ANALYSIS \& PDE Volume 16 No. 5 2023

RAIPH CHII, LASSI PAUNONEN, DAVID SHIFERT. REINHARD S AIAN AND YURI TOMILOV

NONUNIFORM STABILITY OF DA MIPD CONTHACTION

 SRMIGROUPS
NONUNIFORM STABILITY OF DAMPED CONTRACTION SEMIGROUPS

Ralph Chill, Lassi Paunonen, David Seifert, Reinhard Stahn and Yuri Tomilov

We investigate the stability properties of strongly continuous semigroups generated by operators of the form $A-B B^{*}$, where A is the generator of a contraction semigroup and B is a possibly unbounded operator. Such systems arise naturally in the study of hyperbolic partial differential equations with damping on the boundary or inside the spatial domain. As our main results we present general sufficient conditions for nonuniform stability of the semigroup generated by $A-B B^{*}$ in terms of selected observability-type conditions on the pair (B^{*}, A). The core of our approach consists of deriving resolvent estimates for the generator expressed in terms of these observability properties. We apply the abstract results to obtain rates of energy decay in one-dimensional and two-dimensional wave equations, a damped fractional Klein-Gordon equation and a weakly damped beam equation.

1. Introduction 1089
2. Preliminaries 1093
3. Frequency domain criteria for resolvent bounds and nonuniform stability 1102
4. Time-domain conditions for nonuniform stability 1110
5. Optimality of the decay rates 1115
6. Nonuniform stability of damped partial differential equations 1119
References 1129

1. Introduction

We study the stability properties of abstract differential equations of the form

$$
\begin{equation*}
\dot{x}(t)=\left(A-B B^{*}\right) x(t), \quad x(0)=x_{0} \in X . \tag{1-1}
\end{equation*}
$$

Here A generates a strongly continuous contraction semigroup, or typically a unitary group, on the Hilbert space X and B is a possibly unbounded operator, defined on a Hilbert space U. This class of dynamical systems includes several types of partial differential equations with damping, especially wave equations [Lebeau 1996; Ammari and Tucsnak 2001; Anantharaman and Léautaud 2014] and other hyperbolic PDE models [Liu and Zhang 2015; Dell'Oro and Pata 2021]. Equations of this form are also often encountered in control theory as a result of feedback interconnections and output feedback stabilisation [Slemrod 1974; Benchimol 1977; Guo and Luo 2002; Lasiecka and Triggiani 2003; Curtain and Weiss 2006; 2019].

[^0]Our main interest is in studying stability properties of the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ generated by $A-B B^{*}$ and the asymptotic behaviour of the solution $x(\cdot)=T_{B}(\cdot) x_{0}$ of (1-1). One of the key results concerning equations of the form (1-1) is that stability of $\left(T_{B}(t)\right)_{t \geq 0}$ can be characterised in terms of observability of the pair ($\left.B^{*}, A\right)$; see [Slemrod 1974; Benchimol 1977; Curtain and Weiss 2006; 2019]. This relationship is well understood in the context of exponential stability and strong stability. In this paper we investigate this relationship for semigroups $\left(T_{B}(t)\right)_{t \geq 0}$ which are polynomially stable or more generally nonuniformly stable. Our main results introduce new observability-type conditions which can be used to guarantee and verify the precise nonuniform stability properties of the differential equation (1-1).

The problem in (1-1) and the associated semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ are said to be (uniformly) exponentially stable if $\|x(t)\| \leq M e^{-\omega t}\left\|x_{0}\right\|$ for all $x_{0} \in X$ and $t \geq 0$ and for some constants $M, \omega>0$. The weaker notion of strong stability requires only that $\|x(t)\| \rightarrow 0$ for $t \rightarrow \infty$ for all $x_{0} \in X$. The main benefit of exponential stability over strong stability is that the decay of the solutions takes place at a guaranteed rate as $t \rightarrow \infty$. In this paper we focus on nonuniform stability [Batty and Duyckaerts 2008; Borichev and Tomilov 2010; Rozendaal et al. 2019; Chill et al. 2020], where $\left(T_{B}(t)\right)_{t \geq 0}$ is strongly stable and all classical solutions of (1-1) decay at a specific rate. Nonuniform and polynomial stability have been investigated in detail, especially for damped wave equations on multidimensional domains [Lebeau 1996; Liu and Rao 2005; Burq and Hitrik 2007; Anantharaman and Léautaud 2014; Stahn 2017; Cavalcanti et al. 2019; Datchev and Kleinhenz 2020], coupled partial differential equations [Duyckaerts 2007], and plate equations [Liu and Zhang 2015; Laurent and Léautaud 2021].

Under suitable assumptions on A and B, exponential stability of the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ is equivalent to "exact observability" [Tucsnak and Weiss 2009, Chapter 6] of the pair (B^{*}, A) [Slemrod 1974; Curtain and Weiss 2006]. In addition, strong stability can be characterised in terms of "approximate observability" of $\left(B^{*}, A\right)$ [Benchimol 1977]. In this paper we show that several modified concepts, each of which may be seen as "quantified approximate observability" of the pair $\left(B^{*}, A\right)$, lead to nonuniform stability of the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$. In particular, we say that $\left(B^{*}, A\right)$ satisfies the nonuniform Hautus test if there exist functions $M, m: \mathbb{R} \rightarrow\left[r_{0}, \infty\right)$ with $r_{0}>0$ such that [Miller 2012, Section 2.3]

$$
\|x\|_{X}^{2} \leq M(s)\|(i s-A) x\|_{X}^{2}+m(s)\left\|B^{*} x\right\|_{U}^{2}, \quad x \in D(A), s \in \mathbb{R} .
$$

In addition, if A is skew-adjoint we say that the pair $\left(B^{*}, A\right)$ satisfies the wavepacket condition if there exist bounded functions $\gamma, \delta: \mathbb{R} \rightarrow(0, \infty)$ such that [Miller 2012, Section 2.5]

$$
\begin{equation*}
\left\|B^{*} x\right\|_{U} \geq \gamma(s)\|x\|_{X}, \quad x \in \mathrm{WP}_{s, \delta(s)}(A), s \in \mathbb{R} \tag{1-2}
\end{equation*}
$$

Here $\mathrm{WP}_{s, \delta(s)}(A)$ denotes the spectral subspace of $-i A$ associated with the interval $(s-\delta(s), s+\delta(s))$ (elements of $\mathrm{WP}_{s, \delta(s)}(A)$ are called wavepackets of A).

The following theorem summarises our main results on these two observability concepts. The precise assumptions of Theorem 1.1 are stated in Assumption 2.1 in Section 2A, and they are automatically satisfied whenever A generates a strongly continuous contraction semigroup and $B \in \mathcal{L}(U, X)$. The results employ a function $\mu: \mathbb{R} \rightarrow\left[r_{0}, \infty\right), r_{0}>0$, such that

$$
\begin{equation*}
\left\|B^{*}(1+i s-A)^{-1} B\right\| \leq \mu(s), \quad s \in \mathbb{R} \tag{1-3}
\end{equation*}
$$

As shown in Section 2A, we may always choose μ in such a way that $\mu(s) \lesssim 1+s^{2}, s \in \mathbb{R}$. Moreover, in the case where $B \in \mathcal{L}(U, X)$ and in many concrete applications μ may be taken to be constant. Finally, a measurable function $N:[0, \infty) \rightarrow(0, \infty)$ is said to have positive increase if there exist $\alpha, c_{\alpha}, s_{0}>0$ such that $N(\lambda s) / N(s) \geq c_{\alpha} \lambda^{\alpha}$ for all $\lambda \geq 1$ and $s \geq s_{0}$.
Theorem 1.1. Assume that the operators A and B satisfy Assumption 2.1 and that $\mu: \mathbb{R} \rightarrow\left[r_{0}, \infty\right)$, $r_{0}>0$, is an even function such that (1-3) holds.

If the pair $\left(B^{*}, A\right)$ satisfies the nonuniform Hautus test for some continuous and even functions M and m, and if the function $N:[0, \infty) \rightarrow(0, \infty)$ defined by $N(\cdot):=M(\cdot) \mu(\cdot)+m(\cdot) \mu(\cdot)^{2}$ is strictly increasing and has positive increase, then $\left(T_{B}(t)\right)_{t \geq 0}$ is nonuniformly stable and

$$
\begin{equation*}
\left\|T_{B}(t) x_{0}\right\| \leq \frac{C}{N^{-1}(t)}\left\|\left(A-B B^{*}\right) x_{0}\right\|, \quad x_{0} \in D\left(A-B B^{*}\right), t \geq t_{0} \tag{1-4}
\end{equation*}
$$

for some $C, t_{0}>0$, where N^{-1} is the inverse function of N.
If A is skew-adjoint and $\left(B^{*}, A\right)$ satisfies the wavepacket condition (1-2) for continuous and even functions γ, δ such that $\gamma(\cdot)^{-1} \delta(\cdot)^{-1}$ is strictly increasing and has positive increase, then $\left(T_{B}(t)\right)_{t \geq 0}$ is nonuniformly stable and (1-4) is satisfied for $N(\cdot):=\gamma(\cdot)^{-2} \delta(\cdot)^{-2} \mu(\cdot)^{2}$.

Equations of the form (1-1) in particular include the damped second-order equation

$$
\begin{equation*}
\ddot{w}(t)+L w(t)+D D^{*} \dot{w}(t)=0, \quad w(0) \in H_{1 / 2}, \quad \dot{w}(0) \in H, \tag{1-5}
\end{equation*}
$$

for a positive operator L on a Hilbert space H and $D \in \mathcal{L}\left(U, H_{-1 / 2}\right)$, where $H_{1 / 2}$ is the domain of the fractional power $L^{1 / 2}$ and $H_{-1 / 2}$ is its dual with respect to the pivot space H. Nonuniform stability of such systems has been studied in the literature in the case where $D \in \mathcal{L}(U, H)$, and in particular it was shown in [Anantharaman and Léautaud 2014] and [Joly and Laurent 2020, Appendix B] that for such operators D the problem (1-1) is nonuniformly stable whenever the "Schrödinger group" generated by $i L$ with the observation operator D^{*} is observable in a certain generalised sense. We subsequently refer to this property as the Schrödinger group associated with the pair $\left(D^{*}, i L\right)$ being observable. In this paper we show that the same observability condition for the Schrödinger group generated by $i L$ serves as a sufficient condition for the wavepacket condition and the nonuniform Hautus test for the pair ($\left.B^{*}, A\right)$. Moreover, our results generalise the results in [Anantharaman and Léautaud 2014, Theorem 2.3] and [Joly and Laurent 2020, Appendix B] to the case of general damping operators $D \in \mathcal{L}\left(U, H_{-1 / 2}\right)$. Finally, the second part of Theorem 1.1 was proved in [Paunonen 2017, Theorem 6.3] in the special case where A is a diagonal operator with uniform spectral gap and $B \in \mathcal{L}(U, X)$.

As our last observability-type concept we introduce nonuniform observability of the pair (B^{*}, A), which requires that there exist $\beta \geq 0$ and $\tau, c_{\tau}>0$ such that

$$
\begin{equation*}
c_{\tau}\left\|(I-A)^{-\beta} x\right\|_{X}^{2} \leq \int_{0}^{\tau}\left\|B^{*} T(t) x\right\|_{U}^{2} d t, \quad x \in D(A) \tag{1-6}
\end{equation*}
$$

where $(T(t))_{t \geq 0}$ is the contraction semigroup generated by A. Note that if $\beta=0$, then nonuniform observability reduces to the classical notion of exact observability of $\left(B^{*}, A\right)$. The main result of Section 4, Theorem 4.4, shows that if $\left(B^{*}, A\right)$ is nonuniformly observable with parameter $\beta \in(0,1]$ and if
$B \in \mathcal{L}(U, X)$, then the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ is polynomially stable and (1-4) holds for $N^{-1}(t)=t^{1 /(2 \beta)}$. Related generalisations of exact observability have previously been used as sufficient conditions for nonuniform stability of damped second-order systems of the form (1-5) in [Ammari and Tucsnak 2001; Ammari and Nicaise 2015; Ammari et al. 2017]. Moreover, in the special case $\beta=\frac{1}{2}$, similar generalised observability conditions were used in [Russell 1975] and [Duyckaerts 2007, Section 5] to prove polynomial stability of (1-1). Finally, nonuniform stability of (1-5) for a special class of dampings satisfying $\left\|L^{-\beta} x\right\| \lesssim\left\|D^{*} x\right\| \lesssim\left\|L^{-\beta} x\right\|$ for some $\beta>0$ and all $x \in X$ was studied in [Liu and Zhang 2015], and for $D D^{*}=f(L)$ with some function f in [Dell'Oro and Pata 2021]. In Section 4 we show that the assumptions in [Liu and Zhang 2015] imply nonuniform observability of the pair (B^{*}, A), and our results in particular establish a new proof of [loc. cit., Theorem 2.1].

The core of our approach in Sections 3 and 4 consists of deriving upper bounds for the resolvent norms $\left\|\left(i s-A+B B^{*}\right)^{-1}\right\|, s \in \mathbb{R}$, in terms of the different types of observability-type condition. In Section 5 we address optimality of our results. In particular, we present an abstract result which describes how sharpness of the resolvent bound can be used to deduce optimality of the decay rate (1-4) of the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$. In addition, in the case where A is skew-adjoint we prove a lower bound for resolvent norms of $A-B B^{*}$ in terms of the restrictions of B^{*} to eigenspaces of A. Combining these two results allows us to prove that Theorem 1.1 is optimal in several situations of interest, and in particular if A has compact resolvent and uniformly separated eigenvalues.

In the last part of the paper we apply our main results to derive rates of energy decay for solutions of selected PDE models, namely wave equations on one- and two-dimensional spatial domains with different types of damping, a fractionally damped Klein-Gordon equation, and a weakly damped Euler-Bernoulli beam equation. In most of these examples the wavepackets are simply finite linear combinations of eigenfunctions [Tucsnak and Weiss 2009, Section 6.9]. In our one-dimensional wave and beam equations, the eigenvalues of A have a uniform spectral gap and, as a result, we obtain a particularly simple form of the wavepacket condition (1-2). Moreover, our general optimality results in Section 5 guarantee that the decay estimates we obtain in these cases are sharp. On the other hand, for two-dimensional wave equations with viscous damping our results are typically suboptimal. This is due to the phenomenon that in certain cases the smoothness of the damping profile improves the degree of polynomial stability [Burq and Hitrik 2007; Anantharaman and Léautaud 2014; Datchev and Kleinhenz 2020], whereas observability-type conditions do not in general distinguish between smooth and rough dampings. Indeed, comparing different types of viscous damping reveals natural limitations to optimality of decay rates derived from observability conditions, and we discuss this topic in detail in Section 6A.

The paper is organised as follows. In Section 2 we state the main assumptions on the operators A and B and recall essential results concerning nonuniform stability of strongly continuous semigroups. In Section 3 we present the main results showing that the nonuniform Hautus test and the wavepacket condition imply nonuniform stability of $\left(T_{B}(t)\right)_{t \geq 0}$. In particular, in the second part of Section 3 we reformulate these results specifically for damped second-order systems, and present sufficient conditions for nonuniform stability of (1-5) based on observability of the Schrödinger group. Next, in Section 4 we show that nonuniform observability in the sense of (1-6) implies polynomial stability of $\left(T_{B}(t)\right)_{t \geq 0}$.

In Section 5 we present a series of abstract results concerning optimality of the stability results in the previous sections. Finally, in Section 6 we study energy decay for several PDE models.

Notation. If X and Y are Banach spaces and $A: D(A) \subseteq X \rightarrow Y$ is a linear operator, we denote by $D(A)$, $\operatorname{Ker}(A)$ and $\operatorname{Ran}(A)$ the domain, kernel and range of A, respectively. Moreover, $\sigma(A), \sigma_{p}(A)$, and $\rho(A)$ denote the spectrum, the point spectrum and the resolvent set of A, respectively. The space of bounded linear operators from X to Y is denoted by $\mathcal{L}(X, Y)$. The notation $X \hookrightarrow Y$ will mean that $X \subseteq Y$ with continuous and dense embedding. We denote the norm on a space X by $\|\cdot\|_{X}$ and its inner product by $\langle\cdot, \cdot\rangle_{X}$, and we omit the subscripts when there is no risk of ambiguity. We assume all our Banach and Hilbert spaces to be complex.

Let $\mathbb{R}_{+}:=[0, \infty)$, and denote the open right and left half-planes by $\mathbb{C}_{+}=\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda>0\}$ and $\mathbb{C}_{-}=\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda<0\}$, respectively. We denote by χ_{E} the characteristic function of a set E. For two functions $f: E \subseteq \mathbb{R} \rightarrow \mathbb{R}_{+}$and $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$we write $f(t)=O(g(|t|))$ if there exist $C, t_{0}>0$ such that $f(t) \leq C g(|t|)$ whenever $|t| \geq t_{0}$. If in addition $g(t)>0$ whenever $|t| \geq t_{0}$, we write $f(t)=o(g(|t|))$ if $f(t) / g(|t|) \rightarrow 0$ as $|t| \rightarrow \infty$. For real-valued quantities p and q, we use the notation $p \lesssim q$ if $p \leq C q$ for some constant $C>0$ which is independent of all the parameters that are free to vary in the given situation. The notation $p \gtrsim q$ is defined analogously.

2. Preliminaries

2A. Standing assumptions and well-posedness. Let $A: D(A) \subseteq X \rightarrow X$ be the generator of a contraction semigroup $(T(t))_{t \geq 0}$ on a Hilbert space X. All semigroups considered in this paper are strongly continuous. For $\lambda_{0} \in \rho(A)$ we equip $D(A)$ with the graph norm $\|x\|_{1}=\left\|\left(\lambda_{0}-A\right) x\right\|_{X}, x \in D(A)$, and denote the Hilbert space defined in this way by X_{1}. Defining X_{-1} as the completion of X with respect to the norm $\|x\|_{-1}=\left\|\left(\lambda_{0}-A\right)^{-1} x\right\|_{X}$, we obtain a Hilbert space X_{-1} such that $X_{1} \hookrightarrow X \hookrightarrow X_{-1}$. The operator A has a unique extension A_{-1} to X_{-1}, with domain $D\left(A_{-1}\right)=X$, and A_{-1} generates a contraction semigroup $\left(T_{-1}(t)\right)_{t \geq 0}$ on X_{-1} which is unitarily equivalent to $(T(t))_{t \geq 0}$. In particular, $A_{-1} \in \mathcal{L}\left(X, X_{-1}\right)$ and the operators A, A_{-1} are unitarily equivalent and thus have the same spectrum. Moreover, any $S \in \mathcal{L}(X)$ commuting with A has a (unique) continuous extension to an operator in $\mathcal{L}\left(X_{-1}\right)$, unitarily equivalent to S; see [Tucsnak and Weiss 2009, Section 2.10].

To state our main assumptions, we let V be a Hilbert space such that $X_{1} \subseteq V \subseteq X$ with continuous embeddings. In particular, V is dense in X and we consider the Gelfand triple $V \hookrightarrow X \hookrightarrow V^{*}$, where V^{*} is the dual of V with respect to the pivot space X [Tucsnak and Weiss 2009, Section 2.9]. We denote by $\langle\cdot, \cdot\rangle_{V^{*}, V}: V^{*} \times V \rightarrow \mathbb{C}$ the unique continuous extension of the inner product of X, and we define $V_{A}:=\left\{x \in V: A_{-1} x \in V^{*}\right\}$. In the following we state our standing assumptions on the operators $A: D(A) \subseteq X \rightarrow X$ and $B \in \mathcal{L}\left(U, X_{-1}\right)$, where U is another Hilbert space.

Assumption 2.1. The operators $A: D(A) \subseteq X \rightarrow X$ and $B \in \mathcal{L}\left(U, X_{-1}\right)$ have the following properties.
(H1) The generator A of the contraction semigroup $(T(t))_{t \geq 0}$ satisfies $\operatorname{Re}\left\langle A_{-1} x, x\right\rangle_{V^{*}, V} \leq 0$ for all $x \in V_{A}$. (H2) We have $B \in \mathcal{L}\left(U, V^{*}\right)$ and $\operatorname{Ran}\left(\left(\lambda_{0}-A_{-1}\right)^{-1} B\right) \subseteq V$ for some (or equivalently all) $\lambda_{0} \in \rho(A)$.

Assumption 2.1 in particular requires that $\operatorname{Ran}(B) \subseteq X_{-1} \cap V^{*}$. Note that when A is not skew-adjoint, the space V^{*} is not necessarily contained in X_{-1}; it is instead a subspace of X_{-1}^{d}, the first extrapolation space for the adjoint A^{*} [Tucsnak and Weiss 2009, Section 2.10]. If $B \in \mathcal{L}(U, X)$, which we will refer to as B being bounded, then Assumption 2.1 is automatically satisfied for any generator A of a contraction semigroup $(T(t))_{t \geq 0}$ with the choices $V=V^{*}=X$.

We write $B^{*} \in \mathcal{L}(V, U)$ for the adjoint of $B \in \mathcal{L}\left(U, V^{*}\right)$, where V is identified with $\left(V^{*}\right)^{*}$ via the pivot duality through X. In particular,

$$
\langle B u, x\rangle_{V^{*}, V}=\left\langle u, B^{*} x\right\rangle_{U}, \quad x \in V, u \in U .
$$

Moreover, (H2) in Assumption 2.1 and the closed graph theorem imply that $B^{*}\left(\lambda-A_{-1}\right)^{-1} B \in \mathcal{L}(U)$ for all $\lambda \in \rho(A)$. We formally define the operator $A_{B}=A_{-1}-B B^{*}$ on X by

$$
\begin{gather*}
A_{B} x=A_{-1} x-B B^{*} x, \quad x \in D\left(A_{B}\right), \tag{2-1a}\\
D\left(A_{B}\right)=\left\{x \in V: A_{-1} x-B B^{*} x \in X\right\} . \tag{2-1b}
\end{gather*}
$$

As shown in the following lemma, Assumption 2.1 guarantees that A_{B} generates a contraction semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ on X. In particular, the orbits of this semigroup are the solutions of the abstract Cauchy problem

$$
\begin{align*}
& \dot{x}(t)=A_{B} x(t), \quad t \geq 0, \tag{2-2a}\\
& x(0)=x_{0} \in X . \tag{2-2b}
\end{align*}
$$

For $x_{0} \in X$ the orbit $x(\cdot)=T_{B}(\cdot) x_{0}$ is a mild solution of (2-2), and it is a classical solution if and only if $x_{0} \in D\left(A_{B}\right)$ [Arendt et al. 2011, Chapter 3].

Lemma 2.2. Let A and B satisfy Assumption 2.1. Then the operator A_{B} defined in (2-1) generates a strongly continuous contraction semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ on X. Moreover, we have $\rho(A) \cap \overline{\mathbb{C}}_{+} \subseteq \rho\left(A_{B}\right) \cap \overline{\mathbb{C}}_{+}$,

$$
\begin{equation*}
\operatorname{Re}\left\langle\left(i s-A_{B}\right) x, x\right\rangle \geq\left\|B^{*} x\right\|^{2}, \quad s \in \mathbb{R}, x \in D\left(A_{B}\right), \tag{2-3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(\lambda-A_{-1}\right)^{-1} B\right\|^{2} \leq \frac{1}{\operatorname{Re} \lambda}\left\|B^{*}\left(\lambda-A_{-1}\right)^{-1} B\right\|, \quad \lambda \in \mathbb{C}_{+} . \tag{2-4}
\end{equation*}
$$

Proof. First note that if $x \in X$ and $u \in U$ are such that $A_{-1} x+B u=: y \in X$, then condition (H2) implies that for any $\lambda_{0} \in \rho(A)$ we have $x=\left(\lambda_{0}-A_{-1}\right)^{-1}\left(\lambda_{0} x-y+B u\right) \in V$ and $A_{-1} x=y-B u \in V^{*}$. Thus $x \in V_{A}$ and condition (H1) implies that

$$
\begin{align*}
\operatorname{Re}\left\langle A_{-1} x+B u, x\right\rangle_{X} & =\operatorname{Re}\left\langle A_{-1} x, x\right\rangle_{V^{*}, V}+\operatorname{Re}\langle B u, x\rangle_{V^{*}, V} \tag{2-5a}\\
& \leq \operatorname{Re}\left\langle B^{*} x, u\right\rangle_{U} . \tag{2-5b}
\end{align*}
$$

Let $s \in \mathbb{R}$ and $x \in D\left(A_{B}\right)$, and choose $u=-B^{*} x$. Then (2-5) immediately implies (2-3). In particular, A_{B} is dissipative.

To prove that $\rho(A) \cap \overline{\mathbb{C}}_{+} \subseteq \rho\left(A_{B}\right) \cap \overline{\mathbb{C}}_{+}$, fix $\lambda \in \rho(A) \cap \overline{\mathbb{C}}_{+}$, let $u \in U$ and choose $x=\left(\lambda-A_{-1}\right)^{-1} B u$. Then $A_{-1} x+B u=\lambda\left(\lambda-A_{-1}\right)^{-1} B u \in X$ and (2-5) implies that

$$
(\operatorname{Re} \lambda)\left\|\left(\lambda-A_{-1}\right)^{-1} B u\right\|^{2} \leq \operatorname{Re}\left\langle B^{*}\left(\lambda-A_{-1}\right)^{-1} B u, u\right\rangle .
$$

In particular, this inequality implies (2-4). Moreover, this estimate shows that the operator $G(\lambda):=$ $B^{*}\left(\lambda-A_{-1}\right)^{-1} B \in \mathcal{L}(U)$ satisfies $\operatorname{Re} G(\lambda) \geq 0$, and consequently $I+G(\lambda)$ is boundedly invertible in $\mathcal{L}(U)$. A direct verification shows that $\lambda-A_{B}$ has bounded inverse given by

$$
\begin{equation*}
\left(\lambda-A_{B}\right)^{-1}=\left(\lambda-A_{-1}\right)^{-1}\left(I-B(I+G(\lambda))^{-1} B^{*}(\lambda-A)^{-1}\right), \tag{2-6}
\end{equation*}
$$

and we deduce the required spectral inclusion $\rho(A) \cap \overline{\mathbb{C}}_{+} \subseteq \rho\left(A_{B}\right) \cap \overline{\mathbb{C}}_{+}$. In particular, A_{B} is closed. Since A_{B} is dissipative and $\mathbb{C}_{+} \subseteq \rho\left(A_{B}\right)$, its domain is dense in X by [Tucsnak and Weiss 2009, Proposition 3.1.6]. Hence A_{B} is m-dissipative, and by the Lumer-Phillips theorem it generates a strongly continuous contraction semigroup on X.

