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JUAN CARLOS CANTERO, JOAN MATEU, JOAN OROBITG AND JOAN VERDERA

We prove the persistence of boundary smoothness of vortex patches for a nonlinear transport equation
in Rn with velocity field given by convolution of the density with an odd kernel, homogeneous of
degree −(n −1) and of class C2(Rn

\{0}, Rn). This allows the velocity field to have nontrivial divergence.
The quasigeostrophic equation in R3 and the Cauchy transport equation in the plane are examples.

1. Introduction

The vorticity form of the Euler equation in the plane is

∂tω(x, t) + v(x, t) · ∇ω(x, t) = 0,

v(x, t) = (∇⊥N ∗ ω( · , t))(x),

ω(x, 0) = ω0(x),

(1)

where x ∈ R2, t ∈ R, N =
1

2π
log |x | is the fundamental solution of the laplacian in the plane, ∇

⊥N is a
rotation of ∇N of 90◦ in the counterclockwise direction and ω0 is the initial vorticity. A deep result of
Yudovich [1963] asserts that the vorticity equation is well-posed in L∞

c , the measurable bounded functions
with compact support. A vortex patch is the special weak solution of (1) when the initial condition is
the characteristic function of a bounded domain D0. Since the vorticity equation is a transport equation,
vorticity is conserved along trajectories and thus ω(x, t) = χDt (x) for some domain Dt . A challenging
problem, raised in the eighties, was to show that boundary smoothness persists for all times. Specifically, if
D0 has boundary of class C1+γ, 0 < γ < 1, then one would like Dt to have boundary of the same class for
all times. This was viewed as a 2-dimensional problem which featured some of the main difficulties of the
regularity problem for the Euler equation in R3. It was conjectured, on the basis of numerical simulations,
that the boundary of Dt could become of infinite length in finite time [Majda 1986]. Chemin [1993]
proved that boundary regularity persists for all times using paradifferential calculus, and Bertozzi and
Constantin [1993] found shortly after a minimal beautiful proof based on methods of classical analysis
with a geometric flavor.
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The vortex patch problem was considered for the aggregation equation with newtonian kernel in higher
dimensions in [Bertozzi et al. 2016]. The equation is

∂tρ(x, t) + div(ρ(x, t)v(x, t)) = 0,

v(x, t) = −(∇N ∗ ρ( · , t))(x),

ρ(x, 0) = ρ0(x),

(2)

x ∈ Rn and t ∈ R. In [Bertozzi et al. 2012] a well-posedness theory in L∞
c was developed, following the

path of [Yudovich 1963; 2002, Theorem 8.1]. When the initial condition is the characteristic function of
a bounded domain, one calls the unique weak solution a vortex patch, as for the vorticity equation. One
proves in [Bertozzi et al. 2016] that if the boundary of D0 is of class C1+γ, 0 < γ < 1, then the solution
of (2) with initial condition ρ0 = χD0 is of the form

ρ(x, t) =
1

1−t
χDt (x), x ∈ Rn, 0 ≤ t < 1,

where Dt is a C1+γ domain for all t < 1. The restriction to times less than 1 obeys a blow-up phenomenon
studied in [Bertozzi et al. 2012]. Hence the preceding result is the analog of Chemin’s theorem for the
aggregation equation. See [Bae and Kelliher 2021] for a more general result concerning striated regularity.

After a change in the time scale the aggregation equation for vortex patches becomes the nonlinear
transport equation

∂tρ(x, t) + v(x, t) · ∇ρ(x, t) = 0,

v(x, t) = −(∇N ∗ ρ( · , t))(x),

ρ(x, 0) = χD0(x),

(3)

x ∈ Rn , t ∈ R, where N is the fundamental solution of the laplacian in Rn and D0 is a bounded domain. In
this formulation one proves in [Bertozzi et al. 2016] that if D0 is of class C1+γ, then there is a solution of (3)
of the form χDt (x) with Dt a domain of class C1+γ. To the best of our knowledge there is no well-posedness
theory in L∞

c for (3), for a general initial condition in L∞
c . However, if the initial condition is the character-

istic function of a domain D0, not necessarily smooth, one has existence and uniqueness for the transport
equation (3). For existence, solve the equation (2) with initial condition ρ0(x) = χD0(x). Then the unique
solution has the form ρ(x, t) = (1/(1− t))χDt (x) and hence, after changing the time scale as in [Bertozzi
et al. 2012], one obtains a solution for (3) which is a vortex patch. For uniqueness, we resort to an argument
which combines results of [Clop et al. 2016a; 2016b] to prove that each weak solution of (3) in L∞

c is la-
grangian and so a vortex patch. Changing the time scale, one obtains a weak solution of (2), which is unique.

The proof follows the scheme of [Bertozzi and Constantin 1993] and overcomes difficulties related to
the fact that the velocity field has a nonzero divergence and to the higher-dimensional context. The reader
can consult [Bertozzi et al. 2016] for connections with the existing literature and for references to models
leading to various aggregation equations.

This paper originated from an attempt to deeply understand the role of the kernel that gives the velocity
field. For the aggregation equation the kernel is −∇N and for the vorticity equation in the plane the
kernel is a rotation of 90◦ of ∇N. These are odd kernels, smooth off the origin and homogeneous of
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degree −(n − 1). We wondered what would happen for the Cauchy kernel
1

2π z
= L(∇N ), with L(x, y) = (x, −y), z = (x, y) ∈ R2

= C.

Although apparently there is no model leading to the nonlinear transport equation given by the Cauchy
kernel, from the mathematical perspective the question makes sense. We then embarked in the study of
the nonlinear transport equation

∂tρ(z, t) + v(z, t) · ∇ρ(z, t) = 0,

v(z, t) =

( 1
2π z

∗ ρ( · , t)
)
(z),

ρ(z, 0) = χD0(z),

(4)

where z = (x, y) is the complex variable and D0 is a bounded domain with C1+γ boundary, 0 < γ < 1. A
first remark is that apparently there does not exist a well-posedness theory in L∞

c for the equation above,
but this does not prevent the study of smooth vortex patches, as a particular subclass of L∞

c enjoying a
bit of smoothness.

To grasp what could be expected we looked at an initial datum which is the characteristic function of
the domain enclosed by an ellipse

D0 =

{
(x, y) ∈ R2

:
x2

a2 +
y2

b2 < 1
}
.

We proved that there exists a weak solution of (4) of the form ρ(z, t) = χDt (z), with Dt the domain
enclosed by an ellipse with semiaxes a(t) and b(t) collapsing to a segment on the horizontal axis as t →∞.

A key remark is that (4) is not rotation invariant. Fix an angle 0 < θ < π
2 and consider as initial domain

the set enclosed by a tilted ellipse

D0 = eiθ
{
(x, y) ∈ R2

:
x2

a2 +
y2

b2 < 1
}
.

As before we find a weak solution of (4) of the form ρ(z, t) = χDt (z), with Dt the domain enclosed by
an ellipse with semiaxes a(t) and b(t) forming an angle θ(t) with the horizontal axis. The evolution is
different according to whether 0 < θ ≤

π
4 or π

4 < θ < π
2 . Under the assumption that a0 > b0, in the case

0 < θ ≤
π
4 the semiaxis a(t) increases as t → ∞ to a positive number a∞, b(t) decreases to 0 and θ(t)

decreases to a positive angle θ∞. Hence Dt collapses into an interval on a line forming a positive angle
with the horizontal axis. If π

4 < θ < π
2 , then for small times a(t) decreases and b(t) increases, so that

the ellipse at time t tends initially to become a circle. This happens until a critical time is reached after
which a(t) increases and b(t) decreases. The angle θ(t) decreases for all positive times and at some point
it becomes π

4 ; after that one falls into the regime of the first case and the domain Dt collapses as t → ∞,
into a segment on a line which forms a positive angle with the horizontal axis. The case a0 < b0 is similar
and can be reduced to the previous situation by conjugation (symmetry with respect to the horizontal axis).

Detailed proofs of the results just described can be found in Section 7. What they show is that the
behavior of vortex patches for the Cauchy transport equation can be much more complicated than for the
vorticity or aggregation equations. This is also easily understood if one looks at the divergence of the vector
field in (4). If ∂ and ∂̄ denote respectively the derivatives with respect to the z- and z̄-variables, then we get

2 ∂̄v(z, t) = ρ(z, t)
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and

2 ∂v(z, t) = −
1
π

p.v.

∫
1

(z − w)2 ρ(w, t) d A(w) = B(ρ( · , t))(z),

where B is the Beurling transform, one of the basic Calderón–Zygmund operators in the plane. Here d A
is 2-dimensional Lebesgue measure. The divergence of v is given by

div v = ℜ(2 ∂v) = − p.v.
1
π

∫
ℜ

(
1

(z − w)2

)
ρ(w, t) d A(w)

= − p.v.
1
π

(
x2

− y2

|z|4
⋆ ρ( · , t)

)
(z).

The last convolution is a Calderón–Zygmund operator (a second-order Riesz transform) and so it does not
map bounded functions into bounded functions. The most one can say a priori on the divergence of the
velocity field is that it is a BMO function in the plane, provided the density ρ( · , t) is a bounded function.
It is a well-known fact, already used in [Bertozzi and Constantin 1993; Chemin 1993], that if D is a domain
with boundary of class C1+γ, then an even Calderón–Zygmund operator applied to χD is a bounded
function. Thus we indeed expect div v to be bounded. Nevertheless, the expression of the divergence of
the field in terms of a Calderón–Zygmund operator applied to the density is potentially difficult to handle.

We have succeeded in proving that there exists a weak solution of (4) of the form χDt with Dt a domain
with boundary of class C1+γ for all times t ∈ R. This weak solution is unique in the class of characteristic
functions of C1+γ domains.

The Cauchy kernel belongs to a wider class for which the preceding well-posedness theorem holds.
We refer to the class of kernels in Rn which are odd, homogeneous of degree −(n − 1) and of class
C2(Rn

\ {0}, Rn). Interesting examples of such kernels are those of the form L(∇N ), where L is a linear
mapping from Rn into itself and N is the fundamental solution of the laplacian in Rn. They are harmonic
off the origin. In particular in R3 one can take L(x1, x2, x3) = (−x2, x1, 0). The corresponding field is
divergence-free and the associated equation is the well-known quasigeostrophic equation. See [García
et al. 2022] for recent results on rotating vortex patches for the quasigeostrophic equation.

