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LONG TIME EXISTENCE OF YAMABE FLOW
ON SINGULAR SPACES WITH POSITIVE YAMABE CONSTANT

JØRGEN OLSEN LYE AND BORIS VERTMAN

We establish long-time existence of the normalized Yamabe flow with positive Yamabe constant on a
class of manifolds that includes spaces with incomplete cone-edge singularities. We formulate our results
axiomatically so that they extend to general stratified spaces as well, provided certain parabolic Schauder
estimates hold. The central analytic tool is a parabolic Moser iteration, which yields uniform upper and
lower bounds on both the solution and the scalar curvature.

1. Introduction and statement of the main results

The Yamabe conjecture states that for any compact, smooth Riemannian manifold (M, g0) without
boundary there exists a constant scalar curvature metric conformal to g0. The first proof of this conjecture
was initiated by Yamabe [1960] and continued by Trudinger [1968], Aubin [1976] and Schoen [1984].
The proof is based on the calculus of variations and elliptic partial differential equations. An alternative
tool for proving the conjecture is due to Hamilton [1989], who utilized the normalized Yamabe flow of a
Riemannian manifold (M, g0), which is a family g ≡ g(t), t ∈ [0, T ] of Riemannian metrics on M such
that the following evolution equation holds:

∂t g = −(S − ρ)g, ρ := Volg(M)−1
∫

M
S dVolg. (1-1)

Here S is the scalar curvature of g, Volg(M) is the total volume of M with respect to g and ρ is the
average scalar curvature of g. The normalization by ρ ensures that the total volume does not change
along the flow. Hamilton [1989] introduced the Yamabe flow and also showed its long-time existence. It
preserves the conformal class of g0 and ideally should converge to a constant scalar curvature metric,
thereby establishing the Yamabe conjecture by parabolic methods.

Establishing convergence of the normalized Yamabe flow is intricate already in the setting of smooth,
compact manifolds. In the case of scalar negative, scalar flat and locally conformally flat scalar positive
metrics, convergence is due to Ye [1994]. The case of a nonconformally flat g0 with positive scalar
curvature is delicate and has been studied first by Schwetlick and Struwe [2003] for large energies and
later by Brendle [2005; 2007] for arbitrary energies. More specifically, [Schwetlick and Struwe 2003,
Section 5] as well as [Brendle 2005, p. 270; 2007, p. 544] invoke the positive mass theorem, which is
where the dimensional restriction in [Schwetlick and Struwe 2003; Brendle 2005] and the spin assumption
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in [Brendle 2007, Theorem 4] come from. Assuming [Schoen and Yau 2022] to be correct, [Schwetlick
and Struwe 2003; Brendle 2005; 2007] cover all closed manifolds which are not conformally equivalent
to spheres.

In the noncompact setting, our understanding is limited. On complete manifolds, long-time existence
has been discussed in various settings by Ma [2016], Ma and An [1999] and Schulz [2020]. On incomplete
surfaces, where Ricci and Yamabe flows coincide, Giesen and Topping [2010; 2011] constructed a flow
that becomes instantaneously complete.

In this work, we study the Yamabe flow on a general class of spaces that includes incomplete spaces with
cone-edge (wedge) singularities or, more generally, stratified spaces with iterated cone-edge singularities.
This continues a program initiated in [Bahuaud and Vertman 2014; 2019], where existence and convergence
of the Yamabe flow has been established in case of negative Yamabe invariant. Here, we study the positive
case and, utilizing methods of Akutagawa, Carron and Mazzeo [Akutagawa et al. 2014], we establish
long-time existence of the flow under certain mild geometric assumptions. We don’t attempt to prove
convergence here, in view of [Schwetlick and Struwe 2003; Brendle 2005; 2007] and the fact that we
don’t have a substitute for the positive mass theorem in the singular setting.

Our main result (see Theorem 5.1 for the precise statement) is as follows.

Theorem 1.1. Let (M, g0) be a Riemannian manifold of dimension n = dim M ≥ 3 such that the following
four assumptions (to be made precise below) hold:

(1) The Yamabe constant Y (M, g0) defined in (1-6) is positive.

(2) (M, g0) is admissible and satisfies a Sobolev inequality as in Definition 1.2.

(3) Parabolic Schauder estimates of Definition 1.4 hold on (M, g0).

(4) The initial scalar curvature S0 ∈ C1,α(M) as in Assumption 4. Moreover, we also require that
S0 ∈ Ln2/(2(n−2))(M) and that its negative part (S0)− ∈ L∞(M).

Under these assumptions, a normalized Yamabe flow of g0 exists within the space of admissible spaces,
with infinite existence time.

Examples, where the assumptions of the theorem are satisfied, include spaces with incomplete wedge
singularities. More general stratified spaces with iterated cone-edge metrics are also covered, provided
parabolic Schauder estimates continue to hold in that setting.

Let us point out two technical novelties of our work.

(1) We prove uniform bounds on the solution and on the scalar curvature along the normalized Yamabe
flow without using the maximum principle. We have not found any such argument in the existing literature.

(2) We derive such uniform bounds starting with low initial Sobolev regularity, S0 ∈ H 1(M). This low
initial regularity forces us to develop very intricate arguments to deal even with the chain rule. We have
not seen any such argument in the existing literature on parabolic equations.

We now proceed with explaining the assumptions in detail.
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Normalized Yamabe flow and Yamabe constant. Consider a Riemannian manifold (M, g0), with g0

normalized such that the total volume Volg0(M) equals 1. The Yamabe flow (1-1) preserves the conformal
class of the initial metric g0 and, assuming dim M = n ≥ 3, we can write g = u4/(n−2)g0 for some function
u > 0 on MT = M ×[0, T ] for some upper time limit T > 0. Then the normalized Yamabe flow equation
can be equivalently written as an equation for u:

∂t(u(n+2)/(n−2))=
1
4(n + 2)(ρu(n+2)/(n−2)

− L0(u)), L0 := S0 −
4(n − 1)

n − 2
10, (1-2)

where L0 is the conformal Laplacian of g0, defined in terms of the scalar curvature S0 and the Laplace
Beltrami operator 10 associated to the initial metric g0. The scalar curvature of the evolving metric g is
given by S = u−(n+2)/(n−2)L0(u), and the volume form of g = u4/(n−2)g0 is given by dVolg = u2n/(n−2) dµ,
where we write dµ := dVolg0 for the time-independent initial volume form. One computes that

∂t dVolg = −
1
2 n(S − ρ) dVolg. (1-3)

Hence, the total volume of (M, g) is constant and thus equal to 1 along the flow. The average scalar
curvature then takes the form

ρ =

∫
M

S dVolg =

∫
M

L(u)u−(n+2)/(n−2)u2n/(n−2) dµ=

∫
M

4(n − 1)
n − 2

|∇u|
2
+ S0u2 dµ. (1-4)

Explicit computations lead to the following evolution equation for the average scalar curvature:

∂tρ = −
n − 2

2

∫
M
(ρ− S)2u2n/(n−2) dµ. (1-5)

The latter evolution equation in particular implies that ρ ≡ ρ(t) is nonincreasing along the flow. We
conclude the exposition by defining the Yamabe constant of g0, which incidentally provides a lower
bound for ρ. Let u be a solution of (1-2). We define the Lq(M) spaces with respect to the integration
measure dµ.

We define the first Sobolev space H 1(M) as the space of all v : M → R such that the first Sobolev
norm, defined with respect to dµ and the pointwise norm associated to g0, satisfies

∥v∥2
H1(M) :=

∫
M
ν2 dµ+

∫
M

|∇ν|2 dµ <∞.

Similarly we define H 1(M, g) by using dVolg instead of dµ and the pointwise norm associated to g. If u
and u−1 are both bounded, one easily checks that H 1(M)= H 1(M, g).

We define the Yamabe invariant of g0 as

Y (M, g0) := inf
v∈H1(M)\{0}

1
∥v∥2

L2n/(n−2)(M)

∫
M

4(n − 1)
n − 2

|∇v|2 + S0v
2 dµ

≤

∫
M

4(n − 1)
n − 2

|∇u|
2
+ S0u2 dµ= ρ (by (1-4)), (1-6)

where in the inequality we have used that for any solution u of (1-2), ∥u∥L2n/(n−2)(M) = dVolg(M) ≡ 1.
How one proceeds will depend heavily on the sign of the Yamabe constant. In this paper we will assume
that Y (M, g0) > 0. In particular, the average curvature ρ is then positive and uniformly bounded away
from zero along the normalized Yamabe flow.



480 JØRGEN OLSEN LYE AND BORIS VERTMAN

Assumption 1. The Yamabe constant Y (M, g0) is positive.

A Sobolev inequality and other admissibility assumptions. The Moser iteration arguments in this paper
are strongly motivated by the related work in [Akutagawa et al. 2014] on the Yamabe problem on stratified
spaces. Thus, similar to that paper, we impose certain admissibility assumptions, which are naturally
satisfied by certain compact stratified spaces with iterated cone-edge metrics.

Definition 1.2. Let (M, g0) be a smooth Riemannian manifold of dimension n. We call (M, g0) admissible
if it satisfies the following conditions:

• (M, g0) with volume form dµ= dVolg0 has finite volume: Volg0(M) <∞.

• For any ε > 0, there exist finitely many open balls B2Ri (xi )⊂ M such that

Volg0

(
M\

⋃
i

BRi (xi )

)
≤ ε. (1-7)

• Smooth, compactly supported functions C∞
c (M) are dense in H 1(M).1

• (M, g0) admits a Sobolev inequality of the following kind: defining Lq(M) spaces with respect to dµ,
there exist A0, B0 > 0 such that for all f ∈ H 1(M),

∥ f ∥
2
L2n/(n−2)(M) ≤ A0∥∇ f ∥

2
L2(M) + B0∥ f ∥

2
L2(M). (1-8)

The main examples we have in mind are closed manifolds2 and regular parts of smoothly stratified
spaces endowed with iterated cone-edge metrics. See [Akutagawa et al. 2014, Section 2.1] for a definition
of the latter. That the Sobolev inequality holds in this case is shown in Proposition 2.2 of the same paper.
Note that the list of admissibility assumptions does not contain compactness. Nor do we specify explicitly
how the metric g0 looks near the singular strata of M, in the case of stratified spaces. Restrictions on the
local behavior of the metric will instead be coded in Lq -data, like requiring the initial scalar curvature S0

to be in Lq(M) for suitable q > 0. These requirements are stated in the theorems below, and will vary
from statement to statement.

Assumption 2. (M, g0) is an admissible Riemannian manifold.

In what follows we want to relate the assumption of the Sobolev inequality (1-8) in Definition 1.2 to
positivity of the Yamabe constant Y (M, g0).

Proposition 1.3. Assume S0 ∈ L∞(M) and Y (M, g0) > 0. Then (1-8) holds.

Proof. Indeed, it follows directly from the definition of Y (M, g0) in (1-6) that

∥ f ∥
2
L2n/(n−2)(M) ≤

1
Y (M, g0)

(
4(n − 1)

n − 2
∥∇ f ∥

2
L2(M) + ∥S0∥L∞(M)∥ f ∥

2
L2(M)

)
for all f ∈ H 1(M). This is indeed the Sobolev inequality (1-8). □

1This can be phrased as H1
0 (M)= H1(M). Note that this rules out M being the interior of a manifold with a codimension 1

boundary.
2This includes finite volume, complete manifolds, since any finite volume, complete manifold satisfying the Sobolev inequality

is compact; see [Hebey 1996, Lemma 3.2, pp. 18–19 and Remark 2, pp. 56–57].
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Parabolic Schauder estimates and short-time existence. Our proof requires intricate arguments involving
the heat operator and its mapping properties, as seen in the previous work by the second author jointly with
Bahuaud [Bahuaud and Vertman 2014; 2019] in the setting of spaces with incomplete wedge singularities.
Here we axiomatize these arguments into a definition of certain parabolic Schauder estimates, having in
mind further generalizations to stratified spaces.

Definition 1.4. (M, g0) satisfies parabolic Schauder estimates if there is a scale of Banach spaces
{Ck,α

≡ Ck,α(M × [0, T ])} k∈N0 of continuous functions on M × [0, T ] with

C0,α
⊃ C1,α

⊃ C2,α
⊃ · · ·

for some α ∈ (0, 1) and any T > 0, with the following properties:

(1) Algebraic properties of the Banach spaces:

• For any k ∈ N0, the constant function 1 exists in Ck,α(M × [0, T ]).

