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THE GREEN FUNCTION WITH POLE AT INFINITY
APPLIED TO THE STUDY OF THE ELLIPTIC MEASURE

JOSEPH FENEUIL

In RdC1
C or in Rn nRd (d < n� 1), we study the Green function with pole at infinity defined for instance

by David, Engelstein, and Mayboroda. In two cases, we deduce the equivalence between the elliptic
measure and the Lebesgue measure on Rd . We further prove the A1-absolute continuity of the elliptic
measure for operators that can be related to the two previous cases via Carleson measures, extending the
range of operators for which the A1-absolute continuity of the elliptic measure is known.

1. Introduction

History and motivation. Over the past decades, a considerable number of articles have studied the
relationship between the geometry of the boundary of a domain � and the Lp-solvability of the
Dirichlet problem ��u D 0 in �. The Lp-solvability of the Dirichlet problem for large p is equiv-
alent to the absolute continuity of the harmonic measure, and we shall focus our presentation on
the latter. The theory was pioneered in 1916 by the Riesz brothers (see [Riesz and Riesz 1920]),
who established the absolute continuity of the harmonic measure for simply connected domains in
the complex plane with a rectifiable boundary. The quantitative and local analogues are stated in
[Lavrentev 1963] and [Bishop and Jones 1990], respectively. The development of the theory in Rn,
for n � 2, started in [Dahlberg 1977] and treated Lipschitz domains. Many works were then de-
voted to finding the optimal conditions on � and @� to guarantee the absolute continuity of the
harmonic measure. It was finally understood that a quantitative version of absolute continuity of the
harmonic measure holds if and only if the boundary @� is uniformly rectifiable and the domain �
has enough access to its boundary. A nonexhaustive list of articles that lead to this conclusion in-
cludes [Azzam et al. 2016; 2017; David and Jerison 1990; Hofmann et al. 2014; Hofmann and Martell
2014; Semmes 1990], and the minimal access condition to the boundary was recently obtained in
[Azzam et al. 2020].

One of the strategies for studying the absolute continuity of the harmonic measure, and by extension the
Lp-solvability of the Dirichlet problem, is to make a change of variable in order to obtain an equivalent
problem for simpler sets but for more complicated elliptic operators. So instead of studying ��uD 0

on a general domain �, many works focused their interest on the study of elliptic operators of the form
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LD� divAr on, for instance, �D Rn�1
C WD f.x; t/ 2 Rn�1� .0;C1/g. Here, A is a matrix satisfying

the ellipticity and boundedness conditions

A.x; t/� � � � CLj�j
2 for .x; t/ 2� and � 2 Rn; (1.1)

jA.x; t/� � �j � CLj�jj�j for .x; t/ 2� and �; � 2 Rn; (1.2)

for some constant CL> 0. As shown in [Caffarelli et al. 1981b; Modica and Mortola 1980], the conditions
(1.1) and (1.2) are not sufficient to ensure that the elliptic measure associated to L is absolutely continuous
with respect to the Lebesgue measure on Rn�1, and thus some extra assumptions are needed on A to
obtain our absolute continuity. Two situations that give positive results are heavily studied: the first
situation focuses on t -independent matrices A and are studied in [Jerison and Kenig 1981] (use a Rellich
identity), [Auscher et al. 2008] (perturbations), [Hofmann et al. 2015] (A is nonsymmetric), [Hofmann
et al. 2019] (Dirichlet problem in weighted Lp), or [Hofmann et al. 2022] (the antisymmetric part of A
can be unbounded); while in the second situation, the coefficients of A satisfy some conditions described
with the help of Carleson measures and Carleson measure perturbations, and are considered, for instance,
in [Dindoš and Pipher 2019; Dindoš et al. 2017; 2007; Fefferman et al. 1991; Hofmann and Martell 2012;
Hofmann et al. 2021; Kenig and Pipher 2001].

When the domain is the complement of a thin set, for instance�DRnnRd WDf.x; t/2Rd�Rn�d; t¤0g

with d < n� 1, studying the solutions to ��uD 0 in � does not make sense. Indeed, the solutions to
��uD 0 in � are the same as the solutions to ��uD 0 in Rn, which means that the boundary Rd is
not “seen” by the Laplacian or, in term of harmonic measure, it means that the Brownian motion has
zero probability to hit the boundary Rd. In [David et al. 2021b; 2020], G. David, S. Mayboroda, and the
author developed an elliptic theory for domains with thin boundaries by using appropriate degenerate
operators. If �D Rn nRd is considered, we assume that the elliptic operator LD� div Ar satisfies

A.x; t/� � � � CLjt j
dC1�n

j�j2 for .x; t/ 2� and � 2 Rn; (1.3)

jA.x; t/� � �j � CLjt j
dC1�n

j�jj�j for .x; t/ 2� and �; � 2 Rn; (1.4)

for some constant CL > 0. The operator L can thus be written as � div jt jdC1�nAr where A satisfies
conditions (1.1) and (1.2). Under those conditions, the elliptic measure with pole in X 2� associated
to L, denoted by !X

L
, is the probability measure on Rd so that the function uf on � constructed for any

f 2 C1
0
.Rd / as

uf .X /D

Z
Rd

f .y/ d!X
L .y/ (1.5)

is a weak solution to LuD 0, is continuous on �, and has trace on Rd equal to f . The articles [David
and Mayboroda 2022b; David et al. 2019a; Feneuil 2022; Feneuil et al. 2021; Mayboroda and Poggi 2021;
Mayboroda and Zhao 2019] tackled the absolute continuity of the elliptic measure (or Lp-solvability of
the Dirichlet problem) in the case where the boundary of � is a low dimensional set.

We finish the subsection with the following observation made in [David et al. 2019b]. Let LD� divAr
be an elliptic operator defined on RdC1

C that satisfies (1.1)–(1.2). We define A1 as the top left d � d
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submatrix of A, and A2, A3, a4 so that we have the block matrix

AD
�
A1 A2

A3 a4

�
: (1.6)

For n> d C 1, we construct the elliptic operator zLD� div jt jdC1�n zAr defined on Rn nRd as

zA.x; t/ WD

0B@ A1.x; jt j/ A2.x; jt j/
t

jt j

tT

jt j
A3.x; jt j/ a4.x; jt j/In�d

1CA; (1.7)

where t is seen here as a horizontal vector in Rn�d, which means that A2t and tT A3 are matrices of
dimensions d � .n� d/ and .n� d/� d , respectively, and In�d is the identity matrix of order n� d .
Then the elliptic measures on Rd associated to L and zL — we call them !.x;r/ and z!.x;t/ — satisfy

z!.x;t/ D !.x;jt j/ for .x; t/ 2 Rn
nRd: (1.8)

More generally, any solution u to Lu D 0 in RdC1
C yields a solution zu.x; t/ WD u.x; jt j/ to zLu D 0

in Rn n Rd. As a consequence, the construction from [Caffarelli et al. 1981b; Modica and Mortola
1980] can be adapted to provide, for any 1 � d < n, examples of operators whose elliptic measures
are not absolutely continuous with respect to the Lebesgue measure on Rd. It also means that if an
operator zLD� div jt jdC1�n zAr can be written as (1.7) and if the elliptic measure of the original operator
LD � divAr is absolutely continuous with respect to the Lebesgue measure on Rd, then the elliptic
measure associated to zL is also absolutely continuous with respect to the Lebesgue measure on Rd.
The above construction provides, for any dimension and codimension of the boundary, a wide range
of elliptic operators that satisfy the absolute continuity of the elliptic measure. However, the (relevant)
solutions of those operators are radial, i.e., they depend only on the distance to the boundary Rd and their
projection on Rd.

The goal of this article is to go beyond the matrices that can be written as (1.7). Of course, as we shall
discuss in the next subsection, we already know of some cases where the first d lines do not matter for
the A1-absolute continuity of the elliptic measure (see [David et al. 2019a; Feneuil et al. 2021]), and
we also know that the A1 property is stable under Carleson perturbations (see [Mayboroda and Poggi
2021]). However, we do not know, for instance, whether it is possible that the bottom right corner of A is
not a Carleson perturbation of a submatrix of the form b.x; jt j/In�d .

