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QUANTITATIVE ALEXANDROV THEOREM
AND ASYMPTOTIC BEHAVIOR OF THE

VOLUME PRESERVING MEAN CURVATURE FLOW

VESA JULIN AND JOONAS NIINIKOSKI

We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of
a regular set in Rn+1 is close to a constant in the Ln sense, then the set is close to a union of disjoint balls
with respect to the Hausdorff distance. This result is more general than the previous quantifications of the
Alexandrov theorem, and using it we are able to show that in R2 and R3 a weak solution of the volume
preserving mean curvature flow starting from a set of finite perimeter asymptotically convergences to a
disjoint union of equisize balls, up to possible translations. Here by a weak solution we mean a flat flow,
obtained via the minimizing movements scheme.

1. Introduction

Here we study the asymptotic behavior of the weak solution of the volume preserving mean curvature
flow starting from a set of finite perimeter. In the classical setting we are given a smooth set E0 ⊂ Rn+1

and we let it evolve into a smooth family of sets (Et)t according to the law, where the normal velocity Vt

is proportional to the mean curvature of Et as

Vt = −(HEt − H Et ) on ∂Et , (1-1)

where H Et = /
∫
∂Et

HEt dHn. Equations of mean curvature type are important in geometry, where one
usually studies the geometric properties of ∂Et which are inherited from ∂E0. Equation (1-1) can also be
seen as a volume preserving gradient flow of the surface area. These equations arise naturally in physical
models involving surface tension; see [Taylor et al. 1992].

The main issue with (1-1) is that it may develop singularities in finite time even in the plane [Mayer
2001; Mayer and Simonett 2000]. In order to pass over the singular time one may try to do a surgery
procedure and restart the flow after a singular time as in [Huisken and Sinestrari 2009] or to define a weak
solution of (1-1), which is what we will consider here. For the mean curvature flow one may define a weak
solution by using the varifold setting by Brakke [1978], the level set solution developed independently
by Chen, Giga and Goto [Chen et al. 1989] and Evans and Spruck [1991], or by using the minimizing
movements scheme developed independently by Almgren, Taylor and Wang [Almgren et al. 1993] and
Luckhaus and Stürzenhecker [1995]. Since we want the solution of (1-1) to be a family of sets and since
(1-1) does not satisfy the comparison principle, the natural choice is to define a weak solution via the
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minimizing movements scheme as in [Almgren et al. 1993; Luckhaus and Sturzenhecker 1995]. This
solution is usually called a flat flow, and it is well defined due to [Mugnai et al. 2016] but might not be
unique.

The advantage of the flat flow is that it is defined for all times for any bounded initial set with finite
perimeter and we may thus study its asymptotic behavior. Heuristically, one may guess that the flat flow
converges to a critical point of the static problem, which are classified in [Delgadino and Maggi 2019]
as a disjoint union of balls, possibly tangent to each other. The asymptotic convergence of (1-1) has
been proved for initial sets with certain geometric properties such as convexity [Huisken 1987], nearly
spherical [Escher and Simonett 1998] or sets which are near a stable critical set in the flat torus in low
dimensions [Niinikoski 2021]. We note that in these cases the flow does not develop singularities and is
thus classically well defined for all times. The result in [Kim and Kwon 2020] shows that the convergence
holds also for star-shaped sets, up to possible translations. For the mean curvature flow with forcing, the
asymptotic behavior has been studied for the level set solution in [Giga et al. 2019; 2020] and for the flat
flow in the plane in [Fusco et al. 2022]. The result closest to ours is the work by Morini, Ponsiglione and
Spadaro [Morini et al. 2022], where the authors prove that the discrete-in-time approximation of the flat
flow of (1-1) converges exponentially fast to a disjoint union of balls. Here we are able to pass the time
discretization to zero and characterize the limit sets for the flat flow of (1-1) in R2 and R3. The precise
definition of the flat flow is given in Section 4.

Theorem 1.1. Assume E0 ⊂ Rn+1, with n ≤ 2 and |E0| = |B1|, is a bounded set of finite perimeter which
is either essentially open or essentially closed, and let (Et)t≥0 be a flat flow of (1-1) starting from E0.
There is N ∈ N such that the following holds: for every ε > 0 there is Tε > 0 such that for every t ≥ Tε

there are points x1, . . . , xN , which may depend on time, with |xi − x j | ≥ 2r for i ̸= j and r = N−1/(n+1)

such that for Ft =
⋃N

i=1 Br (xi ),

sup
x∈Et1Ft

d∂Ft (x) ≤ ε.

Here d∂F denotes the distance function. To the best of our knowledge this is the first result on
the characterization of the asymptotic limit of (1-1) in R3. The above result holds for any limit of the
approximative flat flow, and we do not need the additional assumption on the convergence of the perimeters
as in [Luckhaus and Sturzenhecker 1995; Mugnai et al. 2016]. We note that the assumption on E0 being
either essentially open or closed is only needed to ensure that the flow is continuous up to time zero. It
plays no role in the asymptotic analysis.

Concerning the limiting configurations, Theorem 1.1 is sharp since the flow (1-1) may converge to
tangent balls as shown in [Fusco et al. 2022]. On the other hand, we believe that one may rule out
the possible translations and the flow actually convergences to a disjoint union of balls. The higher
dimensional case and the possible speed of convergence are also open problems.

Quantitative Alexandrov theorem. The proof of Theorem 1.1 is based on the dissipation inequality
proven in [Mugnai et al. 2016] and stated in Proposition 4.1. This implies that there is a sequence of
times t j → ∞ such that the mean curvatures of the evolving sets Et j are asymptotically close to a constant
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with respect to the L2-norm. Therefore, we need a quantified version of the Alexandrov theorem which
enables us to conclude that the sets Et j are close to a disjoint union of balls.

There is a lot of recent research on generalizing the Alexandrov theorem [Ciraolo and Maggi 2017;
Delgadino and Maggi 2019; Delgadino et al. 2018; De Rosa et al. 2020; Krummel and Maggi 2017;
Magnanini and Poggesi 2020]. We refer the survey paper [Ciraolo 2021] for the state of the art. Unfor-
tunately, none of the available results is applicable to our problem, and we are also not able to use the
characterization of the critical sets in [Delgadino and Maggi 2019, Corollary 2] to identify the limit set.
Indeed, even if we know that the sets Et j converge to a set of finite perimeter and their mean curvatures
converge to a constant, it is not clear why the limit set is a set of finite perimeter with weak mean
curvature as this class of sets is not in general closed. Our main result is the following quantification of
the Alexandrov theorem, which is the main technical tool in the proof of Theorem 1.1.

Theorem 1.2. Let E ⊂ Rn+1 be a C2 regular set such that P(E) ≤ C0 and |E | ≥ 1/C0. There are
positive constants q = q(n) ∈ (0, 1], C = C(C0, n) and δ = δ(C0, n) such that if ∥HE − λ∥Ln(∂E) ≤ δ

for some λ ∈ R, then 1/C ≤ λ ≤ C and there are points x1, . . . , xN with |xi − x j | ≥ 2R, where R = n/λ,
such that for F =

⋃N
i=1 BR(xi ),

sup
x∈E1F

d∂F (x) ≤ C∥HE − λ∥
q
Ln(∂E).

Moreover,
|P(E) − N (n + 1)ωn+1 Rn

| ≤ C∥HE − λ∥
q
Ln(∂E).

The main advantage of Theorem 1.2 with respect to the previous results in the literature is that we
do not assume any geometric restriction on E such as mean convexity. Moreover, we assume the mean
curvature to be close to a constant only in the Ln sense, which is exactly what we need for the asymptotic
analysis in Theorem 1.1. This makes the proof challenging as, for example, we cannot use the estimates
from Allard’s regularity theory [1972].

Theorem 1.2 is sharp in the sense that ∥HE −λ∥Ln(∂E) cannot be replaced by a weaker L p-norm. This
can be seen by considering a set which is a union of the unit ball and a ball of small radius ε located far
away. On the other hand, the dissipation inequality in Proposition 4.1 controls only the L2-norm of the
mean curvature, which is the reason we cannot prove Theorem 1.1 in higher dimensions. The proof of
Theorem 1.2 is done in a constructive way and we obtain an explicit bound on the exponent q = (n +2)−3.
It would be interesting to obtain the sharp bound as it might be crucial in order to obtain the possible
exponential convergence of (1-1) as in [Morini et al. 2022]. In the two-dimensional case the optimal
power q = 1 is proven in [Fusco et al. 2022].

Outline of the proof of Theorem 1.2. Since the proof of Theorem 1.2 is rather long, we outline it here.
As in [Delgadino and Maggi 2019], our argument is based on the proof of the Heinze–Karcher inequality
by Montiel and Ros [1991], which is an alternative for the proof in [Ros 1987]. In [Delgadino and
Maggi 2019], the authors are able to generalize the Montiel–Ros argument to sets of finite perimeter
with weak distributional mean curvature. Here we revisit the argument by Montiel and Ros and deduce
in Proposition 3.3 that for E and R as in Theorem 1.2 and for 0 < r < R, the volume of the set
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Er = {x ∈ E : dist(x, ∂E) > r} satisfies the estimate∣∣∣∣|Er | −
|E |

Rn+1 (R − r)n+1
∣∣∣∣ ≤ C∥HE − λ∥Ln(∂E).

We use this in Step 1 of the proof of Theorem 1.2 to deduce that for r close to R the set Er is a union of
a finite number of components, or clusters, with positive distance to each other.

We note that the above inequality is not enough to conclude the proof as, e.g., the cube Q = (−1, 1)n+1

satisfies |Qr | = (1 − r)n+1
|Q|. Therefore, we need further information from the Montiel–Ros argument

and we prove in Proposition 3.3 that the Minkowski sum Er + Bρ = {x ∈ Rn+1
: dist(x, Er ) < ρ}, with

0 < ρ < r < R, satisfies∣∣∣∣|Er + Bρ | −
|E |

Rn+1 (R − (r − ρ))n+1
∣∣∣∣ ≤

C
(R − r)n+1 ∥HE − λ∥Ln(∂E).

This enables us to prove that the components of Er + Bρ ⊂ E, with properly chosen ρ and r , are almost
spherical. In particular, if E satisfies the above estimate with C = 0, then it is a disjoint union of balls.
This, together with the density estimate from [Topping 2008], concludes the proof.

2. Notation and preliminary results

In this section we briefly introduce our notation and recall some results from differential geometry. Given
a set E ⊂ Rn+1 the distance function dE : Rn+1

→ [0, ∞) is defined, as usual, as

dE(x) := inf
y∈E

|x − y|,

and we denote the signed distance function d̄E : Rn+1
→ R by

d̄E(x) :=

{
−d∂E(x) for x ∈ E,

d∂E(x) for x ∈ Rn+1
\ E.

