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EIGENVALUE BOUNDS FOR SCHRÖDINGER OPERATORS WITH
RANDOM COMPLEX POTENTIALS

OLEG SAFRONOV

We consider the Schrödinger operator perturbed by a random complex-valued potential. For this operator,
we consider its eigenvalues situated in the unit disk. We obtain an estimate on the rate of accumulation of
these eigenvalues to the positive half-line.

1. Introduction and main results

We study the behavior of eigenvalues of the operator H = −1+ V acting on a Hilbert space L2(Rd),
where d ≥ 3. The potential V is assumed to be a complex-valued function of the form

V (x)=

∑
n∈Zd

ωnvnχ(x − n), vn ∈ C, x ∈ Rd,

where the ωn are independent random variables taking values in the interval [−1, 1] and χ is the
characteristic function of the unit cube [0, 1)d.

The probability space in our theorems is the set 6 of all infinite sequences ω = {ωn}n∈Zd . The
probability measure is defined on 6 as the infinite product of corresponding measures on intervals [−1, 1].
Since ωn can be viewed as a function on6 whose value is equal to the n-th coordinate of ω, its expectation
E[ωn] can be viewed as an integral over 6. We impose the condition

E[ωn] = 0

on ωn guaranteeing oscillations of V. The coefficients vn do not have to be real.
To formulate the main result, we set

Ṽ (x)=

∑
n∈Zd

|vn|χ(x − n).

Note that Ṽ is a nonnegative function such that |V | ≤ Ṽ.

Theorem 1.1. Let d ≥ 3, let R0 > 0 and let 1 < ν < q < 2. Then the eigenvalues λj of the operator
−1+ V satisfy

E

[ ∑
|λj |<R2

0

Im
√
λj |λj |

(q−1)/2
]

≤ C |R0|
q−ν

(∫
Rd

|Ṽ (x)|p dx
)2

, (1.1)
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with

p =
d
2

+
d − q

2(d − 2)
. (1.2)

It is assumed that Im
√
λj ≥ 0. The constant C in (1.1) depends only on d, ν and q.

Theorem 1.1 is a particular case of the following statement, which has rather complicated looking
conditions imposed on the parameters.

Theorem 1.2. Let d ≥ 3, and let R0 > 0. Assume that the parameters ~ and p obey the conditions

~

2p
+

d − 1
2

< ~ <
d + 1

2
,

and

max{2, ~} ≤ p <min
{

2~,
d~

2~ − 1

}
.

Assume also that Ṽ ∈ L p(Rd). Then the eigenvalues λj of the operator −1+ V satisfy

E

[ ∑
|λj |≤R2

0

Im
√
λj |λj |

(q−1)/2
]

≤ C |R0|
q−2p−p(d−1)/~

(∫
Rd

|Ṽ (x)|p dx
)2

, q > 2p −
p(d − 1)
~

. (1.3)

It is assumed that Im
√
λj ≥ 0. If ~ =

1
2(d + 1), then (1.3) holds with p = ~. The constant C in (1.3)

depends only on d, p, ~ and q.

It is known that, if vn ∈ R, the eigenvalues λj obey the Lieb–Thirring estimate (see [Helffer and Robert
1990; Laptev and Weidl 2000; Lieb and Thirring 1976])∑

j

|λj |
γ

≤ C
∫

Rd
|V (x)|d/2+γ dx, V = V , d ≥ 3, γ ≥ 0. (1.4)

Theorem 1.1 allows one to consider real potentials V for which the right-hand side of (1.4) is infinite,
while the left-hand side is finite almost surely. Indeed, let 1< 2γ = q < d/(d −1). Then the parameter p
in (1.2) satisfies the inequality

p > 1
2 d + γ. (1.5)

Similar results for real random potentials V = V were obtained by the author and Vainberg in [Safronov
and Vainberg 2008]. However, there is a big difference between Theorem 1.1 and the results of that
earlier work, since the only point of accumulation of eigenvalues of the operator H considered there
is the point λ= 0. When one studies complex-valued potentials, the fact that the eigenvalues λj might
accumulate to points other than λ= 0 should not be excluded. Examples of decaying complex potentials V
such that eigenvalues of H = −1+ V accumulate to points of the positive real line R+ are constructed
in [Bögli 2017]. Because of the difference between the cases of real and complex potentials, it would be
more appropriate to ask what new information Theorem 1.1 provides compared to [Frank 2018; Frank
and Sabin 2017], rather than realize that this theorem does not follow from the Lieb–Thirring estimate
even in the selfadjoint case.
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The related result of [Frank and Sabin 2017] says that there is a constant C that depends on d , p and γ
such that ∑

j

dist(λj ,R+)|λj |
γ−1

≤ C
(∫

Rd
|V |

p dx
)2γ /(2p−d)

, (1.6)

under conditions on γ and p implying that p < γ +
1
2 d . One can now refer to (1.5) to conclude that our

results do give new information about the distribution of eigenvalues in the complex plane.
The same conclusion could be made by an analysis of the results of [Frank 2018], where the eigenvalues

in the disk

DV =

{
z ∈ C : |z|p−d/2

≤ C p,d

∫
|V |

p dx
}

are considered separately from the rest of the eigenvalues; here p > 1
2 d. R. Frank [2018] proves that

under some restrictions on p, ( ∑
λj ∈DV

dist(λj ,R+)
γ

)σ
≤ C

∫
Rd

|V |
p dx, (1.7)

for γ equal to either p or 2p − d + ε. The constants C > 0 and σ > 0 depend only on d and p in the
first case but also on ε > 0 in the second. In its turn, ε > 0 belongs to the interval whose size depends
on p. The observation we make is that p < γ +

1
2 d in (1.7). On the other hand, in deterministic results,

p simply can not be larger than γ +
1
2 d .

Theorem 1.1 gives information about the eigenvalues of H situated in a finite disk about the origin.
The behavior of the eigenvalues outside of this disk is described below.

Theorem 1.3. Let d ≥ 3, let R > 0 and let 1 < ν < q < 2. Then the eigenvalues λj of the operator
−1+ V satisfy

E

[ ∑
|λj |≥R2

Im
√
λj (|λj | − R2)

|λj |R

]
≤ C |R|

−ν

(∫
Rd

|Ṽ (x)|p dx
)2

,

with

p =
d
2

+
d − q

2(d − 2)
.

It is assumed that Im
√
λj ≥ 0. The constant C in (1.1) depends only on d, ν and q.

According to Theorem 1.3, the condition Ṽ ∈ L p implies that, for any R > 0,∑
|λj |≥R2

|Im
√
λj |<∞ (1.8)

almost surely. Eigenvalues of H outside a finite disk about the point z =0 were also studied in [Frank 2018].
However, in the theorems of that work the radius R of the disk depends on V. Moreover, when d ≥ 3,
these theorems guarantee convergence of

∑
|λj |≥R2 |Im λj |

α
|λj |

−β for some α > 1 and β > 0 rather than
convergence of the series (1.8).

Theorem 1.3 immediately implies the following assertion.
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Corollary 1.4. Let d ≥ 3, let R > 0 and let 1 < ν < q < 2. Then the eigenvalues λj of the operator
−1+ V satisfy

E

[ ∑
R2≤|λj |≤2R2

Im
√
λj |λj |

(ν−1)/2
]

≤ C
(∫

Rd
|Ṽ (x)|p dx

)2

,

with

p =
d
2

+
d − q

2(d − 2)
.

It is assumed that Im
√
λj ≥ 0. The constant C in (1.1) depends only on d, ν and q.

We also mention the article [Frank 2018] because Theorem 1.1 of that paper deals with the question
about the shape of the domain containing all eigenvalues of H. In particular, it implies that the imaginary
part of an eigenvalue tends to zero as the real part tends to infinity (in a quantitative way) once V ∈ L p

with p > 1
2(d + 1). Despite a vague visual resemblance of Corollary 1.4 to such a theorem, it does not

give new information about the region containing all eigenvalues of H.
The next statement is an improvement of Theorem 1.1 for 3 ≤ d ≤ 5 and R0 ≤ 1.

Theorem 1.5. Let 3 ≤ d ≤ 5, and let 0< R0 ≤ 1. Assume that τ1 satisfies

0 ≤

((
d
2

+
(η− 1)(d + 1)

7d
+

d − η

2(d − 2)

)
− 2

)
τ1 ≤

(ν− 1)(d + 1)
7d

,

with η and ν such that 1< ν < η < 2. If d = 3, then we assume additionally that 8ν+ 9η < 26. Let p, q
and r be the numbers defined by

p =
d

7τ1
,

1
q

=
1 − θ

p
+
θ

2
and

1
r

=
1 − θ

2p
+
θ

2
,

where θ is the solution of the equation

τ1(1 − θ)+
θ

2

(
d
2

+
d − η

2(d − 2)

)
= 1.

