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A SIMPLE NUCLEAR C∗-ALGEBRA WITH AN INTERNAL ASYMMETRY

ILAN HIRSHBERG AND N. CHRISTOPHER PHILLIPS

We construct an example of a simple approximately homogeneous C∗-algebra such that its Elliott invariant
admits an automorphism which is not induced by an automorphism of the algebra.

Classification theory for simple nuclear C∗-algebras reached a milestone recently. The results of
[Elliott et al. 2015; Tikuisis et al. 2017], building on decades of work by many authors, show that simple
separable unital C∗-algebras with finite nuclear dimension satisfying the universal coefficient theorem
are classified via the Elliott invariant, Ell( · ), which consists of the ordered K0-group along with the
class of the identity, the K1-group, the trace simplex, and the pairing between the trace simplex and the
K0-group. Earlier counterexamples due to Toms [2008] and Rørdam [2003], related to ideas of Villadsen
[1998], show that one cannot expect to be able to extend this classification theorem beyond the case
of finite nuclear dimension, at least not without either extending the invariant or restricting to another
class of C∗-algebras. An important facet of the classification theorems is a form of rigidity. Starting
with two C∗-algebras A and B and an isomorphism 8 : Ell(A)→ Ell(B), one not only shows that A
and B are isomorphic, but rather that there exists an isomorphism from A to B which induces the given
isomorphism 8 on the level of the Elliott invariant.

The goal of this paper is to illustrate how this existence property may fail in the infinite nuclear
dimension setting, even when restricting to a class consisting of a single C∗-algebra. Namely, we
construct an example of a simple unital nuclear separable AH algebra C, along with an automorphism
of Ell(C), which is not induced by any automorphism of C. This can be viewed as a companion of
sorts to [Toms 2008, Theorem 1.2], where it was shown that when such automorphisms exist, they
need not be unique in the sense described. The mechanism of the example is that if there were such an
automorphism ϕ, there would be projections p, q ∈ C such that ϕ(p)= q but such that the corners pCp
and qCq have different radii of comparison [Toms 2006] (the definition is recalled at the beginning of
Section 1). This further shows that simple unital AH algebras can be quite inhomogeneous. In particular,
extending the Elliott invariant by adding something as simple as the radius of comparison will not help
for the classification of AH algebras which are not Jiang–Su stable.
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We now give an overview of our construction. We start with the counterexample from [Toms 2008,
Theorem 1.1]. We consider two direct systems, described diagrammatically as follows:

C(X0) //
////
//
C(X1)⊗Mr(1) //

////
//
C(X2)⊗Mr(2) //

////
//
· · ·

C([0, 1])
//
////// C([0, 1])⊗Mr(1)

//
////// C([0, 1])⊗Mr(2)

//
////// · · ·

(0-1)

The ordinary arrows indicate a large (and rapidly increasing) number of embeddings which are carefully
chosen, and the dotted arrows indicate a small number of point evaluation maps, thrown in so as to ensure
that the resulting direct limit is simple. The spaces in the upper diagram are contractible CW complexes
whose dimension increases rapidly compared to the sizes of the matrix algebras. (Toms uses cubes; in our
construction we found it easier to use cones over products of spheres, but the underlying idea is similar.)
The direct system is constructed so as to have positive radius of comparison. We use [Thomsen 1994] to
choose the lower diagram so as to mimic the upper diagram, and produce the same Elliott invariant. As
the resulting algebra on the bottom is AI, it has strict comparison, and therefore is not isomorphic to the
one on the top. (In [Toms 2008] it isn’t important for the two diagrams to match up nicely in terms of the
ranks of the matrices involved. However, we will show that it can be done, as it is important for us.)

Our construction involves moving the point evaluations across, so as to merge the two systems:

C(X0)

((

////
//
C(X1)⊗Mr(1)

))

////
//
C(X2)⊗Mr(2)

&&

////
//
· · ·

C([0, 1])

66

////// C([0, 1])⊗Mr(1)

55

////// C([0, 1])⊗Mr(2)

88

////// · · ·

(0-2)

With care, one can arrange for the flip between the two levels of the diagram to make sense as an
automorphism of the Elliott invariant. The resulting C∗-algebra has positive radius of comparison and
behaves roughly as badly as Toms’ example. Nevertheless, we can distinguish a part of it which roughly
corresponds to the rapid dimension growth diagram on the top from a part which roughly corresponds to
the AI part on the bottom. Namely, if at the first level C(X0)⊕C([0, 1]) we denote by q the function
which is 1 on X0 and 0 on [0, 1], and we define q⊥ = 1− q, then the K0-classes of q and q⊥ will be
switched by the automorphism of the Elliott invariant we construct. However, we can tell apart the corners
qCq and q⊥Cq⊥ by considering their radii of comparison.

Section 1 develops the choices needed to get different radii of comparison in different corners of the
algebra we construct. Section 2 contains the work needed to assemble the ingredients of the construction
into a simple C∗-algebra whose Elliott invariant admits an appropriate automorphism. The main theorem
is in Section 3.

1. Upper and lower bounds on the radius of comparison

We recall the required standard definitions and notation related to the Cuntz semigroup. See Section 2
of [Rørdam 1992] for details. For a unital C∗-algebra A, we denote its tracial state space by T(A).
We take M∞(A) =

⋃
∞

n=1 Mn(A), using the usual embeddings Mn(A) ↪→ Mn+1(A). For τ ∈ T(A), we
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define dτ : M∞(A)+→ [0,∞) by dτ (a)= limn→∞ τ(a1/n). If a, b ∈ M∞(A)+, then a ≾ b (a is Cuntz
subequivalent to b) if there is a sequence (vn)

∞

n=1 in M∞(A) such that limn→∞ vnbv∗n = a.
Following [Toms 2006, Definition 6.1], for ρ ∈ [0,∞), we say that A has ρ-comparison if whenever

a, b ∈ M∞(A)+ satisfy dτ (a)+ ρ < dτ (b) for all τ ∈ T(A), then a ≾ b. The radius of comparison of A,
denoted by rc(A), is

rc(A)= inf({ρ ∈ [0,∞) | A has ρ-comparison}).

We take rc(A)=∞ if there is no ρ such that A has ρ-comparison. Since AH algebras are nuclear, all
quasitraces on them are traces by [Haagerup 2014, Theorem 5.11]. Thus, we ignore quasitraces. Also, by
[Phillips 2014, Proposition 6.12], the radius of comparison remains unchanged if we replace M∞(A) by
K ⊗ A throughout. Thus, we may work only in M∞(A).

Our construction uses a specific setup, with a number of parameters of various kinds which must be
chosen to satisfy specific conditions. Construction 1.1 lists for reference many of the objects used in it,
and some of the conditions they must satisfy. It abstracts the diagram (0-2). Construction 1.6 specifies the
choices of spaces and maps needed for the results on Cuntz comparison, and Construction 2.17, together
with the additional maps in parts (11), (12), and (13) of Construction 1.1, is used to arrange the existence
of a suitable automorphism of the tracial state space of the algebra we construct. Because of the necessity
of passing to a subsystem at one stage in this process, we must start the proof of the main theorem with a
version of just the top row in the diagram (0-1); this is Construction 3.3. Many of the lemmas use only a
few of the objects and their properties, so that the reader can refer back to just the relevant parts of the
constructions. In particular, many details are used only in this section or only in Section 2. Some of the
details are used for just one lemma each.

Construction 1.1. For much of this paper, we will consider algebras constructed in the following way
and using the following notation:

(1) (d(n))n=0,1,2,... and (k(n))n=0,1,2,... are sequences in Z≥0, with d(0) = 1 and k(0) = 0. Moreover,
for n ∈ Z≥0,

l(n)= d(n)+ k(n), r(n)=
n∏

j=0

l( j), and s(n)=
n∏

j=0

d( j).

Further define t (n) inductively as follows. Set t (0)= 0, and

t (n+ 1)= d(n+ 1)t (n)+ k(n+ 1)[r(n)− t (n)].

(See Lemma 1.14 for the significance of t (n).)

(2) We will assume that k(n) < d(n) for all n ∈ Z≥0.

(3) We define

κ = inf
n∈Z>0

s(n)
r(n)

.

For estimates involving the radius of comparison, we will assume κ > 1
2 .
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(4) The numbers ω,ω′ ∈ (0,∞] are defined by

ω =
k(1)

k(1)+ d(1)
and ω′ =

∞∑
n=2

k(n)
k(n)+ d(n)

.

We will require ω′ < ω < 1
2 . In particular,

∞∑
n=1

k(n)
k(n)+ d(n)

<∞.

(5) We will also eventually require that κ as in (3) and ω as in (4) are related by 2κ − 1> 2ω. This can
easily be arranged with a suitable choice of d(1) and k(1).

(6) (Xn)n=0,1,2,... and (Yn)n=0,1,2,... are sequences of compact metric spaces. (They will be further
specified in Construction 1.6.)

(7) For n ∈ Z≥0, the algebra Cn is

Cn = Mr(n)⊗ (C(Xn)⊕C(Yn)).

We further make the identifications

C(Xn+1, Mr(n+1))= Ml(n+1)⊗C(Xn+1, Mr(n)),

C(Yn+1, Mr(n+1))= Ml(n+1)⊗C(Yn+1, Mr(n)),

C(Xn)⊕C(Yn)= C(Xn ⨿ Yn),

C(Xn, Mr(n))⊕C(Yn, Mr(n))= C(Xn ⨿ Yn,Mr(n)).

(8) For n ∈ Z>0, we are given a unital homomorphism

γn : C(Xn)⊕C(Yn)→ Ml(n+1)(C(Xn+1)⊕C(Yn+1)),

and the homomorphism
0n+1, n : Cn→ Cn+1

is given by 0n+1, n = idMr(n) ⊗ γn . Moreover, for m, n ∈ Z≥0 with m ≤ n,

0n,m = 0n,n−1 ◦0n−1, n−2 ◦ · · · ◦0m+1,m : Cm→ Cn.

In particular, 0n,n = idCn .

(9) We require that the maps

γn : C(Xn ⨿ Yn)→ Ml(n+1)(C(Xn+1⨿ Yn+1))

in (8) be diagonal; that is, that there exist continuous functions

Sn,1, Sn,2, . . . , Sn, l(n+1) : Xn+1⨿ Yn+1→ Xn ⨿ Yn

such that for all f ∈ C(Xn ⨿ Yn), we have

γn( f )= diag( f ◦ Sn,1, f ◦ Sn,2, . . . , f ◦ Sn, l(n+1)).

(These maps will be specified further in Construction 1.6.)
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(10) We set C = lim
−−→n Cn , taken with respect to the maps 0n,m . The maps associated with the direct limit

will be called 0∞,m : Cm→ C for m ∈ Z≥0.

As we need to work with two diagrams which are similar in most positions, as in diagrams (0-1)
and (0-2), we sometimes use additional objects and conditions in the construction, as follows:

(11) For n ∈ Z>0, we may be given an additional unital homomorphism

γ (0)n : C(Xn)⊕C(Yn)→ Ml(n+1)(C(Xn+1)⊕C(Yn+1)).

Then the maps 0(0)n+1, n : Cn → Cn+1, 0(0)n,m : Cm → Cn are defined analogously to (8), the algebra C (0)

is given as C (0)
= lim
−−→n Cn , taken with respect to the maps 0(0)n,m , and the maps 0(0)∞,m : Cm → C (0) are

defined analogously to (10).

(12) In (11), analogously to (9), we may require that there be

S(0)n,1, S(0)n,2, . . . , S(0)n, l(n+1) : Xn+1⨿ Yn+1→ Xn ⨿ Yn

such that for all f ∈ C(Xn ⨿ Yn) we have

γ (0)n ( f )= diag( f ◦ S(0)n,1, f ◦ S(0)n,2, . . . , f ◦ S(0)n, l(n+1)).

(These maps will be specified further in Construction 1.6.)

(13) Assuming diagonal maps as in (9), we may require that they agree in the coordinates 1,2, . . . ,d(n+1);
that is, for n ∈ Z>0 and k = 1, 2, . . . , d(n+ 1), we have S(0)n,k = Sn,k .

Lemma 1.2. In Construction 1.1(1), the sequence (s(n)/r(n))n=1,2,... is strictly decreasing.

Proof. The proof is straightforward. □

Lemma 1.3. In Construction 1.1(1), and assuming Construction 1.1(2), we have

0=
t (0)
r(0)

<
t (1)
r(1)

<
t (2)
r(2)

< · · ·<
1
2
.