Most of the earlier literature focused on elliptic operators that are “close” to an operator for which jt j
(or t in the codimension 1 case) is a solution. In this article, we show that we are justified in replacing jt j
by any x-independent “Green function with pole at infinity”. We shall first construct the Green function
with pole at infinity in the spirit of [David et al. 2021a]. The Green function (and the Green function
with pole at infinity) has a deep connection with the harmonic measure (see Lemma 2.9 below); some
recent works [David and Mayboroda 2022a; David et al. 2023; 2022] even started to link the geometry
of @� directly to bounds on the Green function (instead of estimates on the harmonic measure). We shall
thus study the Green function with pole at infinity in a few easy cases and deduce that the harmonic
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measure and the Lebesgue measure are comparable (hence A1-absolute continuous with respect to each
other). Then we will use the Green function with pole at infinity as a substitute of jt j in a now classical
argument that establishes the stability of the A1-absolute continuity of the harmonic measure under
some transformations on the elliptic operator. This will enlarge the class of operators for which the
A1-absolute continuity of the harmonic measure is known, especially in the case where d < n� 1.

Presentation of the results. In the rest of the article d is an integer in f0; : : : ; n� 1g. If d D n� 1, then
�DRn

CDRdC1
C Df.x; t/2Rd�.0;C1/g. If d <n�1, then�DRnnRd Df.x; t/2Rd�Rn�d; t¤0g.

When we write that 0< jt j< r , we understand t 2 .0; r/ if n�d D 1 and t 2B.0; r/� Rn�d otherwise.
If LD� div Ar satisfies (1.3)–(1.4), then the elliptic measure defined in (1.5) is nondegenerate, is

doubling, and satisfies the change of pole property (respectively Lemmas 11.10, 11.12, and 11.16 in
[David et al. 2021b]), and those conditions are the ones needed to prove the following result from [David
et al. 2019a].

Theorem 1.9 (Theorem 8.9 in [David et al. 2019a]). Let LD� div Ar, where the real matrix-valued
function A satisfies the ellipticity and boundedness conditions (1.1)–(1.2). Assume that there exists M > 0

such that, for any Borel set H � Rd, the solution uH defined by uH .X /D !
X
L
.H / satisfies the Carleson

measure estimate

sup
x2Rd;r>0

/
Z

B
Rd .x;r/

Z
jt j<r

jtruH j
2 dy dt

jt jn�d
�M: (1.10)

Then the elliptic measure is A1 with respect to the Lebesgue measure on Rd, i.e., for every � > 0 there
exists a ı > 0 (that depends only on �, d , n, CL, and M ) such that for every ball B WD B.x; r/ � Rd,
every t that satisfies jt j D r , and any Borel set E � B, one has

if
!
.x;t/
L

.E/

!
.x;t/
L

.B/
< ı; then

jEj

jBj
< �: (1.11)

For a proof when d D n� 1, see Corollary 3.2 in [Kenig et al. 2016]. The condition (1.10) is closely
related to another characterization of the A1-absolute continuity of the elliptic measure on Rd called
BMO-solvability, which can be found in [Dindoš et al. 2011] for the codimension 1 case and in [Mayboroda
and Zhao 2019] when d < n� 1.

The condition (1.10) means that .jt jjruH j/
2jt jd�n dt dx is a Carleson measure. In order to lighten

the presentation, we introduce a notation for inequalities like (1.10). We say that a quantity f satisfies
the Carleson measure condition if there exists C > 0 such that

kf kL1 � C and sup
x2Rd;r>0

/
Z

B
Rd .x;r/

Z
jt j<r

jf j2
dt dy

jt jn�d
� C: (1.12)

In short, we write f 2 CM2 or f 2 CM2.C / when we want to refer to the constant on the right side of
the bound (1.10). So to conclude, in order to apply Theorem 1.9, we need to assume that there exists
K > 0 such that for any Borel set H, the function uH exists in CM2.K/. It will also be useful to write
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the variant f 2 eCM 2.C / when

sup
x2Rd;r>0

/
Z

B
Rd .x;r/

Z
jt j<r

�
sup

jZ�.y;t/j<jt j=4

jf .Z/j2
� dt dy

jt jn�d
� C: (1.13)

To the best of the author’s knowledge, in our setting of high codimensional boundaries, the most
general condition on the coefficients of the matrix A that ensures the A1-absolute continuity of the
elliptic measure with respect to the d -dimensional Hausdorff measure is given in [Feneuil et al. 2021].

Theorem 1.14 (Theorem 1.9 (1) in [Feneuil et al. 2021] for p D 2). Let LD� div jt jdC1�nAr, where
the real matrix-valued function A satisfies the ellipticity and boundedness conditions (1.1)–(1.2). Assume
that A can be decomposed as

AD
�
A1 A2

B3 b � In�d

�
C C; (1.15)

where In�d is the identity matrix, A1, A2, and B3 are d � d , d � .n�d/, and .n�d/� d matrix-valued
functions, respectively, and b is a scalar function, all of which satisfy

� K�1 � b �K,

� jt jjrbjC jt jjrxB3jC jt j
n�d divt .jt j

dC1�nB3/CjCj 2 CM2.K/,

for a constant K > 0. Then the hypothesis (1.10) of Theorem 1.9 is satisfied (with a constant M that
depends only on d , n, CL, and K) and therefore the elliptic measure !X

L
is A1-absolutely continuous

with respect to the Lebesgue measure.

Remarks. (i) In codimension 1, that is when d D n � 1, Theorem 1.14 requires that the last line
adC1 of the matrix A can be decomposed as adC1 D bdC1C cdC1 with jt jjrbdC1j C jcdC1j 2 CM2.
This condition is thus weaker than the one found in [Kenig and Pipher 2001], where one assumes that
jt jjrAj 2 CM, and the conditions are the same if we add to that result the perturbation theory from
[Hofmann and Martell 2012]. However, to the best of the author’s knowledge, the first time where no
conditions on the first d lines were assumed is in [David et al. 2019a; Feneuil et al. 2021].

(ii) Observe that if A is a .dC1/� .dC1/ matrix-valued function on RdC1
C that satisfies the assumptions

of the above theorem, then the n� n matrix-valued function zA defined from A on Rn nRd as in (1.7)
also satisfies the assumptions of Theorem 1.14.

(iii) With the same argument as the one used in [Dindoš et al. 2007, Corollary 2.3], one can show that
if B3 and b satisfy

.x; t/ 7! osc
B..x;t/;jt j=4/

B3C osc
B..x;t/;jt j=4/

b 2 CM2.K/; (1.16)

where oscB f D supB f � infB f , then we can find yB3 and Ob such that

.x; t/ 7! sup
B..x;t/;jt j=4/

jB3� yB3jC osc
B..x;t/;jt j=4/

jb� Obj 2 CM2.K
0/

and
ryB3Cr

Ob 2 CM2.K
0/:
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So assuming the apparently weaker condition (1.16) is enough to satisfy the assumptions of Theorem 1.14
and therefore obtain the A1-absolute continuity of the elliptic measure.

When d < n� 1, the operator L D � div Ar will necessarily depend on jt j as long as it satisfies
(1.3)–(1.4). However, once the weight jt jdC1�n is removed, we can see that Theorem 1.14 does not even
consider the simple case where AD jt jn�d�1A is an arbitrary constant elliptic matrix.

Let T3 be an .n�d/�d matrix-valued function and T4 be an .n�d/�.n�d/matrix-valued function. We
say that .T3; T4/ satisfies (H1) if

T3 and T4 are x-independent, (H1)

and we say that .T3; T4/ satisfies (H2) if�
.T3/

Trjt j is x-independent,
there exists h W .0;C1/ 7! R such that .T4/

Trjt j D h.jt j/rjt j.
(H2)

In addition, we say that T4 satisfies (H1)/(H2) if .0; T4/ satisfies (H1)/(H2). Note that when d D n� 1,
T4 is a scalar function, and (H1) and (H2) are the same hypothesis.

The condition (H2) for T4 is neither weaker nor stronger than (H1). Roughly, if T4 satisfies (H2), then
rjt j is an eigenvalue of T4 and T4 may depend on x.

