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SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES

ALEX IOSEVICH AND AKOS MAGYAR

Let A be a nondegenerate simplex on k vertices. We prove that there exists a threshold s; < k such that
any set A C R* of Hausdorff dimension dim A > s; necessarily contains a similar copy of the simplex A.

1. Introduction

A classical problem of geometric Ramsey theory is to show that sufficiently large sets contain a given
geometric configuration. The underlying settings can be Euclidean space, the integer lattice or vector
spaces over finite fields. By a geometric configuration, we mean the collection of finite point sets obtained
from a given finite set F C R* via translations, rotations and dilations.

If the size is measured in terms of the positivity of the Lebesgue density, then it is known that large sets
in R* contain a translated and rotated copy of all sufficiently large dilates of any nondegenerate simplex A
with k vertices [Bourgain 1986]. However, on the scale of the Hausdorff dimension s < & this question is not
very well understood. The only affirmative result in this direction was obtained by Iosevich and Liu [2019].

In the other direction, a construction due to Keleti [2008] shows that there exists a set A C R of
full Hausdorff dimension which does not contain any nontrivial 3-term arithmetic progression. In two
dimensions an example due to Falconer [2013] and Maga [2010] shows that there exists a set A C R?
of Hausdorff dimension 2 which does not contain the vertices of an equilateral triangle, or more generally
a nontrivial similar copy of a given nondegenerate triangle. It seems plausible that examples of such sets
exist in all dimensions, but this is not currently known. See [Fraser and Pramanik 2018] for related results.

The purpose of this paper is to show that measurable sets A € R¥ of sufficiently large Hausdorff
dimension s < k contain a similar copy of any given nondegenerate k-simplex with bounded eccentricity.
Our arguments make use of and have some similarity to those of Lyall and Magyar [2020]. We also
extend our results to bounded degree distance graphs. For the special cases of a path (or chain) and,
more generally, a tree, similar but somewhat stronger results were obtained in [Bennett et al. 2016] and
[Iosevich and Taylor 2019].

2. Main results

Let V ={vy, ..., v} C R be a nondegenerate k-simplex, a set of k vertices which are in general position
spanning a (k—1)-dimensional affine subspace. For 1 < j <k, let r;(V) be the distance of the vertex v;
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MSC2020: 28A75, 42B15.

Keywords: simplexes, Hausdorff dimension, graphs.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.


http://msp.org/apde/
https://doi.org/10.2140/apde.2023.16-7
https://doi.org/10.2140/apde.2023.16.1485
http://msp.org
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/

1486 ALEX IOSEVICH AND AKOS MAGYAR

to the affine subspace spanned by the remaining vertices v;, i # j, and define r (V) := min<;j < r; (V).
Let d (V) denote the diameter of the simplex, which is also the maximum distance between two vertices.
Then the quantity §(V) :=r(V)/d(V), which is positive if and only if V is nondegenerate, measures how
close the simplex V is to being degenerate.

We say that a simplex V' is similar to V, if V/ = x 4+ A - U(V) for some x € R, » > 0 and U € SO(k);
that is if V'’ is obtained from V by a translation, dilation and rotation.

Theorem 1. Let k € N and § > 0. There exists so = so(k, §) < k such that if E is a compact subset of RF
of Hausdorff dimension dim E > s, then E contains the vertices of a simplex V' similar to V, for any
nondegenerate k-simplex V with (V) > 4.

Remarks. (1) Note that the dimension condition is sharp for kK = 2, as a construction due to Maga [2010]
shows the existence of a set E C R? with dim(E) = 2 that does not contain any equilateral triangle or
more generally a similar copy of any given triangle.

While we do not currently have an example showing that the dimension condition is sharp when k > 2,
we have some indications that this should be the case. In the finite field setting, one can show that [F‘; (the
d-dimensional vector space over the field with ¢ elements) contains a d-dimensional equilateral simplex
if and only if (d + 1)/2¢ is a square in [,; see the appendix in [Bennett et al. 2014]. This allows one
to construct an [F;l that does not contain a d-dimensional equilateral simplex under a suitable arithmetic
assumption on [F,. While such an assumption is not meaningful in R the Fourier analytic methods
used in this paper would likely to extend to the finite field setting. At the very least, this says that if
the dimensional assumption in Theorem 1 is not sharp, a very different approach would be required to
establish a positive result.

(2) It is also interesting to note that the proof of Theorem 1 above proves much more than just the
existence of vertices of V' similar to V inside E. The proof proceeds by constructing a natural measure
on the set of simplexes and proving an upper and a lower bound on this measure. This argument shows
that an infinite “statistically” correct “amount” of simplexes V' exist that satisfy the conclusion of the
theorem, shedding considerable light on the structure of sets of positive upper Lebesgue density.

(3) Theorem 1 establishes a nontrivial exponent sy < k, but the proof yields sg very close to k£ and not
explicitly computable. The analogous results in the finite field setting (see e.g., [Hart and Iosevich 2008],
[losevich and Parshall 2019]) suggest that it may be possible to obtain explicit exponents, but this would
require a fundamentally different approach to certain lower bounds obtained in the proof of Theorem 1.

A distance graph is a connected finite graph embedded in Euclidean space, with a set of vertices
V ={vg, v1,...,0,} C R4 and a setof edges E C {(i, j):0<i < j <n}. We say that a graph I' = (V, E)
has degree at most k if |V;| <k forall 1 < j <n, where V; = {v; : (i, j) € E}. The graph I is called
proper if the sets V; U {v;} for all j are in general position, in the sense that V; U {v;} is not contained
in a subspace of dimension smaller than |V;| — 1. Let r(I") be the minimum of the distances from the
vertices v; to the corresponding affine subspace spanned by the sets V;, and note that (I') > 0 if I" is
proper. Let d(I") denote the length of the longest edge of I', and let 6(I") :=r(I")/d(T").
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We say that a distance graph I = (V' E) is isometric to T’ and write I'" >~ T, if there is a one-to-one
and onto mapping ¢ : V — V' so that |¢ (v;) — ¢ (v;)| = |v; — v;| for all (i, j) € E. One may picture I’
obtained from I'" by a translation followed by rotating the edges around the vertices, if possible. By A - I"
we mean the dilate of the distance graph I' by a factor A > 0, and we say that I'” is similar to T if I is
isometric to A - I.

Theorem 2. Let5 >0, n>1, 1 <k <d, and let E be a compact subset of R¥ of Hausdorff dimension s <d.
There exists so = so(n, d, 8) < d such that if s > s, then E contains a distance graph I’ similar to T, for
any proper distance graph T = (V, E) of degree at most k, with V. C R%, |V | =n and §(T") > 6.

Note that Theorem 2 implies Theorem 1, as a nondegenerate simplex is a proper distance graph of

degree k — 1.

3. Proof of Theorem 1

Let E C B(0, 1) be a compact subset of the unit ball B(0, 1) in R¥ of Hausdorff dimension s < k. It is

well known that there is a probability measure p supported on E such that u(B(x, r)) < C,r® for all

balls B(x, r). The following observation shows that we may take C,, =4 for our purposes. !

Lemma 1. There exists a set E' C B(0, 1) of the form E' = p~'(F — u) for some p > 0, u € R* and
F C E, and a probability measure ' supported on E’ which satisfies

W (B(x,r)) <4r, forall x e R r>0. (3-1)
Proof. Let K := inf(S), where
S:={CeR:u(Bx,r) <Cr’, VB(x,r)}.
By Frostman’s lemma [Mattila 1995], we have that § = @ and K > 0, moreover,
p(B(x,r)) <2Kr’,

for all balls B(x, r). There exists a ball Q = B(v, p) of radius p such that u(Q) > %K p’. We translate E
so Q is centered at the origin, set F = E N Q and denote by wr the induced probability measure on F:

n(ANF)

A) =
wr(A) o (F)

Note that for all balls B = B(x, r),
(B) < 2Kr? _4(;’)‘;‘
M= ke T\
Finally, we define the probability measure " as u'(A) := ur(pA). Itis supported on E' = p 'FCB(,1)
and satisfies

W (B(x,r)) = up(B(px, pr)) < 4r'. O

I'We would like to thank Giorgis Petridis for bringing this observation to our attention.
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Clearly E contains a similar copy of V if the same holds for E’, thus one can pass from E to E’ in
proving our main results, assuming that (3-1) holds. Given ¢ > 0, let ¥.(x) = ek (x /&) > 0, where
¥ > 0 is a Schwarz function whose Fourier transform, 1}, is a compactly supported smooth function
satisfying ¥ (0) =1 and 0 < < 1.

We define 1, := i * .. Note that u, is a continuous function satisfying |||l < Ce*~* with an
absolute constant C = Cy, > 0, by Lemma 1.

Let V={vg=0, ..., vr_1} be a given nondegenerate simplex and note that in proving Theorem 1 we
may assume that d(V) = 1, and hence §(V) =r(V). A simplex V' ={xo =0, x1, ..., xx_1} is isometric

to V if for every 1 < j < k one has that x; € Sy, X1 where

.....

Serryy =1y RNy —xi| = v; —vil, 0<i < j}

is a sphere of dimension k — j and of radius r; =r;(V) > r(V) > 0. Let oy, x,_, denote its normalized
surface area measure.
Given 0 < A and ¢ < 1, define the multilinear expression

T}LV(M&) ZZ/MS(X)MS(X —)\.XI) "'Ms(x_)‘xkfl)doi(xl)do'xl (x2) daxl ..... )Ck,z(-xkfl)dxs (3_2)
which may be viewed as a weighted count of the isometric copies of LA.

3.1. Upper bounds. A crucial part of our approach is to show that the averages Ty (it.) have a limit
as ¢ — 0, for which one needs the following upper bound.
Lemma 2. There exists a constant Cy, > 0, depending only on k, such that
|Tov (2e) = Ty (me)| < Cir (V) ™20 120 1DEZ0FA, (3-3)
As an immediate corollary we have the following:

ﬁ < s < k. There exists

Ty (w) = ;E)T(l) Tov (ue), (3-4)

Lemma 3. Let k —

and moreover,
| Ty () — Ty (e)| < Cr (V)12 7120126 =0F1/4, (3-5)

Indeed, the left side of (3-5) can be written as a telescopic sum:

> Ty (uae) — Ty (e, with g; =27z,
j=0

Proof of Lemma 2. Write Apte := o, — (. Then
k—1 k—1 k
[TroeGe=rx) = [T e =axp) =D A o),
j=1 j=1 j=1

where

Aj(pte) = [ ]ty (6 = Ao Apee (x — 1xy), (3-6)
i#]
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and where ¢;; = 2¢ fori < j and ¢;; = ¢ for i > j. Since the arguments below are the same for all
1 <j<k—1,assume j =k — 1 for simplicity of notations. Writing f *;, g(x) := [ f(x —Ay)g(y) dy,
and using || e |loo < Ce*~ % we have for AT (u,) := Toy (te) — Tov (2e) that

|AT ()| S e*726=D /

where dw(x1, ..., xx—2) =do(x1) - doy,

/ /’LS (X)A/’L{S *}\. O.)Cl,...,xk,Z (x) d-x d(l)(XI, ] xk—Z)a (3_7)

xi_3 (xk—2) for k > 3, and where for k = 3 we have that

.....

dw(x1) =do (x1), which is the normalized surface area measure on the sphere S = {y : |y| = |v1]}.
The inner integral is of the form

s—d
|<:u“€’ AMS *)» le,...,xk,2>| 5 8Y “A/’LS *)\ O'xl,“.,xkfz ||2

Thus by Cauchy—Schwarz and Plancherel’s identity,

Aft T ()P < 2606 f INRGRGY
where

5(§) = / 16212 G deo (v, xk2).

Since Sy, ... x._, 1S a one-dimensional circle of radius rx_; > (V) > 0 contained in an affine subspace
orthogonal to My, . ., =span{xy, ..., xx—2}, we have that

1621 s QO S (L r(VIAdistE, My, )7

Since the measure w(x, ..., xx—p) is invariant with respect to the change of variables (x, ..., xy—3) —
(Uxy, ..., Uxg_p) for any rotation U € SO(k), one estimates

=/ (A 4+r(V)Adist(UE, My, ... xk_z))*lda)(xl,...,xk_g)dU

=/ (A +r(VAEdist(n, My, )" doo(x1, ... xk—2) dox 2 () S (1+r(VIAED T,

where we have written 1 := |£|"!U& and oy_; denotes the surface area measure on the unit sphere
Sk=1 C R,

Note that A//Z;(é‘) = /fc(é)(lﬁ(Zsé) — 1&(85)), which is supported on [§] < e~ ! and is essentially
supported on |£| &~ ¢~ !, Indeed, writing

J = / Apc@PL@ds= | 1AREPLE)ds+ f |Ape@P L) d =t I+ )

|E]<e~! e712<|g|<e!

and using |1ﬁ(2£§) — 1/7(85)| < el/2 for || < e~/ we estimate

Ji ,Sgl/zf |E) 2 (268) + Y (s8)) dE < ' /25,

/ )PP (e8) dE = / () dp(x) < &8k,
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On the other hand, as I, (§) < &!'/2r(V)~'A~! for |€] > ¢~!/2, we have
S Prvyh! / |0E) P (e&) dE Sr(V)~IaT e Pk,

where we have written ¢ (&) = (1 (26) — ¥/ (£))2 Plugging these estimates into (3-7), we obtain
IAT (o) |2 < r(V) 1A 1gl/2H@k=DG—d)
and (3-5) follows. .

The support of (. is not compact, however, as it is a rapidly decreasing function, it can be made to
be supported in a small neighborhood of the support of & without changing our main estimates. Let
¢ (x) := ¢ (ce~/?x) with some small absolute constant ¢ > 0, where 0 < ¢ (x) < 1 is a smooth cut-off,
which equals one for |x| < % and is zero for |x| > 2. Define 1}8 =Y., and 1, = u * 1/78. It is easy to
see that fi, < u, and [ fi, > % if ¢ > 0 is chosen sufficiently small. Using the trivial upper bound, for
k—1/(4k) <s < k we have

1 Tov (e) — Ty (o) | < Cllpe 155 e — fielloo < Cre'/?,

and it follows that estimate (3-5) remains true with u, replaced with fi,.

3.2. Lower bounds. Let f, := ce*~*[i,, where ¢ = ¢y > 0 is a constant such that 0 < f; < 1 and
[ fedx = c'ek5. Let o := ¢’¢¥~% and note that the set A, := {x D fe(x) > %a} has measure |A.| > %a.
If one defines the averages

Tv(Ae) = / 14, 0)1a, (x —Axy) -+ - 14, (x —Axg—1) do(xy) - - - doy,. e, (Xk—1) dx,
then clearly
Tov (ite) = ca* Thy (Ap).

The averages T,y (A.) represent the density of isometric copies of the simplex AA in a set A, of measure
|A¢| = 5 > 0, which was studied in [Lyall and Magyar 2020] in the more general context of k-degenerate
distance graphs. We recall one of the main results of the aforementioned paper; see Theorem 2 (ii) together
with Estimate (18):

Theorem 3 [Lyall and Magyar 2020]. Let A C [0, 11¥ and |A| = o > 0. Then there exists an interval I of
length |1| > exp(—Ca~C%), such that for all » € I, one has

| Tov (A)] = ca.

Thus for all A € 1,
Ty (jig) =c>0 (3-8)

for a constant ¢ = c(k, ¥, r(V)) > 0. Now, let

1
Ty (i) = f ATy (i) .
0
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For k — - < <k, by (3-5) we have that
| Toy () — Tav (jie)| < Cer (V) 120712618
it follows that

1
/ M2\ Ty (W) — Tov (fie) | dh < Crr (V) ™1/261/8) (3-9)
0

and in particular fol AM72T v (1) dh < 0o. On the other hand, by (3-8), one has that

1
| ¥ PTG = expr—em€it o, (3-10)
0
Assume that 7 (V) > §, fix a small € = g; 5 > 0 and then choose s = s (¢, §) < k such that

Cid~ 12618 < % exp(—e‘ck(k_s)),

which ensures that

1
f A2 Ty (w) da > 0.
0

Thus there exists A > 0 such that 7y y (1) > 0. Fix such a A, and assume indirectly that EF=Ex.--xE
does not contain any simplex isometric to AV, i.e., any point of the compact configuration space S,y C RK*
of such simplexes. By compactness, this implies that there is some 1 > 0 such that the n-neighborhood
of EX also does not contain any simplex isometric to A V. Since the support of i, is contained in the
Ckel/z-neighborhood of E, as E = supp u, it follows that Tyy (fi,) = O for all ¢ < cxn? and hence
T).v () = 0, contradicting our choice of A. This proves Theorem 1.

4. The configuration space of isometric distance graphs

Let 'y = (Vy, E) be a fixed proper distance graph, with vertex set Vo = {vg =0, vy, ..., v,} C RY of
degree k <d. Let t;; =|v; —vj|2 for (i, j) € E. A distance graph ' =(V, E) with V ={xo =0, x1, ..., x,,}
is isometric to I'g if and only if x = (x1, ..., x,) € Sr,, where

Sty ={(x1, ..., ) €RY : | —xj|* =1;;, VO<i < j<n, (i, j) € E}.

We call the algebraic set St, the configuration space of isometric copies of I'g. Note that Sr, is the
zero set of the family 7 = {f;; : (i, j) € E} with f;;(x) = |x; — xj|2 — 1;j, thus it is a special case of the
general situation described in Section 5.

If ' >~ 'y with vertex set V = {xo = 0, xq, ..., x,} is proper, then x = (xy, ..., x,) is a nonsin-
gular point of Sr,. Indeed, for a fixed 1 < j < n, let I'; be the distance graph obtained from I' by
removing the vertex x; together with all edges emanating from it. By induction we may assume that
x"=(x1,...,Xj_1,Xj41, ..., X,) is a nonsingular point, i.e., the gradient vectors Vy fix(x), (i, k) € E,
i #J, k # j, are linearly independent. Since I" is proper, the gradient vectors V, fi;(x) = 2(x; — x;),
(i, j) € E, are also linearly independent, hence x is a nonsingular point. In fact we have shown that the
partition of coordinates x = (y, z) with y = x; and z = x’ is admissible and hence (6-4) holds.
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Let ro =r(Ig) > 0. Itis clear that if I' ~I"g and |x; —v;| < ng for all 1 < j <n, for a sufficiently small
no = n(rg) > 0, then I' is proper and r(I") > %ro. Foragivenl1 <j<n,let X; :={x; € V:(, j) € E}
and define

Sx, :=f{x e R : |x —x; | =1, Vx; € X;}.

As explained in Section 6, S X; is a sphere of dimension d — | X;| > 1 with radius r(X;) > %ro. Let o,
denote the surface area measure on Sx; and write vx; ‘= ¢;0x;, where ¢; is a smooth cut-off function
supported in an n-neighborhood of v; with ¢;(v;) = 1.

Write x = (x1,...,x,) and ¢ (x) := ]_['j’.:1 ¢;j(x;j). Then by (6-4) and (6-5) one has

/g(X)¢(x)dwf(x)=cj(Fo) // g§(x)p(x") dvx; (x) dwF (x'), (4-1)

where X’ = (x1, ..., Xj—1, Xj41,...,%,) and Fj ={fi; : (i,]) € E, | # j}. The constant c;(I'g) > 0 is the
reciprocal of the volume of the parallelotope with sides x; — x;, (i, j) € E, which is easily shown to be at
least ckr(',‘ , as the distance of each vertex to the opposite face is at least %ro on the support of ¢.

5. Proof of Theorem 2

Let d > k and again, without loss of generality, assume that d(I") = 1 and hence §(I") = r(I"). Given
A, & > 0, define the multilinear expression

Tyry (te) = / : / e () e (X = Ax1) -+ - e (X = AX0)P (X1, .., Xp) dwp(xy, ..., xp)dx. (5-1)
Given a proper distance graph I'g = (V, E) on |V | = n vertices of degree k < n, one has the following
upper bound.

Lemma 4. There exists a constant C = C,, 4 x(ro) > 0 such that
| Trg (iae) — Tory (pe)| < CA™ 120 H1/DO=DFLA, (5-2)

This implies again that in dimensions d — 1/(4n 4-2) <s <d, the limit T, (u) := limg_ ¢ Thr,(Le)
exists. Also, the lower bound (3-8) holds for distance graphs of degree k, as was shown for a large class
of graphs, the so-called k-degenerate distance graphs; see [Lyall and Magyar 2020]. Thus one may argue
exactly as in Section 3 to prove that there exists a A > 0 for which

Thry(1) >0, (5-3)

and Theorem 2 follows from the compactness of the configuration space Sy, € R?". It remains to prove
Lemma 4.

Proof of Lemma 4. Write AT () := Tor,(te) — Thr, (tt2¢). Then we have AT (u,) = ijl AT (ue),
where A;T () is given by (5-1) with u.(x — Ax;) replaced by Au,(x — Ax;) given in (3-6), and
Me(x — Ax;) by poe(x — Ax;) for i > j. Then by (4-1) we have the analogue of estimate (3-7):

|AT ()| S @~ D6=D f ‘ / 1e () A ke 3 vx, (¥) dx|p (x)) dog, (x'), (5-4)
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where ¢ (x") =[], vy ¢ (x;). Thus by Cauchy—Schwarz and Plancherel’s identity,

8,7 GP £ [ IKR©PR @ ds
where

1{(%‘)2/Iﬁx,()»é)l%(x/)dwﬁ(x/)-

Recall that on the support of ¢ (x’) we have that Sx; is a sphere of dimension at least 1 and of radius

r> %ro > 0, contained in an affine subspace orthogonal to span X ;. Thus,

1Dx, (A&)1> S (1 + roA dist(&, span X;)) ™",
Let U : R — R? be a rotation, and for x’ = (x;)ixj write Ux" = (Ux;);2;. As explained in Section 6,
the measure WF; is invariant under the transformation x’ — Ux’, hence
L) < //(1 + roA dist(&, span UXJ-))_1 dor, (x)dU

_ / f (1 + ror|€] dist(n, span X))~ dog_1 (n) dwF; (x') < (1 4+ rorl&)

where we have written again 7 := |£|'U& € §9~\.
Then we argue as in Lemma 2, noting that as A/Eg (£) is essentially supported on |£] &~ ¢!, we have
that

|AT(M8)|2 5 ro—l)\‘—lgzn(s—d)-i-l/Z/ |ﬁ(€)|2($(8§)d§ S ro—l)\’—lg(Zn-‘rl)(S—d)—Fl/z’
with i = e or fie = W * ¢.. This proves Lemma 4. Il

6. Measures on real algebraic sets

Let 7 = {fi1,..., f,} be a family of polynomials f; : RY — R. We will describe certain measures
supported on the algebraic set

Spi={xeR?: fix) =--- = fo(x) =0}. &)

A point x € Sr is called nonsingular if the gradient vectors

Vfl(X), cee vfn(x)

are linearly independent. Let S% denote the set of nonsingular points. It is well known that if S% #* O,
then it is a relative open, dense subset of Sz, and moreover it is an (d —n)-dimensional submanifold of R4
If x e S(}, then there exists a set of coordinates J = {ji, ..., ju}, with 1 < j; <--- < j, <d, such that
: dfi
JF,s(x) :=det (—l (X)) # 0. (6-2)
1<i<n,jeJ

8Xj
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Accordingly, we will call a set of coordinates J admissible if (6-2) holds for at least one point x € S?E and
will denote by Sz, ; the set of such points. For a given set of coordinates x; let Vy, f(x) := (3x, f (%)) jes
and note that J is admissible if and only if the gradient vectors

v)wfl(-x)a ---aVXan(-x)

are linearly independent for at least one point x € Sr. It is clear that, unless Sr ; = &, it is a relative
open and dense subset of Sr and is also a (d —n)-dimensional submanifold, moreover S?r is the union of
the sets Sr ; for all admissible J.

We define a measure, near a point xo € Sr s, as follows. For simplicity of notation assume that
J={1,...,n}and let

CD()C) = (fl, ...,fn,an, .. .,xd).

Then ® : U — V is a diffeomorphism on some open set xo € U C R? to its image V = ®(U), moreover
Sr=® 1 (VNRI™). Indeed, x € SFrNU if and only if ®(x) = (0,...,0, Xp41,...,xg) € V. Let

I ={n+1,...,d} and write x; := (xp4+1,...,xq). Let ¥(xy) = ®~1(0, x;) and in local coordinates
let x; define the measure wr via
/ gdor = / g(W(xp)) Jacg (W(xp)) day. (6-3)

for a continuous function g supported on U. Note that Jace(x) = jr j(x), i.e., the Jacobian of the
mapping ¢ at x € U is equal to the expression given in (6-2), and that the measure dwr is supported
on Sx. Define the local coordinates y; = f;(x) for 1 < j <nand y; = x; forn < j <d. Then

dyin---ANdyg=dfin---ANdfy Adxppi N ANdxg =Jace(x)dxy A Adxy,

and thus
dx; /\---/\dxd=JaC¢(x)*1df1 A ANdfp ANdxppi AN ANdxg=dfi n---Ndfy ANdor.

This shows that the measure dw £ (given as a differential (d—n)-form on SN U) is independent of the
choice of local coordinates x;. Then wr is defined on S% and moreover the set S%\S 7.7 1s of measure
zero with respect to wp, as it is a proper analytic subset on RY~" in any other admissible local coordinates.

Let x = (z, y) be a partition of coordinates in R4, with y=xy,, 2=X,,and assume thatfori=1,...,m
the functions f; depend only on the z-variables. We say that the partition of coordinates is admissible if
there is a point x = (z, ¥) € Sr such that both the gradient vectors V, fi(x), ..., V, f(x) and the vectors
Vy fms1(x), ..., V, fu(x) form a linearly independent system. Partition the system F = F; U F, with
Fr={f1,..., fm}and 7 = {fiu+1, - .., fn}- Then there is a set Jl’ C J; for which

. , afi
R @ = det( -2 (2) £0,
dx I<i<m,jeJ]

j
and also a set J; € J, such that

dfi

Jm.p@ y) = det(g(z, y #0.

J )m-ﬁ-lfifn,je]z/
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Since V,, f; =0 for 1 <i < m, it follows that the set of coordinates J' = J{ U J; is admissible, moreover,

JF0 (v, 2) = jr 0@ Jjr 50, 2).

For fixed z, let f; .(y) := fi(z,y) and let 5 ; = {fu+1z .-, fnz}. Then clearly jfLsz(y,z) =
JF,...2;(y) as it only involves partial derivatives with respect to the y-variable. Thus we have an analogue
of Fubini’s theorem, namely,

fg(X)dwf(X)=// 8(z,y) dor, (y)dor,(2). (6-4)

Consider now algebraic sets given as the intersection of spheres. Let xq, ..., x, € RY ty, ...ty >0
and F={fi,..., fu), where fi(x) =|x —x;|>—t; fori =1, ..., m. Then Sr is the intersection of spheres
centered at the points x; of radius r; = til/ 2 If the set of points X = {x1, ..., x,,} is in general position
(i.e., they span an (m—1)-dimensional affine subspace), then a point x € S is nonsingular if x ¢ span X,
i.e., if x cannot be written as linear combination of xi, ..., x,,. Indeed, since Vf;(x) = 2(x — x;), we
have that

m m m
Y avix) =0 = Y ax=) anx,
i=1 i=1

i=1

which implies that > a; = 0 and Y ", a;x; = 0. By replacing the equations |x — x;|?> = #; with
|x —x1|% — |x —x;|*> = t; —t;, which is of the form x - (x; —x;) =¢;, fori =2, ..., m, it follows that S
is the intersection of the sphere with an (n—1)-codimensional affine subspace Y, perpendicular to the
affine subspace spanned by the points x;. Thus Sz is an m-codimensional sphere of R? if S has one
point x ¢ span{xy, ..., x,} and all of its points are nonsingular. Let x’ be the orthogonal projection of x
to span X. If y € Y is a point with |y — x| = |x — x| then by the Pythagorean theorem we have that
|y — xi| = |x — x;| and hence y € Sx. It follows that S is a sphere centered at x” and contained in Y.

Let T' = Tx be the inner product matrix with entries #;; := (x — x;) - (x — x;) for x € Sr. Since
(x—x;) - (x —x) = 3t + 15 — |x; — x; ),

the matrix 7 is independent of x. We will show that dwr = cr dos,., where dos, denotes the surface

area measure on the sphere Sr and cr =27" det(T)~1/2 > 0, i.e., for a function g € Co(R?),
/ g(x)dwr(x) =cr / g(x) dog, (x). (6-5)
S}- S}'
Let x € Sr be fixed and let ey, . .., es be an orthonormal basis so that the tangent space T, Sr equals
span{e,;+1, ..., €4}, and moreover we have that span{Vfi, ..., Vf,,} =span{ey, ..., ey}. Letxy, ..., x,

be the corresponding coordinates on RY and note that in these coordinates the surface area measure, as a
(d—m)-form at x, is

dos, (x) =dxpmp1 N--- Ndxy.
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On the other hand, in local coordinates x; = (x;;41, ..., X4), it is easy to see from (6-2)—(6-3) that
Jjr.y(x)=2"vol(x —x1,...,x — x;), and hence

dor(x) =27""vol(x — X1, ..., X —Xp) " dXpme1 A+ Adxq,
where vol(x — xy, ..., x —x;,) is the volume of the parallelotope with side vectors x — x;. Finally, it is a

well-known fact from linear algebra that
vol(x —x1,...,x — xm)2 =det(T),

1.e., the volume of a parallelotope is the square root of the Gram matrix formed by the inner products of
its side vectors.
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RESONANCES FOR SCHRODINGER OPERATORS
ON INFINITE CYLINDERS AND OTHER PRODUCTS

T. J. CHRISTIANSEN

We study the resonances of Schrodinger operators on the infinite product X = R? x S!, where d is odd,
S! is the unit circle, and the potential V lies in L°(X). This paper shows that at high energy, resonances
of the Schrodinger operator —A 4+ V on X = R? x S' which are near the continuous spectrum are
approximated by the resonances of —A 4 Vj on X, where the potential Vj is given by averaging V over
the unit circle. These resonances are, in turn, given in terms of the resonances of a Schrodinger operator
on R? which lie in a bounded set. If the potential is smooth, we obtain improved localization of the
resonances, particularly in the case of simple, rank 1 poles of the corresponding scattering resolvent on R?.
In that case, we obtain the leading order correction for the location of the corresponding high-energy
resonances. In addition to direct results about the location of resonances, we show that at high energies
away from the resonances, the resolvent of the model operator —A 4 V; on X approximates that of
—A+V on X. If d =1, in certain cases this implies the existence of an asymptotic expansion of solutions
of the wave equation. Again for the special case of d = 1, we obtain a resonant rigidity type result for the
zero potential among all real-valued smooth potentials.

1. Introduction

We study the Schrodinger operator — A+ V on the manifold X = R? x S! with the product metric, where d
is odd, S! is the unit circle, and V € L2°(X). In the special case d = 1, X is the infinite cylinder R x st
We show that in the large energy limit, resonances near the continuous spectrum are well approximated
by those of —A 4 Vjy, where Vj is the average of V over st Vo(x) = # 02” V(x,0)d6. By a separation
of variables argument, these, in turn, are determined by the low energy resonances of the Schrodinger
operator — Z;i:l 82/ ijz + Vo on RY. In the case of smooth potentials V, for simple rank 1 poles of the
(scattering) resolvent of — 27:0 32/ ijz + Vo, we find the leading-order corrections to the location of the
corresponding poles of the resolvent of —A +V on X. Among other things, this allows us to prove that no
other smooth real-valued potential on R x S! has the same resonances as the zero potential. For potentials
with Vy = 0, we show the existence of large resonance-free regions. Whend =1 and V € C°(X; R),
under certain hypotheses on the potential Vy we are able to give an asymptotic expansion of solutions
of the wave equation. For the case of d = 1 we study a simple example of a nontrivial potential V
with Vy = 0 and locate some of the corresponding resonances. Some of these results are reminiscent of
Drouot’s results [2018] for rapidly oscillating potentials on R
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Let A < 0 denote the Laplacian on X = RY x S! with the product metric. For V e L°(X) the
Schrodinger operator —A + V' has continuous spectrum [0, 0o), with multiplicity which increases at
each threshold jz, for j e Ng. ForIm¢ > 0,set Ry () =(—A+V — ;‘2)_1. This (scattering) resolvent
has a meromorphic continuation to 7 , the minimal Riemann surface for which 7;(¢) def (¢?2—=1»)"%isa
single-valued analytic function for each / € Ny. The resonances are poles of the resolvent Ry ({). We
refer to the portion of 7 for which Im 7;(¢) > 0 for all [ € Ny as the physical space. In this set Ry is a
bounded operator on L?(X), away from a discrete set of points which correspond to (square roots of)
eigenvalues. For [ € Ny and p > 0, denote by B;(p) the connected component of {{ € Z: |71(¢)] < p}
which nontrivially intersects both the physical space and the set {¢ € Z:Re 79(¢) > 0}. Using as the
coordinate 7;(¢), B;(p) is identified with the disk of radius p in the complex plane, centered at the origin,
and this identification is compatible with the complex structure of Z Bipy If 0 < V2[ —1. The point
77(¢) = 0 in Bj(p) corresponds to the /-th threshold. We study the resonances of —A + V in B;(p),
or Bj(xlogl), as | — oco. Results of Section 6 show that these are the high-energy resonances “near” the
continuous spectrum which have Re tp > 0.

For a function V € L°(X) and m € Z define

1 27 )
Vi (x) = Z/ Vi(x,0)e ™ dg,
0

so that V(x, 0) = Z;’f:_oo V,u (x)e™?. The minimal assumption on a potential V in most of this paper
will be that
VeLX(X) and |[[Vylre= 0(|m|_5) for some § with 0 < 4§ < % (1-1)

Note that this imposes an assumption on é as well, which we shall include when we invoke hypothesis (1-1).
We use the notation Ag = Z;-i: | 8%/ 8xj2 for the Laplacian on R?,

Ry,o0) = (—Ag+Vo—2H7!, if ImA >0 (1-2)

with the same notation for its meromorphic continuation to the complex plane — see Section 3A. The poles
of Ry, in C are the resonances of —Ag 4+ Vp. The multiplicity my, o(Xo) of a resonance of —Ag+ Vp
at A is given by the dimension of the range of the singular part of the resolvent at Ag; this is discussed
further in Section 4.

Theorem 1.1. Let X = R? x S, d odd, and let V € LX(X) satisfy Vil = O(Im|~?) for some §
with 0 < § < % Suppose Lo € C, Lo # 0, is a resonance of —Ag + Vo on R, of multiplicity my,.0(Ao).
Let p € R, p > |Ao|. Then there are Co > 0, L > 0 so that forl > L, | € N there are exactly 2my, o(1o)

resonances, when counted with multiplicity, of —A + 'V in the set
{¢ € Bi(p) : [T(§) — Aol < Col ™/ mvo0toly,

Here, and elsewhere in the paper, the apparent “doubling” of the number of poles (when counted with
multiplicity) on X as compared with those on R? is due to the fact that for / € N, /2 is an eigenvalue
of —d?/d6? on S' of multiplicity two. This can be seen immediately in the simplest case, V = Vp, by
separating variables.



RESONANCES FOR SCHRODINGER OPERATORS ON INFINITE CYLINDERS AND OTHER PRODUCTS 1499

PR 7 N T
7’ >
7’ N
Vi N
p >}
’ A
.. >
AR \‘
[N
X )
[
' p A
T
! 1
\ X | X B
\ ]
\ X x .,
A ’
AN X ’
~ /,
~ b
\‘~_ _—”

Figure 1. A schematic showing resonances of —A + V in B;(p), pictured in the
7;-coordinate. Each red x indicates a single resonance of even multiplicity or a cluster of
resonances. The hatched region indicates the portion of B;(p) which lies in the physical
space. By comparing Figure 2, Section 3B one can see how this fits in the larger picture.

In this paper we refer to any pole of the resolvent as a resonance, including those which correspond to
eigenvalues. The second part of Theorem 1.2, for which V is assumed to be smooth, implies an improved
localization of the resonances for smooth potentials.

The next theorem shows that, other than possible poles near the threshold, the poles as described above
are all the poles in B;(p) for sufficiently large /.

Theorem 1.2. Let X = R? x S!, d odd, and suppose V satisfies the hypothesis (1-1). Choose p > 0 so
that if Aj is a pole of Ry, 0()), then |A;| # p. Set

A, ={xj € C:|Aj| < pand A;j is a pole of Ry, o(1)}.

Let €' > 0 be so that € < min{|A;| : X; € Ay, Xj # 0}. Then there are C, L>0s0 that forl > L, 1 € N,
there are no resonances of —A+V in

{£ € Bi(p) : |u(0)| > € and |1 (¢) —Aj| > CI7/™00%) forall A; e A,).
Moreover, if V is smooth for perhaps larger L and C, for |l > L there are no resonances in
{¢ €Bi(p) |t > € and |1 (¢) — Aj| > C172/mvg.005)) forall )j € Ap}.

In addition, if Ry, 0(A) is analytic in a neighborhood of the origin, then there are no poles in B (¢') forl
sufficiently large.

We comment that smoothness of the potential V is more than is needed for the second part of
Theorem 1.2. It would suffice to have V € C¥(X), for some k sufficiently large. In order to simplify the
proofs, we have not tracked the value of k£ which is needed.

To help visualize these theorems, we include Figure 1, which is a schematic showing the resonances of
—A+V in Bj(p) for large [, using the t;-coordinate. This schematic is familiar from odd-dimensional
scattering theory; that this should be so is a consequence of Theorems 1.1-1.3. One difference is that
in this diagram, the only portion of B;(p) which lies in the physical space is the portion which is in the
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first quadrant, indicated by hatching. Another is that each x indicates either a single resonance of even
multiplicity, or a cluster of resonances. See Figure 2 to see how By fits in a larger context.

For Schrodinger operators on R?, the behavior of the singularities of the resolvent at the origin is
delicate. For example, notions of multiplicity of a resonance which agree at points away from the origin
may differ at the origin; see [Dyatlov and Zworski 2019, Theorem 2.8]. These same sorts of issues arise
at thresholds in the case under study here, and accounts for the fact that this next theorem, which concerns
resonances very near the thresholds, is weaker than the previous ones.

Theorem 1.3. Let V satisfy (1-1) and suppose the resolvent of —Ag + Vo on R? has a pole at 0 of
order r > 0, and multiplicity my, o(0) Then there are C, L > 0 so that —A +V on X has at least
2my,.0(0) resonances, when counted with multiplicity, in B;(Cl =8/"y when | > L, 1 € N. Moreover, there
is an € > 0 so that —A + V has no poles in B;(€)\ B;(CI7%/"y whenl > L. If V € C2°(X), then this
can be improved to show that there is a C; > 0 so that —A + V has no poles in B;(¢€) \ B;(Cyl —2/ry
when | > L. Moreover, under the hypothesis (1-1), if r =1 there are exactly 2my, ¢(0) resonances of
—A+V in B/(CI™®) forl > L.

Suppose for the moment that Vj) is real-valued. In this case, it is well known that if d = 1 the order
of the pole of the resolvent of —dz/dx2 + Vo at O cannot exceed 1, and if it is 1, then my, ¢(0) =1
[Dyatlov and Zworski 2019, Theorem 2.7]. If d > 3 is odd, then the order of the pole of the resolvent
of —Ag+ Vy at 0 cannot exceed 2 [Dyatlov and Zworski 2019, Lemma 3.16]. For general V and r, the
order of the pole at 0 can be bounded from above in terms of my; ((0), and in the case d = 1, my, ¢(0)
can be bounded above by r.

It is of particular interest to understand poles of the resolvent Ry near the physical region. In Section 6
we show that there are large regions near the physical region that contain no resonances. A consequence
of those results is that large energy resonances near the continuous spectrum and having Re 79(¢) > 0 are
contained in regions of the form B;(p), where p depends on how near the continuous spectrum we wish
to look. In Section 6 we further justify our focus on the resonances in sets B;(p).

Theorems 1.1-1.3 combined with results of Section 6 yield the following corollary. Here d7 is a
distance on Z, defined in Section 6. The boundary of the physical region corresponds to the continuous
spectrum. In the corollary, we use {g“jb} to denote a sequence of points in Z, to distinguish them from {l
which is used elsewhere to denote a particular mapping from an open subset of the complex plane into Z.

Corollary 1.4. Let V € L°(X; R) satisfy (1-1). Then Ry (¢) has a sequence {{f}j’il of poles satisfying
both Iro(g“jb)l — 00 as j — oo and dz(¢?, physical region) — 0 as J — oo ifand only if Ry, o(A) has at
least one pole in i[0, 00).

In particular, if d = 1, by [Reed and Simon 1978, Theorem XIII.110] if f xV = 0 then Ry (¢) has
such a sequence of poles approaching the physical space. In contrast, if Vy(x) > 0 for all x and Vy
is nontrivial, Ry (¢) does not have such a sequence of poles. Note that for any fixed k9 € N, we have
|ro(g'jb)| — o0 as j — oo if and only if |rk0(§jb)| — 00 as j — oco. We remark that we could prove an
analog of Corollary 1.4 for complex-valued potentials as well.
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If we enlarge the region centered at the threshold [ with increasing [, we have less fine localization of
the resonances, see Theorem 7.1. However, when Vj, the average of the potential, is identically zero, we
can get a larger resonance-free region. The difference in the next result for d = 1 and d > 3 is due to the
fact that the resolvent of —d?/dx? on R has a pole at the origin, but that of —A( on R for d > 3 odd
does not.

Theorem 1.5. Let V € L°(X) satisfy (1-1), and suppose Vo = 0. If d = 1 there are o, co > 0 so that for
I € N sufficiently large there are no resonances of —A + V in the set {¢ € By(alogl) : |1(¢)| > co/1°).
If d > 3 is odd, there is an o > 0 so that for | sufficiently large there are no resonances of —A + 'V in the
set Bi(«logl).

There is a sense in which this theorem is sharp; see Proposition 12.6 for a computation for the case d =1
with the potential V (x, 6) = 2x,,(x) cos 6, where xj, is the characteristic function of the interval [—1, 1].

We can find the leading correction term for high-energy resonances of —A + V which correspond to
simple resonances of —Ag + Vp. In the next theorem, Vj is the gradient on R4, so that

a d 0
Vof=\—f—f....—f).
Of (3)61 f 8)(2f 8xd f)

Theorem 1.6. Let X =R¢ xS!, d odd, V € C2°(X), and suppose Ao € C is a simple pole of the scattering

resolvent Ry, o of —Ao+ Vo on R?, and that the residue of Ry,.0 at Ay has rank 1. Suppose for any
x € CX(RY),

X(Rvo,o()») - u ®u)x (1-3)

i
A — Ao
is analytic near A = Ao. Let p > |Ag|. Then there are €, L > 0 so that for | > L there are exactly two
poles of Ry (¢), when counted with multiplicity, in {¢ € B;(|hol + 1) : |11(¢) — Ao| < €}, and each pole

of Ry (L) in this set satisfies

n@) =ro— 152 % /R (Vi Viw® + (Vo Vi - Vo Viu?) (x) dx + 01 7).
k#£0

We note that the normalization of the singularity in (1-3) is chosen so that if V is real-valued and
Ao € 1[0, 00), then u is real-valued. There is some further discussion of u at the beginning of Section 10.
Proposition 12.3 shows that the leading correction may be rather different for a nonsmooth potential by
considering the special case of the potential on R x S! given by V (x, 6) = 2 cos 6 x;,(x), where x, is
the characteristic function of the interval [—1, 1]. As for Theorem 1.2, the proof of Theorem 1.6 only
needs V to be C¥ for some k sufficiently large. Since Theorem 1.8 requires smoothness of the potential
only for an application of Theorem 1.6, the same is true for it. Again, we have chosen not to track this
value in the interest of simplifying proofs.

If Vo e LY (R?; R) and the operator —Ag + Vp on L*(R%) has a simple negative eigenvalue — B2, then
this negative eigenvalue corresponds to a simple pole of Ry, ¢ on the positive imaginary axis at i|f],
and the residue has rank 1. By Theorem 1.1 (or Corollary 1.4), in this case Ry has a sequence of poles
approaching the physical space. If V € C2°(X; R), the poles approach the physical space very rapidly.
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Theorem 1.7. Suppose V € C°(X; R) and L € C is a simple pole of Ry, (1) with Re Ay =0, with residue
of Ry, at Ao having rank 1. Then there is an € > 0 so that if {Clb}fiL CcZisa sequence of poles of Ry
with £ € Bi(|rol + 1) and |t (¢)) — hol < €, then Re 7 (¢)) = O(™N) for any N. In particular, this
implies that if Im Ay > 0, then d; (;lb, physical region) = O (V).

Proposition 12.3 demonstrates the necessity of assuming some regularity of the potential, at least
for d = 1, by studying the resonances very near the /-th threshold for a certain real-valued potential with
a jump singularity. These resonances in B;(1) arise from the pole of Ry ¢(A) at Ao = 0. They have

lu(g)l=01""?)
and, for a subsequence of /’s tending to infinity,
Im(w (g > 15l >

This paper was initially motivated by the case d = 1, as R x S! provides a particularly simple example
of a manifold with infinite cylindrical ends and as such provides a testing ground for studying resonances
for Schrodinger operators on such manifolds. Most of the proofs of the preceding theorems are essentially
identical for any odd dimension of the factor R<, so we have included the more general results. However,
Theorems 1.8 and 1.9 are particular to the d =1 case.

As a corollary of Theorems 1.1, 1.3, and 1.6, we get in the case d = 1 a uniqueness-type result for the
zero potential among smooth real-valued potentials.

Theorem 1.8. Let V € C2°(R x S'; R). Suppose for each p > 0 there is a sequence
1122 = ()32, N

with [; — 00 when j — 00 so that in By;(p) the resonances of —A+V and —A on X =R x S! are the
same. Then V = 0.

This result is false if we omit the hypothesis that V' is real-valued. For example, for V| € C2°(R) set
V(x,0) =V (x)e'’. Then the operators —A 4 V and —A have the same resonances; see [Autin 2011] or
[Christiansen 2004, Section 4]. This example can be easily generalized.

As part of our study of the distribution of resonances, we prove that, in a suitable sense, near the
physical region of Z, Ry is well approximated by Ry, away from the poles of Ry,; see Proposition 5.4
and Lemma 5.5. In the case d = 1, this and results of [Christiansen and Datchev 2022] give a wave
expansion; see Theorem 1.9.

Let X=RxS! Ve C2°(X; R), and suppose —A + V has finitely many eigenvalues 1, po, ..., iy,
repeated with multiplicity, with associated orthonormal eigenfunctions {n;}, so that (—A + V)n; = u;n;.
Let u satisfy

52

mu—Au—}—Vu:O, (1-4)

(u, u)i—o = (f1, f2) € CZ(X) x CZ(X).
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Theorem 1.9. Let X =R xS' and V, fi, f» € C°(X), with V real-valued, and suppose —d*/dx*+V,
on R has no negative eigenvalues and no resonance at 0. Let u be the solution of (1-4) on [0, o00) x X.
Then for each ko € N we can write u(t) = ue(t) + tihr ko (1) + Uy 1, (t), where

sin((p))"/?1)
ue(t,x,0)= Y nlx, 9)<cos<(uj)”2r><f1, m) o )
€0y (=A+V) i
wj#0
+ Y @O fin) + i) (15)
nj€o,(—=A+V)
=0
and
ko—1 's)
ik (8, %, 0) = bo,o+ (6, 0) + Y 172K Y (&b 1 (x,0) + € b _(x,0))
k=0 j=1

for some bj i 1 € (x)1/2+2k+€L2(X). For any x € C2°(X) there is a constant C so that

o
D lxbjxxlizg <€ k=0,1,2,... ko —1
j=1

and
X tr ko (Dl L20x) < Ct™ ™  for t sufficiently large.

The assumption that —d?/dx? + V, on R has no negative eigenvalues and no resonance at 0 means,
by Theorem 1.2, that Ry has at most finitely many poles on the boundary of the physical space. In
particular, this means at most finitely many eigenvalues of —A + V/, so that the sum in u, is finite. Further,
there are at most finitely many poles at thresholds, and this implies via results of [Christiansen and
Datchev 2022] that at most finitely many of the b; o + are nonzero.

If —d?/d x>+ V, on R has one or more negative eigenvalues, it seems plausible that there is an asymptotic
expansion of solutions of the wave equation on compact sets. Since in this case by Theorem 1.7 the
resolvent Ry may have a sequence of poles rapidly approaching, but not lying in, the continuous spectrum,
such an expansion would need to take these into account and is more complicated — see for example
[Tang and Zworski 2000] for an expansion in a Euclidean scattering setting with resonances approaching
the continuous spectrum. In our setting proving the existence of such an expansion may use techniques
similar to those of [Christiansen and Datchev 2022] but does not follow directly from the results of that
work. Proving this is outside the scope of this paper.

In this paper we have, for simplicity, limited ourselves to the case of Schrodinger operators on R? x S.
However, many of our results for L potentials hold as well for Schrodinger operators with Dirichlet or
Neumann boundary conditions on R4~ % (0, 00) x S or on R? x (0, 7).

1A. Relation to previous work. This paper was inspired in part by two different sets of papers. The
first are papers which study eigenvalues and resonances of Schrodinger operators on RY with rapidly
oscillating potentials, and includes [Borisov 2006; Borisov and Gadylshin 2006; Duchéne and Weinstein
2011; Duchéne et al. 2014; 2015; Dimassi 2016; Drouot 2018]. Of these the most closely related to this



1504 T. J. CHRISTIANSEN

paper is that of Drouot [2018], which studies the distribution of resonances of Schrodinger operators
—Ao+ V. on R with d odd. Here

V.(x) = Vo(x) + Z Vi(x)e* ¥ x e RY.
kezd k#0

Drouot shows in quantitative ways that in the limit € | 0, resonances of —Ag + V. near the continuous
spectrum are well approximated by those of —Ag + V. In addition, he proves some refinements related,
for example, to the leading order correction of the positions of the resonances. Theorems 1.1, 1.2, 1.3, 1.5,
and 1.6, as well as some computations in Section 12, are inspired by results in [Drouot 2018]. However,
the proofs are quite different. In part, this is because the different setting requires different techniques.
Additionally, Drouot’s results come mainly from studying regularized determinants. While this has the
potential of producing in some instances more refined results than we obtain here, it requires a substantial
amount of technical work. We have chosen instead to mostly avoid determinants, or to work only with
determinants of operators of the type I 4+ F, where F is finite rank. Instead, we use an operator Rouché
theorem of Gohberg and Sigal [1971]. In some places this may allow for sharper results than could be
obtained by using a regularized determinant. We note in addition that in the setting of [Drouot 2018], the
resonances lie on the complex plane, while for us, the resonances lie on a Riemann surface which is a
countable but infinite cover of the complex plane, with infinitely many branch points. This means that
some of the techniques used in [Drouot 2018] cannot be applied here.

A less direct source of inspiration is work done on the distribution of eigenvalues of the Schrodinger
operator —As» + W on the sphere S" (and certain other compact manifolds), n > 2; see for example
[Weinstein 1977; Widom 1979]. In this setting, eigenvalues of the Schrodinger operator occur in bands.
Roughly speaking, these authors show that a suitable average of the potential W can be used to obtain
information about the distribution of high-energy eigenvalues of the Schrodinger operator within these
bands. This average is over closed geodesics, rather than over all of S". Of course, our function Vy(x) is
the average of the potential V over the cross section of S', the unique closed geodesic on S'.

This paper was originally motivated by the d = 1 case, which gives X = R x S, a manifold with an
infinite cylindrical end. The spectral and scattering theory of manifolds with infinite cylindrical ends
has been studied in, for example, [Goldstein 1974; Guillopé 1989; Melrose 1993]. There is a large
literature studying the existence of eigenvalues and, in certain settings, the locations of resonances for
such manifolds and the related problems of waveguides which have a “one-dimensional infinity” as our
d =1 case does; see, e.g., [Levitin and Marletta 2008] or the monograph [Exner and Kovaiik 2015]. This
monograph also includes some results for manifolds with “higher-dimensional infinity”. Many of these
results focus on low-energy eigenvalues or resonances. We mention the papers [Christiansen 2002; 2004;
Christiansen and Datchev 2021; Christiansen and Zworski 1995; Parnovski 1995; Edward 2002] which
are more directly connected with high-energy behavior.

1B. Comments regarding other product manifolds. This paper studies only Schrodinger operators on
R? x S!, where d is odd. Here we comment on why we require that d be odd and on the choice of S for
the second factor.
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For Euclidean scattering, e.g., for the Schrodinger operator —Aga + Vgs on RY with Vigs € L (RY),
the space to which the resolvent continues is determined by the dimension: for odd d the meromorphic
continuation is to the complex plane, and for even d the meromorphic continuation is to A, the logarithmic
cover of C\ {0}. This means that certain questions related to the distribution of resonances are more
difficult in even dimensional Euclidean scattering than in odd dimensional Euclidean scattering. For
the problem we consider here, the Riemann surface on which the resonances live is a bit involved to
describe when d is odd; see Section 3B. The Riemann surface when d is even is much more complicated,
requiring as its building block A rather than C. It is, however, clear that some of our results, appropriately
interpreted, hold if d is even as long as we stay away from thresholds. In the interest of clarity we do not
pursue this here.

Next we turn to the choice of the factor S!. There are three things that make this an especially nice
choice:

(1) The spacing between the distinct eigenvalues grows as the eigenvalues grow.
(2) Upon averaging in S', we get a model operator that we understand fairly well.

(3) There is a choice of eigenfunctions of the Laplacian on S! so that a product of two eigenfunctions is

again an eigenfunction: ¢'/%¢/*0 = £1(/+k)0

Not all of our results require this last property. In view of [Weinstein 1977; Widom 1979], it would be
natural to think of replacing S' with $™. Of course, the spacing of distinct eigenvalues of the Laplacian
on S™ is similar to that for S'. However, when using a factor " with m > 1, obtaining a model operator
is much more complicated, and it seems any results for general potentials would likely be substantially
weaker.

1C. Ideas from the proofs. Our starting point for the study of resonances of —A + V is an identification
of the resonances with the points ¢ for which the operator I + (V — Vp)Ry,(¢)x has nontrivial null
space. Here Rw(¢) is the meromorphic continuation of the resolvent of —A 4+ W, and x € L2°(X)
satisfies x V = V and is, for convenience, chosen independent of 8. By separating variables, we can
understand Ry, in terms of the resolvent of —Z;i: 182/ 3xj2 + Vp(x) on R4.

We use two well-known and related properties of the resolvent of —27:182/ BxJ.Z + Vo(x) on R?. One
is the estimate y 1

H;z (— > 0% ox;+Vo— (L + i0)2> X H =o(A™)
j=1
as A —ooforleRand x € LY (R?). The second is the existence of a logarithmic resonance-free
neighborhood of the real axis.

An immediate consequence of this second fact and the fact that the distance between thresholds of our
operator —A + V on X increases at high energy is that if V = Vj, at high energy near the thresholds the
resonances of —A + Vp on X are determined by low-energy resonances of — Zjl: | 92/ 8xj2 + Vo on RY.
Moreover, using these facts and an operator Rouché theorem of Gohberg and Sigal [1971], we are able
to show that at high energy near the thresholds the zeros of I 4 (V — Vp) Ry, x are approximated by the
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poles of x Ry, x. These ideas underlie the proofs of the L results of Theorems 1.1-1.3 and 1.5. They
are also central to the proofs of the smooth versions of these results and of Theorem 1.6, although these
proofs require some additional study of the resolvent of —A + V) when Vj) is smooth.

1D. Organization. In Section 3 we recall some results from Euclidean scattering and show that the
resolvent of —A + V on X has a meromorphic continuation to Z. (We note that this latter is known;
see Section 3 for references.) We define the multiplicity of a pole of the resolvent, and give several
useful identities involving it in Section 4. In addition, this section introduces some notation and results
related to the operator Rouché theorem of Gohberg and Sigal [1971]. With these preliminaries we prove
Theorems 1.1 and 1.2 in the case of an L* potential V, using results from [Gohberg and Sigal 1971].
Section 6 contains more discussion of the Riemann surface Z and shows the existence of resonance-free
regions which are, at high energy, near the physical region and away from thresholds. This provides the
missing pieces of the proof of Corollary 1.4. Combining these with the resolvent estimates of Section 5
and results of [Christiansen and Datchev 2022] proves Theorem 1.9.

Section 8 contains preliminary computations which are needed to refine our results for smooth potentials.
The smooth case of Theorem 1.2 is proved with techniques similar to that of the L result, but using in
addition results of Section 8.

In Section 10 we prove Theorems 1.6 and 1.7. We do this using Fredholm determinants, but determinants
of the form det(/ + F), where F is a finite-rank operator. Theorem 1.8 follows rather directly from the
earlier results. Finally, in Section 12, in the case d = 1 we give approximations of some of the high-energy
resonances for a particularly simple potential which has Vp = 0 and which is not smooth.

2. Notation and conventions

On X = R4 x S' we use the coordinates (x, 6) or (x, 8), with x, x’ € R? and 6, 6’ € [0, 27).
Throughout the paper, V € L2 (X) and [ € Ny, and the dimension d of R? is odd. We use C to stand
for a positive constant, the value of which may change without comment.
Suppose A and B are linear operators on domains in L?(R?) and L*(S'), respectively, and are given

by
2w
(Af)(x)=AdA(x,x’)f(x’)dx’ and (Bg)(@):/O B(6,0")g(0") do.

Then A and B give rise to linear operators on domains in L?(X), which we again denote by A and B,
and which are given by

(Ah)(x,0) = / A(x, xYh(x',0)dx" and (Bh)(x,0) = f B(©,0)h(x,0)do .
R4 R4
For f, g € L*(R%), the operator f ® g : L2(R?) — L%(RY) is defined via
(f ®gh)(x)= f(X)fR!g(x/)h(x/) dx’.

If f, g € L>(X), the operator f ® g on L*>(X) is defined analogously.
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We list some repeatedly used notation for the convenience of the reader:

o The Laplacians on R? and X are given, respectively, by

2 d 52 52
AOZZ@ and A= F-’-W
j=l1 J =1 J

o« Vo(x) = 5 [T V(x,0)e™ ™ d for m € Z.
e VE=V#x,0)=V(x,0) — Vo(x).

Bi(p) and D;(Ag, p) are open sets in 7 , defined in Sections 1 and 5, respectively.

Ry is the (scattering) resolvent of —A 4+ V on X; see Section 3B.

Ry, o is the (scattering) resolvent of —Ag+ Vj on R?; see Section 3.

e my (o) is the multiplicity of ¢y € Zasa pole of Ry; see (4-1).

e my, 0(Ao) is the multiplicity of Ag € C as a pole of Ry, o; see (4-2).
G:{zeC:lzl <2l—1}— Bi(V2[—1) C Z is the (local) inverse of

B(W2l—1)3¢t—>1@)ef{zeC: |zl <V2-1} CC.

3. Odd-dimensional Euclidean scattering and continuation of the resolvent

We begin by fixing notation and recalling some well-known facts from Euclidean scattering theory. We
then use these to give a self-contained proof that the resolvent of —A + V on X has a meromorphic
continuation to Z.

3A. The Euclidean resolvent. Let Vi € L?"([Rd), d odd, and set
Ry 0() = (=Ag+Vo— 1)~ LPRY) — L2(RY)

when Im A > 0. The 0 in the second place in the subscript is to help us think of this as a model operator,
as we shall see. We shall later use the explicit expression for the resolvent as an integral when d = 1,
fe L*(R), and Im A > 0:

(RooG1 ) = o [ A1 gy ax for d=1. 3-1)

From this we can see immediately that if x € L2°(R), then x Ro o(1)x has a meromorphic continuation
to C\ {0}. The same is true when d > 3 is odd: if x € LSO(Rd), then x Ro,0(A)x has an analytic
continuation to the complex plane, see [Dyatlov and Zworski 2019, Theorem 3.3]. In higher dimensions,
the Schwartz kernel is given in terms of a Hankel function. It is well known, see [Dyatlov and Zworski 2019,
Theorem 3.8], that if V, x € Lé’o([Rd ), then x Ry, 0(A) x has a meromorphic continuation to the complex
plane. Alternatively, restricting the domain and enlarging the range, Ry, o() : L2(RY) — HI%C(IR‘{) has a
meromorphic continuation to C.
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The following lemma is well known, but we include it for completeness, as it is crucial for our
arguments.

Lemma 3.1. Let Vpy, x € LSO([R‘Z). Then there are constants Co, C1 > 0 so that x Ry, 0(A) x is analytic in
{,eC:|ReA|> Cp, ImA > —Clog(l+|Rer|)}. Moreover, in this region || x Ry, o(A) x| = O(IAI™h.

Proof. Without loss of generality, we may assume y Vo = Vj. Then

X R0 x = xRo.o(W)x (I + VoRoo(M)x) ™"

Since from (3-1) when d = 1 or [Dyatlov and Zworski 2019, Theorem 3.1] when d > 3, thereisa C > 0
so that

IV Ro.o() x|l < CeCImP-/1a,
where (ImA)_ = max(0, — Im 1); the lemma follows immediately. Il

3B. The resolvent of —A + V on X and the Riemann surface Z. Recall that whend = 1, X is a
manifold with infinite cylindrical ends. For a manifold with infinite cylindrical ends, the space to which
the resolvent of a Schrodinger operator continues is determined by the distinct eigenvalues of the Laplacian
on the cross-section of the end(s). Here that means {2} jeNg» since this is the set of (distinct) eigenvalues
of —d?/d6* on S'. As we show below, the resolvent for —A + V on R? x S! has a meromorphic
continuation to the same space as that of the resolvent of —A 4+ V on R x S!, provided d is odd.

For jeNpand ¢ € C, Im¢ > 0, set

1,(0) & (2= B2

with Im7;(¢) > 0. Set 7_;(¢) =7;(¢) if j € N.

The Riemann surface Z is defined to be the minimal Riemann surface on which, for each j € Ny, 7; is a
single-valued analytic function on Z. We briefly describe its construction and some of its properties. Note
that 79(¢) = ¢ for ¢ in the upper half-plane, and this has, of course, an analytic continuation to C. Now
71(¢) = 7—1(¢) is an analytic function of ¢ € C\ ((—o0, 1]U[1, 00)), and there is a minimal Riemann
surface Z 1 so that t; extends analytically to 7 1. This is a double cover of C, ramified at the points +1.
This process can be repeated for each j € N, resulting in a minimal Riemann surface Z on which T;
is analytic for each j € Ny. We define a projection p: Z — C as follows. For ¢ in the physical space,
identified with the upper half-plane, p(¢) = ¢, and p is in general the analytic continuation of this function.
Then Z has infinitely many ramification points which project under p to j € Z\ {0}. We call the set
{¢e Z:Im 7;(¢) > 0 for all j € Ny} the physical space, or physical region. For further discussion of this
Riemann surface; see [Melrose 1993, Section 6.6].

We shall say that a point ¢y € Z corresponds to a threshold if t9({y) € Z. Note that with this definition,
all the ramification points of Z correspond to thresholds. In addition, the set of points corresponding to
thresholds includes those points projecting to 0. These might naturally also be considered ramification
points of Z, as in some sense by choosing ¢? to originally be our spectral parameter we have already
made the cuts corresponding to the zero threshold.
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In order to separate variables below, we introduce the orthogonal projections Py : L2(X) — L*(X)
defined for k € Z by

1 2 ) , ) ,
(Pef)(x,0) = o— f(x, 0" 4 o=kO6=00y go’ if ke N,
T Jo
2T

1
(Pof)(x,0)= o f(x,0)do'.
T Jo

We shall use these throughout the paper.

Let Ve L°(X). For ¢ e CwithIm¢ > 0,set Ry(§) = (—A+V — ¢%)~!. Consider first the special
case where V € L2°(X) is independent of 6. Then V = Vj, and we can think of V{ as an element
of L2°(X) or of L;’Q(Rd ). In this special case we can separate variables to obtain

x
Ryy(2) = Ryy0(tk ()P (3-2)
k=0
The explicit expression (3-2) for Ry, using separation of variables shows that if x € L2°(X), then x Ry, x
and Ry, : LZ(X ) —> HI%) -(X) have meromorphic continuations to Z.In fact, the same is true for x Ry x
and Ry for general V € L2°(X). This is well known, at least when d = 1, see [Goldstein 1974; Guillopé
1989; Melrose 1993], though we sketch a proof below, valid for all odd 4.
If¢ eC, Im¢ > 0, then
(=A+V =E)Ro(§) =T+ VRo(?).

Multiplying by a function x € L2°(X) with xV =V,

(—A+V —HRy(x = x4+ VRo()x),

implying that
XRo(@)x = xRv(©)x(I+VRo(©)x) (3-3)
or
XRy (@) x = xRo(@)xIT +VRo()x)™". (3-4)
Using I — VRo(O)x (I + VRo()x)™ = (I + VRo(¢)x)~" and (3-4) yields
(I+VRy()x) ' =1-VRv(©)x; (3-5)

compare [Dyatlov and Zworski 2019, (2.2.15)—(2.2.16)]. Likewise, writing
viy vy, (3-6)
we find, making the additional hypothesis that x V¥ = V#,
XRv () x = xRy (@O x U+ V' Ry ()x) and (I +V* Ry =1-V*Ry(©)x. (-7

Each of these is helpful. Since V Ro(¢)x : L2(X) — L*(X) is compact and has a meromorphic extension
to Z,and I + V Ro(¢) x is invertible for ¢ in the physical space with Im ¢ sufficiently large, meromorphic
Fredholm theory ensures that (1 4+V Ry(¢) x) ™! is a meromorphic operator-valued function on Z, and each



1510 T. J. CHRISTIANSEN

T w = ‘L'02
,/’—_ ~~~\\ ,’——-‘\
/’ \s // \\
’ \\ I/ >
’ Y )
/ A / ')
1 )} [/
1 ) [t A
! ) L 5 1 ¥ } M
— : 12 121, R
Ve 1 1 \ 1 21 1
e P i 1 \ 1 o=y 1
N ’
\ ’ I \ I 5 4 1
\\ ,’ 1 ~ 1 4 1
. ’ 1 \~_L_—’ 1
S g 1 1 1
S 7 1 branch 1 branch branch |
1T ' cut ' cut cut !

Figure 2. On the left, B;(p) in the 1;-coordinate; on the right, a portion of B;(p) in the
w = (70(¢))?-coordinate for larger context. In the w diagram, (—A+V —w)~! is bounded
in the upper half-plane and the red dots on the horizontal axis indicate thresholds. The
hatching denotes the portion of B;(p) in the physical region; the shaded region indicates
the rest which is visible in the w plane diagram.

of (3-3)—(3-5) and (3-7) holds on all of Z. Moreover, writing I +V Ry = + VRo(I — x))({ + VRox)
and noting that (I + VRo(I — x))~' =1 — VRo(I — x), this shows that

Ry (£) = Ro(O)(I + VRo(£) )™ = VRo()I = X)) : LX(X) — HZ.(X)

has a meromorphic continuation to Z.

We note from (3-2) that Ry, is bounded on L?(X) when ¢ is in the physical space and is away from a
discrete set of poles (corresponding to eigenvalues). The same is true of Ry.

Throughout this paper we shall mainly work with subsets of B; W2=1)C 7 , forl eN. We recall B;(p)
is defined to be the connected component of {¢ € Z: |T1(¢)| < p} which has nonempty intersection with
both the physical space and the portion of Z with Re 7o(¢) > 0. The choice of /2] — 1 in B;(v/2] — 1) is
made because then (for / > 1) B;(+/2] — 1) contains only a single point of 7 corresponding to a threshold,
the one associated with the eigenvalue /%> of —d?/d6% on S'. If € > 0, then z = 7;(¢) gives the complex
structure of Z [ BI(VAI=T—¢)’ and Bj(v/2] — 1 —¢€) is naturally identified with a disk Be(W2l—1—¢€) of
radius /2] — 1 — € in C, centered at the origin. In this coordinate z, we have that z = 0 corresponds to
the threshold /% and the intersection of B¢ (+/2] — 1 — €) with the first quadrant corresponds to a region
in physical space, and so has Im t; > 0 for all £ € Ny. If 7 lies in the intersection of Be(W2l—1—¢€)
with the fourth quadrant, then Im 74 (¢£(z)) < 0 for 0 <k </ and Im 74 (¢(z)) > O for k > [. On the other
hand, if z lies in the intersection of Bg(+/2] — 1 — €) with the second quadrant, then Im 74 (¢(z)) < O
for 0 <k <[l—1and Im7(¢(z)) > O for k > [. Figure 2 shows a schematic of B;(p) and, for context,
the portion of B;(p) which is visible in the w = (10(2))? plane. We note that while we have used the
spectral parameter ¢ 2 in the definition of Ry (¢) to be consistent with the usual odd-dimensional Euclidean
scattering resolvent, the diagram on the right in Figure 2 uses as spectral parameter w = (19(¢))? to make
a more easily digested diagram. To put the diagram in context, think of (—A + V — w)~! as having
meromorphic continuation from the upper half-plane to {w eC\ (U]?’io (j2+i(—o0, 0]))} (which can,
of course, be identified with a subset of Z).
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On the open set B;(+/2] — 1 —¢€), z = 11(¢) is a coordinate compatible with the complex structure
of Z. Thus it is natural to use 7; as a local coordinate. We write

gil{zeCilz]l <V2—1—€}—» B(V2A—-1—e)CZ

as the function satisfying

G((¢)=¢ forall ¢ € Bi(v/2l—1—¢).

We note that if ¢ € Bj(v/2l —1—¢€),thenRe7;(¢) >0if 0 < j </, and Im7;(¢) > 0if j > [.
The next lemma follows easily from (3-2) and Lemma 3.1, but is fundamental to many of the results
of this paper.

Lemma 3.2. Let Vy € L°(R), a > 0, and x € L°(X). Then for | sufficiently large, uniformly for
¢ € Bi(alogl), we have || x (I = P)Ry, (O x|l = 01~

Proof. Set 1 = z and |z| < alog /. Then using the identity
=1+ 17—k

for [ sufficiently large, |7x(&(2))| > V1 for k € Ny, k # [. Moreover, Im 7;(¢;(z)) > 0 if k > [, and
Im 74 (£;(z))| = O(1) if k < [. Then the lemma follows from Lemma 3.1 and the representation of Ry, o
given by (3-2). U

4. Multiplicities of poles and results of [Gohberg and Sigal 1971]

For an operator A depending meromorphically on ¢ e Cor ¢ € Z,let E(A, &) denote the principal part
of the Laurent expansion of A at {p. For V € L2°(X) and ¢ € 7 , define

my (20) & rank E(Ry ., £o)(LA(X)). (4-1)

Suppose x € L2°(X) satisfies x V =V (and, if V =0, y is nontrivial). Then it follows from an expansion
of Ry atits singularities as in [Dyatlov and Zworski 2019, Theorems 2.5, 2.7, 3.9, 3.17] and a unique
continuation result, e.g., [Jerison and Kenig 1985, Remark 6.7], that my ({y) = rank E(x Ry X, o). Note
that if Ry is analytic at ¢p, then my ({p) = 0.

If Vo e LSO([Rd) and Ao € C we define

def —
myy.0(ro) = rank E(Ry,.0, »0) (LA(RY)). (4-2)

Again, the second 0 in the subscript is meant to help us think of this as corresponding to a model. As for my,
if x € LY°(R) satisfies x V =V (and x is nontrivial if V = 0), then my; o(Ao) =rank E(x Ry,.0X, Ao)-
We recall some definitions and results of [Gohberg and Sigal 1971], adapted to our setting.
Let A be a bounded linear operator on a complex Hilbert space #, depending meromorphically on

7€ Q C C, where  is a domain. Near a point zo € €2, we have A(z) =) 50

j=—n (z—20)! A;. If the operators

A_yq, ..., A_, are finite rank, then we say A is finitely meromorphic at zg. If A is finitely meromorphic
at each zg € , then A is finitely meromorphic on Q2. Suppose that A is a compact operator on H, A is
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finitely meromorphic on €2, and I + A(zy) is invertible for some z; € 2. Then by the meromorphic
Fredholm theorem, (I + A(z))~" is finitely meromorphic on €.
Suppose A is a finitely meromorphic operator on a domain €, with (I + A)~! also finitely meromorphic
on 2. Below we denote the derivative of A with respect to z by A. Then for zg € 2, define
MU+ A, z)% L tr/ AU + A(z) " dz,
2mi -,

20
where y,, is a positively oriented circle, centered at zo with radius €. Here we choose € small enough that
{lz— z0| < €} € Q and neither A nor (I + A)~! has poles in the set {z: 0 < |z — zo| < €}.

Our definition of finitely meromorphic is local, so it makes sense on domains in Z as well, using a
local coordinate compatible with the complex structure of Z. Likewise, we can define M (I + A, ¢y) for
such operators. (This requires the choice of a circle small enough that it has in its interior at most one
ramification point of Z.)

We will say the linear operator A on the Hilbert space # satisfies hypotheses (H1) on a domain Q C C
if A is a finitely meromorphic, compact operator defined on €2, and 7 + A is invertible for at least one
point in €2 and hence has a finitely meromorphic inverse in 2.

The following lemma is a direct consequence of [Gohberg and Sigal 1971, Proposition 5].

Lemma 4.1 [Gohberg and Sigal 1971, Proposition 5]. Suppose A, B : H — H satisfy hypotheses (H1),
and suppose B and (I + B)™" are analytic on Q. Then for 7o € Q,

M(I+ A, zo) = M((I + A)(I + B), 20)-

Let T : L?(X) — L*(X) be a bounded linear operator. We shall repeatedly make use of the straightfor-
ward identities

I+TP=(I+PTP)I+U—-P)TP) and (I+U—-P)TP) '=1—-I—-P)TP. (4-3)
Lemma 4.2. Let A : L>(X) — L*(X) satisfy hypotheses (H1) on a domain Q2. Then for zy € S,
M+ APy, z0) = M1 + P APy, 20)-

Proof. Using (4-3) implies that

M(I+APy, 20) = 5 / AQPU+A@P)  dz= 5t f AQPIU+PARP) dz, (4-4)
Yzo &)

where y;, is a small circle centered at zg as in the definition of M (I 4+ A, zo).
Because P; is a projection, using the cyclicity of the trace, tr(BP;) = tr(P;BP;) for a trace class
operator B : L>(X) — L*(X). Using this in (4-4) gives

M+ APy, z0) = 2%_” tr/ PIAR)PI+PAQRQ)P) L dz = M(I +P1AP,, z0). |
1%

20
The following proposition is a variant of a well-known result in the study of resonances of Schrédinger
operators on R?; compare, e.g., [Dyatlov and Zworski 2019, Theorem 3.15].
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Proposition 4.3. Suppose V € L (X) is nontrivial, and let x € L°(X) satisfy xV = V. Then the
operator Ry (¢) has a pole at ¢y € Z if and only if the operator I + V Ro(¢) x has nontrivial null space
at &o. Moreover, if ¢y does not correspond to a threshold, then

my (§o) = M + VRox., o).
Proof. A proof follows by essentially the same method as [Dyatlov and Zworski 2019, Theorem 3.15]. [J
We recall the notation V# = V — Vj. Another useful identity is the following.

Lemma 4.4. Let x € LX°(X) satisfy xV =V and xVoy = Vo. Then for ¢y € 7 so that Lo does not
correspond to a threshold, we have

my (§0) = M(I + V* Ry, x, ¢0) +my, (¢o)-
Proof. We first note that
I+VRox =+ V*Rox(I +VoRox)™ I+ VoRox) = (I + V¥ Ry, ) + VoRox).  (4-5)
Thus using Proposition 4.3 and [Gohberg and Sigal 1971, Theorem 5.2] gives
my (o) = M(I +V Rox, o) = M +V*Ry,x, o) + M + VoRox, ¢o)
= M(I +V*Ry,x. £o) +my, (%) O
Lemma 4.5. Suppose V, x € L°(X), with xV =V, and x is independent of 6. Let o > 0. Then there is
an L > 0 so that for| > L
M(I+V Rox, §0) = M +Pi(I+VRo(I = P1)x)~"' VRoPix, L)
for any ¢y € Bij(alogl).
Proof. We begin by writing
I+ VRox =T+ VRy(I=P)x)I+I+VRo(I—-P)x) "VRyPix)

and noting that since by Lemma 3.2 ||V Ro(I — P x|l = o~ '?) uniformly on B;(« log!) there is an
L >0sothatfor! > L, (I+VRo(I—7P;)x)""is analytic on B;(clog!). Thus for these / by Lemma 4.1
M+ VRox,l0)=MU+{UT+VRy(I —PDx)"'VRyPix, o) for any &g € Bj(a logl). An application
of Lemma 4.2 completes the proof. (|

Lemma 4.6. Let V, x € LX°(X), with V satisfying (1-1), xV =V, and x independent of 6. Set
Ay =U+VRo(I — P)x)~" and B;y = VRoPx. Let K C C be a compact set such that Ry, is
analytic on K, and suppose 0 € K if d = 1. Choose p > 0 so that K C {A € C: |A| < p}, and set
K; ={¢ € Bi(p) : 71(¢) € K}. Then for sufficiently large [,

IPi(Arv By — A v, Biyv,) | = O(1™%) (4-6)
and
(I +P1A; vy Bi.vy) "' Pi(ALvBry — ArvyBivy) | = O(17%) (4-7)

uniformly for ¢ € K;.
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Proof. We write
Pi(A;vBiv —AivyBiv,) =Pi(Arv — A vy) Biv +PiArv,(Biv — Bry,). (4-8)

By Lemma 3.2, [|[A;y — I|| = O(~"/?) and || A}y, — I|| = O(~'/?) uniformly on B;(p), so that the first
term on the left-hand side is O (I~!/?). Moreover,

P1A;v,(Bi.v — Brv,) = A1 v, Pi(Bv — Brvy) = A1y, PIV* Ro Py,

and || P, V#P;|| = O(1~%) by our assumption on V. Hence the norm of the second term on the right-hand
side of (4-8) is O (I~%). This proves (4-6).
On K|,
I+ P AL Bry, =1 +PiBy,+01"*) =1+PVoRox + 001", (4-9)
But
(I +PVoRox)™ =1 =P+ U —VoRy,o(@))Pr=1—-Pi+ TP,

where T is givenby T = (I + V()R(),O(rl))()_1 =1—VoRy, 0(11) x. By our choice of K, we have that T is
uniformly bounded for 7; € K or for ¢ € K, and hence (I + P; Vo Ry x)~ ! is bounded on K;. Using (4-9),
this shows (I 4+ P;A;y, Bl,vo)_l is bounded on K;, and thus, by (4-6), we get (4-7). O

5. A resolvent estimate and localizing the resonances in the L case:
Proofs of Theorems 1.1, 1.2, and 1.3

In this section we prove Theorems 1.1-1.3 in the case of an L* potential V, providing a high-energy
localization of the resonances in sets B;(p). We also prove Proposition 5.4 and Lemma 5.5, which show
that the resolvent for the potential Vj is, at high energies, a good approximation of the resolvent for the
potential V away from poles.

