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NONUNIFORM STABILITY OF DAMPED CONTRACTION SEMIGROUPS

RALPH CHILL, LASSI PAUNONEN, DAVID SEIFERT, REINHARD STAHN AND YURI TOMILOV

We investigate the stability properties of strongly continuous semigroups generated by operators of the
form A−B B∗, where A is the generator of a contraction semigroup and B is a possibly unbounded operator.
Such systems arise naturally in the study of hyperbolic partial differential equations with damping on
the boundary or inside the spatial domain. As our main results we present general sufficient conditions
for nonuniform stability of the semigroup generated by A − B B∗ in terms of selected observability-type
conditions on the pair (B∗, A). The core of our approach consists of deriving resolvent estimates for the
generator expressed in terms of these observability properties. We apply the abstract results to obtain
rates of energy decay in one-dimensional and two-dimensional wave equations, a damped fractional
Klein–Gordon equation and a weakly damped beam equation.
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1. Introduction

We study the stability properties of abstract differential equations of the form

ẋ(t) = (A − B B∗)x(t), x(0) = x0 ∈ X. (1-1)

Here A generates a strongly continuous contraction semigroup, or typically a unitary group, on the Hilbert
space X and B is a possibly unbounded operator, defined on a Hilbert space U. This class of dynamical
systems includes several types of partial differential equations with damping, especially wave equations
[Lebeau 1996; Ammari and Tucsnak 2001; Anantharaman and Léautaud 2014] and other hyperbolic PDE
models [Liu and Zhang 2015; Dell’Oro and Pata 2021]. Equations of this form are also often encountered
in control theory as a result of feedback interconnections and output feedback stabilisation [Slemrod
1974; Benchimol 1977; Guo and Luo 2002; Lasiecka and Triggiani 2003; Curtain and Weiss 2006; 2019].
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Our main interest is in studying stability properties of the semigroup (TB(t))t≥0 generated by A − B B∗

and the asymptotic behaviour of the solution x( · ) = TB( · )x0 of (1-1). One of the key results concerning
equations of the form (1-1) is that stability of (TB(t))t≥0 can be characterised in terms of observability of
the pair (B∗, A); see [Slemrod 1974; Benchimol 1977; Curtain and Weiss 2006; 2019]. This relationship
is well understood in the context of exponential stability and strong stability. In this paper we investigate
this relationship for semigroups (TB(t))t≥0 which are polynomially stable or more generally nonuniformly
stable. Our main results introduce new observability-type conditions which can be used to guarantee and
verify the precise nonuniform stability properties of the differential equation (1-1).

The problem in (1-1) and the associated semigroup (TB(t))t≥0 are said to be (uniformly) exponentially
stable if ∥x(t)∥ ≤ Me−ωt

∥x0∥ for all x0 ∈ X and t ≥ 0 and for some constants M , ω > 0. The weaker
notion of strong stability requires only that ∥x(t)∥ → 0 for t → ∞ for all x0 ∈ X . The main benefit of
exponential stability over strong stability is that the decay of the solutions takes place at a guaranteed
rate as t → ∞. In this paper we focus on nonuniform stability [Batty and Duyckaerts 2008; Borichev
and Tomilov 2010; Rozendaal et al. 2019; Chill et al. 2020], where (TB(t))t≥0 is strongly stable and
all classical solutions of (1-1) decay at a specific rate. Nonuniform and polynomial stability have been
investigated in detail, especially for damped wave equations on multidimensional domains [Lebeau 1996;
Liu and Rao 2005; Burq and Hitrik 2007; Anantharaman and Léautaud 2014; Stahn 2017; Cavalcanti
et al. 2019; Datchev and Kleinhenz 2020], coupled partial differential equations [Duyckaerts 2007], and
plate equations [Liu and Zhang 2015; Laurent and Léautaud 2021].

Under suitable assumptions on A and B, exponential stability of the semigroup (TB(t))t≥0 is equivalent
to “exact observability” [Tucsnak and Weiss 2009, Chapter 6] of the pair (B∗, A) [Slemrod 1974; Curtain
and Weiss 2006]. In addition, strong stability can be characterised in terms of “approximate observability”
of (B∗, A) [Benchimol 1977]. In this paper we show that several modified concepts, each of which may
be seen as “quantified approximate observability” of the pair (B∗, A), lead to nonuniform stability of the
semigroup (TB(t))t≥0. In particular, we say that (B∗, A) satisfies the nonuniform Hautus test if there exist
functions M , m : R → [r0, ∞) with r0 > 0 such that [Miller 2012, Section 2.3]

∥x∥
2
X ≤ M(s)∥(is − A)x∥

2
X + m(s)∥B∗x∥

2
U , x ∈ D(A), s ∈ R.

In addition, if A is skew-adjoint we say that the pair (B∗, A) satisfies the wavepacket condition if there
exist bounded functions γ, δ : R → (0, ∞) such that [Miller 2012, Section 2.5]

∥B∗x∥U ≥ γ (s)∥x∥X , x ∈ WPs,δ(s)(A), s ∈ R. (1-2)

Here WPs,δ(s)(A) denotes the spectral subspace of −i A associated with the interval (s − δ(s), s + δ(s))
(elements of WPs,δ(s)(A) are called wavepackets of A).

The following theorem summarises our main results on these two observability concepts. The precise
assumptions of Theorem 1.1 are stated in Assumption 2.1 in Section 2A, and they are automatically
satisfied whenever A generates a strongly continuous contraction semigroup and B ∈ L(U, X). The
results employ a function µ : R → [r0, ∞), r0 > 0, such that

∥B∗(1 + is − A)−1 B∥ ≤ µ(s), s ∈ R. (1-3)
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As shown in Section 2A, we may always choose µ in such a way that µ(s) ≲ 1 + s2, s ∈ R. Moreover, in
the case where B ∈ L(U, X) and in many concrete applications µ may be taken to be constant. Finally, a
measurable function N : [0, ∞) → (0, ∞) is said to have positive increase if there exist α, cα, s0 > 0
such that N (λs)/N (s) ≥ cαλα for all λ ≥ 1 and s ≥ s0.

Theorem 1.1. Assume that the operators A and B satisfy Assumption 2.1 and that µ : R → [r0, ∞),
r0 > 0, is an even function such that (1-3) holds.

If the pair (B∗, A) satisfies the nonuniform Hautus test for some continuous and even functions M
and m, and if the function N : [0, ∞) → (0, ∞) defined by N ( · ) := M( · )µ( · ) + m( · )µ( · )2 is strictly
increasing and has positive increase, then (TB(t))t≥0 is nonuniformly stable and

∥TB(t)x0∥ ≤
C

N−1(t)
∥(A − B B∗)x0∥, x0 ∈ D(A − B B∗), t ≥ t0, (1-4)

for some C , t0 > 0, where N−1 is the inverse function of N.
If A is skew-adjoint and (B∗, A) satisfies the wavepacket condition (1-2) for continuous and even

functions γ, δ such that γ ( · )−1δ( · )−1 is strictly increasing and has positive increase, then (TB(t))t≥0 is
nonuniformly stable and (1-4) is satisfied for N ( · ) := γ ( · )−2δ( · )−2µ( · )2.

Equations of the form (1-1) in particular include the damped second-order equation

ẅ(t) + Lw(t) + DD∗ẇ(t) = 0, w(0) ∈ H1/2, ẇ(0) ∈ H, (1-5)

for a positive operator L on a Hilbert space H and D ∈ L(U, H−1/2), where H1/2 is the domain of the
fractional power L1/2 and H−1/2 is its dual with respect to the pivot space H. Nonuniform stability of
such systems has been studied in the literature in the case where D ∈ L(U, H), and in particular it was
shown in [Anantharaman and Léautaud 2014] and [Joly and Laurent 2020, Appendix B] that for such
operators D the problem (1-1) is nonuniformly stable whenever the “Schrödinger group” generated by i L
with the observation operator D∗ is observable in a certain generalised sense. We subsequently refer to
this property as the Schrödinger group associated with the pair (D∗, i L) being observable. In this paper
we show that the same observability condition for the Schrödinger group generated by i L serves as a
sufficient condition for the wavepacket condition and the nonuniform Hautus test for the pair (B∗, A).
Moreover, our results generalise the results in [Anantharaman and Léautaud 2014, Theorem 2.3] and
[Joly and Laurent 2020, Appendix B] to the case of general damping operators D ∈ L(U, H−1/2). Finally,
the second part of Theorem 1.1 was proved in [Paunonen 2017, Theorem 6.3] in the special case where A
is a diagonal operator with uniform spectral gap and B ∈ L(U, X).

As our last observability-type concept we introduce nonuniform observability of the pair (B∗, A), which
requires that there exist β ≥ 0 and τ, cτ > 0 such that

cτ∥(I − A)−β x∥
2
X ≤

∫ τ

0
∥B∗T (t)x∥

2
U dt, x ∈ D(A), (1-6)

where (T (t))t≥0 is the contraction semigroup generated by A. Note that if β = 0, then nonuniform
observability reduces to the classical notion of exact observability of (B∗, A). The main result of
Section 4, Theorem 4.4, shows that if (B∗, A) is nonuniformly observable with parameter β ∈ (0, 1] and if
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B ∈ L(U, X), then the semigroup (TB(t))t≥0 is polynomially stable and (1-4) holds for N−1(t) = t1/(2β).
Related generalisations of exact observability have previously been used as sufficient conditions for
nonuniform stability of damped second-order systems of the form (1-5) in [Ammari and Tucsnak 2001;
Ammari and Nicaise 2015; Ammari et al. 2017]. Moreover, in the special case β =

1
2 , similar generalised

observability conditions were used in [Russell 1975] and [Duyckaerts 2007, Section 5] to prove polynomial
stability of (1-1). Finally, nonuniform stability of (1-5) for a special class of dampings satisfying
∥L−β x∥ ≲ ∥D∗x∥ ≲ ∥L−β x∥ for some β > 0 and all x ∈ X was studied in [Liu and Zhang 2015], and
for DD∗

= f (L) with some function f in [Dell’Oro and Pata 2021]. In Section 4 we show that the
assumptions in [Liu and Zhang 2015] imply nonuniform observability of the pair (B∗, A), and our results
in particular establish a new proof of [loc. cit., Theorem 2.1].

The core of our approach in Sections 3 and 4 consists of deriving upper bounds for the resolvent norms
∥(is − A + B B∗)−1

∥, s ∈ R, in terms of the different types of observability-type condition. In Section 5
we address optimality of our results. In particular, we present an abstract result which describes how
sharpness of the resolvent bound can be used to deduce optimality of the decay rate (1-4) of the semigroup
(TB(t))t≥0. In addition, in the case where A is skew-adjoint we prove a lower bound for resolvent norms
of A − B B∗ in terms of the restrictions of B∗ to eigenspaces of A. Combining these two results allows us
to prove that Theorem 1.1 is optimal in several situations of interest, and in particular if A has compact
resolvent and uniformly separated eigenvalues.

In the last part of the paper we apply our main results to derive rates of energy decay for solutions of
selected PDE models, namely wave equations on one- and two-dimensional spatial domains with different
types of damping, a fractionally damped Klein–Gordon equation, and a weakly damped Euler–Bernoulli
beam equation. In most of these examples the wavepackets are simply finite linear combinations of
eigenfunctions [Tucsnak and Weiss 2009, Section 6.9]. In our one-dimensional wave and beam equations,
the eigenvalues of A have a uniform spectral gap and, as a result, we obtain a particularly simple form
of the wavepacket condition (1-2). Moreover, our general optimality results in Section 5 guarantee that
the decay estimates we obtain in these cases are sharp. On the other hand, for two-dimensional wave
equations with viscous damping our results are typically suboptimal. This is due to the phenomenon
that in certain cases the smoothness of the damping profile improves the degree of polynomial stability
[Burq and Hitrik 2007; Anantharaman and Léautaud 2014; Datchev and Kleinhenz 2020], whereas
observability-type conditions do not in general distinguish between smooth and rough dampings. Indeed,
comparing different types of viscous damping reveals natural limitations to optimality of decay rates
derived from observability conditions, and we discuss this topic in detail in Section 6A.

The paper is organised as follows. In Section 2 we state the main assumptions on the operators A
and B and recall essential results concerning nonuniform stability of strongly continuous semigroups.
In Section 3 we present the main results showing that the nonuniform Hautus test and the wavepacket
condition imply nonuniform stability of (TB(t))t≥0. In particular, in the second part of Section 3 we
reformulate these results specifically for damped second-order systems, and present sufficient conditions
for nonuniform stability of (1-5) based on observability of the Schrödinger group. Next, in Section 4
we show that nonuniform observability in the sense of (1-6) implies polynomial stability of (TB(t))t≥0.
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In Section 5 we present a series of abstract results concerning optimality of the stability results in the
previous sections. Finally, in Section 6 we study energy decay for several PDE models.

Notation. If X and Y are Banach spaces and A : D(A) ⊆ X → Y is a linear operator, we denote by D(A),
Ker(A) and Ran(A) the domain, kernel and range of A, respectively. Moreover, σ(A), σp(A), and ρ(A)

denote the spectrum, the point spectrum and the resolvent set of A, respectively. The space of bounded
linear operators from X to Y is denoted by L(X, Y ). The notation X ↪→ Y will mean that X ⊆ Y with
continuous and dense embedding. We denote the norm on a space X by ∥ · ∥X and its inner product by
⟨ · , · ⟩X , and we omit the subscripts when there is no risk of ambiguity. We assume all our Banach and
Hilbert spaces to be complex.

Let R+ := [0, ∞), and denote the open right and left half-planes by C+ = {λ ∈ C : Re λ > 0} and
C− = {λ ∈ C : Re λ < 0}, respectively. We denote by χE the characteristic function of a set E . For two
functions f : E ⊆ R → R+ and g : R+ → R+ we write f (t) = O(g(|t |)) if there exist C , t0 > 0 such that
f (t) ≤ Cg(|t |) whenever |t | ≥ t0. If in addition g(t) > 0 whenever |t | ≥ t0, we write f (t) = o(g(|t |)) if
f (t)/g(|t |) → 0 as |t | → ∞. For real-valued quantities p and q, we use the notation p ≲ q if p ≤ Cq
for some constant C > 0 which is independent of all the parameters that are free to vary in the given
situation. The notation p ≳ q is defined analogously.

2. Preliminaries

2A. Standing assumptions and well-posedness. Let A : D(A)⊆ X → X be the generator of a contraction
semigroup (T (t))t≥0 on a Hilbert space X . All semigroups considered in this paper are strongly continuous.
For λ0 ∈ ρ(A) we equip D(A) with the graph norm ∥x∥1 = ∥(λ0 − A)x∥X , x ∈ D(A), and denote the
Hilbert space defined in this way by X1. Defining X−1 as the completion of X with respect to the norm
∥x∥−1 = ∥(λ0 − A)−1x∥X , we obtain a Hilbert space X−1 such that X1 ↪→ X ↪→ X−1. The operator A has
a unique extension A−1 to X−1, with domain D(A−1) = X , and A−1 generates a contraction semigroup
(T−1(t))t≥0 on X−1 which is unitarily equivalent to (T (t))t≥0. In particular, A−1 ∈ L(X, X−1) and the
operators A, A−1 are unitarily equivalent and thus have the same spectrum. Moreover, any S ∈ L(X)

commuting with A has a (unique) continuous extension to an operator in L(X−1), unitarily equivalent
to S; see [Tucsnak and Weiss 2009, Section 2.10].

To state our main assumptions, we let V be a Hilbert space such that X1 ⊆ V ⊆ X with continuous
embeddings. In particular, V is dense in X and we consider the Gelfand triple V ↪→ X ↪→ V ∗, where
V ∗ is the dual of V with respect to the pivot space X [Tucsnak and Weiss 2009, Section 2.9]. We
denote by ⟨ · , · ⟩V ∗,V : V ∗

× V → C the unique continuous extension of the inner product of X , and we
define VA := {x ∈ V : A−1x ∈ V ∗

}. In the following we state our standing assumptions on the operators
A : D(A) ⊆ X → X and B ∈ L(U, X−1), where U is another Hilbert space.

Assumption 2.1. The operators A : D(A) ⊆ X → X and B ∈ L(U, X−1) have the following properties.

(H1) The generator A of the contraction semigroup (T (t))t≥0 satisfies Re⟨A−1x, x⟩V ∗,V ≤ 0 for all x ∈ VA.

(H2) We have B ∈ L(U, V ∗) and Ran((λ0 − A−1)
−1 B) ⊆ V for some (or equivalently all) λ0 ∈ ρ(A).
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Assumption 2.1 in particular requires that Ran(B) ⊆ X−1 ∩ V ∗. Note that when A is not skew-adjoint,
the space V ∗ is not necessarily contained in X−1; it is instead a subspace of Xd

−1, the first extrapolation
space for the adjoint A∗ [Tucsnak and Weiss 2009, Section 2.10]. If B ∈ L(U, X), which we will refer to
as B being bounded, then Assumption 2.1 is automatically satisfied for any generator A of a contraction
semigroup (T (t))t≥0 with the choices V = V ∗

= X .
We write B∗

∈ L(V, U ) for the adjoint of B ∈ L(U, V ∗), where V is identified with (V ∗)∗ via the
pivot duality through X . In particular,

⟨Bu, x⟩V ∗,V = ⟨u, B∗x⟩U , x ∈ V, u ∈ U.

Moreover, (H2) in Assumption 2.1 and the closed graph theorem imply that B∗(λ− A−1)
−1 B ∈ L(U ) for

all λ ∈ ρ(A). We formally define the operator AB = A−1 − B B∗ on X by

AB x = A−1x − B B∗x, x ∈ D(AB), (2-1a)

D(AB) = {x ∈ V : A−1x − B B∗x ∈ X}. (2-1b)

As shown in the following lemma, Assumption 2.1 guarantees that AB generates a contraction semigroup
(TB(t))t≥0 on X . In particular, the orbits of this semigroup are the solutions of the abstract Cauchy problem

ẋ(t) = AB x(t), t ≥ 0, (2-2a)

x(0) = x0 ∈ X. (2-2b)

For x0 ∈ X the orbit x( · ) = TB( · )x0 is a mild solution of (2-2), and it is a classical solution if and only
if x0 ∈ D(AB) [Arendt et al. 2011, Chapter 3].

