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THE CAUCHY PROBLEM FOR THE INFINITESIMAL MODEL
IN THE REGIME OF SMALL VARIANCE

FLORIAN PATOUT

We study the asymptotic behavior of solutions of the Cauchy problem associated to a quantitative
genetics model with a sexual mode of reproduction. It combines trait-dependent mortality and a
nonlinear integral reproduction operator, the infinitesimal model. A parameter describes the standard
deviation between the offspring and the mean parental traits. We show that under mild assumptions
upon the mortality rate m, when the deviations are small, the solutions stay close to a Gaussian profile
with small variance, uniformly in time. Moreover, we characterize accurately the dynamics of the mean
trait in the population. Our study extends previous results on the existence and uniqueness of stationary
solutions for the model. It relies on perturbative analysis techniques with a sharp description of the
correction from the Gaussian profile.

A list of symbols can be found on page 1348.

1. Introduction

We investigate solutions fε ∈ L1(R+× R) of the Cauchy problem{
ε2∂t fε(t, z) + m(z) fε(t, z) = Bε( fε)(t, z), t > 0, z ∈ R,

fε(0, z) = f 0
ε (z),

(Pt fε)

where Bε( f ) is the following nonlinear, homogeneous mixing operator associated with the infinitesimal
model of [Fisher 1918], see also [Barton et al. 2017] for a modern perspective:

Bε( f )(z) :=
1

ε
√

π

∫∫
R2

exp
[
−

1
ε2

(
z −

z1 + z2

2

)2]
f (z1)

f (z2)∫
R

f (z′

2) dz′

2
dz1 dz2. (1-1)

This problem originates from quantitative genetics in the context of evolutionary biology. The variable z
denotes a phenotypic trait, fε is the distribution of the population with respect to z and m is the trait-
dependent mortality rate.

The mixing operator Bε models the inheritance of quantitative traits in the population, under the
assumption of a sexual mode of reproduction. As formulated in (1-1), it is assumed that offspring traits are
distributed normally around the mean of the parental traits 1

2(z1 + z2), with a constant variance, here 1
2ε2.

We are interested in the evolutionary dynamics resulting in the selection of well-fitted (low mortality)
individuals, i.e., the concentration of the distribution around some dominant traits with standing variance.
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In theoretical evolutionary biology, a broad literature deals with this model to describe sexual repro-
duction; see e.g., [Barfield et al. 2011; Barton et al. 2017; Bulmer 1980; Cotto and Ronce 2014; Huisman
and Tufto 2012; Roughgarden 1972; Slatkin 1970; Slatkin and Lande 1976; Tufto 2000; Turelli 2017;
Turelli and Barton 1994].

We are interested in the asymptotic behavior of the trait distribution fε as ε2 vanishes. It is expected
that the profile concentrates around some particular traits under the influence of selection.

The asymptotic description of concentration around some particular trait(s) has been extensively
investigated for various linear operators Bε associated with asexual reproduction such as, for instance, the
diffusion operator fε(t, z) + ε21 fε(t, z), or the convolution operator (1/ε)K (z/ε) ∗ fε(t, z) where K is
a probability kernel with unit variance; see [Barles and Perthame 2007; Barles et al. 2009; Diekmann
et al. 2005; Lorz et al. 2011; Perthame 2007] for the earliest investigations and [Bouin et al. 2018;
Méléard and Mirrahimi 2015; Mirrahimi 2020] for the case of fat-tailed kernels K. In those linear cases,
the asymptotic analysis usually leads to a Hamilton–Jacobi equation after performing the Hopf–Cole
transform uε = −ε log fε. Those problems require a careful well-posedness analysis for uniqueness and
convergence as ε → 0; see [Barles et al. 2009; Calvez and Lam 2020; Mirrahimi and Roquejoffre 2016].

Much less is known about the operator Bε defined by (1-1). From a mathematical viewpoint, in the
field of probability theory, [Barton et al. 2017] derived the model from a microscopic framework. In
[Mirrahimi and Raoul 2013; Raoul 2017], the authors deal with a different scaling than the current small
variance assumption ε2

≪ 1 and add a spatial structure in order to derive the celebrated Kirkpatrick and
Barton system [1997].

Gaussian distributions will play a pivotal role in our analysis as they are left-invariant by the infinitesimal
operator Bε; see [Mirrahimi and Raoul 2013; Turelli and Barton 1994]. In [Calvez et al. 2019], the authors
studied special stationary solutions, having the form

exp
[
λεt
ε2

]
Fε(z), with Fε(z) =

1

ε
√

2π
exp

[
−

(z − z∗)
2

2ε2 − U s
ε (z)

]
.

In this paper we tackle the Cauchy problem (Pt fε), and we hereby look for solutions that are close to
Gaussian distributions uniformly in time of the form

fε(t, z) =
1

ε
√

2π
exp

[
λ(t)
ε2 −

(z − z∗(t))2

2ε2 − Uε(t, z)
]
. (1-2)

The scalar function λ measures the growth (or decay according to its sign) of the population. The mean
of the Gaussian density, z∗, is also the trait at which the population concentrates when ε → 0. The
pair (λ, z∗) will be determined by the analysis at all times. It is somehow related to invariant properties of
the operator Bε. The function Uε measures the deviation from the Gaussian profile induced by the selection
function m. It is a cornerstone of our analysis that Uε is Lipschitz continuous with respect to z, uniformly
in t and ε. Plugging the transformation (1-2) into (Pt fε) yields the following equivalent problem:

−ε2∂tUε(t, z) + λ̇(t) + (z − z∗(t))ż∗(t) + m(z)

= Iε(Uε)(t, z) exp[Uε(t, z) − 2Uε(t, z̄(t)) + Uε(t, z∗(t))], (PtUε)
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where z̄(t) is the midpoint between z and z∗(t):

z̄(t) =
1
2(z + z∗(t)),

and the functional Iε is defined by

Iε(Uε)(t, z)

=

∫∫
R2 exp

[
−

1
2 y1 y2 −

3
4(y2

1 + y2
2) + 2Uε(t, z̄) − Uε(t, z̄ + εy1) − Uε(t, z̄ + εy2)

]
dy1 dy2

√
π
∫

R
exp

[
−

1
2 y2 + Uε(t, z∗) − Uε(t, z∗ + εy)

]
dy

. (1-3)

This functional is the residual shape of the infinitesimal operator (1-1) after suitable transformations. It
was first introduced in the formal analysis of [Garnier et al. 2022] and in the study of the corresponding
stationary problem in [Calvez et al. 2019]. The Lipschitz continuity of Uε is pivotal here as it ensures that
Iε(Uε) → 1 when ε → 0. Thus for small ε, we expect that (Pt fε) is well approximated by the following
problem:

λ̇(t) + (z − z∗(t))ż∗(t) + m(z) = exp[U0(t, z) − 2U0(t, z̄(t)) + U0(t, z∗(t))]. (1-4)

Interestingly, this characterizes the dynamics of (λ(t), z∗(t)). By differentiating (1-4) and evaluating at
the point z = z∗(t), then simply evaluating (1-4) at z = z∗(t), we find the following pair of relationships:

ż∗(t) + m′(z∗(t)) = 0, (1-5)

λ̇(t) + m(z∗(t)) = 1. (1-6)

Then, a more compact way to write the limit problem for ε = 0 is

M(t, z) = exp[U0(t, z) − 2U0(t, z̄(t)) + U0(t, z∗(t))], (PtU0)

with the notation
M(t, z) := 1 + m(z) − m(z∗(t)) − m′(z∗(t))(z − z∗(t)). (1-7)

It follows from (1-6) and (1-5) that

M(t, z∗(t)) = 1, ∂z M(t, z∗(t)) = 0. (1-8)

An explicit solution of (PtU0) exists under the form of an infinite series:

V ∗(t, z) :=

∑
k≥0

2k log(M(t, z∗(t) + 2−k(z − z∗(t)))). (1-9)

This formula is obtained by noticing a recursive relation on the first derivative of ∂zU0, as in Section 2.2
of [Calvez et al. 2019]. The same recursive argument is used here in Section 7G. Interestingly, this series
is convergent thanks to the relationships of (1-8). The function V ∗ is a solution of (PtU0), but not the
only one. There are two degrees of freedom when solving (PtU0), since adding any affine function to U0

leaves the right-hand side unchanged. Therefore, a general expression of solutions is the following, where
the scalar functions p0 and q0 are arbitrary:

U0(t, z) = p0(t) + q0(t)(z − z∗(t)) + V ∗(t, z). (1-10)
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We have foreseen that the Lipschitz regularity of Uε was the way to guarantee that Iε(Uε) → 1 as ε → 0.
As a matter of fact, an important part of [Calvez et al. 2019] is dedicated to proving such regularity for U s

ε ,
the solution of the stationary problem

λs
ε + m(z) = Iε(U s

ε )(z) exp
[
U s

ε (z) − 2U s
ε

(1
2(z + zs

∗
)
)
+ U s

ε (zs
∗
)
]
, z ∈ R. (PUε stat)

The authors introduced an appropriate functional space controlling Lipschitz bound. They were then
able to show the existence of U s

ε and its (local) uniqueness in that space. They also proved that U s
ε was

converging when ε → 0 towards solutions of (PtU0); see Figure 1 for a schematic comparison of the
scope of the present article compared to previous work.

Here, to tackle the nonstationary problem (PtUε), we make the following assumptions of asymptotic
growth on the selection function m, when |z| → ∞.

Assumption 1.1. We suppose that the function m is a C5(R) function, bounded below. We define the
scalar function z∗ as the gradient flow

ż∗(t) = −m′(z∗(t)), t > 0, (1-11)

associated to a prescribed initial data z∗(0). Next, we make the following assumptions:

• We suppose that z∗(0) lies next to a nondegenerate local minimum of m, denoted by zs
∗
, such that

z∗(t) −−−→
t→∞

zs
∗
. (1-12)

• We also require that there exists a uniform positive lower bound on M :

inf
(t,z)∈R+×R

M(t, z) > 0. (1-13)

• We make growth assumptions on M in the following way:

for k = 1, 2, 3, 4, 5, (1 + |z − z∗|)
α ∂k

z M(t, z)
M(t, z)

∈ L∞(R+× R), (1-14)

for some 0 < α < 1, the same as in Definition 1.2.

• We make a final assumption upon the behavior of m at infinity, roughly that it has superlinear growth,
uniformly in time:

lim sup
z→∞

∣∣∣∣M(t, z̄)
M(t, z)

∣∣∣∣ := a <
1
2
, lim sup

z→∞

∣∣∣∣∂z M(t, z̄)
∂z M(t, z)

∣∣∣∣< ∞. (1-15)

The first assumption on m and z∗ guarantees the following local convexity property, at least for times t
large enough:

∃ µ0 > 0, ∃ t0 > 0, such that ∀t ≥ t0, m′′(z∗(t)) ≥ µ0. (1-16)

Any convex function m with at least quadratic growth at infinity will satisfy Assumption 1.1, without
restriction on the initial data. This type of fitness landscape is fairly standard in the asexual models, e.g.,
the Fisher geometrical model [Fisher 1999; Martin and Roques 2016] assumes a quadratic fitness function.
However, our analysis also encompasses different scenarios with possibly multiple optima, the limiting
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condition is the positivity of M. This corresponds to a global assumption on the behavior of z∗ and m,
that reduces the choice of z∗(0).1 The relationship (1-14) corresponds to algebraic decay assumptions
for M, and accordingly, it holds true if m behaves like any (at least quadratic) polynomial function as
|z| → +∞ (as well as (1-15)). The shape of the selection function, even far from the optimum, changes
the qualitative behavior of a population; see [Osmond and Klausmeier 2017]. A detailed discussion on
the behavior of the solution whether our assumptions are satisfied or not is carried out in Section 9 with
some numerical simulations displayed.

The purpose of this work is to rigorously prove the convergence of the solution of (PtUε) towards a
particular solution of (PtU0). Given the general shape of U0, see (1-10), it is natural to decompose Uε by
separating the affine part from the rest:

Uε(t, z) = pε(t) + qε(t)(z − z∗(t)) + Vε(t, z). (1-17)

We require accordingly that at all times t > 0,

Vε(t, z∗) = ∂z Vε(t, z∗) = 0,

which is another way of saying that the pair (pε, qε) tunes the affine part of Uε. The pair (qε, Vε) is the
main unknown of this problem. It is expected that Vε converges to V ∗ when ε → 0. Our analysis will be
able to determine the limit of qε even if it cannot be identified by the problem at ε = 0. Indeed, in (PtU0),
the linear part q0 can be any constant. Our limit candidate for qε is q∗, that we define as the solution of
the differential equation

q̇∗(t) = −m′′(z∗(t))q∗(t) +
1
2 m(3)(z∗(t)) − 2m′′(z∗(t))m′(z∗(t)), (1-18)

corresponding to an initial value of q∗(0). Moreover we define p∗ as the function which satisfies, for a
given p∗(0),

ṗ∗(t) = −m′(z∗(t))q∗(t) + m′′(z∗(t)). (1-19)

These expressions for p∗ and q∗ are obtained formally by canceling same order (in ε) terms when
differentiating (PtUε) and looking at the main terms when ε is very small. More precisely, we must
also evaluate the differentiated problem at z = z∗. Thus, those expressions are somehow linked to the
formulas for λ and z∗ in (1-5) and (1-6). Note that differentiating and evaluating at z = z∗ the problem
for ε > 0 will be our strategy of proof to tackle the convergence of pε and qε, in Sections 5A and 5B.
Before detailing these technical points, let us note that the function

U∗(t, z) := p∗(t) + q∗(t)(z − z∗(t)) + V ∗(t, z) (1-20)

will be our candidate for the limit of Uε when ε → 0. The problem for Vε equivalent to the problem (PtUε),
using (1-17), is

M(t, z) − ε2( ṗε(t) + q̇ε(t)(z − z∗(t)) + m′(z∗(t))qε(t)) − ε2∂t Vε(t, z)

= Iε(qε, Vε)(t, z) exp[Vε(t, z) − 2Vε(t, z̄(t)) + Vε(t, z∗(t))]. (Pt Vε)

1 M is structurally positive, based on the formulation of (Pt U0). The uniform lower bound in (1-13) is mainly technical.
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One can notice that thanks to cancellations the functional Iε(Uε) does not depend on pε, which explains
for the most part why we focus upon (qε, Vε). We choose to write Iε(qε, Vε)(t, z) := Iε(Uε)(t, z) as
a functional of both unknowns because we will study variations in both directions. One of the main
difficulties to prove the link between (Pt Vε) and (PtU0) is that, formally, the terms with the time derivatives
in qε and Vε vanish when ε → 0. This makes our study belong to the class of singular limit problems.

Before stating our main result we need to define appropriate functional spaces. We first define a
reference space E, similar to the one introduced in [Calvez et al. 2019] for the study of the stationary
problem (PUε stat). However, compared to that case we will need more precise controls, which is why
we introduce a subspace F with more stringent conditions.

Definition 1.2 (functional spaces). We define α < 2− ln 3/ln 2 such that α ∈ (0, 1) along with the weight
function ϕα:

ϕα(t, z) := (1 + |z − z∗(t)|)α.

The corresponding functional space E is given by

E =
{
v ∈ C3(R+× R)

∣∣ ∀t > 0, v(t, z∗(t)) = ∂zv(t, z∗(t)) = 0
}

∩
{
v ∈ C3(R+× R)

∣∣ |∂zv(t, z)|, ϕα(t, z)|∂2
z v(t, z)|, ϕα(t, z)|∂3

z v(t, z)| ∈ L∞(R+× R)
}

equipped with the norm

∥v∥E = max
{

sup
(t,z)∈R+×R

|∂zv(t, z)|, sup
(t,z)∈R+×R

(ϕα(t, z)|∂2
z v(t, z)|), sup

(t,z)∈R+×R

(ϕα(t, z)|∂3
z v(t, z)|)

}
.

We also define the subspace F :

F := E ∩
{
v ∈ C1(R+× R)

∣∣ |2v(t, z̄(t)) − v(t, z)|, ϕα(t, z)|∂zv(t, z̄(t)) − ∂zv(t, z)| ∈ L∞(R+× R)
}
,

and we associate to it the corresponding norm

∥v∥F = max
{
∥v∥E , sup

(t,z)∈R+×R

(|2v(t, z̄(t)) − v(t, z)|), sup
(t,z)∈R+×R

(ϕα(t, z)|∂zv(t, z̄(t)) − ∂zv(t, z)|)
}
.

The condition on α exists for computational reasons, highlighted at the end of the discussion of
Proposition 7.7. The threshold coincides with that of the stationary case; see [Calvez et al. 2019, (5.11)].
The weight function ϕα is another similar feature. Its role is mainly to have a uniform bound on the first
derivative using previous estimates on further derivatives, for which we need α to be bounded. We refer
to Section 7G for comments on the tuning of this parameter.

Since most of this paper is focused around the pair (qε, Vε) ∈ R × F, we will use the convenient
notation ∥(q, V )∥ := max(|q|, ∥V ∥F ). Our main theorem is the following convergence result:

Theorem 1.3 (convergence). There exist K0, K ′

0 and ε0 >0 such that if we make the following assumptions
on the initial condition, for all ε ≤ ε0:

∥Vε(0, · ) − V ∗(0, · )∥F ≤ ε2K0, |qε(0) − q∗(0)| ≤ ε2K0 and |pε(0) − p∗(0)| ≤ ε2K0,
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then we have uniform estimates of the solutions of the Cauchy problem:

sup
t>0

∥Vε − V ∗
∥F ≤ ε2K ′

0, sup
t>0

|qε(t) − q∗(t)| ≤ ε2K ′

0 and sup
t>0

|pε(t) − p∗(t)| ≤ ε2K ′

0,

where q∗ is the solution of (1-18) associated to q∗(0) and p∗ is the solution of (1-19) associated to p∗(0).
The function V ∗ is defined in (1-9).

Therefore, as predicted, the limit of Uε when ε → 0 is the function

p∗(t) + q∗(t)(z − z∗(t)) + V ∗(t, z).

Theorem 1.3 establishes the stability, with respect to ε and uniformly in time, of Gaussian distributions
around the dynamics of the dominant trait driven by a gradient flow differential equation.

In [Calvez et al. 2019], a fixed-point argument was used to build solutions of the stationary prob-
lem (PUε stat) when ε ≪ 1. Estimates were uniform in ε, in order to pass to the limit ε → 0. As a
matter of fact, their limit problem when ε = 0 [Calvez et al. 2019, Problem PU0] is consistent with (1-4),
without time dependency. However, their method of proof can no longer be applied in our case because
the (singular) derivative in time of the Cauchy problem (Pt fε) breaks the structure that made the stationary
problem equivalent to a fixed-point mapping. In fact, in the present article, (PtU0) and (PtUε) are different
in nature due to the fast time relaxation dynamics. This is one of the main difficulties of this work
compared to [Calvez et al. 2019]. For this reason, we replace the fixed-point argument by a perturbative
analysis. This program is schematized in Figure 1. We introduce the corrector terms κε and Wε, our aim
is to bound them uniformly:

Vε(t, z) = V ∗(t, z) + ε2Wε(t, z), (1-21)

qε(t) = q∗(t) + ε2κε(t). (1-22)

The scalar q∗, perturbed by ε2κε, will tune further the affine part of the solution. The function Wε measures
the error made when approximating (PtUε) by (PtU0). We choose not to perturb pε because we will
realize in Section 5B that it can be straightforwardly deduced from the analysis.

