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FINITE-TIME BLOWUP FOR A NAVIER–STOKES MODEL EQUATION FOR THE
SELF-AMPLIFICATION OF STRAIN

EVAN MILLER

We consider a model equation for the Navier–Stokes strain equation which has the same identity for
enstrophy growth and a number of the same regularity criteria as the full Navier–Stokes strain equation,
and is also an evolution equation on the same constraint space. We prove finite-time blowup for this
model equation, which shows that the identity for enstrophy growth and the strain constraint space are not
sufficient on their own to guarantee global regularity for Navier–Stokes. The mechanism for the finite-time
blowup of this model equation is the self-amplification of strain, which is consistent with recent research
suggesting that strain self-amplification, not vortex stretching, is the main mechanism behind the turbulent
energy cascade. Because the strain self-amplification model equation is obtained by dropping certain terms
from the full Navier–Stokes strain equation, we will also prove a conditional blowup result for the full
Navier–Stokes equation involving a perturbative condition on the terms neglected in the model equation.

1. Introduction

The incompressible Navier–Stokes equation is one of the fundamental equations of fluid mechanics.
Although it is over 150 years old, much about its solutions, including the global existence of smooth
solutions, remains unknown. The Navier–Stokes equation is given by

∂t u − 1u + (u · ∇)u + ∇ p = 0,

∇ · u = 0,

(1-1)

where u ∈ R3 is the velocity and p is the pressure. The first equation is a statement of Newton’s second
law, F = ma, where ∂t u + (u · ∇)u gives the acceleration in the Lagrangian frame, 1u describes the
viscous forces due to the internal friction of the fluid, and −∇ p describes the force due to the pressure.
The second equation, the divergence-free constraint, comes from the conservation of mass. We will note
that p is not an independently evolving function, but is determined entirely by u by convolution with the
Poisson kernel,

p = (−1)−1
3∑

i, j=1

∂uj

∂xi

∂ui

∂xj
.

It is possible to state the incompressible Navier–Stokes equation without giving any reference to
pressure at all by making use of the Helmholtz projection onto the space of divergence-free vector fields,
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yielding the equation

∂t u − 1u + Pdf∇ · (u ⊗ u) = 0. (1-2)

Note that we have used the fact that ∇ · (u ⊗ u) = (u · ∇)u because ∇ · u = 0, and the fact that the
Helmholtz decomposition implies that Pdf(∇ p) = 0.

The first major advances towards a rigorous mathematical understanding of the Navier–Stokes equation
came in the seminal paper by Leray [1934]. For all initial data u0

∈ L2
df, Leray proved the global-in-time

existence of weak solutions, in the sense of integrating against smooth test functions, satisfying the energy
inequality, which states that for all t > 0,

1
2∥u(t)∥2

L2 +

∫ t

0
∥u(τ )∥2

Ḣ1 dτ ≤
1
2∥u0

∥
2
L2 .

Unfortunately, while such solutions are well suited to study in the sense that global-in-time existence is
guaranteed for all finite energy initial data, they are not known to be either smooth or unique, leaving
major problems for the well-posedness theory.

The lack of a uniqueness and regularity theory for Leray weak solutions led Fujita and Kato to develop
the notion of mild solutions, which satisfy (1-2) in the sense of Duhamel’s formula. Unlike Leray’s weak
solutions, mild solutions must be both smooth and unique. Fujita and Kato [1964] proved the local-in-time
existence, uniqueness, and smoothness of mild solutions for initial data in Ḣ 1, with the time of existence
bounded below uniformly in the Ḣ 1 norm.

Theorem 1.1. There exists an absolute constant C > 0 such that for all initial data u0
∈ Ḣ 1

df, there
exists Tmax ≥ C/∥u0

∥
4
Ḣ1 and a unique mild solution to the Navier–Stokes equation u ∈ C([0, Tmax); Ḣ 1

df).
Furthermore, we have the higher regularity u ∈ C∞((0, Tmax)×R3). If in addition we have u0

∈ H 1
df, then

the energy inequality holds with equality; that is for all 0 < t < Tmax,

1
2∥u(t)∥2

L2 +

∫ t

0
∥u(τ )∥2

Ḣ1 dτ =
1
2∥u0

∥
2
L2 .

We will note that because mild solutions are smooth and unique, the initial value problem for mild
solutions of the Navier–Stokes equation is locally well posed in Ḣ 1 — and also in a number of larger
spaces; however, it is not known to be globally well posed. Whether the Navier–Stokes equation has
global smooth solutions or admits smooth solutions that blowup in finite time is one of the biggest open
problems in PDEs and one of the Millennium Problems put forward by the Clay Mathematics Institute
[Fefferman 2006].

The main difficulty is that the only bounds that are available on the growth of solutions are the bounds
in L∞

t L2
x and L2

t Ḣ 1
x due to the energy equality, and these bounds are not enough to guarantee the global

existence of smooth solutions because the energy equality is supercritical with respect to the invariant
rescaling of the Navier–Stokes equation. The solution set of the Navier–Stokes equation is preserved
under the rescaling

uλ(x, t) = λu(λx, λ2t),
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for all λ > 0. This means that is not enough to control the L∞
t L2

x - or L2
t Ḣ 1

x -norms of u, which are
supercritical in terms of scaling; in order to guarantee global regularity, we need to control a scale critical
norm. Ladyzhenskaya [1967], Prodi [1959], and Serrin [1962] independently proved a family of scale
critical regularity criteria, which state that if Tmax < +∞ and 2/p + 3/q = 1 with 3 < q ≤ +∞, then∫ Tmax

0
∥u(t)∥p

Lq dt = +∞.

Escauriaza, Seregin and Sv̌erák [Escauriaza et al. 2003] extended this result to the endpoint case q = 3.
They proved that if Tmax < +∞, then

lim sup
t→Tmax

∥u(t)∥L3 = +∞.

Recently, Tao [2021] further extended this regularity criterion giving a quantitative lower bound on the
rate of the blowup of the L3-norm. This result is very slightly supercritical — in fact triple logarithmic —
with respect to scaling, and is the first supercritical regularity criterion for the Navier–Stokes equation.

Two crucially important objects for the study of the Navier–Stokes equation are the strain, which is the
symmetric gradient of the velocity, S = ∇symu, with Si j =

1
2(∂i uj + ∂j ui ), and the vorticity, which is a

vector that represents the antisymmetric part of the velocity and is given by ω = ∇ × u. Physically, the
strain describes how a parcel of the fluid is deformed, while the vorticity describes how a parcel of the
fluid is rotated.

Taking the curl of (1-1), we find the evolution equation for ω is given by

∂tω − 1ω + (u · ∇)ω − Sω = 0.

Taking the symmetric gradient of (1-1), we find the evolution equation for S is given by,

∂t S − 1S + (u · ∇)S + S2
+

1
4ω ⊗ ω −

1
4 |ω|

2 I3 + Hess(p) = 0. (1-3)

We will note that the vorticity equation is invariant under the rescaling

ωλ(x, t) = λ2ω(λx, λ2t),

and the strain equation is invariant under the rescaling

Sλ(x, t) = λ2S(λx, λ2t).

The extra factor of λ comes from the fact that both ω and S scale like ∇u.
The vorticity has been studied fairly exhaustively for its role in the dynamics of the Navier–Stokes

equation. For instance, the Beale–Kato–Majda regularity criterion [Beale et al. 1984], which holds for
smooth solutions of both the Euler and Navier–Stokes equations, states that if Tmax < +∞, then∫ Tmax

0
∥ω( · , t)∥L∞ dt = +∞.

Chae and Choe [1999] proved a regularity criterion on two components of vorticity that has a geometric
significance, guaranteeing that the blowup must be fully three dimensional. They showed that if a smooth
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solution of the Navier–Stokes equation blows up in finite time Tmax < +∞, then for all 3/2 < q < +∞

and 2/p + 3/q = 2, ∫ Tmax

0
∥e3 × ω( · , t)∥p

Lq dt = +∞. (1-4)

The fixed direction condition in this regularity criterion was recently loosened by the author in [Miller
2021]. In another key result involving vorticity, Constantin and Fefferman [1993] proved that the direction
of the vorticity must vary rapidly in regions where the vorticity is large if there is finite-time blowup.
There are many other results involving vorticity, far too many to list here.

The strain equation has been investigated much less thoroughly, but can provide some insights that do
not follow as clearly from the vorticity equation. We will refer to the evolution equation for S in (1-3) as
the Navier–Stokes strain equation. This equation is an evolution equation on the constraint space L2

st, the
space of strain matrices, which replaces the divergence-free constraint for the Navier–Stokes and vorticity
equations. We define L2

st as follows.

Definition 1.2. Define L2
st ⊂ L2(R3

; S3×3) by

L2
st = {∇symu : u ∈ Ḣ 1, ∇ · u = 0}.

The role of this constraint space in the evolution equation (1-3) was examined by the author in [Miller
2020]. One geometric restriction on the matrices S ∈ L2

st is that they must be trace-free because

tr(S) = ∇ · u = 0.

Furthermore, in that paper, the author proved that Hessians and scalar multiples of the identity matrix
must be in the orthogonal compliment of L2

st.

Proposition 1.3. For all f ∈ Ḣ 2(R3) and for all g ∈ L2(R3), we have Hess( f ), gI3 ∈ (L2
st)

⊥. That is for
all S ∈ L2

st,

⟨Hess( f ), S⟩ = 0 and ⟨gI3, S⟩ = 0.

For sufficiently smooth solutions to the Navier–Stokes strain equation, 1
4 |ω|

2, Hess(p) ∈ L2, so we can
conclude that the terms 1

4 |ω|
2 I3 and Hess(p) are orthogonal to the constraint space, or in other words

that 1
4 |ω|

2 I3, Hess(p) ∈ (L2
st)

⊥. This means that the Navier–Stokes strain equation can be expressed in
terms of the projection onto L2

st as

∂t S − 1S + Pst
(
(u · ∇)S + S2

+
1
4ω ⊗ ω

)
= 0. (1-5)

This is analogous to defining the Navier–Stokes equation without any reference to ∇ p by using the
Helmholtz projection onto the space of divergence-free vector fields in (1-2). We will use (1-5) to define
mild solutions to the Navier–Stokes strain equation in Section 3.

It is not actually necessary to separately prove the existence of mild solutions to the strain equation,
as it is straightforward to reduce this problem to the existence of mild solutions of the Navier–Stokes
equation. The author proved the equivalence of these formulations in [Miller 2020].
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Proposition 1.4. A velocity field u ∈ C([0, Tmax); Ḣ 1
df) is a mild solution of the Navier–Stokes equation if

and only if S ∈ C([0, Tmax); L2
st) is a mild solution to the Navier–Stokes strain equation, where S = ∇symu

and u = −2 div(−1)−1S.

The strain evolution equation is extremely useful because it allows us to prove a simplified identity
for enstrophy growth, which can equivalently be defined in terms of the square of the L2-norm of S, ω,
or ∇u based on an isometry proved by the author in [Miller 2020].

