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SUBELLIPTIC WAVE EQUATIONS ARE NEVER OBSERVABLE

CYRIL LETROUIT

It is well known that observability (and, by duality, controllability) of the elliptic wave equation, i.e., with
a Riemannian Laplacian, in time T0 is almost equivalent to the geometric control condition (GCC), which
stipulates that any geodesic ray meets the control set within time T0. We show that in the subelliptic
setting, the GCC is never satisfied, and that subelliptic wave equations are never observable in finite time.
More precisely, given any subelliptic Laplacian 1= −

∑m
i=1 X∗

i X i on a manifold M, and any measurable
subset ω ⊂ M such that M\ω contains in its interior a point q with [X i , X j ](q) /∈ Span(X1, . . . , Xm) for
some 1 ⩽ i, j ⩽ m, we show that, for any T0 > 0, the wave equation with subelliptic Laplacian 1 is not
observable on ω in time T0.

The proof is based on the construction of sequences of solutions of the wave equation concentrating on
geodesics (for the associated sub-Riemannian distance) spending a long time in M\ω. As a counterpart,
we prove a positive result of observability for the wave equation in the Heisenberg group, where the
observation set is a well-chosen part of the phase space.
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1. Introduction

1.1. Setting. Let n ∈ N∗ and let M be a smooth connected compact manifold of dimension n with a
nonempty boundary ∂M. Let µ be a smooth volume on M. We consider m ⩾ 1 smooth vector fields
X1, . . . , Xm on M which are not necessarily independent, and we assume that the following Hörmander
condition [1967] holds:

The vector fields X1, . . . , Xm and their iterated brackets [X i , X j ], [X i , [X j , Xk]], etc.
span the tangent space Tq M at every point q ∈ M.
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We consider the sub-Laplacian 1 defined by

1= −

m∑
i=1

X∗

i X i =

m∑
i=1

X2
i + divµ(X i )X i ,

where the star designates the transpose in L2(M, µ) and the divergence with respect to µ is defined by
L Xµ= (divµ X)µ, where L X stands for the Lie derivative. Then 1 is hypoelliptic; see [Hörmander 1967,
Theorem 1.1].

We consider 1 with Dirichlet boundary conditions and the domain D(1) which is the completion in
L2(M, µ) of the set of all u ∈ C∞

c (M) for the norm ∥(Id−1)u∥L2 . We also consider the operator (−1)1/2

with domain D((−1)1/2) which is the completion in L2(M, µ) of the set of all u ∈ C∞
c (M) for the norm

∥(Id −1)1/2u∥L2 .
Consider the wave equation 

∂2
t t u −1u = 0 in (0, T )× M,

u = 0 on (0, T )× ∂M,
(u|t=0, ∂t u|t=0)= (u0, u1),

(1)

where T > 0. It is well known (see for example [Garetto and Ruzhansky 2015, Theorem 2.1; Engel and
Nagel 2000, Chapter II, Section 6]) that for any (u0, u1) ∈ D((−1)1/2)× L2(M), there exists a unique
solution

u ∈ C0(0, T ; D((−1)
1
2 ))∩ C1(0, T ; L2(M)) (2)

to (1) (in a mild sense).
We set

∥v∥H =

(∫
M

m∑
j=1

(X jv(x))2 dµ(x)
)1

2

. (3)

Note that ∥v∥H = ∥(−1)1/2v∥L2(M,µ).
The natural energy of a solution is

E(u(t, · ))=
1
2(∥∂t u(t, · )∥2

L2(M,µ) + ∥u(t, · )∥2
H).

If u is a solution of (1), then
d
dt

E(u(t, · ))= 0,

and therefore the energy of u at any time is equal to

∥(u0, u1)∥
2
H×L2 = ∥u0∥

2
H + ∥u1∥

2
L2(M,µ).

In this paper, we investigate exact observability for the wave equation (1).

Definition 1. Let T0 > 0 and ω ⊂ M be a µ-measurable subset. The subelliptic wave equation (1) is
exactly observable on ω in time T0 if there exists a constant CT0(ω) > 0 such that, for any (u0, u1) ∈

D((−1)1/2)× L2(M), the solution u of (1) satisfies∫ T0

0

∫
ω

|∂t u(t, x)|2 dµ(x) dt ⩾ CT0(ω)∥(u0, u1)∥
2
H×L2 . (4)
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1.2. Main result. Our main result is the following.

Theorem 2. Let T0 > 0 and let ω ⊂ M be a measurable subset. We assume that there exist 1 ⩽ i, j ⩽ m
and q in the interior of M\ω such that [X i , X j ](q) /∈ Span(X1(q), . . . , Xm(q)). Then the subelliptic
wave equation (1) is not exactly observable on ω in time T0.

Consequently, using a duality argument (see Section 4.2), we obtain that exact controllability also does
not hold in any finite time.

Definition 3. Let T0 > 0 and ω⊂ M be a measurable subset. The subelliptic wave equation (1) is exactly
controllable on ω in time T0 if for any (u0, u1) ∈ D((−1)1/2)× L2(M) there exists g ∈ L2((0, T0)× M)
such that the solution u of 

∂2
t t u −1u = 1ωg in (0, T0)× M,

u = 0 on (0, T0)× ∂M,
(u|t=0, ∂t u|t=0)= (u0, u1),

(5)

satisfies u(T0, · )= 0.

Corollary 4. Let T0 > 0 and let ω ⊂ M be a measurable subset. We assume that there exist 1 ⩽ i, j ⩽ m
and q in the interior of M\ω such that [X i , X j ](q) /∈ Span(X1(q), . . . , Xm(q)). Then the subelliptic
wave equation (1) is not exactly controllable on ω in time T0.

In what follows, we denote by D the set of all vector fields that can be decomposed as linear combinations
with smooth coefficients of the X i :

D = Span(X1, . . . , Xm)⊂ T M.

D is called the distribution associated to the vector fields X1, . . . , Xm . For q ∈ M, we denote by Dq ⊂ Tq M
the distribution D taken at point q.

The assumptions of Theorem 2 are satisfied as soon as the interior U of M \ω is nonempty and D has
constant rank < n in U . Indeed, under these conditions, we can argue by contradiction: assume that for
any q ∈ U and any 1 ⩽ i, j ⩽ m, it holds [X i , X j ](q) ∈ Span(X1(q), . . . , Xm(q))= Dq . Then we have
[D,D] ⊂ D in U , i.e., D is involutive. By Frobenius’s theorem, D is then completely integrable, which
contradicts Hörmander’s condition.

The following examples show that the assumptions of Theorem 2 are also satisfied in some nonconstant-
rank cases:

Example 5. In the Baouendi–Grushin case, for which X1 = ∂x1 and X2 = x1∂x2 are vector fields on
(−1, 1)x1 × Tx2 , where T = R/Z, the corresponding sub-Laplacian 1 = X2

1 + X2
2 (here, µ = dx1 dx2

for simplicity) is elliptic outside of the singular submanifold S = {x1 =0}. Therefore, the corresponding
subelliptic wave equation is observable on any open subset containing S (with some finite minimal time
of observability, see [Bardos et al. 1992]), but according to Theorem 2, it is not observable in any finite
time on any subset ω such that the interior of M \ω has a nonempty intersection with S.

Example 6. In the Martinet case, the vector fields are X1 = ∂x1 and X2 = ∂x2 + x2
1∂x3 on (−1, 1)x1 ×

Tx2 × Tx3 , and the corresponding sub-Laplacian is 1= X2
1 + X2

2 (again, µ= dx1 dx2 dx3 for simplicity).
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Then, we have [X1, X2] = 2x1∂x3 . The only points at which this bracket belongs to the distribution
Span(X1, X2) are the points for which x1 = 0. Since this set of points has empty interior, the assumptions
of Theorem 2 are satisfied as soon as M \ω has nonempty interior.

Remark 7. The assumption of compactness on M is not necessary; we may remove it and just require that
the subelliptic wave equation (1) in M is well-posed. It is for example the case if M is complete for the
sub-Riemannian distance induced by X1, . . . , Xm since1 is then essentially self-adjoint [Strichartz 1986].

Remark 8. Theorem 2 remains true if M has no boundary. In this case, (1) is well-posed in a space
slightly smaller than (2): a condition of null average has to be added since nonzero constant functions
on M are solutions of (1); see Section 1.5. The observability inequality of Theorem 2 remains true in this
space of solutions; anticipating the proof, we notice that the spiraling normal geodesics of Proposition 17
still exist (since their construction is purely local), and we subtract from the initial datum uk

0 of the
localized solutions constructed in Proposition 16 their spatial average

∫
M uk

0 dµ.

Remark 9. Thanks to abstract results (see for example [Miller 2012]), Theorem 2 remains true when the
subelliptic wave equation (1) is replaced by the subelliptic half-wave equation ∂t u + i

√
−1u = 0 with

Dirichlet boundary conditions.

1.3. Ideas of the proof. In the sequel, we define a normal geodesic1 to be the projection on M of a
bicharacteristic (parametrized by time) for the principal symbol of the wave equation (1). We will give a
more detailed definition in Section 1.4.

The proof of Theorem 2 mainly requires two ingredients:

(1) There exist solutions of the free subelliptic wave equation (1) whose energy concentrates along any
given normal geodesic.

(2) There exist normal geodesics which “spiral” around curves transverse to D, and which therefore
remain arbitrarily close to their starting point on arbitrarily large time intervals.

Combining the two above facts, the proof of Theorem 2 is straightforward (see Section 4.1). Note that
the first point follows from the general theory of propagation of complex Lagrangian spaces, while the
second point is the main novelty of this paper.

Since our construction is purely local (meaning that it does not “feel” the boundary and only relies
on the local structure of the vector fields), we can focus on the case where there is a (small) open
neighborhood V of the origin O such that V ⊂ M\ω, and [X i , X j ](O) /∈ DO for some 1 ⩽ i, j ⩽ m. In
the sequel, we assume it is the case.

Let us give an example of vector fields where the spiraling normal geodesics used in the proof
of Theorem 2 are particularly simple. We consider the three-dimensional manifold with boundary
M1 = (−1, 1)x1 ×Tx2 ×Tx3 , where T = R/Z ≈ (−1, 1) is the one-dimensional torus. We endow M1 with

1This terminology is common in sub-Riemannian geometry, and it is justified by the fact that we can naturally associate to the
vector fields X1, . . . , Xm a metric structure on M for which these projected paths are geodesics; see [Montgomery 2002].



SUBELLIPTIC WAVE EQUATIONS ARE NEVER OBSERVABLE 647

the vector fields X1 = ∂x1 and X2 = ∂x2 − x1∂x3 . This is the Heisenberg manifold with boundary. We
endow M1 with an arbitrary smooth volume µ. The normal geodesics we consider are given by

x1(t)= ε sin(t/ε),

x2(t)= ε cos(t/ε)− ε,

x3(t)= ε(t/2 − ε sin(2t/ε)/4).

(6)

They spiral around the x3-axis x1 = x2 = 0.
Here, one should think of ε as a small parameter. In the sequel, we denote by xε the normal geodesic

with parameter ε.
Clearly, given any T0 > 0, for ε sufficiently small, we have xε(t) ∈ V for every t ∈ (0, T0). Our

objective is to construct solutions uk of the subelliptic wave equation (1) such that ∥(uk
0, uk

1)∥H×L2 = 1
and the energy of uk(t, · ) concentrates outside of an open set Vt containing xε(t), i.e.,∫

M1\Vt

(
|∂t uk(t, x)|2 + (X1uk(t, x))2 + (X2uk(t, x))2

)
dµ(x)

tends to 0 as k →+∞ uniformly with respect to t ∈ (0, T0). As a consequence, the observability inequality
(4) fails.

The construction of solutions of the free wave equation whose energy concentrates on geodesics
is classical in the elliptic (or Riemannian) case; these are the so-called Gaussian beams, for which
a construction can be found for example in [Ralston 1982]. Here, we adapt this construction to our
subelliptic (sub-Riemannian) setting, which does not raise any problem since the normal geodesics we
consider stay in the elliptic part of the operator 1. It may also be directly justified with the theory of
propagation of complex Lagrangian spaces (see Section 2).

In the case of general vector fields X1, . . . , Xm , the existence of spiraling normal geodesics also has to
be justified. For that purpose, we first approximate X1, . . . , Xm by their nilpotent approximations, and
we then prove that, for these approximations, such a family of spiraling normal geodesics exists, as in the
Heisenberg case.

1.4. Normal geodesics. In this section, we explain in more details what normal geodesics are. As said
before, they are natural extensions of Riemannian geodesics since they are projections of bicharacteristics.

We denote by Sm
phg(T

∗((0, T )× M)) the set of polyhomogeneous symbols of order m with compact
support and by 9m

phg((0, T )× M) the set of associated polyhomogeneous pseudodifferential operators of
order m whose distribution kernel has compact support in (0, T )× M (see Appendix A).

