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RIESZ TRANSFORM AND VERTICAL OSCILLATION
IN THE HEISENBERG GROUP

KATRIN FÄSSLER AND TUOMAS ORPONEN

We study the L2-boundedness of the 3-dimensional (Heisenberg) Riesz transform on intrinsic Lipschitz
graphs in the first Heisenberg group H. Inspired by the notion of vertical perimeter, recently defined
and studied by Lafforgue, Naor, and Young, we first introduce new scale and translation invariant
coefficients osc�(B(q, r)). These coefficients quantify the vertical oscillation of a domain �⊂ H around
a point q ∈ ∂�, at scale r > 0. We then proceed to show that if � is a domain bounded by an intrinsic
Lipschitz graph 0, and ∫

∞

0
osc�(B(q, r))

dr
r

≤ C <∞, q ∈ 0,

then the Riesz transform is L2-bounded on 0. As an application, we deduce the boundedness of the Riesz
transform whenever the intrinsic Lipschitz parametrisation of 0 is an ϵ better than 1

2 -Hölder continuous in
the vertical direction.

We also study the connections between the vertical oscillation coefficients, the vertical perimeter, and
the natural Heisenberg analogues of the β-numbers of Jones, David, and Semmes. Notably, we show that
the L p-vertical perimeter of an intrinsic Lipschitz domain � is controlled from above by the p-th powers
of the L1-based β-numbers of ∂�.

1. Introduction

1A. A Euclidean introduction to the Heisenberg Riesz transform. A fundamental singular integral
operator (SIO) in Rd is the (d−1)-dimensional Riesz transform, formally defined by the convolution

Rd−1ν(x)= ν ∗
x

|x |d
.

Here x/|x |
d is the (d−1)-dimensional Riesz kernel which is, up to a constant, the gradient of the funda-

mental solution of the Laplacian. Through this connection to the Laplace equation, the operator Rd−1 has
many applications to problems concerning analytic and harmonic functions. For instance, whenever Rd−1

is bounded on L2(µ) for a (d−1)-regular measure µ, then the support of µ is nonremovable for Lipschitz
harmonic functions (or bounded analytic functions in the plane); see [Tolsa 2014] for an in depth
introduction to this topic and many more references.
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A second application of the SIO Rd−1 is the method of layer potentials employed to solve the Dirichlet
problem {

1u(x)= 0, x ∈�,

u|∂� = g
(1.1)

on domains �⊂ Rd with Lipschitz boundaries, and with, say, g ∈ L2(Hd−1
|∂�). As the name suggests, a

key component in the method of layer potentials is the study of the boundary layer potential

Dν(x)= p.v. 1
ωd

∫
∂�

(y − x)n∂�(y)
|y − x |d

dν(y).

The boundedness of the operator D on L2(Hd−1
|∂�) can be derived from the boundedness of Rd−1; see

[Fabes et al. 1978; Verchota 1984].
By now, the L2-boundedness properties of the operator Rd−1 are well understood. According to a

result of David and Semmes [1991], generalising the earlier works of Calderón [1977] and Coifman,
McIntosh, and Meyer [Coifman et al. 1982], Rd−1 is bounded on L2(Hd−1

|S) whenever S ⊂ Rd is
uniformly (d−1)-rectifiable. More recently, Nazarov, Tolsa, and Volberg [Nazarov et al. 2014a] proved a
converse: if S ⊂ Rd is (d−1)-regular, then the uniform rectifiability of S is necessary for the boundedness
of Rd−1 on L2(Hd−1

|S). These results have been used to show that a compact (d−1)-set is removable
for Lipschitz harmonic functions if and only if it is purely (d−1)-unrectifiable [Mattila and Paramonov
1995; Nazarov et al. 2014b] and that the Dirichlet problem (1.1) is solvable in Lipschitz domains with
L2-boundary values [Verchota 1984].

The work here is motivated by aspirations to extend parts of the theory above to the case of a basic
hypoelliptic and nonelliptic operator, the sub-Laplacian (also known as the Kohn Laplacian)

1H = X2
+ Y 2

in R3. Here X and Y are the vector fields

X = ∂x −
1
2 y∂t and Y = ∂y +

1
2 x∂t . (1.2)

A first step is to understand the L2-boundedness of an associated Riesz transform operator, which we will
soon define.

Whereas the operators X, Y,1H do not interact particularly nicely with Euclidean translations, they do
commute with the following left translations τp : R3

→ R3,

τp(q) :=
(
x + x ′, y + y′, t + t ′

+
1
2(xy′

− x ′y)
)
,

where p = (x, y, t) ∈ R3 and q = (x ′, y′, t ′) ∈ R3. This suggests that it is natural to study questions
about 1H in the setting of the first Heisenberg group H = (R3, · ), where the group law “ · ” is defined so
that X and Y are (left) invariant:

p · q := τp(q).
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It was shown by Folland [1975] that the operator 1H has a fundamental solution G : R3
\ {0} → R, whose

formula is given by

G(p)=
c

((x2 + y2)2 + 16t2)1/2
=:

c
∥p∥

2
Kor
, p = (x, y, t) ∈ H \ {0}.

Here c > 0 is a constant and ∥p∥Kor := ((x2
+ y2)2 + 16t2)1/4. This quantity is known as the Korányi

norm of the point p ∈ H, and it induces a metric dKor on H via the relation

dKor(p, q)= ∥q−1
· p∥Kor. (1.3)

The distance dKor is invariant under the left translations, that is, dKor(p · q1, p · q2)= dK (q1, q2) for all
p, q1, q2 ∈ H.

In analogy with the (d−1)-dimensional Riesz transform discussed above, one may now consider the
SIO R formally defined by

Rν(p) := ν ∗ ∇HG(p).

Here ∇H stands for the horizontal gradient ∇HG = (XG, Y G), and the convolution should be understood
in the Heisenberg sense:

f ∗ g(p)=

∫
f (q)g(q−1

· p) dq.

The main open question is the following:

Question 1. For which locally finite Borel measures µ on H (equivalently R3) is the operator R bounded
on L2(µ)?

Here the boundedness on L2(µ) is defined in the standard way via ϵ-truncations; see Section 4 for the
precise definition.

1B. Previous work. To the best of our knowledge, the Heisenberg Riesz transform R was first mentioned
in [Chousionis and Mattila 2014], where the following removability question was raised and studied:
Which subsets of H (more generally, of Heisenberg groups of arbitrary dimensions) are removable for
Lipschitz harmonic functions? The notions of Lipschitz and harmonic should be interpreted in the
Heisenberg sense: We call a function u : H → R harmonic if it solves the sub-Laplace equation 1Hu = 0.
A function f : H → R is Lipschitz if | f (p)− f (q)| ≤ LdKor(p, q) for some L ≥ 1 and all p, q ∈ H.

It was shown in [Chousionis and Mattila 2014, Theorem 3.13] that the critical exponent for the
removability problem in H is 3 (keeping in mind that dimH(H, dKor) = 4). More precisely, sets with
vanishing 3-dimensional measure are removable, while sets of Hausdorff dimension exceeding 3 are not.
In [Chousionis and Mattila 2014, Section 5], the authors formulate (essentially) Question 1 and suggest
its connection to the removability problem.

The connection was formalised by Chousionis and the authors in the following theorem:

Theorem 1.4 [Chousionis et al. 2019a, Theorem 1.2]. If µ is a 3-regular measure on H (see (1.5) below),
and R is bounded on L2(µ), then sptµ is nonremovable for Lipschitz harmonic functions in H.
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In [Chousionis et al. 2019a], we also proved the first nontrivial results on the L2-boundedness of R
(and a class of other SIOs). To discuss these results, and also the ones in the present paper, we need the
concept of intrinsic Lipschitz functions and graphs. A vertical subgroup W ⊂ H is, from a geometric
point of view, any 2-dimensional subspace of R3 containing the t-axis. The complementary horizontal
subgroup of W is the line V = W⊥ in the xy-plane.

We give the definition of intrinsic Lipschitz functions φ : W → V and the associated intrinsic Lipschitz
graphs 0φ ⊂ H in Section 2C. These objects were introduced by Franchi, Serapioni, and Serra Cassano
[Franchi et al. 2006], and they appear to be fundamental building blocks in the theory of high-dimensional
rectifiability in the Heisenberg group; see for example [Chousionis et al. 2019b; Mattila et al. 2010].
In particular, intrinsic Lipschitz graphs 0 ⊂ H are closed 3-regular sets, which means that the measure
µ= H3

|0 satisfies
µ(B(p, r))∼ r3, p ∈ sptµ, 0< r ≤ diam(sptµ). (1.5)

In another paper of Franchi, Serapioni, and Serra Cassano [Franchi et al. 2011], a Rademacher-type
theorem was established for intrinsic Lipschitz functions: without delving into detail, we just mention
that if φ : W → V is intrinsic Lipschitz, then for Lebesgue almost every w ∈ W there exists an intrinsic
gradient for φ, denoted by ∇

φφ(w).
Recall that in Rd, Calderón [1977] and Coifman, McIntosh, and Meyer [Coifman et al. 1982] proved

that Rd−1 is bounded on L2(Hd−1
|0) if 0 ⊂ Rd is a Lipschitz graph. In analogy, one can ask:

Question 2. Assume that 0 ⊂ H is an intrinsic Lipschitz graph. Is R bounded on L2(H3
|0)?

We are not convinced enough to upgrade the question to a conjecture. In [Chousionis et al. 2019a], we
obtained a positive answer under a extra regularity:

Theorem 1.6 [Chousionis et al. 2019a, Theorem 1.1]. Assume α > 0 and that φ ∈ C1,α(W) has compact
support. Then R is bounded on L2(H3

|0φ ).

The assumption φ ∈ C1,α(W) means that the intrinsic gradient of φ exists everywhere and satisfies
an intrinsic version of α-Hölder regularity (which is weaker than Euclidean α-Hölder regularity). The
assumption implies, see [Chousionis et al. 2019a, Proposition 4.1], that the affine approximation of 0φ
at p ∈ 0 improves at a geometric rate as one zooms into p.

