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DISENTANGLEMENT, MULTILINEAR DUALITY
AND FACTORISATION FOR NONPOSITIVE OPERATORS

ANTHONY CARBERY, TIMO S. HÄNNINEN AND STEFÁN INGI VALDIMARSSON

In a previous work we established a multilinear duality and factorisation theory for norm inequalities for
pointwise weighted geometric means of positive linear operators defined on normed lattices. In this paper
we extend the reach of the theory for the first time to the setting of general linear operators defined on
normed spaces. The scope of this theory includes multilinear Fourier restriction-type inequalities. We
also sharpen our previous theory of positive operators.

Our results all share a common theme: estimates on a weighted geometric mean of linear operators
can be disentangled into quantitatively linked estimates on each operator separately. The concept of
disentanglement recurs throughout the paper.

The methods we used in the previous work — principally convex optimisation — relied strongly on
positivity. In contrast, in this paper we use a vector-valued reformulation of disentanglement, geometric
properties (Rademacher-type) of the underlying normed spaces, and probabilistic considerations related
to p-stable random variables.
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1. Introduction

In our previous work [Carbery et al. 2022] we introduced and developed a general functional-analytic
principle concerning norm inequalities for pointwise weighted geometric means

d∏
j=1

|Tj f j (x)|αj

of positive linear operators Tj defined on suitable spaces, where αj ≥ 0 and
∑d

j=1 αj = 1. In this paper
we extend our study to the situation in which the linear operators Tj are no longer assumed to be positive.
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The techniques of [Carbery et al. 2022] relied strongly on positivity, so it will be necessary to involve a
new set of ideas.

In order to set the scene for this, it will be helpful to recall the main theorem of [Carbery et al. 2022],
but we first we need to set up some notation. Let (X, dµ) be a measure space and let M(X) be the class
of measurable functions on X . Let Y be a real or complex normed space. (For example, if Y is a measure
space, Y could be the class S(Y ) of simple functions with an L p-norm for some p ≥ 1.) We say that
a linear map T : Y → M(X) saturates X if, for each subset E ⊆ X of positive measure, there exists a
subset E ′

⊆ E with µ(E ′) > 0 and an h ∈ Y such that |T h| > 0 a.e. on E ′. For reasons explained in
[Carbery et al. 2022], such a condition is needed for the result which follows to hold.

Theorem 1.1 [Carbery et al. 2022]. Suppose that X is a σ -finite measure space and that Yj , for j =

1, . . . , d, are normed lattices. Suppose that the linear operators Tj : Yj → M(X) are positive and that
each Tj saturates X. Suppose that 0< q ≤ ∞ and

∑d
j=1 αj = 1. Finally, suppose that∥∥∥∥ d∏

j=1

(Tj f j )
αj

∥∥∥∥
Lq (X)

≤ A
d∏

j=1

∥ f j∥
αj
Yj

(1)

for all nonnegative f j ∈ Yj , 1 ≤ j ≤ d.

Case I: (disentanglement) If q = 1, then there exist nonnegative measurable functions gj on X such that

1 ≤

d∏
j=1

gj (x)αj a.e. on X (2)

and such that, for each j , ∫
X

gj (x)Tj f j (x) dµ(x)≤ A∥ f j∥Yj (3)

for all f j ∈ Yj , with the same constant A as in (1).
Conversely, if the Tj are positive linear operators such that there exist nonnegative measurable

functions gj on X such that (2) holds and such that (3) holds for all f j ∈ Yj , then (1) holds for all
nonnegative f j ∈ Yj .

Case II: (multilinear duality) If q > 1, then for every nonnegative G ∈ Lq ′

(X) there exist nonnegative
measurable functions gj on X such that

G(x)≤

d∏
j=1

gj (x)αj a.e. on X (4)

and such that, for each j , ∫
X

gj (x)Tj f j (x) dµ(x)≤ A∥G∥Lq′ ∥ f j∥Yj (5)

for all f j ∈ Yj , with the same constant A as in (1).
Conversely, if the Tj are positive linear operators such that for every nonnegative G ∈ Lq ′

(X) there
exist nonnegative measurable functions gj on X such that (4) holds and such that (5) holds for all f j ∈ Yj ,
then (1) holds for all nonnegative f j ∈ Yj .
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Case III: (multilinear Maurey factorisation) If 0 < q < 1, then there exist nonnegative measurable
functions gj on X such that1 ∥∥∥∥ d∏

j=1

gj (x)αj

∥∥∥∥
q ′

= 1 (6)

and such that, for each j , (3) holds for all f j ∈ Yj , with the same constant A as in (1).
Conversely, if the Tj are positive linear operators such that there exist nonnegative measurable

functions gj on X such that (6) holds and such that (3) holds for all f j ∈ Yj , then (1) holds for all
nonnegative f j ∈ Yj .

Numerous illustrations and applications of this theorem were given in [Carbery et al. 2022]. It should
be stressed that this result is a general one, applying to the class of positive operators broadly.

The forward parts of this result are the difficult ones; the converses follow easily by applying Hölder’s
inequality. When d = 1, Case II reduces to an elementary duality statement concerning the operator
T : Y → Lq and this gives rise to the sobriquet “multilinear duality” in the case of general d. The term
“factorisation” relates both to the pointwise factorisation expressed by (4) and to the condition (5), which
is a statement that each operator Tj factorises through a certain weighted L1-space.

Case I, corresponding to q = 1, plays a special role, and indeed the remaining cases corresponding to
q ̸= 1 can be deduced from it without too much difficulty — see Section 5 for arguments of this type. We
describe the case q = 1 as a “disentanglement” result since it disentangles a bound (1) on the pointwise
combination of the Tj ’s into bounds (3) on each Tj separately, with the individual bounds linked via (2).

Notice that, when suitably modified, the statement of Theorem 1.1 makes perfectly good sense in
principle without the hypothesis of positivity of the operators Tj ; nevertheless, as we have mentioned, the
arguments from [Carbery et al. 2022] rely very heavily on positivity. In this paper we use vector-valued
techniques to develop an analogue of Theorem 1.1 which applies to general linear operators defined on
normed spaces. See Theorems 1.5, 1.7, 4.3 and 5.2 below.

In what follows we shall primarily focus on the case of L1 norms of pointwise weighted products∏d
j=1 |Tj f j |

γj in our pursuit of extending Theorem 1.1 to general linear operators Tj . We return to the case
of general Lq -norms of such expressions in Section 5, and there we see that it is relatively straightforward
to derive the results for general q, which even in the positive case significantly generalise Theorem 1.1,
from those corresponding to q = 1.

We next give a simple lemma. All of our main results can be framed as reversals of the implication it
establishes (under various auxiliary hypotheses).

Lemma 1.2. Let Yj be normed spaces and let Tj :Yj →M(X) be linear mappings for 1 ≤ j ≤ d. Suppose
γj > 0 are given. Assume that for some (pj ) with 0< pj <∞ we have the condition

d∑
j=1

γj

pj
= 1, (7)

1We caution that we use the notation ∥g∥q :=
(∫

|g|
q)1/q and q ′

:= q/(q − 1) for q < 0 and for 0< q < 1, even though in
these cases ∥ · ∥q does not define a norm.
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and that there exist nonnegative measurable functions (φj ) on X such that
d∏

j=1

φj (x)γj/pj ≥ 1 (8)

almost everywhere on X and such that(∫
X

|Tj f j (x)|pjφj (x) dµ(x)
)1/pj

≤ A∥ f j∥Yj (9)

for all f j ∈ Yj . Then ∫
X

d∏
j=1

|Tj f j (x)|γj dµ(x)≤ A
∑d

j=1 γj

d∏
j=1

∥ f j∥
γj
Yj

(10)

for all f j ∈ Yj .

Proof. Let θj = γj/pj . Then
∑d

j=1 θj = 1, and, by (8), (9) and Hölder’s inequality, we have∫
X

d∏
j=1

|Tj f j (x)|γj dµ(x)≤

∫
X

d∏
j=1

|Tj f j (x)|γjφj (x)γj/pj dµ(x)

=

∫
X

d∏
j=1

|Tj f j (x)|pj θjφj (x)θj dµ(x)

≤

d∏
j=1

(∫
X

|Tj f j (x)|pjφj (x) dµ(x)
)θj

≤ A
∑d

j=1 pj θj

d∏
j=1

∥ f j∥
pj θj
Yj

= A
∑d

j=1 γj

d∏
j=1

∥ f j∥
γj
Yj
. □

Taking γj = qαj with q and
∑d

j=1 αj = 1 as in the preceding discussion makes a point of contact with
Theorem 1.1.

Note that Lemma 1.2 has no content in the linear case d = 1. Our main concern will therefore be with
the converse scenario in the genuinely multilinear case d ≥ 2. The lemma delineates what we might hope
for. More precisely:

Basic Question. Let d ≥2. Suppose X is a σ -finite measure space, Yj are normed spaces, Tj :Yj →M(X)
are saturating linear mappings, and γj > 0 for 1 ≤ j ≤ d. We suppose that (10) holds. For which (pj ) (if
any) with 0< pj <∞ satisfying condition (7) can we conclude that there exist nonnegative (φj ) such that
conditions (8) and (9) hold, perhaps with a loss in the constants?

Once again we emphasise that we ask this question in the broad context: we seek answers which do
not rely upon the precise nature of the operators Tj : Yj → M(X), but instead which will hold universally
over a wide class of linear operators. We expect that the set of admissible exponents (pj ), in addition to
satisfying (7),2 will reflect whatever geometric structures the normed spaces Yj may possess.

2For a discussion of why we require this condition, see Proposition A.1 in the Appendix.
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We shall give separate answers to this question in the settings of general linear operators and of positive
linear operators. It transpires that in order to develop the theory for general linear operators, it first makes
sense to consider a related question for positive linear operators: if in Theorem 1.1 we take the lattices Yj

to be Lrj -spaces, are there stronger, rj -dependent, conclusions that we can make?
The following result answers our Basic Question for positive linear operators on Lebesgue spaces,

with no loss in constants. A corresponding answer in the case of general linear operators on Lebesgue
spaces is given in Theorem 1.5.

