# ANALYSIS & PDEVolume 16No. 22023

ANTONIO TRUSIANI

THE STRONG TOPOLOGY OF ω-PLURISUBHARMONIC FUNCTIONS





# THE STRONG TOPOLOGY OF $\omega$ -PLURISUBHARMONIC FUNCTIONS

# ANTONIO TRUSIANI

On a compact Kähler manifold  $(X, \omega)$ , given a model-type envelope  $\psi \in PSH(X, \omega)$  (i.e., a singularity type) we prove that the Monge–Ampère operator is a homeomorphism between the set of  $\psi$ -relative finite energy potentials and the set of  $\psi$ -relative finite energy measures endowed with their strong topologies given as the coarsest refinements of the weak topologies such that the relative energies become continuous. Moreover, given a totally ordered family  $\mathcal{A}$  of model-type envelopes with positive total mass representing different singularity types, the sets  $X_{\mathcal{A}}$  and  $Y_{\mathcal{A}}$ , given as the union of all  $\psi$ -relative finite energy potentials and of all  $\psi$ -relative finite energy measures with varying  $\psi \in \overline{\mathcal{A}}$ , respectively, have two natural strong topologies which extend the strong topologies on each component of the unions. We show that the Monge–Ampère operator produces a homeomorphism between  $X_{\mathcal{A}}$  and  $Y_{\mathcal{A}}$ .

As an application we also prove the strong stability of a sequence of solutions of complex Monge– Ampère equations when the measures have uniformly  $L^p$ -bounded densities for p > 1 and the prescribed singularities are totally ordered.

# 1. Introduction

Let  $(X, \omega)$  be a compact Kähler manifold where  $\omega$  is a fixed Kähler form, and let  $\mathcal{H}_{\omega}$  denote the set of all Kähler potentials, i.e., all  $\varphi \in C^{\infty}$  such that  $\omega + dd^c \varphi$  is a Kähler form. The pioneering work of Yau [1978] shows that the Monge–Ampère operator

$$MA_{\omega} : \mathcal{H}_{\omega,\text{norm}} \to \left\{ dV \text{ volume form} : \int_{X} dV = \int_{X} \omega^{n} \right\},$$

$$MA_{\omega}(\varphi) := (\omega + dd^{c}\varphi)^{n},$$
(1)

is a bijection, where for any subset  $A \subset PSH(X, \omega)$  of all  $\omega$ -plurisubharmonic functions, we use the notation  $A_{norm} := \{u \in A : \sup_X u = 0\}$ . Note that the assumption on the total mass of the volume forms in (1) is necessary since  $\mathcal{H}_{\omega,norm}$  represents all Kähler forms in the cohomology class  $\{\omega\}$  and the quantity  $\int_X \omega^n$  is cohomological.

In [Guedj and Zeriahi 2007] the authors extended the Monge–Ampère operator using the *nonpluripolar product* (as defined successively in [Boucksom et al. 2010]) and the bijection (1) to

$$\operatorname{MA}_{\omega} : \mathcal{E}_{\operatorname{norm}}(X, \omega) \to \left\{ \mu \text{ nonpluripolar positive measure } : \mu(X) = \int_{X} \omega^{n} \right\},$$
 (2)

where  $\mathcal{E}(X, \omega) := \{ u \in PSH(X, \omega) : \int_X MA_\omega(u) = \int_X MA_\omega(0) \}$  is the set of all  $\omega$ -psh functions with full Monge–Ampère mass.

MSC2020: primary 32W20; secondary 32Q15, 32U05.

Keywords: complex Monge-Ampère equations, compact Kähler manifolds, quasi-psh functions.

<sup>© 2023</sup> MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

The set  $PSH(X, \omega)$  is naturally endowed with the  $L^1$ -topology which we will call *weak*, but the Monge–Ampère operator in (2) is not continuous even if the set of measures is endowed with the weak topology. Thus in [Berman et al. 2019], setting  $V_0 := \int_X MA_\omega(0)$ , strong topologies were introduced for

$$\mathcal{E}^{1}(X,\omega) := \{ u \in \mathcal{E}(X,\omega) : E(u) > -\infty \}$$

and

$$\mathcal{M}^1(X, \omega) := \{V_0\mu : \mu \text{ is a probability measure satisfying } E^*(\mu) < +\infty\},\$$

as the coarsest refinements of the weak topologies such that the Monge–Ampère energy E(u) [Aubin 1984; Berman and Boucksom 2010; Boucksom et al. 2010] and the energy for probability measures  $E^*$  [Berman et al. 2013; 2019], respectively, become continuous. The map

$$MA_{\omega}: (\mathcal{E}^{1}_{norm}(X, \omega), strong) \to (\mathcal{M}^{1}(X, \omega), strong)$$
 (3)

is then a homeomorphism. Later Darvas [2015] showed that  $(\mathcal{E}^1(X, \omega), \text{strong})$  actually coincides with the metric closure of  $\mathcal{H}_{\omega}$  endowed with the Finsler metric  $|f|_{1,\varphi} := \int_X |f| \operatorname{MA}_{\omega}(\varphi)$  with  $\varphi \in \mathcal{H}_{\omega}$ ,  $f \in T_{\varphi}\mathcal{H}_{\omega} \simeq C^{\infty}(X)$  and associated distance

$$d(u, v) := E(u) + E(v) - 2E(P_{\omega}(u, v)),$$

where  $P_{\omega}(u, v)$  is the rooftop envelope given basically as the largest  $\omega$ -psh function bounded above by min(u, v) [Ross and Witt Nyström 2014]. This metric topology has played an important role in the last decade to characterize the existence of special metrics [Berman et al. 2020; Chen and Cheng 2021a; 2021b; Darvas and Rubinstein 2017].

It is also important and natural to solve complex Monge–Ampère equations requiring that the solutions have some prescribed behavior, for instance along a divisor.

We first recall that on PSH(X,  $\omega$ ) there is a natural partial order  $\preccurlyeq$  given as  $u \preccurlyeq v$  if  $u \le v + O(1)$ , and the total mass through the Monge–Ampère operator respects such partial order, i.e.,  $V_u := \int_X MA_\omega(u) \le V_v$ if  $u \preccurlyeq v$  [Boucksom et al. 2010; Witt Nyström 2019]. Thus in [Darvas et al. 2018], the authors introduced the  $\psi$ -relative analogs of the sets  $\mathcal{E}(X, \omega)$  and  $\mathcal{E}^1(X, \omega)$ , for  $\psi \in PSH(X, \omega)$  fixed, as

$$\mathcal{E}(X, \omega, \psi) := \{ u \in \mathsf{PSH}(X, \omega) : u \preccurlyeq \psi \text{ and } V_u = V_v \}$$
$$\mathcal{E}^1(X, \omega, \psi) := \{ u \in \mathcal{E}(X, \omega, \psi) : E_{\psi}(u) > -\infty \},$$

where  $E_{\psi}$  is the  $\psi$ -relative energy. They then proved that

$$MA_{\omega}: \mathcal{E}_{norm}(X, \omega, \psi) \to \{\mu \text{ nonpluripolar positive measure}: \mu(X) = V_{\psi}\}$$
(4)

is a bijection if and only if  $\psi$ , up to a bounded function, is a *model-type envelope*, or in other words,  $\psi = (\lim_{C \to +\infty} P(\psi + C, 0))^*$  satisfies  $V_{\psi} > 0$  (the star is for the upper semicontinuous regularization). There are plenty of these functions, for instance, to any  $\omega$ -psh function  $\psi$  with analytic singularities is associated a unique model-type envelope. We denote by  $\mathcal{M}$  the set of all model-type envelopes and by  $\mathcal{M}^+$  those elements  $\psi$  such that  $V_{\psi} > 0$ .

Letting  $\psi \in \mathcal{M}^+$ , in [Trusiani 2022], we proved that  $\mathcal{E}^1(X, \omega, \psi)$  can be endowed with a natural metric topology given by the complete distance  $d(u, v) := E_{\psi}(u) + E_{\psi}(v) - 2E_{\psi}(P_{\omega}(u, v))$ .

Analogously to  $E^*$ , we introduce in Section 5 a natural  $\psi$ -relative energy for probability measures  $E^*_{\psi}$ ; thus the set

$$\mathcal{M}^1(X, \omega, \psi) := \{V_{\psi} \mu : \mu \text{ is a probability measure satisfying } E^*_{\psi}(\mu) < +\infty\}$$

can be endowed with its strong topology given as the coarsest refinement of the weak topology such that  $E_{\psi}^{*}$  becomes continuous.

**Theorem A.** Let  $\psi \in \mathcal{M}^+$ . Then

$$\mathrm{MA}_{\omega} : (\mathcal{E}^{1}_{\mathrm{norm}}(X, \omega, \psi), d) \to (\mathcal{M}^{1}(X, \omega, \psi), \mathrm{strong})$$
(5)

is a homeomorphism.

It is natural to wonder if one can extend the bijections (2) and (4) to bigger subsets of  $PSH(X, \omega)$ .

Given  $\psi_1, \psi_2 \in \mathcal{M}^+$  such that  $\psi_1 \neq \psi_2$ , the sets  $\mathcal{E}(X, \omega, \psi_1)$  and  $\mathcal{E}(X, \omega, \psi_2)$  are disjoint ([Darvas et al. 2018, Theorem 1.3] quoted below as Theorem 2.1), but it may happen that  $V_{\psi_1} = V_{\psi_2}$ . So in these situations, at least one of  $\mathcal{E}^1_{\text{norm}}(X, \omega, \psi_1)$  or  $\mathcal{E}^1_{\text{norm}}(X, \omega, \psi_2)$  must be ruled out to extend (4). However, given a totally ordered family  $\mathcal{A} \subset \mathcal{M}^+$  of model-type envelopes, the map  $\mathcal{A} \ni \psi \to V_{\psi}$  is injective (again by [Darvas et al. 2018, Theorem 1.3]), i.e.,

$$\mathrm{MA}_{\omega}: \bigsqcup_{\psi \in \mathcal{A}} \mathcal{E}_{\mathrm{norm}}(X, \omega, \psi) \to \{\mu \text{ nonpluripolar positive measure}: \mu(X) = V_{\psi} \text{ for } \psi \in \mathcal{A}\}$$

is a bijection.

In [Trusiani 2022] we introduced a complete distance  $d_A$  on

$$X_{\mathcal{A}} := \bigsqcup_{\psi \in \bar{\mathcal{A}}} \mathcal{E}^1(X, \omega, \psi),$$

where  $\bar{\mathcal{A}} \subset \mathcal{M}$  is the weak closure of  $\mathcal{A}$  and where we identify  $\mathcal{E}^1(X, \omega, \psi_{\min})$  with a point  $P_{\psi_{\min}}$  if  $\psi_{\min} \in \mathcal{M} \setminus \mathcal{M}^+$  (since in this case  $E_{\psi} \equiv 0$ , see Remark 2.7). Here  $\psi_{\min}$  is given as the smallest element in  $\bar{\mathcal{A}}$ , observing that the Monge–Ampère operator  $MA_{\omega} : \bar{\mathcal{A}} \to MA_{\omega}(\bar{\mathcal{A}})$  is a homeomorphism when the range is endowed with the weak topology (Lemma 3.12). We call the strong topology on  $X_{\mathcal{A}}$  the metric topology given by  $d_{\mathcal{A}}$  since  $d_{\mathcal{A}|\mathcal{E}^1(X,\omega,\psi)\times\mathcal{E}^1(X,\omega,\psi)} = d$ . The precise definition of  $d_{\mathcal{A}}$  is quite technical (in Section 2 we will recall many of its properties), but the strong topology is natural since it is the coarsest refinement of the weak topology such that  $E_{\mathcal{A}}(\cdot)$  becomes continuous as Theorem 6.2 shows. In particular the strong topology is independent of the set  $\mathcal{A}$  chosen.

Also the set

$$Y_{\mathcal{A}} := \bigsqcup_{\psi \in \bar{\mathcal{A}}} \mathcal{M}^1(X, \omega, \psi)$$

has a natural strong topology given as the coarsest refinement of the weak topology such that  $E_{\cdot}^{*}(\cdot)$  becomes continuous.

**Theorem B.** The Monge–Ampère map

 $MA_{\omega}: (X_{\mathcal{A}, \text{norm}}, d_{\mathcal{A}}) \to (Y_{\mathcal{A}}, \text{strong})$ 

is a homeomorphism.

Obviously in Theorem B we define  $MA_{\omega}(P_{\psi_{\min}}) := 0$  if  $V_{\psi_{\min}} = 0$ .

Note that by Hartogs' lemma and Theorem 6.2 the metric subspace  $X_{\mathcal{A},\text{norm}}$  is complete and represents the set of all closed and positive (1, 1)-currents  $T = \omega + dd^c u$  such that  $u \in X_{\mathcal{A}}$ , where  $P_{\psi_{\min}}$  encases all currents whose potentials u are more singular than  $\psi_{\min}$  if  $V_{\psi_{\min}} = 0$ .

Finally, as an application of Theorem B we study an example of the stability of solutions of complex Monge–Ampère equations. Other important situations will be dealt with in a future work.

**Theorem C.** Let  $\mathcal{A} := \{\psi_k\}_{k \in \mathbb{N}} \subset \mathcal{M}^+$  be totally ordered, and let  $\{f_k\}_{k \in \mathbb{N}} \subset L^1 \setminus \{0\}$  be a sequence of nonnegative functions such that  $f_k \to f \in L^1 \setminus \{0\}$  and such that  $\int_X f_k \omega^n = V_{\psi_k}$  for any  $k \in \mathbb{N}$ . Assume also that there exists p > 1 such that  $||f_k||_{L^p}$  and  $||f||_{L^p}$  are uniformly bounded. Then  $\psi_k \to \psi \in \mathcal{M}^+$  weakly, and the sequence  $\{u_k\}_{k \in \mathbb{N}}$  of solutions of

$$MA_{\omega}(u_k) = f_k \omega^n, \quad u_k \in \mathcal{E}^1_{norm}(X, \omega, \psi_k), \tag{6}$$

converges strongly to  $u \in X_A$  (i.e.,  $d_A(u_k, u) \to 0$ ), which is the unique solution of

$$MA_{\omega}(u) = f\omega^n, \quad u \in \mathcal{E}^1_{norm}(X, \omega, \psi).$$

In particular,  $u_k \rightarrow u$  in capacity.

The existence of the solutions of (6) follows by Theorem A in [Darvas et al. 2021a], while the fact that the strong convergence implies the convergence in capacity is our Theorem 6.3. Note also that the convergence in capacity of Theorem C was already obtained in [Darvas et al. 2021b]; see Remark 7.1.

**1A.** *Structure of the paper.* Section 2 is dedicated to introducing preliminaries, and, in particular, all necessary results presented in [Trusiani 2022]. In Section 3 we extend some known uniform estimates for  $\mathcal{E}^1(X, \omega)$  to the relative setting, and we prove the key upper-semicontinuity of the relative energy functional  $E_{\cdot}(\cdot)$  in  $X_A$ . Section 4 regards the properties of the action of measures on PSH $(X, \omega)$  and, in particular, their continuity. Then Section 5 is dedicated to proving Theorem A. We use a variational approach to show the bijection, then we need some further important properties of the strong topology on  $\mathcal{E}^1(X, \omega, \psi)$  to conclude the proof. Section 6 is the heart of the article where we extend the results proved in the previous section to  $X_A$ , and we present our main Theorem B. Finally in Section 7 we show Theorem C.

**1B.** *Future developments.* As mentioned above, in a future work we will present some strong stability results of more general solutions of complex Monge–Ampère equations with prescribed singularities than Theorem C, starting the study of a kind of *continuity method* where the singularities will also vary. As an application we will study the existence of (log) Kähler–Einstein metrics with prescribed singularities, with a particular focus on the relationships among them varying the singularities.

# 2. Preliminaries

We recall that given a Kähler complex compact manifold  $(X, \omega)$ , the set  $PSH(X, \omega)$  is the set of all  $\omega$ -plurisubharmonic functions ( $\omega$ -psh), i.e., all  $u \in L^1$  given locally as the sum of a smooth function and a plurisubharmonic function such that  $\omega + dd^c u \ge 0$  as a (1, 1)-current. Here  $d^c := \frac{i}{2\pi}(\bar{\partial} - \partial)$  so that  $dd^c = \frac{i}{\pi}\partial\bar{\partial}$ . For any pair of  $\omega$ -psh functions u, v, the function

$$P_{\omega}[u](v) := \left(\lim_{C \to \infty} P_{\omega}(u+C, v)\right)^* = (\sup\{w \in \mathrm{PSH}(X, \omega) : w \preccurlyeq u, \ w \le v\})^*$$

is  $\omega$ -psh, where the star is for the upper semicontinuous regularization and

$$P_{\omega}(u, v) := (\sup\{w \in \mathsf{PSH}(X, \omega) : w \le \min(u, v)\})^*.$$

Then the set of all model-type envelopes is defined as

$$\mathcal{M} := \{ \psi \in \mathsf{PSH}(X, \omega) : \psi = P_{\omega}[\psi](0) \}.$$

We also recall that  $\mathcal{M}^+$  denotes the elements  $\psi \in \mathcal{M}$  such that  $V_{\psi} > 0$  where, as said in the Introduction,  $V_{\psi} := \int_X MA_{\omega}(\psi).$ 

The class of  $\psi$ -relative full mass functions  $\mathcal{E}(X, \omega, \psi)$  complies with the following characterization.

**Theorem 2.1** [Darvas et al. 2018, Theorem 1.3]. Suppose  $v \in PSH(X, \omega)$  such that  $V_v > 0$  and v is less singular than  $u \in PSH(X, \omega)$ . Then the following are equivalent:

(i)  $u \in \mathcal{E}(X, \omega, v)$ .

(ii) 
$$P_{\omega}[u](v) = v$$
.

(iii)  $P_{\omega}[u](0) = P_{\omega}[v](0).$ 

The clear inclusion  $\mathcal{E}(X, \omega, v) \subset \mathcal{E}(X, \omega, P_{\omega}[v](0))$  may be strict, and it seems more natural in many cases to consider only functions  $\psi \in \mathcal{M}$ . For instance, as shown in [Darvas et al. 2018],  $\psi$  being a model-type envelope is a necessary assumption to make the equation

$$MA_{\omega}(u) = \mu, \quad u \in \mathcal{E}(X, \omega, \psi),$$

always solvable where  $\mu$  is a nonpluripolar measure such that  $\mu(X) = V_{\psi}$ . It is also worth recalling that there are plenty of elements in  $\mathcal{M}$ , since  $P_{\omega}[P_{\omega}[\psi]] = P_{\omega}[\psi]$  for any  $\psi \in \text{PSH}(X, \omega)$  with  $\int_X \text{MA}_{\omega}(\psi) > 0$ , see [Darvas et al. 2018, Theorem 3.12]. Indeed,  $v \to P_{\omega}[v]$  may be thought of as a projection from the set of negative  $\omega$ -psh functions with positive Monge–Ampère mass to  $\mathcal{M}^+$ .

We also retrieve the following useful result.

**Theorem 2.2** [Darvas et al. 2018, Theorem 3.8]. Let  $u, \psi \in PSH(X, \omega)$  such that  $u \geq \psi$ . Then

$$\mathrm{MA}_{\omega}(P_{\omega}[\psi](u)) \leq \mathbb{1}_{\{P_{\omega}[\psi](u)=u\}} \mathrm{MA}_{\omega}(u).$$

In particular, if  $\psi \in \mathcal{M}$  then  $MA_{\omega}(\psi) \leq \mathbb{1}_{\{\psi=0\}} MA_{\omega}(0)$ .

Note also, in Theorem 2.2 the equality holds if u is continuous with bounded distributional Laplacian with respect to  $\omega$  as a consequence of [Di Nezza and Trapani 2021]. In particular, for any  $\psi \in \mathcal{M}$ ,  $MA_{\omega}(\psi) = \mathbb{1}_{\{\psi=0\}} MA_{\omega}(0)$ .

**2A.** The metric space  $(\mathcal{E}^1(X, \omega, \psi), d)$ . In this subsection we assume  $\psi \in \mathcal{M}^+ := \{\psi \in \mathcal{M} : V_{\psi} > 0\}$ .

As in [Darvas et al. 2018], we also denote by  $PSH(X, \omega, \psi)$  the set of all  $\omega$ -psh functions which are more singular than  $\psi$ , and we recall that a function  $u \in PSH(X, \omega, \psi)$  has  $\psi$ -relative minimal singularities if  $|u - \psi|$  is globally bounded on X. We also use the notation

$$\mathbf{MA}_{\omega}(u_1^{j_1},\ldots,u_l^{j_l}) := (\omega + dd^c u_1)^{j_1} \wedge \cdots \wedge (\omega + dd^c u_l)^{j_l}$$

for  $u_1, \ldots, u_l \in \text{PSH}(X, \omega)$  where  $j_1, \ldots, j_l \in \mathbb{N}$  such that  $j_1 + \cdots + j_l = n$ .

**Definition 2.3** [Darvas et al. 2018, Section 4.2]. The  $\psi$ -relative energy functional  $E_{\psi}$ : PSH $(X, \omega, \psi) \rightarrow \mathbb{R} \cup \{-\infty\}$  is defined as

$$E_{\psi}(u) := \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (u - \psi) \operatorname{MA}_{\omega}(u^{j}, \psi^{n-j})$$

if *u* has  $\psi$ -relative minimal singularities, and as

$$E_{\psi}(u) := \inf\{E_{\psi}(v) : v \in \mathcal{E}(X, \omega, \psi) \text{ with } \psi \text{ -relative minimal singularities, } v \ge u\}$$

otherwise. The subset  $\mathcal{E}^1(X, \omega, \psi) \subset \mathcal{E}(X, \omega, \psi)$  is defined as

$$\mathcal{E}^{1}(X, \omega, \psi) := \{ u \in \mathcal{E}(X, \omega, \psi) : E_{\psi}(u) > -\infty \}.$$

When  $\psi = 0$ , the  $\psi$ -relative energy functional is the *Aubin–Mabuchi energy functional*, also called the *Monge–Ampère energy*; see [Aubin 1984; Mabuchi 1986].