1C. New results. A novelty of the current paper is to prove the L2-boundedness of R in some scenarios
where there is no pointwise decay for the quality of affine approximation of 0. As a basic example,
Theorem 4.1 below applies to graphs of the form

0 = 0R2 × R ⊂ H,

where 0R2 is a (Euclidean) Lipschitz graph in R2. It turns out that a key feature of these graphs is the
following. The two complementary domains �1, �2 ⊂ H\0 have zero vertical oscillation: for j ∈ {1, 2},
every vertical line ℓ⊂ H satisfies

ℓ⊂� j or ℓ∩� j = ∅. (1.7)
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The condition (1.7) is qualitative, not to mention exceedingly restrictive, so we looked for a way to quantify
and relax it. For these purposes, we introduce the vertical oscillation coefficients osc�(B(p, r)). Given a
domain�⊂H and a point p ∈∂�, the number osc�(B(p, r)) quantifies, in a scale and translation invariant
way, how far � is (locally) from satisfying (1.7). The definition of the coefficients osc�(B(p, r)) was
inspired by the notion of vertical perimeter recently introduced in [Lafforgue and Naor 2014, Section 4]
and further studied in [Naor and Young 2018]; see Remark 3.2 for the definition. We postpone further
details on the vertical oscillation coefficients to Section 3.

Here is the main theorem of the paper.

Theorem 1.8. Let 0 ⊂ H be an intrinsic Lipschitz graph, and let � be one of the components of H \0.
Assume that there is a finite constant C > 0 such that∫

∞

0
osc�(B(p, r))

dr
r

≤ C, p ∈ ∂�. (1.9)

Then R is bounded on L2(H3
|0).

In general, we do not know how reasonable the assumption (1.9) is. It follows easily from the
Rademacher theorem for intrinsic Lipschitz functions (and Corollary 3.34 below) that osc�(B(p, r))→ 0
for H3 almost every p ∈ 0 as r ↘ 0. But we have no quantitative estimates for osc�(B(p, r)) if nothing
better than intrinsic Lipschitz regularity is assumed of 0; see Section 6 for a concrete question in this
vein. However, we can complement Theorem 1.8 with the following application.

Theorem 1.10. Let φ : W → R be an intrinsic Lipschitz function that satisfies the following Hölder
regularity in the vertical direction:

|φ(y, t)−φ(y, s)| ≤ H |t − s|(1+τ)/2, |s − t | ≤ 1 (1.11)

and
|φ(y, t)−φ(y, s)| ≤ H |t − s|(1−τ)/2, |s − t |> 1, (1.12)

where H ≥ 1 and 0< τ ≤ 1. Then R is bounded on L2(H3
|0φ ).

It is well known that intrinsic Lipschitz functions are always 1
2 -Hölder continuous in the vertical

direction. So, Theorem 1.10 states that an ϵ of additional regularity in this one direction yields the
L2-boundedness of R on 0φ .

1D. Vertical oscillation and β-numbers. A fundamental concept in the theory of quantitative rectifiability
in Rn is the β-number, first introduced in [Jones 1990], then further developed in [David and Semmes
1991], and later applied by too many authors to begin acknowledging here. It is no surprise that suitable
variants of the β-numbers (see Section 3A for definitions) can also be used to study quantitative rectifiability
questions in H, as well as higher dimensional Heisenberg groups. A few papers already doing so are
[Chousionis and Li 2017; Chousionis et al. 2019a; 2019b; Fässler et al. 2020; Juillet 2010; Li and Schul
2016a; 2016b]. Since we here introduce new coefficients related to the theory of quantitative rectifiability
in H, it is natural to ask: is there a connection to β-numbers? We investigate this matter in Sections 3A
and 6B.
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We only mention the key results here briefly and informally. First, the vertical oscillation coefficients
of � are bounded from above by the (L1-based) β-numbers of ∂�— at least if ∂� is 3-regular. This is
the content of Corollary 3.34. Second, if ∂� is 3-regular, and if the β-numbers associated to ∂� satisfy an
L p-Carleson packing condition, see (6.4), then the L p-variant of the vertical perimeter of � inside balls
B(q, r), q ∈ ∂�, is bounded by the usual (horizontal) perimeter of � in B(q, r). This is Corollary 6.5.

This result should be contrasted with the work of Naor and Young in higher dimensional Heisenberg
groups: in [Naor and Young 2018, Proposition 41], they prove that if � ⊂ Hn, n ≥ 2, is an intrinsic
Lipschitz domain, then the L2-vertical perimeter of � in balls centred at ∂� is automatically bounded
by the horizontal perimeter — without any reference to β-numbers. Then, at the very end of [Naor and
Young 2018], see also Remark 4 in the same work, the authors mention showing in a forthcoming paper
[Naor and Young 2022] that a similar inequality fails for the L2-vertical perimeter in H1

= H, but holds
for the L p-vertical perimeter for some p > 2 (specifically, the authors mention p = 4).1 If this is the case,
then, according to Corollary 6.5, one cannot expect the β-numbers of intrinsic Lipschitz graphs to satisfy
an L2-Carleson packing condition. This is in contrast to the situation in Rn, where the β-numbers on
Lipschitz graphs do satisfy an L2-Carleson packing condition; see [David and Semmes 1991, (C3)].

2. Preliminaries

In this section, we collect essential notions related to the algebraic and metric structures of the first
Heisenberg group H, and we recall the definition and basic properties of intrinsic Lipschitz graphs over
vertical planes in H. For a more thorough introduction to these subjects, we refer the reader to [Capogna
et al. 2007; Serra Cassano 2016].

2A. Right- and left-invariant vector fields. Recall from the Introduction that X and Y denote the standard
left-invariant vector fields on H defined in (1.2). We will also work with their right invariant counterparts

X̃ = ∂x +
1
2 y∂t and Ỹ = ∂y −

1
2 x∂t .

We define the left and right (horizontal) gradients of φ ∈ C1(R3) as the 2-vectors

∇Hφ = (Xφ, Yφ) and ∇̃Hφ = (X̃φ, Ỹφ).

For V = (V1, V2) ∈ C1(R3,R2), we define the left and right divergences as the functions

divH V := X V1 + Y V2 ∈ C0(R3) and d̃ivHV := X̃ V1 + Ỹ V2 ∈ C0(R3).

For V,W ∈ C1(R3,R2), we define the inner product

⟨V,W ⟩ := V1W1 + V2W2 ∈ C1(R3).

Finally, we denote the left and right sub-Laplacians as

1H := X X + Y Y and 1̃H := X̃ X̃ + Ỹ Ỹ.
1While the present paper was under review, the paper [Naor and Young 2022] appeared, and indeed contains the results

mentioned here.
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2B. Metric structure. Various left-invariant distance functions on H are commonly used in the literature,
for instance the standard sub-Riemannian distance or the Korányi metric given in (1.3). The choice of
metric that we are going to use is motivated by the divergence theorem (Theorem 4.3), which holds for
the spherical Hausdorff measure S3 with respect to the metric

d : H × H → [0,+∞), d(p, q) := ∥q−1
· p∥, (2.1)

where

∥(x, y, t)∥ := max{|(x, y)|, 2
√

|t |}.

However, every left-invariant metric on H that is continuous with respect to the Euclidean topology on
R3 and homogeneous with respect to the one-parameter family of Heisenberg dilations (δλ)λ>0,

δλ : H → H, δλ(x, y, t) := (λx, λy, λ2t),

is bi-Lipschitz equivalent to the metric d; this applies in particular to the Korányi distance dKor. Unless
otherwise stated, all metric concepts such as balls B(p, r), diameters, and Hausdorff measures will be
defined using the metric d.

2C. Intrinsic Lipschitz graphs. Let W be a vertical subgroup with complementary horizontal subgroup V;
recall from the paragraph after Theorem 1.4 that, in this paper, the complementary horizontal subgroup
of W is the orthogonal complement of W in R3. Any point p ∈ H can be written as p =w ·v for uniquely
given w ∈ W and v ∈ V. We write w =: πW(p) and call it the vertical projection of p to W; similarly,
we denote the horizontal projection by v = πV(p). These projections have been studied in connection
with uniform rectifiability problems in the Heisenberg group; see for example [Chousionis et al. 2019b;
Fässler et al. 2020].

Definition 2.2. A function φ : W → V is intrinsic L-Lipschitz if

∥πV(8(w
′)−18(w))∥ ≤ L∥πW(8(w

′)−18(w))∥, for all w,w′
∈ W, (2.3)

where 8 : W → H denotes the graph map 8(w)= w ·φ(w). The intrinsic graph of φ is

0φ := {w ·φ(w) : w ∈ W} =8(W).

The term intrinsic refers to the fact that if φ is an intrinsic L-Lipschitz function, then, for all p ∈ H

and r > 0, also τp(δr (0φ)) is an intrinsic graph of an intrinsic L-Lipschitz function. According to
[Chousionis et al. 2019b, Remark 2.6], an intrinsic L-Lipschitz graph over an arbitrary vertical plane can
be mapped to an intrinsic L-Lipschitz graph over the (y, t)-plane by an isometry of the form

Rθ : H → H, Rθ (x, y, t) := (x cos θ + y sin θ,−x sin θ + y cos θ, t).

Since moreover the (complexified) kernel of the Heisenberg Riesz transform satisfies

(XG − iY G) ◦ Rθ = eiθ (XG − iY G),
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we may without loss of generality assume in the following that W is the (y, t)-plane and V is the x-axis.
For this choice, we have

πV(x, y, t)= (x, 0, 0) and πW(x, y, t)=
(
0, y, t +

1
2 xy

)
, for all (x, y, t) ∈ H.

Moreover, the map (x, 0, 0) 7→ x provides an isometric isomorphism between (V, · , d) and (R,+, | · |),
and under this identification of V with R, the intrinsic Lipschitz condition (2.3) is equivalent to

|φ(0, y, t)−φ(0, y′, t ′)| ≤ L∥πW(8(0, y′, t ′)−18(0, y, t))∥, for all (y, t), (y′, t ′) ∈ R2.

The subgroup (W, · ) is isomorphic to (R2,+), and the map (0, y, t) 7→ (y, t) pushes the measure H3
|W

forward to cL2 on R2, for a constant 0< c <∞. As mentioned in the Introduction, an intrinsic Lipschitz
function φ : W → V possesses an intrinsic gradient ∇

φφ at H3 almost every point of W. In analogy with
the behaviour of Euclidean Lipschitz functions, if φ : W → V is intrinsic Lipschitz, then

∥∇
φφ∥L∞(H3|W) <∞,

by [Citti et al. 2014, Proposition 4.4]. More information about intrinsic gradients is collected for instance
in [Chousionis et al. 2019b, Section 4.2; Serra Cassano 2016].

3. Vertical oscillation coefficients

In this section, we define and study the main new concept of the paper, the vertical oscillation coefficients.
These coefficients are derived from the recent notion of vertical perimeter, due to [Lafforgue and Naor
2014, Definition 4.2] (see also [Naor and Young 2018, (28)]).

