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THE “GOOD” BOUSSINESQ EQUATION: LONG-TIME ASYMPTOTICS

CHRISTOPHE CHARLIER, JONATAN LENELLS AND DENG-SHAN WANG

We consider the initial-value problem for the “good” Boussinesq equation on the line. Using inverse
scattering techniques, the solution can be expressed in terms of the solution of a 3 × 3-matrix Riemann–
Hilbert problem. We establish formulas for the long-time asymptotics of the solution by performing a
Deift–Zhou steepest descent analysis of a regularized version of this Riemann–Hilbert problem. Our results
are valid for generic solitonless Schwartz class solutions whose space-average remains bounded as t → ∞.

1. Introduction

When investigating the bidirectional propagation of small amplitude and long wavelength capillary-gravity
waves on the surface of shallow water, J. Boussinesq [1872] derived the classical Boussinesq equation

ηt t − gh0ηxx = gh0

(
3
2

η2

h0
+

h2
0

3
ηxx

)
xx

, (1-1)

where η(x, t) is the perturbation-free surface, h0 is the mean depth, and g is the gravitational constant.
This equation was later rediscovered by Keulegan and Patterson [1940]. In nondimensional units, (1-1)
can be written as

ut t − uxx − (u2)xx − uxxxx = 0, (1-2)

where u(x, t) is a real-valued function and subscripts denote partial derivatives. Equation (1-2) is often
referred to as the “bad” Boussinesq equation in contrast to the so-called “good” Boussinesq equation

ut t − uxx + (u2)xx + uxxxx = 0, (1-3)

in which the ut t and uxxxx terms have the same sign, thus making the equation linearly well-posed; see,
e.g., [Bona and Sachs 1988; Compaan and Tzirakis 2017; Farah 2009; Himonas and Mantzavinos 2015;
Linares 1993] for well-posedness results for (1-3). Equation (1-3) governs small nonlinear oscillations in
an elastic beam and is also known as the “nonlinear string equation” [Falkovich et al. 1983].

Deift and Zhou [1993] proposed a steepest descent method for the asymptotic analysis of Riemann–
Hilbert (RH) problems. The Deift–Zhou approach has been successfully utilized to determine long-time
asymptotics for a large number of integrable equations such as the modified KdV equation [Deift and
Zhou 1993], the KdV equation [Deift et al. 1994], the nonlinear Schrödinger equation [Jenkins and
McLaughlin 2014; Tovbis et al. 2004], the sine-Gordon equation [Cheng et al. 1999], the Camassa–Holm
equation [Boutet de Monvel et al. 2009], the Degasperis–Procesi equation [Boutet de Monvel et al. 2019],
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and the Toda lattice [Deift et al. 1996]. At his 60th birthday conference in 2005, P. Deift [2008] presented
a list of sixteen open problems, among which he pointed out that “The long-time behavior of the solutions
of the Boussinesq equation with general initial data is a very interesting problem with many challenges.”
The purpose of this paper is to take a first step towards the solution of this problem.

As in [McKean 1981; Deift et al. 1982], we consider the following version of the “good” Boussinesq
equation:

ut t +
4
3(u2)xx +

1
3 uxxxx = 0, (1-4)

which can be obtained from (1-3) by a simple shift u → u +
1
2 followed by a trivial rescaling. Our main

result provides explicit formulas for the long-time asymptotics of the solution u(x, t) of (1-4) in a sector
in the right half-plane {x > 0, t > 0} under the assumption that the initial data lie in the Schwartz class and
satisfy the physically natural assumption that ut(x, 0) has zero mean. The proof is based on a Deift–Zhou
steepest descent analysis of a 3×3-matrix RH problem, which is parametrized by x and t . This RH problem
was derived in [Charlier and Lenells 2022] by performing a spectral analysis of a Lax pair associated to
(1-4); it is formulated in the complex plane of the spectral parameter k and has a jump contour consisting
of the three lines R ∪ ωR ∪ ω2R, where ω = e2π i/3. The steepest descent analysis of this RH problem is
severely complicated by the fact that the associated spectral problem is third-order. In fact, even though
a version of the inverse scattering formalism was developed for the Boussinesq equation already in [Deift
et al. 1982], the results presented here are, to the best of our knowledge, the first asymptotic results for any
of the equations (1-2)–(1-4) obtained via steepest descent techniques (there exists a substantial amount
of work on the long-time asymptotics for Boussinesq equations based on functional analytic approaches,
see, e.g., [Farah 2008; Liu 1997; Linares and Scialom 1995; Wang 2009], but these approaches yield
asymptotic information of a much less precise type). In addition to the third-order spectral problem,
another complication in the analysis of (1-4) stems from the fact that the associated RH problem is singular
at the origin. Therefore, instead of performing the steepest descent analysis of this RH problem directly, we
will analyze a regularized version of the RH problem and then transfer the results to the singular problem.

The paper is organized as follows. The main result is stated in Section 2. An overview of the rather
involved proof, which also contains a statement of the relevant RH problem, is presented in Section 3.
The steepest descent analysis begins in Section 4, where several transformations of the RH problem are
implemented. Local parametrices at the three critical points are constructed in Section 5 and the resulting
small-norm RH problem is estimated in Section 6. Finally, the asymptotic behavior of u(x, t) is obtained
in Section 7.

2. Main result

Equation (1-4) can be rewritten as the system [Zakharov 1974]{
wt +

1
3 uxxx +

4
3(u2)x = 0,

ut = wx ,
(2-1)

which is equivalent to (1-4) provided that u1(x) := ut(x, 0) satisfies∫
R

u1(x) dx = 0. (2-2)
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The assumption (2-2) ensures that the integral
∫

R
u dx does not grow linearly but is conserved in time.

Indeed, letting u0(x) := u(x, 0) and assuming that u has sufficient smoothness and decay, (1-4) implies

d2

dt2

∫
R
u dx = 0, i.e.,

∫
R
u dx =

(∫
R
u1 dx

)
t +

∫
R
u0 dx .

Therefore, instead of analyzing (1-4) with initial data u(x, 0) and ut(x, 0) directly, we will consider the
system (2-1) with initial data u0(x) = u(x, 0) and w0(x) = w(x, 0).

2A. Definition of s(k) and s A(k). The formulation of our main result involves two spectral functions
s(k) and s A(k) which are defined as follows (see [Charlier and Lenells 2022] for details). Suppose u0(x)

and w0(x) are real-valued functions in S(R), where S(R) denotes the Schwartz class of rapidly decaying
functions on the real line. Let ω := e2π i/3 and let, for j = 1, 2, 3, lj (k) = ω j k. Define U(x, k) by

U(x, k) = P(k)−1

 0 0 0
0 0 0

−w0(x)−u0x −2u0(x) 0

 P(k), (2-3)

where

P(k) =

 ω ω2 1
ω2k ωk k
k2 k2 k2

 . (2-4)

Let X (x, k) and X A(x, k) be the 3×3-matrix-valued eigenfunctions defined by the linear Volterra integral
equations

X (x, k) = I −

∫ ∞

x
e(x−x ′)L̂(k)(UX)(x ′, k) dx ′, (2-5a)

X A(x, k) = I +

∫ ∞

x
e−(x−x ′)L̂(k)(UT X A)(x ′, k) dx ′, (2-5b)

where L = diag(l1, l2, l3), L̂ denotes the operator which acts on a 3 × 3 matrix A by L̂A = [L, A] (i.e.,
eL̂A = eLAe−L), and UT denotes the transpose of U. The 3 × 3-matrix-valued functions s(k) and s A(k)

are defined by

s(k) = I −

∫
R

e−xL̂(k)(UX)(x, k) dx, (2-6)

s A(k) = I +

∫
R

exL̂(k)(UT X A)(x, k) dx . (2-7)

2B. Statement of the main result. We first state our main result for the system (2-1); the formulation for
(1-4) is given as a corollary. For simplicity, we only consider solutions in the Schwartz class, but it will
be clear from the text that our result and its proof only require a finite degree of smoothness and decay.

Definition 2.1. We call {u(x, t),w(x, t)} a Schwartz class solution of (2-1) with initial data u0, w0 ∈S(R) if

(i) u, w are smooth real-valued functions of (x, t) ∈ R × [0, ∞),

(ii) u, w satisfy (2-1) for (x, t) ∈ R × [0, ∞) and

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ R.
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Figure 1. The contour 0 and the open sets Dn , n = 1, . . . , 6, which decompose the
complex k-plane.

(iii) u, w have rapid decay as |x | → ∞ in the sense that, for each integer N ≥ 1 and each T > 0,

sup
x∈R

t∈[0,T )

N∑
i=0

(1 + |x |)N (|∂ i
x u| + |∂ i

xw|) < ∞.

Let {Dn}
6
n=1 denote the sectors shown in Figure 1. We make the following two assumptions.

Assumption 2.2 (absence of solitons). Assume that (s(k))11 and (s A(k))11 are nonzero for k ∈ D1 \ {0}

and k ∈ D4 \ {0}, respectively.

Assumption 2.3 (generic behavior at k = 0). Assume that

lim
k→0

k2(s(k))11 ̸= 0, lim
k→0

k2(s A(k))11 ̸= 0.

Assumption 2.2 ensures that no solitons are present (the case when s11 and s A
11 have a finite number

of simple poles off the contour can be treated by standard methods; see, e.g., [Fokas and Its 1996], or
[Lenells 2012] for a 3 × 3 matrix case). Assumption 2.3 ensures that s11 and s A

11 have double poles at
k = 0, which is the case for generic initial data [Charlier and Lenells 2022].

Define the reflection coefficient r1(k) by

r1(k) =
(s(k))12

(s(k))11
, k ∈ (0, ∞). (2-8)

If u0, w0 ∈ S(R) are such that Assumptions 2.2 and 2.3 hold, then r1(k) extends to a smooth function of
k ∈ [0, ∞) with rapid decay as k → ∞ which satisfies r1(0) = ω and |r1(k)| < 1 for k > 0; see [Charlier
and Lenells 2022].

We can now state our main result, which establishes the long-time behavior of u(x, t) in the asymptotic
sector x/t > 0; see Figures 2 and 3.
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Figure 2. Numerical example showing |r1(k)| as a function of k ≥ 0 (left) and an example
of an asymptotic sector in the (x, t)-plane where the formula of Theorem 2.4 applies (right).
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Figure 3. Numerical simulation of the solution u(x, t) of (1-4) with initial data u(x, 0)=

−
1
10 e−x2/20 and ut(x, 0) = 0 (solid blue) together with the asymptotic approximation in

(2-9) (dashed black) at the times t = 0, t = 100, t = 200, and t = 300. As expected,
the asymptotic formula provides a better and better approximation as t increases. The
convergence is the slowest for small values of x , which is consistent with the fact that
the asymptotic estimate (2-9) is not uniform near x = 0.

Theorem 2.4 (long-time asymptotics for (2-1)). Suppose {u(x, t), w(x, t)} is a Schwartz class solution
of (2-1) with initial data u0, w0 ∈ S(R) such that Assumptions 2.2 and 2.3 hold. Then the following
asymptotic formula holds uniformly for ζ = x/t in compact subsets of (0, ∞) as t → ∞:

u(x, t) = −
35/4k0

√
ν

√
2t

sin
(

19π

12
+ ν ln(6

√
3tk2

0) −
√

3k2
0 t − arg r1(k0) − arg 0(iν)

+
1
π

∫
∞

k0

ln
∣∣∣∣ s − k0

s − ωk0

∣∣∣∣ d ln(1 − |r1(s)|2)
)

+ O
(

ln t
t

)
, (2-9)
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where 0 denotes the Gamma function, k0 ≡ k0(ζ ) = ζ/2, and ν ≡ ν(ζ ) ≥ 0 is defined by

ν = −
1

2π
ln(1 − |r1(k0)|

2).

The proof of Theorem 2.4 is presented in Sections 3–7; Section 3 contains an overview of the proof.
As a corollary, we obtain asymptotics of the solution of (1-4) with initial data u0(x) = u(x, 0) and

u1(x) = ut(x, 0).

Corollary 2.5 (long-time asymptotics for (1-4)). Suppose u(x, t) is a Schwartz class solution of the
“good” Boussinesq equation (1-4) with initial data u0, u1 ∈ S(R) such that

∫
R

u1 dx = 0. Let w0(x) =∫ x
−∞

u1(x ′) dx ′ and define r1 : (0, ∞) → C by (2-8). Suppose Assumptions 2.2 and 2.3 hold. Then u obeys
the asymptotic formula (2-9) as t → ∞ uniformly for ζ = x/t in compact subsets of (0, ∞).