Proposition 2.4. The following properties from [Darvas et al. 2018] hold:

- (i) [Theorem 4.10]  $E_{\psi}$  is nondecreasing.
- (ii) [Lemma 4.12]  $E_{\psi}(u) = \lim_{i \to \infty} E_{\psi}(\max(u, \psi j)).$
- (iii) [Lemma 4.14]  $E_{\psi}$  is continuous along decreasing sequences.
- (iv) [Theorem 4.10 and Corollary 4.16]  $E_{\psi}$  is concave along affine curves.
- (v) [Lemma 4.13]  $u \in \mathcal{E}^1(X, \omega, \psi)$  if and only if  $u \in \mathcal{E}(X, \omega, \psi)$  and  $\int_X (u \psi) \operatorname{MA}_{\omega}(u) > -\infty$ .
- (vi) [Proposition 4.19]  $E_{\psi}(u) \ge \limsup_{k \to \infty} E_{\psi}(u_k)$  if  $u_k, u \in \mathcal{E}^1(X, \omega, \psi)$  and  $u_k \to u$  with respect to the weak topology.
- (vii) [Proposition 4.20] Letting  $u \in \mathcal{E}^1(X, \omega, \psi)$ ,  $\chi \in \mathcal{C}^0(X)$  and  $u_t := \sup\{v \in PSH(X, \omega) | v \le u + t\chi\}^*$ for any t > 0, then  $t \to E_{\psi}(u_t)$  is differentiable and its derivative is given by

$$\frac{d}{dt}E_{\psi}(u_t) = \int_X \chi \operatorname{MA}_{\omega}(u_t).$$

(viii) [Theorem 4.10] If  $u, v \in \mathcal{E}^1(X, \omega, \psi)$ , then

$$E_{\psi}(u) - E_{\psi}(v) = \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (u-v) \operatorname{MA}_{\omega}(u^{j}, v^{n-j})$$

and the function  $\mathbb{N} \ni j \to \int_X (u-v) \operatorname{MA}_{\omega}(u^j, v^{n-j})$  is decreasing. In particular,

$$\int_{X} (u-v) \operatorname{MA}_{\omega}(u) \le E_{\psi}(u) - E_{\psi}(v) \le \int_{X} (u-v) \operatorname{MA}_{\omega}(v).$$

(ix) [Theorem 4.10] If  $u \le v$ , then

$$E_{\psi}(u) - E_{\psi}(v) \le \frac{1}{n+1} \int_{X} (u-v) \operatorname{MA}_{\omega}(u).$$

**Remark 2.5.** All the properties of Proposition 2.4 are shown in [Darvas et al. 2018] assuming  $\psi$  has *small unbounded locus*, but [Trusiani 2022, Proposition 2.7] and the general integration by parts formula proved in [Xia 2019] allow us to extend these properties to the general case as described in [Trusiani 2022, Remark 2.10].

Recalling that for any  $u, v \in \mathcal{E}^1(X, \omega, \psi)$  the function  $P_{\omega}(u, v) = \sup\{w \in PSH(X, \omega) : w \le \min(u, v)\}^*$ belongs to  $\mathcal{E}^1(X, \omega, \psi)$  (see [Trusiani 2022, Proposition 2.13]), then we also have that the function  $d : \mathcal{E}^1(X, \omega, \psi) \times \mathcal{E}^1(X, \omega, \psi) \to \mathbb{R}_{\ge 0}$  defined as

$$d(u, v) = E_{\psi}(u) + E_{\psi}(v) - 2E_{\psi}(P_{\omega}(u, v))$$

assumes finite values. Moreover, it is a complete distance as the next result shows.

**Theorem 2.6** [Trusiani 2022, Theorem A].  $(\mathcal{E}^1(X, \omega, \psi), d)$  is a complete metric space.

We call the *strong topology* on  $\mathcal{E}^1(X, \omega, \psi)$  the metric topology given by the distance d. Note that, by construction,  $d(u_k, u) \to 0$  as  $k \to \infty$  if  $u_k \searrow u$ , and d(u, v) = d(u, w) + d(w, v) if  $u \le w \le v$ ; see [Trusiani 2022, Lemma 3.1].

Moreover, as a consequence of Proposition 2.4, it follows that for any  $C \in \mathbb{R}_{>0}$  the set

$$\mathcal{E}_{C}^{1}(X,\omega,\psi) := \left\{ u \in \mathcal{E}^{1}(X,\omega,\psi) : \sup_{X} u \leq C \text{ and } E_{\psi}(u) \geq -C \right\}$$

is a weakly compact convex set.

**Remark 2.7.** If  $\psi \in \mathcal{M} \setminus \mathcal{M}^+$ , then  $\mathcal{E}^1(X, \omega, \psi) = \text{PSH}(X, \omega, \psi)$  since  $E_{\psi} \equiv 0$  by definition; see [Trusiani 2022, Remark 3.10]. In particular,  $d \equiv 0$ , and it is natural to identify  $(\mathcal{E}^1(X, \omega, \psi), d)$  with a point  $P_{\psi}$ . Moreover, we recall that  $\mathcal{E}^1(X, \omega, \psi_1) \cap \mathcal{E}^1(X, \omega, \psi_2) = \emptyset$  if  $\psi_1, \psi_2 \in \mathcal{M}, \ \psi_1 \neq \psi_2$  and  $V_{\psi_2} > 0$ .

**2B.** *The space*  $(X_A, d_A)$ . From now on we assume  $A \subset M^+$  to be a totally ordered set of model-type envelopes, and we denote by  $\overline{A}$  its closure as a subset of PSH $(X, \omega)$  endowed with the weak topology. Note that  $\overline{A} \subset PSH(X, \omega)$  is compact by [Trusiani 2022, Lemma 2.6]. Indeed, we will prove in Lemma 3.12 that  $\overline{A}$  is actually homeomorphic to its image through the Monge–Ampère operator MA $_{\omega}$  when the set of measures is endowed with the weak topology. This yields that  $\overline{A}$  is also homeomorphic to a closed set contained in  $[0, \int_X \omega^n]$  through the map  $\psi \to V_{\psi}$ .

**Definition 2.8.** We define the set

$$X_{\mathcal{A}} := \bigsqcup_{\psi \in \bar{\mathcal{A}}} \mathcal{E}^1(X, \omega, \psi)$$

if  $\psi_{\min} := \inf \mathcal{A}$  satisfies  $V_{\psi_{\min}} > 0$ , and

$$X_{\mathcal{A}} := P_{\psi_{\min}} \sqcup \bigsqcup_{\psi' \in \bar{\mathcal{A}}, \psi \neq \psi_{\min}} \mathcal{E}^1(X, \omega, \psi)$$

if  $V_{\psi_{\min}} = 0$ , where  $P_{\psi_{\min}}$  is a singleton.

 $X_A$  can be endowed with a natural metric structure as [Trusiani 2022, Section 4] shows.

**Theorem 2.9** [Trusiani 2022, Theorem B].  $(X_A, d_A)$  is a complete metric space such that

$$d_{\mathcal{A}|\mathcal{E}^{1}(X,\omega,\psi)\times\mathcal{E}^{1}(X,\omega,\psi)} = d$$

for any  $\psi \in \overline{\mathcal{A}} \cap \mathcal{M}^+$ .

We call the *strong topology* on  $X_A$  the metric topology given by the distance  $d_A$ . Note that the definition is coherent with that of Section 2A since the induced topology on  $\mathcal{E}^1(X, \omega, \psi) \subset X_A$  coincides with the strong topology given by d.

We will also need the following contraction property which is the starting point to construct  $d_A$ .

**Proposition 2.10** [Trusiani 2022, Lemma 4.2 and Proposition 4.3]. Let  $\psi_1, \psi_2, \psi_3 \in \mathcal{M}$  such that  $\psi_1 \preccurlyeq \psi_2 \preccurlyeq \psi_3$ . Then  $P_{\omega}[\psi_1](P_{\omega}[\psi_2](u)) = P_{\omega}[\psi_1](u)$  for any  $u \in \mathcal{E}^1(X, \omega, \psi_3)$  and  $|P_{\omega}[\psi_1](u) - \psi_1| \le C$  if  $|u - \psi_3| \le C$ . Moreover, the map

$$P_{\omega}[\psi_1](\cdot): \mathcal{E}^1(X, \omega, \psi_2) \to \text{PSH}(X, \omega, \psi_1)$$

has image in  $\mathcal{E}^1(X, \omega, \psi_1)$  and is a Lipschitz map of constant 1 when the sets  $\mathcal{E}^1(X, \omega, \psi_i)$ , i = 1, 2, are endowed with the d distances, i.e.,

$$d(P_{\omega}[\psi_1](u), P_{\omega}[\psi_1](v)) \le d(u, v)$$

for any  $u, v \in \mathcal{E}^1(X, \omega, \psi_2)$ .

Here we report some properties of the distance  $d_A$  and some consequences which will be useful later.

**Proposition 2.11.** The following properties from [Trusiani 2022] hold:

(i) [Proposition 4.14] If  $u \in \mathcal{E}^1(X, \omega, \psi_1)$  and  $v \in \mathcal{E}^1(X, \omega, \psi_2)$  for  $\psi_1, \psi_2 \in \overline{\mathcal{A}}$  and  $\psi_1 \succeq \psi_2$ , then

$$d_A(u, v) \ge d(P_{\omega}[\psi_2](u), v).$$

(ii) [Lemma 4.6] If  $\{\psi_k\}_{k\in\mathbb{N}} \subset \mathcal{M}^+$ ,  $\psi \in \mathcal{M}$ , with  $\psi_k \searrow \psi$  (resp.  $\psi_k \nearrow \psi$  a.e.),  $u_k \searrow u$  and  $v_k \searrow v$ (resp.  $u_k \nearrow u$  a.e. and  $v_k \nearrow v$  a.e.), for  $u_k, v_k \in \mathcal{E}^1(X, \omega, \psi_k)$  and  $u, v \in \mathcal{E}^1(X, \omega, \psi)$  and  $|u_k - v_k|$ is uniformly bounded, then

$$d(u_k, v_k) \rightarrow d(u, v).$$

(iii) [Proposition 4.5] If  $\{\psi_k\}_{k\in\mathbb{N}} \subset \mathcal{M}^+$ ,  $\psi \in \mathcal{M}$ , such that  $\psi_k \to \psi$  monotonically a.e., then for any  $\psi' \in \mathcal{M}$  such that  $\psi' \succeq \psi_k$  for any  $k \gg 1$  big enough and for any strongly compact set  $K \subset (\mathcal{E}^1(X, \omega, \psi'), d),$ 

$$d(P_{\omega}[\psi_k](\varphi_1), P_{\omega}[\psi_k](\varphi_2)) \rightarrow d(P_{\omega}[\psi](\varphi_1), P_{\omega}[\psi](\varphi_2))$$

uniformly on  $K \times K$ , i.e., varying  $(\varphi_1, \varphi_2) \in K \times K$ . In particular, if  $\psi_k, \psi \in \overline{A}$ , then

$$d_{\mathcal{A}}(P_{\omega}[\psi](u), P_{\omega}[\psi_{k}](u)) \to 0,$$
  
$$d(P_{\omega}[\psi_{k}](u), P_{\omega}[\psi_{k}](v)) \to d(P_{\omega}[\psi](u), P_{\omega}[\psi](v))$$

*monotonically for any*  $(u, v) \in \mathcal{E}^1(X, \omega, \psi') \times \mathcal{E}^1(X, \omega, \psi')$ .

(iv) [Section 4.2]  $d_{\mathcal{A}}(u_1, u_2) \ge |V_{\psi_1} - V_{\psi_2}|$  if  $u_1 \in \mathcal{E}^1(X, \omega, \psi_1)$  and  $u_2 \in \mathcal{E}^1(X, \omega, \psi_2)$ , and the equality holds if  $u_1 = \psi_1$  and  $u_2 = \psi_2$  (by definition of  $d_{\mathcal{A}}$ ).

The following lemma is a special case of [Xia 2019, Theorem 2.2]; see also [Darvas et al. 2018, Lemma 4.1].

**Lemma 2.12** [Trusiani 2022, Proposition 2.7]. Let  $\{\psi_k\}_{k\in\mathbb{N}} \subset \mathcal{M}^+$ ,  $\psi \in \mathcal{M}$ , such that  $\psi_k \to \psi$  monotonically almost everywhere. Let also  $u_k, v_k \in \mathcal{E}^1(X, \omega, \psi_k)$  converge in capacity to  $u, v \in \mathcal{E}^1(X, \omega, \psi)$ , respectively. Then for any j = 0, ..., n,

$$\operatorname{MA}_{\omega}(u_k^j, v_k^{n-j}) \to \operatorname{MA}_{\omega}(u^j, v^{n-j})$$

weakly. Moreover, if  $|u_k - v_k|$  is uniformly bounded, then for any j = 0, ..., n,

$$(u_k - v_k) \operatorname{MA}_{\omega}(u_k^j, v_k^{n-j}) \to (u - v) \operatorname{MA}_{\omega}(u^j, v^{n-j})$$

weakly.

It is well known that the set of Kähler potentials  $\mathcal{H}_{\omega} := \{\varphi \in PSH(X, \omega) \cap C^{\infty}(X) : \omega + dd^{c}\varphi > 0\}$  is dense in  $(\mathcal{E}^{1}(X, \omega), d)$ . The same holds for  $P_{\omega}[\psi](\mathcal{H}_{\omega})$  in  $(\mathcal{E}^{1}(X, \omega, \psi), d)$ .

**Lemma 2.13** [Trusiani 2022, Lemma 4.8]. The set  $\mathcal{P}_{\mathcal{H}_{\omega}}(X, \omega, \psi) := P_{\omega}[\psi](\mathcal{H}) \subset \mathcal{P}(X, \omega, \psi)$  is dense in  $(\mathcal{E}^{1}(X, \omega, \psi), d)$ .

The following lemma shows that, for  $u \in PSH(X, \omega)$  fixed, the map  $\mathcal{M}^+ \ni \psi \to P_{\omega}[\psi](u)$  is weakly continuous over any totally ordered set of model-type envelopes that are more singular than u.

**Lemma 2.14.** Let  $u \in PSH(X, \omega)$ , and let  $\{\psi_k\}_{k \in \mathbb{N}} \subset \mathcal{M}^+$  be a totally ordered sequence of modeltype envelopes converging to  $\psi \in \mathcal{M}$ . Assume also that  $\psi_k \preccurlyeq u$  for any  $k \gg 1$  big enough. Then  $P_{\omega}[\psi_k](u) \rightarrow P_{\omega}[\psi](u)$  weakly.

*Proof.* As  $\{\psi_k\}_{k\in\mathbb{N}}$  is totally ordered, without loss of generality we may assume that  $\psi_k \to \psi$  monotonically almost everywhere. Set  $\tilde{u} := \lim_{k\to\infty} P_{\omega}[\psi_k](u)$ . We want to prove that  $\tilde{u} = P_{\omega}[\psi](u)$ .

Suppose  $\psi_k \searrow \psi$ . We can immediately check that  $P_{\omega}[\psi_k](u) \le P_{\omega}[\psi_k](\sup_X u) = \psi_k + \sup_X u$ , which implies  $\tilde{u} \le \psi + \sup_X u$  letting  $k \to +\infty$ . Thus  $\tilde{u} \le P_{\omega}[\psi](u)$ , as the inequality  $\tilde{u} \le u$  is trivial. Moreover,

since  $\psi \leq \psi_k$  we also have  $P_{\omega}[\psi](u) \leq P_{\omega}[\psi_k](u)$ , which clearly yields  $P_{\omega}[\psi](u) \leq \tilde{u}$  and concludes this part.

Suppose  $\psi_k \nearrow \psi$ . Then the inequality  $\tilde{u} \le P_{\omega}[\psi](u)$  is immediate. Next, combining Theorem 2.2 and Proposition 2.10, we have

$$\begin{split} \mathsf{MA}_{\omega}(P_{\omega}[\psi_{k}](u)) &= \mathsf{MA}_{\omega}(P_{\omega}[\psi_{k}](P_{\omega}[\psi](u))) \\ &\leq \mathbb{1}_{\{P_{\omega}[\psi_{k}](u) = P_{\omega}[\psi](u)\}} \operatorname{MA}_{\omega}(P_{\omega}[\psi](u)) \\ &\leq \mathbb{1}_{\{\tilde{u} = P_{\omega}[\psi](u)\}} \operatorname{MA}_{\omega}(P_{\omega}[\psi](u)), \end{split}$$

where the last inequality follows from  $P_{\omega}[\psi_k](u) \le \tilde{u} \le P_{\omega}[\psi](u)$ . Thus, as  $MA_{\omega}(P_{\omega}[\psi_k](u)) \to MA_{\omega}(\tilde{u})$ weakly by [Darvas et al. 2018, Theorem 2.3], we deduce that  $\tilde{u} \in \mathcal{E}(X, \omega, \psi)$  and

$$\mathrm{MA}_{\omega}(\tilde{u}) \leq \mathbb{1}_{\{\tilde{u}=P_{\omega}[\psi](u)\}} \mathrm{MA}_{\omega}(P_{\omega}[\psi](u)).$$

Moreover, we also have  $P_{\omega}[\psi](u) \in \mathcal{E}(X, \omega, \psi)$ . Indeed,  $P_{\omega}[\psi](u) \leq P_{\omega}[\psi](\sup_X u) = \psi + \sup_X$ , i.e.,  $P_{\omega}[\psi](u) \preccurlyeq \psi$ , while  $P_{\omega}[\psi](u) \geq P_{\omega}[\psi](\psi_k - C_k) = \psi_k - C_k$  for nonnegative constants  $C_k$  and for any  $k \gg 1$  big enough as  $u, \psi$  are less singular than  $\psi_k$ . Thus  $P_{\omega}[\psi](u) \succcurlyeq \psi_k$  for any k, which yields  $\int_X MA_{\omega}(P_{\omega}[\psi](u)) \geq V_{\psi} > 0$  and gives  $P_{\omega}[\psi](u) \in \mathcal{E}(X, \omega, \psi)$ . Hence

$$0 \leq \int_{X} (P_{\omega}[\psi](u) - \tilde{u}) \operatorname{MA}_{\omega}(\tilde{u})$$
  
$$\leq \int_{\{\tilde{u} = P_{\omega}[\psi](u)\}} (P_{\omega}[\psi](u) - \tilde{u}) \operatorname{MA}_{\omega}(P_{\omega}[\psi](u)) = 0,$$

which by the domination principle of [Darvas et al. 2018, Proposition 3.11] implies  $\tilde{u} \ge P_{\omega}[\psi](u)$ .

# 3. Tools

In this section we collect some uniform estimates on  $\mathcal{E}^1(X, \omega, \psi)$  for  $\psi \in \mathcal{M}^+$ , we recall the  $\psi$ -relative capacity and we prove the upper semicontinuity of  $E_{\cdot}(\cdot)$  on  $X_{\mathcal{A}}$ .

# **3A.** Uniform estimates. Let $\psi \in \mathcal{M}^+$ .

We first define in the  $\psi$ -relative setting the analogs of some well-known functionals of the variational approach; see [Berman et al. 2013].

We define the  $\psi$ -relative I- and J-functionals,

$$I_{\psi}, J_{\psi}: \mathcal{E}^1(X, \omega, \psi) \times \mathcal{E}^1(X, \omega, \psi) \to \mathbb{R}, \text{ where } \psi \in \mathcal{M}^+,$$

as

$$I_{\psi}(u, v) := \int_{X} (u - v) (\mathrm{MA}_{\omega}(v) - \mathrm{MA}_{\omega}(u)),$$
  
$$J_{\psi}(u, v) := J_{u}^{\psi}(v) := E_{\psi}(u) - E_{\psi}(v) + \int_{X} (v - u) \mathrm{MA}_{\omega}(u),$$

respectively; see also [Aubin 1984]. They assume nonnegative values by Proposition 2.4, and  $I_{\psi}$  is clearly symmetric while  $J_{\psi}$  is convex, again by Proposition 2.4. Moreover, the  $\psi$ -relative *I*- and *J*-functionals are related to each other by the following result.

**Lemma 3.1.** Let  $u, v \in \mathcal{E}^1(X, \omega, \psi)$ . Then

(i) 
$$\frac{1}{n+1}I_{\psi}(u,v) \le J_{u}^{\psi}(v) \le \frac{n}{n+1}I_{\psi}(u,v),$$

(ii) 
$$\frac{1}{n}J_u^{\psi}(v) \le J_v^{\psi}(u) \le nJ_u^{\psi}(v)$$

In particular,

 $d(\psi, u) \le n J_u^{\psi}(\psi) + (\|\psi\|_{L^1} + \|u\|_{L^1})$ 

for any  $u \in \mathcal{E}^1(X, \omega, \psi)$  such that  $u \leq \psi$ .

Proof. By Proposition 2.4 it follows that

$$n \int_{X} (u-v) \operatorname{MA}_{\omega}(u) + \int_{X} (u-v) \operatorname{MA}_{\omega}(v) \le (n+1)(E_{\psi}(u) - E_{\psi}(v))$$
$$\le \int_{X} (u-v) \operatorname{MA}_{\omega}(u) + n \int_{X} (u-v) \operatorname{MA}_{\omega}(v)$$

for any  $u, v \in \mathcal{E}^1(X, \omega, \psi)$ , which yields (i) and (ii).

Next, considering  $v = \psi$  and assuming  $u \leq \psi$  from the second inequality in (ii), we obtain

$$d(u, \psi) = -E_{\psi}(u) \le n J_{u}^{\psi}(\psi) + \int_{X} (\psi - u) \operatorname{MA}_{\omega}(\psi)$$

which implies the assertion since  $MA_{\omega}(\psi) \leq MA_{\omega}(0)$  by Theorem 2.2.

We can now proceed to show the uniform estimates, adapting some results in [Berman et al. 2013]. **Lemma 3.2** [Trusiani 2022, Lemma 3.7]. Let  $\psi \in \mathcal{M}^+$ . Then there exists positive constants A > 1, B > 0depending only on n,  $\omega$  such that for any  $u \in \mathcal{E}^1(X, \omega, \psi)$ ,

$$-d(\psi, u) \le V_{\psi} \sup_{X} (u - \psi) = V_{\psi} \sup_{X} u \le A d(\psi, u) + B$$

**Remark 3.3.** As a consequence of Lemma 3.2, if  $d(\psi, u) \leq C$ , then  $\sup_X u \leq (AC + B)/V_{\psi}$  while

$$-E_{\psi}(u) = d(\psi + (AC + B)/V_{\psi}, u) - (AC + B) \le d(\psi, u) \le C,$$

i.e.,  $u \in \mathcal{E}_D^1(X, \omega, \psi)$  where  $D := \max(C, (AC + B)/V_{\psi})$ . Conversely, using the definitions and the triangle inequality, it is easy to check that  $d(u, \psi) \le C(2V_{\psi} + 1)$  for any  $u \in \mathcal{E}_C^1(X, \omega, \psi)$ .

**Proposition 3.4.** Let  $C \in \mathbb{R}_{>0}$ . Then there exists a continuous increasing function  $f_C : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  depending only on  $C, \omega, n$  with  $f_C(0) = 0$  such that

$$\left| \int_{X} (u-v) (\mathrm{MA}_{\omega}(\varphi_1) - \mathrm{MA}_{\omega}(\varphi_2)) \right| \le f_C(d(u,v))$$
(7)

for any  $u, v, \varphi_1, \varphi_2 \in \mathcal{E}^1(X, \omega, \psi)$  with  $d(u, \psi), d(v, \psi), d(\varphi_1, \psi), d(\varphi_2, \psi) \leq C$ .

