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A GENERAL NOTION OF UNIFORM ELLIPTICITY AND
THE REGULARITY OF THE STRESS FIELD

FOR ELLIPTIC EQUATIONS IN DIVERGENCE FORM

UMBERTO GUARNOTTA AND SUNRA MOSCONI

For solutions of Div(DF(Du))= f we show that the quasiconformality of z 7→ DF(z) is the key property
leading to the Sobolev regularity of the stress field DF(Du), in relation with the summability of f . This
class of nonlinearities encodes in a general way the notion of uniform ellipticity and encompasses all
known instances where the stress field is known to be Sobolev regular. We provide examples showing the
optimality of this assumption and present two applications: a nonlinear Cordes condition for equations in
divergence form and some partial results on the C p′

conjecture.

1. Introduction

In this work we are interested in Sobolev regularity results for the often-called “stress field” DF(Du)
corresponding to solutions of

div(DF(Du))= f, (1-1)

seen as the Euler–Lagrange equation for the energy functional

J (w,�)=

∫
�

F(Dw)+ f w dx, (1-2)

where � ⊂ RN, N ⩾ 2, f ∈ Lm(�) for some m > 1, and F ∈ C1(RN ) is a strictly convex function
obeying a suitable local form of uniform ellipticity condition. Questions regarding regularity of the stress
field recently gained increasing interest as a basic tool to attack further regularity and locality properties
of solutions to divergence form equations; see, e.g., [Avelin et al. 2018; Balci et al. 2020; Breit et al. 2018;
2022; Ciraolo et al. 2020; Colombo and Figalli 2014; Kuusi and Mingione 2013]. Despite its usefulness,
however, most of the results are constrained to special kinds of nonlinearities of either p-Laplacian-type
or having Uhlenbeck structure. Simple nonlinearities, such as

F(z)= |z − z0|
p
+ |z + z0|

p, 1< p < 2, z0 ̸= 0, (1-3)

do not fall within most of the currently available regularity theory. Since we focus on the stress field
instead of Du itself, we briefly justify this point of view, recalling the general situation for functionals of
the calculus of variations and their local minimizers.

Let u solve (1-1). If F ∈ C2(RN ) is uniformly elliptic, i.e.,

λ|ξ |2 ⩽ (D2 F(z) ξ, ξ)⩽3|ξ |2 for all z, ξ ∈ RN ,
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it is a classical result that f ∈ L2
loc(�) if and only if u ∈ W 2,2

loc (�), and in this case the regularity of Du
and V = DF(Du) coincide, since Du = DF−1(V ) and DF is bi-Lipschitz. Regarding W 2,m-regularity
for m ̸= 2, it is clear that if u ∈ W 2,m

loc (�), then DF(Du) ∈ W 1,m
loc (�), and thus f ∈ Lm

loc(�). Conversely,
suppose f ∈ Lm

loc(�); differentiating (1-1) gives

div(D2 F(Du)Dvk)= ∂k f, vk = ∂ku, k = 1, . . . , N .

If f ∈ Lm
loc(�) for m > N, then Du is Hölder continuous by the De Giorgi–Nash theorem; so, freezing

the (now continuous) coefficients of the matrix D2 F(Du), we can apply the Calderón–Zygmund theorem
to obtain that u ∈ W 2,m

loc (�), i.e., DF(Du) ∈ W 1,m
loc (�).

Next, consider the p-Poisson equation
1pu = f, p > 1, (1-4)

corresponding to the integrand F(z)= |z|p/p. In this case F satisfies

λ |z|p−2
|ξ |2 ⩽ (D2 F(z) ξ, ξ)⩽3 |z|p−2

|ξ |2,

and the Sobolev regularity of Du is much more involved. We are aware of only one result giving
second-order Sobolev regularity of u from an Lm assumption on f : in the nondegenerate case p ∈ (1, 2],
that u ∈ W 2,p(RN ) if f ∈ L p′

(RN ) (1/p + 1/p′
= 1, as usual) was proved in [Simon 1978] for global

solutions and in [de Thélin 1982] for local ones.
Through difference quotients and Caccioppoli inequalities one can usually infer Sobolev regularity

of Du from Sobolev regularity of f . In this framework, [Cellina 2017; Mercuri et al. 2016] treat the case
when p> 2 is near uniform ellipticity, proving, respectively, u ∈ W 2,2

loc (�) for 2⩽ p< 3 and u ∈ W 2,m
loc (�)

for any m, as long as p − 2 is sufficiently small. The postulated regularity for f is f ∈ W 1,2
loc (�) in

[Cellina 2017] and f ∈ W 1,m
loc (�) for m > N in [Mercuri et al. 2016].

For p > 2 and only assuming Lm regularity of f in (1-4), the best results available prove fractional
differentiability of Du; see [Mingione 2007; 2010; Miśkiewicz 2018; Savaré 1998; Simon 1978]. The
main idea of [Kuusi and Mingione 2013; Mingione 2007; 2010], which goes back to [Uhlenbeck 1977],
is to study the regularity properties of the field

V = |Du|
(p−2)/2 Du (1-5)

and deduce from the latter suitable regularity of Du. This approach is nowadays widespread, but still failed
to produce estimates in terms of the Lebesgue norm of f paralleling the second-order Calderón–Zygmund
theory depicted above in the nondegenerate case.

An alternative route is to consider the regularity of the stress field

V = |Du|
p−2 Du,

which arises as an interesting object per se in a variety of situations, e.g., in the framework of nonconvex
variational problems [Carstensen and Müller 2002] and in the dual formulation of traffic congestion
problems; see [Brasco et al. 2010]. In particular, the applicability of DiPerna–Lions theory in the latter
is tied to the Sobolev regularity of the stress field of the dual problem, which was the main concern
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of [Brasco et al. 2010] for a very degenerate functional of the form (1-2). When f is Sobolev regular,
variants of Caccioppoli inequalities and difference quotient methods have been used in the cited works to
obtain Sobolev regularity of V ; see also [Damascelli and Sciunzi 2004].

For less regular f the seminal paper is [Lou 2008], treating the case f ∈ Lm with m ⩾ max{2, N/p}.
In more recent years, the regularity of the stress field has been the object of fruitful investigations, also
thanks to the fact that it seems to provide more natural estimates than (1-5). Starting from [Diening et al.
2012], a first-order nonlinear Calderón–Zygmund theory for the p-Laplacian problem with right-hand
side in divergence form

div(|Du|
p−2 Du)= div G

is nowadays well-developed, showing the principle that the divergence operator can be “canceled out” to
get estimates for |Du|

p−2 Du in terms of G in the same space. We refer to [Balci et al. 2020; Breit et al.
2018; 2022] for this line of research, but let us remark that the order of differentiability for V considered
in these works is always less than 1.

Indeed, regarding the second-order Calderón–Zygmund theory (i.e., full Sobolev regularity for V ),
much less is known. A natural conjecture for solutions of (1-4) via the same principle would be

f ∈ Lm
loc(�) ⇐⇒ V ∈ W 1,m

loc (�), (1-6)

which is actually false for p ≃ 1. The case m =+∞, p> 2, corresponds to the well-known C p′

conjecture,
which will be discussed later, proved in the plane in [Araújo et al. 2017]. The endpoint m = 1 of (1-6)
is considered by [Avelin et al. 2018], where, e.g., for f ∈ L1

loc(�), it is proved that V ∈ W 1−ε,1 for all
ε > 0 (actually, f can be a general Radon measure in [Avelin et al. 2018]).

The only positive result of the type (1-6) (beyond the close one in [Lou 2008]) concerns the Hilbertian
case m = 2, which has been recently proved in [Cianchi and Mazya 2018] for equations having Uhlenbeck
structure, i.e., of the form

div(a(|Du|) Du)= f (or div G). (1-7)

The role of this structural assumption is in fact the main motivation of this work: indeed, (with the
exception of [Mingione 2007; Avelin et al. 2018]), the higher-order Calderón–Zygmund theorem exposed
so far is restricted to equations of the form (1-7) and in this case it can be actually extended to systems;
see [Breit et al. 2018; 2022; Cianchi and Mazya 2019; Balci et al. 2022]. As L2-theory seems to be the
basic step to deal with the general problem (1-6), it is worth investigating to what extent the Uhlenbeck
structure is necessary to develop such a theory and whether the general nonlinear problem (1-1) enjoys
the same Sobolev regularity for its stress field V = DF(Du).

It turns out that such regularity holds true when the map z 7→ DF(z) is quasiconformal. A quasicon-
formal map G : RN

→ RN is a homeomorphism belonging to W 1,N
loc (R

N ) such that, for some finite K ,

|λmax(DG(z))|N ⩽ K |det DG(z)| (1-8)

almost everywhere, with λmax(DG) being the maximum singular value of DG; we refer to [Martin
2014] for a short modern survey on quasiconformal mappings. The main outcome of our results is that
quasiconformality of DF in (1-1) is a natural and robust notion of uniform ellipticity, flexible enough
to encompass anisotropic examples such as (1-3), still allowing a reasonable regularity theory.
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Quasiconformal maps which are gradients of convex functions (or being, more generally, monotone)
have been systematically studied in [Kovalev and Maldonado 2005; Kovalev 2007]; convex potentials of
quasiconformal mappings are called quasiuniformly convex functions.

Definition 1.1. A convex F ∈ C1(RN ) is called K -quasiuniformly convex for some K ∈ [1,+∞) if it is
not affine, DF ∈ W 1,1

loc (R
N ), and

λmax(D2 F(z))⩽ K λmin(D2 F(z)) for a.e. z ∈ RN , (1-9)

where λmin(M) and λmax(M) denote the minimum and maximum eigenvalues of M.

For the most part, this will be the main assumption on F for the study of (1-1), and we will use the
acronym “q.u.c.” for “quasiuniformly convex”. Clearly, (1-9) and (1-8) for G = DF are equivalent (but
(1-9) implies (1-8) with a constant K N−1); in Proposition 2.3 we will show that any q.u.c. function is
strictly convex and of (p, q)-growth. In Section 3C we will discuss concrete examples but, in the meantime,
we note that z 7→ |z|p is q.u.c. for any p> 1, and the sum of q.u.c. functions is q.u.c.; hence (1-3) is q.u.c.

1A. Main results. We now present our main results, referring to the appropriate theorems in the following
sections for more complete statements. The first one concerns local minimizers u ∈ W 1,p

loc (�) for the
functional J in (1-2), i.e., those u obeying J (u) <+∞ and J (u, B)⩽ J (u +w, B) for all B ⋐� and
w ∈ W 1,p

0 (B).

Theorem 1.2 (Theorem 3.3). Let�⊆ RN be open, F ∈ C1(RN ) be K -q.u.c., and f ∈ L2(�)∩W −1,p′

(�)

for p = 1 + 1/K. Then any local minimizer u ∈ W 1,p
loc (�) of J satisfies

∥DF(Du)∥W 1,2(BR) ⩽ C(1 + ∥ f ∥L2(B2R) + ∥F(Du)∥K
L1(B2R)

)

for some C = C(K , N , R) and all B4R ⊆�.

Remark 1.3. Let us briefly discuss the main assumptions. Other comments may be found in Remark 3.4.

