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PARTIAL REGULARITY OF LERAY–HOPF WEAK SOLUTIONS TO THE
INCOMPRESSIBLE NAVIER–STOKES EQUATIONS WITH HYPERDISSIPATION

WOJCIECH S. OŻAŃSKI

We show that if u is a Leray–Hopf weak solution to the incompressible Navier–Stokes equations with
hyperdissipation α ∈

(
1, 5

4

)
then there exists a set S ⊂ R3 such that u remains bounded outside of S at each

blow-up time, the Hausdorff dimension of S is bounded above by 5 − 4α and its box-counting dimension
is bounded by 1

3 (−16α2
+ 16α+ 5). Our approach is inspired by the ideas of Katz and Pavlović (Geom.

Funct. Anal. 12:2 (2002), 355–379).

1. Introduction

We are concerned with the incompressible Navier–Stokes equations with hyperdissipation,

ut + (−1)αu + (u · ∇)u + ∇ p = 0 in R3,

div u = 0,
(1-1)

where α ∈
(
1, 5

4

)
. The equations are equipped with an initial condition u(0)= u0, where u0 is given. We

note that the symbol (−1)α is defined as the pseudodifferential operator with the symbol (2π)2α|ξ |2α in
the Fourier space, which makes (1-1) a system of pseudodifferential equations.

It is well known that the hyperdissipative Navier–Stokes equations (1-1) are globally well-posed for
α ≥

5
4 , which was proved by Lions [1969]; see also [Tao 2009]. The question of well-posedness for

α < 5
4 , including the case α = 1 of the classical Navier–Stokes equations, remains open.

The first partial regularity result for the hyperdissipative (1-1) model was given by Katz and Pavlović
[2002], who proved that the Hausdorff dimension of the singular set in space at the first blow-up time
of a local-in-time strong solution is bounded by 5 − 4α for α ∈

(
1, 5

4

)
. Recently Colombo et al. [2020]

showed that if α ∈
(
1, 5

4

]
, u is a suitable weak solution of (1-1) on R3

× (0,∞) and

S′
:= {(x, t) : u is unbounded in every neighbourhood of (x, t)}

denotes the singular set in space-time then P5−4α(S′)= 0, where Ps denotes the s-dimensional parabolic
Hausdorff measure. This is a stronger result than that of [Katz and Pavlović 2002] since it is concerned
with the space-time singular set S′ (rather than the singular set in space at the first blow-up), it is a
statement about the Hausdorff measure of the singular set (rather than merely the Hausdorff dimension)
and it includes the case α =

5
4 (in which case the statement, P0(S′)= 0, means that the singular set is

in fact empty, and so (1-1) is globally well-posed). The main ingredient of the notion of a “suitable weak
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solution” in the approach of [Colombo et al. 2020] is a local energy inequality, which is a generalisation
of the classical local energy inequality in the Navier–Stokes equations (i.e., when α = 1) to the case
α ∈

(
1, 5

4

)
. The fractional Laplacian (−1)α is incorporated in the local energy inequality using a version

of the extension operator introduced in [Caffarelli and Silvestre 2007]; see also [Yang 2013; Kwon and
Ożański 2022; Colombo et al. 2020, Theorem 2.3]. Colombo et al. [2020] also showed a bound on the
box-counting dimension of the singular set

dB(S′
∩ (R3

× [t,∞)))≤
1
3(−8α2

− 2α+ 15) (1-2)

for every t > 0. We note that this bound reduces to 0 at α =
5
4 and converges to 5

3 as α→ 1+, which is the
bound that one can deduce from the classical result of [Caffarelli et al. 1982]; see [Robinson and Sadowski
2007] or Lemma 2.3 in [Ożański 2019] for a proof. We note that this bound (for the Navier–Stokes
equations) has recently been improved by [Wang and Yang 2019]

(
to the bound dB(S)≤

7
6

)
.

Here, we build on the work of [Katz and Pavlović 2002], as their ideas offer an entirely different
viewpoint on the theory of partial regularity of the Navier–Stokes equations (or the Navier–Stokes
equations with hyper- and hypodissipation), as compared to the early work of Scheffer [1976a; 1976b;
1977; 1978; 1980] and the celebrated result of [Caffarelli et al. 1982], as well as alternative approaches of
[Vasseur 2007; Lin 1998; Ladyzhenskaya and Seregin 1999] and numerous extensions of the theory, such
as [Colombo et al. 2020; Tang and Yu 2015; Kwon and Ożański 2022]. Instead it is concerned with the
dynamics (in time) of energy packets that are localised both in the frequency space and the real space R3,
and with studying how these packets move in space, as well as transfer the energy between the high and
low frequencies. An important concept in this approach is the so-called barrier (see (3-23)), which, in a
sense, quarantines a fixed region in space in a way that prevents too much energy flux entering the region.
This property is essential in showing regularity at points outside of the singular set.

In order to state our results, we will say that u is a (global-in-time) Leray–Hopf weak solution of (1-1) if

(i) it satisfies the equations in a weak sense, namely∫ t

0

∫ (
−uϕt + (−1)α/2u · (−1)α/2ϕ+ (u · ∇)u ·ϕ

)
=

∫
u0 ·ϕ−

∫
u(t) ·ϕ(t)

holds for all t > 0 and all ϕ ∈ C∞

0 ([0,∞)×R3
; R3), with divϕ(s)= 0 for all s ≥ 0 (where we wrote∫

≡
∫

R3 for brevity),

(ii) the strong energy inequality,

1
2∥u(t)∥2

+

∫ t

s
∥(−1)α/2u(τ )∥2 dτ ≤

1
2∥u(s)∥2 (1-3)

holds for almost every s ≥ 0 (including s = 0) and every t > s. Here ∥ · ∥ denotes the ∥ · ∥L2(R) norm.

We note that Leray–Hopf weak solutions admit intervals of regularity; namely for every Leray–Hopf
weak solution there exists a family of pairwise disjoint intervals (ai , bi )⊂ (0,∞) such that u coincides
with some strong solution of (1-1) on each interval and

H(5−4α)/2α
(

R \

⋃
i

(ai , bi )

)
= 0; (1-4)
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see Theorem 2.6 and Lemma 4.1 in [Jiu and Wang 2014] for a proof. This is a generalisation of
the corresponding statement in the case α = 1 (i.e., in the case of the Navier–Stokes equations); see
Section 6.4.3 in [Ożański and Pooley 2018] and Chapter 8 in [Robinson et al. 2016].

Given u0 ∈ L2(R3) with div u0 = 0 there exists at least one global-in-time Leray–Hopf weak solution
(see Theorem 2.2 in [Colombo et al. 2020], for example). We denote by S the singular set in space of u
at single blow-up times, namely

S :=

⋃
i

Si , (1-5)

where

Si :=
{

x ∈ R3
: u is unbounded in U ×

(1
2(ai + bi ), bi

)
for any neighbourhood U of x

}
denotes the singular set. In particular, if x ̸∈ S then lim supt→b−

i
∥u(t)∥L∞(U ) ≤ ci for every i and U ∋ x .

The first of our main results is the following.

Theorem 1.1. Let u be a Leray–Hopf weak solution of (1-1) with α ∈
(
1, 5

4

)
and an initial condition

u0 ∈ H 1(R3), and let ε > 0. There exists C > 0 and a family of collections Bj of cubes Q ⊂ R3 of
sidelength 2− j (1+ε) such that

#Bj ≤ C 2 j (5−4α+ε)

for each j ∈ N, and
S ⊂ lim sup

j→∞

⋃
Q∈Bj

Q. (1-6)

In particular, dH (S)≤ 5 − 4α.

Here dH stands for the Hausdorff dimension, and we recall that lim sup j→∞ G j :=
⋂

k≥0
⋃

j≥k G j

denotes the set of points belonging to infinitely many G j ’s. It is well known (see Lemma 3.1 in [Katz
and Pavlović 2002], for example) that (1-6) implies that dH (S)≤ 5 − 4α+ ε, from which the last claim
of the theorem follows by sending ε→ 0.

We note that C might depend on ε, but it does not depend on the interval of regularity (ai , bi ), which
gives us a control of the structure of the singular sets Si that is uniform across blow-ups in time of a
Leray–Hopf weak solution. This is an improvement of the result of Katz and Pavlović [2002], who
obtained such control for a given strong solution, and so for each interval of regularity (ai , bi ) of a
Leray–Hopf weak solution their result implies existence of Ci > 0 such that Si ⊂ lim sup j→∞

⋃
Q∈B(i)j

Q
for some collections B(i)j of cubes of sidelength 2− j (1+ε) satisfying B(i)j ≤ Ci 2 j (5−4α+ε) for all j . One
could therefore expect that the constants Ci become unbounded as i varies (for example in a scenario of a
limit point of the set of blow-up times {bi }), and Theorem 1.1 shows that it does not happen.

We note, however, that Theorem 1.1 does not estimate the dimension of the singular set at the blow-up
time which is not an endpoint bi of an interval of regularity (but instead a limit of a sequence of such bi ’s).
In other words, if x ̸∈ S, U ∋ x is a small open neighbourhood of x and {(ai , bi )}i is a collection of
consecutive intervals of regularity of u, we show that supU×((ai +bi )/2,bi )

|u| = ci < ∞, but our result
does not exclude the possibility that ci → ∞ as i → ∞. It also does not imply boundedness of |u(t)|
at times t near the left endpoint ai of any interval of regularity (ai , bi ). These issues are related to the
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fact that inside the barrier we still have to deal with infinitely many energy packets (i.e., infinitely many
frequencies and cubes in R3). Thus, supposing that the estimate on the energy packets inside the barrier
breaks down at some t , we are unable to localize the packet (i.e., the frequency and the cube) on which
the growth occurs near t , unless t is located inside an interval of regularity; see Step 1 of the proof of
Theorem 3.7 for details.

The proof of Theorem 1.1 is inspired by the strategy of the proof of [Katz and Pavlović 2002], which
we extend to the case of Leray–Hopf weak solutions and we use a more robust main estimate. The main
estimate controls the time derivative of the L2 norm of the Littlewood–Paley projection Pj u combined
with a cut-off in space (the energy packet); see (3-2). We show that such norm is continuous in time
(regardless of putative singularities of a Leray–Hopf weak solution), which makes the main estimate
valid for all t > 0. Inspired by [Katz and Pavlović 2002], we then define bad cubes and good cubes (see
(3-15)) and show that we have a certain more-than-critical decay on a cube that is good and has some
good ancestors. We then construct Bj as a certain cover of bad cubes and prove (1-6).

Our second main result is concerned with the box-counting dimension. We let

S(k) :=
⋃
i≤k

Si . (1-7)

Theorem 1.2. Let u be as in Theorem 1.1. Then dB(S(k))≤
1
3(−16α2

+ 16α+ 5) for every k ∈ N.

We prove the theorem by sharpening the argument outlined below Theorem 1.1. We recall that the
box-counting dimension dB is concerned with covering the given set by a collection of balls of radius r ,

dB(K ) := lim sup
r→0

log N (K , r)
− log r

, (1-8)

where N (K , r) denotes the minimal number of balls (or boxes) of radius r required to cover K. In this con-
text, one can actually use the families Bj from (1-6) to deduce that dB(S(k))≤ 1

9(−64α3
+96α2

−48α+35)
for every k, which we discuss in detail in Section 4. This is however a worse estimate than claimed in
Theorem 1.2.

In fact, in Section 4 we improve this estimate by constructing refined families Cj that, in a sense, give a
more robust control of the low modes, which reduces the number of cubes required to cover the singular
set and hence improve the bound on dB(S(k)). See the informal discussion following Proposition 4.1 for
more insight about this improvement.

We note that we can only estimate dB(S(k)) (rather than dB(S)) because of the localisation issue
described above. To be more precise, for each sufficiently small δ > 0 we can construct a family of cubes
of sidelength δ > 0 that covers the singular set when t approaches a singular time, and that has cardinality
less than or equal to δ(−16α2

+16α+5)/3+ε for any given ε > 0. This family can be constructed independently
of the interval of regularity, but given x outside of this family we can show that the solution is bounded
in a neighbourhood of x if the choice of (sufficiently small) δ is dependent on the interval of regularity.
This gives the limitation to only finite number of intervals of regularity in the definition of S(k).

We note that the result of [Colombo et al. 2020] is stronger than our result in the sense that it is
concerned with the space-time singular set S′ (rather than the singular set S in space), it is concerned
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with the parabolic Hausdorff measure of S′ (rather than merely the bound on dH (S′)) and its estimate of
dB(S′) is sharper than our estimate on dB(Sk).

However, our result is stronger than [Colombo et al. 2020] in the sense that it applies to any Leray–Hopf
weak solutions (rather than merely suitable weak solutions). In other words we do not use the local energy
inequality, which is the main ingredient of [Colombo et al. 2020]. Also, our approach does not include
any estimates of the pressure function. In fact we only consider the Leray projection of the first equation
in (1-1), which eliminates the pressure. Furthermore, our approach can be thought of as an extension of
the global regularity of (1-1) for α > 5

4 . In fact, the following corollary can be proved almost immediately
using our main estimate; see Section 3F.