We set P = ∂2
t t −1 ∈92

phg((0, T )× M), whose principal symbol is

p2(t, τ, x, ξ)= −τ 2
+ g∗(x, ξ),

with τ the dual variable of t and g∗ the principal symbol of −1. For ξ ∈ T ∗M, we have (see Appendix A)

g∗
=

m∑
i=1

h2
X i
.
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Here, given any smooth vector field X on M, we denote by h X the Hamiltonian function (momentum
map) on T ∗M associated with X defined in local (x, ξ)-coordinates by h X (x, ξ)= ξ(X (x)).

In T ∗(R × M), the Hamiltonian vector field p⃗2 associated with p2 is given by p⃗2 f = {p2, f }, where
{ · , · } denotes the Poisson bracket (see Appendix A). Since p⃗2 p2 = 0, we get that p2 is constant along
the integral curves of p⃗2. Thus, the characteristic set C(p2) = {p2 =0} is preserved by the flow of p⃗2.
Null-bicharacteristics are then defined as the maximal integral curves of p⃗2 which live in C(p2). In other
words, the null-bicharacteristics are the maximal solutions of

ṫ(s)= −2τ(s),
ẋ(s)= ∇ξg∗(x(s), ξ(s)),
τ̇ (s)= 0,
ξ̇ (s)= −∇x g∗(x(s), ξ(s)),
τ 2(0)= g∗(x(0), ξ(0)).

(7)

This definition needs to be adapted when the null-bicharacteristic meets the boundary ∂M, but in the
sequel, we only consider solutions of (7) on time intervals where x(t) does not reach ∂M.

In the sequel, we take τ = −
1
2 , which gives g∗(x(s), ξ(s)) =

1
4 . This also implies that t (s) = s + t0

and, taking t as a time parameter, we are led to solve
ẋ(t)= ∇ξg∗(x(t), ξ(t)),
ξ̇ (t)= −∇x g∗(x(t), ξ(t)),
g∗(x(0), ξ(0))=

1
4 .

(8)

In other words, the t-variable parametrizes null-bicharacteristics in a way that they are traveled at speed 1.

Remark 10. In the subelliptic setting, the cosphere bundle S∗M can be decomposed as S∗M =U∗M∪S6,
where U∗M =

{
g∗

=
1
4

}
is a cylinder bundle, 6 = {g∗

=0} is the characteristic cone and S6 is the sphere
bundle of 6; see [Colin de Verdière et al. 2018, Section 1].

We denote by φt : S∗M → S∗M the (normal) geodesic flow defined by φt(x0, ξ0)= (x(t), ξ(t)), where
(x(t), ξ(t)) is a solution of the system given by the first two lines of (8) and initial conditions (x0, ξ0).
Note that any point in S6 is a fixed point of φt and that the other normal geodesics are traveled at speed 1
since we took g∗

=
1
4 in U∗M (see Remark 10).

The curves x(t) which solve (8) are geodesics (i.e., local minimizers) for a sub-Riemannian metric g;
see [Montgomery 2002, Theorem 1.14].

1.5. Observability in some regions of phase-space. We have explained in Section 1.3 that the existence of
solutions of the subelliptic wave equation (1) concentrated on spiraling normal geodesics is an obstruction
to observability in Theorem 2. Our goal in this section is to state a result ensuring observability if one
“removes” in some sense these normal geodesics.

For this result, we focus on a version of the Heisenberg manifold described in Section 1.3 which has
no boundary. This technical assumption avoids us using boundary microlocal defect measures in the
proof, which, in this sub-Riemannian setting, are difficult to handle. As a counterpart, we need to consider
solutions of the wave equation with null initial average, in order to get well-posedness.
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We consider the Heisenberg group G, that is, R3 with the composition law

(x1, x2, x3) ⋆ (x ′

1, x ′

2, x ′

3)= (x1 + x ′

1, x2 + x ′

2, x3 + x ′

3 − x1x ′

2).

Then X1 = ∂x1 and X2 = ∂x2 −x1∂x3 are left-invariant vector fields on G. Since 0=
√

2πZ×
√

2πZ×2πZ

is a co-compact subgroup of G, the left quotient MH = 0\G is a compact three-dimensional manifold
and, moreover, X1 and X2 are well-defined as vector fields on the quotient. We call MH endowed with the
vector fields X1 and X2 the “Heisenberg manifold without boundary”. Finally, we define the Heisenberg
Laplacian 1H = X2

1 + X2
2 on MH . Since [X1, X2] = −∂x3 , it is a hypoelliptic operator. We endow MH

with an arbitrary smooth volume µ.
We introduce the space

L2
0 =

{
u0 ∈ L2(MH ),

∫
MH

u0 dµ= 0
}

and we consider the operator 1H whose domain D(1H ) is the completion in L2
0 of the set of all

u ∈ C∞
c (MH ) with null-average for the norm ∥(Id −1H )u∥L2 . Then, −1H is positive definite and we

consider (−1H )
1/2 with domain D((−1H )

1/2)= H0 := L2
0 ∩H(MH ). The wave equation{

∂2
t t u −1H u = 0 in R × MH ,

(u|t=0, ∂t u|t=0)= (u0, u1) ∈ D((−1H )
1
2 )× L2

0,
(9)

admits a unique solution u ∈ C0(R; D((−1H )
1/2))∩ C1(R; L2

0).
We note that −1H is invertible in L2

0. The space H0 is endowed with the norm ∥u∥H (defined in
(3) and also equal to ∥(−1H )

1/2u∥L2), and its topological dual H′

0 is endowed with the norm ∥u∥H′

0
:=

∥(−1H )
−1/2u∥L2 .

We note that g∗(x, ξ)= ξ 2
1 + (ξ2 − x1ξ3)

2 and hence the null-bicharacteristics are solutions of

ẋ1(t)= 2ξ1, ξ̇1(t)= 2ξ3(ξ2 − x1ξ3),

ẋ2(t)= 2(ξ2 − x1ξ3), ξ̇2(t)= 0,

ẋ3(t)= −2x1(ξ2 − x1ξ3), ξ̇3(t)= 0.

(10)

The spiraling normal geodesics described in Section 1.3 correspond to ξ1 = cos(t/ε)/2, ξ2 = 0 and
ξ3 = 1/(2ε). In particular, the constant ξ3 is a kind of rounding number reflecting the fact that the
normal geodesic spirals at a certain speed around the x3-axis. Moreover, ξ3 is preserved under the flow
(somehow, the Heisenberg flow is completely integrable), and this property plays a key role in the proof
of Theorem 11 below and justifies that we state it only for the Heisenberg manifold (without boundary).

As said above, normal geodesics corresponding to a large momentum ξ3 are precisely the ones used to
contradict observability in Theorem 2. We expect to be able to establish observability if we consider only
solutions of (1) whose ξ3 (in a certain sense) is not too large. This is the purpose of our second main result.

Set
Vε =

{
(x, ξ) ∈ T ∗MH : |ξ3|>

1
ε
(g∗

x (ξ))
1
2

}
.

Note that since ξ3 is constant along null-bicharacteristics, Vε and its complement V c
ε are invariant under

the bicharacteristic equations (10).
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In the next statement, we define a horizontal strip to be the periodization under the action of the
co-compact subgroup 0 of a set of the form

{(x1, x2, x3) : (x1, x2) ∈ [0,
√

2π)2, x3 ∈ I },

where I is a strict open subinterval of [0, 2π).

Theorem 11. Let B ⊂ MH be an open subset and suppose that B is sufficiently small, so that ω= MH\B
contains a horizontal strip. Let a ∈ S0

phg(T
∗MH ), a ⩾ 0, such that, denoting by j : T ∗ω→ T ∗MH the

canonical injection,
j (T ∗ω)∪ Vε ⊂ Supp(a)⊂ T ∗MH ,

and in particular a does not depend on time. There exists κ > 0 such that, for any ε > 0 and any T ⩾ κε−1,
it holds

C∥(u(0), ∂t u(0))∥2
H0×L2

0
⩽

∫ T

0
|(Op(a)∂t u, ∂t u)L2 | dt + ∥(u(0), ∂t u(0))∥2

L2
0×H′

0
(11)

for some C = C(ε, T ) > 0 and for any solution u ∈ C0(R; D((−1H )
1/2))∩ C1(R; L2

0) of (9).

The term ∥(u0, u1)∥
2
L2×H′

0
in the right-hand side of (11) cannot be removed; i.e., our statement only

consists of a weak observability inequality. Indeed, the usual way to remove such terms is to use a
unique continuation argument for eigenfunctions ϕ of 1, but here it does not work since Op(a)ϕ = 0 does
not imply in general that ϕ ≡ 0 in the whole manifold, even if the support of a contains j (T ∗ω) for some
nonempty open set ω: in some sense, there is no “pseudodifferential unique continuation argument”.

1.6. Comments on the existing literature.

Elliptic and subelliptic waves. The exact controllability/observability of the elliptic wave equation is
known to be almost equivalent to the so-called geometric control condition (GCC) (see [Bardos et al.
1992]) that any geodesic enters the control set ω within time T. In some sense, our main result is that GCC
is not satisfied in the subelliptic setting, as soon as M\ω contains in its interior a point x at which 1 is
“truly subelliptic”. For the elliptic wave equation, in many geometrical situations, there exists a minimal
time T0 > 0 such that observability holds only for T ⩾ T0: when there exists a geodesic γ : (0, T0)→ M
traveled at speed 1 which does not meet ω̄, one constructs a sequence of initial data (uk

0, uk
1)k∈N∗ of the

wave equation whose associated microlocal defect measure is concentrated on (x0, ξ0) ∈ S∗M taken to be
the initial conditions for the null-bicharacteristic projecting onto γ . Then, the associated sequence of
solutions (uk)k∈N∗ of the wave equation has an associated microlocal defect measure ν which is invariant
under the geodesic flow: p⃗ν = 0, where p⃗ is the Hamiltonian flow associated to the principal symbol p
of the wave operator. In particular, denoting by π : T ∗M → M the canonical projection, π∗ν gives no
mass to ω since γ is contained in M \ ω̄, and this proves that observability cannot hold.

In the subelliptic setting, the invariance property p⃗ν = 0 does not give any information on ν on the
characteristic manifold 6, since p⃗ = −2τ∂t + g⃗∗ vanishes on 6. This is related to the lack of information
on propagation of singularities in this characteristic manifold; see the main theorem of [Lascar 1982].
If one instead tries to use the propagation of the microlocal defect measure for subelliptic half-wave
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equations, one is immediately confronted with the fact that
√

−1 is not a pseudodifferential operator
near 6.

This is why, in this paper, we used only the elliptic part of the symbol g∗ (or, equivalently, the strictly
hyperbolic part of p2), where the propagation properties can be established, and then the problem is
reduced to proving geometric results on normal geodesics.

Subelliptic Schrödinger equations. The recent article [Burq and Sun 2019] deals with the same observ-
ability problem, but for subelliptic Schrödinger equations: namely, the authors consider the Baouendi–
Grushin Schrödinger equation i∂t u −1Gu = 0, where u ∈ L2((0, T )× MG), MG = (−1, 1)x × Ty and
1G = ∂2

x + x2∂2
y is the Baouendi–Grushin Laplacian. Given a control set of the form ω = (−1, 1)x ×ωy ,

where ωy is an open subset of T, the authors prove the existence of a minimal time of control L(ω) related
to the maximal height of a horizontal strip contained in MG\ω. The intuition is that there are solutions of
the Baouendi–Grushin Schrödinger equation which travel along the degenerate line x = 0 at a finite speed;
in some sense, along this line, the Schrödinger equation behaves like a classical (half)-wave equation.
What we want here is to explain in a few words why there is a minimal time of observability for the
Schrödinger equation, while the wave equation is never observable in finite time as shown by Theorem 2.

The plane R2
x,y endowed with the vector fields ∂x and x∂y also admits normal geodesics similar to the

1-parameter family qε, namely, for ε > 0,

x(t)= ε sin(t/ε),

y(t)= ε(t/2 − ε sin(2t/ε)/4).

These normal geodesics, denoted by γε, also “spiral” around the line x = 0 more and more quickly as
ε → 0, and so we might expect to construct solutions of the Baouendi–Grushin Schrödinger equation
with energy concentrated along γε, which would contradict observability when ε→ 0 as above for the
Heisenberg wave equation.

However, we can convince ourselves that it is not possible to construct such solutions: in some sense,
the dispersion phenomena of the Schrödinger equation exactly compensate for the lengthening of the
normal geodesics γε as ε→ 0 and explain that even these Gaussian beams may be observed in ω from a
certain minimal time L(ω) > 0 which is uniform in ε.

To put this argument into a more formal form, we consider the solutions of the bicharacteristic equations
for the Baouendi–Grushin Schrödinger equation i∂t u −1Gu = 0 given by

x(t)= ε sin(ξy t), ξx(t)= εξy cos(ξy t),

y(t)= ε2ξy

(
t
2

−
sin(2ξy t)

4ξy

)
, ξy(t)= ξy .

It follows from the hypoellipticity of 1G (see [Burq and Sun 2019, Section 3] for a proof) that

|ξy|
1/2 ≲

√
−1G = (|ξx |

2
+ x2

|ξy|
2)1/2 = ε|ξy|.