Example 1.17. If we set v.t/ to be a horizontal vector orthogonal to t and independent of x, for
instance v.t/D .�t2; t1; 0; : : : ; 0/, and a.x/ to be a vertical vector in Rn�d independent of t , for instance
a.x/D .cos.x/; 0; : : : ; 0/T, then

T4 WD In�d C
1

2jt j
a.x/v.t/

satisfies (H2) but not (H1). On the other hand, a matrix T4 which is constant will satisfy (H1) but
not (H2) except if T4 is actually a scalar multiple of the identity matrix. Also, observe that T4 can go
beyond b � In�d and still stabilize rjt j. Remember that t is seen as a horizontal vector and hence

T4 WD In�d C
1

2

tT t

jt j2

is a matrix that satisfies both (H1) and (H2) but is not the multiplication of the identity matrix by a scalar
function.

Our first result states that, if the last n� d lines of A satisfy either (H1) or (H2), then the elliptic
measure and the Lebesgue measure on Rd are equivalent. Taking matrices as given in Example 1.17 will
already allow us to obtain control of the harmonic measure for some elliptic operators not considered
in the previous literature (for instance when A is a constant matrix where T3 ¤ 0 and T4 is not a scalar
multiple of the identity).

Theorem 1.18. Let LD� div jt jdC1�nAr be an elliptic operator satisfying (1.1)–(1.2). Assume that L

is such that

AD
�
A1 A2

T3 T4

�
; where .T3; T4/ satisfies either (H1) or (H2). (1.19)
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Then, for any Y0 D .y0; t0/ and any Borel set E ��Y0
WD BRd .y0; jt0j/, we have

C�1 jEj

j�Y0
j
� !Y0.E/�

jEj

j�Y0
j
; (1.20)

where jEj denotes the d -dimensional Lebesgue measure and C > 0 depends only on n, d , and CL.

For our second result, we consider elliptic operators whose coefficients are close to a matrix of the form
in (1.19). We shall show that for such operators the bound in Theorem 1.9 holds by adapting an S <N

argument (see [Kenig et al. 2000] and ensuing literature). Our contribution will be the use of the Green
function as a substitute for jt j, a bit like in [Akman et al. 2023], but we handle the (possible) roughness
of the Green function with a much simpler Caccioppoli-type argument.

Theorem 1.21. Let LD� div jt jdC1�nAr be an elliptic operator satisfying (1.1)–(1.2), and write the
decomposition

AD
�

A1 A2

B3CC3 bT4CC4

�
; (1.22)

where b is a scalar function, A1 is a d � d matrix, and the dimensions of A2, B3, C3, T4, C4 are such that
the matrices complete the n� n matrix A. Assume that the submatrices of A satisfy the following:

(a) T4 satisfies either (H1) or (H2),

and there exists a constant K > 0 such that

(b) K�1 � b �K,

(c) jC3jC jC4j 2
eCM 2.K/,

(d) jt jjrbjC jt jjdivx.B3/
T jC jt jn�d jdivt .jt j

dC1�nB3/j 2 CM2.K/.

Then the hypothesis (1.10) of Theorem 1.9 is true and thus the elliptic measure !X
L

is A1-absolutely
continuous with respect to the Lebesgue measure on Rd.

Remarks. (i) Theorem 1.14 is a consequence of Theorem 1.21 when T4 is the identity matrix.

(ii) In the above theorem, when M D .Mij /ij is an .n�d/ � d matrix, then the quantity divx M T

is a vector in Rn�d whose k-th component is
Pd

jD1 @xj
Mkj , and similarly the quantity divt M is a

vector in Rd whose k-th component is
Pn�d

iD1 @ti
Mik .

(iii) When d D n� 1, T4 is a scalar function, and (H2) should read “there exists h W .0;C1/ 7! R such
that T4rt D h.t/rt for all t 2 .0;C1/”, but the later just means that T4 is x-independent, and thus (H1)
and (H2) are the same hypothesis.

(iv) We actually prove a stronger estimate than (1.10); we prove a local S <N L2-estimate which is
stated in (4.10) below. We see a priori no big obstacles in our methods that will stop us from obtaining
N < S estimates under the assumptions of Theorem 1.21, and hence from studying the solvability of the
Dirichlet problem.
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In the next result, we assume a stronger condition on T4 which will allow us to be slightly more flexible
on the bottom left corner of A. In the next lemma, B3 can satisfy either jt jn�d jdivt jt j

dC1�nB3j 2 CM2

as in Theorem 1.21, or simply jt jjdivt B3j 2 CM2.

Theorem 1.23. Assume that d < n� 2. Let L D � div jt jdC1�nAr be an elliptic operator satisfying
(1.1)–(1.2). Write the decomposition

AD
�

A1 A2

B3CzB3CC3 bT4CC4

�
; (1.24)

and assume that

(a) .T4/
Trjt j D rjt j,

and there exists a constant K > 0 such that

(b) K�1 � b �K,

(c) jC3jC jC4j 2
eCM 2.K/,

(d) jt jjrbjC jt jjdivx.B3/
T jC jt jn�d jdivt .jt j

dC1�nB3/j 2 CM2.K/,

(e) jt jjdivx.zB3/
T jC jt jjdivt zB3j 2 CM2.K/.

Then the hypothesis (1.10) of Theorem 1.9 is true and thus the elliptic measure !X
L

is A1-absolutely
continuous with respect to the Lebesgue measure on Rd.

Remark 1.25. The last theorem is a bit unmotivated at the moment. One classical strategy to deal with
nonflat boundaries is to make changes of variable. One can thus obtain an equivalent problem where the
boundary is better (e.g., flat) but the coefficients of the operators are much worse. See for instance [Kenig
and Pipher 2001] in the classical case and [David et al. 2019a] in higher codimension. That is why it is
key to obtain, in the flat case, the largest possible set of operators for which the harmonic measure is
A1-absolute continuous with respect to the Lebesgue measure. The term B3 is the one that we can treat
if we adapt the proof of [Kenig and Pipher 2001] in higher codimension, however B3 is not well adapted
to a change of variable and we would much prefer to use B3.

In [David et al. 2019a], the authors had to introduce a new (and more complicated) change of variable in
order to deal with the case where the boundary is the graph of a Lipschitz function. Still, the construction
is limited to graphs of Lipschitz functions with small Lipschitz constant. I claim here that we can deal
with big Lipschitz constant if we can allow terms in the form of zB3 in the bottom left corner of A, as we
do in Theorem 1.23.

The full construction of the change of variable that maps the graph of an arbitrary Lipschitz function
' W Rd ! Rn�d to Rd and that turns the elliptic operator from [David et al. 2019a] into one in the form
of (1.24) will not be done here, since it would be too long and technical (and we do not have a new result
to prove with it). We will only give a rough idea via an example. If the Lipschitz function is

' W x 2 R 7! .ax; 0/ 2 R2
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and its graph is given by ˆ.x/D .x; '.x//, then the change of variable that maps R to the graph of '
constructed in [Kenig and Pipher 2001] would be

�1.x; t1; t2/D .x; axC t1; t2/Dˆ.x/C .0; t/;

while the one in [David et al. 2019a] would be

�2.x; t1; t2/D .x� c1t1; axC c2t1; t2/Dˆ.x/C .�c1t1; c2t1; t2/;

where c1 D a=
p

1C a2 and c2 D 1=
p

1C a2 are such that ˆ.x/ is orthogonal to .�c1t1; c2t1; t2/. Our
alternative is to take

�3.x; t1; t2/D .x; axC ct1; t2/Dˆ.x/C .0; ct1; t2/; with c D
p

1C a2;

which is constructed so that the distance between �3.x; t1; t2/ and the graph of ' is jt j (like for �2 but
where �3.x; t1; t2/ lies in the plane f.x; s1; s2/; .s1; s2/ 2 R2g, like for �1). If we consider the operator
LD� div ı.X /�1r, where ı.X / is the distance between X and the graph of ', then using the change
of variable �3 will turn L into L3 D� div jt j�1A3r where

A3
D

0@c�4 �ac 0

�ac 1 0

0 0 1

1A
is in the form (1.24), but not in the form (1.15) or (1.22). Replacing an affine function ' by a Lipschitz
function included in a plane will already complicate the computations, but if we change ˆ to a mollified
version ˆjt j in the construction of �3, then we pretend that it stays “fairly short”. Adding the torsion
(i.e., when the Lipschitz function is not anymore included in a plane) will complicate the construction
even more.