*Proof.* As said in Remark 3.3, if  $w \in \mathcal{E}^1(X, \omega, \psi)$  with  $d(\psi, w) \leq C$ , then  $\tilde{w} := w - (AC + B)/V_{\psi}$  satisfies  $\sup_X \tilde{w} \leq 0$  and

$$-E_{\psi}(\tilde{w}) = d(\psi, \tilde{w}) \le d(\psi, w) + d(w, \tilde{w}) \le C + AC + B =: D.$$

Therefore, setting  $\tilde{u} := u - (AC + B)/V_{\psi}$  and  $\tilde{v} := v - (AC + B)/V_{\psi}$ , we can proceed exactly as in [Berman et al. 2013, Lemma 5.8] using the integration by parts formula in [Xia 2019] (see also [Boucksom et al. 2010, Theorem 1.14]) to get

$$\left| \int_{X} (\tilde{u} - \tilde{v}) (\mathrm{MA}_{\omega}(\varphi_1) - \mathrm{MA}_{\omega}(\varphi_2)) \right| \le I_{\psi}(\tilde{u}, \tilde{v}) + h_D(I_{\psi}(\tilde{u}, \tilde{v})), \tag{8}$$

where  $h_D : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  is an increasing continuous function depending only on *D* such that  $h_D(0) = 0$ . Furthermore, by definition,

$$d(\psi, P_{\omega}(\tilde{u}, \tilde{v})) \le d(\psi, \tilde{u}) + d(\tilde{u}, P_{\omega}(\tilde{u}, \tilde{v})) \le d(\psi, \tilde{u}) + d(\tilde{u}, \tilde{v}) \le 3D,$$

so by the triangle inequality and (8) we have

$$\left| \int_{X} (u-v)(\mathrm{MA}_{\omega}(\varphi_{1}) - \mathrm{MA}_{\omega}(\varphi_{2})) \right| \leq I_{\psi}(\tilde{u}, P_{\omega}(\tilde{u}, \tilde{v})) + I_{\psi}(\tilde{v}, P_{\omega}(\tilde{u}, \tilde{v})) + h_{3D}(I_{\psi}(\tilde{u}, P_{\omega}(\tilde{u}, \tilde{v}))) + h_{3D}(I_{\psi}(\tilde{v}, P_{\omega}(\tilde{u}, \tilde{v}))).$$
(9)

On the other hand, if  $w_1, w_2 \in \mathcal{E}^1(X, \omega, \psi)$  with  $w_1 \ge w_2$ , then by Proposition 2.4

$$I_{\psi}(w_1, w_2) \le \int_X (w_1 - w_2) \operatorname{MA}_{\omega}(w_2) \le (n+1)d(w_1, w_2)$$

Hence from (9) it is sufficient to set  $f_C(x) := (n+1)x + 2h_{3D}((n+1)x)$  to conclude the proof since clearly  $d(\tilde{u}, \tilde{v}) = d(u, v)$ .

**Corollary 3.5.** Let  $\psi \in \mathcal{M}^+$  and let  $C \in \mathbb{R}_{>0}$ . Then there exists a continuous increasing function  $f_C : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  depending only on  $C, \omega, n$  with  $f_C(0) = 0$  such that

$$\int_{X} |u - v| \operatorname{MA}_{\omega}(\varphi) \le f_{\mathcal{C}}(d(u, v))$$

for any  $u, v, \varphi \in \mathcal{E}^1(X, \omega, \psi)$  with  $d(\psi, u), d(\psi, v), d(\psi, \varphi) \leq C$ .

*Proof.* Since  $d(\psi, P_{\omega}(u, v)) \leq 3C$ , letting  $g_{3C} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  be the map (7) of Proposition 3.4, it follows that

$$\int_{X} (u - P_{\omega}(u, v)) \operatorname{MA}_{\omega}(\varphi) \leq \int_{X} (u - P_{\omega}(u, v)) \operatorname{MA}_{\omega}(P_{\omega}(u, v)) + g_{3C}(d(u, P_{\omega}(u, v)))$$
$$\leq (n+1)d(u, P_{\omega}(u, v)) + g_{3C}(d(u, v)),$$

where in the last inequality we used Proposition 2.4. Hence by the triangle inequality we get

$$\int_{X} |u - v| \operatorname{MA}_{\omega}(\varphi) \le (n+1)d(u, P_{\omega}(u, v)) + (n+1)d(v, P_{\omega}(u, v)) + 2g_{3C}(d(u, v))$$
$$= (n+1)d(u, v) + 2g_{3C}(d(u, v)).$$

Defining  $f_C(x) := (n+1)x + 2g_{3C}(x)$  concludes the proof.

378

As a first important consequence we obtain that the strong convergence in  $\mathcal{E}^1(X, \omega, \psi)$  implies the weak convergence.

**Proposition 3.6.** Let  $\psi \in \mathcal{M}^+$  and let  $C \in \mathbb{R}_{>0}$ . Then there exists a continuous increasing function  $f_{C,\psi} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  depending on  $C, \omega, n, \psi$  with  $f_{C,\psi}(0) = 0$  such that

$$||u - v||_{L^1} \le f_{C,\psi}(d(u, v))$$

for any  $u, v \in \mathcal{E}^1(X, \omega, \psi)$  with  $d(\psi, u), d(\psi, v) \leq C$ . In particular,  $u_k \to u$  weakly if  $u_k \to u$  strongly.

*Proof.* Theorem A in [Darvas et al. 2021a] (see also Theorem 1.4 in [Darvas et al. 2018]) implies that there exists  $\phi \in \mathcal{E}^1(X, \omega, \psi)$  with  $\sup_X \phi = 0$  such that

$$MA_{\omega}(\phi) = c MA_{\omega}(0),$$

where  $c := V_{\psi} / V_0 > 0$ . Therefore it follows that

$$||u-v||_{L^1} \le \frac{1}{c}g_{\hat{C}}(d(u,v)),$$

where  $\hat{C} := \max(d(\psi, \phi), C)$  and  $g_{\hat{C}}$  is the continuous increasing function with  $g_{\hat{C}}(0) = 0$  given by Corollary 3.5. Setting  $f_{C,\psi} := \frac{1}{c}g_{\hat{C}}$  concludes the proof.

Finally we also get the following useful estimate.

**Proposition 3.7.** Let  $\psi \in \mathcal{M}^+$  and let  $C \in \mathbb{R}_{>0}$ . Then there exists a constant  $\tilde{C}$  depending only on  $C, \omega, n$  such that

$$\left| \int_{X} (u-v) (\mathrm{MA}_{\omega}(\varphi_1) - \mathrm{MA}_{\omega}(\varphi_2)) \right| \leq \tilde{C} I_{\psi}(\varphi_1, \varphi_2)^{1/2}$$
(10)

for any  $u, v, \varphi_1, \varphi_2 \in \mathcal{E}^1(X, \omega, \psi)$  with  $d(u, \psi), d(v, \psi), d(\varphi_1, \psi), d(\varphi_2, \psi) \leq C$ .

*Proof.* As in Proposition 3.4 and with the same notation, the function  $\tilde{u} := u - (AC + B)/V_{\psi}$  satisfies  $\sup_X u \le 0$  (by Lemma 3.2) and  $-E_{\psi}(u) \le C + AC + B =: D$  (and similarly for  $v, \varphi_1, \varphi_2$ ). Therefore by integration by parts and using Lemma 3.8 below, it follows exactly as in [Berman et al. 2013, Lemma 3.13] that there exists a constant  $\tilde{C}$  depending only on D, n such that

$$\left| \int_{X} (\tilde{u} - \tilde{v}) (\mathrm{MA}_{\omega}(\tilde{\varphi}_{1}) - \mathrm{MA}_{\omega}(\tilde{\varphi}_{2})) \right| \leq \tilde{C} I_{\psi}(\tilde{\varphi}_{1}, \tilde{\varphi}_{2})^{1/2}$$

which clearly implies (10).

**Lemma 3.8.** Let  $C \in \mathbb{R}_{>0}$ . Then there exists a constant  $\tilde{C}$  depending only on  $C, \omega, n$  such that

$$\int_X |u_0 - \psi|(\omega + dd^c u_1) \wedge \dots \wedge (\omega + dd^c u_n) \le \tilde{C}$$

for any  $u_0, \ldots, u_n \in \mathcal{E}^1(X, \omega, \psi)$ , with  $d(u_j, \psi) \leq C$  for any  $j = 0, \ldots, n$ .

*Proof.* As in Proposition 3.4 and with the same notation,  $v_j := u_j - (AC + B)/V_{\psi}$  satisfies  $\sup_X v_j \le 0$ , and setting  $v := (v_0 + \cdots + v_n)/(n+1)$  we obtain  $\psi - u_0 \le (n+1)(\psi - v)$ . Thus by Proposition 2.4,

$$\begin{split} \int_{X} (\psi - v_0) \operatorname{MA}_{\omega}(v) &\leq (n+1) \int_{X} (\psi - v) \operatorname{MA}_{\omega}(v) \leq (n+1)^2 |E_{\psi}(v)| \\ &\leq (n+1) \sum_{j=0}^{n} |E_{\psi}(v_j)| \leq (n+1) \sum_{j=0}^{n} (d(\psi, u_j) + D) \leq (n+1)^2 (C+D), \end{split}$$

where D := AC + B. On the other hand,  $MA_{\omega}(v) \ge E(\omega + dd^c u_1) \land \cdots \land (\omega + dd^c u_n)$ , where the constant *E* depends only on *n*. Finally we get

$$\int_{X} |u_{0} - \psi|(\omega + dd^{c}u_{1}) \wedge \dots \wedge (\omega + dd^{c}u_{n}) \leq D + \frac{1}{E} \int_{X} (\psi - v_{0}) \operatorname{MA}_{\omega}(v)$$
$$\leq D + \frac{(n+1)^{2}(C+D)}{E}.$$

# **3B.** $\psi$ -relative Monge–Ampère capacity.

**Definition 3.9** [Darvas et al. 2018, Section 4.1; Darvas et al. 2021a, Definition 3.1]. Let  $B \subset X$  be a Borel set, and let  $\psi \in \mathcal{M}^+$ . Then its  $\psi$ -*relative Monge–Ampère capacity* is defined as

$$\operatorname{Cap}_{\psi}(B) := \sup \left\{ \int_{B} \operatorname{MA}_{\omega}(u) : u \in \operatorname{PSH}(X, \omega), \ \psi - 1 \le u \le \psi \right\}$$

In the absolute setting the Monge–Ampère capacity is very useful for studying the existence and regularity of solutions of the degenerate complex Monge–Ampère equation [Kołodziej 1998], and the analog holds in the relative setting [Darvas et al. 2018, 2021a]. We refer to these articles for many properties of the Monge–Ampère capacity.

For any fixed constant A, write  $\mathcal{C}_{A,\psi}$  for the set of all probability measures  $\mu$  on X such that

$$\mu(B) \le A \operatorname{Cap}_{\psi}(B)$$

for any Borel set  $B \subset X$  [Darvas et al. 2018, Section 4.3].

**Proposition 3.10.** Let  $u \in \mathcal{E}^1(X, \omega, \psi)$  with  $\psi$ -relative minimal singularities. Then  $MA_{\omega}(u)/V_{\psi} \in \mathcal{C}_{A,\psi}$  for a constant A > 0.

*Proof.* Let  $j \in \mathbb{R}$  such that  $u \ge \psi - j$  and assume without loss of generality that  $u \le \psi$  and  $j \ge 1$ . Then the function  $v := j^{-1}u + (1 - j^{-1})\psi$  is a candidate in the definition of  $\operatorname{Cap}_{\psi}$ , which implies that  $\operatorname{MA}_{\omega}(v) \le \operatorname{Cap}_{\psi}$ . Hence, since  $\operatorname{MA}_{\omega}(u) \le j^n \operatorname{MA}(v)$ , we get that  $\operatorname{MA}_{\omega}(u) \in \mathcal{C}_{A,\psi}$  for  $A = j^n$  and the result follows.

**Lemma 3.11** [Darvas et al. 2018, Lemma 4.18]. If  $\mu \in C_{A,\psi}$ , then there is a constant B > 0 depending only on A, n such that

$$\int_X (u-\psi)^2 \mu \le B(|E_{\psi}(u)|+1)$$

for any  $u \in PSH(X, \omega, \psi)$  such that  $\sup_X u = 0$ .

Similar to the case  $\psi = 0$  (see [Guedj and Zeriahi 2017]), we say that a sequence  $u_k \in PSH(X, \omega)$  converges to  $u \in PSH(X, \omega)$  in  $\psi$ -relative capacity for  $\psi \in \mathcal{M}$  if

$$\operatorname{Cap}_{\psi}(\{|u_k - u| \ge \delta\}) \to 0$$

as  $k \to \infty$  for any  $\delta > 0$ .

By [Guedj and Zeriahi 2017, Theorem 10.37] (see also [Berman et al. 2013, Theorem 5.7]) the convergence in  $(\mathcal{E}^1(X, \omega), d)$  implies the convergence in capacity. The analog holds for  $\psi \in \mathcal{M}^+$ , i.e., the strong convergence in  $\mathcal{E}^1(X, \omega, \psi)$  implies the convergence in  $\psi$ -relative capacity. Indeed, in Proposition 5.7 we will prove the strong convergence implies the convergence in  $\psi'$ -relative capacity for any  $\psi' \in \mathcal{M}^+$ .

**3C.** (*Weak*) upper semicontinuity of  $u \to E_{P_{\omega}[u]}(u)$  over  $X_{\mathcal{A}}$ . One of the main features of  $E_{\psi}$  for  $\psi \in \mathcal{M}$  is its upper semicontinuity with respect to the weak topology. Here we prove the analog for  $E_{\cdot}(\cdot)$  over  $X_{\mathcal{A}}$ .

Lemma 3.12. The map

$$MA_{\omega} : \overline{\mathcal{A}} \to MA_{\omega}(\overline{\mathcal{A}}) \subset \{\mu \text{ a positive measure on } X\}$$

is a homeomorphism considering the weak topologies. In particular,  $\overline{A}$  is homeomorphic to a closed set contained in  $[0, \int_X MA_\omega(0)]$  through the map  $\psi \to V_\psi$ .

*Proof.* The map is well-defined and continuous by [Trusiani 2022, Lemma 2.6]. Moreover, the injectivity follows from the fact that  $V_{\psi_1} = V_{\psi_2}$  for  $\psi_1, \psi_2 \in \overline{A}$  implies  $\psi_1 = \psi_2$  using Theorem 2.1 and the fact that  $A \subset \mathcal{M}^+$ .

Finally, to conclude the proof it is enough to prove that  $\psi_k \to \psi$  weakly assuming  $V_{\psi_k} \to V_{\psi}$ , and it is clearly sufficient to show that any subsequence of  $\{\psi_k\}_{k\in\mathbb{N}}$  admits a subsequence weakly convergent to  $\psi$ . Moreover, since  $\overline{\mathcal{A}}$  is totally ordered and  $\succ$  coincides with  $\geq$  on  $\mathcal{M}$ , we may assume  $\{\psi_k\}_{k\in\mathbb{N}}$  is a monotonic sequence. Then, up to considering a further subsequence,  $\psi_k$  converges almost everywhere to an element  $\psi' \in \overline{\mathcal{A}}$  by compactness, and Lemma 2.12 implies that  $V_{\psi'} = V_{\psi}$ , i.e.,  $\psi' = \psi$ .

In the case  $\mathcal{A} := \{\psi_k\}_{k \in \mathbb{N}} \subset \mathcal{M}^+$ , we say that the  $u_k \in \mathcal{E}^1(X, \omega, \psi_k)$  converge weakly to  $P_{\psi_{\min}}$ where  $\psi_{\min} \in \mathcal{M} \setminus \mathcal{M}^+$  if  $|\sup_X u_k| \leq C$  for any  $k \in \mathbb{N}$  and any weak accumulation point u of  $\{u_k\}_{k \in \mathbb{N}}$ satisfies  $u \preccurlyeq \psi_{\min}$ . This definition is the most natural since  $PSH(X, \omega, \psi) = \mathcal{E}^1(X, \omega, \psi_{\min})$ .

**Lemma 3.13.** Let  $\{u_k\}_{k\in\mathbb{N}} \subset X_A$  be a sequence converging weakly to  $u \in X_A$ . If  $E_{P_{\omega}[u_k]}(u_k) \geq C$  uniformly, then  $P_{\omega}[u_k] \rightarrow P_{\omega}[u]$  weakly.

*Proof.* By Lemma 3.12 the convergence requested is equivalent to  $V_{\psi_k} \rightarrow V_{\psi}$ , where we set

$$\psi_k := P_{\omega}[u_k], \quad \psi := P_{\omega}[u].$$

Moreover, by a simple contradiction argument it is enough to show that any subsequence  $\{\psi_{k_h}\}_{h\in\mathbb{N}}$ admits a subsequence  $\{\psi_{k_{h_j}}\}_{j\in\mathbb{N}}$  such that  $V_{\psi_{k_{h_j}}} \to V_{\psi}$ . Thus up to considering a subsequence, by abuse of notation and by the lower semicontinuity  $\liminf_{k\to\infty} V_{\psi_k} \ge V_{\psi}$  of [Darvas et al. 2018, Theorem 2.3], we may suppose by contradiction that  $\psi_k \searrow \psi'$  for  $\psi' \in \mathcal{M}$  such that  $V_{\psi'} > V_{\psi}$ . In particular,  $V_{\psi'} > 0$ and  $\psi' \succeq \psi$ . Then by Proposition 2.10 and Remark 3.3, the sequence  $\{P_{\omega}[\psi'](u_k)\}_{k\in\mathbb{N}}$  is bounded

in  $(\mathcal{E}^1(X, \omega, \psi'), d)$  and it belongs to  $\mathcal{E}^1_{C'}(X, \omega, \psi')$  for some  $C' \in \mathbb{R}$ . Therefore, up to considering a subsequence, we have that  $\{u_k\}_{k\in\mathbb{N}}$  converges weakly to an element  $v \in \mathcal{E}^1(X, \omega, \psi)$  (which is the element u itself when  $u \neq P_{\psi_{\min}}$ ), while the sequence  $P_{\omega}[\psi'](u_k)$  converges weakly to an element  $w \in \mathcal{E}^1(X, \omega, \psi')$ . Thus the contradiction follows from  $w \leq v$  since  $\psi' \geq \psi$ ,  $V_{\psi'} > 0$  and  $\mathcal{E}^1(X, \omega, \psi') \cap \mathcal{E}^1(X, \omega, \psi) = \emptyset$ .  $\Box$ 

**Proposition 3.14.** Let  $\{u_k\}_{k\in\mathbb{N}} \subset X_A$  be a sequence converging weakly to  $u \in X_A$ . Then

$$\limsup_{k \to \infty} E_{P_{\omega}[u_k]}(u_k) \le E_{P_{\omega}[u]}(u).$$
(11)

*Proof.* Let  $\psi_k := P_{\omega}[u_k]$  and  $\psi := P_{\omega}[u] \in \overline{A}$ . We may assume  $\psi_k \neq \psi_{\min}$  for any  $k \in \mathbb{N}$  if  $\psi = \psi_{\min}$  and  $V_{\psi_{\min}} = 0$ .

Moreover, we can suppose that  $E_{\psi_k}(u_k)$  is bounded from below, which implies that  $u_k \in \mathcal{E}^1_C(X, \omega, \psi_k)$ for a uniform constant *C* and that  $\psi_k \to \psi$  weakly by Lemma 3.13. Thus since

$$E_{\psi_k}(u_k) = E_{\psi_k}(u_k - C) + CV_{\psi_k}(u_k - C)$$

for any  $k \in \mathbb{N}$ , Lemma 3.12 implies that we may assume that  $\sup_X u_k \leq 0$ . Furthermore, since  $\mathcal{A}$  is totally ordered, it is enough to show (11) when  $\psi_k \rightarrow \psi$  a.e. monotonically.

If  $\psi_k \searrow \psi$ , setting  $v_k := (\sup\{u_j : j \ge k\})^* \in \mathcal{E}^1(X, \omega, \psi_k)$ , we easily have

$$\limsup_{k \to \infty} E_{\psi_k}(u_k) \le \limsup_{k \to \infty} E_{\psi_k}(v_k) \le \limsup_{k \to \infty} E_{\psi}(P_{\omega}[\psi](v_k))$$

using the monotonicity of  $E_{\psi_k}$  and Proposition 2.10. Hence if  $\psi = \psi_{\min}$  and  $V_{\psi_{\min}} = 0$ , then

$$E_{\psi}(P_{\omega}[\psi](v_k)) = 0 = E_{\psi}(u),$$

while otherwise the conclusion follows from Proposition 2.4 since  $P_{\omega}[\psi](v_k) \searrow u$  by construction.

If instead  $\psi_k \nearrow \psi$ , fix  $\epsilon > 0$  and for any  $k \in \mathbb{N}$  let  $j_k \ge k$  such that

$$\sup_{j\geq k} E_{\psi_j}(u_j) \leq E_{\psi_{j_k}}(u_{j_k}) + \epsilon$$

Thus again by Proposition 2.10,  $E_{\psi_{j_k}}(u_{j_k}) \leq E_{\psi_l}(P_{\omega}[\psi_l](u_{j_k}))$  for any  $l \leq j_k$ . Moreover, assuming  $E_{\psi_{j_k}}(u_{j_k})$  is bounded from below,  $-E_{\psi_l}(P_{\omega}[\psi_l](u_{j_k})) = d(\psi_l, P_{\omega}[\psi_l](u_{j_k}))$  is uniformly bounded in l, k, which implies that  $\sup_X P_{\omega}[\psi_l](u_{j_k})$  is uniformly bounded by Remark 3.3 since  $V_{\psi_{j_k}} \geq a > 0$  for  $k \gg 0$  big enough. By compactness, up to considering a subsequence, we obtain  $P_{\omega}[\psi_l](u_{j_k}) \rightarrow v_l$  weakly where  $v_l \in \mathcal{E}^1(X, \omega, \psi_l)$  by the upper semicontinuity of  $E_{\psi_l}(\cdot)$  on  $\mathcal{E}^1(X, \omega, \psi_l)$ . Hence

$$\limsup_{k \to \infty} E_{\psi_k}(u_k) \le \limsup_{k \to \infty} E_{\psi_l}(P_{\omega}[\psi_l](u_{j_k})) + \epsilon = E_{\psi_l}(v_l) + \epsilon$$

for any  $l \in \mathbb{N}$ . Moreover, by construction,  $v_l \leq P_{\omega}[\psi_l](u)$  since  $P_{\omega}[\psi_l](u_{j_k}) \leq u_{j_k}$  for any k such that  $j_k \geq l$  and  $u_{j_k} \to u$  weakly. Therefore by the monotonicity of  $E_{\psi_l}(\cdot)$  and by Proposition 2.11 (ii), we conclude that

$$\limsup_{k \to \infty} E_{\psi_k}(u_k) \le \lim_{l \to \infty} E_{\psi_l}(P_{\omega}[\psi_l](u)) + \epsilon = E_{\psi}(u) + \epsilon$$

letting  $l \to \infty$ .

