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ON THE WELL-POSEDNESS PROBLEM FOR THE
DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION

ROWAN KILLIP, MARIA NTEKOUME AND MONICA VIS, AN

We consider the derivative nonlinear Schrödinger equation in one space dimension, posed both on the line
and on the circle. This model is known to be completely integrable and L2-critical with respect to scaling.
We first discuss whether ensembles of orbits with L2-equicontinuous initial data remain equicontinuous
under evolution. We prove that this is true under the restriction M(q) =

∫
|q|

2 < 4π . We conjecture that
this restriction is unnecessary. Further, we prove that the problem is globally well posed for initial data
in H 1/6 under the same restriction on M . Moreover, we show that this restriction would be removed by a
successful resolution of our equicontinuity conjecture.

1. Introduction

The derivative nonlinear Schrödinger equation

iqt + q ′′
+ i(|q|

2q)′ = 0 (DNLS)

describes the evolution of a complex-valued field q defined either on the line R or the circle T = R/Z. This
equation was introduced as an effective model in magnetohydrodynamics; see [Ichikawa and Watanabe
1977; Mio et al. 1976; Mjølhus 1976]. It was soon shown to be completely integrable [Kaup and Newell
1978] and has received enduring attention since that time.

As we shall document more fully below, well-posedness questions for (DNLS), particularly global
well-posedness, have been particularly stubborn. Local well-posedness is already very challenging: the
nonlinearity contains a full derivative, like KdV or mKdV, while the linear part gives only Schrödinger-like
smoothing.

The task of converting local into global well-posedness is typically a matter of exploiting conservation
laws. As a completely integrable system, (DNLS) has an infinite family of conserved quantities. The first
three are as follows:

M(q) =

∫
|q(x)|2 dx, (1-1)

H(q) = −
1
2

∫
i(qq̄ ′

− q̄q ′) + |q|
4 dx, (1-2)

H2(q) =

∫
|q ′

|
2
+

3
4

i |q|
2(qq̄ ′

− q̄q ′) +
1
2
|q|

6 dx . (1-3)
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The striking fact about (DNLS) is that, with the exception of M(q), none of the Hamiltonians in the
hierarchy are coercive. Indeed, algebraic solitons have M = 4π but all other Hamiltonians are identically
zero. Applying the scaling symmetry

q(t, x) 7→
√

λ q(λ2t, λx) (1-4)

to an algebraic soliton yields a one-parameter family of solutions with identical values for all the conserved
quantities. However, this family is unbounded in H s for every s > 0.

The quantity H(q) serves as the Hamiltonian for (DNLS) with respect to the Poisson structure

{F, G} =

∫
δF
δq

(
δG
δq̄

)′

+
δF
δq̄

(
δG
δq

)′

dx, (1-5)

while M(q) generates translations, albeit at speed 2. Although the momentum is given by 1
2 M(q), our

definition of M leads to a more seamless connection to the existing literature.
Given that M(q) is invariant under both (DNLS) and the scaling (1-4), it is natural to ask whether or

not (DNLS) is well posed in L2. This is not known. Indeed, the existing local well-posedness theory
requires H s initial data with s ≥

1
2 . (We will make some further progress on this question in this paper.)

It is important to recognize that because M(q) is scaling critical, the mere fact that it forms a coercive
conservation law would not suffice to render local well-posedness in L2 automatically global. One must
fear the solution concentrates at one (or more) points in space, a scenario known as type-II blowup. We
do not believe this happens.

Conjecture 1.1. For any Q ⊆ S that is L2-bounded and equicontinuous, the totality of states reached by
(DNLS) orbits originating from Q, that is

Q∗ = {et J∇ H q : q ∈ Q and t ∈ R}, (1-6)

is also L2-equicontinuous.

Here S denotes Schwartz class in the line case and C∞ on the torus. In the line case, recent works
(discussed below) guarantee that all such initial data lead to global Schwartz solutions. The analogous
claim is unknown on the torus, though we believe it to be true. Nevertheless, one can still ask if
equicontinuity holds for as long as the orbits do exist. By the arguments presented in this paper, solutions
cannot break down without losing equicontinuity. Therefore, a positive resolution of the conjecture for
such partial solutions would already guarantee that they are global and so settle the conjecture in its
entirety; see Corollary 4.2.

We phrased the conjecture in terms of S initial data because it is a class that is dense in all relevant
spaces. It also serves to emphasize that the central question to be addressed is not inherently tied to low
regularity.

Equicontinuity in L2 is most easily understood via Fourier transformation: it means that |q̂|
2 forms a

tight family of measures. Notice that, in view of the uncertainty principle, concentration on the physical
side must be accompanied by a loss of tightness on the Fourier side.
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In setting this conjecture, we have in mind four principal reasons: (1) It is challenging, yet recent
developments give us hope for a successful resolution. (2) It encapsulates a single essential obstacle,
namely, understanding conservation laws for (DNLS). (3) A proof of this conjecture would have significant
consequences for the well-posedness problem. Indeed, such equicontinuity results form an essential part of
a recent program developed in [Bringmann et al. 2021; Harrop-Griffiths et al. 2020; Killip and Vis,an 2019]
that has proved successful in obtaining optimal well-posedness results for completely integrable PDE.
(4) We are able to verify that it is true in the regime M(q) < 4π ; see Theorem 1.3 below.

Given the nature of completely integrable systems, it is natural to imagine that an equicontinuity
conjecture of the same form holds for all other PDE in the (DNLS) hierarchy. Indeed, we truly believe that
this is so and will shortly formulate just such a conjecture. However, the particular claim that we believe
will be of greatest use in understanding the hierarchy is best expressed through the perturbation determinant.
Let us turn our attention now to presenting this object, beginning with the requisite background.

The Lax pair introduced by Kaup and Newell [1978] for (DNLS) employs

LKN =

[
−iλ2

−∂ λq
−λq̄ iλ2

−∂

]
.

For what follows, it will be convenient to make some cosmetic changes to this choice. Specifically, we
set λ = eiπ/4√κ with κ ≥ 1 and replace eiπ/4q 7→ q. This yields

L(κ) :=

[
1 0
0 −1

] [
κ−∂

√
κ q

i
√

κ q̄ κ+∂

]
and, for q ≡ 0, L0(κ) :=

[
κ−∂ 0

0 −(κ+∂)

]
.

These modifications maintain the crucial property that for smooth functions,

q(t) solves (DNLS) ⇐⇒
d
dt

L(t; κ) = [P(t; κ), L(t; κ)],

where

P(κ) =

[
2iκ2

−κ|q|
2 2iκ3/2q−κ1/2

|q|
2q+iκ1/2q ′

2κ3/2q̄+iκ1/2
|q|

2q̄−κ1/2q̄ ′
−2iκ2

+κ|q|
2

]
.

This guarantees that the Lax operators L at different times are conjugate, at least formally. This in turn
suggests that the perturbation determinant det[L−1

0 (κ)L(κ)] should be well defined and conserved by the
flow.

To make this precise, it is convenient for us to mimic the analysis of the AKNS-ZS system employed
in [Killip et al. 2018]: Let us first define (κ ± ∂)−1/2 as the Fourier multipliers (κ ± iξ)−1/2, where the
complex square root is determined by

√
κ > 0 and continuity. We then define

3(q) := (κ − ∂)−1/2q(κ + ∂)−1/2 and 0(q) := (κ + ∂)−1/2q̄(κ − ∂)−1/2, (1-7)

which are Hilbert–Schmidt operators for q ∈ L2; see Lemma 2.1. Thus

a(κ; q) = det[1 − iκ30] (1-8)

is well defined for q ∈ L2 (and extends holomorphically to all Re κ > 0); moreover, for q ∈ S it agrees
with the formal notion of the perturbation determinant.
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While a(κ) does encode all the Hamiltonians of the (DNLS) hierarchy, this is more easily seen through
its logarithm,

α(κ; q) := − log[a(κ; q)] =

∑
ℓ≥1

1
ℓ

tr{(iκ30)ℓ}, (1-9)

which serves as a generating function for these conservation laws. Due to the possibility of a(κ) vanishing,
α(κ) may not be defined for all κ ≥ 1. Nevertheless, the series in (1-9) does converge for fixed q ∈ L2

and κ sufficiently large; see Proposition 2.6.
We have not yet addressed the conservation of a(κ; q) under the (DNLS) flow. In the line case,

this could be effected by demonstrating that a(κ; q) coincides with the reciprocal of the transmission
coefficient and then appealing to the inverse scattering theory. However, two direct proofs have appeared
recently in the literature: Klaus and Schippa [2022] argued by differentiating the series (following a model
introduced in [Killip et al. 2018]), while Tang and Xu [2021] developed a microscopic representation of
this conservation law (in the style of [Harrop-Griffiths et al. 2020]). While these papers impose a small
M(q) requirement, this is solely to guarantee the convergence of the series (1-9). This issue is remedied
by our Proposition 2.6.