Proposition 1.5. For all −
3
2 < α < 3

2 and for all S ∈ Ḣα
st ,

∥S∥
2
Ḣα =

1
2∥ω∥

2
Ḣα =

1
2∥∇u∥

2
Ḣα.

Remark 1.6. We should note here that the factor of 1
2 in Proposition 1.5 is entirely an artifact of how the

vorticity is defined. The vorticity is a vector representation of the antisymmetric part of ∇u, with

A =
1
2

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

,

where A is the antisymmetric part of ∇u given by Ai j =
1
2(∂i uj −∂j ui ). From this identity we can see that

∥S∥
2
Ḣα = ∥A∥

2
Ḣα ,

so the isometry in Proposition 1.5 tells us that all the Hilbert norms of the symmetric and antisymmetric
parts of the gradient of a divergence-free vector field are equal.

Definition 1.7. Based on the isometry in Proposition 1.5, we will define the enstrophy of a solution to
the Navier–Stokes equation, which can be equivalently expressed as

E(t) = ∥S(t)∥2
L2 =

1
2∥ω(t)∥2

L2 =
1
2∥∇u(t)∥2

L2,

and the energy of a solution of the Navier–Stokes equation, which can be equivalently expressed as

K (t) = ∥S(t)∥2
Ḣ−1 =

1
2∥ω(t)∥2

Ḣ−1 =
1
2∥u(t)∥2

L2 .

Remark 1.8. The energy equality for smooth solutions of the Navier–Stokes equation can be stated in
terms of energy and enstrophy as

K (t) + 2
∫ t

0
E(τ ) dτ = K0.

Enstrophy is a very important quantity because Theorem 1.1 states that a smooth solution of the
Navier–Stokes equation must exist locally in time for initial data in u0

∈ Ḣ 1. This implies that enstrophy
controls regularity, because as long as enstrophy remains bounded on some time interval, a smooth
solution can be continued to some later time.

The standard estimate for enstrophy growth is given in terms of nonlocal interaction of the vorticity
and the strain:

d
dt

1
2
∥ω(t)∥2

L2 = −∥ω∥
2
Ḣ1 + ⟨S, ω ⊗ ω⟩.
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This is a nonlocal identity because S can be determined in terms of ω by a nonlocal, zeroth order
pseudo-differential operator, with S = ∇sym∇ × (−1)−1ω. Using the isometry in Proposition 1.5 and the
evolution equations for both the strain and the vorticity, this identity can be drastically simplified, with
the nonlocal term replaced by a term involving only the determinant of S.

Proposition 1.9. Suppose u ∈ C([0, Tmax); Ḣ 1
df) is a mild solution of the Navier–Stokes equation. Note

that this is equivalent to assuming that S ∈ C([0, Tmax); L2
st) is a mild solution to the Navier–Stokes strain

equation. Then for all 0 < t < Tmax,

d
dt

∥S(t)∥2
L2 = −2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3) = −2∥S∥

2
Ḣ1 − 4

∫
det(S).

This identity was first proven by Neustupa and Penel [2001; 2005]. The analogous result without
the dissipation term −2∥S∥

2
Ḣ1 was later proven independently by Chae [2006] in the context of smooth

solutions of the Euler equation using similar methods to Neustupa and Penel. This identity was also
proven using the evolution equation for the strain, a different approach to that of Neustupa and Penel, by
the author in [Miller 2020]. The identity in Proposition 1.9 directly implies a family of scale-invariant
regularity criteria in terms of the positive part of the middle eigenvalue of S.

Theorem 1.10. Suppose u ∈ C([0, Tmax); Ḣ 1
df) is a mild solution of the Navier–Stokes equation, or

equivalently that S ∈ C([0, Tmax); L2
st) is a mild solution to the Navier–Stokes strain equation. Let

λ1(x, t) ≤ λ2(x, t) ≤ λ3(x, t) be the eigenvalues of S(x, t), and let λ+

2 (x, t) = max{0, λ2(x, t)}. Then
for all 3/q + 2/p = 2 and 3/2 < q ≤ +∞, there exists Cq > 0 depending only on q such that for all
0 < t < Tmax,

∥S(t)∥2
L2 ≤ ∥S0

∥
2
L2 exp

(
Cq

∫ t

0
∥λ+

2 (τ )∥
p
Lq dτ

)
.

In particular, if Tmax < +∞, then ∫ Tmax

0
∥λ+

2 (t)∥p
Lq dt = +∞.

This regularity criterion was first proven by Neustupa and Penel [2001; 2005; 2018]. It was also
proven independently by the author in [Miller 2020]. Note that because tr(S) = 0, this regularity criterion
significantly restricts the geometry of any finite-time blowup for the Navier–Stokes equation: any blowup
must be driven by unbounded planar stretching and axial compression, with the strain having two positive
eigenvalues and one very negative eigenvalue.

There are many other conditional regularity results, which guarantee the regularity of solutions as
long as some scale critical quantity remains finite, including regularity criteria involving the derivative in
just one direction ∂3u [Kukavica and Ziane 2007], and involving just one velocity direction u3 [Chemin
and Zhang 2016; Chemin et al. 2017]. For a more thorough, but by no means exhaustive, treatment of
regularity criteria for the Navier–Stokes equation, see Chapter 11 in [Lemarié-Rieusset 2016].

In this paper we will take the opposite approach. We will prove finite-time blowup for solutions of
the Navier–Stokes equation with a fairly broad set of initial data, assuming that a certain scale invariant
quantity related to the structure of the nonlinearity remains small. We will do this first by considering a
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model equation for the Navier–Stokes strain equation and proving finite-time blowup for solutions of this
model equation, and then by viewing the actual Navier–Stokes strain equation as a perturbation of the
model equation.

In order to do this, we will drop the advection and the vorticity terms from the evolution equation (1-5)
entirely, along with a piece of the S2 term so that the enstrophy growth identity in Proposition 1.9 still
holds. We will show that

⟨S, ω ⊗ ω⟩ = −4
∫

det(S) = −
4
3⟨S2, S⟩

and
⟨(u · ∇)S, S⟩ = 0,

and therefore 〈
Pst

(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
, S

〉
= 0.

Using this identity, we can rewrite the full Navier–Stokes strain equation as

∂t S − 1S +
2
3 Pst(S2) + Pst

(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
= 0.

Dropping the term Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
from the evolution equation, our strain model equation

will be given by
∂t S − 1S +

2
3 Pst(S2) = 0. (1-6)

We will refer to (1-6) as the strain self-amplification model equation because it isolates the interaction of
the strain with itself, discarding the nonlocal interaction with the vorticity and the effects of advection. In
the model equation, we are dropping a combination of terms that are orthogonal to S in L2, while keeping
the two terms that contribute to the evolution in time of the L2-norm to first order. We will also show that
for solutions of the strain self-amplification model equation we have

d
dt

∥S(t)∥2
L2 = −2∥S∥

2
Ḣ1 − 4

∫
det(S),

so the strain self-amplification model equation does in fact have the same identity for enstrophy growth
as the Navier–Stokes equation, and consequently has a regularity criterion for λ+

2 in the critical Lebesgue
spaces L p

t Lq
x entirely analogous to the regularity criterion for the Navier–Stokes equation in Theorem 1.10.

Solutions of this model equation blowup in finite time for a fairly wide range of initial conditions.

Theorem 5.3. Suppose S ∈ C([0, Tmax); H 1
st) is a mild solution of the strain self-amplification model

equation such that
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0) > 0.

Then for all 0 < t < Tmax,

E(t) >
E0

(1 − r0t)2 , (1-7)

where

r0 =
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0)

2∥S0∥2
L2

.
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Note in particular that this implies

Tmax ≤
2∥S0

∥
2
L2

−3∥S0∥2
L2 − 4

∫
det(S0)

.

Furthermore, for all 2/p + 3/q = 2 and 3/2 < q ≤ +∞,∫ Tmax

0
∥λ+

2 (t)∥p
Lq dt = +∞.

Remark 1.11. The key to the proof of Theorem 5.3, which is the main result of this paper, is a 3
2 lower

bound on the rate of enstrophy growth for a wide range of initial conditions. In particular, we will show
that if

g0 :=
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0)

∥S0∥3
L2

> 0,

then for all 0 < t < Tmax,
d
dt

E(t) > g0 E(t)3/2,

which immediately yields estimate (1-7) in Theorem 5.3.

Remark 1.12. Theorem 5.3 shows that the regularity criterion in Theorem 1.10, which guarantees the
existence of smooth solutions of the Navier–Stokes equation so long as λ+

2 ∈ L p
t Lq

x , is not enough to
guarantee the global existence of smooth solutions to the Navier–Stokes equation just by making use of
the constraint space. For solutions of the strain self-amplification model equation, which is an evolution
equation on L2

st (the constraint space), λ+

2 becomes unbounded in this whole family of scale critical
spaces. The regularity criterion on λ+

2 implies that the blowup for the Navier–Stokes equation must be
characterized by unbounded planar stretching and axial compression, corresponding to a strain matrix with
two positive eigenvalues and one very negative eigenvalue in turbulent regions. One physical example of
such a structure in turbulent fluids is two colliding jets. The blowup result for the strain self-amplification
model equation shows that a blowup with these features is possible within the relevant constraint space.

Because we chose our strain self-amplification model equation (1-6) by dropping some terms from the
full strain equation, we can prove a new conditional blowup result for the full Navier–Stokes equation, by
viewing the actual strain equation as a perturbation of the strain self-amplification model equation.

Theorem 6.1. Suppose u ∈ C([0, Tmax); H 2
df) is a mild solution of the Navier–Stokes equation such that

f0 := −3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0,

and for all 0 < t < Tmax, ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
(1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

≤ 2.

Then there is finite-time blowup with

Tmax < T∗ :=
−E0 +

√

E2
0 + f0K0

f0
,

where K0 and E0 are taken as in Definition 1.7 and f0 is as defined above.



FINITE-TIME BLOWUP FOR NAVIER–STOKES MODEL EQUATION FOR SELF-AMPLIFICATION OF STRAIN 1005

Remark 1.13. Theorem 6.1 quantifies how close solutions of the Navier–Stokes strain equation have
to be to solving the model equation in order to be guaranteed to blowup in finite time. This result is —
to the knowledge of the author — the first of its kind. There are many results stating that if some scale
invariant quantity is finite, then solutions of the Navier–Stokes equation must be smooth, such as the
aforementioned Ladyzhenskaya–Prodi–Serrin and Beale–Kato–Majda regularity criteria. Theorem 6.1 is
the first result to say that, for some set of initial data, if a scale invariant quantity remains small enough
for the history of the solution, there must be blowup in finite time.

