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Quantitative formulations of Fefferman’s counterexample for the ball multiplier are naturally linked
to square function estimates for conical and directional multipliers. We develop a novel framework
for these square function estimates, based on a directional embedding theorem for Carleson sequences
and multiparameter time-frequency analysis techniques. As applications we prove sharp or quantified
bounds for Rubio-de Francia-type square functions of conical multipliers and of multipliers adapted
to rectangles pointing along N directions. A suitable combination of these estimates yields a new and
currently best-known logarithmic bound for the Fourier restriction to an N -gon, improving on previous
results of A. Córdoba. Our directional Carleson embedding extends to the weighted setting, yielding
previously unknown weighted estimates for directional maximal functions and singular integrals.
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1. Motivation and main results

The celebrated theorem of Charles Fefferman [1971] shows that the ball multiplier is an unbounded
operator on Lp.Rn/ for all p¤ 2 whenever n� 2. A well-known argument, originally due to Yves Meyer
[de Guzmán 1981], exhibits the intimate relationship of the ball multiplier with vector-valued estimates
for directional singular integrals along all possible directions. Fefferman [1971] proved the impossibility
of such estimates by testing these vector-valued inequalities on a Kakeya set.

Besicovitch or Kakeya sets are compact sets in the Euclidean space that contain a line segment of
unit length in every direction. Sets of this type with zero Lebesgue measure do exist. However, in two
dimensions, Kakeya sets are necessarily of full Hausdorff dimension. The question of the Hausdorff
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dimension of Kakeya sets can be then formulated as a question of quantitative boundedness of the Kakeya
maximal function, which is a maximal directional average along rectangles of fixed eccentricity and
pointing along arbitrary directions.

The importance of the ball multiplier for the summation of higher dimensional Fourier series, as well as
its intimate connection to Kakeya sets, have motivated a host of problems in harmonic analysis which have
been driving relevant research since the 1970s. Finitary or smooth models of the ball multiplier such as the
polygon multiplier and the Bochner–Riesz means quantify the failure of boundedness of the ball multiplier
and formalize the close relation of these operators with directional maximal and singular averages.

This paper is dedicated to the study of a variety of operators in the plane that are all connected in one
way or another with the ball multiplier. Our point of view is through the analysis of directional operators
mapping into Lp.R2I `q/-spaces where the inner `q-norm is taken with respect to the set of directions.
Different values of q are relevant in our analysis but the cases q D 2 and q D1 are of particular interest.
On one hand, the case qD1 arises when considering maximal directional averages and the corresponding
differentiation theory along directions; see [Bateman 2013; Christ et al. 1986; Di Plinio and Parissis 2021;
Katz 1999] for classical and recent work on the subject. On the other hand, the case q D 2 is especially
relevant for Meyer’s argument that bounds the norm of a vector-valued directional Hilbert transform by
the norm of the ball multiplier. It also arises when dealing with square functions associated to conical or
directional Fourier multipliers of the type

f 7! fCjf W j D 1; : : : ; N g;

where each Cj is adapted to a different coordinate pair and the Cj have disjoint or well-separated Fourier
support. These estimates are directional analogues of the celebrated square function estimate for Fourier
restriction to families of disjoint cubes, due to Rubio de Francia [1985], and they appear naturally when
seeking quantitative estimates on the N -gon Fourier multiplier.

While such square function estimates have been considered previously in the literature, and usually
approached directly via weighted norm inequalities, our treatment is novel and leads to improved and
in certain cases sharp estimates in terms of the cardinality of the set of directions. It rests on a new
directional Carleson measure condition and corresponding embedding theorem, which is subsequently
applied to intrinsic directional square functions of time-frequency nature. The link between the abstract
Carleson embedding theorem and the applications is provided by directional, one- and two-parameter
time-frequency analysis models. The latter allow us to reduce estimates for directional operators to those
of the corresponding intrinsic square functions involving directional wave packet coefficients. We note
that in the fixed coordinate system case, related square functions have appeared in [Lacey 2007], while a
single-scale directional square function similar to those of Section 4 is present in [Di Plinio et al. 2018]
by Guo, Thiele, Zorin-Kranich and the second author.

Having clarified the context of our investigation, we turn to the detailed description of our main results
and techniques.

A new approach to directional square functions. While we address several types of square functions
associated to directional multipliers, our analysis of each relies on a common first step. This is an
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L4-square function inequality for abstract Carleson measures associated with one- and two-parameter
collections of rectangles in R2, pointing along a finite set of N directions; this setup is presented in
Section 2 and the central result is Theorem C. Section 2 builds upon the proof technique first introduced in
[Katz 1999] and revisited in [Bateman 2013] in the study of sharp weakL2-bounds for maximal directional
operators. Our main novel contributions are the formulation of an abstract directional Carleson condition
which is flexible enough to be applied in the context of time-frequency square functions, and the realization
that square functions in L4 can be treated in a T T �-like fashion. The advancements over [Bateman 2013;
Katz 1999] also include the possibility of handling two-parameter collections of rectangles.

In Section 4, we verify that the Carleson condition, which is a necessary assumption in the directional
embedding of Theorem C, is satisfied by the intrinsic directional wave packet coefficients associated with
certain time-frequency tile configurations, and Theorem C may be thus applied to obtain sharp estimates
for discrete time-frequency models of directional Rubio de Francia square functions (for instance).
Establishing the Carleson condition requires a precise control of spatial tails of the wave packets; this
control is obtained by a careful use of Journé’s product theory lemma.

The estimates obtained for the time-frequency model square functions are then applied to three main
families of operators described below. All of them are defined in terms of an underlying set ofN directions.
As in Fefferman’s counterexample for the ball multiplier, the Kakeya set is the main obstruction for
obtaining uniform estimates. Depending on the type of operator, the usable estimates will be restricted
in the range 2 < p < 4 for square function estimates or in the range 3

4
< p < 4 for the self-adjoint case of

the polygon multiplier. The fact that the estimates should be logarithmic in N in the Lp-ranges above is
directed by the Besicovitch construction of the Kakeya set. It is easy to see that for p outside this range
the only available estimates are essentially trivial polynomial estimates. Further obstructions deter any
estimates for Rubio-de-Francia-type square function in the range p<2 already in the one-directional case.

Sharp Rubio de Francia square function estimates in the directional setting. Section 5 concerns
quantitative estimates of Rubio de Francia type for the square function associated with N finitely
overlapping cone multipliers, of both rough and smooth type. Beginning with the seminal article of Nagel,
Stein and Wainger [Nagel et al. 1978], square functions of this type are crucial in the theory of maximal
operators, in particular along lacunary directions; see for instance [Parcet and Rogers 2015; Sjögren and
Sjölin 1981]. In the case ofN uniformly spaced cones, logarithmic estimates with unspecified dependence
were proved by A. Córdoba [1982] using weighted theory.

In order to make the discussion above more precise, and to give a flavor of the results of this paper, we
introduce some basic notation. Let � � Œ0; 2�/ be an interval and consider the corresponding smooth
restriction to the frequency cone subtended by � , namely

C ı� f .x/ WD
Z 2�

0

Z 1
0

Of .%ei#/ˇ� .#/eix�%ei#% d% d#; x 2 R2;

where ˇ� is a smooth indicator on � ; namely it is supported in � and is identically 1 on the middle half of � .
One of the main results of this paper is a quantitative estimate for a square function associated with the

smooth conical multipliers of a finite collection of intervals with bounded overlap. In the statement of the
theorem below `2� denotes the `2-norm on the finite set of directions �.
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Theorem A. Let � D f�g be a finite collection of intervals in Œ0; 2�/ with bounded overlap, namelyX
�2�

1�

1

. 1:

We then have the square function estimate

kfC ı� f gkLp.R2I`2� / .p .log #�/
1
2
� 1
p kf kp

for 2� p < 4, as well as the restricted-type analogue valid for all measurable sets E

kfC ı� .f 1E /gkL4.R2I`2� / . .log #�/
1
4 jEj

1
4 kf k1:

The dependence on #� in the estimates above is best possible.

The sharp estimate of Theorem A above can be suitably bootstrapped in order to provide an estimate
for rough conical frequency projections; the precise statement can be found in Theorem J of Section 5.
The sharpness of the estimates in Theorem A above is discussed in Section 8.6.

A similar square function estimate associated with disjoint rectangular directional frequency projections
is presented in Section 6. This is a square function that is very close in spirit to the one originally considered
in [Rubio de Francia 1985], and especially to the two-parameter version from [Journé 1985] and revisited
in [Lacey 2007]. The novel element is the directional aspect which comes from the fact that the frequency
rectangles are allowed to point along a set of N different directions. Our method of proof can deal equally
well with one-parameter rectangular projections or collections of arbitrary eccentricities. As before we
prove a sharp — in terms of the number of directions — estimate for the smooth square function associated
with rectangular frequency projections alongN directions; this is the content of Theorem K. The main term
in the upper bound of Theorem K matches the logarithmic lower bound associated with the Kakeya set.

The polygon multiplier. The square function estimates discussed above may be combined with suitable
vector-valued estimates in the directional setting in order to obtain a quantitative estimate for the operator
norm of the N -gon multiplier, namely the Fourier restriction to a regular N -gon PN ,

TPN f .x/ WD

Z
PN

Of .�/eix�� d�; x 2 R2: (1.1)

In Section 7 we give the details and proof of the following quantitative estimate for the polygon multiplier.

Theorem B. Let PN be a regularN -gon in R2 and TPN be the corresponding Fourier restriction operator
defined in (1.1). We have the estimate

kTPN W L
p.R2/k. .logN/4j

1
2
� 1
p
j; 4

3
< p < 4:

We limit ourselves to treating the regular N -gon case; however, it will be clear from the proof that this
restriction may be significantly weakened by requiring instead a well-distribution-type assumption on the
arcs defining the polygon, similar to the one that is implicit in Theorem A.

Precise Lp-bounds for the N -gon multiplier as a function of N quantify Fefferman’s counterexample
and so the failure of boundedness of the ball multiplier when p¤ 2. A logarithmic-type estimate for TPN
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was first obtained in [Córdoba 1977]. While the exact dependence in that work is not explicitly tracked,
the upper bound on the operator norm obtained there must be necessarily larger than O.logN/5=4 for p
close to the endpoints of the relevant interval; see Remark 7.12 and Section 8.4 for details. While
the dependence obtained in Theorem B is a significant improvement over previous results, it does not
match the currently best-known lower bound, which is the same as that for the Meyer lemma constant in
Lemma 7.21 and Section 8.1.

Remark. Let ı > 0 and Tj be a smooth frequency restriction to one of the O.ı�1/ tangential ı � ı2

boxes covering the ı2 neighborhood of S1. Unlike the sharp forward square function estimate we prove
in this article, the reverse square function estimate

kf kp � Cp;ıkfTjf W 1� j �O.1=ı/gkLp.R2W`2
j
/ (1.2)

holds with C4;ı D O.1/ at the endpoint p D 4. For the proof of this L4-decoupling estimate, see
[Córdoba 1977; Fefferman 1973]. An extension to the range 2 < p < 4 is at the moment only possible
via vector-valued methods, which introduce the loss Cp;ı D O.j log ıj1=2�1=p/. In fact (1.2) with the
loss Cp;ı claimed above follows easily from Lemma 7.18; the details are contained in Remark 7.22.

Reverse square function inequalities of the type (1.2) have been popularized by Wolff in his proof of
local smoothing estimates in the large p regime; see also [Garrigós and Seeger 2010; Łaba and Pramanik
2006; Łaba and Wolff 2002; Pramanik and Seeger 2007]. We refer to [Carbery 2015] for a proof that the
p D 2n=.n� 1/ case of the Sn�1 reverse square function estimate implies the corresponding Ln.Rn/
Kakeya maximal inequality, as well as the Bochner–Riesz conjecture. In [Carbery 2015], the author also
asks whether a ı-free estimate holds in the range 2 < p < 2n=.n� 1/. At the moment this is not known
in any dimension.

On a different but related note, weakening (1.2) by replacing the right-hand side with the larger
square function of kfj kp yields a sample (weak) decoupling inequality: a full range of sharp decoupling
inequalities for hypersurfaces with curvature have been established starting from the recent, seminal paper
[Bourgain and Demeter 2015]. In the case of S1, the weak decoupling inequality holds in the wider range
2� p � 6, with C"ı�"-type bounds outside of Œ2; 4�; our methods do not seem to provide insights on the
quantitative character of weak decoupling in this wider range.

Weighted estimates for the maximal directional function. The simplest example of an application of
the directional Carleson embedding theorem is the adjoint of the directional maximal function; this was
already noticed by Bateman [2013], re-elaborating on the approach of [Katz 1999]. By duality, the
L2-directional Carleson embedding theorem of Section 2 yields the sharp bound for the weak-.2; 2/-norm
of the maximal Hardy–Littlewood maximal function MN along N arbitrary directions

kMN W L
2.R2/! L2;1.R2/k �

p
logN I

this result first appeared in the quoted article [Katz 1999].
Theorem C may be extended to the directional weighted setting. We describe this extension in Section 3,

see Theorem D, and derive several novel weighted estimates for directional maximal and singular integrals
as an application.
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More specifically, our weighted Carleson embedding Theorem D yields a Fefferman–Stein-type
inequality for the operator MN with sharp dependence on the number of directions; this result is
the content of Theorem E. Specializing to A1-weights in the directional setting yields the first sharp
weighted result for the maximal function along arbitrary directions. Furthermore, Theorem F contains
an L2;1.w/-estimate for the maximal directional singular integrals along N directions, for suitable
directional weights w, with a quantified logarithmic dependence in N. This is a weighted counterpart of
the results of [Demeter 2010; Demeter and Di Plinio 2014].

2. An L2-inequality for directional Carleson sequences

In this section we prove an abstract L2-inequality for certain Carleson sequences adapted to sets of
directions: the main result is Theorem C below. The Carleson sequences we will consider are indexed by
parallelograms with long side pointing in a given set of directions in R2, and possessing certain natural
properties. The definitions below are motivated by the applications we have in mind, all of them lying in
the realm of directional singular and averaging operators.

2.1. Parallelograms and sheared grids. Fix a coordinate system and the associated horizontal and
vertical projections of A� R2:

�1.A/ WD fx 2 R W fxg �R\A¤¿g; �2.A/ WD fy 2 R W R� fyg\A¤¿g:

Fix a finite set of slopes S � Œ�1; 1�. Throughout, we indicate by N D #S the number of elements of S .
In general we will deal with sets of directions

V WD f.1; s/ W s 2 Sg; V ? WD f.�s; 1/ W s 2 Sg:

We will conflate the descriptions of directions in terms of slopes in S and in terms of vectors in V with
no particular mention.