Therefore ε2
|ξy| ≳ 1, and hence |y(t)| ≳ t , independently from ε and ξy . This heuristic gives the

intuition that a minimal time L(ω) is required to detect all solutions of the Baouendi–Grushin Schrödinger
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equation from ω, but that for T0 > L(ω), no solution is localized enough to stay in M\ω during the time
interval (0, T0). Roughly speaking, the frequencies of order ξy travel at speed ∼ ξy , which is typical for a
dispersion phenomenon. This picture is very different from the one for the wave equation (which we
consider in this paper) for which no dispersion occurs.

With similar ideas, in [Letrouit and Sun 2021], the interplay between the subellipticity effects measured
by the nonholonomic order of the distribution D (see Section 3.1) and the strength of dispersion of
Schrödinger-type equations was investigated. More precisely, for1γ = ∂2

x +|x |
2γ ∂2

y on M = (−1, 1)x ×Ty ,
and for s ∈ N, the observability properties of the Schrödinger-type equation (i∂t − (−1γ )

s)u = 0 were
shown to depend on the value κ = 2s/(γ + 1). In particular it is proved that, for κ < 1, observability
fails for any time, which is consistent with the present result, and that for κ = 1, observability holds only
for sufficiently large times, which is consistent with the result of [Burq and Sun 2019]. The results of
[Letrouit and Sun 2021] are somehow Schrödinger analogues of the results of [Beauchard et al. 2014]
which deal with a similar problem for the Baouendi–Grushin heat equation.

General bibliographical comments. Control of subelliptic PDEs has attracted much attention in the
last decade. Most results in the literature deal with subelliptic parabolic equations, either the Baouendi–
Grushin heat equation [Koenig 2017; Duprez and Koenig 2020; Beauchard et al. 2020] or the heat
equation in the Heisenberg group [Beauchard and Cannarsa 2017]. The paper [Burq and Sun 2019] was
the first to deal with a subelliptic Schrödinger equation and the present work is the first to handle exact
controllability of subelliptic wave equations.

A slightly different problem is the approximate controllability of hypoelliptic PDEs, which was studied
in [Laurent and Léautaud 2022] for hypoelliptic wave and heat equations. Approximate controllability is
weaker than exact controllability, and it amounts to proving “quantitative” unique continuation results
for hypoelliptic operators. For the hypoelliptic wave equation, it is proved in [Laurent and Léautaud
2022] that for T > 2 supx∈M(dist(x, ω)) (here, dist is the sub-Riemannian distance), the observation of
the solution on (0, T )×ω determines the initial data, and therefore the whole solution.

1.7. Organization of the paper. In Section 2, we construct exact solutions of the subelliptic wave
equation (1) concentrating on any given normal geodesic. First, in Section 2.1, we show that, given any
normal geodesic t 7→ x(t) which does not hit ∂M in the time interval (0, T ), it is possible to construct a
sequence (vk)k∈N of approximate solutions of (1) whose energy concentrates along t 7→ x(t) during the
time interval (0, T ) as k → +∞. By “approximate”, we mean here that ∂2

t tvk −1vk is small, but not
necessarily exactly equal to 0. In Section 2.1, we provide a first proof for this construction using the
classical propagation of complex Lagrangian spaces. Another proof using a Gaussian beam approach is
provided in Appendix B. Then, in Section 2.2, using this sequence (vk)k∈N, we explain how to construct a
sequence (uk)k∈N of exact solutions of (∂2

t t −1)u = 0 in M with the same concentration property along
the normal geodesic t 7→ x(t).

In Section 3, we prove the existence of normal geodesics which spiral in M, spending an arbitrarily
large time in M\ω. These normal geodesics generalize the example described in Section 1.3 for the
Heisenberg manifold with boundary. The proof proceeds in two steps: first, we show that it is sufficient
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to prove the result in the so-called “nilpotent case” (Section 3.2), and then we prove it in the nilpotent
case (Section 3.3).

In Section 4.1, we use the results of Sections 2 and 3 to conclude the proof of Theorem 2. In Section 4.2,
we deduce Corollary 4 by a duality argument. Finally, in Section 4.3, we prove Theorem 11.

2. Gaussian beams along normal geodesics

2.1. Construction of sequences of approximate solutions. We consider a solution (x(t), ξ(t))t∈[0,T ]

of (8) on M. We shall describe the construction of solutions of

∂2
t t u −1u = 0 (12)

on [0, T ] × M with energy

E(u(t, · )) :=
1
2(∥∂t u(t, · )∥2

L2(M,µ) + ∥u(t, · )∥2
H)

concentrated along x(t) for t ∈ [0, T ]. The following proposition, which is inspired by [Ralston 1982;
Macià and Zuazua 2002], shows that it is possible, at least for approximate solutions of (12).

Proposition 12. Fix T > 0 and let (x(t), ξ(t))t∈[0,T ] be a solution of (8)
(
in particular g∗(x(0), ξ(0))= 1

4

)
which does not hit the boundary ∂M in the time interval (0, T ). Then there exist a0, ψ ∈ C2((0, T )× M)
such that, setting, for k ∈ N,

vk(t, x)= k
n
4 −1a0(t, x)eikψ(t,x)

the following properties hold:

• vk is an approximate solution of (12), meaning that

∥∂2
t tvk −1vk∥L1((0,T );L2(M)) ⩽ Ck−

1
2 . (13)

• The energy of vk is bounded below with respect to k and t ∈ [0, T ]:

there exists A > 0 such that, for all t ∈ [0, T ], lim inf
k→+∞

E(vk(t, · ))⩾ A. (14)

• The energy of vk is small off x(t): For any t ∈ [0, T ], we fix Vt an open subset of M for the initial
topology of M, containing x(t), so that the mapping t 7→ Vt is continuous (Vt is chosen sufficiently
small so that this makes sense in a chart). Then

sup
t∈[0,T ]

∫
M\Vt

(
|∂tvk(t, x)|2 +

m∑
j=1

(X jvk(t, x))2
)

dµ(x) k→+∞
−−−−→ 0. (15)

Remark 13. The construction of approximate solutions such as the ones provided by Proposition 12 is
usually done for strictly hyperbolic operators, that is, operators with a principal symbol pm of order m such
that the polynomial f (s)= pm(t, q, s, ξ) has m distinct real roots when ξ ̸= 0; see for example [Ralston
1982]. The operator ∂2

t t −1 is not strictly hyperbolic because g∗ is degenerate, but our proof shows that the
same construction may be adapted without difficulty to this operator along normal bicharacteristics. This
is due to the fact that along normal bicharacteristics, ∂2

t t −1 is indeed strictly hyperbolic (or equivalently,
1 is elliptic). It was already noted by [Ralston 1982] that the construction of Gaussian beams could
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be done for more general operators than strictly hyperbolic ones, and that the differences between the
strictly hyperbolic case and more general cases arise while dealing with propagation of singularities.
Also, in [Hörmander 1985, Chapter 24.2], it was noticed that “since only microlocal properties of p2 are
important, it is easy to see that hyperbolicity may be replaced by ∇ξ p2 ̸= 0.”

Hereafter we provide two proofs of Proposition 12. The first proof is short and is actually quite
straightforward for readers acquainted with the theory of propagation of complex Lagrangian spaces,
once one has noticed that the solutions of (8) which we consider live in the elliptic part of the principal
symbol of −1. For the sake of completeness, and because this also has its own interest, we provide
in Appendix B a second proof, longer but more elementary and accessible without any knowledge of
complex Lagrangian spaces; it relies on the construction of Gaussian beams in the subelliptic context.
The two proofs follow parallel paths, and indeed, the computations which are only sketched in the first
proof are written in full detail in the second proof, given in Appendix B.

First proof of Proposition 12. The construction of Gaussian beams, or more generally of a WKB
approximation, is related to the transport of complex Lagrangian spaces along bicharacteristics, as
reported for example in [Hörmander 1985, Chapter 24.2; Ivrii 2019, Volume I, Part I, Chapter 1.2]. Our
proof follows the lines of [Hörmander 1985, pages 426–428].

A usual way to solve (at least approximately) evolution equations of the form

Pu = 0, (16)

where P is a hyperbolic second-order differential operator with real principal symbol and C∞ coefficients,
is to search for oscillatory solutions

vk(x)= k
n
4 −1a0(x)eikψ(x). (17)

In this expression as in the rest of the proof, we suppress the time variable t . Thus, we use x =

(x0, x1, . . . , xn), where x0 = t in the earlier notation, and we set x ′
= (x1, . . . , xn). Similarly, we take

the notation ξ = (ξ0, ξ1, . . . , ξn), where ξ0 = τ previously, and ξ ′
= (ξ1, . . . , ξn). The bicharacteristics

are parametrized by s as in (7), and without loss of generality, we only consider bicharacteristics with
x(0)= 0 at s = 0, which implies in particular x0(s)= s because of our choice τ 2(s)= g∗(x(s), ξ(s))= 1

4 .
Taking charts of M, we can assume M ⊂ Rn. The precise argument for reducing to this case is written

at the end of Appendix B. Also, in the sequel, P = ∂2
t t −1.

Plugging the ansatz (17) into (16), we get

Pvk = (k
n
4 +1 A1 + k

n
4 A2 + k

n
4 −1 A3)eikψ , (18)

with
A1(x)= p2(x,∇ψ(x))a0(x), A2(x)= La0(x), A3(x)= ∂2

t t a0(x)−1a0(x),

and L is a transport operator given by

La0 =
1
i

n∑
j=0

∂p2

∂ξ j
(x,∇ψ(x))

∂a0

∂x j
+

1
2i

( n∑
j,k=0

∂2 p2

∂ξ j∂ξk
(x,∇ψ(x))

∂2ψ

∂x j∂xk

)
a0. (19)
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For vk to be an approximate solution of P, we are first led to cancel the higher-order term in (18), i.e.,

f (x) := p2(x,∇ψ(x))= 0, (20)

which we solve for initial conditions

ψ(0, x ′)= ψ0(x ′), ∇ψ0(0)= ξ ′(0) and ψ0(0)= 0 (21)

(i.e., we fix such a ψ0, and then we solve (20) for ψ). Indeed, it will be sufficient for our purpose for (20)
to be satisfied at second order along the curve x(s); i.e., Dα

x f (x(s))= 0 for any |α| ⩽ 2 and any s. For
that, we first notice that the choice ∇ψ(x(s))= ξ(s) ensures that (20) holds at orders 0 and 1 along the
curve s 7→ x(s) (see Appendix B for detailed computations). Now, we explain how to choose D2ψ(x(s))
adequately in order for (20) to hold at order 2.

We use the decomposition of p2 into

p2(x0, x ′, ξ0, ξ
′)= −(ξ0 − r(x ′, ξ ′))(ξ0 + r(x ′, ξ ′))+ R(x ′, ξ ′),

where r =
√

g∗ in a conic neighborhood of (0, ξ(0)). Note that
√

g∗ is smooth in small conic neigh-
borhoods of (0, ξ(0)) since g∗(0, ξ(0))=

1
4 ̸= 0. Indeed, g∗ is elliptic along the whole bicharacteristic

since g∗(x(t), ξ(t))=
1
4 is preserved by the bicharacteristic flow. The rest term R(x ′, ξ ′) is smooth and

microlocally supported far from the bicharacteristic; i.e., R(x ′, ξ ′)= 0 for any (x ′, ξ ′) ∈ T ∗M in a conic
neighborhood of (x ′(s), ξ ′(s)) for s ∈ [0, T ].

We consider the bicharacteristic γ+ starting at (0, 0, r(0, ξ ′(0)), ξ ′(0)) and the bicharacteristic γ−

starting at (0, 0,−r(0, ξ ′(0)), ξ ′(0)).
We denote by 8±(x0, y′, η′) the solution of the Hamilton equations with Hamiltonian H±(x0, x ′, ξ ′)=

ξ0∓r(x ′, ξ ′) and initial datum (x ′, ξ ′)= (y′, η′) at x0 =0. In other words,8±(x0, y′, η′)= ex0 H⃗±(0, y′, η′).
Then, for any s, 8(s, · ) is well-defined and symplectic from a neighborhood of (0, ξ ′(0)) to a neigh-
borhood of H±(s, 0, ξ ′(0)).

The solution ψ(s, · ) of (20) and (21) is equal to 0 on γ± and ∇ψ(s, · ) is obtained by the transport
of the values of ∇ψ0 by 8±(s, · ). In other words, to compute ∇ψ(s, · ), one transports the Lagrangian
subspace 30 = {(x ′,∇ψ0(x ′))} along the Hamiltonian flow H⃗± during a time s, which yields 3s ⊂ T ∗M,
and then, if possible, one writes 3s under the form {(x ′,∇x ′ψ(s, x ′))}, which gives ∇x ′ψ(s, x ′). The
trouble is that the solution is only local in time: when x ′

7→ π(8±(s, x ′,∇ψ0(x ′))) ceases to be a
diffeomorphism (conjugate point), where π : T ∗M → M is the canonical projection, we see that the
process described above does not work (appearance of caustics). In the language of Lagrangian spaces,
30 = {(x ′,∇ψ0(x ′))} ⊂ T ∗M is a Lagrangian subspace and, since 8±(s, · ) is a symplectomorphism,
3s =8±(s,30) is Lagrangian as well. If π|3s is a local diffeomorphism, one can locally describe 3s by
3s = {(x ′,∇x ′ψ(s, x ′))} ⊂ T ∗M for some function ψ(s, · ), but blow-up happens when rank(dπ|3s ) < n
(classical conjugate point theory), and such a ψ(s, · ) may not exist.