Remark 1.14. The mechanism for blowup proposed in Theorem 6.1 for the Navier–Stokes equation is
also consistent with research on the turbulent energy cascade. Very recently, Carbone and Bragg [2020]
showed both theoretically and numerically that strain self-amplification is a more important factor in
the average turbulent energy cascade than vortex stretching. This gave a concrete statement to a line
of inquiry on the turbulent energy cascade begun by Tsinober [2001]. The turbulent energy cascade is
directly tied to the Navier–Stokes regularity problem, as finite-time blowup requires a transfer of energy
to arbitrarily small scales, so this suggests that the self-amplification of strain is the most likely potential
mechanism for the finite-time blowup of solutions of the Navier–Stokes equation. The conditional blowup
result in this paper gives a quantitative estimate on the structure of the nonlinearity that will lead to
finite-time blowup for the Navier–Stokes equation via the self-amplification of strain if it is maintained
by the dynamics.

Remark 1.15. Turbulent solutions of the Navier–Stokes equation are, almost by definition, difficult to
impossible to write down in closed form. This poses a significant barrier to proving the existence of
smooth solutions of the Navier–Stokes equation that blowup in finite time: if finite-time blowup solutions
do in fact exist, it will still almost certainly not be possible to give a negative answer to the Navier–Stokes
regularity problem by providing a counterexample in closed form. Any progress on the Navier–Stokes
regularity problem in the direction of proving the existence of finite-time blowup will likely require an
interplay of analysis and numerics. Theorem 6.1 provides a quantitative criterion that could guide further
numerical work searching for possible blowup solutions.

We cannot show that there are any solutions of Navier–Stokes equation which satisfy the perturbative
condition in Theorem 6.1 up until T ∗. If we could, then this would solve the Navier–Stokes regularity
problem by implying the existence of finite-time blowup. We can, however, use scaling arguments to
prove that this condition is satisfied for short times for some solutions of the Navier–Stokes equation.

Theorem 6.3. There exists a mild solution of the Navier–Stokes equation u ∈ C([0, Tmax); H 3
df) and ϵ > 0

such that

−3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0,

and for all 0 ≤ t < ϵ, ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
(1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

≤ 2.
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Remark 1.16. In this paper we have taken the viscosity to be ν = 1. For the Navier–Stokes regularity
problem, we can fix the viscosity to be ν = 1 without loss of generality because it is equivalent up to
rescaling the Navier–Stokes regularity problem for arbitrary ν > 0. It is useful, however, to see how the
blowup results that we will prove scale with respect to the viscosity parameter ν > 0. If we take the
viscosity to be ν > 0, then the Navier–Stokes equation is now given by

∂t u − ν1u + Pdf∇ · (u ⊗ u) = 0,

and the strain self-amplification model equation is given by

∂t S − ν1S +
2
3 Pst(S2) = 0.

In this case, the condition
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0) > 0

in Theorems 5.3 and 6.1 is replaced with the condition

−3ν∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0.

Likewise the condition ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
(1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

≤ 2

in Theorems 6.1 and 6.3 is replaced by∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−ν1S + Pst
( 1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

≤ 2.

Remark 1.17. We should note in particular this means that if S0
∈ H 1

st and −
∫

det(S0) > 0, then for all

0 < ν < ν0
:=

−4
∫

det(S0)

3∥S0∥2
Ḣ1

,

the strain self-amplification model equation with viscosity ν blows up in finite time. This implies that the
blowup for the strain self-amplification model equation is generic at sufficiently large Reynolds number,
subject only to the geometric sign constraint on initial data, i.e., −

∫
det(S0) > 0. This suggests that the

self-amplification of strain is likely the driving factor behind possible blowup for the full Navier–Stokes
equation, and any depletion of nonlinearity preventing finite-time blowup must come from the effects of
advection and the nonlocal interaction of strain and vorticity.

This also means that finite-time blowup may occur for the strain self-amplification model equation
even in simplified geometric settings where blowup is ruled out for the full Navier–Stokes equation. We
will show that there is finite-time blowup for the strain self-amplification model equation even when
restricted to axisymmetric, swirl-free solutions. This contrasts strongly with the Navier–Stokes equation
where there is global regularity for arbitrarily large initial data in the axisymmetric, swirl-free case. There
are also axisymmetric, swirl-free solutions of the Navier–Stokes equation that satisfy the perturbative
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condition for short times, as in Theorem 6.3. Such solutions cannot, of course, satisfy the conditions of
Theorem 6.1 because they cannot blowup in finite time, and hence the perturbative condition can only be
satisfied for short times in such cases.

Remark 1.18. Because such a wide range of initial data lead to finite-time blowup for the strain self-
amplification model equation, the set of initial data for which there is finite-time blowup for this model
equation is too broad a set to consider as possible candidates for finite-time blowup for the Navier–Stokes
equation. While initial data that blowup in finite time are ubiquitous at high Reynolds number, subject
only to a sign constraint on the integral of the determinant of the strain, this does not necessarily mean
that blowup itself is generic. There could be certain structures or scaling laws that emerge as the blowup
time is approached for any blowup solution; further study is needed.

One possible avenue for further work would be to allow the dynamics of the strain self-amplification
model equation to select candidates for blowup for the full Navier–Stokes equation. Consider a solution
of the strain self-amplification model equation that is not axisymmetric and swirl free, and that blows up
in finite time Tmax < +∞. If we take S( · , Tmax − ϵ) for some 0 < ϵ ≪ Tmax as our initial data for the
full Navier–Stokes equation, then this would be a very natural candidate for blowup if blowup does in
fact occur for the full Navier–Stokes equation. To consider such an approach, more detailed study of
the qualitative features of blowup solutions of the strain self-amplification model equation is needed. At
present, essentially all we know about such solutions is a lower bound on the growth of enstrophy and
that λ+

2 blows up in the scale-critical L p
t Lq

x spaces.

In Section 2, we will discuss the relationship between our results and previous results for simplified
model equations for Navier–Stokes. In Section 3, we will define a number of the spaces used in our analysis
and give precise definitions of mild solutions. In Section 4, we will develop the local well-posedness
theory for the strain self-amplification model equation, including proving global well-posedness for small
initial data, and scale critical regularity criteria in terms of λ+

2 and in terms of two vorticity components.
In Section 5, we will prove Theorem 5.3, demonstrating the existence of finite-time blowup for solutions
of the strain self-amplification model equation, and will prove a number of properties about the set of
initial data satisfying the hypothesis of this theorem. Finally in Section 6, we will prove Theorem 6.1, the
conditional blowup result for the full Navier–Stokes equation when a perturbative condition is satisfied
by the history of the solution, and further show that this perturbative condition is satisfied for short times
for some solutions of the Navier–Stokes equation.

2. Relationship to previous literature

There are a number of previous results that prove blowup for simplified model equations for Navier–
Stokes with the hope of elucidating possibilities of extending this to the full Navier–Stokes equation.
Montgomery-Smith [2001] introduced a scalar toy model equation, replacing the first order pseudo-
differential operator Pdf∇· by −(−1)1/2 and replacing the quadratic term u ⊗ u by u2, giving the scalar
equation

∂t u − 1u − (−1)1/2(u2) = 0,
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and proved the existence of finite-time blowup solutions for this equation. This blowup result was extended
by Gallagher and Paicu [2009] to a model equation on the space of divergence-free vector fields by
adjusting the Fourier symbol of the first order pseudo differential operator. However, while Gallagher and
Paicu’s model equation is an evolution equation on natural constraint space, the space of divergence-free
vector fields, neither of these model equations respects the energy equality, and so both are still quite
far from the actual fluid equations. They are nonetheless important in that they establish that it is not
possible to prove global regularity for the Navier–Stokes equation using heat semigroup methods alone.

Tao [2016] improved on these earlier blowup results by introducing a Fourier space averaged Navier–
Stokes model equation. His model equation is given by

∂t u − 1u + B̃(u, u) = 0, (2-1)

where B̃(u, u) is a Fourier space averaged version of Pdf∇ · (u ⊗ u). This equation is an improvement
over the previous results because B̃ is constructed so that

⟨B̃(u, u), u⟩ = 0,

so Tao’s model equation (2-1) respects the energy equality with, for all 0 < t < Tmax,

1
2∥u(t)∥2

L2 +

∫ t

0
∥u(τ )∥2

Ḣ1 dτ =
1
2∥u0

∥
2
L2,

while also exhibiting finite-time blowup. The operator B̃ also has some of the same harmonic analysis
bounds as those found for full Navier–Stokes equation, in particular,

∥B̃(u, u)∥L2 ≤ C∥u∥L4∥∇u∥L4 . (2-2)

The fact that there are finite-time blowup solutions to Tao’s model equation shows that if there is global
regularity for solutions of the Navier–Stokes equation with arbitrary smooth initial data, the proof will
require more than the energy equality and the standard harmonic analysis techniques. New a priori bounds
are needed. We will note in particular that the bound in (2-2) implies that Tao’s model equation respects
the Ladyzhenskaya–Prodi–Serrin regularity criterion, that is if Tmax < +∞ for a solution u of (2-1), then
for all 2/p + 3/q = 1 and 3 < q ≤ +∞, ∫ Tmax

0
∥u∥

p
Lq = +∞.

While the Tao model equation respects the energy equality and some of the structure of the velocity
equation, it does not respect the structure of the vorticity or strain equations. In particular, Tao’s model
does not respect — or at least has not been shown to respect — the identity for enstrophy growth in
Proposition 1.9, the regularity criterion on λ+

2 in Theorem 1.10, or the regularity criterion on two
components of the vorticity in (1-4). The finite-time blowup result for the strain self-amplification model
equation is an advance on Tao’s model equation if the Navier–Stokes regularity problem is considered
from the point of view of enstrophy growth. The model equation considered here, unlike Tao’s model
equation, does not respect the energy equality; however, from a mathematical point of view, the energy
equality is less fundamental to the Navier–Stokes regularity problem than the identity for enstrophy
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growth because energy does not control regularity. Blowup for the Navier–Stokes equation in finite
time is equivalent to the blowup of enstrophy in finite time, so mathematically it is very significant that
we are able to show blowup for an evolution equation on L2

st that respects the identity for enstrophy
growth in Proposition 1.9. In summary, Tao’s model equation reflects more of the structure of the velocity
formulation of the Navier–Stokes regularity problem, while the strain self-amplification model equation
reflects more of the structure of both the strain and vorticity formulations of the regularity problem.

The strain self-amplification model equation is the first model equation of possible Navier–Stokes
blowup that respects regularity criteria for the Navier–Stokes equation based not just on size, but on
geometric structure as well. It is straightforward to show that the strain self-amplification, Montgomery-
Smith, Gallagher–Paicu, and Tao model equations all respect the Ladyzhenskaya–Prodi–Serrin regularity
criterion on the size of u, but the strain self-amplification model equation also respects the regularity
criterion on λ+

2 in Theorem 1.10. This implies as a corollary that the strain self-amplification model
equation must respect the regularity criterion on two vorticity components proved by Chae and Choe as
well. This suggests it captures significantly more of the geometry of potential Navier–Stokes blowup than
any of the previous model equations, at least as far as deformation and vorticity are concerned.