For each s 2 S let �
1 0

s 1

�
be the corresponding shearing matrix. A parallelogram along s is the image P D As.I � J / of the
rectangular box I � J in the fixed coordinate system with jI j � jJ j. We denote the collection of
parallelograms along s by P2s and

P2S WD
[
s2S

P2s :

In order to describe the setup for our general result we introduce a collection of directional dyadic grids
of parallelograms. In order to define these grids we consider the two-parameter product dyadic grid

D20 WD fRD I �J W I; J 2 D.R/; jI j � jJ jg

obtained by taking the cartesian product of the standard dyadic grid D.R/ with itself; we note that we
only consider the rectangles in D�D whose horizontal side is longer than their vertical one. Define the
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RD I � Œ0; 1� 2 D20
AsR 2 D2s

1 1

0
tan � D s

As

0

I I

Figure 1. The axis-parallel rectangle R 2 D20 is mapped to the slanted parallelogram AsR 2 D2s .

sheared grids
D2s WD fAsR WR 2 D

2
0g; s 2 S; D2S WD

[
s2S

D2s :

We will also use the notation

D2s;k1;k2 WD fAsR WRD I �J 2 D
2
0; jI j D 2

�k1 ; jJ j D 2�k2g; s 2 S; k1; k2 2 Z; k1 � k2:

Note that D2s is a special subcollection of P2s . In particular, R 2 D2s is a parallelogram oriented along
v D .1; s/ with vertical sides parallel to the y-axis and such that �1.R/ is a standard dyadic interval.
Furthermore our assumptions on S and the definition of D20 imply that the parallelograms in D2S have
long side with slope jsj � 1 and a vertical short side. See Figure 1. With a slight abuse of language we
will continue referring to the rectangles in D2S as dyadic.

Several results in this paper will involve collections of parallelograms R�D2S . Writing Rs WDR\D2s
we have the natural decomposition of R into #S DN subcollections

RD
[
s2S

Rs:

In general for any collection R of parallelograms we will use the notation

sh.R/ WD
[
R2R

R

for the shadow of the collection. Finally, for any collection of parallelograms R we define the correspond-
ing maximal operator

MRf .x/ WD sup
R2R
hjf jiR1R.x/; f 2 L1loc.R

2/; x 2 R2: (2.2)

We will also use the following notation for directional maximal functions:

Mvf .x/ WD sup
r>0

1

2r

Z r

�r

jf .xC tv/j dt; Mjf .x/ WDMej f .x/; j 2 f1; 2g; x 2 R2: (2.3)

If V � R2 is a compact set of directions with 0 … V , we write

MV f WD sup
v2V

Mvf: (2.4)
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L

T 2T

T 02T

L

Figure 2. A collection L subordinate to a collection T � P20 .

In the definitions above and throughout the paper we use the notation

hgiE D�

Z
E

g WD
1

jEj

Z
E

g.x/ dx

whenever g is a locally integrable function in R2 and E � R2 has finite measure.

2.5. An embedding theorem for directional Carleson sequences. In this section we will be dealing with
Carleson-type sequences a D faRgR2D2S , indexed by dyadic parallelograms. In order to define them
precisely we need a preliminary notion.

Definition 2.6. Let L � P2S be a collection of parallelograms and let s 2 S . We will say that L is
subordinate to a collection T � P2s if for each L 2 L there exists T 2 T such that L� T ; see Figure 2.

It is important to stress that collections L are subordinate to rectangles T � P2s having a fixed slope s.
The Carleson sequences aD faRgR2R we will be considering will fall under the scope of the following
definition.

Definition 2.7. Let a D faRgR2D2S be a sequence of nonnegative numbers. Then a will be called an
L1-normalized Carleson sequence if for every L� D2S which is subordinate to some collection T � P2�
for some fixed � 2 S , we have X

L2L

aL � jsh.T /j

and the quantity
massa WD

X
R2D2S

aR

is finite. Given a Carleson sequence aDfaR WR2D2Sg and a collection R�D2S we define the corresponding
balayage

TR.a/.x/ WD
X
R2R

aR
1R.x/
jRj

; x 2 R2: (2.8)

We write T .a/ for TR.a/ when RD D2S . For 1� p � 2 we then define the balayage norms

massa;p.R/ WD kTR.a/kLp :

Note that massa;1.R/D
P
R2R aR �massa.
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Remark 2.9 (elementary properties of mass). Let R� D2� for some fixed � 2 S . Then R is subordinate
to itself and if a is an L1-normalized Carleson sequence we have

massa;1.R/D
X
R2R

aR � jsh.R/j; R� D2� for some fixed � 2 S:

Also, the very definition of mass and the log-convexity of the Lp-norm imply

massa;p.R/�massa;1.R/
1� 2

p0 massa;2.R/
2
p0 (2.10)

for all 1� p � 2, with p0 its dual exponent.

We are now ready to state the main result of this section. The result below should be interpreted as a
reverse Hölder-type bound for the balayages of directional Carleson sequences.

Theorem C. Let S � Œ�1; 1� be a finite set of N slopes and R�D2S . Suppose that the maximal operators
fMRs W s 2 Sg satisfy

sup
s2S

kMRs W L
p
! Lp;1k. .p0 / ; p! 1C;

for some  � 0. Then for every L1-normalized Carleson sequence aD faRgR2D2S

massa;2.R/. .logN/
1
2 ..1C / log logN/


2 massa;1.R/

1
2 :

The proof of Theorem C occupies the next subsection. The argument relies on several lemmas, whose
proof is postponed to Section 2.23.

Remark 2.11. There are essentially two cases in the assumption of Theorem C above. If for each s 2 S
the family Rs happens to be a one-parameter family, then the corresponding maximal operator MRs is of
weak-type-.1; 1/, whence the assumption holds with  D 0. In the generic case that RD D2S , for each s
the operator MRs DMD2s is a skewed copy of the strong maximal operator and the assumption holds
with  D 1.

2.12. Main line of proof of Theorem C. Throughout the proof, we use the following partial order
between parallelograms Q;R 2 D2S :

Q �R
def
() Q\R¤¿; �1.Q/� �1.R/: (2.13)

Notice that, since Q;R 2 D2S , we have that �1.R/; �1.Q/ belong to the standard dyadic grid D on R.
It is convenient to encode the main inequality of Theorem C by means of the following dimensionless

quantity associated with a collection R� D2S and a Carleson sequence aD faRgR2D2S :

Up.R/ WD sup
L�R
aDfaRg

massa;p.L/

massa;1.L/
1
p

;

where the supremum is taken over all finite subcollections L � R and all L1-normalized Carleson
sequences aD faRgR2D2S . There is an easy, albeit lossy, a priori estimate for Up.R/ for general R�D2S .
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Lemma 2.14. Let S � Œ�1; 1� be a finite set of N slopes and a D faRgR2R be a normalized Carleson
sequence as above. For every R� D2S we have the estimate

Up.R/.N
1
p0 sup
s2S

kMRs W L
p0
! Lp

0;1
k; 1 < p <1:

Theorem C is then an easy consequence of the following bootstrap-type estimate. For an arbitrary
finite collection of parallelograms R� D2S we will prove the estimate

U2.R/2 . .logU2.R// logN; (2.15)

with absolute implicit constant. Note also that the boundedness assumption on MRs for some p < 2 and
Lemma 2.14 yield the a priori estimate U2.R/.N 1=2. Inserting this a priori estimate into (2.15) and boot-
strapping will then complete the proof of Theorem C. It thus suffices to prove (2.15) to obtain Theorem C.

The remainder of the section is dedicated to the proof of (2.15). We begin by expanding the square of
the L2-norm of TR.a/ as follows:

massa;2.R/2 D kTR.a/k22 � 2
X
R2R

aR
1

jRj

Z
R

X
Q2R
Q�R

aQ
1Q
jQj
DW 2

X
R2R

aRB
R
R : (2.16)

For any L�R and R 2R we have implicitly defined

BL
R WD

1

jRj

Z
R

X
Q2L
Q�R

aQ
1Q
jQj

: (2.17)

Remark 2.18. Observe that for any L�R and every fixed s 2 S we have[
fR 2Rs W BL

R > �g �

�
x 2 R2 WMRs

�X
Q2L

aQ
1Q
jQj

�
.x/ > �

�
;

which by our assumption on the weak .p; p/ norm of MRs implies

sup
s2S

ˇ̌̌̌[�
R 2Rs W BL

R > �

�ˇ̌̌̌
. .p0 /

massa;p.L/p

�p
; p! 1C:

For a numerical constant �� 1, to be chosen at the end of the proof, a nonnegative integer k and s 2 S
we consider subcollections of Rs as follows:

Rs;k WD fR WR 2Rs; �k � BR
R < �.kC 1/g; k 2 N; s 2 S: (2.19)

Using (2.16) we have

kTR.a/k
2
2 .

X
s2S

NX
kD0

k�
X

R2Rs;k

aRCN sup
s2S

�X
k>N

k�
X

R2Rs;k

aR

�
. �.logN/massa;1.R/C�N

X
k>N

k sup
s2S

jsh.Rs;k/j: (2.20)

Here � > 0 is the constant used to define the collections Rs;k and in the last lines we used the definition
of a Carleson sequence and Remark 2.9.
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The following lemma encodes the exponential decay relation between mass and BL
R and is in fact the

main step of the proof of Theorem C.

Lemma 2.21. Let a D faR W R 2 D2Sg be an L1-normalized Carleson sequence, S � Œ�1; 1�, and
L;R� D2S with L�R. We assume that for some p 2 Œ1; 2/

Ap WD sup
s2S

kMRs W L
p
! Lp;1k<C1:

If ��C max.1; ApU2.L/2=p
0

/ for a sufficiently large numerical constant C > 1 then there exists L1 � L
such that

(i) massa;1.L1/� 1
2
massa;1.L/,

(ii) fixing s 2 S and denoting by R0s the collection of rectangles R in Rs with BL
R > �, see (2.17), we

have that
BL
R � �CB

L1
R for all R 2R0s:

The final lemma we make use of in the argument translates the exponential decay of the mass of each
Rs;k into exponential decay of the support size, which is what we need in the estimate (2.20).

Lemma 2.22. Let S � Œ�1; 1� and define the collections Rs;k by (2.19) with � defined as in Lemma 2.21
for LDR

� WD C max.1; ApU2.R/
2
p0 /:

We assume that the operators fMRs W s 2 Sg map Lp.R2/ to Lp;1.R2/ uniformly with constant Ap . For
k � 1 we then have the estimate

jsh.Rs;k/j. 2�k massa;1.R/;
with absolute implicit constant.

With these lemmas in hand we now return to the proof of (2.15). Substituting the estimate of Lemma 2.22
into (2.20) yields

kTR.a/k
2
2 . �massa;1.R/

�
.logN/CN

X
k�logN

k2�k
�
. �massa;1.R/.logN/:

This was proved for an arbitrary collection R and so also for every L�R. Thus the estimate above and
our assumption Ap . .p0 / imply

U2.R/2 . �.logN/; �&max.1; .p0 /U2.R/
2
p0 /:

Now observe that we can assume U2.R/& 1; otherwise there is nothing to prove. In this case we can take

�' .p0 /U2.R/
2
p0

for every p > 1. The choice p0 WD .logU2.R// guarantees that ŒU2.R/�1=p
0 . 1 and leads to

U2.R/2 . .logU2.R// logN:

This is the desired estimate (2.15) and so the proof of Theorem C is complete.
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2.23. Proofs of the lemmas.

Proof of Lemma 2.14. We follow the proof of [Lacey 2007, Lemma 3.11]. Take R to be some finite
collection and kgkp0 D 1 such thatX

R2R

aR
1R
jRj


p

D

Z X
R2R

aR
1R
jRj

g:

Define R0 WD fR 2 R W hgiR > ŒcN=massa;1.R/�1=p
0

g for some c > 1 and R0s WD R0 \D2s for s 2 S .
Then,Z X

R2R

aR
1R
jRj

g �
X

R2RnR0
aRhgiRC

X
R2R0

aR
1R
jRj


p

� .cN /
1
p0

�X
R2R

aR

�1
p

CN sup
s2S

 X
R2R0s

aR
1R
jRj


p

:

This meansX
R2R

aR
1R
jRj


p

. .cN /
1
p0

�
1C

N
1
p

c
1
p0

sup
s2S

P
R2R0s aR.1R=jRj/


p�P

R2R0s aR
� 1
p

�P
R2R0s aR

� 1
p�P

R2Rs aR
� 1
p

��X
R2R

aR

�1
p

:

We have proved that for an arbitrary collection R we have

Up.R/� .cN /
1
p0

�
1C

N
1
p

c
1
p0

sup
s

Up.R0s/
massa;1.R0s/

1
p

massa;1.R/
1
p

�
:

We claim that sups2S Up.R0s/ . sups2S kMRs W L
p0 ! Lp

0;1k. Assuming this for a moment and
using Remark 2.9 we can estimateX

R2R0s

aR � jsh.R0s/j � jfMRs .g/ > .cN=massa;1.R//1=p
0

gj

� sup
s2S

kMRs W L
p0
! Lp

0;1
k
p0massa;1.R/

cN
:

This proves the proposition upon choosing c & sups2S kMRs W L
p0 ! Lp

0;1kp
0

.
We have to prove the claim. Note that since R0s is a collection in a fixed direction, the inequality

UR0s . sups2S kMRs W L
p0 ! Lp

0;1k follows by the John–Nirenberg inequality in the product setting
and Remark 2.9; see [Lacey 2007, Lemma 3.11]. �

Proof of Lemma 2.21. By the invariance under shearing of our statement, we can work in the case s D 0.
Therefore, R00 will stand for the collection of rectangles in R0 such that BL

R >�, where ��C and C > 1
will be specified at the end of the proof. We write RD IR �LR for R 2R0.

Inside-outside splitting. For I 2 f�1.R/ WR 2R00g and any interval K we define

Lin
I;K WD fQ 2 L WQ � I �K; �2.Q/� 3Kg; Lout

I;K WD fQ 2 L WQ � I �K; �2.Q/ª 3Kg;

where we recall that the definition of partial order Q �R was given in (2.13). Set also

B in
I;K WD

�

Z
I�K

X
Q2Lin

I;K

aQ

jQj
1Q; Bout

I;K WD
�

Z
I�K

X
Q2Lout

I;K

aQ

jQj
1Q:
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˛0

�Q

Q

I

RD I�L

K

Q\.I�f˛0g/

3K

Q\.I�f˛g/
˛

Figure 3. A rectangle Q with angle �Q intersecting RD I�L� I�K.