Our main result is the following.

Theorem. Let k : Rn
\ {0} → Rn be an odd function, homogeneous of degree −(n − 1) and of class

C2(Rn
\ {0}, Rn). Let D0 be a bounded domain with boundary of class C1+γ, 0 < γ < 1. Then the

nonlinear transport equation
∂tρ(x, t) + v(x, t) · ∇ρ(x, t) = 0,

v(x, t) = (k ⋆ ρ( · , t))(x),

ρ(x, 0) = χD0(x),

(5)

x ∈ Rn, t ∈ R, has a weak solution of the form

ρ(x, t) = χDt (x), x ∈ Rn, t ∈ R,

with Dt a bounded domain with boundary of class C1+γ.
This solution is unique in the class of characteristic functions of domains with boundary of class C1+γ.

For the notion of weak solution see [Majda and Bertozzi 2002, Chapter 8].
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A remark on the special case in which the kernel k is divergence-free is in order. In this case, in
particular for the quasigeostrophic equation, one has well-posedness in L∞

c . Existence can be proved
following closely the argument in [Majda and Bertozzi 2002, Chapter 8] for the vorticity equation (for the
smooth case see [Cantero 2021]). For uniqueness one resorts to [Nieto et al. 2001] whenever the kernel
has the special form L(∇N ) with L a linear map from Rn into itself. Indeed, in that work uniqueness in
L∞

c is proven for the continuity equation in higher dimensions with velocity field given by convolution
with ±∇N. The changes needed to take care of the case L(∇N ) are straightforward. If k is divergence-free
and satisfies the general hypothesis stated in the theorem, then one appeals to [Crippa and Stefani 2021],
where uniqueness is proved for lagrangian solutions, and to [Clop et al. 2016a; 2016b], in which one
shows that a weak solution is lagrangian.

The paper is organized as follows. In the next section we present an outline of the proof, in which
only a few facts are proven. The other sections are devoted to presenting complete proofs of our results.
Section 3 is devoted to an auxiliary result. In Section 4 an appropriate defining function for the patch at
time t is constructed. Section 5 deals with the material derivative of the gradient of the defining function
and its expression in terms of differences of commutators. In Section 6 we estimate the differences of
commutators in the Hölder norm on the boundary via Whitney’s extension theorem. Domains enclosed by
ellipses as initial patches for the Cauchy transport equation are studied in Section 7 and the unexpected
phenomena that turn up along the vortex patch evolution are described in detail. Finally, there is an
Appendix on the existence of principal values of singular integrals in a very special context.

Constants will be denoted by C , mostly without an explicit reference to innocuous parameters, and may
be different at different occurrences. If D is a domain with smooth boundary σ = σ∂ D denotes the surface
measure on ∂ D and when there is no confusion possible we omit the subscript. The exterior unit normal vec-
tor to ∂ D at the point x is denoted by n⃗(x)= (n1(x), . . . , nn(x)), without explicit reference to the boundary.

2. Outline of the proof

The proof follows the general scheme devised in [Bertozzi and Constantin 1993]. There are serious
obstructions caused by the fact that the field is not divergence-free and we will explain below how to
confront them. The reader will find useful to consult [Bertozzi and Constantin 1993; Bertozzi et al. 2016].

2.1. The contour dynamics equation. Assume that one has a weak solution of (5) of the form ρ(x, t) =

χDt (x), Dt being a bounded domain of class C1+γ for t in some interval [0, T ]. The field v( · , t) is
Lipschitz. This is due to the fact that our kernel has homogeneity −(n −1) and so ∇v is given by a matrix
whose entries are even convolution Calderón–Zygmund operators applied to the characteristic function
of Dt plus, possibly, a constant multiple of such a characteristic function (coming from a delta function
at the origin). Since Dt has boundary of class C1+γ all entries of the matrix ∇v are functions in L∞(Rn)

[Bertozzi and Constantin 1993]. Thus the equation of particle trajectories (the flow mapping)

d X (α, t)
dt

= v(X (α, t), t), X (α, 0) = α, (6)
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has a unique solution and X ( · , t) is a bilipschitz mapping of Rn into itself, 0 ≤ t ≤ T. Indeed one has
the usual estimate

∥∇ X ( · , t)∥∞ ≤ exp
∫ t

0
∥∇v( · , s)∥∞ ds. (7)

Since k is homogeneous of degree −(n − 1) and smooth off the origin we have

k = ∂1(x1k) + ∂2(x2k) + · · · + ∂n(xnk), x = (x1, . . . , xn) ∈ Rn
\ {0}. (8)

This follows straightforwardly from Euler’s theorem on homogeneous functions.
Assume that ρ(x, t) = χDt (x) is a weak solution of the general equation (5). The velocity field is

v( · , t) = χDt ⋆ k = χDt ⋆ (∂1(x1k) + · · · + ∂n(xnk))

= ∂1χDt ⋆ (x1k) + · · · + ∂nχDt ⋆ (xnk)

= −n1 dσ∂ Dt ⋆ (x1k) − · · · − nn dσ∂ Dt ⋆ (xnk).

Thus

v(x, t) = −

n∑
j=1

∫
∂ Dt

(x j − yj )k(x − y)n j (y) dσ∂ Dt (y)

= −

∫
∂ Dt

k(x − y)⟨x − y, n⃗(y)⟩ dσ∂ Dt (y), x ∈ Rn. (9)

The next step is to set x = X (α, t) and to make the change of variables y = X (β, t) in the preceding
surface integral. To do this conveniently let T1(β), . . . , Tn−1(β) be an orthonormal basis of the tangent
space to ∂ D0 at the point β ∈ ∂ D0 and let DX ( · , t) be the differential of X ( · , t) as a differentiable
mapping from ∂ D0 into Rn . The vectors DX (β, t)(T j (β)) are tangent to ∂ Dt at the point X (β, t) for
1 ≤ j ≤ n − 1. Hence the vector ∧n−1

j=1 DX (β, t)(T j (β)) (10)

is orthogonal to ∂ Dt at the point X (β, t) and a different choice of the orthonormal basis Tj (β), 1≤ j ≤n−1,
has the effect of introducing a ± sign in front of (10). We may choose the Tj (β) so that n⃗(β), T1(β), . . . ,
Tn−1(β) gives the standard orientation of Rn. Substituting the expression (9) for the velocity field in (6)
and making the change of variables y = X (β, t) we get

d
dt

X (α, t) = v(X (α, t), t)

= −

∫
∂ D0

k(X (α, t) − X (β, t))
〈
X (α, t) − X (β, t),

∧n−1
j=1 DX (β, t)(T j (β))

〉
dσ∂ D0(β).

Let X : ∂ D0 → Rn be a mapping of class C1+γ such that for some constant µ > 0

|X (α) − X (β)| ≥
1
µ

|α − β|, α, β ∈ ∂ D0. (11)

In other words X ∈ C1+γ (∂ D0, Rn), X is bilipschitz onto the image and µ is a Lipschitz constant for the
inverse mapping.
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Define a mapping F(X) : ∂ D0 → Rn by

F(X)(α) = −

∫
∂ D0

k(X (α) − X (β))
〈
X (α) − X (β),

∧n−1
j=1 DX (β)(T j (β))

〉
dσ∂ D0(β). (12)

The contour dynamics equation (CDE) is

d X (α, t)
dt

= F(X ( · , t))(α), α ∈ ∂ D0,

X ( · , 0) = I,

where I denotes the identity mapping on ∂ D0.
We conclude that if there exists a weak solution of the type we are looking for, then the flow restricted

to ∂ D0 is a solution of the CDE.
To proceed in the reverse direction, we need some preparation. Let � be the open set in the Banach

space C1+γ (∂ D0, Rn) consisting of those X ∈ C1+γ (∂ D0, Rn) satisfying (11) for some µ > 0. The set �

is open in C1+γ (∂ D0, Rn) and the CDE can be thought of as an ODE in the open set �. We want to
show that a solution X ( · , t) to the CDE in an interval (−T, T ) provides a weak solution of the nonlinear
transport equation (5). Clearly X ( · , t) maps ∂ D0 onto a (n−1)-dimensional hypersurface St . The goal
now is to identify an open set Dt with boundary St . If we add the hypothesis that ∂ D0 is connected,
and hence a connected (n−1)-dimensional hypersurface of class C1+γ, then the analog of the Jordan
curve theorem holds [Guillemin and Pollack 1974, p. 89]. Then the complement of ∂ D0 in Rn has only
one bounded connected component which is D0. In the same vein, the complement of St has only one
bounded connected component, which we denote by Dt , so that the boundary of Dt is St . The definition
of Dt is less direct if we drop the assumption that ∂ D0 is connected. We proceed as follows. Let S j

t ,
1 ≤ j ≤ m, be the connected components of St . Denote by U j

t the bounded connected component of
the complement of S j

t in Rn . Among the U j
t there is one, say U 1

t , that contains all the others. This is
so at time t = 0 because D0 is connected and this property is preserved by the flow X ( · , t). We set
Dt = U 1

t \
(⋃m

j=2 U j
t
)
, so that the boundary of Dt is St .

Indeed, as the reader may have noticed, it is not necessary to assume that D0 is connected in our
theorem. It can be any bounded open set with C1+γ boundary. Then the argument we have just described
is applied to each connected component.

Define a velocity field by

v(x, t) = (k ⋆ χDt )(x), x ∈ Rn, t ∈ (−T, T ). (13)

Since Dt has boundary of class C1+γ, the field v( · , t) is Lipschitz for each t ∈ (−T, T ) and the equation
of the flow (6) has a unique solution which is a bilipschitz mapping of Rn onto itself whose restriction to
∂ D0 is the solution of the CDE we were given. Thus X (D0, t) = Dt and χDt is a weak solution of the
nonlinear transport equation (5).

