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THE STRONG TOPOLOGY OF ω-PLURISUBHARMONIC FUNCTIONS

ANTONIO TRUSIANI

On a compact Kähler manifold (X, ω), given a model-type envelope ψ ∈ PSH(X, ω) (i.e., a singularity
type) we prove that the Monge–Ampère operator is a homeomorphism between the set of ψ-relative finite
energy potentials and the set of ψ-relative finite energy measures endowed with their strong topologies
given as the coarsest refinements of the weak topologies such that the relative energies become continuous.
Moreover, given a totally ordered family A of model-type envelopes with positive total mass representing
different singularity types, the sets XA and YA, given as the union of all ψ-relative finite energy potentials
and of all ψ-relative finite energy measures with varying ψ ∈ A, respectively, have two natural strong
topologies which extend the strong topologies on each component of the unions. We show that the
Monge–Ampère operator produces a homeomorphism between XA and YA.

As an application we also prove the strong stability of a sequence of solutions of complex Monge–
Ampère equations when the measures have uniformly L p-bounded densities for p > 1 and the prescribed
singularities are totally ordered.

1. Introduction

Let (X, ω) be a compact Kähler manifold where ω is a fixed Kähler form, and let Hω denote the set
of all Kähler potentials, i.e., all ϕ ∈ C∞ such that ω+ ddcϕ is a Kähler form. The pioneering work of
Yau [1978] shows that the Monge–Ampère operator

MAω : Hω,norm →

{
dV volume form :

∫
X

dV =

∫
X
ωn

}
,

MAω(ϕ) := (ω+ ddcϕ)n,

(1)

is a bijection, where for any subset A ⊂ PSH(X, ω) of all ω-plurisubharmonic functions, we use the
notation Anorm := {u ∈ A : supX u = 0}. Note that the assumption on the total mass of the volume
forms in (1) is necessary since Hω,norm represents all Kähler forms in the cohomology class {ω} and the
quantity

∫
X ω

n is cohomological.
In [Guedj and Zeriahi 2007] the authors extended the Monge–Ampère operator using the nonpluripolar

product (as defined successively in [Boucksom et al. 2010]) and the bijection (1) to

MAω : Enorm(X, ω)→

{
µ nonpluripolar positive measure : µ(X)=

∫
X
ωn

}
, (2)

where E(X, ω) :=
{
u ∈ PSH(X, ω) :

∫
X MAω(u)=

∫
X MAω(0)

}
is the set of all ω-psh functions with full

Monge–Ampère mass.
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The set PSH(X, ω) is naturally endowed with the L1-topology which we will call weak, but the
Monge–Ampère operator in (2) is not continuous even if the set of measures is endowed with the weak
topology. Thus in [Berman et al. 2019], setting V0 :=

∫
X MAω(0), strong topologies were introduced for

E1(X, ω) := {u ∈ E(X, ω) : E(u) >−∞}

and

M1(X, ω) := {V0µ : µ is a probability measure satisfying E∗(µ) <+∞},

as the coarsest refinements of the weak topologies such that the Monge–Ampère energy E(u) [Aubin
1984; Berman and Boucksom 2010; Boucksom et al. 2010] and the energy for probability measures E∗

[Berman et al. 2013; 2019], respectively, become continuous. The map

MAω : (E1
norm(X, ω), strong)→ (M1(X, ω), strong) (3)

is then a homeomorphism. Later Darvas [2015] showed that (E1(X, ω), strong) actually coincides
with the metric closure of Hω endowed with the Finsler metric | f |1,ϕ :=

∫
X | f | MAω(ϕ) with ϕ ∈ Hω,

f ∈ TϕHω ≃ C∞(X) and associated distance

d(u, v) := E(u)+ E(v)− 2E(Pω(u, v)),

where Pω(u, v) is the rooftop envelope given basically as the largest ω-psh function bounded above by
min(u, v) [Ross and Witt Nyström 2014]. This metric topology has played an important role in the last
decade to characterize the existence of special metrics [Berman et al. 2020; Chen and Cheng 2021a;
2021b; Darvas and Rubinstein 2017].

It is also important and natural to solve complex Monge–Ampère equations requiring that the solutions
have some prescribed behavior, for instance along a divisor.

We first recall that on PSH(X, ω) there is a natural partial order ≼ given as u ≼ v if u ≤ v+ O(1), and
the total mass through the Monge–Ampère operator respects such partial order, i.e., Vu :=

∫
X MAω(u)≤ Vv

if u ≼ v [Boucksom et al. 2010; Witt Nyström 2019]. Thus in [Darvas et al. 2018], the authors introduced
the ψ-relative analogs of the sets E(X, ω) and E1(X, ω), for ψ ∈ PSH(X, ω) fixed, as

E(X, ω,ψ) := {u ∈ PSH(X, ω) : u ≼ ψ and Vu = Vv},

E1(X, ω,ψ) := {u ∈ E(X, ω,ψ) : Eψ(u) >−∞},

where Eψ is the ψ-relative energy. They then proved that

MAω : Enorm(X, ω,ψ)→ {µ nonpluripolar positive measure : µ(X)= Vψ } (4)

is a bijection if and only if ψ , up to a bounded function, is a model-type envelope, or in other words,
ψ = (limC→+∞ P(ψ + C, 0))∗ satisfies Vψ > 0 (the star is for the upper semicontinuous regularization).
There are plenty of these functions, for instance, to any ω-psh function ψ with analytic singularities is
associated a unique model-type envelope. We denote by M the set of all model-type envelopes and by
M+ those elements ψ such that Vψ > 0.
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Letting ψ ∈M+, in [Trusiani 2022], we proved that E1(X, ω,ψ) can be endowed with a natural metric
topology given by the complete distance d(u, v) := Eψ(u)+ Eψ(v)− 2Eψ(Pω(u, v)).

Analogously to E∗, we introduce in Section 5 a natural ψ-relative energy for probability measures E∗

ψ ;
thus the set

M1(X, ω,ψ) := {Vψµ : µ is a probability measure satisfying E∗

ψ(µ) <+∞}

can be endowed with its strong topology given as the coarsest refinement of the weak topology such
that E∗

ψ becomes continuous.

Theorem A. Let ψ ∈ M+. Then

MAω : (E1
norm(X, ω,ψ), d)→ (M1(X, ω,ψ), strong) (5)

is a homeomorphism.

It is natural to wonder if one can extend the bijections (2) and (4) to bigger subsets of PSH(X, ω).
Given ψ1, ψ2 ∈ M+ such that ψ1 ̸= ψ2, the sets E(X, ω,ψ1) and E(X, ω,ψ2) are disjoint ([Darvas

et al. 2018, Theorem 1.3] quoted below as Theorem 2.1), but it may happen that Vψ1 = Vψ2 . So in these
situations, at least one of E1

norm(X, ω,ψ1) or E1
norm(X, ω,ψ2) must be ruled out to extend (4). However,

given a totally ordered family A⊂M+ of model-type envelopes, the map A∋ψ → Vψ is injective (again
by [Darvas et al. 2018, Theorem 1.3]), i.e.,

MAω :

⊔
ψ∈A

Enorm(X, ω,ψ)→ {µ nonpluripolar positive measure : µ(X)= Vψ for ψ ∈ A}

is a bijection.
In [Trusiani 2022] we introduced a complete distance dA on

XA :=

⊔
ψ∈A

E1(X, ω,ψ),

where A ⊂ M is the weak closure of A and where we identify E1(X, ω,ψmin) with a point Pψmin if
ψmin ∈ M \M+ (since in this case Eψ ≡ 0, see Remark 2.7). Here ψmin is given as the smallest element
in A, observing that the Monge–Ampère operator MAω : A → MAω(A) is a homeomorphism when the
range is endowed with the weak topology (Lemma 3.12). We call the strong topology on XA the metric
topology given by dA since dA|E1(X,ω,ψ)×E1(X,ω,ψ) = d. The precise definition of dA is quite technical
(in Section 2 we will recall many of its properties), but the strong topology is natural since it is the
coarsest refinement of the weak topology such that E·( · ) becomes continuous as Theorem 6.2 shows. In
particular the strong topology is independent of the set A chosen.

Also the set

YA :=

⊔
ψ∈A

M1(X, ω,ψ)

has a natural strong topology given as the coarsest refinement of the weak topology such that E∗
·
( · )

becomes continuous.
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Theorem B. The Monge–Ampère map

MAω : (XA,norm, dA)→ (YA, strong)

is a homeomorphism.

Obviously in Theorem B we define MAω(Pψmin) := 0 if Vψmin = 0.
Note that by Hartogs’ lemma and Theorem 6.2 the metric subspace XA,norm is complete and represents

the set of all closed and positive (1, 1)-currents T = ω+ ddcu such that u ∈ XA, where Pψmin encases all
currents whose potentials u are more singular than ψmin if Vψmin = 0.

Finally, as an application of Theorem B we study an example of the stability of solutions of complex
Monge–Ampère equations. Other important situations will be dealt with in a future work.

Theorem C. Let A := {ψk}k∈N ⊂ M+ be totally ordered, and let { fk}k∈N ⊂ L1
\ {0} be a sequence of

nonnegative functions such that fk → f ∈ L1
\ {0} and such that

∫
X fkω

n
= Vψk for any k ∈ N. Assume

also that there exists p > 1 such that ∥ fk∥L p and ∥ f ∥L p are uniformly bounded. Then ψk → ψ ∈ M+

weakly, and the sequence {uk}k∈N of solutions of

MAω(uk)= fkω
n, uk ∈ E1

norm(X, ω,ψk), (6)

converges strongly to u ∈ XA (i.e., dA(uk, u)→ 0), which is the unique solution of

MAω(u)= f ωn, u ∈ E1
norm(X, ω,ψ).

In particular, uk → u in capacity.

The existence of the solutions of (6) follows by Theorem A in [Darvas et al. 2021a], while the fact
that the strong convergence implies the convergence in capacity is our Theorem 6.3. Note also that the
convergence in capacity of Theorem C was already obtained in [Darvas et al. 2021b]; see Remark 7.1.

1A. Structure of the paper. Section 2 is dedicated to introducing preliminaries, and, in particular, all
necessary results presented in [Trusiani 2022]. In Section 3 we extend some known uniform estimates
for E1(X, ω) to the relative setting, and we prove the key upper-semicontinuity of the relative energy
functional E·( · ) in XA. Section 4 regards the properties of the action of measures on PSH(X, ω) and,
in particular, their continuity. Then Section 5 is dedicated to proving Theorem A. We use a variational
approach to show the bijection, then we need some further important properties of the strong topology
on E1(X, ω,ψ) to conclude the proof. Section 6 is the heart of the article where we extend the results
proved in the previous section to XA, and we present our main Theorem B. Finally in Section 7 we show
Theorem C.

1B. Future developments. As mentioned above, in a future work we will present some strong stability
results of more general solutions of complex Monge–Ampère equations with prescribed singularities than
Theorem C, starting the study of a kind of continuity method where the singularities will also vary. As an
application we will study the existence of (log) Kähler–Einstein metrics with prescribed singularities,
with a particular focus on the relationships among them varying the singularities.
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2. Preliminaries

We recall that given a Kähler complex compact manifold (X, ω), the set PSH(X, ω) is the set of all
ω-plurisubharmonic functions (ω-psh), i.e., all u ∈ L1 given locally as the sum of a smooth function and
a plurisubharmonic function such that ω+ ddcu ≥ 0 as a (1, 1)-current. Here dc

:=
i

2π (∂̄ − ∂) so that
ddc

=
i
π
∂∂̄ . For any pair of ω-psh functions u, v, the function

Pω[u](v) :=
(

lim
C→∞

Pω(u + C, v)
)∗

= (sup{w ∈ PSH(X, ω) : w ≼ u, w ≤ v})∗

is ω-psh, where the star is for the upper semicontinuous regularization and

Pω(u, v) := (sup{w ∈ PSH(X, ω) : w ≤ min(u, v)})∗.

Then the set of all model-type envelopes is defined as

M := {ψ ∈ PSH(X, ω) : ψ = Pω[ψ](0)}.

We also recall that M+ denotes the elements ψ ∈ M such that Vψ > 0 where, as said in the Introduction,
Vψ :=

∫
X MAω(ψ).

The class of ψ-relative full mass functions E(X, ω,ψ) complies with the following characterization.

Theorem 2.1 [Darvas et al. 2018, Theorem 1.3]. Suppose v ∈ PSH(X, ω) such that Vv > 0 and v is less
singular than u ∈ PSH(X, ω). Then the following are equivalent:

(i) u ∈ E(X, ω, v).

(ii) Pω[u](v)= v.

(iii) Pω[u](0)= Pω[v](0).

The clear inclusion E(X, ω, v)⊂ E(X, ω, Pω[v](0)) may be strict, and it seems more natural in many
cases to consider only functions ψ ∈ M. For instance, as shown in [Darvas et al. 2018], ψ being a
model-type envelope is a necessary assumption to make the equation

MAω(u)= µ, u ∈ E(X, ω,ψ),

always solvable where µ is a nonpluripolar measure such that µ(X)= Vψ . It is also worth recalling that
there are plenty of elements in M, since Pω[Pω[ψ]]= Pω[ψ] for anyψ ∈PSH(X, ω)with

∫
X MAω(ψ)>0,

see [Darvas et al. 2018, Theorem 3.12]. Indeed, v → Pω[v] may be thought of as a projection from the
set of negative ω-psh functions with positive Monge–Ampère mass to M+.

We also retrieve the following useful result.

Theorem 2.2 [Darvas et al. 2018, Theorem 3.8]. Let u, ψ ∈ PSH(X, ω) such that u ≽ ψ . Then

MAω(Pω[ψ](u))≤ 1{Pω[ψ](u)=u} MAω(u).

In particular, if ψ ∈ M then MAω(ψ)≤ 1{ψ=0} MAω(0).
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Note also, in Theorem 2.2 the equality holds if u is continuous with bounded distributional Laplacian
with respect to ω as a consequence of [Di Nezza and Trapani 2021]. In particular, for any ψ ∈ M,
MAω(ψ)= 1{ψ=0} MAω(0).

2A. The metric space (E1(X, ω,ψ), d). In this subsection we assume ψ ∈ M+
:= {ψ ∈ M : Vψ > 0}.

As in [Darvas et al. 2018], we also denote by PSH(X, ω,ψ) the set of all ω-psh functions which are
more singular than ψ , and we recall that a function u ∈ PSH(X, ω,ψ) has ψ-relative minimal singularities
if |u −ψ | is globally bounded on X . We also use the notation

MAω(u
j1
1 , . . . , u jl

l ) := (ω+ ddcu1)
j1 ∧ · · · ∧ (ω+ ddcul)

jl

for u1, . . . , ul ∈ PSH(X, ω) where j1, . . . , jl ∈ N such that j1 + · · · + jl = n.