This decomposition highlights a crucial part of our analysis, coming back to the initial (Pt fε). The
main part (in ε) of the solution fε is quadratic (up to the transform (1-2)). This means that it does not
belong to the space of the corrective term Vε. After this main (quadratic) part of fε, of order 1/ε2, the
corrective terms are much more precise for small ε: V ∗ is of order 1, while ε2Wε is of order ε2. The
objective of this article is to show that κε and Wε are uniformly bounded with respect to time and ε.

2. Heuristics and method of proof

For this section only, we focus on the function Uε instead of Vε to get a heuristic argument in favor of the
decomposition (1-17) and some elements supporting Theorem 1.3. We will denote by Rε the perturbation
such that we look for solutions of (PtUε) of the form

Uε(t, z) = U∗(t, z) + ε2 Rε(t, z).
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linearized problem

perturbative analysis

evolutionary problem stationary problem, fixed time

fixed point
argument

for " > 0

convergence    as " → 0

Calvez et al (2019)

stability

present work

scaling transform

approximations
for small "

" "t f "f tP ( )2∂ +

" "tU "U tP ( )2∂ +

"F tP ((problem ))

"U tP ((problem ))

0U tP ((problem ))

"�( ,solution "U )

0�(solution , 0U )

Figure 1. Scope of our paper compared to preceding work.

The function U∗, defined in (1-20), also solves (PtU0). Plugging this perturbation into (PtUε) yields the
following perturbed equation for Rε:

M(t, z) − ε2∂tU∗(t, z) − ε4∂t Rε(t, z)

= Iε(U∗
+ ε2 Rε)(t, z)

× exp[U∗(t, z) − 2U∗(t, z̄(t)) + U∗(t, z∗(t))] exp[ε2(Rε(t, z) − 2Rε(t, z̄(t)) + Rε(t, z∗(t)))].

By using (PtU0), one gets that Rε solves

M(t, z) − ε2∂tU∗(t, z) − ε4∂t Rε(t, z)

= Iε(U∗
+ ε2 Rε)(t, z)M(t, z) exp[ε2(Rε(t, z) − 2Rε(t, z̄(t)) + Rε(t, z∗(t)))].

To prove the boundedness of Rε, a solution to this nonlinear equation, we shall linearize it and show
a stability result on the linearized problem; see Theorem 7.1. We explain here the heuristics about the
linearization. We have already said that Iε is expected to converge to 1. Therefore by linearizing the
exponential, a natural linearized equation when ε is small appears to be

ε2∂t R̃ε(t, z) = M(t, z)(−R̃ε(t, z) + 2R̃ε(t, z̄(t)) − R̃ε(t, z∗(t))), (2-1)

For clarity we denote by T the linear operator

T (R)(t, z) := M(t, z)(2R(t, z̄(t)) − R(t, z) + R(t, z∗(t))).
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We know precisely the eigenelements of this linear operator. The eigenvalue 0 has multiplicity two, the
eigenspace consisting of affine functions. More generally one can get every eigenvalue by differentiating
iteratively the operator T and evaluating at z = z∗. This corresponds to the following table:

Eigenvalue: 0 0 −
1
2 −

3
4 · · ·

Dual eigenvector: δz∗(t) δ′

z∗(t) δ′′

z∗(t) δ
(3)
z∗(t) · · ·

This explains why Rε should be decomposed between affine parts and the rest, and, as a consequence,
why this is also the case for the solution Uε we are investigating. The scalars pε and qε of the decomposi-
tion (1-17) correspond to the projection of Uε upon the eigenspace associated to the (double) eigenvalue 0.
On the other hand, the rest is expected to remain uniformly bounded since the corresponding eigenvalues
are negative, below −

1
2 .

Beyond the heuristics about the stability, this linear analysis also illustrates the discrepancy between Vε

and qε in Theorem 1.3. While Vε is expected to relax to an explicit bounded value arbitrary quickly
as ε → 0 (fast dynamics), this is not true for qε, and its limit q∗ solves a differential equation (slow
dynamics):

q̇∗(t) = −m′′(z∗(t))q∗(t) +
1
2 m(3)(z∗(t)) − 2m′′(z∗(t))m′(z∗(t)).

One interpretation of this formula is that, for ε > 0, the second eigenvalue, which corresponds to
the affine part, is not 0 as in the table above. Our intuition, given the equation above, is that it is of
order −ε2m′′(z∗(t)). We can guess that this explains why, in Section 8, we obtain directly with contraction
arguments that the perturbation of Vε is bounded (fast dynamics), while to show that the perturbation
of qε is uniformly bounded, we must deal with an ODE that it solves. This “vanishing” but negative
second eigenvalue could also explain why our analysis needs a uniform contraction argument for the
affine part while it can be chosen freely at ε = 0; see (PtU0).

The technique we will use in the following sections to bound Wε in F will seem more natural in light
of this formal analysis. The first step will be to work around z∗, the base point of the dual eigenelements
in the table above. We derive uniform bounds up to the third derivative to estimate Wε; see Theorem 7.1.

By plugging the expansions of (1-21) and (1-22) associated to the decomposition (1-17) and the
logarithmic transform (1-2) into our original model (Pt fε), we obtain the following main reference
equation that we will study in the rest of this article:

M(t, z)−ε2( ṗε(t)+q̇∗(t)(z−z∗)+m′(z∗)q∗(t)+∂t V ∗(t, z))−ε4(κ̇ε(t)(z−z∗)+m′(z∗)κε(t)+∂t Wε(t, z))

= M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε) exp[ε2(Wε(t, z) − 2Wε(t, z̄(t)) + Wε(t, z∗(t)))]. (2-2)

Our main objective will be to linearize (2-2), in order to deduce the boundedness of the unknowns, (κεWε),
by working on the linear part of the equations. We will need to investigate different scales (in ε) to capture
the different behaviors of each contribution.

We will pay attention to the remaining terms. We will use the classical notation O(1) and O(ε), and
we will write ∥(κε, Wε)∥O(ε) to illustrate when the constants of O(ε) depend on (κε, Wε). We also
define a refinement of the classical notation O(ε):
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Definition 2.1 (O∗(εβ)). For β ∈ N, we say that a function g(ε, t, z) is such that g(ε, t, z) = O∗(εβ) if
there exists ε∗ such that for all ε ≤ ε∗,

|g(ε, t, z)| ≤ C∗εβ,

and the constants ε∗ and C∗ depend only on the pair (q∗, V ∗).

More generally, when we write O(ε), the constants involved may a priori depend upon the pair (κε, Wε).
Our intent is to make the dependency of the constants clear when we linearize. This will prove to be a
crucial point when we go back to the nonlinear problem (2-2). We will see that all the terms that do not
have a sufficient order in ε, to be negligible, will be O∗(1), and therefore uniformly bounded independently
of (κε, Wε). A key point of our analysis is to segregate those terms when doing the linearization.

The rest of the paper is organized as follows:

• First we prove some properties upon the reference pair (q∗, V ∗) around which all the terms of (2-2)
are linearized.

• A key part of our perturbative analysis is to be able to linearize Iε, which we do in Section 4 thanks
to careful estimates upon the directional derivatives.

• We derive an equation on κε in Section 5A, and later a linear equation for the approximation Wε, as
well as derivations for all of its derivatives in Section 6, while controlling precisely the error terms.

• We next show the boundedness of the solutions of the linear problem in the space F, see Section 7,
mainly through maximum principles and a dyadic division of the space to take into account the
nonlocal behavior of the infinitesimal operator. This is the content of Theorem 7.1.

• Finally, we tackle the proof of Theorem 1.3 in Section 8, using contraction arguments deduced from
the previous section.

• To conclude, in Section 9 we discuss some of our assumptions made in Assumption 1.1, illustrated
by some numerical simulations.

3. Preliminary results: estimates of I∗
ε and V ∗

3A. Control of (q∗, V ∗). Before tackling the main difficulties of this article, we first state some controls
on the function V ∗, the solution of (PtU0). Most of them use the explicit expression of (1-9) and were
proved in [Calvez et al. 2019]. To be able to measure this function we introduce another functional space,
with more constraints.

Definition 3.1 (subspace E∗). We define E∗ as the following subspace of E :

E∗
:= E ∩ {v ∈ C5(R+× R) | ϕα(t, z)|∂4

z v(t, z)|, ϕα(t, z)|∂5
z v(t, z)| ∈ L∞(R+× R)},

and we equip it with the norm ∥ · ∥∗:

∥v∥∗ = max
(
∥v∥E , sup

(t,z)∈R+×R

ϕα(t, z)|∂4
z v(t, z)|, sup

(t,z)∈R+×R

ϕα(t, z)|∂5
z v(t, z)|

)
.
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Our intention with the successive definitions of the functional spaces is to be able to measure each
term of the decomposition made in (1-21) as follows:

Vε = V ∗
+ ε2Wε, with Vε ∈ E, V ∗

∈ E∗ and Wε ∈ F.

The fact that V ∗
∈ E∗ is part of the claim of the following lemma:

Lemma 3.2 (properties of V ∗). The function V ∗ belongs to the space E∗. Moreover,

∂2
z V ∗(t, z∗) = 2m′′(z∗) and ∂3

z V ∗(t, z∗) =
4
3 m(3)(z∗). (3-1)

Proof. Precise estimates of the summation operator that defines V ∗ in (1-9) are studied in [Calvez et al.
2019]. They can be applied there thanks to the decay assumptions about M; see (1-14). The only difference
here is that a uniform bound for the fourth and fifth derivative are required. The proofs of those bounds
rely solely upon the assumption made in (1-14), for the fourth and fifth derivative of M. This shows
that V ∗

∈ E∗. Explicit computations based on (1-9) prove the relationships (3-1). □

A consequence of Lemma 3.2 is that since m′′(z∗(t)) > 0 for t > t0, thanks to (1-16), we have that V ∗

is locally convex around z∗(t). However, we need more information about V ∗ than the space it belongs
to. We will bound (q∗, V ∗) independently of time. This is the content of the following result:

Proposition 3.3 (uniform bound on (q∗, V ∗)). There exists a constant K ∗ such that for j = 0, 1, 2, 3, we
have

max(∥V ∗
∥∗, ∥q∗

∥L∞(R+), ∥∂t∂
j

z V ∗
∥L∞(R+×R)) ≤ K ∗.

Proof. For the estimates upon V ∗ and ∂t V ∗, it is a direct consequence of the definition of E∗ and the
explicit formula (1-9). The technique to bound the sums is to distinguish between the small and large
indices, as was detailed in [Calvez et al. 2019].

For q∗, one must look to (1-18). The boundedness of q∗ is a straightforward consequence of the
convexity of m at z∗(t) for large times; see (1-16) and the convergence of z∗ to bound the other terms. □

3B. Estimates of I∗
ε and its derivatives. We next define a notational shortcut for the functional Iε

introduced in (1-3), when it is evaluated at the reference pair (q∗, V ∗):

I∗

ε := Iε(q∗, V ∗).

This section is devoted to getting precise estimates of this function. This will be crucial for the linearization
of Iε(q∗

+ ε2κε, V ∗
+ ε2Wε) as can be seen on the full equation (2-2).

Proposition 3.4 (estimation of I∗
ε ). We have that

I∗

ε (t, z) = 1 + O∗(ε2),

where the constants of O∗(ε2) depend only on K ∗, as introduced in Proposition 3.3 and as defined by
Definition 2.1.



1300 FLORIAN PATOUT

The proof involves exact Taylor expansions in ε. Very similar expansions were performed in Lemma 3.1
of [Calvez et al. 2019]. We adapt the method of proof here, since it will be used extensively throughout
this article.

Proof of Proposition 3.4. We recall that by Proposition 3.3, max(|q∗
|, ∥V ∗

∥∗) ≤ K ∗, and, by definition,

I∗

ε (t, z) =

∫∫
R2 e−Q(y1,y2) exp[−εq∗(t)(y1 + y2) + 2V ∗(t, z̄) − V ∗(t, z̄ + εy1) − V ∗(t, z̄ + εy2)] dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εq∗(t)y + V ∗(t, z∗) − V ∗(t, z∗ + εy)] dy

:=
N (t, z)
D(t)

,

where Q is the quadratic form appearing after the rescaling of the infinitesimal operator in (1-3):

Q(y1, y2) :=
1
2 y1 y2 +

3
4(y2

1 + y2
2).

This quadratic form will appear very frequently in what follows, mostly, as here, through the bivariate
Gaussian distribution it defines. Once and for all, we state that a correct normalization of this Gaussian
distribution is

1
√

2π

∫∫
R2

e−Q(y1,y2) dy1 dy2 = 1.

We start the estimates with the more complicated term, the numerator N. With an exact Taylor expansion
inside the exponential, there exists generic 0 < ξi < 1, for i = 1, 2, such that

N (t, z) =
1

√
2π

∫∫
R2

e−Q(y1,y2) exp
[
−εq∗(t)(y1 + y2) − ε(y1 + y2)∂z V ∗(t, z̄)

−
1
2ε2(y2

1∂2
z V ∗(t, z̄ + εξ1 y1) + y2

2∂2
z V ∗(t, z̄ + εξ2 y2))

]
dy1 dy2.

Moreover, we can write, for some θ = θ(y1, y2) ∈ (0, 1),

exp[−εP] = 1 − εP +
1
2ε2 P2 exp[−θεP], with

P := (y1 + y2)(q∗(t) + ∂z V ∗(t, z̄)) +
1
2ε(y2

1∂2
z V ∗(t, z̄ + εξ1 y1) + y2

2∂2
z V ∗(t, z̄ + εξ2 y2)),

such that

|P| ≤ K ∗
(
|y1| + |y2| +

1
2ε(y2

1 + y2
2)
)
. (3-2)

Combining the expansions, we find that

N (t, z) =
1

√
2π

∫∫
R2

e−Q(y1,y2)
(
1 − εP +

1
2ε2 P2 exp[−θεP]

)
dy1 dy2

= 1 − ε
1

√
2π

∫∫
R2

e−Q(y1,y2) P dy1 dy2 +
ε2

2
√

2π

∫∫
R2

e−Q(y1,y2) P2 exp[−θεP] dy1 dy2. (3-3)

The key part is the cancellation of the terms O(ε) due to the symmetry of Q:

1
√

2π

∫∫
R2

e−Q(y1,y2)(y1 + y2) dy1 dy2 = 0.
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Therefore,

ε
√

2π

∫∫
R2

e−Q(y1,y2) P dy1 dy2

=
ε2

2
√

2π

∫∫
R2

e−Q(y1,y2)(y2
1∂2

z V ∗(t, z̄ + εξ1 y1) + y2
2∂2

z V ∗(t, z̄) + εξ2 y2) dy1 dy2,

and we get the estimate∣∣∣∣ ε
√

π

∫∫
R2

e−Q(y1,y2) P dy1 dy2

∣∣∣∣≤ ε2

2
√

2π

∫∫
R2

e−Q(y1,y2)(y2
1 + y2

2)K ∗ dy1 dy2 ≤ O∗(ε2).

Thanks to (3-2) it is easy to verify that the last term of (3-3) behaves similarly:

ε2

2
√

2π

∫∫
R2

e−Q(y1,y2) P2 exp[−θεP] dy1 dy2 = O∗(ε2).

Indeed, it states that the term P is at most quadratic with respect to yi , so Q + θεP is uniformly bounded
below by a positive quadratic form for ε small enough. This shows that

N (t, z) = 1 + O∗(ε2).

The denominator is easier. With the same arguments, using the Gaussian density, we find that

D(t) = 1 + O∗(ε2).

Combining the estimates of N and D, we get the desired result. □

There exists a link between q∗ and ∂zI∗
ε (t, z∗), which is in fact the motivation behind the choice of q∗.

Proposition 3.5 (link between q∗ and ∂zI∗
ε (t, z∗)).

∂zI∗

ε (t, z∗(t)) = ε2(m′′(z∗(t))q∗(t) −
1
2 m(3)(z∗(t))

)
+ O∗(ε4),

where the constants of O∗(ε4) only depend on K ∗.

The proof of this result was the content of [Calvez et al. 2019, Lemma 3.1] and only requires that the
pair (q∗, V ∗) is uniformly bounded, as stated in Proposition 3.3. Its proof follows the same procedure of
exact Taylor expansions as that of Proposition 3.4.

It will be useful to dispose of estimates of ∂zI∗
ε not only at the point z∗. They are less precise, as stated

in the following proposition:

Proposition 3.6 (estimates of the decay of the derivatives of I∗
ε ). There exists a constant ε∗ that depends

only on K ∗ such that for all ε ≤ ε∗, for j = 1, 2, 3,

sup
(t,z)∈R+×R

ϕα(t, z)|∂( j)
z I∗

ε (t, z)| = O∗(ε2).
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To simplify notations, we introduce the following difference operator that appears in the integral Iε;
see (1-3):

Dε(V )(Y, t, z) := V (t, z̄) −
1
2 V (t, z̄ + εy1) −

1
2 V (t, z̄ + εy2), with Y = (y1, y2),

D∗

ε (V )(y, t) := V (t, z∗) − V (t, z∗ + εy).
(3-4)

We will use the following technical lemma giving an estimate of the weight function against the derivatives
of a given function.

Lemma 3.7 (influence of the weight function). There exists a constant C such that for each ball B of E∗

or F, there exists εB such that for every W ∈ B, for every y ∈ R and ε ≤ εB , for j = 2, 3, 4, 5,

ϕα(t, z)|∂( j)
z W (t, z̄(t) + εy)| ≤

{
C∥W∥ if |y| ≤ |z − z∗(t)|,
(1 + |y|

α)∥W∥ otherwise,

with ∥W∥ = ∥W∥∗ or ∥W∥F depending on the case.

Proposition 3.6 is a prototypical result. It will be followed by a series of similar statements. Therefore,
we propose two different proofs. In the first one, we write exact Taylor expansions. However, the
formalism is heavy, which is why we propose next a formal argument, where the Taylor expansions are
written without the exact remainder for the sake of clarity.

In the rest of this paper more complicated estimates will be proved, in the spirit of Proposition 3.6; see
Proposition 4.1 and Lemma 4.8 for instance. The notations and formulas will be very long, so we shall
only write the formal parts of the argument. However, it can all be made rigorous, as below.

Proof of Proposition 3.6. First, write the expression for the derivative, using our notation Dε introduced
in (3-4):

∂zI∗

ε (t, z) =

∫∫
R2 e−Q(y1,y2) exp[−εq∗(y1 + y2) + 2Dε(V ∗)(Y, t, z)]Dε(∂z V ∗)(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy

:=
N (t, z)
D(t)

. (3-5)

We only focus on the numerator. The denominator D can be handled similarly as in the proof of
Proposition 3.4, where we show that it is essentially 1 + O∗(ε2). We perform two Taylor expansions in
the numerator N, namely,

2Dε(V ∗)(Y, t, z̄) = −ε(y1+y2)∂z V ∗(t, z̄)− 1
2ε2(y2

1∂2
z V ∗(t, z̄+εξ1 y1)+y2

2∂2
z V ∗(t, z̄+εξ2 y2)),

Dε(∂z V ∗)(Y, t, z̄) = −
1
2ε(y1+y2)∂

2
z V ∗(t, z̄)− 1

4ε2(y2
1∂3

z V ∗(t, z̄+εξ1 y1)+y2
2∂3

z V ∗(t, z̄+εξ2 y2)),
(3-6)

where the ξi denote some generic number such that 0 < ξi < 1 for i = 1, 2. Moreover, we can write

exp[−εP] = 1 − εP exp[−θεP], with

P := (y1 + y2)(∂z V ∗(t, z̄) + q∗) +
1
2(y2

1∂2
z V ∗(t, z̄ + εξ1 y1) + y2

2∂2
z V ∗(t, z̄ + εξ2 y2)), (3-7)
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for some θ = θ(y1, y2) ∈ (0, 1). Combining the expansions, we find that

ϕα(t, z)∂zI∗

ε (t, z)

=
ϕα(t, z)
√

2π

∫∫
R2

e−Q(y1,y2)(1 − εP exp[−θεP])

×
(
−

1
2ε(y1 + y2)∂

2
z V ∗(t, z̄) −

1
4ε2(y2

1∂3
z V ∗(t, z̄ + εξ1 y1) + y2

2∂3
z V ∗(t, z̄ + εξ2 y2))

)
dy1 dy2.