Remark 2.6 (asymptotics in the left half-plane). In Theorem 2.4, we have, for conciseness, only presented
asymptotics of u(x, t) in a subsector of the right-half plane x > 0. A similar formula can be derived by the
same methods for a subsector of the left half-plane, except that the formulas there involve r2 := s A

12/s A
11

instead of r1. Alternatively, asymptotics in the left half-plane can be obtained directly from Theorem 2.4
and the invariance of the Boussinesq equation under space inversion.

Remark 2.7 (asymptotics of w). Theorem 2.4 provides a formula for the asymptotics of u. Our methods
can be used to derive an analogous asymptotic formula for w, but since this requires somewhat lengthy
estimates of t-derivatives (see (3-6)), we have decided to not include this.

Remark 2.8 (regularity and decay assumptions). The Schwartz class assumption in Theorem 2.4 can be
relaxed significantly. In fact, even our current proofs only require a finite degree of smoothness and decay.
In light of the developments for integrable equations with second-order spectral problems, we expect that
significant further improvements can be obtained by considering solutions in weighted Sobolev spaces.
Consider for example the nonlinear Schrödinger equation: In [Deift and Zhou 2003], asymptotic formulas
for the solution of the Cauchy problem were established under essentially minimal assumptions on the
initial data, and more recently, the error terms in these formulas have been sharpened to become in a
certain sense optimal by using the ∂̄ generalization of the nonlinear steepest descent method [Borghese
et al. 2018; Dieng et al. 2019]. It is an interesting research direction to investigate the regularity and
decay requirements necessary for the derivation of asymptotic formulas for integrable equations with
higher-order spectral problems. It seems clear that the ∂̄ steepest descent method can be effectively
applied also in this context. However, the construction of the direct and inverse scattering transforms in
the framework of weighted Sobolev spaces is likely to be more involved for spectral problems of at least
third order than for second-order problems.

2C. Notation. We summarize some notation that will be used throughout the paper. In what follows,
γ ⊂ C denotes an oriented (piecewise smooth) contour.

• If A is an n × m matrix, then |A| ≥ 0 is defined by |A|
2
=

∑
i, j |Ai j |

2. Note that |A + B| ≤ |A| + |B|

and |AB| ≤ |A||B|.

• c and C will denote generic positive constants which may change within a computation.
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• We write R+ = (0, ∞) and R− = (−∞, 0).

• For 1 ≤ p ≤ ∞, we write A ∈ L p(γ ) if |A| belongs to L p(γ ). Then A ∈ L p(γ ) if and only if each
entry Ai j belongs to L p(γ ). We write ∥A∥L p(γ ) := ∥|A|∥L p(γ ).

• We define L̇3(γ ) as the space of all functions f : γ → C such that (1 + |k|)1/3 f (k) ∈ L3(γ ). If γ is
bounded, L̇3(γ ) = L3(γ ), but in general it only holds that L̇3(γ ) ⊂ L3(γ ). We turn L̇3(γ ) into a Banach
space with the norm ∥ f ∥L̇3(γ ) := ∥(1 + |k|)1/3 f ∥L3(γ ).

• We let Ė3(C \ γ ) denote the space of all analytic functions f : C \ γ → C with the property that for
each component D of C \ γ there exist curves {Cn}

∞

1 in D such that the Cn eventually surround each
compact subset of D and

sup
n≥1

∫
Cn

(1 + |k|) | f (k)|3 |dk| < ∞.

• For a function f defined in C \ γ , we let f± denote the nontangential boundary values of f from the
left and right sides of γ , respectively, whenever they exist. If f ∈ Ė3(C \ γ ), then f± exist a.e. on γ and
f± ∈ L̇3(γ ); see [Lenells 2018, Theorem 4.1].

3. Overview of the proof

The proof of Theorem 2.4 consists of a Deift–Zhou steepest descent analysis of a 3×3 matrix RH problem.
The jump contour 0 of this RH problem consists of the three lines R ∪ ωR ∪ ω2R, see Figure 1, and the
jump matrix v is given explicitly in terms of r1(k) defined in (2-8) and the function r2(k) defined by

r2(k) =
(s A(k))12

(s A(k))11
, k ∈ (−∞, 0). (3-1)

More precisely, v is defined as follows. Define {lj (k), z j (k)}3
j=1 by

lj (k) = ω j k, z j (k) = ω2 j k2, k ∈ C, (3-2)

and define the complex-valued functions 8i j (ζ, k) for 1 ≤ i ̸= j ≤ 3 by

8i j (ζ, k) = (li − lj )ζ + (zi − z j ),

where ζ := x/t . By symmetry, it is enough to consider 821, 831, and 832, which are explicitly given by

821(ζ, k) = ω(ω − 1)k(ζ − k),

831(ζ, k) = (1 − ω)k(ζ − ω2k),

832(ζ, k) = (1 − ω2)k(ζ − ωk).

Given a function f (k) of k ∈ C, we let f ∗ denote the Schwartz conjugate of f , i.e.,

f ∗(k) = f (k̄).
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The jump matrix v(x, t, k) is defined for k ∈ 0 by

v1 =

 1 −r1(k)e−t821 0
r∗

1 (k)et821 1−|r1(k)|2 0
0 0 1

 , v2 =

1 0 0
0 1−|r2(ωk)|2 −r∗

2 (ωk)e−t832

0 r2(ωk)et832 1

 ,

v3 =

 1−|r1(ω
2k)|2 0 r∗

1 (ω2k)e−t831

0 1 0
−r1(ω

2k)et831 0 1

 , v4 =

1−|r2(k)|2 −r∗

2 (k)e−t821 0
r2(k)et821 1 0

0 0 1

 ,

v5 =

1 0 0
0 1 −r1(ωk)e−t832

0 r∗

1 (ωk)et832 1−|r1(ωk)|2

 , v6 =

 1 0 r2(ω
2k)e−t831

0 1 0
−r∗

2 (ω2k)et831 0 1 − |r2(ω
2k)|2

 ,

(3-3)

where vj denotes the restriction of v to the subcontour of 0 labeled by j in Figure 1. We consider the
following RH problem, which is formulated in the L3-setting to ensure uniqueness (the solution of an
n × n-matrix L p-RH problem is unique whenever it exists provided that 1 ≤ n ≤ p; see [Lenells 2018,
Theorem 5.6]).

RH problem 3.1 (L3-RH problem for m). Find a 3×3-matrix-valued function m(x, t, · ) ∈ I + Ė3(C\0)

such that m+(x, t, k) = m−(x, t, k)v(x, t, k) for a.e. k ∈ 0.

By introducing the row-vector-valued function n by

n(x, t, k) = (ω ω2 1)m(x, t, k), (3-4)

we can transform the RH problem for m into the following vector RH problem for n.

RH problem 3.2 (L3-RH problem for n). Find a 1×3-row-vector-valued function n(x, t, · )∈ (ω, ω2, 1)+

Ė3(C \ 0) such that n+(x, t, k) = n−(x, t, k)v(x, t, k) for a.e. k ∈ 0.

For technical reasons, we also need the classical version of this RH problem.

RH problem 3.3 (classical RH problem for n). Find a 1 × 3-row-vector-valued function n(x, t, k) with
the following properties:

(i) n(x, t, · ) : C \ 0 → C1×3 is analytic.

(ii) The limits of n(x, t, k) as k approaches 0 \ {0} from the left and right exist, are continuous on 0 \ {0},
and are denoted by n+ and n−, respectively. Furthermore, they are related by

n+(x, t, k) = n−(x, t, k)v(x, t, k), k ∈ 0 \ {0}. (3-5)

(iii) n(x, t, k) = (ω, ω2, 1) + O(k−1) as k → ∞.

(iv) n(x, t, k) = O(1) as k → 0.

The following result was proved in [Charlier and Lenells 2022].

Proposition 3.4. Suppose the assumptions of Theorem 2.4 hold. Let U be an open subset of R × [0, ∞)

and suppose for each (x, t) ∈ U that the solution of the classical RH problem 3.3 for n is unique whenever
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it exists. Then RH problem 3.3 has a unique solution n(x, t, k) for each (x, t) ∈ U and the solution
{u(x, t), w(x, t)} of (2-1) can be expressed in terms of n = (n1, n2, n3) byu(x, t) = −

3
2

∂

∂x
limk→∞ k(n3(x, t, k) − 1),

w(x, t) = −
3
2

∂

∂t
limk→∞ k(n3(x, t, k) − 1),

(x, t) ∈ U. (3-6)

To use Proposition 3.4, we need the following lemma.

Lemma 3.5. Suppose RH problem 3.1 has a solution m(x, t, · ) at some point (x, t) ∈ R × [0, ∞).
Then n = (ω, ω2, 1)m is the unique solution of RH problem 3.2 at (x, t). Moreover, if the solution of
RH problem 3.3 exists, then it is unique and is given by n = (ω, ω2, 1)m.

Proof. The assertion for n = (ω, ω2, 1)m follows as in [Boutet de Monvel et al. 2019, Lemma A.5]. The
last claim follows because every solution of RH problem 3.3 is also a solution of RH problem 3.2. □

It will follow from the steepest descent analysis (see Lemma 6.3) that there exists a T > 0 such
that RH problem 3.1 has a unique solution m for t ≥ T and x/t in a compact subset of (0, ∞). Thus
Proposition 3.4 and Lemma 3.5 imply that the formulas (3-6) for u, w are valid for all t ≥ T and x/t in
compact subsets of (0, ∞) if n is defined by n = (ω, ω2, 1)m. Therefore it is enough to determine the
large t asymptotics of m.

3A. Steepest descent analysis. The large t behavior of m can be obtained by performing a Deift–
Zhou steepest descent analysis of RH problem 3.1. The first step in this analysis is to define analytic
approximations of the functions r1 and r2 appearing in the jump matrix v, as well as of the combination
r1/(1 − |r1|

2). Once these approximations are in place, we can deform the contour in such a way that
the new jump is close to the identity matrix everywhere except near three critical points (see Section 4).
The critical points are the solutions of the stationary phase equations ∂821/∂k = 0, ∂831/∂k = 0, and
∂832/∂k = 0. For each choice of 1 ≤ j < i ≤ 3, ∂8i j/∂k = 0 has a single zero ki j given by

k21 =
ζ

2
, k31 =

ωζ

2
, k32 =

ω2ζ

2
.

Writing k0 ≡ k21, these three critical points can be expressed as k0, ωk0, and ω2k0; see Figure 4. The
signature tables for 821, 831, and 832 are shown in Figures 5–7.

Near each of the three critical points, the RH problem can be approximated by a local parametrix
which is constructed in Section 5. In fact, since the jump matrix v obeys the symmetries

v(x, t, k) = Av(x, t, ωk)A−1
= Bv(x, t, k̄)−1B, k ∈ 0, (3-7)

where

A =

0 0 1
1 0 0
0 1 0

 and B =

0 1 0
1 0 0
0 0 1

 , (3-8)

the solution m obeys the symmetries

m(x, t, k) = Am(x, t, ωk)A−1
= Bm(x, t, k̄)B, k ∈ C \ 0. (3-9)
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R

ω2RωR

ωk0

k0

ω2k0

Figure 4. The three critical points k0, ωk0, ω
2k0 in the complex k-plane for ζ > 0.

R

Re821 > 0

Re821 < 0ωk0

k0

ω2k0

Figure 5. The regions where Re821 > 0 (shaded) and Re821 < 0 (white).

R

Re 831 < 0

Re 831 > 0ωk0

k0

ω2k0

Figure 6. The regions where Re 831 > 0 (shaded) and Re 831 < 0 (white).

It is therefore sufficient to construct the local parametrix mk0 at k0, because then the local parametrices at
ωk0 and ω2k0 can be obtained by symmetry. In the end, we arrive at a small-norm RH problem whose
solution is estimated in Section 6. Finally, the asymptotics of u(x, t) is obtained in Section 7.

3B. Assumptions for the remainder of the paper. From here on, we assume that {u(x, t), w(x, t)} is a
Schwartz class solution of (2-1) with initial data u0, w0 ∈ S(R) such that Assumptions 2.2 and 2.3 hold.
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R

Re 832 < 0

Re 832 > 0ωk0

k0

ω2k0

Figure 7. The regions where Re 832 > 0 (shaded) and Re 832 < 0 (white).