As a consequence, defining

$$X_{\mathcal{A},C} := \bigsqcup_{\psi \in \bar{\mathcal{A}}} \mathcal{E}_C^1(X, \omega, \psi),$$

we get the following compactness result.

**Proposition 3.15.** *Let*  $C, a \in \mathbb{R}_{>0}$ *. The set* 

$$X^{a}_{\mathcal{A},C} := X_{\mathcal{A},C} \cap \left(\bigsqcup_{\psi \in \bar{\mathcal{A}}: V_{\psi} \ge a} \mathcal{E}^{1}(X, \omega, \psi)\right)$$

is compact with respect to the weak topology.

Proof. It follows directly from the definition that

$$X^{a}_{\mathcal{A},C} \subset \left\{ u \in \mathsf{PSH}(X,\omega) : \left| \sup_{X} u \right| \le C' \right\},$$

where  $C' := \max(C, C/a)$ . Therefore by Proposition 8.5 in [Guedj and Zeriahi 2017],  $X^a_{\mathcal{A},C}$  is weakly relatively compact. Finally Proposition 3.14 and Hartogs' lemma imply that  $X^a_{\mathcal{A},C}$  is also closed with respect to the weak topology, concluding the proof.

**Remark 3.16.** The whole set  $X_{\mathcal{A},C}$  may not be weakly compact. Indeed, assuming  $V_{\psi_{\min}} = 0$  and letting  $\psi_k \in \overline{\mathcal{A}}$  such that  $\psi_k \searrow \psi_{\min}$ , the functions  $u_k := \psi_k - 1/\sqrt{V_{\psi_k}}$  belong to  $X_{\mathcal{A},V}$  for  $V = \int_X MA_\omega(0)$  since  $E_{\psi_k}(u_k) = -\sqrt{V_{\psi_k}}$  but  $\sup_X u_k = -1/\sqrt{V_{\psi_k}} \rightarrow -\infty$ .

# 4. The action of measures on $PSH(X, \omega)$

In this section we want to replace the action on  $PSH(X, \omega)$  defined in [Berman et al. 2013] given by a probability measure  $\mu$  with an action which assumes finite values on elements  $u \in PSH(X, \omega)$  with  $\psi$ -relative minimal singularities, where  $\psi = P_{\omega}[u]$  for almost all  $\psi \in \mathcal{M}$ . On the other hand, for any  $\psi \in \mathcal{M}$  we want there to exist many measures  $\mu$  whose action over  $\{u \in PSH(X, \omega) : P_{\omega}[u] = \psi\}$ is well-defined. The problem is that  $\mu$  varies among *all probability measures* while  $\psi$  varies among *all model-type envelopes*. So it may happen that  $\mu$  takes mass on nonpluripolar sets and that the unbounded locus of  $\psi \in \mathcal{M}$  is very nasty.

**Definition 4.1.** Let  $\mu$  be a probability measure on *X*. Then  $\mu$  acts on PSH(*X*,  $\omega$ ) through the functional  $L_{\mu}$ : PSH(*X*,  $\omega$ )  $\rightarrow \mathbb{R} \cup \{-\infty\}$  defined as  $L_{\mu}(u) = -\infty$  if  $\mu$  charges  $\{P_{\omega}[u] = -\infty\}$ , as

$$L_{\mu}(u) := \int_{X} (u - P_{\omega}[u])\mu$$

if u has  $P_{\omega}[u]$ -relative minimal singularities and  $\mu$  does not charge  $\{P_{\omega}[u] = -\infty\}$  and otherwise as

 $L_{\mu}(u) := \inf\{L_{\mu}(v) : v \in PSH(X, \omega) \text{ with } P_{\omega}[u] \text{ -relative minimal singularities, } v \ge u\}.$ 

**Proposition 4.2.** *The following properties hold:* 

- (i)  $L_{\mu}$  is affine, i.e., it satisfies the scaling property  $L_{\mu}(u+c) = L_{\mu}(u) + c$  for any  $c \in \mathbb{R}$ ,  $u \in PSH(X, \omega)$ .
- (ii)  $L_{\mu}$  is nondecreasing on  $\{u \in PSH(X, \omega) : P_{\omega}[u] = \psi\}$  for any  $\psi \in \mathcal{M}$ .

- (iii)  $L_{\mu}(u) = \lim_{j \to \infty} L_{\mu}(\max(u, P_{\omega}[u] j))$  for any  $u \in \text{PSH}(X, \omega)$ .
- (iv) If  $\mu$  is nonpluripolar, then  $L_{\mu}$  is convex.
- (v) If  $\mu$  is nonpluripolar and  $u_k \to u$  and  $P_{\omega}[u_k] \to P_{\omega}[u]$  weakly as  $k \to \infty$ , then

$$L_{\mu}(u) \ge \limsup_{k \to \infty} L_{\mu}(u_k)$$

(vi) If  $u \in \mathcal{E}^1(X, \omega, \psi)$  for  $\psi \in \mathcal{M}^+$ , then  $L_{\mathrm{MA}_\omega(u)/V_\psi}$  is finite on  $\mathcal{E}^1(X, \omega, \psi)$ .

*Proof.* The first two properties follow by definition.

For the third property, setting  $\psi := P_{\omega}[u]$ , clearly  $L_{\mu}(u) \leq \lim_{j \to \infty} L_{\mu}(\max(u, \psi - j))$ . Conversely, for any  $v \geq u$  with  $\psi$ -relative minimal singularities  $v \geq \max(u, \psi - j)$  for  $j \gg 0$  big enough, by (ii) we get  $L_{\mu}(v) \geq \lim_{j \to \infty} L_{\mu}(\max(u, \psi - j))$  which implies (iii) by definition.

Next we prove (iv). Let  $v = \sum_{l=1}^{m} a_l u_l$  be a convex combination of elements  $u_l \in PSH(X, \omega)$ . Without loss of generality we may assume  $\sup_X v$ ,  $\sup_X u_l \le 0$ . In particular, we have  $L_{\mu}(v)$ ,  $L_{\mu}(u_l) \le 0$ .

Suppose  $L_{\mu}(v) > -\infty$  (otherwise it is trivial) and let  $\psi := P_{\omega}[v], \ \psi_l := P_{\omega}[u_l]$ . Then for any  $C \in \mathbb{R}_{>0}$  it is easy to see that

$$\sum_{l=1}^{m} a_l P_{\omega}(u_l + C, 0) \le P_{\omega}(v + C, 0) \le \psi,$$

which leads to  $\sum_{l=1}^{m} a_l \psi_l \leq \psi$  letting  $C \to \infty$ . Hence (iii) yields

$$-\infty < L_{\mu}(v) = \int_{X} (v - \psi)\mu \le \sum_{l=1}^{n} a_{l} \int_{X} (u_{l} - \psi_{l})\mu = \sum_{l=1}^{n} a_{l} L_{\mu}(u_{l}).$$

Property (v) easily follows from  $\limsup_{k\to\infty} \max(u_k, P_{\omega}[u_k] - j) \le \max(u, P_{\omega}[u] - j)$  and (iii), while the last property is a consequence of Lemma 3.8.

Next, since for any  $t \in [0, 1]$  and any  $u, v \in \mathcal{E}^1(X, \omega, \psi)$ 

$$\int_{X} (u-v) \operatorname{MA}_{\omega}(tu+(1-t)v) = (1-t)^{n} \int_{X} (u-v) \operatorname{MA}_{\omega}(v) + \sum_{j=1}^{n} {\binom{n}{j}} t^{j} (1-t)^{n-j} \int_{X} (u-v) \operatorname{MA}_{\omega}(u^{j}, v^{n-j})$$
  

$$\geq (1-t)^{n} \int_{X} (u-v) \operatorname{MA}_{\omega}(v) + (1-(1-t)^{n}) \int_{X} (u-v) \operatorname{MA}_{\omega}(u),$$

we can proceed exactly as in [Berman et al. 2013, Proposition 3.4] (see also [Guedj and Zeriahi 2007, Lemma 2.11]), replacing  $V_{\theta}$  with  $\psi$ , to get the following result.

**Proposition 4.3.** Let  $A \subset PSH(X, \omega)$  and let  $L : A \to \mathbb{R} \cup \{-\infty\}$  be a convex and nondecreasing function satisfying the scaling property L(u + c) = L(u) + c for any  $c \in \mathbb{R}$ .

- (i) If L is finite-valued on a weakly compact convex set  $K \subset A$ , then L(K) is bounded.
- (ii) If  $\mathcal{E}^1(X, \omega, \psi) \subset A$  and L is finite-valued on  $\mathcal{E}^1(X, \omega, \psi)$ , then

$$\sup_{\{u \in \mathcal{E}^1_C(X, \omega, \psi) : \sup_X u \le 0\}} |L| = O(C^{1/2}) \quad as \ C \to \infty.$$

**4A.** When is  $L_{\mu}$  continuous? The continuity of  $L_{\mu}$  is a hard problem. However, we can characterize its continuity on some weakly compact sets as the next theorem shows.

**Theorem 4.4.** Let  $\mu$  be a nonpluripolar probability measure, and let  $K \subset PSH(X, \omega)$  be a compact convex set such that  $L_{\mu}$  is finite on K, the set  $\{P_{\omega}[u] : u \in K\} \subset \mathcal{M}$  is totally ordered and its closure in  $PSH(X, \omega)$  has at most one element in  $\mathcal{M} \setminus \mathcal{M}^+$ . Suppose also that there exists  $C \in \mathbb{R}$  such that  $|E_{P_{\omega}[u]}(u)| \leq C$  for any  $u \in K$ . Then the following properties are equivalent:

- (i)  $L_{\mu}$  is continuous on K.
- (ii) The map  $\tau: K \to L^1(\mu), \ \tau(u) := u P_{\omega}[u]$  is continuous.
- (iii) The set  $\tau(K) \subset L^1(\mu)$  is uniformly integrable, i.e.,

$$\int_{t=m}^{\infty} \mu\{u \le P_{\omega}[u] - t\} \to 0$$

as  $m \to \infty$ , uniformly for  $u \in K$ .

*Proof.* We first observe that if  $u_k \in K$  converges to  $u \in K$ , then by Lemma 3.13,  $\psi_k \to \psi$ , where we set  $\psi_k := P_{\omega}[u_k]$  and  $\psi := P_{\omega}[u]$ .

Then we can proceed exactly as in [Berman et al. 2013, Theorem 3.10] to get the equivalence between (i) and (ii), (ii)  $\Rightarrow$  (iii) and the fact that the graph of  $\tau$  is closed. It is important to emphasize that (iii) is equivalent to saying that  $\tau(K)$  is *weakly* relative compact by the Dunford–Pettis theorem, i.e., with respect to the weak topology on  $L^1(\mu)$  induced by  $L^{\infty}(\mu) = L^1(\mu)^*$ .

Finally, assuming that (iii) holds it remains to prove (i). So, letting  $u_k, u \in K$  such that  $u_k \to u$ , we have to show that  $\int_X \tau(u_k)\mu \to \int_X \tau(u)\mu$ . Since  $\tau(K) \subset L^1(\mu)$  is bounded, unless considering a subsequence, we may suppose  $\int_X \tau(u_k) \to L \in \mathbb{R}$ . By Fatou's lemma,

$$L = \lim_{k \to \infty} \int_X \tau(u_k) \mu \le \int_X \tau(u) \mu.$$
(12)

Then for any  $k \in \mathbb{N}$  the closed convex envelope

$$C_k := \overline{\operatorname{Conv}\{\tau(u_j) : j \ge k\}}$$

is weakly closed in  $L^1(\mu)$  by the Hahn–Banach theorem, which implies that  $C_k$  is weakly compact since it is contained in  $\tau(K)$ . Thus since  $C_k$  is a decreasing sequence of nonempty weakly compact sets, there exists  $f \in \bigcap_{k\geq 1} C_k$  and there exist elements  $v_k \in \text{Conv}(u_j : j \geq k)$  given as finite convex combinations such that  $\tau(v_k) \to f$  in  $L^1(\mu)$ . Moreover, by the closed graph property,  $f = \tau(u)$  since  $v_k \to u$  as a consequence of  $u_k \to u$ . On the other hand, by Proposition 4.2 (iv) we get

$$\int_X \tau(v_k)\mu \leq \sum_{l=1}^{m_k} a_{l,k} \int_X \tau(u_{k_l})\mu$$

if  $v_k = \sum_{l=1}^{m_k} a_{l,k} u_{k_l}$ . Hence  $L \ge \int_X \tau(u) \mu$ , which together with (12) implies  $L = \int_X \tau(u) \mu$ .

**Corollary 4.5.** Let  $\psi \in \mathcal{M}^+$  and  $\mu \in \mathcal{C}_{A,\psi}$ . Then  $L_{\mu}$  is continuous on  $\mathcal{E}_C^1(X, \omega, \psi)$  for any  $C \in \mathbb{R}_{>0}$ . In particular, if  $\mu = MA_{\omega}(u)/V_{\psi}$  for  $u \in \mathcal{E}^1(X, \omega, \psi)$  with  $\psi$ -relative minimal singularities, then  $L_{\mu}$  is continuous on  $\mathcal{E}_C^1(X, \omega, \psi)$  for any  $C \in \mathbb{R}_{>0}$ .

*Proof.* With the notation of Theorem 4.4,  $\tau(\mathcal{E}_C^1(X, \omega, \psi))$  is bounded in  $L^2(\mu)$  by Lemma 3.11. Hence by Holder's inequality  $\tau(\mathcal{E}_C^1(X, \omega, \psi))$  is uniformly integrable and Theorem 4.4 yields the continuity of  $L_{\mu}$  on  $\mathcal{E}_C^1(X, \omega, \psi)$  for any  $C \in \mathbb{R}_{>0}$ .

The last assertion follows directly from Proposition 3.10.

The following lemma will be essential to prove Theorem A and Theorem B.

**Lemma 4.6.** Let  $\varphi \in \mathcal{H}_{\omega}$  and let  $\mathcal{A} \subset \mathcal{M}$  be a totally ordered subset. Set also  $v_{\psi} := P_{\omega}[\psi](\varphi)$  for any  $\psi \in \mathcal{A}$ . Then the actions  $\{V_{\psi}L_{\mathrm{MA}_{\omega}(v_{\psi})/V_{\psi}}\}_{\psi \in \mathcal{A}}$  take finite values and they are equicontinuous on any compact set  $K \subset \mathrm{PSH}(X, \omega)$  such that  $\{P_{\omega}[u] : u \in K\}$  is a totally ordered set whose closure in  $\mathrm{PSH}(X, \omega)$  has at most one element in  $\mathcal{M} \setminus \mathcal{M}^+$  and such that  $|E_{P_{\omega}[u]}(u)| \leq C$  uniformly for any  $u \in K$ . If  $\psi \in \mathcal{M} \setminus \mathcal{M}^+$ , for the action  $V_{\psi}L_{\mathrm{MA}_{\omega}(v_{\psi})/V_{\psi}}$  we mean the null action. In particular, if  $\psi_k \to \psi$ monotonically almost everywhere and  $\{u_k\}_{k \in \mathbb{N}} \subset K$  converges weakly to  $u \in K$ , then

$$\int_{X} (u_k - P_{\omega}[u_k]) \operatorname{MA}_{\omega}(v_{\psi_k}) \to \int_{X} (u - P_{\omega}[u]) \operatorname{MA}_{\omega}(v_{\psi}).$$
(13)

Proof. By Theorem 2.2,

$$|V_{\psi}L_{\mathrm{MA}_{\omega}(v_{\psi})/V_{\psi}}(u)| \leq \int_{X} |u - P_{\omega}[u]| \operatorname{MA}_{\omega}(\varphi)$$

for any  $u \in PSH(X, \omega)$  and any  $\psi \in A$ , so the actions in the statement assume finite values. Then the equicontinuity on any weak compact set  $K \subset PSH(X, \omega)$  satisfying the assumptions of the lemma follows from

$$V_{\psi} \left| L_{\mathrm{MA}_{\omega}(v_{\psi})/V_{\psi}}(w_{1}) - L_{\mathrm{MA}_{\omega}(v_{\psi})/V_{\psi}}(w_{2}) \right| \leq \int_{X} |w_{1} - P_{\omega}[w_{1}] - w_{2} + P_{\omega}[w_{2}] |\mathrm{MA}_{\omega}(\varphi)|$$

for any  $w_1, w_2 \in \text{PSH}(X, \omega)$  since  $\text{MA}_{\omega}(\varphi)$  is a volume form on X and  $P_{\omega}[w_k] \to P_{\omega}[w]$  if  $\{w_k\}_{k \in \mathbb{N}} \subset K$  converges to  $w \in K$  under our hypothesis by Lemma 3.13.

For the second assertion, if  $\psi_k \searrow \psi$  (resp.  $\psi_k \nearrow \psi$  almost everywhere), letting  $f_k$ ,  $f \in L^{\infty}$  such that  $MA_{\omega}(v_{\psi_k}) = f_k MA_{\omega}(\varphi)$  and  $MA_{\omega}(v_{\psi}) = f MA_{\omega}(\varphi)$  (Theorem 2.2), we have  $0 \le f_k \le 1, 0 \le f \le 1$  and  $\{f_k\}_{k\in\mathbb{N}}$  is a monotone sequence. Therefore  $f_k \rightarrow f$  in  $L^p$  for any p > 1 as  $k \rightarrow \infty$ , which implies

$$\int_{X} (u - P_{\omega}[u]) \operatorname{MA}_{\omega}(v_{\psi_{k}}) \to \int_{X} (u - P_{\omega}[u]) \operatorname{MA}_{\omega}(v_{\psi})$$

as  $k \to \infty$  since MA<sub> $\omega$ </sub>( $\varphi$ ) is a volume form. Hence (13) follows since by the first part of the proof,

$$\int_{X} (u_k - P_{\omega}[u_k] - u + P_{\omega}[u]) \operatorname{MA}_{\omega}(v_{\psi_k}) \to 0.$$

# 5. Theorem A

In this section we fix  $\psi \in \mathcal{M}^+$  and, using a variational approach, we first prove the bijectivity of the Monge–Ampère operator between  $\mathcal{E}_{norm}^1(X, \omega, \psi)$  and  $\mathcal{M}^1(X, \omega, \psi)$ , and then we prove that it is actually a homeomorphism considering the strong topologies.

**5A.** *Degenerate complex Monge–Ampère equations.* Letting  $\mu$  be a probability measure and  $\psi \in \mathcal{M}$ , we define the functional  $F_{\mu,\psi} : \mathcal{E}^1(X, \omega, \psi) \to \mathbb{R} \cup \{-\infty\}$  as

$$F_{\mu,\psi}(u) := (E_{\psi} - V_{\psi}L_{\mu})(u),$$

where we recall from Section 4 that

$$L_{\mu}(u) = \lim_{j \to \infty} L_{\mu}(\max(u, \psi - j))$$
$$= \lim_{j \to \infty} \int_{X} (\max(u, \psi - j) - \psi)\mu$$

 $F_{\mu,\psi}$  is clearly a translation invariant functional, and  $F_{\mu,\psi} \equiv 0$  for any  $\mu$  if  $V_{\psi} = 0$ .

**Proposition 5.1.** Let  $\mu$  be a probability measure,  $\psi \in \mathcal{M}^+$  and let  $F := F_{\mu,\psi}$ . If  $L_{\mu}$  is continuous then F is upper semicontinuous on  $\mathcal{E}^1(X, \omega, \psi)$ . Moreover, if  $L_{\mu}$  is finite-valued on  $\mathcal{E}^1(X, \omega, \psi)$ , then there exist A, B > 0 such that

$$F(v) \le -A\,d(\psi, v) + B$$

for any  $v \in \mathcal{E}^1_{\text{norm}}(X, \omega, \psi)$ , i.e., F is *d*-coercive. In particular, F is upper semicontinuous on  $\mathcal{E}^1(X, \omega, \psi)$ and *d*-coercive on  $\mathcal{E}^1_{\text{norm}}(X, \omega, \psi)$  if  $\mu = MA_{\omega}(u)/V_{\psi}$  for  $u \in \mathcal{E}^1(X, \omega, \psi)$ .

*Proof.* If  $L_{\mu}$  is continuous then F is easily upper semicontinuous by Proposition 2.4.

Then, since  $d(\psi, v) = -E_{\psi}(v)$  on  $\mathcal{E}_{norm}^{1}(X, \omega, \psi)$ , it is easy to check that the coercivity requested is equivalent to

$$\sup_{\mathcal{E}^{1}_{C}(X,\omega,\psi)\cap\mathcal{E}^{1}_{\operatorname{norm}}(X,\omega,\psi)}|L_{\mu}| \leq \frac{(1-A)}{V_{\psi}}C + O(1),$$

which holds by Proposition 4.3 (ii).

Next assuming  $\mu = MA_{\omega}(u)/V_{\psi}$ , it is sufficient to check the continuity of  $L_{\mu}$  since  $L_{\mu}$  is finitevalued on  $\mathcal{E}^{1}(X, \omega, \psi)$  by Proposition 4.2. We may suppose without loss of generality that  $u \leq \psi$ . By Proposition 3.7 and Remark 3.3, for any  $C \in \mathbb{R}_{>0}$ ,  $L_{\mu}$  restricted to  $\mathcal{E}_{C}^{1}(X, \omega, \psi)$  is the uniform limit of  $L_{\mu_{j}}$ , where  $\mu_{j} := MA_{\omega}(\max(u, \psi - j))$ , since  $I_{\psi}(\max(u, \psi - j), u) \rightarrow 0$  as  $j \rightarrow \infty$ . Therefore  $L_{\mu}$  is continuous on  $\mathcal{E}_{C}^{1}(X, \omega, \psi)$  because of the uniform limit of continuous functionals  $L_{\mu_{j}}$  (Corollary 4.5).  $\Box$ 

Because of the concavity of  $E_{\psi}$ , if  $\mu = MA_{\omega}(u)/V_{\psi}$  for  $u \in \mathcal{E}^1(X, \omega, \psi)$  where  $V_{\psi} > 0$ , then

$$J_{u}^{\psi}(\psi) = F_{\mu,\psi}(u) = \sup_{\mathcal{E}^{1}(X,\omega,\psi)} F_{\mu,\psi},$$

i.e., u is a maximizer of  $F_{\mu,\psi}$ . The other way around also holds as the next result shows.

**Proposition 5.2.** Let  $\psi \in \mathcal{M}^+$  and let  $\mu$  be a probability measure such that  $L_{\mu}$  is finite-valued on  $\mathcal{E}^1(X, \omega, \psi)$ . Then  $\mu = MA_{\omega}(u)/V_{\psi}$  for  $u \in \mathcal{E}^1(X, \omega, \psi)$  if and only if u is a maximizer of  $F_{\mu,\psi}$ .