Definition 2.3 [Darvas et al. 2018, Section 4.2]. The ψ-relative energy functional Eψ : PSH(X, ω,ψ)→
R ∪ {−∞} is defined as

Eψ(u) :=
1

n+1

n∑
j=0

∫
X
(u −ψ)MAω(u j, ψn− j )

if u has ψ-relative minimal singularities, and as

Eψ(u) := inf{Eψ(v) : v ∈ E(X, ω,ψ) with ψ-relative minimal singularities, v ≥ u}

otherwise. The subset E1(X, ω,ψ)⊂ E(X, ω,ψ) is defined as

E1(X, ω,ψ) := {u ∈ E(X, ω,ψ) : Eψ(u) >−∞}.

When ψ = 0, the ψ-relative energy functional is the Aubin–Mabuchi energy functional, also called the
Monge–Ampère energy; see [Aubin 1984; Mabuchi 1986].

Proposition 2.4. The following properties from [Darvas et al. 2018] hold:

(i) [Theorem 4.10] Eψ is nondecreasing.

(ii) [Lemma 4.12] Eψ(u)= lim j→∞ Eψ(max(u, ψ − j)).

(iii) [Lemma 4.14] Eψ is continuous along decreasing sequences.

(iv) [Theorem 4.10 and Corollary 4.16] Eψ is concave along affine curves.

(v) [Lemma 4.13] u ∈ E1(X,ω,ψ) if and only if u ∈ E(X,ω,ψ) and
∫

X (u −ψ)MAω(u) >−∞.

(vi) [Proposition 4.19] Eψ(u) ≥ lim supk→∞ Eψ(uk) if uk, u ∈ E1(X, ω,ψ) and uk → u with respect
to the weak topology.

(vii) [Proposition 4.20] Letting u ∈ E1(X, ω,ψ), χ ∈ C0(X) and ut := sup{v ∈ PSH(X, ω) v ≤ u + tχ}
∗

for any t > 0, then t → Eψ(ut) is differentiable and its derivative is given by

d
dt

Eψ(ut)=

∫
X
χ MAω(ut).
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(viii) [Theorem 4.10] If u, v ∈ E1(X, ω,ψ), then

Eψ(u)− Eψ(v)=
1

n+1

n∑
j=0

∫
X
(u − v)MAω(u j, vn− j )

and the function N ∋ j →
∫

X (u − v)MAω(u j, vn− j ) is decreasing. In particular,∫
X
(u − v)MAω(u)≤ Eψ(u)− Eψ(v)≤

∫
X
(u − v)MAω(v).

(ix) [Theorem 4.10] If u ≤ v, then

Eψ(u)− Eψ(v)≤
1

n+1

∫
X
(u − v)MAω(u).

Remark 2.5. All the properties of Proposition 2.4 are shown in [Darvas et al. 2018] assuming ψ has
small unbounded locus, but [Trusiani 2022, Proposition 2.7] and the general integration by parts formula
proved in [Xia 2019] allow us to extend these properties to the general case as described in [Trusiani
2022, Remark 2.10].

Recalling that for any u, v∈E1(X, ω,ψ) the function Pω(u, v)= sup{w∈PSH(X, ω) :w≤min(u, v)}∗

belongs to E1(X, ω,ψ) (see [Trusiani 2022, Proposition 2.13]), then we also have that the function
d : E1(X, ω,ψ)× E1(X, ω,ψ)→ R≥0 defined as

d(u, v)= Eψ(u)+ Eψ(v)− 2Eψ(Pω(u, v))

assumes finite values. Moreover, it is a complete distance as the next result shows.

Theorem 2.6 [Trusiani 2022, Theorem A]. (E1(X, ω,ψ), d) is a complete metric space.

We call the strong topology on E1(X, ω,ψ) the metric topology given by the distance d. Note that,
by construction, d(uk, u)→ 0 as k → ∞ if uk ↘ u, and d(u, v)= d(u, w)+ d(w, v) if u ≤ w ≤ v; see
[Trusiani 2022, Lemma 3.1].

Moreover, as a consequence of Proposition 2.4, it follows that for any C ∈ R>0 the set

E1
C(X, ω,ψ) :=

{
u ∈ E1(X, ω,ψ) : sup

X
u ≤ C and Eψ(u)≥ −C

}
is a weakly compact convex set.

Remark 2.7. Ifψ ∈M\M+, then E1(X, ω,ψ)=PSH(X, ω,ψ) since Eψ ≡0 by definition; see [Trusiani
2022, Remark 3.10]. In particular, d ≡ 0, and it is natural to identify (E1(X, ω,ψ), d) with a point Pψ .
Moreover, we recall that E1(X, ω,ψ1)∩ E1(X, ω,ψ2)= ∅ if ψ1, ψ2 ∈ M, ψ1 ̸= ψ2 and Vψ2 > 0.

2B. The space (XA, dA). From now on we assume A ⊂ M+ to be a totally ordered set of model-type
envelopes, and we denote by A its closure as a subset of PSH(X, ω) endowed with the weak topology. Note
that A ⊂ PSH(X, ω) is compact by [Trusiani 2022, Lemma 2.6]. Indeed, we will prove in Lemma 3.12
that A is actually homeomorphic to its image through the Monge–Ampère operator MAω when the set of
measures is endowed with the weak topology. This yields that A is also homeomorphic to a closed set
contained in

[
0,

∫
X ω

n
]

through the map ψ → Vψ .
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Definition 2.8. We define the set

XA :=

⊔
ψ∈A

E1(X, ω,ψ)

if ψmin := infA satisfies Vψmin > 0, and

XA := Pψmin ⊔

⊔
ψ ′∈A,ψ ̸=ψmin

E1(X, ω,ψ)

if Vψmin = 0, where Pψmin is a singleton.

XA can be endowed with a natural metric structure as [Trusiani 2022, Section 4] shows.

Theorem 2.9 [Trusiani 2022, Theorem B]. (XA, dA) is a complete metric space such that

dA|E1(X,ω,ψ)×E1(X,ω,ψ) = d

for any ψ ∈ A∩M+.

We call the strong topology on XA the metric topology given by the distance dA. Note that the definition
is coherent with that of Section 2A since the induced topology on E1(X, ω,ψ)⊂ XA coincides with the
strong topology given by d .

We will also need the following contraction property which is the starting point to construct dA.

Proposition 2.10 [Trusiani 2022, Lemma 4.2 and Proposition 4.3]. Let ψ1, ψ2, ψ3 ∈ M such that
ψ1 ≼ψ2 ≼ψ3. Then Pω[ψ1](Pω[ψ2](u))= Pω[ψ1](u) for any u ∈E1(X, ω,ψ3) and |Pω[ψ1](u)−ψ1|≤C
if |u −ψ3| ≤ C. Moreover, the map

Pω[ψ1]( · ) : E1(X, ω,ψ2)→ PSH(X, ω,ψ1)

has image in E1(X, ω,ψ1) and is a Lipschitz map of constant 1 when the sets E1(X, ω,ψi ), i = 1, 2, are
endowed with the d distances, i.e.,

d(Pω[ψ1](u), Pω[ψ1](v))≤ d(u, v)

for any u, v ∈ E1(X, ω,ψ2).

Here we report some properties of the distance dA and some consequences which will be useful later.

Proposition 2.11. The following properties from [Trusiani 2022] hold:

(i) [Proposition 4.14] If u ∈ E1(X, ω,ψ1) and v ∈ E1(X, ω,ψ2) for ψ1, ψ2 ∈ A and ψ1 ≽ ψ2, then

dA(u, v)≥ d(Pω[ψ2](u), v).

(ii) [Lemma 4.6] If {ψk}k∈N ⊂ M+, ψ ∈ M, with ψk ↘ ψ (resp. ψk ↗ ψ a.e.), uk ↘ u and vk ↘ v

(resp. uk ↗ u a.e. and vk ↗ v a.e.), for uk, vk ∈ E1(X, ω,ψk) and u, v ∈ E1(X, ω,ψ) and |uk − vk |

is uniformly bounded, then

d(uk, vk)→ d(u, v).



THE STRONG TOPOLOGY OF ω-PLURISUBHARMONIC FUNCTIONS 375

(iii) [Proposition 4.5] If {ψk}k∈N ⊂ M+, ψ ∈ M, such that ψk → ψ monotonically a.e., then for
any ψ ′

∈ M such that ψ ′ ≽ ψk for any k ≫ 1 big enough and for any strongly compact set
K ⊂ (E1(X, ω,ψ ′), d),

d(Pω[ψk](ϕ1), Pω[ψk](ϕ2))→ d(Pω[ψ](ϕ1), Pω[ψ](ϕ2))

uniformly on K × K, i.e., varying (ϕ1, ϕ2) ∈ K × K. In particular, if ψk, ψ ∈ A, then

dA(Pω[ψ](u), Pω[ψk](u))→ 0,

d(Pω[ψk](u), Pω[ψk](v))→ d(Pω[ψ](u), Pω[ψ](v))

monotonically for any (u, v) ∈ E1(X, ω,ψ ′)× E1(X, ω,ψ ′).

(iv) [Section 4.2] dA(u1, u2)≥ |Vψ1 −Vψ2 | if u1 ∈ E1(X, ω,ψ1) and u2 ∈ E1(X, ω,ψ2), and the equality
holds if u1 = ψ1 and u2 = ψ2 (by definition of dA).

The following lemma is a special case of [Xia 2019, Theorem 2.2]; see also [Darvas et al. 2018,
Lemma 4.1].

Lemma 2.12 [Trusiani 2022, Proposition 2.7]. Let {ψk}k∈N ⊂ M+, ψ ∈ M, such that ψk → ψ mono-
tonically almost everywhere. Let also uk, vk ∈ E1(X, ω,ψk) converge in capacity to u, v ∈ E1(X, ω,ψ),
respectively. Then for any j = 0, . . . , n,

MAω(u
j
k , v

n− j
k )→ MAω(u j, vn− j )

weakly. Moreover, if |uk − vk | is uniformly bounded, then for any j = 0, . . . , n,

(uk − vk)MAω(u
j
k , v

n− j
k )→ (u − v)MAω(u j, vn− j )

weakly.

It is well known that the set of Kähler potentials Hω := {ϕ ∈ PSH(X, ω)∩ C∞(X) : ω+ ddcϕ > 0} is
dense in (E1(X, ω), d). The same holds for Pω[ψ](Hω) in (E1(X, ω,ψ), d).

Lemma 2.13 [Trusiani 2022, Lemma 4.8]. The set PHω
(X, ω,ψ) := Pω[ψ](H)⊂ P(X, ω,ψ) is dense

in (E1(X, ω,ψ), d).

The following lemma shows that, for u ∈ PSH(X, ω) fixed, the map M+
∋ ψ → Pω[ψ](u) is weakly

continuous over any totally ordered set of model-type envelopes that are more singular than u.

Lemma 2.14. Let u ∈ PSH(X, ω), and let {ψk}k∈N ⊂ M+ be a totally ordered sequence of model-
type envelopes converging to ψ ∈ M. Assume also that ψk ≼ u for any k ≫ 1 big enough. Then
Pω[ψk](u)→ Pω[ψ](u) weakly.

Proof. As {ψk}k∈N is totally ordered, without loss of generality we may assume thatψk →ψ monotonically
almost everywhere. Set ũ := limk→∞ Pω[ψk](u). We want to prove that ũ = Pω[ψ](u).

Suppose ψk ↘ψ . We can immediately check that Pω[ψk](u)≤ Pω[ψk](supX u)=ψk +supX u, which
implies ũ ≤ψ+supX u letting k → +∞. Thus ũ ≤ Pω[ψ](u), as the inequality ũ ≤ u is trivial. Moreover,
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since ψ ≤ ψk we also have Pω[ψ](u) ≤ Pω[ψk](u), which clearly yields Pω[ψ](u) ≤ ũ and concludes
this part.

Suppose ψk ↗ ψ . Then the inequality ũ ≤ Pω[ψ](u) is immediate. Next, combining Theorem 2.2 and
Proposition 2.10, we have

MAω(Pω[ψk](u))= MAω(Pω[ψk](Pω[ψ](u)))

≤ 1{Pω[ψk ](u)=Pω[ψ](u)} MAω(Pω[ψ](u))

≤ 1{ũ=Pω[ψ](u)} MAω(Pω[ψ](u)),

where the last inequality follows from Pω[ψk](u)≤ ũ ≤ Pω[ψ](u). Thus, as MAω(Pω[ψk](u))→MAω(ũ)
weakly by [Darvas et al. 2018, Theorem 2.3], we deduce that ũ ∈ E(X, ω,ψ) and

MAω(ũ)≤ 1{ũ=Pω[ψ](u)} MAω(Pω[ψ](u)).

Moreover, we also have Pω[ψ](u) ∈ E(X, ω,ψ). Indeed, Pω[ψ](u)≤ Pω[ψ](supX u)= ψ + supX , i.e.,
Pω[ψ](u) ≼ ψ , while Pω[ψ](u) ≥ Pω[ψ](ψk − Ck) = ψk − Ck for nonnegative constants Ck and for
any k ≫ 1 big enough as u, ψ are less singular than ψk . Thus Pω[ψ](u)≽ ψk for any k, which yields∫

X MAω(Pω[ψ](u))≥ Vψ > 0 and gives Pω[ψ](u) ∈ E(X, ω,ψ). Hence

0 ≤

∫
X
(Pω[ψ](u)− ũ)MAω(ũ)

≤

∫
{ũ=Pω[ψ](u)}

(Pω[ψ](u)− ũ)MAω(Pω[ψ](u))= 0,

which by the domination principle of [Darvas et al. 2018, Proposition 3.11] implies ũ ≥ Pω[ψ](u). □

3. Tools

In this section we collect some uniform estimates on E1(X, ω,ψ) for ψ ∈ M+, we recall the ψ-relative
capacity and we prove the upper semicontinuity of E·( · ) on XA.

3A. Uniform estimates. Let ψ ∈ M+.
We first define in the ψ-relative setting the analogs of some well-known functionals of the variational

approach; see [Berman et al. 2013].
We define the ψ-relative I - and J -functionals,

Iψ , Jψ : E1(X, ω,ψ)× E1(X, ω,ψ)→ R, where ψ ∈ M+,

as

Iψ(u, v) :=

∫
X
(u − v)(MAω(v)− MAω(u)),

Jψ(u, v) := Jψu (v) := Eψ(u)− Eψ(v)+
∫

X
(v− u)MAω(u),
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respectively; see also [Aubin 1984]. They assume nonnegative values by Proposition 2.4, and Iψ is clearly
symmetric while Jψ is convex, again by Proposition 2.4. Moreover, the ψ-relative I - and J -functionals
are related to each other by the following result.

Lemma 3.1. Let u, v ∈ E1(X, ω,ψ). Then

(i) 1
n+1

Iψ(u, v)≤ Jψu (v)≤
n

n+1
Iψ(u, v),

(ii) 1
n

Jψu (v)≤ Jψv (u)≤ n Jψu (v).

In particular,
d(ψ, u)≤ n Jψu (ψ)+ (∥ψ∥L1 + ∥u∥L1)

for any u ∈ E1(X, ω,ψ) such that u ≤ ψ .