(1) Assumptions on F. The Sobolev regularity assumption DF ∈ W 1,1
loc (R

N ) is necessary, as shown in
Example 3.5, where a strictly convex, radial F ∈ C1(RN ) obeying (1-9) is constructed in such a way that
the stress field of a suitable solution to (1-1) with f = 0 is not absolutely continuous.

The q.u. convexity condition fails in simple examples such as the orthotropic p-Laplacian related to
the integrand

F(z)=

N∑
i=1

|zi |
p.

We remark that Giaquinta’s example [1987] in R6 is a local minimizer of an analytic functional whose
integrand is not q.u.c. and such that the stress field is in W 1,s

loc (R
N ) only for s < 5

4 . Playing around with
examples of similar structure suggests intricate interplays between the maximal Sobolev regularity of
the stress field and the possibly nonstandard structure of DF ; hence, it is not clear what to expect from
functionals with non-quasiconformal gradient mapping.

In Example 3.6 we discuss integrands of the form F(z)= F(|z|), while Examples 3.7 and 3.8 investigate
more general anisotropic functionals.
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• Assumptions on f . The hypothesis f ∈ W −1,p′

(�) has been made for expository reasons and the relation
between p and K will be derived in Proposition 2.3. On one hand, our results are mostly local in nature
and therefore it suffices to require f ∈ L2

loc(�)∩W −1,p′

loc (�), meaning with the latter the intersection of the
spaces W −1,p′

(�n) on an exhausting sequence of open relatively compact �n ↑�. For p ⩾ 2N/(N + 2),
the condition f ∈ W −1,p′

loc (�) automatically follows from Sobolev embedding and f ∈ L2
loc(�); for

p < 2 N/(N + 2), L2(�) is not embedded in W −1,p′

(�), destroying the variational framework we chose
to be in. One should then resort to the notion of approximable solutions (briefly described in the last
section), in order to deal with those cases. We refer to [Alberico et al. 2019] for a comprehensive theory of
approximable solutions in the anisotropic framework. Anyway, in terms of summability, f ∈ W −1,p′

(�)

is implied by f ∈ L(p
∗)′(�), which is a weaker summability than the one in [Lou 2008].

• The exponent p. As will be clear from the proof, the exponent p = 1 + 1/K is not the only possible
choice. Any p satisfying

|z|p ⩽ C(F(z)+ 1), z ∈ RN ,

will serve the purpose of proving Theorem 1.2, and the previous estimate holds true for p = 1 + 1/K
and F K -q.u.c., thanks to Proposition 2.3 below. In Example 3.6 we will see that higher choices of p
are sometimes feasible. Clearly, the variational condition f ∈ W −1,p′

(�) is weaker for higher p’s.

We will give two applications of Theorem 1.2. The first one deals with nonlinear Cordes conditions for
variational problems. Cordes conditions usually refer to Lm-theory for elliptic equations in nondivergence
form with measurable coefficients, namely, to solutions of

N∑
i j=1

ai j Di j u = f, (1-10)

with measurable coefficients ai j :�⊆ RN
→ R satisfying

λ |ξ |2 ⩽
N∑

i j=1

ai j (x) ξi ξi ⩽3 |ξ |2

for all ξ ∈ RN and a.e. x ∈�. Under these measurability assumptions alone, there is no hope in general
for the Calderón–Zygmund inequality

∥u∥W 2,m(�) ⩽ Cm∥ f ∥Lm(�) for all m > 1. (1-11)

Some regularity has to be assumed on ai j in order to obtain (1-11) for all m > 1 (VMO regularity suffices;
see [Chiarenza et al. 1991]). Roughly stated, a Cordes condition for (1-10) with discontinuous ai j says
that (1-11) holds if either m is sufficiently near 2, or 3/λ is sufficiently near 1. A similar situation takes
place for nonlinear equations in divergence form.

Theorem 1.4 (Theorem 4.3). Let F obey the assumptions of Theorem 1.2 and f ∈ Lm(�)∩ W −1,p′

(�)

for some m > 1. Then any local minimizer u ∈ W 1,p(�) for J in (1-2) is such that DF(Du) ∈ W 1,m
loc (�)

and
∥DF(Du)∥W 1,m(BR) ⩽ C(∥ f ∥Lm(B2R) + ∥DF(Du)∥Lm(B2R))
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for C = C(K , N ,m, R) and all B4R ⊆�, in either of the following cases:

(i) K ⩽ K0, with K0 = K0(N ,m) > 1.

(ii) |m − 2| ⩽ δ0 for δ0 = δ0(K , N ) > 0.

As a second application we will derive some partial results pertaining the C p′

conjecture, which states
that any solution of the p-Poisson equation with bounded right-hand side is C p′

regular if p> 2 (hereafter
we use the notation Cγ

= C [γ ],γ−[γ ], where [γ ] is the integer part of γ ).

Theorem 1.5 (Corollary 4.5, Theorem 4.7, and Corollary 4.8). Let u :�→ R be an approximable solution
of (1-4).

(i) If f ∈ L∞(�), then for all sufficiently small |p−2| it holds u ∈C2−αp(�), where αp =c(N )|p−2|>0.

(ii) For any m, p > 1, if u and � have cylindrical symmetry, then |Du|
p−2 Du ∈ W 1,m

loc (�) whenever
f ∈ Lm

loc(�). In particular, any cylindrical approximable solution of (1-4) belongs to Cmin{p′,2}−ε(�)

for any ε > 0.

Remark 1.6. • Item (i) confirms the validity of the C p′

conjecture near uniform ellipticity, and is inspired
by [Mercuri et al. 2016]. Here, however, we obtain an explicit rate of the Hölder exponent and, more
substantially, we do not require Sobolev regularity on f . When f ∈ L∞(�), the usual notion of weak
solution suffices.

• Point (ii) gives a weak form of the C p′

conjecture (namely, u ∈ C p′
−) in the class of cylindrical solutions

for any p ⩾ 2, with a different approach than the one of [Araújo et al. 2018]. We need the notion of
approximable solutions as in general f may fail to belong to W −1,p′

(�) for small m > 1, destroying the
variational setting. For details on such a notion we refer to Section 4B.

By a cylindrical solution we mean a function of the form u(x)= v(|x ′
|), x = (x ′, x ′′) ∈ Rk

× RN−k,
k ⩽ N. It is worth noticing that the domain � may not contain the origin, in which case the approach of
[Araújo et al. 2018] cannot be easily applied.

1B. Outline of the proofs. Consider, as a first step, a smooth compactly supported solution u of

div DF(Du)= f in RN ,

with F and f smooth. Our starting point is the well-known identity

∥DV ∥
2
L2(RN )

= ∥ div V ∥
2
L2(RN )

+
1
2∥ curl V ∥

2
L2(RN )

for all V ∈ C∞

c (R
N
; RN ), (1-12)

where curl V = DV − DV t. Applying (1-12) to the stress field V = DF(Du), we are reduced to estimate
curl V.

The main observation is that, in the smooth setting, DV is of special type, namely

DV = D2 F(Du) D2u,

where D2 F(Du) is a symmetric positive definite matrix and D2u is symmetric. An elementary lemma
shows that any matrix of the form

X = P S, P symmetric positive definite, S symmetric,
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satisfies

|X − X t
|
2
2 ⩽ 2

(
1 −

λmin

λmax

)2

|X |
2
2, (1-13)

where λmin and λmax are, respectively, the minimum and maximum eigenvalues of P. Thus the curl term
in (1-12) can be reabsorbed to the left if λmax ⩽ K λmin holds a.e. for the matrix D2 F, giving

∥DV ∥
2
L2(RN )

⩽ K 2
∥ f ∥

2
L2(RN )

for V = DF(Du) in the smooth, global setting.
In order to prove Theorem 1.2 we have to localize the estimate and to suitably build smooth approxi-

mating problems. We regularize the integrand, the source, and the boundary data through convolution but,
in order to have strongly elliptic problems, we would like to add a small multiple of a strongly elliptic
functional. Since we do not want to alter the q.u. convexity constant, the only viable choice is to add small
multiples of |z|2 to the regularized integrands. This is a quite unnatural choice if F is not of standard qua-
dratic growth, and it forces some interplay between the regularization parameters. Here, the explicit a priori
Lipschitz estimate for the corresponding solutions taken from [Bousquet and Brasco 2016] plays a key role.

The main step of the proof of Theorem 1.4 is to represent the solutions of{
div V = f,

curl V = G

in RN through Riesz transforms and generalize (1-12) to the Lm-setting as

∥DV ∥Lm(RN ) ⩽ C(m, N )(∥ div V ∥Lm(RN ) + ∥ curl V ∥Lm(RN )).

Thus, inequality (1-13) does the trick in case (i) of Theorem 1.4, allowing reabsorption of the curl term
for K sufficiently near 1. A standard Riesz interpolation argument, together with a careful choice of the
norms involved, allows proving case (ii).

Finally, point (i) of Theorem 1.5 is an immediate consequence of point (i) of Theorem 1.4, while
point (ii) stems from this observation: if u exhibits cylindrical symmetry, then the stress field a(|Du|) Du
is irrotational; by the Helmoltz decomposition, it can be locally represented as the gradient of a solution
of 1v = f ∈ Lm, so the standard Calderón–Zygmund theorem applies.

1C. Structure of the paper. In Section 2 we recall some functional inequalities and properties about
quasiuniform convexity. In Section 3A we develop our basic estimate in the smooth setting; Section 3B
is devoted to the proof of Theorem 1.2, where the main approximation procedure, used also later, is
described; Section 3C contains the relevant examples depicted above. In Section 4 we focus on the
applications: first we treat the Cordes conditions, and finally we collect the partial results pertaining the
C p′

conjecture.

Notations. • The euclidean norm of a vector v ∈ RN is denoted by |v| and (v,w) denotes the scalar
product. By � we denote a bounded open subset of RN, while Br denotes a ball of radius r not necessarily
centered at the origin. Similarly, B denotes a ball with unspecified center and radius; if B = Br (x0), then
we set λB = Bλr (x0).



1962 UMBERTO GUARNOTTA AND SUNRA MOSCONI

• For a N × N matrix A = (ai j ), its transpose is denoted by At ; on such matrices we consider the
Frobenius norm

|A|2 =

( N∑
i, j=1

|ai j |
2
)1/2

,

arising from the scalar product (A, B)2 = Tr(A B t). For v,w ∈ RN, v⊗w is the matrix with entries
(vi wj ), while v∧w= v⊗w−w⊗v; I denotes the identity matrix, while Id the identity function of RN ;
ON is the orthogonal group of N × N matrices such that A At

= At A = I ; if A is symmetric, λmin(A),
λmax(A) are its minimum and its maximum eigenvalues.

• If a domain of integration is missing, it means that we are integrating on RN. We also set for brevity
∥ f ∥m = ∥ f ∥Lm(RN ). Finally, we sometimes will use the Lm “norm” also for m ∈ (0, 1), when it is only
positively 1-homogeneous.

• As is customary, we indicate with W −1,p′

(�) the dual space of W 1,p
0 (�).