Theorem 1.3. Suppose that X and Yj , for j = 1, . . . , d, are measure spaces and that X is σ -finite.
Suppose that the linear operators Tj : S(Yj )→ M(X) are positive and that each Tj saturates X. Suppose
that 1 ≤ rj ≤ ∞ for all j . Finally, suppose that for some exponents γj > 0 we have∫

X

d∏
j=1

(Tj f j )(x)γj dµ(x)≤ A
∑d

j=1 γj

d∏
j=1

∥ f j∥
γj

Lrj (Yj )
(11)

for all nonnegative simple functions f j on Yj , 1 ≤ j ≤ d.
Then for all (pj ) satisfying 0 < pj <∞ for all j ,

∑d
j=1 γj/pj = 1 and pj ≤ rj for all j , there exist

nonnegative (φj ) such that
d∏

j=1

φj (x)γj/pj ≥ 1 (12)

almost everywhere on X and such that(∫
X

|Tj f j (x)|pjφj (x) dµ(x)
)1/pj

≤ A∥ f j∥rj (13)

for all f j ∈ S(Yj ).

Remark 1. In the Appendix below we give an example of positive linear operators (Tj ) satisfying (11)
for which the set of (pj ) satisfying 0< pj <∞ and

∑d
j=1 γj/pj = 1, and for which the conclusion of

Theorem 1.3 holds, consists precisely of those satisfying pj ≤ rj for every j . See Corollary A.7. Thus the
condition pj ≤ rj is sharp if we want our result to hold broadly for positive operators without further
reference to their individual properties.3

Notice that the set {
(pj ) ∈ (0,∞)d :

d∑
j=1

γj

pj
= 1 and pj ≤ rj for all j

}
is nonempty if and only if

∑d
j=1 γj/rj ≤1. In particular, Theorem 1.3 has no content unless

∑d
j=1 γj/rj ≤1.

In Corollary A.7 we demonstrate, by example, that if
∑d

j=1 γj/rj > 1, then the set of (pj ) satisfying the
conclusion of Theorem 1.3 may indeed be empty.

3For particular positive operators (Tj ), the result may hold even when pj > rj for some j . Indeed, let X = Yj = [0, 1] with
Lebesgue measure, let rj = 1 for all j and let each Tj be given by Tj f =

∫ 1
0 f , so that each Tj f is constant on [0, 1]. Then (11)

holds for all exponents γj >0, with A=1. If we take φj (x)=1 for all j , then both (12) and (13) hold for all exponents 0< pj <∞.
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Under hypothesis (11), the disentangled conclusions (13) for pj ≤ max{rj , γj } alone, with otherwise
unspecified but nontrivial (φj ), are more straightforward, and can be established by methods which
are not genuinely multilinear.4 The significant feature of Theorem 1.3 is that under the hypotheses∑d

j=1 γj/pj = 1 and pj ≤ rj for all j , we can choose (φj ) also satisfying the specific quantitative lower
bound (12). Similar remarks apply to our subsequent results.

We point out that the case pj = 1 for all j of Theorem 1.3 directly implies Case I (and therefore
Case II) of Theorem 1.1 (in the special case where the spaces Yj are taken to be Lrj ). The case pj = rj of
Theorem 1.3 is, however, the crucial one, and in a slightly different notation can be presented as follows:

Theorem 1.4 (disentanglement for positive operators on Lebesgue spaces). Suppose that X and Yj ,
for j = 1, . . . , d, are measure spaces and that X is σ -finite. Suppose that the linear operators Tj :

S(Yj )→ M(X) are positive and that each Tj saturates X. Suppose that 1 ≤ pj <∞ for all j , and that
θj ≥ 0 are such that

∑d
j=1 θj = 1. Finally, suppose that∫

X

d∏
j=1

(Tj f j )(x)pj θj dµ(x)≤ B
d∏

j=1

∥ f j∥
pj θj

L pj (Yj )

for all nonnegative simple functions f j on Yj , 1 ≤ j ≤ d. Then there exist nonnegative measurable
functions φj on X such that

d∏
j=1

φj (x)θj ≥ 1

almost everywhere on X and such that, for each j ,(∫
X

|Tj f j (x)|pjφj (x) dµ(x)
)1/pj

≤ B1/pj ∥ f j∥L pj (Yj )

for all simple functions f j on Yj .

In analogy with the Case I of Theorem 1.1, we shall also call this result a disentanglement theorem,
and it is an instance of the general disentanglement theorem for positive operators on pj -convex spaces,
which we shall present as Theorem 3.2.

As the reader will have noticed, by homogeneity we may take B = 1 (and A = 1 in earlier results)
without loss. (And by playing with homogeneities the constant B1/pj can be replaced with B(

∑d
j=1 pj θj)

−1

).
In order to address our main concern in the paper — the extension of the theory to include general

linear operators which are not necessarily positive — we shall consider the analogous situation under
hypotheses of Rademacher-type in place of p-convexity. Our use of p-convexity and Rademacher-type
proceeds in parallel with their deployment in the development of the Maurey theory; see [García-Cuerva
and Rubio de Francia 1985; Albiac and Kalton 2006]. For now we state a sample theorem, which, in
the case that the normed spaces Yj are Lrj -spaces, answers the Basic Question. We shall significantly
generalise this result later; see Theorem 4.3.

4The range pj ≤ max{rj , γj } for this simpler problem is also known to be sharp, as the arguments in the Appendix confirm.
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Theorem 1.5. Suppose that X and Yj , for j = 1, . . . , d , are measure spaces and that X is σ -finite.
Suppose that Tj : S(Yj ) → M(X) are linear (not necessarily positive) operators and that each Tj

saturates X. Suppose that5 1 ≤ rj <∞ for all j . Finally, suppose that for some exponents γj > 0 we have∫
X

d∏
j=1

|Tj f j (x)|γj dµ(x)≤ A
∑d

j=1 γj

d∏
j=1

∥ f j∥
γj

Lrj (Yj )
(14)

for all simple functions f j on Yj , 1 ≤ j ≤ d.
Then for all (pj ) such that

∑d
j=1 γj/pj = 1 and

0< pj < rj for those j for which 1 ≤ rj < 2,
0< pj ≤ 2 for those j for which 2 ≤ rj <∞,

(15)

there exist nonnegative φj such that
d∏

j=1

φj (x)γj/pj ≥ 1

almost everywhere on X and such that(∫
X

|Tj f j (x)|pjφj (x) dµ(x)
)1/pj

≲{γj ,rj ,pj } A∥ f j∥Lrj (Yj )

for all f j ∈ S(Yj ).

Remark 2. In the Appendix below we give an example of linear operators (Tj ) satisfying (14) for which
the set of (pj ) satisfying 0< pj <∞ and

∑d
j=1 γj/pj = 1, and for which the conclusion of Theorem 1.5

holds, consists precisely of those satisfying (15). See Corollary A.8. Thus the condition (15) is sharp
if we want our result to hold broadly for linear operators without further reference to their individual
properties. For specific operators Tj the conclusion may nevertheless hold even if (15) is violated.

Note that the set of (pj ) satisfying
∑d

j=1 γj/pj = 1 together with (15) will be nonempty if and only if∑d
j=1 γj/min{rj , 2}< 1 when at least one rj < 2,∑d

j=1 γj ≤ 2 when all 2 ≤ rj <∞.

In Corollary A.8 we demonstrate, by example, that if this condition is violated, the set of (pj ) satisfying
the conclusion of Theorem 1.5 may indeed be empty.

The special case of this result corresponding to pj = 2 for all j is singled out:

Theorem 1.6 (disentanglement for general linear operators on Lebesgue spaces). Suppose that X and Yj ,
for j = 1, . . . , d, are measure spaces and that X is σ -finite. Suppose that the linear operators Tj :

S(Yj ) → M(X) saturate X. Suppose that θj > 0 and
∑d

j=1 θj = 1. Finally, suppose that for some

5The proof will reveal that the result remains valid under the weaker assumption 0< rj <∞, provided that we accordingly
modify (15) to 0< pj < rj for those j for which 0< rj < 2.
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exponents 2 ≤ rj <∞ we have∫
X

d∏
j=1

|Tj f j (x)|2θj dµ(x)≤ B
d∏

j=1

∥ f j∥
2θj

Lrj (Yj )

for all simple functions f j on Yj , 1 ≤ j ≤ d. Then there exist nonnegative measurable functions φj on X
such that

d∏
j=1

φj (x)θj ≥ 1

almost everywhere on X and such that, for each j ,(∫
X

|Tj f j (x)|2φj (x) dµ(x)
)1/2

≲ B1/2
∥ f j∥Lrj (Yj )

for all simple functions f j on Yj .

Theorem 1.6 readily upgrades to the following result (see Section 5), whose formulation can be
compared to Case II of Theorem 1.1:

Theorem 1.7 (multilinear duality for general operators on Lebesgue spaces). Suppose that X and
Yj , for j = 1, . . . , d , are measure spaces and that X is σ -finite. Suppose that the linear operators
Tj : S(Yj )→ M(X) saturate X. Suppose that αj > 0 and

∑d
j=1 αj = 1. Finally, suppose that, for some

exponents q ≥ 2 and 2 ≤ rj <∞, we have∥∥∥∥ d∏
j=1

|Tj f j |
αj

∥∥∥∥
q

≤ B
d∏

j=1

∥ f j∥
αj

Lrj (Yj )

for all simple functions f j on Yj , 1 ≤ j ≤ d. Then for every nonnegative G ∈ L(q/2)
′

there exist nonnegative
measurable functions gj on X such that

d∏
j=1

gj (x)αj ≥ G(x)

almost everywhere on X and such that, for each j ,(∫
X

|Tj f j (x)|2gj (x) dµ(x)
)1/2

≲ B∥G∥(q/2)′∥ f j∥Lrj (Yj )

for all simple functions f j on Yj .

The converse statements to these three results are once again also true, and are easy to verify.
Note that in these last three results we do not assert “≤” but only “≲” in the conclusions, and moreover

the case rj = ∞ is excluded from Theorems 1.5 and 1.7. This is ultimately because we shall need to
apply Khintchine’s inequality. Note also the numerology familiar from harmonic analysis, in which
L p-boundedness of a positive operator for p > 1 (such as a maximal operator) often corresponds to
L2p′

-boundedness of a corresponding nonpositive operator (such as a singular integral operator). Even in
the linear case d = 1, the duality statement is along the lines that T : Lr

→ Lq with q, r ≥ 2 if and only
if ∥|T ∗g|

2
∥q ′/2 ≲ ∥|g|

2
∥r ′/2 (rather than ∥T ∗g∥q ′ ≲ ∥g∥r ′).
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1.1. Multilinear restriction and the Mizohata–Takeuchi conjecture. As an indication of the scope of
Theorem 1.7, we consider the so-called multilinear restriction problem for the Fourier transform. For
1 ≤ j ≤ n, let 0j : Uj → Rn (with Uj ⊆ Rn−1) be smooth parametrisations of compact hypersurfaces Sj

in Rn with nonvanishing gaussian curvature. We assume that the hypersurfaces are transversal in the
sense that if ωj (x) denotes a unit normal to Sj at x ∈ Sj , then |ω1(x1)∧ · · · ∧ωn(xn)| ≥ c > 0 for all
x j ∈ Sj . The Fourier extension (or dual restriction) operator Ej for Sj is given by

Ej f j (x)=

∫
Uj

e2π i x ·0(tj ) f j (tj ) dtj .