Crucially, the O(ε) contribution cancels due to the symmetry of Q, as already observed above:∫∫
R2

e−Q(y1,y2)(y1 + y2) dy1 dy2 = 0.

So, it remains that

ϕα(t, z)N (t, z)

= −ε2 ϕα(t, z)

4
√

2π

∫∫
R2

e−Q(y1,y2)(y2
1∂3

z V ∗(t, z̄ + εξ1 y1) + y2
2∂3

z V ∗(t, z̄ + εξ2 y2)) dy1 dy2

+ ε2 ϕα(t, z)

2
√

2π

∫∫
R2

e−Q(y1,y2) P exp[−θεP](y1 + y2)∂
2
z V ∗(t, z̄) dy1 dy2

+ ε3 ϕα(t, z)

4
√

2π

∫∫
R2

e−Q(y1,y2) P exp[−θεP](y2
1∂3

z V ∗(t, z̄ + εξ1 y1) + y2
2∂3

z V ∗(t, z̄ + εξ2 y2)) dy1 dy2.

If we forget about the weight in front of each term, clearly the last two contributions are uniform O∗(ε)

since ε ≤ ε∗ is small enough and V ∗ and q∗ are uniformly bounded by K ∗; see Proposition 3.3. The
term P is at most quadratic with respect to yi , see (3-7), so Q + θεP is uniformly bounded below by a
positive quadratic form for ε small enough.

A difficulty is to add the weight to those estimates. To do so, we use Lemma 3.7, for each integral
term appearing in the previous formula, because each time a term of the following form appears:

ϕα(t, z)∂( j)
z V ∗(t, z̄ + εξi yi ). (3-8)

Since every ξi satisfies 0 < ξi < 1, the bounds given by Lemma 3.7 ensure that each integral remains
bounded by moments of the bivariate Gaussian defined by Q, as if there were no weight function. This
concludes the proof of the first estimate of Proposition 3.6.

Bounding the quantity ϕα(t, z)|∂( j)
z I∗

ε (t, z)| for j = 2, 3 follows the same steps, as seen here:

∂2
z I

∗

ε (t, z)

=

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V ∗)(Y, t, z)]

(
Dε(∂z V ∗)2

+
1
2Dε(∂

2
z V ∗)

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy
,

∂3
z I

∗

ε (t, z) =

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V ∗)(Y, t, z)]

×
(
Dε(∂z V ∗)3

+
3
2Dε(∂z V ∗)Dε(∂

2
z V ∗) +

1
4Dε(∂

3
z V ∗)

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy
.
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The motivation behind going up to the fifth derivative of V ∗ in Definition 3.1 lies in the terms

1
2Dε(∂

2
z V ∗) and 1

4Dε(∂
3
z V ∗). (3-9)

To gain an order ε2 as needed in Proposition 3.6 for the estimates, one needs to go up by two orders in
the Taylor expansions, which involve fourth and fifth derivatives. The importance of the order ε2 will
later appear in Proposition 4.2 and Section 7. □

We now propose a formal argument which is much simpler to read.

Formal proof of Proposition 3.6. We tackle the first derivative. We use the same notations as previously,
see (3-5), and again focus on the numerator N. Formally,

N (t, z) =

∫∫
R2

e−Q(y1,y2) exp[−ε(y1 + y2)(q∗
+ ∂z V ∗(t, z̄)) + (y2

1 + y2
2)O∗(ε2)]

× (−ε(y1 + y2)∂
2
z V ∗(t, z̄) + (y2

1 + y2
2)O∗(ε2)) dy1 dy2.

Thanks to the linear approximation of the exponential, we find that

N (t, z) =

∫∫
R2

e−Q(y1,y2)(1 − ε(y1 + y2)(q∗
+ ∂z V ∗(t, z̄)) + (y2

1 + y2
2)O∗(ε2))

× (−ε(y1 + y2)∂
2
z V ∗(t, z̄) + (y2

1 + y2
2)O∗(ε2)) dy1 dy2. (3-10)

By sorting out the orders in ε, this can be rewritten as

N (t, z) = εN1 + O∗(ε2).

By symmetry,

N1 := −

∫∫
R2

e−Q(y1,y2)(ε(y1 + y2)∂
2
z V ∗(t, z̄)) dy1 dy2 = 0.

To conclude, we notice that we can add the weight function to those estimates and make the same
arguments as in the previous proof. □

Proof of Lemma 3.7. If |z − z∗| ≤ 1, then 1 + |z − z∗| ≤ 2, and the result is immediate by Definitions 3.1
and 1.2 of the adequate functional spaces. Therefore, one can suppose that |z − z∗| > 1. We first look at
the regime |y| ≤ |z − z∗|. Then, by definition of the norms,

ϕα(t, z)|∂( j)
z W (t, z̄ + εy)| ≤ 2

|z − z∗|
α

|z̄ + εy − z∗|
α
|z̄ + εy − z∗|

α
|∂( j)

z W (t, z̄ + εy)|

≤ 2
|z − z∗|

α

|z̄ + εy − z∗|
α
∥W∥. (3-11)

To bound the last quotient, we use the following inequality, that holds true because we are in the regime
|y| ≤ |z − z∗|:

|z̄ + εy − z∗| ≥ −|εy| + |z̄ − z∗| ≥
1
2 |z − z∗| − ε|z − z∗|.

This yields

2
|z − z∗|

|z̄ + εy − z∗|
≤

2
1/2 − ε

. (3-12)
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Bringing together (3-11) and (3-12), one gets Lemma 3.7 in the regime |y| ≤ |z − z∗|, on the condition
that ε < 1

2 .
On the contrary, when |z − z∗| ≤ |y|, we have immediately that

(1 + |z − z∗|
α)|∂( j)

z W (t, z̄ + εy)| ≤ (1 + |y|
α)∥W∥. □

4. Linearization of Iε and its derivatives

The first step to obtain a linearized equation on Wε is to study the nonlinear terms of (2-2). A key point is
the study of the functional Iε defined in (1-3), which plays a major role in our study. We will show that it
converges uniformly to 1, as we claimed in Section 1, and that its derivatives are uniformly small, with
some decay for large z, similarly to what we proved for the function I∗

ε in the previous section. This will
enable us to linearize Iε and its derivatives in Propositions 4.2 and 4.5.

4A. Linearization of Iε. We first bound uniformly all the terms that appear during the linearization
of Iε by Taylor expansions. One starts by measuring the first order directional derivatives.

Proposition 4.1 (bounds on the directional derivatives of Iε). For any ball B of R × E , there exists a
constant εB that depends only on B such that for all ε ≤ εB we have, for all (g, V ) ∈ B and H ∈ E :

sup
(t,z)∈R+×R

|∂gIε(g, V )(t, z)| ≤ ∥(g, V )∥O(ε2) (4-1)

and

sup
(t,z)∈R+×R

|∂V Iε(g, V ) · H(t, z)| ≤ ∥(g, V )∥∥H∥E O(ε2). (4-2)

Proof. As in the estimates of I∗
ε and its derivatives in the previous section, the argument to obtain the

result will be to perform exact Taylor expansions. As explained before we will not pay attention to the
exact remainders that can be handled exactly as before, and we refer to the proofs of Propositions 3.4
and 3.6 for the details. However, our computations will make clear the order ε2 of (4-1) and (4-2). First,
thanks to the derivation with respect to g, an order of ε is gained straightforwardly:

∂gIε(g, V )(t, z)

= −ε

(∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)](y1 + y2) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

− Iε(g, W )(t, z)

∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)]y dy
√

π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

)
. (4-3)

The common denominator is bounded:∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)] dy ≥

∫
R

exp
[
−

1
2 |y|

2
− 2ε|y|∥(g, V )∥

]
dy.
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For the numerators, a supplementary order in ε is gained by symmetry of Q, as in other estimates; see
Proposition 3.6 for instance. For the single integral we write∫

R

e−|y|
2/2 y exp[−εgy +D∗

ε (V )(y, t)] dy ≤

∫
R

e−|y|
2/2 y exp[−εgy + 2ε|y|∥(g, V )∥] dy

≤

∫
R

e−|y|
2/2 y(1 − εgy + O(ε)|y|∥(g, V )∥) dy.

Finally, ∫
R

e−|y|
2/2 y exp[−εgy +D∗

ε (V )(y, t)] dy ≤ ∥(g, V )∥O(ε). (4-4)

For the first numerator of (4-3), the computations work in the same way:∫∫
R2

exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)](y1 + y2) dy1 dy2

≤

∫∫
R2

exp[−Q(y1, y2) + O(ε)(y1 + y2)∥(g, V )∥](y1 + y2) dy1 dy2

≤

∫∫
R2

exp[−Q(y1, y2)](1 + O(ε)(y1 + y2)∥(g, V )∥)(y1 + y2) dy1 dy2 ≤ ∥(g, V )∥O(ε). (4-5)

Therefore, combining (4-3)–(4-5) we have proven the bound upon the first derivative of Iε in (4-1).
Concerning (4-2), one starts by writing the following formula for the Fréchet derivative:

∂V Iε(g, V ) · H(t, z)

=

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]2Dε(H)(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

− Iε(g, V )(t, z)

∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)]D∗
ε (H)(y, t) dy

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
. (4-6)

The claimed order ε2 holds true, by similar symmetry arguments. For instance, when we do the Taylor
expansions on the numerator of the first term of (4-6), we find that∫∫

R2
exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]2Dε(H)(Y, t, z) dy1 dy2

= 2
∫∫

R2
exp[−Q(y1, y2)](1 − ε(y1 + y2)(g + ∂z V (t, z̄)) + O(ε2)∥V ∥E)

× (−ε(y1 + y2)∂z H(t, z̄) + O(ε2)(y2
1 + y2

2)∥H∥E) dy1 dy2

= −2ε∂z H(t, z̄)
∫∫

R2
exp[−Q(y1, y2)](y1 + y2) dy1 dy2

+ ε2∂z H(t, z̄)(g + ∂z V (t, z̄))
∫∫

R2
exp[−Q(y1, y2)](y1 + y2)

2 dy1 dy2+ O(ε2)∥H∥E∥(g, V )∥

≤ ∥(g, V )∥∥H∥E O(ε2). (4-7)
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For the second term of (4-6), we also gain an order ε2 when making Taylor expansions of D∗
ε (V ), since

∂z H(t, z∗) = 0:∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)]D∗

ε (H)(y, t) dy

= −

∫
R

e−|y|
2/2 exp[−εgy + 2ε|y|∥(g, V )∥]y2O(ε2)∥H∥E dy

= −

∫
R

e−|y|
2/2(1 − εgy + 2ε|y|∥(g, V )∥)y2O(ε2)∥H∥E dy ≤ ∥(g, V )∥∥H∥E O(ε2). (4-8)

As before, the denominator of (4-6) has a uniform lower bound, therefore combining (4-6)–(4-8) concludes
the proof. □

We have proven all the tools to linearize Iε as follows, thanks to the previous estimates on the directional
derivatives of Iε.

Proposition 4.2 (linearization of Iε). For any ball B of R × E , there exists a constant εB that depends
only on B such that for all ε ≤ εB we have, for all (g, W ) ∈ B,

Iε(q∗
+ ε2g, V ∗

+ ε2W )(t, z) = I∗

ε (t, z) + O(ε3)∥(g, W )∥ (4-9)

= 1 + O∗(ε2) + O(ε3)∥(g, W )∥, (4-10)

where O(ε3) only depends on the ball B.

Proof. We write an exact Taylor expansion

Iε(q∗
+ ε2g, V ∗

+ ε2W ) = I∗

ε + ε2(∂gIε(q∗
+ ε2ξg, V ∗

+ ε2ξW )+ ∂V Iε(q∗
+ ε2ξg, V ∗

+ ε2ξW ) · W ),

for some 0 < ξ < 1. Therefore (4-9) is a direct application of Proposition 4.1 to g′
= q∗

+ ε2ξg,
V = V ∗

+ ε2ξW and H = W . One deduces the estimation of (4-10) from Proposition 3.4. □

As a matter of fact, in (4-10), we have even shown an estimate 1+ O∗(ε2)+ O(ε4)∥(g, W )∥. However,
we choose to reduce arbitrarily the order in ε for consistency reasons with further estimates of this article.
It suffices for our purposes.

4B. Linearization of ∂zIε and decay estimates. In order to prove Theorem 1.3, we need to uniformly
bound ∥Wε∥F , and this implies L∞ bounds of the derivatives of Wε. To obtain those, our method is to
work on the linearized equations they satisfy. Therefore, linearizing Iε is not enough, we need to linearize
∂

( j)
z Iε as well, for j = 1, 2, 3. For that purpose we need more details than previously about the nature of

the negligible terms. More precisely, we need to know how it behaves relatively to the weight function of
the space E and F, that acts by definition upon the second and third derivatives. The objective of this
section is to linearize ∂

( j)
z Iε to obtain similar results to Proposition 4.2. We first prove the following

estimates on the derivatives of Iε:
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Proposition 4.3 (decay estimate of ∂zIε). For any ball B of R×E , there exists a constant εB that depends
only on B such that for any pair (g, V ) in B, for all ε ≤ εB :

sup
(t,z)∈R+×R

ϕα(t, z)|∂zIε(g, V )(t, z)| ≤ ∥(g, V )∥O(ε),

sup
(t,z)∈R+×R

ϕα(t, z)|∂2
z Iε(g, V )(t, z)| ≤ ∥(g, V )∥O(ε),

sup
(t,z)∈R+×R

ϕα(t, z)|∂3
z Iε(g, V )(t, z)| ≤ ∥(g, V )∥O(εα) +

1
21−α

∥ϕα∂3
z V ∥∞,

where all the O(ε) depend only on the ball B, and ∥ϕα∂3
z V ∥∞ = sup(t,z)∈R+×R ϕα(t, z)|∂3

z V (t, z)|.

We are not able to propagate an order ε for all derivatives. There is a factor of order 0 in ε in the
third one: ∥ϕα∂3

z V ∥∞/21−α. It will be dealt with using a contraction argument, since 2α−1 < k(α) < 1;
and k(α) plays the same role as in Theorem 7.1. This has to be put in parallel with [Calvez et al. 2019,
Proposition 4.6].

Proof. We focus on the first derivative, the proof for the second derivative is straightforward to adapt:

ϕα(t, z)∂zIε(g, V )(t, z)

= ϕα(t, z)

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]Dε(∂z V )(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
. (4-11)

As before, the following formal Taylor expansions hold true for the numerator, ignoring the weight in the
first step:∫∫

R2
exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]Dε(∂z V )(Y, t, z) dy1 dy2

=

∫∫
R2

exp[−Q(y1, y2)](1 − O(ε)(y1 + y2)∥(g, V )∥)(−O(ε)(y1 + y2)∥(g, V )∥) dy1 dy2,

≤ O(ε)∥(g, V )∥. (4-12)

Meanwhile the denominator has a uniform lower bound:∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)] dy ≥

∫
R

exp
[
−

1
2 |y|

2
− 2ε|y|∥(g, V )∥

]
dy.

The estimate of (4-12) can be made rigorous as in the proof of Proposition 3.6, for instance. Moreover,
one can add the weight to bound (4-11) thanks to Lemma 3.7, as explained in the proof of Proposition 3.6.
Therefore, the proof of the first estimate of Proposition 4.3 is achieved.

For the second term of Proposition 4.3, involving the second derivative, the arguments and decomposi-
tion of the space are the same. We follow the same steps, arriving at the formula

∂2
z Iε(g, V )(t, z)

=

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]

(
Dε(∂z V )2

+
1
2Dε(∂

2
z V )

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
.
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Things are a little bit different for the third derivative, as can be seen in the following explicit formula:

∂3
z Iε(t, z) =

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]

×
(
Dε(∂z V )3

+
3
2Dε(∂z V )Dε(∂

2
z V ) +

1
4Dε(∂

3
z V )

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
. (4-13)

All terms in this formula will provide an order ε exactly as before, except for the linear contribution
of Dε(∂

3
z V ) since we lack a priori controls of the fourth derivative of V in F. Therefore, for this term we

proceed as follows:

ϕα(t, z)|Dε(∂
3
z V )(Y, t, z)|

= (1 + |z − z∗|)
α
∣∣∂3

z V (t, z̄) −
1
2∂3

z V (t, z̄ + εy1) −
1
2∂3

z V (t, z̄ + εy2)
∣∣

≤ (1 + |z − z∗|)
α
(
|∂3

z V (t, z̄)| + 1
2 |∂3

z V (t, z̄ + εy1)| +
1
2 |∂3

z V (t, z̄ + εy2)|
)

≤ 2α+1
∥ϕα∂3

z V ∥∞(1 + εα(|y1|
α
+ |y2|

α)). (4-14)

For this computation, we used the following property of the weight function, which was also of crucial
importance in [Calvez et al. 2019, Lemma 4.5]:

sup
(t,z)∈R+×R

ϕα(t, z)
ϕα(t, z̄)

≤ 2α.

As a consequence, take i = 1 or 2. Then

ϕα(t, z)|∂3
z V (z̄ + εyi )| ≤

2αϕα(t, z̄)
(1 + |z̄ + εyi − z∗|)α

∥ϕα∂3
z V ∥∞

≤ 2α

(
1 +

|εyi |

1 + |z̄ + εyi − z∗|

)α

∥ϕα∂3
z V ∥∞

≤ 2α(1 + εα
|yi |

α)∥ϕα∂3
z V ∥∞.

We deduce that

ϕα(t, z)

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]

( 1
4Dε(∂

3
z V )(Y, t, z)

)
dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

≤
1

21−α
∥ϕα∂3

z V ∥∞ + O(εα)∥(g, V )∥,

by subadditivity of | · |
α. This justifies (4-14). Once added to other estimates of the terms of (4-13),

obtained by Taylor expansions of Dε as before, we get the desired estimate. □

One can notice in the proof that the order O(ε) is not the sharpest one can possibly get for the first
derivative; see (4-12). However, it is sufficient for our purposes. We now detail the control upon the
directional derivatives of Iε.
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Proposition 4.4 (bound of the directional derivatives of Iε). For any ball B of R × E , there exists a
constant εB that depends only on B such that for any pair (g, V ) in B and any function H ∈ E , for
every ε ≤ εB :

sup
(t,z)∈R+×R

(ϕα(t, z)|∂g∂
( j)
z Iε(g, V )(t, z)|) ≤ O(ε)∥(g, V )∥E , j = 1, 2, 3, (4-15)

sup
(t,z)∈R+×R

(ϕα(t, z)|∂V ∂( j)
z Iε(g, V ) · H(t, z)|) ≤ O(ε)∥H∥E , j = 1, 2, (4-16)

sup
(t,z)∈R+×R

(ϕα(t, z)|∂V ∂3
z Iε(g, V ) · H(t, z)|) ≤ O(εα)∥H∥E +

1
21−α

∥ϕα∂3
z H∥∞, (4-17)

where the O(ε) depend only on the ball B.

As for Proposition 4.3, in those estimates, the order of precision O(ε) is not optimal and we could
improve it without it being useful. We will not give the full proof for each estimate of this Proposition.
However, we see that it follows the same pattern than in Proposition 4.3, and we will even use those
results for the proof. In particular for the third derivative, it is not possible to completely recover an
order ε, hence the term

∥ϕα∂3
z H∥∞/21−α.