Remark 2.3. If Assumption 2.1 holds, then for every $\lambda \in \mathbb{C}_{+}$the right-hand side of (2-6) extends uniquely to a mapping from the (not necessarily closed) subspace $X+\operatorname{Ran}(B)$ of X_{-1} to X, simply by replacing $(\lambda-A)^{-1}$ by $\left(\lambda-A_{-1}\right)^{-1}$. We use this formula to define the extension of $\left(\lambda-A_{B}\right)^{-1}$ to an operator $\left(\lambda-A_{B}\right)^{-1}: X+\operatorname{Ran}(B) \rightarrow X$. In particular, we have

$$
\left(\lambda-A_{B}\right)^{-1} B=\left(\lambda-A_{-1}\right)^{-1} B(I+G(\lambda))^{-1} \in \mathcal{L}(U, X)
$$

for $\lambda \in \mathbb{C}_{+}$. The identity $\left(\lambda-A_{B}\right)^{-1}=\left(I+(1-\lambda)\left(\lambda-A_{B}\right)^{-1}\right)\left(1-A_{B}\right)^{-1}$ shows that also for arbitrary $\lambda \in \rho\left(A_{B}\right)$ the operator $\left(\lambda-A_{B}\right)^{-1}$ extends uniquely to a mapping from $X+\operatorname{Ran} B$ into X, and that $\left(\lambda-A_{B}\right)^{-1} B \in \mathcal{L}(U, X)$. For $\lambda \in \rho\left(A_{B}\right)$ and $u \in U$ we have $\left(\lambda-A_{B}\right)^{-1} B u \in V$ and

$$
\left(\lambda-A_{-1}+B B^{*}\right)\left(\lambda-A_{B}\right)^{-1} B u=B u,
$$

and if $x \in V$ is such that $\left(\lambda-A_{-1}+B B^{*}\right) x \in X+\operatorname{Ran}(B)$ (in particular, if $x \in D(A)$), then

$$
\left(\lambda-A_{B}\right)^{-1}\left(\lambda-A_{-1}+B B^{*}\right) x=x .
$$

Remark 2.4. Define $X_{B}:=D(A)+\operatorname{Ran}\left(\left(\lambda_{0}-A_{-1}\right)^{-1} B\right)$, where $\lambda_{0} \in \rho(A)$. The space X_{B} is independent of the choice of λ_{0}, and $X_{B} \subseteq V$ by Assumption 2.1. Moreover, the domain of A_{B} has the useful alternative characterisation

$$
D\left(A_{B}\right)=\left\{x \in X_{B}: A_{-1} x+B B^{*} x \in X\right\} .
$$

Here the nontrivial inclusion can be verified as in the beginning of the proof of Lemma 2.2.
Our results in Section 3 employ a parameter which describes the growth of the operator-valued function $\lambda \mapsto B^{*}\left(\lambda-A_{-1}\right)^{-1} B$ on a vertical line in \mathbb{C}_{+}. In particular, we take $\mu: \mathbb{R} \rightarrow\left[r_{0}, \infty\right), r_{0}>0$, to be a function such that

$$
\begin{equation*}
\left\|B^{*}\left(1+i s-A_{-1}\right)^{-1} B\right\| \leq \mu(s), \quad s \in \mathbb{R}, \tag{2-7}
\end{equation*}
$$

and the rate of growth of μ affects the resolvent estimates in our results. The following lemma shows that μ can be taken to be uniformly bounded whenever $B \in \mathcal{L}(U, X)$, and that estimate (2-7) always holds for a quadratic function μ.
Lemma 2.5. If A and B satisfy Assumption 2.1, then the following hold:
(a) The estimate (2-7) holds for $\mu(s)=c\left(1+s^{2}\right), s \in \mathbb{R}$, for some $c>0$.
(b) If $B \in \mathcal{L}(U, X)$, then (2-7) holds for $\mu(s) \equiv c$ with some $c>0$.
(c) If (2-7) holds, then $\left\|\left(1+i s-A_{-1}\right)^{-1} B\right\| \leq \mu(s)^{1 / 2}$ for $s \in \mathbb{R}$.

Proof. Part (b) follows directly from the assumption that A generates a contraction semigroup, which implies that $\left\|(1+i s-A)^{-1}\right\| \leq 1$ for all $s \in \mathbb{R}$. Moreover, part (c) follows from (2-4) in Lemma 2.2. To prove part (a), fix $s \in \mathbb{R}$ and let $R=\left(1+i s-A_{-1}\right)^{-1}$. Using the identity $R=\left(I-A_{-1}\right)^{-1}-i s(I-A)^{-1} R$ we see that

$$
\left\|B^{*} R B\right\| \leq\left\|B^{*}\left(I-A_{-1}\right)^{-1} B\right\|+|s|\left\|B^{*}(I-A)^{-1}\right\|\|R B\| \lesssim 1+|s|\|R B\|
$$

and similarly

$$
\|R B\| \leq\left\|\left(I-A_{-1}\right)^{-1} B\right\|+|s|\left\|(1+i s-A)^{-1}\right\|\left\|\left(I-A_{-1}\right)^{-1} B\right\| \lesssim 1+|s| .
$$

Together these estimates give $\left\|B^{*}\left(1+i s-A_{-1}\right)^{-1} B\right\| \lesssim 1+s^{2}, s \in \mathbb{R}$.
Estimates of the form (2-7) have been studied extensively in the control theory literature. In particular, for a bounded function μ the estimate in (2-7) is known as the property of well-posedness of the operatorvalued "transfer function" $\lambda \mapsto B^{*}\left(\lambda-A_{-1}\right)^{-1} B$; see [Salamon 1987; Guo and Luo 2002; Staffans 2002; Tucsnak and Weiss 2014]. This property has been verified in the literature for several different types of PDE systems; see for instance [Ammari and Tucsnak 2001; Guo and Luo 2002; Lasiecka and Triggiani 2003; Tucsnak and Weiss 2014; Ammari and Nicaise 2015]. As shown in the next lemma, validity of (2-7) for a bounded function μ moreover implies that B^{*} is an admissible observation operator for the semigroup $(T(t))_{t \geq 0}$, which is to say that $B^{*} T(\cdot) x \in L^{2}(0, \tau ; U)$ for all $x \in D(A)$ and $\tau>0$. This property will be useful in discussing the relationship between our results and existing results in the literature. In addition, the following lemma shows that under the same assumption B is an admissible control operator in the sense that $\int_{0}^{\tau} T_{-1}(\tau-t) B u(t) d t \in X$ for all $u \in L^{2}(0, \tau ; U)$ and $\tau>0$.
Lemma 2.6. Let A and B satisfy Assumption 2.1. If (2-7) is satisfied for a bounded function μ, then B and B^{*} are, respectively, admissible control and observation operators for the semigroup $(T(t))_{t \geq 0}$ generated by A.

Proof. Since A and B satisfy Assumption 2.1, it is straightforward to verify that the operator $S: D(S) \subseteq$ $X \times U \rightarrow X \times U$ defined by

$$
S=\left(\begin{array}{cc}
A_{-1} & B \\
B^{*} & 0
\end{array}\right), \quad D(S)=\left\{\binom{x}{u} \in X \times U: A_{-1} x+B u \in X\right\}
$$

is a system node on (U, X, U) in the sense of [Staffans 2002, Definition 2.1]. Moreover, estimate (2-5) for $(x, u) \in D(S)$ and [loc. cit., Theorem 4.2] imply that the system node S is impedance passive in the sense of [loc. cit., Definition 4.1]. The transfer function of the system node S is given by $G(\lambda)=B^{*}\left(\lambda-A_{-1}\right)^{-1} B$ for $\lambda \in \rho(A)$. Hence the assumption that (2-7) is satisfied for a bounded function μ together with [loc. cit., Theorem 5.1] imply that the system node S is well-posed in the sense of [loc. cit., Definition 2.6]. In particular, $B \in \mathcal{L}\left(U, X_{-1}\right)$ and $B^{*} \in \mathcal{L}\left(X_{1}, U\right)$ are, respectively, admissible control and observation operators for the semigroup generated by A.

2B. Damped second-order problems. In this section we wish to use the framework introduced in Section 2A to study a class of abstract second-order equations with damping. To this end, we consider a positive self-adjoint and boundedly invertible operator $L: D(L) \subseteq H \rightarrow H$ on a Hilbert space H. We write H_{1} for the domain of L equipped with the norm $\|x\|_{H_{1}}=\|L x\|_{H}, x \in H_{1}$, and define $H_{1 / 2}$ to be the domain of the fractional power $L^{1 / 2}$ equipped with the norm $\|x\|_{H_{1 / 2}}=\left\|L^{1 / 2} x\right\|_{H}, x \in H_{1 / 2}$. We denote by $H_{-1 / 2}$ the dual of $H_{1 / 2}$ with respect to the pivot space H. For an operator $D \in \mathcal{L}\left(U, H_{-1 / 2}\right)$, where U is another Hilbert space, we consider the differential equation

$$
\begin{gather*}
\ddot{w}(t)+L w(t)+D D^{*} \dot{w}(t)=0, \quad t \geq 0 \tag{2-8a}\\
w(0)=w_{0} \in H_{1 / 2}, \quad \dot{w}(0)=w_{1} \in H . \tag{2-8b}
\end{gather*}
$$

Such systems have been studied extensively; see for instance [Lasiecka and Triggiani 2000; Guo and Luo 2002; Anantharaman and Léautaud 2014; Ammari and Nicaise 2015; Ammari and Tucsnak 2001] and the references therein. This class of systems in particular contains the wave equation with viscous damping on a two-dimensional bounded and convex domain $\Omega \subseteq \mathbb{R}^{2}$ with (necessarily Lipschitz) boundary $\partial \Omega$,

$$
w_{t t}(\xi, t)-\Delta w(\xi, t)+b(\xi)^{2} w_{t}(\xi, t)=0, \quad t>0
$$

where $b \in L^{\infty}(\Omega)$ is a nonnegative function and we impose Dirichlet boundary conditions. In this situation we may choose $H=U=L^{2}(\Omega)$, let $L=-\Delta$ be the (negative) Laplacian on H with Dirichlet boundary conditions, and define $D \in \mathcal{L}(U, H)$ by $D u=b u$ for all $u \in U$. This partial differential equation will be studied in detail in Section 6A.

In order to formulate the abstract system (2-8) as a first-order abstract Cauchy problem of the form (2-2), we proceed as in [Tucsnak and Weiss 2014, Section 6]. In particular, we let $x(\cdot)=(w(\cdot), \dot{w}(\cdot))$ and take X to be the Hilbert space $X=H_{1 / 2} \times H$ equipped with the inner product $\langle x, y\rangle_{X}=\left\langle x_{1}, y_{1}\right\rangle_{H_{1 / 2}}+\left\langle x_{2}, y_{2}\right\rangle_{H}$ for $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in X$. The operators $A: D(A) \subseteq X \rightarrow X$ and $B: U \rightarrow X_{-1}$ in Section 2A are defined as

$$
A=\left(\begin{array}{rr}
0 & I \\
-L & 0
\end{array}\right) \quad \text { and } \quad B=\binom{0}{D}
$$

with $D(A)=H_{1} \times H_{1 / 2}$ and $X_{-1}=H \times H_{-1 / 2}$. Then A is a skew-adjoint operator and thus it generates a unitary group $(T(t))_{t \in \mathbb{R}}$ on X. We may choose $V=H_{1 / 2} \times H_{1 / 2}$, which has the corresponding dual space $V^{*}=H_{1 / 2} \times H_{-1 / 2}$. The dual pairing of V and V^{*} is given by

$$
\langle x, y\rangle_{V^{*}, V}=\left\langle x_{1}, y_{1}\right\rangle_{H_{1 / 2}}+\left\langle x_{2}, y_{2}\right\rangle_{H_{-1 / 2}, H_{1 / 2}}
$$

for $x=\left(x_{1}, x_{2}\right) \in V^{*}, y=\left(y_{1}, y_{2}\right) \in V$.
Condition (H1) is satisfied since $\operatorname{Re}\left\langle A_{-1} x, x\right\rangle_{V^{*}, V}=0$ for $x \in V=V_{A}$, as is easily verified. In addition, we have both $B \in \mathcal{L}\left(U, X_{-1}\right)$ and $B \in \mathcal{L}\left(U, V^{*}\right)$. For $\lambda \in \rho(A)$ the resolvent of A has the form

$$
(\lambda-A)^{-1}=\left(\begin{array}{cc}
\lambda\left(\lambda^{2}+L\right)^{-1} & \left(\lambda^{2}+L\right)^{-1} \\
-L\left(\lambda^{2}+L\right)^{-1} & \lambda\left(\lambda^{2}+L\right)^{-1}
\end{array}\right),
$$

and an analogous formula holds for $\left(\lambda-A_{-1}\right)^{-1}$. Therefore we in particular have $\operatorname{Ran}\left(A_{-1}^{-1} B\right) \subseteq V$, and thus condition (H2) in Assumption 2.1 is satisfied. By Lemma 2.2 the operator A_{B} defined in (2-1)
generates a contraction semigroup on X, as also shown in [Lasiecka and Triggiani 2000, Proposition 7.6.1] and [Guo and Luo 2002, Theorem 1].

It is straightforward to see that $B^{*}=\left(0, D^{*}\right) \in \mathcal{L}(V, U)$, where $D^{*} \in \mathcal{L}\left(H_{1 / 2}, U\right)$ is the adjoint of $D \in \mathcal{L}\left(U, H_{-1 / 2}\right)$. Therefore the formula for $\left(\lambda-A_{-1}\right)^{-1}$ implies that

$$
B^{*}\left(\lambda-A_{-1}\right)^{-1} B=\lambda D^{*}\left(\lambda^{2}+L_{-1}\right)^{-1} D, \quad \lambda \in \mathbb{C}_{+} .
$$

Moreover, $\left\|D^{*}\left((1+i s)^{2}+L_{-1}\right)^{-1} D\right\|=\left\|D^{*}\left((1-i s)^{2}+L_{-1}\right)^{-1} D\right\|, s \in \mathbb{R}$. Hence if

$$
\begin{equation*}
s\left\|D^{*}\left((1+i s)^{2}+L_{-1}\right)^{-1} D\right\| \leq \mu_{0}(s), \quad s \in \mathbb{R}_{+}, \tag{2-9}
\end{equation*}
$$

for some $\mu_{0}: \mathbb{R}_{+} \rightarrow\left[r_{0}^{\prime}, \infty\right), r_{0}^{\prime}>0$, then condition (2-7) holds for some even function $\mu: \mathbb{R} \rightarrow\left[r_{0}, \infty\right)$, $r_{0}>0$, satisfying $\mu(s) \lesssim \mu_{0}(|s|), s \in \mathbb{R}$. Conversely, property (2-7) implies the above estimate for $\mu_{0}: \mathbb{R}_{+} \rightarrow\left[r_{0}, \infty\right)$ defined by $\mu_{0}(s)=\mu(s), s \in \mathbb{R}_{+}$. The estimate (2-9) has been shown to hold for a bounded function μ_{0} for several PDE models having our second-order form (2-8); see for instance [Ammari and Tucsnak 2001; Guo and Luo 2002; Lasiecka and Triggiani 2003]. On the other hand, as shown in [Lasiecka and Triggiani 1981] and [Weiss 2003, Section 4], unbounded functions μ_{0} are needed in some cases including wave equations with boundary damping. In the case where $D \in \mathcal{L}(U, H)$, we have $B \in \mathcal{L}(U, X)$ and, in particular, (2-7) holds for a bounded function μ by Lemma 2.5.

2C. Resolvent estimates and nonuniform stability. Throughout the paper we are interested in finding sufficient conditions for the spectrum of the operator A_{B} defined in (2-1) to be contained in $\mathbb{C}_{\text {_ }}$ and in obtaining a resolvent estimate of the form

$$
\begin{equation*}
\left\|\left(i s-A_{B}\right)^{-1}\right\| \leq N(s), \quad s \in \mathbb{R}, \tag{2-10}
\end{equation*}
$$

for an explicit function $N: \mathbb{R} \rightarrow(0, \infty)$.
In order to pass from the resolvent estimate (2-10) to sharp rates of decay for the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ we make use of the following abstract result from [Rozendaal et al. 2019, Theorem 3.2]; see [Borichev and Tomilov 2010, Theorem 2.4] for the case where N is a polynomial. Recall that a measurable function $N: \mathbb{R}_{+} \rightarrow(0, \infty)$ is said to have positive increase if there exist constants $\alpha, s_{0}>0$ and $c_{\alpha} \in(0,1]$ such that

$$
\begin{equation*}
\frac{N(\lambda s)}{N(s)} \geq c_{\alpha} \lambda^{\alpha}, \quad \lambda \geq 1, s \geq s_{0} . \tag{2-11}
\end{equation*}
$$

When $N: \mathbb{R}_{+} \rightarrow(0, \infty)$ is nondecreasing but not necessarily strictly increasing we take N^{-1} to denote the right-continuous right-inverse of N defined by $N^{-1}(t)=\sup \{s \geq 0: N(s) \leq t\}$ for $t \geq N(0)$.

Theorem 2.7 [Rozendaal et al. 2019, Theorem 3.2]. Let $(T(t))_{t \geq 0}$ be a strongly continuous contraction semigroup on a Hilbert space X, with generator A. If $i \mathbb{R} \subseteq \rho(A)$ and if $\|(\text { is }-A)^{-1} \| \leq N(|s|)$ for all $s \in \mathbb{R}$, where $N: \mathbb{R}_{+} \rightarrow(0, \infty)$ is a continuous nondecreasing function of positive increase, then

$$
\begin{equation*}
\left\|T(t) A^{-1}\right\|=O\left(\frac{1}{N^{-1}(t)}\right), \quad t \rightarrow \infty . \tag{2-12}
\end{equation*}
$$

The class of functions satisfying (2-11) contains all regularly varying functions $N: \mathbb{R}_{+} \rightarrow(0, \infty)$ which have positive index [Rozendaal et al. 2019, Section 2], and in particular it contains any measurable
function $N: \mathbb{R}_{+} \rightarrow(0, \infty)$ defined for all sufficiently large values of $s \geq 0$ by $N(s)=s^{\alpha} \log (s)^{\beta}$, where $\alpha>0$ and $\beta \in \mathbb{R}$. As discussed in [Borichev and Tomilov 2010; Rozendaal et al. 2019; Debruyne and Seifert 2019], Theorem 2.7 is optimal in several senses, and for a large class of semigroups the condition of positive increase is even a necessary condition for (2-12) to hold.

Remark 2.8. If $N(s)=C(1+|s|)^{\alpha}$ in Theorem 2.7 for some constants $C, \alpha>0$, then (2-12) becomes $\left\|T(t) A^{-1}\right\|=O\left(t^{1 / \alpha}\right)$ as $t \rightarrow \infty$. It is shown in [Borichev and Tomilov 2010, Theorem 2.4] that for individual orbits of $(T(t))_{t \geq 0}$ one obtains the even better decay rate $\|T(t) x\|=o\left(t^{-1 / \alpha}\right)$ as $t \rightarrow \infty$ for all $x \in D(A)$.

In subsequent sections we shall repeatedly make use of the following lemma when proving resolvent estimates; see, e.g., [Arendt et al. 2011, Proposition 4.3.6] for a proof of a more general result.

Lemma 2.9. Let A be the generator of a contraction semigroup on a Hilbert space X and let $s \in \mathbb{R}$. If there exists $c_{s}>0$ such that

$$
\begin{equation*}
\|x\| \leq c_{s}\|(i s-A) x\|, \quad x \in D(A) \tag{2-13}
\end{equation*}
$$

then is $\in \rho(A)$ and $\left\|(i s-A)^{-1}\right\| \leq c_{s}$.
We shall also make use of the following lemma on adjoints in the case where A is a skew-adjoint operator. Here the composition $\left(\lambda-A_{B}\right)^{-1} B$ in part (b) is defined as in Remark 2.3.

Lemma 2.10. Let A and B satisfy Assumption 2.1 and assume that A is skew-adjoint.
(a) We have

$$
\left(\left(\lambda-A_{-1}\right)^{-1} B\right)^{*}=B^{*}(\bar{\lambda}+A)^{-1}, \quad \lambda \in \rho(A) .
$$

(b) If $\operatorname{Re}\left\langle A_{-1} x, x\right\rangle_{V^{*}, V}=0$ for all $x \in V_{A}$, then the adjoint A_{B}^{*} of A_{B} defined in (2-1) is given by

$$
\begin{align*}
& A_{B}^{*} x=-A_{-1} x-B B^{*} x, \quad x \in D\left(A_{B}^{*}\right), \tag{2-14a}\\
& D\left(A_{B}^{*}\right)=\left\{x \in V: A_{-1} x+B B^{*} x \in X\right\} . \tag{2-14b}
\end{align*}
$$

Moreover, $\left(\left(\lambda-A_{B}\right)^{-1} B\right)^{*}=B^{*}\left(\bar{\lambda}-A_{B}^{*}\right)^{-1}$ for $\lambda \in \rho\left(A_{B}\right) \cap \overline{\mathbb{C}}_{+}$.
Proof. To prove part (a), let $\lambda \in \rho(A), x \in X$ and $u \in U$. By density of X in X_{-1}, we may find a sequence $\left(y_{k}\right)_{k \in \mathbb{N}} \subseteq X$ such that $\left\|y_{k}-B u\right\|_{X_{-1}} \rightarrow 0$ as $k \rightarrow \infty$. Since $\left(\bar{\lambda}+A_{-1}\right)^{-1} \in \mathcal{L}\left(X_{-1}, X\right)$, we also have

$$
\left\|\left(\bar{\lambda}+A_{-1}\right)^{-1} B u-(\bar{\lambda}+A)^{-1} y_{k}\right\|_{X} \rightarrow 0, \quad k \rightarrow \infty .
$$

Hence the definition of B^{*} and skew-adjointness of A imply that

$$
\begin{aligned}
\left\langle u, B^{*}(\lambda-A)^{-1} x\right\rangle_{U} & =\left\langle B u,(\lambda-A)^{-1} x\right\rangle_{V^{*}, V}=\left\langle B u,(\lambda-A)^{-1} x\right\rangle_{X_{-1}, X_{1}} \\
& =\lim _{k \rightarrow \infty}\left\langle y_{k},(\lambda-A)^{-1} x\right\rangle_{X_{-1}, X_{1}}=\lim _{k \rightarrow \infty}\left\langle y_{k},(\lambda-A)^{-1} x\right\rangle_{X} \\
& =\lim _{k \rightarrow \infty}\left\langle(\bar{\lambda}+A)^{-1} y_{k}, x\right\rangle_{X}=\left\langle\left(\bar{\lambda}+A_{-1}\right)^{-1} B u, x\right\rangle_{X} .
\end{aligned}
$$

Since x and u were arbitrary, we have $\left(B^{*}(\lambda-A)^{-1}\right)^{*}=\left(\bar{\lambda}+A_{-1}\right)^{-1} B$.

To prove (b), we define

$$
\begin{aligned}
& \tilde{A}_{B} x=-A_{-1} x-B B^{*} x, \quad x \in D\left(\tilde{A}_{B}\right), \\
& D\left(\tilde{A}_{B}\right)=\left\{x \in V: A_{-1} x+B B^{*} x \in X\right\} .
\end{aligned}
$$

Since $-A$ and B satisfy Assumption 2.1 (with the same choice of V), \tilde{A}_{B} generates a contraction semigroup on X by Lemma 2.2. The assumption that $\operatorname{Re}\left\langle A_{-1} x, x\right\rangle_{V^{*}, V}=0$ for $x \in V_{A}$ and a simple polarisation argument imply that $\left\langle A_{-1} x, y\right\rangle_{V^{*}, V}=-\left\langle x, A_{-1} y\right\rangle_{V, V^{*}}$ for $x, y \in V_{A}$, where we define $\left\langle z_{1}, z_{2}\right\rangle_{V, V^{*}}:=\overline{\left\langle z_{2}, z_{1}\right\rangle_{V^{*}, V}}$ for $z_{1} \in V, z_{2} \in V^{*}$. Hence if $x \in D\left(A_{B}\right) \subseteq V_{A}$ and $y \in D\left(\tilde{A}_{B}\right) \subseteq V_{A}$, then

$$
\left\langle A_{B} x, y\right\rangle_{X}=\left\langle A_{-1} x-B B^{*} x, y\right\rangle_{V^{*}, V}=\left\langle x,\left(-A_{-1}-B B^{*}\right) y\right\rangle_{V, V^{*}}=\left\langle x, \tilde{A}_{B} y\right\rangle_{X} .
$$

Thus A_{B}^{*} is an extension of \tilde{A}_{B}, and since $\rho\left(A_{B}^{*}\right) \cap \rho\left(\tilde{A}_{B}\right) \neq \varnothing$ we further see that $A_{B}^{*}=\tilde{A}_{B}$.
Now let $\lambda \in \rho\left(A_{B}\right) \cap \overline{\mathbb{C}}_{+}, x \in X$ and $u \in U$. We have $\left(\bar{\lambda}-A_{B}^{*}\right)^{-1} x \in D\left(A_{B}^{*}\right) \subseteq V_{A}$. Moreover, by Remark 2.3 we have $\left(\lambda-A_{B}\right)^{-1} B u \in V_{A}$ and

$$
\begin{aligned}
\left\langle u, B^{*}\left(\bar{\lambda}-A_{B}^{*}\right)^{-1} x\right\rangle_{U} & =\left\langle B u,\left(\bar{\lambda}-A_{B}^{*}\right)^{-1} x\right\rangle_{V^{*}, V} \\
& =\left\langle\left(\lambda-A_{-1}+B B^{*}\right)\left(\lambda-A_{B}\right)^{-1} B u,\left(\bar{\lambda}-A_{B}^{*}\right)^{-1} x\right\rangle_{V^{*}, V} \\
& =\left\langle\left(\lambda-A_{B}\right)^{-1} B u,\left(\bar{\lambda}+A_{-1}+B B^{*}\right)\left(\bar{\lambda}-A_{B}^{*}\right)^{-1} x\right\rangle_{V, V^{*}} \\
& =\left\langle\left(\lambda-A_{B}\right)^{-1} B u, x\right\rangle_{X} .
\end{aligned}
$$

Since $\lambda \in \rho\left(A_{B}\right) \cap \overline{\mathbb{C}}_{+}, x \in X$ and $u \in U$ were arbitrary, the proof is complete.
The following proposition presents some general consequences of resolvent estimates of the form (2-10). In particular, part (c) concerns the effect of scaling the operator B on the resulting resolvent estimate. Once again, the composition $\left(i s-A_{B}\right)^{-1} B$ for $s \in \mathbb{R}$ is defined as in Remark 2.3. As noted in Section 2B, the additional assumptions in (b) are in particular satisfied for the class of second-order systems considered there.