It is conjectured (see [Bennett et al. 2006]) that these operators satisfy the multilinear bound∫
Rn

n∏
j=1

|Ej f j (x)|2/(n−1) dx ≲
n∏

j=1

∥ f j∥
2/(n−1)
L2(Uj )

(16)

or equivalently ∥∥∥∥ n∏
j=1

|Ej f j (x)|1/n
∥∥∥∥

2n/(n−1)
≲

n∏
j=1

∥ f j∥
1/n
L2(Uj )

. (17)

This is known up to endpoints (see [Bennett et al. 2006; Tao 2020]) but is as yet unresolved in the form
stated here.

These considerations clearly fit into the framework which we were discussing above, in particular
Theorem 1.7, and we therefore have the following:

Theorem 1.8 (factorisation for multilinear restriction). The multilinear restriction bound (17) holds if
and only if , for all nonnegative G ∈ Ln(Rn), there exist nonnegative g1, . . . , gn such that

n∏
j=1

gj (x)1/n
≥ G(x)

almost everywhere and, for all j ,(∫
Rn

|Ej f j (x)|2gj (x) dx
)1/2

≲ ∥G∥n∥ f j∥2.

On the other hand, the corresponding endpoint multilinear Kakeya theorem is due to Guth [2010] (see
also [Carbery and Valdimarsson 2013]). He proved it by directly establishing the following fundamental
factorisation result:

Theorem 1.9 [Guth 2010]. For 1 ≤ j ≤ n, let Tj be families of doubly infinite tubes of unit cross-section
with transversal directions. For all nonnegative G ∈ Ln(Rn), there exist nonnegative g1, . . . , gn such that

n∏
j=1

gj (x)1/n
≥ G(x)

almost everywhere and, for all j and T ∈ Tj ,∫
T

gj (x) dx ≲ ∥G∥n.
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Theorem 1.1,
Case I

Theorem 2.1 Theorem 2.3

Theorem 5.1

Theorem 3.2 Theorem 4.3

Theorem 5.2

Figure 1. Taxonomy of main theorems.

Moreover, coming from entirely different considerations, there is a conjecture, often attributed to
Mizohata and Takeuchi, which states:

Conjecture 1 (Mizohata–Takeuchi conjecture). Let S be a compact hypersurface of nonvanishing gaussian
curvature, with corresponding Fourier extension operator E . Then, for any nonnegative weight w, we have∫

Rn
|E f (x)|2w(x) dx ≲ sup

T
w(T )

∫
| f (t)|2 dt,

where the sup is taken over all doubly infinite tubes of unit cross-section with direction normal to S.

Combining these last two statements we obtain:

Proposition 1.10. Conditional on the Mizohata–Takeuchi conjecture, the multilinear restriction bound
(16) holds.

Proof. In order to establish (16), we integrate the function
∏n

j=1 |Ej f j (x)|2/n against a test function G in
the unit ball of Ln. We let Tj consist of tubes with directions normal to Sj . We apply Guth’s theorem
to G obtain gj as in Theorem 1.9. Then∫

Rn

n∏
j=1

|Ej f j (x)|2/nG(x) dx ≤

∫
Rn

n∏
j=1

|Ej f j (x)|2/ngj (x)1/n dx ≤

n∏
j=1

(∫
Rn

|Ej f j (x)|2gj (x) dx
)1/n

by Hölder’s inequality. For each j we have∫
Rn

|Ej f j (x)|2gj (x) dx ≲

(
sup
T ∈Tj

∫
T

gj

) ∫
| f j (t)|2 dt ≲ ∥ f j∥

2
2

by the Mizohata–Takeuchi conjecture and the second conclusion of Theorem 1.9. Combining these
estimates yields (16). □

1.2. Structure of the paper. In Section 2 we first state and prove two results, Theorems 2.1 and 2.3, both
equivalent to Case I of Theorem 1.1, and then we indicate how we shall use vector-valued techniques to
obtain our main theorems. In Section 3 we discuss refinements of Theorem 1.1 for positive operators to
the case of p-convex lattices; the main result here is Theorem 3.2. The case of general linear operators
is taken up in Section 4, and here we impose conditions of Rademacher-type; the main result in this
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Theorem 1.3 Theorem 1.4

Theorem 3.2

Theorem 5.1

Figure 2. Positive operators.

Theorem 1.5 Theorem 1.6 Theorem 1.7

Theorem 4.1

Theorem 4.3

Theorem 5.2

Figure 3. General linear operators.

setting is Theorem 4.3. In Section 5 we establish sharp multilinear duality and Maurey-type factorisation
theorems for both positive and general linear operators, in Theorems 5.1 and 5.2 respectively. The logical
connections between these main results are summarised in Figure 1.

The implications between the main result for positive operators on p-convex lattices, Theorem 3.2,
and its more basic manifestations Theorems 1.3 and 1.4 for Lr -spaces, are given in Figure 2.

For general linear operators on normed spaces of (nontrivial) Rademacher-type, the corresponding logi-
cal implications between the main result, Theorem 4.3 and the more basic manifestations Theorems 1.5, 1.6
and 1.7 for Lr -spaces, are given by Figure 3. Finally, in the Appendix, we consider the necessity of the
conditions we have imposed on the exponents (pj ) in the Basic Question and in Theorems 1.3 and 1.5,
and we show that they cannot in general be dispensed with. We also show that one cannot avoid the
hypothesis of (pj )-convexity in Theorem 3.2.

2. Vector-valued disentanglement

In this section we state and prove two results, both of which are equivalent to the disentanglement result
given by Case I of Theorem 1.1. These will be crucial in the development of both the positive theory stated
in terms of p-convexity and of the general linear theory using Rademacher-type. At the end of this section
we describe the strategy that we will adopt in order to achieve these aims in the succeeding sections.

2.1. Functional form. We first derive an equivalent, arguably more primordial, form of Case I of
Theorem 1.1, which makes no reference to saturating positive linear operators, nor to normed lattices,
but instead is couched in terms of saturating families of nonnegative measurable functions on a σ -finite
measure space X .

Let (X, dµ) be a σ -finite measure space. Suppose that for each 1 ≤ j ≤ d we have an indexing set Kj

and a family {gkj }kj ∈Kj of nonnegative measurable functions on X . We assume that, for each j , the family
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{gkj }kj ∈Kj saturates X in the sense that, for every E ⊆ X with µ(X) > 0, there is a subset E ′
⊆ E with

µ(E ′) > 0 and a kj ∈ Kj such that gkj > 0 on E ′.

Theorem 2.1 (disentanglement of functions). With (X, dµ) and {gkj }kj ∈Kj as above, and αj > 0 such that∑d
j=1 αj = 1, assume that ∫

X

d∏
j=1

( ∑
kj ∈Kj

βkj gkj

)αj

dµ≤ A
d∏

j=1

( ∑
kj ∈Kj

βkj

)αj

(18)

for all (finitely supported) nonnegative {βkj }. Then there exist nonnegative φj such that

d∏
j=1

φj (x)αj ≥ 1 (19)

almost everywhere on X , and such that, for all j ,∫
X

gkj (x)φj (x) dµ(x)≤ A (20)

for all kj ∈ Kj .

Proof. Let Yj be the normed lattice l1(Kj ) with counting measure on Kj , whose members are denoted by
β j = {βkj }kj ∈Kj . (There is no requirement on Kj to be countable.) Define Tj : l1(Kj )→ M(X) by

Tj (β j ) :=

∑
kj ∈Kj

βkj gkj .

Note that Tj are saturating positive linear operators. Then (18) becomes∫
X

d∏
j=1

(Tjβ j )
αj dµ≤ A

d∏
j=1

∥β∥
αj
Yj
.

By Case I of Theorem 1.1, there exist φj such that (19) holds and such that∫
X
(Tjβ j )φj dµ≤ A∥β j∥Yj ,

which is the same as ∫
X

( ∑
kj ∈Kj

βkj gkj

)
φj dµ≤ A

∑
kj ∈Kj

βkj ,

or, equivalently, (20). □

Theorem 2.1 can be equivalently rephrased in terms of convex families of functions as follows:

Theorem 2.2 (disentanglement of convex families of functions). Let (X, dµ) be a σ -finite measure space.
Suppose that

∑d
j=1 αj = 1 and that each αj > 0. For each j ∈ {1, . . . , d} let Gj be a saturating convex set

of nonnegative measurable functions. Assume that∫
X

d∏
j=1

gj (x)αj dµ(x)≤ A for all gj ∈ Gj .
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Then there exist nonnegative φj such that
d∏

j=1

φj (x)αj ≥ 1

almost everywhere on X , and such that, for all j ,∫
X

gj (x)φj (x) dµ(x)≤ A for all gj ∈ Gj .