Proof. We have t (0)= 0 by definition. We prove by induction on n ∈ Z>0 that

t (n− 1)
r(n− 1)

<
t (n)
r(n)

<
1
2
. (1-1)

This will finish the proof. For n = 1, we have

t (1)
r(1)
=

k(1)
k(1)+ d(1)

,

which is in
(
0, 1

2

)
by Construction 1.1(2). Now assume (1-1); we prove this relation with n+ 1 in place

of n. We have r(n)− t (n) > t (n), so

t (n+ 1)
r(n+ 1)

=
d(n+ 1)t (n)+ k(n+ 1)[r(n)− t (n)]

[d(n+ 1)+ k(n+ 1)]r(n)
>

d(n+ 1)t (n)+ k(n+ 1)t (n)
[d(n+ 1)+ k(n+ 1)]r(n)

=
t (n)
r(n)

. (1-2)
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Also, with

α =
d(n+ 1)

d(n+ 1)+ k(n+ 1)
and β =

t (n)
r(n)

,

starting with the first step in (1-2), and at the end using α > 1
2 (by Construction 1.1(2)) and β < 1

2 (by the
induction hypothesis), we have

t (n+ 1)
r(n+ 1)

= αβ + (1−α)(1−β)= 1
2 [1− (2α− 1)(1− 2β)]< 1

2 .

This completes the induction, and the proof. □

Lemma 1.4. With the notation of Constructions 1.1(1) and 1.1(4), and assuming the conditions in
Constructions 1.1(2) and 1.1(4), for all n ∈ Z>0 we have

ω ≤
t (n)
r(n)
≤ ω+ω′ < 2ω.

Proof. The third inequality is immediate from Construction 1.1(4).
By Lemma 1.3, the sequence (t (n)/r(n))n=1,2,... is strictly increasing. Also,

t (1)
r(1)
=

k(1)
k(1)+ d(1)

= ω. (1-3)

The first inequality in the statement now follows.
Next, we claim that

t (n)
r(n)
≤

n∑
j=1

k( j)
k( j)+ d( j)

for all n ∈ Z>0. The case n = 1 is (1-3). Assume this inequality is known for n. Then

t (n+ 1)
r(n+ 1)

=

(
d(n+ 1)

k(n+ 1)+ d(n+ 1)

)(
t (n)
r(n)

)
+

(
k(n+ 1)

k(n+ 1)+ d(n+ 1)

)(
r(n)− t (n)

r(n)

)
≤

t (n)
r(n)
+

k(n+ 1)
k(n+ 1)+ d(n+ 1)

≤

n+1∑
j=1

k( j)
k( j)+ d( j)

,

as desired.
The second inequality in the statement now follows. □

Notation 1.5. For a topological space X , we define

cone(X)= (X ×[0, 1])/(X ×{0}).

Then cone(X) is contractible, and cone( · ) is a covariant functor: if T : X→ Y is a continuous map, then
it induces a continuous map cone(T ) : cone(X)→ cone(Y ). We identify X with the image of X ×{1} in
cone(X).

Construction 1.6. We give further details on the spaces Xn and Yn in Construction 1.1(6).
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(14) The space Xn is chosen as follows. First set Z0 = S2. With (d(n))n=0,1,2,... and (s(n))n=0,1,2,... as in
Construction 1.1(1), define inductively

Zn = Zd(n)
n−1 = (S

2)s(n).

Then set Xn = cone(Zn). (In particular, Xn is contractible, and Zn ⊂ Xn as in Notation 1.5.) Further, for
n ∈ Z≥0 and j = 1, 2, . . . , d(n+ 1), we let P (n)j : Zn+1→ Zn be the j-th coordinate projection, and we
set Q(n)

j = cone(P (n)j ) : Xn+1→ Xn .

(15) Yn = [0, 1] for all n ∈ Z>0. (In particular, Yn is contractible.)

(16) We assume we are given points xm ∈ Xm for m ∈ Z≥0 such that, using the notation in (14), for all
n ∈ Z≥0, the set{
(Q(n)

ν1
◦ Q(n+1)

ν2
◦ · · · ◦ Q(m−1)

νm−n
)(xm) | m = n+ 1, n+ 2, . . . and ν j = 1, 2, . . . , d(n+ j)

for j = 1, 2, . . . ,m− n
}

is dense in Xn .

(17) We assume we are given a sequence (yk)k=0,1,2,... in [0, 1] such that for all n ∈Z≥0 the set {yk | k≥ n}
is dense in [0, 1].

(18) The maps
γn : C(Xn ⨿ Yn)→ Ml(n+1)(C(Xn+1⨿ Yn+1))

will be as in Construction 1.1(9), with the maps Sn, j : Xn+1⨿ Yn+1→ Xn ⨿ Yn appearing there defined
as follows:

(a) With Q(n)
j as in (14), we set Sn, j (x)= Q(n)

j (x) for x ∈ Xn+1 and j = 1, 2, . . . , d(n+ 1).

(b) Sn, j (x)= yn for

x ∈ Xn+1 and j = d(n+ 1)+ 1, d(n+ 1)+ 2, . . . , l(n+ 1).

(c) There are continuous functions

Rn,1, Rn,2, . . . , Rn, d(n+1) : Yn+1→ Yn

(which will be taken from Proposition 2.14 below) such that Sn, j (y) = Rn, j (y) for y ∈ Yn+1 and
j = 1, 2, . . . , d(n+ 1).

(d) Sn, j (y)= xn for

y ∈ Yn+1 and j = d(n+ 1)+ 1, d(n+ 1)+ 2, . . . , l(n+ 1).

(19) The maps
γ (0)n : C(Xn ⨿ Yn)→ Ml(n+1)(C(Xn+1⨿ Yn+1))

will be as in Construction 1.1(12), with the maps S(0)n, j : Xn+1⨿Yn+1→ Xn⨿Yn appearing there given by
S(0)n, j = Sn, j for j = 1, 2, . . . , d(n+ 1) and to be specified later for j = d(n+ 1)+ 1, d(n+ 1)+ 2, . . . ,
l(n+ 1).
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With the choices in Construction 1.6(18), the map

γn : C(Xn)⊕C(Yn)→ C(Xn+1, Ml(n+1))⊕C(Yn+1, Ml(n+1))

in Construction 1.1(8), as further specified in Construction 1.1(9), is given as follows. With Cd(n) viewed
as embedded in Md(n) as the diagonal matrices, there is a homomorphism

δn : C(Yn)→ C(Yn+1, Cd(n+1))⊂ C(Yn+1,Md(n+1))

such that

γn( f, g)=
(
diag( f ◦ Q(n)

1 , f ◦ Q(n)
2 , . . . , f ◦ Q(n)

d(n+1),

g(yn), g(yn), . . . , g(yn)︸ ︷︷ ︸
k(n+1) times

), diag(δn(g), f (xn), f (xn), . . . , f (xn)︸ ︷︷ ︸
k(n+1) times

)
)
. (1-4)

For the purposes of this section, we need no further information on the maps δn , except that they send
constant functions to constant functions.

Lemma 1.7. Assume the notation and choices in parts (1), (7), (8), and (10) of Construction 1.1, and in
Construction 1.6 (except part (19)) and the parts of Construction 1.1 referred to there. Then the algebra C
is simple.

Proof. Using Construction 1.6(16), this is easily deduced from [Dădărlat et al. 1992, Proposition 2.1]. □

Notation 1.8. Let p ∈C(S2,M2) denote the Bott projection, and let L be the tautological line bundle over
S2 ∼= CP1. (Thus, the range of p is the section space of L .) Recalling that X0 = cone(S2), parametrized
as in Notation 1.5, define b ∈ C(X0,M2) by b(λ) = λ · p for λ ∈ [0, 1]. Assuming the notation and
choices in parts (1), (6), (7), (8), and (10) of Construction 1.1 and in Construction 1.6, for n ∈ Z≥0 set
bn = (idM2 ⊗0n,0)(b, 0) ∈ M2(Cn).

We require the following simple lemma concerning characteristic classes. It gives us a way of estimating
the radius of comparison, which is similar to the one used in [Villadsen 1998, Lemma 1], but more
suitable for the types of estimates we need here.

Lemma 1.9. The Cartesian product L×k does not embed in a trivial bundle over (S2)k of rank less
than 2k.

Proof. We refer the reader to [Milnor and Stasheff 1974, Section 14] for an account of Chern classes. The
Chern character c(L) is of the form 1+ ε, where ε is a generator of H 2(S2,Z), and the product operation
satisfies ε2

= 0. Let P1, P2, . . . , Pk : (S2)k → S2 be the coordinate projections. For j = 1, 2, . . . , k,
set ε j = P∗j (ε). The elements ε1, ε2, . . . , εk ∈ H 2((S2)k,Z), along with 1 ∈ H 0((S2)k,Z) (the standard
generator) generate the cohomology ring of (S2)k and satisfy ε2

j = 0 for j = 1, 2, . . . , k. By naturality
of the Chern character [Milnor and Stasheff 1974, Lemma 14.2] and the product theorem [Milnor and
Stasheff 1974, (14.7) on page 164], we have c(L×k) =

∏k
j=1(1+ ε j ). Now, suppose L×k embeds as

a subbundle of a trivial bundle E . Let F be the complementary bundle, so that L×k
⊕ F = E . By the

product theorem, c(L×k)c(F)= c(L×k
⊕F)= c(E)= 1. Thus, c(F)= c(L×k)−1

=
∏k

j=1(1−ε j ). Since
c(F) has a nonzero term in the top cohomology group H 2k((S2)k), it follows that rank(F) is at least k.
Thus, rank(E)= rank(L×k)+ rank(F)≥ 2k, as required. □
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Lemma 1.10. Adopt the assumptions and notation of Notation 1.8. Let n ∈ Z>0. Then bn|Zn is the
orthogonal sum of a projection pn whose range is isomorphic to the section space of the Cartesian product
bundle L×s(n) and a constant function of rank at most r(n)− s(n)− t (n).

We don’t expect bn|Zn to be a projection, since some of the point evaluations occurring in the maps of
the direct system will be at points x ∈ cone(Zm) \ Zm for values of m < n, and bm(x) is not a projection
for such x .

We don’t need the estimate on the rank of the second part of the description of bn|Zn ; it is included to
make the construction more explicit. If there are no evaluations at the “cone points”

(Zm ×{0})/(Zm ×{0}) ∈ (Zm ×[0, 1])/(Zm ×{0})

(following the parametrization in Notation 1.5), then this rank will be exactly r(n)− s(n)− t (n).

Proof of Lemma 1.10. For n ∈ Z≥0 write bn = (cn, gn), with

cn ∈ M2(C(Xn,Mr(n))) and gn ∈ M2(C(Yn,Mr(n))).

Further, for j = 1, 2, . . . , s(n) let T (n)
j : (S

2)s(n)→ S2 be the j-th coordinate projection. We claim that
cn is an orthogonal sum cn,0+ cn,1, in which cn,0 is the direct sum of the functions b ◦ cone(T (n)

j ) for
j = 1, 2, . . . , s(n) and cn,1 is a constant function of rank at most r(n)− s(n)− t (n), and moreover that
gn is a constant function of rank at most t (n). The statement of the lemma follows from this claim.

The proof of the claim is by induction on n. The claim is true for n = 0, by the definition of b and
since s(0)= 1, t (0)= 0, and r(0)− s(0)− t (0)= 0.

Now assume that the claim is known for n, recall that 0n+1, n = idMr(n) ⊗ γn (see Construction 1.1(8)),
and examine the summands in the description (1-4) of the map γn (after Construction 1.6). With this
convention, first take ( f, g) in (1-4) to be (cn,0, 0). The first coordinate 0n+1,n(cn,0, 0)1 is of the form
required for cn+1,0, while 0n+1,n(cn,0, 0)2 is a constant function of rank k(n+ 1)s(n) unless cn(xn)= 0,
in which case it is zero. In the same manner, we see that:

• 0n+1,n(cn,1, 0)1 is constant of rank at most d(n+ 1)[r(n)− s(n)− t (n)].

• 0n+1,n(cn,1, 0)2 is constant of rank at most k(n+ 1)[r(n)− s(n)− t (n)].

• 0n+1,n(0, gn)1 is constant of rank at most k(n+ 1)t (n).

• 0n+1,n(0, gn)2 is constant of rank at most d(n+ 1)t (n).

Putting these together, we get in the first coordinate of 0n+1,n(bn) the direct sum of cn+1,0 as described
and a constant function of rank at most

d(n+ 1)[r(n)− s(n)− t (n)] + k(n+ 1)t (n).

A computation shows that this expression is equal to r(n + 1)− s(n + 1)− t (n + 1). In the second
coordinate we get a constant function of rank at most

k(n+ 1)s(n)+ k(n+ 1)[r(n)− s(n)− t (n)] + d(n+ 1)t (n)= t (n+ 1).

This completes the induction, and the proof. □
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Corollary 1.11. Adopt the assumptions and notation of Notation 1.8. Let n ∈ Z≥0. Let e = (e1, e2) be an
element in M∞(Cn)∼= M∞(C(Xn)⊕C(Yn)) such that e1 is a projection which is equivalent to a constant
projection. If there exists x ∈ M∞(Cn) such that ∥xex∗− bn∥<

1
2 then rank(e1)≥ 2s(n).

Proof. Recall from Construction 1.6(14) and Notation 1.5 that

Zn = (S2)s(n) and Zn ⊂ cone(Zn)= Xn ⊂ Xn ⨿ Yn.