Then the eigenvalues λj of the operator −1+ V satisfy

E

[ ∑
|λj |≤R2

0

Im
√
λj |λj |

(σ−1)/2
]

≤ Cτ1,σ |R0|
σ−θqν/2

(∫
Rd

|Ṽ (x)|r dx
)2q/r

, σ > 1
2θqν.

Besides its dependence on d , the constant Cτ1,σ in this inequality depends on a choice of the parameters
τ1 and σ .

Theorem 1.5 gives new information about eigenvalues of H. Even in the case V = V, this theorem
does not follow from the Lieb–Thirring estimates. It turns into Theorem 1.1 for dimensions 3 ≤ d ≤ 5
once we set τ1 = 0. On the other hand, since it allows us to consider ratios σ/r smaller than ratios q/p
allowed by Theorem 1.1, Theorem 1.5 is an improvement of Theorem 1.1 for dimensions 3 ≤ d ≤ 5 and
the values of the parameter R0 < 1.
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One of the difficulties we encountered in this paper is that our statements can not be derived by taking
expectations in the inequalities obtained by Borichev, Golinskii and Kupin [Borichev et al. 2009]. The
reason is that operators of the Birman–Schwinger type we are dealing with might have different properties
for different ω. This difficulty was overcome through an application of the Joukowski transform to a
half-plane with a removed semidisk and consecutive integration with respect to the radius.

Eigenvalue bounds for Schrödinger operators with complex potentials have been studied for a long
time. First of all, one should mention the related work of B. Pavlov, who found sharp conditions on V
guaranteeing that H has only finitely many eigenvalues in C \ R+. In particular, this is true for the one
dimensional operator on the half-line R+ (see [Pavlov 1966]) if

|V (x)| ≤ Ce−c
√

x , ∀x ∈ R+,

for some constants C and c > 0.
In 2001, E. B. Davies posed a question whether the estimate

|λ| ≤
1
4

(∫
R

|V (x)| dx
)2

, d = 1,

that he and his collaborators established for any nonreal eigenvalue λ of H (see [Abramov et al. 2001;
Davies and Nath 2002]) can be extended to higher dimensions. This question was nicely handled by
R. Frank [2011]. It was shown that, if 0< γ ≤

1
2 and d ≥ 2, then there is a positive constant Cγ,d such

that

|λ|γ ≤ Cγ,d

∫
Rd

|V (x)|d/2+γ dx, (1.9)

for any eigenvalue of H in C \ R+. The technique of [Frank 2011] was further developed and combined
with some complex analysis in [Frank and Sabin 2017], where the authors already give the estimate (1.6)
on the rate of accumulation of eigenvalues to the positive half-line R+. Another bound of this type is the
inequality (1.7) established in [Frank 2018].

Note also, that if one only considers eigenvalues outside of a cone

0ε = {z ∈ C : Re z ≥ 0, |Im z| ≤ εRe z}

(here ε > 0), then the Lieb–Thirring bound holds for these eigenvalues (see [Frank et al. 2006]):∑
λj /∈0ε

|λj |
γ

≤ Cγ,d,ε

∫
Rd

|V (x)|d/2+γ dx, γ ≥ 1.

While we do not intend to describe all results related to the theory of operators with complex-valued
potentials, we would like to mention the articles [Briet et al. 2021; Cuenin 2017; Cuenin et al. 2014;
Demuth et al. 2009; Demuth and Katriel 2008; Hansmann 2011; 2017; Korotyaev 2020; Korotyaev and
Laptev 2018; Korotyaev and Safronov 2020; Laptev and Safronov 2009; Pavlov 1967] in addition to
those already mentioned, all of which could be viewed as valuable contributions in this area.
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2. Preliminaries

Everywhere below, Sp denotes the class of compact operators K obeying

∥K∥
p
Sp

= Tr(K ∗K )p/2 <∞, p > 1.

Note that if K ∈ Sp for some p > 1, then K ∈ Sq for q > p and ∥K∥q ≤ ∥K∥p.
Let z j be the eigenvalues of a compact operator K ∈ Sn where n ∈ N \ {0}. We define the n-th

determinant of I + K as

detn(I + K )=

∏
j

(1 + z j ) exp
( n−1∑

m=1

(−1)mzm
j

m

)
, n ≥ 2,

det(I + K )=

∏
j

(1 + z j ), n = 1.

There exists a constant Cn > 0 depending only on n such that

|detn(I + X)| ≤ eCn∥X∥
n
Sn , ∀X ∈ Sn.

Moreover, we have the following statement; see Proposition 2.1 of [Korotyaev and Safronov 2020].

Proposition 2.1. Let n ≥ 2. Then for any n − 1 ≤ p ≤ n, there exists a constant C p,n > 0 depending only
on p and n such that

|detn(I + X)| ≤ eC p,n∥X∥
p
Sp , ∀X ∈ Sp. (2.1)

The way the eigenvalue bounds are obtained in [Korotyaev and Safronov 2020] uses applications of
the following abstract result.

Theorem 2.2. Let H0 be a selfadjoint operator on a Hilbert space H. Let W1 and W2 be two bounded
operators on H, and let V = W2W1. Assume that the function

C+ ∋ z 7→ W1(H0 − z)−1W2 ∈ Sp, 1 ≤ p <∞,

is analytic in the upper half-plane C+ = {z ∈ C : Im z > 0} and continuous up to the real line R. Assume
also that

∥W1(H0 − z)−1W2∥
p
Sp

= o
(

1
|z|

)
, as |z| → ∞. (2.2)

Then the eigenvalues λj of H0 + V in C+ satisfy∑
j

Im λj ≤ C p

∫
∞

−∞

∥W1(H0 − λ− i0)−1W2∥
p
Sp

dλ, (2.3)

where C p depends only on the parameter p.

Proof. The proof of this statement relies on Jensen’s inequality for zeros of an analytic function, which is
(also) justified in Proposition 3.11 of [Korotyaev and Safronov 2020]. □
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Proposition 2.3. Let a(z) be an analytic function on C+ satisfying the condition

a(z)= 1 + o
(

1
|z|

)
as |z| → ∞.

Assume that for some γ > 0,
ln|a(λ+ iγ )| ≤ f (λ), ∀λ ∈ R.

Then zeros of a(z) situated above the line Im z = γ satisfy the inequality∑
j

(Im λj − γ )+ ≤
1

2π

∫
∞

−∞

f (λ) dλ. (2.4)

The statement also holds for γ = 0, if a(z) is continuous up to the real line R.

The bound (2.3) follows from (2.1) and the estimate (2.4) with γ = 0 once we set

a(z)= detn(I + W1(H0 − z)−1W2)

and
f (λ)= C p,n∥W1(H0 − λ− i0)−1W2∥

p
Sp
.

According to the Birman–Schwinger principle, z is an eigenvalue of H0 + V if and only if a(z) = 0
(multiplicities coincide). This completes the proof of Theorem 2.2. □

One of the tools used in the present paper is an interpolation. Interpolation has been also used to prove
Theorem 1.2 of [Korotyaev and Safronov 2020], which can be generalized and formulated as follows.

Theorem 2.4. Let (�,µ) be a space with an σ -finite measure µ such that L2(�,µ) is separable. Let H0

be a selfadjoint operator on the Hilbert space L2(�,µ). Assume that the integral kernel of the operator
e−i t H0 satisfies the estimate

|e−i t H0(x, y)| ≤
C
t~
, ∀t > 0, ∀x, y ∈�,

for some ~ > 0. Let V ∈ L p(�,µ) ∩ L∞(�,µ) for p > ~ such that p ≥ 1. Assume also that (2.2)
holds for all W1 and W2 that belong to a class of functions dense in L2p(�,µ). Then eigenvalues of the
operator H = H0 + V satisfy ∑

j

|Im λj |
r
≤ C p,r

(∫
�

|V (x)|p dµ
)r/p−~

,

for any r >max{2(p − ~), 1}.

The proof of this result is a counterpart of the proof of Theorem 1.2 from [Korotyaev and Safronov
2020], with the only differences being that the value of the parameter ~ in Theorem 1.2 of that work is 3

2
and � = R3. However, one can consider different ~ as well as spaces � which are different from Rd.
Especially interesting are spaces of fractional dimensions for which 2~ is not an integer.