The article is divided as follows. Section 2 introduces the notion of a Green function with pole at infinity
and will deduce a relation between this Green function and the elliptic measure that holds whenever
L satisfies the ellipticity and boundedness conditions (1.1)–(1.2). Section 3 is devoted to the study of
operators of the form (1.19) and proves Theorem 1.18. In Section 4, we demonstrate Theorem 1.21 and
1.23 by establishing a local S <N estimate that implies (1.10).

In the rest of the article, A . B means that A � CB for a constant C whose dependence on the
parameters will be stated or will be obvious from context. In addition, A� B means A. B and B .A.

2. General results on the Green function with pole at infinity

In this section, we consider an elliptic operator LD� div jt jdC1�nAr satisfying (1.1)–(1.2). Even if
this article applies when �D RdC1

C (if d D n� 1/ or �D Rn nRd (if d < n� 1/, the definitions and
results of this section can be easily generalized to domains (and elliptic operators) that enter the scope
of the elliptic theory developed in [David et al. 2021b; 2020]. In particular, we only need � to satisfy
the Harnack chain condition and the corkscrew point condition (see [David et al. 2021b; 2020] for these
definitions).
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We need a bit of functional theory, which is only needed for the precise statement of Definition 2.4
and Proposition 2.5 below, and can be overlooked. The space

W WD

�
u 2L1

loc.�/

Z
�

jruj
dt dx

jt jn�d�1
<C1

�
(2.1)

is equipped with the seminorm kukW WD krukL2.�/. Observe that k � kW is a norm for C1
0
.�/ and we

write W0 for the completion of C1
0
.�/ under k � kW . We also define

W0.�/ WD fu 2W
1;2

loc .�/ W u' 2W0 for any ' 2 C10 .Rn/ <C1g: (2.2)

The proof of the properties of W , W0, and W0.�/ can be found in [David et al. 2021b; 2020], but let
us give a few comments to build the reader’s intuition. The spaces W and W0 are the ones where we
find the solutions to the Dirichlet problem LuD 0 in �, uD f 2H 1=2.Rd / by using the Lax–Milgram
theorem; here H 1=2.Rd /DW 1=2;2.Rd /DB

1=2
2;2
.Rd / is the (classical) Besov space of traces. The space

W0 is the subspace of W containing the functions with zero trace. The space W0.�/ is a space bigger
than W0 that possess the same local properties as W0 but does not have any control when j.x; t/j !1.

We recall that u 2W
1;2

loc .�/ is a weak solution to LuD 0 in � ifZ
�

Aru � r'
dt dx

jt jn�d�1
D 0 for ' 2 C10 .�/: (2.3)

Definition 2.4. A Green function (associated to L�) with pole at infinity is a positive weak solution
G WDGL� 2W0.�/ to L�uD� div jt jdC1�nATruD 0 in �.

Be aware that, in the above definition, the function G is a solution to the adjoint operator L� D

� div jt jdC1�nATr. We prefer here to associate G to the adjoint right away, because it is the appropriate
tool we ultimately need for our proofs. But since L and L� satisfy the same properties (1.1)–(1.2), we
have the following.

Proposition 2.5 [David et al. 2021a, Lemma 6.5]. A Green function with pole at infinity G enjoys the
following properties:

� G 2 C.�/, i.e., G is continuous up to the boundary Rd.

� G D 0 on Rd.

� G is unique up to a constant. We write GX for the only Green function with pole at infinity which
satisfies GX .X /D 1, and the uniqueness gives

GX .Y /GY .X /D 1 for X;Y 2�: (2.6)

� Let GY .X / be the Green function (associated to L�) with pole at Y as defined in Chapter 10 of
[David et al. 2021b]. Take Y0 D .y0; t0/ 2�, and define for j 2 N the point Yj D .y0; 2

j t0/. There
exists a subsequence jn!1 such that

GYjn

GYjn .Y0/
converges uniformly on compact sets of � to GY0

: (2.7)
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Proof. The first two points are a consequence of the De Giorgi–Nash–Moser estimates on weak solutions
that can be found (for instance) in [David et al. 2021b, Chapter 8]. The last two points are in Lemma 6.5
from [David et al. 2021a] or in its proof. �

We assign to any point Z D .z; s/ 2� the boundary ball

�Z WD B.z; jsj/� Rd: (2.8)

We apply the comparison principle (see [Caffarelli et al. 1981a] for the codimension 1 case and [David
et al. 2021b] for the higher codimension) to compare the Green function with pole at infinity and the
elliptic measure.

Lemma 2.9. Let Y0 D .y0; t0/ 2�. If X D .x; t/ 2� satisfies x 2 B.y0; 2jt0j/ and 0< jt j< 2jt0j, we
have that

C�1GY0
.X /�

�
jt j

jt0j

�1�d

!Y0.�X /� C GY0
.X /; (2.10)

where C > 0 depends only on n, d , and CL. Here GY0
DGL�;Y0

is defined in Proposition 2.5 and is the
Green function associated to L� with pole at infinity, and !Y0 D !

Y0

L
is the elliptic measure associated

to L with pole at Y0 defined in (1.5).

Remark 2.11. We can use the uniqueness of the Green function (2.6) to get an estimate of GY0
.X / using

the elliptic measure when X is far from Y0.

Proof. We need to invoke some results from [David et al. 2021b]. The classical case d D n� 1 is not
included in that work but is either already known to the reader or can be found in the last section of
[David et al. 2020].

Let Y1 D .y0; 4t0/. The change of pole property [David et al. 2021b, Lemma 11.16] states that, for
any Borel set E ��Y1

D 4�Y0
and any Y 2� satisfying jY �y0j> 8t0, we have

!Y1.E/�
!Y .E/

!Y .�Y1
/
; (2.12)

with constants that depend only on n, d , and CL. Together with the doubling property of the elliptic
measure [David et al. 2021b, Lemma 11.12] and the Harnack inequality [David et al. 2021b, Lemma 8.9],
we deduce that, for the same set E, point Y , and with constants that depend on the same parameters, we
have

!Y0.E/�
!Y .E/

!Y .�Y0
/
: (2.13)

For our second result, we want to compare the Green function and the elliptic measure. Let gX .Y / be
the Green function associated to L with pole in X. Then [David et al. 2021b, Lemma 10.6] implies that

GY .X /D gX .Y / for X;Y 2�: (2.14)

Moreover, [David et al. 2021b, Lemma 11.11] gives, for X D .x; t/ 2� and Y 2� nBRn.x; 2jt j/,

jt jd�1gX .Y /� !Y .�X /; (2.15)
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with constants that depend only on n, d , and CL. So the combination of (2.14) and (2.15) implies, for
X D .x; t/ 2�, that

jt jd�1GY .X /� !Y .�X / for Y 2� nBRn.x; 2jt j/: (2.16)

The proof of the lemma is then pretty easy. Let Y0 and X be as in the assumptions of the lemma. For
any Y far enough from Y0, we use (2.16) to obtain

GY .X /

GY .Y0/
�
jt j1�d!Y .�X /

jt0j1�d!Y .�Y0
/
;

but, since the conditions on X and Y0 imply E WD�X � 4�Y0
, the estimate (2.13) yields

GY .X /

GY .Y0/
�

�
jt j

jt0j

�1�d

!Y0.�X /:

The above bounds on GY =GY .Y0/ are uniform in Y , therefore, by (2.7), those bounds are transferred
to GY0

. The lemma follows. �

3. x-independent Green functions with pole at infinity

In this section, we shall make two easy observations: first, that the Green function, associated to

L� D� div jt jn�d�1AT
r

as in Section 2, with pole at infinity is independent of x whenever A is x-independent; and second, if
both A and the Green function G with pole at infinity are x-independent, then G does not depend on the
first n� d lines of A. We shall invoke, in addition, the uniqueness of the Green function with pole at
infinity and (2.12) to deduce that the elliptic measure and the Lebesgue measure are equivalent on Rd

whenever the last n� d lines of A are x-independent.