Then clearly d∂E = |d̄E |. We denote the ball with radius r centered at x by Br (x) and by Br if it is
centered at the origin. Given a set E ⊂ Rn+1 we denote its ρ-enlargement by the Minkowski sum

E + Bρ = {x + y ∈ Rn+1
: x ∈ E, y ∈ Bρ} = {x ∈ Rn+1

: dE(x) < ρ}.

For a measurable set E ⊂ Rn+1 the shorthand notation |E | denotes its Lebesgue measure, and we
denote the k-dimensional measure of the unit ball in Rk by ωk . In some cases, we may use the shorthand
notation |E | more generally for a measurable set E ⊂ Rk to denote its k-dimensional Lebesgue measure
but this shall be clear from context.

For a set of finite perimeter E ⊂ Rn+1 we denote its reduced boundary by ∂∗E and the perimeter by
P(E). Recall that P(E) = Hn(∂∗E) and for a regular enough set, ∂∗E = ∂E. The relative isoperimetric
inequality states that for every set of finite perimeter E and for every ball Br (x),

Hn(∂∗E ∩ Br (x))(n+1)/n
≥ cn min{|E ∩ Br (x)|, |Br (x) \ E |},

for a dimensional constant cn . We refer to [Maggi 2012] for an introduction to the topic.
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We define the tangential differential of F ∈ C1(Rn+1
; Rm) on ∂E by

Dτ F(x) = DF(x)(I − νE(x) ⊗ νE(x)),

where νE denotes the unit outer normal of E. For a function f ∈ C1(Rn+1
; R) we denote by ∇τ f its

tangential gradient which is a vector in Rn+1. We define the tangential divergence of F ∈ C1(Rn+1
; Rn+1)

by divτ F = Tr(Dτ F). Then the divergence theorem on manifolds generalizes to∫
∂∗E

divτ F dHn
=

∫
∂∗E

HE ⟨F, νE ⟩ dHn,

where HE ∈ L1(∂∗E) is the distributional mean curvature. When ∂E is smooth, HE agrees with the
classical definition of the mean curvature, which for us is the sum of the principal curvatures.

We begin by recalling the well-known inequality proven first by Simon [1993] in R3 and then by
Topping [2008] in the general case.

Theorem 2.1. Let 6 ⊂ Rn+1 be a compact and connected C2-hypersurface. Then

diam(6) ≤ Cn

∫
6

|H6|
n−1 dHn, (2-1)

where Cn depends only on the dimension.

We need also the Michael–Simon inequality [Michael and Simon 1973].

Theorem 2.2. Let 6 ⊂ Rn+1, n ≥ 2, be a compact C2-hypersurface. Then for every nonnegative
ϕ ∈ C1(Rn+1),

∥ϕ∥Ln/(n−1)(6) ≤ Cn

∫
6

|∇τϕ| +ϕ|H6| dHn, (2-2)

where Cn depends only on the dimension.

The following density-type estimate is essentially proven in [Morini et al. 2022, Lemma 2.1].

Proposition 2.3. Let E ⊂ Rn+1 be a set of finite perimeter with P(E) > 0 and 0 < β < 1. There is a
positive constant c = c(n, β) such that

rE,β := sup{r ∈ R+ : there exists x ∈ Rn+1 with |Br (x) ∩ E | ≥ β|Br (x)|} ≥ c
|E |

P(E)
.

We use the previous results to prove the following lemma, which is useful when we bound the Lagrange
multipliers and the number of the components of the flat flow of (1-1).

Lemma 2.4. Let E ⊂ Rn+1 be a bounded set of finite perimeter with a distributional mean curvature
HE ∈ L1(∂∗E), λ ∈ R and 1 ≤ C0 < ∞. There is a positive constant C = C(C0, n) such that:

(i) If P(E) ≤ C0 and |E | ≥ 1/C0, then

1/C − C∥HE − λ∥L1(∂∗E) ≤ λ ≤ C + C∥HE − λ∥L1(∂∗E).

(ii) If P(E) ≤ C0, |E | ≥ 1/C0 and E is C2 regular, then the number of components of E is bounded by
C(1 + ∥HE − λ∥

n
Ln(∂E)) and the diameters of the components are bounded by C(1 + ∥HE − λ∥

n−1
Ln−1(∂E)

).
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Proof. Our standing assumptions throughout the proof are P(E) ≤ C0 and |E | ≥ 1/C0. The perimeter
bound and the global isoperimetric inequality yield

|E | ≤ cn P(E)(n+1)/n
≤ cnC (n+1)/n

0 .

By the assumptions on E and by the divergence theorems, we compute the following for any vector
field F ∈ C1(Rn+1

; Rn+1):

λ

∫
E

div F dx =

∫
∂∗E

λ⟨F, νE ⟩ dHn

=

∫
∂∗E

HE ⟨F, νE ⟩ dHn
+

∫
∂∗E

(λ − HE)⟨F, νE ⟩ dHn

=

∫
∂∗E

divτ F dHn
+

∫
∂∗E

(λ − HE)⟨F, νE ⟩ dHn. (2-3)

Our goal is to construct a suitable vector field F to obtain (i) from (2-3). To this aim, we use first
the relative isoperimetric inequality, Proposition 2.3 and a suitable continuity argument to find positive
r0 = r0(C0, n), R0 = R0(C0, n) and r such that r0 ≤ r ≤ R0 and, by possibly translating the coordinates,
|Br ∩ E | =

1
2 |Br |. Again, it follows from the relative isoperimetric inequality that Hn(∂∗E ∩ Br ) ≥ c for

some positive c = c(C0, n). Choose a decreasing C1 function f : R → R with

f (t) =

{
(2r)−1 for t ≤

3
2r

t−1 for t ≥
5
2r

and for which the conditions f (t) ≤ min{(2r)−1, t−1
} and | f ′(t)| ≤ (2r)−2 hold on

[ 3
2r, 5

2r
]
. We define

the function F : Rn+1
→ Rn+1 by setting F(x) = f (|x |)x . Then F is a C1 vector field with

DF(x) = f (|x |)I +
f ′(|x |)

|x |
x ⊗ x for every x ∈ Rn+1,

div F(x) = (n + 1) f (|x |) + f ′(|x |)|x | for every x ∈ Rn+1,

divτ F(x) = n f (|x |) + f ′(|x |)

(
|x | −

⟨x, νE ⟩
2

|x |

)
for every x ∈ ∂∗E.

Then 0 < div F ≤ (n + 1)(2r)−1 everywhere and div F = (n + 1)(2r)−1 in Br , so by using these and the
earlier observations we obtain

n + 1
4R0

|Br0 | ≤
n + 1

4r
|Br | =

n + 1
2r

|Br ∩ E |

≤

∫
E

div F dx ≤
n + 1

2r
|E | ≤

cn(n + 1)

2r0
C (n+1)/n

0 .

(2-4)

Again, 0 ≤ divτ F ≤ n(2r)−1 on ∂∗E and divτ F = n(2r)−1 on ∂∗E ∩ Br , and thus

nc
2R0

≤
n
2r

Hn(∂∗E ∩ Br ) ≤

∫
∂∗E

divτ F dHn
≤

n P(E)

2r
≤

nC0

2r0
. (2-5)

We use (2-3), (2-4), (2-5) and |F | ≤ 1 to obtain (i).
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The claim (ii) is easy to prove in the planar case and therefore we assume that n ≥2. Let E1, E2, . . . , EN

denote the connected components of E. We apply Theorem 2.2 on ∂Ei with ϕ = 1 and use Hölder’s
inequality to obtain

C−1
n ≤ ∥HEi ∥Ln(∂Ei ) ≤ ∥HEi − λ∥Ln(∂Ei ) + |λ|P(Ei )

1/n,

from which we conclude, using (i) and Hölder’s inequality, that

NC−n
n ≤ 2n

∥HE − λ∥
n
Ln(∂E) + 2n

|λ|
n P(E)

≤ 2n
∥HE − λ∥

n
Ln(∂E) + 22nC0Cn(1 + ∥HE − λ∥

n
L1(∂E)

)

≤ 2n
∥HE − λ∥

n
Ln(∂E) + 22nC0Cn(1 + Cn−1

0 ∥HE − λ∥
n
Ln(∂E)). (2-6)

On the other hand, Theorem 2.1 together with (i) and Hölder’s inequality implies∑
i

diam(Ei ) ≤

∑
i

Cn

∫
∂Ei

|HEi |
n−1 dHn

≤

∑
i

2n−1Cn

(∫
∂Ei

|HEi − λ|
n−1 dHn

+ |λ|
n−1 P(Ei )

)
≤ 2n−1Cn

(∫
∂E

|HE − λ|
n−1 dHn

+ P(E)|λ|
n−1

)
≤ 2n−1Cn(∥HE − λ∥

n−1
Ln−1(∂E)

+ 2n−1C0Cn(1 + ∥HE − λ∥
n−1
L1(∂E)

))

≤ 2n−1Cn(∥HE − λ∥
n−1
Ln−1(∂E)

+ 2n−1C0Cn(1 + Cn−2
0 ∥HE − λ∥

n−1
Ln−1(∂E)

)). (2-7)

Thus, by possibly increasing C , the second claim follows from (2-6) and (2-7). □

3. Quantitative Alexandrov theorem

We split the proof of Theorem 1.2 into two parts. We first revisit the Montiel–Ros argument in
Proposition 3.3 where all the technical heavy lifting is done. The idea of Proposition 3.3 is to transform
the (local) information of the mean curvature of E being close to a constant into information on the
ρ-enlargement of the level sets of the distance function of ∂E. We note that the statement of Proposition 3.3
is given by the sharp exponent. The proof of Theorem 1.2 is then based on purely geometric arguments.

We first state the following equivalent formulation of the theorem.

Remark 3.1. Once we prove that in Theorem 1.2 the number of component of E is bounded, the statement
on the L∞-distance is equivalent to the fact that, under the assumption ∥HE − λ∥Ln(∂E) ≤ δ, there are
points x1, . . . , xN such that

N⋃
i=1

Bρ−
(xi ) ⊂ E ⊂

N⋃
i=1

Bρ+
(xi ),

where we have ρ− = R − C∥HE − λ∥
q
Ln(∂E), ρ+ = R + C∥HE − λ∥

q
Ln(∂E), R = n/λ and the balls

Bρ−
(x1), . . . , Bρ−

(xN ) are disjoint to each other. We leave the details to the reader.
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In Theorem 1.2 we assume that the mean curvature is bounded only in the Ln sense and thus the
estimates from Allard’s regularity theory [1972] are not available for us. Indeed, the Ln-boundedness of
the mean curvature is not strong enough to give proper density estimates. Moreover, even in the three
dimensional case R3 we cannot use the results from [Simon 1993], because we do not have a uniform
bound on the Euler characteristic of the set E. However, if we know that the mean curvature is close to a
constant with respect to the Ln-norm, then the following density estimate holds. The proof is based on
[Topping 2008, Lemma 1.2].