We shall use notation for a disk in the 7;-coordinate in B;(p). For Ag € C and ry > 0, set p = |Ag| +ro+1,
and define, for 21 > p? + 1, D;(ko, ro) C Bi(p) C 7 by

Dy, 10) £ {2 € Bi(p) 1 | (2) — Aol < ro}-

A preliminary step in the proof of Theorem 1.1 is the following proposition, which provides an initial
localization of the resonances.

Proposition 5.1. Let V € L°(X) satisfy (1-1). Suppose Lo € C, Ao # 0 is a resonance of —Ao+ Vp
on R, of multiplicity my, 0(Ao). Then there are L, € > 0 so that

> my(@) =2my,0(0)

¢eDy(ho,€)
my(£)>0

whenl > L.

Proof. Choose € > 0 so that Ry, o(A) is analytic on 0 < |A —A¢| < € and € < |A¢|. By our expression (3-2)
for Ry,, using separation of variables and Lemmas 3.1 and 3.2, my, ({;(1o)) = 2my,.0(1o) for [ sufficiently
large. The factor of 2 on the right comes from the fact that the range of 7, (as an operator on L>(S')) has
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rank 2 for [ > 0. Choose x € L2°(X) independent of 6 so that x V = V. From Proposition 4.3 and our
choice of €, for [ sufficiently large,

my,(G1(ho)) = MU+ VoRox, aGo)) = > MU+ VoRox, ).

¢ €D (Ao,€)
MI+VoRox,$)#0

Lemma 4.5 implies that if W = Vyor W =V,
M(I+WRox, ) =MUI+Pi(I+WRo(I —P)x)"'WRePix,¢") for ¢’ € Di(ro,€)  (5-1)

if [ is sufficiently large.
By Lemma 4.6 and an operator Rouché theorem [Gohberg and Sigal 1971, Theorem 2.2], for /
sufficiently large,

> M +Pi(I+VRo(I =P)x)~"'VRoPix, §)
¢eDy(ho,€)
MI+Pi(I+V Ro(I=P)x) "'V RoPrx,£)#0
= > M (I +Pi(I+ VoRo(I = P)x)~ ' VoRoPix. ©).  (5-2)
¢eDy(ro,€)

MI+Pi(I+VoRo(I=P)x) "' VoRoPrx,£)#0

Combining (5-1) (with W = V and with W = V), (5-2), and another application of Proposition 4.3, this
time with V, proves the proposition. O

SA. Proofs of Theorems 1.1 and 1.2 for V € L(X). Theorem 1.1 follows from combining the result
of Theorem 1.2 for L potentials and Proposition 5.1. In this section we prove Theorem 1.2 for L*
potentials V.

Recall by the definition of E(Ry, 0, Xo), if Ao € C is a pole of Ry, o, then Ry, o(X) — E(Ry,.0(1), Xo)

is analytic at Ag. Define

RYE(E: 20, 1) E Ryp () — E(Ryy. (ko). (5-3)

For [ sufficiently large, by (3-2) and Lemma 3.2
Ry (£5 20, 1) = Ry, (£) = E(Rvy 00, 20) li=u(e) P+ (5-4)
Note that if Ry, is analytic at &;(1¢), then Ri/zg({; Ao, 1) = Ry, ().

Lemma 5.2. Suppose V, x € LY (X) and V satisfies (1-1). Let Ao € C and Ri,ig = Ri,eog({; Ao, 1) be the
operator defined in (5-3). If Ry, 0(}) is analytic for 0 < |L — Ag| < €, then for | sufficiently large,

VERVE(@) x = VFRVE(Z; o, DX

is analytic on D;(ho, €), and as | — oo the estimate ||XR§,€;g(§)V#R$)g(§’)X | = O~%) holds uniformly
for ¢ € Dy(ho, €.
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Proof. Without loss of generality we can assume x is independent of 6 and xV = V. By (3-2) and
Lemma 3.2, for [ sufficiently large, R;Zg (¢) is analytic and bounded in Dj;(ro, €). We write
XRVEOVIRE@) x

= XRyEXT —POVIREx + x RyEXPIVIRGEX (I = P) + X RyEXPIVIREX P (5-5)
Now for ¢ € Dy(ho, €) and I sufficiently large, ||x Ry>x (I — Pl = O(~"/) uniformly in D; (%o, €).
Since || V|| = O(jm|~%) we have ||P,V#P,|| = O(~?), and so

IPVERGEX P = IPVFPIRYEX P = OU°). O
A related lemma which we also need is the following.

Lemma 5.3. Let V, x € L(X) with V satisfying (1-1). Let K C C be a compact set on which Ry, g is
analytic and suppose K C {A € C:|A| < p}. Set K & {ceBi(p):11(¢) e K} C Z. Then for [ sufficiently
large, || x Ry, V#RVOX | = O(~°%) uniformly on K.

Proof. This lemma can be proved by mimicking the proof of Lemma 5.2. Alternatively, it can be proved
by covering K; with a finite number of neighborhoods on which Lemma 5.2 holds. 0

Proof of Theorem 1.2 for V e L°(X). We shall use the identities (3-7). Thus poles of Ry in B;(p) are
the values of ¢ € B;(p) such that I + V#RVO (¢)x is not invertible. Here x € C°(X) satisfies xV =V
and is independent of 6.

(1) Foreach A; € A,, A; #0, let €; > 0 be as guaranteed by Proposition 5.1, so that there are exactly
2my;,0(Ao) resonances (counted with multiplicity) of —A + V in D;(4;, €;) for [ sufficiently large. Set

K={reC:€ <|rA|<pand |L—Aj| >¢ forall ; €A},

Kz={§EBz(/O-H)ITJ(C)EK}=§1(/0)\(D1(0,6/) U D,(/\,,e,-)>.

)L_/'EAIO

By an application of Lemma 5.3, for [ sufficiently large, I + V¥# Ry, (¢)x is invertible by its Neumann
series on K;. Thus by (3-7) Ry has no poles on K; for / sufficiently large.

(2) Now we work on D;(A;, €;) and set R%g(g) = R?,zg({; [, X;), so that
RYE(E) = Ry, (0) — E(Ry, 00, A a=a(e)Pi

for [ sufficiently large. By our choice of ¢; this is analytic on D;(A j» €j) for large enough /. Then by
Lemma 5.2 I + V#Riz)g(;)x is invertible in D;(A;, €;), with

I+ V*RE@O )™ =T=V*REQO X + Or2x) 12001
for ¢ € El(kj, €;). Thus on ﬁl(kj, €),

I+ V*Ry,x =+ V*RGEQO U + U+ V*RE@) )T VFERY.0(0), 20) a=ne)Prix)-  (5-6)
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By (5-6) and (4-3), I + V#RVOX is invertible at a point ¢ € D;(A;, €;) if and only if
I+P I+ V*RZEQ) 0™ VFERY 00, 20) lr=r0)Pix

is invertible at ¢. There is a C; so that || x E(Ry,.0, 4;) x| < CjlA— ;| 7™00%) on {L € C: |A—1;| <€}
see [Dyatlov and Zworski 2019, Theorems 2.5 and 3.9]. Thus on D;(%;, €;), using Lemma 5.2,

IP(T + VERGE@) %)™ VFE (R 01, 20)) lh=re)Pix I

o0
= Y P(=V*RGE@) VFE Ry 0(hs 20)) lrzrye) PrX H
Jj=0

< 1P = VFRGEE)IVFE Ry, 00k, 2D iz Pix Il + CHI0 11 (@) — ) 700,

Now we use Lemma 3.2, ||V, ||z = O(|m|~%), and the fact that 7P, commutes with Ry, o so that
12T = VERGEC)V*PI| = 0(~°)
on Dj(A;j, €). Thus there is a (new) Cj so that
1P+ VERGEE) VB Ry 0k, Mo limr)Pix | < CH2 i(g) — 2y 00

on Dy (A}, €;). Therefore
I+PiI+ RyEE) T E(Rvy 0k, 20) r=re) P X

is invertible in this region if |7;(¢) —A;| > le_‘s/mVO-O(W, where we can take C; = (ZCJ’.)l/’”VO’O(’\f). Taking
C= max; e, C; finishes the proof of Theorem 1.2 away from 7; = 0.

(3) If Ry, 0(A) does not have a pole at the origin, then there is a 6 > 0 so that for / sufficiently large, Ry, ()
is analytic in B;(8). Thus by Lemma 5.3, for [ sufficiently large, Ry (¢) is analytic in B;(8). O

SB. Approximating the resolvent Ry. In asense made precise below in Proposition 5.4 and Lemma 5.5, at
high energies Ry, approximates Ry well away from resonances. The first result is useful for neighborhoods
of thresholds.

Proposition 5.4. Let V, x € L°(X), with V satisfying (1-1). Let K C C be a compact set on which Ry,
is analytic and suppose K C {} € C: |A| < p}. Define K; def {¢ € Bi(p) :u(t) e K} C 7. Then for |
sufficiently large, Ry is analytic on K;. Moreover, if x € L°(X), then || x (Ry () — Ry, ($) x|l = ol™?%
uniformly for ¢ € K.

Proof. Without loss of generality we may assume x is independent of 6 and satisfies x V = V. Then
xRv,x = xRy x (I + V*Ry,x). Since by Lemma 5.3 ||(V#Rvox)2|| < % on K; for [ sufficiently large,
I + V#Ry,x is invertible as (I + V¥Ry,x)~! = Z;io(—v#RVoX)j, and thus Ry is analytic on K;.
Moreover,

oo
X(Rv () = Ry ()X =X Y Ry (@) (=V*Ry, () ).
j=1
By applying Lemma 5.3 twice, this becomes

X(Ry(£) — Ry, ()X = —x Ry, (O VR, (O x + Opoy 12(7°) = 02, 12(170). O
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A similar result with a similar proof is the following lemma. The points ¢ € Z considered in this
lemma lie on the boundary of the physical space, but are away from the thresholds.

Lemma 5.5. Let V, x € L2°(X), with V satisfying (1-1). Then there are constants M, L > 0 so that

. : 7(¢) M

if l>L, teBW2-1), yk)eil0,00), and M < — < \/21—1—5,
i

then |x(Rv(¢) = Ry, ()xll=00%). (5-7)

Likewise, there are constants M, L, > 0 so that

if |>Ly, ¢eB(2—1), 5()el0,00), and M; < 1(¢) <2l —1— %

then || x(Ry(Z) — Ry,(O) x| =0™%). (5-8)
Proof. This proof is very similar to the proof of Proposition 5.4. We outline the proof of the first statement

only, as the proof of the second is analogous.
Without loss of generality, we may assume yx is independent of 6 and satisfies y V = V.

We next note that if ¢ € B;(+/2] — 1), then for [ > 3 either |7;(¢)| > %m or |[5—1(¢)| > %m
or both are true. In either case, if 7;(¢) € [0, 00), then there is a ¢o > 0 so that |7;(¢)| > col'/? for
J #1,1— 1. Moreover, again with 7;(¢) € i[0, 00), Im7;(¢) > 0if j >/ and Im7;({) =0if 0 < j < /.

Suppose ¢ € Bi(\/21 1), 71(¢) €i[0, 00), and |7;(¢)| > }‘m Then using Lemma 3.1 and (3-2)
we see that

Ix Ry (D) x (I =Pl = 01~'7).
By Lemma 3.1 there is a C > 0 so thatif A € R, |A| > C, then

IVl oo ll X RvpoW) x| < 5.

Choose M > C + 1; then if 7;(¢) € i[0, co) with
M
n® _ oM
i Vi
for [ sufficiently large |7;—1(¢)| > C. Now we restrict ourselves to 7;(¢) € i[0, oo) with
M
}1\/21—1 S19) e -
i

Since ||P;—1 V#P,_i|| = O(~?) by our assumption on || V,, || 1.,

Ix Ry (D) Pr- VI Ry, () Pii x| = O™,
and we can follow the proof of Lemma 5.2 to show that ||x Ry, (¢)V*Ry, (&) x|l = O 7). Then
I (Rv (&) — Ry, ) x|l = X Ry () x (I + V* Ry, (00" = D
= xR, O V* Ry, (D) x|+ 00™°) = 0017,

proving the lemma when 7;(¢) € i[0, oo) with %«/21 —1< :T'L'l(é') <2l — 1—M/\/7. A similar argument,
singling out P; rather than P;_, handles the case when 7;(¢) € i[0, 0co) with % 20 -1 < |_1(¢)]. O
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5C. Proof of Theorem 1.3. Theorem 1.3 concerns poles of Ry arising as perturbations of threshold
poles of Ry, (¢). Using separation of variables as in (3-2), these threshold poles, in turn, correspond to a
pole of Ry, o(1) at A =0.

We begin with a lemma about poles of Ry, (A) at the origin. This result is well known if Vj is
real-valued.

Lemma 5.6. Suppose Vy € L2° (R?), and near » =0

ko

1
Rvyoh) =) Ac+AG), (5-9)
k=1

where A is analytic in a neighborhood of the origin. Then my, 0(0) = maxo<,;<; rank(A| +tA»).

Since A, Aj; are finite-rank, the rank of A +¢A; is equal to its maximum for all but a finite number
of values of ¢ in [0, 1].

Proof. Using the expansion (5-9) and the identity (—Ag+ Vp — )»Z)RVO,O()L) = I shows that for k > 0,
(—Ao+ Vo) Ax = Ak, where we use the convention Ay =01if k+2 > kg. Just as in [Dyatlov and Zworski
2019, Theorem 2.5], one can use this and the fact that —Ay4-Vp commutes with Ry, ¢ to show that for j e N,
Ran(A;;) C Ran(A>) and Ran(Az;;1) C Ran(A;). Here Ran(Ay) denotes the range of the operator A;
on L2(R%). Since my, o(0) = dim ({2, Ran(Ay)), this shows my, o(0) = dim(Ran A; URan A,). But

dim(Ran A; URan A;) = max dimRan(A| 4+7A;) = max rank(A| +1Aj),
t€[0,1] t€[0,1]

proving the lemma. 0

Lemma 5.7. Let V € L°(X) satisfy (1-1). Let € > 0 be chosen so that Ry, o(A) has no poles in
{(LeC:0< |\ <2¢},and let y; C B;(2¢) C Z be the curve {|t/| = €} with positive orientation. Then
fort €10, 1] and [ sufficiently large,

rank (1+lfz(§))Rv(§)de(§)Zrank/(1+tfz(§))Rv0(§)dfz(§)-

vi v

Proof. We assume V* is nontrivial, since otherwise there is nothing to prove.
We first point out that if Ry, (1) = Zi": | A *Ar+ AL, with AV analytic near A = 0, then for /
sufficiently large

f (14170 Ry (O) di() = / (14 171(0)) Ry 0 (51 (O))Pr di(§) = 2w (A + 1 A2) P,
V44 i

Let x € L2°(X) satisfy xV =V, with x independent of 6. Using Proposition 5.4, for [ sufficiently

/ (I +tu @) xRv(Q)x du(¢) —2mix (A1 +1A2)Pix H =0(™),
Vi

large,

(A +17(8)x (Ry(§) — Ry (£) x de(Z)H =0(™).

Vi
Thus
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and this implies that for / sufficiently large,

rank [ (1+77(8)x Rv (&) x du(§) = 2rank(x (A1 +1A2) x). (5-10)
v
But since (—Ag + Vp)ko A ; =0for j =1,2, a unique continuation theorem, e.g., [Jerison and Kenig
1985], ensures that rank(A| +¢A,) =rank(x (A| +1A>)x), and similarly

rank [ (14+17(5)x Ry (§)x du(§) =rank [ (1+171(8)Rv(£) dn(f). O
v 17

Lemma 5.8. Let Vy, x € Lfo(Rd), with x Vo = V. Suppose Ry, (L) has a pole of order 1 at the origin.
Then for [ sufficiently large, 2(my, 0(0) —mo,0(0)) = M (I + VoRox, £(0)).

Proof. We note here that the requirement that / is sufficiently large is to ensure that, using (3-2), any poles
of Ry, at ;(0) arise from poles of Ry, at the origin. Then via separation of variables it suffices to show
that

my, 0(0) —moo(0) = MU + VoRoo(A) x, 0).

Ford =1, then my, ¢(0) = 1 and if V} is real-valued, this follows immediately from [Dyatlov and Zworski
2019, (2.2.31)]. For complex-valued Vp, the proof is similar, if one uses the assumption that Ry, has a
simple pole at the origin. When d > 3 is odd, the lemma follows as in the proof of [Dyatlov and Zworski
2019, Theorem 3.15]. In each case, the assumption that the pole is of order 1 is important. O

Lemma 5.9. Let V € LX°(X) satisfy (1-1). Let € > 0 be chosen so that Ry, o(A) has no poles in
{A e C:0 < |A| <2€}. Suppose Ry, (L) has a pole of order 1 at the origin, with residue of rank my;, (0).
Then for [ sufficiently large,

D my(©) < 2my, 0(0).

LeDy(e)
my (§)#0

Proof. Let x € L2 (X) be independent of 6 and satisfy x V = V. We first claim that for any ¢y € Z,

my ($o) <M+ V Rox, &) +mo(&o). (5-11)

If ¢g does not correspond to a threshold, then my(&p) =0 and this follows from the stronger Proposition 4.3.
If ¢y does correspond to a threshold, this follows from a simplified adaptation of the proof of [Dyatlov
and Zworski 2019, Theorem 3.15].

Arguing as in the proof of Proposition 5.1, using Lemmas 4.5 and 4.6 and an operator Rouché theorem
[Gohberg and Sigal 1971, Theorem 2.2], for [ sufficiently large,

Z M+ VRox, )= Z M+ VoRox,t) =M+ VoRox, 5(0). (5-12)
CeB(e) LEB(€)
MI+V Ryx.¢)#0 MI+VoRox,5)#0

But by our assumptions and Lemma 5.8, M ({ 4+ VoRo x, £1(0)) = 2(my,,0(0) — m,0(0)) for / sufficiently
large. Using this, (5-12), and applying (5-11) completes the proof. O
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Proof of Theorem 1.3 under the assumption ||V, ||z~ = O(Jm|™%). Let € > 0 be as in the statement of
Lemma 5.7. By applying Lemmas 5.6 and 5.7, we see that for / sufficiently large,

DO omv@) = Y my(§) =2my,0(0).

ceB(e) CE€B(e)
my (§)#0 my, (£)#0

Thus for [ sufficiently large Ry has at least 2my, 0(0) poles in B;(€). If Ry, o(1) has a simple pole at the
origin, then applying in addition Lemma 5.9 we see that Ry has at exactly 2my; 0(0) poles in B;(¢).

To finish the proof of the theorem for the L°° case we need to refine the estimate on the location of
the resonances in B;(€). We do this by showing that there is a C > 0 so that there are no resonances in
B;(e) \ B;(CI~%/") for I sufficiently large. This follows almost exactly the proof of Theorem 1.2, point 2,
with A; replaced by 0. The difference here is that the bound on the singular part of x Ry, x at the origin
is given by || x E(Ry,, 0)x || < C|A|™"; that is, my, o(%;) is replaced by r rather than my, ¢(0). Having
made this minor adaptation, the remainder of the proof follows without change. O

6. Resonance-free regions, poles of Ry and Ry, and the proofs of Corollary 1.4 and Theorem 1.9

Thus far we have focused on resonances in the sets B;(p), for [/ large. In this section we justify this
by showing that the high-energy resonances near the physical space which also have Re 79(¢) > 0 lie
in Bj(p), for p sufficiently large. We do this by showing the existence of large resonance-free regions
in B;(+/21 — 1). We discuss Z further, focusing on the region near the physical space. We describe the
relationship between the resolvents Ry and Ry;, where V is the complex conjugate of V; see Lemma 6.2.
This lemma shows that we can understand the poles of Ry which are near the physical space and have
Re 79(¢) < 0 by understanding the poles of Ry; which are near the physical space and have Re 79(¢) > 0.

Lemma 6.1. Let V € L (X). Then for any 0 <y < 1 there are M., c; > 0 so that the region

4 def

U S1{¢ e B(V2I=1): My <Re(1(¢)) < y+/2I, Im7,(8) > —c logRe(7(£))}

contains no poles of Ry for [l sufficiently large. Likewise, for any @ > 0 and 0 < y < 1, there is a constant
M_ > 0 so that

U € e B(V2I—1): M_ <Im((2)) < y+/2I, Ret;(¢) > —a)
contains no poles of Ry for [ sufficiently large.

The region U, 1+ is reminiscent of the logarithmic resonance-free regions familiar from potential scattering
on R?. We note that there is substantial overlap between U, 1+ and U ,.

Proof. Let x € L°(X) be independent of 6 and satisfy x V =V and 0 < x < 1. To prove the lemma, we
use xRy () x = xRo(C)(I + VRo(¢)x)~! and the representation (3-2) via separation of variables.
From (3-2) and the estimate || x Ro.o(A) x || < Ce©1™M-/|1|, there are constants Cy, C, so that

C1eC2m5(©)-
IVRo(Oxll < sup\ ————— |-
jeNo 17i (5]
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First consider Ul+. Set ¢, = 1/Cy — 84, where 8. > 0, 8. < 1/C», and take M, > (2C;)"/@+C2),

Then if ¢ € U,
CeC2ma(@)-

1T (%)

If j<land ¢ € U[+, then |7;(¢)| = |7 (¢)| and a computation shows

1
<§.

eC2(m i (0) - eC2(Im 7 (8))-
<
17 (0 17(0)]
On the other hand, for j > [, if ¢ € U;", then
Re(7j(¢))* < Re(m4+1(2))* = (Re 1(¢))* — 20 — (Im 7 (¢))* — 1 < =211 — y?).

Since Im 7;(¢) > O for j > [ and ¢ € B;(+~/2[ — 1), this is enough to show that

Clecz(lmfj(é“))f
|17 (O]
for ¢ € Ul+ and [ sufficiently large. Then ||V Ro(¢) x|l < %, and I + V Ry(¢)yx is invertible.

For U;”, choose M_ >0 sothat 16| VL~ < M?. Then using (3-2) and || Rp,o (V) || < 1/(dist(A2, [0, 00)))
forImA > 0, for ¢ € U;,

=

<

1 81V |70
< V]I~ su < BV

L
o (distTh [0,00) © M2 2

=

HVRO(C)X ZPJ

j=l
Next we show that

1
=3

H VR (¢) Z Pix

0<j<l

in U;” for sufficiently large /. Using the orthogonality of the projections ijl Pjand o j<i Pj this
will complete our proof that I + V Ry is invertible. Note that

12, =21 — (Im1)’ 4+ Re1)> — 1 +2i Re(r;) Im(1y).

Thus |77_1] > /(1 — y2)2l 4+ O0(1) and —Im(7;_;) <2a/+/1 —y2+ O(1~'/?), so for [ sufficiently large,
Clecz(lmﬂ—l(é“))—

|T1-1(8)]
for eU; . Butif0<j<l—1and¢ €U,

=

<

C1eC2mT @)= €| Callmroi ()~

<
17 (O] lT1—1(¢)]

This ensures that

1
<2

HVRO@) > Pix

0<j<l

so that I + V Ro(¢) x is invertible on U;~ for [ sufficiently large. O



RESONANCES FOR SCHRODINGER OPERATORS ON INFINITE CYLINDERS AND OTHER PRODUCTS 1523

We remark that we have not made an effort to optimize the results of Lemma 6.1, as in this paper we
are concentrating instead on regions near the thresholds, where, as we have seen, resonances can occur.

Before proving Corollary 1.4, we discuss Z and the boundary of the physical space a bit more. To
motivate the discussion, consider the simpler case of the Schrodinger operator —Aq + Vo on R?, where
we use A” as the spectral parameter in defining the (scattering) resolvent. Thus, given a value E > 0,
there are two points, ++/E corresponding to the spectral parameter E on the boundary of the physical
space, with Ry, o(EVE) = (—Ag + Vo — (WE £i0))~".

There is a similar phenomena in the case of —A + V on RY x S!, but it is notationally harder to
describe. Given E > 0, let vE £i0 € 7 be the points on 7 with RV(«/Ej: i0)=(—A+V—EFi0)~L
Equivalently, we could define vE =+ i0 to be the point in Z with T; (WE +i0)=+E — j2if j2<E,
and 7;(VE £i0) = i\/j2 — E if j> > E. By our definition of Bj(p), if [z = |[v/E| and I > 0, then
VE+i0e By, (W2[g — 1), but VE —i0 & By, (v/2lg —1). Thus there is some sense in which we have
been studying only “half” of the boundary of the physical space. However, we shall see in Lemma 6.2
that this suffices for understanding the behavior of the resolvent, if we consider both the resolvent of
—A+V and that of —A + V.

Thus, to fully cover points on the boundary of the physical space, we need to define another type of
open set in Z, analogous to B;(p). For [ € N and p > 0, denote by Bi(p) the connected component
of {¢ € Z: |71(¢)| < p} which intersects the physical space and includes a region with &= Re 7y(¢) > O.
With the + sign, we get the set B;(p) defined in the introduction: BlJr (p) =Bi(p). If lg = L«/EJ and
VE — g < p, then the point ~/E — i0 corresponding to E on the boundary of the physical space as
defined above has vE —i0 € B, _(p). Hence any point on the boundary of the physical space lies in

o o
B (HU (U B (V2I - 1)) U (U B (W2l — 1)).
=1 =1

As before, we make the choice of /2] — 1 for p as that is the largest value of p for which BljE (p) contains
only a single point corresponding to a threshold. For certain combinations of / and p it can happen that
B/ (p) = B[ (p).

Consider a Schrodinger operator on d-dimensional Euclidean space with potential Vj € L(?O(Rd) and
scattering resolvent Ry, o(1). When Im A > 0, that is A is in the physical space,

Ry 00 = (—Ao+ Vo —A) 7' = (Ag+ Vo — 277" = (Ryo(—A)".

Here V,, and A denote the usual complex conjugates. For odd d the identity Ry, o(A) = (RVOO(_)_‘))* then
holds by meromorphic continuation for all A € C. In particular, this implies A is a pole of Ry, o() if
and only if —Ag is a pole of Ry, ((2). For real-valued V, this is the well-known symmetry of resonances
for symmetric Schrodinger operators in odd dimensions.

We turn to the analog of this result for Ry, which is shown in a similar way. Suppose ¢ is in the
physical space, here identified with the upper half-plane, so that Ry (¢) = (A +V — ¢?)~!. Thus
(RV(—E))* = Ry (¢). For general ¢ € Z, we define —¢T € Z to be the point in Z which satisfies
rj(—g“T) = —7;(¢) for all j. This is an antiholomorphic mapping, and if ¢ is in the physical space,
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identified with the upper half-plane, the mapping ¢ — —¢ ' agrees with the mapping ¢ — —¢. Then the
identity
(Ry(=t")*=Ry((), where 7j(=¢") = —T(¢), forall j €Ny (6-1)

holds for all ¢ € Z by meromorphic continuation. In particular, this means that ¢y € Zisa pole of Ry (¢)
if and only if —{J is a pole of Ry (¢). Note thatif ¢ € Bz+(:0) = B;(p), then —{T € B; (p). Thus to study
the poles of Ry (¢) in B; (p) it suffices to study the poles of Ry;(¢) in Bl+(,o) = B;(p). Likewise, an
estimate on Ry in B;' (/2] — 1) implies an estimate on Ry in B, (v/2[ — 1).

We summarize these results in the following lemma.

Lemma 6.2. If V) € Lgo([R{d), then Ao is a pole of Ry, o(A) if and only if —Xo is a pole of Ry, o(A).
Let V e L°(X). Then & € Z is a pole of Ry (¢) if and only if —gg is a pole of Ry (¢). Here Xo, V,
and Vy are the complex conjugates of Lo, V, and Vy, respectively, and —¢" is as defined in (6-1).

We define a distance on Z as follows: for ., e Z,
N 7y def /
dz(¢, &) = sup|z;(¢) — 7 (5] (6-2)
j
That this is well defined and a metric is shown in [Christiansen and Datchev 2021, Section 5.1]. Note that
if ¢, ¢’ € Z satisfy 7;(¢) # —7;(¢’), then since 7;(£)? — 7;(¢")? = 5 (£)> — u(¢')%

7(¢) + ()
7;($) + (&)

I7;(0) — ;¢ = u () — u(@)

In particular, this implies that for any p > 0 there is an L = L(p) so thatif [ > L and ¢, ¢’ € B;(p) then

dz(¢,¢) = u@) —u@)Hl.

Proof of Corollary 1.4. Recall our hypotheses include that V is real-valued, ensuring that Vj is real-valued
as well.

The operator-valued function Ry (¢) has a sequence {g“jb} of poles satisfying |79(¢ jb)| —o00as j —> oo
and d (fjb, physical space) — 0 only if Ry (¢) has infinitely many poles in | ;2 B;(+/21 — 1) or infinitely
many poles in U[’Zl Bf(ﬁ) (or both). If Ry (¢) has infinitely many poles in Ufil B/ (WV2[=1),
then by Lemma 6.2, Ry (¢) = Ry(¢) has infinitely many poles in | ;2 B;(+/2] — 1). Thus it suffices to
study sequences of poles in | ;o Bi(~/2] —1).

Note that while B;(+/2] — 1) contains only a single threshold, B;(+~/2] — 1) and B;1(~/2] + 1) are
not disjoint and in fact have substantial overlap which contains an interval of the continuous spectrum.
Moreover, for [ sufficiently large the sets U, 1+ and U, of Lemma 6.1 have nontrivial intersection. Applying
Lemma 6.1 we see that in order to have a sequence of resonances contained in Ufil Bi(/2l —1) and
approaching the continuous spectrum (and with 79| — 00), the resonances must lie in [ J;2, B;(M) for
some M. But then the corollary follows from an application of Theorems 1.1-1.3. 0

We now have the ingredients we need to prove Theorem 1.9.
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Proof of Theorem 1.9. The hypotheses on —d?/dx? + Vj and the expression (3-2) mean that the resol-
vent Ry, (¢) has no poles on the boundary of the physical space. Moreover, since for any x € C°(R)
there is a constant C so that || x Ry, 0(A) x|l < C for all A € RU[0, 00), for any x € C°(X) there is a
C1 > 0 so that || x Ry, (¢) x|l < C; for all ¢ in the boundary of the physical space.

Corollary 1.4 shows that there are no poles of the resolvent Ry in the continuous spectrum at high
energy. Proposition 5.4 and Lemma 5.5 show that when ¢ is in the boundary of the physical space and
¢ € Bj(v/21 — 1), the cut-off resolvent of —A + V satisfies || x Ry ({)x — x Rv,(O)x || = O(~"/?). Thus
| x Rv, (&) x |l is uniformly bounded on the boundary of the physical space when |to(¢)| is sufficiently
large. Hence by [Christiansen and Datchev 2021, Theorem 5.6] the hypotheses of [Christiansen and
Datchev 2022, Theorem 4.1] hold. Theorem 1.9 then follows directly. O

7. Larger neighborhoods of the threshold /2

In this section we consider poles of Ry (¢) in neighborhoods B;(« log!) and B;(a(log! )1=€) of the /-th
threshold. We prove Theorem 1.5 for potentials with V) = 0 and the related, but weaker, Theorem 7.1
which holds for a general potential V € L2°(X).

The proof of Theorem 1.5 is similar to that of the proof of Theorem 1.2 for L* potentials.

Proof of Theorem 1.5. Choose x € L2°(X), xV =V, and x independent of 6. We write
XRoV Rox
= XRoPV RoPix + x Ro(1 =P1)V RoPrx + xPiRoV Ro(1 —=Pr) x + x Ro(1 =P)VRo(1 =Pp)x. (7-1)
Let o >A0, and let ¢ € B;(’|logl|), where [ is large enough that B;(«’| log!|) contains only a single
point of Z which corresponds to a threshold. Let ¢ € B;(«’ logl) satisfy |t;(¢)| > 1. Then by Lemma 3.2,
IXRo(§)(1 =Pl = 0",
and by (3-1) and [Dyatlov and Zworski 2019, Theorem 3.1],
eCamz(£)-

1 (5)] )

for some C > 0. Using this estimate and P, VP, = O({ ~%) in (7-1) shows

IxRo(O)Prx|l = 0(

X Ro(C)V Ro(O) x|l = O (22 Imu@N—y,

Thus from (7-1) there is a C; > 0 so that I +V Ry(¢) x is invertible if / is sufficiently large, ¢ € B;(«logl),
|T1(¢)] > 1, and e2€ImuE)- < €13, This last item may be ensured by requiring |7;| < & log [, for suitably
chosen « > 0, o < ¢/, and taking [ sufficiently large. Recall that —A + V has no resonances in regions
where I + V Ry is invertible, see Proposition 4.3.

Applying Theorems 1.2 and 1.3 shows that if d = 1 there is a ¢cp > 0 so that when [ is sufficiently
large the region {¢ € Bj(xlogl) : 1 > |1;(¢)| > col —8) contains no resonances, and if d > 1 there are no
resonances in B;(1) for [ sufficiently large. O

A similar proof gives the next theorem.
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Theorem 7.1. Let V € L°(X) satisfy (1-1), and let € > 0. Then there is a co = co(e, V) > 0 so that for |
sufficiently large, the region

(¢ € Bi(colog DV ) [u(0) =¥ = A+ V)7 for every 3 € € :my,0()) > 0}
contains no poles of Ry (¢).

Proof. We assume V# =V — V) # 0, since otherwise there is nothing to prove.

Choose x € L2°(X) so that xV =V and x is independent of 6. We may think of x as an element
of L°(RY) as well.

Set

AcE D eC: =)= 4+ NP2 forevery A € C:my, (M) > O}
We shall use, from the proof of [Dyatlov and Zworski 2019, Theorem 3.54], that there is a C > 0 so that
(I 4+ VoRo,o(W) 1| < Cexp(CIA|%+€) if A € A, (7-2)
Choose o’ > 0. If ¢ € B;(«’ logl),

XRv, (§)Prx = X Rvy,0(ti(§)Pix
= x Ro,0(m () x (I + VoRoo(m () x) P
Thus, if ¢ € Bj(a’logl) with 7; € A¢ and |7;(¢)| > 1, then

Ix Rvo (©)Prx |l < C exp(CAm7(£)-)) exp(Clz(£)]+)

(7-3)
< Cexp(Clu(¢)]*F).

Here and below we allow the constant C to change from line to line, and note that it depends on V, €,
and x, but not /.

Let ¢ € Bi(e'logl) with 7; € A and |7;(¢)| > 1. Writing x Ry, x as in (7-1) and applying Lemma 3.2
and (7-3), we find that for these ¢, if [ is sufficiently large,

X Rvy (O VF Ry, () x|l < C1l ™ exp(Ci [ (§)|F) (7-4)
for some C;. Now we can choose cg > 0 sufficiently small and L > 0 sufficiently large so that
if |7(0)] < collog)/“* and I > L then Cyl~°exp(Cy|n()|4F) <}

ensuring that I + V#Ry, (¢)x is invertible.
Recalling that with V# nontrivial if 7 4+ V#RVO (¢) x is invertible then ¢ is not a resonance of —A + V
proves the theorem. U

8. Expansion of P;(I + V#Rif;g x)~1V#P; for smooth V

This section contains preliminary computations which allow us to refine some of our results when V is
smooth. We begin with a straightforward lemma about Schrodinger operators on RY.
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Lemma 8.1. Let Vy, x € CZ.’O(R‘{) and J € N. Then as an operator from H*(R%) to H~%/ (R?),

J

XRv oM x ==

1 . 1
X(=8o0+ Vo) ™H x4 57 X Ruy 0 () (= Ao+ Vo) . (8-1)
j=1

22
Proof. First assume A is in the physical region, that is, ImA > 0. Then the J = 1 case follows from
rearranging the equality

(=80 + Vo = 2% Ryy,0(h) = Ryp o) (= Do+ Vo — 2% =1
to get

1
Ry, 0(A) = ﬁ(—l + Ry, 0(A) (—Ao + Vo).

The general case follows by induction.
Since both sides of (8-1) have meromorphic continuations to the complex plane, the equality holds for
all A. |

We shall use the following Hilbert spaces: for n € Ny,

2
def G : . *
Hon(X) = {u e L*(X): Sl € L*(X) if |a| < n} with ullf,, = > 3| oy
lor|<n L™
Here we use the usual multi-index notation for & = («y, ..., ®g). This allows us to indicate mapping

properties of operators which act differently in the x and 6 variables.
One of the main results of this section is the following proposition. Recall that R;f)g(g) = R%g(f? 2o, 1)
is defined in (5-3).

Proposition 8.2. Let V, x € CX°(X) satisfy xV = V. In addition, suppose x is independent of 6. Let
Ao € C, and suppose Ry, o(X) is analytic on 0 < |A — Ao| < €. Then, for Ri,eog(g) = R{Z}g(;; Ao, 1) and
¢ € Di(ho, €),

where the error is uniform on Dj(Lg, €) for [ sufficiently large.

‘L’lz—k2 V_k

VoVi—— =0(7),
a2 TR g2 ¢

Ho,8)(X)—L*(X)

(=Ao+Wo) Vk) P

~ 1
P+ VERGEC) 1) 1v#7>l+l—22(
keZ

k£0

To prove this proposition we use Lemmas 8.3-8.6. In each of these, V, Aq, R;Zg(g“ ), and € are as in

:I:ikeezl:ile — e:l:i(k+l)9

Proposition 8.2. Some of these computations rely on the identity e and hence use

the structure of the eigenfunctions of the Laplacian on S' in an essential way.
Forl e N, let Pi4 : L*(X) — L*(X) denote orthogonal projection onto Lz(Ri)ei”g, so that

1 2 ) ,
Pref)(x,0) = — / Fr, 0100 g7
2.7'[ 0

for!/ >0and P, =P +P—.
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Lemma 8.3. Under the hypotheses of Proposition 8.2,

# oreg # 1 le_kz Vi
PVIRGEOVIP - = VoV = 5 (= Do+ Vo) Ve | Py

4k? 4k?

=0(7)

Ho.n+6)=> Ho,n)

uniformly for ¢ € D;( g, €) when [ is sufficiently large.

Proof. Since V € C°(X), we have ||V, |z~ = O(lm|™") for any N, so |P,V¥P|| = 0(~V). Thus,
choosing / sufficiently large so that (5-4) holds, it suffices to consider

PIVIRVEO) U —P)VFP =PIV Ry, (5)I = P)V*P.
Then

PIVIREI —PYVHP, = Z Z Vi Ry 0(T14) Vi Prt

+ kez
O<lk|, k#—1

=3 3 VaRyo(@an) VarPris + Opo, 2(7Y).

+ keZ
0<|k|<I'/?

Here we use the rapid decay of ||V,,|| to bound the error obtained when we restrict the values of k in the
sum. Using Lemma 8.1 with J = 3 gives

-1 1
PVIRGEI —POVRP =) Y Vg (2— — ——(—Ao+ Vo)) VP + 017, (8-2)
+  kez Tk Tk
O<|k|<I/?

where the error is as an operator from H(g ,+6)(X) to H ) (X) and is uniform in D;(Ao, €). Since we
have restricted |k| to be relatively small compared with [, we can expand 7;4+; asymptotically in /. Thus,
with each sum over k € Z with 0 < |k| < {!/?, using Tzzik = rlz F2lk —k? gives

S Lvau=l % (L+L)V Vi= Y Ty
S VaVie=5 2 T V= (2 k22 —a22 kK
O<|k| <12 I+k O<|k|<l/2 I+ =k O<lk|<il/2 N1
—1 Tt —k? _
=5 > <’k2 >V_ka+0(l . (8-3)
0<lk| <172

Here and below the error is uniform in D;(Ag, €) when [ is sufficiently large.
For the second term in (8-2), we write

Z %ka(_AO‘f‘VO)Vik: Z .

Vo (= Ao + Vo) Vax

2 _ _ k2)2
0<lk|<1/2 T+k om0 =20k = k)
1 1
~ 42 Z k_QV:Fk(_A0+VO)V:|:k+O(l_3).
0<|k| <112
Note that
1 1
Z pv¢k(—A0 + Vo) Vix = Z k—2V,k(—A0 + Vo) Vi, (8-4)

0<|k|<I'/2 0<|k|<I1/2



RESONANCES FOR SCHRODINGER OPERATORS ON INFINITE CYLINDERS AND OTHER PRODUCTS 1529

since the sum is over k € Z, with 0 < |k| < I'/2. The rapid decay in m of || V,,||c» means we can replace
the sums in (8-3) and (8-4) over 0 < |k| < ['/? by sums over all nonzero k € Z, with an error which
is O(I™V). O

The next lemma is an algebraic identity.

Lemma 8.4. Forany V € C°(X)

1
Y VY Vo =0.
miez  JUTM
m, j#0, m#—j

We give two different proofs.

Proof. For this proof, we show that for each jy # 0, mq # 0 the coefficient of Vj,V,,,V_ ), in the sum
is zero. This proof is purely algebraic in nature.

If mo # £ jo, then there are six possibilities for the pair (j, m) which will give a term containing
VinoVieVemo—jo: (Jo, mo), (mo, jo), (—mo— jo, mo), (mo, —jo—mo), (jo, —mo—jo), (—mo— jo, jo). Thus
the sum of the coefficients of V,,,V; V_n,—j, is

1 1 1 1 1 1

— + . + - + - =0
JoGo+mo) — mo(jo+mo)  jo(jo+mo) jomo jomo  mo(jo+mo)
A similar argument when jy = mg shows the coefficient of Vjﬁ V_2j, is zero as well. 4

Alternate proof of Lemma 8.4. For this proof, we use that V; is the j-th Fourier coefficient of V. Though
in our applications V; depends on x, that dependence is not important here so we will suppress it.
Set
wWe)=>_ Lyjeiie
70/
and note d/dOW () = V(0) — Vy. Then
2

i (V(0) — Vo) (W(6))* db = %(W(e»ﬂé” =0 (8-5)

by the fundamental theorem of calculus. But

1 —1
I AL D A

m,jez m,jeZ Jm
m, j#0 m, j#0
m#—j m#—j
2
=— (V(0) — Vo) (W(6))* do, (8-6)
0

where the last equality uses ¢'/%¢? = ¢!+ and the fact that the integral of a function over a circle is

its zeroth Fourier coefficient. Combining (8-5) and (8-6) proves the lemma. O
Lemma 8.5. Under the hypotheses of Proposition 8.2, if | is sufficiently large
1P (VFRYE VEPl a0 — Homan = OU ) uniformly for ¢ € Dy(ho, €).
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Proof. Again we use that || P V#P|l = 0(™N) for any N. This implies

PIVERYE? VAP = PU(VIRGEU =P VP + Opa, 12 (17V).
Note that for ¢ € D;(Ag, €) and [ sufficiently large, Ri,ig(f)(l —P1) = Ry, (¢)(I —Py). Then
Pu(V* Ry, (I = P)*V*P,

=P Z et HkEme Z Vet j Rviy,0 (Titk+m) Ve Rvig, 0 (T144) Vet Prs
n

k,m,jeZ
k,m k20, —21
m, j#0
= § E Ver ety RV.0 Tkt ) Ve Ry 0 (T1) Vi Pre + O 07N, (8-7)
£ kmtk£0,—21
m#0, k,meZ

By Lemma 8.1, for k, m + k # 0, —2I,

H X R0 (Titiem) Ve R0 (Tpi) Varke — 55— X Vaeom Vi

Tdktm Ytk HH6(RY)— H (RY)

= O Vit | o0 || Ve || )

This implies (with sums still over Z), using ||V, |lc»r = O (Jm|~Y), that
1

Pi(VE Ry, (I = P)*V*Pr = Z Z ———5 Vett+m Vam Ve P + ol
£ ko ktmz0,—20 Hkm Ttk
1
- Z Z 2 —Vertetm) Viem Vi Pre + 0 (1)
£ 0<|k|, [k-+m| <172, m#£0 Uispk+m Uitk
1
=2 > Ak kb | Flerm) Vaem Vi Prae o+ 0™
+ 0<|k|, [k+m|<IV/2, m#£0
1 —
=20 X G Ve Ven VakPla+ 00, (8-8)
+ 0#k,k+m,m

Here errors are as operators from H(g ,+6)(X) to H,) (X), and are uniform in D;(Ag, €) when [ is
sufficiently large. But the final sum in (8-8) is zero by Lemma 8.4. U

Lemma 8.6. Under the hypotheses of Proposition 8.2 for j >3, j € N, and [ sufficiently large,
IOVERVEE) VP g 00— 12000 = O )

uniformly for ¢ € Di(Ag, €).

Proof. By Lemma 8.5,
1P CVFRYE > VEPU Hrey— Homw = OUT).

This gives

(VIRYVE VPP = VIRGEUI — PO(VIRYE? VAP + VIRVEP (VR VP,

=V*RYEI - PV RE VP + 0(7) (8-9)
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as an operator from H (g ,46)(X) to H »)(X). Using that 7, commutes with Ry, and ||, VP l=01™N)
for any N gives

(VERYE> VP = (V¥ Ry, (I = P VP + VEREPVF Ry, (I = PO VFP 4 Opa, 12 (7).
Using this in (8-9) yields
(VERY)VFP = (VFRy, (1 = P))’ VP,
+ V*Ry, (I = POV*RYEPV* Ry, (I = POV*Pr + Ong 59— Hio ). (8-10)
For large [, Lemma 8.1 applied with J = 1 shows that
IV Ry, (I = PDY VPl 11, ) 1200) = OU).

Choose x € C°(X) independent of 6 so that V x = V. We write the second term on the right in (8-10)
as the composition of three operators, with the grouping indicated below by the brackets:

V*Ry, (I = POV*RYEPVF Ry, (I — P VP
= [V* Ry, = POV*|[x RVEPX|[PIVF Ry, (I = POVF*P].  (8-11)
By Lemma 8.1,
IV*Ryy (1 =PV ¥t 0y Hgy = OU ).

The second operator, xRiZgPZ X, 1s bounded. By Lemma 8.3, the third is O(7?) as an operator from
Ho,n+6) to H, ). Thus we have proved the lemma when j = 3.
The case of j > 3 follows from the j = 3 case. O

We now can prove Proposition 8.2.
Proof of Proposition 8.2. For [ sufficiently large, on D;(Xrg, €),
o0
P+ VIRGEO) ) VP =P Y (—V*RVEQO ) VP
j=0

The proposition then follows from an application of Lemmas 8.3, 8.5, and 8.6, and recalling that
IPV*Pil = 01™). O

The proof of Theorem 1.6 uses the next lemma, which computes an expression related to the leading
term of

PiI + VIREG () VP

Lemma 8.7. Suppose V € C°(X) and u H?(R?) satisfies (— Ao+ Vo — )%)u =0. Then

—/ u((zZ—kZ)V_kau—V_k(—Ao+Vo)(Vku))dx:/ (R +23—= 2>V Vi +u? VoV - Vo Vi) dx.
Rd Rd
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Proof. We first compute fRu V_i(—Ao + Vo) (Viu) dx. Expanding and then integrating by parts yields
/ uV_i (—Ao+ Vo) (Viu) dx
Rd

= — / (M2V_kA0Vk +2V_uVo Vi - Vou) dx +/ uV_i Vi(— Ao+ Vo)u dx
R4

:—/ uzv_kAodex—i-/ ZZ (V_k—Vk) dx+k2/ uzv_kadx
R? i R?

:/ uzvov_k.vovkderAg/ u?V_y Vi dx. (8-12)
Rd R4

Using this, we find

(22 =KV Vi —uV_i (= Ao+ Vo) (Veu)) dx = — f (P2 =V Vit Vo Vi -VoVi)u?) dx,
R4 Rd

completing the proof. O

The proof of the next lemma uses some of the same ideas as that of Proposition 8.2. This result will be
used in the proof of Theorem 1.7.

Lemma 8.8. Suppose V € C°(X; R). Let Ay € iR be a simple pole of Ry, o(A) with residue of rank 1.
Let M > |Ao| and N € N, and suppose Ry, o(L) — E(Ry, 0(r), o) is analytic for |» — Lo| < €. Then
if x € C(X;R) is independent of 0 and satisfies Vx =V, there exists an s = s(N) € N and an
Ay =An(1, 1) : Hp5(X) = L*(X) so that for [ sufficiently large,

IP(T+ VFRYE () )™ VP — AN (1), Dl 001200 = OU™Y) (8-13)

uniformly for ¢ € D;(rg, €). Moreover, Ay(z,1) depends analytically on z in the set {z € C: |z — Ao| < €}
and if z € iR, then Ay (z, 1) is symmetric on C°(X) C L?(X). Furthermore,

1P AN Pzl gy 00— 2200 = OUY)
for any N.

Proof. By Lemma 5.2, if j > 2N, then on D;(hg, €) we have

I(V*RYED) ) 200> 1200 = OU™Y).
Thus

=0ou™M). (8-14)
L2(X)—L%(X)

H(l+v# @0 Z( VERGE@) 1)

j=0

Now we write, for [ sufficiently large,

RYE = RyEPr+ Ry, (I — P)). (8-15)
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From our assumptions on Vp and the pole of Ry, ¢ at A, thereisau € C *(R?; R) so that for |L —Ag| <e,
Ry, 0(A) —i/(A — Xo)u @ u is analytic. Then for / sufficiently large

i
RyE(QQPr = RyE(&: 2o, DPr = Ry, 0(m()Pr — ———— @ @u)Pr.
7($) —Xo

Ifry=7()eiRand ¢ € Di (X, €), the operator XRi,eOg(C)sz is symmetric on C2°(X). On the other
hand, for k # [, writing t; for 74 (¢) and using Lemma 8.1 yields

X RvyPix = x Rvy,0(ti) P x

1 .
=— (Ao + Vo) 'P
X;(rf-i—lz—kz)l( 0o+ Vo) ™ Prx

1
— Ry, () (=Ag+ Vo)V Pix. (8-16
X(rlz+l2—k2)N vo(Ti) (—Ao+ Vo) " Prx.  (8-16)
If ‘L'ZZER, then
1

—————(—Ao+ V) '
X(rlz—i—lz—kz)f( o+ Vo) Prx

is symmetric on C2°(X). Set

Ty =Tn(u, ) = RyE, (@) P — ZZ 12 Ty A P (8-17)
k£l j=1 (tl + )

Note that Ty is an analytic operator-valued function of 7; for ¢ € Di(ho, €), where |1 — Ag| < €.
Using (8-16),

1 (RyE = T) X | Hoans (%)= Hioy ) = O ™),

if |7 — Aol <€, and xTn (1, 1) x is symmetric on C°(X) if 7; € iR. Moreover, by (8-14),

2N
H I+ VIR @@~ =Y (V¥ Tw(@. D) x =0a™")
j=0 Hsovy—L?
if s(N) > 4N?. Thus if we define
2N ‘
Ay =An(, D) =P Yy (=VTy)/V*P (8-18)
j=0

then Ay satisfies (8-13), Ay is an analytic function of 7; if |7, — Ag| < €, and An(77,[) is symmetric
on CX(X) if ; € iR.
To show that | Pre AnPixll )12 = O(~V), consider a term P, (V#Ty)/ V#P,_. We write

PH_(V#TN)j V#Pl_ — Z leeim19TN szeim29 TN L. ijeiij TN ij+leimj+197pl_'

my+mo+--+mj =21
my#0
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Thus we see that at least one m,, must have absolute value at least 2[/(j + 1). Since ||Viu|lcr = O (|m|~P)
for any fixed r, any p, we obtain

1P (VTN VPl 12 = OU™N)

for some sufficiently large s. Thus the result for P, Ay P;— follows from our expression (8-18) for Ay.
The result for P;_ AnP;4 follows similarly. O

9. Proofs of the smooth case of Theorem 1.2 and Theorem 1.3

The first application of our results in the previous section is to improve the localization of the resonances
when V € C2°(X).

Proof of Theorem 1.2 for V. € CX°(X). Let A; € A, and choose € > 0 so that there are no poles of
Ryy0(A) in 0 < [A — A;| < €. We will show that there is a C; > 0 so that there are no poles of Ry (¢)
in¢ € Di(Aj, €) with |5(¢) — 4] > le_2/(’"V0~°(Af')) when [ is sufficiently large.

Choose x € C2°(X) so that x V =V and y is independent of 6. As previously, if / is sufficiently large,

RyF(©) = Ry (&5 2, 1) = Ryy(§) — E(Rvp.0, A la=u() Pt

and note that Riz)g(g; Aj, 1) is analytic on 51(Aj, €). By (3-7), any poles of Ry (¢) in D;(A;, €) are points
at which I +P;(I + V*E*Ri,eo‘g(g)x)_1 V#E(RVO,O, Aj) x P, has nontrivial null space.
Using the smoothness of V, for any fixed s € N there is a constant C > 0 (depending on s, Vy, A;)
with
C
[7(©) = 3"

IV*E (Rvy,00 A) e ) X P 22000 Hoy(x) = -1

[Dyatlov and Zworski 2019, Theorems 2.5, 2.7, 3.9, and 3.17]. Thus on D;(1;, €), for [ sufficiently large
by Proposition 8.2,

C
Plr(g) =m0

12T + VERGED) )™ VFE (Rve.0. M) ha=n0) X Pill 12000 12x) <

for some C. Thus there is a C; > 0 so that if { € D;(A, €) and |;($) — Aj| > C,-l_z/m‘/0~°()‘f), then
1+P I+ V#Rz,ig(())()_l V#E(RVO’O, Aj)Py is invertible, and ¢ is not a resonance.

Since A; € A, is arbitrary, A, contains only finitely many elements and we have already proved the
theorem for the case of an L* potential V, this suffices to prove the smooth version of the theorem. [

The proof of the smooth case of Theorem 1.3 is almost identical, given our earlier results.

Proof of Theorem 1.3 for V e C2°(X). Recall that we have already proved the L* case of this theorem.
Thus, the proof follows just as in the proof of the smooth case of Theorem 1.2, except that estimate (9-1)

is replaced by

Cc
VF¥E (R, 0, 0)s=ey) X P, = ' i
IVZERY.0. Obimaio) X Prll 200~ Ho 0 = [0
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10. Proofs of Theorems 1.6 and 1.7

We prove Theorems 1.6 and 1.7 in this section, using results of Section 8.
Before turning to the proofs of the theorems, we say something more about the function u of (1-3).
The mapping properties of the resolvent mean that for any € > 0 away from its poles, we have the map

RV() 0()\') . e—(e+max(0,—ImA))lleZ(Rd) N e(€+max(0,—ImA))lleZ(Rd)‘
With Ry, 0(%)" denoting the transpose, we have the symmetry Ry, 0(1)" = Ry, 0(}), checked first for
Im A > 0 and then holding by analytic continuation for all A. This implies that if Ry, o(1) has a simple pole
of rank 1 at g, then there is a u € e(€+mX(O.—ImM)IxI1 2(Rd) g0 that (1-3) holds, where the operator u ® u

is understood as an operator between weighted L? spaces.
Now we turn more directly to the proofs, beginning with a preliminary lemma.

Lemma 10.1. Let Lo be a pole of Ry, o and set R;i)g(g) = Ri,eog(g; ro,1). Let x € C°(X) be independent
of 0 and satisfy x V =V, with x nontrivial. Suppose Ry, o(A) is analytic for 0 < |. — Ao| < €. Then there
isan L > 0 so that for | > L, if ¢y € D;(Ao, €), then

M+ V*Ry,(0)x. §0) = MU + I + V*RGE) )™ VFE Ry, 000, 20) ey Pl 20)-

Proof. By Lemma 5.2, there is an L > 0 so that [ + V#Ri,eog(;)x is invertible on D;(1g, €) for [ > L.
Then if [ > L and ¢y € D;(), €),

M(I+V*Ry,x, ¢0) = M((I+V*RZEQ) )T+ T+ VIRGED) )T VFERy,.0(0), 20) ey P £0)
=MI+I+V*RGEQO )T VFERY,0M), 20) lha() Pi $0)
where the second equality uses Lemma 4.1. 0

Given f € CX(R?), define hay € C°(X) by hay(x, 0) = f(x)e*?/\/27r. For z9 € C and an operator
A Hpg(X) — L*(X) set

i
Da(z) =det(l+:(Ahl@)h—z-i-z‘\h—z@hl))- (10-1)
—20

Here “det” is the Fredholm determinant. In this special case it is easily calculated to be

: 2{(z—z()+i / h_,<Ahl>) (z—zO+z‘ / hz(Ah_l))+ [ nercany [ hz(Ahl)}- (10-2)
(z—20) X X X X

Proposition 10.2. Let 7o € C, € > 0, and set U = {z € C : |z — 20| < €}. Suppose there are L1, my > %
and s € N so that forl > L, | € N and 7z € U, there are linear operators S; = S;(z) and Ty = T;(2)

Dp(z) =

mapping H s (X) to L?(X) which are operator-valued functions analytic on U, satisfying:
o sup_cy, PSP — Ti(2) Pill gy ) 22x) = OUT™0),
 Ti@Pr = Piy Ti(2)Prs + Pi-Ti(2)Pi— and sup, ey 1 Ti() |l g, (x)- 22060 = OU2).

Then given f € C(?O([Rd), for | sufficiently large the functions (z — Zo)ng, (2) and (z — Zo)zDT, (2) have
exactly two zeros, counted with multiplicity, in U, and they lie in U¢ 5. Moreover, there is a labeling of
these two sets of zeros as zs,+ and 27+, so that |25+ — z7,+| = O (7).
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Proof. By translating if necessary, we may assume zg = 0.

Our assumptions on 7; imply that Fi(z) = F1(z; 1) défz + i fx h+1(T;(z)h+;) is analytic on U and
satisfies Fi(z) = z 4+ O(I~'/?) uniformly on U,. Applying Rouché’s theorem to the pair F(z) and the
function z, we see that F. has, for [ sufficiently large, exactly one zero in the set Uc/4 and no zeros
in Ue \ Uc/4. We label this zero as z7,+. Since fX h+i(Tyhyy) = 0, we have that z>Dr, (z) = Fi(2) F_(z)
and 77,4 are the zeros of z2Dr,.

We write

Fe(z; ) =z+i / h+1(Ti(D)h+) = (2 — 219+ (2; D), (10-3)
X

with ¢4 analytic on U, for [ sufficiently large. An application of the maximum principle shows that there
is a C > 0 independent of / so that for / sufficiently large,

% <lps(z; DI < C forall z € Usea. (10-4)
Next consider the intermediary

Gi(d)=Ga(z:]) d=efz+i/

RECICONEESS / hot (TH@ha) + O™,

X

Our estimate G — Fr = O([7™), (10-3), and (10-4) allow an application of Rouché’s theorem to the
pair Fx, G+ on a disk with center z7;+ and radius co/ ™" for an appropriate choice of ¢o > 0 and for /
sufficiently large. This shows that for [ sufficiently large, G+ has exactly one zero (counting multiplicity)
in Uc/3. We label this zero z;; + (the “I” here stands for intermediate, as this is an intermediate step).
We have shown |z + — z7,,+| = O(™™°). As before, by the maximum principle we may write

Gizil)= Gz -z D012 D),  with % <lpre(z D <C, forall z € Usea (10-5)

for some constant C independent of /, and for / sufficiently large.
Now consider ZZDS, (z). By our assumptions on S; and 77,

D5 (2) = G4 ()G-(2) + O™ = (2 — 210.) (2 — 211,214+ (D)P1 - (2) + OU>").

Thus we can apply Rouché’s theorem again, this time to the pair zzDSI (z) and G4 (z;1)G_(z;1) at a
distance proportional to /7" of z;; 1, proving the proposition. U

We apply this proposition in the proof of Theorem 1.6.

Proof of Theorem 1.6. We assume that V# £ 0, since otherwise there is nothing to prove. Choose
x € CX(X) with x V =V, and x independent of 6.
Let Ri,eog(;‘) = Ri,zg({; Mo, 1), and let €, L > 0 be as in Lemma 10.1. For [/ > L the function

def - -
Fi(2) = (&) — 2o)* det( + (I + VFRYED) ) ™ VI E (Ry.0, 20) [r=n0)P1)
is analytic on D;(Xg, €). Moreover, the order of vanishing of F; at £y € D;(Xo, €) is given by

M + I+ V*RYE) )™ VFE (R0, 20) lh=r(e) P C0) + my, (L0).



RESONANCES FOR SCHRODINGER OPERATORS ON INFINITE CYLINDERS AND OTHER PRODUCTS 1537

see [Gohberg and Sigal 1971, Theorem 5.1]. Note that for {y € D;(Ag, €) and [ sufficiently large,
my, (¢o) # 0 if and only if 7;(¢o) = Xo. For A9 # 0, combining this with Lemmas 10.1 and 4.4, we see
that the poles of Ry in D;(Xg, €) are, for [ > L, given by the zeros of F;, and the multiplicities agree.
If A9 = 0, the same is true, but as in the proof of Theorem 1.3 we use Lemmas 5.6, 5.7, and 5.9.
To prove the theorem, we will apply Proposition 10.2 with the following choices: z = 7;(¢), zo = Ao,
f) = x()u(x) so that ha(x, 0) = x ()u(x)e*1//2x,
Si=S1z) = U+ VIR () 'V,
—1 22—k 1
=Ti(2) = 2 (— VoV — T —5 V(Ao + Vo)Vk)Pz,
k#0
and s = 8. By Proposition 8.2 we have, in the notation of Proposition 10.2, my = 3. Note that using the
coordinate z = 7;(¢), we have F;(¢(z)) = (z — XO)ZDS, (z), where Dy, is as defined via (10-1).
The function (z — AO)ZDT, (z) has a single zero of multiplicity 2 in U,, and by Lemma 8.7 this is the

k2 + )»2 u2VQV_k - Vo Vi
z— Ao+ lZZ/( uV_ka—f—T)
k0

near z = Ag. This zero is given by

u-VoV_r - Vo Vi
2+ x0—412 Z/(u V_ka+k—2)+0(l ).

zero of

k#0
By Proposition 10.2, the zeros of (z — A0)>Ds,(z) in U, are within O(I~™°) = O (I~3) of the zero
(of multiplicity 2) of (z — AO)ZDT, (z) in Ug, thus completing the proof. O

The proof of Theorem 1.7 is similar.

Proof of Theorem 1.7. We prove the theorem by showing that for any N € N there is an € > 0 so that
for I € N sufficiently large if £’ € D;(Ao, €) and ¢ is a pole of Ry (¢), then Re 7;(¢)) = O(I™N).

Choose x € C2°(X; R) sothat x V =V and x is independent of #. Choose €, L > 0, as in Lemma 10.1.
Let u € C*®°(R?) be such that Ry, 0(A) —i/(A — Ao)u ® u is analytic for A near Ag. Our assumptions
on V and Ao imply that u is real-valued. We apply Proposition 10.2 in a way very similar to the proof of
Theorem 1.6. We make the following choices: z = 7;(¢), zo = Ao, h4i(x, 0) = x (X)u(x)e*?//27, and
S=8S)=U+ V#Rrveg(g‘l (2)x)~'V#P;, where Ri,eg(g‘) = Rrveg({; Ao, 1). For [ sufficiently large, S is
analytic on U.. Let Ay = An(z, 1) be the operator from Lemma 8.8, and set

=Ti(z; N) =P+ ANPry + Pi-ANPi-.
By Lemma 8.8, there is an s € N so that
IP1Si()Pr = Ti(@) | gy x) > L20x) = O U™ M

uniformly for z € U,. Thus for our application of Proposition 10.2 we have my = N.
Following the proof of Theorem 1.6, the poles of Ry in D;(Ag, €) are determined by the zeros of
(z — AO)ZDS, (z) in Ue, using U, 3 z = 1;(¢). By Proposition 10.2, these zeros are approximated by those
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of (z — AO)QDTI (z) in U,, with an error which is O(I="). We compete the proof by showing that for [
sufficiently large the zeros of Dz, (z) in Ue lie on the imaginary axis.

Set ay(z; 1) def fX hi(T)(2)hy) = fX h11(Ti(z)h+;). From Lemma 8.8 and the definition of T}, if
z € UcNiR, then T;(iz) is symmetric on C°(X) C L*(X). In particular, this implies that if z € iR N U,
then a1 (z; I) € R. Since a4 (z; () is analytic for z € U, and is real-valued for z € iR N U, we must have

a+(z;l)=a+(—z;1) for z € Ue. (10-6)

We remark that since A € iR, we have z € U, if and only if —Z € U..

From the proof of Proposition 10.2, the zeros of (z — )»0)2DT1 (z) in U are given by the zeros of
z—Xto+ias(z, 1) in Ug, and there is, for [ sufficiently large, exactly one such zero for each choice of +.
We denote these zeros by z7,+ and focus on the zero for the “4” sign, z7,4. Using A9 € iR,

2+ — Ao tiay(zn+; D) =0=z54 —do+iay(zg+; 1) = —(=25+ — Ao +ia(zp+: 1)
= —(—z+ — Mo +iar (=274 D),
where the last equality uses (10-6). Hence —Zz7; is also a zero of z — Ao +ia4(z; [) in Ue, and since

there is exactly one such zero, it must be that —z7,; = z7,4, and thus z7,4 € iR. The same argument
shows z7,— € iR. O

11. Proof of Theorem 1.8, the resonant uniqueness of V =0 whend =1

Theorem 1.8, a result on the resonant rigidity of the zero potential on R x S', follows rather directly from
Theorems 1.1, 1.3, and 1.6.

Proof of Theorem 1.8. Suppose X =R x S! and V is as in Theorem 1.8. Then by Theorems 1.1 and 1.3,
the one-dimensional operator —d?/dx? + Vo on R must have a resonance at the origin and nowhere
else, and this resonance must have multiplicity 1. But since Vp € L2°(R), by well-known results for
one-dimensional Schrodinger operators, Vy = 0; see for example [Zworski 1987].

The operator Ry o(A) —i/(2A)1 ® 1 is analytic at the origin. Using this in Theorem 1.6 along with the
fact that Ry has poles at a sequence of thresholds tending to infinity, we find

1
Z o) / (K*ViV_y + V[V ) (x)dx =0.
k0 R

But since V_g(x) = Vi (x) for a real-valued potential V, this implies V; =0 for all k, and hence V =0. O

12. The potential V (x, 0) =2x,(x) cosf on R x st

In this section we investigate the resonances near the /-th threshold of the Schrodinger operator with
potential V (x, 8) =2xj,(x)cos6 on X =R x S!. Here x 1,(x) is the characteristic function of the interval
Io=[—1,1], 50 x5,(x) =1if x| <1 and x;,(x) =0if |x| > 1. This potential has Vj = 0 so that vi=V.
Proposition 12.3 shows that the resonances nearest the threshold, which correspond to perturbations of the
pole at the origin for Ry ¢(A), are, for this potential, localized in a different way than for smooth potentials;
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compare Theorem 1.6. By Proposition 12.6, there is a sense in which Theorem 1.5 is sharp. We remark
that some of the computations of this section are reminiscent of those found in [Drouot 2018, Section 2].
In all of this section,
V(x,0) =2y, (x)cos® and X =RxS'

We will use this preliminary lemma.
Lemma 12.1. For A, A’ € C, A # £/,
X1oR0.0(A) x1,Ro.0(M") x14

3 x1,(Ro,0(X") — Ro,0(M) X1,

1 ; /
== O (g @+ P @b_y),  (12-1)

+ 4AN (A +))
where

Pas (x) = €M g (x).

Moreover, if T € C, T # A, applying the operator xj,Ro,0(t) to the function x, (x)e™* vyields

1 e—ikeif(]'i‘x)_i_;ei}‘eif(l_x) . (12-2)
2t(h—1) 2t(t+2)

Proof. The first can be seen, for example, by using (3-1), the explicit expression for the Schwartz kernel

. 1
(X1, R0.0(T) X 1p™*) (%) = %1 (%) (AZ _ Tze’“—l—

of Ro o, and evaluating
/1 eiklx—x”\—i—ik’lx”—x/l dx"
-1
for |x|, |x| < 1. Likewise, (12-2) follows from an explicit computation using (3-1). O
12A. Resonances near the threshold t; = 0 for V(x,0) = 2x;,(x) cosf. Since in this section we

concentrate on the resonance near the threshold, we work on B;(1). A preliminary step is the following.

Lemma 12.2. Let R(r)eg €)= R(r)eg({; 0, 0). Then for [ sufficiently large, uniformly on B;(1),
1P+ VRGEO x) ™V + VROV + (VRFEO V)P = 0072

Proof. Using the Neumann series,

[e.e]
I+ VRGO x1) ™'V =D (=VRGE@) V.
j=0
By Lemma 5.2, [|[(—V Ry®(¢))/|| = O(™2) on By(1) if j > 4 and [ is sufficiently large. This ensures the
Neumann series for (I + VR(r)eg () )(10)_1 converges, and

3
H(l +VREEO )™V = Y (—VREEE)Y VH =007
j=0
on B;(1).
Now we note that our explicit expression for V means that 7;VP; = 0. Likewise, it implies that
Pi(VRy®(¢))*VP, =0, completing the proof. O
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Proposition 12.3. For [ sufficiently large, the poles of Ry (¢) in B;(1) satisfy

1 .
=——(—1—i+2V) o).
Q)= =1 =i+ 1007

Proof. We give a proof similar to that of Theorem 1.6 using Proposition 10.2.
Let Rgeg be as in Lemma 12.2, and restrict ¢ to ¢ € B;(1). Note

i
RooM)——1®1
0,0(2) 5 1®
is regular at A = 0. Set z = 7;(¢),

Si(z) = I+ VR (@) x,) VP, and  hyy(x,6) = ilf

= tue
We use Dy, as is defined by (10-1) and U, as in Proposition 10.2. Then just as in the proof of Theorem 1.6,
the poles of Ry in B;(1) are identified via z = 1;(¢) with the zeros of zzDSl (z) in U;. Set zg = 0 and
Ty =P (—VRy*()V — (VR;*(¢))*V)P;. Then by Lemma 12.2, in our application of Proposition 10.2
we can take s = 0 and my = 2. We claim that uniformly for z € U,

2
*Dr(2) = (z (1— eV 4y + 0(12)) . (12-3)

1
+ 2(21)3/2
Assuming for the moment that (12-3) holds, this shows that the two zeros (when counted with multiplicity)

of ZZDTI (z) in U, satisty
—1— i+

2(21)3/2

An application of Proposition 10.2 and Lemma 12.2 then proves the proposition.

7= +017?).

We now turn to showing (12-3). We use

RyE@Q@)IVPi= Y (" Roo(ris1) + e Roo(ti-1)) X1, Pres (12-4)
+

where 741 = 7/+1(¢;(2)), so that

PV RE(G (@) VP = x1,(Ro,0(ti—1) + Ro,0(tis1)) X1, P (12-5)

Then using (12-2) gives

_ X 1
hoyV R™E Vhy=— (1-Vy4 1 0aq2 12:6
uniformly on U;. Now note
/ het (VR Vg = / (VRYEVha) (X1 (R V) hy). (12-7)
X X

By (12_2)9
IVReEVhzDIl = 00" and [ (Ry*V)?hall = O™,

Using the expression for Dy, as in (10-2) and equations (12-5)-(12-7) completes the proof of (12-3). [
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12B. Existence of poles of Ry within ~ logl of the l-th threshold, for V(x,0) =2x;,(x)cosf. Asa
point of comparison with Theorem 1.5, for the special case V (x,0) =2xy,(x) cos6 on X =R x S! we
consider the existence of poles of Ry (¢) in D;(« log!) with |7;(¢)] > 1.

Again, we use the coordinate z = 1;(¢) on B;(« log!), and the functions ¢, are as defined in Lemma 12.1.

Lemma 12.4. Let @ > 0 be fixed, and set z = 1;(¢). Forl sufficiently large, uniformly on B;(a logl)\ B;(1)
we have

where

1
Pi+V Ry x1,(I —P)) ' VRO(O x1,Pr+ (f+ @+ f- @b )P — ﬁXIORO,O(Z)XIOPI

1
— o(mezﬂmﬂ—) +0U73%, (12-8)

ieiZ ei‘L’[+1 ei‘[171
fr() = fr(x, 2, D) = 4_X10(x)<—¢:|:r1+1 + —d):tr]l)'

Z 7412+ T141) T_1(z+1-1)

For notational simplicity, we have written 7,11 for 7;,11(&(2)).

Proof. We use

(I + VRo(Q) x5, (T =PD)"" =D (=VRo(@) sy (I = P1))
j=0

since ||V Ro(&) x1,(I =PIl = O —1/2) This estimate, along with others in this proof, are uniform for
¢ € Bi(alogl)\ B;(1). By Lemma 12.1, (3-1), and the explicit expression for V, we see that

X1 Ro(C) I — PV Ry () x1,Pill = O (2M™-/(1|z]))  for ¢ € By(arlogl)

for [ sufficiently large. Moreover, this same lemma implies that if |j — /| <2, then

11 (V Ro () = P))? x5, Pyl = O ?)
uniformly on B;(« log!l). This ensures that
2
H ((1 +VRo(&) xi, (I —P)) ™" = Z(—VRO(C)XIO(I - 731))") VRo(&) x1 P
j=0
_ L oimo
Since, as in the proof of Proposition 12.3, 7, VP, =0 and P;(V Ro(I — P;))>V P, = 0, it suffices to use

—PiVRo(&) x1,(I —P1)V Ro(¢)P; to approximate P;(I + V Ro(¢) x1,(1 — P! V Ro(¢)x1,Pr with the
desired accuracy.
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Using Lemma 12.1 and its notation,

PiV Ro(51(2)) —Pr)V Ro(&1(2) x1,P1
= X1, (Ro,0(T14+1) X1, R0,0(2) + Ro,0(T1—1) X1, R0,0(2)) X1, P

1 jel @ T
= ——x1(Ro.o(Ti+1) — Roo@) X1, Pl + Db+ @b )P
TZZH_ZZXIO( 0,0(T14+1) = Ro,0(2) x1, P 4ZT1+1(Z+TI+])(¢Q+1 G+ D0, QPP
1 jei T
+———x1(Roo(ti—1) — Ro.0(2) x1, P + Qb by, ®_)P.
le_l—ZZXIO( 0,0(Ti—1) — Ro,0(2)) x1,Pi 4ZT1_1(Z+T1_1)(¢I,] b+ P QPP
Note that
- —3/2
p > X1 Ro.0(uxD) xp | = OU™7)
Tx1 —%
and

— 0(l_4|Z|_1€2(ImZ)_).

1 1 1
+ X1 R0,0(2) X1o — =5 X10R0,0(2) X1
H <t12+1 -2 - ZZ) ’ vt ’

This gives

Pir(VRo(&5 () —P1)V Ro,0(51(2)) x1,Pi
el @tTsn) jet@tu-1)
T —T — P
(¢ 1+1®¢Z+¢ [+1®¢ Z) l+4ZTl—1(Z+Tl—1)

1
_ 2—12R0,0(Z)P1 + 012,12 (15/2|Z|

and completes the proof. U

= 0 QP +_q  QP_)P
4ZT[+1(Z+TZ+]) (¢[ 1 ¢Z ¢ 1—1 ¢ Z) 1

emmz)) + 02,2737, (12-10)

Note that the functions f1 and ¢+ in Lemma 12.4 depend holomorphically on z in the set
{zeC:1<z<alogl}.

The function g; of the next lemma appears in the proof of Proposition 12.6, as its zeros approximate
the locations of the poles of Ry (¢) away from the threshold in B;(« log!), if o < 1. A discussion of the
Lambert W function can be found, for example, in [Corless et al. 1996]. This next lemma is very similar
to [Drouot 2018, Lemma 2.4].

Lemma 12.5. The zeros of

2
def 1 2i(v/214z) 1
@)= (1 — e -
&l 8121 812721

are given by zf = zf(l) = %Wv((—ieZiﬁ F i+ 1)/(412])), where W, is the v-th branch of the
Lambert W function. In particular, we have zfr ~ —% log!l. Moreover, for | sufficiently large there is

2
(ieZiz +62i2))

an rg > 0 independent of | so that if w € C and |w| < rg, then

lgi(zf () +w)| = 5wl (12-11)
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Proof. The zeros of g; are solutions of
Q2 W2+ _ 1 (ie%7 4 &%)

T 81V21 817721

and so satisfy

. 1 .
—2iz 2i+/21 .
ze =——>e +1+10).
8I/21

Solutions of this equation are given by

From [Corless et al. 1996, (4.20)], we have zl ~—= logl as | — oo.
To finish the proof, we set y = 1/(8/~+/2/) and wrlte

g(z2) = (1 + geZiZ(—eZi‘@ —1- i)) (1 + gez"z(—ez"‘/27 +1+ i)).
Now we evaluate at z = z; + w, with w € C, |w| small, to find

ZiF 2iw y 5 ZT 2iw y 5

+ iv2l i/21

Z; +w)y=[1+ e e + 14
ail ! ) ( + +w 2 e_ZIZJr (- )) ( Z] +w 2 e_ZIZT (- ))

Zil— 2iw Z?-ele _e2i@+1+i
4w w2V 44

where for the second equality we have used sze_ZiZT = J/(eZ"‘/27 + 1 +1i). This gives, then, recalling

IZ1 | > oo as ! — oo,
@it +w) = (<2iw+ O(wl/If )+ O(lw| >>(M T 0<|w|>>
2V ] 4
for |w| small. Then there is a ryp > O independent of / so that for / sufficiently large and |w| < ro,
g1 +w)| > 3wl O
Proposition 12.6. For V(x,0) = 2x;,(x) cos8 and [ sufficiently large, Ry (¢) has a pole at a point
§l+ € Bl(% logl) with §l+ satisfying

j 1
‘L’l((ﬁ) = %Wl (4[@(1621«F i+ 1)) + O(Z 1/2+e)

forany € > 0.

