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INVERSE PROBLEMS FOR NONLINEAR MAGNETIC
SCHRÖDINGER EQUATIONS ON CONFORMALLY TRANSVERSALLY

ANISOTROPIC MANIFOLDS

KATYA KRUPCHYK AND GUNTHER UHLMANN

We study the inverse boundary problem for a nonlinear magnetic Schrödinger operator on a conformally
transversally anisotropic Riemannian manifold of dimension n ≥ 3. Under suitable assumptions on
the nonlinearity, we show that the knowledge of the Dirichlet-to-Neumann map on the boundary of the
manifold determines the nonlinear magnetic and electric potentials uniquely. No assumptions on the
transversal manifold are made in this result, whereas the corresponding inverse boundary problem for the
linear magnetic Schrödinger operator is still open in this generality.

1. Introduction and statement of results

Let (M, g) be a smooth compact oriented Riemannian manifold of dimension n ≥ 3 with smooth boundary.
Let A ∈ C∞(M, T ∗M) be a 1-form with complex-valued C∞ coefficients, and let

dA = d + i A : C∞(M)→ C∞(M, T ∗M),

where d : C∞(M)→ C∞(M, T ∗M) is the de Rham differential. We define the formal L2-adjoint of dA,
d∗

A : C∞(M, T ∗M)→ C∞(M), as

(dAu, v)L2(M,T ∗ M) = (u, d∗

Av)L2(M), u ∈ C∞

0 (M
int), v ∈ C∞

0 (M
int, T ∗M int),

where M int
= M \ ∂M stands for the interior of M. Here and in what follows, when u, v ∈ C∞(M),

we write

(u, v)L2(M) =

∫
M

uv̄ dVg

for the natural L2-scalar product, where dVg is the Riemannian volume element on M. Similarly, when
α, β ∈ C∞(M, T ∗M) are 1-forms, we define the L2-scalar product

(α, β)L2(M,T ∗ M) =

∫
M

⟨α, β̄⟩g dVg(x),

where ⟨ · , · ⟩g is the pointwise scalar product in the space of 1-forms induced by the Riemannian metric g.
In the local coordinates (x1, . . . , xn), in which α =

∑n
j=1 αj dx j , β =

∑n
j=1 βj dx j , and (g jk) is the
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matrix inverse of (gjk) with g =
∑n

j,k=1 gjk dx j dxk , we have

⟨α, β⟩g =

n∑
j,k=1

g jkαjβk .

We also have
d∗

A = d∗
− i⟨A, · ⟩g.

In local coordinates, we see that

d∗v = −

n∑
j,k=1

|g|
−1/2∂x j (|g|

1/2g jkvk), (1-1)

where |g| = det(gjk) and v =
∑n

j=1 vj dx j .
In this paper we shall consider 1-forms and scalar functions depending holomorphically on a parameter

z ∈ C. Specifically, let A : M × C → T ∗M and V : M × C 7→ C satisfy the following conditions:

(Ai ) The map C ∋ z 7→ A( · , z) is holomorphic with values in C1,1(M, T ∗M), the space of 1-forms with
complex-valued C1,1(M) coefficients.

(Vi ) The map C ∋ z 7→ V ( · , z) is holomorphic with values in C1,1(M).

(Vi i ) V (x, 0)= 0, for all x ∈ M.

Here C1,1(M) is the space of C1 functions on M with a Lipschitz gradient.
It follows from (Ai ), (Vi ), and (Vi i ) that A and V can be expanded into the power series

A(x, z)=

∞∑
k=0

Ak(x)
zk

k!
, Ak(x) := ∂k

z A(x, 0) ∈ C1,1(M, T ∗M), (1-2)

converging in the C1,1(M, T ∗M) topology, and

V (x, z)=

∞∑
k=1

Vk(x)
zk

k!
, Vk(x) := ∂k

z V (x, 0) ∈ C1,1(M), (1-3)

converging in the C1,1(M) topology.
Let us introduce the nonlinear magnetic Schrödinger operator defined by

L A,V u = d∗

A( · ,u)
dA( · ,u)u + V ( · , u)

= −1gu + d∗(i A( · , u)u)− i⟨A( · , u), du⟩g + ⟨A( · , u), A( · , u)⟩gu + V ( · , u), (1-4)

for u ∈C∞(M). Notice that the first-order linearization of L A,V is the standard linear magnetic Schrödinger
operator d∗

A0
dA0 + V1. Furthermore, we also assume that A0 ∈ C∞(M, T ∗M), V1 ∈ C∞(M), and that

(i) 0 is not a Dirichlet eigenvalue of the operator d∗

A0
dA0 + V1.

Consider the Dirichlet problem for the nonlinear magnetic Schrödinger operator{
L A,V u = 0 in M int,

u|∂M = f.
(1-5)
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It is shown in Theorem B.1 that under the above assumptions, there exist δ > 0 and C > 0 such that when
f ∈ Bδ(∂M) := { f ∈ C2,α(∂M) : ∥ f ∥C2,α(∂M) < δ}, 0< α < 1, the problem (1-5) has a unique solution
u = u f ∈ C2,α(M) satisfying ∥u∥C2,α(M) < Cδ. Here C2,α(M) stands for the standard Hölder space of
functions on M. Associated to the problem (1-5), we define the Dirichlet-to-Neumann map

3A,V f = ∂νu f |∂M , (1-6)

where f ∈ Bδ(∂M) and ν is the unit outer normal to the boundary.
The inverse problem that we are interested in is whether the knowledge of the Dirichlet-to-Neumann

map 3A,V determines the nonlinear magnetic and electric potentials, A and V , respectively.
When A = 0 and V (x, z)= V1(x)z, the inverse problem for the linear Schrödinger operator −1g + V1

is related to the Calderón problem, which has been the object of intense study but remains open in the
case of a general smooth Riemannian manifold (M, g) of dimension n ≥ 3 with smooth boundary. Let us
mention that the unique determination of the potential V1 from the knowledge of the Dirichlet-to-Neumann
map 30,V1 was established in [Sylvester and Uhlmann 1987] in the Euclidean setting, in [Isozaki 2004]
for hyperbolic manifolds, and in [Kohn and Vogelius 1984; Lassas and Uhlmann 2001; Lee and Uhlmann
1989] in the analytic case. The uniqueness in the inverse boundary problem for the linear magnetic
Schrödinger operator d∗

A0
dA0 + V1 up to a suitable gauge transformation was obtained in [Nakamura

et al. 1995] in the Euclidean setting; see also [Krupchyk and Uhlmann 2014]. Going beyond these
settings, the most general uniqueness results were obtained in the case when the manifold (M, g) is
conformally transversally anisotropic and the transversal manifold satisfies some additional assumptions.
Following [Dos Santos Ferreira et al. 2009; 2016], let us recall the definition of a conformally transversally
anisotropic manifold.

Definition 1.1. A compact smooth oriented Riemannian manifold (M, g) of dimension n ≥ 3 with smooth
boundary is said to be conformally transversally anisotropic if there exists an (n−1)-dimensional smooth
compact Riemannian manifold (M0, g0) with smooth boundary such that M ⋐ R× M0 and g = c(e ⊕ g0),
where e is the Euclidean metric on R and c is a positive smooth function on M.

In the case when (M, g) is conformally transversally anisotropic, assuming that the transversal manifold
(M0, g0) is simple in the sense that the boundary ∂M0 is strictly convex and, for any point p ∈ M0, the
exponential map expp with its maximal domain of definition in Tp M0 is a diffeomorphism onto M0, the
global uniqueness for the inverse boundary problem for the linear magnetic Schrödinger equation up
to a gauge was proven in [Dos Santos Ferreira et al. 2009]; see also [Krupchyk and Uhlmann 2018].
Note that the geodesic ray transform on functions and 1-forms is invertible on simple manifolds; see
[Anikonov 1978; Muhometov 1977].

These uniqueness results were strengthened in [Dos Santos Ferreira et al. 2016], where the global
uniqueness in the inverse boundary problem for the linear Schrödinger equation was established under the
assumption that the geodesic ray transform on the transversal manifold is injective. Similar results for the
inverse boundary problem for the linear magnetic Schrödinger equation were obtained in [Cekić 2017;
Krupchyk and Uhlmann 2018]. The injectivity of the geodesic ray transform is open in general, and
has only been established under certain geometric assumptions. In particular, the injectivity of the
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geodesic ray transform is proven in [Stefanov et al. 2018; Uhlmann and Vasy 2016] when M0 has
strictly convex boundary and is foliated by strictly convex hypersurfaces, and in [Guillarmou 2017;
Guillarmou et al. 2021] when M0 has a hyperbolic trapped set and no conjugate points. As an example of
the latter, one can consider a negatively curved manifold M0. We refer to [Dos Santos Ferreira et al. 2020]
where the linearized anisotropic Calderón problem was studied on a transversally anisotropic manifold
under certain mild conditions on the transversal manifold related to the geometry of pairs of intersecting
geodesics.

Turning the attention to inverse problems for nonlinear PDEs, it was discovered in [Kurylev et al.
2018] that nonlinearity can be helpful in solving inverse problems for hyperbolic equations; see also
[Feizmohammadi et al. 2021; Lassas et al. 2018]. Similar phenomena for inverse problems for semilinear
elliptic PDEs have been revealed in [Feizmohammadi and Oksanen 2020; Lassas et al. 2021a]; see also
[Krupchyk and Uhlmann 2020a; 2020b; Lai and Zhou 2020; Lassas et al. 2021b]. A common feature of
all of the aforementioned works is that the presence of a nonlinearity allows one to solve inverse problems
for nonlinear equations in cases where the corresponding inverse problem in the linear setting is open.

In particular, the inverse boundary problem for the nonlinear Schrödinger equation

L0,V u = −1gu + V ( · , u)= 0

on a conformally transversally anisotropic manifold (M, g) of dimension n ≥ 3 was studied in [Feizmo-
hammadi and Oksanen 2020; Lassas et al. 2021a], and the following result was obtained: if V satisfies
the assumptions (Vi ), (Vi i ), and

(Vi i i ) ∂z V (x, 0)= ∂2
z V (x, 0)= 0, for all x ∈ M,

then the knowledge of the Dirichlet-to-Neumann map 30,V determines V in M × C uniquely. Notice
that remarkably there are no assumptions on the transversal manifold in this result while the inverse
problem for the linear Schrödinger equation is still open in this generality. The proof of this result relies
on higher-order linearizations of the Dirichlet-to-Neumann map, which allow one to reduce the inverse
problem to the following density result; see [Lassas et al. 2021a].

Proposition 1.2. Let (M, g) be a conformally transversally anisotropic manifold of dimension n ≥ 3, and
let q ∈ C1,1(M). If ∫

M
qu1u2u3u4 dVg = 0, (1-7)

for all harmonic functions u j ∈ C∞(M), j = 1, 2, 3, 4, then q ≡ 0.

The purpose of this paper is to extend the aforementioned result of [Feizmohammadi and Oksanen
2020; Lassas et al. 2021a] to the nonlinear magnetic Schrödinger equation L A,V u = 0 given by (1-4).
To state our result, similarly to the assumption (Vi i i ) on the potential V , we shall also suppose that the
nonlinear magnetic potential A satisfies

(Ai i ) A(x, 0)= ∂z A(x, 0)= 0, for all x ∈ M.

Our main result is as follows.
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Theorem 1.3. Let (M, g) be a conformally transversally anisotropic manifold of dimension n ≥ 3. Let
A(1), A(2) : M × C → T ∗M and V (1), V (2)

: M × C 7→ C satisfy the assumptions (Ai ), (Ai i ), and
(Vi ), (Vi i ), (Vi i i ), respectively. If 3A(1),V (1) =3A(2),V (2) then A(1) = A(2) and V (1)

= V (2) in M × C.

Remark 1.4. Let us point out that there are no assumptions on the transversal manifold in Theorem 1.3,
whereas the corresponding inverse boundary problem for the linear magnetic Schrödinger operator is still
open in this generality.

Remark 1.5. Notice that as opposed to the inverse boundary problem for the linear magnetic Schrödinger
equation, where one can determine the magnetic potential up to a gauge transformation only, in our
nonlinear setting the unique determination of both potentials is possible, due to the assumptions (Ai ), (Ai i ),
and (Vi ), (Vi i ), (Vi i i ), which imply that the first-order linearization of the nonlinear equation is given by
−1gu = 0, rather than by the linear magnetic Schrödinger equation.

Similarly to [Feizmohammadi and Oksanen 2020; Lassas et al. 2021a], the proof of Theorem 1.3 relies
on higher-order linearizations of the Dirichlet-to-Neumann map 3A,V , as well as a suitable consequence
of the following density result, which may be of some independent interest.

Proposition 1.6. Let (M, g) be a conformally transversally anisotropic manifold of dimension n ≥ 3, and
let A ∈ C1,1(M, T ∗M) be a 1-form. If∫

M
⟨A, d(u1u2u3)⟩gu4 dVg = 0, (1-8)

for all harmonic functions u j ∈ C∞(M), j = 1, 2, 3, 4, then A ≡ 0.

The starting point in the proof of Proposition 1.6 consists of showing that the boundary traces of the
1-form A, as well as of its normal derivative, vanish, as a consequence of the integral identity (1-8). This
allows us to extend A by zero to R× M0 \ M, while preserving its regularity. The proof of Proposition 1.6
then follows the strategy of the proof of Proposition 1.2 established in [Lassas et al. 2021a]. Specifically,
we construct harmonic functions to be used in (1-8), based on suitable Gaussian beams quasimodes
associated to two nontangential intersecting geodesics on the transversal manifold M0. Using the freedom
of working with four harmonic functions, we construct a pair of harmonic functions based on a Gaussian
beam quasimode v and its complex conjugate v̄, concentrated near one geodesic, and another pair of
harmonic functions based on a Gaussian beam quasimode w and its complex conjugate w, concentrated
near the other geodesic. The product d(vv̄w)w is supported near the finitely many points of intersections
of these geodesics, and the product does not have high oscillations. This makes it possible to conclude
that A = 0, using both nonstationary as well as stationary phase arguments (the Laplace method).

Remark 1.7. Our regularity assumption on A in Proposition 1.6 is motivated by the fact that the continuity
of the zero extension of A to R×M0\M is needed for a rough stationary phase argument and the Lipschitz
continuity of the gradient of the zero extension of A is needed for a nonstationary phase argument in the
proof of Proposition 1.6.

Returning to the proof of Theorem 1.3, let us mention that due to the assumptions (Ai i ) and (Vi i ), (Vi i i ),
only the linearizations of the Dirichlet-to-Neumann map of order ≥ 3 become useful when recovering the
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nonlinear potentials A(x, z) and V (x, z). Considering the m-th order linearization, m ≥ 3, leads to the
integral identity∫

M
((m + 1)i⟨A, d(u1 · · · um)⟩gum+1 − (mid∗(A)+ V )u1 · · · um+1) dVg = 0, (1-9)

where A = A(1)m−1 − A(2)m−1 and V = V (1)
m − V (2)

m , which is valid for any harmonic function ul ∈ C2,α(M)
with l = 1, . . . ,m + 1. Setting u1 = · · · = um−3 = 1 in (1-9) gives the identity

(m + 1)i
∫

M
⟨A, d(um−2um−1um)⟩gum+1 dVg =

∫
M
(mid∗(A)+ V )um−2um−1umum+1) dVg. (1-10)

To proceed, we first show that (1-10) implies that A|∂M = 0 and ∂ν A|∂M = 0, and then use a consequence
of Proposition 1.6 to obtain that A ≡ 0; see Corollary 4.1 below. To recover V , we substitute A = 0
in (1-10) and rely on Proposition 1.2.