2. Preliminaries

2A. Functional inequalities. For 0< θ < m, m > 1, starting from the inequality∫
B1

|v|m dx ⩽
∫

B1

|Dv|m dx + C(N ,m, θ)
(∫

B1

|v|θ dx
)m/θ

(2-1)

(obtained by a standard compactness argument), and replicating, with the obvious modifications, the proof
of [Cianchi and Mazya 2018, equation (5.4)], we get the following functional inequality.

Lemma 2.1. Let m > 1, 0 < θ < m, and R ⩽ r < s < 2R. There exists C = C(N ,m, θ) such that for
any v ∈ W 1,m(Bs \ Br ) and any δ ∈ (0, 1) it holds∫

Bs\Br

|v|m dx ⩽ δm Rm
∫

Bs\Br

|Dv|m dx +
C

(δN (s − r) RN−1)(m−θ)/θ

(∫
Bs\Br

|v|θ dx
)m/θ

.

The following lemma is a straightforward generalization of the well-known identity∫
|DV |

2
2 dx =

1
2

∫
| curl V |

2
2 dx +

∫
(div V )2 dx, (2-2)

valid for V ∈ C1
c (R

N
; RN ).

Lemma 2.2. If V ∈ C2(RN ,RN ), then for any ϕ ∈ C2
c (R

N ) it holds∫
ϕ2

|DV |
2
2 dx =

1
2

∫
ϕ2

| curl V |
2
2 dx +

∫
ϕ2 (div V )2 dx

+

∫
[2(Dϕ2, V ) div V + (D2ϕ2, V ⊗ V )2] dx . (2-3)

Proof. Write, through parallelogram identity,

|DV |
2
2 =

1
4 |DV − DV t

|
2
2 +

1
4 |DV + DV t

|
2
2,
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then multiply by ϕ2 and integrate to obtain∫
ϕ2

|DV |
2
2 dx =

∫
ϕ2

4
| curl V |

2
2 dx +

∫
ϕ2

4
∑

i j (Dj V i
+ Di V j )2 dx

=

∫
ϕ2

4
| curl V |

2
2 dx +

∫
ϕ2

2
|DV |

2
2 dx +

∫
ϕ2

2
∑

i j Di V j Dj V i dx . (2-4)

The last term is computed integrating by parts twice: for any i, j = 1, . . . , N∫
ϕ2 Di V j Dj V i dx

= −

∫
Diϕ

2 V j Dj V i dx −

∫
ϕ2 V j Di j V i dx

=

∫
Di jϕ

2 V j V i dx +

∫
Diϕ

2 V i Dj V j dx +

∫
Djϕ

2 V j Di V i dx +

∫
ϕ2 Dj V j Di V i dx,

so that summing over i, j gives∫
ϕ2 ∑

i j Di V j Dj V i dx =

∫
[ϕ2(div V )2 + 2 (Dϕ2, V ) div V + (D2ϕ2, V ⊗ V )2] dx .

Inserting this formula into (2-4) yields (2-3). □

2B. Quasiuniform convexity. In this section we show that the q.u. convexity condition provides, in a
unified way, many of the properties that the usual integrands of the calculus of variations satisfy.

Let us begin by observing that the gradient of a convex F is defined a.e. and belongs to BVloc(R
N );

see [Alberti and Ambrosio 1999]. Accordingly, the second derivative of F can be decomposed into an
absolutely continuous part, a jump part, and a Cantor part. If F ∈ C1(RN ) the jump part vanishes; hence
by requiring that F ∈ C1(RN )∩ W 2,1

loc (R
N ) we are actually excluding that D2 F has a Cantor part.

Now we discuss in detail some consequences of the q.u. convexity condition; although condition (iv)
of Proposition 2.3 will be not used in the sequel, we prove it for the sake of completeness.

Proposition 2.3 (properties of K -quasiuniformly convex functions). Let F be a K -quasiuniformly convex
function. Then:

(i) DF is K N−1-quasiconformal; hence C1/K (RN ).

(ii) F is strictly convex and of (p, q)-growth, i.e., there exists C = C(N , K , F) > 0 and 1< p< q <+∞

such that

C−1
|z|p

− C ⩽ F(z)⩽ C(|z|q + 1), (2-5)

C−1
|z|p−1

− C ⩽ |DF(z)| ⩽ C(|z|q−1
+ 1) (2-6)

for all z ∈ RN. More precisely, one can take p = 1 + 1/K and q = 1 + K.

(iii) If ϕ ∈ C∞
c (R

N
; [0,+∞)), then F ∗ϕ is K -q.u.c.
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(iv) Its Moreau–Yoshida regularization

Fδ(z)= inf
y∈RN

{
F(y)+ 1

2 δ
|y − z|2

}
(2-7)

is K -q.u.c.

Proof. (i) By the Alexandrov theorem DF is differentiable a.e., and [Väisälä 1971, Theorem 32.3]
ensures that DF ∈ W 1,N

loc (R
N ). Since (1-8) and (1-9) are equivalent up to changing the constants, u is

quasiuniformly convex in the sense of [Kovalev and Maldonado 2005]. In particular Theorem 3.1 of that
work shows that DF is K N−1-quasiconformal. The regularity statement holds for any quasiconformal
mapping; see [Martin 2014, Theorem 2.14].

(ii) The strict convexity of F follows from [Kovalev and Maldonado 2005, Lemma 3.2]. If z0 is the
unique minimum point for F we can consider F(z0 + · ) − F(z0), so there is no loss in generality
assuming DF(0)= 0, F(0)= 0. Let G = DF, which then is K N−1-quasiconformal. By [Martin 2014,
Theorem 2.14]

|G(z)| ⩽ C(N , K ) sup
y∈B1

|G(y)||z|1/K , z ∈ B1.

Since G−1 is still K N−1 quasiconformal, it obeys a similar estimate, proving the lower bound

|G(z)| ⩾ C(N , K ,G)|z|K , z ∈ B1.

Finally, the inversion

G∗(x)=
G(x/|x |

2)

|G(x/|x |2)|2

is again K N−1 quasiconformal on B1, so that the previous estimates are transferred to the outside of B1 as

C−1
|z|1/K ⩽ |G(z)| ⩽ C |z|K , |z| ⩾ 1, (2-8)

where C = C(N , K ,G). For G = DF, p = 1 + 1/K , q = 1 + K , we thus obtained (2-6). Moreover, by
[Kovalev 2007, Lemma 18], DF is δ-convex for some δ = δ(N , K ) > 0, meaning that

(DF(z)− DF(y), z − y)⩾ δ|DF(z)− DF(y)||z − y| for all z, y ∈ RN . (2-9)

Using (2-9) and (2-6), we get

F(z)=

∫ 1

0
(DF(t z), z) dt ⩾ δ

∫ 1

0
|DF(t z)||z| dt ⩾

δ

p C
|z|p

− C |z| ⩾
δ

p C
|z|p

− C,

by sufficiently increasing C in the last inequality. This produces the lower bound in (2-5), while the upper
bound follows from (2-6) alone through a similar calculation.

(iii) Let λmin(z) = λmin(D2 F(z)), where z is a second-order differentiability point for F. From the
representation

λmin(z) := inf{(D2 F(z) ξ, ξ) : ξ ∈ D},
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where D is a fixed countable dense subset of SN−1, we infer that λmin is measurable and in L1
loc(R

N ).
Then, for any z ∈ RN and ξ ∈ D,

(D2 F ∗ϕ(z) ξ, ξ)=

∫
ϕ(z − y) (D2 F(y) ξ, ξ) dy

⩾
∫
ϕ(z − y) λmin(y) |ξ |2 dx =: λ̃min(z) |ξ |2,

while ∫
ϕ(z − y) (D2 F(y) ξ, ξ) dy ⩽

∫
ϕ(z − y) K λmin(y) |ξ |2 dy = K λ̃min(z) |ξ |2,

implying the claim.

(iv) Recall that the minimum in (2-7) is attained at a unique point Pδ(z) satisfying

Pδ(z)+ δ DF(Pδ(z))= z, DFδ(z)= DF(Pδ(z)), (2-10)

and the so-defined function Pδ = (Id + δ DF)−1 is 1-Lipschitz and a homeomorphism of RN, since
F ∈ C1(RN ). Let E be the set of points where DF fails to be differentiable. The map Id + δ DF is the
gradient of a K -quasiuniformly convex function, and hence by point (i) is quasiconformal and satisfies
the Lusin (N ) property, i.e., it sends null-measure sets to null-measure sets; see [Väisälä 1971]. Thus,
P−1
δ (E) has zero measure. Moreover, since Pδ is Lipschitz continuous, Rademacher’s theorem ensures

that the set M where Pδ is not differentiable has zero measure. We will prove (1-9) at any point

z /∈ M ∪ P−1
δ (E),

the latter set having zero measure. Indeed, at any such point z we have that DF is differentiable at Pδ(z)
and Pδ is differentiable at z. The chain rule applied to (2-10) then gives

(I + δD2 F(Pδ(z))) D Pδ(z)= I, D2 Fδ(z)= D2 F(Pδ(z)) D Pδ(z),

which yields

D2 Fδ(z)= D2 F(Pδ(z))(I + δ D2 F(Pδ(z)))−1. (2-11)

Let the eigenvalues of D2 F(Pδ(z)) be λmin = λ1 ⩽ . . . ⩽ λN = λmax. The matrices D2 F(Pδ(z)) and
(I+δ D2 F(Pδ(z)))−1 have the same basis of eigenvectors, with eigenvalues λi and (1+δ λi )

−1 respectively.
Hence (2-11) implies that D2 Fδ(z) has eigenvalues λi/(1 + δ λi ). As t 7→ t/(1 + δ t) is increasing, its
minimum and maximum eigenvalues are

λδ,min :=
λmin

1 + δλmin
, λδ,max :=

λmax

1 + δλmax
,

which obey λδ,max ⩽ Kλδ,min as long as λmax ⩽ Kλmin. □

Due to the previous proposition, we will denote henceforth by p and q the powers of the lower and
upper bounds, respectively, for a given K -q.u.c. function F.
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2C. Extensions. We conclude with a couple of tools which will be occasionally used in the following.

Lemma 2.4. Let F ∈ C1(BR) be a nonnegative, strictly convex function, and σ ∈ (0, 1).

(i) There exists a strictly convex F̃ ∈ C1(RN ) such that F̃ |Bσ R = F and, for some C , α depending on F,
R, N, σ , it holds

|z|2 ⩽ α(F̃(z)+ 1), C−1
|z| − C ⩽ |DF̃(z)| ⩽ C(|z| + 1). (2-12)

(ii) If F is K -q.u.c. in BR as per Definition 1.1, and for some ε > 0 it holds λmin(z)⩾ ε in BR \ Bσ R , in
addition to (2-12) F̃ can be chosen to be K̃ -q.u.c., with K̃ = K̃ (F, R, N , σ, ε).