Lemma 2.11. Let A and B satisfy Assumption 2.1 and let A_{B} be as defined in (2-1). If $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and if $N: \mathbb{R} \rightarrow(0, \infty)$ is such that $(2-10)$ holds, then the following are true:
(a) For $s \in \mathbb{R}$, we have

$$
\begin{aligned}
\left\|B^{*}\left(i s-A_{B}\right)^{-1}\right\| & \leq N(s)^{1 / 2}, \\
\left\|\left(i s-A_{B}\right)^{-1} B\right\| & \lesssim 1+N(s), \\
\left\|B^{*}\left(i s-A_{B}\right)^{-1} B\right\| & \leq 1 .
\end{aligned}
$$

(b) If either $B \in \mathcal{L}(U, X)$, or

$$
A^{*}=-A \quad \text { and } \quad \operatorname{Re}\left\langle A_{-1} x, x\right\rangle_{V^{*}, V}=0, \quad x \in V_{A} \text {, }
$$

then $\left\|\left(i s-A_{B}\right)^{-1} B\right\| \leq N(s)^{1 / 2}$ for all $s \in \mathbb{R}$.
(c) Let $\kappa>0$ and consider the operator $A_{B, \kappa}: D\left(A_{B, \kappa}\right) \subseteq X \rightarrow X$ defined by

$$
\begin{aligned}
& A_{B, \kappa} x=A_{-1} x-\kappa^{2} B B^{*} x, \quad x \in D\left(A_{B, \kappa}\right), \\
& D\left(A_{B, \kappa}\right)=\left\{x \in V: A_{-1} x-\kappa^{2} B B^{*} x \in X\right\} .
\end{aligned}
$$

Then $i \mathbb{R} \subseteq \rho\left(A_{B, \kappa}\right)$ and $\left\|\left(i s-A_{B, \kappa}\right)^{-1}\right\| \lesssim 1+N(s)^{2}$ for $s \in \mathbb{R}$. If the assumptions in part (b) hold, then $\left\|\left(i s-A_{B, \kappa}\right)^{-1}\right\| \lesssim N(s)$ for $s \in \mathbb{R}$.

Proof. To prove the first estimate in (a), fix $s \in \mathbb{R}$ and $y \in X$, and let $x=\left(i s-A_{B}\right)^{-1} y \in D\left(A_{B}\right)$. Then $\|x\| \leq N(s)\|y\|$ and $\left(i s-A_{B}\right) x=y$, and hence, by (2-3) in Lemma 2.2,

$$
\left\|B^{*} x\right\|^{2} \leq \operatorname{Re}\langle y, x\rangle \leq\|y\|\|x\| \leq N(s)\|y\|^{2} .
$$

Since $s \in \mathbb{R}$ and $y \in X$ were arbitrary, the first estimate in part (a) follows.
To prove the second and third estimates in (a), we begin by deriving a preliminary estimate. Let $\lambda \in \overline{\mathbb{C}}_{+}$ and $u \in U$. If we define the composition $\left(\lambda-A_{B}\right)^{-1} B$ as in Remark 2.3 and let $x=\left(\lambda-A_{B}\right)^{-1} B u \in X$, then Remark 2.3 implies that $x \in V$ and $A_{-1} x+B\left(u-B^{*} x\right)=\lambda x \in X$. Estimate (2-5) in the proof of Lemma 2.2 shows that

$$
\begin{aligned}
(\operatorname{Re} \lambda)\|x\|^{2} & =\operatorname{Re}\left\langle A_{-1} x+B\left(u-B^{*} x\right), x\right\rangle_{X} \leq \operatorname{Re}\left\langle B^{*} x, u-B^{*} x\right\rangle_{U} \\
& =\operatorname{Re}\left\langle B^{*} x, u\right\rangle_{U}-\left\|B^{*} x\right\|_{U}^{2}
\end{aligned}
$$

In particular, $\left\|B^{*}\left(\lambda-A_{B}\right)^{-1} B u\right\|=\left\|B^{*} x\right\| \leq\|u\|$ for all $\lambda \in \overline{\mathbb{C}}_{+}$, which implies the third estimate in (a). On the other hand, for $\lambda=1+i s$ with $s \in \mathbb{R}$, the same estimate shows that

$$
\begin{aligned}
\left\|\left(1+i s-A_{B}\right)^{-1} B u\right\|^{2} & \leq \operatorname{Re}\left\langle B^{*} x, u\right\rangle_{U}-\left\|B^{*} x\right\|_{U}^{2} \\
& \leq \operatorname{Re}\left\langle B^{*}\left(1+i s-A_{B}\right)^{-1} B u, u\right\rangle_{U} \leq 1 .
\end{aligned}
$$

This inequality together with the property that (see Remark 2.3)

$$
\left(i s-A_{B}\right)^{-1} B u=\left(I+\left(i s-A_{B}\right)^{-1}\right)\left(1+i s-A_{B}\right)^{-1} B u, \quad s \in \mathbb{R},
$$

finally implies the second estimate in (a).
In order to prove (b), we first note that under the additional assumptions it follows either from boundedness of B or from Lemma 2.10(b) that the adjoint A_{B}^{*} is given by (2-14) and that $\left(\left(i s-A_{B}\right)^{-1} B\right)^{*}=$ $B^{*}\left(-i s-A_{B}^{*}\right)^{-1}, s \in \mathbb{R}$. Proceeding as in the case of the first estimate in part (a), we may use the structure of A_{B}^{*} to show that $\left\|B^{*}\left(-i s-A_{B}^{*}\right)^{-1}\right\|^{2} \leq\left\|\left(-i s-A_{B}^{*}\right)^{-1}\right\|$ for $s \in \mathbb{R}$. Hence for all $s \in \mathbb{R}$ we have

$$
\left\|\left(i s-A_{B}\right)^{-1} B\right\|=\left\|B^{*}\left(-i s-A_{B}^{*}\right)^{-1}\right\| \leq\left\|\left(i s-A_{B}\right)^{-1}\right\|^{1 / 2} \leq N(s)^{1 / 2}
$$

To show (c), let $\kappa>0$ and $s \in \mathbb{R}$ be fixed. Moreover, let $x \in D\left(A_{B, \kappa}\right)$ and $y=\left(i s-A_{B, \kappa}\right) x \in X$. Estimate (2-3) in Lemma 2.2 (applied to the operators A and κB) implies that $\left\|B^{*} x\right\|^{2} \leq \kappa^{-2}\|x\|\|y\|$. We have

$$
y=\left(i s-A_{-1}+\kappa^{2} B B^{*}\right) x=\left(i s-A_{-1}+B B^{*}\right) x+\left(\kappa^{2}-1\right) B B^{*} x,
$$

and since $x \in V$ and $\left(i s-A_{-1}+B B^{*}\right) x \in X+\operatorname{Ran}(B)$, Remark 2.3 gives

$$
x=\left(i s-A_{B}\right)^{-1} y+\left(1-\kappa^{2}\right)\left(i s-A_{B}\right)^{-1} B B^{*} x .
$$

Using Young's inequality we obtain

$$
\begin{aligned}
\|x\|^{2} & \leq 2 N(s)^{2}\|y\|^{2}+2\left(1-\kappa^{2}\right)^{2}\left\|\left(i s-A_{B}\right)^{-1} B\right\|^{2}\left\|B^{*} x\right\|^{2} \\
& \leq 2 N(s)^{2}\|y\|^{2}+2 \frac{\left(1-\kappa^{2}\right)^{2}}{\kappa^{2}}\left\|\left(i s-A_{B}\right)^{-1} B\right\|^{2}\|x\|\|y\| \\
& \leq 2 N(s)^{2}\|y\|^{2}+\frac{1}{2}\|x\|^{2}+\frac{2\left(1-\kappa^{2}\right)^{4}}{\kappa^{4}}\left\|\left(i s-A_{B}\right)^{-1} B\right\|^{4}\|y\|^{2} .
\end{aligned}
$$

Since $A_{B, \kappa}$ generates a contraction semigroup by Lemma 2.2, the claims follow from parts (a) and (b) together with Lemma 2.9.

The estimate $\left\|B^{*}\left(i s-A_{B}\right)^{-1} B\right\| \leq 1, s \in \mathbb{R}$, in part (a) was proved in [Oostveen 2000, Lemma 2.2.6, P6] in the case where $B \in \mathcal{L}(U, X)$, and a similar result for general B in the case of second-order systems was presented in [Weiss and Tucsnak 2003, Theorem 1.3].

3. Frequency domain criteria for resolvent bounds and nonuniform stability

3A. Criteria for first-order problems. In this section we consider the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ generated by the operator A_{B} defined in (2-1), and present sufficient conditions for nonuniform stability of this semigroup in terms of observability properties of the pair $\left(B^{*}, A\right)$. Theorem 2.7 allows us to focus on estimating the resolvent of A_{B} on the imaginary axis, and shows that whenever $\left\|\left(i s-A_{B}\right)^{-1}\right\| \leq N(|s|)$, $s \in \mathbb{R}$, for some continuous nondecreasing $N: \mathbb{R}_{+} \rightarrow(0, \infty)$ with positive increase, the classical solutions $x(\cdot)=T_{B}(\cdot) x_{0}, x_{0} \in D\left(A_{B}\right)$, of (2-2) satisfy

$$
\begin{equation*}
\left\|T_{B}(t) x_{0}\right\| \leq \frac{C}{N^{-1}(t)}\left\|A_{B} x_{0}\right\|, \quad t \geq t_{0} \tag{3-1}
\end{equation*}
$$

for some constants $C, t_{0}>0$.
Our first main result is based on the following Hautus-type condition with variable parameters. The same condition with bounded functions M and m was used in [Miller 2012] to study observability properties of the pair $\left(B^{*}, A\right)$.

Definition 3.1. The pair $\left(B^{*}, A\right)$ is said to satisfy the nonuniform Hautus test if there exist M, m : $\mathbb{R} \rightarrow\left[r_{0}, \infty\right), r_{0}>0$, such that

$$
\begin{equation*}
\|x\|_{X}^{2} \leq M(s)\|(i s-A) x\|_{X}^{2}+m(s)\left\|B^{*} x\right\|_{U}^{2}, \quad x \in D(A), s \in \mathbb{R} . \tag{3-2}
\end{equation*}
$$

The following theorem presents a norm bound for the resolvent of A_{B} on $i \mathbb{R}$ when the pair $\left(B^{*}, A\right)$ satisfies the nonuniform Hautus test. General properties of the function μ in condition (3-3) were discussed in Section 2A and in Lemma 2.5.

Theorem 3.2. Let A and B satisfy Assumption 2.1. Assume further that $M, m, \mu: \mathbb{R} \rightarrow\left[r_{0}, \infty\right), r_{0}>0$, are such that the pair $\left(B^{*}, A\right)$ satisfies the nonuniform Hautus test for the functions M and m, and

$$
\begin{equation*}
\left\|B^{*}\left(1+i s-A_{-1}\right)^{-1} B\right\| \leq \mu(s), \quad s \in \mathbb{R} . \tag{3-3}
\end{equation*}
$$

Then the operator A_{B} defined in (2-1) satisfies $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and

$$
\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim M(s) \mu(s)+m(s) \mu(s)^{2}, \quad s \in \mathbb{R} .
$$

Conversely, if $N: \mathbb{R} \rightarrow(0, \infty)$ is such that $\left\|\left(i s-A_{B}\right)^{-1}\right\| \leq N(s)$ for all $s \in \mathbb{R}$, then (3-2) holds for $M(\cdot)=2 N(\cdot)^{2}$ and a function m such that $m(s) \lesssim 1+N(s)^{2}$ for $s \in \mathbb{R}$. If, in addition, either $B \in \mathcal{L}(U, X)$, or $A^{*}=-A$ and $\operatorname{Re}\left\langle A_{-1} x, x\right\rangle_{V^{*}, V}=0$ for all $x \in V_{A}$, then one may choose $m=2 N$.

Proof. Since A_{B} generates a contraction semigroup on X by Lemma 2.2, Lemma 2.9 shows that the inclusion $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and the resolvent estimate will follow from a suitable lower bound for $i s-A_{B}$, $s \in \mathbb{R}$. To this end, let $s \in \mathbb{R}$ and $x \in D\left(A_{B}\right)$ be fixed and let $y=\left(i s-A_{B}\right) x$. If we let $R=\left(1+i s-A_{-1}\right)^{-1}$ and define $x_{1}=x+R B B^{*} x$, then (is $\left.-A_{-1}\right) x_{1}=y-R B B^{*} x \in X$ and hence $x_{1} \in D(A)$. Applying (3-2) and using the identity $B^{*} x_{1}=\left(I+B^{*} R B\right) B^{*} x$ shows that

$$
\begin{aligned}
\left\|x_{1}\right\|^{2} & \leq M(s)\left\|(i s-A) x_{1}\right\|^{2}+m(s)\left\|B^{*} x_{1}\right\|^{2} \\
& \leq M(s)\left(\|y\|+\|R B\|\left\|B^{*} x\right\|\right)^{2}+m(s)\left(1+\left\|B^{*} R B\right\|\right)^{2}\left\|B^{*} x\right\|^{2} \\
& \lesssim M(s)\|y\|^{2}+\left(M(s)\|R B\|^{2}+m(s)\left(1+\left\|B^{*} R B\right\|^{2}\right)\right)\left\|B^{*} x\right\|^{2} .
\end{aligned}
$$

Since $\left\|B^{*} x\right\|^{2} \leq \operatorname{Re}\langle y, x\rangle \leq\|y\|\|x\|$ by Lemma 2.2, we may further estimate the norm of $x=x_{1}-R B B^{*} x$ by

$$
\begin{aligned}
\|x\|^{2} & \lesssim\left\|x_{1}\right\|^{2}+\|R B\|^{2}\left\|B^{*} x\right\|^{2} \\
& \lesssim M(s)\|y\|^{2}+\left(M(s)\|R B\|^{2}+m(s)\left(1+\left\|B^{*} R B\right\|^{2}\right)\right)\|x\|\|y\| \\
& \leq M(s)\|y\|^{2}+\varepsilon\|x\|^{2}+\frac{1}{4 \varepsilon}\left(M(s)\|R B\|^{2}+m(s)\left(1+\left\|B^{*} R B\right\|^{2}\right)\right)^{2}\|y\|^{2},
\end{aligned}
$$

where $\varepsilon>0$. We have $\left\|B^{*} R B\right\| \leq \mu(s)$ by assumption, and Lemma 2.2 further implies that $\|R B\|^{2} \leq$ $\left\|B^{*} R B\right\| \leq \mu(s)$. Letting ε be sufficiently small we obtain

$$
\begin{aligned}
\|x\|^{2} & \lesssim\left(M(s)+M(s)^{2}\|R B\|^{4}+m(s)^{2}\left(1+\left\|B^{*} R B\right\|^{2}\right)^{2}\right)\|y\|^{2} \\
& \lesssim\left(M(s)^{2} \mu(s)^{2}+m(s)^{2} \mu(s)^{4}\right)\|y\|^{2} \\
& \lesssim\left(M(s) \mu(s)+m(s) \mu(s)^{2}\right)^{2}\left\|\left(i s-A_{B}\right) x\right\|^{2} .
\end{aligned}
$$

Since $x \in D\left(A_{B}\right)$ was arbitrary, Lemma 2.9 implies that is $\in \rho\left(A_{B}\right)$ and $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim M(s) \mu(s)+$ $m(s) \mu(s)^{2}$.

To prove the other claims, assume that $\left\|\left(i s-A_{B}\right)^{-1}\right\| \leq N(s)$ and let $s \in \mathbb{R}$ and $x \in D(A)$ be arbitrary. Using the properties in Remark 2.3, the claims follow from the estimate

$$
\begin{aligned}
\|x\|^{2} & =\left\|\left(i s-A_{B}\right)^{-1}(i s-A) x+\left(i s-A_{B}\right)^{-1} B B^{*} x\right\|^{2} \\
& \leq 2\left\|\left(i s-A_{B}\right)^{-1}\right\|^{2}\|(i s-A) x\|^{2}+2\left\|\left(i s-A_{B}\right)^{-1} B\right\|^{2}\left\|B^{*} x\right\|^{2}
\end{aligned}
$$

and Lemma 2.11.
Remark 3.3. In the case where μ is a bounded function the resolvent estimate in Theorem 3.2 takes the form $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim M(s)+m(s), s \in \mathbb{R}$. As shown in Lemma 2.5, if A and B satisfy Assumption 2.1, then condition (3-3) is always satisfied for $\mu(s)=c\left(1+s^{2}\right), s \in \mathbb{R}$, with some $c>0$. However, in the absence of a more precise bound for $\left\|B^{*}\left(1+i s-A_{-1}\right)^{-1} B\right\|$ the proof of Theorem 3.2 can be modified to derive an alternative resolvent growth bound. Indeed, if the operator R in the proof is redefined as $R=\left(I-A_{-1}\right)^{-1}$ and if x_{1} is defined as before, then we have $\left(i s-A_{-1}\right) x_{1}=y+(i s-1) R B B^{*} x$, and estimates analogous to those in the original proof show that $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and

$$
\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim M(s)\left(1+s^{2}\right)+m(s), \quad s \in \mathbb{R} .
$$

This estimate is in general sharper than what is obtained from Theorem 3.2 with a quadratic upper bound for μ. Finally, for general μ the estimates in the proof of Theorem 3.2 also establish the more precise bound

$$
\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim M(s)^{1 / 2}+M(s)\left\|\left(1+i s-A_{-1}\right)^{-1} B\right\|^{2}+m(s) \mu(s)^{2}
$$

for $s \in \mathbb{R}$. This improves on the original estimate if $\left\|\left(1+i s-A_{-1}\right)^{-1} B\right\| \rightarrow 0$ as $|s| \rightarrow \infty$. The latter holds, for instance, if $B \in \mathcal{L}(U, X)$ is compact.

Recall that the pair $\left(B^{*}, A\right)$ is said to be exactly observable if

$$
\int_{0}^{\tau}\left\|B^{*} T(t) x\right\|^{2} d t \geq c_{\tau}\|x\|^{2}, \quad x \in D(A)
$$

for some $\tau>0$ and $c_{\tau}>0$ [Tucsnak and Weiss 2009, Definition 6.1.1]. If (3-3) is satisfied for a bounded function μ, then Lemma 2.6 and [Miller 2012, Theorem 2.4] imply that the nonuniform Hautus test is satisfied for some bounded functions M and m if and only if the pair $\left(B^{*}, A\right)$ is exactly observable. In this situation Theorem 3.2 and the Gearhart-Prüss theorem imply that $\left(T_{B}(t)\right)_{t \geq 0}$ is exponentially stable, as in [Slemrod 1974; Curtain and Weiss 2006].

Our next resolvent estimate for a skew-adjoint operator A is based on lower bounds for B^{*} restricted to so-called wavepackets of A. Similar conditions have previously been used to study exact observability of the pair (B^{*}, A), for example in [Chen et al. 1991; Ramdani et al. 2005; Miller 2012].

Definition 3.4. Let A be a self-adjoint operator on X. For $s \in \mathbb{R}$ and $\delta(s)>0$ we define $\mathrm{WP}_{s, \delta(s)}(A)$ to be the spectral subspace of A associated with the interval $(s-\delta(s), s+\delta(s)) \subseteq \mathbb{R}$. The elements $x \in \mathrm{WP}_{s, \delta(s)}(A)$ are called $(s, \delta(s))$-wavepackets of A. If A is skew-adjoint, then we define $\mathrm{WP}_{s, \delta(s)}(A)$ to be $\mathrm{WP}_{s, \delta(s)}(-i A)$.

The following proposition presents a sufficient condition for nonuniform stability of $\left(T_{B}(t)\right)_{t \geq 0}$ given in terms of the action of B^{*} on wavepackets of A. In the case where μ is a bounded function and the pair $\left(B^{*}, A\right)$ is exactly observable, it is possible by Lemma 2.6 and [Miller 2012, Corollary 2.17] to choose $\delta(s) \equiv \delta_{0}>0$ and $\gamma(s) \equiv \gamma_{0}>0$, and our result then implies exponential stability of $\left(T_{B}(t)\right)_{t \geq 0}$.

Theorem 3.5. Let A and B satisfy Assumption 2.1 and suppose that A is skew-adjoint. Suppose further that $\mu: \mathbb{R} \rightarrow\left[r_{0}, \infty\right), r_{0}>0$, is such that

$$
\left\|B^{*}\left(1+i s-A_{-1}\right)^{-1} B\right\| \leq \mu(s), \quad s \in \mathbb{R}
$$

If there exist bounded functions $\gamma, \delta: \mathbb{R} \rightarrow(0, \infty)$ such that

$$
\begin{equation*}
\left\|B^{*} x\right\|_{U} \geq \gamma(s)\|x\|_{X}, \quad x \in \mathrm{WP}_{s, \delta(s)}(A), s \in \mathbb{R} \tag{3-4}
\end{equation*}
$$

then $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and

$$
\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim \frac{\mu(s)^{2}}{\gamma(s)^{2} \delta(s)^{2}}, \quad s \in \mathbb{R}
$$

Proof. By Lemma 2.2, A_{B} generates a contraction semigroup on X. Thus by Lemma 2.9 the claims will follow from suitable lower bounds for the operators is $-A_{B}, s \in \mathbb{R}$. Let $s \in \mathbb{R}$ and $x \in D\left(A_{B}\right)$ be fixed
and let $y=\left(i s-A_{B}\right) x$. Further let $P_{0} \in \mathcal{L}(X)$ be the orthogonal projection onto $\mathrm{WP}_{s, \delta(s)}(A)$, and let $P_{\infty}=I-P_{0}$. Define

$$
x_{0}=P_{0} x, \quad x_{\infty}=P_{\infty} x, \quad y_{0}=P_{0} y, \quad \text { and } \quad y_{\infty}=P_{\infty} y .
$$

Since $x_{0} \in \mathrm{WP}_{s, \delta(s)}(A)$ and $B^{*} x_{0}=B^{*} x-B^{*} x_{\infty}$, (3-4) implies that

$$
\begin{equation*}
\|x\|^{2}=\left\|x_{0}\right\|^{2}+\left\|x_{\infty}\right\|^{2} \lesssim \gamma(s)^{-2}\left(\left\|B^{*} x\right\|^{2}+\left\|B^{*} x_{\infty}\right\|^{2}\right)+\left\|x_{\infty}\right\|^{2} . \tag{3-5}
\end{equation*}
$$

We now estimate $\left\|x_{\infty}\right\|$ and $\left\|B^{*} x_{\infty}\right\|$ in turn. We begin by introducing the operator $R=\left(1+i s-A_{-1}\right)^{-1}$, noting that $\|R\| \leq 1$ since A generates a contraction semigroup. Applying $P_{\infty} R$ to both sides of the identity $y=\left(i s-A_{B}\right) x$ we obtain

$$
\begin{equation*}
(i s-A) R x_{\infty}=R y_{\infty}-P_{\infty} R B B^{*} x, \tag{3-6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
x_{\infty}=R x_{\infty}+R y_{\infty}-P_{\infty} R B B^{*} x . \tag{3-7}
\end{equation*}
$$

Now since R and P_{∞} commute, we have $R x_{\infty} \in \operatorname{Ran}\left(P_{\infty}\right)$, and the spectral theorem for self-adjoint operators implies that $\left\|R x_{\infty}\right\| \leq \delta(s)^{-1}\left\|(i s-A) R x_{\infty}\right\|$. Thus

$$
\left\|x_{\infty}\right\| \lesssim \delta(s)^{-1}\left\|(i s-A) R x_{\infty}\right\|+\|y\|+\|R B\|\left\|B^{*} x\right\| .
$$

By (3-6) we have

$$
\left\|(i s-A) R x_{\infty}\right\| \leq\left\|R y_{\infty}\right\|+\left\|P_{\infty} R B B^{*} x\right\| \leq\|y\|+\|R B\|\left\|B^{*} x\right\|,
$$

and therefore

$$
\begin{equation*}
\left\|x_{\infty}\right\| \lesssim \delta(s)^{-1}\left(\|y\|+\|R B\|\left\|B^{*} x\right\|\right) . \tag{3-8}
\end{equation*}
$$

In order to estimate $\left\|B^{*} x_{\infty}\right\|$ we begin by observing that, by (3-7),

$$
\begin{equation*}
\left\|B^{*} x_{\infty}\right\| \leq\left\|B^{*} R\right\|\left\|x_{\infty}\right\|+\left\|B^{*} R\right\|\|y\|+\left\|B^{*}\left(I-P_{0}\right) R B\right\|\left\|B^{*} x\right\| . \tag{3-9}
\end{equation*}
$$

Since A is skew-adjoint, we have $B^{*}(1+i s-A)^{-1}=\left(\left(1-i s+A_{-1}\right)^{-1} B\right)^{*}$ by Lemma 2.10. Hence the resolvent identity gives

$$
\left\|B^{*} R\right\|=\left\|\left(1-i s+A_{-1}\right)^{-1} B\right\|=\left\|R B-2(1-i s+A)^{-1} R B\right\| \leq 3\|R B\|,
$$

and since $\left\|(1+i s-A) P_{0}\right\| \lesssim 1+\delta(s) \lesssim 1$ we see using (2-4) in Lemma 2.2 that

$$
\begin{aligned}
\left\|B^{*}\left(I-P_{0}\right) R B\right\| & \leq\left\|B^{*} R B\right\|+\left\|B^{*} R(1+i s-A) P_{0} R B\right\| \\
& \lesssim\left\|B^{*} R B\right\|+\|R B\|^{2} \lesssim\left\|B^{*} R B\right\| .
\end{aligned}
$$

Using these estimates and (3-8), we obtain from (3-9) that

$$
\begin{aligned}
\left\|B^{*} x_{\infty}\right\| & \lesssim\|R B\|\left\|x_{\infty}\right\|+\|R B\|\|y\|+\left\|B^{*} R B\right\|\left\|B^{*} x\right\| \\
& \lesssim \delta(s)^{-1}\|R B\|\|y\|+\left(\delta(s)^{-1}\|R B\|^{2}+\left\|B^{*} R B\right\|\right)\left\|B^{*} x\right\| .
\end{aligned}
$$

Inserting our bounds for $\left\|x_{\infty}\right\|$ and $\left\|B^{*} x_{\infty}\right\|$ into (3-5), and using the estimate $\left\|B^{*} x\right\|^{2} \leq\|x\|\|y\|$ implied by (2-3) in Lemma 2.2, we deduce after a straightforward calculation that

$$
\begin{aligned}
\|x\|^{2} & \lesssim \gamma(s)^{-2}\left(\left\|B^{*} x\right\|^{2}+\left\|B^{*} x_{\infty}\right\|^{2}\right)+\left\|x_{\infty}\right\|^{2} \\
& \lesssim \delta(s)^{-2}\left(1+\gamma(s)^{-2}\|R B\|^{2}\right)\|y\|^{2}+\left(\gamma(s)^{-2}\left(1+\delta(s)^{-2}\|R B\|^{4}+\left\|B^{*} R B\right\|^{2}\right)+\delta(s)^{-2}\|R B\|^{2}\right)\|x\|\|y\| .
\end{aligned}
$$

Since $\|R B\|^{2} \leq\left\|B^{*} R B\right\| \leq \mu(s)$ by Lemma 2.2 and our assumption we obtain, after dropping dominated terms, the estimate

$$
\|x\|^{2} \lesssim \gamma(s)^{-2} \delta(s)^{-2} \mu(s)\|y\|^{2}+\gamma(s)^{-2} \delta(s)^{-2} \mu(s)^{2}\|x\|\|y\| .
$$

An application of Young's inequality now yields

$$
\|x\|^{2} \lesssim \gamma(s)^{-4} \delta(s)^{-4} \mu(s)^{4}\|y\|^{2},
$$

and the claim follows from Lemma 2.9.
Remark 3.6. In the situation where μ is a bounded function, Theorem 3.5 can alternatively be proved by combining Theorem 3.2, Lemma 2.6 and results in [Miller 2012]. Indeed, in this case Lemma 2.6 implies that B^{*} is admissible and by [loc. cit., Proposition 2.16] the pair $\left(B^{*}, A\right)$ satisfies the nonuniform Hautus test (3-2) for some functions M and m such that $M(s) \lesssim \gamma(s)^{-2} \delta(s)^{-2}$ and $m(s) \lesssim \gamma(s)^{-2}$ for $s \in \mathbb{R}$. The claim of Theorem 3.5 then follows from Theorem 3.2. Similarly to Remark 3.3, the end of the proof of Theorem 3.5 can be modified to establish the potentially sharper resolvent estimate

$$
\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim v(s)+v(s)^{2}\left\|\left(1+i s-A_{-1}\right)^{-1} B\right\|^{2}+\frac{\mu(s)^{2}}{\gamma(s)^{2}}, \quad s \in \mathbb{R}
$$

where $\nu(s)=\delta(s)^{-1}\left(1+\gamma(s)^{-1}\left\|\left(1+i s-A_{-1}\right)^{-1} B\right\|\right)$.
Remark 3.7. It is easy to see from the proofs of Theorems 3.2 and 3.5 that if the assumptions are satisfied only for $|s| \geq s_{0}$ for some $s_{0}>0$, then $i \mathbb{R} \backslash\left(-i s_{0}, i s_{0}\right) \subseteq \rho\left(A_{B}\right)$ and the resolvent estimate will hold for $|s| \geq s_{0}$. The same comment applies to the results in the remainder of this paper. Since the nonuniform decay rate is determined only by the resolvent norms for large values of $|s|$, this property is useful in situations where $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ is already known or can be shown using other methods.