Lemma 3.1. Let LD� div jt jdC1�nAr be an elliptic operator satisfying (1.1)–(1.2) and where A is as
in (1.19). Then the Green function (associated to L�) with pole at infinity is x-independent and satisfies,
for any Y0 D .y0; t0/ and X D .x; t/ in �,

C�1 jt j

jt0j
�GY0

.X /� C
jt j

jt0j
; (3.2)

where the constants depend only on n� d and CL.

Proof. The proof is similar under either assumption, (H1) or (H2). We know that the Green function
with pole at infinity has to depend on jt j, but it does not need to depend on x or t=jt j. When .T3; T4/

satisfies (H2), L stabilizes the space of functions that depend on jt j, and thus by uniqueness the Green
function will depend only on jt j. When .T3; T4/ satisfies (H1), L stabilizes the space of functions that are
x-independent, and hence the Green function will be independent of x.
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Case 1: .T3; T4/ satisfies (H1). Define

L0 WD � div jt jdC1�nT4r: (3.3)

The operator L0 is an elliptic operator on Rn�d nf0g satisfying the ellipticity and boundedness conditions
(1.1)–(1.2) with the same constant CL as L.

When d < n � 1, the space Rn�d n f0g and the operator L0 enter the scope of the elliptic theory
developed in [David et al. 2021b] or [David et al. 2020],1 and so all the results in Section 2 hold. Of
course, the study of the elliptic measure of L0, where the boundary is reduced to the point f0g, is trivial
and hence not very interesting. But using this easy case will allow us to find a good candidate for the
Green function with pole at infinity for L�. Let !X

L0
be the elliptic measure on f0g and G.L0/�;t0

be
the Green function with pole at infinity (associated to .L0/

�) which takes the value 1 at t0. Lemma 2.9
implies, for jt j< 2jt0j, that

G.L0/�;t0
.t/�

jt j

jt0j
!Y0.�t /D

jt j

jt0j
!Y0.f0g/D

jt j

jt0j
:

The probability measure !X
L0

on f0g obviously satisfies !X
L0
.f0g/D 1, hence

G.L0/�;t0
.t/�

jt j

jt0j
for jt j< 2jt0j: (3.4)

When jt j � 2jt0j, we use (2.6) and (3.4) to write

G.L0/�;t0
.t/D ŒG.L0/�;t .t0/�

�1
�

�
jt0j

jt j

��1

D
jt j

jt0j
:

We conclude, for any t; t0 2 Rn�d, that

G.L0/�;t0
.t/�

jt j

jt0j
: (3.5)

When d D n� 1, the result (3.5) holds without the need of Lemma 2.9. The operator L0 is defined on
the half line, and there exists f .t/ defined on .0;C1/ such that L0D @tf .t/@t and f .t/� 1 in order to
satisfy the ellipticity and boundedness conditions. A simple exercise of integration shows that the Green
functions with pole at infinity of .L0/

� DL0 are

G.L0/�.t/DK

Z t

0

dt

f .t/
� C jt j; (3.6)

where K is any positive constant, and thus (3.5) follows easily.

We set, for Y0 D .y0; t0/ 2� and X D .x; t/ 2�,

HY0
.X / WDG.L0/�;t0

.t/: (3.7)

1Maybe also when d D n� 1, but let us not take any risks.
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Because of the x-independence of HY0
and T3, we have for ' 2 C1

0
.�/ thatZ

�

AT
rHY0

� r'
dt dx

jt jn�d�1

D

Z
Rn�d

.T3/
T
rtG.L0/�;t0

�

�Z
Rd

rx' dx

�
dt

jt jn�d�1
C

Z
Rd

Z
Rn�d

.T4/
T
rtG.L0/�;t0

� rt'
dt

jt jn�d�1
dx:

The first integral on the right-hand side above is 0 because
R

Rd rx'.x; t/ dx D 0 for all t . The second
integral is also 0 because G.L0/�;t0

is a weak solution to .L0/
�. So HY0

is a weak solution to L�.
Moreover, HY0

2W0.R
n/ because G.L0/�;t0

2W0.R
n�d /. By the uniqueness given in Proposition 2.5,

we necessarily have

GY0
.X /DHY0

.X / WDG.L0/�;t0
.t/: (3.8)

As a consequence, GY0
is x-independent, and the conclusion (3.2) of the lemma follows from (3.5).

Case 2: .T3; T4/ satisfies (H2). In this case, the proof is a simple exercise of integration. By (1.1)
and (1.2), we have

.CL/
�1
ˇ̌
rjt j

ˇ̌2
� T4rjt j � rjt j � CL

ˇ̌
rjt j

ˇ̌2 for all t 2 Rn�d
n f0g:

Since
ˇ̌
rjt j

ˇ̌
D 1, our assumption on T4 implies that

.CL/
�1
� h.jt j/� CL for all t 2 Rn�d

n f0g: (3.9)

We define gr0
as

gr0
DKr0

Z r

0

1

h.r/
dr; (3.10)

where K is chosen such that gr0
.r0/D 1. Our bounds on h yield

gr0
�

r

r0

: (3.11)

We construct now HY0
.X / for Y0 D .y0; t0/ 2� and X D .x; t/ 2� as

HY0
.X / WD gjt0j

.jt j/: (3.12)

Observe that since HY0
depends only on jt j, we have

L�HY0
.X /D g0

jt0j
.jt j/ divx.T3/

T
rjt jC divt Œg

0
jt0j
.jt j/.T4/

T
rjt j�

D 0CKjt0j
divt

1

h.jt j/
h.jt j/D 0;

thanks to the conditions (H2) and the definition (3.10). In addition, HY0
is Lipschitz by (3.10)–(3.9) and

is 0 on the boundary, therefore it lies in W0.�/. So again by uniqueness of the Green function with pole
at infinity (see Proposition 2.5), we have GY0

DHY0
. The conclusion (3.2) is then an easy consequence

of (3.12) and (3.11). �
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Remark 3.13. An interesting consequence of the above proof, for instance (3.6), is that for a general
operator of the form LD� div jt jdC1�nAr, knowing that the elliptic measure is A1-absolute continuous
with respect to the Lebesgue measure (or even equivalent to the Lebesgue measure) will not help us to
get a lot of control on t-derivatives of the Green functions with pole at infinity. Indeed, it is possible to
take h to be any arbitrary function in L1 that stays between 1 and 2. In this case, gr0

defined in (3.10)
and GY0

are only Lipschitz. In particular, the nontangential limit of jrGj at the boundary may not exist
in any reasonable sense (only inferior and superior limits exist). It means that the estimates on the Green
function obtained in [David et al. 2023; 2022] are not equivalent to the A1-absolute continuity of the
harmonic measure without any restriction on the elliptic operator L.

Corollary 3.14. Let LD� div jt jdC1�nAr be an elliptic operator satisfying (1.1)–(1.2). Assume that A
can be written as

AD
�
A1 A2

0 T4

�
; (3.15)

where T4rjt j D rjt j for all t 2 Rn�d.
Then, for X D .x; t/ 2� and Y0 D .y0; t0/ 2�, the Green function with pole at infinity satisfies

GY0
.X /D

jt j

jt0j
: (3.16)

Proof. Under our assumptions, T4 satisfies (H2) with h.r/� 1. From the proof of Lemma 3.1, we have
GY0

.X /D gjt0j
.jt j/ where gr0

.r/ is given by (3.10). The lemma follows. �

Proof of Theorem 1.18. Lemma 3.1 easily implies the equivalence between the harmonic measure and
the surface measure. It was already done in the proof of Theorem 6.7 in [David et al. 2021a], but let us
repeat it for completeness. Take x 2�Y0

. The combination of Lemma 2.9 and Lemma 3.1 requires, for
any 0< r < jt0j and any X D .x; t/ satisfying jt j D r , that

!Y0.BRd .x; r//�GY0
.X /

�
jt j

jt0j

�d�1

�

�
jt j

jt0j

�d

D
jBRd .x; r/j

j�Y0
j

: (3.17)

In particular, the measure is absolutely continuous with respect to the d -dimensional Lebesgue measure
on Rd, and, by the Lebesgue differentiation theorem, the Poisson kernel kY0 WD d!Y0=dLd satisfies, for
almost any x 2�Y0

,

kY0.x/D lim
r!0

!Y0.BRd .x; r//

jBRd .x; r/j
�

1

j�Y0
j
:

The theorem follows by integrating kY0 over E. �

4. Proof of Theorems 1.21 and 1.23

The proof of Theorems 1.21 and 1.23 will rely on an S vs N argument, where S is the square function
(which will not be introduced here but is related to the left-hand side of (4.10)) and N is the nontangential
maximal function. The importance of the two functionals S and N for the A1-absolute continuity of the
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harmonic measure was noted in [Kenig et al. 2000], and the general method to compare S and N (when
Carleson measures are involved) was first found in [Kenig and Pipher 2001]. In [Kenig et al. 2016], it
was observed that being able to bound the Lp-norm of S by the Lp-norm of N is enough to guarantee
the absolute continuity of the harmonic measure, which is basically our Theorem 1.9. The adaptation of
the methods to higher codimensional boundaries can be found in Sections 7 and 8 of [David et al. 2019a]
and in [Feneuil et al. 2021].