We claim that if K � R is any interval then for all ˛ 2K we have

�

Z
I�f˛g

X
Q2Lout

I;K

aQ
1Q
jQj
D

X
Q2Lout

I;K

aQ
jQ\ .I � f˛g/j

jQj
. �
Z
I�3K

X
Q2Lout

I;K

aQ
1Q
jQj

: (2.24)

To see this note that in order for a Q-term appearing in the sum of the left-hand side above to be nonzero
we must have

�1.Q/� I; �2.Q/\K ¤¿; �2.Q/\R n 3K ¤¿:

Let us write �Q D arctan � if Q 2 D2� for some � 2 S . A computation then reveals that

jQ\ .I � f˛g/j Dmin.jJQj; dist.˛;R n�2.Q/// cot �Q:

We also observe that �2.Q/\ .3K nK/ contains an interval AD A.˛/ of length jKj=3, whence for all
˛0 2 A we have

dist.˛;Rn�2.Q//� dist.˛; ˛0 /Cdist.˛0;Rn�2.Q//. jKjCdist.˛0;Rn�2.Q//. dist.˛0;Rn�2.Q//I

see Figure 3. This clearly implies that for every ˛ 2K we have

jQ\ .I � f˛g/j. �
Z
A

jQ\ .I � f˛0g/j d˛0 . �
Z
3K

jQ\ .I � f˛0g/j d˛0;

which proves the claim.
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Smallness of the local average. We now use the previously obtained (2.24) to prove (ii). Let R?0 denote
the family of parallelograms RD IR �LR 2R00 such that Bout

IR;LR
> �. For each such R let KR be the

maximal interval K 2 fLR; 3LR; : : : ; 3kLR; : : : g such that Bout
IR;K

> �; the existence of the maximal
intervalKR is guaranteed for example by the a priori estimate of Lemma 2.14 and the assumption R 2R?0 .
Obviously KR � LR and Bout

IR;3KR
� �.

We show that for R 2R?0 we have

�

Z
R

X
Q2Lout

IR;KR

aQ
1Q
jQj
� �� (2.25)

for some numerical constant � � 1. Indeed it is a consequence of (2.24) that

�

Z
IR�f˛g

X
Q2Lout

IR;KR

aQ
1Q
jQj
. �
Z
IR�3KR

X
Q2Lout

IR;KR

aQ
1Q
jQj

� �

Z
IR�3KR

X
Q2Lout

IR;3KR

aQ
1Q
jQj
C�

Z
IR�3KR

X
Q2Lout

IR;KR
nLout
IR;3KR

aQ
1Q
jQj

:

The first summand is estimated using the maximality of KR:

�

Z
IR�3KR

X
Q2Lout

IR;3KR

aQ
1Q
jQj
D Bout

IR;3KR
� �:

The second summand can be further analyzed by observing that the cubes Q appearing in the sum above
satisfy �1.Q/� I and �2.Q/� 9KR since Q … Lout

IR;3KR
, that is, Lout

IR;3KR
nLout

IR;KR
is subordinate to

the singleton collection fIR � 9KRg. Applying the Carleson sequence property

�

Z
IR�3KR

X
Q2Lout

IR;KR
nLout
IR;3KR

aQ
1Q
jQj
�

X
Q2Lout

IR;KR
nLout
IR;3KR

aQ
jQ\ .IR � 3KR/j

jQjjIR � 3KRj
. 1� � (2.26)

by our assumption on �. Combining the estimates above shows that

�

Z
IR�f˛g

X
Q2Lout

IR;KR

aQ
1Q
jQj
. �

for all ˛ 2KR. Since �2.R/�K this implies (2.25).
Observe that if RD IR �LR 2R00 nR

?
0 then

Bout
IR;LR

D�

Z
IR�LR

X
Q2Lout

IR;LR

aQ
1Q
jQj
� �:

Defining the subcollection L1. We set

L10 WD
[
R2R?0

Lin
IR;KR

; L100 WD
[

R2R00nR?0

Lin
IR;LR

; L1 WD L10[L100:



DIRECTIONAL SQUARE FUNCTIONS 1665

Now note that for each R 2R?0 and K DKR 2 K�1.R/ we have that

BL
R �
�

Z
R

X
Q2Lout

IR�KR

aQ
1Q
jQj
C �

Z
R

X
Q2Lin

IR�KR

aQ
1Q
jQj
� ��CB

L1
R ;

while for R 2R00 nR
?
0 the same estimate holds using LR in place of KR. It remains to show the desired

estimate for massa;1.L1/ in (i) of the lemma.

Smallness of massa;1.L1/. By the definition of the collections Lin
I;K we have that

sh.L1/�
[
R2R?0

IR � 3KR [
[

R2R00nR
?
0

IR � 3LR:

If K DKR for some R 2R?0 we have by definition that Bout
IR;KR

>�. On the other hand for R 2R00 nR
?
0

we have that BL
R D B

L
IR;LR

> �.
Define

E WD

�
.x; y/ 2 R2 WMv

�X
Q2L

aQ
1Q
jQj

�
.x; y/�

�

2

�
;

where Mv DM.1;s/ DM1 is the directional Hardy–Littlewood maximal operator acting in the direction
v D .1; s/D .1; 0/, see (2.3), since we have assumed s D 0. We will show that[

R2R?0

IR � 3KR � f.x; y/ 2 R2 WM2.1E /.x; y/� C g

for a sufficiently small constant C > 0, where M2 is as in (2.3). To this end let us define

 .˛/ WD
1

jIRj

Z
IR�f˛g

X
Q2Lout

IR;KR

aQ
1Q
jQj

:

Note that

� < Bout
IR;KR

D �

Z
KR

 .˛/ d˛ �
1

jKRj

Z
fKRW .˛/>�=2g

 .˛/ d˛C
�

2
�

c�

jKRj

ˇ̌̌̌�
KR W  .˛/ >

�

2

�ˇ̌̌̌
C
�

2
;

which readily yields the existence of K 0 �KR, with

jKRj. jK 0j; inf
x2IR

inf
y2K0

Mv

� X
Q2Lout

IR;KR

aQ
1Q
jQj

�
.x; y/ >

�

2
:

This in turn implies that M2.1E /& 1 on IR � 3KR. Now we can concludeˇ̌̌̌ [
R2R?0

IR � 3KR

ˇ̌̌̌
� jfM2.1E /& 1gj. jEj.

1

�
massa;1.L/

by the weak-.1; 1/ inequality of the directional Hardy–Littlewood maximal operator M.1;0/.
On the other hand we have for the rectangles R 2R00 nR

?
0 that[

R2R00nR
?
0

IR � 3LR �

�
MR0

�X
Q2L

aQ
1Q
jQj

�
>
�

3

�
:
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Thus we get by the weak .p; p/ assumption for MR0 thatˇ̌̌̌ [
R2R00nR

?
0

IR � 3LR

ˇ̌̌̌
�

ˇ̌̌̌�
MR0

�X
Q2L

aQ
1Q
jQj

>
�

3

��ˇ̌̌̌
.
A
p
p

�p
massa;p.L/.

A
p
p

�p
massa;1.L/U2.L/2.p�1/:

By the subordination property of L1 we get

massa;1.L1/�
ˇ̌̌̌ [
R2R?0

IR � 3KR [
[

R2R00nR
?
0

IR � 3LR

ˇ̌̌̌
�
1

2
massa;1.L/;

upon choosing �� C max.1; ApU2.L/2=p
0

/ with sufficiently large C > 1. �

Proof of Lemma 2.22. Fix s 2 S and choose � in the definition of Rs;k to be the value given by
Lemma 2.21 with LDRD

S
s2S Rs . Let j D 0 and L0 D Lj WDR. Construct L1 D LjC1 �R such

that massa;1.L1/� 1
2
massa;1.L0/. Since BL0

R > k� for all R 2Rs;k , we have

�k < B
L0
R � �CB

L1
R D) B

L1
R > �.k� 1/:

Repeat the procedure recursively with j C 1 in place of j . When j D k� 1, we have reached the collec-
tion Lk�1 with massa;1.Lk�1/. 2�k massa;1.L0/ and BLk�1

R > �. This last condition and Remark 2.18
imply that

sh.Rs;k/�
�

MRs

� X
Q2Lk�1

aQ
1Q
jQj

�
> �

�
and so, using (2.10),

jsh.Rs;k/j �
A
p
p

�p
massa;p.Lk�1/p �

A
p
p

�p
massa;1.Lk�1/

p� 2p
p0 massa;2.Lk�1/

2p

p0

� 2�k massa;1.L0/
CA

p
p

�p

�
massa;2.L0/2

massa;1.L0/

�p�1
D 2�k massa;1.L0/

CA
p
p

�p
U2.L0/2.p�1/

and the lemma follows by the definition of � since L0 DR. �

3. A weighted Carleson embedding and applications to directional maximal operators

In this section, we provide a weighted version of the directional Carleson embedding theorem. We then
derive, as applications, novel weighted norm inequalities for maximal and singular directional operators.

The proof of the weighted Carleson embedding follows the strategy used for Theorem C, with
suitable modifications. In order to simplify the presentation, we restrict our scope to collections of
parallelograms RD

˚S
Rs W s 2 S

	
with the property that the maximal operator MRs associated to each

collection Rs satisfies the appropriate weighted weak-.1; 1/ inequality. This is the case, for instance,
when the collections Rs are of the form

Rs � D2s;k; D2s;k WD
[
k1�k

D2s;k1;k (3.1)
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for a fixed k 2 Z. In other words, the parallelograms in direction s have fixed vertical sidelength and
arbitrary eccentricity.

3.2. Directional weights. Let S be a set of slopes and w; u 2 L1loc.R
2/ be nonnegative functions, which

we refer to as weights from now on. Our weight classes are related to the maximal operator

MS I2 WDMV ıM.0;1/;

recalling that MV DMf.1;s/Ws2Sg is the directional maximal operator defined in (2.4). We introduce the
two-weight directional constant

Œw; u�S WD sup
x2R2

MS I2w.x/

u.x/
:

We pause to point out some relevant examples of pairs w; u with Œw; u�S <1. Recall that, for p > 2,
kMS I2kp!p . .log #S/1=p; this is actually a special case of Theorem C and interpolation. Therefore, if
g � 0 belongs to the unit sphere of Lp.R2/,

w WD

1X
`D0

MŒ`�
S I2g

2`kMS I2k
`
p!p

satisfies Œw;w�S � 2kMS I2kp!p; here T Œ`� denotes `-fold composition of an operator T with itself. We
also highlight the relevance of Œw; u�S in Theorem D below by noticing that

sup
s2S

kMD2
s;k
W L1.u/! L1;1.w/k. Œw; u�S ;

with absolute implicit constant. This result is obtained via the classical Fefferman–Stein inequality in
direction s paired with the remark that MD2

s;k
w .MS I2w � Œw; u�Su.

3.3. Weighted Carleson sequences. We begin with the weighted analogue of Definition 2.7, which is
given with respect to a fixed weight w.

Definition 3.4. Let a D faRgR2D2S be a sequence of nonnegative numbers. Then a will be called an
L1-normalized w-Carleson sequence if for every L � D2S which is subordinate to some collection
T � P2� for some fixed � 2 S , we haveX

L2L

aL � w.sh.T //; massa WD
X
R2D2S

aR <1:

As before, if R� D2� for some fixed � 2 S then R is subordinate to itself and

massa;1.R/D
X
R2R

aR � w.sh.R//; R� D2� for some fixed � 2 S:

Throughout this section all Carleson sequences and related quantities are taken with respect to some fixed
weight w which is suppressed from the notation. We can now state our weighted Carleson embedding
theorem.
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Theorem D. Let S� Œ�1; 1� be a finite set ofN slopes and R�D2S . Letw; u be weights with Œw; u�S <1
and such that

sup
s2S

kMRs W L
1.u/! L1;1.w/k. Œw; u�S :

Then for every L1-normalized w-Carleson sequence aD faRgR2D2S we have�Z
jTR.a/.x/j

2 dx
MRu.x/

�1
2

. .logN/
1
2 Œw; u�S massa;1.R/

1
2 :

3.5. Proof of Theorem D. We follow the proof of Theorem C and only highlight the differences to
accommodate the weighted setting. Write � WD ŒMRu�

�1. Expanding the L2.�/-norm we have

kTR.a/k
2
L2.�/

� 2
X
R2R

aR
X
Q2R
Q�R

aQ
�.Q\R/

jQjjRj
:

From the definition of � we have that

�.Q\R/�
jQ\Rj

infQ MRu
�
jQj

u.Q/
jQ\Rj;

whence

kTR.a/k
2
L2.�/

� 2
X
R2R

aR �

Z
R

X
Q2R
Q�R

aQ
1Q
u.Q/

WD 2
X
R2R

aRB
R
R ;

where now for any L�R we have defined

BL
R WD

�

Z
R

X
Q2L
Q�R

aQ
1Q
u.Q/

:

Defining the families Rs;k for s 2 S and k 2 N as in (2.19) we then have the estimate

kTR.a/k
2
L2.�/

� 2�

�
.logN/massa;1.R/CN

X
k>logN

k sup
s2S

w.sh.Rs;k//
�
:

Again � > 0 is a constant that will be determined later in the proof and in the last line we used the
w-Carleson assumption for the sequence aD faRg for rectangles in a fixed direction.

We need the weighted version of Lemma 2.21, which is given under the standing assumptions of
Theorem D.

Lemma 3.6. Let aD faR WR 2 D2Sg be an L1-normalized w-Carleson sequence, s 2 S � Œ�1; 1�, and
L;R� D2S with L�R. For every � > C Œw; u�S , where C is a suitably chosen absolute constant, there
exists L1 � L such that

(i) massa;1.L1/� 1
2
massa;1.L/,

(ii) denoting by R0s the collection of rectangles R in Rs with BL
R > � we have that

BL
R � �CB

L1
R for all R 2R0s:
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Proof. We can assume that s D 0 and let R00 be the collection of rectangles in R0 such that BL
R > �,

where � is as in the statement of the lemma and C will be specified at the end of the proof. For
I 2 f�1.R/ WR 2R00g and any interval K � R we define Lin

I;K and Lout
I;K as in the proof of Theorem C,

but now we set

B in
I;K WD

�

Z
I�K

X
Q2Lin

I;K

aQ

u.Q/
1Q; Bout

I;K WD
�

Z
I�K

X
Q2Lout

I;K

aQ

u.Q/
1Q:

We define R000 to be the subcollection of those RD I �L 2R00 such that Bout
I;L � �. By linearity we

get for each R 2R000 that BL
R � �CB

in
I;L � �CB

L001
R , where

L100 WD
[

RDI�L2R000

Lin
I;L; sh.L001/�

[
RDI�L2R000

I � 3L:

Since R000 �R00 we conclude as before that

w.sh.L001//� w
� [
RDI�L2R000

I � 3L

�
� w

��
MR0

�X
Q2L

aQ1Q
u.Q/

�
>
�

3

��

.
Œw; u�S

�

Z
R2

X
Q2R

aQ
1Q
u.Q/

duD
Œw; u�S

�
massa;1.L/

by the two-weight weak-type-.1; 1/ inequality for MRs DMR0 . Now L001 is subordinate to the collection
fI � 3L W I �L 2R000g. Using the definition of a Carleson sequence we haveX

Q2L001

aQ � w

� [
RDI�L2R000

I � 3L

�
.
Œw; u�S

�
massa;1.L/;

and so massa;1.L001/. Œw; u�S massa;1.L/=�.
It remains to deal with parallelograms

RD I �L 2R?0 WDR00 nR
00
0; Bout

I;L > �:

We define the maximal KR such that Bout
I;KR

> � as before; the existence of this maximal interval can be
guaranteed for example by assuming the collection R is finite. We have for each RD I �L 2R?0 that
Bout
I;L > � so KR � L and Bout

I;3KR
� � by maximality.

