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A WESS–ZUMINO–WITTEN TYPE EQUATION
IN THE SPACE OF KÄHLER POTENTIALS

IN TERMS OF HERMITIAN–YANG–MILLS METRICS

KUANG-RU WU

We prove that the solution of a Wess–Zumino–Witten type equation from a domain D in Cm to the space
of Kähler potentials can be approximated uniformly by Hermitian–Yang–Mills metrics on certain vector
bundles. The key is a new version of Berndtsson’s theorem on the positivity of direct image bundles.

1. Introduction

Let L be a positive line bundle over a compact complex manifold X of dimension n, and let h be a
positively curved metric on L with curvature ω. The space of Kähler potentials is

Hω = {φ ∈ C∞(X,R) : ω+ i∂∂̄φ > 0},

and for a positive integer k we denote by Hk the space of inner products on H 0(X, Lk). Starting from a
question asked by Yau [1987] and the work of Tian [1990], Zelditch [1998], Catlin [1999], and many
others, it is well known that a given Kähler potential φ ∈ Hω can be approximated by φk ∈ Hω associated
with Hk as k → ∞. Furthermore, Mabuchi [1987], Semmes [1992], and Donaldson [1999] discovered
that Hω carries a Riemannian metric which allows one to talk about geometry, especially geodesics,
of Hω. Thanks to Phong and Sturm [2006], Chen and Sun [2012], Berndtsson [2018], and Darvas, Lu,
and Rubinstein [Darvas et al. 2020], geodesics in Hω can be approximated by geodesics in Hk as k → ∞.
More generally, one may wonder if harmonic maps into Hω can also be approximated by harmonic maps
associated with Hk . A version of this was confirmed by Rubinstein and Zelditch [2010] when X is toric,
and the maps take values in toric Kähler metrics; see also [Song and Zelditch 2007; 2010].

Here we focus on a Wess–Zumino–Witten (WZW) type equation for a map from D ⊂ Cm to Hω, and
we show that the solution to such an equation can be approximated by Hermitian–Yang–Mills metrics on
certain direct image bundles. We will also see how this result recovers some of those mentioned in the
first paragraph.

We first explain how to derive this WZW equation. Recall that the tangent space TφHω at φ ∈Hω can be
canonically identified with C∞(X,R), and following [Donaldson 1999; Mabuchi 1987; Semmes 1992],
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the Mabuchi metric gM on Hω is

gM(ξ, η)=

∫
X
ξηωn

φ, for φ ∈ Hω and ξ, η ∈ TφHω.

Let D be a bounded smooth strongly pseudoconvex domain in Cm. A map 8 : D → Hω will be identified
as 8 : D × X → R with 8(z, · ) ∈ Hω for z ∈ D. A map 8 : D → Hω is said to be harmonic if it is a
critical point of the functional E(8)=

∫
D|8∗|

2 dV, where dV is the Euclidean volume form on D, 8∗ is
the differential of 8, and |8∗| is the Hilbert–Schmidt norm of 8∗, measured by the Mabuchi metric gM

and the Euclidean metric of D. A straightforward computation gives the harmonic map equation
m∑

j=1

|∇8z j |
2
− 28z j z̄ j = 0, (1)

where {z j } are coordinates on D and |∇8z j (z)|
2 is computed using the metric ω8(z). On the other hand,

there is a perturbed functional E, whose Euler–Lagrange equation is also of interest. The construction
of this perturbed functional is similar to that of [Donaldson 1999, Section 5] (see also [Witten 1983]),
where one-dimensional D were considered. In order to define E, we first define a three-form θ on Hω:
for φ ∈ Hω and ξ1, ξ2, ξ3 ∈ TφHω,

θ(ξ1, ξ2, ξ3) := gM({ξ1, ξ2}ωφ , ξ3)=

∫
X
{ξ1, ξ2}ωφξ3ω

n
φ, (2)

where { · , · }ωφ is the Poisson bracket determined by the symplectic form ωφ . This three-form θ is d-closed
by Lemma 4.5 below, and by Lemma 4.4 there is a two-form α on Hω such that dα = θ. For a map
8 : D → Hω, we define

E (8) := E(8)+ 4i
∑

j

∫
D
α(8z̄ j ,8z j ) dV.

We will show in Lemma 4.6 that the Euler–Lagrange equation of E is
m∑

j=1

|∇8z j |
2
− 28z j z̄ j + i{8z̄ j ,8z j }ω8 = 0. (3)

Following [Witten 1983] and [Donaldson 1999], we call (3) the WZW equation for a map 8 : D → Hω.
Donaldson [1999] showed, when m = 1, that the WZW equation is equivalent to a homogeneous

complex Monge–Ampère equation. We have the following extended equivalence for m ≥ 1 by a similar
computation. Let π : D × X → X be the projection onto X. Then the extended equivalence is

8 solves (3) ⇐⇒ (i∂∂̄8+π∗ω)n+1
∧

(
i

m∑
j=1

dz j ∧ dz̄ j

)m−1

= 0. (4)

This suggests that the proper generality of the WZW equation is for maps from a Kähler manifold D
to Hω. Nevertheless, in this paper we restrict to D ⊂ Cm.

The next step is to construct a solution of the WZW equation, and then we will show it can be
approximated by the solutions of Hermitian–Yang–Mills equations.
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Definition 1.1. We will say that a function u : D× X → [−∞,∞) is ω-subharmonic on graphs if, for any
holomorphic map f from an open subset of D to X, we have that ψ( f (z))+ u(z, f (z)) is subharmonic,
where ψ is a local potential of ω.

This definition does not depend on the choice of ψ since any two local potentials differ by a plurihar-
monic function. (This definition has its origin in the works of Slodkowski [1988; 1990a; 1990b], and
Coifman and Semmes [1993]; however, they focus on functions u defined on D×V with a vector space V
where u(z, · ) are norms or quasinorms, whereas we consider simply functions on D × X. There is also a
notion of k-subharmonicity, see [Błocki 2005], but it is not equivalent to subharmonicity on graphs.)

Let v be a real-valued smooth function on ∂D × X and ∂D ∋ z 7→ v(z, · )= vz ∈ Hω. We simply write
v ∈ C∞(∂D,Hω). Consider the Perron family

Gv :=

{
u ∈ usc(D × X) : u is ω-subharmonic on graphs, lim sup

D∋z→ζ∈∂D
u(z, x)≤ v(ζ, x)

}
.

As we will later see, the upper envelope V = sup{u : u ∈ Gv} is a weak solution of the WZW equation
from D to Hω. The above setup is for Hω. As for Hk , we recall first the two maps that connect Hω

and Hk . The Hilbert map Hk : Hω → Hk is

Hk(φ)(s, s)=

∫
X

hk(s, s)e−kφωn, for φ ∈ Hω and s ∈ H 0(X, Lk).

In the other direction, the Fubini–Study map F Sk : Hk → Hω is given by

F Sk(G)(x)=
1
k

log sup
s∈H0(X,Lk)

G(s,s)≤1

hk(s, s)(x), for G ∈ Hk and x ∈ X.

Now following the definitions from [Coifman and Semmes 1993], let N ∗

k be the set of norms on H 0(X, Lk)∗.
Then a norm function D ∋ z 7→ Uz ∈ N ∗

k is said to be subharmonic if log Uz( f (z)) is subharmonic for
any holomorphic section f : W ⊂ D → H 0(X, Lk)∗. The second Perron family we consider is

Gk
v :=

{
D ∋ z → Uz ∈ N ∗

k is subharmonic, lim sup
D∋z→ζ∈∂D

U 2
z (s)≤ H∗

k (vζ )(s, s) for any s ∈ H 0(X, Lk)∗
}
,

where H∗

k (v) is the inner product dual to Hk(v). We note a remarkable theorem about the upper envelope
V k

= sup{U : U ∈ Gk
v} from [Coifman and Semmes 1993], which shows that V k is not only a norm but

an inner product (see [Slodkowski 1990a, Corollary 2.7] for a different proof); moreover, it solves the
Hermitian–Yang–Mills equation (see also [Donaldson 1992]){

32(V k)= 0,
V k

|∂D = H∗

k (v).

Here we view V k as a Hermitian metric on the bundle D × H 0(X, Lk)∗ → D, and 2(V k) is its curvature.
Further, 3 is the trace with respect to the Euclidean metric of D, so in general 32(V k) takes values
in endomorphisms of H 0(X, Lk)∗. Denoting the dual metric by (V k)∗, our main result is that the upper
envelope V of Gv is the limit of Hermitian–Yang–Mills metrics.
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Theorem 1.2. F Sk((V k)∗) converges to V uniformly on D × X, as k → ∞.

Now we turn to the interpretation of the upper envelope V and its relation to the WZW equation. The
next theorem shows that V solves the WZW equation under a regularity assumption.

Theorem 1.3. If the upper envelope V of Gv is in C2(D × X), then

(i∂∂̄V +π∗ω)n+1
∧

(
i

m∑
j=1

dz j ∧ dz̄ j

)m−1

= 0.

As a result, Theorems 1.2 and 1.3 together show that the solution of the WZW equation can be
approximated by the Hermitian–Yang–Mills metrics. (The equation in Theorem 1.3 is similar to the
complex Hessian equation, which has been studied extensively in [Błocki 2005; Collins and Picard 2019;
Dinew and Kołodziej 2014; Dinew et al. 2019; Lu and Nguyen 2015; 2019], and we hope to return to it
in the future.)