Lemma 3.2. Let 6 ⊂ Rn+1 be a compact C2-hypersurface and λ ∈ R+. There is a positive dimensional
constant δn such that if ∥H6 − λ∥Ln(6) ≤ δn , then

δn ≤
Hn(B(x, r) ∩ 6)

rn

for every x ∈ 6 and 0 < r ≤ δn/λ.

Proof. The planar case n = 1 is rather obvious and we leave it to the reader. Assume n ≥ 2. Fix x ∈ 6

and define V : [0, ∞) → [0, ∞) as V (r) = Hn(Br (x)∩6). Since V is increasing, the derivative V ′(r) is
defined for almost every r ∈ [0, ∞), and∫ r2

r1

V ′(ρ) dρ ≤ V (r2) − V (r1) whenever 0 ≤ r1 < r2.

By a standard foliation argument we have that Hn(∂Br (x) ∩ 6) > 0 for at most countably many r ∈ R+.
Thus V ′(r) is defined and Hn(∂Br (x) ∩ 6) = 0 for almost every r ∈ [0, ∞). Fix such an r and choose
h ∈ R+ for which Hn(∂Br+h(x) ∩ 6) = 0. Define a cut-off function fh : Rn+1

→ R by setting

fh(y) =


1, y ∈ Br (x),

1 − |y − x |/h, y ∈ Br+h(x) \ Br (x),

0, y ∈ Rn+1
\ Br+h(x).

By using a suitable approximation argument combined with Theorem 2.2 we obtain

V (r)(n−1)/n
≤ Cn

(
V (r + h) − V (r)

h
+ ∥ fh H6∥L1(6)

)
.

In turn, we may choose a sequence (hk)k such that hk → 0 and Hn(∂Br+hk (x) ∩ 6) = 0. Then by
letting k → ∞ the previous estimate yields

V (r)(n−1)/n
≤ Cn

(
V ′(r) +

∫
Br (x)∩6

|H6| dHn
)

≤ Cn

(
V ′(r) +

∫
Br (x)∩6

|H6| dHn
)

≤ Cn

(
V ′(r) +

∫
Br (x)∩6

|H6 − λ| dHn
+ λV (r)

)
≤ Cn(V ′(r) + ∥H6 − λ∥Ln(6)V (r)(n−1)/n

+ λV (r)).
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Thus for almost every r ∈ (0, ∞),(
C−1

n − ∥H6 − λ∥Ln(6)

V (r)1/n − λ

)
V (r) ≤ V ′(r).

If ∥H6 − λ∥Ln(6) ≤ δn for small δn , then the above inequality implies

1
2Cn

V (r)1−1/n
− λV (r) ≤ V ′(r).

Fix r < δn/λ. We will assume that V (r) ≤ δnrn, since otherwise the claim is trivially true. By the
monotonicity of V we have

V (ρ)1/n
≤ V (r)1/n

≤ δn/λ

for all 0 < ρ < r . For δn small enough the above inequality then yields

1
4Cn

V (ρ)1−1/n
≤ V ′(ρ)

for almost every 0 < ρ < r . The claim follows by integrating this over (0, r). □

Montiel–Ros argument. We recall that for E ⊂ Rn+1 we write

Er := {x ∈ E : dist(x, ∂E) > r}. (3-1)

We use the fact that E is C2 regular and say that x ∈ ∂E satisfies the interior ball condition with radius r
if, for y = x − rνE(x), it holds that Br (y) ⊂ E. For r > 0 we define

0r := {x ∈ ∂E : x satisfies the interior ball condition with radius r}. (3-2)

Proposition 3.3. Let λ ∈ R and suppose that a bounded and C2 regular set E ⊂ Rn+1 satisfies P(E) ≤ C0

and |E | ≥ 1/C0 with C0 ∈ R+. Then for 0 < r < R with R = n/λ,∣∣∣∣|Er | −
|E |

Rn+1 (R − r)n+1
∣∣∣∣ ≤ C∥HE − λ∥Ln(∂E)

and

Hn(∂E \ 0r ) ≤
C

(R − r)n+1 ∥HE − λ∥Ln(∂E),

provided that ∥HE − λ∥Ln(∂E) ≤ δ, where the constants C and δ depend only on C0 and on the dimension.
Moreover, under the same assumptions, for 0 < ρ < r < R,∣∣∣∣|Er + Bρ | −

|E |

Rn+1 (R − (r − ρ))n+1
∣∣∣∣ ≤

C
(R − r)n+1 ∥HE − λ∥Ln(∂E).

Proof. As we already mentioned the proof is based on the Montiel–Ros argument for the Heinze–Karcher
inequality, which we recall shortly. To that aim, we define ζ : ∂E × R → Rn+1 as

ζ(x, t) = x − tνE(x).
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We denote the principle curvatures of ∂E at x by k1(x), . . . , kn(x) and assume that they are pointwise
ordered as ki (x) ≤ ki+1(x). If we consider ∂E ×R as a hypersurface embedded in Rn+2, then its tangential
Jacobian is

Jτ ζ(x, t) =

n∏
i=1

|1 − tki (x)| on ∂E × R.

For every bounded Borel set M ⊂ ∂E × R we have, by the area formula,∫
ζ(M)

H0(ζ−1(y) ∩ M) dy =

∫
M

Jτ ζ dHn+1.

In the proof, C denotes a positive constant which may change from line to line, depending only on C0

and on the dimension.

Step 1: In order to utilize Lemma 2.4, we choose δ = δ(C0, n) to be the same as in the lemma and assume
∥HE − λ∥Ln(∂E) ≤ δ. Then E has N connected components with N ≤ C . We may thus prove the claim
componentwise and assume that E is connected. We write

6 :=
{

x ∈ ∂E : |HE(x) − λ| < 1
2λ

}
.

By Lemma 2.4 we have λ ≥ 1/C , and thus by Hölder’s inequality

Hn(∂E \ 6) ≤
2
λ

∫
∂E

|HE(x) − λ| dHn
≤ C∥HE − λ∥Ln(∂E). (3-3)

Moreover, we have

n
n + 1

∫
6

1
HE

dHn
=

n
n + 1

∫
6

(
1
λ

+

(
1

HE
−

1
λ

))
dHn

≤
n P(E)

(n + 1)λ
+ C∥HE(x) − λ∥Ln(∂E).

Since E is connected, Lemma 2.4 yields diam(E) ≤ R̃ with R̃ = R̃(C0, n) ≥ R. Choose x0 ∈ E. Then
using (2-3) with F(x) = x − x0 we obtain

n P(E) = (n + 1)λ|E | +

∫
∂E

(HE − λ)⟨(x − x0), νE ⟩ dHn,

which in turn implies ∣∣n P(E) − (n + 1)λ|E |
∣∣ ≤ C∥HE − λ∥Ln(∂E). (3-4)

Hence we deduce
n

n + 1

∫
6

1
HE

dHn
≤ |E | + C∥HE − λ∥Ln(∂E). (3-5)

Next we define

Z = {(x, t) ∈ 6 × [0, ∞) : 0 ≤ t ≤ 1/kn(x)}.
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Note that this is well defined, since x ∈ 6 implies kn(x) ≥ HE(x)/n ≥ λ/(2n) > 0. We also set

6′

1 = {x ∈ ∂E \ 6 : kn(x) ≤ 1/R̃} and 6′

2 = {x ∈ ∂E \ 6 : kn(x) > 1/R̃},

Z ′

1 = 6′

1 × [0, R̃] and Z ′

2 = {(x, t) ∈ 6′

2 × [0, ∞) : 0 ≤ t ≤ 1/kn(x)},

and finally
Z ′

= Z ′

1 ∪ Z ′

2.

Then Z and Z ′ are disjoint and bounded Borel sets and E ⊂ ζ(Z ∪ Z ′). To see this fix y ∈ E and let
x ∈ ∂E be such that r = d∂E(y) = |x − y|. Then we may write y = x − rνE(x), and by the maximum
principle kn(x) ≤ 1/r . Since diam(E) ≤ R̃, we have r ≤ R̃ and so we conclude that (x, r) ∈ Z ∪ Z ′ and
y = ζ(x, r).

We now recall the Montiel–Ros argument. We use the fact that E is a subset of ζ(Z ∪ Z ′), the area
formula, the arithmetic geometric inequality and the fact that 1/kn(x) ≤ n/HE(x) for x ∈ 6 to obtain

|E | ≤ |ζ(Z)| + |ζ(Z ′)| ≤

∫
ζ(Z)

H0(ζ−1(y) ∩ Z) dy + |ζ(Z ′)|

=

∫
Z

Jτ ζ dHn+1
+ |ζ(Z ′)|

=

∫
6

∫ 1/kn(x)

0

n∏
i=1

(1 − tki (x)) dt dHn
+ |ζ(Z ′)|

≤

∫
6

∫ 1/kn(x)

0

(
1 −

t
n

HE(x)

)n

dt dHn
+ |ζ(Z ′)|

≤

∫
6

∫ n/HE (x)

0

(
1 −

t
n

HE(x)

)n

dt dHn
+ |ζ(Z ′)|

=
n

n + 1

∫
6

1
HE

dHn
+ |ζ(Z ′)|.

Next we quantify the previous four inequalities. To that aim we define the nonnegative numbers R1, R2, R3

and R4 as
R1 = |ζ(Z) \ E |, (3-6)

R2 =

∫
ζ(Z)

|H0(ζ−1(y) ∩ Z) − 1| dy, (3-7)

R3 =

∫
6

∫ 1/kn(x)

0

∣∣∣∣(1 −
t
n

HE(x)

)n

−

n∏
i=1

(1 − tki (x))

∣∣∣∣ dt dHn, (3-8)

R4 =

∫
6

∫ n/HE (x)

1/kn(x)

∣∣∣∣1 −
t
n

HE(x)

∣∣∣∣n

dt dHn. (3-9)

Then by repeating the Montiel–Ros argument we deduce that

|E | ≤
n

n + 1

∫
6

1
HE

dHn
+ |ζ(Z ′)| − R1 − R2 − R3 − R4.
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Therefore, by (3-5),
R1 + R2 + R3 + R4 ≤ |ζ(Z ′)| + C∥HE − λ∥Ln(∂E),

where the Ri are defined in (3-6)–(3-9).
Let us next show that

|ζ(Z ′)| ≤ C∥HE(x) − λ∥Ln(∂E). (3-10)

Indeed, by the area formula we have

|ζ(Z ′)| ≤

∫
Z ′

Jτ ζ dHn+1
=

∫
6′

1

∫ R̃

0

n∏
i=1

|1− tki (x)| dt dHn
+

∫
6′

2

∫ 1/kn(x)

0

n∏
i=1

|1− tki (x)| dt dHn. (3-11)

By the definition of 6′

1, we have |1 − tki (x)| = (1 − tki (x)) for every (x, t) ∈ 6′

1 × [0, R̃], and therefore
by the arithmetic-geometric inequality we may estimate

n∏
i=1

|1 − tki (x)| ≤ C(1 + |HE(x)|n) for (x, t) ∈ 6′

1 × [0, R̃].

