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A CHARACTERIZATION OF THE RAZAK–JACELON ALGEBRA

NORIO NAWATA

Combining Elliott, Gong, Lin and Niu’s result and Castillejos and Evington’s result, we see that if A is
a simple separable nuclear monotracial C�-algebra, then A˝W is isomorphic to W , where W is the
Razak–Jacelon algebra. In this paper, we give another proof of this. In particular, we show that if D
is a simple separable nuclear monotracial M21-stable C�-algebra which is KK-equivalent to f0g, then
D is isomorphic to W without considering tracial approximations of C�-algebras with finite nuclear
dimension. Our proof is based on Matui and Sato’s technique, Schafhauser’s idea in his proof of the
Tikuisis–White–Winter theorem and properties of Kirchberg’s central sequence C�-algebra F.D/ of D.
Note that some results for F.D/ are based on Elliott, Gong, Lin and Niu’s stable uniqueness theorem.
Also, we characterize W by using properties of F.W/. Indeed, we show that a simple separable nuclear
monotracial C�-algebra D is isomorphic to W if and only if D satisfies the following properties:

(i) For any � 2 Œ0; 1�, there exists a projection p in F.D/ such that �D;!.p/D � .
(ii) If p and q are projections in F.D/ such that 0< �D;!.p/D �D;!.q/, then p is Murray–von Neumann

equivalent to q.
(iii) There exists an injective homomorphism from D to W .

1. Introduction

The Razak–Jacelon algebra W is a certain simple separable nuclear monotracial C�-algebra which is
KK-equivalent to f0g. Note that such a C�-algebra must be stably projectionless; that is, W˝Mn.C/ has
no nonzero projections for any n 2N. In particular, every stably projectionless C�-algebra is nonunital.
Jacelon [2013] constructed W as an inductive limit C�-algebra of Razak’s building blocks [2002]. We
can regard W as a stably finite analogue of the Cuntz algebra O2. In particular, W is expected to play
a central role in the classification theory of simple separable nuclear stably projectionless C�-algebras
as O2 played in the classification theory of Kirchberg algebras; see, for example, [Rørdam 2002; Gabe
2020]. We refer the reader to [Elliott et al. 2020a; 2020b; Gong and Lin 2020] for recent progress in the
classification of simple separable nuclear stably projectionless C�-algebras. Note that there exist many
interesting examples of simple stably projectionless C�-algebras. See, for example, [Connes 1982; Elliott
1996; Kishimoto 1999; Kishimoto and Kumjian 1996; 1997; Robert 2012].

Combining Elliott, Gong, Lin and Niu’s result [Elliott et al. 2020a] and Castillejos and Evington’s
result [2020] (see also [Castillejos et al. 2021]), we see that if A is a simple separable nuclear monotracial
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C�-algebra, then A˝W is isomorphic to W . This can be considered as a Kirchberg–Phillips-type
absorption theorem [2000] for W . In this paper, we give another proof of this. In our proof, we do not
consider tracial approximations of C�-algebras with finite nuclear dimension. Also, we mainly consider
abstract settings and do not use any classification theorem based on inductive limit structures of W other
than Razak’s classification theorem [2002]. (Actually, we need Razak’s classification theorem only for
W˝M21 ŠW .) We obtain a Kirchberg–Phillips-type absorption theorem for W as a corollary of the
following theorem.

Theorem 6.1. Let D be a simple separable nuclear monotracial M21-stable C�-algebra which is
KK-equivalent to f0g. Then D is isomorphic to W .

Our proof of the theorem above is based on Matui and Sato’s technique [2012; 2014a; 2014b],
Schafhauser’s idea [2020a] (see also [Schafhauser 2020b]) in his proof of the Tikuisis–White–Winter
theorem [Tikuisis et al. 2017] and properties of Kirchberg’s central sequence C�-algebra F.D/ of D.

Matui and Sato’s technique enables us to show that certain (relative) central sequence C�-algebras
have strict comparison. Note that a key concept in their technique is property (SI). This concept was
introduced in [Sato 2009; 2010].

Borrowing Schafhauser’s idea, we show that if D is a simple separable nuclear monotracial (M21-stable)
C�-algebra which is KK-equivalent to f0g, then there exist “trace-preserving” homomorphisms from D
to ultrapowers B! of certain C�-algebras B. Combining this and a uniqueness result for approximate
homomorphisms from D, we obtain an existence result, that is, existence of homomorphisms from D to
certain C�-algebras. Schafhauser’s arguments are based on extension theory (or KK-theory) and Elliott
and Kucerovsky’s result [2001] with a correction by Gabe [2016]. Hence Schafhauser’s arguments are
suitable for our purpose, that is, a study of C�-algebras which are KK-equivalent to f0g.

We studied properties of F.W/ in [Nawata 2019; 2021] by using the stable uniqueness theorem
in [Elliott et al. 2020a]. In particular, we showed that F.W/ has many projections and satisfies a
certain comparison theory for projections. By these properties and Connes’ 2� 2 matrix trick, we can
show that every trace-preserving endomorphism of W is approximately inner. (Note that Jacelon [2013,
Corollary 4.6] showed this result as an application of Razak’s results [2002].) This argument is a traditional
argument in the theory of operator algebras; see [Connes 1976]. In this paper, we remark that arguments
in [Nawata 2019; 2021] work for a simple separable nuclear monotracial M21-stable C�-algebra D
which is KK-equivalent to f0g. Also, we characterize W by using these properties of F.W/. Indeed, we
show the following theorem.

Theorem 6.4. Let D be a simple separable nuclear monotracial C�-algebra. Then D is isomorphic to W
if and only if D satisfies the following properties:

(i) For any � 2 Œ0; 1�, there exists a projection p in F.D/ such that �D;!.p/D � .

(ii) If p and q are projections in F.D/ such that 0<�D;!.p/D �D;!.q/, then p is Murray–von Neumann
equivalent to q.

(iii) There exists an injective homomorphism from D to W .
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This paper is organized as follows. In Section 2, we collect notation, definitions and some results. In
particular, we recall Matui and Sato’s technique. In Section 3, we introduce the property W, which is a key
property for uniqueness results. Also, we remark that arguments in [Nawata 2019; 2021] work for more
general settings. In Section 4, we show uniqueness results. First, we show that if D has property W, then
every trace-preserving endomorphism of D is approximately inner. Secondly, we consider a uniqueness
theorem for approximate homomorphisms from a simple separable nuclear monotracial M21-stable
C�-algebra D which is KK-equivalent to f0g for an existence result in Section 5. In Section 5, we show
an existence result by borrowing Schafhauser’s idea. In Section 6, we show the main results in this paper.

2. Preliminaries

In this section we shall collect notation, definitions and some results. We refer the reader to [Blackadar
2006; Pedersen 1979] for basics of operator algebras.

For a C�-algebra A, we denote by AC the sets of positive elements of A and by A� the unitization
algebra of A. Note that if A is unital, then ADA�. For a; b 2AC, we say that a is Murray–von Neumann
equivalent to b, written a � b, if there exists an element z in A such that z�z D a and zz� D b. Note
that � is an equivalence relation by [Pedersen 1998, Theorem 3.5]. For a; b 2 A, we denote by Œa; b�
the commutator ab� ba. For a subset F of A and " > 0, we say that a completely positive (c.p.) map
' W A! B is .F; "/-multiplicative if

k'.ab/�'.a/'.b/k< "

for any a; b 2 F. Let Z and M21 denote the Jiang–Su algebra and the CAR algebra, respectively. We
say a C�-algebra A is monotracial if A has a unique tracial state and no unbounded traces. In the case
where A is monotracial, we denote by �A the unique tracial state on A unless otherwise specified.

2A. Razak–Jacelon algebra W . The Razak–Jacelon algebra W is a certain simple separable nuclear
monotracial C�-algebra which is KK-equivalent to f0g. In [Jacelon 2013], W is constructed as an
inductive limit C�-algebra of Razak’s building blocks. By Razak’s classification theorem [2002], W is
M21-stable, and hence W is Z-stable. In this paper, we do not assume any classification theorem for W
other than Razak’s classification theorem.

2B. Kirchberg’s central sequence C�-algebras. We shall recall the definition of Kirchberg’s central
sequence C�-algebras [2006]. Fix a free ultrafilter ! on N. For a C�-algebra B, put

c!.B/ WD
˚
fxngn2N 2 `

1.N;B/ j lim
n!!
kxnk D 0

	
; B! WD `1.N;B/=c!.B/:

We denote by .xn/n a representative of an element in B!. Let A be a C�-subalgebra of B!. Set

Ann.A;B!/ WD f.xn/n 2 B! \A0 j .xn/naD 0 for any a 2 Ag:

Then Ann.A;B!/ is a closed ideal of B! \A0. Define a .relative/ central sequence C�-algebra F.A;B/
of A� B! by

F.A;B/ WD B! \A0=Ann.A;B!/:
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We identify B with the C�-subalgebra of B! consisting of equivalence classes of constant sequences.
In the case A D B, we denote F.B;B/ by F.B/ and call it the central sequence C�-algebra of B . If
A is �-unital, then F.A;B/ is unital by [Kirchberg 2006, Proposition 1.9]. Indeed, let s D .sn/n be
a strictly positive element in A � B!. Since we have limk!1 s1=ks D s, taking a suitable sequence
fk.n/gn2N�N, we obtain s0D .s1=k.n/n /n 2B

! such that s0sD s. Then it is easy to see that s0 2B!\A0

and Œs0�D 1 in F.A;B/. Note that the inclusion B � B� induces an isomorphism from F.A;B/ onto
F.A;B�/ because we have Œxs0�D Œx� in F.A;B�/ for any x 2 .B�/! \A0.