We also assume that r1(k) and r2(k) are defined by (2-8) and (3-1). We let I denote a fixed compact
subset of (0, ∞).

4. Transformations of the RH problem

By performing a number of transformations, we can bring the RH problem 3.1 to a form suitable for deter-
mining the long-time asymptotics. More precisely, starting with m, we will define functions m( j)(x, t, k),
j = 1, 2, 3, such that the RH problem satisfied by m( j) is equivalent to the original RH problem 3.1. The
RH problem for m( j) can be formulated as follows, where the contours 0( j) and the jump matrices v( j)

are specified below.

RH problem 4.1 (RH problem for m( j)). Find a 3 × 3-matrix-valued function m( j)(x, t, · ) ∈ I +

Ė3(C \ 0( j)) such that m( j)
+ (x, t, k) = m( j)

− (x, t, k)v( j)(x, t, k) for a.e. k ∈ 0( j).

The jump matrix v(3) obtained after the third transformation has the property that it approaches the
identity matrix as t → ∞ everywhere on the contour except near the three critical points k0, ωk0, ω2k0.
This means that we can find the long-time asymptotics of m(3) by computing the contribution from three
small crosses centered at these points.

The symmetries (3-7) and (3-9) will be preserved at each stage of the transformations, so that, for
j = 1, 2, 3,

v( j)(x, t, k) = Av( j)(x, t, ωk)A−1
= Bv( j)(x, t, k̄)−1B, k ∈ 0( j), (4-1)

m( j)(x, t, k) = Am( j)(x, t, ωk)A−1
= Bm( j)(x, t, k̄)B, k ∈ C \ 0( j). (4-2)

4A. First transformation. The purpose of the first transformation is to remove (except for a small
remainder) the jumps across the subcontours eπ i/3R+, R−, and e−π i/3R+ of 0. To implement this
transformation, we need analytic approximations of the functions r∗

2 , r1, and r̂∗

1 , where r̂1(k) is defined by

r̂1(k) =
r1(k)

1 − r1(k)r∗

1 (k)
.
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Re k

U1U2

U3 U4

k0

Figure 8. The open sets {Uj }
4
1 in the complex k-plane.

We introduce open sets Uj = Uj (ζ ) ⊂ C, j = 1, . . . , 4, as in Figure 8, such that

U1 ∪ U3 = {k | Re 821(ζ, k) < 0}, U2 ∪ U4 = {k | Re 821(ζ, k) > 0}.

Lemma 4.2. There exist decompositions

r∗

2 (k) = r∗

2,a(x, t, k) + r∗

2,r (x, t, k), k ∈ (−∞, 0],

r1(k) = r1,a(x, t, k) + r1,r (x, t, k), k ∈ [0, k0],

r̂∗

1 (k) = r̂∗

1,a(x, t, k) + r̂∗

1,r (x, t, k), k ∈ [k0, ∞),

(4-3)

where the functions r∗

2,a, r∗

2,r , r1,a, r1,r , r̂∗

1,a, r̂∗

1,r have the following properties:

(a) For each ζ ∈ I and each t > 0, r∗

2,a(x, t, k) and r1,a(x, t, k) are defined and continuous for k ∈ U 2

and analytic for k ∈ U2, and r̂∗

1,a(x, t, k) is defined and continuous for k ∈ U 1 and analytic for k ∈ U1.

(b) For each ζ ∈ I and t > 0, the functions r∗

2,a , r1,a , and r̂∗

1,a satisfy

|r∗

2,a(x, t, k)| ≤
C |k − ωk0|

1 + |k|2
e(t/4)|Re 821(ζ,k)|, k ∈ U 2, (4-4a)

|∂ l
x(r

∗

2,a(x, t, k) − r∗

2 (0))| ≤ C |k|e(t/4)|Re 821(ζ,k)|, k ∈ U 2, (4-4b)

|∂ l
x(r1,a(x, t, k) − r1(0))| ≤ C |k|e(t/4)|Re 821(ζ,k)|, k ∈ U 2, (4-4c)

|∂ l
x(r1,a(x, t, k) − r1(k0))| ≤ C |k − k0|e(t/4)|Re 821(ζ,k)|, k ∈ U 2, (4-4d)

|∂ l
x(r̂

∗

1,a(x, t, k) − r̂∗

1 (k0))| ≤ C |k − k0|e(t/4)|Re 821(ζ,k)|, k ∈ U 1, (4-4e)

|∂ l
x r̂∗

1,a(x, t, k)| ≤
C

1 + |k|
e(t/4)|Re 821(ζ,k)|, k ∈ U 1, (4-4f)

where l = 0, 1 and the constant C is independent of ζ, t, k.

(c) For each 1 ≤ p ≤ ∞ and l = 0, 1,

the L p-norm of (1 + | · |)∂ l
xr∗

2,r (x, t, · ) on (−∞, 0) is O(t−3/2), (4-5)
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the L p-norms of ∂ l
xr1,r (x, t, · ) and r1,r (x, t, · )

· −k0
on (0, k0) are O(t−3/2), (4-6)

the L p-norms of (1 + | · |)∂ l
x r̂∗

1,r (x, t, · ) and
r̂∗

1,r (x, t, · )
· −k0

on (k0, ∞) are O(t−3/2), (4-7)

uniformly for ζ ∈ I as t → ∞.

Proof. The proof uses the techniques of [Deift and Zhou 1993]. Since these techniques are rather standard
by now, we omit the details; see [Lenells 2017, Lemma 4.8] for a proof of a similar lemma. □

In the sequel, we often write r j,a(k) and r j,r (k) instead of r j,a(x, t, k) and r j,r (x, t, k), respectively,
for notational convenience.

Recalling that r2 = r2,a + r2,r , we can factorize v2, v4, v6 as

v2 = vU
2,av2,rv

L
2,a, v4 = vU

4,av4,rv
L
4,a, v6 = vL

6,av6,rv
U
6,a,

where the analytic factors are given by

vU
2,a =

1 0 0
0 1 −r∗

2,a(ωk)e−t832

0 0 1

 , vL
2,a =

1 0 0
0 1 0
0 r2,a(ωk)et832 1

 ,

vU
4,a =

1 −r∗

2,a(k)e−t821 0
0 1 0
0 0 1

 , vL
4,a =

 1 0 0
r2,a(k)et821 1 0

0 0 1

 ,

vL
6,a =

 1 0 0
0 1 0

−r∗

2,a(ω
2k)et831 0 1

 , vU
6,a =

1 0 r2,a(ω
2k)e−t831

0 1 0
0 0 1

 ,

and the small remainders v j,r , j = 2, 4, 6, are given by the expressions obtained by replacing rj with r j,r

in the definition (3-3) of vj , i.e.,

v2,r =

1 0 0

0 1−r2,r (ωk)r∗

2,r (ωk) −r∗

2,r (ωk)e−t832

0 r2,r (ωk)et832 1

 ,

v4,r =

1−|r2,r (k)|2 −r∗

2,r (k)e−t821 0

r2,r (k)et821 1 0
0 0 1

 ,

v6,r =

 1 0 r2,r (ω
2k)e−t831

0 1 0
−r∗

2,r (ω
2k)et831 0 1−r2,r (ω

2k)r∗

2,r (ω
2k)

 .

Define the sectionally analytic function m(1) by

m(1)(x, t, k) = m(x, t, k)G(x, t, k),
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where G is defined by

G(x, t, k) =



vU
2,a, k ∈ D1,

(vL
2,a)

−1, k ∈ D2,

vU
4,a, k ∈ D3,

(vL
4,a)

−1, k ∈ D4,

vL
6,a, k ∈ D5,

(vU
6,a)

−1, k ∈ D6.

(4-8)

Lemma 4.3. G(x, t, k) and G(x, t, k)−1 are uniformly bounded for k ∈ C\0, t > 0, and ζ ∈ I. Moreover,
G = I + O(k−1) as k → ∞.

Proof. We have Re 821(ζ, k) > 0 for k ∈ D3 (see Figure 5). Therefore, by virtue of (4-4a),

|vU
4,a(x, t, k) − I | ≤

C
1 + |k|

e−ct |Re 821(ζ,k)|, k ∈ D3,

uniformly for ζ ∈ I. Since Re 821(ζ, k) < 0 for ζ ∈ D4 (see Figure 5 again), we deduce similarly that

|r2,a(x, t, k)| ≤
C

1 + |k|
e(t/4)|Re 821(ζ,k)|, k ∈ U 3,

and hence
|(vL

4,a)
−1(x, t, k) − I | ≤

C
1 + |k|

e−ct |Re 821(ζ,k)|, k ∈ D4.

We appeal to the A-symmetry of (4-1) to extend these bounds to the other sectors. □

It follows from Lemma 4.3 that m satisfies RH problem 3.1 if and only if m(1) satisfies RH problem 4.1
with j = 1, where 0(1)

= 0 and the jump matrix v(1) is given on 01 ∪ 03 ∪ 05 by

v
(1)
1 = vU

6,av1v
U
2,a, v

(1)
3 = vL

2,av3v
U
4,a, v

(1)
5 = vL

4,av5v
L
6,a,

and the small jumps remaining on 02 ∪ 04 ∪ 06 are given by

v
(1)
j = v j,r , j = 2, 4, 6.

Here 0j denotes the subcontour of 0 labeled by j in Figure 1. More explicitly, the jump matrices v
(1)
j ,

j = 1, 3, 5, can be expressed as

v
(1)
1 =

 1 −r1(k)e−t821 β(k)e−t831

r∗

1 (k)et821 1−r1(k)r∗

1 (k) α(k)e−t832

0 0 1

 ,

v
(1)
3 =

1−r1(ω
2k)r∗

1 (ω2k) α(ω2k)e−t821 r∗

1 (ω2k)e−t831

0 1 0
−r1(ω

2k)et831 β(ω2k)et832 1

 ,

v
(1)
5 =

 1 0 0
β(ωk)et821 1 −r1(ωk)e−t832

α(ωk)et831 r∗

1 (ωk)et832 1−r1(ωk)r∗

1 (ωk)

 ,
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0(2)

1

2

3

4

5

6

7

8

9
k0

ωk0

ω2k0

Figure 9. The contour 0(2) in the complex k-plane.

where the functions α(k) ≡ α(x, t, k) and β(k) ≡ β(x, t, k) are defined by

α(k) = −r∗

2,a(ωk)(1 − r1(k)r∗

1 (k)), k ∈ R+,

β(k) = r2,a(ω
2k) + r1(k)r∗

2,a(ωk), k ∈ R+.

4B. Second transformation. Let 0(2)
=

⋃9
j=1 0

(2)
j denote the contour displayed in Figure 9, where

0
(2)
1 = [k0, ∞) etc. For each ζ ∈ I, we choose δ1(ζ, k) such that δ1 is analytic except for the jump

across 0
(2)
1 ,

δ1+(ζ, k) = δ1−(ζ, k)(1 − |r1(k)|2), k ∈ 0
(2)
1 ,

and such that
δ1(ζ, k) = 1 + O(k−1), k → ∞. (4-9)

The relation k0 = ζ/2 implies that there exists an ϵ > 0 such that

|r(k0)| ≤ 1 − ϵ for all k ∈ [k0, ∞) and all ζ ∈ I. (4-10)

Hence, by the Plemelj formulas, we find

δ1(ζ, k) = exp
{

1
2π i

∫
[k0,∞)

ln(1 − |r1(s)|2)
s − k

ds
}
, k ∈ C \ 0

(2)
1 . (4-11)

Let ln0(k) denote the logarithm of k with branch cut along arg k = 0, i.e., ln0(k) = ln |k|+ i arg0 k with
arg0 k ∈ (0, 2π).