Proof. We continue to use z = 7;(¢) and work in a region with 1 < |z]| < %logl.
Using Lemma 12.4,

1
Pr(I+ VR (&) x1,(I —P)) ' VR x1,Pr = FP + 53 X1oRo.0@xu,Pi + A,

where, with notation from Lemma 12.4,

F=FGZ,D)=-f1Q¢,— f-Q_,
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and [|A]| = O(7/2e®™9-) + 0(1~*?) on B;(§logl) \ Bi(l). We recall that the poles of Ry in
B;(logl)\ By(l) are the zeros of I +P;(I +V Ro({)x1,(I —P)) "'V Ro() x1,Pr in By(§logl)\ Bi(1).
We write

I+Pi(I+ VR x1,(I —P)) " VR x1, P
1 1 -1
= (I + ﬁXIoRO,O(Z)XIoPI> (I + (I + 2—12X10Ro,0(Z)X10771) (FP+ A)) (12-12)
since

1
I+ WXIORO,O(Z)XIOPI

is invertible here. For notational convenience, set

1 -1
S=8 = (I + ﬁXIORO,O(Z)XIO,PI) ,
and note that

1 p—
— 5 X1 Ro0@ X1 P+ 02120l 440m2) )

We first consider the poles of I + SFP;. These poles are given by the zeros of the function

Di(z) & det(1 + SFPy) = (1 - fR (Sf+>¢z) (1 - /R (Sf_>¢_z) - ( /R (Sf_>¢>z) ( fR (Sf+)¢>_z>

with twice the multiplicity. A computation and use of the approximations 7,4 = i~/2l + O(I~'/?) and
7_1 = /21 + O(~/?) show that

S=1

Di(2) = g1(2)+ O + 0 2 logle* ™),

where g; is the function of Lemma 12.5. We note that both g; and 51 are analyticin z if 1 < |z| < % log!.
We use zT(l ) as in Lemma 12.5. Recalling that Im z;’ ~ —% log/, the estimate (12-11) combined with
Rouché’s theorem shows that D;(z) has a zero within O (I~/?+€), for any € > 0, of z; (/). This, in turn,
means that

1

—1 —
(I —|—SF771)_1 = (I + (I + WXIORO,O(Z)XIO) FPI)

has a single pole of multiplicity two at a point satisfying z = ZT () + O(I~'/>*€). Moreover, we can find
a co = co(€) so that

— 0(11-‘,—6)

1 —1
()

when the distance from z to the pole is given by col ~1/2F€,

Now using our estimate on ||A|| we can apply the operator Rouché theorem to the pair I/ + SF7P; and
I+ SFP;+ SA, to find that I + SFP; 4+ SA has two poles (when counted with multiplicity) which are,
using the z-coordinate, within O (I —1/2+€) of zT(l). O



RESONANCES FOR SCHRODINGER OPERATORS ON INFINITE CYLINDERS AND OTHER PRODUCTS 1545

Acknowledgments

The author gratefully acknowledges the partial support of a University of Missouri Research Leave and a
Simons Foundation Collaboration Grant for Mathematicians. Thank you to Kiril Datchev, Alexis Drouot,
Adam Helfer, and Alejandro Uribe for helpful conversations. The author is also grateful to an anonymous
referee whose comments and questions improved the exposition of the paper.

References

[Autin 2011] A. Autin, “Isoresonant complex-valued potentials and symmetries”, Canad. J. Math. 63:4 (2011), 721-754. MR
Zbl

[Borisov 2006] D. I. Borisov, “On the spectrum of the Schrodinger operator perturbed by a rapidly oscillating potential”, J. Math.
Sci. (N.Y.) 139:1 (2006), 6243-6322. MR Zbl

[Borisov and Gadylshin 2006] D. I. Borisov and R. R. Gadylshin, “On the spectrum of the Schrodinger operator with a rapidly
oscillating compactly supported potential”’, Teoret. Mat. Fiz. 147:1 (2006), 58—63. In Russian; translated in Theoret. and Math.
Phys. 147:1 (2006), 496-500. MR Zbl

[Christiansen 2002] T. Christiansen, “Some upper bounds on the number of resonances for manifolds with infinite cylindrical
ends”, Ann. Henri Poincaré 3:5 (2002), 895-920. MR Zbl

[Christiansen 2004] T. Christiansen, “Asymptotics for a resonance-counting function for potential scattering on cylinders”,
J. Funct. Anal. 216:1 (2004), 172-190. MR Zbl

[Christiansen and Datchev 2021] T. J. Christiansen and K. Datchev, “Resolvent estimates on asymptotically cylindrical manifolds
and on the half line”, Ann. Sci. Ecole Norm. Sup. (4) 54:4 (2021), 1051-1088. MR Zbl

[Christiansen and Datchev 2022] T. J. Christiansen and K. Datchev, “Wave asymptotics for waveguides and manifolds with
infinite cylindrical ends”, Int. Math. Res. Not. 2022:24 (2022), 19431-19500. MR

[Christiansen and Zworski 1995] T. Christiansen and M. Zworski, “Spectral asymptotics for manifolds with cylindrical ends”,
Ann. Inst. Fourier (Grenoble) 45:1 (1995), 251-263. MR Zbl

[Corless et al. 1996] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function”,
Adv. Comput. Math. 5:4 (1996), 329-359. MR Zbl

[Dimassi 2016] M. Dimassi, “Semi-classical asymptotics for the Schrodinger operator with oscillating decaying potential”,
Canad. Math. Bull. 59:4 (2016), 734-747. MR Zbl

[Drouot 2018] A. Drouot, “Scattering resonances for highly oscillatory potentials”, Ann. Sci. Ecole Norm. Sup. (4) 51:4 (2018),
865-925. MR Zbl

[Duchéne and Weinstein 2011] V. Duchéne and M. I. Weinstein, “Scattering, homogenization, and interface effects for oscillatory
potentials with strong singularities”, Multiscale Model. Simul. 9:3 (2011), 1017-1063. MR Zbl

[Duchéne et al. 2014] V. Duchéne, 1. Vukicevié¢, and M. 1. Weinstein, “Scattering and localization properties of highly oscillatory
potentials”, Comm. Pure Appl. Math. 67:1 (2014), 83—-128. MR Zbl

[Duchéne et al. 2015] V. Duchéne, 1. Vukiéevi¢, and M. 1. Weinstein, “Homogenized description of defect modes in periodic
structures with localized defects”, Commun. Math. Sci. 13:3 (2015), 777-823. MR Zbl

[Dyatlov and Zworski 2019] S. Dyatlov and M. Zworski, Mathematical theory of scattering resonances, Grad. Stud. in Math.
200, Amer. Math. Soc., Providence, RI, 2019. MR Zbl

[Edward 2002] J. Edward, “On the resonances of the Laplacian on waveguides”, J. Math. Anal. Appl. 272:1 (2002), 89-116.
MR Zbl

[Exner and Kovaiik 2015] P. Exner and H. Kovatik, Quantum waveguides, Springer, 2015. MR Zbl

[Gohberg and Sigal 1971] I. C. Gohberg and E. L. Sigal, “An operator generalization of the logarithmic residue theorem and
Rouché’s theorem”, Mat. Sb. (N.S.) 84(126) (1971), 607-629. In Russian; translated in Math. USSR-Sb. 13 (1971), 603-625.
MR Zbl


http://dx.doi.org/10.4153/CJM-2011-031-8
http://msp.org/idx/mr/2848996
http://msp.org/idx/zbl/1220.31012
http://dx.doi.org/10.1007/s10958-006-0349-6
http://msp.org/idx/mr/2278906
http://msp.org/idx/zbl/1155.34368
http://dx.doi.org/10.4213/tmf2022
http://dx.doi.org/10.4213/tmf2022
https://doi.org/10.1007/s11232-006-0056-y
https://doi.org/10.1007/s11232-006-0056-y
http://msp.org/idx/mr/2254715
http://msp.org/idx/zbl/1177.34107
http://dx.doi.org/10.1007/s00023-002-8641-6
http://dx.doi.org/10.1007/s00023-002-8641-6
http://msp.org/idx/mr/1937607
http://msp.org/idx/zbl/1020.58022
http://dx.doi.org/10.1016/j.jfa.2004.02.008
http://msp.org/idx/mr/2091360
http://msp.org/idx/zbl/1078.35082
http://dx.doi.org/10.24033/asens.2477
http://dx.doi.org/10.24033/asens.2477
http://msp.org/idx/mr/4331303
http://msp.org/idx/zbl/07548723
http://dx.doi.org/10.1093/imrn/rnab254
http://dx.doi.org/10.1093/imrn/rnab254
http://msp.org/idx/mr/4523253
http://dx.doi.org/10.5802/aif.1455
http://msp.org/idx/mr/1324132
http://msp.org/idx/zbl/0818.58046
http://dx.doi.org/10.1007/BF02124750
http://msp.org/idx/mr/1414285
http://msp.org/idx/zbl/0863.65008
http://dx.doi.org/10.4153/CMB-2016-022-8
http://msp.org/idx/mr/3563753
http://msp.org/idx/zbl/1353.81049
http://dx.doi.org/10.24033/asens.2368
http://msp.org/idx/mr/3861565
http://msp.org/idx/zbl/1408.35107
http://dx.doi.org/10.1137/100811672
http://dx.doi.org/10.1137/100811672
http://msp.org/idx/mr/2831589
http://msp.org/idx/zbl/1258.34172
http://dx.doi.org/10.1002/cpa.21459
http://dx.doi.org/10.1002/cpa.21459
http://msp.org/idx/mr/3139427
http://msp.org/idx/zbl/1292.34083
http://dx.doi.org/10.4310/CMS.2015.v13.n3.a9
http://dx.doi.org/10.4310/CMS.2015.v13.n3.a9
http://msp.org/idx/mr/3318385
http://msp.org/idx/zbl/1325.34099
http://dx.doi.org/10.1090/gsm/200
http://msp.org/idx/mr/3969938
http://msp.org/idx/zbl/1454.58001
http://dx.doi.org/10.1016/S0022-247X(02)00137-3
http://msp.org/idx/mr/1930706
http://msp.org/idx/zbl/1119.78317
http://dx.doi.org/10.1007/978-3-319-18576-7
http://msp.org/idx/mr/3362506
http://msp.org/idx/zbl/1314.81001
http://mi.mathnet.ru/eng/msb/v126/i4/p607
http://mi.mathnet.ru/eng/msb/v126/i4/p607
https://doi.org/10.1070/SM1971v013n04ABEH003702
http://msp.org/idx/mr/0313856
http://msp.org/idx/zbl/0254.47046

1546 T. J. CHRISTIANSEN

[Goldstein 1974] C. I. Goldstein, “Meromorphic continuation of the ¥-matrix for the operator —A acting in a cylinder”, Proc.
Amer. Math. Soc. 42:2 (1974), 555-562. MR Zbl

[Guillopé 1989] L. Guillopé, “Théorie spectrale de quelques variétés a bouts”, Ann. Sci. Ecole Norm. Sup. (4) 22:1 (1989),
137-160. MR Zbl

[Jerison and Kenig 1985] D. Jerison and C. E. Kenig, “Unique continuation and absence of positive eigenvalues for Schrodinger
operators”, Ann. of Math. (2) 121:3 (1985), 463-494. MR Zbl

[Levitin and Marletta 2008] M. Levitin and M. Marletta, “A simple method of calculating eigenvalues and resonances in domains
with infinite regular ends”, Proc. Roy. Soc. Edinburgh Sect. A 138:5 (2008), 1043-1065. MR Zbl

[Melrose 1993] R. B. Melrose, The Atiyah—Patodi-Singer index theorem, Res. Notes Math. 4, Peters, Wellesley, MA, 1993. MR
Zbl

[Parnovski 1995] L. B. Parnovski, “Spectral asymptotics of the Laplace operator on manifolds with cylindrical ends”, Int. J.
Math. 6:6 (1995), 911-920. MR Zbl

[Reed and Simon 1978] M. Reed and B. Simon, Methods of modern mathematical physics, 1V: Analysis of operators, Academic
Press, New York, 1978. MR Zbl

[Tang and Zworski 2000] S.-H. Tang and M. Zworski, “Resonance expansions of scattered waves”, Comm. Pure Appl. Math.
53:10 (2000), 1305-1334. MR Zbl

[Weinstein 1977] A. Weinstein, “Asymptotics of eigenvalue clusters for the Laplacian plus a potential”, Duke Math. J. 44:4
(1977), 883-892. MR Zbl

[Widom 1979] H. Widom, “Eigenvalue distribution theorems for certain homogeneous spaces”, J. Funct. Anal. 32:2 (1979),
139-147. MR Zbl

[Zworski 1987] M. Zworski, “Distribution of poles for scattering on the real line”, J. Funct. Anal. 73:2 (1987), 277-296. MR
Zbl

Received 11 Dec 2020. Revised 19 Oct 2021. Accepted 4 Feb 2022.

T. J. CHRISTIANSEN: christiansent@missouri.edu
Department of Mathematics, University of Missouri, Columbia, MO, United States

mathematical sciences publishers :'msp


http://dx.doi.org/10.2307/2039544
http://msp.org/idx/mr/355687
http://msp.org/idx/zbl/0276.35028
http://dx.doi.org/10.24033/asens.1580
http://msp.org/idx/mr/985859
http://msp.org/idx/zbl/0682.58049
http://dx.doi.org/10.2307/1971205
http://dx.doi.org/10.2307/1971205
http://msp.org/idx/mr/794370
http://msp.org/idx/zbl/0593.35119
http://dx.doi.org/10.1017/S0308210506001144
http://dx.doi.org/10.1017/S0308210506001144
http://msp.org/idx/mr/2477451
http://msp.org/idx/zbl/1170.35069
http://dx.doi.org/10.1016/0377-0257(93)80040-i
http://msp.org/idx/mr/1348401
http://msp.org/idx/zbl/0796.58050
http://dx.doi.org/10.1142/S0129167X95000407
http://msp.org/idx/mr/1354001
http://msp.org/idx/zbl/0842.58074
http://msp.org/idx/mr/0493421
http://msp.org/idx/zbl/0401.47001
http://dx.doi.org/10.1002/1097-0312(200010)53:10<1305::AID-CPA4>3.3.CO;2-R
http://msp.org/idx/mr/1768812
http://msp.org/idx/zbl/1032.35148
http://projecteuclid.org/euclid.dmj/1077312549
http://msp.org/idx/mr/482878
http://msp.org/idx/zbl/0385.58013
http://dx.doi.org/10.1016/0022-1236(79)90051-X
http://msp.org/idx/mr/534671
http://msp.org/idx/zbl/0414.43010
http://dx.doi.org/10.1016/0022-1236(87)90069-3
http://msp.org/idx/mr/899652
http://msp.org/idx/zbl/0662.34033
mailto:christiansent@missouri.edu
http://msp.org

ANALYSIS AND PDE
Vol. 16 (2023), No. 7, pp. 1547-1588

DOI: 10.2140/apde.2023.16.1547

A STRUCTURE THEOREM FOR ELLIPTIC AND PARABOLIC OPERATORS
WITH APPLICATIONS TO HOMOGENIZATION OF
OPERATORS OF KOLMOGOROV TYPE

MALTE LITSGARD AND KAJ NYSTROM

We consider the operators
Vx - (A(X)Vx), Vx-(A(X)Vx) =9, Vx-(AX)Vx)+X- -Vy—20,

where X € @, (X,1) € @ xRand (X, 7,?) € Q x R" x R, respectively, and where 2 C R™ is an
(unbounded) Lipschitz domain with defining function ¥ : R™~! — R being Lipschitz with constant
bounded by M. Assume that the elliptic measure associated to the first of these operators is mutually
absolutely continuous with respect to the surface measure do (X) and that the corresponding Radon—
Nikodym derivative or Poisson kernel satisfies a scale-invariant reverse Holder inequality in L?, for some
fixed p, 1 < p < oo, with constants depending only on the constants of A, m and the Lipschitz constant
of ¥, M. Under this assumption we prove that the same conclusions are also true for the parabolic
measures associated to the second and third operators with do (X) replaced by the surface measures
do (X) dr and do (X) dY dt, respectively. This structural theorem allows us to reprove several results
previously established in the literature, as well as to deduce new results in, for example, the context of
homogenization for operators of Kolmogorov type. Our proof of the structural theorem is based on recent
results established by the authors concerning boundary Harnack inequalities for operators of Kolmogorov
type in divergence form with bounded, measurable and uniformly elliptic coefficients.

1. Introduction
Let @ C R™, m > 2, be an (unbounded) Lipschitz domain
Q:{X:(x,xm)el]%m*l XR:x,; >k}, (1-1)

where 1 : R"~! — R is Lipschitz with constant bounded by M. Let A = A(X) = {a;, j(X)} be a real
m X m matrix-valued, measurable function such that A(X) is symmetric and

kEP < Y a j(X0&E <kIE (1-2)

i,j=1
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for some 1 <k < oo and for all £ € R", X € R™ We consider the divergence form operators

Le:=Vx - (A(X)Vyx),
Lp:=Vx-(A(X)Vx) — 0,
Li:=Vx-(A(X)Vx)+ X - Vy -9,

in RZ7"+ > 1, equipped with coordinates (X, Y, t) := (X1, ..., Xms Y1, -+ -» Ym> 1) € R X R x R.
Obviously L¢ only makes reference to the X-coordinate, £p makes reference to the X- and 7-coordinates
and Lx makes reference to all coordinates. The subscripts &£, P, K, refer to elliptic, parabolic and
Kolmogorov.

L¢ is the standard second-order elliptic PDE with only measurable, bounded and uniformly elliptic
coefficients, much-studied ever since the breakthroughs of Moser, Nash, De Giorgi and others. Lp is the
corresponding parabolic version, and Li is an operator of Kolmogorov type in divergence form, which
up to now has only been modestly studied and understood. Recently, in [Golse et al. 2019] the authors
extended the De Giorgi—-Nash—-Moser (DGNM) theorem, which in its original form only considers elliptic
or parabolic equations in divergence form, to (hypoelliptic) equations with rough coefficients including
the operator Ly assuming (1-2). Their result is the correct scale- and translation-invariant estimates for
local Holder continuity and the Harnack inequality for weak solutions.

To give some perspective on the operator L, recall that the operator

K:=Vx-Vx+X.-Vy—0

was originally introduced and studied by Kolmogorov [1934]. He noted that K is an example of a
degenerate parabolic operator having strong regularity properties, and he proved that I has a fundamental
solution which is smooth off its diagonal. Today, using the terminology introduced by Hormander
[1967], we can conclude that K is hypoelliptic. Naturally, for the operator Lx, assuming only measurable
coefficients and (1-2), the methods of Kolmogorov and Hormander cannot be directly applied to establish
the DGNM theorem and related estimates.

In this paper we are interested in the L” Dirichlet problem for the operators L¢, Lp, Lx in the
(unbounded) Lipschitz domains 2, €2 x R and €2 x R™ x R respectively, and where X € , (X,t) €e 2 xR
and (X, 7Y, 1) € 2 x R" x R. In particular, we consider the operators £p and Lx in ¢-independent and
(Y, t)-independent domains, respectively. We introduce a (physical) measure ox on 922 x R" x R,

do(X, Y, 1) =14+ |V (x)|>dxdY dr, (X,Y,1) € d0Q2 xR" xR. (1-3)

We refer to o as the surface measure on 92 x R™ x R, where the subscript K indicates that we consider
a setting appropriate for operators of Kolmogorov type. The corresponding measures relevant for L¢ and
Lp are og and op,

doe(X) =1+ Vo (0)[2dx, dop(X, 1) := doe(X)dt, (1-4)

where X € 92 and (X, ¢) € 92 x R, respectively.
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The main results of the paper are Theorems 3.1, 3.2 and 3.3, stated in Section 3 below. Using these
theorems we can derive new results concerning the L? Dirichlet problem for £x using results previously
only proved for L£¢ or Lp, and we can also conclude that some results proved in the literature concerning
Lp are straightforward consequences of the corresponding results for L¢. In particular, the main result
of [Fabes and Salsa 1983] concerning parabolic measure is a consequence of the classical result of
[Dahlberg 1977] concerning harmonic measure. Our proofs of Theorems 3.1, 3.2 and 3.3 are based on our
recent results in [Litsgard and Nystrom 2022] concerning boundary Harnack inequalities for operators of
Kolmogorov type in divergence form with bounded, measurable and uniformly elliptic coefficients.

Theorem 3.1, 3.2 and 3.3, and their consequences, are deduced under the assumptions:

(A1) Q2 C R™ is a (unbounded) Lipschitz domain with constant M.
(A2) A satisfies (1-2) with constant k.
(A3) A satisfies the qualitative assumptions stated in (2-16) and (2-17) below.

All quantitative estimates will only depend on m, ¥ and M, and Theorems 3.1 and 3.2 are by their
nature of local character. However, we have chosen to state our results in the unbounded geometric
setting 2 x R™ x R. To avoid being diverted by additional technical issues caused by the unbounded
setting, we assume (2-16). Equation (2-17) is only imposed to ensure that all results (e.g., the existence
of fundamental solutions) and all estimates used in the paper can be found in the literature. One can
dispense of (2-17) at the expense of additional arguments.

We consider the following problems and we refer to the bulk of the paper for all definitions, and in
particular for the definition of weak solutions to Lxu =0 in 2 x R™ x R.

Definition. Assume that Q C R” is an (unbounded) Lipschitz domain with constant M. Assume that A
satisfies (1-2) with constant «, and (2-16). Given p € (1, c0), we say that the Dirichlet problem for Licu =0
in © x R™ xR is solvable in L? (02 x R™ xR, doy) if there exists, for every f € LP (02 xR" xR, dox),
a weak solution to the Dirichlet problem

Lxu=0 in Q2 xR" xR,
u=yf nontangentially on 92 x R™ x R,

and a constant ¢, depending only on m, k¥, M and p, such that

IN @) llLraexrm xR, dox) < Cll fllLr(@@xrm xR, dox)s

where N (u) is introduced in Section 2G. For short we say that D,‘é(E)Q x R™ x R, doy) is solvable. If
the solution is unique then we say that the Dirichlet problem for Lxu = 0 in Q is uniquely solvable in
LP(022 x R" x R, dox). For short we write that D,’é(BQ x R™ x R, dox) is uniquely solvable. The
notions that Dg (02, dog) and D;;(SSZ x R, dop) are uniquely solvable are defined analogously.

Using our structural theorems (i.e., combining Theorems 3.1, 3.2 and 3.3) we can conclude that
if Dg(BQ, dog) is uniquely solvable for some p € (1, c0), then also D,’é(aSZ x R™ x R, doy) is
uniquely solvable. We can use this insight to state a number of results concerning the solvability
of D,’é(aﬁ x R™ x R, dox) and in particular we can conclude the following.
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Theorem 1.1. Assume (A1)—(A3). Assume also
Alx, xp) = A(x), xeR", x, R, (1-5)

i.e., A is independent of x,,. Then there exists § = 6(m, k, M) € (0, 1) such that if 2 —§ < p < 00, then
DR (3 x R™ x R, doy) is uniquely solvable.

Theorem 1.2. Assume (A1)—(A3). Assume also
A, X +1) = A(x, xn), xeR™, x, €R, (1-6)
i.e., A is 1-periodic in x,,, and that A satisfies a Dini-type condition in the x,,-variable,

1 2
f @) 45 < o0, (1-7)
0 e

where 0(0) :=sup{|A(x, A1) — A(x, Ap)|:x € R™ 1 A — 2o < 0}. Then there exists § = 6(m,k, M) €
(0, 1) such that if 2 — 6 < p < 00, then D%(&Q x R™ x R, doy) is uniquely solvable.

Using our structural theorems it follows that Theorem 1.1 is a consequence of [Jerison and Kenig
1981] and that Theorem 1.2 is a consequence of [Kenig and Shen 2011]. By the same argument we can
conclude that the main result in [Fabes and Salsa 1983] is a consequence of [Dahlberg 1977] and that the
main result in [Castro and Stromqvist 2018] is a consequence of [Kenig and Shen 2011].

With Theorem 1.2 in place we are also able to analyze a homogenization problem for operators of
Kolmogorov type. In this case we assume, in addition to (1-2), that

AX+2Z)=A(X) forall ZeZ™, (1-8)
and that ] )
®
/ @ 45 < o0, (1-9)
0 o

where ©(p) :=sup{|]A(X) — A(?)l X, X eR™, | X — ?l < p}. That is, A is periodic with respect to the
lattice Z™ and A satisfies a Dini condition in all variables.
We consider, for € > 0, the operator L,

$i=Vx - (A°(X)Vx), A“X):=A(X/e). (1-10)
Let
Le:=Vx-(AVy),

where the matrix A is determined by
Ao = / AX)Vxwe(X)dX, oeR™, (1-11)
©,1)m

and the auxiliary function w, solves the problem
Vx - (A(X)Vxwe (X)) =0 in (0, D™,
Wy (X) —aX is 1-periodic (in all variables),
/‘(071)»1 (wa (X) - C(X) dX = 0
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Finally, we also introduce
C=LE+X-Vy—08, Li:=Le+X Vy—20. (1-12)
We prove the following homogenization result.

Theorem 1.3. Assume (A1)-(A3). Assume also (1-8) and (1-9). Then there exists § = 6(m, k, M) € (0, 1)
such that the following is true. Consider € > 0. Given p, 2—8§ < p <oo,and f € LP(dQ xR" xR, dox),
there exists a unique weak solution u, to the Dirichlet problem

Lsue=0 inQxR" xR,
uc = f nontangentially on 92 x R™ x R,

and a constant c = c(m, k, M, p), 1 <c < 00, such that

IN (U llLrgoxrm xR, dox) < cll fllLr@xrm xR, dox)-

Moreover, u. — u locally uniformly in Q x R"™ x R as € — 0, and u is the unique weak solution to the
Dirichlet problem
{Z‘;@?:O in Q2 x R" xR, (1-13)
u= f nontangentially on 02 x R™ x R,

and there exists a constant ¢ = c(m, k, M, p), 1 < c < 00, such that

IN @) |lLraoxrm xR, dox) < Cll fllLr(a@xRm xR, dox)-

Theorem 1.2 and the first part of Theorem 1.3 were proved in [Kenig and Shen 2011] for L¢. In that
work the Neumann and regularity problems are also treated. The theory for the Neumann and regularity
problems is based on the use of integral identities to estimate certain nontangential maximal functions.
Homogenization of Neumann and regularity problems for £p and Lx remain interesting open problems.

To be clear, the main idea of this paper is that results concerning the L? Dirichlet problem for the
operator Lx in domains 2 x R™ x R (and for the operator £p in domains €2 x R) can be derived from
the corresponding results for the operator L¢ in €2, using boundary estimates and in particular boundary
Harnack inequalities for the operator Lx (Lp). In the case of L the latter results are established in
[Litsgard and Nystrom 2022]; however, the relevant results in that work hold for more general operators

Vx - (AX,Y,)Vx) + X - Vy — 3,
and in the more general class of domains
(XY, 1) = (X, Xy, Yo 1) €R i x> P (x, v, 1)

In particular, in [Litsgard and Nystrom 2022] we allow for (Y, #)-dependent coefficients and domains.
Therefore, one can repeat the analysis of this paper, taking any result concerning the solvability of the
L? Dirichlet problem for parabolic operators

Vx - (AX,1)Vx) — 0,
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in Lip(l, %) domains, as the point of departure. The results are the corresponding results for the operator
Vx - (AX,)Vx)+ X - Vy — o

in Y -independent Lipschitz-type domains. Similarly, focusing only on £¢ and £p, one can replace 2 C R™
by an NTA-domain in the sense of [Jerison and Kenig 1982], having an (m—1)-dimensional Ahlfors-regular
boundary in the sense of [David and Semmes 1991; 1993]; see also [David and Jerison 1990].

The rest of the paper is organized as follows. In Section 2, which is of more preliminary nature, we
introduce notation and state definitions including the notion of weak solutions. In this section we also
discuss the Dirichlet problem, see Theorem 2.1, and we point out that in Theorems 1.3 and 1.4 in [Litsgard
and Nystrom 2021] we simply missed stating the obvious restriction u € L (€2 x R™ x R) under which the
proofs there are given. With this clarification, Theorem 2.1 is a special case of Theorem 1.4 in [Litsgard
and Nystrom 2021]. In Section 3 we state our structural theorems: Theorems 3.1, 3.2 and 3.3. In Section 4
we state a number of lemmas concerning the interior regularity of weak solutions and concerning the
boundary behavior of nonnegative solutions to Lxu = 0; the latter were recently established in [Litsgard
and Nystrom 2022]. In Section 5 we prove Theorems 3.1 and 3.2. In Section 6 we prove Theorem 3.3 and
hence, as outlined above and as a consequence, we prove Theorems 1.1 and 1.2. In Section 7 we also give,
as we believe that the argument may be of independent interest in the case of operators of Kolmogorov
type, a proof of Theorem 1.1 using Rellich-type inequalities along the proof of the corresponding result
for the heat equation in [Fabes and Salsa 1983]. In Section 8 we apply our findings to homogenization,
giving new results for homogenization of operators of Kolmogorov type, and in particular we prove
Theorem 1.3.

2. Preliminaries

2A. Group law and metric. The natural family of dilations jointly for the operators Lg, Lp, Lic, (8;)r>0,
on RN*1 N :=2m, is defined by
8(X, Y, 1) =(rX,r’Y, r’) (2-1)

for (X, Y, 1) € RN*L » > 0. Furthermore, the classes of operators Lg, Lp, Li are closed under the group
law
X, Y, DoX, Y, ) = X+ X, Y+Y —1X,i+1), (2-2)

where (X, Y, 1), (X, Y, ) € RN*L Note that

(X,Y, ) '=(=X,-Y —tX, —1), (2-3)

and hence

X, Y, D o X, Y, ) = X=X, Y-Y+(t—-DX,t—17), (2-4)

whenever (X, Y, 1), (X,Y,7) e RN*L
Given (X, Y, t) € RV*! we let

I(X, Y, Ol = (X, )+ 112, (X, V)] = |X|+ Y|/ (2-5)
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We recall the following pseudotriangular inequalities: there exists a positive constant ¢ such that
1. Y, 07 <elX. Y. 0l (X, Y. 00 (X, Y, DIl < c(I(X. Y. )l + (X, Y, D), (2-6)
whenever (X, Y, 1), (X, Y,7) € RV*!. Using (2-6) it follows immediately that
IX. Y. D o(X. V.0 <c (X, Y. 1) o (X, Y, D), 2-7)
whenever (X, Y, 1), (X, Y, 7) e RV*L Let
d(X, Y, 0, (X, Y,0) =1(IX, ¥, D) o (X, Y, D + (X, Y, ) o (X, ¥, DID. (2-8)
Using (2-7) it follows that
IX. Y. D) o (X, V.0 ~d((X. Y, 1), (XY, D)~ (X, V. o (X, Y., (2-9)

with constants of comparison independent of (X, Y, 1), (i , Y, ) e RN*1. Again using (2-6) we also see
that
(X, Y, 0, (X, Y, 1) <c(d((X,Y,0,(X,Y, D) +d(X,Y,1),(X,Y,1)), (2-10)

whenever (X, 7Y, 1), (5(\ , ?, 1), ()? , }N’, 7) € RV*! and hence d is a symmetric quasidistance. Based on d
we introduce the balls

B(X. Y. 1) :={(X,Y,1) e RV :d((X,Y.D), (X, Y, 1)) <7} (2-11)
for (X,Y,t) € R¥*! and r > 0. The measure of the ball B,(X, Y, t) is |B.(X, Y, t)| = c(m)r9, where
q :=4m+2.
2B. Surface cubes and reference points. Let Q C R™, m > 2, be an (unbounded) Lipschitz domain as
defined in (1-1) and with constant M. Let

T =0 xR x R={(x, Xm, ¥, ym., 1) € RN T x,, = ¥ (). (2-12)

An observation is that (X, d, dox) is a space of homogeneous type in the sense of [Coifman and
Weiss 1971], with homogeneous dimension ¢ — 1. Furthermore, (RN d, dX dY dr) is also a space of
homogeneous type in the sense of [Coifman and Weiss 1971], but with homogeneous dimension q.

Let

Q:=(—1, D" x (=1, )" x (=1, 1)
and
0,=36.0:={(rX,r’Y,r’t): (X,Y,1t) € Q).

Given a point (X, Yo, to) € RV ! we let
0 (Xo, Yo, 10) := (Xo, Yo, t0) 0 Qr :={(Xo, Yo, t0) o (X, ¥, 1) : (X, ¥, 1) € O, }.
Furthermore, if (Xg, Yy, fp) € 02 x R™ x R then we set

A, (Xo, Yo, 10) := (02 x R" x R) N O, (X, Yo, to).
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We will frequently, and for brevity, write O, and A, for Q,(Xy, Yo, fo) and A, (Xo, Yo, fo) whenever the
point (Xg, Yo, tp) is clear from the context. At instances we will simply also write A for A, (Xo, Yo, fo)
whenever the point (Xg, Yo, fo) and the scale » do not have to be stated explicitly. Given a positive
constant ¢, cA := A, (Xp, Yo, tp).

Given o > 0 and A > 0, we let
A:;A = (O, Ao, 0, —%AQ3, Qz) ER" ' xRxR" ' xR xR, @-13)
Ay p=1(0,A0,0,3A0° —0%) e R" ' x Rx R" ' x Rx R,
and
A;A(Xo, Yo, t0) == (Xo, Yo, t0) OA;t,A,

whenever (Xo, Yo, to) € RV*t1. Furthermore, given A := A, (X, Yo, tp) we let

AR p = A5 (Xo, Yo, 10).

2C. Qualitative assumptions on the coefficients. Central to our arguments are the boundary estimates
recently proved in [Litsgard and Nystrom 2022], where we considered solutions to the equation Lu = 0,
where L is the operator

Vx - (A(X,Y,t)Vx)+ X - Vy — 0, (2-14)

inRVTLU N =2m, m>1,(X,Y, 1) := (X1, -« s Xpus Y1 - - - » Yms 1) € R™ x R™ x R. We assume that
A=AX Y, ) ={a;;(X, Y, D}

is a real-valued, m x m-dimensional, symmetric-matrix-valued function satisfying

m

kTEP <D ai (XY 0EE, AKX Y. 08 - ¢| < kg1, (2-15)
i,j=1
for some k € [1, 00), and for all £, ¢ € R™, (X, Y,t) € R¥*!. Throughout [Litsgird and Nystrom 2022]
we also assume that

A= A(X,Y,t)= I, outside some arbitrary but fixed compact subset of RV *!, (2-16)
and that
ai,j € C®(RM* (2-17)

forall i, j € {1,...,m}. In [Litsgard and Nystrom 2022] the assumptions in (2-16) and (2-17) are only
used in a qualitative fashion. In particular, from the perspective of the operator, the constants of the
quantitative estimates in that work only depend on m and «. To be consistent with that paper, in (A1)—(A3)
we have included the qualitative assumptions stated in (2-16), (2-17).

2D. Function spaces. Let Uy C R™, Uy C R™ be bounded domains, i.e., bounded, open and connected
sets in R™. Let J C R be an open and bounded interval. We denote by H}((U x) the Sobolev space of
functions g € L?(Uyx) whose distribution gradient in Uy lies in (L2(Ux)™, i.e.,

Hy(Ux) :={g € L%(Ux) : Vxg € (L*(Ux)™},
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and we set
lgllzrp wy) = 18l 2wy + VX8l 2wy, & € Hy(Ux).

We let H}(’O(UX) denote the closure of C;°(Uy) in the norm of H}((UX). If Uy is a bounded Lipschitz
domain, then C*®°(U x) is dense in H )1((U x). In particular, equivalently we could define H )lf(U x) as the
closure of C*°(U x) in the norm || - ||H)|((UX). We let H;l (Ux) denote the dual to H;((UX), whose elements
act on functions in H}(’O(UX) through the duality pairing (-, -) := (-, ')H;I(UX)’H}(’O(UX).

In analogy with the definition of H}((UX), we let W(Ux x Uy x J) be the closure of C*°(Ux x Uy x J)
in the norm

Nlullw @y xvy =)

=lullz wyxs,mrwen TIEEX-Vy+0ull s wy vy wi

172 12
o— . 2 j— . . 2 -
= (/LYXJ||M( Y, t)||H)]((UX)det) + (.//nyjn( X-Vy+0)u( ,Y,t)llH;](UX)det) . (2-18)

In particular, W(Ux x Uy x J) is a Banach space and u € W(Ux x Uy x J) if and only if
uely,(UyxJ, Hy(Uy)) and (—=X-Vy+d)ue L}, (Uy x J, Hy'(Ux)). (2-19)

Let Q C R™, m > 2, be an (unbounded) Lipschitz domain as defined in (1-1) and with constant M.
We say that u € Wi (2 x R x R) if u € W(Ux x Uy x J) whenever Ux C R™, Uy C R™ are bounded
domains, J C R is an open and bounded interval, and Ux x Uy x J is compactly contained in 2 x R” x R.

2E. Weak solutions. Let Uy, Uy and J be as introduced in the previous subsection. We say that u is a
weak solution to

Lxu=0 inUxxUyxJ (2-20)
ifue WUy xUy x J) and if

0://f AX)Vxu-VxpdX dY dr+ (=X-Vy43)u(-,Y,0),¢(-,Y,0))dYdr (2-21)
UXnyXJ UyXJ

2 ] . . . .o .
for all ¢ € f’lY,t(UY x J, I;IX’O(UX)). Here, again, (-, )= (-, '>H;‘(Ux),H}w(Ux) is the duality pairing
between H, (Uy) and Hx,o(UX)-

Definition. Let Q C R™, m > 2, be an (unbounded) Lipschitz domain as defined in (1-1) and with
constant M. We say that u is a weak solution to

Lru=0 inQxR" xR (2-22)

if u € Wi (2 x R" x R) and if u satisfies (2-21), whenever Uy x Uy x J is compactly contained in
Q2 x R" x R.

Note that if u is a weak solution to the equation Licu =0 in 2 x R™ x R, then it is a weak solution in
the sense of distributions, i.e.,

///(A(X)qu Vx¢p —u(—X - Vy+9)¢)dX dY dr =0, (2-23)

whenever ¢ € C;°(2 x R™ x R).
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2F. The Dirichlet problem and associated boundary measures. In [Litsgard and Nystrom 2021] we
conducted a study of the existence and uniqueness of weak solutions to

Vx - (AX,Y,t)Vxu)+ X - Vyu — o;u =0,

as well as the existence and uniqueness of weak solutions to the Dirichlet problem with continuous
boundary data. In [Litsgard and Nystrom 2021], Theorems 1.2, 1.3, and 1.4, are particularly relevant to
this paper. Theorem 1.2 in [loc. cit.] concerns the existence of weak solutions to (2-24). However, in
[loc. cit.] a stronger notion of weak solutions is used, see Definition 2 there, as we there demand certain
Sobolev regularity up to the boundary of €2 x R™ x R. Theorem 1.3 in [loc. cit.] concerns the uniqueness
of weak solutions to (2-24) and in Theorem 1.4 in [loc. cit.] we consider the continuous Dirichlet problem
and the representation of the solution using associated parabolic measures. We here state the following
consequence of these results.

Theorem 2.1. Assume that A satisfies (1-2) and (2-16). Let f € Cyp(02 x R™ x R). Then there exists
ueC(QxR" xR) such that u = u r is a weak solution to the Dirichlet problem

Liu=0 nQxR" xR, (224)
u=f onoQ2xR" xR,

in the sense of the Definition on page 1555. If u is bounded, then u = uy is the unique weak solution

to (2-24) and in this case there exists, for every (X, Y,t) € Q x R" x R, a unique probability measure

w(X, Y, t,-)on 0Q x R"™ x R such that

u(X,Y, 1) = f// FX,Y, DHdox(X, Y, 1, X, Y, 7). (2-25)
QxR xR

Proof. As stated above, the notion of weak solutions introduced in the Definition on page 1555 is weaker
than the notion of weak solutions introduced in Definition 2 in [Litsgard and Nystrom 2021]. In particular,
concerning the existence part of Theorem 2.1, Theorems 1.2—1.4 in that work give a stronger result.
Concerning uniqueness and Theorems 1.3 and 1.4 of that work, an important piece of information is
neglected in the statements of these two theorems. As can be seen from the proofs of Theorems 1.3
and 1.4 there, this information concerns the fact that in the unbounded setting 2 x R™ x R we need
a condition at infinity to ensure uniqueness, and what we prove is the uniqueness of bounded weak
solutions. In particular, in Theorem 1.3 it should be stated that g € W(RN*!) N L>®(RN*1!) and that
u is unique if u € L*°(2 x R” x R). Similarly, in Theorem 1.4 it should be stated that u is unique
if u e L*°(2 x R™ x R). In Theorems 1.3 and 1.4 we simply missed stating the obvious restriction
u € L°(2 x R™ x R) under which the proofs in that work are given. With this clarification, Theorem 2.1
is a special case of Theorem 1.4 in [Litsgard and Nystrom 2021]. (|

The measure wi (X, Y, t, E) introduced in Theorem 2.1 is referred to as the parabolic measure, or
Kolmogorov measure to distinguish it from the parabolic measure associated to Lp, associated to Li in
QxR"xR,at (X,Y,r) e 2xR" x Rand of E C 92 x R™ x R. Properties of wi (X, Y, t, -) govern
the Dirichlet problem in (2-24). The corresponding elliptic and parabolic measures on d€2 and 92 x R,
wg and wp, are introduced analogously.
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2G. The nontangential maximal operator. Given an (unbounded) Lipschitz domain 2 C R” with
constant M,

(Xo, Yo, 10) = ((x0, ¥ (x0)), Yo, 7o) € 32 x R" x R,
and 1 > 0, we introduce the (nontangential) cone
I'(Xo, Yo, 20) :={(X, Y, 1) e QxR" xR :d((X, Y, 1), (X0, Yo, 10)) < n|xm — ¥ (x0)|}. (2-26)
Given a function u defined in 2 x R™ x R we consider the nontangential maximal operator

N (u)(Xo, Yo, 10) := sup lu(X, Y, 1)]. (2-27)
(X,Y,t)el'"(Xo,Yo,t0)

If f is defined on 02 x R™ x R and (X, Yo, o) € 02 x R™ x R, then we say that u(Xg, Yo, o) =
f (Xo, Yo, tp) nontangentially (n.t.) if
lim u(X,Y, 1) = f(Xo, Yo, 1),

(X,Y,1)el(Xo,Yo,t0)
(X,Y,1)—(Xo,Yo,t0)

where n = n(M) is chosen so that (92 x R™ x R) NI""(Xo, Yo, t0) = {(Xo, Yo, tp)}. With this choice of n
we simply write N (u) for N"(u). Furthermore, given § > 0 we introduce the truncated cone

I'J(Xo, Yo, to) := I'"(Xo, Yo, 10) N Bs(Xo, Yo, to), (2-28)
and the truncated nontangential maximal operator

NJ (u)(Xo, Yo, 1) := sup lu(X, Y, ). (2-29)
(X,Y,0)eT] (Xo,Yo,t0)

Again with n fixed, we write Ns(u) for N (;7 (u). For more on nontangential maximal functions in the
elliptic context we refer to [Kenig 1994].

2H. Conventions. Throughout the paper we will use following conventions. By ¢ we will, if not otherwise
stated, denote a constant satisfying 1 <c¢ < co. We write ¢; < ¢; if ¢1 /¢; is bounded from above by a positive
constant depending only on m, k, and M, if not otherwise stated. We write ¢; ~ ¢ if ¢; < ¢y and ¢ < ¢;.

Givenapoint (X, Y, 1) e R" xR" xR, welet mx (X, Y, 1) ==X, wx (X, Y, t) := (X, t). Similarly, if
A C 92 x R™ x R, then we let wx (A) denote the projection of A onto the X-coordinate, we let wx ;(A)
denote the projection of A onto the (X, ¢)-coordinates.

3. Statements of the structural theorems

Our structural theorems concern the quantitative relations between the measures wg, wp, wx and the
(physical) measures og, op, ox. We first prove the following relations between the measures.

Theorem 3.1. Assume (A1)—(A3). Let we, wp, and wi be the elliptic, parabolic and Kolmogorov
measures associated to Lg, Lp, L in 2, 2 X R and Q@ x R™ x R, respectively. Then there exist
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A=Am, M), 1 <A <ooandc=c(m,k, M), 1 <c < oo such that the following is true. Consider

A=A (X, Yy, 19) CIRLxR" x R. Then

oMo (Al A A op(x(A)op@x (Afy ). 7x: (D) oe(mx(A)we(x(Afy 0), 7x(A))
ox(A) op(mx. (D)) oe(mx(A))

whenever A C A.

Theorem 3.1 states that the measures a);g(ACA As ) wp(TTx, t(AcA A)s ) a)g(rrx(ACA A), +) are all
comparable in the sense stated when evaluated on the surface cube A C A. As we will prove, if A = A;

and if
we(x (Af5 ) Tx (Af)) 1)
F—0 oe(x (A7)
exists, then also the limits
w(AT, +, Aj wp(mx (AT V), Tx (Af
IC( cALA ) and  lim P( X,t( cA,A) X,t( )) (3_2)

i
F—0  ox(Af) F—0 op(mx,: (A7)

exist and all limits are comparable in the sense of Theorem 3.1. Indeed, using (3-1) we will be able to

deduce that the Poisson kernels

dwge
K&(”X(A:_A,A)’ X) = d_(nX(AcA A) X),

dwp
Kp(x (Al 0). X, 1) = d—(nx,t(AjA,Ax X, 1),

" dwx
K}C(ACA’A’Xv Y’t): _(A(,A A’X, Yat)

are all well-defined on A and that
UIC(A)KIC(ACA o XY, D)~ op(wx (A)Kp(y, z(ACA A X, 1)

~ og(Tx (M) Ke(mx (Af5 ). X).
whenever (X, Y, 1) € A.
Given ¢g, 1 < g < 00, we say that K¢(X) := Kg(er(AjA’A), X) € B;(mx(A), dog) with constant T,

1 <T <oo,if y
q
(][ C|Ke (X)) dCfs(X)) SF(][ _ Ke(X)] ng(X)) (3-3)
wx(A) x(A)

forall AC A. Analogously, Kp(X, t) :=Kp(nx,,(A:rA’A), X,t) € By(wx (A), dop) and Kic (X, Y, 1) :=
Ki(Af, o» X, Y. 1) € B4(A, doy), with constant T, if

1/q
(][f |Kp(X. D)]? dop(X, t)) sr(][f _ |Kp(X, )| dop (X, t)),
X, (D) X, (D)
1/q
(]66[ |Kic(X, Y, )|? dox (X, Y, z)) 51“(]%( |Kic(X, Y, )| dox (X, Y, z)),
A A

respectively, for all A C A.

(3-4)
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We can now state our second main result.

Theorem 3.2. Assume (A1)-(A3). Let we, wp, and wic be as in the statement of Theorem 3.1. Then there
exist A\ =Am, M), 1 <A <ooandc=c(m,k, M), 1 <c < o0, such that the following is true. Consider
A=A, (Xo, Yo, to) COIQLXR"™ xR. Assume that wg(wx (A:A’A), -) is mutually absolutely continuous on
wx (A) with respect to og and that the associated Poisson kernel Kg(X) := K¢ (mx (AjA’ A)» X) satisfies

Ke € By(mx(A), dog)

for some q, 1 < g < 0o, and with constant I, 1 <T" < oo. Then Q)'p(]TX’t(Aj_AyA), ) and wlC(Aer,A’ )
are mutually absolutely continuous on wx ;(A) and A with respect to op and o, respectively, and the
associated Poisson kernels Kp(X,t) := Kp(nx,,(AjA’A), X,t)and Kx (X, Y, t) = K’C(AjA,A’ X, Y, 1)

satisfy
Kp € By(mx,(A). dop), K € By(A, doy).

with constant T = F(m, K, M, T).
We also prove the following theorem.

Theorem 3.3. Assume (A1)—(A3). Let p € (1, 00) be given and let q denote the index dual to p. Assume
that wi (AZFA’ A» *) is mutually absolutely continuous on A with respect to oxc for all A := A, (X, Yo, t9) C
02 x R™ x R. Then the following statements are equivalent:

@) KK(A;FA’A, ) € By(A, doy) forall A C 92 x R™ x R, with a uniform constant I'.
(i1) D,@(@Q x R™ x R, doy) is solvable.

Furthermore, ifoé(BQ X R™ x R, doy) is solvable then it is uniquely solvable.

4. Local regularity and boundary estimates

In this section we state a number of the lemmas concerning the interior regularity of weak solution and the
boundary behavior of nonnegative solutions. The boundary estimates are proven in [Litsgard and Nystrom
2022] for the more general operators stated in (2-14), assuming (2-15), (2-16) and (2-17). Concerning
geometry, in that work we considered unbounded domains Q C RV*! of the form

Q={(X,Y, 1) = (X, Xp, ¥, Y, ) € RV 20 > (2, 3, yns 1)), (4-1)

imposing restrictions on ¢ of Lipschitz character accounting for the underlying non-Euclidean group
structure. In particular, we also allowed for (Y, t)-dependent domains. Up to a point, the results in
[Litsgard and Nystrom 2022] are established allowing A = A(X, Y, t) and 1} = 1/~f(x, Y, Ym, t) to depend
on all variables with y,, included. However, the more refined results established are derived assuming in
addition that A as well as ¥ are independent of the variable y,,. The reason for this is discussed in detail
in that work. Obviously, the operators Ly considered in this paper are, as A = A(X), special cases of the
more general operators of Kolmogorov type considered there. Also, the geometric setting of that work is
more demanding compared to the domains considered in this paper, as 2 x R" x R is a special case of
the domains in (4-1).
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Below we formulate the necessary auxiliary and boundary-type estimate results needed in our proofs,
and in particular in the proofs of Theorems 3.1, 3.2 and 3.3, in the context of Li as these results follow
from [Litsgard and Nystrom 2022]. For the corresponding results for L¢ and Lp we refer to [Kenig 1994]
and [Fabes and Safonov 1997; Fabes et al. 1986; 1999; Nystrom 1997], respectively.

4A. Energy estimates and local regularity. Consider (X, Yo, to) C RVN*L In the following we will
frequently use the notation Q, := Q,(Xo, Yo, t9) for ¢ > 0.

Lemma 4.1. Assume that u is a weak solution to Liu = 0 in Qs = Q2-(Xo, Yo, tp) C RN*L Then

/// |vxu|2dXdet§r—12/// lu|?dX dY dr.
r QZr

Proof. This is an energy estimate that can be proven using standard arguments. We refer to [Litsgard and
Nystrom 2022] for further details. g

The following two lemmas are proved in [Golse et al. 2019].

Lemma 4.2. Assume that u is a weak solution to Licu =0 in Q2,(Xo, Yo, to) C RNTL Given p € [1, 00)
there exists a constant c = c(m, k, p), 1 < c¢ < 0o such that

1/p
sup |u| < C(M lu|? dX dY dt) . 4-2)
Qr Q2r

Lemma 4.3. Assume that u is a weak solution to Liu =0 in Q2 (X0, Yo, t0) C RNTL Then there exists
a=a(m,k) € (0, 1) such that

o~ ~ d((X, Y, 1), (X,Y,D))\*
(X, Y,r>—u<x,Y,r>|5( G ))) sup lul, (43)
r Q2r
whenever (X, Y, 1), (X,Y,7) € 0,(Xo, Yo, to).
To state the Harnack inequality we introduce
0, (Xo. Yo. to) 1= 0, (Xo, Yo, 1) N{(X, Y, 1) 1 tg — 1> <t <1o}. (4-4)

The following Harnack inequality is proved in [Golse et al. 2019].

Lemma 4.4. There exist constants c =c(m,k) > lando, B, y,0€ (0, 1),withO<a < B <y < 02, such
that the following is true. Assume that u is a nonnegative weak solution to Lxu =0 in Q, (Xo, Yo, o) C
RN*L Then,

sup u<c_ inf u,
O (Xo.Yo.10) 0} (X0.Yo.10)

where N
07 (Xo, Yo, t0) = (X, Y, 1) € Q. (Xo, Yo, to) : tg —ar® < t <o},

07 (Xo, Yo, 10) = (X, ¥, 1) € 0, (Xo, Yo, t0) : to— yr* <t <ty — Bri}.

Remark. Note that the constants «, 8, v, 8 appearing in Lemma 4.4 cannot be chosen arbitrarily.
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4B. Estimates for (nonnegative) solutions. We refer to [Litsgard and Nystrom 2022] for the proofs of
the following results.

Lemma 4.5. Assume (A1)—(A3). Let (Xg, Yo, tp) € 0Q X R" x Rand r > 0. Let u be a weak solution of
Liu=0in (QxR" xR)N Q,,(Xo, Yo, ty), vanishing continuously on (02 x R™ x R) N O, (Xo, Yo, to).
Then, there exists « = a(m, k, M) € (0, 1) such that

d((X,7,1), (Xo, Yo, fo)))“

sup u, 4-5)

r (QxR™ xRN Q2 (X0, Yo.t0)

w(X,Y,1) S (
whenever (X, Y,t) € (2 x R" x R)N Q,/(Xo, Yo, 10).

Lemma 4.6. Let Q2 and A be as in Lemma 4.5. There exist A = A(m, M), ¢c = c(m,«x, M), and
y=y(m,k, M), 0 <y < o0, such that the following holds. Let (Xy, Yy, t9) € 0Q X R" x Rand r > 0.
Assume that u is a nonnegative weak solution to Lxu = 0 in (2 x R™ x R) N Q2 (Xg, Yo, ty). Then

u(lX,Y, 1) S (Q/d)yu(A;A(Xo, Yo, 1)),
M(Xv Y7 t) Z (d/Q)yl/l(A;’A(XO, YO9 tO))v
whenever (X, Y, 1) € (QxR" xR)NQ2p/c(Xo, Yo, 1), 0<o <r/c,whered :=d((X, Y, 1), 09QxR" xR).

(4-6)

Theorem 4.7. Let 2 and A be as in Lemma 4.5. Then there exist A = A(m, M) and ¢ = c(m, k, M) such
that the following holds. Let (Xq, Yo, ty) € 02 x R™ x R and r > 0. Assume that u is a nonnegative weak
solution to Lxu = 0in (2 x R" x R) N O»-(Xo, Yo, to), vanishing continuously on (92 x R™ x R) N
er(X(), Yo, 19). Then

u(X,Y, 1) S M(A;A(Xo, Yo, 10)),

whenever (X, Y,t) € (2 x R" x R) N Q24/c(Xo, Yo, 1)), 0 <0 <r/c.

Theorem 4.8. Let 2 and A be as in Lemma 4.5. Then there exist A = A(m, M) and ¢ = c(m, k, M) such
that the following holds. Let (Xo, Yo, to) € 022 x R™ x R and r > 0. Assume that u and v are nonnegative
weak solutions to Lxu = 0in Q x R" x R, vanishing continuously on (02 x R™ x R) N Q»,(Xo, Yo, ty).
Letgg=r/c,

m = U(AZ,FO,A(XO, Yo,17)), my; =v(A, ,(Xo, Yo, ), @7

my =u(A, x(Xo, Yo,10)), my; =u(Ay A (Xo, Yo, 1)),
and assume m; > 0, m, > 0. Then there exist constants ¢ = c(m, M) and

cr=cy(m,k, M, mf/ml_, m;/mz_),

1 <cy, cp < 00, such that if we let 01 = go/c1, then

o v(AQ,A(X()? Yo, o)) - v(X,Y, 1) e U(AQ,A@O, Yo, o))
2 ~ ~ - = > C2 ~ ~ o )
u(Aga(Xo, Yo, 7)) ~ u(X, Y. 1) u(Ag, A (Xo, Yo, 10))

whenever (X,Y,t) € ( x R" x R) N QQ/CI(XO, Yo, fo) for some 0 < o < o1 and (Xo, Yo, 7o) €
(02 x R™ x R) N Q,, (Xo, Yo, 10).
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4C. Estimates of Green’s functions and parabolic measures. The adjoint operator of Lx is defined as
©:=Vx-(A(X)Vx) — X -Vy + 0, (4-8)

as A is assumed to be symmetric.

Remark. We remark that for nonnegative weak solutions to the adjoint equation £x-u = 0, adjoint versions
of Lemma 4.6, Theorem 4.7, and Theorem 4.8 hold. The statements in the adjoint versions are the same,
except that the roles of A;A(Xo, Yo, tp) and A;A(Xo, Yo, tp) are reversed.

Definition. A fundamental solution for L is a continuous and positive function 'y =T (X, Y, ¢, X , 17, ),
defined for 7 < and (X, Y), (X, ¥) € RV, such that

() Tx(-,-,- X,Y,7)is a weak solution of Lxcu =0in RN x (7, 00) and T'(X, Y, 1, -, -, -) is a weak
solution of Licu =0 in RN x (—o0, 1),

(ii) for any bounded function ¢ € C(RV) and (X, Y), (X, Y) € RV, we have

lim__ u(X,Y,n=¢X.Y), _ _lim X, Y,7)=¢X.7), (4-9)
(X,Y,t)egX,Y,f) (X,Y,E)an,Y,t)
1>t 1>t

where
u(X,Y, 1) = // Te(X,Y, 6, X, Y, D) ¢(X,Y)dX dY,
RN (4-10)
X, Y, 7) = // Te(X,Y, 6, X, Y, D) ¢(X,Y)dX dY.
RN

Lemma 4.9. Assume that A satisfies (2-17). Then there exists a fundamental solution to Ly in the sense
of the Definition above. Let I'ic(X, Y, t, X , Y , 1) be the fundamental solution to Lx. Then we have the
upper bound

1

d(X,Y, 1), (X,Y,7)1-2

Me(X,Y,1,X,Y, 7)< (4-11)

forall (X, Y, 1), (X,Y,[) witht > 1.

Proof. We refer to [Delarue and Menozzi 2010; Di Francesco and Pascucci 2005; Polidoro 1997] for the
existence of the fundamental solution for £ under the additional condition that the coefficients are Holder
continuous. See also [Lanconelli et al. 2020]. For the quantitative estimate we refer to Lemma 4.17 in
[Litsgard and Nystrom 2022] and the subsequent discussion. O

Assume that Q@ C R” is an (unbounded) Lipschitz domain with constant M. We define the Green’s
function associated to L for 2 x R™ x R, with pole at ()? , ?, 1) e QxR" xR, as

Ge(X,Y,t,X,Y, 1) =Tx(X,Y,1,X,Y,1)

—/// Te(X,Y, 7, X, Y, Ddox(X, Y, 1,X,Y, 1), (412
02 xR™m xR
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where ["i is the fundamental solution to the operator L. If we instead consider (X, Y, ) € @ x R™ x R
as fixed, then, for (X, Y,7) € Q x R" x R,

Ge(X,Y,1,X,Y, /) =Tx(X,Y,1,X,Y,1)

AN AN A~ ~

—/// Tx(X,Y,t,X,Y, D) doi(X, Y, 1, X,Y,1), (413)
I xR™ xR

where w,*c()? , ?, f,-) is the associated adjoint Kolmogorov measure relative to ()? , ?, 7) and Q x R" x R.
The corresponding Green’s functions associated to L¢ and Lp, for 2 and 2 x R, are denoted by G¢
and Gp, respectively.

Let 6 € Cj° (RN*1). The following representation formulas are proved in Lemma 8.3 in [Litsgard and
Nystrom 2022]:

0(X,Y,1) = f/f 0(X,Y,)dox (X, Y, 1, X, Y, 1)
I xR xR
—/// AX)VxGr(X,Y,7, X, Y, 1)-VxO(X, Y, t)dX dY dt
QxR"™ xR

+ /// Ge(X,Y,5, X, Y, )(X-Vy —3,)0(X, Y, t)dX dY dt,

QxR xR (4_]4)

0(X, Y,f):/// 0(X,Y,t)dop(X, Y, 1, X, Y, 1)
IQ2xR™ xR

—/// AX)VxGr(X, Y, t,X,Y,7)-Vx6(X, Y, 1)dX dY dr
QxRm xR
+ f// Gr(X, Y, t,X,Y, D) (=X -Vy +8)0(X,Y,1)dX dY dr,
QxR™ xR

whenever ()?, ?, f) e QxR™ xR.
The following lemmas, Lemmas 4.10 and 4.11, are proved in [Litsgard and Nystrom 2022]; see in
particular Section 8. Theorem 4.12 stated below is one of the main results in that work.

Lemma 4.10. Ler Q2 and A be as in Lemma 4.5. Then there exist A = A(m, M), 1 < A < o0, ¢ =
c(m,x, M), 1 <c < oo, such that the following is true. Let (Xo, Yo, 1) € 02 xR" xR, 0 < o < o0.

Then
012G (X, Y, 1, AL (X0, Yo, 10)) S (X, Y, 1, Ag(Xo, Yo, 10))

S01PGr(X, Y, 1, A, (X0, Yo, o)),
whenever (X, Y, 1) e Q xR" xR, t > 1 —|—CQ2.

Lemma 4.11. Let 2 and A be as in Lemma 4.5. Then there exist A = A(m, M), 1 < A <00, ¢ =
cim,k, M), 1 <c < oo, such that the following is true. Let (Xq, Yo, %) € 0Q x R" xR, 0 < o < o0.
Then

Gr(X,Y, 1, A, y(Xo, Yo,10) S Gr(X, Y, 1, AZA(XO» Yo,10)) S Gr(X, Y, 1, A, , (Xo, Yo, 10)),

whenever (X, Y, 1) e Q xR™" xR, t > ZQ+CQ2.
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Theorem 4.12. Let 2 and A be as in Lemma 4.5. Then there exist A = A(m, M), 1 < A < oo,
c=c(m,x, M), 1 <c < oo, such that the following is true. Let (Xg, Yo, tp) € 0Q x R" xR, 0 < gg < 00.
Then

wic (A, A (Xo, Yo, 1o), Anp(Xo, Yo, 10)) S wic (AT coo.A (X0, Yo, 70), A o(Xo, Yo, 7))

for all Ay(Xo, Yo, ), (Xo, Yo, o) € 32 x R™ x R such that A,(Xo, Yo, 1) C Augy(Xo, Yo, o).

5. Proof of the structural theorems: Theorems 3.1 and 3.2

The purpose of the section is to prove Theorems 3.1 and 3.2. Throughout the section we assume (A1)—(A3).
Let we, wp, and wi be as in the statement of Theorem 3.1.

5A. Proof of Theorem 3.1. To prove Theorem 3.1 we need to prove that there exist A = A(m, M),
1<A<oo, c=c(m,x,M), 1 <c < oo, such that if A := A, (Xo, Yy, fp) C 02 x R" x R, then the
estimates stated in the theorems hold whenever A C A. The proof of Theorem 3.1 is based on the relation
between wg, wp, wi and the corresponding Green’s functions and boundary Harnack inequalities.

To start the proof we first note that an immediate consequence of Lemma 4.10 is that there exists
c=c(m,k, M), 1 <c < oo, such that given A := A, (X, Yo, f0) C 92 x R" x R, we have

FI2Gr(Aly s A ) S oAy 40 D) SFIT2GR(AT 4 A ) (5-1)

whenever A = Az C A. Using this, and the corresponding results for £¢ and Lp, see [Kenig 1994] and
[Fabes and Safonov 1997; Fabes et al. 1986; 1999; Nystrom 1997], we obtain

Ge(x(Af, 0 nx(AzA)) O’K(A)a)g(ﬂx(AcA N nX(A)) Ge(mx (Al ) x (A )

Gr(Alan-A; ) : e (Tx (A)wrc(Afy 5 A) : Gr(Alpa- A% )

cA A

, (5-2)

and

GP(jTX,t(AjA,A)’ nX,t(AZ’A)) < GK(A)a)p(JTX l‘(Aj_A A) JTXJ(A)) < GP(nX,I(AjA’A)v nX,t(A;A’A))

Gre(Afan A ) T op(x(A)ox(Af 4 D) T Gr(Afaa AL )

To this end we will now prove the theorem only for wi, the proof for wp being analogous. We first relate
G,C(ACA A A ) and G;C(ACA A AJr ) Using that G;C(ACA As s o> o) solves the adjoint equation we
can apply the adjomt version of Lemma 4 6 to conclude that
GIC(A:_A’A, AXA) Z G]C(A;‘rA’As A:’_A,A)’
GIC(A:A,A, A;A,A) Z GIC(AZFA’Aa Ag,A)'
Hence

Ge(Ala o Alz ) _ GeAlia ALY _ Gl A7)

Gr(Aly Az ) 7 Gr(Ala A ) 7 Gr(Aly 4 A% )

7

(5-3)
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Therefore, applying Lemma 4.11 twice,
+ +
GIC(ACA’A, AA,A)

GIC(A;FA,A» AC_A,A)

~ 1. (5-4)

Furthermore, by the standard elliptic Harnack inequality
Ge(rx(Afy ) Tx(AL N~ Gelrx(Afy 2)s Tx (A ). (5-5)
Putting (5-2)—(5-5) together we can conclude that
O’}C(A)a)g(ﬂX(AjA’A)v T[X(A)) GE(T[X (A:_A’A)’ nX(Az,A))
oe(mx (A)wx(Al, 5. D) Gr(Afanr A )

Next, using Theorem 4.8

(5-6)

cA,A
GK(AZFA,A,AZA) Gr(AA A- AX A)

Ge(rx(Afy n)- Tx(AS ) Ge(rx(Aly \) mx (A% 4)

Furthermore, G¢(myx (A:rA’A), JTx(AZ’A)) ~r " A (rog(mx(A))) ) by classical estimates for the fun-
damental solution second-order elliptic equations in divergence form; see [Kenig 1994]. We claim that

Gr(Afy o AR D) AP0 (roxc(A) 7 (5-7)

To prove this we first note that the upper bound on G;C(A:FA, A AJAr’ ) follows from Lemma 4.9. The
proof of the lower bound on G (AjA’ A AZ A) 1s a bit more subtle but can be achieved analogously to
the proof of the estimate in display (9.11) in [Litsgard and Nystrom 2022]. Using (5-7), we deduce

Ge(mx(Aly n) Tx(AF ) Ge(ax(Afy ) x(AL L) ox(A)

Gr(Alyas A% ) Gi(Alx p AL D) oe(x (D))

Combing this with (5-6),

0 (Tx ()0 (B)we (Tx (Aca 2) Tx(A)
o (A)oe(mx (Ao (Al 5. A)

This proves Theorem 3.1.

5B. Proof of Theorem 3.2. Again we will only prove the theorem for wy, the proof for wp being
analogous. Assume that C()g(ﬂx(A:_A’ A)»> ) is mutually absolutely continuous on 7y (A) with respect
to og and that the associated Poisson kernel K¢ (X) := Kg(rrx(A:“A’A), X) satisfies

Ke € By(mx(A), dog)

for some ¢, 1 < g < oo, and with constant I', 1 <I'" < co. To prove Theorem 3.2 for wx we have
to prove that CU)C(A:_A’ A ) 1s mutually absolutely continuous on A with respect to oy, and that the
associated Poisson kernel K (X, Y, t) := K;C(AeryA, X, Y, 1) satisfies Kx € B4 (A, dox) with a constant
I'=T(m,«, M,T).
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Let dug := we(mrx (A:’A’A), wx(-))dY dt. To prove that a);C(A;’A’A, -) is absolutely continuous on A
with respect to oy it suffices to prove that a);g(AjA’ As ) K g on A and that ux < ox on A. Recall that
dox (X, Y,t) = dog(X) dY dt. However, as ux and o are defined through the stated product structure,
it follows immediately that px < ox on A as wg(mx (AZFA’ A)s-) K og onmyx(A). In particular, by the
assumptions it suffices to prove that a)K(A:rA’ A *) is absolutely continuous on A with respect to px and
we will do this by using Theorem 3.1.

Recall that we previously observed that (X, d, dox), where ¥ was introduced in (2-12), is a space of
homogeneous type in the sense of [Coifman and Weiss 1971]. By the results in [Christ 1990] there exists
what we here will refer to as a dyadic grid on ¥ having a number of important properties in relation to d.
To formulate this we introduce, for any (X, Y,t) € ¥ and E C X,

dist((X, Y, 1), E) :=inf{d((X, Y, 1), (X,Y,©): (X,Y,7) € E}, (5-8)
and we let

diam(E) :=sup{d((X, Y, 1), (X, Y,7) : (X, Y, 1), (X,Y,7) € E}. (5-9)

Using [Christ 1990] we can conclude that there exist constants & > 0, 8 > 0 and ¢, < oo such that for
each k € Z there exists a collection of Borel sets, D, which we will call cubes, such that

Di:={Qf C =:j e,
where J; denotes some index set depending on k, satisfying:

(i) = =J; O foreachk e Z.
(i) If m > k then either Q7 C Q% or Q7' N Q% = @.
(iii) For each (j, k) and each m < k, there is a unique i such that Q{; c o
Gv)(ﬁmn(Qﬁ)g(g2_@
(v) Each Q% contains ¥ N By« (X5, Y1, 1)) for some (X4, Y}, 1) € £.
(vi) ox({(X, Y, 1) € Qf :dist((X, ¥, 1), £\ 0}) <0 27%})) <cx 0 oxc(Q)) forall k, j and forall o € (0, @).

We shall denote by D = D(X) the collection of all Qf ,le.,
D= JDy.
k

Note that (iv) and (v) above imply that for each cube Q € Dy there is a point (X g, Yp,7p) € ¥ and a
cube Q,(Xg, Yg, tp) such that r ~ 2~k ~ diam(Q) and

Ar(Xp,Yp,10) C QO CAL(Xg, Yp,10) (5-10)
for some uniform constant c. We let

AQZZ Ar(XQ,YQ,IQ), (5—11)
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and we shall refer to the point (X ¢, Yg, 7o) as the center of Q. Given a dyadic cube Q C X, we define
its y dilate by

Y Q:= A, diam0) (X0, Yo, 10). (5-12)

For a dyadic cube Q € Dy, we let £(Q) = 27%, and we shall refer to this quantity as the length of Q.
Clearly, £(Q) =~ diam(Q).

We now prove that wg (AjA’ A» ) 1s absolutely continuous on A with respect to px using Theorem 3.1.
Indeed, let E C A and § > 0, and let {Q;} be a (finite) dyadic Vitali covering of E such that

MIC(U Qj) < px(E) +34,

and such that y Q; Ny Q; = & for some small y = y(m, M) > 0, whenever i # j. Using Theorem 3.1
and the doubling property of wg(rx (A;LA’ A)s +) we see that

wx(Afy ps 0) S ox(Afy 4, Acg) S we(x(Aty ) Tx(Bep 0N S ey 0)),  (5-13)

where now the implicit constants may depend on |A[, which is fixed. Hence

wi(Afp s E) < ZCUIC(A:_A,A’ 0) < ZMK(V 0) S /MC(U Qj) S (i (E) +96). (5-14)
J J

In particular, given € > 0 there exists § = §(m, k, M, €, |A|) > 0 such that if £ C A, and if ux(E) <4,
then a),C(A:rAyA, E) < €, proving that w,C(AZFAvA, )KL Uk
By the above we can conclude that wx (A:rA’ As ) Ko on A and that

d wic(Afy 5, AF(X, Y, 1)
X Afypo X, ¥, 1) = lim —— A T

Kic(Afa s X Y 1) 1= ——
K(Aca A ) doy F~0  ox(Af(X, Y, 1))

exists and is well-defined for ox-almost every (X, Y, ) € A. Using Theorem 3.1

GIC(A)KIC(A;FA,A, X, Y, )~ UP(”X,!(A))KP(WX,I(AjA,A)v X, 1)
BGS(JTX(A))Ks(JTX(A:rA,A), X), (5-15)

whenever (X, Y, t) € A. Using the assumption on K¢g(X) = Kg(ﬂ'x(A:_A’A), X), and (5-15), it follows
that Kic(X, Y, 1) .= KK(A:“A,A, X, Y, t) satisfies

K}C € Bq(A, dO’;c),

with a constant T = F(m, i, M, T"). This completes the proof of Theorem 3.2.

6. The L? Dirichlet problem for £x.: Theorem 3.3

Recall the notation ¥ introduced in (2-12). Given f € L} (%, dox), we let

loc

MU)X, Y, 0):=  sup ]%[A 1| do

A=A (X,Y,1)CXE



1568 MALTE LITSGARD AND KAJ NYSTROM

denote the Hardy—Littlewood maximal function of f, with respect to ox. In the following we assume that
a);g(AjAy A ) 18 mutually absolutely continuous on A with respect to oy for every A := A, (X, Yo, tp) C
02 x R™ x R.

We first prove that (i) implies (ii) and hence we assume, given A C dQ xR xR, that K (Aer’ Artrt)E
B, (A, dox). As wi is a doubling measure we can use the classical results of Coifman and Fefferman
[1974, Theorem IV] to conclude that K ;C(AjA’ A> o) € BG(A, doy) for some g > ¢ independent of A.
Let p be the index dual to ¢ and note that p < p.

Consider first f € Cp(3€2 x R™ x R). Let (Xo, Yo, o) € 02 x R™ x R, and recall the (nontangential)
cone I'(Xo, Yo, to). Let (X,Y,7) € T(Xo, Yo, to) and let 8 := d((X,Y,7), (Xo, Yo, to)). Then, by
Theorem 2.1 we know that there exists a unique bounded weak solution to Lxu =0 in 2 x R™ x R, with
u= f on 02 x R" x R. Furthermore,

w(X,Y,7) /f/ KX, Y, 5, X, Y, 1) f(X, Y, t)dox(X, Y, 1).

We write
ulX,Y, %) = //f KX, Y, 5, X,Y,0) f(X,Y,t)dox(X, Y, 1)
A4s(Xo,Yo0,70) 00
)] K@ TSR 0 dor (X, V)
=2 R;(Xo.,Yo0.10)
o0
= (X, Y, D)+ ) ui(X. Y, 1),
j=2
where R;(Xo, Yo, t0) 1= Ayj+15(Xo, Yo, 0) \ Asis(Xo, Yo, fp). Using
d X, Y, 7 Ar(X, Y, ¢t
KR PEX Y= K R P 5 X v 1) = lim 2& al ) (6-1)
dox F—0 ox (A7 (X, Y, 1))

in combination with Theorem 4.7, we see that
K,C(X Y £L,X, Y, 1)< K,C(AcA4 XY ),

whenever (X, Y, t) € A4s(Xo, Yo, f0), and where Ays := A45(Xo, Yo, fp). Hence, using Cauchy—Schwarz,

o\ ) ]
i (X, Y, 0)| < o—K(Am(]%[ |Kic(Afx, a- X, Y. D) dff/c) (M (| f17) (X0, Yo. 10))"/?
Ays
< coxc(Afy, A- Das) (M (| f17)(Xo, Yo, 10)) 7
< c(M(|f1")(Xo. Yo, to))"/?
by (i). Similarly, using also Lemma 4.5 we have
KIC(S(\a ?7 f; X’ Y’ t) 5 27ajK’C(Aj_A2j5’A7 X? Y’ t)a

whenever (X, Y, 1) € R;(Xo, Yo, tp). Using this estimate, and essentially just repeating the estimates
conducted in the estimate of u;, we deduce that

lu;j(X, Y, 1) <27 (M(| f17)(Xo, Yo, 10)) /7.
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In particular,

o
XY, D) < (XY, D+ ) |uj(X, Y. )| < (M| £17)(Xo. Yo, 10)) /7,

j=2

and hence
N () (Xo, Yo, to) < c(M (| fI)(Xo, Yo, 10))"/7.
We can conclude that
IN @)l Lr @exrnx®, dog) < NMAFIPNYP N Lo @2xin xR, dox)
<cll fllLreexrm xR, dox)> (6-2)

by the continuity of the Hardy—Littlewood maximal function and where the constant ¢ depends only
on (m,k, M, p). We now remove the restriction that f € Cp(02 x R" x R). Indeed, given f €
LP (02 x R™ x R, dox) there exist, by density of Cp(d2 x R” x R) in L?(02 x R"™ x R, dok), a
sequence of functions {f;}, f; € Co(d22 x R™ x R), converging to f in LP(02 x R™ x R, dox). In
particular, there exists a sequence of functions {u;}, where u; is the unique bounded weak solution to
Liu; =01in @ x R" x R, with u; = f; on 92 x R™ x R. By (6-2),

IN (up — upllLr@e@xrn xR, dox) =< cll fk = fillLr@@xRm xR, dox) = 0 as k,l — oo. (6-3)

Consider Uy x Uy x J € RN*! where Uy ¢ R” and Uy C R” are bounded domains and J = (a, b)
with —00 < a < b < 0co. Assume that Uy x Uy x J is compactly contained in 2 x R" x R and that the
distance from Uy x Uy X J t0 9Q x R™ x R is r > 0. By a covering argument with cubes of size, say, r/2,
Lemma 4.2, and the finiteness of N(u;) in L? (02 x R™ x R, dox), it follows that {u;} is uniformly
bounded in L?(Ux x Uy x J), whenever Uy x Uy x J is compactly contained in 2 x R™ x R. Using
this, and the energy estimate of Lemma 4.1, we can conclude that

” VXMJ' ”LZ(UX xUy xJ) is uniforn’lly bounded. (6‘4)

Using (6-4) and the weak formulation of the equation Liu; =0 it follows that (X - Vy —;)u; is uniformly
bounded, with respect to j, in L%’I(Uy x J, H;l(UX)). Let W(Ux x Uy x J) be defined as in (2-18). By
the above argument we can conclude, whenever Uy x Uy x J is compactly contained in 2 x R™ x R, that

lu; llw(yxUy xJy 18 uniformly bounded. (6-5)
Using (6-3), and arguing as in the deductions in (6-4) and (6-5), we can also conclude that
luk —uillwwyxvyxsy — 0 ask,l — oo. (6-6)
Using (6-6) it follows that a subsequence {u,} of {u;} converges to a weak solution u to

Liu=0 in Q@ xR" xR,
and that

IN @) lLrexrm xR, dox) < Cll fllLr@@xRrm xR, dox)-

Note also, using the notation introduced above, that

N —uj)llLr@exrn xR, dox) < Cllf — fillLr(@axrm xR, dox) = 0 as j — oo. (6-7)
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To complete the proof that (i) implies (ii) we have to prove that u = f n.t. on 92 x R" x R. Consider
feLP(OQxR" xR, dox) and let { f;}, f; € Co(02 x R™ x R), be a sequence of functions converging
to fin L7 (02 x R™ x R, dox). Let (Xg, Yo, fp) € 02 x R™ x R be a Lebesgue point of f. Given é > 0
we have

Ns(u— f)(Xo, Yo,20) < Ns(u—u;)(Xo, Yo, t0)+Ns(u;— f;)(Xo, Yo, t0) +M(f — f;)(Xo, Yo, 1), (6-8)
where N was introduced in (2-29) and Ns(u — f)(Xo, Yo, tp) should be interpreted as

Sup |M(X5 Y’ t)_f(XCN YOato)l'
(X.Y,1)el{ (Xo,Y0.10)

In the following we assume, as we may without loss of generality, that (0, 0, 0) € 92 x R" x R. Given
€ > 0small and R > 1, let

Se(R,8) :={(X,Y,t) e Ar(0,0,0) : Ns(u — f)(X, Y, 1) > €}.
Using (6-8), weak estimates and (6-7) we deduce

ox(Se(R,98)) < Ceip(”f - fj ”ip(aQXRmXR, dox) + ”N(S(uj - fj)||€p(AR(o7o,o),dg,C))- (6-9)

Now letting § — 0, j — 0o, R — o0, in that order, we deduce that the set of points (X, Yy, f9) €
092 x R™ x R at which

lim lu(X, Y, 1) — f(Xo, Yo, 00)| > €
(X,Y,1)el'(Xo, Yo,%)
(X,Y,1)—(Xo0,Y0,%0)

has ox measure zero. As € is arbitrary we can conclude that u = f n.t. on 9Q2 x R" x R.