Let �B be a tracial state on B. Define �B;! W B! ! C by �B;!..xn/n/ D limn!! �B.xn/ for any
.xn/n 2 B

!. Since ! is an ultrafilter, it is easy to see that �B;! is a well-defined tracial state on B!. The
following proposition is a relative version of [Nawata 2019, Proposition 2.1].

Proposition 2.1. Let B be a C�-algebra with a faithful tracial state �B , and let A be a C�-subalgebra
of B!. Assume that �B;! jA is a state. Then �B;!..xn/n/D 0 for any .xn/n 2 Ann.A;B!/.

Proof. Let fh�g�2ƒ be an approximate unit for A. Since �B;! jA is a state, we have lim �B;!.h�/D 1.
The rest of proof is same as the proof of [Nawata 2019, Proposition 2.1]. �

By the proposition above, if �B;! jA is a state, then �B;! induces a tracial state on F.A;B/. We denote
it by the same symbol �B;! for simplicity.

2C. Invertible elements in unitization algebras. Let GL.A�/ denote the set of invertible elements in A�.
The following proposition is trivial if 1A� D 1B� .

Proposition 2.2. Let A� B be an inclusion of C�-algebras. Then GL.A�/� GL.B�/.

Proof. Let x 2 GL.A�/. There exists "0 > 0 such that for any 0� " < "0 we have xC "1A� 2 GL.A�/
because GL.A�/ is open. Since SpA.x/[ f0g D SpB.x/[ f0g, we have xC "1B� 2 GL.B�/ for any
0 < " < "0. Therefore x 2 GL.B�/. �

The following corollary is an immediate consequence of the proposition above.

Corollary 2.3. Let fAngn2N be a sequence of C�-algebras with An � AnC1, and let AD
S1
nD1An. If

An � GL.A�n / for any n 2 N, then A� GL.A�/.

The following proposition is well known if B is unital. See, for example, the proof of [Schafhauser
2020a, Proposition 3.2].

Proposition 2.4. Let B be a C�-algebra with B � GL.B�/. Then B! � GL..B!/�/.

Proof. We shall show only the case where B is nonunital. Let .xn/n 2 B!. Because of B � GL.B�/,
there exists .zn/n 2 .B�/! such that zn 2 GL.B�/ for any n 2 N and .xn/n D .zn/n in .B�/!. For
any n 2 N, put un WD zn.z�nzn/

�1=2. Then un is a unitary element and zn D un.z�nzn/
1=2. Note that we

have .xn/nD .un/n.x�nxn/
1=2
n . For any n2N, there exist yn 2B and �n 2C such that unD ynC�n1B�

and j�nj D 1 because un is a unitary element in B�. Since ! is an ultrafilter, there exists �0 2 C such
that limn!! �n D �0. Hence

.un/n D .yn/nC�01.B!/� 2 .B
!/�:
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Since
..yn/nC�01.B!/�/..x

�
nxn/

1=2
n C "1.B!/�/! .xn/n

as "! 0, we have .xn/n 2 GL..B!/�/. �

Note that if B has almost stable rank 1 (see [Robert 2016] for the definition), then B �GL.B�/. Also,
if B is unital, then B ˝K � GL..B˝K/�/, where K is the C�-algebra of compact operators on an
infinite-dimensional separable Hilbert space.

2D. Matui and Sato’s technique. We shall review Matui and Sato’s technique [2012; 2014a; 2014b].
Let B be a monotracial C�-algebra, and let A be a simple separable nuclear monotracial C�-subalgebra
of B!. Assume that �B is faithful and �B;! jA is a state. Consider the Gelfand–Naimark–Segal (GNS)
representation ��B of B associated with �B , and put

M WD `1.N; ��B .B/
00/=
˚
fxngn2N j Q�B;!..x

�
nxn/n/ WD lim

n!!
Q�B.x

�
nxn/D 0

	
;

where Q�B is the unique normal extension of �B on ��B .B/
00. Note that M is a von Neumann algebraic

ultrapower of ��B .B/
00 and Q�B;! is a faithful normal tracial state on M. Since B is monotracial, ��B .B/

00

is a finite factor, and hence M is also a finite factor. Define a homomorphism % from B! to M by
%..xn/n/ D .��B .xn//n. Kaplansky’s density theorem implies that % is surjective. Moreover, [Matui
and Sato 2014a, Theorem 3.1] (see also [Kirchberg and Rørdam 2014, Theorem 3.3]) implies that the
restriction % on B! \A0 is a surjective homomorphism onto M \ %.A/0.

Proposition 2.5. With notation as above, M \ %.A/0 is a finite factor.

Proof. Note that Q�B;! is the unique tracial state on M since M is a finite factor. It is enough to show that
M \ %.A/0 is monotracial. Let � be a tracial state on M \ %.A/0. Since we assume that �B;! jA is a state,
we see that if A is unital, then %.1A/D 1M . Hence % can be extended to a unital homomorphism %� from
A� to M, and M \ %.A/0 DM \ %�.A�/0. By [Bosa et al. 2019, Lemma 3.21], there exists a positive
element a in A� such that Q�B;!.%�.a//D 1 and �.x/D Q�B;!.%�.a/x/ for any x 2M \ %.A/0. Since A
is monotracial,

�.x/D Q�B;!.%
�.a/x/D Q�B;!.%

�.a// Q�B;!.x/D Q�B;!.x/:

Indeed, let x0 be a positive contraction in M \%.A/0. For any a 2A, define � 0.a/ WD Q�B;!.%.a/x0/. Then
� 0 is a tracial positive linear functional on A. Since A is monotracial and �B;! jA is a tracial state on A,
there exists a positive number t such that � 0.a/D t �B;!.a/ for any a 2 A. Note that if fhngn2N is an
approximate unit for A, then t D limn!1 � 0.hn/. On the other hand, we have

j Q�B;!.x0/� �
0.hn/j D jQ�B;!..1� %.hn//x0/j D jQ�B;!..1� %.hn//

1=2x0.1� %.hn//
1=2/j

� jQ�B;!.1� %.hn//j D j1� �B;!.hn/j ! 0

as n!1. Hence t D Q�B;!.x0/, and Q�B;!.%.a/x0/D Q�B;!.%.a// Q�B;!.x0/ for any a 2 A. It is easy to
see that this implies Q�B;!.%�.a/x/D Q�B;!.%�.a// Q�B;!.x/ for any a 2A� and x 2M \%.A/0. Therefore
we have �.x/D Q�B;!.x/ for any x 2M \ %.A/0. Consequently, M \ %.A/0 is monotracial. �
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For a; b 2AC, we say that a is Cuntz smaller than b, written a- b, if there exists a sequence fxngn2N

of A such that kx�nbxn�ak! 0. A monotracial C�-algebra B is said to have strict comparison if, for any
k 2N, a; b 2Mk.B/C with d�B˝Trk

.a/<d�B˝Trk
.b/ implies a- b, where Trk is the unnormalized trace

onMk.C/ and d�B˝Trk
.a/D limn!1 �B˝Trk.a1=n/. Using [Nawata 2013, Lemma 5.7], essentially the

same proofs as [Matui and Sato 2012, Theorem 1.1; 2014a, Lemma 3.2] show the following proposition.
See also the proof of [Nawata 2021, Lemma 3.6].

Proposition 2.6. Let B be a monotracial C�-algebra, and let A be a simple separable non-type-I
nuclear monotracial C�-subalgebra of B!. Assume that �B is faithful, �B;! jA is a state and B has strict
comparison. Then B has property (SI) relative to A; that is, for any positive contractions a and b in
B! \A0 satisfying

�B;!.a/D 0 and inf
m2N

�B;!.b
m/ > 0;

there exists an element s in B! \A0 such that s�s D a and bs D s.

By Proposition 2.1, % induces a surjective homomorphism from F.A;B/ to M \ %.A/0. We denote
it by the same symbol % for simplicity. Using Propositions 2.5 and 2.6, essentially the same proofs as
[Matui and Sato 2014a, Proposition 3.3; 2014b, Proposition 4.8] show the following proposition. See
also the proof of [Nawata 2021, Proposition 3.8].

Proposition 2.7. Let B be a monotracial C�-algebra, and let A be a simple separable non-type-I
nuclear monotracial C�-subalgebra of B!. Assume that �B is faithful, �B;! jA is a state and B has strict
comparison. Then F.A;B/ is monotracial and has strict comparison. Furthermore, if a and b are positive
elements in F.A;B/ satisfying d�B;!

.a/ < d�B;!
.b/, then there exists an element r in F.A;B/ such that

r�br D a.

3. Property W

In this section we shall introduce the property W, which is a key property in Section 4.

Definition 3.1. LetD be a simple separable nuclear monotracial C�-algebra. We say thatD has property W
if F.D/ satisfies the following properties:

(i) For any � 2 Œ0; 1�, there exists a projection p in F.D/ such that �D;!.p/D � .

(ii) If p and q are projections in F.D/ such that 0<�D;!.p/D �D;!.q/, then p is Murray–von Neumann
equivalent to q.