Also recall the line bundle L and the projection p from Notation 1.8.
It follows from Lemma 1.10 that there is a projection q ∈ M2r(n)(C(Zn)) whose range is isomorphic

to the section space of the s(n)-dimensional vector bundle L
Ś

s(n) and such that q(bn|Zn )q = q. Now
∥xex∗−bn∥<

1
2 implies ∥q(xex∗|Zn )q−q∥< 1

2 . Since e|Zn and q|Zn are projections, it follows that q|Zn

is Murray–von Neumann equivalent to a subprojection of e|Zn = e1|Zn . Therefore rank(e1|Zn )≥ 2s(n) by
Lemma 1.9. So rank(e1)≥ 2s(n). □

Although not strictly needed for the sequel, we record the following.

Corollary 1.12. Assume the notation and choices in parts (1), (3)
(
including κ > 1

2

)
, (7), (8), and (10) of

Construction 1.1, and in Construction 1.6 (except part (19)) and the parts of Construction 1.1 referred to
there. Then the algebra C satisfies rc(C)≥ 2κ − 1> 0.

Proof. Suppose ρ < 2κ − 1. We show that C does not have ρ-comparison. Choose n ∈ Z>0 such that
1/r(n) < 2κ − 1− ρ. Choose M ∈ Z≥0 such that ρ + 1 < M/r(n) < 2κ . Let e ∈ M∞(Cn) be a trivial
projection of rank M. By slight abuse of notation, we use 0m,n to denote the amplified map from M∞(Cn)

to M∞(Cm) as well. For m > n, the rank of 0m,n(e) is Mr(m)/r(n), and the choice of M guarantees
that this rank is strictly less than 2s(m). Now, for any trace τ on Cm (and thus for any trace on C), and
justifying the last step afterwards, we have

dτ (0m,n(e))= τ(0m,n(e))=
1

r(m)
·M ·

r(m)
r(n)

≥ 1+ ρ > dτ (bm)+ ρ.

To explain the last step, recall bm from Notation 1.8, and use Lemma 1.10 to see that the ranks of its
components (bm)1 ∈ M2(C(Xm,Mr(m))) and (bm)2 ∈ M2(C(Ym,Mr(m))) are both less than r(m), while
the identity element has rank r(m).

On the other hand, if 0∞,0(b)≾0∞,n(e) then, in particular, there exists some m > n and x ∈ M∞(Cm)

such that ∥x0m,n(e)x∗− bm∥<
1
2 , which contradicts Corollary 1.11. □

Notation 1.13. We assume the notation and choices in parts (1), (6), (7), (8), and (10) of Construction 1.1.
In particular, C0 = C(X0)⊕C(Y0). Define q0 = (1, 0) ∈ C(X0)⊕C(Y0) and q⊥0 = 1− q0. For n ∈ Z>0

define qn = 0n,0(q0) ∈ Cn and q⊥n = 1− qn , and finally, define q = 0∞,0(q0) ∈ C and q⊥ = 1− q .

Lemma 1.14. Make the assumptions in Notation 1.13. Further assume the notation and choices in
Construction 1.6 (except part (19)). Then the projection

1− qn ∈ Ml(n)(C(Xn))⊕Ml(n)(C(Yn))

has the form (e, f ) for a constant projection e∈Ml(n)(C(Xn))=C(Xn,Ml(n)) of rank t (n) and a constant
projection f ∈ Ml(n)(C(Yn))= C(Yn,Ml(n)) of rank r(n)− t (n).
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From Construction 1.6, we don’t actually need to know anything about the spaces Xn and Yn , we don’t
need to know anything about the points xn and yn except which spaces they are in, and we don’t need to
know anything about the maps Q(n)

j and Rn, j except their domains and codomains.

Proof of Lemma 1.14. The proof is an easy induction argument, using the fact that the image of a constant
function under a diagonal map is again a constant function. □

Lemma 1.15. Assume the notation and choices in parts (1)–(10) of Construction 1.1, Construction 1.6
(except part (19)), and Notation 1.13, including k(n) < d(n) for all n ∈ Z≥0, κ > 1

2 , ω > ω′, and
2κ − 1> 2ω. Then

rc(q⊥Cq⊥)≥
2κ − 1

2ω
.

Proof. We proceed as in the proof of Corollary 1.12, although the rank computations are somewhat more
involved. The difference is in the definition of dτ . In this corner, dτ is normalized so that dτ (q⊥)= 1 for
all τ ∈ T(C). To avoid redefining the notation, we will use τ to denote a tracial state on C, and therefore
our dimension functions will be of the form a 7→ dτ (a)/τ(q⊥), noting that τ(q⊥)= dτ (q⊥) since q⊥ is
a projection.

It suffices to show that for all ρ ∈ (1, (2κ − 1)/(2ω))∩Q, we have rc(q⊥Cq⊥)≥ ρ.
Fix δ ∈ (0, ω) such that

ρ < (1− δ)
(

2κ − 1
2ω

)
. (1-5)

Set

ε =
δ

2ρ(1− δ)
> 0. (1-6)

Since the sequence (s(n)/r(n))n=0,1,2,... is nonincreasing and converges to a nonzero limit κ , there exists
n0 ∈ Z≥0 such that, for all n and m with m ≥ n ≥ n0, we have

0≤ 1−
r(n)
s(n)
·

s(m)
r(m)

< ε.

This implies that
r(m)
r(n)
−

s(m)
s(n)

< ε ·
r(m)
r(n)

. (1-7)

Using (1-5) and δ < ω at the first step, we get

1−ω+ 2ρω < 1− δ+ 2(1− δ)
(

2κ − 1
2ω

)
ω = 2κ(1− δ).

Now write ρ = α/β with α, β ∈ Z>0. Choose n ≥ n0 such that

β

r(n)
< 2κ(1− δ)− (1−ω+ 2ρω).

Then there exists N1 ∈ Z>0 such that ρN1 ∈ Z>0 and

2κ(1− δ) >
N1

r(n)
> 1−ω+ 2ρω. (1-8)
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Set

N2 = ρN1. (1-9)

Using ρ > 1 at the last step, we have

N2

r(n)
=
ρN1

r(n)
> ρ(1−ω+ 2ρω) > ρ(1−ω)+ 2ω.

Now suppose e ∈M∞(Cn)=M∞(C(Xn)⊕C(Yn)) is an ordered pair whose first component is a trivial
projection on Xn of rank N1 and whose second component is a (trivial) projection on Yn of rank N2. Let
m > n, and let f be the first component of 0m,n(e); we estimate rank( f ). (The second component is a
trivial projection over Ym whose rank we don’t care about.) Now f is the direct sum of r(m)/r(n) trivial
projections, coming from C(Xn,Mr(n)) and C(Yn,Mr(n)). At least s(m)/s(n) of these summands come
from C(Xn,Mr(n)). So at most r(m)/r(n)− s(m)/s(n) of these summands come from C(Yn,Mr(n)).
The summands coming from C(Xn,Mr(n)) have rank N1 and the summands coming from C(Yn,Mr(n))

have rank N2. Since N2 > N1, we get

rank( f )≤
(

r(m)
r(n)
−

s(m)
s(n)

)
N2+

s(m)
s(n)
· N1 =

r(m)
r(n)
· N1+

(
r(m)
r(n)
−

s(m)
s(n)

)
(N2− N1).

Combining this with (1-7) at the first step, and using (1-9) at the second step, (1-6) at the third step, (1-8)
at the fifth step, and Construction 1.1(3) at the sixth step, we get

rank( f ) <
r(m)
r(n)
· (N1+ εN2)=

r(m)
r(n)
· (1+ ερ) · N1

=
r(m)
r(n)
·

2− δ
2(1− δ)

· N1 <
r(m)
r(n)
·

N1

1− δ
< 2κr(m)≤ 2s(m).

So Corollary 1.11 implies that there is no x ∈ M∞(Cm) for which ∥x0n,m(e)x∗− bm∥<
1
2 . Since m > n

is arbitrary,

0∞,n(e) ̸≾ b. (1-10)

Now let τ be a trace on C, and restrict it to Cn ∼= Mr(n)(C(Xn)⊕C(Yn)). Denote by tr the normalized
trace on Mr(n). There is a probability measure µ on Xn ⨿ Yn such that τ(a) =

∫
Xn⨿Yn

tr(a) dµ for all
a ∈ Cn . Define λ= µ(Xn), so 1− λ= µ(Yn). Then, using (1-9) at the second step,

τ(e)=
λN1+ (1− λ)N2

r(n)
=
[λ+ ρ(1− λ)]N1

r(n)
.

Using Lemma 1.14 to calculate the ranks of the components of q⊥n , we get

τ(q⊥n )=
λt (n)+ (1− λ)[r(n)− t (n)]

r(n)
, (1-11)

τ(qn)= 1− τ(q⊥n )=
λ[r(n)− t (n)] + (1− λ)t (n)

r(n)
. (1-12)
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It follows from Lemmas 1.10 and 1.14 that dτ (bn) ≤ τ(qn). Using this at the first step, and (1-11)
and (1-12) at the second step, we get

dτ (bn)

τ (q⊥n )
≤
τ(qn)

τ (q⊥n )
=
λ[r(n)− t (n)] + (1− λ)t (n)
λt (n)+ (1− λ)[r(n)− t (n)]

.

So
τ(e)− dτ (bn)

τ (q⊥n )
≥
(λ+ ρ(1− λ))N1− (λ[r(n)− t (n)] + (1− λ)t (n))

λt (n)+ (1− λ)[r(n)− t (n)]
.

The last expression is a fractional linear function in λ and is defined for all values of λ in the interval
[0, 1]. Any such function is monotone on [0, 1]. In the following calculations, we recall from Lemma 1.4
that ω ≤ t (n)/r(n) < 2ω. If we set λ= 1 and use (1-8), the value we obtain is

N1/r(n)− (1− t (n)/r(n))
t (n)/r(n)

>
(1−ω+ 2ρω)− (1−ω)

2ω
= ρ.

If we set λ= 0, we get, using (1-8) at the first step and ρ > 1 at the last step,

ρN1/r(n)− t (n)/r(n)
1− t (n)/r(n)

>
ρ(1−ω+ 2ρω)− 2ω

1−ω
= ρ+

2ρ2ω− 2ω
1−ω

> ρ.

Therefore
dτ (0∞,n(e))

dτ (q⊥)
>

dτ (b)
dτ (q⊥)

+ ρ

for all traces τ on C, so rc(q⊥Cq⊥) > ρ, as required. □

We now turn to the issue of finding upper bounds on the radius of comparison. For this, we appeal to
results from [Niu 2014]. Niu [2014, Definition 3.6] introduced a notion of mean dimension for a diagonal
AH-system. Suppose we are given a direct system of homogeneous algebras of the form

An = C(Kn,1)⊗M jn,1 ⊕C(Kn,2)⊗M jn,2 ⊕ · · ·⊕C(Kn,m(n))⊗M jn,m(n),

in which each of the spaces involved is a connected finite CW complex, and the connecting maps are
unital diagonal maps. Let γ denote the mean dimension of this system, in the sense of Niu. It follows
trivially from [Niu 2014, Definition 3.6] that

γ ≤ lim
n→∞

max
({

dim(Kn,l)

jn,l

∣∣∣ l = 1, 2, . . . ,m(n)
})
.

Theorem 6.2 of [Niu 2014] states that if A is the direct limit of a system as above, and A is simple, then
rc(A)≤ γ /2. Since the system we are considering here is of this type, Niu’s theorem applies. With that
at hand, we can derive an upper bound for the radius of comparison of the complementary corner.

Lemma 1.16. Under the same assumptions as in Lemma 1.15, we have

rc(qCq)≤
1

1− 2ω
.
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Proof. The algebra C is simple by Lemma 1.7, so qCq is also simple. This fact and Lemma 1.14 allow
us to apply the discussion above, getting

rc(qCq)≤ 1
2

lim
n→∞

max
(

dim(Xn)

rank(qn|Xn )
,

dim(Yn)

rank(qn|Yn )

)
.

As dim(Yn)= 1 for all n, the second term converges to 0. As for the first term, by Construction 1.6(14), we
have dim(Xn)= 2s(n)+1. Also, rank(qn|Xn )= r(n)−t (n) by Lemma 1.14. Thus, by Construction 1.1(1)
and Lemma 1.4, and using d(n)→∞ (which follows from Construction 1.1(4)) at the last step,

lim
n→∞

dim(Xn)

rank(qn|Xn )
= lim

n→∞

2s(n)+ 1
r(n)− t (n)

≤ lim
n→∞

2r(n)+ 1
r(n)− t (n)

≤
2

1− 2ω
.

This gives us the required estimate. □

Lemma 1.17. Let the assumptions and notation be as in Notation 1.13, Construction 1.6(14), and
Construction 1.6(15). If e ∈ C is a projection which has the same K0-class as q then e is unitarily
equivalent to q. The same holds with q⊥ in place of q.

Proof. This can be seen directly from the construction. For each n ∈Z≥0, since Xn and Yn are contractible
(Constructions 1.6(14) and (15)), if e ∈ M∞(Cn) is a projection which has the same K0-class as q , then e
is actually unitarily equivalent to qn . The same holds for q⊥n . It follows that this is the case in C as well. □

We point out that this lemma can also be deduced using cancellation. By [Elliott et al. 2009, The-
orem 4.1], simple unital AH algebras which arise from AH systems with diagonal maps have stable
rank 1. Rieffel has shown that C∗-algebras with stable rank 1 have cancellation; see [Blackadar 1998,
Theorem 6.5.1].

