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OVERDETERMINED BOUNDARY PROBLEMS
WITH NONCONSTANT DIRICHLET AND NEUMANN DATA

MIGUEL DOMÍNGUEZ-VÁZQUEZ, ALBERTO ENCISO AND DANIEL PERALTA-SALAS

We consider the overdetermined boundary problem for a general second-order semilinear elliptic equation
on bounded domains of Rn, where one prescribes both the Dirichlet and Neumann data of the solution.
We are interested in the case where the data are not necessarily constant and where the coefficients of the
equation can depend on the position, so that the overdetermined problem does not generally admit a radial
solution. Our main result is that, nevertheless, under minor technical hypotheses nontrivial solutions to
the overdetermined boundary problem always exist.

1. Introduction

The study of overdetermined boundary problems, that is, problems where one prescribes both Dirichlet and
Neumann data, has grown into a major field of research in the theory of elliptic PDEs since its appearance
in Lord Rayleigh’s classic treatise [1877]. An outburst of activity started with the groundbreaking paper
[Serrin 1971], where he combined an adaptation of Alexandrov’s moving planes method with a subtle refine-
ment of the maximum principle to prove a symmetry result for an overdetermined problem. More precisely,
Serrin proved that, under mild technical hypotheses, positive solutions to elliptic equations of the form

1u + F(u)= 0

inside a bounded domain �⊂ Rn satisfying the boundary conditions

u = 0 and ∂νu = −c on ∂�, (1-1)

where c is an unspecified constant that can be picked freely, only exist if � is a ball, in which case u
is radial. The result remains true if F also depends on the norm of the gradient of u and if we replace
the Laplacian by other position-independent operators of variational form [Cianchi and Salani 2009].

The influence of Serrin’s result is such that the very considerable body of literature devoted to
overdetermined boundary problems is mostly limited to proofs that solutions need to be radial in cases
that can be handled using the method of moving planes. Without attempting to be comprehensive, some
remarkable results about overdetermined boundary value problems include alternative approaches to radial
symmetry results using P-functions [Garofalo and Lewis 1989; Kawohl 1998] or Pohozaev-type integral
identities [Brandolini et al. 2008; Magnanini and Poggesi 2020a; 2020b], extensions of the moving
plane method to the hyperbolic space and the hemisphere [Kumaresan and Prajapat 1998], to degenerate
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elliptic equations such as the p-Laplace equation [Damascelli et al. 1999], and to exterior [Aftalion and
Busca 1998; Garofalo and Sartori 1999], unbounded [Farina and Valdinoci 2010] or nonsmooth domains
[Prajapat 1998], and stability of symmetry [Aftalion et al. 1999]. Another direction of research that
has attracted considerable recent attention is the study of connections with the theory of constant mean
curvature surfaces and the construction of nontrivial solutions to Serrin-type problems in exterior domains
[Traizet 2014; del Pino et al. 2015; Ros et al. 2020]. Nontrivial solutions for partially overdetermined
problems or with degenerate ellipticity are also known to exist [Alessandrini and Garofalo 1989; Fragalà
and Gazzola 2008; Fragalà et al. 2006; Farina and Valdinoci 2013].

In two surprising papers, Pacard and Sicbaldi [2009] and Delay and Sicbaldi [2015] proved the existence
of extremal domains with small volume for the first eigenvalue of the Laplacian in any compact Riemannian
manifold, that is, domains for which the overdetermined problem for the linear elliptic equation

1gu + λu = 0

has a positive solution with zero Dirichlet data and constant Neumann data. Here 1g is the Laplacian
operator associated with a Riemannian metric g on a compact manifold and the constant λ (which one
eventually chooses as the first Dirichlet eigenvalue of the domain �) is not specified a priori. Very
recently we managed to show the existence of nontrivial solutions, with the same overdetermined Dirichlet
and Neumann conditions, for fairly general semilinear elliptic equations of second order with possibly
nonconstant coefficients [Domínguez-Vázquez et al. 2019].