Remark 1.8. The assumptions (Ai ), (Ai i ), (Vi ), (Vi i ), and (Vi i i ) in Theorem 1.3 are made precisely so that
the higher-order linearizations of the Dirichlet-to-Neumann map 3A,V lead to the integral identities (1-9)
involving at least four harmonic functions, and the freedom of working with four harmonic functions
allows one to solve the inverse boundary problem without any assumption on the transversal manifold;
see also [Lassas et al. 2021a].

Let us point out that inverse boundary problems for the nonlinear magnetic Schrödinger equation in the
Euclidean space, both in the case of full and partial data, have been studied in [Lai and Zhou 2020]. The
density of certain products of gradients of harmonic functions in the Euclidean space has been recently
established in [Cârstea and Feizmohammadi 2021], when solving an inverse boundary problem for certain
anisotropic quasilinear elliptic equations.

Finally, let us remark that inverse boundary problems for nonlinear elliptic PDEs have been studied
extensively in the literature. We refer to [Cârstea and Feizmohammadi 2021; Cârstea et al. 2019;
Feizmohammadi and Oksanen 2020; Hervas and Sun 2002; Isakov and Nachman 1995; Isakov and
Sylvester 1994; Kang and Nakamura 2002; Krupchyk and Uhlmann 2020a; 2020b; Lai and Zhou 2020;
Lassas et al. 2021a; 2021b; Sun 1996; 2004; 2010, Sun and Uhlmann 1997].

The paper is organized as follows. In Section 2 we recall the construction of harmonic functions on
a conformally transversally anisotropic manifold based on Gaussian beams quasimodes constructed on
R × M0 and localized near nontangential geodesics on the transversal manifold M0. For the convenience
of the reader, in Section 3 we provide a proof of Proposition 1.6 in a simplified setting. Section 4
is devoted to the proof of Proposition 1.6 in the general case. The proof of Theorem 1.3 occupies
Section 5. Appendix A discusses a standard rough version of stationary phase needed in the proof of
Proposition 1.6. In Appendix B, we show the well-posedness of the Dirichlet problem for the nonlinear
magnetic Schrödinger equation, in the case of small boundary data. The determination of the first-order
boundary traces of a scalar function and a 1-form, via suitable orthogonality relations involving harmonic
functions on the manifold M, is presented in Appendix C. Finally, Appendix D discusses some basic
properties of geodesics which are used in the body of the paper.
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2. Gaussian beams quasimodes and construction of harmonic functions

Let (M, g) be a conformally transversally anisotropic manifold so that (M, g) ⋐ (R × M0, c(e ⊕ g0)).
Let us write x = (x1, x ′) for local coordinates in R × M0. Note that φ(x)= ±αx1, α > 0, is a limiting
Carleman weight for −h21g; see [Dos Santos Ferreira et al. 2009].

Letting g̃ = e ⊕ g0, we have

c(n+2)/4
◦ (−1g) ◦ c−(n−2)/4

= −1g̃ + q, (2-1)

where
q = −c(n+2)/41g(c−(n−2)/4);

see [Dos Santos Ferreira et al. 2016]. Here q ∈ C∞(R × M0; R). It follows from (2-1) that in order
to construct harmonic functions on (M, g) based on Gaussian beams quasimodes, we shall need to
have Gaussian beams quasimodes for the Schrödinger operator −1g̃ + q , conjugated by an exponential
weight corresponding to the limiting Carleman weight φ. Our quasimodes will be constructed on the
manifold R × M0 and will be localized to nontangential geodesics on the transversal manifold M0. A unit
speed geodesic γ : [−S1, S2] → M0, 0< S1, S2 <∞, is called nontangential if γ (−S1), γ (S2) ∈ ∂M0,
γ̇ (−S1), γ̇ (S2) are nontangential vectors to ∂M0, and γ (t) ∈ M int

0 for all −S1 < t < S2; see [Dos
Santos Ferreira et al. 2016]. As in [Lassas et al. 2021a], it will be convenient to normalize our quasimodes
in L4(M0), as later we shall have to deal with products of four such quasimodes. We shall need the
following essentially well-known result, see [Feizmohammadi and Oksanen 2020, Section 4.1]; see also
[Dos Santos Ferreira et al. 2016; Lassas et al. 2021a].

Proposition 2.1. Let α > 0, and let τ = s + iλ, s ≥ 1, with λ ∈ R fixed. Then for any k ∈ N and R ≥ 1,
there exist N ∈ N and families of Gaussian beam quasimodes v1( · ; s), v2( · ; s) ∈ C∞(R× M0) such that

∥e−ατ x1(−1g̃ + q)eατ x1v1( · ; s)∥H k((I×M0)int) = O(s−R),

∥eατ x1(−1g̃ + q)e−ατ x1v2( · ; s)∥H k((I×M0)int) = O(s−R),
(2-2)

and

∥vj ( · ; s)∥L4(I×M0) = O(1), ∥vj ( · ; s)∥L∞(I×M0) = O(1)s(n−2)/8, j = 1, 2, (2-3)

as s → ∞. Here I ⊂ R is an arbitrary bounded interval. The local structure of the quasimodes is as
follows: Let p ∈ γ ([−S1, S2]) and let t1 < · · · < tP be the times in [−S1, S2] when γ (tl) = p. In a
sufficiently small neighborhood U of p, the quasimode vj is a finite sum

vj |U = v
(1)
j + · · · + v

(P)
j .

Each v(l)j has the form

v
(l)
1 = s(n−2)/8eiατϕ(l)a(l), v

(l)
2 = s(n−2)/8eiατϕ(l)b(l), l = 1, . . . , P,

where ϕ = ϕ(l) ∈ C∞(U ; C) satisfies, for t close to tl ,

ϕ(γ (t))= t, ∇ϕ(γ (t))= γ̇ (t), Im(∇2ϕ(γ (t)))≥ 0, Im(∇2ϕ)|γ̇ (t)⊥ > 0,
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and a(l), b(l) ∈ C∞(R × U ) are of the form

a(l)(x1, t, y; s)=

( N∑
j=0

τ− j a(l)j

)
χ

(
y
δ′

)
, b(l)(x1, t, y; s)=

( N∑
j=0

τ− j b(l)j

)
χ

(
y
δ′

)
,

where a(l)0 = b(l)0 is independent of x1 and the potential q,

a(l)0 (t, y)= a(l)00 (t)+O(|y|), a(l)00 (t) ̸= 0, for all t,

a(l)1 (x1, t, y)= a(l)10 (x1, t)+O(|y|), b(l)1 (x1, t, y)= b(l)10 (x1, t)+O(|y|).

Here a(l)10 (x1, t) = e f (l)(t)ã(l)10 (x1, t) and b(l)10 (x1, t) = e f (l)(t)b̃(l)10 (x1, t), where f (l) is independent of the
potential q, and further we have that ã(l)10 and b̃(l)10 satisfy the equations

(∂x1 + i∂t)ã
(l)
10 =

1
α

(
−

1
2

e− f (l)(1g̃a(l)0 )|y=0 + C (l)
0 q(x1, t, 0)

)
,

(∂x1 − i∂t)b̃
(l)
10 =

1
α

(1
2

e− f (l)(1g̃a(l)0 )|y=0 − C (l)
0 q(x1, t, 0)

)
,

where C (l)
0 ̸= 0 is a constant, independent of the potential q. Here (t, y) are the Fermi coordinates for γ

for t close to tl , χ ∈ C∞

0 (R
n−2) is such that 0 ≤ χ ≤ 1, χ = 1 for |y| ≤

1
4 and χ = 0 for |y| ≥

1
2 , and

δ′ > 0 is a fixed number that can be taken arbitrarily small.

Remark 2.2. In the special case when the conformal factor c is equal to 1, we have q = 0, g = g̃, and

e∓ατ x1 ◦ (−1g) ◦ e±ατ x1 = −1g ∓ 2α∂x1 − (ατ)2.

Thus, we can take the Gaussian beams quasimodes in (2-2) to be equal, v1 = v2, and independent of x1.

Next we shall construct harmonic functions on (M, g) based on the Gaussian beams quasimodes of
Proposition 2.1. To that end, we shall use the approach of [Dos Santos Ferreira et al. 2009], based on
Carleman estimates with limiting Carleman weights. The construction is standard, see [Dos Santos Ferreira
et al. 2016; Lassas et al. 2021a], and is presented here for the convenience of the reader only.

Assume, as we may, that (M, g) is embedded in a compact smooth manifold (N , g) without boundary
of the same dimension. Our starting point is the following Carleman estimates for the Schrödinger
operator, which is established in [Dos Santos Ferreira et al. 2009, Lemma 4.3].

Proposition 2.3. Let q ∈ C∞(M). Then given any t ∈ R, we have for all h > 0 small enough and all
u ∈ C∞

0 (M
int) that

h∥u∥H t
scl(N )

≤ C∥eφ/h(−h21+ h2q)e−φ/hu∥H t
scl(N )

, C > 0. (2-4)

Here H t(N ), t ∈ R, is the standard Sobolev space, equipped with the natural semiclassical norm

∥u∥H t
scl(N )

= ∥(1 − h21g)
t/2u∥L2(N ).

Using a standard argument, see [Dos Santos Ferreira et al. 2009], we convert the Carleman estimate (2-4)
into the following solvability result.
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Proposition 2.4. Let t ∈ R. If h > 0 is small enough, then for any v ∈ H t(M int), there is a solution
u ∈ H t(M int) of the equation

eφ/h(−h21+ h2q)e−φ/hu = v in M int

which satisfies

∥u∥H t
scl(M

int) ≤
C
h

∥v∥H t
scl(M

int).

Here
H t(M int)= {V |M int : V ∈ H t(N )}, t ∈ R,

with the norm
∥v∥H t

scl(M
0) = inf

V ∈H t
scl(N ),v=V |M int

∥V ∥H t
scl(N )

.

Let α > 0, and let

τ = s + iλ with 1 ≤ s =
1
h
, λ ∈ R, λ fixed.

In view of (2-1), to construct suitable harmonic functions on (M, g), we shall find complex geometric
optics solution to the equation

(−1g̃ + q)ũ = 0 in M int (2-5)

having the form
ũ1 = eατ x1(v1 + r1) and ũ2 = e−ατ x1(v2 + r2),

where v1 and v2 are the Gaussian beam quasimodes given in Proposition 2.1, and r1 and r2 are the
remainder terms. Thus, ũ1 is a solution of (2-5) provided that

e−αx1/h(−h21g̃ + h2q)eαx1/h(eiαλx1r1)= −eiαλx1e−ατ x1(−h21g̃ + h2q)eατ x1v1. (2-6)

For any k ∈ N and R ≥ 1 arbitrarily large, Propositions 2.4 and 2.1 imply that there is r1 ∈ H k(M int) such
that

∥r1∥H k
scl(M

int) ≤ O(h−1)∥e−ατ x1(−h21g̃ + h2q)eατ x1v1∥H k
scl(M

int) = O(h R−1),

and therefore, for any K , there is R large enough so that

∥r1∥H k(M int) ≤ h−k
∥r1∥H k

scl(M
int) = O(hK ).

Similarly, one can construct r2. This together with (2-1) gives the following result concerning the
construction of harmonic functions on (M, g) based on Gaussian beams quasimodes.

Proposition 2.5. Let α > 0, and let τ = s + iλ, s = 1/h, with λ ∈ R being fixed. For all k, K , and h > 0
small enough, there are u1, u2 ∈ H k(M int) solutions of −1gu j = 0 in M int having the form

u1 = eατ x1c−(n−2)/4(v1 + r1) and u2 = e−ατ x1c−(n−2)/4(v2 + r2),

where v1 =v1( · ; s), v2 =v2( · ; s)∈C∞(R×M0) are the Gaussian beam quasimodes from Proposition 2.1,
and r1, r2 ∈ H k(M int) are such that ∥rj∥H k(M int) = O(hK ) as h → 0.
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Remark 2.6. Taking k > 1
2 n + 3 and using the Sobolev embedding H k(M int) ⊂ C3(M), we see that

u j ∈ C3(M) with

∥rj∥C3(M) = O(hK ),

as h → 0, j = 1, 2.

3. Proof of Proposition 1.6 in a simplified setting

The proof of Proposition 1.6 will follow along the lines of the proof of [Lassas et al. 2021a, Proposition 5.1].
Before we prove Proposition 1.6 in the general case, let us explain the main ideas in a simplified setting.

Let us assume that each point p ∈ M int
0 is the unique intersection point of two distinct nontangential

non-self-intersecting geodesics γ and η. Assume furthermore that the conformal factor c equals 1. As we
shall see below, in this simplified setting the continuity of A suffices, and therefore to extend A by 0 to
the continuous form on R× M0 \ M, we only need to show A|∂M = 0. This follows by taking u2 = u3 = 1
in (1-8) and applying Proposition C.3.

In view of Proposition C.5, we see that (1-8) also holds for all harmonic functions u j ∈ C2,α(M),
0< α < 1, j = 1, . . . , 4.

Let s = 1/h, and let λ ∈ R be fixed. Our choice of the harmonic functions below will be similar to
[Lassas et al. 2021a]. Specifically, using Proposition 2.5 and Remark 2.6, we see that there exist harmonic
functions u j ∈ C3(M), j = 1, . . . , 4, on (M, g) of the form

u1 = e−(s+iλ)x1(v+ r1), u2 = e(s+iλ)x1(v+ r2),

u3 = e−sx1(w+ r3), u4 = esx1(w+ r4),
(3-1)

where

∥rj∥C1(M) = O(s−K ), (3-2)

as s →∞, K ≫1, and v=v( · ; s), w=w( · ; s)∈C∞(M0) are Gaussian beams quasimodes concentrating
near the geodesics η and γ , respectively, constructed in Proposition 2.1; see also Remark 2.2. We have

v(x ′
; s)= s(n−2)/8ei(s+iλ)ϕ(x ′)a(x ′

; s) and w(x ′
; s)= s(n−2)/8eisψ(x ′)b(x ′

; s), (3-3)

where

ϕ(η(t))= t, ∇ϕ(η(t))= η̇(t), Im(∇2ϕ(η(t)))≥ 0, Im(∇2ϕ)|η̇(t)⊥ > 0,

ψ(γ (τ))= τ, ∇ψ(γ (τ))= γ̇ (τ ), Im(∇2ψ(γ (τ)))≥ 0, Im(∇2ψ)|γ̇ (τ )⊥ > 0,
(3-4)

and

a(t, y; s)=

( N∑
j=0

τ− j aj

)
χ

(
y
δ′

)
, b(τ, z; s)=

( N∑
j=0

τ− j bj

)
χ

(
z
δ′

)
, (3-5)

where
a0(t, y)= a(l)00 (t)+O(|y|), a00(t) ̸= 0, for all t,

b0(τ, z)= a00(τ )+O(|z|), b00(τ ) ̸= 0, for all τ.
(3-6)
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Here (t, y) and (τ, z) are the Fermi coordinates for the geodesics η and γ , χ ∈ C∞

0 (R
n−2) is such that

0 ≤ χ ≤ 1, χ = 1 for |y| ≤
1
4 and χ = 0 for |y| ≥

1
2 , and δ′ > 0 is a fixed number that can be taken

arbitrarily small. We also have

∥v∥L4(M0) = ∥w∥L4(M0) = O(1), ∥v∥L∞(M0) = ∥w∥L∞(M0) = O(s(n−2)/8), (3-7)

as s → ∞. Similarly, we find that

∥s(n−2)/8ei(s+iλ)ϕ
∇a∥L4(M0) = ∥s(n−2)/8eisψ

∇b∥L4(M0) = O(1),

∥∇v∥L4(M0) = O(s), ∥∇w∥L4(M0) = O(s),

∥∇v∥L∞(M0) = O(s(n+6)/8), ∥∇w∥L∞(M0) = O(s(n+6)/8),

(3-8)

as s → ∞.
Now it follows from (3-1) that

(u1u2u3)(x)= e−2iλx1−sx1(|v(x ′)|2w(x ′)+ R(x)),

where

R = |v|2r3 + (w+ r3)(vr̄2 + v̄r1 + r1r̄2).