Next we prove that (ii) implies (i) and hence we assume that D,’é(aﬂ x R™ x R, doy) is solvable. Let
(Xo, Yo, 1) € 02, A := A, (Xo, Yo,%) C 02 xR" x Rand f € Cyo(A), f > 0. Let u be the unique
bounded solution to the Dirichlet problem with boundary data f. Then

u(Afy p) = /// Kx(Ajy o X, Y. D) f(X, Y, 1) dox (X, Y, 1).
A

Using the estimate in Lemma 4.2, and (ii),

1/p
u(AZy 2) S (f][][ lu(X, Y, t)|1’dXdet>
’ Qr/c(Az—AYA)
1 1/p
S ( /f/ INu)(X,Y, )| dox(X, Y, z))
or(A) 4A

(1 ) 1/p
N(U;C(A) //A|f(X, Y, 0)|” dox (X, Y,t)) '

In particular, for all f € Co(A) with || |l Lr(3@xR" xR, dox) = 1, we have

1 1/p
< )
B (%(M)

Vf/ Kie(Afy, A X Y. D) f(X, Y, 1) dox(X, Y, 1)
A
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Hence, since (A, o) is a finite measure space,

1/q 1 1/p
(f/A|KK(AjA,A,X,Y,t)|qda;C(X,Y,t)) S(U}Q(A)) :

Furthermore, Lemmas 4.5 and 4.6 imply

A

Combining the estimates,

[U /q [[f
< |KK(A3_A’A’ X7 Yv t)|qu]C(X, Y’ t)) S KK(AZ’_A’A7X7 Yv t)dGIC(Xv Ya t)
A A

Hence K ;C(A:’A’ As 0 ) € By(A, doy) and the proof that (i) implies (1) is complete. Put together we
have proved that the statements in Theorem 3.3(i) and (ii) are equivalent.

6A. Proof of the uniqueness statement in Theorem 3.3. Having proved that Theorem 3.3(i) and (ii) are
equivalent it remains to prove that if D,’é(aﬁ x R™ x R, doy) is solvable, then D,@(BQ x R™ x R, dox)
is uniquely solvable. That is, we have to prove that if N(u) € L? (92 x R™ x R, dox), and if u is a weak
solution to the Dirichlet problem

Lxu=0 in 2xR" xR,

{ u=0 ntonoQxR" xR,

then u =0 in 2 x R™ x R. Note that the proof of this is considerably more involved compared to the
corresponding arguments in the elliptic setting [Kenig 1994; Kenig and Shen 2011]. One reason is, again,
the (time-)lag in the Harnack inequality for parabolic equations.

To start the proof we fix (X, Y, ) € © x R™ x R and we intend to prove that u(X, Y, 7) = 0. Let
6 € C3° (22 x R™ x R) with # = 1 in a neighborhood of ()?, ?, 7). Then, using (4-14),

w(X, Y, 1) = wé)(X,Y,1)
=— /// AX)VxGx(X,Y,1,X,Y,1)-Vx(ud)(X, Y, t)dX dY dr
+ f// Ge(X,Y, 1, X,Y,1)(X - Vy —3)u0)(X, Y, 1)dX dY dt.  (6-10)
By the results in [Golse et al. 2019], see Lemma 4.3, we know that any weak solution to Lxu = 0 is
Holder continuous. As A is independent of (Y, ), it follows that partial derivatives of u with respect to Y
and ¢ are also weak solutions. As a consequence, as A is independent of (Y, t), any weak solution to

Liu = 0is C*°-smooth as a function of (Y, ¢). Hence the term (X - Vy — 9,) (u0) appearing in the last
display is well-defined. Using (6-10), and that Liu = 0,

w(X,Y, D) < U+ 1+ 1I), (6-11)
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where
I:= f/ G (XY, 7, X, Y, D||Vxu(X, Y, )| |Vx0(X, Y, )| dX dY dr,

= // IVxGr(X, Y, 1, X, Y, Ol |lu(X, Y, )| |Vx0(X, Y, )| dX dY dt, (6-12)
11 = /f IGe(X, Y, 5, X, Y, )| |u(X, Y, )]0 — X - Vy)O(X, Y, )| dX dY dr.

Recall the notation Q := (—1, 1) x (=1, 1)" x (=1, 1). Given (X, Y, ) = (£, £m, ¥, 1) € Qx R" x R
fixed, we have
(E,¥@E), Y, 1) edQxR" xR

fixed. We consider Qg ((x, ¥ (x)), Y, 1) = (X, ¥RX), Y, f)o Qg and we let € and R satisfy
€ <A/8, R>8\ wherek:=x, — ().

When taking limits, we will always first let € — 0O before letting R — oo.

Let p1=1(X,Y,1) € CF(Qar (%, ¥()),Y,1)), 0 <1 <1, be such that p; =1 on Qr((£, ¥ (%)), Y, 7).
Let 9o = ¢2(X) = ¢a(x, x;y) be a smooth function with range [0, 1] such that ¢»(x, x,;) = 1 on
{(x,xm) : X = Y(x)+ 2€} and @o(x, x,) = 0 on {(x, x,) : X, < Y(x)+ €}. Note that ¢; can be
constructed so that || RVx |z~ + |R*(X - Vy — 3,1 || 1~ < 1. Similarly, ¢, can be constructed so that
leVx@allLe < c, where c is independent of €. We let

9 ZQ(X, Y9 t) :e(xvxinv Ya t) = §01(X, Yv t)(p2(X, xm)-

Then 6 € C3°(Qar((£, ¥ (%)), V. )), 0<60 <1, 6 = 1 on the set of points (X, ¥, ) = (x, X, ¥, 1) €
Qr((%, (%)), Y,7) which satisfy x,, > ¥ (x) + 2¢ and 6 = 0 on the set of points in (X, Y, ) =
(x, xm, Y, 1) € Qp((X, ¥ (X)), Y, 7) which satisfy x,, < ¥ (x) + €. Let

() D1 = Qor((F, (@), Y. D) N{(X, Y, 1) Yr(x) + € < X < Y (x) + 26},

(i) D2 = Qar(®, ¥(), Y, HN{(X, Y. 1) 1 ¥ (x) + R < x < ¥(x) + 2R},
(iii) D3:=DsN{(X, Y, 1) : ¥ (x)+2€ <xp, <Y (x)+ R},

where

Dy = Qor((%, ¥(%), Y, )\ Qr((&, ¥(%)), ¥, 1).

Using this notation, the domains where the integrands in 7, /1, and /1] are nonzero are contained in the
union D; U D, U Ds. By the construction of 6,

(") 1€VxO|lopy) + IIR*(X - Vy — 3)0 || L(p,) < c,
(ii") IRVxO|lL(p,) + IR*(X - Vy — 8,0l =Dy < c,
(iii") |RVxO LoDy + IR*(X - Vy — )0 |l LoDy < €,

where c is a constant which is independent of € and R. Note that if (X, Y,?) € D3, then (X, Y, t) =
@1(X, Y, t) and this explains (iii’).
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Using the sets Dy, D», and D3, and letting

Gr(-s )= Gr(X, YV ),
we see that
I+1H+1 ST+ T+ Ts, (6-13)
where

T, :=6i2/f (elGel IVxul + el Vx Gl lul + R |Gl lul) dX a dr,
D,
1
T21=F// (RIGx||Vxu| + RIVx Gyl lu] + |Gyl lul) dX dY dr,
D,

1
T3:=ﬁ/f (RIG | |Vxul + RIVx Gl lul + |Gl Ju]) dX dY dr.
D3

We need to estimate 77, 15, and 73. To improve readability we will in the following use the notation
Api= @R XR" x R)N Q,((%, ¥ (%)), Y, ) forg>0.

We first consider 7. We start by estimating the contribution from the term |G| |u| and in this case
we prove a harder estimate than we need. The argument will be used for further reference. Note that

%/f/ |Gyl Jul dX dY dt
€ D,

- ¥ (x)+2€ G Y.t
S\// Ne(l/l)(l/ }C((-x’xm), ’ )d_xm) do_lC
AoR € ¥ (x)+e €

¥(x)+2e q 1/q

~ l G]C((-xa-x )9Y’t)

5||Ne(u>||Lp<A2R,da,c>(f / / (— f m 50 4 Y dor)
Aog \€ Jy(x)+e €

where N, is a truncated maximal operator defined as

Ne@)(X, Y, )= sup  [u((x,xn), Y, ).
Y (xX)<xm <¥ (x)+2€
Using Lemma 4.10 and the definition of K, see (6-1), we have, for every (X, Y, ) € Ayg, 1 <0 <2,
and denoting by e, the unit vector in R” pointing into €2 in the x,,-direction,
G/C(S(\7 /Y\,f,X‘i‘O'Eem,Y,t) C()[C(S(\, ?72\7 ACUG(X’ Yat))
m

< lim .
e—>0 € €e—0 €1~

<Kx(X,Y,1,X,Y,1).

Note that if 7 < t, then this is trivial as the left-hand side is identically zero. If 7 > ¢, then we may apply
Lemma 4.10 in the deduction as we are considering the limiting situation € — 0. Using these estimates,
and Lebesgue’s theorem on dominated convergence, we obtain

limsupiz/// |G| |uldX dY dt
e—>0 € D1

5 (hm Sup ”ﬁé(u)”LF(AzR,dO';c))”K}C(X\a ,Y\a f’ Ty %y ')”Lq(AzR,dO')C) = 09 (6_14)

e—>0



1574 MALTE LITSGARD AND KAJ NYSTROM

as u vanishes at the boundary in the nontangential sense. We next consider the term

1//f Gl V| dX dY dr.
€ D,

In this case, we first note, using Lemma 4.6 and the construction of Dy, that if € is small enough, then
Gr(X,Y. 1) =Gr(X, V.1, X, Y, 1) S(R/MY Gi(Aly, p X, Y. 1), (6-15)

whenever (X, Y, ) € D;. Let {Q;} be all Whitney cubes in a Whitney decomposition of 2 x R™ x R
which intersects Dy. Then |Q;| ~ €4. Using (6-15) and Holder’s inequality

1//[ |G| |Vyu|dX dY dt
€ D

g(R/x)VéZ/// G (Afx, as X, ¥, )| Vxu| dX Y dr
i Q; 7
J

1/2 12
g(R/A)VéZ(/// |GK(A:FAR’A,X,Y,t)|2dXdet> (// |qu|2dXdet) . (6-16)
i Qj Qj
J

Using the adjoint version of Lemmas 4.6, and 4.11, we see that

sup Gic(Afy, 4 X, Y. 1) S iréf Gr(Afa, p- X Y, 0). (6-17)
4Q; ’ j ’

Furthermore, using the energy estimate of Lemma 4.1, assuming that the Whitney decomposition is such
that 8Q; C @ x R" x R,

/// |vxu|2dXdet§e—2/// lu>dX dY dr < e 2|Q;|(sup |ul)?. (6-18)
Q) 20, 20,

Using (6-16)—(6-18) we deduce

1 |G,C||vxu|dXdet,§(R/WiZ|Qj|(infG,c(ATA XY D) (suplu(X, Y, 0)). (6-19)
€ D €? r 4Q; COR 20;

sup |u| < (]%[ lu dXdet). (6-20)
2Qj 4Qj

This inequality in combination with (6-19) imply that

Using Lemma 4.2

%ff/ |G,<||qu|dXdet§(R/)»)VE—IZ//ﬁ Gi(Aly, o, X. Y. Dlu(X, Y, 1) dX dY df, (6-21)
Dy D,

where D is the enlargement of D defined as the union of the cubes {4Q;}. We can now repeat the
argument leading up to (6-14), with G replaced by G (A:'AR’ As > o ) and with Dy replaced by Dy, to
conclude that

limsupé/f/ G x| |Vxu| dX dY di = 0. (6-22)
D,

e—0
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The remaining term in 77 can be handled analogously and hence we can conclude that
T; — 0, ase— 0. (6-23)

Next we consider 7> and we first consider the contribution from the term

lz/// Gl ju dX dY dr. (6-24)
r /),

In this case we first note, using Lemma 4.9, that
Ge(X.Y,)=Ge(X, Y, i, X, Y.) <Tx(X, Y, 7, X, Y. 1) S R*,

whenever (X, Y, t) € D,. Hence,

izf// |GK||u|dXdet§R1q// N (u) dog
R D> AsR

SRTIRCVUTYP N )| 1o (Agg. doxe)

= RYD/PN W) r(arg. dox) — 0, as R — oo.

We next consider the contribution from the term

l/// |Gk ||Vxu|dX dY dr.
R D,

Using the energy estimate of Lemma 4.1, as well as Lemma 4.2,

1/2
(/f/ |qu|2dXdet> gqu/Z/// lu| dX dY dt,
D> 52

where D, is an enlargement of D,. Using this, and also again using the bound on G stated above, we

see that
l/// |G;C||qu|dXdet§qu/2Rlq/zf// lu| dX dY dr
R D, 52
,Squf/f N (u)| dog
A4r

SRYTIRCVY N )| Lo (A4, dor)

< R(l_q)/l’||N(u)||Lp(A4R,dU,C) — 0, asR— oo.

The remaining term in 75 can be handled analogously and hence we can conclude that
T, — 0, asR — oc. (6-25)

Finally we consider 75. The term in 73 containing the integrand |G| |u| can be handled as we handled
the term in (6-24). For the other terms we first recall that by construction G K(f(\ Y. 6 X, Y, t) Z0if
and only if ¢ < f. Furthermore, for (X, Y, t) € D; fixed, Gxe(-,-,-, X, Y, 1) isa nonnegative solution to
Lxu=0in (L xR" x R)YN Qr((x, ¥ (X)), ?, 7). In particular, if R is large enough, then by Theorem 4.7
we have that

Ge(X, Y, 1, X,Y,1) SGr(AL,, X, Y1), (6-26)
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whenever (X, Y, t) € D3 and we can ensure that A:T,IAR A C Orp((X, ¥ (X)), Y, 7). To proceed we let

C = C(m) > 1 be a large but fixed constant, and we introduce
D3 :=D3N{(X,Y, 1) : y(x)+2¢ <x, <Y (x)+R/C}.

Then the domain of integration in the terms defining 73 is partitioned into integration over D3 and D3\ D3.
Integration over the latter set can be handled as we handled 7,. Therefore we here only consider the
remaining terms in 73 but with domain of integration defined by D3. We now let {Q;} be all Whitney
cubes in a Whitney decomposition of  x R™ x R which intersects D3. Focusing on the term in T3
containing the integrand |G| |Vxu| we see that

%f/f Gl V| dX dY dt
3

2]
<= |Gl Vxu|dX dY dt
R JZ QjﬂD;k

1/2
§%Z|Q,-|”21<Q,~>‘l(/// |G/c|2dXdet> (]%[ |u|dXdet>
J Q;ND;3 40;
1 _
SJﬁZIQﬂl(Qj) l(sngK(Az[lAR’A,X, Y, t))(ﬁ% |u|dXdet), (6-27)
j j 0

where we have used Lemma 4.1, Lemma 4.2 and (6-26). Furthermore, (6-17) remains valid in this context
and hence

(supGi(AF,, X, Y,0) <]6[][ ul dX dY dt)
Qj ' 40;

5(]66[ GK(AleRA,X,Y,t)luldXdet). (6-28)
4Q; ’

Combining these insights we see, using the notation 6(X) := (x,;, — ¥ (x)), that

%f/f |G,C||qu|dXdet§%Zl(Qj)1(//[@ Gr(AT , 4 X Y. t)|u|dXdet)
D;‘ j J ’

1 N .
s E(/fﬁg Gr(AZip, o0 X Y Duld(X)™ dX dY dz), (6-29)

where 5; is a slight enlargement of D3 due to the enlargement from Q; to 4Q;. In particular,

1 1 -
E///*|G,C||VXu|dXdet§E(///D Gr(AL o X, Y. D)lul8(X) 1dXdet), (6-30)
3 S

where Ds is defined as the set

@ XR" xRN (Qer(X, Y, D\ (X, Y, 1) : (x, ¥ (x), ¥, 1) € Agje, Y (x) < X < ¥ (x) +2¢R})
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for some ¢ = c(m) > 1. Note that points in Ds can be represented as
(X, Y, 1) =((x, ¥ (x)), Y, 1) +(0,8(X), 0,0),
where ((x, ¥ (x)),Y,t) € Acg \ Ag/c. Consider one such point (X, Y, r). We claim that
GrAT o X Y 08O S M(K(AL 40 )Xo\ gy (D) (@ (X)), Y1), (631)

where again M denotes the Hardy-Littlewood maximal function on 2 x R x R with respect to oy,
and YA p\Ag e ) is the indicator function for the set Acg \ Ag/.. To prove (6-31) we simply note, using
Lemma 4.10, that

wi(AT, s Aer ((x, ¥ (%)), Y, 1))
Ge(At, . X, Y, 0D8X) ' < ¢ Arh :
KA tara NIX)TR o (A ((x, ¥(x)), Y, 1))

where r := §(X), and that wx (AT, , Aer((x, (X)), Y, t)) can be expressed as
—1ARA p

Kic(AT X, Y, D doe(X, Y, 1)
///A”«x,w(x)),m c~'ArA

= /// Ke(AT 5 0o XY, Dt Ay (X, ¥, D) doxe (X, Y, D).
Acr ((x, ¥ (X)), Y,0) '

Using (6-31) we can continue the estimate in (6-30) to conclude that

1
: / / / Gl | Vxul dX dY dr < / / / M(Kx(AT 1y o D sas o ()N @) dog.
D3 Acr\AR/e ’

Hence, the term on the left-hand side in the last display can estimated by

1/q 1/p
I o) ([ o)
AcrR\AR/c Acr\AR/c Up
< (o (Aeg) Ve ( f f / N ()P dGic) ~0,
Z\AR/(.

as R — oo. This completes the estimate of the term in 73 containing the integrand |G ||Vxu|. The term
containing the integrand |Vx G| |u| can be estimated in a similar manner. We omit further details and

claim that
T3 — 0, as R — oo. (6-32)
To summarize, we have proved that
lw(X,Y, )| < lim limsup (I + 11 + 1) < lim limsup (T} + T» + T3) = 0; (6-33)
R—o00 (50 R—o0 50

ie., |u(5(\ , i’\, )| =0, and as (5(\ , ?, f) is an arbitrary but fixed point in the argument, we can conclude
that # =0 in Q2 x R™ x R. This completes the proof of uniqueness and hence the proof of Theorem 3.3.
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7. An alternative proof of Theorem 1.1 along the lines of [Fabes and Salsa 1983]

In this section we give, as we believe that the argument may be of independent interest in the case of
operators of Kolmogorov type, a proof of the key estimate underlying Theorem 1.1 using Rellich-type
inequalities instead of the structural theorem. Hence, the proof is along the lines of the corresponding
proof for the heat equation in [Fabes and Salsa 1983]. To avoid formal calculations and manipulations we
will, for simplicity, throughout the section assume

(A1)-(A3) and that 92 is C°°-smooth. (7-1)

The assumptions in (7-1) will only be used in a qualitative fashion and the constants of our quantitative
estimates will only depend on m, k and M. The general case follows by approximation arguments that
we leave to the interested reader.

In addition to (7-1) we also assume (1-5), i.e., that A is independent of x,,. Then the unique bounded
solution to the Dirichlet problem Lxu =0in @ x R" xR, u = f € Co(02 x R™ x R), equals

~ A~

w(X,Y, 1) = f/f Ke(X, Y, 7, X, Y, 0)f(X, Y, 1)dox(X, Y, 1),
I xR xR
and due to (7-1),
Kx(X,Y,1,X,Y, 1) := Ax)VxGx(X, Y, 1, X, Y, 1) - N(X)

forall (X,7Y,1) € 92 x R" x R and where N (X) is the outer unit normal to 02 at X € 0%2.
We are going to prove that if A := A, (Xg, Yo, to) C 92 x R™ x R, then

12
(]%[ |Kic(A%y 4. X, VD) doc(X, ¥, r)) < (]%[ |Kic(A%y 4, X, ¥, )] dog(X, Y, z)) (7-2)
A A

for all A C A. In fact, we claim that it suffices to prove (7-2) for A = A. To see this, we assume that
(7-2) holds for all A with A replaced by A, and we start by noting that we have the representations

Ki(Afy oo X, Y. 1) = A)VxG(Af, 4. X, Y. 1) - N(X)
dw W (Afp 0 DX, Y, 1))

K4+ i
=—— (A, A- X. Y. ) =lim
doy ( cAA ) F—0 o (A (X, Y, 1))

for (X, Y,1) € A. Consider (X, Y, 1) € A and 7 > 0 small. Writing A= A;(X,Y,t) and

o (Al a0 ) ox(Al n B oc(AT L A)

: < (7-3)
oxc(A) oA’ D) o(A)
we first apply Lemma 4.10 to deduce
At G A)  Gr(AQy A A )
Wi (Afp o> D) < AN A ' (7-4)

+ ~ ~Y + —
oAz A Oe(A; AR )
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Next, applying Theorem 4.8 in (7-4), and passing to the limit by letting 7 — 0 in (7-3),

GIC(ACA A A;A,A)

G (AT, AR )

K’C(A;‘rA’Av X: Yv t) KIC(A:A’A9X9 Y? t)

Using this, and (7-2) with A replaced by A (which holds by the assumption), we deduce

12 Gr(Afy a0 AT )
( HH. ik o x voP oy, r)) < AMTAN_ - (gs)
Gr(AT; 1Az ) oc(B)
However, again using the bound G;C(A:“A K A4_A A) pe 7274, see (5-7), we see that
GIC(A+A A A ) 1
o7 4AA SFIGK(AT, A AT ). (7-6)
Gr(ATy 1A Do) A 4B
Next, using Lemma 4.11, Lemma 4.10 and Theorem 4.12, in that order, we deduce
Gre(Afanr Az ) SP T (Al 40 A), (7-7)

and hence, by combining the estimates above, see that

12 (A« A)
(]66[ |Kic(AT 1, X, Y, 0)]*dox (X, Y, t)) SKLLA, (7-8)
A ’ o (A)

which completes the proof of our claim.

Based on the above it remains to prove (7-2) for A = A and the rest of the proof is devoted to this. We
note that we can without loss of generality assume that (Xg, Yo, o) = (0, 0, 0). A key observation in the
following argument, and this is a consequence of A and €2 being independent of (Y, ¢), is that

K (55, ?, X, Y1) depends on (?, £,Y, 1) only through the differences (?— Y), (f—1).

In particular,
Kx(X,Y,1,X,Y,0)=Kx(X,Y =Y, i —1, X,0,0). (7-9)

Note that A is invariant under the change of coordinates (X, Y, t) — (X, —Y, —t). Hence,
I:= // |Kic(Af; 5. X, Y. D)7 dox(X, Y, 1)
A

= (" f / |Ki(Afy oo X, =Y, )P doxc(X, Y, 1).
A
Using (7-9), Harnack’s inequality, i.e., Lemma 4.4, and more specifically Lemma 4.6, we see that
K;C(ACA X =Y, - S KIC(A4CA A X Y1)
for all (X, Y,t) € A. Hence,

|Kic(Afy ar Xo =Y, —D)> S Kic(Aly 00 X. =Y, —0)Kic(Af 5 5. X, Y, 1) (7-10)
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forall (X,Y,t) € A. Let
¢ € COMMT\ ({(Af, AVULAL L A D)
be such that
d(X, Y, 1) =1, (7-11)

whenever (X, Y, 1) = ((x, x,), Y, t) is such that (x, Y, 1) € [—r, r]" ! x [=r3, 3] x [—r2, r?], xpm €
[V (x) —r/16, ¥ (x)+r/16], and
$(X,Y,1)=0, (7-12)

whenever (X, Y,t) = ((x, x»,), Y, t) is in the complement of the set defined through the restrictions
(x, Y, 1) € [<2r, 2r]" 7! x [=(2r), 2r)*1" x [=(2r)%, (2r)?), X € [¥ (x) —r/8, ¥ (x) +r/8]. Further-
more, we choose ¢ so that

|VX¢(X5 YJ)'S"_I» |(XVY_at)¢(X9 Y,t)lsr_zv (7_13)
whenever (X, 7Y, t) e RY +1. We introduce

V(X, Y, 1) :=Gi(Ay oo X, =Y, —1), (X, Y,1):=Gr(Aj, o X, Y, 1), (7-14)
and
U(X,Y, 1) =¢(X,Y,1)d,v(X,Y, 1) (7-15)

Recalling that ﬁ)},y,z = Vx - (A(X)Vyx) — X - Vy + 0, and using the definition of the Green’s function, we
see that

o://f L*Gi(Af A o X, Y, OV (X, Y, 1)dX dY dt
QxR" xR ’
:/// L(X, Y, )V (X, Y, t)dX dY dr.
QxR™ xR
Hence

0= [ff (,C*ﬁ(xa Y, t)lIJ(X, Y, t) — ﬁ(X, Y, I)L\.IJ(X’ Y’ t)) dXx dY dr
QxR xR

+ff/ (X, Y, )LW(X, Y, r)dX dY dr.
QxR™ xR

ozf// Kic(Aj o o X, Y, OW(X, Y, 1) dox(X, Y, 1)
QxR xR '
+/// U(X,Y,DLW(X, Y, 1)dXdY dr. (7-16)
QxR™ xR

Note that by construction, W (X, Y, t) =0,,v(X, Y, 1) if (X, Y, t) € A. Consider the vector field A(x)N (X).
Obviously, A(x)N(X) - N(X) < k by the boundedness of A and hence we can write

Using this identity, and integrating by parts,

em =T (X) +c(X)AX)N(X)

for all (X, Y, t) € A and for some function c¢( - ) such that ¢(X) > c(m, k, M) for all (X, Y, t) € A. Here
T (X) denotes a vector tangent to d€2 at X. Using these observations we see that

W(X,Y, 1) =0,,v(X,Y, 1) =c(X)AX)N(X) - Vxv(X, Y, 1),
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whenever (X, Y, t) € A. In particular, using this and the fact that K ,C(AjA’ A) and W are nonnegative
functions,

Ig‘/// (X, Y, ) LW (X, Y, t)dX dY dt|.
QxR™ xR

LYX,Y,1)=(Vx(AX)Vx)+ X - Vy — )W
=2A(X)Vx(9x, v)Vx$ + 9y, vLY + HL(Iy, ),

We next observe that

and that
Lu(X,Y, 1) =L(G(Acan, X, =Y, —1) = (L*Gr)(Acan, X, =Y, —1) =0.
Using this we see that
E(axm U) = ‘C(axm U) - axmﬁ(v) == 8ymv.
In particular,

LY(X, Y, 1) =2A(x)Vx(0y,0) Vi + 3y, vLD + Py, v.

We note that these calculations essentially only use that A is independent of x,,. Recall that ¢ satisfies
(7-11)—(7-13) and let

E=QxR"xR)N{(X,Y,1):¢(X,Y, 1) #0}.
Using this notation and elementary manipulations,

where
I :=r"2 /f IVxGic(Afy 5. X, =Y, =D)|Gi(Af o o- X, Y, 1)dX dY dt,
. :

12:=r1// IVxGi(Afy o2 X, =Y, =D)|[Vx G (A s 5. X. Y, 1)|dX dY dt,

E

Li=r"" f// |Vx0y, G (Afy pr Xo =Y, =DIGx(Afp 4. X, Y, 1) dX dY dt,
E

Iy = // ’ 19y, G (Afx A X, =Y, =D)IGi(Af 5 5. X, Y, 1)dX dY dr.
Using the energy estimate of Lemma 4.1, and that
IGi(Ady a0 Xo =Y, =D+ |Gk (Afp o X Y. D) SP779,
whenever (X, Y, t) € E, we deduce that
L+ DL So(a)™

Similarly, using a slightly more involved argument, a Whitney decomposition, Lemma 4.1 and the fact
that A is independent of x,,, we can proceed in a manner similar to the proof of Lemma 2.6 in [Nystrom
2017] to also deduce that

L+1Iy So(A)™
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Putting these estimates together we can conclude that
JJ[ Kt s xvoP do v =1 S acay

whenever A C 92 x R” x R. Furthermore, as 1 < a),g(AjA As D), we have

1/2
(w |KIC(ACA AaX Y, t)| dO’;c) (M |KIC(A AA’X’ Y, t)|dGK>a

which is (7-2) with A = A. This completes the proof.

8. Applications to homogenization: Theorem 1.3
By making the change of variables (X, Y, 1) — (X, Y,7), (X, Y, 1) = (¢X, €Y, €27), the boundary

IQXR"XxR={(X,Y,1) e R" x R" x R : x, = ¥ (x)}

is transformed into
I xR xR:={(X,Y, 1) e R" x R" x R: % = Ve (%)},
where ¥ (x) := €'y (ex). Note that 1 and ¥ have the same Lipschitz constant. Let

veX, Y, 1) i=uc(X, Y, 1), [ ¥e®),Y,0):=f(x, ¥ (x),Y,1).

Then,
Liue=0 in Q2 xR" xR, &1
=f nt.ondQxR" xR,
where L} is as in (1-12), if and only if
Llve=0 inQ xR" xR, 82)
Ve = fe nt.ondQ: x R x R.

By Theorem 1.2 we see that (8-2) has a unique weak solution which satisfies

IN () llLr 3 xR xR, dox) S Il fell Lr (99 xR7 xR, doe) -

Changing back to the (X, Y, t)-coordinates, we get that (8-1) has a unique weak solution satisfying the
estimate

IN (o) |l Lraexrr xR, dog) S I f IlLr(@@xrm xR, dox) s (8-3)

and in the last two displays the implicit constants are also allowed to depend on p, but are independent of
€ and f. This settles the proof of the first part of Theorem 1.3.
To settle the proof of the second part of Theorem 1.3 we want to let ¢ — 0 and prove, given f €
LP (02 x R™ x R, dox), that u — u and that u is a weak solution to the Dirichlet problem
{L k=0 in Q2xR" xR,
U=

m (8-4)
f nt.ondQ xR" xR,
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and that

N @)l r@exrm xR, dox) S | fIlLr(9@xRm xR, dox) » (8-5)

where the implicit constant also is allowed to depend on p. Note that A is a constant matrix, and
once existence is established, uniqueness for the problem stated follows from the uniqueness part of
Theorem 3.3. We also note that in the following it suffices to consider the case p = 2, again by the
classical arguments in [Coifman and Fefferman 1974].

Consider Uy x Uy x J C RNt where Uy c R™ and Uy C R™ are bounded domains and J = (a, b),
with —00 <a < b < 0o. Assume that Uy x Uy x J is contained in  x R™ x R and that the distance from
Ux x Uy x J t0 32 x R™ x Ris r > 0. By a covering argument with cubes of size, say, r/2, Lemma 4.2,
and (8-3), it follows that u, is uniformly bounded, with respect to €, in L?>(Ux x Uy x J), whenever
Ux x Uy x J C Q x R™ x R. Using this, and the energy estimate of Lemma 4.1, we can conclude that

IVxuell L2y xuy x sy 18 uniformly bounded in €. (8-6)

Next, using (8-6) and the weak formulation of the equation Lj.u. = 0 it follows that (X - Vy — 9;)u, is
uniformly bounded, with respect to €, in L%’t(Uy x J, H;l(UX)). Let W(Ux x Uy x J) be defined as
in (2-18). By the above argument we can conclude, whenever Uy x Uy x J is compactly contained in
Q x R™ x R, that

lue llwwy xvy x 7y 1s uniformly bounded in €, (8-7)

and, by ellipticity of A€, that
|A“Vxu, 2, wxxvy <y is uniformly bounded in €. (8-8)
Using the Sobolev embedding theorem one can prove that there exists a compact injection
W(Ux x Uy x J) = L*(Ux x Uy x J). (8-9)
Using this, (8-7) and (8-8) we see that there exists a subsequence of {u.}, still denoted by {u.}, such that
ue — i in L*(Ux x Uy x J),
ASVyu, — & weakly in (L>(Ux x Uy x J))™, (8-10)

(X-Vy —0)ue — (X -Vy —0,)u  weakly in L%’I(Uy X J, H;l(UX)).
In particular,
ue — u  weakly in W(Ux x Uy x J).

Furthermore, using this and the local regularity estimate in Lemma 4.3 we also have that
uc — u, locally uniformly in 2 x R™ x R as € — 0.

We now have sufficient information to pass to the limit in the weak formulation of the equation
Li-ue =0 and doing so we obtain

02/[/ S-VX¢dXdet+/ (=X -Vy+0d)u(-,Y,0),¢(-, Y, 0))dYdr  (8-11)
Ux><Uy><J UyXJ



1584 MALTE LITSGARD AND KAJ NYSTROM

for all ¢ € L%J(Uy x J, H}(’O(UX)). We need to show that & = AVyii. To this end, we consider the
functions

wg (X) == ewy(X/€), (8-12)

with w, defined as in (1-11). Following [Cioranescu and Donato 1999], we see that

wy, = «-X weakly in H}((UX), -13)
wS —a-X in L*(Uy).
In particular
AVywS — Ao weakly in (L*(Ux))" (8-14)
and
/AG(X)VXwg -Vx¢pdX =0 (8-15)

for all ¢ € C5°(Uy); see [Cioranescu and Donato 1999, Section 8.1].
Pick ¢ € C3°(Ux), ¥ € C;°(Uy x J). We choose ¢ = pu.y in (8-15), and integrate with respect to ¥
and ¢:

0=/// (AS(X)VxwS - Vxu) oy dXdet+/f/ (A (X)Vxwt - Ve dX AV dr. (8-16)

Picking w§ v as a test function in the weak formulation of Lj-u. = 0 yields

0= // ((A*(X)Vxue - Vxwy)oy + (A (X)Vxue - Vxp)wg ) dX dY dr
+ /f/(x V¥ — ) ewSue dX dY dr,

where we have used that ¢ and w;, only depend on X and that ¥ only depends on Y and ¢. Subtracting
the expression in the last display from (8-16) yields

0= ff (A*(X)Vxwg - Vxo)uey — (A (X)Vxue - Vxp)wgyr) dX dY dr
— // (X -Vyy —o)pwiu.dX dY de.  (8-17)
Using (8-10), (8-13), and (8-14), we see that

f/ ((AE(X)Vsz-VX<p)uex//)dXdet—>//f((ga-vxw)ﬁw)dXdet,
///(AG(X)VXMG Vx@)wSy dX dY df — /f/(g Vx@)(a - X)¥ dX dY dt,

/// (X - Vy ¥ — ) pwSuce dX dY dr — ///(X SV — a9 (- X)pi dX dY dr,

as € — 0; i.e., passing to the limit in (8-17) we obtain

J[[ (- Fxpriy — - xor@ 200 = - Vrp ~ 8@ X)) ax av dr <o
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Using that
(Vxo)(a - X)¥ = Vx(p(a- X)¥) —ap,

and (8-11), now with ¢ = (« - X)@r as test function, we get
// (A - Vx@)ay — (& -a)oy)dX dY dr = 0. (8-18)
Since A is constant, this implies that
£-a=(AVxi)-a foralla e R",

and consequently, £ = AVyii. In particular, {u}.-( has a subsequence that converges weakly to i and it
is a weak solution to Lxit =0 in  x R™ x R.
Next, assume that f € Cp(0Q2 x R™ x R). Then

u (X, Y, 1) :/// KX, Y, t,X,Y,D f(X,Y,dox(X,Y,1), (8-19)

and we need to extract a convergent subsequence from the sequence of kernels {K.}. Using the represen-
tation in (8-19) we see that if

(X,Y, 1) eUx xUy xJ and dist(Uy, 92 x R™ x R) > 2r, (8-20)

then as above, i.e., again using a covering argument, Lemma 4.2 and (8-3), we deduce that

J[[ Kex vt XF D £ R T D o R0 = (X Vo] = g ane
for some positive constant ¢ < oo independent of €. It thus follows by duality that
[Ke(X, Y, 1, -, Dl20exrm xR, dog)
is bounded uniformly in € for (X, Y, ¢) as in (8-20). This clearly implies that
1 Kell L2y x Uy x T xR xR, dX dY dr doye)
is bounded uniformly in €. Thus, for a subsequence,
K. — K, ase—0, weaklyin L*(Ux x Uy x J x Q2 x R" x R, dX dY dt dog).

Suppose now that {u.;} converges weakly in W(Ux x Uy x J) to u. Then, by the above argument
there exists a subsequence {e;/} of {€;} such that Kej, converges weakly to K in

L>(Ux x Uy x J x 02 x R" x R, dX dY dt doy).

This implies, as u (X, Y, t) - u(X, Y, t), and by continuity for all (X, Y, ¢) as in (8-20), that
ue(X, Y, 1) =/f/ KX, Y, t,X. Y. D) f(X, Y, dox(X, Y, 1)

N /// KXY, 6,X, Y., DfX,Y,DHdox(X,Y,))=ia(X,Y, 1),
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as € — 0 and for all (X, Y, ¢) as in (8-20). As Ux x Uy x J is arbitrary in this argument, we conclude
that for a certain subsequence of {u¢}¢~0,

ue — i weakly in Wipe (2 x R™ x R),

and
K. — K weakly in LIZOC(Q xR" xR x 02 x R" x R, dX dY dr dok). (8-21)
Furthermore,
Liii =0 in QxR" xR,
and

(X, Y, z):/// KX, Y, t,X,Y,D)f(X,Y,)dox(X, Y, 1),
whenever (X, Y, t) € Q x R™ x R. Note that the space
L%OC(Q XxR" xR x 92 x R" xR, dX dY dr doy)

in (8-21) should be interpreted as local only in the first three variables X, Y and ¢. As A is a constant
matrix, the Kolmogorov measure wg, . is absolutely continuous with respect to oxc and this can be seen as a
consequence of Theorem 1.1. In particular, the problem D,%(&Q x R™ x R, dox) is uniquely solvable for
the operator Li and K (X,Y, ¢, X , Y , 1) is the Radon—-Nikodym derivative of the Kolmogorov measure
wz (X, Y, t,-) with respect to o at ()~(, ?, 1) € 32 x R™ x R. As a consequence, using Theorem 3.3
we can conclude that for f € Co(02 x R™ x R) given, u is the unique solution to the problem in (8-4)
which satisfies (8-5). For f € L% x R™ x R, doy) the same conclusion follows from the density
of Co(32 x R™ x R) in L?(3Q x R™ x R, doy); see the final part in the proof of (i) implies (ii) in
Theorem 3.3 for reference. Summing up, the proof of Theorem 1.3 is complete.
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DIMENSION-FREE HARNACK INEQUALITIES
FOR CONJUGATE HEAT EQUATIONS AND
THEIR APPLICATIONS TO GEOMETRIC FLOWS

L1-JUAN CHENG AND ANTON THALMAIER

Let M be a differentiable manifold endowed with a family of complete Riemannian metrics g(¢) evolving
under a geometric flow over the time interval [0, T[. We give a probabilistic representation for the
derivative of the corresponding conjugate semigroup on M which is generated by a Schrodinger-type
operator. With the help of this derivative formula, we derive fundamental Harnack-type inequalities
in the setting of evolving Riemannian manifolds. In particular, we establish a dimension-free Harnack
inequality and show how it can be used to achieve heat kernel upper bounds in the setting of moving
metrics. Moreover, by means of the supercontractivity of the conjugate semigroup, we obtain a family of
canonical log-Sobolev inequalities. We discuss and apply these results both in the case of the so-called
modified Ricci flow and in the case of general geometric flows.

1. Introduction

Let M be a differentiable manifold endowed with a C! family of complete Riemannian metrics g(¢)
indexed by the real interval [0, T[, where T € ]0, oo]. The family g(¢) describes the evolution of the
manifold M under a geometric flow where T is the first time where possibly a blow-up of the curvature
occurs. This type of singularity is not excluded in our setting.

More specifically, we consider geometric flows of the type

0;g(t) =—=2Sc(t) on M x [0, TJ,

where Sc(r) = (S§;;) is a general time-dependent symmetric (0, 2)-tensor. For fixed 7, with respect to the
metric g(), let S = g/ §; ; be the metric trace of the tensor S(7) and A, the Laplace—Beltrami operator
acting on functions on M. In practice, the geometric flow deforms the geometry of M and smooths out
irregularities in the metric to give it a nicer and more symmetric form, which provides geometric and
topological information on the manifold.

Consider operators of the form L, = A, — V'¢,, where ¢, is a time-dependent function on M. We also
use the notation g, = g(¢), S, = S(¢, - ) and Sc; = Sc(¢). In this paper we study the (minimal) fundamental
solution to heat equations of the type

(Ly —0)u(t,x) =0, resp. (L, +9; —o)u(t, x) =0,
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where o, = d;¢; + S;. The first equation is the classical heat equation, the second one appears naturally
as conjugate heat equation. More precisely, we have the following relationship.

Remark 1.1. Set du; = e %d vol,, where vol, denotes the Riemannian volume to the metric g(¢). Let
[0 = L, — 9; be the standard heat operator and [1* its formal adjoint with respect to the measure u; ® dt.

Thus,
T T
//VDUdutdtzf/UD*Vdu,dt
0o Jm 0o Jm

for functions U, V € C Cz’l (M x [0, T[). From this relation it is immediate that [(I* = L, + 9; — o;.

Example 1.2. A typical situation covered by this setting is solving a geometric flow equation (e.g., Ricci
flow) forward in time and the associated conjugate heat equation backward in time. In the case of the
Ricci flow 9;g(#) = —2 Ric; and L; = A, the conjugate heat equation reads as [1*u = (A;+9; — R)u =0,
where R = tr Ric denotes the (time-dependent) scalar curvature.

It should be mentioned that an important ingredient in the proof of the Poincaré conjecture by Perelman
[2002] is a differential Harnack inequality which is related to a gradient estimate for solutions to the
conjugate heat equation under forward Ricci flow on a compact manifold. This relation has been one of
our motivations to investigate solutions to conjugate heat equations and their associated semigroups also
by methods of stochastic analysis.

Let X, be the diffusion process generated by L, = A, — V'¢, (called L,-diffusion process) which we
assume to be nonexplosive up to time 7. We consider the two-parameter semigroup associated to L;,

Po f () = =E[f(X) | Xs=x], s=t,

which satisfies the heat equation
ad
aps,tf = _Ls PS,tfv
limg, Ps, f = f.

In previous work, we already studied properties of heat equations under geometric flows, like properties
of the semigroup P;; generated by L,, by adapting probabilistic methods. In [Cheng 2017], for instance,
the first author gave functional inequalities equivalent to a lower bound of Ric; 4+ Sc,;. In [Cheng and
Thalmaier 2018a; 2018c] we established characterizations of upper and lower bounds for Ric; + Sc; in
terms of functional inequalities on the path space over M.

On a more probabilistic side, in [Cheng and Thalmaier 2018b] the authors studied existence and unique-
ness of so-called evolution systems of measures related to the semigroup P; ;. Using such systems as ref-
erence measures, contractivity of the semigroup, as well as log-Sobolev inequality, have been investigated.

Although the evolution system of measures is helpful to shed light on properties of solutions to the
heat equation, it is still difficult to obtain a full picture of this measure system, like its relation to the
system of volume measures. It has been observed that if one uses volume measures as reference measures,
many questions will be related to the conjugate heat equation and not the usual heat equation; see e.g.,
[Abolarinwa 2015; Cao et al. 2015; Kuang and Zhang 2008].
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Recall that 11 (dx) =e~?® d vol,, where vol, is the volume measure with respect to the metric g(¢). Let

Psé,)tf(-x) = [E|:3XP <_/ o(r, X;) dr)f(Xt) X =x:|a

where o(¢, x) = o,(x) is given by o, := 9;¢; + S; and

2 pus(dx) = —o(t, x) i (d).

According to the Feynman—Kac formula, Pf . f represents the solution to the equation

d
aﬁos =—(Ly—05)ps, @r= f’

on [0, t] x M where t < T. We note that this equation is conjugate to the heat equation

iu(s, x) = Lsu(s, -)(x).
as

In this paper, we first give probabilistic formulas and estimates for de, f from which we then derive a
dimension-free Harnack inequality. It is interesting to note that by combining the dimension-free Harnack
inequalities for P;; and Pft, one can obtain new on-diagonal and Gaussian upper bounds for the heat
kernel to L, with respect to u,; see Sections 5 and 6. We apply these results then to the following modified
geometric flow for g, combined with the conjugate heat equation for ¢, (see, e.g., Corollary 5.3 below), i.e.,

{@gﬂ=—2@C+H%M¢Dn
0 = —(Agp = S)(1, x).

As is well known, for Sc = Ric, this flow represents the gradient flow to Perelman’s famous entropy

(1-1)

functional, also known as Perelman’s F-functional [2002].

Before we give other applications of these Harnack inequalities, let us first compare our results on heat
kernel estimates with the known results in this direction. In [Coulibaly-Pasquier 2019], the author used a
horizontal coupling of curves to obtain a dimension-free Harnack inequality for P;, generated by A,,
and applied it then to on-diagonal heat kernel estimates by following Grigoryan’s argument [1997]. The
first difference to our approach is that we use the dimension-free Harnack inequality for the conjugate
heat semigroup instead of comparing P ; to PS‘?, by controlling the absolute value of the potential |o]|.
The second difference is that in [Coulibaly-Pasquier 2019], the author used the midpoint (¢ 4 s5)/2 as
reference time, so that lower bounds for both Ric; 4+ Sc; and Ric, — Sc; for ¢ € [0, T] are required. Here,
in our approach, we adopt the method of [Grigoryan 1997] as well, but the reference time r has greater
flexibility. For instance, the reference time r can be chosen close to s so that if one knows that there
exist constants k¥ and K such that |[dos| < k and Ricg 4 Scy + Hessg(¢s) > K at the initial time s, then
by choosing r close to s, an on-diagonal heat kernel estimate can still be derived under the assumption
that Ric, — Sc, + Hess, (¢;) > K, (¢) for ¢t € [0, T]. For instance, if the geometric flow is a Ricci flow and
¢ =0, then K| = 0 and solely information from the initial manifold is basically enough to derive upper
heat kernel bounds. With respect to this point of view, the necessary conditions in our results could be
weakened significantly.
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Recently, Buzano and Yudowitz [2020] established Gaussian-type heat kernel estimates under a general
geometric flow by adapting the methods from [Davies 1987]. In their paper, in the case of a general
geometric flow, they assume for vector fields X on M the tensorial inequality

0 < D(Sc, X) := %s — AS=2IS;; P +4(ViSiDX; —2(V;S)X; + 2R X, X; — 28, X X, (1-2)

It should be remarked that apart from some classical geometric flows where condition (1-2) is easily
checked, this condition in general is difficult to verify. Generally speaking, it is an advantage for
applications to rely on information about Ric and Sc directly. From this point of view, our conditions are
convenient to apply.

Next, we observe that

ps(Po ) = me(f), s <t, (1-3)

which means that the family of measures u; plays a role for the semigroup Pfl similar to that of the
invariant measure in the static Riemannian case for the one-parameter semigroup P;. Log-Sobolev
inequalities with respect to the invariant measure are well-established under certain curvature conditions
on Riemannian manifolds. They have many applications and are related to other functional inequalities
for P;; see for instance [Bakry 1997; Gross 1975; Wang 2001; 2009]. This leads to the natural question
of whether it is possible to prove log-Sobolev inequalities with respect to i, in a similar way through
functional inequalities for Pﬁ [

In Section 7 we discuss the relation between contraction properties of the semigroup and log-Sobolev
inequalities with respect to .. Using the dimension-free Harnack inequality for Pﬁ,, we give a sufficient
condition for supercontractivity of Pf, which we then use to prove existence of the (defective) log-Sobolev
inequality for . It is well known that the log-Sobolev inequality and Sobolev inequality are important
tools to establish upper bounds for the heat kernel; see [Abolarinwa 2016; Bailesteanu 2012; Zhang 2006;
Buzano and Yudowitz 2020]. Note that in [Buzano and Yudowitz 2020] the condition for the log-Sobolev
inequality is D(Sc, X) > 0, which implies in particular (d; — A;)S; > 0. Here besides the curvature
condition for the gradient estimate, we add the condition (d; — L;)o; > 0 to derive a super log-Sobolev
inequality. The results are then applied to the system (1-1). More specifically, denote by p; = p, (0, -)
the distance function to a given base point o in M with respect to the metric g;, and suppose that the
geometric flow g, and the function ¢, satisfy (1-1). Assuming that Ric, + Hess; (¢;) + Sc; > K (¢) and

u,(exp()»,otz)) < oo forall A > 0and ¢ € [0, T[, there exists a function 8 such that

ws(f2log f2) < rus(IVS fEE+ 105 %) + Bs(r), 7 >0,

for f € C3°([0, T[ x M) and pu,(f?) = 1.

The paper is organized as follows. In Section 3 a probabilistic formula for the derivative of the
conjugate heat semigroup is given and used to establish a gradient estimate for Pft under suitable
curvature conditions. In Section 4 we derive two versions of dimension-free Harnack inequalities from
the mentioned gradient inequality for PSQ’,, which are then applied in Section 5 to on-diagonal heat
kernel estimates and in Section 6 to Gaussian-type heat kernel estimates via Grigoryan’s argument.
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These Harnack inequalities are further used in Section 7 to gain sufficient and necessary conditions for
supercontractivity of Pﬁ,. In Section 7 we also clarify the relation between supercontractivity of Pf,
and the log-Sobolev inequality with respect to w,. These results are then applied to system (1-1) of the
modified geometric flow under conjugate heat equation.

2. Brownian motion with respect to evolving manifolds

Let (M, g;):e; be an evolving manifold indexed by I = [0, T'[. Let V' be the Levi-Civita connection with
respect to g;. Denote by M := M x [ space-time and consider the bundle

TM =5 M,

where 7 is the projection. As observed by Hamilton [1993] there exists a natural space-time connection V
on T M considered as bundle over space-time M such that
{VUX =VIX,
Vo, X =8, X + 33,8 (X, )™

for all v € (Ty M, g;) and all time-dependent vector fields X on M. This connection is compatible with
the metric, i.e.,

d
J71X g = 20X, Vi X),.

Remark 2.1. Let G =O(n), where n = dim M and consider the G-principal bundle ¥ = M of orthonormal
frames with fibers

T ={u:R"— (T:M, g) | u isometry}.

As usual, a € G acts on F from the right via composition. The connection V gives rise to a G-invariant
splitting of the sequence

d
00— kerdmn —> TF LN a*TM —— 0,

which induces a decomposition of TF as TF =V @ H :=kerdn ®h(w*TM). For u € F, the space H, is
the horizontal space at u and V,, ={v € T,F: (dm)v =0} the vertical space at u. The bundle isomorphism

h:no*TM > H—TF, h,: Ty(¢zyM=>=> H,, ue3, 2-1)
is the horizontal lift of the G-connection.

Corollary 2.2. To each X + b0, € T(x,,,M and each frame u € F 1), there exists a unique “horizontal lift”
X*4+bD; € H, of X + bd; such that

In explicit terms, X* is the horizontal lift of X with respect to the metric g;, and D; = (d /ds)|s—ouy, where
Uy is the horizontal lift based at u of the curve s — (x,t +s).



1594 LI-JUAN CHENG AND ANTON THALMAIER

We consider curves in M of the form
y[=(xl’£l)a te[O,T[y

where £, is a monotone differentiable transformation on [0, T'[. The horizontal lift of such a curve y; in
M is a curve u; in F such that wu; = y; and Vy (u,e) = 0 for each e € R". Then

W =uguy " (ToM, g, ) — (T M., g,), 0<r<s<T,
gives parallel transport along y;. In the following we consider the special case ¢, =t.

Remark 2.3. Vector fields and differential forms on M can be seen as time-dependent vector fields and
differential forms on M. It is convenient to write objects on M as G-equivariant functions on J. In
particular, then

(1) functions f € C°°(M) read as fe C*>(F) via f:: form,
(2) time-dependent vector fields Y on M read as Y:F>R'viaY (u) = u‘lYﬂ(u),
(3) time-dependent differential forms o on M read as & : ¥ — (R")* via a(u) = otz () (ut - ).

The following formulas hold:
Xf=X"f, 8f=Df, Wr=X'Y, V,Y=DY, Vya=X*a, Vya=Da. (2-2)

The proofs are straightforward. For instance, to check the last equality, let u#; be a horizontal curve such
that Tu; = y; = (x, t), where x € M is fixed. Then

(Dsa)(uy) = oln(u,)(ut -)

~ d
Y= Gy

i
dt t=s
= d_‘ e s4r) ([ s,srtss =) = (Vg o) x5y (s - ) = (65;&)(%)-
rlr=0
Remark 2.4. The vector fields
H; eT(TT), Hiw)= ue)* =hy(ue), i=1,....n,

where (eq, ..., e,) denotes the standard basis of R”, are the standard-horizontal vector fields on . The
operator

Ahor == Z H ,'2
i=1
is called Bochner’s horizontal Laplacian on J. Note that
Af =Aborf and  Argugh® = Apord, (2-3)
where Arough = tr(V")? is the rough Laplacian on differential one-forms. Recall that, for fixed 7 € I,

dA; f =t(V)2df —Ric,(df, -) (2-4)
by the Weitzenbock formula.
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Let 7 : ¥ — M denote the canonical projection. For ¢ € C'?>(M), we define a vector field on F by
H? eT(TF), HYw) =h(V'¢@t,-)), ww)=(x,1).

Consider the following Stratonovich SDE on J

{dU =D,(U)dt+Y ! | Hi(U)odB' — H?(U) dt,

(2-5)
Us=u;, n(uy)=1(x,s), sel[0,T].

Here B denotes standard Brownian motion on R” (sped up by the factor 2, i.e., d B' d B/ = 26; ; dt) with
generator Ar». Equation (2-5) has a unique solution up to its lifetime ¢ := limg_, » £, where

Go:=inf{t € [s, T[: ps(w(Us), r(Uy)) >k}, n=>1, infg:=T, (2-6)

and where p; stands for the Riemannian distance induced by the metric g(¢). We note that if U solves
(2-5) then

7(Uy) = (X, 1),
where X is a diffusion process on M generated by L, = A, — V'¢,. In case of ¢ =0 we call X a

(g:)-Brownian motion on M.
More precisely, we have the following result.

Proposition 2.5. Let U be a solution to the SDE (2-5). Then
(1) for any C?-function F : F — R,
d(F(U)) = (D, F)(U)dt + Y (HiF)(U)dB' + (A F)(U) dt — (H? F)(U) dt,
i=1
(2) for any C?-function f : M — R, we have
d(f (X)) =@ )(X)dt + Z(Ueif) dB' + (L, f)(X) dt.

i=1

Let U be a solution to the SDE (2-5) and 7 (U,) = (X;, t). Furthermore let
[ =007 (T M, g,) > (TyM,g,), s<r<t<T,

be the induced parallel transport along X, (which by construction consists of isometries). We use the
notation
Xl =Xt(S’X)’ t st

if X; = x. Note that X, = X t(s’x) solves the equation

dX =Ujo dB, — V' (X" )dt, X =x.
For any f € Cg(M),

t
N

FOXE) = fx) - / L, f(X$9)dr = / VT (XS, Uy dB,)s, tels, TI,

is a martingale up to the lifetime ¢. In the case s = 0, we write again X} instead of X EO,x)'
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3. Derivative formula

Let L, = A, — V'¢,;, where ¢ is C1?([0, T[ x M). Throughout this section, we assume the diffusion (X;)
generated by L, is nonexplosive up to time 7. Recall that y,(dx) = e %™ d vol, and

%Mz(dX) = —(0:¢ + S, x) ui(dx) = —o(t, x) p, (dx),
with
Q(t’ x) = Qt(x) = al‘¢(t’x) +S(t7x)

For each ¢, we assume that o, is bounded from below by a constant depending on ¢.
For f € C,(M) let

t
Pﬁzf(x)=[E[eXP<—/ Q(rer)dr)f(Xt) Xs=X]- (3-1)

Then
d
S Pl =—Ls—e) P f. Pi=F. (3-2)

That u(s, x) := Pfl f (x) represents the solution to (3-2) is easily seen from the fact that

’
Cxp<_./ Q(a, Xa) da) Pr?tf(Xr('s’X))a rels, 1],
s

is a martingale under given assumptions.

Our first step is to establish a derivative formula for Pff,. When the metric is static, the derivative
formula for P; f is known as the Bismut formula [Bismut 1984; Elworthy and Li 1994]. The more general
versions in [Thalmaier 1997] have been adapted to Feynman—Kac semigroups in [Thompson 2019].

We fix s € [0, T'[ and consider the random family Q;; € Aut(Tx, M), 0 <s <t < T, given as a solution
to the ordinary differential equation

d0Qs,
dt

= —(Ric+Sc+Hess(¢)), Os.r»  Oss =id, (3-3)
where
(Ric+ Sc+ Hess(qb))//” = //‘;t1 o (Ric; + Sc; + Hess; (¢:))(X;) o //; ;-

Theorem 3.1. Let L, = A, — V', as above. For each t, assume that both o, and
(Ric + Hess(¢) + Sc)(t, -)

are bounded below and that |do;| is bounded. Then, forve TyM and f € C g (M),

(AP ) () =E [eXp<— / or(X,) dr) <df(//s,,Qs,zv)(Xz)—f(Xz) / dor (/s Qs.rv) dr)]. (3-4)
Proof. By the definition of Q as the solution to (3-3), we have

d(U; ' Qy.) = —U; ' (Ric +Hess(¢)) ,, Q.- (3-5)
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Set
N,() =dP% f ([, Qssv), s<r<t.
Write N, (v) = F(U,, q,(v)), where
F(u,w):=dPS f)c(uw), mwu)=(x,r)andw eR",
qr(v) :=U; "' Q0.
By means of Proposition 2.5, we have
d(F Uy, w)) 2 (D, F)(Uy, ) dr + (Apor F)(Uy, w) dr — (H? F)(U,, w) dr, (3-6)

where
(D, F)(u, w) = 8,(dP%, f)x(uw) + 3(3,8) ((d PZ, ), uw),

and where = stands for equality modulo the differential of a local martingale. Using the Weitzenbdck
formula we observe that

ar(dPré,)tf) =—d(L, — Qr)Pr&,)tf
=—d(A, — Vr¢r - Qr)Pr?tf
= —tw(V)2dPS, f +d P f((Hess ¢,)*) +d PS, f (Ric;*) +d (o, P f)x,-
Taking (2-2) and (2-3) into account, we have
(Anor F) Uy, w) = te(V)*d P, f (U w)

and
(H® F)(Uy, w) = Hess(¢,) (d PE, )%, Uyw) = d PE, f (Hess($,)) " ) (U, w).

Thus (3-6) can be rewritten as
d(F(Uy, w)) 2 dPS, f Rici ) Upw +d(er P4 f)x, Urw + 20,8 (@PE f)Fr Uyw).  (3-7)
Combining (3-7) and (3-5) we thus obtain
dN,(v) =d(F Uy, -))(qr)) + F (U, 3-q,(v)) dr
= d(or P f)x, /sy Qsrvdr

= (er(X) dPE f (s, Qs.rv) + PE f (X)) dOy (/] Qs,r0)) dr,
Hence we get

d(eXP<—/r 0u(Xy) du) Nr(v)) = — exp<_/r ou(Xy) du) Pré,)tf(Xr) dQF(//s,r Qs,rv) dr.

Integrating this equality from s to ¢ and taking the expectation gives (3-4). O

Corollary 3.2. Suppose that o, is bounded below for each t, and assume that there are functions k, K €
C ([0, T]) such that |do;| < k(t), respectively

Ric; 4+ Sc; + Hess; (¢;) > K (1).
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Then, for f € C;°(M) and f >0,

t t r
|VSP‘£tf|s < exp(—f K(r) dr)Pft|fo|, + Pf,f/ k() exp(—f K(u) du) dr.

Proof. The condition Ric; 4+ Sc; + Hess; (¢;) > K () implies

1050 < eXp(—f K(r) dr>.

The inequality then follows from the bound |dg;| < k (z). O
In particular, if ¢ = 0, Corollary 3.2 then becomes:

Corollary 3.3. Suppose that S; is bounded below for each t and assume that there are functions S, K €
C ([0, T]) such that |dS;| < k(t), respectively

Ric, + Sc; > K (1).
Then, for f € C3°(M) and f >0,

t t r
|VSR£tf|ssexp<—/ K(r)dr)thlvff|t+P§f,f/ x(r)exp(—/ K(u)du)dr.

4. Dimension-free Harnack inequalities

We first derive two Harnack-type inequalities for P?,. Such dimension-free Harnack inequalities were
studied first by Wang; see, e.g., [Wang 2014] for more results in this direction. When it comes to the
evolving metric case, in [Cheng 2017] the author gave the following Harnack inequality for the 2-parameter
semigroup P, as follows. We denote by B, (M) the space of bounded measurable functions on M.

Theorem 4.1. Suppose that
Ric; + Sc; + Hess; (¢;) > K (1).

Then, for any nonnegative function f € Bp(M) and0 <s <t < T,

I
4(p — Das, 1)

a(s, 1) ::f exp (2/r K (u) du) dr.

We first extend such kind of dimension-free Harnack inequality to that for the conjugate semigroup.

(Ps,tf)p(x)fPs,tfp(y)exp( pz(x’ )/)>,

where

Theorem 4.2. Suppose that o is bounded below, |do;| < k (1), and
Ric; + Sc; + Hess, (¢;) > K (7).

The following two Harnack-type inequalities hold for any p > 1:
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(i) For 0 <s <t < T and any nonnegative function f € By,(M),

t 2
o o\ o ¢p _ - pps (X, y) pn(s,t)ps(x,y)> )
(P, /)P (x) = (Ps, fP)(y)exp ((P 1)/‘Y sup o, dr + 4(p— Dals. 1) 2. 1) , (4D
where l
o(s, 1): :/ exp(Z/ K (u) du) dr,
nis,t): = / /Ux(r) exp(Z/v K (u)du _/’ K (u) du) drdv.
(ii) For 0 <s <t < T and any nonnegative function f € B,(M),
t 2
0 0 e pp;(x,y) 2pn(s, 1)
(Ps,tf)p(x) = (Ps,tfp)(y) E” [exp( (p 1)/S Qr(Xr)dr)] exp(4(p —Da(s. 1) a(s. 1) ps (x, y))

Proof. To facilitate the notion we restrict ourselves to the case s = 0. By approximation and the monotone
class theorem, we may assume that f € C?>(M) has compact support and infy; f > 0. Given x # y
and ¢ > 0, let y : [0, ] — M be the constant-speed go-geodesics from x to y of length pg(x, y). Let
vy =dys/ds. Thus we have |vg|o = po(x, y)/t. Let

_ fos exp(ZfOr Ku) du) dr
B fot exp(2f0r K (u) du) dr’
Then 7(0) =0 and h(t) =t. Let y; = yj(s) and

K p
o(s) = IOg £ (eXp (_/ or(X;) dl”) Psg,zf(xv))
0
=log Py (P )P (ys), s €l0,1].
To determine ¢’ (s), we first note that

d(PE, f(X))? =dM+(Ls+3,) (P, )P (X,)ds
=dM+p(p—1)(PE, /)P H(X) |V PE, fI2(Xs) ds+pos (X)) (PE, )P (X5)ds, s <&,

h(s)

where M; is the local martingale part of (Pft )P (Xy). This implies

SNk 4
r [(exp(— fo 0r(X,) dr) me,,f<xmk>) ] — (L)

SACk u
=p(p— DE* [ / exp (—p / or(X,) dr)<P5,tf>1’—2<xu>|vuPf’,tfﬁ(Xu) du].
0 0

Since infy; f > 0, by letting k — oo, we deduce that

Ky V4
[Ex[<exp(— /O Qr(Xr)d’”) Pf,,f(xs)) } — (RS, )" (x)

—p(p—1) / E [exp (—p / "o (X, dr)<P£,f>P—2|V“Pitf|ﬁ<Xu>] du. (42)
0 0
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Hence, for each x € M,

s p
D px <exp (— f 0r (X)) dr) P8, f (X, ))
os 0 '

A
= p(p— DE' [exp (—p / or(X,) dr)(Pﬁf)P—zws Pﬂfﬁ(xs)].
0
Moreover, by adapting Corollary 3.2 for Pf ?ie.,

\)

: s r
IVOPLC flo < exp(—f K(r) dr) PY2 VS fls + pPo”ff/ Kk (r) exp(—f K(u)du) dr,
’ 0 ’ ’ 0 0
we thus obtain, for s € [0, 7],
do(s)

ds (P(ff(Ps‘?tf)p

{p(p — DPPIPS P IV log PLf12) + R (s)(VOPJS (P )P vs>o}><m
- (Po(+f){(p — DPPEPE PRIV P 1)
o) exp(— [ & du)ms)Po’ff (PP 19" P2 £

_ —'00();’ y)h/(s) Py (PSP /OS Kk(r) exp<—/or K (u) du) dr}>(y.v)

4 po 0 s 0 2
>———pfeLp p —D|Vilog P
- (P()I??(Psé;)tf)p 0,s {( S,tf) ((p )l g S,If|s

_ Mh’(s) exp(—/s K (u) dM)IVS log P, f s
0

3 /00();, y)h/(s) /s - exp(_/’ K du) dr) }>(ys)
0 0

b ()2 s s "
> PR exp<—2 | K(u)du>po<x,y>2—£h’<s> | K<r)exp<— | K(u)du)drm(x,y),
4(p—1)t2 0 t 0 0

where the last inequality follows from the simple fact that

b2
aA*>+bA >—— a>0.
4a
Since |
W) = tt exp(2fr0 K (u) du) ’
Jo exp(2fy K (u) du)dr
we thus arrive at
do(s p exp "2K (u) du
@(s) S : (/o : )  po(x, )’
ds 4(p — D([fy exp(2/y K (u) du)dr)

B pexp(2fy K (u)du) fy «(r) exp(— [y K (u)du)dr
Joexp(2fy K (u)du)dr

po(x,y), se€[0,1]
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Integrating over s from O and 7, we get

t p
(Py )P (x) = [Ey[<exp(— /0 @r(Xr)dr>f(X,)) ]

Xp< ppo(x, y)?
4(p—1) [y exp(2fy K () du)dr

plafS (ryexp(2fS K (w)du—[) K () du) dr ds o ))
JEexp(2f K (u) du) dr pOLE Y
! t
<P [exp(—/ or(Xr) dr)f(Xt)p:| exp((p - l)f supo, dr)
0 0
Xp< ppo(x, y)?
4(p—1) [y exp(2fy K (u)du)dr

pfofo k) exp(2fy K w)du — [, K (u)du)drds
Jo exp(2fy K (u)du)dr
This proves part (i) of the theorem. In addition, by adopting in (4-3) the estimate

t P .
EJ’[(exp(— fo Qr(Xr)dl”>f(Xt))j|S(P(f,fp)(y)[Ey[exp(—(p—l) /O Q,(Xr)drﬂ,

part (ii) of the theorem follows as well. Il

Po(x, y))- (4-3)

5. On-diagonal heat kernel estimates

Let p be the fundamental solution of L, = A; — V'¢, in the sense that
{8zp(t, x;8, ) =(A = Vg)p(t, s, y)(x),
lim, s p(t, x;5,y) = 8y(x),
where ¢ > 5. Let p* be the conjugate heat kernel of p; it is the density of Pf ;(x, dy) with respect to
ui(dy), i.e.,

Psg,tf(x)zfp*(s,x;t,y)f(y) Mz(dy)=/p*(s,x;t, ) f (e Y vol, (dy),

where vol, denotes the volume measure with respect to g,. In [Cheng 2017] the following Harnack
inequality for the 2-parameter semigroup P; ; was derived; it can be seen as a special case of Theorem 4.1.

It is interesting to observe that Theorem 4.1 for P;;, along with the Harnack inequality (4-1) for Rf",,
will allow us to attain on-diagonal upper bounds for the heat kernel p:

c
pt,x;s,x) <

T Vi (Bi(x, T —5)) 15 (B (x,/T —5))

forO<s<t<Tandx e M.

Theorem 5.1. Suppose that sup o,; < oo foru € [0, T]. Let 0 <s <t < T and there exists ro € (s, 1)
such that, foru € [rg, t],
Ric, — Sc, +Hess, (¢,) > K1(u),
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and, foru € [s, rol,
Ric, + Sc, + Hess, (¢,) > K2(u) and |do,| < k(u) < oo.
Then the following heat kernel upper bound holds:

t—s +t—s+2n2(s,r0)«/t—s)

4oy (ro, 1) 4ar(s, o)

p(t,x;s,x) <exp (%/ supo, du +
« 1
Vit (B (x, /T —5)) s (B (x, VT —5))

o (ro, t):=/ exp<2/ Kl(u)du> dv, (5-1)

ar(s, rg): = /ro exp(Z/v Ky (u) du) dv, (5-2)

(s, rg): = m/UK(t) exp(2/v Kyr(u)du —/ K> (u) du) dt dv. (5-3)

Proof. We first observe that

where

p(t,x;s,x)zf pt,x;r,2) p(r,z; 5, x) ) (dz)
M

1/2 1/2
s(f p(r,x;r,z)zur<dz)) (/ P(F,Z;s,x)zﬂr(dz)) :
M M

Hence we are left with the task to estimate the two terms
I = / Pt xir P urdz), b= / p(r. 25030 (d2).
M M

In order to estimate I; we proceed with Theorem 4.1. Let p(s, x;u,y) := p(t —s,x;t —u, y) for
0<s <u<t. Then

Osp(-,x;u,y)(s) =—Li—sp(s,-;u, y)(x).
Write Py, f = [ p(s, x; u, y) f() fe—s(dy) for all f € By(M). As
Ricu - SCu +H€SSL,(¢M) > K](M), uec [rOa t]7

for some K € C([rg, t]), we obtain that, for t > r > ry,

P t—r 2 1(Bi (x, N B T )
(Po.s—r )2 () 1t (By (x, /1= 5)) eXp( 2} exp(2f; K1) du)dv

p7(x, y)
Zfrt exp(ZfUt K1) du)dv

S/M(Fo,z—rf)Z(X)eXp<— >uz(dy)

< / (Poser £ e(dy)
M

< exp( f supo~ (u, ->du) /M FO)? 1 (dy).
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Taking
fO)i=®kAp(t,x;r,2), ze€M, keN,

we obtain

. 2 ! _ ‘ t—s 1
fM(k/\p(t,x,r,z)) ur(dy)SeXp(/r supo (u, )du+2a1(r’t))m(3t(x’ =)’

o (r,t) = /Iexp(Z/t Ki(u) du) dv.

_ N2 ! . t—s 1
11—/Mp(t,x,r,z) /Lr(dz)feXp</r supo - (u, )du+Zal(r,z)>ut(B,(x,M))'

where

Letting k — oo, we arrive at

To estimate the second term I, we write

/p(r,z;s,x)zur(dz)=f (s, x5 7, 2)% ur(dz),
M M

where p* denotes the adjoint heat kernel to p. Recall that

{ o p (s, x;5r,2) =—Lsp*(s, 51, 2)(x) + 0s(X) p*(s, y; 1, 2),
lims_,, p*(s, x; 1, 2) = 6x(2).

1603

Let { P{, }o<s<r<: be the semigroup generated by the operator L; — ¢;. By (4-1), this time relying on the

assumption
Ric, + Sc, +Hess, (¢u) = Ka(u),  u € [s, rol,

we have that, for s < r <ry,

p2(x,y)  2ma(s, r)ps(x, )’))
205(s, 1) as(s,r) ’

(P&, )*(x) < (P& f5)(y) exp ( / sup o™ (u, - ) du+

ar(s,r) = /r exp(Z/U K> (u) du) dv,
n(s,r)= /r/vx(u) exp(Z/v Ky (1) dt —/u K> (1) dt> dudv.

By means of this formula, we can proceed as above to obtain

where

(Pﬁrf)z(xmsws(x,\/r—s»exp(—/rsupg(u,->du— = —Z”Z(S’r)”_s)

20(s, 1) (s, r)

ps(x,y)  2ma(s, r)ps(x, y)
205(s, 1) ar(s,r)

5/ (P&, f)*(x) exp (—/rSUPQ_(u, )du —
M s

5/ (P&, f)(y) Ms(d)’):/ SO wr(dy).
M M

) ws(dy)
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Thus taking f(z) := p*(s, x; r, z) Ak and letting k — oo, we obtain

t—s+2n2(s,r)«/t—s) (
20[2(5,}") /’LS(BS(X’VZ’_S))'

/P*(S,X;V,Z)Zur(dz)ieXp</ supo~ (u,-)du+ 5.4)
M S

Finally, combining (5-4) we obtain

p(t,x;s,x) <11

t
<exp (%f supo™ (u,-)du+
N

t—s + t—s+2n(s,r)/t —s
4o (r, 1) Aoy (s, 1)

X 5
Vits (B (x, T —9)) i (B (x, /T —5))

where the functions o, ay, 1, are defined by (5-1). O

Remark 5.2. (1) In [Coulibaly-Pasquier 2019], the author used a horizontal coupling of curves to derive
a dimension-free Harnack inequality for the two-parameter semigroup Ps, generated by A;, a method
first used by Wang [2011; 2014], and applied it then to establish an upper bound for the heat kernel. A
major difference to our approach when ¢ = 0 is that we use the Harnack inequality again to deal with
the term />, while in [Coulibaly-Pasquier 2019] a comparison result for P ; and Pﬁt is used so that the
conditions there include both upper and lower bounds on g¢. On the other hand, in [Coulibaly-Pasquier
2019], the middle time (z + s)/2 is used as reference time, so that the conditions require o to be bounded
and Ric; + Sc; to have a lower bound on the whole time interval. However the reference time r can be
chosen close to s so that if the manifold M is compact, and if |dos| < x and Ric; 4+ Scy + Hess; (¢5) > K>
at the initial time s, then for small € > 0 there exists § > O such that, for u € [s, s + J],

Ric, + Sc, + Hess, (¢,) > K —€ and |do,| <k +e€.

Therefore, the coefficients of the upper bound depend on g(s), the lower bound of Ric,, — Sc,, + Hess, (¢,,),
u €ls,t]and suppg, < oo, u € [s,t].
(2) Gaussian upper bounds for the heat kernel on evolving manifolds have recently also been obtained by

Buzano and Yudowitz [2020]. In their paper, they assume that for each vector field X on M the following
tensor inequality holds true:

0 < D(SC, X) = %S —AS— 2|S,’j|2 +4(ViSij)Xj —2(VJ'S)XJ' +2Rin,'Xj - 2S,’jX,'Xj.

Our approach via dimension-free Harnack inequalities enables us to relax such type of conditions.

We now exemplify our estimates in some specific situations. First we consider the modified geometric
flow for g, combined with the conjugate heat equation for ¢, i.e.,

{Btg(x, t) = —2(Sc + Hess(¢)) (x, 1),
0 (x) = —Ary(x) — S(x, 1).

The following result holds for system (5-5).

(5-5)
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Corollary 5.3. Suppose that (g;, ¢;) evolve by (5-5) and that, for 0 <s <t < T, there existsr € [s, t]

such that

Ric, —Sc, > K (u), u €][r, t], Ric, + Sc, +2Hess, (¢,) = Ko(u), u€ls,r].
Then

p(t,x;s,x)gexp( 1= + 1= ) ! ,
e Aar(r, ) daa(s,r) ) /g (By(x, VT — ) (B (x, /T —5))

o (r, t):=/ exp(Z/ Kl(u)du> dv,
ay(s,r). = /r exp<2/v K> (u) du) dv.

Proof. It is immediate from the definition of o that
01 = 0;¢; + trg, (Sc, +Hess, (¢;)) = 0,¢; + Ay + S, = 0.
The proof is hence completed by applying Theorem 5.1. U

In particular, we may consider the standard geometric flow for the evolution of the metric g, i.e.,
{8tg(t) = —28c(1),
¢(x) =0.

For this geometric flow, we have o = S and thus obtain the following result.

(5-6)

Corollary 5.4. Suppose that g; evolves by (5-6) and sup S;” < oo foreacht € [0, T[. ForO<s <t < T,
there exists r € (s, t) such that

RiCM_SCuZKl(u)7 ue[ra t]7
|dS,| <x(u) <oo, Ric,+Sc, > Kr(u), uecls,r].