The C2 assumption in Theorem 1.3 is somewhat artificial. At this point, we are able to show V is
continuous by Corollary 3.3, and it is desirable to prove higher regularity of V either through PDE
techniques or pluripotential theory which we will pursue in a different paper. The guiding example is
when m = 1. In that case the WZW equation is the much studied complex Monge–Ampère equation; it is
known that V is not smooth in general (see [Darvas 2014; Darvas and Lempert 2012; Lempert and Vivas
2013]), and C1,1 is the best one can hope for (see [Błocki 2012; Chen 2000; Chu et al. 2017]).

We mention briefly works related to our result. If m = 1 and D ⊂ C is an annulus, and v is invariant
under rotation of the annulus, then Theorems 1.2 and 1.3 recover the geodesic approximation result of
Phong and Sturm [2006] and Berndtsson [2018]. When X is toric, these theorems are reduced to the
harmonic approximation of Rubinstein and Zelditch [2010], except that C2 convergence is proved in their
paper (see also [Song and Zelditch 2007; 2010]).

The proof of Theorem 1.2 hinges on Theorem 2.1, a result regarding the positivity of direct image
bundles. Although Berndtsson’s theorem [2009] has played a crucial role in approximation theorems
similar to Theorem 1.2 (for example [Berman and Keller 2012; Berndtsson 2018; Darvas and Wu 2019;
Darvas et al. 2020]), when it comes to approximating by Hermitian–Yang–Mills metrics, a subharmonic
analogue of Berndtsson’s theorem is desired. It is Theorem 2.1, where we prove a version of positivity of
direct image bundles for weights that are subharmonic on graphs. This is perhaps the crux of this paper.
A corresponding result on Stein manifolds can be proved easily following the proof of Theorem 2.1.

The WZW equation (3) is the harmonic map (1) perturbed with Poisson’s bracket, which is closely
related to the geometry of Hω, an infinite-dimensional nonpositively curved manifold. Since the theory
of harmonic maps into nonpositively curved manifolds is well developed by Eells and Sampson [1964],
Hamilton [1975], and many others, a possible future direction is to see if one can combine the classical
results with those of this paper to study Hω. Yet another possible but remote direction is to use slope
stability in the Donaldson–Uhlenbeck–Yau theorem to study the K-stability by Theorem 1.2. This is a
vast subject and we only mention a few papers that are closer to our study. See [Chen et al. 2015a; 2015b;
2015c; Dervan and Keller 2019; Donaldson 1985; Li 2012; Székelyhidi 2014; Uhlenbeck and Yau 1986;
Zhang 2021].
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Before we end this introduction, a few words about the structure of this paper. In Section 2, the
subharmonic version of positivity of direct image bundles is proved, except we put off a technical lemma
to Section 5. Section 3 is devoted to Theorem 1.2 and Section 4 to Theorem 1.3. In Section 6, we draw
parallels with [Darvas and Wu 2019].

2. Positivity of direct image bundles

Consider a Hermitian holomorphic line bundle (E, g) → Xn over a compact complex manifold, and
assume the curvature η of the metric g is positive. For two sections s, t ∈ H 0(X, E ⊗ K X ), we write
locally

s = σ ⊗ s ′, t = τ ⊗ t ′,

where σ, τ ∈ E and s ′, t ′
∈ K X . (Such an expression is possible as long as one of the bundles is of rank 1.

In the current case, E and K X are both line bundles.) We extend the metric g to acting on sections
of E ⊗ K X by setting g(s, t)= g(σ, τ )s ′

∧ t̄ ′, which is an (n, n)-form. It is not hard to see this (n, n)-form
is globally defined on X.

We define a variant of the Hilbert map: HilbE⊗K X (u), for a function u : D × X → R, is given by

HilbE⊗K X (u)(s, s)=

∫
X

g(s, s)e−u(z,· )

with s ∈ H 0(X, E ⊗ K X ). Since the integrand on the right is already an (n, n)-form, the integral makes
sense. In the following, suitable assumptions will be made on u to make sure the integral converges. Then
the map z 7→ HilbE⊗K X (u) is a Hermitian metric on the bundle D × H 0(X, E ⊗ K X )→ D. The main
result of this section is the following positivity theorem.

Theorem 2.1. If u is bounded and upper semicontinuous (usc) on D × X, and η-subharmonic on graphs,
then the dual metric Hilb∗

E⊗K X
(u) is a subharmonic norm function.

The following approximation lemma is somewhat technical and we postpone its proof to Section 5.

Lemma 2.2. Let u be a bounded usc function on D × X which is η-subharmonic on graphs. Then, for D′

relatively compact open in D, there exist εj ↘ 0 and u j ∈ C∞(D′
× X) decreasing to u, where u j is

(1 − εj )η-subharmonic on graphs. Namely, for any holomorphic map f from an open subset of D′ to X,
1(ψ( f (z))+ u j (z, f (z)))≥ εj1(ψ( f (z)), where η = i∂∂̄ψ locally.

Proof of Theorem 2.1. Since being a subharmonic norm function is a local property, we focus on D′, a
relatively compact open set in D. Take εj and u j as in Lemma 2.2. Assuming the theorem holds for such
a u j (namely, the dual metric Hilb∗

E⊗K X
(u j ) is a subharmonic norm function), it follows that Hilb∗

E⊗K X
(u)

is also a subharmonic norm function because Hilb∗

E⊗K X
(u j ) decreases to Hilb∗

E⊗K X
(u) as j → ∞.

As a result, we only need to prove the theorem for u ∈ C∞(D′
× X) with the property that there

exists ε > 0 such that for any holomorphic function f from an open subset of D′ to X,

1(ψ( f (z))+ u(z, f (z)))≥ ε1(ψ( f (z)), where η = i∂∂̄ψ locally. (5)
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In a coordinate system � ⊂ Cn on X, we will not write out the coordinate map. We will use Greek
letters µ, λ for indices of coordinates on X, and Roman letters i, j for indices of coordinates on D;
moreover, f µ means the µ-th component of f , whereas ψµλ̄, ui ī , and ui λ̄ mean partial derivatives
∂2ψ/∂xµ∂ x̄λ, ∂2u/∂zi∂ z̄i , and ∂2u/∂zi∂ x̄λ, respectively. In this coordinate system �⊂ Cn on X, we first
show that the matrix (ψµλ̄+uµλ̄)(z0, x0) is positive definite, for any given (z0, x0)∈ D′

×�. Inequality (5)
about ψ+u is unchanged after a translation in coordinates of D′

×�, so we can assume (z0, x0)= (0, 0).
In terms of local coordinates, inequality (5) becomes

ε
∑
i,λ,µ

ψµλ̄
∂ f µ

∂zi

∂ f̄ λ

∂ z̄i
≤

∑
i,λ,µ

ψµλ̄
∂ f µ

∂zi

∂ f̄ λ

∂ z̄i
+

∑
i

ui ī +
∑
i,λ

ui λ̄
∂ f̄ λ

∂ z̄i
+

∑
i,µ

u īµ
∂ f µ

∂zi
+

∑
i,λ,µ

uµλ̄
∂ f µ

∂zi

∂ f̄ λ

∂ z̄i
. (6)

Fix (ξ1, ξ2, . . . , ξn)∈Cn. For N a positive number, we consider f (z)= N (ξ1, ξ2, . . . , ξn)z1; note that f (z)
is in � by restricting z in a small neighborhood of 0 in D′. With such a choice of f , we deduce from (6)
that

ε
∑
λ,µ

ψµλ̄(0, 0)ξµξ̄λN 2
≤

∑
λ,µ

ψµλ̄(0, 0)ξµξ̄λN 2
+

∑
i

ui ī (0, 0)

+

∑
λ

u1λ̄(0, 0)ξ̄λN +

∑
µ

u1̄µ(0, 0)ξµN +

∑
λ,µ

uµλ̄(0, 0)ξµξ̄λN 2. (7)

For larger N, we have to restrict f to a smaller domain in D′, but since inequality (7) is evaluated at (0, 0),
it holds for any N. Divide (7) by N 2 and send N to infinity, to obtain (ψµλ̄ + uµλ̄)(0, 0)≥ ε(ψµλ̄)(0, 0)
as matrices, and hence (ψµλ̄ + uµλ̄)(0, 0) is positive definite.