Proof. The equivalence of Theorems 2.1 and 2.2 is clear from the following observation: writing
γkj := βkj /

(∑
kj ∈Kj

βkj

)
and using homogeneity, assumption (18) of Theorem 2.1 can be rephrased as∫

X

d∏
j=1

gαj
j dµ≤ A for all gj ∈ convGj ,

where convGj is the convex hull of Gj . □

2.2. Vector-valued form. The viewpoint of Theorem 2.1 lends itself more readily to applications which
are far from obvious from the viewpoint of the formulation of Theorem 1.1. For some of these applications
we shall need to work with quasinormed spaces rather than normed spaces Yj . We recall that a quasinormed
space Y is one in which we have the quasitriangle inequality ∥x + y∥Y ≤ K (∥x∥Y + ∥y∥Y) for some
K ≥ 1 in place of the usual triangle inequality.6

For example, we have:

Theorem 2.3. Suppose that (X, dµ) is a σ -finite measure space, Yj are quasinormed spaces and
0 < pj < ∞. Suppose Tj : Yj → M(X) are homogeneous of degree 1 — that is, Tj (λ f j ) = λTj f j

for all f j ∈ Yj and all scalars λ. Assume that, for all j , the functions {|Tj f j | : f j ∈ Yj } saturate X. Let
θj > 0 satisfy

∑d
j=1 θj = 1 and suppose that we have the (pj )-vector-valued inequality∫

X

d∏
j=1

( N∑
k=1

|Tj f jk(x)|pj

)θj

dµ(x)≤ A
d∏

j=1

( N∑
k=1

∥ f jk∥
pj
Yj

)θj

(21)

uniformly in N. Then there exist nonnegative φj such that
d∏

j=1

φj (x)θj ≥ 1

almost everywhere on X and such that, for each j ,(∫
X

|Tj f j (x)|pjφj (x) dµ(x)
)1/pj

≤ A1/pj ∥ f j∥Yj

for all f j ∈ Yj .

Notice that we do not need Yj to have a lattice structure, nor do we need linearity or positivity of Tj .

6We shall not use the quasitriangle inequality, and so the constant K will not appear explicitly in our analysis. In fact, every
quasinormed space Y is r -normable and hence has Rademacher-type r for some 0< r ≤ 1; see for example [Kalton 2005]. The
Rademacher-type constant Rr (Y) will instead feature.
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Proof. Consider the saturating families{(
|Tj f j (x)|
∥ f j∥Yj

)pj

: f j ∈ Yj \ {0}

}
of nonnegative functions defined on X . Assumption (21) translates into (18) with αj = θj , with the same
constant A. So by Theorem 2.1 there are nonnegative φj such that (19) and (20) hold. And (20) translates
into (∫

X
|Tj f j (x)|pjφj (x) dµ(x)

)1/pj

≤ A1/pj ∥ f j∥Yj

for all f j ∈ Yj . □

To complete the assertion that Theorems 1.1 (Case I), 2.1 and 2.3 are all equivalent, we note that
Theorem 2.3 implies Case I of Theorem 1.1. Indeed, the scalar-valued inequality (the hypothesis of
Theorem 1.1) readily upgrades to the vector-valued inequality (the hypothesis of Theorem 2.3 with pj = 1
for all j) via positivity, as follows: we have∫

X

d∏
j=1

(∑
k

|Tj f jk(x)|
)θj

dµ(x)≤

∫
X

d∏
j=1

∣∣∣∣Tj

(∑
k

| f jk |

)
(x)

∣∣∣∣θj

dµ(x)

≤ A
d∏

j=1

∥∥∥∥∑
k

| f jk |

∥∥∥∥θj

Yj

≤ A
d∏

j=1

(∑
k

∥ f jk∥Yj

)θj

.

(Note that the use of the triangle inequality for Yj here is legitimate since in the implication under
consideration the spaces Yj are indeed normed spaces.) Summarising, Theorems 1.1 (Case I), 2.1 and 2.3
are all equivalent.

The reader will readily verify using Hölder’s inequality that the converse statements to Theorems 2.1
and 2.3 also hold.

2.3. Vector-valued approach to disentanglement. We now give a preview of how we shall employ
Theorem 2.3 to establish the main disentanglement theorems of the following sections. Indeed, thanks to
Theorem 2.3 (and its easy converse), given weights (θj ) with

∑d
j=1 θj = 1, exponents (pj ) with pj > 0,

a measure space (X, µ) and linear operators Tj : Yj → M(X) defined on quasinormed spaces Yj , the
following two statements are equivalent:

• (disentanglement of pj -th powers) The norm inequality∫
X

d∏
j=1

|Tj f j (x)|pj θj dµ(x)≤ A
d∏

j=1

∥ f j∥
pj θj
Yj

implies that there exist nonnegative φj such that
∏d

j=1 φj (x)θj ≥ 1 almost everywhere on X and such that,
for each j , (∫

X
|Tj f j (x)|pjφj (x) dµ(x)

)1/pj

≤ Ã1/pj ∥ f j∥Yj .
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• (scalar-valued implies vector-valued inequality) The scalar-valued inequality∫
X

d∏
j=1

|Tj f j (x)|pj θj dµ(x)≤ A
d∏

j=1

∥ f j∥
pj θj
Yj

implies the vector-valued inequality∫
X

d∏
j=1

(∑
k

|Tj f jk(x)|pj

)θj

dµ(x)≤ Ã
d∏

j=1

(∑
k

∥ f jk∥
pj
Yj

)θj

.

In the following sections, we prove disentanglement theorems via this vector-valued approach: subject
to geometric properties of the spaces Yj (p-convexity for positive linear operators, Rademacher-type for
general linear operators), we deduce the vector-valued inequality from the corresponding scalar-valued
inequality, and thereby establish our disentanglement theorems via the equivalence we have just set out.

3. Positive operators and p-convexity

In this section we state and prove a more general form of Theorem 1.3 applying to normed lattices which
enjoy p-convexity properties.

Definition 3.1 (p-convexity). Let 1≤ p<∞. A normed lattice Y is p-convex if for all finite sequences ( f j )

in Y we have ∥∥∥∥(∑
j

| f j |
p
)1/p∥∥∥∥

Y
≤ C p(Y)

(∑
j

∥ f j∥
p
Y

)1/p

.

The least such constant is denoted by C p(Y) and is called the p-convexity constant of Y . Clearly C p(Y)≥1.

Notice that L p is p-convex with p-convexity constant equal to 1, and that every normed lattice is
1-convex with 1-convexity constant equal to 1. If a lattice Y is p-convex for some 1 ≤ p <∞, then it is
p̃-convex for all 1 ≤ p̃ ≤ p; see, for example, [Lindenstrauss and Tzafriri 1979].

Using the fact that Lr is p-convex for 1 ≤ p ≤ r , with p-convexity constant 1, Theorem 1.3 follows
directly from the next, more general result, which is the principal result of this section. This answers our
Basic Question for positive linear operators defined on p-convex lattices upon taking γj = pjθj .

Theorem 3.2 (disentanglement theorem for positive operators on p-convex lattices). Suppose that X is a
σ -finite measure space and that Yj , for j = 1, . . . , d , are pj -convex normed lattices for some 1 ≤ pj <∞.
Suppose that the linear operators Tj : Yj → M(X) are positive, and that each Tj saturates X. Suppose
that θj > 0 and that

∑d
j=1 θj = 1. Finally, suppose that∫

X

d∏
j=1

(Tj f j )(x)pj θj dµ(x)≤ B
d∏

j=1

∥ f j∥
pj θj
Yj

(22)

for all nonnegative f j in Yj , 1 ≤ j ≤ d.
Then there exist nonnegative measurable functions φj on X such that

d∏
j=1

φj (x)θj ≥ 1 (23)
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almost everywhere on X and such that for each j ,(∫
X

|Tj f j (x)|pjφj (x) dµ(x)
)1/pj

≤ B1/pj C pj (Yj )∥ f j∥Yj (24)

for all f j ∈ Yj .

Remark 3. The necessity of the geometric assumption that each lattice Yj is pj -convex is addressed in
the Appendix — see Proposition A.9.

We establish Theorem 3.2 using the strategy described above in Section 2.3. Indeed, by the discussion
there, and some playing with homogeneities, it suffices to show that under the assumptions of the theorem,
the scalar-valued inequality ∫

X

d∏
j=1

|Tj f j (x)|pj θj dµ(x)≤ B
d∏

j=1

∥ f j∥
pj θj
Yj

(25)

implies the (pj )-vector-valued inequality∫
X

d∏
j=1

( N∑
k=1

|Tj f jk(x)|pj

)θj

dµ(x)≤ B
d∏

j=1

C pj (Yj )
pj θj

d∏
j=1

( N∑
k=1

∥ f jk∥
pj
Yj

)θj

, (26)

and this is exactly what we do in the next lemma:

Lemma 3.3 (scalar-valued to vector-valued). Suppose that Tj : Yj → M(X) are positive linear operators
and that Yj are pj -convex normed lattices for some pj ≥ 1. Then (25) implies (26).

Note that when each Yj is an Lrj -space for rj ≥ pj , the constant in (26) is precisely B since then we
have C pj (L

rj )= 1.

Proof. By homogeneity, we may assume that, for each j ,
(∑N

k=1 ∥ f jk∥
pj
Yj

)1/pj
= 1.

We are seeking a bound for the left-hand side of (26), and start by linearising the expression(∑N
k=1 |Tj f jk(x)|pj

)1/pj in a pointwise manner. We do this by using classical duality for l p spaces,
together with positivity. Indeed, we have, with the sup taken over all (λk) with

∑
k λ

p′

j
k = 1,( N∑

k=1

∣∣∣∣Tj f jk(x)
∣∣∣∣pj

)1/pj

= sup
(λk)

|

N∑
k=1

λk Tj f jk(x)| = sup
(λk)

∣∣∣∣Tj

( N∑
k=1

λk f jk

)
(x)

∣∣∣∣
≤ sup

(λk)

Tj

[( N∑
k=1

λ
p′

j
k

)1/p′

j
( N∑

k=1

| f jk |
pj

)1/pj
]
(x)

= Tj

[( N∑
k=1

| f jk |
pj

)1/pj
]
(x) := Tj Fj (x).

Now we are in a position to apply (25), and we thus have∫
X

d∏
j=1

( N∑
k=1

|Tj f jk(x)|pj

)θj

dµ(x)≤

∫
X

d∏
j=1

Tj Fj (x)pj θj dµ(x)≤ B
d∏

j=1

∥Fj∥
pj θj
Yj
.
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We use the definition of p-convexity to obtain

∥Fj∥Yj =

∥∥∥∥[( N∑
k=1

| f jk |
pj

)1/pj
]∥∥∥∥

Yj

≤ C pj (Yj )

( N∑
k=1

∥ f jk∥
pj
Yj

)1/pj

= C pj (Yj ).

Combining these inequalities establishes the lemma. □

Notice that we really use linearity of Tj in this argument; sublinearity does not suffice for it to work.