Using (3-2), (3-7), and (3-8), we see that

∥R∥C1(M) = O(s−L), (3-9)

where L is large depending on K . Hence, we have

∂x1(u1u2u3)= e−2iλx1−sx1[(−2iλ− s)(|v|2w+ R)+ ∂x1 R],

and therefore, using (3-9), (3-2), and (3-7), we get

∂x1(u1u2u3)u4 = −se−2iλx1 |v|2|w|
2
+OL1(M)(1), (3-10)

as s → ∞. We also get

∂xk (u1u2u3)= e−2iλx1−sx1(∂xk (|v|
2w)+ ∂xk (R))

for k = 2, . . . , n, and therefore, (3-9), (3-2), (3-7), and (3-8) yield

∂xk (u1u2u3)u4 = e−2iλx1∂xk (|v|
2w)w+OL1(M)(1), (3-11)

as s → ∞. Writing A = (A1, A′) and using (3-10) and (3-11), we conclude that

⟨A, d(u1u2u3)⟩gu4 = e−2iλx1(−s A1|v|
2
|w|

2
+ ⟨A′, dx ′(|v|2w)w⟩g0)+OL1(M)(1), (3-12)

as s → ∞. It follows from (1-8) with the help of (3-12) that∫
M

e−2iλx1(−s A1|v|
2
|w|

2
+ ⟨A′, dx ′(|v|2w)w⟩g0) dVg = O(1), (3-13)

as s → ∞.



1836 KATYA KRUPCHYK AND GUNTHER UHLMANN

Extending A by zero to R × M0 \ M, and denoting the extension again by A, we now see that
A ∈ C(R× M0, T ∗(R× M0)) as A|∂M = 0. Denoting the partial Fourier transform of A in the x1 variable
by Â(λ, x ′), we get from (3-13) that∫

M0

(−s Â1(2λ, · )|v|2|w|
2
+ ⟨ Â′(2λ, · ), dx ′(|v|2w)w⟩g0) dVg0 = O(1), (3-14)

as s → ∞. Since v and w can be chosen to be supported in arbitrarily small but fixed neighborhoods
of η and γ , respectively, and since η and γ only intersect at p, the products |v|2|w|

2 and dx ′(|v|2w)w

concentrate in a small neighborhood U of p. Using (3-3) and (3-5), we see that in U,

|v|2|w|
2
= s(n−2)/2e−2s(Imϕ+Imψ)e−2λReϕ(|a0|

2
|b0|

2
+OL∞(M0)(1/s))

= s(n−2)/2e−2s(Imϕ+Imψ)e−2λReϕ
|a0|

2
|b0|

2
+OL1(M0)(1/s), (3-15)

and
dx ′(|v|2w)w= s(n−2)/2e−2s(Imϕ+Imψ)e−2λReϕ[(is(2i d Imϕ+dψ)(|a0|

2
|b0|

2
+OL∞(M0)(1/s))

−2λ(d Reϕ)|a|
2
|b|

2
+dx ′(|a|

2b)b̄
]

= s(n−2)/2e−2s(Imϕ+Imψ)e−2λReϕis(2i d Imϕ+dψ)|a0|
2
|b0|

2
+OL1(M0)(1), (3-16)

as s → ∞. Substituting (3-15) and (3-16) into (3-14) and dividing by s1/2, we obtain

s(n−1)/2
∫

U
(− Â1(2λ, ·)+i⟨ Â′(2λ, ·),2i d Imϕ+dψ⟩g0)e

−2λReϕ
|a0|

2
|b0|

2e−s9 dVg0 = O(s−1/2),

(3-17)
as s → ∞, where

9 = 2(Imϕ+ Imψ).

It follows from (3-4) that
9(p)= 0, d9(p)= 0, ∇

29(p) > 0,

where the later inequality is a consequence of the fact that the Hessians of Imϕ and Imψ at p are positive
definite in the directions orthogonal to η and γ , respectively.

Let us now denote by z = (z1, . . . , zn−1) the geodesic normal coordinates in (M0, g0) with the origin
at p. Then

g0(z)= 1 +O(|z|2), (3-18)

see [Petersen 2006, Chapter 2, Section 8, p. 56], and dVg0 = |g0(z)|1/2 dz. Passing to the limit as s → ∞

in (3-17) and using the rough version of the stationary phase Lemma A.1, as well as (3-18), we obtain

(− Â1(2λ, p)+ i Â′(2λ, p)(γ̇ (t0)))e−2λReϕ(p)
|a00(p)|2|b00(p)|2 = 0,

where p = γ (t0), for all λ ∈ R. As a00(p) ̸= 0, b00(p) ̸= 0, and λ is arbitrary, we see that

−A1(x1, p)+ i A′(x1, p)(γ̇ (t0))= 0,

which is equivalent to
(i A1, A′)(x1, p)(1, γ̇ (t0))= 0. (3-19)
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Here we may replace γ̇ (t0) by −γ̇ (t0). Thus, (3-19) gives that A1(x1, p)= 0, and since the point (x1, p)
is an arbitrary point in R × M0, we get A1 ≡ 0. Hence, we only need to show that the 1-form A′(x1, · )

vanishes on M0, knowing that

A′(x1, p)(γ̇ (t0))= 0. (3-20)

To that end, we assume without loss of generality that v1 = γ̇ (t0)= (1, 0, . . . , 0) ∈ Rn−1, and consider
the small perturbations of v1 given by

v2 =
1

√
1 + ε2

(1, ε, 0, . . . , 0), . . . , vn−1 =
1

√
1 + ε2

(1, 0, . . . , 0, ε), (3-21)

for ε > 0 small. The unit vectors v1, . . . , vn−1 are linearly independent, and thus, they span the tangent
space Tp M0. By Proposition D.2, for ε> 0 sufficiently small, the unit speed geodesic γp,vj through (p, vj ),
j = 2, . . . , n − 1, is nontangential between boundary points, does not have self-intersections, and inter-
sects η at the point p only. Applying the discussion above with γ = γp,vj , we obtain that A′(x1, p)(vj )= 0,
j = 2, . . . , n − 1. This together with (3-20) gives that A′(x1, p)= 0. The proof of Proposition 1.6 in the
simplified case is complete.

4. Proof of Proposition 1.6 in the general setting

In the case of a general transversal manifold M0, the nontangential geodesics γ and η might have self-
intersections and may intersect more than in one point, which complicates the proof. To proceed we
shall follow [Lassas et al. 2021a] and introduce additional parameters in the construction of harmonic
functions. Furthermore, we shall implement the presence of the conformal factor c which is assumed to
be equal to 1 in [Lassas et al. 2021a].

Let us proceed to discuss the choice of two nontangential geodesics to be used when constructing
Gaussian beams quasimodes. When doing so let us first observe that arguing as in the proof of Theorem 1.2
of [Salo 2017], we may assume that (M0, g0) has a strictly convex boundary. An application of [Salo 2017,
Lemma 3.1] gives therefore that there exists a null set E in (M0, g0) such that all points in M0 \ E lie on
some nontangential geodesic joining boundary points. Fix a point y0 ∈ M int

0 \E and let γ : [−S1, S2]→ M0,
0< S1, S2 <∞, be a unit speed nontangential geodesic such that γ (0)= y0. Then by Proposition D.1,
moving the point y0 along γ a little and reparametrizing the geodesic, if necessary, there exists a small
neighborhood W ⊂ Sy0 M0 of w0 = γ̇ (0) such that for every w ∈ W, w ̸= w0, the unit speed geodesic
η : [−T1, T2] → M0, 0 < T1, T2 <∞, such that η(0) = y0 and η̇(0) = w is also nontangential, and γ
and η do not intersect each other at the boundary of M0. Notice that γ and η are distinct and are not
reverses of each other. As we shall see below, the fact that γ and η do not intersect each other at the
boundary of M0 allows us to avoid the use of stationary and nonstationary phase on the boundary of M0.

By [Lassas et al. 2021a], we know that γ and η can intersect only finitely many times. Let us denote by
p1, . . . , pN ∈ M int

0 the distinct intersection points of γ and η. For each r , r = 1, . . . , N, let t (r)1 < · · ·< t (r)Pr

be the times in [−T1, T2] when η(tr
j ) = pr , and let τ (r)1 < · · · < τ

(r)
Qr

be the times in [−S1, S2] when
γ (τ

(r)
j )= pr . Let Ur be a small neighborhood of pr , r = 1, . . . , N.
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Choosing harmonic functions. First it follows from Proposition C.5 that (1-8) continues to hold for all
harmonic functions u j ∈ C2,α(M), 0< α < 1, j = 1, . . . , 4.

Let s ≥ 1 and let L > 0, λ,µ ∈ R be fixed. By Proposition 2.5 and Remark 2.6, there are harmonic
functions u j ∈ C3(M) of the form

u1 = e(s+iµ)x1c−(n−2)/4(v1 + r1), u2 = e−(s+iµ)x1c−(n−2)/4(v2 + r2),

u3 = e−L(s+iλ)x1c−(n−2)/4(w1 + r3), u4 = eL(s+iλ)x1c−(n−2)/4(w2 + r4),
(4-1)

where
∥rj∥C1(M) = O(s−K ), (4-2)

as s → ∞, K ≫ 1, and vj ∈ C∞(R × M0), j = 1, 2, and wj ∈ C∞(R × M0), j = 1, 2, are the Gaussian
beam quasimodes constructed in Proposition 2.1 and associated to the nontangential geodesics η and γ ,
respectively, such that

supp(vj ( · ; s))⊂ R × small neigh(η) and supp(wj ( · ; s))⊂ R × small neigh(γ ). (4-3)

Notice that here we follow [Lassas et al. 2021a], and the minor differences are as follows: in order to
incorporate the presence of the conformal factor our Gaussian beams quasimodes are constructed on all
of R × M0 rather than on M0 as in that work, and the parameters µ and λ are real.

Let us now recall a local description of the quasimodes vj and wj near the intersection points pr of γ
and η. In doing so, let us fix p to be one of the intersection points pr and let us set U = Ur . In the open
set U, the quasimodes vj are of the form

vj |U =

P∑
k=1

v
(k)
j , j = 1, 2, (4-4)

where t1 < · · ·< tP are the times in [−T1, T2] when η(tk)= p. Each v(k)1 and v(k)2 in (4-4) has the form

v
(k)
1 = s(n−2)/8ei(s+iµ)ϕ(k)a(k), v

(k)
2 = s(n−2)/8ei(s+iµ)ϕ(k)b(k), k = 1, . . . , P, (4-5)

where ϕ = ϕ(k) ∈ C∞(U ; C) satisfies, for t close to tk ,

ϕ(η(t))= t, ∇ϕ(η(t))= η̇(t), Im(∇2ϕ(η(t)))≥ 0, Im(∇2ϕ)|η̇(t)⊥ > 0, (4-6)

and each a(k), b(k) ∈ C∞(R × U ) is of the form

a(k)(x1, t, y; s)=

( N∑
j=0

τ− j a(k)j

)
χ

(
y
δ′

)
, b(k)(x1, t, y; s)=

( N∑
j=0

τ− j b(k)j

)
χ

(
y
δ′

)
, (4-7)

where a(k)0 = b(k)0 is independent of x1 and

a(k)0 (t, y)= a(k)00 (t)+O(|y|), a(k)00 (t) ̸= 0, for all t. (4-8)

Here (t, y) are the Fermi coordinates for η for t close to tk , χ ∈ C∞

0 (R
n−2) is such that 0 ≤ χ ≤ 1, χ = 1

for |y| ≤
1
4 and χ = 0 for |y| ≥

1
2 , and δ′ > 0 is a fixed number that can be taken arbitrarily small.
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Furthermore, in U, the quasimodes w1 and w2 are finite sums

wj |U =

Q∑
k=1

w
(k)
j , j = 1, 2, (4-9)

where τ1 < · · ·<τQ are the times in [−S1, S2] when γ (τk)= p. Each w(k)1 and w(k)2 in (4-9) has the form

w
(k)
1 = s(n−2)/8eLi(s+iλ)ψ (k)c(k), w

(k)
2 = s(n−2)/8eLi(s+iλ)ψ (k)d(k), k = 1, . . . , Q, (4-10)

where each ψ = ψ (k) ∈ C∞(U ; C) satisfies, for τ close to τk ,

ψ(γ (τ))= τ, ∇ψ(γ (τ))= γ̇ (τ ), Im(∇2ψ(γ (τ)))≥ 0, Im(∇2ψ)|γ̇ (τ )⊥ > 0, (4-11)

and each c(k), d(k) ∈ C∞(R × U ) is of the form

c(k)(x1, τ, z; s)=

( N∑
j=0

τ− j c(k)j

)
χ

(
z
δ′

)
, d(k)(x1, τ, z; s)=

( N∑
j=0

τ− j d(k)j

)
χ

(
z
δ′

)
, (4-12)

where c(k)0 = d(k)0 is independent of x1 and

c(k)0 (τ, z)= c(k)00 (τ )+O(|z|), c(k)00 (τ ) ̸= 0, for all τ. (4-13)

Here (τ, z) are the Fermi coordinates for γ for t close to tk .
We also have

∥vj∥L4(M) = O(1), ∥∇vj∥L4(M) = O(s),

∥wj∥L4(M) = O(1), ∥∇wj∥L4(M) = O(s),

∥vj∥L∞(M) = O(s(n−2)/8), ∥∇vj∥L∞(M) = O(s(n+6)/8),

∥wj∥L∞(M) = O(s(n−2)/8), ∥∇wj∥L∞(M) = O(s(n+6)/8),

(4-14)

as s → ∞, j = 1, 2.
Now it follows from (4-1) that

u1u2u3 = e(−Ls+2iµ−Liλ)x1c−3(n−2)/4(v1v̄2w1 + R̃), (4-15)

where
R̃ = r3v1v̄2 + (w1 + r3)(v1r̄2 + v̄2r1 + r1r̄2).

Using (4-2) and (4-14), we get
∥R̃∥C1(M) = O(s−L), (4-16)

where L is large. Hence, we have

∂x1(u1u2u3)= e(−Ls+2iµ−Liλ)x1
[
(−Ls + 2iµ− Liλ)c−3(n−2)/4(v1v̄2w1 + R̃)

+ ∂x1(c
−3(n−2)/4)(v1v̄2w1 + R̃)+ c−3(n−2)/4(∂x1(v1v̄2w1)+ ∂x1 R̃)

]
,

and therefore, in view of (4-16), (4-2), and (4-14), we get

∂x1(u1u2u3)u4 = e2i(µ−Lλ)x1c−(n−2)
[−Lsv1v̄2w1w2 + ∂x1(v1v̄2w1)w2] +OL1(M)(1), (4-17)
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as s → ∞. We also have from (4-15) that

∂xk (u1u2u3)= e(−Ls+2iµ−Liλ)x1[c−3(n−2)/4(∂xk (v1v̄2w1)+ ∂xk R̃)+ ∂xk (c
−3(n−2)/4)(v1v̄2w1 + R̃)],

for k = 2, . . . , n, and therefore, in view of (4-16), (4-2), and (4-14), we get

∂xk (u1u2u3)u4 = e2i(µ−Lλ)x1c−(n−2)∂xk (v1v̄2w1)w2 +OL1(M)(1), (4-18)

as s → ∞.
For future reference, we also note that

u1u2u3u4 = e2i(µ−Lλ)x1c−(n−2)(v1v̄2w1w2 + R̃w2 + (v1v̄2w1 + R̃)r̄2)= OL1(M)(1), (4-19)

as s → ∞.
Using (4-17) and (4-18), we obtain

⟨A, d(u1u2u3)⟩gu4 = e2i(µ−Lλ)x1c1−n(A1(−Lsv1v̄2w1w2 + ∂x1(v1v̄2w1)w2)

+ ⟨A′, dx ′(v1v̄2w1)⟩g0w2
)
+OL1(M)(1), (4-20)

as s → ∞.
It follows from (1-8) in view of (4-20) that∫
M
(A1(−Lsv1v̄2w1w2+∂x1(v1v̄2w1)w2)+⟨A′, dx ′(v1v̄2w1)⟩g0w2)e2i(µ−Lλ)x1c1−n dVg =O(1), (4-21)

as s → 0.
Now taking u2 = u3 = 1 in (1-8) and applying Proposition C.3, we obtain that A|∂M = 0 and ∂ν A|∂M = 0.