It comes from the linear part Dε(∂
3
z V ) that appears in ∂3

z Iε, see (4-13). However, it does not prevent
us from carrying our analysis since the factor 1/21−α will be absorbed by a contraction argument; see
Section 8.

Proof of Proposition 4.4. We first detail the proof of (4-15), because derivatives in g are somehow easier
to estimate. The formula for the first derivative is:

∂g∂zIε(g, V )(t, z)

= −ε

(∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)](y1 + y2)Dε(∂z V )(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

− ∂zIε(g, V )(t, z)

∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)]y dy
√

π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

)
. (4-18)

The first term of this formula closely resembles the one for ∂z Iε(g, V ), with an additional factor ε(y1+ y2).
We do not detail how to bound it, as it follows the same steps; see the work done following (4-11). For
the second term we first use the following bound:∫

R
e−|y|

2/2 exp[−εgy +D∗
ε (V )(y, t)]y dy

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
≤

∫
R

exp
[
−

1
2 |y|

2
+ 2ε|y|∥(g, V )∥

]
y dy∫

R
exp

[
−

1
2 |y|2 − 2ε|y|∥(g, V )∥

]
dy

. (4-19)

For ε sufficiently small that depends only on ∥(g, V )∥ we deduce a uniform bound with moments of
the Gaussian distribution. We then use the estimate from Proposition 4.3 on ∂z Iε(g, V ), which takes the
weight into account, to conclude.
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Every other estimate of Proposition 4.4 works along the same lines. We illustrate this with the second
derivative in g and z:

∂g∂
2
z Iε(g,V )(t, z)

=−ε

(∫∫
R2 e−Q(y1,y2) exp[−εg(y1+y2)+2Dε(V )(Y, t, z)](y1+y2)

(
Dε(∂zV )2

+
1
2Dε(∂

2
z V )

)
(Y, t, z)dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy+D∗

ε (V )(y, t)]dy

−∂2
z Iε(g,V )

∫
R

e−|y|
2/2 y exp[−εgy+D∗

ε (V )(y, t)]dy∫
R

e−|y|2/2 exp[−εgy+D∗
ε (V )(y, t)]dy

)
. (4-20)

This is very close to ∂2
z Iε that has already been estimated in Proposition 4.3, and therefore the same

arguments as before hold.
The structure is different for the derivatives in V, as can be seen for ∂V ∂zIε(g, V ) · H :

∂V ∂zIε(g, V )· H(t, z)

=

∫∫
R2 exp[−Q(y1, y2)−εg(y1 + y2)+2Dε(V )(Y, t, z)](2Dε(∂z V )Dε(H)+Dε(∂z H))(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy+D∗

ε (V )(y, t)] dy

−∂zIε(g, V )(t, z)

∫
R

e−|y|
2/2 exp[−εgy+D∗

ε (V )(y, t)]D∗
ε (H)(y, t) dy

√
π
∫

R
e−|y|2/2 exp[−εgy+D∗

ε (V )(y, t)] dy
. (4-21)

The second term can still be bounded using Proposition 4.3 and estimate (4-19) along with the following
immediate result:

|D∗

ε (V )(y, t)| ≤ ε|y|∥V ∥E .

For the first term, we must do Taylor expansions of 2Dε(∂z V )Dε(H) +Dε(∂z H) to control them with
the weight. One ends up with moments of the multidimensional Gaussian distribution just as in all the
previous proofs. For instance,

2ϕα(t, z)|Dε(∂z V )Dε(H)|(t, z) ≤ ϕα(t, z)|Dε(∂z V )(t, z)|O(ε)(|y1| + |y2|)∥H∥E

≤ O(ε)(|y1| + |y2| + |y1|
α+1

+ |y2|
1+α)(|y1| + |y2|)∥H∥E∥V ∥E .

The same method holds for the second derivative in V and z.
The estimate of the third derivative in g and z is similar to the previous computations with the following

formula:

∂g∂
3
z Iε(t, z)

=

−ε
∫∫

R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]

× (y1 + y2)
(
Dε(∂z V )3

+
3
2Dε(∂z V )Dε(∂

2
z V ) +

1
4Dε(∂

3
z V )

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

− ε∂3
z Iε(t, z)

∫
R

e−|y|
2/2 y exp[−εgy +D∗

ε (V )(y, t)] dy∫
R

e−|y|2/2 exp[−εgy +D∗
ε (V )(y, t)] dy

. (4-22)
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However, to get the bound (4-17), things are a little bit different, because of the linear term of higher
order, Dε(∂

3
z H):

∂V ∂3
z Iε(g, V ) · H(t, z)

=

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]

×

(
Dε(H)

(
2Dε(∂z V )3

+ 3Dε(∂z V )Dε(∂
2
z V ) +

1
2Dε(∂

3
z V )

)
+ 3Dε(∂z H)Dε(∂z V )2

+
3
2(Dε(∂z V )Dε(∂

2
z H) +Dε(∂z H)Dε(∂

2
z V )) +

1
4Dε(∂

3
z H)

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

+ ∂3
z Iε(t, z)

∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)]D∗
ε (H)(y, t) dy

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
.

We do not get an order ε from the linear part Dε(∂
3
z H), since we do not control the fourth derivative in E.

We then proceed with arguments following (4-13) in the proof of Proposition 4.3. □

Thanks to those estimates we are able to write our main result for this part, which is a precise control
of the linearization of the derivatives of Iε:

Proposition 4.5 (linearization with weight). For any ball B of R × E, there exists a constant εB that
depends only on B such that for all ε ≤ εB we have, for all (g, W ) ∈ B:

∂zIε(q∗
+ ε2g, V ∗

+ ε2W )(t, z) = ∂zI∗

ε (t, z) +
∥(g, W )∥

ϕα(t, z)
O(ε3), (4-23)

∂2
z Iε(q∗

+ ε2g, V ∗
+ ε2W )(t, z) = ∂2

z I
∗

ε (t, z) +
∥(g, W )∥

ϕα(t, z)
O(ε3), (4-24)

∂3
z Iε(q∗

+ ε2g, V ∗
+ ε2W )(t, z) = ∂3

z I
∗

ε (t, z) +
ε2

∥ϕα∂3
z W∥∞

21−αϕα(t, z)
+

∥(g, W )∥

ϕα(t, z)
O(ε2+α), (4-25)

where the O(ε3) only depend on the ball B.

Proof. The methodology for (4-23)–(4-25) is the same. We detail for instance how to prove (4-23). One
begins by writing the following exact Taylor expansion up to the second order:

∂zIε(q∗
+ ε2g, V ∗

+ ε2W )(t, z)

= ∂zI∗

ε (t, z) + ε2(∂g∂zIε(q∗
+ ε2ξg, V ∗

+ ε2ξW )(t, z) + ∂V ∂zIε(q∗
+ ε2ξg, V ∗

+ ε2ξW ) · W (t, z)),

with 0 < ξ < 1. The result for (4-23) is then given by the directional decay estimates of Proposition 4.4
applied to g′

= q∗
+ ε2ξg, V = V ∗

+ ε2ξW and H = W. □

Together with Proposition 3.6, we know exactly how ∂
j

z Iε behaves when ε is small:

∂( j)
z Iε(q∗

+ ε2g, V ∗
+ ε2W )(t, z) = O∗(ε2) +

∥(g, W )∥

ϕα(t, z)
O(ε3),

where j = 1, 2, and the behavior is only slightly different for j = 3.
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4C. Refined estimates of I∗
ε at z = z∗. To conclude this section dedicated to estimates of Iε, we now

show that our estimates above can be made much more precise when looking at the particular case of
the function I∗

ε evaluated at the point z∗. In particular, we will gain information about the sign of the
derivatives, that will prove crucial regarding the stability of κε. This additional precision is similar to what
was needed in the stationary case [Calvez et al. 2019, Lemma 3.1] where detailed expansions of Iε were
needed for the study of the affine part, there named γε. We will find it convenient to use the following
notations, as in [Calvez et al. 2019]:

Definition 4.6 (measure notations). We introduce the following measures:

dG∗

ε(Y, z, t) :=
G∗

ε(Y, t, z)∫∫
R2 G∗

ε(Y, t, z)dy1 dy2

=
exp[−Q(y1, y2)−εq∗(y1+y2)+2Dε(V ∗)(Y, t, z)]∫∫

R2 exp[−Q(y1, y2)−εq∗(y1+y2)+2Dε(V ∗)(Y, t, z)]dy1 dy2
, (4-26)

with Y = (y1, y2), and

d N ∗

ε (y, t) :=
N ∗

ε (y, t)∫
R

N ∗
ε ( · , t)

:=
exp

[
−

1
2 |y|

2
− εq∗y +D∗

ε (V ∗)(y, t)
]∫

R
exp

[
−

1
2 |y|2 − εq∗y +D∗

ε (V ∗)(y, t)
]

dy
. (4-27)

Proposition 4.7 (uniform control of the directional derivatives of ∂zI∗
ε ). There exist a function of time R∗

ε

such that for any ball B of E , there exists a constant ε∗ that depends only on K ∗, that satisfies for all
ε ≤ ε∗, for all H ∈ E :

∂g∂zI∗

ε (t, z∗) = ε2 R∗

ε (t) + O∗(ε3) and ∂V ∂zI∗

ε · H(t, z∗) = O∗(ε2)∥H∥E , (4-28)

where all the O∗(ε j ) depend only on K ∗ defined in Proposition 3.3 and R∗
ε is given by the formula

R∗

ε (t) := m′′(t, z∗)

∫∫
R2

dG∗

ε(Y, t, z∗)(y1 + y2)
2 dy1 dy2. (4-29)

So R∗
ε is uniformly bounded and there exists a constant R0 and time t0 such that R∗

ε ≥ R0 > 0 for all t ≥ t0.

The sign of R∗
ε is directly connected to the behavior of z∗ we assumed in the introduction; see (1-16).

The derivative in V admits a lower order in ε as in previous estimates; see (4-25) and (4-17) for instance.
This lower order term will be absorbed by a contraction argument, see Section 8, once we have a definitive
estimate of ∥Wε∥F ; see estimate (8-2).

Proof of Proposition 4.7. First we focus on the bound of the first equation in (4-28). Similarly to (4-18),
the explicit formula for the derivative is

∂g∂zI∗

ε (t, z∗)

:= − ε(I1 + I2)

= − ε

(∫∫
R2 exp[−Q(y1, y2) − εq∗(y1 + y2) + 2Dε(V ∗)(Y, t, z∗)](y1 + y2)Dε(∂z V ∗)(Y, t, z∗) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy

− ∂zI∗

ε (t, z∗)

∫
R

e−|y|
2/2 y exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy
√

π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy

)
. (4-30)
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Thanks to Proposition 4.4, we already know that |∂zI∗
ε (t, z∗)|= O∗(ε2). Moreover, we bound uniformly

the second term as follows:∣∣∣∣
∫

R
e−|y|

2/2 y exp[−εq∗y +D∗
ε (V ∗)(y, t)] dy

√
π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy

∣∣∣∣≤
∫

R
exp

[
−

1
2 |y|

2
+ 2εK ∗

|y|
]
|y| dy

√
π
∫

R
exp

[
−

1
2 |y|2 − 2εK ∗|y|

]
dy

≤ O∗(1),

where K ∗ was defined in Proposition 3.3. This shows that I2 = O∗(ε2). Therefore one can focus on I1.
In order to gather information about the sign of this quantity and not only get a bound in absolute value,
we perform exact Taylor expansions of Dε(∂z V ∗). We divide I1 by I∗

ε (t, z∗), and thanks to the definitions
of (4-26) and (4-27) we get

I1

I∗
ε (t, z∗)

=

∫∫
R2

dG∗

ε(Y, t, z∗)(y1 + y2)Dε(∂z V ∗)(Y, t, z∗) dy1 dy2.

As usual, we make Taylor expansions: there exists 0 < ξ1, ξ2 < 1 such that

I1

I∗
ε (t, z∗)

=

∫∫
R2

dG∗

ε(Y, t, z∗)
(
−ε 1

2(y1 + y2)
2∂2

z V ∗(t, z∗)−
1
4ε2 y2

1(y1 + y2)∂
3
z V ∗(t, z∗+εξ1 y1)

−
1
4ε2 y2

2(y1 + y2)∂
3
z V ∗(t, z∗ + εξ2 y2)

)
dy1 dy2. (4-31)

We next define R∗
ε as

ε∂2
z V ∗(t, z∗)

∫∫
R2

dG∗

ε(Y, t, z∗)
1
2(y1 + y2)

2 dy1 dy2 =: εR∗

ε (t),

with the following uniform bounds, that come from bounding by moments of a Gaussian distribution:

0 < R0 ≤ R∗

ε (t), ∀t ≥ t0.

Moreover, it is easy to see that R∗
ε is uniformly bounded. The next terms of (4-31) are of order superior

to ε2 and can be bounded uniformly by

1
4
ε2
∣∣∣∣∫∫

R2
dG∗

ε(Y, t, z∗)(y2
1(y1 + y2) + y2

2(y1 + y2))K ∗ dy1 dy2

∣∣∣∣≤ O∗(ε2).

Therefore one can rewrite (4-31) as

I1

I∗
ε (t, z∗)

= −εR∗

ε (t) + O∗(ε2).

Thanks to Proposition 3.4, we recover a similar estimate for I1:

I1 = −εR∗

ε (t) + O∗(ε2).

Finally coming back to (4-30), we have shown that

∂g∂zI∗

ε (t, z∗) = ε2 R∗

ε (t) + O∗(ε3).
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This concludes the proof of the first estimate in (4-28). Next, we tackle the proof of the estimate upon the
Fréchet derivative in (4-28), where, again, we first divide by I∗

ε (t, z∗):

∂V ∂zI∗
ε · H(t, z∗)

I∗
ε (t, z∗)

=

∫∫
R2

dG∗

ε(Y, t, z∗)(Dε(∂z V ∗)2Dε(H) +Dε(∂z H))(Y, t, z∗) dy1 dy2

−
∂zI∗

ε (t, z∗)

I∗
ε (t, z∗)

∫
R

d N ∗

ε (y, t)D∗

ε (H)(y, t) dy. (4-32)

Thanks to Propositions 3.6 and 3.4 and a uniform bound on D∗
ε (W ), we have∣∣∣∣∂zI∗

ε (t, z∗)

I∗
ε (t, z∗)

∫
R

d N ∗

ε (y, t)D∗

ε (H)(y, t) dy
∣∣∣∣≤ O∗(ε3)∥H∥E . (4-33)

For the first term of (4-32), we first make a bound based on Taylor expansions of Dε(H):

|Dε(H)(Y, t, z∗)| ≤
1
2ε2(|y1|

2
+ |y2|

2)∥H∥E .

The key element here is that since Dε is evaluated at z∗, one gains an order in ε because ∂z H(t, z∗) = 0,
by definition of E. Therefore, one gets∣∣∣∣∫∫

R2
dG∗

ε(Y, t, z∗)(Dε(∂z V ∗)2Dε(H))(Y, t, z∗) dy1 dy2

∣∣∣∣≤ O∗(ε3)∥H∥E , (4-34)

where the additional order in ε is gained through a Taylor expansion of Dε(∂z V ∗). We finally tackle the
last term of (4-32) we did not yet estimate, involving Dε(∂z H). Based only on Taylor expansions in E ,
we do not gain an order ε3 as in the previous terms, which explains our estimate of order ε2 in (4-32).
Rather, we obtain, for some 0 < ξ < 1,∫∫

R2
dG∗

ε(Y, t, z∗)Dε(∂z H)(Y, t, z∗) dy1 dy2

= ε
∂2

z H(t, z∗)

2

∫∫
R2

dG∗

ε(Y, t, z∗)(y1 + y2) dy1 dy2

+
ε2

4

∫∫
R2

dG∗

ε(Y, t, z∗)(y2
1∂3

z H(t, z∗ + εξ y1) + y2
2∂3

z H(t, z∗ + εξ y2)) dy1 dy2. (4-35)

It is straightforward, based on multiple similar computations, to deduce that the first moment of dG∗
ε is

zero at the leading order. Therefore,

ε
∂2

z H(t, z∗)

2

∫∫
R2

dG∗

ε(Y, t, z∗)(y1 + y2) dy1 dy2 = ε
∂2

z H(t, z∗)

2
O∗(ε) = O∗(ε2)∥H∥E . (4-36)

See for instance the proof of Proposition 3.4 for similar computations. In the second term of (4-35), we
also cannot do better than an order in ε2:

ε2

4

∫∫
R2

dG∗

ε(Y, t, z∗)(y2
1∂3

z H(t, z∗ + εξ y1) + y2
2∂3

z H(t, z∗ + εξ y2)) dy1 dy2

≤
ε2

∥H∥E

4

∫∫
R2

dG∗

ε(Y, t, z∗)(y2
1 + y2

2) dy1 dy2 = O∗(ε2)∥H∥E .

Finally, by putting together (4-33)–(4-35) and finally (4-36), the second estimate of (4-28) is proven. □
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The order ε3 of the second equation in (4-28) will be crucial in our analysis around κε, the perturbation
of the linear part qε defined in (1-22). Next, we provide an accurate linearization of ∂zIε compared to
the one provided before in Proposition 4.5 and (4-23). This is possible thanks to an evaluation at z = z∗,
and it will prove useful when tackling the perturbation of the linear part κε. This is the content of the
following lemma.

Lemma 4.8 (uniform control of the second Fréchet derivative of ∂zIε). For any ball B of R × E , there
exists a constant εB that depends only on B such that for all ε ≤ εB we have, for all (g, W ) ∈ B, that

∂zIε(q∗
+ ε2g, V ∗

+ ε2W )(t, z∗)

= ∂zI∗

ε (t, z∗) + ε2(∂g∂zI∗

ε (t, z∗)g + (∂V ∂zI∗

ε · W )(t, z∗)) + O(ε5)∥(g, W )∥. (4-37)

Proof. We write f (p) := ∂zIε(q∗
+ pg, V ∗

+ pW )(t, z). We recognize in formula (4-37) a Taylor
expansion of f . Then, to prove the estimate of (4-37) it is sufficient to bound f ′′(ε2) uniformly:

f ′′(ε2) ≤ O(ε)∥(g, W )∥.

The formula for f ′′ is very long, so for clarity we will denote by Aε(p) the numerator and by Bε(p) the
denominator of f (p), respectively, so that when we differentiate we have the structure

f ′′(p) =
A′′

ε(p)

Bε(p)
− 2

A′
ε(p)B ′

ε(p)

Bε(p)2 −
Aε(p)B ′′

ε (p)

Bε(p)2 + 2
Aε(p)B ′

ε(p)2

Bε(p)3 . (4-38)

The numerator is defined as

Aε(p) :=

∫∫
R2

exp[−Q(y1, y2) + 2Dε(V ∗
+ pW )(Y, t, z∗) − ε(q∗

+ pg)(y1 + y2)]

×Dε(∂z V ∗
+ pW )(Y, t, z∗) dy1 dy2,

while the denominator reads

Bε(p) :=

∫
R

e−|y|
2/2 exp[−ε(q∗

+ pg)y +D∗

ε (V ∗
+ pW )(y, t)] dy.

Therefore we will divide each term by I∗
ε to simplify the notations. This will make the measures dG∗

ε, d N ∗
ε ,

introduced in (4-26) and (4-27), appear. For instance,

Aε(p)

I∗
ε (t, z∗)Bε(p)

:=

∫∫
R2 dG∗

ε(Y, t, z∗) exp[−εpg(y1 + y2) + 2pDε(W )(Y, t, z∗)](Dε(∂z V ∗
+ p∂z V ∗)(Y, t, z∗)) dy1 dy2∫

R
d N ∗

ε (y, t) exp[pD∗
ε (W )(y, t) − εpgy] dy

.