Similarly, we deduce that
n∏

i=1

|1 − tki (x)| ≤ C(1 + tn
|HE(x)|n) for x ∈ 6′

2 and 0 ≤ t ≤ 1/kn(x).

On the other hand, by the definition of 6′

2 we have 1/kn(x) < R̃. Therefore, by (3-11), λ ≤ C and (3-3)
we have

|ζ(Z ′)| ≤ C
∫

6′

1∪6′

2

∫ R̃

0
(1 + |HE(x)|n) dt dHn

= C R̃
∫

∂E\6

(1 + |HE(x)|n) dHn

≤ C
∫

∂E\6

(1 + λn
+ |HE − λ|

n) dHn

≤ C(Hn(∂E \ 6) + ∥HE − λ∥
n
Ln(∂E))

≤ C∥HE − λ∥Ln(∂E)

when ∥HE − λ∥Ln(∂E) ≤ 1. Hence by decreasing δ, if needed, we have (3-11). In particular,

R1 + R2 + R3 + R4 ≤ C∥HE − λ∥Ln(∂E), (3-12)

where the Ri are defined in (3-6)–(3-9).

Step 2: Here we utilize the estimate (3-12) and prove the following auxiliary result. For a Borel set
0 ⊂ ∂E and 0 < r < R,

|E ∩ ζ(Z ∩ (0 × (r, R)))| ≥
Hn(0)

(n + 1)Rn (R − r)n+1
− C∥HE − λ∥Ln(∂E). (3-13)
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We prove (3-13) by “backtracking” the Montiel–Ros argument. By the definition of R1, R2, R3, R4

and (3-12) we may estimate

|E ∩ ζ(Z ∩ (0 × (r, R)))| ≥ |ζ(Z ∩ (0 × (r, R)))| − R1

≥

∫
ζ(Z∩(0×(r,R)))

H0(ζ−1(y) ∩ Z ∩ (0 × (r, R))) dy − R1 − R2

=

∫
0∩6

∫ min{R,1/kn(x)}

min{r,1/kn(x)}

n∏
i=1

(1 − tki (x)) dt dHn
− R1 − R2

≥

∫
0∩6

∫ min{R,1/kn(x)}

min{r,1/kn(x)}

(
1 −

t
n

HE(x)

)n

dt dHn
− R1 − R2 − R3

≥

∫
0∩6

∫ min{R,n/HE (x)}

min{r,1/kn(x)}

(
1 −

t
n

HE

)n

dt dHn
− R1 − R2 − R3 − R4

≥

∫
0∩6

∫ min{R,n/HE (x)}

min{r,n/HE (x)}

(
1 −

t
n

HE

)n

dt dHn
− R1 − R2 − R3 − R4.

Recall that for x ∈ 6, we have 1
2λ ≤ HE(x) ≤ 2λ and R = n/λ. Therefore, we may estimate∫

0∩6

∫ min{R,n/HE (x)}

min{r,n/HE (x)}

(
1−

t
n

HE

)n

dt dHn
≥

∫
0∩6

∫ min{R,n/HE (x)}

min{r,n/HE (x)}

(
1−

t
n
λ

)n

dt dHn
−C∥HE −λ∥Ln(∂E)

≥

∫
0∩6

∫ R

r

(
1−

t
n
λ

)n

dt dHn
−C∥HE −λ∥Ln(∂E)

=
Hn(0∩6)n

(n+1)λ

(
1−

λ

n
r
)n+1

−C∥HE −λ∥Ln(∂E)

=
Hn(0∩6)R

(n+1)

(
1−

r
R

)n+1

−C∥HE −λ∥Ln(∂E).

Hence we obtain (3-13) from the previous two inequalities, from (3-3) and from (3-12).

Step 3: Here we finally prove the proposition. Recall the definition of Er in (3-1). Let us first prove that

|Er | ≥
P(E)

(n + 1)Rn (R − r)n+1
− C∥HE − λ∥Ln(∂E) (3-14)

for all 0 < r < R.
To this aim, we claim that

E ∩ ζ(Z ∩ (6 × (r, R))) ⊂ Er ∪ {y ∈ ζ(Z) : H0(ζ−1(y) ∩ Z) ≥ 2} ∪ ζ(Z ′). (3-15)

The point of this inclusion is that almost every point which is of the form y = x − tνE(x), for x ∈ Z and
t ∈ (r, R), belongs to Er .

To this aim, let y ∈ E ∩ ζ(6 × (r, R)). Then we may write y = x − tνE(x) = ζ(x, t) for some x ∈ 6

and t ∈ (r, R), with (x, t) ∈ Z . If d∂E(y) = |y − x |, then y ∈ Er because |x − y| = t > r . Otherwise,

d∂E(y) = |y − x̃ | = r̃ < t for x̃ ∈ ∂E,
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so we may write y = x̃ − r̃νE(x) = ζ(x̃, r̃) and (x̃, r̃) ∈ Z ∪ Z ′. Again, if (x̃, r̃) /∈ Z ′, then (x̃, r̃) ∈ Z and
thus H0(ζ−1(y) ∩ Z) ≥ 2. Hence we have (3-15).

Recall that by the definition of R2 and by (3-12),

|{y ∈ ζ(Z) : H0(ζ−1(y) ∩ Z) ≥ 2}| ≤

∫
ζ(Z)

|H0(ζ−1(y) ∩ Z) − 1| dy

≤ C∥HE − λ∥Ln(∂E). (3-16)

We then use (3-15), (3-16), (3-10) and (3-13) with 0 = 6 to deduce

|Er | ≥ |E ∩ ζ(Z ∩ (6 × (r, R)))| − C∥HE − λ∥Ln(∂E)

≥
Hn(6)

(n + 1)Rn (R − r)n+1
− C∥HE − λ∥Ln(∂E).

The inequality (3-14) then follows from (3-3).
Let us next show that for all r ∈ (0, R),

|Er | ≤
Hn(0r )

(n + 1)Rn (R − r)n+1
+ C∥HE − λ∥Ln(∂E), (3-17)

where 0r ⊂ ∂E is defined in (3-2).
First we show

|ER| ≤ C∥HE − λ∥Ln(∂E). (3-18)

This follows from an already familiar argument, so we only sketch it here. It is easy to see that

ER ⊂ ζ(Z ′) ∪ ζ(Z ∩ (6 × (R, ∞))).

Moreover, since 1
2λ ≤ HE(x) ≤ 2λ for x ∈ 6,

Jτ ζ(x, t) =

n∏
i=1

|1 − tki (x)| ≤ C(1 + |HE(x)|n) ≤ C for (x, t) ∈ Z ∩ (6 × (R, ∞)).

Recall that R = n/λ. Therefore, we have

|ζ(Z ∩ (6 × (R, ∞)))| ≤

∫
6

∫ max{n/HE (x),R}

R
Jτ ζ(x, t) dt dHn

≤ C
∫

6

∣∣∣∣ n
HE

− R
∣∣∣∣ dt dHn

≤ C∥HE − λ∥Ln(∂E).

The estimate (3-18) then follows from |ER| ≤ |ζ(Z ∩ (6 × (R, ∞)))| + |ζ(Z ′)| and (3-10).
Note that for all ρ ∈ (r, R) we have {x ∈ E : d∂E(x) = ρ} = ζ(0ρ, ρ) and 0ρ ⊂ 0r . We also set

ζρ = ζ( · , ρ) : ∂E → Rn+1, and thus {x ∈ E : d∂E(x) = ρ} = ζρ(0ρ) and

Jτ ζρ(x) =

n∏
i=1

|1 − ρki (x)| ≤

(
1 −

HE

n
ρ

)n

for x ∈ 0ρ .
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Therefore by (3-18) and by coarea and area formulas we obtain

|Er | ≤ |Er | − |ER| + C∥HE − λ∥Ln(∂E) ≤

∫ R

r
Hn({x ∈ E : d∂E = ρ}) dρ + C∥HE − λ∥Ln(∂E)

=

∫ R

r
Hn(ζρ(0ρ)) dρ + C∥HE − λ∥Ln(∂E)

≤

∫ R

r

∫
0ρ

Jτ ζρ(x) dHn dρ + C∥HE − λ∥Ln(∂E)

≤

∫ R

r

∫
0ρ

(
1 −

HE

n
ρ

)n

dHn dρ + C∥HE − λ∥Ln(∂E)

≤

∫ R

r
Hn(0ρ)

(
1 −

λ

n
ρ

)n

dρ + C∥HE − λ∥Ln(∂E)

≤ Hn(0r )

∫ R

r

(
1 −

ρ

R

)n

dρ + C∥HE − λ∥Ln(∂E)

=
Hn(0r )

(n + 1)Rn (R − r)n+1
+ C∥HE − λ∥Ln(∂E).

Hence we have (3-17).
The second claim of the proposition follows immediately from (3-14) and (3-17). These also imply∣∣∣∣|Er | −

P(E)

(n + 1)Rn (R − r)n+1
∣∣∣∣ ≤ C∥HE − λ∥Ln(∂E).

The first claim thus follows from (3-4) and R = n/λ.
For the last claim we refine the inclusion (3-15) and show that for 0 < ρ < r < R and r ′

∈ (r, R),

E ∩ ζ(Z ∩ (0r ′ × (r ′
− ρ, R))) ⊂ (Er + Bρ) ∪ {y ∈ ζ(Z) : H0(ζ−1(y) ∩ Z) ≥ 2} ∪ ζ(Z ′). (3-19)

Indeed, let y ∈ E ∩ ζ(Z ∩ (0r ′ × (r ′
−ρ, R))). Then we may write y = x − tνE(x) for some x ∈ 6 ∩0r ′

and t ∈ (r ′
− ρ, R), with (x, t) ∈ Z . If t ∈ (r ′, R), then by (3-15),

y ∈ E ∩ ζ(Z ∩ (6 × (r, R))) ⊂ Er ∪ {y ∈ ζ(Z) : H0(ζ−1(y) ∩ Z) ≥ 2} ∪ ζ(Z ′)

⊂ (Er + Bρ) ∪ {y ∈ ζ(Z) : H0(ζ−1(y) ∩ Z) ≥ 2} ∪ ζ(Z ′).