However, if the phase ψ0 is complex, quadratic, and satisfies the condition Im(D2ψ0) > 0, where
D2ψ0 denotes the Hessian, no blow-up happens, and the solution is global-in-time. Let us explain why.
Indeed, 30 = {(x ′,∇ψ0(x ′))} then lives in the complexification of the tangent space T ∗M, which may be
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thought of as C2(n+1). We take coordinates (y, η) on T ∗Rn+1 or T ∗Cn+1 and we consider the symplectic
forms defined by σ =

∑
dy j ∧ dη j and σC =

∑
dy j ∧ dη j .

Because of the condition Im(D2ψ0) > 0, 30 is called a “strictly positive Lagrangian space” (see
[Hörmander 1985, Definition 21.5.5]), meaning that iσC(v, v) > 0 for v in the tangent space to 30.
For any s, the symplectic forms σ and σC are preserved by 8(s, · ), meaning that 8(s, · )∗σ = σ and
8(s, · )∗σC = σC; therefore σ = 0 on the tangent space to 3s , and iσC(v, v) > 0 for v tangent to 3s .
It precisely means that 3s is also a strictly positive Lagrangian space. Then, by [Hörmander 1985,
Proposition 21.5.9], we know that there exists ψ(s, · ) complex and quadratic with Im(D2ψ(s, · )) > 0
such that 3s = {(x ′,∇x ′ψ(s, x ′))} (to apply [Hörmander 1985, Proposition 21.5.9], recall that, for
ϕ(x ′)= 1

2(Ax ′, x ′), it holds ∇ϕ(x ′)= Ax ′). In other words, the key point in using complex phases is that
strictly positive Lagrangian spaces are parametrized by complex quadratic phases ϕ with Im(D2ϕ) > 0,
whereas real Lagrangian spaces were not parametrized by real phases (see explanations above). This
parametrization is a diffeomorphism from the Grassmannian of strictly positive Lagrangian spaces to
the space of complex quadratic phases with ϕ with Im(D2ϕ) > 0. Hence, the phase

ψ(s, y′)= ∇x ′ψ(x(s)) · (y′
− x ′(s))+ 1

2(y
′
− x ′(s)) · D2

x ′ψ(s, x ′(s))(y′
− x ′(s))

for s ∈ [0, T ] and y′
∈ Rn is smooth and for this choice (20) is satisfied at second order along s 7→ x(s)

(the rest R(x ′, ξ ′) plays no role since it vanishes in a neighborhood of s 7→ x(s)).
Then, we note that A2 vanishes along the bicharacteristic if and only if La0(x(s))=0 (see also [Hörman-

der 1985, equation (24.2.9)]). According to (19), this turns out to be a linear transport equation on a0(x(s)),
with leading coefficient ∇ξ p2(x(s), ξ(s)) different from 0. Given a ̸=0 at (t =0, x ′

= x ′(0)), this transport
equation has a solution a0(x(s)) with initial datum a, and, by Cauchy uniqueness, a0(x(s)) ̸= 0 for any s.
We can choose a0 in a smooth (and arbitrary) way outside the bicharacteristic. We choose it to vanish
outside a small neighborhood of this bicharacteristic, so that no boundary effect happens.

With these choices of ψ and a0, the bound (13) then follows from the following result whose proof
is given in [Ralston 1982, Lemma 2.8].

Lemma 14. Let c(x) be a function on Rn+1 which vanishes at order S − 1 on a curve 0 for some S ⩾ 1.
Suppose that Supp c ∩ {|x0| ⩽ T } is compact and that Imψ(x) ⩾ ad(x)2 on this set for some constant
a > 0, where d(x) denotes the distance from the point x ∈ Rd+1 to the curve 0. Then there exists a
constant C such that ∫

|x0|⩽T
|c(x)eikψ(x)

|
2 dx ⩽ Ck−S−

n
2 .

Let us now sketch the end of the proof, which is given in Appendix B in full detail. We apply Lemma 14
to S = 3, c = A1 and to S = 1, c = A2, and we get

∥∂2
t tvk −1vk∥L1(0,T ;L2(M)) ⩽ C(k−

1
2 + k−

1
2 + k−1),

which implies (13). The bounds (14) and (15) follow from the facts that Im(D2ψ(s, · )) > 0 and
vk(x)= kn/4−1a0(x)eikψ(x). □
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Remark 15. An interesting question would be to understand the delocalization properties of the Gaussian
beams constructed along normal geodesics in Proposition 12. Compared with the usual Riemannian
case done for example in [Ralston 1982], there is a new phenomenon in the sub-Riemannian case since
the normal geodesic x(t) (or, more precisely, its lift to S∗M) may approach the characteristic manifold
6 = {g∗

=0}, which is the set of directions in which 1 is not elliptic. In finite time T as in our case,
the lift of the normal geodesic remains far from 6, but it may happen as T → +∞ that it goes closer
and closer to 6. The question is then to understand the link between the delocalization properties of the
Gaussian beams constructed along such a normal geodesic, and notably the interplay between the time T
and the semiclassical parameter 1

k .

2.2. Construction of sequences of exact solutions in M. In this section, using the approximate solutions
of Section 2.1, we construct exact solutions of (12) whose energy concentrates along a given normal
geodesic of M which does not meet the boundary ∂M during the time interval [0, T ].

Proposition 16. Let (x(t), ξ(t))t∈[0,T ] be a solution of (8) in M
(
in particular g∗(x(0), ξ(0))= 1

4

)
which

does not meet ∂M. Let θ ∈ C∞
c ([0, T ] × M) with θ(t, · )≡ 1 in a neighborhood of x(t) and such that the

support of θ(t, · ) stays at positive distance of ∂M.
Suppose (vk)k∈N is constructed along x(t) as in Proposition 12 and uk is the solution of the Cauchy

problem 
(∂2

t t −1)uk = 0 in (0, T )× M,
uk = 0 in (0, T )× ∂M,
uk|t=0 = (θvk)|t=0, ∂t uk|t=0 = [∂t(θvk)]|t=0.

Then:

• The energy of uk is bounded below with respect to k and t ∈ [0, T ]:

there exists A > 0 such that, for all t ∈ [0, T ], lim inf
k→+∞

E(uk(t, · ))⩾ A. (22)

• The energy of uk is small off x(t): For any t ∈ [0, T ], we fix Vt an open subset of M for the initial
topology of M, containing x(t), so that the mapping t 7→ Vt is continuous (Vt is chosen sufficiently
small so that this makes sense in a chart). Then

sup
t∈[0,T ]

∫
M\Vt

(
|∂t uk(t, x)|2 +

m∑
j=1

(X j uk(t, x))2
)

dµ(x) k→+∞
−−−−→ 0. (23)

Proof of Proposition 16. Set hk = (∂2
t t −1)(θvk). We consider wk the solution of the Cauchy problem

(∂2
t t −1)wk = hk in (0, T )× M,

wk = 0 in (0, T )× ∂M,
(wk|t=0, ∂twk|t=0)= (0, 0).

(24)

Differentiating E(wk(t, · )) and using Gronwall’s lemma, we get the energy inequality

sup
t∈[0,T ]

E(wk(t, · ))⩽ C(E(wk(0, · ))+ ∥hk∥L1(0,T ;L2(M))).
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Therefore, using (13), we get supt∈[0,T ] E(wk(t, · ))⩽ Ck−1. Since uk = θvk −wk , we obtain that

lim
k→+∞

E(uk(t, · ))= lim
k→+∞

E((θvk)(t, · ))= lim
k→+∞

E(vk(t, · ))

for every t ∈ [0, T ], where the last equality comes from the fact that θ and its derivatives are bounded
and ∥vk∥L2 ⩽ Ck−1 when k → +∞. Using (14), we conclude that (22) holds.

To prove (23), we observe similarly that

sup
t∈[0,T ]

∫
M\Vt

(
|∂t uk(t, x)|2 +

m∑
j=1

(X j uk(t, x))2
)

dµ(x)

⩽ C sup
t∈[0,T ]

(∫
M\Vt

(|∂tvk(t, x)|2 +

m∑
j=1

(X jvk(t, x))2) dµ(x)
)

+ Ck−
1
2 → 0

as k → +∞, according to (15). It concludes the proof of Proposition 16. □

3. Existence of spiraling normal geodesics

The goal of this section is to prove the following proposition, which is the second building block of the
proof of Theorem 2, after the construction of localized solutions of the subelliptic wave equation (1) done
in Section 2.

We say that X1, . . . , Xm satisfies the property (P) at q ∈ M if the following holds:

(P) For any open neighborhood V of q , for any T0 > 0, there exists a nonstationary normal geodesic
t 7→ x(t), traveled at speed 1, such that x(t) ∈ V for any t ∈ [0, T0].

Proposition 17. At any point q ∈ M such that there exist 1⩽ i, j ⩽m with [X i , X j ](q) /∈Dq , property (P)
holds.

In Section 3.1, we define the so-called nilpotent approximations X̂q
1 , . . . , X̂q

m at a point q ∈ M, which are
first-order approximations of X1, . . . , Xm at q ∈ M such that the associated Lie algebra Lie(X̂q

1 , . . . , X̂q
m)

is nilpotent. Roughly, we have X̂q
i ≈ X i (q), but low-order terms of X i (q) are not taken into account for

defining X̂q
i , so that the high-order brackets of the X̂q

i vanish (which is not generally the case for the X i ).
These nilpotent approximations are good local approximations of the vector fields X1, . . . , Xm , and their
study is much simpler.

The proof of Proposition 17 splits into two steps: first, we show that it is sufficient to prove the result
in the nilpotent case (Section 3.2), then we handle this simpler case (Section 3.3).

3.1. Nilpotent approximation. In this section, we recall the construction of the nilpotent approximations
X̂q

1 , . . . , X̂q
m . The definitions we give are classical, and the reader can refer to [Agrachev et al. 2020,

Chapter 10; Jean 2014, Chapter 2] for more material on this section. This construction is related to the
notion of tangent space in the Gromov–Hausdorff sense of a sub-Riemannian structure (M,D, g) at a
point q ∈ M ; the tangent space is defined intrinsically (meaning that it does not depend on a choice of
coordinates or of local frame) as an equivalence class under the action of sub-Riemannian isometries; see
[Bellaïche 1996; Jean 2014].
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Sub-Riemannian flag. We define the sub-Riemannian flag as follows: we set D0
= {0}, D1

= D, and, for
any j ⩾ 1, D j+1

= D j
+ [D,D j

]. For any point q ∈ M, it defines a flag

{0} = D0
q ⊂ D1

q ⊂ · · · ⊂ Dr−1
q ⊊ Dr(q)

q = Tq M.

The integer r(q) is called the nonholonomic order of D at q, and it is equal to 2 everywhere in the
Heisenberg manifold for example. Note that it depends on q; see Example 5 in Section 1.2 (the Baouendi–
Grushin example).

For 0 ⩽ i ⩽ r(q), we set ni (q)= dimD i
q , and the sequence (ni (q))0⩽i⩽r(q) is called the growth vector

at point q . We set Q(q)=
∑r(q)

i=1 i(ni (q)− ni−1(q)), which is generically the Hausdorff dimension of the
metric space given by the sub-Riemannian distance on M ; see [Mitchell 1985]. Finally, we define the
nondecreasing sequence of weights wi (q) for 1 ⩽ i ⩽ n as follows. Given any 1 ⩽ i ⩽ n, there exists
a unique 1 ⩽ j ⩽ n such that n j−1(q)+ 1 ⩽ i ⩽ n j (q). We set wi (q) = j . For example, for any q in
the Heisenberg manifold, w1(q) = w2(q) = 1 and w3(q) = 2; indeed, the coordinates x1 and x2 have
“weight 1”, while the coordinate x3 has “weight 2” since ∂x3 requires a bracket to be generated.

Regular and singular points. We say that q ∈ M is regular if the growth vector (ni (q ′))0⩽i⩽r(q ′) at q ′ is
constant for q ′ in a neighborhood of q . Otherwise, q is said to be singular. If any point q ∈ M is regular,
we say that the structure is equiregular. For example, the Heisenberg manifold is equiregular, but not the
Baouendi–Grushin example.

Nonholonomic orders. The nonholonomic order of a smooth germ of function is given by the formula

ordq( f )= min{s ∈ N : there exists i1, . . . , is ∈ {1, . . . ,m} such that (X i1 · · · X is f )(q) ̸= 0},

where we adopt the convention that min∅= +∞.
The nonholonomic order of a smooth germ of vector field X at q, denoted by ordq(X), is the real

number defined by

ordq(X)= sup{σ ∈ R : ordq(X f )⩾ σ + ordq( f ) for all f ∈ C∞(q)}.