Proof. By Proposition 2.4 it follows that

n
∫

X
(u − v)MAω(u)+

∫
X
(u − v)MAω(v)≤ (n + 1)(Eψ(u)− Eψ(v))

≤

∫
X
(u − v)MAω(u)+ n

∫
X
(u − v)MAω(v)

for any u, v ∈ E1(X, ω,ψ), which yields (i) and (ii).
Next, considering v = ψ and assuming u ≤ ψ from the second inequality in (ii), we obtain

d(u, ψ)= −Eψ(u)≤ n Jψu (ψ)+
∫

X
(ψ − u)MAω(ψ),

which implies the assertion since MAω(ψ)≤ MAω(0) by Theorem 2.2. □

We can now proceed to show the uniform estimates, adapting some results in [Berman et al. 2013].

Lemma 3.2 [Trusiani 2022, Lemma 3.7]. Let ψ ∈ M+. Then there exists positive constants A> 1, B > 0
depending only on n, ω such that for any u ∈ E1(X, ω,ψ),

−d(ψ, u)≤ Vψ sup
X
(u −ψ)= Vψ sup

X
u ≤ A d(ψ, u)+ B

Remark 3.3. As a consequence of Lemma 3.2, if d(ψ, u)≤ C , then supX u ≤ (AC + B)/Vψ while

−Eψ(u)= d(ψ + (AC + B)/Vψ , u)− (AC + B)≤ d(ψ, u)≤ C,

i.e., u ∈ E1
D(X, ω,ψ) where D := max(C, (AC + B)/Vψ). Conversely, using the definitions and the

triangle inequality, it is easy to check that d(u, ψ)≤ C(2Vψ + 1) for any u ∈ E1
C(X, ω,ψ).

Proposition 3.4. Let C ∈ R>0. Then there exists a continuous increasing function fC : R≥0 → R≥0

depending only on C, ω, n with fC(0)= 0 such that∣∣∣∣∫
X
(u − v)(MAω(ϕ1)− MAω(ϕ2))

∣∣∣∣ ≤ fC(d(u, v)) (7)

for any u, v, ϕ1, ϕ2 ∈ E1(X, ω,ψ) with d(u, ψ), d(v, ψ), d(ϕ1, ψ), d(ϕ2, ψ)≤ C.
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Proof. As said in Remark 3.3, if w ∈ E1(X, ω,ψ) with d(ψ,w) ≤ C , then w̃ := w − (AC + B)/Vψ
satisfies supX w̃ ≤ 0 and

−Eψ(w̃)= d(ψ, w̃)≤ d(ψ,w)+ d(w, w̃)≤ C + AC + B =: D.

Therefore, setting ũ := u − (AC + B)/Vψ and ṽ := v− (AC + B)/Vψ , we can proceed exactly as in
[Berman et al. 2013, Lemma 5.8] using the integration by parts formula in [Xia 2019] (see also [Boucksom
et al. 2010, Theorem 1.14]) to get∣∣∣∣∫

X
(ũ − ṽ)(MAω(ϕ1)− MAω(ϕ2))

∣∣∣∣ ≤ Iψ(ũ, ṽ)+ hD(Iψ(ũ, ṽ)), (8)

where hD : R≥0 → R≥0 is an increasing continuous function depending only on D such that hD(0)= 0.
Furthermore, by definition,

d(ψ, Pω(ũ, ṽ))≤ d(ψ, ũ)+ d(ũ, Pω(ũ, ṽ))≤ d(ψ, ũ)+ d(ũ, ṽ)≤ 3D,

so by the triangle inequality and (8) we have∣∣∣∣∫
X
(u − v)(MAω(ϕ1)− MAω(ϕ2))

∣∣∣∣
≤ Iψ(ũ, Pω(ũ, ṽ))+ Iψ(ṽ, Pω(ũ, ṽ))+ h3D(Iψ(ũ, Pω(ũ, ṽ)))+ h3D(Iψ(ṽ, Pω(ũ, ṽ))). (9)

On the other hand, if w1, w2 ∈ E1(X, ω,ψ) with w1 ≥ w2, then by Proposition 2.4

Iψ(w1, w2)≤

∫
X
(w1 −w2)MAω(w2)≤ (n + 1)d(w1, w2).

Hence from (9) it is sufficient to set fC(x) := (n + 1)x + 2h3D((n + 1)x) to conclude the proof since
clearly d(ũ, ṽ)= d(u, v). □

Corollary 3.5. Let ψ ∈ M+ and let C ∈ R>0. Then there exists a continuous increasing function
fC : R≥0 → R≥0 depending only on C, ω, n with fC(0)= 0 such that∫

X
|u − v| MAω(ϕ)≤ fC(d(u, v))

for any u, v, ϕ ∈ E1(X, ω,ψ) with d(ψ, u), d(ψ, v), d(ψ, ϕ)≤ C.

Proof. Since d(ψ, Pω(u, v))≤ 3C , letting g3C : R≥0 → R≥0 be the map (7) of Proposition 3.4, it follows
that ∫

X
(u − Pω(u, v))MAω(ϕ)≤

∫
X
(u − Pω(u, v))MAω(Pω(u, v))+ g3C(d(u, Pω(u, v)))

≤ (n + 1)d(u, Pω(u, v))+ g3C(d(u, v)),

where in the last inequality we used Proposition 2.4. Hence by the triangle inequality we get∫
X
|u − v| MAω(ϕ)≤ (n + 1)d(u, Pω(u, v))+ (n + 1)d(v, Pω(u, v))+ 2g3C(d(u, v))

= (n + 1)d(u, v)+ 2g3C(d(u, v)).

Defining fC(x) := (n + 1)x + 2g3C(x) concludes the proof. □



THE STRONG TOPOLOGY OF ω-PLURISUBHARMONIC FUNCTIONS 379

As a first important consequence we obtain that the strong convergence in E1(X, ω,ψ) implies the
weak convergence.

Proposition 3.6. Let ψ ∈ M+ and let C ∈ R>0. Then there exists a continuous increasing function
fC,ψ : R≥0 → R≥0 depending on C, ω, n, ψ with fC,ψ(0)= 0 such that

∥u − v∥L1 ≤ fC,ψ(d(u, v))

for any u, v ∈ E1(X, ω,ψ) with d(ψ, u), d(ψ, v)≤ C. In particular, uk → u weakly if uk → u strongly.

Proof. Theorem A in [Darvas et al. 2021a] (see also Theorem 1.4 in [Darvas et al. 2018]) implies that
there exists φ ∈ E1(X, ω,ψ) with supX φ = 0 such that

MAω(φ)= c MAω(0),

where c := Vψ/V0 > 0. Therefore it follows that

∥u − v∥L1 ≤
1
c

gĈ(d(u, v)),

where Ĉ := max(d(ψ, φ),C) and gĈ is the continuous increasing function with gĈ(0) = 0 given by
Corollary 3.5. Setting fC,ψ :=

1
c gĈ concludes the proof. □

Finally we also get the following useful estimate.

Proposition 3.7. Let ψ ∈M+ and let C ∈ R>0. Then there exists a constant C̃ depending only on C, ω, n
such that ∣∣∣∣∫

X
(u − v)(MAω(ϕ1)− MAω(ϕ2))

∣∣∣∣ ≤ C̃ Iψ(ϕ1, ϕ2)
1/2 (10)

for any u, v, ϕ1, ϕ2 ∈ E1(X, ω,ψ) with d(u, ψ), d(v, ψ), d(ϕ1, ψ), d(ϕ2, ψ)≤ C.

Proof. As in Proposition 3.4 and with the same notation, the function ũ := u − (AC + B)/Vψ satisfies
supX u ≤ 0 (by Lemma 3.2) and −Eψ(u)≤ C + AC + B =: D (and similarly for v, ϕ1, ϕ2). Therefore by
integration by parts and using Lemma 3.8 below, it follows exactly as in [Berman et al. 2013, Lemma 3.13]
that there exists a constant C̃ depending only on D, n such that∣∣∣∣∫

X
(ũ − ṽ)(MAω(ϕ̃1)− MAω(ϕ̃2))

∣∣∣∣ ≤ C̃ Iψ(ϕ̃1, ϕ̃2)
1/2,

which clearly implies (10). □

Lemma 3.8. Let C ∈ R>0. Then there exists a constant C̃ depending only on C, ω, n such that∫
X
|u0 −ψ |(ω+ ddcu1)∧ · · · ∧ (ω+ ddcun)≤ C̃

for any u0, . . . , un ∈ E1(X, ω,ψ), with d(u j , ψ)≤ C for any j = 0, . . . , n.
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Proof. As in Proposition 3.4 and with the same notation, vj := u j − (AC + B)/Vψ satisfies supX vj ≤ 0,
and setting v := (v0 + · · · + vn)/(n + 1) we obtain ψ − u0 ≤ (n + 1)(ψ − v). Thus by Proposition 2.4,∫

X
(ψ − v0)MAω(v)≤ (n + 1)

∫
X
(ψ − v)MAω(v)≤ (n + 1)2|Eψ(v)|

≤ (n + 1)
n∑

j=0

|Eψ(vj )| ≤ (n + 1)
n∑

j=0

(d(ψ, u j )+ D)≤ (n + 1)2(C + D),

where D := AC + B. On the other hand, MAω(v) ≥ E(ω + ddcu1) ∧ · · · ∧ (ω + ddcun), where the
constant E depends only on n. Finally we get∫

X
|u0 −ψ |(ω+ ddcu1)∧ · · · ∧ (ω+ ddcun)≤ D +

1
E

∫
X
(ψ − v0)MAω(v)

≤ D +
(n + 1)2(C + D)

E
. □

3B. ψ-relative Monge–Ampère capacity.

Definition 3.9 [Darvas et al. 2018, Section 4.1; Darvas et al. 2021a, Definition 3.1]. Let B ⊂ X be a
Borel set, and let ψ ∈ M+. Then its ψ-relative Monge–Ampère capacity is defined as

Capψ(B) := sup
{∫

B
MAω(u) : u ∈ PSH(X, ω), ψ − 1 ≤ u ≤ ψ

}
.

In the absolute setting the Monge–Ampère capacity is very useful for studying the existence and
regularity of solutions of the degenerate complex Monge–Ampère equation [Kołodziej 1998], and the
analog holds in the relative setting [Darvas et al. 2018, 2021a]. We refer to these articles for many
properties of the Monge–Ampère capacity.

For any fixed constant A, write CA,ψ for the set of all probability measures µ on X such that

µ(B)≤ A Capψ(B)

for any Borel set B ⊂ X [Darvas et al. 2018, Section 4.3].

Proposition 3.10. Let u ∈ E1(X, ω,ψ) with ψ-relative minimal singularities. Then MAω(u)/Vψ ∈ CA,ψ

for a constant A > 0.

Proof. Let j ∈ R such that u ≥ ψ − j and assume without loss of generality that u ≤ ψ and j ≥ 1.
Then the function v := j−1u + (1 − j−1)ψ is a candidate in the definition of Capψ , which implies that
MAω(v) ≤ Capψ . Hence, since MAω(u) ≤ jn MA(v), we get that MAω(u) ∈ CA,ψ for A = jn and the
result follows. □

Lemma 3.11 [Darvas et al. 2018, Lemma 4.18]. If µ ∈ CA,ψ , then there is a constant B > 0 depending
only on A, n such that ∫

X
(u −ψ)2µ≤ B(|Eψ(u)| + 1)

for any u ∈ PSH(X, ω,ψ) such that supX u = 0.
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Similar to the case ψ = 0 (see [Guedj and Zeriahi 2017]), we say that a sequence uk ∈ PSH(X, ω)
converges to u ∈ PSH(X, ω) in ψ-relative capacity for ψ ∈ M if

Capψ({|uk − u| ≥ δ})→ 0

as k → ∞ for any δ > 0.
By [Guedj and Zeriahi 2017, Theorem 10.37] (see also [Berman et al. 2013, Theorem 5.7]) the

convergence in (E1(X, ω), d) implies the convergence in capacity. The analog holds for ψ ∈ M+,
i.e., the strong convergence in E1(X, ω,ψ) implies the convergence in ψ-relative capacity. Indeed, in
Proposition 5.7 we will prove the strong convergence implies the convergence in ψ ′-relative capacity for
any ψ ′

∈ M+.

3C. (Weak) upper semicontinuity of u → EPω[u](u) over XA. One of the main features of Eψ forψ ∈M
is its upper semicontinuity with respect to the weak topology. Here we prove the analog for E·( · ) over XA.

Lemma 3.12. The map

MAω : A → MAω(A)⊂ {µ a positive measure on X}

is a homeomorphism considering the weak topologies. In particular, A is homeomorphic to a closed set
contained in

[
0,

∫
X MAω(0)

]
through the map ψ → Vψ .

Proof. The map is well-defined and continuous by [Trusiani 2022, Lemma 2.6]. Moreover, the injectivity
follows from the fact that Vψ1 = Vψ2 for ψ1, ψ2 ∈ A implies ψ1 = ψ2 using Theorem 2.1 and the fact
that A ⊂ M+.

Finally, to conclude the proof it is enough to prove that ψk → ψ weakly assuming Vψk → Vψ , and it
is clearly sufficient to show that any subsequence of {ψk}k∈N admits a subsequence weakly convergent
to ψ . Moreover, since A is totally ordered and ≽ coincides with ≥ on M, we may assume {ψk}k∈N is a
monotonic sequence. Then, up to considering a further subsequence, ψk converges almost everywhere to
an element ψ ′

∈ A by compactness, and Lemma 2.12 implies that Vψ ′ = Vψ , i.e., ψ ′
= ψ . □

In the case A := {ψk}k∈N ⊂ M+, we say that the uk ∈ E1(X, ω,ψk) converge weakly to Pψmin

where ψmin ∈ M \M+ if |supX uk | ≤ C for any k ∈ N and any weak accumulation point u of {uk}k∈N

satisfies u ≼ ψmin. This definition is the most natural since PSH(X, ω,ψ)= E1(X, ω,ψmin).

Lemma 3.13. Let {uk}k∈N ⊂ XA be a sequence converging weakly to u ∈ XA. If EPω[uk ](uk) ≥ C
uniformly, then Pω[uk] → Pω[u] weakly.

Proof. By Lemma 3.12 the convergence requested is equivalent to Vψk → Vψ , where we set

ψk := Pω[uk], ψ := Pω[u].