Let 1�d <n be integers, and let�DRn
C WD f.x; t/2Rd�.0;C1/g if d Dn�1 and�DRnnRd WD

f.x; t/ 2 Rd �Rn�d; t ¤ 0g if d < n� 1. The nontangential maximal functions N and zN are defined for
any continuous function v on � and any x 2 Rd as

N.v/.x/D sup
.y;t/2
.x/

jvj and zN .v/.x/D sup
.y;t/2
.x/

�
/
Z
jZ�.y;t/j<jt j=4

jvj2 dZ

�1=2

; (4.1)

where

 .x/D f.y; t/ 2�; jy �xj< jt jg: (4.2)

We shall introduce here the variants 
10.x/ WD f.y; t/2�; jy�xj<10jt jg and N10.v/.x/ WD sup
10.x/
jvj.

They will be used to compare zN and N. Indeed, we have the pointwise bound zN .v/.x/�N10.v/.x/ and
it is well known (see [Stein 1993], Chapter II, Section 2.5.1) that kN10.v/k2 � kN.v/k2. Altogether,

k zN .v/kL2.Rd / � kN10.v/kL2.Rd / � kN.v/kL2.Rd /: (4.3)

We recall that the nontangential maximal functions behave well with the Carleson measure condition
(1.12) and (1.13). Indeed, if v is a continuous function on� and f 2CM2.K/, then we have the Carleson
inequality Z

�

f 2v2 dx dt

jt jn�d
.KkN.v/k2

L2.Rd /
; (4.4)

and similarly, if g 2 eCM 2.K/, thenZ
�

g2v2 dx dt

jt jn�d
.Kk zN .v/k2

L2.Rd /
.KkN.v/k2

L2.Rd /
: (4.5)

Combining (4.4) and (4.5) with the Cauchy–Schwarz inequality, for all w 2L2
loc.�/, one hasZ

�

f vw
dx dt

jt jn�d
� CK1=2

kN.v/kL2.Rd /

�Z
�

w2 dx dt

jt jn�d

�1=2

; (4.6)

Z
�

gvw
dx dt

jt jn�d
� CK1=2

k zN .v/kL2.Rd /

�Z
�

w2 dx dt

jt jn�d

�1=2

: (4.7)

We also introduce cut-off functions associated to tent sets. Choose a smooth function � 2C1
0
.R/ such

that 0 � � � 1, � � 1 on .�1; 1/, � � 0 on .2;C1/, and j�0j � 2. For a ball B WD B.x; r/� Rd, we
define ‰B as

‰B.y; t/D �

�
dist.x;B/
jt j

�
�

�
jt j

r

�
: (4.8)
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We also associate to B the tent set TB WD f.x; t/ 2 � W x 2 B; jt j � rg. The function ‰B is such that
‰ � 1 on TB and ‰ � 0 on � � T2B . Note that, if a different definition of tent sets is used, we can
easily change the definition of ‰B so that ‰B is adapted to the other definition of tent sets.

Theorems 1.21 and 1.23 are consequences of the following lemma.

Lemma 4.9. If LD� div jt jdC1�nr satisfies the assumptions of either Theorem 1.21 or Theorem 1.23,
then, for any ball B D B.x; r/� Rd and for any bounded weak solution u to LuD 0, we haveZ

�

jruj2‰4
B

dt dx

jt jn�d�2
� C.1CK/kN.u‰B/k

2
L2.Rd /

; (4.10)

where C > 0 depends only on n, d , and CL.

Proof of Theorems 1.21 and 1.23 from Lemma 4.9. We only need to show that (4.10) implies (1.10).
Take the function uH .X / WD !

X
L
.H /, which is a weak solution to LuD 0 bounded by 1. Pick x 2 Rd

and r > 0, and define B WDB.x; r/�Rd. The function ‰B is 1 on B.x; r/�ft 2Rn�d ; 0< jt j< rg, so
Lemma 4.9 gives Z

B.x;r/

Z
jt j<r

jtruH j
2 dy dt

jt jn�d
. kN.uH‰B/k

2
L2.Rd /

:

The function N.uH‰B/is bounded by 1 and is supported on 4B (since uH‰B is supported on T2B). As
a consequence, the above bound becomesZ

B
Rd .x;r/

Z
jt j<r

jtruH j
2 dy dt

jt jn�d
. jB.x; 4r/j. jB.x; r/j:

The bound (1.10) and thus the theorems follow. �

Proof of Lemma 4.9. The proof will be largely identical under the two kinds of assumptions that we have
(the ones from Theorem 1.21 and the ones from Theorem 1.23). The proof will split at the very end (in
Step 5), when we consider terms involving B3 and zB3 (the bottom left corner of A), which need to be
addressed in a different (yet somehow related) manner.

Our proof will follow the outline of the one of Theorem 7.10 in [David et al. 2019a], but will be
significantly different on two occasions. First, in Step 3, we give a simple Caccioppoli-type argument
to deal with the possible nonsmoothness of the Green function with pole at infinity, which will replace
here what was jt j in [David et al. 2019a]. And in Step 5, we will deal with the terms zB3, which were
considered in neither [David et al. 2019a] nor [Feneuil et al. 2021].

Step 1: Carleson estimates on the cut-off functions. In order to deal with finite quantities, we need to
refine our cut-off function ‰B . We define ‰B;� as

‰B;�.y; t/D‰B.y; t/�

�
�

jt j

�
; (4.11)

where � is the smooth function introduced above (4.8) and was already used to define ‰B . We first gather
some properties of the cut-off function ‰B;�. Observe that

jr‰B;�.y; t/j. 1

jt j
for .y; t/ 2�; (4.12)
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and r‰B;� is supported on E1[E2[E3, where

E1 WD f.y; t/ 2�; dist.y;B/� 2jt j � 2 dist.y;B/g;

E2 WD f.y; t/ 2�; r.B/� jt j � 2r.B/g;

with r.B/ being the radius of B, and

E3 WD f.y; t/ 2�; jt j � � � 2jt jg:

So we deduce that
jt jjr‰B;�.y; t/jC jt j

2
jr‰B;�.y; t/j

2 . 1E1[E2[E3
.y; t/: (4.13)

We will need the fact that jt jjr‰B;�.y; t/j and .jt jjr‰B;�.y; t/j/
1=2 satisfy the Carleson measure condi-

tion eCM 2.M / for some uniform constant M which, combined with (4.4), implies, for any continuous
function v, thatZ

�

jt jjr‰B;�.y; t/jv
2 dt dx

jt jn�d
C

Z
�

jt jjr‰B;�.y; t/jv
2 dt dx

jt jn�d
. k zN .v/k2

L2.Rd /
: (4.14)

Of course, thanks to (4.3), if (4.14) is true, then we also have the analogue estimate where zN is replaced by
N. Thanks to (4.13), the claim (4.14) will be then proven if we can show that 1E1[E2[E3

2 eCM 2.M /;

that is

sup
x2Rd; r>0

/
Z

B
Rd .x;r/

Z
jt j<r

sup
jZ�.y;t/j<jt j=4

j1E1[E2[E3
.Z/j2

dy dt

jt jn�d
. 1: (4.15)

However, (4.15) is an immediate consequence of the fact that, for each y 2 Rd,Z
t2Rn�d

sup
jZ�.y;t/j<jt j=4

j1E1[E2[E3
.Z/j2

dt

jt jn�d

�

Z
dist.y;B/=4�jt j�2 dist.y;B/

dt

jt jn�d
C

Z
r.B/=2�jt j�4r.B/

dt

jt jn�d
C

Z
�=4�jt j�2�

dt

jt jn�d
. 1:

The claim (4.14) follows.