• For any k ∈ N0 and any u ∈ Ck,α(M × [0, T ]) uniformly bounded away from zero, we have that the
inverse u−1 exists in Ck,α(M × [0, T ]).

• For any k ≥ 2 and ℓ≤ k we have Ck,α
·Cℓ,α

⊆ Cℓ,α. Writing ∥ · ∥ℓ,α for the norm on Cℓ,α, we have a
uniform constant Cℓ,α such that for any u ∈ Ck,α and v ∈ Cℓ,α,

∥u · v∥ℓ,α ≤ Cℓ,α∥u∥k,α∥v∥ℓ,α. (1-9)

(2) Regularity properties of the Banach spaces:

• We have the inclusions

C0,α(M × [0, T ])⊆ C0([0, T ], L2(M)),

C1,α(M × [0, T ])⊆ C0([0, T ], H 1(M)),

C2,α(M × [0, T ])⊆ L∞(M × [0, T ]).

(1-10)

Moreover, for any u ∈ C0,α(M ×[0, T ]) and any fixed p ∈ M, the evaluation u(p, · ) still lies in C0,α.
The map M ∋ p 7→ ∥u(p, · )∥0,α is again L2(M).

• If Ck,α([0, T ]) ⊂ Ck,α(M × [0, T ]) consists of functions that are constant on M, then the spaces
C2k,α([0, T ]) are characterized as

C2k,α([0, T ])= {u ∈ C0,α([0, T ]) | ∂k
t u ∈ C0,α([0, T ])}. (1-11)

• For any k ∈ N0, the following maps are bounded:

∂t ,10 : Ck+2,α(M × [0, T ])→ Ck,α(M × [0, T ]),

∇ : Ck+1,α(M × [0, T ])→ Ck,α(M × [0, T ]).
(1-12)

(3) Weak maximum principle for elements of the Banach spaces:

• Any u ∈ C2,α(M × [0, T ]) satisfies a weak maximum principle; that is for any Cauchy sequence
{qℓ}ℓ∈N ⊂ M we have

inf
M

u = lim
ℓ→∞

u(qℓ) =⇒ lim
ℓ→∞

(10u)(qℓ)≥ 0. (1-13)
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In the case that the Cauchy sequence {qℓ}ℓ∈N converges to an interior point p ∈ M, where u attains a
global minimum, we have that 10u(p)≥ 0.

(4) Mapping properties of the heat operator:

• The heat operator et10 admits the mapping properties

et10 : Ck,α(M × [0, T ])→ Ck+2,α(M × [0, T ]),

et10 : Ck,α(M × [0, T ])→ tαCk+1,α(M × [0, T ]),

et10 : L∞(M × [0, T ])→ C1,α(M × [0, T ]).

(1-14)

If et10 acts without convolution in time, then we have a bounded map

et10 : Ck,α(M)→ Ck,α(M × [0, T ]). (1-15)

(5) Mapping properties of other solution operators:

• For any positive a ∈ C1,α(M × [0, T ]) uniformly bounded away from zero, there is a solution
operator Q for (∂t − a ·10)u = f , u(0)= 0, with

Q : C0,α(M × [0, T ])→ C2,α(M × [0, T ]). (1-16)

If a ∈ C2,α, then additionally Q : C1,α
→ C3,α is bounded.

• For any positive a ∈ C1,α(M × [0, T ]) uniformly bounded away from zero, there is a solution
operator R for (∂t − a ·10)u = 0, u(0)= f , with

R : C2,α(M)→ C2,α(M × [0, T ]), (1-17)

where Ck,α(M) denotes the subspace of Ck,α(M × [0, T ]) consisting of time-independent functions.
If a ∈ C2,α, then additionally R : C3,α(M)→ C3,α(M × [0, T ]) is bounded.

Let us now discuss where such parabolic Schauder estimates hold.

Examples 1.5. (a) Parabolic Schauder estimates hold on smooth compact Riemannian manifolds without
boundary by the classical estimates of [Ladyženskaja et al. 1968].

(b) By [Bahuaud and Vertman 2014; 2019], a manifold with a wedge singularity satisfies the parabolic
Schauder estimates,3 assuming that the wedge metric is feasible in the sense of [Bahuaud and Vertman
2019, Definition 2.2]. The proof is based on the microlocal heat kernel description in [Mazzeo and
Vertman 2012]. Note that the choice of Banach spaces is not canonical, and instead one can use, for
example, the scale of weighted Hölder spaces as in [Vertman 2021].

(c) In view of the recent work by Albin and Gell-Redman [2017], we expect the same parabolic Schauder
estimates to hold on general stratified spaces with iterated cone-wedge metrics.

Assumption 3. (M, g0) satisfies parabolic Schauder estimates.

3In fact, in the mapping properties of solution operators Q and R we require here less than in [Bahuaud and Vertman 2019]:
in the case a ∈ C2,α we only ask for Q : C1,α

→ C3,α and R : C3,α(M)→ C3,α, while in that paper, these additional mapping
properties are proved for one order higher.
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Using parabolic Schauder estimates, we can prove short time existence and regularity of the renormalized
Yamabe flow, exactly as in [Bahuaud and Vertman 2014, Theorem 1.7 and 4.1] and by a slight adaptation
of [Bahuaud and Vertman 2019, Proposition 4.8].

Theorem 1.6. Let (M, g0) satisfy parabolic Schauder estimates. Assume, moreover, that the scalar
curvature S0 of g0 lies in C1,α(M). Then the following hold:

(1) The Yamabe flow (1-2) admits, for some T > 0 sufficiently small, a solution

u ∈ C2,α(M × [0, T ])⊆ C0([0, T ], H 1(M))∩ L∞(M × [0, T ])

which is positive and uniformly bounded away from zero.4

(2) If a solution, u ∈ C2,α(M ×[0, T ]), to the Yamabe flow (1-2) exists for a given T > 0 and is uniformly
bounded away from zero, then in fact u ∈ C3,α(M × [0, T ]). In particular, we obtain

S ∈ C1,α(M × [0, T ])⊆ C0([0, T ], H 1(M)).

Proof. We shall only provide a brief proof outline. The first statement is proved by setting up a fixed point
argument in the Banach space C2,α(M ×[0, T ]). If u = 1 + v ∈ C2,α(M ×[0, T ]) is a solution to (1-2),
then v satisfies the equation

∂tv− (n − 1)10v = −
1
4(n − 2)S0 +8(v), (1-18)

where8 : C2,α(M ×[0, T ])→ C0,α(M ×[0, T ]) is a bounded map, in view of the algebraic and regularity
properties (1-12) in Definition 1.4. Moreover, 8 is quadratic in its argument, i.e., writing ∥ · ∥k,α for the
norm on Ck,α for any k ∈ N, there exists a uniform C > 0, such that by (1-9) (compare [Bahuaud and
Vertman 2014, Lemma 5.1]), for all w,w′

∈ C2,α,

∥8(w)∥0,α ≤ C∥w∥
2
2,α and ∥8(w)−8(w′)∥0,α ≤ C(∥w∥2,α + ∥w′

∥2,α)∥w−w′
∥2,α. (1-19)

Now a solution v of (1-18) (and hence also a solution u = 1 + v of (1-2)) is obtained as a fixed point of
the map

C2,α(M × [0, T ]) ∋ v 7→ et (n−1)10
(
−

1
4(n − 2)S0 +8(v)

)
∈ C2,α(M × [0, T ]), (1-20)

which is a contraction mapping on a subset of C2,α(M ×[0, T ]) for T > 0 sufficiently small,5 by (1-14)
in Definition 1.4. One argues exactly as in [Bahuaud and Vertman 2014, Theorem 4.1]. Note that the
regularity of the scalar curvature S along the flow is then S ∈ C0,α(M × [0, T ]).

Note also that the fixed point argument is performed in a small ball around zero in C2,α(M ×[0, T ]),
and thus for T > 0 sufficiently small, the norm of v is small. Hence u = 1 + v is positive and bounded
away from zero.

The second statement improves the regularity of S. By the regularity properties (1-10) in Definition 1.4,
we conclude that ρ, ∂tρ ∈ C0,α([0, T ]). By (1-11), this implies that ρ ∈ C2,α([0, T ]). We can now apply

4Later on, we will prove uniform lower bounds on u for any finite T > 0.
5We need to assume that T > 0 is sufficiently small in order to control et (n−1)10(S0).
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the mapping properties (1-16) and (1-17)6 in Definition 1.4 to obtain a solution u′
∈ C3,α(M ×[0, T ])

with
∂t u′

− (n − 1)u−4/(n−2)10u′
=

1
4(n − 2)(ρu − S0u(n−6)/(n−2)), u′(0)= 1. (1-21)

The given solution u ∈ C2,α satisfies the same equation, and we can prove that u ≡ u′ by the weak
maximum property (1-13) of elements in C2,α. Thus, indeed, u ∈ C3,α and hence S ∈ C1,α. This is
basically the argument used in [Bahuaud and Vertman 2019, Proposition 4.8]. □

Remark 1.7. If we assume Q : C2,α
→ C4,α and R : C4,α(M)→ C4,α in Definition 1.4, as has been

proved in [Bahuaud and Vertman 2019], then the condition S0 ∈ C2,α(M) implies, by similar arguments as
in Theorem 1.6, that any solution u in C2,α is actually in C4,α. This would lead to S ∈ C2,α, in particular,
the scalar curvature would stay bounded along the flow. Here, we decided to require less in Definition 1.4,
assume less regularity for S0 and conclude boundedness of S by Moser iteration methods instead.

Regularity of the initial scalar curvature. In view of Theorem 1.6, we arrive at our final assumption on
a regularity of the initial scalar curvature S0 with respect to the scale of Banach spaces in Definition 1.4.

Assumption 4. Assuming that (M, g0) satisfies parabolic Schauder estimates, we also ask that the initial
scalar curvature S0 be an element of C1,α(M).

In view of Theorem 1.6, this implies that S ∈ H 1(M). Moreover, since u ∈ C2,α(M ×[0, T ])⊂ L∞

for T > 0 sufficiently small, norms on the Sobolev space H 1(M) with respect to g0 and norms on the
Sobolev space H 1(M, g) with respect to g = u4/(n−2)g0 are equivalent. Thus S(t) lies in the Sobolev
space H 1(M, g(t)) for any t ∈ [0, T ], which we abbreviate as

S ∈ H 1(M, g). (1-22)

Our arguments below will use (1-22) to show that given S0 ∈ Lq(M) for

q =
n2

2(n − 2)
=

n
2

+
n

n − 2
>

n
2
,

we may conclude by Moser iteration that S ∈ L∞(M) for positive times. We close this subsection with
the observation that on stratified spaces, S0 ∈ Lq(M) for q > 1

2 n and S0 ∈ L∞(M) basically carry the
same geometric restriction. Indeed, consider a cone (0, 1)× N over a Riemannian manifold (N , g0), with
metric g0 = dx2

⊕ x2gN + h, where h is smooth in x ∈ [0, 1] and |h|ḡ = O(x) as x → 0, and where we
write ḡ := dx2

⊕ x2gN . Then

S0 ∼
scal(gN )− dim N (dim N − 1)

x2 + O(x−1) as x → 0, (1-23)

where the higher order term O(x−1) comes from the perturbation h. We see that both of the assumptions
S0 ∈ L∞(M) and S0 ∈ Lq(M) for q > 1

2 n imply that the leading term of the metric g0 is scalar-flat, i.e.,
scal(gN )= dim N (dim N − 1).

6Here we use the assumption that u is uniformly bounded away from zero and that 1 ∈ C3,α by the algebraic properties of the
Banach spaces.
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The overarching strategy. Studies of the Yamabe flow usually follow the very rough pattern that we
outline here. One first argues that (1-2) has a short-time solution. This is the step we have been concerned
with in this section. This step doesn’t invoke the sign of the Yamabe constant.

The next step is to show that the flow can be extended to all times. The way one does this is to assume
the flow is defined for t ∈ (0, T ) for some maximal time T <∞ and then derive a priori bounds on the
solution u and the scalar curvature S, showing that neither of them develop singularities as t → T. One
can thus keep flowing past T, establishing long-time existence. This is the step we address in the rest of
the paper.