2. The tracial state space

For a compact Hausdorff space X , we will need all of C(X,R) (the space of real-valued continuous
functions on X ), the tracial state space of C(X) (and of C(X,Mn)), and the space of affine functions on
the tracial state space. This last space is an order unit space, and much of our work will be done there.

For later reference, we recall some of the definitions, and then describe how to move between these
spaces. We begin with the definition of an order unit space from the discussion before Proposition II.1.3
of [Alfsen 1971]. We suppress the order unit in our notation, since (except in several abstract results) our
order unit spaces will always be sets of affine continuous functions on compact convex sets with order
unit the constant function 1.

Definition 2.1. An order unit space V is a partially ordered real Banach space (see page 1 of [Goodearl
1986] for the axioms of a partially ordered real vector space) which is Archimedean (if v ∈ V and
{λv |λ∈ (0,∞)} has an upper bound, then v≤0), with a distinguished element e∈V which is an order unit
(that is, for every v ∈ V there is λ∈ (0,∞) such that −λe≤ v≤ λe), and such that the norm on V satisfies

∥v∥ = inf({λ ∈ (0,∞) | −λe ≤ v ≤ λe})

for all v ∈ V.
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The morphisms of order unit spaces are the positive linear maps which preserve the order units.

The morphisms of compact convex sets (compact convex subsets of locally convex topological vector
spaces) are just the continuous affine maps.

Definition 2.2. If K is a compact convex set, we denote by Aff(K ) the order unit space of continuous
affine functions f : K → R, with the supremum norm and with order unit the constant function 1.

If K and L are compact convex sets and λ :K→ L is continuous and affine, we let λ∗ :Aff(L)→Aff(K )
be the positive linear order unit preserving map given by λ∗( f )= f ◦ λ for f ∈ Aff(L).

This definition makes K 7→ Aff(K ) a functor.

Definition 2.3. If V is an order unit space with order unit e, we denote by S(V ) (or S(V, e) if e is not
understood) its state space (the order unit space morphisms to (R, 1)), which is a compact convex set
with the weak* topology.

If W is another order unit space and ϕ : V →W is positive, linear, and order unit preserving, we let
S(ϕ) : S(W )→ S(V ) be the continuous affine map given by S(ϕ)(ω)= ω ◦ϕ for ω ∈ S(W ).

This definition makes V 7→ S(V ) a functor.

Theorem 2.4 [Goodearl 1986, Theorem 7.1]. There is a natural isomorphism S(Aff(K ))∼= K for compact
convex sets K, given by sending x ∈ K to the evaluation map evx :Aff(K )→R defined by evx( f )= f (x)
for f ∈ Aff(K ).

Definition 2.5. For a unital C*-algebra A, we denote its tracial state space by T(A). If A and B are unital
C∗-algebras and ϕ : A→ B is a unital homomorphism, we let T(ϕ) : T(B)→ T(A) be the continuous
affine map given by T(ϕ)(τ ) = τ ◦ ϕ for τ ∈ T(B). We let ϕ̂ : Aff(T(A))→ Aff(T(B)) be the positive
order unit preserving map given by ϕ̂( f )= f ◦T(ϕ) for f ∈ Aff(T(A)). (Thus, ϕ̂ = T(ϕ)∗.)

Lemma 2.6. Let X be a compact Hausdorff space. Then C(X,R), with the supremum norm and
distinguished element the constant function 1, is a complete order unit space. Restriction of tracial states
on C(X) is an affine homeomorphism from T(C(X)) to S(C(X,R)). The map from X to S(C(X,R))

which sends x ∈ X to the point evaluation evx : C(X,R)→ R is a homeomorphism onto its image, and
the map RX : Aff(S(C(X,R)))→ C(X,R), given by RX ( f )(x)= f (evx) for f ∈ Aff(S(C(X,R))) and
x ∈ X , is an isomorphism of order unit spaces.

If Y is another compact Hausdorff space, then the function which sends a positive linear order unit
preserving map Q : C(X,R)→ C(Y,R) to S(Q) : S(C(Y,R))→ S(C(X,R)), as in Definition 2.3, is a
bijection to the continuous affine maps from S(C(Y,R)) to S(C(X,R)). Its inverse is the map E given as
follows. For a continuous affine map λ : S(C(Y,R))→ S(C(X,R)), using the notation of Definition 2.2,
define E(λ) : C(X,R)→ C(Y,R) by E(λ)= RY ◦ λ

∗
◦ R−1

X .

A positive linear order unit preserving map from C(X,R) to C(Y,R) is called a Markov operator.

Proof of Lemma 2.6. It is immediate that C(X,R) is a complete order unit space. The identification of
S(C(X,R)) is also immediate. The fact that RX is bijective follows from [Goodearl 1986, Corollary 11.20]
using the identification of X with the extreme points of S(C(X,R)).
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For the second paragraph, it is immediate that S sends positive linear order unit preserving maps to
continuous affine maps, and that E does the reverse. For the rest, we must show that S ◦ E and E ◦ S are
the identity maps on the appropriate sets.

We first claim that for g ∈ Aff(S(C(X,R))) and ρ ∈ S(C(X,R)) we have

g(ρ)= ρ(RX (g)). (2-1)

This formula is true by definition when ρ = evx for some x ∈ X . Since, for fixed g, both sides of (2-1)
are continuous affine functions of ρ, and since S(C(X,R)) is the closed convex hull of {evx | x ∈ X}, the
claim follows.

We next claim that if λ : S(C(Y,R))→ S(C(X,R)) is continuous and affine, ω ∈ S(C(Y,R)), and
g ∈ Aff(S(C(X,R))), then

(ω ◦ RY )(g ◦ λ)= (λ(ω) ◦ RX )(g). (2-2)

To prove this claim, for the same reasons as in the proof of the first claim, it suffices to prove this when
there is y ∈ Y such that ω = evy . In this case, using the definition of RY at the second step, and the
previous claim with ρ = λ(evy) at the third step,

(evy ◦ RY )(g ◦ λ)= RY (g ◦ λ)(y)= (g ◦ λ)(evy)= (λ(evy) ◦ RX )(g),

as desired.
Now let λ : S(C(Y,R))→ S(C(X,R)) be continuous and affine; we prove that S(E(λ)) = λ. Let

ω ∈ S(C(X,R)) and let f ∈ C(Y,R). Working through the definitions gives

S(E(λ))(ω)( f )= (ω ◦ RY )(R−1
X ( f ) ◦ λ).

By (2-2) with g = R−1
X ( f ), the right-hand side is λ(ω)( f ), as desired.

Finally, let Q : C(X,R)→ C(Y,R) be a positive linear order unit preserving map; we show that
E(S(Q))= Q. Let f ∈ C(X,R) and let y ∈ Y. Working through the definitions gives

E(S(Q))( f )(y)= R−1
X ( f )(evy ◦ Q).

Applying (2-1) with g= R−1
X ( f ) and ρ=evy◦Q, we see that the right-hand side is (evy◦Q)( f )=Q( f )(y).

This proves that E(S(Q))= Q, and the proof is complete. □

Direct limits of direct systems of order unit spaces are constructed at the beginning of Section 3 of
[Thomsen 1994], including Lemma 3.1 there.

Proposition 2.7. Let ((Dn)n=0,1,2,..., (ϕn,m)0≤m≤n) be a direct system of unital C∗-algebras and unital
homomorphisms. Set D = lim

−−→n Dn . Then there are a natural homeomorphism

T(D)→ lim
←−−

n
T(Dn)

and a natural isomorphism
Aff(T(D))→ lim

−−→
n

Aff(T(Dn))

of order unit spaces.
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Proof. The first part is Lemma 3.3 of [Thomsen 1994].
The second part is Lemma 3.2 of [Thomsen 1994], combined with the fact (Theorem 2.4) that the state

space of Aff(K ) is naturally identified with K. □

Definition 2.8. Let V and W be order unit spaces, with order units e ∈ V and f ∈ W. We define the
direct sum V ⊕ W to be the vector space direct sum V ⊕ W as a real vector space, with the order
(v1, w1) ≤ (v2, w2) for v1, v2 ∈ V and w1, w2 ∈ W if and only if v1 ≤ v2 and w1 ≤ w2, with the order
unit (e, f ), and the norm ∥(v,w)∥ =max(∥v∥, ∥w∥).

Lemma 2.9. Let V and W be order unit spaces. Then V ⊕W as in Definition 2.8 is an order unit space,
which is complete if V and W are.

Proof. The proof is straightforward. □

Lemma 2.10. Let A and B be unital C∗-algebras. Then, taking the direct sum on the right to be as in
Definition 2.8, there is an isomorphism

Aff(T(A⊕ B))∼= Aff(T(A))⊕Aff(T(B)),

given as follows. Identify T(A) with a subset of T(A ⊕ B) by, for τ ∈ T(A), defining i(τ )(a, b) =
τ(a) for all a ∈ A and b ∈ B, and similarly identify T(B) with a subset of T(A⊕ B). Then the map
Aff(T(A⊕ B))→ Aff(T(A))⊕Aff(T(B)) is f 7→ ( f |T(A), f |T(B)).

Proof. It is clear that if f ∈ Aff(T(A ⊕ B)), then f |T(A) ∈ Aff(T(A)) and f |T(B) ∈ Aff(T(B)), and
moreover that the map of the lemma is linear, positive, and preserves the order units. One easily checks
that every tracial state on A⊕ B is a convex combination of tracial states on A and B, from which it
follows that if f |T(A) = 0 and f |T(B) = 0 then f = 0.

It remains to prove that the map of the lemma is surjective. Let g ∈ Aff(T(A)) and h ∈ Aff(T(B)).
Define f : T(A⊕ B)→ R by, for τ ∈ T(A⊕ B),

f (τ )= τ(1, 0)g(τ (1, 0)−1τ |A)+ τ(0, 1)g(τ (0, 1)−1τ |B)

(taking the first summand to be zero if τ(1, 0)= 0 and the second summand to be zero if τ(0, 1)= 0).
Straightforward but somewhat tedious calculations show that f is weak* continuous and affine, and
clearly f |T(A) = g and f |T(B) = h. □

The following result generalizes Lemma 3.4 of [Thomsen 1994]. It still isn’t the most general Elliott
approximate intertwining result for order unit spaces, because we assume that the underlying order unit
spaces of the two direct systems are the same. The main effect of this assumption is to simplify the notation.

Proposition 2.11. Let (Vm)m=0,1,2,... be a sequence of separable complete order unit spaces, and let

((Vm)m=0,1,2,..., (ϕn,m)0≤m≤n) and ((Vm)m=0,1,2,..., (ϕ
′

n,m)0≤m≤n)

be two direct systems of order unit spaces, using the same spaces, and with maps ϕn,m, ϕ
′
n,m : Vm→ Vn

which are linear, positive, and preserve the order units. Let V and V ′ be the direct limits

V = lim
−−→
((Vm)m=0,1,2,..., (ϕn,m)0≤m≤n) and V ′ = lim

−−→
((Vm)m=0,1,2,..., (ϕ

′

n,m)0≤m≤n),
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with corresponding maps
ϕ∞,n : Vn→ V and ϕ′

∞,n : Vn→ V ′

for n ∈ Z≥0. For n ∈ Z≥0 further let
v
(n)
0 , v

(n)
1 , . . . ∈ Vn

be a dense sequence in the closed unit ball of Vn , and define Fn ⊂ Vn to be the finite set

Fn =

n⋃
m=0

[{ϕn,m(v
(m)
k ) : 0≤ k ≤ n} ∪ {ϕ′n,m(v

(m)
k ) : 0≤ k ≤ n}].

Suppose that there are δ0, δ1, . . . ∈ (0,∞) such that
∞∑

n=0

δn <∞ (2-3)

and for all n ∈ Z≥0 and all v ∈ Fn we have

∥ϕn+1, n(v)−ϕ
′

n+1, n(v)∥< δn.

Then there is a unique isomorphism ρ : V → V ′ such that for all m ∈ Z≥0 and all v ∈ Vm we have

ρ(ϕ∞,m(v))= lim
n→∞

(ϕ′
∞,n ◦ϕn,m)(v).

Its inverse is determined by
ρ−1(ϕ′

∞,m(v))= lim
n→∞

(ϕ∞,n ◦ϕ
′

n,m)(v)

for m ∈ Z≥0 and v ∈ Vm .

Proof. We first claim that for m ∈ Z≥0 and v ∈ Fm , the sequence ((ϕ′
∞,n ◦ ϕn,m)(v))n≥m is a Cauchy

sequence in V ′. For n ≥ m, we estimate, using ∥ϕ′
∞,n+1∥ ≤ 1, ∥v∥ ≤ 1, and ϕn,m(v) ∈ Fn at the last step:

∥(ϕ′
∞,n+1◦ϕn+1,m)(v)−(ϕ

′

∞,n◦ϕn,m)(v)∥ = ∥(ϕ
′

∞,n+1◦ϕn+1, n◦ϕn,m)(v)−(ϕ
′

∞,n+1◦ϕ
′

n+1, n◦ϕn,m)(v)∥

≤ ∥ϕ′
∞,n+1∥∥ϕn+1, n(ϕn,m(v))−ϕ

′

n+1, n(ϕn,m(v))∥ ≤ δn.