Let us extend A by zero to (R× M0)\ M and denote this extension by A again. Since A ∈ C1,1(M, T ∗M)
and A|∂M = 0, ∂ν A|∂M = 0, we see that A ∈ C1,1(R × M0, T ∗(R × M0)). Now (4-21) implies that∫

R×M0

(A1(−Lsv1v̄2w1w2 + ∂x1(v1v̄2w1)w2)+ ⟨A′, dx ′(v1v̄2w1)⟩g0w2)

× e2i(µ−Lλ)x1c1−n dVg = O(1), (4-22)

as s → 0. In view of (4-3), (4-22) gives

N∑
r=1

∫
R×Ur

(A1(−Lsv1v̄2w1w2 + ∂x1(v1v̄2w1)w2)+ ⟨A′, dx ′(v1v̄2w1)⟩g0w2)

× e2i(µ−Lλ)x1c1−n dVg = O(1), (4-23)

as s → 0, where the Ur are sufficiently small neighborhoods of the points pr of the intersections of γ
and η. Using (4-4), (4-5), (4-7), (4-10), and (4-12), we obtain that in Ur ,

v1v̄2w1w2 = s(n−2)/2
∑

1≤k,l≤Pr

∑
1≤m, j≤Qr

eis9r
klm j e8

r
klm j a(k),r0 a(l),r0 c(m),r0 c( j),r

0 +OL1(I×M0)(1/s), (4-24)

where
9r

klm j = ϕ(k),r −ϕ(l),r + Lψ (m),r − Lψ ( j),r , (4-25)

8r
klm j = −µϕ(k),r −µϕ(l),r − Lλψ (m),r − Lλψ ( j),r , (4-26)
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and I ⊂ R is a bounded interval. Recall that all a(k),r0 and c(m),r are independent of x1. This fact also
implies that

∂x1(v1v̄2w1)w2 = OL1(I×M0)(1/s). (4-27)

Using (4-4), (4-5), (4-7), (4-10), and (4-12), we also get that in Ur ,

dx ′(v1v̄2w1)w2 = s(n−2)/2
∑

1≤k,l≤Pr

∑
1≤m, j≤Qr

is(dϕ(k),r − dϕ(l),r + L dψ (m),r )

× eis9r
klm j e8

r
klm j a(k),r0 a(l),r0 c(m),r0 c( j),r

0 +OL1(I×M0)(1). (4-28)

Substituting (4-24), (4-27), and (4-28) into (4-23), using that dVg = cn/2 dx1 dVg0 , and dividing (4-23)
by s1/2, we obtain

s(n−1)/2
N∑

r=1

∑
1≤k,l≤Pr

∑
1≤m, j≤Qr

∫
Ur

Br
klm j e

is9r
klm j dVg0 = O(s−1/2), (4-29)

where

Br
klm j =[−L

∧

A1c1−n/2(2(µ−Lλ), · )+i⟨
∧

A′c1−n/2(2(µ−Lλ), · ) dϕ(k),r −dϕ(l),r +L dψ (m),r ⟩g0]

× e8
r
klm j a(k),r0 a(l),r0 c(m),r0 c( j),r

0 . (4-30)

Notice that the occurrence of the factor s(n−1)/2 is natural here, in view of a subsequent application of the
stationary phase method, in its rough version, to the integral in the left-hand side of (4-29).

Choosing L. The argument below follows [Lassas et al. 2021a] closely and is presented here for com-
pleteness and the convenience of the reader only. We claim that L > 0 can be chosen sufficiently large
but fixed so that d9r

klm j (pr )= 0 for all points pr , 1 ≤ r ≤ N, if and only if k = l and m = j . Indeed, it
follows from (4-25) that

∇9r
klmi j (pr )= (∇ϕ(k),r − ∇ϕ(l),r + L∇ψ (m),r − L∇ψ ( j),r )(pr )

= η̇(tr
k )− η̇(t

r
l )+ L γ̇ (τ r

m)− L γ̇ (τ r
j ). (4-31)

If k = l and m = j , (4-31) implies that ∇9r
klmi j (pr )= 0 for all 1 ≤ r ≤ N. Now since the geodesic γ is

nontangential, and therefore not closed, we have γ̇ (τ r
m)− γ̇ (τ

r
j ) ̸= 0, for all m ̸= j , for all r , 1 ≤ r ≤ N.

Let
α = min{|γ̇ (τ r

m)− γ̇ (τ
r
j )| : m ̸= j, 1 ≤ m, j ≤ Qr , 1 ≤ r ≤ N }> 0.

Then in view of the fact that η is a unit speed geodesic, it follows from (4-31) that for all r , 1 ≤ r ≤ N,
and for all m ̸= j ,

|∇9r
klm j (pr )| ≥ Lα− 2 ≥ 1, (4-32)

provided that L ≥ 3/α. Hence, if d9r
klm j (pr )= 0 then m = j , and therefore, (4-31) implies that

∇9r
klmk(pr )= η̇(tr

k )− η̇(t
r
l ). (4-33)

This completes the proof of the claim since η̇(tr
k )− η̇(t

r
l ) ̸= 0 for all k ̸= l and all r , 1 ≤ r ≤ N.
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In what follows we choose L ≥ 3/α. Furthermore, it follows from (4-32) and (4-33) that for such L ,
there exists β > 0 such that

|∇9r
klm j (pr )| ≥ β > 0, (4-34)

for (k, l,m, j) ∈ {(k, l,m, j) : 1 ≤ k, l ≤ Pr , 1 ≤ m, j ≤ Qr } \ {(k, l,m, j) : k = l, m = j}, 1 ≤ r ≤ N.
Returning to (4-29), we write the integral there as

I = s(n−1)/2
N∑

r=1

∑
1≤k,l≤Pr

∑
1≤m, j≤Qr

∫
Ur

Br
klm j e

is9r
klm j dVg0 =

N∑
r=1

(I r
1 + I r

2 ), (4-35)

where
I r
1 = s(n−1)/2

∑
1≤k≤Pr

∑
1≤m≤Qr

∫
Ur

Br
kkmmeis9r

kkmm dVg0,

I r
2 = s(n−1)/2

∑
1≤k ̸=l≤Pr

∑
1≤m ̸= j≤Qr

∫
Ur

Br
klm j e

is9r
klm j dVg0 .

(4-36)

Rough stationary phase calculation. Here the analysis is concerned with the integrals I r
1 . It follows

from (4-25) that
9r

kkmm = 2i(Imϕ(k),r + L Imψ (m),r ),

and therefore, d9r
kkmm(pr )= 0, 9r

kkmm(pr )= 0, and Im ∇
29r

kkmm(pr ) > 0, where pr ∈ M int
0 is the point

of intersection of γ and η. Note that Ur ⊂ M int
0 , and hence, there will be no contributions from the

boundary.
Let us denote by z = (z1, . . . , zn−1) the geodesic normal coordinates in (M0, g0) with origin at pr .

Writing dVg0 = |g0(z)|1/2 dz, applying Lemma A.1, and using (4-30) and (4-26), we obtain that

lim
s→∞

s(n−1)/2
∫

Ur

Br
kkmmeis9r

kkmm dVg0

= lim
s→∞

s(n−1)/2
∫

neigh(0,Rn−1)

Br
kkmm(z)|g0(z)|1/2eis9r

kkmm(z) dz = Cr
kkmm Br

kkmm(pr )

= Cr
kkmm[−L
∧

A1c1−n/2(2(µ− Lλ), pr )+ i L
∧

A′c1−n/2(2(µ− Lλ), pr )(γ̇ (τ
r
m))]

× e−2µtr
k −2Lλτ r

m |a(k),r00 (pr )|
2
|c(m),r00 (pr )|

2, (4-37)

where

Cr
kkmm =

(2π)(n−1)/2

(det Im ∇29r
kkmm(pr ))1/2

> 0.

Here we also used that
ϕ(k),r (pr )= tr

k and ψ (m),r (pr )= τ r
m .

Thus, we see from (4-36) and (4-37) that

lim
s→∞

I r
1 =

∑
1≤k≤Pr

∑
1≤m≤Qr

Cr
kkmm[−L
∧

A1c1−n/2(2(µ− Lλ), pr )+ i L
∧

A′c1−n/2(2(µ− Lλ), pr )(γ̇ (τ
r
m))]

× e−2µtr
k −2Lλτ r

m |a(k),r00 (pr )|
2
|c(m),r00 (pr )|

2. (4-38)
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Nonstationary phase calculation. Here the analysis is concerned with I r
2 in (4-36). It follows from

(4-25) that
9r

klm j = 9̃r
klm j + i Imϕ(k),r + i Imϕ(l),r + Li Imψ (m),r + Li Imψ ( j),r, (4-39)

where
9̃r

klm j = Reϕ(k),r − Reϕ(l),r + L Reψ (m),r − L Reψ ( j),r
∈ C∞ (4-40)

is real such that |∇9̃r
klm j (pr )| = |∇9r

klm j (pr )| ≥ β > 0 provided L > 3/α in view of (4-34).
Let us denote by z = (z1, . . . , zn−1) the geodesic normal coordinates in (M0, g0) with origin at p.

Motivated by (4-30) and (4-39), we set

f (z)= [−L
∧

A1c1−n/2(2(µ− Lλ), z)+ i⟨
∧

A′c1−n/2(2(µ− Lλ), z)dϕ(k),r − dϕ(l),r + Ldψ (m),r ⟩g0]

× e8
r
klm j |g0(z)|1/2 ∈ C1,1

0 (M0),

and
â(k),r0 = s(n−2)/8e−s Imϕ(k),r a(k),r0 , ĉ(m),r0 = s(n−2)/8e−s Imψ (m),r c(m),r0 . (4-41)

Thus,

I r
2,klm j := s(n−1)/2

∫
Ur

Br
klm j e

is9r
klm j dVg = s1/2

∫
neigh(0,Rn−1)

f (z)â(k),r0 â(l),r0 ĉ(m),r0 ĉ( j),r
0 eis9̃r

klm j (z) dz. (4-42)

Note that f is independent of s, and

∥â(k),r0 ∥L4(M0) = O(1), ∥ĉ(m),r0 ∥L4(M0) = O(1), (4-43)

as s → ∞. We next claim that

∥∇â(k),r0 ∥L4(M0) = O(s1/2), ∥∇ ĉ(m),r0 ∥L4(M0) = O(s1/2), (4-44)

as s → ∞; see [Lassas et al. 2021a]. Let us recall the argument briefly. It is enough to show the first
bound in (4-44). To that end, we have from (4-41) that

∇â(k),r0 = s(n−2)/8e−s Imϕ(k),r (−s(∇ Imϕ(k),r )a(k),r0 + ∇a(k),r0 ). (4-45)

It suffices to control the first term in the right-hand side of (4-45), and to this end we note that in the
Fermi coordinates (t, y), associated with the geodesic η, we have

|∇ Imϕ(k),r (t, y)| = O(|y|) (4-46)

and
Imϕ(k),r (t, y)≥ c|y|

2, (4-47)

for some c > 0; see (4-6). Thus, using (4-46) and (4-47), we get

∥s(n−2)/8e−s Imϕ(k),r s(∇ Imϕ(k),r )a(k),r0 ∥L4(M0) = O(s(n−2)/8s)
(∫

|y|≤1/2
e−4s Imϕ(k),r

|y|
4 dy

)1/4

= O(s1/2).

This bound together with (4-45) shows the first bound in (4-44). Similarly to (4-44), we also have

∥∂αâ(k),r0 ∥L4(M0) = O(s|α|/2), ∥∂α ĉ(m),r0 ∥L4(M0) = O(s|α|/2), for all α, (4-48)
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as s → ∞. Furthermore, as δ′ > 0 can be chosen as small as we wish, we see that â(k),r0 and ĉ(k),r0 have
compact support in Ur .

Letting

L =
∇9̃r

klmi j · ∇

i |∇9̃r
klmi j |

2
,

we have L(eis9̃r
klmi j )= seis9̃r

klmi j . Integrating by parts in (4-42), we get

I r
2,klm j = s−1/2

∫
neigh(0,Rn−1)

eis9̃r
klm j (z)L t( f (z)â(k),r0 â(l),r0 ĉ(m),r0 ĉ( j),r

0 ) dz,

where L t
= −L − div L . Now in view of (4-40) and (4-43), we see that

s−1/2
∣∣∣∣∫

neigh(0,Rn−1)

eis9̃r
klm j (z)(div L)( f (z)â(k),r0 â(l),r0 ĉ(m),r0 ĉ( j),r

0 ) dz
∣∣∣∣ = O(s−1/2),

and in view of (4-44),

s−1/2
∣∣∣∣∫

neigh(0,Rn−1)

eis9̃r
klm j (z) f (z)∇(â(k),r0 â(l),r0 ĉ(m),r0 ĉ( j),r

0 ) dz
∣∣∣∣ = O(1),

as s → ∞. As f is independent of s, we see, after one integration by parts in (4-42), that I r
2,klm j = O(1).

Since ∇ f is Lipschitz, we can integrate by parts a second time, and using (4-48), we get

I r
2,klm j = O(s−1/2), (4-49)

as s → ∞. Notice that it is precisely here that we need the assumption that our 1-form A is an element of
C1,1

0 (R × M0, T ∗(R × M0)).
We get, in view of (4-36) and (4-49),

I r
2 = O(s−1/2), (4-50)

as s → ∞.