For example, it holds ordq([X, Y ]) ⩾ ordq(X)+ ordq(Y ) and ordq( f X) ⩾ ordq( f )+ ordq(X). As a
consequence, every X which has the property that X (q ′) ∈ D i

q ′ for any q ′ in a neighborhood of q is of
nonholonomic order ⩾ −i .

Privileged coordinates. Locally around q ∈ M, it is possible to define a set of so-called “privileged
coordinates” of M ; see [Bellaïche 1996].

A family (Z1, . . . , Zn) of n vector fields is said to be adapted to the sub-Riemannian flag at q if it is a
frame of Tq M at q and if Zi (q) ∈ Dwi (q)

q for any i ∈ {1, . . . , n}. In other words, for any i ∈ {1, . . . , r(q)},
the vectors Z1, . . . , Zni (q) at q span D i

q .
A system of privileged coordinates at q is a system of local coordinates (x1, . . . , xn) such that

ordq(xi )= wi for 1 ⩽ i ⩽ n. (25)

In particular, for privileged coordinates, we have ∂xi ∈ Dwi (q)
q \Dwi (q)−1

q at q, meaning that privileged
coordinates are adapted to the flag.
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Example: exponential coordinates of the second kind. Choose an adapted frame (Z1, . . . , Zn) at q . It is
proved in [Jean 2014, Appendix B] that the inverse of the local diffeomorphism

(x1, . . . , xn) 7→ exp(x1 Z1) ◦ · · · ◦ exp(xn Zn)(q)

defines privileged coordinates at q, called exponential coordinates of the second kind.

Dilations. We consider a chart of privileged coordinates at q given by a smooth mapping ψq : U → Rn ,
where U is a neighborhood of q in M, with ψq(q) = 0. For every ε ∈ R\{0}, we consider the dilation
δε : Rn

→ Rn defined by
δε(x)= (εwi (q)x1, . . . , ε

wn(q)xn)

for every x = (x1, . . . , xn). A dilation δε acts also on functions and vector fields on Rn by pull-back:
δ∗ε f = f ◦δε and δ∗ε X is the vector field such that (δ∗ε X)(δ∗ε f )= δ∗ε (X f ) for any f ∈ C1(Rn). In particular,
for any vector field X of nonholonomic order k, it holds δ∗ε X = ε−k X .

Nilpotent approximation. Fix a system of privileged coordinates (x1, . . . , xn) at q . Given a sequence of
integers α = (α1, . . . , αn), we define the weighted degree of xα = xα1

1 · · · xαn
n to be

w(α)= w1(q)α1 + · · · +wn(q)αn.

Coming back to the vector fields X1, . . . , Xm , we can write the Taylor expansion

X i (x)∼

∑
α, j

aα, j xα∂x j . (26)

Since X i ∈ D, its nonholonomic order is necessarily −1; hence it holds w(α)⩾ w j (q)− 1 if aα, j ̸= 0.
Therefore, we may write X i as a formal series

X i = X (−1)
i + X (0)

i + X (1)
i + · · · ,

where X (s)
i is a homogeneous vector field of degree s, meaning that

δ∗ε (ψq)∗X (s)
i = εs(ψq)∗X (s)

i .

We set X̂q
i = (ψq)∗X (−1)

i for 1 ⩽ i ⩽ m. Then X̂q
i is homogeneous of degree −1 with respect to dilations,

i.e., δ∗ε X̂q
i = ε−1 X̂q

i for any ε ̸= 0. Each X̂q
i may be seen as a vector field on Rn thanks to the coordinates

(x1, . . . , xn). Moreover,
X̂q

i = lim
ε→0

εδ∗ε (ψq)∗X i

in the C∞ topology; all derivatives uniformly converge on compact subsets. For ε>0 small enough we have

X ε
i := εδ∗ε (ψq)∗X i = X̂q

i + εRεi ,

where Rεi depends smoothly on ε for the C∞ topology; see also [Agrachev et al. 2020, Lemma 10.58].
An important property is that (X̂q

1 , . . . , X̂q
m) generates a nilpotent Lie algebra of step r(q); see [Jean

2014, Proposition 2.3].
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The nilpotent approximation of X1, . . . , Xm at q is then defined as M̂q
≃ Rn endowed with the vector

fields X̂q
1 , . . . , X̂q

m . It is important to note that the nilpotent approximation depends on the initial choice
of privileged coordinates. For an explicit example of computation of nilpotent approximation; see [Jean
2014, Example 2.8].

3.2. Reduction to the nilpotent case. In this section, we show the following.

Lemma 18. Let X1, . . . , Xm be smooth vector fields on M satisfying Hörmander’s condition, and let
q ∈ M. If the property (P) holds at point 0 ∈ Rn for the nilpotent approximation X̂q

1 , . . . , X̂q
m , then the

property (P) holds at point q for X1, . . . , Xm .

Note that the above lemma is true for any nilpotent approximation X̂q
1 , . . . , X̂q

m at q , i.e., for any choice
of privileged coordinates (see Section 3.1).

Proof of Lemma 18. We use the notation hZ for the momentum map associated with the vector field Z
(see Section 1.4). We use the notation of Section 3.1, in particular the coordinate chart ψq .

We set Yi = (ψq)∗X i and X ε
i = εδ∗εYi which is a vector field on Rn. Recall that

X ε
i = X̂q

i + εRεi ,

where Rεi depends smoothly on ε for the C∞ topology. Therefore, using the homogeneity of X̂q
i , we get,

for any ε > 0,

Yi =
1
ε
(δε)∗X ε

i =
1
ε
(δε)∗(X̂

q
i + εRεi )= X̂q

i + (δε)∗ Rεi . (27)

The vector field (δε)∗ Rεi (x) does not depend on ε and has a size which tends uniformly to 0 as
x → 0 ∈ M̂q

≃ Rn. Recall that the Hamiltonian Ĥ associated to the vector fields X̂q
i is given by

Ĥ =

m∑
i=1

h2
X̂q

i
.

Similarly, we set

H =

m∑
i=1

h2
Yi
.

We note that (27) gives
hYi = h X̂q

i
+ h(δε)∗ Rεi .

Hence

H⃗ = 2
m∑

i=1

hYi h⃗Yi =
⃗̂H + 2⃗, (28)

where 2⃗ is a smooth vector field on T ∗Rn such that

∥(dπ ◦ 2⃗)(x, ξ)∥ ⩽ C∥x∥ (29)

when ∥x∥ → 0 (independently of ξ ), where π : T ∗Rn
→ Rn is the canonical projection. This last

point comes from the smooth dependence of Rεi on ε for the C∞ topology (uniform convergence of all
derivatives on compact subsets of Rn).
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Given the projection of an integral curve c( · ) of H⃗ , we denote by ĉ( · ) the projection of the integral
curve of ⃗̂H with same initial covector. Combining (28) and (29), and using Gronwall’s lemma, we obtain
the following result:

Fix T0 > 0. For any neighborhood V of 0 in Rn ,
there exists another neighborhood V ′ of 0 such that if c|[0,T0] ⊂ V ′, then ĉ|[0,T0] ⊂ V.

Therefore, if the property (P) holds at 0 ∈ Rn for X̂q
1 , . . . , X̂q

m , then it holds also at 0 ∈ Rn for the
vector fields Y1, . . . , Ym .

Using that X i =ψ∗
q Yi , we can pull back the result to M and obtain that the property (P) holds at point q

for X1, . . . , Xm , which concludes the proof of Proposition 17. □

Thanks to Lemma 18, it is sufficient to prove the property (P) under the additional assumption that

M ⊂ Rn and Lie(X1, . . . , Xm) is nilpotent. (30)

In all that follows, we assume that this is the case.

3.3. End of the proof of Proposition 17. Let us finish the proof of Proposition 17. Our ideas are inspired
by [Agrachev and Gauthier 2001, Section 6].

First step: reduction to the constant Goh matrix case. We consider an adapted frame Y1, . . . , Yn at q . We
take exponential coordinates of the second kind at q; we consider the inverse ψq of the diffeomorphism

(x1, . . . , xn) 7→ exp(x1Y1) · · · exp(xnYn)(q).

Then we write the Taylor expansion (26) of X1, . . . , Xm in these coordinates. Thanks to Lemma 18, we can
assume that all terms in these Taylor expansions have nonholonomic order −1. We denote by ξi the dual
variable of xi . We use the notation n1, n2, . . . introduced in Section 3.1, and we make a strong use of (25).

Claim 1. If a normal geodesic (x(t), ξ(t))t∈R has initial momentum satisfying ξk(0)=0 for any k ⩾n2+1,
then ξ̇k ≡ 0 for any k ⩾ n1 + 1, and in particular ξk ≡ 0 for any k ⩾ n2 + 1.

Proof. We write

X j (x)=

n∑
i=1

ai j (x)∂xi , j = 1, . . . ,m,

where the ai j are homogeneous polynomials. We have

g∗(x, ξ)=

m∑
j=1

( n∑
i=1

ai j (x)ξi

)2

. (31)

Let k ⩾ n2+1, which means that xk has nonholonomic order ⩾ 3. If ai j (x) depends on xk , then necessarily
i ⩾ n3 + 1, since ai j (x)∂xi has nonholonomic order −1. Thus, writing explicitly ξ̇k = −∂g∗/∂xk thanks
to (31), there is in front of each term a factor ξi for some i which is in particular ⩾ n2 + 1. By Cauchy
uniqueness, we deduce that ξk ≡ 0 for any k ⩾ n2 + 1.
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Now, let k ⩾ n1 + 1, which means that xk has nonholonomic order ⩾ 2. If ai j (x) depends on xk , then
necessarily i ⩾n2+1, since ai j (x)∂xi has nonholonomic order −1. Thus, writing explicitly ξ̇k =−∂g∗/∂xk

thanks to (31), there is in front of each term a factor ξi for some i which is ⩾ n2 + 1. It is null by the
previous conclusion; hence ξ̇k ≡ 0. □

The previous claim will help us to reduce the complexity of the vector fields X i once again (after the
first reduction provided by Lemma 18). Let us consider, for any 1 ⩽ j ⩽ m, the vector field

X red
j =

n2∑
i=1

ai j (x)∂xi , (32)

where the sum is taken only up to n2. We also consider the reduced Hamiltonian on T ∗M

g∗

red =

m∑
j=1

h2
X red

j
.

Claim 2. If X red
1 , . . . , X red

m satisfy property (P) at q, then X1, . . . , Xm satisfy property (P) at q.

Proof. Let us assume that X red
1 , . . . , X red

m satisfy property (P) at q . Let T0 > 0 and let (x red,ε(0), ξ red,ε(0))
be initial data for the Hamiltonian system associated to g∗

red which yield speed-1 normal geodesics
(x red,ε(t), ξ red,ε(t)) such that x red,ε(t)→ q uniformly over (0, T0) as ε→ 0.

We can assume without loss of generality that ξ red,ε
i (0)= 0 for any i ⩾ n2 + 1, since these momenta

(preserved under the reduced Hamiltonian evolution) do not change the projection x red,ε(t) of the normal
geodesic. We consider (xε(0), ξ ε(0))= (x red,ε(0), ξ red,ε(0)) as initial data for the (nonreduced) Hamil-
tonian evolution associated to g∗. Then we notice that ξ εk ≡ 0 for k ⩾ n2 + 1 thanks to Claim 1. It follows
that when i ⩽ n2, we have xεi (t)= x red,ε

i (t); i.e., the coordinate xi is the same for the reduced and the
nonreduced Hamiltonian evolution.

Finally, we take k such that n2 + 1 ⩽ k ⩽ n3. Since g∗ is given by (31), we have

ẋεk =
∂g∗

∂ξk
= 2

m∑
j=1

ak j (xε)
( n∑

i=1

ai j (xε)ξ εi

)
. (33)

But ak j has necessarily nonholonomic order 2 since ∂xk has nonholonomic order −3. Thus, ak j (x) is a
nonconstant homogeneous polynomial in x1, . . . , xn2 . Since xε1, . . . , xεn2

converge to q uniformly over
(0, T0) as ε→ 0, it is also the case of xεk according to (33), noticing that∣∣∣∣ n∑

i=1

ai j (xε)ξ εi

∣∣∣∣ ⩽ (g∗)
1
2 =

1
2

for any j . In other words, xεn2+1, . . . , xεn3
also converge to q uniformly over (0, T0) as ε→ 0.

We can repeat this argument successively for k ∈ {n3 + 1, . . . , n4}, k ∈ {n4 + 1, . . . , n5}, etc., and we
finally obtain the result: for any 1 ⩽ k ⩽ n, xεk converges to q uniformly over (0, T0) as ε→ 0. □

Thanks to the previous claim, we are now reduced to proving Proposition 17 for the vector fields
X red

1 , . . . , X red
m . In order to keep notation as simple as possible, we simplify to X1, . . . , Xm ; i.e., we drop

the upper notation “red”. Also, without loss of generality we assume that q = 0.