The claim now follows from (2-3).
Next, we claim that for m ∈ Z≥0 and k ∈ Z>0, the sequence ((ϕ′

∞,n ◦ ϕn,m)(v
(m)
k ))n≥m is a Cauchy

sequence in V ′. Indeed, taking m0 =max(m, k), this follows from the previous claim and the fact that
ϕm0,m(v

(m)
k ) ∈ Fm0 .

Now we claim that for m ∈ Z≥0 and v ∈ Vm , the sequence ((ϕ′
∞,n ◦ϕn,m)(v))n≥m is a Cauchy sequence

in V ′. Without loss of generality ∥v∥ ≤ 1. This claim follows from a standard ε/3 argument: to show that

∥(ϕ′
∞,n1
◦ϕn1,m)(v)− (ϕ

′

∞,n2
◦ϕn2,m)(v)∥< ε

for all sufficiently large n1 and n2, choose k ∈ Z>0 such that ∥v − v(m)k ∥ < ε/3, and use the previous
claim.

Since V ′ is complete, it follows that limn→∞(ϕ
′
∞,n ◦ϕn,m)(v) exists for all m ∈ Z≥0 and v ∈ Vm . Since

∥ϕ′
∞,n◦ϕn,m∥≤1 whenever m, n ∈Z≥0 satisfy m≤n, it follows that for m ∈Z>0 there is a unique bounded

linear map ρm : Vm→ V ′ such that ∥ρm∥ ≤ 1 and ρm(v)= limn→∞(ϕ
′
∞,n ◦ϕn,m)(v) for all v ∈ Vm .
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It is clear from the construction that ρn◦ϕn,m =ρm whenever m, n ∈Z≥0 satisfy m≤ n. By the universal
property of the direct limit, there is a unique bounded linear map ρ : V → V ′ such that ρ ◦ϕ∞,m = ρm

for all m ∈ Z≥0. It is clearly contractive, order preserving, order unit preserving, and uniquely determined
as in the statement of the proposition.

The same argument shows that there is a unique contractive linear map λ : V ′→ V determined in the
analogous way. For all m ∈ Z≥0, we have

λ ◦ ρ ◦ϕ∞,m = λ ◦ϕ
′

∞,m = ϕ∞,m,

so the universal property of the direct limit implies λ ◦ ρ = idV . Similarly ρ ◦ λ= idV ′ . □

Proposition 2.12. The isomorphism of Proposition 2.11 has the following naturality property. Let the
notation be as there, and suppose that, in addition, we are given separable complete order unit spaces Wn

for n ∈ Z≥0, direct systems

((Wm)m=0,1,2,..., (ψn,m)0≤m≤n) and ((Wm)m=0,1,2,..., (ψ
′

n,m)0≤m≤n)

using the same spaces, with positive linear order unit preserving maps, with direct limits W and W ′, and
with corresponding maps

ψ∞,n :Wn→W and ψ ′
∞,n :Wn→W ′

for n ∈ Z≥0. Also suppose that for n ∈ Z>0 there is a sequence

w
(n)
0 , w

(n)
1 , . . . ∈Wn

which is dense in the closed unit ball of Wn , and that there is a sequence (εn)n=0,1,2,... in (0,∞) such that∑
∞

n=0 εn <∞ and, with

Gn =

n⋃
m=0

[{ψn,m(w
(m)
k ) | 0≤ k ≤ n} ∪ {ψ ′n,m(w

(m)
k ) | 0≤ k ≤ n}],

for all n ∈ Z≥0 and all w ∈ Gn we have

∥ψn+1, n(w)−ψ
′

n+1, n(w)∥< εn.

Let σ : W → W ′ be the isomorphism of Proposition 2.11. Suppose further that we have positive linear
order unit preserving maps µn, µ

′
n : Vn→Wn for n ∈ Z≥0 such that

µn ◦ϕn,m = ψn,m ◦µm and µ′n ◦ϕ
′

n,m = ψ
′

n,m ◦µ
′

m

for all m, n ∈ Z≥0 with m ≤ n. Let µ : V →W and µ′ : V ′→W ′ be the induced maps of the direct limits.
Then µ′ ◦ ρ = σ ◦µ.

Proof. By construction, ρ : V → V ′ and σ :W →W ′ are determined by

ρ(ϕ∞,m(v))= lim
n→∞

(ϕ′
∞,n ◦ϕn,m)(v) (2-4)
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for m ∈ Z≥0 and v ∈ Vm , and

σ(ψ∞,m(w))= lim
n→∞

(ψ ′
∞,n ◦ψn,m)(w) (2-5)

for m ∈ Z≥0 and w ∈Wm . Using (2-4) at the first step and (2-5) at the last step, for m ∈ Z≥0 and v ∈ Vm

we therefore have

(µ′ ◦ ρ)(ϕ∞,m(v))= µ
′
(

lim
n→∞

(ϕ′
∞,n ◦ϕn,m)(v)

)
= lim

n→∞
(µ′ ◦ϕ′

∞,n ◦ϕn,m)(v)

= lim
n→∞

(ψ ′
∞,n ◦ψn,m ◦µm)(v)= (σ ◦µ)(ϕ∞,m(v)).

Since
⋃
∞

m=0 ϕ∞,m(Vm) is dense in V, the result follows. □

Proposition 2.14 below can essentially be extracted from the proof of Lemma 3.7 of [Thomsen 1994].
We give here a precise formulation which is needed for our purposes. The difference between our
formulation and that of [Thomsen 1994] is that we need more control over the matrix sizes in the
construction. In the argument, the following result substitutes for Lemma 3.6 there.

Lemma 2.13 (based on [Thomsen 1994]). Let X and Y be compact Hausdorff spaces, with X path
connected. Let λ : T(C(Y ))→ T(C(X)) be affine and continuous. Let E(λ) : C(X,R)→ C(Y,R) be as
in Lemma 2.6. Then for every ε > 0 and every finite set F ⊂ C(X,R) there exists N0 ∈ Z>0 such that for
every N ∈ Z>0 with N ≥ N0 there are continuous functions g1, g2, . . . , gN : Y → X such that for every
f ∈ F we have ∥∥∥∥E(λ)( f )− 1

N

N∑
j=1

f ◦ g j

∥∥∥∥
∞

< ε.

Proof. It suffices to prove the result under the additional assumption that ∥ f ∥ ≤ 1 for all f ∈ F.
Let ε > 0. Since E(λ) is a Markov operator, Theorem 2.1 of [Thomsen 1994] provides n ∈ Z>0, unital

homomorphisms ψ1, ψ2, . . . , ψn :C(X)→C(Y ), and α1, α2, . . . , αn ∈ [0, 1] with
∑n

l=1 αl = 1 such that∥∥∥∥E(λ)( f )−
n∑

l=1

αlψl( f )
∥∥∥∥
∞

<
ε

2

for all f ∈ F. Note that if β1, β2, . . . , βn ∈ [0, 1] satisfy
∑n

l=1 |αl −βl |< ε/2 then∥∥∥∥E(λ)( f )−
n∑

l=1

βlψl( f )
∥∥∥∥
∞

< ε

for all f ∈ F. Choose N0 ∈Z>0 such that N0> 4n/ε. Let N ∈Z>0 satisfy N ≥ N0. For l = 1, 2, . . . , n−1
choose βl ∈ (αl − 1/N , αl] ∩ (1/N )Z, and set βn = 1−

∑n−1
l=1 βl . Then

β1, β2, . . . , βn ∈
1
N

Z≥0,

n∑
l=1

βl = 1, and
n∑

l=1

|αl −βl |<
ε

2
.

Set ml = Nβl for l = 1, 2, . . . , n. Then for all f ∈ F we have∥∥∥∥E(λ)( f )− 1
N

n∑
l=1

mlψl( f )
∥∥∥∥
∞

< ε.
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Now for l = 1, 2, . . . , n let hl : Y → X be the continuous function such that ψl( f ) = f ◦ hl for all
f ∈ C(X), and for j = 1, 2, . . . , N define g j = hl when

l−1∑
k=1

mk < j ≤
l∑

k=1

mk .

Then
1
N

n∑
l=1

mlψl( f )= 1
N

N∑
j=1

f ◦ g j

for all f ∈ C(X). □

Proposition 2.14. Let K be a metrizable Choquet simplex, and let (l(n))n=0,1,2,... be a sequence of integers
such that l(n)≥2 for all n>0. For n∈Z≥0 set r(n)=

∏n
j=1 l( j). Then there exist n0<n1<n2< · · ·∈Z≥0,

with n0 = 0 and n1 = 1, and a direct system

C([0, 1])⊗Mr(n0)
α1,0
−−→ C([0, 1])⊗Mr(n1)

α2,1
−−→ C([0, 1])⊗Mr(n2)

α3,2
−−→ · · ·

with injective maps which are diagonal (in the sense analogous to Construction 1.1(9)) and such that the
direct limit A satisfies T(A)∼= K.

It is easy to arrange that the algebra A in this proposition be simple: by Proposition 2.11, replacement
of a small enough fraction of the maps gk,l in the proof with suitable point evaluations does not change
the tracial state space. However, doing so at this stage does not help with later work.

The conditions n0 = 0 and n1 = 1 are needed because we will later need to pass to a corresponding
subsystem of a system as in Construction 1.1 (more accurately, Construction 3.3 below), and we want to
avoid later complexity of the argument by preserving the value of ω.

Proof of Proposition 2.14. We mostly follow the proof of Lemma 3.7 of [Thomsen 1994], using
Lemma 2.13 in place of Lemma 3.6 of [Thomsen 1994], and slightly changing the order of the steps to
accommodate the difference between our conclusion and that of Theorem 3.9 of [Thomsen 1994]. For
convenience, we will use Proposition 2.11 in place of Lemma 3.4 of [Thomsen 1994].

For convenience of notation, and following [Thomsen 1994], set P = T(C([0, 1])). Lemma 3.8 of
[Thomsen 1994] provides an inverse system ((Pk)k=0,1,..., (λ j,k)0≤ j≤k) with continuous affine maps
λ j,k : Pk→ Pj such that Pk = P for all k ∈ Z≥0 and

lim
←−−
((Pk)k=0,1,..., (λ j,k)0≤ j≤k)∼= K . (2-6)

Choose f0, f1, . . . ∈ C([0, 1], R) such that { f0, f1, . . . } is dense in C([0, 1], R).
We now construct numbers nk ∈ Z>0 for k ∈ Z≥0, finite subsets Fk ⊂C([0, 1], R) for k ∈ Z≥0, positive

unital linear maps ψk+1, k : C([0, 1], R)→ C([0, 1], R) for k ∈ Z>0, and continuous functions

gk,1, gk,2, . . . , gk, r(nk+1)/r(nk) : [0, 1] → [0, 1]

such that the following conditions are satisfied:

(1) F0 = { f0} and for k ∈ Z≥0,

Fk+1 = Fk ∪ { fk+1} ∪ E(λk, k+1)(Fk ∪ { fk+1})∪ψk+1, k(Fk ∪ { fk+1}).
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(2) n0 = 0, n1 = 1, and n2 = 2, and for k ∈ Z>0 with k ≥ 2 we have nk+1 > nk and r(nk+1)/r(nk) > 2k.

(3) For k ∈ Z≥0 and f ∈ C([0, 1], R),

ψk+1, k( f )=
r(nk)

r(nk+1)

r(nk+1)/r(nk)∑
l=1

f ◦ gk,l .

(4) ∥E(λk, k+1)( f )−ψk+1, k( f )∥< 2−k for k ≥ 2 and f ∈ Fk .

We carry out the construction by induction on k. Define F0 = { f0}, n0 = 0, and n1 = 1. Take g0,l :

[0, 1]→ [0, 1] to be the identity map for l = 1, 2, . . . , r(1). Then define ψ1, 0 by (3) and define F1 by (1).
Now suppose k ≥ 1 and we have Fk and nk ; we construct

Fk+1, nk+1, gk,1, gk,2, . . . , gk, r(nk+1)/r(nk), and ψk+1, k .

Apply Lemma 2.13 with λ = λk, k+1, with ε = 2−k, and with F = Fk , obtaining N0 ∈ Z>0. Choose
nk+1 > nk and so large that

r(nk+1)

r(nk)
>max(N0, 2k).

This gives (2). Apply the conclusion of Lemma 2.13 with N = r(nk+1)/r(nk), calling the resulting
functions gk,1, gk,2, . . . , gk, r(nk+1)/r(nk). Then define ψk+1, k by (3). This gives (4). Finally, define Fk+1

by (1). This completes the induction.
For j, k ∈ Z≥0 with j ≤ k, define ψk, j : C([0, 1], R)→ C([0, 1], R) by

ψk, j = ψk, k−1 ◦ψk−1, k−2 ◦ · · · ◦ψ j+1, j .

