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We study an extension problem for the Ornstein–Uhlenbeck operator L = −1+ 2x · ∇ + n, and we
obtain various characterisations of the solution of the same. We use a particular solution of that extension
problem to prove a trace Hardy inequality for L from which Hardy’s inequality for fractional powers
of L is obtained. We also prove an isometry property of the solution operator associated to the extension
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1. Introduction and the main results

It is said that analysts are obsessed with inequalities. The usefulness of various weighted and unweighted
inequalities in applications to problems in differential geometry, quantum mechanics, partial differential
equations, etc., have made this a very attractive area of research. Hardy’s inequality is one such inequality
which finds its origin in an old paper of G. H. Hardy [1919] written more than a hundred years ago; see
also [Hardy 1920]. In recent years, this has been intensively studied in different settings and various
contexts. For a historical review of Hardy’s inequality, we refer the reader to [Kufner et al. 2007].

We begin by recalling the classical Hardy’s inequality which states that, given f ∈ C∞

0 (R
n),

1
4
(n − 2)2

∫
Rn

| f (x)|2

|x |2
dx ≤

∫
Rn

|∇ f (x)|2 dx, n ≥ 3,

where ∇ denotes the gradient in Rn. This can be rephrased as follows in terms of the Euclidean Laplacian
1 :=

∑n
j=1 ∂

2/∂x2
j :

1
4
(n − 2)2

∫
Rn

| f (x)|2

|x |2
dx ≤ ⟨(−1) f, f ⟩,
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which has been generalised to fractional powers of the Laplacian. In fact, for 0< s< 1
2 n and f ∈ C∞

0 (R
n),

we have

4s 0
( 1

4(n + 2s)
)2

0
( 1

4(n − 2s)
)2

∫
Rn

| f (x)|2

|x |2s dx ≤ ⟨(−1)s f, f ⟩. (1-1)

The constant appearing on the left-hand side is known to be sharp (see [Beckner 2012; Yafaev 1999] for
instance), but the equality is never achieved. Frank et al. [2008] used a ground state representation to
give a new proof of (1-1) when 0< s <min

{
1, 1

2 n
}
, improving the previous results. On the other hand,

replacing the homogeneous weight |x |
−2s by a nonhomogeneous weight we have the following version of

Hardy’s inequality:

4s 0
( 1

4(n + 2s)
)

0
( 1

4(n − 2s)
)ρ2s

∫
Rn

| f (x)|2

(ρ2 + |x |2)2s dx ≤ ⟨(−1)s f, f ⟩, ρ > 0, (1-2)

where the constant is sharp and the equality is achieved for the functions (ρ2
+ |x |

2)−(n−2s)/2. See
[Boggarapu et al. 2019, Remark 2.6] for a proof of inequality (1-2). Note that proving such an inequality
for fractional powers depends on how one views this type of operator. In fact, there are several ways of
obtaining fractional powers of the Laplacian. Caffarelli and Silvestre [2007] first studied an extension
problem associated to the Laplacian on Rn and obtained the fractional power as a mapping which takes
Dirichlet data to the Neumann data. Motivated by this work, [Boggarapu et al. 2019] studied the extension
problem in a more general setting of sums of squares of vector fields on certain stratified Lie groups. They
used a solution of that extension problem to prove a trace Hardy inequality from which Hardy’s inequality
is obtained. Because of its several interesting features, the study of extension problems for various
operators has received considerable attention in recent times, see e.g., [Roncal and Thangavelu 2020b;
Stinga and Torrea 2010], etc.

Inspired by [Frank et al. 2015], Roncal and Thangavelu [2020a] considered a modified extension
problem for the sub-Laplacian on the H-type groups which gives conformally invariant fractional powers
of the sub-Laplacian, and they proved Hardy’s inequality for the same. In this regard, we would also
like to mention that Garofalo and Tralli [2021] recently used an extension problem for the heat operator
associated to the sub-Laplacian on the H-type groups to study the usual and conformal fractional powers
of the sub-Laplacian. See also [Garofalo and Tralli 2023] by the same authors in this direction.

Although this fractional Hardy-type inequality has been studied extensively in the setting of Euclidean
harmonic analysis, not much has been studied in the framework of Gaussian harmonic analysis. As we
know that the role of the Laplacian in Gaussian harmonic analysis is played by the Ornstein–Uhlenbeck
operator defined by L̃ := −1+ 2x · ∇, it is therefore natural to ask for such a fractional Hardy inequality
for this operator. It is also convenient to work with L := −1+ 2x · ∇ + n instead of L̃ . In fact, from
the mathematical point of view, L is very closely related to the Hermite operator; see (1-3) below. Later
in this article, this relationship will be discussed and exploited in some of our studies. Because of its
various applications in probability theory, stochastic calculus, etc., the study of the Ornstein–Uhlenbeck
operator experienced a lot of developments in the last couple of decades. We refer the reader to the book
of Urbina-Romero [2019] in this regard.
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Our aim in this article is to establish Hardy and trace Hardy inequalities for fractional powers of
the Ornstein–Uhlenbeck operator L . Recall that L = −1+ 2x · ∇ + n can be defined on the Gaussian
L2 space: L2(γ ) = L2(Rn, γ (x) dx) with γ (x) = π−n/2e−|x |

2
is a positive self-adjoint operator. We

observe that
∑n

j=1 ∂
∗

j ∂j = −1+2x ·∇, where ∂j = ∂/∂x j and ∂∗

j = 2x j − ∂j is its adjoint on L2(γ ). The
relation between L and the Hermite operator H = −1+ |x |

2 is given by

Mγ L M−1
γ = H, where Mγ f (x)= γ (x)1/2 f (x). (1-3)

Hardy’s inequality for the fractional powers H s of the Hermite operator has been studied in [Ciaurri et al.
2018]. Here H s is defined by spectral theory as

H s
=

∞∑
k=0

(2k + n)s Pk,

where (2k +n), k ∈ N are the eigenvalues of H on L2(Rn) and Pk is the orthogonal projection of L2(Rn)

onto the finite-dimensional eigenspace corresponding to the eigenvalue (2k+n). However, there is another
natural candidate for fractional powers of H, and hence of L , which will be treated here.

To motivate the new definition of fractional powers, denoted by Hs , it is better to recall the conformally
invariant fractional powers of the sub-Laplacian L on the Heisenberg group Hn. The connection between
L and H is given by the relation πλ(L f )= πλ( f )H(λ), where the πλ are the Schrödinger representations
of Hn and H(λ)= −1+ λ2

|x |
2. The spectral decomposition of H(λ) is given by

H(λ)=

∞∑
k=0

(2k + n)|λ|Pk(λ).

The conformally invariant fractional powers of L are then defined, for 0< s < (n + 1), by the relation

πλ(Ls f )= πλ( f )
∞∑

k=0

(2|λ|)s
0
( 1

2(2k + n + 1 + s)
)

0
( 1

2(2k + n + 1 − s)
) Pk(λ).

The operator on the right-hand side which multiplies πλ( f ) is the alternate candidate for fractional powers
of H(λ), which we denote by H(λ)s . By defining Qk = M−1

γ Pk Mγ , the spectral decomposition of L
becomes L =

∑
∞

k=0(2k + n)Qk , and hence the fractional powers we are interested in are given by

Ls f (x)=

∞∑
k=0

2s 0
( 1

2(2k + n + 1 + s)
)

0
( 1

2(2k + n + 1 − s)
)Qk f (x).

Along with L we also consider U =
1
2 L and the associated fractional powers

Us f (x)=

∞∑
k=0

2s 0
( 1

2(k + n/2 + 1 + s)
)

0
( 1

2(k + n/2 + 1 − s)
)Qk f (x).

For these operators, we prove the inequality in the following theorem. Letting A be either L or U , we
define the trace norm of a suitable function u(x, ρ) on Rn

× [0,∞) as

as(A, u)2 =

∫
∞

0

∫
Rn

(
|∇Au(x, ρ)|2 +

( 1
2 n +

1
4ρ

2)u(x, ρ)2)ρ1−2s dγ (x) dρ,



1208 PRITAM GANGULY, RAMESH MANNA AND SUNDARAM THANGAVELU

where
∇U u := (2−1/2∂1u, 2−1/2∂2u, . . . , 2−1/2∂nu, ∂ρu)

and ∇L is defined without the scaling factor 2−1/2.

Theorem 1.1 (general trace Hardy inequality). Let 0 < s < 1, and let A be either L or U. Suppose
φ ∈ L2(γ ) is a real-valued function in the domain of As such that φ−1 Asφ is locally integrable. Then for
any real-valued function u(x, ρ) from the space C2

0([0,∞),C2
b(R

n)) we have

as(A, u)2 ≥ 21−2s 0(1 − s)
0(s)

∫
Rn

u(x, 0)2
Asφ(x)
φ(x)

dγ (x).

It would be nice if we could choose a function φ so that Asφ can be calculated explicitly. It turns out
that for A = U we can do that. Indeed, with such a choice of φ we can prove an explicit trace Hardy
inequality from which Hardy’s inequality can be deduced.

Theorem 1.2 (Hardy’s inequality for Us). Let 0 < s < 1. Assume that f ∈ L2(γ ) with Us f ∈ L2(γ ).
Then for every ρ > 0 we have

⟨Us f, f ⟩L2(γ ) ≥ (2ρ)s
0
(1

2(n/2 + 1 + s)
)

0
( 1

2(n/2 + 1 − s)
) ∫

Rn

f (x)2

(ρ+ |x |2)s
ws(ρ+ |x |

2) dγ (x)

for an explicit ws(t)≥ 1. The inequality is sharp, and equality is attained for

f (x)=
√

2
2−(n/2+1−s)/2

0
( 1

2(n/2 + 1 − s)
)e|x |

2/2(ρ+ |x |
2)−(n/2+1−s)/2K(n/2+1−s)/2(ρ+ |x |

2),

where Kµ denotes the Macdonald’s function.

We remark that since ws(t)≥ 1, we have the following inequality which is slightly weaker:

⟨Us f, f ⟩L2(γ ) ≥ (2ρ)s
0
( 1

2(n/2 + 1 + s)
)

0
( 1

2(n/2 + 1 − s)
) ∫

Rn

f (x)2

(ρ+ |x |2)s
dγ (x). (1-4)

However, written in this form, we do not yet know if the constant appearing in the above inequality
is sharp or not. Observe that the constant we have obtained is analogous to the sharp constant in the
Euclidean case; see (1-2). It is worth pointing out that Hardy’s inequality for the pure fractional powers U s

can be deduced from Theorem 1.2. Indeed, writing Rs := UsU−s, we see that Rs is a bounded operator
on L2(γ ) and its operator norm is given by

∥Rs∥op = sup
k≥0

( 1
2(k + n/2)

)−s 0
( 1

2(k + n/2 + 1 + s)
)

0
( 1

2(k + n/2 + 1 − s)
) .

To estimate this norm we use the fact that xβ−α0(x + α)/0(x +β) ≤ (x + β)/(x + α) for α > 0 (see
[Roncal and Thangavelu 2016]), which gives the estimate( 1

2(k + n/2)
)−s 0

( 1
2(k + n/2 + 1 + s)

)
0
( 1

2(k + n/2 + 1 − s)
) ≤

2k + n + 2(1 − s)
2k + n + 2(1 + s)

.

The right-hand side of the above inequality being an increasing function of k, we obtain ∥Rs∥op ≤ 1.
Using this, Hardy’s inequality for U s reads as follows:
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Corollary 1.3. Let 0< s < 1. Assume that f ∈ L2(γ ) with U s f ∈ L2(γ ). Then for any ρ > 0 we have

⟨U s f, f ⟩L2(γ ) ≥ (2ρ)s
0
( 1

2(n/2 + 1 + s)
)

0
( 1

2(n/2 + 1 − s)
) ∫

Rn

f (x)2

(ρ+ |x |2)s
dγ (x).

As a consequence of Hardy’s inequality with nonhomogeneous weight, we obtain a Heisenberg-type
uncertainty principle for the fractional powers of the Ornstein–Uhlenbeck operator. Indeed, an application
of the Cauchy–Schwarz inequality yields∫

Rn
| f (x)|2 dγ (x)≤

(∫
Rn

| f (x)|2(ρ+ |x |
2)s dγ (x)

)1/2(∫
Rn

f (x)2

(ρ+ |x |2)s
dγ (x)

)1/2

,

which along with Theorem 1.2 gives the following:

Corollary 1.4. For any f ∈ L2(γ ) with Us f ∈ L2(γ ), we have(∫
Rn

| f (x)|2(ρ+ |x |
2)s dγ (x)

)
⟨Us f, f ⟩L2(γ ) ≥ (2ρ)s

0
( 1

2(n/2 + 1 + s)
)

0
( 1

2(n/2 + 1 − s)
)(∫

Rn
| f (x)|2 dγ (x)

)2

.

We must mention that one can use the L2-boundedness of Us L−s along with the inequality for Us to
derive an inequality for Ls. Indeed, the operator norm of Rs := Us L−s is given by

∥Rs∥op = sup
k≥0

2s(2k + n)−s 0
( 1

2(k + n/2 + 1 + s)
)

0
( 1

2(k + n/2 + 1 − s)
) ,

which can be estimated as above to get ∥Rs∥op ≤ 2−s. The fact that ∥Rs∥op⟨Ls f, f ⟩L2(γ ) ≥ ⟨Us f, f ⟩L2(γ )

together with this estimate yields the following:

Theorem 1.5 (Hardy’s inequality for Ls). Let 0 < s < 1. Assume that f ∈ L2(γ ) with Ls f ∈ L2(γ ).
Then for any ρ > 0 we have

⟨Ls f, f ⟩L2(γ ) ≥ (4ρ)s
0
( 1

2(n/2 + 1 + s)
)

0
( 1

2(n/2 + 1 − s)
) ∫

Rn

f (x)2

(ρ+ |x |2)s
dγ (x).