To state the grand version of Conjecture 1.1, covering a wide range of commuting flows, let us first
introduce a replacement for the set Q∗ defined in (1-6). Given q ∈ S, we first define

Cq = {q̃ ∈ S : a(κ; q̃) = a(κ; q) for all κ > 0} (1-10)

and write C0
q for the connected component (in the L2 topology) of Cq containing q . Finally, given a set

Q ⊆ S, we define

Q∗∗ =

⋃
q∈Q

C0
q . (1-11)

Conjecture 1.2. If Q ⊆ S is L2-bounded and equicontinuous, then so too is the set Q∗∗ defined in (1-11).

We have several motivations in choosing connected components when defining Q∗∗. This formulation
of the conjecture retains a vestige of the behavior of orbits, while emphasizing that this is a question
about conservation laws and is ultimately independent of the well-posedness of any flow. Note also that
while the zero solution and the family of algebraic solitons all share a(κ) ≡ 1, they are not in the same
connected component under the (DNLS) hierarchy.

Our most compelling evidence in favor of these two conjectures is that both hold in the regime where
M(q) < 4π .

Theorem 1.3. Let Q ⊆ S be an L2-equicontinuous set satisfying

sup{∥q∥
2
L2 : q ∈ Q} < 4π. (1-12)

Then the set Q∗∗ defined in (1-11) is L2-bounded and equicontinuous.

The significance of 4π is this: It is the value of M at which the polynomial conservation laws lose
their efficacy. It is also the value of M for the algebraic soliton, which is maximal among all solitary
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wave solutions. Unlike mass-critical NLS, (DNLS) admits solitons of arbitrarily small L2-norm, and
consequently, there is no notion of a scattering threshold.

The proof of Theorem 1.3, which will be given in Section 3, is both short and simple. Indeed, the
hypothesis (1-12) even allows us to forgo the restriction to connected components.

It has been observed before that tr(iκ30) may be used to understand how the L2-norm of q is
distributed across frequencies (compare Lemma 2.2). The key observation that allows us to reach all the
way to 4π (as opposed to mere smallness, compare [Klaus and Schippa 2022; Tang and Xu 2021]) is
the manner in which we handle the remainder, specifically, the observation that the remainder may be
summed in κ for any q ∈ L2; see (3-8).

While the 4π restriction is crucial to our proof of Theorem 1.3, it does not play any role in our
subsequent analysis of the consequences of such equicontinuity. For this reason, we introduce a general
threshold M∗.

Definition 1.4. Let M∗ denote the maximal constant such that for any L2-equicontinuous set Q ⊆ S
satisfying

sup{∥q∥
2
L2 : q ∈ Q} < M∗, (1-13)

the set defined in (1-11) is L2-equicontinuous.

Evidently, Theorem 1.3 shows that M∗ ≥ 4π and we conjecture that M∗ = ∞. Our primary contribution
to the well-posedness problem is low-regularity well-posedness below the M∗ threshold.

Theorem 1.5. Fix 1
6 ≤ s < 1

2 . The (DNLS) evolution is globally well posed, both on the line and on the
circle, in the space

Bs
M∗

= {q ∈ H s
: ∥q∥

2
L2 < M∗} (1-14)

endowed with the H s topology.

A natural prerequisite for proving this theorem is a priori H s bounds. In Section 4, we show how such
bounds follow from L2-equicontinuity; see Theorem 4.3.

To prove Theorem 1.5 we employ the method of commuting flows introduced in [Killip and Vis,an 2019].
In that paper, the method was used to prove well-posedness of the Korteweg–de Vries equation. It has
also been adapted and extended to treat the well-posedness problem for other completely integrable PDE
[Bringmann et al. 2021; Harrop-Griffiths et al. 2020], to prove symplectic non-squeezing [Ntekoume
2022], and to construct dynamics for KdV in thermal equilibrium [Killip et al. 2020].

In contrast to those papers, we do not employ a change of unknown; this simplifies some of the analysis.
On the other hand, new difficulties attend the construction of regularized flows: Because they are rooted in
α(κ; q), the regularized Hamiltonians Hκ(q) cannot be defined throughout B0

M∗
for any single value of κ .

Instead, we need to use an exhaustion by equicontinuous subsets. Ultimately, these problems originate in
the L2-criticality of the problem. Nevertheless, we will be able to prove that the regularized flows admit
a satisfactory notion of well-posedness all the way down to L2! The s ≥

1
6 restriction arises later when

we show that the regularized flows converge to the full (DNLS) evolution.
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At this moment we do not know whether s =
1
6 is sharp in either geometry or indeed, whether the

threshold regularity will differ between the line and the circle. Moreover, we do not know of any results
(in either geometry) that would preclude well-posedness all the way down to the scaling critical space L2.
On the other hand, the self-similar solutions constructed in [Fujiwara et al. 2020] (see also [Kitaev 1985])
show that smooth solutions can break-down in a dramatic way if one permits mere weak-L2 decay at
spatial infinity.

The restriction s < 1
2 in Theorem 1.5 does not represent a meaningful breakdown of our methods.

However, treating larger values would require additional arguments. This seems unwarranted given that a
great deal is already known about H s-solutions for s ≥

1
2 , as we shall now discuss.

Local well-posedness in H s for s > 3
2 was proved by Tsutsumi and Fukuda [1980; 1981]. This was

extended to s ≥
1
2 by Takaoka [1999] for (DNLS) posed on the line and by Herr [2006] for the periodic

problem. The endpoint s =
1
2 is significant: for lesser s, the data-to-solution map can no longer be

uniformly continuous on bounded sets; see [Biagioni and Linares 2001; Takaoka 1999].
Global well-posedness in H 1(R) for initial data satisfying M(q) < 2π was obtained by Hayashi and

Ozawa [1992]. This result was extended first to s > 2
3 and then to s > 1

2 by Colliander, Keel, Staffilani,
Takaoka, and Tao [Colliander et al. 2001; 2002], under the same L2 restriction. See [Miao et al. 2011] for
a refinement of these arguments to handle the endpoint case s =

1
2 , as well as [Takaoka 2001] for earlier

efforts in this direction.
Hayashi and Ozawa [1992] also proved that solutions with initial data in S remain in S for as long as

they remain bounded in H 1.
Wu [2015] proved global well-posedness in H 1(R) for initial data satisfying M(q) < 4π ; see also his

earlier work [Wu 2013] which first overcame the 2π barrier. An alternate variational proof was given in
[Fukaya et al. 2017], which also constructed global solutions for highly modulated initial data of arbitrary
L2 size. The result in [Wu 2015] was extended to the periodic setting in [Mosincat and Oh 2015]. Finally,
the argument in [Colliander et al. 2002] was further advanced in [Guo and Wu 2017; Mosincat 2017] to
treat the endpoint case s =

1
2 and M(q) < 4π ; see also [Win 2010] for earlier work in the periodic setting.

We note that the results of this paper provide an alternate proof of the main results in [Mosincat and
Oh 2015; Wu 2015]; see Corollary 4.2. In particular, Proposition 4.1 shows that H 1 bounds follow from
Theorem 1.3.

The well-posedness of (DNLS) has also been investigated in Fourier–Lebesgue spaces; [Deng et al.
2021; Grünrock 2005; Grünrock and Herr 2008]. This allowed the authors to obtain a uniformly continuous
data-to-solution map in spaces that are closer to the critical scaling; recall that this property breaks down
in H s spaces when s < 1

2 . An almost sure global well-posedness result for randomized initial data was
proved in [Nahmod et al. 2012].

As a completely integrable PDE, (DNLS) is also amenable to inverse scattering techniques. Building
on the pioneering work of Liu [2017], global well-posedness and asymptotic analysis of soliton-free
solutions in H 2,2(R) = { f ∈ H 2(R) : x2 f ∈ L2(R)} were addressed in [Liu et al. 2016; 2018].

Global well-posedness for all H 2,2(R) initial data was proved by Jenkins, Liu, Perry, and Sulem in
[Jenkins et al. 2020b]. This work builds on the authors’ prior successes in [Jenkins et al. 2018b]. These
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authors also proved a soliton resolution result [Jenkins et al. 2018a] for generic data in H 2,2(R). See also
their excellent review article [Jenkins et al. 2020a].

The inverse scattering approach was also applied by Pelinovsky and Shimabukuro [2018] to prove
global well-posedness in H 1,1(R)∩ H 2(R) for soliton-free solutions and then in joint work with Saalmann
[Pelinovsky et al. 2017] for data giving rise to finitely many solitons; see also [Saalmann 2017].