An induction argument shows that for j, k ∈ Z≥0 with j ≤ k, we have

E(λ j,k)( f j ) ∈ Fk and ψk, j ( f j ) ∈ Fk .

This condition, together with Proposition 2.11, allows us to conclude that, as order unit spaces, we have

lim
−−→
((C([0, 1], R))k=0,1,..., (E(λ j,k))0≤ j≤k)∼= lim

−−→
((C([0, 1], R))k=0,1,..., (ψk, j )0≤ j≤k). (2-7)

For k ∈ Z≥0 define

αk+1, k : C([0, 1], Mr(nk))→ C([0, 1], Mr(nk+1))= Mr(nk+1)/r(nk)(C([0, 1], Mr(nk)))

by
αk+1, k( f )= diag( f ◦ gk,1, f ◦ gk,2, . . . , f ◦ gk, r(nk+1)/r(nk))

for f ∈ C([0, 1], Mr(nk)). Let A be the resulting direct limit C∗-algebra.
It is easy to check, and is stated as Lemma 3.5 of [Thomsen 1994], that α̂k+1,k = ψk+1,k . Letting V

and W be the order unit spaces

V = lim
−−→
((C([0, 1], R))k=0,1,..., (E(λ j,k))0≤ j≤k),

W = lim
−−→
((C([0, 1], R))k=0,1,..., (α̂k, j )0≤ j≤k),

(2-7) now says V ∼=W. Lemma 3.2 of [Thomsen 1994] and (2-6) imply that V ∼=Aff(K ). Proposition 2.7
implies that Aff(T (A))∼=W. So Aff(T (A))∼= Aff(K ), whence T (A)∼= K by Theorem 2.4. □
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Proposition 2.15. Let (Dn)n=0,1,2,... and (Cn)n=0,1,2,... be sequences of unital C∗-algebras. Let

((Dn)n=0,1,2,..., (ϕn,m)0≤m≤n), ((Dn)n=0,1,2,..., (ϕ
′

n,m)0≤m≤n),

((Cn)n=0,1,2,..., (ψn,m)0≤m≤n), ((Cn)n=0,1,2,..., (ψ
′

n,m)0≤m≤n)

be direct systems with unital homomorphisms, and call the direct limits (in order) D, D′, C, and C ′.
Suppose further that we have unital homomorphisms µn, µ

′
n : Dn→ Cn for n ∈ Z≥0 such that

µn ◦ϕn,m = ψn,m ◦µm and µ′n ◦ϕ
′

n,m = ψ
′

n,m ◦µ
′

m

for all m, n ∈ Z≥0 with m ≤ n. Let µ : D→ C and µ′ : D′→ C ′ be the induced maps of the direct limits.
Assume that for all m ∈ Z≥0 we have

∞∑
n=m

∥ϕ̂n,m − ϕ̂′n,m∥<∞ and
∞∑

n=m

∥ψ̂n,m − ψ̂ ′n,m∥<∞.

Then there exist isomorphisms

ρ : Aff(T(D))→ Aff(T(D′)) and σ : Aff(T(C))→ Aff(T(C ′))

such that µ̂′ ◦ ρ = σ ◦ µ̂. Moreover, if Cn = Dn for all n ∈ Z≥0 and ψn,m = ϕn,m and ψ ′n,m = ϕn,m for all
m and n, then we can take σ = ρ.

Proof. We can apply Propositions 2.11 and 2.12 using arbitrary countable dense subsets of the closed
unit balls of Aff(T(Dn)) and Aff(T(Cn)) for n ∈ Z>0. Under the hypotheses of the last statement, the
uniqueness statement in Proposition 2.11 implies that σ = ρ. □

Lemma 2.16. Adopt the notation of Construction 1.1, including (11) (a second set of maps), and (9)
and (13) (diagonal maps, agreeing in the coordinates 1, 2, . . . , d(n+ 1)). Then

∥

∧

0
(0)
n+1, n −
∧

0n+1, n∥ ≤
2k(n+ 1)

d(n+ 1)+ k(n+ 1)
for all n ∈ Z≥0.

Proof. For a compact metrizable space Z , let M(Z) be the real Banach space consisting of all signed Borel
measures on Z . (That is, M(Z) is the dual space of C(Z ,R).) Identify Z with the set of point masses
in M(Z). For n ∈ Z≥0, we can identify T(Cn) with the weak* compact convex subset of M(Xn ⨿ Yn)

consisting of probability measures. Thus Xn ⨿ Yn ⊂ T(Cn). For every function f ∈ Aff(T(Cn)), the
function ιn( f )(z)= f (z) ·1Mr(n) for z ∈ Xn⨿Yn is in C(Xn⨿Yn, Mr(n))=Cn; and τ(ιn( f ))= f (τ ) for
all τ ∈ Xn ⨿ Yn ⊂ T(Cn), hence also all τ ∈ T(Cn) by linearity and continuity.

For f ∈ Aff(T(Cn)) and τ ∈ T(Cn+1), we can apply the formula in Construction 1.1(9) to ιn( f ) and
apply τ to everything, to get

∧

0
(0)
n+1, n( f )(τ )=

1
l(n+ 1)

l(n+1)∑
k=1

τ( f ◦ S(0)n,1) and
∧

0n+1, n( f )(τ )=
1

l(n+ 1)

l(n+1)∑
k=1

τ( f ◦ Sn,1).
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Using (13), we get

|

∧

0
(0)
n+1, n( f )(τ )−
∧

0n+1, n( f )(τ )| =
1

l(n+ 1)

∣∣∣∣ l(n+1)∑
k=d(n+1)+1

[τ( f ◦ S(0)n,1)− τ( f ◦ Sn,1)]

∣∣∣∣
≤

l(n+ 1)− d(n+ 1)
l(n+ 1)

(2∥ f ∥∞).

The conclusion follows. □

We add additional parts to Constructions 1.1 and 1.6.

Construction 2.17. Adopt the assumptions and notation of all parts of Construction 1.1 (except (13)),
and in addition make the following assumptions and definitions:

(20) For all m ∈ Z≥0, the maps S(0)m, j , Sm, j : Xm+1⨿ Ym+1→ Xm ⨿ Ym satisfy

S(0)m, j (Xm+1)⊂ Xm and S(0)m, j (Ym+1)⊂ Ym

for j = 1,2, . . . , l(m),
Sm, j (Xm+1)⊂ Xm and Sm, j (Ym+1)⊂ Ym

for j = 1,2, . . . ,d(m), and
Sm, j (Xm+1)⊂ Ym and Sm, j (Ym+1)⊂ Xm

for j = d(m)+ 1, d(m)+ 2, . . . , l(m).

(21) For m ∈Z≥0, define Dm=Mr(m)⊕Mr(m). Define ϕ(0)m+1,m, ϕm+1,m :Dm→Dm+1 by, for a, b∈Mr(m),

ϕ
(0)
m+1,m(a, b)= (diag(a, a, . . . , a), diag(b, b, . . . , b)),

ϕm+1,m(a, b)= (diag(a, a, . . . , a, b, b, . . . , b), diag(b, b, . . . , b, a, a, . . . , a)),

in which a occurs d(m) times in the first entry in the second line on the right and k(m) times in the second
entry, while b occurs k(m) times in the first entry and d(m) times in the second entry. For m, n ∈ Z≥0

with m ≤ n, define
ϕn,m = ϕn,n−1 ◦ϕn−1, n−2 ◦ · · · ◦ϕm+1,m : Dm→ Dn,

and define ϕ(0)n,m : Dm→ Dn similarly. Define AF algebras by

D = lim
−−→

m
(Dm, ϕm+1,m) and D(0)

= lim
−−→

m
(Dm, ϕ

(0)
m+1,m),

and for m ∈ Z>0 let ϕ∞,m : Dm→ D and ϕ(0)∞,m : Dm→ D(0) be the maps associated to these direct limits.

(22) For m ∈ Z≥0, define µm : Dm → Cm as follows. For a, b ∈ Mr(m) let f ∈ C(Xm,Mr(m)) and
g ∈ C(Ym,Mr(m)) be the constant functions with values a and b. Then set µm(a, b) = ( f, g). Further,
following Lemma 2.18(2) below, let µ : D→C and µ(0) : D(0)

→C (0) be the direct limits of the maps µm .

(23) For m ∈ Z≥0, define θm : Dm → Dm by θm(a, b) = (b, a) for a, b ∈ Mr(m). Further, following
Lemma 2.18(3) below, let θ ∈ Aut(D) and θ (0) ∈ Aut(D(0)) be the direct limits of the maps θm .



A SIMPLE NUCLEAR C∗-ALGEBRA WITH AN INTERNAL ASYMMETRY 735

Lemma 2.18. Under the assumptions of Constructions 1.1 (except (13)), 1.6, and 2.17, the following hold:

(1) The direct system ((C (0)
n )n=0,1,2,..., (0

(0)
n,m)0≤m≤n) is the direct sum of two direct systems

((C(Xn, Mr(n)))n=0,1,2,..., (0
(0)
n,m |C(Xm ,Mr(m)))0≤m≤n),

((C(Yn, Mr(n)))n=0,1,2,..., (0
(0)
n,m |C(Ym ,Mr(m)))0≤m≤n),

and C (0) is isomorphic to the direct sum of the direct limits A and B of these systems.

(2) For all m, n ∈ Z≥0 with m ≤ n,

0(0)n,m ◦µm = µn ◦ϕ
(0)
n,m and 0n,m ◦µm = µn ◦ϕn,m .

Moreover, the maps µm induce unital homomorphisms µ(0) : D(0)
→ C (0) and µ : D→ C, and for all

m ∈ Z≥0,
0(0)
∞,m ◦µm = µ

(0)
◦ϕ(0)
∞,m and 0∞,m ◦µm = µ ◦ϕ∞,m .

(3) For all m, n ∈ Z≥0 with m ≤ n,

ϕ(0)n,m ◦ θm = θn ◦ϕ
(0)
n,m and ϕn,m ◦ θm = θn ◦ϕn,m .

The maps θm induce automorphisms θ : D→ D and θ (0) : D(0)
→ D(0) such that

ϕ∞,m ◦ θm = θ ◦ϕ∞,m and ϕ(0)
∞,m ◦ θm = θ

(0)
◦ϕ(0)
∞,m

for all m ∈ Z≥0.

(4) For all m ∈ Z≥0, (µm)∗ : K∗(Dm)→ K∗(Cm) is an isomorphism, and

µ∗ : K∗(D)→ K∗(C) and (µ(0))∗ : K∗(D(0))→ K∗(C (0))

are isomorphisms.

Proof. The fact that all the maps in (4) are isomorphisms on K-theory comes from the assumption that
the spaces Xm and Ym are contractible ((14) and (15) in Construction 1.6). Everything else is essentially
immediate from the constructions. □

3. The main theorem

We now have the ingredients to deduce the main theorem of this paper, Theorem 3.2.
To state the theorem, we first need to define automorphisms of Elliott invariants, so we need a category

in which they lie. For convenience, we restrict to unital C∗-algebras, and we give a very basic list of
conditions.

Definition 3.1. An abstract unital Elliott invariant is a tuple G = (G0, (G0)+, g,G1, K , ρ) in which
(G0, (G0)+, g) is a preordered abelian group with distinguished positive element g which is an order
unit, G1 is an abelian group, K is a Choquet simplex (possibly empty), and ρ : G0 → Aff(K ) is an
order preserving group homomorphism such that ρ(g) is the constant function 1. (If K = ∅, we take
Aff(K )= {0}, and we take ρ to be the constant function with value 0.)
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If

G(0)
= (G(0)

0 , (G(0)
0 )+, g(0),G(0)

1 , K (0), ρ(0)) and G(1)
= (G(1)

0 , (G(1)
0 )+, g(1),G(1)

1 , K (1), ρ(1))

are abstract unital Elliott invariants, then a morphism from G(0) to G(1) is a triple F = (F0, F1, S) in
which F0 : G

(0)
0 → G(1)

0 is a group homomorphism satisfying

F0((G
(0)
0 )+)⊂ (G

(1)
0 )+ and F0(g(0))= g(1),

F1 : G
(0)
1 → G(0)

1 is a group homomorphism, and S : K (1)
→ K (0) is a continuous affine map satisfying

ρ(1)(F0(η))= ρ
(0)(η) ◦ S (3-1)

for all η ∈ G(0)
0 .

If
F (0) : G(0)

→ G(1) and F (1) = (F (1)0 , F (1)1 , S(1)) : G(1)
→ G(2)

are morphisms of abstract unital Elliott invariants, then define

F (1) ◦ F (0) = (F (1)0 ◦ F (0)0 , F (1)1 ◦ F (0)1 , S(0) ◦ S(1)).

(Note: S(0) ◦ S(1), not S(1) ◦ S(0).)
The Elliott invariant of a unital C∗-algebra A is

Ell(A)= (K0(A), K0(A)+, [1], K1(A), T(A), ρA),

in which ρA : K0(A)→ Aff(T(A)) is given by ρA(η)(τ )= τ∗(η) for η ∈ K0(A) and τ ∈ T(A).
If A and B are unital C∗-algebras and ϕ : A→ B is a unital homomorphism, then we define ϕ∗ :

Ell(A)→ Ell(B) to consist of the maps ϕ∗ from K0(A) to K0(B) and from K1(A) to K1(B), together
with the map T(ϕ) of Definition 2.5. We write it as (ϕ∗,0, ϕ∗,1, T(ϕ)).