The main ingredient in proving the above mentioned trace Hardy and Hardy’s inequality for fractional
powers of L is a solution of the extension problem for L:(

−L + ∂2
ρ +

1−2s
ρ

∂ρ −
1
4
ρ2
)

u(x, ρ)= 0, u(x, 0)= f (x). (1-5)

As we will see later, a solution of the above partial differential equation will play a very crucial role for
our purpose. The second theme of this article is the study of general solutions of the extension problem
for L under consideration. In fact, we prove a characterisation of the solution when the initial data is a
tempered distribution. In order to state the result we need to introduce some more notations which will be
briefly described here. More details can be found in Section 3. We introduce the following two operators.
For any distribution f for which Mγ f is tempered, we define

S1
ρ f (x) :=

( 1
2ρ

2
)(s−1)/2

0(s)

∞∑
k=0

0
( 1

2(2k + n + s + 1)
)
W−(k+n/2), s/2

( 1
2ρ

2)Qk f (x),
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and for any function g for which Qk g has enough decay as a function of k, we define

S2
ρg(x) :=

( 1
2ρ

2)(s−1)/2
∞∑

k=0

M−(k+n/2), s/2
(1

2ρ
2)Qk g(x),

where W−(k+n/2), s/2 and M−(k+n/2), s/2 are Whittaker functions.
In view of the asymptotic properties of the Whittaker functions stated in Lemma 3.2, it follows that the

series defining S1
ρ f converges for any tempered distribution Mγ f . Moreover, if we take g from H 2

γ,ρ(R
n),

which is the image of L2(Rn, γ ) under the semigroup e−ρ
√

L, then the series defining S2
ρg also converges

and defines a smooth function. With these notations we prove the following characterisation:

Theorem 1.6. Let f be a distribution such that Mγ f is tempered. Then any function u(x, ρ) for which
Mγ u(x, ρ) is tempered in x is a solution of the extension problem (1-5) with initial condition f if and
only if u(x, ρ)= S1

ρ f (x)+ S2
ρg(x) for some g ∈

⋂
t>0 H 2

γ,t(R
n).

We also prove another characterisation of the solution of the extension problem in terms of its
holomorphic extendability. In order to state this we need to introduce some more notations. For any
t, δ > 0 we consider the positive weight function

wδt (x, y)=
1
0(δ)

∫
Rn

e−2ux
(

1 −
|u|

2
+ |y|

2

t2

)δ−1

+

e−(|u|
2
+|y|

2) du.

For any ρ > 0, we let H 2(�ρ, w
2s
ρ ) stand for the weighted Bergman space consisting of holomorphic

functions on the tube domain�ρ := {z = x + iy ∈ Cn
: |y|<ρ} belonging to L2(�ρ, w

2s
ρ ). Also for m ∈ R,

let W m
H (R

n) stand for the Sobolev space associated to the Hermite operator H. This is a Hilbert space in
which the norm is given by

∥ f ∥
2
W m

H
:=

∞∑
k=0

(2k + n)2m
∥Pk f ∥

2
2.

Theorem 1.7. A solution of the extension problem (1-5) is of the form u(x, ρ) = S1
ρ f (x) for some

distribution f such that Mγ f ∈ W mn
H (Rn), where 2mn = −

1
4(2n + 1), if and only if for every ρ > 0,

Mγ u( · , ρ) extends holomorphically to �ρ/2 and satisfies the uniform estimate∫
�ρ/2

|Mγ u(z, ρ)|2w2s
ρ/2(z) dz ≤ Cρn−1/2

for all 0< ρ ≤ 1.

We conclude the introduction by describing the plan of the paper. In Section 2, we study an extension
problem for the Ornstein–Uhlenbeck operator. We provide two representations of solutions and their
equivalence. In Section 3, we prove several characterisations of the solution of the extension problem
under consideration. Using the results obtained in Section 2, we prove the trace Hardy and Hardy’s
inequality in Section 4. Then in Section 5, we prove an isometry property of the solution to the extension
problem. Finally we end our discussion by proving an inequality of Hardy–Littlewood–Sobolev type for
the fractional powers of the Hermite operator in Section 6.
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2. The extension problem for the Ornstein–Uhlenbeck operator and fractional powers

The extension problem. Our strategy to prove Hardy’s inequality for Ls is via the trace Hardy inequality
which in turn requires the study of the following extension problem for the operator L:(

−L + ∂2
ρ +

1−2s
ρ

∂ρ −
1
4
ρ2
)

u(x, ρ)= 0, u(x, 0)= f (x). (2-1)

If u is a solution of the above problem, it follows that v(x, ρ)= Mγ u(x, ρ) solves the problem(
−H + ∂2

ρ +
1−2s
ρ

∂ρ −
1
4
ρ2
)
v(x, ρ)= 0, v(x, 0)= Mγ f (x). (2-2)

A solution of the above problem can be obtained in terms of the solution of an extension problem for the
sub-Laplacian on the Heisenberg group.

Let L be the sub-Laplacian on the Heisenberg group Hn. Then a solution of the extension problem(
−L+ ∂2

ρ +
1−2s
ρ

∂ρ +
1
4
ρ2∂2

t

)
w(z, t, ρ)= 0, w(z, t, 0)= f (z, t)

is given by w(z, t, ρ)= ρ2s f ∗8s,ρ(z, t), see [Roncal and Thangavelu 2020a], where 8s,ρ is an explicit
function given by

8s,ρ(z, a)=
2−(n+1+s)

πn+10(s)
0
( 1

2(n + 1 + s)
)2(( 1

4ρ
2
+

1
4 |z|2

)2
+ a2)−(n+1+s)/2

.

If we let π stand for the Schrödinger representation of Hn on L2(Rn), then we have the following result.

Theorem 2.1. For any f ∈ L2(γ ) the function v(x, ρ) defined by the equation

v(x, ρ)= ρ2s
∫

Hn
8s,ρ(g)π(g)∗Mγ f (x) dg

solves the extension problem for the Hermite operator with initial condition Mγ f . Consequently, the
extension problem for L is solved by u(x, ρ)= e|x |

2/2v(x, ρ).

Proof. For any X from the Heisenberg Lie algebra hn viewed as a left-invariant vector field on Hn, we
can easily check that

π(X)
∫

Hn
ϕ(g)π(g)∗ f (x) dg = −

∫
Hn

Xϕ(g)π(g)∗ f (x) dg.

This leads to

H
∫

Hn
ϕ(g)πλ(g)∗ f (x) dg =

∫
Hn

Lϕ(g)πλ(g)∗ f (x) dg,

and consequently, as

ρ2sL8s,ρ(g)=

(
∂2
ρ +

1−2s
ρ

∂ρ +
1
4
ρ2∂2

t

)
ρ2s8s,ρ(g)= 0,

we obtain (
−H + ∂2

ρ +
1−2s
ρ

∂ρ −
1
4
ρ2
)(
ρ2s

∫
Hn
8s,ρ(g)π(g)∗ f (x) dg

)
= 0.
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To check that v(x, ρ) satisfies the initial condition, we make the change of variables (z, t)→ (ρz, ρ2t),
so that

v(x, ρ)=

∫
Hn
8s,1(z, t)π(ρz, ρ2t)∗Mγ f (x) dz dt.

Since π(ρz, ρ2t)Mγ f converges to Mγ f in L2(Rn), we obtain v(x, ρ)→ Mγ f as ρ → 0 in view of the
fact that

∫
Hn 8s,1(g) dg = 1. This completes the proof of the theorem. □

There is yet another convenient way of representing the solution of the extension problem for L . If we
let kt,s(ρ)= (sinh t)−s−1e−(coth t)ρ2/4, then it is known that this function satisfies the equation

∂t kt,s(ρ)=

(
∂2
ρ +

1+2s
ρ

∂ρ −
1
4
ρ2
)

kt, s(ρ).

Theorem 2.2. For f ∈ L p(γ ) with 1 ≤ p ≤ ∞, a solution of the extension problem for L is given by

u(x, ρ)=
4−s

0(s)
ρ2s

∫
∞

0
kt, s(ρ)e−t L f (x) dt. (2-3)

Moreover, as ρ → 0, the solution u( · , ρ) converges to f in L p(γ ) for any 1 ≤ p <∞.

Proof. That u solves the extension problem follows easily from the fact that e−t L f (x) solves the heat
equation associated to L , i.e., −Le−t L f (x)= ∂t e−t L f (x), and the definition of kt,s(ρ). Indeed, we have

−Lu(x, ρ)=
4−s

0(s)
ρ2s

∫
∞

0
kt, s(ρ)∂tv(x, t) dt,

which after an integration by parts in the t variable yields

Lu(x, ρ)=
4−s

0(s)
ρ2s

∫
∞

0
∂t kt, s(ρ)v(x, t) dt.

Since kt,s(ρ) is the heat kernel associated to the operator
(
∂2
ρ +

1+2s
ρ
∂ρ −

1
4ρ

2
)
, we have

Lu(x, ρ)=
4−s

0(s)
ρ2s
(
∂2
ρ +

1+2s
ρ

∂ρ −
1
4
ρ2
) ∫ ∞

0
kt, s(ρ)e−t L f (x) dt.

Finally, an easy calculation shows that for any function v(ρ) one has(
∂2
ρ +

1−2s
ρ

∂ρ −
1
4
ρ2
)
(ρ2sv(ρ))= ρ2s

(
∂2
ρ +

1+2s
ρ

∂ρ −
1
4
ρ2
)
v(ρ),

and hence it follows that u(x, ρ) solves the extension problem.
Now to prove the L p(γ ) convergence of the solution to the initial condition, we make use of the fact

that e−t L is a contraction semigroup on every L p(γ ) and e−t L f converges to f in L p(γ ) as t → 0. We
first make a change of variables t → ρ2t to get

u(x, ρ)=
4−s

0(s)
ρ2s+2

∫
∞

0
kρ2t,s(ρ)e

−ρ2t L f (x) dt.
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Note that

ρ2s+2kρ2t,s(ρ)= ρ2s+2(sinh ρ2t)−s−1e−(coth ρ2t)ρ2/4

= t−s−1
(

ρ2t
sinh ρ2t

)s+1

e−(coth ρ2t)ρ2t/(4t)
→ t−s−1e−1/(4t) as ρ → 0. (2-4)

Here we have used the facts that (sinh y)/y → 1 and y coth y → 1 as y → 0. Also we see that
t−s−1e−1/(4t)

∈ L1(0,∞), and an easy calculation yields∫
∞

0
t−s−1e−1/(4t) dt = 4s0(s).

Now using this result we can write, for any x ∈ Rn,

u(x, ρ)− f (x)=
4−s

0(s)
ρ2s+2

∫
∞

0
kρ2t, s(ρ)e

−ρ2t L f (x) dt −
4−s

0(s)

∫
∞

0
t−s−1e−1/(4t) f (x) dt

=
4−s

0(s)

∫
∞

0
(ρ2s+2kρ2t, s(ρ)− t−s−1e−1/(4t))e−ρ2t L f (x) dt

+
4−s

0(s)

∫
∞

0
t−s−1e−1/(4t)(e−ρ2t L f (x)− f (x)) dt.

Therefore, using Minkowski’s integral inequality and the fact that ∥e−ρ2t L f ∥L p(γ ) ≤ ∥ f ∥L p(γ ), we have

∥u( · , ρ)− f ∥L p(γ ) ≤
4−s

0(s)

∫
∞

0
|ρ2s+2kρ2t, s(ρ)− t−s−1e−1/(4t)

|∥ f ∥L p(γ ) dt

+
4−s

0(s)

∫
∞

0
t−s−1e−1/(4t)

∥e−ρ2t L f − f ∥L p(γ ) dt. (2-5)

Note that using the asymptotics of the sine and cotangent hyperbolic functions, we have

|ρ2s+2kρ2t, s(ρ)− t−s−1e−1/(4t)
| ≤ Cρ2s+2e−ρ2t (s+1)

+ t−s−1e−1/(4t)
:= hρ(t), t > M. (2-6)

It is not hard to see that for every ρ > 0, we have hρ ∈ L1 and limρ→0
∫

∞

M hρ(t) dt =
∫

∞

M h(t) dt , and
also as ρ → 0 we have hρ(t)→ t−s−1e−1/(4t)

=: h(t) pointwise. Hence by the generalised dominated
convergence theorem (DCT) we have∫

∞

M
|ρ2s+2kρ2t,s(ρ)− t−s−1e−1/(4t)

|∥ f ∥L p(γ ) dt → 0 as ρ → 0.

Now see that, similar to (2-4), one can show the function hρ(t) goes to a finite limit as t → 0, so there is
no singularity of hρ at 0. Hence it is easy to see that∫ M

0
|ρ2s+2kρ2t,s(ρ)− t−s−1e−1/(4t)

|∥ f ∥L p(γ ) dt

goes to zero as ρ → 0. Hence it follows that the first integral in the right-hand side of (2-5) goes to zero.
Also the integrand of the second integral is bounded above by an integrable function of t . Indeed,

t−s−1e−1/(4t)
∥e−ρ2t L f − f ∥L p(γ ) ≤ 2t−s−1e−1/(4t)

∥ f ∥L p(γ ).
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Hence by DCT the second integral goes to zero as ρ → 0. Therefore we have

u( · , ρ)=
4−s

0(s)
ρ2s+2

∫
∞

0
kρ2t, s(ρ)e

−ρ2t L f dt → f in L p(γ ) as ρ → 0. □

We have thus given two representations for solutions of the extension problem, and we now claim they
are the same. This is not obvious and needs a proof. It is convenient to work with the functions

ϕs,δ(z, a)=
((
δ+

1
4 |z|2

)2
+ a2)−(n+1+s)/2

,

in terms of which we can express 8s,ρ as follows: with δ =
1
4ρ

2,

8s,ρ(z, a)=
2−(n+1+s)

πn+10(s)
0
( 1

2(n + 1 + s)
)2
ϕs,δ(z, a). (2-7)

For a function ϕ(z, t) on Hn we let ϕλ(z) denote the inverse Fourier transform of ϕ in the t variable. Thus

ϕλs,δ(z)=

∫
∞

−∞

ϕs,δ(z, t)eiλt dt.

This is a radial function on Cn and hence has an expansion in terms of the Laguerre functions:

ϕλk (z)= Ln−1
k

( 1
2 |λ||z|2

)
e−|λ||z|2/4. (2-8)

We let cλk,δ(s) be the coefficients defined by

ϕλs,δ(z)= (2π)−n
|λ|n

∞∑
k=0

cλk,δ(s)ϕ
λ
k (z). (2-9)

These coefficients are given in terms of the auxiliary function L(a, b, c) defined for a, b ∈ R+ and c ∈ R

as follows:

L(a, b, c)=

∫
∞

0
e−a(2x+1)xb−1(1 + x)−c dx . (2-10)

The following proposition expresses the cλk,δ(s) in terms of L; see [Cowling and Haagerup 1989].