3B. Criteria for second-order problems. In this section we focus on studying the resolvent growth for the operator A_{B} defined in (2-1) in the case where the operators

$$
A=\left(\begin{array}{rr}
0 & I \\
-L & 0
\end{array}\right) \quad \text { and } \quad B=\binom{0}{D}
$$

on X and U, respectively, satisfy the assumptions in Section 2B. In particular, $L: H_{1} \subseteq H \rightarrow H$ is a positive self-adjoint and boundedly invertible operator and $D \in \mathcal{L}\left(U, H_{-1 / 2}\right)$. We shall reformulate the conditions of Theorems 3.2 and 3.5 in terms of the operators L and D. In addition, we shall present further sufficient conditions for nonuniform stability in terms of generalised observability properties of the "Schrödinger group" generated by $i L$.

In the proofs of our results we shall employ a change of variables which transforms A into a blockdiagonal operator $A_{\text {diag }}$; see for instance the proof of [Miller 2012, Theorem 3.8]. Recalling that $V=H_{1 / 2} \times H_{1 / 2}$, we define a unitary operator $Q \in \mathcal{L}(V, X)$ by

$$
Q=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \tag{3-10}\\
i L^{1 / 2} & -i L^{1 / 2}
\end{array}\right), \quad \text { with } Q^{-1}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
I & -i L^{-1 / 2} \\
I & i L^{-1 / 2}
\end{array}\right) .
$$

We then have $A=Q A_{\text {diag }} Q^{-1}$, where

$$
A_{\text {diag }}=\left(\begin{array}{cc}
i L^{1 / 2} & 0 \\
0 & -i L^{1 / 2}
\end{array}\right): D\left(A_{\text {diag }}\right) \subseteq V \rightarrow V,
$$

with domain $D\left(A_{\text {diag }}\right)=H_{1} \times H_{1}$. The following lemma describes the wavepackets of A in terms of the wavepackets of $L^{1 / 2}$.

Lemma 3.8. Let L and A be as in Section $2 B$ and let $\delta: \mathbb{R} \rightarrow(0, \infty)$ be such that $\sup _{s \in \mathbb{R}} \delta(s) \leq\left\|L^{-1 / 2}\right\|$. Then for every $s \in \mathbb{R}$ we have

$$
\begin{equation*}
\mathrm{WP}_{s, \delta(s)}(A)=\left\{\binom{w}{i \operatorname{sign}(s) L^{1 / 2} w}: w \in \mathrm{WP}_{|s|, \delta(s)}\left(L^{1 / 2}\right)\right\} . \tag{3-11}
\end{equation*}
$$

Proof. Let $s>0$ be fixed. We have $\mathrm{WP}_{s, \delta(s)}(A)=\operatorname{Ran}\left(\chi_{I_{s, \delta(s)}}(-i A)\right)$, where $I_{s, \delta(s)}=(s-\delta(s), s+\delta(s))$. Using the decomposition $A=Q A_{\text {diag }} Q^{-1}$ and the upper bound for δ we see that

$$
\chi_{I_{s, \delta s}}(-i A)=Q\left(\begin{array}{cc}
\chi_{I_{s, \delta(s)}}\left(L^{1 / 2}\right) & 0 \\
0 & 0
\end{array}\right) Q^{-1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\chi_{I_{s, \delta(s)}}\left(L^{1 / 2}\right) & 0 \\
i L^{1 / 2} \chi_{I_{s, \delta(s)}}\left(L^{1 / 2}\right) & 0
\end{array}\right) Q^{-1} .
$$

The functional calculus for the positive and boundedly invertible operator L implies that

$$
\chi_{I_{s, \delta(s)}}\left(L^{1 / 2}\right) H_{1 / 2}=\operatorname{Ran}\left(\chi_{I_{s, \delta(s)}}\left(L^{1 / 2}\right)\right),
$$

and hence (3-11) follows from surjectivity of Q^{-1}. The proof in the case $s<0$ is analogous.
The next result is a counterpart of Theorem 3.5 for damped second-order systems. We refer to [Russell 1975, Section 3] for a related result on polynomial stability of second-order systems in the case where L has discrete spectrum and $D \in \mathcal{L}(U, H)$.

Theorem 3.9. Let L, D, A and B be as in Section $2 B$ and assume $\mu_{0}: \mathbb{R}_{+} \rightarrow\left[r_{0}, \infty\right), r_{0}>0$, is such that

$$
s\left\|D^{*}\left((1+i s)^{2}+L_{-1}\right)^{-1} D\right\| \leq \mu_{0}(s), \quad s \in \mathbb{R}_{+} .
$$

If there exist bounded functions $\gamma_{0}, \delta_{0}: \mathbb{R}_{+} \rightarrow(0, \infty)$ such that

$$
\left\|D^{*} w\right\|_{U} \geq \gamma_{0}(s)\|w\|_{H}, \quad w \in \mathrm{WP}_{s, \delta_{0}(s)}\left(L^{1 / 2}\right), s \geq 0
$$

then $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and

$$
\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim \frac{\mu_{0}(|s|)^{2}}{\gamma_{0}(|s|)^{2} \delta_{0}(|s|)^{2}}, \quad s \in \mathbb{R}
$$

Proof. If we let $s_{0}=\min \left\{\left\|L^{-1 / 2}\right\|, 1\right\}$ then $\sigma\left(L^{1 / 2}\right) \subseteq\left[s_{0}, \infty\right)$. Define $\delta: \mathbb{R} \rightarrow(0, \infty)$ by

$$
\begin{equation*}
\delta(s)=\frac{s_{0} \delta_{0}(|s|)}{2 \sup _{s \geq 0} \delta_{0}(s)}, \quad s \in \mathbb{R} \tag{3-12}
\end{equation*}
$$

Fix $s \in \mathbb{R}$ and let $x \in \mathrm{WP}_{s, \delta(s)}(A)$ be arbitrary. Lemma 3.8 implies that $x=\left(w, i \operatorname{sign}(s) L^{1 / 2} w\right)$ for some $w \in \mathrm{WP}_{|s|, \delta(s)}\left(L^{1 / 2}\right)$. Noting that $L^{1 / 2} w \in \mathrm{WP}_{|s|, \delta(s)}\left(L^{1 / 2}\right)$, our assumptions imply that

$$
\left\|B^{*} x\right\|_{U}=\left\|D^{*} L^{1 / 2} w\right\|_{U} \geq \gamma_{0}(|s|)\left\|L^{1 / 2} w\right\|_{H}=\frac{\gamma_{0}(|s|)}{\sqrt{2}}\|x\|_{X} .
$$

Thus the conditions of Theorem 3.5 hold for $\delta: \mathbb{R}_{+} \rightarrow(0, \infty)$ defined in (3-12) and for $\gamma: \mathbb{R}_{+} \rightarrow(0, \infty)$ defined by $\gamma(s)=\gamma_{0}(|s|) / \sqrt{2}$ for $s \in \mathbb{R}$. Since (2-9) holds by assumption, the arguments in Section 2B show that $\left\|B^{*}\left(1+i s-A_{-1}\right)^{-1} B\right\| \lesssim \mu_{0}(|s|), s \in \mathbb{R}$. Thus the claims follow from Theorem 3.5.

The recent literature contains several studies of nonuniform stability for second-order systems based on observability properties of the Schrödinger group associated with ($D^{*}, i L$) when $D \in \mathcal{L}(U, H)$ is a bounded operator. In particular, the Hautus-type condition (3-13) in the following proposition was used as a starting point for deriving resolvent estimates for A_{B} in [Anantharaman and Léautaud 2014, Theorem 2.3] in the case of constant parameters M_{0} and m_{0}, and with variable parameters in [Joly and Laurent 2020, Appendix B]; see also [Laurent and Léautaud 2021]. In both cases the results were used to prove nonuniform stability of wave equations with viscous damping. The following result generalises the results on resolvent growth in [Joly and Laurent 2020, Appendix B] to operators L with possibly noncompact resolvent and operators $D \in \mathcal{L}\left(U, H_{-1 / 2}\right)$.

Proposition 3.10. Let L, D, A and B be as in Section 2B. Moreover, let $M_{0}: \mathbb{R}_{+} \rightarrow(0, \infty)$ and $m_{0}: \mathbb{R}_{+} \rightarrow\left[r_{0}, \infty\right), r_{0}>0$, be such that

$$
\begin{equation*}
\|w\|_{H}^{2} \leq M_{0}(s)\left\|\left(s^{2}-L\right) w\right\|_{H}^{2}+m_{0}(s)\left\|D^{*} w\right\|_{U}^{2}, \quad w \in H_{1}, s \geq 0 \tag{3-13}
\end{equation*}
$$

and define $\eta:=\inf _{s \geq 0} M_{0}(s)(1+s)^{2}>0$. Then the conditions of Theorem 3.9 are satisfied for the functions $\gamma_{0}, \delta_{0}: \mathbb{R}_{+} \rightarrow(0, \infty)$ defined by

$$
\begin{equation*}
\delta_{0}(s)=\frac{\min \left\{\sqrt{\eta}, \frac{1}{2}\right\}}{\sqrt{2 M_{0}(s)}(1+s)} \quad \text { and } \quad \gamma_{0}(s)=\frac{1}{\sqrt{2 m_{0}(s)}} \tag{3-14}
\end{equation*}
$$

for $s \geq 0$. If, in addition, $\mu_{0}: \mathbb{R}_{+} \rightarrow\left[r_{0}, \infty\right), r_{0}>0$, is such that

$$
\begin{equation*}
s\left\|D^{*}\left((1+i s)^{2}+L_{-1}\right)^{-1} D\right\| \leq \mu_{0}(s), \quad s \in \mathbb{R}_{+} \tag{3-15}
\end{equation*}
$$

then $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and

$$
\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim\left(1+s^{2}\right) M_{0}(|s|) m_{0}(|s|) \mu_{0}(|s|)^{2}, \quad s \in \mathbb{R} .
$$

Proof. Let $s \geq 0$. The function δ_{0} in (3-14) is bounded and for every $r \in\left(s-\delta_{0}(s), s+\delta_{0}(s)\right)$ we have

$$
\left|s^{2}-r^{2}\right|=|s-r||s+r| \leq \frac{\min \left\{\sqrt{\eta}, \frac{1}{2}\right\}\left(2 s+\delta_{0}(s)\right)}{\sqrt{M_{0}(s)}(1+s)} \leq \frac{1}{\sqrt{2 M_{0}(s)}}
$$

If $w \in \mathrm{WP}_{s, \delta_{0}(s)}\left(L^{1 / 2}\right)$, this estimate and the functional calculus for L imply that $\left\|\left(s^{2}-L\right) w\right\|^{2} \leq$ $\left(2 M_{0}(s)\right)^{-1}\|w\|^{2}$. Hence (3-13) yields

$$
\left\|D^{*} w\right\|^{2} \geq \frac{1}{2 m_{0}(s)}\|w\|^{2}
$$

Since $s \geq 0$ and the wavepacket w were arbitrary, the conditions of Theorem 3.9 are satisfied for the functions δ_{0} and γ_{0} defined by (3-14), and the remaining claims follow from Theorem 3.9.

Our result shows in particular that if (3-13) holds for constant functions M_{0} and m_{0} and if (3-15) holds for a bounded function μ_{0}, then $\|\left(\text { is }-A_{B}\right)^{-1} \| \lesssim 1+s^{2}$ for $s \in \mathbb{R}$. The same result was previously proved for $D \in \mathcal{L}(U, H)$ in [Anantharaman and Léautaud 2014, Theorem 2.3], and we shall discuss this result further in the context of damped waves in Section 6A below. A result closely related to Proposition 3.10 and, in particular, allowing nonconstant functions M_{0} and m_{0} was proved in [Joly and Laurent 2020, Proposition B.3], once again in the simpler setting where $D \in \mathcal{L}(U, H)$; see also [Laurent and Léautaud 2021]. Proposition 3.10 not only generalises and extends these earlier results, it moreover allows us to see that observability conditions of the type considered in (3-13) and in [Joly and Laurent 2020, Appendix B] serve as sufficient conditions for the wavepacket condition in Theorem 3.5. Finally, in the case where μ_{0} is a bounded function, Lemma 2.6 and [Miller 2012, Proposition 2.16] show that the same conditions further imply the nonuniform Hautus test in Definition 3.1 for the associated first-order equation.

We conclude this section by presenting an equivalent characterisation for the nonuniform Hautus test of pairs (B^{*}, A) stemming from second-order systems.

Proposition 3.11. Let L, D, A and B be as in Section $2 B$. If $M_{0}, m_{0}: \mathbb{R}_{+} \rightarrow\left[r_{0}, \infty\right), r_{0}>0$, are such that

$$
\begin{equation*}
\|w\|_{H}^{2} \leq M_{0}(s)\left\|\left(s-L^{1 / 2}\right) w\right\|_{H}^{2}+m_{0}(s)\left\|D^{*} w\right\|_{U}^{2} \tag{3-16}
\end{equation*}
$$

for all $w \in H_{1 / 2}$ and $s \geq 0$, then $\left(B^{*}, A\right)$ satisfies the nonuniform Hautus test for some function M such that $M(s) \lesssim M_{0}(|s|)+m_{0}(|s|)$ and for m given by $m(s)=4 m_{0}(|s|), s \in \mathbb{R}$. If, in addition, $\mu_{0}: \mathbb{R}_{+} \rightarrow\left[r_{0}, \infty\right)$, $r_{0}>0$, is such that

$$
s\left\|D^{*}\left((1+i s)^{2}+L_{-1}\right)^{-1} D\right\| \leq \mu_{0}(s), \quad s \in \mathbb{R}_{+},
$$

then $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and

$$
\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim M_{0}(|s|) \mu_{0}(|s|)+m_{0}(|s|) \mu_{0}(|s|)^{2}, \quad s \in \mathbb{R} .
$$

Conversely, if $\left(B^{*}, A\right)$ satisfies the nonuniform Hautus test for some $M, m: \mathbb{R} \rightarrow\left[r_{0}, \infty\right), r_{0}>0$, then (3-16) holds for M_{0} and m_{0} defined by $M_{0}(s)=M(s)$ and $m_{0}(s)=m(s) / 2$ for $s \geq 0$.

Proof. Since $L^{1 / 2}$ is boundedly invertible by definition, similarly as in [Miller 2012, Theorem 3.8] the decomposition $A=Q A_{\text {diag }} Q^{-1}$ with Q as in (3-10) implies that (3-2) holds if and only if

$$
\left\|y_{1}\right\|_{H}^{2}+\left\|y_{2}\right\|_{H}^{2} \leq M(s)\left(\left\|\left(s-L^{1 / 2}\right) y_{1}\right\|_{H}^{2}+\left\|\left(s+L^{1 / 2}\right) y_{2}\right\|_{H}^{2}\right)+\frac{m(s)}{2}\left\|D^{*}\left(y_{1}-y_{2}\right)\right\|_{U}^{2}
$$

for all $y_{1}, y_{2} \in H_{1 / 2}$ and $s \in \mathbb{R}$. Thus if (3-2) holds, then choosing $y_{2}=0$ and $s \geq 0$ in the above inequality implies the last claim of the proposition.

To prove the first claim, let $s \geq 0$ and $y_{1}, y_{2} \in H_{1 / 2}$ be arbitrary. Our assumptions imply that $L^{1 / 2}$ is boundedly invertible and $D^{*} L^{-1 / 2} \in \mathcal{L}(H, U)$. Thus the estimates $\left\|L^{1 / 2}\left(s+L^{1 / 2}\right)^{-1}\right\| \leq 1$, $\left\|\left(s+L^{1 / 2}\right)^{-1}\right\| \leq\left\|L^{-1 / 2}\right\|^{-1}$ and (3-16) imply that

$$
\begin{aligned}
& \left\|y_{1}\right\|_{H}^{2}+\left\|y_{2}\right\|_{H}^{2} \\
& \leq M_{0}(s)\left\|\left(s-L^{1 / 2}\right) y_{1}\right\|_{H}^{2}+m_{0}(s)\left\|D^{*} y_{1}\right\|_{U}^{2}+\left\|y_{2}\right\|_{H}^{2} \\
& \leq M_{0}(s)\left\|\left(s-L^{1 / 2}\right) y_{1}\right\|_{H}^{2}+2 m_{0}(s)\left\|D^{*}\left(y_{1}-y_{2}\right)\right\|_{U}^{2}+2 m_{0}(s)\left\|D^{*} L^{-1 / 2}\right\|^{2}\left\|L^{1 / 2} y_{2}\right\|_{H}^{2}+\left\|y_{2}\right\|_{H}^{2} \\
& \leq M_{0}(s)\left\|\left(s-L^{1 / 2}\right) y_{1}\right\|_{H}^{2}+2 m_{0}(s)\left\|D^{*}\left(y_{1}-y_{2}\right)\right\|_{U}^{2}+\left(2 m_{0}(s)\left\|D^{*} L^{-1 / 2}\right\|^{2}+\left\|L^{-1 / 2}\right\|^{-2}\right)\left\|\left(s+L^{1 / 2}\right) y_{2}\right\|_{H}^{2} .
\end{aligned}
$$

Thus (3-2) holds for $s \geq 0$ with M and m as described in the claim. For $s<0$ we get an analogous estimate by applying (3-16) to $\left\|y_{2}\right\|^{2}$ with s replaced by $|s|$, and combining the estimates shows that (3-2) holds for $s \in \mathbb{R}$ with functions $M, m: \mathbb{R} \rightarrow\left[r_{0}, \infty\right)$ satisfying $m(s)=4 m_{0}(|s|)$ and $M(s) \lesssim M_{0}(|s|)+m_{0}(|s|)$ for $s \in \mathbb{R}$. Finally, as shown in Section 2B, the fact that (2-9) holds by assumption implies $\left\|B^{*}\left(1+i s-A_{-1}\right)^{-1} B\right\| \lesssim \mu_{0}(|s|), s \in \mathbb{R}$, and thus the remaining claims follow from Theorem 3.2.

4. Time-domain conditions for nonuniform stability

4A. Conditions for first-order problems. In this section we present sufficient conditions for polynomial stability of the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ generated by A_{B} in terms of the following generalised observability concept. Related generalisations of exact observability have previously been used in [Ammari and Tucsnak 2001; Ammari and Nicaise 2015; Ammari et al. 2017] to study nonuniform stability of damped second-order systems.

Definition 4.1. Let $(T(t))_{t \geq 0}$ be a contraction semigroup on X, with generator A, and let $C \in \mathcal{L}\left(X_{1}, U\right)$, where X and U are Hilbert spaces. The pair (C, A) is said to be nonuniformly observable (with parameters $\beta \geq 0$ and $\tau>0$) if there exists $c_{\tau}>0$ such that

$$
\begin{equation*}
c_{\tau}\left\|(I-A)^{-\beta} x\right\|_{X}^{2} \leq \int_{0}^{\tau}\|C T(t) x\|_{U}^{2} d t, \quad x \in D(A) \tag{4-1}
\end{equation*}
$$

Note that by [Kato 1961, Corollary] the norm $\left\|(I-A)^{-\beta} x\right\|$ in (4-1) can be replaced by $\left\|\left(\lambda_{0}-A\right)^{-\beta} x\right\|$ for any fixed $\lambda_{0} \in \rho(A) \cap \overline{\mathbb{C}}_{+}$(and a possibly different $c_{\tau}>0$), and in particular the choice $\lambda_{0}=0$ is possible if $0 \in \rho(A)$. By injectivity of $(I-A)^{-\beta}$, nonuniform observability also implies approximate observability of the pair (C, A) in the sense that if $C T(t) x=0$ for all $t \in[0, \tau]$, then necessarily $x=0$. The case $\beta=0$ corresponds to exact observability of the pair (C, A).

Throughout this section we consider the setting of Section 2A in the case where B is a bounded operator. In particular, $A: D(A) \subseteq X \rightarrow X$ generates a contraction semigroup $(T(t))_{t \geq 0}$ on a Hilbert space X and $B \in \mathcal{L}(U, X)$, where U is another Hilbert space. In this situation the generator of the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ is $A_{B}=A-B B^{*}$ with $D\left(A_{B}\right)=D(A)$. The following consequence of the Heinz inequality for dissipative operators due to Kato will be important for the arguments in this section. The result in particular allows us to compare fractional powers of $I-A$ and $I-A_{B}$.

Theorem 4.2 [Kato 1961, Corollary]. Let A_{1} and A_{2} be generators of contraction semigroups on X, and suppose that $D\left(A_{1}\right) \subseteq D\left(A_{2}\right)$ and $\left\|A_{2} x\right\| \lesssim\left\|A_{1} x\right\|$ for all $x \in D\left(A_{1}\right)$. Then for every $\alpha \in[0,1]$ we have $D\left(\left(-A_{1}\right)^{\alpha}\right) \subseteq D\left(\left(-A_{2}\right)^{\alpha}\right)$ and $\left\|\left(-A_{2}\right)^{\alpha} x\right\| \lesssim\left\|\left(-A_{1}\right)^{\alpha} x\right\|$ for all $x \in D\left(\left(-A_{1}\right)^{\alpha}\right)$.

We shall also require the following lemma. A similar result for second-order systems of the form in Section 2B (and a possibly unbounded operator B) was presented in [Ammari and Tucsnak 2001, Lemma 4.1].

Lemma 4.3. Let $A: D(A) \subseteq X \rightarrow X$ be a skew-adjoint operator generating a unitary group $(T(t))_{t \geq 0}$ and let $B \in \mathcal{L}(U, X)$.
(a) For every $\tau>0$ there exists $C_{\tau}>0$ such that

$$
\begin{equation*}
\int_{0}^{\tau}\left\|B^{*} T_{B}(t) x\right\|^{2} d t \leq \int_{0}^{\tau}\left\|B^{*} T(t) x\right\|^{2} d t \leq C_{\tau} \int_{0}^{\tau}\left\|B^{*} T_{B}(t) x\right\|^{2} d t \tag{4-2}
\end{equation*}
$$

for all $x \in X$. Moreover, the second inequality in (4-2) remains valid when A is merely a generator of a contraction semigroup.
(b) The pair $\left(B^{*}, A\right)$ is nonuniformly observable with parameters $\beta \in[0,1]$ and $\tau>0$ if and only if $\left(B^{*}, A_{B}\right)$ is nonuniformly observable with the same parameters β and τ.

Proof. We begin by the second statement in (a). Suppose therefore that $(T(t))_{t \geq 0}$ is a contraction semigroup and let $\tau>0$ be fixed. Define $\Psi, \Psi_{B} \in \mathcal{L}\left(X, L^{2}(0, \tau ; U)\right)$ by $\Psi x:=B^{*} T(\cdot) x$ and $\Psi_{B} x:=B^{*} T_{B}(\cdot) x$ for all $x \in X$. If we define $\mathbb{F}_{\tau} \in \mathcal{L}\left(L^{2}(0, \tau ; U)\right)$ by

$$
\left(\mathbb{F}_{\tau} u\right)(t)=\int_{0}^{t} B^{*} T(t-s) B u(s) d s, \quad u \in L^{2}(0, \tau ; U)
$$

then the variation of parameters formula for $\left(T_{B}(t)\right)_{t \geq 0}$ implies that

$$
\left(I+\mathbb{F}_{\tau}\right) \Psi_{B}=\Psi
$$

Hence the second inequality in (4-2) holds with $C_{\tau}=\left(1+\left\|\mathbb{F}_{\tau}\right\|\right)^{2}$. To complete the proof of (a), assume that A is skew-adjoint in which case $(T(t))_{t \geq 0}$ is a unitary group. Direct computations may be used to show that $\operatorname{Re}\left\langle\mathbb{F}_{\tau} u, u\right\rangle \geq 0$ for all $u \in L^{2}(0, \tau ; U)$, and therefore the operator $I+\mathbb{F}_{\tau}$ is boundedly invertible with $\left\|\left(I+\mathbb{F}_{\tau}\right)^{-1}\right\| \leq 1$. This implies the first inequality in (4-2) and thus completes the proof of (a).