Moreover, by a simple contradiction argument it is enough to show that any subsequence {ψkh }h∈N

admits a subsequence {ψkhj
}j∈N such that Vψkhj

→ Vψ . Thus up to considering a subsequence, by abuse
of notation and by the lower semicontinuity lim infk→∞ Vψk ≥ Vψ of [Darvas et al. 2018, Theorem 2.3],
we may suppose by contradiction that ψk ↘ ψ ′ for ψ ′

∈ M such that Vψ ′ > Vψ . In particular, Vψ ′ > 0
and ψ ′ ≽ ψ . Then by Proposition 2.10 and Remark 3.3, the sequence {Pω[ψ ′

](uk)}k∈N is bounded
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in (E1(X, ω,ψ ′), d) and it belongs to E1
C ′(X, ω,ψ ′) for some C ′

∈ R. Therefore, up to considering a
subsequence, we have that {uk}k∈N converges weakly to an element v∈E1(X, ω,ψ) (which is the element u
itself when u ̸= Pψmin), while the sequence Pω[ψ ′

](uk) converges weakly to an element w ∈ E1(X, ω,ψ ′).
Thus the contradiction follows fromw≤v sinceψ ′ ≽ψ , Vψ ′ >0 and E1(X, ω,ψ ′)∩E1(X, ω,ψ)=∅. □

Proposition 3.14. Let {uk}k∈N ⊂ XA be a sequence converging weakly to u ∈ XA. Then

lim sup
k→∞

EPω[uk ](uk)≤ EPω[u](u). (11)

Proof. Let ψk := Pω[uk] and ψ := Pω[u] ∈ A. We may assume ψk ̸= ψmin for any k ∈ N if ψ = ψmin

and Vψmin = 0.
Moreover, we can suppose that Eψk (uk) is bounded from below, which implies that uk ∈ E1

C(X, ω,ψk)

for a uniform constant C and that ψk → ψ weakly by Lemma 3.13. Thus since

Eψk (uk)= Eψk (uk − C)+ CVψk

for any k ∈ N, Lemma 3.12 implies that we may assume that supX uk ≤ 0. Furthermore, since A is totally
ordered, it is enough to show (11) when ψk → ψ a.e. monotonically.

If ψk ↘ ψ , setting vk := (sup{u j : j ≥ k})∗ ∈ E1(X, ω,ψk), we easily have

lim sup
k→∞

Eψk (uk)≤ lim sup
k→∞

Eψk (vk)≤ lim sup
k→∞

Eψ(Pω[ψ](vk))

using the monotonicity of Eψk and Proposition 2.10. Hence if ψ = ψmin and Vψmin = 0, then

Eψ(Pω[ψ](vk))= 0 = Eψ(u),

while otherwise the conclusion follows from Proposition 2.4 since Pω[ψ](vk)↘ u by construction.
If instead ψk ↗ ψ , fix ϵ > 0 and for any k ∈ N let jk ≥ k such that

sup
j≥k

Eψj (u j )≤ Eψjk
(u jk )+ ϵ.

Thus again by Proposition 2.10, Eψjk
(u jk ) ≤ Eψl (Pω[ψl](u jk )) for any l ≤ jk . Moreover, assuming

Eψjk
(u jk ) is bounded from below, −Eψl (Pω[ψl](u jk ))= d(ψl, Pω[ψl](u jk )) is uniformly bounded in l, k,

which implies that supX Pω[ψl](u jk ) is uniformly bounded by Remark 3.3 since Vψjk
≥ a > 0 for k ≫ 0

big enough. By compactness, up to considering a subsequence, we obtain Pω[ψl](u jk ) → vl weakly
where vl ∈ E1(X, ω,ψl) by the upper semicontinuity of Eψl ( · ) on E1(X, ω,ψl). Hence

lim sup
k→∞

Eψk (uk)≤ lim sup
k→∞

Eψl (Pω[ψl](u jk ))+ ϵ = Eψl (vl)+ ϵ

for any l ∈ N. Moreover, by construction, vl ≤ Pω[ψl](u) since Pω[ψl](u jk ) ≤ u jk for any k such that
jk ≥ l and u jk → u weakly. Therefore by the monotonicity of Eψl ( · ) and by Proposition 2.11 (ii), we
conclude that

lim sup
k→∞

Eψk (uk)≤ lim
l→∞

Eψl (Pω[ψl](u))+ ϵ = Eψ(u)+ ϵ

letting l → ∞. □
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As a consequence, defining
XA,C :=

⊔
ψ∈A

E1
C(X, ω,ψ),

we get the following compactness result.

Proposition 3.15. Let C, a ∈ R>0. The set

Xa
A,C := XA,C ∩

( ⊔
ψ∈A:Vψ≥a

E1(X, ω,ψ)
)

is compact with respect to the weak topology.

Proof. It follows directly from the definition that

Xa
A,C ⊂

{
u ∈ PSH(X, ω) :

∣∣sup
X

u
∣∣ ≤ C ′

}
,

where C ′
:= max(C,C/a). Therefore by Proposition 8.5 in [Guedj and Zeriahi 2017], Xa

A,C is weakly
relatively compact. Finally Proposition 3.14 and Hartogs’ lemma imply that Xa

A,C is also closed with
respect to the weak topology, concluding the proof. □

Remark 3.16. The whole set XA,C may not be weakly compact. Indeed, assuming Vψmin = 0 and letting
ψk ∈ A such that ψk ↘ ψmin, the functions uk := ψk − 1/

√
Vψk belong to XA,V for V =

∫
X MAω(0)

since Eψk (uk)= −
√

Vψk but supX uk = −1/
√

Vψk → −∞.

4. The action of measures on PSH(X, ω)

In this section we want to replace the action on PSH(X, ω) defined in [Berman et al. 2013] given by
a probability measure µ with an action which assumes finite values on elements u ∈ PSH(X, ω) with
ψ-relative minimal singularities, where ψ = Pω[u] for almost all ψ ∈ M. On the other hand, for
any ψ ∈ M we want there to exist many measures µ whose action over {u ∈ PSH(X, ω) : Pω[u] = ψ}

is well-defined. The problem is that µ varies among all probability measures while ψ varies among all
model-type envelopes. So it may happen that µ takes mass on nonpluripolar sets and that the unbounded
locus of ψ ∈ M is very nasty.

Definition 4.1. Let µ be a probability measure on X . Then µ acts on PSH(X, ω) through the functional
Lµ : PSH(X, ω)→ R ∪ {−∞} defined as Lµ(u)= −∞ if µ charges {Pω[u] = −∞}, as

Lµ(u) :=

∫
X
(u − Pω[u])µ

if u has Pω[u]-relative minimal singularities and µ does not charge {Pω[u] = −∞} and otherwise as

Lµ(u) := inf{Lµ(v) : v ∈ PSH(X, ω) with Pω[u]-relative minimal singularities, v ≥ u}.

Proposition 4.2. The following properties hold:

(i) Lµ is affine, i.e., it satisfies the scaling property Lµ(u+c)= Lµ(u)+c for any c ∈ R, u ∈ PSH(X, ω).

(ii) Lµ is nondecreasing on {u ∈ PSH(X, ω) : Pω[u] = ψ} for any ψ ∈ M.
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(iii) Lµ(u)= lim j→∞ Lµ(max(u, Pω[u] − j)) for any u ∈ PSH(X, ω).

(iv) If µ is nonpluripolar, then Lµ is convex.

(v) If µ is nonpluripolar and uk → u and Pω[uk] → Pω[u] weakly as k → ∞, then

Lµ(u)≥ lim sup
k→∞

Lµ(uk).

(vi) If u ∈ E1(X, ω,ψ) for ψ ∈ M+, then LMAω(u)/Vψ is finite on E1(X, ω,ψ).

Proof. The first two properties follow by definition.
For the third property, setting ψ := Pω[u], clearly Lµ(u)≤ lim j→∞ Lµ(max(u, ψ − j)). Conversely,

for any v ≥ u with ψ-relative minimal singularities v ≥ max(u, ψ − j) for j ≫ 0 big enough, by (ii) we
get Lµ(v)≥ lim j→∞ Lµ(max(u, ψ − j)) which implies (iii) by definition.

Next we prove (iv). Let v =
∑m

l=1 alul be a convex combination of elements ul ∈ PSH(X, ω). Without
loss of generality we may assume supX v, supX ul ≤ 0. In particular, we have Lµ(v), Lµ(ul)≤ 0.

Suppose Lµ(v)>−∞ (otherwise it is trivial) and let ψ := Pω[v], ψl := Pω[ul]. Then for any C ∈ R>0

it is easy to see that
m∑

l=1

al Pω(ul + C, 0)≤ Pω(v+ C, 0)≤ ψ,

which leads to
∑m

l=1 alψl ≤ ψ letting C → ∞. Hence (iii) yields

−∞< Lµ(v)=

∫
X
(v−ψ)µ≤

n∑
l=1

al

∫
X
(ul −ψl)µ=

n∑
l=1

al Lµ(ul).

Property (v) easily follows from lim supk→∞ max(uk, Pω[uk] − j)≤ max(u, Pω[u] − j) and (iii), while
the last property is a consequence of Lemma 3.8. □

Next, since for any t ∈ [0, 1] and any u, v ∈ E1(X, ω,ψ)∫
X
(u−v)MAω(tu+(1−t)v)= (1−t)n

∫
X
(u−v)MAω(v)+

n∑
j=1

(n
j

)
t j (1−t)n− j

∫
X
(u−v)MAω(u j,vn− j )

≥ (1−t)n
∫

X
(u−v)MAω(v)+(1−(1−t)n)

∫
X
(u−v)MAω(u),

we can proceed exactly as in [Berman et al. 2013, Proposition 3.4] (see also [Guedj and Zeriahi 2007,
Lemma 2.11]), replacing Vθ with ψ , to get the following result.

Proposition 4.3. Let A ⊂ PSH(X, ω) and let L : A → R∪{−∞} be a convex and nondecreasing function
satisfying the scaling property L(u + c)= L(u)+ c for any c ∈ R.

(i) If L is finite-valued on a weakly compact convex set K ⊂ A, then L(K ) is bounded.

(ii) If E1(X, ω,ψ)⊂ A and L is finite-valued on E1(X, ω,ψ), then

sup
{u∈E1

C (X,ω,ψ):supX u≤0}

|L| = O(C1/2) as C → ∞.
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4A. When is Lµ continuous? The continuity of Lµ is a hard problem. However, we can characterize its
continuity on some weakly compact sets as the next theorem shows.

Theorem 4.4. Let µ be a nonpluripolar probability measure, and let K ⊂ PSH(X, ω) be a compact
convex set such that Lµ is finite on K, the set {Pω[u] : u ∈ K } ⊂ M is totally ordered and its closure
in PSH(X, ω) has at most one element in M \ M+. Suppose also that there exists C ∈ R such that
|EPω[u](u)| ≤ C for any u ∈ K. Then the following properties are equivalent:

(i) Lµ is continuous on K.

(ii) The map τ : K → L1(µ), τ(u) := u − Pω[u] is continuous.

(iii) The set τ(K )⊂ L1(µ) is uniformly integrable, i.e.,∫
∞

t=m
µ{u ≤ Pω[u] − t} → 0

as m → ∞, uniformly for u ∈ K.

Proof. We first observe that if uk ∈ K converges to u ∈ K, then by Lemma 3.13, ψk → ψ , where we set
ψk := Pω[uk] and ψ := Pω[u].

Then we can proceed exactly as in [Berman et al. 2013, Theorem 3.10] to get the equivalence between
(i) and (ii), (ii) ⇒ (iii) and the fact that the graph of τ is closed. It is important to emphasize that (iii)
is equivalent to saying that τ(K ) is weakly relative compact by the Dunford–Pettis theorem, i.e., with
respect to the weak topology on L1(µ) induced by L∞(µ)= L1(µ)∗.

Finally, assuming that (iii) holds it remains to prove (i). So, letting uk, u ∈ K such that uk → u, we have
to show that

∫
X τ(uk)µ→

∫
X τ(u)µ. Since τ(K )⊂ L1(µ) is bounded, unless considering a subsequence,

we may suppose
∫

X τ(uk)→ L ∈ R. By Fatou’s lemma,

L = lim
k→∞

∫
X
τ(uk)µ≤

∫
X
τ(u)µ. (12)

Then for any k ∈ N the closed convex envelope

Ck := Conv{τ(u j ) : j ≥ k}

is weakly closed in L1(µ) by the Hahn–Banach theorem, which implies that Ck is weakly compact since
it is contained in τ(K ). Thus since Ck is a decreasing sequence of nonempty weakly compact sets, there
exists f ∈

⋂
k≥1 Ck and there exist elements vk ∈ Conv(u j : j ≥ k) given as finite convex combinations

such that τ(vk) → f in L1(µ). Moreover, by the closed graph property, f = τ(u) since vk → u as a
consequence of uk → u. On the other hand, by Proposition 4.2 (iv) we get∫

X
τ(vk)µ≤

mk∑
l=1

al,k

∫
X
τ(ukl )µ

if vk =
∑mk

l=1 al,kukl . Hence L ≥
∫

X τ(u)µ, which together with (12) implies L =
∫

X τ(u)µ. □
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Corollary 4.5. Let ψ ∈ M+ and µ ∈ CA,ψ . Then Lµ is continuous on E1
C(X, ω,ψ) for any C ∈ R>0. In

particular, if µ = MAω(u)/Vψ for u ∈ E1(X, ω,ψ) with ψ-relative minimal singularities, then Lµ is
continuous on E1

C(X, ω,ψ) for any C ∈ R>0.

Proof. With the notation of Theorem 4.4, τ(E1
C(X, ω,ψ)) is bounded in L2(µ) by Lemma 3.11. Hence

by Holder’s inequality τ(E1
C(X, ω,ψ)) is uniformly integrable and Theorem 4.4 yields the continuity

of Lµ on E1
C(X, ω,ψ) for any C ∈ R>0.

The last assertion follows directly from Proposition 3.10. □

The following lemma will be essential to prove Theorem A and Theorem B.

Lemma 4.6. Let ϕ ∈ Hω and let A ⊂ M be a totally ordered subset. Set also vψ := Pω[ψ](ϕ) for
any ψ ∈ A. Then the actions {Vψ LMAω(vψ )/Vψ }ψ∈A take finite values and they are equicontinuous on
any compact set K ⊂ PSH(X, ω) such that {Pω[u] : u ∈ K } is a totally ordered set whose closure in
PSH(X, ω) has at most one element in M \M+ and such that |EPω[u](u)| ≤ C uniformly for any u ∈ K.
If ψ ∈ M \ M+, for the action Vψ LMAω(vψ )/Vψ we mean the null action. In particular, if ψk → ψ

monotonically almost everywhere and {uk}k∈N ⊂ K converges weakly to u ∈ K, then∫
X
(uk − Pω[uk])MAω(vψk )→

∫
X
(u − Pω[u])MAω(vψ). (13)

Proof. By Theorem 2.2,

|Vψ LMAω(vψ )/Vψ (u)| ≤

∫
X
|u − Pω[u]| MAω(ϕ)

for any u ∈ PSH(X, ω) and any ψ ∈ A, so the actions in the statement assume finite values. Then the
equicontinuity on any weak compact set K ⊂ PSH(X, ω) satisfying the assumptions of the lemma follows
from

Vψ
∣∣LMAω(vψ )/Vψ (w1)− LMAω(vψ )/Vψ (w2)

∣∣ ≤

∫
X
|w1 − Pω[w1] −w2 + Pω[w2]| MAω(ϕ)

for any w1, w2 ∈ PSH(X, ω) since MAω(ϕ) is a volume form on X and Pω[wk] → Pω[w] if {wk}k∈N ⊂ K
converges to w ∈ K under our hypothesis by Lemma 3.13.