Theorem 6.1 shows that the local part of the nonlinearity of the strain evolution equation tends to
lead to finite-time blowup for a wide range of initial conditions, so there must be finite-time blowup for
the Navier–Stokes equation similar to the blowup for the model equation for the self-amplification of
strain unless the vorticity and advection terms act to deplete this nonlinearity and prevent blowup. This
is consistent with a number of previous works for model equations related to the Navier–Stokes and
Euler equations that suggest that advection plays a regularizing role. For instance, there are a number of
previous works on the Constantin–Lax–Majda [Constantin et al. 1985] and De Gregorio [1990] 1D models
for the vorticity equation which showed that advection may have a regularizing effect [Córdoba et al.
2005; Elgindi and Jeong 2020; Jia et al. 2019]. Theorem 5.3, which states that finite-time blowup occurs
for a wide range of initial data for the strain self-amplification model equation, extends the analysis of the
regularizing role of advection from 1D models that do not respect the structure of the constraint space to
a 3D model that does respect the structure of the constraint space.

There is also previous research on model equations for the axisymmetric Navier–Stokes and Euler
equations which preserve more of the structures of three dimensional fluid mechanics than the Constantin–
Lax–Majda or De Gregorio models. These model equations also show that advection plays a regularizing
role [Hou and Lei 2009; Hou et al. 2018]. Furthermore, there has been research on the possible role
of advection in the depletion of nonlinearity related to its interaction with the pressure in the growth
of subcritical Lq-norms of u [Tran and Yu 2015]. Theorem 6.1 is entirely novel, however, because it
is the first perturbative, finite-time blowup result related to the possible role of nonlinear depletion by
advection. The previous results were either heuristic or numerical; in contrast, Theorem 6.1 provides
a quantitative condition guaranteeing blowup as long as the terms which could potentially deplete the
nonlinear self-amplification of strain are small enough relative to strain self-amplification.

Finally, we should mention that very recently, Elgindi [2021] and Elgindi, Ghoul, and Masmoudi
[Elgindi et al. 2021] proved finite-time blowup for a class of C1,α(R3) solutions of the Euler equation
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that conserve energy. While the question of blowup for smooth solutions to the Euler equation remains
open, this represents an enormous step forward in providing an example of classical solutions to the
Euler equation that blowup in finite time. The blowup solutions of the Euler equation constructed in
[Elgindi 2021; Elgindi et al. 2021] are axisymmetric and swirl free, and are closely related to an example
of finite-time blowup that we will construct for the strain self-amplification model equation. We will
discuss this further in Section 5.

3. Definitions

We begin by defining the homogeneous and inhomogeneous Hilbert spaces.

Definition 3.1. For all s ∈ R, let H s(R3) be the Hilbert space with norm

∥ f ∥
2
H s =

∫
R3

(1 + 4π2
|ξ |

2)s
| f̂ (ξ)|2 dξ = ∥(1 + 4π2

|ξ |
2)s/2 f̂ ∥

2
L2,

and for all −
3
2 < s < 3

2 , let Ḣ s(R3) be the homogeneous Hilbert space with norm

∥ f ∥
2
Ḣ s =

∫
R3

(2π |ξ |)2s
| f̂ (ξ)|2 dξ = ∥(2π |ξ |)s f̂ ∥

2
L2 .

Note that when referring to H s(R3), Ḣ s(R3), or L p(R3), we will often omit the R3 for brevity. All
Hilbert and Lebesgue norms are taken over R3 unless otherwise specified. Furthermore, S3×3 will refer
to the space of three by three symmetric matrices:

S3×3
=


a d e

d b f
e f c

 : a, b, c, d, e, f ∈ R

.

We now define the subspaces of divergence-free vector fields and strain matrices in Hilbert spaces.

Definition 3.2. For all s ∈ R, define H s
df ⊂ H s(R3

; R3) by

H s
df = {u ∈ H s(R3

; R3) : ξ · û(ξ) = 0 almost everywhere ξ ∈ R3
}.

For all −
3
2 < s < 3

2 , define Ḣ s
df ⊂ Ḣ s(R3

; R3) by

Ḣ s
df = {u ∈ Ḣ s(R3

; R3) : ξ · û(ξ) = 0 almost everywhere ξ ∈ R3
}.

Definition 3.3. For all s ∈ R, define H s
st ⊂ H s(R3

; S3×3) by

H s
st = {∇sym(−1)−1/2u : u ∈ H s

df}.

For all −
3
2 < s < 3

2 , define Ḣ s
st ⊂ Ḣ s(R3

; S3×3) by

Ḣ s
st = {∇sym(−1)−1/2u : u ∈ Ḣ s

df}.

Definition 3.4. For all 1 < q < +∞, define Lq
st by

Lq
st = {S ∈ Lq(R3

; S3×3) : tr(S) = 0, S = ∇sym(−1)−1(−2 div(S))}.
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Remark 3.5. We will note that we have already defined L2
st in the introduction, so we now have two

definitions of L2
st. These definitions are equivalent, as was proven by the author in [Miller 2020]. The key

reason for this is that, just as the vorticity can be inverted to obtain the velocity, with

u = ∇ × (−1)−1ω,

so too can the strain be inverted to obtain the velocity, with

u = −2 div(−1)−1S.

This means that for all S ∈ L2
st,

S = ∇symu ⇐⇒ u = −2 div(−1)−1S.

This implies the condition in Definition 3.4 in the case q = 2 is equivalent to the condition in Definition 1.2.
See [Miller 2020] for more details. We will also note that Definition 3.4 is well defined because the
operator −2∇sym div(−1)−1 is a bounded linear operator mapping Lq

→ Lq for all 1 < q < +∞. This
follows from the boundedness of the Riesz transform R = ∇(−1)−1/2 because

−2∇sym div(−1)−1S = −2Rsym R · S.

We will also define axisymmetric, swirl-free vector fields and strain matrices.

Definition 3.6. Begin by letting

r =

√
x2

1 + x2
2 , z = x3, er =

1
r
(x1, x2, 0), ez = (0, 0, 1).

We will say that u ∈ Ḣ 1
df is an axisymmetric, swirl-free vector field if

u(x) = ur (r, z)er + uz(r, z)ez.

Note that the divergence-free condition can be expressed in this case by

∇ · u = ∂r ur +
1
r

ur + ∂zuz = 0.

We will say that S ∈ L2
st is an axisymmetric, swirl-free strain matrix if

S = ∇symu,

where u ∈ Ḣ 1
df is an axisymmetric, swirl-free vector field.

We conclude this section by providing the precise definitions for mild solutions of the Navier–Stokes
equation, the Navier–Stokes strain equation, and the strain self-amplification model equation.

Definition 3.7. A velocity field u ∈ C([0, Tmax); Ḣ 1
df) is a mild solution to the Navier–Stokes equation if

it satisfies (1-2) in the sense of Duhamel’s formula, that is, if for all 0 < t < Tmax,

u(t) = et1u0
−

∫ t

0
eτ1 Pdf∇ · (u ⊗ u)(t − τ) dτ.
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Note that et1 is defined in terms of convolution with the heat kernel

G(x, t) =
1

(4π t)3/2 exp
(
−

|x |
2

4t

)
,

so that
et1 f = G( · , t) ∗ f.

Remark 3.8. Tmax is the maximal time of existence for a mild solution. If there is a mild solution globally
in time for some initial data u0

∈ Ḣ 1
df, then Tmax = +∞, and if there is not a mild solution globally in

time, then Tmax < +∞ is the blowup time when the solution becomes singular.

Definition 3.9. A strain matrix S ∈ C([0, Tmax); L2
st) is a mild solution to the Navier–Stokes strain

equation if it satisfies (1-5) in the sense of Duhamel’s formula, that is, if for all 0 < t < Tmax,

S(t) = et1S0
−

∫ t

0
eτ1 Pst

(
(u · ∇)S + S2

+
1
4ω ⊗ ω

)
(t − τ) dτ,

with u = (−1)−1(−2 div(S)) and ω = ∇ × u.

Definition 3.10. S ∈ C([0, Tmax); L2
st) is a mild solution to the strain self-amplification model equa-

tion (1-6) if S satisfies this equation in the sense of Duhamel’s formula, that is, for all 0 < t < Tmax,

S(t) = et1S0
−

2
3

∫ t

0
eτ1 Pst(S2)(t − τ) dτ.

4. Some properties of the strain self-amplification model equation

We begin this section by considering the local-in-time existence of mild solutions to the strain self-
amplification model equation.

Theorem 4.1. Let C =
( 3

32∥g∥L2
)4, where g(x) = exp(−|x |

2/4)/(2π)3/2. For all S0
∈ L2

st, there exists a
unique mild solution to the strain self-amplification model equation, S ∈ C([0, Tmax); L2

st), with Tmax ≥

C/∥S0
∥

4
L2 . Furthermore, S ∈ C((0, Tmax); H∞) and is therefore smooth for all positive times up until

possible blowup.

Proof. The proof of Theorem 4.1 is essentially the same as the proof of local existence of mild solutions
for the Navier–Stokes equation introduced by Kato and Fujita. It will be based on a Banach fixed point
argument.

We begin by fixing

T <
C

∥S0∥4
L2

.

Note that this implies
32
3 ∥g∥L2∥S0

∥L2 T 1/4 < 1.

Define the map W : C([0, T ]; L2
st) → C([0, T ]; L2

st) by

W [M](t) = et1S0
+

∫ t

0
eτ1 Pst(M2(t − τ)) dτ.
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Note that S being a mild solution of the heat equation is equivalent to S being a fixed point of this map
with W [S] = S.

We will first show that if ∥M∥C([0,T ];L2) ≤ 2∥S0
∥L2 , then ∥W [M]∥C([0,T ];L2) ≤ 2∥S0

∥L2 . Recall that

et1 f = G( · , t) ∗ f,

where

G(x, t) = t−3/2g(t−1/2x).

Therefore we can compute that

∥G( · , t)∥L2 = ∥g∥L2 t−3/4.

Applying Young’s inequality for convolutions we find that for all 0 ≤ t ≤ T,

∥W [M](t)∥L2 ≤ ∥S0
∥L2 +

2
3

∫ t

0
∥Pst(eτ1)M2)∥L2 dτ ≤ ∥S0

∥L2 +
2
3

∫ t

0
∥G( · , t)∥L2∥M2(t − τ)∥L1 dτ

≤ ∥S0
∥L2 +

2
3
∥M2

∥C([0,T ];L1)

∫ t

0
∥g∥L2τ−3/4 dτ ≤ ∥S0

∥L2 +
8
3
∥M∥

2
C([0,T ];L2)

∥g∥L2 t1/4

≤ ∥S0
∥L2 +

8
3
∥M∥

2
C([0,T ];L2)

∥g∥L2 T 1/4.

Using the fact that ∥M∥C([0,T ];L2) ≤ 2∥S0
∥L2 and recalling that 32

3 ∥g∥L2∥S0
∥L2 T 1/4 < 1, we can see that

8
3∥M∥

2
C([0,T ];L2)

∥g∥L2 T 1/4
≤

32
3 ∥S0

∥
2
L2∥g∥L2 T 1/4

≤ ∥S0
∥L2 .