We notice that any factor of the sum in (4-38) (divided by I∗
ε ) is a sum (and a product) of terms of the

form
A( j)

ε (p)B(k)
ε (p)

Bε(p)I∗
ε (t, z∗)

=
A( j)

ε (p)

I∗
ε (t, z∗)Bε(p)

B(k)
ε (p)

Bε(p)
,
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with j = 0, 1, 2, k = 1, 2 and the constraint j + k = 2. It is rather convenient to bound separately each of
those terms. For instance, we deal with the second one:

A′
ε(p)B ′

ε(p)

Bε(p)2I∗
ε (t, z∗)

=
A′

ε(p)

I∗
ε (t, z∗)Bε(p)

B ′
ε(p)

Bε(p)
. (4-39)

The first term of this product is

A′
ε(p)

I∗
ε (t, z∗)Bε(p)

:=

∫∫
R2 dG∗

ε(Y, t, z∗) exp[2pDε(W )−εgp(y1+y2)]Dε(∂zW ) dy1 dy2∫
R

d N ∗
ε (y, t) exp[2D∗

ε (W )(y, t)−εgy] dy

+

∫∫
R2 dG∗

ε(Y, t, z∗) exp[2pDε(W )−εgp(y1+y2)]2Dε(∂z V ∗
+p∂zW )(Dε(W )−εg(y1+y2)) dy1 dy2∫

R
d N ∗

ε (y, t) exp[2D∗
ε (W )(y, t)−εgy] dy

.

The numerator and denominator can be bounded by estimating naively Dε:∣∣∣∣ A′
ε(p)

Bε(p)I∗
ε (t, z)

∣∣∣∣
≤

∫∫
R2 dG∗

ε(Y, t, z∗)exp[3ε∥(g,W )∥(|y1|+|y2|)]ε(|y1|+|y2|)∥(g,W )∥dy1 dy2∫
R

d N ∗
ε (y, t)exp[−3ε∥(g,W )∥|y|]dy

+

∫∫
R2 dG∗

ε(Y, t, z∗)exp[3ε∥(g,W )∥(|y1|+|y2|)]ε
2(|y1|+|y2|)

2(3∥(g,W )∥+2K ∗)3∥(g,W )∥dy1 dy2∫
R

d N ∗
ε (y, t)exp[−3ε∥(g,W )∥|y|]dy

.

Therefore, we only get moments of a Gaussian distribution, so the previous bound is in fact∣∣∣∣ A′
ε(p)

Bε(p)I∗
ε (t, z)

∣∣∣∣≤ O(ε)∥(g, W )∥. (4-40)

With the exact same arguments but more convoluted formulas, one shows that∣∣∣∣ A′′
ε(p)

Bε(p)I∗
ε (t, z)

∣∣∣∣≤ O(ε)∥(g, W )∥. (4-41)

For the quotients of B in (4-38), we lose the structure of the measures dG∗
ε and d N ∗

ε , but they are replaced
by an actual Gaussian measure exp[−y2/2]. Therefore, with the same arguments as before, we bound the
quotient by the moments of a Gaussian distribution. For instance,∣∣∣∣ B ′

ε(p)

Bε(p)

∣∣∣∣= ∣∣∣∣
∫

R
e−|y|

2/2 exp[2D∗
ε (V ∗

+ pW ) − ε(q∗
+ gp)y](2D∗

ε (W ) − εgy) dy∫
R

e−|y|2/2 exp[2D∗
ε (V ∗ + pW ) − ε(q∗ + gp)y] dy

∣∣∣∣
≤

∫
R

e−|y|
2/2 exp[3ε|y|K ∗

+ 3ε∥(g, W )∥|y|](3ε∥(g, W )∥|y|) dy∫
R

e−|y|2/2 exp[−3εK ∗|y| − 3ε∥(g, W )∥|y|] dy

≤ O(ε)∥(g, W )∥. (4-42)
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Multiplying each term of (4-41) by (4-42) and then combining them yields the desired estimate result,
given the separation of terms made in (4-38):∣∣∣∣ f ′′(p)

I∗
ε (t, z)

∣∣∣∣≤ O(ε)∥(g, W )∥.

Thanks to Proposition 3.4, Lemma 4.8 is proven. □

5. Linearized equation for κε, convergence of pε

5A. Uniform boundedness of κε. Thanks to the estimates of the previous sections, all the useful tools to
look at the perturbation κε are made available. We recall that our final goal is to show that κε is bounded
as it is the perturbation from q∗; see (1-22). We show in this section that one gets an approximated ODE
on κε with good properties when linearizing; see Proposition 5.1. It is obtained by differentiating (2-2)
and evaluating at z = z∗. This is exactly what suggested the spectral analysis of the formal linearized
operator T in the table on page 1297. Now, thanks to our previous set of estimates from Section 4, we
are able to carefully justify our linearization. Finally, the limit ODE we introduced for q∗ in (1-18) will
appear clearly when we do our analysis to balance contributions of smaller order.

To simplify expressions, we introduce the following alternative notations for all t, z ∈ R+× R:

4ε(t, z) := Wε(t, z) − 2Wε(t, z̄(t)). (5-1)

Compared to previous sections, and for the rest of this article, we will work in the space F that is well
suited to measure Wε and build the linearization results, here for κε. All our previous estimates that were
established in E remain true in F.

Proposition 5.1 (equation on κε). For any ball B of R ×F there exists a constant εB that depends only
on B such that if (κε, Wε) ∈ B is a solution of (2-2), then for all ε ≤ εB , we have that κε is a solution of
the following ODE:

−κ̇ε(t) = R∗

ε (t)κε + O∗(1)∥Wε∥F + O∗(1) + O(ε)∥(κε, Wε)∥, (5-2)

where the O(ε) depend only on B, and the R∗
ε are defined in Proposition 4.7.

Proof. As announced above, one starts by differentiating (2-2). This yields, with the notation 4ε introduced
in (5-1),

∂z M(t, z) − ε2q̇∗(t) − ε2∂z∂t V ∗(t, z) − ε4κ̇ε(t) − ε4∂z∂t Wε(t, z)

= M(t, z)∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

+ ∂z M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

+ ε2 M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]∂z4ε(t, z).

When we evaluate the expression at z = z∗, the last two terms vanish, since ∂z M(t, z∗) = ∂z4ε(t, z∗) = 0.
Therefore, the equation becomes, since 4ε(t, z∗) = 0 and M(t, z∗) = 1,

−ε2q̇∗(t) − ε2∂z∂t V ∗(t, z∗) − ε4κ̇ε(t) − ε4∂z∂t Wε(t, z∗) = ∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗). (5-3)
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We then use directly the linearization result of Lemma 4.8 that we prepared for that purpose:

∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗)

= ∂zI∗

ε (t, z∗) + ε2(∂g∂zI∗

ε (t, z∗)κε + (∂V ∂zI∗

ε · Wε)(t, z∗)) + O(ε5)∥(κε, Wε)∥. (5-4)

We see that for most of the terms, we previously provided a careful estimate in Section 4. First, by
Proposition 3.5,

∂zI∗

ε (t, z∗) = ε2(m′′(z∗)q∗(t) −
1
2 m(3)(z∗)

)
+ O∗(ε4).

Plugging this into the asymptotic development of (5-4), we get the following:

∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗)

= ε2(m′′(z∗(t))q∗(t) −
1
2 m(3)(z∗(t))

)
+ ε2(∂g∂zI∗

ε (t, z∗)κε + ∂V ∂zI∗

ε · Wε(t, z∗)) + O∗(ε4) + O(ε5)∥(κε, Wε)∥.

Combining this with Proposition 4.7 where we got precise estimates at the point z∗, we complete the
expansion of ∂zIε:

∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗)

= ε2(m′′(z∗)q∗(t) −
1
2 m(3)(z∗)

)
+ ε4 R∗

ε (t)κε + O∗(ε4)∥Wε∥F + O∗(ε4) + O(ε5)∥(κε, Wε)∥.

When we turn back to (5-3), we have shown at this point the following relationship:

−ε2q̇∗(t) − ε2∂z∂t V ∗(t, z∗) − ε4κ̇ε(t) − ε4∂z∂t Wε(t, z∗)

= ε2(m′′(z∗)q∗(t) −
1
2 m(3)(z∗)

)
+ ε4 R∗

ε (t)κε + O∗(ε4)∥Wε∥F + O∗(ε4) + O(ε5)∥(κε, Wε)∥. (5-5)

To get a stable equation on κε, the terms of order ε2 must cancel out. This is precisely the role played by
the dynamics of q∗ defined in (1-18). To see it, we just rewrite a term of (5-5), using ∂z V ∗(t, z∗) = 0
and Lemma 3.2:

∂z∂t V ∗(t, z∗) = m′(z∗)∂
2
z V ∗(t, z∗) = 2m′(z∗)m′′(z∗).

Therefore, we recognize that by the definition of q∗ in (1-18), the following terms cancel:

ε2(q̇∗(t) + m′′(z∗)q∗(t) −
1
2 m(3)(z∗) + 2m′′(z∗)m′(z∗)

)
= 0.

We then rewrite the second term of (5-5) of order ε4:

∂z∂t Wε(t, z∗) = m′(z∗)∂
2
z Wε(t, z∗) = O∗(1)∥Wε∥F .

Finally, we deduce from (5-5) the following relationship:

−κ̇ε(t) = R∗

ε (t)κε + O∗(1)∥Wε∥F + O∗(1) + O(ε)∥(κε, Wε)∥.

We have proven (5-2). □
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In this ODE solved by κε, each term plays a separate part. First the function R∗
ε is what guarantees the

stability of κε because it is positive for large times. The other terms come from our perturbative analysis
methodology. The term O∗(1) + O(ε)∥(κε, Wε)∥ measures the error made when linearizing to obtain
the ODE, and it ensures that it is of superior order in ε except for the part that comes from the reference
point of our linearization: O∗(1). Interestingly, there is also an error term that is not of superior order
when linearizing, O∗(1)∥Wε∥F , but what saves our contraction argument of Section 8 is that this term
only involves Wε, which we can bound independently, see Section 7.

5B. Equation on pε. We did not perturb the number pε as we did for (qε, Vε) since it can be straightfor-
wardly computed from our reference equation (2-2). Given the spectral decomposition in the table on
page 1297 in the heuristics of Section 2, it is consistent to evaluate (2-2) at z = z∗ to gain the necessary
information about pε. This yields

1 − ε2( ṗε(t) + m′(z∗)q∗(t)) − ε4m′(z∗)κε(t) = Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗). (5-6)

Thanks to Propositions 3.3 and 4.2, and as long as κε is bounded (which we will show in Section 8),

ε2( ṗε(t) + m′(z∗(t))q∗(t)) = O(ε2).

In this last equation, the order of precision is not enough to recover the equation on p∗ when ε → 0. The
problem is that the linearization of Iε made in (4-10) is a little too rough. Coming back to Proposition 3.4,
we make the more precise estimate

I∗

ε (t, z∗) = 1 −
1
2ε2∂2

z V ∗(t, z∗) + O∗(ε4). (5-7)

The proof of this result is a direct adaptation of that of Proposition 3.4, by making Taylor expansions
up to the fourth derivative of V ∗, as made possible by the introduction of E∗; see Definition 3.1. This
involves computing the moments of the Gaussian distribution exp[−Q]:

1
√

2π

∫∫
R2

e−Q(y1,y2)(y2
1 + y2

2) dy1 dy2 =
1
2
. (5-8)

By plugging (5-7) into (5-6), and using (4-9), we find that

ṗε(t) + m′(z∗)q∗(t) =
1
2∂2

z V ∗(t, z∗) + O(ε2) = m′′(z∗) + O(ε2). (5-9)

We used (3-1) for the last equality. From (5-9), the convergence of pε towards p∗ defined by (1-19),
stated in Theorem 1.3, is straightforward.

6. Linearization results

We finally tackle the complete linearization of (2-2). A preview was given when we studied the equation
on κε, however it was local since we had beforehand evaluated at z∗(t). Here, we will provide global (in
space) results.
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6A. Linearization of Wε. A first step is to control the function 4ε, which, we recall, is a byproduct
of Wε, introduced in (5-1).

Lemma 6.1 (control of 4ε). For any ball B of F, there exists a constant εB that depends only on B such
that for all ε ≤ εB , if Wε ∈ B, then 4ε defined in (5-1) satisfies

exp[ε24ε(t, z)] = 1 + ε24ε(t, z) + O(ε4)∥Wε∥F ,

where O(ε4) depends only on the ball B.

Proof. By the choice of the norm in F and in the setting of Wε ∈ B we have the following uniform control
for all t, z:

|4ε(t, z)| ≤ ∥Wε∥F .

Then, by performing an exact Taylor expansion, there exists 0 < ξ < 1 such that

exp[ε24ε(t, z)] = 1 + ε24ε(t, z) +
1
2ε44ε(t, z)2 exp[ε2ξ4ε(t, z)].

To conclude we uniformly bound the rest for ε2
≤ 1/∥Wε∥F :∣∣ 1

2ε44ε(t, z)2 exp[ε2ξ4ε(t, z)]
∣∣≤ 1

2ε4
∥Wε∥

2
F . □

This first result is prototypical of the tools we will employ to linearize the problem (2-2) solved
by (κε, Wε). We now write the linearized problem satisfied by Wε.

Proposition 6.2 (linearization for Wε). For any ball B of R ×F, there exists a constant εB that depends
only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B, a solution of (2-2), satisfies the estimate

−ε2∂t Wε(t, z) = M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥), (6-1)

where O(ε) depends only on B.

Proof. One starts from (2-2):

M(t, z)−ε2( ṗε(t)+m′(z∗)q∗(t)+q̇∗(t)(z−z∗)+∂t V ∗(t, z))−ε4(κ̇ε(t)(z−z∗)+m′(z∗)κε(t)+∂t Wε(t, z))

= M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]. (6-2)

Thanks to Lemma 6.1 and Proposition 4.2, where we linearized Iε, and the term in 4ε, one can expand
the right-hand side as follows:

M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

= M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= M(t, z) + ε2 M(t, z)4ε(t, z) + M(t, z)(O∗(ε2) + O(ε3)∥(κε, Wε)∥). (6-3)

The left-hand side of (6-2) is a little bit more involved. We will use our previous work on (pε, κε). First,
thanks to (5-6) which states the relationship satisfied by pε, we have

−ε2( ṗε(t) + m′(z∗)q∗(t)) − ε4κεm′(z∗) = 1 − Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗).
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We then use Proposition 4.2 involving the linearization of Iε to get that

−ε2( ṗε(t) + m′(z∗)q∗(t)) − ε4κεm′(z∗) = O∗(ε2) + O(ε3)∥(κε, Wε)∥. (6-4)

From Proposition 3.3, we have the following uniform bound:

|∂t V ∗(t, z)| ≤ K ∗. (6-5)

Thanks to our preliminary work on κε, and more precisely (5-5), we know that

q̇∗(t) + ε2κ̇ε(t) = O∗(1) + O(ε)∥(κε, Wε)∥.

Therefore, the affine terms are comparable to M, since M is a superlinear function that admits a uniform
lower bound by hypothesis; see (1-13):∣∣∣∣(q̇∗(t) + ε2κ̇ε(t))(z − z∗)

M(t, z)

∣∣∣∣= O∗(1) + O(ε)∥(κε, Wε)∥. (6-6)

When adding up the estimates of (6-5) and (6-6), we have shown that

−ε2( ṗε(t)+m′(z∗)q∗(t)+ q̇∗(t)(z − z∗)+ ∂t V ∗(t, z))− ε4(κ̇ε(t)(z − z∗)+m′(z∗(t))κε(t)+ ∂t Wε(t, z))

= M(t, z)(O∗(ε2) + O(ε3))∥(κε, Wε)∥ − ε4∂t Wε(t, z). (6-7)

We have divided by M the relationships (6-4) and (6-5), which is possible thanks to the uniform lower
bound of M.

Finally, when putting together (6-6) and (6-3) in (6-2), the terms M cancel each other, and we find
(6-1) by factoring out ε2. □

One can notice the similarity between what we just proved rigorously and the heuristics made in (2-1).
From this result one can straightforwardly deduce an approximated linear equation satisfied by 4ε.

Corollary 6.3 (linearization in 4ε(t, z)). For any ball B of R×F , there exists a constant εB that depends
only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B satisfies the estimate

ε2∂t4ε(t, z) = M(t, z)
(

2
M(t, z̄(t))

M(t, z)
4ε(t, z̄) − 4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥

)
, (6-8)

where O(ε) depends only on B.

Remark 6.4. • The reader may notice that the computation of ∂t4ε yields a parasite term ε2 ż∗∂z4ε(t, z̄)
not dealt with by (6-1). However, this is a lower order term since it satisfies

ε2 ż∗(t)∂z4ε(t, z) = O(ε2)∥(κε, Wε)∥. (6-9)

• Under the same assumption as Corollary 6.3, Wε also satisfies the following linear equation:

−ε2∂t Wε(t, z) = M(t, z)(4ε(t, z) + O(1)).

However, in Section 7, we will study the stability of the solution of the linear problem. We will see that
one needs precise estimates about the structure of the nonlinear negligible terms, which explains the more
detailed estimate (6-1) and is the purpose of all our previous sections.
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6B. Linearization of ∂zWε. The computations for ∂zWε are slightly more complex because of the
differentiation of the triple product in the right-hand side (2-2). However, the key point is that when
we linearize Iε(q∗

+ ε2κε, V ∗
+ ε2κε) the derivatives of Iε are negligible in ε. Therefore the intuitive

linearized problem for ∂zWε, given by the derivation of the linearized equation for Wε, actually holds
true. This is the content of the following proposition:

Proposition 6.5 (linearization in ∂zWε). For any ball B of R ×F, there exists a constant εB that depends
only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B solution of (2-2) satisfies the following estimate:

−ε2∂t∂zWε(t, z) = M(t, z)
(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ∂z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥), (6-10)

where O(ε) depends only on B.

Proof. One starts by differentiating (2-2) as in the proof of Proposition 5.1 to highlight κε. This yields

∂z M(t, z) − ε2q̇∗(t) − ε2∂z∂t V ∗(t, z) − ε4κ̇ε(t) − ε4∂z∂t Wε(t, z)

= M(t, z)∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

+ ∂z M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

+ ε2 M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]∂z4ε(t, z).

However, contrary to the case where we were studying κ̇ε, we will not evaluate at z∗. We introduce the
notations Ri corresponding to each of the three terms of the right-hand side of the previous equation.
We will linearize each Ri starting with R1, which we estimate thanks to Proposition 4.5 and Lemma 6.1,
paired with the estimate of Proposition 3.6:

R1 := ∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)]

= M(t, z)
(
∂zI∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

Therefore, the final contribution of R1 is

R1 = M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-11)

Next, one looks at R2. Thanks to Proposition 4.2,

R2 := ∂z M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

= ∂z M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= ∂z M(t, z) + ε2∂z M(t, z)4ε(t, z) + ∂z M(t, z)(O∗(ε2) + O(ε3)∥(κε, Wε)∥). (6-12)
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We finally tackle R3 with the same techniques, using Proposition 4.2 and Lemma 6.1:

R3 := ε2 M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]∂z4ε(t, z)

= ε2 M(t, z)∂z4ε(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= ε2 M(t, z) + M(t, z)
O(ε4)∥(κε, Wε)∥

ϕα(t, z)
. (6-13)

In that last estimate, we chose to write O∗(ε4) as a regular O(ε4). Coming back to our initial problem,
when we assemble (6-11)–(6-13), we obtain

∂z M(t, z) − ε2q̇∗(t) − ε2∂z∂t V ∗(t, z) − ε4κ̇ε(t) − ε4∂z∂t Wε(t, z)

= ∂z M(t, z) + ε2∂z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ ε2 M(t, z)
(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-14)

We now deal with the left-hand side of (6-14). First, the terms ∂z M(t, z) on each side cancel. Next, using
the ODE that defines q∗ in (1-18), our linearized equation on κ̇ε stated in (5-2) and finally our bound
of ∂t V ∗ made in Proposition 3.3, we find that

−ε2(q̇∗(t) + ∂z∂t V ∗(t, z) + ε2κ̇ε(t)) = O∗(ε2) + O(ε3)∥(κε, Wε)∥. (6-15)

Finally, if we divide by M , the following estimate holds true since α < 1:∣∣∣∣O∗(ε2) + O(ε3)∥(κε, Wε)∥

M(t, z)

∣∣∣∣≤ O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)
.