Completion of the proof. Passing to the limit s → ∞ in (4-29) and using (4-35), (4-36), (4-38), and
(4-50), we obtain

N∑
r=1

Pr∑
k=1

Qr∑
m=1

Cr
kkmm[−L
∧

A1c1−n/2(2(µ− Lλ), pr )+ i L
∧

A′c1−n/2(2(µ− Lλ), pr )(γ̇ (τ
r
m))]

× e−2µtr
k −2Lλτ r

m |a(k),r00 (pr )|
2
|c(m),r00 (pr )|

2
= 0. (4-51)

Next we would like to determine each term in the sum in (4-51) separately. To do this, we shall follow
[Lassas et al. 2021a]. First choosing µ= (1 − L)λ, we get

N∑
r=1

Pr∑
k=1

Qr∑
m=1

[−L
∧

A1c1−n/2(2λ(1 − 2L), pr )+ i L
∧

A′c1−n/2(2λ(1 − 2L), pr )(γ̇ (τ
r
m))]

× Cr
kkmme−2λ[L(τ r

m−tr
k )+tr

k ]
|a(k),r00 (pr )|

2
|c(m),r00 (pr )|

2
= 0. (4-52)
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It is shown in [Lassas et al. 2021a] that for all L ≥ 1 sufficiently large,

L(τ r1
m1

− tr1
k1
)+ tr1

k1
̸= L(τ r2

m2
− tr2

k2
)+ tr2

k2
(4-53)

when (r1, k1,m1) ̸= (r2, k2,m2), and fixing L ≥ 3/α large enough, we may assume in what follows
that (4-53) holds. We shall next need Lemma 5.2 from [Lassas et al. 2021a] which can be stated as
follows: let f1, . . . , fN ∈ E ′(R) be such that for some distinct real numbers a1, . . . , aN , one has

N∑
j=1

f̂ j (λ)eajλ = 0, λ ∈ R,

then f1 = · · · = fN = 0. Applying this result, we get for all r , k, m, λ,

(−
∧

A1c1−n/2(2λ(1 − 2L), pr )+ i
∧

A′c1−n/2(2λ(1 − 2L), pr )(γ̇ (τ
r
m)))C

r
kkmm |a(k),r00 (pr )|

2
|c(m),r00 (pr )|

2
= 0,

and as Cr
kkmm ̸= 0, a(k),r00 (pr ) ̸= 0, and c(m),r00 (pr ) ̸= 0, we get, taking the inverse Fourier transform in x1,

−A1(x1, pr )+ i A′(x1, pr )(γ̇ (τ
r
m))= 0,

for all x1 ∈ R, pr , and τ r
m . Since y0 was one of the points pr , and γ (τ r

m)= y0, we know

(i A1, A′)(x1, y0)(1, γ̇ (τ r
m))= 0. (4-54)

Here we may replace γ̇ (τ r
m) by −γ̇ (τ r

m), and thus, (4-54) implies that A1(x1, y0)= 0, for all x1 ∈ R and
almost all y0 ∈ M0, and therefore, by continuity, A1 ≡ 0. Hence, we are left with proving that the 1-form
A′(x1, · ) vanishes on M0 from the fact that

A′(x1, y0)(γ̇ (τ
r
m))= 0. (4-55)

To proceed we assume without loss of generality that v1 := γ̇ (τ r
m)= (1, 0, . . . , 0) ∈ Rn−1 and consider its

small perturbations v2, . . . , vn−1 given by (3-21). The unit vectors v1, . . . , vn−1 are linearly independent,
and therefore, they span the tangent space Ty0 M0. By Proposition D.1, for ε > 0 sufficiently small, the
unit speed geodesic γy0,vj , j = 2, . . . , n − 1, through (y0, vj ) is nontangential between boundary points,
and γ and γy0,vj do not intersect each other at the boundary of M0. Applying the discussion above with
η = γ and γ = γy0,vj , we get

A′(x1, y0)(vj )= 0, j = 2, . . . , n − 1. (4-56)

It follows from (4-55) and (4-56) that the 1-form A′(x1, y0) equals 0, and therefore, A′
≡ 0. This completes

the proof of Proposition 1.6 in the general setting.
In the course of the proof of Proposition 1.6, we also proved the following result.

Corollary 4.1. Let (M, g) be a conformally transversally anisotropic manifold of dimension n ≥ 3. Let
A ∈ C1,1(M, T ∗M) be a 1-form such that A|∂M = 0 and ∂ν A|∂M = 0. If∫

M
⟨A, d(u1u2u3)⟩gu4 dVg = O(1),

as s → ∞, for all harmonic functions ul ∈ C3(M), l = 1, . . . , 4, of the form (4-1), then A ≡ 0.
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5. Proof of Theorem 1.3

Let ε = (ε1, . . . , εm) ∈ Cm, m ≥ 3, and consider the Dirichlet problem (1-5) with

f =

m∑
k=1

εk fk, fk ∈ C2,α(∂M), k = 1, . . . ,m.

Then for all |ε| sufficiently small, the problem (1-5) has a unique small solution u( · , ε)∈ C2,α(M), which
depends holomorphically on ε ∈ neigh(0,Cm); see Theorem B.1.

We shall use an induction argument on m ≥ 3 to show that all the coefficients Am and Vm in (1-2)
and (1-3), see also (1-5), can be determined from the Dirichlet-to-Neumann map 3A,V given in (1-6).

First, let m = 3, and let us proceed to carry out a third-order linearization of the Dirichlet-to-Neumann
map. Let u j = u j (x, ε) be the unique small solution of the Dirichlet problem

−1gu j +id∗
(∑

∞

k=2 A( j)
k (x)(uk

j /k!)u j
)
−i

〈∑
∞

k=2 A( j)
k (x)(uk

j /k!), du j
〉
g

+
〈∑

∞

k=2 A( j)
k (x)(uk

j /k!),
∑

∞

k=2 A( j)
k (x)(uk

j /k!)
〉
gu j +

∑
∞

k=3 V ( j)
k (x)(uk

j /k!)= 0 in M,

u j = ε1 f1 +ε2 f2 +ε3 f3 on ∂M,

(5-1)

for j = 1, 2. Differentiating (5-1) with respect to εl , l = 1, 2, 3, and using that u j (x, 0)= 0, we get{
−1gv

(l)
j = 0 in M,

v
(l)
j = fl on ∂M,

(5-2)

where v(l)j = ∂εl u j |ε=0. By the uniqueness and the elliptic regularity for the Dirichlet problem (5-2), we
have that v(l) := v

(l)
1 = v

(l)
2 ∈ C2,α(M), l = 1, 2, 3; see [Gilbarg and Trudinger 1983, Theorem 6.15].

Applying ∂εk∂εl |ε=0, k, l = 1, 2, 3, to (5-1), we next get{
−1gw

(k,l)
j = 0 in M,

w
(k,l)
j = 0 on ∂M,

(5-3)

where w(k,l)j = ∂εk∂εl u j |ε=0, and therefore, w(k,l)j = 0 for all j = 1, 2 and k, l = 1, 2, 3. Finally, applying
∂ε1∂ε2∂ε3 |ε=0 to (5-1), we obtain the third-order linearization{

−1gwj + 3id∗(A( j)
2 v(1)v2v(3))− i⟨A( j)

2 , d(v(1)v(2)v(3))⟩g + V ( j)
3 v(1)v(2)v(3) = 0 in M,

wj = 0 on ∂M,
(5-4)

where wj = ∂ε1∂ε2∂ε3u j |ε=0. Using that

d∗(Av)= (d∗ A)v− ⟨A, dv⟩g, (5-5)

for any 1-form A and a function v, we can rewrite (5-4) as{
−1gwj − 4i⟨A( j)

2 , d(v(1)v(2)v(3))⟩g + (3id∗(A( j)
2 )+ V ( j)

3 )v(1)v(2)v(3) = 0 in M,

wj = 0 on ∂M.
(5-6)
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The fact that

3A(1),V (1)(ε1 f1 + ε2 f2 + ε3 f3)=3A(2),V (2)(ε1 f1 + ε2 f2 + ε3 f3)

for all small ε and all f j ∈ C2,α(∂M) implies that ∂νu1|∂M = ∂νu2|∂M . Therefore, an application of
∂ε1∂ε2∂ε3 |ε=0 yields ∂νw1|∂M = ∂νw2|∂M . Multiplying (5-6) by v(4) ∈ C2,α(M) harmonic in (M, g) and
applying Green’s formula, we get∫

M
(4i⟨A, d(v(1)v(2)v(3))⟩gv

(4)
− (3id∗(A)+ V )v(1)v(2)v(3)v(4)) dVg = 0, (5-7)

for all v(l) ∈ C2,α(M) harmonic in (M, g), l = 1, . . . , 4. Here A = A(1)2 − A(2)2 and V = V (1)
3 − V (2)

3 . An
application of Proposition C.4 implies that A|∂M = 0 and ∂ν A|∂M = 0.

Choosing v(l)= ul ∈ C3(M), l = 1, . . . , 4, to be harmonic functions of the form (4-1), and using (4-19),
we first observe that (5-7) implies that∫

M
⟨A, d(u1u2u3)⟩gu4 dVg = O(1),

as s → ∞. By Corollary 4.1, we get A ≡ 0, and therefore, A(1)2 = A(2)2 . Substituting A = 0 into (5-7), we
get ∫

M
V v(1)v(2)v(3)v(4) dVg = 0,

for all harmonic functions v(l) ∈ C2,α(M), l = 1, . . . , 4. Using Proposition 1.2, we obtain that V = 0,
and thus, V (1)

3 = V (2)
3 .

Let m ≥ 4 and assume that

Ak = A(1)k = A(2)k , for k = 2, . . . ,m − 2, Vk = V (1)
k = V (2)

k , for k = 3, . . . ,m − 1. (5-8)

To show that A(1)m−1 = A(2)m−1 and V (1)
m = V (2)

m , we shall perform the m-th order linearization of the
Dirichlet-to-Neumann map. To that end, let u j = u j (x, ε) be the unique small solution of the Dirichlet
problem

−1gu j +id∗
(∑

∞

k=2 A( j)
k (x)(uk

j /k!)u j
)
−i

〈∑
∞

k=2 A( j)
k (x)(uk

j /k!), du j
〉
g

+
〈∑

∞

k=2 A( j)
k (x)(uk

j /k!),
∑

∞

k=2 A( j)
k (x)(uk

j /k!)
〉
gu j +

∑
∞

k=3 V ( j)
k (x)(uk

j /k!)= 0 in M,

u j = ε1 f1 +· · ·+εm fm on ∂M,

(5-9)

for j = 1, 2. We would like to apply ∂ε1 · · · ∂εm |ε=0 to (5-9). First we observe that

∂ε1 · · · ∂εm

(
id∗

( ∞∑
k=m

A( j)
k (x)

uk
j

k!
u j

)
− i

〈 ∞∑
k=m

A( j)
k (x)

uk
j

k!
, du j

〉
g
+

∞∑
k=m+1

V ( j)
k (x)

uk
j

k!

)
is a sum of terms, each of them containing positive powers of u j which vanish when ε = 0. The only
term in the expression for ∂ε1 · · · ∂εm (V

( j)
m (x)um

j /m!) which does not contain a positive power of u j
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is V ( j)
m (x)∂ε1u j · · · ∂εm u j . Furthermore, the only term in the expression for

∂ε1 · · · ∂εm

(
id∗

(
A( j)

m−1

um
j

(m − 1)!

))
which does not contain a positive power of u j is mid∗(A( j)

m−1∂ε1u j · · · ∂εm u j ). The only terms in

∂ε1 · · · ∂εm

〈
A( j)

m−1

um−1
j

(m − 1)!
, du j

〉
g

which do not contain a positive power of u j can be written as ⟨A( j)
m−1, d(∂ε1u j · · · ∂εm u j )⟩g. The expression

∂ε1 · · · ∂εm

(
id∗

(m−2∑
k=2

A( j)
k (x)

uk
j

k!
u j

)
− i

〈m−2∑
k=2

A( j)
k (x)

uk
j

k!
, du j

〉
g
+

m−1∑
k=3

V ( j)
k (x)

uk
j

k!

)
is independent of j = 1, 2, in view of (5-8) and the fact that it contains only derivatives of u j of the form
∂k
εl1 ,...,εlk

u j |ε=0 with k = 1, . . . ,m − 2 and εl1, . . . , εlk ∈ {ε1, . . . , εm}. Here we use the fact that

∂k
εl1 ,...,εlk

u1|ε=0 = ∂k
εl1 ,...,εlk

u2|ε=0

for k = 1, . . . ,m − 1 and εl1, . . . , εlk ∈ {ε1, . . . , εm}. This follows by applying the operators ∂k
εl1 ,...,εlk

|ε=0

to (5-9), using (5-8) and the unique solvability of the Dirichlet problem for the Laplacian.
The terms in the expression for

∂ε1 · · · ∂εm

(〈 ∞∑
k=2

A( j)
k (x)

uk
j

k!
,

∞∑
k=2

A( j)
k (x)

uk
j

k!

〉
g
u j

)
which do not contain a positive power of u j , only contain A( j)

2 , . . . , A( j)
m−3, and only derivatives of u j of

the form ∂k
εl1 ,...,εlk

u j |ε=0 with k = 1, . . . ,m − 4 and εl1, . . . , εlk ∈ {ε1, . . . , εm}, which are independent of
j = 1, 2.

Hence, the m-th order linearization has the form{
−1gwj + mid∗(A( j)

m−1v
(1)

· · · v(m))− i⟨A( j)
m−1, d(v(1) · · · v(m))⟩g + V ( j)

m v(1) · · · v(m) = Hm in M,

wj = 0 on ∂M,

where wj = ∂ε1 · · · ∂εm u j |ε=0 and Hm is known and independent of j = 1, 2. Using (5-5), the previous
system can be written as{

−1gwj − (m + 1)i⟨A( j)
m−1, d(v(1) · · · v(m))⟩g + (mid∗(A( j)

m−1)+ V ( j)
m )v(1) · · · v(m) = Hm in M,

wj = 0 on ∂M.

Proceeding as in the case m = 3, we see that∫
M
((m + 1)i⟨A, d(v(1) · · · v(m))⟩gv

(m+1)
− (mid∗(A)+ V )v(1) · · · v(m+1)) dVg = 0,

for any v(l) ∈ C2,α(M) harmonic, l = 1, . . . ,m +1. Here A = A(1)m−1 − A(2)m−1 and V = V (1)
m −V (2)

m . Setting
v(1) = · · · = v(m−3)

= 1 and arguing as in the case m = 3, we complete the proof of Theorem 1.3.
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Appendix A: A rough stationary phase argument

We need the following rough version of the stationary phase; see [Lassas et al. 2021a].

Lemma A.1. Let 9 ∈ C∞(Rn
; R) be such that

9(0)= 0, 9 ′(0)= 0, and 9 ′′(0) > 0. (A-1)

Let V ⊂ Rn be a sufficiently small neighborhood of zero, and let a ∈ C(V ). Then

lim
s→∞

sn/2
∫

V
e−s9(z)a(z) dz =

(2π)n/2

(det9 ′′(0))1/2
a(0). (A-2)

Proof. Taylor expanding the phase function 9 and using (A-1), we get

9(z)=
1
29

′′(0)z · z +O(|z|3),

and therefore,
9(z)≥ c|z|2, (A-3)

with some c > 0, for all z ∈ V , a sufficiently small neighborhood of zero. Making the change of variables
z 7→ s1/2z in the integral in (A-2) and using the dominated convergence theorem, we obtain that

lim
s→∞

sn/2
∫

V
e−s9(z)a(z) dz = lim

s→∞

∫
s1/2V

e−s9(z/s1/2)a(z/s1/2) dz

=

(∫
Rn

e−9 ′′(0)z·z/2 dz
)

a(0)=
(2π)n/2

(det9 ′′(0))1/2
a(0).

Here we use the following consequence of (A-3),

|χs1/2V e−s9(z/s1/2)a(z/s1/2)| ≤ O(1)e−c|z|2
∈ L1(Rn),

where χs1/2V is the characteristic function of the set s1/2V . Thus, (A-2) follows. □

Appendix B: Well-posedness of the Dirichlet problem
for a nonlinear magnetic Schrödinger equation

The purpose of this appendix is to show the well-posedness of the Dirichlet problem for a nonlinear
magnetic Schrödinger equation with small boundary data. The argument is standard, see [Krupchyk and
Uhlmann 2020a; Lassas et al. 2021a], and is given here for completeness and the convenience of the
reader.

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 2 with smooth boundary.
Let Ck,α(M) stand for the Hölder space on M, where k ∈ N ∪ {0} and 0< α < 1; see [Hörmander 1976,
Appendix A]. Let us note that Ck,α(M) is an algebra under pointwise multiplication, and

∥uv∥Ck,α(M) ≤ C(∥u∥Ck,α(M)∥v∥L∞(M) + ∥u∥L∞(M)∥v∥Ck,αM)), u, v ∈ Ck,α(M); (B-1)

see [Hörmander 1976, Theorem A.7].
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Consider the Dirichlet problem for the nonlinear magnetic Schrödinger operator{
L A,V u = 0 in M,
u = f on ∂M,

(B-2)

where L A,V is given in (1-4). Here the 1-form A mapping M × C to T ∗M and the function V mapping
M × C to C satisfy the following conditions:

(A) The map C ∋ z 7→ A( · , z) is holomorphic with values in C1,α(M, T ∗M), the space of 1-forms with
complex-valued C1,α(M) coefficients.

(Vi ) The map C ∋ z 7→ V ( · , z) is holomorphic with values in Cα(M).

(Vi i ) V (x, 0)= 0, for all x ∈ M.