Definition 3.1 (vertical perimeter). Let �,U ⊂ H be Lebesgue measurable sets, and let s > 0 be a scale.
The vertical perimeter of � relative to U at scale s is the quantity

v�(U )(s) :=

∫
U
|χ�(p)−χ�(p · (0, 0, s2))| dp.

Here and in the following, dp refers to integration with respect to Lebesgue measure L3 on R3, which
agrees up to a multiplicative constant with H4.

Remark 3.2. Having first defined the vertical perimeter v�(U )(s) at a fixed scale s > 0, [Lafforgue and
Naor 2014, (70)] and [Naor and Young 2018, Section 2.2] proceed to define the L2-vertical perimeter of�
as the L2(ds/s)-norm of the function s 7→ v�(H)/s. More generally, for p ≥ 1 and an open set U ⊂ H,
one can consider (as in [Naor and Young 2018, (68)] for example) the L p-vertical perimeter of � in U :

℘�,p(U ) :=

∥∥∥∥s 7→
v�(U )(s)

s

∥∥∥∥
L p(ds/s)

=

(∫
∞

0

(
v�(U )(s)

s

)p
ds
s

)1/p

.

It would be interesting to know if the L p-vertical perimeter of �— for some p ≥ 1 — can be related to
the boundedness of the Heisenberg Riesz transform on L2(H3

|∂�).
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Definition 3.3 (vertical oscillation coefficients). Let �⊂ H be a Lebesgue measurable (typically open)
set, and let B(p, r)⊂ H be a ball. We define

osc�(B(p, r)) :=
1
r4

/
∫ r

0
v�(B(p, r))(s) ds.

Next we examine the basic properties of the oscillation coefficients.

Lemma 3.4. There is an absolute constant C ≥ 1 such that osc�(B(p, r)) ≤ C for all Lebesgue
measurable sets �⊂ H and all balls B(p, r)⊂ H. The vertical oscillation coefficients are approximately
monotone in the following sense: if B(p1, r1)⊂ B(p2, r2)⊂ H are two balls with r2 ≤ C1r1, then

osc�(B(p1, r1))≲C1 osc�(B(p2, r2)). (3.5)

Finally, the vertical oscillation coefficients are invariant with respect to dilations and left translations in
the following sense:

oscδt (q·�)(B(δt(q · p), tr))= osc�(B(p, r)), t > 0, q ∈ H. (3.6)

Proof. To prove the first claim, observe that v�(B(p, r))(s)≤ 2H4(B(p, r))∼ r4 for all 0 ≤ s ≤ r , so

osc�(B(p, r))≲ /
∫ r

0

r4

r4 ds = 1.

The approximate monotonicity property (3.5) follows immediately from the inequality v�(B(p1, r1))(s)≤
v�(B(p2, r2))(s), valid for all s > 0.

The left-invariance oscq·�(B(q · p, r))= osc�(B(p, r)) of the vertical oscillation coefficients follows
from the evident left-invariance of the vertical perimeter, so we assume that p = q = 0 and prove that

oscδt (�)(B(0, tr))= osc�(B(0, r)), t > 0.

To see this, we start by expanding

oscδt (�)(B(0, tr))=
1

(tr)5

∫ tr

0
vδt (�)(B(0, tr))(s) ds

=
1

(tr)5

∫ tr

0

∫
B(0,tr)

|χδt (�)(p)−χδt (�)(p · (0, 0, s2))| dp ds.

Then, we make the change of variables p 7→ δt(q), and finally s 7→ ut :

oscδt (�)(B(0, tr))=
1
r5

∫ r

0

∫
B(0,r)

|χ�(q)−χ�(q · (0, 0, u2))| dq du = osc�(B(0, r)). □

Remark 3.7. The previous lemma says that osc�(B(p, r))≲ 1 no matter what � looks like. If � is the
sub- or supergraph of an intrinsic Lipschitz function satisfying better than 1

2 -Hölder regularity in the
vertical direction, then the oscillation coefficients of � have geometric decay. A more precise statement
can be found in Lemma 5.6.

In connection with singular integrals, the vertical oscillation coefficients will enter through the next
lemma.
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Lemma 3.8. Let � ⊂ H be a Lebesgue measurable set. Let p ∈ H, r > 0, and let ψ ∈ C1(R3) with
sptψ ⊂ B(p, r). Then ∣∣∣∣ 1

r4

∫
�

∂tψ(p) dp
∣∣∣∣ ≲ ∥∂tψ∥∞ osc�(B(p, 10r)), (3.9)

where ∂tψ is the derivative of ψ with respect to the third variable.

Proof. We start by reducing to the case B(p, r)= B(0, 1). So, assume that (3.9) holds for every Lebesgue
measurable set � and all ψ ∈ C1(R3) with sptψ ⊂ B(0, 1) and with osc�(B(0, 10)) on the right-hand
side. Then, if ψ ∈ C1(R3) with sptψ ⊂ B(p, r), we consider the function ψp,r = ψ ◦ τp ◦ δr ∈ C1(R3)

with sptψp,r ⊂ B(0, 1). It follows that∣∣∣∣ 1
r4

∫
�

∂tψ(q) dq
∣∣∣∣ =

∣∣∣∣∫
δ1/r (p−1·�)

∂tψ(p · δr (q)) dq
∣∣∣∣

=

∣∣∣∣∫
δ1/r (p−1·�)

r−2∂tψp,r (q) dq
∣∣∣∣

≲
∥∂tψp,r∥∞

r2 oscδ1/r (p−1·�)(B(0, 10))

= ∥∂tψ∥∞ osc�(B(p, 10r)),

using Lemma 3.4 in the last equation.
It remains to prove the case B(p, r)= B(0, 1), so fix ψ ∈ C1(R3) with sptψ ⊂ B(0, 1). By Fubini’s

theorem, we can write ∫
�

∂tψ(q) dq =

∫
L

∫
ℓ

∂tψ(q)χ�(q) dH1
E(q) dη(ℓ), (3.10)

where L stands for the collection of vertical lines, η is the two-dimensional Lebesgue measure on R2

(which is used to parametrise L), and H1
E denotes the 1-dimensional Hausdorff measure with respect to

the Euclidean distance. Next, we note that if ℓ ∈ L is a fixed line, then∫
ℓ

∂tψ(q) dH1
E(q)= 0. (3.11)

Now, let Q := [−5, 5]
2
× [−2,−1] ⊂ B(0, 10). We note that whenever ℓ ∈ L is a line with nonzero

contribution in (3.10), we have ℓ∩ B(0, 1) ̸= ∅, and in particular

H1
E(ℓ∩ Q)= 1.

Then, use (3.10)–(3.11) to write∣∣∣∣∫
�

∂tψ(q) dq
∣∣∣∣ =

∣∣∣∣∫
L

∫
ℓ∩Q

∫
ℓ

∂tψ(q)[χ�(q)−χ�(p)] dH1
E(q) dH1

E(p) dη(ℓ)
∣∣∣∣

≤ ∥∂tψ∥∞

∫
L

∫
ℓ∩Q

∫
ℓ∩B(0,1)

|χ�(q)−χ�(p)| dH1
E(q) dH1

E(p) dη(ℓ).
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Next, for ℓ ∈ L and p ∈ ℓ∩ Q fixed, we make the change of variable q 7→ p · (0, 0, s) in the innermost
integral: since q ∈ ℓ∩ B(0, 1) and p ∈ ℓ∩ Q, we note that s ∈ [0, 3]. This leads to∣∣∣∣∫

�

∂tψ(q) dq
∣∣∣∣ ≤ ∥∂tψ∥∞

∫
L

∫
ℓ∩Q

∫ 3

0
|χ�(p · (0, 0, s))−χ�(p)| ds dH1

E(p) dη(ℓ)

≤ ∥∂tψ∥∞

∫ 3

0

∫
L

∫
ℓ∩B(0,10)

|χ�(p · (0, 0, s))−χ�(p)| dH1
E(p) dη(ℓ) ds

≲ ∥∂tψ∥∞

∫ √
3

0
v�(B(0, 10))(u)u du ≲ ∥∂tψ∥∞ osc�(B(0, 10)).

In the final inequality, the factor “u” was simply estimated by
√

3. □

3A. Vertical oscillation vs. vertical β-numbers. Given a set E ⊂ H and a ball B(q, r)⊂ H, we recall
from [Chousionis et al. 2019b, Definition 3.3] the following vertical β-number of E in B(q, r), q ∈ E ,

βE,∞(B(q, r)) := inf
W,z

sup
x∈B(q,r)∩E

dist(x, z · W)

r
,

where the inf runs over all vertical subgroups W ⊂ H and all points z ∈ H. More generally, one can
consider the L p-variants

βE,p(B(q, r)) := inf
W,z

(
1
r3

∫
B(q,r)∩E

(
dist(x, z · W)

r

)p

dH3(x)
)1/p

, 1 ≤ p <∞,

assuming that E has locally finite 3-dimensional measure. If E happens to be 3-regular, then the
βE,p-numbers are essentially monotone in p:

βE,p1(B(q, r))≲ βE,p2(B(q, r)), q ∈ E, 1 ≤ p1 ≤ p2 ≤ ∞.

The next theorem shows that the vertical oscillation coefficients of � are always bounded by the βE,∞-
numbers of ∂�, and also almost bounded from above by the βE,1-numbers of ∂�. After this statement
concerning general domains �, we will give a corollary to domains with 3-regular boundaries: in this
case the word almost above can be omitted.

Theorem 3.12. Let � ⊂ H be an open set such that ∂� has locally finite 3-dimensional measure, and
let r > 0. Then, for any p ∈ ∂� and 0< s ≤ r ,

v�(B(p, r))(s)
r4 ≲ϵ inf

W,z

[
1
r3

∫
B(p,15r)∩∂�

d(q, z · W)

15r
dH3(q)+ ϵ

(
sup

q∈B(p,15r)∩∂�

d(q, z · W)

15r

)]
(3.13)

for any nondecreasing function ϵ : R+ → R+ such that ϵ(δ)→ 0 as δ → 0.