2. The evolution of the scalar curvature and lower bounds

In this section we derive a lower bound on the scalar curvature S along the normalized Yamabe flow.
We present an argument that requires neither the maximum principle nor the full set of assumptions in
Theorem 1.1, but rather the following assumptions (provided the flow exists):

• S ∈ H 1(M, g) along normalized Yamabe flow,
• H 1(M) and H 1(M, g) have equivalent norms,
• C∞

c (M) is dense in H 1(M),
• Y (M, g0) > 0.

(2-1)

These properties clearly follow from Assumptions 1, 2, 3 and 4.

Lemma 2.1. Let g = u4/(n−2)g0 be a family of metrics evolving according to the normalized Yamabe flow
equation (1-2) satisfying (2-1). Then S evolves according to

∂t S − (n − 1)1S = S(S − ρ), (2-2)

where 1 denotes the Laplacian with respect to the time-evolving metric g. We write S+ := max{S, 0} and
S− := − min{S, 0}. Then S± are elements of H 1(M, g) and satisfy

∂t S+ − (n − 1)1S+ ≤ S+(S+ − ρ), (2-3)

∂t S− − (n − 1)1S− ≤ −S−(S− + ρ). (2-4)

Remark 2.2. Equation (2-2) is to be understood in the weak sense: for any compactly supported smooth
test function φ ∈ C∞

c (M) we have∫
M
∂t S ·φ dVolg + (n − 1)

∫
M
(∇S,∇φ)g dVolg =

∫
M

S(S − ρ) ·φ dVolg.

Similarly for the partial differential inequalities (2-3) and (2-4) and φ ≥ 0, we have∫
M
∂t S± ·φ dVolg + (n − 1)

∫
M
(∇S±,∇φ)g dVolg ≤ ±

∫
M

S±(S± ∓ ρ) ·φ dVolg.

By (2-1), C∞
c (M) is dense in H 1(M)= H 1(M, g). Hence we might as well assume φ ∈ H 1(M, g) in the

weak formulation above.
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Proof. Equation (2-2) is well known and can be deduced as follows. Write

Lg := S − 4
n − 1
n − 2

1

for the conformal Laplacian of the metric g. We write L0 ≡ Lg0 . If g and g0 are related by g = u4/(n−2)g0,
then Lg and L0 are related by

Lg( · )= u−(n+2)/(n−2)L0(u · ).

In particular, S = Lg(1)= u−(n+2)/(n−2)L0(u). We differentiate this equation weakly in time and use (1-2)
to replace ∂t u = −

1
4(n − 2)(S − ρ)u and get

∂t S =
1
4(n + 2)(S − ρ)u−(n+2)/(n−2)L0(u)− 1

4(n − 2)u−(n+2)/(n−2)L0((S − ρ)u).

Applying the transformation rule for L we may rewrite this as

∂t S =
1
4(n + 2)(S − ρ)Lg(1)− 1

4(n − 2)Lg(S − ρ)

=
1
4(n + 2)(S − ρ)S + (n − 1)1S −

1
4(n − 2)(S − ρ)S.

This proves formula (2-2). In order to derive the differential inequality for S+, consider any ε > 0 and
define

ψε(x) :=

{√
x2 + ε2 − ε, x ≥ 0,

0, x < 0.

For v ∈ H 1(M, g) it is readily checked that ψε(v) ∈ H 1(M, g) and limε→0 ψε(v)= v+. Furthermore, in
the case x > 0, we compute the derivatives

ψ ′

ε(x)=
x

√
x2 + ε2

, ψ ′′

ε (x)=
ε2

(x2 + ε2)3/2
.

These are both bounded for a fixed ε>0, so the chain rule applies. Next up we claim, for any v∈ H 1(M, g),
in the weak sense

1ψε(v)≥
v

√
v2 + ε2

1v ≡ ψ ′

ε(v)1v. (2-5)

This is seen as follows. Let 0 ≤ ξ ∈ C∞
c (M) be arbitrary and compute∫

M
ξ1ψε(v) dVolg := −

∫
M
(∇ξ,∇ψε(v))g dVolg = −

∫
M

v
√
v2 + ε2

(∇ξ,∇v)g dVolg

= −

∫
M

(
∇v,∇

(
v

√
v2 + ε2

ξ

))
g

dVolg +

∫
M

ξε2
|∇v|2g

(v2 + ε2)3/2
dVolg

≥ −

∫
M

(
∇v,∇

(
v

√
v2 + ε2

ξ

))
g

dVolg

=:

∫
M
ξ

v
√
v2 + ε2

1v dVolg.
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This proves (2-5), which allows us to deduce that

∂tψε(S)− (n − 1)1ψε(S)≤

{
ψ ′
ε(S)(∂t S − (n − 1)1S), S ≥ 0,

0, S < 0,

=

{
ψ ′
ε(S)S(S − ρ), S ≥ 0,

0, S < 0,
(by (2-2))

=
S

√
S2 + ε2

S+(S+ − ρ).

Letting ε→ 0 results in (2-3). To prove (2-4), observe that S− = S+ − S. Hence

∂t S− − (n − 1)1S− = ∂t S+ − (n − 1)1S+ − (∂t S − (n − 1)1S)

≤ S+(S − ρ)− S(S − ρ)= S−(S − ρ),

where we have used (2-2) and (2-3) in the inequality step. The only thing which remains to be observed
is that S− · S = S−(S+ − S−)= −S2

−
. □

We can now derive lower bounds for S by studying the evolution (in-)equalities above. This is usually
done by invoking the weak maximum principle for S, which is not available under the assumptions (2-1).
Thus, we provide an alternative novel argument, which does not use a maximum principle and which we
could not find elsewhere in the literature.

Proposition 2.3. Let g = u4/(n−2)g0 be a family of metrics evolving according to the normalized Yamabe
flow equation (1-2) satisfying (2-1). Then

∥S−∥L p(M,g)(t)≤ etnρ(0)/(2p)
∥(S0)−∥L p(M)

for all 2 ≤ p ≤ ∞. In particular, if (S0)− ∈ L∞(M), then S− ∈ L∞ on [0, T ] with uniform bounds
depending only on T and S0. Moreover, if S0 ≥ 0, then S ≥ 0 along the normalized Yamabe flow for all
time.

Proof. The weak formulation of (2-4) is that for any 0 ≤ ξ ∈ H 1(M, g),∫
M
ξ∂t S− dVolg + (n − 1)

∫
M
(∇S−,∇ξ)g dVolg ≤ −

∫
ξ S−(S− + ρ) dVolg. (2-6)

A problem when manipulating this is that the chain rule fails to hold in general, so we use the same
workaround as [Akutagawa et al. 2014, pp. 10–13] (who in turn are following [Gursky 1993, pp. 349–352]).
Let L > 0, β ≥ 1 and define

φβ,L(x) :=

{
xβ, x ≤ L ,

βLβ−1(x − L)+ Lβ, x > L ,
(2-7)

Gβ,L(x) :=

∫ x

0
φ′

β,L(y)
2 dy =


β2

2β − 1
x2β−1, x ≤ L ,

β2L2(β−1)x −
2β2L2β−1(β − 1)

2β − 1
, x > L .

(2-8)
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Finally, we define Hβ,L(x) :=
∫ x

0 Gβ,L(y) dy and conclude that

Hβ,L(x)=


βx2β

2(2β − 1)
, x ≤ L ,

β2L2(β−1)

2
(x2

− L2)−
2β2L2β−1(β − 1)

2β − 1
(x − L)+

βL2β

2(2β − 1)
, x > L .

The crucial features of these definitions are

φβ,L(x)
L→∞
−−→ xβ, Gβ,L(x)

L→∞
−−→

β2

2β − 1
x2β−1, Hβ,L(x)

L→∞
−−→

β

2(2β − 1)
x2β.

These functions are also dominated by simpler expressions. For instance, Hβ,L(x)≤ β2x2β holds for all
L > 0 and β ≥ 1 as follows: For x ≤ L , there is nothing to show. For x > L , we first observe that

Hβ,L(x)=
β2

2
L2(β−1)x2

−
2β2(β − 1)

2β − 1
L2β−1x +

β(β − 1)
2

L2β.

Dropping the nonpositive middle term and estimating by x ≥ L , we find

Hβ,L(x)≤
β2

2
x2β

+
β(β − 1)

2
x2β < β2x2β.

Another important property is that φβ,L ∈ C1(R+), with φ′
β,L ∈ L∞(R+) for all L > 0, and so we

may apply the chain rule to φβ,L(S−). Finally, since we are assuming a C1 time-dependence, we have
∂t Hβ,L(S−) = (∂t S−)Gβ,L(S−). We will use ξ := Gβ,L(S−) as a test function in (2-6). Note that by
definition, Gβ,L(x) is linear for x > L and hence Gβ,L( f ) ∈ H 1(M, g) whenever f ∈ H 1(M, g) (here
we are also using that Vol(M) <∞). Then (2-6) implies∫

M
∂t Hβ,L(S−) dVolg ≤ −(n − 1)

∫
M

|∇φβ,L(S−)|
2
g dVolg −

∫
M

Gβ,L(S−)S−(S− + ρ) dVolg. (2-9)

We then use (1-3) to conclude∫
M
∂t Hβ,L(S−) dVolg = ∂t

∫
M

Hβ,L(S−) dVolg +
n
2

∫
M

Hβ,L(S−)(S − ρ) dVolg

= ∂t

∫
M

Hβ,L(S−) dVolg −
n
2

∫
M

Hβ,L(S−)(S− + ρ) dVolg, (2-10)

where the last step uses

SHβ,L(S−)≡ (S+ − S−)Hβ,L(S−)= −S−Hβ,L(S−).

Finally, we need a Sobolev inequality given to us by the positivity of the Yamabe constant, namely for
any f ∈ H 1(M, g) we have by the definition of Y (M, g0) (note that Y (M, g0)= Y (M, g) by conformal
invariance) that

Y (M, g0)∥ f ∥
2
L2n/(n−2)(M,g) ≤ 4

n − 1
n − 2

∥∇ f ∥
2
L2(M,g) +

∫
M

S f 2 dVolg. (2-11)
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We set f = φβ,L(S−). Observe that φβ,L(S−)
2S = −φβ,L(S−)

2S−. Then (2-11) implies

(n − 1)∥∇φβ,L(S−)∥
2
L2(M,g) ≥

n − 2
4

Y (M, g0)∥φβ,L(S−)∥
2
L2n/(n−2)(M,g) +

n − 2
4

∫
M
φβ,L(S−)

2S− dVolg

≥
n − 2

4

∫
M
φβ,L(S−)

2S− dVolg. (2-12)

Combining (2-9), (2-10) and (2-12) yields

∂t

∫
M

Hβ,L(S−) dVolg ≤

∫
M

(
n
2

Hβ,L(S−)− Gβ,L(S−)S− −
n − 2

4
φβ,L(S−)

2
)

S− dVolg

+

∫
M
ρ

(
n
2

Hβ,L(S−)− Gβ,L(S−)S−

)
dVolg.

We claim the first group of terms on the right-hand side is nonpositive, which follows by a direct
computation. We begin by noting that

1
2 nHβ,L(x)− xGβ,L(x)− 1

4(n − 2)φβ,L(x)2

=


(−1)

4(2β − 1)
((4β + n)(β − 1)+ 2)x2β, x ≤ L ,

L2β

4

(
−2β2

(
x
L

)2

−
2(n − 2)β(β − 1)

2β − 1

(
x
L

)
+ (β − 1)(n + 2(β − 1))

)
, x > L .

In both cases one checks that the expressions are nonpositive7 for β ≥ 1. Hence using that Gβ,L(S−)≥ 0
and ρ is nonincreasing by (1-5), we conclude

∂t

∫
M

Hβ,L(S−) dVolg ≤

∫
M

nρ
2

Hβ,L(S−) dVolg ≤
nρ(0)

2

∫
M

Hβ,L(S−) dVolg.

Integrating shows ∫
M

Hβ,L(S−) dVolg(t)≤ etnρ(0)/2
∫

M
Hβ,L(S−) dVolg(t = 0).