Definition 3.1 is enough to make the abstract unital Elliott invariants into a category such that Ell( · ) is
a functor from unital C∗-algebras and unital homomorphisms to abstract unital Elliott invariants.

Theorem 3.2. There exists a simple unital separable AH algebra C with stable rank 1 and with the
following property. There exists an automorphism F of Ell(C) such that there is no automorphism α of
C satisfying α∗ = F. Moreover, the automorphism F in this example can be chosen so that F ◦ F is the
identity morphism of Ell(C).

We outline the proof. We make a first pass through Constructions 1.1 and 1.6, without the spaces Yn , and
without specifying the point evaluation maps. This is Construction 3.3 below. We get a direct system; call
its direct limit C̃. Apply Proposition 2.14 using the sequence of matrix sizes in this system and K = T(C̃).
Doing so requires passing to a subsequence of the sequence of matrix sizes. Replace the original system
with the corresponding subsystem; Lemma 3.5 below justifies this. Then make a second pass through
Constructions 1.1 and 1.6, taking the spaces Xn and the maps between them from this subsystem and
the spaces Yn and the maps between them from the system gotten from Proposition 2.14, as needed
substituting appropriate point evaluations for the diagonal entries of the formulas for the maps. This



A SIMPLE NUCLEAR C∗-ALGEBRA WITH AN INTERNAL ASYMMETRY 737

requires sufficiently few changes that, by our work in Section 2, the tracial state space remains the same.
Therefore the algebra obtained from these constructions has an order two automorphism of its tracial state
space which corresponds to exchanging the two rows in the diagram (0-2). The constructions have been
designed so that there is also a corresponding automorphism of the K-theory. Our work in Section 1 rules
out the possibility of a corresponding automorphism of the algebra, because such an automorphism would
necessarily send a particular corner of the algebra to another one with a different radius of comparison.

We start with the following construction, which is “half” of Construction 1.1, and gives just the top
row of the diagram (0-1).

Construction 3.3. We will consider direct systems and their associated direct limits constructed as follows.

(1) The sequences (d(n))n=0,1,2,... and (k(n))n=0,1,2,... in Z≥0 are as in Construction 1.1(1) and satisfy
the condition of Construction 1.1(2). We further define (l(n))n=0,1,2,..., (r(n))n=0,1,2,..., (s(n))n=0,1,2,...,
and (t (n))n=0,1,2,... as in Construction 1.1(1).

(2) Following Constructions 1.1(3) and (4), we define

κ = inf
n∈Z>0

s(n)
r(n)

, ω =
k(1)

k(1)+ d(1)
, and ω′ =

∞∑
n=2

k(n)
k(n)+ d(n)

.

(These will not be used directly in connection with this direct system.)

(3) As in Construction 1.6(14), we define compact metric spaces by Xn = cone((S2)s(n)) for n ∈ Z≥0,
and we define maps Q(n)

j : Xn+1→ Xn for n ∈ Z≥0 and j = 1, 2, . . . , d(n+ 1) to be the cones over the
projection maps

(S2)s(n+1)
= ((S2)s(n))d(n+1)

→ (S2)s(n).

(4) We are given maps δn : C(Xn)→ C(Xn+1, Ml(n+1)) (as in Construction 1.1(8), but with only one
summand) which are diagonal; that is, there are continuous maps

Tn,1, Tn,2, . . . , Tn,l(n+1) : Xn+1→ Xn

such that
δn( f )= diag( f ◦ Tn,1, f ◦ Tn,2, . . . , f ◦ Tn,l(n+1))

for f ∈ C(Xn). (Compare with Construction 1.1(9).) Moreover, Tn, j = Q(n)
j for j = 1, 2, . . . , d(n+ 1).

The maps Tn, j are unspecified for j = d(n+ 1)+ 1, d(n+ 1)+ 2, . . . , l(n+ 1).

(5) Set An = Mr(n) ⊗ C(Xn) (like in Construction 1.1(7) but with only one summand). Following
Construction 1.1(8), set

1n+1, n = idMr(n) ⊗ δn : An→ An+1,

and for m, n ∈ Z≥0 with m ≤ n, take

1n,m =1n,n−1 ◦1n−1, n−2 ◦ · · · ◦1m+1,m : Am→ An.

(6) Define A = lim
−−→n An , taken with respect to the maps 1n,m . For n ∈ Z≥0, let 1∞,n : An→ A be the

map associated with the direct limit.
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To avoid confusing notation, we isolate the following computation as a lemma.

Lemma 3.4. Let n ∈ Z>0 and let κ1, κ2, . . . , κn, δ1, δ2, . . . , δn ∈ (0,∞). Then
n∑

j=1

κ j

δ j + κ j
≥

∏n
j=1(δ j + κ j )−

∏n
j=1 δ j∏n

j=1(δ j + κ j )
.

Proof. For j = 1, 2, . . . , n define

λ j =
κ j

δ j + κ j
.

Then λ j ∈ (0, 1). Some calculation shows that the conclusion of the lemma becomes
n∑

j=1

λ j ≥ 1−
n∏

j=1

(1− λ j ). (3-2)

We prove (3-2) by induction on n. For n = 1 it is trivial. Suppose (3-2) is known for some value of n.
Given λ1, λ2, . . . , λn+1 ∈ (0, 1), set µ= 1− (1− λn)(1− λn+1). Then

µ ∈ (0, 1) and µ= λn + λn+1− λnλn+1 ≤ λn + λn+1.

Applying the induction hypothesis on λ1, λ2, . . . , λn−1, µ at the second step, we then have

n+1∑
j=1

λ j ≥

n−1∑
j=1

λ j +µ≥ 1−
[n−1∏

j=1

(1− λ j )

]
(1−µ)= 1−

n+1∏
j=1

(1− λ j ).

This completes the induction, and the proof of the lemma. □

Lemma 3.5. Let a direct system as in Construction 3.3 be given, but using sequences (d̃(n))n=0,1,2,...

and (k̃(n))n=0,1,2,... in place of (d(n))n=0,1,2,... and (k(n))n=0,1,2,.... Denote the additional sequences
analogous to those in Construction 3.3(1) by l̃, r̃ , and s̃. Denote the numbers analogous to those
in Construction 3.3(2) by κ̃ , ω̃, and ω̃′. Denote the spaces used in the system by X̃n . Let ν :
Z≥0→ Z≥0 be a strictly increasing function such that ν(0) = 0 and ν(1) = 1. Then the direct system
(C(X̃ν(m), Mr̃(ν(m))))m=0,1,2,... is isomorphic to a system as in Construction 3.3, with the choices d(0)= 1,
k(0)= 0,

d(m)= d̃(ν(m− 1)+ 1) d̃(ν(m− 1)+ 2) · · · d̃(ν(m)), (3-3)

k(m)= l̃(ν(m− 1)+ 1) l̃(ν(m− 1)+ 2) · · · l̃(ν(m))− d(m) (3-4)

for m ∈ Z>0. Moreover, following the notation of Construction 3.3,

l(m)= l̃(ν(m− 1)+ 1) l̃(ν(m− 1)+ 2) · · · l̃(ν(m)),

r(m)= r̃(ν(m)), and s(m)= s̃(ν(m))
(3-5)

for m ∈ Z≥0, and

κ = κ̃, ω = ω̃, and ω′ ≤ ω̃′.

Proof. Given the definitions of d and k, the proofs of the formulas for l, r , and s are easy.
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Using Lemma 1.2 at the first and fourth steps, we now get

κ̃ = lim
n→∞

s̃(n)
r̃(n)
= lim

m→∞

r̃(ν(m))
s̃(ν(m))

= lim
m→∞

s(m)
r(m)

= κ.

We have ω = ω̃ because ν(1)= 1.
Using Lemma 3.4 at the second step and (3-3), (3-4) and (3-5) at the third step, we have

ω̃′ =

∞∑
m=2

ν(m)∑
j=ν(m−1)+1

k̃( j)

k̃( j)+ d̃( j)

≥

∞∑
m=2

∏ν(m)
j=ν(m−1)+1[d̃( j)+ k̃( j)] −

∏ν(m)
j=ν(m−1)+1 d̃( j)∏ν(m)

j=ν(m−1)+1[d̃( j)+ k̃( j)]
=

∞∑
m=2

k(m)
k(m)+ d(m)

= ω′.

Define Xm = X̃ν(m) for m ∈ Z≥0. Clearly Xm = cone((S2)s(m)), as required. Denote the maps in the
system of the hypotheses by

δ̃n : C(X̃n)→ C(X̃n+1, Ml̃(n+1)) and 1̃n,m : C̃m→ C̃n,

with δ̃n being built using maps

T̃n,1, T̃n,2, . . . , T̃n, l(n+1) : X̃n+1→ X̃n,

as in Construction 3.3(4). For p = ν(m), ν(m)+ 1, . . . , ν(m+ 1)− 1, set

j (p)=
r̃(p)

r̃(ν(m))
= l̃(ν(m)+ 1) l̃(ν(m)+ 2) · · · l̃(p).

Then define

δ(0)m : C(X̃ν(m))→ C(X̃ν(m+1), Ml(n+1))

by

δ(0)m = idM j (ν(m+1)−1) ⊗ δ̃ν(m+1)−1 ◦ idM j (ν(m+1)−2) ⊗ δ̃ν(m+1)−2 ◦ · · · ◦ δ̃ν(m).

(In the last term we omit idM j (ν(m)) since j (ν(m))=1.) With this definition, one checks that idMr̃(ν(m))⊗δ̃m=

1̃ν(m+1), ν(m), so that the direct system gotten using the maps δ(0)m in Construction 3.3 is a subsystem of
the system given in the hypotheses.

We claim that δ(0)m is unitarily equivalent to a map δm :C(Xm)→C(Xm+1, Ml(n+1)) as in Construction 3.3.
This will imply isomorphism of the direct systems, and complete the proof of the lemma. First, δ(0)m is
given as in Construction 3.3(4) using some maps from X̃ν(m+1) to X̃ν(m), namely all possible compositions

T̃ν(m), iν(m) ◦ T̃ν(m)+1, iν(m)+1 ◦ · · · ◦ T̃ν(m+1)−1, iν(m+1)−1,

with i p = 1, 2, . . . , l̃(p+1) for p= ν(m), ν(m)+1, . . . , ν(m+1)−1. Moreover, since the composition
of projection maps is a projection map, restricting to i p = 1, 2, . . . , d̃(p+ 1) for all p gives exactly all
the maps Q(m)

j : Xm+1→ Xm for j = 1, 2, . . . , d(n+ 1). Therefore δ(0)m is unitarily equivalent to a map
as in Construction 3.3 by a permutation matrix. □
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Proof of Theorem 3.2. Choose N ∈ Z>0 such that

N > 5 and exp
(
−

1
N−1

)
>

3
4
. (3-6)

(For example, N = 6 will work.) In Construction 1.1(1) we make preliminary choices of the numbers d(n)
etc., calling them d̃(n) etc. Take d̃(0)= 1 and k̃(0)= 0, and take d̃(n)= N n and k̃(n)= 1 for n ∈ Z>0.
Then

l̃(n)= N n
+ 1, r̃(n)=

n∏
j=1

(N j
+ 1), and s̃(n)=

n∏
j=1

N j

for n ∈ Z>0. We obtain numbers as in Construction 3.3(2) (equivalently, Constructions 1.1(3) and (4)),
which we call κ̃ , ω̃, and ω̃′. Further, adopt the definitions and notation of Construction 3.3, except that we
use X̃n instead of Xn and similarly throughout. That is, in Construction 3.3(3) we call the spaces X̃n

instead of Xn , the projection maps Q̃(n)
j , in Construction 3.3(4) we call the maps of algebras δ̃n and the

maps of spaces T̃n, j : X̃n+1→ X̃n , in Construction 3.3(5) we call the algebras Ãn and the maps 1̃n,m ,
and in Construction 3.3(6) we call the direct limit Ã and the maps to it 1̃∞,n . As in Construction 3.3(4),
we take T̃n, j = Q̃(n)

j for j = 1, 2, . . . , d̃(n+ 1). For n ∈ Z≥0 choose an arbitrary point x̃n ∈ X̃n , and for
j = d̃(n+1)+1 let T̃n, j be the constant function on X̃n+1 with value x̃n . (Note that d̃(n+1)+1= l̃(n+1).)

We claim that the conditions in Constructions 1.1(3), 1.1(4), and 1.1(5) are satisfied, and moreover that

1
1− 2ω̃

<
2κ̃ − 1

2ω̃
.

For n ∈ Z>0 we have, using log(m+ 1)− log(m) < 1/m at the third step,

s̃(n)
r̃(n)
=

n∏
j=1

N j

N j + 1
= exp

( n∑
j=1

−[log(N j
+ 1)− log(N j )]

)
≥ exp

(
−

n∑
j=1

1
N j

)
> exp

(
−

1
N − 1

)
.