This implies that

∥W [M]∥C([0,T ];L2) ≤ 2∥S0
∥L2 .

Therefore W is an automorphism on the closed ball

B = {M ∈ C([0, T ]; L2
st) : ∥M∥C([0,T ];L2) ≤ 2∥S0

∥L2}.

We will now show that W is a contraction mapping on B. Fix M, Q ∈ B. Using Young’s convolution
inequality as above we can compute that for all 0 ≤ t ≤ T,

∥W [M](t) − W [Q](t)∥L2 =
1
3

∥∥∥Pst

∫ t

0
et1((M + Q)(M − Q) + (M − Q)(M + Q))

∥∥∥
L2

≤
8
3
∥g∥L2 t1/4

∥M + Q∥C([0,T ];L2)∥M − Q∥C([0,T ];L2)

≤
8
3
∥g∥L2 t1/4(∥M∥C([0,T ];L2) + ∥Q∥C([0,T ];L2))∥M − Q∥C([0,T ];L2)

≤
32
3

∥g∥L2∥S0
∥L2 T 1/4

∥M − Q∥C([0,T ];L2).

Letting

r =
32
3 ∥g∥L2∥S0

∥L2 T 1/4 < 1,

we find that

∥W [M] − W [Q]∥C([0,T ];L2) ≤ r∥M − Q∥C([0,T ];L2).
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Note that B is a complete metric space, so by the Banach fixed point theorem, we can conclude that there
exists a unique S ∈ B ⊂ C([0, T ]; L2

st) such that

W [S] = S.

This implies that there is a unique, mild solution with initial data in S0
∈ L2

st locally in time. Note that
the higher regularity S ∈ C((0, T ]; H∞) is a result of the smoothing due to the heat kernel, but we will
not go through the details of that here. This higher regularity follows from a bootstrapping argument that
is essentially the same as the argument in the case of the Navier–Stokes equation given in [Fujita and
Kato 1964]. □

We will now prove a useful proposition giving an identity for the determinant of 3 × 3, symmetric,
trace-free matrices.

Proposition 4.2. Suppose M ∈ S3×3 is a 3 × 3 symmetric matrix such that tr(M) = 0. Then

tr(M3) = 3 det(M).

Proof. Every symmetric matrix is diagonalizable over R, so let λ1 ≤ λ2 ≤ λ3 be the eigenvalues of M.
Using the trace-free condition we can see that

tr(M) = λ1 + λ2 + λ3 = 0.

Therefore we can compute that

tr(M3) = λ3
1 + λ3

2 + λ3
3 = (−λ1 − λ2)

3
+ λ3

1 + λ3
2 = −3λ2

1λ2 − 3λ1λ
2
2

= 3(−λ1 − λ2)λ1λ2 = 3λ1λ2λ3 = 3 det(M). □

Using this proposition, we will show that the strain self-amplification model equation has the same
identity for enstrophy growth as the Navier–Stokes strain equation.

Proposition 4.3. Suppose S ∈ C([0, Tmax); L2
st) is a mild solution to the strain self-amplification model

equation. Then for all 0 < t < Tmax,

d
dt

∥S( · , t)∥2
L2 = −2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3) = −2∥S∥

2
Ḣ1 − 4

∫
det(S).

Proof. Taking the derivative in time of the L2-norm, we plug equation (1-6) into the strain self-amplification
model, finding

d
dt

∥S( · , t)∥2
L2 = 2⟨∂t S, S⟩ = −2

〈
−1S +

2
3

Pst(S2), S
〉
= −2∥S∥

2
Ḣ1 −

4
3
⟨Pst(S2), S⟩

= −2∥S∥
2
Ḣ1 −

4
3
⟨S2, S⟩ = −2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3) = −2∥S∥

2
Ḣ1 − 4

∫
det(S),

where we have used the fact that S belongs to L2
st to drop the projection Pst and the fact that S is symmetric

to compute the inner product, and have finally applied Proposition 4.2. □
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In fact, the vortex stretching and the integral of the determinant of the strain can be related in a general
way as follows. This will be useful in showing the term we dropped in the model equation does not
contribute to enstrophy growth.

Proposition 4.4. For all S ∈ L3
st,

−4
∫

det(S) = ⟨S; ω ⊗ ω⟩,

where u = −2 div(−1)−1S and ω = ∇ × u. In particular, this implies that〈
S, Pst

( 1
3 S2

+
1
4ω ⊗ ω

)〉
= 0.

Proof. The first step of the proof will be to show that∫
tr((∇u)3) = 0. (4-1)

We begin by recalling that by definition,

S = ∇sym(−1)−1(−2 div(S)),

and so we can see that S = ∇symu. We may conclude that

∇u = −2∇ div(−1)−1S.

Using the boundedness of the Riesz transform from L3
→ L3, this implies that ∇u ∈ L3, so the integral

in (4-1) is absolutely convergent.
Using the divergence-free condition we note that

3∑
i=1

∂ui

∂xi
= ∇ · u = 0.

Therefore for all u ∈ C∞
c (R3

; R3) with ∇ · u = 0, we can integrate by parts — without worrying about
boundary terms because of compact support — finding∫

tr((∇u)3) =

3∑
i, j,k=1

∫
∂uj

∂xi

∂uk

∂xj

∂ui

∂xk
= −

3∑
i, j,k=1

∫
uj

∂2uk

∂xi∂xj

∂ui

∂xk

=

3∑
i, j,k=1

∫
uj

∂uk

∂xi

∂2ui

∂xj∂xk
= −

3∑
i, j,k=1

∫
∂uj

∂xk

∂uk

∂xi

∂ui

∂xj
= −

∫
tr((∇u)3) = 0.

Because C∞
c (R3

; R3) is dense in L3(R3
; R3), this suffices to guarantee that for all ∇u ∈ L3 with ∇ ·u = 0,∫

tr((∇u)3) = 0.

We know that ∇u = S + A. Using the fact that S is symmetric and A is antisymmetric, and that all
antisymmetric matrices are trace-free, we compute

tr((∇u)3) = tr(S3) + 3 tr(S A2).
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Recall from the introduction that

A =
1
2

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

,

and we can compute that
A2

=
1
4ω ⊗ ω −

1
4 |ω|

2 I3.

Therefore we find
3 tr(S A2) =

3
4(S : ω ⊗ ω) +

3
4 |ω|

2 tr(S) =
3
4(S : ω ⊗ ω).

Applying Proposition 4.2, we find that

tr(S3) = 3 det(S).

Therefore we find
tr((∇u)3) = 3 det(S) +

3
4(S : ω ⊗ ω).

Integrating this equality over R3 we find

⟨S; ω ⊗ ω⟩ + 4
∫

det(S) =
4
3

∫ (
3 det(S) +

3
4
(S : ω ⊗ ω)

)
=

4
3

∫
tr((∇u)3) = 0.

Finally we compute〈
Pst

(
1
3

S2
+

1
4
ω⊗ω

)
; S

〉
=

〈
1
3

S2
+

1
4
ω⊗ω; S

〉
=

1
4
⟨S; ω⊗ω⟩+

1
3

∫
tr(S3)=

1
4
⟨S; ω⊗ω⟩+

∫
det(S)= 0,

and this completes the proof. The author would like to thank the anonymous referee from an earlier
version of [Miller 2020] for this observation. □

Using this result, we will observe that the term we have dropped from the Navier–Stokes strain equation
to obtain our strain self-amplification model equation is orthogonal to S with respect to the L2-inner
product.

Corollary 4.5. Suppose S ∈ H 1
st with S = ∇symu and ω = ∇ × u. Then〈

Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
; S

〉
= 0.

Proof. We begin by observing that H 1 ↪→ Ḣ 1/2 ↪→ L3, and so clearly S ∈ L3
st. Applying Proposition 4.4

we see that 〈
Pst

(1
3 S2

+
1
4ω ⊗ ω

)
; S

〉
= 0.

Next we use the divergence-free condition, ∇ · u = 0, and the fact that we have sufficient regularity to
integrate by parts to compute

⟨Pst((u · ∇)S); S⟩ = ⟨(u · ∇)S; S⟩ = −⟨S; (u · ∇)S⟩ = 0. □

Note that this means the term Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
does not contribute to enstrophy growth,

so when we write the Navier–Stokes strain equation as

∂t S − 1S +
2
3 Pst(S2) + Pst

(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
= 0,
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only the terms −1S and 2
3 Pst(S2) contribute to enstrophy growth. This is the justification for studying the

dynamics of enstrophy growth using a model equation that drops the term Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ω

)
,

retaining only the terms that actually contribute to the growth of enstrophy.
The strain self-amplification model equation, like the Navier–Stokes strain equation, is invariant under

the rescaling
Sλ(s, t) = λ2S(λx, λ2t).

We will now show the existence of global smooth solutions of the strain self-amplification model equation
with small initial data in the critical Hilbert space Ḣ−1/2.

Theorem 4.6. Suppose S0
∈ L2

st ∩ Ḣ−1/2
st and

∥S0
∥Ḣ−1/2 <

3
√

3
4
√

2
π.

Then there exists a unique, global smooth solution to the strain self-amplification model equation S ∈

C([0, +∞); L2
st), that is Tmax = +∞.

Proof. We begin by observing there must be a smooth solution S ∈ C((0, Tmax); L2
st), for some Tmax > 0.

We will consider the growth of the Ḣ−1/2-norm on this time interval. We will use the fractional Sobolev
inequality proven in [Lieb 1983; Lieb and Loss 1997]. For all f ∈ L3/2(R3),

∥ f ∥Ḣ−1/2 ≤
1

21/6π1/3
∥ f ∥L3/2,

and for all g ∈ L3(R3),
∥g∥L3 ≤

1
21/6π1/3

∥g∥Ḣ1/2 .

Applying both fractional Sobolev inequalities we find that

d
dt

∥S(t)∥2
Ḣ−1/2 = −2∥S∥

2
Ḣ1/2 −

4
3
⟨(−1)−1/2S, S2

⟩ ≤ −2∥S∥
2
Ḣ1/2 +

4
3
∥(−1)−1/2S∥Ḣ1/2∥S2

∥Ḣ−1/2

≤ −2∥S∥
2
Ḣ1/2 +

4
3

1
21/6π1/3

∥S∥Ḣ−1/2∥S2
∥L3/2 ≤ −2∥S∥

2
Ḣ1/2 +

4
3

1
21/6π1/3

∥S∥Ḣ−1/2∥S∥
2
L3

≤ −2∥S∥
2
Ḣ1/2 +

4
3

1
21/2π

∥S∥Ḣ−1/2∥S∥
2
Ḣ1/2 ≤ 2∥S∥

2
Ḣ1/2

(
−1 +

√
2

3π
∥S∥Ḣ−1/2

)
.

From this bound on the growth of the Ḣ−1/2-norm it is clear that if

∥S(t)∥Ḣ−1/2 <
3π
√

2
,

then
d
dt

∥S(t)∥Ḣ−1/2 < 0.