Lemma 2.2. Let A and B satisfy Assumption 2.1. Then the operator AB defined in (2-1) generates a
strongly continuous contraction semigroup (TB(t))t≥0 on X. Moreover, we have ρ(A)∩C+ ⊆ρ(AB)∩C+,

Re⟨(is − AB)x, x⟩ ≥ ∥B∗x∥
2, s ∈ R, x ∈ D(AB), (2-3)

and
∥(λ − A−1)

−1 B∥
2
≤

1
Re λ

∥B∗(λ − A−1)
−1 B∥, λ ∈ C+. (2-4)

Proof. First note that if x ∈ X and u ∈ U are such that A−1x + Bu =: y ∈ X , then condition (H2) implies
that for any λ0 ∈ ρ(A) we have x = (λ0 − A−1)

−1(λ0x − y + Bu) ∈ V and A−1x = y − Bu ∈ V ∗. Thus
x ∈ VA and condition (H1) implies that

Re⟨A−1x + Bu, x⟩X = Re⟨A−1x, x⟩V ∗,V + Re⟨Bu, x⟩V ∗,V (2-5a)

≤ Re⟨B∗x, u⟩U . (2-5b)

Let s ∈ R and x ∈ D(AB), and choose u = −B∗x . Then (2-5) immediately implies (2-3). In particular,
AB is dissipative.

To prove that ρ(A)∩C+ ⊆ ρ(AB)∩C+, fix λ ∈ ρ(A)∩C+, let u ∈ U and choose x = (λ− A−1)
−1 Bu.

Then A−1x + Bu = λ(λ − A−1)
−1 Bu ∈ X and (2-5) implies that

(Re λ)∥(λ − A−1)
−1 Bu∥

2
≤ Re⟨B∗(λ − A−1)

−1 Bu, u⟩.
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In particular, this inequality implies (2-4). Moreover, this estimate shows that the operator G(λ) :=

B∗(λ − A−1)
−1 B ∈ L(U ) satisfies Re G(λ) ≥ 0, and consequently I + G(λ) is boundedly invertible in

L(U ). A direct verification shows that λ − AB has bounded inverse given by

(λ − AB)−1
= (λ − A−1)

−1(I − B(I + G(λ))−1 B∗(λ − A)−1), (2-6)

and we deduce the required spectral inclusion ρ(A) ∩ C+ ⊆ ρ(AB) ∩ C+. In particular, AB is closed.
Since AB is dissipative and C+ ⊆ ρ(AB), its domain is dense in X by [Tucsnak and Weiss 2009,
Proposition 3.1.6]. Hence AB is m-dissipative, and by the Lumer–Phillips theorem it generates a strongly
continuous contraction semigroup on X . □

Remark 2.3. If Assumption 2.1 holds, then for every λ ∈ C+ the right-hand side of (2-6) extends uniquely
to a mapping from the (not necessarily closed) subspace X + Ran(B) of X−1 to X , simply by replacing
(λ − A)−1 by (λ − A−1)

−1. We use this formula to define the extension of (λ − AB)−1 to an operator
(λ − AB)−1

: X + Ran(B) → X . In particular, we have

(λ − AB)−1 B = (λ − A−1)
−1 B(I + G(λ))−1

∈ L(U, X)

for λ ∈ C+. The identity (λ− AB)−1
= (I + (1 −λ)(λ− AB)−1)(1 − AB)−1 shows that also for arbitrary

λ ∈ ρ(AB) the operator (λ − AB)−1 extends uniquely to a mapping from X + Ran B into X , and that
(λ − AB)−1 B ∈ L(U, X). For λ ∈ ρ(AB) and u ∈ U we have (λ − AB)−1 Bu ∈ V and

(λ − A−1 + B B∗)(λ − AB)−1 Bu = Bu,

and if x ∈ V is such that (λ − A−1 + B B∗)x ∈ X + Ran(B) (in particular, if x ∈ D(A)), then

(λ − AB)−1(λ − A−1 + B B∗)x = x .

Remark 2.4. Define X B := D(A)+Ran((λ0− A−1)
−1 B), where λ0 ∈ρ(A). The space X B is independent

of the choice of λ0, and X B ⊆ V by Assumption 2.1. Moreover, the domain of AB has the useful alternative
characterisation

D(AB) = {x ∈ X B : A−1x + B B∗x ∈ X}.

Here the nontrivial inclusion can be verified as in the beginning of the proof of Lemma 2.2.

Our results in Section 3 employ a parameter which describes the growth of the operator-valued function
λ 7→ B∗(λ − A−1)

−1 B on a vertical line in C+. In particular, we take µ : R → [r0, ∞), r0 > 0, to be a
function such that

∥B∗(1 + is − A−1)
−1 B∥ ≤ µ(s), s ∈ R, (2-7)

and the rate of growth of µ affects the resolvent estimates in our results. The following lemma shows that
µ can be taken to be uniformly bounded whenever B ∈ L(U, X), and that estimate (2-7) always holds for
a quadratic function µ.

Lemma 2.5. If A and B satisfy Assumption 2.1, then the following hold:

(a) The estimate (2-7) holds for µ(s) = c(1 + s2), s ∈ R, for some c > 0.
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(b) If B ∈ L(U, X), then (2-7) holds for µ(s) ≡ c with some c > 0.

(c) If (2-7) holds, then ∥(1 + is − A−1)
−1 B∥ ≤ µ(s)1/2 for s ∈ R.

Proof. Part (b) follows directly from the assumption that A generates a contraction semigroup, which
implies that ∥(1 + is − A)−1

∥ ≤ 1 for all s ∈ R. Moreover, part (c) follows from (2-4) in Lemma 2.2. To
prove part (a), fix s ∈ R and let R = (1+is − A−1)

−1. Using the identity R = (I − A−1)
−1

−is(I − A)−1 R
we see that

∥B∗ RB∥ ≤ ∥B∗(I − A−1)
−1 B∥ + |s|∥B∗(I − A)−1

∥∥RB∥ ≲ 1 + |s|∥RB∥

and similarly

∥RB∥ ≤ ∥(I − A−1)
−1 B∥ + |s|∥(1 + is − A)−1

∥∥(I − A−1)
−1 B∥ ≲ 1 + |s|.

Together these estimates give ∥B∗(1 + is − A−1)
−1 B∥ ≲ 1 + s2, s ∈ R. □

Estimates of the form (2-7) have been studied extensively in the control theory literature. In particular,
for a bounded function µ the estimate in (2-7) is known as the property of well-posedness of the operator-
valued “transfer function” λ 7→ B∗(λ − A−1)

−1 B; see [Salamon 1987; Guo and Luo 2002; Staffans
2002; Tucsnak and Weiss 2014]. This property has been verified in the literature for several different
types of PDE systems; see for instance [Ammari and Tucsnak 2001; Guo and Luo 2002; Lasiecka and
Triggiani 2003; Tucsnak and Weiss 2014; Ammari and Nicaise 2015]. As shown in the next lemma,
validity of (2-7) for a bounded function µ moreover implies that B∗ is an admissible observation operator
for the semigroup (T (t))t≥0, which is to say that B∗T ( · )x ∈ L2(0, τ ; U ) for all x ∈ D(A) and τ > 0.
This property will be useful in discussing the relationship between our results and existing results in the
literature. In addition, the following lemma shows that under the same assumption B is an admissible
control operator in the sense that

∫ τ

0 T−1(τ − t)Bu(t) dt ∈ X for all u ∈ L2(0, τ ; U ) and τ > 0.

Lemma 2.6. Let A and B satisfy Assumption 2.1. If (2-7) is satisfied for a bounded function µ, then
B and B∗ are, respectively, admissible control and observation operators for the semigroup (T (t))t≥0

generated by A.

Proof. Since A and B satisfy Assumption 2.1, it is straightforward to verify that the operator S : D(S) ⊆

X × U → X × U defined by

S =

(
A−1 B
B∗ 0

)
, D(S) =

{(
x
u

)
∈ X × U : A−1x + Bu ∈ X

}
is a system node on (U, X, U ) in the sense of [Staffans 2002, Definition 2.1]. Moreover, estimate (2-5) for
(x, u)∈ D(S) and [loc. cit., Theorem 4.2] imply that the system node S is impedance passive in the sense of
[loc. cit., Definition 4.1]. The transfer function of the system node S is given by G(λ) = B∗(λ− A−1)

−1 B
for λ ∈ ρ(A). Hence the assumption that (2-7) is satisfied for a bounded function µ together with [loc. cit.,
Theorem 5.1] imply that the system node S is well-posed in the sense of [loc. cit., Definition 2.6]. In
particular, B ∈ L(U, X−1) and B∗

∈ L(X1, U ) are, respectively, admissible control and observation
operators for the semigroup generated by A. □
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2B. Damped second-order problems. In this section we wish to use the framework introduced in
Section 2A to study a class of abstract second-order equations with damping. To this end, we consider a
positive self-adjoint and boundedly invertible operator L : D(L) ⊆ H → H on a Hilbert space H. We
write H1 for the domain of L equipped with the norm ∥x∥H1 = ∥Lx∥H , x ∈ H1, and define H1/2 to be
the domain of the fractional power L1/2 equipped with the norm ∥x∥H1/2 = ∥L1/2x∥H , x ∈ H1/2. We
denote by H−1/2 the dual of H1/2 with respect to the pivot space H. For an operator D ∈ L(U, H−1/2),
where U is another Hilbert space, we consider the differential equation

ẅ(t) + Lw(t) + DD∗ẇ(t) = 0, t ≥ 0, (2-8a)

w(0) = w0 ∈ H1/2, ẇ(0) = w1 ∈ H. (2-8b)

Such systems have been studied extensively; see for instance [Lasiecka and Triggiani 2000; Guo and Luo
2002; Anantharaman and Léautaud 2014; Ammari and Nicaise 2015; Ammari and Tucsnak 2001] and the
references therein. This class of systems in particular contains the wave equation with viscous damping
on a two-dimensional bounded and convex domain � ⊆ R2 with (necessarily Lipschitz) boundary ∂�,

wt t(ξ, t) − 1w(ξ, t) + b(ξ)2wt(ξ, t) = 0, t > 0,

where b ∈ L∞(�) is a nonnegative function and we impose Dirichlet boundary conditions. In this situation
we may choose H = U = L2(�), let L = −1 be the (negative) Laplacian on H with Dirichlet boundary
conditions, and define D ∈ L(U, H) by Du = bu for all u ∈ U. This partial differential equation will be
studied in detail in Section 6A.

In order to formulate the abstract system (2-8) as a first-order abstract Cauchy problem of the form (2-2),
we proceed as in [Tucsnak and Weiss 2014, Section 6]. In particular, we let x( · ) = (w( · ), ẇ( · )) and take
X to be the Hilbert space X = H1/2×H equipped with the inner product ⟨x, y⟩X =⟨x1, y1⟩H1/2 +⟨x2, y2⟩H

for x = (x1, x2), y = (y1, y2) ∈ X . The operators A : D(A) ⊆ X → X and B : U → X−1 in Section 2A
are defined as

A =

(
0 I

−L 0

)
and B =

(
0
D

)
,

with D(A) = H1 × H1/2 and X−1 = H × H−1/2. Then A is a skew-adjoint operator and thus it generates
a unitary group (T (t))t∈R on X . We may choose V = H1/2 × H1/2, which has the corresponding dual
space V ∗

= H1/2 × H−1/2. The dual pairing of V and V ∗ is given by

⟨x, y⟩V ∗,V = ⟨x1, y1⟩H1/2 + ⟨x2, y2⟩H−1/2,H1/2

for x = (x1, x2) ∈ V ∗, y = (y1, y2) ∈ V.
Condition (H1) is satisfied since Re⟨A−1x, x⟩V ∗,V = 0 for x ∈ V = VA, as is easily verified. In addition,

we have both B ∈ L(U, X−1) and B ∈ L(U, V ∗). For λ ∈ ρ(A) the resolvent of A has the form

(λ−A)−1
=

(
λ(λ2

+L)−1 (λ2
+L)−1

−L(λ2
+L)−1 λ(λ2

+L)−1

)
,

and an analogous formula holds for (λ− A−1)
−1. Therefore we in particular have Ran(A−1

−1 B) ⊆ V, and
thus condition (H2) in Assumption 2.1 is satisfied. By Lemma 2.2 the operator AB defined in (2-1)
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generates a contraction semigroup on X , as also shown in [Lasiecka and Triggiani 2000, Proposition 7.6.1]
and [Guo and Luo 2002, Theorem 1].

It is straightforward to see that B∗
= (0, D∗) ∈ L(V, U ), where D∗

∈ L(H1/2, U ) is the adjoint of
D ∈ L(U, H−1/2). Therefore the formula for (λ − A−1)

−1 implies that

B∗(λ − A−1)
−1 B = λD∗(λ2

+ L−1)
−1 D, λ ∈ C+.

Moreover, ∥D∗((1 + is)2
+ L−1)

−1 D∥ = ∥D∗((1 − is)2
+ L−1)

−1 D∥, s ∈ R. Hence if

s∥D∗((1 + is)2
+ L−1)

−1 D∥ ≤ µ0(s), s ∈ R+, (2-9)

for some µ0 : R+ → [r ′

0, ∞), r ′

0 > 0, then condition (2-7) holds for some even function µ : R → [r0, ∞),
r0 > 0, satisfying µ(s) ≲ µ0(|s|), s ∈ R. Conversely, property (2-7) implies the above estimate for
µ0 : R+ → [r0, ∞) defined by µ0(s) = µ(s), s ∈ R+. The estimate (2-9) has been shown to hold for
a bounded function µ0 for several PDE models having our second-order form (2-8); see for instance
[Ammari and Tucsnak 2001; Guo and Luo 2002; Lasiecka and Triggiani 2003]. On the other hand, as
shown in [Lasiecka and Triggiani 1981] and [Weiss 2003, Section 4], unbounded functions µ0 are needed
in some cases including wave equations with boundary damping. In the case where D ∈ L(U, H), we
have B ∈ L(U, X) and, in particular, (2-7) holds for a bounded function µ by Lemma 2.5.

2C. Resolvent estimates and nonuniform stability. Throughout the paper we are interested in finding
sufficient conditions for the spectrum of the operator AB defined in (2-1) to be contained in C− and in
obtaining a resolvent estimate of the form

∥(is − AB)−1
∥ ≤ N (s), s ∈ R, (2-10)

for an explicit function N : R → (0, ∞).
In order to pass from the resolvent estimate (2-10) to sharp rates of decay for the semigroup (TB(t))t≥0

we make use of the following abstract result from [Rozendaal et al. 2019, Theorem 3.2]; see [Borichev
and Tomilov 2010, Theorem 2.4] for the case where N is a polynomial. Recall that a measurable function
N : R+ → (0, ∞) is said to have positive increase if there exist constants α, s0 > 0 and cα ∈ (0, 1] such that

N (λs)
N (s)

≥ cαλα, λ ≥ 1, s ≥ s0. (2-11)

When N : R+ → (0, ∞) is nondecreasing but not necessarily strictly increasing we take N−1 to denote
the right-continuous right-inverse of N defined by N−1(t) = sup{s ≥ 0 : N (s) ≤ t} for t ≥ N (0).

Theorem 2.7 [Rozendaal et al. 2019, Theorem 3.2]. Let (T (t))t≥0 be a strongly continuous contraction
semigroup on a Hilbert space X , with generator A. If iR ⊆ ρ(A) and if ∥(is − A)−1

∥ ≤ N (|s|) for all
s ∈ R, where N : R+ → (0, ∞) is a continuous nondecreasing function of positive increase, then

∥T (t)A−1
∥ = O

(
1

N−1(t)

)
, t → ∞. (2-12)

The class of functions satisfying (2-11) contains all regularly varying functions N : R+ → (0, ∞)

which have positive index [Rozendaal et al. 2019, Section 2], and in particular it contains any measurable
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function N : R+ → (0, ∞) defined for all sufficiently large values of s ≥ 0 by N (s) = sα log(s)β , where
α > 0 and β ∈ R. As discussed in [Borichev and Tomilov 2010; Rozendaal et al. 2019; Debruyne and
Seifert 2019], Theorem 2.7 is optimal in several senses, and for a large class of semigroups the condition
of positive increase is even a necessary condition for (2-12) to hold.

Remark 2.8. If N (s) = C(1 + |s|)α in Theorem 2.7 for some constants C, α > 0, then (2-12) becomes
∥T (t)A−1

∥ = O(t1/α) as t → ∞. It is shown in [Borichev and Tomilov 2010, Theorem 2.4] that for
individual orbits of (T (t))t≥0 one obtains the even better decay rate ∥T (t)x∥ = o(t−1/α) as t → ∞ for
all x ∈ D(A).

In subsequent sections we shall repeatedly make use of the following lemma when proving resolvent
estimates; see, e.g., [Arendt et al. 2011, Proposition 4.3.6] for a proof of a more general result.

Lemma 2.9. Let A be the generator of a contraction semigroup on a Hilbert space X and let s ∈ R. If
there exists cs > 0 such that

∥x∥ ≤ cs∥(is − A)x∥, x ∈ D(A), (2-13)

then is ∈ ρ(A) and ∥(is − A)−1
∥ ≤ cs .

We shall also make use of the following lemma on adjoints in the case where A is a skew-adjoint
operator. Here the composition (λ − AB)−1 B in part (b) is defined as in Remark 2.3.

Lemma 2.10. Let A and B satisfy Assumption 2.1 and assume that A is skew-adjoint.

(a) We have
((λ − A−1)

−1 B)∗ = B∗(λ̄ + A)−1, λ ∈ ρ(A).