Corollary 1.3. If α > 5
4 then (1-1) is globally well-posed.

We also point out that our estimate on the box-counting dimension, dB(Sk)≤
1
3(−16α2

+ 16α+ 5),
converges to 5

3 as α → 1+, just as (1-2).
Finally, we also correct a number of imprecisions appearing in [Katz and Pavlović 2002]; see for

example Remark 3.4 and Step 1 of the proof of Theorem 3.7.
The structure of the article is as follows. In Section 2 we introduce some preliminary concepts

including the Littlewood–Paley projections, paraproduct decomposition, and Bernstein inequalities, as
well as a number of analytic tools that allow us to manipulate quantities involving cut-offs in both the real
space and the Fourier space, which includes estimates of the errors when one moves a Littlewood–Paley
projection across spatial cut-offs and vice versa. We prove the first result, Theorem 1.1, in Section 3. We
prove Corollary 1.3 in Section 3F and we prove the second result, Theorem 1.2, in Section 4.

2. Preliminaries

Unless specified otherwise, all function spaces are considered on the whole space R3. In particular
L2

:= L2(R3). We do not use the summation convention. We will write ∂i :=∂xi , B(R) :={x ∈R3
: |x |≤ R},∫

:=
∫

R3 , and ∥ · ∥p := ∥ · ∥L p(R3). We reserve the notation “∥ · ∥” for the L2 norm, that is, ∥ · ∥ := ∥ · ∥2.
We denote any positive constant by c (whose value may change at each appearance). We point out

that c might depend on u0 and α, which we consider fixed throughout the article. As for the constants
dependent on some parameters, we sometimes emphasise the parameters by using subscripts. For example,
ck,q is any constant dependent on k and q .

We denote by e( j) (a j -negligible error) any quantity that can be bounded (in absolute value) by
cK 2−K j for any given K > 0.

We say that a differential inequality f ′
≤ g on a time interval I is satisfied in the integral sense if

f (t)≤ f (s)+
∫ t

s
g(τ ) dτ for every t, s ∈ I with t > s. (2-1)

We recall that Leray–Hopf weak solutions are weakly continuous with values in L2. Indeed, it follows
from part (i) of the definition that∫

u(t)ϕ is continuous for every ϕ ∈ C∞

0 (R
3) with divϕ = 0.
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This is also true if divϕ ̸=0, as in this case one can apply the Helmholtz decomposition to write ϕ=φ+∇ψ ,
where divφ = 0 (then

∫
u(t)φ is continuous and

∫
u(t)∇ψ = 0 since u(t) is divergence-free). Thus,

since part (ii) gives that {u(t)}t≥0 is bounded in L2, weak continuity of u(t) follows.

2A. Littlewood–Paley projections. Given f ∈ L1(R3), we denote by f̂ its Fourier transform, i.e.,

f̂ (ξ) :=

∫
f (x)e−2π i x ·ξ dx, ξ ∈ R3,

and by f̌ its inverse Fourier transform, i.e., f̌ (x) := f̂ (−x). Let h ∈ C∞(R; [0, 1]) be any function such
that h(x)= 1 for x < 1 and h(x)= 0 for x > 2. We set p(x) := h(|x |)− h(2|x |), where x ∈ R3, we let

pj (ξ) := p(2− jξ) for j ∈ Z, (2-2)

and we let Pj (the j-th Littlewood–Paley projection) be the corresponding multiplier operator, that is,

P̂j f (ξ) := pj (ξ) f̂ (ξ).

By construction, supp pj ⊂ B(2 j+1)\ B(2 j−1). We note that
∑

j∈Z pj = 1, and so formally
∑

j∈Z Pj = id.
We also define

P̃j ≡ Pj±2 :=

j+2∑
k= j−2

Pk, Pj−4, j+2 :=

j+2∑
k= j−4

Pk, P≤ j :=

j∑
k=−∞

Pk, P≥ j :=

∞∑
k= j

Pk, (2-3)

and analogously for p̃j , pj−4, j+2, p≤ j , p≥ j . By a direct calculation one obtains that

p̌j (y)= 23 j p̌(2 j y) (2-4)

for all j ∈ Z, y ∈ R3. In particular ∥ p̌j∥1 = c and so, since Pj f = p̌j ∗ f (where “∗” denotes the
convolution), Young’s inequality for convolutions gives

∥Pj u∥q ≤ c∥u∥q (2-5)

for any q ∈ [1,∞]. Moreover, given K > 0 there exists cK > 0 such that

| p̌j (y)| ≤ cK (2 j
|y|)−2K 23 j , (2-6)

|∂i p̌j (y)| ≤ cK (2 j
|y|)−2K 24 j (2-7)

for all j ∈ Z, y ̸= 0 and i = 1, 2, 3. Indeed, the case j = 0 follows by noting that

e2π iy·ξ
= (−4π2

|y|
2)−K1K

ξ e2π iy·ξ

and calculating

| p̌(y)| =

∣∣∣∫ p(ξ)e2π iy·ξ dξ
∣∣∣ = (4π2

|y|
2)−K

∣∣∣∫ 1K p(ξ)e2π iy·ξ dξ
∣∣∣ ≤ cK |y|

−2K
∫

B(2)
|1K p| = cK |y|

−2K

(and similarly |∂i p̌(y)| ≤ cK |y|
−2K ), where we have integrated by parts 2K times, and the case j ̸= 0

follows from (2-4). Using (2-6) and (2-7) we also get

∥ p̌j∥Lq (B(d)c) ≤ CK ,q(d2 j )−2K+3/q 23 j (q−1)/q (2-8)
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and
∥∂i p̌j∥Lq (B(d)c) ≤ CK ,q(d2 j )−2K+3/q 2 j (1+n(q−1)/q), (2-9)

respectively, for any K > 0, d > 0, i = 1, 2, 3, j ∈ Z and q ≥ 1. Indeed∫
R3

\B(d)
| p̌j (y)|q dy ≤ CK ,q2− jq(2K−3)

∫
|y|≥d

|y|
−2K q dy = CK ,q2− jq(2K−3)d−2K q+3,

from which (2-8) follows (and (2-9) follows analogously). We note that the same is true when p is
replaced by any compactly supported multiplier.

Corollary 2.1. Let λ ∈ C∞

0 (R
3) and, given j ∈ Z, set λj (ξ) := λ(2− jξ). Then, given d > 0,

∥λ̌j∥L2(R3\B(d)) ≤ cK 2− j (2K−3)d−2K+3/2.

We will denote by T the Leray projection, that is,

T̂ f (ξ) :=

(
I −

ξ ⊗ ξ

|ξ |2

)
f̂ , (2-10)

where f : R3
→ R3, and I denotes the 3 × 3 identity matrix.

2B. Bernstein inequalities. Here we point out classical Bernstein inequalities on R3:

∥Pj f ∥q ≤ c 23 j (1/p−1/q)
∥Pj f ∥p, (2-11)

∥P≤ j f ∥q ≤ c 23 j (1/p−1/q)
∥P≤ j f ∥p (2-12)

for any 1 ≤ p ≤ q ≤ ∞. We refer the reader to Lemma 2.1 of [Bahouri et al. 2011] for a proof.

2C. The paraproduct formula. Here we briefly describe the Bony decomposition formula, that is, we
concern ourselves with a structure of a Littlewood–Paley projection of a product of two functions, Pj ( f g).
One could obviously write f =

∑
k∈Z Pk f (and similarly for g) to obtain that

Pj ( f g)= Pj

( ∑
k,m∈Z

Pk f Pm g
)
. (2-13)

However, since functions pj , pk have pairwise disjoint supports for many pairs j, k ∈ Z, one could
speculate that some of the terms on the right-hand side of (2-13) vanish. This is indeed the case and

Pj ( f g)= Pj

(
Pj±2 f P≤ j−5g + P≤ j−5 f Pj±2g + Pj−4, j+2 f Pj±4g +

∑
k≥ j+3

Pk f Pk±2g
)

= Pj (Kloc,low + Klow,loc + Kloc + Khh), (2-14)

which is also known as Bony’s decomposition formula. For the sake of completeness we prove the formula
below. Heuristically speaking, Kloc,low corresponds to interactions between local (i.e., around j) modes
of f and low modes of g, Klow,loc to interactions between low modes of f and local modes of g, Kloc to
local interactions and Khh to interactions between high modes; see Figure 1 for a geometric interpretation
of (2-14). We now prove (2-14). For this it is sufficient to show that

Pj (Pk f Pm g)= 0 for (k,m) ∈ R1 ∪ R2 ∪ R3, (2-15)
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m

R2

Kloc
( j, j)

Klow,loc

Khh

R3

Kloc,low

R1

k

Figure 1. Sketch of the interpretation of the terms on the right-hand side of (2-14).
The regions R1, R2, R3 (consisting of grey dots) correspond to pairs (k,m) for which
Pj (Pk f Pm g) vanishes; see the discussion following (2-15).

where R1, R2, R3 are as sketched in Figure 1. The Fourier transform of w := Pj (Pk f Pm g) is

ŵ(ξ)= pj (ξ)
∫

pk(η) f̂ (η)pm(ξ − η)ĝ(ξ − η) dη.

We can assume that |ξ | ∈ (2 j−1, 2 j+1) (as otherwise pj (ξ) vanishes) and that |η| ∈ (2k−1, 2k+1) (as
otherwise pk(η) vanishes).

Case 1: (k,m) ∈ R1. Suppose that k ≥ m (the opposite case is analogous). Then j ≥ k + 3 (see Figure 1)
and so

|ξ − η| ≥ |ξ | − |η| ≥ 2 j−1
− 2k+1

≥ 2k+2
− 2k+1

= 2k+1
≥ 2m+1.

Thus pm(ξ − η) vanishes.

Case 2: (k,m) ∈ R2 ∪ R3. Suppose that (k,m) ∈ R2 (the case (k,m) ∈ R3 is analogous). Then m ≥ k +3
and m ≥ j + 3 (see Figure 1) and so

|ξ − η| ≤ |ξ | + |η| ≤ 2 j+1
+ 2k+1

≤ 2 · 2m−2
= 2m−1.

Hence pm(ξ − η) vanishes as well, and so (2-15) follows.

2D. Moving bump functions across Littlewood–Paley projections. Here we show the following:

Lemma 2.2. Let φ1, φ2 : R3
→ [0, 1] be such that their supports are separated by at least d > 2− j. Then

∥φ1 Pj (φ2 f )∥q ≤ cK (d2 j )−2K+3
∥ f ∥q
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for all q ∈ [1,∞], j ∈ Z, K > 0 and f ∈ Lq(R3). Furthermore, if |∇φ2| ≤ c d−1 then

∥φ1 Pj (φ2∇ f )∥q ≤ cK (d2 j )−2K+32 j
∥ f ∥q .

We will only use the lemma (and the corollary below) with q = 2 or q = 1.

Proof. We note that

φ1 Pj (φ2 f )(x)= φ1(x)
∫

suppφ2

p̌j (x − y)φ2(y) f (y) dy

= φ1(x)
∫

suppφ2

χ|x−y|>d p̌j (x − y)φ2(y) f (y) dy (2-16)

since the supports of φ1, φ2 are at least d apart. Thus using Young’s inequality for convolutions

∥φ1 Pj (φ2 f )∥q ≤ ∥ p̌j∥L1(B(d)c)∥φ2 f ∥q ≤ cK (d2 j )−2K+3
∥ f ∥q

for any K > 0, where we used (2-8). This shows the first claim of the lemma. The second claim follows by
replacing f by ∇ f in (2-16), integrating by parts, and using Young’s inequality for convolutions to give

∥φ1 Pj (φ2∇ f )∥q ≤ c∥∇ p̌j∥L1(B(d)c)∥φ2 f ∥q + ∥ p̌j∥L1(B(d)c)∥∇φ2 f ∥q

≤ cK (d2 j )−2K+32 j
∥ f ∥q ,

where we also used the assumption that |∇φ2| ≤ c d−1 < c 2 j . □

In fact the same result is valid when Pj is replaced by the composition of Pj with any 0-homogeneous
multiplier (e.g., the Leray projector).

Corollary 2.3. Let M be a bounded, 0-homogeneous multiplier (i.e., M̂ f (ξ)= m(ξ) f̂ (ξ), where m(λξ)=
m(ξ) for any λ> 0). Let φ1, φ2 : R3

→ [0, 1] be such that their supports are separated by at least d > 2− j.
Then

∥φ1 M Pj (φ2∇ f )∥q ≤ cK (d2 j )−2K+32 j
∥ f ∥q

for all q ∈ [1,∞], j ∈ Z, K > 0 and f ∈ Lq(R3).

2E. Moving Littlewood–Paley projections across spatial cut-offs. We say that φ ∈ C∞

0 (R
3) is a d-cutoff

if diam(suppφ)≤ c d and |Dlφ| ≤ cld−l for any l ≥ 0.
We denote by ed( j) any quantity that can be bounded (in absolute value) by cK 2cj (d2 j )c−K for any

given K > 0. The point of such notation is that it will articulate the dependence of the size of the error in
our main estimate (see Proposition 3.1) on both j and d .