So κ̃ ≥ exp(−1/(N − 1)) > 3
4 by (3-6). Furthermore,

ω̃ =
1

N + 1
<

1
4

and ω̃′ =

∞∑
j=2

1
N j + 1

<

∞∑
j=2

1
N j =

1
N (N − 1)

,

so the conditions ω̃′ < ω̃ < 1
2 in Construction 1.1(4) and 2κ̃− 1> 2ω̃ in Construction 1.1(5) are satisfied.

Moreover,

1
1− 2ω̃

=
N + 1
N − 1

<
N + 1

4
=

1
4ω̃
=

2
( 3

4

)
− 1

2ω̃
<

2κ̃ − 1
2ω̃

.

The claim is proved.
Apply Proposition 2.14 with K = T( Ã) and with l̃(n) and r̃(n) in place of l(n) and r(n), getting a

strictly increasing sequence, which we call (ν(n))n=0,1,2,..., with ν( j)= j for j = 0, 1, an AI algebra B0

(called A in Proposition 2.14) which is the direct limit of a unital system

C([0, 1])⊗Mr(ν(0))
α1,0
−−→ C([0, 1])⊗Mr(ν(1))

α2,1
−−→ C([0, 1])⊗Mr(ν(2))

α3,2
−−→ · · · ,
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with injective diagonal maps αn+1, n given by

f 7→ diag( f ◦ Rn,1, f ◦ Rn,2, . . . , f ◦ Rn, r(νn+1)/r(νn))

for continuous functions

Rn,1, Rn,2, . . . , Rn, r(ν(n+1))/r(ν(n)) : [0, 1] → [0, 1],

and an isomorphism T(B0)→ T( Ã).
Apply Lemma 3.5 with this choice of ν. Define the sequences (d(n))n=0,1,2,... and (k(n))n=0,1,2,... as

in Lemma 3.5, and then make all the definitions in Constructions 1.1 and 1.6. (Some are also given in
the statement of Lemma 3.5.) Then, as in the proof of Lemma 3.5, Xn = X̃ν(n). We make the following
choices for the unspecified objects in these constructions. We choose points xn ∈ Xn and yn ∈ [0, 1] for
n ∈ Z≥0 such that the conditions in Constructions 1.6(16) and (17) are satisfied. (It is easy to see that this
can be done.) Use these points in parts (b) and (d) of Construction 1.6(18). Take the maps

Rn,1, Rn,2, . . . , Rn, d(n+1) : Yn+1→ Yn

in part (c) of Construction 1.6(18) to be those from the application of Proposition 2.14 above. For
j = 1, 2, . . . , l(n+1), let S(0)n, j |Xn+1 : Xn+1→ Xn be the maps in the system obtained from Lemma 3.5,
and take S(0)n, j |Yn+1 = Rn, j . The requirement S(0)n, j = Sn, j for j = 1, 2, . . . , d(n+1) in Construction 1.6(19)
is then satisfied, so that the condition in Construction 1.1(13) is also satisfied. Moreover, with these
choices, the conditions in Construction 2.17(20) are satisfied.

By Lemma 3.5, the numbers κ , ω, and ω′ from Constructions 1.1(3) and (4) satisfy

κ = κ̃, ω = ω̃, and ω′ ≤ ω̃′.

Therefore κ > 1
2 , ω′<ω< 1

2 , and 2κ−1> 2ω, as required in Constructions 1.1(3), (4), and (5); moreover

1
1− 2ω

<
2κ − 1

2ω
. (3-7)

The algebra C is simple by Lemma 1.7.
The algebras A and B of Lemma 2.18(1) are now A= Ã and B= B0, so C (0), as in Construction 1.1(11),

is isomorphic to Ã⊕ B0. The isomorphism T(B0)→ T( Ã) gives an isomorphism ζ
(0)
0 : Aff(T(A))→

Aff(T(B)). This provides an automorphism of Aff(T(A))⊕Aff(T(B)), given by

( f, g) 7→ ((ζ
(0)
0 )−1(g), ζ (0)0 ( f )).

Let ζ (0) be the corresponding automorphism of Aff(T(A⊕ B))=Aff(T(C (0))) gotten using Lemma 2.10.
Clearly ζ (0) ◦ ζ (0) is the identity map on Aff(T(C (0))).

Adopt the notation of Construction 2.17: C and C (0) are as already described, D and D(0) are
the AF algebras from Construction 2.17(21), µ : D → C and µ(0) : D(0)

→ C (0) are the maps of
Construction 2.17(22) (which are isomorphisms on K-theory by Lemma 2.18(4)), and θ ∈ Aut(D) and
θ (0) ∈ Aut(D(0)) are as in Construction 2.17(23).
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Define E = lim
−−→n Mr(m), with respect to the maps a 7→ diag(a, a, . . . , a), with a repeated l(n) times.

The direct system defining D(0) is the direct sum of two copies of the direct system just defined, so

D(0) ∼= E ⊕ E and Aff(T(D(0)))∼= Aff(T(E ⊕ E)).

Since E is a UHF algebra, we have Aff(T(E))∼=R with the usual order and order unit 1. Using idAff(T(E))

in place of ζ (0)0 above, we get an automorphism of Aff(T(D(0))). But this automorphism is just θ̂ (0).
We claim that ζ (0) ◦ µ̂(0) = µ̂(0) ◦ θ̂ (0). To prove the claim, we work with

Aff(T(E))⊕Aff(T(E)) and Aff(T(A))⊕Aff(T(B))

in place of Aff(T(D(0))) and Aff(T(C (0))), but keep the same names for the maps.
Since µ(0) : E ⊕ E → A⊕ B is the direct sum of unital maps from the first summand to A and the

second summand to B, the map µ̂(0) is similarly a direct sum of maps Aff(T(E))→ Aff(T(A)) and
Aff(T(E))→ Aff(T(B)). Let e and f be the order units of Aff(T(A)) and Aff(T(B)). The unique
positive order unit preserving maps Aff(T(E))→ Aff(T(A)) and Aff(T(E))→ Aff(T(B)) are α 7→ αe
and β 7→ β f for α, β ∈ R. Therefore µ̂(0)(α, β)= (αe, β f ). Since ζ (0)0 is order unit preserving, we have
ζ
(0)
0 (e)= f , so

ζ (0)(αe, β f )= (βe, α f )= µ̂(0)(β, α)= (µ̂(0) ◦ θ̂ (0))(α, β).

The claim follows.
Using conditions (4) and (13) in Construction 1.1, Lemma 2.16, and Proposition 2.15, we get isomor-

phisms
ρ : Aff(T(D(0)))→ Aff(T(D)) and σ : Aff(T(C (0)))→ Aff(T(C))

such that µ̂ ◦ ρ = σ ◦ µ̂(0). Define

η = ρ ◦ θ̂ (0) ◦ ρ−1
∈ Aut(Aff(T(D))) and ζ = σ ◦ ζ (0) ◦ σ−1

∈ Aut(Aff(T(C))).

A calculation now shows that the claim above implies

ζ ◦ µ̂= µ̂ ◦ η. (3-8)

We also have ζ ◦ ζ = idAff(T(C)).
We want to apply Proposition 2.15 with Dn and ϕn,m as in Construction 2.17(21), and ϕ(0)n,m as there in

place of ϕ′n,m , so that D and D(0) are as already given, with Cn = Dn for all n ∈ Z≥0 and ψn,m = ϕn,m

and ψ ′n,m = ϕ
′
n,m for all m and n, and with θn , θ (0)n , θ , and θ (0) from Construction 2.17(23) in place of µn ,

µ′n , µ, and µ′. As before, this application is justified by conditions (4) and (13) in Construction 1.1, and
Lemma 2.16. The outcome is an isomorphism ρ ′ : Aff(T(D(0)))→ Aff(T(D)) such that

θ̂ = ρ ′ ◦ θ̂ (0) ◦ (ρ ′)−1. (3-9)

We claim that η = θ̂ . The “right” way to do this is presumably to show that ρ ′ = ρ above, but the
following argument is easier to write. We have

Aff(T(D))∼= Aff(T(D(0)))∼= R2,
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with order (α, β)≥ 0 if and only if α ≥ 0 and β ≥ 0 and order unit (1, 1). Since the state space S(R2)

of R2 with this order unit space structure is an interval, and automorphisms of order unit spaces preserve
the extreme points of the state space, there is only one possible action of a nontrivial automorphism of R2

on S(R2). Theorem 2.4 implies that R2 ∼=Aff(S(R2)), so there is only one nontrivial automorphism of R2.
Since θ̂ (0) is nontrivial, so is θ̂ by (3-9), and so is η by its definition. The claim follows.

The claim and (3-8) imply

ζ ◦ µ̂= µ̂ ◦ θ̂ . (3-10)

Passing to state spaces and applying Theorem 2.4, we get an affine homeomorphism H : T(C)→ T(C)
such that ζ( f ) = f ◦ H for all f ∈ Aff(T(C)), and moreover H ◦ H = idT(C). By Lemma 2.18(4),
the expression µ∗ ◦ θ∗ ◦ (µ∗)−1 is a well-defined automorphism of K∗(C), of order 2. We claim that
F = (µ∗ ◦θ∗ ◦ (µ∗)−1, H) is an order two automorphism of Ell(C). We use the notation of Definition 3.1
for the Elliott invariant of a C∗-algebra; in particular, ρC and ρD are not related to the maps ρ and ρ ′

above. The only part needing work is the compatibility condition (3-1) in Definition 3.1, which amounts
to showing that

ρC ◦µ∗ ◦ θ∗ ◦ (µ∗)
−1
= ζ ◦ ρC .

To see this, we calculate, using at the second and last steps the notation of Definition 2.5 and the fact that
the morphisms of Elliott invariants defined by µ and θ satisfy (3-1) in Definition 3.1, and using (3-10) at
the third step,

ζ ◦ ρC = ζ ◦ ρC ◦µ∗ ◦ (µ∗)
−1
= ζ ◦ µ̂ ◦ ρD ◦ (µ∗)

−1

= µ̂ ◦ θ̂ ◦ ρD ◦ (µ∗)
−1
= ρC ◦µ∗ ◦ θ∗ ◦ (µ∗)

−1,

as desired.
Thus, we have constructed an automorphism F of Ell(C) of order 2. It remains to show that F is not

induced by any automorphism of C.
Using (3-10) on the last components, one easily sees that F ◦ µ∗ = µ∗ ◦ θ∗. Let q and q⊥ be

as in Notation 1.13. In the construction of D as in Construction 2.17(21), set e = ϕ∞,0((1, 0)) and
e⊥ = 1− e = ϕ∞,0((0, 1)). Then θ(e)= e⊥, µ(e)= q , and µ(e⊥)= q⊥. Therefore F([q])= [q⊥].

Suppose now that there exists an automorphism α such that α∗ = F. Then [α(q)] = [q⊥]. By
Lemma 1.17, α(q) is unitarily equivalent to q⊥. Let u be a unitary such that uα(q)u∗ = q⊥. Thus,
since α(q Aq)= α(q)Aα(q)= u∗q⊥Aq⊥u, it follows that the q Aq and q⊥Aq⊥ have the same radius of
comparison. By (3-7), this contradicts Lemmas 1.15 and 1.16. □

Remark 3.6. One can easily check that, with C as in the proof of Theorem 3.2, there is a unique
automorphism of Ell(C) whose component automorphism of the tracial state space is as in the proof.
Therefore the conclusion can be slightly strengthened: there is an automorphism of T(C) which is
compatible with an automorphism of Ell(C) but which is not induced by any automorphism of C.

Question 3.7. Does there exist a compact metric space X and a minimal homeomorphism h : X → X
such that the crossed product C∗(Z, X, h) has the same features as the example we construct here?
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Our construction provides an example of an automorphism of order 2 of the Elliott invariant which is
not induced by any automorphism of the C*-algebra. The question of whether there exists an example of
such an automorphism of the invariant which is induced by an automorphism of the algebra but not by
one of order 2 is an older question by Blackadar, which we record below. For Kirchberg algebras in the
UCT class, it is known that any order two automorphism of the Elliott invariant is induced by an order
two automorphism of the C*-algebra [Benson et al. 2003]; also see [Katsura 2008] for a generalization to
actions of many other finite groups. However, very little seems to be known in the stably finite case, even
for classifiable C*-algebras (and in fact even for AF algebras).

Question 3.8 (Blackadar). Does there exist a simple separable stably finite unital nuclear C∗-algebra C
and an automorphism F of Ell(C) such that:

(1) F ◦ F is the identity morphism of Ell(C).

(2) There is an automorphism α of C such that α∗ = F.

(3) There is no α as in (2) which in addition satisfies α ◦α = idC .

Can such an algebra be chosen to be AH and have stable rank 1?

Our method of proof suggests that, instead of being just a number, the radius of comparison should
be taken to be a function from V (A) to [0,∞]. If one uses the generalization to nonunital algebras in
[Blackadar et al. 2012, Section 3.3], one could presumably even get a function from Cu(A) to [0,∞].
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