By arguments in [Nawata 2019; 2021], we see that if D is a simple separable nuclear monotracial
M21-stable C�-algebra which is KK-equivalent to f0g, then D has property W. We shall give a sketch of
a proof for reader’s convenience and show a slight generalization (or a relative version).

In this section, we assume that D is a simple separable nuclear monotracial M21-stable C�-algebra
which is KK-equivalent to f0g and B is a simple monotracial C�-algebra with strict comparison and
B � GL.B�/. Let ˆ be a homomorphism from D to B! such that �D D �B;! ı .̂ By the Choi–
Effros lifting theorem, there exists a sequence fˆngn2N of contractive c.p. maps from D to B such that
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ˆ.x/D .ˆn.x//n for any x 2 D. Since we assume �D D �B;! ı ,̂ we have �B;! jˆ.D/ is a state. Hence
�B;! is the unique tracial state on F.ˆ.D/; B/ by Proposition 2.7. The following proposition is analogous
to [Nawata 2019, Proposition 4.2; 2021, Proposition 2.6].

Proposition 3.2. (i) For any N 2N, there exists a unital homomorphism from M2N .C/ to F.ˆ.D/;B/.

(ii) For any � 2 Œ0; 1�, there exists a projection p in F.ˆ.D/;B/ such that �B;!.p/D � .

(iii) Let h be a positive element in F.ˆ.D/;B/ such that d�B;!
.h/ > 0. For any � 2 Œ0; d�B;!

.h//, there
exists a nonzero projection p in hF.ˆ.D/;B/h such that �B;!.p/D � .

Proof. (i) Since D is isomorphic to D˝M21 D D˝
N
n2NM2N .C/, an argument similar to that in the

proof of Proposition 4.2 in [Nawata 2019], henceforth abbreviated [N19], shows that there exists a family
f.eij;m/mg

2N

i;jD1 of contractions in D! \D0 such that� 2NX
`D1

e``;mx

�
m

D x and .eij;mekl;mx/m D .ıjkeil;mx/m

for any 1� i; j; k; l � 2N and x 2 D. Note that we have

lim
m!!

k.Œˆn.eij;m/; ˆn.x/�/nk D 0; lim
m!!





� 2
NX

`D1

ˆn.e``;m/ˆn.x/�ˆn.x/

�
n





D 0
and

lim
m!!

k..ˆn.eij;m/ˆn.ekl;m/� ıjkˆn.eil;m//ˆn.x//nk D 0

for any 1� i; j; k; l � 2N and x 2D. Hence, for any finite subset F �D and " > 0, there exists a family
of f.ˆn.eij;.F;"///ng2

N

i;jD1 of contractions in B! such that

lim
n!!
kŒˆn.eij;.F;"//; ˆn.x/�k< "; lim

n!!





 2
NX

`D1

ˆn.e``;.F;"//ˆn.x/�ˆn.x/





< "
and

lim
n!!
k.ˆn.eij;.F;"//ˆn.ekl;.F;"//� ıjkˆn.eil;.F;"///ˆn.x/k< "

for any 1 � i; j; k; l � 2N and x 2 F. Let fFmgm2N be an increasing sequence of finite subsets in D
such that D D

S
m2N Fm. We can find a sequence fXmgm2N of elements in ! such that XmC1 � Xm,T

m2NXm D∅, and, for any n 2Xm,

kŒˆn.eij;.Fm;1=m//; ˆn.x/�k<
1

m
;





 2
NX

`D1

ˆn.e``;.Fm;1=m//ˆn.x/�ˆn.x/





< 1

m

and
k.ˆn.eij;.Fm;1=m//ˆn.ekl;.Fm;1=m//� ıjkˆn.eil;.Fm;1=m///ˆn.x/k<

1

m

for any 1� i; j; k; l � 2N and x 2 Fm. For any 1� i; j � 2N, put

Eij;n WD

�
0 if n …X1;
ˆn.eij;.Fm;1=m// if n 2Xm nXmC1 .m 2 N/:
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Then we have .Eij;n/n 2 B! \ˆ.D/0,
2NX
`D1

Œ.E``;n/n�D 1 and Œ.Eij;n/n�Œ.Ekl;n/n�D ıjkŒ.Eil;n/n�

in F.ˆ.D/;B/ for any 1� i; j; k; l � 2N. Therefore there exists a unital homomorphism from M2N .C/

to F.ˆ.D/;B/.

(ii) Since D is isomorphic to D˝M21 D D˝
N
n2NM21 , an argument similar to that in the proof

of [N19, Proposition 4.2] shows that there exists a positive contraction .pm/m in D! \ D such that
..p2m � pm/x/m D 0 for any x 2 D and �D;!..pm/m/ D � . By an argument similar to that above, we
obtain a projection p in F.ˆ.D/;B/ such that �B;!.p/D � .

(iii) Using Proposition 2.7 instead of [N19, Proposition 4.1], we obtain the conclusion by the same
argument as in the proof of [N19, Proposition 4.2]. �

The proposition above and the same arguments as in [N19, Section 4] show the following corollary.

Corollary 3.3 ((cf. [N19, Proposition 4.8])). Let p and q be projections in F.ˆ.D/;B/ such that
�B;!.p/ < 1. Then p and q are Murray–von Neumann equivalent if and only if p and q are unitarily
equivalent.

Since we assume B � GL.B�/, we obtain the following proposition by the same argument as in the
proof of [N19, Proposition 4.9].

Proposition 3.4. Let u be a unitary element in F.ˆ.D/;B/. Then there exists a unitary element w in
.B�/! \ˆ.D/0 such that uD Œw�.

There exists a homomorphism � from F.ˆ.D/;B/˝D to B! such that

�.Œ.xn/n�˝ a/D .xnˆn.a//n

for any Œ.xn/n� 2 F.ˆ.D/;B/ and a 2 D. For a projection p in F.ˆ.D/;B/, put

B!p WD �.p˝ s/B
!�.p˝ s/;

where s is a strictly positive element in D. Define a homomorphism �p from D toB!p by �p.a/ WD�.p˝a/
for any a 2 D. Since B has strict comparison, we see that if p is a projection in F.ˆ.D/;B/ such that
�B;!.p/>0, then �p is .L;N /-full for some mapsL andN by [N19, Lemma 3.5 and Proposition 3.7]. (We
refer the reader to [N19, Section 3] for details of the .L;N /-fullness.) Therefore [N19, Proposition 3.3]
implies the following theorem. We may regard this theorem as a variant of Elliott, Gong, Lin and
Niu’s stable uniqueness theorem [Elliott et al. 2020a, Corollary 3.15]; see also [Elliott and Niu 2016,
Corollary 8.16]. Note that [N19, Proposition 3.3] is also based on the results in [Elliott and Kucerovsky
2001; Gabe 2016; Dadarlat and Eilers 2001; 2002].

Theorem 3.5. Let � be a compact metrizable space. For any finite subsets F1 � C.�/, F2 � D and
" > 0, there exist finite subsets G1 � C.�/, G2 � D, m 2 N and ı > 0 such that the following holds. Let
p be a projection in F.ˆ.D/;B/ such that �B;!.p/ > 0. For any contractive (G1ˇG2; ı)-multiplicative
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maps  1;  2 WC.�/˝D!B!p , there exist a unitary element u inMm2C1.B
!
p /
� and z1; z2; : : : ; zm 2�

such that



u. 1.f ˝ b/˚
m‚ …„ ƒ

mM
kD1

f .zk/�.p˝ b/˚ � � �˚

mM
kD1

f .zk/�.p˝ b//u
�

� 2.f ˝ b/˚

m‚ …„ ƒ
mM
kD1

f .zk/�.p˝ b/˚ � � �˚

mM
kD1

f .zk/�.p˝ b/





< "
for any f 2 F1 and b 2 F2.

Using Proposition 2.7, Proposition 3.2 and Corollary 3.3 instead of Propositions 4.1, 4.2, and 4.8
of [N19], the same proof as [N19, Lemma 5.1] shows the following lemma.

Lemma 3.6. Let� be a compact metrizable space, and letF be a finite subset of C.�/ and ">0. Suppose
that  1 and  2 are unital homomorphisms from C.�/ to F.ˆ.D/;B/ such that �B;! ı 1 D �B;! ı 2:
Then there exist a projection p 2 F.ˆ.D/;B/, .F; "/-multiplicative unital c.p. maps  01 and  02 from
C.�/ to pF.ˆ.D/;B/p, a unital homomorphism � from C.�/ to .1 � p/F.ˆ.D/;B/.1 � p/ with
finite-dimensional range and a unitary element u 2 F.ˆ.D/;B/ such that

0 < �B;!.p/ < "; k 1.f /� . 
0
1.f /C �.f //k< "; k 2.f /�u. 

0
2.f /C �.f //u

�
k< "

for any f 2 F.

The following lemma is essentially the same as [N19, Theorem 5.2] and [Nawata 2021, Theorem 5.2].

Lemma 3.7. Let � be a compact metrizable space, and let F1 be a finite subset of C.�/ and F2 a
finite subset of D, and let " > 0. Then there exist mutually orthogonal positive elements h1; h2; : : : ; hl in
C.�/ of norm 1 such that the following holds. If  1 and  2 are unital homomorphisms from C.�/ to
F.ˆ.D/;B/ such that

�B;!. 1.hi // > 0; 1� 8i � l; and �B;! ı 1 D �B;! ı 2;

then there exists a unitary element u in .B!/� such that

ku�. 1.f /˝ a/u
�
� �. 2.f /˝ a/k< "

for any f 2 F1, a 2 F2.