(b) If Re⟨A−1x, x⟩V ∗,V = 0 for all x ∈ VA, then the adjoint A∗

B of AB defined in (2-1) is given by

A∗

B x = −A−1x − B B∗x, x ∈ D(A∗

B), (2-14a)

D(A∗

B) = {x ∈ V : A−1x + B B∗x ∈ X}. (2-14b)

Moreover, ((λ − AB)−1 B)∗ = B∗(λ̄ − A∗

B)−1 for λ ∈ ρ(AB) ∩ C+.

Proof. To prove part (a), let λ ∈ ρ(A), x ∈ X and u ∈ U. By density of X in X−1, we may find a sequence
(yk)k∈N ⊆ X such that ∥yk − Bu∥X−1 → 0 as k → ∞. Since (λ̄ + A−1)

−1
∈ L(X−1, X), we also have

∥(λ̄ + A−1)
−1 Bu − (λ̄ + A)−1 yk∥X → 0, k → ∞.

Hence the definition of B∗ and skew-adjointness of A imply that

⟨u, B∗(λ − A)−1x⟩U = ⟨Bu, (λ− A)−1x⟩V ∗,V = ⟨Bu, (λ− A)−1x⟩X−1,X1

= lim
k→∞

⟨yk, (λ− A)−1x⟩X−1,X1 = lim
k→∞

⟨yk, (λ− A)−1x⟩X

= lim
k→∞

⟨(λ̄ + A)−1 yk, x⟩X = ⟨(λ̄ + A−1)
−1 Bu, x⟩X .

Since x and u were arbitrary, we have (B∗(λ − A)−1)∗ = (λ̄ + A−1)
−1 B.
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To prove (b), we define

ÃB x = −A−1x − B B∗x, x ∈ D( ÃB),

D( ÃB) = {x ∈ V : A−1x + B B∗x ∈ X}.

Since −A and B satisfy Assumption 2.1 (with the same choice of V ), ÃB generates a contraction
semigroup on X by Lemma 2.2. The assumption that Re⟨A−1x, x⟩V ∗,V = 0 for x ∈ VA and a simple
polarisation argument imply that ⟨A−1x, y⟩V ∗,V = −⟨x, A−1 y⟩V,V ∗ for x, y ∈ VA, where we define
⟨z1, z2⟩V,V ∗ := ⟨z2, z1⟩V ∗,V for z1 ∈ V, z2 ∈ V ∗. Hence if x ∈ D(AB) ⊆ VA and y ∈ D( ÃB) ⊆ VA, then

⟨AB x, y⟩X = ⟨A−1x − B B∗x, y⟩V ∗,V = ⟨x, (−A−1 − B B∗)y⟩V,V ∗ = ⟨x, ÃB y⟩X .

Thus A∗

B is an extension of ÃB , and since ρ(A∗

B) ∩ ρ( ÃB) ̸= ∅ we further see that A∗

B = ÃB .
Now let λ ∈ ρ(AB) ∩ C+, x ∈ X and u ∈ U. We have (λ̄ − A∗

B)−1x ∈ D(A∗

B) ⊆ VA. Moreover, by
Remark 2.3 we have (λ − AB)−1 Bu ∈ VA and

⟨u, B∗(λ̄ − A∗

B)−1x⟩U = ⟨Bu, (λ̄ − A∗

B)−1x⟩V ∗,V

= ⟨(λ − A−1 + B B∗)(λ − AB)−1 Bu, (λ̄ − A∗

B)−1x⟩V ∗,V

= ⟨(λ − AB)−1 Bu, (λ̄ + A−1 + B B∗)(λ̄ − A∗

B)−1x⟩V,V ∗

= ⟨(λ − AB)−1 Bu, x⟩X .

Since λ ∈ ρ(AB) ∩ C+, x ∈ X and u ∈ U were arbitrary, the proof is complete. □

The following proposition presents some general consequences of resolvent estimates of the form (2-10).
In particular, part (c) concerns the effect of scaling the operator B on the resulting resolvent estimate. Once
again, the composition (is− AB)−1 B for s ∈ R is defined as in Remark 2.3. As noted in Section 2B, the ad-
ditional assumptions in (b) are in particular satisfied for the class of second-order systems considered there.

Lemma 2.11. Let A and B satisfy Assumption 2.1 and let AB be as defined in (2-1). If iR ⊆ ρ(AB) and
if N : R → (0, ∞) is such that (2-10) holds, then the following are true:

(a) For s ∈ R, we have
∥B∗(is − AB)−1

∥ ≤ N (s)1/2,

∥(is − AB)−1 B∥ ≲ 1 + N (s),

∥B∗(is − AB)−1 B∥ ≤ 1.
(b) If either B ∈ L(U, X), or

A∗
= −A and Re⟨A−1x, x⟩V ∗,V = 0, x ∈ VA,

then ∥(is − AB)−1 B∥ ≤ N (s)1/2 for all s ∈ R.

(c) Let κ > 0 and consider the operator AB,κ : D(AB,κ) ⊆ X → X defined by

AB,κ x = A−1x − κ2 B B∗x, x ∈ D(AB,κ),

D(AB,κ) = {x ∈ V : A−1x − κ2 B B∗x ∈ X}.

Then iR ⊆ ρ(AB,κ) and ∥(is − AB,κ)
−1

∥ ≲ 1 + N (s)2 for s ∈ R. If the assumptions in part (b) hold,
then ∥(is − AB,κ)

−1
∥ ≲ N (s) for s ∈ R.
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Proof. To prove the first estimate in (a), fix s ∈ R and y ∈ X , and let x = (is − AB)−1 y ∈ D(AB). Then
∥x∥ ≤ N (s)∥y∥ and (is − AB)x = y, and hence, by (2-3) in Lemma 2.2,

∥B∗x∥
2
≤ Re⟨y, x⟩ ≤ ∥y∥∥x∥ ≤ N (s)∥y∥

2.

Since s ∈ R and y ∈ X were arbitrary, the first estimate in part (a) follows.
To prove the second and third estimates in (a), we begin by deriving a preliminary estimate. Let λ ∈ C+

and u ∈ U. If we define the composition (λ− AB)−1 B as in Remark 2.3 and let x = (λ− AB)−1 Bu ∈ X ,
then Remark 2.3 implies that x ∈ V and A−1x + B(u − B∗x) = λx ∈ X . Estimate (2-5) in the proof of
Lemma 2.2 shows that

(Re λ)∥x∥
2
= Re⟨A−1x + B(u − B∗x), x⟩X ≤ Re⟨B∗x, u − B∗x⟩U

= Re⟨B∗x, u⟩U − ∥B∗x∥
2
U .

In particular, ∥B∗(λ− AB)−1 Bu∥ = ∥B∗x∥ ≤ ∥u∥ for all λ ∈ C+, which implies the third estimate in (a).
On the other hand, for λ = 1 + is with s ∈ R, the same estimate shows that

∥(1 + is − AB)−1 Bu∥
2
≤ Re⟨B∗x, u⟩U − ∥B∗x∥

2
U

≤ Re⟨B∗(1 + is − AB)−1 Bu, u⟩U ≤ 1.

This inequality together with the property that (see Remark 2.3)

(is − AB)−1 Bu = (I + (is − AB)−1)(1 + is − AB)−1 Bu, s ∈ R,

finally implies the second estimate in (a).
In order to prove (b), we first note that under the additional assumptions it follows either from

boundedness of B or from Lemma 2.10(b) that the adjoint A∗

B is given by (2-14) and that ((is−AB)−1 B)∗ =

B∗(−is− A∗

B)−1, s ∈ R. Proceeding as in the case of the first estimate in part (a), we may use the structure
of A∗

B to show that ∥B∗(−is − A∗

B)−1
∥

2
≤ ∥(−is − A∗

B)−1
∥ for s ∈ R. Hence for all s ∈ R we have

∥(is − AB)−1 B∥ = ∥B∗(−is − A∗

B)−1
∥ ≤ ∥(is − AB)−1

∥
1/2

≤ N (s)1/2.

To show (c), let κ >0 and s ∈R be fixed. Moreover, let x ∈ D(AB,κ) and y = (is−AB,κ)x ∈ X . Estimate
(2-3) in Lemma 2.2 (applied to the operators A and κ B) implies that ∥B∗x∥

2
≤ κ−2

∥x∥∥y∥. We have

y = (is − A−1 + κ2 B B∗)x = (is − A−1 + B B∗)x + (κ2
− 1)B B∗x,

and since x ∈ V and (is − A−1 + B B∗)x ∈ X + Ran(B), Remark 2.3 gives

x = (is − AB)−1 y + (1 − κ2)(is − AB)−1 B B∗x .

Using Young’s inequality we obtain

∥x∥
2
≤ 2N (s)2

∥y∥
2
+ 2(1 − κ2)2

∥(is − AB)−1 B∥
2
∥B∗x∥

2

≤ 2N (s)2
∥y∥

2
+ 2

(1 − κ2)2

κ2 ∥(is − AB)−1 B∥
2
∥x∥∥y∥

≤ 2N (s)2
∥y∥

2
+

1
2
∥x∥

2
+

2(1 − κ2)4

κ4 ∥(is − AB)−1 B∥
4
∥y∥

2.
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Since AB,κ generates a contraction semigroup by Lemma 2.2, the claims follow from parts (a) and (b)
together with Lemma 2.9. □

The estimate ∥B∗(is−AB)−1 B∥≤1, s ∈R, in part (a) was proved in [Oostveen 2000, Lemma 2.2.6, P6]
in the case where B ∈ L(U, X), and a similar result for general B in the case of second-order systems
was presented in [Weiss and Tucsnak 2003, Theorem 1.3].

3. Frequency domain criteria for resolvent bounds and nonuniform stability

3A. Criteria for first-order problems. In this section we consider the semigroup (TB(t))t≥0 generated
by the operator AB defined in (2-1), and present sufficient conditions for nonuniform stability of this
semigroup in terms of observability properties of the pair (B∗, A). Theorem 2.7 allows us to focus on
estimating the resolvent of AB on the imaginary axis, and shows that whenever ∥(is − AB)−1

∥ ≤ N (|s|),
s ∈ R, for some continuous nondecreasing N : R+ → (0, ∞) with positive increase, the classical solutions
x( · ) = TB( · )x0, x0 ∈ D(AB), of (2-2) satisfy

∥TB(t)x0∥ ≤
C

N−1(t)
∥AB x0∥, t ≥ t0, (3-1)

for some constants C, t0 > 0.
Our first main result is based on the following Hautus-type condition with variable parameters. The

same condition with bounded functions M and m was used in [Miller 2012] to study observability
properties of the pair (B∗, A).

Definition 3.1. The pair (B∗, A) is said to satisfy the nonuniform Hautus test if there exist M , m :

R → [r0, ∞), r0 > 0, such that

∥x∥
2
X ≤ M(s)∥(is − A)x∥

2
X + m(s)∥B∗x∥

2
U , x ∈ D(A), s ∈ R. (3-2)

The following theorem presents a norm bound for the resolvent of AB on iR when the pair (B∗, A)

satisfies the nonuniform Hautus test. General properties of the function µ in condition (3-3) were discussed
in Section 2A and in Lemma 2.5.

Theorem 3.2. Let A and B satisfy Assumption 2.1. Assume further that M, m, µ : R → [r0, ∞), r0 > 0,
are such that the pair (B∗, A) satisfies the nonuniform Hautus test for the functions M and m, and

∥B∗(1 + is − A−1)
−1 B∥ ≤ µ(s), s ∈ R. (3-3)

Then the operator AB defined in (2-1) satisfies iR ⊆ ρ(AB) and

∥(is − AB)−1
∥ ≲ M(s)µ(s) + m(s)µ(s)2, s ∈ R.

Conversely, if N : R → (0, ∞) is such that ∥(is − AB)−1
∥ ≤ N (s) for all s ∈ R, then (3-2) holds

for M( · ) = 2N ( · )2 and a function m such that m(s) ≲ 1 + N (s)2 for s ∈ R. If , in addition, either
B ∈ L(U, X), or A∗

= −A and Re⟨A−1x, x⟩V ∗,V = 0 for all x ∈ VA, then one may choose m = 2N.
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Proof. Since AB generates a contraction semigroup on X by Lemma 2.2, Lemma 2.9 shows that the
inclusion iR ⊆ ρ(AB) and the resolvent estimate will follow from a suitable lower bound for is − AB ,
s ∈ R. To this end, let s ∈ R and x ∈ D(AB) be fixed and let y = (is− AB)x . If we let R = (1+is− A−1)

−1

and define x1 = x + RB B∗x , then (is − A−1)x1 = y − RB B∗x ∈ X and hence x1 ∈ D(A). Applying (3-2)
and using the identity B∗x1 = (I + B∗ RB)B∗x shows that

∥x1∥
2
≤ M(s)∥(is − A)x1∥

2
+ m(s)∥B∗x1∥

2

≤ M(s)(∥y∥ +∥RB∥∥B∗x∥)2
+ m(s)(1 + ∥B∗ RB∥)2

∥B∗x∥
2

≲ M(s)∥y∥
2
+

(
M(s)∥RB∥

2
+ m(s)(1 + ∥B∗ RB∥

2)
)
∥B∗x∥

2.

Since ∥B∗x∥
2
≤Re⟨y, x⟩≤∥y∥∥x∥ by Lemma 2.2, we may further estimate the norm of x=x1−RB B∗x by

∥x∥
2 ≲ ∥x1∥

2
+ ∥RB∥

2
∥B∗x∥

2

≲ M(s)∥y∥
2
+

(
M(s)∥RB∥

2
+ m(s)(1 + ∥B∗ RB∥

2)
)
∥x∥∥y∥

≤ M(s)∥y∥
2
+ ε∥x∥

2
+

1
4ε

(
M(s)∥RB∥

2
+ m(s)(1 + ∥B∗ RB∥

2)
)2

∥y∥
2,

where ε > 0. We have ∥B∗ RB∥ ≤ µ(s) by assumption, and Lemma 2.2 further implies that ∥RB∥
2
≤

∥B∗ RB∥ ≤ µ(s). Letting ε be sufficiently small we obtain

∥x∥
2 ≲ (M(s) + M(s)2

∥RB∥
4
+ m(s)2(1 + ∥B∗ RB∥

2)2)∥y∥
2

≲ (M(s)2µ(s)2
+ m(s)2µ(s)4)∥y∥

2

≲ (M(s)µ(s) + m(s)µ(s)2)2
∥(is − AB)x∥

2.

Since x ∈ D(AB) was arbitrary, Lemma 2.9 implies that is ∈ ρ(AB) and ∥(is − AB)−1
∥ ≲ M(s)µ(s) +

m(s)µ(s)2.
To prove the other claims, assume that ∥(is − AB)−1

∥ ≤ N (s) and let s ∈ R and x ∈ D(A) be arbitrary.
Using the properties in Remark 2.3, the claims follow from the estimate

∥x∥
2
= ∥(is − AB)−1(is − A)x + (is − AB)−1 B B∗x∥

2

≤ 2∥(is − AB)−1
∥

2
∥(is − A)x∥

2
+ 2∥(is − AB)−1 B∥

2
∥B∗x∥

2

and Lemma 2.11. □

Remark 3.3. In the case where µ is a bounded function the resolvent estimate in Theorem 3.2 takes the
form ∥(is − AB)−1

∥≲ M(s)+m(s), s ∈ R. As shown in Lemma 2.5, if A and B satisfy Assumption 2.1,
then condition (3-3) is always satisfied for µ(s) = c(1 + s2), s ∈ R, with some c > 0. However, in the
absence of a more precise bound for ∥B∗(1 + is − A−1)

−1 B∥ the proof of Theorem 3.2 can be modified
to derive an alternative resolvent growth bound. Indeed, if the operator R in the proof is redefined as
R = (I − A−1)

−1 and if x1 is defined as before, then we have (is − A−1)x1 = y + (is − 1)RB B∗x , and
estimates analogous to those in the original proof show that iR ⊆ ρ(AB) and

∥(is − AB)−1
∥ ≲ M(s)(1 + s2) + m(s), s ∈ R.
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This estimate is in general sharper than what is obtained from Theorem 3.2 with a quadratic upper bound
for µ. Finally, for general µ the estimates in the proof of Theorem 3.2 also establish the more precise bound

∥(is − AB)−1
∥ ≲ M(s)1/2

+ M(s)∥(1 + is − A−1)
−1 B∥

2
+ m(s)µ(s)2

for s ∈ R. This improves on the original estimate if ∥(1 + is − A−1)
−1 B∥ → 0 as |s| → ∞. The latter

holds, for instance, if B ∈ L(U, X) is compact.

Recall that the pair (B∗, A) is said to be exactly observable if∫ τ

0
∥B∗T (t)x∥

2 dt ≥ cτ∥x∥
2, x ∈ D(A),

for some τ > 0 and cτ > 0 [Tucsnak and Weiss 2009, Definition 6.1.1]. If (3-3) is satisfied for a bounded
function µ, then Lemma 2.6 and [Miller 2012, Theorem 2.4] imply that the nonuniform Hautus test is
satisfied for some bounded functions M and m if and only if the pair (B∗, A) is exactly observable. In
this situation Theorem 3.2 and the Gearhart–Prüss theorem imply that (TB(t))t≥0 is exponentially stable,
as in [Slemrod 1974; Curtain and Weiss 2006].

Our next resolvent estimate for a skew-adjoint operator A is based on lower bounds for B∗ restricted
to so-called wavepackets of A. Similar conditions have previously been used to study exact observability
of the pair (B∗, A), for example in [Chen et al. 1991; Ramdani et al. 2005; Miller 2012].

Definition 3.4. Let A be a self-adjoint operator on X . For s ∈ R and δ(s) > 0 we define WPs,δ(s)(A)

to be the spectral subspace of A associated with the interval (s − δ(s), s + δ(s)) ⊆ R. The elements
x ∈ WPs,δ(s)(A) are called (s, δ(s))-wavepackets of A. If A is skew-adjoint, then we define WPs,δ(s)(A)

to be WPs,δ(s)(−i A).