Proof. To prove (i), let τ = (1+σ)/2, choose a radial cut-off function η ∈ C∞
c (BR; [0, 1]) such that η≡ 1

in Bτ R , and define

F̃(z)= η(z) F(z)+ (1 − η(z))
|z|2

2
+ C (|z| − σ R)2

+
,

where C > 0 is a constant to be chosen. Clearly F̃ ∈ C1(RN ) and obeys (2-12), so it remains to show
that F is strictly convex for a suitable C . To this aim, set

A(z) :=
1
2

D2(|z| − σ R)2 =
σ R
|z|

z
|z|

⊗
z
|z|

+

(
1 −

σ R
|z|

)
I,

whose eigenvalues are 1 and 1 − σ R/|z|. In particular, A is nonnegative definite in BR \ Bσ R , and its
eigenvalues are uniformly bounded below in RN

\ Bτ R by a positive constant; since F̃ agrees with F
in Bσ R , it follows that F̃ is strictly convex in Bτ R and in RN

\ BR . A straightforward computation yields

D2 F̃ = η D2 F + M + 2 C A,

M := (1 − η) I + Dη⊗ DF + DF ⊗ Dη− 2 Dη⊗ z +

(
F −

|z|2

2

)
D2η

a.e. outside Bσ R , and we can choose C so that(
1 −

σ

τ

)
C = max

z∈BR
|M(z)|2,

ensuring

λmin(D2 F̃)⩾ η λmin(D2 F)+
(

1 −
σ

τ

)
C in BR \ Bτ R.

Summing up, F̃ is globally strictly convex by an elementary argument.
To prove (ii), let λ̃min(z) and λ̃max(z) denote the minimum and maximum eigenvalues of D2 F̃(z), and

λmin, λmax those for D2 F. It holds

ε ⩽ λmin ⩽ λ̃min ⩽ λ̃max ⩽ 3 C + λmax

in Bτ R \ Bσ R , so that from (1-9) we get

λ̃max

λ̃min
⩽
λ̃max

λmin
⩽

3 C
λmin

+ K ⩽
3 C
ε

+ K .



UNIFORM ELLIPTICITY AND REGULARITY OF THE STRESS FIELD 1967

In RN
\ Bτ R it holds

(1 − σ/τ)C + η λmin ⩽ λ̃min ⩽ λ̃max ⩽ 3 C + η λmax,

so that
λ̃max

λ̃min
⩽

3 C + K η λmin

(1 − σ/τ)C + η λmin
⩽

3 τ
τ − σ

+ K .

Since F̃ = F on Bσ R and (1-9) holds for F there, the claim is proved. □

3. Divergence form, quasiconformal equations

3A. The smooth setting. The core of our approach lies in the following elementary observation.

Lemma 3.1. Let X = P S, where P and S are symmetric N × N matrices and P is positive definite with
minimum and maximum eigenvalues λmin and λmax. Then

|X − X t
|
2
2 ⩽ 2

(1 − λmin/λmax)
2

1 + (λmin/λmax)2
|X |

2
2. (3-1)

Proof. Inequality (3-1) is invariant under rotations; thus, without loss of generality, we can suppose
Pi j = λiδi j with 0< λ1 ⩽ . . .⩽ λN . Then from X = P S we get

X i j = λi Si j ,

so that

|X − X t
|
2
2 =

∑
i j

|X j i − X i j |
2
= 2

∑
i< j

|X j i − X i j |
2
= 2

∑
i< j

|λj Sj i − λi Si j |
2,

and from the symmetry of S we conclude

|X − X t
|
2
2 = 2

∑
i< j

S2
i j (λj − λi )

2. (3-2)

Similarly, we have

|X |
2
2 ⩾

∑
i< j

(X2
i j + X2

j i )=

∑
i< j

S2
i j (λ

2
i + λ2

j ). (3-3)

Let

ϕ(t)=
(1 − t)2

1 + t2 ,

which is decreasing in [0, 1], and observe that for j > i we have λi/λj ∈ [0, 1]. Therefore

(λj − λi )
2
=
(λj − λi )

2

λ2
j + λ2

i
(λ2

j + λ2
i )= ϕ

(
λi

λj

)
(λ2

j + λ2
i )⩽ ϕ

(
λmin

λmax

)
(λ2

j + λ2
i ).

Inserting this estimate in (3-3) and recalling (3-2) we get

|X − X t
|
2
2 ⩽ 2ϕ

(
λmin

λmax

) ∑
i< j

S2
i j (λ

2
i + λ2

j )= 2ϕ
(
λmin

λmax

)
|X |

2
2. □
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Theorem 3.2. Let u ∈ C2(B2R) solve

div(DF(Du))= f in B2R

for a K -q.u.c. F ∈ C2(RN ), and let
V (x)= DF(Du(x)).

Then for any θ ∈ (0, 2] there exist C = C(N , K , θ) and CR = C(N , K , θ, R) such that

∥V ∥W 1,2(BR) ⩽ C ∥ f ∥L2(B2R) + CR ∥V ∥Lθ (B2R). (3-4)

Proof. For any ε > 0 let

Fε(z)= F(z)+ ε
|z|2

2
, fε = f + ε 1u,

so that D2 Fε is symmetric and positive definite. It holds

λmin(D2 Fε(z))= λmin(D2 F(z))+ ε, λmax(D2 Fε(z))= λmax(D2 F(z))+ ε,

so that if (1-9) holds for F, it does so for D2 Fε as well, with the same constant K .
Clearly u solves

div(DFε(Du))= fε
in B2R . Letting

Vε = DFε(Du),

it holds
DVε = D2 Fε(Du) D2u,

where the first matrix is symmetric positive definite and the second one is symmetric. We thus apply
Lemma 3.1 to the matrix

P = D2 Fε(Du), S = D2u, X = DVε = P S.

Recall that D2 Fε(Du) satisfies (1-9) with constant K , whence(
λmax(D2 Fε(Du))− λmin(D2 Fε(Du))

)2

λ2
max(D2 Fε(Du))+ λ2

min(D
2 Fε(Du))

⩽
(K − 1)2

K 2 + 1
.

From (3-1) we get

| curl Vε|22 ⩽ 2
(K − 1)2

K 2 + 1
|DVε|22. (3-5)

For any r, s with R ⩽ r < s ⩽ 2 R, fix ϕ ∈ C∞
c (Bs, [0, 1]) such that

ϕ|Br ≡ 1, |Dϕ| ⩽
C

s − r
, |D2ϕ| ⩽

C
(s − r)2

. (3-6)

This will allow us to consider ϕ Vε as defined on the whole RN, so that (2-3) holds true. The stipulated
properties of ϕ ensure that∫

2(Dϕ2, Vε) fε + (D2ϕ2, Vε ⊗ Vε)2 dx ⩽
C

(s − r)2

∫
Bs\Br

|Vε|2 dx + C
∫

B2R

f 2
ε dx,
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where we used the Schwartz inequality on the first term and s ⩽ 2R. Using also (3-5) to control the curl
term of Lemma 2.2 yields∫

ϕ2
|DVε|22 dx ⩽

(
1 −

1
K

)2 ∫
ϕ2

|DVε|22 dx +
C

(s − r)2

∫
Bs\Br

|Vε|2 dx + C
∫

B2R

f 2
ε dx .

We let ε → 0 and bring the first term on the right to the left-hand side; recalling that ϕ ≡ 1 on Br , we
obtain ∫

Br

|DV |
2
2 dx ⩽

CK

(s − r)2

∫
Bs\Br

|V |
2
+ CK

∫
B2R

f 2 dx (3-7)

for any R ⩽ r < s ⩽ 2R. We next proceed as in [Cianchi and Mazya 2018]: by Lemma 2.1 with m = 2 and

δ =
s − r

2
√

CK R
,

we get

CK

(s − r)2

∫
Bs\Br

|V |
2 dx ⩽ 1

4

∫
Bs\Br

|DV |
2
2 dx +

CK R(2−θ)/θ

(s − r)2+(2−θ)/θ(N+1)

(∫
Bs\Br

|V |
θ dx

)2/θ

,

which inserted into (3-7) gives, for all R ⩽ r < s ⩽ 2R,∫
Br

|DV |
2
2 dx ⩽ 1

4

∫
Bs

|DV |
2
2 dx + CK

∫
B2R

f 2 dx +
CK R(2−θ)/θ

(s − r)2+(2−θ)/θ(N+1)

(∫
Bs\Br

|V |
θ dx

)2/θ

.

A standard iteration lemma (see [Giaquinta 1983, Lemma 3.1, Chapter 5]) improves the latter to∫
BR

|DV |
2
2 dx ⩽ CK

∫
B2R

f 2 dx +
CK

R2+(2−θ)/θN

(∫
B2R

|V |
θ dx

)2/θ

,

which is the desired estimate on the derivative of V. In order to control ∥V ∥
2
L2(BR)

, we invoke the rescaled
form of (2-1) which, in conjunction with the previous estimate, completes the proof of (3-4). □

3B. Local minimizers. For a bounded �⊆ RN we let

J (w,�)=

∫
�

F(Dw) dx +

∫
�

fw dx

whenever the two integrands are in L1(�), sometimes omitting the dependence on � when this causes no
confusion. We will consider J under p-coercivity assumptions on F and for f ∈ W −1,p′

(�), so that it is
well-defined on W 1,p(�).

Recall that u ∈ W 1,p
loc (�) is a local minimizer for J in W 1,p(�) if, for any B ⋐�,

J (u, B)= inf{J (w, B) : w ∈ u + W 1,p
0 (B)}. (3-8)

Theorem 3.3. Let F ∈ C1(RN ) be a q.u.c. function and q > p > 1 be given in Proposition 2.3(ii). For
f ∈ L2(�)∩ W −1,p′

(�), let u be a local minimizer u of J in �. Then, for any ball B such that 4B ⊆�

it holds DF(Du) ∈ W 1,2(B),

∥DF(Du)∥L2(B) ⩽ C(1 + ∥ f ∥L2(2B) + ∥F(Du)∥(q−1)/p
L1(2B) ) (3-9)
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for C = C(K , N , B) > 0, and for any θ ∈ (0, 2]

∥DF(Du)∥W 1,2(B) ⩽ C(∥ f ∥L2(2B) + ∥DF(Du)∥Lθ (2B)) (3-10)

for C = C(K , N , B, θ) > 0. Moreover, u satisfies the Euler–Lagrange equation∫
�

(DF(Du), Dϕ) dx =

∫
�

f ϕ dx for all ϕ ∈ C∞

c (�). (3-11)

Proof. Let Argmin(F)= {z0}. By considering F̃(z)= F(z + z0)− F(z0) and ũ(x)= u(x)− (z0, x) and
noting that f ( · ) (z0, · ) ∈ L1

loc(�), it is readily checked that ũ turns out to be a local minimizer of

J̃ (w,�)=

∫
�

F̃(Dw)+ fw dx .

Hence, hereafter we suppose F(z)⩾ F(0)= 0. Finally, recalling Proposition 2.3(ii), we know that F is
strictly convex and

C−1
|z|p

− C ⩽ F(z)⩽ C(|z|q + 1), |DF(z)| ⩽ C(|z|q−1
+ 1), (3-12)

so that u is the unique minimizer locally, with respect to its own boundary values. We split the proof into
several steps.

Step 1: approximating problems. Fix ϕ ∈ C∞
c (B1, [0,+∞)) such that ∥ϕ∥1 = 1 and let ϕε(x) =

ε−N ϕ(x/ε). For B ⋐� and n ∈ N, let fn = f ∗ϕ1/n and, for εn, µn → 0+ to be chosen,

Jn(w)=

∫
B

F ∗ϕεn (Dw)+
µn

2
|Dw|

2
+ fn w dx .