2.2. The local theorem. As a first step we solve the CDE locally in time. For this we look at the CDE as
an ODE in the open set � of the Banach space C1+γ (∂ D0, Rn). To show local existence and uniqueness
we apply the Picard theorem. First one has to check that F(X) ∈ C1+γ (∂ D0, Rn) for each X ∈ �. After
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taking a derivative in α in (12) one gets a p.v. integral on ∂ D0, which defines a Calderón–Zygmund
operator (not of convolution type) with respect to the underlying measure dσ∂ D0 , acting on a function
satisfying a Hölder condition of order γ . The result is again a Hölder function of the same order, since one
shows that Calderón–Zygmund operators of the type one gets preserve Hölder spaces. In a second step
one needs to prove that F(X) is locally a Lipschitz function of the variable X or, equivalently, that the
differential DF(X) of F at the point X ∈ � is locally bounded in X . Again one has to estimate operators
of Calderón–Zygmund type with respect Hölder spaces of order γ . These estimates, subtle at some points,
are proved in full detail in [Bertozzi et al. 2016] for the kernel k = −∇N. The variations needed to cover
the present situation are minor and are left to the reader. It is important that, as in [Bertozzi et al. 2016],
the time interval on which the local solution exists depends continuously only on the dimension n, the
kernel k, the diameter of D0, the (n−1)-dimensional surface measure of ∂ D0 and the constant q(D0)

determining the C1+γ character of ∂ D0, whose definition we discuss below.
Let D be a bounded domain with boundary of class C1+γ. Then there exists a defining function of

class C1+γ, that is, a function ϕ ∈ C1+γ (Rn), such that D = {x ∈ Rn
: ϕ(x) < 0} and ∇ϕ(x) ̸= 0 if

ϕ(x) = 0. We set

q(D) = inf
{

∥∇ϕ∥γ,∂ D

|∇ϕ|inf
: ϕ a defining function of D of class C1+γ

}
, (14)

where |∇ϕ(x)| =

√∑n
j=1 ∂jϕ(x)2,

∥∇ϕ∥γ,∂ D = sup
{

|∇ϕ(x) − ∇ϕ(y)|

|x − y|γ
: x, y ∈ ∂ D, x ̸= y

}
,

|∇ϕ|inf = inf{|∇ϕ(x)| : ϕ(x) = 0}.

There is here an important variation with respect to [Bertozzi and Constantin 1993; Bertozzi et al.
2016]: the Hölder seminorm of order γ of ∇ϕ is taken in those papers in the whole of Rn . For reasons
that will become clear later on we need to restrict our attention to the boundary of D and this requires
finer estimates.

2.3. Global existence: a priori estimates. Assume that the maximal time of existence for the solution
X ( · , t) of the CDE is T. By this we mean that X ( · , t) is defined for t ∈ (−T, T ) but cannot be extended
to a larger interval. We want to prove that T = ∞. For that it suffices to prove that for some constant
C = C(T ) one has

diam(Dt) + σ(∂ Dt) + q(Dt) ≤ C, t ∈ (−T, T ). (15)

If the preceding inequality holds, then we take t0 < T close enough to T so that after the application of
the existence and uniqueness theorem for the CDE to the domain Dt0 at time t0 we get an interval of
existence for the solution which goes beyond T (the same argument applies to the lower extreme −T ).

To obtain (15) we look for a priori estimates in terms of ∥∇v∥∞. For diam(Dt) and σ(∂ Dt) this is
straightforward in view of (7). The core of the paper is the a priori estimate of q(Dt), which we get by
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constructing an appropriate defining function 8( · , t) for Dt satisfying

|∇8( · , t)|inf ≥ |∇ϕ0|inf exp
(
−Cn

∫ t

0
∥∇v( · , s)∥∞ ds

)
, t > 0, (16)

∥∇8( · , t)∥γ,∂ Dt ≤ ∥∇ϕ0∥γ,∂ D0 exp
(

Cn

∫ t

0
(1 + ∥∇v( · , s)∥∞) ds

)
, t > 0. (17)

As it was pointed out in [Bertozzi et al. 2016] if one transports a defining function ϕ0 of D0 by
ϕt = ϕ0 ◦ X−1( · , t), then ∇ϕt may have jumps at the boundary of Dt for t ̸= 0 and so ϕt is not necessarily
differentiable. In [Bertozzi et al. 2016] one shows that

lim
Dt∋y→x

∇ϕ(y, t) = lim
Dt∋y→x

det ∇ X−1(y, t)
|∇ϕ0(X−1(x, t))|

det D(x)
n⃗(x), x ∈ ∂ Dt , (18)

lim
Rn\Dt∋y→x

∇ϕ(y, t) = lim
Rn\Dt∋y→x

det ∇ X−1(y, t)
|∇ϕ0(X−1(x, t))|

det D(x)
n⃗(x), x ∈ ∂ Dt , (19)

where X−1( · , t) is the inverse mapping of X ( · , t) and D(x) is the differential at x of the restriction of
X−1( · , t) to ∂ Dt , as a differentiable mapping from ∂ Dt onto ∂ D0. Define

8(x, t) =

{
0, x ∈ ∂ Dt ,

det ∇ X (X−1(x, t), t)ϕ(x, t), x /∈ ∂ Dt .
(20)

We show in Section 4 that 8(x, t) is a defining function of Dt of class C1+γ.
The definition of 8 yields a formula for its material derivative D/(Dt) = ∂t + v · ∇, namely,

D8

Dt
= div(v) 8. (21)

Taking gradient in the preceding identity one gets

D(∇8)

Dt
= ∇(div(v)) 8+ div(v)∇8 − (∇v)t(∇8), (22)

where (∇v)t stands for the transpose of the matrix ∇v. The right-hand side of (22) can be split into two
terms which behave differently. The first is ∇(div(v)) 8 and the second div(v)∇8 − (∇v)t(∇8). We
prove that the second term is a finite sum of differences of commutators, which can be shown, with some
effort, to have the right estimates. The first term does not combine with others to yield a commutator
and because of that we call it the solitary term. A priori it is the most singular term on the right-hand side
of (22), since it contains second-order derivatives of v. We show that the solitary term extends continuously
to ∂ Dt by 0 and so it can be ignored at the price of working only on the boundary of Dt for all t .

To prove that the solitary term extends continuously to the boundary by 0 we need a recent result of
[Vasin 2017] whose statement is as follows. Let T be a convolution homogeneous even Calderón–Zygmund
operator of the type

T ( f )(x) = p.v.

∫
Rn

L(x − y) f (y) dy = lim
ϵ→0

∫
|y−x |>ϵ

L(x − y) f (y) dy, (23)
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where L is an even kernel, homogeneous of degree −n, satisfying the smoothness condition L ∈

C1(Rn
\{0}) and the cancellation property

∫
|x |=1 L(x) dσ(x)=0. The function f is in L p(Rn), 1≤ p <∞,

and the principal value integral (23) is defined a.e. on Rn. Vasin’s result states that if D is a bounded
domain with boundary of class C1+γ then

|∇T (χD)(x)| dist(x, ∂ D)1−γ
≤ C, x ∈ D ∪ (Rn

\ D), (24)

where the constant C depends only on n, γ and the constants giving the smoothness of ∂ D. We provide a
proof of (24) in Section 3 for completeness.

One applies (24) to the second derivatives of the velocity field v = k ⋆ χDt with t fixed. One has in the
distributions sense

∂j k = p.v. ∂j k + c⃗j δ0, with c⃗j =

∫
|ξ |=1

k(ξ)ξj dσ(ξ), (25)

and so
(∂jv)(x) = ( p.v. ∂j k ⋆ χDt )(x) + c⃗j χDt (x), x ∈ Dt ∪ (Rn

\ Dt),

and, taking a second derivative,

(∂l∂jv)(x) = ∂l( p.v. ∂j k ⋆ χDt )(x), x ∈ Dt ∪ (Rn
\ Dt), 1 ≤ l, j ≤ n. (26)

By (24) applied to the operator T associated with the kernel L = ∂j k

|(∂l∂jv)(x)| dist(x, ∂ Dt)
1−γ

≤ C(t), x ∈ Dt ∪ (Rn
\ Dt), 1 ≤ l, j ≤ n, (27)

where C(t) depends on n, γ and the constants related to the smoothness of ∂ Dt . This implies that the
solitary term has limit 0 at the boundary of ∂ Dt , coming from the complement, because |8(x, t)| is
comparable to dist(x, ∂ Dt) as x approaches ∂ Dt (8( · , t) is continuously differentiable and vanishes on
the boundary but the gradient does not).

It is worth remarking that if each component of the kernel k is harmonic off the origin, then (24) can
be obtained readily from the fact that T (χD) satisfies a Hölder condition of order γ in D, which is the
main lemma of [Mateu et al. 2009].

From (22) at boundary points, and thus without the solitary term, one gets straightforwardly (16). Thus
the a priori estimate of q(Dt) is reduced to (17).

We turn now our attention to the second term in (22). We prove that the i-th component of the vector
div(v)∇8−(∇v)t(∇8) evaluated at the point x ∈ Rn is a sum of n−1 terms, each of which is a difference
of two commutators. In fact, the i-th component is∑

j ̸=i

p.v.

∫
Dt

∂j kj (x − y)(∂i8(x) − ∂i8(y)) dy − p.v.

∫
Dt

∂i kj (x − y)(∂j8(x) − ∂j8(y)) dy. (28)

It is crucial here that we obtain differences of commutators, which provides eventually an extra cancellation.
In [Bertozzi and Constantin 1993] it was shown that the Hölder seminorm of order γ of each commutator

in (28) can be estimated by Cn (1 + ∥∇v( · , t)∥∞)∥∇8( · , t)∥γ,Rn . This is not enough in our situation,
because of the presence of the factor ∥∇8( · , t)∥γ,Rn , which should be replaced by a boundary quantity
like ∥∇8( · , t)∥γ,∂ Dt .
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To obtain the correct estimate we transform the j-the term in (28) into a difference of two boundary
commutators:

p.v.

∫
∂ Dt

kj (x − y)(∂i8(x) − ∂i8(y))n j (y) dσ(y)

− p.v.

∫
∂ Dt

kj (x − y)(∂j8(x) − ∂j8(y))ni (y) dσ(y). (29)

It is worth emphasizing here that it is not true that the commutator

p.v.

∫
Dt

∂j kj (x − y)(∂i8(x) − ∂i8(y)) dy

equals

p.v.

∫
∂ Dt

kj (x − y)(∂i8(x) − ∂i8(y))n j (y) dσ(y).

What is true is that the difference of two commutators in the j -th term of (28) equals the difference of two
commutators in (29). There is some magic here in arranging all terms so that certain hidden cancellation
takes place. To get the right estimates on the boundary commutators one cannot adapt [Bertozzi and
Constantin 1993, Lemma 7.3, p. 26] to the underlying measure dσ on ∂ Dt , because this would give a
constant of the type

Ct = sup
x∈∂ Dt

sup
r>0

σ(B(x, r))

rn−1 ,

which can be estimated by the Lipschitz constant of X ( · , t), namely, exp
∫ t

0 ∥∇v( · , s)∥∞ ds. This
exponential constant is by far too large.