Recently there has been a surge of activity on the well-posedness problem for (DNLS). We first note
the paper [Klaus and Schippa 2022], which showed a priori H s bounds, 0 < s < 1

2 , for solutions with
M(q) small. The smallness assumption allows them to guarantee that the series (1-9) converges rapidly
for κ large, and so the series can be conflated with its first term. The paper [Tang and Xu 2021] presents
a microscopic representation of the conservation of α(κ; q). In [Bahouri and Perelman 2022], the authors
achieve the major breakthrough of proving that for every initial datum in H 1/2(R), the orbit remains
bounded in the same space (irrespective of the size of M(q)). For the periodic (DNLS), the paper [Isom
et al. 2020] shows that for s ≥ 1 and M(q) small, the H s(T)-norm of solutions grows at most polynomially
in time.

While these exciting results appeared too recently to affect what we do in this paper, their novelty and
insightfulness give us every hope that the conjectures presented herein may soon be resolved.

2. Preliminaries

Our conventions for the Fourier transform are

f̂ (ξ) =
1

√
2π

∫
R

e−iξ x f (x) dx, so f (x) =
1

√
2π

∫
R

eiξ x f̂ (ξ) dξ

for functions on the line, and

f̂ (ξ) =

∫ 1

0
e−iξ x f (x) dx, so f (x) =

∑
ξ∈2πZ

f̂ (ξ)eiξ x

for functions on the torus T. These definitions of the Fourier transform are unitary on L2 and yield the
Plancherel identities

∥ f ∥L2(R) = ∥ f̂ ∥L2(R) and ∥ f ∥L2(T) =

∑
ξ∈2πZ

| f̂ (ξ)|2,

as well as the following convolution identity on R:

f̂ g =
1

√
2π

f̂ ∗ ĝ.

We use the standard Littlewood–Paley decomposition of a function,

q =

∑
N∈2N

qN ,

based on a smooth partition of unity on the Fourier side. Here q1 denotes the projection onto frequencies
|ξ | ≤ 1; for N ≥ 2, frequencies |ξ | ∼ N are contained in qN .
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The fact that the operators 3 and 0 defined in (1-7) are Hilbert–Schmidt was noticed already in [Killip
et al. 2018, Lemma 4.1]:

Lemma 2.1. For q ∈ L2 and κ > 0, we have

∥3∥
2
I2(R) = ∥0∥

2
I2(R) ≈

∫
R

log
(

4 +
ξ 2

κ2

)
|q̂(ξ)|2√
4κ2 + ξ 2

dξ ≲ κ−1
∥q∥

2
L2, (2-1)

∥3∥
2
I2(T) = ∥0∥

2
I2(T) ≈

∑
ξ∈2πZ

log
(

4 +
ξ 2

κ2

)
|q̂(ξ)|2√
4κ2 + ξ 2

≲ κ−1
∥q∥

2
L2 . (2-2)

Proof. The estimate (2-1) follows from the computation

∥3∥
2
I2(R) =

1
2π

∫
R

|q̂(ξ)|2
∫

R

1√
κ2 + η2

√
κ2 + (η + ξ)2

dη dξ ≈

∫
R

log
(

4 +
ξ 2

κ2

)
|q̂(ξ)|2√
4κ2 + ξ 2

dξ.

To compute the above integral in η, one treats separately the regions |η| ≤ 2|ξ | and |η| > 2|ξ |; the
logarithm term arises only when considering the first region.

On the torus, similar arguments yield

∥3∥
2
I2(T) =

∑
ξ∈2πZ

|q̂(ξ)|2
∑

η∈2πZ

1√
κ2 + η2

√
κ2 + (η + ξ)2

≈

∑
ξ∈2πZ

log
(

4 +
ξ 2

κ2

)
|q̂(ξ)|2√
4κ2 + ξ 2

,

which settles (2-2). □

These Hilbert–Schmidt bounds ensure that iκ30 is trace class and thus that the determinant in (1-8) is
well defined. The trace of this operator will also be important and is easily evaluated.

Lemma 2.2. Let q ∈ L2 and κ > 0. Then

tr(iκ30) =

∫
iκ|q̂(ξ)|2

2κ − iξ
dξ on R, (2-3)

tr(iκ30) =
1 + e−κ

1 − e−κ

∑
ξ∈2πZ

iκ|q̂(ξ)|2

2κ − iξ
on T. (2-4)

Proof. To prove (2-3), we simply compute the trace on the Fourier side:

tr(iκ30) =
iκ
2π

∫∫
|q̂(ξ)|2

(η − iκ)(η + ξ + iκ)
dη dξ =

∫
iκ|q̂(ξ)|2

2κ − iξ
dξ.

In the circle setting, we use the partial fraction decomposition of the cotangent:∑
η∈2πZ

(
1

κ + iη
+

1
κ − iη

)
= coth

(
κ

2

)
=

1 + e−κ

1 − e−κ
. (2-5)

In this way, we find

tr(iκ30) = iκ
∑

ξ∈2πZ

|q̂(ξ)|2
1

ξ + 2iκ

∑
η∈2πZ

(
1

η − iκ
−

1
η + ξ + iκ

)
=

∑
ξ∈2πZ

iκ|q̂(ξ)|2

2κ − iξ
1 + e−κ

1 − e−κ
.

Notice that the sum over η simplifies to (2-5) because ξ ∈ 2πZ. □
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In Section 5, it will be convenient to express the next term in the series (1-9) as a paraproduct. This is
the role of the next lemma.

Lemma 2.3. Let q ∈ L2 and κ > 0. Then

tr([30]
2) =

∫
R

(
1

2κ + ∂
q̄
)2

(4κ − ∂)

(
1

2κ − ∂
q
)2

dx on R, (2-6)

tr([30]
2) =

1 + e−κ

1 − e−κ

∫
T

(
1

2κ + ∂
q̄
)2

(4κ − ∂)

(
1

2κ − ∂
q
)2

dx on T. (2-7)

Proof. The method is exactly that of the previous lemma, only the details change. In the line case, we
have a more complicated (but still elementary) contour integral. In the circle case, one must verify that∑
ξ∈2πZ

1
(κ + iξ)(κ − i[ξ + η1])(κ + i[ξ + η1 + η2])(κ − i[ξ + η1 + η2 + η3])

=
1 + e−κ

1 − e−κ
·

4κ − i(η1 + η3)

(2κ − iη1)(2κ + iη2)(2κ − iη3)(2κ + iη4)
.

This follows from (2-5) via a careful partial fraction decomposition. □

Our next lemma records operator estimates for frequency localized potentials.

Lemma 2.4 (operator estimates). Fix q ∈ L2, N ∈ 2N, and κ ≥ 1, and write 3N =3(qN ) and 0N =0(qN ).
Then

∥3N ∥I2 = ∥0N ∥I2 ≈

√
1

κ + N
log

(
4 +

N 2

κ2

)
∥qN ∥L2, (2-8)

∥3N ∥op = ∥0N ∥op ≲ min
{√

N
κ

,

√
1

κ + N
log

(
4 +

N 2

κ2

)}
∥qN ∥L2, (2-9)∑

N≤N0

∥3N ∥op ≲ κ−1 min{

√
N0,

√
κ}∥q∥L2 . (2-10)

Proof. The claim (2-8) follows immediately from Lemma 2.1.
Using the Bernstein inequality, we estimate

∥3N ∥op ≤ ∥(κ − ∂)−1/2
∥op∥qN ∥op∥(κ + ∂)−1/2

∥op ≤
1
κ

∥qN ∥L∞ ≲

√
N

κ
∥qN ∥L2 .

Combining this with (2-8) yields (2-9).
The case N0 ≤ κ of (2-10) is clear. If N0 > κ , an application of (2-9) yields

∑
N≤N0

∥3N ∥op ≲
∑
N≤κ

√
N

κ
∥q∥L2 +

∑
κ<N≤N0

√
1
N

log
(

4 +
N 2

κ2

)
∥q∥L2 ≲

√
κ

κ
∥q∥L2,

as desired. □
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Lemma 2.5. For all κ ≥ 1, we have

∥(κ + ∂)−1 f (κ − ∂)−1
∥I2 ≲ κ−1/2

∥ f ∥H−1, (2-11)

∥q(κ + ∂)−3/4
∥I2 ≲ κ−1/4

∥q∥L2, (2-12)

∥(κ − ∂)−1/4q(κ + ∂)−1/4
∥op ≲ ∥q∥L2 . (2-13)

Proof. We first turn to (2-11). We will only consider here the line setting; in the periodic case, one can
apply a similar argument to the one in the proof of Lemma 2.1. A straightforward computation yields

∥(κ + ∂)−1 f (κ − ∂)−1
∥

2
I2

=
1

2π

∫∫
| f̂ (ξ)|2

[κ2 + (ξ + η)2](κ2 + η2)
dη dξ.

Considering separately the regions |η| ≤ 2|ξ | and |η| > 2|ξ | when integrating in η, we find

∥(κ + ∂)−1 f (κ − ∂)−1
∥

2
I2
≲

∫
| f̂ (ξ)|2

κ(κ2 + ξ 2)
dξ ≲ κ−1

∥ f ∥
2
H−1 .