Remark 4. The essence of the vector-valued approach to disentanglement lies in upgrading a scalar-
valued estimate into the corresponding vector-valued estimate. From the viewpoint of disentanglement of
convex families of functions, this amounts to upgrading the estimate∫

X

d∏
j=1

|gj (x)|θj dµ(x)≤ A for all gj ∈ Gj

from the family

Gj := G(Tj ,Yj , pj ) :=

{
|Tj f j |

pj

∥ f j∥
pj
Yj

}
to its convex hull convGj . Now, Lemma 3.3 loosely states that, under its assumptions, the family Gj is
“essentially convex”. Indeed, let F1 and F2 be sets of nonnegative measurable functions and C > 0 be a
constant. Let us write F1 ≤ CF2 if for each f1 ∈ F1 there is f2 ∈ F2 such that f1 ≤ C f2. Assume that
T : Y → M(X) is a positive linear operator on a p-convex normed lattice Y with p-convexity constant
C p(Y). Then from the definition of p-convexity it follows that

convG(T,Y, p)≤ C p(Y)G(T,Y, p).

4. General linear operators and Rademacher-type

We now consider general linear (not necessarily positive) operators. We will follow the same general
lines of argument as in the previous section. The key new ingredient in this setting will be an analogue of
the argument of Lemma 3.3 which converts scalar to vector inequalities, but now without a positivity
hypothesis. Once again we shall first need to linearise the expression

(∑N
k=1 |Tj f jk(x)|pj

)1/pj in a
pointwise manner. We no longer have positivity at our disposal, so we shall instead use the sequence of
Rademacher functions, which we denote by (ϵk).

Let us first suppose for simplicity that each pj = 2. In this case, we have, for each j ,( N∑
k=1

|Tj f jk(x)|2
)1/2

=

(
E

∣∣∣∣ N∑
k=1

ϵk Tj f jk(x)
∣∣∣∣2)1/2

,

∼θj

(
E

∣∣∣∣ N∑
k=1

ϵk Tj f jk(x)
∣∣∣∣2θj

)1/2θj

=

(
E

∣∣∣∣Tj

( N∑
k=1

ϵk f jk

)
(x)

∣∣∣∣2θj
)1/2θj
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by Khintchine’s inequality, so that∫
X

d∏
j=1

( N∑
k=1

|Tj f jk(x)|2
)θj

dµ(x)≲{θj } E

∫
X

d∏
j=1

∣∣∣∣Tj

( N∑
k=1

ϵ jk f jk

)
(x)

∣∣∣∣2θj

dµ(x).

If we now assume (25) with pj = 2 for all j , we can dominate this last expression by

B E

d∏
j=1

∥∥∥∥ N∑
k=1

ϵ jk f jk

∥∥∥∥2θj

Yj

.

If Yj is assumed to be of Rademacher-type 2, that is to say(
E

∥∥∥∥ N∑
k=1

ϵk Fk

∥∥∥∥2

Yj

)1/2

≤ R2(Yj )

( N∑
k=1

∥Fk∥
2
Yj

)1/2

for some finite R2(Yj ), we will obtain (using Jensen’s inequality E(X θ )≤ E(X)θ for 0< θ < 1)∫
X

d∏
j=1

( N∑
k=1

|Tj f jk(x)|2
)θj

dµ(x)≲{θj } B
d∏

j=1

R2(Yj )
2θj

d∏
j=1

( N∑
k=1

∥ f jk∥
2
Yj

)θj

,

which is the analogue of (26) in this setting.
(Note that even in the case that each Yj is an L2-space, and so R2(Yj )= 1, there is an implicit constant

greater than 1 in this last conclusion, due to the use of Khintchine’s inequality.)
The argument now proceeds exactly in accordance with the remarks in Section 2.3, and we arrive at:

Theorem 4.1 (disentanglement theorem for general linear operators on spaces of Rademacher type 2).
Suppose that X is a σ -finite measure space and that Yj , for j = 1, . . . , d, are normed spaces which are of
Rademacher-type 2. Suppose that the linear operators Tj : Yj →M(X) saturate X , and that

∑d
j=1 θj = 1.

Finally, suppose that ∫ d∏
j=1

|Tj f j (x)|2θj dµ(x)≤ B
d∏

j=1

∥ f j∥
2θj
Yj

for all f j in Yj , 1 ≤ j ≤ d.
Then there exist nonnegative measurable functions φj on X such that

d∏
j=1

φj (x)θj ≥ 1

almost everywhere on X , and such that, for each j ,(∫
X

|Tj f j (x)|2φj (x) dµ(x)
)1/2

≲{θj } B1/2 R2(Yj )∥ f j∥Yj

for all f j ∈ Yj .

The special case of this result when each Yj is an Lrj -space with 2 ≤ rj <∞ is Theorem 1.6, which
immediately follows from Theorem 4.1 upon using the fact (see below) that the Lebesgue space Lr with
r ≥ 2 has Rademacher-type 2.
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We now need to discuss what happens when one or more of the pj are not equal to 2. We need the
notion of Rademacher-type p.

Definition 4.2 (Rademacher-type). Let 0< p ≤ 2. A quasinormed space Y is of Rademacher-type p if
for all finite sequences (Fk) in Y we have(

E

∥∥∥∥ N∑
k=1

ϵk Fk

∥∥∥∥p

Y

)1/p

≤ Rp(Y)
( N∑

k=1

∥Fk∥
p
Y

)1/p

for some finite constant Rp(Y).

The least such constant is denoted by Rp(Y) and is called the p-Rademacher-type constant of Y .
When 0 < r ≤ 2, the Lebesgue space Lr has Rademacher-type p for 0 < p ≤ r ; when 2 < r < ∞,
Lr has Rademacher-type p for 0< p ≤ 2. Every normed space Y has Rademacher-type 1. Note that by
Khintchine’s inequality, if a quasinormed space is of Rademacher-type p, then it is also of Rademacher-
type p̃ for all 0 < p̃ ≤ p. Observe that the one-dimensional normed space R (and more generally any
Hilbert space) has Rademacher-type 2 with corresponding constant 1. When 0< p< 1, Rademacher-type
p is equivalent to p-normability, i.e., the existence of a constant C such that∥∥∥∥ N∑

k=1

Fk

∥∥∥∥
Y

≤ C
( N∑

k=1

∥Fk∥
p
Y

)1/p

.

Ideally we would hope to have:

Aspiration (general disentanglement aspiration for linear operators). Suppose that X is a σ -finite measure
space and that Yj , for j = 1, . . . , d , are quasinormed spaces which are of Rademacher-type pj for certain
0< pj ≤ 2. Suppose that the linear operators Tj :Yj →M(X) saturate X , and that

∑d
j=1 θj = 1. Finally,

suppose that ∫ d∏
j=1

|Tj f j (x)|pj θj dµ(x)≤ B
d∏

j=1

∥ f j∥
pj θj
Yj

(27)

for all f j in Yj , 1 ≤ j ≤ d.
Then there exist nonnegative measurable functions φj on X such that

d∏
j=1

φj (x)θj ≥ 1 (28)

almost everywhere on X and such that, for each j ,(∫
X

|Tj f j (x)|pjφj (x) dµ(x)
)1/pj

≲{θj ,pj } B1/pj Rpj (Yj )∥ f j∥Yj (29)

for all f j ∈ Yj .

We cannot hope for this to be true in general in situations in which some pj < 2; see the Appendix.
Nevertheless, we are able to prove something slightly weaker, namely that the aspiration is in fact a theorem
under the stronger hypothesis that for those j with pj < 2, the normed spaces Yj have Rademacher-type
strictly larger than pj .



530 ANTHONY CARBERY, TIMO S. HÄNNINEN AND STEFÁN INGI VALDIMARSSON

Theorem 4.3 (disentanglement theorem for general linear operators on spaces of nontrivial Rademacher
type). Let X be a σ -finite measure space and Yj quasinormed spaces. Let Tj : Yj → M(X) be linear
operators. Suppose that the linear operators Tj saturate X. Let 0< pj ≤ 2 and

∑d
j=1 θj = 1. Assume that∫ d∏

j=1

|Tj f j (x)|pj θj dµ(x)≤ B
d∏

j=1

∥ f j∥
pj θj
Yj

(30)

for all f j in Yj , 1 ≤ j ≤ d.
Suppose moreover that each space Yj has Rademacher-type rj = 2 for those j with pj = 2, and has

Rademacher-type rj > pj for those j with pj < 2.
Then there exist nonnegative measurable functions φj on X such that

d∏
j=1

φj (x)θj ≥ 1

almost everywhere on X and such that, for each j ,(∫
X

|Tj f j (x)|pjφj (x) dµ(x)
)1/pj

≲{θj ,pj ,rj } B1/pj Rrj (Yj )∥ f j∥Yj

for all f j ∈ Yj .

Using the fact that the Lebesgue space Lr (with 0 < r < ∞) has Rademacher-type min{2, r}, and
hence also Rademacher-type r̃ for every 0 < r̃ ≤ min{2, r}, we immediately obtain Theorem 1.5 (and
also the assertion made in the accompanying footnote).

Proof. Once again the key issue is to pass from the scalar-valued inequality (30) to the vector-valued
inequality analogous to (26), and this is achieved by linearising the expression( N∑

k=1

|Tj f jk(x)|pj

)1/pj

for each j . When pj = 2 the Rademacher functions achieve this, but they are unsuited to do so when
0< pj < 2 and instead we use p-stable random variables. (For simplicity of notation, in what follows we
shall assume that pj < 2 for all j ; the easy modifications when pj = 2 for some j are left to the reader.)

We recall that for 0< p ≤2, a real-valued random variable γ on a probability space is called (normalised)
p-stable if it satisfies E(ei tγ ) = e−|t |p

. Note that the distribution (i.e., the pushforward measure on the
real line) of a p-stable random variable is unique because the characteristic function (i.e., the Fourier
transform up to a sign) of a random variable determines its distribution. These random variables enjoy
the following key property:

Lemma 4.4 (key property of independent p-stable random variables). Let 0< q < p ≤ 2. Let (γk) be a
sequence of independent p-stable random variables. Then(

E

∣∣∣∣∑
k

γkak

∣∣∣∣q)1/q

∼p,q

(∑
k

|ak |
p
)1/p

for all sequences (ak) of scalars.



DISENTANGLEMENT, MULTILINEAR DUALITY AND FACTORISATION FOR NONPOSITIVE OPERATORS 531

Pisier [1974] proved that this property can be upgraded to the vector-valued setting under an appropriate
hypothesis of Rademacher-type:

Lemma 4.5 (Rademacher-type r implies stable-type p < r). Let 0 < q < p < r ≤ 2. Let Y be a
quasinormed space of Rademacher-type r. Let (γk) be a sequence of independent p-stable random
variables. Then (

E

∥∥∥∥∑
k

γk fk

∥∥∥∥q

Y

)1/q

≲p,q,r Rr (Y)
(∑

k

∥ fk∥
p
Y

)1/p

for all sequences ( fk) of vectors.