Let L2(X, E ⊗ K X ) be the space of measurable sections s whose L2-norm
∫

X g(s, s)e−u(z,· ) is finite.
Since different z will give rise to comparable L2-norms, the space L2(X, E ⊗ K X ) does not change with z,
and so we have a Hermitian Hilbert bundle D′

×L2(X, E⊗K X )→ D′ which has D′
×H 0(X, E⊗K X )→ D′

as a subbundle. Denote the curvature of the subbundle by 2 =
∑
2j k̄dz j ∧ dzk̄ . This setup is almost

identical to [Berndtsson 2009, Theorem 1.1], where the author observed that the second fundamental
form of the subbundle D′

× H 0(X, E ⊗ K X )→ D′ can be controlled by L2-estimates. Following the
computations in Section 3 of the same work, we deduce∑

j

(2j j̄ s, s)≥

∫
X

K (z, · )g(s, s)e−u(z,· ), (8)

where s ∈ H 0(X, E ⊗ K X ) and K : D′
× X → R is a smooth function, given in local coordinates on X by

K =

∑
j

(
u j j̄ −

∑
λ,µ

(ψ + u)λ̄µu j λ̄u j̄µ

)
;

here (ψ + u)λ̄µ stands for the inverse matrix of (ψ + u)λ̄µ; cf. [Berndtsson 2009, Formula (3.1)].
We claim that K ≥ 0. Fix (z0, x0) ∈ D′

× X with a coordinate system � around x0. First notice that ψ
is independent of z, so if we denote ψ(x)+ u(z, x) by φ(z, x), then

K =

∑
j

(
φj j̄ −

∑
λ,µ

φj λ̄φ
λ̄µφ j̄µ

)
.
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Since the matrix (φµλ̄) is positive definite, we can assume local coordinates in � are such that (φµλ̄) is
the identity matrix at (z0, x0), and therefore K (z0, x0)=

∑
j (φj j̄ −

∑
λ|φj λ̄|

2)(z0, x0). For a holomorphic
function f from an open subset of D′ to �, the subharmonicity of φ(z, f (z)) reads as∑

i

φi ī +

∑
i,λ

φi λ̄
∂ f̄ λ

∂ z̄i
+

∑
i,µ

φiµ
∂ f µ

∂zi
+

∑
i,λ,µ

φµλ̄
∂ f µ

∂zi

∂ f̄ λ

∂ z̄i
≥ 0. (9)

Without loss of generality, we assume (z0, x0)= (0, 0) and choose f λ = −
∑

i φi λ̄(0, 0)zi in (9) with z
small so that f (z) is in �. Inequality (9) becomes

∑
j

(
φj j̄ −

∑
λ|φj λ̄|

2
)
(0, 0)≥ 0. Therefore K ≥ 0. See

also the remark after Lemma 4.1 for a slightly different proof of this claim and an invariant meaning of K.
As a result, (8) implies

∑
j (2j j̄ s, s) ≥ 0, and hence the curvature of the dual metric Hilb∗

E⊗K X
(u)

satisfies the opposite inequality; according to [Coifman and Semmes 1993, Theorem 4.1] this implies
Hilb∗

E⊗K X
(u) is a subharmonic norm function. □

Now we replace (E, g) by (Lk
⊗ K ∗

X , hk
⊗ωn), which is positively curved for large k since

2(hk
⊗ωn)= kω+ Ricω.

We have the following proposition regarding the metric Hk(u) on the bundle D × H 0(X, Lk).

Proposition 2.3. Suppose u is a bounded usc function on D × X and with some ε ∈ (0, 1) we have that
u is (1−ε)ω-subharmonic on graphs. Then there exists k0 = k0(ε, ω), independent of u, such that, for
k ≥ k0, the dual metric H∗

k (u) is a subharmonic norm function.

Proof. In order to use Theorem 2.1, we must check if ku is (kω+Ricω)-subharmonic on graphs. Suppose
that ω = i∂∂̄ψ and Ricω = i∂∂̄φ locally. Then we want to see if kψ( f (z))+φ( f (z))+ ku(z, f (z)) is
subharmonic for any holomorphic map f . Note that

kψ +φ+ ku = k(1 − ε)ψ + ku + εkψ +φ,

and k(1 − ε)ψ( f (z))+ ku(z, f (z)) is subharmonic by assumption. On the other hand, there exists k0

depending on ε and ω such that εkψ + φ is plurisubharmonic (psh) for k ≥ k0. Therefore, for k ≥ k0,
ku is (kω+ Ricω)-subharmonic on graphs. By Theorem 2.1, the metric Hilb∗

Lk (ku) is a subharmonic
norm function for k ≥ k0. The proposition follows since HilbLk (ku)= Hk(u). □

3. Approximation by Hermitian–Yang–Mills metrics

Recall that D is in Cm and (L , h)→ Xn is a positive line bundle with curvature ω.

Lemma 3.1. Let u be an usc function on D × X and ω-subharmonic on graphs. Then for any fixed z ∈ D,
u(z, x) is ω-psh on X, and for any fixed x ∈ X, u(z, x) is subharmonic on D.

This can be seen as a special case of an abstract theorem in [Slodkowski 1990a, Section 1], whose
proof we translate to our setting.

Proof. By choosing the holomorphic map f constant in the definition of ω-subharmonic on graphs, it
follows immediately that u(z, x) is subharmonic in z.
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For a fixed z0 ∈ D, we want to show x 7→ ψ(x)+ u(z0, x) is psh in a coordinate system � ⊂ Cn

on X, where ψ is a local potential of ω. Let P be the complex line {λe1 : λ ∈ C, e1 = (1, 0, . . . , 0) ∈ Cn
}.

Without loss of generality, it suffices to prove that, for λe1 ∈ P ∩�, the function λ 7→ψ(λe1)+u(0, λe1)

is subharmonic. Let U be a disc in P ∩�, and we simply write U = {λ ∈ C : |λ− a|< R}. Let h(λ) be
harmonic on U and continuous up to the boundary. We will be done if

ψ(ae1)+ u(0, ae1)+ h(a)≤ max
λ∈∂U

(uψ(λe1)+ u(0, λe1)+ h(λ)).

Suppose the inequality is not true. By [Slodkowski 1986, Lemma 4.5] with ∂U ⊂ U as the two compact
sets in that lemma, there is an R-linear function l : C → R and b ∈ U such that, if we write

v(z, λ)= ψ(λe1)+ u(z, λe1)+ h(λ)+ l(λ), (10)

then

v(0, b) > v(0, λ), for λ ∈ U − {b}.

Now define W (z, λ1, . . . , λm) := v(z, λ1)+ · · ·+ v(z, λm) in a neighborhood of (0, b∗) := (0, b, . . . , b)
in Cm

× Cm. As W (0, b∗) > W (0, λ1, . . . , λm) for (λ1, . . . , λm) ̸= b∗, there exists a ball B ⊂ Cm of
radius r centered at b∗ such that

W (0, b∗) > max
{0}×∂B

W.

Since W is usc, there exists ε>0 such that W (z, λ1, . . . , λm)<W (0, b∗), for |z|≤ε and (λ1, . . . , λm)∈∂B.
Let S = (r/ε) IdCm . We have W (z, b∗

+ S(z)) < W (0, b∗) for |z| = ε, which contradicts the maximum
principle because W (z, b∗

+ S(z))=
∑m

i=1 v(z, b + (r/ε)zi ) is subharmonic by (10). □

Although in the Introduction the boundary data v is in C∞(∂D,Hω), we will prove a lemma for a broader
class of boundary data ν. Let ν : ∂D×X → R be a continuous map such that νz( · ) := ν(z, · )∈ PSH(X, ω)
for z ∈ ∂D. Let

Gν =

{
u ∈ usc(D × X) : u is ω-subharmonic on graphs, lim sup

D∋z→ζ∈∂D
u(z, x)≤ ν(ζ, x)

}
.

In order to study the properties of the upper envelope V of Gν , we introduce a closely related family.
With the projection π : D × X → X , let

Fν :=

{
u : u ∈ PSH(D × X, π∗ω), lim sup

D∋z→ζ∈∂D
u(z, x)≤ ν(ζ, x)

}
.

The upper envelope of Fν extends to a solution U ∈ C(D × X) of
(π∗ω+ i∂∂̄U)n+m

= 0 on D × X,
π∗ω+ i∂∂̄U ≥ 0 on D × X,
U |∂D×X = ν;
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see for example [Boucksom 2012; Darvas and Wu 2019]. In addition, we also need the solution h to the
Dirichlet problem {∑

j h j j̄ +1ωh + 2n = 0 on D × X,

h|∂D×X = ν.

Lemma 3.2. If we denote the upper envelopes of Gν and Fν by V and U, respectively, then U ≤ V ≤ h
and

lim
(z,x)→(z0,x0)∈∂D×X

V(z, x)= ν(z0, x0).

Moreover, if ν is negative, then so is V.

Proof. Unraveling the definitions of Fν and Gν , we see Fν ⊂ Gν , so U ≤ V. For any u ∈ Gν , u(z, · ) is
ω-psh for fixed z by Lemma 3.1, hence 1ωu +2n ≥ 0; in addition, u( · , x) is subharmonic for fixed x . By
the maximum principle, u ≤ h and hence V ≤ h also. U and h are both equal to ν on ∂D × X, and so is V.

For a fixed x0 ∈ X, let H0(z) be the harmonic function on D with boundary values ν(z, x0). For u ∈ Gν ,
we have u(z, x0)≤ H0(z), and therefore V(z, x0)≤ H0(z). The second statement follows at once. □

With Proposition 2.3 at hand, we can start to prove Theorem 1.2. The following envelope will be used
in the proof: for an usc function F on X, we introduce

P(F) := sup{h ∈ PSH(X, ω) | h ≤ F} ∈ PSH(X, ω);

see [Berman 2019; Ross and Witt Nyström 2017].