Let us then assume that t ∈ (r ′
− ρ, r ′

]. We write y = x − r ′νE(x) + (r ′
− t)νE(x). Since x ∈ 0r ′ , i.e.,

∂E satisfies the interior ball condition at x with radius r ′ > r , necessarily we have x − r ′νE(x) ∈ Er .
Therefore, since 0 ≤ r ′

− t < ρ, we conclude that y ∈ Er + Bρ and (3-19) follows.
We use (3-10), (3-13), (3-16) and (3-19) to conclude

|Er + Bρ | ≥ |E ∩ ζ(Z ∩ (0r ′ ∩ ×(r ′
− ρ, R)))| − C∥HE − λ∥Ln(∂E)

≥
Hn(0r ′)

(n + 1)Rn (R − (r ′
− ρ))n+1

− C∥HE − λ∥Ln(∂E).
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By using the second claim of the proposition and then letting r ′
→ r , we deduce

|Er + Bρ | ≥
P(E)

(n + 1)Rn (R − (r − ρ))n+1
−

C
(R − r)n+1 ∥HE − λ∥Ln(∂E).

On the other hand, clearly Er + Bρ ⊂ Er−ρ . Then by (3-17) we have

|Er + Bρ | ≤ |Er−ρ | ≤
P(E)

(n + 1)Rn (R − (r − ρ))n+1
+ C∥HE − λ∥Ln(∂E).

The last claim thus follows from the two previous inequalities and (3-4). □

Proof of Theorem 1.2. Let E, λ and C0 be as in the formulation of Theorem 1.2. Recall that we write
R = n/λ. As before C denotes a constant which may change from line to line but always depends only
on C0 and n. Let us write

ε := ∥HE − λ∥Ln(∂E).

If ε = 0, then E is a disjoint union of balls by [Delgadino and Maggi 2019]. Let us then assume that
0 < ε ≤ δ, where δ is initially set as in Proposition 3.3. We might shrink δ several times but always in
such a way that it depends only on C0 and the dimension n. Indeed, by shrinking δ, if needed, Lemma 2.4
provides the estimates

1/C ≤ λ and R ≤ C,

and hence the first claim of Theorem 1.2 is clear. We will use these estimates repeatedly without further
mention.

By Lemma 2.4, the number of connected components of E and their diameters are bounded by C. Thus,
by applying a similar argument as in the proof of Proposition 3.3 (to obtain (3-4)) on each component
and then summing these estimates we obtain∣∣n P(E) − (n + 1)λ|E |

∣∣ ≤ Cε. (3-20)

By possibly shrinking δ we have R−δ1/(n+2)
≥

1
2 R. Choose r0 = R−ε1/(n+2). Then the volume estimates

given by Proposition 3.3 read as ∣∣∣∣|Er | −
|E |

Rn+1 (R − r)n+1
∣∣∣∣ ≤ Cε (3-21)

for all 0 ≤ r < R and ∣∣∣∣|Er + Bρ | −
|E |

Rn+1 (R − (r − ρ))n+1
∣∣∣∣ ≤ Cε1/(n+2) (3-22)

for all 0 ≤ ρ ≤ r ≤ r0. We remark that by (3-21) we have

|Er0 | ≥
|E |

Rn+1 ε(n+1)/(n+2)
− Cε ≥

1
C

ε(n+1)/(n+2)
− Cε.

Hence by decreasing δ, if needed, we may assume that Er0 is nonempty. This implies that Er ′ is nonempty
for r ′ >r0 when |r ′

−r0| is small enough. Since for any r ′ >r0 it is geometrically clear that 0r ′ ⊂∂Er0 +Br0 ,
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and then by using Proposition 3.3 and r0 = R − ε1/(n+2) we have

Hn(∂E \ (Er0 + Br0)) ≤ Hn(∂E \ 0r ′) ≤ C
ε

(r0 − r ′ + ε1/(n+2))n+1 .

Thus by letting r ′
→ r0 the previous estimate yields

Hn(∂E \ (Er0 + Br0)) ≤ Cε1/(n+2). (3-23)

As previously, we divide the proof into three steps.

Step 1: Recall that r0 = R−ε1/(n+2)
≥

1
2 R. We prove that there is a positive constant d0 = d0(C0, n)≤

1
4 R

such that if x, y ∈ Er0 , then either

|x − y| < ε1/(2(n+2)) or |x − y| ≥ d0. (3-24)

Let us fix x, y ∈ Er0 . We write d := |x − y| and denote the segment from x to y by

Jxy := {t x + (1 − t)y : t ∈ [0, 1]}.

We may assume that d is small, since otherwise the claim (3-24) is trivially true. To be more precise, we
assume

d ≤ min
{ 1

4 R, 1
}
. (3-25)

Let us first show that
Jxy ⊂ Er0−R−1d2 . (3-26)

Note that r0 − R−1d2 > 0 by r0 ≥
1
2 R and (3-25), and hence Er0−R−1d2 is well defined and nonempty.

Choose z ∈ Rn+1
\ E and z′

∈ Jxy such that

|z − z′
| = dist(Rn+1

\ E, Jxy).

If z′
= x or z′

= y, then it follows from x, y ∈ Er0 that |z − z′
| > r0. If not, then from the fact that z′ is the

closest point on Jxy to z, we deduce that the vector x − z′ is orthogonal to z − z′, i.e., ⟨x − z′, z − z′
⟩ = 0.

Note also that min{|x − z′
|, |y − z′

|} ≤
1
2 d and we may thus assume that |x − z′

| ≤
1
2 d . Therefore, by the

Pythagorean theorem we have

|x − z|2 = |x − z′
|
2
+ |z − z′

|
2
≤

1
4 d2

+ |z − z′
|
2.

Since |x − z| > r0, the previous estimate gives us

|z − z′
|
2 > r2

0 −
1
4 d2.

We deduce from r0 ≥
1
2 R and (3-25) that(

r2
0 −

1
4 d2)1/2

≥ r0 − R−1d2.

The previous two estimates yield |z − z′
| > r0 − R−1d2, and claim (3-26) follows due to the choice of

z and z′.
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Again, we use r0 ≥
1
2 R and (3-25) to observe that

r0 − (1 + R−1)d2
≥ r0 − d − R−1d2

≥
1
2 R −

1
4 R −

1
16 R > 0.

Thus Er0−(1+R−1)d2 is well defined and nonempty. Next, we deduce from (3-26) and Er + Bρ ⊂ Er−ρ

that

Jxy + Bd2 ⊂ Er0−R−1d2 + Bd2 ⊂ Er0−(1+R−1)d2 . (3-27)

Since Jxy + Bd2 contains the cylinder Jxy × Bn
d2 , it is clear that

|Jxy + Bd2 | ≥ ωnd1+2n.

On the other hand, (3-21) and ε ≤ 1 (we may assume δ ≤ 1) imply

|Er0−(1+R−1)d2 | ≤
|E |

Rn+1 (R − (r0 − (1 + R−1)d2))n+1
+ Cε

=
|E |

Rn+1 (ε1/(n+2)
+ (1 + R−1)d2)n+1

+ Cε

≤
|E |

Rn+1 (ε1/(n+2)
+ (1 + R−1)d2)n+1

+ Cε(n+1)/(n+2)

≤ Cd2(n+1)
+ Cε(n+1)/(n+2).

Then (3-27) yields

ωnd1+2n
≤ Cd2(n+1)

+ Cε(n+1)/(n+2).

If d ≥ ε1/(2(n+2)), then

ωnd1+2n
≤ Cd2(n+1).

This implies d ≥ c > 0 for some c = c(C0, n). By recalling (3-25), claim (3-24) follows.

Step 2: By (3-24) and possibly replacing δ with min
{
δ,

(1
8 d0

)2(n+2)} we may divide the set Er0 into N
clusters E1

r0
, . . . , E N

r0
such that we fix a point xi ∈ Er0 and define the corresponding cluster E i

r0
as

E i
r0

=
{

x ∈ Er0 : |x − xi | ≤
1
8 d0

}
.

By (3-24), we have E i
r0

⊂ Bε0(xi ), where ε0 = ε1/(2(n+2)) and |xi − x j | ≥ d0 for i ̸= j . Therefore, we
have for every ρ > 0

N⋃
i=1

Bρ(xi ) ⊂ Er0 + Bρ ⊂

N⋃
i=1

Bρ+ε0(xi ). (3-28)

Since r0 ≥
1
2 R > 1

4 R ≥ d0 and |xi − x j | ≥ d0 for i ̸= j , we have that the balls Bρ(x1), . . . , Bρ(xN ) with
ρ =

1
4 d0 are disjoint and contained in E, which in turn implies there is an upper bound N0 = N0(C0, n)∈ N

for the number of clusters N.
Next we improve the lower bound |xi−x j |≥d0 and prove that there is a positive constant C1 =C1(C0, n)

such that

|xi − x j | ≥ 2R − 2C1ε
1/(n+2)2

for all pairs i ̸= j. (3-29)
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As a byproduct we prove the last statement of the theorem, i.e., we show

|P(E) − N (n + 1)ωn+1 Rn
| ≤ Cε1/(2(n+2)). (3-30)

Recall that the balls Bd0/4(x1), . . . , Bd0/4(xN ) are disjoint. Therefore, using N ≤ N0 and (3-28) with
ρ =

1
4 d0 we deduce ∣∣|Er0 + Bd0/4| − Nωn+1

( 1
4 d0

)n+1∣∣ ≤ Cε0 = Cε1/(2(n+2)).

On the other hand, we have 1
4 d0 ≤

1
16 R < 1

2 R ≤ r0, so we may use (3-22) to obtain∣∣∣∣|Er0 + Bd0/4| −
|E |

Rn+1

(1
4 d0 + ε1/(n+2)

)n+1
∣∣∣∣ ≤ Cε1/(n+2).

These two estimates and ε ≤ 1 imply∣∣|E | − Nωn+1 Rn+1∣∣ ≤ Cε1/(2(n+2)). (3-31)

Thus (3-20), R = n/λ and (3-31) yield (3-30).
To obtain (3-29), let us assume that there is 0 < h < 1

2 R such that |xi − x j | < 2R − 2h for some i ̸= j .
This implies that the balls BR(xi ) and BR(x j ) intersect each other such that a set enclosed by a spherical
cap of height h is included in their intersection. As the volume enclosed by the spherical cap of height h
has a lower bound cn Rn+1h(n+2)/2, with some dimensional constant cn , then there is c = c(C0, n) such
that

|BR(xi ) ∩ BR(x j )| ≥ ch(n+2)/2.

We use the previous estimate as well as (3-22), (3-28), (3-31), ε ≤ 1 and N ≤ N0 to estimate

Nωn+1 Rn+1
≤ |E | + Cε0

≤ |Er0 + Br0 | + Cε0 + Cε1/(n+2)

≤

∣∣∣∣ N⋃
i=1

BR+ε0(xi )

∣∣∣∣ + Cε0 + Cε1/(n+2)

≤

∣∣∣∣ N⋃
i=1

BR(xi )

∣∣∣∣ + Nωn+1((R + ε0)
n+1

− Rn+1) + Cε0 + Cε1/(n+2)

≤ Nωn+1 Rn+1
− |BR(xi ) ∩ BR(x j )| + Cε0 + Cε1/(n+2)

≤ Nωn+1 Rn+1
− ch(n+2)/2

+ Cε0 + Cε1/(n+2)

= Nωn+1 Rn+1
− ch(n+2)/2

+ Cε1/(2(n+2))
+ Cε1/(n+2)

≤ Nωn+1 Rn+1
− ch(n+2)/2

+ Cε1/(2(n+2)).