Note that we need q < p in the above lemmas because p-stable random variables fail to be p-integrable.
For a textbook treatment of Rademacher and p-stable random variables and Rademacher and p-stable
types, see for example [Albiac and Kalton 2006, Sections 6.2, 6.4, and 7.1].

Now, for each j = 1, . . . , d , let (γ jk) be a sequence of independent pj -stable random variables. Then,
by Lemma 4.4, we have( N∑

k=1

|Tj f jk(x)|pj

)1/pj

∼{θj }

(
E

∣∣∣∣∑
k

γ jk Tj f jk(x)
∣∣∣∣pj θj

)1/pj θj

.

Using this linearisation we can rephrase the left-hand side of the vector-valued inequality in terms of the
left-hand side of the scalar-valued inequality,∫

X

d∏
j=1

( N∑
k=1

|Tj f jk(x)|pj

)θj

dµ(x)∼{θj } E

∫
X

d∏
j=1

∣∣∣∣∑
k

γ jk Tj f jk(x)
∣∣∣∣pj θj

dµ(x)

= E

∫
X

d∏
j=1

∣∣∣∣Tj

(∑
k

γ jk f jk

)
(x)

∣∣∣∣pj θj

dµ(x).

Using the assumed scalar-valued inequality (30), we have the estimate

E

∫
X

d∏
j=1

∣∣∣∣Tj

(∑
k

γ jk f jk

)
(x)

∣∣∣∣pj θj

dµ(x)≤ BE

d∏
j=1

∥∥∥∥∑
k

γ jk f jk

∥∥∥∥pj θj

Yj

= B
d∏

j=1

E

(∥∥∥∥∑
k

γ jk f jk

∥∥∥∥pj θj

Yj

)
.

By Lemma 4.5, together with the assumption that each space Yj has Rademacher-type rj > pj , and the
fact that θj < 1, we obtain

E

(∥∥∥∥∑
k

γ jk f jk

∥∥∥∥pj θj

Yj

)
≲θj ,pj ,rj Rrj (Yj )

pj θj

(∑
k

∥ f jk∥
pj
Y

)θj

for each j and therefore

E

d∏
j=1

∥∥∥∥∑
k

γ jk f jk

∥∥∥∥pj θj

Yj

≲θj ,pj ,rj

d∏
j=1

Rrj (Yj )
pj θj

(∑
k

∥ f jk∥
pj
Y

)θj

.



532 ANTHONY CARBERY, TIMO S. HÄNNINEN AND STEFÁN INGI VALDIMARSSON

Summarising, we have proved that if the quasinormed spaces Yj have Rademacher-type rj , then the
scalar-valued inequality (30) implies the vector-valued inequality∫

X

d∏
j=1

( N∑
k=1

|Tj f jk(x)|pj

)θj

dµ(x)≲θj ,pj ,rj

d∏
j=1

Rrj (Yj )
pj θj

(∑
k

∥ f jk∥
pj
Y

)θj

.

By the remarks in Section 2.3, this suffices to establish Theorem 4.3. □

Remark 5. Since the linearisation arguments of Theorems 3.2 and 4.3 run componentwise, in the case
where some of the operators are positive on pj -convex lattices and some nonpositive on rj -Rademacher-
type normed spaces, we may obtain a hybrid of these two theorems, whose precise formulation we leave
to the interested reader.

5. Multilinear duality and Maurey factorisation extended

In this section we apply the two main disentanglement theorems (Theorem 3.2 for positive linear operators
and Theorem 4.3 for general linear operators) to deduce multilinear duality and multilinear Maurey
factorisation theorems in the spirit of Theorem 1.1. The treatment we give is very much in parallel to the
manner in which Cases II and III of Theorem 1.1 can be deduced from Case I.

Note that multilinear Maurey factorisation theorems below (Cases III of Theorems 5.1 and 5.2) in the
linear case d = 1 recover the Maurey factorisation theorems [1974] for linear operators. We emphasise,
however, that our main theorems (Theorems 3.2 and 4.3) have no linear counterparts since in the case
d = 1 they are vacuous.

5.1. Positive operators. We begin with the setting of positive operators.

Theorem 5.1. Suppose that X is a σ -finite measure space and that Yj , for j = 1, . . . , d , are pj -convex
normed lattices for some 1 ≤ pj <∞. Suppose that the linear operators Tj : Yj → M(X) are positive
and that each Tj saturates X. Suppose that θj > 0 and that

∑d
j=1 θj = 1. Finally, suppose that for some

0< q ≤ ∞ we have ∥∥∥∥ d∏
j=1

(Tj f j )
pj θj

∥∥∥∥
Lq (dµ)

≤ B
d∏

j=1

∥ f j∥
pj θj
Yj

(31)

for all nonnegative f j in Yj , 1 ≤ j ≤ d.

Case I: (disentanglement). q = 1. See Theorem 3.2.

Case II: (multilinear duality) If q > 1, then for every nonnegative G ∈ Lq ′

(X) there exist nonnegative
measurable functions gj on X such that

G(x)≤

d∏
j=1

gj (x)θj

almost everywhere, and such that(∫
X

|Tj f j (x)|pj gj (x) dµ(x)
)1/pj

≤ B1/pj C pj (Yj )∥G∥q ′∥ f j∥Yj

for all f j ∈ Yj .
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Case III: (multilinear Maurey factorisation) If 0 < q < 1 then there exist nonnegative measurable
functions gj on X such that ∥∥∥∥ d∏

j=1

gj (x)θj

∥∥∥∥
q ′

= 1

and such that (∫
X

|Tj f j (x)|pj gj (x) dµ(x)
)1/pj

≤ B1/pj C pj (Yj )∥ f j∥Yj

for all f j ∈ Yj .

Note that Theorem 5.1 in the special case pj = 1 for all j is precisely Theorem 1.1.

Proof. We begin with Case II. Suppose that∥∥∥∥ d∏
j=1

(Tj f j )
pj θj

∥∥∥∥
Lq (X)

≤ B
d∏

j=1

∥ f j∥
pj θj
Yj

for all nonnegative f j ∈ Yj , 1 ≤ j ≤ d . Then, for all nonnegative G ∈ Lq ′

(X) with ∥G∥Lq′ = 1, we have∫
X

d∏
j=1

(Tj f j (x))pj θj G dµ(x)≤

∥∥∥∥ d∏
j=1

(Tj f j )
pj θj

∥∥∥∥
q

≤ B
d∏

j=1

∥ f j∥
pj θj
Yj
.

It is easy to see that if Tj saturates X with respect to the measure dµ, then it also does so with respect
to G dµ. Moreover, the measure G dµ is σ -finite. Therefore, by Theorem 3.2 applied with the measure
G dµ in place of dµ, there are nonnegative measurable functions γj such that

1 ≤

d∏
j=1

γj (x)θj G dµ-a.e. on X ,

and such that, for each j ,(∫
X

|Tj f j (x)|pjγj (x)G(x) dµ(x)
)1/pj

≤ B1/pj C pj (Yj )∥ f j∥Yj

for all f j ∈ Yj . Setting gj = γj G gives the desired conclusion.
Now we turn to Case III. The main hypothesis (31) is that∫

X

d∏
j=1

(Tj f j )
pj θj q dµ≤ Bq

d∏
j=1

∥ f j∥
pj θj q
Yj

for all nonnegative f j ∈ Yj , 1 ≤ j ≤ d .
We introduce a new one-dimensional normed lattice Yd+1 with a nonnegative element y of unit norm. Let

Td+1 :Yd+1 →M(X) be given by λy →λ1, where 1 denotes the constant function taking the value 1 on X .
Then we have ∫

X

d+1∏
j=1

(Tj f j )
pj θj q dµ≤ Bq

d+1∏
j=1

∥ f j∥
pj θj q
Yj

for all f j ∈ Yj , 1 ≤ j ≤ d + 1, where the exponents θd+1 > 0 and pd+1 > 0 are at our disposal.
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We want to impose the condition θd+1 = 1/q −1> 0 because, with θ̃j := θj q , we then have
∑d+1

j=1 θ̃j = 1
and ∫

X

d+1∏
j=1

(Tj f j )
pj θ̃j dµ≤ Bq

d+1∏
j=1

∥ f j∥
pj θ̃j
Yj

for all f j ∈ Yj , 1 ≤ j ≤ d + 1.
By Theorem 3.2 we therefore have that there exist ψj , 1 ≤ j ≤ d + 1, such that

d+1∏
j=1

ψj (x)θ̃j = 1

almost everywhere, and(∫
X

|Tj f j (x)|pjψj (x) dµ(x)
)1/pj

≤ Bq/pj C pj (Yj )∥ f j∥Yj

for all f j ∈ Yj , 1 ≤ j ≤ d + 1.
The case j = d + 1 of this last inequality tells us that (if we choose pd+1 = 1)∫

X
ψd+1(x) dµ(x)≤ Bq

and, since by the previous equality we have

ψd+1(x)=

d∏
j=1

ψj (x)−θ̃j/θ̃d+1 =

d∏
j=1

ψj (x)−θj/θd+1 =

d∏
j=1

ψj (x)θj q ′

,

it gives ∥∥∥∥ d∏
j=1

ψj (x)θj

∥∥∥∥
q ′

≥ Bq/q ′

.

If we now set gj = B−q/q ′

ψj for 1 ≤ j ≤ d we obtain∥∥∥∥ d∏
j=1

gj (x)θj

∥∥∥∥
q ′

≥ 1

and (∫
X

|Tj f j (x)|pj gj (x) dµ(x)
)1/pj

≤ B1/pj C pj (Yj )∥ f j∥Yj

for all 1 ≤ j ≤ d, and for all f j ∈ Yj . □

5.2. General linear operators. Next we turn to general linear operators and state a result which in
particular contains Theorem 1.7. The proof follows exactly the same arguments as in Theorem 5.1, with
the exception that the application of Theorem 3.2 there is now replaced by that of Theorem 4.3. (We
also need for Case III to observe that the one-dimensional normed space Yd+1 which we introduce has
Rademacher-type strictly greater than 1 — indeed it has Rademacher-type 2 with constant 1 as we noted
earlier.) We leave the remaining details to the reader.
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Theorem 5.2. Let X be a σ -finite measure space and Yj quasinormed spaces. Let Tj : Yj → M(X) be
linear operators. Suppose that the linear operators Tj saturate X. Let 0 < pj ≤ 2 and

∑d
j=1 θj = 1.