Another object that we will work with is the operator

X (k)= |V |
1/2(−1− z)−1V (−1− z)−1V |V |

−1/2, z = k2, k ∈ C+.



1040 OLEG SAFRONOV

If V is a bounded compactly supported function, then X (k) is a trace class operator for d ≤ 3, and
X (k) ∈ Sp for p > 1

4 d and d ≥ 4. In this case, we set

Dn(k)= detn(I − X (k)), n > 1
4 d, n ∈ N.

Proposition 2.5. Let V be a compactly supported function on Rd. If a point λ ∈ C\R+ is an eigenvalue
of H = −1+ V, then Dn(k) = 0 for k =

√
λ. The algebraic multiplicity of the eigenvalue λ does not

exceed the multiplicity of the root of the function Dn( · ).

Proof. According to the Birman–Schwinger principle, a point λ is an eigenvalue of H if and only if −1 is
an eigenvalue of |V |

1/2(−1− λ)−1V |V |
−1/2. Therefore, 1 is an eigenvalue of X (k0) with k2

0 = λ. On
the other hand, if 1 is an eigenvalue of X (k0), then Dn(k0)= 0.

The statement about the multiplicity follows from the fact that an isolated eigenvalue of H whose
multiplicity m is larger than 1 can be turned into m simple eigenvalues by an arbitrarily small perturbation
of finite rank (which does not have to be a function). For any ε > 0 there is a finite rank operator Kε such
that ∥Kε∥< ε and that all eigenvalues of −1+ Kε + V near λ are simple. Define now the function

dε(k)= detn(I − |V |
1/2(−1+ Kε − z)−1V (−1+ Kε − z)−1V |V |

−1/2),

analytic in the neighborhood of k0 =
√
λ for sufficiently small ε > 0. In this neighborhood of the point k0,

we have dε(k) → Dn(k) uniformly, as ε → 0. Since the function dε(k) has at least m zeros near k0,
the multiplicity of the zero of the function Dn(k) at k = k0 can not be smaller than m by the argument
principle. □

3. Large values of Re ζ without projections

The following proposition gives an important estimate for the integral kernel of (−1− z)−ζ.

Proposition 3.1. Let d ≥ 2, and let 1
2(d − 1) ≤ Re ζ ≤

1
2(d + 1). The integral kernel of the operator

(−1− z)−ζ satisfies the estimate

|(−1− z)−ζ (x, y)| ≤ βeα(Im ζ )2
|k|

(d−1)/2−Re ζ
|x − y|

Re ζ−(d+1)/2, (3.1)

for z /∈ R+. The positive constants β and α in this inequality depend only on d and Re ζ .

The proof of this proposition, as well as related references, can be found in [Frank and Sabin 2017].
Everywhere below, we use the notation χl(x)= χ(x − l), where l ∈ Zd.

Corollary 3.2. Let 1
2(d − 1)≤ Re ζ < 1

2(d + 1), where d ≥ 2. Let 2 ≤ r < 2d/(2 Re ζ − 1). Suppose that
W is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then

∥W (−1− z)−ζχl∥S2 ≤ βeα(Im ζ )2
|k|

(d−1)/2−Re ζ
∥W∥r , (3.2)
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for z /∈ R+. The positive constants β and α in this inequality depend only on d and Re ζ . If Re ζ =
1
2(d+1)

and d ≥ 2, then (3.2) holds with r = 2.

Proof. It follows from (3.1) that

∥W (−1− z)−ζχl∥
2
S2

≤ Ce2α(Im ζ )2
|k|

(d−1)−2 Re ζ
∑
n∈Zd

(|n − l| + 1)2 Re ζ−(d+1)
|wn|

2.

A simple application of Hölder’s inequality leads to (3.2). □

We need to turn (3.2) into a similar estimate for the S4-norm of the operator corresponding to smaller
values of Re ζ . For that purpose, we employ the inequality

∥W (−1− z)−ζχl∥ ≤ βeα(Im ζ )2
∥W∥∞, (3.3)

for Re ζ = 0.
By interpolation we obtain the following proposition from (3.2) and (3.3).

Proposition 3.3. Let 1
2(d − 1)≤ ~ < 1

2(d + 1), where d ≥ 2. Let 2 ≤ r < 2d/(2~ − 1). Suppose that W
is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then, for any Re ζ = τ ∈ (0, ~] and z /∈ R+,

∥W (−1− z)−ζχl∥S2~/τ ≤ βeα(Im ζ )2
|k|

((d−1)/(2~)−1)τ
∥W∥r~/τ . (3.4)

The positive constants β and α in this inequality depend only on d and τ . If ~ =
1
2(d + 1) and d ≥ 2,

then (3.4) holds with r = 2.

Proof. Indeed, let Re ζ0 = τ , and let
A =�|A|

be the polar decomposition of the operator

A = |W |
ζ0/τ (−1− z)−ζ0χl .

Consider the function

f (ζ )= eαζ
2

Tr(|W |
ζ/τ (−1− z)−ζχl |A|

(2~−ζ+i Im ζ0)/τ�∗).

If Re ζ = 0, then
| f (ζ )| ≤ C1∥A∥

2~/τ
S2~/τ

.

If Re ζ = ~, then
| f (ζ )| ≤ C2|k|

(d−1)/2−~
∥A∥

~/τ

S2~/τ
∥W∥

~/τ
r~/τ .

Consequently, by the three lines lemma,

| f (ζ0)| ≤ C |k|
θ((d−1)/2−~)

∥W∥
θ~/τ
r~/τ ∥A∥

(2−θ)~/τ

S2~/τ
, θ = τ/~.
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Put differently,

|eαζ
2
0 |∥A∥

2~/τ
S2~/τ

≤ C |k|
θ((d−1)/2−~)

∥W∥
θ~/τ
r~/τ ∥A∥

(2−θ)~/τ

S2~/τ
, θ = τ/~.

The latter inequality implies (3.4). □

In particular, once we set r~/τ = 4, we obtain the following.

Corollary 3.4. Let 1
2(d − 1)≤ ~ < 1

2(d + 1), where d ≥ 2. Suppose that W is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then

∥W (−1− z)−ζχl∥S4 ≤ βeα(Im ζ )2
|k|

((d−1)/(2~)−1)Re ζ
∥W∥4, (3.5)

for any 1
2~ ≤ Re ζ <min{~, d~/(4~ − 2)} and z /∈ R+. The positive constants β and α in this inequality

depend only on d and Re ζ . If ~ =
1
2(d + 1) and d ≥ 2, then (3.5) holds with Re ζ =

1
2~.

Let us now consider the operator

X(ζ )= eα0ζ
2
W (−1− z)−ζV (−1− z)−ζW,

where W is a fixed function independent of ω. The proof of the following proposition is based on the
fact that E[ωn] = 0.

Proposition 3.5. Let 1
2(d − 1) ≤ ~ < 1

2(d + 1), where d ≥ 2. Let 1
2~ ≤ Re ζ < min{~, d~/(4~ − 2)}.

Assume that Ṽ ∈ L2(Rd), W ∈ L4(Rd) and α0 > 2α. Then

(E(∥X(ζ )∥2
S2
))1/2 ≤ CRe ζ e(2α−α0)(Im ζ )2

|k|
((d−1)/~−2)Re ζ

∥Ṽ ∥2∥W∥
2
4. (3.6)

If ~ =
1
2(d + 1) and d ≥ 2, then (3.6) holds with Re ζ =

1
2~.

Proof. Obviously,

E(∥X(ζ )∥2
S2
)= E(TrX(ζ )∗X(ζ ))≤ e2α0 Re ζ 2 ∑

l∈Zd

|vl |
2
∥W (−1− z)−ζχl∥

2
S4

∥χl(−1− z)−ζW∥
2
S4
.

Together with Corollary 3.4, this implies (3.6). □

Corollary 3.6. Let 1
2(d −1)≤ ~ < 1

2(d +1), where d ≥ 2. Let 1
2~ ≤ Re ζ <min{~, d~/(4~−2)}. Assume

that Ṽ ∈ L2(Rd), W = Ṽ 1/2 and α0 > 2α. Then

(E(∥X(ζ )∥2
S2
))1/2 ≤ CRe ζ e(2α−α0)(Im ζ )2

|k|
((d−1)/~−2)Re ζ

∥Ṽ ∥
2
2. (3.7)

If ~ =
1
2(d + 1) and d ≥ 2, then (3.7) holds with Re ζ =

1
2~.
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4. An estimate for the square of the Birman–Schwinger operator

According to the observations that we made, if W =

√
Ṽ , then X(ζ ) is a function that obeys (3.7) for

some rather large values of Re ζ , and it also obeys

∥X(ζ )∥ ≤ C∥Ṽ ∥
2
∞
,

for Re ζ = 0. To obtain our first result about eigenvalues, we can interpolate between these two cases. Let

X̃(k)= W (−1− z)−1V (−1− z)−1W, z = k2, k ∈ C+,

where W is a fixed function independent of ω. What follows is the result of the interpolation (which does
not work for d = 2).