Now using (2.24) we get that

� WD
X

Q2Lout
I;3KR

aQ
jQ\ .I � f˛g/j

u.Q/jI j
.

X
Q2Lout

I;3KR

aQ
jQ\ .I � 3KR/j

u.Q/j3KRjjI j
D �

Z
I�3KR

X
Q2Lout

I;3KR

aQ
1Q
u.Q/

. �

by the maximality of KR. On the other hand

„ WD
X

Q2Lout
I;KnL

out
I;3K

aQ �

Z
I�f˛g

1Q
u.Q/

.
X

Q�I�9K

aQ
jQ\ .I � 3K/j

jI � 3Kju.Q/
:
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Since MRsw �MVM2w � Œw; u�S u uniformly in s we get that for Q � I � 9K

u.Q/& Œw; u��1S
w.I � 9K/

jI � 9Kj
jQj

and by this and the w-Carleson property for all Q subordinate to I � 9K we get

„. Œw; u�S � �
provided �� Œw; u�S . We now define

L10 WD
[
R2R?0

Lin
�1.R/;KR

so that
sh.L01/�

[
R2R?0

�1.R/�KR:

Arguing as in the unweighted case of Theorem C we can estimate

w.sh.L01//� w
� [
R2R?0

�1.R/�KR

�
. w.fM2.1E /& 1g/;

where

E WD

�
.x; y/ 2 R2 WMv

�X
Q2L

aQ
1Q
u.Q/

�
.x; y/�

�

2

�
:

In the definition of E above we have that Mv D M.1;s/ D M1 since we have reduced to the case
v D .1; s/D .1; 0/. Using the subordination property of L01 and the Fefferman–Stein inequality once in
the direction e2 for M2 and once in the direction v D .1; s/D .1; 0/ for Mv we estimate

massa;1.L01/� w
� [
R2R?0

�1.R/�KR

�
.
1

�

X
Q2L

aQ
MVM2w.Q/

u.Q/
�
Œw; u�S

�
massa;1.L/:

We have thus proved the lemma upon setting L1 WDL001[L
0
1 and choosing ��C Œw; u�S for a sufficiently

large numerical constant C > 1. �

Repeating the steps in the proof of Lemma 2.22 for � as in the statement of Lemma 3.6 we get for the
sets Rs;k defined with respect to this � that

w.sh.Rs;k//. 2�k massa;1.R/;

and this completes the proof of Theorem D.

3.7. Applications of Theorem D. The first corollary of Theorem D is a two-weighted estimate for the
directional maximal operator MV from (2.4).

Theorem E. Let V � S1 be a finite set of N slopes and w be a weight on R2. Then

kMV W L
2. zMVw/! L2;1.w/k.

p
logN; zMV WDMV ıMV ımaxfM.1;0/;M.0;1/g:
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Remark 3.8. In the proof below, we argue for almost horizontal V , and in place of maxfM.1;0/;M.0;1/g

we use M.0;1/. The usage of maxfM.1;0/;M.0;1/g enables the statement of the theorem to be invariant
under rotation of V .

Proof of Theorem E. By standard limiting arguments, it suffices to prove that for each k 2 Z the estimate

kMR W L
2.z/! L2;1.w/k.

p
logN; z WDMR ıMV ıM.0;1/w; (3.9)

when R is a one-parameter collection as in (3.1), holds uniformly in k.
For a nonnegative function f 2 S.R2/ let Uf be a linearization of MRf , namely

MRf .x/D Uf .x/D
1

jR.x/j

Z
R.x/

f .y/ dy D
X
R2R

hf iR1FR.x/; FR WD fx 2R WR.x/DRg:

By duality, (3.9) turns into

kU �.w1E /kL2.z�1/ .
p

logN
p
w.E/ for all E � R2: (3.10)

We can easily calculate

U �.w1E /D
X
R2R

w.E \FR/
1R
jRj

and it is routine to check that fw.E \FR/gR2R is a w-Carleson sequence according to Definition 3.4.
The main point here is that the sets fE \FRgR2R are by definition pairwise disjoint and FR � R for
each R 2R.

Setting u WDMV ıM.0;1/w; if S are the slopes of V , it is clear that Œw; u�S . 1 and that z�1D .MRu/
�1.

Therefore (3.10) follows from an application of Theorem D. �

We may in turn use Theorem E to establish a weighted norm inequality for maximal directional singular
integrals with controlled dependence on the cardinality #V DN. Similar considerations may be used to
yield weighted bounds for directional singular integrals in Lp.R2/ for p > 2; we do not pursue this issue.

Theorem F. Let K be a standard Calderón–Zygmund convolution kernel on R and V � S1 be a finite set
of N slopes. For v 2 V we define

Tvf .x/D sup
">0

ˇ̌̌̌Z
"<t< 1

"

f .xC tv/K.t/ dt
ˇ̌̌̌
; TV f .x/D sup

v2V

jTvf .x/j:

Let w be a weight on R2 with Œw�AV1 WD kMVw=wk1 <1. Then

kTV W L
2.w/! L2;1.w/k. .logN/

3
2 Œw�

5
2

AV1
:

We sketch the proof, which is a weighted modification of the arguments for [Demeter and Di Plinio
2014, Theorem 1]. Hunt’s classical exponential good-� inequality, see [Demeter and Di Plinio 2014,
Proposition 2.2] for a proof, may be upgraded to

w.fx 2 R2 W Tvf .x/ > 2�;Mvf .x/� �g/. exp
�
�

c

Œw�AV1

�
w.fx 2 R2 W Tvf .x/ > �g/ (3.11)
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by using that Œw�AV1 dominates theA1 constant of the one-dimensional weight t 7!w.xCtv/ for all x2R2,
v 2 V , together with Fubini’s theorem. With (3.11) in hand, Theorem F follows from Theorem E via
standard good-� inequalities, selecting ./�1 � Œw�AV1

logN. Note that the right-hand side of the
estimate in the conclusion of Theorem E becomes Œw�3=2A1

p
logN when the estimate is specified to

AV1 weights as the ones we consider here.

4. Tiles, adapted families, and intrinsic square functions

We define here some general notions of tiles and adapted families of wave-packets: definitions in this
spirit have appeared in, among others [Barrionuevo and Lacey 2003; Demeter and Di Plinio 2014; Lacey
and Li 2006; 2010; Lacey 2007]. These will be essential for the time-frequency analysis square functions
we use in this paper in order to model the main operators of interest. After presenting these abstract
definitions we show some general orthogonality estimates for wave packet coefficients. We then detail
how these notions are specialized in three particular cases of interest.

4.1. Tiles and wavelet coefficients. Throughout this section we fix a finite set of slopes S � Œ�1; 1�.
Remember that alternatively we will refer to the set of vectors V WD f.1; s/ W s 2 Sg. A tile is a set
t WD Rt ��t � R2 � R2, where Rt 2 D2S and �t � R2 is a measurable set, and jRt jj�t j & 1. We
denote by s.t/ 2 S the slope such that Rt 2 D2s.t/, and then

Rt D As.t/.It �Jt /; with It �Jt 2 D20:

We also use the notation vt WD .1; s.t//. There are several different collections of tiles used in this paper,
they will generically be denoted by T ;T1;T 0 or similar. Given any collection of tiles T we will often
use the notation RT WD fRt W t 2 T g to denote the collection of spatial components of the tiles in T .
The exact geometry of these tiles will be clear from context; however, several estimates hold for generic
collections of tiles, as we will see in Section 4.3.

Let t DRt ��t be a tile and M � 2. We denote by AMt the collection of Schwartz functions � on R2

such that

(i) supp. O�/��t ,

(ii) there holds

sup
0�˛;ˇ�M

sup
x2R2
jRt j

1
2 jI j˛jJ jˇ

�
1C
jx � vt j

jI jjvt j

�M�
1C
jx � e2j

jJ j

�M
j@˛vt@

ˇ
e2
�.xC cRt /j � 1:

In the above display cRt refers to the center of Rt and

@vt . � / WD
vt

jvt j
� r. � /:

An immediate consequence of property (ii) is the normalization

sup
�2AMt

k�k2 . 1:

We thus refer to AMt as the collection of L2-normalized wave packets adapted to t of order M . For
our purposes, it will suffice to work with moderate values of M, say 23 �M � 250. In fact, we use
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M DM0 D 2
50 in the definition of the intrinsic wavelet coefficient associated with the tile t and the

Schwartz function f :
at .f / WD sup

�2AM0t

jhf; �ij2; M0 D 2
50: (4.2)

This section is dedicated to square functions involving wavelet coefficients associated with particular
collections of tiles which formally look like

�T .f /
2
WD

X
t2T

at .f /
1Rt
jRt j

; T is a collection of tiles:

We begin by proving some general global and local orthogonality estimates for collections of tiles with
finitely overlapping frequency components. These estimates will be essential in showing that the sequence
fat .f /gt2T is Carleson in the sense of Section 2, when jf j � 1E for some measurable set E � R2 with
0 < jEj<1. This in turn will allow us to use the directional Carleson embedding of Theorem C in order
to conclude corresponding estimates for intrinsic square functions defined on collections of tiles.

4.3. Orthogonality estimates for collections of tiles. We begin with an easy orthogonality estimate for
wave packet coefficients. For completeness we present a sketch of proof which has a T T � flavor. The
argument follows the lines of proof of [Lacey 2007, Proposition 3.3].

Lemma 4.4. Let T be a set of tiles such that
P
t2T 1�t . 1, let M � 23 and f�t W t 2 T g be such that

�t 2AMt for all t 2 T . We have the estimateX
t2T

jhf; �t ij
2 . kf k22; (4.5)

and as a consequence X
t2T

at .f /. kf k22:

Proof. Fix M � 23. It suffices to prove that for kf k2D 1 and an arbitrary adapted family of wave packets
f�t W �t 2AMt ; t 2 T g there holds

B WD
X
t2T

jhf; �t ij
2 . 1: (4.6)

Let us first fix some � 2�.T / WD f�t W t 2 T g and consider the family

T .f�g/ WD ft 2 T W�t D�g:

To prove (4.6), we introduce

B�.g/ WD
X

t2T .f�g/

jhg; �t ij
2; S�.g/ WD . Og1�/_:

We claim that B�.g/. kgk22 for all g, uniformly in � 2�.T /. Assuming the claim for a moment and
remembering the finite overlap assumption on the frequency components of the tiles we have

B D
X

�2�.T /

B�.S�f /.
X

�2�.T /

kS�.f /k
2
2 �

 X
�2�.T /

1�
2
1

kf k22 . 1
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as desired. It thus suffices to prove the claim. To this end let

P�.g/ WD
X

t2T .f�g/

hg; �t i�t :

Then for any g with kgk2 D 1 we have that B�.g/D hP�.g/; gi � kP�.g/k2 and it suffices to prove
that kP�.g/k22 . B�.g/. A direct computation reveals that

kP�.g/k
2
2 � B�.g/ sup

t 02T .f�g/

X
t2T .f�g/

jh�t ; �t 0ij. B;

where the second inequality in the last display above follows by the polynomial decay of the wave packets
f�t W�t D�g. This completes the proof of the lemma. �

We present below a localized orthogonality statement which is needed in order to verify that the
coefficients at .f / form a Carleson sequence in the sense of Section 2. Verifying this Carleson condition
relies on a variation of Journé’s lemma that can be found in [Cabrelli et al. 2006, Lemma 3.23]; we
rephrase it here adjusted to our notation. In the statement of the lemma below we denote by MP2s the
maximal operator corresponding to the collection P2s , where s 2 S is a fixed slope. Note that the proof in
[Cabrelli et al. 2006] corresponds to the case of slope s D 0 but the general case s 2 S follows easily by a
change of variables. Remember here that we have S � Œ�1; 1�.

In the statement of the lemma below two parallelograms are called incomparable if none of them is
contained in the other.

Lemma 4.7. Let s 2 S be a slope and T � D2s be a collection of pairwise incomparable parallelograms.
Define

sh?.T / WD fMP2s 1sh.T / > 2
�6
g

and for each R 2 T let uR be the least integer u such that 2uR 6� sh?.T /. ThenX
R2T
uRDu

jRj. 2ujsh.T /j:

With the suitable analogue of Journé’s lemma in hand we are ready to state and prove the localized
orthogonality condition for the coefficients at .f /.

Lemma 4.8. Let s 2 S be a slope, T � P2s be a given collection of parallelograms and T be a collection
of tiles such that

RT WD fRt W t 2 T g
is subordinate to T . Then we have X

t2T

at .f /. jsh.T /jkf k21:

Proof. We first make a standard reduction that allows us to pass to a collection of dyadic rectangles. To do
this we use that there exist at most 92 shifted dyadic grids D2s;j such that for each parallelogram T 2 T
there exists zT 2

S
j D

2
s;j with T � zT and jT j � j zT j. jT j; see for example [Hytönen et al. 2013]. Now
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note that for each zT 2 zT we have
jT \ zT j

j zT j
& 1; sh. zT /� fMP2S

.1sh.T //& 1g

and so jsh. zT /j. jsh.T /j. Now it is clear that we can replace T with the dyadic collection zT in the assump-
tion. Furthermore there is no loss in generality with assuming that T is a pairwise incomparable collection.
We do so in the rest of the proof and continue using the notation T assuming it is a dyadic collection.