The same estimate for the vertical oscillation coefficient osc�(B(p, r)) follows immediately by taking
the average over s ∈ (0, r ] on the left-hand side; we will however need the sharper result later, in Section 6B.
Note also that the quantity on the right-hand side of (3.13) looks like

β∂�,1(B(p, 15r))+ ϵ[β∂�,∞(B(p, 15r))],
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but can be sometimes larger, as only one choice of z,W is made on the right-hand side of (3.13). The
quantities on both sides of the inequality (3.13) are invariant under scaling and translation, so we may
assume that p = 0 and r = 1. We start the proof of Theorem 3.12 with the following simple lemma.

Lemma 3.14. Let�⊂ H be an open set. Let H ⊂ H be a vertical half-space, that is, a half-space bounded
by the translate of some vertical subgroup. Then

v�(B(0, 1))(s)≤ 2H4([�1H ] ∩ B(0, 3)), 0< s ≤ 1.

Proof. Let 0 ≤ s ≤ 1. Note that χH (q)= χH (q · (0, 0, s2)) for all q ∈ H. Hence,

v�(B(0, 1))(s)≤

∫
B(0,1)

|χ�(q)−χH (q)+χH (q · (0, 0, s2))−χ�(q · (0, 0, s2))| dq

≤ 2
∫

B(0,3)
|χ�(q)−χH (q)| dq = 2H4([�1H ] ∩ B(0, 3)). □

Now, to conclude the proof of Theorem 3.12, it suffices to show
(
after scaling � by 1

3

)
that there exists

a vertical half-space H ⊂ H such that

H4([�1H ] ∩ B(0, 1))≲ϵ inf
W,z

[∫
B(0,5)∩∂�

d(q, z · W) dH3(q)+ ϵ
(

sup
q∈B(0,5)∩∂�

d(q, z · W)

)]
. (3.15)

Further, to prove (3.15), we may assume that if P := z · W is a vertical plane minimising the right-hand
side in (3.15), then d(q, P)≤ δ := 10−10 for all q ∈ B(0, 5)∩∂�. Indeed, (3.15) is clear if this fails (with
implicit constant ∼ 1/ϵ(δ)). In particular, since 0 = p ∈ ∂�, we may write P = z′

· W with d(0, z′)≤ δ.
By left-translating both P and � by the inverse of z′ and then rotating suitably around the t-axis, we may
suppose that P = {(0, y, t) : y, t ∈ R} and

sup
q∈B(0,4)∩∂�

d(q, P)≤ δ. (3.16)

In other words, (3.16) holds for a suitable rotation of (z′)−1
·�, but we keep denoting this set by �. We

will no longer need the information 0 ∈ ∂� in the sequel. Now, with this new notation, it suffices to prove
(3.15) with [�1H ] ∩ B(0, 1.1) on the left-hand side and, say, B(0, 4)∩ ∂� on the right-hand side.

We will, in fact, show that there exists a vertical half-space H ⊂ H such that

H4([�1H ] ∩ B(0, 1.1))≲
∫

B(0,4)∩∂�
d(q, P) dH3(q). (3.17)

So, the L1-based β-number of ∂� dominates the vertical oscillation of � under the a priori assumption
that the L∞-based β-number is sufficiently small. We now choose H. We denote the (closed) half-spaces
bounded by P by

H+ := {(x, y, t) : x ≥ 0} and H− := {(x, y, t) : x ≤ 0}.

Write U+,U− for the connected components of B(0, 4)\ P(δ), where P(δ) is the closed δ-neighbourhood
of P, with

U+ ⊂ H+ and U− ⊂ H−.
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B(0, 4)

�

w

P(δ)

B(0, 2)

pw,+

0

ℓw,+

ℓw,+

ℓw,+

Figure 1. Various concepts in the proof of Theorem 3.12. Scenario (a) is depicted.

By (3.16), we may infer that either U+ ⊂� or U+ ∩�=∅, and similarly either U− ⊂� or U− ∩�=∅.
The definition of H depends on which of these cases occur:

(a) If U− ⊂� and U+ ∩�= ∅, let H := H−.

(b) If U− ∩�= ∅ and U+ ⊂�, let H := H+.

(c) If U+,U− ⊂�, let H be any vertical half-space containing B(0, 4).

(d) If U+ ∩�= ∅ = U− ∩�, let H be any vertical half-space with H ∩ B(0, 4)= ∅.

The point of these choices is that always

[�1H ] ∩ B(0, 4)⊂ P(δ), (3.18)

as one may easily verify.
We claim that (3.17) holds for the choice of H above. To see this, we will need additional notation.

For w ∈ P, let
ℓw := {w · (x, 0, 0) : x ∈ R}

be the left-translate of the x-axis passing through w. We also define the half-lines

ℓw,+ := ℓw ∩ H+ and ℓw,− := ℓw ∩ H−,

see Figure 1. To prove (3.17), we study separately the parts of [�1H ] ∩ B(0, 1.1) inside H− and H+.
These investigations are symmetrical, so we restrict our attention to H+. For notational convenience, we
write B(0, s)∩ H+ := B+(0, s) in the sequel. We will apply the general integration estimate

H4(A)∼

∫
P
H1(A ∩ ℓw) dw, A ⊂ H Borel. (3.19)
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Here “dw” refers to the 3-dimensional Hausdorff measure on P, which coincides (up to a constant)
with the Lebesgue measure on P. In order to establish formula (3.19), recall that H4 agrees up to a
multiplicative constant with the 3-dimensional Lebesgue measure and the transformation 8 : R2

×R → H,
8((w1, w2), s)= (0, w1, w2) · (s, 0, 0) has Jacobian determinant equal to 1. Hence,

H4(A)∼

∫
R2

∫
∞

−∞

χA(8(w, s)) ds dw. (3.20)

Next, for every w ∈ P, the map s 7→8(w, s)= w · (s, 0, 0) is an isometry between (R, | · |) and (ℓw, d),
and thus we find that ∫

∞

−∞

χA(8(w, s)) ds =

∫
ℓw

χA(q) dH1(q)= H1(A ∩ ℓw). (3.21)

These facts together prove (3.19). Applied to the set A = [�1H ] ∩ B+(0, 1.1), this formula then yields

H4([�1H ] ∩ B+(0, 1.1))≲
∫

P∩B(0,2.2)
H1([�1H ] ∩ ℓw,+ ∩ B(0, 1.1)) dw. (3.22)

Here, the integration is restricted to P ∩ B(0, 2.2) as 8(w, s), w ∈ P, can lie in B(0, 1.1) only if |s| ≤ 1.1,
and in that case d(8(w, s), 0)≥ d(w, 0)− d(0, (s, 0, 0)) > 1.1 if w ∈ P \ B(0, 2.2); in other words, the
lines ℓw with w ∈ P \ B(0, 2.2) avoid B(0, 1.1). Now, we fix w ∈ P ∩ B(0, 2.2), and we will establish a
suitable pointwise bound for the integrand in (3.22). To this end:

• If ℓw,+ ∩ ∂[�1H ] ∩ B(0, 4)= ∅, set pw,+ := w.

• If ℓw,+ ∩ ∂[�1H ] ∩ B(0, 4) ̸= ∅, let

pw,+ := max[ℓw,+ ∩ ∂[�1H ] ∩ B(0, 4)],

where the max refers to the only natural ordering on ℓw,+.

Then, by (3.18), we have in both cases

pw,+ ∈ ℓw,+ ∩ P(δ)⊂ P(δ)∩ B(0, 3), w ∈ P ∩ B(0, 2.2). (3.23)

(If w is sufficiently close to ∂B(0, 2.2), then it may happen that ℓw,+ ∩ P(δ) ̸⊂ B(0, 2.2), see Figure 1.
However, δ > 0 has been chosen so small that the second inclusion in (3.23) holds.) Next we define

h+(w) := dist(pw,+, P), w ∈ P ∩ B(0, 2.2).

The suitable pointwise bound for the integrand in (3.22) is

H1([�1H ] ∩ ℓw,+ ∩ B(0, 1.1))≤ h+(w), w ∈ P ∩ B(0, 2.2). (3.24)

In proving (3.24), we may evidently assume that

[�1H ] ∩ ℓw,+ ∩ B(0, 1.1) ̸= ∅. (3.25)

Now, to prove (3.24), we will first argue that also

[�1H ]
c
∩ ℓw,+ ∩ B(0, 4) ̸= ∅. (3.26)
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This will follow immediately once we manage to argue that

U+ ⊂ [�1H ]
c, (3.27)

since evidently ℓw,+ ∩ U+ ̸= ∅. The proof of (3.27) depends on the scenario (a)–(d):

(a) Here U+ ∩�= ∅ and H = H−, so U+ ⊂�c
∩ H c

⊂ [�1H ]
c.

(b) Here U+ ⊂� and H = H+, so U+ ⊂�∩ H ⊂ [�1H ]
c.

(c) Here U+ ⊂� and B(0, 4)⊂ H, so U+ ⊂�∩ H ⊂ [�1H ]
c.

(d) Here U+ ∩�= ∅ and H ∩ B(0, 4)= ∅, so U+ ⊂�c
∩ H c

⊂ [�1H ]
c.

We have now established (3.27), and hence (3.26). Combining (3.25)–(3.26), we see that

pw,+ = max[ℓw,+ ∩ ∂[�1H ] ∩ B(0, 4)]

is well-defined, and moreover

[�1H ] ∩ ℓw,+ ∩ B(0, 1.1)⊂ [w, pw,+], (3.28)

where [w, pw,+] stands for the (horizontal) line segment connecting w and pw,+. The point pw,+ can
be uniquely expressed as pw,+ = w · v+, where v+ = (x+, 0, 0) for some x+ ≥ 0. Thus we find by the
definition of the metric d that

x+ ≤ ∥w̄−1wv+∥ = d(wv+, w̄)= d(pw,+, w̄), for all w̄ ∈ P.

On the other hand, it holds that d(pw,+, w)= x+. Hence

h+(w)= dist(pw,+, P)= d(pw,+, w)= H1([w, pw,+]), (3.29)

where the last identity follows from the fact that x 7→w · (x, 0, 0) is an isometry from (R, | · |) to (ℓw, d).
We can now infer (3.24) from (3.28) and (3.29).

Before proceeding further, we record that the function h+ : P ∩ B(0, 2.2)→ R is Borel, in fact even
upper semicontinuous. To see this, note that pw,+ is always contained in the compact set

K := (P ∪ ∂[�1H ])∩ B(0, 3)

for w ∈ P ∩ B(0, 2.2), and, consequently, also h+(P ∩ B(0, 2.2)) is contained in the compact set
K ′

:= {dist(p, P) : p ∈ K } ⊂ R. If h+ was not upper semicontinuous, there would exist w ∈ P ∩ B(0, 2.2),
ϵ > 0, and a sequence (wn)n ⊆ P ∩ B(0, 2.2) with

lim
n→∞

wn = w and lim
n→∞

h+(wn) > h+(w).