Proposition 4.1. Let 1
2(d − 1)≤ ~ < 1

2(d + 1), where d ≥ 3. Let

max{2, ~} ≤ p <min
{

2~,
d~

2~ − 1

}
. (4.1)

Let W = Ṽ 1/2. Assume that Ṽ ∈ L p(Rd). Then

(E(∥X̃(k)∥p
Sp
))1/p

≤ C |k|
(d−1)/~−2

∥Ṽ ∥
2
p. (4.2)

If ~ =
1
2(d + 1) and d ≥ 3, then (4.2) holds with p = ~.

Proof. Note that X (k)= X(1). The logic of interpolation says that (4.2) holds for p defined as

p = 2/θ, for θ such that 1 = θτ,

where 1
2~ ≤ τ < min{~, d~/(4~ − 2)}. Of course, this interpolation works only if τ > 1, which is

impossible for d = 2. Observe that, with this notation, p = 2τ .
Let

X (k)=�|X (k)|

be the polar decomposition of the operator X (k). Consider the function

f (ζ )= eα0ζ
2
E(Tr(|W |

ζ (−1− z)−ζVζ (−1− z)−ζ |W |
ζ
|X (k)|2τ−ζ�∗)),

where
Vζ (x) :=

∑
n

ωn|vn|
ζ ei arg vnχ(x − n).

If Re ζ = 0, then
| f (ζ )| ≤ C1E(∥X (k)∥2τ

S2τ
).

If Re ζ = τ , then
| f (ζ )| ≤ C2|k|

((d−1)/~−2)τ (E(∥X (k)∥2τ
S2τ
))1/2∥Ṽ ∥

2τ
2τ .

Consequently, by the three lines lemma,

| f (1)| ≤ C |k|
(d−1)/~−2

∥Ṽ ∥
2
2τ (E(∥X (k)∥2τ

S2τ
))1−1/(2τ).
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Put differently,

E(∥X (k)∥2τ
S2τ
)≤ C |k|

(d−1)/~−2
∥Ṽ ∥

2
2τ (E(∥X (k)∥2τ

S2τ
))1−1/(2τ).

The latter inequality implies (4.2) because 2τ = p. □

Now we can formulate and prove the following result.

Theorem 4.2. Let d ≥ 3, and let 1< ν < q < 2. Assume that W = |V |
1/2. Then

E(∥X (k)∥p
Sp
)≤ C |k|

−ν
∥Ṽ ∥

2p
p , (4.3)

for p defined by

p =
d(d − 1)− q

2(d − 2)
=

d
2

+
d − q

2(d − 2)
. (4.4)

Proof. Observe that the assumption ν < q < 2 leads to the inequalities

d + 1
2

< p <
d(d − 1)− ν

2(d − 2)
. (4.5)

We will show that the conditions of Proposition 4.1 are fulfilled for the parameter ~ defined by

~ =
(d − 1)p
2p − ν

.

The latter relation simply means that

ν =

(
2 −

(d − 1)
~

)
p. (4.6)

Consequently, (4.3) follows from (4.2). The second inequality in (4.5) implies

~ >
d(d − 1)− ν

2(d − ν)
>

d − 1
2

, (4.7)

while the first inequality in (4.5) combined with the condition ν < 2 implies

~ <
d + 1

2
.

One can also see that the first inequality in (4.7) is equivalent to the estimate

p =
~ν

2~ − (d − 1)
<

d~
2~ − 1

.

Finally, note that when d ≥ 3, the condition p < 2~ follows from the fact that ν+ q > 2. □

5. Proof of Theorem 1.1

We will work with the function

d(z)= detn(I − X (k)), n = [p] + 1,
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where z is related to k via the Joukowski mapping

z =
R
k

+
k
R
, R > 0,

which maps the set {k ∈ C : Im k > 0, |k| > R} onto the upper half-plane {z ∈ C : Im z > 0}. Rather
standard arguments lead to the estimate∑

j

Im z j ≤ C
∫

∞

−∞

ln|d(z)| dz, (5.1)

where the z j are the zeros of the function d(z) situated in the upper half-plane C+. In fact, (5.1) could be
established in the same way as Jensen’s inequality for zeros of an analytic function on a unit disk. In (5.1)
we assume that V is compactly supported. The relation (5.1) leads to the estimate

∑
j

(
|kj |

2
− R2

|kj |
2 R

)
+

Im kj ≤ C
(∫

∞

−∞

∥X (k)∥p
Sp

(
1
R

−
R
k2

)
+

dk +

∫ π

0
∥X (R · eiθ )∥

p
Sp

sin θ dθ
)
.

Taking the expectation we obtain

E

[∑
j

Im kj (|kj |
2
− R2)+

|kj |
2 R

]

≤ C
(∫

∞

−∞

E[∥X (k)∥p
Sp

]

(
1
R

−
R
k2

)
+

dk +

∫ π

0
E[∥X (R · eiθ )∥

p
Sp

] sin θ dθ
)
. (5.2)

Due to Theorem 4.2, the latter inequality leads to

E

[∑
j

Im kj (|kj |
2
− R2)+

|kj |
2 R

]
≤ C |R|

−ν
∥Ṽ ∥

2p
p . (5.3)

Now, suppose that we consider only the eigenvalues λj = k2
j that satisfy the inequality

|kj | ≤ R0.

Multiplying (5.3) by Rq−1 and integrating with respect to R from 0 to R0, we obtain

E

[ ∑
|kj |≤R0

Im kj |kj |
q−1

]
≤ C |R0|

q−ν
∥Ṽ ∥

2p
p , q > ν. (5.4)

This implies Theorem 1.1. □

Theorem 1.2 can be proved in the same way. The only difference is that one needs to use Proposition 4.1
instead of Theorem 4.2.

Note also that (5.3) implies Theorem 1.3.
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6. Operators of the Birman–Schwinger type

Let a, b and V be functions on Rd. Define

Aζ = |a|
ζ FVζ F∗

|b|
ζ,

where F is the unitary Fourier transform operator. For any complex number z, we understand Vz as the
sum

Vz(x) :=

∑
n

ωn|vn|
zei arg vnχ(x − n).

Note that the operator Aζ can be viewed as a sum over the lattice Zd :

Aζ =

∑
n∈Zd

Aζ,n, (6.1)

where
Aζ,n = ωn|a|

ζ F |vn|
ζ ei arg vnχ( · − n)F∗

|b|
ζ .

We will show that while Aζ might not be bounded at some points ω, it is still a compact operator
almost surely if a, b and Ṽ are in L2. We remind the reader that Ṽ was defined as the function

Ṽ (x)=

∑
n

|vn|χ(x − n).

Remark. Operators of the form aFW F∗b do not have to be bounded for all a, b and W from L2. Indeed,
let

W (x)= (|x | + 1)−s, with 1
2 d < s < 2

3 d,

and let

a(ξ)= b(ξ)=

{
|ξ |−3s/4 if |ξ | ≤ 1,
0 if |ξ |> 1.

If aFW F∗b was bounded, the operator T = aF
√

W would be bounded as well. The latter is not true,
simply because Tψ /∈ L2 for ψ = W (the singularity of Tψ at zero is |ξ |3s/4−d ).

Proposition 6.1. Let a ∈ L2, b ∈ L2 and Ṽ ∈ L2. Let also p ≥ 2. Then the sum (6.1) with Re ζ = 2/p
converges almost surely in Sp. Moreover,

(E[∥Aζ∥
p
Sp

])1/p
≤ (2π)−2d/p

∥a∥
2/p
2 ∥b∥

2/p
2 ∥Ṽ ∥

2/p
2 , Re ζ = 2/p. (6.2)

Proof. We are going to prove (6.2) for one point ζ0 such that Re ζ0 = 2/p. For that purpose, we define the
operator K (ω)= |Aζ0 |

p/2. Then, obviously,

β := E(∥K∥
2
S2
)= E[∥Aζ0∥

p
Sp

].