Thus h(n+2)/2
≤ Cε1/(2(n+2)) and (3-29) follows.

Step 3: Let C1 be as in (3-29). By decreasing δ, if needed, we may assume

0 < R − C1ε
1/(n+2)2

< R − ε1/(n+2)
= r0.
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Then by (3-28) and (3-29) we have that the balls Bρ(x1), . . . , Bρ(xN ), with ρ = R − C1ε
1/(n+2)2

, are
disjoint and

N⋃
i=1

Bρ(xi ) ⊂ Er0 + Bρ ⊂ Er0−ρ ⊂ E. (3-32)

This, ε ≤ 1, N ≤ N0 and (3-31) imply∣∣∣∣E \

N⋃
i=1

Bρ(xi )

∣∣∣∣ ≤ Cε1/(n+2)2
. (3-33)

Set ε1 = ε1/(n+2)3
. We prove

E ⊂

N⋃
i=1

Bη(xi ) (3-34)

for η = R + C2ε1 with some positive C2 = C2(n, C0). By decreasing δ, if necessary, we deduce from
(3-33) that

|Bε1 | >

∣∣∣∣E \

N⋃
i=1

Bρ(xi )

∣∣∣∣.
Thus, if x ∈ Eε1 , then Bε1(x) ∩

⋃N
i=1 Bρ(xi ) must be nonempty. This implies

Eε1 ⊂

N⋃
i=1

Bρ+ε1(xi ). (3-35)

Assume that for x ∈ ∂E,
dx := dist(x, Er0 + Br0) > 0.

Then by (3-23)
Hn(∂E ∩ B(x, dx)) ≤ Cε1/(n+2).

Let δn ∈ R+ be as in Lemma 3.2, and set rx = min{dx , δn/λ}. Again, by possibly decreasing δ so that
δ ≤ δn , Lemma 3.2 yields

δnrn
x ≤ Hn(∂E ∩ Brx (x)).

By combining the two previous estimates we have

min
{

dx ,
δn

λ

}
≤ Cε1/(n(n+2)).

Since δn/λ ≥ δn/C , by decreasing δ, if necessary, the previous estimate implies rx = dx and further yields

dx ≤ Cε1/(n(n+2))
≤ Cε1/(n+2)2

. (3-36)

On the other hand, by (3-28),

Er0 + Br0 ⊂ Er0 + BR ⊂

N⋃
i=1

BR+ε0(xi ), (3-37)
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where ε0 = ε1/(2(n+2))
≤ ε1/(n+2)2

. Thus (3-36) and (3-37) imply

∂E ⊂

N⋃
i=1

Bη̃(xi )

with η̃ = R + Cε1/(n+2)2
. By combining this observation with (3-35) we obtain (3-34).

Finally, by decreasing δ one more time, if necessary, (3-30), (3-32) and (3-34) yield

N⋃
i=1

Bρ−
(xi ) ⊂ E ⊂

N⋃
i=1

Bρ+
(xi ),

where ρ− = R − Cε1/(n+2)3
, ρ+ = R + Cε1/(n+2)3

, the balls Bρ−
(x1), . . . , Bρ−

(xN ) are mutually disjoint,
for N we have

|P(E) − N (n + 1)ωn+1 Rn
| ≤ Cε1/(n+2)3

and C = C(C0, n) ∈ R+. The claim of Theorem 1.2 then follows by Remark 3.1. □

4. Asymptotic behavior of the volume preserving mean curvature flow

In this section we first define the flat flow and recall some of its basic properties. We do this in the general
dimensional case Rn+1 and restrict ourselves to the case n ≤ 2 only in the proof of Theorem 1.1. We
begin by defining the flat flow of (1-1).

Assume that E0 ⊂ Rn+1 is a bounded set of finite perimeter with the volume of the unit ball |E0|=ωn+1.
For a given h ∈ R+ we construct a sequence of sets (Eh

k )∞k=1 by an iterative minimizing procedure called
minimizing movements, where initially Eh

0 = E0 and Eh
k+1 is a minimizer of the problem

Fh(E, Ek) = P(E) +
1
h

∫
E

d̄Ek dx +
1

√
h

∣∣|E | −ωn+1
∣∣. (4-1)

Recall that d̄Ek is the signed distance function from Ek . We then define the approximative flat flow
(Eh

t )t≥0 by
Eh

t = Eh
k , for (k − 1)h ≤ t < kh. (4-2)

By [Mugnai et al. 2016] we know that there is a subsequence of the approximative flat flow which
converges:

(Ehl
t )t≥0 → (Et)t≥0,

where for every t > 0 the set Et is a set of finite perimeter with |Et | = ωn+1. Any such limit is called
a flat flow of (1-1). It follows from [Mugnai et al. 2016] that when n ≤ 6 and if the perimeters of Eh

t

converge, i.e., limh→0 P(Eh
t ) = P(Et) for every t > 0, then the flat flow is a weak solution of the volume

preserving mean curvature flow. It is not known if the flat flow coincides with the classical solution
of (1-1) when the latter is well defined and smooth, but the result in [Chambolle and Novaga 2008] seems
to suggest this (see also [Chambolle et al. 2015]).
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Preliminary results. Let us take a more rigorous approach to the concepts heuristically introduced above.
We base this mainly on [Mugnai et al. 2016], with the only difference being that the volume constraint
has a different value. Obviously, this does not affect the arguments.

First, we take a closer look at the functional Fh given by (4-1). If E, F ⊂ Rn+1 are bounded sets of
finite perimeter, then it is easy to see that modifications of E in a set of measure zero do not affect the
value Fh(E, F), whereas such modifications of F may lead to drastic changes of the value of Fh(E, F).
To eliminate this issue, we use a convention that a topological boundary of a set of finite perimeter is
always the support of the corresponding Gauss–Green measure. Thus, we consider Fh as a functional

Xn+1 × {A ∈ Xn+1 : A ̸= ∅} → R,

where
Xn+1 = {E ⊂ Rn+1

: E is a bounded set of finite perimeter with ∂E = spt µE }.

We remark that if E0 is essentially open or closed and E0 ∈ Xn+1, then we may assume Xn+1 to be open
or closed, respectively.

For F ∈ Xn+1 nonempty, there is always a minimizer E of the functional Fh( · , F) in the class Xn+1

satisfying the discrete dissipation inequality

P(E) +
1
h

∫
E1F

d∂F dx +
1

√
h

∣∣|E | −ωn+1
∣∣ ≤ P(F) +

1
√

h

∣∣|F | −ωn+1
∣∣; (4-3)

see [Mugnai et al. 2016, Lemma 3.1]. Moreover, there is a dimensional constant Cn such that

sup
E1F

d∂F ≤ Cn
√

h; (4-4)

see [Mugnai et al. 2016, Proposition 3.2]. The minimizer E is always a (3, r0)-minimizer in any open
neighborhood of E with suitable 3, r0 ∈ R+ satisfying 3r0 ≤ 1. Thus, by the standard regularity theory
[Maggi 2012, Theorem 26.5 and Theorem 28.1] ∂∗E is relatively open in ∂E and C1,α regular with any
0 < α < 1

2 and the Hausdorff dimension of the singular part ∂E \∂∗E is at most n −7. These imply that E
can always be chosen as an open set. On the other hand, if E is nonempty, it has a Lipschitz-continuous
distributional mean curvature HE satisfying the Euler–Lagrange equation

d̄F

h
= −HE + λE, (4-5)

where the Lagrange multiplier can be written in the case |E | ̸= ωn+1 as

λE =
1

√
h

sgn(ωn+1 − |E |), (4-6)

see [Mugnai et al. 2016, Lemma 3.7]. Thus, using standard elliptic estimates one can show that ∂∗E is in
fact C2,α regular and (4-5) holds in the classical sense on ∂∗E. In particular, E is C2,α regular when n ≤ 6.
Moreover, if x ∈ ∂E satisfies the exterior or interior ball condition with any r , then it must belong to the
reduced boundary of E. This is well known and follows essentially from [Delgadino and Maggi 2019,
Lemma 3].
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Now let us turn our attention back to flat flows. Let E0 ∈ Xn+1 be a set with volume ωn+1 and let
0 < h < (ωn+1/P(E0))

2. Then we find a minimizer Eh
1 ∈ Xn+1 for Fh( · , E0), and by (4-3) we have∣∣|Eh

1 |−ωn+1
∣∣ ≤

√
h P(E0) implying, via the condition h < (ωn/P(E0))

2, that Eh
1 is nonempty. Again we

find a minimizer Eh
2 ∈ Xn+1 for Fh( · , E1), and using (4-3) twice we obtain

∣∣|Eh
2 | − ωn+1

∣∣ ≤
√

h P(E0)

and thus Eh
2 is also nonempty. By continuing the procedure we find nonempty sets Eh

0 , Eh
1 , Eh

2 , . . .∈ Xn+1

as mentioned earlier, i.e., Eh
0 = E0 and Eh

k is a minimizer of Fh( · , Ek−1) for every k ∈ N. Thus we may
define an approximate flat flow (Eh

t )t≥0, with the initial set E0, defined by (4-2). Further, a flat flow as a
limit is defined as before. By iterating (4-3) we obtain

P(Eh
kh) +

1
h

k∑
j=1

∫
Eh

jh1Eh
( j−1)h

d∂Eh
( j−1)h

dx +
1

√
h

∣∣|Eh
kh| −ωn+1

∣∣ ≤ P(E0) for every k ∈ N. (4-7)

By the earlier discussion we may assume that Eh
t is an open set, for every t ≥ h, and ∂Eh

t is C2 regular up
to the singular part ∂Eh

t \∂∗Eh
t with Hausdorff dimension at most n −7. We use the shorthand notation λh

t

for the corresponding Lagrange multiplier.
Next we list some basic properties of the approximative flat flow.

Proposition 4.1. Let (Eh
t )t≥0 be an approximative flat flow starting from E0 ∈ Xn+1 with volume ωn+1

and P(E0) ≤ C0. There is a positive constant C = C(C0, n) such that the following hold for every
0 < h < (ωn/P(E0))

2:

(i) For every s, t with h ≤ s ≤ t − h we have |Eh
s 1Eh

t | ≤ C
√

t − s.

(ii) Suppose that for a given T1 ≥ 0 we have |Eh
T1

| = ωn+1. Then P(Eh
T1

) ≥ P(Eh
t ) for every t ≥ T1 and∫ T2

T1+h

∫
∂∗Eh

t

(HEh
t
− λh

t )
2 dHn dt ≤ C(P(Eh

T1
) − P(Eh

T2
))

for every T2 ≥ T1 + h. Moreover, for every h ≤ T1 < T2,∫ T2

T1

∫
∂∗Eh

t

(HEh
t
− λh

t )
2 dHn dt ≤ C P(E0).