We know that
∥S0

∥Ḣ−1/2 <
3
√

3
4
√

2
π <

3π
√

2
,

so we can conclude that for all 0 ≤ t < Tmax,

∥S(t)∥Ḣ−1/2 <
3
√

3
4
√

2
π.
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To finish the proof we will need to consider bounds on the enstrophy growth in terms of the Ḣ−1/2-norm.
In addition to the fractional sharp Sobolev inequality, we will also make use of the ordinary sharp Sobolev
inequality [Sobolev 1963; Talenti 1976], which states that for all f ∈ L6(R3),

∥ f ∥L6 ≤
1

√
3

(
2
π

)2/3
∥ f ∥Ḣ1 .

Applying the Sobolev inequality, the fractional Sobolev inequality, Hölder’s inequality, and the product
rule to the identity for enstrophy growth in Proposition 4.3, we find

d
dt

∥S(t)∥2
L2 = −2∥S∥

2
Ḣ1 −

4
3
⟨S, S2

⟩ ≤ −2∥S∥
2
Ḣ1 +

4
3
∥S∥Ḣ−1/2∥S2

∥Ḣ1/2

= −2∥S∥
2
Ḣ1 +

4
3
∥S∥Ḣ−1/2∥∇(S2)∥Ḣ−1/2 ≤ −2∥S∥

2
Ḣ1 +

4
3

1
21/6π1/3

∥S∥Ḣ−1/2∥∇(S2)∥L3/2

≤ −2∥S∥
2
Ḣ1 +

4
3

1
21/6π1/3

∥S∥Ḣ−1/22∥∇S∥L2∥S∥L6

≤ −2∥S∥
2
Ḣ1 +

8
3

1
21/6π1/3

1
√

3

(
2
π

)2/3
∥S∥Ḣ−1/2∥S∥

2
Ḣ1 = 2∥S∥

2
Ḣ1

(
−1 +

4
√

2
3
√

3π
∥S∥Ḣ−1/2

)
.

We have already shown that for all 0 ≤ t < Tmax,

4
√

2
3
√

3π
∥S(t)∥Ḣ−1/2 < 1,

so for all 0 ≤ t < Tmax,
d
dt

∥S(t)∥2
L2 ≤ 0.

This implies that for all 0 ≤ t < Tmax,

∥S(t)∥L2 ≤ ∥S0
∥L2 .

We know from Theorem 4.1 that for all 0 ≤ t < Tmax,

Tmax − t >
C

∥S(t)∥4
L2

.

This means that if Tmax < +∞, then

lim
t→Tmax

∥S(t)∥L2 = +∞.

We know that for all 0 ≤ t < Tmax we have ∥S(t)∥L2 ≤ ∥S0
∥L2 , so we can conclude that Tmax = +∞. □

Remark 4.7. We will note that the assumption S ∈ Ḣ−1/2
∩ L2 is not actually necessary; it is sufficient to

have small initial data in Ḣ−1/2 to guarantee global regularity with no assumption that S0
∈ L2. However,

dropping this assumption makes the proof a little more technical, and, more importantly, the whole point
of a strain self-amplification model equation is to model enstrophy growth, so if our solution is not in L2

the model does not mean very much.
Likewise, some of the other results in this section are not optimal: for example, it should be straightfor-

ward to prove the local existence of mild, smooth solutions with initial data in B−2+3/p
p,∞ , for 2 ≤ p < +∞,

without too much difficulty. Because the strain self-amplification model equation is adapted specifically
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to study L2 solutions however, getting local existence or small data results down to the largest scale
critical spaces is not particularly useful or illuminating.

We will now prove that because the strain self-amplification model equation has the same identity for
enstrophy growth as the Navier–Stokes equation, it also has a regularity criterion on the positive part
of the middle eigenvalue of the strain matrix that is precisely the same as the analogous result for the
Navier–Stokes equation, Theorem 1.10.

Theorem 4.8. Suppose S ∈ C([0, Tmax); L2
st) is a mild solution to the strain self-amplification model equa-

tion. Let λ1(x, t) ≤ λ2(x, t) ≤ λ3(x, t) be the eigenvalues of S(x, t), and let λ+

2 (x, t) = max{0, λ2(x, t)}.
Then for all 3/q + 2/p = 2 and 3/2 < q ≤ +∞, there exists Cq > 0 depending only on q such that for all
0 < t < Tmax,

∥S(t)∥2
L2 ≤ ∥S0

∥
2
L2 exp

(
Cq

∫ t

0
∥λ+

2 (τ )∥
p
Lq dτ

)
. (4-2)

In particular, if Tmax < +∞, then ∫ Tmax

0
∥λ+

2 (t)∥p
Lq dt = +∞.

Proof. We know from Theorem 4.1 that if Tmax < +∞, then

lim
t→Tmax

∥S(t)∥2
L2 = +∞,

so it suffices to prove estimate (4-2). Because tr(S) = 0, we know that λ1 ≤ 0 and λ3 ≥ 0, and therefore

−λ1λ3 ≥ 0.

We can compute from the identity for enstrophy growth in Proposition 4.3 that

d
dt

∥S(t)∥2
L2 = −2∥S∥

2
Ḣ1 − 4

∫
det(S) = −2∥S∥

2
Ḣ1 + 4

∫
(−λ1λ3)λ2

≤ −2∥S∥
2
Ḣ1 + 4

∫
(−λ1λ3)λ

+

2 ≤ −2∥S∥
2
Ḣ1 + 2

∫
λ+

2 |S|
2
≤ Cq∥λ+

2 ∥
p
Lq ∥S∥

2
L2,

after applying Hölder’s inequality, the Sobolev inequality, and Young’s inequality. This computation is
precisely the same as the one done in the proof of the regularity criterion on λ+

2 in [Miller 2020], so we
refer the reader there for more details on these steps. Applying Grönwall’s inequality, we find for all
0 < t < Tmax,

∥S(t)∥2
L2 ≤ ∥S0

∥L2 exp
(
Cq

∫ t

0
∥λ+

2 (τ )∥
p
Lq dτ

)
. □

This regularity criterion means that there must be unbounded planar stretching in the scale critical
L p

t Lq
x spaces in order for finite-time blowup to occur. The strength of the strain formulation of the

Navier–Stokes regularity problem means that not only does the strain self-amplification model equation
respect geometric regularity criteria in terms of the strain; it also respects the regularity criterion on two
components of the vorticity proven for the full Navier–Stokes equation by Chae and Choe [1999].
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Corollary 4.9. Suppose S ∈ C([0, Tmax); L2
st) is a mild solution to the strain self-amplification model

equation. Let ω = ∇ × (−1)−1(−2 div(S)) be the vorticity associated with the strain S. Then for all
3/q +2/p = 2 and 3/2 < q < +∞, there exists Cq > 0 depending only on q such that for all 0 < t < Tmax,

∥S(t)∥2
L2 ≤ ∥S0

∥
2
L2 exp

(
Cq

∫ t

0
∥e3 × ω(τ)∥

p
Lq dτ

)
.

In particular, if Tmax < +∞, then ∫ Tmax

0
∥e3 × ω(t)∥p

Lq dt = +∞.

Proof. We know that tr(S) = 0 and λ1 ≤ λ2 ≤ λ3, so λ2 is the smallest eigenvalue of S in magnitude. This
implies for all unit vectors v ∈ R3, that |λ2| ≤ |Sv|. Consequently we can see that for all x ∈ R3,

|λ2| ≤ |Se3|.

Next we observe that
2Se3 = ∇u3 + ∂3u,

e3 × ω = ∇u3 − ∂3u.

We can see that ∇u3 is a gradient and that ∇ · ∂3u = 0, and so using the Helmholtz projections unto the
spaces of divergence-free vector fields and gradients, we can see that

∇u3 = Pgr (e3 × ω),

∂3u = −Pdf(e3 × ω).

The boundedness of the Helmholtz decomposition then implies that for all 1 < q < +∞,

∥λ2∥Lq ≤ ∥Se3∥Lq ≤
1
2∥∇u3∥Lq +

1
2∥∂3u∥Lq ≤ Cq∥e3 × ω∥Lq .

The result then follows as an immediate corollary of Theorem 4.8. □

5. Finite-time blowup for the strain self-amplification model equation

In this section, we will prove the existence of finite-time blowup for the strain self-amplification model
equation. We begin by proving a nonlinear differential inequality giving a lower bound on the rate of
enstrophy growth that is sufficient to guarantee finite-time blowup for some initial data.

Proposition 5.1. Suppose S ∈ C([0, Tmax); H 1
st) is a mild solution of the strain self-amplification model

equation. Then for all 0 ≤ t < Tmax,
d
dt

E(t) ≥ g0 E(t)3/2,

where

g0 =
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0)

∥S0∥3
L2

.
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Proof. We will begin by letting

g(t) =
−3∥S( · , t)∥2

Ḣ1 − 4
∫

det(S( · , t))

∥S( · , t)∥3
L2

=
−3∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

E(t)3/2 .

Differentiating g, we find that for all 0 < t < Tmax,

d
dt

g(t) =
6
∥∥−1S +

2
3 Pst(S2)

∥∥2
L2

E(t)3/2 −
3
2

(
−3∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

)(
−2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

)
E(t)5/2

=
6
∥∥−1S +

2
3 Pst(S2)

∥∥2
L2

∥S∥
3
L2

−
3
2

(
−3∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

)(
−2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

)
∥S∥

5
L2

≥
6
∥∥−1S +

2
3 Pst(S2)

∥∥2
L2

∥S∥
3
L2

−
3
2

(
−2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

)2

∥S∥
5
L2

=
6

∥S∥
5
L2

(
∥S∥

2
L2

∥∥∥−1S +
2
3

Pst(S2)

∥∥∥2

L2
−

(
−∥S∥

2
Ḣ1 −

2
3

∫
tr(S3)

)2 )
.

Applying Young’s inequality, we find

−∥S∥
2
Ḣ1 −

2
3

∫
tr(S3) = −

〈
−1S +

2
3

Pst(S2), S
〉
≤

∥∥∥1S +
2
3

Pst(S2)

∥∥∥
L2

∥S∥L2,

and so we can conclude that for all 0 < t < Tmax,

d
dt

g(t) ≥ 0.

Therefore, we can conclude that for all 0 < t < Tmax,

g(t) ≥ g0.

Finally, we observe that for all 0 < t < Tmax,

d
dt

E(t) = −2∥S∥
2
Ḣ1 − 4

∫
det(S) ≥ −3∥S∥

2
Ḣ1 − 4

∫
det(S) = g(t)E(t)3/2

≥ g0 E(t)3/2, (5-1)

and this completes the proof. □

Remark 5.2. Note that as long as S is not the trivial solution — as long as ∥S∥
2
Ḣ1 > 0 — then the inequality

in (5-1) is strict and therefore for all 0 < t < Tmax,

d
dt

E(t) > g0 E(t)3/2.