Proof. Take positive elements h1;h2; : : : ;hl inC.�/ in the same way as in the proof of [N19, Theorem 5.2].
Let  1 and  2 be unital homomorphisms from C.�/ to F.ˆ.D/;B/ such that �B;!. 1.hi // > 0 for any
1� i � l and �B;! ı 1 D �B;! ı 2. Define homomorphisms ‰1 and ‰2 from C.�/˝D to B! by

‰1 WD � ı . 1˝ idD/ and ‰2 WD � ı . 2˝ idD/:

Note that there exists � > 0 such that �B;!. 1.hi // � � for any 1 � i � l . Using Proposition 3.4,
Theorem 3.5 and Lemma 3.6 instead of Corollaries 4.10, 3.8 and Lemma 5.1 in [N19], the same argument
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as in the proof of [N19, Theorem 5.2] shows that there exists a unitary element u in .B!/� such that

ku‰1.f ˝ a/u
�
�‰2.f ˝ a/k< "

for any f 2 F1, a 2 F2. Therefore we obtain the conclusion. �

The following theorem is a generalization of [N19, Theorem 5.3]. See also [N19, Theorem 5.3].

Theorem 3.8. Let N1 and N2 be normal elements in F.ˆ.D/;B/ such that Sp.N1/ D Sp.N2/ and
�B;!.f .N1// > 0 for any f 2 C.Sp.N1//C n f0g. Then there exists a unitary element u in F.ˆ.D/;B/
such that uN1u� DN2 if and only if �B;!.f .N1//D �B;!.f .N2// for any f 2 C.Sp.N1//.

Proof. It is enough to show the “if” part because the “only if” part is obvious. Let� WDSp.N1/DSp.N2/,
and define unital homomorphisms  1 and  2 from C.�/ to F.ˆ.D/;B/ by  1.f / WD f .N1/ and
 2.f / WD f .N2/ for any f 2 C.�/. By the Choi–Effros lifting theorem, there exist sequences of
unital c.p. maps f 1;ngn2N and f 2;ngn2N from C.�/ to B� such that  1.f / D Œ. 1;n.f //n� and
 2.f / D Œ. 2;n.f //n� for any f 2 C.�/. Let F1 WD f1; �g � C.�/, where � is the identity function
on �, that is, �.z/ D z for any z 2 �, and let fF2;mgm2N be an increasing sequence of finite subsets
in D such that DD

S
m2N F2;m. For any m 2 N, applying Lemma 3.7 to F1, F2;m and 1=m, we obtain

mutually orthogonal positive elements h1;m, h2;m, . . . , hl.m/;m in C.�/ of norm 1. Since we have

�B;!. 1.hi;m// > 0; 1� 8i � l.m/; and �B;! ı 1 D �B;! ı 2

by the assumption, Lemma 3.7 implies that there exists a unitary element .um;n/n in .B!/� such that

k.um;n/n�. 1.f /˝ a/.u
�
m;n/n� �. 2.f /˝ a/k<

1

m

for any f 2 F1, a 2 F2;m. By the definition of �, we have

lim
n!!
kum;n 1;n.f /ˆn.a/u

�
m;n� 2;n.f /ˆn.a/k<

1

m

for any f 2 F1, a 2 F2;m. Therefore we inductively obtain a decreasing sequence fXmgm2N of elements
in ! such that

T
m2NXm D∅, and, for any n 2Xm,

kum;n 1;n.f /ˆn.a/u
�
m;n� 2;n.f /ˆn.a/k<

1

m

for any f 2 F1, a 2 F2;m. Set

un WD

�
1 if n …X1;
um;n if n 2Xm nXmC1 .m 2 N/:

Then we have

lim
n!!
kunˆn.a/u

�
n�ˆn.a/k D 0; lim

n!!
kun 1;n.�/ˆn.a/u

�
n� 2;n.�/ˆn.a/k D 0

for any a 2 D. Therefore, .un/n 2 .B�/! \ˆ.D/0 and Œ.un/n�N1Œ.un/n�� DN2 in F.ˆ.D/;B/. Since
Œ.un/n� is a unitary element in F.ˆ.D/;B/, we obtain the conclusion. �

The following corollary is an immediate consequence of the theorem above.
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Corollary 3.9 (cf. [Nawata 2021, Corollary 5.4]). Let p and q be projections in F.ˆ.D/;B/ such that
0 < �B!.p/ < 1. Then p and q are unitarily equivalent if and only if �B;!.p/D �B;!.q/.

The corollary above and the same argument as in the proof of [Nawata 2021, Corollary 5.5] show the
following theorem.

Theorem 3.10. Let p and q be projections in F.ˆ.D/;B/ such that 0 < �B;!.p/� 1. Then p and q are
Murray–von Neumann equivalent if and only if �B;!.p/D �B;!.q/.

By Proposition 3.2 and applying the theorem above to B D D and ˆD idD, we obtain the following
corollary.

Corollary 3.11. Let D be a simple separable nuclear monotracial M21-stable C�-algebra which is
KK-equivalent to f0g. Then D has property W.

4. Uniqueness theorem

In this section we shall show that if D has property W, then every trace-preserving endomorphism
of D is approximately inner. Furthermore, we shall consider a uniqueness theorem for approximate
homomorphisms from a simple separable nuclear monotracial M21-stable C�-algebra D which is KK-
equivalent to f0g for an existence theorem in Section 5.

Let D be a simple separable nuclear monotracial C�-algebra, and let ' be a trace-preserving endomor-
phism of D. Define a homomorphism ˆ from D to M2.D/ by

ˆ.a/ WD

�
a 0

0 '.a/

�
for any a 2D. Since ' is trace-preserving, we see that �M2.D/;! jˆ.D/ is a state. Hence �M2.D/;! is a
tracial state on F.ˆ.D/;M2.D//. (See Proposition 2.1.) Define homomorphisms �11 and �22 from F.D/

to F.ˆ.D/;M2.D// by

�11.Œ.xn/n�/ WD

���
xn 0

0 0

��
n

�
and �22.Œ.xn/n�/ WD

���
0 0

0 '.xn/

��
n

�
for any Œ.xn/n� in F.D/. It is easy to see that �11 and �22 are well-defined. Put p WD �11.1/ and q WD �22.1/.
Note that p and q are projections in F.ˆ.D/;M2.D// and if fhngn2N is an approximate unit for D, then

p D

���
hn 0

0 0

��
n

�
and q D

���
0 0

0 '.hn/

��
n

�
:

It can be easily checked that �11 is an isomorphism from F.D/ onto pF.ˆ.D/;M2.D//p.

Lemma 4.1. Let D be a simple separable nuclear monotracial C�-algebra with property W. Then D is
M21-stable, and hence D is Z-stable.

Proof. Since D has property W, there exists a projection p in F.D/ such that �D;!.p/D 1
2

. Moreover, p
is Murray–von Neumann equivalent to 1�p. Hence there exists a unital homomorphism from M2.C/

to F.D/. By Corollary 1.13 and Proposition 4.11 in [Kirchberg 2006] (see [Blackadar et al. 1992,
Proposition 2.12] for the pioneering work), D is M21-stable. �
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The lemma above implies that if D has property W, then D has strict comparison and D�GL.D�/ by
[Rørdam 2004a; Robert 2016]. Furthermore, F.ˆ.D/;M2.D// is monotracial and has strict comparison
by Proposition 2.7. The following lemma is related to [Nawata 2021, Lemma 6.2].

Lemma 4.2. With notation as above, if D has property W, then p is Murray–von Neumann equivalent
to q in F.ˆ.D/;M2.D//.

Proof. For any m 2 N, there exists a projection qm in F.D/ such that �D;!.qm/D 1� 1=m because D
has property W. Proposition 2.7 implies that there exists a contraction rm in F.ˆ.D/;M2.D// such
that r�mprm D �22.qm/. By a diagonal argument, we see that there exist a projection q0 in F.D/ and a
contraction r inF.ˆ.D/;M2.D// such that �D;!.q0/D1 and r�prD �22.q0/. Note that �22.q0/ is Murray–
von Neumann equivalent to prr�p. There exists a projection p0 in F.D/ such that �11.p0/D prr�p
and �D;!.p0/D 1 because �11 is an isomorphism from F.D/ onto pF.ˆ.D/;M2.D//p. Since D has
property W, there exist v1 and v2 in F.D/ such that v�1v1 D 1, v1v�1 D p

0, v�2v2 D 1 and v2v�2 D q
0.

Therefore we have
pD �11.1/� �11.p

0/Dprr�p� r�pr D �22.q
0/� �22.1/D q: �

The following theorem is one of the main theorems in this section.

Theorem 4.3. Let D be a simple separable nuclear monotracial C�-algebra with property W, and let '
be a trace-preserving endomorphism of D. Then ' is approximately inner.