Proposition 2.3 (Cowling–Haagerup). For any δ > 0 and 0< s < 1
2(n + 1), we have

cλk,δ(s)=
(2π)n+1

|λ|s

0
( 1

2(n + 1 + s)
)2 L

(
δ|λ|, 1

2(2k + n + 1 + s), 1
2(2k + n + 1 − s)

)
.

Using this proposition we can compute the explicit formula for the group Fourier transform of 8s,ρ(g)
on Hn. Let Pk(λ) stand for the projections associated to H(λ)= −1+ λ2

|x |
2. Then making use of the

fact that ∫
Cn
ϕλk (z)πλ(z, 0) dz = (2π)−n

|λ|−n Pk(λ),

we obtain the following formula: with δ =
1
4ρ

2, as before,∫
Hn
8s,ρ(g)πλ(g)∗ dg =

2−(n+1+s)

πn+10(s)
0
( 1

2(n + 1 + s)
)2

∞∑
k=0

cλk,δ(s)Pk(λ).
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As the projections associated to L are given by Qk = M−1
γ Pk Mγ , we see that the solution defined in

Theorem 2.1 is given by

u(x, ρ)=
2−(n+1+s)

πn+10(s)
0
( 1

2(n + 1 + s)
)2
ρ2s

∞∑
k=0

c1
k,δ(s)Qk f (x).

Therefore, in order to prove our claim, we only need to check that

4−s

0(s)
ρ2s

∫
∞

0
kt, s(ρ)e−t L f (x) dt =

2−(n+1+s)

πn+10(s)
0
( 1

2(n + 1 + s)
)2
ρ2s

∞∑
k=0

c1
k,δ(s)Qk f (x),

where δ =
1
4ρ

2. Equivalently, we need to check that∫
∞

0
kt, s(ρ)e−t (2k+n) dt = L

( 1
4ρ

2, 1
2(2k + n + 1 + s), 1

2(2k + n + 1 − s)
)
.

In order to compute the above integral, we make the change of variable coth t = 2z + 1 and note that
−(sinh2 t)−1 dt = 2 dz and sinh t = (2z(2z + 2))−1/2. We get∫

∞

0
(sinh t)−s−1e−(coth t)ρ2/4e−t (2k+n) dt

= 2
∫

∞

0
(2z(2z + 2))(s−1)/2e−(2z+1)ρ2/4

(2z+2
2z

)−(2k+n)/2
dz

= 2
∫

∞

0
e−(2z+1)ρ2/4(2z)[(s−1)+(2k+n)]/2(2z + 2)−[(1−s)+(2k+n)]/2 dz

= 2s
∫

∞

0
e−(2z+1)ρ2/4(z)[(s+1)+(2k+n)]/2−1(z + 1)−[(1−s)+(2k+n)]/2 dz

= 2s L
( 1

4ρ
2, 1

2(2k + n + 1 + s), 1
2(2k + n + 1 − s)

)
.

This proves our claim that Theorems 2.1 and 2.2 define the same solution of the extension problem.
The above proof also shows that the function u(x, ρ) defined by the integral (using U in place of L)

u(x, ρ)=
4−s

0(s)
ρ2s

∫
∞

0
kt, s(ρ)e−tU f (x) dt,

solves the extension problem for U and the following expansion for the solution u is valid.

Proposition 2.4. For 0< s < 1
2(n + 1) and f ∈ L2(γ ), the solution of the extension problem associated

to U is given by

u( · , ρ)=
2−s

0(s)
ρ2s

∞∑
k=0

L
( 1

4ρ
2, 1

2(k + n/2 + 1 + s), 1
2(k + n/2 + 1 − s)

)
Qk f. (2-11)

We let Ts,ρ stand for the solution operator which takes f into the solution u(x, ρ) of the extension
problem. Thus

Ts,ρ f (x)=
4−s

0(s)
ρ2s

∫
∞

0
kt, s(ρ)e−t L f (x) dt,
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which is also given by the expansion in the above proposition. In what follows we make use of the
transformation property

(2λ)a

0(a)
L(λ, a, b)=

(2λ)b

0(b)
L(λ, b, a) (2-12)

satisfied by the L function for all admissible values of (a, b, c); see Cowling and Haagerup [1989].

Fractional powers of the operators L and U. In what follows let A stand for either L or U . Note that
the associated eigenvalues λk are given by (2k + n) and

(
k +

1
2 n
)
, respectively. The above representation

of the solution of the extension problem allows us to define As as the Neumann boundary data associated
to the extension problem. More precisely we have the following result:

Theorem 2.5. Assume that 0< s < 1. Let f ∈ L2
∩ L p(γ ) with 1 ≤ p <∞ be such that As f ∈ L p(γ ).

Then the solution of the extension problem u(x, ρ)= Ts,ρ f (x) satisfies

lim
ρ→0

ρ1−2s∂ρu(x, ρ)= −21−2s 0(1 − s)
0(s)

As f,

where the convergence is understood in the L p(γ ) sense.

Proof. The expansion of Ts,ρ f given in Proposition 2.4 and the transformation property (2-12) of the
L function allows us to verify the identity

ρ2s T−s,ρ(As f )(x)=
4s0(s)
0(−s)

Ts,ρ f (x), (2-13)

which when expanded reads as

4s0(s)
0(−s)

u(x, ρ)=
4s

0(−s)

∫
∞

0
(sinh t)s−1e−(coth t)ρ2/4e−t A As f (x) dt.

Differentiating with respect to ρ and multiplying both sides by −ρ1−2s, we get

−ρ1−2s∂ρu(x, ρ)=
1

20(s)
ρ2(1−s)

∫
∞

0
(sinh t)s−1(coth t)e−(coth t)ρ2/4e−t A As f (x) dt.

Now we make the change of variable t → tρ2 to get

−ρ1−2s∂ρu(x, ρ)=
1

20(−s)
ρ4−2s

∫
∞

0
(sinh(tρ2))s−1 coth(tρ2)e− coth(tρ2)ρ2/4e−tρ2 A As f (x) dt

=
1

20(−s)

∫
∞

0
t s−2

(
sinh(tρ2)

tρ2

)s−1

coth(tρ2)(tρ2)e− coth(tρ2)ρ2/4e−tρ2 A As f (x) dt.

Under the extra assumption that As f ∈ L p(γ ) with 1 ≤ p<∞, we know that limρ→0 e−ρ2t A As f = As f ,
in L p(γ ). So as ρ → 0, we can argue as in the proof of Theorem 2.2 to obtain

lim
ρ→0

(−ρ1−2s∂ρu(x, ρ))=
1

20(s)
As f

(∫
∞

0
t s−2e−1/(4t) dt

)
.

Computing the last integral and simplifying we obtain

lim
ρ→0

(ρ1−2s∂ρu(x, ρ))= −2(1−2s)0(1 − s)
0(s)

As f . □
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3. Characterisations of solutions of the extension problem

In this section we prove several characterisations of solutions of the extension problem for L . Recall that
the extension problem for L reads as(

−L + ∂2
ρ +

1−2s
ρ

∂ρ −
1
4
ρ2
)

u(x, ρ)= 0, u(x, 0)= f (x).

Now given α ∈ Nn and ρ > 0 we define the Fourier–Hermite coefficients associated to the expansion in
terms of the normalised Hermite polynomials Hα as

ũ(α, ρ) :=

∫
Rn

u(x, ρ)Hα(x) dγ (x).

Now letting vα(ρ) := ũ(α, 2
√
ρ), we see that

(−(2|α| + n)+ ρ∂2
ρ + (1 − s)∂ρ − ρ)vα(ρ)= 0, vα(0)= ( f, Hα)L2(γ ).

Again if we write vα(ρ)= e−ρgα(2ρ), then it can be easily checked that the above equation becomes

rg′′

α(r)+ (1 − s − r)g′

α(r)−
1
2(2|α| + n + 1 − s)gα(r)= 0,

where r = 2ρ. Now we let gα(r)= r shα(r), which leads to

rh′′

α(r)+ (1 + s − r)h′

α(r)−
1
2(2|α| + n + 1 + s)hα(r)= 0. (3-1)

Note that this is in the form of Kummer’s equation: xh′′(x)+ (b − x)h′
− ah(x) = 0. The solutions

of Kummer’s equation are given by the functions M(a, b, x) and V (a, b, x), which are known as the
confluent hypergeometric functions. The function M, given by M(a, b, x)=

∑
∞

m=0((a)m/(b)mm!)xm, is
analytic, and

V (a, b, x)=
π

sinπb

(
M(a, b, x)

0(1 + a − b)0(b)
− x1−b M(1 + a − b, 2 − b, x)

0(a)0(2 − b)

)
, x > 0.

Also, V has the integral representation given by

V (a, b, x)=
1

0(a)

∫
∞

0
e−t x ta−1(1 + t)b−a−1 dt, x > 0.

For more details, see for instance [Abramowitz and Stegun 1964, Chapter 13] and also [Frank et al. 2015,
Lemma 5.2].

Finally, writing µ=
1
2 s and κ = |α|+

1
2 n, performing another substitution wα(r)= e−1/2rr1/2+µhα(r),

transforms (3-1) to

w′′

α(r)+
(
−

1
4

−
κ

r
+

1/4 −µ2

r2

)
wα(r)= 0, (3-2)

which is in the form of a Whittaker equation. This warrants the following lemma which describes the
properties of solutions of Whittaker equations.
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Lemma 3.1 [Olver and Maximon 2010]. Let κ ∈ R and −2µ /∈ N. The two linearly independent solutions
of the ordinary differential equation

w′′(x)+
(
−

1
4

+
κ

x
+

1/4 −µ2

x2

)
w(x)= 0

are given by the functions Mκ,µ(x) and Wκ,µ(x), where

Mκ,µ(x)= e−x/2x1/2+µ

∞∑
p=0

1/2 +µ− κ

(1 + 2µ)p p!
x p,

and when 2µ is not an integer,

Wκ,µ(x)=
0(−2µ)

0(1/2 −µ− κ)
Mκ,µ(x)+

0(+2µ)
0(1/2 +µ− κ)

Mκ,−µ(x). (3-3)

Moreover, we have the following asymptotic properties of these Whittaker functions:
For large x ,

Mκ,µ(x)∼
0(1 + 2µ)

0(1/2 +µ− κ)
ex/2x−κ, µ− κ ̸= −

1
2 ,−

3
2 , . . . and Wκ,µ(x)∼ e−x/2xκ. (3-4)

Also as x → 0 we have

Mκ,µ(x)= xµ+1/2(1 + O(x)), 2ν ̸= −1,−2,−3, . . . , (3-5)

Wκ,µ(x)=
0(2µ)

0(1/2 +µ− κ)
x1/2−µ

+
0(−2µ)

0(1/2 −µ− κ)
x1/2+µ

+ O(x3/2−µ), 0< µ< 1
2 . (3-6)

In view of the above lemma, generic solutions of (3-2) are given by

wα(r)= C1(|α|)M−(|α|+n/2), s/2(r)+ C2(|α|)W−(|α|+n/2), s/2(r).

But we know vα(ρ) = e−ρgα(2ρ) = e−ρ(2ρ)shα(ρ) = e−ρ(2ρ)seρ/2ρ−1/2−µwα(ρ), and by definition
vα(ρ)= ũ(α, 2

√
ρ). Hence we have

ũ(α, ρ)=
( 1

2ρ
2)(s−1)/2(C1(|α|)W−(|α|+n/2), s/2

( 1
2ρ

2)
+ C2(|α|)M−(|α|+n/2), s/2

( 1
2ρ

2)). (3-7)

The initial condition on the solution along with the behaviour of the Whittaker functions stated in the
previous lemma allows us to conclude that

C1(|α|)=
1
0(s)

0
( 1

2(2k + n + s + 1)
)
( f, Hα)L2(γ ).

Thus the solution of the extension problem can be written as a sum of two functions, namely( 1
2ρ

2)(s−1)/2 1
0(s)

∞∑
k=0

0
( 1

2(2k + n + s + 1)
)
W−(k+n/2), s/2

( 1
2ρ

2)Qk f,

( 1
2ρ

2)(s−1)/2 ∑
α∈Nn

C2(|α|)M−(|α|+n/2), s/2
( 1

2ρ
2)Hα(x).

The second series above converges under some decay conditions on the coefficients C2(|α|) as we will
see soon. We make use of these considerations in the proof of Theorem 3.3 below.



EXTENSION PROBLEM, TRACE AND HARDY’S INEQUALITIES FOR THE ORNSTEIN–UHLENBECK OPERATOR 1219

To proceed further with our description of solutions of the extension problem, we need the following
asymptotic properties of the Whittaker functions appearing in the above expressions for large values of
the parameter k.

Lemma 3.2. For any ρ ∈ (0,∞), we have the following asymptotic properties, as k tends to infinity:

( 1
2ρ

2)(s−1)/2 M−(k+n/2), s/2
( 1

2ρ
2)

∼ (ρ)s−1/2(
√

2k + n)−s−1/2 exp
(

2(2k + n)ζ
(

ρ2

4(2k + n)

)1/2)
, (3-8)

( 1
2ρ

2)(s−1)/2W−(k+n/2), s/2
( 1

2ρ
2)

∼
(ρ

√
2k + n)s−1/2

0
( 1

2(2k + n + 1 + s)
) exp

(
−2(2k + n)ζ

(
ρ2

4(2k + n)

)1/2)
, (3-9)

where 2
√
ζ(x)=

√
x + x2 + ln(

√
x +

√
x + 1) for x > 0.