This differential inequality is sufficient to guarantee finite-time blowup for any solution with initial data
such that g0 > 0. We will now prove Theorem 5.3, which is restated here for the reader’s convenience.

Theorem 5.3. Suppose S ∈ C([0, Tmax); H 1
st) is a mild solution of the strain self-amplification model

equation such that

−3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0.
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Then for all 0 < t < Tmax,

E(t) >
E0

(1 − r0t)2 ,

where

r0 =
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0)

2∥S0∥2
L2

.

Note in particular that this implies

Tmax ≤
2∥S0

∥
2
L2

−3∥S0∥2
L2 − 4

∫
det(S0)

.

Furthermore, for all 2/p + 3/q = 2 and 3/2 < q ≤ +∞,∫ Tmax

0
∥λ+

2 (t)∥p
Lq dt = +∞.

Proof. The main argument of the proof will be integrating the differential inequality in Proposition 5.1.
Applying Proposition 5.1, we can see that for all 0 < t < Tmax,

d
dt

E(t) > g0 E(t)3/2, (5-2)

where g0 > 0 by hypothesis. Applying the chain rule and (5-2), for all 0 < t < Tmax,

d
dt

(−E(t)−1/2) =
1
2 E(t)−3/2 d

dt
E(t) > 1

2 g0,

Integrating this differential inequality, we find that for all 0 < t < Tmax,

E−1/2
0 − E(t)−1/2 > 1

2 g0t.

This implies that

E(t)−1/2 < E−1/2
0 −

1
2 g0t,

and therefore that

E(t) >
1(

E−1/2
0 −

1
2 g0t

)2 .

Multiplying the numerator and denominator by E0, we find that for all 0 < t < Tmax,

E(t) >
E0(

1 −
1
2 g0 E1/2

0 t
)2 .

It is easy to check that

r0 =
1
2 g0 E1/2

0 ,

so we have now established that for all 0 < t < Tmax,

E(t) >
E0

(1 − r0t)2 .
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Furthermore, this clearly implies that

Tmax ≤
1
r0

=
2∥S0

∥
2
L2

−3∥S0∥2
L2 − 4

∫
det(S0)

.

Finally, applying Theorem 4.8, we conclude that for all 2/p + 3/q = 2 and 3/2 < q ≤ +∞,∫ Tmax

0
∥λ+

2 (t)∥p
Lq dt = +∞. □

Next we will show that the set of initial data satisfying the hypothesis of Theorem 5.3 is nonempty and
bounded below in Ḣ−1/2. We will also show that λ+

2 is bounded below in L3/2 for all S in this set. First
we will need to perform a few calculations related to the determinant of the strain.

Proposition 5.4. There exists S ∈ H 1
st, axisymmetric and swirl-free, such that

−

∫
R3

det(S) > 0.

Note that we will say that S is axisymmetric and swirl free if S = ∇symu, where u is an axisymmetric,
swirl-free, divergence-free vector field.

Proof. We begin by taking u ∈ H 2
df using axisymmetric coordinates, letting

u(x) = (r − 2r z2) exp(−r2
− z2)er + (−2z + 2r2z) exp(−r2

− z2)ez.

We will observe that

u(x) =

(1 − 2x2
3)

x1

x2

0

 + (−2x3 + 2(x2
1 + x2

2)x3)

0
0
1

exp(−(x2
1 + x2

2 + x2
3)),

and so not only do we have u ∈ H 2, but we have the stronger result that u must be in the Schwartz class
of smooth functions, which have, along with all their derivatives, faster than polynomial decay at infinity.
Taking the divergence of u we find that

∇ · u =

(
∂r +

1
r

)
ur + ∂zuz = ((2 − 4z2

− 2r2
+ 4r2z2)+ (−2 + 2r2

+ 4z2
− 4r2z2)) exp(−r2

− z2) = 0,

as required, so that u ∈ H 2
df. Taking the curl of u we find that

ω = (∂zur − ∂r uz)eθ = ((−4r z − 2r z + 4r z3) − (4r z + 4r z − 4r3z)) exp(−r2
− z2)eθ

= (−14r z + 4r z3
+ 4r3z) exp(−r2

− z2)eθ .

Next we will observe that the gradient can be represented in axisymmetric coordinates as

∇ =
1
r

eθ∂θ + er∂r + ez∂z.

Using this representation and recalling that

er =

cos(θ)

sin(θ)

0

,
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we can see that
∂θer = eθ .

This means we can compute

tr(S(eθ ⊗ eθ )) = tr(∇u(eθ ⊗ eθ )) =
ur
r

= (1 − 2z2) exp(−r2
− z2).

Applying Proposition 4.4 we find that

−

∫
det(S) =

1
4
⟨S; ω ⊗ ω⟩ =

1
4

∫
R3

tr(S(eθ ⊗ eθ ))(x)|ω(x)|2 dx

=
1
4

∫ ∞

0

∫ ∞

−∞

2πr(1 − 2z2)(−14r z + 4r z3
+ 4r3z)2 exp(−3r2

− 3z2) dz dr

= π
∫ ∞

0

∫ ∞

0
r(1 − 2z2)(−14r z + 4r z3

+ 4r3z)2 exp(−3r2
− 3z2) dz dr

= 4π
∫ ∞

0

∫ ∞

0
r3z2(1 − 2z2)(−7 + 2z2

+ 2r2)2 exp(−3r2
− 3z2) dz dr,

using the fact that the integrand is even in z. Making the substitution v = z2 and w = r2, we find that

−

∫
det(S) = π

∫ ∞

0

∫ ∞

0
w

√
v(1 − 2v)(−7 + 2v + 2w)2 exp(−3w − 3v) dv dw =

8π3/2

81
√

3
.

Therefore we can conclude that there exists S ∈ H 1
st, axisymmetric and swirl-free, such that

−

∫
det(S) > 0. □

Theorem 5.5. Let the set of initial data satisfying the hypotheses of Theorem 5.3, 0blowup ⊂ H 1
st, be given

by

0blowup =

{
S ∈ H 1

st : −3∥S∥
2
Ḣ1 − 4

∫
det(S) > 0

}
.

Then 0blowup is nonempty.

Proof. Take any S ∈ H 1
st such that

−

∫
det(S) > 0.

We know such an S must exist from Proposition 5.4. If we multiply such an S ∈ H 1
st by a sufficiently

large constant we will end up with an element of 0blowup. In particular, we compute

lim
m→+∞

(
−3∥mS∥

2
Ḣ1 − 4

∫
det(mS)

)
= lim

m→+∞

(
−3m2(∥S∥

2
Ḣ1) + 4m3

(
−

∫
det(S)

))
= +∞.

Therefore we may conclude that for all S ∈ H 1
st such that −

∫
det(S) > 0 and for sufficiently large m > 0,

we have mS ∈ 0blowup. □

Remark 5.6. Note that near the origin, the velocity corresponding to finite-time blowup for the strain self-
amplification model equation from Proposition 5.4 and Theorem 5.5 has a very similar geometric structure
to the C1,α finite-time blowup solution to the Euler equation from [Elgindi 2021; Elgindi et al. 2021].
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Both involve planar stretching and axial compression near the origin. In particular, approximating the
velocity in Proposition 5.4 near the origin by the first order Taylor polynomial, we have

u(x) ≈ rer − 2zez.

Remark 5.7. The fact the 0blowup is nonempty means that the condition in Theorem 5.3 is satisfied for
some initial data, and so we can conclude that there must exist solutions of the strain self-amplification
model equation that blowup in finite time. In addition to knowing the 0blowup is nonempty, we also know
that 0blowup is bounded below in Ḣ−1/2 because Theorem 4.6 states that there is global regularity for
solutions of the strain self-amplification model equation with small initial data in Ḣ−1/2, and Theorem 5.3
requires that all of the solutions with initial data in 0blowup must blowup in finite time. This can also be
shown directly by computation using the relevant Sobolev embeddings along with Hölder’s inequality. In
addition, we have a lower bound on the amount of planar stretching for S ∈ 0blowup in the form of a lower
bound on λ+

2 in the scale critical Lebesgue space.

Proposition 5.8. For all S ∈ 0blowup,

∥λ+

2 ∥L3/2 >
9
2

(
π

2

)4/3
.

Proof. We will prove the contrapositive. Suppose S ∈ H 1
st with

∥λ+

2 ∥L3/2 ≤
9
2

(
π

2

)4/3
.

We will begin by observing that because tr(S) = 0, we have λ1 ≤ 0 and λ3 ≥ 0 because three positive
(respectively negative) eigenvalues would violate the trace-free condition. This implies that −λ1λ3 ≥ 0.
Therefore, we can compute

− det(S) = (−λ1λ3)λ2 ≤ (−λ1λ3)λ
+

2 ≤
1
2(λ2

1 + λ2
2)λ

+

2 ≤
1
2λ+

2 |S|
2.

Applying this estimate, Hölder’s inequality, and the Sobolev inequality, we find that

−3∥S∥
2
Ḣ1 − 4

∫
det(S) ≤ −3∥S∥

2
Ḣ1 + 2

∫
λ+

2 |S|
2
≤ −3∥S∥

2
Ḣ1 + 2∥λ+

2 ∥L3/2∥S∥
2
L6

≤ −3∥S∥
2
Ḣ1 +

2
3

(
2
π

)4/3
∥λ+

2 ∥L3/2∥S∥
2
Ḣ1 ≤ 0.

Therefore we can see that S /∈ 0blowup, and this completes the proof. □

6. A perturbative blowup condition for the full Navier–Stokes equation

In this section, we will prove a perturbative condition for blowup, and we will also show that this
perturbative condition is satisfied at least for short times. We begin by proving Theorem 6.1, which is
restated for the reader’s convenience.

Theorem 6.1. Suppose u ∈ C([0, Tmax); H 2
df) is a mild solution of the Navier–Stokes equation such that

f0 := −3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0,
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and for all 0 < t < Tmax, ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
(1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

≤ 2. (6-1)

Then there is finite-time blowup with

Tmax < T∗ :=
−E0 +

√

E2
0 + f0K0

f0
,

where K0 and E0 are taken as in Definition 1.7 and f0 is as defined above.

Proof. We will begin by letting

f (t) = −3∥S( · , t)∥2
Ḣ1 − 4

∫
det(S)( · , t).

We know that tr(S) = 0 and that therefore det(S) =
1
3

∫
tr(S3). Therefore we can see that

f (t) = −3∥S∥
2
Ḣ1 −

4
3

∫
tr(S3).

Differentiating f , we find that for all 0 < t < Tmax,

d
dt

f (t) = 6
〈
1S +

2
3 Pst(S2), −1S + Pst

(
(u · ∇)S + S2

+
1
4ω ⊗ ω

)〉
.