*Proof.* As said before, it is clear that  $\mu = MA_{\omega}(u)/V_{\psi}$  implies that u is a maximizer of  $F_{\mu,\psi}$ . Conversely, if u is a maximizer of  $F_{\mu,\psi}$ , then by [Darvas et al. 2018, Theorem 4.22],  $\mu = MA_{\omega}(u)/V_{\psi}$ .

Similarly to [Berman et al. 2013] we thus define the  $\psi$ -relative energy for  $\psi \in \mathcal{M}$  of a probability measure  $\mu$  as

$$E_{\psi}^{*}(\mu) := \sup_{u \in \mathcal{E}^{1}(X, \omega, \psi)} F_{\mu, \psi}(u)$$

i.e., essentially as the Legendre transform of  $E_{\psi}$ . It takes nonnegative values ( $F_{\mu,\psi}(\psi) = 0$ ), and it is easy to check that  $E_{\psi}^*$  is a convex function.

Moreover, defining

 $\mathcal{M}^1(X, \omega, \psi) := \{ V_{\psi} \mu : \mu \text{ is a probability measure satisfying } E^*_{\psi}(\mu) < \infty \},\$ 

we note that  $\mathcal{M}^1(X, \omega, \psi)$  consists only of the null measure if  $V_{\psi} = 0$ , while if  $V_{\psi} > 0$ , any probability measure  $\mu$  such that  $V_{\psi} \mu \in \mathcal{M}^1(X, \omega, \psi)$  is nonpluripolar as the next lemma shows.

**Lemma 5.3.** Let  $A \subset X$  be a (locally) pluripolar set. Then there exists  $u \in \mathcal{E}^1(X, \omega, \psi)$  such that  $A \subset \{u = -\infty\}$ . In particular, if  $V_{\psi} \mu \in \mathcal{M}^1(X, \omega, \psi)$  for  $\psi \in \mathcal{M}^+$ , then  $\mu$  is nonpluripolar.

*Proof.* By [Berman et al. 2013, Corollary 2.11], there exists  $\varphi \in \mathcal{E}^1(X, \omega)$  such that  $A \subset \{\varphi = -\infty\}$ . Therefore setting  $u := P_{\omega}[\psi](\varphi)$  proves the first part.

Next, let  $V_{\psi}\mu \in \mathcal{M}^1(X, \omega, \psi)$  for  $\psi \in \mathcal{M}^+$  and let  $\mu$  be a probability measure, and assume by contradiction that  $\mu$  takes mass on a pluripolar set A. Then by the first part of the proof there exists  $u \in \mathcal{E}^1(X, \omega, \psi)$  such that  $A \subset \{u = -\infty\}$ . On the other hand, since  $V_{\psi}\mu \in \mathcal{M}^1(X, \omega, \psi)$ , by definition  $\mu$  does not charge  $\{\psi = -\infty\}$ . Thus by Proposition 4.2 (iii) we obtain  $L_{\mu}(u) = -\infty$ , a contradiction.  $\Box$ 

We now prove that the Monge–Ampère operator is a bijection between  $\mathcal{E}^1(X, \omega, \psi)$  and  $\mathcal{M}^1(X, \omega, \psi)$ .

**Lemma 5.4.** Let  $\psi \in \mathcal{M}^+$  and  $\mu \in \mathcal{C}_{A,\psi}$ , where  $A \in \mathbb{R}$ . Then there exists  $u \in \mathcal{E}^1_{\text{norm}}(X, \omega, \psi)$  maximizing  $F_{\mu,\psi}$ .

*Proof.* By Lemma 3.11,  $L_{\mu}$  is finite-valued on  $\mathcal{E}^{1}(X, \omega, \psi)$ , and it is continuous on  $\mathcal{E}^{1}_{C}(X, \omega, \psi)$  for any  $C \in \mathbb{R}$  thanks to Corollary 4.5. Therefore it follows from Proposition 5.1 that  $F_{\mu,\psi}$  is upper semicontinuous and *d*-coercive on  $\mathcal{E}^{1}_{\text{norm}}(X, \omega, \psi)$ . Hence  $F_{\mu,\psi}$  admits a maximizer  $u \in \mathcal{E}^{1}_{\text{norm}}(X, \omega, \psi)$  as an easy consequence of the weak compactness of  $\mathcal{E}^{1}_{C}(X, \omega, \psi)$ .

**Proposition 5.5.** Let  $\psi \in \mathcal{M}^+$ . Then the Monge–Ampère map MA :  $\mathcal{E}^1_{\text{norm}}(X, \omega, \psi) \to \mathcal{M}^1(X, \omega, \psi)$ ,  $u \to MA(u)$ , is bijective. Furthermore, if  $V_{\psi}\mu = MA_{\omega}(u) \in \mathcal{M}^1(X, \omega, \psi)$  for  $u \in \mathcal{E}^1(X, \omega, \psi)$ , then any maximizing sequence  $u_k \in \mathcal{E}^1_{\text{norm}}(X, \omega, \psi)$  for  $F_{\mu,\psi}$  necessarily converges weakly to u.

Proof. The proof is inspired by [Berman et al. 2013, Theorem 4.7].

The map is well-defined as a consequence of Proposition 5.1, i.e.,  $MA_{\omega}(u) \in \mathcal{M}^1(X, \omega, \psi)$  for any  $u \in \mathcal{E}^1(X, \omega, \psi)$ . Moreover, the injectivity follows from [Darvas et al. 2021a, Theorem 4.8].

Let  $u_k \in \mathcal{E}_{norm}^1(X, \omega, \psi)$  be a sequence such that  $F_{\mu,\psi}(u_k) \nearrow \sup_{\mathcal{E}^1(X,\omega,\psi)} F_{\mu,\psi}$ , where  $\mu = MA_{\omega}(u)/V_{\psi}$ is a probability measure and  $u \in \mathcal{E}_{norm}^1(X, \omega, \psi)$ . Up to considering a subsequence, we may also assume that  $u_k \rightarrow v \in PSH(X, \omega)$ . Then, by the upper semicontinuity and *d*-coercivity of  $F_{\mu,\psi}$  (Proposition 5.1), it follows that  $v \in \mathcal{E}_{norm}^1(X, \omega, \psi)$  and  $F_{\mu,\psi}(v) = \sup_{\mathcal{E}^1(X,\omega,\psi)} F_{\mu,\psi}$ . Thus by Proposition 5.2 we get  $\mu = MA_{\omega}(v)/V_{\psi}$ . Hence v = u since  $\sup_X v = \sup_X u = 0$ .

Then let  $\mu$  be a probability measure such that  $V_{\psi}\mu \in \mathcal{M}^1(X, \omega, \psi)$ . Again by Proposition 5.2, to prove the existence of  $u \in \mathcal{E}_{norm}^1(X, \omega, \psi)$  such that  $\mu = MA_{\omega}(u)/V_{\psi}$  it is sufficient to check that  $F_{\mu,\psi}$  admits a maximum over  $\mathcal{E}_{norm}^1(X, \omega, \psi)$ . Moreover by Proposition 5.1, we also know that  $F_{\mu,\psi}$  is *d*-coercive on  $\mathcal{E}_{norm}^1(X, \omega, \psi)$ . Thus if there exists a constant A > 0 such that  $\mu \in \mathcal{C}_{A,\psi}$ , then Corollary 4.5 leads to the upper semicontinuity of  $F_{\mu,\psi}$ , which clearly implies that  $V_{\psi}\mu = MA_{\omega}(u)$  for  $u \in \mathcal{E}^1(X, \omega, \psi)$  since  $\mathcal{E}_C^1(X, \omega, \psi) \subset PSH(X, \omega)$  is compact for any  $C \in \mathbb{R}_{>0}$ .

In the general case, by [Darvas et al. 2018, Lemma 4.26] (see also [Cegrell 1998]),  $\mu$  is absolutely continuous with respect to  $\nu \in C_{1,\psi}$  using also that  $\mu$  is a nonpluripolar measure (Lemma 5.3). Therefore, letting  $f \in L^1(\nu)$  such that  $\mu = f\nu$ , we define for any  $k \in \mathbb{N}$ 

$$\mu_k := (1 + \epsilon_k) \min(f, k) \nu,$$

where the  $\epsilon_k > 0$  are chosen such that  $\mu_k$  is a probability measure, noting that  $(1 + \epsilon_k) \min(f, k) \to f$ in  $L^1(\nu)$ . Then by Lemma 5.4 it follows that  $\mu_k = MA_{\omega}(u_k)/V_{\psi}$  for  $u_k \in \mathcal{E}^1_{norm}(X, \omega, \psi)$ .

Moreover, by weak compactness we may also assume that  $u_k \to u \in PSH(X, \omega)$ , without loss of generality. Note that  $u \leq \psi$  since  $u_k \leq \psi$  for any  $k \in \mathbb{N}$ . Then by [Darvas et al. 2021a, Lemma 2.8] we obtain

$$\operatorname{MA}_{\omega}(u) \ge V_{\psi} f v = V_{\psi} \mu,$$

which implies  $MA_{\omega}(u) = V_{\psi}\mu$  by [Witt Nyström 2019] since *u* is more singular than  $\psi$  and  $\mu$  is a probability measure. It remains to prove that  $u \in \mathcal{E}^1(X, \omega, \psi)$ .

It is not difficult to see that  $\mu_k \leq 2\mu$  for  $k \gg 0$ , thus Proposition 4.3 implies that there exists a constant B > 0 such that

$$\sup_{\mathcal{E}_{C}^{1}(X,\omega,\psi)} |L_{\mu_{k}}| \leq 2 \sup_{\mathcal{E}_{C}^{1}(X,\omega,\psi)} |L_{\mu}| \leq 2B(1+C^{1/2})$$

for any  $C \in \mathbb{R}_{>0}$ . Therefore

$$J_{u_k}^{\psi}(\psi) = E_{\psi}(u_k) + V_{\psi}|L_{\mu_k}(u_k)| \le \sup_{C>0} (2V_{\psi}B(1+C^{1/2})-C),$$

and Lemma 3.1 yields  $d(\psi, u_k) \leq D$  for a uniform constant D, i.e.,  $u_k \in \mathcal{E}_{D'}^1(X, \omega, \psi)$  for any  $k \in \mathbb{N}$  for a uniform constant D'; see Remark 3.3. Hence since  $\mathcal{E}_{D'}^1(X, \omega, \psi)$  is weakly compact we obtain  $u \in \mathcal{E}_{D'}^1(X, \omega, \psi)$ .

**5B.** *Proof of Theorem A.* We further explore the properties of the strong topology on  $\mathcal{E}^1(X, \omega, \psi)$ .

By Proposition 3.6, the strong convergence implies the weak convergence. Moreover, the strong topology is the coarsest refinement of the weak topology such that  $E_{\psi}(\cdot)$  becomes continuous.

**Proposition 5.6.** Let  $\psi \in \mathcal{M}^+$  and  $u_k, u \in \mathcal{E}^1(X, \omega, \psi)$ . Then  $u_k \to u$  strongly if and only if  $u_k \to u$  weakly and  $E_{\psi}(u_k) \to E_{\psi}(u)$ .

*Proof.* Assume  $u_k \to u$  weakly and  $E_{\psi}(u_k) \to E_{\psi}(u)$ . Then  $w_k := (\sup\{u_j : j \ge k\})^* \in \mathcal{E}^1(X, \omega, \psi)$  and it decreases to u. Thus by Proposition 2.4,  $E_{\psi}(w_k) \to E_{\psi}(u)$  and

$$d(u_k, u) \le d(u_k, w_k) + d(w_k, u) = 2E_{\psi}(w_k) - E_{\psi}(u_k) - E_{\psi}(u) \to 0.$$

Conversely, assuming that  $d(u_k, u) \to 0$ , we immediately get that  $u_k \to u$  weakly as said above; see Proposition 3.6. Moreover,  $\sup_X u_k$ ,  $\sup_X u \le A$  uniformly for a constant  $A \in \mathbb{R}$ . Thus

$$|E_{\psi}(u_k) - E_{\psi}(u)| = |d(\psi + A, u_k) - d(\psi + A, u)| \le d(u_k, u) \to 0.$$

We also observe that the strong convergence implies the convergence in  $\psi'$ -capacity for any  $\psi' \in \mathcal{M}^+$ .

**Proposition 5.7.** Let  $\psi \in \mathcal{M}^+$  and  $u_k, u \in \mathcal{E}^1(X, \omega, \psi)$  such that  $d(u_k, u) \to 0$ . Then there exists a subsequence  $\{u_{k_j}\}_{j \in \mathbb{N}}$  such that  $w_j := (\sup\{u_{k_h} : h \ge j\})^*$  and  $v_j := P_{\omega}(u_{k_j}, u_{k_{j+1}}, \ldots)$  belong to  $\mathcal{E}^1(X, \omega, \psi)$  and converge monotonically almost everywhere to u. In particular,  $u_k \to u$  in  $\psi'$ -capacity for any  $\psi' \in \mathcal{M}^+$ , and  $\operatorname{MA}_{\omega}(u_k^j, \psi^{n-j}) \to \operatorname{MA}_{\omega}(u^j, \psi^{n-j})$  weakly for any  $j = 0, \ldots, n$ .

*Proof.* Since the strong convergence implies the weak convergence by Proposition 5.6, it is clear that  $w_k \in \mathcal{E}^1(X, \omega, \psi)$  and that it decreases to u. In particular, up to considering a subsequence we may assume that  $d(u_k, w_k) \le 1/2^k$  for any  $k \in \mathbb{N}$ .

Next for any  $j \ge k$ , set  $v_{k,j} := P_{\omega}(u_k, \dots, u_j) \in \mathcal{E}^1(X, \omega, \psi)$  and  $v_{k,j}^u := P_{\omega}(v_{k,j}, u) \in \mathcal{E}^1(X, \omega, \psi)$ . Then it follows from Proposition 2.4 and [Darvas et al. 2018, Lemma 3.7] that

$$\begin{aligned} d(u, v_{k,j}^{u}) &\leq \int_{X} (u - v_{k,j}^{u}) \operatorname{MA}_{\omega}(v_{k,j}^{u}) \leq \int_{\{v_{k,j}^{u} = v_{k,j}\}} (u - v_{k,j}) \operatorname{MA}_{\omega}(v_{k,j}) \\ &\leq \sum_{s=k}^{j} \int_{X} (w_{s} - u_{s}) \operatorname{MA}_{\omega}(u_{s}) \leq (n+1) \sum_{s=k}^{j} d(w_{s}, u_{s}) \leq \frac{n+1}{2^{k-1}}. \end{aligned}$$

Therefore by Proposition 3.15,  $v_{k,j}^u$  decreases (hence converges strongly) to a function  $\phi_k \in \mathcal{E}^1(X, \omega, \psi)$  as  $j \to \infty$ . Similarly we also observe that

$$d(v_{k,j}, v_{k,j}^{u}) \le \int_{\{v_{k,j}^{u}=u\}} (v_{k,j}-u) \operatorname{MA}_{\omega}(u) \le \int_{X} |v_{k,1}-u| \operatorname{MA}_{\omega}(u) \le C$$

uniformly in *j* by Corollary 3.5. Hence by definition,  $d(u, v_{k,j}) \leq C + (n+1)/2^{k-1}$ , i.e.,  $v_{k,j}$  decreases and converges strongly as  $j \to \infty$  to the function  $v_k = P_{\omega}(u_k, u_{k+1}, \ldots) \in \mathcal{E}^1(X, \omega, \psi)$ , again by Proposition 3.15. Moreover, by construction,  $u_k \geq v_k \geq \phi_k$  since  $v_k \leq v_{k,j} \leq u_k$  for any  $j \geq k$ . Hence

$$d(u, v_k) \le d(u, \phi_k) \le \frac{n+1}{2^{k-1}} \to 0$$

as  $k \to \infty$ , i.e.,  $v_k \nearrow u$  strongly.

The convergence in  $\psi'$ -capacity for  $\psi' \in \mathcal{M}^+$  is now clearly an immediate consequence. Indeed by an easy contradiction argument it is enough to prove that any arbitrary subsequence, which we will keep denoting by  $\{u_k\}_{k\in\mathbb{N}}$  for the sake of simplicity, admits a further subsequence  $\{u_{k_j}\}_{j\in\mathbb{N}}$  converging in  $\psi'$ -capacity to u. Thus taking the subsequence satisfying  $v_j \leq u_{k_j} \leq w_j$ , where  $v_j$ ,  $w_j$  are the monotonic sequences of the first part of the proposition, the convergence in  $\psi'$ -capacity follows from the inclusions

$$\{|u - u_{k_j}| > \delta\} = \{u - u_{k_j} > \delta\} \cup \{u_{k_j} - u > \delta\} \subset \{u - v_j > \delta\} \cup \{w_j - u > \delta\}$$

for any  $\delta > 0$ . Finally Lemma 2.12 gives the weak convergence of the measures.

390

We now endow the set  $\mathcal{M}^1(X, \omega, \psi) = \{V_{\psi}\mu : \mu \text{ is a probability measure satisfying } E^*_{\psi}(\mu) < +\infty\}$ (Section 5A) with its natural strong topology given as the coarsest refinement of the weak topology such that  $E^*_{\psi}(\cdot)$  becomes continuous and prove Theorem A.

**Theorem A.** Let  $\psi \in \mathcal{M}^+$ . Then

$$\operatorname{MA}_{\omega} : (\mathcal{E}^{1}_{\operatorname{norm}}(X, \omega, \psi), d) \to (\mathcal{M}^{1}(X, \omega, \psi), \operatorname{strong})$$

# is a homeomorphism.

*Proof.* The map is bijective as an immediate consequence of Proposition 5.5.

Next, letting the  $u_k \in \mathcal{E}_{norm}^1(X, \omega, \psi)$  converge strongly to  $u \in \mathcal{E}_{norm}^1(X, \omega, \psi)$ , Proposition 5.7 gives the weak convergence of  $MA_{\omega}(u_k) \to MA_{\omega}(u)$  as  $k \to \infty$ . Moreover, since  $E_{\psi}^*(MA_{\omega}(v)/V_{\psi}) = J_v^{\psi}(\psi)$ for any  $v \in \mathcal{E}^1(X, \omega, \psi)$ , we get

$$|E_{\psi}^{*}(\mathrm{MA}_{\omega}(u_{k})/V_{\psi}) - E_{\psi}^{*}(\mathrm{MA}_{\omega}(u)/V_{\psi})|$$

$$\leq |E_{\psi}(u_{k}) - E_{\psi}(u)| + \left| \int_{X} (\psi - u_{k}) \operatorname{MA}_{\omega}(u_{k}) - \int_{X} (\psi - u) \operatorname{MA}_{\omega}(u) \right|$$

$$\leq |E_{\psi}(u_{k}) - E_{\psi}(u)| + \left| \int_{X} (\psi - u_{k}) (\operatorname{MA}_{\omega}(u_{k}) - \operatorname{MA}_{\omega}(u)) \right| + \int_{X} |u_{k} - u| \operatorname{MA}_{\omega}(u). \quad (14)$$

Hence  $MA_{\omega}(u_k) \to MA_{\omega}(u)$  strongly in  $\mathcal{M}^1(X, \omega, \psi)$  since each term on the right-hand side of (14) goes to 0 as  $k \to +\infty$ , combining Proposition 5.6, Proposition 3.7 and Corollary 3.5, and recalling that by Proposition 3.4,  $I_{\psi}(u_k, u) \to 0$  as  $k \to \infty$ .

Conversely, suppose that  $MA_{\omega}(u_k) \to MA_{\omega}(u)$  strongly in  $\mathcal{M}^1(X, \omega, \psi)$ , where  $u_k, u \in \mathcal{E}^1_{norm}(X, \omega, \psi)$ . Then, letting  $\{\varphi_j\}_{j \in \mathbb{N}} \subset \mathcal{H}_{\omega}$  such that  $\varphi_j \searrow u$  [Błocki and Kołodziej 2007] and setting  $v_j := P_{\omega}[\psi](\varphi_j)$ , by Lemma 3.1,

$$(n+1)I_{\psi}(u_{k},v_{j}) \leq E_{\psi}(u_{k}) - E_{\psi}(v_{j}) + \int_{X} (v_{j} - u_{k}) \operatorname{MA}_{\omega}(u_{k})$$
  
=  $E_{\psi}^{*}(\operatorname{MA}_{\omega}(u_{k})/V_{\psi}) - E_{\psi}^{*}(\operatorname{MA}_{\omega}(v_{j})/V_{\psi}) + \int_{X} (v_{j} - \psi)(\operatorname{MA}_{\omega}(u_{k}) - \operatorname{MA}_{\omega}(v_{j})).$  (15)

By construction and the first part of the proof, it follows that  $E_{\psi}^*(MA_{\omega}(u_k)/V_{\psi}) - E_{\psi}^*(MA_{\omega}(v_j)/V_{\psi}) \to 0$ as  $k, j \to \infty$ . Setting  $f_j := v_j - \psi$ , we want to prove

$$\limsup_{k \to \infty} \int_X f_j \operatorname{MA}_{\omega}(u_k) = \int_X f_j \operatorname{MA}_{\omega}(u),$$

which would imply  $\limsup_{j\to\infty} \limsup_{k\to\infty} I_{\psi}(u_k, v_j) = 0$  since  $\int_X f_j(MA_{\omega}(u) - MA_{\omega}(v_j)) \to 0$  as a consequence of Propositions 3.7 and 3.4.

We observe that  $||f_j||_{L^{\infty}} \le ||\varphi_j||_{L^{\infty}}$  by Proposition 2.10, and we denote by  $\{f_j^s\}_{s\in\mathbb{N}} \subset C^{\infty}$  a sequence of smooth functions converging in capacity to  $f_j$  such that  $||f_j^s||_{L^{\infty}} \le 2||f_j||_{L^{\infty}}$ . Here we briefly recall how to construct such a sequence. Let  $\{g_j^s\}_{s\in\mathbb{N}}$  be the sequence of bounded functions converging in capacity to  $f_j$  defined as  $g_j^s := \max(v_j, -s) - \max(\psi, -s)$ . We have that  $||g_j^s||_{L^{\infty}} \le ||f_j||_{L^{\infty}}$  and that  $\max(v_j, -s), \max(\psi, -s) \in \text{PSH}(X, \omega)$ . By a regularization process (see [Błocki and Kołodziej 2007])

and a diagonal argument we can now construct a sequence  $\{f_j^s\}_{j\in\mathbb{N}} \subset C^{\infty}$  converging in capacity to  $f_j$  such that  $||f_j^s||_{L^{\infty}} \leq 2||g_j^s|| \leq 2||f_j||_{L^{\infty}}$ , where  $f_j^s = v_j^s - \psi^s$  with  $v_j^s$ ,  $\psi^s$  quasi-psh functions decreasing to  $v_j$ ,  $\psi$ , respectively.