Since RT is subordinate to T we have the decomposition

T D
[
T2T

T .T /; T .T / WD ft 2 T WRt � T g:

Now if f is supported on sh?.T / and �t 2AM0t for each t 2 T thenX
t2T

jhf; �t ij
2 . kf k22 � jsh

?.T /jkf k21 . jsh.T /jkf k
2
1

by Lemma 4.4. We may thus assume that f is supported outside sh?.T /. By Lemma 4.7 it then suffices
to prove that X

t2T .T /

jhf; �t ij
2 . 2�10ujT j

whenever u is the least integer such that 2uT 6� sh?.T / and kf k1 D 1. As f is supported off sh?.T /
we have for this choice of u that

f D
X
n�0

fn; fn WD f 12uCnT n2uCn�1T :

Let zT be the center of T and suppose that T D As.IT � JT /, with IT � JT 2 D20; remember that we
write vs WD .1; s/. Let

�T .x/ WD

�
1C

.x� zT / � vs

jIT jjvsj

��20
.1CjJT j

�1.x� zT / � e2/
�20:

Observe preliminarily that
kfn�T k1 . 2�20.uCn/

so that for any constant c > 0 we have� X
t2T .T /

jhf; �t ij
2

�1
2

�

X
n�0

� X
t2T .T /

jhfn; �t ij
2

�1
2

D

X
n�0

� X
t2T .T /

jhfnc
�1�T ; c�

�1
T �t ij

2

�1
2

.
X
n�0

kfn�T k2 .
X
n�0

kfn�T k1j2
uCnT j

1
2 . 2�5ujT j

1
2

as claimed. To pass to the second line we have used estimate (4.5) of Lemma 4.4 together with the easily
verifiable fact that for each t 2 T .T / the wave-packet c��1T �t is adapted to t with order M0� 20� 2

3

provided the absolute constant c is chosen small enough. �
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4.9. The intrinsic square function associated with rough frequency cones. Let s 2 S be our finite set of
slopes. As usual we write vs WD .1; s/ for s 2 S and V WD fvs W s 2 Sg and switch between the description
of directions as slopes or vectors as desired with no particular mention. Now assume we are given a
finitely overlapping collection of arcs f!sgs2S with each !s � S1 centered at .vs=jvsj/?. We will adopt
the notation

!s WD

��
vs�

jvs� j

�?
;

�
vsC

jvsC j

�?�
assuming that the positive direction on the circle is counterclockwise and s� < s < sC.

For s 2 S we define the conical sectors

�s;k WD

�
� 2 R2 W 2k�1 < j�j< 2kC1;

�

j�j
2 !s

�
; k 2 ZI (4.10)

these are an overlapping cover of the cone

Cs WD

�
� 2 R2 n f0g W

�

j�j
2 !s

�
;

with k 2 Z playing the role of the annular parameter. Each sector �s;k is strictly contained in the cone Cs .
For each s 2S let `s 2Z be chosen such that 2�`s < j!sj � 2�`sC1. We perform a further discretization

of each conical sector �s;k by considering Whitney-type decompositions with respect to the distance
to the lines determined by the boundary rays rs� and rsC ; here rsC denotes the ray emanating from the
origin in the direction of v?

sC
and similarly for rs� . For each sector �s;k a central piece which we call

�s;k;0 is left uncovered by these Whitney decompositions. This is merely a technical issue and we will
treat these central pieces separately in what follows.

To make this precise let s; k be fixed and define the regions

�s;k;m WD

�
� 2�s;k W

1

3
2�jmj�1 �

dist.�; rsC/
j!sj

�
1

3
2�jmjC1

�
; m > 0;

�s;k;m WD

�
� 2�s;k W

1

3
2�jmj�1 �

dist.�; rs�/
j!sj

�
1

3
2�jmjC1

�
; m < 0:

(4.11)

The central part that was left uncovered corresponds to mD 0 and is described as

�s;k;0 WD

�
� 2�s;k Wmin.dist.�; rs�/; dist.�; rsC//�

1

2

1

3
j!sj

�
: (4.12)

Notice that the collection f�s;k;mgm2N is a finitely overlapping cover of �s;k . Furthermore the family
f�s;k;mgs;k;m has finite overlap as the cones fCsgs2S have finite overlap and for fixed s the family
f�s;k;mgk;m is Whitney both in k and m.

These geometric considerations are depicted in Figure 4.
The collection of tiles T corresponding to this decomposition is obtained as

T WD
[
s2S

T �s [T
0
s [T

C
s (4.13)
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vsD.1;s/

Rt dual to�s;k;0

j�jD2kC1 j�jD2k�1

2kC1j!s jÅ2
k�`s

�s;k

r
sC

rs�

�s;k;0

v?s D.�s;1/

�s;k;m;m>0

Figure 4. The decomposition of the sector �s;k into Whitney regions, and the spatial
grid corresponding to the middle region �s;k;0.

where

T �s WD
[

k2Z;m<0

Ts�;k;m; Ts�; k;m WD ft DRt ��s;k;m WRt 2 Ds�;k;k�`sCjmjg; m < 0;

T 0s WD
[
k2Z

Ts;k;0; Ts;k;0 WD ft DRt ��s;k;0 WRt 2 Ds;k;k�`sg;

T Cs WD
[

k2Z;m>0

TsC;k;m; TsC; k;m WD ft DRt ��s;k;m WRt 2 DsC;k;k�`sCjmjg; m > 0:

(4.14)

We stress here that for each cone Cs we introduce tiles in three possible directions vs� ; vs; vsC . This
turns out to be a technical nuisance more than anything else as the total number of directions is still
comparable to #S , and our estimates will be uniform over all S with the same cardinality. However in
order to avoid confusion we set

S� WD S [fs� W s 2 Sg[ fsC W s 2 Sg DW S�[S [SC: (4.15)

Note also that for fixed s; k;m the choice of scales for Rt yields that the tile t DRt ��s;k;m obeys the
uncertainty principle in both radial and tangential directions.

We then define the associated intrinsic square function by

�T .f / WD

�X
t2T

at .f /
1Rt
jRt j

�1
2

; (4.16)

where the set of slopes S are kept implicit in the notation. Here we remember the notation at .f / that
was introduced in (4.2). Using the orthogonality estimates of Section 4.3 as input for Theorem C, we
readily obtain the estimates of the following theorem.
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Theorem G. We have the estimates

k�T W L
p.R2/k.p .log #S/

1
2
� 1
p .log log #S/

1
2
� 1
p ; 2� p < 4; (4.17)

sup
E;f

k�T .f 1E /k4
jEj

1
4

. .log #S/
1
4 .log log #S/

1
4 ; (4.18)

where the supremum in the last display is taken over all measurable sets E �R2 of finite positive measure
and all Schwartz functions f on R2 with kf k1 � 1.

Proof. First of all, observe that the case p D 2 of (4.17) is exactly the conclusion of Lemma 4.4. By
restricted weak-type interpolation it thus suffices to prove (4.18) to obtain the remaining cases of (4.17);
we turn to the former task.

For convenience define S� WD S [fs� W s 2 Sg[ fsC W s 2 Sg DW S�[S [SC; note that this is the
actual set of slopes of tiles in T . Let

RT WD fRt W t 2 T g � D2S� :

Observe that we can write

�T .f 1E /2 D
X
R2RT

� X
t2T WRtDR

at .f 1E /
�

1R
jRj
DW

X
R2RT

aR
1R
jRj

;

where

a WD

�
aR D

X
t2T WRtDR

at .f 1E / WR 2RT
�
:

We fix E and f as in the statement and we will obtain (4.18) from an application of Theorem C to the
Carleson sequence aD faRgR2RT .

First, massa . jEj as a consequence of Lemma 4.4 sinceX
R2RT

aR D
X
R2RT

X
t2T WRtDR

at .f 1E /D
X
t2T

at .f 1E /. kf 1Ek22 . jEj:

Further, the fact that a is (a constant multiple of) anL1-normalized Carleson sequence is a consequence
of the localized estimate of Lemma 4.8. To verify this we need to check the validity of Definition 2.7 for
the sequence a above. To that end let L� D2S� be a collection of parallelograms which is subordinate to
T � D2� for some fixed � 2 S�. ThenX

R2L

aR D
X
R2L

X
t2T WRtDR

at .f 1E /D
X
t2TL

at .f 1E /;

where TL WD ft 2 T WRt 2 Lg. By Lemma 4.8 the right-hand side of the display above can be estimated
by a constant multiple of jsh.T /jkf 1Ek21 � jsh.T /j. This shows the desired property in the definition
of a Carleson sequence.

Finally if T� WD ft 2 T W s.t/D �g for � 2 S�, we have that

sup
�2S�

kMRT� W L
p.R2/! Lp;1.R2/k. p0; p! 1C:
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Indeed note that for fixed direction � 2 S� each maximal operator appearing in the estimate above is
bounded by the strong maximal operator in the coordinates .v; e2/ with v D .1; �/.

Now Theorem C applies to the Carleson sequence aD faRgR2RT yielding

k�T .f 1E /k44 D kTRT .a/k
2
2 . .log #S�/.log log #S�/massa . .log #S/.log log #S/jEj;

which is the claimed estimate (4.18) as #S� ' #S . The proof of Theorem G is thus complete. �

4.19. The intrinsic square function associated with smooth frequency cones. The tiles in the previous
subsection were used to model rough frequency projections on a collection of essentially disjoint cones.
Indeed note that all decompositions were of Whitney type with respect to all the singular sets of the
corresponding rough multiplier. In the case of smooth frequency projections on cones we need a simplified
collection of tiles that we briefly describe below.

Assuming S is a finite set of slopes and the arcs f!sgs2S on S1 have finite overlap as before we now
define for s 2 S and k 2 Z the collections

Ts;k WD ft DRt ��s;k WRt 2 Ds;k�`s ;kg; Ts WD
[
k2Z

Ts;k; T WD
[
s2S

Ts; (4.20)

with �s;k given by (4.10). Here we also assume that 2�`s � j!sj � 2�`sC1. Notice that each conical
sector �s;k now generates exactly one frequency component of possible tiles in contrast with the previous
subsection where we need a whole Whitney collection for every s and every k; in fact the tiles Ts;k are for
all practical purposes the same as the tiles Ts;k;0 considered in Section 4.9. It is of some importance to note
here that for each fixed s 2 S the collection RT WD fRt W t 2 T g consists of parallelograms of fixed eccen-
tricity 2`s and thus the corresponding maximal operator MRTs is of weak-type-.1; 1/ uniformly in s 2 S :

sup
s2S

kMRTs W L
1.R2/! L1;1.R2/k. 1:

The intrinsic square function �T is formally given as in (4.16) but defined with respect to the new
collection of tiles defined in (4.20). A repetition of the arguments that led to the proof of Theorem G
yields the following.

Theorem H. For T defined by (4.20) we have the estimates

k�T W L
p.R2/k.p .log #S/

1
2
� 1
p ; 2� p < 4;

sup
E;f

k�T .f 1E /k4
jEj

1
4

. .log #S/
1
4 ;

where the supremum in the last display is taken over all measurable sets E �R2 of finite positive measure
and all Schwartz functions f on R2 with kf k1 � 1.

4.21. The intrinsic square function associated with rough frequency rectangles. The considerations in
this subsection aim at providing the appropriate time-frequency analysis in order to deal with a Rubio-
de-Francia-type square function, given by frequency projections on disjoint rectangles in finitely many
directions. The intrinsic setup is described by considering again a finite set of slopes S and corresponding
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directions V . Suppose that we are given a finitely overlapping collection of rectangles F D
S
s2S Fs ,

consisting of rectangles which are tensor products of intervals in the coordinates v; v?, v D .1; s/, for
some s 2 S . Namely a rectangle F 2 Fs is a rotation by s of an axis-parallel rectangle. We stress
that the rectangles in each collection Fs are generic two-parameter rectangles, namely their sides have
independent lengths (there is no restriction on their eccentricity).

We also note that Fs consists of rectangles rather than parallelograms and this difference is important
when one deals with rough frequency projections. Our techniques are sufficient to deal with the case
of parallelograms as well but we just choose to detail the setup for the rectangular case. The interested
reader will have no trouble adjusting the proof for variations of our main statement below for the case of
parallelograms, or for the case that the families Fs are in fact one-parameter families.

Given F 2Fs we define a two-parameter Whitney discretization as follows. Let F D rots.I �J /CyF
for some yF 2 R2, where rots denotes counterclockwise rotation by s about the origin and I �J is an
axis parallel rectangle centered at the origin. Note that I D .�jI j=2; jI j=2/ and similarly for J. Then we
define for .k1; k2/ 2 N2, k1; k2 ¤ 0,

Wk1;k2.F / WD

�
� 2 I �J W

1

3
2�k1�1 �

1

2
�
j�1j

jI j
�
1

3
2�k1C1;

1

3
2�k2�1 �

1

2
�
j�2j

jJ j
�
1

3
2�k2C1

�
:

The definition has to be adjusted for k1 D 0 or k2 D 0. For example we define for k2 ¤ 0

W0;k2.F / WD

�
� 2 I �J W

1

2
jI j � j�1j �

1

2

1

3
jI j;

1

3
2�k2�1jJ j �

1

2
jJ j � j�2j �

1

3
2�k2C1jJ j

�
and symmetrically for k1 ¤ 0 and k2 D 0. Finally

W0;0.F / WD

�
� 2 I �J W

1

2
jI j � j�1j �

1

2

1

3
jI j;

1

2
jJ j � j�2j �

1

2

1

3
jJ j

�
:

Then for k D .k1; k2/ 2 N2 we set �s;k1;k2.F / WD rots.Wk1;k2.F //CyF .
We can define tiles for this system as follows. If F 2 Fs for some s 2 S and F D rots.I �J /CyF

with I �J as above, then we choose `FI ; `
F
J 2 Z such that 2`

F
I < jI j � 2`

F
I C1 and 2`

F
J < jJ j � 2`

F
J C1.

We will have

T F
WD

[
s2S

T F
s ; T F

s WD

[
F 2Fs

Ts.F /; Ts.F / WD
[

.k1;k2/2N2

Ts;k1;k2.F /; F 2 Fs; (4.22)

where
Ts;k1;k2.F / WD ft DRt ��s;k1;k2.F / WRt 2 Ds;�k2C`FJ ;�k1C`FI g; F 2 Fs:

Note again that the tiles defined above obey the uncertainty principle in both v; v? for every fixed
v D .1; s/ with s 2 S .

The intrinsic square function associated with the collection F is denoted by �T F and formally has the
same definition as (4.16), where now the T are given by the collection T F of (4.22). The corresponding
theorem is the intrinsic analogue of a multiparameter directional Rubio de Francia square function
estimate.
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Theorem I. Let F be a finitely overlapping collection of two-parameter rectangles in directions given by SX
F 2F

1F

1

. 1:

Consider the collection of tiles T F defined in (4.22) and let �T F be the corresponding intrinsic square
function. We have the estimates

k�T F W Lp.R2/k.p .log #S/
1
2
� 1
p .log log #S/

1
2
� 1
p ; 2� p < 4;

sup
E;f

k�T F .f 1E /k4
jEj

1
4

. .log #S/
1
4 .log log #S/

1
4 ;

where the supremum in the last display is taken over all measurable sets E �R2 of finite positive measure
and all Schwartz functions f on R2 with kf k1 � 1.