Proof. By Lemma 4.2, there exists a contraction V in F.ˆ.D/;M2.D// such that

V �V D

���
hn 0

0 0

��
n

�
and V V � D

���
0 0

0 '.hn/

��
n

�
;

where fhngn2N is an approximate unit for D. It can be easily checked that there exists an element .vn/n
in D! such that

V D

���
0 0

vn 0

��
n

�
;

and we have
.vnx/n D .'.x/vn/n; .v�nvnx/n D x and .vnv

�
n'.x//n D '.x/

for any x 2D. Since .vnx/n D .'.x/vn/n and .'.x/vnv�n/n D '.x/, we have .vnxv�n/n D '.x/ for any
x 2D. Because of D � GL.D�/, we may assume that vn is an invertible element in D� for any n 2 N.
(See the proof of Proposition 2.4.) For any n 2 N, let un WD vn.v�nvn/

�1=2. Then un is a unitary element
in D�. Since .v�nvnx/n D x, we have .unx/n D .vn.v�nvn/

�1=2x/n D .vnx/n for any x 2D. Therefore

'.x/D .vnxv
�
n/n D .unxv

�
n/n D .un.vnx

�/�/n D .un.unx
�/�/n D .unxu

�
n/n

for any x 2D. Consequently, ' is approximately inner. �

Let D be a simple separable nuclear monotracialM21-stable C�-algebra which isKK-equivalent to f0g.
In the rest of this section, we shall consider a uniqueness theorem for approximate homomorphisms
from D to certain C�-algebras. Let B be a simple monotracial C�-algebra with strict comparison,
B �GL.B�/ and M2.B/�GL.M2.B/�/, and let ' and  be homomorphisms from D to B! such that
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�D D �B;! ı' D �B;! ı . By the Choi–Effros lifting theorem, there exist sequences of contractive c.p.
maps 'n and  n from D to B such that '.a/D .'n.a//n and  .a/D . n.a//n for any a 2 D. Define a
homomorphism ˆ from D to M2.B/

! by

ˆ.a/ WD

��
'n.a/ 0

0  n.a/

��
n

for any a 2 D. Since �D D �B;! ı ' D �B;! ı , we know �M2.B/;! jˆ.D/ is a state. Hence �M2.B/;! is
a tracial state on F.ˆ.D/;M2.B// as above. Since D is separable, there exist elements .sn/n and .tn/n
inB! such that Œ.sn/n�D1 in F.'.D/;B/ and Œ.tn/n�D1 in F. .D/;B/ by arguments in Section 2B. Put

p WD

���
sn 0

0 0

��
n

�
and q WD

���
0 0

0 tn

��
n

�
in F.ˆ.D/;M2.B//. It is easy to see that p and q are projections in F.ˆ.D/;M2.B// such that
�M2.B/;!.p/D �M2.B/;!.q/D

1
2

. Theorem 3.10 implies that p is Murray–von Neumann equivalent to q.
Therefore we obtain the following theorem by an argument similar to that in the proof of Theorem 4.3.

Theorem 4.4. Let D be a simple separable nuclear monotracial M21-stable C�-algebra which is
KK-equivalent to f0g and B a simple monotracial C�-algebra with strict comparison, B � GL.B�/ and
M2.B/�GL.M2.B/�/. If ' and are homomorphisms from D toB! such that �DD �B;!ı'D �B;!ı ,
then there exists a unitary element u in .B�/! such that '.a/D u .a/u� for any a 2 D.

The following corollary is an immediate consequence of the theorem above.

Corollary 4.5. Let D be a simple separable nuclear monotracial M21-stable C�-algebra which is
KK-equivalent to f0g and B a simple monotracial C�-algebra with strict comparison, B � GL.B�/
and M2.B/ � GL.M2.B/�/. If ' and  are trace-preserving homomorphisms from D to B, then ' is
approximately unitarily equivalent to  .

Remark 4.6. If B is a simple separable exact monotracial Z-stable C�-algebra, then B has strict
comparison, B � GL.B�/ and M2.B/� GL.M2.B/�/ by [Rørdam 2004a; Robert 2016].

The following corollary is also an immediate consequence of Theorem 4.4.

Corollary 4.7. Let D be a simple separable nuclear monotracial M21-stable C�-algebra which is
KK-equivalent to f0g and B a simple monotracial C�-algebra with strict comparison, B � GL.B�/ and
M2.B/ � GL.M2.B/�/. For any finite subset F � D and " > 0, there exist a finite subset G � D and
ı > 0 such that the following holds. If ' and  are .G; ı/-multiplicative maps from D to B such that

j�B.'.a//� �D.a/j< ı and j�B. .a//� �D.a/j< ı

for any a 2G, then there exists a unitary element u in B� such that

k'.a/�u .a/u�k< "

for any a 2 F.



1812 NORIO NAWATA

5. Existence theorem

In this section, we assume that D is a simple separable nuclear monotracial M21-stable C�-algebra which
is KK-equivalent to f0g and B is a simple separable exact monotracial Z-stable C�-algebra. We shall
show that there exists a trace-preserving homomorphism from D to B. Many arguments in this section are
motivated by Schafhauser’s proof [2020a] (see also [Schafhauser 2020b]) of the Tikuisis–White–Winter
theorem [Tikuisis et al. 2017].

The following lemma is related to [Kirchberg and Phillips 2000, Lemma 2.2].

Lemma 5.1. Let D be a simple separable nuclear monotracial M21-stable C�-algebra which is
KK-equivalent to f0g and B a simple separable exact monotracial Z-stable C�-algebra. If there
exists a homomorphism ' from D to B! such that �B;! ı ' D �D, then there exists a trace-preserving
homomorphism from D to B.

Proof. By the Choi–Effros lifting theorem, there exists a sequence f'ngn2N of contractive c.p. maps
from D to B such that '.a/D .'n.a//n for any a 2D. Let fFmgm2N be an increasing sequence of finite
subsets in D such that DD

S
m2N Fm. For any m2N, applying Corollary 4.7 to Fm and 1=2m, we obtain

a finite subset Gm of D and ım > 0. We may assume that Gm �GmC1, ım > ımC1 for any m 2 N and
limm!1 ım D 0. Since we have

lim
n!!
k'n.ab/�'n.a/'n.b/k D 0 and lim

n!!
j�B.'n.a//� �D.a/j D 0

for any a; b 2 D, there exists a subsequence f'n.m/gm2N of f'ngn2N such that

k'n.m/.ab/�'n.m/.a/'n.m/.b/k< ım and j�B.'n.m/.a//� �D.a/j< ım

for any a; b 2 Gm. Corollary 4.7 implies that for any m 2 N, there exists a unitary element um in B�

such that

k'n.m/.a/�um'n.mC1/.a/u
�
mk<

1

2m

for any a 2 Fm. Therefore it can easily be checked that the limit

lim
m!1

u1u2 � � �um�1'n.m/.a/u
�
m�1 � � �u

�
2u
�
1

exists for any a 2 D. Define  .a/ WD limm!1 u1u2 � � �um�1'n.m/.a/u�m�1 � � �u
�
2u
�
1 for any a 2 D.

Then  is a trace-preserving homomorphism from D to B. �

By the lemma above, it is enough to show that there exists a homomorphism ' from D to B! such that
�B;! ı' D �D. Borrowing Schafhauser’s idea [2020a], we shall show this. By arguments in Section 2D,
there exists the extension

� W 0 �! J �! B!
%
�!M �! 0;

where M is a von Neumann algebraic ultrapower of ��B .B/
00 and

J D ker %D f.xn/n 2 B! j Q�B;!..x�nxn/n/D 0g:
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Note that J is known as the trace kernel ideal. Also, M is a II1-factor because B is infinite-dimensional
(which is implied by Z-stability) and monotracial. Since D is monotracial and nuclear, ��D.D/00 is
the injective II1-factor. Hence there exists a unital homomorphism from ��D.D/00 to M (see, for ex-
ample, [Takesaki 2003, Chapter XIV, Proposition 2.15]). In particular, there exists a trace-preserving
homomorphism … from D to M. Consider the pullback extension

…�� W 0 // J // E
O%
//

y…
��

D //

…
��

0

� W 0 // J // B!
%
// M // 0

where E Df.a; x/2D˚B! j….a/D %.x/g, O%..a; x//D a and y…..a; x//D x for any .a; x/2E. If we
could show that …�� is a split extension with a cross section 
 , then y… ı 
 is a homomorphism from D
to B! such that �B;! ı y… ı 
 D �D. But we were unable to show this, immediately. Note that we need to
consider a separable extension in order to use KK-theory and some results in [Elliott and Kucerovsky
2001; Gabe 2016]. We shall construct a suitable separable extension �0 by Blackadar’s technique [2006,
Section II.8.5].

We shall recall some definitions and some results in [Elliott and Kucerovsky 2001; Gabe 2016]. An
extension 0 ! I ! C ! A ! 0 is said to be purely large if, for any x 2 C n I, xIx� contains a
stable C�-subalgebra which is full in I. Note that xIx� D xx�Ixx� D I \ xCx�. By [Gabe 2016,
Theorem 2.1] (see also [Elliott and Kucerovsky 2001, Corollary 16]), if A is nonunital and I is stable,
then a separable extension 0! I ! C ! A! 0 is nuclear-absorbing if and only if it is purely large.

Lemma 5.2. With notation as above, suppose that there exist separable C�-subalgebras J0�J, B0�B!

and M0 �M such that J0 is stable,

�0 W 0 �! J0 �! B0
%jB0��!M0 �! 0

is a purely large extension and ….D/ �M0. Then there exists a homomorphism ' from D to B! such
that �B;! ı' D �D.