Let �=�(ω) be the partially isometric operator appearing in the polar decomposition

Aζ0 =�(ω)|Aζ0 |.
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We introduce the analytic function

f (ζ )= E[Tr Aζ |K |
2−ζ

|K |
i Im ζ0�∗

],

which will be treated by the three lines lemma. Since ∥Aζ∥ ≤ 1 for Re ζ = 0, and ∥|K |
i Im ζ0�∗

∥ ≤ 1, we
obtain that

| f (ζ )| ≤ β, for Re ζ = 0. (6.3)

On the other hand,
| f (ζ )| ≤ (2π)−dβ1/2

∥Ṽ ∥2∥a∥2∥b∥2, for Re ζ = 1, (6.4)

by an analogue of Hölder’s inequality valid for Schatten classes. Indeed, for Re ζ = 1,

| f (ζ )|2 ≤ E[∥Aζ∥2
S2

] · E[∥K∥
2
S2

],

and
E[∥Aζ∥2

S2
] = E[Tr A∗

ζ Aζ ] =

∑
n∈Zd

E[Tr A∗

ζ,n Aζ,n] ≤ (2π)−2d
∥Ṽ ∥

2
2∥a∥

2
2∥b∥

2
2.

Using the three lines lemma, we obtain from (6.3) and (6.4) that

| f (ζ )| ≤ (2π)−d Re ζβ1−Re ζ/2
∥Ṽ ∥

Re ζ
2 ∥a∥

Re ζ
2 ∥b∥

Re ζ
2 .

Note now that f (ζ0)= β. Consequently,

β1/p
≤ (2π)−2d/p

∥Ṽ ∥
2/p
2 ∥a∥

2/p
2 ∥b∥

2/p
2 . □

Corollary 6.2. Let T be a random operator of the form

T = |a|FV F∗
|b|,

with
V (x) :=

∑
n

ωnvnχ(x − n).

Let a ∈ L p, b ∈ L p, vn ∈ ℓp and p ≥ 2. Then

(E[∥T ∥
p
Sp

])1/p
≤ (2π)−2d/p

∥a∥p∥b∥p∥Ṽ ∥p.

Proof. Observe that the functions |a|
p/2, |b|

p/2 and Ṽ p/2 belong to L2. Therefore, according to the
proposition, the Sp-norm of the operator

K̃ = |a|
pζ/2 FVpζ/2 F∗

|b|
pζ/2

obeys the inequality

(E[∥K̃∥
p
Sp

])1/p
≤ (2π)−2d/p

∥|a|
p/2

∥
2/p
2 ∥|b|

p/2
∥

2/p
2 ∥Ṽ p/2

∥
2/p
2 , Re ζ = 2/p. □

The following result is a very well-known bound obtained by E. Seiler and B. Simon [Seiler and Simon
1975]. Moreover, the reader can easily prove it using standard interpolation.
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Proposition 6.3. Let a and W be two functions from L p(Rd) with p ≥ 2. Let T be the operator

T = aFW,

where F is the operator of the Fourier transform. Then

∥T ∥Sp ≤ (2π)−d/p
∥a∥p∥W∥p, p ≥ 2.

Corollary 6.4. Let q ≥ p ≥ 2. Let T be a random operator of the form

T = |a|FV F∗
|b|,

with
V (x) :=

∑
n

ωnvnχ(x − n).

Let a ∈ L p, b ∈ Lq and vn ∈ ℓp. Then

(E[∥T ∥
q
Sp

])1/q ≤ (2π)−d/p−d/q
∥a∥p∥b∥q∥Ṽ ∥p.

Proof. According to Proposition 6.3,

∥T ∥Sp ≤ (2π)−d/p
∥a∥p∥b∥∞∥Ṽ ∥p, p ≥ 2.

On the other hand, according to Corollary 6.2,

(E[∥T ∥
p
Sp

])1/p
≤ (2π)−2d/p

∥a∥p∥b∥p∥Ṽ ∥p.

It remains to interpolate between the two cases. For that purpose, we introduce the function

f (ζ )= E[(Tr K p)(1+q−p)(1−ζ )/p+ζ(p−1)(q−p)/p2
Tr |a|FV F∗

|b|
qζ/p K p−1�∗

],

where K = ||a|FV F∗
|b|| and � is the partially isometric operator appearing in the polar decomposition

|a|FV F∗
|b| =�K .

For convenience, we write
β := E[(Tr K p)q/p

].

If Re ζ = 0, then by Hölder’s inequality,

| f (ζ )| ≤ (2π)−d/pβ∥a∥p∥Ṽ ∥p.

If Re ζ = 1, then

| f (ζ )| ≤ E[(Tr K p)(p−1)(q−p)/p2
∥|a|FV F∗

|b|
q/p

∥Sp(Tr K p)(p−1)/p
],

which leads to
| f (ζ )| ≤ β1−1/p(2π)−2d/p

∥a∥p∥b∥
q/p
q ∥Ṽ ∥p.

Observe also that
f (p/q)= β.

Thus by the three lines lemma,

β ≤ β1−1/q(2π)−d/p−d/q
∥a∥p∥b∥q∥Ṽ ∥p. □
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7. Large values of Re ζ

Let 0< R ≤ 1. Let χ0,k be the characteristic function of the ball

B =

{
ξ ∈ Rd

: |ξ | ≤
2|k|

R

}
,

and let χ1,k = 1 −χ0,k be the characteristic function of its complement

Rd
\B =

{
ξ ∈ Rd

: |ξ |>
2|k|

R

}
.

We introduce the operators
Pn,k = Fχn,k F∗,

which are the spectral projections of −1 corresponding to the intervals [0, 4|k|
2/R2

] and (4|k|
2/R2,∞).

Besides depending on the properties of (−1− z)−ζ, the arguments of this paper also rely on the
properties of the operators Pn,k(−1− z)−ζ for different values of ζ . In this section, we discuss relatively
large values of Re ζ . The following proposition gives an important estimate for the integral kernel of
Pn,k(−1− z)−ζ.

Proposition 7.1. Let R ≤ 1. Let d ≥ 2, and let 1
2(d − 1) < Re ζ ≤

1
2(d + 1). The integral kernel of the

operator Pj,k(1− z)−ζ satisfies the estimate

|Pj,k(−1− z)−ζ (x, y)| ≤ βeα(Im ζ )2
|k|

(d−1)/2−Re ζ
|x − y|

Re ζ−(d+1)/2, (7.1)

for z /∈ R+ and j = 0, 1. The positive constants β and α in this inequality depend only on d and Re ζ .

Proof. Due to Proposition 3.1, it is sufficient to prove only one of the inequalities (7.1). Let us first
estimate the integrals

In =

∫
2n |k|<R|ξ |<2n+1|k|

eiξ(x−y) dξ
(|ξ |2 − k2)ζ

= −|x − y|
−2

∫
2n |k|<R|ξ |<2n+1|k|

1ξeiξ(x−y) dξ
(|ξ |2 − k2)ζ

= |x − y|
−2

∫
S2n+1|k|/R∪S2n |k|/R

±i(x − y)ξeiξ(x−y) d Sξ
|ξ |(|ξ |2 − k2)ζ

− ζ |x − y|
−2

∫
2n |k|<R|ξ |<2n+1|k|

2iξ(x − y)eiξ(x−y) dξ
(|ξ |2 − k2)ζ+1 , (7.2)

for n ≥ 1. We will show that

|In| ≤ βeα(Im ζ )2(2n
|k|/R)(d−1)/2−Re ζ

|x − y|
Re ζ−(d+1)/2, (7.3)

for some β > 0 and α > 0. A priori,

|In| ≤ Cde2π |Im ζ |(2n
|k|/R)d−2 Re ζ, (7.4)

but the representation (7.2) leads to

|In| ≤ Cde2π |Im ζ |(2n
|k|/R)d−2 Re ζ−1

|x − y|
−1. (7.5)
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The first estimate (7.4) implies (7.3) for 2n
|k||x − y|< R, because in this case,

|In| ≤ Cde2π |Im ζ |(2n
|k|/R)d−2 Re ζ (2n

|k||x − y|/R)Re ζ−(d+1)/2.

The second inequality (7.5) implies (7.3) for 2n
|k||x − y| ≥ R, because 1

2(d +1)−Re ζ ≤ 1 and, therefore,

(2n
|k|/R)d−2 Re ζ−1

|x − y|
−1

≤ (2n
|k|/R)d−2 Re ζ+Re ζ−(d+1)/2

|x − y|
Re ζ−(d+1)/2.