One needs to replace the standard bound Cn (1+∥∇v( · , t)∥∞)∥∇8( · , t)∥γ,Rn for a “solid” commutator
of the type (28) by Cn (1+∥∇v( · , t)∥∞)∥∇8( · , t)∥γ,∂ Dt . Here we have used the term solid commutator
to indicate that the integration is on Dt with respect to n-dimensional Lebesgue measure as opposed
to a boundary commutator in which the integration is on the boundary of ∂ Dt with respect to surface
measure σ . To get the estimate in terms of ∥∇8( · , t)∥γ,∂ Dt we resort to the difference-of-commutators
structure, which allows us to appeal to Whitney’s extension theorem, the reason being that one can switch
between a difference of boundary commutators and a difference of solid commutators via the divergence
theorem. The final outcome is (17).

Of course for those cases in which the kernel is divergence-free, the quasigeostrophic equation in
particular, one does not need the boundary commutators and getting the commutator formula (28) suffices
to complete the proof as in [Bertozzi and Constantin 1993]. Indeed in these cases the transported defining
function is already a genuine defining function, since the gradient has no jump according (18) and (19),
or appealing to a regularization argument, as in [Radu 2022].

To complete the proof from the a priori estimates is a standard reasoning. One needs a logarithmic
inequality for ∥∇v( · , t)∥∞, which is a consequence of the boundedness of T (χD) for an even smooth
convolution Calderón–Zygmund operator T and a domain D with boundary of class C1+γ, and of the
particular form of the constant. One obtains

∥∇v( · , t)∥∞ ≤
Cn

γ

(
1 + log+

(
|Dt |

1/n ∥∇8∥γ,∂ Dt

|∇8|inf

))
, (30)
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where Cn is a dimensional constant and |D| stands for the n-dimensional Lebesgue measure of the
measurable set D. The novelty in inequality (30) is that ∥∇8∥γ,∂ Dt is now replacing the larger constant
∥∇8∥γ,Rn which appears in [Bertozzi and Constantin 1993; Bertozzi et al. 2016, Corollary 6.3] in dealing
with the corresponding inequality. This follows from a scrutiny of the constants that appear along the
proof and an application of the implicit differentiation formula.

Inserting (16) and (17) in (30) one gets, for a dimensional constant C ,

∥∇v( · , t)∥∞ ≤ C + C
∫ t

0
(1 + ∥∇v( · , s)∥∞) ds,

which yields, by Gronwall,
∥∇v(x, t)∥∞ ≤ C eCt , −T < t < T,

and this completes the proof of (15).
The reader may have observed that it is not strictly necessary for the proof to use the quantity q(Dt),

defined in (14). Nevertheless, it is the canonical quantity to take into consideration and helps to make
some statements clearer. We will use it again in Section 4.

3. An auxiliary result

The result we are referring to is the following and can be found in [Vasin 2017].

Lemma. Let D ⊂ Rn be a bounded domain with boundary of class C1+γ, 0 < γ < 1, and L an even
kernel in C1(Rn

\ 0), homogeneous of degree −n. Then

|∇(L ⋆ χD)(x)| dist(x, ∂ D)1−γ
≤ C, x ∈ Rn

\ ∂ D,

where C is a constant depending only on D.

Proof. Placing the gradient on the characteristic function of D we obtain

∇(L ⋆ χD) = L ⋆ (−n⃗ dσ∂ D).

Fix x ∈ D and set d = d(x) = dist(x, ∂ D). By the divergence theorem

(L ⋆ n⃗ dσ∂ D)(x) = (L ⋆ n⃗ dσ∂ B(x,d))(x) −

∫
D\B(x,d)

∇L(x − y) dy.

Now
(L ⋆ n⃗ dσ∂ B(x,d))(x) =

∫
|y−x |=d

L(x − y)n⃗(y) dσ(y) =

∫
|z|=d

L(z)n⃗(z) dσ(z)

and the last integral clearly vanishes, owing to the oddness of L(z)n⃗(z). Thus

∇(L ⋆ χD)(x) = −(L ⋆ n⃗ dσ∂ D)(x) =

∫
D\B(x,d)

∇L(x − y) dy,

and

dist(x, ∂ D) |∇(L ⋆ χD)(x)| = d
∣∣∣∣∫

D\B(x,d)

∇L(x − y) dy
∣∣∣∣ ≤ d

∫
D\B(x,d)

C
|y − x |n+1 dy ≤ C.
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Therefore in proving the lemma one can assume that d ≤
1
2r0, where r0 = r0(D) has the property that,

given a point p in the boundary of D, B(p, 2r0) ∩ D is the set of points in B(p, 2r0) lying below the
graph of a C1+γ function defined on the tangent hyperplane through p.

We assume, without loss of generality, that 0 is the closest point of ∂ D to x and that the tangent
hyperplane to ∂ D at 0 is {x ∈ Rn

: xn = 0}. We also assume that D ∩ B(0, 2r0) = {x ∈ Rn
: xn < ϕ(x ′)},

where x ′
= (x1, . . . , xn−1), ϕ ∈ C1+γ (B ′(0, 2r0)), B ′(0, 2r0) = {x ′

∈ Rn−1
: |x ′

| < 2r0}. In particular,

|ϕ(x ′)| ≤ ∥∇ϕ∥γ,B ′(0,2r0)|x
′
|
1+γ , x ′

∈ B ′(0, 2r0).

We clearly have∫
D\B(x,d)

∇L(x − y) dy =

∫
(D\B(x,d))∩B(0,r0)

∇L(x − y) dy +

∫
D∩Bc(0,r0)

∇L(x − y) dy.

The second term above is easy to estimate:∣∣∣∣∫
D∩Bc(0,r0)

∇L(x − y) dy
∣∣∣∣ ≤

∫
Bc(0,r0)

dy
|y|n+1 dy ≤

C
r0

.

For the first term one uses the fact that if H is a halfspace then L ⋆ χH vanishes on H. This follows
from the fact that the preceding statement is true for balls instead of halfspaces [Mateu et al. 2009] and a
straightforward limiting argument. Then one has∫

(D\B(x,d))∩B(0,r0)

∇L(x−y)dy =

∫
(D\B(x,d))∩B(0,r0)

∇L(x−y)dy−

∫
H−

∇L(x−y)dy

=

∫
(D\H−)∩B(0,r0)

∇L(x−y)dy

−

∫
(H−\(D∪B(x,d)))∩B(0,r0)

∇L(x−y)dy−

∫
H−∩Bc(0,r0)

∇L(x−y)dy,

and the last term is estimated as we did above with D in place of H−. The remaining two terms are
tangential and they are treated similarly. For the first we set∫

(D\H−)∩B(0,r0)

∇L(x − y) dy =

∫
(D\H−)∩B(0,2d)

∇L(x − y) dy +

∫
(D\H−)∩(B(0,r0)\B(0,2d))

∇L(x − y) dy.

Since for x ∈ D \ H− one has |y − x | ≥ d , we get∣∣∣∣∫
(D\H−)∩B(0,2d)

∇L(x − y) dy
∣∣∣∣ ≤

C
dn+1 |(D \ H−) ∩ B(0, 2d)|

≤
C

dn+1

∫ 2d

0
ρn−1 σ {θ ∈ Sn−1

: ρθ ∈ D \ H−} dρ

≤
C

dn+1

∫ 2d

0
ρn−1+γ dρ = C dγ−1.
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Finally ∣∣∣∣∫
(D\H−)∩(B(0,r0)\B(0,2d))

∇L(x − y) dy
∣∣∣∣ ≤ C

∫
(D\H−)∩(B(0,r0)\B(0,2d))

1
|y|n+1 dy

≤ C
∫ 2d

0

1
ρn+1 ρn−1+γ dρ = C dγ−1. □

It is an interesting fact that the preceding lemma implies the main lemma in [Mateu et al. 2009],
which states that under the hypothesis of Vasin’s lemma the function L ⋆ χD satisfies a Hölder condition
of order γ on D and on Rn

\ D. Incidentally, it is worth mentioning that this result has been proved
independently by various authors at different times and with various degrees of generality. We are grateful
to M. Lanza de Cristoforis for bringing to our attention the oldest reference we are aware of, namely, the
paper of Carlo Miranda [1965].

We give an account of the proof of this fact only for the statement concerning D. In the exterior of D
one applies similar arguments.

Take two points x and y in D. Let d = dist(x, ∂ D) be the distance from x to the boundary. As before,
we assume, without loss of generality, that 0 is the closest point of ∂ D to x and that the tangent hyperplane
to ∂ D at 0 is {x ∈ Rn

: xn = 0}. We can also assume that D ∩ B(0, 2r0) = {x ∈ Rn
: xn < ϕ(x ′)}, where

x ′
= (x1, . . . , xn−1), ϕ ∈ C1+γ (B ′(0, 2r0)), B ′(0, 2r0) = {x ′

∈ Rn−1
: |x ′

| < 2r0}. Then

|ϕ(x ′)| ≤ ∥∇ϕ∥γ,B ′(0,2r0)|x
′
|
1+γ , x ′

∈ B ′(0, 2r0). (31)

As in [Mateu et al. 2009] we can reduce matters to the case in which d ≤
1
2r0, because otherwise we

resort to the smoothness of L ⋆ χD on the domain
{
z ∈ D : dist(z, ∂ D) > 1

2r0
}
.

Let K be the closed cone with aperture 45◦ and axis the negative xn-axis. That is

K = {x ∈ Rn
: −

√
2 xn ≥ |x |}.