(iii) For every T > 0 there is R = R(E0, T ) such that Eh
t ⊂ BR for all 0 ≤ t ≤ T.

(iv) If (hk)k is a sequence of positive numbers converging to zero, then up to a subsequence there exist
approximative flat flows ((Ehk

t )t≥0)k which converge to a flat flow (Et)t≥0 in the L1 sense in space and
pointwise in time, where Et ∈ Xn+1, i.e., for every t ≥ 0,

lim
hk→0

|Ehk
t 1Et | = 0.

The limit flow also satisfies |Es1Et | ≤ C
√

t − s for every 0 < s < t and |Et | = ωn+1 for every t ≥ 0.

(v) If E0 is either open or closed, then the sequence in (iv) converges to (Et)t≥0 in the L1 sense in space
and compactly uniformly in time, i.e., for a fixed T,

lim
hk→0

sup
t∈[0,T ]

|Ehk
t 1Et | = 0.

Moreover, |Es1Et | ≤ C
√

t − s for every 0 ≤ s < t .
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Proof. Claims (i)–(iv) are essentially proved in [Mugnai et al. 2016]; see the proofs of Proposition 3.5,
Lemma 3.6 and Theorem 2.2.

To prove (v) we first show that

|Eh
h 1E0| → 0 as h → 0,

which immediately implies via (iv) that |E01Et | ≤ C
√

t for every t ≥ 0 and hence the second claim of (v)
holds. Then the compactly uniform convergence in time is a rather direct consequence of this and (i).

To this aim, let (hk)k be an arbitrary sequence of positive numbers converging to zero. By (iii) and by
the standard compactness property of sets of finite perimeter, there is a bounded set of finite perimeter E∞

such that, up to extracting a subsequence, Ehk
hk

→ E∞ in the L1 sense. In particular, by (4-7) we have
|E∞| = ωn+1 = |E0|. Again, by using |Ehk

hk
1E∞| → 0 and (4-4) we have

|E∞ \ {y ∈ Rn
: d̄E0(y) ≤ j−1

}| = 0 and |{y ∈ Rn
: d̄E0(y) ≤ − j−1

} \ E∞| = 0

for every j ∈ N. Thus, by letting j → ∞ we obtain |E∞ \ E0| = 0 and |int(E0) \ E∞| = 0. Since E0 is
open or closed, this means either |E∞ \ E0| = 0 or |E0 \ E∞| = 0. But now |E∞| = |E0|, so the previous
yields |E∞1E0| = 0. Thus |Ehk

hk
\ E0| → 0 up to a subsequence and since (hk)k was arbitrarily chosen

we have |Eh
h 1E0| → 0. □

We note that claim (v) does not hold for every bounded set of finite perimeter E0. As an example one
may construct a wild set of finite perimeter E0 such that |Eh

h 1E0| ≥ c0 > 0 for all h > 0.
By [Mugnai et al. 2016, Corollary 3.10], for a fixed time T ≥ h, we have that the integral

∫ T
h |λh

t |
2 dt

is uniformly bounded in h and hence, via (4-6), that |{t ∈ (h, T ) : |Eh
t | ̸= ωn+1}| ≤ Ch, where C depends

also on T. We may improve this by using Lemma 2.4.

Proposition 4.2. Let C0 > 0 and E0 ∈ Xn+1 be a set of finite perimeter with volume ωn+1 and P(E0)≤ C0.
There are positive constants C = C(C0, n) and h0 = h0(C0, n) such that if h ≤ h0 and (Eh

t )t≥0 is an
approximative flat flow starting from E0, then for every h ≤ T1 ≤ T2∫ T2

T1

|λh
t |

2 dt ≤ C(T2 − T1 + 1) and |{t ∈ (T1, T2) : |Eh
t | ̸= ωn+1}| ≤ Ch(T2 − T1 + 1).

Proof. By (4-7) we may choose h0 = h0(C0, n) such that |Eh
t | ≥

1
2ωn+1 whenever h ≤ h0. We may also

assume C0 > 2ωn+1 so that |Eh
t | ≥ 1/C0 for h ≤ h0. Thus, by Lemma 2.4 and P(Eh

t ) ≤ C0, we find a
positive C = C(C0, n) such that for every t ≥ h and h ≤ h0

|λh
t |

2
≤ C

(
1 +

∫
∂∗Eh

t

(HEh
t
− λh

t )
2 dHn

)
,

and therefore ∫ T2

T1

|λh
t |

2 dt ≤ C(T2 − T1) + C
∫ T2

T1

∫
∂∗Eh

t

(HEh
t
− λh

t )
2 dHn dt.

By Proposition 4.1 (ii) we obtain the first inequality. The first inequality implies, via (4-6), the second
inequality with the same constant C . □
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We need also the following comparison result for the proof.

Lemma 4.3. Let 1 ≤ C0 < ∞. Assume E0 ∈ Xn+1 is a set of finite perimeter with volume ωn+1 and
P(E0) ≤ C0, and let F =

⋃N
i=1 Br (xi ) with |xi −x j | ≥ 2r and 1/C0 ≤ r ≤ C0. There is a positive constant

ε0 = ε0(C0, n) such that if (Eh
t )t≥0 is an approximative flat flow starting from E0 and

sup
x∈Eh

t0
1F

d∂F (x) ≤ ε with ε ≤ ε0

for t0 ≥ 0, then
sup

x∈Eh
t 1F

d∂F (x) ≤ Cε1/9 for all t0 < t < t0 +
√

ε

provided that h ≤ min{
√

ε, h0}, where h0 = h0(C0, n) is as in Proposition 4.2.

Proof. Our standing assumptions are

h ≤ min{
√

ε, h0} and ε ≤ min{1/(2C0), 1}.

As usual, C denotes a positive constant which may change from line to line but depends only on the
parameters C0 and n.

Without loss of generality we may assume t0 = 0. Fix an arbitrary xi ∈ {x1, . . . , xN }. Up to translating
the coordinates we may assume that xi = 0. We set for every k = 0, 1, 2, . . .

ρk = inf{|x | : x ∈ Rn+1
\ Eh

kh}

and
rk = min{r, ρ0, . . . , ρk}.

We claim that
r2

k+1 − r2
k ≥ −C1(1 + |λh

(k+1)h|)h, (4-8)

with some positive constant C1 = C1(C0, n). First, if rk+1 = rk , the claim (4-8) is trivially true. Thus we
may assume rk+1 < rk which implies ρk+1 = rk+1 < rk ≤ ρk . Then ρk > 0 which in turn means

ρk = min
∂Eh

kh

|x |.

Since Eh
(k+1)h is bounded and open, there is a point x ∈ Rn+1

\ Eh
(k+1)h with ρk+1 = |x |. Let x ′ be a closest

point to x on ∂Eh
kh . Then

rk+1 + |d̄Eh
kh

(x)| = |x | + |d̄Eh
kh

(x)| ≥ |x ′
| ≥ ρk ≥ rk .

The condition |x | < ρk means x exists in Eh
kh , so the previous estimate yields

rk+1 − rk ≥ d̄Eh
kh

(x). (4-9)

Again, x ∈ Eh
kh \ Eh

(k+1)h so by Equation (4-4), |d̄Eh
kh

(x)| ≤ Cn
√

h and hence

rk+1 − rk ≥ −Cn
√

h. (4-10)
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We split the argument into two cases. First, if rk+1 < Cn
√

h, then by (4-10) we have rk < 2Cn
√

h.
Therefore, using (4-10) we obtain

r2
k+1 − r2

k ≥ −Cn(rk+1 + rk)
√

h ≥ −3C2
n h. (4-11)

If rk+1 ≥ Cn
√

h, then by (4-10) we have rk ≤ 2rk+1. Since rk+1 > 0, we have x ∈ ∂Eh
(k+1)h and Eh

(k+1)h
satisfies the interior ball condition of radius rk+1 at x . Thus by the discussion in Section 2, x belongs to
the reduced boundary of Eh

(k+1)h and therefore by the maximum principle HEh
(k+1)h

(x) ≤ n/rk+1. Again,
by the previous estimate, (4-9), the Euler–Lagrange equation (4-5) and rk+1 ≤ C0 we obtain

rk+1 − rk

h
≥

d̄Eh
kh

(x)

h
≥ −

n
rk+1

− |λh
(k+1)h|

≥ −
1

rk+1
(n + C0|λ

h
(k+1)h|).

Therefore
r2

k+1 − r2
k

h
≥ −

(
1 +

rk

rk+1

)
(n + C0|λ

h
(k+1)h|) ≥ −3(n + C0|λ

h
(k+1)h|). (4-12)

Thus (4-11) and (4-12) yield the claim (4-8) in the case rk+1 < rk .
We iterate (4-8) up to K ∈ N, which is chosen so that K h ∈ (

√
ε, 2

√
ε) (recall h <

√
ε), and use

Proposition 4.2 to obtain

r2
K − r2

0 ≥ −C1

K−1∑
k=0

(1 + |λh
(k+1)h|)h

= −C1K h − C1

∫ (K+1)h

h
|λh

t | dt

≥ −2C1
√

ε − C1

∫ 3
√

ε

h
|λh

t | dt

≥ −2C1
√

ε −

∫ 3
√

ε

h
ε−1/4

+ ε1/4
|λh

t |
2 dt

≥ −Cε1/4
(

1 +

∫ 3
√

ε

h
|λh

t |
2 dt

)
≥ −Cε1/4. (4-13)

By the assumption supx∈E01F d∂F (x) ≤ ε we have r − ε ≤ r0. Thus we divide r2
K − r2

0 by rK + r0 and
use r0 ≥ r − ε ≥

1
2r ≥ 1/(2C0) as well as (4-13) to find a positive constant C2 = C2(C0, n) such that

rK ≥ r − C2ε
1/4. This means that

inf
Rn+1\Eh

t

d̄Br (xi ) ≥ −C2ε
1/4 for all t <

√
ε,

and again due to the arbitrariness of xi ∈ {x1, . . . , xN }, that

inf
Rn+1\Eh

t

d̄F ≥ −C2ε
1/4 for all t <

√
ε.
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To conclude the proof, we show that there is a positive constant ε1 = ε1(C0, n) such that

sup
Eh

t

d̄F ≤ 2ε1/9 for all t <
√

ε (4-14)

provided that ε ≤ ε1. To this aim we choose an arbitrary x0 ∈ Rn+1
\ F with d̄F (x0) ≥ 2ε1/9. For every

k = 0, 1, 2, . . . , we set
ρk = inf

x∈Eh
kh

|x − x0|

and
rk = min{2ε1/9, ρ1, . . . , ρk}.