The estimates (7.3) imply (7.1) for j = 1, because

P1,k(−1− z)−ζ (x, y)= (2π)−d
∞∑

n=1

In. □

Corollary 7.2. Let 1
2(d − 1) < Re ζ < 1

2(d + 1), where d ≥ 2. Let 2 ≤ r < 2d/(2 Re ζ − 1). Suppose
that W is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then
∥W Pj,k(−1− z)−ζχl∥S2 ≤ βeα(Im ζ )2

|k|
(d−1)/2−Re ζ

∥W∥r , (7.6)

for z /∈ R+ and j = 0, 1. The positive constants β and α in this inequality depend only on d and Re ζ .
If Re ζ =

1
2(d + 1) and d ≥ 2, then (7.6) holds with r = 2.

Proof. It follows from (7.1) that

∥W Pj,k(−1− z)−ζχl∥
2
S2

≤ Ce2α(Im ζ )2
|k|

(d−1)−2 Re ζ
∑
n∈Zd

(|n − l| + 1)2 Re ζ−(d+1)
|wn|

2.

A simple application of Hölder’s inequality leads to (7.6). □

On the other hand, we have the inequality

∥W Pj,k(−1− z)−ζχl∥ ≤ βeα(Im ζ )2
∥W∥∞, (7.7)

for Re ζ = 0.
By interpolation, we obtain the following from (7.6) and (7.7).

Proposition 7.3. Let 1
2(d − 1) < ~ < 1

2(d + 1), where d ≥ 2. Let 2 ≤ r < 2d/(2~ − 1). Suppose that W
is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then, for any Re ζ = τ ∈ (0, ~), z /∈ R+ and j = 0, 1,

∥W Pj,k(−1− z)−ζχl∥S2~/τ ≤ βeα(Im ζ )2
|k|

((d−1)/(2~)−1)τ
∥W∥r~/τ . (7.8)

The positive constants β and α in this inequality depend only on d and τ . If ~ =
1
2(d +1) and d ≥ 2, then

(7.8) holds with r = 2.
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Proof. Indeed, let Re ζ0 = τ , and let
A =�|A|

be the polar decomposition of the operator

A = |W |
ζ0/τ Pj,k(−1− z)−ζ0χl .

Consider the function

f (ζ )= eαζ
2

Tr(|W |
ζ/τ Pj,k(−1− z)−ζχl |A|

(2~−ζ+i Im ζ0)/τ�∗).

If Re ζ = 0, then
| f (ζ )| ≤ C1∥A∥

2~/τ
S2~/τ

.

If Re ζ = ~, then
| f (ζ )| ≤ C2|k|

(d−1)/2−~
∥A∥

~/τ

S2~/τ
∥W∥

~/τ
r~/τ .

Consequently, by the three lines lemma,

| f (ζ0)| ≤ C |k|
θ((d−1)/2−~)

∥W∥
θ~/τ
r~/τ ∥A∥

(2−θ)~/τ

S2~/τ
, θ = τ/~.

Put differently,
|eαζ

2
0 |∥A∥

2~/τ
S2~/τ

≤ C |k|
θ((d−1)/2−~)

∥W∥
θ~/τ
r~/τ ∥A∥

(2−θ)~/τ

S2~/τ
, θ = τ/~.

The latter inequality implies (7.8), and the proof is completed. □

In particular, once we set r~/τ = 4, we obtain the following.

Corollary 7.4. Let 1
2(d − 1) < ~ < 1

2(d + 1), where d ≥ 2. Suppose that W is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then
∥W Pj,k(−1− z)−ζχl∥S4 ≤ βeα(Im ζ )2

|k|
((d−1)/(2~)−1)Re ζ

∥W∥4, (7.9)

for any 1
2~ ≤ Re ζ <min{~, d~/(4~ − 2)}, z /∈ R+ and j = 0, 1. The positive constants β and α in this

inequality depend only on d and Re ζ . If ~ =
1
2(d + 1) and d ≥ 2, then (7.9) holds with Re ζ =

1
2~.

We will now discuss the properties of the random operators

Xn,m(ζ )= eα0ζ
2
(W Pn,k(−1− z)−ζV (−1− z)−ζ Pm,k W ).

Here W is a fixed function which does not depend on ω.

Proposition 7.5. Let 1
2(d − 1) < ~ < 1

2(d + 1), where d ≥ 2. Let 1
2~ ≤ Re ζ < min{~, d~/(4~ − 2)}.

Assume that Ṽ ∈ L2(Rd), W ∈ L4(Rd) and α0 > 2α. Then

(E(∥Xn,m(ζ )∥
2
S2
))1/2 ≤ CRe ζ e(2α−α0)(Im ζ )2

|k|
((d−1)/~−2)Re ζ

∥Ṽ ∥2∥W∥
2
4. (7.10)

If ~ =
1
2(d + 1) and d ≥ 2, then (7.10) holds with Re ζ =

1
2~.
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Proof. Obviously,

E(∥Xn,m(ζ )∥
2
S2
)= E(Tr Xn,m(ζ )

∗Xn,m(ζ ))

≤ e2α0 Re ζ 2 ∑
l∈Zd

|vl |
2
∥W Pn,k(−1− z)−ζχl∥

2
S4

∥χl(−1− z)−ζ Pm,k W∥
2
S4
.

Together with Corollary 7.4, this implies (7.10). □

We will also study the spectral properties of the operator

Y (ζ )= X0,0(ζ )+ X0,1(ζ )+ X1,0(ζ ).

Corollary 7.6. Let 1
2(d −1)< ~ < 1

2(d +1), where d ≥ 2. Let 1
2~ ≤ Re ζ <min{~, d~/(4~−2)}. Assume

that Ṽ ∈ L2(Rd), W = Ṽ 1/2 and α0 > 2α. Then

(E(∥Y (ζ )∥2
S2
))1/2 ≤ CRe ζ e(2α−α0)(Im ζ )2

|k|
((d−1)/~−2)Re ζ

∥Ṽ ∥
2
2. (7.11)

If ~ =
1
2(d + 1) and d ≥ 2, then (7.11) holds with Re ζ =

1
2~.

8. Small values of Re ζ

The notations we use in this section are the same as in the previous one. In particular, the projections
Pn,k are the same as before. As was mentioned, the arguments of this paper rely on the properties of the
operators Pn,k(−1− z)−ζ for different values of ζ . In this section, we discuss the case 0 ≤ Re ζ < 1.

In the next two propositions, we discuss the properties of the random operators

Xn,m(ζ )= eα0ζ
2
(W Pn,k(−1− z)−ζV (−1− z)−ζ Pm,k W ),

for Re ζ =
1
2γ and 0< γ < 3

2 . Here W is a fixed function which does not depend on ω. The value of the
parameter α0 should be sufficiently large as in Corollary 7.6.

Later, we will also study the spectral properties of the operator

Y (ζ )= X0,0(ζ )+ X0,1(ζ )+ X1,0(ζ ).

However, the terms in this representation will be studied separately. A this point, we do not discuss
X1,1(ζ ) at all.

Proposition 8.1. Let d ≥ 2. Let z ∈ C \ R+, and let 2 ≤ 2p < 3/γ . Assume that 0< R ≤ 1. If Re ζ =
1
2γ ,

W ∈ L4p and Ṽ ∈ L2p, then X0,0(ζ ) ∈ Sp almost surely. Moreover,

E(∥X0,0(ζ )∥
p
Sp
)1/p

≤ C p,γ e−α0|Im ζ |2/2
(

|k|

R

)3d/(2p)−2γ

∥Ṽ ∥2p∥W∥
2
4p. (8.1)

Proof. This statement follows from Corollary 6.2 and Proposition 6.3. If r =
1
2q =2p, then 1/r+2/q =1/p.

Moreover, since

X0,0(ζ )= eα0ζ
2
(W (−1− z)−ζ/3 P0,k(−1− z)−2ζ/3V (−1− z)−2ζ/3 P0,k(−1− z)−ζ/3W ),
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we obtain the estimate

∥X̃0,0(ζ )∥p

≤ |eα0ζ
2
| · ∥W (−1− z)−ζ/3 P0,k∥q∥P̃0,k(−1− z)−2ζ/3V (−1− z)−2ζ/3 P0,k∥r∥P0,k(−1− z)−ζ/3W∥q .