Proof of Theorem 1.2. Without loss of generality, we will assume v ≤ 0. Fix δ > 1, and for z ∈ ∂D,
define vδz = P(δvz). By [Darvas and Wu 2019, Lemma 4.9], ∂D × X ∋ (z, x) 7→ vδz (x) is continuous.
Let V δ be the upper envelope of Gvδ . By Lemma 3.2, V δ

≤ 0, and so u ≤ 0 for u ∈ Gvδ . The next step is
to have a better upper bound for u ∈ Gvδ . To that end, we can look instead at max{u, c}, which is still
in Gvδ as long as the constant c ≤ min vδ. Since max{u, c} is bounded, we will assume u is bounded.
Moreover, u/δ is ω/δ-subharmonic on graphs. According to Proposition 2.3, there exists k0 = k0(δ)

such that for k ≥ k0, H∗

k (u/δ) is a subharmonic norm function. Because lim sup∂D H∗

k (u/δ) ≤ H∗

k (v),
it follows that H∗

k (u/δ) ∈ Gk
v and therefore H∗

k (u/δ) ≤ V k on D and F Sk(Hk(u/δ)) ≤ F Sk((V k)∗).
By Lemma 3.1, we have ω+ i∂∂̄u/δ ≥ (1 − 1/δ)ω, (the operator i∂∂̄ here is with respect to variables
in X ). The Ohsawa–Takegoshi extension theorem implies (see [Darvas et al. 2020, Theorem 2.11] or
[Darvas and Wu 2019, Lemma 4.10]) that there exist C > 0 and k0(δ) such that, for k ≥ k0,

1
δ

u −
C
k

≤ F Sk ◦ Hk

(1
δ

u
)

≤ F Sk((V k)∗).

Since δv ≤ 0, both V δ and u are negative by Lemma 3.2, and as a result we have u −C/k ≤ F Sk((V k)∗);
this statement is true for any u ∈ Gvδ , so we actually have V δ

− C/k ≤ F Sk((V k)∗). In addition, since
vz + (δ− 1) inf∂D×X (vz) is a competitor in P(δvz),

V + (δ− 1) inf
∂D×X

(v)≤ V δ.
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Putting things together, we conclude

V + (δ− 1) inf
∂D×X

(v)−
C
k

≤ F Sk((V k)∗), for k ≥ k0(δ). (11)

Next we claim that F Sk((V k
z )

∗)(x) is ω-subharmonic on graphs. Some preparation is needed. Let s be a
nonvanishing holomorphic section of Lk over an open set Y ⊂ X. Let e−kφ

:= hk(s, s) and s∗

k : Y → (Lk)∗

be defined by s∗

k (x)( · )= hk( · , ekφ(x)/2s(x)) for x ∈ Y. Suppose ŝ∗

k : Y → H 0(X, Lk)∗ is the pointwise
evaluation map of s∗

k , namely ŝ∗

k (x)(σ ) := s∗

k (x)(σ (x)) for σ ∈ H 0(X, Lk). Then we have the following
formula, which is taken from [Darvas and Wu 2019, Lemma 4.1]:

F Sk((V k
z )

∗)(x)=
2
k

log[V k
z (ŝ

∗

k (x))], x ∈ Y. (12)

Meanwhile, for σ ∈ H 0(X, Lk), we have ekφ(x)/2ŝ∗

k (x)(σ ) = σ(x)/s(x) is holomorphic, so ekφ/2ŝ∗

k is
holomorphic. Hence for any holomorphic map g from an open subset of D to X,

1(φ(g(z))+ F Sk((V k
z )

∗)(g(z)))=1
(1

k
log[V k

z ((e
kφ/2ŝ∗

k ) ◦ g(z))]2
)
. (13)

By [Coifman and Semmes 1993, Theorem 4.1], the Hermitian–Yang–Mills metric V k
z is a subharmonic

norm function, so the last term of (13) is nonnegative, which means F Sk((V k)∗) is ω-subharmonic on
graphs as we claimed. Further, according to the Tian–Catlin–Zelditch asymptotic theorem or by [Darvas
and Wu 2019, Lemma 4.10], we have an easier but cruder estimate

F Sk((V k
z )

∗
|∂D)= F Sk(Hk(v))≤ v+ O(log k/k),

so
F Sk((V k)∗) ∈ Gv+O(log k/k)

and
F Sk((V k)∗)≤ V + O(log k/k).

This last inequality together with (11) concludes the proof. □

It is natural to ask if V belongs to Gv. A standard approach to show that the envelope belongs to a
family is to take upper regularization, and the case at hand is very similar to [Coifman and Semmes 1993,
Lemma 11.11], where upper regularization is taken in the z-variables. The reason it works in their lemma
is because their function in the x-variables is a norm, but ours is not and regularization does not seem to
work. However, with Theorem 1.2 one can easily show V ∈ Gv . It would be interesting to prove V ∈ Gv

directly without using Theorem 1.2; after all, Gv and V can be defined on any Kähler manifold (X, ω)
without reference to a line bundle.

Corollary 3.3. The upper envelope V is continuous, and V ∈ Gv.

Proof. The first statement is a direct consequence of Theorem 1.2. As to the second statement, let ψ
be a local potential of ω and f a holomorphic map from an open subset of D to X. For any u ∈ Gv,
ψ( f (z))+ u(z, f (z)) is subharmonic; hence ψ( f (z))+ V (z, f (z)), the supremum over u ∈ Gv , is also
subharmonic since V is continuous. By Lemma 3.2, it follows that V ∈ Gv. □
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4. The WZW equation

We will prove Theorem 1.3 and compute the Euler–Lagrange equation of E in this section. We begin
with an observation. Suppose u is a C2 function on D × X and ψ is a local potential of ω. Consider
the complex Hessian of u +ψ with respect to a fixed coordinate z j in D and local coordinates x in X
where ψ is defined, 

(u+ψ)z j z̄ j (u+ψ)z j x̄1 · · · (u+ψ)z j x̄n

(u+ψ)x1 z̄ j (u+ψ)x1 x̄1 · · · (u+ψ)x1 x̄n
...

...
. . .

...

(u+ψ)xn z̄ j (u+ψ)xn x̄1 · · · (u+ψ)xn x̄n

 , (14)

which we will denote by (u +ψ)j . Then

(i∂∂̄u +π∗ω)n+1
∧

(
i

m∑
j=1

dz j ∧ dz̄ j

)m−1

= (n + 1)!(m − 1)!
m∑

j=1

det(u +ψ)j

( m∧
k=1

idzk ∧ dz̄k ∧

n∧
l=1

idxl ∧ dx̄l

)
. (15)

Lemma 4.1. Suppose u is a C2 function on D × X and ω+ i∂∂̄u(z, · ) > 0 on X for all z ∈ D. Then u is
ω-subharmonic on graphs if and only if

(i∂∂̄u +π∗ω)n+1
∧

(
i

m∑
j=1

dz j ∧ dz̄ j

)m−1

≥ 0.

Proof. Let ψ be a local potential of ω and denote the complex Hessian of u +ψ with respect to z j and x
by (u +ψ)j , as in the matrix (14). Due to (15), we will focus on

∑m
j=1 det(u +ψ)j .

Let f be a holomorphic function from an open subset of D to X. Then in a coordinate system on X,

1(ψ( f (z))+u(z, f (z)))=
∑
i,λ,µ

ψµλ̄
∂ f µ

∂zi

∂ f̄ λ

∂ z̄i
+

∑
i

ui ī +
∑
i,λ

ui λ̄
∂ f̄ λ

∂ z̄i
+

∑
i,µ

u īµ
∂ f µ

∂zi
+

∑
i,λ,µ

uµλ̄
∂ f µ

∂zi

∂ f̄ λ

∂ z̄i
.

If we denote the matrix (ψµλ̄ + uµλ̄) by A and the column vector (ui λ̄) by Bi , then the right side of the
equation above can be written as

∑
i

(〈
A
∂ f
∂zi

,
∂ f
∂zi

〉
+

〈
Bi ,

∂ f
∂zi

〉
+

〈
Bi ,

∂ f
∂zi

〉
+ ui ī

)
, (16)

where the angled inner product is the usual Euclidean inner product and ∂ f/∂zi is the column vector
(∂ f µ/∂zi ). The matrix form can be further written as

∑
i

(∥∥∥∥√
A
∂ f
∂zi

+
√

A
−1

Bi

∥∥∥∥2

− ∥
√

A
−1

Bi∥
2
+ ui ī

)
. (17)
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Notice that∑
i

(−∥
√

A
−1

Bi∥
2
+ ui ī )=

∑
i

(ui ī − ⟨A−1 Bi , Bi ⟩)=

∑
i

(
ui ī −

∑
λ,µ

ui λ̄(ψ + u)λ̄µu īµ

)

=

∑
i

det(u +ψ)i

det(ψµλ̄ + uµλ̄)
, (18)

where the last equality can be deduced from Schur’s formula for determinants of block matrices as follows
(see also [Semmes 1992; Berndtsson 2009] for a different computation). We examine the complex Hessian
of u +ψ ,

(u+ψ)j =


(u+ψ)z j z̄ j (u+ψ)z j x̄1 · · · (u+ψ)z j x̄n

(u+ψ)x1 z̄ j (u+ψ)x1 x̄1 · · · (u+ψ)x1 x̄n
...

...
. . .

...

(u+ψ)xn z̄ j (u+ψ)xn x̄1 · · · (u+ψ)xn x̄n

 ,

and find that the Schur complement of the trailing n × n minor ((u +ψ)µλ̄) is precisely

u j j̄ −

∑
λ,µ

u j λ̄(u +ψ)λ̄µu j̄µ,

which is also equal to det(u +ψ)j/ det((u +ψ)µλ̄) by Schur’s formula; see [Horn and Zhang 2005].
Now u is ω-subharmonic on graphs if and only if (17) is nonnegative for any holomorphic maps f , and

it is equivalent to the last summation in (18) being nonnegative. The lemma follows from the positivity of
the matrix (ψµλ̄ + uµλ̄) and (15). □

From (15) and (18), the function K in the proof of Theorem 2.1 has the invariant expression

K =
m!n!