The following proposition presents a sufficient condition for nonuniform stability of (TB(t))t≥0 given
in terms of the action of B∗ on wavepackets of A. In the case where µ is a bounded function and the pair
(B∗, A) is exactly observable, it is possible by Lemma 2.6 and [Miller 2012, Corollary 2.17] to choose
δ(s) ≡ δ0 > 0 and γ (s) ≡ γ0 > 0, and our result then implies exponential stability of (TB(t))t≥0.

Theorem 3.5. Let A and B satisfy Assumption 2.1 and suppose that A is skew-adjoint. Suppose further
that µ : R → [r0, ∞), r0 > 0, is such that

∥B∗(1 + is − A−1)
−1 B∥ ≤ µ(s), s ∈ R.

If there exist bounded functions γ, δ : R → (0, ∞) such that

∥B∗x∥U ≥ γ (s)∥x∥X , x ∈ WPs,δ(s)(A), s ∈ R, (3-4)

then iR ⊆ ρ(AB) and

∥(is − AB)−1
∥ ≲

µ(s)2

γ (s)2δ(s)2 , s ∈ R.

Proof. By Lemma 2.2, AB generates a contraction semigroup on X . Thus by Lemma 2.9 the claims will
follow from suitable lower bounds for the operators is − AB , s ∈ R. Let s ∈ R and x ∈ D(AB) be fixed
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and let y = (is − AB)x . Further let P0 ∈ L(X) be the orthogonal projection onto WPs,δ(s)(A), and let
P∞ = I − P0. Define

x0 = P0x, x∞ = P∞x, y0 = P0 y, and y∞ = P∞y.

Since x0 ∈ WPs,δ(s)(A) and B∗x0 = B∗x − B∗x∞, (3-4) implies that

∥x∥
2
= ∥x0∥

2
+ ∥x∞∥

2 ≲ γ (s)−2(∥B∗x∥
2
+ ∥B∗x∞∥

2) + ∥x∞∥
2. (3-5)

We now estimate ∥x∞∥ and ∥B∗x∞∥ in turn. We begin by introducing the operator R = (1+ is − A−1)
−1,

noting that ∥R∥ ≤ 1 since A generates a contraction semigroup. Applying P∞ R to both sides of the
identity y = (is − AB)x we obtain

(is − A)Rx∞ = Ry∞ − P∞ RB B∗x, (3-6)

and hence

x∞ = Rx∞ + Ry∞ − P∞ RB B∗x . (3-7)

Now since R and P∞ commute, we have Rx∞ ∈ Ran(P∞), and the spectral theorem for self-adjoint
operators implies that ∥Rx∞∥ ≤ δ(s)−1

∥(is − A)Rx∞∥. Thus

∥x∞∥ ≲ δ(s)−1
∥(is − A)Rx∞∥ +∥y∥ +∥RB∥∥B∗x∥.

By (3-6) we have

∥(is − A)Rx∞∥ ≤ ∥Ry∞∥ +∥P∞ RB B∗x∥ ≤ ∥y∥ +∥RB∥∥B∗x∥,

and therefore

∥x∞∥ ≲ δ(s)−1(∥y∥ +∥RB∥∥B∗x∥). (3-8)

In order to estimate ∥B∗x∞∥ we begin by observing that, by (3-7),

∥B∗x∞∥ ≤ ∥B∗ R∥∥x∞∥ +∥B∗ R∥∥y∥ +∥B∗(I − P0)RB∥∥B∗x∥. (3-9)

Since A is skew-adjoint, we have B∗(1 + is − A)−1
= ((1 − is + A−1)

−1 B)∗ by Lemma 2.10. Hence the
resolvent identity gives

∥B∗ R∥ = ∥(1 − is + A−1)
−1 B∥ = ∥RB − 2(1 − is + A)−1 RB∥ ≤ 3∥RB∥,

and since ∥(1 + is − A)P0∥ ≲ 1 + δ(s) ≲ 1 we see using (2-4) in Lemma 2.2 that

∥B∗(I − P0)RB∥ ≤ ∥B∗ RB∥ +∥B∗ R(1 + is − A)P0 RB∥

≲ ∥B∗ RB∥ +∥RB∥
2 ≲ ∥B∗ RB∥.

Using these estimates and (3-8), we obtain from (3-9) that

∥B∗x∞∥ ≲ ∥RB∥∥x∞∥ +∥RB∥∥y∥ +∥B∗ RB∥∥B∗x∥

≲ δ(s)−1
∥RB∥∥y∥ + (δ(s)−1

∥RB∥
2
+ ∥B∗ RB∥)∥B∗x∥.



1106 RALPH CHILL, LASSI PAUNONEN, DAVID SEIFERT, REINHARD STAHN AND YURI TOMILOV

Inserting our bounds for ∥x∞∥ and ∥B∗x∞∥ into (3-5), and using the estimate ∥B∗x∥
2
≤ ∥x∥∥y∥ implied

by (2-3) in Lemma 2.2, we deduce after a straightforward calculation that

∥x∥
2 ≲ γ (s)−2(∥B∗x∥

2
+∥B∗x∞∥

2)+∥x∞∥
2

≲ δ(s)−2(1+γ (s)−2
∥RB∥

2)∥y∥
2
+

(
γ (s)−2(1+δ(s)−2

∥RB∥
4
+∥B∗RB∥

2)+δ(s)−2
∥RB∥

2)
∥x∥∥y∥.

Since ∥RB∥
2
≤ ∥B∗ RB∥ ≤ µ(s) by Lemma 2.2 and our assumption we obtain, after dropping dominated

terms, the estimate

∥x∥
2 ≲ γ (s)−2δ(s)−2µ(s)∥y∥

2
+ γ (s)−2δ(s)−2µ(s)2

∥x∥∥y∥.

An application of Young’s inequality now yields

∥x∥
2 ≲ γ (s)−4δ(s)−4µ(s)4

∥y∥
2,

and the claim follows from Lemma 2.9. □

Remark 3.6. In the situation where µ is a bounded function, Theorem 3.5 can alternatively be proved
by combining Theorem 3.2, Lemma 2.6 and results in [Miller 2012]. Indeed, in this case Lemma 2.6
implies that B∗ is admissible and by [loc. cit., Proposition 2.16] the pair (B∗, A) satisfies the nonuniform
Hautus test (3-2) for some functions M and m such that M(s) ≲ γ (s)−2δ(s)−2 and m(s) ≲ γ (s)−2 for
s ∈ R. The claim of Theorem 3.5 then follows from Theorem 3.2. Similarly to Remark 3.3, the end of the
proof of Theorem 3.5 can be modified to establish the potentially sharper resolvent estimate

∥(is − AB)−1
∥ ≲ ν(s) + ν(s)2

∥(1 + is − A−1)
−1 B∥

2
+

µ(s)2

γ (s)2 , s ∈ R,

where ν(s) = δ(s)−1(1 + γ (s)−1
∥(1 + is − A−1)

−1 B∥).

Remark 3.7. It is easy to see from the proofs of Theorems 3.2 and 3.5 that if the assumptions are satisfied
only for |s| ≥ s0 for some s0 > 0, then iR \ (−is0, is0) ⊆ ρ(AB) and the resolvent estimate will hold for
|s| ≥ s0. The same comment applies to the results in the remainder of this paper. Since the nonuniform
decay rate is determined only by the resolvent norms for large values of |s|, this property is useful in
situations where iR ⊆ ρ(AB) is already known or can be shown using other methods.

3B. Criteria for second-order problems. In this section we focus on studying the resolvent growth for
the operator AB defined in (2-1) in the case where the operators

A =

(
0 I

−L 0

)
and B =

(
0
D

)
on X and U, respectively, satisfy the assumptions in Section 2B. In particular, L : H1 ⊆ H → H is a
positive self-adjoint and boundedly invertible operator and D ∈ L(U, H−1/2). We shall reformulate the
conditions of Theorems 3.2 and 3.5 in terms of the operators L and D. In addition, we shall present
further sufficient conditions for nonuniform stability in terms of generalised observability properties of
the “Schrödinger group” generated by i L .
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In the proofs of our results we shall employ a change of variables which transforms A into a block-
diagonal operator Adiag; see for instance the proof of [Miller 2012, Theorem 3.8]. Recalling that
V = H1/2 × H1/2, we define a unitary operator Q ∈ L(V, X) by

Q =
1

√
2

(
I I

i L1/2
−i L1/2

)
, with Q−1

=
1

√
2

(
I −i L−1/2

I i L−1/2

)
. (3-10)

We then have A = Q Adiag Q−1, where

Adiag =

(
i L1/2 0

0 −i L1/2

)
: D(Adiag) ⊆ V → V,

with domain D(Adiag) = H1 × H1. The following lemma describes the wavepackets of A in terms of the
wavepackets of L1/2.

Lemma 3.8. Let L and A be as in Section 2B and let δ : R → (0, ∞) be such that sups∈R δ(s) ≤ ∥L−1/2
∥.

Then for every s ∈ R we have

WPs,δ(s)(A) =

{(
w

i sign(s)L1/2w

)
: w ∈ WP|s|,δ(s)(L1/2)

}
. (3-11)

Proof. Let s > 0 be fixed. We have WPs,δ(s)(A) = Ran(χIs,δ(s)(−i A)), where Is,δ(s) = (s − δ(s), s + δ(s)).
Using the decomposition A = Q Adiag Q−1 and the upper bound for δ we see that

χIs,δs
(−i A) = Q

(
χIs,δ(s)(L1/2) 0

0 0

)
Q−1

=
1

√
2

(
χIs,δ(s)(L1/2) 0

i L1/2χIs,δ(s)(L1/2) 0

)
Q−1.

The functional calculus for the positive and boundedly invertible operator L implies that

χIs,δ(s)(L1/2
)H1/2 = Ran(χIs,δ(s)(L1/2

)),

and hence (3-11) follows from surjectivity of Q−1. The proof in the case s < 0 is analogous. □

The next result is a counterpart of Theorem 3.5 for damped second-order systems. We refer to [Russell
1975, Section 3] for a related result on polynomial stability of second-order systems in the case where L
has discrete spectrum and D ∈ L(U, H).

Theorem 3.9. Let L , D, A and B be as in Section 2B and assume µ0 : R+ → [r0, ∞), r0 > 0, is such that

s∥D∗((1 + is)2
+ L−1)

−1 D∥ ≤ µ0(s), s ∈ R+.

If there exist bounded functions γ0, δ0 : R+ → (0, ∞) such that

∥D∗w∥U ≥ γ0(s)∥w∥H , w ∈ WPs,δ0(s)(L1/2), s ≥ 0,

then iR ⊆ ρ(AB) and

∥(is − AB)−1
∥ ≲

µ0(|s|)2

γ0(|s|)2δ0(|s|)2 , s ∈ R.
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Proof. If we let s0 = min{∥L−1/2
∥, 1} then σ(L1/2

) ⊆ [s0, ∞). Define δ : R → (0, ∞) by

δ(s) =
s0δ0(|s|)

2 sups≥0 δ0(s)
, s ∈ R. (3-12)

Fix s ∈ R and let x ∈ WPs,δ(s)(A) be arbitrary. Lemma 3.8 implies that x = (w, i sign(s)L1/2w) for some
w ∈ WP|s|,δ(s)(L1/2). Noting that L1/2

w ∈ WP|s|,δ(s)(L1/2), our assumptions imply that

∥B∗x∥U = ∥D∗L1/2w∥U ≥ γ0(|s|)∥L1/2w∥H =
γ0(|s|)

√
2

∥x∥X .

Thus the conditions of Theorem 3.5 hold for δ : R+ → (0, ∞) defined in (3-12) and for γ : R+ → (0, ∞)

defined by γ (s) = γ0(|s|)/
√

2 for s ∈ R. Since (2-9) holds by assumption, the arguments in Section 2B
show that ∥B∗(1 + is − A−1)

−1 B∥ ≲ µ0(|s|), s ∈ R. Thus the claims follow from Theorem 3.5. □

The recent literature contains several studies of nonuniform stability for second-order systems based
on observability properties of the Schrödinger group associated with (D∗, i L) when D ∈ L(U, H) is
a bounded operator. In particular, the Hautus-type condition (3-13) in the following proposition was
used as a starting point for deriving resolvent estimates for AB in [Anantharaman and Léautaud 2014,
Theorem 2.3] in the case of constant parameters M0 and m0, and with variable parameters in [Joly and
Laurent 2020, Appendix B]; see also [Laurent and Léautaud 2021]. In both cases the results were used to
prove nonuniform stability of wave equations with viscous damping. The following result generalises
the results on resolvent growth in [Joly and Laurent 2020, Appendix B] to operators L with possibly
noncompact resolvent and operators D ∈ L(U, H−1/2).

Proposition 3.10. Let L , D, A and B be as in Section 2B. Moreover, let M0 : R+ → (0, ∞) and
m0 : R+ → [r0, ∞), r0 > 0, be such that

∥w∥
2
H ≤ M0(s)∥(s2

− L)w∥
2
H + m0(s)∥D∗w∥

2
U , w ∈ H1, s ≥ 0, (3-13)

and define η := infs≥0 M0(s)(1+s)2 > 0. Then the conditions of Theorem 3.9 are satisfied for the functions
γ0, δ0 : R+ → (0, ∞) defined by

δ0(s) =
min

{√
η, 1

2

}
√

2M0(s)(1 + s)
and γ0(s) =

1
√

2m0(s)
(3-14)

for s ≥ 0. If , in addition, µ0 : R+ → [r0, ∞), r0 > 0, is such that

s∥D∗((1 + is)2
+ L−1)

−1 D∥ ≤ µ0(s), s ∈ R+, (3-15)

then iR ⊆ ρ(AB) and

∥(is − AB)−1
∥ ≲ (1 + s2)M0(|s|)m0(|s|)µ0(|s|)2, s ∈ R.

Proof. Let s ≥ 0. The function δ0 in (3-14) is bounded and for every r ∈ (s − δ0(s), s + δ0(s)) we have

|s2
− r2

| = |s − r ||s + r | ≤
min

{√
η, 1

2

}
(2s + δ0(s))

√
M0(s)(1 + s)

≤
1

√
2M0(s)

.
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If w ∈ WPs,δ0(s)(L1/2), this estimate and the functional calculus for L imply that ∥(s2
− L)w∥

2
≤

(2M0(s))−1
∥w∥

2. Hence (3-13) yields

∥D∗w∥
2
≥

1
2m0(s)

∥w∥
2.

Since s ≥ 0 and the wavepacket w were arbitrary, the conditions of Theorem 3.9 are satisfied for the
functions δ0 and γ0 defined by (3-14), and the remaining claims follow from Theorem 3.9. □

Our result shows in particular that if (3-13) holds for constant functions M0 and m0 and if (3-15) holds
for a bounded function µ0, then ∥(is − AB)−1

∥≲ 1+s2 for s ∈ R. The same result was previously proved
for D ∈ L(U, H) in [Anantharaman and Léautaud 2014, Theorem 2.3], and we shall discuss this result
further in the context of damped waves in Section 6A below. A result closely related to Proposition 3.10
and, in particular, allowing nonconstant functions M0 and m0 was proved in [Joly and Laurent 2020,
Proposition B.3], once again in the simpler setting where D ∈ L(U, H); see also [Laurent and Léautaud
2021]. Proposition 3.10 not only generalises and extends these earlier results, it moreover allows us to see
that observability conditions of the type considered in (3-13) and in [Joly and Laurent 2020, Appendix B]
serve as sufficient conditions for the wavepacket condition in Theorem 3.5. Finally, in the case where µ0

is a bounded function, Lemma 2.6 and [Miller 2012, Proposition 2.16] show that the same conditions
further imply the nonuniform Hautus test in Definition 3.1 for the associated first-order equation.

We conclude this section by presenting an equivalent characterisation for the nonuniform Hautus test
of pairs (B∗, A) stemming from second-order systems.

Proposition 3.11. Let L , D, A and B be as in Section 2B. If M0, m0 : R+ →[r0, ∞), r0 > 0, are such that

∥w∥
2
H ≤ M0(s)∥(s − L1/2)w∥

2
H + m0(s)∥D∗w∥

2
U (3-16)

for all w ∈ H1/2 and s ≥ 0, then (B∗, A) satisfies the nonuniform Hautus test for some function M such that
M(s)≲ M0(|s|)+m0(|s|) and for m given by m(s) = 4m0(|s|), s ∈ R. If , in addition, µ0 : R+ → [r0, ∞),
r0 > 0, is such that

s∥D∗((1 + is)2
+ L−1)

−1 D∥ ≤ µ0(s), s ∈ R+,

then iR ⊆ ρ(AB) and

∥(is − AB)−1
∥ ≲ M0(|s|)µ0(|s|) + m0(|s|)µ0(|s|)2, s ∈ R.

Conversely, if (B∗, A) satisfies the nonuniform Hautus test for some M, m : R → [r0, ∞), r0 > 0,
then (3-16) holds for M0 and m0 defined by M0(s) = M(s) and m0(s) = m(s)/2 for s ≥ 0.