Then
p(t, x;s,x)
! r— t—5+2m(s, r)/t — 1
<exp (1/ sup S, du + ul + $+2m(s.r) s) ,
2Js Aoy (r, 1) Aoy (s, 1) Vs (By(x, /T= ) e (Bi (x, /T—5))
where
1 v
oy (r, t)::/ exp(Z/ Kl(u)du) dv,
rr rv
ozz(s,r):=/ exp(Z/ Kz(u)du> dv,
SI’ v * v t
nz(s,r):sz K(t)exp<2/ Ko(u)du —/ Kz(u)du> dt dv.
S S N N
Proof. The result follows from Theorem 5.1 by taking Hess(¢) =0 and o = S. O

In particular, if we consider the heat kernel estimate under the compact Ricci flow, i.e., g, evolving by
(5-6) with Sc = Ric, then
Ki(t) =0, supR;(-)<supR;(-)<oo0.
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Hence if we further know that Ricy > K and |d R;| < « at time s, then there exists a constant C depending
on K, k, sup R~ and s, ¢ such that

C(K,k,supR™,s,t)
(By(x,N/T—35)) i (Bi(x,/T—5))

6. Gaussian-type heat kernel estimates

p(t,x;s,x) <
Vit

In this section, we apply the dimension-free Harnack inequality to heat kernel estimates. To this end, we
need the following lemma, which has been extended from [Grigoryan 1997]. Compared with the results
of Section 5 above, the additional condition “Sc > 0 is required.

Lemma 6.1. Forx e M, To >0, p>1, g=p/Q2(p—1)), let

ps(x, ¥)? Ty
V) =——, M, 0 < —
nes,y) To— 240 —5) yE€ <5< <2q
If Sc; = 0, then, forany f € BZF(M),
_ 32 T
[ B D@ i@y < [ o e iy, s<i<st 6
M M

Proof. Let
16)= [ (PP 70 expins, y) ).
We first take the derivative of the function n with respect to s,

205, M5y ) | ps(x, ¥)?

WO = =y T T -2 —)?
:2ps(x,y)fo"(x’y) Scs (Vus Yu) du 2 ps(x, y)? -~ 2y ps(x, y)?
Ty—2q0 ) To— 24— = 1Ty — 24—

where y : [0, ps(x, y)] = M is a gs-geodesic connecting x and y. Then we have
_ 4
I'(s) = f p(PE” P () (—Ls +;S>Rff”f(y) exp (1(s, ) du
M

+ /M (PEIP F)P(y) exp (n(s, ¥))s(s, y) dus fM (P2IP F)P(y) exp (n(s, ¥)) 05 () d s
= /M p(PE? FYPVL PP (v) f exp (n(s, ) dias + /M (P2 £YP(y) exp (n(s, ¥)) dsn(s, y) djus

. _/ PQ/Pf)P 'L, P“fl/pfexp (n(s,y))dus
M

N /Os(X,y)z
+2q [ (B DG exp (s, ) TR T
Vst/pfl os(x,y) 2
= —1 P@{p p n(s«)(' R o) )d s 2 0.
/p(p )(Ps f)fe P (P —DTo—2q—s)) =

By integrating the function I’ from s to 7, we prove inequality (6-1). O
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Theorem 6.2. Let p(t, x; s, y) be the minimal fundamental solution of

{atp(t, x;8,y)=Lipt,-;s,y)(x),
lim; ¢ p(2, x; 5, y) =8(y).

Assume that Sc; > 0 and sup o, < oo fort € [0, T]. If there exists r € (s, t) such that

Ric, — Sc, +Hess, (¢,) > K1(u), u€lr, 1],
Ric, +Sc, +Hess; > Kx(u) and |doy| <«x(u), uc€ls,r],

for some functions K| € C([r, t]) and k, K, € C([s, r]), then, foranyd >2ands <r <t <T,

Pt x5, y) < ¢ exp(—_ps(x’yy)
" Vi (By (xS T= )V 1 (B (y,/T—9)) 26(t —5)
where
_ l ! — . p(t—s) 1 1 (s, r)
C‘“"!z[ supe - (u, )d”+4(2—p) (al(r, 0w, r)>+a2(s,r) 206 —29)

forpe (1+1/(6—1),2)and oy, an, n as in (5-1).
Proof. Since Sc; > 0, we have p; < p, for r > 5. We observe that

p(t, x; 5, y)els ) /@1

< p(t,x;s, y)epr(x,)’)z/(4T0)

2 2
< [ pttexinpn s )@ NI )
M

|

1607

1/2 1/2
< </ pr, x; r, 7)ePr@*/To Mr(dz)) </ p(t, z; s, y)2ePr @0 To u,(dz)) . (6-2)
M M

where Tp = 8(t — s5). Hence we are left with the task to estimate the two terms
2
L= / p(t, x;r, 2)%e Ty, (d2),
M

12 = / p(r’ z; 8, y)2e,0r(Z,Y)2/TO Mr(dZ)
M
In order to estimate /; we proceed with Theorem 5.1. Recall that by definition

pGs,x;u,y)=pt—s,x;t—u,y) forO<s<u<t<T,

and write

Fs,uf=/ﬁ(s,x;u,y)f(y)uz—s(dy) for f € Byp(M).

Ric, — Sc, + Hess, (¢,) = K1(u), ue€lrt],
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for some K| € C([r, t]) and for p € (1, 2) such that g := p/[2(p — 1)] < §/2, we have
pt—s) 1
t t §—2q
22— p) [ exp|2f, Ki(u)du)dv

(Po.i—r [)?(x) 1 (By (x, N1 = 5)) eXP(—

2 2
< f (f_’o,z—rf)z(x)exp(— 20; (4, 9) o o) )Mt(dy)
M

22— p)frt exp(zfv’ Ki(u) a’u) dv To—2q(t —s)

pr(x, y)?
To—2q(—s)

t
< exp( / supo™ (u, -)du) / F2e @ T ) (dy),
r M

where the second inequality comes from the dimension-free Harnack inequality (see Theorem 4.1); the

< /M (Po,,_rfz”’y’(y)exp(— )Mz(dy)

third inequality is a consequence of Lemma 6.1. Taking
FO) = (kA p(t, x;r, y)e®ror @Dy ey keN,

we obtain

/ (e A p(t, x; 7, ) eFA T 1, (dy)
M

- (/’ (0. ) du + p(t—s) 1 ) 1
ex su u,-)du ,
=P\, e 2C—pai(n D) 8-2q ) 1, (B (e T —s5)
where . .
oy (r, t)=/ exp(Z/ Kl(u)du> dv.
r v
Letting k — oo, we arrive at
= f p(t.x: 1, 2)ePr OO dz)
M
t
_ pt—s) 1 1
< ) d . 6-3
—CXPUr e )t S () 5—2q>ut(3t<x,¢_r—s>> ©

To estimate the second term I, we write

/ p(r.z: s, ¥)* ur(dz) =/ pr(s. yir. 2wy (dz),
M M
where p* denotes the adjoint heat kernel to p. Recall that

{asp*(s, yir,z) =—Lsp*(s,-:r,2)(¥) + o5 () p*(s, yi 1, 2),
limgy, p*(s, y; 1, 2) = 8,(x).
Let {PSQ,,}OSSS,S, be the semigroup generated by the operator L, — o;. By Theorem 4.1, using the
assumption

Ric; + Sc; +Hess; (¢,) > K2(t) and |do;| <« (1)
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for ¢t € (s, ry), we have

(PP £)*(x)

r _ 2
< (PPIP PP (y) exp / 2-p) sup o (. ) du + —P w.y) L Zms, r)ps(x,y))’
s P 22 = p)aa(s, r) (s, r)

where s <r < rp and

ar(s, r) = /r exp(Z/U K> (u) du) dv,
m(s,r) = frka(u) exp<2fv Ky(t)dt _/u K> (1) dt) dudv.

By means of this formula, we can proceed as above to obtain

(Ps%pf)z(x)u_v(BS(x,Jt—s))exp(—frsupg_(u,-)du— pu=s) _ 2mlsnvims )

. 20-pasr) | msr)  8-2g
o/p £2/pyp _M)
< fM (PeIP f2/ry (x)exp( ey @)
2
< / f(y)zeXP(—M) s (dy), (6-4)
M 0

where Ty = §(t — s). Thus taking f(z) := p*(s, y; r, z) Ak and letting k — oo, we obtain

72 f—
12=/ P (s, y; 1, 22 VOO (dz)
M

p(t—s) +2n2(s,r)m 1 ) 1
2(2 = paa(s. r) (s, r) 8 —2q ) us(Bs(y, /1 —5))

-
< exp(/ supo™ (u,-)du+
N
Finally, combining (6-3) and (6-4) we obtain
pt,x;s,y) <v I

t
fexp(%/ supo~ (u,-)du+
S

p(t—s)( 1 4 1 )+n2(s,r)«/t—s+ 1 )

42-p) \ai(r, 1)  aa(s,r) aa(s,r) 2(6—2q)
1 { ps(x, Y)z }
X expy——— ¢,
Va5 (By (x, V1=3)) 1t (Bi (v, V/1=5)) 8(1—s)
where the functions o, ay, 1, are defined by (6-2). ]

Let M be a compact manifold. Since Ric + Sc + Hess(¢) and |do| are continuous in time and space,
we may choose r in Theorem 6.2 close to s such that if Ric + Sc 4+ Hess(¢) has a lower bound and |dp|
an upper bound at time s, then these terms will also have a lower, resp. upper, bound close to s. We state
a consequence of this observation in the following corollary.

Corollary 6.3. Let M be a compact manifold. Assume Sc, > 0 and sup o,; < oo foru € [0, T], as well as
Ric, — Sc, + Hess, (¢,) = K (u) for some continuous function K| € C([0, T]). Fors € [0, T, if there
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exist constants K, and k such that
Rics + Scy + Hesss (¢5) > K2 and  |dos| <k,

then, forany § > 2 and s <t < T, there exists a constant C such that

Ps (x, y>2} 1
28(t =) | /s (B T =)V 1t (B(y, /T —9))

where C depends on K1, K3, k, SUP[o.71x M @ and s, t.

p(t,x;s,y) <C eXp{—

Proof. As there exist constants K; and « such that
Ricy + Scy + Hessg (¢p5) > K> and  |dos| <k,
we conclude that, for any € > 0, there exists ry > s such that for u € [s, rg] we still have
Ric, + Sc, +Hess, (¢,) > K —€ and |do,| <k +e€.

Then by means of Theorem 6.2 we can then complete the proof. O

Remark 6.4. (1) Suppose that the geometric flow g; is evolving as a compact Ricci flow, i.e., the
manifold is compact, Sc; = Ric, and Ric, > 0 for ¢t € [0, T[. We consider the estimate for the heat kernel
p(t, x; s, y) generated by A;. Hence if Ricy > K and |d Rs| > k at the initial time s, then, for 7 > ¢ > s,
there exists a constant C depending on K, «, sup R(s, - ) and s, ¢ such that

Ps (x, y>2} 1
25(t =) ) /g (B (x, T — )V 110 (Bi (3, /T —5))

(2) Theorem 6.2 and Corollary 6.3 can be applied to the modified geometric flow (5-5) and the standard
geometric flow (5-6) as well.

pt,x;s,y) < Cexp:—

7. Super log-Sobolev inequalities and conjugate semigroup properties
The semigroup Pft is called supercontractive if it maps L? (M, ;) into L9 (M, us), i.e.,

||Ps£;)z||(p,t)—>(q,S) <00

forany 1 < p <g <400 and 0 <s <t < T. In the following section, we investigate the relation between
supercontractivity of Pf , and a log-Sobolev inequality with respect to u,, which is viewed as another
important application of the derivative formula of the conjugate semigroup.

We state first the main results of this section. Thanks to the gradient estimate for Py, and the fact that
the family of measures {1} takes over the role of the invariant measure, the results can be proved much
as in [Wang 2005, Chapter 5] and [Rockner and Wang 2003]. We include proofs in the Appendix for the
reader’s convenience.

Theorem 7.1. Assume that o, is bounded and (0, — L;)o; > 0,

Ric, + Hess, (¢;) +Sc; > K(t), |do,| <« (t) fortel0,TI.
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If

||P£,||(,,,,)_>(q7s) <00 forl<p<gand 0<s<t<T,

then, forevery f € H' (M, ;) such that || f ||2., =1, t €[0, T, the following super log-Sobolev inequalities
hold:

/f2 log £ du, sr/(|fo|?+iQtf2) dp+Bi(r), >0, (7-1)

where B,(r) = B, (v, (), 1) and

t t u 2
Bi(s, t) = qp_qp 10g(||PsQ’t||(p,,)_)(q,S)> +2/ (/ k(1) exp(—/ K(v) dv) du) dr,

y(s,t):wf exp(—2/ K(u)du)dr,
q—p s r

Y, (r) =inf{s € [0, 1] : y (s, 1) <r}.

Remark 7.2. (i) The log-Sobolev inequality (7-1) has been shown to be equivalent to the Sobolev inequal-
ity and can hence be used to obtain an upper bound for the heat kernel; see, e.g., [Zhang 2006] for the situ-
ation under Ricci flow, and [Buzano and Yudowitz 2020] for a general geometric flow. Moreover, the log-
Sobolev inequality can be used to characterize supercontractivity of the conjugate semigroup with respect
to the volume measure. Note that in [Buzano and Yudowitz 2020], the authors start with the condition that
D(Sc, X) > 0, which implies (d; — A;)S; > 0 and has been used in the proof of the log-Sobolev inequality.
We follow a different approach but include the condition (d; —L;)o; > 0 to obtain the log-Sobolev inequality.

(i) In Theorem 7.1 information about Ric 4+ Hess(¢) + Sc and |dg| on the time interval [s, ] is used
to obtain the log-Sobolev inequality (7-1) with respect to the measure p;. By a time reversal as in the
proof of Theorem 5.1, the lower bound on Ric 4+ Hess(¢) — Sc and the bound on |dg| allow us to get the
log-Sobolev inequality with a modified S;.

In addition, we observe that the inequality above has a close relationship with supercontractivity of the
conjugate semigroup as follows.

Theorem 7.3. Suppose that there exists a function B; : RT™ — R™ such that

e (f*log f3) <ru (IV' fI7 + %0 f?) + Bi(r) forallt [0, T[and || fl2, = 1. (7-2)
Then
||P£,||(p,,)_>(q7s) <00 forl<p<qgandO<s<t<T.

Proof. The main idea of proof is from [Rockner and Wang 2003]; we include it in the Appendix for the
reader’s convenience. 0

As an application, we specify the general results above in the case of the modified geometric flow
(M’ 8t ¢l) eVOlVing by

{&g(x, -)(t) = =2(Sc + Hess(¢)) (x, 1), (7-3)

0y = —Avpr — St
For this system, we have ¢ = 0. Thus, by Theorem 7.1 with o = 0, we obtain the following result.
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Corollary 7.4. Assume that (g;, ¢;) follows the evolving equation (7-3) and

Ric; + Hess;(¢;) +Sc; > K(t) forallt €0, T|.
Suppose that

| Ps.ell(py—sigs) <00 forl<p<gand0<s=<t<T.

Then the super log-Sobolev inequalities
[ Proesan <r [ 9 7R du+ gy, r-o (7-4)

hold for every f € H' (M, u;) such that | fllo, =1, t €[0, T[, where B,(r) := B(y,_l(r), t) and

=~ pq
B(s, 1) = q—p log (I Pyl (p.t)— (g.5))
4pg—1) [ ’
y(s, 1) = 4rg =1 exp<—2/ K (u) du) dr,
q—p s r

vy ) =inf{s = 0:y(s, 1) <r}.

Finally, we are in position to give a necessary and sufficient condition for supercontractivity of PSQJ
By the dimension-free Harnack inequality and by using the method from [Rockner and Wang 2003] (see
the proof in the Appendix), we have the following result.

Theorem 7.5. Suppose that o; is bounded from below and

Ric, + Hess, (¢;) +Sc; > K(t), |do,| <« (t) fortel0,TI.

Then the condition
||P£,||(p,,)_>(q,s) <00 foralll<p<qg<ooandO0<s<t<T

holds if and only if
p,,(exp()uptz)) <oo forallh>0andt € |0, T].

Applied to the modified geometric flow (o0 = 0), we have the following corollary from Theorem 7.5.

Corollary 7.6. Assume that (g;, ;) evolves according to (7-3) and that
Ric, + Hess;(¢;) +Sc; > K(t), te€]|0,T],
for some function K € C([0, T[). Then

||P£,||(p,,)_>(q,s) <o forl<p<g<ooand0<s<t<T
if and only if
ut(exp(kptz)) <oo for A>0andt €0, T].
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Appendix
To prove Theorem 7.1, we first establish a log-Sobolev inequality with respect to the semigroup Pfft.

Proposition A.1. Assume that
Ric; +Hess;(¢;) +Sc; > K(t), suplot| <oo and |do/| <«k(t) fortel0,T].

Then, forO<s <t <T and f € C;°(M),

t t
Pg(f*log f?) < 4( / exp(—z / K (u) du) dr) PV fI2+ P, f*log PE, f?
S r

t t u 2 t
+2f (/ K(u)CXp(—/ K(v)dv)du) drPﬁ,f2+/ Py,r(QrPr,th)dr.

Proof. Without loss of generality, we assume that f > § for some § > 0. Otherwise, we may take
fs = (f>+8)"/? and pass to the limit § | 0 to obtain the conclusion.
Now consider the process

r = (Pri f)10g(Pr f2) (X rag),
where as above

w=inf{t € [s, T[: pi(0, X;) =k}, k=1 (A-1)
By means of Itd’s formula, we have

d(P% ) log(PS fH (X))

=dM, + (L, +8,)(Pf, f* log P{, f)(X,) dr (A2)

=dM, + ( V" PE f212 4+ 0,(1 +log Pf,fz)Pf,fz) (X,)dr, r<tAt,

Py f?

where M, is a local martingale. On the other hand, by Corollary 3.2, we have the estimate
t t u
V" P2 [ < exp (— / K (u) du) PLIV f2i+ P f? / e (1) exp(— f K (v) dv) du
r r r
t t u
< 2exp<— f K@) du) P&(FIV! F1) + P& f / k(1) exp <— f K@) dv) du
r r r

t t u
szexp(— / K(u)du)JPfixf%Pftuvffﬁ)+Pfi,fz / K<u>exp(— / K(v)dv)du,

which gives

VP17 , t ) ,
§4eXP(—2 f K(u)du)(Pftﬁ)Pf,(W’fﬁ)+2<P£tf2>2< / K<u)exp<— / K(v)dv) du).
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Substituting back into (A-2), we obtain
d (exp (— / ' ou(X) du) (PAf?) log(Pf,fzxxr))
<dM,+4exp (—2ft K (u)du —/r Qu(Xu)du> PV fI7(X,)dr
+2 (/t K (1) exp <—/ K(v)dv) du)2 exp (-/ 0u(X.) du> P2 fA(X,)dr

,
+or(X,)exp (_/ Qu(Xu)du) Pr?tfz(Xr)d}’, 0<s=<r=munt.
s

Integrating both sides from s to ¢ A 7y, taking the expectation, and letting k 1 400, we obtain by dominated
convergence

P(f*log f2) — P2, f*log(PS, )

t t
54/ exp(—Z/ K(u)du)drPﬁ,wffﬁ

t t u 2 t
+/ {2(/ K(u)f:Xp(—/ K(v)dv) du) }dr Pﬁ,f2+/ P2 (o, P% f*) dr,

t t
P (f*log f?) 54( / exp(—z / K(u)du) dr) PV fIF+PS, flog P, f2

t t u 2 t
+ / {2( / K(u)CXp(— / K(v)dv)du) }derf, i+ / P2 (o, P% f)dr, (A-3)

completing the proof. g

or in other words,

Proof of Theorem 7.1. Since

t
logt (P, f*) < P& 2 < exp( f sup o;, du) £ 112,
S

we can integrate both sides of the log-Sobolev inequality (A-3) with respect to us. Taking (1-3) into
account, we get

uz(fZIng2)§4< / exp(—z / K(u)du)dr)u,<|V’f|?>+us<R£,leogPf,,f2>

t t u 2 t
-1—[ {2(/ K(M)CXP(—/ K(v)dv)du) }dr,u;(fz)—kf ,ur(QrPff,fz)dr. (A-4)

For the last term above, we have

0y (1r (QrPré,JtJﬂ)) = /'Lr(_QEPré;tfz) + Mr((arQr)Préjtfz) — ur(or(Ly — Qr)Pr?tfz)
= wr((3r0r — Lror) PE f) = 0.
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It then follows that

1 (0r P f2) < e (or ).
Moreover,

t t
m(leogf2>s4(f exp(—zf K(u)du)Vldr)uz(lvlfl,%r%@rf)+Ms( P{ frlog P )

' ' u 2
T )] o

We deal first with the term ;J,S(P‘f”,f2 log Pftfz). Letl < p<gq.Forany h€]0,1—1/p[ let
ph

€10, 1.

rp, =

By the Riesz—Thorin interpolation theorem, we have

P fllgns < ,Il(p (g5 1P ,IIL f;;(m I fllppes  f€LP(M, py), (A-5)

where | | . |

— = _rh—i-— and — = _rh—i-r—h.

Dh 1 p qn 1 q
Thus 1

1 -\
ph=-—— and qh=<1—Mh>
1—nh g(p—1)

Since || P11, (1,5) < 1, we get from (A-5) that

2(1—h
[ PATRII dyag <UPEN g 112

Then, for f € C;°(M) satisfying || fl2,; = 1, we have
L[ peppa-mya gp, — ([ poispa i P, FI2A-) gy —
n 5,1 s 5.t s (P, f1 )" d g

Taking the limit as & — 0 in (A—6) as

i_z
1 Yhqh
< (PG )= D- (A-6)

) p
lim - <||P 1 RS o1 102 | Pl (.= (g.)-

we obtain by dominated convergence

rig—1
Y [ P s 10g Pl g2 i = [ PP og i < =L 108 1P i
or equivalently,
q(p—
s (B 2 10g Py f) < 20— )ut(fz 0gf)+q Jog Pl (AT

Substituting (A-7) back into (A-4), we arrive at

me(fAlog f3) <y (s, ) e (IV' fIF + 300 f2) + B(s, 1) (A-8)
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for every f € Cg°(M) satisfying || f|l2,; = 1, where

y(s,t)=4pq(q_—_p1)/ [exp(—Z/ K(u)du)\/l] dr,

pq plg=1 ([ u ?
log(||PSQ,t||(p,,)_>(q,s))+2—/ Kk (u)exp| — K()dv)du) dr.
q—p q—p K r r

We complete the proof by letting

B(s,t) =

Bi(r) =By (). ). 0
Proof of Theorem 7.3. Let 0 <s <t < T and f € C3°(M) such that f > & > 0. To calculate the derivative
of s (P, £)4) with respect to s, we start with some preparatory calculations:
(Ls + ) (P )T
= Ly (PN +q () (P HIOTN @ P )+ ()P )T log P, f
=q($)(q(s) = DL NIO2IVPL F1 44" (P )T Tog P f +q(9)es(PE )T, (A9)

By Corollary 3.2, there exist positive constants ¢ (s, t) and ¢, (s, t) such that
VP 2l < c1(s O I 12+ c2(s, ) IV flel5.
Moreover, [| P, flloo < (P 1) [| flloo and
(PE )1 Togt (P f) < (P& H)IOF! < (P 1TOF || £+,
Combining these estimates, we obtain
I(Ls +05) (P )T, < 0.

Now, by Theorem 4.1, we see that

ius((P;if)qm) = — 15 (05 (PE )1 + s (35 (PE, £)19))

ds
= — 15 (05 (PE )1 + s ((Ly + 35) (PE, £)19)

=q()(q(s) = D) s IV P FI2(PE 197 + ¢/ (5) s (PEL 1)) log PE, f)
— (1 —q(s)) us(0s(PE, £)19).

. 1—- _
For “Ps,tf”q(s),s» simce ”Pﬁtf”q(g,(j) = (MS((Psé?tf)q(s)))l/q(s) l, we thus find

d o 7

TP Fllgrs = @) = DIPLf 1l s (VPR HTOT)
q'(s) _

P LIy s (CPEL S Tog PE, )

q'(s)

_ 7() ||Psg,tf||q(s),s log ”Pséftf”q(s),s

q(s)—1

q(s)

+

1_ 9
1P FIE Y s (05 (P 1)),
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On the other hand, passing from f to f?/2/|| fP/?||,., in the log-Sobolev inequality (7-2), we obtain

2
P L™ ep—2ygs g2 rf /212
/f (”fp/z”zs)d'us =r 4 ff A% f|sdﬂv+4/f osds + Bs (M f ||2,s'

In this inequality, replacing f and p by P¢, 2 f and ¢(s) respectively, we obtain

ws((PE )7 10g(PE ) — 1 P FILS)  10g [1PE Fllgs).s

ﬂ Q q(s)—2 sp o q(s)
<2 /(Ps,tf) VP SR dps+ s [ ecdi + B

B0,y p 2SI (A-10)

Now let
— 4"71([—5‘) _ 1 1 —
q(s)=e (p—D+1L, q@®)=p

Note that ¢ is a decreasing function and ¢’ (s)r/4 + (¢(s) — 1) = 0. Thus, combining (A-10) with (A-10),
we arrive at

Bs(r)q’'(s)
_” tf”q(s)s_ q(s)2 | P tf”q(s)s» O0<s=<t<T.
It follows that
1P Fllgcsrs < exp< / P “(r()q)z(”) u) 1 s (A-11)

If we impose that g(s) = g, then

g—1\"
r—4(t—s)<log 1) .

Substituting the value of r into (A-11) yields
t —1 /
Bu(4(t —s)(ogg = D/(p =) ) g’ (w)
PE fllgs < exp(— / - 5 du ) 1 f 1l p.s- O
s qu)
Proof of Theorem 7.5. By means of the Harnack inequality (4-1), the theorem can be proved along the
lines of [Wang 2005, Theorem 5.7.3] or [Cheng and Thalmaier 2018b]. For the reader’s convenience, we

include a proof here. We first prove that if 1 (exp()»,os )) < oo for all A > 0, then Py is supercontractive,
ie, forany 1 < p < g < oo, we have

1P (p.1y— (q.5) < 00
Let p>1and f € C,(M). For 0 <s <t < T it follows from the Harnack inequality (4-1) that

pp2(x, ) +n(s,r>ps<x,y))
4(p — Dafs, t) al(s,t) ’

[(PE PO < (P FIP) () exp ((P— 1)/ supo, dr +

Thus, if u,(| f|?) = 1, then

oy (x, y) _n(s,t)ps(x,y)) @)
4(p—1Da(s, 1) als, 1) ’
p(ps(x)+R)? (s, 1)(ps(x)+R)
4(p—Da(s,t) o(s,t)

1>|P J(x)V’/exp((l p)/ supo;” dr—

> | PS, f(0)|P s (Bs (0, R)) exp ((1—p)/ supo, dr— ) (A-12)
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where Bs(o, R) = {y € M : ps(y) < R} denotes the geodesic ball (with respect to the metric g(s)) of
radius R about 0 € M and where p;(-) = p; (0, - ). Since ,u,(exp(kp,z)) < 00, the system of measures ((y)
is compact, i.e., there exists R = R(s) > 0, possibly depending on s, such that

2
1 (Bo(0, R(5)) = 5 (bx : s () < R(s)p = 1 = P25) S oo
R(s)

(after normalizing u, to a probability measure). Combining the last estimate with (A-12), we arrive at

n(s, (s +R)  plps(x) + R)? )
a(s,t) 4(p — Da(s, 1) ’

t
1> |PY, f(x)[P 277 exp ((1 —p)/ supo, dr —
N
which further implies

(s, (s +R) | (ps(x) +R)?
pa(s, 1) 4(p — Da(s, 1)

—1 t
IPﬁtf(x)I§2eXp(—pp /SUPQr_dr-i‘ ) s<t. (A-13)
N

Therefore, we achieve
1
1P, Fllgs < (s (exp(q et +c202))))

for some positive constants ¢y, c; depending on s and ¢. Hence, if 115 (exp(hp?)) < oo for any A > 0 and
s € [0, T[, then Py, is supercontractive.

Conversely, if the semigroup Pf, is supercontractive, by Theorem 7.1 the super log-Sobolev inequalities
(7-2) holds. We first prove that 1, (e*”) < oo for s € [0, T[ and A > 0. To this end, let Ps.k = ps Ak and
hs k(X)) = pg(exp (Aps k). Taking exp(Aps x/2) in the super log-Sobolev inequality (7-1), we obtain

)Lh;’k()h) - hs,k()t) 10g hs,k()\) =< hs,k()")k2 (2 + ﬂ;,(zr) ) .

This implies

1 P AR (W) = he ) loghs k(M) 1 Bo(r)
Lloghy 1 (A ) = <L A0 A-14
(5 toghox (1) ) T (A-14)
Integrating both sides of (A-14) from A to 2A, we obtain
Bk @) = 12, exp (532 + Bo(r). (A-15)

From this inequality, along with the fact that there exists a constant M, such that

1
s (s = M) = g exp(= 537 = B, (1),
we get
hs,k()‘) = f exp()‘ps,k) d g +/ eXP()L,Os,k) dis
{}\pszMs} {)L,US<Mr}
< s (s = MGDH'? g (@) V2 1 eMs yy ((hps < M)

< (% exp(—%kz — By (r)))]/2 eXp(%)\z + %,Bs (r))hs,k()u) + eM‘YlLs({)LPs < M;})

1
< Shs k() +eM s (s < My,
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which implies A, (1) < 2eMs s ({Aps < M) for s € [0, T[. As M is independent of k, letting k tend to
infinity, we arrive at
ws () < oo forallse[0, TI.

To prove that moreover fi (e:“)s2 ) < oo fors e [0, T[ and A > 0, we can follow the argument in [Cheng
and Thalmaier 2018b, pp. 22-23]. O
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THE REGULARITY OF THE BOUNDARY OF VORTEX PATCHES
FOR SOME NONLINEAR TRANSPORT EQUATIONS

JUAN CARLOS CANTERO, JOAN MATEU, JOAN OROBITG AND JOAN VERDERA

We prove the persistence of boundary smoothness of vortex patches for a nonlinear transport equation
in R" with velocity field given by convolution of the density with an odd kernel, homogeneous of
degree —(n — 1) and of class C2(R" \ {0}, R"). This allows the velocity field to have nontrivial divergence.
The quasigeostrophic equation in R and the Cauchy transport equation in the plane are examples.

1. Introduction
The vorticity form of the Euler equation in the plane is

ow(x,t)+v(x,t)-Vo(x,t) =0,
v(x, 1) = (VN s (-, 1)) (x), (1)

w(x, 0) = wo(x),

where x e R%, t e R, N = % log |x| is the fundamental solution of the laplacian in the plane, VN is a
rotation of VN of 90° in the counterclockwise direction and wy is the initial vorticity. A deep result of
Yudovich [1963] asserts that the vorticity equation is well-posed in L2°, the measurable bounded functions
with compact support. A vortex patch is the special weak solution of (1) when the initial condition is
the characteristic function of a bounded domain Dy. Since the vorticity equation is a transport equation,
vorticity is conserved along trajectories and thus w(x, t) = xp, (x) for some domain D;. A challenging
problem, raised in the eighties, was to show that boundary smoothness persists for all times. Specifically, if
Dy has boundary of class C'*7, 0 < y < 1, then one would like D, to have boundary of the same class for
all times. This was viewed as a 2-dimensional problem which featured some of the main difficulties of the
regularity problem for the Euler equation in R>. It was conjectured, on the basis of numerical simulations,
that the boundary of D, could become of infinite length in finite time [Majda 1986]. Chemin [1993]
proved that boundary regularity persists for all times using paradifferential calculus, and Bertozzi and
Constantin [1993] found shortly after a minimal beautiful proof based on methods of classical analysis
with a geometric flavor.

MSC2020: primary 35Q31, 35Q35, 35Q49, 35K59, 35L60; secondary 42B20.
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The vortex patch problem was considered for the aggregation equation with newtonian kernel in higher
dimensions in [Bertozzi et al. 2016]. The equation is

8,,0(x, t) +d1V(/0(X, t)v(x7 t)) = Oa
v(x, 1) =—=(VNxp(-,1))(x), (2)
p(x,0) = po(x),

x € R" and r € R. In [Bertozzi et al. 2012] a well-posedness theory in L2° was developed, following the
path of [Yudovich 1963; 2002, Theorem 8.1]. When the initial condition is the characteristic function of
a bounded domain, one calls the unique weak solution a vortex patch, as for the vorticity equation. One
proves in [Bertozzi et al. 2016] that if the boundary of Dy is of class C'*7, 0 < y < 1, then the solution
of (2) with initial condition pyp = xp, is of the form

plx,t) = %_ZXD,(x), xeR", 0<t<1,

where D; is a C'*” domain for all # < 1. The restriction to times less than 1 obeys a blow-up phenomenon
studied in [Bertozzi et al. 2012]. Hence the preceding result is the analog of Chemin’s theorem for the
aggregation equation. See [Bae and Kelliher 2021] for a more general result concerning striated regularity.
After a change in the time scale the aggregation equation for vortex patches becomes the nonlinear
transport equation
p(x,t)+v(x,1)-Vp(x,1)=0,
v(x, 1) ==(VN*p(-,1))(x), 3)
p(x,0) = Xp,(x),

x € R", t e R, where N is the fundamental solution of the laplacian in R"” and Dy is a bounded domain. In
this formulation one proves in [Bertozzi et al. 2016] that if Dy is of class C 147 then there is a solution of (3)
of the form x p, (x) with D, a domain of class C'*7. To the best of our knowledge there is no well-posedness
theory in L for (3), for a general initial condition in L2°. However, if the initial condition is the character-
istic function of a domain Dy, not necessarily smooth, one has existence and uniqueness for the transport
equation (3). For existence, solve the equation (2) with initial condition po(x) = xp,(x). Then the unique
solution has the form p(x, t) = (1/(1 —t)) xp, (x) and hence, after changing the time scale as in [Bertozzi
et al. 2012], one obtains a solution for (3) which is a vortex patch. For uniqueness, we resort to an argument
which combines results of [Clop et al. 2016a; 2016b] to prove that each weak solution of (3) in L° is la-
grangian and so a vortex patch. Changing the time scale, one obtains a weak solution of (2), which is unique.

The proof follows the scheme of [Bertozzi and Constantin 1993] and overcomes difficulties related to
the fact that the velocity field has a nonzero divergence and to the higher-dimensional context. The reader
can consult [Bertozzi et al. 2016] for connections with the existing literature and for references to models
leading to various aggregation equations.

This paper originated from an attempt to deeply understand the role of the kernel that gives the velocity
field. For the aggregation equation the kernel is —V N and for the vorticity equation in the plane the
kernel is a rotation of 90° of VN. These are odd kernels, smooth off the origin and homogeneous of
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degree —(n — 1). We wondered what would happen for the Cauchy kernel

ﬁ — L(VN), with L(x,y) = (x, =), z=(x,y) e R =C.

Although apparently there is no model leading to the nonlinear transport equation given by the Cauchy
kernel, from the mathematical perspective the question makes sense. We then embarked in the study of

the nonlinear transport equation
atP(Z, t) + U(Zs t) : VIO(Z7 t) = 0

vz = (g #0C0) @), @

p(z,0) = xpy(2),
where z = (x, y) is the complex variable and Dy is a bounded domain with C!'*” boundary, 0 <y < 1. A
first remark is that apparently there does not exist a well-posedness theory in L2° for the equation above,
but this does not prevent the study of smooth vortex patches, as a particular subclass of L>° enjoying a
bit of smoothness.
To grasp what could be expected we looked at an initial datum which is the characteristic function of
the domain enclosed by an ellipse
X2 2
Dy = {(x y) e R?: _+ﬁ < 1}
We proved that there exists a weak solution of (4) of the form p(z, ) = xp,(z), with D, the domain
enclosed by an ellipse with semiaxes a(¢) and b(t) collapsing to a segment on the horizontal axis as t — oo.
A key remark is that (4) is not rotation invariant. Fix an angle 0 < 6 < 5 and consider as initial domain
the set enclosed by a tilted ellipse

2 2
Do—e’e{(x y) e R?: ——l—% < 1}

As before we find a weak solution of (4) of the form p(z, t) = xp,(z), with D; the domain enclosed by
an ellipse with semiaxes a(¢) and b(t) forming an angle 0 (t) with the horizontal axis. The evolution is
different according to whether 0 < 6 < ” or Z <0 < Z. Under the assumption that ag > by, in the case
0<6 < Z the semiaxis a(t) increases as t — oo to a posnlve number ao, b(t) decreases to 0 and 0(r)
decreases to a positive angle 6o, Hence D; collapses into an interval on a line forming a positive angle
with the horizontal axis. If = ” < 6 < Z, then for small times a(t) decreases and b(¢) increases, so that
the ellipse at time ¢ tends 1n1t1a11y to become a circle. This happens until a critical time is reached after
which a(¢) increases and b(t) decreases. The angle 0(¢) decreases for all positive times and at some point
it becomes 7; after that one falls into the regime of the first case and the domain D; collapses as ¢ — 00,
into a segment on a line which forms a positive angle with the horizontal axis. The case ag < by is similar
and can be reduced to the previous situation by conjugation (symmetry with respect to the horizontal axis).

Detailed proofs of the results just described can be found in Section 7. What they show is that the
behavior of vortex patches for the Cauchy transport equation can be much more complicated than for the
vorticity or aggregation equations. This is also easily understood if one looks at the divergence of the vector
field in (4). If 3 and 8 denote respectively the derivatives with respect to the z- and Z-variables, then we get

20v(z, 1) = p(z,1)
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and
29v(z, t)———PV/( 2p(w 1)dA(w) =B(p(-,1))(2),

where B is the Beurling transform, one of the basw Calderén—Zygmund operators in the plane. Here d A
is 2-dimensional Lebesgue measure. The divergence of v is given by

. _ 1 1
divve =RQ2ov) = p.v.n/ ((Z )2>p(w,t)dA(w)

g (e
= p.V.T[< P * p( ,t))(z).

The last convolution is a Calderén—Zygmund operator (a second-order Riesz transform) and so it does not

map bounded functions into bounded functions. The most one can say a priori on the divergence of the
velocity field is that it is a BMO function in the plane, provided the density p( -, t) is a bounded function.
It is a well-known fact, already used in [Bertozzi and Constantin 1993; Chemin 1993], that if D is a domain
with boundary of class C'*7, then an even Calderén—Zygmund operator applied to xp is a bounded
function. Thus we indeed expect div v to be bounded. Nevertheless, the expression of the divergence of
the field in terms of a Calder6n—Zygmund operator applied to the density is potentially difficult to handle.

We have succeeded in proving that there exists a weak solution of (4) of the form xp, with D; a domain
with boundary of class C'*7 for all times ¢ € R. This weak solution is unique in the class of characteristic
functions of C'*” domains.

The Cauchy kernel belongs to a wider class for which the preceding well-posedness theorem holds.
We refer to the class of kernels in R” which are odd, homogeneous of degree —(n — 1) and of class
C*(R™\ {0}, R"). Interesting examples of such kernels are those of the form L(VN), where L is a linear
mapping from R" into itself and N is the fundamental solution of the laplacian in R". They are harmonic
off the origin. In particular in R3 one can take L(x, x2, x3) = (—x2, x1, 0). The corresponding field is
divergence-free and the associated equation is the well-known quasigeostrophic equation. See [Garcia
et al. 2022] for recent results on rotating vortex patches for the quasigeostrophic equation.

Our main result is the following.

Theorem. Let k : R" \ {0} — R" be an odd function, homogeneous of degree —(n — 1) and of class
C*(R™\ {0}, R"). Let Dy be a bounded domain with boundary of class C'17, 0 <y < 1. Then the
nonlinear transport equation
8[,0(x, t) + U(.x, t) : Vp(-x’ t) =0

v(x7t)=(k*p('st))(x)’ (5)

p(x,0) = xp,(x),
x € R", t € R, has a weak solution of the form

p(x,t)=xp,(x), xeR" teR,

with D, a bounded domain with boundary of class C'*7.

This solution is unique in the class of characteristic functions of domains with boundary of class C'*7.

For the notion of weak solution see [Majda and Bertozzi 2002, Chapter 8].
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A remark on the special case in which the kernel k is divergence-free is in order. In this case, in
particular for the quasigeostrophic equation, one has well-posedness in L2°. Existence can be proved
following closely the argument in [Majda and Bertozzi 2002, Chapter 8] for the vorticity equation (for the
smooth case see [Cantero 2021]). For uniqueness one resorts to [Nieto et al. 2001] whenever the kernel
has the special form L(VN) with L a linear map from R" into itself. Indeed, in that work uniqueness in
L° is proven for the continuity equation in higher dimensions with velocity field given by convolution
with =V N. The changes needed to take care of the case L(V N) are straightforward. If k is divergence-free
and satisfies the general hypothesis stated in the theorem, then one appeals to [Crippa and Stefani 2021],
where uniqueness is proved for lagrangian solutions, and to [Clop et al. 2016a; 2016b], in which one
shows that a weak solution is lagrangian.

The paper is organized as follows. In the next section we present an outline of the proof, in which
only a few facts are proven. The other sections are devoted to presenting complete proofs of our results.
Section 3 is devoted to an auxiliary result. In Section 4 an appropriate defining function for the patch at
time ¢ is constructed. Section 5 deals with the material derivative of the gradient of the defining function
and its expression in terms of differences of commutators. In Section 6 we estimate the differences of
commutators in the Holder norm on the boundary via Whitney’s extension theorem. Domains enclosed by
ellipses as initial patches for the Cauchy transport equation are studied in Section 7 and the unexpected
phenomena that turn up along the vortex patch evolution are described in detail. Finally, there is an
Appendix on the existence of principal values of singular integrals in a very special context.

Constants will be denoted by C, mostly without an explicit reference to innocuous parameters, and may
be different at different occurrences. If D is a domain with smooth boundary o = o3 p denotes the surface
measure on d D and when there is no confusion possible we omit the subscript. The exterior unit normal vec-
tor to 9 D at the point x is denoted by 71(x) = (n(x), ..., n,(x)), without explicit reference to the boundary.

2. Outline of the proof

The proof follows the general scheme devised in [Bertozzi and Constantin 1993]. There are serious
obstructions caused by the fact that the field is not divergence-free and we will explain below how to
confront them. The reader will find useful to consult [Bertozzi and Constantin 1993; Bertozzi et al. 2016].

2.1. The contour dynamics equation. Assume that one has a weak solution of (5) of the form p(x, t) =
xp,(x), D; being a bounded domain of class C 147 for ¢ in some interval [0, T]. The field v(-,?) is
Lipschitz. This is due to the fact that our kernel has homogeneity —(n — 1) and so Vv is given by a matrix
whose entries are even convolution Calder6n—Zygmund operators applied to the characteristic function
of D; plus, possibly, a constant multiple of such a characteristic function (coming from a delta function
at the origin). Since D, has boundary of class C 147 all entries of the matrix Vv are functions in L (R")
[Bertozzi and Constantin 1993]. Thus the equation of particle trajectories (the flow mapping)

dX(a,t)

- =v(X(a,1),1), X(,0)=a, (6)
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has a unique solution and X (-, ¢) is a bilipschitz mapping of R" into itself, 0 < ¢ < 7. Indeed one has
the usual estimate

t
IVXCl < exp [ 1900 5) s ™)
0
Since k is homogeneous of degree —(n — 1) and smooth off the origin we have
k= 01(x1k) + 92 (x2k) + - - - + 3 (xpk),  x = (x1,...,x,) € R"\ {0}. (8)

This follows straightforwardly from Euler’s theorem on homogeneous functions.
Assume that p(x, ) = xp,(x) is a weak solution of the general equation (5). The velocity field is
v(-, 1) = xp, *k = xp, * (91 (x1k) + - - - + 9n (x,k))
= 01 Xp, * (X1k) + - - + 0 x D, * (xnk)
= —n1doyp, x (x1k) — - - - —n, doyp, x (x,k).

Thus
vix, ) =—_ /3 g =3k = y)nj () doao, ()
j=170F

__ /aD kG — ) x — v, i) doap, (v),  x € R™. o

The next step is to set x = X («, t) and to make the change of variables y = X (8, ) in the preceding
surface integral. To do this conveniently let 71(8), ..., T,—1(8) be an orthonormal basis of the tangent
space to d Dy at the point 8 € 0Dg and let DX (-, t) be the differential of X (-, ¢) as a differentiable
mapping from 0Dy into R". The vectors DX (B, t)(T;(B)) are tangent to d D, at the point X (8, t) for
1 < j <n—1. Hence the vector

iZIDX(B.1)(Tj(B)) (10)

is orthogonal to 0 D, at the point X (B, 7) and a different choice of the orthonormal basis 7;(8), 1 <j <n—1,
has the effect of introducing a + sign in front of (10). We may choose the T;(B) so that n(B), Tv(B), ...,
T.—1(B) gives the standard orientation of R". Substituting the expression (9) for the velocity field in (6)
and making the change of variables y = X (8, t) we get

d _
%X(Ol, t)=v(X(a,1),1)
=- fa KOG = X (B (X (@ 1) = X (8,0, NZIDX (B, 0T (B) doran, (B).
Let X : Dy — R" be a mapping of class C!'*7 such that for some constant & > 0
IX(a)—X(ﬂ)Izﬁla—ﬂl, a, B € dDyo. (1)

In other words X € C'*7(d Dy, R"), X is bilipschitz onto the image and . is a Lipschitz constant for the
inverse mapping.
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Define a mapping F(X) : 9Dy — R" by

F(X)(@) = — /d | KX(@) = X () (X(@) = X(®), NI DX BT, (B))downn(). (12)
The contour dynamics equation (CDE) is
dX(a,t)
0 - F(X(-,1))(a), oe€dDy,
X(-,0)=1,

where I denotes the identity mapping on d Dy.

We conclude that if there exists a weak solution of the type we are looking for, then the flow restricted
to d Dy is a solution of the CDE.

To proceed in the reverse direction, we need some preparation. Let 2 be the open set in the Banach
space C"t7 3Dy, R™) consisting of those X € Ct7 0Dy, R™) satisfying (11) for some u > 0. The set 2
is open in C!'*7 (9 Dy, R") and the CDE can be thought of as an ODE in the open set Q. We want to
show that a solution X (-, ¢) to the CDE in an interval (—7, T') provides a weak solution of the nonlinear
transport equation (5). Clearly X (-, ¢) maps d Dy onto a (n—1)-dimensional hypersurface S;. The goal
now is to identify an open set D, with boundary S;. If we add the hypothesis that 0 Dy is connected,
and hence a connected (n—1)-dimensional hypersurface of class C'*?, then the analog of the Jordan
curve theorem holds [Guillemin and Pollack 1974, p. 89]. Then the complement of d Dy in R" has only
one bounded connected component which is Dy. In the same vein, the complement of S; has only one
bounded connected component, which we denote by D, so that the boundary of D; is S;. The definition
of D; is less direct if we drop the assumption that d Dy is connected. We proceed as follows. Let Stj ,
1 < j < m, be the connected components of S;. Denote by Utj the bounded connected component of
the complement of Stj in R". Among the Utj there is one, say U,l, that contains all the others. This is
so at time ¢ = 0 because Dy is connected and this property is preserved by the flow X (-, ). We set
D, =U'\ (U;fl:z U{), so that the boundary of D; is ;.

Indeed, as the reader may have noticed, it is not necessary to assume that Dg is connected in our
theorem. It can be any bounded open set with C!'*7 boundary. Then the argument we have just described
is applied to each connected component.

Define a velocity field by

v(x,t)=(kxxp)(x), xeR" te(-T,T). (13)

Since D, has boundary of class C't7, the field v(-, 1) is Lipschitz for each t € (—T, T') and the equation
of the flow (6) has a unique solution which is a bilipschitz mapping of R" onto itself whose restriction to
0Dy is the solution of the CDE we were given. Thus X (Dy, t) = D; and xp, is a weak solution of the
nonlinear transport equation (5).

2.2, The local theorem. As a first step we solve the CDE locally in time. For this we look at the CDE as
an ODE in the open set 2 of the Banach space C'*7 (3 Dy, R"). To show local existence and uniqueness
we apply the Picard theorem. First one has to check that F(X) € C'17 (3 Dy, R") for each X € Q. After
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taking a derivative in « in (12) one gets a p.v. integral on d Dy, which defines a Calderén—Zygmund
operator (not of convolution type) with respect to the underlying measure dojp,, acting on a function
satisfying a Holder condition of order y. The result is again a Holder function of the same order, since one
shows that Calder6n—Zygmund operators of the type one gets preserve Holder spaces. In a second step
one needs to prove that F(X) is locally a Lipschitz function of the variable X or, equivalently, that the
differential D F'(X) of F at the point X € Q is locally bounded in X. Again one has to estimate operators
of Calder6n—Zygmund type with respect Holder spaces of order y. These estimates, subtle at some points,
are proved in full detail in [Bertozzi et al. 2016] for the kernel Kk = —V N. The variations needed to cover
the present situation are minor and are left to the reader. It is important that, as in [Bertozzi et al. 2016],
the time interval on which the local solution exists depends continuously only on the dimension 7, the
kernel k, the diameter of Dy, the (n—1)-dimensional surface measure of d Dy and the constant g (Dy)
determining the C'*7 character of 3 Dy, whose definition we discuss below.

Let D be a bounded domain with boundary of class C!*7. Then there exists a defining function of
class C'*7, that is, a function ¢ € C'*7(R"), such that D = {x € R" : ¢(x) < 0} and Vo(x) # 0 if
@(x) =0. We set

IVelly.ap
IV@lint

where |V ()| =V, 0(0)’.
Vo) — Vol |

||V<P||y,aD=Sup{ .x,yeaD,x;éy},
lx —yl”

q(D) = inf{ : ¢ a defining function of D of class Cl+y}, (14)

IV@lint = inf{| Vo (x)| : 9(x) = 0}.

There is here an important variation with respect to [Bertozzi and Constantin 1993; Bertozzi et al.
2016]: the Holder seminorm of order y of Vg is taken in those papers in the whole of R". For reasons
that will become clear later on we need to restrict our attention to the boundary of D and this requires
finer estimates.

2.3. Global existence: a priori estimates. Assume that the maximal time of existence for the solution
X(-,t) of the CDE is T. By this we mean that X (-, ¢) is defined for ¢t € (—7, T') but cannot be extended
to a larger interval. We want to prove that 7 = oco. For that it suffices to prove that for some constant
C = C(T) one has

diam(D;)+0(0D;)+q(D;) <C, te(=T,T). (15)

If the preceding inequality holds, then we take fy < T close enough to T so that after the application of
the existence and uniqueness theorem for the CDE to the domain Dy, at time fy we get an interval of
existence for the solution which goes beyond T (the same argument applies to the lower extreme —7).
To obtain (15) we look for a priori estimates in terms of ||Vv| . For diam(D;) and o (d D) this is
straightforward in view of (7). The core of the paper is the a priori estimate of g(D,), which we get by
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constructing an appropriate defining function ®( -, ¢) for D; satisfying
t
IV (-, ) linf = [V@olint eXp(—Cn/ IIVU(-,S)IIoodS), t>0, (16)
0

t
IVOC-, Dllyap, = IVeolly.a, CXP(Cn/ a1+ IIVv(-,S)Iloo)dS), 1>0. (7)
0

As it was pointed out in [Bertozzi et al. 2016] if one transports a defining function ¢y of Dy by
¢, =@oo X~'(-, 1), then Vo, may have jumps at the boundary of D, for ¢ # 0 and so ¢; is not necessarily
differentiable. In [Bertozzi et al. 2016] one shows that

IVoo(X ™' (x, )] -

lim Ve(y,t)= lim detVX '(y,¢ , c oD, 18
plm ey, 1) pam  de (v, 1) det D) n(x) x ' (13)
Voo(X ' (x, 1) .
lim Vo= lim  detvx~(y,n X WG cap, a9
R!\D;5y—x R\D;>y—>x det D(x)

where X ~!(-, ¢) is the inverse mapping of X (-, ¢) and D(x) is the differential at x of the restriction of
X~1(-,1) to dD,, as a differentiable mapping from 0 D; onto d Dg. Define

0, € dDy,
O(x, 1) = » rEo (20)
detVX(X '(x,0),Heo(x,t), x¢&dD,.
We show in Section 4 that ® (x, ¢) is a defining function of D, of class C'*7.
The definition of @ yields a formula for its material derivative D/(Dt) = 0; + v - V, namely,
be div(v) @ (21)
— =div(v) ®.
Dt
Taking gradient in the preceding identity one gets
D(V®) : . ;
D =V(div(v)) ® +div(v)V® — (V) (VD), (22)

where (Vv)' stands for the transpose of the matrix Vv. The right-hand side of (22) can be split into two
terms which behave differently. The first is V(div(v)) ® and the second div(v)V® — (Vv) (VD). We
prove that the second term is a finite sum of differences of commutators, which can be shown, with some
effort, to have the right estimates. The first term does not combine with others to yield a commutator
and because of that we call it the solitary term. A priori it is the most singular term on the right-hand side
of (22), since it contains second-order derivatives of v. We show that the solitary term extends continuously
to dD; by 0 and so it can be ignored at the price of working only on the boundary of D, for all ¢.

To prove that the solitary term extends continuously to the boundary by O we need a recent result of
[Vasin 2017] whose statement is as follows. Let T be a convolution homogeneous even Calderén—Zygmund
operator of the type

T(f)x)= p-V-/W Lx—y)f(y)dy= elg% Lx—y)f(y)dy, (23)

ly—x|>¢€
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where L is an even kernel, homogeneous of degree —n, satisfying the smoothness condition L €
C'(R"\{0}) and the cancellation property /|x|=1 L(x)do (x)=0. The function f isin L?(R"), 1 < p < o0,
and the principal value integral (23) is defined a.e. on R". Vasin’s result states that if D is a bounded

domain with boundary of class C'*” then
IVT (xp)(x)| dist(x,dD) ™" <C, xeDUR"\ D), (24)

where the constant C depends only on 7, y and the constants giving the smoothness of 0 D. We provide a
proof of (24) in Section 3 for completeness.

One applies (24) to the second derivatives of the velocity field v = k x xp, with ¢ fixed. One has in the
distributions sense

3k = p.v. djk +¢; 89, with & :f k(£)gj do (£), (25)
|§1=1

and so
(3;v)(x) = (p.v. djk* xp,)(x) +¢; xp,(x), x €D, UR"\ Dy),

and, taking a second derivative,

(39v)(x) = i (p.v. djk* xp,)(x), x€D,UR'\D,), 1 <I,j<n. (26)
By (24) applied to the operator T associated with the kernel L = 9;k

|(@9;v) ()] dist(x, 8D)' 7 < C(1), x e D,UR'\Dy), 1=1,j=<n, 27)

where C(¢) depends on n, y and the constants related to the smoothness of d D,. This implies that the
solitary term has limit O at the boundary of dD,, coming from the complement, because | D (x, 1)| is
comparable to dist(x, dD;) as x approaches 0 D; (® (-, ¢t) is continuously differentiable and vanishes on
the boundary but the gradient does not).

It is worth remarking that if each component of the kernel k is harmonic off the origin, then (24) can
be obtained readily from the fact that 7'(xp) satisfies a Holder condition of order y in D, which is the
main lemma of [Mateu et al. 2009].

From (22) at boundary points, and thus without the solitary term, one gets straightforwardly (16). Thus
the a priori estimate of g (D) is reduced to (17).

We turn now our attention to the second term in (22). We prove that the i-th component of the vector
div(v) VO — (Vv)' (V) evaluated at the point x € R" is a sum of n— I terms, each of which is a difference
of two commutators. In fact, the i-th component is

p.V./

It is crucial here that we obtain differences of commutators, which provides eventually an extra cancellation.

9jkj (x = y)(@; P (x) — 3; P(y) dy — P-V-/ dikj(x — y)(9; P (x) — ;P (y))dy.  (28)

D,

In [Bertozzi and Constantin 1993] it was shown that the Holder seminorm of order y of each commutator
in (28) can be estimated by C,, (1 + [[Vv (-, )|lcc) IV®(-, 1)]l,,r». This is not enough in our situation,
because of the presence of the factor [[V® (-, t)]l,, rr, which should be replaced by a boundary quantity
like [VO(-, D)lly0p,-
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To obtain the correct estimate we transform the j-the term in (28) into a difference of two boundary
commutators:

p.V./aD kj(x — y)(3; ®(x) — 3; @ (y))n;(y) do(y)

- P-V-/a kj(x = y)(0;P(x) —8;@(y)ni(y)da(y). (29)
D,

It is worth emphasizing here that it is not true that the commutator

P-V-/D djkj(x — y)(3; P (x) — 3; @(y)) dy
equals t
P-V-/a kj(x —y)(0; ®(x) — 8; P(y)n;(y)do(y).
D,

What is true is that the difference of two commutators in the j-th term of (28) equals the difference of two
commutators in (29). There is some magic here in arranging all terms so that certain hidden cancellation
takes place. To get the right estimates on the boundary commutators one cannot adapt [Bertozzi and
Constantin 1993, Lemma 7.3, p. 26] to the underlying measure do on d D,, because this would give a

constant of the type
o(B(x,r))
Cir= sup sup ————
xedD; r>0 r

’

which can be estimated by the Lipschitz constant of X (-, ¢), namely, exp fot IVv(-, s)|lcods. This
exponential constant is by far too large.

One needs to replace the standard bound C,, (1+[|Vu (-, H)[lcc) VP (-, 1) ||, g for a “solid” commutator
of the type (28) by C,, (1 +[IVv (-, D)) IVP (-, D)l,,9p,. Here we have used the term solid commutator
to indicate that the integration is on D, with respect to n-dimensional Lebesgue measure as opposed
to a boundary commutator in which the integration is on the boundary of d D, with respect to surface
measure o. To get the estimate in terms of |[V® (-, 1), 3p, we resort to the difference-of-commutators
structure, which allows us to appeal to Whitney’s extension theorem, the reason being that one can switch
between a difference of boundary commutators and a difference of solid commutators via the divergence
theorem. The final outcome is (17).

Of course for those cases in which the kernel is divergence-free, the quasigeostrophic equation in
particular, one does not need the boundary commutators and getting the commutator formula (28) suffices
to complete the proof as in [Bertozzi and Constantin 1993]. Indeed in these cases the transported defining
function is already a genuine defining function, since the gradient has no jump according (18) and (19),
or appealing to a regularization argument, as in [Radu 2022].

To complete the proof from the a priori estimates is a standard reasoning. One needs a logarithmic
inequality for ||Vv(-, t)||s0, Which is a consequence of the boundedness of 7'(xp) for an even smooth
convolution Calderé6n—Zygmund operator T and a domain D with boundary of class C'*7, and of the
particular form of the constant. One obtains

C VoI, -
V0, Dl = 2 (1 4 10g* (1, Y 2rans ) ) (30)
Y qu)linf
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where C, is a dimensional constant and | D| stands for the n-dimensional Lebesgue measure of the
measurable set D. The novelty in inequality (30) is that [[V®||, 5p, is now replacing the larger constant
|V @, r» which appears in [Bertozzi and Constantin 1993; Bertozzi et al. 2016, Corollary 6.3] in dealing
with the corresponding inequality. This follows from a scrutiny of the constants that appear along the
proof and an application of the implicit differentiation formula.

Inserting (16) and (17) in (30) one gets, for a dimensional constant C,

t
IVo(-, Dlleo < C+C/ A+ Vol $lleo) ds,
0

which yields, by Gronwall,
IVo(x, )]lo <Ce', —T <t<T,

and this completes the proof of (15).

The reader may have observed that it is not strictly necessary for the proof to use the quantity g (D;),
defined in (14). Nevertheless, it is the canonical quantity to take into consideration and helps to make
some statements clearer. We will use it again in Section 4.

3. An auxiliary result

The result we are referring to is the following and can be found in [Vasin 2017].

Lemma. Let D C R" be a bounded domain with boundary of class C'*7, 0 <y < 1, and L an even
kernel in C'(R"\ 0), homogeneous of degree —n. Then

V(L % xp)(x)|dist(x, dD)!™7 <C, xeR"\aD,
where C is a constant depending only on D.

Proof. Placing the gradient on the characteristic function of D we obtain
V(L*xp)=Lx(—ndoyp).

Fix x € D and set d = d(x) = dist(x, d D). By the divergence theorem

(Lxniidoyp)(x) = (L xiidoypx.a))(x) —/ VL(x —y)dy.
D\B(x,d)

(L*ndoypx,a)(x) = /

ly—x|=d

L(x — y)ii(y) do(y) = / L()(2) do (2)

lz|=d

and the last integral clearly vanishes, owing to the oddness of L(z)n(z). Thus

V(Lv'r)(D)(x)=—(L*'rf_ida‘au)(x)=/ VL(x —y)dy,
D\B(x,d)

and
C

dist(x, D) |V(Lx xp)(x)|=d / VL(x—y)dy‘ §d/ —]dyfc.
D\B(x,d) D\B(x.d) |y —x|"T
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Therefore in proving the lemma one can assume that d < %ro, where rg = ro(D) has the property that,
given a point p in the boundary of D, B(p, 2rg) N D is the set of points in B(p, 2ry) lying below the
graph of a C'*7 function defined on the tangent hyperplane through p.

We assume, without loss of generality, that O is the closest point of D to x and that the tangent
hyperplane to dD at 0 is {x € R" : x,, = 0}. We also assume that D N B(0, 2rp) = {x € R" : x,, < p(x)},
where x' = (x1, ..., X,—1), ¢ € CTV(B'(0, 2r¢)), B'(0, 2ro) = {x' € R"~! : |x’| < 2r¢}. In particular,

o < IVelly.Bo20x 'Y, x" € B0, 2rg).

We clearly have

/ VL(x—y)dy=/ VL(x—y)der/ VL(x —y)dy.
D\B(x,d) (D\B(x,d))NB(0,ry) DNB<(0,ry)

The second term above is easy to estimate:

d C
/ VL(x—y)dy‘ff yH dy < —.
DB (0,ro) Be(0,r0) [YI" ro

For the first term one uses the fact that if H is a halfspace then L x xz vanishes on H. This follows
from the fact that the preceding statement is true for balls instead of halfspaces [Mateu et al. 2009] and a
straightforward limiting argument. Then one has

VL(x—y)dy= / VL(x—y)dy— f VL(x—y)dy

v/(\D\B(x,d))ﬂB(O,rO) (D\B(x,d))NB(0,ry) H_

:/ VL(x—y)dy
(D\H_)NB(0,rp)
—/ VL(x—y)dy—f VL(x—y)dy,
(H-\(DUB(x,d)))NB(0,ro) H_NB<(0,rg)

and the last term is estimated as we did above with D in place of H_. The remaining two terms are
tangential and they are treated similarly. For the first we set

VL(x —y)dy :/

/ VL(x —y) dy—i—/ VL(x —y)dy.
(D\H-)NB(0,ro) (D\H-)NB(0,2d)

(D\H_)N(B(0.,r0)\ B(0,2d))

Since for x € D\ H_ one has |y — x| > d, we get

C

<~ |(D\ H) N B0, 24)]

‘ / VL(x—y) dy’
(D\H_)NB(0,2d)

2d
< i / p"lo{oes  poe D\H }dp
0

C 2d
SW/O " dp=Carl.
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Finally
1
f w(x—y)dy‘sc/ -
(D\H_)N(B(0,r0)\ B(0,2d)) (D\H_)N(B(0.ro\B(©0.2d)) 1¥I"
2d 1
n—1+4y _ y—1
SC/O —pn+1p do=Cd" ™. O

It is an interesting fact that the preceding lemma implies the main lemma in [Mateu et al. 2009],
which states that under the hypothesis of Vasin’s lemma the function L x xp satisfies a Holder condition
of order y on D and on R" \ D. Incidentally, it is worth mentioning that this result has been proved
independently by various authors at different times and with various degrees of generality. We are grateful
to M. Lanza de Cristoforis for bringing to our attention the oldest reference we are aware of, namely, the
paper of Carlo Miranda [1965].

We give an account of the proof of this fact only for the statement concerning D. In the exterior of D
one applies similar arguments.

Take two points x and y in D. Let d = dist(x, d D) be the distance from x to the boundary. As before,
we assume, without loss of generality, that O is the closest point of d D to x and that the tangent hyperplane
to D at 0 is {x € R" : x, = 0}. We can also assume that D N B(0, 2rp) = {x € R" : x,, < ¢(x")}, where
x' = (X1,...,%0—1), ¢ € CTY(B'(0, 2r¢)), B'(0,2ro) = {x’ € R"~! : |x’| < 2rp}. Then

o) < IVelly.B020)x "7, x" € B0, 2rg). (31)

As in [Mateu et al. 2009] we can reduce matters to the case in which d < %ro, because otherwise we
resort to the smoothness of L % xp on the domain {z € D : dist(z, dD) > iro}.
Let K be the closed cone with aperture 45° and axis the negative x,-axis. That is

K={xeR":—vV2x, > |x|}.

We say that x and y are in nontangential position if x, y € K. Otherwise they are in tangential position.

Assume first that x, y € D are in nontangential position and distinguish two cases. The first is
y € B(0,2d)\ B(0, d). Apply the mean value theorem on an arc contained in K N (B(0, 2d) \ B(0, d))
of length comparable to |y — x|. One gets

| (y) — f(x)] < C sup{dist(€, 8D)” " : & € K N (B(0,2d) \ B, d))}|y —x. (32)
We claim that there exists an absolute constant ¢y with 0 < ¢ < 1 satisfying
dist(§, 9D) = co l§x], & € KN B(O, ro), (33)

provided r is small enough. Let p € 9D be such that |§ — p| = dist(&¢, d D). Since p = (p’, p,) is on the
graph of ¢ we have, by (31), |p,| < C|p'|'*€ < Cr§|p'l. Thus
&l < 180 — Pul +1pal < 1€ — pl+Crg 1P|
<E—=pl+Cri(p —E1+1&)
<I§ = pl(1+Cry)+Crg l&l,
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where in the last inequality we used that || < V2€,, E € K. Taking ro so small that C r§ < % we obtain
& <2(1+Crp)l€ — pl =2(1+ Crg) dist(§, 9D).

Indeed, the constant C is the previous string of inequalities is V2 IVelly, B ©,2r,), Which also depends
on ro. But this is not an obstruction because it decreases with r.
Therefore, by (32),

1F () = F@)] < C (col&l) "y —xl<Cc ' d" Ny —x|" 7 |y — x|V
<c 7'\ Gy |y —x” =Cly —x|.

Let us turn our attention to the case y € K N B¢(0, 2d). Note that there exists an absolute constant
Co > 1 such that

ly — x| < Co lyn — xal, yEKﬂBC(O,zd)-

Apply the fundamental theorem of calculus on the interval with endpoints x and y and estimate the
gradient of f by a constant times the distance to the boundary raised to the power y — 1. By (33) we obtain

1
If(y)—f(x)licf distCx +1(y —x), D) |y — x| di
0

1
—1 _
<Cc /Ianrt(yn—xn)I” Ny —xldi
0

it By P
[Yn — xul Jo
=CCo((d+Iyn—xuD)" =d") < Clyn —xu|” < Cly —x|",
as desired.

We are left with the case in which x and y are in tangential position, that is, y € D N (R" \ K). In
[Mateu et al. 2009] there is a reduction argument to the nontangential case, which we now reproduce
for completeness. Take a point p € 9D with |y — p| = dist(y, D) and let N be the exterior unit normal
vector to 0D at p. We will take rg so small that N is very close to the exterior unit normal vector 7 to
aD at 0. Then the ray y — tN, t > 0, will intersect K at some point yo and the pairs x, yp and y, yo will
be in tangential position. Let us seek a condition on ¢ so that y — tN € K, that is, so that

ly —tN| <V2|(y —tN, 7). (34)

Here (-, - ) denotes the scalar product in R". Since |(y — N, 7i)| > t(N, i) — |y| and |y — tN| < |y| +1,
a sufficient condition for (34) is

(L+~2D)lyl < 1 (V2(N, 7i) — D).
Take ro small enough so that v/2(N, 7i) — 1 > (v/2 — 1)/2. A simpler sufficient condition for (34) is

1vV2-1

|yl <cot, withcyp=3

2/2+1
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Define ty by |y| = co fp and then set yp =y — toﬁ. By construction, yp € K N D and the pairs x, yp and
¥, Yo are in nontangential position. Hence we only have to check that

ly = yol = Colx —yl. (35)

We have cg |y — yo| = co o = |y|. On the other hand, the condition y ¢ K is exactly |y| < V2 |y'|, and
clearly |[x — y| > |y’|. Therefore (35) holds with an absolute constant Cy.

4. The defining function for D,

In this section we prove that the function ® defined by (20) is a defining function of D; of class C'*7.
Our assumption now is that the CDE has a solution X (-, ¢) for ¢ in an interval (—7'; T') and that Dy is
the domain with d D, = X (d Dy, t) which has been defined in Section 2.1. The field defined by (13) has a
flow map (6) whose restriction to d Dy is precisely the solution of the CDE.

Taking the gradient in (20) we get, for x ¢ dD;,

VO (x,t) =det VX (X' (x,1), 1) Vo(x, )+ V(det VX (X ' (x, 1), ))ep(x, 1). (36)

In [Bertozzi et al. 2016, Section 8] it was shown that VX ~!( -, ¢) satisfies a Holder condition of order y
on the open set R” \ 9D, (but may have jumps at d D;). What remains to be proved is that V& (-, )
extends continuously to d D,. This is straightforward for the first term in the right-hand side of (36), just
by the jump formulas (18) and (19). We have

Voo (X~ (x, )]

li det VX (X 'y, 1), 1) Vo(y, 1) = ,
[R"\E)lerslyex e (X (y,0), 1) Vo(y, 1) det Do) n(x)

where D(x) is the differential at x € 3D, of X~'(-,t) viewed as a differentiable mapping from 9D,
into 9 Dy.

The second term in the right-hand side of (36) tends to O as x approaches a point in d D;. Proving this
requires some work. For the sake of simplicity of notation let us consider positive times ¢ less than 7. Since
X (-, 1) is a continuously differentiable function of # with values in the Banach space C!*7 (3 Dy, R"),
the constants g (Dy) determining the C'*” smoothness of the boundary of D; are uniformly bounded for
0 <s <t. Hence

V(- 9)llec <C@), 0=<s<=t, 37)

IVoC-, )y, p, +IIVVC DN, gryp, <C@), 0=s=t, (38)

where C(¢) denotes here and in the sequel a positive constant depending on ¢ but not on s € [0, ¢].
Inequality (37) follows from the fact, already mentioned, that standard even convolution Calderén—
Zygmund operators are bounded on characteristic functions of C'*” domains with bounds controlled by
the constants giving the smoothness of the domain (see, for instance, (30)). Inequality (38) has appeared
in the literature several times with various degrees of generality, as we mentioned in the previous section,
where a complete proof was presented. In [Mateu et al. 2009] the reader will find another accessible
proof independent of Vasin’s lemma. The constants are not logarithmic, but this is not relevant here. The



REGULARITY OF THE BOUNDARY OF VORTEX PATCHES FOR SOME NONLINEAR TRANSPORT EQUATIONS 1637

statement is that if T is an even smooth (of class C') convolution homogeneous Calderé6n—Zygmund
operator and D is a domain with boundary of class C'*%, 0 < y < 1, then T (xp) satisfies a Holder
condition of order y in D and in R" \ D.

As we said in Section 2 one applies (24) to the second-order derivatives of the field v to conclude that

10;0cv(x, 5)| < C(1) dist(x, dD,)’ ", x¢ oDy, 0<s<t, 1<j k<n. (39)

See (26) and (27).
Combining (7), the analogous inequality with VX (-, t) replaced by VX~!(-, ¢) and (37) we get

COH'<IVX(.9)lw=C@), 0=<s<t. (40)
Therefore X (-, s) is a bilipschitz homeomorphism of R" and consequently, for all « € R",
C ()~ dist(ar, D) < dist(X (@, 5), dD;) < C(¢) dist(er, dDg), 0<s <t. 41
Now let us turn to the second term in the right-hand side of (36)
I(x) = V(det VX (X' (x, 1), 1)ex, 1) = gola) Vi J (e, 1), (42)
where we have set x = X («, t) and J (¢, t) = det VX («, ). The jacobian satisfies

%J(a, t)=divv(X(a,t),t) J(a,t)

and so .
J(a,t) = expf divv(X(a, s), s)ds.
Hence V, J (¢, t) is ’
(exp/ divv(X(a, s),s) ds) (f div((Vv) (X (e, 5), 5)) VX (c, 5) ds) vx~! (x,1), (43)
0 0

where the divergence of a matrix is the vector with components the divergence of rows. Combining (37),
(39), (40), (41), (42) and (43) we get

t
I (x)| < C(2) |po(e)] / dist(X (a, 5), dD,)” ™" ds
0
< C(t) lgo(e)] dist(a, dDg)" ™' < C(¢) dist(er, dDg)” .
If dist(x, 0 D;) — O then dist(c, d Dg) — 0 and thus /I (x) — O.
5. The commutators

The material derivative D/(Dt) = d; + v - V of the defining function of the previous section is

DEICD(X) = %(J(Ot, 1) go(@)) =div (X (a, 1), 1) J (e, 1) go(a) =divu(x, 1) P(x, 1),
which proves (21). Taking derivatives in the equation above and rearranging terms one obtains
D 9o = v(divv)® + (divr)Vd — (Vo) (VD). (44)

Dt
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The first term tends to O at the boundary of D,, by (39). This section is devoted to proving that the second
term in the right-hand side, namely (divv)V® — (Vv)!(V®), is a sum of n — 1 terms, each of which
is a difference of boundary commutators. It clearly suffices to prove that each coordinate is a sum of
n — 1 differences of boundary commutators. We present the details for the first coordinate, which is

0oy 1P — vy P+ - -+ 0,v, 01D — 01v, 9,D. 45)

Let us work with the first term drv, 01 P — 9;v2 I, P. The others are treated similarly. The preceding
expression is evaluated at (x, t) with x € 9 D,. To lighten the notation we set D = D,, so that ¢ is fixed,
and x = xp,. Recall that v(-,7) =k x and so

vi(-,)=kjxx, 1=<j=<n.
By (25) we have in the distributions sense
jvj (-, 1) = djkj x x = p.v. dikj* x +cjx, 1=j=n,
where ¢; = flé\=1 kj(§)&; do (§). Thus

Dv2(-, 1) N P(-, 1) = (ko * x)(+) 1 P(-, 1) = p.v.(akayx x) 1P+ 2 P

and
02ky *x (01 ®P) = p.v. ko * (x91P) +c2 01D,
which yields
v2(-,1) 01 D(-,1) = p.v.(d2ko* x) 01 P — p.v. drkox (01 D)+ ko x () 31 D). (46)
Similarly
01v2(-,1) P (-, 1) = p.v.(Arka* x) 02D — p.v. d1ka* (02 D) + 01k x () 32 D). 47)

Since x9;® = 9;(x ), 1 < j <n, we have

02ky * (x01P) = 91ky * (x 02 P),
and subtracting (47) from (46) yields
82U2( ) t) aqu( Ty t) - alv2( Ty t) aZCD( ) t)
= p.v.(d2ka % x) 01D — p.v. oko % (x 31 D) — (p.v.(d1kax x) 12D — p.v. ko x (X D)), (48)

which is the difference of two solid commutators. Here we are using the term “solid” to indicate that the
integration is taken with respect to n-dimensional Lebesgue measure. Our next task is to bring the solid
commutators to the boundary.

Formula (48) is an identity between distributions and is not a priori obvious that the principal value
integrals exist at boundary points. The same can be said about the principal values on the boundary
which appear in the calculation below. That they do exist in our context is a routine argument, which we
postpone to the Appendix.
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Let x € 9D. Given € > 0 set D, = D \ B(x, €). By the divergence theorem

(p.v. O2ko % (x01P))(x) = lir%/ ka(x — )1 P(y)dy
=0 Jp,

= — lim ka(x — y)31@(y)na(y)do(y) +/ ka(x —y)a1 ®(y)dy
D, D

e—0 Jy
= —P-V-/ ka(x — )01 ®(y)n2(y) do (y) +/ ky(x — y)012®(y) dy
aD D
+ lim ka(x — )01 ®(y)nz(y) doe(y),
€20 J3B(x,e)nD

where o, is the surface measure on d B(x, €). We do not need to compute explicitly the term

lim ka(x = y)01 @ (y)na(y) doe(y),

€0 JyB(x,e)nD
nor to worry about the second-order derivative of ® which has appeared, because they will eventually cancel

out (a routine regularization argument takes care of the actual presence of the second derivatives of ®).
We turn now to the computation of (p.v. d;oN * x)(x). We have

(p-v. doky * x)(x) =elin%/ Ik (x —y)dy
— D€

= — lim kao(x — y)na(y) do (y)
De

e—>0 Jy

= —p-V-/ ka(x — y)na(y) do (y) + lim ka(x — y)na(y) doe(y).
aD €=>0J3B(x,e)nD
Therefore

(p.v. d2ky * (x 31P)) (x) — (p.v. B2k x)(x) 91 P (x)
= P-V-/BD ka(x = y)na(y) do(y) 9 ®(x) — P-V-/B ky(x = y)81®(y)na(y) do(y)

D
+ f ka(x =)o () dy,  (49)
D
since

lim ka(x — y)(01P(y) — 01 P(x)) doe(y) =0,
€0 JoB(x,e)nD

because k» is homogeneous of order —(n — 1) and d;P is continuous at x. The conclusion is that
the solid commutator in the left-hand side of (49) is a boundary commutator plus and additional term
involving second-order derivatives of ®. This term will disappear soon and in the final formulas no
second derivatives of ® are present, so that the C'*? condition on @ is enough.

Proceeding in a similar way we find

(p-v. 01k x (x02®))(x) — (p.v. dka * x)(x) 0P (x)
= lf’-V-/a ky(x —y)ni(y)do(y) P (x) — p-V-/a kao(x — ) ®(y)ni(y)do(y)
oD D
+/ ka(x —y)an®(y)dy, (50)
D
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Subtracting (50) from (49) we see that the difference of the two solid commutators in (48) is exactly, on
the boundary of D, a difference of boundary commutators. Hence ((divv)I — (Vv)")(V®) is a sum of
n — 1 terms, each being a difference of two vector-valued boundary commutators.