Step 2: introduction of G. First, we decompose L as

AD
�

A1 A2

B3CzB3CC3 bT4CC4

�
; (4.16)

so that it includes the assumptions of both Theorem 1.21 and Theorem 1.23. In particular, we have

jC3jC jC4j 2
eCM 2.K/;

jt jjrbjCjt jjdivx.B3/
T
jCjt jn�d

jdivt .jt j
dC1�nB3/jCjt jjdivx.zB3/

T
jCjt jjdivt zB3j2CM2.3K/:

(4.17)

We set L0 WD � div jt jdC1�nA0r, where

A0 WD

0@1

b
A1

1

b
A2

0 T4

1A; (4.18)
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which satisfies
1

b
ADA0C

1

b

�
0 0

B3CzB3CC3 C4

�
: (4.19)

Let Y0 D .y0; t0/ 2� be such that jt0j D 1, and write G for GY0
, the Green function associated to .L0/

�

with pole at infinity. The important properties of G for this proof are first that G 2W
1;2

loc .�/ is a weak
solution to .L0/

�uD 0 in �, that isZ
�

A0r' � rG
dt dx

jt jn�d�1
D 0 for any compactly supported ' 2W 1;2.�/; (4.20)

and second, that Lemma 3.1 requires that

G is x-independent and G.X /� jt j for all X D .x; t/ 2�: (4.21)

Step 3: estimation of k zN .u‰2
B;�
rG/k2. If the goal were to only obtain (1.10), we would not need to go

through the same computations, we would just have to prove

k zN .uH‰
2
B;�rG/kL2.Rd / . jBj: (4.22)

Since G is a weak solution to L0uD 0, Caccioppoli’s inequality yields

/
Z
jZ�.y;t/j<jt j=4

jrGj2 dZ . 1

jt j2
/
Z
jZ�.y;t/j<jt j=2

jGj2 dZ for .y; t/ 2�:

But since G � jt j by (4.21), the above inequality becomes

/
Z
jZ�.y;t/j<jt j=4

jrGj2 dZ . 1:

We take the supremum on .y; t/ 2 
 .x/ and then integrate on x 2 100B, and we get

jBj& k zN .rG/kL2.100B/ & k zN .uH‰
2
B;�rG/kL2.Rd /

because uH � 1 by construction. The claim (4.22) follows.

However, what we really need in order to prove the inequality (4.10) is

k zN .u‰2
B;�rG/kL2.Rd / . kN.u‰B;�/kL2.Rd /; (4.23)

where u is any weak solution of LuD 0 which is bounded on T2B . To reach this goal, we first need the
following Caccioppoli inequality. Let D � Rn be a ball of radius r such that 4D �� and 5D\ @�¤∅.
In particular, we have

G.X /� jt j � r for X D .x; t/ 2 2D (4.24)

by (4.21). Let ‰ be a function such that 0 � ‰ � 1 and jr‰j . 1=jt j, and let u be a weak solution
to LuD 0. We claim that

/
Z

D

jrGj2u2‰4 dX . 1

r2
/
Z

2D

juj2‰2 dX: (4.25)



564 JOSEPH FENEUIL

Let ˆ be such that 0�ˆ� 1, ˆ� 1 on D, ˆ� 0 outside 4
3
D, and jrˆj � 5r . ThenZ

D

jrGj2u2‰4 dX � T WD

Z
D

jrGj2u2‰4ˆ2 dX: (4.26)

The function G is a weak solution of L0uD 0, so, by the ellipticity of A0 and since the weight satisfies
jt jdC1�n � rdC1�n on 2D, we have

T .
“
�

A0rG � rGu2‰4ˆ2 dt dx

jt jn�d�1

D

“
�

A0rŒGu2‰4ˆ2� � rG
dt dx

jt jn�d�1
� 2

“
�

A0ru � rG .Gu‰4ˆ2/
dt dx

jt jn�d�1

� 2

“
�

A0rˆ � rG .Gu2‰4ˆ/
dt dx

jt jn�d�1
� 4

“
�

A0r‰ � rG .Gu2‰3ˆ2/
dt dx

jt jn�d�1

WD T1CT2CT3CT4:

The functions G, u, ˆ, and ‰ all belong to L1.2D/\W 1;2.2D/, so Gu2‰4ˆ2 is a valid test function
and (4.20) gives that T1 D 0. By the boundedness of A0 and Cauchy–Schwarz’s inequality, the terms
T2, T3, and T4 can be bounded as follows. We have

jT3j. T 1=2

�“
�

jrˆj2G2u2‰4 dt dx

jt jn�d�1

�1=2

. T 1=2

�“
4D=3

u2‰4 dt dx

jt jn�d�1

�1=2

because jrˆj. 1=r � 1=G on 2D. Similarly

jT4j. T 1=2

�“
�

jr‰jG2u2‰2ˆ2 dt dx

jt jn�d�1

�1=2

. T 1=2

�“
4D=3

u2‰2 dt dx

jt jn�d�1

�1=2

because jr‰j. 1=jt j � 1=G on 2D. At last

jT2j. T 1=2

�“
�

jruj2G2‰4ˆ2 dt dx

jt jn�d�1

�1=2

. T 1=2

�
r2

“
4D=3

jruj2‰4 dt dx

jt jn�d�1

�1=2

:

We deduce that

T . T 1=2

�“
4D=3

u2‰2 dt dx

jt jn�d�1
C r2

“
4D=3

jruj2‰4 dt dx

jt jn�d�1

�1=2

and then“
D

jrGj2u2‰4 dt dx

jt jn�d�1
.
“

4D=3

u2‰2 dt dx

jt jn�d�1
C r2

“
4D=3

jruj2‰4 dt dx

jt jn�d�1
: (4.27)

We repeat the process for the last integral of the right-hand side above, using the fact that u is a weak
solution to LuD 0, and we obtain2

r2

“
4D=3

jruj2‰4 dt dx

jt jn�d�1
.
“

2D

u2‰2 dt dx

jt jn�d�1
:

2The estimate below can also be seen as a variant of Caccioppoli’s inequality, and is a consequence of Lemma 3.1 (i) in
[Feneuil et al. 2021].
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We combine the last estimate with (4.27) and get that“
D

jrGj2u2‰4 dt dx

jt jn�d�1
.
“

2D

u2‰2 dt dx

jt jn�d�1
: (4.28)

The claim (4.25) follows after we recall that jt j � r on 2D.

We now apply (4.25) and have

/
Z
jZ�.y;t/j<jt j=4

jrGj2u2‰4
B;� dZ . 1

jt j2
/
Z
jZ�.y;t/j<jt j=2

u2‰2
B;� dZ for .y; t/ 2�:

As a consequence, for any x 2 Rd,

zN .u‰2
B;�rG/.x/.N10.u‰B;�/.x/:

The claim (4.23) follows from (4.3).

Step 4: proof of (4.10). We define

J D JB;� WD

Z
�

jruj2‰4
B;�

dt dx

jt jn�d�2
;

and we want to show that

JB;� . .1CK/kN.u‰B;�/k
2
L2.Rd /

C .1CK1=2/J
1=2
B;�
kN.u‰B;�/kL2.Rd /; (4.29)

where K is the constant used in the assumptions of the theorem under proof. Since u 2W
1;2

loc .�/, all the
quantities in (4.29) are finite, and therefore (4.29) improves itself in

JB;� . .1CK/kN.u‰B;�/k
2
L2.Rd /

: (4.30)

We assumed that the solution u is bounded, so the left-hand side above is uniformly bounded in �. We
take then the limit as � goes to 0 to obtain the desired bound (4.10).