The conclusion will follow when we take the limit L → ∞, which we can do for the following reason.8

On the left-hand side we appeal to Fatou’s lemma and the pointwise convergence of Hβ,L to find

lim inf
L→∞

∫
M

Hβ,L(S−) dVolg ≥

∫
M

lim inf
L→∞

Hβ,L(S−) dVolg =
β

2(2β − 1)

∫
M

S2β
− dVolg.

The right-hand side we deal with by the dominated convergence theorem. We showed on page 488
that Hβ,L(x) ≤ β2x2β holds for all L > 0 and β ≥ 1. Since we are assuming (S0)− ∈ L∞(M), we can
use β2((S0)−)

2β as a dominating integrable function to deduce

lim inf
L→∞

∫
M

Hβ,L((S0)−) dµ= lim
L→∞

∫
M

Hβ,L((S0)−) dµ=
β

2(2β − 1)

∫
M
((S0)−)

2β dµ.

7For the x ≥ L case observe that the polynomial is negative for x = L , and the expression for x > L clearly has a negative
derivative. So the expression remains negative for x > L .

8This argument is applied several times, without writing out the details in the latter instances.
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Combined we have for β ≥ 1, ∫
M

S2β
− dVolg ≤ etnρ(0)/2

∫
M
(S0)

2β
− dµ.

This gives the conclusion when writing 2β = p. □

Remark 2.4. Let us again emphasize the novelty of this argument: it circumvents the maximum principle,
and one only needs to know that S ∈ H 1(M, g), as assumed in (2-1).

For completeness, let us also provide the classical and widely known argument (see [Brendle 2005]),
using the weak maximum principle: we assume S satisfies (1-13), which is the case if S ∈C2,α(M×[0, T ]).
See Remark 1.7 for conditions which ensure this regularity of S along the flow.

Proposition 2.5. Assume that S ∈ C0(M × [0, T ]) satisfies the weak maximum principle (1-13) and that
Y (M, g0) > 0. Then S admits a uniform lower bound

S ≥ min
{
0, inf

M
S0

}
.

Proof. By the weak maximum principle, we have, for Smin := infM S,

∂t Smin ≥ Smin(Smin − ρ).

If Smin is negative for all times, then the right-hand side becomes positive, and we get Smin ≥ infM S0.
If Smin is positive for all times, we can further estimate the right-hand side using ρ ≤ ρ(0); see (1-5).
Dividing, we then get

∂t Smin

Smin(ρ(0)− Smin)
≥ −1.

Integrating this differential inequality, we find

Smin(t)≥
ρ(0)(S0)min

eρ(0)t(ρ(0)− (S0)min)+ (S0)min
≥ 0.

If Smin changes sign along the flow, the statement follows by a combination of both estimates. □

3. Uniform bounds on the solution along the flow

The arguments of this section employ the assumptions

• (M, g0) is an admissible manifold,
• H 1(M) and H 1(M, g) have equivalent norms,
• u ∈ C0([0, T ], H 1(M)) and S ∈ H 1(M, g),
• Y (M, g0) > 0,

(3-1)

provided the flow exists. These properties follow from Assumptions 1, 2, 3 and 4.
We begin with the upper bound on u, which follows easily from the lower bound on the scalar

curvature S, obtained in Proposition 2.3.
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Proposition 3.1. Let g = u4/(n−2)g0 be a family of metrics, u> 0, such that (3-1) holds and the normalized
Yamabe flow equation (1-2) holds weakly, with u(0)= 1. Assume furthermore that (S0)− ∈ L∞(M), where
S0 is the scalar curvature of g0. Then there exists some uniform constant 0< C(T ) <∞, depending only
on T > 0 and S0, such that u ≤ C(T ) for all t ∈ [0, T ] with T <∞.

Proof. We have by (1-1) and (1-5) that

∂t u = −
1
4(n − 2)(S − ρ)u ≤

1
4(n − 2)(S− + ρ)u ≤

1
4(n − 2)(S− + ρ(0))u.

By Proposition 2.3 we have ∥S−∥L∞(M) ≤ ∥(S0)−∥L∞(M), and hence setting

C :=
1
4(n − 2)(∥(S0)−∥L∞(M) + ρ(0)),

we conclude
∂t u ≤ Cu =⇒ u ≤ eCT u0 = eCT. □

The lower bound is more intricate and in many ways more interesting. The argument will rely on the
upper bound on u and the lower bound on S. The proof will be a mixture and modification of the methods
in [Akutagawa et al. 2014, pp. 20–21; Brendle 2005, pp. 221–222].

Theorem 3.2. Let g = u4/(n−2)g0 be a family of metrics, u > 0, such that (3-1) holds and the normalized
Yamabe flow equation (1-2) holds weakly, with u(0)= 1. Assume furthermore that (S0)− ∈ L∞(M) and
that S0 ∈ Lq(M) for some q > 1

2 n. Then there exists some uniform constant c(T ) > 0, depending only on
T > 0 and S0, such that c(T )≤ u for all t ∈ [0, T ].

Proof. By combining (1-2) and (1-1) we may eliminate the term ∂t u and get

−4
n − 1
n − 2

10u = (u4/(n−2)S − S0)u.

Using that (S0)− ∈ L∞(M) and u ∈ L∞(M × [0, T ]), by Proposition 3.1 we may define

P :=
n − 2

4(n − 1)
(S0 + ∥u∥

4/(n−2)
L∞(MT )

∥(S0)−∥L∞(M)) ∈ Lq(M).

Note that P only depends on S0 and T. Furthermore, Proposition 2.3 yields

(−10 + P)u ≥ 0. (3-2)

Let us explain the proof idea. Assume we can show that there is some δ > 0 such that u−δ
∈ H 1(M)

uniformly in t ∈ [0, T ]. Then (3-2) implies

(−10 − δP)u−δ
= δu−1−δ10u − δ(1 + δ)u−2−δ

|∇u|
2
− δPu−δ

= −δu−1−δ(−10 + P)u − δ(1 + δ)u−2−δ
|∇u|

2
≤ 0. (3-3)

This is precisely the setting of [Akutagawa et al. 2014, Proposition 1.8], which then concludes by Moser
iteration and Sobolev inequality (1-8) that

∥u−δ
∥L∞(M) ≤ C∥u−δ

∥H1(M),
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where the constant C > 0 depends on δP, hence only on T and S0, but not on t . Under our temporary
assumption (3-2), we thus get a uniform bound on u−δ, which gives a uniform lower bound on u.

Hence we only need to show that u−δ
∈ H 1(M) uniformly. Let ε, δ > 0 and (following [Akutagawa

et al. 2014, pp. 20–21]) define the functions ψε(u) := (u + ε)−δ and φε(u) := (u + ε)−1−2δ. These are
both in H 1(M) since u ∈ H 1(M). Using φε as a test function in the weak formulation of (3-2), we deduce

−
1 + 2δ
δ2 ∥∇ψε(u)∥2

L2(M) +

∫
M

Puφε(u) dµ≥ 0,

and, using that uφε(u)≤ ψε(u)2 along with the Hölder inequality, we find

∥∇ψε(u)∥2
L2(M) ≤

δ2

1 + 2δ
∥P∥Lq (M)∥ψε(u)2∥Lq/(q−1)(M). (3-4)

Since q > 1
2 n, we have q/(q − 1) < n/(n − 2) and thus ∥ψε(u)2∥Lq/(q−1)(M) ≤ ∥ψε(u)∥2

L2n/(n−2)(M). By the
Sobolev inequality (1-8) we know

∥ψε(u)∥2
L2n/(n−2)(M) ≤ A0∥∇ψε(u)∥2

L2(M) + B0∥ψε(u)∥2
L2(M). (3-5)

Next we need a Poincaré inequality. Let B ⊂ M be a ball. Then, exactly as in [Akutagawa et al. 2014,
Lemma 1.14], there exists a constant CB > 0 such that

∥ f ∥
2
L2(M) ≤ CB(∥∇ f ∥

2
L2(M) + ∥ f ∥

2
L2(B)) (3-6)

holds for all f ∈ H 1(M). Plugging (3-5) and (3-6) into (3-4) yields

∥∇ψε(u)∥2
L2(M) ≤

δ2

1 + 2δ
∥P∥Lq (M)((A0 + B0CB)∥∇ψε(u)∥2

L2(M) + B0CB∥ψε(u)∥2
L2(B)),

which is equivalent to(
1 −

δ2

1 + 2δ
∥P∥Lq (M)(A0 + B0CB)

)
∥∇ψε(u)∥2

L2(M) ≤
δ2

1 + 2δ
∥P∥Lq (M)B0CB∥ψε(u)∥2

L2(B).

Choosing δ > 0 small enough so that the left-hand side becomes positive, we get a uniform (meaning now
both t- and ε-independent) bound on ∥∇ψε(u)∥L2(M) if we can get a uniform bound on ∥ψε(u)∥L2(B).
The uniform bound on ∥ψε(u)∥L2(B) will come from the local theory for elliptic supersolutions. Observe
that since u satisfies (3-2), we have u2n/(n−2) satisfies (by the same computation as in (3-3))

−10u2n/(n−2)
+

2n
n − 2

Pu2n/(n−2)
≥ 0.

Let R > 0 be such that B4R(x)⊂ M for some x ∈ M. Then, according to [Gilbarg and Trudinger 1983,
Theorem 8.18, p. 194], the following weak Harnack inequality holds on B2R(x); namely there is a
constant C > 0 independent of u but depending on g0, R and n such that

Volg(B2R(x))≡ ∥u2n/(n−2)
∥L1(B2R(x)) ≤ C inf

BR(x)
u2n/(n−2), (3-7)
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where in the first identification we recall that dVolg = u2n/(n−2)dµ. By the admissibility of (M, g0), the
assumption (1-7) holds and we may take a collection of balls B4Ri (xi )⊂ M, indexed by i = 1, . . . , N <∞,
with the property that9 (

1 − Volg0

( N⋃
i=1

B2Ri (xi )

))
∥u∥

2n/(n−2)
L∞(MT )

< 1. (3-8)

Let Ci be the constant in (3-7) for the ball B2Ri (xi ). By summing all the individual inequalities (3-7) for
each i = 1, . . . , N, we have

N∑
i=1

Volg(B2Ri (xi ))≤

N∑
i=1

Ci inf
BRi (xi )

u2n/(n−2)
≤ NC max

i

(
inf

BRi (xi )
u2n/(n−2))

with C := maxi Ci . The left-hand side can bounded from below by
N∑

i=1

Volg(B2Ri (xi ))≥ Volg

( N⋃
i=1

B2Ri (xi )

)
= 1 − Volg

(
M \

N⋃
i=1

B2Ri (xi )

)
≥ 1 − Volg0

(
M \

N⋃
i=1

B2Ri (xi )

)
∥u∥

2n/(n−2)
L∞(MT )

=: c,

which is positive by choice of the balls subject to (3-8). Thus

0< c ≤ NC max
i

(
inf

BRi (xi )
u2n/(n−2)).

This shows that there has to be a ball BRi (xi ) with u uniformly bounded from below by c(T ) > 0 for
t ∈ [0, T ]. On this ball we thus get a uniform bound ψε(u) ≥ c(T )−δ, which gives our desired t- and
ε-independent bound on ∥ψε(u)∥2

L2(B), and thereby we have that u−δ
∈ H 1(M) uniformly. □

Corollary 3.3. Under the conditions of Theorem 3.2, one can find uniform constants 0< A(T ), B(T )<∞,
depending only on T > 0 and initial scalar curvature S0 (but not dependent on t), such that for all
f ∈ H 1(M, g),

∥ f ∥
2
L2n/(n−2)(M,g) ≤ A(T )∥∇ f ∥

2
L2(M,g) + B(T )∥ f ∥

2
L2(M,g), (3-9)

i.e., (1-8) holds for the time-dependent metric but with time-independent constants.

Proof. Due to (1-8) we have, for all f ∈ H 1(M)= H 1(M, g),

∥ f ∥
2
L2n/(n−2)(M,g0)

≤ A0∥∇ f ∥
2
L2(M,g0)

+ B0∥ f ∥
2
L2(M,g0)

.