We say that x and y are in nontangential position if x, y ∈ K . Otherwise they are in tangential position.
Assume first that x, y ∈ D are in nontangential position and distinguish two cases. The first is

y ∈ B(0, 2d) \ B(0, d). Apply the mean value theorem on an arc contained in K ∩ (B(0, 2d) \ B(0, d))

of length comparable to |y − x |. One gets

| f (y) − f (x)| ≤ C sup{dist(ξ, ∂ D)γ−1
: ξ ∈ K ∩ (B(0, 2d) \ B(0, d))}|y − x |. (32)

We claim that there exists an absolute constant c0 with 0 < c0 < 1 satisfying

dist(ξ, ∂ D) ≥ c0 |ξn|, ξ ∈ K ∩ B(0, r0), (33)

provided r0 is small enough. Let p ∈ ∂ D be such that |ξ − p| = dist(ξ, ∂ D). Since p = (p′, pn) is on the
graph of ϕ we have, by (31), |pn| ≤ C |p′

|
1+ϵ

≤ C r ϵ
0 |p′

|. Thus

|ξn| ≤ |ξn − pn| + |pn| ≤ |ξ − p| + C r ϵ
0 |p′

|

≤ |ξ − p| + C r ϵ
0 (|p′

− ξ ′
| + |ξ ′

|)

≤ |ξ − p|(1 + C r ϵ
0 ) + C r ϵ

0 |ξn|,
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where in the last inequality we used that |ξ | ≤
√

2|ξn|, ξ ∈ K . Taking r0 so small that C r ϵ
0 ≤

1
2 we obtain

|ξn| ≤ 2(1 + C r ϵ
0 )|ξ − p| = 2(1 + C r ϵ

0 ) dist(ξ, ∂ D).

Indeed, the constant C is the previous string of inequalities is
√

2 ∥∇ϕ∥γ,B ′(0,2r0), which also depends
on r0. But this is not an obstruction because it decreases with r0.

Therefore, by (32),

| f (y) − f (x)| ≤ C (c0|ξn|)
γ−1

|y − x | ≤ C cγ−1
0 dγ−1

|y − x |
1−γ

|y − x |
γ

≤ C cγ−1
0 dγ−1(3d)1−γ

|y − x |
γ

= C |y − x |
γ .

Let us turn our attention to the case y ∈ K ∩ Bc(0, 2d). Note that there exists an absolute constant
C0 > 1 such that

|y − x | ≤ C0 |yn − xn|, y ∈ K ∩ Bc(0, 2d).

Apply the fundamental theorem of calculus on the interval with endpoints x and y and estimate the
gradient of f by a constant times the distance to the boundary raised to the power γ −1. By (33) we obtain

| f (y) − f (x)| ≤ C
∫ 1

0
dist(x + t (y − x), ∂ D)γ−1

|y − x | dt

≤ C cγ−1
0

∫ 1

0
|xn + t (yn − xn)|

γ−1
|y − x | dt

= C
|y − x |

|yn − xn|

∫
|yn−xn |

0
(d + τ)γ−1 dτ

= C C0 ((d + |yn − xn|)
γ

− dγ ) ≤ C |yn − xn|
γ

≤ C |y − x |
γ ,

as desired.
We are left with the case in which x and y are in tangential position, that is, y ∈ D ∩ (Rn

\ K ). In
[Mateu et al. 2009] there is a reduction argument to the nontangential case, which we now reproduce
for completeness. Take a point p ∈ ∂ D with |y − p| = dist(y, ∂ D) and let N⃗ be the exterior unit normal
vector to ∂ D at p. We will take r0 so small that N⃗ is very close to the exterior unit normal vector n⃗ to
∂ D at 0. Then the ray y − t N⃗ , t > 0, will intersect K at some point y0 and the pairs x, y0 and y, y0 will
be in tangential position. Let us seek a condition on t so that y − t N⃗ ∈ K , that is, so that

|y − t N⃗ | ≤
√

2|⟨y − t N⃗ , n⃗⟩|. (34)

Here ⟨ · , · ⟩ denotes the scalar product in Rn. Since |⟨y − t N⃗ , n⃗⟩| ≥ t⟨N⃗ , n⃗⟩− |y| and |y − t N⃗ | ≤ |y| + t ,
a sufficient condition for (34) is

(1 +
√

2)|y| ≤ t (
√

2⟨N⃗ , n⃗⟩ − 1).

Take r0 small enough so that
√

2⟨N⃗ , n⃗⟩ − 1 ≥ (
√

2 − 1)/2. A simpler sufficient condition for (34) is

|y| ≤ c0 t, with c0 =
1
2

√
2 − 1

√
2 + 1

.
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Define t0 by |y| = c0 t0 and then set y0 = y − t0 N⃗. By construction, y0 ∈ K ∩ D and the pairs x, y0 and
y, y0 are in nontangential position. Hence we only have to check that

|y − y0| ≤ C0 |x − y|. (35)

We have c0 |y − y0| = c0 t0 = |y|. On the other hand, the condition y /∈ K is exactly |y| <
√

2 |y′
|, and

clearly |x − y| ≥ |y′
|. Therefore (35) holds with an absolute constant C0.

4. The defining function for Dt

In this section we prove that the function 8 defined by (20) is a defining function of Dt of class C1+γ.
Our assumption now is that the CDE has a solution X ( · , t) for t in an interval (−T ; T ) and that Dt is
the domain with ∂ Dt = X (∂ D0, t) which has been defined in Section 2.1. The field defined by (13) has a
flow map (6) whose restriction to ∂ D0 is precisely the solution of the CDE.

Taking the gradient in (20) we get, for x /∈ ∂ Dt ,

∇8(x, t) = det ∇ X (X−1(x, t), t) ∇ϕ(x, t) + ∇(det ∇ X (X−1(x, t), t))ϕ(x, t). (36)

In [Bertozzi et al. 2016, Section 8] it was shown that ∇ X−1( · , t) satisfies a Hölder condition of order γ

on the open set Rn
\ ∂ Dt (but may have jumps at ∂ Dt ). What remains to be proved is that ∇8( · , t)

extends continuously to ∂ Dt . This is straightforward for the first term in the right-hand side of (36), just
by the jump formulas (18) and (19). We have

lim
Rn\∂ Dt∋y→x

det ∇ X (X−1(y, t), t) ∇ϕ(y, t) =
|∇ϕ0(X−1(x, t))|

det D(x)
n⃗(x),

where D(x) is the differential at x ∈ ∂ Dt of X−1( · , t) viewed as a differentiable mapping from ∂ Dt

into ∂ D0.
The second term in the right-hand side of (36) tends to 0 as x approaches a point in ∂ Dt . Proving this

requires some work. For the sake of simplicity of notation let us consider positive times t less than T. Since
X ( · , t) is a continuously differentiable function of t with values in the Banach space C1+γ (∂ D0, Rn),
the constants q(Ds) determining the C1+γ smoothness of the boundary of Ds are uniformly bounded for
0 ≤ s ≤ t . Hence

∥∇v( · , s)∥∞ ≤ C(t), 0 ≤ s ≤ t, (37)

∥∇v( · , s)∥γ,Ds + ∥∇v( · , s)∥γ,Rn\Ds
≤ C(t), 0 ≤ s ≤ t, (38)

where C(t) denotes here and in the sequel a positive constant depending on t but not on s ∈ [0, t].
Inequality (37) follows from the fact, already mentioned, that standard even convolution Calderón–
Zygmund operators are bounded on characteristic functions of C1+γ domains with bounds controlled by
the constants giving the smoothness of the domain (see, for instance, (30)). Inequality (38) has appeared
in the literature several times with various degrees of generality, as we mentioned in the previous section,
where a complete proof was presented. In [Mateu et al. 2009] the reader will find another accessible
proof independent of Vasin’s lemma. The constants are not logarithmic, but this is not relevant here. The
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statement is that if T is an even smooth (of class C1) convolution homogeneous Calderón–Zygmund
operator and D is a domain with boundary of class C1+γ, 0 < γ < 1, then T (χD) satisfies a Hölder
condition of order γ in D and in Rn

\ D.
As we said in Section 2 one applies (24) to the second-order derivatives of the field v to conclude that

|∂j∂kv(x, s)| ≤ C(t) dist(x, ∂ Ds)
γ−1, x /∈ ∂ Ds, 0 ≤ s ≤ t, 1 ≤ j, k ≤ n. (39)

See (26) and (27).
Combining (7), the analogous inequality with ∇ X ( · , t) replaced by ∇ X−1( · , t) and (37) we get

C(t)−1
≤ ∥∇ X ( · , s)∥∞ ≤ C(t), 0 ≤ s ≤ t. (40)

Therefore X ( · , s) is a bilipschitz homeomorphism of Rn and consequently, for all α ∈ Rn,

C(t)−1 dist(α, ∂ D0) ≤ dist(X (α, s), ∂ Ds) ≤ C(t) dist(α, ∂ D0), 0 ≤ s ≤ t. (41)

Now let us turn to the second term in the right-hand side of (36)

II (x) = ∇(det ∇ X (X−1(x, t), t))ϕ(x, t) = ϕ0(α) ∇x J (α, t), (42)

where we have set x = X (α, t) and J (α, t) = det ∇ X (α, t). The jacobian satisfies

d
dt

J (α, t) = div v(X (α, t), t) J (α, t)

and so

J (α, t) = exp
∫ t

0
div v(X (α, s), s) ds.

Hence ∇x J (α, t) is(
exp

∫ t

0
div v(X (α, s), s) ds

) (∫ t

0
div((∇v)t(X (α, s), s)) ∇ X (α, s) ds

)
∇ X−1(x, t), (43)

where the divergence of a matrix is the vector with components the divergence of rows. Combining (37),
(39), (40), (41), (42) and (43) we get

|II (x)| ≤ C(t) |ϕ0(α)|

∫ t

0
dist(X (α, s), ∂ Ds)

γ−1 ds

≤ C(t) |ϕ0(α)| dist(α, ∂ D0)
γ−1

≤ C(t) dist(α, ∂ D0)
γ .

If dist(x, ∂ Dt) → 0 then dist(α, ∂ D0) → 0 and thus II (x) → 0.

5. The commutators

The material derivative D/(Dt) = ∂t + v · ∇ of the defining function of the previous section is

D
Dt

8(x) =
d
dt

(J (α, t) ϕ0(α)) = div v(X (α, t), t) J (α, t) ϕ0(α) = div v(x, t) 8(x, t),

which proves (21). Taking derivatives in the equation above and rearranging terms one obtains

D
Dt

∇8 = ∇(div v)8 + (div v)∇8 − (∇v)t(∇8). (44)
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The first term tends to 0 at the boundary of Dt , by (39). This section is devoted to proving that the second
term in the right-hand side, namely (div v)∇8 − (∇v)t(∇8), is a sum of n − 1 terms, each of which
is a difference of boundary commutators. It clearly suffices to prove that each coordinate is a sum of
n − 1 differences of boundary commutators. We present the details for the first coordinate, which is

∂2v2 ∂18 − ∂1v2 ∂28 + · · · + ∂nvn ∂18 − ∂1vn ∂n8. (45)

Let us work with the first term ∂2v2 ∂18 − ∂1v2 ∂28. The others are treated similarly. The preceding
expression is evaluated at (x, t) with x ∈ ∂ Dt . To lighten the notation we set D = Dt , so that t is fixed,
and χ = χDt . Recall that v( · , t) = k ⋆ χ and so

vj ( · , t) = kj ⋆ χ, 1 ≤ j ≤ n.