Observe that for any M, Q ∈ L2,

⟨M, M + Q⟩ =
∥∥M +

1
2 Q

∥∥2
L2 −

1
4∥Q∥

2
L2,

and so letting M =−1S+
2
3 Pst(S2) and Q = Pst

(
(u ·∇)S+

1
3 S2

+
1
4ω⊗ω

)
, we find that for all 0< t < Tmax,

d
dt

f (t) = 6
∥∥−1S + Pst

( 1
2(u · ∇)S +

5
6 S2

+
1
4ω ⊗ ω

)∥∥2
L2 −

3
2

∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)∥∥2
L2 .

Applying the perturbative condition (6-1), we find that for all 0 < t < Tmax,

d
dt

f (t) ≥ 0,

and therefore for all 0 < t < Tmax,
f (t) ≥ f0.

Using the identity for enstrophy growth we find that for all 0 < t < Tmax,

d
dt

E(t) = −2∥S∥
2
Ḣ1 − 4

∫
det(S) > −3∥S∥

2
Ḣ1 − 4

∫
det(S) = f (t) ≥ f0.

Integrating this differential inequality we find that for all 0 < t < Tmax,

E(t) > E0 + f0t,

and integrating this lower bound for enstrophy growth, we find that for all 0 < t < Tmax,∫ t

0
E(τ ) dτ > E0t +

1
2 f0t2.
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Now suppose towards a contradiction that Tmax ≥ T∗. Using the definition

T∗ =
−E0 +

√

E2
0 + f0K0

f0
,

we find that ∫ T∗

0
E(t) dt > E0T∗ +

1
2 f0T 2

∗
=

1
2 K0.

However this contradicts the bound from the energy equality, which requires that∫ T∗

0
E(t) dt ≤

1
2 K0.

Therefore we may conclude that Tmax < T∗, and this complete the proof. □

We cannot show that the perturbative condition (6-1) is satisfied up until T∗ — if we could this would
resolve the Navier–Stokes regularity problem by proving the existence of finite-time blowup. We can,
however, show that it is satisfied for short times. The first step will be to show that it holds at the level of
initial data.

Proposition 6.2. There exists S ∈ H 2
st ∩ Ḣ−1

st such that

−3∥S∥
2
Ḣ1 − 4

∫
det(S) > 0 (6-2)

and ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)∥∥
L2∥∥−1S + Pst

( 1
2(u · ∇)S +

5
6 S2 +

1
8ω ⊗ ω

)∥∥
L2

< 2. (6-3)

Proof. Begin by taking M ∈ H 2
st ∩ Ḣ−1

st such that

−3∥M∥
2
Ḣ1 − 4

∫
det(M) > 0

and Q ∈ H 2
st ∩ Ḣ−1

st not identically zero. For all λ > 0, let

Qλ(x) = Q(λx) and Sλ
= M + Qλ.

It is a simple computation to observe that

∥Qλ
∥Ḣ1 = λ−1/2

∥Q∥Ḣ1 and ∥Qλ
∥L3 = λ−1

∥Q∥L3 .

Therefore we can see that
lim

λ→+∞
Qλ

= 0

in both Ḣ 1 and L3. This implies that

lim
λ→+∞

−3∥Sλ
∥

2
Ḣ1 − 4

∫
det(Sλ) = −3∥M∥

2
Ḣ1 − 4

∫
det(M) > 0,

so Sλ satisfies (6-2) for sufficiently large λ > 0.
Now take

v = −2 div(−1)−1 M and w = −2 div(−1)−1 Q.
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Note that we then have

M = ∇symv and Q = ∇symw.

Likewise we will take

a = ∇ × v and b = ∇ × w.

Finally we will let

wλ(x) = λ−1w(λx) and bλ(x) = b(λx),

noting that this implies

Qλ
= ∇symwλ and bλ

= ∇ × wλ.

Going back to our linear combination, we can see that

uλ
= v + wλ and ωλ

= a + bλ.

Applying the triangle inequality we can see that∥∥Pst
(
(uλ

· ∇)Sλ
+

1
3(Sλ)2

+
1
4ωλ

⊗ ωλ
)∥∥

L2

≤
∥∥Pst

(
(v · ∇)M +

1
3 M2

+
1
4a ⊗ a

)∥∥
L2 +

∥∥Pst
(
(wλ

· ∇)Qλ
+

1
3(Qλ)2

+
1
4 bλ

⊗ bλ
)∥∥

L2

+
∥∥Pst

(
(wλ

· ∇)M + (v · ∇)Qλ
+

1
3(QλM + M Qλ) +

1
4(bλ

⊗ a + a ⊗ bλ)
)∥∥

L2,

and applying Hölder’s inequality and our scaling laws from above, we can conclude∥∥Pst
(
(uλ

· ∇)Sλ
+

1
3(Sλ)2

+
1
4ωλ

⊗ ωλ
)∥∥

L2

≤
∥∥Pst

(
(v ·∇)M +

1
3 M2

+
1
4a ⊗a

)∥∥
L2 +λ−3/2∥∥Pst

(
(w ·∇)Q +

1
3 Q2

+
1
4 b⊗b

)∥∥
L2 +λ−1

∥w∥L∞∥∇M∥L2

+λ−1/2
∥v∥L∞∥∇Q∥L2 +

2
3λ−3/4

∥M∥L4∥Q∥L4 +
1
2λ−3/4

∥a∥L4∥b∥L4 . (6-4)

Likewise we may compute that∥∥−1Sλ
+ Pst

( 1
2(uλ

· ∇)Sλ
+

5
6(Sλ)2

+
1
8ωλ

⊗ ωλ
)∥∥

L2

≥ λ1/2
∥ −1Q∥L2 − λ−3/2∥∥Pst

( 1
2(w · ∇)Q +

5
6 Q2

+
1
8 b ⊗ b

)∥∥
L2

−
∥∥−1M + Pst

(1
2(v · ∇)M +

5
6 M2

+
1
8a ⊗ a

)∥∥
L2 −

5
3λ−3/4

∥M∥L4∥Q∥L4

−
1
4λ−3/4

∥a∥L4∥b∥L4 −
1
2λ−1/2

∥v∥L∞∥∇Q∥L2 −
1
2λ−1

∥w∥L∞∥∇M∥L2 . (6-5)

Putting together the inequalities in (6-4) and (6-5), we find that

lim
λ→+∞

∥∥Pst
(
(uλ

· ∇)Sλ
+

1
3(Sλ)2

+
1
4ωλ

⊗ ωλ
)∥∥

L2∥∥−1Sλ + Pst
(1

2(uλ · ∇)Sλ +
5
6(Sλ)2 +

1
8ωλ ⊗ ωλ

)∥∥
L2

= 0,

and so in particular for sufficiently large λ > 0,∥∥Pst
(
(uλ

· ∇)Sλ
+

1
3(Sλ)2

+
1
4ωλ

⊗ ωλ
)∥∥

L2∥∥−1Sλ + Pst
(1

2(uλ · ∇)Sλ +
5
6(Sλ)2 +

1
8ωλ ⊗ ωλ

)∥∥
L2

< 2. □
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Now that we have established that the perturbative condition (6-1) can hold for initial data, it is
straightforward to show that it can hold for at least short times by continuity. This result is Theorem 6.3,
which is restated for the reader’s convenience.

Theorem 6.3. There exists a mild solution of the Navier–Stokes equation u ∈ C([0, Tmax); H 3
df) and ϵ > 0

such that
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0) > 0,

and for all 0 ≤ t < ϵ, ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
( 1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

< 2.

Proof. Fix initial data S0
∈ H 2

st ∩ Ḣ−1
st such that

−3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0

and ∥∥Pst
(
(u0

· ∇)S0
+

1
3(S0)2

+
1
4ω0

⊗ ω0
)∥∥

L2∥∥−1S0 + Pst
( 1

2(u0 · ∇)S0 +
5
6(S0)2 +

1
8ω0 ⊗ ω0

)∥∥
L2

< 2,

where S0
=∇symu0 and ω0

=∇×u0. Note that u0
∈ H 3

df by definition and is given by u0
=−2 div(−1)−1S0.

Let u ∈ C([0, Tmax); H 3
df) be the unique mild solution of the Navier–Stokes equation with initial data u0.

Next we will let

c(t) =
∥∥Pst

(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ω

)
( · , t)

∥∥
L2 − 2

∥∥(
−1S + Pst

( 1
2(u · ∇)S +

5
6 S2

+
1
8ω ⊗ω

))
( · , t)

∥∥
L2 .

The fact that u ∈C([0, Tmax); H 3
df) immediately implies that c ∈C([0, Tmax)). We also know by hypothesis

that
c(0) < 0,

so by continuity there must exist ϵ > 0 such that for all 0 ≤ t < ϵ,

c(t) < 0.

This completes the proof. □

Remark 6.4. The key to the proof of Proposition 6.2 and Theorem 6.3 rests on the fact that we can add a
perturbative term which is small in both Ḣ 1 and L3, leaving (6-2) essentially unaffected, but which is
very large in Ḣ 2, making the denominator in (6-3) as large as we like. The key is to add a perturbative
term that is supported at very high Fourier modes, but with a scaling chosen so that the perturbation
remains small in Ḣ 1

∩ L3.

Remark 6.5. There are axisymmetric, swirl-free initial data that satisfy Theorem 6.3. To see this, in the
context of Proposition 6.2, take M as in Proposition 5.4 and Q to be an arbitrary axisymmetric, swirl-free
strain matrix and the result follows. In this case, however, we know that the perturbative condition can
only be satisfied for short times because there is global regularity for axisymmetric, swirl-free solutions
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of the Navier–Stokes equation. There is something in the geometry of axisymmetric swirl-free solutions
that, when coupled with the dynamics of the equation, guarantees the perturbative condition will fail after
short times.

Corollary 6.6. Suppose u ∈ C([0, +∞); H 2
df) is an axisymmetric, swirl-free, mild solution of the Navier–

Stokes equation such that

f0 := −3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0.

Then there exists 0 < t < T ∗
:= (−E0 +

√

E2
0 + f0K0 )/ f0 such that∥∥Pst

(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
( 1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

> 2.

Proof. Ladyzhenskaya [1968b; 1968a] first proved global regularity for solutions of the Navier–Stokes
equation with swirl-free, axisymmetric initial data. The corollary follows immediately from Theorem 6.1
and the global regularity of axisymmetric, swirl-free solutions of the Navier–Stokes equation because
if the perturbative condition from Theorem 6.1 was satisfied up until T ∗, then there must be finite-time
blowup, which we know cannot occur. □
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Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5 (1967), 169–185. In Russian; translated in Sem. Math. Steklov
Math. Inst., Leningrad 5 (1969), 60–67. MR Zbl

[Ladyzhenskaya 1968a] O. A. Ladyzhenskaya, “Certain nonlinear problems of the theory of continuous media”, pp. 560–573 in
Proceedings of the International Congress of Mathematicians (Moscow, 1966), edited by I. G. Petrovskiı̆, Izdat. “Mir”, Moscow,
1968. In Russian. MR Zbl

[Ladyzhenskaya 1968b] O. A. Ladyzhenskaya, “Unique global solvability of the three-dimensional Cauchy problem for the
Navier–Stokes equations in the presence of axial symmetry”, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7
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