Assume that for some 0< q ≤ ∞ we have∥∥∥∥ d∏
j=1

|Tj f j |
pj θj

∥∥∥∥
Lq (dµ)

≤ B
d∏

j=1

∥ f j∥
pj θj
Yj

for all f j in Yj , 1 ≤ j ≤ d.
Suppose moreover that each space Yj has Rademacher-type rj = 2 for those j with pj = 2, and has

Rademacher-type rj > pj for those j with pj < 2.

Case I: (disentanglement) q = 1. See Theorem 4.3.

Case II: (multilinear duality) If q > 1, then for every nonnegative G ∈ Lq ′

(X) there exist nonnegative
measurable functions gj on X such that

G(x)≤

d∏
j=1

gj (x)θj

almost everywhere, and such that(∫
X

|Tj f j (x)|pj gj (x) dµ(x)
)1/pj

≲{θj ,pj ,rj } B1/pj Rrj (Yj )∥G∥q ′∥ f j∥Yj

for all f j ∈ Yj .

Case III: (multilinear Maurey factorisation) If 0 < q < 1 then there exist nonnegative measurable
functions gj on X such that ∥∥∥∥ d∏

j=1

gj (x)θj

∥∥∥∥
q ′

= 1

and such that (∫
X

|Tj f j (x)|pj gj (x) dµ(x)
)1/pj

≲{θj ,pj ,rj } B1/pj Rrj (Yj )∥ f j∥Yj

for all f j ∈ Yj .

There are further extensions to Case II in both Theorems 5.1 and 5.2 when we replace the role of Lq for
q > 1 by Köthe function spaces as in [Carbery et al. 2022]. We leave the details to the interested reader.

Appendix: Why certain conditions are needed

At various points in the development of our results we have imposed conditions whose necessity might not
be immediately obvious. For example, in the Basic Question we imposed the homogeneity condition (7),
in Theorems 1.3 and 1.5 we imposed upper bounds on the exponents pj , and in Theorem 3.2 we imposed
pj -convexity on the lattices Yj . In this final section we establish that, in all these cases, the conditions
we impose are indeed needed in order for our results to have a sufficiently broad scope so as to include
certain natural examples.
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A.1. Condition (7) in the Basic Question. We first want to clarify to what extent condition (7) is needed
in the formulation of the Basic Question.

Proposition A.1. Fix rj ≥ 1 and γj > 0 for 1 ≤ j ≤ d. Suppose that (pj ) is such that whenever
Tj : Lrj (R)→ M(Rd) are positive linear operators such that∫

Rd

d∏
j=1

|Tj f j (x)|γj dx ≲
d∏

j=1

∥ f j∥
γj

Lrj (R)
(32)

holds, then there exists (φj ) such that
d∏

j=1

φj (x)γj/pj ≥ 1 (33)

and (∫
Rd

|Tj f j (x)|pjφj (x) dx
)1/pj

≲ ∥ f j∥Lrj (R) (34)

hold. Then (pj ) must necessarily satisfy
d∑

j=1

γj

pj
= 1.

Proof. Let 8j ∈ Lγj (R) \
⋃
βj ̸=γj

Lβj (R) and gj ∈ Lr ′

j (R) be nonzero and strictly positive. Let Tj :

Lrj (R)→ Lγj (R) be given by

Tj f (s)=

(∫
R

f gj

)
8j (s).

Extend Tj to Tj : Lrj (R)→ M(Rd) by defining

(Tj f )(x1, . . . , xd) := Tj f (x j ).

Then (32) holds with exponents (γj ), but if we replace any γj by any other exponent, its left-hand side
becomes infinite for all nontrivial nonnegative f j ∈ Lrj (R).

By hypothesis, (pj ) is such that there exists (φj ) satisfying (33) and (34) for this particular (Tj ). Let
λ=

∑d
j=1 γj/pj . Then (33) gives

d∏
j=1

φj (x)γj/λpj ≥ 1,

and so by Lemma 1.2 we can conclude that∫ d∏
j=1

|Tj f j (x)|γj/λ dµ(x)≲
d∏

j=1

∥ f j∥
γj/λ

Lrj ;

that is, (32) holds also with exponents (γj/λ) in place of (γj ) for this (Tj ). This is a contradiction to what
we observed above, unless λ= 1. □
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A.2. Sharpness of the exponents in Theorems 1.3 and 1.5. As a preliminary observation, we note that
the next two lemmas can be used to demonstrate the sharpness of the exponents arising in the classical
Maurey–Nikishin–Stein theory of factorisation of linear operators.

Lemma A.2. For each 1 ≤ r ≤ ∞ and 0 < γ < ∞ we can construct a positive translation-invariant
bounded linear operator T : Lr (G)→ Lγ (G) (where G = T or R with Haar measure) such that

{0< p <∞ : for some nontrivial φ, T : Lr
→ L p(φ) boundedly} = Ir,γ := (0,max{γ, r}].

This is well known. When γ ≤ r , we take T = I , and when γ > r , we take T to be a fractional integral
operator (or slight variant thereof when r = 1).

We next consider general operators.

Lemma A.3. For each 1 ≤ r <∞ and 0 < γ <∞ we can construct a translation-invariant bounded
linear operator T : Lr (G)→ Lγ (G) (where G = T or R with Haar measure) such that

{0< p<∞ : for some nontrivial φ, T : Lr
→ L p(φ) boundedly}

= Jr,γ :=


(0,γ ] when 2 ≤ γ < r or γ ≥ r,
(0,2] when γ < 2 ≤ r,
(0,r) when γ < r < 2.

This is also mostly well known. The exponents γ ≥ r are covered by Lemma A.2 (in which case we
can take G = T or R with Haar measure), so it remains to consider the exponents γ < r (in which case we
shall take G = T). Note that, by an averaging argument, for a translation-invariant operator on a compact
abelian group, T : Lr

→ L p(φ) boundedly for a nontrivial weight φ if and only if T : Lr
→ L p(φ)

boundedly for the weight φ = 1. Thus,

{0< p <∞ : for some nontrivial φ, T : Lr (T)→ L p(T, φ) boundedly}

= {0< p <∞ : T : Lr (T)→ L p(T) boundedly}.

When r > 2 we shall also need the following result to assist us in establishing Lemma A.3:

Lemma A.4. Let 2 ≤ γ <∞. Then there is a bounded translation-invariant linear operator T : L2(T)→

Lγ (T) such that for no p > γ is T bounded from L∞(T) to L p(T).

For the case γ = 2 of Lemma A.4, an argument based on Rademacher functions can be found
in [García-Cuerva and Rubio de Francia 1985, Chapter VI, Example 2.10(e)]. The case γ > 2 fol-
lows readily from Bourgain’s solution [1989] of the 3(p)-set problem. This result states that for
each 2 < γ < ∞ there is a set E ⊆ Z which is a 3(γ )-set, but which is not a 3( p̃)-set for any
p̃ > γ . If T is the Fourier multiplier operator with multiplier χE , then T is bounded from L2(T)

to Lγ (T) (since E is a 3(γ )-set) but unbounded from L∞(T) to L p(T) for every p > γ (since if
T : L∞

→ L p boundedly for some p > γ , then interpolating between this bound and the bound
T : L2

→ Lγ with γ > 2 gives the bound T : Lq
→ L p̃ for some q < p̃ and p̃ > γ , which would
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imply that E is a 3( p̃)-set, a contradiction). (We thank an anonymous referee for pointing out this
connection to us.) Bourgain’s argument gives the stronger conclusion that the operator T can also
be chosen to satisfy T 2

= T. On the other hand, his argument is not constructive, and so we give a
simple constructive proof of Lemma A.4 — which is perhaps of independent interest — in Section A.4
below.

We return to the detailed discussion of Lemma A.3.

• When 2 ≤ γ < r we appeal to Lemma A.4, and we take T to be a translation-invariant bounded linear
operator T : L2

→ Lγ (and hence T : Lr
→ Lγ ) that is not bounded from L∞ to L p for any p > γ .

• When γ < 2< r we appeal to Lemma A.4, and we take T to be a translation-invariant bounded linear
operator T : L2

→ L2 (and hence T : Lr
→ Lγ ) that is not bounded from L∞ to L p for any p > 2.

• When γ < r and r = 2 we take T to be the identity operator.

• When γ < r < 2 we appeal to a theorem of [Zafran 1975] which states that for each r < 2 there is a
translation-invariant bounded linear operator T : Lr (T)→ Lr,∞(T) (and thus T : Lr (T)→ Lγ (T) for all
γ < r ) such that T is not bounded on Lr.

By taking tensor products we obtain corresponding multilinear examples. Indeed, by choosing operators
Tj : Lrj (Gj )→ Lγj (Gj ) as in Lemmas A.2 and A.3, and letting the measure space (X, dµ) be the product
X = G1 × · · · × Gd , with dµ as product measure, we obtain:

Proposition A.5. For each 1 ≤ rj ≤ ∞ and 0< γj <∞ there is a σ -finite measure space X and there
are positive linear operators Tj : Lrj (Gj )→ M(X) such that∫

X

d∏
j=1

|Tj f j |
γj ≲

d∏
j=1

∥ f j∥
γj
rj

and such that

{(pj ) ∈ (0,∞)d : for each j, Tj : Lrj → L pj (φj ) boundedly for some nontrivial φj }

=

d∏
j=1

Irj ,γj =

d∏
j=1

(0,max{γj , rj }].

Proposition A.6. For each 1 ≤ rj <∞ and 0< γj <∞ there is a σ -finite measure space X and there
are linear operators Tj : Lrj (Gj )→ M(X) such that∫

X

d∏
j=1

|Tj f j |
γj ≲

d∏
j=1

∥ f j∥
γj
rj

and such that

{(pj ) ∈ (0,∞)d : for each j, Tj : Lrj → L pj (φj ) boundedly for some nontrivial φj } =

d∏
j=1

Jrj ,γj .