Proof. For large values of κ and for any x ∈ (0,∞), the following asymptotic properties can be found in
[Olver and Maximon 2010, 13.21.6, 13.21.7]:

M−κ,µ(4κx)=
20(2µ+ 1)
κµ−1/2

(
xζ(x)
1 + x

)1/4

I2µ(4κζ(x)1/2)(1 + O(κ−1)), (3-10)

W−κ,µ(4κx)=

√
8/πeκ

κκ−1/2

(
xζ(x)
1 + x

)1/4

K2µ(4κζ(x)1/2)(1 + O(κ−1)), (3-11)

where I2µ is the modified Bessel function of the first kind and K2µ denotes the Macdonald function of
order 2µ. Taking x =

1
2ρ

2, κ = k +
1
2 n and µ=

1
2 s, for large values of k, from (3-10) we have

M−(k+n/2),s/2(x)=
20(2µ+1)
(k+n/2)µ−1/2

(
xζ(x/2(2k+n))

2(2k+n)+x

)1/4

I2µ

(
2(2k+n)ζ

(
x

2(2k+n)

)1/2)
(1+O(k−1)).

Recall that the modified Bessel function of the first kind has the following asymptotic property:

I2µ(x)∼
1

√
2πx

ex when x is real and x → ∞. (3-12)

But it is easy to see that 2(2k + n)ζ(x/(2(2k + n)))1/2 goes to infinity as k → ∞, which by the above
asymptotic property yields

I2µ

(
2(2k + n)ζ

(
x

2(2k + n)

)1/2)
∼

(
2(2k + n)ζ

(
x

2(2k + n)

)1/2)−1/2

exp
(

2(2k + n)ζ
(

x
2(2k + n)

)1/2)
, (3-13)

valid for large values of k. It can be easily checked that for any x > 0 and large k,(
1
4

)1/4( x
2k + n

)1/4

≤

(
x

2(2k + n)+ x

)1/4

≤

(
3
4

)1/4( x
2k + n

)1/4

. (3-14)

This, along with (3-13), proves the result for the function M−(k+n/2), s/2.
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We obtain the asymptotic property for the other function similarly: for large k, from (3-11) we have

W−(k+n/2), s/2(x)

=

√
8/πek+n/2

(k + n/2)k+n/2−1/2

(
xζ(x/(2(2k + n)))

2(2k + n)+ x

)1/4

K2µ

(
2(2k + n)ζ

(
x

2(2k + n)

)1/2)
(1 + O(k−1)).

Now the Macdonald’s function K2µ(z) has the following asymptotic property:

K2µ(x)∼
√
π/(2x)e−x, when x is real and x → ∞. (3-15)

Again for the same reason as above, as k → ∞, using (3-15) we have

K2µ

(
2(2k + n)ζ

(
x

2(2k + n)

)1/2)
∼

(
2(2k + n)ζ

(
x

2(2k + n)

)1/2)−1/2

exp
(
−2(2k + n)ζ

(
x

2(2k + n)

)1/2)
. (3-16)

Using Stirling’s formula, 0(x)=
√

2πx x−1/2e−x eθ(x)/12x for 0< θ(x) < 1 which is true for x > 0, see
[Ahlfors 1953], we have

0
( 1

2(2k + n + 1 + s)
)
e(k+n/2)

(k + n/2)(k+n/2)−1/2 =
0
( 1

2(2k + n + 1 + s)
)

e−θ(k+n/2)/6(2k+n)0
( 1

2(2k + n)
) ∼

( 1
2(2k + n)

)(1+s)/2
,

as k → ∞. This observation along with (3-14) and the asymptotic property (3-16) yields

0
( 1

2(2k + n + 1 + s)
)
W−(k+n/2), s/2(x)∼ (2k + n)s/2−1/4x1/4 exp

(
−2(2k + n)ζ

(
x

2(2k + n)

)1/2)
. □

Remark. It can be easily checked that for large κ the following inequality is valid for any x > 0:

1
2

√
xκ ≤ κ

√
ζ(x/κ)≤

3
2

√
xκ, (3-17)

which can be used to further simplify the exponential part in the above estimates.

The analysis preceding Lemma 3.2 motivates us to define the following two operators. Given a
distribution f such that Mγ f is a tempered distribution, we define

S1
ρ f =

( 1
2ρ

2
)(s−1)/2

0(s)

∞∑
k=0

0
( 1

2(2k + n + s + 1)
)
W−(k+n/2), s/2

( 1
2ρ

2)Qk f. (3-18)

Recall that h is a tempered distribution on Rn if and only if the Hermite coefficients satisfy the estimate
|(h,8α)| ≤ C(2|α| + n)m for some integer m. So Mγ f being a tempered distribution, its Hermite coeffi-
cients have at most polynomial growth, and consequently Qk f has polynomial growth in k. So because
of the exponential decay in (3-9), the above series defining S1

ρ f converges uniformly. Consequently, in
view of (3-7), S1

ρ f defines a solution of the extension problem.
For the other solution of the Whittaker equation we define the operator S2

ρ for nice functions g by

S2
ρg =

( 1
2ρ

2)(s−1)/2
∞∑

k=0

M−(k+n/2), s/2
( 1

2ρ
2)Qk g. (3-19)
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It is not hard to see that as the Whittaker function M−(k+n/2), s/2
( 1

2ρ
2
)

has exponential growth as k → ∞,
Qk g must have enough decay for the series in (3-19) to converge. This encourages us to determine a
condition on the function g so that the projections Qk g have enough decay. Now as can be seen in the
above lemma, the function M−(k+n/2), s/2

( 1
2ρ

2
)

is growing like ecρ
√

2k+n for large values of k which leads
us to consider the image of L2(γ ) under the semigroup e−t L1/2

, which we denote by H 2
γ,t(R

n). Clearly, if
g ∈

⋂
t>0 H 2

γ,t(R
n), the series in (3-19) converges and defines a smooth function. But in view of the connec-

tion between L and the Hermite operator H, we note that a function g is in H 2
γ,t(R

n) if and only if ge−| · |
2/2

is in the image of L2(Rn) under the Poisson semigroup e−t H1/2
. Let us write H 2

t (R
n) := e−t H1/2

(L2(Rn)).
We are ready to prove the following characterisation for the solution of the extension problem.

Theorem 3.3. Let f be a distribution such that Mγ f is tempered. Then any function u(x, ρ) for which
Mγ u(x, ρ) is tempered in x is a solution of the extension problem (1-5) with initial condition f if and
only if u(x, ρ)= S1

ρ f (x)+ S2
ρg(x) for some g ∈

⋂
t>0 H 2

γ,t(R
n).

Proof. First suppose u(x, ρ)= S1
ρ f (x)+ S2

ρg(x) for some g such that g ∈
⋂

t>0 H 2
γ,t(R

n). Consequently,
for every t > 0, we have ∥Qk g∥

2
L2(γ )

≤ Ce−2t
√

2k+n for large k. So the expression (3-19) defining S2
ρg is

well defined and solves the extension problem.
Now since Mγ f is a tempered distribution, as mentioned above, the Fourier–Hermite coefficients

associated to Hermite polynomials of f satisfy

| f̃ (α)| = |( f, Hα)L2(γ )| ≤ C(2|α| + n)m for some integer m.

But in view of the fact that
∑

|α|=k 1 = (k + n − 1)!/(k!(n − 1)!) ≤ C(2k + n)n−1, we must have that
∥Qk f ∥

2
L2(γ )

≤ C(2k + n)2m+n−1. Now the asymptotic property (3-8) in Lemma 3.2 along with estimate
(3-17) gives( 1

2ρ
2)(s−1)/2

0
( 1

2(2k + n + 1 + s)
)
W−(k+n/2), s/2

(1
2ρ

2)
≤ (ρ

√
2k + n)s−1/2e−ρ

√
2k+n/2,

which allows us to conclude that
∞∑

k=0

(
0
( 1

2(2k + n + 1 + s)
)
W−(k+n/2), s/2

( 1
2ρ

2))2
(2k + n)2m+n−1 <∞.

Consequently, S1
ρ f make sense and hence solves the extension problem. Now we observe that an easy

calculation yields( 1
2ρ

2
)(s−1)/2

0(s)
0
( 1

2(2k + n + 1 + s)
)
W−(k+n/2), s/2

( 1
2ρ

2)
=

2−s

0(s)
ρ2s L

( 1
4ρ

2, 1
2(2|α| + n + 1 + s), 1

2(2|α| + n + 1 − s)
)
, (3-20)

which together with the expression (3-18) yields that S1
ρ f is in the form (2-3) and, as discussed in the

previous subsection, this converges to f as ρ → 0. Also note that from the asymptotic property in (3-5),
we have

(1
2ρ

2
)(s−1)/2 M−(k+n/2), s/2

( 1
2ρ

2
)

approaches zero as ρ → 0. So S2
ρg → 0 as ρ → 0. Therefore

u = S1
ρ f + S2

ρg solves the extension problem with initial condition f .
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Conversely, suppose u(x, ρ) is a solution of the extension equation (2-1) with initial condition f whose
Fourier–Hermite coefficients associated to the Hermite polynomials have tempered growth. Then as
discussed in the beginning of this subsection we have

ũ(α, ρ)=
( 1

2ρ
2)(s−1)/2(C1(|α|)W−(k+n/2), s/2

( 1
2ρ

2)
+ C2(|α|)M−(k+n/2), s/2

( 1
2ρ

2)).
Now using ũ(α, 0)= ( f, Hα) and the behaviour of

( 1
2ρ

2
)(s−1)/2W−(k+n/2), s/2

( 1
2ρ

2
)

near ρ = 0, see (3-5),
we have

C1(|α|)=
0
(1

2(2|α| + n + 1 + s)
)

0(s)
( f, Hα)L2(γ ).

Also since Mγ u(x, ρ) is tempered, ũ(α, ρ) has at most polynomial growth in |α|. But estimate (3-17)
along with the asymptotic property (3-8) yields( 1

2ρ
2)(s−1)/2 M−(k+n/2), s/2

( 1
2ρ

2)
≤ C(ρ)s−1/2(

√
2k + n)−s−1/2e3ρ

√
2k+n/2

for large k. Hence we must have C2(|α|) decaying as e−3ρ
√

2|α|+n/2 for every ρ > 0. So let us take
g =

∑
α∈Nn C2(|α|)Hα . Then the function g satisfies ∥Qk g∥

2
L2(γ ) ≤ Ce−3ρ

√
2k+n/2 for every ρ > 0. This

ensures that g ∈ H 2
γ,3ρ/2(R

n) for every ρ > 0, which completes the proof. □

Remark. For any ρ > 0, the space H 2
ρ (R

n) has an interesting characterisation. It is well known that
any g from this space has a holomorphic extension to the tube domain �ρ = {z = x + iy ∈ Cn

: |y|< ρ}

in Cn which belongs to L2(�ρ, wρ) for an explicit positive weight function wρ given by

wρ(z)= (ρ2
− |y|

2)n/2
Jn/2−1(2i(ρ2

− |x |
2)1/2|x |)

(2i(ρ2 − |x |2)|x |)n/2−1 , z = x + iy ∈ Cn,

where Jn/2−1 denotes the Bessel function of order (n/2 − 1). We denote this weighted Bergman space
by H 2

ρ (C
n). Thangavelu [2010] proved that for any holomorphic function F on �ρ ,∫

�ρ

|F(z)|2wρ(z) dz = cn

∞∑
k=0

∥Pk f ∥
2 k!(n − 1)!
(k + n − 1)!

Ln−1
k (−2ρ2)eρ

2
, (3-21)

where f is the restriction of F to Rn. In view of this identity we see that g ∈ H 2
ρ (R

n) if and only if the
function Mγ g extends holomorphically to �ρ and belongs to H 2

ρ (C
n). We refer the reader to [Thangavelu

2010] for more details in this regard. From this observation we infer that the condition g ∈
⋂

t>0 H 2
γ,t(R

n)

in the above theorem can be replaced by the requirement that Mγ g extends holomorphically and belongs
to
⋂

t>0 H 2
t (C

n).

We also have the following characterisation of the solution u(x, ρ) when Mγ u(x, ρ) has tempered
growth in both the variables.

Theorem 3.4. Suppose u(x, ρ) is a solution of the extension problem (2-1), where Mγ u is tempered (in
both variables). Then u = S1

ρ f for some f ∈ L p(γ ) if and only if supρ>0 ∥u( · , ρ)∥L p(γ ) ≤ C.
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Proof. Suppose f ∈ L p(γ ), and let u = S1
ρ f . Then, as mentioned earlier,

u(x, ρ)=
4−s

0(s)
ρ2s

∫
∞

0
kt,s(ρ)e−t L f (x) dt.

Now since e−t L is a contraction semigroup on L p(γ ), we have

∥u( · , ρ)∥L p(γ ) ≤ ∥ f ∥L p(γ )

4−s

0(s)
ρ2s

∫
∞

0
kt,s(ρ) dt.

Proceeding in a similar way as before, one can easily see that∫
∞

0
kt,s(ρ) dt = 2s+1L

( 1
4ρ

2, 1
2(1 + s), 1

2(1 − s)
)
.

So we have
∥u( · , ρ)∥L p(γ ) ≤ Cs∥ f ∥L p(γ )ρ

2s L
( 1

4ρ
2, 1

2(1 + s), 1
2(1 − s)

)
.

Now we make use of an estimate for the L function, see [Roncal and Thangavelu 2020b, p. 18], to get

∥u( · , ρ)∥L p(γ ) ≤ Cs∥ f ∥L p(γ )ρ
2s0(s)

( 1
2ρ

2)−se−ρ2/4
= 2∥ f ∥L p(γ )e−ρ2/4,

which gives the required boundedness.
Conversely, let supρ>0 ∥u( · , ρ)∥L p(γ ) ≤ C . This condition allows us to extract a subsequence ρj along

which u( · , ρ) converges weakly to a function f ∈ L p(γ ). Letting ρ go to zero along ρj , from (3-7) we
have

ũ(α, ρ)
( 1

2ρ
2)(s−1)/2

=
0
( 1

2(2|α| + n + 1 + s)
)

0(s)
( f, Hα)L2(γ )W−(k+n/2), s/2

( 1
2ρ

2)
+ C2(|α|)M−(k+n/2), s/2

( 1
2ρ

2).
Now as ρ → ∞ we have

M−(k+n/2), s/2
( 1

2ρ
2)

∼
0(1 + 2µ)

0(1/2 +µ+ (k + n/2))
eρ

2/4ρ(2k+n).