Set
Lipψ(B)= {w ∈ Lip(B) : w = ψ on ∂B}.

According to [Stampacchia 1963, Theorem 9.2], there is a solution vn ∈ Lipu∗ϕ1/n
(B) of

Jn(vn)= inf{Jn(w) : w ∈ Lipu∗ϕ1/n
(B)},

since u ∗ ϕ1/n is smooth on ∂B (thus satisfying the bounded slope condition) and also fn is smooth.
Moreover, for any fixed n there is no Lavrentiev gap for Jn; see [Bousquet et al. 2014, p. 5923]. Hence
vn also solves

Jn(vn)= inf{Jn(w) : w ∈ u ∗ϕ1/n + W 1,p
0 (B)}.

Step 2: determining the parameters. For any choice of εn, µn , the integrand

Fn(z) := F ∗ϕεn (z)+
µn

2
|z|2

is µn-uniformly convex; hence [Bousquet and Brasco 2016, Theorem 4.1] ensures the existence of
constants An (depending only on B and ∥ fn∥∞, as well as on the regularity of u ∗ϕ1/n , but not on εn , µn),
such that

Lip(vn)⩽
An

µn
=: Ln. (3-13)
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Without loss of generality, we can assume Ln ⩾ 1. We first choose µn ↓ 0 so that

lim
n
µn

∫
B

|Du ∗ϕ1/n|
2 dx = 0, lim

n
µp−1

n A2−p
n = 0, (3-14)

and observe that Ln is independent of εn . Then we choose εn: define the numbers

Mn = 1 + sup
B

|Du ∗ϕ1/n| + Ln.

Since ϕε ∗ F → F in C1
loc(R

N ) as ε ↓ 0, we can pick (εn)⊆ (0, 1), εn ↓ 0, so that

∥F ∗ϕεn − F∥C1(BMn )
⩽ 1

n
. (3-15)

Clearly, it still holds
Fn → F in C1

loc(R
N ). (3-16)

Step 3: the limsup inequality. Testing the minimality of vn against the admissible function u ∗ϕ1/n gives

Jn(vn)⩽ Jn(u ∗ϕ1/n).

Owing to u ∗ϕ1/n → u in W 1,p(B) and (3-14), one has

lim
n

Jn(u ∗ϕ1/n)=

∫
B

f u dx + lim
n

∫
B

F ∗ϕεn (Du ∗ϕ1/n) dx . (3-17)

To estimate the last integral, we use (3-15) to get∫
B

F ∗ϕεn (Du ∗ϕ1/n) dx ⩽ |B|

n
+

∫
B

F(Du ∗ϕ1/n) dx .

The vector-valued Jensen inequality then leads to

lim
n

∫
B

F ∗ϕεn (Du ∗ϕ1/n) dx ⩽ lim
n

∫
B

F(Du ∗ϕ1/n) dx

⩽ lim
n

∫
(1+1/n)B

ϕ1/n ∗ F(Du) dx =

∫
B

F(Du) dx .

Inserting the latter into (3-17) we conclude

lim
n

Jn(vn)⩽ J (u). (3-18)

Step 4: convergence of (vn) to u. From (3-18) we have that (Jn(vn)) is bounded. By Jensen’s inequality
F ⩽ F ∗ϕεn so that, through (3-12), for some constant C = C(N , F, B) > 0 we have

Jn(vn)⩾
∫

B
F(Dvn) dx +

∫
B

fn vn dx

⩾
∥Dvn∥

p
L p(B)

C
− C − ∥ fn∥W −1,p′

(B)∥D(vn − u ∗ϕ1/n)∥L p(B) +

∫
B

fn u ∗ϕ1/n dx

⩾
∥Dvn∥

p
L p(B)

C
− C − ∥ fn∥W −1,p′

(B)(∥Dvn∥L p(B) + ∥Du ∗ϕ1/n∥L p(B))+

∫
B

fn u ∗ϕ1/n dx .
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Since fn → f in W −1,p′

(B) and u ∗ϕ1/n → u in W 1,p(B), by (3-18) we deduce that (Dvn) is bounded
in L p(B). Moreover, by Poincaré’s inequality,

∥vn∥L p(B) ⩽ ∥vn − u ∗ϕ1/n∥L p(B) + ∥u ∗ϕ1/n∥L p(B)

⩽ C(∥D(vn − u ∗ϕ1/n)∥L p(B) + ∥u ∗ϕ1/n∥L p(B))

⩽ C(∥Dvn∥L p(B) + ∥u ∗ϕ1/n∥W 1,p(B)),

so that (vn) is bounded in L p(B) as well. Therefore the sequence (vn) is bounded in W 1,p(B), and hence
possesses a (not relabeled) subsequence weakly convergent to some v ∈ W 1,p(B); actually, it is readily
checked that v ∈ u + W 1,p

0 (B). We claim that

lim
n
µn

∫
B

|Dvn|
2 dx = 0.

Indeed, this is obvious by Hölder’s inequality when p ⩾ 2, while if p < 2 we use (3-13) and (3-14) to
infer

µn

∫
B

|Dvn|
2 dx ⩽ µn L2−p

n

∫
B

|Dvn|
p dx ⩽ µp−1

n A2−p
n

∫
B

|Dvn|
p dx → 0,

where we used the boundedness of (Dvn) in L p(B). Thus

lim
n

∫
B

µn

2
|Dvn|

2
+ fn vn dx =

∫
B

f v dx . (3-19)

The functional
w 7→

∫
B

F(Dw) dx

is weakly lower semicontinuous in W 1,p(B), whence (again by the Jensen inequality)

J (v)⩽ lim
n

[∫
B

F(Dvn) dx +

∫
B

f vn dx
]

⩽ lim
n

[∫
B

F ∗ϕεn (Dvn) dx +
µn

2

∫
B

|Dvn|
2
+ fn vn dx

]
= lim

n
Jn(vn). (3-20)

Coupling the latter with (3-18) we get J (v) ⩽ J (u), implying v = u by the strict convexity of J. In
particular we obtain, up to subsequences,

Dvn ⇀ Du in L p(B), (3-21)

and from (3-20), (3-18) we infer Jn(vn)→ J (u). Subtracting (3-19) we get∫
B

F ∗ϕεn (Dvn) dx →

∫
B

F(Du) dx,

which, thanks to (3-15), implies ∫
B

F(Dvn) dx →

∫
B

F(Du) dx . (3-22)

Step 5: uniform Sobolev bound on DF(Dvn). By Proposition 2.3(iii), and the beginning of the proof
of Theorem 3.2, Fn satisfies (1-9) with the same constant K ; since Fn ∈ C3(RN ), (1-9) actually holds
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everywhere. Moreover, standard regularity theory ensures that vn ∈ C2(B), so we can apply Theorem 3.2,
and in particular (3-4), to obtain, for any θ ∈ (0, 2] and r =

1
2 , 1,

∥DFn(Dvn)∥W 1,2(r B/2) ⩽ C (∥ fn∥L2(r B) + ∥DFn(Dvn)∥Lθ (r B)). (3-23)

The first term on the right is clearly bounded by a multiple of ∥ f ∥L2(B). For the second one, we let p, q
be given in (3-12) and choose θ̄ = min{p/(q − 1), 1}. By (3-12) we get

|DF(z)|θ̄ ⩽ C (|z|θ̄ (q−1)
+ 1)⩽ C (|z|p

+ 1)θ̄ (q−1)/p ⩽ C(F(z)+ 1)θ̄ (q−1)/p. (3-24)

Using (3-15) and (3-24) we obtain∫
B

|DFn(Dvn)|
θ̄ dx

⩽
∫

B
|DF(Dvn)|

θ̄ dx + n−θ̄
|B| +µθ̄n

∫
B

|Dvn|
θ̄ dx

⩽ C
∫

B
(F(Dvn)+ 1)θ̄ (q−1)/p dx + n−θ̄

|B| +µθ̄n ∥Dvn∥
θ̄
L p(B)|B|

1−θ̄/p

⩽ C |B|
1−θ̄ (q−1)/p

(∫
B
(F(Dvn)+ 1) dx

)θ̄ (q−1)/p

+ n−θ̄
|B| +µθ̄n ∥Dvn∥

θ̄
L p(B)|B|

1−θ̄/p. (3-25)

The first integral is bounded by (3-22) and the remaining terms vanish when n → ∞, so

lim
n

∥DFn(Dvn)∥L θ̄ (B) ⩽ C
(∫

B
(F(Du)+ 1) dx

)(q−1)/p

. (3-26)

Thanks to (3-23) for r = 1, (3-26) implies the Sobolev bound

lim
n

∥DFn(Dvn)∥W 1,2(B/2) ⩽ C. (3-27)

Step 6: passage to the limit. Let B ′
=

1
2 B and

Vn = DFn(Dvn).

Thanks to (3-27), (Vn) is bounded in W 1,2(B ′); hence we can pick a subsequence satisfying

Vn → V weakly in W 1,2(B ′), strongly in L2(B ′), and pointwise a.e. in B ′, (3-28)

for a suitable V ∈ W 1,2(B ′).
Each Fn is strictly convex and superlinear by construction; hence DFn is a homeomorphism of RN.

Moreover, by (3-16) we know that DFn → DF locally uniformly. According to a theorem by Arens
(see [Dijkstra 2005] for a modern exposition), this implies that DF−1

n → DF−1 locally uniformly. Since
Vn → V pointwise a. e., we infer that

Dvn = DF−1
n (Vn)→ DF−1(V ) pointwise a.e.,

which, coupled with (3-21), allows the identification Du = DF−1(V ). Therefore, Vn → DF(Du) in B ′

in all the senses prescribed in (3-28).
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By considering 4B instead of B, estimate (3-9) follows from (3-23) and (3-26), as long as 4B ⊆�. Let
B ′′

=
1
4 B. By Lebesgue’s dominated convergence theorem ∥Vn∥Lθ (B ′) → ∥V ∥Lθ (B ′); hence, exploiting

also the lower semicontinuity of the W 1,2(B ′′) norm, we can pass to the limit in (3-23) with r =
1
2 . Again

considering 4B instead of B yields (3-10). Finally, the validity of (3-11) can be checked only on balls B
such that 4B ⊆�, by a standard partition of unity argument. If B is such a ball, we can pass to the limit
in the Euler Lagrange equations for the approximating problems constructed as before in 4B, and since
DFn(Dvn)→ DF(Du), fn → f strongly in L2(B), we get (3-11). □

Remark 3.4. The previous theorem has an immediate consequence. The class of q.u.c. functionals is
a (proper) subclass of the so-called functionals with (p, q)-growth, i.e., those obeying (2-5), (2-6). For
example, the integrand

F(z)= |z1|
p
+ |z2|

q , z = (z1, z2) ∈ R2, p, q > 1,

is of (p, q)-growth but not q.u.c., even if p = q. Given a local minimizer of a convex functional of
general (p, q)-growth, the a priori regularity on Du is just Du ∈ L p

loc(�), and the first step towards
higher regularity is showing that actually Du ∈ Lq

loc(�). For 2 ⩽ p ⩽ N, this is to be expected only when
q < p (N + 2)/N ; see [Giaquinta 1987; Esposito et al. 1999]. For the subclass of q.u.c. integrands, from
DF(Du)∈ W 1,2

loc (�), we infer by Sobolev’s embedding that DF(Du)∈ L2∗

loc(�). Since |DF(z)|≿ |z|p−1,
it holds Du ∈ L2∗(p−1)

loc (�); hence for such class of integrands we obtain the condition q ⩽ 2∗ (p − 1),
which gives a larger range if p ⩾ 2. This range may not be optimal in the q.u.c. class, but on one hand it
shows the advantages of considering the stress field instead of (1-5), while on the other hand it holds
for any f ∈ L2

loc(�) ∩ W −1,p′

(�). It is quite possible, in light of the results of [Beck and Mingione
2020], that, for f having a sufficiently high degree of summability, minimizers for q.u.c. integrands are
automatically Lipschitz continuous, regardless of the largeness of the ratio q/p, a fact that, if true, would
bypass completely the higher integrability issue for the gradient in the q.u.c. class. This is actually the
case for functionals with Uhlenbeck structure; see [Cianchi and Mazya 2011].