In this section we show that, roughly speaking, we can move Littlewood–Paley projections Pj across
d-cutoffs as long as d > 2− j.

Lemma 2.4. Given a d-cutoff φ, q ∈ [1,∞] and multiindices α, β, with |β|, |α| ≤ 3,

∥(1 − P̃j )Dα(φPj Dβ f )∥q ≤ ed( j)∥ f ∥q

for every j .
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Proof. We write φ = φ1 +φ2, where
φ̂1(ξ) := χ|ξ |≤2 j−2 φ̂(ξ),

φ̂2(ξ) := χ|ξ |>2 j−2 φ̂(ξ).

Note that
∧

(φ1 Pj Dβ f )(ξ)=

∫
φ̂1(ξ − η)pj (η)(2π i)|β|ηβ f̂ (η) dη

is supported in |ξ | ∈ (2 j−2, 2 j+2) (as φ̂1(ξ − η) is supported in {|ξ − η| ≤ 2 j−2
} and pj (η) is supported

in {2 j−1 < |η|< 2 j+1
}). Since p̃j (ξ)= 1 for such ξ , we obtain

φ1 Pj Dβ f = P̃jφ1 Pj Dβ f, (2-17)

and so it suffices to show that

∥(1 − P̃j )Dα(φ2 Pj Dβ f )∥q ≤ ed( j)∥ f ∥q .

We will show that

∥D̂αφ2∥1 ≤ ed( j) (2-18)

for every |α| ≤ 3. Then the claim follows by writing

∥(1 − P̃j )Dα(φ2 Pj Dβ f )∥q ≤

∑
α1+α2=α

∥Dα1φ2 Pj Dα2+β f ∥q

≤

∑
α1+α2=α

∥Dα1φ2∥∞∥Pj Dα2+β f ∥q

≤

∑
|α1|≤3

∥D̂α1φ2∥1 · 26 j
∥ f ∥q ≤ ed( j)∥ f ∥q .

In order to see (2-18) we first note that

|D̂αφ2(ξ)| ≤ c|ξ ||α|

∣∣∣∫ φ2(x)e−2π ix ·ξ dx
∣∣∣

= c|ξ ||α|(4π2
|ξ |2)−K

∣∣∣∫ φ2(x)1K e−2π ix ·ξ dx
∣∣∣

= c|ξ ||α|(4π2
|ξ |2)−K

∣∣∣∫ 1Kφ2(x)e−2π ix ·ξ dx
∣∣∣ ≤ cK |ξ |−2K+|α|d−2K+3.

Thus

∥D̂αφ2∥1 = c
∫

|ξ |>2 j−2
|D̂αφ2(ξ)| ≤ cK d−2K+3

∫
|ξ |>2 j−2

|ξ |−2K+|α|
= cK 23 j (d2 j )−2K+3,

which gives (2-18). □

Similarly one can put the Littlewood–Paley projection “inside the cutoff”. In this case one can prove
a statement similar to Lemma 2.4, but, since we will only need a version with no derivatives, we state
a simplified statement.

Corollary 2.5. Given a d-cutoff φ, ∥Pj (φ(1 − Pj±2) f )∥ ≤ ed( j) for every j .
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Proof. The claim follows using the same decomposition as above, φ = φ1 +φ2. Since
∧

φ(1 − Pj±2) f (ξ)=

∫
φ̂1(ξ − η)(1 − pj±2(η)) f̂ (η) dη,

we see that (since |η| ∈ (−∞, 2 j−2) ∪ (2 j+2,∞)) either |ξ | ≥ |η| − |ξ − η| ≥ 2 j+2
− 2 j−2

≥ 2 j+1 or
|ξ | ≤ |η| + |ξ − η| ≤ 2 j−2

+ 2 j−2
= 2 j−1. In any case pj (ξ)= 0 and so Pj (φ1(1 − ˜̃P j ) f )= 0. The part

involving φ2 can be estimated by ed( j) using the same argument as above. □

2F. Cubes. We denote by Q any open cube in R3. Given a > 1, we denote by aQ the cube with the
same centre as Q and a times larger sidelength. We sometimes write Q(x) to emphasise that cube Q
is centred at a point x ∈ R3. Given an open cube Q of sidelength d > 0, we let φQ ∈ C∞

0 (R
3
; [0, 1]) be

a d-cutoff such that

φQ = 1 on Q, suppφQ ⊂
7
6 Q, and ∥∇

kφQ∥∞ ≤ Ckd−k . (2-19)

Note that
|ξ |k |φ̂Q(ξ)| ≤ ckd3−k for ξ ∈ R3, (2-20)

which can be shown by a direct computation.

2G. Localised Bernstein inequalities. If Q is a cube of sidelength d > 2− j then

∥φQ Pj f ∥q ≤ c 23 j (1/2−1/q)
∥φQ Pj f ∥ + ed( j)∥ f ∥q , (2-21)

due to Lemma 2.4 and the classical Bernstein inequality (2-11).

2H. Absolute continuity. Here we state two lemmas that will help us (in Step 1 of the proof of
Proposition 3.1) in proving the main estimate for Leray–Hopf weak solutions.

Lemma 2.6. Suppose that f : [a, b] → R is continuous and such that f ′
∈ L1(a, b). Then

f (t)= f (s)+
∫ t

s
f ′(τ ) dτ

for every s, t ∈ (a, b).

Proof. This is elementary. □

Lemma 2.7. If u(x, t) is weakly continuous in time on an interval (a, b) with values in L2(R3) then Pj u
is strongly continuous in time into L2(�) on (a, b) for any bounded domain �⊂ R3.

Proof. We note that

∥Pj u(t)− Pj u(s)∥2
L2(�)

=

∫
�

∣∣∣∫ p̌j (x − y)(u(y, t)− u(y, s)) dy
∣∣∣2

dx .

Weak continuity of u(t) gives that the integral inside the absolute value converges to 0 as t → s (for any
fixed x). Furthermore it is bounded by

∥ p̌j∥∥u(t)− u(s)∥ ≤ cj ,
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where we used the Cauchy–Schwarz inequality and the fact that u is bounded in L2 (a property of
functions weakly continuous in L2). Since the constant function c2

j is integrable on �, the claim of the
lemma follows from the dominated convergence theorem. □

3. The proof of the main result

In this section we prove Theorem 1.1; namely we will show that dH (S)≤ 5 − 4α, where S is the singular
set in space of a Leray–Hopf weak solution (recall (1-5)). We will actually show that

dH (S)≤ 5 − 4α+ ε

for any

ε ∈
(
0,min

( 1
3(4α− 4), 1

20

))
. (3-1)

We now fix such ε and we allow every constant (denoted by “c”) to depend on ε.
We say that a cube Q is a j -cube if it has sidelength 2− j (1−ε). The reason for considering such “almost

dyadic cubes” (rather than the dyadic cubes of sidelength 2− j ) is that ed( j) = e( j) for d = 2− j (1−ε)

(which is not true for d = 2− j ). We say that a cover of a set is a j-cover if it consists only of j-cubes.
We denote by Sj (�) any j-cover of � such that #Sj (�)≤ c

( 1
2 diam(�)− j (1−ε)

)3.
Moreover, given a j-cube and k ∈ Z, we denote the k-cube concentric with Q by Qk , that is,

Qk := 2( j−k)(1−ε)Q.

3A. The main estimate. Given a cube Q and j ∈ Z we let

uQ, j := ∥φQ Pj u∥

and we write

uQ, j±2 :=

j+2∑
k= j−2

uQ,k .

We point out that uQ, j is a function of time, which we will often skip in our notation.
We start with a derivation of an estimate for uQ, j for any j ∈ Z and any cube Q of sidelength d>16·2− j.

Proposition 3.1 (main estimate). Let u be a Leray–Hopf weak solution of the hyperdissipative Navier–
Stokes equations (1-1) on the time interval [0,∞) and let d > 16 · 2− j. Then uQ, j is continuous on
[0,∞) and

d
dt

u2
Q, j ≤ −c 22α j u2

Q, j+c uQ, j

(
2 j u3Q/2, j±2

∑
θ j≤k≤ j−5

23k/2umax(Qk ,3Q/2),k

+25 j/2u2
3Q/2, j±4+23 j/2

∑
k≥ j+1

2ku2
3Q/2,k

)
+ediss+

∑
k≥θ j

ed(k)

= −Gdiss+c uQ, j (G low,loc+G loc+Ghh)+ediss+evl+
∑
k≥θ j

ed(k) (3-2)
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is satisfied in the integral sense (recall (2-1)) for any cube Q of side-length d and any j ∈ Z, where

θ :=
2
3(2α− 1 − ε) (3-3)

and
ediss := c 22α j (d2 j )−1u2

3Q/2, j±2,

evl := c 22α j 2−ε j u2
3Q/2, j±2.

Here max
(
Qk,

3
2 Q

)
denotes the larger of the cubes Qk , 3

2 Q, and Gdiss should be thought of as the
dissipation term, G low,loc the interaction between low (i.e., modes k ≤ j −5) and local modes (i.e., modes
j ± 2), G loc the local interactions (i.e., including only the modes j ± 4) and Ghh the interactions between
high modes (i.e., modes k ≥ j).

The role of the parameter θ is to separate the “very low” Littlewood projections from the “low”
Littlewood–Paley projections. That is (roughly speaking), given j ∈ N we will not have to worry about
the Littlewood–Paley projections Pk with k < θ j (i.e., they will be effortlessly absorbed by the dissipation
at the price of the error term evl (“vl” here stands for “very low”); see (3-12)–(3-13) below for a detailed
explanation), which is the reason why such modes are not included in G low,loc. In fact G low,loc is (roughly
speaking) the most dangerous term, as it represents, in a sense, the injection of energy from low scales to
high scales, and we will need to use Gdiss to counteract it; see Step 5 in the proof of Theorem 3.7.

The error term ediss appearing in the estimate is the error appearing when estimating the dissipation
term, and it cannot be estimated by ed( j). Its appearance is a drawback of the main estimate, but in our
applications (in Theorems 3.3 and 3.7) it can be absorbed by Gdiss.

Proof of Proposition 3.1. Recall (1-4) that a Leray–Hopf weak solution admits intervals of regularity.

Step 1: We show that it is sufficient to show (3-2) on each of the intervals of regularity.
On each interval of regularity (a, b) we apply the Leray projection (recall (2-10) to the first equation

of (1-1) to obtain
ut + (−1)αu + T [(u · ∇)u] = 0.

Multiplying by Pj (φ
2
Q Pj u) and integrating in space we obtain (at any given time)

1
2

d
dt

u2
Q, j = −

∫
(−1)αu Pj (φ

2
Q Pj u)−

∫
T [(u · ∇)u] Pj (φ

2
Q Pj u)=: I + J.

We note that I, J ∈ L1(0, T ) for every T > 0. Indeed, by brutal estimates

|J | =

∣∣∣∫ φQ Pj T [(u · ∇)u]φ2
Q Pj u

∣∣∣
≤ ∥Pj T [(u · ∇)u]∥1∥Pj u∥∞ ≤ c∥u∥∥∇u∥ · 23 j/2

∥Pj u∥ ≤ c 23 j/2
∥∇u∥

(where we used Bernstein inequality (2-11) in the third line), which is integrable on (0, T ) for every
T > 0. That I ∈ L1(0, T ) for every T > 0 is a consequence of Step 2 below. Thus, since u(t) is weakly
continuous with values in L2 (recall Section 2), Lemma 2.6 gives that (3-2) is valid (in the integral sense)
on [0,∞).

Thus it suffices to show that I + J can be estimated by the right-hand side of (3-2).



760 WOJCIECH S. OŻAŃSKI

Step 2: We show that I ≤ −Gdiss + ediss + ed( j). (Note that this gives in particular that I ∈ L1(0,∞),
since (trivially) uQ′, j ≤ c for every cube Q′ and every j .)

We write

I = −

∫
φQ(−1)

αPj u φQ Pj u

= −

∫
(−1)α P̃j (φQ Pj u) φQ Pj u −

∫
(−1)α(1 − P̃j )(φQ Pj u) φQ Pj u −

∫
[φQ, (−1)

α
]Pj u φQ Pj u

=: I1 + I2 + I3.

Note that, due to the Plancherel theorem

I1 = −c
∫

|ξ |2α p̃j (ξ)|v̂(ξ)|
2 dξ ≤ −c 22α j

∫
p̃j (ξ)|v̂(ξ)|

2 dξ

= −c 22α j
∫

P̃jv · v = −c 22α j u2
Q, j + c 22α j

∫
(1 − P̃j )v · v

≤ −c 22α j u2
Q, j + c 22α j

∥(1 − P̃j )v∥ = −Gdiss + ed( j),

where we wrote v := φQ Pj u for brevity, and we used the fact that ∥v∥ ≤ c (recall (1-3)) in the last line,
as well as Lemma 2.4 in the last equality.