But it is given that ũ(α, ρ) has polynomial growth in the ρ variable, so we must have C2(α) = 0, and
hence we are done. □

Now we turn our attention to the holomorphic extendability of solutions of the extension problem under
consideration. To motivate what we plan to do, we first recall a result about holomorphic extendability of
solutions of the following extension problem for the Laplacian on Rn:(

1+ ∂2
ρ +

1−s
ρ
∂ρ

)
u(x, ρ)= 0, u(x, 0)= f (x), x ∈ Rn, ρ > 0.

After the remarkable work of Caffarelli and Silvestre [2007], this problem has been extensively studied in
the literature. See, for example, the work of Stinga and Torrea [2010]. It is known that for f ∈ L2(Rn),
the function u(x, ρ)= ρs f ∗ϕs,ρ(x), where ϕs,ρ is the generalised Poisson kernel given by

ϕs,ρ(x)= π−n/20
( 1

2(n + s)
)

|0(s)|
(ρ2

+ |x |
2)−(n+s)/2, x ∈ Rn,
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is a solution of the extension problem. Recently in [Roncal and Thangavelu 2020b], the authors proved
that a necessary and sufficient condition for the solution of the above problem to be of the form u(x, ρ)=
ρs f ∗ϕs,ρ(x) for some f ∈ L2(Rn) is that u( · , ρ) extends holomorphically to the tube domain �ρ in Cn,
belongs to a weighted Bergman space Bs(�ρ) and satisfies the uniform estimate ∥u( · , ρ)∥Bs ≤ C for
all ρ > 0, where the norm ∥ · ∥Bs is given by

∥F∥
2
Bs

:= ρ−n
∫
�ρ

|F(x + iy)|2
(

1 −
|y|

2

ρ2

)s−1

+

dx dy.

Our aim in the rest of this section is to prove an analogous result for the extension problem we considered
for the Ornstein–Uhlenbeck operator L . In order to do so, we require the following Gutzmer’s formula
for the Hermite expansions. In order to state the same, we need to introduce some more notations.

Let Sp(n,R) denote the symplectic group consisting of 2n × 2n real matrices which preserves the
symplectic form [(x, u), (y, v)] = (u · y − v · x) on R2n with determinant 1. Recall that O(2n,R) stands
for the orthogonal group, and let K := Sp(n,R)∩ O(2n,R). For a complex matrix σ = a+ ib, it is known
that σ is unitary if and only if the matrix σA :=

(a
b

−b
a

)
belongs to the group K which yields a one to one

correspondence between K and the unitary group U (n). A proof of this can be found in [Folland 1989].
We let σ · (x, u) stand for the action of σA on (x, u), which clearly has a natural extension to Cn

× Cn.
Also given (x, u) ∈ Rn

× Rn, let π(x, u) be the unitary operator acting on L2(Rn) defined by

π(x, u)φ(ξ)= ei(x ·ξ+x ·u/2)φ(ξ + u), ξ ∈ Rn.

Clearly for (z, w) ∈ Cn
× Cn, as long as φ is holomorphic, π(z, w)φ(ξ) makes perfect sense. Also note

that Laguerre functions of type (n−1), defined earlier in (2-8), can be considered as a function on Rn
×Rn

which can be holomorphically extended to Cn
× Cn as follows:

ϕk(z, w) := Ln−1
k

( 1
2(z

2
+w2)

)
e−(z2

+w2)/4, z, w ∈ Cn.

We have the following very useful identity proved in [Thangavelu 2008]:

Theorem 3.5 (Gutzmer’s formula). For a holomorphic function f on Cn, we have∫
Rn

∫
K

|π(σ · (z, w)) f (ξ)|2 dσ dξ = e(u·y−v·x)
∞∑

k=0

k!(n − 1)!
(k + n − 1)!

ϕk(2iy, 2iv)∥Pk f ∥
2
2,

where z = x + iy, w = u + iv ∈ Cn.

We use this to prove the following result:

Proposition 3.6. Let δ > 0. For a holomorphic function F on �t , we have the identity∫
Rn

∫
|y|<t

|F(x + iy)|2wδt (x, y) dx dy = Cn

∞∑
k=0

∥Pk f ∥
2
2
0(k + 1)0(n + δ)

0(k + n + δ)
Ln+δ−1

k (−2t2)t2n,

where f denotes the restriction of F to Rn and the weight wδt > 0 is given by

wδt (x, y)=
1
0(δ)

∫
Rn

e−2u·x
(

1 −
|u|

2
+ |y|

2

t2

)δ−1

+

e−(|u|
2
+|y|

2) du.
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Proof. Let F be holomorphic in the tube domain�t = {z = x +iy : |y|< t} of Cn. Now since the Lebesgue
measure is rotationally invariant, (1−(|u|

2
+|y|

2)/t2)δ−1
+ e−(|u|

2
+|y|

2) dy du is a rotation-invariant measure.
So, using Gutzmer’s formula, we have∫

R2n

(∫
Rn

|π(iy, iv)F(ξ)|2 dξ
)(

1 −
|u|

2
+ |y|

2

t2

)δ−1

+

e−(|u|
2
+|y|

2) dy du

= cn

∞∑
k=0

∥Pk f ∥
2
2

k!(n − 1)!
(k + n − 1)!

∫
R2n
ϕk(2iy, 2iu)

(
1 −

|u|
2
+ |y|

2

t2

)δ−1

+

e−(|u|
2
+|y|

2) dy du. (3-22)

Integrating in polar coordinates, the integral on the right-hand side becomes∫
R2n
ϕk(2iy, 2iu)

(
1 −

|u|
2
+ |y|

2

t2

)δ−1

+

e−(|u|
2
+|y|

2) dy du = ω2n

∫
∞

0
Ln−1

k (−2r2)

(
1 −

r2

t2

)δ−1

+

r2n−1 dr.

Now using a change of variable r → r t followed by another change of variable r →
√

r in the integral in
the right-hand side of the above equation, we have∫

∞

0
Ln−1

k (−2r2)

(
1 −

r2

t2

)δ−1

+

r2n−1 dr =
1
2

t2n
∫ 1

0
Ln−1

k (r(−2t2))(1 − r)δ−1rn−1 dr.

By making use of the following identity (see [Szegő 1967]),

Lαk (t)=
0(k +α+ 1)

0(α−β)0(k +β + 1)

∫ 1

0
(1 − r)α−β−1rβLβk (r t) dr,

the above yields

1
0(δ)

∫
R2n
ϕk(2iy, 2iu)

(
1 −

|u|
2
+ |y|

2

t2

)δ−1

+

e−(|u|
2
+|y|

2) dy du

=
1
2

t2nω2n
0(k + n)

0(k + n + δ)
Ln+δ−1

k (−2t2). (3-23)

Now we simplify the left-hand side of (3-22):

1
0(δ)

∫
R2n

(∫
Rn

|π(iy, iv)F(ξ)|2 dξ
)(

1 −
|u|

2
+ |y|

2

t2

)δ−1

+

e−(|u|
2
+|y|

2) dy du

=
1
0(δ)

∫
R2n

(∫
Rn

|ei(iy·ξ+iy·iu/2)F(ξ + iu)|2 dξ
)(

1 −
|u|

2
+ |y|

2

t2

)δ−1

+

e−(|u|
2
+|y|

2) dy du

=
1
0(δ)

∫
R2n

(∫
Rn

|e−2y·ξ F(ξ + iu)|2 dξ
)(

1 −
|u|

2
+ |y|

2

t2

)δ−1

+

e−(|u|
2
+|y|

2) dy du

=

∫
R2n

|F(ξ + iu)|2
(

1
0(δ)

∫
Rn

e−2y·ξ

(
1 −

|u|
2
+ |y|

2

t2

)δ−1

+

e−(|u|
2
+|y|

2) dy
)

dξ du

=

∫
R2n

|F(ξ + iu)|2wδt (u, ξ) dξ du.
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Now, when |u| ≥ t , we see that (1 − (|u|
2
+ |y|

2)/t2)δ−1
+ = 0 for all y ∈ Rn. Thus,∫

R2n
|F(ξ + iu)|2wδt (u, ξ) dξ du =

∫
Rn

∫
|u|<t

|F(ξ + iu)|2wδt (u, ξ) dξ du.

Finally, we have∫
Rn

∫
|u|<t

|F(ξ + iu)|2wδt (u, ξ) dξ du = cn

∞∑
k=0

∥Pk f ∥
2
2
0(k + 1)0(n + δ)

0(k + n + δ)
Ln+δ−1

k (−2t2)t2n. □

For s > 0, we consider the following positive weight function w̃ρ(k) on N given by the sequence( 1
2ρ

2)s−1(
0
( 1

2(2k + n + 1 + s)
)
W−(k+n/2), s/2

( 1
2ρ

2))20(k + 1)0(n + 2s)
0(k + n + 2s)

Ln+2s−1
k

(
−

1
2ρ

2).
We define W s

ρ(R
n) to be the space of all tempered distributions f for which

∥ f ∥
2
s,ρ :=

∞∑
k=0

w̃ρ(k)∥Pk f ∥
2
2 <∞.

Remark. For r < 0, the following asymptotic property of Laguerre functions is well known (see [Szegő
1967, Theorem 8.22.3]) and is valid for large k, for r ≤ −c and for c > 0:

Lαk (r)=
1

2
√
π

er/2(−r)−α/2−1/4kα/2−1/4e2
√

−kr (1 + O(k−1/2)). (3-24)

The asymptotic property (3-9) together with (3-17) gives( 1
2ρ

2)s−1(
0
( 1

2(2k + n + 1 + s)
)
W−(k+n/2), s/2

( 1
2ρ

2))2
≤ c1(ρ

√
2k + n)2s−1e−ρ

√
2k+n,

and from (3-24) we have

Ln+2s−1
k

(
−

1
2ρ

2)
≤ ceρ

2/4ρ−n−2s+1/2(2k + n)(n+2s−1)/2−1/4eρ
√

2k+n.

Now using the fact that 0(k + 1)0(n + 2s)/0(k + n + 2s)∼ (2k + n)−(n+2s−1), we have

w̃ρ(k)≤ c1eρ
2/4(ρ2(2k + n))−(2n+1)/4.

On the other hand, using (3-9) and (3-24), for large k, we have

w̃ρ(k)≥ c2eρ
2/4(ρ2(2k + n))−(2n+1)/4e−ψρ(k),

where ψρ(k)= 4(2k +n)ζ(ρ2/(4(2k +n)))1/2 −ρ
√

2k. It can be checked that for 0<ρ ≤ 1, the function
ψρ(k) is decreasing in k, whence ψρ(k)≤ c for some constant c depending on ρ. So finally we have

c2eρ
2/4(ρ2(2k + n))−(2n+1)/4

≤ w̃ρ(k)≤ c1eρ
2/4(ρ2(2k + n))−(2n+1)/4. (3-25)

By letting mn = −
1
8(2n + 1), we clearly see that f ∈ W s

ρ(R
n) if and only if f ∈ W mn

H (Rn) whenever
0< ρ ≤ 1. Here W m

H (R
n) denotes the Hermite Sobolev spaces.



EXTENSION PROBLEM, TRACE AND HARDY’S INEQUALITIES FOR THE ORNSTEIN–UHLENBECK OPERATOR 1227

In view of the connection between the operators H and L , to prove Theorem 1.7 it suffices to prove
the following characterisation for the solution of the extension problem for H. Note that the extension
problem for the Hermite operator H we are talking about reads as(

−H + ∂2
ρ +

1−2s
ρ

∂ρ −
1
4
ρ2
)

u(x, ρ)= 0, u(x, 0)= f (x).

For ρ > 0, let Tρ stand for the operator defined for reasonable f by

Tρ f (x) :=
(1

2ρ
2)(s−1)/2 1

0(s)

∞∑
k=0

0
( 1

2(2k + n + s + 1)
)
W−(k+n/2), s/2

( 1
2ρ

2)Pk f (x).

Using similar reasoning as in the case of L , we point out that for a tempered distribution f , the above
expression makes sense and solves the extension problem for H. Moreover, in view of the relation
Qk = M−1

γ Pk Mγ , we have Tρ f = M−1
γ S1

ρM−1
γ f . Thus Theorem 1.7 easily follows from the following:

Theorem 3.7. A solution of the extension problem for H is of the form u(x, ρ) = Tρ f (x) for some
f ∈ W mn

H (Rn) if and only if for every ρ > 0, u( · , ρ) extends holomorphically to �ρ/2 and satisfies the
estimate ∫

�ρ/2

|u(z, ρ)|2w2s
ρ/2(z) dz ≤ Cρn−1/2, (3-26)

for all 0< ρ ≤ 1.

Proof. First suppose u(x, ρ)= Tρ f (x) for some f such that f ∈ W m(s)
H (Rn). So clearly

u(x, ρ)=

( 1
2ρ

2
)(s−1)/2

0(s)

∞∑
k=0

0
( 1

2(2k + n + s + 1)
)
W−(k+n/2), s/2

( 1
2ρ

2)Pk f (x).

But the Hermite function 8α(x) = Hα(x)e−|x |
2/2 has holomorphic extension to Cn. Let 8k(z, w) :=∑

|α|=k 8α(z)8α(w). Then using the estimate (see [Thangavelu 2010])

|8k(z, z̄)| ≤ C(y)(2k + n)3(n−1)/4e2
√

2k+n|y|

along with the asymptotic property (3-9), we conclude that the series
∞∑

k=0

0
( 1

2(2k + n + s + 1)
)
W−(k+n/2), s/2

( 1
2ρ

2)Pk f (z)

converges uniformly over compact subsets of �ρ/2 and hence defines a holomorphic function in the
domain �ρ/2. Now noting that

∥Pku( · , ρ)∥2
2 = ρ2s−2c2

s
(
0
( 1

2(2k + n + s + 1)
)
W−(k+n/2), s/2

( 1
2ρ

2))2
∥Pk f ∥

2
2,

in view of Proposition 3.6 we obtain∫
Rn

∫
|y|<ρ/2

|u(x + iy, ρ)|2w2s
ρ/2(x, y) dx dy = cnρ

2n
∞∑

k=0

w̃ρ(k)∥Pk f ∥
2
2.
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But in view of (3-25),

∥ f ∥
2
s,ρ ≤ Ceρ

2/4ρ−(2n+1)/2
∞∑

k=0

(2k + n)2mn∥Pk f ∥
2
2,

which gives ∫
Rn

∫
|y|<ρ/2

|u(x + iy, ρ)|2w2s
ρ/2(x, y) dx dy ≤ Ceρ

2/4ρn−1/2
∥ f ∥

2
W mn

H
,

proving the first part of the theorem.
Conversely, let u(z, ρ) be holomorphic on �ρ/2 for every ρ > 0 satisfying the estimate (3-26). Let gρ

be a tempered distribution such that

Pku( · , ρ)=
(1

2ρ
2)(s−1)/2

0
( 1

2(2k + n + s + 1)
)
W−(k+n/2), s/2

( 1
2ρ

2)Pk gρ . (3-27)

Now for 0< ρ ≤ 1, using (3-25) we have

∥gρ∥2
W mn

H
≤ Ce−ρ2/4ρ(2n+1)/2

∞∑
k=0

w̃ρ(k)∥Pk gρ∥2
2.