The condition (Vi i ) guarantees that u = 0 is a solution to (B-2) when f = 0. It follows from (A), (Vi ),
and (Vi i ) that A and V can be expanded into the power series

A(x, z)=

∞∑
k=0

Ak(x)
zk

k!
, Ak(x) := ∂k

z A(x, 0) ∈ C1,α(M, T ∗M), (B-3)

converging in the C1,α(M, T ∗M) topology, and

V (x, z)=

∞∑
k=1

Vk(x)
zk

k!
, Vk(x) := ∂k

z V (x, 0) ∈ Cα(M), (B-4)

converging in the Cα(M) topology. We also assume that A0 ∈ C∞(M, T ∗M) and V1 ∈ C∞(M). Let us
assume furthermore that

(i) 0 is not a Dirichlet eigenvalue of the operator d∗

A0
dA0 + V1.

Under all of the assumptions above, we have the following result.

Theorem B.1. There exist δ > 0 and C > 0 such that for any

f ∈ Bδ(∂M) := { f ∈ C2,α(∂M) : ∥ f ∥C2,α(∂M) < δ},

the problem (B-2) has a solution u = u f ∈ C2,α(M) which satisfies

∥u∥C2,α(M) ≤ C∥ f ∥C2,α(∂M).

The solution u is unique within the class {u ∈ C2,α(M) : ∥u∥C2,α(M)<Cδ} and it depends holomorphically
on f ∈ Bδ(∂M). Furthermore, the map

Bδ(∂M)→ C1,α(M), f 7→ ∂νu f |∂M

is holomorphic.

Proof. We shall follow [Lassas et al. 2021a], see also [Krupchyk and Uhlmann 2020a], and in order to
prove this result we shall rely on the implicit function theorem for holomorphic maps between complex
Banach spaces; see [Pöschel and Trubowitz 1987, p. 144]. To that end, we let

B1 = C2,α(∂M), B2 = C2,α(M), and B3 = Cα(M)× C2,α(∂M),
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and introduce the map

F : B1 × B2 → B3, F( f, u)= (L A,V u, u|∂M − f ). (B-5)

Let us verify that the map F indeed enjoys the mapping properties given in (B-5). To that end, let
u ∈ C2,α(M) and note first that −1gu ∈ Cα(M). Let us check that A( · , u( · )) ∈ C1,α(M, T ∗M). By
Cauchy’s estimates, the coefficients Ak in (B-3) satisfy

∥Ak∥C1,α(M,T ∗ M) ≤
k!

Rk sup
|z|=R

∥A( · , z)∥C1,α(M,T ∗ M), R > 0, (B-6)

for all k = 0, 1, . . . . Using (B-1) and (B-6), we obtain∥∥∥∥ Ak

k!
uk

∥∥∥∥
C1,α(M,T ∗ M)

≤
Ck

Rk ∥u∥
k
C1,α(M) sup

|z|=R
∥A( · , z)∥C1,α(M,T ∗ M), (B-7)

for all k = 0, 1, . . . . Choosing R = 2C∥u∥C1,α(M), it follows from (B-7) that the series
∑

∞

k=0 Ak(x)uk/k!

converges in C1,α(M, T ∗M), and thus, A( · , u( · )) ∈ C1,α(M, T ∗M). Similarly, V ( · , u( · )) ∈ Cα(M);
see also [Krupchyk and Uhlmann 2020a]. Hence, using (1-4), we see that L A,V u ∈ Cα(M).

We next claim that the map F in (B-5) is holomorphic. To this end, we first note that F is locally
bounded as F is continuous in ( f, u). Thus, it suffices to show that F is weakly holomorphic; see [Pöschel
and Trubowitz 1987, p. 133]. In doing so, let ( f0, u0), ( f1, u1) ∈ B1 × B2, and let us prove that the map

λ 7→ F(( f0, u0)+ λ( f1, u1))

is holomorphic in C with values in B3. It suffices to check that the map λ 7→ A(x, u0(x)+ λu1(x)) is
holomorphic in C with values in C1,α(M, T ∗M), as the fact that the map λ 7→ V (x, u0(x)+ λu1(x)) is
holomorphic in C with values in Cα(M) can be proved similarly; see [Krupchyk and Uhlmann 2020a].
The holomorphy of λ 7→ A(x, u0(x)+ λu1(x)) follows from the fact that in view of (B-7), the series

∞∑
k=0

Ak

k!
(u0 + λu1)

k

converges in C1,α(M, T ∗M), locally uniformly in λ ∈ C.
We have F(0, 0)= 0, and the partial differential ∂u F(0, 0) : B2 → B3 is given by

∂u F(0, 0)v = (d∗

A0
dA0v+ V1v, v|∂M).

By the assumption (i), we have that the map ∂u F(0, 0) : B2 → B3 is a linear isomorphism; see [Gilbarg
and Trudinger 1983, Theorem 6.15].

An application of the implicit function theorem, see [Pöschel and Trubowitz 1987, p. 144], allows
us to conclude that there exists δ > 0 and a unique holomorphic map S : Bδ(∂M) → C2,α(M) such
that S(0)= 0 and F( f, S( f ))= 0 for all f ∈ Bδ(∂M). Setting u = S( f ) and noting that S is Lipschitz
continuous with S(0)= 0, we see that

∥u∥C2,α(M) ≤ C∥ f ∥C2,α(∂M). □
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Appendix C: First-order boundary determination of potentials

When proving Theorem 1.3 and Proposition 1.6, an important step consists in determining the boundary
values, as well as the normal derivatives, of a scalar function and a 1-form, via suitable orthogonality
relations involving harmonic functions on the manifold. The purpose of this section is to carry out this step.
In doing so, we shall rely on the methods developed in [Brown 2001; Brown and Salo 2006], with suitable
modifications in [Guillarmou and Tzou 2011, Appendix], where the boundary values of a scalar potential
and a vector field are recovered. The main contribution of this section is that we push the methods a
little further, in order to recover the first-order normal derivatives of the potential and the 1-form under
limited regularity assumptions; see also [Alessandrini et al. 2018]. We would like to mention the works
[Brown and Salo 2006; García and Zhang 2016, Appendix], where the gradient of a C1-conductivity at
the boundary of a Euclidean domain is recovered; see also [Alessandrini 1990; Caro and Garcia 2017;
Caro and Meroño 2020]. We refer to [Kohn and Vogelius 1984; Lee and Uhlmann 1989; Nakamura et al.
1995; Sylvester and Uhlmann 1988], where the entire Taylor series at the boundary of C∞-coefficients
are recovered.

To proceed, we shall need the following density result for the space of L2-harmonic functions; see also
[Choe et al. 2004, Corollary 2.14] for a different approach in the Euclidean setting.

Proposition C.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 2 with smooth
boundary. The set of harmonic functions on M int that are smooth up to the boundary is dense in the space
of L2-harmonic functions in the L2 topology.

Proof. Let u ∈ L2(M) be harmonic, i.e., −1gu = 0 in M int. Then by the partial hypoellipticity of the
Laplacian, see [Eskin 2011, Theorem 26.1], we have f = u|∂M ∈ H−1/2(∂M). There exists therefore
a sequence f j ∈ C∞(∂M), j = 1, 2, . . . , such that ∥ f j − f ∥H−1/2(∂M) → 0, as j → ∞. The Dirichlet
problem {

−1gu j = 0 in M int,

u j |∂M = f j ,

has a unique solution u j ∈ H 1(M), and by the boundary elliptic regularity, u j ∈ C∞(M). By [Eskin 2011,
Theorem 26.3], we get

∥u j − u∥L2(M) ≤ C∥ f j − f ∥H−1/2(∂M) → 0,

as j → ∞, establishing the proposition. □

Our first boundary determination result follows. While this result is not used in this work, the construc-
tion of a family of harmonic functions given in the proof is needed for the proof of Proposition C.3 below.
Furthermore, we state this result and provide the proof for completeness and the convenience of the reader.

Proposition C.2. Let (M, g) be a conformally transversally anisotropic manifold of dimension n ≥ 3,
and let V ∈ C1,1(M). If ∫

M
V u1u2 dVg = 0, (C-1)

for all harmonic functions u1, u2 ∈ C∞(M), then V |∂M = 0 and ∂νV |∂M = 0.
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Proof. By Proposition C.1, we see that (C-1) continues to hold for all harmonic functions u1, u2 ∈ L2(M).
To proceed, we shall follow [Brown 2001; Brown and Salo 2006], constructing a family of functions,
whose boundary values have a highly oscillatory behavior while becoming increasingly concentrated near
a given point on the boundary of M. To convert such functions to harmonic functions, we follow the idea
of [Guillarmou and Tzou 2011, Appendix] and rely on a Carleman estimate for the conjugated Laplacian
with a gain of two derivatives, established in [Salo and Tzou 2009, Lemma 2.1] in the Euclidean case
and in [Krupchyk and Uhlmann 2018, Proposition 2.2] in the conformally transversally anisotropic case.

Let x0 ∈ ∂M and let (x1, . . . , xn) be the boundary normal coordinates centered at x0 so that in these
coordinates, x0 = 0, the boundary ∂M is given by {xn = 0}, and M int is given by {xn > 0}. We have, see
[Lee and Uhlmann 1989],

g(x ′, xn)=

n−1∑
α,β=1

gαβ(x) dxα dxβ + (dxn)
2, (C-2)

and we may also assume that the coordinates x ′
= (x1, . . . , xn−1) are chosen so that

gαβ(x ′, 0)= δαβ +O(|x ′
|
2), 1 ≤ α, β ≤ n − 1; (C-3)

see [Petersen 2006, Chapter 2, Section 8, p. 56]. Therefore,

gαβ(x ′, xn)= gαβ(x ′, 0)+O(xn)= δαβ +O(|x ′
|
2)+O(xn). (C-4)

In view of (C-3), we have

−1g = D2
xn

+

n−1∑
α,β=1

gαβ(x)Dxα Dxβ + f (x)Dxn + R(x, Dx ′), (C-5)

where f is a smooth function and R is a differential operator of order 1 in x ′ with smooth coefficients;
see [Lee and Uhlmann 1989]. Notice that in the local coordinates, Tx0∂M = Rn−1, equipped with the
Euclidean metric. The unit tangent vector τ is then given by τ = (τ ′, 0), where τ ′

∈ Rn−1, |τ ′
| = 1.

Associated to the tangent vector τ ′ is the covector ξ ′
α =

∑n−1
β=1 gαβ(0)τ ′

β = τ ′
α ∈ T ∗

x0
∂M.

Let η ∈ C∞

0 (R
n
; R) be such that supp(η) is in a small neighborhood of 0, and∫

Rn−1
η(x ′, 0)2 dx ′

= 1. (C-6)

Let 1
3 ≤ α ≤

1
2 . Following [Brown and Salo 2006], in the boundary normal coordinates, we set

v0(x)= η

(
x
λα

)
ei(τ ′

·x ′
+i xn)/λ, 0< λ≪ 1, (C-7)

so that v0 ∈ C∞(M), with supp(v0) in an O(λα) neighborhood of x0 = 0. Here τ ′ is viewed as a covector.
A direct computation

∥v0∥
2
L2(M) = O(1)

∫
|x |≤cλα, xn≥0

e−2xn/λ dx ′ dxn = O(λα(n−1))

∫
∞

0
e−2tλ dt = O(λα(n−1)+1), (C-8)
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as λ→ 0, shows that

∥v0∥L2(M) = O(λα(n−1)/2+1/2). (C-9)

Following [Guillarmou and Tzou 2011, Appendix], we shall construct a harmonic function u ∈ L2(M)
of the form

u = v0 + r,

and therefore, we need to find r ∈ L2(M) satisfying

1gr = −1gv0 in M int. (C-10)

To that end, we shall rely on the following Carleman estimate for the conjugated Laplacian with a
gain of two derivatives established in [Salo and Tzou 2009, Lemma 2.1; Krupchyk and Uhlmann 2018,
Proposition 2.2]: for all 0< h ≪ 1 and all v ∈ C∞

0 (M
int), we have

∥v∥H2
scl(M

int) ≤
C
h

∥eϕ/h
◦ (−h21g) ◦ e−ϕ/hv∥L2(M). (C-11)

Here the limiting Carleman weight ϕ(x) equals x1. Using a standard argument, one can convert the
Carleman estimate (C-11) into a solvability result. Applying this solvability result with h > 0 small but
fixed, we see that there exists a solution r ∈ L2(M) of (C-10) such that

∥r∥L2(M) ≤ C∥1gv0∥H−2(M int). (C-12)

Next we claim that

∥1gv0∥H−2(M int) = O(λα(n−3)/2+3/2), 1
3 ≤ α ≤

1
2 , (C-13)

as λ→ 0. In order to prove (C-13), we first compute the Euclidean Laplacian acting on v0:

1v0 = ei(τ ′
·x ′

+i xn)/λ

[
λ−2α(1η)

(
x
λα

)
+2iλ−α−1(∇η)

(
x
λα

)
·(τ ′, i)−λ−2(τ ′, i) ·(τ ′, i)η

(
x
λα

)]
= ei(τ ′

·x ′
+i xn)/λ

[
λ−2α(1η)

(
x
λα

)
+2iλ−α−1(∇η)

(
x
λα

)
·(τ ′, i)

]
, (C-14)

where we have used that (τ ′, i) · (τ ′, i) = 0. The second term in the right-hand side of (C-14) has the
worst growth as α → 0 and we will analyze it. The first term in the right-hand side of (C-14) can be
treated in a similar fashion. To that end, we note that the second term in the right-hand side of (C-14) has
the form

λ−α−1χ

(
x
λα

)
ei(τ ′

·x ′
+i xn)/λ,

where χ ∈C∞(Rn) is supported in a small neighborhood of 0, and we can proceed similarly to [Guillarmou
and Tzou 2011, Appendix]. Setting

L =
∇φ̄ · ∇

i |∇φ|2
=

1
2i

∇φ̄ · ∇, φ = τ ′
· x ′

+ i xn,
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we get Lei(τ ′
·x ′

+i xn)/λ = λ−1ei(τ ′
·x ′

+i xn)/λ. Letting ψ ∈ C∞

0 (M
int) and integrating by parts twice using the

operator L , we obtain

λ−α−1
∫

M
χ

(
x
λα

)
ψ(x)ei(τ ′

·x ′
+i xn)/λ dVg

= λ−α−1λ2
∫

M
(L)2

(
χ

(
x
λα

)
ψ(x)|g(x)|1/2

)
ei(τ ′

·x ′
+i xn)/λ dx, (C-15)

since the transpose L t equals −L . The term in the right-hand side of (C-15), where the bound cannot
be improved integrating by parts further, will occur when the operator (L)2 falls on ψ , and in this case,
using the Cauchy–Schwarz inequality and a computation similar to (C-8), we get∣∣∣∣λ−α+1

∫
M
χ

(
x
λα

)
ei(τ ′

·x ′
+i xn)/λ(L)2(ψ(x)) dVg

∣∣∣∣
≤ λ−α+1

∥∥∥∥χ(
x
λα

)
ei(τ ′

·x ′
+i xn)/λ

∥∥∥∥
L2(M)

∥ψ∥H2(M int) ≤ O(λα(n−3)/2+3/2)∥ψ∥H2(M int). (C-16)

Proceeding similarly, integrating by parts using the operator L , if needed, we can bound all the other
terms in (C-15) with the same bound as in (C-16). Therefore, it follows from (C-14) and (C-16) that for
0< α ≤

1
2 , we have

∥1v0∥H−2(M int) = O(λα(n−3)/2+3/2), (C-17)

as λ→ 0. To get the bound (C-13) for the Laplace–Beltrami operator, we notice that in view of (C-3),
(C-5), and (C-17), we have to bound

n−1∑
α,β=1

(gαβ(x)− δαβ)Dxα Dxβv0 + f (x)Dxnv0 + R(x, Dx ′)v0 (C-18)

in H−2(M int). Let us proceed to bound the first term. To that end, we compute

Dxα Dxβv0 = ei(τ ′
·x ′

+i xn)/λ

[
λ−2α(Dxα Dxβη)

(
x
λα

)
+ λ−1−α(Dxαη)

(
x
λα

)
τβ

+ λ−1−α(Dxβη)

(
x
λα

)
τα + λ−2τατβη

(
x
λα

)]
. (C-19)

The worst growth as λ→ 0 is in the fourth term in (C-19), and therefore, in view of (C-18), we proceed
to bound

λ−2(gαβ − δαβ)χ

(
x
λα

)
ei(τ ′

·x ′
+i xn)/λ, χ(x)= τατβη(x),

in H−2(M int). The other terms in the first term in (C-18) can be bounded similarly. As before, integrating
by parts twice using the operator L , we get

λ−2
∫

M
(gαβ−δαβ)χ

(
x
λα

)
ei(τ ′

·x ′
+i xn)/λψ dVg

=

∫
M
(L)2

(
(gαβ−δαβ)χ

(
x
λα

)
ψ |g(x)|1/2

)
ei(τ ′

·x ′
+i xn)/λ dx . (C-20)
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The term in the right-hand side of (C-20) where the bound cannot be improved occurs when the opera-
tor (L)2 falls on ψ , and in this case, using the Cauchy–Schwarz inequality, (C-4), and a computation
similar to (C-8), we get∣∣∣∣∫

M
(gαβ − δαβ)χ

(
x
λα

)
ei(τ ′

·x ′
+i xn)/λ(L)2ψ dVg

∣∣∣∣
≤

(∫
M
(O(|x ′

|
4)+O(x2

n))χ
2
(

x
λα

)
e−2xn/λ dVg

)1/2

∥ψ∥H2(M int)

≤

(
O(λ2αλα(n−1)/2+1/2)+O(λα(n−1)/2)

(∫
∞

0
x2

ne−2xn/λ dxn

)1/2)
∥ψ∥H2(M int)

= (O(λα(n+3)/2+1/2)+O(λα(n−1)/2+3/2))∥ψ∥H2(M int). (C-21)

The growth in λ in (C-21) is smaller than or equal to that in the desired bound (C-13) provided that α ≥
1
3 .