Using g = u4/(n−2)g0, we conclude a similar estimate with respect to g:

∥ f ∥
2
L2n/(n−2)(M,g) ≤ A(T )∥∇ f ∥

2
L2(M,g) + B(T )∥ f ∥

2
L2(M,g), (3-10)

where

A(T ) := A0
(supMT

u)2

(infMT u)2
, B(T ) := B0

(supMT
u)2

(infMT u)2n/(n−2) .

Now the statement follows, since u, u−1
∈ L∞(M × [0, T ]) by Proposition 3.1 and Theorem 3.2. □

9Note that the volume of (M, g0) is normalized to 1 and thus (3-8) corresponds to (1-7).
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We shall need this Sobolev inequality (3-9) when we tackle the upper bound on the scalar curvature S
in Section 4.

4. Upper bound on the scalar curvature along the flow

The arguments of this section employ the assumptions

• (M, g0) is an admissible manifold,
• H 1(M) and H 1(M, g) have equivalent norms,
• C∞

c (M) is dense in H 1(M),
• the Sobolev inequality (3-9) holds,
• S ∈ H 1(M, g) and Y (M, g0) > 0,

(4-1)

provided the flow exists. These properties follow from Assumptions 1, 2, 3 and 4, as in the previous
section. The Sobolev inequality (3-9) holds under the same assumptions in view of Corollary 3.3. In this
section we use (4-1) to show a uniform upper bound on the scalar curvature. More precisely, we will
show the following result.

Theorem 4.1. Let S evolve according to (2-2) with initial curvature S0 ∈ Ln2/(2(n−2))(M) and its negative
part (S0)− ∈ L∞(M). Then, assuming (4-1) holds, there exists a uniform constant 0 < C(T ) < ∞,
depending only on T > 0 and S0, such that

∥S∥L∞(M×[T/2,T ]) ≤ C(T ).

The proof proceeds in two steps. The first step is to prove an Ln2/(2(n−2))(M, g)-norm bound on S,
uniform in t ∈ [0, T ]. That uniform bound rests on a chain of arguments of [Brendle 2005, Lemmas 2.2,
2.3, 2.5] (also to be found in [Schwetlick and Struwe 2003, Lemma 3.3]) that apply in our setting as well.
In the second step we perform a Moser iteration argument by following [Ma et al. 2012]. Our proofs are
close to those in [Brendle 2005] with some additional arguments due to lower regularity.

Lemma 4.2. Under the conditions of Theorem 4.1, there exists for any finite T > 0 a uniform constant
0< C(T ) <∞, depending only on T and S0, such that for all t ∈ [0, T ] we have the estimate10∫ T

0

(∫
M

Sn2/(2(n−2)) dVolg

)(n−2)/n

dt ≤ C(T ), ∥S∥Ln/2(M,g) ≤ C, (4-2)

where the second constant C only depends on S0, not on T.

Proof. It suffices to prove the statement for S+ and S− individually. By Proposition 2.3, the statement
holds for the negative part S−. Thus we only need to prove the claim for S+. We may therefore assume
without loss of generality that S ≥ 0, so that S ≡ S+, and use (2-3) as the evolution equation.

The claim will follow from the evolution equation (2-2), but we have to argue a bit differently
depending on whether 3 ≤ n ≤ 4 or n > 4. The idea is the same in all dimensions n ≥ 3 however. Let

10Below, we will denote all uniform positive constants, depending only on T and S0, either by C(T ) or CT , unless stated
otherwise.
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us start with 3 ≤ n ≤ 4. Fix any σ > 0, and set β =
1
4 n. Since β ≤ 1, the function x 7→ (x + σ)β is

in C1
[0,∞) with bounded derivative. Thus, we may apply the chain rule to (S + σ)β and conclude

that (S + σ)β ∈ C1([0, T ]; H 1(M, g)). We use β2/(2β − 1)(S + σ)2β−1 as a test function with β =
1
4 n

in the weak formulation of (2-3), which yields the inequality

β2

2β − 1

∫
M
(S + σ)2β−1∂t(S + σ) dVolg + (n − 1)

∫
M

|∇(S + σ)β |2 dVolg

≤
β2

2β − 1

∫
M

S(S − ρ)(S + σ)2β−1 dVolg.

Using (1-3) yields

β

2(2β − 1)
∂t

∫
M
(S + σ)2β dVolg + (n − 1)

∫
M

|∇(S + σ)β |2 dVolg

≤
β

2β − 1

∫
M
βS(S − ρ)(S + σ)2β−1

−
n
4
(S − ρ)(S + σ)2β dVolg

= −
β2σ

2β − 1

∫
M
(S − ρ)(S + σ)2β−1 dVolg

= −
β2σ

2β − 1

∫
M
(S + σ − ρ)(S + σ)2β−1 dVolg +

σ 2β2

2β − 1

∫
M
(S + σ)2β−1 dVolg

≤
σβ2(σ + ρ(0))

2β − 1

∫
M
(S + σ)2β−1 dVolg ≤

σβ2(σ + ρ(0))
2β − 1

∫
M
(S + σ)2β dVolg,

where the first equality is due to β=
1
4 n, the penultimate inequality uses ρ(0)≥ρ(t) and the final inequality

is due to Hölder with p = β/(β−1) and q = β. We want to integrate this inequality in time. Note that any
inequality of the form ∂tw(t)+ a(t)≤ bw(t) with a(t)≥ 0 yields ∂tw ≤ bw and hence w(t)≤ ebtw(0).
Plugging this estimate into the original differential inequality leads to ∂tw+ a ≤ bebtw(0). Integrating
the latter inequality in time yields w(t)+

∫ t
0 a(s) ds ≤ ebtw(0). We therefore conclude that∫

M
(S + σ)n/2 dVolg(T )+

4(n − 2)(n − 1)
n

∫ T

0

∫
M

|∇(S + σ)n/4|2 dVolg

≤ eσ(σ+ρ(0))nT/2
∫

M
(S0 + σ)n/2 dµ. (4-3)

This is for any σ > 0. Sending σ → 0 and using Fatou’s lemma on the left-hand side and the monotone
convergence theorem on the right-hand side yields (on dropping the nonnegative term with ∇S)∫

M
Sn/2 dVolg(T )≤

∫
M

Sn/2
0 dµ.

This yields our uniform Ln/2(M, g) bound on S in (4-2). Returning to (4-3), we appeal to the Sobolev
inequality (3-9) to deduce∫ T

0
∥(S + σ)n/4∥2

L2n/(n−2)(M,g) dt ≤

(
A(T )n

4(n − 2)(n − 1)
+ T B(T )

)
eσ(σ+ρ(0))nT/2

∫
M
(S0 + σ)n/2 dµ,
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hence also ∫ T

0

(∫
M

|S|
n2/(2(n−2)) dVolg

)(n−2)/n

dt ≤ C(T ).

This proves the claim for 3 ≤ n ≤ 4.
For n > 4 the claim will follow similarly, but the above test function does not have bounded derivative

for n > 4, and we neither know that it is in H 1 nor do we know that the chain rule applies. We therefore
argue similarly to the proof of Proposition 2.3, where we introduced the functions φβ,L , Gβ,L and Hβ,L .
We again set β =

1
4 n. Using Gβ,L(S) as a test function in (2-2), we find∫

M
Gβ,L(S)(∂t S) dVolg + (n − 1)

∫
M

|∇φβ,L(S)|2 dVolg ≤

∫
M

S(S − ρ)Gβ,L(S) dVolg.

Using the evolution equation (1-3) for the volume form, we have

∂t

∫
M

Hβ,L(S) dVolg+(n−1)
∫

M
|∇φβ,L(S)|2 dVolg ≤

∫
M
(S−ρ)

(
SGβ,L(S)−

n
2

Hβ,L(S)
)

dVolg. (4-4)

One readily checks from the definitions of Gβ,L and Hβ,L in Proposition 2.3 that

x Gβ,L(x)−
n
2

Hβ,L(x)=


β

2β − 1
x2β

(
β −

n
4

)
, x ≤ L ,

β2L2β
((

1 −
n
4

)(
x
L

)2

+
2(β − 1)
2β − 1

(
n
2

− 1
)

x
L

−
n(β − 1)

4β

)
, x > L ,

(4-5)

and from this one sees that xGβ,L(x)− 1
2 nHβ,L(x)≤ 0 for β =

1
4 n and n ≥ 4 as follows: For x ≤ L there

is nothing to show. For x > L , notice that

β2L2β
((

1 −
n
4

)(
x
L

)2

+
2(β − 1)
2β − 1

(
n
2

− 1
)

x
L

−
n(β − 1)

4β

)
= −β2(β − 1)L2β

(
x
L

− 1
)2

≤ 0,

where we have substituted n = 4β and recognized a square.11 Hence, using again that ρ is nonincreasing
along the flow, we conclude that the inequality

∂t

∫
M

Hβ,L(S) dVolg + (n − 1)
∫

M
|∇φβ,L(S)|2 dVolg ≤ 0

holds for any L ≥ ρ(0). This is a differential inequality of the same kind as in the above 3 ≤ n ≤ 4 case.
Integrating it we deduce, for any t ∈ [0, T ],∫

M
Hβ,L(S) dVolg(T )+ (n − 1)

∫ T

0

∫
M

|∇φβ,L(S)|2 dVolg dt ≤

∫
M

Hβ,L(S0) dµ. (4-6)

Using β =
1
4 n and letting L → ∞, this yields, using Fatou’s lemma and dominated convergence exactly as

in the final step of the proof of Proposition 2.3 (neglecting the positive second summand on the left-hand

11This is the point where we need n ̸= 3, since in this case β − 1< 0 and the above expression fails to be negative for x > L .
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side of (4-6)), the inequality

∥S∥Ln/2(M,g) =

(∫
M

Sn/2 dVolg

)2/n

≤

(∫
M

|S0|
n/2 dµ

)2/n

≡ C, (4-7)

where the constant C(T ) > 0 depends only on T and S0. This yields the second estimate in (4-2) for n> 4.
For the first estimate in (4-2), note that φβ,L(S) ∈ H 1(M, g)12 and thus by (3-9) and (4-6) we deduce∫ T

0

(∫
M

|φβ,L(S)|2n/(n−2) dVolg

)(n−2)/n

dt

≤ A(T )
∫ T

0

∫
M

|∇φβ,L(S)|2 dVolg dt + B(T )
∫ T

0

∫
M

|φβ,L(S)|2 dVolg dt

≤
A(T )
n − 1

(∫
M

Hβ,L(S0) dµ−

∫
M

Hβ,L(S) dVolg(T )
)

+ B(T )
∫ T

0

∫
M

|φβ,L(S)|2 dVolg dt.

Thus, letting L →∞ we conclude, using Fatou’s lemma and dominated convergence as before, with β=
1
4 n,

and (4-7), that∫ T

0

(∫
M

Sn2/(2(n−2)) dVolg

)(n−2)/n

dt ≤

(
n A(T )

4(n − 1)(n − 2)
+ B(T )T

) ∫
M

|S0|
n/2 dµ≡ C(T ), (4-8)

where the uniform constant C(T ) > 0 depends only on T and S0. This proves the first estimate in (4-2)
for n > 4. □

Lemma 4.3. Under the conditions of Theorem 4.1, there exists for any finite T > 0 a uniform constant
0< C(T ) <∞, depending only on T and S0, such that for all t ∈ [0, T ] we have the estimate∫

M
|S|

n2/(2(n−2)) dVolg ≤ C(T ).

Proof. As in the previous lemma we have to split the argument into cases based on the dimension. We
first show the statement for n ≥ 4. We will again use the inequality (4-4). However, while in Lemma 4.2
we set β =

1
4 n, here we will use the inequality (4-4) with β = n2/(4(n − 2)). For this choice of β the

expression xGβ,L(x)− 1
2 nHβ,L(x) is no longer necessarily nonpositive, and we estimate it against a new

approximation function

fβ,L(x) :=

{
βx2β, x ≤ L ,
nβ2L2β−1x, x > L .

(4-9)

By (4-5) one sees that the inequality xGβ,L(x)− 1
2 nHβ,L(x) ≤ fβ,L(x) holds for all β ≥ 1 and L > 0

in the case n ≥ 4. One important aspect to notice is that fβ,L(x) is linear in x for x > L , as opposed to
quadratic in x for Hβ,L(x) and xGβ,L(x). This will become important below. Returning to (4-4) and

12Note that a priori we do not know if Sn/4
∈ H1(M; g) and thus cannot directly apply the Sobolev inequality (3-9) to Sn/4.