Then letting  $\delta > 0$  we have

$$\int_{X} (f_j - f_j^s) \operatorname{MA}_{\omega}(u_k) \le \delta V_{\psi} + 3 \|\varphi_j\|_{L^{\infty}} \int_{\{f_j - f_j^s > \delta\}} \operatorname{MA}_{\omega}(u_k)$$
$$\le \delta V_{\psi} + 3 \|\varphi_j\|_{L^{\infty}} \int_{\{\psi^s - \psi > \delta\}} \operatorname{MA}_{\omega}(u_k)$$

from the trivial inclusion  $\{f_j - f_j^s > \delta\} \subset \{\psi^s - \psi > \delta\}$ . Therefore

$$\begin{split} \limsup_{s \to \infty} \limsup_{k \to \infty} \int_{X} (f_{j} - f_{j}^{s}) \operatorname{MA}_{\omega}(u_{k}) &\leq \delta V_{\psi} + \limsup_{s \to \infty} \limsup_{k \to \infty} \int_{\{\psi^{s} - \psi \geq \delta\}} \operatorname{MA}_{\omega}(u_{k}) \\ &\leq \delta V_{\psi} + \limsup_{s \to \infty} \int_{\{\psi^{s} - \psi \geq \delta\}} \operatorname{MA}_{\omega}(u) = \delta V_{\psi}, \end{split}$$

where we used that  $\{\psi^s - \psi \ge \delta\}$  is a closed set in the plurifine topology. Hence since  $f_j^s \in C^{\infty}$  we obtain

$$\limsup_{k \to \infty} \int_X f_j \operatorname{MA}_{\omega}(u_k) = \limsup_{s \to \infty} \limsup_{k \to \infty} \left( \int_X (f_j - f_j^s) \operatorname{MA}_{\omega}(u_k) + \int_X f_j^s \operatorname{MA}_{\omega}(u_k) \right)$$
$$\leq \limsup_{s \to \infty} \int_X f_j^s \operatorname{MA}_{\omega}(u) = \int_X f_j \operatorname{MA}_{\omega}(u),$$

which as said above implies  $I_{\psi}(u_k, v_j) \to 0$  letting  $k, j \to \infty$  in this order.

Next we obtain  $u_k \in \mathcal{E}_C^1(X, \omega, \psi)$  for some  $C \in \mathbb{N}$  big enough since  $J_{u_k}^{\psi}(\psi) = E_{\psi}^*(\mathrm{MA}_{\omega}(u_k)/V_{\psi})$ , again by Lemma 3.1. In particular, up to considering a subsequence,  $u_k \to w \in \mathcal{E}_{\mathrm{norm}}^1(X, \omega, \psi)$  weakly by Proposition 3.15. Observe also that by Proposition 3.7,

$$\left| \int_{X} (\psi - u_k) (\mathrm{MA}_{\omega}(v_j) - \mathrm{MA}_{\omega}(u_k)) \right| \to 0$$
(16)

as  $k, j \rightarrow \infty$  in this order. Moreover, by Proposition 3.14 and Lemma 4.6,

$$\limsup_{k \to \infty} \left( E_{\psi}^* (\operatorname{MA}_{\omega}(u_k) / V_{\psi}) + \int_X (\psi - u_k) (\operatorname{MA}_{\omega}(v_j) - \operatorname{MA}_{\omega}(u_k)) \right) \\
= \limsup_{k \to \infty} \left( E_{\psi}(u_k) + \int_X (\psi - u_k) \operatorname{MA}_{\omega}(v_j) \right) \le E_{\psi}(w) + \int_X (\psi - w) \operatorname{MA}_{\omega}(v_j). \quad (17)$$

Therefore combining (16) and (17) with the strong convergence of  $v_i$  to u we obtain

$$E_{\psi}(u) + \int_{X} (\psi - u) \operatorname{MA}_{\omega}(u) = \lim_{k \to \infty} E_{\psi}^{*}(\operatorname{MA}_{\omega}(u_{k})/V_{\psi})$$
  
$$\leq \limsup_{j \to \infty} \left( E_{\psi}(w) + \int_{X} (\psi - w) \operatorname{MA}_{\omega}(v_{j}) \right)$$
  
$$= E_{\psi}(w) + \int_{X} (\psi - w) \operatorname{MA}_{\omega}(u),$$

i.e., w is a maximizer of  $F_{MA_{\omega}(u)/V_{\psi},\psi}$ . Hence w = u (Proposition 5.5), i.e.,  $u_k \to u$  weakly. Furthermore, again by Lemma 3.1 and Lemma 4.6,

$$\begin{split} \limsup_{k \to \infty} (E_{\psi}(v_j) - E_{\psi}(u_k)) &\leq \limsup_{k \to \infty} \left( \frac{n}{n+1} I_{\psi}(u_k, v_j) + \left| \int_X (u_k - v_j) \operatorname{MA}_{\omega}(v_j) \right| \right) \\ &\leq \left| \int_X (u - v_j) \operatorname{MA}_{\omega}(v_j) \right| + \limsup_{k \to \infty} \frac{n}{n+1} I_{\psi}(u_k, v_j). \end{split}$$
(18)

Finally letting  $j \to \infty$ , since  $v_j \searrow u$  strongly, we obtain  $\liminf_{j\to\infty} E_{\psi}(u_k) \ge \lim_{j\to\infty} E_{\psi}(v_j) = E_{\psi}(u)$ , which implies that  $E_{\psi}(u_k) \to E_{\psi}(u)$  and that  $u_k \to u$  strongly by Proposition 5.6.

The main difference between the proof of Theorem A and the proof of the same result in the absolute setting, i.e., when  $\psi = 0$ , is that for fixed  $u \in \mathcal{E}^1(X, \omega, \psi)$  the action

$$\mathcal{M}^{1}(X, \omega, \psi) \ni \mathrm{MA}_{\omega}(v) \to \int_{X} (u - \psi) \mathrm{MA}_{\omega}(v)$$

is not a priori continuous with respect to the weak topologies of measures even if we restrict the action on  $\mathcal{M}_{C}^{1}(X, \omega, \psi) := \{V_{\psi}\mu : E_{\psi}^{*}(\mu) \leq C\}$  for  $C \in \mathbb{R}$ , while in the absolute setting this is given by [Berman et al. 2019, Proposition 1.7], where the authors used the fact that any  $u \in \mathcal{E}^{1}(X, \omega)$  can be approximated inside the class  $\mathcal{E}^{1}(X, \omega)$  by a sequence of continuous functions.

# 6. Strong topologies

In this section we investigate the strong topology on  $X_A$  in detail, proving that it is the coarsest refinement of the weak topology such that  $E_{\cdot}(\cdot)$  becomes continuous (Theorem 6.2) and proving that the strong convergence implies the convergence in  $\psi$ -capacity for any  $\psi \in \mathcal{M}^+$  (Theorem 6.3), i.e., we extend all the typical properties of the  $L^1$ -metric geometry to the bigger space  $X_A$ , justifying further the construction of the distance  $d_A$  [Trusiani 2022] and its naturality. Moreover, we define the set  $Y_A$  and prove Theorem B.

**6A.** *About*  $(X_A, d_A)$ . First we prove that the strong convergence in  $X_A$  implies the weak convergence, recalling that for the weak convergence of  $u_k \in \mathcal{E}^1(X, \omega, \psi_k)$  to  $P_{\psi_{\min}}$ , where  $\psi_{\min} \in \mathcal{M}$  with  $V_{\psi_{\min}} = 0$ , we mean that  $|\sup_X u_k| \le C$  and that any weak accumulation point of  $\{u_k\}_{k \in \mathbb{N}}$  is more singular than  $\psi_{\min}$ .

**Proposition 6.1.** Let  $u_k$ ,  $u \in X_A$  such that  $u_k \to u$  strongly. If  $u \neq P_{\psi_{\min}}$ , then  $u_k \to u$  weakly. If instead  $u = P_{\psi_{\min}}$ , then the following dichotomy holds:

- (i)  $u_k \to P_{\psi_{\min}}$  weakly.
- (ii)  $\limsup_{k\to\infty} |\sup_X u_k| = +\infty$ .

*Proof.* The dichotomy for the case  $u = P_{\psi_{\min}}$  follows by definition. Indeed, if  $|\sup_X u_k| \le C$  and  $d_A(u_k, u) \to 0$  as  $k \to \infty$ , then  $V_{\psi_k} \to V_{\psi_{\min}} = 0$  by Proposition 2.11 (iv), which implies that  $\psi_k \to \psi_{\min}$  by Lemma 3.12. Hence any weak accumulation point u of  $\{u_k\}_{k \in \mathbb{N}}$  satisfies  $u \le \psi_{\min} + C$ .

Thus, let  $\psi_k, \psi \in \mathcal{A}$  such that  $u_k \in \mathcal{E}^1(X, \omega, \psi_k)$  and  $u \in \mathcal{E}^1(X, \omega, \psi)$  where  $\psi \in \mathcal{M}^+$ . Observe that

$$d(u_k, \psi_k) \le d_{\mathcal{A}}(u_k, u) + d(u, \psi) + d_{\mathcal{A}}(\psi, \psi_k) \le A$$

for a uniform constant A > 0 by Proposition 2.11 (iv).

On the other hand, by [Błocki and Kołodziej 2007], for any  $j \in \mathbb{N}$  there exists  $h_j \in \mathcal{H}_{\omega}$  such that  $h_j \ge u$ ,  $\|h_j - u\|_{L^1} \le 1/j$  and  $d(u, P_{\omega}[\psi](h_j)) \le 1/j$ . In particular, by the triangle inequality and Proposition 2.11, we have

$$\lim_{k \to \infty} \sup d(P_{\omega}[\psi_k](h_j), \psi_k) \leq \lim_{k \to \infty} \sup \left( d_{\mathcal{A}}(P_{\omega}[\psi_k](h_j), P_{\omega}[\psi](h_j)) + \frac{1}{j} + d(u, \psi) + d(\psi, \psi_k) \right)$$
$$\leq d(u, \psi) + \frac{1}{j}, \tag{19}$$

Similarly, again by the triangle inequality and Proposition 2.11,

$$\limsup_{k \to \infty} d(u_k, P_{\omega}[\psi_k](h_j)) \le \limsup_{k \to \infty} \left( d_{\mathcal{A}}(P_{\omega}[\psi_k](h_j), P_{\omega}[\psi](h_j)) + \frac{1}{j} + d_{\mathcal{A}}(u, u_k) \right) \le \frac{1}{j}$$
(20)

$$\begin{split} \limsup_{k \to \infty} \|u_k - u\|_{L^1} &\leq \limsup_{k \to \infty} (\|u_k - P_{\omega}[\psi_k](h_j)\|_{L^1} + \|P_{\omega}[\psi_k](h_j) - P_{\omega}[\psi](h_j)\|_{L^1} + \|P_{\omega}[\psi](h_j) - u\|_{L^1}) \\ &\leq \frac{1}{j} + \limsup_{k \to \infty} \|u_k - P_{\omega}[\psi_k](h_j)\|_{L^1}, \end{split}$$

$$(21)$$

where we also used Lemma 2.14. In particular, we deduce that  $d(\psi_k, P_{\omega}[\psi_k](h_j)), d(\psi_k, u_k) \leq C$  for a uniform constant  $C \in \mathbb{R}$  from (19) and (20). Next let  $\phi_k \in \mathcal{E}_{norm}^1(X, \omega, \psi)$  be the unique solution of  $MA_{\omega}(\phi_k) = (V_{\psi_k}/V_0) MA_{\omega}(0)$ , and observe that by Proposition 2.4,

$$d(\psi_k, \phi_k) = -E_{\psi_k}(\phi_k) \le \int_X (\psi_k - \phi_k) \operatorname{MA}_{\omega}(\phi_k) \le \frac{V_{\psi_k}}{V_0} \int_X |\phi_k| \operatorname{MA}_{\omega}(0) \le \|\phi_k\|_{L^1} \le C',$$

since  $\phi_k$  belongs to a compact (hence bounded) subset of  $PSH(X, \omega) \subset L^1$ . Therefore, since  $V_{\psi_k} \ge a > 0$  for  $k \gg 0$  big enough, by Proposition 3.6 it follows that there exists a continuous increasing function  $f : \mathbb{R}_{\ge 0} \to \mathbb{R}_{\ge 0}$  with f(0) = 0 such that

$$||u_k - P_{\omega}[\psi_k](h_j)||_{L^1} \le f(d(u_k, P_{\omega}[\psi_k](h_j)))$$

for any k, j big enough. Hence, combining (20) and (21), the convergence requested follows letting  $k, j \to +\infty$  in this order.

We can now prove the important characterization of the strong convergence as the coarsest refinement of the weak topology such that  $E_{\cdot}(\cdot)$  becomes continuous.

**Theorem 6.2.** Let  $u_k \in \mathcal{E}^1(X, \omega, \psi_k)$  and  $u \in \mathcal{E}^1(X, \omega, \psi)$  for  $\{\psi_k\}_{k \in \mathbb{N}}$ ,  $\psi \in \overline{\mathcal{A}}$ . If  $\psi \neq \psi_{\min}$  or  $V_{\psi_{\min}} > 0$ , then the following are equivalent:

- (i)  $u_k \rightarrow u$  strongly.
- (ii)  $u_k \to u$  weakly and  $E_{\psi_k}(u_k) \to E_{\psi}(u)$ .

In the case  $\psi = \psi_{\min}$  and  $V_{\psi_{\min}} = 0$ , if  $u_k \to P_{\psi_{\min}}$  weakly and  $E_{\psi_k}(u_k) \to 0$ , then  $u_k \to P_{\psi_{\min}}$  strongly. Finally, if  $d_A(u_k, P_{\psi_{\min}}) \to 0$  as  $k \to \infty$ , then the following dichotomy holds:

- (a)  $u_k \to P_{\psi_{\min}}$  weakly and  $E_{\psi_k}(u_k) \to 0$ .
- (b)  $\limsup_{k\to\infty} |\sup_X u_k| = \infty$ .

*Proof.* (ii)  $\Rightarrow$  (i): Assume that (ii) holds where we include the case  $u = P_{\psi_{\min}}$  setting  $E_{\psi}(P_{\psi_{\min}}) := 0$ . Clearly it is enough to prove that any subsequence of  $\{u_k\}_{k\in\mathbb{N}}$  admits a subsequence which is  $d_A$ -convergent to u. For the sake of simplicity we denote by  $\{u_k\}_{k\in\mathbb{N}}$  the arbitrary initial subsequence, and since A is totally ordered by Lemma 3.13 we may also assume either  $\psi_k \searrow \psi$  or  $\psi_k \nearrow \psi$  almost everywhere. In particular, even if  $u = P_{\psi_{\min}}$  we may suppose that  $u_k$  converges weakly to a proper element  $v \in \mathcal{E}^1(X, \omega, \psi)$  up to considering a further subsequence by definition of the weak convergence to the point  $P_{\psi_{\min}}$ . In this case by abuse of notation we denote the function v, which depends on the subsequence chosen, by u. Note also that by Hartogs' lemma we have  $u_k \le \psi_k + A$  and  $u \le \psi + A$  for a uniform constant  $A \in \mathbb{R}_{\ge 0}$  since  $|\sup_X u_k| \le A$ .

In the case of  $\psi_k \searrow \psi$ , we have that  $v_k := (\sup\{u_j : j \ge k\})^* \in \mathcal{E}^1(X, \omega, \psi_k)$  decreases to u. Thus  $w_k := P_{\omega}[\psi](v_k) \in \mathcal{E}^1(X, \omega, \psi)$  decreases to u, which implies  $d(u, w_k) \to 0$  as  $k \to \infty$ . (If  $u = P_{\psi_{\min}}$ , we immediately have  $w_k = P_{\psi_{\min}}$ .)

Moreover, by Propositions 2.4 and 2.10,

$$E_{\psi}(u) = \lim_{k \to \infty} E_{\psi}(w_k) = AV_{\psi} - \lim_{k \to \infty} d(\psi + A, w_k)$$
  

$$\geq \lim_{k \to \infty} (AV_{\psi_k} - d(\psi_k + A, v_k))$$
  

$$= \limsup_{k \to \infty} E_{\psi_k}(v_k) \geq \lim_{k \to \infty} E_{\psi_k}(u_k) = E_{\psi}(u)$$

since  $\psi_k + A = P_{\omega}[\psi_k](A)$ . Hence

$$\limsup_{k \to \infty} d(v_k, u_k) = \limsup_{k \to \infty} (d(\psi_k + A, u_k) - d(v_k, \psi_k + A)) = \lim_{k \to \infty} (E_{\psi_k}(v_k) - E_{\psi_k}(u_k)) = 0.$$

Thus by the triangle inequality it is sufficient to show that  $\limsup_{k\to\infty} d_A(u, v_k) = 0$ .

Next, for any  $C \in \mathbb{R}$  we set  $v_k^C := \max(v_k, \psi_k - C)$  and  $u^C := \max(u, \psi - C)$ , and we observe that  $d(\psi_k + A, v_k^C) \rightarrow d(\psi + A, u^C)$  by Proposition 2.11 since  $v_k^C \searrow u^C$ . This implies that

$$d(v_k, v_k^C) = d(\psi_k + A, v_k) - d(\psi_k + A, v_k^C) = AV_{\psi_k} - E_{\psi_k}(v_k) - d(\psi_k + A, v_k^C)$$
  

$$\to AV_{\psi} - E_{\psi}(u) - d(\psi + A, u^C) = d(\psi + A, u) - d(\psi + A, u^C) = d(u, u^C).$$

Thus, since  $u^C \to u$  strongly, again by the triangle inequality it remains to estimate  $d_{\mathcal{A}}(u, v_k^C)$ . Fix  $\epsilon > 0$ and  $\phi_{\epsilon} \in \mathcal{P}_{\mathcal{H}_{\omega}}(X, \omega, \psi)$  such that  $d(\phi_{\epsilon}, u) \leq \epsilon$  (by Lemma 2.13). Then letting  $\varphi \in \mathcal{H}_{\omega}$  such that  $\phi_{\epsilon} = P_{\omega}[\psi](\varphi)$  and setting  $\phi_{\epsilon,k} := P_{\omega}[\psi_k](\varphi)$ , by Proposition 2.11 we have

$$\begin{split} \limsup_{k \to \infty} d_{\mathcal{A}}(u, v_k^C) &\leq \limsup_{k \to \infty} (d(u, \phi_{\epsilon}) + d_{\mathcal{A}}(\phi_{\epsilon}, \phi_{\epsilon,k}) + d(\phi_{\epsilon,k}, v_k^C)) \\ &\leq \epsilon + d(\phi_{\epsilon}, u^C) \\ &\leq 2\epsilon + d(u, u^C), \end{split}$$

which concludes the first case of (ii)  $\Rightarrow$  (i) by the arbitrariness of  $\epsilon$  since  $u^C \rightarrow u$  strongly in  $\mathcal{E}^1(X, \omega, \psi)$ .

Next assume that  $\psi_k \nearrow \psi$  almost everywhere. In this case we may assume  $V_{\psi_k} > 0$  for any  $k \in \mathbb{N}$ . Then  $v_k := (\sup\{u_j : j \ge k\})^* \in \mathcal{E}^1(X, \omega, \psi)$  decreases to u. Moreover, setting  $w_k := P_{\omega}[\psi_k](v_k) \in \mathcal{E}^1(X, \omega, \psi_k)$  and combining with the monotonicity of  $E_{\psi_k}(\cdot)$ , the upper semicontinuity of  $E_{\cdot}(\cdot)$  (Proposition 3.14)

and the contraction property of Proposition 2.10, we obtain

$$E_{\psi}(u) = \lim_{k \to \infty} E_{\psi}(v_k) = AV_{\psi} - \lim_{k \to \infty} d(v_k, \psi + A)$$
  
$$\leq \liminf_{k \to \infty} (AV_{\psi_k} - d(w_k, \psi_k + A))$$
  
$$= \liminf_{k \to \infty} E_{\psi_k}(w_k) \leq \limsup_{k \to \infty} E_{\psi_k}(w_k) \leq E_{\psi}(u),$$

i.e.,  $E_{\psi_k}(w_k) \to E_{\psi}(u)$  as  $k \to \infty$ . As an easy consequence we get  $d(w_k, u_k) = E_{\psi_k}(w_k) - E_{\psi_k}(u_k) \to 0$ , thus it is sufficient to prove that

$$\limsup_{k \to \infty} d_{\mathcal{A}}(u, w_k) = 0.$$

Similar to the previous case, fix  $\epsilon > 0$  and let  $\phi_{\epsilon} = P_{\omega}[\psi](\varphi_{\epsilon})$  for  $\varphi \in \mathcal{H}_{\omega}$  such that  $d(u, \phi_{\epsilon}) \le \epsilon$ . Again Propositions 2.10 and 2.11 yield

$$\begin{split} \limsup_{k \to \infty} d_{\mathcal{A}}(u, w_k) &\leq \epsilon + \limsup_{k \to \infty} (d_{\mathcal{A}}(\phi_{\epsilon}, P_{\omega}[\psi_k](\phi_{\epsilon})) + d(P_{\omega}[\psi_k](\phi_{\epsilon}), w_k)) \\ &\leq \epsilon + \limsup_{k \to \infty} (d_{\mathcal{A}}(\phi_{\epsilon}, P_{\omega}[\psi_k](\phi_{\epsilon})) + d(\phi_{\epsilon}, v_k)) \leq 2\epsilon, \end{split}$$

which concludes the first part.

(i)  $\Rightarrow$  (ii) if  $u \neq P_{\psi_{\min}}$ , while (i) implies the dichotomy if  $u = P_{\psi_{\min}}$ : If  $u \neq P_{\psi_{\min}}$ , then Proposition 6.1 implies that  $u_k \rightarrow u$  weakly and, in particular, that  $|\sup_X u_k| \leq A$ . Thus it remains to prove that  $E_{\psi_k}(u_k) \rightarrow E_{\psi}(u)$ .

If  $u = P_{\psi_{\min}}$ , then again by Proposition 6.1 it remains to show that  $E_{\psi_k}(u_k) \to 0$  assuming  $u_{k_h} \to P_{\psi_{\min}}$  strongly and weakly. Note that we also have  $|\sup_X u_k| \le A$  for a uniform constant  $A \in \mathbb{R}$  by definition of the weak convergence to  $P_{\psi_{\min}}$ .

Since by an easy contradiction argument it is enough to prove that any subsequence of  $\{u_k\}_{k\in\mathbb{N}}$  admits a further subsequence such that the convergence of the energies holds, without loss of generality we may assume that  $u_k \to u \in \mathcal{E}^1(X, \omega, \psi)$  weakly even in the case  $V_{\psi} = 0$  (i.e., when, with abuse of notation,  $u = P_{\psi_{\min}}$ ).