Proof. Consider the pullback extension

…��0 W 0 // J0 // E0
O%
//

y…
��

D //

…
��

0

�0 W 0 // J0 // B0
%
// M0

// 0

whereE0Df.a; x/2D˚B0 j….a/D%.x/g, O%..a; x//Da and y…..a; x//Dx for any .a; x/2E0. Since
�0 is purely large, it can be easily checked that …��0 is purely large. Hence …��0 is nuclear-absorbing
by [Gabe 2016, Theorem 2.1]. Because D isKK-equivalent to f0g and nuclear, we have Ext.D; J0/Df0g,
and hence Œ…��0� D 0 in Ext.D; J0/. Therefore there exists a (nuclear) split extension �0 such that
…��0˚�

0 is a split extension. Since …��0 is nuclear-absorbing, …��0 is strongly unitarily equivalent to
…��0˚�

0, and hence…��0 is a split extension. Let 
0 be a cross section of…��0, and define ' WD y…ı
0.
Then ' is the desired homomorphism. �
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A key result in the proof of the pure largeness is the following characterization of stable C�-algebras.

Theorem 5.3 [Hjelmborg and Rørdam 1998; Rørdam 2004b, Theorem 2.2]. Let A be a �-unital
C�-algebra. Then A is stable if and only if , for any a 2 AC and " > 0, there exist positive elements a0

and c in A such that ka� a0k � ", a0 � c and kack � ".

Before we construct a separable extension �0, we shall consider properties of �.

Proposition 5.4. With notation as above, let b be a positive element in B! nJ.

(i) For any positive element a in bJb, there exists a positive element c in bJb such that a� c and acD 0.

(ii) For any positive element a in J and " > 0, there exist a positive element d in bJb and an element
r in J such that kr�dr � ak< ".

(iii) For any element x in B! and " > 0, there exists an element y in GL..B!/�/ such that kx�yk< ".

For the proof of the proposition above, we need some lemmas. For a positive element a 2A and " > 0,
we denote by .a� "/C the element f .a/ in A, where f .t/Dmaxf0; t � "g, t 2 Sp.a/. The same proof
as in [Rørdam 1992, Proposition 2.4] shows the following lemma. See also [Pedersen 1987, Corollary 8].

Lemma 5.5. Let A be a C�-algebra with A� GL.A�/, and let a and b be positive elements in A. Then
a is Cuntz smaller than b if and only if , for any " > 0, there exists a unitary element u in A� such that
u.a� "/Cu

� 2 bAb.

The following lemma can be regarded as an application of the construction of Z .

Lemma 5.6. Let A be a monotracial Z-stable C�-algebra. For any � 2
�
0; 1
2

�
, there exist positive

elements d and d 0 inA such that dd 0D0 and d�A..d�"/C/Dd�A..d
0�"/C/D .1�"/� for any 0� "�1.

Proof. Let � be the Lebesgue measure on Œ0; 1�, and define a tracial state �0 on C.Œ0; 1�/ by �0.f / WDR
Œ0;1� f d� for any f 2 C.Œ0; 1�/. By [Rørdam 2004a, Theorem 2.1(i)], there exists a unital homomor-

phism  from C.Œ0; 1�/ to Z such that �0 D �Z ı . Define f and g in C.Œ0; 1�/ by

f .t/ WD

8<:
2
�
t if t 2

�
0; �
2

�
;

�
2
�
t C 2 if t 2

�
�
2
; �
�
;

0 if t 2 .�; 1�
and g.t/ WD

8̂̂̂<̂
ˆ̂:
0 if t 2 Œ0; ��;
2
�
t � 2 if t 2

�
�; 3�

2

�
;

�
2
�
t C 4 if t 2

�
3�
2
; 2�

�
;

0 if t 2 .2�; 1�:

Note that for any 0� "� 1, we have

.f � "/C.t/D

8̂̂̂<̂
ˆ̂:
0 if t 2

�
0; "�

2

�
;

2
�
t � " if t 2

�
"�
2
; �
2

�
;

�
2
�
t C 2� " if t 2

�
�
2
; � � "�

2

�
;

0 if t 2
�
� � "�

2
; 1
�
;

.g� "/C.t/D

8̂̂̂<̂
ˆ̂:
0 if t 2

�
0; � C "�

2

�
;

2
�
t � 2� " if t 2

�
� C "�

2
; 3�
2

�
;

�
2
�
t C 4� " if t 2

�
3�
2
; 2� � "�

2

�
;

0 if t 2
�
2� � "�

2
; 1
�
:
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Hence d�0
..f � "/C/D d�0

..g� "/C/D .1� "/� . Let s be a strictly positive element in A, and put

d WD s˝ .f / and d 0 WD s˝ .g/

in A˝Z Š A. Then d and d 0 are desired positive elements in A. �

Lemma 5.7. Let A be a simple separable exact monotracial Z-stable C�-algebra, and let b be a (nonzero)
positive element in A. For any � 2 .0; d�A.b/=2/, there exist positive elements e and e0 in bAb such that
ee0 D 0 and d�A.e/D d�A.e

0/ > � .

Proof. By Lemma 5.6, there exist contractions d and d 0 in A such that dd 0 D 0 and � < d�A.d/ D
d�A.d

0/ < d�A.b/=2. Furthermore, we may assume that there exists " > 0 such that d�A..d � "/C/ D
d�A..d

0 � "/C/ > � . Since A has strict comparison and d�A.d C d
0/ D d�A.d/C d�A.d

0/ < d�A.b/,
Lemma 5.5 implies that there exists a unitary element u in A� such that u.d C d 0� "/Cu� 2 bAb. Note
that .d C d 0� "/C D .d � "/CC .d 0� "/C because of dd 0 D 0. Put

e WD u.d � "/Cu
� and e0 WD u.d 0� "/Cu

�:

Then e and e0 are desired positive elements. �

Proof of Proposition 5.4. (i) We may assume kakD1 and kbkD1. Since b…J, we have �B;!.b/>0. Take
a representative .bn/n of b such that kbnkD 1 for any n2N, and choose "0>0 such that �B;!.b/�"0>0.
Since we have

lim
n!!

d�B .bn/� lim
n!!

�B.bn/D �B;!.b/;

there exists an element X1 2 ! such that, for any n 2X1,

d�B .bn/ > �B;!.b/� "0:

By an argument similar to that in the proof of [Sato 2010, Lemma 3.2], we see that there exists a
representative .an/n of a such that an 2 bnBbn and kank D 1 for any n 2 N and limn!! d�B .an/D 0
because of a 2 .bn/nJ.bn/n. Hence there exists an element X2 2 ! such that for any n 2X2,

d�B .an/ <
�B;!.b/� "0

2
:

Note that we have d�B .an/ < d�B .bn/=2 for any n 2 X1 \X2. Hence Lemma 5.7 implies that for any
n 2 X1 \ X2, there exist positive elements en and e0n in bnBbn such that ene0n D 0 and d�B .en/ D
d�B .e

0
n/ > d�B .an/. Since bnBbn has strict comparison and bnBbn � GL.bnBbn�/ by [Rørdam 2004a;

Robert 2016], Lemma 5.5 shows that for any n 2 X1 \X2, there exist unitary elements un and vn in
bnBbn

� such that
un.an� 1=n/Cu

�
n 2 enBen and vn.an� 1=n/Cv

�
n 2 e

0
nBe

0
n:

Note that .an � 1=n/Cu�nvn.an � 1=n/C D 0 for any n 2 X1 \X2. Define z D .zn/n and c D .cn/n
in B! by

zn WD

�
0 if n …X1\X2;
u�nvn.an� 1=n/

1=2
C

if n 2X1\X2
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and

cn WD

�
0 if n …X1\X2;
u�nvn.an� 1=n/Cv

�
nun if n 2X1\X2:

It is easy to see that z; c 2 bB!b, z�z D a, zz� D c and ac D 0. Since bJb is a closed ideal in bB!b
and a 2 bJb, we know z and c are elements in bJb. Therefore we obtain the conclusion.

(ii) Note that B! has strict comparison; see, for example, [Bosa et al. 2019, Lemma 1.23]. Since a 2 J
and b … J, we have d�B;!

.a1=5/D 0 and d�B;!
.b/ > 0. Hence there exists a sequence fsN gN2N in B!

such that limN!1 ks�N bsN � a
1=5k D 0. Let dN WD bsNa1=5s�N b and rN WD sNa1=5 for any N 2 N.

Then we have dN 2 bJb, rN 2 J for any N 2 N and

r�NdN rN D a
1=5s�N bsNa

1=5s�N bsNa
1=5
! a

as N !1. Therefore we obtain the conclusion.

(iii) Since B is a simple monotracial Z-stable C�-algebra, B � GL.B�/ by [Rørdam 2004a; Robert
2016]. Therefore we obtain the conclusion by Proposition 2.4. �

IfB is unital, then the following lemma is a well-known consequence of Proposition 2.4 and Blackadar’s
technique [2006, Proposition II.8.5.4].

Lemma 5.8. With notation as above, let S be a separable subset of B!. Then there exists a separable
C�-algebra A such that S � A� B! and A� GL.A�/.