664 CYRIL LETROUIT

If we choose our normal geodesics so that x(0)= 0, then xi ≡ 0 for any i ⩾ n2 + 1 thanks to (32). In
other words, we forget the coordinates xn2+1, . . . , xn in the sequel, since they all vanish.2

Second step: conclusion of the proof. Now, we write the normal extremal system in its “control” form.
We refer the reader to [Agrachev et al. 2020, Chapter 4]. We have

ẋ(t)=

m∑
i=1

ui (t)X i (x(t)), (34)

where the ui are the controls, explicitly given by

ui (t)= 2h X i (x(t), ξ(t)) (35)

since (x(t), ξ(t))= et g⃗∗

(0, ξ0). Thanks to (32), we rewrite (34) as

ẋ(t)= F(x(t))u(t), (36)

where F = (ai j ), which has size n2 × m, and u =
t(u1, . . . , um). Differentiating (35), we have the

complementary equation

u̇(t)= G(x(t), ξ(t))u(t),

where G is the Goh matrix

G = (2{h X j , h X i })1⩽i, j⩽m

(it differs from the usual Goh matrix by a factor −2 due to the absence of factor 1
2 in the Hamiltonian g∗

in our notation).
Let us prove that G(t) is constant in t . Fix 1 ⩽ j, j ′ ⩽ m. We notice that in (32), ai j is a constant

(independent of x) as soon as 1 ⩽ i ⩽ n1 since ∂xi has weight −1. This implies

[X j , X j ′] is spanned by the vector fields ∂xn1+1, ∂xn1+2, . . . , ∂xn2
. (37)

Putting this into the relation {h X j , h X j ′
}= h[X j ,X j ′ ]

, and using that the dual variables ξk for n1+1⩽ k ⩽ n2

are preserved under the Hamiltonian evolution (due to Claim 1), we get that G(t)≡ G is constant in t .
We know that G ̸= 0 and that G is antisymmetric. The whole control space Rm is the direct sum of the

image of G and the kernel of G, and G is nondegenerate on its image. We take u0 in an invariant plane
of G; in other words its projection on the kernel of G vanishes (see Remark 19). We denote by G̃ the
restriction of G to this invariant plane. We also assume that u0, decomposed as u0 = (u01, . . . , u0m) ∈ Rm,
satisfies

∑m
i=1 u2

0i =
1
4 . Then u(t)= et G̃u0 and since et G̃ is an orthogonal matrix, we have ∥et G̃u0∥=∥u0∥.

We have by integration by parts

x(t)=

∫ t

0
F(x(s))esG̃u0 ds = F(x(t))G̃−1(et G̃

− I )u0 −

∫ t

0

d
ds
(F(x(s)))G̃−1(esG̃

− I )u0 ds. (38)

2Note that this is the case only because we are now working with the reduced Hamiltonian evolution; otherwise, under
the original Hamiltonian evolution associated to (31), the xi (for i ⩾ n2 + 1) remain small according to Claim 2, but do not
necessarily vanish.
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Let us now choose the initial data of our family of normal geodesics (indexed by ε). The starting point
xε(0)= 0 is the same for any ε; we only have to specify the initial covectors ξ ε = ξ ε(0) ∈ T ∗

0 Rm. For any
i = 1, . . . ,m, we impose that

⟨ξ ε, X i ⟩ = u0i . (39)

It follows that g∗(x(0), ξ ε(0)) =
∑m

i=1 u2
0i =

1
4 for any ε > 0. Now, we notice that Span(X1, . . . , Xm)

is in direct sum with the Span of the [X i , X j ] for i, j running over 1, . . . ,m (this follows from (37)).
Fixing G0

̸= 0 an antisymmetric matrix and G̃0 its restriction to an invariant plane, we can specify,
simultaneously to (39), that

⟨ξ ε, 2[X j , X i ]⟩ = ε−1G0
i j .

Then xε(t) is given by (38) applied with G̃ = ε−1G̃0, which brings a factor ε in front of (38).
Recall finally that the coefficients ai j which compose F have nonholonomic order 0 or 1; thus

they are degree-1 (or constant) homogeneous polynomials in x1, . . . , xn1 . Thus d
ds (F(x(s))) is a linear

combination of ẋi (s) which we can rewrite thanks to (36) as a combination with bounded coefficients(
since

∑m
i=1 u2

i =
1
4

)
of the xi (s). Hence, applying the Gronwall lemma in (38), we get ∥xε(t)∥ ⩽ Cε,

which concludes the proof.

Remark 19. Let us explain why we choose u0 to be in an invariant plane of G. If the projection of u0

to the kernel of G is nonzero then the primitive of the exponential of e(t/ε)G0u0 contains a linear term
that does not depend on ε. Then the corresponding trajectory follows a singular curve; see [Agrachev
et al. 2020, Chapter 4] for a definition. This means we find normal geodesics which spiral around a
singular curve and do not remain close to their initial point over (0, T0), although their initial covector is
“high in the cylinder bundle U∗M”. For example, for the Hamiltonian ξ 2

1 + (ξ2 + x2
1ξ3)

2 associated to
the “Martinet” vector fields X1 = ∂x1 , X2 = ∂x2 + x2

1∂x3 in R3, there exist normal geodesics which spiral
around the singular curve (t, 0, 0).

Remark 20. The normal geodesics constructed above lose their optimality quickly, in the sense that their
first conjugate point and their cut-point are close to q.

4. Proofs

4.1. Proof of Theorem 2. In this section, we conclude the proof of Theorem 2.
Fix a point q in the interior of M \ω and 1 ⩽ i, j ⩽ m such that [X i , X j ](q) /∈ Dq . Fix also an open

neighborhood V of q in M such that V ⊂ M\ω. Fix V ′ an open neighborhood of q in M such that
V ′

⊂ V, and fix also T0 > 0.
As already explained in Section 1.3, to conclude the proof of Theorem 2, we use Proposition 16 applied

to the particular normal geodesics constructed in Proposition 17.
By Proposition 17, we know that there exists a normal geodesic t 7→ x(t) such that x(t) ∈ V ′ for

any t ∈ (0, T0). It is the projection of a bicharacteristic (x(t), ξ(t)) and since it is nonstationary and
travels at speed 1, it holds g∗(x(t), ξ(t))= 1

4 . We denote by (uk)k∈N a sequence of solutions of (12) as in
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Proposition 16 whose energy at time t concentrates on x(t) for t ∈ (0, T0). Because of (22), we know that

∥(uk(0), ∂t uk(0))∥H×L2 ⩾ c > 0

uniformly in k.
Therefore, in order to establish Theorem 2, it is sufficient to show that∫ T0

0

∫
ω

|∂t uk(t, x)|2 dµ(x) dt k→+∞
−−−−→ 0. (40)

Since x(t) ∈ V ′ for any t ∈ (0, T0), we get that for Vt chosen sufficiently small for any t ∈ (0, T0), the
inclusion Vt ⊂ V holds (see Proposition 16 for the definition of Vt ). Combining this last remark with (23),
we get (40), which concludes the proof of Theorem 2.

4.2. Proof of Corollary 4. We endow the topological dual H(M)′ with the norm

∥v∥H(M)′ = ∥(−1)−1/2v∥L2(M).

The following proposition is standard; see, e.g., [Tucsnak and Weiss 2009; Le Rousseau et al. 2017].

Lemma 21. Let T0 > 0 and ω ⊂ M be a measurable set. Then the following two observability properties
are equivalent:

(P1) There exists CT0 such that, for any (v0, v1) ∈ D((−1)1/2)× L2(M), the solution

v ∈ C0(0, T0; D((−1)
1
2 ))∩ C1(0, T0; L2(M))

of (1) satisfies ∫ T0

0

∫
ω

|∂tv(t, q)|2 dµ(q) dt ⩾ CT0∥(v0, v1)∥H(M)×L2(M). (41)

(P2) There exists CT0 such that, for any (v0, v1) ∈ L2(M)× D((−1)−1/2), the solution

v ∈ C0(0, T0; L2(M))∩ C1(0, T0; D((−1)−
1
2 ))

of (1) satisfies ∫ T0

0

∫
ω

|v(t, q)|2 dµ(q) dt ⩾ CT0∥(v0, v1)∥
2
L2×H(M)′ . (42)

Proof. Let us assume that (P2) holds. Let u be a solution of (1) with initial conditions (u0, u1) ∈

D((−1)1/2)× L2(M). We set v= ∂t u, which is a solution of (1) with initial data v|t=0 = u1 ∈ L2(M) and
∂tv|t=0 =1u0 ∈ D((−1)−1/2). Since ∥(v0, v1)∥L2×H(M)′ = ∥(u1,1u0)∥L2×H(M)′ = ∥(u0, u1)∥H(M)×L2 ,
applying the observability inequality (42) to v = ∂t u, we obtain (41). The proof of the other implication
is similar. □

Finally, using Theorem 2, Lemma 21 and the standard HUM method [Lions 1988], we get Corollary 4.
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4.3. Proof of Theorem 11. We consider the space of functions u ∈ C∞([0, T ] × MH ) such that∫
MH

u(t, · ) dµ= 0

for any t ∈ [0, T ], and we denote by HT its completion for the norm ∥ · ∥HT induced by the scalar product

(u, v)HT =

∫ T

0

∫
MH

(∂t u∂tv+ (X1u)(X1v)+ (X2u)(X2v)) dµ dt.

We consider also the topological dual H′

0 of the space H0 (see Section 1.5).

Lemma 22. The injections H0 ↪→ L2(MH ), L2(MH ) ↪→ H′

0 and HT ↪→ L2((0, T )× MH ) are compact.

Proof. Let (ϕk)k∈N be an orthonormal basis of real eigenfunctions of L2(MH ), labeled with increasing
eigenvalues 0 = λ0 < λ1 ⩽ · · · ⩽ λk → +∞, so that −1Hϕk = λkϕk . The fact that λ1 > 0, which will
be used in the sequel, can be proved as follows: If −1Hϕ = 0 then

∫
MH
((X1ϕ)

2
+ (X2ϕ)

2) dµ= 0 and,
since ϕ ∈ C∞(MH ) by hypoelliptic regularity, we get X1ϕ(x) = X2ϕ(x) = 0 for any x ∈ MH . Hence,
[X1, X2]ϕ ≡ 0, and all together, this proves that ϕ is constant; thus λ1 > 0.

We prove the last injection. Let u ∈ HT . Writing u(t, · ) =
∑

∞

k=1 ak(t)ϕk( · ) (note that there is no
0-mode since u(t, · ) has null average), we see that

∥u∥
2
HT

⩾ (−1H u, u)L2((0,T )×MH ) =

∞∑
k=1

λk∥ak∥
2
L2((0,T )) ⩾ λ1

∞∑
k=1

∥ak∥
2
L2((0,T )) = λ1∥u∥

2
L2((0,T )×MH )

,

and thus HT embeds continuously into L2((0, T )× MH ). Then, using a classical subelliptic estimate (see
[Hörmander 1967; Rothschild and Stein 1976, Theorem 17]), we know that there exists C > 0 such that

∥u∥H1/2((0,T )×MH ) ⩽ C(∥u∥L2((0,T )×MH ) + ∥u∥HT ).

Together with the previous estimate, we obtain that, for any u ∈HT , ∥u∥H1/2((0,T )×MH ) ⩽ C∥u∥HT . Then,
the result follows from the fact that the injection H 1/2((0, T )× MH ) ↪→ L2((0, T )× MH ) is compact.

The proof of the compact injection H0 ↪→ L2(MH ) is similar, and the compact injection L2(MH ) ↪→H′

0
follows by duality. □

Proof of Theorem 11. In this proof, we use the notation P = ∂2
t t −1H . For the sake of a contradiction,

suppose that there exists a sequence (uk)k∈N of solutions of the wave equation such that ∥(uk
0, uk

1)∥H×L2 =1
for any k ∈ N and

∥(uk
0, uk

1)∥L2×H′

0
→ 0,

∫ T

0
|(Op(a)∂t uk, ∂t uk)L2(MH ,µ)| dt → 0 (43)

as k → +∞. Following the strategy of [Tartar 1990; Gérard 1991], our goal is to associate a defect
measure to the sequence (uk)k∈N. Since the functional spaces involved in our result are unusual, we give
the argument in detail.

First, up to extraction of a subsequence which we omit, (uk
0, uk

1) converges weakly in H0 × L2(MH )

and, using the first convergence in (43) and the compact embedding H0 × L2(MH ) ↪→ L2(MH )×H′

0,
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we get that (uk
0, uk

1) ⇀ 0 in H0 × L2
0. Using the continuity of the solution with respect to the initial data,

we obtain that uk ⇀ 0 weakly in HT . Using Lemma 22, we obtain uk
→ 0 strongly in L2((0, T )× MH ).