6. Holder estimate of differences of boundary commutators

We keep the notation of the previous section D = D;, V& = V®(-,t), with ¢ fixed. Our goal is to
estimate the Holder seminorm of order y on dD of the difference of two boundary commutators. For
instance,

DB(x) := P-V-/BD ka(x = y)oa @ (y)ni(y) do (y) — p-V-/aD ka(x = y)ni(y) do(y) 2P (x)

- (P-V-/BD ka(x = y)01 @ (y)na(y) do (y) — P-V-/aD ka(x — y)na(y) do(y) 81<I>(X)>-

The general case follows immediately by the same arguments. The strategy consists in exploiting the
fact that DB(x) is also, for x € d D, a difference DS (x) of two solid commutators, as we checked in the
previous section. That is, DB(x) for x € dD is identical to

DS(x) = DS(®)(x) := (p.v. dokp * (x01P) — (p.v. daka * x) 9 D) — (d1ka % (x 2P) — (d1k2 % X) D).

By [Bertozzi and Constantin 1993, Corollary, p. 24, and Lemma, p. 26], estimating each commutator
separately, we have || DS|l, re < C, |[VV(-, ) |loo VP, g, which is not good enough, because we need
V@, 5p in place of |[VP|, .
We now consider the jet
0,09, ...,0,D)
on 3 D. By Whitney’s extension theorem [Stein 1970, Chapter VI, p. 177] there exists W of class C!*7 (R")

such that ¥ =0 and VW = V® on d D, satisfying

Vo(x) - (y—
| |)f)?x(|ly+yX)| Y FEE y’xeaD})' .

This precise estimate is not stated explicitly in Stein’s book but it follows from the proof. We claim that

sup| Y2 OOV reap| <2021V, 0. (52)
ly — x|ty V’

We postpone the proof of the claim and we complete the estimate of || DB||, sp.

VWl r < Cy (HV(DH)/,E)D +sup{

The extension ¥ of the jet (0, 0, P, ..., d,P) on D, given by Whitney’s extension theorem, satisfies,
in view of (51) and (52) ,
VW, g < Cuy IVPOIly.ap.
Since VW = V& on 9 D, the differences of solid commutators DS(®) and DS(W¥) are equal on 0 D. Thus
IDBlly,op = IDS(W)lly,a0 < DSy, R
=G Vo, Dlloo + DIV re < Cr (IVU(-, Dlloo + D IVl ap-

This can be used to prove the a priori estimate (17) as in [Bertozzi and Constantin 1993].
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We turn now to the proof of the claim (52). Fix a point x € 9 D. Assume without loss of generality
that x =0 and V®(0) = (0, ...,0, 9,®(0)), 9,P(0) > 0. Define § = §(x) by

sy _p IVl
Vo)

This choice of § implies that the normal vector V®(y) remains for y € B(0,8) N 0D in the ball
B(V®(0), |[VP(0)|/2). Indeed
VO (0)]

IVO(y) = VOO)| < IV®ly,9p 8" = 7

Then given y € B(0, §) N d D, the tangent hyperplane to d D at y forms an angle less than 30° with the
horizontal plane and thus 3 D is the graph of a function y, = ¢(y,) which satisfies a Lipschitz condition
with constant less than 1. Here we have used the standard notation y = (y', y,), ¥ = (V15 .-+, Yu_1)-
The function ¢ is defined in the open set U which is the projection of B(0, §) N dD into R"~! defined by
y — y'. By the implicit function theorem ¢ is of class C!*7 in its domain.

Note that for each y € 3D N B(0, §), the segment {# y' : 0 <t < 1} is contained in U, as an elementary
argument shows. The mean value theorem on that segment for the function ¢ — ¢(zy’) yields

IVO(©)-y| VOOl - VO (0)]
Iy[tr |yt = |y

sup{[Ve()|: 2 € U, 12| < 1y} Y.

By implicit differentiation

9%, (@)
P2, @)’

and so, recalling that 9;®(0) =0, 1 < j <n —1, and that z = (z/, ¢(2)),

(@) = l<j<n-—1,

14
IV®llyap lzl” _ 2

IVo(z)| < < IV®l,.ap 2" 21217, 121 <1y,
18, ®(2)] |V (0)] Y
because
18, (2)] > 8, (0)] — 8, (2) — 3, D(0)]
, Vo)

> VOO = V@90 8" =
and

lzl = (1212 + o)D) < V217.
Thus

IVD(0) - y|

S =2 IV®lap, v €9DNBO.).

If y €D\ B(0, §),
VOO -yl _ VOO _ Vo)
R S § Y L 74

=2[IV®ly.ap,

which completes the proof of (52).
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7. Domains enclosed by ellipses as Cauchy patches
In this section we consider the transport equation in the plane given by the Cauchy kernel
81/0(23 t) + U(Z’ t) : VP(Z, t) = O’
1
vz 0 = (- %p(.0) Q). (53)
p(z,0) = xp,(2),

z=x+iy e C=R?and ¢ € R. Note that we have changed the normalization of the velocity field in (4)
by a factor of 2.
We take the initial patch to be the domain enclosed by an ellipse

b2
We will show that the solution provided by the theorem is of the form xg, (z), with

x2 y2
{(x NER: ot hap <1}

2
Eo_{(x y) e R?: —+—<1}

and
(ao + bo) €*'
t)=ay———————, teR, 54
a(t) = ao Do+ ay € (34)
(ao + bo)
b(t) =bg———, teR. 55
(t) AT (55)

Ast — 00, a(t) — ag + bg and b(t) — 0, so that the ellipse at time ¢ degenerates into the segment
[—(ao+bo), ap+bo] as t — 400 and into the segment i[— (ag+bg), ap+bg] on the vertical axis as t — —oo.

Since (53) is not rotation invariant, one has to consider also the case of an initial patch given by the
domain enclosed by a tilted ellipse

b2
In this case the straight line containing the semiaxis of length a makes an angle 6 with the horizontal axis
and we take 0 <6 < %
Assume that the initial patch is Eg = E(ag, by, 6p). Then we will show that the solution given by the
theorem is xg, with E; = E(a(t), b(t), 0(t)), where a(t), b(t) and 6(¢) are the unique solutions of the
system

2 2
E(a, b, 9)_e’9{(x y) e R?: —+—<1}

a) = 2 a(t) b(t) cos(20(1)),
a b()
o 2
b'(r) = o+ bo a(t) b(t) cos(26(1)), (56)
0ty = -2 AWbD) ey,

ag~+ by a(t) —b(t)
with initial conditions a(0) = ag, b(0) = by, 0(0) = 0.
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We start the proof by assuming that the patch D; of the weak solution provided by the theorem is
indeed E;. Let z(¢) be the trajectory of the particle that at time O is at z(0) € 9 Ey. Then

dz

ZZU(Z(t),t), Z(O) eaEOa (57)
and v is the velocity field of (53). It is a well-known fact that v can be explicitly computed [Hmidi et al.
2015]. One has

a(t) —b()
at)+b)
Indeed in [Hmidi et al. 2015] only the case 8(¢) = 0 is dealt with, but the general case follows easily from

v = (o) @ =2 -qe V2, zeE q) = (59)

the behavior under rotations of a convolution with the Cauchy kernel.

To lighten the notation we do not stress the dependence on ¢ and write a = a(t), b = b(t), 6 =0(¢),
g =q(t), z=2z(0) = x() +iy(t) = x +iy. The condition z(t) € E, is equivalent to e~z (1) €
0E(a(t), b(t),0), which is

(x cos(9) +y sin(@))>  (—x sin(®) + y cos(9))?
2 + 2 =
a b

and can also be written more concisely as

L,

(z.e)  (z,ie?)
a? * b2

Here we have denoted by (u, v) the scalar product of the vectors # and v. Now proceed as follows. Take

=1. (59)

the derivative in (59) with respect to 7 and then replace z' () by the expression of the field given by (58). We
get an equation containing a, b, 6 and z, which determines z(¢), the solution of the CDE. This equation is

i@) ’

z,e . , o a ,
( ((Z,6’919’—qes’9)+(z,e’9))—;(z,e’g)

a?

2

,' i0 ) ) ) b’ )
&), 10 i) + i) — i (60)

b2
Evaluate at 7 = z(1) = a(t)e'®® (which is a vertex of the ellipse at time 7). One gets the equation
a =2 “bb c0s(26). 61)
Evaluating at the other vertex of the ellipse at time ¢, that is, at z = z(¢) = b(t) i €®®, yields
b =—29% o520, (62)
a+b

Adding (61) and (62) we see that a + b is constant, then equal to ag + bg. Thus we have the first two
equations in (56).

Before getting the third equation let us solve the case in which the initial ellipse has axes parallel to
the coordinate axes (6p = 0). In this case set 8(t) =0, ¢ € R. Replacing in (62) a by ag + by — b and
solving we get (55) and then (54).
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Now take the domain E; = E(a(t), b(t), 0), the vector field

v(z,t>=(%Z*XE,)@:z—q(z)z, L <E,

and the flow p
z
—=z—q()z, 0) € 0E,
o =7 qt)z, z(0) 0

The preceding system is

dx(t) 2b(t) dy(t) 2a(t)
= X(f), = - y
dt aop + by dt ag + by

).

Then the flow map is linear on Eg and given by a diagonal matrix. Hence the flow preserves the coordinate
axes and maps 0 Ey into an ellipse with axes parallel to the coordinate axes enclosing a domain E,. But
(61) and (62) say exactly that the vertices of d E; belong to 85,. Thus E, = E; and so xg, is the unique
weak solution of the Cauchy transport equation in the class of characteristic functions of C'*” domains.

Let us now go back to the general case and obtain a third equation involving 6’. Impose that the
intersection of the ellipse d E; with the positive real axis belongs to the image of d Ey under the flow. In

cos20 sin?@\ /2
a? + b? 0)-

After a lengthy computation one gets

other words replace z(¢) in (60) by

2 ab
0 = — in(26), 63
ap+ bo a—bsm( ) (©3)

provided a # b.

We know claim that the system (56) has a unique solution defined for all times ¢ € R provided agy # by.
The case ag = by corresponds to an initial disc and so to the case 8y = 0, which has been discussed before.
Consider the open set

Q={(ab0)eR’:a>0,b>0,a#band0 <6 <Z}.

Clearly a unique solution of the system exists locally in time for any initial condition (ag, b, 6p) € €2,
because the function giving the system is C* in Q. We claim that this solution exists for all times.
Assume that the maximal interval of existence is (—7, T') for some 0 < T < co. By the first two equations
of the system (56) |a’| and |b’| are bounded above by 2(ag + bo) and hence the limits lim; 7 a(¢t) = a(T)
and lim;_, 7 b(¢t) = b(T) exist. We also have

/ /

a

<2 and

<2

and so

2T

0<ape ?T <a(T) <ape’” and 0 <boe T <b(T) < bye*”.

Note that 6’(¢) cannot vanish. Otherwise, by (63), 8(¢) = 0 for some 7, and in this case we have already
checked that the system can be solved for all times. Hence 6 has constant sign. When ag > by, the
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function 6 decreases, and if ay < by, the function 6 increases. In any case we have that there exists
O(T) = lim 6(r).
t—T

We cannot have 8(T) =0 o0r 0(T) = % because we have solved the equation in these cases for all times.
For the same reason we cannot have a(T) = b(T). Therefore (a(T), b(T),0(T)) € Q2 and we can solve
the system past 7', which is a contradiction.

We proceed now to prove that the domain E; = E(a(t), b(t), 6(t)) enclosed by the ellipse provided
by the solution of (56) yields the weak solution xg, of the transport equation (53) with initial condition
Dy = Ey. We consider the field (58) and the trajectory (57) of a particle initially at the boundary point
z(0) € dEy. Since the velocity field is linear in E, the flow is a linear function of z(0) € Ey. Thus the
initial ellipse d Eq is mapped into an ellipse dE, enclosing E,, the image of Eg under the flow map. To
show that xg, is a weak solution of the Cauchy transport equation we only need to ascertain that £, = E,.
But the three equations of (56) simply mean that the vertices of E; and the intersection of E, with the
horizontal axis are in the image of d Eg under the flow map. It is now a simple matter to realize that there
is only one ellipse centered at the origin containing those three points.

A surprising result arises when examining the asymptotic behavior as t — oo of the weak solution of
the Cauchy transport equation (53) when the initial condition is E (ag, bg, 6p), with ag # by and 6y > 0.
We know that the solution of the system (56) never leaves the open set 2. In particular a(z) — b(¢) has
a definite sign determined by the initial condition. Assume for definiteness that ag — bg > 0, so that
a(t)—b(t) >0, t €R, and hence 6(t) is a decreasing function. Then the limit 6, = lim,_, o, 6(¢) exists.
The system (56) readily yields that the function (a — b) sin(26) has vanishing derivative, so that

(a(t) — b(t)) sin(20(t)) = (ap — bo) sin(26), ¢ € R. (64)

Thus (ag + bg) sin(260(¢)) > (a(t) — b(t)) sin(26(¢)) = (ap — bo) sin(26y) and taking limits

A
sin(20,,) > L%
ao+ by

sin(26p) > 0,

which means that the limit angle 6., is positive. In other words, the axes of the ellipses at time ¢ do not
approach the coordinate axes.

Assume that 0 < 6y < %. Since 6(t) decreases, 0 < 26(t) < % t > 0, which implies that a(¢) increases
and b(t) decreases. By (62)

t
b(t) = by exp/ — a(s) cos(20(s)) ds < by exp (— cos(20y) t),
0

ap
ao+bo aop+bo

and s0 b, = 0, provided 6y < 7. If §p = 7 we break the integral above into two pieces, the first between
0 and 1 and the second between 1 and ¢. We get, for some constant C independent of ¢,

2610

cos(20(1)) (r — 1)), r>1,
bo

b(t) < C exp (—
ao
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(1023, b():l, 9()2

w|

oo =4, boo=0,| 0 =0.2239

Figure 1. The initial ellipse and the final segment.

which again yields bo, = 0. By (64)

ap — by

sin(20) = b sin(26p), (65)
0

ao

which determines the limit angle in terms of the initial data.

Let us turn now to the case 7 < 6p < 5. In Figure 1 one can see the initial ellipse and the final segment.
In view of the first two equations of the system (56), at least for a short time a(¢) decreases and b(¢)
increases. If one has % < 0, then cos(260(t)) < 0 for r > 0 and a(¢) decreases and b(t) increases for all
times. Integrating the third equation in (56) we obtain

_ b(2)
ds ) <tan(fy) exp(— 5 st
ay — by

Letting t — oo we get tan(6~,) = 0, which is impossible. Hence 6, < %. Then for some 7y we have

_ t
tan(6(t)) = tan(6y) exp( 4 f a(s)b(s)
0

ao+ by a(s) —b(s)

6(to) < 7, which brings us into the previous case, in particular to the expression (65) for the limiting
angle 0.
Arguing similarly with r — —oo we get (65) with sin(26~) replaced by sin(20_,), where 0_,, =
lim; o 0(t). Thus 0_ = 5 — Ooo.
The case ag < by is reduced to ag > by by taking conjugates (symmetry with respect to the horizontal
axis). Indeed, (53) is invariant by taking conjugates, as a simple computation shows. If one has ay < by
T

and an angle 0y, the symmetric ellipse has semiaxes Ag = by, By = ap and angle 96 =5 —bp.

Appendix: Existence of principal values

The first fact we prove in this section is the following.

Lemma. Let D be a bounded domain with boundary of class C'*7, 0 <y < 1. Let L : R"\ {0} — R be
an even kernel, continuous on R" \ {0}, homogeneous of degree —n, which satisfies cancellation property
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fl$\=1 L(&)do (&) =0. Then for each x € 3D the principal value

(p.v.Lx xp)(x) = lim L(x—y)dy
€0 J{yeD:|y—x|>¢)
exists.

Proof. Without loss of generality assume that x = 0, that the tangent hyperplane to D at O is {y € R" :
v, = 0} and that 9 > 0 is so small that there exists a function

@ e CY(B'(0,2r9)), B'(0,2r0) ={y e R":1y/| <2r0}, ¥ =O1s--vs Yne1),

such that D N B(0, rg) ={y € B(0, ro) : y, < 0 (y")}.
For 0 < r set

S,={yeR":|yl=r}, St={yeS :y,>0} and S ={yeS :y, <0}

Since L is even,

0:/5 L(y)da(y)zfﬁL(y)dG(yH/S L(y)do(y)ZZ/ L(y)do(y).

r

Set H. ={yeR":y, <0}. For 0 < § < € < rg we then have

—/ uw@+/ L(y)dy
{yeD:|y|>€} {yeD:|y|>6}

-/ Lody- [ L(y)dy.
{yeR":5<|y|<e}N(D\H-) {yeR":5<|y|<e}N(H-\D)

The tangential domains (D \ H_) N B(0, €) and (H_ \ D) N B(0, €) are very small. Indeed,

L(y)dy

€
f 5/ Lpr=lo(o e 5" po e D\ H_}dp
{yeR":5<|y|<e}N(D\H_) s P

¢ —1+y C 12
<C P dp < = €.
B Y

One obtains in the same way

L(y)dy

/ <Cer
(yeRm:5<|y|<€}N(H_\D) 14

and so the proof is complete. U
The second result is the following.

Lemma. Let D be a bounded domain with boundary of class C'*7, 0 <y < 1. Let K : R*\ {0} — R be
an odd kernel of class C'(R" \ {0}), homogeneous of degree —(n — 1). Let ¢ be a function defined on 3 D
satisfying a Holder condition of some positive order on d D. Then for each x € 0D and each 1 < j <n
the principal value

(p-v. K x¢n;do)(x) = lim K(x—=y)o(y)nj(y)do(y)
€=>0 J{yeaD:|y—x|>¢)

exists.
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Proof. It is easy to get rid of ¢. Indeed
/ K(x—y)pn;j(y)do(y)
{yedD:e<|y—x|}

=/ K(x = y)(@(y) —e()n;(y)do(y) + ¢(x) K(x—y)nj(y)do(y)
{yedD:e<|y—x|} {yedD:e<|y—x|}

and the first integral in the right-hand side tends as € — 0 to the absolutely convergent integral

/3 K@= 3)@0) — 0 0)do ().

Hence we can assume that ¢ is identically 1.

We can also assume, as in the proof of the previous lemma, that x = 0, the tangent hyperplane to d D
at 0is {y € R" : y, = 0} and the domain D inside B(0, €) is exactly {y € B(0,€) : y, < ¢(y')}. By the
divergence theorem

/ Koo == [ arkedy+ [ Koo
{yedD:e<|yl} {yeD:e<lyl} {yeD:|y|=¢}
= T 4+1I,
where in the last identity one is defining / and 1.
To apply the previous lemma to I we need to check that d; K (y), which is continuous off the origin,

even and homogeneous of degree —n, and has vanishing integral on the unit sphere. By the divergence
theorem

/ a,-K(y)dy=/ KO mMmdo)— [ K0y do(y).
I<|yl<2 [y|=2 [yl=1

which is 0, since the two integrals over the spheres are the same by homogeneity. Hence, changing to
polar coordinates,

O:/ ajK(y)dy =log2/ K(0)do(0),
I<|y|<2 16]=1

which takes care of 1.
For the term 11, set, as before, H_ = {y € R" : y, < 0}. We then have

/ K(y)nj(y)do(y) =/ K(y)nj(y)do(y)
{yeD:|y|=¢€}

{yeD\H_:|y|=¢}
+f KO dot) - [ K () n; () dor (7).
{(yeH_:|y|=¢} {yeH-\D:|y|=¢}
The first and third terms tend to O with €, because the domains of integration are tangential. Indeed,
o(@B(0,e)N(D\ H-))+0(dB(0,€)N(H-\ D)) < Ce" 't

and so the absolute value of the first and third terms can be estimated by C €”.
It only remains to note that the second term is independent of €, by homogeneity. O
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Quantitative formulations of Fefferman’s counterexample for the ball multiplier are naturally linked
to square function estimates for conical and directional multipliers. We develop a novel framework
for these square function estimates, based on a directional embedding theorem for Carleson sequences
and multiparameter time-frequency analysis techniques. As applications we prove sharp or quantified
bounds for Rubio-de Francia-type square functions of conical multipliers and of multipliers adapted
to rectangles pointing along N directions. A suitable combination of these estimates yields a new and
currently best-known logarithmic bound for the Fourier restriction to an N -gon, improving on previous
results of A. Cérdoba. Our directional Carleson embedding extends to the weighted setting, yielding
previously unknown weighted estimates for directional maximal functions and singular integrals.
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1. Motivation and main results

The celebrated theorem of Charles Fefferman [1971] shows that the ball multiplier is an unbounded
operator on L? (R") for all p # 2 whenever n > 2. A well-known argument, originally due to Yves Meyer
[de Guzman 1981], exhibits the intimate relationship of the ball multiplier with vector-valued estimates
for directional singular integrals along all possible directions. Fefferman [1971] proved the impossibility
of such estimates by testing these vector-valued inequalities on a Kakeya set.

Besicovitch or Kakeya sets are compact sets in the Euclidean space that contain a line segment of
unit length in every direction. Sets of this type with zero Lebesgue measure do exist. However, in two
dimensions, Kakeya sets are necessarily of full Hausdorff dimension. The question of the Hausdorff

MSC2020: primary 42B20; secondary 42B25.
Keywords: directional operators, directional square functions, Rubio de Francia inequalities, directional Carleson embedding
theorems, polygon multiplier.
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dimension of Kakeya sets can be then formulated as a question of quantitative boundedness of the Kakeya
maximal function, which is a maximal directional average along rectangles of fixed eccentricity and
pointing along arbitrary directions.

The importance of the ball multiplier for the summation of higher dimensional Fourier series, as well as
its intimate connection to Kakeya sets, have motivated a host of problems in harmonic analysis which have
been driving relevant research since the 1970s. Finitary or smooth models of the ball multiplier such as the
polygon multiplier and the Bochner—Riesz means quantify the failure of boundedness of the ball multiplier
and formalize the close relation of these operators with directional maximal and singular averages.

This paper is dedicated to the study of a variety of operators in the plane that are all connected in one
way or another with the ball multiplier. Our point of view is through the analysis of directional operators
mapping into L7 (R?; £49)-spaces where the inner £4-norm is taken with respect to the set of directions.
Different values of g are relevant in our analysis but the cases ¢ = 2 and g = oo are of particular interest.
On one hand, the case g = oo arises when considering maximal directional averages and the corresponding
differentiation theory along directions; see [Bateman 2013; Christ et al. 1986; Di Plinio and Parissis 2021;
Katz 1999] for classical and recent work on the subject. On the other hand, the case g = 2 is especially
relevant for Meyer’s argument that bounds the norm of a vector-valued directional Hilbert transform by
the norm of the ball multiplier. It also arises when dealing with square functions associated to conical or
directional Fourier multipliers of the type

Se={Cif:j=1,....N},

where each C; is adapted to a different coordinate pair and the C; have disjoint or well-separated Fourier
support. These estimates are directional analogues of the celebrated square function estimate for Fourier
restriction to families of disjoint cubes, due to Rubio de Francia [1985], and they appear naturally when
seeking quantitative estimates on the N-gon Fourier multiplier.

While such square function estimates have been considered previously in the literature, and usually
approached directly via weighted norm inequalities, our treatment is novel and leads to improved and
in certain cases sharp estimates in terms of the cardinality of the set of directions. It rests on a new
directional Carleson measure condition and corresponding embedding theorem, which is subsequently
applied to intrinsic directional square functions of time-frequency nature. The link between the abstract
Carleson embedding theorem and the applications is provided by directional, one- and two-parameter
time-frequency analysis models. The latter allow us to reduce estimates for directional operators to those
of the corresponding intrinsic square functions involving directional wave packet coefficients. We note
that in the fixed coordinate system case, related square functions have appeared in [Lacey 2007], while a
single-scale directional square function similar to those of Section 4 is present in [Di Plinio et al. 2018]
by Guo, Thiele, Zorin-Kranich and the second author.

Having clarified the context of our investigation, we turn to the detailed description of our main results
and techniques.

A new approach to directional square functions. While we address several types of square functions
associated to directional multipliers, our analysis of each relies on a common first step. This is an
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L*-square function inequality for abstract Carleson measures associated with one- and two-parameter
collections of rectangles in R?, pointing along a finite set of N directions; this setup is presented in
Section 2 and the central result is Theorem C. Section 2 builds upon the proof technique first introduced in
[Katz 1999] and revisited in [Bateman 2013] in the study of sharp weak L2-bounds for maximal directional
operators. Our main novel contributions are the formulation of an abstract directional Carleson condition
which is flexible enough to be applied in the context of time-frequency square functions, and the realization
that square functions in L# can be treated in a T T *-like fashion. The advancements over [Bateman 2013;
Katz 1999] also include the possibility of handling two-parameter collections of rectangles.

In Section 4, we verify that the Carleson condition, which is a necessary assumption in the directional
embedding of Theorem C, is satisfied by the intrinsic directional wave packet coefficients associated with
certain time-frequency tile configurations, and Theorem C may be thus applied to obtain sharp estimates
for discrete time-frequency models of directional Rubio de Francia square functions (for instance).
Establishing the Carleson condition requires a precise control of spatial tails of the wave packets; this
control is obtained by a careful use of Journé’s product theory lemma.

The estimates obtained for the time-frequency model square functions are then applied to three main
families of operators described below. All of them are defined in terms of an underlying set of NV directions.
As in Fefferman’s counterexample for the ball multiplier, the Kakeya set is the main obstruction for
obtaining uniform estimates. Depending on the type of operator, the usable estimates will be restricted
in the range 2 < p < 4 for square function estimates or in the range % < p < 4 for the self-adjoint case of
the polygon multiplier. The fact that the estimates should be logarithmic in N in the L?-ranges above is
directed by the Besicovitch construction of the Kakeya set. It is easy to see that for p outside this range
the only available estimates are essentially trivial polynomial estimates. Further obstructions deter any
estimates for Rubio-de-Francia-type square function in the range p < 2 already in the one-directional case.

Sharp Rubio de Francia square function estimates in the directional setting. Section 5 concerns
quantitative estimates of Rubio de Francia type for the square function associated with N finitely
overlapping cone multipliers, of both rough and smooth type. Beginning with the seminal article of Nagel,
Stein and Wainger [Nagel et al. 1978], square functions of this type are crucial in the theory of maximal
operators, in particular along lacunary directions; see for instance [Parcet and Rogers 2015; Sjogren and
Sjolin 1981]. In the case of N uniformly spaced cones, logarithmic estimates with unspecified dependence
were proved by A. Cérdoba [1982] using weighted theory.

In order to make the discussion above more precise, and to give a flavor of the results of this paper, we
introduce some basic notation. Let 7 C [0, 2rr) be an interval and consider the corresponding smooth
restriction to the frequency cone subtended by 7, namely

2T OO A . . i
C2f@)= [ [ e )Be ) 0 doad. xR,

where (. is a smooth indicator on t; namely it is supported in T and is identically 1 on the middle half of <.

One of the main results of this paper is a quantitative estimate for a square function associated with the
smooth conical multipliers of a finite collection of intervals with bounded overlap. In the statement of the
theorem below ¢2 denotes the ¢{2-norm on the finite set of directions 7.
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Theorem A. Let T = {1} be a finite collection of intervals in [0, 27r) with bounded overlap, namely

>,

TET

<1

~

o0

We then have the square function estimate

o 1_1
1CE /i@y Sp Gog#0) > F 1 11,

for2 < p < 4, as well as the restricted-type analogue valid for all measurable sets E

o 1 1
K2 1E N ez, S (og#0) HEL £ loo.
The dependence on #t in the estimates above is best possible.

The sharp estimate of Theorem A above can be suitably bootstrapped in order to provide an estimate
for rough conical frequency projections; the precise statement can be found in Theorem J of Section 5.
The sharpness of the estimates in Theorem A above is discussed in Section 8.6.

A similar square function estimate associated with disjoint rectangular directional frequency projections
is presented in Section 6. This is a square function that is very close in spirit to the one originally considered
in [Rubio de Francia 1985], and especially to the two-parameter version from [Journé 1985] and revisited
in [Lacey 2007]. The novel element is the directional aspect which comes from the fact that the frequency
rectangles are allowed to point along a set of N different directions. Our method of proof can deal equally
well with one-parameter rectangular projections or collections of arbitrary eccentricities. As before we
prove a sharp — in terms of the number of directions — estimate for the smooth square function associated
with rectangular frequency projections along N directions; this is the content of Theorem K. The main term
in the upper bound of Theorem K matches the logarithmic lower bound associated with the Kakeya set.

The polygon multiplier. The square function estimates discussed above may be combined with suitable
vector-valued estimates in the directional setting in order to obtain a quantitative estimate for the operator
norm of the N-gon multiplier, namely the Fourier restriction to a regular N-gon Py,

Tow @)= | fE)e Eds, xeR? (1.1)

In Section 7 we give the details and proof of the following quantitative estimate for the polygon multiplier.

Theorem B. Let Py be a regular N -gon in R? and Tp,, be the corresponding Fourier restriction operator
defined in (1.1). We have the estimate

ITpy : LPR)] S (og N)*1275] 4 < p<a,

We limit ourselves to treating the regular N -gon case; however, it will be clear from the proof that this
restriction may be significantly weakened by requiring instead a well-distribution-type assumption on the
arcs defining the polygon, similar to the one that is implicit in Theorem A.

Precise L?-bounds for the N-gon multiplier as a function of N quantify Fefferman’s counterexample
and so the failure of boundedness of the ball multiplier when p # 2. A logarithmic-type estimate for 7p,,
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was first obtained in [Cérdoba 1977]. While the exact dependence in that work is not explicitly tracked,
the upper bound on the operator norm obtained there must be necessarily larger than O(log N)3/4 for p
close to the endpoints of the relevant interval; see Remark 7.12 and Section 8.4 for details. While
the dependence obtained in Theorem B is a significant improvement over previous results, it does not
match the currently best-known lower bound, which is the same as that for the Meyer lemma constant in
Lemma 7.21 and Section 8.1.

Remark. Let § > 0 and T; be a smooth frequency restriction to one of the O(§~1) tangential § x §2
boxes covering the §2 neighborhood of S!. Unlike the sharp forward square function estimate we prove
in this article, the reverse square function estimate

1 llp = CpslT) f 21 =) = O/} Lrge:e2) (1.2)

holds with C4 s = O(1) at the endpoint p = 4. For the proof of this L*-decoupling estimate, see
[Cordoba 1977; Fefferman 1973]. An extension to the range 2 < p < 4 is at the moment only possible
via vector-valued methods, which introduce the loss C, 5 = O(|log§|'/271/?). In fact (1.2) with the
loss C,, 5 claimed above follows easily from Lemma 7.18; the details are contained in Remark 7.22.

Reverse square function inequalities of the type (1.2) have been popularized by Wolff in his proof of
local smoothing estimates in the large p regime; see also [Garrigds and Seeger 2010; Laba and Pramanik
2006; Laba and Wolff 2002; Pramanik and Seeger 2007]. We refer to [Carbery 2015] for a proof that the
p =2n/(n—1) case of the S"~! reverse square function estimate implies the corresponding L" (R")
Kakeya maximal inequality, as well as the Bochner—Riesz conjecture. In [Carbery 2015], the author also
asks whether a §-free estimate holds in the range 2 < p <2n/(n —1). At the moment this is not known
in any dimension.

On a different but related note, weakening (1.2) by replacing the right-hand side with the larger
square function of | f; ||, yields a sample (weak) decoupling inequality: a full range of sharp decoupling
inequalities for hypersurfaces with curvature have been established starting from the recent, seminal paper
[Bourgain and Demeter 2015]. In the case of S!, the weak decoupling inequality holds in the wider range
2 < p <6, with C.§~*-type bounds outside of [2, 4]; our methods do not seem to provide insights on the
quantitative character of weak decoupling in this wider range.

Weighted estimates for the maximal directional function. The simplest example of an application of
the directional Carleson embedding theorem is the adjoint of the directional maximal function; this was
already noticed by Bateman [2013], re-elaborating on the approach of [Katz 1999]. By duality, the
L?-directional Carleson embedding theorem of Section 2 yields the sharp bound for the weak-(2, 2)-norm
of the maximal Hardy-Littlewood maximal function My along N arbitrary directions

My : L>(R*) — L>®°(R?)| ~ /log N;

this result first appeared in the quoted article [Katz 1999].

Theorem C may be extended to the directional weighted setting. We describe this extension in Section 3,
see Theorem D, and derive several novel weighted estimates for directional maximal and singular integrals
as an application.
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More specifically, our weighted Carleson embedding Theorem D yields a Fefferman—Stein-type
inequality for the operator My with sharp dependence on the number of directions; this result is
the content of Theorem E. Specializing to A;-weights in the directional setting yields the first sharp
weighted result for the maximal function along arbitrary directions. Furthermore, Theorem F contains
an L%°°(w)-estimate for the maximal directional singular integrals along N directions, for suitable
directional weights w, with a quantified logarithmic dependence in N. This is a weighted counterpart of
the results of [Demeter 2010; Demeter and Di Plinio 2014].

2. An L2-inequality for directional Carleson sequences

In this section we prove an abstract L2-inequality for certain Carleson sequences adapted to sets of
directions: the main result is Theorem C below. The Carleson sequences we will consider are indexed by
parallelograms with long side pointing in a given set of directions in R?, and possessing certain natural
properties. The definitions below are motivated by the applications we have in mind, all of them lying in
the realm of directional singular and averaging operators.

2.1. Parallelograms and sheared grids. Fix a coordinate system and the associated horizontal and
vertical projections of A C R2:

m1(A):={xeR:{x} xRNA#T}, m(A):={yeR:Rx{y}nNA#}.

Fix a finite set of slopes S C [—1, 1]. Throughout, we indicate by N = #S the number of elements of S.
In general we will deal with sets of directions

Vi={1,s):s€S}, V%i:={(-s1):seS}.

We will conflate the descriptions of directions in terms of slopes in S and in terms of vectors in V' with

i

be the corresponding shearing matrix. A parallelogram along s is the image P = Ag(I x J) of the

no particular mention.
For each s € S let

rectangular box I x J in the fixed coordinate system with |/| > |J|. We denote the collection of

Py = P2

seS

parallelograms along s by PSZ and

In order to describe the setup for our general result we introduce a collection of directional dyadic grids
of parallelograms. In order to define these grids we consider the two-parameter product dyadic grid

D :={R=1IxJ:1,J €eDR), |I|>|J]}

obtained by taking the cartesian product of the standard dyadic grid D(R) with itself; we note that we
only consider the rectangles in D x D whose horizontal side is longer than their vertical one. Define the
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As
/\
1
R=IX[0,1]€D(2)
0
N R
1 1

Figure 1. The axis-parallel rectangle R € D(z) is mapped to the slanted parallelogram A;R € D2.

sheared grids
DZ:={A;R:ReDj}, seS. Di:=|]D}
seS
We will also use the notation

D2k =1AR:R=1xJeD}, |[I[|=27%|]|=27}, seS. kikaeZ ki <k.

Note that D? is a special subcollection of P2. In particular, R € D? is a parallelogram oriented along
v = (1, s) with vertical sides parallel to the y-axis and such that 1 (R) is a standard dyadic interval.
Furthermore our assumptions on S and the definition of D(Z) imply that the parallelograms in Dg have
long side with slope |s| < 1 and a vertical short side. See Figure 1. With a slight abuse of language we
will continue referring to the rectangles in Dg as dyadic.

Several results in this paper will involve collections of parallelograms R C Dg. Writing Rg :=RN Df
we have the natural decomposition of R into #S = N subcollections

R:URS.

In general for any collection R of parallelograms we will use the notation

sh(R):= | J R

ReR
for the shadow of the collection. Finally, for any collection of parallelograms R we define the correspond-
ing maximal operator

Mg f(x) := sup (IfDRIR(x), [ eLL.(R?), x e R (2.2)

We will also use the following notation for directional maximal functions:

1

o ' |f(x+tv)[dr, M f(x):=M, f(x), jeil,2}, xe R2. (2.3)

—-r

M, f(x) := sup

r>0

If V C R? is a compact set of directions with 0 ¢ V, we write

My f := sup M, f. (2.4)
vevV
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TeT

S— T'eT
Figure 2. A collection £ subordinate to a collection 7 C ”Pg.

In the definitions above and throughout the paper we use the notation

(8)E =][Eg:=ﬁ/Eg(X)dx

whenever g is a locally integrable function in R? and E C R? has finite measure.

2.5. An embedding theorem for directional Carleson sequences. In this section we will be dealing with
Carleson-type sequences a = {aR}p en? indexed by dyadic parallelograms. In order to define them
precisely we need a preliminary notion.

Definition 2.6. Let £ C P§ be a collection of parallelograms and let s € S. We will say that £ is
subordinate to a collection 7~ C P2 if for each L € L there exists T € 7 such that L C T'; see Figure 2.

It is important to stress that collections £ are subordinate to rectangles 7 C 773 having a fixed slope s.
The Carleson sequences a = {ar}rer We will be considering will fall under the scope of the following
definition.

Definition 2.7. Let a = {ag} ReD? be a sequence of nonnegative numbers. Then a will be called an
L*°-normalized Carleson sequence if for every £ C D§ which is subordinate to some collection 7 C 77,2
for some fixed T € S, we have

Y ar <|[sh(T))
and the quantity Let
massg i= Z ar
ReDZ

is finite. Given a Carleson sequencea={ag:R¢€ Dg} and a collection R C D% we define the corresponding

balayage L)
RrR(x
Ta(@() = Y ar~er
ReR
We write T (a) for Tr(a) when R = Dg. For 1 < p <2 we then define the balayage norms
massq,p(R) := [Tr(a)| L~
Note that massg,1(R) = D ger @R < Mass.

€ R2. (2.8)
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Remark 2.9 (elementary properties of mass). Let R C D% for some fixed t € S. Then R is subordinate
to itself and if a is an L°°-normalized Carleson sequence we have

massg,1(R) = Z ar <|sh(R)|, RC D% for some fixed T € S.
ReR

Also, the very definition of mass and the log-convexity of the L?-norm imply
2 2
massg, p(R) < massq,1 (R)l_P’ massg 2(R) 7’ (2.10)

forall 1 < p <2, with p’ its dual exponent.

We are now ready to state the main result of this section. The result below should be interpreted as a
reverse Holder-type bound for the balayages of directional Carleson sequences.

Theorem C. Let S C [—1, 1] be a finite set of N slopes and R C Dg. Suppose that the maximal operators
{Mg, : s € S} satisfy

sup [Mg, : L? — LP®| < (p), p—17,

SES

for some y > 0. Then for every L°°-normalized Carleson sequence a = {aRr}p e

massa2(R) < (log N)2((1 + y) loglog N)% massg 1 (R)2.

The proof of Theorem C occupies the next subsection. The argument relies on several lemmas, whose
proof is postponed to Section 2.23.

Remark 2.11. There are essentially two cases in the assumption of Theorem C above. If for each s € §
the family Ry happens to be a one-parameter family, then the corresponding maximal operator M is of
weak-type-(1, 1), whence the assumption holds with y = 0. In the generic case that R = D%, for each s
the operator Mz, = Mp2 is a skewed copy of the strong maximal operator and the assumption holds
with y = 1.

2.12. Main line of proof of Theorem C. Throughout the proof, we use the following partial order
between parallelograms Q, R € Dg:

0<R & QNR#D. m(Q)Cm(R). (2.13)

Notice that, since O, R € Dg, we have that 71 (R), 71(Q) belong to the standard dyadic grid D on R.
It is convenient to encode the main inequality of Theorem C by means of the following dimensionless
quantity associated with a collection R C D§ and a Carleson sequence a = {agr}p ep?’
massg, p (L
Up(R):= sup —a’p( ) ,

1
P 1
:%ai} massg,1(L)?

a

where the supremum is taken over all finite subcollections £ C R and all L°°-normalized Carleson
sequences a = {aR} ReD%- There is an easy, albeit lossy, a priori estimate for U, (R) for general R C D%.
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Lemma 2.14. Let S C [—1, 1] be a finite set of N slopes and a = {aR}rer be a normalized Carleson
sequence as above. For every R C D% we have the estimate

1 ’ ’
Up(R) SN7? sup |[Mg, : L? — LP>®°|, 1< p<oo.
seS

Theorem C is then an easy consequence of the following bootstrap-type estimate. For an arbitrary
finite collection of parallelograms R C D§ we will prove the estimate

U2(R)? < (log U2(R))" log N, (2.15)

with absolute implicit constant. Note also that the boundedness assumption on Mz for some p < 2 and
Lemma 2.14 yield the a priori estimate Uz (R) S N 172 Inserting this a priori estimate into (2.15) and boot-
strapping will then complete the proof of Theorem C. It thus suffices to prove (2.15) to obtain Theorem C.

The remainder of the section is dedicated to the proof of (2.15). We begin by expanding the square of
the L2-norm of T (a) as follows:

1o
massa2(R) = ITa(@)l3 <2 ) arpp; /Z 95—:2ZaRB§. (2.16)

ReR QeRr ReR
O<R

For any £ C R and R € R we have implicitly defined

Be= g [, X 015 @17

QeL
Q<R

Remark 2.18. Observe that for any £ C R and every fixed s € S we have

J(ReR;: BR>)L}C{xe[R2 MRS[ZaQI :|(x)>)t%
oo 10

which by our assumption on the weak (p, p) norm of Mg implies
massg, p (L£)?

U{RGRS:B§>A} o

For a numerical constant A > 1, to be chosen at the end of the proof, a nonnegative integer k and s € S

<) p—1T.

sup
seS

we consider subcollections of Ry as follows:
Rsx :={R:R€Rs, Mk <BEF <A(k+1)}, keN,seS. (2.19)
Using (2.16) we have

||TR(a)||%sZka 3 aR+Nsup[Z Y aR}

sE€S k=0 ReR; k>N ReR i
< A(log N) massy 1 (R) + AN > k sup|sh(Ry k). (2.20)
k>N sES

Here A > 0 is the constant used to define the collections R x and in the last lines we used the definition
of a Carleson sequence and Remark 2.9.
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The following lemma encodes the exponential decay relation between mass and B I% and is in fact the
main step of the proof of Theorem C.

Lemma 2.21. Leta = {ag : R € D%} be an L*°-normalized Carleson sequence, S C [—1,1], and
L,RC Dg with L C R. We assume that for some p € [1,2)

Ap :=sup |[Mg, : L? — LP*°|| < +o0.
sES

If A > Cmax(1, 4, U2(£)?/P") for a sufficiently large numerical constant C > 1 then there exists L1 C L
such that

(i) massq,1(£1) < § massq,1(L),

(ii) fixing s € S and denoting by R, the collection of rectangles R in Rs with B}% > A, see (2.17), we
have that
Bf <A+ Bg' forallReR).

The final lemma we make use of in the argument translates the exponential decay of the mass of each
Rk into exponential decay of the support size, which is what we need in the estimate (2.20).

Lemma 2.22. Let S C [—1, 1] and define the collections R i by (2.19) with A defined as in Lemma 2.21
for L=TR
2
A:=Cmax(1l, ApU2(R)”").

We assume that the operators {Mg, : s € S} map LP(R?) to LP>°°(R?) uniformly with constant Ap. For
k > 1 we then have the estimate
[sh(Rs,)| < 27 massa, 1 (R),

with absolute implicit constant.

With these lemmas in hand we now return to the proof of (2.15). Substituting the estimate of Lemma 2.22
into (2.20) yields

TR ()3 < A massq 1 (R) [(log N)+N Y k2_k} < Amass,, 1 (R)(log N).
k>log N

This was proved for an arbitrary collection R and so also for every £ C R. Thus the estimate above and
our assumption A, < (p’)¥ imply

U(R)2 < Alog N), A= max(l, (p') Un(R) 7).
Now observe that we can assume U, (R) 2 1; otherwise there is nothing to prove. In this case we can take
A= () U (R)
for every p > 1. The choice p’ := (log U2(R)) guarantees that [U2(R)]'/?" < 1 and leads to
U2(R)* 5 (log U2(R))” log N.

This is the desired estimate (2.15) and so the proof of Theorem C is complete.
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2.23. Proofs of the lemmas.

Proof of Lemma 2.14. We follow the proof of [Lacey 2007, Lemma 3.11]. Take R to be some finite
collection and ||g||, = 1 such that

> anfg

ReR

Define R’ :={R€R:(g)r > [cN/ massa,l(R)]l/I’ } for some ¢ > 1 and R, := R'ND? fors € S.
Then,

[ L aripe= 3 ante

ReR ReR\R/

= et

ReR

1

);/(Z aR)p + N sup

ReR seS

> antt

ReR}

)z

b

ReR’

This means

1R
2 arppr|

ReR

S

N% sup ”ZR672§ aR(lR/|R|)HP (ZRERg aR)
1
(X Rrer, @R)

N =

s€S (ZRGRQ aR)p

We have proved that for an arbitrary collection R we have

< (cN)ﬁ’(1 n

N
D=

cr

1

N7 , massa,l(R;)!l’)
1 - 1 .

sup Up (RY)

1
0 < @M 1+ :
cr’ S massg,1(R)?

We claim that sup;cg Up (R)) < supses Mg, : LP" — LP"®|. Assuming this for a moment and
using Remark 2.9 we can estimate

> ag < [sh(R))| < [{Mr,(g) > (cN/ massa,1(R))"/ 7'}
ReR} , , ) R
<sup Mg, : L?" — LP"®|P massa,1(R)
seS cN
This proves the proposition upon choosing ¢ = supseg [Mg, : L? — LP"®| 7"
We have to prove the claim. Note that since R/ is a collection in a fixed direction, the inequality

Ur; < supges Mg, : L? " Lo || follows by the John—Nirenberg inequality in the product setting
and Remark 2.9; see [Lacey 2007, Lemma 3.11]. 0

Proof of Lemma 2.21. By the invariance under shearing of our statement, we can work in the case s = 0.
Therefore, R6 will stand for the collection of rectangles in R¢ such that B I% > A, where A >C and C > 1
will be specified at the end of the proof. We write R = Ig x Lg for R € Ry.

Inside-outside splitting. For I € {m1(R) : R € Ry} and any interval K we define
LPg ={0€L:0=<IxK m(Q)C3K}, L{':={0€eLl:0=<IxK, m(Q)Z3K}

where we recall that the definition of partial order Q < R was given in (2.13). Set also

]gK Z IQIIQ’ sit=f, X igte

Q L:(yul
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0

, [ enUx{a’})

on( XM

3K 3

Figure 3. A rectangle Q with angle 0¢ intersecting R =1 xL C I xK.

We claim that if K C R is any interval then for all « € K we have
1 QN x{a})| _
f w0ig= L a0 g s 3 QIQI' (229
X{O(} QEL()UI Qec(}uk X Q Enul

To see this note that in order for a Q-term appearing in the sum of the left-hand side above to be nonzero
we must have

m(Q)CIl, m(Q)NK#T, m(Q)NR\3K #0.
Let us write fg = arctano if Q € D2 for some o € S. A computation then reveals that
|0 N (I x{a})| =min(|Jg|, dist(e, R\ 72(Q))) cotOp.

We also observe that 7,(Q) N (3K \ K) contains an interval A = A(«) of length | K|/3, whence for all
o’ € A we have

dist(ar, R\ m2(Q)) < dist(ar,a”) +dist(a’, R\ 712(Q)) < | K| +dist(a’, R\ 72(Q)) < dist(a’, R\ 72 (0));
see Figure 3. This clearly implies that for every o € K we have
0NUxtadl = f 100U xtlde’ < f 100 x (o'
A 3K

which proves the claim.
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Smallness of the local average. We now use the previously obtained (2.24) to prove (ii). Let Rj denote
the family of parallelograms R = Ig X Lg € Ry, such that B}’;‘;’ Ly > A- For each such R let Kg be the
maximal interval K € {L,3Lg,..., ¥ LR, ... } such that B}’;‘;’ x > A; the existence of the maximal
interval Kg is guaranteed for example by the a priori estimate of Lemma 2.14 and the assumption R € Rj.
Obviously Kg 2 Ly and B}’“‘3KR <.

We show that for R € R we have

][ > aQ |Q| (2.25)

Loul
Q€Lip KR

for some numerical constant x > 1. Indeed it is a consequence of (2.24) that

1o 1o
[ X oaoigsf % a0
IRx{oe}Q - | | Irx3KpR c | |

?u]tg,KR Q ‘C(}u;g Kp
1
=f > aorl+f >l
Irx3KR Q erout |Q| IrRx3KR QGCOM \Cout |Q|
IR.3KpR IR. KR IR.3KR

The first summand is estimated using the maximality of Kg:

/ > a0 = it <A

Irx3K - |Q| iR

RXEER ge LiR3KR

The second summand can be further analyzed by observing that the cubes Q appearing in the sum above
satisfy 771 (Q) C I and m2(Q) C 9Kg since Q ¢ L% 35 thatis, L% 3p \ L7Y ¢ is subordinate to

the singleton collection {/g x 9Kg}. Applying the Carleson sequence property

][ 3 492 < 3 ap | CNURSKR] 3 (506
IRX3KR |Q| - |Q||IRX3KR| T

out out out out
OQ€Lyy kp\LTR 3K R Q€Lyy Kk \ETR3K R

by our assumption on A. Combining the estimates above shows that

][ Z an_Qs,'\
IRX{a} QEE(}LZ,KR |Q|

for all « € Kg. Since m2(R) C K this implies (2.25).
Observe that if R = Ig x Lg € Ry \ Ry then

Bout =f
IR,L
R R IRXLR

Defining the subcollection £L1. We set

/. in "n.__ in . / "
L= Lh ke L= | LhL. Li=r£ULy
ReR} ReR\R

1o
2. a0jp) =4
Q E(I)u]tg LR
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Now note that for each R € R* and K = KR € K, (r) we have that

shsf, X ceigitf, X oeigzersy
0 m 0]~
e Q€LY xk g

while for R € R\ R{y the same estimate holds using L in place of Kg. It remains to show the desired
estimate for mass,,1(£1) in (i) of the lemma.

Smallness of massg,1(L£1). By the definition of the collections CiI“ x We have that

sh(£r)c | J Irx3KgU | ) Irx3Lg.
ReR} ReR{\RY
If K = K for some R € R we have by definition that B;’;’;’ Kg > A- On the other hand for R € Ro\Rg
we have that BILQ = BIL Lp” A.
Define

E:={(x,y)e[R2 [ ag— }(X V=3 }
QZEL 10| 2

where My = M(q 5) = M is the directional Hardy-Littlewood maximal operator acting in the direction
v={(1,s5) = (1,0), see (2.3), since we have assumed s = 0. We will show that

| 1z x3Kg C{(x.y) e R* :Ma(1E)(x. y) = C}
ReR]

for a sufficiently small constant C > 0, where M5 is as in (2.3). To this end let us define

1 10
V()=
11R] J1pxiay Z “Clor
Q ﬁ]R,KR

Note that
1 A cA A A
A< B§™ ][ Y(a)do < —— Y(a)da+ = < HKR:l//((x)>—H+—,
Ir.Kr ™ |KR| J{K givr(@)>2/2} 2 7 |KR] 2 2

which readily yields the existence of K’ C Kg, with

Kr|<|K'|, inf inf M —
Kel<IKL ot e M| agi | > 5,

Iry
QEL‘(;I; KR

This in turn implies that M (1g) = 1 on /g x 3Kg. Now we can conclude

1
U 7rx3Kg| < [{(M2(15) 2 1} S |E| S 5 massa,1(C)

ReRj

by the weak-(1, 1) inequality of the directional Hardy-Littlewood maximal operator M(q ).
On the other hand we have for the rectangles R € R \ R; that

U s e ety) -2

ReR{\R] QeL
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Thus we get by the weak (p, p) assumption for Mg, that

1 A
U twestaf | s (S ao g5
ReR{\R} Q€L
V4 V4
< )L_Z massq, p (L) < A—Z massa,l(ﬁ)Uz(ﬁ)z(p_l).

By the subordination property of £; we get

massg,1(£1) <

U Igr x3Kg U U Ig x3Lg
ReR} ReR{\RS

< % massg,1(L),

upon choosing A > C max(1, A,U»(£)?/P") with sufficiently large C > 1. O

Proof of Lemma 2.22. Fix s € S and choose A in the definition of R x to be the value given by
Lemma 2.21 with £L =R = | J;cg Rs. Let j =0 and Lo = £; := R. Construct L1 = L1 C R such
that mass;,1(£1) < % massg,1(Lo). Since Bﬁo > kA for all R € Ry, we have

Ak <BRP <A+ Bg' = BR' >Ak-1).

Repeat the procedure recursively with j 4 1 in place of j. When j = k — 1, we have reached the collec-
tion Lx_q with massg 1(Lx—1) < 2k massg,1(Lo) and Bﬁk_l > A. This last condition and Remark 2.18

imply that
1
sh(Rs k) C {MR;[ > agé] > A}
Q€Ly—1
and so, using (2.10),
AP AP _2p
|sh(Rs,x)| < A_i massg, p(L—1)P < A_i massg,1(Li—1)"" 7" massg 2(Li—1)

IS

2
2

< 2k massq,1(Lo)

CAII,’ ( massa,2(£0)2

p—1 CAP
7 ) = 27 massy,1 (Lo) =L U (Lo)? P~V

massg,1(Lo) AP

and the lemma follows by the definition of A since £y = R. O

3. A weighted Carleson embedding and applications to directional maximal operators

In this section, we provide a weighted version of the directional Carleson embedding theorem. We then
derive, as applications, novel weighted norm inequalities for maximal and singular directional operators.

The proof of the weighted Carleson embedding follows the strategy used for Theorem C, with
suitable modifications. In order to simplify the presentation, we restrict our scope to collections of
parallelograms R = {U Rs:s€S } with the property that the maximal operator Mz associated to each
collection R satisfies the appropriate weighted weak-(1, 1) inequality. This is the case, for instance,
when the collections R are of the form

2 2 2
Rs CDZ . Dipi=|J D2k (3.1)
k1§k
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for a fixed k € Z. In other words, the parallelograms in direction s have fixed vertical sidelength and
arbitrary eccentricity.

3.2. Directional weights. Let S be a set of slopes and w,u € LIOC(RZ) be nonnegative functions, which
we refer to as weights from now on. Our weight classes are related to the maximal operator

Mgz := My oM, 1),

recalling that My = My ):ses) is the directional maximal operator defined in (2.4). We introduce the
two-weight directional constant
. Mg w(x)
[w,u]s := sup ———=.
x€R? u(x)
We pause to point out some relevant examples of pairs w, u with [w, u]s < co. Recall that, for p > 2,
IMs:2llp—p < (log#S )P this is actually a special case of Theorem C and interpolation. Therefore, if
g > 0 belongs to the unit sphere of L?(R?),
(4]
MS 28

satisfies [w, w]s <2||Mg.2||p—p; here T denotes £-fold composition of an operator T' with itself. We
also highlight the relevance of [w, u]g in Theorem D below by noticing that

2t M52l p

sup [Mp2 : L ") — LY w)|| < [w,uls,

seS

with absolute implicit constant. This result is obtained via the classical Fefferman—Stein inequality in
direction s paired with the remark that M,> W SMgsow < [w, u]su.
S,

3.3. Weighted Carleson sequences. We begin with the weighted analogue of Definition 2.7, which is
given with respect to a fixed weight w.

Definition 3.4. Let a = {ar} ReD% be a sequence of nonnegative numbers. Then a will be called an
L*°-normalized w-Carleson sequence if for every £ C D2 which is subordinate to some collection
T C P? for some fixed T € S, we have

Z ar, <w(sh(7T)), massy:= Z aR < oo.

2
Lec ReDy

As before, if R C D? for some fixed T € S then R is subordinate to itself and

massg,1(R) = Z ar <w(sh(R)), RC Df for some fixed t € S.
ReR
Throughout this section all Carleson sequences and related quantities are taken with respect to some fixed
weight w which is suppressed from the notation. We can now state our weighted Carleson embedding
theorem.
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Theorem D. Let S C[—1, 1] be a finite set of N slopes and R C Dé. Let w, u be weights with [w, u]s < 0o
and such that
sup [Mr, @ L' (u) = L (w)|| < [w. uls.

seS

Then for every L°°-normalized w-Carleson sequence a = {ag} g ep2 We have

(/ |TR(a)(x)|2 G )) < (log N)2[w, u]s massa,1(R)?.

3.5. Proof of Theorem D. We follow the proof of Theorem C and only highlight the differences to
accommodate the weighted setting. Write o := [Mzu]~!. Expanding the L?(o’)-norm we have
o(QNR)
ITR@)32) <2 ) ar Y ag— o OIR

ReR QeR
O<R

From the definition of o we have that

[ONRl _ [0
infg Mru — u(Q)

@ ey <2 2 an f, 3 a0 Ssi=2 3 arsf,

ReR Q€erR ReR
O<R

][ 2 Qu(Q)

QeL
O<R

o(QNR) <

O NR|.

whence

where now for any £ C R we have defined

Defining the families R x for s € S and k € N as in (2.19) we then have the estimate

7@,y = 24| Gog W) massa s R) 4N 3 ksupwsh(Roe)) |
k>log N ses

Again A > 0 is a constant that will be determined later in the proof and in the last line we used the
w-Carleson assumption for the sequence a = {ag} for rectangles in a fixed direction.

We need the weighted version of Lemma 2.21, which is given under the standing assumptions of
Theorem D.

Lemma 3.6. Leta ={ag: R € D%} be an L*°-normalized w-Carleson sequence, s € S C [—1, 1], and
LR C Dg. with L C R. For every A > C[w, u]g, where C is a suitably chosen absolute constant, there
exists L1 C L such that

(i) massq,1(L1) < § massq,1(L),

(i) denoting by R, the collection of rectangles R in Rg with B Iﬁe > A we have that

BE <A+ By forall ReR,.
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Proof. We can assume that s = 0 and let R{, be the collection of rectangles in Rq such that BI% > A,
where A is as in the statement of the lemma and C will be specified at the end of the proof. For
I € {m1(R): R € Ry} and any interval K C R we define E‘I“ x and E?”}{ as in the proof of Theorem C,

but now we set
- 1o, B ][
Big: ]{ K, Z U(Q) e I IxK Z

Eout

(Q) lo.

We define Ry to be the subcollection of those R = | x L € Ry, such that B}’“i < A. By linearity we
get for each R € Ry that B£§A+B <A+BR,where

L= |J £pp. shehc | I1x3L.
R=IxLeRy R=IxLeR]
Since Rg C 7% we conclude as before that

w(sh(c))<w( U Ist)gw({MRO(Zcﬁg)>%})

R=IXLER” Qerl
[w, u]s _ [w,u]s
/RZ Z (Q) = massg,1(L)

by the two-weight weak-type-(1, 1) inequality for Mz, = Mg,. Now L] is subordinate to the collection
{I x3L: 1 x L eRy}. Using the definition of a Carleson sequence we have

Z ag < w( U 1 ><3L) < [w,/\u]S massq,1(L),

Qecry R=IxLeR}

and so massg, 1 (L)) < [w, u]s massq,1(L£)/A.
It remains to deal with parallelograms

R=1xLeRy:=Ry\Ry. B >A.

We define the maximal K g such that B?“}(R > A as before; the existence of this maximal interval can be
guaranteed for example by assuming the collection R is finite. We have for each R = I x L € R} that
B}’“i > A so Kg D L and B}’“zf Ky <A by maximality.

Now using (2.24) we get that

o 1@ N x{a))| QNI x3KR)| _ 1o
A= 2 a0 u(Q)|| S 2 ag u(Q)[3KR| || _]{ 2 aQu(Q)S

xX3KR
out out out
Q€LY 5k p Q€LY 5k p Q€LY 5k p

by the maximality of Kg. On the other hand

|0 NI x3K)|
Z = 2

8= ][ < 0 .
Ix{a} U(Q) |1 x3K[u(Q)

Qecout \ﬁnul QCIX9K
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Since Mz, w < MyMaw < [w, u]s u uniformly in s we get that for Q C I x 9K

1w x9K)

u(Q) 2 . uls S e 10|

and by this and the w-Carleson property for all Q subordinate to / x 9K we get

85 ([wuls=A
provided A > [w, u]s. We now define
! . i
e = U L3 .k
ReR]
so that

sh(c)) C | ) mi(R) x K.
ReR

Arguing as in the unweighted case of Theorem C we can estimate

wion(ep) < w( U m(8)x Ke) S w(Ma(1) 2 1),

ReRy

1 A
=l er | Y ag S|zl
2.°%30) 2

where

In the definition of E above we have that M, = M5 = M; since we have reduced to the case
v = (1,5) = (1,0). Using the subordination property of £} and the Fefferman—Stein inequality once in
the direction e for M and once in the direction v = (1, 5) = (1, 0) for M,, we estimate

massa,l(ﬁ/l) < w(RLéJz*m(R) X KR) < % Z aQMVuM(zQU;(Q) < [w,ku]s massa.1(L).

QecL

We have thus proved the lemma upon setting £ := E/I/ U £} and choosing A > C[w, u]s for a sufficiently
large numerical constant C > 1. O

Repeating the steps in the proof of Lemma 2.22 for A as in the statement of Lemma 3.6 we get for the
sets R x defined with respect to this A that

w(sh(Ryx)) <27 massy,1(R),
and this completes the proof of Theorem D.

3.7. Applications of Theorem D. The first corollary of Theorem D is a two-weighted estimate for the
directional maximal operator My from (2.4).

Theorem E. Let V C S be a finite set of N slopes and w be a weight on R?. Then

My : L2 My w) — L*>*®(w)| < vlog N, My := My oMy omax{M(; o), M(o.1)}-
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Remark 3.8. In the proof below, we argue for almost horizontal V, and in place of max{M(y o). M(o,1)}
we use Mg 1). The usage of max{M(; o). M(g,1)} enables the statement of the theorem to be invariant
under rotation of V.

Proof of Theorem E. By standard limiting arguments, it suffices to prove that for each k € Z the estimate

IMz : L*(z) = L*®(w)|| < ylog N, z:=MgoMyoMq nuw, (3.9)

when R is a one-parameter collection as in (3.1), holds uniformly in k.
For a nonnegative function f € S(R?) let Uf be a linearization of Mz f, namely

1

M =U = — dy = 1 , Fgr:= R: R(x) = R}.
RS = UG = R foy 7OV %mR Fr(x),  Fri={x€R:R(x)=R}
By duality, (3.9) turns into
||U*(w1E)||L2(Zfl) < Jlog N/w(E) forall E C R (3.10)

We can easily calculate
U*(wlg)= > w(EN FR)%
ReR
and it is routine to check that {w(E N FRr)}rer is a w-Carleson sequence according to Definition 3.4.
The main point here is that the sets { E N Fr}rer are by definition pairwise disjoint and Fg C R for
each R e R.
Setting u := My oM(q, 1yw, if S are the slopes of V, it is clear that [w, u]s < 1 and that z7l=Mzu)~L
Therefore (3.10) follows from an application of Theorem D. O

We may in turn use Theorem E to establish a weighted norm inequality for maximal directional singular

integrals with controlled dependence on the cardinality #V = N. Similar considerations may be used to
yield weighted bounds for directional singular integrals in L?(R?) for p > 2; we do not pursue this issue.

Theorem F. Let K be a standard Calderén—Zygmund convolution kernel on R and V C S be a finite set
of N slopes. For v € V we define

Ty f (x) = sup

e>0

[ rasmk@al 1y i@ =spln L

<t<y veV

Let w be a weight on R? with [w]A}/ = [Myw/w|eo < co. Then

3 5
1Ty : L2 (w) - L>®(w)] < (log N)i[w]j}/-

We sketch the proof, which is a weighted modification of the arguments for [Demeter and Di Plinio
2014, Theorem 1]. Hunt’s classical exponential good-A inequality, see [Demeter and Di Plinio 2014,
Proposition 2.2] for a proof, may be upgraded to

w({xG[RRZ:va(x)>2)t,va(x)§yA})§exp(— )w({xe[Rz:TUf(x)>/\}) (3.11)

V[w]A{/
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by using that [w] AV dominates the A, constant of the one-dimensional weight ¢ > w (x +¢v) for all x € R?,
v € V, together with Fubini’s theorem. With (3.11) in hand, Theorem F follows from Theorem E via
standard good-A inequalities, selecting (y)™! ~ [w] e log N. Note that the right-hand side of the
estimate in the conclusion of Theorem E becomes [w]z/1 2\/@ when the estimate is specified to
A{/ weights as the ones we consider here.

4. Tiles, adapted families, and intrinsic square functions

We define here some general notions of tiles and adapted families of wave-packets: definitions in this
spirit have appeared in, among others [Barrionuevo and Lacey 2003; Demeter and Di Plinio 2014; Lacey
and Li 2006; 2010; Lacey 2007]. These will be essential for the time-frequency analysis square functions
we use in this paper in order to model the main operators of interest. After presenting these abstract
definitions we show some general orthogonality estimates for wave packet coefficients. We then detail
how these notions are specialized in three particular cases of interest.

4.1. Tiles and wavelet coefficients. Throughout this section we fix a finite set of slopes S C [—1, 1].
Remember that alternatively we will refer to the set of vectors V := {(1,s) : s € §}. A tile is a set
t:= R; xQ; C R? x R?, where R; € D% and ©; C R? is a measurable set, and |R;||2;]| 2 1. We
denote by s(¢) € S the slope such that R; € Dsz( " and then

Ry = Agy(Iy x Jy),  with I; x J; € D§.

We also use the notation v; := (1, s(¢)). There are several different collections of tiles used in this paper,
they will generically be denoted by T, Ty, T’ or similar. Given any collection of tiles T we will often
use the notation Rt := {R; : t € T} to denote the collection of spatial components of the tiles in 7.
The exact geometry of these tiles will be clear from context; however, several estimates hold for generic
collections of tiles, as we will see in Section 4.3.

Lett = R; x 2; be atile and M > 2. We denote by .A?’I the collection of Schwartz functions ¢ on R?
such that

() supp(d) C Q,
(i1) there holds

M M
1 XU X -e
sup  sup |Rt|2|1|“|J|ﬂ(1+' t') (1+' 2') 162 98 ¢ (x +cr,)| < 1.
0<a,B<M xcR2 |1| |Ut| |J|

In the above display cg, refers to the center of R; and

By, (+) 1= L V(-).
[ve |

An immediate consequence of property (ii) is the normalization

sup [lpfl2 S 1.
peAM

We thus refer to A?’[ as the collection of L2-normalized wave packets adapted to t of order M. For
our purposes, it will suffice to work with moderate values of M, say 23 < M < 2°°. In fact, we use
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M = My = 2°° in the definition of the intrinsic wavelet coefficient associated with the tile ¢ and the
Schwartz function f:
ar(f):= sup [(f.d)|*. Mo=2. (4.2)
pea)o
This section is dedicated to square functions involving wavelet coefficients associated with particular
collections of tiles which formally look like

Ar ()= ar(f)

teT

1R,

, T 1is a collection of tiles.
|R:|

We begin by proving some general global and local orthogonality estimates for collections of tiles with
finitely overlapping frequency components. These estimates will be essential in showing that the sequence
{a;(f)}ser is Carleson in the sense of Section 2, when | | < 1g for some measurable set £ C R? with
0 < |E| < oco. This in turn will allow us to use the directional Carleson embedding of Theorem C in order
to conclude corresponding estimates for intrinsic square functions defined on collections of tiles.

4.3. Orthogonality estimates for collections of tiles. We begin with an easy orthogonality estimate for
wave packet coefficients. For completeness we present a sketch of proof which has a TT* flavor. The
argument follows the lines of proof of [Lacey 2007, Proposition 3.3].

Lemma 4.4. Let T be a set of tiles such that y_,cr 1q, < 1,let M > 23 and {¢; : t € T} be such that
¢ € AM forall t € T. We have the estimate

ST S I3 (4.5)
teT
and as a consequence

da(H2IfI5

teT

Proof. Fix M > 23. Tt suffices to prove that for || || = 1 and an arbitrary adapted family of wave packets
{¢: s € AM, t € T} there holds

B:=Y) |{fé)P 5L (4.6)

teT
Let us first fix some Q2 € Q(T) :={Q; :t € T} and consider the family

THRQY) :={teT Q2 =Q}.
To prove (4.6), we introduce
Ba(®):= > Hg.¢)P Sa(g):=(21a)".
teT ({Q2})

We claim that B (g) < | g||§ for all g, uniformly in Q2 € Q(7'). Assuming the claim for a moment and
remembering the finite overlap assumption on the frequency components of the tiles we have

B= Y BaSaN)s Y ISa(NE=| X 1a

QeQ(T) QeQ(T) QeQ(T)

2
IFI3 <1

o0




1674 N. ACCOMAZZO, F. DI PLINIO, P. HAGELSTEIN, I. PARISSIS AND L. RONCAL

as desired. It thus suffices to prove the claim. To this end let

Po(g):i= Y (g.¢:)¢r.
teT ({2})
Then for any g with ||g||> = 1 we have that Bg(g) = (Pa(g2), g) < | Pa(g)l|l2 and it suffices to prove
that || P (g)||% < Bgq(g). A direct computation reveals that

IPa(Il3 < Ba(g) sup > [¢r.¢r)| < B,
t’eT ({2}) teT ({Q))
where the second inequality in the last display above follows by the polynomial decay of the wave packets
{¢: : Q¢ = Q}. This completes the proof of the lemma. |

We present below a localized orthogonality statement which is needed in order to verify that the
coefficients a;( f') form a Carleson sequence in the sense of Section 2. Verifying this Carleson condition
relies on a variation of Journé’s lemma that can be found in [Cabrelli et al. 2006, Lemma 3.23]; we
rephrase it here adjusted to our notation. In the statement of the lemma below we denote by Mp2 the
maximal operator corresponding to the collection Psz, where s € S is a fixed slope. Note that the proof in
[Cabrelli et al. 2006] corresponds to the case of slope s = 0 but the general case s € S follows easily by a
change of variables. Remember here that we have S C [—1, 1].

In the statement of the lemma below two parallelograms are called incomparable if none of them is
contained in the other.

Lemma 4.7. Let s € S be a slope and T C D? be a collection of pairwise incomparable parallelograms.
Define
sh*(7) := {MPf lsh(T) > 2_6}

and for each R € T let ug be the least integer u such that 2* R ¢ sh*(T). Then

D IR S2|sh(T).

ReT
UR=U

With the suitable analogue of Journé’s lemma in hand we are ready to state and prove the localized
orthogonality condition for the coefficients a;( f).

Lemma 4.8. Let s € S be a slope, T C PSZ be a given collection of parallelograms and T be a collection
of tiles such that
Rr:={R;:teT}

is subordinate to T. Then we have

> ai(f) SIsh(MINf 12

teT
Proof. We first make a standard reduction that allows us to pass to a collection of dyadic rectangles. To do
this we use that there exist at most 92 shifted dyadic grids Ds2 j such that for each parallelogram T € T

there exists T € U f Dsz j with T'C T and |T| < |T| < |T|; see for example [Hytonen et al. 2013]. Now
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note that for each T € T we have
ITNT]| -
7 2 1 sh(T) CiMp2 (Lsn(r) 2 13

and so |sh(T)| < |sh(7)|. Now it is clear that we can replace 7~ with the dyadic collection 7 in the assump-

tion. Furthermore there is no loss in generality with assuming that 7 is a pairwise incomparable collection.

We do so in the rest of the proof and continue using the notation 7 assuming it is a dyadic collection.
Since R is subordinate to 7 we have the decomposition

T=|J1({T. T(T):={eT:RCT}.
TeT
Now if f is supported on sh*(7") and ¢; € A?/IO for eacht € T then

Y WL SISIE < Ish* (D113 S Ish(DIF 13

teT

by Lemma 4.4. We may thus assume that f is supported outside sh* (7). By Lemma 4.7 it then suffices
to prove that

> fig)> 5271 T

teT (T)

whenever u is the least integer such that 2¥7T ¢ sh*(7") and || f ||coc = 1. As f is supported off sh*(7)
we have for this choice of u that

f = Z fna fn = f12u+nT\2u+n71T.
n>0

Let z7 be the center of T and suppose that T = A;(I7 x Jr), with IT x JT € D(z); remember that we
write vg := (1, 5). Let

(x —z7) -0\ - -
xr(x) = (1+WU|S 1+ |J7| I(X—ZT)'ez) 20,
S
Observe preliminarily that
[ faxrlloo < 27200 +n)

so that for any constant ¢ > 0 we have

1

( 2 |<f’¢t>|2)552( 2. l<fn’¢r>|2)2=2( > |<fnc—1xT,cx;l¢t>|2)2

teT(T) n>0 “teT(T) n>0 “teT(T)
1 _ 1
SY Nxrla 0 1 faxrlloeol2T T2 2754 T|
n>0 n>0

as claimed. To pass to the second line we have used estimate (4.5) of Lemma 4.4 together with the easily
verifiable fact that for each ¢ € T (T') the wave-packet ¢ X}lgbt is adapted to ¢ with order My — 20 > 23
provided the absolute constant ¢ is chosen small enough. O
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4.9. The intrinsic square function associated with rough frequency cones. Let s € S be our finite set of
slopes. As usual we write vg ;= (1,s5) fors € S and V := {vs : s € S} and switch between the description
of directions as slopes or vectors as desired with no particular mention. Now assume we are given a
finitely overlapping collection of arcs {w;}ses With each wg C S! centered at (vs/|vg|)L. We will adopt

w5 i= ((|Zj_|)l’ (ﬁil)L)

assuming that the positive direction on the circle is counterclockwise and s~ < s < s™.

the notation

For s € § we define the conical sectors

Qs,k:={EERZ:Zk_1<|§|<2k“, iews}, k €7, (4.10)

these are an overlapping cover of the cone
— 2\ (- &
Cs.— SER \{0}._€a)s N

with k € Z playing the role of the annular parameter. Each sector €2  is strictly contained in the cone Cs.

For each s € S let £ € Z be chosen such that 2~ < lws| < 2=+ we perform a further discretization
of each conical sector €2 x by considering Whitney-type decompositions with respect to the distance
to the lines determined by the boundary rays rg— and rg+; here r(+ denotes the ray emanating from the
origin in the direction of vngr and similarly for rg—. For each sector €2 ; a central piece which we call
Qg k.0 18 left uncovered by these Whitney decompositions. This is merely a technical issue and we will
treat these central pieces separately in what follows.

To make this precise let s, k be fixed and define the regions

dist(€, _
Q= {g € Qyp: Lomimi-1 < dist(§.re+) _ 1, |m|+1} om0,

3 - -3

i t'é’s' : 4.11)
1st(&€, rg— .
Qoo = V& € Qg boim=t < BEETT) Dpmiral ) )
LS s 3 |ws| 3
The central part that was left uncovered corresponds to m = 0 and is described as
. . 11

Qs k0= {g € Qg k : min(dist(&, rg—), dist(§, rg+)) > 5 glws|%. (4.12)

Notice that the collection {2, x m }men is a finitely overlapping cover of Q; . Furthermore the family
1825 k.m }s.k,m has finite overlap as the cones {Cs}scs have finite overlap and for fixed s the family
{25 k,mk,m is Whitney both in k and m.

These geometric considerations are depicted in Figure 4.

The collection of tiles T corresponding to this decomposition is obtained as

T:= )T, uTdUuTS (4.13)

seS
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re— 2Kt lawg|=2k=ts vs=(1,5)
USLZ(—S,I) Qs k
Qs.k,O
T+
Qs,k,m:m>0 Rt dual to Qs’k’()
jgl=2F1 jgl=251

Figure 4. The decomposition of the sector {2 x into Whitney regions, and the spatial
grid corresponding to the middle region 2 g o.

where

Iy = U Ts—km: Ts—km = {t =Ry x Qs,k,m ‘R; € ’Ds*,k,k—éx—i-lmI}s m <0,

kezZ,m<0
0. . .
T, .= U Ts k0, Tspo:=1{t =R xQs k0 Rt € Dy e k—t, ) (4.14)
kez

T o= T pom: Totkm = = Ri X Qi : Rt € Dyt gy, 4pm|}» M > 0.

keZ,m>0

We stress here that for each cone Cy; we introduce tiles in three possible directions vs—, vg, Ug+. This
turns out to be a technical nuisance more than anything else as the total number of directions is still
comparable to #S, and our estimates will be uniform over all S with the same cardinality. However in
order to avoid confusion we set

S*:=SU{s :seStU{st:seSt=S"USuUST. (4.15)

Note also that for fixed s, k, m the choice of scales for R; yields that the tile 7 = R; X Q ¢, obeys the
uncertainty principle in both radial and tangential directions.
We then define the associated intrinsic square function by

Ar(f) = (Za,(f) Lr, ) 4.16)

= R

where the set of slopes S are kept implicit in the notation. Here we remember the notation a;( f) that
was introduced in (4.2). Using the orthogonality estimates of Section 4.3 as input for Theorem C, we
readily obtain the estimates of the following theorem.
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Theorem G. We have the estimates

1

|A7 1 LP®)] <) (log#S) 777 (loglog#5)2 77, 2< p <4, @.17)
A 1

sup M < (log#S)%(log log#S)%, (4.18)
E.f |E|#+

where the supremum in the last display is taken over all measurable sets E C R? of finite positive measure
and all Schwartz functions f on R? with || f |leo < 1.

Proof. First of all, observe that the case p = 2 of (4.17) is exactly the conclusion of Lemma 4.4. By
restricted weak-type interpolation it thus suffices to prove (4.18) to obtain the remaining cases of (4.17);
we turn to the former task.

For convenience define S* :=SU{s” :seS}U{sT :5€ S} =:S~USUST; note that this is the
actual set of slopes of tiles in T'. Let

Ry :={R,:t €T} C D3..

Observe that we can write

1r 1r
Ar(f1pR =Y ( ) at(flE)) = e,
ReRr “teT:R;=R ReRT
where
a:={aR= Z at(flE)IRE'R,T}.
teT:R,=R
We fix E and f as in the statement and we will obtain (4.18) from an application of Theorem C to the
Carleson sequence a = {aR}ReRry -
First, mass, < |E| as a consequence of Lemma 4.4 since

Yoar= )Y, Y. a(flp)=) a(flp) S|f1el5 SIE.