(m − 1)!(n + 1)!

(π∗ω+ i∂∂̄u)n+1
∧

(
i
∑m

j=1 dz j ∧ dz̄ j
)m−1

(ω+ i∂∂̄u)n ∧
(
i
∑m

j=1 dz j ∧ dz̄ j
)m ,

and one can see K ≥ 0 if u is ω-subharmonic on graphs. See also [Campana et al. 2019, Section 4.1,
Formula (85)].

Proof of Theorem 1.3. By (15), the equation

(i∂∂̄V +π∗ω)n+1
∧

(
i

m∑
j=1

dz j ∧ dz̄ j

)m−1

= 0

is equivalent to
∑

j det(ψ + V )j = 0, so we will prove the latter equation.
By Corollary 3.3, the function V is ω-subharmonic on graphs, and hence V (z, x) is ω-psh on X by

Lemma 3.1. Take a coordinate chart � of X. Then for ε > 0 and x ∈ �, the function V (z, x)+ ε|x |
2

satisfies the assumption of Lemma 4.1, so
∑

i det(ψ + V + ε|x |
2)i ≥ 0 and

∑
i det(ψ + V )i ≥ 0.

Suppose
∑

i det(ψ + V )i is positive at a point p in D × X. We may assume det(ψ + V )1 is positive
at p. We digress here to prove the following lemma.
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Lemma 4.2. Let A be an (n + 1)× (n + 1) Hermitian matrix partitioned as

A =


a11 a12 · · · a1(n+1)

a21
... B

a(n+1)1

 ,

where B has size n × n. If det A > 0 and the matrix B ≥ 0, then the matrix A > 0.

Proof. The semipositivity of B implies that A has at least n nonnegative eigenvalues, and actually it has at
least n positive eigenvalues since A is invertible. The last eigenvalue of A must also be positive because
det A > 0. □

By the above lemma, the matrix (ψ+V )1 is actually positive at p. Its n×n trailing minor (ψ+V )µλ̄(p)
is also positive. Since V is assumed to be C2, we can find a neighborhood N of p in D × X such that
the matrix (ψ + V )µλ̄ > δ in N, for some positive number δ. By possibly shrinking N, we also have∑

i det(ψ + V )i > 0 in N.
For the last step in the proof of Theorem 1.3, choose a smooth cutoff function ρ supported in N with

−δ/2 ≤ (ρµλ̄) ≤ δ/2 and such that
∑

i det(ψ + V + ρ)i > 0 in N. We see the function V + ρ satisfies
the assumption of Lemma 4.1 on N, and hence V + ρ is ω-subharmonic on graphs and is in Gv, which
contradicts V = sup Gv. Therefore,

∑
j det(ψ + V )j = 0. □

As in the Introduction, θ on Hω is given by

θ(ξ1, ξ2, ξ3) := gM({ξ1, ξ2}ωφ , ξ3)=

∫
X
{ξ1, ξ2}ωφξ3ω

n
φ, (19)

where φ ∈ Hω and ξ1, ξ2, ξ3 ∈ TφHω. We have {ξ1, ξ2}ωφω
n
φ = ndξ1 ∧ dξ2 ∧ωn−1

φ , and using integration
by parts we deduce that ∫

X
{ξ1, ξ2}ωφξ3ω

n
φ =

∫
X
ξ1{ξ2, ξ3}ωφω

n
φ,

and therefore θ is indeed skew-symmetric and a three-form. Moreover, θ is smooth in the sense that,
for smooth vector fields X1, X2, X3, the function θ(X1, X2, X3) : Hω → R is smooth. The rest of this
section is devoted to proving that the three-form θ is d-closed on Hω and showing the derivation of the
Euler–Lagrange equation of E.

The exterior derivative and the Poincaré lemma over a Banach manifold are discussed in detail in
[Abraham et al. 1988, Supplement 6.4A], and although Hω is a Fréchet manifold, we can still derive the
following two lemmas by similar approaches. See [Hamilton 1982] for a discussion of Fréchet manifolds.

We define first the exterior derivative on Hω. Given a smooth k-form β on Hω and tangent vectors
ξ0, . . . , ξk at TφHω, in order to define

dβ(ξ0, . . . , ξk),

we extend ξi to vector fields on Hω, which are constant in the canonical trivialization THω≈Hω×C∞(X).
Still denoting the constant vector fields by ξi , the exterior derivative is given by the well-known formula

dβ(ξ0, . . . , ξk)=

k∑
j=0

(−1) j Lξj (β(ξ0, . . . , ξ̂j , . . . , ξk))+
∑
i< j

(−1)i+ jβ(Lξi ξj , ξ0, . . . , ξ̂i , . . . , ξ̂j , . . . , ξk),
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where ξ̂j means ξj is to be omitted and Lξi is the Lie derivative along ξi . Since the flow that ξi generates
is simply the translation t 7→ φ+ tξi , the Lie derivative Lξi ξj equals 0. We summarize the discussion in
the following lemma.

Lemma 4.3. Let β be a smooth k-form on Hω, and let ξ0, . . . , ξk be vector fields on Hω which are
constant in the canonical trivialization THω ≈ Hω × C∞(X). Then

dβ(ξ0, . . . , ξk)=

k∑
j=0

(−1) j Lξj (β(ξ0, . . . , ξ̂j , . . . , ξk)) (20)

=

k∑
j=0

(−1) j d
dt

∣∣∣
t=0
β(ξ0, . . . , ξ̂j , . . . , ξk)(φ+ tξj ), (21)

where ξ̂j means ξj is to be omitted. (This formula is true if Hω ⊂ C∞(X) is replaced by an open subset of
a Fréchet space.)

Lemma 4.4. If β is a d-closed smooth k-form on Hω, then there exists a (k−1)-form Hβ on Hω such
that d(Hβ)= β.

Proof. The proof is similar to the finite-dimensional case. Recall that Hω is convex and that 0 ∈ Hω.
Given ξ1, . . . , ξk−1 ∈ TφHω, we define the (k−1)-form Hβ by

Hβ(ξ1, . . . , ξk−1)=

∫ 1

0
tk−1β(φ, ξ1, . . . , ξk−1)(tφ) dt.

Here φ, ξ1, . . . , ξk−1 are regarded as constant vector fields through THω ≈ Hω × C∞(X).
To find d(Hβ)(ξ1, . . . , ξk), let us compute

d
dt

∣∣∣
t=0

Hβ(ξ1, . . . , ξ̂j , . . . , ξk)(φ+ tξj )

= lim
h→0

Hβ(ξ1, . . . , ξ̂j , . . . , ξk)(φ+ hξj )− Hβ(ξ1, . . . , ξ̂j , . . . , ξk)(φ)

h

= lim
h→0

∫ 1

0
tk−1β(φ+ hξj , ξ1, . . . , ξ̂j , . . . , ξk)(tφ+ thξj )−β(φ, ξ1, . . . , ξ̂j , . . . , ξk)(tφ)

h
dt

= lim
h→0

∫ 1

0

(
tk−1β(φ, ξ1, . . . , ξ̂j , . . . , ξk)(tφ+ thξj )−β(φ, ξ1, . . . , ξ̂j , . . . , ξk)(tφ)

h

+tk−1β(ξj , ξ1, . . . , ξ̂j , . . . , ξk)(tφ+ thξj )

)
dt.

As (t, h) 7→ β(φ, ξ1, . . . , ξ̂j , . . . , ξk)(tφ + thξj ) and (t, h) 7→ β(ξj , ξ1, . . . , ξ̂j , . . . , ξk)(tφ + thξj ) are
smooth, we can exchange the limit and integral and obtain∫ 1

0
tk−1 d

dh

∣∣∣
h=0
β(φ, ξ1, . . . , ξ̂j , . . . , ξk)(tφ+ thξj )+ tk−1β(ξj , ξ1, . . . , ξ̂j , . . . , ξk)(tφ) dt

=

∫ 1

0
tk d

dh

∣∣∣
h=0
β(φ, ξ1, . . . , ξ̂j , . . . , ξk)(tφ+ hξj )+ (−1) j−1tk−1β(ξ1, . . . , ξk)(tφ) dt.
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As a result, by Lemma 4.3,

d(Hβ)(ξ1, . . . , ξk)

=

k∑
j=1

(−1) j+1
∫ 1

0
tk d

dh

∣∣∣
h=0
β(φ, ξ1, . . . , ξ̂j , . . . , ξk)(tφ+ hξj )+ (−1) j−1tk−1β(ξ1, . . . , ξk)(tφ) dt.