Remark 4.23. As before, there is slight improvement in the case of one-parameter spatial components in
each direction. More precisely suppose that F D

S
s2S Fs is a given collection of disjoint rectangles

in directions given by S . If for each s 2 S the family RFs WD fRt W t 2 TFsg yields a weak-type-.1; 1/
maximal operator then the estimates of Theorem I hold without the log log-terms.

Remark 4.24. Suppose that RD
S
s2S Rs � P2S is a family of parallelograms in directions given by s;

namely we have that if R 2 Rs then R D As.I � J /C yR for some rectangle I � J in R2 with sides
parallel to the coordinate axes and centered at 0, and yR 2 R2. Now there is an obvious way to construct
a Whitney partition of each R 2R. Indeed we just define the frequency components

�s;k1;k2.R/ WD As.Wk1;k2.I �J //CyR;

with Wk1;k2.I �J / as constructed before. Then

Ts;k1;k2.R/ WD fRt ��s;k1;k2.R/ WRt 2 Ds;�k2C`FJ ;�k1C`FI g; R 2Rs;

and T are given as in (4.22). With this definition there is a corresponding intrinsic square function �TR

which satisfies the bounds of Theorem I. The improvement of Remark 4.23 is also valid if RD
S
s2S Rs

and each Rs consists of rectangles of fixed eccentricity.

The proof of Theorem I relies again on the global and local orthogonality estimates of Section 4.3 and
a subsequent application of the directional Carleson embedding theorem, Theorem C. We omit the details.

5. Sharp bounds for conical square functions

We begin this section by recalling the definition for the smooth conical frequency projections given in
Section 1. Let � � Œ0; 2�/ be an interval and consider the corresponding rough cone multiplier

C�f .x/ WD

Z 2�

0

Z 1
0

Of .%ei#/1� .#/eix�%ei#% d% d#; x 2 R2;
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and its smooth analogue

C ı� f .x/ WD

Z 2�

0

Z 1
0

Of .%ei#/ˇ
�
# � c�

j� j=2

�
eix�%ei#% d% d#; x 2 R2; (5.1)

where ˇ is a smooth function on R supported on Œ�1; 1� and equal to 1 on
�
�
1
2
; 1
2

�
and c� , j� j stand

respectively for the center and length of � .
This section is dedicated to the proofs of two related theorems concerning conical square functions.

The first is a quantitative estimate for a square function associated with the smooth conical multipliers of
a finite collection of intervals with bounded overlap given in Theorem A, namely the estimates

kfC ı� f gkLp.R2I`2� / .p .log #�/
1
2
� 1
p kf kp

for 2� p < 4, as well as the restricted-type analogue valid for all measurable sets E

kfC ı� .f 1E /gkL4.R2I`2� / . .log #�/
1
4 jEj

1
4 kf k1;

under the assumption of finite overlap X
�2�

1�

1
. 1: (5.2)

The second theorem concerns an estimate for the rough conical square function for a collection of
finitely overlapping cones �.

Theorem J. Let � be a finite collection intervals in Œ0; 2�/ with finite overlap as in (5.2). Then the square
function estimate

kfC�f gkLp.R2I`2� / .p .log #�/1�
2
p .log log #�/

1
2
� 1
p kf kp (5.3)

holds for each 2� p < 4.

Theorem A is sharp, in terms of log #!-dependence, for all 2�p < 4 and for pD 4 up to the restricted
type. Theorem J improves on [Córdoba 1982, Theorem 1], where the dependence on cardinality is
unspecified. Examples providing a lower bound of .log #!/1=2�1=pkf kp for the left-hand side of (5.3),
and showing the sharpness of Theorem A, are detailed in Section 8.

The remainder of the section is articulated as follows. In the upcoming Section 5.4 we show Theorem A.
The subsequent subsection is dedicated to the proof of Theorem J.

5.4. Proof of Theorem A. We are given a finite collection of intervals ! 2! having bounded overlap as
in (5.2). By finite splitting we may reduce to the case of ! 2! being pairwise disjoint; we treat this case
throughout.

The first step in the proof of Theorem A is a radial decoupling. Let  be a smooth radial function on
R2 with

1Œ1;2�.j�j/�  .�/� 1Œ2�1;22�.j�j/

and define the Littlewood–Paley projection

Skf .x/ WD

Z
 .2�k�/ Of .�/ eix�� d�; x 2 R2:
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The following weighted Littlewood–Paley inequality is contained in [Bennett and Harrison 2012, Proposi-
tion 4.1].

Proposition 5.5 [Bennett and Harrison 2012]. Let w be a nonnegative locally integrable function. ThenZ
R2
jf j2w .

Z
R2

X
k2Z

jSk.f /j
2MŒ3�w;

with implicit constant independent of w, f , where we recall that MŒ3� denotes the three-fold iteration of
the Hardy–Littlewood maximal operator M with itself.

We may easily deduce the next lemma from the proposition.

Lemma 5.6. For any p � 2 we have

kfC ı� f gkLp.R2I`2� / .
� X

k2Z; �2�

jC ı� Sk.f /j
2

�1
2

p

: (5.7)

Proof. The case p D 2 is trivial so we assume p > 2. Letting r WD p
2
> 1 there exists some w 2 Lr

0

.R2/

with kwkr 0 D 1 such that

kfC ı� f gk
2
Lp.R2I`2� /

D

X
�2�

Z
R2
jC ı� f j

2w .
X

k2Z; �2�

Z
R2
jC ı� Sk.f /j

2M Œ3�w

and the lemma follows by Hölder’s inequality and the boundedness of M Œ3� on Lr
0

.R2/. �

The second and final step of the proof of Theorem A is the reduction of the operator appearing in the
right-hand side of (5.7) to the model operator of Theorem H.

In order to match the notation of Section 4.9 we write f!sgs2S for the collection of arcs in S1

corresponding to the collection of intervals �, namely for � 2 � we implicitly define s D s� by means of
v?s =jv

?
s j WD eic� D .1; s/=j.1; s/j. We set S WD fs� W � 2 �g and define the corresponding arcs in S1 as

!s� WD fe
i�
W � 2 �g:

Now the cone C� is the same thing as the cone Cs and #S D #�. Similarly we write C ı� D C
ı
s�

so the
cones can now be indexed by s 2 S . Define `s such that 2�`s � j!sj � 2�`sC1.

By finite splitting and rotational invariance there is no loss in generality with assuming that S � Œ�1; 1�.
Notice that the support of the multiplier of C ıs Sk is contained in the frequency sector �s;k defined in
(4.10). By standard procedures of time-frequency analysis, as for example in [Demeter and Di Plinio
2014, Section 6], the operator C ıs Sk can be recovered by appropriate averages of operators

Cs;kf WD
X
t2Ts;k

hf; �t i�t ;

where �t 2 A8M0t for all t 2 Ts! ;k and Ts;k is defined in (4.20). Here M0 D 250 is as chosen
in (4.2). Fixing s; k for the moment we preliminarily observe that for each � � 1 the collection
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Rs;k WDRTs;k D fRt W t 2 Ts;kg can be partitioned into subcollections fRj
s;k;�

W 1 � j � 28�g with
the property that

R1; R2 2R
j

s;k;�
D) 22�C4R1\ 2

2�C4R2 D¿:

We will also use below the Schwartz decay of �t 2AM0t in the formp
jRt jj�t j. 1Rt C

X
��0

2�8M0�
X
�2Rs;k

� 6�2�Rt ; ��2
�C1Rt

1�:

Using Schwartz decay of �t twice, in particular to bound by an absolute constant the second factor
obtained by Cauchy–Schwarz after the first step, we get

jCs;kf j
2 .

� X
t2Ts;k

jhf; �t ij
2 j�t jp
jRt j

�� X
t2Ts;k

p
jRt jj�t j

�

.
X
t2Ts;k

jhf; �t ij
2 1Rt
jRt j
C

X
��0

2�8M0�
X
t2Ts;k

X
�2Rs;k

� 6�2�Rt ;��2
�C1Rt

jhf; �t ij
2 1�
j�j

�

X
t2Ts;k

jhf; �t ij
2 1Rt
jRt j
C

X
��0

2�8M0�
X

R2Rs;k

28�X
jD1

X
�2Rs;k

� 6�2�Rt ;��2
�C1Rt

jhf; �t ij
2 1�
j�j
:

Now for fixed !; k; �; j and t 2 Ts;k observe that there is at most one �D �j
s;k;�

.t/ 2Rj
!;k;�

such that
� 6� 2�Rt , � � 2�C1Rt . Thus the estimate above can be written in the form

jCs;kf j
2 .

X
t2Ts;k

jhf; �t ij
2 1Rt
jRt j
C

X
��0

2�8M0�
28�X
jD1

X
t2Ts;k

jhf; �t ij
2

1
�
j

s;k;�
.t/

j�
j

s;k;�
.t/j

:

Observe that if t 2 Ts;k ,

�t 2A8M0t ; � 2Rs;k; � � 2�C1Rt D) 2�4M� jhf; �t ij
2
� at�.f /;

where t� D � � �s;k 2 Ts;k is the unique tile with spatial localization given by �; this is because
2�4M��t 2AM0t� . We thus conclude that

jCs;kf j
2 .

X
t2Ts;k

at .f /
1Rt
jRt j

: (5.8)

Comparing with the definition of �T given in (4.16) we may summarize the discussion in the lemma
below.

Lemma 5.9. Let 1 < p <1. Then

sup
kf kpD1

� X
k2Z; �2�

jC ı� Sk.f /j
2

�1
2

p

. sup
kf kpD1

k�T .f /kp;
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where
T WD

[
s2S

[
k2Z

Ts;k

and Ts;k is defined in (4.20).

The proof of the upper bound in Theorem A is then completed by juxtaposing the estimates of
Lemmas 5.6 and 5.9 with Theorem H. For the optimality of the estimate see Section 8.6.

5.10. Proof of Theorem J. The proof of Theorem J is necessarily more involved than its smooth
counterpart Theorem A. In particular we need to decompose each cone not only in the radial direction as
before, but also in the directions perpendicular to the singular boundary of each cone. We describe this
procedure below.

Consider a collection of intervals � D f�g as in the statement. By the same correspondence as in the
proof of Theorem A we pass to a family f!sgs2S consisting of finitely overlapping arcs on S1 centered
at v?s =jv

?
s j and corresponding cones Cs . Note that the sectors f�s;kgs2S;k2Z defined in (4.10) form a

finitely overlapping cover of
S
s2S Cs . We remember here that vs D .1; s/, that the interval !s is given

by .v?s� ; v
?

sC
/, and that the positive direction is counterclockwise.

Now, for each fixed s 2 S the cover f�s;k;mg.k;m/2Z2 defined in (4.11), (4.12), is a Whitney cover
of �s;k in the product sense: for each �s;k;m the distance from the origin is comparable to 2k and the
distance to the boundary is comparable to 2�jmjj!s j.

The radial decomposition in k will be taken care of by the Littlewood–Paley decomposition fSkgk2Z,
defined as in the proof of Theorem J. Now for fixed s; k we consider a smooth partition of unity
subordinated to the cover f�s;k;mgm2Z. Note that one can easily achieve that by choosing f's;mgm<0 to
be a one-sided (contained in Cs) Littlewood–Paley decomposition in the negative direction v� D vs� ,
and constant in the direction .v�/? when m< 0, and similarly one can define 's;m when m> 0, with
respect to the positive direction vC. The central piece �s;k;0 corresponds to 's0 defined implicitly as

's;0 D 1Cs �
X
m2Z

's;m:

Now the desired partition of unity is

�s;k;m.�/ WD 1Cs .�/'s;m.�/ k.�/D 's;m.�/ k.�/;

where k WD .2�k � /, with the constructed in the proof of Theorem A. Remember that Skf WD . k Of /_

and let us define ˆs;mf WD .'s;m Of /_.
An important step in the proof is the following square function estimate in Lp.R2/, with 2� p < 4,

that decouples the Whitney pieces in every cone Cs . It comes at a loss inN, which appears to be inevitable
because of the directional nature of the problem.

Lemma 5.11. Let fCsgs2S be a family of frequency cones, given by a family of finitely overlapping arcs
! WD f!sgs2S as above. For 2� p < 4 there holds

kfCsf gkLp.R2I`2!/ .
1

4�p
.log #S/

1
2
� 1
p kfSkˆs;mf gkLp.R2I`2

!�Z�Zg
/:
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Proof. Observe that the desired estimate is trivial for p D 2 so let us fix some p 2 .2; 4/. There exists
some g 2 Lq with q D .p=2/0 D p=.p� 2/ such that

A2 WD kfCsf gjk
2
Lp.R2I`2!/

D

Z
R2

X
s2S

jCsf j
2g

and so by Proposition 5.5 we get

A2 .
X
k2Z

X
s2S

Z
R2
jCsSkf j

2MŒ3�g;

where we recall that MŒ3� denotes three iterations of the Hardy–Littlewood maximal operator M. Fixing s
for a moment we use Proposition 5.5 in the directions vs� ; vs and vsC to further estimateZ

R2
jCsf j

2MŒ3�g .
X
m2Z

X
"2f�;0;Cg

Z
R2
jSkˆs;mf j

2MŒ3�
vs"

MŒ3�g;

where we adopted the convention s0 WD s for brevity, and Mv is given by (2.3). Remember also that
ˆs;m for m> 0 corresponds to directions sC, while ˆs;m corresponds to directions s� for m< 0, and to
directions s0 D s for mD 0. Now for any v 2 S1 and r > 1 we have that

MŒ3�
v G . .r

0 /2ŒMvG
r �
1
r I

see for example [Pérez 1994]. Thus MŒ3�
vs"MŒ3�g..r 0 /2ŒMV � ŒMŒ3�G�r �1=r, where MV �f WDsupv2V �Mvf ,

where here we use V � WD f.1; s/ W s 2 S�g with S� as in (4.15), and MV �f WD supw2V � Mw.f /.
It is known [Katz 1999] that MV � maps Lp.R2/ to Lp.R2/ with a bound .log #V �/1=p for p > 2. As

p < 4 there exists a choice of 1 < r < p=.2.p� 2// so that p=.r.p� 2// > 2 and a theorem from [Katz
1999] applies. Using this fact together with Hölder’s inequality proves the lemma. �

The proof of Theorem J can now be completed as follows. For each .s; k;m/ 2 S � Z � Z the
operator Skˆs;m is a smooth frequency projection adapted to the rectangular box �s;k;m. Following the
same procedure that led to (5.8) in the proof of Theorem A we can approximate each piece Skˆs;mf by
an operator of the form

Cs";k;mf WD
X

t2Ts";k;m

hf; �t i�t ; jCs";k;mf j
2 .