ReRT ReRTt teT:R;=R teT

Further, the fact that a is (a constant multiple of) an L °°-normalized Carleson sequence is a consequence
of the localized estimate of Lemma 4.8. To verify this we need to check the validity of Definition 2.7 for
the sequence a above. To that end let £ C D2, be a collection of parallelograms which is subordinate to
T C D2 for some fixed o € S* Then

Yar=Y Y alfin =Y alfle),
ReL Rel teT:R;=R teT,
where T, :={t € T : R; € £}. By Lemma 4.8 the right-hand side of the display above can be estimated
by a constant multiple of |sh(7)||| f1£||%, < |sh(7)|. This shows the desired property in the definition
of a Carleson sequence.
Finally if Ty :={t € T : s(t) = o} for 0 € §*, we have that
sup Mgy, : L?(R*) — LPC®)| s p/. p—>1T.

geS*
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Indeed note that for fixed direction o € S* each maximal operator appearing in the estimate above is
bounded by the strong maximal operator in the coordinates (v, e) with v = (1, o).
Now Theorem C applies to the Carleson sequence a = {agr}rer, yielding

IAT(f1E)]4 = TRy (@)]3 < (log #S™) (loglog #S ™) mass, < (log #5) (loglog #S)| E|.
which is the claimed estimate (4.18) as #S™* ~ #S. The proof of Theorem G is thus complete. O

4.19. The intrinsic square function associated with smooth frequency cones. The tiles in the previous
subsection were used to model rough frequency projections on a collection of essentially disjoint cones.
Indeed note that all decompositions were of Whitney type with respect to all the singular sets of the
corresponding rough multiplier. In the case of smooth frequency projections on cones we need a simplified
collection of tiles that we briefly describe below.

Assuming S is a finite set of slopes and the arcs {w;}ses on S! have finite overlap as before we now
define for s € S and k € Z the collections

Top:={t =R xQp: R €Dspy g} To=|JTox. T:=|JT. (4.20)
kez sES

with € ¢ given by (4.10). Here we also assume that 276 < |ws| < 26+ Notice that each conical
sector £25 ;. now generates exactly one frequency component of possible tiles in contrast with the previous
subsection where we need a whole Whitney collection for every s and every k; in fact the tiles T j are for
all practical purposes the same as the tiles T x o considered in Section 4.9. It is of some importance to note
here that for each fixed s € S the collection R := {R; :t € T } consists of parallelograms of fixed eccen-
tricity 2% and thus the corresponding maximal operator Mz . is of weak-type-(1, 1) uniformly in s € S

sup [[Mr,, : L'(R*) - LY (R?)| < 1.

seS

The intrinsic square function Ar is formally given as in (4.16) but defined with respect to the new
collection of tiles defined in (4.20). A repetition of the arguments that led to the proof of Theorem G
yields the following.

Theorem H. For T defined by (4.20) we have the estimates

|AT : LP(R?)] 5, (l0g#S)2 77, 2= p<4,
A 1
p IATUEe o
E.f |E|4
where the supremum in the last display is taken over all measurable sets E C R? of finite positive measure
and all Schwartz functions f on R? with || f |eo < 1.

4.21. The intrinsic square function associated with rough frequency rectangles. The considerations in
this subsection aim at providing the appropriate time-frequency analysis in order to deal with a Rubio-
de-Francia-type square function, given by frequency projections on disjoint rectangles in finitely many
directions. The intrinsic setup is described by considering again a finite set of slopes S and corresponding
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directions V. Suppose that we are given a finitely overlapping collection of rectangles F = | J;c g Fs.
consisting of rectangles which are tensor products of intervals in the coordinates v, v, v = (1,s), for
some s € S. Namely a rectangle F' € F; is a rotation by s of an axis-parallel rectangle. We stress
that the rectangles in each collection Fy are generic two-parameter rectangles, namely their sides have
independent lengths (there is no restriction on their eccentricity).

We also note that Fy consists of rectangles rather than parallelograms and this difference is important
when one deals with rough frequency projections. Our techniques are sufficient to deal with the case
of parallelograms as well but we just choose to detail the setup for the rectangular case. The interested
reader will have no trouble adjusting the proof for variations of our main statement below for the case of
parallelograms, or for the case that the families Fy are in fact one-parameter families.

Given F € Fs we define a two-parameter Whitney discretization as follows. Let F =rots(I x J)+ yF
for some yr € R?, where rots denotes counterclockwise rotation by s about the origin and 7 x J is an
axis parallel rectangle centered at the origin. Note that I = (—|/|/2,|I|/2) and similarly for J. Then we
define for (k1,k2) € N2, ky,ky #0,

Wkl,kz(F):{éele Lyt LB Ly Ly

_@<l2_k2+1
3 =273 "3 '

1
2 |J]—3
The definition has to be adjusted for k1 = 0 or k5 = 0. For example we define for k, # 0

o ! 11 1 5 —kr—1 1 1 y—kr+1
WouaF)i= | € 1x7 5 3111~ l6al = S 5171, §2771101 = Q11 fal = g2

1},
Then for k = (k1, k2) € N? we set Qg k1 der (F) =10t (Wi, 1, (F)) + VF.
We can define tiles for this system as follows. If F' € F; for some s € S and F =roty(/ X J)+ yF
with I x J as above, then we choose Kf,ff € 7 such that 2¢7 < 1] < 247 +1 and 247 < |J| < L5 +1,
We will have

F=r/. 7= L@ T(F)= |J TuuF). Fer, (4.22)
s€S FeFs (k1,k2)eN?

and symmetrically for k1 # 0 and k, = 0. Finally

1 11
Woo(F)i= (& € 17 3111~ 161 = 53111, 5171~ 62 >

NI*—‘
U.)I»—A

where
Ts,kl,kz(F) ={t=R;x Qs,kl,kz(F) :R; € Ds,—kz—i—(f,—kl-l-ff}’ F e F;.

Note again that the tiles defined above obey the uncertainty principle in both v, v for every fixed
v=(1,s5) withs € §.

The intrinsic square function associated with the collection F is denoted by Ay and formally has the
same definition as (4.16), where now the T are given by the collection T7 of (4.22). The corresponding
theorem is the intrinsic analogue of a multiparameter directional Rubio de Francia square function
estimate.
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Theorem 1. Let F be a finitely overlapping collection of two-parameter rectangles in directions given by S

>t

FeF

<1

~
o

Consider the collection of tiles T defined in (4.22) and let A= be the corresponding intrinsic square
function. We have the estimates

1

IAT : LP(R)]| <p (log#S)2 77 (loglog#S)2 ™7, 2< p <4,
> IAr#(f1E)|4

: < (log#S)%(log log#S)%,
E.f |E|4

where the supremum in the last display is taken over all measurable sets E C R? of finite positive measure
and all Schwartz functions f on R? with || f |leo < 1.

Remark 4.23. As before, there is slight improvement in the case of one-parameter spatial components in
each direction. More precisely suppose that F = | J,.g Fs is a given collection of disjoint rectangles
in directions given by S. If for each s € S the family Rz, := {R; : t € Tr,} yields a weak-type-(1, 1)
maximal operator then the estimates of Theorem I hold without the log log-terms.

Remark 4.24. Suppose that R = | J;cg Rs C Pg is a family of parallelograms in directions given by s;
namely we have that if R € R then R = As(I x J) + yg for some rectangle I x J in R? with sides
parallel to the coordinate axes and centered at 0, and yg € R?. Now there is an obvious way to construct
a Whitney partition of each R € R. Indeed we just define the frequency components

Qs,kl,kz(R) = AS(Wkl,kz(I X '])) + yR’
with Wy, x, (I x J) as constructed before. Then
Ty ey o (R) 1= AR X Qs ey joy (R) 1 Re €D g g8 g yor}s RERs,

and T are given as in (4.22). With this definition there is a corresponding intrinsic square function Ar,
which satisfies the bounds of Theorem I. The improvement of Remark 4.23 is also valid if R = (e g Rs
and each R consists of rectangles of fixed eccentricity.

The proof of Theorem I relies again on the global and local orthogonality estimates of Section 4.3 and
a subsequent application of the directional Carleson embedding theorem, Theorem C. We omit the details.

5. Sharp bounds for conical square functions

We begin this section by recalling the definition for the smooth conical frequency projections given in
Section 1. Let  C [0, 277) be an interval and consider the corresponding rough cone multiplier

27 poo . . ;
C: f(x):= / Flee)1.(9)e ™ gdodd, x e R2,
o Jo
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and its smooth analogue

2w roo 9 D —cCr\ iyonni®
€2 fix) = / (e’ )ﬁ(—)e’x'“ 0dodd, xcR?, 5.1)
o Jo Iz|/2

where § is a smooth function on R supported on [—1, 1] and equal to 1 on [—% %] and c¢, |t| stand
respectively for the center and length of t.

This section is dedicated to the proofs of two related theorems concerning conical square functions.
The first is a quantitative estimate for a square function associated with the smooth conical multipliers of
a finite collection of intervals with bounded overlap given in Theorem A, namely the estimates

o 1_1
I{C: f}”LP(RZ;(%) <p (log#7)27 7| fllp

for 2 < p < 4, as well as the restricted-type analogue valid for all measurable sets E

o 1 1
HCS 10N oz < Qoght) HEL ] £ oo

under the assumption of finite overlap
X

The second theorem concerns an estimate for the rough conical square function for a collection of

<. (5.2)

o0

finitely overlapping cones t.

Theorem J. Let T be a finite collection intervals in [0, 27r) with finite overlap as in (5.2). Then the square
function estimate

_2 1_1
Ce a2y Sp (log#t)' =7 (loglog #2) 277 | £ (5.3)
holds for each2 < p < 4.

Theorem A is sharp, in terms of log #w-dependence, for all 2 < p < 4 and for p = 4 up to the restricted
type. Theorem J improves on [Cérdoba 1982, Theorem 1], where the dependence on cardinality is
unspecified. Examples providing a lower bound of (log #@)/2=1/7| f| p for the left-hand side of (5.3),
and showing the sharpness of Theorem A, are detailed in Section 8.

The remainder of the section is articulated as follows. In the upcoming Section 5.4 we show Theorem A.
The subsequent subsection is dedicated to the proof of Theorem J.

5.4. Proof of Theorem A. We are given a finite collection of intervals w € @ having bounded overlap as
in (5.2). By finite splitting we may reduce to the case of w € @ being pairwise disjoint; we treat this case
throughout.
The first step in the proof of Theorem A is a radial decoupling. Let 1y be a smooth radial function on
R? with
11,2(1ED < ¥ () < 112D

and define the Littlewood—Paley projection

Sk f(x) = / v *E fE)evEds, xR,
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The following weighted Littlewood—Paley inequality is contained in [Bennett and Harrison 2012, Proposi-
tion 4.1].
Proposition 5.5 [Bennett and Harrison 2012]. Let w be a nonnegative locally integrable function. Then
[rtws [ Y iscnpmi,
R R kez

with implicit constant independent of w, f, where we recall that MBI denotes the three-fold iteration of
the Hardy-Littlewood maximal operator M with itself.

We may easily deduce the next lemma from the proposition.
Lemma 5.6. For any p > 2 we have

: (5.7
P

1C2 Lo @iz <

( ) |c:Sk(f>|2)2

kez,teT

Proof. The case p = 2 is trivial so we assume p > 2. Letting r := £ > 1 there exists some w € L” "(R%)
with ||w]|,» = 1 such that

HCE W py = 20 [ €5/ Po s 3 [ 1Cesi(r )P
TET

kez,tet
and the lemma follows by Holder’s inequality and the boundedness of M (3] on L” /([R{Z). O

The second and final step of the proof of Theorem A is the reduction of the operator appearing in the
right-hand side of (5.7) to the model operator of Theorem H.

In order to match the notation of Section 4.9 we write {ws}ses for the collection of arcs in S!
corresponding to the collection of intervals T, namely for T € T we implicitly define s = s; by means of
vSJ-/|vSJ-| =e/ =(1,5)/|(1,5)]. We set S :={s; : 7 € 7} and define the corresponding arcs in S! as

Wy, = {e“9 10 €t}

Now the cone C; is the same thing as the cone Cs and #S = #z. Similarly we write C; = C{ so the
cones can now be indexed by s € S. Define {5 such that 275 < |wy| <276t

By finite splitting and rotational invariance there is no loss in generality with assuming that S C [—1, 1].
Notice that the support of the multiplier of C;’ Sy is contained in the frequency sector Q; j defined in
(4.10). By standard procedures of time-frequency analysis, as for example in [Demeter and Di Plinio
2014, Section 6], the operator C;’ Sy can be recovered by appropriate averages of operators

Conf = Y (frde)or,
IGTS'k

where ¢; € .A?MO for all 1 € T, r and Ty is defined in (4.20). Here My = 230 is as chosen
in (4.2). Fixing s,k for the moment we preliminarily observe that for each v > 1 the collection
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Rk :=Rr,, ={R; :t € Ts} can be partitioned into subcollections {Rik , 1= = 28V with
the property that
Ri.RyeR!, = 22TR N>R =0.

We will also use below the Schwartz decay of ¢; € Aﬁwo in the form

VIRl¢e] S 1g, + ) 278Mov 3~ 1,

v>0 PERs .k
pZL2Y R;, pC2V IR,

Using Schwartz decay of ¢, twice, in particular to bound by an absolute constant the second factor
obtained by Cauchy—Schwarz after the first step, we get

|cs,kf|25( S 10 0) |2J"f”R_t)( ) /_|¢t)

tely tely i
1z 1
2 —8M 2P
Zlfq’nl ’+Z oy > |<f,<i>t)|—|
teTy x v>0 teT; x PERs k p
¢2VR[,pC2”+1R[
281)
2 IR —8 M,
< Q2 MWAePRe+ 2 27 50y ) el —|-
teTy « v>0 ReR; i j=1 PERs k

pZ2" R, .pC2V 1R,

Now for fixed w, k, v, j and 1 € T observe that there is at most one p = 'ng L)€ Ri} k. Such that
o Z2R;, p C2"T1R,. Thus the estimate above can be written in the form

28v
1r — pé L@
ICox fPS D [ fidhe) |2|R’| DM NN (S P
tels x v>0 j=1teTy x skv()|

Observe that if ¢ € Ty g,
pre M0 peRe k. pC2TIR, = 27MY|(£i0)1> < ay, (f).

where 1, = p x Qg € T, is the unique tile with spatial localization given by p; this is because
274Mv g .A?ZO. We thus conclude that

Cx /PSS D

tETbk

(5.8)

Comparing with the definition of A7 given in (4.16) we may summarize the discussion in the lemma
below.

Lemma 5.9. Let 1 < p < oc0. Then

( ) |c:Sk(f>|2)é

kezZ,teT

S sup AT ()l
P Iflp=1

sup
£ 1p=1
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where

T:=J T

seS kez
and Ty j is defined in (4.20).
The proof of the upper bound in Theorem A is then completed by juxtaposing the estimates of
Lemmas 5.6 and 5.9 with Theorem H. For the optimality of the estimate see Section 8.6.

5.10. Proof of Theorem J. The proof of Theorem J is necessarily more involved than its smooth
counterpart Theorem A. In particular we need to decompose each cone not only in the radial direction as
before, but also in the directions perpendicular to the singular boundary of each cone. We describe this
procedure below.

Consider a collection of intervals T = {7} as in the statement. By the same correspondence as in the
proof of Theorem A we pass to a family {ws}ses consisting of finitely overlapping arcs on S! centered
at vSJ- / |vsJ-| and corresponding cones C;. Note that the sectors {2 x }ses kez defined in (4.10) form a
finitely overlapping cover of | J;c g Cs. We remember here that vy = (1, 5), that the interval wy is given
by (vsJ:, vi;r), and that the positive direction is counterclockwise.

Now, for each fixed s € S the cover {Q x m}(k m)ez2 defined in (4.11), (4.12), is a Whitney cover
of Q2 x in the product sense: for each €2  ,, the distance from the origin is comparable to 2% and the
distance to the boundary is comparable to 2~ 17ll®s!,

The radial decomposition in k£ will be taken care of by the Littlewood—Paley decomposition {Si }x <z,
defined as in the proof of Theorem J. Now for fixed s,k we consider a smooth partition of unity
subordinated to the cover {2 x m fmez. Note that one can easily achieve that by choosing {@s m }m<o to
be a one-sided (contained in Cy) Littlewood—Paley decomposition in the negative direction v~ = vs—,

and constant in the direction (v when m < 0, and similarly one can define ¢; ,, when m > 0, with

respect to the positive direction v™. The central piece s,k,0 corresponds to @, defined implicitly as

vs,0 =1¢, — Z Ps,m-

mezZ

Now the desired partition of unity is

s kem (§) 1= 1, (§)@s.m )V (§) = @s,m (§) Yk (§),

where ¥ := ¥ (27 .), with the ¥ constructed in the proof of Theorem A. Remember that Sy, f := (V f )Y
and let us define @ [ := ((ps,mf)v.

An important step in the proof is the following square function estimate in L?(R?), with 2 < p < 4,
that decouples the Whitney pieces in every cone Cs. It comes at a loss in N, which appears to be inevitable
because of the directional nature of the problem.

Lemma 5.11. Let {Cs}ses be a family of frequency cones, given by a family of finitely overlapping arcs
® = {ws}ses as above. For 2 < p < 4 there holds

1 1_1
HCs Filnngg) S gy Q02 #9277 1Sk Pam [l Lo ags

xeZ})'
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Proof. Observe that the desired estimate is trivial for p = 2 so let us fix some p € (2, 4). There exists
some g € L1 with g = (p/2) = p/(p — 2) such that

A= UG P gz = [, T 1S P
SES

and so by Proposition 5.5 we get

4253y, Z/Rz |CsSic fPMPlg,

kez seS
where we recall that M[3! denotes three iterations of the Hardy—Littlewood maximal operator M. Fixing s
for a moment we use Proposition 5.5 in the directions vs—, vy and v+ to further estimate

[cerpmBles S 3 [ isionn MM

mez se{—,0,+}

where we adopted the convention s° := s for brevity, and M, is given by (2.3). Remember also that

D, for m > 0 corresponds to directions sT, while ® s,m corresponds to directions s~ for m < 0, and to

0

directions s = s for m = 0. Now for any v € S! and r > 1 we have that

MG < (2 M, G

see for example [Pérez 1994]. Thus ME;LMB]g < ()2 My« [MPBIG]"1Y7, where My « f :=Supyey+ My f,
where here we use V* := {(1,s) : s € $*} with S* as in (4.15), and My« f := sup,,cp+ My (f).

It is known [Katz 1999] that My« maps L?(R?) to L?(R2) with a bound (log #V *)!/? for p > 2. As
p < 4 there exists a choice of 1 <r < p/(2(p —2)) so that p/(r(p —2)) > 2 and a theorem from [Katz
1999] applies. Using this fact together with Holder’s inequality proves the lemma. O

The proof of Theorem J can now be completed as follows. For each (s,k,m) € S x Z x Z the
operator S @ 5, 18 a smooth frequency projection adapted to the rectangular box €2 g ,,. Following the
same procedure that led to (5.8) in the proof of Theorem A we can approximate each piece S ®@s, f by
an operator of the form

1R
CoedenS = Y. (fid)pr. |CeepmfIPS D a(F) R
t€Tlse k.m telse k.m !
where s° follows the sign of m and coincides with s if m = 0. The collections of tiles T x ,, are the ones
given in (4.14). Now Lemma 5.11 and Theorem G are combined to complete the proof of Theorem J.

6. Directional Rubio de Francia square functions

In his seminal paper Rubio de Francia [1985] proved a one-sided Littlewood—Paley inequality for arbitrary
intervals on the line. This estimate was later extended by Journé [1985] to the case of rectangles
(n-dimensional intervals) in R”; a proof more akin to the arguments of the present paper appears in
[Lacey 2007]. The aim of this subsection is to present a generalization of the one-sided Littlewood—Paley
inequality to the case of rectangles in R? with sides parallel to a given set of directions. The set of
directions is to be finite, necessarily, because of Kakeya counterexamples.
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As in the case of cones of Section 5 we will present two versions, one associated with smooth frequency
projections and one with rough. To set things up let S be a finite set of slopes and V' be the corresponding
directions. We consider a family of rotated rectangles F as in Section 4.21, where F = | J ¢ g Fs. For
each s € § arectangle F' € F; is a rotation by s of an axis parallel rectangle, so that the sides of R are
parallel to (v, v1) with v = (1,5). We will write F = rotg(Ir x Jr)+ yfF for some yr € R? in order
to identify the axes-parallel rectangle Ir x Jr producing F by an s-rotation; this writing assumes that
Ir x JF is centered at the origin.

Now for each F' € F we consider the rough frequency projection

P f(x) = / S O1F e ds xR,
R
and its smooth analogue

PRrw)= [ Forr@cta xR

where yg is a smooth function on R2, supported in R, and identically 1 on rots(%l X %J )
We first state the smooth square function estimate.

Theorem K. Let F be a collection of rectangles in R* with sides parallel to (v, UJ') for some v in a finite
set of directions V. Assume that F has finite overlap. Then

o 1_1 1_1
IXPE S L r @262y Sp (og#V)2" 7 (loglog#V) 27 || f

for2 < p < 4, as well as the restricted-type analogue valid for all measurable sets E

o 1 1 1
1PE (F1E) | aqgosez) < (0g#V)¥ (oglog#V) ¥ [E[H | £ oo
The dependence on #V in the estimates above is best possible up the doubly logarithmic term.

Remark 6.1. We record a small improvement of the estimates above in some special cases. Suppose that
for fixed s € S all the rectangles F' € F; have one side-length fixed, or that they have fixed eccentricity.
In both these cases the collections of spatial components of the tiles needed to discretize these operators,
Rrrs ={R;:t €T 7}, with T as in (4.22), give rise to maximal operators that are of weak-type (1, 1).
Then Remark 4.23 shows that the estimates of Theorem K hold without the doubly logarithmic terms,
and as shown in Section 8.2 this is best possible.

The rough version of this Rubio-de-Francia-type theorem is slightly worse in terms of the dependence
on the number of directions. The reason for that is that, as in the case of conical projections, passing
from rough to smooth in the directional setting incurs a loss of logarithmic terms, essentially originating
in the corresponding maximal function bound.

Theorem L. Let F be a collection of rectangles in R? with sides parallel to (v, v ) for some v in a finite
set of directions V. Assume that F has finite overlap. Then the following square function estimate holds
for2 <p<4:

3_3 1_1
||{PFf}||Lp(R2;g§E) Sp (log#V)27 r (loglog#V)2" 7| f .
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The proofs of these theorems follow the by now familiar path of introducing local Littlewood—Paley
decompositions on each multiplier, approximating with time-frequency analysis operators, establishing a
directional Carleson condition on the wave-packet coefficients and finally applying Theorem C. We will
very briefly comment on the proofs below.

Proof of Theorems L and K. We first sketch the proof of Theorem L, which is slightly more involved. The
first step here is a decoupling lemma which is completely analogous to Lemma 5.11 with the difference
that now we need to use two directional Littlewood—Paley decompositions, while in the case of cones
only one. This explains the extra logarithmic term of the statement.

Remember that F = | J; Fs, with s = (1, v) for some v € V; here s gives the directions (v, v1) of the
rectangles in F. Using the finitely overlapping Whitney decomposition of Section 4.21 we have for each
F € F5 a collection of tiles

Ts(F):= | Tokiseo(F)
(k1,k2)ez?

as in (4.22). Let us for a moment fix s and F' € Fs. The frequency components of the tiles in T5(F) form
a two-parameter Whitney decomposition of F', so let {¢F k; k, }(k, k,)ez2 be @ smooth partition of unity
subordinated to this cover and denote by ® f i, ., the Fourier multiplier with symbol ¢ £ ., «,-

The promised analogue of Lemma 5.11 is the following estimate: for 2 < p < 4 there holds
1 1-2
||{PF f}|||Lp(|R2;€2}_) S m(log#l/) p H{cps’k"sz}“Lp(Rz;Z%fszz})'

The proof of this estimate is a two-parameter repetition of the proof of Lemma 5.11, where one applies

(6.2)

Proposition 5.5 once in the direction of v and once in the direction of vL. Using the familiar scheme we
can approximate each ®; x| r, / by time-frequency analysis operators

1R,
| R: |

Priiof = D (fo)br. PPriifPS Y.  alf)

ter&‘.kl,kz(F) teTY,kl.kz(F)

and by (6.2) the proof of Theorem L follows by corresponding bounds for the intrinsic square function of
Theorem I, defined with respect to the tiles T7 given by (4.22).

For Theorem K things are a bit simpler as the decoupling step of (6.2) is not needed. Apart from
that one needs to consider for each F a new set of tiles which is very easy to define: If F' € Fs with
F =rots(Ip x JF) + yF,

T'(F):={t=R/xF:R €D}, ,}

and then T := | Jpc» T'(F). One can recover P by operators of the form

1z,

Pef = Y (fo)de. IPRSPS D a(F)R]

teTs(F) teT(F)

as before. Using the orthogonality estimates of Section 4.3 in Theorem C yields the upper bound in
Theorem K. The optimality of the estimates in the statement of Theorem K is discussed in Section 8.2. [
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7. The multiplier problem for the polygon

Let P = Py be a regular N-gon and Tp,, be the corresponding Fourier restriction operator on P

Tp f(x):= /Rz f@®1p@E)e ™t dt, xR
In this subsection we prove Theorem B, namely we will prove the estimate
ITpy - LP®2)] < (log N)*275 ] 4 < p <

The idea is to reduce the multiplier problem for the polygon to the directional square function estimates
of Theorem K and combine those with vector-valued inequalities for directional averages and directional
Hilbert transforms.

We introduce some notation. The large integer N is fixed throughout and left implicit in the notation.
By scaling, it will be enough to consider a regular polygon P with the following geometric properties:
First, P has vertices

{v; =e%:1<j<N+1} vj :=exp(2mj/N),

on the unit circle S!, with ¥; = ¥y 41 = 0 and oriented counterclockwise so that U¥j41—0; >0. The
associated Fourier restriction operator is then defined by

Tpf = 1pf)".

The proof of the estimate of Theorem B for 7’» occupies the remainder of this section; by self-duality of
the estimate it will suffice to consider the range 2 < p < 4.

7.1. A preliminary decomposition. Let N be a large positive integer and take « such that 2¢~1 < N <2,
For each —2x < k < 0 consider a smooth radial multiplier 7 which is supported on the annulus

) —k—1 —k—5
Ak:{EER :1— 22[( <|E|<I—ZT§
and is identically 1 on the smaller annulus
2—k—-2 y—k—4
ay = {ée[REZ:l— o <|g|<1—2T}

Now consider the corresponding radial multiplier operators Ty

0
ka = (mkf)v, My = Z mp.
k=—2k
We note that m, is supported in the annulus

)
2.1 2

With this in mind let us consider radial functions mg, mp € S(R?), with 0 < mq, mp < 1, such that

(mo +my +mp)lp = 1p, (7.2)
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with the additional requirement that

supp(mp) C Ap :={EeR?:1-2723 <|g| < 142723, (7.3)
Defining
Tof := fmo. Tef :=fme. Opf:= fmplp,

identity (7.2) implies that 7» = Ty + T, + Op. Observing that Ty is bounded on p forall 1 < p < oo
with bounds O, (1) we have

ITPllLr@mey Sp 1+ 1TcllLr w2y + 1OPllLo@2), 1< p <00 (7.4)
7.5. Estimating T,,. We aim for the estimate
< 4G
1T fllp S 27770 fllp. 2= p <4 (7.6)
The case p = 2 is obvious, whence it suffices to prove the restricted-type version at the endpoint p = 4

1T (f1E) 4 S K1 E1F]|f loo- (7.7)

Now we have that for any g
0

1
4 3
5( ) mgr*) P

k=—2«k

0
> Tk

k=—2«

| Tk gl =

and thus
N i
||Txg||4sx4( > ||Tkg||i) : (7.8)
k=—2k

Let {w; : j € J} be the collection of intervals on S! centered at v; :=exp(27ij/N) and of length 2. Note
that these intervals have finite overlap and their centers v; form a ~ 1/N-net on S'. Now let {8, : j € J}
be a smooth partition of unity subordinated to the finitely overlapping open cover {w; : j € J} so that
each B; is supported in ;. We can decompose each T as

(TJ)(E)=ka(lél)ﬂj(|s|)f(€) DY ik ®FE). = Tx)E). R

JjEJ jeJ jeJ

For s; € § and —2« < k < 0 we define the conical sectors

Qj’k:={§€R2:$eAk’ §/|S|EO)/}

and note that each one of the multipliers m;  is supported in €2; . Each €2; x is an annular sector around
the circle of radius 1 — 2% /2%¢ of width ~ 2k /2%%, where —2k < k < 0. It is a known observation,

usually attributed to Cérdoba [1977, Theorem 2] or C. Fefferman [1973], that for such parameters we have

> Lo, 1 (7.9)
Ji'ed
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This pointwise inequality and Plancherel’s theorem allow us to decouple the pieces T} x in L*; for each

fixed k as above we have 1

(D kf|2)2

jeJ

1Tk flla < (7.10)

4

see also the proof of Lemma 7.18 below for a vector-valued version of this estimate. Combining the last
estimate with (7.8) and dominating the ¢{2-norm by the £!-norm yields

7l s [ Z (Simare) )45K‘3‘(/[Z (Z'T’kf')] )}‘

—2Kk JEJ k=—2k jeJ
3 3
<« (/ [ DG ]) — i As e Sl
k=—2k jeJ

with
0 !
AJ,Kf:=( ) Zm,kfﬁ) |
k=—2kjeJ

But now note that {7} x }; x is a finitely overlapping family of smooth frequency projections on a family
of rectangles in at most ~ N directions. Furthermore all these rectangles have one side of fixed length
since |wj| =27 for all j € J. So Theorem K with the improvement of Remark 6.1 applies to yield

1 1 1 1
A7k flla < Qog#N)4 || flloo| E[* = k4| flloo| E|4. (7.11)
The last two displays establish (7.7) and thus (7.6).

Remark 7.12. The term 7} is also present in the argument of [Cérdoba 1977]. Therein, an upper
estimate of order O(x3/4) for p near 4 is obtained, by using the triangle inequality and the bound
sup {[| Tk | Lar2) : =2k <k <0} ~ 1/ for the smooth restriction to a single annulus.

7.13. Estimating Op. In this subsection we will prove the estimate

105 fll, <G| 71, (7.14)

Let ® be a smooth radial function with support in the annular region {& € R?: 1 —¢272% < |&| < 14¢272¢},
where c is a fixed small constant, and satisfying 0 < ® < 1. Let {; : j € J} be a partition of unity on st
relative to intervals w; as in Section 7.5. Define the Fourier multiplier operators on R?

§

77 = <I>(E)ﬂj(|g|

)f(é) teR% (7.15)
The operators 7; satisfy a square function estimate
Ty FH ooy SK2 21 lp 2<p <4,
KT (1B sy S K5 ETE] S oo

(7.16)
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which follows in the same way as (7.11), by using Theorem K with the improvement of Remark 6.1.
They also obey a vector-valued estimate
11
IRTj fidlLe @2y S 62 2 IRSi3Lr @2y, 2=p <4
o1
T (U sz S S IFIF I Lo sz

These estimates are easy to prove. Indeed note that it suffices to prove the endpoint-restricted estimate at

(7.17)

p = 4. Using the Fefferman—Stein inequality for fixed j € J we can estimate for each function g with
lgll2 =1

[ X m@iore s Y [ 151PWe < 1w, [ s
R2j€J jes R2 “JIIJF jed

1
SIF[2] sup Mg |l 12.00@2),
jeJ
where M; is the Hardy—-Littlewood maximal operator with respect to the collection of parallelograms in
D2

Sj,—2K,—K
operator and the number of directions involved in its definition is comparable to N ~ 2%, Then the

with s; defined through (—s;, 1) := v;. Now sup;¢; M; is the maximal directional maximal

maximal theorem from [Katz 1999] applies to give the estimate

1
| sup Mj gll12.00(r2) S k2.
jeJ
This proves the second of the estimates (7.17) and thus both of them by interpolation.
In the estimate for Op we will also need the following decoupling result.

Lemma 7.18. Let2 < p < 4. Then
2T
J

Proof. Note that the case p = 2 of the conclusion is trivial due to the finite overlap of the supports of the

1_1
ST S ooz
4

multipliers of the operators 7;. Thus by vector-valued restricted-type interpolation of the operator
Uit 0D =) T
jeJ
it suffices to prove a restricted type L*! — L* estimate:

10Dl S x¥|E|F (7.19)
for functions with ||{ fj}||;2 < 1£. To do so note that the finite overlap of the supports of 737] * fkﬁ
over j,k, as in (7.9), gives

OGS Dla S IRT) Sl La@eie2)
and the restricted-type estimate (7.19) follows from (7.17). O

We come to the main argument for Op. Let mp be as in (7.2)—(7.3) and 7; be the multiplier operators
from (7.15) corresponding to the choice ® = mp. Then obviously

jeJ
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We may also tweak ® and the partition of unity on S! to obtain further multiplier operators T} as in
(7.15) and such that the Fourier transform of the symbol of T“] equals 1 on the support of the symbol
of T;. With these definitions in hand we estimate for 2 < p < 4

107 flp =

> Ti(T;Tp f)
J

1_1
S k2P ITR(T; Y r@esez)
p

1_1
=22 |[{H; Hj 1 (T P Lo w262y (7.20)

The first inequality is an application of Lemma 7.18 for 7~"J The last equality is obtained by observing
that the polygon multiplier 7» on the support of each 7; may be written as a (sum of O(1)) directional
biparameter multipliers H; H; 1 of iterated Hilbert transform type, where H; is a Hilbert transform
along the direction v;, which is the unit vector perpendicular to the j-th side of the polygon, and pointing
inside the polygon; these are at most ~ N such directions.

In order to complete our estimate for Op we need the following Meyer-type lemma for directional
Hilbert transforms of the form

Hof @)= [ F@Olewoe™ds x e,

Lemma 7.21. Let V C S be a finite set of directions and H,, be the Hilbert transform in the direction v.
Then for % < p <4 we have

11
1y bl ooz S Qog#E S A Lo osgs -
The dependence on #V is best possible.

Proof. 1t suffices to prove the estimate for 2 < p < 4. The proof is by way of duality and uses the following
inequality for the Hilbert transform: for »r > 1 and w a nonnegative locally integrable function we have

1
/|va|2ws/ Myl
R2 R2

with M, given by (2.3). See for example [Pérez 1994]. Using this we have for a suitable g € LP/2) of
norm 1 that

1
€l sy = [ 2 1HofilPe < Y [ IAPOLIET?
R vevV veV R
1
5 ”{fv}Hil’(Rz;Z%/) ||(MV|g|r)r ||L(D/2)’(R2)»

with My g := sup,cy Mypg. Now for 2 < p < 4 there is a choice of 1 <r < p/(2(p —2)) so that
p/(r(p—2)) > 2. This means that the maximal theorem from [Katz 1999] applies again to give

1 _2
My g7 | Loy @2y < (log#V)! ™7,

and so the proof of the upper bound is complete. The optimality is discussed in Section 8.1. O
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Let us now go back to the estimate for Op. The left-hand side of (7.20) contains a double Hilbert
transform. By an iterated application of Lemma 7.21 we thus have

_2
VCH; Hy o1 (T DM Loy S €T Do,

since the number of directions is N = 2¥. The final estimate for the right-hand side of the display above is a
direct application of (7.16), which together with (7.20) yields the estimate for || Op f ||, claimed in (7.14).

Now the decomposition (7.4), together with the estimate of Section 7.5 for T, and the estimate (7.14)
for Op, completes the proof of Theorem B.

Remark 7.22. Consider a function f in R? such that supp( f ) € Ag, where Ag is an annulus of width §2
around S'. Decomposing A into a union of O(1/8) finitely overlapping annular boxes of radial width §2
and tangential width §, we can write f =) _ jer Ti f, wheie each 7} is a smooth frequency projection
onto one of these annular boxes, indexed by j. Then if 7; is a multiplier operator whose symbol is
identically 1 on the frequency support of 7; f* and supported on a slightly larger box, we can write
f=> 7 T}T] f, as in (7.20) above. Then Lemma 7.18 yields

1_1
I/ 1L @2y S (0g(1/8))2" 2 [RT; 3 Lo @2,2)-

This is the inverse square function estimate claimed in the remark after Theorem B in Section 1.

8. Lower bounds and concluding remarks

8.1. Sharpness of Meyer’s lemma. We briefly sketch the quantitative form of Fefferman’s counterexample
[1971] proving the sharpness of Lemma 7.21. Let N be a large dyadic integer. Using a standard
Besicovitch-type construction we produce rectangles {R; : j = 1,..., N} with sidelengths 1 x 1/N, so
that the long side of R; is oriented along v; :=exp(2mij/N). Now we consider the set £ to be the union
of these rectangles and

N 1
'E:: URj ilogN'

j=1
Denoting by R ; the 2-translate of R; in the direction of v; we gather that {E i:j=1,...,N}isa
pairwise disjoint collection. Furthermore if H; is the Hilbert transform in direction v;, there holds

|Hj1Rj| zclﬁi.

Therefore for all 1 < p < o0
N

(Z |Hj 1, |2)£

N ~
UR&
j=1 =1

J

=>c
p

N % N %
1 1 1 1
‘(ZHR,P) s(DR,-l) |E|772 5 (log N)Z77.
j=1 P N=1

Self-duality of the square function estimate then gives the optimality of the estimate of Lemma 7.21.

while for p <2
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8.2. Sharpness of the directional square function bound. In this subsection we prove that the bound of
Theorem L is best possible, up to the doubly logarithmic terms. In particular we prove that the bound of
Remark 6.1 is best possible.

We begin by showing a lower bound for the rough square function estimate

PPl oy < I1PFY: LP(R2) — L% ) gl 2= p <4, (8.3)

where the notation is as in Section 6. Now as in [Fefferman 1971] one can easily show that the estimate
above implies the vector-valued inequality for directional averages, for directions corresponding to the
directions of rectangles in F. For this let #/ = N, where V is the set of directions of rectangles in F.
Now consider functions {gr } rer with compact Fourier support; by modulating these functions we can
assume that supp(gr) C B(cr, A) for some A > 1 and {cr}rer a I00AN-net in R%. Then if F is a
rectangle centered at ¢ with short side 1 parallel to a direction v € V' and long side of length N parallel
to vi:, then we have that | Prgr| = |Ay . gF|. where A, . is the averaging operator

Aup f() i=2N /|

/ f(x—tvF—svj,:)dtds, x € R2.
t1<1/2 JN|s|<1

Note that this is a single-scale average with respect to rectangles of dimensions 1 x 1/N in the directions
UF, vi: respectively. Since the frequency supports of these functions are well-separated we gather that
for all choices of signs e € {—1, 1} we have

Y IPrGP =) PT(Z 8FgF)

TeF TeF FeFr

2

=Y |Prerl*.

TeF

Thus applying (8.3) with the function G as above and averaging over random signs we get
K{Avr 8P} Lr @2y < INPF}: LY (R?) — LPR*UD)IHg Y r@meuzy. 2= P <4
Now we just need to note that as in Section 8.1 we have that

Avelre 2 1g

where { RF } Fer are the rectangles used in the Besicovitch construction in Section 8.1. As before we get

[{PF}: LP(R?) — LP (8% £3)] 2 (log #) 37

For p < 2 the square function estimate (8.3) is known to fail even in the case of a single directions; see
for example the counterexample in [Rubio de Francia 1985, §1.5].

One can use the same argument in order to show a lower bound for the norm of the smooth square
function

PR oanzy < 1{PE}: LP(RD) — LP @ )lgly 2= p <4,

Indeed, following the exact same steps we can deduce a vector-valued inequality for smooth averages

AﬁFf(x):szf(x—tvF—svf;)yF(t,s)dtds, x € R?,
RJR
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where yF is the smooth product bump function used in the definition of P in Section 6. By a direct

~

computation one easily shows the analogous lower bound Ay 1g, 2 1 R for the rectangles of the
Besicovitch construction and this completes the proof of the lower bound for smooth projections as well.

8.4. Sharpness of Cordoba’s bound for radial multipliers. Firstly we remember the definition of each
radial multiplier Ps: Let ® : R — R be a smooth function which is supported in [—1, 1] and define

Pfe)= [ FOOCT A=l de xR,
These smooth radial multipliers were used extensively in Section 7. Cérdoba [1979] proved the bound

1_1
I1Psflp < (og1/8) 275l £1,. 3<p=<a

In fact the same bound is implicitly proved in Section 7 in a more refined form, but only in the open
range p € (% 4) with weak-type analogues at the endpoints. More precisely we have discretized Py into
a sum of pieces { Ps ;}jecs, where each P ; is a smooth projection onto an annular box of width § and
length V8, pointing along one of N equispaced directions v;. Then it follows from the considerations in
Section 7 that D

R Ps.; S 3o @22y Slog1/8)2 7| flp, 2<p <4,

1 1
R Ps,; SR 4oy S 10g(1/8) %[ f ool F[*.

Obviously one gets the same bound by duality for % < p <2, while the L2-bound is trivial. Now these

(8.5)

estimates imply Cérdoba’s estimate for Pg in the open range (%, 4) by the decoupling inequality (7.10),
also due to Cérdoba. On the other hand Cérdoba’s estimate is sharp. Indeed one uses the same rescaling
and modulation arguments as in the previous subsection in order to deduce a vector-valued inequality for
smooth averages starting by Cérdoba’s estimate. Testing this vector-valued estimate against the rectangles
of the Besicovitch construction proves the familiar lower bound for Ps and thus also shows the optimality
of the estimates in (8.5). We omit the details.

8.6. Lower bounds for the conical square function. We conclude this section with a simple example
that provides a lower bound for the operator norm of the conical square function ||Ce(f) : €2 of
Theorem J and the smooth conical square function ||CJ : £2 || of Theorem A. The considerations in this
subsection also rely on the Besicovitch construction so we adopt again the notation of Section 8.1 for the
rectangles {R; : 1 < j < N} and their union E. Let H j+ denote the frequency projection in the half-space
{¢ € R2:£-vj > 0}, where vj := exp(2ij/N). We begin by observing that

HYf—H'  f=CiPyf—C;P_f, (8.7)

where P, P_ denote the rough frequency projections in the upper and lower half-space respectively and
Cy, is the multiplier associated with the cone bordered by v;, vj+1. Since H j+ is a linear combination of
the identity with the usual directional Hilbert transform H; along v; we conclude that

v !
(Z [(Hj —Hj)flz)

J=1

SIHCLP(R?) = LPR% N flp. 2<p <4
p
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Now note that for each fixed 1 <k < N we have

1z, > (Hj—Hj11)lg, = 1z Hilg, 2 1z, (8.8)
J

if Ek is a sufficiently large translation of R} in the positive direction vg. Thus
N
‘/ 1, Y H - Eig |2 |Y [ 1,
j=1 ke Rk

On the other hand the left-hand side of the display above is bounded by a constant multiple of

~

=~

—
~

Gy} : LP(RD) — LP(R%: ) H (Z 1;/)2 H <ICy 1 LP(R?) — LP(R?1€2) | (log N)* 7
J r'

for all 2 < p < 4. We thus conclude that
ICj}: LP(R?) — LP(R%: )] 2 (log N)Z 77, 2= p<4.

We explain how this counterexample can be modified to get a lower square function estimate for
the smooth cone multipliers C,, from (5.1) matching the upper bound of Theorem A. For ¢ € R write
v jt :=exp(2mi(j+t)/N)andlet H j’ and H;’Jr be the directional Hilbert transform and analytic projection
along v}, respectively. Let 6 > 0 be a small parameter to be chosen later and for each 1 < j < N let w;

be an interval of size SN ~! centered around 277j/N. Arguing as in (8.7),

o o Nl
Co, P+ f—Co P-f = a(—)(H}’*f—H}flf)dt
: Nit|<s \ 0

for a suitable nonnegative averaging function « which equals 1 on [—%, %] Now, if Ek is again a

sufficiently large translation of Ry in the positive direction vy and § is chosen sufficiently small depending
only on the translation amount, the analogue of (8.8) is

N
~ ! _H! =15 i ! > 1=
12, iy 27— i Me = g, ol iR 2

The lower bound for [[{Cq, } : L?(R?) — L?(R?; £3)] then follows exactly as in the previous case.

Acknowledgements

The authors are grateful to Ciprian Demeter and Jongchon Kim for fruitful discussions on reverse square
function estimates, and for providing additional references on the subject.

Accomazzo is partially supported by the project PGC2018-094528-B-100 (AEI/FEDER, UE) with
acronym “IHAIP”, project MTM-2017-82160-C2-2-P of the Ministerio de Economia y Competitivi-
dad (Spain), and grant T1247-19 of the Basque Government. Di Plinio is partially supported by the
National Science Foundation under the grants DMS-1800628, DMS-2000510, NSF-DMS-2054863.
Hagelstein is partially supported by a grant from the Simons Foundation (#521719 to Paul Hagelstein).



1698 N. ACCOMAZZO, F. DI PLINIO, P. HAGELSTEIN, I. PARISSIS AND L. RONCAL

Parissis is partially supported by the project PGC2018-094528-B-100 (AEI/FEDER, UE) with acronym
“IHAIP”, grant T1247-19 of the Basque Government and IKERBASQUE. Roncal is supported by the
Basque Government through the BERC 2018-2021 program, by the Spanish Ministry of Economy
and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2017-2018 and
through project PID2020-113156GB-100. She also acknowledges the RyC project RYC2018-025477-1
and IKERBASQUE.

References

[Barrionuevo and Lacey 2003] J. Barrionuevo and M. T. Lacey, “A weak-type orthogonality principle”, Proc. Amer. Math. Soc.
131:6 (2003), 1763-1769. MR Zbl

[Bateman 2013] M. Bateman, “Maximal averages along a planar vector field depending on one variable”, Trans. Amer. Math.
Soc. 365:8 (2013), 4063—-4079. MR Zbl

[Bennett and Harrison 2012] J. Bennett and S. Harrison, “Weighted norm inequalities for oscillatory integrals with finite type
phases on the line”, Adv. Math. 229:4 (2012), 2159-2183. MR Zbl

[Bourgain and Demeter 2015] J. Bourgain and C. Demeter, “The proof of the /% decoupling conjecture”, Ann. of Math. (2) 182:1
(2015), 351-389. MR Zbl

[Cabrelli et al. 2006] C. Cabrelli, M. T. Lacey, U. Molter, and J. C. Pipher, “Variations on the theme of Journé’s lemma”, Houston
J. Math. 32:3 (2006), 833-861. MR Zbl

[Carbery 2015] A. Carbery, “A remark on reverse Littlewood—Paley, restriction and Kakeya”, preprint, 2015. arXiv 1507.02515

[Christ et al. 1986] M. Christ, J. Duoandikoetxea, and J. L. Rubio de Francia, “Maximal operators related to the Radon transform
and the Calderén—Zygmund method of rotations”, Duke Math. J. 53:1 (1986), 189-209. MR Zbl

[Cérdoba 1977] A. Cérdoba, “The multiplier problem for the polygon”, Ann. of Math. (2) 105:3 (1977), 581-588. MR
[Cérdoba 1979] A. Cérdoba, “A note on Bochner—Riesz operators”, Duke Math. J. 46:3 (1979), 505-511. MR Zbl
[Cordoba 1982] A. Cérdoba, “Geometric Fourier analysis”, Ann. Inst. Fourier (Grenoble) 32:3 (1982), 215-226. MR Zbl

[Demeter 2010] C. Demeter, “Singular integrals along N directions in IRz”, Proc. Amer. Math. Soc. 138:12 (2010), 4433-4442.
MR Zbl

[Demeter and Di Plinio 2014] C. Demeter and F. Di Plinio, “Logarithmic L? bounds for maximal directional singular integrals
in the plane”, J. Geom. Anal. 24:1 (2014), 375-416. MR Zbl

[Di Plinio and Parissis 2021] F. Di Plinio and I. Parissis, “Maximal directional operators along algebraic varieties”, Amer. J.
Math. 143:5 (2021), 1463-1503. MR Zbl

[Di Plinio et al. 2018] F. Di Plinio, S. Guo, C. Thiele, and P. Zorin-Kranich, “Square functions for bi-Lipschitz maps and
directional operators”, J. Funct. Anal. 275:8 (2018), 2015-2058. MR Zbl

[Fefferman 1971] C. Fefferman, “The multiplier problem for the ball”, Ann. of Math. (2) 94 (1971), 330-336. MR Zbl
[Fefterman 1973] C. Fefferman, “A note on spherical summation multipliers”, Israel J. Math. 15 (1973), 44-52. MR Zbl

[Garrigés and Seeger 2010] G. Garrigés and A. Seeger, “A mixed norm variant of Wolff’s inequality for paraboloids”,
pp. 179-197 in Harmonic analysis and partial differential equations (El Escorial, Spain, 2008), edited by P. Cifuentes et al.,
Contemp. Math. 505, Amer. Math. Soc., Providence, RI, 2010. MR

[de Guzman 1981] M. de Guzman, Real variable methods in Fourier analysis, Notas Mat. 75, North-Holland, Amsterdam, 1981.
MR Zbl

[Hytonen et al. 2013] T. P. Hytonen, M. T. Lacey, and C. Pérez, “Sharp weighted bounds for the g-variation of singular integrals”,
Bull. Lond. Math. Soc. 45:3 (2013), 529-540. MR Zbl

[Journé 1985] J.-L. Journé, “Calderén—Zygmund operators on product spaces”, Rev. Mat. Iberoam. 1:3 (1985), 55-91. MR Zbl
[Katz 1999] N. H. Katz, “Maximal operators over arbitrary sets of directions”, Duke Math. J. 97:1 (1999), 67-79. MR Zbl


http://dx.doi.org/10.1090/S0002-9939-02-06744-8
http://msp.org/idx/mr/1955263
http://msp.org/idx/zbl/1042.42011
http://dx.doi.org/10.1090/S0002-9947-2013-05673-5
http://msp.org/idx/mr/3055689
http://msp.org/idx/zbl/1278.42024
http://dx.doi.org/10.1016/j.aim.2011.12.014
http://dx.doi.org/10.1016/j.aim.2011.12.014
http://msp.org/idx/mr/2880218
http://msp.org/idx/zbl/1250.42039
http://dx.doi.org/10.4007/annals.2015.182.1.9
http://msp.org/idx/mr/3374964
http://msp.org/idx/zbl/1322.42014
https://www.math.uh.edu/~hjm/restricted/pdf32(3)/13cabrelli.pdf
http://msp.org/idx/mr/2247912
http://msp.org/idx/zbl/1140.42003
http://msp.org/idx/arx/1507.02515
http://dx.doi.org/10.1215/S0012-7094-86-05313-5
http://dx.doi.org/10.1215/S0012-7094-86-05313-5
http://msp.org/idx/mr/835805
http://msp.org/idx/zbl/0656.42010
http://dx.doi.org/10.2307/1970926
http://msp.org/idx/mr/438022
http://projecteuclid.org/euclid.dmj/1077313571
http://msp.org/idx/mr/544242
http://msp.org/idx/zbl/0438.42013
http://www.numdam.org/item?id=AIF_1982__32_3_215_0
http://msp.org/idx/mr/688026
http://msp.org/idx/zbl/0488.42027
http://dx.doi.org/10.1090/S0002-9939-2010-10442-2
http://msp.org/idx/mr/2680067
http://msp.org/idx/zbl/1206.42009
http://dx.doi.org/10.1007/s12220-012-9340-2
http://dx.doi.org/10.1007/s12220-012-9340-2
http://msp.org/idx/mr/3145928
http://msp.org/idx/zbl/1302.42022
http://dx.doi.org/10.1353/ajm.2021.0037
http://msp.org/idx/mr/4334401
http://msp.org/idx/zbl/1479.42049
http://dx.doi.org/10.1016/j.jfa.2018.07.005
http://dx.doi.org/10.1016/j.jfa.2018.07.005
http://msp.org/idx/mr/3841536
http://msp.org/idx/zbl/1400.42023
http://dx.doi.org/10.2307/1970864
http://msp.org/idx/mr/296602
http://msp.org/idx/zbl/0234.42009
http://dx.doi.org/10.1007/BF02771772
http://msp.org/idx/mr/320624
http://msp.org/idx/zbl/0262.42007
http://dx.doi.org/10.1090/conm/505/09923
http://msp.org/idx/mr/2664568
https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/46/suppl/C
http://msp.org/idx/mr/596037
http://msp.org/idx/zbl/0449.42001
http://dx.doi.org/10.1112/blms/bds114
http://msp.org/idx/mr/3065022
http://msp.org/idx/zbl/1271.42021
http://dx.doi.org/10.4171/RMI/15
http://msp.org/idx/mr/836284
http://msp.org/idx/zbl/0634.42015
http://dx.doi.org/10.1215/S0012-7094-99-09702-8
http://msp.org/idx/mr/1681088
http://msp.org/idx/zbl/0942.42009

DIRECTIONAL SQUARE FUNCTIONS 1699

[ELaba and Pramanik 2006] I. Laba and M. Pramanik, “Wolft’s inequality for hypersurfaces”, Collect. Math. 2006:Extra (2006),
293-326. MR Zbl

[Laba and Wolff 2002] I. Laba and T. Wolff, “A local smoothing estimate in higher dimensions”, J. Anal. Math. 88 (2002),
149-171. MR Zbl

[Lacey 2007] M. T. Lacey, Issues related to Rubio de Francia’s Littlewood—Paley inequality, New York J. Math. Monogr. 2,
State Univ. New York, Albany, 2007. MR Zbl

[Lacey and Li 2006] M. T. Lacey and X. Li, “Maximal theorems for the directional Hilbert transform on the plane”, Trans. Amer.
Math. Soc. 358:9 (2006), 4099-4117. MR Zbl

[Lacey and Li 2010] M. Lacey and X. Li, On a conjecture of E. M. Stein on the Hilbert transform on vector fields, Mem. Amer.
Math. Soc. 965, Amer. Math. Soc., Providence, RI, 2010. MR Zbl

[Nagel et al. 1978] A. Nagel, E. M. Stein, and S. Wainger, “Differentiation in lacunary directions”, Proc. Natl. Acad. Sci. USA
75:3 (1978), 1060-1062. MR Zbl

[Parcet and Rogers 2015] J. Parcet and K. M. Rogers, “Directional maximal operators and lacunarity in higher dimensions”,
Amer. J. Math. 137:6 (2015), 1535-1557. MR Zbl

[Pérez 1994] C. Pérez, “Weighted norm inequalities for singular integral operators”, J. Lond. Math. Soc. (2) 49:2 (1994),
296-308. MR Zbl

[Pramanik and Seeger 2007] M. Pramanik and A. Seeger, “L? regularity of averages over curves and bounds for associated
maximal operators”, Amer. J. Math. 129:1 (2007), 61-103. MR Zbl

[Rubio de Francia 1985] J. L. Rubio de Francia, “A Littlewood—Paley inequality for arbitrary intervals”, Rev. Mat. Iberoam. 1:2
(1985), 1-14. MR Zbl

[Sjogren and Sjolin 1981] P. Sjogren and P. Sjolin, “Littlewood—Paley decompositions and Fourier multipliers with singularities
on certain sets”, Ann. Inst. Fourier (Grenoble) 31:1 (1981), 157-175. MR Zbl

Received 28 Jun 2021. Revised 9 Dec 2021. Accepted 24 Jan 2022.

NATALIA ACCOMAZZO: naccomazzo@math.ubc.ca
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

FRANCESCO D1 PLINIO: francesco.diplinio@unina.it
Dipartimento di Matematica e Applicazioni, Universita di Napoli, Napoli, Italy
PAUL HAGELSTEIN: paul_hagelstein@baylor.edu

Department of Mathematics, Baylor University, Waco, TX, United States
IOANNIS PARISSIS: ioannis.parissis@ehu.es

Departamento de Matematicas, Universidad del Pais Vasco, Bilbao, Spain
and

Ikerbasque, Basque Foundation for Science, Bilbao, Spain

LUz RONCAL: lroncal@bcamath.org

BCAM - Basque Center for Applied Mathematics, Bilbao, Spain

and

Ikerbasque, Basque Foundation for Science, Bilbao, Spain

mathematical sciences publishers :'msp


http://msp.org/idx/mr/2264215
http://msp.org/idx/zbl/1213.42018
http://dx.doi.org/10.1007/BF02786576
http://msp.org/idx/mr/1956533
http://msp.org/idx/zbl/1042.42006
http://nyjm.albany.edu/m/2007/2v.pdf
http://msp.org/idx/mr/2293255
http://msp.org/idx/zbl/1142.42007
http://dx.doi.org/10.1090/S0002-9947-06-03869-4
http://msp.org/idx/mr/2219012
http://msp.org/idx/zbl/1095.42010
http://dx.doi.org/10.1090/S0065-9266-10-00572-7
http://msp.org/idx/mr/2654385
http://msp.org/idx/zbl/1190.42005
http://dx.doi.org/10.1073/pnas.75.3.1060
http://msp.org/idx/mr/466470
http://msp.org/idx/zbl/0391.42015
http://dx.doi.org/10.1353/ajm.2015.0038
http://msp.org/idx/mr/3432267
http://msp.org/idx/zbl/1337.42020
http://dx.doi.org/10.1112/jlms/49.2.296
http://msp.org/idx/mr/1260114
http://msp.org/idx/zbl/0797.42010
http://dx.doi.org/10.1353/ajm.2007.0003
http://dx.doi.org/10.1353/ajm.2007.0003
http://msp.org/idx/mr/2288738
http://msp.org/idx/zbl/1161.42009
http://dx.doi.org/10.4171/RMI/7
http://msp.org/idx/mr/850681
http://msp.org/idx/zbl/0611.42005
http://dx.doi.org/10.5802/aif.821
http://dx.doi.org/10.5802/aif.821
http://msp.org/idx/mr/613033
http://msp.org/idx/zbl/0437.42011
mailto:naccomazzo@math.ubc.ca
mailto:francesco.diplinio@unina.it
mailto:paul_hagelstein@baylor.edu
mailto:ioannis.parissis@ehu.es
mailto:lroncal@bcamath.org
http://msp.org




ANALYSIS AND PDE
Vol. 16 (2023), No. 7, pp. 1701-1744

DOI: 10.2140/apde.2023.16.1701

PARTIAL REGULARITY FOR NAVIER-STOKES AND
LIQUID CRYSTALS INEQUALITIES WITHOUT MAXIMUM PRINCIPLE

GABRIEL S. KoCcH

In 1985, V. Scheffer discussed partial regularity results for what he called solutions to the Navier—Stokes
inequality. These maps essentially satisfy the incompressibility condition as well as the local and global
energy inequalities and the pressure equation which may be derived formally from the Navier—Stokes
system of equations, but they are not required to satisfy the Navier—Stokes system itself.

We extend this notion to a system considered by Fang-Hua Lin and Chun Liu in the mid 1990s related to
models of the flow of nematic liquid crystals, which include the Navier—Stokes system when the director
field d is taken to be zero. In addition to an extended Navier—Stokes system, the Lin-Liu model includes a
further parabolic system which implies an a priori maximum principle for d which they use to establish
partial regularity (specifically, P!(S) = 0) of solutions.

For the analogous inequality one loses this maximum principle, but here we nonetheless establish the
partial regularity result P%/>*3(S) = 0, so that in particular the putative singular set S has space- time
Lebesgue measure zero. Under an additional assumption on d for any fixed value of a certain parameter
o € (5, 6) — which for o = 6 reduces precisely to the boundedness of d used by Lin and Liu — we obtain
the same partial regularity (P'(S) = 0) as do Lin and Liu. In particular, we recover the partial regularity
result (P! (S) = 0) of Caffarelli-Kohn-Nirenberg [1982] for suitable weak solutions of the Navier—Stokes
system, and we verify Scheffer’s assertion that the same holds for solutions of the weaker inequality as well.

We remark that the proofs of partial regularity both here and in the work of Lin and Liu largely follow the
proof in Caffarelli-Kohn—Nirenberg, which in turn used many ideas from an earlier work of Scheffer [1975].

1. Introduction

Fang-Hua Lin and Chun Liu consider the following system in [Lin and Liu 1995; 1996], which reduces
to the classical Navier—Stokes system in the case d = 0 (here we have set various parameters equal to one
for simplicity):
ur—Au+V  [u®@u+Vvdovdl+Vp=0
Vu=0 (1-1)
di—Ad+wu-V)d+ f(d)=0
with f = VF for a scalar field F given by

F(x) = (]x]* = 1)?,
so that
fx)=4(x> = x

MSC2020: 35A21, 35B65, 35D30, 35G50, 35Q35.
Keywords: Navier—Stokes, liquid crystals, partial regularity.
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(and in particular f(0) = 0). We take the spatial dimension to be three, so that for some 2 C R3 and
T > 0, we are considering maps of the form

u,d:Qx0,T)—> R, p:Qx(0,7T)—>R,
and here
F:R >R, f:[R{3—>[R§3

are fixed as above. As usual, u represents the velocity vector field of a fluid, p is the scalar pressure in the
fluid, and, as in nematic liquid crystals models, d corresponds roughly! to the director field representing
the local orientation of rod-like molecules, with u also giving the velocities of the centers of mass of
those anisotropic molecules.
In (1-1), for vector fields v and w, the matrix fields v ® w and Vv ® Vw are defined to be those with
entries
8vk awk
w®w);j=viw; and (VvOVw);j=v; w;:= TME
(summing over the repeated index k as per the Einstein convention), and for a matrix field J = (J;;), we
define the vector field V7 - J by?
0Jij

(VI D)= dijj o= dx;

(summing again over j). We think formally of V (as well as any vector field) as a column vector and V7
as a row vector, so that each entry of (the column vector) V7 - J is the divergence of the corresponding
row of J. In what follows, for a vector field v we similarly denote by V7’ v the matrix field with i-th row
given by VT =), ie.,

av;
Vi =v ;= —,
( )l.[ i,j axj
so that for smooth vector fields v and w we always have
Vi-wew) =VIvyw+uV-w) = Vv+u(V-w). (1-2)

For a scalar field ¢ we set V2¢ := VT (V¢), and for matrix fields J = (Jij) and K = (K;;), we let
J : K := J;jK;; (summing over repeated indices) denote the (real) Frobenius inner product of the matrices;
thatis, J: K =tr(JTK). We set | J| := VJ:J and |v| := /v - v, and to minimize cumbersome notation
will often abbreviate by writing Vv := V7 v for a vector field v where the precise structure of the matrix
field VT v is not crucial; for example, |Vv| :=|VTv|.
We note that by formally taking the divergence V- of the first line in (1-1) we obtain the usual pressure
equation
—Ap=V-(V' . [u®u+Vd o Vd)). (1-3)

n principle, for d to only represent a direction one should have |d| = 1. As proposed in [Lin and Liu 1995], F(d) is used
to model a Ginzburg-Landau type of relaxation of the pointwise constraint |d| = 1. For further discussions on the modeling
assumptions leading to systems such as the one above, see e.g., [Lin and Wang 2014] or the appendix of [Lin and Liu 1995].

2Many authors simply write V - J, which is perhaps more standard.



PARTIAL REGULARITY FOR NAVIER-STOKES AND LIQUID CRYSTALS INEQUALITIES 1703

As in the Navier—Stokes (d = 0) setting, one may formally deduce (see Section 2) from (1-1) the following
global and local energy inequalities which one may expect solutions of (1-1) (with appropriate boundary
conditions) to satisfy:>

d [Iul2 |vd|?

diJol 2 7 2

+F(d)} dx+/[|Vu|2—|—|Ad—f(a’)|2]dx <0 (1-4)
Q

for each ¢ € (0, T), as well as a localized version®

d |M|2 |Vd|2 2 2 512
E Q[(T-l- 5 )¢j|dx+/;_z(|Vu| +|Vd|“)p dx

(e vary el (VAP .
_/Q <7+ . )<¢t+ ¢>+(7+ : +p)u- p

+u®Vep:VdoVd —pVI [ f(d)]: de} dx (1-5)

=Rys(d.p)

for t € (0, T) and each smooth, compactly supported in 2 and nonnegative scalar field ¢ > 0. (For
Navier—Stokes, i.e., when d = 0, one may omit all terms involving d, even though 0 # F(0) ¢ LY(R%).)

In [Lin and Liu 1995], for smooth and bounded €2, the global energy inequality (1-4) is used to construct
global weak solutions to (1-1) for initial velocity in L?(£2), along with a similarly appropriate condition
on the initial value of d which allows (1-4) to be integrated over O < ¢ < T. This is consistent with the
pioneering result of J. Leray [1934] for Navier—Stokes (treated later by many other authors using various
methods, but always relying on the natural energy as in [Leray 1934]).

In [Lin and Liu 1996], the authors establish a partial regularity result for weak solutions to (1-1)
belonging to the natural energy spaces which moreover satisfy the local energy inequality (1-5). The result
is of the same type as known partial regularity results for a class of solutions known as suitable weak
solutions to the Navier—Stokes equations. The program for such partial regularity results for Navier—Stokes
was initiated in a series of papers by V. Scheffer in the 1970s and 1980s (see, for example, [Scheffer 1977;
1980] and other works mentioned in [Caffarelli et al. 1982]), and subsequently improved by L. Caffarelli,
R. Kohn and L. Nirenberg in [Caffarelli et al. 1982].5 They show (as do Lin and Liu [1996]) that the
one-dimensional parabolic Hausdorff measure of the (potentially empty) singular set S is zero (P!(S) =0,
see Definition 2 below), implying that singularities (if they exist) cannot for example contain any smooth
one-parameter curve in space-time. The method of proof in [Lin and Liu 1996] largely follows the method
of [Caffarelli et al. 1982].

Of course the general system (1-1) is (when d # 0) substantially more complex than the Navier—Stokes
system, and one therefore could not expect a stronger result than the type in [Caffarelli et al. 1982],
i.e., P1(S) = 0; in fact, it is surprising that such a result still holds even when d # 0. The explanation

3For sufficiently regular solutions one can show that equality holds.

4Note that in [Lin and Liu 1996], the term “ Ry (d, ¢)” in (1-5) actually appears incorrectly as “+Rf (d, ¢)”; see Section 2.

S Alternative proofs of slight variations of the main results in [Caffarelli et al. 1982] were given in later works such as [Lin
1998; Ladyzhenskaya and Seregin 1999; Vasseur 2007; Kukavica 2009].
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for this seems to be that although (1-1) is more complex than Navier—Stokes in view of the additional
d components, one can derive an a priori maximum principle for d because of the third equation in
(1-1) which substantially offsets this complexity from the viewpoint of regularity. Therefore, under
suitable boundary and initial conditions on d, one may assume that d is in fact bounded, a fact which is
significantly exploited in [Lin and Liu 1996]. More recently, the authors of [Du et al. 2020] established
the same type of result for a related but more complex Q-tensor system; however there, as well, one may
obtain a maximum principle which is of crucial importance for proving partial regularity. One is therefore
led to the following natural question, which we will address below:

Can one deduce any partial regularity for systems similar in structure to (1-1) but which lack any
maximum principle?

In the Navier—Stokes setting, it was asserted by Scheffer [1985] that in fact the proof of the partial
regularity result in [Caffarelli et al. 1982] does not require the full set of equations in (1-1). He mentions
that the key ingredients are membership of the global energy spaces, the local energy inequality (1-5), the
divergence-free condition V - u = 0 and the pressure equation (1-3) (with d = 0 throughout). Scheffer
called vector fields satisfying these four requirements solutions to the Navier—Stokes inequality, equivalent
to solutions to the Navier—Stokes equations with a forcing f which satisfies f -u < 0 everywhere. In
contrast, the results in [Lin and Liu 1996] do very strongly use the third equation in (1-1) in that it implies
a maximum principle for d.

In this paper, we explore what happens if one considers the analog of Scheffer’s Navier—Stokes
inequality for the system (1-1) when d s 0. That is, we consider triples (u, d, p) with global regularities
implied — at least when €2 is bounded and under suitable assumptions on the initial data— by (1-4) which
satisfy (1-3) and V - u = 0 weakly as well as (a formal consequence of) (1-5), but are not necessarily
weak solutions of the first and third equations (i.e., the two vector equations) in (1-1). In particular,
we will not assume that d € L (2 x (0, T)), which would have been reasonable in view of the third
equation in (1-1). We see that without further assumptions, the result is substantially weaker than the
PL(S) = 0 result for Navier—Stokes: following the methods of [Caffarelli et al. 1982; Lin and Liu 1996]
we obtain (see Theorem 1) P%/2+3(S) = 0 for any 6 > 0. This reinforces our intuition that the situation
here is substantially more complex than that of Navier—Stokes. On the other hand, we show that under a
suitable uniform local decay condition on |d|° (|u|® + |Vd|?)!~9/% with o € (5, 6) —see (1-14) below,
which in particular holds when d = 0 as in [Caffarelli et al. 1982] — one in fact obtains PI(S)=0asin
[Caffarelli et al. 1982; Lin and Liu 1996]. In particular, we verify the above-mentioned assertion made by
Scheffer [1985] regarding partial regularity for the Navier—Stokes inequality.

Our key observation which allows us to work without any maximum principle is that, in view of the
global energy (1-4) and the particular forms of F and f, it is reasonable (see Section 2) to assume (1-9);
this implies that d € L*°(0, T’; LO(§2)) which is sufficient for our purposes.

As alluded to above, for our purposes we actually do not require all of the information which appears
in (1-5). In view of the fact that

2
Ry @) = oV LF(@)]: V7 d| < 12dP|VdP + 8(@«@ (1-6)
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(see (2-21) below), a consequence of (1-5) is that
A(t)+B(t) <8A(1t)+C(t) for0<t<T, (1-7)

with A, B, C > 0 defined as

2 \V/ 2
A(t) :=/ (%ﬁ j' )as, B(t) :=f (IVul* +|V2d|H¢
Qx{r} Qx{t}

and

. > |Vd|? 2 2
C(t) = - —+ lp; + Ag| + 12|d|7|Vd| ¢
Xt

2 2
ul*> | |Vd|?
= 4 +plu-Vo+u®Ve:Vd o Vd
Qx{t}

+

’

2 2

where fo &= fQ g(-,1)dx. Equation (1-7) is nearly sufficient, with the term .A(¢) on the right-hand
side —in fact, even with u omitted, which cannot be avoided as “R r(d, ¢)” appears on the right-hand side
of (1-5) with a minus sign (see footnote 4) — actually being, for technical reasons, the only® troublesome
term. (Note that if R ¢(d, ¢) had appeared with a plus sign in (1-5), one could have simply dropped
the troublesome ¢|Vd|? term in (2-21) as a nonpositive quantity.) We therefore use a Gronwall-type
argument to hide this term on the left-hand side of (1-7) so that (if ¢|,—o = 0)

A'(t)+B(t) <C(t) +8€8T/ C(t)dt forO0<t<T. (1-8)
0

The (formally derived) local energy inequality (1-8) implies (1-13) below (for an appropriate constant
C ~ 8Te8T + 1), which is sufficient for our purposes. (In fact, for all elements of the proof other than
Proposition 8, a weaker form as in (3-5) is sufficient.)

Our main result is the following.

Theorem 1. Fix any open set Q@ C R and any T, C € (0, 00). Set Q7 := Q x (0, T) and suppose
u,d:Qr — R and p : Qr — R satisfy the following four assumptions:

(1) u, d and p belong to the following spaces:’

u,d, Vd € L®(0, T; L*()), Vu, Vd, V’d € L*(Qr) (1-9)
and

p e L*(Qr); (1-10)

6In fact, the appearance of |d|? on the right-hand side of (1-6), and hence of (1-7) as well, is handled precisely by the
assumption that d € L*°(0, T'; L%()), and is the reason for the slightly weaker results compared to the Navier—Stokes setting
(i.e., when d = 0).

7TFor a vector field f or matrix field J and scalar function space X, by f € X or J € X we mean that all components or
entries of f or J belong to X; by & f € X we mean all second partial derivatives of all components of f belong to X etc.
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(2) u is weakly divergence-free:3
V-u=0 in D (Qr); (1-11)

(3) The following pressure equation holds weakly:®
~Ap=V- [V - u®u+VdoVd)] in D (Qr); (1-12)

(4) The following local energy inequality holds:'°

/ (|u|2+|Vd|2)¢dx+f/(|Vu|2+|V2d|2)¢>dxdr
Qx{r} 0JQ
56/ [/ [(ul* +|Vd|D|¢: + Ad| + |d|*|Vd|*p] dx
0 Qx{t}

ul> |Vd|?
= 4 +plu-Vo4+u®Ve:Vd O Vd|dx|dr
axiriL\ 2 2

forae t€(0,T) and forall ¢ €Cy°(2x (0,00)) suchthat ¢ >0. (1-13)

_l’_

Let S C Qr be the (potentially empty) set of singular points where |u| + |Vd| is not essentially bounded
in any neighborhood of each z € S, and let P* be the k-dimensional parabolic Hausdorff outer measure
(see Definition 2). The following are then true:

(1) PY*H(S) =0, for any § > 0 arbitrarily small.
(i) 1!
— . 1 o113 3\1-0/6 )
8o := sup [limsup o2 |d|° (Ju|” +|Vd|’) dz) < oo (1-14)
2we@r \ N0 7)) 0,20

for some o € (5, 6), then P'(S) =0.

Note that in the case d = 0, we regain the classical result of P!(S) = 0 for Navier—Stokes as obtained
in, for example, [Caffarelli et al. 1982], and more specifically for the (weaker) Navier—Stokes inequality
mentioned in [Scheffer 1985].

We recall that the definition of the outer parabolic Hausdorff measure P¥ is given as follows, see
[Caffarelli et al. 1982, pp. 783-784]:

Definition 2 (parabolic Hausdorff measure). For any S C R* x R and k > 0, define

PES) = ;ig% PE(S),

8Locally integrable functions will always be associated to the standard distribution whose action is integration against a
suitable test function so that, e.g., [V - u](¥) = —[u](VY) = — f u - Vi for € D(Qr).

“Note that u @ u + Vd © Vd € L3/3(Qr) C L} (Q7), see (2-18)-(2-19).

10For brevity, for w C R3, we set wx{f) gdx = fw g(x,t)dx.

Uy general we set z = (x, t) € Qr, dz :=dx dt and recall from Definition 2 that Q, (xq, fg) := Br(xg) X (fg — r2, 19)-
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where

o0
SCUQ,/., rj <96, VjeN}
j=1

Py(S) = inf{zrf
j=1

and Q, is any parabolic cylinder of radius r > 0, i.e.,

Q= Q,(x,1):=B,(x) x (t —r*, 1) CR* xR

for some x € R3 and t € R. We note that P¥ is an outer measure, and all Borel sets are P¥-measurable.

Remark 3. In the case Q = R?, the condition (1-10) on the pressure follows (locally, at least) from
(1-9) and (1-12) if p is taken to be the potential-theoretic solution to (1-12), since (1-9) implies that
u, Vd € L'3(Qr) by interpolation (see (2-18) below) and Sobolev embeddings, and then (1-12) gives
peLl3Qr) C L130/C2(S2T) by Calder6n—Zygmund estimates. For a more general €2, the existence of such
a p can be derived from the motivating equation (1-1) (e.g., by estimates for the Stokes operator); see
[Lin and Liu 1996]. Here, however, we will not refer to (1-1) at all and simply assume p satisfies (1-10)

and address the partial regularity of such a hypothetical set of functions satisfying (1-9)—(1-13).

We note that Theorem 1 does not immediately recover the result of [Lin and Liu 1996] (which would
correspond to ¢ = 6 in (1-14), which holds when d € L™ as assumed in that paper). Heuristically,
however, one can argue as follows:!?

If d were bounded, then taking for example D := 24||d ||%oo @n T 8 < 0o one would be able to deduce

from (1-6) that
|Vd|*
IRf(d,¢>)I§D( 5 >¢-

Adjusting the Gronwall-type argument leading to (1-8), one could then deduce from (1-5) that (if . A(0) =0)

T
At)+B@) <C@®) +DeDT/ C(t)dt for0<t<T,
0

ul? | vd?
= 4 +plu-Vo+u®Ve:Vd o Vd||.
axin L\ 2 2

where

. ul> |Vd|?
C(t) ::/ (7+ 5 )|¢I+A¢>| +
Qx{r}

Using such an energy inequality, one would not need to include the |d|® term in E3 g (see (3-6)) as one
would not need to consider the term coming from R ¢(d, ¢) at all in Proposition 6, and — noting that
the L°° norm is invariant under the rescaling on d in (3-25) — one could then adjust Lemmas 4 and 7
appropriately to recover the result in [Lin and Liu 1996] using the proof of Theorem 1 below.

Finally, we remark that the majority of the arguments in the proofs given below are not new, with
many essentially appearing in [Lin and Liu 1996] or [Caffarelli et al. 1982]. However we feel that our
presentation is particularly transparent and may be a helpful addition to the literature, and we include all
details so that our results are easily verifiable.

12We assume this is roughly the argument in [Lin and Liu 1996], although the details are not explicitly given; see, in particular,

[Lin and Liu 1996, (2.45)] which appears without the remainder term denoted in [Lin and Liu 1996] by R(f, ¢), and here by
Ry(d, §).
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2. Motivation

We will show in this section that the assumptions in Theorem 1 are at least formally satisfied by smooth
solutions to the system (1-1).

2.1. Energy identities. As in [Lin and Liu 1996], let us assume that we have smooth solutions to (1-1)
which vanish or decay sufficiently at Q2 (assumed smooth, if nonempty) and at spatial infinity as
appropriate so that all boundary terms vanish in the following integrations by parts, and proceed to
establish smooth versions of (1-4) and (1-5). First, noting the simple identities

Vd|?

VT-(Vd(DVd)=V< )—i—(VTd)TAd (2-1)

and
(VITDTAd] - u=[(VId)u] Ad =[(u-V)d]- Ad, (2-2)

at a fixed ¢ one may perform various integrations by parts —keeping in mind that V - u = 0 —to see that
O=/[u,—Au+VT~(u®u)+Vp+VT-(Vd@Vd)]-udx
Q

3 (lul?

= /Q[E (T) + |Vul? + [(u- V)d] - Ad] dx (2-3)

and —recalling that f = VF so that [d; + (u - V)d]- f(d) = (% +u- V)[F(d)]—that

0=—/[dz+(u'V)d—(Ad—f(d))]'(Ad—f(d))dx
Q

2
=—/ [—%('V;” —I—F(d)) +[(u-V)d]-Ad—|Ad—f(d)|2} dx. (2-4)
Q

Adding the two gives the global energy identity for (1-1):
d |ul> | |Vd|?
dt Jq

2 2

in view of the cancellation of the terms in bold in (2-3) and (2-4).