Fix B ∈90
phg((0, T )× MH ). We have

(Buk, uk)HT =

∫ T

0

∫
MH

(
(∂t Buk)(∂t uk)+ (X1 Buk)(X1uk)+ (X2 Buk)(X2uk)

)
dµ(q) dt

=

∫ T

0

∫
MH

(
([∂t , B]uk)(∂t uk)+ ([X1, B]uk)(X1uk)+ ([X2, B]uk)(X2uk)

)
dµ(q) dt

+

∫ T

0

∫
MH

(
(B∂t uk)(∂t uk)+ (B X1uk)(X1uk)+ (B X2uk)(X2uk)

)
dµ(q) dt. (44)

Since [∂t , B]∈90
phg((0,T )×MH ), [X j , B]∈90

phg((0, T )× MH ) and uk
→0 strongly in L2((0, T )×MH ),

the first of the two lines in (44) converges to 0 as k → +∞. Moreover, the last line is bounded uniformly
in k since B ∈90

phg((0, T )× MH ). Hence (Buk, uk)HT is uniformly bounded. By a standard diagonal
extraction argument (see [Gérard 1991] for example), there exists a subsequence, which we still denote
by (uk)k∈N such that (Buk, uk) converges for any B of principal symbol b in a countable dense subset
of C∞

c ((0, T )× MH ). Moreover, the limit only depends on the principal symbol b, and not on the full
symbol.

Let us now prove that
lim inf
k→+∞

(Buk, uk)HT ⩾ 0 (45)

when b ⩾ 0. With a bracket argument as in (44), we see that it is equivalent to proving that the liminf as
k → +∞ of the quantity

Qk(B)= (B∂t uk, ∂t uk)L2 + (B X1uk, X1uk)L2 + (B X2uk, X2uk)L2 (46)

is ⩾ 0. But there exists B ′
∈ 90

phg((0, T ) × MH ) such that B ′
− B ∈ 9−1

phg((0, T ) × MH ) and B ′ is
positive (this is the so-called Friedrichs quantization, see for example [Taylor 1974, Chapter VII]). Then,
lim infk→+∞ Qk(B ′) ⩾ 0, and Qk(B ′

− B) → 0 since (B ′
− B)∂t ∈ 90

phg((0, T )× MH ) and uk
→ 0

strongly in L2((0, T )× MH ). It immediately implies that (45) holds.
Therefore, setting p = σp(P) and denoting by C(p) the characteristic manifold C(p)= {p=0}, there

exists a nonnegative Radon measure ν on S∗(C(p))= C(p)/(0,+∞) such that

(Op(b)uk, uk)HT →

∫
S∗(C(p))

b dν

for any b ∈ S0
phg((0, T )× MH ).

Let C ∈9−1
phg((0, T )× MH ) of principal symbol c. We have p⃗c = {p, c} ∈ S0

phg((0, T )× MH ) and, for
any k ∈ N,

((C P − PC)uk, uk)HT = (C Puk, uk)HT − (Cuk, Puk)HT = 0 (47)

since Puk
= 0. To be fully rigorous, the identity of the previous line, which holds for any solution u ∈HT

of the wave equation, is first proved for smooth initial data since Pu /∈ HT in general, and then extended
to general solutions u ∈ HT . Taking principal symbols in (47), we get ⟨ν, p⃗c⟩ = 0.
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Therefore, denoting by (ψs)s∈R the maximal solutions of

d
ds
ψs(ρ)= p⃗(ψs(ρ)), ρ ∈ T ∗(R × MH )

(see (7)), we get that, for any s ∈ (0, T ),

0 = ⟨ν, p⃗c ◦ψs⟩ =

〈
ν,

d
ds

c ◦ψs

〉
=

d
ds

⟨ν, c ◦ψs⟩

and hence

⟨ν, c⟩ = ⟨ν, c ◦ψs⟩. (48)

We note here that the precise homogeneity of c (namely c ∈ S−1
phg((0, T )× MH )) does not matter since ν

is a measure on the sphere bundle S∗(C(p)). The identity (48) means that ν is invariant under the flow p⃗.
From the second convergence in (43), we can deduce that

ν = 0 in S∗(C(p))∩ T ∗((0, T )× Supp(a)). (49)

The proof of this fact, which is standard (see for example [Burq and Sun 2022, Section 6.2]), is given in
Appendix C.

Let us prove that any normal geodesic of MH with momentum ξ ∈ V c
ε enters ω in time at most κε−1

for some κ > 0, which does not depend on ε. Indeed, the solutions of the bicharacteristic equations (10)
with g∗

=
1
4 and ξ3 ̸= 0 are given by

x1(t)=
1

2ξ3
cos(2ξ3t +φ)+

ξ2

ξ3
, x2(t)= B −

1
2ξ3

sin(2ξ3t +φ),

x3(t)= C +
t

4ξ3
+

1
16ξ 2

3
sin(2(2ξ3t +φ))+

ξ2

2ξ 2
3

sin(2ξ3t +φ),

where B,C, ξ2, ξ3 are constants. Since ξ ∈ V c
ε and g∗

=
1
4 , it holds

1
4|ξ3|

⩾
ε

2
.

Hence, we can conclude using the expression for x3 (whose derivative is roughly (4|ξ3|)
−1) and the fact

that ω = MH\B contains a horizontal strip. Note that if ξ3 = 0, the expressions of x1(t), x2(t), x3(t) are
much simpler and we can conclude similarly.

Hence, together with (49), the propagation property (48) implies that ν≡ 0. It follows that ∥uk
∥HT → 0.

By conservation of energy, it is a contradiction with the normalization ∥(uk
0, uk

1)∥H×L2 = 1. Hence, (11)
holds. □

Appendix A: Pseudodifferential calculus

We denote by � an open set of a d-dimensional manifold (typically d = n or d = n + 1 with the notation
of this paper) equipped with a smooth volume µ. We denote by q the variable in �, typically q = x or
q = (t, x) with our notation.
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Let ω0 = dp ∧ dq be the canonical symplectic form on T ∗� written in canonical coordinates (q, p).
The Hamiltonian vector field f⃗ of a function f ∈ C∞(T ∗�) is defined by the relation

ω0( f⃗ , · )= −d f ( · ).

In the coordinates (q, p), it reads

f⃗ =

d∑
j=1

(∂p j f )∂q j − (∂q j f )∂p j .

In these coordinates, the Poisson bracket is

{ f, g} = ω0( f⃗ , g⃗)=

d∑
j=1

(∂p j f )(∂q j g)− (∂q j f )(∂p j g),

which is also equal to f⃗ g and −g⃗ f .
Let π : T ∗�→� be the canonical projection. We recall briefly some facts concerning pseudodifferential

calculus, following [Hörmander 1985, Chapter 18].
We denote by Sm

hom(T
∗�) the set of homogeneous symbols of degree m with compact support in�. We

also write Sm
phg(T

∗�) for the set of polyhomogeneous symbols of degree m with compact support in �.
Hence, a ∈ Sm

phg(T
∗�) if a ∈ C∞(T ∗�), π(Supp(a)) is a compact of �, and there exist a j ∈ Sm− j

hom (T
∗�)

such that, for all N ∈ N, a −
∑N

j=0 a j ∈ Sm−N−1
phg (T ∗�). We denote by 9m

phg(T
∗�) the space of

polyhomogeneous pseudodifferential operators of order m on �, with a compactly supported kernel
in � × �. For A ∈ 9m

phg(�), we denote by σp(A) ∈ Sm
phg(T

∗�) the principal symbol of A. The
subprincipal symbol is characterized by the action of pseudodifferential operators on oscillating functions:
if A ∈9m

phg(�) and f (q)= b(q)eikS(q) with b, S smooth and real-valued, then∫
�

A( f ) f̄ dµ= km
∫
�

(
σp(A)(q, S′(q))+ 1

k
σsub(A)(q, S′(q))

)
| f (q)|2 dµ(q)+ O(km−2).

A quantization is a continuous linear mapping

Op : Sm
phg(T

∗�)→9m
phg(�)

satisfying σp(Op(a))= a. An example of quantization is obtained by using partitions of unity and, locally,
the Weyl quantization, which is given in local coordinates by

OpW (a) f (q)=
1

(2π)d

∫
Rd

q′×Rd
p

ei⟨q−q ′,p⟩a
(

q + q ′

2
, p

)
f (q ′) dq ′ dp.

We have the following properties:

(1) If A ∈9l
phg(�) and B ∈9m

phg(�), then [A, B] ∈9l+m−1
phg (�) and σp([A, B])=

1
i {σp(a), σp(b)}.

(2) If X is a vector field on � and X∗ is its formal adjoint in L2(�,µ), then X∗X ∈ 92
phg(�),

σp(X∗X)= h2
X and σsub(X∗X)= 0.

(3) If A ∈9m
phg(�), then A maps continuously the space H s(�) to the space H s−m(�).
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Appendix B: Proof of Proposition 12

In this appendix, we give a second proof of Proposition 12 written in a more elementary form than the
one of Section 2.1. Let us first prove the result when M ⊂ Rn , following the proof of [Ralston 1982].
The general case is addressed at the end of this section.

As in the proof of Section 2.1, we suppress the time variable t . Thus we use x = (x0, x1, . . . , xn),
where x0 = t . Similarly, ξ = (ξ0, ξ1, . . . , ξn), where ξ0 = τ previously. Let 0 be the curve given by
x(s) ∈ Rn+1. We insist on the fact that in the proof the bicharacteristics are parametrized by s, as in (7).
We consider functions of the form

vk(x)= k
n
4 −1a0(x)eikψ(x).

We would like to choose ψ(x) such that for all s ∈ R, ψ(x(s)) is real-valued and

Im
∂2ψ

∂xi∂x j
(x(s))

is positive definite on vectors orthogonal to ẋ(s). Roughly speaking, |eikψ(x)
| will then look like a

Gaussian distribution on planes perpendicular to 0 in Rn+1.
We first observe that ∂2

t tvk −1vk can be decomposed as

∂2
t tvk −1vk = (k

n
4 +1 A1 + k

n
4 A2 + k

n
4 −1 A3)eikψ , (50)

with

A1(x)= p2(x,∇ψ(x))a0(x), A2(x)= La0(x), A3(x)= ∂2
t t a0(x)−1a0(x).

Here we have set

La0 =
1
i

n∑
j=0

∂p2

∂ξ j
(x,∇ψ(x))

∂a0

∂x j
+

1
2i

( n∑
j,k=0

∂2 p2

∂ξ j∂ξk
(x,∇ψ(x))

∂2ψ

∂x j∂xk

)
a0. (51)

(For general strictly hyperbolic operators, L contains a term with the subprincipal symbol of the operator,
but here it is null; see Appendix A.)

In what follows, we construct a0 and ψ so that A1(x) vanishes at order 2 along 0 and A2(x) vanishes
at order 0 along the same curve. We will then be able to use Lemma 14 with S = 3 and S = 1 respectively.

Analysis of A1(x). Our goal is to show that, if we choose ψ adequately, we can make the quantity

f (x)= p2(x,∇ψ(x)) (52)

vanish at order 2 on 0. For the vanishing at order 0, we prescribe that ψ satisfies ∇ψ(x(s))= ξ(s), and
then f (x(s))= 0 since (x(s), ξ(s)) is a null-bicharacteristic. Note that this is possible since x(s) ̸= x(s ′)

for any s ̸= s ′, due to ẋ0(s) = 1 (bicharacteristics are traveled at speed 1; see Section 1.4). For the
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vanishing at order 1, using (52) and (7), we remark that, for any 0 ⩽ j ⩽ n,

∂ f
∂x j

(x(s))=
∂p2

∂x j
(x(s))+

n∑
k=0

∂p2

∂ξk
(x(s))

∂ψ

∂x j∂xk
(x(s))

= −ξ̇ j (s)+
n∑

k=0

ẋk(s)
∂ψ

∂x j∂xk
(x(s))

= −
d
ds

(
∂ψ

∂x j
(x(s))

)
+

n∑
k=0

ẋk(s)
∂ψ

∂x j∂xk
(x(s))= 0. (53)

Therefore, f vanishes automatically at order 1 along 0 (without making any particular choice for ψ): it
just follows from (52) and the bicharacteristic equations (7). But for f (x) to vanish at order 2 along 0, it
is required to choose a particular ψ . In the end, we will find that if ψ is given by the formula (59) below,
with M being a solution of (54), then f vanishes at order 2 along 0. Let us explain why.

Using the Einstein summation notation, we want that, for any 0 ⩽ i, j ⩽ n, it holds

0 =
∂2 f
∂x j∂xi

=
∂2 p2

∂x j∂xi
+

∂2 p2

∂ξk∂xi

∂2ψ

∂x j∂xk
+

∂2 p2

∂x j∂ξk

∂2ψ

∂xi∂xk
+
∂2 p2

∂ξl∂ξk

∂2ψ

∂xi∂xk

∂2ψ

∂x j∂xl
+
∂p2

∂ξk

∂3ψ

∂x j∂xk∂xi

along 0. Introducing the matrices

(M(s))i j =
∂2ψ

∂xi∂x j
(x(s)), (A(s))i j =

∂2 p2

∂xi∂x j
(x(s), ξ(s)),

(B(s))i j =
∂2 p2

∂ξi∂x j
(x(s), ξ(s)), (C(s))i j =

∂2 p2

∂ξi∂ξ j
(x(s), ξ(s)),

this amounts to solving the matricial Riccati equation

d M
ds

+ MC M + BT M + M B + A = 0 (54)

on a finite-length time interval. While solving (54), we also require M(s) to be symmetric, Im(M(s)) to be
positive definite on the orthogonal complement of ẋ(s), and M(s)ẋ(s)= ξ̇ (s) to hold for all s due to (53).