Note that using Proposition 3.6 we obtain∫
�ρ/2

|u(z, ρ)|2w2s
ρ/2(z) dz = cnρ

2n
∞∑

k=0

w̃ρ(k)∥Pk gρ∥2
2,

which by the hypothesis yields ∥gρ∥2
W mn

H
≤ C for all 0< ρ ≤ 1. Now by the Banach–Alaoglu theorem,

we choose a sequence {ρm} going to 0 such that gρm converges weakly in W mn
H (Rn) as k → ∞. Let f be

the weak limit in this case. Now given ϕ ∈ S(Rn), we have∫
Rn

u(x, ρm)ϕ(x) dx =

∞∑
k=0

∫
Rn

Pku(x, ρm)Pkϕ(x) dx .

But using (3-27), the above integral equals
∞∑

k=0

( 1
2ρ

2
m
)(s−1)/2

0
(1

2(2|α| + n + s + 1)
)
W−(|α|+n/2), s/2

( 1
2ρ

2
m
) ∫

Rn
Pk gρm (x)Pkϕ(x) dx .

This allows us to conclude that u( · , ρm) converges to f in the sense of distribution. Now under the
assumption that u solves the extension problem for H, the exact same argument as in the beginning of
this subsection gives

û(α, ρ)=
( 1

2ρ
2)(s−1)/2(C1(|α|)W−(|α|+n/2), s/2

( 1
2ρ

2)
+ C2(|α|)M−(|α|+n/2), s/2

( 1
2ρ

2)),
where û(α, ρ) denotes the Hermite coefficients. But the estimate (3-26) gives

∞∑
k=0

(
C2(k)M−(k+n/2), s/2

( 1
2ρ

2))2Ln+2s−1
k

(
−

1
2ρ

2)
≤ C(ρ).

But since both M−(k+n/2), s/2
( 1

2ρ
2
)

and Ln+2s−1
k

(
−

1
2ρ

2
)

have exponential growth in k (see (3-8) and
(3-24)), the above inequality forces C2(k) to be zero. Now, as u( · , ρm) converges to f and as ρm tends
to zero,

( 1
2ρ

2
m
)(s−1)/2W−(k+n/2), s/2

( 1
2ρ

2
m
)

goes to a constant 0(s)/0
( 1

2(2k + n + s + 1)
)

(see (3-5)), and
the theorem follows. □
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4. Trace Hardy and Hardy’s inequality

Trace Hardy inequality. We prove the following trace Hardy inequality only for the operator U as the
case of L is similar. We shall work with the gradient on Rn

× [0,∞) defined by

∇U u := (2−1/2∂1u, 2−1/2∂2u, . . . , 2−1/2∂nu, ∂ρu).

We also let Ps(∂x , ∂ρ)=
(
−U + ∂2

ρ +
1−2s
ρ
∂ρ −

1
4ρ

2
)

stand for the extension operator.

Lemma 4.1. Let u and v be two real-valued functions on Rn
×[0,∞) such that u, v∈C2

0([0,∞),C2(Rn)).
Then for 0< s < 1 we have∫

∞

0

∫
Rn

∣∣∣∣∇U u(x, ρ)−
u(x, ρ)
v(x, ρ)

∇Uv(x, ρ)
∣∣∣∣2ρ1−2s dγ (x) dρ

=

∫
∞

0

∫
Rn

(
|∇U u(x, ρ)|2 +

( 1
2 n +

1
4ρ

2)u(x, ρ)2)ρ1−2s dγ (x) dρ

+

∫
∞

0

∫
Rn

u(x, ρ)2

v(x, ρ)
(Ps(∂x , ∂ρ)v(x, ρ))ρ1−2s dγ (x) dρ

+

∫
Rn

u(x, 0)2

v(x, 0)
lim
ρ→0

(ρ1−2s∂ρv)(x, ρ) dγ (x). (4-1)

Proof. For any 1 ≤ j ≤ n, we consider the integral∫
Rn

(
∂j u −

u
v
∂jv

)2

dγ (x)=

∫
Rn

(
(∂j u)2 − 2

u
v
∂j u∂jv+

u2

v2 (∂jv)
2
)

dγ (x). (4-2)

Now by the definition of adjoint we get∫
Rn

u
v
∂j u∂jv dγ (x)=

∫
Rn

u∂∗

j

(
u
v
∂jv

)
dγ (x).

Using the fact that ∂∗

j = 2x j − ∂j on L2(γ ), we have

u∂∗

j

(
u
v
∂jv

)
= 2x j

u2

v
∂jv−

u
v
∂j u∂jv− u2∂j

(
1
v
∂jv

)
,

which together with the above equation yields

2
∫

Rn

u
v
∂j u∂jv dγ (x)=

∫
Rn

(
2x j

u2

v
∂jv− u2∂j

(
1
v
∂jv

))
dγ (x)

=

∫
Rn

(
2x j

u2

v
∂jv−

u2

v
∂2

j v+
u2

v2 (∂jv)
2
)

dγ (x).

Hence we have ∫
Rn

(
u2

v2 (∂jv)
2
− 2

u
v
∂j u∂jv

)
dγ (x)= −

∫
Rn

u2

v
∂∗

j ∂jv dγ (x).
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Similarly, for any x ∈ Rn one can obtain∫
∞

0

(
u2

v2 (∂ρv)
2
− 2

u
v
∂ρu∂ρv

)
ρ1−2s dρ =

∫
∞

0

u2

v2 ∂ρ(ρ
1−2s∂ρv) dρ+

u(x, 0)2

v(x, 0)
lim
ρ→0

(ρ1−2s∂ρv)(x, ρ).

Multiplying both side of (4-2) by 1
2 and summing over j we get the required result. □

Theorem 4.2 (general trace Hardy inequality). Let 0< s< 1. Suppose φ ∈ L2(γ ) is a real-valued function
in the domain of Us such that φ−1Usφ is locally integrable. Then for any real-valued function u(x, ρ)
from the space C2

0([0,∞),C2
b(R

n)) we have∫
∞

0

∫
Rn

(
|∇U u(x, ρ)|2 +

( 1
2 n +

1
4ρ

2)u(x, ρ)2)ρ1−2s dγ (x) dρ ≥ Cn,s

∫
Rn

u(x, 0)2
Lsφ(x)
φ(x)

dγ (x).

Proof. To prove this result, we make use of Lemma 4.1. Since the left-hand side of (4-1) is always
nonnegative, we have, for 0< s < 1,∫

∞

0

∫
Rn

(
|∇U u(x, ρ)|2 +

( 1
2 n +

1
4ρ

2)u(x, ρ)2)ρ1−2s dγ (x) dρ

≥ −

∫
∞

0

∫
Rn

u(x, ρ)2

v(x, ρ)
(Ps(∂x , ∂ρ)v(x, ρ))ρ1−2s dγ (x) dρ

−

∫
Rn

u(x, 0)2

v(x, 0)
lim
ρ→0

(ρ1−2s∂ρv)(x, ρ) dγ (x). (4-3)

Now we take

v(x, ρ)=
4−s

0(s)
ρ2s

∫
∞

0
kt, s(ρ)e−t Lφ(x) dt.

Then v solves the extension equation (2-1), i.e., Ps(∂x , ∂ρ)v = 0 and v(x, 0)= φ(x). Then from (4-3),
we have∫

∞

0

∫
Rn

(
|∇U u(x, ρ)|2 +

( 1
2 n +

1
4ρ

2)u(x, ρ)2)ρ1−2s dγ (x) dρ

≥ −

∫
Rn

u(x, 0)2

v(x, 0)
lim
ρ→0

(ρ1−2s∂ρv)(x, ρ) dγ (x). (4-4)

In view of the above, we need to solve the extension problem for U with a given initial condition φ. Since

− lim
ρ→0

ρ1−2s∂ρu(x, ρ)= 21−2s 0(1 − s)
0(s)

Usφ,

we get the desired inequality. □

Corollary 4.3. Let 0< s < 1 and f ∈ L2(γ ) with Us f ∈ L2(γ ). Then we have

⟨Us f, f ⟩L2(γ ) ≥

∫
Rn

f 2(x)
Usφ

φ
dγ (x)

for any real-valued φ in the domain of Us .

Proof. When u itself solves the extension problem with initial condition f , the proof of Lemma 4.1 shows
that the left-hand side of the trace Hardy inequality reduces to ⟨Us f, f ⟩L2(γ ). □
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Hardy’s inequality from trace Hardy. In this subsection we construct a suitable function φ so that
(Usφ)/φ simplifies. In order to do so, let us quickly recall some basic facts about Laguerre functions.
Let α >−1 and k ∈ N. The Laguerre polynomial of degree k and type α, which we denote by Lαk (x), is
a solution of the ordinary differential equation

xy′′(x)+ (α+ 1 − x)y′(x)+ ky(x)= 0,

whose explicit expression is given by

Lαk (x)=

k∑
j=0

0(k +α+ 1)
0(k − j + 1)0( j +α+ 1)

(−x) j

j !
. (4-5)

Recall that the Laguerre functions of type (n − 1) are given by

ϕn−1
k (r)= Ln−1

k

( 1
2r2)e−r2/4, r ≥ 0.

For more details about such functions we refer the reader to [Thangavelu 1993, Chapter 1]. Now given
s, ρ > 0, we consider the function φs,ρ which is defined in terms of Laguerre polynomials as follows:

φs,ρ(x)=

∞∑
m=0

C2m,ρ(s)Ln/2−1
m (|x |

2)= e|x |
2/2

∞∑
m=0

C2m,ρ(s)ϕn/2−1
m (

√
2|x |),

where the coefficients are given in terms of the L function as

Ck,ρ(s)=
2π

0
( 1

2(n/2 + 1 + s)
)2 L

(
ρ, 1

4(2k + n)+ 1
2(1 + s), 1

4(2k + n)+ 1
2(1 − s)

)
.

In the following lemma we show how these functions are related via the fractional power of the operator
under study.

Lemma 4.4. For −1< s < 1, we have

Usφ−s,ρ =
0
( 1

2(n/2 + 1 + s)
)2

0
( 1

2(n/2 + 1 − s)
)2 (4ρ)

sφs,ρ . (4-6)

Proof. Let us take two radial functions g and h on Rn such that

g(x)= πn/2e|x |
2/2h(x),

where h ∈ L2(Rn). Moreover, we choose h in such a way that the Laguerre coefficients

Rn/2−1
m (h)= 2

0(m + 1)
0(m + n/2)

∫
∞

0
h(r)Ln/2−1

m (r2)e−r2/2rn−1 dr

are nonzero. By our choice of h and definition of g, it is not hard to see that Qk g(x) = e|x |
2/2 Pkh(x).

Also, since h is radial, using a result proved in [Thangavelu 1993, Theorem 3.4.1] we have

Pkh(x)=

{
0 if k = 2m + 1,
Rn/2−1

m (h)Ln/2−1
m (|x |

2)e−|x |
2/2 if k = 2m.

(4-7)
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Now using the definition of the Laguerre function along with the fact that Rn/2−1
m (h) ̸= 0, we see that

φs,ρ(x)= e|x |
2/2

∞∑
m=0

2π
0(n/2+1+s)2

L
(
ρ, 1

4(4m+n)+ 1
2(1+s), 1

4(4m+n)+ 1
2(1−s)

)
ϕn/2−1

m (
√

2|x |)

= e|x |
2/2

∞∑
m=0

C2m,ρ(s)(Rn/2−1
m (h))−1 Rn/2−1

m (h)Ln/2
m (|x |

2)e|x |
2/2.

But observation (4-7) and the fact that

Qk g(x)= e|x |
2/2 Pkh(x)

transform the above equation into

φs,ρ(x)=

∞∑
k=0

Ck,ρ(s)(R
n/2−1
⌊k/2⌋

(h))−1 Qk g(x). (4-8)

Hence using the definition of Us we have

Usφ−s,ρ =

∞∑
k=0

Ck,ρ(−s)2s 0
( 1

4(2k + n)+ 1
2(1 + s)

)
0
( 1

4(2k + n)+ 1
2(1 − s)

)(Rn/2−1
⌊k/2⌋

(h))−1 Qk g. (4-9)

But in view of the transformation property (2-12), we have

Ck,ρ(−s)

=
2π

0
( 1

2(n/2+1−s)
)2 L

(
ρ, 1

4(2k +n)+ 1
2(1−s), 1

4(2k +n)+ 1
2(1+s)

)
=

2π

0
( 1

2(n/2+1−s)
)2 (2ρ)

s 0
( 1

4(2k +n)+ 1
2(1−s)

)
0
( 1

4(2k +n)+ 1
2(1+s)

)L
(
ρ, 1

4(2k +n)+ 1
2(1+s), 1

4(2k +n)+ 1
2(1−s)

)
=
0
( 1

2(n/2+1+s)
)2

0
( 1

2(n/2+1−s)
)2 (2ρ)

s 0
( 1

4(2k +n)+ 1
2(1−s)

)
0
( 1

4(2k +n)+ 1
2(1+s)

)Ck,ρ(s). (4-10)

Hence from (4-9) we obtain

Usφ−s,ρ =
0
( 1

2(n/2 + 1 + s)
)2

0
( 1

2(n/2 + 1 − s)
)2 (4ρ)

sφs,ρ . □

Now in the rest of the section we will calculate φs,ρ almost explicitly in terms of the Macdonald’s
function Kν , defined for z > 0 by the integral

Kν(z) := 2−ν−1zν
∫

∞

0
e−t−z2/(4t)t−ν−1 dt.