By direct computation (compare [Simon 2005, Theorem 4.1]), we have

∥q(κ + ∂)−3/4
∥I2 ≲ ∥q∥L2∥(κ + iξ)−3/4

∥L2
ξ
≲ κ−1/4

∥q∥L2,

which settles (2-12).
Similarly, by Cwikel’s theorem (see [Cwikel 1977] or [Simon 2005, Theorem 4.2]), we find that

∥(κ − ∂)−1/4q(κ + ∂)−1/4
∥op ≤ ∥(κ − ∂)−1/4

√
|q|∥op

∥∥∥∥ q
√

|q|
(κ + ∂)−1/4

∥∥∥∥
op

≲ ∥(κ ± iξ)−1/4
∥

2
L4

weak
∥
√

|q|∥
2
L4 ≲ ∥q∥L2 . □

Proposition 2.6. Let Q be a bounded and equicontinuous subset of L2. Then

lim
κ→∞

sup
q∈Q

√
κ ∥3(q)∥op = 0. (2-14)

Moreover, there exists κ0 ≥ 1 such that the series (1-9) converges uniformly for κ ≥ κ0 and q ∈ Q.

Proof. Fix ε > 0 and let η > 0 be a small parameter to be chosen later. Using (2-10) and Lemma 2.1, we
get

√
κ ∥3(q)∥op ≲

√
κ ∥3(q>ηκ)∥op +

√
κ

∑
N≤ηκ

∥3N (q)∥op ≲ ∥q>ηκ∥L2 +
√

η∥q∥L2 .

Choosing η small enough depending on the L2 bound of Q, and then κ sufficiently large depending on η

and the equicontinuity property of Q, we may ensure that
√

κ ∥3(q)∥op < ε for all q ∈ Q,

which yields (2-14).
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To continue, we choose κ0 sufficiently large such that for any κ ≥ κ0 we have
√

κ ∥3(q)∥op ≤
1
2

uniformly for q ∈ Q. Lemma 2.1 then yields

∥(iκ30)ℓ+1
∥I1 ≤ κℓ+1

∥3∥
2
I2

∥3∥
2ℓ
op ≲ 2−ℓ

∥q∥
2
L2, (2-15)

uniformly for κ ≥ κ0 and q ∈ Q, which ensures convergence of the series (1-9). □

As discussed in the introduction, this convergence result allows the arguments of [Klaus and Schippa
2022; Tang and Xu 2021] to be extended beyond the regime of small L2-norm and so show that α(κ; q)

is conserved under the (DNLS) flow, for κ sufficiently large. This conservation is inherited by a(κ; q) for
all Re κ > 0 because this is a holomorphic function in this region.

3. Equicontinuity in L2

The goal of this section is to prove Theorem 1.3. We begin with a convenient notion of the momentum at
high frequencies in each geometry:

β
[2]

R (κ; q) :=

∫
R

ξ 2
|q̂(ξ)|2

4κ2 + ξ 2 dξ and β
[2]

T (κ; q) :=

∑
ξ∈2πZ

ξ 2
|q̂(ξ)|2

4κ2 + ξ 2 . (3-1)

The curious notation is explained by the fact that these expressions coincide with the quadratic (in q)
parts of the quantities in (4-3). For our immediate purposes, however, the following relation with the
formulas of Lemma 2.2 is more important:

Im tr(iκ30) =
1
2
[M(q) − β

[2]

R (κ; q)] on R,

Im tr(iκ30) =
1
2

1+e−κ

1−e−κ
[M(q) − β

[2]

T (κ; q)] on T.

(3-2)

Given an infinite subset K ⊆ 2N, we then define a norm via

∥q∥
2
K := ∥q∥

2
L2 +

∑
κ∈K

β[2](κ; q). (3-3)

This in turn leads to a very convenient formulation of equicontinuity.

Lemma 3.1. A set Q ⊆ L2 is bounded and equicontinuous if and only if there exists an infinite set K ⊆ 2N

such that supq∈Q ∥q∥K < ∞.

Proof. This is immediately evident from the observation that

∥q∥
2
K ≈ ∥q∥

2
L2 +

∑
κ∈K

∥q>κ∥
2
L2 ≈ ∥q∥

2
L2 +

∑
N∈2N

#{κ ∈ K : κ < N }∥qN ∥
2
L2 . □

Before beginning the proof of Theorem 1.3, we need two further preliminaries. The first will allow us
to pass from the determinant to the exponentiated trace, and the second to take logarithms.

Lemma 3.2. Let A ∈ I1. Then

|det(1 + A) − exp{tr(A)}| ≤
1
2∥A∥

2
I2

exp{∥A∥I1}. (3-4)
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Proof. Let λi enumerate the nonzero eigenvalues of A repeated according to algebraic multiplicity. By
relating eigenvalues and singular values, Weyl proved that∑

|λi | ≤ ∥A∥I1 and
∑

|λi |
2
≤ ∥A∥

2
I2

.

Now let us compare

det(1 + A) = 1 +

∞∑
n=1

1
n!

∑
i1,...,in
distinct

λi1λi2 · · · λin , and exp{tr(A)} = 1 +

∞∑
n=1

1
n!

∑
i1,...,in

λi1λi2 · · · λin .

Evidently, the difference contains only sums over n-tuples (i1, . . . , in) that contain at least one pair of
identical indices. Thus,

LHS of (3-4) ≤

∞∑
n=2

1
n!

(
n
2

)[∑
j

|λ j |
2
][∑

i

|λi |

]n−2

≤
1
2
∥A∥

2
I2

∞∑
n=2

1
(n − 2)!

∥A∥
n−2
I1

,

and so (3-4) follows. □

Lemma 3.3. Given C > 0 and 0 < ε < π , let

R = {z : |Re z| ≤ C and 0 < Im z < 2π − ε}. (3-5)

Then

|Im(z − w)| ≤
πeC

sin(ε/2)
|ew

− ez
| uniformly for z, w ∈ R. (3-6)

Proof. This reduces to elementary trigonometry once one realizes that the worst-case scenario is Re z =

Re w = −C . □

We are now ready for the climax of the section.

Proof of Theorem 1.3. Let us begin right away with the key computation. Given any q ∈ L2, we may
apply (2-8), (2-10), and (in the final step) Cauchy–Schwarz to deduce that∑

κ∈2N

∥iκ3(q)0(q)∥2
I2
≲

∑
κ∈2N

κ2
∑

N1∼N2≥N3,N4

∥3N1(q)∥I2∥3N2(q)∥I2∥3N3(q)∥op∥3N4(q)∥op

≲ M(q)
∑
κ∈2N

∑
N1∼N2

1
N2 + κ

log
(

4 +
N 2

2

κ2

)
∥qN1∥L2∥qN2∥L2 min{N2, κ}

≲ M(q)
∑

N1∼N2

∥qN1∥L2∥qN2∥L2

( ∑
κ≤N2

κ

N2
log

(
4 +

N 2
2

κ2

)
+

∑
κ>N2

N2

κ

)
≲ M(q)2. (3-7)

Combining this with Lemmas 2.1 and 3.2, we find∑
κ∈2N

∣∣a(κ; q) − exp{− tr[iκ3(q)0(q)]}
∣∣ ≤ C M(q)2eC M(q) (3-8)

for some absolute C.
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As we did not explicitly require that M(q̃) = M(q) for q̃ ∈ C0
q , let us pause to see that this follows

from the equality a(κ; q̃) ≡ a(κ; q). From (3-4) and Lemma 2.2 we see that for κ → ∞,

0 = |a(κ; q̃) − a(κ; q)| =
∣∣exp{− tr[iκ3(q̃)0(q̃)] − exp{− tr[iκ3(q)0(q)]}

∣∣ + o(1)

=

∣∣∣exp
{
−

i
2

M(q̃)
}

− exp
{
−

i
2

M(q)
}∣∣∣ + o(1).

Thus M(q̃) is preserved modulo 4πZ. As q̃ belongs to the same connected component as q, we must
have that M(q̃) = M(q). For later use, we note the consequence

sup
q∈Q∗∗

M(q) = sup
q∈Q

M(q). (3-9)

While this argument did not require the hypothesis (1-12), we will need it to unwrap this phase
ambiguity when we address equicontinuity. This is our next topic.

Given an equicontinuous set Q satisfying (1-12), choose ε > 0 and an infinite subset K ⊆ 2N such that

sup
q∈Q,κ∈K

1+e−κ

1−e−κ
M(q) ≤ 4π − 2ε and sup

q∈Q
∥q∥K < ∞.