3C. Examples.

Example 3.5 (on the assumption F ∈ W 2,1). In this example we show that, in order to obtain Sobolev
regularity of DF(Du), it is not sufficient to require that condition (1-9) holds at almost every point, but
that Sobolev regularity of DF is a necessary assumption.

Let N = 2. For any ball B ⋐ {(x, y) ∈ R2
: x > 0}, consider the smooth function

u(x, y)= arctan(y/x).

We claim that, for any (not necessarily convex) C2 function F : R → R, u solves

div DF(Du)= 0 in B, (3-29)

where here and in what follows we make the identification F(z)= F(|z|). Letting z = (x, y), z⊥
= (−y, x),

it holds

Du(z)=
z⊥

|z|2
, D2u(z)=

1
|z|4

(
2xy y2

−x2

y2
−x2

−2xy

)
,
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while

DF(w)= F ′(|w|)
w

|w|
, D2 F(w)= F ′′(|w|)

w

|w|
⊗
w

|w|
+

F ′(|w|)

|w|

(
I −

w

|w|
⊗
w

|w|

)
.

An elementary computation then yields

D2 F(Du) D2u(z)=
1

|z|4

(
xy(F ′′(1/|z|)+F ′(1/|z|)|z|) F ′′(1/|z|)y2

−F ′(1/|z|)|z|x2

F ′(1/|z|)|z|y2
−F ′′(1/|z|)x2

−xy(F ′′(1/|z|)+F ′(1/|z|)|z|)

)
,

which has zero trace, proving the claim.
Now, let h : [0, 1] → [0, 1] denote the Cantor function. By abuse of notation, we still denote by h its

extension to the whole R defined as

h(t)= k + h(t − k) if k ⩽ t < k + 1, k ∈ Z,

and we also denote by C the periodic extension of the Cantor set to the whole R. Consider

F(|w|) :=
|w|

2

2
+ H(|w|), H(t) :=

∫ t

0
h(τ ) dτ,

which is a strictly convex C1 function with quadratic growth. Clearly, F can be approximated in C1 by a
sequence {Fn} of smooth radial functions, so that we can pass to the limit into the corresponding weak
formulations of (3-29) to obtain that u solves

div(DF(Du))= 0 weakly in B.

However,

DF(Du(z))=
z⊥

|z|2
+ h(|z|−1)

z⊥

|z|

is not even absolutely continuous in B, since its distributional derivative has a Cantor part concentrated
on {z : 1/|z| ∈ C}, which has zero measure.

Since h′(t)= 0 in the classical sense for a.e. t ∈ R, it is readily verified that F obeys (1-9) with K = 1
at every point of

RN
\ Crad, Crad = {z ∈ RN

: |z| ∈ C},

thus almost everywhere. Notice that DF is of bounded variation but does not belong to W 1,1
loc (R

N ), since
its derivative has a Cantor part concentrated on Crad.

Example 3.6 (Uhlenbeck structure). For divergence form equations having the Uhlenbeck structure

div(a(|Du|) Du)= f (3-30)

we recover the local regularity result of [Cianchi and Mazya 2018, Theorem 2.1], under the additional
assumption f ∈ W −1,p′

(�) (see the second point in Remark 1.3 in this respect). Here, the exponent p is
related to the function a as follows. Define F by

F(z)=

∫
|z|

0
t a(t) dt
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to get DF(z)= a(|z|)z. If a ∈ C1(0,+∞), it holds

D2 F(z)= a(|z|) I + |z| a′(|z|)
z
|z|

⊗
z
|z|
,

possessing the eigenvector z/|z| with eigenvalue a(|z|)+ |z| a′(|z|), while its orthogonal eigenspace
is relative to the unique eigenvalue a(|z|). The equation is elliptic if and only if both eigenvalues are
nonnegative, and in order to bound the ratio between them we look at

K = sup
t>0

max
{

a(t)
a(t)+ ta′(t)

,
a(t)+ ta′(t)

a(t)

}
.

It is readily checked that if

ia = inf
t>0

t a′(t)
a(t)

, sa = sup
t>0

t a′(t)
a(t)

,

then

K = max
{

1
1 + ia

, 1 + sa

}
,

so that the q.u. convexity condition (1-9) is equivalent to the common requirement

−1< ia ⩽ sa <∞, (3-31)

which is the one used, e.g., in [Cianchi and Mazya 2018]. In our framework, the exponent p is given by
Proposition 2.3 and turns out to be

p = 1 +
1
K

= min
{

2 + ia,
sa + 2
sa + 1

}
.

In the model case a(z) = |z|p−2, which corresponds to the p-Poisson equation, we directly have ia =

sa = p − 2, so that the previous exponent is actually p. In the general case ia < is , the exponent p can be
improved, since it holds (see [Cianchi and Mazya 2011, Proposition 2.15])

F(z)⩾ a(1)
|z|2+ia

2 + ia
, |z| ⩾ 1,

so that one can take p = 2+ia > 1 by (3-31) (see the third point in Remark 1.3). Indeed, for p = 2+ia and
f ∈ W −1,p′

(�), J is also coercive on W 1,p(�) when supplemented with reasonable boundary conditions.
The variational treatment of (3-30) in standard Sobolev spaces is thus justified if one is not looking for
optimal rearrangement invariant estimates.

Example 3.7 (anisotropic examples). In [Ciraolo et al. 2020; Antonini et al. 2022; Cozzi et al. 2014;
2016] anisotropic equations whose principal part arises as the Euler–Lagrange equation of∫

�

G(H(Du)) dx

are considered, where H ∈ C2(RN
\ {0},R+) is a convex, positively 1-homogeneous function and

G ∈ C2(R+,R+) is an increasing, strictly convex function of p-growth. Clearly, H is fully determined
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by the unit “ball”
BH = {z ∈ RN

: H(z) < 1} ∋ 0,

and any open, bounded, convex B with 0 ∈ B will uniquely determine such an H through its Minkowski
functional. Notice that in general H may not even be a norm, due to the possible lack of symmetry of BH .

The more general ellipticity assumption in the cited works reads as follows: H is said to be uniformly
convex if the principal curvatures of ∂BH are bounded from below by a positive constant. From [Cozzi
et al. 2014, Appendix A], the uniform ellipticity of H amounts to

(H(z) D2 H(z) η, η)⩾ δ|η|2 for all z ∈ RN
\ {0}, η ∈ DH(z)⊥,

for some δ > 0 (which is actually equivalent to the same type of inequality for η ∈ z⊥). Under this
assumption various results can be proved, and in particular the Sobolev regularity of the associated
stress field is treated in [Ciraolo et al. 2020; Antonini et al. 2022] as a stepping-stone to more general
results. Here we show that anisotropic functionals of this kind fall within our general framework of q.u.c.
functionals.

To this end, set F(z)= G(H(z)) so that

D2 F(z)= G ′′(H(z)) DH(z)⊗ DH(z)+
G ′(H(z))

H(z)
H(z) D2 H(z)

for z ̸= 0, and notice that both
DH(z)⊗ DH(z) and H(z) D2 H(z)

are 0-homogeneous. Inspecting the proof of [Cozzi et al. 2014, Appendix A], we see that for any
z, ξ ∈ RN

\ {0} it either holds
(DH(z)⊗ DH(z) ξ, ξ)⩾ λ1 |ξ |2

or
(H(z) D2 H(z) ξ, ξ)⩾ λ2 |ξ |2

(with λi = λi (H) > 0), while altogether

(H(z) D2 H(z) ξ, ξ)⩽3 |ξ |2, (DH(z)⊗ DH(z) ξ, ξ)⩽3 |ξ |2

for some 3=3(H). It follows that the minimum eigenvalue of D2 F(z) is bounded from below by

min
{
λ1 G ′′(H(z)), λ2

G ′(H(z))
H(z)

}
,

while its maximum eigenvalue is bounded from above by

3

(
G ′′(H(z))+

G ′(H(z))
H(z)

)
.

Therefore F is K -q.u.c. for

K =
3

min{λ1, λ2}
sup
t∈R+

max
{

1 +
G ′(t)

G ′′(t) t
, 1 +

G ′′(t) t
G ′(t)

}
.
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The finiteness of the latter is compatible with the standard Uhlenbeck example: for a(t) = G ′(t)/t , a
straightforward calculation shows that

sup
t∈R+

max
{

G ′(t)
G ′′(t) t

,
G ′′(t) t
G ′(t)

}
<+∞ ⇐⇒ −1< ia ⩽ sa <+∞.

Example 3.8 (nonstandard anisotropic growth). It is straightforward to check that if F1 and F2 are q.u.c. C1

functions satisfying (1-9) with constants K1 and K2 respectively, then F1 + F2 is max{K1, K2}-q.u.c. This
observation allows to consider anisotropic Euler–Lagrange equations arising from integrands of the form

F(z)=

M∑
i=1

|Ai (z − zi )|
pi , zi ∈ RN, Ai ⩾ I, pi > 1 for i = 1, . . . ,M .

As a more common example of anisotropic functionals, consider the weak solution of the Dirichlet problem{
1pu + D1(|D1u|

q−2 D1u)= f in B,
u = 0 on ∂B

for a ball B, f ∈ L∞(B) and q > p > 2. This corresponds to the unique minimizer u ∈ W 1,p
0 (B) of

J (w)=

∫
B

1
p
|Dw|

p
+

1
q

|D1w|
q
+ f w dx,

which is globally Lipschitz continuous, since

F(z)=
1
p
|z|p

+
1
q

|z1|
q

is uniformly p-convex outside B1 (see [Bousquet and Brasco 2016]), i.e.,

(D2 F(z) ξ, ξ)⩾ cp(1 + |z|2)(p−2)/2
|ξ |2, |z| ⩾ 1.

Moreover,

D2 F(z)= |z|p−2
(

I + (p − 2) z
|z|

⊗
z
|z|

)
+ (q − 1)|z1|

q−2 e1 ⊗ e1,

so that the minimum and maximum eigenvalues of D2 F(z) satisfy

λmin(z)⩾ |z|p−2, λmax(z)⩽ (p − 1) |z|p−2
+ (q − 1) |z|q−2.