Proposition 4.5. Let 0< s < 1 and ρ > 0. Then we have

φs,ρ(x)= 2
√
π2−(n/2+1+s)/2

√
2π0

( 1
2(n/2 + 1 + s)

)e|x |
2/2(ρ+ |x |

2)−(n/2+1+s)/2K(n/2+1+s)/2(ρ+ |x |
2). (4-11)
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Proof. First we note the following formula proved in [Ciaurri et al. 2018, Lemma 3.8]:

1
√

2π

∫
∞

−∞

eiλt((ρ+ r2)2 + t2)(α+2+s)/2 dt = |λ|α+1
∞∑

k=0

cλk,ρ(s)ϕ
α
k (
√
(2|λ|)r), (4-12)

where the coefficients cλk,ρ(s) are given by

cλk,ρ(s)=
2π |λ|s

0
( 1

2(α+ 2 + s)
)2 L

(
ρ|λ|, 1

4(4k + 2α+ 2)+ 1
2(1 + s), 1

4(4k + 2α+ 2)+ 1
2(1 − s)

)
.

This holds for any λ ̸= 0 and α >−
1
2 . In particular, taking α =

1
2 n − 1 and λ= 1 in (4-12), we have

φs,ρ(x)= e|x |
2/2 1

√
2π

∫
∞

−∞

ei t((ρ+ |x |
2)2 + t2)−(n/2+1+s)/2 dt. (4-13)

The right-hand side of the above equation can be computed in terms of the Macdonald’s function Kν .
Now we make use of the formula (see [Prudnikov et al. 1986, p. 390])∫

∞

0

cos br
(r2 + z2)δ

dr =

(
2z
b

)1/2−δ √
π

0(δ)
K1/2−δ(bz), (4-14)

which is valid for b > 0 and ℜδ,ℜz > 0. This gives∫
∞

−∞

ei t((ρ+ |x |
2)2 + t2)−(n/2+1+s)/2 dt

= 2
√
π2−(n/2+1+s)/2

0
( 1

2(n/2 + 1 + s)
)(ρ+ |x |

2)−(n/2+1+s)/2K−(n/2+1+s)/2(ρ+ |x |
2). (4-15)

Now using the fact that Kν = K−ν , we obtain

φs,ρ(x)= 2
√
π2−(n/2+1+s)/2

√
2π0

( 1
2(n/2 + 1 + s)

)e|x |
2/2(ρ+ |x |

2)−(n/2+1+s)/2K(n/2+1+s)/2(ρ+ |x |
2), (4-16)

proving the proposition. □

We are now ready to prove Theorem 1.2. For the convenience of the reader we state the theorem here
as well.

Theorem 4.6. Let 0< s < 1. Assume that f ∈ L2(γ ) such that Us f ∈ L2(γ ). Then for every ρ > 0 we
have

⟨Us f, f ⟩L2(γ ) ≥ (2ρ)s
0
(1

2(n/2 + 1 + s)
)

0
( 1

2(n/2 + 1 − s)
) ∫

Rn

f (x)2

(ρ+ |x |2)s
ws(ρ+ |x |

2) dγ (x)

for an explicit ws(t)≥ 1. The inequality is sharp, and equality is attained for f (x)= φ−s,ρ(x).

Proof. Taking φ = φ−s,ρ in 4.5, in view of Lemma 4.4 we have

Usφ

φ
=
0
( 1

2(n/2 + 1 + s)
)2

0
( 1

2(n/2 + 1 − s)
)2 (4ρ)

s φs,ρ

φ−s,ρ
.



1234 PRITAM GANGULY, RAMESH MANNA AND SUNDARAM THANGAVELU

Now we use Proposition 4.5 to simplify the right-hand side of the above equation. Note that

φs,ρ

φ−s,ρ
=
0
( 1

2(n/2 + 1 − s)
)

0
( 1

2(n/2 + 1 + s)
)2−s(ρ+ |x |

2)−s K(n/2+1+s)/2(ρ+ |x |
2)

K(n/2+1−s)/2(ρ+ |x |2)
. (4-17)

Let

ws(t) :=
K(n/2+1+s)/2(t)
K(n/2+1−s)/2(t)

, t > 0.

Using the fact that Kν(t) is an increasing function of ν for t > 0, we note that ws(t)≥ 1, for all t > 0, and

Usφ

φ
= 2sρs 0

(1
2(n/2 + 1 − s)

)
0
(1

2(n/2 + 1 + s)
)(ρ+ |x |

2)−sws(ρ+ |x |
2).

Hence the required inequality follows from Corollary 4.3.
To see that equality holds for f (x)= φ−s,ρ(x), using Lemma 4.4 we note that

⟨Usφ−s,ρ, φ−s,ρ⟩L2(γ ) =
0
(1

2(n/2 + 1 + s)
)2

0
( 1

2(n/2 + 1 − s)
)2 (4ρ)

s
∫

Rn
φ−s,ρ(x)2

φs,ρ(x)
φ−s,ρ(x)

dγ (x).

We finish by noting that (4-17) allows us to write the above as

⟨Usφ−s,ρ, φ−s,ρ⟩L2(γ ) = (2ρ)s
∫

Rn

φ−s,ρ(x)2

(ρ+ |x |2)s
ws(ρ+ |x |

2) dγ (x). □

5. Isometry property for the solution of the extension problem

In this section we prove an isometry property of the solution operator associated to the extension problem
for the Ornstein–Uhlenbeck operator under consideration. Such a property has been studied in the context
of the extension problem for the Laplacian on Rn and for the sub-Laplacian on Hn in [Möllers et al. 2016].
See also the work of Roncal and Thangavelu [2020a], where they proved a similar result in the context of
H -type groups.

We consider the Gaussian Sobolev space Hs
γ (R

n) defined via the relation f ∈ Hs
γ (R

n) if and only if
Ls/2 f ∈ L2(γ ), where Ls/2 is the fractional power under consideration. Instead of ∥Ls/2 f ∥2, we use the
equivalent norm for this space which is given by

∥ f ∥
2
(s) := ⟨Ls f, f ⟩L2(γ ) =

∑
α∈Nn

2s 0
( 1

2(2|α| + n)+ 1
2(1 + s)

)
0
( 1

2(2|α| + n)+ 1
2(1 − s)

) |⟨ f, Hα⟩L2(γ )|
2.

Recall that the Hα are the normalised Hermite polynomials on Rn forming an orthonormal basis for L2(γ ).
As the solution of the extension equation (2-1) is a function of ρ2, it can be thought of as a function of
(x, y) ∈ Rn+2 that is radial in y. Thus it makes sense to define Ps f (x, y)= u(x,

√
2|y|), where u(x, ρ)

is the solution of the extension equation (2-1) given by (2-3). We can now consider Ps f (x, y) as an
element of L2(Rn+2, γ ). For (α, j) ∈ Nn

× N2, we let

Hα, j (x, y) := Hα(x)Hj (y), (x, y) ∈ Rn
× R2,
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where the Hj are two-dimensional Hermite polynomials. Then Ps f (x, y) can be expanded in terms
of Hα, j (x, y). We will show that Ps takes Hs

γ (R
n) into Hs+1(Rn+2). We equip Hs+1

γ (Rn+2) with a
different but equivalent norm. For u ∈ Hs+1

γ (Rn+2), we define

∥u∥
2
(1,s) =

∑
(α, j)∈Nn×N2

2s+10
( 1

2(2|α| + 2| j | + n + 1)+ 1
2(1 + (1 + s))

)
0
(1

2(2|α| + 2| j | + n + 1)+ 1
2(1 − (1 + s))

) |⟨u j , Hα⟩L2(γ )|
2,

where for any j ∈ N2 we let

u j (x) :=

∫
R2

u(x, y)Hj (y)e−|y|
2/2 dy.

Equipped with this norm we denote the space Hs+1
γ (Rn+2) by H̃s+1

γ (Rn+2).

Theorem 5.1. For 0 < s < n, the function Ps : Hs
γ (R

n) → H̃s+1
γ (Rn+2) is a constant multiple of an

isometry, i.e., ∥Ps f ∥(1,s) = Cn,s∥ f ∥(s) for all f ∈ Hs
γ (R

n).

Proof. We have

Ps f (x, y)=

∞∑
k=0

2−s

0(s)
(
√

2|y|)2s L
( 1

2 |y|
2, 1

2(2k + n)+ 1
2(1 + s), 1

2(2k + n)+ 1
2(1 − s)

)
Qk f.

Now from (2-13) we note that

Ps f (x, y)= T
−s,

√
2|y|
(Ls f )(x)

=

∞∑
k=0

4s

0(−s)
L
( 1

2 |y|
2, 1

2(2k+n)+ 1
2(1−s), 1

2(2k+n)+ 1
2(1+s)

)0( 1
2(2k+n)+ 1

2(1+s)
)

0
( 1

2(2k+n)+ 1
2(1−s)

)Qk f.

Now writing a :=
1
2(2k + n)+ 1

2(1 + s) and b :=
1
2(2k + n)+ 1

2(1 − s), we expand L
( 1

2 |y|
2, a, b

)
in

terms of Hermite polynomials. In order to do this, we use Mehler’s formula (see [Urbina-Romero 2019,
Chapter 1]) for two-dimensional normalised Hermite polynomials:

∑
j∈N2

Hj (x)Hj (y)r | j |
= (1 − r2)−1 exp

(
−

r2(|x |
2
+ |y|

2)

1 − r2 −
2r x · y
1 − r2

)
.

In view of the definition of the L function, we have

L
( 1

2 |y|
2, a, b

)
= e−|y|

2/2
∫

∞

0
e−t |y|

2
ta−1(1 + t)−b dt.

Now taking r2
= t/(1 + t) in the above Mehler’s formula, we have

e−t |y|
2
= (1 + t)−1

∑
j∈N2

Hj (0)Hj (y)
( t

1+t

)| j |/2
,
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which yields

L
( 1

2 |y|
2, a, b

)
= e−|y|

2/2
∑
j∈N2

Hj (0)Hj (y)
∫

∞

0
ta+| j |/2−1(1 + t)−b−| j |/2−1 dt

= e−|y|
2/2
∑
j∈N2

Hj (0)Hj (y)
0(a + | j |/2)0(b − a + 1)

0(b + | j |/2 + 1)
.

Here the second equality follows from the formula∫
∞

0
(1 + t)−bta−1 dt =

0(a)0(b − a)
0(b)

. (5-1)

Finally, writing Ps f (x, y)= v(x, y) and using the above observations, we have

v(x, y)

= cse−|y|
2/2

∑
(α, j)∈Nn×N2

Hj (0)Hj (y)
0(a+| j |/2)0(b−a+1)

0(b+| j |/2+1)
0
( 1

2(2|α|+n)+ 1
2(1+s)

)
0
( 1

2(2|α|+n)+ 1
2(1−s)

)⟨ f, Hα⟩L2(γ )Hα(x),

where cs := 4s/0(−s). Now note that for any j ∈ N2 we obtain

v j (x)= cs

∑
α∈Nn

Hj (0)
0(a + | j |/2)0(b − a + 1)

0(b + | j |/2 + 1)
0
( 1

2(2|α| + n)+ 1
2(1 + s)

)
0
( 1

2(2|α| + n)+ 1
2(1 − s)

)⟨ f, Hα⟩L2(γ )Hα(x),

which yields

⟨v j , Hα⟩L2(γ ) = cs Hj (0)
0(a + | j |/2)0(b − a + 1)

0(b + | j |/2 + 1)
0
( 1

2(2|α| + n)+ 1
2(1 + s)

)
0
( 1

2(2|α| + n)+ 1
2(1 − s)

)⟨ f, Hα⟩L2(γ ).

As shown in [Urbina-Romero 2019], for any k ∈ N and for one-dimensional Hermite polynomials we
have

H2k+1(0)= 0 and (H2k(0))2 =
2−2k0(2k + 1)
0(k + 1)2

.

But making use of the formula 0(2z)= (2π)−1/222z−1/20(z)0
(
z +

1
2

)
, we obtain

(H2k(0))2 =
1

√
π

0(k + 1/2)
0(k + 1)

.

Hence, for j = ( j1, j2) ∈ Nn , we have

(H2 j (0))2 =
1
π

0( j1 + 1/2)0( j2 + 1/2)
0( j1 + 1)0( j2 + 1)

.

With these things in hand we proceed to calculate ∥v∥2
(1,s), which is given by a constant multiple of

∞∑
k=0

∑
j∈N2

(
0
( 1

2(2k + 2| j | + n + 1)+ 1
2(1 + (1 + s))

)
0
( 1

2(2k + 2| j | + n + 1)+ 1
2(1 − (1 + s))

)
×

∣∣∣∣Hj (0)
0(a + | j |/2)0(b − a + 1)

0(b + | j |/2 + 1)
0
( 1

2(2k + n)+ 1
2(1 + s)

)
0
( 1

2(2k + n)+ 1
2(1 − s)

) ∣∣∣∣2∥Qk f ∥
2

)
,
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where ∥Qk f ∥
2
=
∑

|α|=k |⟨ f, Hα⟩L2(γ )|
2. Now we have already noted the fact that H2k+1(0)= 0. In what

follows both j1 and j2 should be even. Using the values of a and b we have

∑
j=( j1, j2)∈N2

0
( 1

2(2k + 2| j | + n + 1)+ 1
2(1 + (1 + s))

)
0
( 1

2(2k + 2| j | + n + 1)+ 1
2(1 − (1 + s))

)(Hj (0)
0(a + | j |/2)0(b − a + 1)

0(b + | j |/2 + 1)

)2

=
0(s + 1)2

π

∑
j∈N2

0
( 1

2(2k + 2| j | + n + 1)+ 1
2(1 − (1 + s))

)
0
( 1

2(2k + 2| j | + n + 1)+ 1
2(1 + (1 + s))

) 0( j1 + 1/2)0( j2 + 1/2)
0( j1 + 1)0( j2 + 1)

.

In order to simplify this further we make use of some properties of Hypergeometric functions. We start
by recalling that

F(δ, β, η, z)=

∞∑
k=0

(δ)k(β)k

(η)kk!
zk

=
0(η)

0(δ)0(β)

∞∑
k=0

0(δ+ k)0(β + k)
0(η+ k)0(k + 1)

zk.