Step 2.1: We show that I2 ≤ ed( j).
We write

I2 ≤ ∥(−1)α(1 − P̃j )(φQ Pj u)∥uQ, j ,

and we will show that
∥(−1)α(1 − P̃j )(φQ Pj u)∥ ≤ ed( j). (3-4)

(This completes this step as uQ, j ≤ c, as above.) Indeed, (3-4) follows in a way similar to Lemma 2.4 by
taking the decomposition

φQ = φ1 +φ2,

where
φ̂1(ξ) := χ|ξ |≤2 j−2 φ̂Q(ξ),

φ̂2(ξ) := χ|ξ |>2 j−2 φ̂Q(ξ).

We see that φ1 Pj u = P̃j (φ1 Pj u) (because of the supports in Fourier space, see (2-17)) and so it is sufficient
to show that

∥(−1)α(φ2 Pj u)∥ ≤ ed( j)

(since ∥1 − P̃j∥ ≤ 1). Since the Fourier transform of (−1)α(φ2 Pj u) is

c|ξ |2α
∫
φ̂2(ξ − η)pj (η)û(η) dη

≤ c
∫

|ξ − η|2α|φ̂2(ξ − η)pj (η)û(η)| dη+ c
∫

|η|2α|φ̂2(ξ − η)pj (η)û(η)| dη,

we obtain

∥(−1)α(φ2 Pj u)∥ ≤ c∥u∥

∫
|ξ |>2 j−2

|ξ |2α|φ̂2(ξ)| dξ + c∥φ̂2∥1∥(−1)
2αPj u∥ ≤ ed( j),
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where we used the Plancherel theorem, (2-18) and the fact that ∥| · |
2αφ̂2( · )∥1 ≤ ed( j) (which follows in

the same way as (2-18)).

Step 2.2: We show that I3 ≤ ediss + ed( j).
We have

I3 ≤ ∥[φQ, (−1)
α
]Pj u∥uQ, j .

For brevity we let v := Pj (φ3Q/2u), φ := φQ and

W := [φ, (−1)α]v.

We will show below that
∥W∥ ≤ c 22α j (d 2 j )−1u3Q/2, j + ed( j),

and we will show in Step 2.2c that

∥W∥ = ∥[φ, (−1)α]Pj u∥ + ed( j), (3-5)

from which the claim of this step follows (and so, together with Step 2.1, finishes Step 2). Since

Ŵ (ξ)= c
∫
(|η|2α − |ξ |2α)φ̂(ξ − η)v̂(η) dη,

we can decompose W by writing
∫

=
∫
|η−ξ |≤2 j−3 +

∫
|η−ξ |>2 j−3 , that is,

W = W1 + W2,

where
Ŵ1(ξ) := c

∫
|η−ξ |≤2 j−3

(|η|2α − |ξ |2α)φ̂(ξ − η)v̂(η) dη,

Ŵ2(ξ) := c
∫

|η−ξ |>2 j−3
(|η|2α − |ξ |2α)φ̂(ξ − η)v̂(η) dη.

We will show (in Step 2.2b below) that ∥W2∥ ≤ ed( j). As for W1, since supp pj ⊂ {|η| ∈ (2 j−1, 2 j+1)},
note that

supp Ŵ1 ⊂ {|ξ | ∈ (2 j−2, 2 j+2)}. (3-6)

Setting f (z) := zα and expanding it in the Taylor series around |ξ |2 we obtain

|η|2α − |ξ |2α =

3∑
k=1

f (k)(|ξ |2)
k!

(|η|2 − |ξ |2)k +
f (4)(z0)

24
(|η|2 − |ξ |2)4,

where z0 belongs to the interval with endpoints |η|2 and |ξ |2 (and so in particular z0 ∈ [22 j−4, 22 j+4
]).

Writing

|η|2 − |ξ |2 =

3∑
i=1

(ηi − ξi )(ηi + ξi )

and taking the k-th power we obtain

|η|2α − |ξ |2α =

4∑
k=1

ck f (k)(z)
∑

|β|=k, |γ1|+|γ2|=k

cβγ1γ2(η− ξ)βηγ1ξγ2,
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where z = |ξ |2 (for k ≤ 3) or z = z0 (for k = 4). Thus, noting that | f (k)(z)| ≤ c 2 j (2α−2k),

|Ŵ1(ξ)| ≤ c
3∑

k=1

| f (k)(|ξ |2)|
∑

|β|=k, |γ1|+|γ2|=k

|ξ ||γ2|
∣∣∣∫

|η−ξ |≤2 j−3
(ξ − η)β φ̂(ξ − η)ηγ1 v̂(η) dη

∣∣∣
+ c

∑
|β|=4, |γ1|+|γ2|=4

|ξ ||γ2|
∣∣∣∫

|η−ξ |≤2 j−3
f (k)(z0)(ξ − η)β φ̂(ξ − η)ηγ1 v̂(η) dη

∣∣∣
≤ c

3∑
k=1

∑
|β|=k, |γ1|+|γ2|=k

2 j (2α−2k+|γ2|)
∣∣∣∫

|η−ξ |≤2 j−3
(ξ − η)β φ̂(ξ − η)ηγ1 v̂(η) dη

∣∣∣
+ c 2 j (2α−4)

∫
|η−ξ |≤2 j−3

|ξ − η|4|φ̂(ξ − η)v̂(η)| dη

≤ c
3∑

k=1

∑
|β|=k, |γ1|+|γ2|=k

2 j (2α−2k+|γ2|)|

∧

DβφDγ1v(ξ)|

+ c
3∑

k=1

∑
|β|=k, |γ1|+|γ2|=k

2 j (2α−2k+|γ2|)
∣∣∣∫

|η−ξ |>2 j−3
(ξ − η)β φ̂(ξ − η)ηγ1 v̂(η) dη

∣∣∣
+ c 2 j (2α−4)

∫
|η−ξ |≤2 j−3

|ξ − η|4|φ̂(ξ − η)v̂(η)| dη

=: c
3∑

k=1

∑
|β|=k, |γ1|+|γ2|=k

2 j (2α−2k+|γ2|)|

∧

DβφDγ1v(ξ)| + Err1(ξ)+ Err2(ξ).

We will show below (in Step 2.2a below) that

∥Err1∥, ∥Err2∥ ≤ c 22α j (d 2 j )−1u3Q/2, j±2 + ed( j).

This, together with the Plancherel identity gives

∥W1∥ ≤ c
3∑

k=1

∑
|β|=k, |γ1|+|γ2|=k

2 j (2α−2k+|γ2|)∥DβφDγ1v∥ + c 22α j (d 2 j )−1u3Q/2, j±2 + ed( j)

≤ c
3∑

k=1

22α j (d 2 j )−k
∥v∥ + c 22α j (d 2 j )−1u3Q/2, j±2 + ed( j),

where we used the facts that |∇
kφ| ≤ c d−k for k = 1, 2, 3, and ∥Dγ1v∥ ≤ c 2 j |γ2|∥v∥ (by applying

Lemma 2.4). Since d > 2− j and

∥v∥ ≤ ∥φ3Q/2 P̃j u∥ + ed( j)= u3Q/2, j±2 + ed( j)

(where we applied Corollary 2.5), we thus arrive at

∥W1∥ ≤ c 22α j (d 2 j )−1u3Q/2, j±2 + ed( j),

as required.

Step 2.2a: We show that ∥Err1∥ ≤ ed( j) and ∥Err2∥ ≤ c 22α j (d 2 j )−1u3Q/2, j±2 + ed( j).
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We focus on Err1 first. We have

Err1(ξ)= c
3∑

k=1

∑
|β|=k, |γ1|+|γ2|=k

2 j (2α−2k+|γ2|)
∣∣∣∫

|η−ξ |>2 j−3
(ξ − η)β φ̂(ξ − η)ηγ1 v̂(η) dη

∣∣∣
≤ c

3∑
k=1

2 j (2α−k)
∫

|η−ξ |>2 j−3
|ξ − η|k |φ̂(ξ − η)v̂(η)| dη

≤ c 2 j (2α−K )
∫

|η−ξ |>2 j−3
|ξ − η|K

|φ̂(ξ − η)v̂(η)| dη

≤ cK 2 j (2α−K )d1−K
∫

|η−ξ |>2 j
|ξ − η|−2

|v̂(η)| dη

≤ cK 2 j (2α−1)(d 2 j )(1−K )
(∫

|η−ξ |>2 j−5
|ξ − η|−4 dη

)1/2

for every K > 3, where we used (2-20) in the fourth line as well as the Cauchy–Schwarz inequality, (2-2)
and the fact that ∥v∥ ≤ ∥u∥ ≤ c (recall (1-3)) in the last line. Thus Err1(ξ)≤ ed( j) for every ξ ∈ R3, and
hence (since |ξ | ≤ 2 j+2) also ∥Err1∥ ≤ ed( j).

As for Err2 we write

Err2(ξ)= c 2 j (2α−4)
∫

|η−ξ |≤2 j−3
|ξ − η|4 |φ̂(ξ − η)v̂(η)| dη

≤ c 2 j (2α−4)d−1
∫

|η−ξ |≤2 j−3
|v̂(η)| dη

≤ c 2 j (2α−3/2)(d 2 j )−1
∥v∥

= c 2 j (2α−3/2)(d 2 j )−1
∥Pjφ3Q/2u∥

≤ c 2 j (2α−3/2)(d 2 j )−1u3Q/2, j±2 + ed( j),

where we used (2-20) in the second line, the Cauchy–Schwarz inequality (as above) in the third line, and
Corollary 2.5 in the last line. Thus

∥Err2∥ ≤ c 22α j (d 2 j )−1u3Q/2, j±2 + ed( j),

as required.

Step 2.2b: We show that ∥W2∥ ≤ ed( j).
Indeed, since |ξ |2α ≤ c|η|2α + c|ξ − η|2α, we obtain for any K > 2α

|Ŵ2(ξ)| =

∣∣∣∫
|η−ξ |>2 j−5

(|η|2α − |ξ |2α)φ̂(ξ − η)v̂(η) dη
∣∣∣

≤ c
∫

|η−ξ |>2 j−5
|η|2α |φ̂(ξ − η)v̂(η)| dη+ c

∫
|η−ξ |>2 j−5

|ξ − η|2α |φ̂(ξ − η)v̂(η)| dη

≤ cK 2 j (2α−K )
∫

|η−ξ |>2 j−5
|ξ − η|K

|φ̂(ξ − η)v̂(η)| dη,

where we used the inequality 1 < cK |ξ − η|K 2− j K, as well as |η| ≤ c 2 j inside the first integral in the
second line and the inequality 1 ≤ cK |ξ − η|K−2α2− j (K−2α) inside the second integral. Thus, using the
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Plancherel identity and Young’s inequality for convolutions

∥W2∥ = ∥Ŵ2∥ ≤ cK 2 j (2α−K )
∥v∥

∫
|η|>2 j−5

|η|K
|φ̂(η)| dη

≤ cK 2 j (2α−K )
∫

|η|>2 j−5
|η|K+4

|φ̂(η)||η|−4 dη

≤ cK 2 j (2α−K )d−(K+1)
∫

|η|>2 j−5
|η|−4 dη

= cK 22α j (d 2 j )−(K+1),

as required, where we used (2-20) in the third inequality.

Step 2.2c: We show that ∥[φ, (−1)α]Pj (1 −φ3Q/2)u∥ ≤ ed( j). (This implies (3-5).)
Indeed, letting (for brevity) w := (1 −φ3Q/2)u and qj (ξ) := |ξ |2α pj (ξ), we can write

φ(−1)αPjw(x)= φ(x)
∫

{|x−y|≥d/3}

q̌j (x − y)w(y) dy,

as in (2-16). Thus, since ∥q̌j∥L1(B(d/3)c) ≤ ed( j) (as in (2-8)), we can use Young’s inequality for
convolutions to obtain

∥φ(−1)αPjw∥ ≤ ∥q̌j∥L1(B(d/3)c)∥w∥ ≤ ed( j). (3-7)

On the other hand

∥(−1)α(φPjw)∥ ≤ ∥(−1)α P̃j (φPjw)∥ +∥(−1)α(1 − P̃j )(φPjw)∥

≤ c 22α j
∥φPjw∥ + ed( j)≤ ed( j),

where we used (3-4) (applied with w instead of u) in the second line and Lemma 2.2 in the last line. This
and (3-7) prove the claim.

Step 3: We show that J ≤ c uQ, j (G low,loc + G loc + Ghh)+ evl +
∑

k≥θ j ed(k). (This together with Step 2
finishes the proof.)

We can rewrite J in the form

J = −

∫
φQ Pj T [(u · ∇)u] · (φQ Pj u)= −

∑
i,l,m

∫
φQ Tmi Pj (ul ∂lum)φQ Pj ui ,

where we used the fact that “Tmi ” and “Pj ” are multipliers (so that they commute). (Recall that T̂mi (ξ)=

(δmi − ξmξi |ξ |
−2), see (2-10).) We now apply the paraproduct formula (2-14) to Pj (ul∂lum) to write

J = Jloc,low + Jlow,loc + Jloc + Jhh,

where each of Jloc,low, Jlow,loc, Jloc, Jhh equals J except for the term ul ∂lum , which is replaced by the
corresponding combination of the modes of ul and ∂lum , as in the paraproduct formula (see (3-8) and
(3-10) below). We estimate Jhh in Step 3.1 below and Jloc,low, Jlow,loc, Jloc in Step 3.2.