Notice that the integrand F is not q.u.c. globally on RN, but on the range of Du we have |z|q−2 ⩽C |z|p−2

for C depending on Lip u, leading to

λmax(z)/λmin(z)⩽ p − 1 + C (q − 1).

Hence Theorem 3.3 applies thanks to the local nature of (1-9) described in Lemma 2.4. Notice the role of
the assumption f ∈ L∞(B) (which could be weakened, but not down to L2(B), see [Beck and Mingione
2020]) and of the smooth boundary condition u ∈ W 1,p

0 (B): they provide the Lipschitz regularity of u,
which in turn allows to employ Lemma 2.4 and to consider u as a minimizer of a functional with q.u.c.
integrand on the whole RN.
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4. Applications

4A. Cordes-type conditions. We start with a generalization of (2-2). In this section, given a matrix field
M :�→ RN

⊗RN, its Lm-norm will be computed with respect to the Frobenius norm of M = (mi j ), i.e.,

∥M∥m =

(∫
|M(x)|m2 dx

)1/m

, |M(x)|22 =

N∑
i, j=1

|mi j (x)|2.

The proofs of this section make use of some tools from harmonic analysis; for an introductory exposition
on this topic, the reader can consult [Duoandikoetxea 2001].

Lemma 4.1. Let V ∈ C1
c (R

N
; RN ) and, for m > 1, set m̂ = max{m,m/(m − 1)} ⩾ 2. Then

∥DV ∥m ⩽ N 2(m̂ − 1)(∥ div V ∥m + ∥ curl V ∥m). (4-1)

Proof. Let Rj be the Riesz transform, defined as the Fourier multiplier with symbol −i ξj/|ξ |; see
[Duoandikoetxea 2001, p. 76]. Then it holds

Dh Vk = −Rh Rk div V −

N∑
j=1

Rh Rj curlk j V, (4-2)

which follows, taking the Fourier transform (denoted by g 7→ ĝ), from the identity

i ξh V̂k =
ξh ξk

|ξ |2

N∑
j=1

i ξj V̂j +

N∑
j=1

ξh ξj

|ξ |2
(i ξj V̂k − i ξk V̂j ).

The second-order Riesz transform has Lm
− Lm norm m̂ − 1 on diagonal terms and (m̂ − 1)/2 on

off-diagonal terms, i.e.,

∥Rh Rk g∥m ⩽ m̂−1
2

∥g∥m, h ̸= k,

∥R2
h g∥m ⩽ (m̂ − 1)∥g∥m;

see [Bañuelos and Méndez-Hernández 2003, Theorem 2.4]. Thus from (4-2) we get

∥Dh Vk∥m ⩽ (m̂ − 1)
(
∥ div V ∥m +

N∑
j=1

∥ curlk j V ∥m

)
.

We sum over k = 1, . . . , N and use the Hölder inequality to get
N∑

k, j=1

∥ curlk j V ∥m ⩽ N 2 (1−1/m)
(∫ N∑

k, j=1

| curlk j V |
m
)1/m

.

Since
N∑

k, j=1

| curlk j V |
m ⩽ N 2−m

( N∑
k, j=1

| curlk j V |
2
)m/2

,

we obtain
N∑

k, j=1

∥ curlk j V ∥m ⩽ N ∥ curl V ∥m .
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Summing also over h = 1, . . . , N we finally get

∥DV ∥m ⩽
N∑

h,k=1

∥Dh Vk∥m ⩽ (m̂ − 1) N 2(∥ div V ∥m + ∥ curl V ∥m). □

Remark 4.2. Estimate (4-1) is very rough in its dependence on N. It is a common feature of Lm-bounds
on Riesz transform that they do not depend on the dimension of the euclidean space. Up to our knowledge,
optimal Lm estimates for the operator D curl−1 (let alone for the resolvent operator of the div-curl system)
are not known. It is also not optimal as m → 2; compare it with (2-2) in the case m = 2.

Theorem 4.3. Let F obey the assumptions of Theorem 3.3, in particular (1-9) with a constant K ⩾ 1
and p, q given in Proposition 2.3. Let furthermore m > 1 and f ∈ Lm(�)∩ W −1,p′

(�). Then any local
minimizer u ∈ W 1,p

loc (�) for J given in (3-8) is such that DF(Du) ∈ W 1,m
loc (�) and satisfies the estimates

∥DF(Du)∥Lm(B) ⩽ C(1 + ∥ f ∥Lm(2B) + ∥F(Du)∥(q−1)/p
L1(2B) ), (4-3)

∥DF(Du)∥W 1,m(B) ⩽ C(∥ f ∥Lm(2B) + ∥DF(Du)∥Lm(2B)) (4-4)

in each of the following cases:

(1) K ⩽ K0, with K0 > 1 depending on N and m, with C = C(N ,m, B).

(2) |m − 2| ⩽ δ0 for δ0 > 0 depending on N and K , with C = C(N , K , B).

Proof. Given B such that 4B ⋐ �, we follow the first four steps of the proof of Theorem 3.3 to find
un ∈ C∞(B), fn ∈ C∞(B), Fn ∈ C∞(RN ) and vn ∈ C2(B) such that

(i) un → u in W 1,p(B), fn → f in Lm(B)∩ W −1,p′

(B),

(ii) Fn is K -q.u.c.,

(iii) vn ⇀ u in W 1,p(B), vn → u in L p(B), and vn solves

div(DFn(Dvn))= fn.

(iv) ∥Fn(Dvn)∥L1(B) → ∥F(Du)∥L1(B).

We then proceed as in Theorem 3.2, in order to find a uniform bound for DFn(Dvn) in W 1,m(B ′),
B ′

=
1
2 B. To simplify the notation, we omit for the moment the dependence of v, F, and f on n.

Let V = DF(Dv) and observe that the assumptions of Lemma 3.1 hold true for the matrix X = DV =

D2 F(Dv) D2v; hence, pointwise,

| curl V |2 ⩽
√

2 e(K ) |DV |2, e(K )= 1 −
1
K
. (4-5)

Suppose B = B2R and, for any R ⩽ r < s ⩽ 2 R, fix ϕ ∈ C∞
c (Bs; [0, 1]) as in (3-6).

We split the proof in two cases, according to the situations under consideration in the two statements.
For the first assertion, we apply (4-1) to the field W := ϕ V to get

∥ϕ DV ∥m ⩽ ∥DW∥m + ∥Dϕ⊗ V ∥m

⩽ N 2 (m̂ − 1)(∥div W∥m + ∥curl W∥m)+
C

s−r
∥V ∥Lm(Bs\Br )
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for any m > 1. From

div W = ϕ f + (V, Dϕ), curl W = ϕ curl V + V ∧ Dϕ

we thus infer

∥ϕ DV ∥m ⩽ N 2 (m̂ − 1)(∥ϕ curl V ∥m + ∥ϕ f ∥m)+
C

s−r
∥V ∥Lm(Bs\Br ). (4-6)

We then let K0 = K0(N ,m) > 1 satisfying
√

2N 2(m̂ − 1) e(K0) < 1 (4-7)

so that, if K ⩽ K0, the curl term in (4-6) can be reabsorbed on the left. Thanks to the properties (3-6)
of ϕ we deduce

∥DV ∥Lm(Br ) ⩽ C ∥ f ∥Lm(BR) +
C

s−r
∥V ∥Lm(Bs\Br ), R ⩽ r < s ⩽ 2R, (4-8)

for a constant C = C(N ,m).
Regarding the second assertion, we consider the linear operator T ( f,G)= DV, where V solves{

div V = f,
curl V =

√
2 G,

f ∈ C∞

c (R
N ), G ∈ C∞

c (R
N
; RN

∧ RN ),

which, as already noted, is represented in terms of Riesz transforms as

T ( f,G)kh = −Rh Rk f −
√

2
N∑

j=1

Rh Rj Gk j .

Estimate (4-1) implies that T has an extension T : Xm → Ym , where

Xm := Lm(RN )× Lm(RN
; RN

∧ RN ), Ym := Lm(RN
; RN

⊗ RN ),

with the norms

∥( f,G)∥m =

(∫
| f |

m
+ |G|

m
2 dx

)1/m

, ∥M∥m =

(∫
|M |

m
2 dx

)1/m

on Xm and Ym , respectively. For the complex interpolation spaces it holds

[Xm1, Xm2]θ = Xm,
1
m

=
1−θ

m1
+
θ

m2
, θ ∈ [0, 1],

with equality of norms, and the same holds for the Ym . On the other hand, Lemma 2.2 ensures that, with
respect to these norms,

∥T ∥L(X2,Y2) = 1.

Fix m̄′ < 2< m̄. The Riesz–Thorin interpolation theorem [Duoandikoetxea 2001, Theorem 1.19] yields

∥T ∥L(Xm ,Ym) ⩽ ∥T ∥
θ
L(Xm̄ ,Ym̄)

,
1
m

=
1−θ

2
+
θ

m̄
,

for any 2 ⩽ m ⩽ m̄, and a similar estimate holds also for m̄′ ⩽ m ⩽ 2. We infer that there exist
η : [m̄′, m̄] → [0,+∞) such that

lim
m→2

η(m)= 0 (4-9)
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and for all m ∈ [m̄′, m̄] it holds
∥T ∥L(Xm ,Ym) ⩽ 1 + η(m).

To complete the choice of δ0 in the second case, we proceed as in the proof of (4-6), setting W = ϕ V
and using the previous operator norm estimate, to get, for η = η(m),

∥ϕ DV ∥m ⩽ ∥DW∥m + ∥V ⊗ Dϕ∥m

⩽ ∥T (div W, 2−1/2 curl W )∥m + ∥V ⊗ Dϕ∥m

⩽ (1 + η) ∥(div W, 2−1/2 curl W )∥m + ∥V ⊗ Dϕ∥m

⩽ (1 + η)
(
∥(ϕ f, ϕ 2−1/2 curl V )∥m + ∥((V, Dϕ), V ∧ Dϕ)∥m

)
+ ∥V ⊗ Dϕ∥m

⩽ 1+η
√

2
∥ϕ curl V ∥m + C ∥ϕ f ∥m +

C
s−r

∥V ∥Lm(Bs\Br )

⩽
(4-5)

(1 + η) e(K ) ∥ϕ DV ∥m + C ∥ f ∥Lm(BR) +
C

s−r
∥V ∥Lm(Bs\Br ).

Since e(K ) < 1, thanks to (4-9) we can choose δ0 = δ0(K , N ) in such a way that

(1 + η(m)) e(K ) < 1 for all m ∈ [2 − δ0, 2 + δ0],

which again gives estimate (4-8) with a constant C = C(N , K ).
Proceeding as in the proof of Theorem 3.2, we see that estimate (4-8) improves to

∥V ∥W 1,m(BR) ⩽ C ∥ f ∥Lm(B2R) + CR,θ∥V ∥Lθ (B2R), θ ∈ (0,m], (4-10)

which therefore holds uniformly for all Vn = DFn(Dvn) constructed at the beginning. If p, q are given
in Proposition 2.3, point (ii), we set θ̄ = min{p/(q − 1),m} and proceed as in (3-25) to get a uniform
bound on ∥Vn∥L θ̄ (B2R)

. Thanks to (4-10), the latter in turn implies the compactness of the Vn in Lm(BR).
The rest of the proof of Theorem 3.3 follows verbatim, providing estimates (4-3) and (4-4) in both the
stated cases. We omit the details. □

Remark 4.4. Closely inspecting the previous proof yields the following asymptotic estimates. The
constant K0 goes to 1 as m → ∞ or m → 1. Similarly, (4-3), (4-4) hold true for m ∈ (a(K ), b(K )) with
a(K )→ 1 and b(K )→ +∞ as K → 1.