We may assume that the limit on the right exists by the compactness of K ′. Reducing to a further
subsequence if necessary, we may assume that the sequence of points pwn,+ = wn · (h+(wn), 0, 0)
converges to a point p = w · v ∈ K. Moreover,

h+(w) < lim
k→∞

h+(wn)= lim
k→∞

dist(pwn,+, P)= dist(p, P). (3.30)
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Since p ∈ ℓw,+ ∩ ∂[�1H ] ∩ B(0, 4) (note that p /∈ P by (3.30)), this contradicts the maximality in the
definition of pw,+, and the proof of the upper semicontinuity of h+ is complete.

We now resume the proof of our goal (3.17). Combining (3.18) and (3.24), we have now established
that

H4([�1H ] ∩ B+(0, 1.1))≲
∫

P∩B(0,2.2)
h+(w) dw =

∫
P∩B(0,2.2)

dist(pw,+, P) dw. (3.31)

Noting that pw,+ ∈ ∂�∩ B(0, 4) if dist(pw,+, P) ̸= 0, this conclusion is not too far from (3.17) anymore.
To arrive at (3.17) from (3.31), we use the vertical projection π := πP to the subgroup P, introduced in
Section 2C. The most central features of π , for now, are that π−1

{w} = ℓw for w ∈ P and that π does not
increase the 3-dimensional Hausdorff measure (too much): there exists a constant C ≥ 1 such that

H3(π(A))≤ CH3(A), A ⊂ H. (3.32)

For a proof, see [Chousionis et al. 2019b, Lemma 3.6]. To apply these facts, let F : P ∩ B(0, 2.2)→ H be
the map F(w) := pw,+. It follows from the discussion leading to (3.29) that F(w)=w ·(h+(w), 0, 0) and
hence F is a Borel function. We deduce that the push-forward measure ν := F♯(H3

|B(0,2.2)∩P), defined
by ν(A) := H3(B(0, 2.2)∩ P ∩ F−1(A)), is a Borel measure on H, and we have the integration formula∫

B(0,2.2)∩P
dist(pw,+, P) dw =

∫
H

dist(q, P) dν(q), (3.33)

see for instance [Mattila 1995, Theorem 1.19]. Clearly ν(H \ F(P ∩ B(0, 2.2)))= 0, which shows that
spt ν ⊆ F(P ∩ B(0, 2.2)). Moreover,

ν ≪ H3
|F(P∩B(0,2.2))

with bounded density, because F−1(A)⊂ π(A) for all A ⊂ H, and hence

ν(A)= H3([B(0, 2.2)∩ P] ∩ F−1(A))≤ H3(π(A))≤ CH3(A), A ⊂ H,

using (3.32). Finally, we observe that

F(P ∩ B(0, 2.2))⊆ B(0, 3)∩ (P ∪ ∂[�1H ])⊆ B(0, 4)∩ (P ∪ ∂�).

The last inclusion follows from the generalities ∂[A ∪ B], ∂[A ∩ B] ⊂ ∂A ∪ ∂B:

∂[�1H ] ⊂ ∂[�∩ H c
] ∪ ∂[�c

∩ H ] ⊂ ∂�∪ ∂H.

In cases (a) and (b) we have ∂H = P, while in cases (c) and (d) the boundary of H does not intersect B(0, 4).
Combining these observations with (3.33), we find∫

B(0,2.2)∩P
dist(pw,+, P) dw ≲

∫
B(0,4)∩∂�

dist(q, P) dH3(q).

Hence the right-hand side of (3.31) is bounded by a constant times the right-hand side of (3.17). The
proof of (3.17), and of Theorem 3.12, is complete. □

We conclude the section by strengthening Theorem 3.12 in the case when ∂� is 3-regular.
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Corollary 3.34. Assume that �⊂ H is an open set such that ∂� is 3-regular. Then

v�(B(p, r))(s)
r4 ≲ β∂�,1(B(p, 30r)), p ∈ ∂�, 0< s ≤ r.

Proof. As usual, we may assume that p = 0 ∈ ∂� and r = 1. The proof is based on the general observation
that if E ⊂ H is 3-regular and P ⊂ H is a vertical plane with P ∩ B(0, 2) ̸= ∅, then

dist(q, P)≲
(∫

B(0,2)∩E
d(x, P) dH3(x)

)1/4

, q ∈ E ∩ B(0, 1). (3.35)

In Euclidean space, the analogous argument can be found for example in [David and Semmes 1991, (5.4)].
To prove (3.35), denote the right-hand side by β1/4, and assume to reach a contradiction that there exists
a point q ∈ B(0, 1)∩ E with d(q, P)≥ Cβ1/4 for some large constant C ≥ 1. We record that this implies
that 1

4Cβ1/4
≤ 1, since we assumed P ∩ B(0, 2) ̸= ∅. Also, clearly

dist(y, P)≥
1
2Cβ1/4, y ∈ E ∩ B

(
q, 1

4Cβ1/4)
⊂ B(0, 2).

By 3-regularity,

(Cβ1/4)3 ≲H3(B
(
q, 1

4Cβ1/4)
∩ E

)
≤

2
Cβ1/4

∫
B(q,Cβ1/4/4)∩E

d(x, P) dH3(x)≤
2β3/4

C
,

and a contradiction is hence reached for C ≥ 1 large enough.
From (3.35) (with “1” and “2” replaced by “15” and “30”, respectively), choosing P = z · W to be the

best-approximating vertical plane for β∂�,1(B(0, 30)), we may now infer that

inf
W,z

[∫
B(0,30)∩∂�

d(q, z · W) dH3(q)+
(

sup
q∈B(0,15)∩∂�

d(q, z · W)
)4

]
≲ β∂�,1(B(0, 30)).

In combination with Theorem 3.12 applied to ϵ(δ) := δ4, this inequality completes the proof. □

4. Boundedness of the Riesz transform

4A. Definitions and restating the main theorem. We now begin to relate the vertical oscillation coef-
ficients to the boundedness of the 3-dimensional Riesz transform in H. For technical convenience, we
replace the vectorial kernel ∇HG = (XG, Y G) from the Introduction with the complex kernel

K (p)= XG(p)− iY G(p),

where G(p)= c∥p∥
−2
Kor is still the fundamental solution to the sub-Laplace equation 1Hu = 0. For the

time being, we will only need to know that K is smooth outside the origin and −3-homogeneous with
respect to the dilations δr :

K (δr (q))= r−3K (q), q ∈ H \ {0}.

It follows that |K (q)| ≲ ∥q∥
−3 for q ∈ H \ {0}. To the kernel K we associate the ϵ-truncated SIOs

Rϵ(µ)(p) :=

∫
{q∈H:∥q−1·p∥≥ϵ}

K (q−1
· p) dµ(q),

where µ is any complex measure on H with finite total variation.
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Let µ be a locally finite Borel measure on H. We say that R is bounded on L2(µ) if the operators Rϵ

are bounded on L2(µ) uniformly in ϵ > 0:

∥Rϵ( f µ)∥L2(µ) ≤ A∥ f ∥L2(µ), f ∈ L1(µ)∩ L2(µ), ϵ > 0.

The measures µ relevant here are 3-regular measures on intrinsic Lipschitz graphs. For intrinsic Lipschitz
graphs 0 ⊂ H as in Theorem 1.8, we will directly prove the L2(µ)-boundedness of R for the particular
measure

µ := S3
|0,

where S3 is the 3-dimensional spherical Hausdorff measure defined using the metric d from (2.1). This
choice makes it more straightforward to use the divergence theorem, but is otherwise arbitrary. In particular,
once the L2(S3

|0)-boundedness of R has been established, then it is easy to check (or see [Chousionis
et al. 2019a, Lemma 3.1]) that R is bounded on L2(µ) with respect to any 3-regular measure µ supported
on 0— in particular H3

|0.
Here is more precisely the result we will prove.

Theorem 4.1. Let W ⊂ H be a vertical subgroup, which we identify with {(y, t) : y, t ∈ R}. Let φ : W → R

be an intrinsic Lipschitz function, let

� := {(x, y, t) : x > φ(πW(x, y, t))}

be the supergraph of φ, and assume that∫
∞

0
osc�(B(p, r))

dr
r

≤ C <∞, p ∈ 0.

Then R is bounded on L2(S3
|0φ ).

It is easy to check that H \0φ has exactly two connected components, namely the supergraph � above
and the subgraph �′

:= {(x, y, t) : x < φ(πW(x, y, t))}. Since

osc�(B(p, r))= oscH\�(B(p, r))= osc�′(B(p, r)), p ∈ 0, r > 0,

fixing the complementary component in Theorem 4.1 does not render the statement less general than that
of Theorem 1.8 in the Introduction.

4B. Test functions and the divergence theorem. We will prove Theorem 4.1 by verifying the conditions
of Christ’s local T (b) theorem [1990]. We first introduce some more notation. From now on the intrinsic
Lipschitz graph 0 := 0φ will be fixed as in Theorem 4.1, and we write µ := S3

|0. We define the
complex-valued function ν on 0 as

ν(w ·φ(w)) := ν1(w ·φ(w))+ iν2(w ·φ(w)) :=
1√

1 + (∇φφ(w))2
+ i

−∇
φφ(w)√

1 + (∇φφ(w))2
, (4.2)

where ∇
φφ is the intrinsic gradient of φ. Since φ is intrinsic Lipschitz, ν(p) exists forµ almost every p ∈0,

because ∇
φφ(w) exists for S3 almost every w ∈ W, and the graph map 8(w)= w ·φ(w) preserves S3
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null sets by the area formula for intrinsic Lipschitz functions, see [Citti et al. 2014, Theorem 1.6]. By
similar reasoning, ν ∈ L∞(µ).

We also define the R2-valued map

νH (q)= (ν1(q), ν2(q))=

(
1√

1 + (∇φφ(w))2
,

−∇
φφ(w)√

1 + (∇φφ(w))2

)
∈ R2, q = w ·φ(w).

Then, by [Citti et al. 2014, Corollary 4.2], νH is the inward-pointing horizontal normal of the intrinsic
supergraph �= {(x, y, t) : x > φ(πW(x, y, t))}, expressed in the frame {X, Y }. With this notation, we
have the following divergence theorem due to Franchi, Serapioni, and Serra Cassano [Franchi et al. 2001].