X
t2Ts";k;m

at .f /
1Rt
jRt j

;

where s" follows the sign of m and coincides with s if mD 0. The collections of tiles Ts";k;m are the ones
given in (4.14). Now Lemma 5.11 and Theorem G are combined to complete the proof of Theorem J.

6. Directional Rubio de Francia square functions

In his seminal paper Rubio de Francia [1985] proved a one-sided Littlewood–Paley inequality for arbitrary
intervals on the line. This estimate was later extended by Journé [1985] to the case of rectangles
(n-dimensional intervals) in Rn; a proof more akin to the arguments of the present paper appears in
[Lacey 2007]. The aim of this subsection is to present a generalization of the one-sided Littlewood–Paley
inequality to the case of rectangles in R2 with sides parallel to a given set of directions. The set of
directions is to be finite, necessarily, because of Kakeya counterexamples.
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As in the case of cones of Section 5 we will present two versions, one associated with smooth frequency
projections and one with rough. To set things up let S be a finite set of slopes and V be the corresponding
directions. We consider a family of rotated rectangles F as in Section 4.21, where F D

S
s2S Fs . For

each s 2 S a rectangle F 2 Fs is a rotation by s of an axis parallel rectangle, so that the sides of R are
parallel to .v; v?/ with v D .1; s/. We will write F D rots.IF �JF /CyF for some yF 2 R2 in order
to identify the axes-parallel rectangle IF �JF producing F by an s-rotation; this writing assumes that
IF �JF is centered at the origin.

Now for each F 2 F we consider the rough frequency projection

PF f .x/ WD

Z
R2

Of .�/1F .�/eix�� d�; x 2 R2;

and its smooth analogue

P ıF f .x/ WD

Z
R2

Of .�/F .�/e
ix�� d�; x 2 R2;

where R is a smooth function on R2, supported in R, and identically 1 on rots
�
1
2
I � 1

2
J
�
.

We first state the smooth square function estimate.

Theorem K. Let F be a collection of rectangles in R2 with sides parallel to .v; v?/ for some v in a finite
set of directions V . Assume that F has finite overlap. Then

kfP ıF f gkLp.R2I`2F /
.p .log #V /

1
2
� 1
p .log log #V /

1
2
� 1
p kf kp

for 2� p < 4, as well as the restricted-type analogue valid for all measurable sets E

kfP ıF .f 1E /gkL4.R2I`2F / . .log #V /
1
4 .log log #V /

1
4 jEj

1
4 kf k1:

The dependence on #V in the estimates above is best possible up the doubly logarithmic term.

Remark 6.1. We record a small improvement of the estimates above in some special cases. Suppose that
for fixed s 2 S all the rectangles F 2 Fs have one side-length fixed, or that they have fixed eccentricity.
In both these cases the collections of spatial components of the tiles needed to discretize these operators,
RT F

s
WD fRt W t 2 T

F
s g, with T F

s as in (4.22), give rise to maximal operators that are of weak-type .1; 1/.
Then Remark 4.23 shows that the estimates of Theorem K hold without the doubly logarithmic terms,
and as shown in Section 8.2 this is best possible.

The rough version of this Rubio-de-Francia-type theorem is slightly worse in terms of the dependence
on the number of directions. The reason for that is that, as in the case of conical projections, passing
from rough to smooth in the directional setting incurs a loss of logarithmic terms, essentially originating
in the corresponding maximal function bound.

Theorem L. Let F be a collection of rectangles in R2 with sides parallel to .v; v?/ for some v in a finite
set of directions V . Assume that F has finite overlap. Then the following square function estimate holds
for 2� p < 4:

kfPF f gkLp.R2I`2F /
.p .log #V /

3
2
� 3
p .log log #V /

1
2
� 1
p kf kp:
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The proofs of these theorems follow the by now familiar path of introducing local Littlewood–Paley
decompositions on each multiplier, approximating with time-frequency analysis operators, establishing a
directional Carleson condition on the wave-packet coefficients and finally applying Theorem C. We will
very briefly comment on the proofs below.

Proof of Theorems L and K. We first sketch the proof of Theorem L, which is slightly more involved. The
first step here is a decoupling lemma which is completely analogous to Lemma 5.11 with the difference
that now we need to use two directional Littlewood–Paley decompositions, while in the case of cones
only one. This explains the extra logarithmic term of the statement.

Remember that F D
S
s Fs , with s D .1; v/ for some v 2 V ; here s gives the directions .v; v?/ of the

rectangles in Fs . Using the finitely overlapping Whitney decomposition of Section 4.21 we have for each
F 2 Fs a collection of tiles

Ts.F / WD
[

.k1;k2/2Z2

Ts;k1;k2.F /

as in (4.22). Let us for a moment fix s and F 2Fs . The frequency components of the tiles in Ts.F / form
a two-parameter Whitney decomposition of F , so let f�F;k1;k2g.k1;k2/2Z2 be a smooth partition of unity
subordinated to this cover and denote by ˆF;k1;k2 the Fourier multiplier with symbol �F;k1;k2 .

The promised analogue of Lemma 5.11 is the following estimate: for 2� p < 4 there holds

kfPF f gjkLp.R2I`2F /
.

1

.4�p/2
.log #V /1�

2
p kfˆs;k1;k2f gkLp.R2I`2F�Z�Zg

/: (6.2)

The proof of this estimate is a two-parameter repetition of the proof of Lemma 5.11, where one applies
Proposition 5.5 once in the direction of v and once in the direction of v?. Using the familiar scheme we
can approximate each ˆs;k1;k2f by time-frequency analysis operators

PF;k1;k2f WD
X

t2Ts;k1;k2 .F /

hf; �t i�t ; jPF;k1;k2f j
2 .

X
t2Ts;k1;k2 .F /

at .f /
1Rt
jRt j

and by (6.2) the proof of Theorem L follows by corresponding bounds for the intrinsic square function of
Theorem I, defined with respect to the tiles T F given by (4.22).

For Theorem K things are a bit simpler as the decoupling step of (6.2) is not needed. Apart from
that one needs to consider for each F a new set of tiles which is very easy to define: If F 2 Fs with
F D rots.IF �JF /CyF ,

T 0.F / WD ft DRt �F WRt 2 D2s;`J ;`I g;

and then T 0 WD
S
F 2F T

0.F /. One can recover P ıF by operators of the form

PıF f WD
X

t2Ts.F /

hf; �t i�t ; jP
ı
F f j

2 .
X

t2Ts.F /

at .f /
1Rt
jRt j

as before. Using the orthogonality estimates of Section 4.3 in Theorem C yields the upper bound in
Theorem K. The optimality of the estimates in the statement of Theorem K is discussed in Section 8.2. �
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7. The multiplier problem for the polygon

Let P D PN be a regular N -gon and TPN be the corresponding Fourier restriction operator on P

TPf .x/ WD

Z
R2

Of .�/1P.�/eix�� d�; x 2 R2:

In this subsection we prove Theorem B, namely we will prove the estimate

kTPN W L
p.R2/k. .logN/4j

1
2
� 1
p
j; 4

3
< p < 4:

The idea is to reduce the multiplier problem for the polygon to the directional square function estimates
of Theorem K and combine those with vector-valued inequalities for directional averages and directional
Hilbert transforms.

We introduce some notation. The large integer N is fixed throughout and left implicit in the notation.
By scaling, it will be enough to consider a regular polygon P with the following geometric properties:
First, P has vertices

fvj D ei#j W 1� j �N C 1g; vj WD exp.2�j=N/;

on the unit circle S1, with #1 D #NC1 D 0 and oriented counterclockwise so that #jC1�#j > 0. The
associated Fourier restriction operator is then defined by

TPf WD .1P Of /
_:

The proof of the estimate of Theorem B for TP occupies the remainder of this section; by self-duality of
the estimate it will suffice to consider the range 2� p < 4.

7.1. A preliminary decomposition. Let N be a large positive integer and take � such that 2��1 <N � 2�.
For each �2� � k � 0 consider a smooth radial multiplier mk which is supported on the annulus

Ak WD

�
� 2 R2 W 1�

2�k�1

22�
< j�j< 1�

2�k�5

22�

�
and is identically 1 on the smaller annulus

ak WD

�
� 2 R2 W 1�

2�k�2

22�
< j�j< 1�

2�k�4

22�

�
:

Now consider the corresponding radial multiplier operators Tk

Tkf WD .mk Of /
_; m� WD

0X
kD�2�

mk :

We note that m� is supported in the annulus�
� 2 R2 W

1

2
< j�j< 1�

2�5

22�

�
:

With this in mind let us consider radial functions m0; mP 2 S.R2/, with 0�m0; mP � 1, such that

.m0Cm� CmP/1P D 1P ; (7.2)
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with the additional requirement that

supp.mP/� AP WD f� 2 R2 W 1� 2�2��3 � j�j � 1C 2�2��3g: (7.3)

Defining
bT0f WD Of m0; bT�f WD Of m� ; 1OPf WD Of mP1P ;

identity (7.2) implies that TP D T0CT� COP . Observing that T0 is bounded on p for all 1 < p <1
with bounds Op.1/ we have

kTPkLp.R2/ .p 1CkT�kLp.R2/CkOPkLp.R2/; 1 < p <1: (7.4)

7.5. Estimating T�. We aim for the estimate

kT�f kp . �4.
1
2
� 1
p
/
kf kp; 2� p < 4: (7.6)

The case p D 2 is obvious, whence it suffices to prove the restricted-type version at the endpoint p D 4

kT�.f 1E /k4 . �jEj
1
4 kf k1: (7.7)

Now we have that for any g

jT�gj D

ˇ̌̌̌ 0X
kD�2�

Tkg

ˇ̌̌̌
.
� 0X
kD�2�

jTkgj
4

�1
4

�
3
4

and thus

kT�gk4 . �
3
4

� 0X
kD�2�

kTkgk
4
4

�1
4

: (7.8)

Let f!j Wj 2J g be the collection of intervals on S1 centered at vj WDexp.2�ij=N / and of length 2��. Note
that these intervals have finite overlap and their centers vj form a � 1=N -net on S1. Now let f ǰ W j 2 J g
be a smooth partition of unity subordinated to the finitely overlapping open cover f!j W j 2 J g so that
each ǰ is supported in !j . We can decompose each Tk as

1.Tkf /.�/D
X
j2J

mk.j�j/ ǰ

�
�

j�j

�
Of .�/DW

X
j2J

mj;k.�/ Of .�/;DW
X
j2J

2.Tj;kf /.�/; � 2 R2:

For sj 2 S and �2� � k � 0 we define the conical sectors

�j;k WD f� 2 R2 W � 2 Ak; �=j�j 2 !j g

and note that each one of the multipliers mj;k is supported in �j;k . Each �j;k is an annular sector around
the circle of radius 1� 2�k=22� of width � 2�k=22�, where �2� � k � 0. It is a known observation,
usually attributed to Córdoba [1977, Theorem 2] or C. Fefferman [1973], that for such parameters we haveX

j;j 02J

1�j;kC�j 0;k . 1: (7.9)
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This pointwise inequality and Plancherel’s theorem allow us to decouple the pieces Tj;k in L4; for each
fixed k as above we have

kTkf k4 .
�X
j2J

jTj;kf j
2

�1
2

4

I (7.10)

see also the proof of Lemma 7.18 below for a vector-valued version of this estimate. Combining the last
estimate with (7.8) and dominating the `2-norm by the `1-norm yields

kT�f k4 . �
3
4

�Z
R2

0X
kD�2�

�X
j2J

jTj;kf j
2

�2�1
4

. �
3
4

�Z
R2

� 0X
kD�2�

�X
j2J

jTj;kf j
2

�2� 1
2
2�1

4

� �
3
4

�Z
R2

� 0X
kD�2�

X
j2J

jTj;kf j
2

�2�1
4

DW �
3
4 k�J;�f k4;

with

�J;�f WD

� 0X
kD�2�

X
j2J

jTj;kf j
2

�1
2

:

But now note that fTj;kgj;k is a finitely overlapping family of smooth frequency projections on a family
of rectangles in at most �N directions. Furthermore all these rectangles have one side of fixed length
since j!j j D 2�� for all j 2 J. So Theorem K with the improvement of Remark 6.1 applies to yield

k�J;�f k4 . .log #N/
1
4 kf k1jEj

1
4 ' �

1
4 kf k1jEj

1
4 : (7.11)

The last two displays establish (7.7) and thus (7.6).

Remark 7.12. The term T� is also present in the argument of [Córdoba 1977]. Therein, an upper
estimate of order O.�5=4/ for p near 4 is obtained, by using the triangle inequality and the bound
sup fkTkkL4.R2/ W �2� � k � 0g � �

1=4 for the smooth restriction to a single annulus.

7.13. EstimatingOP . In this subsection we will prove the estimate

kOPf kp . �4.
1
2
� 1
p
/
kf kp: (7.14)

Letˆ be a smooth radial function with support in the annular region f� 2R2 W1�c2�2� < j�j<1Cc2�2�g,
where c is a fixed small constant, and satisfying 0�ˆ� 1. Let f ǰ W j 2 J g be a partition of unity on S1

relative to intervals !j as in Section 7.5. Define the Fourier multiplier operators on R2

bTjf .�/ WDˆ.�/ ǰ
�
�

j�j

�
Of .�/; � 2 R2: (7.15)

The operators Tj satisfy a square function estimate

kfTjf gkLp.R2I`2J /
. �

1
2
� 1
p kf kp; 2� p < 4;

kfTj .f 1E /gkL4.R2I`2J / . �
1
4 jEj

1
4 kf k1;

(7.16)
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which follows in the same way as (7.11), by using Theorem K with the improvement of Remark 6.1.
They also obey a vector-valued estimate

kfTjfj gkLp.R2I`2J /
. �

1
2
� 1
p kffj gkLp.R2I`2J /

; 2� p < 4;

kfTj .fj 1F /gkL4.R2I`2J / . �
1
4 jF j

1
4 kffj gkL1.R2I`2J /

:
(7.17)

These estimates are easy to prove. Indeed note that it suffices to prove the endpoint-restricted estimate at
p D 4. Using the Fefferman–Stein inequality for fixed j 2 J we can estimate for each function g with
kgk2 D 1 Z

R2

X
j2J

jTj .fj 1F /j2g .
X
j2J

Z
R2
jfj 1F j2Mjg � kffj gk

2
L1.R2I`2J /

Z
F

sup
j2J

Mjg

. jF j
1
2 k sup
j2J

MjgkL2;1.R2/;

where Mj is the Hardy–Littlewood maximal operator with respect to the collection of parallelograms in
D2sj ;�2�;�� with sj defined through .�sj ; 1/ WD vj . Now supj2J Mj is the maximal directional maximal
operator and the number of directions involved in its definition is comparable to N � 2�. Then the
maximal theorem from [Katz 1999] applies to give the estimate

k sup
j2J

MjgkL2;1.R2/ . �
1
2 :

This proves the second of the estimates (7.17) and thus both of them by interpolation.
In the estimate for OP we will also need the following decoupling result.