So we want to show the existence of a further subsequence  $\{u_{k_h}\}_{h\in\mathbb{N}}$  such that  $E_{\psi_{k_h}}(u_{k_h}) \to E_{\psi}(u)$ (note that if  $V_{\psi} = 0$ , then  $E_{\psi}(u) = 0$ ). It easily follows that

$$\begin{aligned} |E_{\psi_k}(u_k) - E_{\psi}(u)| &\leq |d(\psi_k + A, u_k) - d(\psi + A, u)| + A|V_{\psi_k} - V_{\psi}| \\ &\leq d_{\mathcal{A}}(u, u_k) + d(\psi_k + A, \psi + A) + A|V_{\psi_k} - V_{\psi}|, \end{aligned}$$

and this leads to  $\lim_{k\to\infty} E_{\psi_k}(u_k) = E_{\psi}(u)$  by Proposition 2.11, since we have  $\psi_k + A = P_{\omega}[\psi_k](A)$ and  $\psi + A = P_{\omega}[\psi](A)$ . Hence  $E_{\psi_k}(u_k) \to E_{\psi}(u)$  as desired.

Note that in Theorem 6.2, case (b) may happen (Remark 3.16), but obviously one can consider

$$X_{\mathcal{A},\text{norm}} = \bigsqcup_{\psi \in \bar{\mathcal{A}}} \mathcal{E}^1_{\text{norm}}(X, \omega, \psi)$$

to exclude such pathology.

The strong convergence also implies the convergence in  $\psi'$ -capacity for any  $\psi' \in \mathcal{M}^+$ , as our next result shows.

397

**Theorem 6.3.** Let  $\psi_k$ ,  $\psi \in A$  and let  $u_k \in \mathcal{E}^1(X, \omega, \psi_k)$  strongly converge to  $u \in \mathcal{E}^1(X, \omega, \psi)$ . Assume also that  $V_{\psi} > 0$ . Then there exists a subsequence  $\{u_{k_j}\}_{j \in \mathbb{N}}$  such that the sequences  $w_j := (\sup\{u_{k_s}: s \ge j\})^*$  and  $v_j := P_{\omega}(u_{k_j}, u_{k_{j+1}}, \ldots)$  belong to  $X_A$ , satisfying  $v_j \le u_{k_j} \le w_j$  and converging strongly and monotonically to u. In particular,  $u_k \to u$  in  $\psi'$ -capacity for any  $\psi' \in \mathcal{M}^+$  and  $MA_{\omega}(u_k^j, \psi_k^{n-j}) \to MA_{\omega}(u^k, \psi^{n-j})$  weakly for any  $j \in \{0, \ldots, n\}$ .

*Proof.* We first observe that by Theorem 6.2,  $u_k \to u$  weakly and  $E_{\psi_k}(u_k) \to E_{\psi}(u)$ . In particular,  $\sup_X u_k$  is uniformly bounded and the sequence of  $\omega$ -psh  $w_k := (\sup\{u_j : j \ge k\})^*$  decreases to u.

Up to considering a subsequence we may assume either  $\psi_k \searrow \psi$  or  $\psi_k \nearrow \psi$  almost everywhere. We treat the two cases separately.

Assume first that  $\psi_k \searrow \psi$ . Since clearly  $w_k \in \mathcal{E}^1(X, \omega, \psi_k)$  and  $E_{\psi_k}(w_k) \ge E_{\psi_k}(u_k)$ , Theorem 6.2 and Proposition 3.14 yield

$$E_{\psi}(u) = \lim_{k \to \infty} E_{\psi_k}(u_k) \le \limsup_{k \to \infty} E_{\psi_k}(w_k) \le E_{\psi}(u),$$

i.e.,  $w_k \to u$  strongly. Thus up to considering a further subsequence we can suppose that  $d(u_k, w_k) \le 1/2^k$  for any  $k \in \mathbb{N}$ .

Next, similar to the proof of Proposition 5.7, we define  $v_{j,l} := P_{\omega}(u_j, \dots, u_{j+l})$  for any  $j, l \in \mathbb{N}$ , observing that  $v_{j,l} \in \mathcal{E}^1(X, \omega, \psi_{j+l})$ . Thus the function  $v_{j,l}^u := P_{\omega}(u, v_{j,l}) \in \mathcal{E}^1(X, \omega, \psi)$  satisfies

$$d(u, v_{j,l}^{u}) \leq \int_{X} (u - v_{j,l}^{u}) \operatorname{MA}_{\omega}(v_{j,l}^{u}) \leq \int_{\{v_{j,l}^{u} = v_{j,l}\}} (u - v_{j,l}) \operatorname{MA}_{\omega}(v_{j,l})$$
  
$$\leq \sum_{s=j}^{j+l} \int_{X} (w_{s} - u_{s}) \operatorname{MA}_{\omega}(u_{s}) \leq (n+1) \sum_{s=j}^{j+l} d(w_{s}, u_{s}) \leq \frac{n+1}{2^{j-1}},$$
(22)

where we combined Proposition 2.4 and [Darvas et al. 2018, Lemma 3.7]. Therefore by Proposition 3.15,  $v_{j,l}^u$  converges decreasingly and strongly in  $\mathcal{E}^1(X, \omega, \psi)$  to a function  $\phi_j$  which satisfies  $\phi_j \leq u$ .

Similarly,

$$\int_{\{P_{\omega}(u,v_{j,l}^{u})=u\}} (v_{j,l}^{u}-u) \operatorname{MA}_{\omega}(u) \leq \int_{X} |v_{j,1}^{u}-u| \operatorname{MA}_{\omega}(u) < \infty$$

by Corollary 3.5, which implies that  $v_{j,l}$  converges decreasingly to  $v_j \in \mathcal{E}^1(X, \omega, \psi)$  such that  $u \ge v_j \ge \phi_j$ , since  $v_j \le u_s$  for any  $s \ge j$  and  $v_{j,l} \ge v_{i,l}^u$ . Hence from (22) we obtain

$$d(u, v_j) \le d(u, \phi_j) = \lim_{l \to \infty} d(u, v_{j,l}^u) \le \frac{n+1}{2^{j-1}},$$

i.e.,  $v_j$  converges increasingly and strongly to u as  $j \to \infty$ .

Next assume  $\psi_k \nearrow \psi$  almost everywhere. In this case,  $w_k \in \mathcal{E}^1(X, \omega, \psi)$  for any  $k \in \mathbb{N}$ , and clearly  $w_k$  converges strongly and decreasingly to u. On the other hand, letting  $w_{k,k} := P_{\omega}[\psi_k](w_k)$  we observe by Theorem 6.2 and Proposition 3.14 that  $w_{k,k} \rightarrow u$  weakly since  $w_k \ge w_{k,k} \ge u_k$  and

$$E_{\psi}(u) = \lim_{k \to \infty} E_{\psi_k}(u_k) \le \limsup_{k \to \infty} E_{\psi_k}(w_{k,k}) \le E_{\psi}(u),$$

i.e.,  $w_{k,k} \to u$  strongly, again by Theorem 6.2. As in the previous case, we assume that  $d(u_k, w_{k,k}) \le 1/2^k$ up to considering a further subsequence. Therefore, setting  $v_{j,l} := P_{\omega}(u_j, \dots, u_{j+l}) \in \mathcal{E}^1(X, \omega, \psi_j)$ ,  $u^j := P_{\omega}[\psi_j](u)$  and  $v_{j,l}^{u^j} := P_{\omega}(v_{j,l}, u^j)$  we obtain

$$d(u^{j}, v_{j,l}^{u^{j}}) \leq \int_{X} (u^{j} - v_{j,l}^{u^{j}}) \operatorname{MA}_{\omega}(v_{j,l}^{u^{j}}) \leq \sum_{s=j}^{j+l} \int_{X} (w_{s,s} - u_{s}) \operatorname{MA}_{\omega}(u_{s}) \leq \frac{n+1}{2^{j-1}},$$
(23)

proceeding as in the previous case. This implies that  $v_{j,l}^{u^j}$  and  $v_{j,l}$  converge decreasingly and strongly to functions  $\phi_j, v_j \in \mathcal{E}^1(X, \omega, \psi_j)$ , respectively, as  $l \to +\infty$  which satisfy  $\phi_j \leq v_j \leq u^j$ . Therefore combining (23), Proposition 2.11 and the triangle inequality we get

$$\limsup_{j \to \infty} d_{\mathcal{A}}(u, v_j) \le \limsup_{j \to \infty} (d_{\mathcal{A}}(u, u^j) + d(u^j, \phi_j)) \le \limsup_{j \to \infty} \left( d_{\mathcal{A}}(u, u^j) + \frac{n+1}{2^{j-1}} \right) = 0.$$

Hence  $v_j$  converges strongly and increasingly to u, so  $v_j \nearrow u$  almost everywhere (Proposition 6.1) and the first part of the proof is concluded.

The convergence in  $\psi'$ -capacity and the weak convergence of the mixed Monge–Ampère measures follow exactly as in the proof of Proposition 5.7.

We observe that the assumption  $u \neq P_{\psi_{\min}}$  if  $V_{\psi_{\min}} = 0$  in Theorem 6.3 is obviously necessary as the counterexample of Remark 3.16 shows. On the other hand, if  $d_A(u_k, P_{\psi_{\min}}) \rightarrow 0$ , then trivially  $MA_{\omega}(u_k^j, \psi_k^{n-j}) \rightarrow 0$  weakly as  $k \rightarrow \infty$  for any  $j \in \{0, ..., n\}$  as a consequence of  $V_{\psi_k} \searrow 0$ .

# 6B. Proof of Theorem B.

**Definition 6.4.** We define  $Y_A$  as

$$Y_{\mathcal{A}} := \bigsqcup_{\psi \in \bar{\mathcal{A}}} \mathcal{M}^1(X, \omega, \psi),$$

and we endow it with its natural *strong topology* given as the coarsest refinement of the weak topology such that  $E_{\cdot}^*$  becomes continuous, i.e.,  $V_{\psi_k}\mu_k$  converges strongly to  $V_{\psi}\mu$  if and only if  $V_{\psi_k}\mu_k \to V_{\psi}\mu$ weakly and  $E_{\psi_k}^*(\mu_k) \to E_{\psi}^*(\mu)$  as  $k \to \infty$ .

Observe that  $Y_A \subset \{\text{nonpluripolar measures of total mass belonging to } [V_{\psi_{\min}}, V_{\psi_{\max}}]\}$ , where clearly  $\psi_{\max} := \sup A$ . As stated in the Introduction, the definition is coherent with [Berman et al. 2019] since if  $\psi = 0 \in \overline{A}$ , then the induced topology on  $\mathcal{M}^1(X, \omega)$  coincides with the strong topology as defined in that paper.

We also recall that

$$X_{\mathcal{A},\text{norm}} := \bigsqcup_{\psi \in \bar{\mathcal{A}}} \mathcal{E}^1_{\text{norm}}(X, \omega, \psi)$$

where  $\mathcal{E}_{\text{norm}}^1(X, \omega, \psi) := \{ u \in \mathcal{E}^1(X, \omega, \psi) : \sup_X u = 0 \}$  (if  $V_{\psi_{\min}} = 0$ , then we can assume  $P_{\psi_{\min}} \in X_{\mathcal{A}, \text{norm}}$ ). **Theorem B.** *The Monge–Ampère map* 

$$MA_{\omega}: (X_{\mathcal{A}, \text{norm}}, d_{\mathcal{A}}) \to (Y_{\mathcal{A}}, \text{strong})$$

is a homeomorphism.

*Proof.* The map is a bijection as a consequence of Lemma 3.12 and Proposition 5.5, where we clearly define  $MA_{\omega}(P_{\psi_{\min}}) := 0$ , i.e., the null measure.

<u>Step 1</u>: continuity. Assume first that  $V_{\psi_{\min}} = 0$  and that  $d_{\mathcal{A}}(u_k, P_{\psi_{\min}}) \to 0$  as  $k \to \infty$ . Then clearly  $MA_{\omega}(u_k) \to 0$  weakly. Moreover, assuming  $u_k \neq P_{\psi_{\min}}$  for any k, it follows from Proposition 2.4 that

$$E_{\psi_k}^*(\mathrm{MA}_{\omega}(u_k)/V_{\psi_k}) = E_{\psi_k}(u_k) + \int_X (\psi_k - u_k) \operatorname{MA}_{\omega}(u_k)$$
$$\leq \frac{n}{n+1} \int_X (\psi_k - u_k) \operatorname{MA}_{\omega}(u_k) \leq -n E_{\psi_k}(u_k) \to 0$$

as  $k \to \infty$  where the convergence is given by Theorem 6.2. Hence  $MA_{\omega}(u_k) \to 0$  strongly in  $Y_{\mathcal{A}}$ .

We can now assume that  $u \neq P_{\psi_{\min}}$ .

Theorem 6.3 immediately gives the weak convergence of  $MA_{\omega}(u_k)$  to  $MA_{\omega}(u)$ . Let  $\varphi_j \in \mathcal{H}_{\omega}$  be a decreasing sequence converging to u such that  $d(u, P_{\omega}[\psi](\varphi_j)) \leq 1/j$  for any  $j \in \mathbb{N}$  [Błocki and Kołodziej 2007], and set  $v_{k,j} := P_{\omega}[\psi_k](\varphi_j)$  and  $v_j := P_{\omega}[\psi](\varphi_j)$ . Observe also that as a consequence of Proposition 2.11 and Theorem 6.2, for any  $j \in \mathbb{N}$  there exists  $k_j \gg 0$  big enough such that

$$d(\psi_k, v_{k,j}) \le d_{\mathcal{A}}(\psi_k, \psi) + d(\psi, v_j) + d_{\mathcal{A}}(v_j, v_{k,j}) \le d(\psi, v_j) + 1 \le C$$

for any  $k \ge k_j$ , where *C* is a uniform constant independent of  $j \in \mathbb{N}$ . Therefore, again combining Theorem 6.2 with Lemma 4.6 and Proposition 3.7, we obtain

$$\begin{split} &\lim_{k \to \infty} \sup |E_{\psi_{k}}^{*}(\mathrm{MA}_{\omega}(u_{k})/V_{\psi_{k}}) - E_{\psi_{k}}^{*}(\mathrm{MA}_{\omega}(v_{k,j})/V_{\psi_{k}})| \\ &\leq \lim_{k \to \infty} \sup \left( |E_{\psi_{k}}(u_{k}) - E_{\psi_{k}}(v_{k,j})| + \left| \int_{X} (\psi_{k} - u_{k})(\mathrm{MA}_{\omega}(u_{k}) - \mathrm{MA}_{\omega}(v_{k,j})) \right| + \left| \int_{X} (v_{k,j} - u_{k}) \operatorname{MA}_{\omega}(v_{k,j}) \right| \right) \\ &\leq |E_{\psi}(u) - E_{\psi}(v_{j})| + \limsup_{k \to \infty} CI_{\psi_{k}}(u_{k}, v_{k,j})^{1/2} + \int_{X} (v_{j} - u) \operatorname{MA}_{\omega}(v_{j}), \end{split}$$
(24)

since clearly we may assume that either  $\psi_k \searrow \psi$  or  $\psi_k \nearrow \psi$  almost everywhere, up to considering a subsequence. On the other hand, if  $k \ge k_j$ , Proposition 3.4 implies  $I_{\psi_k}(u_k, v_{k,j}) \le 2f_{\tilde{C}}(d(u_k, v_{k,j}))$ , where  $\tilde{C}$  is a uniform constant independent of j, k and  $f_{\tilde{C}} : \mathbb{R}_{\ge 0} \to \mathbb{R}_{\ge 0}$  is a continuous increasing function such that  $f_{\tilde{C}}(0) = 0$ . Hence continuing the estimates in (24) we get

$$(24) \le |E_{\psi}(u) - E_{\psi}(v_j)| + 2Cf_{\tilde{C}}(d(u, v_j)) + d(v_j, u),$$
(25)

using also Propositions 2.4 and 2.11. Letting  $j \to \infty$  in (25), it follows that

$$\limsup_{j \to \infty} \limsup_{k \to \infty} |E_{\psi_k}^*(\mathrm{MA}_{\omega}(u_k)/V_{\psi_k}) - E_{\psi_k}^*(\mathrm{MA}_{\omega}(v_{k,j})/V_{\psi_k})| = 0$$

since  $v_j \searrow u$ . Furthermore, it is easy to check that  $E_{\psi_k}^*(MA_\omega(v_{k,j})/V_{\psi_k}) \rightarrow E_{\psi}^*(MA_\omega(v_j)/V_{\psi})$  as  $k \rightarrow \infty$  for *j* fixed by Lemma 4.6 and Proposition 2.11. Therefore the convergence

$$E_{\psi}^{*}(\mathrm{MA}_{\omega}(v_{j})/V_{\psi}) \to E_{\psi}^{*}(\mathrm{MA}_{\omega}(u)/V_{\psi})$$
<sup>(26)</sup>

as  $j \to \infty$  given by Theorem A concludes this step.

<u>Step 2</u>: continuity of the inverse. We will assume  $u_k \in \mathcal{E}_{norm}^1(X, \omega, \psi_k)$  and  $u \in \mathcal{E}_{norm}^1(X, \omega, \psi)$  such that  $MA_{\omega}(u_k) \to MA_{\omega}(u)$  strongly. Note that when  $\psi = \psi_{min}$  and  $V_{\psi_{min}} = 0$ , the assumption does not depend on the function u chosen. Clearly this implies  $V_{\psi_k} \to V_{\psi}$  which leads to  $\psi_k \to \psi$  as  $k \to \infty$  by Lemma 3.12 since  $\mathcal{A} \subset \mathcal{M}^+$  is totally ordered. Hence, up to considering a subsequence, we may assume that  $\psi_k \to \psi$  monotonically almost everywhere. We keep the same notation of the previous step for  $v_{k,j}$ ,  $v_j$ . We may also suppose that  $V_{\psi_k} > 0$  for any  $k \in \mathbb{N}$  big enough otherwise it would be trivial.

The strategy is to proceed similarly to the proof of Theorem A, i.e., we first prove that  $I_{\psi_k}(u_k, v_{k,j}) \to 0$ as  $k, j \to \infty$  in this order. Then we will use this to prove that the unique weak accumulation point of  $\{u_k\}_{k \in \mathbb{N}}$  is u. Finally we will deduce the convergence of the  $\psi_k$ -relative energies to conclude that  $u_k \to u$  strongly thanks to Theorem 6.2.

By Lemma 3.1,

$$(n+1)^{-1} I_{\psi_{k}}(u_{k}, v_{k,j})$$

$$\leq E_{\psi_{k}}(u_{k}) - E_{\psi_{k}}(v_{k,j}) + \int_{X} (v_{k,j} - u_{k}) \operatorname{MA}_{\omega}(u_{k})$$

$$= E_{\psi_{k}}^{*}(\operatorname{MA}_{\omega}(u_{k})/V_{\psi_{k}}) - E_{\psi_{k}}^{*}(\operatorname{MA}_{\omega}(v_{k,j})/V_{\psi_{k}}) + \int_{X} (v_{k,j} - \psi_{k})(\operatorname{MA}_{\omega}(u_{k}) - \operatorname{MA}_{\omega}(v_{k,j})) \quad (27)$$

for any *j*, *k*. Moreover, by Step 1 and Proposition 2.11 we know that  $E_{\psi_k}^*(\text{MA}_{\omega}(v_{k,j})/V_{\psi_k})$  converges, as  $k \to +\infty$ , to 0 if  $V_{\psi} = 0$  and to  $E_{\psi}^*(\text{MA}_{\omega}(v_j)/V_{\psi})$  if  $V_{\psi} > 0$ . Next by Lemma 4.6,

$$\int_{X} (v_{k,j} - \psi_k) \operatorname{MA}_{\omega}(v_{k,j}) \to \int_{X} (v_j - \psi) \operatorname{MA}_{\omega}(v_j)$$

letting  $k \to \infty$ . So if  $V_{\psi} = 0$ , then from

$$\lim_{k \to \infty} \sup_{X} (v_{k,j} - \psi_k) = \sup_{X} (v_j - \psi) = \sup_{X} v_j$$

we easily get  $\limsup_{k\to\infty} I_{\psi_k}(u_k, v_{k,j}) = 0$ . Thus we may assume  $V_{\psi} > 0$ , and it remains to estimate  $\int_X (v_{k,j} - \psi_k) \operatorname{MA}_{\omega}(u_k)$  from above.

We set  $f_{k,j} := v_{k,j} - \psi_k$ , and as in the proof of Theorem A we construct a sequence of smooth functions  $f_j^s := v_j^s - \psi^s$  converging in capacity to  $f_j := v_j - \psi$  and satisfying  $||f_j^s||_{L^{\infty}} \le 2||f_j||_{L^{\infty}} \le 2||\varphi_j||_{L^{\infty}}$ . Here  $v_j^s$  and  $\psi^s$  are sequences of  $\omega$ -psh functions decreasing to  $v_j$  and  $\psi$ , respectively. Then we write

$$\int_X f_{k,j} \operatorname{MA}_{\omega}(u_k) = \int_X (f_{k,j} - f_j^s) \operatorname{MA}_{\omega}(u_k) + \int_X f_j^s \operatorname{MA}_{\omega}(u_k),$$
(28)

and we observe that

$$\limsup_{s \to \infty} \limsup_{k \to \infty} \int_X f_j^s \operatorname{MA}_{\omega}(u_k) = \int_X f_j \operatorname{MA}_{\omega}(u),$$

since  $MA_{\omega}(u_k) \to MA_{\omega}(u)$  weakly,  $f_j^s \in C^{\infty}$ ,  $f_j^s$  converges to  $f_j$  in capacity and  $||f_j^s||_{L^{\infty}} \le 2||f_j||_{L^{\infty}}$ . We also claim that the first term on the right-hand side of (28) goes to 0 letting  $k, s \to \infty$  in this order. Indeed, for any  $\delta > 0$ ,

$$\int_{X} (f_{k,j} - f_j) \operatorname{MA}_{\omega}(u_k) \leq \delta V_{\psi_k} + 2 \|\varphi_j\|_{L^{\infty}} \int_{\{f_{k,j} - f_j > \delta\}} \operatorname{MA}_{\omega}(u_k)$$
$$\leq \delta V_{\psi_k} + 2 \|\varphi_j\|_{L^{\infty}} \int_{\{|h_{k,j} - h_j| > \delta\}} \operatorname{MA}_{\omega}(u_k), \tag{29}$$

where we set  $h_{k,j} := v_{k,j}$ ,  $h_j := v_j$  if  $\psi_k \searrow \psi$  and  $h_{k,j} := \psi_k$ ,  $h_j := \psi$  if instead  $\psi_k \nearrow \psi$  almost everywhere. Moreover, since  $\{|h_{k,j} - h_j| > \delta\} \subset \{|h_{l,j} - h_j| > \delta\}$  for any  $l \le k$ , from (29) we obtain

$$\begin{split} \limsup_{k \to \infty} \int_{X} (f_{k,j} - f_j) \operatorname{MA}_{\omega}(u_k) &\leq \delta V_{\psi} + \limsup_{l \to \infty} \limsup_{k \to \infty} 2 \|\varphi_j\|_{L^{\infty}} \int_{\{|h_{l,j} - h_j| \geq \delta\}} \operatorname{MA}_{\omega}(u_k) \\ &\leq \delta V_{\psi} + \limsup_{l \to \infty} 2 \|\varphi_j\|_{L^{\infty}} \int_{\{|h_{l,j} - h_j| \geq \delta\}} \operatorname{MA}_{\omega}(u) = \delta V_{\psi}, \end{split}$$

where we also used that  $\{|h_{l,j} - h_j| \ge \delta\}$  is a closed set in the plurifine topology since it is equal to  $\{v_{l,j} - v_j \ge \delta\}$  if  $\psi_l \searrow \psi$  and to  $\{\psi - \psi_l \ge \delta\}$  if  $\psi_l \nearrow \psi$  almost everywhere. Hence

$$\limsup_{k\to\infty}\int_X (f_{k,j}-f_j)\,\mathrm{MA}_{\omega}(u_k)\leq 0.$$

Similarly we also get

$$\limsup_{s\to\infty}\limsup_{k\to\infty}\int_X (f_j-f_j^s)\,\mathrm{MA}_{\omega}(u_k)\leq 0;$$

see also the proof of Theorem A.