To prove (b), fix $\beta \in[0,1]$ and $\tau>0$. Both $(A-I)^{-1}$ and $\left(A_{B}-I\right)^{-1}$ are bounded operators generating contraction semigroups on X. Since $\left\|(A-I)^{-1} x\right\| \lesssim\left\|\left(A_{B}-I\right)^{-1} x\right\| \lesssim\left\|(A-I)^{-1} x\right\|$ for all $x \in X$, Theorem 4.2 implies that $\left\|(I-A)^{-\beta} x\right\| \lesssim\left\|\left(I-A_{B}\right)^{-\beta} x\right\| \lesssim\left\|(I-A)^{-\beta} x\right\|$ for all $x \in X$. Now the claim follows directly from (a).

As our first main result of this section we show that if $D\left(A^{*}\right)=D(A)$ and $B \in \mathcal{L}(U, X)$, then nonuniform observability of $\left(B^{*}, A\right)$ implies polynomial stability of the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ generated by A_{B}. The theorem is similar in nature to the results presented in [Ammari and Tucsnak 2001; Ammari et al. 2017] and [Ammari and Nicaise 2015, Chapter 2]. In particular, these references introduce generalised versions of exact observability of $\left(B^{*}, A\right)$ for second-order equations of the form in Section 2B, and deduce
nonuniform stability of the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$. If $\beta=0$ in our result, then the pair $\left(B^{*}, A\right)$ is exactly observable and we obtain exponential stability, similarly to [Slemrod 1974].

Theorem 4.4. Let A be the generator of a contraction semigroup on X such that $D\left(A^{*}\right)=D(A)$, and let $B \in \mathcal{L}(U, X)$. If the pair $\left(B^{*}, A\right)$ is nonuniformly observable with parameters $\beta \in[0,1]$ and $\tau>0$, then $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and

$$
\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim 1+|s|^{2 \beta}, \quad s \in \mathbb{R} .
$$

In particular, if $0<\beta \leq 1$ then the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ is polynomially stable and there exists a constant C >0 such that

$$
\begin{equation*}
\left\|T_{B}(t) x\right\| \leq \frac{C}{t^{1 /(2 \beta)}}\left\|A_{B} x\right\|, \quad x \in D\left(A_{B}\right), t>0 . \tag{4-3}
\end{equation*}
$$

If $\beta=0$ then the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ is exponentially stable.
Proof. Let $\beta \in[0,1]$ and $\tau>0$ be such that (4-1) holds for some $c_{\tau}>0$. By Lemma 2.2 the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ is contractive and $1 \in \rho\left(A_{B}\right)$. Moreover, both $(A-I)^{-1}$ and $\left(A_{B}-I\right)^{-1}$ are bounded operators generating contraction semigroups on X. Since $\left\|\left(A_{B}-I\right)^{-1} x\right\| \lesssim\left\|(A-I)^{-1} x\right\|$ for all $x \in X$, we have $\left\|\left(I-A_{B}\right)^{-\beta} x\right\| \lesssim\left\|(I-A)^{-\beta} x\right\|$ for all $x \in X$, by Theorem 4.2. Let $\lambda \in \mathbb{C}_{+}$and $x \in D(A)$. The previous estimate, together with nonuniform observability of (B^{*}, A), Lemma 4.3(a) and the estimate $\operatorname{Re}\left\langle\left(\lambda-A_{B}\right) z, z\right\rangle \geq\left\|B^{*} z\right\|^{2}, z \in D(A)$, imply that
$\left\|\left(I-A_{B}\right)^{-\beta} x\right\|^{2} \lesssim\left\|(I-A)^{-\beta} x\right\|^{2} \leq \frac{C_{\tau}}{c_{\tau}} \int_{0}^{\tau}\left\|B^{*} T_{B}(t) x\right\|^{2} d t \leq \frac{C_{\tau}}{c_{\tau}} \int_{0}^{\tau} \operatorname{Re}\left\langle T_{B}(t)\left(\lambda-A_{B}\right) x, T_{B}(t) x\right\rangle d t$.
Since $D\left(I-A_{B}^{*}\right)=D(A)=D\left(I-A_{B}\right)$, Theorem 4.2 gives $D\left(\left(I-A_{B}^{*}\right)^{\beta}\right)=D\left(\left(I-A_{B}\right)^{\beta}\right)$, and in particular $\left(I-A_{B}^{*}\right)^{\beta}\left(I-A_{B}\right)^{-\beta} \in \mathcal{L}(X)$. Hence if $\lambda \in \mathbb{C}_{+}$and $x \in D\left(\left(-A_{B}\right)^{1+2 \beta}\right)$ are arbitrary, the above estimate and contractivity of $\left(T_{B}(t)\right)_{t \geq 0}$ imply that

$$
\begin{aligned}
\|x\|^{2} & \lesssim \frac{C_{\tau}}{c_{\tau}} \int_{0}^{\tau} \operatorname{Re}\left\langle T_{B}(t)\left(\lambda-A_{B}\right)\left(I-A_{B}\right)^{\beta} x, T_{B}(t)\left(I-A_{B}\right)^{\beta} x\right\rangle d t \\
& =\frac{C_{\tau}}{c_{\tau}} \int_{0}^{\tau} \operatorname{Re}\left\langle\left(I-A_{B}^{*}\right)^{\beta}\left(I-A_{B}\right)^{-\beta} T_{B}(t)\left(\lambda-A_{B}\right)\left(I-A_{B}\right)^{2 \beta} x, T_{B}(t) x\right\rangle d t \\
& \leq \frac{\tau C_{\tau}}{c_{\tau}}\left\|\left(I-A_{B}^{*}\right)^{\beta}\left(I-A_{B}\right)^{-\beta}\right\|\left\|\left(\lambda-A_{B}\right)\left(I-A_{B}\right)^{2 \beta} x\right\|\|x\| .
\end{aligned}
$$

Since $\mathbb{C}_{+} \subseteq \rho\left(A_{B}\right)$ we in particular obtain

$$
\sup _{0<\operatorname{Re} \lambda<1}\left\|\left(\lambda-A_{B}\right)^{-1}\left(I-A_{B}\right)^{-2 \beta}\right\|<\infty .
$$

Thus $\left\|\left(\lambda-A_{B}\right)^{-1}\right\| \lesssim 1+|\lambda|^{2 \beta}$ for $0<\operatorname{Re} \lambda<1$ by [Latushkin and Shvydkoy 2001, Lemma 3.2]. In particular, the inequality $\left\|\left(\lambda-A_{B}\right)^{-1}\right\| \geq 1 / \operatorname{dist}\left(\lambda, \sigma\left(A_{B}\right)\right)$ implies that $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim$ $1+|s|^{2 \beta}$ for $s \in \mathbb{R}$. Finally, for $\beta \in(0,1]$, the estimate (4-3) follows from Theorem 2.7, and for $\beta=0$ the claim follows from the Gearhart-Prüss theorem.

As shown in the following proposition, nonuniform observability of $\left(B^{*}, A\right)$ can also be characterised in terms of the orbits of the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$.

Proposition 4.5. Let A be skew-adjoint and $B \in \mathcal{L}(U, X)$. The pair $\left(B^{*}, A\right)$ is nonuniformly observable with parameters $\beta \in[0,1], \tau>0$ if and only if

$$
\begin{equation*}
\left\|(I-A)^{-\beta} x\right\|^{2} \lesssim\|x\|^{2}-\left\|T_{B}(\tau) x\right\|^{2}, \quad x \in X . \tag{4-4}
\end{equation*}
$$

In particular, if (4-4) holds for some $\beta \in[0,1]$ and $\tau>0$, then $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim 1+|s|^{2 \beta}$ for $s \in \mathbb{R}$.

Proof. Fix $\beta \in[0,1]$ and $\tau>0$. As in the proof of Lemma 4.3, we have $\left\|(I-A)^{-\beta} x\right\| \lesssim\left\|\left(I-A_{B}\right)^{-\beta} x\right\| \lesssim$ $\left\|(I-A)^{-\beta} x\right\|$ for all $x \in X$ by Theorem 4.2. For every $x \in D(A)=D\left(A_{B}\right)$ we have

$$
\begin{aligned}
2 \int_{0}^{\tau}\left\|B^{*} T_{B}(t) x\right\|^{2} d t & =2 \int_{0}^{\tau} \operatorname{Re}\left(\left(-A+B B^{*}\right) T_{B}(t) x, T_{B}(t) x\right\rangle d t \\
& =-\int_{0}^{\tau} \frac{d}{d t}\left\|T_{B}(t) x\right\|^{2} d t=\|x\|^{2}-\left\|T_{B}(\tau) x\right\|^{2}
\end{aligned}
$$

Thus (4-4) is equivalent to nonuniform observability of the pair (B^{*}, A_{B}) with parameters β and τ, which in turn is equivalent to nonuniform observability of (B^{*}, A) with parameters β and τ by Lemma 4.3(b). If (4-4) holds, then nonuniform observability of (B^{*}, A) and Theorem 4.4 imply that $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim 1+|s|^{2 \beta}$ for $s \in \mathbb{R}$.

Note that by Theorem 4.2 the norm $\left\|(I-A)^{-\beta} x\right\|$ on the left-hand side of (4-4) can be replaced by $\left\|\left(I-A_{B}\right)^{-\beta} x\right\|$, or by $\left\|(-A)^{-\beta} x\right\|$ if $0 \in \rho(A)$. Estimates similar to (4-4) have been used in the literature in order to prove polynomial decay rates for $\left(T_{B}(t)\right)_{t \geq 0}$ based on discrete-time iterations, especially for damped wave equations [Russell 1975] and coupled partial differential equations [Rauch et al. 2005; Duyckaerts 2007]. In particular, in the special case $\beta=\frac{1}{2}$ condition (4-4) is equivalent to the observability estimate [Duyckaerts 2007, equation (39)]. Thus Theorem 4.4 improves and generalises the stability result in [loc. cit., Section 5] in the case where A is skew-adjoint. Finally, if A generates a contraction semigroup and $B \in \mathcal{L}(U, X)$, then nonuniform observability of (B^{*}, A) with parameters $\beta \in[0,1]$ and $\tau>0$ implies (4-4).

4B. Time-domain conditions for second-order problems. In this section we study nonuniform observability for second-order systems of the form

$$
\begin{equation*}
\ddot{w}(t)+L w(t)+D D^{*} \dot{w}(t)=0, \quad t \geq 0 . \tag{4-5}
\end{equation*}
$$

Throughout the section, L, D, A and B are as in Section 2B. In the proofs of our results we also make use of the operator $\left|A_{\text {diag }}\right|: D\left(\left|A_{\text {diag }}\right|\right) \subseteq X \rightarrow X$ defined by

$$
\left|A_{\text {diag }}\right|=\left(\begin{array}{cc}
L^{1 / 2} & 0 \tag{4-6}\\
0 & L^{1 / 2}
\end{array}\right), \quad D\left(\left|A_{\text {diag }}\right|\right)=D(A)
$$

For second-order systems the concept of nonuniform observability in Definition 4.1 has the following alternative characterisation.

Proposition 4.6. Let L, D, A and B be as in Section $2 B$. The pair $\left(B^{*}, A\right)$ is nonuniformly observable with parameter $\beta \in[0,1]$ and $\tau>0$ if and only if

$$
\left\|L^{(1-\beta) / 2} w_{0}\right\|_{H}^{2}+\left\|L^{-\beta / 2} w_{1}\right\|_{H}^{2} \lesssim \int_{0}^{\tau}\left\|D^{*} \dot{w}(t)\right\|_{U}^{2} d t
$$

where w is the (classical) solution of

$$
\ddot{w}(t)+L w(t)=0, \quad w(0)=w_{0} \in H_{1}, \quad \dot{w}(0)=w_{1} \in H_{1 / 2} .
$$

Proof. Fix $\beta \in[0,1]$ and $\tau>0$. Since $0 \in \rho(A)$, the norm $\left\|(I-A)^{-\beta} x\right\|$ in (4-1) can be replaced by $\left\|(-A)^{-\beta} x\right\|$. If $\left|A_{\text {diag }}\right|$ is defined as in (4-6), then for $x=\left(x_{1}, x_{2}\right) \in X=H_{1 / 2} \times H$ we have

$$
\left\|-A^{-1} x\right\|_{X}^{2}=\left\|L^{-1} x_{2}\right\|_{H_{1 / 2}}^{2}+\left\|x_{1}\right\|_{H}^{2}=\left\|\left|A_{\text {diag }}\right|^{-1} x\right\|_{X}^{2} .
$$

Thus Theorem 4.2 implies that $\left\|(-A)^{-\beta} x\right\| \lesssim\left\|\left|A_{\text {diag }}\right|^{-\beta} x\right\| \lesssim\left\|(-A)^{-\beta} x\right\|$ for all $x \in X$, and hence

$$
\left\|(-A)^{-\beta} x\right\|^{2} \lesssim\left\|L^{(1-\beta) / 2} x_{1}\right\|_{H}^{2}+\left\|L^{-\beta / 2} x_{2}\right\|_{H}^{2} \lesssim\left\|(-A)^{-\beta} x\right\|^{2}
$$

for all $x=\left(x_{1}, x_{2}\right) \in X$. The claims now follow from the fact that for $x=\left(w_{0}, w_{1}\right) \in D(A)=H_{1} \times H_{1 / 2}$ we have $T(t) x \in D(A)$ and $B^{*} T(t) x=D^{*} \dot{w}(t)$ for all $t \geq 0$.

We conclude this section by studying the damped second-order equation (4-5) for damping operators $D \in \mathcal{L}(U, H)$ satisfying

$$
\begin{equation*}
\left\|L^{-\alpha / 2} w\right\| \lesssim\left\|D^{*} w\right\| \lesssim\left\|L^{-\alpha / 2} w\right\|, \quad w \in H \tag{4-7}
\end{equation*}
$$

for some $\alpha \in(0,1]$. Nonuniform stability of such equations was studied in [Liu and Zhang 2015], and in [Dell'Oro and Pata 2021] in a slightly more general setting. The assumptions on D are satisfied in particular for the damping operator $D=L^{-\alpha / 2}$ in the wave and beam equations in [loc. cit., Section 15], as well as for the damped Rayleigh plate studied in [Liu and Zhang 2015, Section 3]. We shall show that such damping implies nonuniform observability in the sense of Definition 4.1. In particular, the following proposition reproduces the result of [loc. cit., Theorem 2.1] for a symmetric damping operator of the form $D D^{*}$ and for $\alpha \in(0,1]$. The degree of stability was shown in [loc. cit., Section 3] to be optimal for a class of systems with a diagonal L.
Proposition 4.7. Let L, D, A and B be as in Section $2 B$ with $D \in \mathcal{L}(U, H)$ such that (4-7) holds for some constant $\alpha \in(0,1]$. Then the pair $\left(B^{*}, A\right)$ is nonuniformly observable with parameter $\beta=\alpha$ and for any $\tau>\left(\pi+2 \pi^{3}\right)\left\|L^{-1 / 2}\right\|^{-1}$. Moreover, the semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ generated by A_{B} is polynomially stable and there exists a constant $C>0$ such that

$$
\left\|T_{B}(t) x\right\| \leq \frac{C}{t^{1 /(2 \alpha)}}\left\|A_{B} x\right\|, \quad x \in D\left(A_{B}\right), t>0 .
$$

Proof. We begin by showing that if we define $(0, I) \in \mathcal{L}(X, H)$, then the pair $((0, I), A)$ is exactly observable for any $\tau>\left(\pi+2 \pi^{3}\right)\left\|L^{-1 / 2}\right\|^{-1}$. To prove this, let $\delta_{0}=\left\|L^{-1 / 2}\right\|$. Then Lemma 3.8 shows that every nontrivial $\left(s, \delta_{0}\right)$-wavepacket x of A has the form $x=\left(w, i \operatorname{sign}(s) L^{1 / 2} w\right)$, where w is a $\left(|s|, \delta_{0}\right)$-wavepacket of $L^{1 / 2}$, and for such x we have

$$
\|(0, I) x\|_{H}=\left\|L^{1 / 2} w\right\|_{H}=\frac{1}{\sqrt{2}}\|x\|_{X} .
$$

Since $\|(0, I)\|=1$, it follows from [Miller 2012, Corollary 2.17] that the pair $((0, I), A)$ is exactly observable for $\tau>\left(\pi+2 \pi^{3}\right)\left\|L^{-1 / 2}\right\|^{-1}$.

If $\left|A_{\text {diag }}\right|$ is defined as in (4-6), then $\left|A_{\text {diag }}\right|^{-1}$ commutes with A, and thus the same is true for $\left|A_{\text {diag }}\right|^{-\alpha}$. As in the proof of Proposition 4.6 we have $\left\|(-A)^{-\alpha} x\right\| \lesssim\left\|\left|A_{\text {diag }}\right|^{-\alpha} x\right\| \lesssim\left\|(-A)^{-\alpha} x\right\|$ for all $x \in X$. We may write $B^{*}=\left(0, D^{*}\right)=\left(0, D^{*} L^{\alpha / 2}\right)\left|A_{\text {diag }}\right|^{-\alpha}$, where the operator $D^{*} L^{\alpha / 2}$ is bounded below by assumption. Thus, for any fixed $\tau>\left(\pi+2 \pi^{3}\right)\left\|L^{-1 / 2}\right\|^{-1}$ and for all $x \in D(A)$, exact observability of $((0, I), A)$ implies that

$$
\begin{equation*}
\int_{0}^{\tau}\left\|B^{*} T(t) x\right\|_{U}^{2} d t \gtrsim \int_{0}^{\tau}\left\|(0, I) T(t)\left|A_{\text {diag }}\right|^{-\alpha} x\right\|_{H}^{2} d t \gtrsim\left\|\left|A_{\text {diag }}\right|^{-\alpha} x\right\|_{X}^{2} \gtrsim\left\|(-A)^{-\alpha} x\right\|_{X}^{2} . \tag{4-8}
\end{equation*}
$$

Theorem 4.2 now implies that the pair $\left(B^{*}, A\right)$ is nonuniformly observable with parameter $\beta=\alpha$ and with the chosen $\tau>\left(\pi+2 \pi^{3}\right)\left\|L^{-1 / 2}\right\|^{-1}$. Since A is skew-adjoint, the remaining claims follow from Theorem 4.4.

5. Optimality of the decay rates

In this section we investigate the optimality of our nonuniform decay estimates for the damped semigroup $\left(T_{B}(t)\right)_{t \geq 0}$. In particular, we present lower bounds for $\left\|T_{B}(\cdot) A_{B}^{-1}\right\|$, which in turn impose a restriction on the growth of $N^{-1}(t)$ as $t \rightarrow \infty$ in estimate (3-1). Our results will allow us to show that our resolvent estimates and the resulting nonuniform decay rates are optimal or near-optimal in several situations of interest, including various PDE models to be explored in Section 6. As we shall see in Section 6A3 below, however, there are also situations of interest in which our techniques fail to produce sharp results and, in particular, the resolvent estimates obtained by means of nonuniform Hautus tests or wavepacket conditions are necessarily suboptimal.

Our first result of this section provides a lower bound for the resolvent norm $\left\|\left(i s-A_{B}\right)^{-1}\right\|$ near eigenvalues of A. Here A is assumed to be skew-adjoint, but it need not have compact resolvent. In this section we define $B_{s}:=\left(B^{*} P_{s}\right)^{*} \in \mathcal{L}(U, X)$, where $P_{s}:=\chi_{\{s\}}(-i A)$ is the orthogonal projection onto $\operatorname{Ker}(i s-A)$. Note that $\operatorname{Ran}\left(B_{s}\right) \subseteq \operatorname{Ker}(i s-A)$ and hence we subsequently consider B_{s} as an operator from U into $\operatorname{Ker}(i s-A)$. If $\operatorname{Ran}\left(B_{s}\right)=\operatorname{Ker}(i s-A)$, we write $B_{s}^{+} \in \mathcal{L}(\operatorname{Ker}(i s-A), U)$ for the Moore-Penrose pseudoinverse of B_{s}. If $\operatorname{dim} \operatorname{Ker}(i s-A)=1$ and $B_{s} \neq 0$, then $\left\|B_{s}^{+}\right\|=\left\|B_{s}\right\|^{-1}$.

Proposition 5.1. Let A and B satisfy Assumption 2.1 and suppose that A is skew-adjoint. Suppose, in addition, that $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and let $N: \mathbb{R} \rightarrow(0, \infty)$ be a function such that $\left\|\left(i s-A_{B}\right)^{-1}\right\| \leq N(s)$ for all $s \in \mathbb{R}$. Then $\operatorname{Ran}\left(B_{s}\right)=\operatorname{Ker}(i s-A)$ for all $s \in \mathbb{R}$, and $N(s) \geq\left\|B_{s}^{+}\right\|^{2}$ for all $s \in \mathbb{R}$ such that is $\in \sigma_{p}(A)$.

Proof. Fix is $\in \sigma_{p}(A)$ and let $y \in \operatorname{Ker}(i s-A)$ be arbitrary. Then $\langle y, z\rangle_{X}=\left\langle y, P_{s} z\right\rangle_{X}$ for all $z \in X$. Hence if $x \in D\left(A_{B}\right)$ is such that $\left(i s-A_{B}\right) x=y$, then

$$
\langle y, z\rangle_{X}=\left\langle\left(i s-A_{-1}\right) x, P_{s} z\right\rangle_{X_{-1}, X_{1}}+\left\langle B B^{*} x, P_{s} z\right\rangle_{X_{-1}, X_{1}}
$$

for all $z \in X$. It is straightforward to show that the first term on the right-hand side is zero, so by definition of B_{s} we have $\langle y, z\rangle_{X}=\left\langle B_{s} B^{*} x, z\right\rangle_{X}$ for all $z \in X$. Thus $B_{s} B^{*} x=y$. Since $y \in \operatorname{Ker}(i s-A)$ was arbitrary, we deduce that $\operatorname{Ran}\left(B_{s}\right)=\operatorname{Ker}(i s-A)$, and in particular the Moore-Penrose pseudoinverse
$B_{s}^{+} \in \mathcal{L}(\operatorname{Ker}(i s-A), U)$ of B_{s} is well defined. Now $\left\|B_{s}^{+} y\right\|=\min \left\{\|u\|: u \in U\right.$ and $\left.B_{s} u=y\right\}$, so by the identity $B_{s} B^{*} x=y$ and Lemma 2.11 we have

$$
\left\|B_{s}^{+} y\right\|^{2} \leq\left\|B^{*} x\right\|^{2}=\left\|B^{*}\left(i s-A_{B}\right)^{-1} y\right\|^{2} \leq N(s)\|y\|^{2} .
$$

This holds for all $y \in \operatorname{Ker}(i s-A)$, so $\left\|B_{s}^{+}\right\|^{2} \leq N(s)$.
Remark 5.2. If the skew-adjoint operator A in Proposition 5.1 has pure point spectrum and the eigenvalues of A are uniformly separated (but not necessarily simple), so that the spectral gap

$$
d_{\text {gap }}:=\inf \left\{\left|s-s^{\prime}\right|: i s, i s^{\prime} \in \sigma(A), s \neq s^{\prime}\right\}
$$

is strictly positive, then the norms $\left\|B_{s}^{+}\right\|$can be used to construct functions δ and γ for which Theorem 3.5 provides the optimal rate of resolvent growth. Indeed, if we choose a constant $\delta(s) \equiv \delta:=d_{\text {gap }} / 4>0$, then all nontrivial $(s, \delta(s))$-wavepackets of A are eigenvectors corresponding to the unique eigenvalue $i s^{\prime}$ in the interval $i\left(s-\delta, s+\delta\right.$). If $B_{s^{\prime}}$ maps surjectively onto $\operatorname{Ker}\left(i s^{\prime}-A\right)$ (which is in fact necessary for $i s^{\prime}$ to be an element of the resolvent set $\rho\left(A_{B}\right)$), then for every $x \in \operatorname{Ker}\left(i s^{\prime}-A\right)$ we have

$$
\left\|B^{*} x\right\|=\left\|B_{s^{\prime}}^{*} x\right\| \geq\left\|B_{s^{\prime}}^{+}\right\|^{-1}\|x\| .
$$

The wavepacket condition (3-4) is therefore satisfied for every bounded function γ such that $\gamma(s) \equiv$ $\left\|B_{s^{\prime}}^{+}\right\|^{-1}$ whenever $s \in\left(s^{\prime}-\delta, s^{\prime}+\delta\right)$ and $i s^{\prime} \in \sigma(A)$. Theorem 3.5 then implies that $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim \gamma(s)^{-2}$, and by Proposition 5.1 this estimate is sharp in the sense that $N\left(s^{\prime}\right) \geq \gamma\left(s^{\prime}\right)^{-2}$ whenever $i s^{\prime} \in \sigma(A)$ and N is as in (3-1).

As Proposition 5.1 provides us with a lower bound for the resolvent of A_{B}, we proceed by showing that such a bound implies a lower bound for orbits of $\left(T_{B}(t)\right)_{t \geq 0}$. This will be done in a more general context in anticipation of possible applications elsewhere. It was shown in [Batty and Duyckaerts 2008, Proposition 1.3] that one cannot in general hope for a better rate of decay than that given in Theorem 2.7. The following new result is a consequence of [loc. cit., Proposition 1.3]. More specifically, it is a variant of a claim made in [Batty et al. 2016, Theorem 1.1] and in the discussion following [Arendt et al. 2011, Theorem 4.4.14], and it gives a sharp optimality statement of the same type but which, crucially, is applicable as soon as one has a lower bound for the resolvent along a (possibly unknown) unbounded sequence of points on the imaginary axis. The proof uses the same ideas as that of [Batty et al. 2016, Corollary 6.11].
Proposition 5.3. Let X be a Banach space and let $(T(t))_{t \geq 0}$ be a bounded semigroup on X whose generator A satisfies $i \mathbb{R} \subseteq \rho(A)$. Suppose that $N: \mathbb{R}_{+} \rightarrow(0, \infty)$ is a continuous nondecreasing function such that $N(s) \rightarrow \infty$ as $s \rightarrow \infty$ and

$$
\begin{equation*}
\limsup _{|s| \rightarrow \infty} \frac{\left\|(i s-A)^{-1}\right\|}{N(|s|)}>0 . \tag{5-1}
\end{equation*}
$$

Then there exists $c>0$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} N^{-1}(c t)\left\|T(t) A^{-1}\right\|>0 \tag{5-2}
\end{equation*}
$$

and if N has positive increase then (5-2) holds for all $c>0$.