However, we do know that φβ,L (S) ∈ H1(M, g), since φβ,L (x) is linear for x > L and S ∈ H1(M, g) for each fixed time
argument.
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applying (3-9) to the term ∥∇φβ,L(S)∥2
L2(M,g), after some reshuffling we find

∂t∥Hβ,L(S)∥L1(M,g) ≤ (n − 1)
B(T )
A(T )

∥φβ,L(S)2∥L1(M,g) −
(n − 1)
A(T )

∥φβ,L(S)∥2
L2n/(n−2)(M,g)

+ ρ(0)
∥∥SGβ,L(S)− 1

2 nHβ,L(S)
∥∥

L1(M,g) + ∥S fβ,L(S)∥L1(M,g). (4-10)

A straightforward computation shows, for all β ≥ 1 and L > 0, that

12βHβ,L(x)≥ φβ,L(x)2 and 4βHβ,L(x)≥ xGβ,L , (4-11)

hold, and here is a way of seeing this: For x ≤ L these are both obvious from the definitions, so we look
at x > L . One first notices that

φβ,L(x)2 = β2L2(β−1)x2
− 2β(β − 1)L2β−1x + (β − 1)2L2β

≤ β2L2(β−1)(x2
+ 2L2)≤ 3β2L2(β−1)x2,

where the first inequality comes from dropping the nonpositive linear term and estimating 1 ≤ β, and the
final inequality is simply L2 < x2. We similarly estimate Hβ,L(x) from below for x > L and find

Hβ,L(x)=

(
β2

2

(
x
L

)2

−
2β2(β − 1)

2β − 1

(
x
L

)
+
β(β − 1)

2

)
L2β

≥

(
β2

2(2β − 1)

(
x
L

)2

+
β(β − 1)

2

)
L2β

≥
β2

2(2β − 1)
x2L2(β−1), (4-12)

where the first inequality uses −x/L ≥ −x2/L2 and the second inequality comes from dropping the
nonnegative constant term. Using these two estimates one readily sees that

12βHβ,L(x)≥
2β

2β − 1
3β2x2L2(β−1)

≥ 3β2x2L2(β−1)
≥ φβ,L(x)2,

showing half of the claim in (4-11). To see the other half, first observe that (for x > L) by dropping the
nonpositive term in (2-8) we have xGβ,L(x)≤ β2x2L2(β−1). Using (4-12) again we deduce

4βHβ,L(x)≥
2β

2β − 1
β2x2L2(β−1)

≥ β2x2L2(β−1)
≥ xGβ,L(x).

This finishes the proof of (4-11), so we arrive by overestimating the right-hand side of (4-10) at the
inequality

∂t∥Hβ,L(S)∥L1(M,g) ≤ CT ∥Hβ,L(S)∥L1(M,g)+∥S fβ,L(S)∥L1(M,g)−
(n−1)
A(T )

∥φβ,L(S)∥2
L2n/(n−2)(M,g), (4-13)

where the uniform constant CT > 0 is explicitly given by

CT := 12(n − 1)β
A(T )
B(T )

+ ρ(0)
(

n
2

+ 4β
)
.

Introduce the nonnegative, real function Fβ,L via

Fβ,L(x) := (x fβ,L(x))1/(2β+1).
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Assume β > 1
4 n, which holds, for example, for β = n2/(4(n − 2)). Set α := n/(4β) < 1 and choose

any δ > 0. Observe that by the Hölder inequality in the first estimate and the Young inequality in the
second, we obtain

∥Fβ,L(S)2β+1
∥L1(M,g) ≤ ∥Fβ,L(S)∥

2αβ
L2nβ/(n−2)(M,g)∥Fβ,L(S)∥

1+2(1−α)β

L2β (M,g)

≤ δα∥Fβ,L(S)β∥2
L2n/(n−2)(M,g) + δ

−α/(1−α)(1 −α)∥Fβ,L(S)∥
1/(1−α)+2β
L2β (M,g) . (4-14)

These norms are finite for finite L > 0, as follows: The claim is clear for S ≤ L , and the delicate point is
the behavior of the function for S large. For S > L , Fβ,L(S)∼ S2/(2β+1), and (since 2β/(2β+1)≤ 1) the
terms ∥Fβ,L(S)β∥L2n/(n−2)(M,g) and ∥Fβ,L(S)∥L2β (M,g) can be controlled via ∥S∥L2n/(n−2)(M,g) and ∥S∥L2(M,g),
respectively. These latter norms are bounded13 because of S existing in C0([0, T ]; H 1(M, g)) and (3-9).

We can compare ∥Fβ,L(S)β∥2
L2n/(n−2)(M,g) and ∥φβ,L(S)∥2

L2n/(n−2)(M,g) since we have the following point-
wise estimates. Directly from the definition we have

Fβ,L(x)β =


ββ/(2β+1)xβ ≤ βxβ, x ≤ L ,

(nβ2)β/(2β+1)Lβ
(

x
L

)2β/(2β+1)

≤ nβLβ−1x, x > L .

Similarly, we may estimate φβ,L from below as

φβ,L(x)=

{
xβ = xβ, x ≤ L ,
βLβ−1x − (β − 1)Lβ ≥ x Lβ−1, x > L .

Combining these two estimates we find nβφβ,L(x)≥ Fβ,L(x)β. By sufficiently shrinking δ > 0 (choosing
δ ≤ 4(n − 1)/(n3βA(T )) to be precise), we can thus ensure for all L > 0 that

δα∥Fβ,L(S)β∥2
L2n/(n−2)(M,g) ≤

(n − 1)
A(T )

∥φβ,L(S)∥2
L2n/(n−2)(M,g),

and therefore deduce from (4-13) and (4-14)

∂t∥Hβ,L(S)∥L1(M,g) ≤ CT ∥Hβ,L(S)∥L1(M,g) + C ′

T ∥Fβ,L(S)∥
1/(1−α)+2β
L2β (M,g) , (4-15)

for uniform constants CT ,C ′

T > 0, where CT is given above,

C ′

T := δ−n/(4β−n)
(

4β − n
4β

)
and δ ≤

4(n − 1)
n3βA(T )

.

The point is that both constants depend only on T > 0 and S0.
We then compare Fβ,L(x)2β to Hβ,L(x) as follows: From the definition of Fβ,L(x) again we find

Fβ,L(x)2β =


β2β/(2β+1)x2β

≤ βx2β, x ≤ L ,

(nβ2)2β/(2β+1)L2β
(

x
L

)4β/(2β+1)

≤ nβ2L2(β−1)x2, x > L .

13This is where it was necessary to estimate xGβ,L −
1
2 nHβ,L ≤ fβ,L . Otherwise, defining Fβ,L in terms of xGβ,L −

1
2 nHβ,L

would cause Fβ,L (S) to go as S3/(2β+1) for large L and we would not be able to guarantee that ∥Fβ,L (S)β∥
2
L2n/(n−2)(M,g) is

finite.
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Consulting (4-12) we find

4nβHβ,L(x)≥
2β

2β − 1

{
nβx2β, x ≤ L ,

nβ2L2(β−1)x2, x > L .

We therefore conclude 4nβHβ,L(x)≥ Fβ,L(x)2β. Defining

C ′′

T := max{(4nβ)1+2/(4β−n)C ′

T ,CT },

we deduce from (4-15) that

∂t∥Hβ,L(S)∥L1(M,g) ≤ C ′′

T (1 + ∥Hβ,L(S)∥
2/(4β−n)
L1(M,g) )∥Hβ,L(S)∥L1(M,g).

Setting β = n2/(4(n − 2)), we can rewrite this differential inequality as

∂t log(∥Hβ,L(S)∥L1(M,g))≤ C ′′

T (1 + ∥Hβ,L(S)∥
n−2/(n)
L1(M,g)).

Integrating this differential inequality in time, we conclude

log(∥Hβ,L(S(T ))∥L1(M,g))≤ log(∥Hβ,L(S0)∥L1(M,g0))+ C ′′

T T + C ′′

T

∫ T

0
∥Hβ,L(S)∥

(n−2)/n
L1(M,g) dt.

Taking the limit L → ∞ (using Fatou’s lemma and dominated convergence as before in the final step of
the proof of Proposition 2.3) and using Lemma 4.2, we deduce

log∥S(T )n
2/(2(n−2))

∥L1(M,g) ≤ log∥Sn2/(2(n−2))
0 ∥L1(M,g) + C ′′

T T + C ′′

T C(T ),

which proves the statement for n ≥ 4.
The above proof would almost work for n = 3. The problem is that xGβ,L −

1
2 nHβ,L ≤ fβ,L no longer

holds true, and one would have a problem showing that the norms in (4-14) are finite. One solution is to
redefine the approximation functions φβ,L , Gβ,L and Hβ,L to ensure xGβ,L(x)− 1

2 nHβ,L(x) is dominated
by a function fβ,L which, for large x , behaves like at most x rather than x2. This is a nontrivial task,
because it is also important for the above argument that one can find constants (depending on n and β but
not L) such that

C1 Hβ,L(x)≥φβ,L(x)2, C2 Hβ,L(x)≥ xGβ,L(x), C3 Fβ,L(x)β ≤ φβ,L(x), C4 Hβ,L(x)≥ Fβ,L(x)2β,

where Fβ,L(x)= (x fβ,L(x))1/(2β+1). Consider the following family of approximation functions with ν ≤ 1
and ν /∈

{
0, 1

2

}
:

φ̃β,L(x) :=


xβ, x ≤ L ,
β

ν
Lβ−νxν + Lβ

(
1 −

β

ν

)
, x > L ,

(4-16)

G̃β,L(x) :=

∫ x

0
φ̃′

β,L(y)
2 dy =


β2

2β − 1
x2β−1, x ≥ L ,

β2L2(β−ν)

2ν− 1
x2ν−1

−
2β2L2β−1(β − ν)

(2ν− 1)(2β − 1)
, x > L ,

(4-17)
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H̃β,L(x) :=

∫ x

0
G̃β,L(y) dy =


β

2(2β − 1)
x2β, x ≤ L ,

β2L2(β−ν)

2ν(2ν− 1)
x2ν

−
2β2L2β−1(β − ν)

(2ν− 1)(2β − 1)
x − Cβ,νL2β, x > L ,

where

Cβ,ν :=
β(β(2β − 1)+ 4νβ(ν−β)+ ν(1 − 2ν))

2ν(2β − 1)(2ν− 1)
.

In the n ≥ 4 case we considered these functions with ν = 1. These functions have the same qualitative
properties as before, namely that φ̃β,L

L→∞
−−→ xβ and φ̃β,L ∈ C1(R+) with φ̃′

β,L ∈ L∞(R+), and similarly
for G̃β,L and H̃β,L . We can therefore use G̃β,L(S) as a test function in (2-2) and deduce the analogue
of (4-4), namely

∂t

∫
M

H̃β,L(S)dVolg+(n−1)
∫

M
|∇φ̃β,L(S)|2 dVolg ≤

∫
M
(S−ρ)

(
SG̃β,L(S)−

n
2

H̃β,L(S)
)

dVolg. (4-18)

Consider the expression xG̃β,L(x)− 1
2 nH̃β,L(x) for x > L:

xG̃β,L(x)−
n
2

H̃β,L(x)=
β2L2(β−ν)

2ν(2ν− 1)

(
2ν−

n
2

)
x2ν

+
2β2(β − ν)L2β−1

(2β − 1)(2ν− 1)

(
n
2

− 1
)

x +
n
2

Cβ,νL2β.

From this one sees that when 0< ν ≤
1
4 n and β ≥

1
4 n, the first two terms become negative. So assume

from now on that 0< ν ≤
1
4 n and later we will make a choice of β ≥

1
4 n. Introduce the function

f̃β,L(x) :=

{
βx2β, x ≤ L ,
1
2 n|Cβ,ν |L2β, x > L ,

which has the property that xG̃ −
1
2 nHβ,L ≤ f̃β,L(x) for all x ≥ 0 and L > 0, as long as β ≥

1
4 n ≥ ν.