By (25) we have in the distributions sense

∂jvj ( · , t) = ∂j kj ⋆ χ = p.v. ∂j kj ⋆ χ + cjχ, 1 ≤ j ≤ n,

where cj =
∫
|ξ |=1 kj (ξ)ξj dσ(ξ). Thus

∂2v2( · , t) ∂18( · , t) = (∂2k2 ⋆ χ)( · ) ∂18( · , t) = p.v.(∂2k2 ⋆ χ) ∂18 + c2χ∂18

and

∂2k2 ⋆ (χ∂18) = p.v. ∂2k2 ⋆ (χ∂18) + c2χ∂18,

which yields

∂2v2( · , t)∂18( · , t) = p.v.(∂2k2⋆χ)∂18− p.v. ∂2k2⋆(χ∂18)+∂2k2⋆(χ∂18). (46)

Similarly

∂1v2( · , t)∂28( · , t) = p.v.(∂1k2⋆χ)∂28− p.v. ∂1k2⋆(χ∂28)+∂1k2⋆(χ∂28). (47)

Since χ∂j8 = ∂j (χ8), 1 ≤ j ≤ n, we have

∂2k2 ⋆ (χ∂18) = ∂1k2 ⋆ (χ∂28),

and subtracting (47) from (46) yields

∂2v2( · , t) ∂18( · , t) − ∂1v2( · , t) ∂28( · , t)

= p.v.(∂2k2 ⋆ χ) ∂18 − p.v. ∂2k2 ⋆ (χ∂18) −
(
p.v.(∂1k2 ⋆ χ) ∂28 − p.v. ∂1k2 ⋆ (χ∂28)

)
, (48)

which is the difference of two solid commutators. Here we are using the term “solid” to indicate that the
integration is taken with respect to n-dimensional Lebesgue measure. Our next task is to bring the solid
commutators to the boundary.

Formula (48) is an identity between distributions and is not a priori obvious that the principal value
integrals exist at boundary points. The same can be said about the principal values on the boundary
which appear in the calculation below. That they do exist in our context is a routine argument, which we
postpone to the Appendix.
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Let x ∈ ∂ D. Given ϵ > 0 set Dϵ = D \ B(x, ϵ). By the divergence theorem

( p.v. ∂2k2 ⋆ (χ∂18))(x) = lim
ϵ→0

∫
Dϵ

∂2k2(x − y)∂18(y) dy

= − lim
ϵ→0

∫
∂ Dϵ

k2(x − y)∂18(y)n2(y) dσ(y) +

∫
D

k2(x − y)∂218(y) dy

= − p.v.

∫
∂ D

k2(x − y)∂18(y)n2(y) dσ(y) +

∫
D

k2(x − y)∂128(y) dy

+ lim
ϵ→0

∫
∂ B(x,ϵ)∩D

k2(x − y)∂18(y)n2(y) dσϵ(y),

where σϵ is the surface measure on ∂ B(x, ϵ). We do not need to compute explicitly the term

lim
ϵ→0

∫
∂ B(x,ϵ)∩D

k2(x − y)∂18(y)n2(y) dσϵ(y),

nor to worry about the second-order derivative of 8 which has appeared, because they will eventually cancel
out (a routine regularization argument takes care of the actual presence of the second derivatives of 8).

We turn now to the computation of ( p.v. ∂12 N ⋆ χ)(x). We have

( p.v. ∂2k2 ⋆ χ)(x) = lim
ϵ→0

∫
Dϵ

∂2k2(x − y) dy

= − lim
ϵ→0

∫
∂ Dϵ

k2(x − y)n2(y) dσ(y)

= − p.v.

∫
∂ D

k2(x − y)n2(y) dσ(y) + lim
ϵ→0

∫
∂ B(x,ϵ)∩D

k2(x − y)n2(y) dσϵ(y).

Therefore
( p.v. ∂2k2 ⋆ (χ∂18))(x) − ( p.v. ∂2k2 ⋆ χ)(x)∂18(x)

= p.v.

∫
∂ D

k2(x − y)n2(y) dσ(y) ∂18(x) − p.v.

∫
∂ D

k2(x − y)∂18(y)n2(y) dσ(y)

+

∫
D

k2(x − y)∂218(y) dy, (49)

since
lim
ϵ→0

∫
∂ B(x,ϵ)∩D

k2(x − y)(∂18(y) − ∂18(x)) dσϵ(y) = 0,

because k2 is homogeneous of order −(n − 1) and ∂18 is continuous at x . The conclusion is that
the solid commutator in the left-hand side of (49) is a boundary commutator plus and additional term
involving second-order derivatives of 8. This term will disappear soon and in the final formulas no
second derivatives of 8 are present, so that the C1+γ condition on 8 is enough.

Proceeding in a similar way we find

( p.v. ∂1k2 ⋆ (χ∂28))(x) − ( p.v. ∂1k2 ⋆ χ)(x)∂28(x)

= p.v.

∫
∂ D

k2(x − y)n1(y) dσ(y) ∂28(x) − p.v.

∫
∂ D

k2(x − y)∂28(y)n1(y) dσ(y)

+

∫
D

k2(x − y)∂128(y) dy, (50)
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Subtracting (50) from (49) we see that the difference of the two solid commutators in (48) is exactly, on
the boundary of D, a difference of boundary commutators. Hence ((div v)I − (∇v)t)(∇8) is a sum of
n − 1 terms, each being a difference of two vector-valued boundary commutators.

6. Hölder estimate of differences of boundary commutators

We keep the notation of the previous section D = Dt , ∇8 = ∇8( · , t), with t fixed. Our goal is to
estimate the Hölder seminorm of order γ on ∂ D of the difference of two boundary commutators. For
instance,

DB(x) := p.v.

∫
∂ D

k2(x − y)∂28(y)n1(y) dσ(y) − p.v.

∫
∂ D

k2(x − y)n1(y) dσ(y) ∂28(x)

−

(
p.v.

∫
∂ D

k2(x − y)∂18(y)n2(y) dσ(y) − p.v.

∫
∂ D

k2(x − y)n2(y) dσ(y) ∂18(x)

)
.

The general case follows immediately by the same arguments. The strategy consists in exploiting the
fact that DB(x) is also, for x ∈ ∂ D, a difference DS(x) of two solid commutators, as we checked in the
previous section. That is, DB(x) for x ∈ ∂ D is identical to

DS(x) = DS(8)(x) :=
(

p.v. ∂2k2 ⋆ (χ∂18) − ( p.v. ∂2k2 ⋆ χ)∂18
)
−

(
∂1k2 ⋆ (χ∂28) − (∂1k2 ⋆ χ)∂28

)
.

By [Bertozzi and Constantin 1993, Corollary, p. 24, and Lemma, p. 26], estimating each commutator
separately, we have ∥DS∥γ,Rn ≤ Cn ∥∇v( · , t)∥∞ ∥∇8∥γ,Rn , which is not good enough, because we need
∥∇8∥γ,∂ D in place of ∥∇8∥γ,Rn .

We now consider the jet
(0, ∂18, . . . , ∂n8)

on ∂ D. By Whitney’s extension theorem [Stein 1970, Chapter VI, p. 177] there exists 9 of class C1+γ (Rn)

such that 9 = 0 and ∇9 = ∇8 on ∂ D, satisfying

∥∇9∥γ,Rn ≤ Cn

(
∥∇8∥γ,∂ D + sup

{
|∇8(x) · (y − x)|

|y − x |1+γ
: y ̸= x, y, x ∈ ∂ D

})
. (51)

This precise estimate is not stated explicitly in Stein’s book but it follows from the proof. We claim that

sup
{

|∇8(x) · (y − x)|

|y − x |1+γ
: y ̸= x, y, x ∈ ∂ D

}
≤ 2(1+γ )/2

∥∇8∥γ,∂ D. (52)

We postpone the proof of the claim and we complete the estimate of ∥DB∥γ,∂ D .
The extension 9 of the jet (0, ∂18, . . . , ∂n8) on ∂ D, given by Whitney’s extension theorem, satisfies,

in view of (51) and (52) ,
∥∇9∥γ,Rn ≤ Cn,γ ∥∇8∥γ,∂ D.

Since ∇9 = ∇8 on ∂ D, the differences of solid commutators DS(8) and DS(9) are equal on ∂ D. Thus

∥DB∥γ,∂ D = ∥DS(9)∥γ,∂ D ≤ ∥DS(9)∥γ,Rn

≤ Cn (∥∇v( · , t)∥∞ + 1) ∥∇9∥γ,Rn ≤ Cn (∥∇v( · , t)∥∞ + 1) ∥∇8∥γ,∂ D.

This can be used to prove the a priori estimate (17) as in [Bertozzi and Constantin 1993].
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We turn now to the proof of the claim (52). Fix a point x ∈ ∂ D. Assume without loss of generality
that x = 0 and ∇8(0) = (0, . . . , 0, ∂n8(0)), ∂n8(0) > 0. Define δ = δ(x) by

δ−γ
= 2

∥∇8∥γ,∂ D

|∇8(0)|
.

This choice of δ implies that the normal vector ∇8(y) remains for y ∈ B(0, δ) ∩ ∂ D in the ball
B(∇8(0), |∇8(0)|/2). Indeed

|∇8(y) − ∇8(0)| ≤ ∥∇8∥γ,∂ D δγ
=

|∇8(0)|

2
.

Then given y ∈ B(0, δ)∩ ∂ D, the tangent hyperplane to ∂ D at y forms an angle less than 30◦ with the
horizontal plane and thus ∂ D is the graph of a function yn = ϕ(y′

n) which satisfies a Lipschitz condition
with constant less than 1. Here we have used the standard notation y = (y′, yn), y′

= (y1, . . . , yn−1).
The function ϕ is defined in the open set U which is the projection of B(0, δ)∩ ∂ D into Rn−1 defined by
y → y′. By the implicit function theorem ϕ is of class C1+γ in its domain.