Step 3.1: We show that Jhh ≤ c uQ, j Ghh +
∑

k≥ j ed(k).
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We write

Jhh = −

∑
i,l,m

∫
φQ Tmi Pj

( ∑
k≥ j+3

Pkul P̃k∂lum

)
φQ Pj ui

≤ ∥φQ Pj u∥∞

∑
i,l,m

∥∥∥∥φQ Tmi Pj

∑
k≥ j+3

(Pkul P̃k∂lum)

∥∥∥∥
1

≤ c 23 j/2uQ, j

∑
i,l,m

∥∥∥∥φQ Tmi Pj

∑
k≥ j+3

(Pkul P̃k∂lum)

∥∥∥∥
1
+ ed( j)

≤ c 23 j/2uQ, j

∑
i,l,m

∥∥∥∥φQ Tmi Pjφ
3
3Q/2

( ∑
k≥ j+3

Pkul P̃k∂lum

)∥∥∥∥
1
+ ed( j)

≤ c 23 j/2uQ, j

∑
k≥ j+3

∥φ3Q/2 Pku∥∥φ2
3Q/2 P̃k∇u∥ + ed( j), (3-8)

where, in the fourth line we applied Corollary 2.3 with f :=
∑

k≥ j+3 Pkul P̃kum and noted that suppφ⊂
7
3 Q

is separated from supp(1 −φ3
3Q/2) by at least 1

3 d . As for the third line, we used Pj u = Pj P̃j u, (2-21) and
(2-11) to write

∥φQ Pj u∥∞ ≤ c 23 j/2uQ, j + ed( j)∥P̃j u∥∞ ≤ c 23 j/2uQ, j + ed( j),

as well as noted that ed( j) multiplied by the (long) L1 norm still gives ed( j), since we can brutally
estimate this norm,∥∥∥∥φQ Tmi Pj

∑
k≥ j+3

(Pkul P̃k∂lum)

∥∥∥∥
1
≤ ∥φQ∥

∥∥∥∥Pj∂l Tmi

∑
k≥ j+3

(Pkul P̃kum)

∥∥∥∥
≤ c d3/22 j

∥∥∥∥Pj Tmi

∑
k≥ j+3

(Pkul P̃kum)

∥∥∥∥
≤ c d3/225 j/2

∥∥∥∥Pj

∑
k≥ j+3

(Pkul P̃kum)

∥∥∥∥
1

≤ c d3/225 j/2
∑

k≥ j+3

∥Pkul P̃kum∥1 ≤ c d3/225 j/2
∑

k≥ j+1

∥Pku∥
2

≤ c d3/225 j/2
∥u∥

2
≤ c d3/225 j/2

for each i, l,m, where we used the Cauchy–Schwarz inequality in the first line, boundedness (in L2) of
the Leray projection (i.e., the fact that |T̂mi (ξ)| ≤ 1) and the Bernstein inequality (2-11) in the third line,
(2-5) in the fourth line and the Cauchy–Schwarz inequality (twice) in the fifth line.

Noting that

∥φ2
3Q/2 P̃k∇u∥ = ∥Pk±2(φ

2
3Q/2∇ P̃ku)∥ + ed(k)

≤ ∥Pk±2∇(φ
2
3Q/2 P̃ku)∥ + 2∥Pk±2(∇φ3Q/2 φ3Q/2 P̃ku)∥ + ed(k)

≤ c 2k
∥φ2

3Q/2 P̃ku∥ + c d−1u3Q/2,k±2 + ed(k)

≤ c 2ku3Q/2,k±2 + ed(k),
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where we used Lemma 2.4 in the first inequality, the fact that ∥P̃k∥ ≤ 1 and (2-19) in the third inequality,
and the assumption d > 2− j > 2−k in the last inequality, we obtain

Jhh ≤ c 23 j/2uQ, j

∑
k≥ j+1

2ku2
3Q/2,k +

∑
k≥ j

ed(k), (3-9)

as required, where we also applied the Cauchy–Schwarz inequality in the first sum.

Step 3.2: We show that Jloc,low + Jlow,loc + Jloc ≤ c uQ, j (G low,loc + G loc)+ evl +
∑

k≥θ j ed(k). (This
completes the proof of Step 3.)

We set

Ulm := P̃j ul

∑
k≤ j−5

Pkum + P̃j um

∑
k≤ j−5

Pkul +

( j+2∑
k= j−4

Pkul

)( j+4∑
k= j−4

Pkum

)
to write

Jloc,low + Jlow,loc + Jloc = −

∑
i,l,m

∫
φQ Tmi Pj∂lUmlφQ Pj ui ≤ uQ, j

∑
i,l,m

∥φQ Tmi Pj∂lUml∥

= uQ, j

∑
i,l,m

∥φQ Tmi Pj (φ
3
3Q/2∂lUml)∥ + ed( j)

≤ c uQ, j

∑
l,m

∥Pj (φ
3
3Q/2∂lUml)∥ + ed( j)

≤ c uQ, j

∑
l,m

(∥Pj∂l(φ
3
3Q/2Uml)∥ + 3∥Pj (φ

2
3Q/2∂lφ3Q/2Uml)∥)+ ed( j)

≤ c 2 j uQ, j

∑
l,m

∥φ2
3Q/2Uml∥ + ed( j), (3-10)

where we applied Corollary 2.3 (with q := 2 and f := Uml) in the third line, as well as (2-19) (as in the
previous calculation) and the assumption d > 2− j in the last line.

We note that for each m, l

∥φ2
3Q/2Uml∥ ≤ 2u3Q/2, j±2

∥∥∥∥φ3Q/2
∑

k≤ j−5

Pku
∥∥∥∥

∞

+ ∥φ3Q/2 Pj±4u∥∞u3Q/2, j±4. (3-11)

Since we can estimate the above L∞ norm including the summation by writing∑
k≤ j−5

=

∑
k<θ j

+

∑
θ j≤k≤ j−5

,

that is, ∥∥∥∥φ3Q/2
∑

k≤ j−5

Pku
∥∥∥∥

∞

≤

∥∥∥∥φ3Q/2
∑
k<θ j

Pku
∥∥∥∥

∞

+

∑
θ j≤k≤ j−5

∥φmax(Qk ,3Q/2)Pku∥∞

≤ ∥P≤θ j u∥∞ + c
∑

θ j≤k≤ j−5

23k/2umax(Qk ,3Q/2),k +

∑
k≥θ j

ed(k)

≤ c 23θ j/2
+ c

∑
θ j≤k≤ j−5

23k/2umax(Qk ,3Q/2),k +

∑
k≥θ j

ed(k), (3-12)
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where we used the localised Bernstein inequality (2-21) in the second line (note that taking max
(
Qk,

3
2 Q

)
is necessary since only then can we guarantee that the sidelength of such cube is greater than 2−k, as
required by (2-21)) and the Bernstein inequality (2-12) in the last line, we can plug it in (3-11) to get

∥φ2
3Q/2Uml∥ ≤ c u3Q/2, j±223θ j/2

+ c u3Q/2, j±2
∑

θ j≤k≤ j−5

23k/2u3Q/2,k + c 23 j/2u2
3Q/2, j±4 +

∑
k≥θ j

ed(k),

where we used the assumption d> 2− j+4 to apply the localised Bernstein inequality(2-21) again. Inserting
this into (3-10) and using the fact that 3

2θ = 2α− 1 − ε, we obtain

Jloc,low + Jlow,loc + Jloc ≤ c 22α j 2−ε j u2
3Q/2, j±2 + c 2 j uQ, j u3Q/2, j±2

∑
θ j≤k≤ j−5

23k/2u3Q/2,k

+ c 25 j/2uQ, j u2
3Q/2, j±4 +

∑
k≥θ j

ed(k), (3-13)

as required (note the first term on the right-hand side the is the “very low modes error”, evl). □

We now constrain ourselves to j-cubes. Given a j-cube Q we will write

uQ := uQ, j

for brevity. The above proposition then reduces to the following.

Corollary 3.2. Let u be a Leray–Hopf weak solution of the Navier–Stokes equations (1-1) on the time
interval [0,∞). Let Q be a j-cube with j large enough so that 2ε j

≥ 16. Then

d
dt

u2
Q ≤ −c 22α j u2

Q+c uQ

(
u3Q/2, j±2

∑
θ j≤k≤ j−5

2 j+3k/2uQk +25 j/2u2
3Q/2, j±4 +

∑
k≥ j+1

23 j/2+ku2
3Q/2,k

)
+c 2 j (2α−ε)u2

3Q/2, j±2+e( j). (3-14)

Proof. We apply the estimate from Proposition 3.1 (which is valid due to the assumption 2ε j > 16). Since

ediss ≤ c 2 j (2α−ε)u2
3Q/2, j±2

and ∑
k≥θ j

ed(k)≤ cK

∑
k≥θ j

2ck2εk(c−K )
≤ cK 2cθ j+εθ j (c−K )

= e( j),

where K is taken large enough (to guarantee the summability of the geometric series), we arrive at (3-14),
as required. □

3B. Good cubes and bad cubes. We now fix u0 ∈ H 1(R3) and a Leray–Hopf weak solution with initial
data u0. We say that a cube Q is j-good if∫ ∞

0

∫
Q

∑
k≥ j

22αk
|Pku|

2
≤ 2− j (5−4α+ε). (3-15)

We say that a j-cube is good if it is j-good. Otherwise we say that it is bad.
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3C. Critical regularity on cubes with some good ancestors. We show that, for sufficiently large j , good-
ness of a j-cube and some of its ancestors guarantees critical regularity (+ε) of uQ on a smaller cube Q.

Theorem 3.3. There exists j0 > 0 (sufficiently large) such that whenever Q is a j-cube such that j ≥ j0
and each Qk−10, k ∈ [θ j, j], is good then

uQ(t) < 2−( j/2)(5−4α+ε) for t ∈ [0, T ).

Remark 3.4. The above theorem appears in an imprecise form as Theorem 7.1 in [Katz and Pavlović
2002].1 This is related to the somewhat unexpected way in which the dissipation error is handled in
Lemma 6.3 in the same work. This lemma is in fact not needed, and it seems necessary to incorporate the
dissipation error directly into the main estimate (in order to get around the imprecision), as in ediss in (3-2).

Moreover the statement of Theorem 7.1 in [Katz and Pavlović 2002] suggests that goodness of only
one cube is sufficient for the critical decay, which is not consistent with its proof (which uses goodness
of the ancestors in the third line on p. 375).

Proof. Note that the claim is true for sufficiently small t > 0 since u0 ∈ H 1, so that

∥Pj u0∥
2
=

∫
p2

j (ξ)|û0(ξ)|
2 dξ ≤ c 2−2 j

∫
|ξ |2 |û0(ξ)|

2 dξ ≤ c 2−2 j
∥u0∥

2
H1 < 2− j (5−4α+ε)

for sufficiently large j , and u(t) remains bounded in H 1 for small t > 0. Suppose that the theorem is
false, and let t0 be the first time when it fails and Q a j-cube for which it fails. Then

uQ(t)≤ 2−( j/2)(5−4α+ε) for t ≤ t0, (3-16)

with equality for t = t0. Let t1 ∈ (0, t0) be the last time when uQ(t1)≤
1
2 2−( j/2)(5−4α+ε), so that

1
2 2−( j/2)(5−4α+ε)

≤ uQ(t)≤ 2−( j/2)(5−4α+ε) for t ∈ (t1, t0). (3-17)

Note that, since suppφ3Q/2 ⊂
7
4 Q ⊂ Q j−1 ⊂ Q j−10 and Q j−10 is good,

∫ t0

t1

∑
k≥ j−10

22αku2
3Q/2,k ≤ c

∫ t0

t1

∫
Q j−10

∑
k≥ j−10

22αk
|Pku|

2
≤ c 2− j (5−4α+ε),

and so in particular
(
recalling that α ∈

(
1, 5

4

))
∫ t0

t1
u2

3Q/2, j±4 ≤ c 2− j (5−2α+ε) (3-18)

and ∫ t0

t1

∑
k≥ j+1

2ku2
3Q/2,k ≤ c 2 j (1−2α)

∫ t0

t1

∑
k≥ j

22αku2
3Q/2,k ≤ c 2− j (4−2α+ε). (3-19)

1The claim following “we must have” on p. 374 does not follow, as the assumption of the proof by contradiction is only on Q,
rather than on every cube in its nuclear family.