Plugging this into (6-14), and dividing each side by ε2, we therefore recover the relationship we wanted
to prove:

−ε2∂t∂zWε(t, z) = M(t, z)
(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ∂z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥). □

We deduce straightforwardly a linearization result upon the quantity ∂z4ε.

Corollary 6.6 (linearization for ∂z4ε(t, z)). For any ball B of R ×F, there exists a constant εB that
depends only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B, a solution of (2-2), satisfies the
following estimate:

ε2∂t∂z4ε(t, z) = M(t, z)
(

M(t, z̄)
M(t, z)

∂z4ε(t, z̄) − ∂z4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ∂z M(t, z)

(
∂z M(t, z̄)
∂z M(t, z)

4ε(t, z̄) − 4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥

)
,

where the O(ε) depends only on B.
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6C. Linearization of ∂2
z Wε(t, z). We now tackle the linearized equation for ∂2

z Wε.

Proposition 6.7 (linearization for ∂2
z Wε). For any ball B of R×F, there exists a constant εB that depends

only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B, a solution of (2-2), satisfies the following
estimate:

−ε2∂2
z ∂t Wε(t, t)

= ∂2
z M(t, z)(4ε(t, z)+ O∗(1)+ O(ε)∥(κε, Wε)∥)+2∂z M(t, z)

(
∂z4ε(t, z)+

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ M(t, z)

(
∂2

z 4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
, (6-16)

where the O(ε) depend only on B.

In the next sections, we choose to write the second derivative ∂2
z 4ε(t, z) in full,

∂2
z Wε(t, z) −

1
2∂2

z Wε(t, z̄),

as the factor 1
2 will be the key to ensure the uniform boundedness of ∂2

z Wε; see Section 7.

Proof. We start by differentiating (2-2) twice. This yields

∂2
z M(t, z) − ε2∂2

z ∂t V ∗(t, z) − ε4∂2
z ∂t Wε(t, z) = R1 + R2 + R3 + R4 + R5 + R6,

with the following notations:

R1 := ∂2
z Iε(q∗

+ ε2κε, V ∗
+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)],

R2 := 2∂z M(t, z)∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)],

R3 := 2M(t, z)ε2∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]∂z4ε(t, z),

R4 := Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂2
z M(t, z) exp[ε24ε(t, z)],

R5 := 2ε2Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂z M(t, z) exp[ε24ε(t, z)]∂z4ε(t, z),

and finally,

R6 := ε2 M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)](ε2∂z4ε(t, z)2
+ ∂2

z 4ε(t, z)).

We will estimate each term separately, starting with R1, for which we apply Proposition 4.5, Lemma 6.1
and Proposition 3.6:

R1 = M(t, z)
(
∂2

z I
∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

Therefore, the final estimate of R1 is

R1 = M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-17)



1326 FLORIAN PATOUT

Next, for the term R2 we use Propositions 4.5 and 3.6 and find that

R2 = 2
(
∂zI∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
∂z M(t, z)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 2∂z M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

We can simplify this expression as

R2 = ∂z M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-18)

The term R3 will not contribute at the order ε2, because of Proposition 3.6, and |∂z4ε(t, z)| ≤ ∥Wε∥F :

R3 = 2ε2 M(t, z)∂z4ε(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

=
O(ε3)∥(κε, Wε)∥

ϕα(t, z)
M(t, z). (6-19)

For R4, the zeroth order terms are more entangled. With Proposition 4.2 and Lemma 6.1 we have

R4 = ∂2
z M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= ∂2
z M(t, z) + ε2∂2

z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥). (6-20)

We see in R4 the appearance of the term ε2∂2
z M(t, z)4ε(t, z) which is also in (6-16), and so it is a good

opportunity to do at first a summary of the computations when adding (6-17)–(6-20):

R1 + R2 + R3 + R4

= ∂2
z M(t, z) + ε2∂2

z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ ε2 M(t, z)
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)
+ ε2∂z M(t, z)

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)
. (6-21)

We continue the estimations by looking at R5, and thanks to Proposition 4.2 we have

R5 = 2ε2∂z M(t, z)∂z4ε(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 2ε2∂z M(t, z)∂z4ε(t, z) + ε2∂z M(t, z)
O∗(ε) + O(ε2)∥(κε, Wε)∥

ϕα(t, z)
.

(6-22)
Finally, we tackle the last term, R6, with Proposition 4.2:

R6 = ε2 M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

×

(
O(ε2)∥(κε, Wε)∥

ϕα(t, z)
+ ∂2

z 4ε(t, z)
)

= ε2 M(t, z)∂2
z 4ε(t, z) + ε2 M(t, z)

O(ε2)∥(κε, Wε)∥

ϕα(t, z)
. (6-23)
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Thanks to those last two estimates, (6-22) and (6-23), that we add with the previous result of (6-21), we
obtain for the full equation

∂2
z M(t, z) − ε2∂2

z ∂t V ∗(t, z) − ε4∂2
z ∂t Wε(t, z)

= ∂2
z M(t, z) + ε2∂2

z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ 2ε2∂z M(t, z)
(
∂z4ε(t, z) +

O∗(1)+ O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ε2 M(t, z)

(
∂2

z 4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
.

Thanks to Proposition 3.3 we know that ∥ε2∂2
z ∂t V ∗(t, z)∥∞ ≤ O∗(ε2). Then,

−ε4∂2
z ∂t Wε(t, t)

= ε2∂2
z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ 2ε2∂z M(t, z)
(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ε2 M(t, z)

(
∂2

z 4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
,

which proves (6-16) after dividing by ε2. □

6D. Linearization of ∂3
z Wε(t, z). Our last linearized equation is the one for ∂3

z Wε, and we proceed with
the same technique, with slightly more complex formulas.

Proposition 6.8 (linearization in ∂3
z Wε). For any ball B of R ×F, there exists a constant εB that depends

only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B, a solution of (2-2), satisfies the following
estimate:

−ε2∂t∂
3
z Wε(t, z) = ∂3

z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ 3∂2
z M(t, z)

(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ 3∂z M(t, z)

(
∂2

z 4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ M(t, z)

(
∂3

z 4ε(t, z) +
∥ϕα∂3

z Wε∥∞

21−αϕα(t, z)
+

O∗(1) + O(εα)∥(κε, Wε)∥

ϕα(t, z)

)
, (6-24)

where the O(ε) depend only on B.

Proof of Proposition 6.7. We start, as ever, by differentiating (2-2), but now three times. This yields, for
the right-hand side, ten terms:

∂3
z M(t, z)−ε2∂3

z ∂t V ∗(t, z)−ε4∂3
z ∂t Wε(t, t) = R1+R2+R3+R4+R5+R6+R7+R8+R9+R10, (6-25)
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with the following notations:

R1 := ∂3
z Iε(q∗

+ ε2κε, V ∗
+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)],

R2 := 3∂2
z Iε(q∗

+ ε2κε, V ∗
+ ε2Wε)(t, z)∂z M(t, z) exp[ε24ε(t, z)],

R3 := 3ε2∂2
z Iε(q∗

+ ε2κε, V ∗
+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)]∂z4ε(t, z),

R4 := 6ε2∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂z M(t, z) exp[ε24ε(t, z)]∂z4ε(t, z),

R5 := 3∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂2
z M(t, z) exp[ε24ε(t, z)],

and, moreover,

R6 := 3ε2∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)](ε2∂z4ε(t, z)2
+ ∂2

z 4ε(t, z)),

R7 := 3ε2Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂z M(t, z) exp[ε24ε(t, z)](ε2∂z4ε(t, z)2
+ ∂2

z 4ε(t, z)),

R8 := 3ε2Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂2
z M(t, z) exp[ε24ε(t, z)]∂z4ε(t, z),

R9 := Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂3
z M(t, z) exp[ε24ε(t, z)].

The last term corresponds to the third derivative of the exponential term exp[ε24ε]:

R10 := ε2Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)]

× (ε4∂z4ε(t, z)3
+ 3ε2∂z4ε(t, z)∂2

z 4ε(t, z) + ∂3
z 4ε(t, z)).

We first tackle R1. We use the linearization of the third derivative of Iε in Proposition 4.5 to find that

R1 = M(t, z)
(
∂3

z I
∗

ε (t, z)+
ε2

∥ϕα∂3
z Wε∥∞

21−αϕα(t, z)
+

O(ε2+α)∥(κε, Wε)∥

ϕα(t, z)

)
(1+ε24ε(t, z)+O(ε4)∥(κε, Wε)∥)

= ε2 M(t, z)
(
∥ϕα∂3

z Wε∥∞

21−αϕα(t, z)
+

O∗(1)+O(εα)∥(κε, Wε)∥

ϕα(t, z)

)
(1+ε24ε(t, z)+O(ε4)∥(κε, Wε)∥).

We end up with the estimate

R1 = ε2 M(t, z)
(

∥∂3
z Wε∥∞

21−αϕα(t, z)
+

O∗(1) + O(εα)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-26)

For R2, with Proposition 4.5 we have

R2 = 3∂z M(t, z)
(
∂2

z I
∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 3∂z M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

We can simplify this expression to

R2 = ε2∂z M(t, z)
(

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-27)
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For R3, we get

R3 = 3ε2 M(t, z)∂z4ε(t, z)
(
∂2

z I
∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 3ε2 M(t, z)∂z4ε(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

We can simplify roughly this expression to

R3 =
O(ε3)∥(κε, Wε)∥

ϕα(t, z)
M(t, z). (6-28)

For R4 one has very similarly

R4 = 6ε2∂z M(t, z)∂z4ε(t, z)
(
∂zI∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 6ε2∂z M(t, z)∂z4ε(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

We can simplify this expression to

R4 =
O(ε3)∥(κε, Wε)∥

ϕα(t, z)
∂z M(t, z). (6-29)

The expression for R5 still follows the same road:

R5 = 3∂2
z M(t, z)

(
∂zI∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 3∂2
z M(t, z)

(
O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

This last expression can be shortened to

R5 = 3ε2∂2
z M(t, z)

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)
. (6-30)

For R6, the expression is a little more involved due to the second derivative of the exponential:

R6 = ε2 M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

×

(
O(ε2)∥(κε, Wε)∥

ϕα(t, z)
+ ∂2

z 4ε(t, z)
)

.

We eventually shorten R6 to

R6 = 3M(t, z)
O(ε3)∥(κε, Wε)∥

ϕα(t, z)
. (6-31)
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If we bring together all of our previous estimates in (6-26)–(6-31), we obtain that

R1 + R2 + R3 + R4 + R5 + R6

= ε2 M(t, z)
(

O∗(1) + O(εα)∥(κε, Wε)∥

ϕα(t, z)

)
+ ε2∂z M(t, z)

(
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ε2∂2

z M(t, z)
(

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+

ε2
∥ϕα∂3

z Wε∥∞

21−αϕα(t, z)
M(t, z). (6-32)

In that first round of estimates, we have shown that all the contributions of the terms with the derivatives
of Iε do not appear when linearizing because they are of high order in ε. Therefore, the most meaningful
contribution will now appear, because Iε now contributes mainly as 1 and no longer vanishes.

We start with R7:

R7 = 3ε2∂z M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

×

(
O(ε2)∥(κε, Wε)∥

ϕα(t, z)
+ ∂2

z 4ε(t, z)
)

,

which can be rewritten as

R7 = 3ε2∂z M(t, z)(1 + O∗(ε) + O(ε2)∥(κε, Wε)∥)

(
∂2

z 4ε(t, z) +
O(ε2)∥(κε, Wε)∥

ϕα(t, z)

)
.

Finally, for R7,

R7 = 3ε2∂z M(t, z)∂2
z 4ε(t, z) + ∂z M(t, z)

(
O∗(ε3) + O(ε4)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-33)

For R8, the following estimates hold true:

R8 = 3ε2∂2
z M(t, z)∂z4ε(t, z)(1 + O∗(ε) + O(ε2)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

Therefore,

R8 = 3ε2∂2
z M(t, z)∂z4ε(t, z) + ∂2

z M(t, z)
(

O∗(ε3) + O(ε4)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-34)

For the last two terms, the derivatives up to the third order appear. The simplest is given by R9:

R9 = ∂3
z M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= ∂3
z M(t, z) + ε2∂3

z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥). (6-35)

At last, for the term R10, we have

R10 = ε2 M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

×

(
O(ε2)∥(κε, Wε)∥

ϕα(t, z)
+ ∂3

z 4ε(t, z)
)

. (6-36)

This is shortened to

R10 = ε2 M(t, z)∂3
z 4ε(t, z) + ε2 M(t, z)

O(ε2)∥(κε, Wε)∥

ϕα(t, z)
. (6-37)
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We now add every estimate, starting from (6-32) and including (6-33)–(6-37) to obtain

10∑
j=1

R j = ∂3
z M(t, z) + ε2∂3

z M(t, z)(4ε(t, z) + O∗(ε2) + O(ε3)∥(κε, Wε)∥)

+ 3ε2∂2
z M(t, z)

(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ 3ε2∂z M(t, z)

(
∂2

z 4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)

+ ε2 M(t, z)
(
∂3

z 4ε(t, z) +
∥ϕα∂3

z Wε∥∞

21−αϕα(t, z)
+

O∗(1) + O(εα)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-38)

To conclude the proof, we deal with the left-hand side of (6-25) as in the linearization of the second
derivative, noticing that the terms ∂3

z M cancel on each side. □

7. Stability of the linearized equations

Building upon the series of linear approximations, we can study the stability of Wε in the space F. The
first result is to control the different terms of F in the norm ∥ · ∥F ; see Definition 1.2. The weight function
introduced in the definition of E is meant to control the behavior at infinity.

Theorem 7.1 (stability analysis). For any ball B of R ×F, there exists a constant εB that depends only
on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B, a solution of (2-2), satisfies the following bounds:

∥4ε∥∞ ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥∂zWε∥∞ ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥ϕα∂z4ε∥∞ ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥ϕα∂2
z Wε∥∞ ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥ϕα∂3
z Wε∥∞ ≤ O∗

0 (1) + O(εα)∥(κε, Wε)∥ + k(α)∥Wε∥F ,

where O∗

0 (1) = max(O∗(1), O(1)∥Wε(0, · )∥F ) and k(α) < 1 is a uniform constant.

The proof of this theorem is quite intricate and will be divided into several subsections. The plan is as
follows:

• First, we focus on a fixed ball around z∗(t). The first step is to get bounds only on a small time interval
on this ball, and the second step is to propagate this bound uniformly in time, locally in space.

• Next, we propagate this bound on the whole space by successively dividing it into growing balls Bn

and dyadic rings Dn centered around z∗; see the definitions in (7-2) and (7-3).

The main arguments are the maximum principle coupled with a suitable division of the space that accounts
for the nonlocal nature of the infinitesimal operator. The purpose of this dyadic decomposition in rings is
to obtain a decay of the norm with respect to the radius of the ring.
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7A. Division of the space into a ball surrounded by growing balls and dyadic rings. Let us first consider
a time T∗. Then for all times t and s such that 0 ≤ t, s ≤ T∗, the inequality

|z∗(t) − z∗(s)| ≤ sup
s≥0

|m′(z∗(s))|T∗ := r∗

holds true, and the supremum is finite because z∗ lives in a bounded domain uniquely determined by m
and z∗(0); see (1-5).

We slightly expand this ball by a constant r0 to be defined later, and define the ball

B0 := {z : |z − z∗(0)| ≤ r0 + r∗}.

Our intention behind this choice is that the ball B0 satisfies the following property:

∀t ≤ T∗, ∀z ∈ B0, |z − z̄(t)| =
1
2 |z − z∗(t)| =

1
2 |z − z∗(0) + z∗(0) − z∗(t)| ≤

1
2r0 + r∗. (7-1)

We recall that z̄(t) :=
1
2(z + z∗(t)). We will split the rest of the space around B0 into successive balls. The

first ball is defined as B1 = {z : |z − z∗(0)| ≤ 2r0 + r∗}. It contains B0, and more importantly, it satisfies
for every t ≤ T∗ the following identity on the middle point:

|z̄(t) − z∗(0)| =
∣∣ 1

2(z + z∗(t)) − z∗(0)
∣∣≤ ∣∣1

2(z − z∗(0))
∣∣+ ∣∣1

2(z∗(0) − z∗(t))
∣∣≤ r0 + r∗.

This shows that for any z ∈ B1 and time t ≤ T∗, the corresponding middle point z̄(t) lies in B0. More
generally, the following lemma holds true if we define, for n ≥ 2,

Bn := {z : |z − z∗(0)| ≤ 2nr0 + r∗}. (7-2)

Lemma 7.2 (middle point property). For every time 0 ≤ t ≤ T∗,

∀n ≥ 1, ∀z ∈ Bn, z̄(t) ∈ Bn−1.

The proof will also feature prominently the dyadic rings Dn , defined as

Dn := {2n−1r0 + r∗ ≤ |z − z∗(0)| ≤ 2nr0 + r∗}, (7-3)

with the convention that D0 = B0. Note that Dn (a subset of Bn) is the set such that Bn−1 ∪ Dn = Bn; see
Figure 2. On the rings, we will need the following notations:

an := sup
(t,z)∈R+×Dn

∣∣∣∣M(t, z̄)
M(t, z)

∣∣∣∣, bn := sup
(t,z)∈R+×Dn

∣∣∣∣∂z M(t, z̄)
∂z M(t, z)

∣∣∣∣. (7-4)

From the asymptotic hypothesis made in (1-15) on the quotient of M, the sequence an is bounded and
satisfies an → a < 1

2 as n → ∞. The sequence bn is uniformly bounded.

Notations for this section. We will denote by ∥ · ∥
n
∞

the L∞ norm on R+× Bn:

for n ≥ 0, ∥ · ∥
n
∞

:= sup
(t,z)∈R+×Bn

| · |. (7-5)
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B0

z*

B1

B2

D1

D2

B0

B1

B2

D1

D2

Figure 2. The division of the space into successive dyadic balls and rings.

7B. Local bounds on B0. The first step of the proof of Theorem 7.1 consists in getting uniform bounds
(in time) on the ball B0. The estimates on the third derivative are dealt with slightly differently, and are
thus delayed to Section 7F.

Proposition 7.3 (local bounds). For a convenient choice of T ∗ and r0 introduced above, and made explicit
in (7-7), there exists a constant εB that depends only on B, such that with the conditions of Theorem 7.1,
Wε satisfies, for ε ≤ εB :

∥4ε∥
0
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥∂zWε∥
0
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥ϕα∂z4ε∥
0
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥ϕα∂2
z Wε∥

0
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

where O∗

0 (1) = max(O∗(1), O∗(1)∥Wε(0, · )∥F ).