Theorem 4.3 (divergence theorem). Let V ∈ C1
c (R

3,R2), and let 0 = 0φ be an intrinsic Lipschitz graph
as above. Then

−

∫
�

divH V (p) dp = c
∫
0

⟨V, νH ⟩ dS3,

where �= {(x, y, t) : x > φ(πW(x, y, t))} and c > 0 is an absolute constant.

Remark 4.4. The divergence theorem in [Franchi et al. 2001] looks a little different than Theorem 4.3
above, so a few remarks are in order. First, the sub- and supergraphs of intrinsic Lipschitz graphs are
H-Caccioppoli sets by [Franchi et al. 2011, Theorem 4.18], so [Franchi et al. 2001, Corollary 7.6] gives
the formula

−

∫
�

divH V (p) dp = c
∫
∂∗,H�

⟨V, νH ⟩ dS3, V ∈ C1
c (R

3,R2).

Here ∂∗,H� stands for the measure theoretic boundary of �; see [Franchi et al. 2001, Definition 7.4]. But
for domains � bounded by intrinsic Lipschitz graphs 0, the measure theoretic boundary of � equals the
topological boundary ∂�= 0: the inclusion 0 ⊂ ∂∗,H� follows from basic definitions, and the inclusion
∂∗,H�⊂ 0 follows from [Franchi et al. 2001, Lemma 7.5 (i)].

We now use the complex function ν to specify a collection of accretive test functions. Let ψ : H →[0, 1]

be a smooth function with χB(0,1/2) ≤ ψ ≤ χB(0,1), and let

ψB(p,r)(q) := ψ(δ1/r (p−1
· q))

be a rescaled version of ψ with sptψB(p,r) ⊂ B(p, r). We record that

|∇HψB(p,r)| ≲
1
r
χB(p,r) and |∂tψB(p,r)| ≲

1
r2χB(p,r). (4.5)

We set

bB(p,r) := ψB(p,r)ν, p ∈ 0, r > 0.

Then, recalling the formula (4.2) for ν, we note

∥bB(p,r)∥L∞(µ) ≲ 1 and Re
(∫

bB(p,r) dµ
)
≳ µ(B(p, r))
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for all B(p, r) with p ∈ 0 and r > 0. According to Main Theorem 10 in [Christ 1990], the L2(µ)

boundedness of R will follow once we verify the testing conditions

∥Rϵ(bBµ)∥L∞(µ) ≤ C and ∥R∗

ϵ(bBµ)∥L∞(µ) ≤ C (4.6)

for all balls B = B(p, r) centred on 0, with C ≥ 1 independent of ϵ > 0. Here R∗
ϵ is the adjoint of Rϵ

with kernel

K ∗(p)= K (p−1).

In fact, it will be technically more convenient to verify the testing conditions (4.6) for smooth truncations
of R. By a smooth truncation, we mean the operator Rs,ϵ associated to the kernel

Kϵ := ϕϵK, (4.7)

where ϕ is smooth and radially symmetric with

χH\B(0,2) ≤ ϕ ≤ χH\B(0,1),

and ϕϵ(p) := ϕ(δ1/ϵ(p)) for p ∈ H. For future reference, we remark that

|∇Hϕϵ | ≲
1
ϵ
χB(0,2ϵ)\B(0,ϵ) and |∂tϕϵ | ≲

1
ϵ2χB(0,2ϵ)\B(0,ϵ). (4.8)

Also, if ϵ = 2−N for some N ∈ N, then ϕϵ can be expanded as a series:

ϕϵ = ϕ2−N =

∑
j≤N

(ϕ2− j −ϕ2− j+1)=:

∑
j≤N

η j, (4.9)

noting that η j is supported on the annulus B(0, 2− j+2) \ B(0, 2− j ). We will assume without loss of
generality that ϵ has this form in the sequel.

Now, instead of (4.6), we will check that

∥Rs,ϵ(bBµ)∥L∞(µ) ≤ C and ∥R∗

s,ϵ(bBµ)∥L∞(µ) ≤ C (4.10)

for all balls B centred on 0, and for some constant C ≥ 1 independent of ϵ > 0. It is easy to check that

|Rs,ϵ( f )(p)−Rϵ( f )(p)| ≲ Mµ( f )(p)

for all f ∈ L∞(µ) and p ∈ 0, where Mµ is the Hardy–Littlewood maximal function

Mµ f (p)= sup
r>0

/
∫

B(p,r)
| f (q)| dµ(q).

Since ∥Mµ(bBµ)∥L∞(µ) ≲ ∥bB∥L∞(µ) ≲ 1, we see that (4.10) implies (4.6).

4C. Initial reductions for verifying the testing conditions. We start by verifying the first condition
in (4.10), that is, proving

|Rs,ϵ(bBµ)(p)| ≤ C, p ∈ 0. (4.11)
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The arguments concerning the second testing condition in (4.10) will be very similar. To prove (4.11),
we make a few reductions, which show that it suffices to verify (4.11) for p = 0 ∈ 0 and for a ball B with
dist(0, B)≤ diam(B)= 1.

As a first step, we argue that it suffices to consider p ∈ 0 with

dist(p, B)≤ diam(B). (4.12)

Indeed, (4.11) follows from standard kernel estimates if dist(p, B) > diam(B). To see this, we write
B = B(p0, r) and fix p ∈ 0 with dist(p, p0)≥ 2r . Then d(p, q)≥ r for all q ∈ B, and consequently

|Rs,ϵ(bB)(p)| ≲ ∥bB∥L∞(µ)

∫
B

dµ(q)
d(p, q)3

≲
µ(B)

r3 ∼ 1.

So, in the sequel we may assume that (4.12) holds.
Next, we argue that it suffices to consider the case p = 0 ∈ 0. Indeed, note first that

µ̃ := S3
|p−1·0 = (τp−1)♯S3

|0 = (τp−1)♯µ.

Then, write
b̃p−1·B := ψp−1·Bνp−1·0,

where νp−1·0 is the analogue of ν (recall (4.2)) for the left-translated intrinsic Lipschitz graph p−1
·0. In

particular,
νp−1·0(p

−1
· q)= ν(q), q ∈ 0,

so that
b̃p−1·B(p

−1
· q)= ψB(q)ν(q)= bB(q), q ∈ 0.

Using this equation, we infer that

Rs,ϵ(b̃p−1·Bµ̃)(0)=

∫
p−1·0

Kϵ(q−1)b̃p−1·B(q) dS3(q)

=

∫
Kϵ(q−1)b̃p−1·B(q) d[(τp−1)♯µ](q)

=

∫
0

Kϵ((p−1
· q)−1)b̃p−1·B(p

−1
· q) dS3(q)

=

∫
0

Kϵ(q−1
· p)bB(q) dS3(q)= Rs,ϵ(bBµ)(p).

This shows that, to find a bound for Rs,ϵ(bBµ)(p), it suffices to do so for Rs,ϵ(b̃p−1·Bµ̃)(0). But the
intrinsic Lipschitz graph p−1

· 0 has all the same properties as we assumed from 0 in Theorem 4.1:
the intrinsic Lipschitz constants do not change, nor do the bounds for the vertical oscillation numbers,
recalling Lemma 3.4, so we may assume that p = 0 ∈ 0.

Finally, we argue that we may assume diam(B)= 1. For this purpose, we first note that

r3
· δr♯µ= S3

|δr (0) =: µ̃. (4.13)
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Indeed, if A ⊂ δr (0), then δ1/r (A)⊂ 0, hence

r3
· (δr♯µ)(A)= r3S3(0 ∩ δ1/r (A))= S3(δr (0)∩ A)= µ̃(A),

which proves (4.13). Now, let r := diam(B), and let b̃δ1/r (B) := ψδ1/r (B) · νδ1/r (0), where νδ1/r (0) stands for
the analogue of ν for the dilated intrinsic Lipschitz graph δ1/r (0). In particular, it is easy to check that

b̃δ1/r (B)(δ1/r (q))= bB(q), q ∈ 0.

We also record the equation

Kϵ(δr (q))= ϕϵ(δr (q))K (δr (q))= r−3
·ϕϵ/r (q)K (q)= r−3Kϵ/r (q),

using the definition of the kernel Kϵ from (4.7) and the −3-homogeneity of K. Then we may use (4.13)
and the equations above to get

Rs,ϵ/r (b̃δ1/r (B)µ̃)(0)=

∫
δ1/r (0)

Kϵ/r (q−1)b̃δ1/r (B)(q) dS3(q)

= r−3
∫
0

Kϵ/r (q−1)b̃δ1/r (B)(q) dδ(1/r)♯µ(q)

= r−3
∫
0

Kϵ/r ([δ1/r (q)]−1)b̃δ1/r (B)(δ1/r (q)) dS3(q)

=

∫
0

Kϵ(q−1)bB(q) dS3(q)= Rs,ϵ(bBµ)(0).

So, to estimate Rs,ϵ(bBµ)(0) it suffices to estimate Rs,ϵ/r (b̃δ1/r (B)µ̃)(0). But, arguing as in the previous
reduction, δ1/r (0) is an intrinsic Lipschitz graph with the same properties as 0. So in the sequel we
assume that diam(B)= 1.

Summarising, we have reduced the proof of (4.11) to the case

p = 0 ∈ 0 and dist(0, B)≤ diam(B)= 1. (4.14)

4D. Verifying the testing conditions. With the above reductions in mind, we start the proof of (4.11).
We record that

K (q−1)= −X̃G(q)+ i Ỹ G(q), q ∈ H \ {0}, (4.15)

as a straightforward computation shows. Hence, we may write

Rs,ϵ(bBµ)(0)

=

∫
0

ϕϵ(q)(−X̃G(q)+ i Ỹ G(q))bB(q) dS3(q)

= −

∫
0

⟨ψB(q)ϕϵ(q)∇̃HG(q), νH (q)⟩ dS3(q)+ i
∫
0

⟨ψB(q)ϕϵ(q)(Ỹ G(q),−X̃G(q)), νH (q)⟩ dS3(q)

=: I1 + i I2,
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recalling the notation from Section 2A. In order to evaluate I1 and I2, we will apply the divergence
theorem (Theorem 4.3) to the vector fields

V1 := (ψBϕϵ X̃G, ψBϕϵ Ỹ G) ∈ C∞

c (R
3,R2) and V2 := (ψBϕϵ Ỹ G,−ψBϕϵ X̃G) ∈ C∞

c (R
3,R2),

respectively.