Lemma 4.4. The function δ1(ζ, k) has the following properties:

(a) δ1 can be written as
δ1(ζ, k) = e−iν ln0(k−k0)e−χ1(ζ,k), (4-12)

where ν ≡ ν(ζ ) ≥ 0 is defined by

ν = −
1

2π
ln(1 − |r1(k0)|

2), ζ ∈ I,
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and

χ1(ζ, k) =
1

2π i

∫
∞

k0

ln0(k − s) d ln(1 − |r1(s)|2). (4-13)

(b) For each ζ ∈ I, δ1(ζ, k) and δ1(ζ, k)−1 are analytic functions of k ∈ C \ 0
(2)
1 with continuous

boundary values on 0
(2)
1 \ {k0}. Moreover,

sup
ζ∈I

sup
k∈C\0

(2)
1

|δ1(ζ, k)±1
| < ∞. (4-14)

(c) δ1 obeys the symmetry

δ1(ζ, k) = δ1(ζ, k̄)−1, ζ ∈ I, k ∈ C \ 0
(2)
1 . (4-15)

(d) As k → k0 along a path which is nontangential to (k0, ∞), we have

|χ1(ζ, k) − χ1(ζ, k0)| ≤ C |k − k0|(1 + |ln |k − k0||), (4-16)

|∂x(χ1(ζ, k) − χ1(ζ, k0))| ≤
C
t

(1 + |ln |k − k0||), (4-17)

where C is independent of ζ ∈ I. Furthermore,

|∂xχ1(ζ, k0)| =
1
t

∣∣∣∂uχ1(u, v)|(u,v)=(ζ,k0) +
1
2
∂vχ1(u, v)|(u,v)=(ζ,k0)

∣∣∣ ≤
C
t

(4-18)

and

∂x(δ1(ζ, k)±1) =
±iν

2t (k − k0)
δ1(ζ, k)±1. (4-19)

Proof. The lemma follows from (4-11) and relatively straightforward estimates. □

The functions δ3 and δ5 defined by

δ3(ζ, k) = δ1(ζ, ω2k), k ∈ C \ 0
(2)
3 ,

δ5(ζ, k) = δ1(ζ, ωk), k ∈ C \ 0
(2)
5 ,

satisfy the jump relations
δ3+(ζ, k) = δ3−(ζ, k)(1 − |r1(ω

2k)|2), k ∈ 0
(2)
3 ,

δ5+(ζ, k) = δ5−(ζ, k)(1 − |r1(ωk)|2), k ∈ 0
(2)
5 .

The jump matrix v(1) cannot be appropriately factorized on the subcontour 0
(2)
1 ∪ 0

(2)
3 ∪ 0

(2)
5 of 0(2).

Hence we introduce m(2) by

m(2)(x, t, k) = m(1)(x, t, k)1(ζ, k),

where the 3 × 3-matrix-valued function 1(ζ, k) is defined by

1(ζ, k) =


δ1(ζ, k)

δ3(ζ, k)
0 0

0 δ5(ζ, k)

δ1(ζ, k)
0

0 0 δ3(ζ, k)

δ5(ζ, k)

 . (4-20)
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From (4-14) and (4-9), we infer that 1 and 1−1 are uniformly bounded for ζ ∈ I and k ∈ C \

(0
(2)
1 ∪ 0

(2)
3 ∪ 0

(2)
5 ) and that

1(ζ, k) = I + O(k−1) as k → ∞. (4-21)

It follows that m satisfies RH problem 3.1 if and only if m(2) satisfies RH problem 4.1 with j = 2, where
the jump matrix v(2) is given by v(2)

= 1−1
− v(1)1+. A computation gives

v
(2)
1 =


δ1+

δ1−

−
δ3δ5

δ1−δ1+

r1(k)e−t821 δ2
3

δ1−δ5
β(k)e−t831

δ1−δ1+

δ3δ5
r∗

1 (k)et821 δ1−

δ1+

(1−r1(k)r∗

1 (k))
δ1−δ3

δ2
5

α(k)e−t832

0 0 1



=


1−r1(k)r∗

1 (k) −
δ3δ5

δ2
1−

r1(k)

1−r1(k)r∗

1 (k)
e−t821 δ2

3
δ1−δ5

β(k)e−t831

δ2
1+

δ3δ5

r∗

1 (k)

1−r1(k)r∗

1 (k)
et821 1 −r∗

2,a(ωk)
δ1+δ3

δ2
5

e−t832

0 0 1

 ,

v
(2)
2 =


1 0 0
0 1−r2,r (ωk)r∗

2,r (ωk) −
δ1δ3

δ2
5

r∗

2,r (ωk)e−t832

0 δ2
5

δ1δ3
r2,r (ωk)et832 1

 ,

v
(2)
7 =


1 −

δ3δ5

δ2
1

r1(k)e−t821 δ2
3

δ1δ5
β(k)e−t831

δ2
1

δ3δ5
r∗

1 (k)et821 1−r1(k)r∗

1 (k)
δ1δ3

δ2
5

α(k)e−t832

0 0 1

 .

The remaining jumps v
(2)
j can be obtained from these matrices together with the Z3 symmetry (4-1) and

are given by

v
(2)
3 =


1 −

δ3+δ5

δ2
1

r∗

2,a(k)e−t821
δ2

3+

δ1δ5

r∗

1 (ω2k)e−t831

1−r1(ω2k)r∗

1 (ω2k)

0 1 0
−

δ1δ5

δ2
3−

r1(ω
2k)et831

1−r1(ω2k)r∗

1 (ω2k)

δ2
5

δ1δ3−

β(ω2k)et832 1−r1(ω
2k)r∗

1 (ω2k)

 ,

v
(2)
4 =


1−r2,r (k)r∗

2,r (k) −
δ3δ5

δ2
1

r∗

2,r (k)e−t821 0
δ2

1
δ3δ5

r2,r (k)et821 1 0

0 0 1

 ,

v
(2)
5 =


1 0 0

δ2
1

δ3δ5−

β(ωk)et821 1−r1(ωk)r∗

1 (ωk) −
δ3δ1

δ2
5−

r1(ωk)e−t832

1−r1(ωk)r∗

1 (ωk)

−
δ1δ5+

δ2
3

r∗

2,a(ω
2k)et831

δ2
5+

δ1δ3

r∗

1 (ωk)et832

1−r1(ωk)r∗

1 (ωk)
1

 ,
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v
(2)
6 =


1 0 δ2

3
δ1δ5

r2,r (ω
2k)e−t831

0 1 0
−

δ1δ5

δ2
3

r∗

2,r (ω
2k)et831 0 1−r2,r (ω

2k)r∗

2,r (ω
2k)

 ,

v
(2)
8 =


1−r1(ω

2k)r∗

1 (ω2k)
δ3δ5

δ2
1

α(ω2k)e−t821 δ2
3

δ1δ5
r∗

1 (ω2k)e−t831

0 1 0

−
δ1δ5

δ2
3

r1(ω
2k)et831 δ2

5
δ1δ3

β(ω2k)et832 1

 ,

v
(2)
9 =


1 0 0

δ2
1

δ3δ5
β(ωk)et821 1 −

δ1δ3

δ2
5

r1(ωk)e−t832

δ1δ5

δ2
3

α(ωk)et831 δ2
5

δ1δ3
r∗

1 (ωk)et832 1−r1(ωk)r∗

1 (ωk)

 .

4C. Third transformation. The (11)-entry of v
(2)
1 can be rewritten as

(v
(2)
1 )11 = 1 − r1(k)r∗

1 (k) = 1 −
δ1+

δ1−

r̂1(k)
δ1+

δ1−

r̂∗

1 (k).

Therefore, using the general identity1+ f1 f3 f1 f2

f3 1 f4

0 0 1

 =

1 f1,a f2− f1 f4

0 1 0
0 0 1

 1+ f1,r f3,r f1,r 0
f3,r 1 0
0 0 1

  1 0 0
f3,a 1 f4

0 0 1

 ,

where f j = f j,a + f j,r , as well as the relation

β(k) − r∗

2,a(ωk)r1(k) = r2,a(ω
2k), k ∈ R+,

we can factorize v
(2)
1 for k ∈ 0

(2)
1 as

v
(2)
1 =


1−

δ2
1+

δ2
1−

r̂1(k)r̂∗

1 (k) −
δ3δ5

δ2
1−

r̂1(k)e−t821 δ2
3

δ1−δ5
β(k)e−t831

δ2
1+

δ3δ5
r̂∗

1 (k)et821 1 −r∗

2 (ωk)
δ1+δ3

δ2
5

e−t832

0 0 1

 = v
(2)A
1 v

(2)
1,rv

(2)B
1 , (4-22)

where

v
(2)A
1 =

1 −
δ3δ5

δ2
1−

r̂1,a(k)e−t821 δ2
3

δ1−δ5
r2,a(ω

2k)e−t831

0 1 0
0 0 1

 ,

v
(2)
1,r =


1−

δ2
1+

δ2
1−

r̂∗

1,r (k)r̂1,r (k) −
δ3δ5

δ2
1−

r̂1,r (k)e−t821 0

δ2
1+

δ3δ5
r̂∗

1,r (k)et821 1 0

0 0 1

 ,
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v
(2)B
1 =


1 0 0

δ2
1+

δ3δ5
r̂∗

1,a(k)et821 1 −
δ1+δ3

δ2
5

r∗

2,a(ωk)e−t832

0 0 1

 .

Similarly, using the general identity 1 f1 f2

f3 1+ f1 f3 f4

0 0 1


=

 1 0 0
f3,a 1 f4,a− f2,a f3,a

0 0 1

  1 f1,r f2,r

f3,r 1+ f1,r f3,r f4,r− f2,a f3,r− f2,r f3,a

0 0 1

 1 f1,a f2,a

0 1 0
0 0 1

 ,

where f j = f j,a + f j,r , as well as the relation

α(k) − r∗

1 (k)β(k) = −r∗

2,a(ωk) − r∗

1 (k)r2,a(ω
2k), k ∈ R+,

we can factorize v
(2)
7 for k ∈ 0

(2)
7 as

v
(2)
7 =


1 −

δ3δ5

δ2
1

r1(k)e−t821 δ2
3

δ1δ5
β(k)e−t831

δ2
1

δ3δ5
r∗

1 (k)et821 1−r1(k)r∗

1 (k)
δ1δ3

δ2
5

α(k)e−t832

0 0 1

 = v
(2)A
7 v

(2)
7,rv

(2)B
7 ,

where

v
(2)A
7 =


1 0 0

δ2
1

δ3δ5
r∗

1,a(k)et821 1 −
δ1δ3

δ2
5

(
r∗

2,a(ωk)+r∗

1,a(k)r2,a(ω
2k)

)
e−t832

0 0 1

 ,

v
(2)
7,r =


1 −

δ3δ5

δ2
1

r1,r (k)e−t821 δ2
3

δ1δ5
βr (k)e−t831

δ2
1

δ3δ5
r∗

1,r (k)et821 1−|r1,r (k)|2
δ1δ3

δ2
5

r∗

1,r (k)
(
r1,r (k)r∗

2,a(ωk)−r2,a(ω
2k)

)
e−t832

0 0 1

 ,

v
(2)B
7 =

1 −
δ3δ5

δ2
1

r1,a(k)e−t821 δ2
3

δ1δ5
βa(k)e−t831

0 1 0
0 0 1

 ,

and
βr (k) := r1,r (k)r∗

2,a(ωk), βa(k) := r2,a(ω
2k) + r1,a(k)r∗

2,a(ωk).

Let Vj ≡ Vj (ζ ) ⊂ C, j = 1, . . . , 4, denote the open subsets of the complex k-plane displayed in
Figure 10. Define the sectionally analytic function m(3) by

m(3)(x, t, k) = m(2)(x, t, k)H(x, t, k),
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Re k

V1V2

V3 V4
k0

ωk0

ω2k0

Figure 10. The open sets {Vj }
4
1 in the complex k-plane.

where H is defined for k ∈ D1 ∪ D6 by

H(x, t, k) =



(v
(2)B
1 )−1, k ∈ V1,

(v
(2)B
7 )−1, k ∈ V2,

v
(2)A
7 , k ∈ V3,

v
(2)A
1 , k ∈ V4,

I, elsewhere in D1 ∪ D6,

(4-23)

and extended to all of C \ 0 by means of the symmetry H(x, t, k) = AH(x, t, ωk)A−1. Let 0(3) be the
contour displayed in Figure 11.

Lemma 4.5. H(x, t, k) is uniformly bounded for k ∈C\0(3), t >0, and ζ ∈I. Moreover, H = I +O(k−1)

as k → ∞.