On the other hand,

H(dβ)(ξ1, . . . , ξk)

=

∫ 1

0
tk(dβ)(φ, ξ1, . . . , ξk)(tφ) dt

=

∫ 1

0
tk

( k∑
j=1

(−1) j d
dh

∣∣∣
h=0
β(φ, ξ1, . . . , ξ̂j , . . . , ξk)(tφ+ hξj )+

d
dh

∣∣∣
h=0
β(ξ1, . . . , ξk)(tφ+ hφ)

)
dt,

where the last equality is due to Lemma 4.3. Therefore

[d(Hβ)+ H(dβ)](ξ1, . . . , ξk)=

∫ 1

0
ktk−1β(ξ1, . . . , ξk)(tφ)+ tk d

dh

∣∣∣
h=0
β(ξ1, . . . , ξk)(tφ+ hφ) dt

=

∫ 1

0

d
dt
(tkβ(ξ1, . . . , ξk)(tφ)) dt = β(ξ1, . . . , ξk),

and the lemma follows since dβ = 0. □

Lemma 4.5. The three-form θ is d-closed.

Proof. This is similar to the derivation of the Aubin–Yau functional and the Mabuchi energy; see e.g.,
[Błocki 2013, Section 4]. Consider four vector fields ξ1, ξ2, ξ3, ξ4 on Hω which are constant in the
canonical trivialization THω ≈ Hω × C∞(X). By Lemma 4.3,

dθ(ξ1, ξ2, ξ3, ξ4)= ξ1θ(ξ2, ξ3, ξ4)− ξ2θ(ξ1, ξ3, ξ4)+ ξ3θ(ξ1, ξ2, ξ4)− ξ4θ(ξ1, ξ2, ξ3). (22)

Using

{ξ3, ξ4}ωφω
n
φ = ndξ3 ∧ dξ4 ∧ωn−1

φ and d
dt

∣∣∣
t=0
ωn−1
φ+tξ1

= (n − 1)i∂∂̄ξ1 ∧ωn−2
φ ,

we have

ξ1θ(ξ2, ξ3, ξ4)= ξ1θ(ξ3, ξ4, ξ2)=
d
dt

∣∣∣
t=0
θ(ξ3, ξ4, ξ2)(φ+ tξ1)

=
d
dt

∣∣∣
t=0

∫
X
{ξ3, ξ4}ωφ+tξ1

ξ2ω
n
φ+tξ1

=
d
dt

∣∣∣
t=0

∫
X
ξ2ndξ3 ∧ dξ4 ∧ωn−1

φ+tξ1

=

∫
X
ξ2ndξ3 ∧ dξ4 ∧ (n − 1)i∂∂̄ξ1 ∧ωn−2

φ

=

∫
X
ξ1ndξ3 ∧ dξ4 ∧ (n − 1)i∂∂̄ξ2 ∧ωn−2

φ = ξ2θ(ξ1, ξ3, ξ4),
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where the second to last equality is due to integration by parts. Because of the symmetry in index, all
terms on the right side of (22) equal 0, and therefore dθ = 0. □

Since θ is d-closed, there exists a two-form α on Hω such that dα = θ by Lemma 4.4. For a map
8 : D → Hω, the derivative 8z j =

1
2(8Re z j − i8Im z j ) is a section of C⊗ THω along 8, and α(8z̄ j ,8z j )

is a function on D. We define

E (8) : = E(8)+ 4i
∑

j

∫
D
α(8z̄ j ,8z j ) dV

=

∫
D

|8∗|
2dV + 4i

∑
j

∫
D
α(8z̄ j ,8z j ) dV,

with dV the Euclidean volume form on D.

Lemma 4.6. The Euler–Lagrange equation of E is

m∑
j=1

|∇8z j |
2
− 28z j z̄ j + i{8z̄ j ,8z j }ω8 = 0, (23)

where ∇8z j is the gradient of 8z j with respect to the metric ω8.

Proof. Let 9 be a smooth map from D to C∞(X) with compact support. The variational equation is

0 =
d
dt

∣∣∣
t=0

(∫
D
|(8+ t9)∗|2 dV + 4i

∑
j

∫
D
α((8+ t9)z̄ j , (8+ t9)z j ) dV

)
. (24)

An extension of the computation in [Donaldson 1999, Section 2] shows that the first term in (24) equals

d
dt

∣∣∣
t=0

∫
D
|(8+ t9)∗|2 dV =

∫
D

∫
X

4
(∑

j

|∇8z j |
2
− 2

∑
j

8z j z̄ j

)
9ωn

8 dV. (25)

The remaining task is to compute the second term in (24).
To that end, we denote C∞(X,C) by C∞

C
(X) and introduce A :Hω×C∞

C
(X)×C∞

C
(X)→ C as follows.

If (u, ξ), (u, η) ∈ Hω × C∞

C
(X) ≈ C ⊗ THω, then A(u, ξ, η) := α((u, ξ), (u, η)). Therefore, for fixed

small t ∈ R, α((8+ t9)z̄ j , (8+ t9)z j )= A(8+ t9, (8+ t9)z̄ j , (8+ t9)z j ) maps from D to C. By
the chain rule,

d
dt

∣∣∣
t=0

A(8+ t9, (8+ t9)z̄ j , (8+ t9)z j )

= d1 A(8,8z̄ j ,8z j )(9)+ d2 A(8,8z̄ j ,8z j )(9z̄ j )+ d3 A(8,8z̄ j ,8z j )(9z j ), (26)

where d1 A, d2 A, and d3 A are partial differentials of A. Since A is linear in the second and third variables,
d2 A(8,8z̄ j ,8z j )(9z̄ j )= A(8,9z̄ j ,8z j ) and d3 A(8,8z̄ j ,8z j )(9z j )= A(8,8z̄ j , 9z j ). Hence the right
side of (26) becomes

d1 A(8,8z̄ j ,8z j )(9)+ A(8,9z̄ j ,8z j )+ A(8,8z̄ j , 9z j ). (27)
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By similar computations,

∂

∂ z̄ j
A(8,9,8z j )= d1 A(8,9,8z j )(8z̄ j )+ A(8,9z̄ j ,8z j )+ A(8,9,8z j z̄ j ),

∂

∂z j
A(8,8z̄ j , 9)= d1 A(8,8z̄ j , 9)(8z j )+ A(8,8z̄ j z j , 9)+ A(8,8z̄ j , 9z j ).

(28)

So integration by parts gives∫
D

A(8,9z̄ j ,8z j ) dV = −

∫
D
(d1 A(8,9,8z j )(8z̄ j )+ A(8,9,8z j z̄ j )) dV,∫

D
A(8,8z̄ j , 9z j ) dV = −

∫
D
(d1 A(8,8z̄ j , 9)(8z j )+ A(8,8z̄ j z j , 9)) dV.

(29)

Combining (27) and (29), we find

d
dt

∣∣∣
t=0

∫
D
α((8+ t9)z̄ j , (8+ t9)z j ) dV

=

∫
D

d1 A(8,8z̄ j ,8z j )(9)− d1 A(8,9,8z j )(8z̄ j )− d1 A(8,8z̄ j , 9)(8z j ) dV. (30)

For a fixed point z0 ∈ D, let 9(z0), 8z̄ j (z0), and 8z j (z0) define three constant vector fields on Hω

denoted by ξ1, ξ2, and ξ3, respectively. By Lemma 4.3,

dα(ξ1, ξ2, ξ3)= ξ1α(ξ2, ξ3)− ξ2α(ξ1, ξ3)+ ξ3α(ξ1, ξ2).

Meanwhile, for constant vector fields ξ1, ξ2, and ξ3, the function ξ1α(ξ2, ξ3) evaluated at u ∈ Hω is
d1 A(u, ξ2, ξ3)(ξ1). So at 8(z0) ∈ Hω,

dα(ξ1, ξ2, ξ3)=d1 A(8(z0), ξ2, ξ3)(ξ1)− d1 A(8(z0), ξ1, ξ3)(ξ2)+ d1 A(8(z0), ξ1, ξ2)(ξ3)

=d1 A(8(z0), ξ2, ξ3)(ξ1)− d1 A(8(z0), ξ1, ξ3)(ξ2)− d1 A(8(z0), ξ2, ξ1)(ξ3). (31)

Hence (30) becomes∫
D

dα(9,8z̄ j ,8z j ) dV =

∫
D
θ(9,8z̄ j ,8z j ) dV =

∫
D

∫
X
{8z̄ j ,8z j }ω89ω

n
8 dV. (32)

Finally, with (25) and (32), the variational equation (24) becomes

0 =

∫
D

∫
X

(
4
(∑

j

|∇8z j |
2
− 2

∑
j

8z j z̄ j

)
+ 4i

∑
j

{8z̄ j ,8z j }ω8

)
9ωn

8 dV, (33)

and we obtain the Euler–Lagrange equation∑
j

|∇8z j |
2
− 2

∑
j

8z j z̄ j + i
∑

j

{8z̄ j ,8z j }ω8 = 0. □
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5. Lemma 2.2

This section is mainly devoted to the proof of Lemma 2.2, and we will follow closely the ideas in
[Błocki and Kołodziej 2007]. The first two lemmas, concerning smooth approximation of continuous
η-subharmonic functions, are based on the exposition in [Demailly 2012, Chapter I, Section 5E] of
[Richberg 1968]. See also [Demailly 1992].

Let θ ∈ C∞(R,R) be a nonnegative function having support in [−1, 1] with
∫

R
θ(h) dh = 1 and∫

R
hθ(h) dh = 0. For arbitrary ξ = (ξ1, . . . , ξp) ∈ (0,∞)p, the regularized maximal function is

Mξ (t1, . . . , tp) :=

∫
Rn

max{t1 + h1, . . . , tp + h p}

n∏
j=1

θ

(
h j

ξj

)
dh1

ξ1
· · ·

dh p

ξp
.