For the second assertion, if ψk ↘ ψ (resp. ψk ↗ ψ almost everywhere), letting fk, f ∈ L∞ such that
MAω(vψk ) = fk MAω(ϕ) and MAω(vψ) = f MAω(ϕ) (Theorem 2.2), we have 0 ≤ fk ≤ 1, 0 ≤ f ≤ 1
and { fk}k∈N is a monotone sequence. Therefore fk → f in L p for any p > 1 as k → ∞, which implies∫

X
(u − Pω[u])MAω(vψk )→

∫
X
(u − Pω[u])MAω(vψ)

as k → ∞ since MAω(ϕ) is a volume form. Hence (13) follows since by the first part of the proof,∫
X
(uk − Pω[uk] − u + Pω[u])MAω(vψk )→ 0. □

5. Theorem A

In this section we fix ψ ∈ M+ and, using a variational approach, we first prove the bijectivity of the
Monge–Ampère operator between E1

norm(X, ω,ψ) and M1(X, ω,ψ), and then we prove that it is actually
a homeomorphism considering the strong topologies.
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5A. Degenerate complex Monge–Ampère equations. Letting µ be a probability measure and ψ ∈ M,
we define the functional Fµ,ψ : E1(X, ω,ψ)→ R ∪ {−∞} as

Fµ,ψ(u) := (Eψ − Vψ Lµ)(u),

where we recall from Section 4 that

Lµ(u)= lim
j→∞

Lµ(max(u, ψ − j))

= lim
j→∞

∫
X
(max(u, ψ − j)−ψ)µ.

Fµ,ψ is clearly a translation invariant functional, and Fµ,ψ ≡ 0 for any µ if Vψ = 0.

Proposition 5.1. Let µ be a probability measure, ψ ∈M+ and let F := Fµ,ψ . If Lµ is continuous then F
is upper semicontinuous on E1(X, ω,ψ). Moreover, if Lµ is finite-valued on E1(X, ω,ψ), then there
exist A, B > 0 such that

F(v)≤ −A d(ψ, v)+ B

for any v ∈ E1
norm(X, ω,ψ), i.e., F is d-coercive. In particular, F is upper semicontinuous on E1(X, ω,ψ)

and d-coercive on E1
norm(X, ω,ψ) if µ= MAω(u)/Vψ for u ∈ E1(X, ω,ψ).

Proof. If Lµ is continuous then F is easily upper semicontinuous by Proposition 2.4.
Then, since d(ψ, v)= −Eψ(v) on E1

norm(X, ω,ψ), it is easy to check that the coercivity requested is
equivalent to

sup
E1

C (X,ω,ψ)∩E1
norm(X,ω,ψ)

|Lµ| ≤
(1 − A)

Vψ
C + O(1),

which holds by Proposition 4.3 (ii).
Next assuming µ = MAω(u)/Vψ , it is sufficient to check the continuity of Lµ since Lµ is finite-

valued on E1(X, ω,ψ) by Proposition 4.2. We may suppose without loss of generality that u ≤ ψ . By
Proposition 3.7 and Remark 3.3, for any C ∈ R>0, Lµ restricted to E1

C(X, ω,ψ) is the uniform limit
of Lµj , where µj := MAω(max(u, ψ− j)), since Iψ(max(u, ψ− j), u)→ 0 as j → ∞. Therefore Lµ is
continuous on E1

C(X, ω,ψ) because of the uniform limit of continuous functionals Lµj (Corollary 4.5). □

Because of the concavity of Eψ , if µ= MAω(u)/Vψ for u ∈ E1(X, ω,ψ) where Vψ > 0, then

Jψu (ψ)= Fµ,ψ(u)= sup
E1(X,ω,ψ)

Fµ,ψ ,

i.e., u is a maximizer of Fµ,ψ . The other way around also holds as the next result shows.

Proposition 5.2. Let ψ ∈ M+ and let µ be a probability measure such that Lµ is finite-valued on
E1(X, ω,ψ). Then µ= MAω(u)/Vψ for u ∈ E1(X, ω,ψ) if and only if u is a maximizer of Fµ,ψ .

Proof. As said before, it is clear that µ= MAω(u)/Vψ implies that u is a maximizer of Fµ,ψ . Conversely,
if u is a maximizer of Fµ,ψ , then by [Darvas et al. 2018, Theorem 4.22], µ= MAω(u)/Vψ . □
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Similarly to [Berman et al. 2013] we thus define the ψ-relative energy for ψ ∈ M of a probability
measure µ as

E∗

ψ(µ) := sup
u∈E1(X,ω,ψ)

Fµ,ψ(u),

i.e., essentially as the Legendre transform of Eψ . It takes nonnegative values (Fµ,ψ(ψ)= 0), and it is
easy to check that E∗

ψ is a convex function.
Moreover, defining

M1(X, ω,ψ) := {Vψµ : µ is a probability measure satisfying E∗

ψ(µ) <∞},

we note that M1(X, ω,ψ) consists only of the null measure if Vψ = 0, while if Vψ > 0, any probability
measure µ such that Vψµ ∈ M1(X, ω,ψ) is nonpluripolar as the next lemma shows.

Lemma 5.3. Let A ⊂ X be a (locally) pluripolar set. Then there exists u ∈ E1(X, ω,ψ) such that
A ⊂ {u = −∞}. In particular, if Vψµ ∈ M1(X, ω,ψ) for ψ ∈ M+, then µ is nonpluripolar.

Proof. By [Berman et al. 2013, Corollary 2.11], there exists ϕ ∈ E1(X, ω) such that A ⊂ {ϕ = −∞}.
Therefore setting u := Pω[ψ](ϕ) proves the first part.

Next, let Vψµ ∈ M1(X, ω,ψ) for ψ ∈ M+ and let µ be a probability measure, and assume by
contradiction that µ takes mass on a pluripolar set A. Then by the first part of the proof there exists
u ∈ E1(X, ω,ψ) such that A ⊂ {u = −∞}. On the other hand, since Vψµ∈M1(X, ω,ψ), by definition µ
does not charge {ψ = −∞}. Thus by Proposition 4.2 (iii) we obtain Lµ(u)= −∞, a contradiction. □

We now prove that the Monge–Ampère operator is a bijection between E1(X,ω,ψ) and M1(X,ω,ψ).

Lemma 5.4. Let ψ ∈ M+ and µ ∈ CA,ψ , where A ∈ R. Then there exists u ∈ E1
norm(X, ω,ψ) maximiz-

ing Fµ,ψ .

Proof. By Lemma 3.11, Lµ is finite-valued on E1(X, ω,ψ), and it is continuous on E1
C(X, ω,ψ) for

any C ∈ R thanks to Corollary 4.5. Therefore it follows from Proposition 5.1 that Fµ,ψ is upper
semicontinuous and d-coercive on E1

norm(X, ω,ψ). Hence Fµ,ψ admits a maximizer u ∈ E1
norm(X, ω,ψ)

as an easy consequence of the weak compactness of E1
C(X, ω,ψ). □

Proposition 5.5. Let ψ ∈ M+. Then the Monge–Ampère map MA : E1
norm(X, ω,ψ) → M1(X, ω,ψ),

u → MA(u), is bijective. Furthermore, if Vψµ = MAω(u) ∈ M1(X, ω,ψ) for u ∈ E1(X, ω,ψ), then
any maximizing sequence uk ∈ E1

norm(X, ω,ψ) for Fµ,ψ necessarily converges weakly to u.

Proof. The proof is inspired by [Berman et al. 2013, Theorem 4.7].
The map is well-defined as a consequence of Proposition 5.1, i.e., MAω(u) ∈ M1(X, ω,ψ) for any

u ∈ E1(X, ω,ψ). Moreover, the injectivity follows from [Darvas et al. 2021a, Theorem 4.8].
Let uk ∈E1

norm(X, ω,ψ) be a sequence such that Fµ,ψ(uk)↗supE1(X,ω,ψ) Fµ,ψ , whereµ=MAω(u)/Vψ
is a probability measure and u ∈ E1

norm(X, ω,ψ). Up to considering a subsequence, we may also assume
that uk → v ∈ PSH(X, ω). Then, by the upper semicontinuity and d-coercivity of Fµ,ψ (Proposition 5.1),
it follows that v ∈ E1

norm(X, ω,ψ) and Fµ,ψ(v) = supE1(X,ω,ψ) Fµ,ψ . Thus by Proposition 5.2 we get
µ= MAω(v)/Vψ . Hence v = u since supX v = supX u = 0.
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Then let µ be a probability measure such that Vψµ∈M1(X, ω,ψ). Again by Proposition 5.2, to prove
the existence of u ∈ E1

norm(X, ω,ψ) such that µ= MAω(u)/Vψ it is sufficient to check that Fµ,ψ admits
a maximum over E1

norm(X, ω,ψ). Moreover by Proposition 5.1, we also know that Fµ,ψ is d-coercive
on E1

norm(X, ω,ψ). Thus if there exists a constant A > 0 such that µ ∈ CA,ψ , then Corollary 4.5 leads to
the upper semicontinuity of Fµ,ψ , which clearly implies that Vψµ= MAω(u) for u ∈ E1(X, ω,ψ) since
E1

C(X, ω,ψ)⊂ PSH(X, ω) is compact for any C ∈ R>0.
In the general case, by [Darvas et al. 2018, Lemma 4.26] (see also [Cegrell 1998]), µ is absolutely

continuous with respect to ν ∈ C1,ψ using also that µ is a nonpluripolar measure (Lemma 5.3). Therefore,
letting f ∈ L1(ν) such that µ= f ν, we define for any k ∈ N

µk := (1 + ϵk)min( f, k)ν,

where the ϵk > 0 are chosen such that µk is a probability measure, noting that (1 + ϵk)min( f, k)→ f
in L1(ν). Then by Lemma 5.4 it follows that µk = MAω(uk)/Vψ for uk ∈ E1

norm(X, ω,ψ).
Moreover, by weak compactness we may also assume that uk → u ∈ PSH(X, ω), without loss of

generality. Note that u ≤ ψ since uk ≤ ψ for any k ∈ N. Then by [Darvas et al. 2021a, Lemma 2.8] we
obtain

MAω(u)≥ Vψ f ν = Vψµ,

which implies MAω(u) = Vψµ by [Witt Nyström 2019] since u is more singular than ψ and µ is a
probability measure. It remains to prove that u ∈ E1(X, ω,ψ).

It is not difficult to see that µk ≤ 2µ for k ≫ 0, thus Proposition 4.3 implies that there exists a
constant B > 0 such that

sup
E1

C (X,ω,ψ)
|Lµk | ≤ 2 sup

E1
C (X,ω,ψ)

|Lµ| ≤ 2B(1 + C1/2)

for any C ∈ R>0. Therefore

Jψuk
(ψ)= Eψ(uk)+ Vψ |Lµk (uk)| ≤ sup

C>0
(2Vψ B(1 + C1/2)− C),

and Lemma 3.1 yields d(ψ, uk) ≤ D for a uniform constant D, i.e., uk ∈ E1
D′(X, ω,ψ) for any k ∈ N

for a uniform constant D′; see Remark 3.3. Hence since E1
D′(X, ω,ψ) is weakly compact we obtain

u ∈ E1
D′(X, ω,ψ). □

5B. Proof of Theorem A. We further explore the properties of the strong topology on E1(X, ω,ψ).
By Proposition 3.6, the strong convergence implies the weak convergence. Moreover, the strong

topology is the coarsest refinement of the weak topology such that Eψ( · ) becomes continuous.

Proposition 5.6. Let ψ ∈ M+ and uk, u ∈ E1(X, ω,ψ). Then uk → u strongly if and only if uk → u
weakly and Eψ(uk)→ Eψ(u).

Proof. Assume uk → u weakly and Eψ(uk)→ Eψ(u). Then wk := (sup{u j : j ≥ k})∗ ∈ E1(X, ω,ψ) and
it decreases to u. Thus by Proposition 2.4, Eψ(wk)→ Eψ(u) and

d(uk, u)≤ d(uk, wk)+ d(wk, u)= 2Eψ(wk)− Eψ(uk)− Eψ(u)→ 0.
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Conversely, assuming that d(uk, u) → 0, we immediately get that uk → u weakly as said above; see
Proposition 3.6. Moreover, supX uk, supX u ≤ A uniformly for a constant A ∈ R. Thus

|Eψ(uk)− Eψ(u)| = |d(ψ + A, uk)− d(ψ + A, u)| ≤ d(uk, u)→ 0. □

We also observe that the strong convergence implies the convergence in ψ ′-capacity for any ψ ′
∈ M+.

Proposition 5.7. Let ψ ∈ M+ and uk, u ∈ E1(X, ω,ψ) such that d(uk, u) → 0. Then there exists
a subsequence {ukj }j∈N such that wj := (sup{ukh : h ≥ j})∗ and vj := Pω(ukj , ukj+1, . . .) belong to
E1(X, ω,ψ) and converge monotonically almost everywhere to u. In particular, uk → u in ψ ′-capacity
for any ψ ′

∈ M+, and MAω(u
j
k , ψ

n− j )→ MAω(u j, ψn− j ) weakly for any j = 0, . . . , n.

Proof. Since the strong convergence implies the weak convergence by Proposition 5.6, it is clear that
wk ∈ E1(X, ω,ψ) and that it decreases to u. In particular, up to considering a subsequence we may
assume that d(uk, wk)≤ 1/2k for any k ∈ N.

Next for any j ≥ k, set vk, j := Pω(uk, . . . , u j ) ∈ E1(X, ω,ψ) and vu
k, j := Pω(vk, j , u) ∈ E1(X, ω,ψ).

Then it follows from Proposition 2.4 and [Darvas et al. 2018, Lemma 3.7] that

d(u, vu
k, j )≤

∫
X
(u − vu

k, j )MAω(v
u
k, j )≤

∫
{vu

k, j =vk, j }

(u − vk, j )MAω(vk, j )

≤

j∑
s=k

∫
X
(ws − us)MAω(us)≤ (n + 1)

j∑
s=k

d(ws, us)≤
n + 1
2k−1 .