Note that for each y ∈ ∂ D ∩ B(0, δ), the segment {t y′
: 0 ≤ t ≤ 1} is contained in U, as an elementary

argument shows. The mean value theorem on that segment for the function t → ϕ(t y′) yields

|∇8(0) · y|

|y|1+γ
=

|∇8(0)||ϕ(y′)|

|y|1+γ
≤

|∇8(0)|

|y|1+γ
sup{|∇ϕ(z′)| : z′

∈ U, |z′
| ≤ |y′

|} |y′
|.

By implicit differentiation

∂jϕ(z′) = −
∂j8(z′, ϕ(z′))

∂n8(z′, ϕ(z′))
, 1 ≤ j ≤ n − 1,

and so, recalling that ∂j8(0) = 0, 1 ≤ j ≤ n − 1, and that z = (z′, ϕ(z′)),

|∇ϕ(z′)| ≤
∥∇8∥γ,∂ D |z|γ

|∂n8(z)|
≤

2
|∇8(0)|

∥∇8∥γ,∂ D 2γ /2
|z′

|
γ , |z′

| ≤ |y′
|,

because
|∂n8(z)| ≥ |∂n8(0)| − |∂n8(z) − ∂n8(0)|

≥ |∇8(0)| − ∥∇8∥γ,∂ D δγ
=

|∇8(0)|

2
and

|z| = (|z′
|
2
+ ϕ(z′)2)1/2

≤
√

2 |z′
|.

Thus
|∇8(0) · y|

|y|1+γ
≤ 21+γ /2

∥∇8∥γ,∂ D, y ∈ ∂ D ∩ B(0, δ).

If y ∈ ∂ D \ B(0, δ),
|∇8(0) · y|

|y|1+γ
≤

|∇8(0)|

|y|γ
≤

|∇8(0)|

δγ
= 2 ∥∇8∥γ,∂ D,

which completes the proof of (52).
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7. Domains enclosed by ellipses as Cauchy patches

In this section we consider the transport equation in the plane given by the Cauchy kernel

∂tρ(z, t) + v(z, t) · ∇ρ(z, t) = 0,

v(z, t) =

( 1
π z

∗ ρ( · , t)
)
(z),

ρ(z, 0) = χD0(z),

(53)

z = x + iy ∈ C = R2 and t ∈ R. Note that we have changed the normalization of the velocity field in (4)
by a factor of 2.

We take the initial patch to be the domain enclosed by an ellipse

E0 =

{
(x, y) ∈ R2

:
x2

a2
0

+
y2

b2
0

< 1
}
.

We will show that the solution provided by the theorem is of the form χEt (z), with

Et =

{
(x, y) ∈ R2

:
x2

a(t)2 +
y2

b(t)2 < 1
}

and

a(t) = a0
(a0 + b0) e2t

b0 + a0 e2t , t ∈ R, (54)

b(t) = b0
(a0 + b0)

b0 + a0 e2t , t ∈ R. (55)

As t → ∞, a(t) → a0 + b0 and b(t) → 0, so that the ellipse at time t degenerates into the segment
[−(a0+b0), a0+b0] as t →+∞ and into the segment i[−(a0+b0), a0+b0] on the vertical axis as t →−∞.

Since (53) is not rotation invariant, one has to consider also the case of an initial patch given by the
domain enclosed by a tilted ellipse

E(a, b, θ) = eiθ
{
(x, y) ∈ R2

:
x2

a2 +
y2

b2 < 1
}
.

In this case the straight line containing the semiaxis of length a makes an angle θ with the horizontal axis
and we take 0 < θ < π

2 .
Assume that the initial patch is E0 = E(a0, b0, θ0). Then we will show that the solution given by the

theorem is χEt with Et = E(a(t), b(t), θ(t)), where a(t), b(t) and θ(t) are the unique solutions of the
system

a′(t) =
2

a0 + b0
a(t) b(t) cos(2θ(t)),

b′(t) = −
2

a0 + b0
a(t) b(t) cos(2θ(t)),

θ ′(t) = −
2

a0 + b0

a(t) b(t)
a(t) − b(t)

sin(2θ(t)),

(56)

with initial conditions a(0) = a0, b(0) = b0, θ(0) = θ0.
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We start the proof by assuming that the patch Dt of the weak solution provided by the theorem is
indeed Et . Let z(t) be the trajectory of the particle that at time 0 is at z(0) ∈ ∂ E0. Then

dz
dt

= v(z(t), t), z(0) ∈ ∂ E0, (57)

and v is the velocity field of (53). It is a well-known fact that v can be explicitly computed [Hmidi et al.
2015]. One has

v(z, t) =

( 1
π z

⋆ χEt

)
(z) = z̄ − q(t) e−2θ(t)z, z ∈ Et , q(t) =

a(t) − b(t)
a(t) + b(t)

. (58)

Indeed in [Hmidi et al. 2015] only the case θ(t) = 0 is dealt with, but the general case follows easily from
the behavior under rotations of a convolution with the Cauchy kernel.

To lighten the notation we do not stress the dependence on t and write a = a(t), b = b(t), θ = θ(t),
q = q(t), z = z(t) = x(t) + iy(t) = x + iy. The condition z(t) ∈ ∂ Et is equivalent to e−iθ(t)z(t) ∈

∂ E(a(t), b(t), 0), which is

(x cos(θ) + y sin(θ))2

a2 +
(−x sin(θ) + y cos(θ))2

b2 = 1,

and can also be written more concisely as

⟨z, eiθ
⟩

2

a2 +
⟨z, i eiθ

⟩
2

b2 = 1. (59)

Here we have denoted by ⟨u, v⟩ the scalar product of the vectors u and v. Now proceed as follows. Take
the derivative in (59) with respect to t and then replace z′(t) by the expression of the field given by (58). We
get an equation containing a, b, θ and z, which determines z(t), the solution of the CDE. This equation is

0 =
⟨z, eiθ

⟩

a2 (⟨z, eiθ i θ ′
− q e3iθ

⟩ + ⟨z̄, eiθ
⟩) −

a′

a3 ⟨z, eiθ
⟩

2

+
⟨z, i eiθ

⟩

b2 (⟨z, −eiθ θ ′
− i q e3iθ

⟩ + ⟨z̄, i eiθ
⟩) −

b′

b3 ⟨z, i eiθ
⟩

2
. (60)

Evaluate at z = z(t) = a(t)eiθ(t) (which is a vertex of the ellipse at time t). One gets the equation

a′
= 2

a b
a + b

cos(2θ). (61)

Evaluating at the other vertex of the ellipse at time t , that is, at z = z(t) = b(t) i eiθ(t), yields

b′
= −2

a b
a + b

cos(2θ). (62)

Adding (61) and (62) we see that a + b is constant, then equal to a0 + b0. Thus we have the first two
equations in (56).

Before getting the third equation let us solve the case in which the initial ellipse has axes parallel to
the coordinate axes (θ0 = 0). In this case set θ(t) = 0, t ∈ R. Replacing in (62) a by a0 + b0 − b and
solving we get (55) and then (54).
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Now take the domain Et = E(a(t), b(t), 0), the vector field

v(z, t) =

( 1
π z

⋆ χEt

)
(z) = z̄ − q(t) z, z ∈ Et ,

and the flow
dz
dt

= z̄ − q(t) z, z(0) ∈ ∂ E0,

The preceding system is

dx(t)
dt

=
2b(t)

a0 + b0
x(t),

dy(t)
dt

= −
2a(t)

a0 + b0
y(t).

Then the flow map is linear on E0 and given by a diagonal matrix. Hence the flow preserves the coordinate
axes and maps ∂ E0 into an ellipse with axes parallel to the coordinate axes enclosing a domain Ẽt . But
(61) and (62) say exactly that the vertices of ∂ Et belong to ∂ Ẽt . Thus Ẽt = Et and so χEt is the unique
weak solution of the Cauchy transport equation in the class of characteristic functions of C1+γ domains.

Let us now go back to the general case and obtain a third equation involving θ ′. Impose that the
intersection of the ellipse ∂ Et with the positive real axis belongs to the image of ∂ E0 under the flow. In
other words replace z(t) in (60) by ((

cos2 θ

a2 +
sin2 θ

b2

)−1/2

, 0
)

.

After a lengthy computation one gets

θ ′
= −

2
a0 + b0

ab
a − b

sin(2θ), (63)

provided a ̸= b.
We know claim that the system (56) has a unique solution defined for all times t ∈ R provided a0 ̸= b0.

The case a0 = b0 corresponds to an initial disc and so to the case θ0 = 0, which has been discussed before.
Consider the open set

� =
{
(a, b, θ) ∈ R3

: a > 0, b > 0, a ̸= b and 0 < θ < π
2

}
.

Clearly a unique solution of the system exists locally in time for any initial condition (a0, b0, θ0) ∈ �,
because the function giving the system is C∞ in �. We claim that this solution exists for all times.
Assume that the maximal interval of existence is (−T, T ) for some 0 < T < ∞. By the first two equations
of the system (56) |a′

| and |b′
| are bounded above by 2(a0 +b0) and hence the limits limt→T a(t) = a(T )

and limt→T b(t) = b(T ) exist. We also have∣∣∣∣a′

a

∣∣∣∣ ≤ 2 and
∣∣∣∣b′

b

∣∣∣∣ ≤ 2

and so
0 < a0e−2T

≤ a(T ) ≤ a0e2T and 0 < b0e−2T
≤ b(T ) ≤ b0e2T .

Note that θ ′(t) cannot vanish. Otherwise, by (63), θ(t) = 0 for some t , and in this case we have already
checked that the system can be solved for all times. Hence θ ′ has constant sign. When a0 > b0, the
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function θ decreases, and if a0 < b0, the function θ increases. In any case we have that there exists

θ(T ) = lim
t→T

θ(t).

We cannot have θ(T ) = 0 or θ(T ) =
π
2 because we have solved the equation in these cases for all times.

For the same reason we cannot have a(T ) = b(T ). Therefore (a(T ), b(T ), θ(T )) ∈ � and we can solve
the system past T, which is a contradiction.