PARTIAL REGULARITY OF THE HYPERDISSIPATIVE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 769

Moreover, since Qk−10 is good for every k ∈ [θ j, j], we also have∫ t0

t1
u2

Qk
≤ c 2−k(5−2α+ε)

(as in (3-18)), and so∫ t0

t1

∑
θ j≤k≤ j−5

23ku2
Qk

≤ c
∑

θ j≤k≤ j−5

2−k(2−2α+ε)
≤ c 2− j (2−2α+ε), (3-20)

where we used the fact that α > 1 and the fact that ε > 0 is small (recall (3-1)).2

Applying the main estimate (3-14) between t1 and t0 (and ignoring the first term on the right-hand
side) and then utilizing (3-18)–(3-20) we obtain

2− j (5−4α+ε)
=

4
3(uQ(t0)2 − uQ(t1)2)

≤ c
∫ t0

t1
uQ

(
2 j u3Q/2, j±2

∑
θ j≤k≤ j−5

23k/2u3Q/2,k + 25 j/2u2
3Q/2, j±4 + 23 j/2

∑
k≥ j+1

2ku2
3Q/2,k

)
+ c 2 j (2α−ε)

∫ t0

t1
u2

3Q/2, j±2 + e( j)

≤c 2−( j/2)(5−4α+ε)
(
2 j 2−( j/2)(5−2α+ε)2−( j/2)(2−2α+ε/2)

+25 j/22− j (5−2α+ε)
+23 j/22− j (4−2α+ε)

)
+ c 2 j (2α−ε)2− j (5−2α+ε)

≤ c 2− j (5−4α+ε)(2−3 jε/8
+ 2− jε/2

+ 2− jε/2
+ 2−3 jε/2)

≤ c 2− j (5−4α+ε)2−3 jε/8,

where, in the second inequality, we also used the Cauchy–Schwarz inequality and used the inequality
j ≤ c 2 jε/4, as well as absorbed e( j) (by writing, for example, e( j)≤ c 2− j (5−4α+2ε) — recall the beginning
of Section 2 for the definition of the j-negligible error e( j)). Thus

1 ≤ c 2− jε/4,

which gives a contradiction for sufficiently large j . □

3D. The singular set. Having defined good cubes and bad cubes, and observing that we have a “slightly
more than critical” estimate on a cube that has some good ancestors (Theorem 3.3), we now characterize
the singular set S in terms of its covers by bad cubes, and (in the next section) we show a much stronger
(than critical) estimate outside S.

Let Aj denote the union of all bad j-cubes. Using Vitali covering lemma we can find a cover Aj that
covers Aj and such that

#Aj ≤ c 2 j (5−4α+ε). (3-21)

Indeed, the Vitali covering lemma gives a sequence of pairwise disjoint bad j-cubes Q(l) such that

Aj ⊂

⋃
l

5Q(l)

2The restriction α > 1 is used here, but α ≥ 1 would be sufficient by noting that
∑

k≥θ j 2−kε
≤ c 2− jθε . Indeed, since θ > 5

8
(recall (3-3)), the last inequality of this proof would become 1 ≤ c 2− jε(θ−1/2−1/8), which still gives contradiction for large j .



770 WOJCIECH S. OŻAŃSKI

However, since
∫

∞

0

∫
|(−1)α/2u|

2
≤ c (from the energy inequality, recall (1-3)),

c ≥

∫ ∞

0

∫
|ξ |2α|û(ξ)|2 =

∑
k∈Z

∫ ∞

0

∫
pk(ξ)|ξ |

2α
|û(ξ)|2

≥ c
∑
k≥ j

22αk
∫ ∞

0

∫
pk(ξ)

2
|û(ξ)|2 = c

∫ ∞

0

∫ ∑
k≥ j

22αk
|Pku|

2

≥ c
∑

l

∫ ∞

0

∫
Q(l)

∑
k≥ j

22αk
|Pku|

2
≥ c

∑
l

2− j (5−4α+ε), (3-22)

where we used the Plancherel identity (twice, in the first and fourth lines), Tonelli’s theorem (twice, in
the second and fourth lines), and the fact that Q(l)’s are pairwise disjoint in the fifth line. Thus

#{l} ≤ c 2 j (5−4α+ε),

and so Aj can be obtained by covering each of 5Q(l) by at most 63 j-cubes.
In the remainder of this section we will show that there exists a (larger) j-cover Bj of all bad j-cubes

(i.e., of Aj ) with the same cardinality (i.e., satisfying (3-21), but with a larger constant) and the additional
property that

for any x outside of Bj there exists r ∈ (0, 2−10)

such that ∂(r Q j (x)) does not touch any bad k-cube for any k ≥ j. (3-23)

(Recall that Q j (x) denotes the j-cube centred at x .) We will refer to ∂(r Q j (x)) as the barrier, and to
(3-23) as the barrier property. We first discuss a simple geometric lemma.

Lemma 3.5 (geometric lemma). Let Q = Q(y), Q′
= Q′(x) be open cubes with sidelengths 2a, 2b,

respectively. Then
∂(r Q) intersects Q′

=⇒ r ∈ [rQ′ − b/a, rQ′ + b/a],

where rQ′ > 0 is such that x ∈ ∂(rQ′ Q).

Proof. We will write γ := b/a for brevity. We split the reasoning into cases.

Case 1: y ∈ ∂Q′. Then rQ′ = b/a (see Figure 2 (middle)), and so r ≥ rQ′ −b/a trivially. Moreover ∂(r Q)
intersects Q′ if and only if ra < 2b (see Figure 2 (middle)), that is, r < 2b/a = rQ′ + b/a, as required.

Case 2: y ̸∈ Q′. Then rQ′ > b/a (which is clear by comparison with Case 1), and ∂(r Q) intersects Q′

if and only if
rQ′a − b < ra < rQ′a + b

(see Figure 2 (right)), as required.

Case 3: y ∈ Q′. Then rQ′ < b/a and ∂(r Q) intersects Q′ if and only if

b − rQ′a < ra < rQ′a + b

(see Figure 2 (left)). The claim follows by ignoring the first of these two inequalities (and writing
r ≥ 0> rQ′ − b/a instead). □



PARTIAL REGULARITY OF THE HYPERDISSIPATIVE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 771

ra

rQ′a

b

y
x

Q′

∂(rQ)

b = rQ′a

b

y

x

Q′

∂(rQ)

ra

ra

y

x

Q′

∂(rQ)

rQ′a

Figure 2. Sketch of the interpretation of Lemma 3.5.

We can now construct the j-cover satisfying the barrier property (3-23).

Lemma 3.6. For every j ≥ 0 there exists a j-cover Bj of Aj such that #Bj ≤ c 2 j (5−4α+ε) and the barrier
property (3-23) holds.

Proof. (Here we follow the argument from [Katz and Pavlović 2002, Section 8].) We will find a j-cover
(also denoted by Bj ) of Aj such that

for any j-cube Q outside of Bj there exists r ∈ (0, 2−10)

such that ∂(r Q) does not touch any bad k-cube for any k ≥ j. (3-24)

(Here “outside” is a short-hand notation for “disjoint with every element of”.) The barrier property (3-23)
is then recovered by replacing every j -cube Q ∈ Bj by 3Q and covering it by at most 43 j -cubes. Indeed,
then for any x outside of such set we have that Q j (x) (the j-cube centred at x) is outside of Bj and so
the barrier property (3-23) follows from (3-24).

Step 1: We define naughty j-cubes.
We say that a j-cube Q is k-naughty, for k ≥ j , if it intersects more than η2(k− j)(5−4α+2ε) elements

of Ak . Here η ∈ (0, 1) is a universal constant, whose value we fix in Step 4 below. We say that a j -cube is
naughty if it is k-naughty for any k ≥ j . (Note that a bad cube is naughty. A good cube is not necessarily
naughty, and vice versa.)

Step 2: For each k ≥ j we construct a j-cover Bj,k of all k-naughty j-cubes such that

#Bj,k ≤ cη−12 j (5−4α+ε)2ε( j−k). (3-25)

(Note that Bj, j covers all j-naughty j-cubes, and so in particular all bad j-cubes.)
Let Q(1) be any k-naughty j-cube. Given Q(1), . . . , Q(l) let Q(l+1) be any k-naughty j-cube that is

disjoint with each of 3Q(1), . . . , 3Q(l). Note that then 3Q(1), . . . , 3Q(l) contain all elements of Ak that
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Q(1), . . . , Q(l) intersect. This means that Q(l+1) intersects at least η 2(k− j)(5−4α+2ε) “new” elements of Ak

(i.e., the elements that none of Q(1), . . . , Q(l) intersect). This means that such an iterative definition can
go on for at most

L := #Akη
−12(k− j)(5−4α+2ε)

≤ cη−12 j (5−4α+ε)2ε( j−k)

steps, and then the family {3Q(1), . . . , 3Q(L)
} covers all k-naughty j -cubes. We now cover each of 3Q(l)

(l = 1, . . . , L) by at most 43 j -cubes to obtain Bj,k . (Note (3-25) then follows from the upper bound on L .)

Step 3: We define Bj .
Let

Bj :=

⋃
k≥ j

Bj,k .

By construction, Bj covers all naughty j-cubes (and so, in particular, all bad j-cubes) and

#Bj ≤

∑
k≥ j

#Bj,k ≤ cη−12 j (5−4α+ε)
∑
k≥ j

2ε( j−k)
= cη−12 j (5−4α+ε),

as required (given η is fixed).

Step 4: We show that (3-24) holds for sufficiently small η ∈ (0, 1). (This, together with the previous step,
finishes the proof.)

Let Q be a j -cube disjoint with all elements of Bj . Let us denote by Ck(Q) the collection of k-cubes Q′

(k ≥ j) from Ak intersecting Q. Since Q is not naughty (as otherwise it would be covered by Bj )

#Ck(Q)≤ η2(k− j)(5−4α+2ε).

Let rQ′ ∈(0,∞) be such that ∂(rQ′ Q) contains the centre of Q′. Applying Lemma 3.5 with 2a =2− j (1−ε)

and 2b = 2−k(1−ε) we obtain that

∂(r Q) intersects Q′
=⇒ r ∈ [rQ′ − 2(1−ε)( j−k), rQ′ + 2(1−ε)( j−k)

].

Thus if fk(r) denotes the number of bad k-cubes that intersect ∂(r Q) then

fk(r)≤

∑
Q′∈Ck(Q)

χ[rQ′−2(1−ε)( j−k),rQ′+2(1−ε)( j−k)](r).

Thus
∥ fk∥L1(0,2−10) ≤ 2 #Ck(Q)2(1−ε)( j−k)

≤ 2η2(4α−4−3ε)( j−k),

and so letting f :=
∑

k≥ j fk and recalling that α > 1 and ε is small enough so that 4α− 4 − 3ε > 0 (see
(3-1)) we obtain

∥ f ∥L1(0,2−10) ≤

∑
k≥ j

∥ fk∥L1(0,2−10) ≤ cη.

(This is the only place in the article where we need the assumption α > 1; otherwise α ≥ 1 would be
sufficient.) By choosing η∈ (0, 1) sufficiently small such that cη< 1

2 2−10 we see that ∥ f ∥L1(0,2−10)< 2−10,
and so there exists r ∈ (0, 2−10) such that f (r)= 0 (recall that f takes only integer values). In other words
there exists r such that ∂(r Q) does not intersect any element of Ak for any k ≥ j , and so in particular
any bad k-cube. □
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We now let
E := lim sup

j→∞

⋃
Q∈Bj

Q.

Observe that, since #Bj ≤ c 2 j (5−4α+ε),
dH (E)≤ 5 − 4α+ ε;

see, for example, Lemma 3.1 in [Katz and Pavlović 2002] for a proof.

3E. Regularity outside E. We now show that for every x ̸∈ E and every interval of regularity (ai , bi )

there exists an open neighbourhood of x on which u(t) remains bounded
(
as t ∈

( 1
2(ai + bi ), bi

))
. This

together with the above bound on dH (S) finishes the proof of Theorem 1.1.
Note that if x ̸∈ E then for sufficiently large j0

x ̸∈ Q for any Q ∈ Bj , for j ≥ j0.
In particular

x does not belong to any bad j-cube for j ≥ j0 (3-26)

(since Bj is a cover of all bad j -cubes), and for any j1 ≥ j0 there exists r = r(x, j1) ∈ (0, 2−10) such that

∂(r Q j1(x)) does not intersect any bad k-cube with k ≥ j1 (3-27)

(by the barrier property, (3-23)). The point is that the barrier can be constructed for any j1 ≥ j0. This will
be relevant for us, since in the proof of regularity below we will consider a j-cube with j ≥ j1 ≥ j0/θ2.
Thus we will be able to deal with some of the low modes (k ∈ [θ j, j − 5])) using (3-26) and others using
(3-27). Indeed, for such modes we will have “cubes larger than j -cube” (i.e., Qk with k < j ) and we will
obtain the critical decay on such cubes by either utilising the barrier property (3-27) (for cubes that are
only “a little bit larger”, see Case 1 in Step 2 for details) or the fact that distant ancestors are large enough
to contain x so that we can use (3-26). As for local and high modes (i.e., k ≥ j − 5), we will use the
barrier property (3-27) to obtain critical regularity for cubes located near the barrier, with more and more
regularity on cubes located further away from the barrier towards the interior. In fact we can guarantee an
arbitrary strong estimate for cubes located sufficiently far from the barrier, but we limit ourselves to the
estimate ≲ 2− j (5−4α+10)/2.

We now proceed to a rigorous version of the above explanation.