Therefore by Proposition 3.15, vu
k, j decreases (hence converges strongly) to a function φk ∈ E1(X, ω,ψ)

as j → ∞. Similarly we also observe that

d(vk, j , v
u
k, j )≤

∫
{vu

k, j =u}

(vk, j − u)MAω(u)≤

∫
X
|vk,1 − u| MAω(u)≤ C

uniformly in j by Corollary 3.5. Hence by definition, d(u, vk, j )≤ C + (n + 1)/2k−1, i.e., vk, j decreases
and converges strongly as j → ∞ to the function vk = Pω(uk, uk+1, . . . ) ∈ E1(X, ω,ψ), again by
Proposition 3.15. Moreover, by construction, uk ≥ vk ≥ φk since vk ≤ vk, j ≤ uk for any j ≥ k. Hence

d(u, vk)≤ d(u, φk)≤
n + 1
2k−1 → 0

as k → ∞, i.e., vk ↗ u strongly.
The convergence in ψ ′-capacity for ψ ′

∈ M+ is now clearly an immediate consequence. Indeed by
an easy contradiction argument it is enough to prove that any arbitrary subsequence, which we will
keep denoting by {uk}k∈N for the sake of simplicity, admits a further subsequence {ukj }j∈N converging
in ψ ′-capacity to u. Thus taking the subsequence satisfying vj ≤ ukj ≤wj , where vj , wj are the monotonic
sequences of the first part of the proposition, the convergence in ψ ′-capacity follows from the inclusions

{|u − ukj |> δ} = {u − ukj > δ} ∪ {ukj − u > δ} ⊂ {u − vj > δ} ∪ {wj − u > δ}

for any δ > 0. Finally Lemma 2.12 gives the weak convergence of the measures. □
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We now endow the set M1(X, ω,ψ)= {Vψµ : µ is a probability measure satisfying E∗

ψ(µ) <+∞}

(Section 5A) with its natural strong topology given as the coarsest refinement of the weak topology such
that E∗

ψ( · ) becomes continuous and prove Theorem A.

Theorem A. Let ψ ∈ M+. Then

MAω : (E1
norm(X, ω,ψ), d)→ (M1(X, ω,ψ), strong)

is a homeomorphism.

Proof. The map is bijective as an immediate consequence of Proposition 5.5.
Next, letting the uk ∈ E1

norm(X, ω,ψ) converge strongly to u ∈ E1
norm(X, ω,ψ), Proposition 5.7 gives

the weak convergence of MAω(uk)→ MAω(u) as k → ∞. Moreover, since E∗

ψ(MAω(v)/Vψ)= Jψv (ψ)
for any v ∈ E1(X, ω,ψ), we get

|E∗

ψ(MAω(uk)/Vψ)− E∗

ψ(MAω(u)/Vψ)|

≤ |Eψ(uk)− Eψ(u)| +
∣∣∣∣∫

X
(ψ − uk)MAω(uk)−

∫
X
(ψ − u)MAω(u)

∣∣∣∣
≤ |Eψ(uk)− Eψ(u)| +

∣∣∣∣∫
X
(ψ − uk)(MAω(uk)− MAω(u))

∣∣∣∣ + ∫
X
|uk − u| MAω(u). (14)

Hence MAω(uk)→ MAω(u) strongly in M1(X, ω,ψ) since each term on the right-hand side of (14)
goes to 0 as k → +∞, combining Proposition 5.6, Proposition 3.7 and Corollary 3.5, and recalling that
by Proposition 3.4, Iψ(uk, u)→ 0 as k → ∞.

Conversely, suppose that MAω(uk)→MAω(u) strongly in M1(X, ω,ψ), where uk, u ∈E1
norm(X, ω,ψ).

Then, letting {ϕj }j∈N ⊂ Hω such that ϕj ↘ u [Błocki and Kołodziej 2007] and setting vj := Pω[ψ](ϕj ),
by Lemma 3.1,

(n+1)Iψ(uk,vj )≤ Eψ(uk)−Eψ(vj )+

∫
X
(vj −uk)MAω(uk)

= E∗

ψ(MAω(uk)/Vψ)−E∗

ψ(MAω(vj )/Vψ)+
∫

X
(vj −ψ)(MAω(uk)−MAω(vj )). (15)

By construction and the first part of the proof, it follows that E∗

ψ(MAω(uk)/Vψ)−E∗

ψ(MAω(vj )/Vψ)→ 0
as k, j → ∞. Setting f j := vj −ψ , we want to prove

lim sup
k→∞

∫
X

f j MAω(uk)=

∫
X

f j MAω(u),

which would imply lim sup j→∞ lim supk→∞ Iψ(uk, vj )= 0 since
∫

X f j (MAω(u)− MAω(vj ))→ 0 as a
consequence of Propositions 3.7 and 3.4.

We observe that ∥ f j∥L∞ ≤ ∥ϕj∥L∞ by Proposition 2.10, and we denote by { f s
j }s∈N ⊂ C∞ a sequence

of smooth functions converging in capacity to f j such that ∥ f s
j ∥L∞ ≤ 2∥ f j∥L∞ . Here we briefly recall

how to construct such a sequence. Let {gs
j }s∈N be the sequence of bounded functions converging in

capacity to f j defined as gs
j := max(vj ,−s)− max(ψ,−s). We have that ∥gs

j ∥L∞ ≤ ∥ f j∥L∞ and that
max(vj ,−s), max(ψ,−s) ∈ PSH(X, ω). By a regularization process (see [Błocki and Kołodziej 2007])
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and a diagonal argument we can now construct a sequence { f s
j }j∈N ⊂ C∞ converging in capacity to f j

such that ∥ f s
j ∥L∞ ≤ 2∥gs

j ∥ ≤ 2∥ f j∥L∞ , where f s
j = vs

j −ψ s with vs
j , ψ

s quasi-psh functions decreasing
to vj , ψ , respectively.

Then letting δ > 0 we have∫
X
( f j − f s

j )MAω(uk)≤ δVψ + 3∥ϕj∥L∞

∫
{ f j − f s

j >δ}

MAω(uk)

≤ δVψ + 3∥ϕj∥L∞

∫
{ψ s−ψ>δ}

MAω(uk)

from the trivial inclusion { f j − f s
j > δ} ⊂ {ψ s

−ψ > δ}. Therefore

lim sup
s→∞

lim sup
k→∞

∫
X
( f j − f s

j )MAω(uk)≤ δVψ + lim sup
s→∞

lim sup
k→∞

∫
{ψ s−ψ≥δ}

MAω(uk)

≤ δVψ + lim sup
s→∞

∫
{ψ s−ψ≥δ}

MAω(u)= δVψ ,

where we used that {ψ s
−ψ ≥ δ} is a closed set in the plurifine topology. Hence since f s

j ∈ C∞ we obtain

lim sup
k→∞

∫
X

f j MAω(uk)= lim sup
s→∞

lim sup
k→∞

(∫
X
( f j − f s

j )MAω(uk)+

∫
X

f s
j MAω(uk)

)
≤ lim sup

s→∞

∫
X

f s
j MAω(u)=

∫
X

f j MAω(u),

which as said above implies Iψ(uk, vj )→ 0 letting k, j → ∞ in this order.
Next we obtain uk ∈ E1

C(X, ω,ψ) for some C ∈ N big enough since Jψuk (ψ) = E∗

ψ(MAω(uk)/Vψ),
again by Lemma 3.1. In particular, up to considering a subsequence, uk → w ∈ E1

norm(X, ω,ψ) weakly
by Proposition 3.15. Observe also that by Proposition 3.7,∣∣∣∣∫

X
(ψ − uk)(MAω(vj )− MAω(uk))

∣∣∣∣ → 0 (16)

as k, j → ∞ in this order. Moreover, by Proposition 3.14 and Lemma 4.6,

lim sup
k→∞

(
E∗

ψ(MAω(uk)/Vψ)+
∫

X
(ψ − uk)(MAω(vj )− MAω(uk))

)
= lim sup

k→∞

(
Eψ(uk)+

∫
X
(ψ − uk)MAω(vj )

)
≤ Eψ(w)+

∫
X
(ψ −w)MAω(vj ). (17)

Therefore combining (16) and (17) with the strong convergence of vj to u we obtain

Eψ(u)+
∫

X
(ψ − u)MAω(u)= lim

k→∞

E∗

ψ(MAω(uk)/Vψ)

≤ lim sup
j→∞

(
Eψ(w)+

∫
X
(ψ −w)MAω(vj )

)
= Eψ(w)+

∫
X
(ψ −w)MAω(u),
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i.e., w is a maximizer of FMAω(u)/Vψ ,ψ . Hence w= u (Proposition 5.5), i.e., uk → u weakly. Furthermore,
again by Lemma 3.1 and Lemma 4.6,

lim sup
k→∞

(Eψ(vj )− Eψ(uk))≤ lim sup
k→∞

(
n

n + 1
Iψ(uk, vj )+

∣∣∣∣∫
X
(uk − vj )MAω(vj )

∣∣∣∣)
≤

∣∣∣∣∫
X
(u − vj )MAω(vj )

∣∣∣∣ + lim sup
k→∞

n
n + 1

Iψ(uk, vj ). (18)

Finally letting j → ∞, since vj ↘ u strongly, we obtain lim inf j→∞ Eψ(uk)≥ lim j→∞ Eψ(vj )= Eψ(u),
which implies that Eψ(uk)→ Eψ(u) and that uk → u strongly by Proposition 5.6. □

The main difference between the proof of Theorem A and the proof of the same result in the absolute
setting, i.e., when ψ = 0, is that for fixed u ∈ E1(X, ω,ψ) the action

M1(X, ω,ψ) ∋ MAω(v)→

∫
X
(u −ψ)MAω(v)

is not a priori continuous with respect to the weak topologies of measures even if we restrict the action on
M1

C(X, ω,ψ) := {Vψµ : E∗

ψ(µ)≤ C} for C ∈ R, while in the absolute setting this is given by [Berman
et al. 2019, Proposition 1.7], where the authors used the fact that any u ∈ E1(X, ω) can be approximated
inside the class E1(X, ω) by a sequence of continuous functions.

6. Strong topologies

In this section we investigate the strong topology on XA in detail, proving that it is the coarsest refinement
of the weak topology such that E·( · ) becomes continuous (Theorem 6.2) and proving that the strong
convergence implies the convergence in ψ-capacity for any ψ ∈M+ (Theorem 6.3), i.e., we extend all the
typical properties of the L1-metric geometry to the bigger space XA, justifying further the construction of
the distance dA [Trusiani 2022] and its naturality. Moreover, we define the set YA and prove Theorem B.

6A. About (XA, dA). First we prove that the strong convergence in XA implies the weak convergence,
recalling that for the weak convergence of uk ∈ E1(X, ω,ψk) to Pψmin , where ψmin ∈ M with Vψmin = 0,
we mean that |supX uk | ≤ C and that any weak accumulation point of {uk}k∈N is more singular than ψmin.

Proposition 6.1. Let uk, u ∈ XA such that uk → u strongly. If u ̸= Pψmin , then uk → u weakly. If instead
u = Pψmin , then the following dichotomy holds:

(i) uk → Pψmin weakly.

(ii) lim supk→∞|supX uk | = +∞.

Proof. The dichotomy for the case u = Pψmin follows by definition. Indeed, if |supX uk | ≤ C and
dA(uk, u)→ 0 as k → ∞, then Vψk → Vψmin = 0 by Proposition 2.11 (iv), which implies that ψk →ψmin

by Lemma 3.12. Hence any weak accumulation point u of {uk}k∈N satisfies u ≤ ψmin + C .
Thus, let ψk, ψ ∈ A such that uk ∈ E1(X, ω,ψk) and u ∈ E1(X, ω,ψ) where ψ ∈ M+. Observe that

d(uk, ψk)≤ dA(uk, u)+ d(u, ψ)+ dA(ψ,ψk)≤ A

for a uniform constant A > 0 by Proposition 2.11 (iv).
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On the other hand, by [Błocki and Kołodziej 2007], for any j ∈ N there exists h j ∈Hω such that h j ≥ u,
∥h j −u∥L1 ≤ 1/j and d(u, Pω[ψ](h j ))≤ 1/j . In particular, by the triangle inequality and Proposition 2.11,
we have

lim sup
k→∞

d(Pω[ψk](h j ), ψk)≤ lim sup
k→∞

(
dA(Pω[ψk](h j ), Pω[ψ](h j ))+

1
j
+ d(u, ψ)+ d(ψ,ψk)

)
≤ d(u, ψ)+ 1

j
, (19)

Similarly, again by the triangle inequality and Proposition 2.11,

lim sup
k→∞

d(uk, Pω[ψk](h j ))≤ lim sup
k→∞

(
dA(Pω[ψk](h j ), Pω[ψ](h j ))+

1
j
+ dA(u, uk)

)
≤

1
j

(20)

and

limsup
k→∞

∥uk−u∥L1 ≤ limsup
k→∞

(∥uk−Pω[ψk](h j )∥L1+∥Pω[ψk](h j )−Pω[ψ](h j )∥L1+∥Pω[ψ](h j )−u∥L1)

≤
1
j
+limsup

k→∞

∥uk−Pω[ψk](h j )∥L1, (21)

where we also used Lemma 2.14. In particular, we deduce that d(ψk, Pω[ψk](h j )), d(ψk, uk) ≤ C for
a uniform constant C ∈ R from (19) and (20). Next let φk ∈ E1

norm(X, ω,ψ) be the unique solution of
MAω(φk)= (Vψk/V0)MAω(0), and observe that by Proposition 2.4,

d(ψk, φk)= −Eψk (φk)≤

∫
X
(ψk −φk)MAω(φk)≤

Vψk

V0

∫
X
|φk | MAω(0)≤ ∥φk∥L1 ≤ C ′,

since φk belongs to a compact (hence bounded) subset of PSH(X, ω)⊂ L1. Therefore, since Vψk ≥ a > 0
for k ≫ 0 big enough, by Proposition 3.6 it follows that there exists a continuous increasing function
f : R≥0 → R≥0 with f (0)= 0 such that

∥uk − Pω[ψk](h j )∥L1 ≤ f (d(uk, Pω[ψk](h j )))

for any k, j big enough. Hence, combining (20) and (21), the convergence requested follows letting
k, j → +∞ in this order. □

We can now prove the important characterization of the strong convergence as the coarsest refinement
of the weak topology such that E·( · ) becomes continuous.

Theorem 6.2. Let uk ∈ E1(X, ω,ψk) and u ∈ E1(X, ω,ψ) for {ψk}k∈N, ψ ∈A. If ψ ̸=ψmin or Vψmin > 0,
then the following are equivalent:

(i) uk → u strongly.

(ii) uk → u weakly and Eψk (uk)→ Eψ(u).

In the case ψ = ψmin and Vψmin = 0, if uk → Pψmin weakly and Eψk (uk)→ 0, then uk → Pψmin strongly.
Finally, if dA(uk, Pψmin)→ 0 as k → ∞, then the following dichotomy holds:

(a) uk → Pψmin weakly and Eψk (uk)→ 0.

(b) lim supk→∞|supX uk | = ∞.
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Proof. (ii) ⇒ (i): Assume that (ii) holds where we include the case u = Pψmin setting Eψ(Pψmin) := 0.
Clearly it is enough to prove that any subsequence of {uk}k∈N admits a subsequence which is dA-convergent
to u. For the sake of simplicity we denote by {uk}k∈N the arbitrary initial subsequence, and since A is
totally ordered by Lemma 3.13 we may also assume either ψk ↘ ψ or ψk ↗ ψ almost everywhere. In
particular, even if u = Pψmin we may suppose that uk converges weakly to a proper element v∈E1(X, ω,ψ)
up to considering a further subsequence by definition of the weak convergence to the point Pψmin . In this
case by abuse of notation we denote the function v, which depends on the subsequence chosen, by u.
Note also that by Hartogs’ lemma we have uk ≤ ψk + A and u ≤ ψ + A for a uniform constant A ∈ R≥0

since |supX uk | ≤ A.
In the case of ψk ↘ ψ , we have that vk := (sup{u j : j ≥ k})∗ ∈ E1(X, ω,ψk) decreases to u. Thus

wk := Pω[ψ](vk) ∈ E1(X, ω,ψ) decreases to u, which implies d(u, wk)→ 0 as k → ∞. (If u = Pψmin ,
we immediately have wk = Pψmin .)