Proceeding exactly as in the n ≥ 4 case, we deduce

∂t∥H̃β,L(S)∥L1(M,g) ≤ (n − 1)
B(T )
A(T )

∥φ̃β,L(S)2∥L1(M,g) −
(n − 1)
A(T )

∥φ̃β,L(S)∥2
L2n/(n−2)(M,g)

+ ρ(0)
∥∥SG̃β,L(S)− 1

2 nH̃β,L(S)
∥∥

L1(M,g) + ∥S f̃β,L(S)∥L1(M,g). (4-19)

We compare φ̃β,L(x)2, xG̃β,L(x) and H̃β,L(x) as in (4-11) and conclude by similar arguments, for all
β ≥ 1, L > 0, and some L-independent constants C1, C2, that

C1 H̃β,L(x)≥ φ̃β,L(x)2,

C2 H̃β,L(x)≥ xG̃β,L(x).
(4-20)

We now proceed as before, getting

∂t∥H̃β,L(S)∥L1(M,g)

≤ CT ∥H̃β,L(S)∥L1(M,g) + ∥S f̃β,L(S)∥L1(M,g) −
(n − 1)
A(T )

∥φ̃β,L(S)∥2
L2n/(n−2)(M,g), (4-21)



502 JØRGEN OLSEN LYE AND BORIS VERTMAN

where the uniform constant CT > 0 is explicitly given by

CT := C1(n − 1)
A(T )
B(T )

+ ρ(0)
( 1

2 n + C2
)
.

Introduce the nonnegative, real function F̃β,L via

F̃β,L(x) := (x f̃β,L(x))1/(2β+1).

Assume β > 1
4 n, which holds, for example, for β = n2/(4(n − 2)). Set α := n/(4β) < 1 and choose any

δ > 0. Observe that by the Hölder inequality in the first estimate and the Young inequality in the second,
we obtain

∥F̃β,L(S)2β+1
∥L1(M,g) ≤ ∥F̃β,L(S)∥

2αβ
L2nβ/(n−2)(M,g)∥F̃β,L(S)∥

1+2(1−α)β

L2β (M,g)

≤ δα∥F̃β,L(S)β∥2
L2n/(n−2)(M,g) + δ

−α/(1−α)(1 −α)∥F̃β,L(S)∥
1/(1−α)+2β
L2β (M,g) . (4-22)

These integrals are finite for the same reasons as in the n ≥ 4 case.
We shall from now on set ν = β/(2β + 1) and β = n2/(4(n − 2)), which translates into ν =

9
22 for

n = 3. Notice that this choice satisfies ν ≤
1
4 n, so the manipulations up until now are allowed. The reason

for choosing this ν is that then

F̃β,L(x)β =

{
βνxβ, x ≤ L ,( 1

2 n|Cβ,ν |
)νLβ−νxν, x > L .

This is easily comparable to φ̃β,L(x). Since

φ̃β,L(x)≥
β

ν
Lβ−νxν

for x > L , we see that by defining

C−1
3 := max

{
βν,

ν

β

(
n
2
|Cβ,ν |

)ν}
we achieve14 C3 F̃β,L(x)β ≤ φ̃β,L(x). So if we choose

δ ≤
(n − 1)
A(T )

4C2
3β

n
,

then the inequality

δα∥F̃β,L(S)β∥2
L2n/(n−2)(M,g) −

(n − 1)
A(T )

∥φ̃β,L(S)∥2
L2n/(n−2)(M,g) ≤ 0

holds for all L > 0, and we deduce from (4-21) and (4-22) that

∂t∥H̃β,L(S)∥L1(M,g) ≤ CT ∥H̃β,L(S)∥L1(M,g) + C ′

T ∥F̃β,L(S)∥
1/(1−α)+2β
L2β (M,g) (4-23)

14This is a somewhat delicate point. If one chooses ν small, it is easy to make xG̃ −
1
2 nH̃ sublinear, but if ν is too small,

F̃ will increase faster than φ̃, ruining the comparison. On the other hand, if ν is bigger than 1
4 n we see above that xG̃ −

1
2 nH̃

becomes too large to guarantee the finiteness of the integrals in (4-22).
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for uniform constants CT ,C ′

T > 0, where CT is given above,

C ′

T := δ−n/(4β−n)
(

4β − n
4β

)
and δ ≤

(n − 1)
A(T )

4C2
3β

n
.

The point is that both constants depend only on T > 0 and S0. The final comparison we need is that
C4 Hβ,L(x) ≥ Fβ,L(x)2β holds for some C4 > 0 independent of L , and here is a way to see that this is
doable: For x ≤ L both functions are proportional, so there is nothing to show. Inserting ν = β/(2β + 1)
into the definition of H̃β,L(x) yields (for x > L)

H̃β,L(x)= L2β
(

4β4

2β − 1

(
x
L

)
−
β(2β + 1)2

2

(
x
L

)2ν

+β2
)
,

which shows that H̃β,L(x) is dominated by a positive linear term for x > L , which will dominate the
sublinear term x2ν of F̃β,L(x)2β. Defining

C ′′

T := max{C1+2/(4β−n)
4 C ′

T ,CT },

we deduce from (4-23) that

∂t∥H̃β,L(S)∥L1(M,g) ≤ C ′′

T (1 + ∥H̃β,L(S)∥
2/(4β−n)
L1(M,g) )∥H̃β,L(S)∥L1(M,g).

The rest of the proof then follows exactly as in the n ≥ 4 case, giving us our required bound for n = 3. □

This completes the first step on the way to Theorem 4.1, proving a uniform Ln2/(2(n−2))(M, g)-norm
bound on S. Before we can go on to prove Theorem 4.1 by a Moser iteration argument, we need the
following parabolic Sobolev inequality.

Lemma 4.4. Let A(T ) and B(T ) denote the constants of the (elliptic) Sobolev inequality (3-9). Then for
any f ∈ H 1(M, g) with uniform norm in t ∈ [0, T ], we have (writing MT := M × [0, T ])15

∥ f 2
∥L(n+2)/n(MT ,g) ≤

n
n+2

(A(T )∥∇ f ∥
2
L2(MT ,g)

+B(T )∥ f ∥
2
L2(MT ,g)

)+
2

n+2
sup

t∈[0,T ]

∥ f (t)∥2
L2(M,g). (4-24)

Proof. The statement and the proof are close to [Ma et al. 2012, Equation 12]. We compute∫ T

0

∫
M

f 2(n+2)/n dVolg dt =

∫ T

0

∫
M

f 2 f 4/n dVolg dt

≤

∫ T

0
(∥ f ∥

2
L2n/(n−2)(M,g)∥ f ∥

4/n
L2(M,g)) dt

≤

∫ T

0
(A(T )∥∇ f ∥

2
L2(M,g) + B(T )∥ f ∥

2
L2(M,g))(∥ f ∥

4/n
L2(M,g)) dt

≤ (A(T )∥∇ f ∥
2
L2(MT ,g)

+ B(T )∥ f ∥
2
L2(MT ,g)

) sup
t∈[0,T ]

(∥ f ∥
4/n
L2(M,g)),

15We write L p(MT , g)≡ L p(MT , g ⊕ dt2) for any p ≥ 1.
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where in the first estimate we applied the Hölder inequality with p =
1
2 n and q = n/(n − 2) and in the

second estimate applied (3-9). Raising both sides of the inequality to the power of n/(n + 2) and using
Young’s inequality AB ≤ Ap/p + Bq/q with p = (n + 2)/n and q =

1
2(n + 2) we arrive at the estimate

as claimed. □

Proof of Theorem 4.1. Since we assume that (S0)− ∈ L∞(M), we have uniform bounds on S− by
Proposition 2.3. Thus it suffices to prove the statement for S+. Therefore we may replace S by S+,
replacing the evolution equation (2-2) for S by the inequality (2-3) for S+. Hence we continue under the
assumption S ≡ S+ ≥ 0, subject to (2-3).

Let η ∈ C1([0, T ],R+) be nondecreasing with η(0) = 0 and ∥η∥∞ ≤ 1. We would like to use
β2η2S2β−1/(2β − 1) (with β > 1) as a test function in the weak formulation of (2-3). The problem is of
course that the chain rule fails to hold in general, so we use the same workaround as in Proposition 2.3
and Lemma 4.3. Let L > 0 and define φβ,L , Gβ,L and Hβ,L as before. Using η(s)2Gβ,L(S) as a test
function in (2-3) we get∫

M
(∂s S)η2Gβ,L(S) dVolg + (n − 1)

∫
M
η2

|∇φβ,L(S)|2 dVolg ≤

∫
M

SGβ,L(S)|S − ρ| dVolg.

On the right-hand side we observe (by a direct computation) that

SGβ,L(S)≤ β2/(2β − 1)φβ,L(S)2.

We integrate this in time for any t ∈ [0, T ] and get∫ t

0

∫
M
(∂s S)η2Gβ,L(S) dVolg ds + (n − 1)

∫ t

0

∫
M
η2

|∇φβ,L(S)|2 dVolg ds

≤
β2

2β − 1

∫ t

0

∫
M
η2φβ,L(S)2|S − ρ| dVolg ds. (4-25)

We rewrite the first term on the left-hand side of (4-25) using (1-3) as∫ t

0

∫
M
η2(∂s S)Gβ,L(S) dVolg ds ≡

∫ t

0

∫
M
η2∂s Hβ,L(S) dVolg ds

=

∫
M
η2 Hβ,L(S) dVolg(s = t)− 2

∫ t

0

∫
M
ηη̇Hβ,L(S) dVolg ds

+
n
2

∫ t

0

∫
M
η2 Hβ,L(S)(S − ρ) dVolg ds,

where we write η̇ ≡ ∂sη and use η(0)= 0. Plugging this into (4-25), we obtain∫
M
η2 Hβ,L(S) dVolg(s = t)+ (n − 1)

∫ t

0

∫
M
η2

|∇φβ,L(S)|2 dVolg ds

≤

∫ t

0

∫
M
η2

(
β2

2β − 1
φβ,L(S)2 +

n
2

HβL (S)
)

|S − ρ| dVolg ds + 2
∫ t

0

∫
M
ηη̇Hβ,L(S) dVolg ds.
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We now take the supremum over t ∈ [0, T ] and appeal to the parabolic Sobolev inequality (4-24) with
f = ηφβ,L(S). The result is

(n − 1)
n A(T )

(
(n + 2)∥η2φβ,L(S)2∥L(n+2)/n(MT ,g) − 2 sup

t∈[0,T ]

∥ηφβ,L(S)∥2
L2(M,g) − nB(T )∥ηφβ,L(S)∥2

L2(MT ,g)

)
+ sup

t∈[0,T ]

∫
M
η2 Hβ,L(S) dVolg

≤

∫ T

0

∫
M
η2

(
β2

2β − 1
φβ,L(S)2 +

n
2

HβL (S)
)

|S − ρ| dVolg dt + 2
∫ T

0

∫
M
ηη̇Hβ,L(S) dVolg dt. (4-26)

By increasing A(T ) > 0 if needed, we may assume (also noting that Hβ,L and φ2
β,L are comparable

by (4-11)) that

sup
t∈[0,T ]

∫
M
η2 Hβ,L(S) dVolg −

2(n − 1)
n A(T )

sup
t∈[0,T ]

∥ηφβ,L(S)∥2
L2(M,g) ≥ 0

for all β ≥ 1 and L > 0. We may therefore drop these terms from (4-26). Taking the limit L → ∞ (using
Fatou’s lemma and the dominated convergence theorem) we get

(n − 1)
n + 2

n A(T )
∥η2S2β

∥L(n+2)/n(MT )
−

B(T )(n − 1)
A(T )

∥ηSβ∥2
L2(MT ,g)

≤

(
β2

2β − 1
+

β

4n(2β − 1)

) ∫ T

0

∫
M
η2S2β

|S − ρ| dVolg dt +
β

2β − 1

∫ T

0

∫
M
ηη̇S2β dVolg dt.

Introducing C := n A(T )/((n + 2)(n − 1)) we get, for any β > 1, the inequality

∥η2S2β
∥L(n+2)/n(MT )

≤
nB(T )
n + 2

∥ηSβ∥2
L2(MT )

+ C
∫ T

0

∫
M
ηη̇S2β dVolg dt + 2Cβ

∫ T

0

∫
M
η2S2β

|S − ρ| dVolg dt.