Theorem 3.7 (regularity outside E). Let x ̸∈ E. Given an interval of regularity (ai , bi ), there exists ci > 1
and j1 = j1(ci ) ∈ N such that

uQ(t) < ci 2− jρ(Q)/2 (3-28)

for all t ∈
( 1

2(ai + bi ), bi
)

and for every j-cube Q ⊂ r Q j1(x), where r ∈ (0, 2−10) is as in (3-27),

ρ(Q) := 5 − 4α+ min
(
10, 1

10εδ(Q)
)

and δ(Q) denotes the smallest k ∈ N such that Q j−k intersects ∂(r Q j1(x)).

Note that the theorem gives no restriction on the range of j’s, but it is clear from the inclusion
Q ⊂ r Q j1(x) that j ≥ j1 + 10 (as r < 2−10).
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Proof. Since u is a strong solution in (ai , bi ), it is continuous in time in (ai , bi ) with values in H 6 (recall
(1-4)). Thus letting

ci := 1 + c
∥∥u

( 1
2(ai + bi )

)∥∥
H6

we see that, for any j -cube Q, uQ
( 1

2(ai + bi )
)
≤ ∥Pj u

(1
2(ai + bi )

)
∥< ci 2−6 j, and hence also uQ(t) < ci

for some t > 1
2(ai + bi ) (due to the continuity of the H 6 norm). Thus the claim remains valid on some

nonempty time interval following 1
2(ai + bi ) (since ρ(Q)≤ 5 − 4α+ 10 ≤ 11).

Since the interval of regularity (ai , bi ) is fixed, from now on we will suppress the subindex “i”, for
brevity.

We take j0 sufficiently large so that (3-26) and the claims of Corollary 3.2 and Theorem 3.3 are valid
(we will let j0 even larger below). We let j1 be the smallest integer such that

j1 ≥ ( j0 + 10)/θ2. (3-29)

We also note that

if Q′(y) is a k-cube centred at y ∈ r Q j1(x) and touching the barrier ∂(r Q j1(x))
then Q′ is good if k ≥ j0. (3-30)

Indeed, if k ≥ j1 then Q′ is good by the barrier property (3-27). If k < j1 then Q′
⊃ r Q j1(x) ∋ x (as the

sidelength of Q′(y) is more than 210 times larger than the sidelength of r Q j1(x) ∋ y), and so Q′ is good
by (3-26).

Suppose that the theorem is false and let t0 > 1
2(a + b) be the first time when it fails. Then

uQ′(t)≤ c 2−kρ(Q′)/2 for all t ∈ [0, t0] and all k-cubes Q′
⊂ r Q j1(x) (3-31)

and there exists a j-cube Q ⊂ r Q j1(x) (for some j ≥ 0) such that

uQ(t0)≥ 2− jρ(Q)/2. (3-32)

We note that the existence of such Q is nontrivial, since there are infinitely many functions uQ′(t) for
Q′

⊂ r Q j1(x). In fact one can think of a scenario when all such uQ′’s remain close to zero until t0 with a
sequence of uQ′’s growing faster and faster past t0 (in such scenario (3-31) holds but not (3-32)). We verify
in Step 1 below that such a scenario does not happen (i.e., that such Q exists) as long as t0 lies inside (a, b).3

We now let t1 ∈ (0, t0) be the last time such that uQ(t1)=
1
2 2− jρ(Q)/2. Then

uQ(t) ∈
[ 1

2 2− jρ(Q)/2, 2− jρ(Q)/2] for t ∈ [t1, t0]. (3-33)

The main estimate (3-14) gives

2− jρ(Q)
=

4
3(uQ(t0)2−uQ(t1)2)

≤ −c 22α j
∫ t0

t1
u2

Q+c
∫ t0

t1
uQ

(
2 j u3Q/2, j±2

∑
θ j≤k≤ j−5

23k/2uQk +25 j/2u2
3Q/2, j±4+23 j/2

∑
k≥ j+1

2ku2
3Q/2,k

)
+c

∫ t0

t1
22α j 2− jεu2

3Q/2, j±2+e( j), (3-34)

3This is the localisation issue that we referred to in the Introduction. This issue was ignored in [Katz and Pavlović 2002].
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where we omitted the time argument in our notation. Note that we can write

e( j)≤ c 2−20 j

(recall the beginning of Section 2 for the definition of e( j), the j-negligible error), so that it can be
ignored (i.e., it can be absorbed into the left-hand side for sufficiently large j ). We will estimate the terms
appearing on the right-hand side of (3-34) in Steps 2–4 below, and we will conclude the proof in Step 5.

Step 1: We verify (3-32).
Let m ∈N. By definition of t0 there exists τ ∈ (t0, t0+1/m) and a j -cube Q such that uQ(τ )≥c 2− jρ(Q)/2.

We claim that (3-32) holds for such Q if m is taken sufficiently large. Indeed, if it does not, then
2 jρ(Q)/2uQ(t0)≤ 1 for each m, and so

c − 1 ≤ 2 jρ(Q)/2(uQ(τ )− uQ(t0))≤ 211 j/2
∥φ2

Q Pj (u(τ )− u(t0))∥ ≤ c∥u(τ )− u(t0)∥2
H6(R3)

for all m, uniformly in j , and so continuity of u in time (on (a, b)) with values in H 6 gives a contradiction
for sufficiently large m. (Note that, for simplicity, we have omitted the dependence of τ and Q on m in
the notation above.)

Step 2: We observe that δ(Q)≥ 11, so that in particular

ρ(Q)≥ 5 − 4α+ ε. (3-35)

In order to see this, note that if δ(Q)≤ 10 then Q j−10 touches ∂(r Q j1(x)). Thus (3-30) implies that
Qk−10 is good for every k ∈ [θ j, j], since

k − 10 ≥ θ j − 10 ≥ θ j1 − 10 ≥ j0

by our choice (3-29) of j1. Hence Theorem 3.3 gives that

2uQ(t0) < 2− j (5−4α+ε)/2
≤ 2− j (5−4α+εδ(Q)/10)/2

= 2− jρ(Q)/2,

which contradicts (3-32).

Step 3: We show that

uQk (t)≤ c 2−k(5−4α+ε)/2, k ∈ [θ j, j − 5],

u3Q/2,k(t)≤

{
c 2− j (ρ(Q)−2ε/5)/2, k ∈ [ j − 4, . . . , j + 100/ε],
c 2−3 j 2−k(9−4α)/2, k ≥ j + 100/ε,

(3-36)

for t ∈ (t1, t0).

Case 1: k ∈ [θ j, j − 5]. If δ(Qk)≥ 11 then in particular Qk ⊂ r Q j1(x) and ρ(Qk)≥ 5 − 4α+ ε, and so
the claim follows from (3-31). If δ(Qk)≤ 10 then Ql−10 is good for every l ∈ [θk, k] due to (3-30), since

l − 10 ≥ θk − 10 ≥ θ2 j − 10 ≥ θ2 j1 − 10 ≥ j0. (3-37)

Therefore the claim follows from Theorem 3.3.
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Qj−2

Q′ ∈ Sk(7Q/4)

Q = Qj

7Q/4

Qj−1

Figure 3. An illustration of (3-40) - note that each Q′
∈ Sk

( 7
4 Q

)
is of the same size as

Q (as in the illustration) or smaller (as k ≥ j).

Case 2: k ∈ [ j − 4, . . . , j + 100/ε). Then

δ(Qk)= δ(Q)+ k − j ≥ δ(Q)− 4 ≥ 7, (3-38)

where we used Step 2 in the last inequality. Hence Qk ⊂ r Q j1(x) and

ρ(Qk)≥ ρ(Q)− 2
5ε.

Thus since for k ∈ [ j − 4, j − 1] we have 3
2 Q ⊂ Qk , (3-31) gives

u3Q/2,k ≤ 2−kρ(Qk)/2 ≤ 2−k(ρ(Q)−2ε/5)/2
≤ c 2− j (ρ(Q)−2ε/5)/2,

as required. If k ≥ j we note that
u3Q/2,k ≤

∑
Q′∈Sk(7Q/4)

uQ′, (3-39)

where Sk
( 7

4 Q
)

denotes a cover of 7
4 Q by k-cubes with #Sk

( 7
4 Q

)
≤ c 23(k− j)(1−ε) (recall the beginning

of Section 3). Since

Q′

j = 2−( j−k)(1−ε)Q′
⊂ Q j−2 for every Q′

∈ Sk
( 7

4 Q
)
, (3-40)

see Figure 3, we obtain

δ(Q′)= δ(Q′

j )+ k − j ≥ δ(Q j−2)= δ(Q)− 2, (3-41)

and so ρ(Q′)≥ ρ(Q)− 1
5ε. Therefore (3-31) gives

uQ′ ≤ 2−kρ(Q′)/2
≤ 2−k(ρ(Q)−ε/5)/2

≤ c 2− j (ρ(Q)−2ε/5)/2,

and since #Sk
( 7

4 Q
)

≤ c 2300(1−ε)/ε
= c (recall our constants may depend on ε) the claim follows by

applying (3-39) above.

Case 3: k ≥ j + 100/ε. For such k we improve (3-41) by writing

δ(Q′)= δ(Q′

j )+ k − j ≥ δ(Q j−2)+ 100/ε = δ(Q)+ 100/ε− 2> 100/ε (3-42)
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for any Q′
∈ Sk

(7
4 Q

)
where we used Step 2 in the last inequality. This gives ρ(Q′) = 15 − 4α. Thus

using (3-39) and the estimate #Sk
(7

4 Q
)
≤ c 23(k− j)(1−ε)

≤ c 23(k− j) we arrive at

u3Q/2,k ≤

∑
Q′∈Sk(7Q/4)

uQ′ ≤

∑
Q′∈Sk(7Q/4)

2−kρ(Q′)/2
≤ c 23(k− j)2−kρ(Q′)/2

= c 2−3 j 2−k(9−4α)/2,

as required.

Step 4: We use the previous step to estimate the terms appearing on the right-hand side of the main
estimate (3-34). Namely we show that∑

θ j≤k≤ j−5

23k/2u3Q/2,k ≤ c 23 j/22− j (5−4α)/22− jε/2,

u2
3Q/2, j±4 ≤ c 2− jρ(Q)/22− j (5−4α)/22− jε/10,∑

k≥ j+1

2ku2
3Q/2,k ≤ c 2 j 2− jρ(Q)/22− j (5−4α)/22− jε/10.

(3-43)

We note that, although the terms appearing on the right-hand side might look complicated, we write
them in this form to articulate their roles. As for the factors 23 j/2 or 2 j, these are “bad factors” which,
together with the corresponding factor in the main estimate (3-34), give 25 j/2. This should be compared
against the factor 22α j which is a “good factor” given by the dissipation (i.e., by the first term on the
right-hand side of (3-34), which comes with a minus). This brings us to the factors of the form 2− j (5−4α)

whose role is exactly to balance the “bad factor” against the “good factors”.
As for the factors 2− jρ(Q)/2, we point out that together with the corresponding factor uQ (which is

bounded above and below by 2− jρ(Q)/2 due to (3-33)) appearing in the basic estimate, one obtains 2− jρ(Q)

as the common factor of all terms in (3-34).
Finally, the role of any factor involving ε is to make sure that the balance falls in our favour, namely

that the resulting constant at all terms on the right-hand side of (3-34) (except for the first term), is smaller
than the constant at the first term (the dissipation term). Writing the estimates in the form (3-43) also
exposes the value of 5 − 4α, which is our desired bound on the Hausdorff dimension.

We now briefly verify (3-43). The first two of them follow from Step 3 by a simple calculation,∑
θ j≤k≤ j−5

23k/2u3Q/2,k ≤ c
∑

θ j≤k≤ j−5

2−k(2−4α+ε)/2
≤ c 2− j (2−4α+ε)/2 (3-44)

and

u2
3Q/2, j±4 ≤ c 2− j (ρ(Q)−2ε/5)

= c 2− jρ(Q)/22− j (ρ(Q)−4ε/5)/2
≤ c 2− jρ(Q)/22− j (5−4α)/22− jε/10,

as required, where we used (3-35) in the last inequality. As for the third estimate in (3-43) we write∑
k≥ j+1

=

∑
j+1≤k≤ j+100/ε

+

∑
k> j+100/ε

,

and estimate each of the two sums separately,∑
j+1≤k≤ j+100/ε

2ku2
3Q/2,k ≤ c 2 j 2− j (ρ(Q)−2ε/5)

≤ c 2 j 2− jρ(Q)/22− j (5−4α+ε/5)/2
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(recall that c might depend on ε), where we used (3-35) in the last inequality, and∑
k> j+100/ε

2ku2
3Q/2,k ≤ c 2−3 j

∑
k> j+100/ε

2−k(8−4α)
≤ c 2− j (11−4α)

≤ c 2 j 2− jρ(Q)/22− j (5−4α+ε/5)/2,

where we used the inequality 11 − 4α ≥ −1 +
1
2ρ(Q)+

1
2(5 − 4α)+ 1

10ε (a trivial consequence of the
fact that ρ(Q)≤ 5 − 4α+ 10) in the last inequality.