Proceeding very much as we did above, we see that∑
κ∈K

∣∣exp{− tr[iκ3(q̃)0(q̃)] − exp{− tr[iκ3(q)0(q)]}
∣∣ ≤ 2C M(q)2eC M(q)

for any q̃ ∈ C0
q . Combining this with (3-2) and Lemma 3.3, we deduce that∑

κ∈K

|β[2](κ; q̃) − β[2](κ; q)| ≲ε 1.

This in turn guarantees that

sup{∥q̃∥
2
K : q̃ ∈ Q∗∗} ≤ sup{∥q∥

2
K : q ∈ Q} + Oε(1) < ∞,

from which equicontinuity follows via Lemma 3.1. □

4. Conservation laws and equicontinuity

The primary goal of this section is to prove H s bounds for (DNLS) solutions, for 0 < s < 1
2 , as a

prerequisite for proving Theorem 1.5. In addition, we will prove equicontinuity in these spaces, which is
also needed to prove that theorem.

Before turning to that subject, we pause to show how L2-equicontinuity can be used to restore coercivity
to the traditional polynomial conservation laws. As a representative example, we show how H2(q) can be
used to control the H 1-norm.

Proposition 4.1. Let Q ⊆ H 1 be L2-bounded and equicontinuous. Then

∥q∥
2
H1 ≲ H2(q) + M(q)3, (4-1)

uniformly for all q ∈ Q.
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Proof. Splitting into low and high frequency parts and estimating using the Bernstein and Gagliardo–
Nirenberg inequalities, respectively, we obtain

∥q∥
6
L6 ≲ ∥q≤N ∥

6
L6 + ∥q>N ∥

6
L6 ≲ N 2

∥q∥
6
L2 + ∥q>N ∥

4
L2∥q ′

∥
2
L2 .

This allows us to control the quartic term in H2, and hence the H 1-norm, as follows:

∥q ′
∥

2
L2 ≤ H2(q) +

3
2

∫
|q(x)|3|q ′(x)| dx

≤ H2(q) + ε∥q ′
∥

2
L2 +

9
16ε

∥q∥
6
L6

≤ H2(q) +

(
ε + C 9

16ε
∥q>N ∥

4
L2

)
∥q ′

∥
2
L2 + C 9

16ε
N 2 M(q)3,

for any ε > 0. The claim (4-1) now follows by choosing ε small and then N large, exploiting the
equicontinuity of Q. □

Proposition 4.1 allows us to extend local H 1 solutions globally in time, provided we remain below the
M∗ bound introduced in Definition 1.4.

Corollary 4.2. The (DNLS) evolution is globally well posed, both on the line and on the circle, in the
space

B1
M∗

= {q ∈ H 1
: ∥q∥

2
L2 < M∗} (4-2)

endowed with the H 1 topology. Moreover, initial data in S leads to solutions that belong to S at all times.

Proof. In the line case, this result can be deduced from [Bahouri and Perelman 2022]; indeed, the
restriction M(q) < M∗ is not needed in this case. Below we give an alternate argument that works also in
the periodic setting.

As discussed in the introduction, local well-posedness in H 1 was proved already in [Takaoka 1999;
Herr 2006]. Thus, given initial data q(0) ∈ B1

M∗
∩S, there is a corresponding maximal lifespan solution

q ∈ Ct([0, T ); H 1) to (DNLS). Moreover, [Hayashi and Ozawa 1992] shows that q(t) ∈ S for all
t ∈ [0, T ). Combining [Klaus and Schippa 2022; Tang and Xu 2021] with Proposition 2.6 yields that
a(κ; q(t)) = a(κ, q(0)) for all t ∈ [0, T ) and κ > 0. By the definition of M∗ and Proposition 4.1, the
solution q satisfies a priori H 1 bounds on [0, T ), which in turn guarantees that T = ∞.

Finally, global well-posedness in B1
M∗

follows from local well-posedness and the density of S in H 1. □

Let us now turn to low-regularity questions. Bounded sets in H s, with s > 0, are automatically
bounded and equicontinuous in L2. As we shall work only below the M∗ threshold in this section, such
L2-equicontinuity is retained globally in time. Our goal is to propagate H s bounds. The key to doing this
is a certain renormalization of α(κ; q) that we introduce now:

βR(κ; q) := ∥q∥
2
L2 − 2 Im α(κ; q) on R,

βT(κ; q) := ∥q∥
2
L2 −

1−e−κ

1+e−κ
2 Im α(κ; q) on T.

(4-3)
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Proposition 2.6 guarantees that these quantities are well defined for κ sufficiently large across our whole
family of orbits.

The quadratic (in q) parts of these expressions were presented already in (3-1). As we saw there,
these provide a sense of the L2-norm of the high-frequency part of q. To address higher regularity, for
0 < s < 1

2 we consider the quantity

βs(κ; q) :=

∫
∞

κ

β(~; q)~2s d~

~
.

The quadratic term in this expression is given by

β[2]

s (κ; q) =

∫
∞

κ

β[2](~; q)~2s d~

~
=

∫
∞

κ

〈
−∂2

4~2 − ∂2 q, q
〉
~2s d~

~
≈s

〈
−∂2

(κ2 − ∂2)1−s q, q
〉
.

From this we see that for any 0 < η < 1,

∥q>κ∥
2
H s ≲ β[2]

s (κ; q) ≲ η2(1−s)
∥q∥

2
H s + ∥q>ηκ∥

2
H s , (4-4)

and so β[2]
s (κ; q) captures the H s-norm of the high-frequency part of q . Indeed, a bounded set Q ⊆ H s

is equicontinuous in H s if and only if β[2]
s (κ; q) → 0 uniformly on Q as κ → ∞.

Theorem 4.3. Fix 0 < s < 1
2 and let Q ⊆ S be H s-bounded and satisfy (1-13). Then, recalling the

notation Q∗∗ from (1-11), we have

sup
q∈Q∗∗

∥q∥H s ≲ C
(

sup
q∈Q

∥q∥
2
L2, sup

q∈Q
∥q∥

2
H s

)
. (4-5)

Moreover, if Q is H s-equicontinuous, then so is Q∗∗.

Proof. As Q is H s-bounded, it is automatically L2-bounded and equicontinuous. By (3-9), Q∗∗ inherits
L2-boundedness from Q. As Q satisfies (1-13), we deduce that Q∗∗ is also L2-equicontinuous. By
Proposition 2.6, we may choose κ0 ≥ 1 such that

√
κ ∥3(q)∥op ≤

1
2 uniformly for q ∈ Q∗∗ and κ ≥ κ0. (4-6)

As shown there, this ensures that α(κ; q) and so also β(κ; q) are well defined for all q ∈ Q∗∗ and κ ≥ κ0.
Arguing as in (2-15), we also see that (4-6) implies

|βs(κ; q) − β[2]

s (κ; q)| ≲
∫

∞

κ

~2s+2
∥3(q)0(q)∥2

I2

d~

~

≲
∫

∞

κ

~2s+2
∑

N1∼N2≥N3≥N4

∥3N1∥I2∥3N2∥I2∥3N3∥op∥3N4∥op
d~

~
(4-7)

uniformly for q ∈ Q∗∗ and κ ≥κ0. To continue from here, we decompose the full sum into the subregions S j

defined by

S1 = {N2 ≤ κ},
S2 = {κ < N2 ≤ ~ and N3 ≤ ηκ},

S3 = {κ < N2 ≤ ~ and N3 > ηκ},

S4 = {N2 > ~ and N3 ≤ ηκ},

S5 = {N2 > ~ and N3 > ηκ},
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where η ∈ (0, 1) is a small parameter to be chosen later. We will estimate separately each of the
contributions

I j (κ; q) :=

∫
∞

κ

~2s+2
∑

S j

∥3N1∥I2∥3N2∥I2∥3N3∥op∥3N4∥op
d~

~
.