It remains to realize that(∫
Rd

χ0,k dξ
|(|ξ |2 − z)2ζ/3|r

)2/r

≤

(∫
|ξ |<2|k|

dξ
|(|ξ |2 − z)2ζ/3|r

)2/r

+ cp,γ ec|Im ζ |

(∫
|ξ |<2|k|/R

dξ
|ξ |2γ r/3

)2/r

≤ C p,γ ec|Im ζ |

(
|k|

R

)2(d−2rγ /3)/r

= C p,γ ec|Im ζ |

(
|k|

R

)d/p−4γ /3

, γ r < 3,

while a similar argument shows that(∫
Rd

χ0,k dξ
|(|ξ |2 − z)ζ/3|q

)2/q

≤ C̃ p,γ ec|Im ζ |

(
|k|

R

)2(d−qγ /3)/q

= C̃ p,γ ec|Im ζ |

(
|k|

R

)d/(2p)−2γ /3

. □

Proposition 8.2. Let 2 ≤ d ≤ 5. Let z ∈ C \ R+, and let 2 ≤ 2p < 3/γ . Assume that 4pγ > d and
0< R ≤ 1. If Re ζ =

1
2γ , W ∈ L4p and Ṽ ∈ L2p, then X0,1(ζ ) ∈ Sp for all ω. Moreover,

∥X0,1(ζ )∥Sp ≤ C p,γ e−α0|Im ζ |2/2
(

|k|

R

)d/p−2γ

∥Ṽ ∥2p∥W∥
2
4p. (8.2)

Proof. Since

X0,1(ζ )= eα0ζ
2
(W (−1− z)−ζ/3 P0,k(−1− z)−2ζ/3V P1,k(−1− z)−ζW ),

we obtain the estimate

∥X0,1(ζ )∥p ≤ |eα0ζ
2
| · ∥W (−1− z)−ζ/3 P0,k∥4p∥P0,k(−1− z)−2ζ/3V ∥2p∥P1,k(−1− z)−ζW∥4p.

It remains to realize that(∫
Rd

χ0,k dξ
|(|ξ |2 − z)2ζ/3|2p

)1/(2p)

≤ C̃ p,γ ec|Im ζ |

(
|k|

R

)d/(2p)−2γ /3

,

while (∫
Rd

χ0,k dξ
|(|ξ |2 − z)ζ/3|4p

)1/(4p)

≤ C̃ p,γ ec|Im ζ |

(
|k|

R

)d/(4p)−γ /3

.

Finally,(∫
Rd

χ1,k dξ
|(|ξ |2 − z)ζ |4p

)1/(4p)

≤ 2ec|Im ζ |

(∫
|ξ |>2|k|/R

dξ( 3
4 |ξ |2

)2γ p

)1/(4p)

≤ C̃ p,γ ec|Im ζ |

(
|k|

R

)d/(4p)−γ

. □

Let us now talk about the operator Y (ζ ). The study of this operator must be harder compared to the
study of X1,1(ζ ) simply because P1,k(−1− z)−ζ is bounded uniformly in z while this is not true about
P0,k(−1− z)−ζ.
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Corollary 8.3. Let 2 ≤ d ≤ 5. Let |k| ≥ R where 0< R ≤ 1. Let also W =

√
Ṽ . Assume that 2 ≤ 2p< 3/γ

and 4pγ > d. If Re ζ =
1
2γ and Ṽ ∈ L2p, then

E(∥Y (ζ )∥p
Sp
)1/p

≤ C p,γ e−α0|Im ζ |2/2
(

|k|

R

)3d/(2p)−2γ

∥Ṽ ∥
2
2p.

In particular, we can set p = 1 and prove the following statement.

Proposition 8.4. Let 2 ≤ d ≤ 5. Let |k| ≥ R where 0< R ≤ 1. Let also W =

√
Ṽ . Assume that

1
8 d < 1

2γ = Re ζ < 3
4 .

Then

E(∥Y (ζ )∥S1)≤ CRe ζ e−α0|Im ζ |2/2
(

|k|

R

)3d/2−4 Re ζ

∥Ṽ ∥
2
2.

9. Another interpolation between small and large values of Re ζ

Let us recall two theorems that hold for the operator

Y (ζ )= X0,0(ζ )+ X0,1(ζ )+ X1,0(ζ ),

with W = Ṽ 1/2. By small values of Re ζ we mean the values that are considered in Corollary 8.3, which
states that, for any p ≥ 1 and d/(8p) < Re ζ < 3/(4p),

E(∥Y (ζ )∥p
Sp
)1/p

≤ CRe ζ,pe−α0|Im ζ |2/2
(

|k|

R

)3d/(2p)−4 Re ζ

∥Ṽ ∥
2
2p. (9.1)

In this corollary, we had to assume that 2 ≤ d ≤ 5 and |k| ≥ R, where 0< R ≤ 1. One should also not
forget that our assumptions about γ = 2 Re ζ imply that Re ζ < 3

4 .
In the next result, we only replace 4 Re ζ by d/(2p) in the right-hand side of (9.1).

Theorem 9.1. Let 2 ≤ d ≤ 5. Let W = Ṽ 1/2. Let

0< Re ζ < 3
4 .

Assume that
d

8 Re ζ
< p <

3
4 Re ζ

, p ≥ 1,

and 0< R ≤ 1. Then

E(∥Y (ζ )∥p
Sp
)1/p

≤ CRe ζ,pe−α0|Im ζ |2/2
(

|k|

R

)d/p

∥Ṽ ∥
2
2p,

for |k| ≥ R.

For the sake of simplicity, we choose

p =
d

7 Re ζ
.

In this case, because of the assumption p ≥ 1 that we made, we have to assume that

0< Re ζ ≤
1
7 d.

Note that 1
7 d < 3

4 . Thus, we can formulate the following assertion.
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Corollary 9.2. Let 2 ≤ d ≤ 5. Let 0< Re ζ ≤
1
7 d and let p = d/(7 Re ζ ). Assume that 0< R ≤ 1. Then

E(∥Y (ζ )∥p
Sp
)1/p

≤ CRe ζ,pe−α0|Im ζ |2/2
(

|k|

R

)d/p

∥Ṽ ∥
2
2p,

for |k| ≥ R.

By the large values of Re ζ we mean the values appearing in Corollary 7.6. We will use only a simpler
version of this result.

Theorem 9.3. Let d ≥ 3. Let 1< ν < η < 2. Let

2 Re ζ =
d
2

+
d − η

2(d − 2)
. (9.2)

Assume that V ∈ L2(Rd) and α0 > 2α. Then

(E(∥Y (ζ )∥2
S2
))1/2 ≤ CRe ζ e(2α−α0)(Im ζ )2

|k|
−ν/2

∥Ṽ ∥
2
2. (9.3)

Proof. For Re ζ defined in (9.2), the assumption ν < η < 2 leads to the inequalities

d + 1
2

< 2 Re ζ <
d(d − 1)− ν

2(d − 2)
. (9.4)

Let us now introduce the parameter ~, setting

~ =
2(d − 1)Re ζ

4 Re ζ − ν
.

The latter relation simply means that

ν =

(
2 −

(d − 1)
~

)
2 Re ζ. (9.5)

Thus (9.3) coincides with (7.11). Let us check that all conditions of Corollary 7.6 are fulfilled. The
second inequality in (9.4) implies

~ >
d(d − 1)− ν

2(d − ν)
>

d − 1
2

, (9.6)

while the first inequality in (9.4) combined with the condition ν < 2 implies that

~ <
d + 1

2
.

One can also see that the first inequality in (9.6) is equivalent to the estimate

2 Re ζ =
~ν

2~ − (d − 1)
<

d~
2~ − 1

.

Finally, note that when d ≥ 3, the condition Re ζ < ~ follows from the fact that ν+ η > 2. Consequently,
Corollary 7.6 implies Theorem 9.3. □

We interpolate between Corollary 9.2 and Theorem 9.3.
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Theorem 9.4. Let 3 ≤ d ≤ 5. Assume that τ1 satisfies

0 ≤

((
d
2

+
(η− 1)(d + 1)

7d
+

d − η

2(d − 2)

)
− 2

)
τ1 ≤

(ν− 1)(d + 1)
7d

, (9.7)

with η and ν such that 1< ν < η < 2. If d = 3, then we assume additionally that 8ν+ 9η < 26. Let p, q
and r be the numbers defined by

p =
d

7τ1
,

1
q

=
1 − θ

p
+
θ

2
and

1
r

=
1 − θ

2p
+
θ

2
, (9.8)

where θ is the solution of the equation

τ1(1 − θ)+
θ

2

(
d
2

+
d − η

2(d − 2)

)
= 1. (9.9)

Then

(E(∥Y (1)∥q
Sq
))1/q ≤ Cq

(
|k|

R

)d(1−θ)/p

|k|
−θν/2

∥Ṽ ∥
2
r , (9.10)

for |k| ≥ R and 0< R ≤ 1.