Proof. Consider the continuous nondecreasing function $n: \mathbb{R}_{+} \rightarrow(0, \infty)$ defined by

$$
n(t)=\sup _{\tau \geq t}\left\|T(\tau) A^{-1}\right\|, \quad t \geq 0
$$

and let n^{-1} denote any right-inverse of n. Note that n takes strictly positive values since by (5-1) the semigroup $(T(t))_{t \geq 0}$ cannot be nilpotent, and that $n(t) \rightarrow 0$ as $t \rightarrow \infty$ by [Batty and Duyckaerts 2008, Theorem 1.1]. Furthermore, by (5-1) and [loc. cit., Proposition 1.3] we may find a constant $c>0$ and an increasing sequence $\left(s_{k}\right)_{k \in \mathbb{N}}$ of positive numbers such that $s_{k} \rightarrow \infty$ as $k \rightarrow \infty$ and $N\left(s_{k}\right)<c n^{-1}\left(\left(2 s_{k}\right)^{-1}\right)$ for all $k \in \mathbb{N}$. Let $t_{k}=n^{-1}\left(\left(2 s_{k}\right)^{-1}\right)$ for $k \in \mathbb{N}$. Then $t_{k} \rightarrow \infty$ as $k \rightarrow \infty$ because N is assumed to be unbounded, and we have $s_{k}=\left(2 n\left(t_{k}\right)\right)^{-1}, k \in \mathbb{N}$. Now $N\left(N^{-1}\left(c t_{k}\right)\right)=c t_{k}>N\left(s_{k}\right)$ and hence $N^{-1}\left(c t_{k}\right)>\left(2 n\left(t_{k}\right)\right)^{-1}$ for all $k \in \mathbb{N}$. Letting $K=\sup _{t \geq 0}\|T(t)\|$, it follows that

$$
\frac{1}{2 N^{-1}\left(c t_{k}\right)} \leq n\left(t_{k}\right) \leq K\left\|T\left(t_{k}\right) A^{-1}\right\|, \quad k \in \mathbb{N},
$$

which establishes (5-2). If N has positive increase then by [Rozendaal et al. 2019, Proposition 2.2] we have $N^{-1}(t) \asymp N^{-1}(c t)$ as $t \rightarrow \infty$ for all $c>0$, which immediately yields the second statement.

Remark 5.4. If N is not assumed to have positive increase then it is possible for (5-1) to be satisfied but for (5-2) to hold only for certain values of $c>0$. We refer the interested reader to the discussion following [Rozendaal et al. 2019, Remark 3.3] for an example of a contraction semigroup on a Hilbert space such that (5-1) holds for $N(s)=\log (s), s \geq 2$, and $\left\|T(t) A^{-1}\right\|=O\left(e^{-t / 2}\right)$ as $t \rightarrow \infty$. In particular, (5-2) does not hold for any $c \in\left(0, \frac{1}{2}\right)$.

The considerations above lead to the following statement, which is the main result of this section. It is an immediate consequence of Propositions 5.1 and 5.3, both of which are applicable under more general assumptions. The result provides lower bounds for orbits of $\left(T_{B}(t)\right)_{t \geq 0}$ under an assumption on the action of B^{*} on eigenvectors of A associated with imaginary eigenvalues $i s_{k} \in \sigma_{p}(A)$. These lower bounds will allow us to show in Section 6B below that the nonuniform decay rates we obtain from our observability conditions are optimal (or near-optimal) in several concrete situations of interest.
Theorem 5.5. Let A and B satisfy Assumption 2.1 and suppose that A is skew-adjoint and that $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$. If there exist a sequence $\left(s_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R},\left|s_{k}\right| \rightarrow \infty$ as $k \rightarrow \infty$ and a continuous nondecreasing function $N_{0}: \mathbb{R}_{+} \rightarrow(0, \infty)$ of positive increase such that $\left\|B_{s_{k}}^{+}\right\|^{2} \geq N_{0}\left(\left|s_{k}\right|\right)$ for all $k \in \mathbb{N}$, then

$$
\limsup _{t \rightarrow \infty} N_{0}^{-1}(t)\left\|T_{B}(t) A_{B}^{-1}\right\|>0
$$

Consequently, if (3-1) holds then there exists a sequence $\left(t_{k}\right)_{k \in \mathbb{N}} \subseteq(0, \infty)$ with $t_{k} \rightarrow \infty$ as $k \rightarrow \infty$ such that $N^{-1}\left(t_{k}\right) \lesssim N_{0}^{-1}\left(t_{k}\right)$ for all $k \in \mathbb{N}$.

We finish this section with a result of independent interest, offering an asymptotic estimate for a collection of eigenvalues of A_{B} under a uniform spectral gap condition of the type discussed in Remark 5.2.

Proposition 5.6. Let A be skew-adjoint and suppose that $B \in \mathcal{L}(U, X)$ is compact. Suppose further that $\sigma(A)=\sigma_{p}(A)$ and that this set is infinite, that $\operatorname{dim} \operatorname{Ker}(i s-A)=1$ for every is $\in \sigma(A)$, and that $d_{\text {gap }}>0$. Then there exist a family $\left(\lambda_{s}\right)_{i s \in \sigma_{p}(A)}$ and $s_{0} \geq 0$ such that $\lambda_{s} \in \sigma\left(A_{B}\right)$ for $|s| \geq s_{0}$ and $\left|\lambda_{s}-\left(i s-\left\|B_{s}\right\|^{2}\right)\right|=o\left(\left\|B_{s}\right\|^{2}\right)$ as $|s| \rightarrow \infty$.

Proof. First, we note that

$$
\left\{\lambda \in \mathbb{C}_{-}: \operatorname{Ker}\left(I+B^{*}(\lambda-A)^{-1} B\right) \neq\{0\}\right\} \subseteq \sigma_{p}\left(A_{B}\right)
$$

Indeed, if $\lambda \in \mathbb{C}_{-}$and $u \in U \backslash\{0\}$ are such that $B^{*}(\lambda-A)^{-1} B u=-u$, then $\left(\lambda-A_{B}\right)(\lambda-A)^{-1} B u=0$. Since $(\lambda-A)^{-1} B u \neq 0$ (otherwise $u=-B^{*}(\lambda-A)^{-1} B u=0$), we conclude that $\lambda \in \sigma_{p}\left(A_{B}\right)$. This reduces our problem to finding suitable points $\lambda \in \mathbb{C}_{-}$with $\operatorname{Ker}\left(I+B^{*}(\lambda-A)^{-1} B\right) \neq\{0\}$.

Our assumptions on A and compactness of B imply that $\left\|B_{s}\right\|=\left\|P_{s} B\right\| \rightarrow 0$ as $|s| \rightarrow \infty$. Fix is $\in \sigma_{p}(A)$ such that $|s| \geq 9\|B\|^{2}$ and $\left\|B_{s}\right\|^{2} \leq d_{\text {gap }}$. By Proposition 5.1, B_{s} maps surjectively onto $\operatorname{Ker}(i s-A)$, and therefore $B_{s} \neq 0$. Let

$$
F_{s}(\lambda)=(\lambda-i s)\left(I+B^{*}(\lambda-A)^{-1} B\right) .
$$

Note that for $\lambda \in \rho(A)$ we have $\operatorname{Ker}\left(I+B^{*}(\lambda-A)^{-1} B\right) \neq\{0\}$ if and only if $\operatorname{Ker}\left(F_{s}(\lambda)\right) \neq\{0\}$. Our aim is to apply Rouché's theorem for operator-valued functions [Gohberg and Sigal 1971, Theorem 2.2]. We have $F_{s}(\lambda)=G_{s}(\lambda)+H_{s}(\lambda)$ with

$$
G_{s}(\lambda)=\lambda-i s+B_{s}^{*} B_{s}, \quad H_{s}(\lambda)=(\lambda-i s) B^{*}(\lambda-A)^{-1} B-B_{s}^{*} B_{s} .
$$

Since $B_{s}^{*} B_{s}$ is a rank-1 operator and $\operatorname{dim} X>1, G_{s}(\lambda)$ is boundedly invertible if and only if $\lambda \notin$ $\left\{i s-\left\|B_{s}\right\|^{2}\right.$, is $\}$. Let $r_{s}=\left\|B_{s}\right\|^{2} / 2$ and define the closed disk $\Omega_{s}=\left\{\lambda \in \mathbb{C}:\left|\lambda-\left(i s-\left\|B_{s}\right\|^{2}\right)\right| \leq r_{s}\right\} \subseteq \mathbb{C}_{-}$ and $\Gamma_{s}=\partial \Omega_{s}$. Then $G_{s}(\lambda)$ is boundedly invertible for all $\lambda \in \Omega_{s} \backslash\left\{i s-\left\|B_{s}\right\|^{2}\right\}$, and for all $\lambda \in \Gamma_{s}$ we have

$$
\left\|G_{s}(\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}\left(\lambda,\left\{i s-\left\|B_{s}\right\|^{2}, i s\right\}\right)}=\frac{1}{r_{s}}
$$

Let $J_{s}=\left\{s^{\prime} \in \mathbb{R}:\left|s^{\prime}-s\right| \leq|s| / 2\right\}$. For every $s^{\prime} \in \mathbb{R} \backslash J_{s}$ and every $\lambda \in \Omega_{s}$ we have

$$
\left|\lambda-i s^{\prime}\right| \geq\left|i s^{\prime}-i s\right|-|\lambda-i s| \geq \frac{|s|}{2}-\frac{3}{2}\left\|B_{s}\right\|^{2} \geq \frac{|s|}{3}
$$

where the last inequality follows from the condition $|s| \geq 9\|B\|^{2}$. Hence, for every $\lambda \in \Omega_{s}$,

$$
\left\|B^{*}(\lambda-A)^{-1} \chi_{\mathbb{R} \backslash J_{s}}(-i A) B\right\| \leq\left\|B^{*}\right\| \sup _{\left|s^{\prime}-s\right|>|s| / 2} \frac{1}{\left|\lambda-i s^{\prime}\right|}\|B\| \leq \frac{3\|B\|^{2}}{|s|}
$$

Thus, for every $u \in U$ with $\|u\| \leq 1$, by the Cauchy-Schwarz inequality, the uniform spectral gap assumption and Bessel's identity, we see that

$$
\begin{aligned}
\frac{\left\|H_{s}(\lambda) u\right\|}{|\lambda-i s|} & \leq\left\|B^{*}(\lambda-A)^{-1} \chi_{\mathbb{R} \backslash J_{s}}(-i A) B u\right\|+\left\|B^{*}(\lambda-A)^{-1} \chi_{J_{s}}(-i A) B u-\frac{B_{s}^{*} B_{s} u \|}{\lambda-i s}\right\| \\
& \leq \frac{3\|B\|^{2}}{|s|}+\left\|\sum_{i s^{\prime} \in\left(\sigma_{p}(A) \cap i J_{s}\right) \backslash\{i s\}} \frac{1}{\lambda-i s^{\prime}} B_{s^{\prime}}^{*} B_{s^{\prime}} u\right\| \\
& \leq \frac{3\|B\|^{2}}{|s|}+\sup _{\left|s^{\prime}\right| \geq|s| / 2}\left\|B_{s^{\prime}}^{*}\right\|\left(2 \sum_{j=1}^{\infty} \frac{1}{d_{\text {gap }}^{2} j^{2}}\right)^{1 / 2}\left(\sum_{i s^{\prime} \in \sigma_{p}(A)}\left\|B_{s^{\prime}} u\right\|^{2}\right)^{1 / 2} \\
& \leq \frac{3\|B\|^{2}}{|s|}+\frac{\pi\|B\|}{\sqrt{3} d_{\text {gap }}} \sup _{\left|s^{\prime}\right| \geq|s| / 2}\left\|B_{s^{\prime}}\right\| .
\end{aligned}
$$

Thus $\left\|H_{s}(\lambda)\right\| \leq q_{s}|\lambda-i s|$ for some $q_{s} \geq 0$ satisfying $q_{s} \rightarrow 0$ as $|s| \rightarrow \infty$. Then, for $|s|$ large enough and $\lambda \in \Gamma_{s}$,

$$
\left\|G_{s}(\lambda)^{-1} H_{s}(\lambda)\right\| \leq \frac{q_{s}|\lambda-i s|}{r_{s}} \leq 3 q_{s}<1
$$

Rouché's theorem [Gohberg and Sigal 1971, Theorem 2.2] now implies that for every is $\in \sigma_{p}(A)$ with $|s|$ sufficiently large there exists $\lambda_{s} \in \Omega_{s}$ such that $\operatorname{Ker}\left(F\left(\lambda_{s}\right)\right) \neq\{0\}$, and the proof is complete.

Observe that if A and B are as in Proposition 5.6 and if $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$, then the result implies that

$$
\liminf _{|s| \rightarrow \infty}\left\|B_{s}\right\|^{2}\left\|\left(i s-A_{B}\right)^{-1}\right\|>0 .
$$

Then using Proposition 5.3 as in Theorem 5.5 , we obtain a lower bound for $\left\|T_{B}(\cdot) A_{B}^{-1}\right\|$ along a sequence $\left(t_{k}\right)_{k \in \mathbb{N}} \subseteq(0, \infty)$ with $t_{k} \rightarrow \infty$ as $k \rightarrow \infty$. We omit a precise formulation of the corresponding statement since it is completely analogous to Theorem 5.5.

6. Nonuniform stability of damped partial differential equations

In this section we apply our general results to several concrete partial differential equations of different types. In particular, we consider damped wave equations on one- and two-dimensional spatial domains, a one-dimensional fractional Klein-Gordon equation, and a damped Euler-Bernoulli beam equation. We also refer to a recent article [Su et al. 2020] for an application of Theorem 3.5 in the study of a coupled PDE system describing the dynamics of linearised water waves.

6A. Wave equations on two-dimensional domains. In this section we consider wave equations on bounded simply connected domains $\Omega \subseteq \mathbb{R}^{2}$ which are either convex or have sufficiently regular (say C^{2}) boundary to ensure that the domain of the Dirichlet Laplacian on Ω is included in $H^{2}(\Omega)$. The wave equation with viscous damping and Dirichlet boundary conditions is given by

$$
\begin{gather*}
w_{t t}(\xi, t)-\Delta w(\xi, t)+b(\xi)^{2} w_{t}(\xi, t)=0, \quad \xi \in \Omega, t>0, \tag{6-1a}\\
w(\xi, t)=0, \quad \xi \in \partial \Omega, t>0, \tag{6-1b}\\
w(\cdot, 0)=w_{0}(\cdot) \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \quad w_{t}(\cdot, 0)=w_{1}(\cdot) \in H_{0}^{1}(\Omega) . \tag{6-1c}
\end{gather*}
$$

Here $b \in L^{\infty}(\Omega)$ is the nonnegative damping coefficient. It is well known that the geometry of Ω and the region where $b(\cdot)>0$ have great impact on the asymptotic properties of the wave equation. In the framework of Section 2B we set $H=L^{2}(\Omega), L=-\Delta$ with domain $H_{1}=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, and define $U=L^{2}(\Omega)$ and $D \in \mathcal{L}\left(L^{2}(\Omega)\right)$ by $D u=b u$ for all $u \in L^{2}(\Omega)$. Since $D \in \mathcal{L}(U, H)$, the function μ_{0} in Section 3B can be chosen to be bounded.

6A1. Exact observability of the Schrödinger group. In order to apply Proposition 3.10 to the damped wave equation (6-1) we need to understand the observability properties of the Schrödinger group on Ω. Of particular interest here is the case of exact observability of the Schrödinger group, which corresponds to (3-13) being satisfied for constant functions M_{0} and m_{0}. In such cases Proposition 3.10 immediately yields the resolvent bound $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim 1+s^{2}, s \in \mathbb{R}$, so by Theorem 2.7 (and Remark 2.8) classical
solutions of the corresponding abstract Cauchy problem decay like (and in fact faster than) $t^{-1 / 2}$ as $t \rightarrow \infty$. This was first proved in [Anantharaman and Léautaud 2014], but we mention that, similarly to [Joly and Laurent 2020, Appendix B], Proposition 3.10 also allows us to deal with the much more general situation where (3-13) is satisfied for functions M_{0} and m_{0} which satisfy suitable lower bounds but need not be constant. We take advantage of this added generality in Section 6A2 below.

The study of energy decay of damped waves via observability conditions has a long history [Slemrod 1974; Russell 1975; Benchimol 1977; Lebeau 1996; Ammari and Tucsnak 2001; Burq and Hitrik 2007; Cavalcanti et al. 2019; Letrouit and Sun 2023; Laurent and Léautaud 2021], and in particular it predates the resolvent approach. It is not surprising, therefore, that there is a rich literature on exact observability of the Schrödinger group, giving many concrete examples to which our abstract theory may be applied. For instance, if Ω is a rectangle then it follows from a classical result due to [Jaffard 1990] that the Schrödinger group corresponding to our system is exactly observable for every nonnegative $b \in L^{\infty}(\Omega)$ such that ess $\sup _{\xi \in \omega} b(\xi)>0$ for some nonempty open set $\omega \subseteq \Omega$; see [Burq and Zworski 2019] for an even stronger result on the torus. Similarly, it follows from [Burq and Zworski 2004, Theorem 9] that if Ω is the Bunimovich stadium then the corresponding Schrödinger group is exactly observable provided the damping b has strictly positive essential infimum on a neighbourhood of one of the sides of the rectangle meeting a half-disk and also at one point on the opposite side. This allows us to recover under a slightly weaker assumption the decay rate obtained in [Burq and Hitrik 2007, Theorem 1.1]. Finally, if Ω is a disk then by [Anantharaman et al. 2016, Theorem 1.2] the Schrödinger group is exactly observable whenever ess $\sup _{\xi \in \omega} b(\xi)>0$ for some open subset ω of $\bar{\Omega}$ such that $\omega \cap \partial \Omega \neq \varnothing$. In fact, this condition is also necessary for exact observability, as can be seen by considering so-called whispering gallery modes. We thus recover the decay rate for classical solutions obtained in [Anantharaman et al. 2016, Remark 1.7]. Further examples of when the Schrödinger group is exactly observable, including also higher-dimensional situations, may be found in [Anantharaman and Léautaud 2014, Section 2A]. We point out in passing that there is also scope to apply directly the wavepacket result Theorem 3.9, which underlies Proposition 3.10. One case in which this is possible is if one knows that ess $\sup _{\xi \in \omega} b(\xi)>0$ for some open set $\omega \subseteq \Omega$ such that $\|w\|_{L^{2}(\omega)} \geq c\|w\|_{L^{2}(\Omega)}$ for some constant $c>0$ and all eigenfunctions w of the Dirichlet Laplacian on Ω. This would allow us to take γ_{0} to be constant in Theorem 3.9, provided we know how to choose δ_{0} in such a way that the $\left(s, \delta_{0}(s)\right)$-wavepackets of $(-\Delta)^{1 / 2}$ are eigenfunctions associated with a single eigenvalue of Δ. The appropriate lower bound is obtained in [Hassell et al. 2009] in the case where Ω is a polygonal region and ω contains a neighbourhood of each of the vertices of Ω, and in fact these assumptions can be relaxed somewhat; see [Hassell et al. 2009, Remark 4]. Choosing an appropriate δ_{0}, however, requires detailed information on the distribution of the eigenvalues of the Dirichlet Laplacian on Ω, which imposes a rather severe restriction on the domains Ω for which this approach is likely to bear fruit.

6A2. Large damping away from a submanifold. We consider the damped Klein-Gordon equation on the square $\Omega=(0,1)^{2}$. This is a slight variant of (6-1) in which Δ is replaced by $\Delta-m$ for some $m>0$. Furthermore, we view Ω as the 2 -torus \mathbb{T}^{2} by imposing periodic rather than Dirichlet boundary conditions, thus allowing us to use the results of [Burq and Zuily 2016]. We apply our abstract results, setting
$H=L^{2}\left(\mathbb{T}^{2}\right)$ and $L=-\Delta+m$ with domain $H_{1}=H^{2}\left(\mathbb{T}^{2}\right)$ in the framework of Section 2B, in order to derive resolvent estimates under the assumption that the damping coefficient b satisfies a certain type of lower bound away from a proper submanifold Σ of \mathbb{T}^{2}. A typical example would be for Σ to be a circle of the form $\Sigma=\left\{\left(\xi_{1}, \xi_{2}\right) \in \Omega: \xi_{1} \in(0,1)\right\}$ for some fixed $\xi_{2} \in(0,1)$, but the results in [Burq and Zuily 2016] also apply in a much more general setting than this. The following result is a simple extension of [loc. cit., Corollary 1.3] in our special case. The distance referred to here is the geodesic distance on the manifold \mathbb{T}^{2}.

Corollary 6.1. Let $r: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a nondecreasing function satisfying $r(s)>0$ for all $s>0$, and suppose that $b(\xi)^{2} \geq r(\operatorname{dist}(\xi, \Sigma))$ for all $\xi \in \mathbb{T}^{2}$. Then $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ and there exist $\varepsilon \in(0,1)$ and $s_{0}>0$ such that

$$
\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim r\left(\varepsilon|s|^{-1 / 2}\right)^{-1}, \quad|s| \geq s_{0} .
$$

Proof. The inclusion $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ may be obtained for instance by following the argument used in the proof of [Anantharaman and Léautaud 2014, Lemma 4.2]. Note in particular that the origin is removed from the spectrum as a result of the shift we apply to the Laplacian. We now prove the resolvent estimate. Given $\varepsilon \in(0,1)$ and $s \in \mathbb{R} \backslash\{0\}$ let $\omega_{\varepsilon, s}=\left\{\xi \in \mathbb{T}^{2}: \operatorname{dist}(\xi, \Sigma)<\varepsilon|s|^{-1 / 2}\right\}$. By [Burq and Zuily 2016, Theorem 1.1] (but see also [Sogge 1988]) there exists $s_{0}>m$ such that

$$
\begin{equation*}
\|w\|_{L^{2}\left(\omega_{\varepsilon, S}\right)} \lesssim \varepsilon^{1 / 2}\left(|s|^{-1}\left\|\left(s^{2}-L\right) w\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}+\|w\|_{L^{2}\left(\mathbb{T}^{2}\right)}\right) \tag{6-2}
\end{equation*}
$$

for all $w \in H^{2}\left(\mathbb{T}^{2}\right), \varepsilon \in(0,1)$ and $s \in \mathbb{R}$ with $|s| \geq s_{0}$. By assumption we have $b(\xi)^{2} \geq r\left(\varepsilon|s|^{-1 / 2}\right)$ for all $\xi \in \mathbb{T}^{2} \backslash \omega_{\varepsilon, s}$. Thus if we let $m_{\varepsilon}(s)=r\left(\varepsilon|s|^{-1 / 2}\right)^{-1}$ for $\varepsilon \in(0,1)$ and $|s| \geq s_{0}$, then

$$
m_{\varepsilon}(s)\|b w\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2} \geq m_{\varepsilon}(s)\|b w\|_{L^{2}\left(\mathbb{T}^{2} \backslash \omega_{\varepsilon, s}\right)}^{2} \geq\|w\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2}-\|w\|_{L^{2}\left(\omega_{\varepsilon, s}\right)}^{2},
$$

and hence by (6-2) and an application of Young's inequality we may choose $\varepsilon \in(0,1)$ sufficiently small to ensure that

$$
\|w\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2} \lesssim|s|^{-2}\left\|\left(s^{2}-L\right) w\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2}+m_{\varepsilon}(s)\|b w\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2}
$$

for all $w \in H^{2}\left(\mathbb{T}^{2}\right)$ and all $s \in \mathbb{R}$ such that $|s| \geq s_{0}$. The result now follows from Proposition 3.10 and Remark 3.7.

We may use Corollary 6.1 to study the asymptotic behaviour of solutions of the damped Klein-Gordon equation. In particular, if $r(s)=c s^{2 \kappa}$ for some constants $c, \kappa>0$ then Corollary 6.1 yields the estimate $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim 1+|s|^{\kappa}$ for $s \in \mathbb{R}$, and hence by Theorem 2.7 any classical solution decays at the rate $t^{-1 / \kappa}$. Note that this is worse than the rate obtained under additional assumptions in [Léautaud and Lerner 2017; Datchev and Kleinhenz 2020] for the classical damped wave equation (6-1), which formally corresponds to the choice $m=0$ in our setting. On the other hand, it is stated in [Burq and Zuily 2016, Remark 1.5] that in general the rate $t^{-1 / \kappa}$ cannot be improved. The main value of Corollary 6.1 lies in the fact that it leads to interesting nonpolynomial resolvent estimates whenever the function r providing the lower bound is chosen appropriately.

6A3. Suboptimality of the observability and wavepacket conditions. In this section we discuss certain natural limitations of our results in Section 3, and in particular describe situations where the nonuniform decay rates obtained by our methods are suboptimal. As shown in [Burq and Hitrik 2007; Anantharaman and Léautaud 2014; Léautaud and Lerner 2017; Datchev and Kleinhenz 2020; Sun 2023] in the case of multidimensional wave equations with viscous damping, rates of nonuniform decay are dependent not only on the location of the damping but also on the smoothness of the damping coefficient b. By studying the damped wave equation (6-1) on a square $\Omega=(0,1)^{2}$ we can illustrate that the resolvent growth rates in Sections 3 and 4 are inherently suboptimal due to the fact that our observability concepts the nonuniform Hautus test, the wavepacket condition, the observability of the Schrödinger group and the nonuniform observability - are unable to detect the degree of smoothness of the damping coefficient b.