To prove this local bound, i.e., in the ball B0, one must start with the higher order derivative to
build a contraction argument. Estimates of the lower order derivatives are then successively deduced
by integration. Clearly, our argument for the third derivative is more technical because it involves a
lot of terms through the linearized approximation made in Proposition 6.8. Therefore, for reasons of
clarity, third derivatives are left out of Proposition 7.3, we will deal with them, locally and on the balls, in
Proposition 7.7. We present here our argument on the simpler derivatives up to order two, and we refer to
Section 7F for the generalization of the method to the third derivative. Interestingly, to prove the nonlocal
estimates on the balls, we will proceed in the reverse way by first dealing with the lower order derivatives.



1334 FLORIAN PATOUT

Proof of Proposition 7.3. By the derivation of the linearized equation in Proposition 6.7, Wε satisfies the
following, see (5-1):

ε2∂t∂
2
z Wε(t, z) = −∂2

z M(t, z)(Wε(t, z) − 2Wε(t, z̄) + O∗(1) + O(ε)∥(κε, Wε)∥)

− 2∂z M(t, z)(∂zWε(t, z) − ∂zWε(t, z̄) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ M(t, z)
(1

2∂2
z Wε(t, z̄) − ∂2

z Wε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥
)
.

We will use the maximum principle on the ball B0. The key point is that on this ball, all other factors
are controlled by ∥∂2

z Wε∥∞. To compare all those terms with ∂2
z Wε, we perform Taylor expansions with

respect to the space variable. First, thanks to (7-1), for any z ∈ B0 we write

∂zWε(t, z̄) − ∂zWε(t, z) ≤

(
r0

2
+ r∗

)
∥∂2

z Wε(t, · )∥L∞(B0).

Similarly, there exists ξ ∈ (z, z̄) and ξ ′
∈ (z∗, z̄) such that

4ε(t, z) = Wε(t, z) − 2Wε(t, z̄) + Wε(t, z∗)

=

(
z − z∗

2

)
∂zW (t, z̄) +

1
2

(z − z∗)
2

4
∂2

z W (t, ξ)−

(
z − z∗

2

)
∂zW (z̄) +

1
2

(z − z∗)
2

4
∂2

z W (ξ ′)

≤
1
4

(
r0

2
+ r∗

)2

∥∂2
z Wε(t, · )∥L∞(B0). (7-6)

Moreover, by the hypothesis made in (1-14) on M, for j = 1, 2,

sup
(t,z)∈R+×B0

∣∣∣∣∂( j)
z M(t, z)
M(t, z)

∣∣∣∣≤ O∗(1).

Thanks to those a priori bounds, when we evaluate (6-16) at the maximum point of ∂2
z Wε on B0, we get

ε2∂t [∥∂
2
z Wε(t, · )∥L∞(B0)]

≤ M(t, z)
(

1
2∥∂2

z Wε(t, · )∥L∞(B0) − ∥∂2
z Wε(t, · )∥L∞(B0)

+ O∗(1)
( 1

4

( 1
2r0 + r∗

)2
+

1
2r0 + r∗

)
∥∂2

z Wε(t, · )∥L∞(B0) + O∗(1) + O(ε)∥(κε, Wε)∥
)
.

The crucial step is that we choose T ∗ and r∗ so small, so that

O∗(1)
( 1

4

( 1
2r0 + r∗

)2
+

1
2r0 + r∗

)
≤

1
4 . (7-7)

The consequence is that

ε2∂t [∥∂
2
z Wε(t, · )∥L∞(B0)] ≤ M(t, z)

(
−

1
4∥∂2

z Wε(t, · )∥L∞(B0) + O∗(1) + O(ε)∥(κε, Wε)∥
)
.

The function M(t, z) admits a lower bound. Therefore, we can apply the maximum principle, on the
ball B0, and get

∥∂2
z Wε∥L∞([0,T ∗]×B0) ≤ max(O∗(1) + O(ε)∥(κε, Wε)∥, ∥∂

2
z Wε(0, · )∥L∞(B0)).
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We now detail how to propagate this bound uniformly in time. One can renew every previous estimate on
each interval Ik := [kT∗, (k + 1)T∗]. By going over the same steps, we notice that the only argument that
changes for different k is the center of the ball B0 around z∗, but interestingly not its radius; see (7-7).
Every other estimate is the same and is independent of k. Therefore, since the condition (7-7) is uniform
in time (O∗(1) does not depend on time), once the radius is chosen small enough depending only on K ∗,
see (7-7), we can repeat recursively the estimates on each interval Ik . Considering all k ∈ N, we have
therefore proven that

∥∂2
z Wε∥

0
∞

≤ max(O∗(1) + O(ε)∥(κε, Wε)∥, ∥∂
2
z Wε(0, · )∥L∞(B0)) ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥. (7-8)

We will use this estimate as the starting point in order to prove the rest of Proposition 7.3. First, notice
that adding the weight function ϕα is straightforward, since it is uniformly bounded on B0:

∥ϕα∂2
z Wε∥

0
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥.

Next, taking advantage of the fact that both Wε and ∂zWε vanish at z∗, we write

|∂zWε(t, z)| =

∣∣∣∣∫ z

z∗(t)
∂2

z Wε(t, z′) dz′

∣∣∣∣≤ (r0 + 2r∗)∥∂
2
z Wε∥

0
∞

.

As a consequence, using again the expansion of (7-6),

|4ε(t, z)| = |2Wε(t, z̄(t)) − Wε(t, z)| ≤
1
4

( 1
2r0 + r∗

)2
∥∂2

z Wε∥
0
∞

.

Similarly, we get a uniform bound on ∂z4ε. Combining those estimates with the first estimate in (7-8),
which comes from the maximum principle, the proof of Proposition 7.3 is concluded. □

7C. Bound on the balls: 4ε. We will now propagate those bounds beyond the small ball. It is very
important to keep the level of precision of O∗(1) + O(ε)∥(κε, Wε)∥, to which we will add some decay
property due to the specific shape of the rings Dn .

Proposition 7.4 (in the balls, 4ε). There exists a constant εB that depends only on B such that with the
conditions of Theorem 7.1, Wε satisfies, for ε ≤ εB ,

∥4ε∥
n
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥, (7-9)

for all n ≥ 1.

Proof. The starting point of the analysis is the linearized equation given by Corollary 6.3. For t ∈ R+,
n ≥ 1, take z in the ball Bn defined previously. We know that

ε2∂t4ε(t, z) = M(t, z)
(

2
M(t, z̄)
M(t, z)

4ε(t, z̄) − 4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥

)
.

One can multiply by sign(4ε) this equality to bound the absolute value; it is important to keep the minus
sign on the right-hand side. We get

ε2∂t |4ε(t, z)| ≤ M(t, z)
(

2
M(t, z̄)
M(t, z)

|4ε(t, z̄)| − |4ε(t, z)| + O∗(1) + O(ε)∥(κε, Wε)∥

)
.
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Then, from Lemma 7.2, we know that the middle point z̄ is in the smaller ball Bn−1, and so we have the
following estimate:

ε2∂t |4ε(t, z)| ≤ M(t, z)
(

2
M(t, z̄)
M(t, z)

∥4ε∥
n−1
∞

− 4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥

)
.

To obtain precise bounds from this inequality, we shall discuss whether the maximum point of 4ε on
the ball Dn is reached inside the ring Dn−1, defined in (7-3), or not. If it is the case, we obtain a sharper
estimate than if it is not the case.

• Suppose that the maximum point that reaches ∥4ε∥
n
∞

belongs to the ring Dn . We can then control the
quotient of M by the sequence an defined in (7-4). Moreover, M admits a uniform lower bound by (1-13),
thus, we can apply the maximum principle to get

∥4ε∥
n
∞

≤ max(2an∥4ε∥
n−1
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥, ∥4ε(0, · )∥L∞(Bn)). (7-10)

We first notice that for all n ∈ N,

∥4ε(0, · )∥L∞(Bn) ≤ O∗

0 (1).

Therefore, from (7-10),

∥4ε∥
n
∞

≤ 2an∥4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥. (7-11)

Here lies the motivation behind the introduction of the notation O∗

0 (1). It allows us to take into account
the initial data and to make recursive estimates that were a priori not possible with (7-10).

• Before going further, we now assume that the maximum point that reaches ∥4ε∥
n
∞

is outside the ring Dn ,
in Bn \ Dn = Bn−1. In that case, the estimate of (7-4) is not helpful, as we would need to define ãn to be
the supremum over Bn , but then this sequence would not give a contraction factor as in (7-10). Therefore,
we simply write for this case

∥4ε∥
n
∞

≤ ∥4ε∥
n−1
∞

. (7-12)

• The combination of (7-11) and (7-12) yields

∥4ε∥
n
∞

≤ max(2an∥4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥, ∥4ε∥
n−1
∞

). (7-13)

This inequality guarantees that the sequence (∥4ε∥
n
∞

)n is uniformly bounded. Heuristically, on the
right-hand side of (7-13), the geometric part of the maximum satisfies 2an → 2a < 1 when n → ∞,
thanks to (1-15), therefore it ensures a contraction, while the other part of the maximum yields at worst a
bound by the term n = 0.

We detail more rigorously the steps as it will serve as a model for future proofs. We assume without
loss of generality that 2an < θ for all n ∈ N, with, for instance the factor θ := a +

1
2 , such that 2a < θ < 1.

We know this is true, but for a finite number of terms, by (7-4). For this handful of terms, we do not
need a contraction argument, since the bound (7-9) follows from a finite number of iterations of (7-13).
Let fn be the function fn(ξ) = max(ξ, 2anξ +C), and a sequence ξn be such that ξn+1 ≤ fn(ξn). We will
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then show that for all n ∈ N,

ξn ≤ max
(
ξ0,

C
1 − θ

)
. (7-14)

The proof is done by induction, the initial step is obvious. If we now assume that the inequality holds
true for a certain n ∈ N, we get

ξn+1 ≤ fn(ξn) ≤ max(ξn, 2anξn + C).

If the previous max is ξn , then we immediately deduce by the induction hypothesis the following:

ξn+1 ≤ ξn ≤ max
(
ξ0,

C
1 − θ

)
.

Otherwise,

ξn+1 ≤ 2an max
(
ξ0,

C
1 − θ

)
+ C.

We once again discuss where the maximum point is reached. If it is ξ0, then we end up with

ξn+1 ≤ 2anξ0 + C ≤ (2an − θ)ξ0 + ξ0 ≤ ξ0.

Similarly, if it is not ξ0,

ξn+1 ≤
2anC
1 − θ

+ C =
(2an − θ)C + C

1 − θ
≤

C
1 − θ

.

Therefore, we have shown that in all cases,

ξn+1 ≤ max
(
ξ0,

C
1 − θ

)
,

which proves (7-14). We conclude, given the bound (7-13), that

∥4ε∥
n
∞

≤ max
(

O∗

0 (1) + O(ε)∥(κε, Wε)∥

1 − θ
, ∥4ε∥

0
∞

)
≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥. □

All the remaining proofs of this section will follow this blueprint.

7D. Bound on the balls: ∂z4ε. We now state a similar result for ∂z4ε. We will see the appearance of
the weight function ϕα in the estimates. It slightly worsens the expressions but the strategy deployed to
prove Proposition 7.4 will still works.

Proposition 7.5 (in the balls, ∂z4ε). There exists a constant εB that depends only on B such that upon
the condition of Theorem 7.1, Wε satisfies for ε ≤ εB

∥ϕα∂z4ε∥
n
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

for n ≥ 1.
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Proof. The proof is similar to the bound on 4ε, but we have to take the weight function into account. We
start with the linear equation satisfied by ∂t∂z4ε in Corollary 6.6. It yields, for z ∈ Bn and t ∈ R+,

ε2∂t |∂z4ε(t, z)|

≤ M(t, z)

(
M(t, z̄)
M(t, z)

|∂z4ε(t, z̄)| − |∂z4ε(t, z)| +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

+
O∗(1)

ϕα(t, z)

(
∂z M(t, z̄)
∂z M(t, z)

∥4ε∥
n−1
∞

+ ∥4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥

))
. (7-15)

In the second factor, thanks to (1-14), we used that

sup
(t,z)∈R+×R

(
ϕα(t, z)

∣∣∣∣∂z M(t, z)
M(t, z)

∣∣∣∣)≤ O∗(1).

To take into account the weight function, we make the following computation:

∂t [ϕα∂z4ε](t, z) = ϕα(t, z)∂t∂z4ε(t, z) + ∂z4ε(t, z)∂tϕα(t, z).

First,

∂z4ε(t, z)∂tϕα(t, z) = α∂z4ε(t, z)
m′(z∗) sign(z − z∗)

(1 + |z − z∗|)1−α
= O∗(1)∂z4ε(t, z), (7-16)

and therefore,

ε2∂z4ε(t, z)∂tϕα(t, z) = O∗(ε2)∥(κε, Wε)∥. (7-17)

By multiplying (7-15) by ϕα and taking into account (7-17), we deduce that

ε2∂t [ϕα|∂z4ε|](t, z)

≤ M(t, z)

(
−ϕα(t, z)|∂z4ε(t, z)| +

M(t, z̄)
M(t, z)

ϕα(t, z)|∂z4ε(t, z̄)| + O∗(1) + O(ε)∥(κε, Wε)∥

+ O∗(1)

(
∂z M(t, z̄)
∂z M(t, z)

∥4ε∥
n−1
∞

+ ∥4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥

)
+

O∗(ε2)∥(κε, Wε)∥

M(t, z)

)
,

As in the previous proof, to obtain sharp bounds from the maximum principle, we discuss whether the
maximum point of ϕα∂z4ε on Bn is reached on the subset Dn or not. We now assume that it is the case.

We can then use the sequences an and bn defined in (7-4) to control the right-hand side of (7-19).
Moreover, with Proposition 7.4 we can estimate the terms involving 4ε on the balls. We then find that

ε2∂t [ϕα|∂z4ε|](t, z)

≤ M(t, z)

(
−ϕα(t, z)|∂z4ε(t, z)| + an

∣∣∣∣ϕα(t, z)
ϕα(t, z̄)

∣∣∣∣∥ϕα∂z4ε∥
n−1
∞

+ bn(O∗

0 (1) + O(ε)∥(κε, Wε)∥)

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥ +
O∗(ε2)∥(κε, Wε)∥

M(t, z)

)
.
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The weight function was chosen precisely to satisfy the scaling estimate

sup
R+×R

∣∣∣∣ϕα(t, z)
ϕα(t, z̄)

∣∣∣∣≤ 2α. (7-18)

Since the function 1/M has a uniform upper bound, and the sequence bn is uniformly bounded, we finally
conclude that

ε2∂t [ϕα|∂z4ε|](t, z)

≤ M(t, z)(−ϕα(t, z)|∂z4ε(t, z)| + 2αan∥ϕα∂z4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥). (7-19)

The maximum principle applied to (7-19) gives

∥ϕα∂z4ε∥
n
∞

≤ max(2αan∥ϕα∂z4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥, ∥ϕα∂z4ε(0, · )∥n
∞

).

Notice that for all n ∈ N,

∥ϕα∂z4ε(0, · )∥L∞(Bn) ≤ ∥Wε(0, · )∥F ≤ O∗

0 (1).

Therefore, we obtain finally, in the case where the maximum point of ϕα∂z4ε on Bn is reached on the
subset Dn ,

∥ϕα∂z4ε∥
n
∞

≤ 2αan∥ϕα∂z4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥. (7-20)

When this is not the case, we will only state that

∥ϕα∂z4ε∥
n
∞

≤ ∥ϕα∂z4ε∥
n−1
∞

. (7-21)

Combining (7-20) and (7-21), we eventually conclude that

∥ϕα∂z4ε∥
n
∞

≤ max(2αan∥ϕα∂z4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥, ∥ϕα∂z4ε∥
n−1
∞

). (7-22)

This implies that the sequence (∥ϕα∂z4ε∥
n
∞

)n is a contraction, using the same recursive arguments as
in the previous proof. Indeed, by hypothesis, 2αan ≤ 2αa < 1, but for a finite number of terms, which
gives for instance a contraction factor θ := a +

1
2 , such that 2a < θ < 1. The second part of the maximum

in (7-22) does not perturb the contraction part, and we deduce that

∥ϕα∂z4ε∥
n
∞

≤ max
(

O∗

0 (1) + O(ε)∥(κε, Wε)∥

1 − θ
, ∥ϕα∂z4ε∥

0
∞

)
≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥.

The second inequality uses the local bounds of the ball B0 made in Proposition 7.3. □

7E. Bound on the balls: ∂2
z Wε. We now make a similar statement about the second derivative.

Proposition 7.6 (in the balls, ∂2
z Wε). There exists a constant εB that depends only on B such that with

the condition of Theorem 7.1, Wε satisfies, for ε ≤ εB ,

∥ϕα∂2
z Wε∥

n
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

for n ≥ 1.
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Proof. We proceed as in the proof of Proposition 7.5. We already know a linearized approximation
for ∂2

z Wε, thanks to (6-16) in Proposition 6.7. Taking the weight into account, one finds that ϕα∂2
z Wε

satisfies the following:

ε2∂t [ϕα(t, z)∂2
z Wε](t, z)

= −∂2
z M(t, z)ϕα(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

− 2∂z M(t, z)(ϕα(t, z)∂z4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ M(t, z)
( 1

2ϕα(t, z)∂2
z Wε(t, z̄) − ϕα(t, z)∂2

z Wε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥
)

+ O(ε2)∥(κε, Wε)∥. (7-23)

The last term comes from the same computation of ∂tϕα as that made in (7-17). To continue, we first use
the following uniform controls of (1-14):

sup
(t,z)∈R+×R

(
ϕα(t, z)

∣∣∣∣∂2
z M(t, z)
M(t, z)

∣∣∣∣)≤ O∗(1) and sup
(t,z)∈R+×R

∣∣∣∣∂z M(t, z)
M(t, z)

∣∣∣∣≤ O∗(1).

We also need the scaling estimate of the weight function, stated in (7-18). Then, we can bound the
right-hand side of (7-23) after factorizing by M, for t ∈ R+ and z ∈ Bn:

ε2∂t [ϕα(t, z)|∂2
z Wε|](t, z)

≤ M(t, z)
(
−ϕα(t, z)|∂2

z Wε(t, z)| + 1
21−α

∥ϕα∂2
z Wε∥

n−1
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥

+ O∗(1)(∥4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥)

+ O∗(1)(∥ϕα∂z4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥)

)
.

Plugging in the controls on the balls of 4ε and ∂z4ε from Propositions 7.4 and 7.5, we have

ε2∂t [ϕα(t, z)|∂2
z Wε|](t, z)

≤ M(t, z)
(
−ϕα(t, z)|∂2

z Wε(t, z)| + 1
21−α

∥ϕα∂2
z Wε∥

n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥
)
.

The function M(t, z) admits a positive lower bound by (1-13). We apply the maximum principle to get

∥ϕα∂2
z Wε∥

n
∞

≤ max
( 1

21−α
∥ϕα∂2

z Wε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥, ∥ϕα∂2
z Wε(0, · )∥n

∞

)
.

As earlier, we can get rid of the initial data in the maximum by stating that for all n ∈ N,

∥ϕα∂2
z Wε(0, · )∥n

∞
≤ ∥Wε(0, · )∥F ≤ O∗

0 (1). (7-24)

Then, the recursive arguments are somehow a little easier in that case than in the proofs of Propositions 7.4
and 7.5 since the geometric term, 2α−1, does not depend on n. Hence we have

∥ϕα∂2
z Wε∥

n
∞

≤
1

21−α
∥ϕα∂2

z Wε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥.
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Because 2α−1 < 1, we immediately get that

∥ϕα∂2
z Wε∥

n
∞

≤ max
(

O∗

0 (1) + O(ε)∥(κε, Wε)∥

1 − 2α−1 , ∥ϕα∂2
z Wε∥

0
∞

)
≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥. □

7F. Local and on-the-balls bound for ∂3
z Wε. We dedicate this section to the study of ∂3

z Wε since it does
not exactly fit the mold of the previous estimates due to the additional factor ∥ϕα∂3

z Wε∥∞/21−α in the
linearized equation in Proposition 6.8.