Applying (2-8) and (2-10) from Lemma 2.4, we have

I1 ≲
∫

∞

κ

~2s+2
∑

N1∼N2≤κ

N2

~3 ∥qN1∥L2∥qN2∥L2∥q∥
2
L2

d~

~

≲ κ2s−1
∥q∥

2
L2

∑
N1∼N2≤κ

N2∥qN1∥L2∥qN2∥L2 ≲ κ2s
∥q∥

4
L2 .

Proceeding analogously and using (4-4), we find

I2 ≲
∑

N1∼N2>κ

∫
∞

N2

ηκ~2s−1 N−2s
2 ∥qN1∥H s ∥qN2∥H s ∥q∥

2
L2

d~

~

≲
∑

N1∼N2>κ

ηκ N−1
2 ∥qN1∥H s ∥qN2∥H s ∥q∥

2
L2 ≲ η∥q∥

2
L2β

[2]

s (κ; q),

I3 ≲
∑

N1∼N2>κ

∫
∞

N2

~2s−1 N 1−2s
2 ∥qN1∥H s ∥qN2∥H s ∥q∥L2∥q>ηκ∥L2

d~

~

≲
∑

N1∼N2>κ

∥qN1∥H s ∥qN2∥H s ∥q∥L2∥q>ηκ∥L2 ≲ ∥q∥L2∥q>ηκ∥L2β[2]

s (κ; q),

I4 ≲
∑

N1∼N2>κ

∫ N2

κ

ηκ~2s log
(

4 +
N 2

2

~2

)
N−1−2s

2 ∥qN1∥H s ∥qN2∥H s ∥q∥
2
L2

d~

~

≲
∑

N1∼N2>κ

ηκ N−1
2 ∥qN1∥H s ∥qN2∥H s ∥q∥

2
L2 ≲ η∥q∥

2
L2β

[2]

s (κ; q),

and finally,

I5 ≲
∑

N1∼N2>κ

∫ N2

κ

~2s log
(

4 +
N 2

2

~2

)
N−2s

2 ∥qN1∥H s ∥qN2∥H s ∥q∥L2∥q>ηκ∥L2
d~

~

≲
∑

N1∼N2>κ

∥qN1∥H s ∥qN2∥H s ∥q∥L2∥q>ηκ∥L2 ≲ ∥q∥L2∥q>ηκ∥L2β[2]

s (κ; q).

Collecting all our estimates, we conclude that

|βs(κ; q) − β[2]

s (κ; q)| ≲ κ2s
∥q∥

4
L2 + (η∥q∥

2
L2 + ∥q∥L2∥q>ηκ∥L2)β[2]

s (κ; q)

uniformly on Q∗∗. As Q∗∗ is L2-bounded and equicontinuous, we may choose η small and then κ1 ≥ κ0

large to deduce that

sup
q∈Q∗∗

β[2]

s (κ; q) ≲ sup
q∈Q

β[2]

s (κ; q) + κ2s sup
q∈Q

∥q∥
4
L2, for all κ ≥ κ1. (4-8)

The claim (4-5) now follows from (4-4) by choosing κ = κ1.
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It remains to prove that H s-equicontinuity for Q is inherited by Q∗∗. This requires a different estimate
for I1. Using (2-8) and (2-9), we obtain

I1 ≲
∑

N4≤···≤N1≤κ

√
N3 N4 ∥qN1∥L2∥qN2∥L2∥qN3∥L2∥qN4∥L2

∫
∞

κ

~2s−1 d~

~
≲ κ2s−4σ

∥q∥
4
H s ,

where σ = min
{
s, 1

4

}
. Now that we know (4-5), we may employ it here to deduce the following analogue

of (4-8):
sup

q∈Q∗∗

β[2]

s (κ; q) ≲ sup
q∈Q

β[2]

s (κ; q) + κ2s−4σ C
(

sup
q∈Q

∥q∥
2
L2, sup

q∈Q
∥q∥

2
H s

)4 (4-9)

uniformly for κ ≥ κ1. As 4σ > 2s, equicontinuity follows by sending κ → ∞. □

5. Global well-posedness in H s for s ≥
1
6

In order to treat the line and circle simultaneously, it is convenient to introduce

A(κ; q) = α(κ; q) on R and A(κ; q) =
1−e−κ

1+e−κ
α(κ; q) on T. (5-1)

This leads to parallel leading asymptotic expansions:

A(κ; q) =
i
2

M(q) +
1

4κ
H(q) + O

(
1
κ2

)
,

as follows from Lemmas 2.2 and 2.3. This expansion is important; it guides our choice of regularized
Hamiltonian flows. We choose

Hκ(q) := 4κ Re A(κ; q),

since, formally at least, H(q) = Hκ(q) + O(κ−1), which suggests that the flow generated by Hκ(q)

approximates the (DNLS) flow as the parameter κ diverges to infinity.
The flow generated by Hκ(q) with respect to the Poisson structure (1-5) is

d
dt

q =

(
δHκ

δq̄

)′

= 2κ

(
δA(κ; q)

δq̄
+

δA(κ; q)

δq

)′

, since
δ Ā
δq̄

=
δA
δq

. (Hκ )

Our first task in this section is to prove that the Hκ flow is well posed on L2-equicontinuous sets
of Schwartz initial data satisfying (1-13), provided κ is chosen sufficiently large depending on the
equicontinuous family; see Proposition 5.3. Moreover, we will show that the corresponding solutions
belong to S for all times.

In Lemma 5.2, the Hκ flow will be shown to conserve M(q) and α(~; q); thus, it satisfies both the
H s-bounds and the H s-equicontinuity guaranteed by Theorem 4.3. Together with Proposition 5.3, this
immediately yields well-posedness of the Hκ flow on H s for all 0 ≤ s < 1

2 under the restriction (1-13);
see Corollary 5.4.

To prove that the (DNLS) flow is well posed in H s for 1
6 ≤ s < 1

2 , it then suffices to prove that this is well
approximated by (Hκ ) flows as κ → ∞. An important ingredient in our argument is the commutativity of
the Hκ and (DNLS) flows, at least on S. This follows from Lemma 5.2 and the well-posedness of these
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flows on S by mimicking the arguments in [Arnold 1989, §39]. In view of this commutativity, proving
convergence of the (Hκ ) flows to the (DNLS) flow amounts to showing that the flow generated by the
difference of the Hamiltonians H(q)− Hκ(q) converges to the identity as κ → ∞. This final stage of the
proof will be carried out in Theorem 5.5.

In order to make sense of (Hκ ), we must prove that α(κ; q) is in fact differentiable. To solve (Hκ )
locally in time, we further need to show that this functional derivative is itself a Lipschitz function of q .
These goals require us to define α(κ; q) on open sets in L2, rather than merely equicontinuous sets. The
next result addresses these issues.

Here and below we write Qε to denote the ε neighborhood of Q in the L2-metric.

Lemma 5.1. Let Q be a bounded and equicontinuous subset of L2. Then there exist ε > 0 and κ0 ≥ 1
such that for all κ ≥ κ0, we have that α(κ; q) is a real-analytic function of q ∈ Qε. Moreover, we have
the bounds ∥∥∥∥δα(κ; q)

δq

∥∥∥∥
H1

+

∥∥∥∥δα(κ; q)

δq̄

∥∥∥∥
H1

≲ κ∥q∥L2, (5-2)∥∥∥∥δα(κ; q)

δq
−

δα(κ; q̃)

δq

∥∥∥∥
H1

+

∥∥∥∥δα(κ; q)

δq̄
−

δα(κ; q̃)

δq̄

∥∥∥∥
H1

≲ κ∥q − q̃∥L2, (5-3)

where the implicit constants depend only on Q. Additionally, for every κ ≥ κ0 and q ∈ Qε, there exists
γ (κ; q) ∈ H 1 such that (

δα(κ; q)

δq̄

)′

= 2κ
δα(κ; q)

δq̄
− iκq[γ (κ; q) + 1], (5-4)(

δα(κ; q)

δq

)′

= −2κ
δα(κ; q)

δq
+ iκq̄[γ (κ; q) + 1], (5-5)

γ (κ; q)′ = 2q̄
δα(κ; q)

δq̄
− 2q

δα(κ; q)

δq
. (5-6)

Lastly, for each integer m ≥ 0 we have∥∥∥∥(
δα(κ; q)

δq̄

)′
∥∥∥∥

Hm
≲m κ∥q∥Hm , (5-7)∥∥∥∥⟨x⟩

2m
(

δα(κ; q)

δq̄

)′
∥∥∥∥

L2
≲m κ∥⟨x⟩

2mq∥L2, (5-8)

uniformly for q ∈ Qε and κ ≥ κ0.

Proof. Proposition 2.6 shows that given δ ∈ (0, 1], there exists κ0 ≥ 1 such that

sup
q∈Q

√
κ ∥3(q)∥op ≤

δ

4
uniformly for κ ≥ κ0.

As 3(q) is linear in q , Lemma 2.1 allows us to deduce

sup
q∈Qε

√
κ ∥3(q)∥op ≤

δ

2
uniformly for κ ≥ κ0, (5-9)

provided ε is chosen sufficiently small (depending on δ).
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Now we must explain how to choose δ. In view of (2-15), δ ≤ 1 guarantees that the series (1-9)
converges on Qε. We place an additional requirement to aid in the proofs of (5-2) and (5-3). From
Lemma 2.5 we find that

∥(κ + ∂)−1/4q(κ − ∂)−1/4
∥op · ∥(κ − ∂)−3/4q(κ + ∂)−3/4

∥op ≲ ∥q∥L2 · κ−1/2
∥3(q)∥op.