0(3)

12

3 4

5

6

7 8k0

ωk0

ω2k0

Figure 11. The contour 0(3) in the complex k-plane.
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Proof. We present the proof for k ∈ V1 ∪ V2; the proof for k ∈ V3 ∪ V4 is similar. Note that Vj ⊂ Uj ,
j = 1, . . . , 4 (see Figures 8 and 10). Note also the identities

821(ζ, ωk) = 832(ζ, k), 821(ζ, ω2k) = −831(ζ, k), 821 + 832 = 831. (4-24)

If k ∈ V 1, then ωk ∈ U 2 and (see Figures 5 and 7)

Re 821(ζ, k) ≤ 0, Re 832(ζ, k) ≥ 0.

Therefore, using (4-24), (4-4a), (4-4f), and (4-14), we find

|((v
(2)B
1 )−1)21| =

∣∣∣∣ δ2
1

δ3δ5
r̂∗

1,a(k)et821

∣∣∣∣ ≤
C

1 + |k|
e−ct |Re 821|, k ∈ V1,

|((v
(2)B
1 )−1)23| =

∣∣∣∣δ1δ3

δ2
5

r∗

2,a(ωk)e−t832

∣∣∣∣ ≤
C

1 + |k|
e−ct |Re 832|, k ∈ V1.

This proves the claim for k ∈ V1. All entries of (v
(2)B
7 )−1 are continuous functions on V 2. Since V 2 is

compact, the claim follows also for k ∈ V2. □

It follows from Lemma 4.5 that m satisfies RH problem 3.1 if and only if m(3) satisfies RH problem 4.1
with j = 3, where 0(3) is the contour displayed in Figure 11 and the jump matrix v(3) is given for
−

π
3 < arg k ≤

π
3 by

v
(3)
1 = v

(2)B
1 =


1 0 0

δ2
1

δ3δ5
r̂∗

1,a(k)et821 1 −
δ1δ3

δ2
5

r∗

2,a(ωk)e−t832

0 0 1

 ,

v
(3)
2 = (v

(2)B
7 )−1

=

1 δ3δ5

δ2
1

r1,a(k)e−t821 −
δ2

3
δ1δ5

(
r2,a(ω

2k)+r1,a(k)r∗

2,a(ωk)
)
e−t831

0 1 0
0 0 1

 ,

v
(3)
3 = (v

(2)A
7 )−1

=


1 0 0

−
δ2

1
δ3δ5

r∗

1,a(k)et821 1 δ1δ3

δ2
5

(
r∗

2,a(ωk)+r∗

1,a(k)r2,a(ω
2k)

)
e−t832

0 0 1

 ,

v
(3)
4 = v

(2)A
1 =

1 −
δ3δ5

δ2
1

r̂1,a(k)e−t821 δ2
3

δ1δ5
r2,a(ω

2k)e−t831

0 1 0
0 0 1

 ,

v
(3)
5 = v

(2)
2 =


1 0 0
0 1−r2,r (ωk)r∗

2,r (ωk) −
δ1δ3

δ2
5

r∗

2,r (ωk)e−t832

0 δ2
5

δ1δ3
r2,r (ωk)et832 1

 ,
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v
(3)
6 = v

(2)B
7 v

(2)
2 A−1v

(2)A
7 (x, t, ω2k)A =


1 δ3δ5

δ2
1

g(k)e−t821 δ2
3

δ1δ5
f (k)e−t831

0 1−r2,r (ωk)r∗

2,r (ωk) −
δ1δ3

δ2
5

r∗

2,r (ωk)e−t832

0 δ2
5

δ1δ3
r2,r (ωk)et832 1

 ,

v
(3)
7 = v

(2)
7,r =


1 −

δ3δ5

δ2
1

r1,r (k)e−t821 δ2
3

δ1δ5
r1,r (k)r∗

2,a(ωk)e−t831

δ2
1

δ3δ5
r∗

1,r (k)et821 1−r1,r (k)r∗

1,r (k)
δ1δ3

δ2
5

r∗

1,r (k)h(k)e−t832

0 0 1

 ,

v
(3)
8 = v

(2)
1,r =


1−

δ2
1+

δ2
1−

r̂1,r (k)r̂∗

1,r (k) −
δ3δ5

δ2
1−

r̂1,r (k)e−t821 0

δ2
1+

δ3δ5
r̂∗

1,r (k)et821 1 0

0 0 1

 ,

and extended to the remainder of 0(3) by means of the first symmetry in (4-1). Here the functions
f (k) ≡ f (x, t, k), g(k) ≡ g(x, t, k), and h(k) ≡ h(x, t, k) are defined by

f (k) = r2,a(ω
2k)+r1,a(k)r∗

2 (ωk)+r∗

1,a(ω
2k),

g(k) = r2,r (ωk)
(
r2,a(ω

2k)+r1,a(k)r∗

2,a(ωk)
)
−r1,a(k)

(
1−r2,r (ωk)r∗

2,r (ωk)
)
−r∗

2,a(k)−r∗

1,a(ω
2k)r2,a(ωk),

h(k) = r1,r (k)r∗

2,a(ωk)−r2,a(ω
2k).

The next lemma establishes bounds on f and g and their x-derivatives.

Lemma 4.6. For k ∈ 03, and l = 0, 1, we have

|∂ l
x f (k)| ≤ C |k|e(t/4)|Re 821(ζ,k)|, |∂ l

x g(k)| ≤ C |k|e(t/4)|Re 821(ζ,k)|. (4-25)

Proof. By (4-4b) and (4-4c), we have r∗

2,r (0) = 0, r∗

2,a(0) = r∗

2 (0), r1,r (0) = 0, and r1,a(0) = r1(0). Since
r1(0) = ω and r2(0) = 1 (see [Charlier and Lenells 2022]), we deduce that

r∗

2,a(0) = r∗

2 (0) = 1 and r1,a(0) = r1(0) = ω.

In particular,

r1,a(0)r∗

2 (0) + r∗

1,a(0) + r2,a(0) = ω + ω̄ + 1 = 0. (4-26)

To derive the estimate for f , we write

f (k) = r∗

1,a(ω
2k) + r2,a(ω

2k) + r1,a(k)r∗

2 (ωk)

= r∗

1,a(ω
2k) − r∗

1,a(0) + r2,a(ω
2k) − r2,a(0) + (r1,a(k) − r1,a(0))r∗

2 (ωk)

+ r1,a(0)(r∗

2 (ωk) − r∗

2 (0)) + r1,a(0)r∗

2 (0) + r∗

1,a(0) + r2,a(0).
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Using (4-26) and the fact that 0
(6)
3 ⊂ (ω2R− ∩ U2), the inequalities (4-4b) and (4-4c) imply

| f (k)| ≤ |r∗

1,a(ω
2k) − r∗

1,a(0)| + |r2,a(ω
2k) − r2,a(0)| + C |r1,a(k) − r1,a(0)| + C |k|

≤ C |k|(e(t/4)|Re 821(ζ,ωk̄)|
+ e(t/4)|Re 821(ζ,ωk̄)|

+ e(t/4)|Re 821(ζ,k)|)

≤ C |k|e(t/4)|Re 821(ζ,k)|, k ∈ 0
(6)
3 .

The estimate for ∂x f is derived in a similar way. Writing

g(k) = r2,r (ωk)
(
r2,a(ω

2k) + r1,a(k)r∗

2,a(ωk)
)
+ r1,a(k)r2,r (ωk)r∗

2,r (ωk) − f ∗(ω2k),

and using that r2,r and ∂xr2,r vanish at k = 0, the estimates for g and ∂x g follow from the estimates for f
and ∂x f . □

Lemma 4.7. The jump matrix v(3) (resp. ∂xv
(3)) converges to the identity matrix I (resp. to the zero

matrix 0) as t → ∞ uniformly for ζ ∈ I and k ∈ 0(3) except near the three critical points k0, ωk0, ω
2k0.

Moreover, the jump matrices v
(3)
j , j = 5, 6, 7, 8, satisfy

∥(1 + | · |)∂ l
x(v

(3)
− I )∥

(L1∩L∞)(0
(3)
5 )

≤ Ct−3/2, (4-27a)

∥(1 + | · |)∂ l
x(v

(3)
− I )∥L1(0

(3)
6 )

≤ Ct−3/2, (4-27b)

∥(1 + | · |)∂ l
x(v

(3)
− I )∥L∞(0

(3)
6 )

≤ Ct−1, (4-27c)

∥(1 + | · |)∂ l
x(v

(3)
− I )∥

(L1∩L∞)(0
(3)
7 ∪0

(3)
8 )

≤ Ct−3/2, (4-27d)

uniformly for ζ ∈ I and l = 0, 1.

Proof. Consider first the jump matrix v
(3)
1 . Since Re 832 ≥ c > 0 and Re 821 ≤ 0 for k ∈ 0

(3)
1 , v

(3)
1

(resp. ∂xv
(3)
1 ) converges to I (resp. to the zero matrix) as t → ∞ by (4-24), (4-4), and (4-14). Note

however that the convergence to 0 of the (21) entry is not uniform for k near k0, because Re 821(ζ, k0)= 0.
Analogous statements for v

(3)
2 , v

(3)
3 , and v

(3)
4 can be proved in a similar way.

Since Re 832 = 0 for k ∈ 0
(3)
5 , (4-27a) follows from (4-5), and (4-14).

We next show (4-27b) and (4-27c). We parametrize 0
(3)
6 by ueπ i/3, 0 ≤ u ≤ 2k0/(1+

√
3), and note that

Re 831(ζ, ueπ i/3) = Re 821(ζ, ueπ i/3) =
3
2 u(2k0 − u), u ∈ R.

It follows that {
Re 831(ζ, k) ≥

4
3 k0|k|,

Re 821(ζ, k) ≥
4
3 k0|k|,

k ∈ 0
(3)
6 .

Using (4-25), (4-14), (4-19), and the fact that ∂x(t831) = (1 − ω)k, we thus find

|(v
(3)
6 − I )13| ≤ C | f (k)|e−t Re 831 ≤ C |k|e−tk0|k|, k ∈ 0

(3)
6 ,

|∂x(v
(3)
6 )13| ≤ C |k|e−tk0|k|, k ∈ 0

(3)
6 .

Hence, for l = 0, 1, we have

∥(1 + | · |)∂ l
x(v

(3)
6 − I )13∥L1(0

(3)
6 )

≤
C

(k0t)2 , ∥(1 + | · |)∂ l
x(v

(3)
6 − I )13∥L∞(0

(3)
6 )

≤
C
k0t

,
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and similar estimates apply to the (12)-entry. On the other hand, Re 832 = 0 for k ∈ 0
(3)
6 , and hence we

can estimate the (23)-entry using (4-14) as

|(v
(3)
6 − I )23| =

∣∣∣∣δ1δ3

δ2
5

r∗

2,r (ωk)

∣∣∣∣ ≤ C |r∗

2,r (ωk)|, k ∈ 0
(3)
6 .

By (4-5), this implies that the L1 and L∞ norms of (1 + | · |)(v(3)
− I )23 on 0

(3)
6 are O(t−3/2) as t → ∞.

Using also (4-19) and (4-5), we conclude similarly that the L1 and L∞ norms of (1 + | · |)∂xv
(3)
23 on 0

(3)
6

are O(t−3/2) as t → ∞. A similar estimate applies to the (32)-entry and its x-derivative. The (22)-entry
is even smaller. This proves (4-27b) and (4-27c).

We finally show (4-27d). Note that Re 832 > 0 and Re 831 > 0 for k ∈ R+. We conclude from (4-4a)
that |(v

(3)
7 − I )23| and |(v

(3)
7 − I )13| decay to zero as t → ∞ faster than |(v

(3)
7 − I )12| and |(v

(3)
7 − I )21|.

Moreover, since Re 821 = 0 for k ∈ R+, (4-6) and (4-14) imply

|(v
(3)
7 − I )21| =

∣∣∣∣ δ2
1

δ3δ5
r∗

1,r

∣∣∣∣ ≤ Ct−3/2, |(v
(3)
7 − I )12| =

∣∣∣∣δ3δ5

δ2
1

r1,r

∣∣∣∣ ≤ Ct−3/2,

while |(v
(3)
7 − I )22| is even smaller. Thus,

∥v(3)
− I∥

(L1∩L∞)(0
(3)
7 )

≤ Ct−3/2.

To estimate ∂x(v
(3)
7 )21, we use (4-6) and (4-19). This gives

|∂x(v
(3)
7 )21| ≤

∣∣∣∣∂x

(
δ3δ5

δ2
1

)
r1,r

∣∣∣∣ + ∣∣∣∣δ3δ5

δ2
1

∂xr1,r

∣∣∣∣ ≤ Ct−3/2.