For this purpose, let $\omega=\left(0, \frac{1}{2}\right) \times(0,1)$. For any arbitrarily small $\varepsilon \in\left(0, \frac{1}{2}\right)$ we may as in [Burq and Hitrik 2007, Section 3] define a smooth nonnegative damping coefficient b_{ε} such that supp $b_{\varepsilon} \subseteq \omega,\left\|b_{\varepsilon}\right\|_{L^{\infty}} \leq 1$, and $\left\|\left(i s-A_{B_{\varepsilon}}\right)^{-1}\right\| \lesssim 1+|s|^{1+\varepsilon}, s \in \mathbb{R}$, where $B_{\varepsilon} \in \mathcal{L}\left(L^{2}(\Omega), X\right)$ is the damping operator associated with b_{ε}. Now consider the damping coefficient $b_{\chi}=\chi_{\omega}$, and denote the damping operator associated with this function by $B_{\chi} \in \mathcal{L}\left(L^{2}(\Omega), X\right)$. For this damping coefficient the optimal order of resolvent growth is known to be $1+|s|^{3 / 2}$ [Stahn 2017; Anantharaman and Léautaud 2014], and in particular $\lim \sup _{|s| \rightarrow \infty}|s|^{-3 / 2}\left\|\left(i s-A_{B_{\chi}}\right)^{-1}\right\|>0$. However, since $b_{\chi}(\xi) \geq b_{\varepsilon}(\xi)$ for all $\xi \in \Omega$, we clearly have

$$
\left\|B_{\chi}^{*} x\right\| \geq\left\|B_{\varepsilon}^{*} x\right\|, \quad x \in X
$$

Hence the nonuniform Hautus test (3-2), the wavepacket condition (3-4), observability of the Schrödinger group (3-13), or nonuniform observability (4-1) for the pair $\left(B_{\varepsilon}^{*}, A\right)$ immediately implies the same property for the pair $\left(B_{\chi}^{*}, A\right)$ with the same parameters. In particular, any resolvent estimate of the form $\left\|\left(i s-A_{B_{\varepsilon}}\right)^{-1}\right\| \leq N(s), s \in \mathbb{R}$, obtained from Theorem 3.2, Theorem 3.5, Proposition 3.10 or Theorem 4.4 also implies that $\left\|\left(i s-A_{B_{\chi}}\right)^{-1}\right\| \leq N(s)$ for $s \in \mathbb{R}$. However, by [Anantharaman and Léautaud 2014, Proposition B.1] we then also have $\lim \sup _{|s| \rightarrow \infty}|s|^{3 / 2} N(s)>0$. This means that $N(s)$ is a suboptimal upper bound for $\left\|\left(i s-A_{B_{\varepsilon}}\right)^{-1}\right\|$ as $|s| \rightarrow \infty$.

Comparing the rates of nonuniform decay of (6-1) with the two damping profiles b_{ε} and b_{χ} also shows that in the second part of Theorem 3.2 it is in general impossible to choose functions M and m satisfying $M+m \lesssim N$. To see this, let M_{ε} and m_{ε} be functions M and m corresponding to the damping b_{ε}. Then the inequality $b_{\chi} \geq b_{\varepsilon}$ implies that (B_{χ}^{*}, A), too, satisfies the Hautus test for the same functions M_{ε} and m_{ε}, and by Theorem 3.2 we have $\left\|\left(i s-A_{B_{\chi}}\right)^{-1}\right\| \lesssim M_{\varepsilon}(s)+m_{\varepsilon}(s), s \in \mathbb{R}$. However, since the optimal order of resolvent growth for the damping b_{χ} is $\mid s^{3 / 2}$, the conclusion cannot be true unless

$$
\limsup _{|s| \rightarrow \infty}|s|^{3 / 2}\left(M_{\varepsilon}(s)+m_{\varepsilon}(s)\right)>0
$$

Thus $M_{\varepsilon}+m_{\varepsilon}$ provides a strictly worse resolvent bound than the estimate $\left\|\left(i s-A_{B_{\varepsilon}}\right)^{-1}\right\| \lesssim 1+|s|^{1+\varepsilon}$, $s \in \mathbb{R}$, obtained in [Burq and Hitrik 2007, Section 3].

Finally, comparison of the damping coefficients b_{ε} and b_{χ} further shows that a dissipative perturbation of a generator of a polynomially stable semigroup can strictly worsen the rate of decay. Indeed, since $b_{\chi} \geq b_{\varepsilon}$ by construction, the "additional damping" of the difference $b_{\Delta}=b_{\chi}-b_{\varepsilon} \geq 0$ increases the
asymptotic rate of resolvent growth as $|s| \rightarrow \infty$ from at most $|s|^{1+\varepsilon}$ to $|s|^{3 / 2}$. In terms of the semigroup generators this means that $A_{B_{\varepsilon}}$ has a strictly slower asymptotic resolvent growth than $A_{B_{\chi}}$ even though $A_{B_{\chi}}$ is a dissipative perturbation of $A_{B_{\varepsilon}}$.

6B. Damped wave equations on one-dimensional domains.

6B1. Damping at a single interior point. In this section we consider the one-dimensional wave equation with pointwise damping studied in [Ammari and Tucsnak 2001, Section 5.1]; see also [Rzepnicki and Schnaubelt 2018] for a closely related problem on the stability of two serially connected strings. Our arguments rely essentially on ideas from [Ammari and Tucsnak 2001]. Given an irrational number $\xi_{0} \in(0,1)$, let us consider the problem

$$
\begin{gather*}
w_{t t}(\xi, t)-w_{\xi \xi}(\xi, t)+w_{t}\left(t, \xi_{0}\right) \delta_{\xi_{0}}(\xi)=0, \quad \xi \in(0,1), t>0, \tag{6-3a}\\
w(0, t)=0, \quad w(1, t)=0, t>0, \tag{6-3b}\\
w(\cdot, 0)=w_{0}(\cdot) \in H^{2}(0,1) \cap H_{0}^{1}(0,1), \quad w_{t}(\cdot, 0)=w_{1}(\cdot) \in H_{0}^{1}(0,1) . \tag{6-3c}
\end{gather*}
$$

As shown in [Ammari and Tucsnak 2001, Section 5.1], the system (6-3) satisfies the assumptions in Section 2B with $H=L^{2}(0,1), L=-\partial_{\xi \xi}$ with domain $H_{1}=H^{2}(0,1) \cap H_{0}^{1}(0,1)$, and L has positive square root with domain $H_{1 / 2}=H_{0}^{1}(0,1)$. The damping operator D is given by $D u=\delta_{\xi_{0}} u$ for all $u \in U=\mathbb{C}$, where $\delta_{\xi_{0}}$ is the Dirac delta distribution at $\xi=\xi_{0}$, and we indeed have $D \in \mathcal{L}\left(\mathbb{C}, H_{-1 / 2}\right)$ and $D^{*} \in \mathcal{L}\left(H_{1 / 2}, \mathbb{C}\right)$, where $H_{-1 / 2}=H^{-1}(0,1)$ and $H_{1 / 2}=H_{0}^{1}(0,1)$. In order to describe the domain $D\left(A_{B}\right)$, note that $A_{-1}^{-1} B=\left(-L^{-1} \delta_{\xi_{0}}, 0\right)=(z, 0)$, where $z \in H_{0}^{1}(0,1)$ is the solution of the differential equation $z^{\prime \prime}=\delta_{\xi_{0}}$ with boundary conditions $z(0)=z(1)=0$ in $H^{-1}(0,1)$. We thus have

$$
z(\xi)= \begin{cases}\xi\left(1-\xi_{0}\right), & 0<\xi \leq \xi_{0} \\ \xi_{0}(1-\xi), & \xi_{0}<\xi \leq 1\end{cases}
$$

Since $D\left(A_{B}\right)=\left\{x \in X_{B}: A_{-1} x-B B^{*} x \in X\right\}$ by Remark 2.4, we deduce that (cf. [Ammari and Tucsnak 2001, Section 5.1])

$$
D\left(A_{B}\right)=\left\{\left(u+z(\cdot) v\left(\xi_{0}\right), v\right): u \in H^{2}(0,1) \cap H_{0}^{1}(0,1), v \in H_{0}^{1}(0,1)\right\},
$$

and therefore classical solutions of (6-3) correspond to initial conditions

$$
\begin{equation*}
w_{0}=w_{00}+z(\cdot) w_{1}\left(\xi_{0}\right), \quad w_{00} \in H^{2}(0,1) \cap H_{0}^{1}(0,1), \quad w_{1} \in H_{0}^{1}(0,1) . \tag{6-4}
\end{equation*}
$$

Since the eigenvalues $\lambda_{n}^{2}=n^{2} \pi^{2}, n \in \mathbb{N}$, and corresponding normalised eigenfunctions $\phi_{n}(\cdot)=$ $\sqrt{2} \sin (n \pi \cdot)$ of L are known explicitly, we may use the wavepacket condition in Theorem 3.9 to analyse the stability properties of the damped system (6-3). Indeed, the eigenvalues $\lambda_{n}=n \pi, n \in \mathbb{N}$, of $L^{1 / 2}$ have a uniform gap, so we may choose $\delta(s) \equiv \pi / 4$. The nontrivial $(s, \delta(s))$-wavepackets of $L^{1 / 2}$ are then simply multiples of the eigenfunctions ϕ_{n} for $n \in \mathbb{N}$ such that $n \pi \in(s-\pi / 4, s+\pi / 4)$. For any $n \in \mathbb{N}$ we have

$$
\left|D^{*} \phi_{n}\right|=\left|\phi_{n}\left(\xi_{0}\right)\right|=\sqrt{2}\left|\sin \left(n \pi \xi_{0}\right)\right| .
$$

In order to determine the rate of resolvent growth we need to estimate the coefficients $\left|D^{*} \phi_{n}\right|$ from below. This certainly requires ξ_{0} to be an irrational number, but in fact we shall need to assume more, namely that ξ_{0} is badly approximable by rationals. It is known, for instance, that given any $\varepsilon>0$ almost every irrational $\xi_{0} \in(0,1)$ has the property that

$$
\begin{equation*}
\min _{m \in \mathbb{N}}\left|\xi_{0}-\frac{m}{n}\right| \geq \frac{1}{n^{2} \log (n)^{1+\varepsilon}} \tag{6-5}
\end{equation*}
$$

for all sufficiently large $n \geq 2$, while simultaneously for almost every irrational $\xi_{0} \in(0,1)$ there exist rationals m / n with arbitrarily large values of $n \geq 2$ such that

$$
\begin{equation*}
\left|\xi_{0}-\frac{m}{n}\right| \leq \frac{1}{n^{2} \log (n)} \tag{6-6}
\end{equation*}
$$

see for instance [Khinchin 1964, Theorem 32]. A rather special class of irrationals $\xi_{0} \in(0,1)$ is the set of irrationals that have constant type. These are commonly defined to be those irrational numbers which have uniformly bounded coefficients in their partial fractions expansions. Irrationals of constant type include all irrational quadratic numbers, that is to say irrational solutions of quadratic equations with integer coefficients. As shown in [Lang 1966, Chapter II, Theorem 6], an irrational number $\xi_{0} \in(0,1)$ has constant type if and only if there is a constant $c_{\xi_{0}}>0$ such that

$$
\begin{equation*}
\min _{m \in \mathbb{N}}\left|\xi_{0}-\frac{m}{n}\right| \geq \frac{c_{\xi_{0}}}{n^{2}}, \quad n \in \mathbb{N} \tag{6-7}
\end{equation*}
$$

It follows from the Dirichlet approximation theorem [Lang 1966, Chapter II, Theorem 1] that for any irrational number $\xi_{0} \in(0,1)$ there exist rationals m / n with arbitrarily large values of $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\xi_{0}-\frac{m}{n}\right| \leq \frac{1}{n^{2}} \tag{6-8}
\end{equation*}
$$

The following result yields (essentially) sharp rates of decay for the energy of our damped system for irrational numbers $\xi_{0} \in(0,1)$ of different nature.

Corollary 6.2. Let w be the (classical) solution of (6-3) corresponding to initial conditions as in (6-4).
(a) Fix $\varepsilon>0$. For almost every irrational number $\xi_{0} \in(0,1)$ there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
\left\|\left(w(\cdot, t), w_{t}(\cdot, t)\right)\right\|_{H^{1} \times L^{2}} \leq C_{\varepsilon} \frac{\log (t)^{1+\varepsilon}}{t^{1 / 2}}\left\|\left(w_{00}, w_{1}\right)\right\|_{H^{2} \times H^{1}}, \quad t \geq 2 \tag{6-9}
\end{equation*}
$$

Moreover, the rate is almost optimal in the sense that if $r: \mathbb{R}_{+} \rightarrow(0, \infty)$ is any function such that $r(t)=$ $o\left(t^{-1 / 2} \log (t)\right)$ as $t \rightarrow \infty$, then there exist w_{0}, w_{1} as in (6-4) for which $r(t)^{-1}\left\|\left(w(\cdot, t), w_{t}(\cdot, t)\right)\right\|_{H^{1} \times L^{2}}$ is unbounded as $t \rightarrow \infty$.
(b) If $\xi_{0} \in(0,1)$ is an irrational number of constant type then there exists $C>0$ such that

$$
\left\|\left(w(\cdot, t), w_{t}(\cdot, t)\right)\right\|_{H^{1} \times L^{2}} \leq \frac{C}{t^{1 / 2}}\left\|\left(w_{00}, w_{1}\right)\right\|_{H^{2} \times H^{1}}, \quad t \geq 1
$$

Moreover, the rate is optimal in the sense that if $r: \mathbb{R}_{+} \rightarrow(0, \infty)$ is any function such that $r(t)=o\left(t^{-1 / 2}\right)$ as $t \rightarrow \infty$, then there exist w_{0}, w_{1} as in (6-4) for which $r(t)^{-1}\left\|\left(w(\cdot, t), w_{t}(\cdot, t)\right)\right\|_{H^{1} \times L^{2}}$ is unbounded as $t \rightarrow \infty$.

Proof. The form of the estimates follows from Theorem 2.7 and the property that for initial conditions as in (6-4) we have

$$
\left\|A_{B}\left(w_{0}, w_{1}\right)\right\|_{X}^{2}=\left\|A\left(w_{00}, w_{1}\right)\right\|_{X}^{2}=\left\|w_{00}^{\prime \prime}\right\|_{L^{2}}^{2}+\left\|w_{1}\right\|_{H^{1}}^{2} .
$$

In order to prove (a), we will use Theorem 3.9. As shown in [Ammari and Tucsnak 2001, Lemma 5.3], we have $|s|\left\|D^{*}\left((1+i s)^{2}+L_{-1}\right)^{-1} D\right\| \lesssim 1, s \in \mathbb{R}$. To verify the wavepacket condition, let ξ_{0} be such that (6-5) holds. For a given $n \geq 2$, choose $m \in \mathbb{N}$ in such a way that $C_{n} \in \mathbb{R}$ defined by

$$
\xi_{0}=\frac{m}{n}+\frac{C_{n}}{n^{2} \log (n)^{1+\varepsilon}}
$$

has minimal absolute value. By (6-5) we have $1 \leq\left|C_{n}\right| \leq n \log (n)^{1+\varepsilon} / 2$ for all sufficiently large $n \geq 2$, and since $2 r / \pi \leq \sin (r) \leq r$ for $0 \leq r \leq \pi / 2$ it follows that

$$
\left|D^{*} \phi_{n}\right|=\sqrt{2}\left|\sin \left(n \pi \xi_{0}\right)\right|=\sqrt{2}\left|\sin \left(\frac{C_{n} \pi}{n \log (n)^{1+\varepsilon}}\right)\right| \geq \frac{2 \sqrt{2}}{n \log (n)^{1+\varepsilon}}
$$

for all sufficiently large $n \geq 2$. Thus by Theorem 3.9 we have $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim s^{2} \log (|s|)^{2+2 \varepsilon},|s| \geq 2$, and hence (6-9) follows from Theorem 2.7; see also [Batty et al. 2016, Theorem 1.3].

In order to prove the optimality statement, note that by (6-6) there exist infinitely many $n \geq 2$ for which $\left|C_{n}\right| \leq \log (n)^{\varepsilon}$ and therefore also

$$
\left|D^{*} \phi_{n}\right|=\sqrt{2}\left|\sin \left(\frac{C_{n} \pi}{n \log (n)^{1+\varepsilon}}\right)\right| \leq \frac{\sqrt{2} \pi}{n \log (n)} .
$$

Now Proposition 5.1 shows that

$$
\limsup _{|s| \rightarrow \infty} \frac{\left\|\left(i s-A_{B}\right)^{-1}\right\|}{|s|^{2} \log (|s|)^{2}}>0,
$$

and it follows from Proposition 5.3 that

$$
\limsup _{t \rightarrow \infty} \frac{\log (t)}{t^{-1 / 2}}\left\|T_{B}(t) A_{B}^{-1}\right\|>0
$$

Now the optimality statement follows from a simple application of the uniform boundedness principle.
The argument for part (b) is entirely analogous and slightly simpler. It uses (6-7) and (6-8) in place of (6-5) and (6-6), respectively.

6B2. Weak damping. In this section we consider a weakly damped wave equation on $(0,1)$, namely

$$
\begin{gather*}
w_{t t}(\xi, t)-w_{\xi \xi}(\xi, t)+b(\xi) \int_{0}^{1} b(r) w_{t}(r, t) d r=0, \quad \xi \in(0,1), t>0 \tag{6-10a}\\
w(0, t)=0, \quad w(1, t)=0, \quad t>0 \tag{6-10b}\\
w(\cdot, 0)=w_{0}(\cdot) \in H^{2}(0,1) \cap H_{0}^{1}(0,1), \quad w_{t}(\cdot, 0)=w_{1}(\cdot) \in H_{0}^{1}(0,1) \tag{6-10c}
\end{gather*}
$$

where $b \in L^{2}(0,1 ; \mathbb{R})$ is the damping coefficient. The wave equation has the form considered in Section 2B with $H=L^{2}(0,1), L=-\partial_{\xi \xi}$ with domain $H_{1}=H^{2}(0,1) \cap H_{0}^{1}(0,1)$, and L has positive square root with domain $H_{1 / 2}=H_{0}^{1}(0,1)$. Moreover, $U=\mathbb{C}$ and $D \in \mathcal{L}(\mathbb{C}, H)$ is the rank-1 operator defined by $D u=b u$ for all $u \in \mathbb{C}$.

The operator L is the same as in Section 6B1. Hence if we define $\delta(s) \equiv \pi / 4$ then the nontrivial $(s, \delta(s))$-wavepackets of $L^{1 / 2}$ are multiples of the normalised eigenfunctions ϕ_{n} for $n \in \mathbb{N}$ such that $n \pi \in(s-\pi / 4, s+\pi / 4)$. For any $n \in \mathbb{N}$ we have

$$
\left|D^{*} \phi_{n}\right|=\sqrt{2}\left|\int_{0}^{1} b(\xi) \sin (n \pi \xi) d \xi\right|
$$

For a large class of functions b these Fourier sine series coefficients have explicit expressions. In order to have $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ we require that $D^{*} \phi_{n} \neq 0$ for all $n \in \mathbb{N}$, and the rate at which $\left|D^{*} \phi_{n}\right|$ decays to zero as $n \rightarrow \infty$ determines the rate of resolvent growth. In the following we summarise the conclusions of Theorem 3.5 for a class of dampings.

Corollary 6.3. Assume that $\left|D^{*} \phi_{n}\right| \gtrsim f(n \pi), n \in \mathbb{N}$, for a continuous strictly decreasing function $f: \mathbb{R}_{+} \rightarrow(0, \infty)$ such that $f(\cdot)^{-1}$ has positive increase. Then there exist $C, t_{0}>0$ such that for all $w_{0} \in H^{2}(0,1) \cap H_{0}^{1}(0,1)$ and $w_{1} \in H_{0}^{1}(0,1)$ the (classical) solution w of $(6-10)$ satisfies

$$
\begin{equation*}
\left\|\left(w(\cdot, t), w_{t}(\cdot, t)\right)\right\|_{H^{1} \times L^{2}} \leq \frac{C}{N^{-1}(t)}\left\|\left(w_{0}, w_{1}\right)\right\|_{H^{2} \times H^{1}}, \quad t \geq t_{0} \tag{6-11}
\end{equation*}
$$

where N^{-1} is the inverse function of $N(\cdot):=f(\cdot)^{-2}$. Moreover, if there exists an increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\left|D^{*} \phi_{n_{k}}\right| \lesssim f\left(n_{k} \pi\right)$ for all $k \in \mathbb{N}$, then the decay rate is optimal in the sense of Theorem 5.5.

Proof. If $\left|D^{*} \phi_{n}\right| \gtrsim f(n \pi), n \in \mathbb{N}$, then the wavepacket condition in (3-11) is satisfied for $\delta_{0}=\pi / 4$ and $\gamma_{0}(s)=f(s+\pi / 4)$. Moreover, since $D \in \mathcal{L}(\mathbb{C}, H)$, we have $|s|\left\|D^{*}\left((1+i s)^{2}+L\right)^{-1} D\right\| \lesssim 1, s \in \mathbb{R}$. Thus Theorem 3.9 implies that $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim f(|s|+\pi / 4)^{-2}, s \in \mathbb{R}$, and Theorem 2.7 yields (6-11) with the function N_{0} defined by $N_{0}(s)=f(s+\pi / 4)^{-2}$ for $s>0$. The claim now follows from the fact that $N^{-1}=N_{0}^{-1}+\pi / 4$.

For the particular damping functions b defined by $b(\xi)=1-\xi, b(\xi)=\xi^{2}(1-\xi)$ and $b(\xi)=\chi_{\left(0, \xi_{0}\right)}(\xi)$, where $\xi_{0} \in(0,1)$ is an irrational of constant type, the optimal decay rates are given by (writing $b_{n}=D^{*} \phi_{n}$ for brevity)

$$
\begin{array}{lll}
b(\xi)=1-\xi, & b_{n}=\frac{\sqrt{2}}{n \pi}, & N^{-1}(t)^{-1} \lesssim t^{-1 / 2}, \\
b(\xi)=\xi^{2}(1-\xi), & b_{n}=\frac{2 \sqrt{2}\left(2(-1)^{n}-1\right)}{n^{3} \pi^{3}}, & N^{-1}(t)^{-1} \lesssim t^{-1 / 6}, \\
b(\xi)=\chi_{\left(0, \xi_{0}\right)}(\xi), & b_{n}=\frac{\sqrt{2}\left(1-\cos \left(n \pi \xi_{0}\right)\right)}{n \pi}, & N^{-1}(t)^{-1} \lesssim t^{-1 / 6} . \tag{6-12c}
\end{array}
$$

The required upper and lower bounds for $\left|D^{*} \phi_{n}\right|$ in the third example follow by arguments similar to those used in the proof of Corollary 6.2, once again using (6-7) and (6-8). Optimality in all three examples is a consequence of Theorem 5.5.

Remark 6.4. The above discussion implies that the Fourier sine series coefficients $b_{n}=D^{*} \phi_{n}$ of the damping b determine the resolvent growth and thus the rate of energy decay in (6-10). So it is natural to try to relate the energy decay to the properties of b and $\left(b_{n}\right)_{n \in \mathbb{N}}$ directly. However, it is difficult to give a succinct answer here without specifying a precise class of functions b. First note that since $b \in L^{2}(0,1)$, we have $\left(b_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}$. On the other hand, the results in [Nazarov 1997] show that for any $\left(c_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}$ with $c_{n} \geq 0$ there exists $b \in C[0,1]$ such that $\left|b_{n}\right| \geq c_{n}$ for all $n \in \mathbb{N}$, and thus any rate of decay that can be achieved with a damping function $b \in L^{2}(0,1)$ can also be achieved with a more regular function $b \in C[0,1]$. However, imposing further regularity properties on b, such as Hölder-type conditions, changes the situation substantially.

In general, finer estimates for decay of $\left(b_{n}\right)_{n \in \mathbb{N}}$ depend heavily on the modulus of continuity (or the integral modulus of continuity) of b, and conversely for $\left(b_{n}\right)_{n \in \mathbb{N}}$ close in a sense to being monotone one may infer regularity properties of b from the sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$; see for instance [Edwards 1979, Chapter 7], [Zygmund 2002, Chapter 5], and [Dyachenko et al. 2019].

Note finally that any polynomial rate of decay $t^{-\alpha}$ with $\alpha \in(0,1)$ can be achieved by choosing the damping function $b \in L^{2}(0,1)$ such that $b_{n}=n^{-1 /(2 \alpha)}$ for $n \in \mathbb{N}$. Moreover, by [Nazarov 1997] the same scale of polynomial rates can be realised by means of continuous damping functions. It would be interesting to consider similar statements about other scales of decay rates, for instance of regularly varying functions, but we do not pursue this here.

6C. A damped fractional Klein-Gordon equation. In this example we consider a "fractional KleinGordon equation" with viscous damping studied in [Malhi and Stanislavova 2020]; see also [Green 2020]. For a fixed $\alpha \in(0,1]$ this system has the form

$$
\begin{gather*}
w_{t t}(\xi, t)+\left(-\partial_{\xi \xi}\right)^{\alpha} w(\xi, t)+m w(\xi, t)+b(\xi)^{2} w_{t}(\xi, t)=0, \quad \xi \in \mathbb{R}, t>0, \tag{6-13}\\
w(\cdot, 0)=w_{0}(\cdot) \in H^{2 \alpha}(\mathbb{R}), \quad w_{t}(\cdot, 0)=w_{1}(\cdot) \in H^{\alpha}(\mathbb{R}), \tag{6-14}
\end{gather*}
$$

where $m>0$ and $b \in L^{\infty}(\mathbb{R})$ is the nonnegative damping coefficient. We assume that ess $\inf _{\xi \in \omega} b(\xi)>0$ for some nonempty open set $\omega \subseteq \mathbb{R}$ which is invariant under translation by 2π.

Polynomial stability of this equation was studied, e.g., in [Malhi and Stanislavova 2020]. In the following proposition we use the wavepacket condition (3-11) to derive the same resolvent estimate under the above assumptions on b (strictly weaker conditions on the damping were also considered recently in [Green 2020]). The fractional Klein-Gordon equation is again of the form studied in Section 2B, now with $H=U=L^{2}(\mathbb{R}), L=\left(-\partial_{\xi \xi}\right)^{\alpha}+m>0$ with domain $H_{1}=H^{2 \alpha}(\mathbb{R})$ and $H_{1 / 2}=H^{\alpha}(\mathbb{R})$. The damping operator $D \in \mathcal{L}\left(L^{2}(\mathbb{R})\right)$ is the multiplication operator defined by $D u=b u$ for all $u \in L^{2}(\mathbb{R})$.

Proposition 6.5. Let $0<\alpha<1$. There exists $C>0$ such that for every $w_{0} \in H^{2 \alpha}(\mathbb{R})$ and $w_{1} \in H^{\alpha}(\mathbb{R})$ the solution w of the fractional Klein-Gordon equation satisfies

$$
\left\|\left(w(\cdot, t), w_{t}(\cdot, t)\right)\right\|_{H^{\alpha} \times L^{2}} \leq \frac{C}{t^{\alpha /(2-2 \alpha)}}\left\|\left(w_{0}, w_{1}\right)\right\|_{H^{2 \alpha} \times H^{\alpha}}, \quad t>0 .
$$

Proof. Let us begin by showing that the classical Klein-Gordon equation corresponding to $\alpha=1$ is exponentially stable. Due to the properties of the damping coefficients we may choose a smooth and
2π-periodic function b_{1} such that $0 \leq b_{1} \leq b$ on \mathbb{R} and $\inf _{\xi \in \omega_{1}} b_{1}(\xi)>0$ for a nonempty open set $\omega_{1} \subseteq \omega$. By [Burq and Joly 2016, Theorem 1.2] the Klein-Gordon equation with damping coefficient b_{1} is exponentially stable. If we define $D_{1} \in \mathcal{L}\left(L^{2}(\mathbb{R})\right)$ so that $D_{1} u=b_{1} u$ for all $u \in L^{2}(\mathbb{R})$, and define $B_{1}=\binom{0}{D_{1}}$, then $\left(B_{1}^{*}, A\right)$ is exactly observable, and by [Miller 2012, Corollary 2.17] the pair $\left(\mathcal{B}_{1}^{*}, A\right)$ satisfies the wavepacket condition (3-4) for constant functions $\delta(s) \equiv \delta>0$ and $\gamma(s) \equiv \gamma>0$. However, since $b(\xi) \geq b_{1}(\xi)$ for all $\xi \in \mathbb{R}$ we see that also $\left(B^{*}, A\right)$ satisfies the wavepacket condition for the same functions δ and γ.