Lemma 5.1. Fix a closed smooth positive (1, 1)-form η on X. Let �α ⋐ D × X be a locally finite open
cover of D × X, let c be a real number, and let uα ∈ C∞(�α) such that uα(z, x)+c|z|2 is η-subharmonic
on graphs. Assume that there exists a family {ξα} of positive numbers such that, for all β and (z, x)∈ ∂�β ,

uβ(z, x)+ ξβ ≤ max
α:(z,x)∈�α

{uα(z, x)− ξα}.

Define a function ũ on D × X as follows. Given (z, x) ∈ D × X, let A = {α : (z, x) ∈�α}, ξA = (ξα)α∈A,
u A(z, x)= {uα(z, x) : α ∈ A}, and

ũ(z, x) := MξA(u A(z, x)).

Then ũ is in C∞(D × X) and ũ(z, x)+ c|z|2 is η-subharmonic on graphs.

Proof. As in the proof of [Demailly 2012, Chapter I, Lemma 5.17 and Corollary 5.19], one can deduce
that for a fixed point in D × X, there exist a neighborhood V and a finite set I of indices α such that
V ⊂

⋂
α∈I �α and on which ũ = MξI (u I ). As a result, by [Demailly 2012, Lemma 5.18 (a)], ũ is smooth

on D × X. Now for a holomorphic map f from an open subset of D to X, we have

ũ(z, f (z))+ c|z|2 +ψ( f (z))= c|z|2 +ψ( f (z))+ MξI (u I (z, f (z)))

= MξI (c|z|
2
+ψ( f (z))+ u I (z, f (z))),

where η = i∂∂̄ψ and we use [Demailly 2012, Lemma 5.18 (d)] in the last equality. Furthermore, since
c|z|2 +ψ( f (z))+ uα(z, f (z)) is subharmonic by assumption, so is MξI (c|z|

2
+ψ( f (z))+ u I (z, f (z)))

by [Demailly 2012, Lemma 5.18 (a)], and therefore ũ + c|z|2 is η-subharmonic on graphs. □

We introduce here some notation that will be used later. Let ρ1 and ρ2 be kernels (i.e., nonnegative
radial smooth functions with support in the unit ball and having integral one) in Cm and Cn, respectively.
For ε > 0, write ρ1,ε( · ) := ε−mρ1( · /ε), and let ρ2,ε be similarly defined.

The proof of the following lemma is very similar to that of [Demailly 2012, Chapter 1, Theorem 5.21].

Lemma 5.2. Let u ∈ C(D × X) be η-subharmonic on graphs. For any number λ > 0, there exists
ũ ∈ C∞(D × X) such that u ≤ ũ ≤ u + Mλ, where M depends only on the diameter of D and ũ is
(1 + λ)η-subharmonic on graphs.
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Proof. Let {�α} be a locally finite open cover of D × X by relatively compact open balls contained
in coordinate patches of D × X. Choose concentric balls �′′

α ⊂ �′
α ⊂ �α of radii r ′′

α < r ′
α < rα and

center (cα, 0) in the given coordinates (z, x) near �α, such that the �′′
α still cover D × X and η has a

local potential ψα in a neighborhood of �α. For small εα > 0 and δα > 0, we set

uα(z, x)= ((u +ψα) ∗ ρεα )(z, x)−ψα(x)+ δα(r ′2
α − |z − cα|2 − |x |

2) on �α,

where ∗ρεα is the convolution with ρεα := ρ1,εαρ2,εα . Since ψα(x)+ u(z, x) is subharmonic in z and psh
in x by Lemma 3.1, the functions (ψα + u) ∗ ρεα decrease to ψα + u as εα goes to 0, locally uniformly
because u is continuous. For εα and δα small enough, we have uα ≤ u +

1
2λ on �α. Moreover, for any

holomorphic map f from an open subset of D to X,

1(uα(z, f (z))+ψα( f (z)))=1((u +ψα) ∗ ρεα )(z, f (z))− δα1(|z − cα|2 + | f (z)|2)

≥ −δα1(|z − cα|2 + | f (z)|2)

≥ −λ1|z|2 − λ1ψα( f (z)),

where the first inequality is due to the fact that (u +ψα) ∗ ρεα is subharmonic on holomorphic graphs,
which can be verified easily because (u +ψα) is subharmonic on holomorphic graphs (or see the proof of
Lemma 2.2 where we provide such verification). So uα(z, x)+ λ|z|2 is (1 + λ)η-subharmonic on graphs.
Set

ξα = δα min
{
r ′2
α − r ′′2

α ,
1
2(r

2
α − r ′2

α )
}
.

Choose first δα such that ξα < 1
2λ, and then εα so small that u ≤ (u +ψα) ∗ ρεα (z, x)−ψα(x) < u + ξα

on �α . As δα(r ′2
α − |z − cα|2 − |x |

2) is less than or equal to −2ξα on ∂�α and greater than ξα on �′′
α , we

have uα < u − ξα on ∂�α and uα > u + ξα on �′′
α , so that the assumption in Lemma 5.1 is satisfied. Also,

the function

U (z, x) := MξA(u A(z, x)), for A = {α :�α ∋ (z, x)},

is in C∞(D × X) and U (z, x)+ λ|z|2 is (1 + λ)η-subharmonic on graphs. Then we have u ≤ U ≤ u + λ

by [Demailly 2012, Lemma 5.18 (b)], and the function defined by ũ := U + λ|z|2 is what we need. □

The following lemma is proved in the same way as Lemmas 4 and 5 in [Błocki and Kołodziej 2007].
The only issue is keeping track of uniformity.

Lemma 5.3. Let U, V be two open sets in Cn and F a biholomorphic map from U to V. Let u be usc,
bounded, and subharmonic on holomorphic graphs in D × U. Define the convolution

uδ1,δ2(z, x)=

∫
Cn

∫
Cm

u(z − a, x − b)ρ1,δ1(a)ρ2,δ2(b) da db,

where ρ1,δ1 and ρ2,δ2 are kernels in Cm and Cn, respectively. On the other hand, define

uF
δ1,δ2

(z, x)= (u ◦ (Id ×F−1))δ1,δ2 ◦ (Id ×F). (34)

Then (uF
δ1,δ2

− uδ1,δ2)(z, x)→ 0 locally uniformly in z, x , and δ1 as δ2 → 0.
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Proof. Define
ûδ2(z, x)= max

{z}×B(x,δ2)

u,

ũδ2(z, x)= −

∫
∂B(x,δ2)

u(z, b) db,

uδ2(z, x)=

∫
Cn

u(z, x − b)ρ2,δ2(b) db,

where −

∫
means the average. Their counterparts under Id ×F−1 and Id ×F as in (34) are denoted by

ûF
δ2
(z, x), ũF

δ2
(z, x), and uF

δ2
(z, x), respectively.

By Lemma 3.1, u(z, · ) is psh in U, so ûδ2(z, x) is a convex function of log δ2. Fixing a ≥ 1 and r > 0,
choose δ2 so small that 0 ≤ (log a)/(log(r/δ2))≤ 1. Then by convexity,

0 ≤ ûaδ2(z, x)− ûδ2(z, x)≤
log a

log(r/δ2)
(ûr (z, x)− ûδ2(z, x)).

Since u is assumed to be bounded, it follows that for any a > 0 (for the case 1> a > 0, use 1/a instead),
ûaδ2(z, x)− ûδ2(z, x) goes to 0 as δ2 → 0, locally uniformly in z and x . Then following the same argument
as in [Błocki and Kołodziej 2007, Lemma 4], we see ûF

δ2
− ûδ2 goes to 0 locally uniformly in z and x , as

δ2 → 0.
Since u(z, · ) is psh in U, ũδ2(z, x) is convex in log δ2. By the argument of [Błocki and Kołodziej 2007,

Lemma 5] and the fact that u is bounded, we see both ûδ2 − ũδ2 and ũδ2 − uδ2 go to 0 locally uniformly in
z, x , as δ2 → 0, and as a result, so does uF

δ2
− uδ2 . Since (uF

δ1,δ2
− uδ1,δ2) is the convolution of (uF

δ2
− uδ2)

in z, we see at once the conclusion of the lemma. □

Proof of Lemma 2.2. Fix a finite number of charts Uα ⋑ Vα such that Vα covers X, and η has a local
potential ψα in a neighborhood of Uα . For each α, let fα : Uα → Cn be the coordinate map, we consider
the convolution ((ψα +u)◦ f −1

α )δ1,δ2 ◦ fα , which we simply denote by (ψα +u)δ1,δ2 on D ×Uα . Because
u added by a constant still satisfies the same assumption in Lemma 2.2, we will assume u is so negative
that (ψα + u)δ1,δ2 −ψα <−a for some a > 0 and all α. At the same time, we consider the convolution of
(ψα + u) under fβ , namely ((ψα + u) ◦ f −1

β )δ1,δ2 ◦ fβ , which can be written as

((ψα + u) ◦ f −1
α ◦ F−1)δ1,δ2 ◦ F ◦ fα, (35)

if F−1
= fα ◦ f −1

β . We denote (35) by (ψα + u)F
δ1,δ2

(the notation is consistent with Lemma 5.3 except
we do not write out the identity map of D here). By Lemma 5.3 on D × (Uα ∩ Uβ)