• We highlight the difference by first proving the initial bound on the local ball B0. We write the linear
equation solved by ϕα∂3

z Wε:

−ε2∂t [ϕα∂3
z Wε](t, z)

= ϕα(t, z)∂3
z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ 3∂2
z M(t, z)(ϕα(t, z)∂z4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ 3∂z M(t, z)(ϕα(t, z)∂2
z 4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ M(t, z)
(
ϕα(t, z)∂3

z 4ε(t, z) +
∥ϕα∂3

z Wε∥∞

21−α
+ O∗(1) + O(εα)∥(κε, Wε)∥

)
− ε2∂3

z Wε(t, z)∂tϕα(t, z). (7-25)

First, one finds that
ε2∂3

z 4ε(t, z)∂tϕα(t, z) = O∗(ε2)∥(κε, Wε)∥.

We recall that 4ε, ∂z4ε and ∂2
z 4ε were all uniformly bounded on B0, with the weight, in Proposition 7.3.

Moreover, from (1-13), for j = 1, 2,

sup
(t,z)∈R+×R

∣∣∣∣∂( j)
z M(t, z)
M(t, z)

∣∣∣∣≤ O∗(1),

sup
(t,z)∈R+×R

(
ϕα(t, z)

∣∣∣∣∂3
z M(t, z)
M(t, z)

∣∣∣∣)≤ O∗(1).

(7-26)

Finally,

ϕα(t, z)|∂3
z Wε(t, z̄)| ≤

2α

4
|ϕα(t, z̄)∂3

z Wε(t, z̄)|.

When plugging all of this into (7-25), we obtain, by evaluating at the point of maximum on B0,

ε2∂t∥ϕα(t, · )∂3
z Wε(t, · )∥L∞(B0)

≤ M(t, z)

(
−∥ϕα(t, · )∂3

z Wε(t, · )∥L∞(B0) +
1

22−α
∥ϕα(t, · )∂3

z Wε(t, · )∥L∞(B0) +
∥ϕα∂3

z Wε∥∞

21−α

+ O∗

0 (1) + O(εα)∥(κε, Wε)∥

)
.
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Since there is a positive lower bound of M, we recognize a contraction argument on the ball B0, and for
bounded times 0 < t ≤ T ∗,

∥ϕα∂3
z Wε∥L∞([0,T ∗]×B0)

≤ max
(( 1

1−2α−2

)(
O∗

0 (1) + O(εα)∥(κε, Wε)∥ +
1

21−α
∥ϕα∂3

z Wε∥∞

)
, ∥ϕα(0, · )∂3

z Wε(0, · )∥L∞(B0)

)
.

Therefore, since the initial data is controlled by O∗

0 (1), we may write

∥ϕα∂3
z Wε∥L∞([0,T ∗]×B0) ≤ O∗

0 (1) + O(εα)∥(κε, Wε)∥ +
2α−1

1−2α−2 ∥ϕα∂3
z Wε∥∞.

As explained in Section 7A, we can now repeat the procedure on each interval of time

Ik := [kT∗, (k + 1)T∗],

and end up with a bound uniform in time on the ball B0:

∥ϕα∂3
z Wε∥

0
∞

≤ O∗

0 (1) + O(εα)∥(κε, Wε)∥ +
2α−1

1−2α−2 ∥ϕα∂3
z Wε∥∞. (7-27)

• We now proceed to propagate this bound on the balls, starting again from (7-25) and using the maximum
principle. For any t ∈ R+ and z ∈ Bn , we have

ε2∂t [ϕα|∂3
z Wε|](t, z)

≤ M(t, z)

(
−ϕα(t, z)|∂3

z Wε(t, z)| +
1

22−α
∥ϕα∂3

z Wε∥
n−1
∞

+
1

21−α
∥ϕα∂3

z Wε∥∞

+ O∗

0 (1) + O(εα)∥(κε, Wε)∥ +

∣∣∣∣ϕα(t, z)
∂3

z M(t, z)
M(t, z)

∣∣∣∣(∥4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥)

+ 3
∣∣∣∣∂2

z M(t, z)
M(t, z)

∣∣∣∣(∥ϕα∂z4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥)

+ 3
∣∣∣∣∂z M(t, z)

M(t, z)

∣∣∣∣(∥ϕα∂2
z 4ε∥

n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥)

)
.

We will use once more our hypothesis (1-14), in the form stated in (7-26). We also need all our previous
estimates on the balls: Propositions 7.4, 7.5 and 7.6. We then obtain

ε2∂t [ϕα|∂3
z Wε|](t, z)

≤ M(t, z)
(
−ϕα(t, z)|∂3

z Wε(t, z)|+ 1
22−α

∥ϕα∂3
z Wε∥

n−1
∞

+
1

21−α
∥ϕα∂3

z Wε∥∞+O∗

0 (1)+O(εα)∥(κε, Wε)∥
)
.

We recall that the term ∥ϕα∂3
z Wε∥∞ is a global control on the whole space R and not localized on the

balls. By applying the maximum principle, one gets

∥ϕα∂3
z Wε∥

n
∞

≤ max
( 1

22−α
∥ϕα∂3

z Wε∥
n−1
∞

+
1

21−α
∥ϕα∂3

z Wε∥∞ + O∗

0 (1)+ O(εα)∥(κε, Wε)∥, ∥ϕα(0, · )∂3
z Wε(0, · )∥n

∞

)
.
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We can absorb the initial data in the term O∗

0 (1) to deduce that

∥ϕα∂3
z Wε∥

n
∞

≤
1

22−α
∥ϕα∂3

z Wε∥
n−1
∞

+
1

21−α
∥ϕα∂3

z Wε∥∞ + O∗

0 (1) + O(εα)∥(κε, Wε)∥.

This sequence is bounded, because its ratio satisfies 2α−2 < 1. Hence,

∥ϕα∂3
z Wε∥

n
∞

≤ max
(

O∗

0 (1) + O(εα)∥(κε, Wε)∥

1 − 2α−2 +
2α−1

1 − 2α−2 ∥ϕα∂3
z Wε∥∞, ∥ϕα∂3

z Wε∥
0
∞

)
. (7-28)

We define k(α) as follows:

k(α) :=
2α−1

1 − 2α−2 ,

and from (7-28) we finally conclude, taking the local bound (7-27) into account, that

∥ϕα∂3
z Wε∥

n
∞

≤ O∗

0 (1) + O(εα)∥(κε, Wε)∥ + k(α)∥ϕα∂3
z Wε∥∞.

We have therefore proven the following proposition:

Proposition 7.7 (in the rings, ∂3
z Wε). There exists a constant εB that depends only on B such that with

the condition of Theorem 7.1, Wε satisfies, for ε ≤ εB ,

∥ϕα∂3
z Wε∥

n
∞

≤ O∗

0 (1) + O(εα)∥(κε, Wε)∥ + k(α)∥ϕα∂3
z Wε∥∞,

for n ≥ 1, with

0 < k(α) :=
2α−1

1 − 2α−2 < 1. (7-29)

The scalar k(α) is a contraction factor, only upon the condition that

α < 2 −
ln 3
ln 2

≈ 0.415. (7-30)

We made that assumption prospectively when we introduced E in Definition 1.2. Beside (7-30), another
reason for which α cannot be taken too large is that it worsens the contraction estimate ϕα(t, z)≤2αϕα(t, z̄);
see (7-18).

7G. Conclusion: proof of Theorem 7.1. All our previous estimates from Propositions 7.4, 7.5, 7.6
and 7.7 are uniform in n, and therefore apply to the whole space. Therefore, so far, every bound of
Theorem 7.1 has been proved except for the one upon ∂zWε. A proof by recursion on the balls could be
adapted from that of Proposition 7.5, starting from the linearized equation of Proposition 6.5. We propose
here a more concise argument on the whole space, that uses instead the result of Proposition 7.5.

For all times t > 0 and z ∈ R,

|∂z4ε(t, z)| = |∂zWε(t, z) − ∂zWε(t, z̄)|

≤
O∗

0 (1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)
. (7-31)
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This estimate is helpful for large z, given the weight function. To control uniformly on the whole space,
let h ∈ R and define N 0

h as the lowest index such that z∗(t)+2−k
|h| ∈ B0 for all k > N 0

h . From Section 7A
we know that N 0

h ≥ ⌈ln(|h|/r0)/ ln(2)⌉. Then, by iterating (7-31), we get

|∂zWε(t, z∗ + h)| ≤ |∂zWε(t, z∗ + 2−(N h
0 +1)h)| + (O∗

0 (1) + O(ε)∥(κε, Wε)∥)

N 0
h∑

k=0

1
ϕα(t, z∗ + 2−kh)

.

Given the control of ∂zWε on B0 from Proposition 7.3 and the explicit form of the weight ϕα , we deduce
that

∂zWε(t, z∗ + h) ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥ + (O∗

0 (1) + O(ε)∥(κε, Wε)∥)

N 0
h∑

k=0

2αk

|h|α
. (7-32)

This series has a finite number of terms (roughly log(|h|)), by definition of N h
0 , and otherwise it would

not be converging. Indeed, since 2N h
0/|h| ≤ 1/r0, this sum is uniformly bounded:

N 0
h∑

k=0

2αk

|h|α
≤ O∗(1)

2αN 0
h

|h|α
≤ O∗(1).

Plugging this into (7-32), we have shown, as stated in Theorem 7.1, that

∥∂zWε∥∞ ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥. □

One should note that the weight function ϕα plays a crucial role here, by “compensating” for the
diverging terms. Namely, if α = 0, the previous argument crumbles starting as early as estimate (7-31).
This shows that the weight ϕα is necessary to ensure uniform Lipschitz bounds of Wε.

8. Proof of Theorem 1.3

We now prove the main result of this paper, that is the boundedness of (κε, Wε) in R×F. We first suppose
that there exists K0 such that

|κε(0)| ≤ K0 and ∥Wε(0, · )∥F ≤ K0, (8-1)

and we look to prove that
|κε| ≤ K ′

0 and ∥Wε∥F ≤ K ′

0,

with K ′

0 to be determined by the analysis.
Theorem 7.1 grants precise bounds of Wε, as long as there exists K such that ∥(κε, Wε)∥ ≤ K. More

precisely, there exists a constant C∗

0 that depends only on K0 and K ∗ and a constant C ′

K that depends
only K such that

∥Wε∥F ≤ C∗

0 + C ′

K εα K + k(α)∥Wε∥F .

Therefore, up to renaming the constants,

∥Wε∥F ≤
C∗

0 + C ′

K εα K
1 − k(α)

≤ C∗

0 + C ′

K εα K . (8-2)
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Clearly, a crucial part of this contraction was to ensure that k(α) < 1. We can now work on κε. We go
back to Proposition 5.1, from which we learned that κε solves

−κ̇ε(t) = R∗

ε (t)κε + O∗(1) + O(ε)∥(κε, Wε)∥ + O∗(1)∥Wε∥F . (8-3)

Thanks to our previous contraction argument, we have an estimate of ∥Wε∥F , and we can get rid of this
last term of order 0. We can plug the estimate (8-2) into (8-3) to finally conclude the argument on κε.

Since R∗
ε is a positive function that admits, for t ≥ t0, a uniform lower bound R0, per Proposition 4.7,

it is straightforward from (8-2) and (8-3), and our subsequent bounds, that there exists C∗

0 and C ′

K such
that, for all time t ,

|κε(t)| ≤ C∗

0 + C ′

K εα K . (8-4)

Coupled with (8-2), those are the stability results we needed on the pair (κε, Wε). We now set a scalar K ′

0
such that

K ′

0 ≥ 2C∗

0 . (8-5)

Then, choose ε0 in the following way:

ε0 :=

( 1
2C ′

0

)1/α

,

where C ′

0 is the constant in (8-2) and (8-4) corresponding to the choice made in (8-5) of the size of the
ball K ′

0. Then for ε ≤ ε0, starting from an initial data that satisfies (8-1), the bound is propagated in time,
and furthermore

∥Wε∥F ≤ K ′

0, |κε| ≤ K ′

0.

Since Vε = V ∗
+ ε2Wε and qε = q∗

+ ε2κε, Theorem 1.3 is proven. □

9. Numerical simulations and discussion

In this section we display some numerical simulations showing the behavior of the solution of the Cauchy
problem for positive ε, and we will provide insight into the structural assumption we made in (1-13).

Influence of the condition (1-13). A first example for our study is to consider a quadratic selection
function, as depicted in Figure 3. In that case, according to Theorem 1.3, starting from any initial
data z∗(0), the solution fε stays close to a Gaussian density with variance ε2. In addition, its mean z∗

converges to the unique minimum of m when the time is large.
Our framework encompasses more general selection functions with multiple local minima, such as

the one depicted in Figure 4. The condition in (1-13) restricts somehow the position of those minima.
If one assumes that z∗ starts from a local minimum, that is m′(z∗(0)) = 0, then this condition implies that
the selective difference between minima must be inferior to 1: m(z∗(0)) − m(zopt) < 1. We recover the
structural condition under which the analysis for the stationary case was performed; see [Calvez et al. 2019].

The selection function depicted in Figure 4, coupled with z∗(0), satisfies the condition (1-13). Then as
stated by Theorem 1.3 the population density fε concentrates around the local minimum, according to
the gradient flow dynamics of Assumption 1.1.
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Figure 3. On the left, in dotted red, the initial data fε(0, · ), and in orange, the distribution fε
after a long time. In the background the selection function m with a global optimum zopt.
On the right, the trajectory of the dominant trait z∗.

z∗(0) zloc zopt
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O
pt

im
al
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ai

t

z∗(0)

Time
)

Figure 4. On the left, in dotted red, the initial data fε(0, · ), and in orange, the distribution fε
after a long time. In the background the selection function m with a global optimum zopt and
a local optimum zloc. On the right, the trajectory of the dominant trait z∗. The function M
is uniformly positive.

A case not taken into account by our methodology is when (1-13) is not satisfied at all times. This is
the case if the slopes of the lines between local and global minima are too sharp. For instance, this is
true in the case of Figure 5. Interestingly, what is observed is a critical behavior. The solution will first
concentrate around the first local minimum before jumping sharply in the attraction basin of the global
minimum; see the right-hand picture of Figure 5.

Under this model it would seem that the population will concentrate around the global minimum of
selection if it is much better than the other selective optima. Interestingly, the value of the local maximum
in between the two minima, that could act as an obstacle between the two convex selection valleys, do not
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Figure 5. On the left, in dotted red, the initial data fε(0, · ), and in orange, the distribution fε
after a long time. In the background the selection function m with a global optimum zopt and
a local optimum zloc. On the right, the trajectory of the dominant trait z∗. The function M
is not uniformly positive.

appear to play a role. On the other hand, if the global minimum is not much better than a local minima,
in the sense that each of them falls under the regime of (1-13), the population can concentrate around this
local minimum.

Influence of the sign of qε. We introduced the scalar qε in (1-17) as part of the decomposition of Uε

between the affine parts and the rest of the function, which we later justified by heuristics on the linearized
problem; see the table on page 1297. We can propose a different interpretation of this scalar, related to
the Gaussian distribution.

The logarithmic transform (1-2) coupled with the decomposition (1-17) can be rewritten as the following
transform on the solution of (Pt fε):

fε(t, z) =
1

ε
√

2π
exp

[
λ(t) − ε2 pε(t) + ε4qε(t)2

ε2 −
(z − (z∗(t) − ε2qε(t)))2

2ε2 − Vε(t, z)
]
. (9-1)

Therefore one can see that qε is the correction to the mean of the Gaussian distribution at the next order
in ε. Its sign corresponds to the sign of the error made on the mean of the Gaussian distribution. If qε is
positive, the correction of z∗ lies on its left. This is consistent with the following reasoning on the limit
value q∗

= limε→0 qε, defined in (1-18). For clarity, suppose that z∗ does not depend on time, that is the
regime of the stationary case. Then from (1-18), we find an explicit value for q∗, which coincides with
[Calvez et al. 2019, (3.2)]:

q∗
=

m(3)(z∗)

2m′′(z∗)
.

By local convexity of m around z∗, see (1-12), the sign of q∗ is the same as the sign of m(3)(z∗).
Therefore, if this scalar is positive, selection leans the profile towards the left, which has better selective
values than the right, since it is flatter. Therefore, we recover what we deduced from (9-1); the sign of qε

is linked to the skewness of the selection function m around z∗.
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List of symbols

Uε Perturbation to solve the Cauchy problem (Pt fε) (1-2)

m Selection function Assumption 1.1

Iε Residual shape of the infinitesimal operator (1-3)

z∗(t) Dominant trait in the population (1-11)

z̄(t) 1
2 (z + z∗(t)) (PtUε)

M 1 + m(z) − m(z∗(t)) − m ′(z∗(t))(z − z∗(t)) (PtU0)

pε, qε, Vε Uε(t, z) = pε(t) + qε(t)(z − z∗(t)) + Vε(t, z) (1-17)

Iε Iε, but as a function of two variables: Iε(qε, Vε) = Iε(Uε) (Pt Vε)

p∗, q∗, V ∗ Limits of our unknowns when ε → 0 (1-19), (1-18), (1-9)

U ∗ Limit of Uε, U ∗(t, z) = p∗(t) + q∗(t)(z − z∗(t)) + V ∗(t, z) (1-20)

Rε Decomposition Uε = U ∗
+ ε2 Rε Section 2

(κε, Wε) qε = q∗
+ ε2κε, Vε = V ∗

+ ε2Wε perturbations (1-21), (1-22)

E , ∥ · ∥E Functional space to measure Vε, and its norm Definition 1.2

F , ∥ · ∥F Functional space to measure Wε, and its norm Definition 1.2

ϕα Weight function ϕα(t, z) = (1 + |z − z∗(t)|)α Definition 1.2

∥(g, W )∥ max(|g|, ∥W∥F ) or max(|g|, ∥W∥E) Definition 2.1

E∗, ∥ · ∥∗ Functional space to measure V ∗, and its norm Definition 3.1

K ∗ Uniform bound of V ∗ in E∗ Proposition 3.3

O∗(ε) Special negligible term O(ε) Definition 2.1

I∗
ε Iε(q∗, V ∗) Proposition 3.4

∂gIε, ∂V Iε Fréchet derivatives w.r.t. the first and second variables Section 4

Q(y1, y2) Quadratic form: 1
2 y1 y2 +

3
4 (y2

1 + y2
2) (1-3)

Y Refers to the pair of traits (y1, y2) (3-4)

Dε(V )(Y, t, z) V (t, z̄) −
1
2 V (t, z̄ + εy1) −

1
2 V (t, z̄ + εy2) (3-4)

D∗
ε (V )(y, t) V (t, z∗) − V (t, z∗ + εy) (3-4)

∥W∥∞ sup(t,z)∈R+×R|W (t, z)|

dG∗
ε, d N ∗

ε Probability densities Section 4C, (4-26), (4-27)

4ε(t, z) Notation shortcut for Wε(t, z) − 2Wε(t, z̄) (5-1)

O∗

0 (1) Dependency upon the initial data at t = 0 Theorem 7.1

B0 “Small” ball around z∗ Figure 2, Section 7A,
Proposition 7.3

r∗, T∗ Parameters in the definition of B0 Section 7A, (7-7)

Bn, Dn Successive balls and dyadic rings Section 7: (7-2), (7-3),
Figure 2

(an)n≥1, (bn)n≥1 Controls of M on the rings Dn (7-4)

∥W∥
n
∞

L∞ norm on R+× Bn , for n ≥ 0 (7-5)
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