Here we will be using the following property proved in [Olver and Maximon 2010]:

0(η)0(η− δ−β)

0(η− δ)0(η−β)
= F(δ, β, η, 1)=

0(η)

0(δ)0(β)

∞∑
k=0

0(δ+ k)0(β + k)
0(η+ k)0(k + 1)

.

That is,
∞∑

k=0

0(δ+ k)0(β + k)
0(η+ k)0(k + 1)

=
0(β)0(η− δ−β)0(δ)

0(η− δ)0(η−β)
, provided ℜ(η− δ−β) > 0. (5-2)

Taking δ=
1
2(2k +2 j2 +n +1− s), β =

1
2 and η=

1
2(2k +2 j2 +n +3+ s) in the above formula, we have

∞∑
j1=0

0(δ+ j1)0(β + j1)
0(η+ j1)0( j1 + 1)

=
0(s + 1/2)0(1/2)

0(s + 1)
0
( 1

2(2k + 2 j2 + n + 1 − s)
)

0
( 1

2(2k + 2 j2 + n + 2 + s)
) .

This gives

∑
j∈N2

0
( 1

2(2k + 2| j | + n + 1)+ 1
2(1 − (1 + s))

)
0
( 1

2(2k + 2| j | + n + 1)+ 1
2(1 + (1 + s))

) 0( j1 + 1/2)0( j2 + 1/2)
0( j1 + 1)0( j2 + 1)

=
0(s + 1/2)0(1/2)

0(s + 1)

∞∑
j2=0

0
( 1

2(2k + n + 1 − s)+ j2
)
0( j2 + 1/2)

0
( 1

2(2k + n + 2 + s)+ j2
)
0( j2 + 1)

=
0(s + 1/2)0(1/2)

0(s + 1)
0
( 1

2(2k + n + 1 − s)
)

0
( 1

2(2k + n + 1 + s)
) 0(s)0(1/2)
0(s + 1/2)

=
0(1/2)2

s
0
( 1

2(2k + n + 1 − s)
)

0
( 1

2(2k + n + 1 + s)
) .
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Therefore, we have

∥v∥2
(1,s) = c2

s0(s + 1)2
20(1/2)2

πs

∞∑
k=0

2s 0
( 1

2(2k + n + 1 − s)
)

0
( 1

2(2k + n + 1 + s)
)∥Qk f ∥

2

= cn,s

∑
α∈Nn

2s 0
( 1

2(2|α| + n + 1 − s)
)

0
( 1

2(2|α| + n + 1 + s)
) |⟨ f, Hα⟩L2(γ )|

2
= cn,s∥ f ∥

2
(s). □

6. Hardy–Littlewood–Sobolev inequality for Hs

In this section we are interested in the Hardy–Littlewood–Sobolev inequality for the fractional powers Hs .
For the Laplacian on Rn and the sub-Laplacian on Hn, such inequalities with sharp constants are known.
Let us recall the inequality for the sub-Laplacian L on Hn. Letting q = 2(n + 1)/(n + 1 − s), the
Hardy–Littlewood–Sobolev inequality for Ls (see [Branson et al. 2013; Frank and Lieb 2012]) reads as

0
( 1

2(1 + n + s)
)2

0
( 1

2(1 + n − s)
)2w

s/(n+1)
2n+1

(∫
Hn

|g(z, w)|q dz dw
)2/q

≤ ⟨Ls g, g⟩. (6-1)

We first find an integral representation of H−s using the integral representation of fractional powers of
the sub-Laplacian, L−s . The integral kernel of L−s is given by cn,s |(z, t)|−Q+2s as shown in [Roncal and
Thangavelu 2016]. Here |(z, t)| := (|z|4 + t2)1/4 denotes the Koranyi norm on the Heisenberg group and
Q = 2n + 2 is its homogeneous dimension. We consider the Schrödinger representation πλ of Hn whose
action on the representation space L2(Rn) is given by

πλ(z, t)φ(ξ)= eiλt eiλ(x ·ξ+x ·y/2)φ(ξ + y).

The Fourier transform of a function f ∈ L1(Hn) is the operator-valued function defined on the set of all
nonzero real numbers, R∗, given by

f̂ (λ)=

∫
Hn

f (z, t)πλ(z, t) dz dt.

The action of the Fourier transform on a function of the form L is well known and is given by L̂ f (λ)=

f̂ (λ)H(λ), where H(λ) is the scaled Hermite operator. In view of this, it can be easily checked that

dπλ(m(L))= m(H(λ)), (6-2)

where dπλ stands for the derived representation corresponding to πλ. We refer the reader to [Thangavelu
1998] for more details in this regard. Recall that the fractional power L−s is defined as follows (see
[Roncal and Thangavelu 2016]):

L−s f (z, t) := (2π)−n−1
∫

∞

−∞

( ∞∑
k=0

(2|λ|)−s 0
( 1

2(2k + n)+ 1
2(1 − s)

)
0
( 1

2(2k + n)+ 1
2(1 + s)

) f λ ∗λ ϕ
λ
k (z)

)
e−iλt

|λ|n dλ.
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So we have dπλ(L−s)= H(λ)−s . In particular, for λ= 1, using spectral decomposition, we have

H−s f =

∞∑
k=0

2−s 0
(1

2(2k + n)+ 1
2(1 − s)

)
0
(1

2(2k + n)+ 1
2(1 + s)

) Pk f.

Now it is not hard to see that

H−s( f e−| · |
2/2)(x)= e−|x |

2/2
∞∑

k=0

2−s 0
(1

2(2k + n)+ 1
2(1 − s)

)
0
(1

2(2k + n)+ 1
2(1 + s)

)Qk f (x). (6-3)

Hence from the definition of L−s we have

H−s( f e−| · |
2/2)(x)= e−|x |

2/2L−s f (x). (6-4)

In this section, we prove an analogue of (6-1) for the operator H−s . We first study L p
− Lq mapping

properties of the operator H−s .
In view of relation (6-2) we have

H−s f (ξ)= cn,s

∫
Hn

|(z, t)|−Q+2sπ1(z, t) f (ξ) dz dt.

Using the definition of π1 and writing z = x + iy, we obtain

H−s f (ξ)= cn,s

∫
Hn
((|x |

2
+ |y|

2)2 + t2)−(n+1−s)/2ei t ei(x ·ξ+x ·y/2) f (ξ + y) dx dy dt

= cn,s

∫
Hn
((|x |

2
+ |η− ξ |2)2 + t2)−(n+1−s)/2ei t ei(x ·ξ+x ·η)/2 f (η) dx dη dt

=

∫
Rn

K s
H (ξ, η) f (η) dη,

where the kernel K s
H is defined by

K s
H (ξ, η)= cn,s

∫
Rn×R

((|x |
2
+ |η− ξ |2)2 + t2)−(n+1−s)/2ei t ei(x ·ξ+x ·η)/2 dx dt. (6-5)

Taking the modulus and then a change of variables leads to

|K s
H (ξ, η)| ≤ cn,s

∫
Rn
(|x |

2
+ |η− ξ |2)−n+s dx .

Now again a change of variable x → x |ξ − η| yields

|K s
H (ξ, η)| ≤ Cn,s |ξ − η|−n+2s. (6-6)

It is a routine matter to check the following L p
− Lq-boundedness property; see e.g., [Grafakos 2009,

Theorem 6.1.3]. In fact, for 1< p < q <∞ with 1/p − 1/q = 2s/n, we get

∥H−s f ∥Lq ≤ Cn,s(p)∥ f ∥L p . (6-7)

Nevertheless, in the following theorem, we obtain a better estimate for the kernel, improving the
L p

− Lq estimates mentioned above.
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Theorem 6.1. For any 1 ≤ p ≤ q <∞ with 1/p − 1/q ≤ 1, there exists a constant Cn,s(p) such that for
all f ∈ L p(Rn), the inequality ∥H−s f ∥Lq ≤ Cn,s(p)∥ f ∥L p holds.

Proof. In view of the formula stated in (4-14), from (6-5) we have

K s
H (ξ,η):=2cn,s

√
π2−(n/2+1+s)/2

0
(1

2(n+1−s)
) ∫

Rn
(|x |

2
+|η−ξ |2)−(n+1−s)/2K−(n+1−s)/2(|x |

2
+|η−ξ |2)ei x ·(η+ξ)/2 dx .

Now we use the integral representation of Kν to simplify the above integral giving the kernel as

Kν(z)= 2−ν−1zν
∫

∞

0
e−t−z2/(4t)t−ν−1 dt. (6-8)

A simple change of variables shows that

zνKν(z)= 2ν−1
∫

∞

0
e−t−z2/(4t)tν−1 dt = zνK−ν(z).

Thus

(|x |
2
+ |η− ξ |2)−(n+1−s)/2K−(n+1−s)/2(|x |

2
+ |η− ξ |2)

= (|x |
2
+ |η− ξ |2)−(n+1−s)/2K(n+1−s)/2(|x |

2
+ |η− ξ |2),

leading to the formula

(|x |
2
+ |η− ξ |2)−(n+1−s)/2K−(n+1−s)/2(|x |

2
+ |η− ξ |2)= 2−ν−1

∫
∞

0
e−t−z2/(4t)t−ν−1 dt,

where ν =
1
2(n + 1 − s) and z = |x |

2
+ |ξ − η|2. Writing a :=

1
2(ξ + η), we estimate the integral∫

Rn
e−(|x |

2
+r2)2/(4t)ei x ·a dx,

where we have let r = |ξ − η|. First note that∫
Rn

e−(|x |
2
+r2)2/(4t)ei x ·a dx = e−r4/(4t)

∫
Rn

ei x ·ae−2r2
|x |

2/(4t)e−|x |
4/(4t) dx .

Let ϕ stand for the Fourier transform of the function e−|x |
4/4. So the above integral is bounded by

e−r4/(4t)
(

t
r2

)n/2

tn/4
∫

Rn
ϕ(t1/4(a − y))e−t |y|

2/(2r2) dy,

which is bounded by (after making a change of variables and using |ϕ(ξ)| ≤ C)

e−r4/(4t)tn/4,

and K s
H (ξ, η) is bounded by∫

∞

0
e−t e−r4/(4t)t−(n+2−2s)/4−1 dt = r−(n+2−2s)/2K(n+2−2s)/4(r2).

Finally we have
|K s

H (ξ, η)| ≤ C |ξ − η|−(n+2−2s)/2K(n+2−2s)/4(|ξ − η|2)=: G(ξ − η). (6-9)



EXTENSION PROBLEM, TRACE AND HARDY’S INEQUALITIES FOR THE ORNSTEIN–UHLENBECK OPERATOR 1241

Now we see that
|H−s f (ξ)| ≤ C | f | ∗ G(ξ), ∀ξ ∈ Rn. (6-10)

Now note that for r ≥ 1, integrating in polar coordinates, we have∫
Rn

G(x)r dx = cn

∫
∞

0
(t−(n+2−2s)/2K(n+2−2s)/4(t2))r tn−1 dt.

Using the facts that Kν(z)∼ z−1/2e−z for large z and near the origin z−νKν(z) is bounded, we conclude
that the above integral is finite. Now in view of Young’s inequality we have

∥| f | ∗ G∥q ≤ ∥ f ∥p∥G∥r , where 1
q

+ 1 =
1
p

+
1
r
. (6-11)

But this is true for any r ≥ 1. Hence we are done. □

As a corollary to Theorem 6.1 we have the following analogue of (6-1).

Corollary 6.2. For q = 2n/(n − s), 0< s < n, we have the inequality

Cn,s

(∫
Rn

| f (x)|q dx
)2/q

≤ ⟨Hs f, f ⟩, (6-12)

where Cn,s is some constant depending only on n and s.

Proof. Replacing s by 1
2 s and putting p = 2 in the above theorem, we have

∥H−s/2 f ∥
2
q ≤ cn,s∥ f ∥

2
2, (6-13)

where q = 2n/(n − s). Now in the above inequality substituting f by Hs/2 f we have(∫
Rn

| f (x)|q dx
)2/q

≤ cn,s⟨Hs/2 f, Hs/2 f ⟩.

But in view of Stirling’s formula for the gamma function we know that H 2
s/2 and Hs differ by a bounded

operator on L2(Rn). Hence the result follows. □

Corollary 6.3 (Hardy’s inequality for Hs). Let 0< s<1. Assume that f ∈ L2(Rn) such that Hs f ∈ L2(Rn).
Then we have

⟨Hs f, f ⟩L2(Rn) ≥ cn,s

∫
Rn

f (x)2

(1 + |x |2)s
dx .

Proof. Given f ∈ L2(Rn), in view of Holder’s inequality we have∫
Rn

f (x)2

(1 + |x |2)s
dx ≤ A(n, s)

(∫
Rn

| f (x)|q dx
)2/q

, (6-14)

where

q =
2n

n − s
, A(n, s) :=

(∫
Rn
(1 + |x |

2)−sq ′

dx
)1/q ′

and
1
q ′

= 1 −
2n − 2s

2n
=

s
n
.

Hence the result follows from the previous corollary. □
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As a consequence of this we have a version of Hardy’s inequality for Ls :

Corollary 6.4. Let 0< s < 1. Assume that f ∈ L2(γ ) such that Ls f ∈ L2(γ ). Then we have

⟨Ls f, f ⟩L2(γ ) ≥ cn,s

∫
Rn

f (x)2

(1 + |x |2)s
dγ (x).

Proof. Let f ∈ L2(γ ). It is easy to see that g(x) := f (x)e−|x |
2/2

∈ L2(Rn). By Corollary 6.3 we have

⟨Hs g, g⟩L2(Rn) ≥ cn,s

∫
Rn

g(x)2

(1 + |x |2)s
dx .

Also from the spectral decomposition we see that

Hs g(x)= Hs( f e−| · |
2/2)(x)= e−|x |

2/2Ls f (x),

which gives ⟨Hs g, g⟩L2(Rn) = ⟨Ls f, f ⟩L2(γ ). Hence the result follows. □

Remark. Frank and Lieb proved in [Frank et al. 2008] that the constant appearing in the left-hand side of
the Hardy–Littlewood–Sobolev inequality (6-1) for the sub-Laplacian on the Heisenberg group is sharp.
It would be interesting to see the sharp constant in the analogous inequality (6-12), which we have proved
for the Hermite operator.
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