Summarizing from (27), we obtain

$$\lim_{k \to \infty} \sup(n+1)^{-1} I_{\psi_k}(u_k, v_{k,j}) \le E_{\psi}^* (\mathrm{MA}_{\omega}(v_j) / V_{\psi}) + \int_{Y} (v_j - \psi) \, \mathrm{MA}_{\omega}(u) - \int_{Y} (v_j - \psi) \, \mathrm{MA}_{\omega}(v_j) =: F_j, \quad (30)$$

and  $F_j \to 0$  as  $j \to \infty$  by Step 1 and Proposition 3.7, since  $\mathcal{E}^1(X, \omega, \psi) \ni v_j \searrow u \in \mathcal{E}^1_{\text{norm}}(X, \omega, \psi)$ , hence strongly.

Next by Lemma 3.1,  $u_k \in X_{\mathcal{A},C}$  for  $C \gg 1$  since  $E^*(\mathrm{MA}_{\omega}(u_k)/V_{\psi_k}) = J_{u_k}^{\psi}(\psi)$  and  $\sup_X u_k = 0$ , thus, up to considering a further subsequence,  $u_k \to w \in \mathcal{E}_{\mathrm{norm}}^1(X, \omega, \psi)$  weakly where  $d(w, \psi) \leq C$ . Indeed, if  $V_{\psi} > 0$  this follows from Proposition 3.15 while it is trivial if  $V_{\psi} = 0$ . In particular, by Lemma 4.6,

$$\int_{X} (\psi_k - u_k) \operatorname{MA}_{\omega}(v_{k,j}) \to \int_{X} (\psi - w) \operatorname{MA}_{\omega}(v_j),$$
(31)

$$\int_{X} (v_{k,j} - u_k) \operatorname{MA}_{\omega}(v_{k,j}) \to \int_{X} (v_j - w) \operatorname{MA}_{\omega}(v_j)$$
(32)

as  $j \to \infty$ . Therefore if  $V_{\psi} = 0$ , then combining  $I_{\psi_k}(u_k, v_{k,j}) \to 0$  as  $k \to \infty$  with (32) and Lemma 3.1, we obtain

$$\limsup_{k \to \infty} (-E_{\psi_k}(u_k) + E_{\psi_k}(v_{k,j})) \le \limsup_{k \to \infty} \left( \frac{n}{n+1} I_{\psi_k}(u_k, v_{k,j}) + \left| \int_X (v_{k,j} - u_k) \operatorname{MA}_{\omega}(v_{k,j}) \right| \right) = 0.$$

This implies that  $d(\psi_k, u_k) = -E_{\psi_k}(u_k) \to 0$  as  $k \to \infty$ , i.e., that  $d_{\mathcal{A}}(P_{\psi_{\min}}, u_k) \to 0$  using Theorem 6.2. We may assume from now until the end of the proof that  $V_{\psi} > 0$ .

By (31) and Proposition 3.14 it follows that

$$\limsup_{k \to \infty} \left( E_{\psi_k}^* (\operatorname{MA}_{\omega}(u_k) / V_{\psi_k}) + \int_X (\psi_k - u_k) (\operatorname{MA}_{\omega}(v_{k,j}) - \operatorname{MA}_{\omega}(u_k)) \right) \\
= \limsup_{k \to \infty} \left( E_{\psi_k}(u_k) + \int_X (\psi_k - u_k) \operatorname{MA}_{\omega}(v_{k,j}) \right) \le E_{\psi}(w) + \int_X (\psi - w) \operatorname{MA}_{\omega}(v_j). \quad (33)$$

On the other hand, by Proposition 3.7 and (30),

$$\limsup_{k \to \infty} \left| \int_{X} (\psi_k - u_k) (\mathrm{MA}_{\omega}(v_{k,j}) - \mathrm{MA}_{\omega}(u_k)) \right| \le C F_j^{1/2}.$$
(34)

In conclusion, by the triangle inequality and combining (33) and (34) we get

$$E_{\psi}(u) + \int_{X} (\psi - u) \operatorname{MA}_{\omega}(u) = \lim_{k \to \infty} E^{*}(\operatorname{MA}_{\omega}(u_{k})/V_{\psi_{k}})$$
  
$$\leq \limsup_{j \to \infty} \left( E_{\psi}(w) + \int_{X} (\psi - w) \operatorname{MA}_{\omega}(v_{j}) + CF_{j}^{1/2} \right)$$
  
$$= E_{\omega}(w) + \int_{X} (\psi - w) \operatorname{MA}_{\omega}(u)$$

since  $F_j \to 0$ , i.e.,  $w \in \mathcal{E}^1_{\text{norm}}(X, \omega, \psi)$  is a maximizer of  $F_{\text{MA}_{\omega}(u)/V_{\psi}, \psi}$ . Hence w = u (Proposition 5.5), i.e.,  $u_k \to u$  weakly. Furthermore, similar to the case  $V_{\psi} = 0$ , Lemma 3.1 and (32) imply

$$E_{\psi}(v_j) - \liminf_{k \to \infty} E_{\psi_k}(u_k) = \limsup_{k \to \infty} (-E_{\psi_k}(u_k) + E_{\psi_k}(v_{k,j}))$$
  
$$\leq \limsup_{k \to \infty} \left( \frac{n}{n+1} I_{\psi_k}(u_k, v_{k,j}) + \left| \int_X (u_k - v_{j,k}) \operatorname{MA}_{\omega}(v_{k,j}) \right| \right)$$
  
$$\leq \frac{n}{n+1} F_j + \left| \int_X (u - v_j) \operatorname{MA}_{\omega}(v_j) \right|.$$

Finally, letting  $j \to \infty$ , since  $v_j \to u$  strongly, we obtain  $\liminf_{k\to\infty} E_{\psi_k}(u_k) \ge \lim_{j\to\infty} E_{\psi}(v_j) = E_{\psi}(u)$ . Hence  $E_{\psi_k}(u_k) \to E_{\psi}(u)$  by Proposition 3.14, which implies  $d_{\mathcal{A}}(u_k, u) \to 0$  by Theorem 6.2.

# 7. Stability of complex Monge-Ampère equations

As stated in the Introduction, we want to use the homeomorphism of Theorem B to deduce the strong stability of solutions of complex Monge–Ampère equations with prescribed singularities when the measures have uniformly bounded  $L^p$  density for p > 1.

**Theorem C.** Let  $\mathcal{A} := \{\psi_k\}_{k \in \mathbb{N}} \subset \mathcal{M}^+$  be totally ordered, and let  $\{f_k\}_{k \in \mathbb{N}} \subset L^1$  be a sequence of nonnegative functions such that  $f_k \to f \in L^1 \setminus \{0\}$  and such that  $\int_X f_k \omega^n = V_{\psi_k}$  for any  $k \in \mathbb{N}$ . Assume also that there exists p > 1 such that  $||f_k||_{L^p}$  and  $||f||_{L^p}$  are uniformly bounded. Then  $\psi_k \to \psi \in \overline{\mathcal{A}} \subset \mathcal{M}^+$ ,

and the sequence of solutions of

$$MA_{\omega}(u_k) = f_k \omega^n, \quad u_k \in \mathcal{E}^1_{norm}(X, \omega, \psi_k),$$
(35)

converges strongly to  $u \in X_A$ , which is the unique solution of

$$MA_{\omega}(u) = f\omega^{n}, \quad u \in \mathcal{E}^{1}_{norm}(X, \omega, \psi).$$
(36)

In particular,  $u_k \rightarrow u$  in capacity.

*Proof.* We first observe that the existence of the unique solutions of (35) follows by [Darvas et al. 2021a, Theorem A].

Moreover, letting *u* be any weak accumulation point for  $\{u_k\}_{k\in\mathbb{N}}$  (there exists at least one by compactness), [Darvas et al. 2021a, Lemma 2.8] yields  $MA_{\omega}(u) \ge f\omega^n$  and by the convergence of  $f_k$  to f we also obtain  $\int_X f\omega^n = \lim_{k\to\infty} V_{\psi_k}$ . Moreover, since  $u_k \le \psi_k$  for any  $k \in \mathbb{N}$ , by [Witt Nyström 2019] we obtain  $\int_X MA_{\omega}(u) \le \lim_{k\to\infty} V_{\psi_k}$ . Hence  $MA_{\omega}(u) = f\omega^n$  which, in particular, means that there is a unique weak accumulation point for  $\{u_k\}_{k\in\mathbb{N}}$  and that  $\psi_k \to \psi$  as  $k \to \infty$  since  $V_{\psi_k} \to V_{\psi}$  (by Lemma 3.12). Then it easily follows by combining Fatou's lemma with Proposition 2.10 and Lemma 2.12 that for any  $\varphi \in \mathcal{H}_{\omega}$ ,

$$\liminf_{k \to \infty} E^*_{\psi_k}(\operatorname{MA}_{\omega}(u_k)/V_{\psi_k}) \ge \liminf_{k \to \infty} \left( E_{\psi_k}(P_{\omega}[\psi_k](\varphi)) + \int_X (\psi_k - P_{\omega}[\psi_k](\varphi)) f_k \omega^n \right)$$
$$\ge E_{\psi}(P_{\omega}[\psi](\varphi)) + \int_X (\psi - P_{\omega}[\psi](\varphi)) f \omega^n, \tag{37}$$

since  $(\psi_k - P_{\omega}[\psi_k](\varphi)) f_k \to (\psi - P_{\omega}[\psi](\varphi)) f$  almost everywhere by Lemma 2.14. Thus, for any  $v \in \mathcal{E}^1(X, \omega, \psi)$ , letting  $\varphi_j \in \mathcal{H}_{\omega}$  be a decreasing sequence converging to v [Błocki and Kołodziej 2007], from inequality (37) we get

$$\liminf_{k \to \infty} E^*_{\psi_k}(\operatorname{MA}_{\omega}(u_k)/V_{\psi_k}) \ge \limsup_{j \to \infty} \left( E_{\psi}(P_{\omega}[\psi](\varphi_j)) + \int_X (\psi - P_{\omega}[\psi](\varphi_j)) f \omega^n \right)$$
$$= E_{\psi}(v) + \int_X (\psi - v) f \omega^n,$$

using Proposition 2.4 and the monotone convergence theorem. Hence by definition,

$$\liminf_{k \to \infty} E^*_{\psi_k}(\mathrm{MA}_{\omega}(u_k)/V_{\psi_k}) \ge E^*_{\psi}(f\omega^n/V_{\psi}).$$
(38)

On the other hand, since  $||f_k||_{L^p}$  and  $||f||_{L^p}$  are uniformly bounded for p > 1 and  $u_k \to u$ ,  $\psi_k \to \psi$  in  $L^q$  for any  $q \in [1, +\infty)$  (see [Guedj and Zeriahi 2017, Theorem 1.48]), we also have

$$\int_X (\psi_k - u_k) f_k \omega^n \to \int_X (\psi - u) f \omega^n < +\infty,$$

which implies that  $\int_X (\psi - u) \operatorname{MA}_{\omega}(u) < +\infty$ , i.e.,  $u \in \mathcal{E}^1(X, \omega, \psi)$  by Proposition 2.4. Moreover, by Proposition 3.14 we also get

$$\limsup_{k \to \infty} E_{\psi_k}^*(\mathrm{MA}_{\omega}(u_k)/V_{\psi_k}) \le E_{\psi}^*(\mathrm{MA}_{\omega}(u)/V_{\psi}),$$

which together with (38) leads us to  $MA_{\omega}(u_k) \to MA_{\omega}(u)$  strongly in  $Y_{\mathcal{A}}$  by definition (observe that  $MA_{\omega}(u_k) = f_k \omega^n \to MA_{\omega}(u) = f \omega^n$  weakly). Hence  $u_k \to u$  strongly by Theorem B while the convergence in capacity follows from Theorem 6.3.

**Remark 7.1.** As said in the Introduction, the convergence in capacity of Theorem C was already obtained in [Darvas et al. 2021b, Theorem 1.4]. Indeed, under the hypotheses of Theorem C it follows from Lemma 2.12 and [Darvas et al. 2021b, Lemma 3.4] that  $d_S(\psi_k, \psi) \rightarrow 0$  where  $d_S$  is the pseudometric on {[u] :  $u \in PSH(X, \omega)$ } introduced in [Darvas et al. 2021b], where the class [u] is given by the partial order  $\preccurlyeq$ .

## Acknowledgments

I want to thank David Witt Nyström and Stefano Trapani for their suggestions and comments. I am also grateful to Hoang-Chinh Lu for pointing out a minor mistake in the previous version of this paper.

# References

- [Aubin 1984] T. Aubin, "Réduction du cas positif de l'équation de Monge–Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité", *J. Funct. Anal.* **57**:2 (1984), 143–153. MR Zbl
- [Berman and Boucksom 2010] R. Berman and S. Boucksom, "Growth of balls of holomorphic sections and energy at equilibrium", *Invent. Math.* **181**:2 (2010), 337–394. MR Zbl
- [Berman et al. 2013] R. J. Berman, S. Boucksom, V. Guedj, and A. Zeriahi, "A variational approach to complex Monge–Ampère equations", *Publ. Math. Inst. Hautes Études Sci.* **117** (2013), 179–245. MR Zbl
- [Berman et al. 2019] R. J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, "Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties", *J. Reine Angew. Math.* **751** (2019), 27–89. MR Zbl
- [Berman et al. 2020] R. J. Berman, T. Darvas, and C. H. Lu, "Regularity of weak minimizers of the *K*-energy and applications to properness and *K*-stability", *Ann. Sci. École Norm. Sup.* (4) **53**:2 (2020), 267–289. MR Zbl
- [Błocki and Kołodziej 2007] Z. Błocki and S. Kołodziej, "On regularization of plurisubharmonic functions on manifolds", *Proc. Amer. Math. Soc.* **135**:7 (2007), 2089–2093. MR Zbl
- [Boucksom et al. 2010] S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, "Monge–Ampère equations in big cohomology classes", *Acta Math.* **205**:2 (2010), 199–262. MR Zbl
- [Cegrell 1998] U. Cegrell, "Pluricomplex energy", Acta Math. 180:2 (1998), 187-217. MR Zbl
- [Chen and Cheng 2021a] X. Chen and J. Cheng, "On the constant scalar curvature Kähler metrics, I: A priori estimates", *J. Amer. Math. Soc.* **34**:4 (2021), 909–936. MR Zbl
- [Chen and Cheng 2021b] X. Chen and J. Cheng, "On the constant scalar curvature Kähler metrics, II: Existence results", *J. Amer. Math. Soc.* **34**:4 (2021), 937–1009. MR Zbl
- [Darvas 2015] T. Darvas, "The Mabuchi geometry of finite energy classes", Adv. Math. 285 (2015), 182–219. MR Zbl
- [Darvas and Rubinstein 2017] T. Darvas and Y. A. Rubinstein, "Tian's properness conjectures and Finsler geometry of the space of Kähler metrics", *J. Amer. Math. Soc.* **30**:2 (2017), 347–387. MR Zbl
- [Darvas et al. 2018] T. Darvas, E. Di Nezza, and C. H. Lu, "Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity", *Anal. PDE* **11**:8 (2018), 2049–2087. MR Zbl
- [Darvas et al. 2021a] T. Darvas, E. Di Nezza, and C. H. Lu, "Log-concavity of volume and complex Monge–Ampère equations with prescribed singularity", *Math. Ann.* **379**:1-2 (2021), 95–132. MR Zbl
- [Darvas et al. 2021b] T. Darvas, E. Di Nezza, and H.-C. Lu, "The metric geometry of singularity types", *J. Reine Angew. Math.* **771** (2021), 137–170. MR Zbl

- [Di Nezza and Trapani 2021] E. Di Nezza and S. Trapani, "Monge–Ampère measures on contact sets", *Math. Res. Lett.* 28:5 (2021), 1337–1352. MR Zbl
- [Guedj and Zeriahi 2007] V. Guedj and A. Zeriahi, "The weighted Monge–Ampère energy of quasiplurisubharmonic functions", *J. Funct. Anal.* **250**:2 (2007), 442–482. MR Zbl
- [Guedj and Zeriahi 2017] V. Guedj and A. Zeriahi, *Degenerate complex Monge–Ampère equations*, EMS Tracts in Math. **26**, Eur. Math. Soc., Zürich, 2017. MR Zbl
- [Kołodziej 1998] S. Kołodziej, "The complex Monge-Ampère equation", Acta Math. 180:1 (1998), 69-117. MR Zbl
- [Mabuchi 1986] T. Mabuchi, "*K*-energy maps integrating Futaki invariants", *Tohoku Math. J.* (2) **38**:4 (1986), 575–593. MR Zbl
- [Ross and Witt Nyström 2014] J. Ross and D. Witt Nyström, "Analytic test configurations and geodesic rays", J. Symplectic Geom. **12**:1 (2014), 125–169. MR Zbl
- [Trusiani 2022] A. Trusiani, " $L^1$  metric geometry of potentials with prescribed singularities on compact Kähler manifolds", J. Geom. Anal. **32**:2 (2022), art. id. 37. MR Zbl
- [Witt Nyström 2019] D. Witt Nyström, "Monotonicity of non-pluripolar Monge–Ampère masses", *Indiana Univ. Math. J.* **68**:2 (2019), 579–591. MR Zbl
- [Xia 2019] M. Xia, "Integration by parts formula for non-pluripolar product", preprint, 2019. arXiv 1907.06359
- [Yau 1978] S. T. Yau, "On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I", *Comm. Pure Appl. Math.* **31**:3 (1978), 339–411. MR Zbl

Received 14 May 2020. Revised 4 Mar 2021. Accepted 10 Jun 2021.

ANTONIO TRUSIANI: antonio.trusiani91@gmail.com University of Rome Tor Vergata, Rome, Italy

# **Analysis & PDE**

msp.org/apde

#### EDITORS-IN-CHIEF

Patrick Gérard Université Paris Sud XI, France patrick.gerard@universite-paris-saclay.fr Clément Mouhot Cambridge University, UK c.mouhot@dpmms.cam.ac.uk

#### BOARD OF EDITORS

| Massimiliano Berti   | Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it                    | Werner Müller         | Universität Bonn, Germany<br>mueller@math.uni-bonn.de                |
|----------------------|--------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|
| Zbigniew Błocki      | Uniwersytet Jagielloński, Poland<br>zbigniew.blocki@uj.edu.pl                  | Gilles Pisier         | Texas A&M University, and Paris 6<br>pisier@math.tamu.edu            |
| Charles Fefferman    | Princeton University, USA<br>cf@math.princeton.edu                             | Igor Rodnianski       | Princeton University, USA<br>irod@math.princeton.edu                 |
| Isabelle Gallagher   | Université Paris-Diderot, IMJ-PRG, France gallagher@math.ens.fr                | Yum-Tong Siu          | Harvard University, USA<br>siu@math.harvard.edu                      |
| Colin Guillarmou     | Université Paris-Saclay, France<br>colin.guillarmou@universite-paris-saclay.fr | Terence Tao           | University of California, Los Angeles, USA tao@math.ucla.edu         |
| Ursula Hamenstaedt   | Universität Bonn, Germany<br>ursula@math.uni-bonn.de                           | Michael E. Taylor     | Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu           |
| Vadim Kaloshin       | University of Maryland, USA vadim.kaloshin@gmail.com                           | Gunther Uhlmann       | University of Washington, USA gunther@math.washington.edu            |
| Izabella Laba        | University of British Columbia, Canada ilaba@math.ubc.ca                       | András Vasy           | Stanford University, USA andras@math.stanford.edu                    |
| Anna L. Mazzucato    | Penn State University, USA<br>alm24@psu.edu                                    | Dan Virgil Voiculescu | University of California, Berkeley, USA<br>dvv@math.berkeley.edu     |
| Richard B. Melrose   | Massachussets Inst. of Tech., USA<br>rbm@math.mit.edu                          | Jim Wright            | University of Edinburgh, UK<br>j.r.wright@ed.ac.uk                   |
| Frank Merle          | Université de Cergy-Pontoise, France merle@ihes.fr                             | Maciej Zworski        | University of California, Berkeley, USA<br>zworski@math.berkeley.edu |
| William Minicozzi II | Johns Hopkins University, USA<br>minicozz@math.ibu.edu                         |                       |                                                                      |

#### PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2023 is US \$405/year for the electronic version, and \$630/year (+\$65, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.

APDE peer review and production are managed by EditFlow<sup>®</sup> from MSP.

PUBLISHED BY



nonprofit scientific publishing

http://msp.org/

© 2023 Mathematical Sciences Publishers

# ANALYSIS & PDE

Volume 16 No. 2 2023

| Riesz transform and vertical oscillation in the Heisenberg group<br>KATRIN FÄSSLER and TUOMAS ORPONEN                                              | 309 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A Wess–Zumino–Witten type equation in the space of Kähler potentials in terms of Hermitian–<br>Yang–Mills metrics<br>KUANG-RU WU                   | 341 |
| The strong topology of $\omega$ -plurisubharmonic functions<br>ANTONIO TRUSIANI                                                                    | 367 |
| Sharp pointwise and uniform estimates for $\bar{\partial}$<br>ROBERT XIN DONG, SONG-YING LI and JOHN N. TREUER                                     | 407 |
| Some applications of group-theoretic Rips constructions to the classification of von Neumann algebras                                              | 433 |
| Long time existence of Yamabe flow on singular spaces with positive Yamabe constant<br>JØRGEN OLSEN LYE and BORIS VERTMAN                          | 477 |
| Disentanglement, multilinear duality and factorisation for nonpositive operators<br>ANTHONY CARBERY, TIMO S. HÄNNINEN and STEFÁN INGI VALDIMARSSON | 511 |
| The Green function with pole at infinity applied to the study of the elliptic measure<br>JOSEPH FENEUIL                                            | 545 |
| Talagrand's influence inequality revisited<br>DARIO CORDERO-ERAUSQUIN and ALEXANDROS ESKENAZIS                                                     | 571 |