Let us temporarily write L_{α} for the operator $\left(-\partial_{\xi \xi}\right)^{\alpha}+m, 0<\alpha \leq 1$, accepting that this entails a minor abuse of notation. Since $\sigma\left(L_{\alpha}\right) \subseteq[m, \infty)$ for $0<\alpha \leq 1$, we obtain from Lemma 3.8 that

$$
\begin{equation*}
\left\|D^{*} w\right\|_{U} \geq \gamma_{1}\|w\|_{H} \tag{6-15}
\end{equation*}
$$

for all (s, δ_{1})-wavepackets w of $L_{\alpha}^{1 / 2}$, where $\delta_{1}, \gamma_{1}>0$ are suitable constants.
For $0<\alpha \leq 1$ and any bounded function $\delta_{0}: \mathbb{R}_{+} \rightarrow(0, \infty)$ the $\left(s, \delta_{0}(s)\right)$-wavepackets of $L_{\alpha}^{1 / 2}$ are precisely the elements of $\operatorname{Ran}\left(\chi_{I_{s, \delta_{0}(s)}}\left(L_{\alpha}^{1 / 2}\right)\right)$, where $I_{s, \delta_{0}(s)}=\left(s-\delta_{0}(s), s+\delta_{0}(s)\right)$. Using the spectral theorem we see that if $I \subseteq[\sqrt{m}, \infty)$ is a bounded interval then $\operatorname{Ran}\left(\chi_{I}\left(L_{\alpha}^{1 / 2}\right)\right)=\operatorname{Ran}\left(\chi_{J_{\alpha}}\left(L_{1}^{1 / 2}\right)\right.$), where $J_{\alpha}=\left(\left(I^{2}-m\right)^{1 / \alpha}+m\right)^{1 / 2}$. Now fix $\alpha \in(0,1)$ and let $\delta_{0}(s)=c\left(1+s^{\alpha^{-1}-1}\right), s \geq 0$, where $c>0$ is a constant. Straightforward estimates show that the images of the intervals $I_{s, \delta_{0}} \cap[\sqrt{m}, \infty)$ under the map $I \mapsto J_{\alpha}$ have length bounded by some constant multiple of c. It follows that (6-15) holds also for all $\left(s, \delta_{0}(s)\right)$-wavepackets w of $L_{\alpha}^{1 / 2}$ provided that c is sufficiently small. (Here the form of the function δ_{0} can either be guessed or alternatively derived by considering the images of constant-width intervals under the inverse of the map $I \mapsto J_{\alpha}$. Moreover, since $D \in \mathcal{L}\left(L^{2}(\Omega)\right)$, we have $|s|\left\|D^{*}\left((1+i s)^{2}+L\right)^{-1} D\right\| \lesssim 1$, $s \in \mathbb{R}$. Thus we deduce from Theorem 3.9 that $\left\|\left(i s-A_{B}\right)^{-1}\right\| \lesssim 1+|s|^{2\left(\alpha^{-1}-1\right)^{-1}}$ for $s \in \mathbb{R}$. The claim now follows directly from Theorem 2.7.

6D. A weakly damped beam equation. In this section we consider the stability of the following EulerBernoulli beam equation with weak damping:

$$
\begin{gather*}
w_{t t}(\xi, t)+w_{\xi \xi \xi \xi}(\xi, t)+b(\xi) \int_{0}^{1} b(r) w_{t}(r, t) d r=0, \quad \xi \in(0,1), t>0 \tag{6-16}\\
w(0, t)=0, \quad w_{\xi \xi}(0, t)=0, t>0 \tag{6-17}\\
w(1, t)=0, \quad w_{\xi \xi}(1, t)=0, t>0, \tag{6-18}\\
w(\cdot, 0)=w_{0}(\cdot) \in H^{4}(0,1) \cap H_{0}^{1}(0,1), \tag{6-19}\\
w_{t}(\cdot, 0)=w_{1}(\cdot) \in H^{2}(0,1) \cap H_{0}^{1}(0,1), \tag{6-20}
\end{gather*}
$$

where $b \in L^{2}(0,1 ; \mathbb{R})$ is the damping coefficient. The boundary conditions describe a situation in which the beam is simply supported.

The beam equation fits into the framework of Section 2B with the choices $H=L^{2}(0,1)$ and

$$
L=\partial_{\xi \xi \xi \xi \xi}, \quad H_{1}=\left\{x \in H^{4}(0,1): x(0)=x^{\prime \prime}(0)=x(1)=x^{\prime \prime}(1)=0\right\} .
$$

The operator L is invertible and positive and its positive square root is given by $L^{1 / 2}=-\partial_{\xi \xi}$ with domain $H_{1 / 2}=H^{2}(0,1) \cap H_{0}^{1}(0,1)$. The eigenvalues and normalised eigenfunctions of $L^{1 / 2}$ are given by
$\lambda_{n}=n^{2} \pi^{2}$ and $\phi_{n}(\cdot)=\sqrt{2} \sin (n \pi \cdot)$, respectively, for $n \in \mathbb{N}$. As in Section $6 \mathrm{~B} 2, U=\mathbb{C}$ and $D \in \mathcal{L}(\mathbb{C}, H)$ is the rank-1 operator defined by $D u=b u$ for all $u \in \mathbb{C}$.

Our aim is to study the asymptotic behaviour of the solutions of the damped beam equation using the wavepacket condition in Theorem 3.9. Since the eigenvalues $\lambda_{n}=n^{2} \pi^{2}, n \in \mathbb{N}$, have a uniform gap, we may choose $\delta(s) \equiv \pi^{2} / 4$. The nontrivial $(s, \delta(s))$-wavepackets of $L^{1 / 2}$ are then multiples of the eigenfunctions ϕ_{n} for $n \in \mathbb{N}$ such that $n^{2} \pi^{2} \in\left(s-\pi^{2} / 4, s+\pi^{2} / 4\right)$. For any $n \in \mathbb{N}$ we have

$$
\left|D^{*} \phi_{n}\right|=\sqrt{2}\left|\int_{0}^{1} b(\xi) \sin (n \pi \xi) d \xi\right|
$$

These Fourier sine series coefficients are identical to the ones in Section 6B2. However, the locations of the eigenvalues of A now result in a slower rate of resolvent growth than in the case of the wave equation. In order to have $i \mathbb{R} \subseteq \rho\left(A_{B}\right)$ it is again necessary that $D^{*} \phi_{n} \neq 0$ for all $n \in \mathbb{N}$. However, since the gaps between the eigenvalues $n^{2} \pi^{2}$ of $L^{1 / 2}$ grow without bound as $n \rightarrow \infty$, the same damping has a greater relative effect for the beam equation than for the wave equation.

Corollary 6.6. Assume that $\left|D^{*} \phi_{n}\right| \gtrsim f\left(n^{2} \pi^{2}\right)$ for a continuous strictly decreasing function $f: \mathbb{R}_{+} \rightarrow$ $(0, \infty)$ such that $f(\cdot)^{-1}$ has positive increase. Then there exist $C, t_{0}>0$ such that for every $w_{0} \in H_{1}$ and $w_{1} \in H_{1 / 2}$ the (classical) solution of the weakly damped beam equation satisfies

$$
\left\|\left(w(\cdot, t), w_{t}(\cdot, t)\right)\right\|_{H^{2} \times L^{2}} \leq \frac{C}{N^{-1}(t)}\left\|\left(w_{0}, w_{1}\right)\right\|_{H^{4} \times H^{2}}, \quad t \geq t_{0},
$$

where N^{-1} is the inverse function of $N(\cdot):=f(\cdot)^{-2}$. Moreover, if there exists an increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\left|D^{*} \phi_{n_{k}}\right| \lesssim f\left(n_{k} \pi\right)$ for all $k \in \mathbb{N}$, then the decay rate is optimal in the sense of Theorem 5.5.

The coefficients $\left|D^{*} \phi_{n}\right|$ for the functions b defined by $b(\xi)=1-\xi, b(\xi)=\xi^{2}(1-\xi)$ and $b(\xi)=$ $\chi_{\left(0, \xi_{0}\right)}(\xi)$ (with $\xi_{0} \in(0,1)$ an irrational number of constant type) are presented in (6-12), and for these functions Corollary 6.6 implies the asymptotic rates $t^{-1}, t^{-1 / 3}$ and $t^{-1 / 3}$ as $t \rightarrow \infty$, respectively. Note finally that Remark 6.4 applies also in the setting of this section.

References

[Ammari and Nicaise 2015] K. Ammari and S. Nicaise, Stabilization of elastic systems by collocated feedback, Lecture Notes in Math. 2124, Springer, 2015. MR Zbl
[Ammari and Tucsnak 2001] K. Ammari and M. Tucsnak, "Stabilization of second order evolution equations by a class of unbounded feedbacks", ESAIM Control Optim. Calc. Var. 6 (2001), 361-386. MR Zbl
[Ammari et al. 2017] K. Ammari, A. Bchatnia, and K. El Mufti, "Non-uniform decay of the energy of some dissipative evolution systems", Z. Anal. Anwend. 36:2 (2017), 239-251. MR Zbl
[Anantharaman and Léautaud 2014] N. Anantharaman and M. Léautaud, "Sharp polynomial decay rates for the damped wave equation on the torus", Anal. PDE 7:1 (2014), 159-214. MR Zbl
[Anantharaman et al. 2016] N. Anantharaman, M. Léautaud, and F. Macià, "Wigner measures and observability for the Schrödinger equation on the disk", Invent. Math. 206:2 (2016), 485-599. MR Zbl
[Arendt et al. 2011] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, 2nd ed., Monogr. Math. 96, Birkhäuser, Basel, 2011. MR Zbl
[Batty and Duyckaerts 2008] C. J. K. Batty and T. Duyckaerts, "Non-uniform stability for bounded semi-groups on Banach spaces", J. Evol. Equ. 8:4 (2008), 765-780. MR Zbl
[Batty et al. 2016] C. J. K. Batty, R. Chill, and Y. Tomilov, "Fine scales of decay of operator semigroups", J. Eur. Math. Soc. 18:4 (2016), 853-929. MR Zbl
[Benchimol 1977] C. D. Benchimol, "Feedback stabilizability in Hilbert spaces", Appl. Math. Optim. 4:3 (1977), 225-248. MR Zbl
[Borichev and Tomilov 2010] A. Borichev and Y. Tomilov, "Optimal polynomial decay of functions and operator semigroups", Math. Ann. 347:2 (2010), 455-478. MR Zbl
[Burq and Hitrik 2007] N. Burq and M. Hitrik, "Energy decay for damped wave equations on partially rectangular domains", Math. Res. Lett. 14:1 (2007), 35-47. MR Zbl
[Burq and Joly 2016] N. Burq and R. Joly, "Exponential decay for the damped wave equation in unbounded domains", Commun. Contemp. Math. 18:6 (2016), art. id. 1650012. MR Zbl
[Burq and Zuily 2016] N. Burq and C. Zuily, "Concentration of Laplace eigenfunctions and stabilization of weakly damped wave equation", Comm. Math. Phys. 345:3 (2016), 1055-1076. MR Zbl
[Burq and Zworski 2004] N. Burq and M. Zworski, "Geometric control in the presence of a black box", J. Amer. Math. Soc. 17:2 (2004), 443-471. MR Zbl
[Burq and Zworski 2019] N. Burq and M. Zworski, "Rough controls for Schrödinger operators on 2-tori", Ann. H. Lebesgue 2 (2019), 331-347. MR Zbl
[Cavalcanti et al. 2019] M. M. Cavalcanti, T. F. Ma, P. Marín-Rubio, and P. N. Seminario-Huertas, "Dynamics of Riemann waves with sharp measure-controlled damping", preprint, 2019. arXiv 1908.04814
[Chen et al. 1991] G. Chen, S. A. Fulling, F. J. Narcowich, and S. Sun, "Exponential decay of energy of evolution equations with locally distributed damping", SIAM J. Appl. Math. 51:1 (1991), 266-301. MR Zbl
[Chill et al. 2020] R. Chill, D. Seifert, and Y. Tomilov, "Semi-uniform stability of operator semigroups and energy decay of damped waves", Philos. Trans. Roy. Soc. A 378:2185 (2020), art. id. 20190614. MR
[Curtain and Weiss 2006] R. F. Curtain and G. Weiss, "Exponential stabilization of well-posed systems by colocated feedback", SIAM J. Control Optim. 45:1 (2006), 273-297. MR Zbl
[Curtain and Weiss 2019] R. F. Curtain and G. Weiss, "Strong stabilization of (almost) impedance passive systems by static output feedback", Math. Control Relat. Fields 9:4 (2019), 643-671. MR Zbl
[Datchev and Kleinhenz 2020] K. Datchev and P. Kleinhenz, "Sharp polynomial decay rates for the damped wave equation with Hölder-like damping", Proc. Amer. Math. Soc. 148:8 (2020), 3417-3425. MR Zbl
[Debruyne and Seifert 2019] G. Debruyne and D. Seifert, "Optimality of the quantified Ingham-Karamata theorem for operator semigroups with general resolvent growth", Arch. Math. (Basel) 113:6 (2019), 617-627. MR Zbl
[Dell'Oro and Pata 2021] F. Dell'Oro and V. Pata, "Second order linear evolution equations with general dissipation", Appl. Math. Optim. 83:3 (2021), 1877-1917. MR Zbl
[Duyckaerts 2007] T. Duyckaerts, "Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface", Asymptot. Anal. 51:1 (2007), 17-45. MR Zbl
[Dyachenko et al. 2019] M. I. Dyachenko, A. B. Mukanov, and S. Y. Tikhonov, "Smoothness of functions and Fourier coefficients", Mat. Sb. 210:7 (2019), 94-119. In Russian; translated in Sb. Math. 210:7 (2019), 994-1018. MR Zbl
[Edwards 1979] R. E. Edwards, Fourier series: a modern introduction, I, 2nd ed., Grad. Texts in Math. 64, Springer, 1979. MR Zbl
[Gohberg and Sigal 1971] I. C. Gohberg and E. I. Sigal, "An operator generalization of the logarithmic residue theorem and the theorem of Rouché", Mat. Sb. (N.S.) 84(126) (1971), 607-629. In Russian; translated in Math. USSR-Sb. 13 (1971), 603-625. MR Zbl
[Green 2020] W. Green, "On the energy decay rate of the fractional wave equation on \mathbb{R} with relatively dense damping", Proc. Amer. Math. Soc. 148:11 (2020), 4745-4753. MR Zbl
[Guo and Luo 2002] B.-Z. Guo and Y.-H. Luo, "Controllability and stability of a second-order hyperbolic system with collocated sensor/actuator", Systems Control Lett. 46:1 (2002), 45-65. MR Zbl
[Hassell et al. 2009] A. Hassell, L. Hillairet, and J. Marzuola, "Eigenfunction concentration for polygonal billiards", Comm. Partial Differential Equations 34:4-6 (2009), 475-485. MR Zbl
[Jaffard 1990] S. Jaffard, "Contrôle interne exact des vibrations d'une plaque rectangulaire", Port. Math. 47:4 (1990), 423-429. MR Zbl
[Joly and Laurent 2020] R. Joly and C. Laurent, "Decay of semilinear damped wave equations: cases without geometric control condition", Ann. H. Lebesgue 3 (2020), 1241-1289. MR Zbl
[Kato 1961] T. Kato, "A generalization of the Heinz inequality", Proc. Japan Acad. 37 (1961), 305-308. MR Zbl
[Khinchin 1964] A. Y. Khinchin, Continued fractions, Univ. Chicago Press, 1964. MR Zbl
[Lang 1966] S. Lang, Introduction to Diophantine approximations, Addison-Wesley, Reading, MA, 1966. MR Zbl
[Lasiecka and Triggiani 1981] I. Lasiecka and R. Triggiani, "A cosine operator approach to modeling $L_{2}\left(0, T ; L_{2}(\Gamma)\right)$: boundary input hyperbolic equations", Appl. Math. Optim. 7:1 (1981), 35-93. MR Zbl
[Lasiecka and Triggiani 2000] I. Lasiecka and R. Triggiani, Control theory for partial differential equations: continuous and approximation theories, II: Abstract hyperbolic-like systems over a finite time horizon, Encycl. Math. Appl. 75, Cambridge Univ. Press, 2000. MR Zbl
[Lasiecka and Triggiani 2003] I. Lasiecka and R. Triggiani, " $L_{2}(\Sigma)$-regularity of the boundary to boundary operator $B^{*} L$ for hyperbolic and Petrowski PDEs", Abstr. Appl. Anal. 2003:19 (2003), 1061-1139. MR Zbl
[Latushkin and Shvydkoy 2001] Y. Latushkin and R. Shvydkoy, "Hyperbolicity of semigroups and Fourier multipliers", pp. 341-363 in Systems, approximation, singular integral operators, and related topics (Bordeaux, France, 2000), edited by A. A. Borichev and N. K. Nikolski, Oper. Theory Adv. Appl. 129, Birkhäuser, Basel, 2001. MR Zbl
[Laurent and Léautaud 2021] C. Laurent and M. Léautaud, "Logarithmic decay for linear damped hypoelliptic wave and Schrödinger equations", SIAM J. Control Optim. 59:3 (2021), 1881-1902. MR Zbl
[Léautaud and Lerner 2017] M. Léautaud and N. Lerner, "Energy decay for a locally undamped wave equation", Ann. Fac. Sci. Toulouse Math. (6) 26:1 (2017), 157-205. MR Zbl
[Lebeau 1996] G. Lebeau, "Équation des ondes amorties", pp. 73-109 in Algebraic and geometric methods in mathematical physics (Crimea, Ukraine, 1993), edited by A. Boutet de Monvel and V. Marchenko, Math. Phys. Stud. 19, Kluwer Acad., Dordrecht, 1996. MR Zbl
[Letrouit and Sun 2023] C. Letrouit and C. Sun, "Observability of Baouendi-Grushin-type equations through resolvent estimates", J. Inst. Math. Jussieu 22:2 (2023), 541-579. MR Zbl
[Liu and Rao 2005] Z. Liu and B. Rao, "Characterization of polynomial decay rate for the solution of linear evolution equation", Z. Angew. Math. Phys. 56:4 (2005), 630-644. MR Zbl
[Liu and Zhang 2015] Z. Liu and Q. Zhang, "A note on the polynomial stability of a weakly damped elastic abstract system", Z. Angew. Math. Phys. 66:4 (2015), 1799-1804. MR Zbl
[Malhi and Stanislavova 2020] S. Malhi and M. Stanislavova, "On the energy decay rates for the 1D damped fractional Klein-Gordon equation", Math. Nachr. 293:2 (2020), 363-375. MR Zbl
[Miller 2012] L. Miller, "Resolvent conditions for the control of unitary groups and their approximations", J. Spectr. Theory 2:1 (2012), 1-55. MR Zbl
[Nazarov 1997] F. L. Nazarov, "The Bang solution of the coefficient problem", Algebra i Analiz 9:2 (1997), 272-287. In Russian; translated in St. Petersburg Math. J. 9:2 (1998), 407-419. MR Zbl
[Oostveen 2000] J. Oostveen, Strongly stabilizable distributed parameter systems, Frontiers Appl. Math. 20, Soc. Indust. Appl. Math., Philadelphia, PA, 2000. MR Zbl
[Paunonen 2017] L. Paunonen, "Robust controllers for regular linear systems with infinite-dimensional exosystems", SIAM J. Control Optim. 55:3 (2017), 1567-1597. MR Zbl
[Ramdani et al. 2005] K. Ramdani, T. Takahashi, G. Tenenbaum, and M. Tucsnak, "A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator", J. Funct. Anal. 226:1 (2005), 193-229. MR Zbl
[Rauch et al. 2005] J. Rauch, X. Zhang, and E. Zuazua, "Polynomial decay for a hyperbolic-parabolic coupled system", J. Math. Pures Appl. (9) 84:4 (2005), 407-470. MR Zbl
[Rozendaal et al. 2019] J. Rozendaal, D. Seifert, and R. Stahn, "Optimal rates of decay for operator semigroups on Hilbert spaces", Adv. Math. 346 (2019), 359-388. MR Zbl
[Russell 1975] D. L. Russell, "Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods", J. Differential Equations 19:2 (1975), 344-370. MR Zbl
[Rzepnicki and Schnaubelt 2018] Ł. Rzepnicki and R. Schnaubelt, "Polynomial stability for a system of coupled strings", Bull. Lond. Math. Soc. 50:6 (2018), 1117-1136. MR Zbl
[Salamon 1987] D. Salamon, "Infinite-dimensional linear systems with unbounded control and observation: a functional analytic approach", Trans. Amer. Math. Soc. 300:2 (1987), 383-431. MR Zbl
[Slemrod 1974] M. Slemrod, "A note on complete controllability and stabilizability for linear control systems in Hilbert space", SIAM J. Control 12 (1974), 500-508. MR Zbl
[Sogge 1988] C. D. Sogge, "Concerning the L^{p} norm of spectral clusters for second-order elliptic operators on compact manifolds", J. Funct. Anal. 77:1 (1988), 123-138. MR Zbl
[Staffans 2002] O. J. Staffans, "Passive and conservative continuous-time impedance and scattering systems, I: Well-posed systems", Math. Control Signals Systems 15:4 (2002), 291-315. MR Zbl
[Stahn 2017] R. Stahn, "Optimal decay rate for the wave equation on a square with constant damping on a strip", Z. Angew. Math. Phys. 68:2 (2017), art. id. 36. MR Zbl
[Su et al. 2020] P. Su, M. Tucsnak, and G. Weiss, "Stabilizability properties of a linearized water waves system", Systems Control Lett. 139 (2020), art. id. 104672. MR Zbl
[Sun 2023] C. Sun, "Sharp decay rate for the damped wave equation with convex-shaped damping", Int. Math. Res. Not. IMRN 2023:7 (2023), 5905-5973. MR Zbl
[Tucsnak and Weiss 2009] M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Birkhäuser, Basel, 2009. MR Zbl
[Tucsnak and Weiss 2014] M. Tucsnak and G. Weiss, "Well-posed systems: the LTI case and beyond", Automatica J. IFAC 50:7 (2014), 1757-1779. MR Zbl
[Weiss 2003] G. Weiss, "Optimal control of systems with a unitary semigroup and with colocated control and observation", Systems Control Lett. 48:3-4 (2003), 329-340. MR Zbl
[Weiss and Tucsnak 2003] G. Weiss and M. Tucsnak, "How to get a conservative well-posed linear system out of thin air, I: Well-posedness and energy balance", ESAIM Control Optim. Calc. Var. 9 (2003), 247-274. MR Zbl
[Zygmund 2002] A. Zygmund, Trigonometric series, I, II, 3rd ed., Cambridge Univ. Press, 2002. MR Zbl
Received 20 Dec 2019. Revised 15 Sep 2021. Accepted 19 Nov 2021.
Ralph Chill: ralph.chill@tu-dresden.de
Institut für Analysis, Fakultät für Mathematik, TU Dresden, Dresden, Germany
LASSI PAUNONEN: lassi.paunonen@tuni.fi
Mathematics, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
DAVID SEIFERT: david.seifert@ncl.ac.uk
School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, United Kingdom
REINHARD StaHN: reinhardstahn@t-online.de
Institut für Analysis, Fakultät für Mathematik, TU Dresden, Dresden, Germany
YURI Tomilov: ytomilov@impan.pl
Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

Analysis \& PDE

msp.org/apde

EDITORS-IN-CHIEF	
Patrick Gérard	Université Paris Sud XI, France patrick.gerard@universite-paris-saclay.fr
Clément Mouhot	Cambridge University, UK c.mouhot@dpmms.cam.ac.uk

BoARd of EDITORS

Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu
Zbigniew Błocki	Uniwersytet Jagielloński, Poland zbigniew.blocki@uj.edu.pl	Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
David Gérard-Varet	Université de Paris, France david.gerard-varet@imj-prg.fr	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Colin Guillarmou	Université Paris-Saclay, France colin.guillarmou@universite-paris-saclay.fr	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Vadim Kaloshin	University of Maryland, USA vadim.kaloshin@gmail.com	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	András Vasy	Stanford University, USA andras@math.stanford.edu
Anna L. Mazzucato	Penn State University, USA alm24@psu.edu	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
Richard B. Melrose	Massachussets Inst. of Tech., USA rbm@math.mit.edu	Jim Wright	University of Edinburgh, UK j.r.wright@ed.ac.uk
Frank Merle	Université de Cergy-Pontoise, France merle@ihes.fr	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu

PRODUCTION
production@msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.
The subscription price for 2023 is US $\$ 405 /$ year for the electronic version, and $\$ 630 /$ year $(+\$ 65$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis \& PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.

APDE peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2023 Mathematical Sciences Publishers

ANAlysis \& PDE

Volume 16 No. 52023

Nonuniform stability of damped contraction semigroups 1089Ralph Chill, Lassi Paunonen, David Seifert, Reinhard Stahn and YuriTomilov
Long time solutions for quasilinear Hamiltonian perturbations of Schrödinger and Klein- 1133
Gordon equations on tori
Roberto Feola, Benoît Grébert and Felice Iandoli
An extension problem, trace Hardy and Hardy's inequalities for the Ornstein-Uhlenbeck op- 1205eratorPritam Ganguly, Ramesh Manna and Sundaram Thangavelu
On the well-posedness problem for the derivative nonlinear Schrödinger equation 1245 Rowan Killip, Maria Ntekoume and Monica Vişan
Exponential integrability in Gauss space 1271
Paata IVanisvili and Ryan Russell

[^0]: The research of Paunonen is funded by the Academy of Finland grants 298182 and 310489 . The work of Tomilov was partially supported the NCN grant UMO-2017/27/B/ST1/00078.
 MSC2010: primary 47D06, 34D05, 47A10, 35L90; secondary 93D15, 35L05.
 Keywords: nonuniform stability, strongly continuous semigroup, resolvent estimate, hyperbolic equation, observability, damped wave equation, Klein-Gordon equation, beam equation.
 © 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