In particular, rk ≤ 2C1/9
0 . A slight modification of the procedure we used to obtain (4-13) yields

r2
K − r2

0 ≥ −Cε1/4,

where K is the same as described earlier. Again, the conditions supx∈E01F d∂F (x) ≤ ε and ε ≤ 1 imply
r0 ≥ 2ε1/9

− ε ≥ ε1/9. Thus

rK − r0 ≥ −C
ε1/4

r0
≥ −Cε5/36

= −Cε1/36ε1/9,

and thus
rK ≥ (1 − Cε1/36)ε1/9 > 1

2ε1/9,

when ε is small enough. Since x0, with dF (x0) ≥ 2ε1/9, was arbitrarily chosen we deduce that

Eh
kh ⊂ {x ∈ Rn+1

: dF (x) ≤ 2ε1/9
} for all k = 0, . . . , K .

The claim (4-14) then follows from the choice of K . □

Proof of Theorem 1.1. The proof of Theorem 1.1 is based on Theorem 1.2. We first use it together with
the dissipation inequality in Proposition 4.1 (ii) to deduce that there exists a sequence of times t j → ∞

such that the sets Et j are close to a disjoint union of balls. Since the perimeter of the approximative
flat flow is essentially decreasing, the number of balls is also monotone. In particular, we deduce that
after some time, the sets Et j are close to a fixed number, say N, of balls. We use the second statement of
Theorem 1.2 to deduce that the perimeters of Et j converge to the perimeter of N balls with volume ωn+1

and thus the right-hand side of the dissipation inequality converges to zero. This allows us to improve
our estimate and use Theorem 1.2 again to deduce that the flat flow Et is close to a disjoint union of N
balls for all large t except a set of times with small measure. The statement then finally follows from
Lemma 4.3.

Proof. Assume that the initial set E0 ∈ Xn+1 has the volume of the unit ball |E0| = ωn+1, fix a positive C0

with C0 ≥ max{1, P(E0)} and assume h < (C0/ωn+1)
2. Let (Et)t≥0 be a flat flow starting from E0 and

let (Ehl
t )t≥0 be an approximative flat flow which by Proposition 4.1 converges to (Et)t≥0 locally uniformly

in L1. We simplify the notation and denote the converging subsequence again by h. Since we are now in
the dimensions 2 and 3 (n = 1, 2), the sets Eh

t are C2 regular.
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Step 1: Let us denote
6h := {t ∈ (0, ∞) : |Eh

t | ̸= ωn+1}. (4-15)

By (4-7) and Proposition 4.2 we find a constant h0 = h0(C0, n) < 1 such that |Eh
t | ≥ 1/C0 for every t ≥ 0

and
|(T1, T2) ∩ 6h| ≤

1
3(T2 − T1)

for every T1 ≥ 1 and T2 ≥ T1 +1 provided that h ≤ h0. On the other hand, by Proposition 4.1 (ii) we have,
for every h ≤ h0 and l ∈ N, that

Il,h := /
∫ (l+1)2

l2
∥HEh

t
− λh

t ∥
2
L2(∂Eh

t )
dt ≤

C
l

.

By Chebysev’s inequality,

|{t ∈ (l2, (l + 1)2) : ∥HEh
t
− λh

t ∥
2
L2(∂Eh

t )
≥ 3Il,h}| ≤

1
3((l + 1)2

− l2).

Therefore, by choosing T1 = l2 and T2 = (l + 1)2 we deduce that the set

{t ∈ (T1, T2) : |Eh
t | = ωn+1, ∥HEh

t
− λh

t ∥
2
L2(∂Eh

t )
< 3Il,h}

is nonempty. Thus if h ≤ h0, then there is a sequence of times (T h
l )l , with l2

≤ T h
l ≤ (l + 1)2, such that

the corresponding sets satisfy |Eh
T h

l
| = ωn+1 and

∥HEh
T h
l

− λh
T h

l
∥L2(∂Eh

T h
l

) ≤ Cl−1/2. (4-16)

By slight abuse of the notation we set Eh
l := Eh

T h
l

and λl,h := λh
T h

l
for h ≤ h0. Since the sets Eh

l are
C2 regular and bounded and thanks to P(E0) ≤ C0, |Eh

l | ≥ 1/C0, (4-16) and Theorem 1.2, we find
l0 = l0(C0, n) such that for every l ≥ l0 we have 1/C ≤ λl,h ≤ C ,

|P(Eh
l ) − N h

l (n + 1)ωn+1(rh
l )n

| ≤ Cl−q/2 and sup
Eh

l 1Fh
l

d∂Fh
l

≤ Cl−q/2, (4-17)

where rh
l = n/λl,h and Fh

l is a union of N h
l pairwise disjoint (open) balls of radius rl,h . Since we

have 1/C ≤ λl,h ≤ C , we also have 1/C ≤ rl,h ≤ C , which together with the perimeter estimate
P(Eh

l ) ≤ P(E0) ≤ C0 implies that there is N0 = N0(C0, n) ∈ N such that N h
l ≤ N0. Further, the distance

estimate in (4-17), together with 1/C ≤ rl,h ≤ C and N h
l ≤ N0, yields

|Eh
l 1Fh

l | ≤ Cl−q/2.

Since |Eh
l | = ωn+1, we have that the estimate above implies |(rl,h)

n+1 N h
l − 1| ≤ Cl−q/2 and further

that |(rl,h)
n(N h

l )n/(n+1)
− 1| ≤ Cl−q/2. This inequality, the perimeter estimate in (4-17) and N h

l ≤ N0

imply
|P(Eh

l ) − (n + 1)ωn+1(N h
l )1/(n+1)

| ≤ Cl−q/2. (4-18)

Since by Proposition 4.1 (ii) (P(Eh
l ))l≥l0 is nonincreasing, we have that (4-18) implies there is a positive

integer l1 = l1(C0, n) ≥ l0 for which (N h
l )l≥l1 is nonincreasing for all h ≤ h0.
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Step 2: For l ≥ l1 and h ≤ h0 the sets Eh
l are thus close to N h

l balls. We claim that there are N ∈ N and
l2 ≥ l1 such that for every integer L ≥ l2,

N h
l = N for all l2 ≤ l ≤ L , (4-19)

provided that h is small enough.
By using a standard diagonal argument and possibly passing to a subsequence we find a sequence

of positive integers (Nl)l≥l1 , with Nl ≤ N0, such that N h
l → Nl for every l ≥ l1. Since (N h

l )l≥l1 is
nonincreasing, we have that (Nl)l≥l1 is nonincreasing too and hence there are N , l2 ∈ N, l2 ≥ l1, such
that Nl = N for every l ≥ l2. Hence we have (4-19) by the convergence of N h

l to Nl .
We obtain from (4-18) and (4-19) that

|P(Eh
l ) − (n + 1)ωn+1(N )1/(n+1)

| ≤ Cl−q/2 (4-20)

for l2 ≤ l ≤ L , provided that h is small enough. Therefore, it follows from Proposition 4.1 (ii) that∫ T h
L

T h
l +h

∥HEh
t
− λh

t ∥
2
L2(∂Eh

t )
dt ≤ Cl−q/2.

Since h ≤ 1 and L > 1 was arbitrarily chosen, the above yields

sup
T ≥(l+2)2

[
lim sup

h→0

∫ T

(l+2)2
∥HEh

t
− λh

t ∥
2
L2(∂Eh

t )
dt

]
≤ Cl−q/2 (4-21)

for every l ≥ l2.

Step 3: Let us fix a small δ, the choice of which will be clear later. Then it follows from (4-21), (4-20)
and the fact that the map t 7→ P(Eh

t ) is nonincreasing in 6h that there is Tδ such that for every T ≥ Tδ +1
there is hδ,T such that ∫ T

Tδ

∥HEh
t
− λh

t ∥
2
L2(∂Eh

t )
dt ≤ δ (4-22)

for all h ≤ hδ,T and

|P(Eh
t ) − (n + 1)ωn+1 N 1/(n+1)

| ≤ δ (4-23)

for all t ∈ (Tδ, T ) \6h . On the other hand, by Proposition 4.2 and by decreasing hδ,T if necessary, we
deduce that

|6h ∩ (Tδ, T )| ≤ δ for all h ≤ hδ,T . (4-24)

Let ε > 0 and let us fix t ≥ Tδ + 1. (The time Tδ + 1 will be Tε in the claim.) We claim that, when δ is
chosen small enough, we have

sup
Eh

t 1Fh
t

d∂Fh
t

≤ ε (4-25)

for h ≤ hδ,T , where Fh
t is a union of N pairwise disjoint (open) balls of radius r = N−1/(n+1) with

volume ωn+1.
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Fix T ≥ t + 1. Then it follows from (4-22) that∫ t

t−δ1/4
∥HEh

τ
− λh

τ∥
2
L2(∂Eh

τ )
dτ ≤ δ,

and from (4-23) and (4-24) that

|P(Eh
τ ) − (n + 1)ωn+1 N 1/(n+1)

| ≤ δ for all τ ∈ (t − δ1/4, t) \ 6h

and |6h ∩ (t − δ1/4, t)| ≤ δ. Using these estimates we deduce that there is t0 ∈ (t − δ1/4, t) such that
|Eh

t0 | = ωn+1,
|P(Eh

t0) − (n + 1)ωn+1 N 1/(n+1)
| ≤ δ (4-26)

and
∥HEh

t0
− λh

t0∥L2(∂Eh
t0

) ≤ δ1/4.

Theorem 1.2 implies that
sup

Eh
t0

1Fh
t0

d∂Fh
t0

≤ Cδq/4

for all h ≤hδ,T , where Fh
t0 is a union of Nt0,h pairwise disjoint (open) balls of radius rt0,h with volume ωn+1,

and
|P(Eh

t0) − Nt0,h(n + 1)ωn+1rn
t0,h| ≤ Cδq/4.

Since 1/C ≤ rt0,h ≤ C, as in Step 1 we deduce from the previous two estimates that |Eh
t01Fh

t0 | ≤ Cδq/4.
Then by (4-26) and |Fh

t0 | = ωn+1 we further conclude that Nt0,h = N, i.e., Fh
t0 is a union of N pairwise

disjoint (open) balls with volume ωn+1 and radius r = N−1/(n+1).
By Lemma 4.3,

sup
Eh

τ 1Fh
t0

d∂Fh
t0

≤ Cδq/36 for all t0 < τ < t0 + δq/8

and h ≤ hδ,T . In particular, since δq/8 > δ1/4 the above inequality holds for t . This proves (4-25) by choos-
ing Fh

t = Fh
t0 and δ small enough. The claim follows by letting h → 0. Note that by Proposition 4.1 (iii)

there is R > 0 such that Fh
t ⊂ BR for all h ≤ hδ,T . Therefore, by passing to another subsequence if

necessary, we have that Fh
t → Ft , where Ft is a union of N pairwise disjoint (open) balls with volume ωn+1,

and by (4-25),
sup

Et1Ft

d∂Ft ≤ ε. □
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