Let M0 be a symmetric (n+1)× (n+1) matrix with Im(M0) > 0 on the orthogonal complement of
ẋ(0) and M0 ẋ(0)= ξ̇ (0) (in particular Im(M0)ẋ(0)= 0). It is shown in [Ralston 1982] that there exists a
global solution M(s) on [0, T ] of (54) which satisfies all the above conditions and such that M(0)= M0.
The proof just requires that A,C are symmetric, but does not need anything special about p2 (in particular,
it applies to our sub-Riemannian case where p2 is degenerate). For the sake of completeness, we recall
the proof here.

We consider (Y (s), N (s)) the matrix solution with initial data (Y (0), N (0))= (Id,M0) (where Id is
the (n+1)× (n+1) identity matrix) to the linear system{

Ẏ = BY + C N ,
Ṅ = −AY − BT N .

(55)
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We note that (Y (s)ẋ(0), N (s)ẋ(0)) then also solves (55), with Y and N being this time vectorial. One
can check that (ẋ(s), ξ̇ (s)) is the solution of the same linear system with same initial data, and therefore,
for any s ∈ R,

ẋ(s)= Y (s)ẋ(0), ξ̇ (s)= N (s)ẋ(0). (56)

All the coefficients in (55) are real and A and C are symmetric, and it follows that the flow defined by (55)
on vectors preserves both the real symplectic form acting on pairs (y, η) ∈ (Rn+1)2 and (y′, η′) ∈ (Rn+1)2

given by
σ((y, η), (y′, η′))= y · η′

− η · y′

and the complexified form σC((y, η), (y′, η′)) = σ((y, η), (ȳ′, η̄′)) for (y, η) ∈ (Cn+1)2 and (y′, η′) ∈

(Cn+1)2. When we say that σC is invariant under (55), it means that we allow complex vectorial initial
data in (55).

Let us prove that Y (s) is invertible for any s. Let v ∈ Cn+1 and s0 ∈ R be such that Y (s0)v = 0. We set
y(s0) = Y (s0)v and η(s0) = N (s0)v and consider χ(s0) = (y(s0), η(s0)). From the conservation of σC,
we get

0 = σC(χ(s0), χ(s0))= σC(χ(0), χ(0))= v · M0v− v̄ · M0v = −2i v̄ · (Im(M0))v.

Since Im(M0) is positive definite on the orthogonal complement to ẋ(0), it holds v = λẋ(0) for some
λ ∈ C. Hence

0 = Y (s0)v = λY (s0)ẋ(0)= λẋ(s0),

where the last equality comes from (56). Since ẋ0(s0)= (∂p2/∂ξ0)(s0)= −2ξ0(s0)= 1, it holds ẋ(s0) ̸= 0;
hence λ= 0. It follows that v = 0 and Y (s0) is invertible.

Now, for any s ∈ R, we set
M(s)= N (s)Y (s)−1,

which is a solution of (54) with M(0)= M0. It satisfies M(s)ẋ(s)= ξ̇ (s) thanks to (56). Moreover, it is
symmetric: if we denote by yi (s) and ηi (s) the column vectors of Y and N , by preservation of σ , for any
0 ⩽ i, j ⩽ n, the quantity

σ((yi (s), ηi (s)), (y j (s), η j (s)))= yi (s) · M(s)y j (s)− y j (s) · M(s)yi (s)

is equal to the same quantity at s = 0, which is equal to 0 since M0 is symmetric.
Let us finally prove that, for any s ∈ R, Im(M(s)) is positive definite on the orthogonal complement of

ẋ(s). Let y(s0) ∈ Cn+1 be in the orthogonal complement of ẋ(s0). We decompose y(s0) on the column
vectors of Y (s0):

y(s0)=

n∑
i=0

bi yi (s0), bi ∈ C.

For s ∈ R, we consider y(s)=
∑n

i=0 bi yi (s) and we set χ(s)=
∑n

i=0 bi (yi (s), ηi (s)). Then,

σC(χ(s), χ(s))= −2i y(s) · Im(M(s))y(s). (57)
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By preservation of σC and using (57), we get that

y(s0) · Im(M(s0))y(s0)= y(0) · Im(M0)y(0). (58)

But y(0) cannot be proportional to ẋ(0); otherwise, using (56), we would get that y(s0) is proportional
to ẋ(s0). Hence, the right-hand side in (58) is > 0, which implies that Im(M(s0)) is positive definite on
the orthogonal complement to ẋ(s0).

Therefore, we found a choice for the second-order derivatives of ψ along 0 which meets all our
conditions. For x = (t, x ′) ∈ R × Rn and s such that t = t (s), we set

ψ(x)= ξ ′(s) · (x ′
− x ′(s))+ 1

2(x
′
− x ′(s)) · M(s)(x ′

− x ′(s)), (59)

and f vanishes at order 2 along 0 for this choice of ψ .
To sum up, as in the Riemannian (or “strictly hyperbolic”) case handled in [Ralston 1982], the key

observation is that the invariance of σ and σC prevents the solutions of (54) with positive imaginary part
on the orthogonal complement of ẋ(0) from blowing up.

Analysis of A2(x). We note that A2 vanishes along 0 if and only if La0(x(s))= 0. According to (51),
this turns out to be a linear transport equation on a0(x(s)). Moreover, the coefficient of the first-order term,
namely ∇ξ p2(x(s), ξ(s)), is different from 0. Therefore, given a0 ̸= 0 at (t =0, x =x(0)), this transport
equation has a solution a0(x(s)) with initial datum a0, and, by Cauchy uniqueness, a0(x(s)) ̸= 0 for any s.
Note that we have prescribed a0 only along 0, and we may choose a0 in a smooth (and arbitrary) way
outside 0. We choose it to vanish outside a small neighborhood of 0.

Proof of (13). We use (50) and we apply Lemma 14 to S = 3, c = A1 and to S = 1, c = A2, and we get

∥∂2
t tvk −1vk∥L1(0,T ;L2(M)) ⩽ C(k−

1
2 + k−

1
2 + k−1),

which implies (13).

Proof of (14). We first observe that since Im(M(s)) is positive definite on the orthogonal complement
of ẋ(s) and continuous as a function of s, there exist α,C > 0 such that, for any t (s) ∈ [0, T ] and any
x ′

∈ M,

|∂tvk(t (s), x ′)|2 +

m∑
j=1

|X jvk(t (s), x ′)|2 ⩾ (C |a0(t (s), x ′)|2k
n
2 + O(k2( n

2 −1)))e−αkd(x ′,x ′(s))2,

where d( · , · ) denotes the Euclidean distance in Rn . We denote by ℓn the Lebesgue measure on Rn . Using
the observation that, for any function f ,∫

M
f (x ′)e−αkd(x ′,x ′(s))2 dµ(x ′)∼

πn/2

kn/2√α
f (x ′(s))

dµ
dℓn

(x ′(s)) (60)

as k → +∞, and the fact that a0(x(s)) ̸= 0, we obtain (14).



SUBELLIPTIC WAVE EQUATIONS ARE NEVER OBSERVABLE 675

Proof of (15). We observe that since Im(M(s)) is positive definite (uniformly in s) on the orthogonal
complement of ẋ(s), there exist C, α′ > 0 such that, for any t ∈ [0, T ], for any x ′

∈ M, |∂tvk(t (s), x ′)|

and |X jvk(t (s), x ′)| are both bounded above by Ckn/4e−α′kd(x ′,x ′(s))2. Therefore∫
M\Vt (s)

(
|∂tvk(t (s), x ′)|2 +

m∑
j=1

|X jvk(t (s), x ′)|2
)

dµ(x ′)

⩽ Ckn/2
∫

M\Vt (s)

e−2α′kd(x ′,x ′(s))2 dµ(x ′)

⩽ Ckn/2
∫

M\Vt (s)

e−2α′kd(x ′,x ′(s))2 dℓn(x ′)+ o(1), (61)

where, in the last line, we used the fact that |dµ/dℓn| ⩽ C in a fixed compact subset of M (since µ is a
smooth volume), and the o(1) comes from the eventual blowup of µ at the boundary of M.

Now, M ⊂ Rn , and there exists r > 0 such that Bd(x(s), r)⊂ Vt (s) for any s such that t (s) ∈ (0, T ),
where d( · , · ) still denotes the Euclidean distance in Rn . Therefore, we bound above the integral in (61) by

Ckn/2
∫

Rn\Bd (x(s),r)
e−2α′kd(x ′,x ′(s))2 dℓn(x ′). (62)

Making the change of variables y = k−1/2(y − x(s)), we can bound (62) from above by

C
∫

Rn\Bd (0,rk1/2)

e−2α′
∥y∥

2
dℓn(y),

with ∥ · ∥ the Euclidean norm. This last expression is bounded above by

Ce−α′r2k
∫

Rn
e−α′

∥y∥
2

dℓn(y),

which implies (15).

Extension of the result to any manifold M. In the case of a general manifold M, not necessarily included
in Rn , we use charts together with the above construction. We cover M by a set of charts (Uα, ϕα), where
(Uα) is a family of open sets of M covering M and ϕα : Uα → Rn is an homeomorphism Uα onto an
open subset of Rn. Take a solution (x(t), ξ(t))t∈[0,T ] of (8). It visits a finite number of charts in the order
Uα1,Uα2, . . . , and we choose the charts and a0 so that vk(t, · ) is supported in a unique chart at each
time t . The above construction shows how to construct a0 and ψ as long as x(t) remains in the same
chart. For any l ⩾ 1, we choose tl so that x(tl) ∈ Uαl ∩ Uαl+1 and a0(tl, · ) is supported in Uαl ∩ Uαl+1 .
Since there is a (local) solution vk for any choice of initial a0(tl, x(tl)) and Im(∂2ψ/(∂xi ∂x j ))(tl, x(tl))
in Proposition 12, we see that vk may be continued from the chart Uαl to the chart Uαl+1 . This continuation
is smooth since the two solutions coincide as long as a0(t, · ) is supported in Uαl ∩ Uαl+1 . Patching all
solutions on the time intervals [tl, tl+1] together, it yields a global-in-time solution vk , as desired.

Appendix C: Proof of (49)

Because of the second convergence in (43) and the nonnegativity of a, it amounts to proving that

(X1 Op(a)uk, X1uk)L2((0,T )×MH ) + (X2 Op(a)uk, X2uk)L2((0,T )×MH ) → 0.
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Now, we notice that for any B ∈90
phg((0, T )× MH ), it holds

(Buk, X1uk)L2((0,T )×MH ) k→+∞
−−−−→ 0 and (Buk, ∂t uk)L2((0,T )×MH ) k→+∞

−−−−→ 0 (63)

since uk
→ 0 strongly in L2((0, T )× MH ) and both X1uk and ∂t uk are bounded in L2((0, T )× MH ).

We apply this to B = [X1,Op(a)], and then, also using (63), we see that we can replace Op(a) by its
Friedrichs quantization OpF (a), which is positive; see [Taylor 1974, Chapter VII]. In other words, we are
reduced to proving

(OpF (a)X1uk, X1uk)L2((0,T )×MH ) + (OpF (a)X2uk, X2uk)L2((0,T )×MH ) k→+∞
−−−−→ 0. (64)

Let δ > 0 and ã ∈ S0
phg((−δ, T + δ)× MH ), 0 ⩽ ã ⩽ sup(a), and such that ã(t, · )= a( · ) for 0 ⩽ t ⩽ T.

Making repeated use of (63) and of integrations by parts (since ã is compactly supported in time), we have

2∑
j=1

(OpF (ã)X j uk, X j uk)L2((0,T )×MH ) =

2∑
j=1

(X j OpF (ã)uk, X j uk)L2((0,T )×MH ) + o(1)

= −(OpF (ã)uk,1uk)L2((0,T )×MH ) + o(1)

= −(OpF (ã)uk, ∂2
t uk)L2((0,T )×MH ) + o(1)

= (∂t OpF (ã)uk, ∂t uk)L2((0,T )×MH ) + o(1)

= (OpF (ã)∂t uk, ∂t uk)L2((0,T )×MH ) + o(1).

Finally we note that since OpF is a positive quantization, we have

2∑
j=1

(OpF (a)X j uk, X j uk)L2((0,T )×MH ) ⩽
2∑

j=1

(OpF (ã)X j uk, X j uk)L2((0,T )×MH )

= (OpF (ã)∂t uk, ∂t uk)L2((0,T )×MH ) + o(1)

⩽ Cδ+ (OpF (a)∂t uk, ∂t uk)L2((0,T )×MH ) + o(1)

⩽ Cδ+ o(1),

where C does not depend on δ. Taking δ → 0 concludes the proof of (64), and consequently (49) holds.
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