We apply the Hölder inequality with p = n2/(2(n − 2)) to the last integral on the right-hand side above.
Using Lemma 4.3 to get a bound on the integral of |S − ρ|

p, we conclude

∥η2S2β
∥L(n+2)/n(MT )

≤
nB(T )
n + 2

∥ηSβ∥2
L2(MT )

+C
∫ T

0

∫
M
ηη̇S2β dVolg dt +C(T )β∥η2S2β

∥L N (MT ), (4-27)

with N := p/(p−1)= n2/(n2
−2n+4) < (n+2)/n. This is almost the expression we want to iterate, but

the presence of η̇ means we have to shrink our time interval in the iteration (as is standard for parabolic
Moser iteration). The details (inspired by [Ma et al. 2012, pp. 889–890]) follow.

Consider the sequence tk :=
( 1

2 −
( 1

2

)k)T for integers k ≥ 1. Let Mk := M × [tk, T ], M1 = MT and
M∞ = M ×

[ 1
2 T, T

]
. Choose nondecreasing test functions ηk ∈ C1([0, T ],R+) with ∥ηk∥∞ ≤ 1 such that

ηk(t)=

{
0, t ≤ tk−1,

1, t ≥ tk .
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The choice of {ηk}k can be made subject to a bound on the derivative 0 ≤ η̇k ≤ 2k+1/T, which we
henceforth assume. Using these functions in (4-27), we find

∥S2β
∥L(n+2)/n(Mk)

= ∥η2
k S2β

∥L(n+2)/n(Mk)
≤ ∥η2

k S2β
∥L(n+2)/n(MT )

≤
nB(T )
n + 2

∥ηk Sβ∥2
L2(MT )

+ C
∫ T

0

∫
M
ηk η̇k S2β dVolg dt + C(T )β∥η2

k S2β
∥L N (MT )

≤ C̃(T )β2k+1
∥S2β

∥L N (Mk−1), (4-28)

where the second inequality uses (4-27) and last step uses η̇≤ 2k+1/T together with the Hölder inequality
to compare L1- and L N -norms. This is the equation we will be iterating. Introduce γ := 2βN and
ρ := (n + 2)/(nN )= (n3

+ 8)/n3 > 1. Then (4-28) reads

∥S∥Lργ (Mk) ≤ (C̃(T )γ 2k)N/γ
∥S∥Lγ (Mk−1).

Replacing γ by ρmγ for m ≥ 0 results in

∥S∥Lρm+1γ (Mk+m)
≤ (C̃(T )ρmγ 2k+m)N/(ρmγ )

∥S∥Lρmγ (Mk+m−1)
,

which can be iterated down to

∥S∥Lρm+1γ (Mk+m)
≤

m∏
i=0

(C̃(T )ρiγ 2k+i )N/(ρiγ )
∥S∥Lγ (Mk−1).

The expression
∏m

i=0(C̃(T )ρ
iγ 2k+i )N/(ρiγ ) converges as m → ∞, as one checks by computing the

logarithm

lim
m→∞

log
m∏

i=0

(C̃(T )ρiγ 2k+i )N/(ρiγ )
=

N
γ

∞∑
i=0

(
log(2kC̃(T )γ )

1
ρi + log(2ρ)

i
ρi

)
=

N
γ

(
ρ

ρ− 1
log(C̃(T )γ 2k)+ log(2ρ)

ρ

(ρ− 1)2

)
.

We therefore deduce for some uniform constant CT > 0

∥S∥L∞(M×[T/2,T ]) ≤ lim
m→∞

∥S∥Lρm+1γ (Mk+m)
≤ CT ∥S∥Lγ (Mk−1) ≤ CT ∥S∥Lγ (MT ).

Choosing

β =
n2

− 2n + 4
4(n − 2)

⇐⇒ γ =
n2

2(n − 2)
,

we can estimate the right-hand side using Lemma 4.3 and deduce for some uniform constant C(T ) > 0

∥S∥L∞(M×[T/2,T ]) ≤ C(T ). □

Remark 4.5. It is worth pointing out that we do not assume S0 ∈ L∞(M), only that S0 ∈ Ln2/(2(n−2))(M).
The above proof tells us that S ∈ L∞(M) for positive times, even if the initial curvature is unbounded.
This is analogous to the well-known behavior of the heat equation, where the solutions for positive times
are often much more regular than the initial data.
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5. Long-time existence of the normalized Yamabe flow

We can now establish our main Theorem 1.1, which explicitly reads as follows.

Theorem 5.1. Let (M, g0) be a Riemannian manifold of dimension n = dim M ≥ 3 such that the following
four assumptions hold:

(1) The Yamabe constant Y (M, g0) is positive, i.e., Assumption 1 holds.

(2) (M, g0) is admissible, i.e., Assumption 2 holds.

(3) Parabolic Schauder estimates (as defined in Definition 1.4) hold on (M, g0), i.e., Assumption 3 holds.

(4) S0 ∈ C1,α(M), i.e., Assumption 4 holds. Moreover, we require that S0 ∈ Ln2/(2(n−2))(M) and that its
negative part (S0)− ∈ L∞(M).

Under these assumptions, a normalized Yamabe flow u4/(n−2)g0 exists with u ∈ C3,α(M × [0,∞)), with
infinite existence time, and with scalar curvature S(t) ∈ L∞(M) for all t > 0.

Proof. Short time existence of the flow with u ∈ C3,α(M × [0, T ′
]) for some small T ′ > 0 is due to

Theorem 1.6. Let T > 0 be the maximal existence time, so that u ∈ C3,α(M ×[0, T )) with locally uniform
control of the Hölder norms in [0, T ), but with no uniform control of the norms up to t = T. If T = ∞,
there is nothing to prove. Otherwise, we proceed as follows.

Proposition 2.3 yields a uniform (i.e., depending only on S0 and the finite T ) lower bound on the scalar
curvature S. Proposition 3.1 and Theorem 3.2 yield uniform upper and lower bounds on the solution u, so
that u ∈ L∞(MT ). This in turn gives us bounds on the Sobolev constants A(T ) and B(T ) (Corollary 3.3),
so we use Theorem 4.1 to argue that S ∈ L∞(MT ). By the evolution equation

∂t u = −
4

n − 2
(S − ρ)u,

we deduce ∂t u ∈ L∞(MT ). Then, arguing exactly as in [Bahuaud and Vertman 2019, Proposition 2.8],
we may then restart the flow and extend the solution past T. For the purpose of self-containment, we
provide the argument here.

Let us consider the linearized equation (1-18) with u = 1 + v,

∂tv− (n − 1)10v = −
1
4(n − 2)S0 +8(v), v(0)= 0, (5-1)

where8(v)∈ L∞(MT ), since u, ∂t u, ρ ∈ L∞(MT ). By the third mapping property in (1-14), we conclude
that v ∈ C1,α(M × [0, T ]).16 Rewrite flow equation (1-2) using N = (n + 2)/(n − 2) as

∂t u − (n − 1)u1−N10u =
1
4(n − 2)(ρ u − S0u2−N ). (5-2)

We will treat the right-hand side of this equation as a fixed element of C0,α(M × [0, T ]). Since u1−N
∈

C1,α(M ×[0, T ]) is positive and uniformly bounded away from zero, we may apply (1-16) and (1-17) to
obtain a solution u′

∈ C2,α(M × [0, T ]) with initial condition u′(0)= 1.

16Note that we now have uniform control of the C1,α-norm up to t = T.
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Note that w := u − u′ solves ∂tw− (n − 1)u1−N10w = 0 with zero initial condition. By the weak
maximum principle (1-13), ∂twmax ≤ 0 and ∂twmin ≥ 0. Due to the initial condition w(0)= 0, we deduce
w ≡ 0 and hence u = u′

∈ C2,α(M ×[0, T ]). Thus u′
∈ C2,α(M ×[0, T ]) extends u(t) up to t = T, and

we conclude
u ∈ C2,α(M × [0, T ]).

By the second statement of Theorem 1.6, we even have u ∈ C3,α(M × [0, T ]) and can now restart the
flow as follows. Consider u0 = u(T ) ∈ C3,α(M) as the initial condition for the normalized Yamabe flow.
By (1-15), et10u0 ∈ C3,α(M × [0, T ]), where the heat operator acts without convolution in time.

We write u = f +et1u0 and plug this into the Yamabe flow equation (1-2) with rescaled time τ = (t−T ).
This yields an equation for f ,

[∂t − (n − 1)(et10u0)
1−N10] f = Q1( f )+ Q2( f, ∂t f ), u′(0)= 0, (5-3)

where Q1 and Q2 denote linear and quadratic combinations of the elements in brackets, respectively,
with coefficients given by polynomials in et10u0, ∂t et10u0 and 10et10u0. Since these coefficients are
of higher Hölder regularity C1,α(M), we may set up a contraction mapping argument in C3,α and thus
extend u past the maximal existence time T exactly as in the proof of Theorem 1.6. This proves long-time
existence. □

Corollary 5.2. In the setting of the above theorem, we have

lim
t→∞

∫
M
(S − ρ)2 dVolg = 0,

and there exists u∞ ∈ L2(M) such that

lim
t→∞

∫
M
(u − u∞)

2 dµ= 0.

Proof. By (1-5) we have

∂tρ = −
n − 2

2

∫
M
(S − ρ)2 dVolg.

This shows that ρ(t) is monotonically decreasing, and we know it’s bounded from below by Y (M, g0) > 0,
so limt→∞ ρ(t) exists. Thus

∫
∞

0 ∂tρ(t) dt <∞, and thus ∂tρ(t) must converge to zero as t → ∞. This
gives the conclusion on

∫
M(S − ρ)2 dVolg. By (1-1) we also conclude that∫
M
(∂t u2n/(n−2)) dµ= −

n
2

∫
M
(S − ρ)u2n/(n−2) dµ= 0,

and using u as a test function in (1-2) leads to

n + 2
2n

∫
M
∂t u2n/(n−2) dµ+ (n − 1)

∫
M

|∇u|
2 dµ=

1
4(n + 2)

(
ρ(t)−

∫
M

u2S0 dµ
)
,

so ∫
M

|∇u|
2 dµ≤

1
4(n + 2)(ρ(0)+ ∥(S0)−∥L∞(M)),
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where we have used
∫

M u2n/(n−2) dµ= 1. This shows that u is uniformly bounded in H 1(M) independent
of t for all t ≥ 0. Since the Sobolev embedding H 1(M) ↪→ Lq(M) is compact for q < 2n/(n − 2) (see
[Akutagawa et al. 2014, Proposition 1.6]), we in particular get that u has a convergent subsequence in
L2(M) as t → ∞, and we call this limit u∞. □

Remark 5.3. The above methods would also show that ∂t u(n+2)/(n−2)
→ 0 in L1(M), since we may

use (1-1) and the Hölder inequality to write

∥∂t u(n+2)/(n−2)
∥L1(M) ≤

1
4(n + 2)∥(S − ρ)un/(n−2)

∥L2(M)∥u2/(n−2)
∥L2(M)

≤
1
4(n + 2)∥(S − ρ)un/(n−2)

∥L2(M).

We then use the first part of the corollary to show that the right-hand side tends to 0.

6. Future research directions and open problems

Long time existence alone does not guarantee regularity of the limit solution u∞ ∈ L2(M). Indeed,
this has to be obstructed for the following two reasons. In the case of closed manifolds, we know that
the Yamabe problem is not uniquely solvable on a round sphere, but so far we have not assumed that
(M, g0) is not a sphere. In the singular setting, the Yamabe problem doesn’t always have a solution, as
demonstrated by Viaclovsky [2010]. We suspect that demanding

Y (M, g0) < lim
R→0

Y (BR(p), g0),

for all p ∈ M, is the required condition in our setting. Under this assumption, Akutagawa, Carron and
Mazzeo are able to solve the Yamabe problem for smoothly stratified spaces in [Akutagawa et al. 2014].
For closed manifolds, this condition becomes Y (M, g0) < Y (Sn, gSn ) with the round metric gSn , which is
the assumption used by Brendle [2005] in his study of the Yamabe flow. Brendle’s proof of convergence
of the Yamabe flow relies on the positive mass theorem, which is not available in the singular setting.
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