Proof. Since L1/2 is boundedly invertible by definition, similarly as in [Miller 2012, Theorem 3.8] the
decomposition A = Q Adiag Q−1 with Q as in (3-10) implies that (3-2) holds if and only if

∥y1∥
2
H + ∥y2∥

2
H ≤ M(s)

(
∥(s − L1/2)y1∥

2
H + ∥(s + L1/2)y2∥

2
H
)
+

m(s)
2

∥D∗(y1 − y2)∥
2
U

for all y1, y2 ∈ H1/2 and s ∈ R. Thus if (3-2) holds, then choosing y2 = 0 and s ≥ 0 in the above inequality
implies the last claim of the proposition.
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To prove the first claim, let s ≥ 0 and y1, y2 ∈ H1/2 be arbitrary. Our assumptions imply that
L1/2 is boundedly invertible and D∗L−1/2

∈ L(H, U ). Thus the estimates ∥L1/2
(s + L1/2

)−1
∥ ≤ 1,

∥(s + L1/2
)−1

∥ ≤ ∥L−1/2
∥

−1 and (3-16) imply that

∥y1∥
2
H+∥y2∥

2
H

≤ M0(s)∥(s−L1/2)y1∥
2
H+m0(s)∥D∗y1∥

2
U +∥y2∥

2
H

≤ M0(s)∥(s−L1/2)y1∥
2
H+2m0(s)∥D∗(y1−y2)∥

2
U +2m0(s)∥D∗L−1/2

∥
2
∥L1/2 y2∥

2
H+∥y2∥

2
H

≤ M0(s)∥(s−L1/2)y1∥
2
H+2m0(s)∥D∗(y1−y2)∥

2
U +

(
2m0(s)∥D∗L−1/2

∥
2
+∥L−1/2

∥
−2)

∥(s+L1/2)y2∥
2
H .

Thus (3-2) holds for s ≥ 0 with M and m as described in the claim. For s < 0 we get an anal-
ogous estimate by applying (3-16) to ∥y2∥

2 with s replaced by |s|, and combining the estimates
shows that (3-2) holds for s ∈ R with functions M, m : R → [r0, ∞) satisfying m(s) = 4m0(|s|) and
M(s) ≲ M0(|s|) + m0(|s|) for s ∈ R. Finally, as shown in Section 2B, the fact that (2-9) holds by
assumption implies ∥B∗(1+ is − A−1)

−1 B∥≲µ0(|s|), s ∈ R, and thus the remaining claims follow from
Theorem 3.2. □

4. Time-domain conditions for nonuniform stability

4A. Conditions for first-order problems. In this section we present sufficient conditions for polynomial
stability of the semigroup (TB(t))t≥0 generated by AB in terms of the following generalised observability
concept. Related generalisations of exact observability have previously been used in [Ammari and
Tucsnak 2001; Ammari and Nicaise 2015; Ammari et al. 2017] to study nonuniform stability of damped
second-order systems.

Definition 4.1. Let (T (t))t≥0 be a contraction semigroup on X , with generator A, and let C ∈ L(X1, U ),
where X and U are Hilbert spaces. The pair (C, A) is said to be nonuniformly observable (with parameters
β ≥ 0 and τ > 0) if there exists cτ > 0 such that

cτ∥(I − A)−β x∥
2
X ≤

∫ τ

0
∥CT (t)x∥

2
U dt, x ∈ D(A). (4-1)

Note that by [Kato 1961, Corollary] the norm ∥(I − A)−β x∥ in (4-1) can be replaced by ∥(λ0 − A)−β x∥

for any fixed λ0 ∈ ρ(A) ∩ C+ (and a possibly different cτ > 0), and in particular the choice λ0 = 0 is
possible if 0 ∈ ρ(A). By injectivity of (I − A)−β , nonuniform observability also implies approximate
observability of the pair (C, A) in the sense that if CT (t)x = 0 for all t ∈ [0, τ ], then necessarily x = 0.
The case β = 0 corresponds to exact observability of the pair (C, A).

Throughout this section we consider the setting of Section 2A in the case where B is a bounded operator.
In particular, A : D(A) ⊆ X → X generates a contraction semigroup (T (t))t≥0 on a Hilbert space X
and B ∈ L(U, X), where U is another Hilbert space. In this situation the generator of the semigroup
(TB(t))t≥0 is AB = A − B B∗ with D(AB) = D(A). The following consequence of the Heinz inequality
for dissipative operators due to Kato will be important for the arguments in this section. The result in
particular allows us to compare fractional powers of I − A and I − AB .
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Theorem 4.2 [Kato 1961, Corollary]. Let A1 and A2 be generators of contraction semigroups on X , and
suppose that D(A1) ⊆ D(A2) and ∥A2x∥ ≲ ∥A1x∥ for all x ∈ D(A1). Then for every α ∈ [0, 1] we have
D((−A1)

α) ⊆ D((−A2)
α) and ∥(−A2)

αx∥ ≲ ∥(−A1)
αx∥ for all x ∈ D((−A1)

α).

We shall also require the following lemma. A similar result for second-order systems of the form
in Section 2B (and a possibly unbounded operator B) was presented in [Ammari and Tucsnak 2001,
Lemma 4.1].

Lemma 4.3. Let A : D(A) ⊆ X → X be a skew-adjoint operator generating a unitary group (T (t))t≥0

and let B ∈ L(U, X).

(a) For every τ > 0 there exists Cτ > 0 such that∫ τ

0
∥B∗TB(t)x∥

2 dt ≤

∫ τ

0
∥B∗T (t)x∥

2 dt ≤ Cτ

∫ τ

0
∥B∗TB(t)x∥

2 dt (4-2)

for all x ∈ X. Moreover, the second inequality in (4-2) remains valid when A is merely a generator
of a contraction semigroup.

(b) The pair (B∗, A) is nonuniformly observable with parameters β ∈ [0, 1] and τ > 0 if and only if
(B∗, AB) is nonuniformly observable with the same parameters β and τ .

Proof. We begin by the second statement in (a). Suppose therefore that (T (t))t≥0 is a contraction semigroup
and let τ > 0 be fixed. Define 9, 9B ∈ L(X, L2(0, τ ; U )) by 9x := B∗T ( · )x and 9B x := B∗TB( · )x
for all x ∈ X . If we define Fτ ∈ L(L2(0, τ ; U )) by

(Fτ u)(t) =

∫ t

0
B∗T (t − s)Bu(s) ds, u ∈ L2(0, τ ; U ),

then the variation of parameters formula for (TB(t))t≥0 implies that

(I + Fτ )9B = 9.

Hence the second inequality in (4-2) holds with Cτ = (1 + ∥Fτ∥)
2. To complete the proof of (a), assume

that A is skew-adjoint in which case (T (t))t≥0 is a unitary group. Direct computations may be used to
show that Re⟨Fτ u, u⟩ ≥ 0 for all u ∈ L2(0, τ ; U ), and therefore the operator I +Fτ is boundedly invertible
with ∥(I + Fτ )

−1
∥ ≤ 1. This implies the first inequality in (4-2) and thus completes the proof of (a).

To prove (b), fix β ∈ [0, 1] and τ > 0. Both (A− I )−1 and (AB − I )−1 are bounded operators generating
contraction semigroups on X . Since ∥(A − I )−1x∥ ≲ ∥(AB − I )−1x∥ ≲ ∥(A − I )−1x∥ for all x ∈ X ,
Theorem 4.2 implies that ∥(I − A)−β x∥≲ ∥(I − AB)−β x∥≲ ∥(I − A)−β x∥ for all x ∈ X . Now the claim
follows directly from (a). □

As our first main result of this section we show that if D(A∗)= D(A) and B ∈L(U, X), then nonuniform
observability of (B∗, A) implies polynomial stability of the semigroup (TB(t))t≥0 generated by AB . The
theorem is similar in nature to the results presented in [Ammari and Tucsnak 2001; Ammari et al. 2017]
and [Ammari and Nicaise 2015, Chapter 2]. In particular, these references introduce generalised versions
of exact observability of (B∗, A) for second-order equations of the form in Section 2B, and deduce
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nonuniform stability of the semigroup (TB(t))t≥0. If β = 0 in our result, then the pair (B∗, A) is exactly
observable and we obtain exponential stability, similarly to [Slemrod 1974].

Theorem 4.4. Let A be the generator of a contraction semigroup on X such that D(A∗) = D(A), and let
B ∈ L(U, X). If the pair (B∗, A) is nonuniformly observable with parameters β ∈ [0, 1] and τ > 0, then
iR ⊆ ρ(AB) and

∥(is − AB)−1
∥ ≲ 1 + |s|2β, s ∈ R.

In particular, if 0 < β ≤ 1 then the semigroup (TB(t))t≥0 is polynomially stable and there exists a constant
C > 0 such that

∥TB(t)x∥ ≤
C

t1/(2β)
∥AB x∥, x ∈ D(AB), t > 0. (4-3)

If β = 0 then the semigroup (TB(t))t≥0 is exponentially stable.

Proof. Let β ∈ [0, 1] and τ > 0 be such that (4-1) holds for some cτ > 0. By Lemma 2.2 the semigroup
(TB(t))t≥0 is contractive and 1 ∈ρ(AB). Moreover, both (A− I )−1 and (AB − I )−1 are bounded operators
generating contraction semigroups on X . Since ∥(AB − I )−1x∥ ≲ ∥(A − I )−1x∥ for all x ∈ X , we have
∥(I − AB)−β x∥ ≲ ∥(I − A)−β x∥ for all x ∈ X , by Theorem 4.2. Let λ ∈ C+ and x ∈ D(A). The
previous estimate, together with nonuniform observability of (B∗, A), Lemma 4.3(a) and the estimate
Re⟨(λ − AB)z, z⟩ ≥ ∥B∗z∥2, z ∈ D(A), imply that

∥(I − AB)−β x∥
2 ≲ ∥(I − A)−β x∥

2
≤

Cτ

cτ

∫ τ

0
∥B∗TB(t)x∥

2 dt ≤
Cτ

cτ

∫ τ

0
Re⟨TB(t)(λ− AB)x, TB(t)x⟩ dt.

Since D(I − A∗

B) = D(A) = D(I − AB), Theorem 4.2 gives D((I − A∗

B)β) = D((I − AB)β), and in
particular (I − A∗

B)β(I − AB)−β
∈ L(X). Hence if λ ∈ C+ and x ∈ D((−AB)1+2β) are arbitrary, the

above estimate and contractivity of (TB(t))t≥0 imply that

∥x∥
2 ≲

Cτ

cτ

∫ τ

0
Re⟨TB(t)(λ − AB)(I − AB)β x, TB(t)(I − AB)β x⟩ dt

=
Cτ

cτ

∫ τ

0
Re⟨(I − A∗

B)β(I − AB)−βTB(t)(λ − AB)(I − AB)2β x, TB(t)x⟩ dt

≤
τCτ

cτ

∥(I − A∗

B)β(I − AB)−β
∥∥(λ − AB)(I − AB)2β x∥∥x∥.

Since C+ ⊆ ρ(AB) we in particular obtain

sup
0<Re λ<1

∥(λ − AB)−1(I − AB)−2β
∥ < ∞.

Thus ∥(λ − AB)−1
∥ ≲ 1 + |λ|

2β for 0 < Re λ < 1 by [Latushkin and Shvydkoy 2001, Lemma 3.2]. In
particular, the inequality ∥(λ− AB)−1

∥≥1/ dist(λ, σ (AB)) implies that iR ⊆ρ(AB) and ∥(is− AB)−1
∥≲

1 + |s|2β for s ∈ R. Finally, for β ∈ (0, 1], the estimate (4-3) follows from Theorem 2.7, and for β = 0
the claim follows from the Gearhart–Prüss theorem. □

As shown in the following proposition, nonuniform observability of (B∗, A) can also be characterised
in terms of the orbits of the semigroup (TB(t))t≥0.
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Proposition 4.5. Let A be skew-adjoint and B ∈ L(U, X). The pair (B∗, A) is nonuniformly observable
with parameters β ∈ [0, 1], τ > 0 if and only if

∥(I − A)−β x∥
2 ≲ ∥x∥

2
− ∥TB(τ )x∥

2, x ∈ X. (4-4)

In particular, if (4-4) holds for some β ∈ [0, 1] and τ > 0, then iR ⊆ρ(AB) and ∥(is− AB)−1
∥≲ 1+|s|2β

for s ∈ R.

Proof. Fix β ∈ [0, 1] and τ > 0. As in the proof of Lemma 4.3, we have ∥(I − A)−β x∥≲ ∥(I − AB)−β x∥≲
∥(I − A)−β x∥ for all x ∈ X by Theorem 4.2. For every x ∈ D(A) = D(AB) we have

2
∫ τ

0
∥B∗TB(t)x∥

2 dt = 2
∫ τ

0
Re⟨(−A + B B∗)TB(t)x, TB(t)x⟩ dt

= −

∫ τ

0

d
dt

∥TB(t)x∥
2 dt = ∥x∥

2
− ∥TB(τ )x∥

2.

Thus (4-4) is equivalent to nonuniform observability of the pair (B∗, AB) with parameters β and τ , which
in turn is equivalent to nonuniform observability of (B∗, A) with parameters β and τ by Lemma 4.3(b).
If (4-4) holds, then nonuniform observability of (B∗, A) and Theorem 4.4 imply that iR ⊆ ρ(AB) and
∥(is − AB)−1

∥ ≲ 1 + |s|2β for s ∈ R. □

Note that by Theorem 4.2 the norm ∥(I − A)−β x∥ on the left-hand side of (4-4) can be replaced by
∥(I − AB)−β x∥, or by ∥(−A)−β x∥ if 0 ∈ ρ(A). Estimates similar to (4-4) have been used in the literature
in order to prove polynomial decay rates for (TB(t))t≥0 based on discrete-time iterations, especially for
damped wave equations [Russell 1975] and coupled partial differential equations [Rauch et al. 2005;
Duyckaerts 2007]. In particular, in the special case β =

1
2 condition (4-4) is equivalent to the observability

estimate [Duyckaerts 2007, equation (39)]. Thus Theorem 4.4 improves and generalises the stability
result in [loc. cit., Section 5] in the case where A is skew-adjoint. Finally, if A generates a contraction
semigroup and B ∈ L(U, X), then nonuniform observability of (B∗, A) with parameters β ∈ [0, 1] and
τ > 0 implies (4-4).

4B. Time-domain conditions for second-order problems. In this section we study nonuniform observ-
ability for second-order systems of the form

ẅ(t) + Lw(t) + DD∗ẇ(t) = 0, t ≥ 0. (4-5)

Throughout the section, L , D, A and B are as in Section 2B. In the proofs of our results we also make
use of the operator |Adiag| : D(|Adiag|) ⊆ X → X defined by

|Adiag| =

(
L1/2 0
0 L1/2

)
, D(|Adiag|) = D(A). (4-6)

For second-order systems the concept of nonuniform observability in Definition 4.1 has the following
alternative characterisation.
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Proposition 4.6. Let L , D, A and B be as in Section 2B. The pair (B∗, A) is nonuniformly observable
with parameter β ∈ [0, 1] and τ > 0 if and only if

∥L(1−β)/2w0∥
2
H + ∥L−β/2w1∥

2
H ≲

∫ τ

0
∥D∗ẇ(t)∥2

U dt,

where w is the (classical) solution of

ẅ(t) + Lw(t) = 0, w(0) = w0 ∈ H1, ẇ(0) = w1 ∈ H1/2.

Proof. Fix β ∈ [0, 1] and τ > 0. Since 0 ∈ ρ(A), the norm ∥(I − A)−β x∥ in (4-1) can be replaced by
∥(−A)−β x∥. If |Adiag| is defined as in (4-6), then for x = (x1, x2) ∈ X = H1/2 × H we have

∥−A−1x∥
2
X = ∥L−1x2∥

2
H1/2

+ ∥x1∥
2
H = ∥|Adiag|

−1x∥
2
X .

Thus Theorem 4.2 implies that ∥(−A)−β x∥ ≲ ∥|Adiag|
−β x∥ ≲ ∥(−A)−β x∥ for all x ∈ X , and hence

∥(−A)−β x∥
2 ≲ ∥L(1−β)/2x1∥

2
H + ∥L−β/2x2∥

2
H ≲ ∥(−A)−β x∥

2

for all x = (x1, x2) ∈ X . The claims now follow from the fact that for x = (w0, w1) ∈ D(A) = H1 × H1/2

we have T (t)x ∈ D(A) and B∗T (t)x = D∗ẇ(t) for all t ≥ 0. □

We conclude this section by studying the damped second-order equation (4-5) for damping operators
D ∈ L(U, H) satisfying

∥L−α/2
w∥ ≲ ∥D∗w∥ ≲ ∥L−α/2

w∥, w ∈ H, (4-7)

for some α ∈ (0, 1]. Nonuniform stability of such equations was studied in [Liu and Zhang 2015], and
in [Dell’Oro and Pata 2021] in a slightly more general setting. The assumptions on D are satisfied in
particular for the damping operator D = L−α/2 in the wave and beam equations in [loc. cit., Section 15],
as well as for the damped Rayleigh plate studied in [Liu and Zhang 2015, Section 3]. We shall show that
such damping implies nonuniform observability in the sense of Definition 4.1. In particular, the following
proposition reproduces the result of [loc. cit., Theorem 2.1] for a symmetric damping operator of the
form DD∗ and for α ∈ (0, 1]. The degree of stability was shown in [loc. cit., Section 3] to be optimal for
a class of systems with a diagonal L .

Proposition 4.7. Let L , D, A and B be as in Section 2B with D ∈L(U, H) such that (4-7) holds for some
constant α ∈ (0, 1]. Then the pair (B∗, A) is nonuniformly observable with parameter β = α and for any
τ > (π + 2π3)∥L−1/2

∥
−1. Moreover, the semigroup (TB(t))t≥0 generated by AB is polynomially stable

and there exists a constant C > 0 such that

∥TB(t)x∥ ≤
C

t1/(2α)
∥AB x∥, x ∈ D(AB), t > 0.

Proof. We begin by showing that if we define (0, I ) ∈ L(X, H), then the pair ((0, I ), A) is exactly
observable for any τ > (π + 2π3)∥L−1/2

∥
−1. To prove this, let δ0 = ∥L−1/2

∥. Then Lemma 3.8 shows
that every nontrivial (s, δ0)-wavepacket x of A has the form x = (w, i sign(s)L1/2

w), where w is a
(|s|, δ0)-wavepacket of L1/2, and for such x we have

∥(0, I )x∥H = ∥L1/2w∥H =
1

√
2
∥x∥X .
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Since ∥(0, I )∥ = 1, it follows from [Miller 2012, Corollary 2.17] that the pair ((0, I ), A) is exactly
observable for τ > (π + 2π3)∥L−1/2

∥
−1.