We made no attempt to obtain optimal estimates for K0 and δ0 as m → 2, mainly due to the roughness
of estimate (4-1) outlined in Remark 4.2. Thus, we do not recover Theorem 3.3 by simply letting m → 2
in the previous statement.

4B. On the C p′ conjecture. An immediate corollary of the Cordes condition proved in the previous
section is the following one.

Corollary 4.5. Any weak solution u ∈ W 1,p
loc (�) of 1pu = f ∈ L∞

loc(�) belongs to C2−α(�), where
α = α(N , p)⩽ C(N ) |p − 2|, provided |p − 2|< 1/(2N 3).

Proof. Recall that z 7→ |z|p is K -q.u.c. with constant

K p = max{p − 1, 1/(p − 1)} =

{
p − 1 if p ⩾ 2,
1/(p − 1) if p ∈ (1, 2).
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We apply the Cordes estimates of the previous theorem, so that |Du|
p−2 Du ∈ W 1,m

loc (�) for any m ⩾ 2
such that (see (4-7))

√
2N 2 (m − 1)(1 − 1/K p) < 1. (4-11)

Given p, we let

m p =
1

2N 2 |p − 2|
.

It is readily checked that, for all p such that |p − 2| < 1/(2N 3), inequality (4-11) holds for m p and
moreover m p > N. By the Morrey embedding we thus have that |Du|

p−2 Du ∈ C1−N/m p(B).
The map 9 : RN

→ RN, defined as

9(y)=

{
|y|

(2−p)/(p−1) y if y ̸= 0,
0 if y = 0

(4-12)

is the inverse of the similarly defined map z 7→ |z|p−2z, for which the well-known inequalities (see the
last chapter of [Lindqvist 2019])

(|z1|
p−2z1 − |z2|

p−2z2, z1 − z2)⩾

{
22−p

|z1 − z2|
p if p ⩾ 2,

(p − 1)|z1 − z2|
2(1 + |z1|

2
+ |z2|

2)(p−2)/2 if 1< p < 2

hold true. By the Schwartz inequality we deduce

||z1|
p−2z1 − |z2|

p−2z2| ⩾

{
22−p

|z1 − z2|
p−1 if p ⩾ 2,

cM |z1 − z2| if 1< p < 2 and |z1| + |z2| ⩽ M,

which means that 9 is globally 1/(p−1)-Hölder continuous if p ⩾ 2 and locally Lipschitz continuous
if 1 < p < 2. In the second case, we observe that f ∈ L∞

loc(�) implies that Du ∈ L∞

loc(�); hence 9 is
Lipschitz continuous on the range of Du. In both cases we thus have

Du ∈ Cαp(�), αp =


1

p − 1

(
1 −

N
m p

)
=

1 − 2N 3(p − 2)
p − 1

if p ⩾ 2,

1 − 2N 3(2 − p) if 1< p < 2,
giving the claim. □

Remark 4.6. A similar conclusion can be drawn for W 1,p
loc (�) local minimizers of J ( · , �) when F is

K -q.u.c. and f ∈ L∞

loc(�). Indeed, DF is K N−1 quasiconformal; hence so is DF−1. In particular, DF−1

is 1/K -Hölder continuous and the α-Hölder regularity of DF(Du) translates to α/K -Hölder regularity
for Du. The dependence of the Hölder exponent of Du from K turns out to be 1 − cN (K − 1) for K
sufficiently near 1.

Consider now a solution u of the inhomogeneous elliptic equation with Uhlenbeck structure

div(a(|Du|) Du)= f ∈ Lm
loc(�), m > 1, (4-13)

where a : (0,+∞)→ (0,+∞) is C1(0,+∞) and satisfies the ellipticity condition

−1< ia ⩽ sa <+∞.
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Solutions of (4-13) with f merely in L2
loc(�) are to be meant in a generalized sense and, as in [Cianchi

and Mazya 2018], we will use the notion of approximable solutions (or SOLA, solution obtained as limit
of approximation) for (4-13): u is an approximable solution for (4-13) in � if a(|Du|) Du ∈ L1

loc(�),
(4-13) holds in the distributional sense in�, and there exists a sequence ( fn)⊆ C∞

c (�) and corresponding
weak solutions un of (4-13) in � with right-hand side fn such that

fn → f in Lm
loc(�), un → u and Dun → Du a.e. in �,

and
lim

n

∫
�′

a(|Dun|) |Dun| dx =

∫
�′

a(|Du|) |Du| dx

for all �′ ⋐�. Notice that u may fail to belong to W 1,1
loc (�), but rather falls into the larger space

T 1,1
loc (�)= {v : Tkv ∈ W 1,1

loc (�) for all k > 0}, Tkv = max{−k,min{v, k}},

for which a pointwise notion of Du is well-defined almost everywhere. Whenever f ∈ W −1,p′

(�), with
p = 2 + ia (see the discussion at the end of Example 3.6), weak and SOLA solutions coincide, and in
particular u belongs to the relevant Orlicz–Sobolev space. For the existence and uniqueness theory of
SOLA we refer to [Cianchi and Mazya 2017].

We say that u ∈ T 1,1
loc (�) is a cylindrical solution of (4-13) if there exists a point x0 ∈ RN and a

k-dimensional vector subspace V ⊆ RN with corresponding orthogonal projection πV : RN
→ V such that

u(x)= v(|πV (x − x0)|)

for some v : I → R with I ⊆ [0,+∞) open and �⊆ {x ∈ V : |x | ∈ I }× V ⊥. In other terms, a cylindrical
function only depends on the distance from some vector subspace.

In order to study the regularity properties of a cylindrical solution of (4-13), we first perform some
straightforward reductions. It is clear that we can assume

V = {x ∈ RN
: xi ≡ 0 for all i = k + 1, . . . , N }, �= A × RN−k,

with A ⊆ Rk invariant by the action of the orthogonal group Ok on Rk. Actually, by the structure of
(4-13), we can directly suppose that k = N, reducing to the case of radial solutions on a radial (meaning,
invariant by ON ) domain �.

Theorem 4.7. Let a ∈ C1((0,+∞); (0,+∞)) satisfy (3-31) and f ∈ Lm(�) for some m > 1, where � is
a radial domain. If u is a radial approximable solution of

div(a(|Du|) Du)= f

in � then, for any m > 1 and BR such that B2R ⋐�, it holds

∥a(|Du|) Du∥W 1,m(BR/2) ⩽ Cm,R
(
∥ f ∥Lm(B2R) + ∥a(|Du|) Du∥L1(B2R)

)
. (4-14)

Proof. The field V = a(|Du|) Du ∈ L1
loc(�) is the pointwise limit of the fields Vk = a(|DTku|) DTku for

k → +∞, which satisfy

T ◦ Vk = Vk ◦ T for all T ∈ ON , |(Vk(x), x)| = |V (x)||x |; (4-15)
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hence it satisfies these as well. We extend V and f as zero outside � (thus keeping the previous properties
for V ) and let Vε = V ∗ϕε, fε = f ∗ϕε, where ϕε is a standard radial convolution kernel supported in Bε.
We claim that Vε obeys (4-15). By changing variables and using the radiality of ϕε, it is readily checked
that Vε satisfies T ◦ Vε = Vε ◦ T for all T ∈ ON . Thus, in order to check the second condition in (4-15) it
suffices to prove it at a point x = r e1, where

Vε(r e1)=

∫
V (y) ϕε(|r e1 − y|) dy.

The integrand above is odd with respect to the reflections yk 7→ −yk , k = 2, . . . , N, which implies that
Vε(r e1) is parallel to e1, and this concludes the proof of (4-15) for Vε. It follows that for

hε(x) := (Vε(x), x/|x |
2) ∈ C∞(RN

\ {0})

it holds, with a slight abuse of notation, hε(x)= hε(|x |) and

Vε(x)= hε(|x |) x . (4-16)

Given a radial subdomain �′ ⋐� and using Fubini’s theorem, we have∫
�′

(Vε, Dψ) dx =

∫
�′

(V, ϕε ∗ Dψ) dx =

∫
�′

(V, D(ψ ∗ϕε)) dx

= −

∫
�′

f ψ ∗ϕε dx = −

∫
�′

fε ψ dx;

thus Vε satisfies div Vε = fε weakly (and thus strongly) in �′ for all sufficiently small ε > 0. From (4-16)
we compute, for x ̸= 0,

DVε(x)= hε(|x |) I + |x | h′

ε(|x |)
x
|x |

⊗
x
|x |
,

which is a symmetric matrix, so that
curl Vε = 0 in �′.

By the Poincaré lemma, for any B2R ⊆�′ and sufficiently small ε > 0, we thus have Vε = Dvε for some
vε ∈ C2(B2R), satisfying weakly 1vε = fε. For R < r < s < 2 R we choose cut-off functions as in (3-6)
and suppose, without loss of generality, that vε has zero mean in Bs . By the standard Calderón–Zygmund
estimates (see [Duoandikoetxea 2001, Theorem 5.1]) and Poincaré’s inequality, it holds

∥D2vε∥
m
Lm(Br )

⩽ Cm

(
∥ fε∥m

Lm(B2R)
+

1
(s − r)m

∥Dvε∥m
Lm(Bs)

+
1

(s − r)2m ∥vε∥
m
Lm(Bs)

)
⩽ Cm ∥ fε∥m

Lm(B2R)
+ Cm

(
1

(s − r)m
+

Rm

(s − r)2m

)
∥Dvε∥m

Lm(Bs)
.

Hence, we can proceed as in the final part of the proof of Theorem 3.2 to improve the latter to

∥Vε∥W 1,m(BR/2) ⩽ Cm ∥ fε∥Lm(B2R) + Cm,R ∥Vε∥L1(B2R).

Since Vε → V in L1(BR), we obtain the claimed estimate (4-14) by lower semicontinuity. □
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Corollary 4.8. Let u ∈ W 1,p(BR) be a cylindrical weak solution of

1pu = f ∈ L∞(BR).

Then

(1) If p ⩾ 2, u ∈ C p′
−ε

loc (BR) for all ε > 0, and also for ε = 0 if furthermore f ∈ C0
Dini(BR).

(2) If p ⩽ 2, u ∈ C2−ε
loc (BR) for all ε > 0, and also for ε = 0 if furthermore f ∈ C0

Dini(BR).

Proof. According to Theorem 4.7, the field V = |Du|
p−2 Du belongs to W 1,m

loc (BR) for any m > 1; hence,
by the Morrey embedding, it lies in C1−ε(BR) for any ε > 0. Similarly, V ∈ Liploc(BR) if f is Dini
continuous, being the gradient of a solution of 1v = f ∈ C0

Dini(BR). We conclude through the properties
of the map 9 in (4-12), as in the proof of Corollary 4.5. □
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