Moreover, by Propositions 2.4 and 2.10,

Eψ(u)= lim
k→∞

Eψ(wk)= AVψ− lim
k→∞

d(ψ+ A, wk)

≥ lim
k→∞

(AVψk −d(ψk + A, vk))

= lim sup
k→∞

Eψk (vk)≥ lim
k→∞

Eψk (uk)= Eψ(u)

since ψk + A = Pω[ψk](A). Hence

lim sup
k→∞

d(vk, uk)= lim sup
k→∞

(d(ψk + A, uk)− d(vk, ψk + A))= lim
k→∞

(Eψk (vk)− Eψk (uk))= 0.

Thus by the triangle inequality it is sufficient to show that lim supk→∞ dA(u, vk)= 0.
Next, for any C ∈ R we set vC

k := max(vk, ψk − C) and uC
:= max(u, ψ − C), and we observe that

d(ψk + A, vC
k )→ d(ψ + A, uC) by Proposition 2.11 since vC

k ↘ uC. This implies that

d(vk, v
C
k )= d(ψk + A, vk)− d(ψk + A, vC

k )= AVψk − Eψk (vk)− d(ψk + A, vC
k )

→ AVψ − Eψ(u)− d(ψ + A, uC)= d(ψ + A, u)− d(ψ + A, uC)= d(u, uC).

Thus, since uC
→ u strongly, again by the triangle inequality it remains to estimate dA(u, vC

k ). Fix ϵ > 0
and φϵ ∈ PHω

(X, ω,ψ) such that d(φϵ, u) ≤ ϵ (by Lemma 2.13). Then letting ϕ ∈ Hω such that
φϵ = Pω[ψ](ϕ) and setting φϵ,k := Pω[ψk](ϕ), by Proposition 2.11 we have

lim sup
k→∞

dA(u, vC
k )≤ lim sup

k→∞

(d(u, φϵ)+ dA(φϵ, φϵ,k)+ d(φϵ,k, vC
k ))

≤ ϵ+ d(φϵ, uC)

≤ 2ϵ+ d(u, uC),

which concludes the first case of (ii) ⇒ (i) by the arbitrariness of ϵ since uC
→ u strongly in E1(X, ω,ψ).

Next assume that ψk ↗ψ almost everywhere. In this case we may assume Vψk > 0 for any k ∈ N. Then
vk := (sup{u j : j ≥ k})∗ ∈E1(X, ω,ψ) decreases to u. Moreover, settingwk := Pω[ψk](vk)∈E1(X, ω,ψk)

and combining with the monotonicity of Eψk ( · ), the upper semicontinuity of E·( · ) (Proposition 3.14)
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and the contraction property of Proposition 2.10, we obtain

Eψ(u)= lim
k→∞

Eψ(vk)= AVψ − lim
k→∞

d(vk, ψ + A)

≤ lim inf
k→∞

(AVψk − d(wk, ψk + A))

= lim inf
k→∞

Eψk (wk)≤ lim sup
k→∞

Eψk (wk)≤ Eψ(u),

i.e., Eψk (wk)→ Eψ(u) as k → ∞. As an easy consequence we get d(wk, uk)= Eψk (wk)− Eψk (uk)→ 0,
thus it is sufficient to prove that

lim sup
k→∞

dA(u, wk)= 0.

Similar to the previous case, fix ϵ > 0 and let φϵ = Pω[ψ](ϕϵ) for ϕ ∈ Hω such that d(u, φϵ)≤ ϵ. Again
Propositions 2.10 and 2.11 yield

lim sup
k→∞

dA(u, wk)≤ ϵ+ lim sup
k→∞

(dA(φϵ, Pω[ψk](φϵ))+ d(Pω[ψk](φϵ), wk))

≤ ϵ+ lim sup
k→∞

(dA(φϵ, Pω[ψk](φϵ))+ d(φϵ, vk))≤ 2ϵ,

which concludes the first part.

(i) ⇒ (ii) if u ̸= Pψmin , while (i) implies the dichotomy if u = Pψmin : If u ̸= Pψmin , then Proposition 6.1
implies that uk → u weakly and, in particular, that |supX uk | ≤ A. Thus it remains to prove that
Eψk (uk)→ Eψ(u).

If u = Pψmin , then again by Proposition 6.1 it remains to show that Eψk (uk)→ 0 assuming ukh → Pψmin

strongly and weakly. Note that we also have |supX uk | ≤ A for a uniform constant A ∈ R by definition of
the weak convergence to Pψmin .

Since by an easy contradiction argument it is enough to prove that any subsequence of {uk}k∈N admits
a further subsequence such that the convergence of the energies holds, without loss of generality we may
assume that uk → u ∈ E1(X, ω,ψ) weakly even in the case Vψ = 0 (i.e., when, with abuse of notation,
u = Pψmin).

So we want to show the existence of a further subsequence {ukh }h∈N such that Eψkh
(ukh )→ Eψ(u)

(note that if Vψ = 0, then Eψ(u)= 0). It easily follows that

|Eψk (uk)− Eψ(u)| ≤ |d(ψk + A, uk)− d(ψ + A, u)| + A|Vψk − Vψ |

≤ dA(u, uk)+ d(ψk + A, ψ + A)+ A|Vψk − Vψ |,

and this leads to limk→∞ Eψk (uk) = Eψ(u) by Proposition 2.11, since we have ψk + A = Pω[ψk](A)
and ψ + A = Pω[ψ](A). Hence Eψk (uk)→ Eψ(u) as desired. □

Note that in Theorem 6.2, case (b) may happen (Remark 3.16), but obviously one can consider

XA,norm =

⊔
ψ∈A

E1
norm(X, ω,ψ)

to exclude such pathology.
The strong convergence also implies the convergence in ψ ′-capacity for any ψ ′

∈ M+, as our next
result shows.
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Theorem 6.3. Letψk, ψ ∈A and let uk ∈E1(X, ω,ψk) strongly converge to u ∈E1(X, ω,ψ). Assume also
that Vψ > 0. Then there exists a subsequence {ukj }j∈N such that the sequenceswj := (sup{uks : s ≥ j})∗ and
vj := Pω(ukj , ukj+1, . . .) belong to XA, satisfying vj ≤ ukj ≤wj and converging strongly and monotonically
to u. In particular, uk → u in ψ ′-capacity for any ψ ′

∈ M+ and MAω(u
j
k , ψ

n− j
k )→ MAω(uk, ψn− j )

weakly for any j ∈ {0, . . . , n}.

Proof. We first observe that by Theorem 6.2, uk → u weakly and Eψk (uk) → Eψ(u). In particular,
supX uk is uniformly bounded and the sequence of ω-psh wk := (sup{u j : j ≥ k})∗ decreases to u.

Up to considering a subsequence we may assume either ψk ↘ ψ or ψk ↗ ψ almost everywhere. We
treat the two cases separately.

Assume first that ψk ↘ ψ . Since clearly wk ∈ E1(X, ω,ψk) and Eψk (wk) ≥ Eψk (uk), Theorem 6.2
and Proposition 3.14 yield

Eψ(u)= lim
k→∞

Eψk (uk)≤ lim sup
k→∞

Eψk (wk)≤ Eψ(u),

i.e., wk → u strongly. Thus up to considering a further subsequence we can suppose that d(uk, wk)≤ 1/2k

for any k ∈ N.
Next, similar to the proof of Proposition 5.7, we define vj,l := Pω(u j , . . . , u j+l) for any j, l ∈ N,

observing that vj,l ∈ E1(X, ω,ψj+l). Thus the function vu
j,l := Pω(u, vj,l) ∈ E1(X, ω,ψ) satisfies

d(u, vu
j,l)≤

∫
X
(u − vu

j,l)MAω(v
u
j,l)≤

∫
{vu

j,l=vj,l }

(u − vj,l)MAω(vj,l)

≤

j+l∑
s= j

∫
X
(ws − us)MAω(us)≤ (n + 1)

j+l∑
s= j

d(ws, us)≤
n + 1
2 j−1 , (22)

where we combined Proposition 2.4 and [Darvas et al. 2018, Lemma 3.7]. Therefore by Proposition 3.15,
vu

j,l converges decreasingly and strongly in E1(X, ω,ψ) to a function φj which satisfies φj ≤ u.
Similarly, ∫

{Pω(u,vu
j,l )=u}

(vu
j,l − u)MAω(u)≤

∫
X
|vu

j,1 − u| MAω(u) <∞

by Corollary 3.5, which implies that vj,l converges decreasingly to vj ∈ E1(X, ω,ψ) such that u ≥ vj ≥ φj ,
since vj ≤ us for any s ≥ j and vj,l ≥ vu

j,l . Hence from (22) we obtain

d(u, vj )≤ d(u, φj )= lim
l→∞

d(u, vu
j,l)≤

n + 1
2 j−1 ,

i.e., vj converges increasingly and strongly to u as j → ∞.
Next assume ψk ↗ψ almost everywhere. In this case, wk ∈ E1(X, ω,ψ) for any k ∈ N, and clearly wk

converges strongly and decreasingly to u. On the other hand, letting wk,k := Pω[ψk](wk) we observe by
Theorem 6.2 and Proposition 3.14 that wk,k → u weakly since wk ≥ wk,k ≥ uk and

Eψ(u)= lim
k→∞

Eψk (uk)≤ lim sup
k→∞

Eψk (wk,k)≤ Eψ(u),
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i.e., wk,k → u strongly, again by Theorem 6.2. As in the previous case, we assume that d(uk, wk,k)≤ 1/2k

up to considering a further subsequence. Therefore, setting vj,l := Pω(u j , . . . , u j+l) ∈ E1(X, ω,ψj ),
u j

:= Pω[ψj ](u) and vu j

j,l := Pω(vj,l, u j ) we obtain

d(u j, vu j

j,l )≤

∫
X
(u j

− vu j

j,l )MAω(v
u j

j,l )≤

j+l∑
s= j

∫
X
(ws,s − us)MAω(us)≤

n + 1
2 j−1 , (23)

proceeding as in the previous case. This implies that vu j

j,l and vj,l converge decreasingly and strongly
to functions φj , vj ∈ E1(X, ω,ψj ), respectively, as l → +∞ which satisfy φj ≤ vj ≤ u j. Therefore
combining (23), Proposition 2.11 and the triangle inequality we get

lim sup
j→∞

dA(u, vj )≤ lim sup
j→∞

(dA(u, u j )+ d(u j, φj ))≤ lim sup
j→∞

(
dA(u, u j )+

n + 1
2 j−1

)
= 0.

Hence vj converges strongly and increasingly to u, so vj ↗ u almost everywhere (Proposition 6.1) and
the first part of the proof is concluded.

The convergence in ψ ′-capacity and the weak convergence of the mixed Monge–Ampère measures
follow exactly as in the proof of Proposition 5.7. □

We observe that the assumption u ̸= Pψmin if Vψmin = 0 in Theorem 6.3 is obviously necessary as
the counterexample of Remark 3.16 shows. On the other hand, if dA(uk, Pψmin) → 0, then trivially
MAω(u

j
k , ψ

n− j
k )→ 0 weakly as k → ∞ for any j ∈ {0, . . . , n} as a consequence of Vψk ↘ 0.

6B. Proof of Theorem B.

Definition 6.4. We define YA as
YA :=

⊔
ψ∈A

M1(X, ω,ψ),

and we endow it with its natural strong topology given as the coarsest refinement of the weak topology
such that E∗

·
becomes continuous, i.e., Vψkµk converges strongly to Vψµ if and only if Vψkµk → Vψµ

weakly and E∗

ψk
(µk)→ E∗

ψ(µ) as k → ∞.

Observe that YA ⊂ {nonpluripolar measures of total mass belonging to [Vψmin, Vψmax]}, where clearly
ψmax := supA. As stated in the Introduction, the definition is coherent with [Berman et al. 2019] since
if ψ = 0 ∈ A, then the induced topology on M1(X, ω) coincides with the strong topology as defined in
that paper.

We also recall that
XA,norm :=

⊔
ψ∈A

E1
norm(X, ω,ψ),

where E1
norm(X, ω,ψ) :={u ∈E1(X, ω,ψ) : supX u =0} (if Vψmin =0, then we can assume Pψmin ∈ XA,norm).

Theorem B. The Monge–Ampère map

MAω : (XA,norm, dA)→ (YA, strong)

is a homeomorphism.
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Proof. The map is a bijection as a consequence of Lemma 3.12 and Proposition 5.5, where we clearly
define MAω(Pψmin) := 0, i.e., the null measure.

Step 1: continuity. Assume first that Vψmin = 0 and that dA(uk, Pψmin) → 0 as k → ∞. Then clearly
MAω(uk)→ 0 weakly. Moreover, assuming uk ̸= Pψmin for any k, it follows from Proposition 2.4 that

E∗

ψk
(MAω(uk)/Vψk )= Eψk (uk)+

∫
X
(ψk − uk)MAω(uk)

≤
n

n + 1

∫
X
(ψk − uk)MAω(uk)≤ −nEψk (uk)→ 0

as k → ∞ where the convergence is given by Theorem 6.2. Hence MAω(uk)→ 0 strongly in YA.
We can now assume that u ̸= Pψmin .
Theorem 6.3 immediately gives the weak convergence of MAω(uk) to MAω(u). Let ϕj ∈ Hω be

a decreasing sequence converging to u such that d(u, Pω[ψ](ϕj )) ≤ 1/j for any j ∈ N [Błocki and
Kołodziej 2007], and set vk, j := Pω[ψk](ϕj ) and vj := Pω[ψ](ϕj ). Observe also that as a consequence of
Proposition 2.11 and Theorem 6.2, for any j ∈ N there exists kj ≫ 0 big enough such that

d(ψk, vk, j )≤ dA(ψk, ψ)+ d(ψ, vj )+ dA(vj , vk, j )≤ d(ψ, vj )+ 1 ≤ C

for any k ≥ kj , where C is a uniform constant independent of j ∈ N. Therefore, again combining
Theorem 6.2 with Lemma 4.6 and Proposition 3.7, we obtain

lim sup
k→∞

|E∗

ψk
(MAω(uk)/Vψk )− E∗

ψk
(MAω(vk, j )/Vψk )|

≤ lim sup
k→∞

(
|Eψk (uk)−Eψk (vk, j )|+

∣∣∣∣∫
X
(ψk −uk)(MAω(uk)−MAω(vk, j ))

∣∣∣∣+∣∣∣∣∫
X
(vk, j −uk)MAω(vk, j )

∣∣∣∣)
≤ |Eψ(u)− Eψ(vj )| + lim sup

k→∞

C Iψk (uk, vk, j )
1/2

+

∫
X
(vj − u)MAω(vj ), (24)

since clearly we may assume that either ψk ↘ ψ or ψk ↗ ψ almost everywhere, up to considering a
subsequence. On the other hand, if k ≥ kj , Proposition 3.4 implies Iψk (uk, vk, j ) ≤ 2 fC̃(d(uk, vk, j )),
where C̃ is a uniform constant independent of j , k and fC̃ : R≥0 → R≥0 is a continuous increasing
function such that fC̃(0)= 0. Hence continuing the estimates in (24) we get

(24) ≤ |Eψ(u)− Eψ(vj )| + 2C fC̃(d(u, vj ))+ d(vj , u), (25)

using also Propositions 2.4 and 2.11. Letting j → ∞ in (25), it follows that

lim sup
j→∞

lim sup
k→∞

|E∗

ψk
(MAω(uk)/Vψk )− E∗

ψk
(MAω(vk, j )/Vψk )| = 0

since vj ↘ u. Furthermore, it is easy to check that E∗

ψk
(MAω(vk, j )/Vψk )→ E∗

ψ(MAω(vj )/Vψ) as k →∞

for j fixed by Lemma 4.6 and Proposition 2.11. Therefore the convergence

E∗

ψ(MAω(vj )/Vψ)→ E∗

ψ(MAω(u)/Vψ) (26)

as j → ∞ given by Theorem A concludes this step.