We proceed now to prove that the domain Et = E(a(t), b(t), θ(t)) enclosed by the ellipse provided
by the solution of (56) yields the weak solution χEt of the transport equation (53) with initial condition
D0 = E0. We consider the field (58) and the trajectory (57) of a particle initially at the boundary point
z(0) ∈ ∂ E0. Since the velocity field is linear in Et the flow is a linear function of z(0) ∈ E0. Thus the
initial ellipse ∂ E0 is mapped into an ellipse ∂ Ẽt enclosing Ẽt , the image of E0 under the flow map. To
show that χEt is a weak solution of the Cauchy transport equation we only need to ascertain that Et = Ẽt .
But the three equations of (56) simply mean that the vertices of Et and the intersection of Et with the
horizontal axis are in the image of ∂ E0 under the flow map. It is now a simple matter to realize that there
is only one ellipse centered at the origin containing those three points.

A surprising result arises when examining the asymptotic behavior as t → ∞ of the weak solution of
the Cauchy transport equation (53) when the initial condition is E(a0, b0, θ0), with a0 ̸= b0 and θ0 > 0.
We know that the solution of the system (56) never leaves the open set �. In particular a(t)− b(t) has
a definite sign determined by the initial condition. Assume for definiteness that a0 − b0 > 0, so that
a(t)− b(t) > 0, t ∈ R, and hence θ(t) is a decreasing function. Then the limit θ∞ = limt→∞ θ(t) exists.
The system (56) readily yields that the function (a − b) sin(2θ) has vanishing derivative, so that

(a(t) − b(t)) sin(2θ(t)) = (a0 − b0) sin(2θ0), t ∈ R. (64)

Thus (a0 + b0) sin(2θ(t)) ≥ (a(t) − b(t)) sin(2θ(t)) = (a0 − b0) sin(2θ0) and taking limits

sin(2θ∞) ≥
a0 − b0

a0 + b0
sin(2θ0) > 0,

which means that the limit angle θ∞ is positive. In other words, the axes of the ellipses at time t do not
approach the coordinate axes.

Assume that 0 < θ0 ≤
π
4 . Since θ(t) decreases, 0 < 2θ(t) < π

2 , t > 0, which implies that a(t) increases
and b(t) decreases. By (62)

b(t) = b0 exp
∫ t

0
−

2
a0 + b0

a(s) cos(2θ(s)) ds ≤ b0 exp
(
−

2a0

a0 + b0
cos(2θ0) t

)
,

and so b∞ = 0, provided θ0 < π
4 . If θ0 =

π
4 we break the integral above into two pieces, the first between

0 and 1 and the second between 1 and t . We get, for some constant C independent of t ,

b(t) ≤ C exp
(
−

2a0

a0 + b0
cos(2θ(1)) (t − 1)

)
, t > 1,
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a0 = 3, b0 = 1, θ0 =
π
3 a∞ = 4, b∞ = 0, θ∞ = 0.2239

Figure 1. The initial ellipse and the final segment.

which again yields b∞ = 0. By (64)

sin(2θ∞) =
a0 − b0

a0 + b0
sin(2θ0), (65)

which determines the limit angle in terms of the initial data.
Let us turn now to the case π

4 < θ0 < π
2 . In Figure 1 one can see the initial ellipse and the final segment.

In view of the first two equations of the system (56), at least for a short time a(t) decreases and b(t)
increases. If one has π

4 ≤ θ∞, then cos(2θ(t)) < 0 for t > 0 and a(t) decreases and b(t) increases for all
times. Integrating the third equation in (56) we obtain

tan(θ(t)) = tan(θ0) exp
(

−4
a0 + b0

∫ t

0

a(s)b(s)
a(s) − b(s)

ds
)

≤ tan(θ0) exp
(
−

−4b2
0

a2
0 − b2

0
t
)

.

Letting t → ∞ we get tan(θ∞) = 0, which is impossible. Hence θ∞ < π
4 . Then for some t0 we have

θ(t0) < π
4 , which brings us into the previous case, in particular to the expression (65) for the limiting

angle θ∞.
Arguing similarly with t → −∞ we get (65) with sin(2θ∞) replaced by sin(2θ−∞), where θ−∞ =

limt→−∞ θ(t). Thus θ−∞ =
π
2 − θ∞.

The case a0 < b0 is reduced to a0 > b0 by taking conjugates (symmetry with respect to the horizontal
axis). Indeed, (53) is invariant by taking conjugates, as a simple computation shows. If one has a0 < b0

and an angle θ0, the symmetric ellipse has semiaxes A0 = b0, B0 = a0 and angle θ ′

0 =
π
2 − θ0.

Appendix: Existence of principal values

The first fact we prove in this section is the following.

Lemma. Let D be a bounded domain with boundary of class C1+γ, 0 < γ < 1. Let L : Rn
\ {0} → R be

an even kernel, continuous on Rn
\ {0}, homogeneous of degree −n, which satisfies cancellation property
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|ξ |=1 L(ξ) dσ(ξ) = 0. Then for each x ∈ ∂ D the principal value

(p.v. L ⋆ χD)(x) = lim
ϵ→0

∫
{y∈D:|y−x |>ϵ}

L(x − y) dy

exists.

Proof. Without loss of generality assume that x = 0, that the tangent hyperplane to ∂ D at 0 is {y ∈ Rn
:

yn = 0} and that r0 > 0 is so small that there exists a function

ϕ ∈ C1+γ (B ′(0, 2r0)), B ′(0, 2r0) = {y ∈ Rn
: |y′

| < 2r0}, y′
= (y1, . . . , yn−1),

such that D ∩ B(0, r0) = {y ∈ B(0, r0) : yn < ϕ(y′)}.
For 0 < r set

Sr = {y ∈ Rn
: |y| = r}, S+

r = {y ∈ Sr : yn > 0} and S−

r = {y ∈ Sr : yn < 0}.

Since L is even,

0 =

∫
Sr

L(y) dσ(y) =

∫
S+

r

L(y) dσ(y) +

∫
S−

r

L(y) dσ(y) = 2
∫

S−
r

L(y) dσ(y).

Set H− = {y ∈ Rn
: yn < 0}. For 0 < δ < ϵ < r0 we then have

−

∫
{y∈D:|y|>ϵ}

L(y) dy +

∫
{y∈D:|y|>δ}

L(y) dy

=

∫
{y∈Rn :δ<|y|<ϵ}∩(D\H−)

L(y) dy −

∫
{y∈Rn :δ<|y|<ϵ}∩(H−\D)

L(y) dy.

The tangential domains (D \ H−) ∩ B(0, ϵ) and (H− \ D) ∩ B(0, ϵ) are very small. Indeed,∣∣∣∣∫
{y∈Rn :δ<|y|<ϵ}∩(D\H−)

L(y) dy
∣∣∣∣ ≤

∫ ϵ

δ

1
ρn ρn−1σ {θ ∈ Sn−1

: ρθ ∈ D \ H−} dρ

≤ C
∫ ϵ

δ

ρ−1+γ dρ ≤
C
γ

ϵγ .

One obtains in the same way ∣∣∣∣∫
{y∈Rn :δ<|y|<ϵ}∩(H−\D)

L(y) dy
∣∣∣∣ ≤

C
γ

ϵγ ,

and so the proof is complete. □

The second result is the following.

Lemma. Let D be a bounded domain with boundary of class C1+γ, 0 < γ < 1. Let K : Rn
\ {0} → R be

an odd kernel of class C1(Rn
\ {0}), homogeneous of degree −(n − 1). Let ϕ be a function defined on ∂ D

satisfying a Hölder condition of some positive order on ∂ D. Then for each x ∈ ∂ D and each 1 ≤ j ≤ n
the principal value

(p.v. K ⋆ ϕn j dσ)(x) = lim
ϵ→0

∫
{y∈∂ D:|y−x |>ϵ}

K (x − y) ϕ(y) n j (y) dσ(y)

exists.
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Proof. It is easy to get rid of ϕ. Indeed∫
{y∈∂ D:ϵ<|y−x |}

K (x − y)ϕ(y)n j (y) dσ(y)

=

∫
{y∈∂ D:ϵ<|y−x |}

K (x − y)(ϕ(y) − ϕ(x))n j (y) dσ(y) + ϕ(x)

∫
{y∈∂ D:ϵ<|y−x |}

K (x − y)n j (y) dσ(y)

and the first integral in the right-hand side tends as ϵ → 0 to the absolutely convergent integral∫
∂ D

K (x − y)(ϕ(y) − ϕ(x))n j (y) dσ(y).

Hence we can assume that ϕ is identically 1.
We can also assume, as in the proof of the previous lemma, that x = 0, the tangent hyperplane to ∂ D

at 0 is {y ∈ Rn
: yn = 0} and the domain D inside B(0, ϵ) is exactly {y ∈ B(0, ϵ) : yn < ϕ(y′)}. By the

divergence theorem∫
{y∈∂ D:ϵ<|y|}

K (−y)n j (y) dσ(y) = −

∫
{y∈D:ϵ<|y|}

∂j K (y) dy +

∫
{y∈D:|y|=ϵ}

K (y)n j (y) dσ(y)

= −I + II,

where in the last identity one is defining I and II .
To apply the previous lemma to I we need to check that ∂j K (y), which is continuous off the origin,

even and homogeneous of degree −n, and has vanishing integral on the unit sphere. By the divergence
theorem ∫

1<|y|<2
∂j K (y) dy =

∫
|y|=2

K (y) n j (y) dσ(y) −

∫
|y|=1

K (y) n j (y) dσ(y),

which is 0, since the two integrals over the spheres are the same by homogeneity. Hence, changing to
polar coordinates,

0 =

∫
1<|y|<2

∂j K (y) dy = log 2
∫

|θ |=1
K (θ) dσ(θ),

which takes care of I .
For the term II , set, as before, H− = {y ∈ Rn

: yn < 0}. We then have∫
{y∈D:|y|=ϵ}

K (y)n j (y) dσ(y) =

∫
{y∈D\H−:|y|=ϵ}

K (y) n j (y) dσ(y)

+

∫
{y∈H−:|y|=ϵ}

K (y) n j (y) dσ(y) −

∫
{y∈H−\D:|y|=ϵ}

K (y) n j (y) dσ(y).

The first and third terms tend to 0 with ϵ, because the domains of integration are tangential. Indeed,

σ(∂ B(0, ϵ)∩ (D \ H−)) + σ(∂ B(0, ϵ)∩ (H− \ D)) ≤ C ϵn−1+γ

and so the absolute value of the first and third terms can be estimated by C ϵγ.
It only remains to note that the second term is independent of ϵ, by homogeneity. □
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