4D1. Estimate for I1. After an application of Theorem 4.3, I1 becomes

I1 = −c
∫
�

divH(ψB(q)ϕϵ(q)∇̃HG(q)) dq

= −c
∫
�

⟨∇H(ψBϕϵ)(q), ∇̃HG(q)⟩ dq − c
∫
�

(ψBϕϵ)(q) divH ∇̃HG(q) dq

=: −cI 1
1 − cI 2

1 .

For I 1
1 , we infer from (4.5), (4.8), and the product rule that

|∇H(ψBϕϵ)| ≲
1
ϵ
χB(0,2ϵ)\B(0,ϵ) +χB .

Since moreover |∇̃HG(q)| ≲ ∥q∥
−3 (this follows from (4.15) for instance), we get∣∣∣∣∫

�

⟨∇H(ψBϕϵ)(q), ∇̃HG(q)⟩ dq
∣∣∣∣ ≲ 1

ϵ

∫
B(0,2ϵ)\B(0,ϵ)

∥q∥
−3dq +

∫
B
∥q∥

−3 dq ≲ 1. (4.16)

To handle the term I 2
1 , we observe the following general relationship between left and right divergence:

divH(V1, V2)= d̃ivH(V1, V2)+ ∂t(−yV1 + xV2), (V1, V2) ∈ C1(R3,R2). (4.17)

It follows that

I 2
1 =

∫
�

(ψBϕϵ)(q)d̃ivH∇̃HG(q) dq +

∫
�

(ψBϕϵ)(q)∂t(−y X̃G(q)+ xỸ G(q)) dq.

Here

d̃ivH∇̃HG(q)= 1̃HG(q)= 0, q ∈ sptϕϵ,

since G is simultaneously the fundamental solution for both operators 1H and 1̃H. So the first term
vanishes. Consequently,

I 2
1 =:

∫
�

(ψBϕϵ)(q)∂t K̃ (q) dq =

∫
�

∂t(ψBϕϵ K̃ )(q) dq −

∫
�

∂t(ψBϕϵ)(q)K̃ (q) dq, (4.18)

where K̃ is the −2-homogeneous kernel

K̃ (z, t)= −y X̃G(z, t)+ xỸ G(z, t)=
8t |z|2

∥(z, t)∥6
Kor
, z = (x, y).
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The main term in (4.18) is the first one, because the second one can be treated in the same fashion as I 1
1

above. Indeed, simply notice from (4.5), (4.8), and the product rule that

|∂t(ψBϕϵ)(q)| ≲
1
ϵ2χB(0,2ϵ)\B(0,ϵ) +χB,

so that ∣∣∣∣∫
�

∂t(ψBϕϵ)(q)K̃ (q) dq
∣∣∣∣ ≲ 1

ϵ2

∫
B(0,2ϵ)\B(0,ϵ)

|K̃ (q)| dq +

∫
B
|K̃ (q)| dq

≲ 1
ϵ4H

4(B(0, 2ϵ))+ 1 ∼ 1.

Finally, the first term in (4.18) is handled using (4.9) and Lemma 3.8 (noting that spt(ψBη j K̃ )⊂ B(0, s)
for any s ∈ [2− j+2, 2− j+3

]) to yield∣∣∣∣∫
�

∂t(ψBϕϵ K̃ )(q) dq
∣∣∣∣ ≤

∑
j≤N

∣∣∣∣∫
�

∂t(ψBη j K̃ )(q) dq
∣∣∣∣

≲
∑
j≤N

2−4 j
∥∂t(ψBη j K̃ )∥∞

∫ 2− j+3

2− j+2
osc�(B(0, 10s)) ds

s
.

From the product rule, noting that

• spt η j ⊂ B(0, 2− j+2) \ B(0, 2− j ),

• sptψB ⊂ B ⊂ B(0, 2) by (4.14),

• K̃ is −2-homogeneous, and

• ∂t K̃ is −4-homogeneous,

we see that

∥∂t(ψBη j K̃ )∥∞ ≲

{
24 j, j ≥ −1,
0, j <−1.

To verify the last bullet point, one can simply compute that ∂t K̃ is the kernel

∂t K̃ (z, t)= 8
|z|2(|z|4 − 32t2)

∥(z, t)∥10
Kor

, z = (x, y).

Summarising the estimate above, we have now shown that

|I1| ≲ 1 +

∑
−1≤ j≤N

∫ 2− j+3

2− j+2
osc�(B(0, 10s)) ds

s

≲ 1 +

∫
∞

0
osc�(B(0, s)) ds

s

≤ 1 + C.
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4D2. Estimate for I2. We move to the term

I2 =

∫
0

⟨ψB(q)ϕϵ(q)(Ỹ G(q),−X̃G(q)), νH (q)⟩ dS3(q)

= −c
∫
�

divH(ψBϕϵ(Ỹ G,−X̃G))(q) dq

= −c
∫
�

⟨∇H(ψBϕϵ)(q), (Ỹ G(q),−X̃G(q))⟩ dq − c
∫
�

(ψBϕϵ)(q) divH(Ỹ G,−X̃G)(q) dq

=: −cI 1
2 − cI 2

2 ,

where the divergence theorem was applied. The term I 1
2 can be handled precisely as I 1

1 above; see (4.16).
So we concentrate on the term I 2

2 . Once again, due to the presence of the right-invariant vector fields X̃
and Ỹ, it is useful to consider the right divergence instead of the left one. Recalling (4.17) and setting
p = (x, y, t), we write

divH(Ỹ G,−X̃G)(p)= d̃ivH(Ỹ G,−X̃G)(p)+ ∂t(−yỸ G − x X̃G)(p)

= (X̃ Ỹ G − Ỹ X̃G)(p)+ ∂t K̂ (p)

= −∂t G(p)+ ∂t K̂ (p).

Here K̂ is yet another −2-homogeneous kernel with explicit expression

K̂ (z, t)=
2|z|4

∥(z, t)∥6
Kor
, (z, t) ∈ H \ {0}.

In other words,

I 2
2 = −

∫
�

(ψBϕϵ)(q)∂t G(q) dq +

∫
�

(ψBϕϵ)(q)∂t K̂ (q) dq. (4.19)

From this point on, the treatment of both terms can be continued as on line (4.18) above. The only facts we
needed about the kernel K̃ there was that it is −2-homogeneous and its t-derivative is −4-homogeneous.
These properties are also satisfied for G and K̂. In fact, the t-derivatives are given by

∂t G(z, t)=
16t

∥(z, t)∥6
Kor

and ∂t K̂ (z, t)= −
96|z|4t

∥(z, t)∥10
Kor
.

Continuing as in (4.18), and afterwards, we obtain

|I 2
2 | ≲ 1 +

∫
∞

0
osc�(B(0, s)) ds

s
≤ 1 + C.

This concludes the proof of (4.11) as we have shown that

∥Rs,ϵ(bBµ)∥L∞(µ) ≤ C. (4.20)

4D3. The adjoint. To prove Theorem 4.1, it remains to establish the bound analogous to (4.20) for the
adjoint R∗

s,ϵ . Arguing as in Section 4C, we may assume that the conditions in (4.14) are in force. In other
words, it suffices to show that

|R∗

s,ϵ(bBµ)(0)| ≤ C,
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where B ⊂ H is a ball with dist(0, B)≤ 1 = diam(B), and 0 ∈ 0. By definition,

R∗

s,ϵ(bBµ)(0)=

∫
0

ϕϵ(q)(XG(q)−iY G(q))bB(q) dS3(q)

=

∫
0

⟨(ψBϕϵ)(q)∇HG(q), νH (q)⟩ dS3
+i

∫
0

⟨(ψBϕϵ)(q)(−Y G, XG)(q), νH (q)⟩ dS3(q)

=: J1+i J2.

The situation is now similar to, but slightly simpler than, the one we have already treated. After we apply
the divergence theorem and use the product rule, we have

J1 = −c
∫
�

⟨∇H(ψBϕϵ)(q),∇HG(q)⟩ dq − c
∫
�

(ψBϕϵ)(q) divH ∇HG(q) dq.

The second term vanishes, as divH ∇HG(q)=1HG(q)= 0 for q ∈ sptϕϵ . The first term can be estimated
as in (4.16).

Concerning J2, the divergence theorem gives

J2 = −c
∫
�

⟨∇H(ψBϕϵ)(q), (−Y G, XG)(q)⟩ dq − c
∫
�

(ψBϕϵ)(q) divH(−Y G, XG)(q) dq.

Once more, the first term is estimated using the argument from (4.16). In the second term, we find that

divH(−Y G, XG)(q)= −XY G(q)+ Y XG(q)= −∂t G(q), q ∈ H \ {0}.

From this point on, the estimates are the same as for the term I 2
2 above; see (4.19). We have now

established that
∥R∗(bBµ)∥L∞(µ) ≤ C,

and the proof of Theorem 4.1 is complete. □

5. Application: intrinsic Lipschitz graphs with extra vertical regularity

In this section, we prove Theorem 1.10, which we restate below.

Theorem 5.1. Let φ : W → R be an intrinsic Lipschitz function which satisfies the following Hölder
regularity in the vertical direction:

|φ(y, t)−φ(y, s)| ≤ H |t − s|(1+τ)/2, |s − t | ≤ 1 (5.2)

and
|φ(y, t)−φ(y, s)| ≤ H |t − s|(1−τ)/2, |s − t |> 1, (5.3)

where H ≥ 1 and 0< τ ≤ 1. Then R is bounded on L2(H3
|0φ ).

As a corollary, we recover the main theorem of [Chousionis et al. 2019a] for the Riesz transform.

Corollary 5.4. Let W ⊂ H be a vertical plane, let α > 0, and let φ : W → V be a compactly supported
C1,α(W) in the sense of [Chousionis et al. 2019a]. Then R is bounded on L2(H3

|0φ ).
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Proof. By [Chousionis et al. 2019a, Proposition 4.2], an intrinsic C1,α-function φ satisfies (5.2) with
exponent τ = α. Since φ is continuous and compactly supported, (5.3) is also satisfied if the constant H
is chosen large enough. To apply Theorem 5.1, we still need to argue that φ is intrinsic Lipschitz: this is
the content of [Chousionis et al. 2019a, Remark 2.18]. □

Besides the compact support assumption, a notable difference between Theorem 5.1 and the main
theorem of [Chousionis et al. 2019a] is that the intrinsic C1,α-condition implies extra regularity in both
vertical and horizontal directions. The conditions (5.2)–(5.3), on the other hand, imply nothing about the
horizontal behaviour of φ. To emphasise this, we give another corollary of Theorem 5.1.