Proceeding similarly integrating by parts, using the operator L if needed, we can bound all the other
terms in (C-20) by the bound which is the same or better than

O(λα(n−3)/2+3/2)∥ψ∥H2(M int).

Thus, using this and in view of (C-18)–(C-21), we conclude that∥∥∥∥ n−1∑
α,β=1

(gαβ(x)− δαβ)Dxα Dxβv0

∥∥∥∥
H−2(M int)

= O(λα(n−3)/2+3/2), (C-22)

provided that 1
3 ≤ α ≤

1
2 . Finally, as R(x, Dx ′) is a differential operator of order 1 in x ′, similarly, we get

∥ f (x)Dxnv0 + R(x, Dx ′)v0∥H−2(M int) = O(λα(n−1)/2+3/2), (C-23)

which is better than the desired bound (C-13). Hence, combining (C-17), (C-22), and (C-23), we
get (C-13).

Now it follows from (C-12) and (C-13) that

∥r∥L2(M) = O(λα(n−3)/2+3/2), 1
3 ≤ α ≤

1
2 , (C-24)

as λ→ 0. Notice that the bound for r in L2 is better than the bound for v0 in L2; see (C-9).
Letting

u1 = v0 + r, u2 = v0 + r , (C-25)

in (C-1) and multiplying (C-1) by λ−α(n−1)−1, we get

0 = λ−α(n−1)−1
∫

M
V (v0 + r)(v̄0 + r̄) dVg = λ−α(n−1)−1(I1 + I2 + I3). (C-26)

Here
I1 =

∫
M

V |v0|
2 dVg, I2 =

∫
M

V (v0r̄ + v̄0r) dVg, and I3 =

∫
M

V |r |
2 dVg.

Using (C-9) and (C-24), we obtain

λ−α(n−1)−1
|I2| ≤ O(λ−α(n−1)−1)∥v0∥L2(M)∥r∥L2(M) = O(λ1−α), (C-27)
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and

λ−α(n−1)−1
|I3| ≤ O(λ−α(n−1)−1)∥r∥

2
L2(M) = O(λ2−2α), (C-28)

as λ→ 0. Using (C-7), (C-6), the fact that V is continuous, and making the change of variables y′
= x ′/λα

and yn = xn/λ, we get

lim
λ→0

λ−α(n−1)−1 I1 = lim
λ→0

∫
Rn−1

∫
∞

0
V (λα y′, λyn)η

2(y′, λ1−α yn)e−2yn |g(λα y′, λyn)|
1/2 dy′ dyn

= V (0)|g(0)|1/2
∫

+∞

0
e−2yn dyn =

1
2

V (0). (C-29)

Passing to the limit λ→ 0 in (C-26) and using (C-27)–(C-29), we obtain V (0)= 0, showing that V |∂M = 0.
Notice that here we can consider any α, 1

3 ≤ α ≤
1
2 .

Next we would like to prove that ∂νV |∂M = 0. To that end, as before, we let x0 ∈ ∂M and consider
boundary normal coordinates centered at x0. As V ∈ C1,1 and V (x ′, 0) = 0, using the fundamental
theorem of calculus and integrating by parts, we have for x near x0 = 0,

V (x ′, xn)=

∫ 1

0

d
dt

V (x ′, t xn) d(t − 1)= V ′

xn
(x ′, 0)xn +

∫ 1

0
(1 − t)

d2

dt2 V (x ′, t xn)

= V ′

xn
(x ′, 0)xn +

∫ 1

0
(1 − t)V ′′

xn xn
(x ′, t xn)x2

n dt = V ′

xn
(x ′, 0)xn +O(x2

n). (C-30)

Now substituting u1 and u2 as given by (C-25) into (C-1), multiplying (C-1) by λ−α(n−1)−2, and then
using (C-30), we get

0 = λ−α(n−1)−2
∫

M
V (v0 + r)(v̄0 + r̄) dVg = λ−α(n−1)−2(I1,1 + I1,2 + I2 + I3). (C-31)

Here

I1,1 =

∫
M

V ′

xn
(x ′, 0)xn|v0|

2 dVg, I1,2 =

∫
M
O(x2

n)|v0|
2 dVg,

I2 =

∫
M

V (v0r̄ + v̄0r) dVg, I3 =

∫
M

V |r |
2 dVg.

Using (C-7) and (C-6), making the change of variables y′
= x ′/λα and yn = xn/λ, and using that V ′

xn
is

continuous, we obtain

lim
λ→0

λ−α(n−1)−2 I1,1 = lim
λ→0

∫
Rn−1

∫
∞

0
V ′

xn
(λα y′, 0)η2(y′, λ1−α yn)yne−2yn |g(λα y′, λyn)|

1/2 dy′ dyn

= V ′

xn
(0)|g(0)|1/2

∫
+∞

0
yne−2yn dyn =

1
4

V ′

xn
(0). (C-32)

Using (C-7), we get

λ−α(n−1)−2
|I1,2| ≤ O(λ−α(n−1)−2)

∫
|x |≤cλα, xn≥0

x2
ne−2xn/λ dx ′ dxn = O(λ). (C-33)
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Using (C-24), we see that

λ−α(n−1)−2
|I3| ≤ O(λ−α(n−1)−2)∥r∥

2
L2(M) = O(λ1−2α)= o(1), (C-34)

as λ→ 0, provided that α < 1
2 .

In view of (C-7) and (C-30), we have

∥V v0∥L2(M) =

(∫
|x |≤cλα,xn≥0

O(x2
n)e

−2xn/λ dx ′ dxn

)1/2

= O(λα(n−1)/2+3/2),

and therefore, using (C-24), we obtain

λ−α(n−1)−2
|I2| ≤ O(λ−α(n−1)−2)∥r∥L2(M)∥V v0∥L2(M) = O(λ1−α). (C-35)

Passing to the limit λ→ 0 in (C-31), and using (C-32), (C-33), (C-23), and (C-35), we get V ′
xn
(0)= 0

provided that α is a fixed number satisfying 1
3 ≤ α < 1

2 . This shows that ∂νV |∂M = 0. □

In order to prove Proposition 1.6, we shall need the following boundary determination result.

Proposition C.3. Let (M, g) be a conformally transversally anisotropic manifold of dimension n ≥ 3. Let
A ∈ C1,1(M, T ∗M) be a 1-form. If ∫

M
⟨A, du1⟩gu2 dVg = 0, (C-36)

for all harmonic functions u1, u2 ∈ C∞(M), then A|∂M = 0 and ∂ν A|∂M = 0.

Proof. First by Proposition C.1, we see that (C-36) holds for all harmonic functions u2 ∈ L2(M). To prove
this result, we shall test the integral identity (C-36) with harmonic functions u2 ∈ L2(M), constructed in
Proposition C.2, of the form

u2 = v0 + r . (C-37)

Since for u1 we need estimates in H 1(M int), we shall construct u1 following [Brown 2001; Brown and
Salo 2006]; see also [Krupchyk and Uhlmann 2018, Appendix A]. We let

u1 = v0 + r1, (C-38)

where r1 ∈ H 1
0 (M

int) is a solution to the Dirichlet problem{
−1gr1 =1gv0 in M,
r1|∂M = 0.

(C-39)

Note that by boundary elliptic regularity, r1 ∈ C∞(M), and therefore, u1 ∈ C∞(M).
Applying the Lax–Milgram lemma to (C-39), we get

∥r1∥H1
0 (M

int) ≤ C∥1gv0∥H−1(M int). (C-40)

Similarly to the bound (C-13), one can show that

∥1gv0∥H−1(M int) = O(λα(n−3)/2+1/2), 1
3 ≤ α ≤

1
2 ;
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see also [Krupchyk and Uhlmann 2018, Appendix A]. This bound together with (C-40) implies that

∥r1∥H1(M int) = O(λα(n−3)/2+1/2), 1
3 ≤ α ≤

1
2 , (C-41)

as λ→ 0.
We shall also need the bound

∥dv0∥L2(M) = O(λα(n−1)/2−1/2), (C-42)

as λ→ 0, which is in view of (C-7) implied by the estimate

∥dv0∥L2(M) ≤ O(1)
(∫

|x |≤cλα, xn≥0
λ−2e−2xn/λ dx ′ dxn

)1/2

= O(λα(n−1)/2−1/2).

Now substituting u1 and u2 given by (C-38) and (C-37), respectively, into (C-36) and multiplying
(C-36) by λ−α(n−1), we get

0 = λ−α(n−1)
∫

M
⟨A, dv0 + dr1⟩g(v̄0 + r̄) dVg = λ−α(n−1)(I1 + I2 + I3), (C-43)

where

I1 =

∫
M

⟨A, dv0⟩g v̄0 dVg, I2 =

∫
M

⟨A, dr1⟩g(v̄0 + r̄) dVg, and I3 =

∫
M

⟨A, dv0⟩gr̄ dVg.

First using (C-7), we write

I1 = I1,1 + I1,2,

where

I1,1 = iλ−1
∫

M
⟨A, τ ′

· dx ′
+ idxn⟩gη

2
(

x
λα

)
e−2xn/λ dVg,

I1,2 = λ−α

∫
M

〈
A, (dη)

(
x
λα

)〉
g
η

(
x
λα

)
e−2xn/λ dVg.

Using (C-2), and making the change of variables y′
= x ′/λα and yn = xn/λ, we get

lim
λ→0

λ−α(n−1) I1,1 = i lim
λ→0

∫
Rn−1

∫
+∞

0
|g(λα y′, λyn)|

1/2η2(y′, λ1−α yn)e−2yn

×

( n−1∑
α,β=1

gαβ(λα y′, λyn)Aα(λα y′, λyn)τ
′

β + An(λ
α y′, λyn)i

)
dy′ dyn

= i
( n−1∑
α,β=1

gαβ(0)Aα(0)τ ′

β + An(0)i
)

|g(0)|1/2
∫

+∞

0
e−2yn dyn

=
i
2
⟨A(0), (τ ′, i)⟩. (C-44)

Estimating similarly as in (C-8), we get

λ−α(n−1)
|I1,2| ≤ O(λ−αn)

∥∥∥∥(dη)( x
λα

)∥∥∥∥
L2(M)

∥∥∥∥η( x
λα

)
e−2xn/λ

∥∥∥∥
L2(M)

= O(λ(1−α)/2). (C-45)
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Using (C-9), (C-24), and (C-41), we see that

λ−α(n−1)
|I2| ≤ O(λ−α(n−1))∥dr1∥L2(M)∥v0 + r∥L2(M) = O(λ1−α). (C-46)

Finally, using (C-42) and (C-24), we obtain

λ−α(n−1)
|I3| ≤ O(λ−α(n−1))∥dv0∥L2(M)∥r∥L2(M) = O(λ1−α). (C-47)

Passing to the limit λ→ 0 in (C-43) and using (C-44)–(C-47), we conclude that ⟨A(0), (τ ′, i)⟩ = 0. Now
changing τ ′ to −τ ′, we see that An(0)= 0, and therefore, ⟨A′(0), τ ′

⟩ = 0, where A′
= (A1, . . . , An−1).

As τ ′
∈ Rn−1 is an arbitrary tangent vector to ∂M at x0 = 0, we get A′(0)= 0. This shows that A|∂M = 0.

Next we shall show that ∂ν A|∂M = 0. To that end, as before, we let x0 ∈ ∂M and consider the boundary
normal coordinates centered at x0. Applying computations similar to (C-30) to each component of A,
we get

A(x ′, xn)= (A′

1xn
, . . . , A′

nxn
)(x ′, 0)xn +O(x2

n)= ∂xn A(x ′, 0)xn +O(x2
n). (C-48)

Substituting u1 and u2 given by (C-38) and (C-37) into (C-36), and multiplying (C-36) by λ−α(n−1)−1,
we have in view of (C-48),

0 = λ−α(n−1)−1
∫

M
⟨A, dv0 + dr1⟩g(v̄0 + r̄) dVg = λ−α(n−1)−1(I1,1 + I1,2 + I2 + I3 + I4), (C-49)

where

I1,1 =

∫
M

⟨∂xn A(x ′, 0)xn, dv0⟩g v̄0 dVg, I1,2 =

∫
M

⟨O(x2
n), dv0⟩g v̄0 dVg,

I2 =

∫
M

⟨A, dr1⟩g v̄0 dVg, I3 =

∫
M

⟨A, dr1⟩gr̄ dVg, I4 =

∫
M

⟨A, dv0⟩gr̄ dVg.

In view of (C-7) we write

I1,11 = iλ−1
∫

M
⟨∂xn A(x ′, 0)xn, τ

′
· dx ′

+ idxn⟩gη
2
(

x
λα

)
e−2xn/λ dVg,

I1,12 = λ−α

∫
M

〈
∂xn A(x ′, 0)xn, (dη)

(
x
λα

)〉
g
η

(
x
λα

)
e−2xn/λ dVg.