Thus, we may choose δ even smaller if necessary to ensure also that

κ∥(κ + ∂)−1/4q(κ − ∂)−1/4
∥op · ∥(κ − ∂)−3/4q(κ + ∂)−3/4

∥op ≤
1
2 (5-10)

uniformly for q ∈ Qε and κ ≥ κ0.
Turning now to (5-2), we argue by duality. For f ∈ H−1, we have〈

f,
δα(κ; q)

δq̄

〉
=

∑
ℓ≥0

(iκ)ℓ+1 tr{[(κ − ∂)−1q(κ + ∂)−1q̄]
ℓ(κ − ∂)−1q(κ + ∂)−1 f̄ }.

The ℓ = 0 term is readily computed exactly via Lemma 2.2. For example,

iκ tr{(κ − ∂)−1q(κ + ∂)−1 f̄ } = iκ
〈

1
2κ + ∂

f, q
〉

in the line case.

In either geometry, this is easily seen to satisfy the desired bound.
For ℓ ≥ 1, we employ (5-10) and Lemma 2.5 to estimate∣∣(iκ)ℓ+1 tr{[(κ − ∂)−1q(κ + ∂)−1q̄]

ℓ(κ − ∂)−1q(κ + ∂)−1 f̄ }
∣∣

≲ κℓ+1
∥(κ + ∂)−1 f̄ (κ − ∂)−1

∥I2∥q(κ + ∂)−3/4
∥

2
I2

∥(κ + ∂)−1/4q(κ − ∂)−1/4
∥

ℓ
op

× ∥(κ − ∂)−3/4q(κ + ∂)−3/4
∥

ℓ−1
op

≲ 2−ℓκ∥ f ∥H−1∥q∥
3
L2,

with an implicit constant independent of ℓ. This proves that the estimate (5-2) holds for the q̄ derivative;
the bound on the q derivative follows in a parallel fashion.

The proof of (5-3) proceeds analogously, noting that one can always exhibit the difference q − q̃ in
place of a q .

We define γ (κ; q) via the associated linear functional

⟨ f, γ (κ; q)⟩ =

∑
ℓ≥1

(iκ)ℓ tr{[(κ − ∂)−1q(κ + ∂)−1q̄]
ℓ(κ − ∂)−1 f̄ }

+

∑
ℓ≥1

(iκ)ℓ tr{[(κ + ∂)−1q̄(κ − ∂)−1q]
ℓ(κ + ∂)−1 f̄ }, (5-11)

and will prove γ ∈ H 1 by showing that this functional is bounded for f ∈ H−1.
Regarding the ℓ = 1 terms, Lemma 2.5 and direct computation show that∣∣κ tr{(κ ∓ ∂)−1q(κ ± ∂)−1q̄(κ ∓ ∂)−1 f̄ }

∣∣ ≲ √
κ ∥q(κ ± ∂)−1q̄∥I2∥ f ∥H−1 ≲

√
κ ∥q∥

2
L2∥ f ∥H−1 .
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For ℓ ≥ 2, we employ Lemma 2.5 and (5-10) as follows:∣∣κℓ tr{[(κ ∓ ∂)−1q(κ ± ∂)−1q̄]
ℓ(κ ∓ ∂)−1 f }

∣∣
≲ κℓ−1/2

∥ f ∥H−1∥q(κ + ∂)−3/4
∥

2
I2

∥(κ − ∂)−1/2
∥op∥(κ + ∂)−1/4q(κ − ∂)−1/4

∥
ℓ
op

× ∥(κ − ∂)−3/4q(κ + ∂)−3/4
∥

ℓ−2
op

≲ 2−ℓ
√

κ ∥q∥
4
L2∥ f ∥H−1,

where the implicit constant is independent of ℓ. Thus γ ∈ H 1 and

∥γ (κ; q)∥H1 ≲
√

κ∥q∥
2
L2 .

The proofs of (5-4) and (5-5) follow parallel arguments. In the former case, we pair δα(κ; q)/δq̄
with f ′, which we then rewrite as a trace. The result then follows by noting the operator identity
f ′

= −(κ − ∂) f − f (κ + ∂) + 2κ f and simplifying.
The proof of (5-6) follows the same style: one pairs γ (κ; q) with f ′ and employs the operator identity

f ′
= [κ + ∂, f ] = −[κ − ∂, f ].
The proof of (5-7) mimics closely that of (5-2), once one understands how to move the derivatives

from the test function f to copies of q. Introducing the notation fh(x) = f (x − h), we observe that by
the translation invariance of the trace,〈

f (m),

(
δα(κ; q)

δq̄

)′ 〉
= −

∂m

∂hm

∣∣∣∣
h=0

〈
f ′

h,
δα(κ; q)

δq̄

〉
= −

∂m

∂hm

∣∣∣∣
h=0

〈
f ′,

δ

δq̄
α(κ; q−h)

〉
= −

∂m

∂hm

∣∣∣∣
h=0

∑
ℓ≥0

(iκ)ℓ+1 tr{[(κ−∂)−1q−h(κ+∂)−1q̄−h]
ℓ(κ−∂)−1q−h(κ+∂)−1 f̄ ′

}.

Next, we apply the estimates used to prove (5-2) together with the elementary inequality

∥q(n)
∥L2 ≲ ∥q∥

1−n/m
L2 ∥q∥

n/m
Hm for all 0 < n ≤ m.

This yields the estimate (5-7). Note that summability in ℓ is guaranteed by (5-10), just as before.
Lastly, we turn to (5-8). The argument is very similar; the key ingredient is to move the polynomial

weight ⟨x⟩
2m from the test function f to a copy of q . This is achieved via the identity

q(κ + ∂)−1 P f̄ =

∑
n≥0

(−1)n
[P (n)q](κ + ∂)−n−1 f̄ ,

valid for any polynomial P(x), which follows easily by induction using

[(κ + ∂)−1, P(x)] = −(κ + ∂)−1 P ′(x)(κ + ∂)−1. □

Lemma 5.2. Let Q ⊆ S be L2-bounded and equicontinuous, and let ε and κ0 be as in Lemma 5.1. Then
for all κ, ~ ≥ κ0,

{H, α(κ)} = 0, {M, α(κ)} = 0, and {α(~), α(κ)} = 0

on Qε. Consequently, A(κ), A(~), M, H, and Hκ all Poisson commute on Qε.
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Proof. As discussed in the introduction, the commutativity of α(κ) with the Hamiltonian H was proved
in [Klaus and Schippa 2022; Tang and Xu 2021] whenever the series defining α(κ) can be guaranteed to
converge. Such convergence is guaranteed by Lemma 5.1.

Recalling (1-5) and employing (5-4), (5-5), and (5-6), we find

{M, α(κ)} = −2κ

∫
γ ′ dx = 0.

Notice that (5-6) guarantees γ ′
∈ L1.

If κ = ~ the third equality is clear. When κ ̸= ~, we may proceed to compute the Poisson bracket by
applying (5-4) and (5-5) directly to the derivatives of α(κ) or by employing integration by parts and then
the corresponding formulae for the partial derivatives of α(~). Comparing the two approaches yields

~{α(κ), α(~)} = κ{α(κ), α(~)}, and so {α(~), α(κ)} = 0. □

Proposition 5.3. For each L2-equicontinuous set Q ⊆ S satisfying (1-13), there exists κ0 ≥ 1 sufficiently
large such that for all κ ≥ κ0, the (Hκ ) flow is globally well posed for initial data in Q. Moreover, the
solutions remain in S for all time. Lastly, the set

Q∗ := {et J∇ Hκ q : q ∈ Q, t ∈ R, and κ ≥ κ0}

is bounded and equicontinuous in L2.

Proof. Recall the set Q∗∗ introduced in (1-11). By (3-9), the hypothesis (1-13), and the definition of M∗,
this set is bounded and equicontinuous in L2. We fix ε > 0 and κ0 ≥ 1 as the values obtained by applying
Lemma 5.1 to the set Q∗∗.

Next we construct a local solution for initial data q(0) ∈ Q∗∗. For κ ≥ κ0, Lemma 5.1 ensures that one
can run the usual contraction mapping argument for the integral equation

q(t) = q(0) +

∫ t

0
2κ

(
δA(κ; q(s))

δq̄
+

δA(κ; q(s))
δq

)′

ds

to find a unique solution q ∈ C([0, T ]; L2), provided T is chosen sufficiently small. In fact, T is chosen
so small that q(t) and indeed all Picard iterates remain in the ε-neighborhood of Q∗∗.

Combining the estimates (5-7) and (5-8) with the Gronwall inequality shows that q(t) ∈ S for all
t ∈ [0, T ]. This in turn allows us to apply Lemma 5.2 to conclude that α(~; q(t)) and hence a(~; q(t)) are
conserved. Taken together, these observations guarantee that q([0, T ]) ⊆ Q∗∗ and so the local solutions
may be concatenated to yield a global solution lying wholly within Q∗∗. Finally, as Q∗ is a subset of Q∗∗,
it is L2-bounded and equicontinuous. □

Combining Proposition 5.3 with Theorem 4.3 immediately yields well-posedness of the (Hκ ) flow in
the following sense:

Corollary 5.4. Fix 0 < s < 1
2 and let Q ⊆ S be H s-bounded and satisfy (1-13). Then there exists κ0 ≥ 1

such that for all κ ≥ κ0 the (Hκ ) flow is globally well posed for initial data in Q. Moreover,

Q∗ := {et J∇ Hκ q : q ∈ Q, t ∈ R, and κ ≥ κ0} ⊆ S is H s-bounded.