400 ANTONIO TRUSIANI

Step 2: continuity of the inverse. We will assume uk ∈ E1
norm(X, ω,ψk) and u ∈ E1

norm(X, ω,ψ) such
that MAω(uk)→ MAω(u) strongly. Note that when ψ = ψmin and Vψmin = 0, the assumption does not
depend on the function u chosen. Clearly this implies Vψk → Vψ which leads to ψk → ψ as k → ∞

by Lemma 3.12 since A ⊂ M+ is totally ordered. Hence, up to considering a subsequence, we may
assume that ψk → ψ monotonically almost everywhere. We keep the same notation of the previous step
for vk, j , vj . We may also suppose that Vψk > 0 for any k ∈ N big enough otherwise it would be trivial.

The strategy is to proceed similarly to the proof of Theorem A, i.e., we first prove that Iψk (uk, vk, j )→ 0
as k, j → ∞ in this order. Then we will use this to prove that the unique weak accumulation point
of {uk}k∈N is u. Finally we will deduce the convergence of the ψk-relative energies to conclude that
uk → u strongly thanks to Theorem 6.2.

By Lemma 3.1,

(n + 1)−1 Iψk (uk, vk, j )

≤ Eψk (uk)− Eψk (vk, j )+

∫
X
(vk, j − uk)MAω(uk)

= E∗

ψk
(MAω(uk)/Vψk )− E∗

ψk
(MAω(vk, j )/Vψk )+

∫
X
(vk, j −ψk)(MAω(uk)− MAω(vk, j )) (27)

for any j, k. Moreover, by Step 1 and Proposition 2.11 we know that E∗

ψk
(MAω(vk, j )/Vψk ) converges,

as k → +∞, to 0 if Vψ = 0 and to E∗

ψ(MAω(vj )/Vψ) if Vψ > 0. Next by Lemma 4.6,∫
X
(vk, j −ψk)MAω(vk, j )→

∫
X
(vj −ψ)MAω(vj )

letting k → ∞. So if Vψ = 0, then from

lim
k→∞

sup
X
(vk, j −ψk)= sup

X
(vj −ψ)= sup

X
vj

we easily get lim supk→∞ Iψk (uk, vk, j ) = 0. Thus we may assume Vψ > 0, and it remains to estimate∫
X (vk, j −ψk)MAω(uk) from above.

We set fk, j := vk, j −ψk , and as in the proof of Theorem A we construct a sequence of smooth functions
f s
j := vs

j −ψ s converging in capacity to f j := vj −ψ and satisfying ∥ f s
j ∥L∞ ≤ 2∥ f j∥L∞ ≤ 2∥ϕj∥L∞ .

Here vs
j and ψ s are sequences of ω-psh functions decreasing to vj and ψ , respectively. Then we write∫

X
fk, j MAω(uk)=

∫
X
( fk, j − f s

j )MAω(uk)+

∫
X

f s
j MAω(uk), (28)

and we observe that

lim sup
s→∞

lim sup
k→∞

∫
X

f s
j MAω(uk)=

∫
X

f j MAω(u),

since MAω(uk)→ MAω(u) weakly, f s
j ∈ C∞, f s

j converges to f j in capacity and ∥ f s
j ∥L∞ ≤ 2∥ f j∥L∞ .

We also claim that the first term on the right-hand side of (28) goes to 0 letting k, s → ∞ in this order.
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Indeed, for any δ > 0,∫
X
( fk, j − f j )MAω(uk)≤ δVψk + 2∥ϕj∥L∞

∫
{ fk, j − f j>δ}

MAω(uk)

≤ δVψk + 2∥ϕj∥L∞

∫
{|hk, j −h j |>δ}

MAω(uk), (29)

where we set hk, j := vk, j , h j := vj if ψk ↘ ψ and hk, j := ψk , h j := ψ if instead ψk ↗ ψ almost
everywhere. Moreover, since {|hk, j − h j |> δ} ⊂ {|hl, j − h j |> δ} for any l ≤ k, from (29) we obtain

lim sup
k→∞

∫
X
( fk, j − f j )MAω(uk)≤ δVψ + lim sup

l→∞

lim sup
k→∞

2∥ϕj∥L∞

∫
{|hl, j −h j |≥δ}

MAω(uk)

≤ δVψ + lim sup
l→∞

2∥ϕj∥L∞

∫
{|hl, j −h j |≥δ}

MAω(u)= δVψ ,

where we also used that {|hl, j − h j | ≥ δ} is a closed set in the plurifine topology since it is equal to
{vl, j − vj ≥ δ} if ψl ↘ ψ and to {ψ −ψl ≥ δ} if ψl ↗ ψ almost everywhere. Hence

lim sup
k→∞

∫
X
( fk, j − f j )MAω(uk)≤ 0.

Similarly we also get

lim sup
s→∞

lim sup
k→∞

∫
X
( f j − f s

j )MAω(uk)≤ 0;

see also the proof of Theorem A.
Summarizing from (27), we obtain

lim sup
k→∞

(n + 1)−1 Iψk (uk, vk, j )

≤ E∗

ψ(MAω(u)/Vψ)− E∗

ψ(MAω(vj )/Vψ)+
∫

X
(vj −ψ)MAω(u)−

∫
X
(vj −ψ)MAω(vj )=: Fj , (30)

and Fj → 0 as j → ∞ by Step 1 and Proposition 3.7, since E1(X, ω,ψ) ∋ vj ↘ u ∈ E1
norm(X, ω,ψ),

hence strongly.
Next by Lemma 3.1, uk ∈ XA,C for C ≫ 1 since E∗(MAω(uk)/Vψk )= Jψuk (ψ) and supX uk = 0, thus,

up to considering a further subsequence, uk → w ∈ E1
norm(X, ω,ψ) weakly where d(w,ψ)≤ C . Indeed,

if Vψ > 0 this follows from Proposition 3.15 while it is trivial if Vψ = 0. In particular, by Lemma 4.6,∫
X
(ψk − uk)MAω(vk, j )→

∫
X
(ψ −w)MAω(vj ), (31)∫

X
(vk, j − uk)MAω(vk, j )→

∫
X
(vj −w)MAω(vj ) (32)

as j → ∞. Therefore if Vψ = 0, then combining Iψk (uk, vk, j )→ 0 as k → ∞ with (32) and Lemma 3.1,
we obtain

lim sup
k→∞

(−Eψk (uk)+ Eψk (vk, j ))≤ lim sup
k→∞

(
n

n + 1
Iψk (uk, vk, j )+

∣∣∣∣∫
X
(vk, j − uk)MAω(vk, j )

∣∣∣∣) = 0.
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This implies that d(ψk, uk)= −Eψk (uk)→ 0 as k → ∞, i.e., that dA(Pψmin, uk)→ 0 using Theorem 6.2.
We may assume from now until the end of the proof that Vψ > 0.

By (31) and Proposition 3.14 it follows that

lim sup
k→∞

(
E∗

ψk
(MAω(uk)/Vψk )+

∫
X
(ψk − uk)(MAω(vk, j )− MAω(uk))

)
= lim sup

k→∞

(
Eψk (uk)+

∫
X
(ψk − uk)MAω(vk, j )

)
≤ Eψ(w)+

∫
X
(ψ −w)MAω(vj ). (33)

On the other hand, by Proposition 3.7 and (30),

lim sup
k→∞

∣∣∣∣∫
X
(ψk − uk)(MAω(vk, j )− MAω(uk))

∣∣∣∣ ≤ C F1/2
j . (34)

In conclusion, by the triangle inequality and combining (33) and (34) we get

Eψ(u)+
∫

X
(ψ − u)MAω(u)= lim

k→∞

E∗(MAω(uk)/Vψk )

≤ lim sup
j→∞

(
Eψ(w)+

∫
X
(ψ −w)MAω(vj )+ C F1/2

j

)
= Eω(w)+

∫
X
(ψ −w)MAω(u)

since Fj → 0, i.e., w ∈ E1
norm(X, ω,ψ) is a maximizer of FMAω(u)/Vψ ,ψ . Hence w = u (Proposition 5.5),

i.e., uk → u weakly. Furthermore, similar to the case Vψ = 0, Lemma 3.1 and (32) imply

Eψ(vj )− lim inf
k→∞

Eψk (uk)= lim sup
k→∞

(−Eψk (uk)+ Eψk (vk, j ))

≤ lim sup
k→∞

(
n

n + 1
Iψk (uk, vk, j )+

∣∣∣∣∫
X
(uk − vj,k)MAω(vk, j )

∣∣∣∣)
≤

n
n + 1

Fj +

∣∣∣∣∫
X
(u − vj )MAω(vj )

∣∣∣∣.
Finally, letting j →∞, since vj → u strongly, we obtain lim infk→∞ Eψk (uk)≥ lim j→∞ Eψ(vj )= Eψ(u).
Hence Eψk (uk)→ Eψ(u) by Proposition 3.14, which implies dA(uk, u)→ 0 by Theorem 6.2. □

7. Stability of complex Monge–Ampère equations

As stated in the Introduction, we want to use the homeomorphism of Theorem B to deduce the strong
stability of solutions of complex Monge–Ampère equations with prescribed singularities when the
measures have uniformly bounded L p density for p > 1.

Theorem C. Let A := {ψk}k∈N ⊂ M+ be totally ordered, and let { fk}k∈N ⊂ L1 be a sequence of
nonnegative functions such that fk → f ∈ L1

\ {0} and such that
∫

X fkω
n

= Vψk for any k ∈ N. Assume
also that there exists p> 1 such that ∥ fk∥L p and ∥ f ∥L p are uniformly bounded. Then ψk →ψ ∈A⊂M+,
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and the sequence of solutions of

MAω(uk)= fkω
n, uk ∈ E1

norm(X, ω,ψk), (35)

converges strongly to u ∈ XA, which is the unique solution of

MAω(u)= f ωn, u ∈ E1
norm(X, ω,ψ). (36)

In particular, uk → u in capacity.

Proof. We first observe that the existence of the unique solutions of (35) follows by [Darvas et al. 2021a,
Theorem A].

Moreover, letting u be any weak accumulation point for {uk}k∈N (there exists at least one by compact-
ness), [Darvas et al. 2021a, Lemma 2.8] yields MAω(u)≥ f ωn and by the convergence of fk to f we also
obtain

∫
X f ωn

= limk→∞ Vψk . Moreover, since uk ≤ψk for any k ∈ N, by [Witt Nyström 2019] we obtain∫
X MAω(u) ≤ limk→∞ Vψk . Hence MAω(u) = f ωn which, in particular, means that there is a unique

weak accumulation point for {uk}k∈N and that ψk → ψ as k → ∞ since Vψk → Vψ (by Lemma 3.12).
Then it easily follows by combining Fatou’s lemma with Proposition 2.10 and Lemma 2.12 that for
any ϕ ∈ Hω,

lim inf
k→∞

E∗

ψk
(MAω(uk)/Vψk )≥ lim inf

k→∞

(
Eψk (Pω[ψk](ϕ))+

∫
X
(ψk − Pω[ψk](ϕ)) fkω

n
)

≥ Eψ(Pω[ψ](ϕ))+

∫
X
(ψ − Pω[ψ](ϕ)) f ωn, (37)

since (ψk − Pω[ψk](ϕ)) fk → (ψ − Pω[ψ](ϕ)) f almost everywhere by Lemma 2.14. Thus, for any
v ∈ E1(X, ω,ψ), letting ϕj ∈ Hω be a decreasing sequence converging to v [Błocki and Kołodziej 2007],
from inequality (37) we get

lim inf
k→∞

E∗

ψk
(MAω(uk)/Vψk )≥ lim sup

j→∞

(
Eψ(Pω[ψ](ϕj ))+

∫
X
(ψ − Pω[ψ](ϕj )) f ωn

)
= Eψ(v)+

∫
X
(ψ − v) f ωn,

using Proposition 2.4 and the monotone convergence theorem. Hence by definition,

lim inf
k→∞

E∗

ψk
(MAω(uk)/Vψk )≥ E∗

ψ( f ωn/Vψ). (38)

On the other hand, since ∥ fk∥L p and ∥ f ∥L p are uniformly bounded for p> 1 and uk → u, ψk →ψ in Lq

for any q ∈ [1,+∞) (see [Guedj and Zeriahi 2017, Theorem 1.48]), we also have∫
X
(ψk − uk) fkω

n
→

∫
X
(ψ − u) f ωn <+∞,

which implies that
∫

X (ψ − u)MAω(u) <+∞, i.e., u ∈ E1(X, ω,ψ) by Proposition 2.4. Moreover, by
Proposition 3.14 we also get

lim sup
k→∞

E∗

ψk
(MAω(uk)/Vψk )≤ E∗

ψ(MAω(u)/Vψ),
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which together with (38) leads us to MAω(uk) → MAω(u) strongly in YA by definition (observe that
MAω(uk) = fkω

n
→ MAω(u) = f ωn weakly). Hence uk → u strongly by Theorem B while the

convergence in capacity follows from Theorem 6.3. □

Remark 7.1. As said in the Introduction, the convergence in capacity of Theorem C was already obtained
in [Darvas et al. 2021b, Theorem 1.4]. Indeed, under the hypotheses of Theorem C it follows from
Lemma 2.12 and [Darvas et al. 2021b, Lemma 3.4] that dS(ψk, ψ)→ 0 where dS is the pseudometric
on {[u] : u ∈ PSH(X, ω)} introduced in [Darvas et al. 2021b], where the class [u] is given by the partial
order ≼.
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