Using (C-2), and making the change of variables y′
= x ′/λα and yn = xn/λ, we get

lim
λ→0

λ−α(n−1)−1 I1,11 = i lim
λ→0

∫
Rn−1

∫
+∞

0
|g(λα y′, λyn)|

1/2 ynη
2(y′, λ1−α yn)e−2yn

×

( n−1∑
α,β=1

gαβ(λα y′, λyn)∂xn Aα(λα y′, 0)τ ′

β + ∂xn An(λ
α y′, 0)i

)
dy′ dyn

= i
( n−1∑
α,β=1

gαβ(0)∂xn Aα(0)τ ′

β + ∂xn An(0)i
)

|g(0)|1/2
∫

+∞

0
yne−2yn dyn

=
i
4
⟨∂xn A(0), (τ ′, i)⟩. (C-50)
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Estimating similarly as in (C-8), we get

λ−α(n−1)−1
|I1,12| ≤ O(λ−αn−1)

∥∥∥∥(dη)( x
λα

)∥∥∥∥
L2(M)

∥∥∥∥xnη

(
x
λα

)
e−2xn/λ

∥∥∥∥
L2(M)

= O(λ(1−α)/2). (C-51)

Using (C-42) and estimating similarly as in (C-8), we obtain

λ−α(n−1)−1
|I1,2| ≤ O(λ−α(n−1)−1)∥dv0∥L2(M)∥x2

nv0∥L2(M) = O(λ). (C-52)

Using (C-41) and (C-48), we get

λ−α(n−1)−1
|I2| ≤ O(λ−α(n−1)−1)∥dr1∥L2(M)∥xnv0∥L2(M) = O(λ1−α). (C-53)

Using (C-41) and (C-24), we have

λ−α(n−1)−1
|I3| ≤ O(λ−α(n−1)−1)∥dr1∥L2(M)∥r∥L2(M) = O(λ1−2α)= o(1), (C-54)

as λ→ 0, provided that α < 1
2 .

Using (C-48), (C-24), and the fact that

∥xndv0∥L2(M) = O(λα(n−1)/2+1/2),

we obtain
λ−α(n−1)−1

|I4| ≤ O(λ−α(n−1)−1)∥xndv0∥L2(M)∥r∥L2(M) = O(λ1−α). (C-55)

Let us fix 1
3 ≤ α < 1

2 . Passing to the limit λ→ 0 in (C-49) and using (C-50)–(C-55), we conclude that
⟨∂xn A(0), (τ ′, i)⟩ = 0, and therefore, ∂xn A(0)= 0. This shows that ∂ν A|∂M = 0. □

Finally, in order to prove Theorem 1.3 we shall need the following boundary determination result.

Proposition C.4. Let (M, g) be a conformally transversally anisotropic manifold of dimension n ≥ 3. Let
A ∈ C1,1(M, T ∗M) be a 1-form and V ∈ C1,1(M). If∫

M
(4i⟨A, d(u1u2u3)⟩gu4 − (3id∗(A)+ V )u1u2u3u4) dVg = 0 (C-56)

for all harmonic functions u j ∈ C2,α(M), j = 1, . . . 4, then A|∂M = 0 and ∂ν A|∂M = 0.

Proof. We also have∫
M
(4i⟨A, d(u2u3u4)⟩gu1 − (3id∗(A)+ V )u1u2u3u4) dVg = 0. (C-57)

Subtracting (C-57) from (C-56), we get∫
M

⟨A, d(u1u2u3)⟩gu4 dVg −

∫
M

⟨A, d(u2u3u4)⟩gu1 dVg = 0. (C-58)

Letting u3 = u4 = 1, (C-58) gives ∫
M

⟨A, du1⟩gu2 dVg = 0 (C-59)

for all harmonic functions u1, u2 ∈ C2,α(M), and therefore for all harmonic functions u1, u2 ∈ C∞(M).
The result follows by an application of Proposition C.3. □
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When proving Proposition 1.6, we shall also need the following standard density result.

Proposition C.5. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 2 with smooth
boundary. The set of harmonic functions in M int that are smooth up to the boundary is dense in the space
of C2,α(M)-harmonic functions, 0< α < 1, in the C2,β(M) topology, for 0< β < α.

Proof. The proof follows along the lines of the proof of Proposition C.1. Indeed, let u ∈ C2,α(M) be
harmonic in M int and let f = u|∂M ∈ C2,α(∂M). Let 0<β <α, and by density, there exists f j ∈ C∞(∂M)
such that ∥ f j − f ∥C2,β (∂M) → 0, as j → ∞; see [Hörmander 1976, Theorem A.10]. The Dirichlet problem{

−1gu j = 0 in M int,

u j |∂M = f j ,

has a unique solution u j ∈ C2,α(M), and by elliptic regularity, we have u j ∈ C∞(M). Using the fact that
C2,α(M)⊂ C2,β(M) and the following bound for the solution to the Dirichlet problem for the Laplacian,
see [Gilbarg and Trudinger 1983, Section 6.3, p. 109],

∥u j − u∥C2,β (M) ≤ C∥ f j − f ∥C2,β (∂M) → 0,
we get the claim. □

Appendix D: Some facts about nontangential geodesics

When proving Proposition 1.6, in order to avoid the use of stationary and nonstationary phase arguments
on the boundary of the manifold, we shall need the following result concerning nontangential geodesics
which was kindly proven for us by Gabriel Paternain.

Proposition D.1. Let (M0, g0) be a smooth compact Riemannian manifold of dimension n ≥ 2 with
smooth boundary, and let γ be a unit speed nontangential geodesic on M0 between boundary points. Then
for each point y0 = γ (t0) ∈ M int

0 , except for finitely many, there exists a small neighborhood

W ⊂ Sy0 M0 = {w ∈ Ty0 M0 : |w|g = 1}

of w0 = γ̇ (t0) such that for every w ∈ W, w ̸= w0, the unit speed geodesic η on M0 passing through
(y0, w) is also nontangential between boundary points, and γ and η do not intersect each other at the
boundary of M0.

Proof. Let us first notice that the property of a geodesic being nontangential is stable under small
perturbations of the initial conditions, in view of the C∞-dependence of the geodesic flow on the initial
conditions. Let y0 = γ (t0) ∈ M int

0 . Reparametrizing the geodesic γ if necessary, we may assume that
γ : [−S1, S2] → M0, 0< S1, S2 <∞, is such that γ (0)= y0 and γ̇ (0)= w0. Let us consider the map

Fy0 : neigh(w0, Sy0 M0)→ neigh(γ (S2), ∂M0), Fy0(w)= π(ϕτ(y0,w)(y0, w)), (D-1)

where τ(y0, w) is the exit time of the geodesic γy0,w through (y0, w), ϕt : SM0 → SM0, t ∈ R, is the
geodesic flow, given by

ϕt(y, w)= (γy,w(t), γ̇y,w(t)), (D-2)

and π : SM0 → M0, π(y, w)= y is the canonical projection.
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The exit time τ(y0, w) depends smoothly on w, in view of the implicit function theorem and the fact
that the geodesic γ is nontangential. The map Fy0 is therefore smooth, and we have Fy0(w0)= γ (S2).

Let us now compute the differential of Fy0 at w0 acting on a vector η ∈ Tw0 Sy0 M0. To that end, consider
a curve w : (−a, a)→ Sy0 M0 such that w(0)= w0 and ẇ(0)= η, and by the chain rule, we get

F ′

y0
(w0)η =

d
ds

∣∣∣∣
s=0

Fy0(w(s))=
d
ds

∣∣∣∣
s=0
π(ϕτ(y0,w(s))(y0, w(s)))

=dπ(ϕτ(y0,w0)(y0, w0))

(
d
dt

∣∣∣∣
t=τ(y0,w0)

ϕt(y0, w0)
∂τ

∂w
(y0, w0)·η+

∂ϕτ(y0,w0)

∂w
(y0, w0)η

)
. (D-3)

To proceed, we recall some facts about the geometry of the tangent bundle following [Paternain 1999].
First, letting

V (y, w)= ker(dπ(y, w))⊂ T(y,w)SM0

be the vertical fiber of T SM0 at (y, w), see [Paternain 1999, Section 1.3.1], we have the splitting

T(y,w)SM0 = H(y, w)⊕ V (y, w),

where H(y, w) is the horizontal fiber of T SM0 at (y, w); see [Paternain 1999, Section 1.3, p. 13]. Both
V (y, w) and H(y, w) can be identified with Sy M0, and for ξ ∈ T(y,w)SM0, we write ξ = (ξ h, ξ v), where
ξ h, ξ v ∈ Sy M0 are the corresponding horizontal and vertical parts of ξ . Let X : SM0 → T SM0 be the
geodesic vector field given by

X (ϕt(y, w))=
d
dt
ϕt(y, w). (D-4)

It follows from [Paternain 1999, Section 1.3, p. 13] that we have

X (y, w)= (w, 0). (D-5)

Now in view of the above splitting, we have (0, η) ∈ V (y0, w0), and therefore, we get

∂ϕτ(y0,w0)

∂w
(y0, w0)η = dϕτ(y0,w0)(y0, w0)(0, η). (D-6)

Using the fact that τ(y0, w0)= S2, (D-2), and (D-4)–(D-6), we obtain from (D-3) that

F ′

y0
(w0)η = dπ(γ (S2), γ̇ (S2))

(
X (γ (S2), γ̇ (S2))

∂τ

∂w
(y0, w0) · η+ dϕτ(y0,w0)(y0, w0)(0, η)

)
= γ̇ (S2)

∂τ

∂w
(y0, w0) · η+ dπ(γ (S2), γ̇ (S2))(dϕS2(y0, w0)(0, η)). (D-7)

Now by [Paternain 1999, Lemma 1.40], see also [Ilmavirta 2020, Theorem 11.2], for the differential of
the geodesic flow we get that

dϕS2(y0, w0)(0, η)= (J(0,η)(S2), J̇(0,η)(S2)), (D-8)

where J(0,η) is the Jacobi field along the geodesic t 7→ π(ϕt(y0, w0))= γ (t) with the initial conditions

J(0,η)(0)= 0, J̇(0,η) = η. (D-9)
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Using [Ilmavirta 2020, Exercise 5.9], (D-9), and the fact that η ∈ Tw0 Sy0 M0, we have

⟨γ̇ (S2), J(0,η)(S2)⟩ = ⟨γ̇ (0), J(0,η)(0)⟩ + S2⟨γ̇ (0), J̇(0,η)(0)⟩ = S2⟨w0, η⟩ = 0, (D-10)

showing that the Jacobi field J(0,η) is normal to γ . It follows from (D-7) and (D-8) that

F ′

y0
(w0)η = γ̇ (S2)

∂τ

∂w
(y0, w0) · η+ J(0,η)(S2). (D-11)

Using (D-11) and the orthogonally (D-10), we see that if F ′
y0
(w0) has a nontrivial kernel, then there

exists η ̸= 0 such J(0,η)(S2) = 0, and therefore, the points y0 and γ (S2) are conjugate points along γ ;
see [Ilmavirta 2020, Definition 7.3]. Thus, F ′

y0
(w0) is bijective as long as y0 is not a conjugate point

to γ (S2) along γ .
By the inverse function theorem, Fy0 is a local diffeomorphism if y0 is not a conjugate point to γ (S2)

along γ .
Hence, if y0 is not a conjugate point to γ (S2) and γ (−S1) along γ , there exists a small neighborhood

W ⊂ Sy0 M0 of w0 such that for every w ∈ W, w ̸= w0, the unit speed geodesic η : [−T1, T2] → M0,
0< T1, T2 <∞, such that η(0)= y0 and η̇(0)=w is also nontangential between boundary points, and γ
and η do not intersect each other at the boundary of M0. Using the fact that γ can only self-intersect
at y0 finitely many times, see [Kenig and Salo 2013, Lemma 7.2], by choosing W sufficiently small so
that the corresponding finitely many tangent vectors of γ and their negatives do not belong to W, we
achieve that the geodesics η and γ are distinct and are not reverses of each other.

To conclude the proof, we recall from [do Carmo 1992, p. 248] that

{p ∈ γ ([−S1, S2]) : p is conjugate to γ (−S1) or γ (S2)}

is discrete, and since M0 is compact, it is finite. This completes the proof of the claim. □

When proving Proposition 1.6 in the simplified setting, we shall need some basic facts about non-
tangential geodesics. These facts are known, see [Dos Santos Ferreira et al. 2020, Section 3], and are
presented here for completeness and the convenience of the reader.

Proposition D.2. Let (M0, g0) be a smooth compact Riemannian manifold of dimension n ≥ 2 with
smooth boundary.

(i) Let γ be a unit speed non-self-intersecting nontangential geodesic on M0, and let y0 = γ (t0) ∈ M int
0 .

Then there exists a small neighborhood W of w0 = γ̇ (t0) in Sy0 M0 such that for every w ∈ W, the unit
speed geodesic γy0,w passing through (y0, w) is nontangential between boundary points and does not
have self-intersections.

(ii) Let γ and η be unit speed non-self-intersecting nontangential geodesics on M0 with the only point
of intersection y0 = γ (t0) = η(s0) ∈ M int

0 . Then there exists a small neighborhood W of w0 = γ̇ (t0) in
Sy0 M0 such that for every w ∈ W, the unit speed geodesic γy0,w passing through (y0, w) is nontangential
between boundary points, does not have self-intersections, and intersects η at the point y0 only.
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Proof. Here we follow [Dos Santos Ferreira et al. 2020, Section 3]. Let us prove (i). Reparametrizing the
geodesic γ if necessary, we may assume that γ : [−S1, S2] → M0, 0< S1, S2 <∞, is such that γ (0)= y0

and γ̇ (0)=w0. First the property of a geodesic being nontangential is stable under small perturbations of
the initial conditions, in view of C∞-dependence of the geodesic flow on the initial conditions. Assume
the contrary: there is a sequence wk →w0 in Sy0 M0 as k → ∞ such that there are times tk < sk when the
corresponding geodesic γy0,wk : [−S1(k), S2(k)] → M0 with γy0,wk (0)= y0, γ̇y0,wk (0)=wk self-intersects:

ak := γy0,wk (tk)= γy0,wk (sk). (D-12)

Note that the sequences −S1(k) and S2(k) approach −S1 and S2, respectively, as k → ∞. Therefore,
the sequences tk and sk are bounded, and passing to subsequences, we may assume that tk → t0 and
sk → s0. Letting k → ∞ in (D-12), we get γ (t0)= γ (s0). Since γ does not have self-intersections we
obtain t0 = s0.

As all geodesics γy0,wk are nontangential, it follows from (D-12) that ak ∈ M int
0 . As M0 is compact, it

has a positive injectivity radius Inj(M0) > 0. Here we have extended M0 to a closed manifold to speak
about the injectivity radius and the boundary will not cause any problems as ak ∈ M int

0 . Now (D-12)
implies that

sk ≥ tk + 2 Inj(M0),

and therefore, s0 − t0 ≥ 2 Inj(M0) > 0, which is a contradiction. Hence, (i) follows.
To prove (ii), first reparametrizing the geodesics γ and η if necessary, we may assume that the map

γ : [−S1, S2] → M0, 0 < S1, S2 <∞, is such that γ (0) = y0 and γ̇ (0) = w0, and η : [−T1, T2] → M0,
0 < T1, T2 < ∞, is such that η(0) = y0. By (i), there exists a small neighborhood W of w0 in Sy0 M0

such that for every w ∈ W, the unit speed geodesic γy0,w such that γy0,w(0) = y0 and γ̇y0,w(0) = w is
nontangential between boundary points and does not have self-intersections. We shall show that the
neighborhood W can be made smaller so that every γy0,w intersects η at the point y0 only. Let us assume
the opposite: there is a sequence wk → w0 in Sy0 M0 as k → ∞ such that there are times tk ̸= 0, sk ̸= 0
when the corresponding geodesic γy0,wk intersects η:

γy0,wk (tk)= η(sk). (D-13)

Note that here we used that γy0,wk and η do not have self-intersections. We also have

γy0,wk (0)= η(0)= y0. (D-14)

Passing to subsequences, we have that tk → t0 and sk → s0. Thus, it follows from (D-13) that γ (t0)=η(s0),
and therefore, as γ and η do not self-intersect and y0 is the only point of their intersection, we get t0 = s0 =0.
In view of (D-13) we have

γy0,wk (tk)= η(sk)→ η(0)= y0 ∈ M int
0 ,

and thus, for k sufficiently large, γy0,wk (tk)= η(sk) ∈ M int
0 . This together with (D-14) gives

|tk |> Inj(M0) > 0 and |sk |> Inj(M0) > 0

for k sufficiently large, otherwise the geodesics γy0,wk and η would intersect at a geodesic ball centered
at y0, which is a contradiction. Thus, (ii) follows. □
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