Proof. Observe that

τ1 <


2(ν−1)(d+1)

7(d−3)d
≤

d
7

if d > 3,

8(ν−1)
21(2−η)

≤
d
7

if 8ν+ 9η < 26 and d = 3.

In both cases, τ1 obeys
0< τ1 ≤

1
7 d.

Consider Y (ζ ) for ζ running over the strip

τ1 ≤ Re ζ ≤
d
4

+
d − η

4(d − 2)
.

Since we have some information about the values of this function on the boundary of the strip, we obtain
(9.10) by interpolation between Corollary 9.2 and Theorem 9.3. □

Remark. We need to explain why the parameters were selected as described in Theorem 9.4. The work
with perturbation determinants requires convergence of integrals of the form∫

∞

ε

E(∥Y (1)∥q
Sq
) dk, ε > 0,

so we need the parameters to satisfy the condition

qd(1 − θ)

p
−

qθν
2
<−1,

which is equivalent to the inequality

τ1(1 − θ) <
θν

14
−

1
7q

=
θ(ν− 1)

14
−
(1 − θ)τ1

d
,
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implying that

τ1(1 − θ) <
θ(ν− 1)(d + 1)

14d
.

The latter can be written differently as

1 −
θ

2

(
d
2

+
d − η

2(d − 2)

)
<
θ(ν− 1)(d + 1)

14d
.

In other words,

2< θ
(

d
2

+
(ν− 1)(d + 1)

7d
+

d − η

2(d − 2)

)
. (9.11)

The condition that θ is large can be converted into an inequality showing that τ1 is small. The relation
(9.11) is satisfied if ((

d
2

+
(ν− 1)(d + 1)

7d
+

d − η

2(d − 2)

)
− 2

)
τ1 <

(ν− 1)(d + 1)
7d

.

Since η > ν, this condition is obviously fulfilled if (9.7) holds.

In the next statement, we estimate the remainder X1,1(ζ ) for ζ = 1.

Theorem 9.5. Let p > 3
4 d ≥ 2, and let ζ = 1. Then

E[∥X1,1(ζ )∥
p
Sp/2

]
1/p

≤ C
(

|k|

R

)−4

∥Ṽ ∥
2
p.

Proof. In this theorem, we deal with the operator

W (−1− z)−1 P1,k V (−1− z)−1 P1,k W.

On the one hand, we see that

E[∥(−1− z)−2/3 P1,k V (−1− z)−2/3 P1,k∥
p
Sp

]
1/p

≤ C
(∫

|ξ |>2|k|/R
||ξ |2 − z|−2p/3 dξ

)2/p

∥Ṽ ∥p,

which implies the inequality

E[∥(−1− z)−2/3 P1,k V (−1− z)−2/3 P1,k∥
p
Sp

]
1/p

≤ C
(

|k|

R

)−8/3

∥Ṽ ∥p, p > 3
4 d.

On the other hand,

∥W (−1− z)−1/3 P1,k∥
2
S2p

≤ C
(

|k|

R

)−4/3

∥Ṽ ∥p, p > 3
4 d.

Consequently,

E[∥W (−1− z)−1 P1,k V (−1− z)−1 P1,k W∥
p
Sp/2

]
1/p

≤ C
(

|k|

R

)−4

∥Ṽ ∥
2
p, p > 3

4 d. □

The next statement follows by Hölder’s inequality.
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Corollary 9.6. Let q > 3
8 d ≥ 1, and let ζ = 1. Then

E[∥X1,1(ζ )∥
q
Sq

]
1/q

≤ C
(

|k|

R

)−4

∥Ṽ ∥
2
2q .

Surprisingly, q in (9.8) satisfies the inequality q > 3
8 d ≥ 1. Thus, we obtain the following result.

Theorem 9.7. Let 3 ≤ d ≤ 5. Assume that τ1 satisfies (9.7) with η and ν such that 1< ν < η < 2. If d = 3,
then we assume additionally that 8ν+ 9η < 26. Let p, q and r be the numbers defined by

p =
d

7τ1
,

1
q

=
1 − θ

p
+
θ

2
and

1
r

=
1 − θ

2p
+
θ

2
, (9.12)

where θ is the solution of the equation

τ1(1 − θ)+
θ

2

(
d
2

+
d − η

2(d − 2)

)
= 1. (9.13)

Then

(E(∥X (k)∥q
Sq
))1/q ≤ Cq

[(
|k|

R

)d(1−θ)/p

|k|
−θν/2

+

(
|k|

R

)−4]
∥Ṽ ∥

2
r ,

for |k| ≥ R and 0< R ≤ 1.

10. Proof of Theorem 1.5

Again, we work with the function

d(z)= detn(I − X (k)), n = [q] + 1,

where z is related to k via the Joukowski mapping

z =
R
k

+
k
R
, R > 0.

Standard arguments allow us to rewrite (5.2) with p replaced by q as

E

[∑
j

Im kj (|kj |
2
− R2)+

|kj |
2 R

]
≤ C

(∫
∞

−∞

E[∥X (k)∥q
Sq

]

(
1
R

−
R
k2

)
+

dk +

∫ π

0
E[∥X (R · eiθ )∥

q
Sq

] sin θ dθ
)
,

where the kj are defined as square roots of eigenvalues of H. Due to Theorem 9.7, the latter inequality
yields

E

[∑
j

Im kj (|kj |
2
− R2)+

|kj |
2 R

]
≤ C |R|

−θqν/2
∥Ṽ ∥

2q
r . (10.1)

Now, suppose that we consider only the eigenvalues λj = k2
j that satisfy the inequality

|kj | ≤ R0.

Multiplying (10.1) by Rσ−1 and integrating with respect to R from 0 to R0, we obtain

E

[ ∑
|kj |≤R0

Im kj |kj |
σ−1

]
≤ C |R0|

σ−θqν/2
∥Ṽ ∥

2q
r , σ > 1

2θqν. □
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zbigniew.blocki@uj.edu.pl

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Isabelle Gallagher Université Paris-Diderot, IMJ-PRG, France
gallagher@math.ens.fr

Colin Guillarmou Université Paris-Saclay, France
colin.guillarmou@universite-paris-saclay.fr

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vadim Kaloshin University of Maryland, USA
vadim.kaloshin@gmail.com

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Anna L. Mazzucato Penn State University, USA
alm24@psu.edu

Richard B. Melrose Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
merle@ihes.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Jim Wright University of Edinburgh, UK
j.r.wright@ed.ac.uk

Maciej Zworski University of California, Berkeley, USA
zworski@math.berkeley.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2023 is US $405/year for the electronic version, and $630/year (+$65, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Univer-
sity of California, Berkeley, CA 94720-3840, is published continuously online.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

http://msp.org/apde
mailto:patrick.gerard@universite-paris-saclay.fr
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:berti@sissa.it
mailto:zbigniew.blocki@uj.edu.pl
mailto:cf@math.princeton.edu
mailto:gallagher@math.ens.fr
mailto:colin.guillarmou@universite-paris-saclay.fr
mailto:ursula@math.uni-bonn.de
mailto:vadim.kaloshin@gmail.com
mailto:ilaba@math.ubc.ca
mailto:alm24@psu.edu
mailto:rbm@math.mit.edu
mailto:merle@ihes.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:pisier@math.tamu.edu
mailto:irod@math.princeton.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:j.r.wright@ed.ac.uk
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 16 No. 4 2023

891Strong semiclassical limits from Hartree and Hartree–Fock to Vlasov–Poisson equations
LAURENT LAFLECHE and CHIARA SAFFIRIO

927Marstrand–Mattila rectifiability criterion for 1-codimensional measures in Carnot groups
ANDREA MERLO

997Finite-time blowup for a Navier–Stokes model equation for the self-amplification of strain
EVAN MILLER

1033Eigenvalue bounds for Schrödinger operators with random complex potentials
OLEG SAFRONOV

1061Carleson measure estimates for caloric functions and parabolic uniformly rectifiable sets
SIMON BORTZ, JOHN HOFFMAN, STEVE HOFMANN, JOSÉ LUIS LUNA GARCÍA and
KAJ NYSTRÖM

A
N

A
LY

SIS
&

PD
E

Vol.16,
N

o.4
2023


	1. Introduction and main results
	2. Preliminaries
	3. Large values of Re(zeta) without projections
	4. An estimate for the square of the Birman–Schwinger operator
	5. Proof of Theorem 1.1
	6. Operators of the Birman–Schwinger type
	7. Large values of Re(zeta)
	8. Small values of Re(zeta)
	9. Another interpolation between small and large values of Re(zeta)
	10. Proof of Theorem 1.5
	References
	
	