If |Adiag| is defined as in (4-6), then |Adiag|
−1 commutes with A, and thus the same is true for |Adiag|

−α.
As in the proof of Proposition 4.6 we have ∥(−A)−αx∥ ≲ ∥|Adiag|

−αx∥ ≲ ∥(−A)−αx∥ for all x ∈ X .
We may write B∗

= (0, D∗) = (0, D∗Lα/2
)|Adiag|

−α, where the operator D∗Lα/2 is bounded below by
assumption. Thus, for any fixed τ > (π + 2π3)∥L−1/2

∥
−1 and for all x ∈ D(A), exact observability of

((0, I ), A) implies that∫ τ

0
∥B∗T (t)x∥

2
U dt ≳

∫ τ

0
∥(0, I )T (t)|Adiag|

−αx∥
2
H dt ≳ ∥|Adiag|

−αx∥
2
X ≳ ∥(−A)−αx∥

2
X . (4-8)

Theorem 4.2 now implies that the pair (B∗, A) is nonuniformly observable with parameter β = α and
with the chosen τ > (π + 2π3)∥L−1/2

∥
−1. Since A is skew-adjoint, the remaining claims follow from

Theorem 4.4. □

5. Optimality of the decay rates

In this section we investigate the optimality of our nonuniform decay estimates for the damped semigroup
(TB(t))t≥0. In particular, we present lower bounds for ∥TB( · )A−1

B ∥, which in turn impose a restriction
on the growth of N−1(t) as t → ∞ in estimate (3-1). Our results will allow us to show that our resolvent
estimates and the resulting nonuniform decay rates are optimal or near-optimal in several situations of
interest, including various PDE models to be explored in Section 6. As we shall see in Section 6A3
below, however, there are also situations of interest in which our techniques fail to produce sharp results
and, in particular, the resolvent estimates obtained by means of nonuniform Hautus tests or wavepacket
conditions are necessarily suboptimal.

Our first result of this section provides a lower bound for the resolvent norm ∥(is − AB)−1
∥ near

eigenvalues of A. Here A is assumed to be skew-adjoint, but it need not have compact resolvent. In
this section we define Bs := (B∗ Ps)

∗
∈ L(U, X), where Ps := χ{s}(−i A) is the orthogonal projection

onto Ker(is − A). Note that Ran(Bs) ⊆ Ker(is − A) and hence we subsequently consider Bs as an
operator from U into Ker(is − A). If Ran(Bs) = Ker(is − A), we write B+

s ∈ L(Ker(is − A), U ) for the
Moore–Penrose pseudoinverse of Bs . If dim Ker(is − A) = 1 and Bs ̸= 0, then ∥B+

s ∥ = ∥Bs∥
−1.

Proposition 5.1. Let A and B satisfy Assumption 2.1 and suppose that A is skew-adjoint. Suppose, in
addition, that iR ⊆ ρ(AB) and let N : R → (0, ∞) be a function such that ∥(is − AB)−1

∥ ≤ N (s) for all
s ∈ R. Then Ran(Bs) = Ker(is − A) for all s ∈ R, and N (s) ≥ ∥B+

s ∥
2 for all s ∈ R such that is ∈ σp(A).

Proof. Fix is ∈ σp(A) and let y ∈ Ker(is − A) be arbitrary. Then ⟨y, z⟩X = ⟨y, Psz⟩X for all z ∈ X . Hence
if x ∈ D(AB) is such that (is − AB)x = y, then

⟨y, z⟩X = ⟨(is − A−1)x, Psz⟩X−1,X1 + ⟨B B∗x, Psz⟩X−1,X1

for all z ∈ X . It is straightforward to show that the first term on the right-hand side is zero, so by definition
of Bs we have ⟨y, z⟩X = ⟨Bs B∗x, z⟩X for all z ∈ X . Thus Bs B∗x = y. Since y ∈ Ker(is − A) was
arbitrary, we deduce that Ran(Bs) = Ker(is − A), and in particular the Moore–Penrose pseudoinverse
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B+
s ∈ L(Ker(is − A), U ) of Bs is well defined. Now ∥B+

s y∥ = min{∥u∥ : u ∈ U and Bsu = y}, so by the
identity Bs B∗x = y and Lemma 2.11 we have

∥B+

s y∥
2
≤ ∥B∗x∥

2
= ∥B∗(is − AB)−1 y∥

2
≤ N (s)∥y∥

2.

This holds for all y ∈ Ker(is − A), so ∥B+
s ∥

2
≤ N (s). □

Remark 5.2. If the skew-adjoint operator A in Proposition 5.1 has pure point spectrum and the eigenvalues
of A are uniformly separated (but not necessarily simple), so that the spectral gap

dgap := inf{|s − s ′
| : is, is ′

∈ σ(A), s ̸= s ′
}

is strictly positive, then the norms ∥B+
s ∥ can be used to construct functions δ and γ for which Theorem 3.5

provides the optimal rate of resolvent growth. Indeed, if we choose a constant δ(s) ≡ δ := dgap/4 > 0,
then all nontrivial (s, δ(s))-wavepackets of A are eigenvectors corresponding to the unique eigenvalue is ′

in the interval i(s − δ, s + δ). If Bs′ maps surjectively onto Ker(is ′
− A) (which is in fact necessary for

is ′ to be an element of the resolvent set ρ(AB)), then for every x ∈ Ker(is ′
− A) we have

∥B∗x∥ = ∥B∗

s′ x∥ ≥ ∥B+

s′ ∥
−1

∥x∥.

The wavepacket condition (3-4) is therefore satisfied for every bounded function γ such that γ (s) ≡

∥B+

s′ ∥
−1 whenever s ∈ (s ′

−δ, s ′
+δ) and is ′

∈σ(A). Theorem 3.5 then implies that ∥(is−AB)−1
∥≲γ (s)−2,

and by Proposition 5.1 this estimate is sharp in the sense that N (s ′) ≥ γ (s ′)−2 whenever is ′
∈ σ(A) and

N is as in (3-1).

As Proposition 5.1 provides us with a lower bound for the resolvent of AB , we proceed by showing
that such a bound implies a lower bound for orbits of (TB(t))t≥0. This will be done in a more general
context in anticipation of possible applications elsewhere. It was shown in [Batty and Duyckaerts 2008,
Proposition 1.3] that one cannot in general hope for a better rate of decay than that given in Theorem 2.7.
The following new result is a consequence of [loc. cit., Proposition 1.3]. More specifically, it is a variant
of a claim made in [Batty et al. 2016, Theorem 1.1] and in the discussion following [Arendt et al. 2011,
Theorem 4.4.14], and it gives a sharp optimality statement of the same type but which, crucially, is applica-
ble as soon as one has a lower bound for the resolvent along a (possibly unknown) unbounded sequence of
points on the imaginary axis. The proof uses the same ideas as that of [Batty et al. 2016, Corollary 6.11].

Proposition 5.3. Let X be a Banach space and let (T (t))t≥0 be a bounded semigroup on X whose
generator A satisfies iR ⊆ ρ(A). Suppose that N : R+ → (0, ∞) is a continuous nondecreasing function
such that N (s) → ∞ as s → ∞ and

lim sup
|s|→∞

∥(is − A)−1
∥

N (|s|)
> 0. (5-1)

Then there exists c > 0 such that

lim sup
t→∞

N−1(ct)∥T (t)A−1
∥ > 0, (5-2)

and if N has positive increase then (5-2) holds for all c > 0.
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Proof. Consider the continuous nondecreasing function n : R+ → (0, ∞) defined by

n(t) = sup
τ≥t

∥T (τ )A−1
∥, t ≥ 0,

and let n−1 denote any right-inverse of n. Note that n takes strictly positive values since by (5-1) the
semigroup (T (t))t≥0 cannot be nilpotent, and that n(t) → 0 as t → ∞ by [Batty and Duyckaerts 2008,
Theorem 1.1]. Furthermore, by (5-1) and [loc. cit., Proposition 1.3] we may find a constant c > 0 and an
increasing sequence (sk)k∈N of positive numbers such that sk → ∞ as k → ∞ and N (sk) < cn−1((2sk)

−1)

for all k ∈ N. Let tk = n−1((2sk)
−1) for k ∈ N. Then tk → ∞ as k → ∞ because N is assumed

to be unbounded, and we have sk = (2n(tk))−1, k ∈ N. Now N (N−1(ctk)) = ctk > N (sk) and hence
N−1(ctk) > (2n(tk))−1 for all k ∈ N. Letting K = supt≥0 ∥T (t)∥, it follows that

1
2N−1(ctk)

≤ n(tk) ≤ K∥T (tk)A−1
∥, k ∈ N,

which establishes (5-2). If N has positive increase then by [Rozendaal et al. 2019, Proposition 2.2] we
have N−1(t) ≍ N−1(ct) as t → ∞ for all c > 0, which immediately yields the second statement. □

Remark 5.4. If N is not assumed to have positive increase then it is possible for (5-1) to be satisfied
but for (5-2) to hold only for certain values of c > 0. We refer the interested reader to the discussion
following [Rozendaal et al. 2019, Remark 3.3] for an example of a contraction semigroup on a Hilbert
space such that (5-1) holds for N (s) = log(s), s ≥ 2, and ∥T (t)A−1

∥ = O(e−t/2) as t → ∞. In particular,
(5-2) does not hold for any c ∈

(
0, 1

2

)
.

The considerations above lead to the following statement, which is the main result of this section. It is
an immediate consequence of Propositions 5.1 and 5.3, both of which are applicable under more general
assumptions. The result provides lower bounds for orbits of (TB(t))t≥0 under an assumption on the action
of B∗ on eigenvectors of A associated with imaginary eigenvalues isk ∈ σp(A). These lower bounds will
allow us to show in Section 6B below that the nonuniform decay rates we obtain from our observability
conditions are optimal (or near-optimal) in several concrete situations of interest.

Theorem 5.5. Let A and B satisfy Assumption 2.1 and suppose that A is skew-adjoint and that iR⊆ρ(AB).
If there exist a sequence (sk)k∈N ⊆ R, |sk | → ∞ as k → ∞ and a continuous nondecreasing function
N0 : R+ → (0, ∞) of positive increase such that ∥B+

sk
∥

2
≥ N0(|sk |) for all k ∈ N, then

lim sup
t→∞

N−1
0 (t)∥TB(t)A−1

B ∥ > 0.

Consequently, if (3-1) holds then there exists a sequence (tk)k∈N ⊆ (0, ∞) with tk → ∞ as k → ∞ such
that N−1(tk) ≲ N−1

0 (tk) for all k ∈ N.

We finish this section with a result of independent interest, offering an asymptotic estimate for a
collection of eigenvalues of AB under a uniform spectral gap condition of the type discussed in Remark 5.2.

Proposition 5.6. Let A be skew-adjoint and suppose that B ∈ L(U, X) is compact. Suppose further
that σ(A) = σp(A) and that this set is infinite, that dim Ker(is − A) = 1 for every is ∈ σ(A), and
that dgap > 0. Then there exist a family (λs)is∈σp(A) and s0 ≥ 0 such that λs ∈ σ(AB) for |s| ≥ s0 and
|λs − (is − ∥Bs∥

2)| = o(∥Bs∥
2) as |s| → ∞.
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Proof. First, we note that

{λ ∈ C− : Ker(I + B∗(λ − A)−1 B) ̸= {0}} ⊆ σp(AB).

Indeed, if λ ∈ C− and u ∈ U \ {0} are such that B∗(λ − A)−1 Bu = −u, then (λ − AB)(λ − A)−1 Bu = 0.
Since (λ − A)−1 Bu ̸= 0 (otherwise u = −B∗(λ − A)−1 Bu = 0), we conclude that λ ∈ σp(AB). This
reduces our problem to finding suitable points λ ∈ C− with Ker(I + B∗(λ − A)−1 B) ̸= {0}.

Our assumptions on A and compactness of B imply that ∥Bs∥ = ∥Ps B∥ → 0 as |s| → ∞. Fix
is ∈ σp(A) such that |s| ≥ 9∥B∥

2 and ∥Bs∥
2

≤ dgap. By Proposition 5.1, Bs maps surjectively onto
Ker(is − A), and therefore Bs ̸= 0. Let

Fs(λ) = (λ − is)(I + B∗(λ − A)−1 B).

Note that for λ ∈ ρ(A) we have Ker(I + B∗(λ− A)−1 B) ̸= {0} if and only if Ker(Fs(λ)) ̸= {0}. Our aim
is to apply Rouché’s theorem for operator-valued functions [Gohberg and Sigal 1971, Theorem 2.2]. We
have Fs(λ) = Gs(λ) + Hs(λ) with

Gs(λ) = λ − is + B∗

s Bs, Hs(λ) = (λ − is)B∗(λ − A)−1 B − B∗

s Bs .

Since B∗
s Bs is a rank-1 operator and dim X > 1, Gs(λ) is boundedly invertible if and only if λ /∈

{is −∥Bs∥
2, is}. Let rs = ∥Bs∥

2/2 and define the closed disk �s = {λ ∈ C : |λ−(is −∥Bs∥
2)| ≤ rs} ⊆ C−

and 0s = ∂�s . Then Gs(λ) is boundedly invertible for all λ∈ �s \{is−∥Bs∥
2
}, and for all λ ∈0s we have

∥Gs(λ)−1
∥ =

1
dist(λ, {is − ∥Bs∥

2, is})
=

1
rs

.

Let Js = {s ′
∈ R : |s ′

− s| ≤ |s|/2}. For every s ′
∈ R \ Js and every λ ∈ �s we have

|λ − is ′
| ≥ |is ′

− is| − |λ − is| ≥
|s|
2

−
3
2
∥Bs∥

2
≥

|s|
3

,

where the last inequality follows from the condition |s| ≥ 9∥B∥
2. Hence, for every λ ∈ �s ,

∥B∗(λ − A)−1χR\Js (−i A)B∥ ≤ ∥B∗
∥ sup

|s′−s|>|s|/2

1
|λ − is ′|

∥B∥ ≤
3∥B∥

2

|s|
.

Thus, for every u ∈ U with ∥u∥ ≤ 1, by the Cauchy–Schwarz inequality, the uniform spectral gap
assumption and Bessel’s identity, we see that

∥Hs(λ)u∥

|λ − is|
≤ ∥B∗(λ − A)−1χR\Js (−i A)Bu∥ +

∥∥∥∥B∗(λ − A)−1χJs (−i A)Bu −
B∗

s Bsu
λ − is

∥∥∥∥
≤

3∥B∥
2

|s|
+

∥∥∥∥ ∑
is′∈(σp(A)∩i Js)\{is}

1
λ − is ′

B∗

s′ Bs′u
∥∥∥∥

≤
3∥B∥

2

|s|
+ sup

|s′|≥|s|/2
∥B∗

s′∥

(
2

∞∑
j=1

1
d2

gap j2

)1/2( ∑
is′∈σp(A)

∥Bs′u∥
2
)1/2

≤
3∥B∥

2

|s|
+

π∥B∥
√

3dgap
sup

|s′|≥|s|/2
∥Bs′∥.
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Thus ∥Hs(λ)∥ ≤ qs |λ − is| for some qs ≥ 0 satisfying qs → 0 as |s| → ∞. Then, for |s| large enough
and λ ∈ 0s ,

∥Gs(λ)−1 Hs(λ)∥ ≤
qs |λ − is|

rs
≤ 3qs < 1.

Rouché’s theorem [Gohberg and Sigal 1971, Theorem 2.2] now implies that for every is ∈ σp(A) with |s|
sufficiently large there exists λs ∈ �s such that Ker(F(λs)) ̸= {0}, and the proof is complete. □

Observe that if A and B are as in Proposition 5.6 and if iR ⊆ ρ(AB), then the result implies that

lim inf
|s|→∞

∥Bs∥
2
∥(is − AB)−1

∥ > 0.

Then using Proposition 5.3 as in Theorem 5.5, we obtain a lower bound for ∥TB( · )A−1
B ∥ along a sequence

(tk)k∈N ⊆ (0, ∞) with tk → ∞ as k → ∞. We omit a precise formulation of the corresponding statement
since it is completely analogous to Theorem 5.5.

6. Nonuniform stability of damped partial differential equations

In this section we apply our general results to several concrete partial differential equations of different
types. In particular, we consider damped wave equations on one- and two-dimensional spatial domains, a
one-dimensional fractional Klein–Gordon equation, and a damped Euler–Bernoulli beam equation. We
also refer to a recent article [Su et al. 2020] for an application of Theorem 3.5 in the study of a coupled
PDE system describing the dynamics of linearised water waves.

6A. Wave equations on two-dimensional domains. In this section we consider wave equations on
bounded simply connected domains � ⊆ R2 which are either convex or have sufficiently regular (say C2)
boundary to ensure that the domain of the Dirichlet Laplacian on � is included in H 2(�). The wave
equation with viscous damping and Dirichlet boundary conditions is given by

wt t(ξ, t) − 1w(ξ, t) + b(ξ)2wt(ξ, t) = 0, ξ ∈ �, t > 0, (6-1a)

w(ξ, t) = 0, ξ ∈ ∂�, t > 0, (6-1b)

w( · , 0) = w0( · ) ∈ H 2(�) ∩ H 1
0 (�), wt( · , 0) = w1( · ) ∈ H 1

0 (�). (6-1c)

Here b ∈ L∞(�) is the nonnegative damping coefficient. It is well known that the geometry of � and
the region where b( · ) > 0 have great impact on the asymptotic properties of the wave equation. In the
framework of Section 2B we set H = L2(�), L = −1 with domain H1 = H 2(�) ∩ H 1

0 (�), and define
U = L2(�) and D ∈ L(L2(�)) by Du = bu for all u ∈ L2(�). Since D ∈ L(U, H), the function µ0 in
Section 3B can be chosen to be bounded.