The entries ∂x(v
(3)
7 )12 and ∂x(v

(3)
7 )22 are estimated in a similar way.

The matrix v
(3)
8 can be estimated in the same way as v

(3)
7 , except that now we need to use (4-7) and to

note that Re 821 = 0 for k ∈ (k0, ∞). This proves (4-27d). □

5. Local parametrix at k0

In Section 4C, we arrived at an RH problem for m(3) with the property that the matrix v(3)
− I decays to

zero as t → ∞ everywhere except near the three critical points k0, ωk0, ω2k0. This means that we only
have to consider neighborhoods of these three points when computing the long-time asymptotics of m(3).
In this section, we find a local solution mk0 which approximates m(3) near k0. The basic idea is that in the
large t limit, the RH problem for m(3) near k0 reduces to an RH problem on a cross which can be solved
exactly in terms of parabolic cylinder functions [Its 1981; Deift and Zhou 1993].

Let ϵ ≡ ϵ(ζ ) = k0/2. Let Dϵ(k0) denote an open disk of radius ϵ centered at k0. Let D = Dϵ(k0) ∪

ωDϵ(k0) ∪ ω2 Dϵ(k0). Let X = k0 + X , where X is the contour defined in (A-1). We will also use the
notation X ϵ

= X ∩ Dϵ(k0) and X ϵ
j = (k0 + X j ) ∩ Dϵ(k0), j = 1, . . . , 4, where X j is defined in (A-1).

In order to relate m(3) to the solution m X of Lemma A.2, we make a local change of variables for k
near k0 and introduce the new variable z ≡ z(ζ, k) by

z = 31/4
√

2t(k − k0). (5-1)
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For each ζ ∈ I, the map k 7→ z is a biholomorphism from Dϵ(k0) onto the open disk of radius 31/4
√

2tϵ
centered at the origin. Using that

821(ζ, k) = 821(ζ, k0) + i
√

3(k − k0)
2,

where 821(ζ, k0) = −i
√

3k2
0 , we see that

t (821(ζ, k) − 821(ζ, k0)) =
i
2

z2.

Equations (4-12) and (5-1) imply that, for ζ ∈ I and k ∈ Dϵ(k0) \ [k0, ∞),

δ3δ5

δ2
1

= e2iν ln0(z)(2
√

3t)−iνe2χ1(ζ,k)δ3δ5 = e2iν ln0(z)d0(ζ, t)d1(ζ, k),

where the functions d0(ζ, t) and d1(ζ, k) are defined for ζ ∈ I and k ∈ Dϵ(k0) \ [k0, ∞) by

d0(ζ, t) = (2
√

3t)−iνe2χ1(ζ,k0)δ3(ζ, k0)δ5(ζ, k0), (5-2)

d1(ζ, k) = e2χ1(ζ,k)−2χ1(ζ,k0)
δ3(ζ, k)δ5(ζ, k)

δ3(ζ, k0)δ5(ζ, k0)
. (5-3)

Defining m̃ for k near k0 by

m̃(x, t, k) = m(3)(x, t, k)Y (ζ, t), k ∈ Dϵ(k0),

where

Y (ζ, t) =

d1/2
0 (ζ, t)e−(t/2)821(ζ,k0) 0 0

0 d−1/2
0 (ζ, t)e(t/2)821(ζ,k0) 0

0 0 1

 ,

we find that the jump ṽ(x, t, k) of m̃ across X ϵ is given by

ṽ1 =

 1 0 0
e−2iν ln0(z)d−1

1 r̂∗

1,a(k)ei z2/2 1 −
δ1δ3

δ2
5

d1/2
0 r∗

2,a(ωk)e−t832e−(t/2)821(ζ,k0)

0 0 1

 ,

ṽ2 =

1 e2iν ln0(z)d1r1,a(k)e−i z2/2
−

δ2
3

δ1δ5
d−1/2

0 �1(k)e−t831e(t/2)821(ζ,k0)

0 1 0
0 0 1

 ,

ṽ3 =

 1 0 0
−e−2iν ln0(z)d−1

1 r∗

1,a(k)ei z2/2 1 δ1δ3

δ2
5

d1/2
0 �2(k)e−t832e−(t/2)821(ζ,k0)

0 0 1

 ,

ṽ4 =

1 −e2iν ln0(z)d1r̂1,a(k)e−i z2/2 δ2
3

δ1δ5
d−1/2

0 r2,a(ω
2k)e−t831e(t/2)821(ζ,k0)

0 1 0
0 0 1

 ,
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where ṽj denotes the restriction of ṽ to X ϵ
j , j =1, 2, 3, 4, and �1(k)≡�1(x, t, k) and �2(k)≡�2(x, t, k)

are given by

�1(k) = r2,a(ω
2k) + r1,a(k)r∗

2,a(ωk), �2(k) = r∗

2,a(ωk) + r∗

1,a(k)r2,a(ω
2k).

Define q ≡ q(ζ ) by
q = r1(k0).

For a fixed z, r1,a(k) → q, r̂∗

1,a(k) → q̄/(1 − |q|
2), and d1(ζ, k) → 1 as t → ∞. This suggests that

ṽ(x, t, k) tends to the jump matrix vX (x, t, z) defined in (A-2) for large t . In other words, the jumps of m(3)

for k near k0 approach those of the function m X Y −1 as t → ∞. This suggests that we approximate m(3)

in the neighborhood Dϵ(k0) of k0 by the 3 × 3-matrix-valued function mk0 defined by

mk0(x, t, k) = Y (ζ, t)m X (q(ζ ), z(ζ, k))Y (ζ, t)−1, k ∈ Dϵ(k0). (5-4)

The prefactor Y (ζ, t) on the right-hand side of (5-4) is included so that mk0 → I on ∂ Dϵ(k0) as t → ∞;
this ensures that mk0 is a good approximation of m(3) in Dϵ(k0) for large t .

Lemma 5.1. The function Y (ζ, t) is uniformly bounded:

sup
ζ∈I

sup
t≥2

|∂ l
x Y (ζ, t)±1

| < C, l = 0, 1. (5-5)

Moreover, the functions d0(ζ, t) and d1(ζ, k) satisfy

|d0(ζ, t)| = e2πν, ζ ∈ I, t ≥ 2, (5-6a)

|∂x d0(ζ, t)| ≤ C ln t
t

, ζ ∈ I, t ≥ 2, (5-6b)

and

|d1(ζ, k) − 1| ≤ C |k − k0|(1 + |ln |k − k0||), ζ ∈ I, k ∈ X ϵ, (5-7a)

|∂x d1(ζ, k)| ≤
C
t

|ln |k − k0||, ζ ∈ I, k ∈ X ϵ . (5-7b)

Proof. The symmetry (4-15) implies

|δ3(ζ, k0)δ5(ζ, k0)| = |δ1(ζ, ω2k0)δ1(ζ, ωk0)| = 1,

and hence (5-6a) follows because

Re χ1(ζ, k0) =
1

2π

∫ ∞

k0

πd ln(1 − |r1(s)|2) = −
1
2

ln(1 − |r1(k0)|
2) = πν.

Using (5-6a), we obtain

|∂x d0(ζ, t)| = |d0(ζ, t)∂x ln d0(ζ, t)| = e2πν
|∂x ln d0(ζ, t)|

≤ C
(
|ln t ∂xν| + |∂xχ1(ζ, k0)| + |∂x ln(δ3(ζ, k0)δ5(ζ, k0))|

)
,

and thus (5-6b) follows from (4-18) and the fact that ∂x = (1/t)∂ζ . Observing that δ3 and δ5 are analytic
for k ∈ X ϵ , (5-7a) follows from (4-16). Finally, we have

∂x d1(ζ, k) = d1(ζ, k) ∂x log d1(ζ, k).
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Since

∂ζ log
δ3(ζ, k)δ5(ζ, k)

δ3(ζ, k0)δ5(ζ, k0)

is analytic and |d1(ζ, k)| ≤ C for k ∈ X ϵ, it follows that

|∂x d1(ζ, k)| ≤ C
(
|∂x(χ1(ζ, k) − χ1(ζ, k0))| +

1
t

∣∣∣∣∂ζ log
δ3(ζ, k)δ5(ζ, k)

δ3(ζ, k0)δ5(ζ, k0)

∣∣∣∣),

and so (5-7b) follows from (4-17). □

Lemma 5.2. For each (x, t), the function mk0(x, t, k) defined in (5-4) is an analytic and bounded function
of k ∈ Dϵ(k0) \X ϵ. Across X ϵ, mk0 obeys the jump condition mk0

+ = mk0
−vk0 , where the jump matrix vk0

satisfies {
∥∂ l

x(v
(3)

− vk0)∥L1
(X ϵ)

≤ Ct−1 ln t,

∥∂ l
x(v

(3)
− vk0)∥L∞(X ϵ) ≤ Ct−1/2 ln t,

ζ ∈ I, t ≥ 2, l = 0, 1. (5-8)

Furthermore, as t → ∞,

∥∂ l
x(m

k0(x, t, · )−1
− I )∥L∞(∂ Dϵ(k0)) = O(t−1/2), l = 0, 1, (5-9)

1
2π i

∫
∂ Dϵ(k0)

(mk0(x, t, k)−1
− I ) dk = −

Y (ζ, t)m X
1 (q(ζ ))Y (ζ, t)−1

31/4
√

2
√

t
+ O(t−1), (5-10)

uniformly for ζ ∈ I, and (5-10) can be differentiated with respect to x without increasing the error term.

Proof. We have

v(3)
− vk0 = Y (ζ, t)(ṽ − vX )Y (ζ, t)−1.

Thus, recalling (5-5), the bounds (5-8) follow if we can show that

∥∂ l
x [ṽ(x, t, · ) − vX (x, t, z(ζ, · ))]∥L1(X ϵ

j ) ≤ Ct−1 ln t, (5-11a)

∥∂ l
x [ṽ(x, t, · ) − vX (x, t, z(ζ, · ))]∥L∞(X ϵ

j ) ≤ Ct−1/2 ln t (5-11b)

for j = 1, . . . , 4 and l = 0, 1. We give the proof of (5-11) for j = 1; similar arguments apply when
j = 2, 3, 4.

For k ∈ X ϵ
1 , only the (21) and (23) elements of the matrix ṽ − vX are nonzero. Using (4-4a), (4-14),

(5-6a), and the facts that 821(ζ, ωk) = 832(ζ, k) and vX
23(q(ζ ), z(ζ, k)) = 0 for k ∈ X ϵ

1 , |(ṽ − vX )23| can
be estimated as

|(ṽ − vX )23| =

∣∣∣∣δ1δ3

δ2
5

d1/2
0 r∗

2,a(ωk)e−t832e−(t/2)821(ζ,k0)

∣∣∣∣ ≤ |r∗

2,a(ωk)|e−t Re 832

≤ Ce(t/4)|Re 821(ζ,ωk)|e−t Re 832 = Ce−(3t/4)|Re 832(ζ,k)|, k ∈ X ϵ
1 .

For k = k0 + ueπ i/4 and u ≥ 0, we have

Re 832(ζ, k0 + ueπ i/4) =
1
2(9k2

0 + 6
√

2k0u +
√

3u2) ≥ c(k0 + u)2. (5-12)
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Hence

∥(ṽ − vX )23∥L1(X ϵ
1 ) ≤ C

∫ k0/2

0
e−ct (k0+u)2

du = C
∫ 3k0/2

k0

e−ctv2
dv ≤ Ce−ctk2

0

and

∥(ṽ − vX )23∥L∞(X ϵ
1 ) ≤ C sup

u≥0
e−ct (k0+u)2

≤ Ce−ctk2
0 .

To estimate ∂x(ṽ − vX )23, we first note that

∂x(ṽ − vX )23 = a1 + a2 + a3 + a4 + a5,

where

a1 = −∂x

(
δ1δ3

δ2
5

)
d1/2

0 r∗

2,a(ωk)e−t832e−(t/2)821(ζ,k0),

a2 = −
δ1δ3

δ2
5

∂x(d
1/2
0 )r∗

2,a(ωk)e−t832e−(t/2)821(ζ,k0),

a3 = −
δ1δ3

δ2
5

d1/2
0 ∂x(r∗

2,a(ωk))e−t832e−(t/2)821(ζ,k0),

a4 = −
δ1δ3

δ2
5

d1/2
0 r∗

2,a(ωk)∂x(e−t832)e−(t/2)821(ζ,k0),

a5 = −
δ1δ3

δ2
5

d1/2
0 r∗

2,a(ωk)e−t832∂x(e−(t/2)821(ζ,k0)).