(ψα+u)δ1,δ2 − (ψβ +u)δ1,δ2 = (ψα+u)δ1,δ2 − (ψα+u)F
δ1,δ2

+ (ψα+u − (ψβ +u))F
δ1,δ2

→ψα−ψβ (36)

locally uniformly in z and x , as δ2, δ1 → 0.
Let χα be a smooth function in Uα that is 0 in Vα and −1 near ∂Uα . We have i∂∂̄χα ≥ −Cη for some

constant C. For 0< ε < 1, according to (36) we can find δ1, δ2 small enough such that for any β and for
any (z, x) ∈ D′

× ∂Uβ ,(
(ψβ + u)δ1,δ2 −ψβ +

ε

C
χβ

)
(z, x) < max

(z,x)∈D′×Uα

(
(ψα + u)δ1,δ2 −ψα +

ε

C
χα

)
(z, x),
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where the maximum is taken over all D′
×Uα that contain (z, x). Let δ= min{δ1, δ2}. Then by [Demailly

2012, Chapter I, Lemma 5.17], the function

uεδ(z, x) := max
(z,x)∈D′×Uα

(
(ψα + u)δ,δ −ψα +

ε

C
χα

)
(z, x)

is continuous on D′
× X. Notice that uεδ(z, x) < −a for any 0 < ε < 1. Since ψα(x) + u(z, x) is

subharmonic in z and psh in x by Lemma 3.1, the function (ψα + u)δ,δ is decreasing to ψα + u as δ → 0,
and hence uεδ is decreasing to u as δ → 0.

We already know that ψα + u is subharmonic on holomorphic graphs, and in this paragraph we will
show this is also true for (ψα + u)δ,δ. Let us denote ψα + u by G momentarily: We want to show that,
for any holomorphic map g from an open subset of D to Uα, the function Gδ,δ(z, g(z)) is subharmonic.
Indeed, since G is bounded on D × Uα , the convolution Gδ,δ is smooth and so Gδ,δ(z, g(z)) is usc. The
map w 7→ G(w, g(w+ a)− b) is subharmonic, therefore the mean-value inequality says

G(z − a, g(z)− b)≤ −

∫
B(z−a,r)

G(w, g(w+ a)− b) dw.

So,

Gδ,δ(z, g(z))≤

∫
Cn

∫
Cm

−

∫
B(z−a,r)

G(w, g(w+ a)− b) dwρ1,δ(a)ρ2,δ(b) da db

=

∫
Cn

∫
Cm

−

∫
B(z,r)

G(W − a, g(W )− b) dWρ1,δ(a)ρ2,δ(b) da db

= −

∫
B(z,r)

Gδ,δ(W, g(W )) dW ;

the use of Fubini’s theorem is justified since G is bounded on D × Uα. As a result, Gδ,δ(z, g(z)) is
subharmonic.

The fact that (ψα +u)δ,δ is subharmonic on holomorphic graphs together with (χα)λµ̄ ≥ −C(ψα)λµ̄ as
matrices, shows, for any holomorphic function f from an open subset of D′ to X,

1
(
(ψα + u)δ,δ −ψα +

ε

C
χα

)
(z, f (z))≥ (−1 − ε)1ψα( f (z)),

so uεδ is (1 + ε)η-subharmonic on graphs.
So far we have shown that given 1< p ∈ N, there exists q0 ∈ N such that, for q > q0, the functions u1/p

1/q
are in C(D′

× X), (1 + 1/p)η-subharmonic on graphs, and decrease to u as q → ∞. For simplicity,
we will denote u1/p

1/q by u p
q . Let M be the constant in Lemma 5.2. We will construct uk

jk inductively
with jk > k2 and ũk ∈ C∞(D′

× X) such that

uk
jk +

1
jk

≤ ũk ≤ uk
jk +

1
jk

+
M
jk
. (37)

Moreover, ũk is (1 + 1/k)(1 + 1/jk)η-subharmonic on graphs, and uk
jk + 1/jk + M/jk is less than both

uk−1
jk−1

+ 1/jk−1 and u2
jk−1

+ 1/jk−1.
Suppose that this is true at the (k−1)-th step. As uk−1

jk−1
+ 1/jk−1 and u2

jk−1
+ 1/jk−1 are both greater

than u, we can find jk > max{ jk−1, k2
} such that uk

jk + 1/jk + M/jk is less than both uk−1
jk−1

+ 1/jk−1
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and u2
jk−1

+1/jk−1 by continuity on the compact set D′
× X. We can then find a function ũk ∈ C∞(D′

× X)
with uk

jk + 1/jk ≤ ũk ≤ uk
jk + 1/jk + M/jk and where ũk is (1 + 1/k)(1 + 1/jk)η-subharmonic on graphs

by applying Lemma 5.2 with λ= 1/jk . So the induction process is true at the k-th step. (One can begin
the induction process with u2

j2 + 1/j2 with j2 large enough such that u2
j2 + 1/j2 < 0.)

One can see that ũk is decreasing to u. Since ũk < 0, we have that (1 − 1/k)ũk is still decreasing to u.
The function (1 − 1/k)ũk is (1 − 1/k2)(1 + 1/jk)η-subharmonic on graphs, and, because jk > k2, is also
(1 − 1/k2 jk)η-subharmonic on graphs. So the (1 − 1/k)ũk are the desired approximants. □

6. A remark

In this final section, we compare results in this paper to those in [Darvas and Wu 2019], where the author
and Darvas consider two other families closely related to Gv and Gk

v. For π : D × X → X, define

Fv :=

{
u : u ∈ PSH(D×X,π∗ω), limsup

D∋z→ζ∈∂D
u(z, x)≤ v(ζ, x)

}
,

Fk
v :=

{
D ∋ z → Uz ∈N ∗

k is Griffiths negative, limsup
D∋z→ζ∈∂D

U 2
z (s)≤ H∗

k (vζ )(s,s) for any s ∈ H 0(X, Lk)∗
}
,

where a norm function Uz is called Griffiths negative if log Uz( f (z)) is psh for any holomorphic section
f : W ⊂ D → H 0(X, Lk)∗. Denote the upper envelopes of Fv and Fk

v by U and U k, respectively. Then
one result in [Darvas and Wu 2019] is that F Sk((U k

z )
∗) converges to U uniformly.

The transition from the aforementioned paper to this paper is the change of plurisubharmonicity to
subharmonicity, as one can see when comparing the definitions of Fk

v and Gk
v. Such a change between

Fv and Gv is a little more subtle, and it can be seen as follows. Let ψ be a local potential of ω. Then
a function u ∈ PSH(D × X, π∗ω) is equivalent to ψ(x)+ u(z, x) being psh in z and x jointly, which
is also equivalent to ψ( f (z))+ u(z, f (z)) being psh for any holomorphic function f : U ⊂ D → X
(see Lemma 6.1 below); therefore we see the change from Fv to Gv is again plurisubharmonicity to
subharmonicity. Also notice that when dim D = 1, Theorem 1.2 and the result in [Darvas and Wu 2019]
are the same because Fv = Gv and Fk

v = Gk
v.

Lemma 6.1. Let �1 and �2 be open sets in Cm and Cn, respectively. If u(z, ξ) is an usc function
on �1 ×�2 such that u(z, s(z)) is psh for any holomorphic map s from an open subset of �1 to �2, then
u is psh on �1 ×�2.

Proof. We want to show that u is subharmonic on any complex line in �1 ×�2, and it suffices to consider
the line C ∋ λ 7→ (λz0, λξ0) where (z0, ξ0) ∈�1 ×�2. In the case when z0 and ξ0 are both nonzero, we
may assume z0 = (1, 0, . . . , 0) and ξ0 = (1, 0, . . . , 0). Let G : �1 → C be the projection on the first
coordinate, and let F : C →�2 be the injection to the first coordinate. By assumption, u(z, F ◦ G(z))
is psh, so the function λ 7→ u(λz0, F ◦ G(λz0))= u(λz0, λξ0) is subharmonic.

If ξ0 = 0, then the function λ 7→ u(λz0, 0) is of course subharmonic. The final case is z0 = 0 and
ξ0 = (1, 0, . . . , 0), and we need to show the function

λ 7→ u(0, . . . , 0; λ, 0, . . . , 0)
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is subharmonic, where the semicolon “ ; ” in the argument is to separate the variables of Cm and Cn.
Given ε > 0 and a ∈ C, the function z 7→ u(z1, . . . , zm; z1/ε+a, 0, . . . , 0) is psh, so its restriction to the
complex line λ 7→ ((λ− a)ε, 0, . . . , 0) is subharmonic; namely, λ 7→ u((λ− a)ε, 0, . . . , 0; λ, 0, . . . , 0)
is subharmonic. Hence,

u(0, . . . , 0; a, 0, . . . , 0)≤ −

∫
∂B(a,r)

u((λ− a)ε, 0, . . . , 0; λ, 0, . . . , 0) dλ,

for r > 0. By Fatou’s lemma and the fact that u is usc,

lim sup
ε→0

∫
∂B(a,r)

u((λ− a)ε, 0, . . . , 0; λ, 0, . . . , 0) dλ≤

∫
∂B(a,r)

u(0, 0, . . . , 0; λ, 0, . . . , 0) dλ.

As a result,

u(0, . . . , 0; a, 0, . . . , 0)≤ −

∫
∂B(a,r)

u(0, . . . , 0; λ, 0, . . . , 0) dλ. □
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