6A1. Exact observability of the Schrödinger group. In order to apply Proposition 3.10 to the damped
wave equation (6-1) we need to understand the observability properties of the Schrödinger group on �.
Of particular interest here is the case of exact observability of the Schrödinger group, which corresponds
to (3-13) being satisfied for constant functions M0 and m0. In such cases Proposition 3.10 immediately
yields the resolvent bound ∥(is − AB)−1

∥≲ 1+ s2, s ∈ R, so by Theorem 2.7 (and Remark 2.8) classical
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solutions of the corresponding abstract Cauchy problem decay like (and in fact faster than) t−1/2 as
t → ∞. This was first proved in [Anantharaman and Léautaud 2014], but we mention that, similarly to
[Joly and Laurent 2020, Appendix B], Proposition 3.10 also allows us to deal with the much more general
situation where (3-13) is satisfied for functions M0 and m0 which satisfy suitable lower bounds but need
not be constant. We take advantage of this added generality in Section 6A2 below.

The study of energy decay of damped waves via observability conditions has a long history [Slemrod
1974; Russell 1975; Benchimol 1977; Lebeau 1996; Ammari and Tucsnak 2001; Burq and Hitrik 2007;
Cavalcanti et al. 2019; Letrouit and Sun 2023; Laurent and Léautaud 2021], and in particular it predates
the resolvent approach. It is not surprising, therefore, that there is a rich literature on exact observability
of the Schrödinger group, giving many concrete examples to which our abstract theory may be applied.
For instance, if � is a rectangle then it follows from a classical result due to [Jaffard 1990] that the
Schrödinger group corresponding to our system is exactly observable for every nonnegative b ∈ L∞(�)

such that ess supξ∈ω b(ξ) > 0 for some nonempty open set ω ⊆ �; see [Burq and Zworski 2019] for an
even stronger result on the torus. Similarly, it follows from [Burq and Zworski 2004, Theorem 9] that if �

is the Bunimovich stadium then the corresponding Schrödinger group is exactly observable provided the
damping b has strictly positive essential infimum on a neighbourhood of one of the sides of the rectangle
meeting a half-disk and also at one point on the opposite side. This allows us to recover under a slightly
weaker assumption the decay rate obtained in [Burq and Hitrik 2007, Theorem 1.1]. Finally, if � is a disk
then by [Anantharaman et al. 2016, Theorem 1.2] the Schrödinger group is exactly observable whenever
ess supξ∈ω b(ξ) > 0 for some open subset ω of � such that ω ∩ ∂� ̸= ∅. In fact, this condition is also
necessary for exact observability, as can be seen by considering so-called whispering gallery modes. We
thus recover the decay rate for classical solutions obtained in [Anantharaman et al. 2016, Remark 1.7].
Further examples of when the Schrödinger group is exactly observable, including also higher-dimensional
situations, may be found in [Anantharaman and Léautaud 2014, Section 2A]. We point out in passing that
there is also scope to apply directly the wavepacket result Theorem 3.9, which underlies Proposition 3.10.
One case in which this is possible is if one knows that ess supξ∈ω b(ξ) > 0 for some open set ω ⊆ � such
that ∥w∥L2(ω) ≥ c∥w∥L2(�) for some constant c > 0 and all eigenfunctions w of the Dirichlet Laplacian
on �. This would allow us to take γ0 to be constant in Theorem 3.9, provided we know how to choose δ0

in such a way that the (s, δ0(s))-wavepackets of (−1)1/2 are eigenfunctions associated with a single
eigenvalue of 1. The appropriate lower bound is obtained in [Hassell et al. 2009] in the case where �

is a polygonal region and ω contains a neighbourhood of each of the vertices of �, and in fact these
assumptions can be relaxed somewhat; see [Hassell et al. 2009, Remark 4]. Choosing an appropriate δ0,
however, requires detailed information on the distribution of the eigenvalues of the Dirichlet Laplacian
on �, which imposes a rather severe restriction on the domains � for which this approach is likely to
bear fruit.

6A2. Large damping away from a submanifold. We consider the damped Klein–Gordon equation on
the square � = (0, 1)2. This is a slight variant of (6-1) in which 1 is replaced by 1− m for some m > 0.
Furthermore, we view � as the 2-torus T2 by imposing periodic rather than Dirichlet boundary conditions,
thus allowing us to use the results of [Burq and Zuily 2016]. We apply our abstract results, setting
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H = L2(T2) and L = −1 + m with domain H1 = H 2(T2) in the framework of Section 2B, in order to
derive resolvent estimates under the assumption that the damping coefficient b satisfies a certain type of
lower bound away from a proper submanifold 6 of T2. A typical example would be for 6 to be a circle of
the form 6 = {(ξ1, ξ2) ∈ � : ξ1 ∈ (0, 1)} for some fixed ξ2 ∈ (0, 1), but the results in [Burq and Zuily 2016]
also apply in a much more general setting than this. The following result is a simple extension of [loc. cit.,
Corollary 1.3] in our special case. The distance referred to here is the geodesic distance on the manifold T2.

Corollary 6.1. Let r : R+ → R+ be a nondecreasing function satisfying r(s) > 0 for all s > 0, and
suppose that b(ξ)2

≥ r(dist(ξ, 6)) for all ξ ∈ T2. Then iR ⊆ ρ(AB) and there exist ε ∈ (0, 1) and s0 > 0
such that

∥(is − AB)−1
∥ ≲ r(ε|s|−1/2)−1, |s| ≥ s0.

Proof. The inclusion iR ⊆ ρ(AB) may be obtained for instance by following the argument used in the
proof of [Anantharaman and Léautaud 2014, Lemma 4.2]. Note in particular that the origin is removed
from the spectrum as a result of the shift we apply to the Laplacian. We now prove the resolvent estimate.
Given ε ∈ (0, 1) and s ∈ R \ {0} let ωε,s = {ξ ∈ T2

: dist(ξ, 6) < ε|s|−1/2
}. By [Burq and Zuily 2016,

Theorem 1.1] (but see also [Sogge 1988]) there exists s0 > m such that

∥w∥L2(ωε,s) ≲ ε1/2(|s|−1
∥(s2

− L)w∥L2(T2) + ∥w∥L2(T2)) (6-2)

for all w ∈ H 2(T2), ε ∈ (0, 1) and s ∈ R with |s| ≥ s0. By assumption we have b(ξ)2
≥ r(ε|s|−1/2) for

all ξ ∈ T2
\ ωε,s . Thus if we let mε(s) = r(ε|s|−1/2)−1 for ε ∈ (0, 1) and |s| ≥ s0, then

mε(s)∥bw∥
2
L2(T2)

≥ mε(s)∥bw∥
2
L2(T2\ωε,s)

≥ ∥w∥
2
L2(T2)

− ∥w∥
2
L2(ωε,s)

,

and hence by (6-2) and an application of Young’s inequality we may choose ε ∈ (0, 1) sufficiently small
to ensure that

∥w∥
2
L2(T2)

≲ |s|−2
∥(s2

− L)w∥
2
L2(T2)

+ mε(s)∥bw∥
2
L2(T2)

for all w ∈ H 2(T2) and all s ∈ R such that |s| ≥ s0. The result now follows from Proposition 3.10 and
Remark 3.7. □

We may use Corollary 6.1 to study the asymptotic behaviour of solutions of the damped Klein–Gordon
equation. In particular, if r(s) = cs2κ for some constants c, κ > 0 then Corollary 6.1 yields the estimate
∥(is − AB)−1

∥ ≲ 1 + |s|κ for s ∈ R, and hence by Theorem 2.7 any classical solution decays at the
rate t−1/κ . Note that this is worse than the rate obtained under additional assumptions in [Léautaud and
Lerner 2017; Datchev and Kleinhenz 2020] for the classical damped wave equation (6-1), which formally
corresponds to the choice m = 0 in our setting. On the other hand, it is stated in [Burq and Zuily 2016,
Remark 1.5] that in general the rate t−1/κ cannot be improved. The main value of Corollary 6.1 lies in
the fact that it leads to interesting nonpolynomial resolvent estimates whenever the function r providing
the lower bound is chosen appropriately.



1122 RALPH CHILL, LASSI PAUNONEN, DAVID SEIFERT, REINHARD STAHN AND YURI TOMILOV

6A3. Suboptimality of the observability and wavepacket conditions. In this section we discuss certain
natural limitations of our results in Section 3, and in particular describe situations where the nonuniform
decay rates obtained by our methods are suboptimal. As shown in [Burq and Hitrik 2007; Anantharaman
and Léautaud 2014; Léautaud and Lerner 2017; Datchev and Kleinhenz 2020; Sun 2023] in the case
of multidimensional wave equations with viscous damping, rates of nonuniform decay are dependent
not only on the location of the damping but also on the smoothness of the damping coefficient b. By
studying the damped wave equation (6-1) on a square � = (0, 1)2 we can illustrate that the resolvent
growth rates in Sections 3 and 4 are inherently suboptimal due to the fact that our observability concepts —
the nonuniform Hautus test, the wavepacket condition, the observability of the Schrödinger group and the
nonuniform observability — are unable to detect the degree of smoothness of the damping coefficient b.

For this purpose, let ω=
(
0, 1

2

)
×(0, 1). For any arbitrarily small ε∈

(
0, 1

2

)
we may as in [Burq and Hitrik

2007, Section 3] define a smooth nonnegative damping coefficient bε such that supp bε ⊆ ω, ∥bε∥L∞ ≤ 1,
and ∥(is − ABε

)−1
∥ ≲ 1 + |s|1+ε, s ∈ R, where Bε ∈ L(L2(�), X) is the damping operator associated

with bε. Now consider the damping coefficient bχ = χω, and denote the damping operator associated
with this function by Bχ ∈ L(L2(�), X). For this damping coefficient the optimal order of resolvent
growth is known to be 1 + |s|3/2 [Stahn 2017; Anantharaman and Léautaud 2014], and in particular
lim sup|s|→∞|s|−3/2

∥(is − ABχ
)−1

∥ > 0. However, since bχ (ξ) ≥ bε(ξ) for all ξ ∈ �, we clearly have

∥B∗

χ x∥ ≥ ∥B∗

ε x∥, x ∈ X.

Hence the nonuniform Hautus test (3-2), the wavepacket condition (3-4), observability of the Schrödinger
group (3-13), or nonuniform observability (4-1) for the pair (B∗

ε, A) immediately implies the same
property for the pair (B∗

χ, A) with the same parameters. In particular, any resolvent estimate of the form
∥(is− ABε

)−1
∥≤ N (s), s ∈ R, obtained from Theorem 3.2, Theorem 3.5, Proposition 3.10 or Theorem 4.4

also implies that ∥(is − ABχ
)−1

∥ ≤ N (s) for s ∈ R. However, by [Anantharaman and Léautaud 2014,
Proposition B.1] we then also have lim sup|s|→∞|s|3/2 N (s) > 0. This means that N (s) is a suboptimal
upper bound for ∥(is − ABε

)−1
∥ as |s| → ∞.

Comparing the rates of nonuniform decay of (6-1) with the two damping profiles bε and bχ also shows
that in the second part of Theorem 3.2 it is in general impossible to choose functions M and m satisfying
M +m ≲ N. To see this, let Mε and mε be functions M and m corresponding to the damping bε. Then the
inequality bχ ≥ bε implies that (B∗

χ, A), too, satisfies the Hautus test for the same functions Mε and mε,
and by Theorem 3.2 we have ∥(is − ABχ

)−1
∥ ≲ Mε(s)+ mε(s), s ∈ R. However, since the optimal order

of resolvent growth for the damping bχ is |s|3/2, the conclusion cannot be true unless

lim sup
|s|→∞

|s|3/2(Mε(s) + mε(s)) > 0.

Thus Mε + mε provides a strictly worse resolvent bound than the estimate ∥(is − ABε
)−1

∥ ≲ 1 + |s|1+ε,
s ∈ R, obtained in [Burq and Hitrik 2007, Section 3].

Finally, comparison of the damping coefficients bε and bχ further shows that a dissipative perturbation
of a generator of a polynomially stable semigroup can strictly worsen the rate of decay. Indeed, since
bχ ≥ bε by construction, the “additional damping” of the difference b1 = bχ − bε ≥ 0 increases the
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asymptotic rate of resolvent growth as |s| → ∞ from at most |s|1+ε to |s|3/2. In terms of the semigroup
generators this means that ABε

has a strictly slower asymptotic resolvent growth than ABχ
even though

ABχ
is a dissipative perturbation of ABε

.

6B. Damped wave equations on one-dimensional domains.

6B1. Damping at a single interior point. In this section we consider the one-dimensional wave equation
with pointwise damping studied in [Ammari and Tucsnak 2001, Section 5.1]; see also [Rzepnicki and
Schnaubelt 2018] for a closely related problem on the stability of two serially connected strings. Our
arguments rely essentially on ideas from [Ammari and Tucsnak 2001]. Given an irrational number
ξ0 ∈ (0, 1), let us consider the problem

wt t(ξ, t) − wξξ (ξ, t) + wt(t, ξ0)δξ0(ξ) = 0, ξ ∈ (0, 1), t > 0, (6-3a)

w(0, t) = 0, w(1, t) = 0, t > 0, (6-3b)

w( · , 0) = w0( · ) ∈ H 2(0, 1) ∩ H 1
0 (0, 1), wt( · , 0) = w1( · ) ∈ H 1

0 (0, 1). (6-3c)

As shown in [Ammari and Tucsnak 2001, Section 5.1], the system (6-3) satisfies the assumptions in
Section 2B with H = L2(0, 1), L =−∂ξξ with domain H1 = H 2(0, 1)∩H 1

0 (0, 1), and L has positive square
root with domain H1/2 = H 1

0 (0, 1). The damping operator D is given by Du =δξ0u for all u ∈U =C, where
δξ0 is the Dirac delta distribution at ξ = ξ0, and we indeed have D ∈ L(C, H−1/2) and D∗

∈ L(H1/2, C),
where H−1/2 = H−1(0, 1) and H1/2 = H 1

0 (0, 1). In order to describe the domain D(AB), note that
A−1

−1 B = (−L−1δξ0, 0) = (z, 0), where z ∈ H 1
0 (0, 1) is the solution of the differential equation z′′

= δξ0

with boundary conditions z(0) = z(1) = 0 in H−1(0, 1). We thus have

z(ξ) =

{
ξ(1 − ξ0), 0 < ξ ≤ ξ0,

ξ0(1 − ξ), ξ0 < ξ ≤ 1.

Since D(AB) = {x ∈ X B : A−1x − B B∗x ∈ X} by Remark 2.4, we deduce that (cf. [Ammari and Tucsnak
2001, Section 5.1])

D(AB) = {(u + z( · )v(ξ0), v) : u ∈ H 2(0, 1) ∩ H 1
0 (0, 1), v ∈ H 1

0 (0, 1)},

and therefore classical solutions of (6-3) correspond to initial conditions

w0 = w00 + z( · )w1(ξ0), w00 ∈ H 2(0, 1) ∩ H 1
0 (0, 1), w1 ∈ H 1

0 (0, 1). (6-4)

Since the eigenvalues λ2
n = n2π2, n ∈ N, and corresponding normalised eigenfunctions φn( · ) =

√
2 sin(nπ · ) of L are known explicitly, we may use the wavepacket condition in Theorem 3.9 to analyse

the stability properties of the damped system (6-3). Indeed, the eigenvalues λn = nπ , n ∈ N, of L1/2 have a
uniform gap, so we may choose δ(s) ≡ π/4. The nontrivial (s, δ(s))-wavepackets of L1/2 are then simply
multiples of the eigenfunctions φn for n ∈ N such that nπ ∈ (s − π/4, s + π/4). For any n ∈ N we have

|D∗φn| = |φn(ξ0)| =
√

2|sin(nπξ0)|.
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In order to determine the rate of resolvent growth we need to estimate the coefficients |D∗φn| from
below. This certainly requires ξ0 to be an irrational number, but in fact we shall need to assume more,
namely that ξ0 is badly approximable by rationals. It is known, for instance, that given any ε > 0 almost
every irrational ξ0 ∈ (0, 1) has the property that

min
m∈N

∣∣∣∣ξ0 −
m
n

∣∣∣∣ ≥
1

n2 log(n)1+ε
(6-5)

for all sufficiently large n ≥ 2, while simultaneously for almost every irrational ξ0 ∈ (0, 1) there exist
rationals m/n with arbitrarily large values of n ≥ 2 such that∣∣∣∣ξ0 −

m
n

∣∣∣∣ ≤
1

n2 log(n)
; (6-6)

see for instance [Khinchin 1964, Theorem 32]. A rather special class of irrationals ξ0 ∈ (0, 1) is the set of
irrationals that have constant type. These are commonly defined to be those irrational numbers which
have uniformly bounded coefficients in their partial fractions expansions. Irrationals of constant type
include all irrational quadratic numbers, that is to say irrational solutions of quadratic equations with
integer coefficients. As shown in [Lang 1966, Chapter II, Theorem 6], an irrational number ξ0 ∈ (0, 1)

has constant type if and only if there is a constant cξ0 > 0 such that

min
m∈N

∣∣∣∣ξ0 −
m
n

∣∣∣∣ ≥
cξ0

n2 , n ∈ N. (6-7)

It follows from the Dirichlet approximation theorem [Lang 1966, Chapter II, Theorem 1] that for any
irrational number ξ0 ∈ (0, 1) there exist rationals m/n with arbitrarily large values of n ∈ N such that∣∣∣∣ξ0 −

m
n

∣∣∣∣ ≤
1
n2 . (6-8)

The following result yields (essentially) sharp rates of decay for the energy of our damped system for
irrational numbers ξ0 ∈ (0, 1) of different nature.

Corollary 6.2. Let w be the (classical) solution of (6-3) corresponding to initial conditions as in (6-4).