To lighten the notation, we shall write until the end of the proof ‰ for ‰B;� and J for JB;�. Since b

is bounded from above (assumption (b) of both Theorems 1.21 and 1.23), G & jt j by (4.21), and A is
elliptic by (1.1), we deduce that

J . I WD

“
�

Aru � ru
‰4G

b

dt dy

jt jn�d�1
:

Using the product rule, we insert ‰4G=b into the second gradient, and we obtain

I D

“
�

Aru � r

�
u‰4G

b

�
dt dy

jt jn�d�1
� 4

“
�

Aru � r‰
u‰3G

b

dt dy

jt jn�d�1

C

“
�

Aru � rb
u‰4G

b2

dt dy

jt jn�d�1
�

“
�

Aru � rG
u‰4

b

dt dy

jt jn�d�1

WD I0C I1C I2C I3:



566 JOSEPH FENEUIL

The term I0 equals 0 because u is a weak solution to Lu D 0 (and the compactly supported function
u‰4G=b 2W 1;2.�/ is a valid test function thanks to Lemma 8.3 in [David et al. 2021b]). The terms
I1 and I2 are bounded in a similar manner. Since b & 1, G � jt j, A is bounded (due to (1.2)), and
0�‰ � 1, the Cauchy–Schwarz inequality infers that

jI1CI2j.
“
�

jt j.jr‰jC jrbj/u‰3
jruj

dt dy

jt jn�d�1
. J 1=2

�“
�

jt j2.jr‰j2Cjrbj2/u2‰2 dt dy

jt jn�d

�1=2

:

We know that jt jjrbj 2CM.K/ by assumption (4.17) and that jt jjr‰j 2CM by (4.14), so the Carleson
inequality (4.4) requires that

jI1C I2j. .1CK1=2/J 1=2
kN.u‰/kL2.Rd /:

As for I3, we use the decomposition of A given in (4.19) to obtain

I3 D�

“
�

.C3rxuC C4rtu/ � rtG
u‰4

b

dt dy

jt jn�d�1

�

“
�

A0ru � rG.u‰4/
dt dy

jt jn�d�1
�

“
�

.B3C zB3/rxu � rtG
u‰4

b

dt dy

jt jn�d�1

WD I31C I32C I33:

Recall that b & 1, and combined with the fact that jC3jC jC4j 2
eCM 2.K/ and (4.7), we deduce

jI31j.
“
�

.jC3jC jC4j/jrujjujjrGj‰4 dt dy

jt jn�d�1
. J 1=2K1=2

k zN .u‰2
rG/kL2.Rd /

. J 1=2K1=2
kN.u‰/kL2.Rd /

by (4.6) and then (4.23). We force .u‰4/ into the first gradient and I32 becomes

I32 D�
1

2

“
�

A0r.u
2‰4/ � rG

dt dy

jt jn�d�1
C 2

“
�

A0r‰ � rG.u2‰3/
dt dy

jt jn�d�1

WD I321C I322:

The term I321 equals 0 thanks to (4.20). As for I322, we use the boundedness of A0 and the inequality
2ab � a2C b2 to write

I322 .
“
�

jr‰jjrGj2u2‰4 dt dy

jt jn�d�1
C

“
�

jr‰ju2‰2 dt dy

jt jn�d�1
;

and then, by (4.14) and (4.23),

I322 . k zN .u‰2
rG/k2

L2.Rd /
Ck zN .u‰/k2

L2.Rd /
. kN.u‰/k2

L2.Rd /
:

Step 5: bound of I33, which is the only difference between Theorems 1.21 and 1.23. Recall that B3

and zB3 satisfy the same condition on the x-derivative, that is

jt jjdivx.B3/
T
jC jt jjdivx.zB3/

T
j 2 CM2.K/;
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but differ on the condition on the t -derivative, which is

jt jn�d
jdivt .jt j

dC1�nB3/jC jt jjdivt zB3j 2 CM2.K/:

The goal is to permute the gradients rx and rt on I33. We define the part of I33 that contains B3 as

S WD �

“
�

B3rxu � rtG
u‰4

b

dt dy

jt jn�d�1
: (4.31)

Using integration by parts in t , S becomes

S D�
1

2

Z
�

B3rx Œu
2� � rtG

‰4

b

dt dy

jt jn�d�1

D
1

2

Z
�

divt .jt j
dC1�nB3rx Œu

2�/
G‰4

b
dt dy

C 2

Z
�

B3rx Œu
2� � rt‰

G‰3

b

dt dy

jt jn�d�1
�

Z
�

B3rx Œu
2� � rtb

G‰4

b2

dt dy

jt jn�d�1

WD S0CS1CS2:

We write the term S0 as a sum on the coefficients of B3, we permute the x and the t-derivatives on u2,
and then we integrate by parts in x. Recall that, in this paper, when M is a matrix-valued function, div M

is a vector-valued function whose j -th entry is the divergence of the j -th column of M.

S0 WD
1

2

X
1�j�d<i�n

“
�

@ti
Œjt jdC1�n.B3/ij@xj

u2�
G‰4

b
dt dy

D
1

2

“
�

divt .jt j
dC1�nB3/�rx.u

2/
G‰4

b
dt dyC

1

2

X
1�j�d<i�n

“
�

.B3/ij@ti
Œ@xj

u2�
G‰4

b

dt dy

jt jn�d�1

D
1

2

“
�

divt .jt j
dC1�nB3/�rx.u

2/
G‰4

b
dt dy�

1

2

“
�

divx.B3/
T
�rt Œu

2�
G‰4

b

dt dy

jt jn�d�1

�2

“
�

.B3/
T
rt Œu

2��rx‰
G‰3

b

dt dy

jt jn�d�1
C

1

2

“
�

.B3/
T
rt Œu

2��rxb
G‰3

b2

dt dy

jt jn�d�1

WD S3CS4CS5CS6:

We do not have x-derivatives on G because G is x-independent; see (4.21). We deal with S1, S2, S3, S4,
S5, and S6 in a similar manner as I2CI3 earlier. We have G . jt j, 1=b . 1, and B3 is bounded, hence, if

f WD jt jjr‰jC jt jjrbjC jt jjdivx.B3/
T
jC jt jn�d

jdivt .jt j
dC1�nB3/j;

the sum of the Si can be bounded by

jS j �

6X
iD1

jSi j.
“
�

f jr.u2/j‰3 dt dy

jt jn�d�1
.
“
�

f jruju‰3 dt dy

jt jn�d�1
:
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But, since f 2 CM2.1CK/ by (4.17) and (4.14), the Carleson estimate (4.6) yields

jS j �

6X
iD1

jSi j. J 1=2.1CK1=2/kN.u‰/kL2.Rd /; (4.32)

as desired. Theorem 1.21 is now proven, because zB3 D 0 in its assumption.

In order to establish Theorem 1.23, it remains to treat the part of I33 that contains zB3. If zS WD I33�S,
and if, for i 2 f0; : : : ; 6g, zSi is obtained from Si by substituting B3 for zB3, for i ¤ 3, we can bound zSi

as we bound Si , because the assumptions on zB3 match those of B3. So, similarly to (4.32), we have that

j zS � zS3j. J 1=2.1CK1=2/kN.u‰/kL2.Rd /: (4.33)

We do not know how to estimate zS3, but instead we know how to estimate

zS7 WD
1

2

“
�

divt .zB3/ � rx.u
2/

G‰4

b

dt dy

jt jn�d�1

D

“
�

divt .zB3/ � rxu
Gu‰4

b

dt dy

jt jn�d�1
: (4.34)

Indeed, we use G . jt j, 1=b . 1, jt jjdivt .B3/j 2 CM2.K/, and the Carleson estimate (4.6), to get,
similarly to the Si’s, that

j zS7j. J 1=2.1CK1=2/kN.u‰/kL2.Rd /: (4.35)

So, in order to bound zS and prove Theorem 1.23 we only have to write zS as a linear combination of
zS7 and zS3. Since we are currently under the assumptions of Theorem 1.23, Corollary 3.14 requires that
G D jt j. With this in mind, we have

Gjt jn�d�1 divt .jt j
dC1�nB3/DG divt .B3/C .d C 1� n/.rtG/

T B3;

which can be reformulated as
zS3 D

zS7C .n� d � 1/ zS :

We conclude that

j zS j D
1

n� d � 2
j. zS3�

zS/C zS7j. J 1=2.1CK1=2/kN.u‰/kL2.Rd /

by (4.33) and (4.35). The lemma follows. �
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