We claim that ∥aj∥(L1∩L∞)(X ϵ
1 ) ≤ Ce−ctk2

0 for j = 1, . . . , 5. These bounds follow from arguments which
are similar to those given for (ṽ−vX )23, but more estimates are required. For a1, we note that ∂x(δ1δ3/δ

2
5)

has a pole at k = k0 (see (4-19)) which is canceled by the zero of r∗

2,a(ωk) (see (4-4a)). For a2 and a3, we
use (5-6b) and (4-4b), respectively. For a4, we note that ∂x(t832) = ∂ζ (832) = (1 − ω)k, and for a5, we
observe that ∂x(t821(ζ, k0)) =

1
2∂k0821(ζ, k0) = ω(ω − 1)k0. Therefore, we arrive at

∥∂x(ṽ − vX )23∥(L1∩L∞)(X ϵ
1 ) ≤ Ce−ctk2

0 .

We next consider the (21)-entry of ṽ−vX. Since q = r1(k0), from (4-4e) it follows r̂∗

1,a(k0) = r̂∗

1 (k0) =

q̄/(1 − |q|
2). Furthermore,

e(t/4)|Re 821(ζ,k)|
= e(t/4)|Re(821(ζ,k)−821(ζ,k0))| = e(1/4)|Re(i z2/2)|

≤ e|z|2/8.

Thus |(ṽ − vX )21| can be estimated as

|(ṽ − vX )21| = |e−2iν ln0(z)d−1
1 r̂∗

1,a(k)ei z2/2
− r̂∗

1,a(k0)e−2iν ln0(z)ei z2/2
|

= |e−2iν ln0(z)||(d−1
1 − 1)r̂∗

1,a(k) + (r̂∗

1,a(k) − r̂∗

1,a(k0))||ei z2/2
|

≤ C(|d−1
1 − 1||r̂∗

1,a(k)| + |r̂∗

1,a(k) − r̂∗

1 (k0)|)e−|z|2/2.

≤ C(|d−1
1 − 1| + |k − k0|)e(t/4)|Re 821(ζ,k)|e−|z|2/2.

≤ C(|d−1
1 − 1| + |k − k0|)e−ct |k−k0|

2
, k ∈ X ϵ

1 ,
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where we have used (4-4e) and (4-4f). Utilizing (5-7a), this gives

|(ṽ − vX )21| ≤ C |k − k0|(1 + |ln |k − k0||)e−ct |k−k0|
2
, k ∈ X ϵ

1 .

Hence
∥(ṽ − vX )21∥L1(X ϵ

1 ) ≤ C
∫ ∞

0
u(1 + |ln u|)e−ctu2

du ≤ Ct−1 ln t

and
∥(ṽ − vX )21∥L∞(X ϵ

1 ) ≤ C sup
u≥0

u(1 + |ln u|)e−ctu2
≤ Ct−1/2 ln t.

To analyze ∂x(ṽ − vX )21, we split it into three parts as follows:

∂x(ṽ − vX )21 = b1 + b2 + b3,

where
b1 = ∂x(e−2iν ln0(z))

(
(d−1

1 − 1)r̂∗

1,a(k) + (r̂∗

1,a(k) − r̂∗

1,a(k0))
)
ei z2/2,

b2 = e−2iν ln0(z)∂x
(
(d−1

1 − 1)r̂∗

1,a(k) + (r̂∗

1,a(k) − r̂∗

1,a(k0))
)
ei z2/2,

b3 = e−2iν ln0(z)
(
(d−1

1 − 1)r̂∗

1,a(k) + (r̂∗

1,a(k) − r̂∗

1,a(k0))
)
∂x ei z2/2.

For b1, we use that |∂x(e−2iν ln0(z))| ≤ C/(t (k − k0)) for k ∈ X ϵ
1 , and thus, by (4-4),

∥b1∥L1(X ϵ
1 ) ≤ Ct−1

∫ ∞

0
(1 + ln u)e−ctu2

du ≤ Ct−3/2 ln t,

∥b1∥L∞(X ϵ
1 ) ≤ Ct−1 sup

u≥0
(1 + ln u)e−ctu2

≤ Ct−1 ln t.

The norms of b2 and b3 are estimated in a similar way. This completes the proof of (5-8).
The variable z goes to infinity as t → ∞ if k ∈ ∂ Dϵ(k0), because

|z| = 31/4
√

2t |k − k0|.

Thus (A-3) yields

m X (q(ζ ), z(ζ, k)) = I +
m X

1 (q(ζ ))

31/4
√

2t(k − k0)
+ O(t−1), t → ∞,

uniformly with respect to k ∈ ∂ Dϵ(k0) and ζ ∈ I, and this asymptotic formula can be differentiated with
respect to x without increasing the error term. Recalling the definition (5-4) of mk0, this gives

(mk0)−1
− I = −

Y (ζ, t)m X
1 (q(ζ ))Y (ζ, t)−1

31/4
√

2t(k − k0)
+ O(t−1), t → ∞, (5-13)

uniformly for k ∈ ∂ Dϵ(k0) and ζ ∈ I. In view of (5-5), the asymptotics (5-13) can be differentiated with
respect to x . This proves (5-9). Equation (5-10) follows from (5-13) and Cauchy’s formula. □

6. A small-norm RH problem

We use the symmetry
mk0(x, t, k) = Amk0(x, t, ωk)A−1
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0̂

1

3 4

5

6

7 8k0

ωk0

ω2k0

Figure 12. The contour 0̂ = 0(3)
∪ ∂D in the complex k-plane.

to extend the domain of definition of mk0 from Dϵ(k0) to D, where we recall that D= Dϵ(k0)∪ωDϵ(k0)∪

ω2 Dϵ(k0). We will show that the solution m̂(x, t, k) defined by

m̂ =

{
m(3)(mk0)−1, k ∈ D,

m(3), elsewhere,

is small for large t . Let 0̂ = 0(3)
∪ ∂D be the contour displayed in Figure 12 and define the jump

matrix v̂ by

v̂ =


v(3), k ∈ 0̂ \D,

(mk0)−1, k ∈ ∂D,

mk0
−v(3)(mk0

+ )−1, k ∈ 0̂ ∩D.

The function m̂ satisfies the following RH problem.

RH problem 6.1 (RH problem for m̂). Find a 3 × 3-matrix-valued function m̂(x, t, · ) ∈ I + Ė3(C \ 0̂)

such that m̂+(x, t, k) = m̂−(x, t, k)v̂(x, t, k) for a.e. k ∈ 0̂.

Let X̂ ϵ denote the union of the cross X ϵ and its images under the maps k 7→ ωk and k 7→ ω2k, i.e.,
X̂ ϵ

= X ϵ
∪ ωX ϵ

∪ ω2X ϵ. Define the contour 0′ by

0′
= 0̂ \ (0 ∪ X̂ ϵ

∪ ∂D).

Lemma 6.2. Let ŵ = v̂ − I . The following estimates hold uniformly for t ≥ 2 and ζ ∈ I:

∥(1 + | · |)∂ l
x ŵ∥(L1∩L∞)(0) ≤

C
k0t

, (6-1a)

∥(1 + | · |)∂ l
x ŵ∥(L1∩L∞)(0′) ≤ Ce−ct , (6-1b)
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∥∂ l
x ŵ∥(L1∩L∞)(∂D) ≤ Ct−1/2, (6-1c)

∥∂ l
x ŵ∥L1(X̂ ϵ

) ≤ Ct−1 ln t, (6-1d)

∥∂ l
x ŵ∥L∞(X̂ ϵ

) ≤ Ct−1/2 ln t, (6-1e)
with l = 0, 1.

Proof. Using that ∂ l
ζ mk0

± and its inverse are uniformly bounded for k ∈ 0̂ ∩D and l = 0, 1, the estimate
(6-1a) follows from Lemma 4.7.

The contour 0′ consists of the set
(⋃4

j=1 0
(3)
j

)
\D and the images of this set under the rotations k 7→ ωk

and k 7→ ω2k. We estimate the L1 and L∞ norms of (1+|· |)∂ l
x ŵ on 0

(3)
j \D for j = 1; similar arguments

apply when j = 2, 3, 4, and (6-1b) then follows by symmetry. We parametrize 0
(3)
1 \D by k = k0 +ueπ i/4,

u > k0/2. Only the (21) and (23) elements of ŵ = v
(3)
1 − I are nonzero. Using (4-4a), (4-14), and (5-12),

the (23)-entry can be estimated as

|ŵ23(x, t, k0 + ueπ i/4)| ≤ C |r∗

2,a(ωk)|e−t832 ≤ Ce−(3t/4)832 ≤ Ce−ct (k0+u)2
.

The analysis of |∂x ŵ23| is similar. Using (4-4e), (4-14), and the identity

Re 821(ζ, k0 + ueπ i/4) = −
√

3u2, u ≥ 0, (6-2)

the (21)-entry can be estimated as

|ŵ21(x, t, k0 + ueπ i/4)| ≤ C |r̂∗

1,a|e
t821 ≤ Cect821 ≤ Ce−ctu2

, u ≥ 0.

Using in addition (4-4f) and (4-19), we conclude that |∂x ŵ21(x, t, k0 + ueπ i/4)| ≤ Ce−ctu2
. Hence

|∂ l
x ŵ(x, t, k0 + ueπ i/4)| ≤ Ce−ctu2

, u > k0/2, l = 0, 1.

It follows that the L1 and L∞ norms of (1 + | · |)∂ l
x ŵ, l = 0, 1, are O(e−ct) as t → ∞ on 0

(3)
1 \D. This

proves (6-1b).
The estimates in (6-1c) are immediate from (5-9).
For k ∈ X ϵ , we have ŵ = mk0

− (v(3)
− vk0)(mk0

+ )−1, so (6-1d) and (6-1e) follow from (5-8) combined
with the fact that ∂ l

ζ mk0
± and its inverse are uniformly bounded for k ∈ 0̂ ∩D and l = 0, 1. □

For a function h defined on 0̂, the Cauchy transform Ĉh is defined by

(Ĉh)(z) =
1

2π i

∫
0̂

h(z′)dz′

z′ − z
, z ∈ C \ 0̂.

If h ∈ L̇3(0̂), then Ĉh ∈ Ė3(C \ 0̂), and the left and right nontangential boundary values of Ĉh, which we
denote by Ĉ+h and Ĉ−h respectively, exist a.e. on 0̂ and belong to L̇3(0̂); furthermore, Ĉ± ∈ B(L̇3(0̂))

and Ĉ+ − Ĉ− = I , where B(L̇3(0̂)) denotes the space of bounded linear operators on L̇3(0̂); see [Lenells
2018, Theorems 4.1 and 4.2].

The estimates in Lemma 6.2 show that{
∥(1 + | · |)∂ l

x ŵ∥L1
(0̂)

≤ Ct−1/2,

∥(1 + | · |)∂ l
x ŵ∥L∞(0̂) ≤ Ct−1/2 ln t,

t ≥ 2, ζ ∈ I, l = 0, 1, (6-3)
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and hence, employing the general identity ∥ f ∥L p ≤ ∥ f ∥
1/p
L1 ∥ f ∥

(p−1)/p
L∞ ,

∥(1 + | · |)∂ l
x ŵ∥L p(0̂) ≤ Ct−1/2(ln t)(p−1)/p, t ≥ 2, ζ ∈ I, l = 0, 1, (6-4)

for each 1 ≤ p ≤ ∞. The estimates (6-4) imply that ŵ ∈ L̇3(0̂) ∩ L∞(0̂). We define Ĉŵ = Ĉŵ(x,t,· ) :

L̇3(0̂) + L∞(0̂) → L̇3(0̂) by Ĉŵh := Ĉ−(hŵ).

Lemma 6.3. There exists a T > 0 such that I − Ĉŵ(x,t,· ) ∈ B(L̇3(0̂)) is invertible whenever t ≥ T and
ζ ∈ I.