Corollary 5.5. Let φ0 : R → R be a (Euclidean) Lipschitz function, and let φ(0, y, t) := φ0(y). Then R
is bounded on L2(µ), where µ is H3 restricted to 0φ .

Proof. We first note that φ is intrinsic Lipschitz because

|φ(0, y, t)−φ(0, y′, t ′)| ≲ |y − y′
| ≤ ∥πW(8(0, y′, t ′)−1

·8(0, y, t))∥,

where 8(0, y, t)= (0, y, t) · (φ(0, y, t), 0, 0) is the graph map parametrising 0φ . Conditions (5.2)–(5.3)
are trivially satisfied, so the claim follows from Theorem 5.1. □

5A. Proof of Theorem 5.1. The proof is based on the following lemma.

Lemma 5.6. Assume φ : W := {(0, y, t) : y, t ∈ R} → R is intrinsic Lipschitz and satisfies (5.2)–(5.3).
Then

osc�(B(p, r))≲ H 4 min{r τ, r−τ
}, p ∈ 0φ, 0< r <∞, (5.7)

where �= {(x, y, t) : x > φ(πW(x, y, t))}, and the implicit constants depend on the intrinsic Lipschitz
constants of φ.

By Theorem 4.1, the lemma above will prove Theorem 5.1.

Proof of Lemma 5.6. The plan is to first use (5.2) to establish the bound

osc�(B(p, r))≲ H 4r τ, p ∈ 0φ, 0< r ≤ 1. (5.8)

The second bound in (5.7) will follow by a similar argument from (5.3) for r > 1.
Write 0 := 0φ , and fix 0< r ≤ 1 and 0< s ≤ r . We claim

v�(B(p, r))(s)=

∫
B(p,r)∩0(Hr1+τ )

|χ�(q)−χ�(q · (0, 0, s2))| dq, (5.9)

where 0(Hr1+τ ) denotes the (Hr1+τ )-neighbourhood of 0. To prove this, it suffices to show that if
q ∈ B(p, r) with dist(q, 0) > Hr1+τ, then

χ�(q)= χ�(q · (0, 0, s2)).
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Indeed, assume to the contrary that q = (x, y, t) ∈ B(p, r) can be found with dist(q, 0) > Hr1+τ and
χ�(q) ̸= χ�(q · (0, 0, s2)). This has two consequences: First, in particular,

|x −φ(πW(x, y, t))| = d((x, 0, 0), φ(πW(q)))

= d(πW(q) · (x, 0, 0), πW(q) ·φ(πW(q)))

= d(q,8(πW(q))) > Hr1+τ,

where 8(w) = w · φ(w) is the graph map parametrising 0. Second, there exists 0 ≤ u ≤ s such that
(x, y, t + u2)= q · (0, 0, u2) ∈ 0, so in particular,

x = φ(πW(q · (0, 0, u2))).

Combining the information above,

|φ(πW(x, y, t + u2))−φ(πW(x, y, t))|> Hr1+τ.

Spelling out the definition of πW, this is equivalent to

Hr1+τ <
∣∣φ(

0, y, t + u2
+

1
2 xy

)
−φ

(
0, y, t +

1
2 xy

)∣∣ ≤ Hu1+τ
≤ Hs1+τ

≤ Hr1+τ.

We have reached a contradiction, and hence proved (5.9).
It follows from (5.9) that

osc�(B(p, r))=
1
r4

/
∫ r

0
v�(B(p, r))(s) ds ≲

H4(B(p, r)∩0(Hr1+τ ))

r4 .

To conclude the proof, we find a maximal Hr1+τ -separated set S ⊂ B(p, 2Hr)∩0; note that this step
uses the assumption r ≤ 1, so that r1+τ

≤ r . Since 0 is 3-regular,

card S ≲ r−3τ. (5.10)

On the other hand, the balls B(q, 10Hr1+τ ), q ∈ S, cover B(p, r)∩0(Hr1+τ ), whence

osc�(B(p, r))≲
H4(B(p, r)∩0(Hr1+τ ))

r4 ≲ (card S)
(Hr1+τ )4

r4 ≲ H 4r τ.

This proves (5.8).
To prove the second bound in (5.7), one fixes r ≥ 1 and proceeds as above, using (5.3) instead of (5.2).

One first obtains

v�(B(p, r))(s)=

∫
B(p,r)∩0(Hr1−τ )

|χ�(q)−χ�(q · (0, 0, s2))| dq

This leads to osc�(B(p, r))≲H4(B(p, r)∩0(Hr1−τ ))/r4. Since r ≥ 1, one has r1−τ
≤ r . One finally

chooses a maximal Hr1−τ -separated set S ⊂ B(p, 2Hr) ∩ 0, and finds that (5.10) gets replaced by
card S ≲ r3τ. This gives osc�(B(p, r))≲ H 4r−τ, as desired. □
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6. Problems and remarks

6A. Carleson packing conditions for the vertical oscillation coefficients? Theorem 1.8 guarantees the
L2-boundedness of R on intrinsic Lipchitz graphs 0 = ∂�⊂ H satisfying the uniform condition∫

∞

0
osc�(B(p, r))

dr
r

≲ 1, p ∈ ∂�. (6.1)

A comparison with analogous results in Euclidean space, in particular those in [David and Semmes 1991],
suggests that it might be possible to relax (6.1) to a Carleson packing condition for the vertical oscillation
coefficients, such as∫

∂�∩B(p0,R)

∫ R

0
osc�(B(p, r))η

dr
r

dH3(p)≲ R3, p0 ∈ ∂�, 0< R ≤ diam ∂�. (Car(η))

Here η≥ 1 is a parameter, and evidently the condition (Car(η)) gets weaker as η increases. Two questions
now arise:

Question 3. For which parameters η ≥ 1 — if any — does the following hold? Assume that 0 = ∂�⊂ H

is an intrinsic Lipschitz graph satisfying (Car(η)). Then R is bounded on L2(H3
|0).

Question 4. For which parameters η ≥ 1 — if any — does the following hold? Every intrinsic Lipschitz
graph 0 ⊂ H satisfies (Car(η)).

We have no further insight on either of the questions at the moment. We conjecture that every intrinsic
Lipschitz graph 0 ⊂ H satisfies (Car(η)) for η ≥ 4.

6B. A connection between vertical perimeter and β-numbers. Let �⊂ H be an open set with 3-regular
boundary, and let 1 ≤ p < ∞. Recall from Remark 3.2 that the L p-vertical perimeter of � in a ball
B(q, r), q ∈ ∂�, is the quantity

℘�,p(B(q, r)) :=

(∫
∞

0

(
v�(B(q, r))(s)

s

)p
ds
s

)1/p

.

Given Corollary 3.34, it is reasonable to expect an inequality between ℘�,p and some quantity defined
via the vertical β-numbers β∂�,1. Such an inequality is given by the following proposition.

Proposition 6.2. Let � ⊂ H be a nonempty open set with 3-regular boundary, and let p0 ∈ ∂� and
0< R ≤ diam ∂�. Then

℘�,p(B(p0, R))≲ R3
+

∫
∂�∩B(p0,C R)

(∫ R

0
β∂�,1(B(q,Cr))p dr

r

)1/p

dH3(q),

where C ≥ 1 is an absolute constant.

Proof. Fix 0< r ≤ R. We start by arguing that

v�(B(p0, R))(r)
r

≲
∫
∂�∩B(p0,C R)

β∂�,1(B(p,Cr)) dH3(p). (6.3)
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To this end, let Br be a finite family of balls of radius r covering B(p0, R) such that the concentric balls
of radius r/2 are disjoint. Note that if dist(B, ∂�) > 2r , then

|χ�(q)−χ�(q · (0, 0, r2))| = 0, q ∈ B,

because d(q, q · (0, 0, r2)) = 2r with our choice of metric d; recall (2.1). Whenever B ∈ Br with
dist(B, ∂�)≤ 2r , we pick some ball B̂ ⊃ B which is centred on ∂� and has radius at most 5r . By the
3-regularity of the boundary, we then have

H3(B̂ ∩ ∂�)∼ r3, B ∈ Br , dist(B, ∂�)≤ 2r.

Then, by the bounded overlap of the balls B̂ and applying Corollary 3.34, we can estimate

v�(B(p0, R))(r)
r

=

∫
B(p0,R)

|χ�(q)−χ�(q · (0, 0, r2))|

r
dq

≤

∑
B∈Br

dist(B,∂�)≤2r

∫
B

|χ�(q)−χ�(q · (0, 0, r2))|

r
dq

≲
∑
B∈Br

dist(B,∂�)≤2r

v�(B̂)(r)
r4 H3(B̂ ∩ ∂�)

≲
∑
B∈Br

dist(B,∂�)≤2r

β∂�,1(30B̂)H3(B̂ ∩ ∂�)

≲
∫

B(p0,C R)
β∂�,1(B(q,Cr)) dH3(q).

This is (6.3). Applying Minkowski’s integral inequality, we infer the bound(∫ R

0

(
v�(B(p0, R))(r)

r

)p
dr
r

)1/p

≲

(∫ R

0

(∫
∂�∩B(p0,C R)

β∂�,1(B(q,Cr)) dH3(q)
)p

dr
r

)1/p

≤

∫
∂�∩B(p0,C R)

(∫ R

0
β∂�,1(B(q,Cr))p dr

r

)1/p

dH3(q).

Finally, it remains to note(∫
∞

R

(
v�(B(p0, R))(r)

r

)p
dr
r

)1/p

≲

(∫
∞

R

R4p

r p+1 dr
)1/p

∼ R3,

and the proposition follows by combining the two estimates above. □

As an immediate corollary, we infer that if the β∂�,1-numbers satisfy a Carleson packing condition
similar to (Car(η)), namely∫

∂�∩B(p0,R)

∫ R

0
β∂�,1(B(q, r))p dr

r
dH3(q)≲ R3, p0 ∈ ∂�, 0< R ≤ diam ∂�, (6.4)

then the L p-vertical perimeter is bounded by (a constant times) the horizontal perimeter.
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Corollary 6.5. Let 1 ≤ p <∞. Assume that �⊂ H is a nonempty open set with 3-regular boundary, and
assume that (6.4) holds. Then

℘�,p(B(q, r))≲ r3, q ∈ ∂�, 0< r ≤ diam ∂�.

Proof. Apply Proposition 6.2, then Hölder’s inequality, and finally (6.4). □
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