+F(d)] a’x+/[|Vu|2+|Ad—f(d)|2] dx =0 (2-5)
Q

It is not quite straightforward to localize the calculations in (2-3) and (2-4), for example replacing the
(global) multiplicative factor (Ad — f(d)) by (Ad — f(d))¢ for a smooth and compactly supported ¢.
Arguing as in [Lin and Liu 1996], one can deduce a local energy identity by instead replacing (Ad — f(d))
by only a part of its localized version in divergence-form, namely by V7’ - (¢ V7 d), at the expense of the
appearance of |Ad — f(d)|> anywhere in the local energy.

Recalling (2-1) and (2-2) and noting further that

[(u-V)d]- [V - (@VId) =[(u-V)d]-[pAd]+ [(u-V)d]-[(V¢ - V)d]

=[(u-V)d]-[pAd]|+u®@Ve:Vd O Vd

and )
vd
[AVTd)):VTd = A<%> —|V2d|?,
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one may perform various integrations by parts to deduce (as V - u = 0) that

O:/[ut—Au—l—VT-(u@u)—l-Vp—i—VT-(Vd@Vd)]-ud)dx
Q

_ |u|? 2, ul? |ul” |2 Vd|?
=/, E ) IVul"o— —(¢:+A¢) — t 5 tpjuVotl-Vid]l-(Ad) | dx

and

- / [di+ (u-V)d — (Ad — f@)]-[V" - (¢V'd)]dx
Q

ey

|va|?
2

+ A¢)

VI fD]:oVTd+[-V)d]- (Ad)p+u@ Ve :Vd O Vdi| dx

for smooth and compactly supported ¢. Upon adding the two equations above and noting again the
cancellation of the terms in bold, we obtain the local energy identity for (1-1):

el | VA ] 4 (IV V2d1P)¢ d
2 [(2+ 2)} +/|u|+| 2 dx

_ ul> | |vd? A ul> | |vdP? -
_fg (TJF > )(¢t+ ¢)+(2 +— +p)u- ¢

+u®Ve:Vdovd—¢VT[fd)]: de} dx. (2-6)

=Rys(d.p)

Note that the term
U Ve :vdovd =[(Vd O Vd)Vel-u=[(u-V)d]-[(Vo - V)d]

in (2-6) is a more accurate version of what is described in [Lin and Liu 1996] as “((u - V)d ® Vd) - V¢,
and that the term “—R ¢ (d, ¢)” in (2-6) appears incorrectly in that paper as “+R ¢ (d, ¢)”.

2.2. Global energy regularity heuristics. Let us first see where the global energy identity (2-5) leads us
to expect weak solutions to (1-1) to live (and hence why we assume (1-9) in Theorem 1).
To ease notation, in what follows let us fix @ C R3, and for T € (0, oo] let us set Q7 := Q2 x (0, T) and

LiLI(T):=L"(0,T; L1().
According to (2-5), we expect, so long as
Mo := 53llu(-, O)lI72 ) + 511VA (-, 0720, + IIF(@(-, 0)lILig) < 00,

(which we would assume as a requirement on the initial data), to construct solutions with u in the usual
Navier—Stokes spaces:
uelL®L*(00) and Vue L?L(c0). (2-7)
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As for d we expect as well in view of (2-5) that
Vd € L®L*(00), F(d)eL®L!(c0) and [Ad— f(d)] € L?L?(c0). (2-8)

The norms of all quantities in the spaces given in (2-7) and (2-8) are controlled by either My (the F(d)
term) or (Mo)'/? (all other terms), by integrating (2-5) over t € (0, o00). Recalling that

F(d):=(d?-1? and f(d):=4(d|*—1)d, (2-9)

one sees that | f(d)|*> = 16F(d)|d|?, and one can easily confirm the following simple estimates:

117 5oy = NF @Iy o) + 1T 220000 (2-10)
IE@I 320 < 11 g0y + M L2000 @-11)
1F @7 200y < TOIF @)l e 3200 117 6 00 (2-12)
1Ad|l 20, < 1A = f(@)l 200 + T2 @l 2012 (00)- (2-13)
Therefore, if we assume that
2] < o0, (2-14)

and hence
1 € L™(0, 00; L*(2)) N L™(0, o0; L3(Q)),

(2-8) along with (2-10) and (2-14) implies that
d € L™(0, 00; L*(Q)) € L™®(0, o0; L*(R2)). (2-15)
This, along with (2-8), then implies that
d € L™®(0, 00; H'(R)) < L™(0, 00; LY(R)) (2-16)
by the Sobolev embedding, from which (2-11) implies that
F(d) € L®LY?(00)
which, along with (2-12) and (2-16), implies that
fd) € LPLY(c0)
which, finally, in view of (2-13) and the last inclusion in (2-8), implies that
Ad € L*(Q7) forany T < oo, (2-17)

with the explicit estimate (2-13) which can then further be controlled by My via (2-8) and (2-10)—(2-12).
We therefore see that it is reasonable (in view of the usual elliptic regularity theory) to expect that
weak solutions to (1-1) should have the regularities in (1-9) of Theorem 1.
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Note further that various interpolations of Lebesgue spaces imply, for example, that for any interval
I C R one has

L®°(; LX) N L2(I; L8(Q)) ¢ L¥Y*(1; LYC729(Q))  forany « € [0, 1]; (2-18)

for example, one may take o = % so that 2/a = 6/(3 — 2) = %). Using this along with the Sobolev
embedding we expect (as mentioned in Remark 3) that

(u and) Vd € L¥*(0, T; LYC729(Q)) forany o €[0,1], T < 00 (2-19)

with the explicit estimate!3

L L (00) L L3 (00)

2/ 2/a 2/a—2 2 112
IIVdIIL?/aLg/@fza)(T) STV + V4| IVdll2q,)-

Note that (2-19) along with (2-16), (2-14) and the Sobolev embedding implies that d € L*(0, T'; L*°(2))
as well forany T < oo and s € [2, 4).

2.3. Local energy regularity heuristics. Here, we will justify the well-posedness of the terms appearing
in the local energy equality (2-6), based on the expected global regularity discussed in the previous
section. In fact, all but the final term in (2-6) (where one can furthermore take the essential supremum
over t € (0, T')) can be seen to be well defined by (2-19) under the assumptions in (1-9) and (1-10).
The Ry (d, ¢) term of (2-6) requires some further consideration: in view of (2-9) we see that

VU @1=V1(1d? = Ddl =2d @[d - (V' d)] + (dI* = HV'd. (2-20)

Recalling that
Ry(d, ¢):= ¢V [f(d)]:V'd,

we therefore have

IRd, $)=¢Qd@[d- (V' d)]:V'd+|d]|Vd|*) — ¢|Vd|, (2-21)

where we have to be careful how we handle the appearance of, essentially, |d|> in the first term (the
second term is integrable in view of (2-8)). We have, for example, that

1¢1d1> IVl 1@y < I9lle@n 1176, IVl g,
and that
ldllLs(@,) <00 forany T € (0, 00) (2-22)

by (2-16), and either
I¢IVaP Il < @l IVdlTag,, o  191VdlP g, < 16ls@n IVl g,
(recall that ¢ is assumed to have compact support) and, for example, that

IVd| p1053q) <00 forany T € (0, 00) (2-23)
by (2-19).

134 < B means that A < C B for some suitably universal constant C > 0.
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3. Proof of Theorem 1

The first part of Theorem 1 will be a consequence of a certain local L> e-regularity criterion (Lemma 4),
while the second part will be a consequence of a certain local H' e-regularity criterion (Lemma 7, which
is itself a consequence of Lemma 4). In the remainder of the paper, for a given zg = (xo, fp) € R xR
and r > 0, as in [Caffarelli et al. 1982] we will adopt the following notation for the standard parabolic
cylinder Q,(zp) with time interval I, (fp), along with their centered versions (indicated with a star):

I (1) :== (tO - 7‘2, 1), Ir*(t()) = (t() - %rz’ fo+ %rz)’

(3-1)
0,(z0) := B, (x0) x I,(to), Q7 (z0) := Br(x0) x I} (19).

These are defined in such a way that Q7 (xo, o) = O, (xo, to + %rz), and subsequently that
Q2 (x0, to + §7%) = Byj2(x0) x (to — 377, 10 + §7°)
is a centered cylinder with center (xo, tp).

Lemma 4 (L3 e-regularity; cf. [Lin and Liu 1996, Theorem 2.6; Caffarelli et al. 1982, Proposition 1]).
Fix any C € (0, 00). For each q € (5, 6], there exists a small'* constant € =¢ (C) € (0, 1) such that for
anyz = (X,1) € R3 x R and p € (0, 1], the following holds:

Suppose (see 3-1) u,d : Q1(z) = R>and p : Q1(Z) — R with

u,d,Vd e L¥(I;(t); L*(B1(X))), Vu,Vd,V’d e L*(0,(2)),

32 (3-2)
peL¥*(0:12)
satisfy
V-u=0 inD(Q7)), (3-3)
—Ap=V- (V' [u®@u+VvdoVvd) inD(Q:i(), (3-4)

and the following local energy inequality holds:"

t
/ <|u|2+|w|2>q>dx+f/ (Vul +|V2dP) dx d
By (x)x{t} t—1 J B (%)

t
< 6[ {f { }[<|u|2+ VA1) g + Apl+ (|ul® + VA1) V| + pld|* | Vd|*p] dx
; B (%) x

—1
/ pu-Vodx|pdr
By (x)x{t}
forae. t €I(t) and forall ¢ € C°(B1(xX) x (t — 1, 00)) such that ¢ > 0. (3-5)

_l’_

14Roughly speaking, € S (€)~?(2% — 1)? with g :=2(q —5)/(g — 2); in particular, &, — 0 as g \( 5.
Bsince [($1u? + $IVd)u- Vo +u® Ve : Vd o Vd| < (31ul® + 3|ul|Vd|?)|Ve| < (Jul® +|Vd[?)| V|, we note that
(1-13) implies (3-5) with p =1 if Q1(z) € Q7. See also footnote 10.
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Set'6
E3q:= / / (ul® +1vdP> + | p*? + |d|9|Va=9/9) dz. (3-6)
01(2)

If E3 4 < €, thenu,Vd € L*(Q1,2(2)) with

2
lullLoocoiniys 1VAllL20,,0G) < Eq/9-

In order to prove Lemma 4, we will require the following two technical propositions. In order to state
them, let us fix (recalling (3-1)) for a given zg = (xo, fo) —to be clear by the context— the abbreviated

notations
re:=2"% " BY:= B, (x0),

(3-7)
1*:=1,(t0), OF:=B*xI*
(so that Q% = Q,-«(z0)) and, for each k € N, we define the quantities
Ly =Li(z0) and Ry = Ry(zo0)
(again, the dependence on zg = (xg, fo) will be clear by context) by17
Li:=esssup 4 (u(®)|*+|Vd@®)|*) dx +/ ][ (\Vul?> +|V2d|*) dx dt (3-8)
telk Bk I%J B¥
and
3 3 1/3 _
Re= ff i +ivaryaz+n® ff ulip- g (3-9)
o ok
where

pr(t) ::][ p(x,t)dx.
Bk

The terms Ly and Ry, correspond roughly to the left- and right-hand sides of the local energy inequality (3-5).
We now state the technical propositions, whose proofs we will give in Section 4.

Proposition 5 (cf. [Lin and Liu 1996, Lemma 2.7]). There exists a large universal constant C 4 > 0 such
that the following holds:

Fixany 7 = (x,1) € R® x R, and suppose u, d and p satisfy (3-2) and (3-4). Then for any zo € 012(2)
we have (see (3-7)—(3-9))
3/2
L3/2(Q1/2(20))

<E3,V¥q>0, ¢f. (3-6)

Ru1(z0) < Ca( max Li”*o) + Ip| ) forall nz2. (3-10)

The proof of Proposition 5 uses only the Holder and Poincaré inequalities, Sobolev embedding and
Calder6n—Zygmund estimates along with a local decomposition of the pressure (see (4-20)) using the
pressure equation (3-4).

16Note that E3 , < 00 by (3-2) and standard embeddings; see Section 2 along with (3-22) with o = 6.
17We use the standard notation for averages, .., JCB fx)dx := ‘—}3' fB f(x)dx.
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Proposition 6 (cf. [Lin and Liu 1996, Lemma 2.8]). There exists a large universal constant Cg > 0 such
that the following holds:

Fixanyz = (X,1) € R x R, suppose u, d and p satisfy (3-2), (3-3) and (3-5), and set E3 , as in (3-6).
Then for any zo € Q1,2(2) and any q € (5, 6], we have (see (3-7)—(3-9))

Ly(z0) < C-CB( - max_Ry(z0) + E3’ +(1+k025’€0)E3,q> forall n>2 (3-11)
2% — 1 ko<k<n
forany ko € {1, ..., n— 1}, where C is the constant from (3-5) and
2(g —5
oy = M > 0.
q—2

The proof of Proposition 6 uses only the local energy inequality (3-5), the divergence-free condition (3-3)
on u and elementary estimates. The quantities on either side of (3-11) do not scale (in the sense of (3-25))
the same way (as do those in (3-10)), which is why the energy inequality is necessary.

Let us now prove Lemma 4 using Propositions 5 and 6.

Proof of Lemma 4. Let us fix some g € (5, 6] and C € (0, 0o). We first note that for any ¢ > 0 as in (3-5)
we have!® (recalling that 5 < 1)

// |d| |Vd| ¢ < f |d|KI|Vd|3(1 ‘1/6)+ / |Vd| ¢(5 th)/3

with o :=2(q —5)/(g —2) € (0, 5]. Taking ¢ in particular such that ¢ =1 on Q' = Q1/2(z0), we see
easily from this along with (3-5) that

L
% S Esg+Ey. forall zo€ Q1. (3-12)

It is also easy to see that
L,y <8L, forany neN. (3-13)

Hence we may pick Co = Co(g, C) > 1 such that for any z9 € Q| 2(Z) — and suppressing the dependence
on zg in what follows — we have
Li, Lo, Ly < 5(Co* (Es g + E5))  (by (3-12), (3-13)), (3-14)
Ca<iCy and (2% —1)"'+243.29C-Cp < (Cp*>

for C4 and Cp as in Propositions 5 and 6. Having fixed Cy— uniformly over zg € Q1,2(z) — we then
choose €, € (0, 1) so small that

b
(Co)®

2- ~2/3
€ < — C(j; < €/

Noting first that €, < (Eq)z/ 3 under the assumption E3 , < €, we in particular see from (3-14) that
Ly, Ly, L3 < (Coég)*>.

18The inequality in fact holds for any g € (2, 6].
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Then, by Proposition 5 with n € {2, 3} we have

Rs. Ry < Co(max{L}?, Ly, LY?} + &) (by (3-10))

< 3Co(Co+ 1)éy < Ciég <&

which implies due to Proposition 6 with n = 4 and ky = 3 that

Ls < Cp((2* —1)"" max{Rs, Ry} + E3

< (Coéy)*.

+(1+3-2)E3,) (by (3-11))

Then in turn, Proposition 5 with n = 4 gives
Ly, Ly, L3, Ly < (Co&)® = Rs <& (by (3-10)),
from which Proposition 6 with n =5 and, again, kg = 3 gives
R3, Ry, Rs <€)7 = Ls<(Coe)*’ (by (3-11)),

and continuing we see by induction that Proposition 5 and Proposition 6 (with ky = 3 fixed throughout)
imply that

Ru(z0) <& and L,(z0) < (Coé)*?  forall n>3.
This, in turn, implies (for example) that (see, e.g., [Wheeden and Zygmund 1977, Theorem 7.16])

lu(zo) > + |Vd(z0)|® < 65/3

for all Lebesgue points zg € Q1/2(z) of lu|®> 4+ |Vd|® which implies the L statement, and Lemma 4 is
proved. U

Lemma 4 will be used to prove the first assertion in Theorem 1 as well as the next lemma, which in
turn will be used to prove the second assertion in Theorem 1.

Lemma 7 (H ! e-regularity; cf. [Lin and Liu 1996, Theorem 3.1; Caffarelli et al. 1982, Proposition 2]).
Fix any C € (0, 00) and g €1, 00). For each o € (5, 6), there exists a small constant €, = €, (C, g)>0
such that the following holds. Fix Q7 := Q x (0, T) as in Theorem 1, and suppose u, d and p satisfy
assumptions (1-9)—(1-13). If (recall (3-1))

1
lim sup —/f 1d1° (Jul® +|Vd|})' =% dz < g (3-15)
™o 2] g
and
. 1 2 2 412
lim sup — (IVul”+1Vad|?) dz < €5, (3-16)
™NO T *(20)

for some zg € Q7, then 7 is a regular point, i.e., \u| and |Vd| are essentially bounded in some neighbor-
hood of 7.



1716 GABRIEL S. KOCH

For the proof of Lemma 7, for zo = (xo, o) € Qr and for r > O sufficiently small, we define A,,
B, Cy, Dy, E, F (cf.[Lin and Liu 1996, (3.3)]) and G, ;, using the cylinders Q}(z9) — whose
centers 7o are in the interior, see (3-1) — by

1 1
Ay () = ~ ess sup / (u@OP +IVdOP) dx,  Boy(r) =~ / f (Vul2 +|V2dP) dz.
B, (x0) r *(z0)

T rerx(t)

._i 3 3 ._i 3/2
Cop(r) :=— (lul” +1Vd|")dz, Dy (r) == — Ipl”'~dz,
r #(20) r #(20)

1 — S
E,(r) == lul{[|ul® = [ul? | +|IVd]* — |Vd|? |} dz (3-17)
r 07 (z0)

where 2" (1) :=][ g(y,t)dy,

B, (x0)
1 1 -
Fry(r) := r_2// . )|”| lpldz, Gq,z()(r) = m[/ . )|d|q(|1/l|3 + |Vd|3)1 q/6dz
r K0 *(20

(note that Gy ;, = C,,) and, for g € [0, 6), define
My -, (r) := 5[Coy(r) + GV (1] + D2 (r) + EX(r) + F2 (r). (3-18)

The statement in Lemma 7 will follow from Lemma 4 along with the following technical decay estimate
which will be proved in Section 4.

Proposition 8 (decay estimate; cf. [Lin and Liu 1996, Lemma 3.1; Caffarelli et al. 1982, Proposition 3]).
Fix any C € (0, 00). There exists some constant ¢ = ¢(C) > 0 such that the following holds. Fix any
g, 0 e Rwith2 < g <o <6, and define

€ (0, 1). (3-19)
q

If u, d and p satisfy (1-9)—(1-13) for Qr as in Theorem 1, and zy € Qr and pg € (0, 1] are such that
7, (20) € Q7 and furthermore

sup B (p) <1 and sup Go(p) <8 (3-20)
p€(0, pol p€(0, pol

for some finite g € [1, 00), then for any p € (0, pp] and y € (0, 3—‘] we have

2
— —6/(6— o, _ 3ag.4/4 k 0.q/2%
My, (yp) <é- 3% ”>[y“°~q/8<Mq,m+M§‘,zz>+y BBy 2+ My )}(p» (3-21)
k=0

(In fact, in the sum over k in (3-21), one can omit the term with , ;, when k =0.)

The key new element in our statement and proof of Proposition 8 (and hence in achieving Lemma 7) is
the fact that, for certain ¢ > 0 (so that G, ;, # C,, and hence M, ;, is notably different from the quantity
found in the standard literature, namely My ), we can still derive an estimate for M, ., of the form (3-21),
with a constant depending only on C, o and g (and not on ¢). This is made possible (see Claim 4 and its
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applications in Section 4.4) by the following interpolation-type estimate for the range of the quantities
Gy, (including G ;, = C,)), a simple consequence of Holder’s inequality:

0<g<0<6 = Gu,0)<GY(r)C () forall r>0. (3-22)

0,20

The estimate (3-22) follows by writing
|7 (|lul® + |Vd ) 79 = [|d|7 (|ul® +|Vd|*)' 770197 (Ju® + |Vd?) D)7

and applying Holder’s inequality with
121,974
=—+
o o

to Gy, and noting that r>74/2 = [r20/2]4/% . [y2]1=4/% 1n particular, if 0 < g <o < 6, setting

q 6 g 6
o. = l_— . — d o = — —
Yo ( o> 6—q and - fo.q o 6—gq

and noting that

6 6
rg = (I = pg) < ——.
Bo.q 6—0( Ug,q) 6—0

we see that

(3-22) (3-15)
GYS () S Ga(NC () TS g7 Mg ()] forall >0 (3-23)

q:20

as long as g > 1; this leads to the constants appearing in (3-21).
Let us now use Proposition 8 and Lemma 4 to prove Lemma 7.

Proof of Lemma 7. Fix any C € (0, 00), o € (5, 6) and g €[1, 00), and fix' any ¢ = g (o) € (5, min{o, 1}),
noting that 6/(6 —¢) < 12 and 2(6 —q) > 1; for the chosen g, let €, = €,(C) € (0, 1) be the corresponding
small constant from Lemma 4.

Let us first note the following important consequence of Lemma 4. Fix Qr as in Lemma 4 and
20 := (xo, fp) € 27, and suppose that

1 é 12
My . (r) < 3 (?) (3-24)

for some r € (0, 1] such that Q7 (zp) € Q7. Setting
Uz, (X, 1) 1= ru(xo +rx, to +r’t),
Daor(x, 1) 1= rzp(xo +rx, tg+ r2t), (3-25)
deyr(x, 1) i=d(xo+7x, 1o+ 1%1),

a change of variables from z = (x, t) to

(y,5) := (xo+rx, to+ r’t) (3-26)

191n the requirement that g € (5, min{o, g}), the choice of g := % is somewhat arbitrary and taken only for concreteness;

one could similarly choose any g € (5, 6) and adjust the subsequent constants accordingly.
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implies that

/ (ttzgr P+ 1Vdog P+ 1Pror P77 4 1dag,r | (g, P + Vg 1) 79/0) dz
70,0

- E_qu g_q6 E_qZ(6fq) ]
_CZO(r)+DZO(r)+Gq,zo(r)§ 3 + 3 + 3 < €.

Since Q7%(0,0) = Q1(0, ), it follows? from assumptions (1-9)~(1-13) that u, ,, ds,, and p., , satisfy
the assumptions of Lemma 4 with Z = (x, ) := (O, %) and p := rte (0, 1], with the same constant C
(see footnote 15). Since we have just seen that

E3q = E3 4z r, dygry Paors 2) < €gs
we therefore conclude by Lemma 4 that

o r ()], |Vdzyr ()] <&° forae. z€ Qi2(0,5) = Bi12(0) x (—5. 3)

and hence
g2/9
u(y, ), [Vd(y, )] < == forae. (3,5) € Bra(xo) x (10— i to+ 7).

In particular, by definition, zg = (xo, fy) is a regular point, i.e., |u| and |Vd| are essentially bounded in a
neighborhood of zp, so long as (3-24) holds for some sufficiently small r > 0.
In view of this fact, setting

8y 1= —( q(a)> and ¢, = 5-g6/(6—”>,

2\ 3

we choose ¥, € (0, 1] so small that

[1—0g4]
8 .q
Goyeeal® < 1( d ) (3-27)

=4\ 2

where ¢ = ¢(C) is the constant from Proposition 8 and o, 4 is defined as in (3-19); finally, we choose
€5 € (0, 1] so small that
Syt 1 (80 0
oy e < 4 () (-28)
If zg € Q7 is such that (3-15) and (3-16) hold, it implies in particular that there exists some pg € (0, 1]
such that Q7 (z0) € Qr and, furthermore,

sup Ggz0(p) <8 (3-29)
p€(0,p0]

20For example, if one fixes an arbitrary ¢ € CSO(QT(O, 0)) and sets ¢*0" (x, 1) := ¢p((x — xg)/r, (T — zo)/rz), then
P07 ¢ Cgo(Qf(Zo)) C (380 (227). One can therefore use the test function ¢<0>" in (1-13), make the change of variables
&,s):=((x—x0)/r, (t — to)/rz), so (x,7) = (xog+7r&, 19+ rzs), and divide both sides of the result by r to obtain the local
energy inequality (3-5) for the rescaled functions with p = 2 (as all terms scale the same way except for |d |2 |Vd |2¢zo,r ) and
= (0, %) The other assumptions are straightforward.
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and

sup B, (p) < €&5. (3-30)
p€(0,p0l

It then follows from (3-27), (3-28) and (3-30) —and the facts that a4, 6, < 1 —that

— . l—aq
e @7@(82 - ”)zz(mmu,ag ”]}),

7 = 4\ 2 4 >
and that
[1-ag,q4/4]
- 3ay.4/4 (-30) _ s 34,,/4G28 1 (6 q
Co ¥, ISBZ:”/ (0) = v, 156U<x,q/ < Z(UT
: . 1—1/2% l—g.q /2
1 ( mingeo.o){minfst />, 5 o2y
4 6

for all p < pp. Suppose now that zg is not a regular point. Then we must have
8o < Myzy(p) forall p e (0, pol, (3-31)

or else (3-24) would hold for some r € (0, pp] which would imply that z¢ is a regular point as we
established above using Lemma 4.

In view of (3-29) and (3-30) — so that in particular (3-20) holds, as we chose ¢, < 1 — we conclude
by the estimate (3-21) of Proposition 8 (along with (3-27), (3-28), (3-30), (3-31) and our calculations
above) that

My 2y (Vop) < §My -, (p) forall p € (0, pol

for any z¢ which is not a regular point. However, since y(f po € (0, po] for any k € N, by iterating the
estimate above we would conclude for such zg that

1 _ 1 _ 1
My, (¥g p0) < 5My.20 (75 P0) = 55 Mo 2 (v 2p0) <+ = 5 My (0) < 85
for a sufficiently large n € N which contradicts (3-31) (with p = y”po), and hence contradicts our

assumption that z¢ is not a regular point. Therefore zo must indeed be regular whenever (3-29) and (3-30)
hold for our choice of €,, which proves Lemma 7. O

In order to prove Theorem 1, we now prove the following general lemma, from which Lemma 4
and Lemma 7 will have various consequences (including Theorem 1 as well as various other historical
results, which we point out for the reader’s interest). As a motivation, note first that, for » > 0 and
z1:=(x1, 1) € R* xR, according to the notation in (3-25) a change of variables gives

1
2 2
/ iz rl? + 1Pz, | =—5_,,/ jul? +1pI*/?,
0%(0,0) r Q3 (x1,11)

1
/ |v”11,r|q:T2q/ |Vul?
07(0,0) r QF(x1,1)
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and |
| a9 P = [ dgwapt-ee (3-32)
Q7(0,0) r O (x1,11)

for any g € [1, 00).

Lemma 9. Fix any open and bounded Q € R*, T € (0, o0), k > 0 and Cy > 0, and suppose further that
SCQr:=Qx(0,T) and that U : Qr — [0, 00] is a nonnegative Lebesgue-measurable function such
that the following property holds in general:

1
(x0,t) €S = limsup - Udz > Cy. (3-33)
™NO TS0 (xo.10)
If, furthermore,

UeLY(Qr), (3-34)

then (recall Definition 2) P*(S) < oo (and hence the parabolic Hausdorff dimension of S is at most k)
with the explicit estimate

55
PHS) < = / Udz; (3-35)
Cr Jo,
moreover, if k =35, then
4 554
ws) < =pis) < - f U dz (3-36)
3 3Cs Ja,

where | is the Lebesgue outer measure, and if k < 5, then in fact P*(S) = u(S) = 0.
Before proving Lemma 9, let us first use it along with Lemma 4 and Lemma 7 to prove Theorem 1.

Proof of Theorem 1. First note that for any > 0 and z; := (x1, #;) € R® x R such that Q,(z;) € Qr,
it follows (as in the proof of Lemma 7) that, according to the definitions in (3-25), the rescaled triple
(uz,.r»dy, ry Pzy.r) satisfies the conditions of Lemma 4 with Z := (0, 0) and p := r2. Therefore if ¢ € (5, 6]
and

1 1
> jul* +|Vd’ + |l + / d ||V
r? J o, a2 Jo, o)

:/ luz, 1P+ 1V, P+ pey P2+ Ndy 19|V, PU710 <&, (3-37)
01(0,0)

(with €, = eq(f) as in Lemma 4), it follows that |u;, ,|, |Vd,, | < C on Q1,2(0, 0) for some C > 0,
and hence |u|, |Vd| < C/r on Q,/>(x1, t1); in particular, every interior point of Q,/>(x1, t1) is a regular
point, assuming (3-37) holds. Therefore, taking zo := (xo, fo) such that

O 2(x1, 1) = Q5 5 (x0, to),

(80 xo = x1 and 1 is slightly lower than #; so that (xo, #o) is in the interior of the cylinder Q,>(x1, 1)) and
letting S C Q7 be the singular set of the solution (i, d, p), we see (in particular) that, since »>19/2 < r2

forr <1,
(xOJO)ES} = limsup / [l +1VdP +1pl? +1d)1| Va0 > & (3-38)
q € (5,6] O T2 o ro i)
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(in fact, (3-38) must hold with lim inf instead of lim sup). Therefore, since (1-9) and (1-10) imply that
ul® +1Vd +1pl>? +1d|9|Va =99 e LY (Qr) (3-39)

(for T < 00), we may apply Lemma 9 — it is not hard to see, by using a suitable covering argument, that
without loss of generality we can assume €2 is bounded — with U := |u P+IVdP+|pl3?+|d|1|Vd]31—4/0),
k=2+1qand C; :=&, to see (setting § := 2(¢ —5) € (0, 1) <=5 <q <6 with2+ Jg = 3 + ) that

9/2+8 1
POPH(S) =0 forany &€ (0, 3).

Before continuing with the proof of Theorem 1, we describe some intermediate results (using only
Lemma 4), with historical relevance, for the interest of the reader:

Suppose that (1-14) holds for some o € (5, 6) which we now fix. We further fix any ¢ € (5, o), and
choose y; 4 > 0 small enough that

V;,;q/a (Vf,éa + (go)q/g) < €.

As in the proof of (3-22), Holder’s inequality (along with (3-32)) implies that

1—q/o
/ oy 191V, PO < (6,71 ( / |del,r|3> ,
01(0,0) 01(0,0)

so that if
1
") |u|3+|w|3+|p|3/2:/ ltz 1P+ IV P+ 1P PP < Vo (3-40)
r Oy (x1,11) 01(0,0)

it follows that

/ g, 1P+ 1V, P+ 1 pey PP+ Ny 11V, PO719 < &,
01(0,0)

and hence (xg, #9) ¢ S for (xo, f9) as above.
Therefore under the general assumption (1-14) with o € (5, 6), there exists Y, > 0 (€.8., Vo := Vo, (5+0)/2)
such that

. 1
(x0.%) €S => limsup— lul® +|Vd? +p)*? = ys. (3-41)
™NO T 03 (x0.10)

Therefore, as long as
(u, Vd, p) € L*(Qr) x L*(Qr) x L3*(Qr), (3-42)

we may apply Lemma 9 with U := lul® +|Vd|® +|p|*?, k=2 and C; := y, to see (similar to Scheffer’s
result [1977]) that
PA(S) =0.

On the other hand, we know slightly more than (3-42). The assumptions on u and d in (1-9) imply
(for example, by (2-18) with o = 2, along with Sobolev embedding) that u, Vd € L'%3(Qr). Suppose
we also knew (as in the case when Q = R?) that p € L3/3(Q7) — which essentially follows from (1-9)
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and (1-12), see [Lin and Liu 1996, Theorem 2.5]. Then (3-34) holds with U := |u|'93 +|Vd|'%/3 4| p|3/3,
and moreover Holder’s inequality implies that

1 10/9 1
(—2/ |u|3+|Vd|3+|p|3/2) <219%)0, |1/9( 5/3/ |u|10/3+|Vd|10/3+|P|5/3>
= J 0% (z0) 05 (z0)

(]Q1] is the Lebesgue measure of the unit parabolic cylinder). In view of (3-41), one could therefore

apply Lemma 9 with

Yo 10/

U — |u|10/3—|—|Vd|10/3+|P|5/3a k:% and Ck = W

to deduce (similar to Scheffer’s result [1980]) that
PI3(S8) =0

All of the above follows from Lemma 4 alone. We will now show that Lemma 7 allows one — under
assumption (1-14) for some o € (5, 6), and even if p ¢ L33 (Q27) —to further decrease the dimension of
the parabolic Hausdorff measure, with respect to which the singular set has measure zero, from % to 1.
This was essentially the most significant contribution of [Caffarelli et al. 1982] in the Navier—Stokes
setting d = 0.

Let us now proceed with the proof of the second assertion in Theorem 1. Suppose d satisfies (1-14)
for some o € (5, 6). Taking €, = €, (C, gos) > 0 as in Lemma 7 with g := g,, we see from (3-16) that

1
(x0,t0) €S = limsup—/ (IVul> +|V3d|») > e,
™0 QO3 (x0,10)

so that (3-33) holds with U := |Vu|?> 4 |V2d|* and k = 1. The second assumption in (1-9) implies that
(3-34) holds as well with U := |Vu|> + |V2d|?. Therefore Lemma 9 with U := |Vu|> + |V2d|?, k=1
and C;, = ¢, implies that

PLS) =

This completes the proof of Theorem 1 (assuming Lemma 9). g

Proof of Lemma 9. Fix any § > 0, and any open set V such that
SCVCQx@OT). (3-43)
For each 7z := (x,t) € S, by (3-33) we can choose r, € (0, §) sufficiently small so that Q:‘Z (z) C V and
1
= U= Cy. (3-44)
05(2)

By a Vitalli covering argument, see [Caffarelli et al. 1982, Lemma 6.1], there exists a sequence (z j)?‘; 1ES
such that

U 0%, () (3-45)
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and such that the set of cylinders {sz,- (zj)}; are pairwise disjoint. We therefore see from (3-44) that

o0
1
k
k< — U<t V=g | U (3-46)
; Z" Z/Q e G Cr Jor

which is finite (and uniformly bounded in §) by (3-34). Note that according to Definition 2 of the parabolic
Hausdorff measure P¥, (3-46) implies

' sk sk
P(S)f—fo— U (3-47)
Cr Jy Cr
which establishes (3-35).
Let us now assume that k£ < 5. Letting u be the Lebesgue (outer) measure, note that

w(Qs, ) < |BIl(Sr)
so that

(346) 5°|B
" |Bl|Z<5rz ) <5°|By|8°" "Z e 20 g2 1'/ (3-48)

since we have chosen r, < § for all z € S. If k = 5, (3-48) along with Definition 2 gives the explicit
estimate (3-36) on u(S). If k < 5, since § > 0 was arbitrary, sending § — 0 we conclude (by (3-34)) that
1 (S) =0 and hence S is Lebesgue measurable with Lebesgue measure zero. We may therefore take V to
be an open set such that w (V) is arbitrarily small but so that (3-43) still holds, and deduce that PK(S) =0
by (3-34) and (3-47). g

4. Proofs of technical propositions

In order to prove Proposition 5 as well as Proposition 8, we will require certain local decompositions of
the pressure (cf. [Caffarelli et al. 1982, (2.15)]) as follows:
4.1. Localization of the pressure.
Claim 1. Fix open sets Q2] € Q27 € Q C R3 and ¥ € C3°(Q2; R) with y =1 0n Q). Let
1 1

47 |x — |

G*(y) = (4-1)

be the fundamental solution of —A in R? so that, in particular,

VG* € L1(2;) forany q € [1, %)
for any fixed x € R, and set
Gy :=—-G'Vy,
w2 =2VG* -V + G Ay,
G 3:=VG ' ®@VY + VY VG + G V3,
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so that

G 1. G 5, Gl 3 €CE()  for any fixed x € Q.

Suppose T1 € C2(2; R), v € C1(Q; R*) and K € C*(Q; R>3). If

—All=V-v in Q, (4-2)
then for any x € Q,
H(x)=—fVG"-vw+/G22,1-v+/Gi‘,,,2H- (4-3)
Similarly, if
—All=V-(VI.K) inQ, (4-4)
then for any x € Q,
M(x) = S K1) + f Gy K+ / GY I, (4-5)

where
S[[?](X) =V, <VXT /GXE) =/va (VT [?) forall [? GC%(Q% R3X3);

in particular (noting V>G* ¢ L1 ), S :[L1(20)1**® — L9(Qy) for any q € (1, 00) is a bounded, linear

loc
Calderon—Zygmund operator.

Remark 10. We note, therefore, that under the assumptions (1-9), (1-10) and (1-12), by suitable regu-
larizations one can see that for almost every fixed ¢ € (0, T'), (4-3) and (4-5) hold for a.e. x € | with
M:=p(-,1), K:=J(-,t)andv:=VT.J(-,1), where

J:=u®u+VdQoVd.
Indeed, under the assumptions (1-9), we have u, Vd € L'%3(Q7) so that (omitting the x-dependence)
J(t)e L°P(Q) forae. te(0,T). (4-6)
Moreover, since u, Vd € L>(0, T; L>(Q)) N L'%3(Q7) and Vu, V2d € L*(Q7), we have

vl .JeL*0,T; L") NLY*Qr)
so that
v J@®) e LNQ)NLY*(Q) forae. t€(0,T). (4-7)

Finally, (1-10) implies that
p(t) e LY*(Q) forae. 1€ (0, 7). (4-8)

Fix now any ¢ € (0, T') such that the inclusions in (4-6)—(4-8) hold. Since Gf//, ;€ Cg° for x € Q1 the terms in
(4-3) and (4-5) containing Gfp,j are all well defined for every x € Q; since J(¢), VI -J(¢), p(t) € Llloc(Q).
The term in (4-3) containing VG* isin L’ (£2;) forany r € [1, %) by Young’s convolution inequality (since

2, is bounded), so that term is well defined for a.e. x € €2;. Indeed, for R > 0 such that €2, C Bg/2(xo)
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for some xo € R, we have x — y € Bg := Br(0) for all x, y € Q. Setting G(y) := G°(y) and letting x g,
be the indicator function of Bg, since i is supported in 2, we therefore have

-1/Vmew:JQVGM&J*wWHU)

for all x € ©2;. Therefore
‘/ VG* vy

by Young’s inequality forany g € [1, 3), s €[1, 3) and r such that 141 = %4—% (note that 3+ 3 —1=1).
Finally, S[¥ J(¢)] € L3(Q5) by the Calderén—Zygmund estimates (as 1< % < oo) so again that term is
defined for a.e. x € Q.

< IKIVGIxBg) * vl 1w
L7 (22)

< IVGIxsellLa@) lv¥ | s wsy = IVGllLapy VY | 3 (2,) < 00

Regularizing the linear equation (1-12) using a standard spatial mollifier at any # € (0, 7)) where (1-12)
holds in D’(£2) and where the inclusions in (4-6)—(4-8) hold, applying Claim 1 and passing to limits gives
the almost-everywhere convergence (after passing to a suitable subsequence) due, in particular, to the
boundedness of the linear operator S on L/3($,).

Proof of Claim 1. Since (extending IT by zero outside of 2) ¢ I € Cg([R?), by the classical representation
formula, see, e.g., [Gilbarg and Trudinger 1983, (2.17)], for any x € R we have

1//(x)1'l(x):—/GXA(lj/l'[):—/Gx(l//Al'I—i-ZVg//-VH—I—HAl//). (4-9)

In particular, for a fixed x € | where ¥ = 1, we have G* V¢ € C;° (R3) so that integrating by parts
in (4-9) we see that

H(x):/Gxglf(—Al'I)—F/G’fl,,zH. (4-10)
If (4-2) holds, then by (4-10) we have
H(X):/wavl)_i-/ fb,zn (4_11)
for any x € ©2;. One can then carefully integrate by parts once in the first term of (4-11) as follows: for a
small € > 0,
1
/ leﬁV-vdy:—/ (V(G*Y)]-vdy +— Yv-v,dS,
y—xl>e y—x|>e 4me Jy—xi=e

=0(e2)
and since the second term vanishes as € — 0 due to the fact that |9 B.(x)| < €2, we conclude (since
VG* e L] ) that

loc

[crvvv=- [v@rwnv== [ve v+ [Gy, 0
which, along with (4-11), implies (4-3) for any x € ;.
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On the other hand, if (4-4) holds, then by (4-10) we have
M(x) = / G*yV- (V. K) +/ Gy o1l (4-12)
and one can write
V- (VT (WK = [V K+VTy [V- K]+ VY- [V - K]+ V- (V- K)

so that (as V¢ = VI (V) = V(VT ) = [V2y]7 since ¢ € C?)
/G"[w (VI K)]
= / G*[V- (VI - (yK)]— / G*[V*Y : K]— f([vaTw] (VK14 [G*Vy]-[VT-KD).

Since G*Vy € Ci° for x € 21, one can again integrate by parts in the final term to obtain
IT(x) :/GX[V~(VT-(1//K))]+/ Gys: K—i—/ Gy oIl

for x € 2 in view of (4-12). Moreover, since ¥ K € Cg and G* € L! | as usual for convolutions one can

loc’
change variables to obtain

/ G'V- (V' (yK)) = [w(v)f : / GWK)}(x) =: S[YK](x)

which gives us (4-5) for any x € 2, where S (see, e.g., [Gilbarg and Trudinger 1983, Theorem 9.9]) is
a singular integral operator as claimed. (Note that V>G* ¢ LlloC

parts twice in this term putting all derivatives on G*, but [ G*y/ K is the Newtonian potential of ¥ K
which can be twice differentiated in various senses depending on the regularity of K.) O

so that one cannot simply integrate by

4.2. Proof of Proposition 5. Tn what follows, for © C R? and I C R, we will use the notation

I lg:o =1l sy, N-ls:r =1y, N llgsoxr =l lsaszaon = |1l e Ls()

and we will abbreviate by writing
I Ng:oxr =1 llg.q:ox1 = - lLaox1)-

We first note some simple inequalities. Letting B, C R? be a ball of radius r > 0, from the embedding
WL2(By) — L°(B)) applied to functions of the form g,(x) = g(rx) — or suitably shifted, if the ball is
not centered as zero — we obtain

||gr||6;31 S ”gr”Z;Bl + ||Vgr”2;Bl = ”gr”2;31 +r”(Vg)r”2;Bl

whereupon — noting by a simple change of variables that

-3
lgrllg: =r""lglly 5,
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for any g € [1, co) — we obtain for any ball B, of radius r > 0 and any g that

1
gle:s, < ~lgllz, + Vg, (4-13)

where the constant is independent of r as well as the center of B,. Next, for any v(x, t), using Holder’s
inequality to interpolate between L2 and L® we have

(4-13)
1/2 1/2 — 1/2 1/2
v las, < WO, IvOllg s < = 2lv@® s, + vl 5 V@115 - (4-14)

Then for I, C R with |I,| =% and Q, := B, x I, Holder’s inequality in the ¢ variable gives

_ 1/2
Wlisio, S 2L vl 0, + 1015, o, (YOI V120,02

so that

12

—1/6 1/2
r 00, S Ivllaesg, + I0IY2 o 190135, S Ivllzeco, + 1V0ll2ig,

(the first of which is sometimes called the multiplicative inequality) with a constant independent of r.
From these, noting that | B,| ~ r3and |Q,| ~ r?, it follows easily that, for example,

3/2 3/2
][][ wiPdz < (ess sup |v(t)|2dx) + </ |Vv|? dx dz) ) (4-15)
n teln Bn n B)l

Note also that a similar scaling argument applied to Poincaré’s inequality gives the estimate

lg — &8 llg:8, SrlIVEllyn ~ BN IVely: s, (4-16)

for any r > 0 and ¢ € [1, o], where go is the average of g in O for any O C R? with |O| < co. Note
finally that a simple application of Holder’s inequality gives

I8ollg:0 = lIgllg;0- (4-17)

Proceeding now with the proof, fix some ¢ € C(‘)’O([RR3) such that

¢=1 in B,(0)=B14(0) and  supp(¢) C By, (0) = B1(0).

Now fix z = (¥,7) € R* x Rand zg = (x9, t9) € 01/2(2), define B*, I* and Q* by (3-7) for this z¢ and
define ¢ by ¢ (x) := ¢(x — xq). So

¢=1 in B> =Biu(x) and  supp(¢) € B' = Bija(xp) C B (%),

since xo € By/2(x). The following estimates will clearly depend only on $, i.e., constants will be uniform
for all zop € Q1/2(2).
First, applying (4-15) to v € {u, Vd} and recalling (3-8) we see that

1 3 3 3 3 @15
r—s(llullg;Qn+||Vd||3;Qn)§ (lul>+1Vd|’)dz <

n o ~

for any n, with a constant independent of n. In particular, for any n we have the estimate

L3? (4-18)

lull3. 00 + IVd 300 Sr3PLY2 (4-19)
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Next, by Claim 1 and Remark 10 with ¥ := ¢, Q, := B! and Q := B2, noting that p = ¢p on
2 .
0% = Q1/4(z0) = Bi/4(x0) x (10— ()", 10), as in (4-5) we have
px,1)

:S[d)J(t)](x)—i—/ (2VGX®UV¢+GXVZ¢):J(z)dy+/ QVG*-Vop+G*Ap)p(t)dy, (4-20)
B\B2 BI\B?

at almost every (x, t) € 02, where
J=uQu+VdoVd, 4-21)

2a @y b:=a ® b+ b ®a and the operator S consisting of second derivatives of the Newtonian potential

SIK](x) :==V, - (VXT / GXE)
B!

for K € L4 (B') is a bounded linear Calderén—Zygmund operator on L?(B") for 1 < g < co. Hence for any
n € N, denoting by y, the indicator function for the set B" = B,-»(xg) and splitting ¢ = x,¢ + (1 — x,) @
in the first term of (4-20), we can write

given by

p= pl,n +p2,n +p3,n Epl,n +p2,n +p3,
where, for almost every (x, t) € 02,
p(x, 1) = S[xn@J (D)](x) + SI(A — xu)@J (1)](x)
::pl-”(x,t) =:p2'”(x,t)

+f QVG* ®, Vo + G*V3¢) : J (1) dy—i—/ (2VG* -V + G Ad) p(t) dy
B'\B2 B\ B2

=:p3n(x,0)=p3(x,1)

(where the last term is clearly independent of n, but we keep the notation p>” for convenience).
Note first that, by the classical Calderén—Zygmund estimates, there is a universal constant C.;, > 0
such that, for all » € N, we have

1P " (132 5041 < Cezll xn® T O3 /2.5 < CezllPlloorge 1 () 1372 57 (4-22)

Next, since the appearance of V¢ in p> exactly cuts off a neighborhood of the singularity of G”* (see (4-1))

uniformly for all x € By/g(xo) —as we integrate over |xo — y| > 4, hence |x — y| > ¢ —we see that
3 (-, 1) € C®(By5(x0)) for t € Iy/5(fp) with, in particular,
(n>
IVep? " O lloo; g < IIVxP " () oo Byystxo) < @A O l1 51 + 12O 11 51).- (4-23)

In the term p>”, the singularity coming from G* is also isolated due to the appearance of ,, but it is no
longer uniform in n so we must be more careful. As we are integrating over a region which avoids a neigh-
borhood of the singularity at y = x of G¥, we can pass the derivatives in S under the integral sign to write

n—1

VP (1) = f VAT gl wldy =3 / Vil(V2GY" 9 01 dy
B\B" B

k\BA+1
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and note, in view of (4-1), that

VGO rp S @S g forall xe B2 ye (B

Therefore, since
Bn+1 _ B(n—1)+2 C Bk+2 for 1 <k<n-— 1,

we see that
n—1
IVap" Do S @ Y2 f 110 01dy (4-24)
k=1 B*

forall ¢t € I]/g(l()).
Now, recalling the notation

fiwyi= f sondx
Bk
for a function f(x,¢) and k € N, for any ¢ € 1> = (to — (3—‘)2, to) and n > 2, we estimate
/ lu(x, )l p(x, 1) — par1(t)]dx
B;H—]
3 .
<> [ il - 1 @) dx
. B"
j=1

3
.’ o
<l Ollz gt Y PP Cot) = BT 0 130,00
j=1

3
S w13, g <|| P O3z pen + B IV (0l BnH) (by (4-16), (4-17) and Holder)
j=2

n—1
< u@) 13, gost (||J(f)||3/2;3ﬂ +r3+1{ (Z 2t ][ @) dy) IOl + p(r>||3/z;31}), (4-25)
B
k=1
where the last inequality follows from (4-22)—(4-24) and Holder’s inequality. Note further that, setting

, (4-26)
L7e(1%)

Ly o= H ][ 11(0)]dy
Bk
we have

<|1n+1|2/3 max Ly sz

3/2(1111»1) 1< <n—1

1/3
=r n+1

sz][ 0 dy

max l]_J ks
I<k<n-—1

1
since [I"t!] =72 41 and
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Integrating over ¢ € I"*! in (4-25), applying Holder’s inequality in the variable ¢ and recalling by (4-19)
5/3 4172
L
n+1"~n+1°

[[ o= itz
Qn

5/3 1 2
Sl e+, max Lot rl (1 sz +1plze0) (4227)

that [lull3.gni1 S7 we obtain

It follows now from (4-21) that

4-19)
5/3,1/2 10/3
103206 < Ml e + 1A g S @2 LD =1 Ly (4-28)
and

Lyx =<

]ék<|u<->|2+|w<->|2> dy” <Ly (4-29)

oo; Ik

Now from (4-21), (4-27)—-(4-29) and the simple fact that %rn =rp4+1 <1 we obtain

1<k<n-—

1/3 _ 1/2 ¢ 1/3 1/3 10
rnilﬁ lullp = Pasildz S L/ {r A La 47,0 max Lir ™ Li+ 1pll3j o)
Q)H»l 1 —

<1

1
<L max Li+[1pll3/: 0 .

Since
(4-18)
3 3 3/2
H i wapyas < L2

adding the previous estimates and recalling (3-8) and (3-9) we have
3/2 1/2
R,y SL nil +L) (majn Le+1pllsj: o)

(where the constant is universal). This along with (3-13) implies (3-10) and proves Proposition 5. O

4.3. Proof of Proposition 6. For simplicity, take z = zg = (0, 0), so that (recall (3-7)) ok = 0K (0, 0),
etc., as the rest can be obtained by appropriate shifts.

We want to take the test function ¢ in (3-5) such that ¢ = ¢" := x ", where (recall that here
0'=0'0,0)0=B; 2(0) x (—}‘, 0) so x will be zero in a neighborhood of the parabolic boundary of oY

X €CP(Bip(0) x (—3,00)), x=1inQ* 0<x<I (4-30)

and

1
U (x, 1) = We—lﬂz/@(rf—t)) for ¢ <0. (431
r2—

Note that the singularity of " would naturally be at (x, t) = (0, r,f) ¢ Q! s0y" €C>®(Q;) and we may
extend " smoothly to ¢ > 0 (where its values will actually be irrelevant) for each n so that, in particular,
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¢" € C°(B1(0) x (=1, 00)) as required21 in (3-5) with (x, ) = (0, 0). Furthermore, we have

VY (x,t) = ————¢"(x,1) and Y"+AY"=0 in Q' (4-32)

2021
Note first that for (x, ) € Q" (n > 2), we have

O<|x|<r, and r><[r?—t]<2r’
so that
”3 = (,,3)3/260/(&3) < (,,3 _ t)3/ZeIXI2/(4(r3—t)) < (2r3)3/26r3/(4r3) _ 23/2e1/4r3.
Hence
! ! <y" < ! for all " 4-33
?/Z—M'E_‘/f(x,f)_a orall (x,7) € Q (4-33)
and therefore (as r,% —t>0)
Ve (x, )| = x| [U"(x, )] < <In. i = i for all (x,t) € Q". (4-34)
2(r2 202 —1) ~rzordoord

Next, note similarly that for 2 < k <n and (x, 1) € Q¥ '\ Q*, we have

re <|x| <rg_1 =2r; and r,? < r,%—i—r,g < [r,% —t] < rr%—l—r,g_] < 2r,§_1 = 8r,3,
so that
o1/32, 3 (r2)3/2 r2/(32r2) < (r t)3/28|x|2/(4(r37t)) < (8r]%)3/2e(zrk)2/(4r3) =29/zer1?‘
Therefore
1 1. Yh(x, 1) < L forall (x,1) € Q" "\Q*¥ @2 <k<n) (4-35)
Pre p =V =am s ’ =r=
and hence, as in (4-34),
1 1
Ve Dl S 5 == forall (r,n€ Q" N\QF @ <k<n). (4-36)
e e Tk

We can therefore estimate (for n > 2 where ¢" = " in Q"):
1 1 2 2 2 2 712
23/2—e1/4-a|:essp§up Bn(lul +|Vd| )+/Qn(|Vu| +|Vad|7)

(4-33)
< esssup (|u|2+|Vd|2>¢"+/ (IVul*+|V2d|H¢"
In Bn Qn

L

: E{f/ [(|”|2+|Vd|2)|¢f+A¢"I+(|u|3+IVdI3)|V¢”|+[>|d|2|Vd|2¢”]+/ V V"
0! 11/t

where the last inequality follows from (3-5). Note that

n (4 32) (4 30)

o + Ao U (x4 Ax) +2Vx - V" in Q°

2l (3-5) as well, the values of ¢ for t > 7 are actually irrelevant.
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and hence, taking k = 2 in (4-35) and (4-36), we see that

11
¢/ +40"S 5+ 5 51 on 0, (4-37)
2 )
so that
2 2 @37 2/3
/ﬁlﬂu|+4Vd|M#“+A¢l . /a qu|+wvm1
o
by Hélder’s inequality. Note similarly that
(4-30) !
V" | = IxVy" +¢"VxI < IVY"[+Iy"] on O
so that (since r} < r2) (4-33), (4-34) and (4-35), (4-36), respectively, give
1
IVe"| < —4 on 0" and  |V§"|S— on 0"\ 0" (4-38)

T'n k

for any n > 2 and 2 < k < n. Therefore

(4-38)

> [, Gl e iwateen S| max o0’ ff, 19l )]Eﬁ(m“
2 QK—1\ Ok 1<
and similarly

(4-38)
an<|u|3+|Vd|3>|V¢”| < [(m)‘—“][fgnqm%|Vd|3>]<rn>“

for any o € (0, 1], and we note that

o o
1
Z(”k)a = ;(2_")]‘ = a1 <® for any o > 0. (4-39)
Hence in view of the disjoint union
n
0'= (U Qk—l\Q") uQ" (4-40)
k=2

we have, taking o = 1 in (4-39),

/f (Jul> +1Vd|})|Ve"| S max ]ff (ul® +vd]®).
0! 1<k<n Qk

__2(qg—5)
Y= T
q

Similarly, setting

and noting that r;, € (O, l] for g € (5, 6], we have

f/ 1d|)?|Vd|*¢" < = / FIEVZIES 4/6)Jr / (Vd|3(¢")S—e)/3

§E3.q
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uniformly, of course, over p € (0, 1]. Since

(4-33)
f f VAP @SB < () / VAP < (r) ff 2%
QY! Q)'l QVl

(as ¢" Sy 3 on Q") for n > 2 and similarly

(4-35)
f / VPR < (e f / VP < ()% ]ff VP
Qk\Qk-H Qk Qk

(as ¢" <rp 2 on QF\ Q%! ) for | <k <n— 1, we see that (4-39) with o = &, and (4-40) again give
// V("0 < 2% — 1) max ][f vdP’,
0! 1<k<n Ok
We therefore see that

20 -5
5// |d|2|Vd|2¢"§gEg,qug(z%—l)*l max ]6[ |Vd®  with a, = M,
0! 5 3 I<k<n J Jok qg—2

uniformly for any p € (0, 1] and g € (5, 6].
Putting all of the above together and recalling (3-8), we see that for n > 2 we have

L, 1
== :[ess sup £ (Jul>+1|Vd|?) +f (|Vul> + |V2d|2)}
C C I B" nJpn

2

< Esg+E3D +(@2% —1)7" max ][][ (|u|3+|Vd|3)+/ : (4-41)
’ 1<k<n Qk 1!

/ pu-Vo"
BI
Furthermore, we claim that for 1 < ky <n — 1 we have

//pu-w < max (r,!“][][ |P—l5k||”|>+k024k°// ol lul. (4-42)
1'1J B! ko<k=<n 0k 0!

Assuming this for the moment and continuing, for n > 2, (4-41), (4-42) and Young’s convexity inequality

along with the fact that, for any k; > 1, we can estimate

max ][7[ (|u|3+|Vd|3)§k125"'f/ (lu]* +|vd|?)
1<k<k Qk Q]

imply (recalling (3-9)) that

L
< By +E2 4% — 1) max Ry 4 ko2 |+ |VdP +|p|*?
c ™~ 4 ko<k<n 0!

SE3,q
for any kg € {1, ..., n — 1}, which proves Proposition 6.

To prove (4-42), we consider additional functions xj (so that xx¢" = xxx ") satisfying (recall that
0F = 0%0,0)= B, (0)x (—r,f, 0), so xx will be zero in a neighborhood of the parabolic boundary of 0"

Xk €C(0y,)  with Q, := B.(0) x (—r2,r%) for r >0,

L~ 1 (4-43)
xk=1 1in Q7,/8, 0<)xx <1 and |Vx|Z P
k
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(Xkl{z>0y will again actually be irrelevant) so that in particular (as érm C §7rk+l /8 Where xx = xxr1=1)

supp(tk — xk+1) € 0r\ Oy (4-44)
Then, fixing any n > 2, writing |
e
X0=Xn+ Y _ (k= Xkt1)
k=0

and noting that o = 1 on o' = 01,2(0,0) C Q7/8(0,0) = Q7,,8(0,0), we see that for any fixed
ko e NN[1,n — 1] and at each fixed T € I', we have

/Bl pu-Vg" =/Bl pu-Vixo¢"] (by (4-43))

n—1
= / pu-Vixag"l+ > / pu- VIO — Xer1)9"]
B! k=07 B'

n—1
= f pu-Vixad"1+) / pu - V(X — Xe+1) "] (by (4-43), (4-44))
Bn k=0 [Bk\Bk+2]
ko—1

= | (p—pwu-Viud"l+ f it VIO% = Xir1)$"]
B" =0 [Bk\Bk+2]

n—1
A3 [ B Vi -9l @49
s [Bk\Bk+2]

where the final equality is due to (3-3), and where
Pr = pr(T) = ][ p(x, )dx.
Bk
Note first that (4-35), (4-36) and (4-44) imply (since ;41 = 2r; for any j) that

VIO — k0" 11 < Itk — 211 IV 10"V Otk — xar )] S

for any k, and similarly
Va1l < 1xal V" |+ 16"V xal Sr7* on Q™.

Therefore we can estimate (recalling again (4-43) and (4-44) when integrating |(4-45)| over T € 1)

n
/ / pu- V" 5k024k°// |p||u|+2rk][][ |p — Pil ul
rel'|J Bl x {1} 0! k=ko ok

which, along with (4-39) with g = % implies (4-42) for any kg € [1, n — 1] as desired. O

4.4. Proof of Proposition 8. In this section we prove the technical decay estimate (Proposition 8) used to
prove Lemma 7. In all of what follows, recall the definitions in (3-17) and (3-18) of A, B;,, C;,, D,
E,, Fy, G4z, and M, ... We will require the following three claims which essentially appear in [Lin and
Liu 1996] and which generalize certain lemmas in [Caffarelli et al. 1982]; however we include full proofs
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in order to clarify certain details, and to highlight the role of G, ;, (not utilized in [Lin and Liu 1996]) in
Claim 4 which is therefore?” a slightly refined version of what appears in [Lin and Liu 1996].

Claim 2 (general estimates; cf. [Caffarelli et al. 1982, Lemmas 5.1 and 5.2]). There exist constants
c1, ¢ > 0 such that for any u and d which have the regularities in (1-9) for Qr := Q x (0, T) as in
Theorem 1, the estimates
Coo(vp) < cily* A2 +y A B*1(p) (4-46)
and
E. (yp) < c2[CP AP B (yp) (4-47)

hold for any zg € R3*! and p > 0 such that Q;(Zo) C Qrandany y € (0, 1].

Claim 3 (estimates requiring the pressure equation; cf. [Caffarelli et al. 1982, Lemmas 5.3 and 5.4]).
There exist constants c3, c4 > 0 such that for any u, d and p which have the regularities in (1-9) and (1-10)
for Qr :=Q x (0, T) as in Theorem 1 and which satisfy the pressure equation (1-12), the estimates

D, (yp) < c3ly (D, + AV B+ CL%) + y AV B (p) (4-48)
and
Foy(yp) < caly'"2 (A + DI+ C2P) + 7104, (BY* + B2)1(p). (4-49)
hold for any zo € R**! and p > 0 such that Q;(Zo) CQrandanyy € (0, %]

The crucial aspect of the estimates (4-46)—(4-49) — which control M, . (yp) —in proving Lemma 7
(through Proposition 8) is that whenever a negative power of y appears, there is always a factor of B, as
well, which will be small when proving Lemma 7. Positive powers of y will similarly be small; in each
term evaluated at p (see also (4-52) below), we must have either y* or BZ) for some o > 0.

To complete the proof of Proposition 8, we require the following.

Claim 4 (estimate requiring the local energy inequality; cf. [Caffarelli et al. 1982, Lemma 5.5]). There
exists a constant c¢s > 0 such that for any u, d and p which have the regularities in (1-9) and (1-10) for
Qr:=Qx (0, T) as in Theorem 1 and such that u satisfies the weak divergence-free property (1-11) and
the local energy inequality (1-13) holds for some constant C € (0, 00), the estimate

Au(B) =5 CIC + E+ Foy+ (1 +1- )G 0 + GV +CBYp)  (4-50)

holds for any q € [2, 6) and any zg € R3*! and p > 0 such that Q;(Zo) C Qr.

Postponing the proof of the claims, let us use them to prove the proposition. In all of what follows, we
note the simple facts that, for any p > 0 and o € (0, 1],

Kel{Ay B, = Kp) <o 'K(p),
Ke(Cy. Dy Ezy. Fr)) = K(ap) <a °K(p). (4-51)
Gq,zo (ap) < O‘_Z_q/qu,Zo(p)~

22Note that Gz, (r) < lld]loo uniformly in r (and zp), though in our setting we may have d ¢ L*°.
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Proof of Proposition 8. Fixing zo and pg as in Proposition 8, under the assumptions in the proposition we
see that estimates (4-46)—(4-50) hold for all p € (0, pol, ¥ € (0, 3] and g € [2, 6) by Claims 2, 3 and 4.
Note first that (4-46), (4-47) and (4-51) imply that

E. (yp) S[AL B> +y 2 A B *(p)

20 ~z0

and hence, for example, there exists some cg > O such that
E.(yp) <coly?Ag +y 2 (ALPBL2 + AL By )(p), (4-52)

for p € (0, pp] and y € (0, %] (in fact, for y € (0, 1]) and that it follows from (4-50), assumption (3-20)
and the assumption that pg < 1 that there exists some c¢7 > 0 such that

€144 (8) 2 erlC 4 Boyt Foy+ G0+ G+ 2o B,

and hence, recalling (3-18), we have that, for some cg > 0,

(©)2432(8) = cslMy.co(0) + My () B (0)] (4-53)

q,20
for p € (0, po]. We note as well that, as in (3-23), if o € [¢g, 6) and if (3-20) holds for some g > 1, then

(3-22) (4-46)
Gy D(yp) < .y (yp) = VOV [PANR+y AN BI N (p)  (4-54)

4,20

for p € (0, po]. Now, writing yp =2y - (%p) for 2y < % it follows from (4-46), (4-48), (4-49), (4-52),
(4-54) and (3-18) followed by an application of (4-51) (with a = 1) to all terms except for A, along
with the facts that y, B;,(p) <1 (so that you can always estimate positive powers by 1) as well as the
fact that o 4 € (0, 1) that

Mg, (yp) <[Coy+ GV 07D + D2 + EX* + F2P1(yp)

q,20
343/2(P —343/4(P 3/4 =6/(6— 343/2(P —343/4( P 3/4 Yoq
S[V A% (§)+V A% (5)34 (p)]+g /(6= '[V A <§>+V A% (5)310/ (p)}
2
+ |y M2 o)+ y AN () B o) + B 0))]
B 3/2
+ 124 (8) + v 2 (AL2(8) BL2(0) + Ay (2) By (0)]

4 [V1/12<AZO (g) n M;,/SO(/?)) 404, (%)(3;52(;0) + Bz20 (,0))]3/2

< (14 26 [V“‘“’/ (M4 [422(5)] " +[422(5)])

(@ G @) e o |

solong as y € (O, }L] Noting that 1 < g%/(6=9)the estimate (3-21) for such y and for p € (0, py] now
follows from the estimate above along with (4-53) as, in particular, (4-53) implies—as y, B;,(p) <1
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and o, 4 € (0, 1) —that

3at5,4/4

(©)2A32(2) < My 2y () + v 7157200 M) 2 (0) B ()
which we apply to the terms above with a positive power of y, and that
©)7PA(8) £ Mya(p)+ M2 ),
which we apply to the terms above with a negative power of y, completing the proof. U

Let us now prove the claims.

Proof of Claim 2. For simplicity, we will suppress the dependence on zg = (xg, fp) in what follows.
Let us first prove (4-46). Note that for any r < p, at any fixed ¢ € I¥, taking v € {u, Vd} we have

/|v|2dxsf lvl? = [P’ | dx + 1B, |[v]”
B, B,
3
5p/ |V|v|2|dx+(5)f v dx
B, o’/ JB

P

due to Poincaré’s inequality (4-16). Since |V|v|2| < |v||Vv| almost everywhere, Holder’s inequality then
implies that

2 < r\} 2
10135, S olvllzs, 1Vll2s, + (5) 1013 5, (4-55)
0 P
Therefore

3/2

[N 3/2<|| vl3.5)%% + 10135 1Vl (by (4-14))

3/2 3/2 3/2 L /r\%2, 3
< (4 (8) il 1vvi5, + 5 (5) I, by @-55).
Summing over v € {u, Vd}, we see that
lull3. 5, + 1VAI3. 5,

S(i+(2 ) )(||u||23 +1IVd|3,5) " (IVul3, 5, + 1V 15,5 + 9/2(||u||23 +11Vdli35,)"".

Now integrating over t € I* (where |I*| = r?), Holder’s inequality implies that

372 3/4
PO S (14 (2) ) Ml 5, + 1913, 5, |21, (V01 gy + 19213, 9,0

3/2
oo; IF

3
r
+ |I:<|WH ||u||%;Bp + ||Vd||%;Bp H

3/2 r
S (14 (2)7) (oA (0B (o) Y + AN,

-32

which, upon dividing both sides by r2, setting y :=r/p and noting that 1 < y , precisely gives (4-46).
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Next, to prove (4-47), we use the Poincaré—Sobolev inequality

lg — & llg*:B, < cqllVEllg:B,

(the constant is independent of r due to the relationship between ¢ and g*) corresponding to the embedding
Whe s L9 for g <3 (in R*) and ¢* =3¢ /(3 —¢q). Taking g = 1, atany 7 € I} and for v € {u, Vd} the
Holder and Poincaré—Sobolev inequalities give us

2_12" 2_12" 2
[ ul|[[v]* = [v[? | dx < llulls; 5, 01 = [V I32:8, S lulls: s IV (0I5, S Nulls: s, [0]12:8, V|25,
B,
Summing this first over v € {u, Vd} at a fixed ¢ and then integrating over ¢t € I, we see that

rPEr) S | lullss (lul3. s +1VAN3.5) VA5 5 + 1V2dII5. 5 )" dt
Iy

S lullzsoz | Aull3: 5, +1VA113 50" [, (V113 gy + 1V2d13, 000"
1/2
SO, g0 2 13, 5, +1VAI3, g, | L IV, s + V213, 00

SrPE e PeAe) B =[P AV B ()
which proves (4-47) and completes the proof of Claim 2. O

Proof of Claim 3. As in (4-3) of Claim 1, for any 7 € I(zo) and almost every x € B3,4(xo) (with r < p),
using a smooth cut-off function v equal to one in 21 := B3,/4(xo) and supported in £ := B, (x) so that

VY| Sp~' and AW S p 2, (4-56)

we use Remark 10 to write IT:= p(-,¢) as

p(x,t)z—/VG’“'v(t)wderfGi‘p,l-v(t)dy+/Gi‘p,zp(-,t)dy

=:pi(x,1) =:p2(x,1) =:p3(x,1)
with

wa =—-G*V, Gfb,z :=2VG" - VY +G*Ay and v(t):=[V - u@u+VdoOVd)](-,1).

Our goal is to estimate p(x, t) for x € B,/2(xo).
Both p> and p3 contain derivatives of Y in each term so that the integrand can only be nonzero when
|y — xo| > %p, and hence for x € B,/2(xo) one has

x=yl=3p = [GWI<p ! and [VG' OIS p 2 (4-57)

From (4-56) and (4-57) and the fact that v is supported in B, (x¢), we have (omitting the dependence on 7,
and noting that the constants in the inequalities are independent of ¢ as they come only from G* and )

sup  |pa(x) < p—Z/ (lul|Vu| +|Vd||V3d]) dy
Bp(x())

xEBp/z(xo)
1/2 1/2
5p2(/ <|u|2+|w|2>dy) (/ <|Vu|2+|v2d|2>dy) (4-58)
Bp(x()) Bp(xo)
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and similarly

sup  1pa(0) < p / pl dy. (4-59)
X€Bp2(x0) B, (x0)
1

For p1, Young’s inequality for convolutions (setting R := 2p as in Remark 10) with % +1= % + ﬁ gives

1
IP1013/2:B,x0) S HW I (Jul + VA ([Vul + |V2d|)||12/11;3,,(x0)

4/3; B, (0)
S oY ul + VD (I Vul + V2d D ll12/11: 8, (o)
and then Holder’s inequality with % = i + % + % gives
1PV 13)5: 8, ey S V411t 4 19D P 5, 000 Lt 4+ VD26, 000 1 Vit 1V 3, 00)
< P (oA llul + 191135, () 1Vl + 1921135 (4-60)

For the following, we fix now any r € (O, %] and omit the dependence on xo, #y and z¢ in B, (x0), B, (xo),
I*(ty), Ay, By, Cy and D, (we will retain zq in the notation for F to distinguish it from F =V f).
To first prove (4-48), we note that (4-58) implies — since r < % o —that

3/4 3/4
/|P2|3/2d)€§r3,0_3(/ (|u|2+|Vd|2)dy) (/ (|W|2+|v2d|2>dy>
Br Bp BP
3/4
<33 (pA(p)) ( / (Vul® + 92 dy)
B,

so that, integrating over ¢ € I and using Holder’s inequality, we have

r? f \p2*dz S p A (o) - 113V (p B(0)) Y = % (AR (p), (4-61)
o
and that (4-59) similarly implies that
3/2 -
r? / \psl?dz Srp™ / ( f 1d dy) < =-D(p). (4-62)
of ¥ \J B, P

Finally, integrating (4-60) over ¢ € ¥, Holder’s inequality with 1 = le + % gives

-2 3/2 < pm2,3/443/8 Vd 3/4 v v24 3/2
r Pz SR O ul +1Vdlll5; o IVl + 1Vl

)
S 2p A () (02C(0) 4 (p B(p)) Y = (CV4(p)) - ((%) AV () B (p).
Multiplying and dividing by (r/p)%/? for any o € R, Cauchy’s inequality gives

_ 3/2 r\¢ A

iR S (5) €0+ (5) T A 0B ). (4-63)
Since we want a positive power of y =r/p in the first term and a negative one in the second (because it
contains B which will be small), we want to take o > 0. Choosing o = 1 purely to make the following
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expression simpler, since p = p3 + p» + p1, we see from (4-61)—(4-63) that

-5
D) S 51D+ (AB)Y +.C'P1p) + () 14V B )(0)
which implies (4-48) for y :=r/p < %
To prove (4-49), we note that F,,(r) < Fi(r) + F2(r) + F3(r), where we set

1
Fi(r):= r_Z// Ipjlluldz.
Or

To estimate F| we use Holder’s inequality and (4-60) to see that (in fact, for r < p)

fB Ipilluldx < |lull3.8,lP1ll3/2:B,
S lulls;s, - ' (oAD" lllul + Va3 5 11Vul +V2d]ll2;5,
< oA () lul + V|35, 11Vul +1V?d| Il 5,
and hence the Cauchy—Schwarz inequality in time gives
Fi(r) Sr72p P AV )l lul + V13, 11Vl + [92d i,

S22 AR () (0P C(p) P (0 B(p)) '

= () ) () )

S(y e o) () )
for any o € R. Taking, say, « = 1, we have

A0 (E) e+ (L) A, (4-64)

Now for F, note that, using (4-58), we have (since r< % ,0)

/|pz||u|dx5p—2/ <|u||Vu|+|Vd||v2d|>dy/ | dx

B, B, B,
< o2 Mul + 1Vdlllzp, 11 Vul +1V2d| |2 5, ()2 {lull2; 5,
S o2 PP (0 A(e) VUl +|Vd| |28,

so that integrating over ¢ € [;* and using Holder’s inequality in time we have

1 /32 172
Far) S 5 — (pA@) (0B (o) () = (L) T1AB (). (4-65)
P2 p2 0
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For F3, using (4-59) and Holder’s inequality, we see that

1 1
5 [ st = ([ ipiay)(f s
r< Js, r<p B, B,
2/3 1/4 1/6
(/ |p|3/2dx) (p3>1/3(f (|u|1/2>4dx) (/ (|u|1/2>6dx) 3y
B, B, B,

which gives us (setting y :=r/p)

1 1/4 3/2 >3 3 /0 2,1/6
Fs(r)f,m(ﬁl(r)) (/ Q*Ipl dX) (//*Iul dX> (r%)

< %(rA(r))‘/“(pzmp))z“(rZC(r»‘/é(rz)”6
ri/4p

1
<
=23

2/3 1/12
<(5) 0T @D PO ) = (1) A 0D (¢ )

by (4-51). Hence Young’s inequality implies

F3(r) < (%)mmw) + DY (p) + C*(p)). (4-66)
Adding (4-64)—(4-66) and passing to the smallest powers of y =r/p(< 1) we see that
Fo(r) < (%)Ulzm + D¥3 £ C¥3(p) + <%>_10[A(31/2 + BY)](p)

which implies (4-49), and completes the proof of Claim 3. O

Proof of Claim 4. We will again omit the dependence on zg (except in F;,).
To estimate A(p/2), we use the local energy inequality (1-13) with a nonnegative cut-off function
¢ € C3°(Q}) which is equal to 1 in Q;/z’ with

VoI Sp~' and gy, IVl Sp 2

We’ll need to estimate terms which control those that appear on the right-hand side of the local energy
inequality (1-13), which we’ll call -V (all of which depend on p) as follows.

I :=/ (ul® + Va1 g + Al dz < p 2 llul® +Vd Pll/: 05 (0)) '
0;

SP2 PP CENP (7)1 = pCp).  (4-6T)
Using the assumption (1-11) that V -u = 0 weakly and indicating by g” the average of a function g in B,
we have
— 2 2 _ 2P 2 _ioq2?
I ._/ f (lul? +1VdP)u - Ve dx| dt —/ / [(lul® = [ul2") + (IVd* = [VdP")u - Vo dx|d1,
1x1J8, Ix1J B,
hence

11'S o7 (0 E(p) = pE(p). (4-68)
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Clearly we have
1= [[ 1pu-V1dz S o7 020 = pFo o) (4-69)
Q)
Using the weak divergence-free condition V - u = 0 in (1-11) to write (see (1-2))
u-Vyd=v".d®u)

(at almost every x) and integrating by parts we have

IV:=/ / u®Ve :Vd ©Vd dx|dt
x1JB

P

dt

— /*/B[(M‘V)d]-[(V¢~V)d]dx

P 14

dt

=/ / V7 ([d@u)]-[(Vo-V)d]dx
*|J B

P P

:/ _/ du:VI[(V¢-V)d]dx|dt,
I B,

and clearly
IVI(Vo-V)d]| < V2| |Vd| + V| V2|

Therefore, for g € [2, 6] we have?3
1V5f/ || lul(p™?|Vd| + p~'|V?d]) dz
o;
< 1! lulll2: s (0> Vdllz: 05 + o~ V2 12: 05)
S Ndllulllz; o5 (02 - p*°NI VI3, 05 + 0 IV2d |12 02)

< (0’Ga(p)) 2 (072 P (P?C (o) + o (0 B(P))'?)
= p(G2(p))*(C'(p) + B'*(p))

< p(G1(p)C 1 (p))'*(C' (0) + B'*(p)) (by (3-22)),
so that
1V S plGy/U(C/o71a 4 1221 B2 (p). (4-70)
Similarly, for g € [2, 6] we have
(3-22)
Vo= / / dRIVdPpdz S p°Galp) < p°GH(p)C' (). (@-71)
P

23Note that it is only the appearance of V24 in the estimate of term IV which forces us to include u in the definition of Gg.z-
Indeed, switching the roles of u (which appears in Cg, along with Vd) and Vd (which appears in G 7, even with u omitted),
one could otherwise control the term /V in precisely the same way. If u is omitted in G, 7, one could still obtain the same
estimate of 7V if one takes ¢ = 6, but this would dramatically weaken the statement of Theorem 1. The remainder of the proof of
Theorem 1 does not require (but is not harmed by) the inclusion of u in G4 .
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Finally, using (4-67)—(4-71), the local energy inequality (1-13) (with constant C) gives
(6)—1§A(§) ST+H+HI+1V+V
< ,0[C2/3 +E+F,+ Glll/q(c5/6—1/q + C1/2—1/qu/2) +[- ]ZGCZ/‘]CI_ZM](,O)
SPICP+E+ Foy+ (1 +1- Gy +(G 0 + ¢ B ()

as long as 2 < g < 6, as in that case we have

GYacd/6=1/a — (G4/(6—q))(6—q)/(4q)(C2/3)(5q—6)/(4q)
q

< (2o 4 (21=0) 2 < G4/<6 Y
4q 4q 4
GUaC1 A0 — (G260 6=/ Ca) (C1/3) 346/ Ca)

< 6—q G 1 3g—6 clB < Gz/(6 9 §C1/3,
2q 2q 2
G;/‘]cl—z/q — (G4/(6—4))(6—Q)/(ZQ) (C2/3)(3q—6)/(2(])

< (o) 4 (32202 < 3gHe-0 3,
2 2q 2 2

This implies (4-50) and proves Claim 4. 0
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