Proof. Let K := ∥Ĉ−∥B(L̇3(0̂)). For each h ∈ L̇3(0̂), we have ∥Ĉŵh∥L̇3(0̂) ≤ K∥ŵ∥L∞(0̂)∥h∥L̇3(0̂), and
thus ∥Ĉŵ∥B(L̇3(0̂)) ≤ K∥ŵ∥L∞(0̂). By (6-3), there exists a T > 0 such that ∥ŵ∥L∞(0̂) < K −1 for t ≥ T. □

In view of Lemma 6.3, we may define µ̂(x, t, k) for k ∈ 0̂, t ≥ T, and ζ = x/t ∈ I by

µ̂ = I + (I − Ĉŵ)−1Ĉŵ I ∈ I + L̇3(0̂). (6-5)

Lemma 6.4. For t ≥ T and ζ ∈ I, there exists a unique solution m̂ ∈ I + Ė3(C \ 0̂) of RH problem 3.1.
This solution is given by

m̂(x, t, k) = I + Ĉ(µ̂ŵ) = I +
1

2π i

∫
0̂

µ̂(x, t, s)ŵ(x, t, s) ds
s−k

. (6-6)

Proof. Since ŵ ∈ L̇3(0̂) ∩ L∞(0̂), this follows from [Lenells 2018, Proposition 5.8]. □

Lemma 6.5. Let 1 < p < ∞. For all sufficiently large t , we have

∥∂ l
x(µ̂ − I )∥L p(0̂) ≤ Ct−1/2(ln t)(p−1)/p, l = 0, 1, ζ ∈ I.

Proof. Let K p := ∥Ĉ−∥B(L p(0̂)) < ∞ and assume t is so large that ∥ŵ∥L∞(0̂) < K −1
p . Standard estimates

using the Neumann series show that

∥µ̂ − I∥L p(0̂) ≤

∞∑
j=1

∥Ĉŵ∥
j−1
B(L p(0̂))

∥Ĉŵ I∥L p(0̂) ≤

∞∑
j=1

K j
p∥ŵ∥

j−1
L∞(0̂)

∥ŵ∥L p(0̂) =
K p∥ŵ∥L p(0̂)

1 − K p∥ŵ∥L∞(0̂)

.

The claim for l = 0 now follows from (6-3) and (6-4). Using that

∂x(µ̂ − I ) = ∂x

∞∑
j=1

(Ĉŵ) j I =

∞∑
j=1

[(∂x Ĉŵ)Ĉŵ · · · Ĉŵ + · · · + Ĉŵ · · · Ĉŵ(∂x Ĉŵ)]I,

we find

∥∂x(µ̂−I )∥L p(0̂) ≤

∞∑
j=2

( j−1)∥Ĉŵ∥
j−2
B(L p(0̂))

∥∂x Ĉŵ∥B(L p(0̂))∥Ĉŵ I∥L p(0̂)+

∞∑
j=1

∥Ĉŵ∥
j−1
B(L p(0̂))

∥∂x Ĉŵ I∥L p(0̂)

≤ C
∞∑
j=2

j K j−2
p ∥ŵ∥

j−2
L∞(0̂)

∥∂x ŵ∥L∞(0̂)∥ŵ∥L p(0̂)+

∞∑
j=1

K j
p∥ŵ∥

j−1
L∞(0̂)

∥∂x ŵ∥L p(0̂)

≤ C
∥∂x ŵ∥L∞(0̂)∥ŵ∥L p(0̂)+∥∂x ŵ∥L p(0̂)

1−K p∥ŵ∥L∞(0̂)

and the claim for l = 1 follows from another application of (6-3) and (6-4). □
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6A. Asymptotics of m̂. The following nontangential limit exists as k → ∞:

L(x, t) :=

̸

lim
k→∞

k(m̂(x, t, k) − I ) = −
1

2π i

∫
0̂

µ̂(x, t, k)ŵ(x, t, k) dk.

Lemma 6.6. As t → ∞,

L(x, t) = −
1

2π i

∫
∂D

ŵ(x, t, k) dk + O(t−1 ln t) (6-7)

and (6-7) can be differentiated termwise with respect to x without increasing the error term.

Proof. Since

L(x, t) = −
1

2π i

∫
∂D

ŵ(x, t, k) dk + L1(x, t) + L2(x, t),

where

L1(x, t) = −
1

2π i

∫
0̂\∂D

ŵ(x, t, k) dk, L2(x, t) = −
1

2π i

∫
0̂

(µ̂(x, t, k) − I )ŵ(x, t, k) dk,

the lemma follows from Lemmas 6.2 and 6.5 and straightforward estimates. □

We infer from (5-10) that the function F defined by

F(ζ, t) = −
1

2π i

∫
∂ Dϵ(k0)

ŵ(x, t, k) dk = −
1

2π i

∫
∂ Dϵ(k0)

((mk0)−1
− I ) dk

satisfies

F(ζ, t) =
Y (ζ, t)m X

1 (q(ζ ))Y (ζ, t)−1

31/4
√

2
√

t
+ O(t−1 ln t) as t → ∞.

The symmetry properties of v̂ imply that both Am̂(x, t, ωk)A−1 and m̂(x, t, k) satisfy RH problem 6.1;
by uniqueness they must be equal, i.e.,

m̂(x, t, k) = Am̂(x, t, ωk)A−1, k ∈ C \ 0̂.

It follows that µ̂ and ŵ also obey this symmetry. Using this in (6-7), we find that the leading contribution
from ∂D to the right-hand side of (6-7) is

−
1

2π i

∫
∂D

ŵ(x, t, k) dk = −
1

2π i

(∫
∂ Dϵ(k0)

+

∫
ω∂ Dϵ(k0)

+

∫
ω2∂ Dϵ(k0)

)
ŵ(x, t, k) dk

= F(ζ, t) + ωA−1 F(ζ, t)A+ ω2A−2 F(ζ, t)A2.

Therefore, (6-7) implies that

∂ l
x lim

k→∞

k(m̂(x, t, k) − I )

= ∂ l
x

(∑2
j=0 ω jA− j Y (ζ, t)m X

1 (q(ζ ))Y (ζ, t)−1A j

31/4
√

2
√

t

)
+ O(t−1 ln t), t → ∞, l = 0, 1, (6-8)

uniformly for ζ ∈ I.



1384 CHRISTOPHE CHARLIER, JONATAN LENELLS AND DENG-SHAN WANG

7. Asymptotics of u(x, t)

Recall from the discussion in Section 3 (see Proposition 3.4 and Lemma 3.5) that

u(x, t) = −
3
2

∂

∂x
(

lim
k→∞

k(n3(x, t, k) − 1)
)
,

where n = (ω, ω2, 1)m. Taking the transformations of Section 4 into account, we can write

m = m̂ H−11−1G−1

for all k ∈ C \D, where G, 1, H are defined in (4-8), (4-20), and (4-23), respectively. It follows that

u(x, t) = −
3
2

∂

∂x

̸

lim
k→∞

k(n̂3(x, t, k) − 1) −
3
2

d
dx

̸

lim
k→∞

k
(

δ5(ζ, k)

δ3(ζ, k)
− 1

)
, (7-1)

where n̂ = (ω, ω2, 1)m̂. Thus, utilizing (6-8) and the fact that 0(iν) = 0(−iν),

u(x, t) = −
3
2

d
dx

(
(ω ω2 1)

∑2
j=0 ω jA− j Y (ζ, t)m X

1 (q(ζ ))Y (ζ, t)−1A j

31/4
√

2
√

t

)
3
+ O(t−1 ln t)

= −
3
2

d
dx

(
ω2d−1

0 et821(ζ,k0)β21 + ωd0e−t821(ζ,k0)β12

31/4
√

2
√

t

)
+ O(t−1 ln t)

= −
3×2

2×31/4
√

2t
d

dx
Re(ω2d−1

0 et821(ζ,k0)β21) + O(t−1 ln t), t → ∞.

Using the identities

|0(iν)| =

√
2π

√
ν
√

eπν − e−πν
=

√
2π

√
νeπν/2|q|

,

δ−1
3 (ζ, k0)δ

−1
5 (ζ, k0) = exp

[
iν log(3k2

0) +
1
π i

∫ ∞

k0

log |ωk0 − s|d ln(1 − |r1(s)|2)
]
,

we conclude that, as t → ∞,

u(x, t)

= −
33/4
√

2t
d

dx
Re

{
√

ν exp
[

4π i
3

+iν ln(6
√

3tk2
0)−i

√
3k2

0 t

−
1
π i

∫
∞

k0

ln
|s−k0|

|s−ωk0|
d ln(1−|r1(s)|2)+i

(
π

4
−argq−arg0(iν)

)]}
+O(t−1 ln t)

= −
33/4√ν
√

2t
d

dx
cos

(
19π

12
+ν ln(6

√
3tk2

0)−
√

3k2
0 t−argq

−arg0(iν)+
1
π

∫
∞

k0

ln
|s−k0|

|s−ωk0|
d ln(1−|r1(s)|2)

)
+O(t−1 ln t)

= −
35/4k0

√
ν

√
2t

sin
(

19π

12
+ν ln(6

√
3tk2

0)−
√

3k2
0 t−argq

−arg0(iν)+
1
π

∫
∞

k0

ln
|s−k0|

|s−ωk0|
d ln(1−|r1(s)|2)

)
+O(t−1 ln t)

uniformly for ζ ∈ I. This proves (2-9) and completes the proof of Theorem 2.4.
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X1X2

X3 X4

0

Figure 13. The contour X = X1 ∪ X2 ∪ X3 ∪ X4 defined in (A-1).

Appendix: Exact solution on a cross

Let X = X1 ∪ · · · ∪ X4 ⊂ C be the cross defined by

X1 = {seiπ/4
| 0 ≤ s < ∞}, X2 = {se3iπ/4

| 0 ≤ s < ∞},

X3 = {se−3iπ/4
| 0 ≤ s < ∞}, X4 = {se−iπ/4

| 0 ≤ s < ∞},
(A-1)

and oriented away from the origin; see Figure 13. Let D ⊂ C denote the open unit disk and define the
function ν : D → (0, ∞) by ν(q) = −

1
2π

ln(1 − |q|
2). We consider the following family of RH problems

parametrized by q ∈ D.

RH problem A.1 (RH problem for m X ). Find a 3×3-matrix-valued function m X (q, z) with the following
properties:

(a) m X (q, · ) : C \ X → C3×3 is analytic.

(b) The limits of m X (q, z) as z approaches X \{0} from the left and right exist, are continuous on X \{0},
and are related by

m X
+
(q, z) = m X

−
(q, z)vX (q, z), k ∈ X \ {0},

where the jump matrix vX (q, z) is defined by 1 0 0
q̄

1−|q|2
z−2iν(q)ei z2/2 1 0

0 0 1

 if z ∈ X1,

1 qz2iν(q)e−i z2/2 0
0 1 0
0 0 1

 if z ∈ X2,

 1 0 0
−q̄z−2iν(q)ei z2/2 1 0

0 0 1

 if z ∈ X3,

1 −q
1−|q|2

z2iν(q)e−i z2/2 0

0 1 0
0 0 1

 if z ∈ X4,

(A-2)

with the branch cut running along the positive real axis, i.e., z2iν(q)
= e2iν(q) ln0(z).

(c) m X (q, z) = I + O(z−1) as z → ∞.

(d) m X (q, z) = O(1) as z → 0.
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The proof of the following lemma is standard and relies on deriving an explicit formula for the
solution m X in terms of parabolic cylinder functions [Its 1981].

Lemma A.2 (the solution m X ). The RH problem A.1 has a unique solution m X (q, z) for each q ∈ D.
This solution satisfies

m X (q, z) = I +
m X

1 (q)

z
+ O

(
1
z2

)
, z → ∞, q ∈ D, (A-3)

where the error term is uniform with respect to arg z ∈ [0, 2π ] and q in compact subsets of D, and the
function m X

1 (q) is defined by

m X
1 (q) =

 0 β12 0
β21 0 0
0 0 0

 , q ∈ D, (A-4)

where β12 and β21 are defined by

β12 =

√
2πe−π i/4e−5πν/2

q̄0(−iν)
, β21 =

√
2πeπ i/4e3πν/2

q0(iν)
, q ∈ D.

Moreover, for each compact subset K of D,

sup
q∈K

sup
z∈C\X

|∂ l
qm X (q, z)| < ∞, l = 0, 1.
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