If Q is H s-equicontinuous, then so is Q∗.
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In order to complete the proof of Theorem 1.5, we must prove that H s-Cauchy sequences of initial
data qn(0) ∈ S satisfying (1-13) lead to Cauchy sequences of solutions to (DNLS). As mentioned above,
this will be accomplished by showing that the flow

d
dt

q =

[
iq ′

− |q|
2q − 2κ

(
δA(κ; q)

δq̄
+

δA(κ; q)

δq

)]′

, (H diff
κ )

generated by H(q) − Hκ(q), converges to the identity as κ → ∞. Due to commutativity of the flows,
S-valued solutions to (H diff

κ ) can be built via

et J∇ Hdiff
κ q = et J∇ H e−t J∇ Hκ q

using Corollaries 4.2 and 5.4. In view of Lemma 5.2, these solutions conserve M and α(~).
The proof of our final theorem makes a fitting end for this paper by highlighting the power of

equicontinuity. It is also here that we will finally see the origin of the restriction s ≥
1
6 . It is needed to

make sense of the nonlinearity in (H diff
κ ) pointwise in time.

Theorem 5.5. Fix 1
6 ≤ s < 1

2 and T > 0. Given a sequence qn(0) ∈ S of initial data that converges in H s

and satisfies (1-13), let qn(t) denote the corresponding solutions to (DNLS). Then qn(t) converges in H s,
uniformly for |t | ≤ T .

Proof. By hypothesis, the set Q = {qn(0) : n ∈ N} is bounded and equicontinuous in the H s-metric. Let
κ0 ≥ 1 be as given by Corollary 5.4. Then for κ ≥ κ0, the (Hκ ) flow is well posed for initial data in Q,
and the set

Q∗ := {et J∇ Hκ qn(0) : n ∈ N, t ∈ R, and κ ≥ κ0} ⊆ S

is bounded and equicontinuous in H s.
The commutativity of the (Hκ ) and the (DNLS) flows allows us to rewrite our sequence of solutions as

qn(t) = et J∇ Hdiff
κ et J∇ Hκ qn(0).

Moreover, by Theorem 4.3, the set

{et J∇ Hdiff
κ q : q ∈ Q∗, t ∈ R, and κ ≥ κ0} ⊆ Q∗∗

is bounded and equicontinuous in H s.
We will show that qn(t) forms a Cauchy sequence in H s, uniformly for |t | ≤ T. By the definition of Q∗,

we estimate

sup
|t |≤T

∥qn(t) − qm(t)∥H s ≤ 2 sup
q∈Q∗

sup
|t |≤T

∥et J∇ Hdiff
κ q − q∥H s + sup

|t |≤T
∥et J∇ Hκ qn(0) − et J∇ Hκ qm(0)∥H s

for all κ ≥ κ0. For any such fixed κ , the well-posedness of the (Hκ ) flow ensures that the last term of the
right-hand side converges to 0 as n, m → ∞. Thus, it suffices to prove that the difference flow converges
to the identity uniformly on Q∗:

lim
κ→∞

sup
q∈Q∗

sup
|t |≤T

∥et J∇ Hdiff
κ q − q∥H s = 0.
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In fact, as Q∗∗ is H s-equicontinuous, it suffices to show that

lim
κ→∞

sup
q∈Q∗

sup
|t |≤T

∥et J∇ Hdiff
κ q − q∥H−4 = 0. (5-12)

By the fundamental theorem of calculus and (H diff
κ ), proving (5-12) reduces to showing that

lim
κ→∞

sup
q∈Q∗∗

∥F∥H−3 = 0, where F := iq ′
− |q|

2q − 2κ

(
δA(κ; q)

δq̄
+

δA(κ; q)

δq

)
. (5-13)

A straightforward computation shows that F [1], the linear (in q) term in F, is given by −i∂3/(4κ2
− ∂2)q .

This clearly converges to zero in H−3 as κ → ∞, uniformly on Q∗∗, or indeed, on any L2-bounded set.
We turn now to the contribution of F [3], the term in F that is cubic in q. Employing Lemma 2.3, we

find the cubic terms(
δA(κ; q)

δq̄

)[3]

= −
κ2

2κ − ∂

{(
1

2κ + ∂
q̄
)

(4κ − ∂)

(
1

2κ − ∂
q
)2}

= −
2κ2

2κ − ∂

{
q
(

1
2κ − ∂

q
)(

1
2κ + ∂

q̄
)}

,(
δA(κ; q)

δq

)[3]

= −
κ2

2κ + ∂

{(
1

2κ − ∂
q̄
)

(4κ + ∂)

(
1

2κ + ∂
q
)2}

= −
2κ2

2κ + ∂

{
q
(

1
2κ + ∂

q
)(

1
2κ − ∂

q̄
)}

.

This allows us to compute the full cubic term as follows:

F [3]
= 2κ2 ∂

2κ − ∂

[
q
(

1
2κ − ∂

q
)(

1
2κ + ∂

q̄
)]

− 2κ2 ∂

2κ + ∂

[
q
(

1
2κ + ∂

q
)(

1
2κ − ∂

q̄
)]

+ 2κ2q
(

1
2κ − ∂

q
)(

1
2κ + ∂

q̄
)

+ 2κ2q
(

1
2κ + ∂

q
)(

1
2κ − ∂

q̄
)

− q2q̄

=
2∂

2κ − ∂

[
q
(

κ

2κ − ∂
q
)(

κ

2κ + ∂
q̄
)]

−
2∂

2κ + ∂

[
q
(

κ

2κ + ∂
q
)(

κ

2κ − ∂
q̄
)]

+ q2
(

∂2

4κ2 − ∂2 q̄
)

+ qq̄
(

∂2

4κ2 − ∂2 q
)

−
1
2

q
(

∂

2κ − ∂
q
)(

∂

2κ + ∂
q̄
)

−
1
2

q
(

∂

2κ + ∂
q
)(

∂

2κ − ∂
q̄
)

.

To estimate its contribution, we pair with f ∈ H 3 and apply Hölder’s inequality. Boundedness is easily
deduced from

∥ f ∥L∞ + κ

∥∥∥∥ ∂

2κ ± ∂
f
∥∥∥∥

L∞

≲ ∥ f ∥H3, (5-14)

∥q∥L3 +

∥∥∥∥ ∂

2κ ± ∂
q
∥∥∥∥

L3
+

∥∥∥∥ ∂2

4κ2 − ∂2 q
∥∥∥∥

L3
≲ ∥q∥H s . (5-15)

Evidently (5-15) requires s ≥
1
6 . The gain of a power of κ in (5-14) guarantees that the contribution of

the first two terms in F [3] decays to zero as κ → ∞. For the remaining terms, we use H s-equicontinuity
to obtain decay: as s ≥

1
6 , we have that

lim
κ→∞

sup
q∈Q∗∗

∥∥∥∥ ∂

2κ ± ∂
q
∥∥∥∥

L3
≲ lim

κ→∞
sup

q∈Q∗∗

∥∥∥∥ ∂

2κ ± ∂
q
∥∥∥∥

H s
= 0.
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Finally, we turn our attention to the remaining terms (quintic and higher) in the series expansion of F.
By Lemma 2.1, (1-9), and the embedding H 3 ↪→ L∞,∣∣∣∣∫ f F [≥5] dx

∣∣∣∣ ≲ ∑
ℓ≥2

κℓ+2
∥3(q)∥2

I2
∥3(q)∥2ℓ−1

op ∥3( f )∥op ≲ ∥q∥
2
L2∥ f ∥H3

∑
ℓ≥2

κℓ
∥3(q)∥2ℓ−1

op .

The convergence we require does not follow from Proposition 2.6; we would lose by a factor of
√

κ .
However arguing in the same fashion, we find

∥3(q)∥op ≲ ∥3(q≤ηκ)∥op + ∥3(q>ηκ)∥op ≲ κ−1
∥q≤ηκ∥L∞ + κ−1/2

∥q>ηκ∥L2

≲ κ−1/2−s(η1/2−s
∥q∥H s + η−s

∥q>ηκ∥H s ),

for any η > 0. When s > 1
6 , we may simply take η = 1 to deduce that

lim
κ→∞

sup
q∈Q∗∗

∥F [5]
∥H−3 = 0.

For the endpoint case s =
1
6 , this follows from the H s-equicontinuity of Q∗∗ by choosing η small and

then κ large. This completes the proof of the theorem. □
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