Step 5: We conclude the proof.
Applying the estimates from the previous step into the main estimate (3-34) and recalling that

u2
3Q/2, j±2 ≤ c 2− j (ρ(Q)−2ε/5) (from Step 3) we obtain

2− jρ(Q)

≤ −c 22α j
∫ t0

t1
u2

Q+c
∫ t0

t1
uQ

(
2 j 2− j (ρ(Q)−2ε/5)/223 j/22− j (5−4α)/22− jε/2

+25 j/22− jρ(Q)/22− j (5−4α)/22− jε/10

+23 j/22 j 2− jρ(Q)/22− j (5−4α)/22− jε/10)
+22α j 2− jε

∫ t0

t1
2− j (ρ(Q)−2ε/5)

= −c 22α j
∫ t0

t1
u2

Q+c 22α j
∫ t0

t1
uQ(2− jρ(Q)/2(2−3 jε/10

+2− jε/10
+2− jε/10))+c 22α j 2−3 jε/5

∫ t0

t1
2− jρ(Q)

≤ −c 2 j (2α−ρ(Q))(t0−t1)(1−c 2− jε/10),

where we used the lower bound uQ ≥
1
2 2− jρ(Q)/2 (see (3-33)) in the last line. Therefore if j0 is sufficiently

large so that
1 − c 2− j1ε/10 > 0

(where c is the last constant appearing in the calculation above; recall also that j1 is given by (3-29)),
we obtain

1 ≤ 0,
a contradiction. □

Corollary 3.8. Given x ̸∈ E and an interval of regularity (ai , bi ) there exists an open neighbourhood U
of x such that

∥u(t)∥L∞(U ) remains bounded for t ∈
( 1

2(ai + bi ), bi
)
.

Proof. We fix an interval of regularity. By Theorem 3.7 there exists j1 and r ∈ (0, 2−10) such that

uQ(t)≤ 2− jρ(Q)/2

for all t ∈ [0, T ) and all j -cubes Q ⊂ r Q j1(x). Let j2 ∈ N be the smallest number such that δ(Q)≥ 100/ε
for every j -cube Q ⊂ Q j2(x). (Note that the last condition implies also that j ≥ j2.) Then ρ(Q)≥ 10 for
any such j-cube Q and so uQ ≤ c 2−5 j. We let

U := Q j2+2(x).

To show that ∥u(t)∥L∞(U ) remains bounded, we note that the localised Bernstein inequality (2-21) gives

∥φQ Pj u∥∞ ≤ c 23 j/2uQ + e( j)≤ c 2−7 j/2
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for every j-cube Q ∈ Sj (U ) with j ≥ j2 + 2. Hence

∥Pj u∥L∞(U ) ≤
∑

Q∈Sj (U )

∥φQ Pj u∥∞ ≤ c 23(1−ε)( j−( j2+2))2−7 j/2
= cj22− j/2

for such j and so
∥u∥L∞(U ) ≤ ∥P≤ j2+1u∥∞ +

∑
j≥ j2+2

∥Pj u∥L∞(U )

≤ c 23 j2/2∥P≤ j2+1u∥ + cj2

∑
j≥ j2+2

2− j/2
≤ cj2,

as required, where we used the Bernstein inequality (2-12) in the second inequality. □

3F. Regularity for α > 5
4 . Here we briefly verify Corollary 1.3. Letting ε ∈ (0, 4α− 5) we see that any

j-cube ( j ≥ 0) satisfies
uQ(t)≤ c ≤ c 2− j (5−4α+ε)

for all t ≥ 0. Thus any closed and sufficiently small surface S ⊂ R3 can be used as a barrier, and
Theorem 3.7 (with ∂(r Q j1(x)) replaced by S) gives that uQ(t) < 2− jρ(Q)/2 for all j-cubes Q located
inside S and all t ≥ 0 (provided u0 is sufficiently smooth). Furthermore j2 (from the proof of Corollary 3.8)
can be chosen independently of x (i.e., depending only on how small S is), and consequently Corollary 3.8
gives boundedness of ∥u(t)∥∞ in t > 0.

4. The box-counting dimension

Here we prove Theorem 1.2; namely that dB(S(k)) ≤
1
3(−16α2

+ 16α + 5), where S(k) :=
⋃

i≤k Si

(recall (1-7)).
A bound on dB(S(k)) can in fact be obtained by examining the proof of Theorem 3.7 above. Namely,

observing that the only consequence of x ̸∈ E that we used in its proof was that

x ̸∈ Q for any Q ∈ Bk, k ∈ [θ2 j1 − 10, j1], (4-1)

where j1 is taken sufficiently large. In fact, this allowed us to deduce that for a given j -cube Q ⊂ r Q j1(x)
the cube Qk = 2( j−k)(1−ε)Q is good for such k’s (take j0 := ⌊θ2 j1 − 10⌋ and recall (3-26), (3-27) and
(3-30)). This, in light of Theorem 3.3, gave us the “slightly more than critical” decay, which in turn
enabled us to deduce better decay for cubes located further inside the barrier r Q j1(x). Corollary 3.8 then
deduced that x ̸∈ S.

Using (4-1) we see that for sufficiently large j⋃
k∈{⌊θ2 j−10⌋,..., j}

⋃
Q∈Bk

Q

contains the singular set in space at a given blow-up time. Thus, covering each of the covers Bk

(k ∈ {⌊θ2 j − 10⌋, . . . , j}) by at most

c 23( j−k)(1−ε)#Bk ≤ c 23( j−k)(1−ε)2k(5−4α+ε)
= c 23 j (1−ε)2k(2−4α+2ε)
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j-cubes we obtain a cover of the singular set by at most

c
j∑

k=⌊θ2 j−10⌋

23 j (1−ε)2k(2−4α+2ε)
≤ c 2 j (3−3ε+θ2(2−4α+2ε))

= c 2 j (−64α3
+96α2(1+ε)−48α(1+ε)2+35+8ε3

+8ε2
−3ε)/9 (4-2)

j -cubes, where we substituted θ =
2
3(2α− 1 − ε) (recall (3-3)) in the last line. In other words N (S(m), r),

the minimal number of r-balls required to cover S(m) (recall the definition (1-8) of the box-counting
dimension), satisfies

N (S(m), r)≤ c r (−64α3
+96α2(1+ε)−48α(1+ε)2+35+8ε3

+8ε2
−3ε)/9(1−ε) (4-3)

for sufficiently small r . This gives that

dB(S(m))≤
1
9(−64α3

+ 96α2
− 48α+ 35) (4-4)

for every m ∈ N. As noted in the Introduction, we point out that the required smallness of r for (4-3)
to hold depends on the interval of regularity (ai , bi ). This is the reason why we only estimate dB(S(m)),
rather than dB(S).

In what follows we present a sharper argument that allows one to get rid of one of θ ’s in the first line
of (4-2) to yield the following.

Proposition 4.1. Given the interval of regularity (ai , bi ) the set⋃
k∈{⌊θ j−10⌋,..., j}

⋃
Q∈Bk

Q

covers the singular set in space at time bi if j is sufficiently large.

Assuming this proposition and letting Cj be a j-cover of all elements of Bk for k = ⌊θ j − 10⌋, . . . , j ,
we obtain a j-cover of the singular set with

#Cj ≤ c
j∑

k=⌊θ j−10⌋

23( j−k)(1−ε)#Bk ≤ c 2 j (3−3ε+θ(2−4α+2ε))
= c 2 j (−16α2

+16α(1+ε)+5−17ε−4ε2)/3,

which shows that dB(S(m))≤ 1
3(−16α2

+16α+5) for all m ∈ N, by an argument analogous to that above.
This is sharper than (4-4), and it proves Theorem 1.2. We note that if one was able to get rid of the other θ
in (4-2), then one would obtain dB(S)≤ 5 − 4α, i.e., the same bound as for dH (S).

Before proceeding to the proof of Proposition 4.1, we comment on the main idea of Proposition 4.1 in
an informal way.

Recall (3-37) that for each k ∈ [θ j, j − 5] we needed Ql−10 to be good for l ∈ [θk, k], and deduced
from the “ε-better than critical” decay for uQk (in Case 1 of Step 3 of the proof of Theorem 3.7, by using
Theorem 3.3), which we have then plugged into the sum of the low modes of the main estimate (3-34) (in
(3-44) above). However, looking closely at this term of the main estimate,

2 j
∫ t0

t1
uQu3Q/2, j±2

∑
θ j≤k≤ j−5

23k/2uQk ,
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we observe that it has a structure similar to the definition of a good cube (3-15). Indeed, ignoring uQ and
u3Q/2, j±2 for a moment we see that we could use (3-15) to estimate it. If that were possible, we would only
need to require that Qk (or rather Qk−10) is good for k ∈ [θ j, j −5], and so we would end up with a saving
of one θ . The only problem is that (3-15) is concerned with the time integral of a squared function, rather
than the function itself, and so, applying the Cauchy–Schwarz inequality in the time integral we would
obtain an additional factor of (t0 − t1)−1/2; see the last term in (4-8) below. It turns out that this additional
factor can be taken care of by absorbing a part of this term by the left-hand side (as in (4-9) below).

Proof of Proposition 4.1.. We will show that if j1 is sufficiently large then every x outside of Cj1 is a
regular point in the given interval of regularity (a, b). We set

j0 := ⌊θ j1 − 10⌋. (4-5)

As in Theorem 3.7 we show that, for sufficiently large j1 = j1(ci ),

uQ(t) < ci 2− jρ(Q) (4-6)

for every x ̸∈
⋃

Q∈Cj1
Q, where ci depends on the interval of regularity (ai , bi ). In fact, we can copy the

entire proof of Theorem 3.7, except for Step 4, where we replace the estimate on the low modes (i.e., the
first inequality in (3-43)) by∑

k∈[θ j, j−5]

23k/2
∫ t0

t1
uQk ≤ c(t0 − t1)2− j (2−4α+ε)/2

+ c(t0 − t1)1/22− j (2−2α+ε)/2, (4-7)

which we prove below. Given (4-7), we can plug it, together with the remaining two inequalities in (3-43),
into the main estimate (3-34) (just as we did in Step 5 of the proof of Theorem 3.7 above) to yield

2− jρ(Q)
= c(uQ(t0)2−uQ(t1)2)

≤ −c 22α j
∫ t0

t1
u2

Q+c
∫ t0

t1
uQ

(
2 j u3Q/2, j±2

∑
θ j≤k≤ j−5

23k/2uQk +25 j/2u2
3Q/2, j±4+23 j/2

∑
k≥ j+1

2ku2
3Q/2,k

)
+22α j 2− jε

∫ t0

t1
u2

3Q/2, j±2+e( j)

≤ −c 22α j (t0−t1)2− jρ(Q)
+c 2− jρ(Q)2 j (1+ε/5)

∫ t0

t1

∑
θ j≤k≤ j−5

23k/2uQk

+c(t0−t1)22α j 2− jρ(Q)(2 jε/10
+2 jε/10

+23 jε/5)

≤ 22α j (t0−t1)2− jρ(Q)(−c+c 2− jε/10)+c(t0−t1)1/22− jρ(Q)2α j 2−3 jε/10, (4-8)

where, in the last step, we applied (4-7) to estimate the low modes. At this point we obtain the same
inequality as before (i.e., as in Step 5 of the proof of Theorem 3.7), except for the last term, which can be
estimated using Young’s inequality ab ≤

1
2a2

+
1
2 b2 to give

1
2 2− jρ(Q)

+ c 22α j (t0 − t1)2− jρ(Q)2−3 jε/5. (4-9)
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Absorbing the first term above on the left-hand side we obtain

1 ≤ 22α j (t0 − t1)(−c + c 2− jε/10),

which gives a contradiction for sufficiently large j .
It remains to verify (4-7). To this end, if δ(Qk)≥ 11 then, as before, we can use the fact that the claim

(4-6) remains valid until t0 to obtain that∑
k∈[θ j, j−5]

δ(Qk)≥11

23k/2
∫ t0

t1
uQk ≤ c(t0 − t1)

∑
k∈[θ j, j−5]

δ(Qk)≥11

23k/22−kρ(Qk)/2 ≤ c(t0 − t1)2− j (2−4α+ε)/2,

where we used the fact that ρ(Qk)≥ 5 − 4α+ ε in the last inequality.
If δ(Qk)≤ 10 then Qk−10 intersects the barrier ∂(r Q j1(x)), and so it is good as k − 10 ≥ θ j − 10 ≥ j0

(recall (3-30) and (4-5)). Thus since φQk ≤ 1Qk−10 (recall (2-19)) the definition (3-15) of a good cube gives∫ t0

t1
u2

Qk
≤

∫ t0

t1

∫
Qk−10

|Pku|
2
≤ c 2−k(5−2α+ε).

Hence ∑
k∈[θ j, j−5],δ(Qk)≤10

23k/2
∫ t0

t1
uQk ≤ (t0 − t1)1/2

∑
θ j,..., j−5,δ(Qk)≤10

23k/2
(∫ t0

t1
u2

Qk

)1/2

≤ c(t0 − t1)1/2
∑

k≤ j−5

2−k(2−2α+ε)/2
= c(t0 − t1)1/22− j (2−2α+ε)/2,

as required. □
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