Lemma 7.18. Let 2� p < 4. ThenX
j

Tjfj


p

. �
1
2
� 1
p kffj gkLp.R2I`2J /

:

Proof. Note that the case p D 2 of the conclusion is trivial due to the finite overlap of the supports of the
multipliers of the operators Tj . Thus by vector-valued restricted-type interpolation of the operator

ffj g 7!O.ffj g/ WD
X
j2J

Tjfj

it suffices to prove a restricted type L4;1! L4 estimate:

kO.ffj g/k4 . �
1
4 jEj

1
4 (7.19)

for functions with kffj gk`2 � 1E . To do so note that the finite overlap of the supports of bTjfj �1Tkfk
over j; k, as in (7.9), gives

kO.ffj g/k4 . kfTjfj gkL4.R2I`2J /
and the restricted-type estimate (7.19) follows from (7.17). �

We come to the main argument for OP . Let mP be as in (7.2)–(7.3) and Tj be the multiplier operators
from (7.15) corresponding to the choice ˆDmP . Then obviously

mP Of D
X
j2J

bTjf :
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We may also tweak ˆ and the partition of unity on S1 to obtain further multiplier operators zTj as in
(7.15) and such that the Fourier transform of the symbol of zTj equals 1 on the support of the symbol
of Tj . With these definitions in hand we estimate for 2 < p < 4

kOPf kp D

X
j

zTj .TjTPf /


p

. �
1
2
� 1
p kfTP.Tjf /gkLp.R2I`2J /

D �
1
2
� 1
p kfHjHjC1.Tjf /gkLp.R2I`2J /

: (7.20)

The first inequality is an application of Lemma 7.18 for zTj . The last equality is obtained by observing
that the polygon multiplier TP on the support of each Tj may be written as a (sum of O.1/) directional
biparameter multipliers HjHjC1 of iterated Hilbert transform type, where Hj is a Hilbert transform
along the direction �j , which is the unit vector perpendicular to the j -th side of the polygon, and pointing
inside the polygon; these are at most �N such directions.

In order to complete our estimate for OP we need the following Meyer-type lemma for directional
Hilbert transforms of the form

Hvf .x/ WD

Z
R2

Of .�/1f��v>0geix�� d�; x 2 R2:

Lemma 7.21. Let V � S1 be a finite set of directions and Hv be the Hilbert transform in the direction v.
Then for 4

3
< p < 4 we have

kfHvfvgkLp.R2I`2V /
. .log #V /j

1
2
� 1
p
j
kffvgkLp.R2I`2V /

:

The dependence on #V is best possible.

Proof. It suffices to prove the estimate for 2<p<4. The proof is by way of duality and uses the following
inequality for the Hilbert transform: for r > 1 and w a nonnegative locally integrable function we haveZ

R2
jHvf j

2w .
Z

R2
jf j2.Mvjwj

r/
1
r ;

with Mv given by (2.3). See for example [Pérez 1994]. Using this we have for a suitable g 2 L.p=2/
0

of
norm 1 that

kfHvfvgk
2
Lp.R2I`2V /

D

Z
R2

X
v2V

jHvfvj
2g .

X
v2V

Z
R2
jfvj

2.Mvjgj
r/
1
r

. kffvgk2Lp.R2I`2V /
k.MV jgj

r/
1
r kL.p=2/0 .R2/;

with MV g WD supv2V Mvg. Now for 2 < p < 4 there is a choice of 1 < r < p=.2.p � 2// so that
p=.r.p� 2// > 2. This means that the maximal theorem from [Katz 1999] applies again to give

k.MV jgj
r/
1
r kL.p=2/0 .R2/ . .log #V /1�

2
p ;

and so the proof of the upper bound is complete. The optimality is discussed in Section 8.1. �
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Let us now go back to the estimate for OP . The left-hand side of (7.20) contains a double Hilbert
transform. By an iterated application of Lemma 7.21 we thus have

kfHjHjC1.Tjf /gkLp.R2I`2J /
. �1�

2
p kfTjf /gkLp.R2I`2J /

since the number of directions isN D2�. The final estimate for the right-hand side of the display above is a
direct application of (7.16), which together with (7.20) yields the estimate for kOPf kp claimed in (7.14).

Now the decomposition (7.4), together with the estimate of Section 7.5 for T� and the estimate (7.14)
for OP , completes the proof of Theorem B.

Remark 7.22. Consider a function f in R2 such that supp. Of /�Aı , where Aı is an annulus of width ı2

around S1. Decomposing Aı into a union of O.1=ı/ finitely overlapping annular boxes of radial width ı2

and tangential width ı, we can write f D
P
j2J Tjf , where each Tj is a smooth frequency projection

onto one of these annular boxes, indexed by j . Then if zTj is a multiplier operator whose symbol is
identically 1 on the frequency support of Tjf and supported on a slightly larger box, we can write
f D

P
j
zTjTjf , as in (7.20) above. Then Lemma 7.18 yields

kf kLp.R2/ . .log.1=ı//
1
2
� 1
p kfTjf gkLp.R2I`2J /

:

This is the inverse square function estimate claimed in the remark after Theorem B in Section 1.

8. Lower bounds and concluding remarks

8.1. Sharpness of Meyer’s lemma. We briefly sketch the quantitative form of Fefferman’s counterexample
[1971] proving the sharpness of Lemma 7.21. Let N be a large dyadic integer. Using a standard
Besicovitch-type construction we produce rectangles fRj W j D 1; : : : ; N g with sidelengths 1� 1=N, so
that the long side of Rj is oriented along vj WD exp.2�ij=N /. Now we consider the set E to be the union
of these rectangles and ˇ̌̌̌

E WD

N[
jD1

Rj

ˇ̌̌̌
.

1

logN
:

Denoting by zRj the 2-translate of Rj in the direction of vj we gather that f zRj W j D 1; : : : ; N g is a
pairwise disjoint collection. Furthermore if Hj is the Hilbert transform in direction vj , there holds

jHj 1Rj j � c1 zRj :
Therefore for all 1 < p <1 � NX

jD1

jHj 1Rj j
2

�1
2

p

� c

ˇ̌̌̌ N[
jD1

zRj

ˇ̌̌̌ 1
p

� c;

while for p � 2 � NX
jD1

j1Rj j
2

�1
2

p

�

� NX
jD1

jRj j

�1
2

jEj
1
p
� 1
2 . .logN/

1
2
� 1
p :

Self-duality of the square function estimate then gives the optimality of the estimate of Lemma 7.21.



DIRECTIONAL SQUARE FUNCTIONS 1695

8.2. Sharpness of the directional square function bound. In this subsection we prove that the bound of
Theorem L is best possible, up to the doubly logarithmic terms. In particular we prove that the bound of
Remark 6.1 is best possible.

We begin by showing a lower bound for the rough square function estimate

kfPF ggkLp.R2I`2F /
� kfPF g W L

p.R2/! Lp.R2I `2F /kkgkp; 2� p < 4; (8.3)

where the notation is as in Section 6. Now as in [Fefferman 1971] one can easily show that the estimate
above implies the vector-valued inequality for directional averages, for directions corresponding to the
directions of rectangles in F . For this let #V DN, where V is the set of directions of rectangles in F .
Now consider functions fgF gF 2F with compact Fourier support; by modulating these functions we can
assume that supp. OgF / � B.cF ; A/ for some A > 1 and fcF gF 2F a 100AN -net in R2. Then if F is a
rectangle centered at cF with short side 1 parallel to a direction vF 2 V and long side of length N parallel
to v?F , then we have that jPF gF j D jAvF gF j, where AvF is the averaging operator

AvF f .x/ WD 2N

Z
jt j�1=2

Z
N jsj<1

f .x� tvF � sv
?
F / dt ds; x 2 R2:

Note that this is a single-scale average with respect to rectangles of dimensions 1� 1=N in the directions
vF ; v

?
F respectively. Since the frequency supports of these functions are well-separated we gather that

for all choices of signs "F 2 f�1; 1g we haveX
T2F

jPTGj
2
WD

X
T2F

ˇ̌̌̌
PT

�X
F 2F

"F gF

�ˇ̌̌̌2
D

X
T2F

jPT gT j
2:

Thus applying (8.3) with the function G as above and averaging over random signs we get

kfAvF gF gkLp.R2I`2F /
� kfPF g W L

p.R2/! Lp.R2I `2F /kkfgF gkLp.R2I`2F /
; 2� p < 4:

Now we just need to note that as in Section 8.1 we have that

AvF 1RF & 1QRF ;

where fRF gF 2F are the rectangles used in the Besicovitch construction in Section 8.1. As before we get

kfPF g W L
p.R2/! Lp.R2I `2F /k& .log #V /

1
2
� 1
p :

For p < 2 the square function estimate (8.3) is known to fail even in the case of a single directions; see
for example the counterexample in [Rubio de Francia 1985, §1.5].

One can use the same argument in order to show a lower bound for the norm of the smooth square
function

kfP ıF ggkLp.R2I`2F /
� kfP ıF g W L

p.R2/! Lp.R2I `2F /kkgkp; 2� p < 4:

Indeed, following the exact same steps we can deduce a vector-valued inequality for smooth averages

AıvF f .x/ WD

Z
R

Z
R

f .x� tvF � sv
?
F /F .t; s/ dt ds; x 2 R2;
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where F is the smooth product bump function used in the definition of P ıF in Section 6. By a direct
computation one easily shows the analogous lower bound AıvF 1RF & 1 zRF for the rectangles of the
Besicovitch construction and this completes the proof of the lower bound for smooth projections as well.

8.4. Sharpness of Córdoba’s bound for radial multipliers. Firstly we remember the definition of each
radial multiplier Pı : Let ˆ W R! R be a smooth function which is supported in Œ�1; 1� and define

Pıf .x/ WD

Z
R2

Of .�/ˆ.ı�1.1� j�j//eix�� d�; x 2 R2:

These smooth radial multipliers were used extensively in Section 7. Córdoba [1979] proved the bound

kPıf kp . .log 1=ı/j
1
2
� 1
p
j
kf kp;

3
4
� p � 4:

In fact the same bound is implicitly proved in Section 7 in a more refined form, but only in the open
range p 2

�
3
4
; 4
�

with weak-type analogues at the endpoints. More precisely we have discretized Pı into
a sum of pieces fPı;j gj2J , where each Pı;j is a smooth projection onto an annular box of width ı and
length

p
ı, pointing along one of N equispaced directions �j . Then it follows from the considerations in

Section 7 that
kfPı;jf gkLp.R2I`2J /

. log.1=ı/
1
2
� 1
p kf kp; 2 < p < 4;

kfPı;jf 1F gkL4.R2I`2J / . log.1=ı/
1
4 kf k1jF j

1
4 :

(8.5)

Obviously one gets the same bound by duality for 4
3
< p < 2, while the L2-bound is trivial. Now these

estimates imply Córdoba’s estimate for Pı in the open range
�
3
4
; 4
�

by the decoupling inequality (7.10),
also due to Córdoba. On the other hand Córdoba’s estimate is sharp. Indeed one uses the same rescaling
and modulation arguments as in the previous subsection in order to deduce a vector-valued inequality for
smooth averages starting by Córdoba’s estimate. Testing this vector-valued estimate against the rectangles
of the Besicovitch construction proves the familiar lower bound for Pı and thus also shows the optimality
of the estimates in (8.5). We omit the details.

8.6. Lower bounds for the conical square function. We conclude this section with a simple example
that provides a lower bound for the operator norm of the conical square function kC!.f / W `2!k of
Theorem J and the smooth conical square function kC ı! W `

2
!k of Theorem A. The considerations in this

subsection also rely on the Besicovitch construction so we adopt again the notation of Section 8.1 for the
rectangles fRj W 1� j �N g and their union E. Let HCj denote the frequency projection in the half-space
f� 2 R2 W � � vj > 0g, where vj WD exp.2�ij=N /. We begin by observing that

HCj f �H
C
jC1f D CjPCf �CjP�f; (8.7)

where PC; P� denote the rough frequency projections in the upper and lower half-space respectively and
Cvj is the multiplier associated with the cone bordered by vj ; vjC1. Since HCj is a linear combination of
the identity with the usual directional Hilbert transform Hj along vj we conclude that� NX

jD1

j.HjC1�Hj /f j
2

�1
2

p

. kfCj g W Lp.R2/! Lp.R2I `2j /kkf kp; 2� p < 4:
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Now note that for each fixed 1� k �N we have

1QRk
X
j

.Hj �HjC1/1Rj D 1QRkHk1Rk & 1QRk (8.8)

if zRk is a sufficiently large translation of Rk in the positive direction vk . Thusˇ̌̌̌Z
1S

k
QRk

NX
jD1

.HjC1�Hj /1Rj

ˇ̌̌̌
&
ˇ̌̌̌X
k

Z
QRk

1QRk

ˇ̌̌̌
' 1:

On the other hand the left-hand side of the display above is bounded by a constant multiple of

kfCj g W L
p.R2/! Lp.R2I `2j /k

�X
j

12Rj

�1
2

p0
. kCV W Lp.R2/! Lp.R2I `2/k.logN/

1
2
� 1
p0

for all 2� p < 4. We thus conclude that

kfCj g W L
p.R2/! Lp.R2I `2/k& .logN/

1
2
� 1
p ; 2� p < 4:

We explain how this counterexample can be modified to get a lower square function estimate for
the smooth cone multipliers C ı! from (5.1) matching the upper bound of Theorem A. For t 2 R write
vtj WD exp.2�i.jCt /=N / and letH t

j andH t;C
j be the directional Hilbert transform and analytic projection

along vtj , respectively. Let ı > 0 be a small parameter to be chosen later and for each 1� j �N let !j
be an interval of size ıN�1 centered around 2�j=N. Arguing as in (8.7),

C ı!jPCf �C
ı
!j
P�f D �

Z
N jt j<ı

˛

�
Nt

ı

�
.H

t;C
j f �H

t;C
jC1f / dt

for a suitable nonnegative averaging function ˛ which equals 1 on
�
�
1
4
; 1
4

�
. Now, if zRk is again a

sufficiently large translation of Rk in the positive direction vk and ı is chosen sufficiently small depending
only on the translation amount, the analogue of (8.8) is

1QRk inf
N jt j<ı

NX
jD1

.H t
j �H

t
jC1/1Rj D 1QRk inf

N jt j<ı
H t
kŒ1Rk �& 1QRk :

The lower bound for kfC!j g W L
p.R2/! Lp.R2I `2j /k then follows exactly as in the previous case.
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