(a) Fix ε > 0. For almost every irrational number ξ0 ∈ (0, 1) there exists Cε > 0 such that

∥(w( · , t), wt( · , t))∥H1×L2 ≤ Cε

log(t)1+ε

t1/2 ∥(w00, w1)∥H2×H1, t ≥ 2. (6-9)

Moreover, the rate is almost optimal in the sense that if r : R+ → (0, ∞) is any function such that r(t) =

o(t−1/2 log(t)) as t → ∞, then there exist w0, w1 as in (6-4) for which r(t)−1
∥(w( · , t), wt( · , t))∥H1×L2

is unbounded as t → ∞.

(b) If ξ0 ∈ (0, 1) is an irrational number of constant type then there exists C > 0 such that

∥(w( · , t), wt( · , t))∥H1×L2 ≤
C

t1/2 ∥(w00, w1)∥H2×H1, t ≥ 1.
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Moreover, the rate is optimal in the sense that if r : R+ → (0, ∞) is any function such that r(t) = o(t−1/2)

as t → ∞, then there exist w0, w1 as in (6-4) for which r(t)−1
∥(w( · , t), wt( · , t))∥H1×L2 is unbounded

as t → ∞.

Proof. The form of the estimates follows from Theorem 2.7 and the property that for initial conditions as
in (6-4) we have

∥AB(w0, w1)∥
2
X = ∥A(w00, w1)∥

2
X = ∥w′′

00∥
2
L2 + ∥w1∥

2
H1 .

In order to prove (a), we will use Theorem 3.9. As shown in [Ammari and Tucsnak 2001, Lemma 5.3],
we have |s|∥D∗((1 + is)2

+ L−1)
−1 D∥ ≲ 1, s ∈ R. To verify the wavepacket condition, let ξ0 be such

that (6-5) holds. For a given n ≥ 2, choose m ∈ N in such a way that Cn ∈ R defined by

ξ0 =
m
n

+
Cn

n2 log(n)1+ε

has minimal absolute value. By (6-5) we have 1 ≤ |Cn| ≤ n log(n)1+ε/2 for all sufficiently large n ≥ 2,
and since 2r/π ≤ sin(r) ≤ r for 0 ≤ r ≤ π/2 it follows that

|D∗φn| =
√

2|sin(nπξ0)| =
√

2
∣∣∣∣sin

(
Cnπ

n log(n)1+ε

)∣∣∣∣ ≥
2
√

2
n log(n)1+ε

for all sufficiently large n ≥ 2. Thus by Theorem 3.9 we have ∥(is − AB)−1
∥ ≲ s2 log(|s|)2+2ε, |s| ≥ 2,

and hence (6-9) follows from Theorem 2.7; see also [Batty et al. 2016, Theorem 1.3].
In order to prove the optimality statement, note that by (6-6) there exist infinitely many n ≥ 2 for which

|Cn| ≤ log(n)ε and therefore also

|D∗φn| =
√

2
∣∣∣∣sin

(
Cnπ

n log(n)1+ε

)∣∣∣∣ ≤

√
2π

n log(n)
.

Now Proposition 5.1 shows that

lim sup
|s|→∞

∥(is − AB)−1
∥

|s|2 log(|s|)2 > 0,

and it follows from Proposition 5.3 that

lim sup
t→∞

log(t)
t−1/2 ∥TB(t)A−1

B ∥ > 0.

Now the optimality statement follows from a simple application of the uniform boundedness principle.
The argument for part (b) is entirely analogous and slightly simpler. It uses (6-7) and (6-8) in place

of (6-5) and (6-6), respectively. □

6B2. Weak damping. In this section we consider a weakly damped wave equation on (0, 1), namely

wt t(ξ, t) − wξξ (ξ, t) + b(ξ)
∫ 1

0
b(r)wt(r, t)dr = 0, ξ ∈ (0, 1), t > 0, (6-10a)

w(0, t) = 0, w(1, t) = 0, t > 0, (6-10b)

w( · , 0) = w0( · ) ∈ H 2(0, 1) ∩ H 1
0 (0, 1), wt( · , 0) = w1( · ) ∈ H 1

0 (0, 1), (6-10c)
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where b ∈ L2(0, 1; R) is the damping coefficient. The wave equation has the form considered in Section 2B
with H = L2(0, 1), L = −∂ξξ with domain H1 = H 2(0, 1) ∩ H 1

0 (0, 1), and L has positive square root
with domain H1/2 = H 1

0 (0, 1). Moreover, U = C and D ∈ L(C, H) is the rank-1 operator defined by
Du = bu for all u ∈ C.

The operator L is the same as in Section 6B1. Hence if we define δ(s) ≡ π/4 then the nontrivial
(s, δ(s))-wavepackets of L1/2 are multiples of the normalised eigenfunctions φn for n ∈ N such that
nπ ∈ (s − π/4, s + π/4). For any n ∈ N we have

|D∗φn| =
√

2
∣∣∣∫ 1

0
b(ξ) sin(nπξ) dξ

∣∣∣.
For a large class of functions b these Fourier sine series coefficients have explicit expressions. In order to
have iR ⊆ ρ(AB) we require that D∗φn ̸= 0 for all n ∈ N, and the rate at which |D∗φn| decays to zero
as n → ∞ determines the rate of resolvent growth. In the following we summarise the conclusions of
Theorem 3.5 for a class of dampings.

Corollary 6.3. Assume that |D∗φn| ≳ f (nπ), n ∈ N, for a continuous strictly decreasing function
f : R+ → (0, ∞) such that f ( · )−1 has positive increase. Then there exist C, t0 > 0 such that for all
w0 ∈ H 2(0, 1) ∩ H 1

0 (0, 1) and w1 ∈ H 1
0 (0, 1) the (classical) solution w of (6-10) satisfies

∥(w( · , t), wt( · , t))∥H1×L2 ≤
C

N−1(t)
∥(w0, w1)∥H2×H1, t ≥ t0, (6-11)

where N−1 is the inverse function of N ( · ) := f ( · )−2. Moreover, if there exists an increasing sequence
(nk)k∈N ⊆ N such that |D∗φnk | ≲ f (nkπ) for all k ∈ N, then the decay rate is optimal in the sense of
Theorem 5.5.

Proof. If |D∗φn| ≳ f (nπ), n ∈ N, then the wavepacket condition in (3-11) is satisfied for δ0 = π/4 and
γ0(s) = f (s + π/4). Moreover, since D ∈ L(C, H), we have |s|∥D∗((1 + is)2

+ L)−1 D∥ ≲ 1, s ∈ R.
Thus Theorem 3.9 implies that ∥(is − AB)−1

∥ ≲ f (|s| + π/4)−2, s ∈ R, and Theorem 2.7 yields (6-11)
with the function N0 defined by N0(s) = f (s + π/4)−2 for s > 0. The claim now follows from the fact
that N−1

= N−1
0 + π/4. □

For the particular damping functions b defined by b(ξ) = 1−ξ , b(ξ) = ξ 2(1−ξ) and b(ξ) = χ(0,ξ0)(ξ),
where ξ0 ∈ (0, 1) is an irrational of constant type, the optimal decay rates are given by (writing bn = D∗φn

for brevity)

b(ξ) = 1 − ξ, bn =

√
2

nπ
, N−1(t)−1 ≲ t−1/2, (6-12a)

b(ξ) = ξ 2(1 − ξ), bn =
2
√

2(2(−1)n
− 1)

n3π3 , N−1(t)−1 ≲ t−1/6, (6-12b)

b(ξ) = χ(0,ξ0)(ξ), bn =

√
2(1 − cos(nπξ0))

nπ
, N−1(t)−1 ≲ t−1/6. (6-12c)

The required upper and lower bounds for |D∗φn| in the third example follow by arguments similar
to those used in the proof of Corollary 6.2, once again using (6-7) and (6-8). Optimality in all three
examples is a consequence of Theorem 5.5.



NONUNIFORM STABILITY OF DAMPED CONTRACTION SEMIGROUPS 1127

Remark 6.4. The above discussion implies that the Fourier sine series coefficients bn = D∗φn of the
damping b determine the resolvent growth and thus the rate of energy decay in (6-10). So it is natural
to try to relate the energy decay to the properties of b and (bn)n∈N directly. However, it is difficult
to give a succinct answer here without specifying a precise class of functions b. First note that since
b ∈ L2(0, 1), we have (bn)n∈N ∈ ℓ2. On the other hand, the results in [Nazarov 1997] show that for any
(cn)n∈N ∈ ℓ2 with cn ≥ 0 there exists b ∈ C[0, 1] such that |bn| ≥ cn for all n ∈ N, and thus any rate
of decay that can be achieved with a damping function b ∈ L2(0, 1) can also be achieved with a more
regular function b ∈ C[0, 1]. However, imposing further regularity properties on b, such as Hölder-type
conditions, changes the situation substantially.

In general, finer estimates for decay of (bn)n∈N depend heavily on the modulus of continuity (or the
integral modulus of continuity) of b, and conversely for (bn)n∈N close in a sense to being monotone
one may infer regularity properties of b from the sequence (bn)n∈N; see for instance [Edwards 1979,
Chapter 7], [Zygmund 2002, Chapter 5], and [Dyachenko et al. 2019].

Note finally that any polynomial rate of decay t−α with α ∈ (0, 1) can be achieved by choosing the
damping function b ∈ L2(0, 1) such that bn = n−1/(2α) for n ∈ N. Moreover, by [Nazarov 1997] the
same scale of polynomial rates can be realised by means of continuous damping functions. It would
be interesting to consider similar statements about other scales of decay rates, for instance of regularly
varying functions, but we do not pursue this here.

6C. A damped fractional Klein–Gordon equation. In this example we consider a “fractional Klein–
Gordon equation” with viscous damping studied in [Malhi and Stanislavova 2020]; see also [Green 2020].
For a fixed α ∈ (0, 1] this system has the form

wt t(ξ, t) + (−∂ξξ )
αw(ξ, t) + mw(ξ, t) + b(ξ)2wt(ξ, t) = 0, ξ ∈ R, t > 0, (6-13)

w( · , 0) = w0( · ) ∈ H 2α(R), wt( · , 0) = w1( · ) ∈ Hα(R), (6-14)

where m > 0 and b ∈ L∞(R) is the nonnegative damping coefficient. We assume that ess infξ∈ω b(ξ) > 0
for some nonempty open set ω ⊆ R which is invariant under translation by 2π .

Polynomial stability of this equation was studied, e.g., in [Malhi and Stanislavova 2020]. In the
following proposition we use the wavepacket condition (3-11) to derive the same resolvent estimate under
the above assumptions on b (strictly weaker conditions on the damping were also considered recently
in [Green 2020]). The fractional Klein–Gordon equation is again of the form studied in Section 2B,
now with H = U = L2(R), L = (−∂ξξ )

α
+ m > 0 with domain H1 = H 2α(R) and H1/2 = Hα(R). The

damping operator D ∈ L(L2(R)) is the multiplication operator defined by Du = bu for all u ∈ L2(R).

Proposition 6.5. Let 0 < α < 1. There exists C > 0 such that for every w0 ∈ H 2α(R) and w1 ∈ Hα(R)

the solution w of the fractional Klein–Gordon equation satisfies

∥(w( · , t), wt( · , t))∥Hα×L2 ≤
C

tα/(2−2α)
∥(w0, w1)∥H2α×Hα , t > 0.

Proof. Let us begin by showing that the classical Klein–Gordon equation corresponding to α = 1 is
exponentially stable. Due to the properties of the damping coefficients we may choose a smooth and
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2π -periodic function b1 such that 0≤b1 ≤b on R and infξ∈ω1 b1(ξ)>0 for a nonempty open set ω1 ⊆ω. By
[Burq and Joly 2016, Theorem 1.2] the Klein–Gordon equation with damping coefficient b1 is exponentially
stable. If we define D1 ∈ L(L2(R)) so that D1u = b1u for all u ∈ L2(R), and define B1 =

( 0
D1

)
, then

(B∗

1, A) is exactly observable, and by [Miller 2012, Corollary 2.17] the pair (B∗

1, A) satisfies the wavepacket
condition (3-4) for constant functions δ(s) ≡ δ > 0 and γ (s) ≡ γ > 0. However, since b(ξ) ≥ b1(ξ) for
all ξ ∈ R we see that also (B∗, A) satisfies the wavepacket condition for the same functions δ and γ .

Let us temporarily write Lα for the operator (−∂ξξ )
α

+ m, 0 < α ≤ 1, accepting that this entails a
minor abuse of notation. Since σ(Lα) ⊆ [m, ∞) for 0 < α ≤ 1, we obtain from Lemma 3.8 that

∥D∗w∥U ≥ γ1∥w∥H (6-15)

for all (s, δ1)-wavepackets w of L1/2
α , where δ1, γ1 > 0 are suitable constants.

For 0 < α ≤ 1 and any bounded function δ0 : R+ → (0, ∞) the (s, δ0(s))-wavepackets of L1/2
α are

precisely the elements of Ran(χIs,δ0(s)(L1/2
α )), where Is,δ0(s) = (s − δ0(s), s + δ0(s)). Using the spectral

theorem we see that if I ⊆ [
√

m, ∞) is a bounded interval then Ran(χI (L1/2
α )) = Ran(χJα

(L1/2
1 )), where

Jα = ((I 2
− m)1/α

+ m)1/2. Now fix α ∈ (0, 1) and let δ0(s) = c(1 + sα−1
−1), s ≥ 0, where c > 0 is a

constant. Straightforward estimates show that the images of the intervals Is,δ0 ∩ [
√

m, ∞) under the map
I 7→ Jα have length bounded by some constant multiple of c. It follows that (6-15) holds also for all
(s, δ0(s))-wavepackets w of L1/2

α provided that c is sufficiently small. (Here the form of the function δ0

can either be guessed or alternatively derived by considering the images of constant-width intervals under
the inverse of the map I 7→ Jα .) Moreover, since D ∈L(L2(�)), we have |s|∥D∗((1+is)2

+L)−1 D∥≲ 1,
s ∈ R. Thus we deduce from Theorem 3.9 that ∥(is − AB)−1

∥ ≲ 1 + |s|2(α−1
−1)−1

for s ∈ R. The claim
now follows directly from Theorem 2.7. □

6D. A weakly damped beam equation. In this section we consider the stability of the following Euler–
Bernoulli beam equation with weak damping:

wt t(ξ, t) + wξξξξ (ξ, t) + b(ξ)
∫ 1

0
b(r)wt(r, t) dr = 0, ξ ∈ (0, 1), t > 0, (6-16)

w(0, t) = 0, wξξ (0, t) = 0, t > 0, (6-17)

w(1, t) = 0, wξξ (1, t) = 0, t > 0, (6-18)

w( · , 0) = w0( · ) ∈ H 4(0, 1) ∩ H 1
0 (0, 1), (6-19)

wt( · , 0) = w1( · ) ∈ H 2(0, 1) ∩ H 1
0 (0, 1), (6-20)

where b ∈ L2(0, 1; R) is the damping coefficient. The boundary conditions describe a situation in which
the beam is simply supported.

The beam equation fits into the framework of Section 2B with the choices H = L2(0, 1) and

L = ∂ξξξξ , H1 = {x ∈ H 4(0, 1) : x(0)=x ′′(0)=x(1)=x ′′(1)=0}.

The operator L is invertible and positive and its positive square root is given by L1/2
= −∂ξξ with

domain H1/2 = H 2(0, 1)∩ H 1
0 (0, 1). The eigenvalues and normalised eigenfunctions of L1/2 are given by
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λn = n2π2 and φn( · )=
√

2 sin(nπ · ), respectively, for n ∈ N. As in Section 6B2, U = C and D ∈L(C, H)

is the rank-1 operator defined by Du = bu for all u ∈ C.
Our aim is to study the asymptotic behaviour of the solutions of the damped beam equation using

the wavepacket condition in Theorem 3.9. Since the eigenvalues λn = n2π2, n ∈ N, have a uniform
gap, we may choose δ(s) ≡ π2/4. The nontrivial (s, δ(s))-wavepackets of L1/2 are then multiples of the
eigenfunctions φn for n ∈ N such that n2π2

∈ (s − π2/4, s + π2/4). For any n ∈ N we have

|D∗φn| =
√

2
∣∣∣∫ 1

0
b(ξ) sin(nπξ) dξ

∣∣∣.
These Fourier sine series coefficients are identical to the ones in Section 6B2. However, the locations of
the eigenvalues of A now result in a slower rate of resolvent growth than in the case of the wave equation.
In order to have iR ⊆ ρ(AB) it is again necessary that D∗φn ̸= 0 for all n ∈ N. However, since the gaps
between the eigenvalues n2π2 of L1/2 grow without bound as n → ∞, the same damping has a greater
relative effect for the beam equation than for the wave equation.

Corollary 6.6. Assume that |D∗φn| ≳ f (n2π2) for a continuous strictly decreasing function f : R+ →

(0, ∞) such that f ( · )−1 has positive increase. Then there exist C, t0 > 0 such that for every w0 ∈ H1 and
w1 ∈ H1/2 the (classical) solution of the weakly damped beam equation satisfies

∥(w( · , t), wt( · , t))∥H2×L2 ≤
C

N−1(t)
∥(w0, w1)∥H4×H2, t ≥ t0,

where N−1 is the inverse function of N ( · ) := f ( · )−2. Moreover, if there exists an increasing sequence
(nk)k∈N ⊆ N such that |D∗φnk | ≲ f (nkπ) for all k ∈ N, then the decay rate is optimal in the sense of
Theorem 5.5.

The coefficients |D∗φn| for the functions b defined by b(ξ) = 1 − ξ , b(ξ) = ξ 2(1 − ξ) and b(ξ) =

χ(0,ξ0)(ξ) (with ξ0 ∈ (0, 1) an irrational number of constant type) are presented in (6-12), and for these
functions Corollary 6.6 implies the asymptotic rates t−1, t−1/3 and t−1/3 as t → ∞, respectively. Note
finally that Remark 6.4 applies also in the setting of this section.
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