Proof. We shall show only the case where B is nonunital. Let A1 be the C�-subalgebra of B! gen-
erated by S . Since A1 is separable, there exists a countable dense subset fxk j k 2 Ng of A1. By
Proposition 5.4(iii), for any k;m 2 N, there exist yk;m 2 B! and �k;m 2 C n f0g such that

kxk � .yk;mC�k;m1.B!/�/k<
1

m

and yk;m C �k;m1.B!/� 2 GL..B!/�/. Let A2 be the C�-subalgebra of B! generated by A1 and
fyk;m j k;m 2 Ng. Then we have A1 � GL.A�2 /. Indeed, we have yk;mC�k;m1A�2 2 GL.A�2 / for any
k;m 2N because of SpA2

.yk;m/[f0g D SpB! .yk;m/[f0g and �k;m¤ 0. Since A1D fxk j k 2 Ng and

kxk � .yk;mC�k;m1.A2/�/k D k1A�2 xk � 1A
�
2
.yk;mC�k;m1.B!/�/k

� kxk � .yk;mC�k;m1.B!/�/k<
1

m

for any k;m 2 N, we have A1 � GL.A�2 /. Repeating this process, we obtain a sequence fAngn2N

of separable C�-subalgebras of B! such that An � AnC1 and An � GL.A�nC1/ for any n 2 N. Put
A WD

S1
nD1An. SinceAn�GL.A�nC1/�GL.A�/ for any n2N by Proposition 2.2, we haveA�GL.A�/.

Therefore A is the desired separable C�-algebra. �

The following lemma is also based on Blackadar’s technique.

Lemma 5.9. With notation as above, let fbk j k 2 Ng be a countable subset of B! nJ and S a separable
subset of B!. Then there exists a separable C�-algebra A such that fbk j k 2 Ng [ S � A � B! and
bk.A\J /bk is full in A\J for any k 2 N.
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Proof. Let A1 be the C�-subalgebra of B! generated by fbk j k 2Ng and S . Since A1 is separable, there
exists a countable dense subset fal j l 2 Ng of .A1 \ J /C. By Proposition 5.4(ii), for any k; l;m 2 N,
there exist dk;l;m 2 bkJbkC and rk;l;m 2 J such that

kr�k;l;mdk;l;mrk;l;m� alk<
1

m
:

Let A2 be the C�-subalgebra of B! generated by A1 and fdk;l;m; rk;l;m j k; l;m 2 Ng. Then we have
A1 \ J � .A2\J /bk.A2\J /bk.A2\J / for any k 2 N because A1 \ J is generated by fal j l 2 Ng.
Repeating this process, we obtain a sequence fAngn2N of separable C�-subalgebras of B! such that
An�AnC1 and An\J � .AnC1\J /bk.AnC1\J /bk.AnC1\J / for any k; n2N. Put A WD

S1
nD1An.

Since we have A\J D
S1
nD1.An\J /, we see that A is the desired separable C�-algebra. �

By Lemmas 5.8 and 5.9, [Blackadar 2006, Proposition II.8.5.3] implies the following lemma.

Lemma 5.10. With notation as above, let fbk j k 2Ng be a countable subset of B! nJ and S a separable
subset of B!. Then there exists a separable C�-algebra A such that fbk j k 2 Ng [ S � A � B!,
A� GL.A�/ and bk.A\J /bk is full in A\J for any k 2 N.

We shall construct the separable extension �0 of Lemma 5.2.
Since % is surjective and D is separable, there exists a separable subset S0 of B! such that %.S0/D

….D/. Applying Lemma 5.8 to S0, we obtain a separable C�-algebra B1 such that S0 � B1 � B! and
B1 � GL.B�1 /. Since B1 is separable, there exist a countable subset fa1;m jm 2Ng of .B1\J /C and a
countable subset fb1;k j k 2 Ng of B1C such that

fa1;m jm 2 Ng D .B1\J /C and fb1;k j k 2 Ng D B1C:

Put T1 WDf.k; l/2N�Nj.b1;k�1=l/C…J g. Applying Proposition 5.4(i) to .b1;k�1=l/Ca1;m.b1;k�1=l/C
for any .k; l/ 2 T1 and m 2 N, there exist a positive element c1;1;.k;l/;m and an element z1;1;.k;l/;m in
.b1;k � 1=l/CJ.b1;k � 1=l/C such that

.b1;k � 1=l/Ca1;m.b1;k � 1=l/Cc1;1;.k;l/;m D 0;

z�1;1;.k;l/;mz1;1;.k;l/;m D .b1;k � 1=l/Ca1;m.b1;k � 1=l/C;

z1;1;.k;l/;mz
�
1;1;.k;l/;m D c1;1;.k;l/;m:

Let S2 WDB1[fc1;1;.k;l/;m; z1;1;.k;l/;m j .k; l/ 2 T1; m 2Ng. Applying Lemma 5.10 to f.b1;k �1=l/C j
.k; l/ 2 T1g and S2, we obtain a separable C�-algebra B2 such that

B1[fc1;1;.k;l/;m; z1;1;.k;l/;m j .k; l/ 2 T1; m 2 Ng � B2 � B
! ;

B2 � GL.B�2 / and .b1;k � 1=l/C.B2\J /.b1;k � 1=l/C is full in B2 \ J for any .k; l/ 2 T1. In the
same way as above, there exist a countable subset fa2;m jm 2 Ng of .B2\J /C and a countable subset
fb2;k j k 2 Ng of B2C such that

fa2;m jm 2 Ng D .B2\J /C and fb2;k j k 2 Ng D B2C;
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and we put T2 WD f.k; l/ 2N�N j .b2;k�1=l/C … J g. Applying Proposition 5.4(i) to .bi;k�1=l/Ca2;m
� .bi;k � 1=l/C for any 1� i � 2, .k; l/ 2 Ti and m 2 N, there exist a positive element c2;i;.k;l/;m and
an element z2;i;.k;l/;m in .bi;k � 1=l/CJ.bi;k � 1=l/C such that

.bi;k � 1=l/Ca2;m.bi;k � 1=l/Cc2;i;.k;l/;m D 0;

z�2;i;.k;l/;mz2;i;.k;l/;m D .bi;k � 1=l/Ca2;m.bi;k � 1=l/C;

z2;i;.k;l/;mz
�
2;i;.k;l/;m D c2;i;.k;l/;m:

Let S3 WD B2 [ fc2;i;.k;l/;m; z2;i;.k;l/;m j 1 � i � 2; .k; l/ 2 Ti ; m 2 Ng. Applying Lemma 5.10 to
f.bi;k � 1=l/C j 1� i � 2; .k; l/ 2 Tig and S3, we obtain a separable C�-algebra B3 such that

B2[fc2;i;.k;l/;m; z2;i;.k;l/;m j 1� i � 2; .k; l/ 2 Ti ; m 2 Ng � B3 � B
! ;

B3�GL.B�3 / and .bi;k � 1=l/C.B3\J /.bi;k � 1=l/C is full in B3\J for any 1� i � 2 and .k; l/2Ti .
Repeating this process, for any n 2 N, we obtain

Bn � B
! ; fan;m jm 2 Ng � .Bn\J /C; fbn;k j k 2 Ng � BnC;

Tn � N�N; fcn;i;.k;l/;m; zn;i;.k;l/;m j 1� i � n; .k; l/ 2 Ti ; m 2 Ng

such that Bn is separable,

Bn � BnC1; Bn � GL.B�n /; fan;m jm 2 Ng D .Bn\J /C;

fbn;k j k 2 Ng D BnC; Tn D f.k; l/ 2 N�N j .bn;k � 1=l/C … J g;

cn;i;.k;l/;m; zn;i;.k;l/;m 2 .bi;k � 1=l/C.BnC1\J /.bi;k � 1=l/C;

.bi;k � 1=l/Can;m.bi;k � 1=l/Ccn;i;.k;l/;m D 0;

z�n;i;.k;l/;mzn;i;.k;l/;m D .bi;k � 1=l/Can;m.bi;k � 1=l/C;

zn;i;.k;l/;mz
�
n;i;.k;l/;m D cn;i;.k;l/;m

and .bi;k � 1=l/C.BnC1\J /.bi;k � 1=l/C is full in BnC1\J for any 1� i � n and .k; l/ 2 Ti . Define

B0 WD

1[
nD1

Bn; J0 WD B0\J and M0 WD %.B0/:

Then
�0 W 0 �! J0 �! B0

%
�!M0 �! 0

is a separable extension and ….D/ �M0. Corollary 2.3 implies B0 � GL.B�0 / since we have Bn �
GL.B�n / for any n 2N. Furthermore, for any i 2N and .k; l/ 2 Ti , .bi;k � 1=l/CJ0.bi;k � 1=l/C is full
in J0 by a similar argument as in the proof of Lemma 5.9. Note that, for any n0 2 N,

J0C D

1[
nDn0

fan;m jm 2 Ng and B0C D

1[
nDn0

fbn;k j k 2 Ng:

We shall show that J0 is stable and �0 is purely large.
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Proof of the stability of J0. Let a 2 J0C n f0g and " > 0. Set

"0 WDmin
�

"

2kak
;

r
"

2
; "

�
:

Since B0 is separable, there exists an approximate unit fhngn2N for B0. Note that hn … J for sufficiently
large n because of M0 ¤ f0g. Hence there exists N 2 N such that hN … J and khNahN � ak < "0=2.
Since B0C D

S1
nD1fbn;k j k 2 Ng, for any l 2 N, there exist n.l/ and k.l/ in N such that

khN � bn.l/;k.l/k<
1

l
:

Note that .bn.l/;k.l/� 1=l/C! hN as l!1 because we have

khN � .bn.l/;k.l/� 1=l/Ck � khN � bn.l/;k.l/kCkbn.l/;k.l/� .bn.l/;k.l/� 1=l/Ck<
2

l
:

Hence there exists l0 2 N such that .bn.l0/;k.l0/� 1=l0/C … J, that is, .k.l0/; l0/ 2 Tn.l0/ and

ka� .bn.l0/;k.l0/� 1=l0/Ca.bn.l0/;k.l0/� 1=l0/Ck<
"0

2
:

Since J0C D
S1
nDn.l0/

fan;m jm 2 Ng, there exist n0 � n.l0/ and m0 2 N such that

ka� an0;m0
k<

"0

2kbn.l0/;k.l0/k
2
:

Put a0 WD .bn.l0/;k.l0/� 1=l0/Can0;m0
.bn.l0/;k.l0/� 1=l0/C. Then

ka� a0k< "0 � ":

By construction of B0 and J0, there exist

z D zn0;n.l0/;.k.l0/;l0/;m0
; c D cn0;n.l0/;.k.l0/;l0/;m0

2 J0

such that a0c D 0, z�z D a0 and zz� D c. Hence a0 � c and

kack D kac � a0ck � ka� a0kkck D ka� a0kka0k< "0.kakC "0/� ":

Therefore J0 is stable by Hjelmborg and Rørdam’s characterization (Theorem 5.3). �

Proof of the pure largeness of �0. Let x 2 B0 n J0. Note that we have xx� … J. Since B0C DS1
nD1fbn;k j k 2 Ng, for any l 2 N, there exist n.l/ and k.l/ in N such that

kxx�� bn.l/;k.l/k<
1

2l
:

By an argument similar to that in the proof of stability of J0, there exists l0 2 N such that .bn.l0/;k.l0/�
1=l0/C … J, that is, .k.l0/; l0/ 2 Tn.l0/. On the other hand, [Kirchberg and Rørdam 2002, Lemma 2.2]
implies that .bn.l0/;k.l0/�1=2l0/C is Cuntz smaller than xx�. Since we have B0 �GL.B�0 /, there exists
a unitary element u in B�0 such that

u.bn.l0/;k.l0/� 1=l0/Cu
�
D u..bn.l0/;k.l0/� 1=2l0/C� 1=2l0/Cu

�
2 xx�B0xx� D xB0x�
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by Lemma 5.5. Put

C WD u.bn.l0/;k.l0/� 1=l0/CJ0.bn.l0/;k.l0/� 1=l0/Cu
�
� xJ0x�:

Then C is full in J0 because .bn.l0/;k.l0/� 1=l0/CJ0.bn.l0/;k.l0/� 1=l0/C is full in J0. We shall show
that C is stable. Let a 2 CC n f0g and " > 0. Set

"0 WDmin
�

"

2kak
;

r
"

2
; "

�
:

By the definition of C and J0C D
S1
nDn.l0/

fan;m jm 2 Ng, there exist n0 � n.l0/ and m0 2N such that

ka�u.bn.l0/;k.l0/� 1=l0/Can0;m0
.bn.l0/;k.l0/� 1=l0/Cu

�
k< "0 � ":

Put a0Du.bn.l0/;k.l0/�1=l0/Can0;m0
.bn.l0/;k.l0/�1=l0/Cu

�2C , then ka�a0k<"0�". By construction
of B0 and J0, there exist elements

zn0;n.l0/;.k.l0/;l0/;m0
; cn0;n.l0/;.k.l0/;l0/;m0

in .bn.l0/;k.l0/� 1=l0/CJ0.bn.l0/;k.l0/� 1=l0/C such that

u�a0ucn0;n.l0/;.k.l0/;l0/;m0
D 0; z�n0;n.l0/;.k.l0/;l0/;m0

zn0;n.l0/;.k.l0/;l0/;m0
D u�a0u

and

zn0;n.l0/;.k.l0/;l0/;m0
z�n0;n.l0/;.k.l0/;l0/;m0

D cn0;n.l0/;.k.l0/;l0/;m0
:

Put c WD ucn0;n.l0/;.k.l0/;l0/;m0
u�. It is easy to see that c 2 C , a0c D 0 and

c � cn0;n.l0/;.k.l0/;l0/;m0
� u�a0u� a0 in B0:

Since C is a hereditary C�-subalgebra of B0 and a0; c 2 C , we see that a0 is Murray–von Neumann
equivalent to c in C . Therefore, the same argument as in the proof of stability of J0 shows kack< ", and
C is stable. Consequently, �0 is a purely large extension. �

Therefore we obtain the following lemma.

Lemma 5.11. With notation as above, there exist separable C�-subalgebras J0 � J, B0 � B! and
M0 �M such that J0 is stable,

�0 W 0 �! J0 �! B0
%jB0��!M0 �! 0

is a purely large extension and ….D/�M0.

Consequently, we obtain the following theorem by Lemma 5.1, Lemma 5.2 and the lemma above.

Theorem 5.12. Let D be a simple separable nuclear monotracial M21-stable C�-algebra which is
KK-equivalent to f0g and B a simple separable exact monotracial Z-stable C�-algebra. Then there exists
a trace-preserving homomorphism from D to B.
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Remark 5.13. Actually, we need not assume that D is M21-stable in the theorem above. Indeed, define
a homomorphism ' from D to D˝M21 by '.a/D a˝ 1. Then ' is a trace-preserving homomorphism
from D to D˝M21 . By the theorem above, there exists a trace-preserving homomorphism  from
D˝M21 to B. Then  ı' is a trace-preserving homomorphism from D to B.

The following corollary is an immediate consequence of the theorem above.

Corollary 5.14. Let B a simple separable exact monotracial Z-stable C�-algebra. Then there exists a
trace-preserving homomorphism from W to B.

The injective II1-factor can embed unitally into every II1-factor. Hence the following question is
natural and interesting.

Question 5.15. (1) Let B be a simple monotracial infinite-dimensional C�-algebra. Does there exist a
trace-preserving homomorphism from W to B?

(2) Let B be a simple non-type-I C�-algebra. Does there exist a (nonzero) homomorphism from W to B?

Note that Dadarlat, Hirshberg, Toms and Winter [Dadarlat et al. 2009] showed that there exists a unital
simple separable nuclear infinite-dimensional C�-algebra B such that Z does not embed unitally into B.

6. Characterization of W

In this section we shall show that if D is a simple separable nuclear monotracial M21-stable C�-algebra
which is KK-equivalent to f0g, then D is isomorphic to W . Also, we shall characterize W by using
properties of F.W/.

Theorem 6.1. Let D be a simple separable nuclear monotracial M21-stable C�-algebra which is
KK-equivalent to f0g. Then D is isomorphic to W .

Proof. By Theorem 5.12 and Corollary 5.14, there exist trace-preserving homomorphisms ' and  
from D to W and from W and D, respectively. Since D and W have property W by Corollary 3.11,
Theorem 4.3 implies that  ı' and ' ı are approximately inner. Therefore D is isomorphic to W by
Elliott’s approximate intertwining argument [Elliott 1993]; see also [Rørdam 2002, Corollary 2.3.4]. �

The following corollary is an immediate consequence of the theorem above.

Corollary 6.2. (i) If A is a simple separable nuclear monotracial C�-algebra, then A˝W is isomorphic
to W . In particular, W˝W is isomorphic to W .

(ii) For any nonzero positive element h in W , hWh is isomorphic to W .

Following the definition in [Lin and Ng 2023], we say that a C�-algebra A is W-embeddable if there
exists an injective homomorphism from A to W .

Lemma 6.3. Let A be a monotracial W-embeddable C�-algebra. Then there exists a trace-preserving
homomorphism from A to W .
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Proof. By the assumption, there exists an injective homomorphism ' from A to W . Let s be a strictly
positive element in A. (Note that A is separable because A is W-embeddable.) Since ' is injective, '.s/
is a nonzero positive element. Corollary 6.2 implies that there exists an isomorphism ˆ from '.s/W'.s/

onto W . Note that ' can be regarded as a homomorphism from A to '.s/W'.s/. Define  WD ˆ ı '.
Then  is a trace-preserving homomorphism from A to W . �

The following theorem is a characterization of W .

Theorem 6.4. Let D be a simple separable nuclear monotracial C�-algebra. Then D is isomorphic to W
if and only if D has property W and is W-embeddable, that is, D satisfies the following properties:

(i) For any � 2 Œ0; 1�, there exists a projection p in F.D/ such that �D;!.p/D � .

(ii) If p and q are projections in F.D/ such that 0<�D;!.p/D �D;!.q/, then p is Murray–von Neumann
equivalent to q.

(iii) There exists an injective homomorphism from D to W .

Proof. The “only if” part is obvious by Corollary 3.11. We shall show the “if” part. Since D is
W-embeddable, there exists a trace-preserving homomorphism ' fromD to W by Lemma 6.3. Lemma 4.1
implies thatD is Z-stable becauseD has property W. Hence there exists a trace-preserving homomorphism
 from W to D by Corollary 5.14. The rest of proof is same as the proof of Theorem 6.1. �

We think that every simple separable nuclear monotracial C�-algebra with property W ought to be
W-embeddable. Note that every simple separable nuclear monotracial C�-algebra with property W is stably
projectionless by [Kirchberg 2006, Remark 2.13] and an argument similar to that in the proof of [Nawata
2019, Corollary 5.9]. Hence an affirmative answer to the following question, which can be regarded as
an analogue of Kirchberg’s embedding theorem [Kirchberg and Phillips 2000], would imply this.

Question 6.5. Let A be a simple separable exact stably projectionless monotracial C�-algebra. Assume
that �A is amenable. Is AW-embeddable?

Note that we need to assume that �A is amenable because ��W .W/00 is the injective II1-factor.
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