As immediate corollaries we have:
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Corollary A.7. For each 1 ≤ rj ≤ ∞ and 0< γj <∞ there is a σ -finite measure space X and there are
positive linear operators Tj : Lrj (Gj )→ M(X) such that∫

X

d∏
j=1

|Tj f j |
γj ≲

d∏
j=1

∥ f j∥
γj
rj

and such that{
(pj ) ∈ (0,∞)d :

d∑
j=1

γj

pj
= 1 and, for each j, Tj : Lrj → L pj (φj ) boundedly for some nontrivial φj

}
is nonempty if and only if

∑d
j=1 γj/rj ≤ 1, and, when this condition holds, equals( d∏

j=1

(0, rj ]

)
∩

{
(pj ) ∈ (0,∞)d :

d∑
j=1

γj

pj
= 1

}
.

Corollary A.8. For each 1 ≤ rj <∞ and 0< γj <∞ there is a σ -finite measure space X and there are
linear operators Tj : Lrj (Gj )→ M(X) such that∫

X

d∏
j=1

|Tj f j |
γj ≲

d∏
j=1

∥ f j∥
γj
rj

and such that{
(pj ) ∈ (0,∞)d :

d∑
j=1

γj

pj
= 1 and, for each j, Tj : Lrj → L pj (φj ) boundedly for some nontrivial φj

}
=

( d∏
j=1

Jrj ,γj

)
∩

{
(pj ) ∈ (0,∞)d :

d∑
j=1

γj

pj
= 1

}
.

This set is nonempty if and only if we have
∑d

j=1 γj/min{rj , 2} < 1 when at least one rj < 2, and∑d
j=1 γj ≤ 2 when all rj ≥ 2. When nonempty, this set equals( ∏

j :rj<2

(0, rj )×
∏

j :rj ≥2

(0, 2]

)
∩

{
(pj ) ∈ (0,∞)d :

d∑
j=1

γj

pj
= 1

}
.

These two corollaries establish the assertions concerning sharpness of Theorems 1.3 and 1.5 which we
made in the Introduction.

A.3. Disentanglement implies p-convexity. Here we show that the hypotheses of p-convexity are intrinsic
to Theorem 3.2, since p-convexity follows from the conclusion of that result, at least in the case when the
spaces Yj are Köthe spaces whose duals are norming. This class includes Lorentz spaces and Orlicz spaces.

We therefore assume in what follows that each Yj is a Köthe function lattice over the σ -finite measure
space (Yj , dνj ), and that we can realise the norm of any f ∈ Yj as

∥ f ∥Yj = sup
∥g∥Y′

j ≤1

∣∣∣∣∫
Yj

f g dνj

∣∣∣∣.
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We remark that a Köthe dual Y ′ is norming if and only if the pointwise convergence fn ↑ f implies the
norm convergence ∥ fn∥Y → ∥ f ∥Y for all pointwise increasing sequences ( fn) (though we shall not need
this characterisation here).

Proposition A.9. Fix Yj as above, and fix 1< pj <∞ for 1 ≤ j ≤ d. Assume that there exists a constant
C{Yj } such that for all weights (θj ) with θj > 0 and

∑d
j=1 θj = 1, all σ -finite measure spaces (X, dµ), and

all saturating positive linear operators Tj : Yj → M(X) the estimate∫
X

d∏
j=1

|Tj f j (x)|pj θj dµ(x)≤ A
d∏

j=1

∥ f j∥
pj θj
Yj

for all f j ∈ Yj

implies the existence of functions φj such that
∏d

j=1 φj (x)θj ≥ 1 and such that(∫
X

|Tj f j |
pjφj dµ

)1/pj

≤ C{Yj } A1/pj ∥ f j∥Yj .

Then each space Yj is pj -convex.

Proof. Fix j . Let gj ∈ Y ′

j be of unit norm. Let (X, dµ) := (Yj , |gj |dνj ). We define Tj := IYj →Yj .
For each i ̸= j , we choose a nonnegative function Fi on Yi such that ∥Fi∥Yi = 1. Since Y ′

i is assumed
to be norming, for each ϵ > 0 we can choose a nonnegative function Gi on Yi with ∥Gi∥Y ′

i
= 1 such that∫

Yi
Fi Gi dνi ≥ (1 − ϵ)∥Fi∥Yi = (1 − ϵ). We define Ti : Yi → M(X) by

Ti f (x)=

∫
Yi

f Gi dνi ,

so that each Ti f is a constant function on X . Note that |Ti fi (x)| ≤ ∥ fi∥Yi for all fi ∈ Yi and that
|Ti Fi (x)| ≥ (1 − ϵ) for all x ∈ X .

Let θj := 1/pj ∈ (0, 1), and choose the remaining θi ∈ (0, 1) in such a way that
∑d

i=1 θi = 1.
With these choices, we have∫

X

d∏
i=1

|Ti fi (x)|pi θi dµ(x)≤

∫
Yj

| f j ||gj | dµj

∏
i ̸= j

∥ fi∥
pi θi
Yi

≤ ∥gj∥Y ′

j
∥ f j∥Yj

∏
i ̸= j

∥ fi∥
pi θi
Yi

=

d∏
i=1

∥ fi∥
pi θi
Yi
.

By assumption, there are (φi ) such that
∏d

i=1 φi (x)θi ≥ 1 and such that, for each i ,(∫
X

|Ti fi |
piφi dµ

)1/pi

≤ C{Yj }∥ fi∥Yi .

Hence, by the equivalence set out in Section 2.3, we have the vector-valued inequality∫
X

d∏
i=1

( N∑
k=1

|Ti fi,k |
pi

)θi

dµ≤ C{Yj }

d∏
i=1

( N∑
k=1

∥ fi,k∥
pi
Yi

)θi

for the same constant C{Yj }.
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For i ̸= j , set fi,k = Fi for k = 1 and fi,k = 0 for k = 2, . . . , N. We obtain∫
Yj

( N∑
k=1

| f j,k |
pj

)1/pj

|gj | dνj ≤ C{Yj }

1
(1 − ϵ)d−1

( N∑
k=1

∥ f j,k∥
pj
Yj

)1/pj

.

By assumption, the Köthe dual Y ′

j is norming, and hence taking supremum over gj in the unit ball of Y ′

j
and letting ϵ → 0 yields ∥∥∥∥( N∑

k=1

| f j,k |
pj

)1/pj
∥∥∥∥
Yj

≤ C{Yj }

( N∑
k=1

∥ f j,k∥
pj
Yj

)1/pj

.

This is the defining inequality of pj -convexity. □

A.4. Constructive proof of Lemma A.4. Finally, we turn to our constructive proof of Lemma A.4, which
represents a slight strengthening (in the particular case when the underlying group is T) of a result found
in [Figà-Talamanca and Price 1973, Theorem 4.4];7 see the references therein for a full history.

We recall (see for example [Katznelson 2004, p. 33]) the sequence of Rudin–Shapiro polynomials Pm

on T. There is a (deterministic) sequence an ∈ {±1} such that the sequence of trigonometric polynomials
defined for m ≥ 0 by

Pm(x) :=

2m
−1∑

n=0

ane2π inx

has the following properties (of which the first and the last are trivial and the second is the interesting one):

• ∥Pm∥2 = 2m/2.

• ∥Pm∥∞ ≤ 2(m+1)/2.

• 2(m−1)/2
≤ ∥Pm∥q ≤ 2(m+1)/2 for 1 ≤ q ≤ ∞.

• ∥P̂m∥∞ = 1.

For the third item, the upper bounds are clear from the second item; for the lower bounds it suffices by
Hölder’s inequality to show that ∥Pm∥1 ≥ 2(m−1)/2, and this follows from the first two items together with
∥Pm∥2 ≤ ∥Pm∥

1/2
1 ∥Pm∥

1/2
∞ .

From the first and fourth of these we deduce by Young’s inequality and interpolation that, for 1 ≤ r ≤ 2,

∥Pm ∗ f ∥2 ≤ 2m(1/r−1/2)
∥ f ∥r .

Let Fm(x)=
∑2m

−1
n=0 e2π inx so that ∥Fm∥p ≲ 2m/p′

for 1< p ≤ ∞ and ∥Fm∥1 ≲ m.
Observe that Pm ∗ Fm = Pm , so that ∥Pm ∗ Fm∥q = ∥Pm∥q ≳ 2m/2 for all 1 ≤ q ≤ ∞. Let Tm denote

convolution with Pm . Using these bounds we can easily see that ∥Tm∥L p→Lq ≲ ∥Tm∥Lr →L2 only when
p ≥ r . Indeed, from the upper bounds on ∥Fm∥p we deduce that, for all 1 ≤ p, q ≤ ∞, ∥Tm∥L p→Lq is
bounded below by 2m(1/2−1/p′) when p > 1 and m−12m/2 when p = 1.

7The examples in [Figà-Talamanca and Price 1973] depend in principle also on the exponent p, whereas ours is p-independent.
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We now build an explicit example. We first note that P̃m := e2π i2m x Pm(x) has frequencies in [2m, 2m+1),
and similarly for F̃m(x) := e2π i2m x Fm(x). Performing this modulation does not change any of the estimates
on Pm and Fm which we had above, and we have P̃m ∗ F̃m = P̃m and P̃m ∗ F̃m′ = 0 for m ̸= m′.

Fix an r with 1 ≤ r ≤ 2. Let T (depending on r ) be given by convolution with
∞∑

m=1

m−22m/22−m/r P̃m;

by the bounds for Pm derived above we see that T is bounded from Lr to L2.
Fix p ≥ 1 and let fm = m−32−m/p′

F̃m so that

∥ fm∥p ≤ m−32−m/p′

∥F̃m∥p ≲ 1

uniformly in m ≥ 1.
Moreover, we have

T fm = m−52m/22−m/r 2−m/p′

P̃m ∗ F̃m

since P̃m ∗ F̃m′ = 0 for m ̸= m′. Therefore,

∥T fm∥1 = m−52m/22−m/r 2−m/p′

∥P̃m ∗ F̃m∥1 ∼ m−52−m/r 2m/p

for each m ≥ 1.
Consequently,

∥T ∥L p→L1 ≳ sup
m

∥T fm∥1 = ∞

when p < r .
Thus, for each 1 < r ≤ 2, we have built an example of an Lr

→ L2-bounded translation-invariant
operator T on T such that, for every 1 ≤ p < r , we have ∥T ∥L p→L1 = ∞.

By duality, for each 2 ≤ r < ∞, we have an explicit example of an L2
→ Lr -bounded translation-

invariant operator T on T such that if q > r , we have ∥T ∥L∞→Lq = ∞. This establishes the constructive
version of Lemma A.4.
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