In all these results, the fact that one is imposing precisely the standard overdetermined boundary
conditions (1-1) plays a crucial role. Roughly speaking, this is because one can relate the existence
of overdetermined solutions with the critical points of certain functional via a variational argument.
Therefore, the gist of the argument in these papers is that the overdetermined condition with constant
data is connected with the local extrema for a natural energy functional, restricted to a specific class of
functions labeled by points in the physical space. This ultimately permits one to derive the existence of
solutions from the fact that a continuous function attains its maximum on a compact manifold. However,
this strategy is successful only for constant boundary data. To our best knowledge, the only result in
the literature which considers nonconstant (albeit special) Neumann data in relation to overdetermined
boundary problems is [Bianchini et al. 2014].

In the recent paper [Domínguez-Vázquez et al. 2021], we have constructed new families of compactly
supported stationary solutions to the three-dimensional Euler equation by proving that there are solutions
to an associated overdetermined problem in two dimensions where one prescribes (modulo constants
that can be picked freely) zero Dirichlet data and nonconstant Neumann data. The proof uses crucially
that the space is two-dimensional, which ensures that the kernel and cokernel of a certain operator are
one-dimensional, and does not work in higher dimensions.

Our objective in this paper is to prove the existence of solutions to overdetermined problems where
one prescribes general Dirichlet and Neumann data (just as before, up to unspecified constants). For
concreteness, we consider the model semilinear equation

Lu + λF(x, u)= 0 (1-2)
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in a bounded domain �⊂ Rn, with Dirichlet and Neumann boundary conditions

u = f0(x), ν · A(x)∇u = −c f1(x) on ∂�. (1-3)

Here f0, f1 are functions on Rn, F is a function on Rn
× R, λ, c are unspecified positive constants, ν is

the outer unit normal on ∂� and L is the second-order operator

Lu := ai j (x) ∂i j u + bi (x) ∂i u,

where A(x)= (ai j (x)) is a (symmetric) matrix-valued function on Rn satisfying the (possibly nonuniform)
ellipticity condition

min
|ξ |=1

ξ · A(x)ξ > 0 for all x ∈ Rn.

Theorem 1.1. Given any noninteger s > 2, let us take any functions F, f0, f1, b of class C s and A of
class C s+2. Assume that the functions F( · , f0( · )) and f1 are positive and that the function f0 has
a nondegenerate critical point. Then there is a family of domains �ε,λ̄ for which the overdetermined
problem (1-2)-(1-3) admits a solution.

More precisely, let p ∈ Rn be a nondegenerate critical point of f0. Then, for any ε ̸= 0 small enough
and λ̄ > 0, the following statements hold:

(i) The domain �ε,λ̄ is a small deformation of the ball of radius ε centered at p, characterized by an
equation of the form |x − p|

2 < ε2
+ O(ε3).

(ii) The dependence of λ and c on the parameter ε is of the form

λ= ε−2λ̄, c = ε−1c̄,

where c̄ = c̄(ε, λ̄) is a positive constant of order 1.

Remark 1.2. In the case of the torsion problem, i.e.,1u+λ=0 (i.e., F(x, u)=1 in the previous notation),
the condition that f0 has a critical point can be relaxed: it is enough that the function Gκ := f0 + κ log f1

has at least one nondegenerate critical point for some constant κ > 0. The statement then applies if p is a
nondegenerate critical point of Gκ and taking λ̄ := nκ > 0 (not necessarily small).

Also, it is easy to obtain different variations on our main theorem following the same method of
proof. In fact, one obtains new results even for the linear equation 1u + b(x) · ∇u + λ f (x) = 0 with
standard overdetermined boundary data f0 := 0, f1 := 1; specifically, if p is a nondegenerate zero
of the vector field n∇ f − f b, then the statement still holds taking any λ̄ > 0. This does not follow
from [Domínguez-Vázquez et al. 2019]. However, we shall not pursue these generalizations here.

Compared with [Domínguez-Vázquez et al. 2019], a major difference is that the theorem does not
only ensure the existence of domains where the overdetermined problem under consideration admits a
nontrivial solution, but also specifies the points around which those domains are located. This immediately
permits one to translate this existence result to problems that are only defined in a subset of Rn or on a
differentiable manifold. In view of the heuristic but fruitful connection between overdetermined boundary
problems and the study of CMC hypersurfaces, a result that is somehow akin to our existence results for
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overdetermined boundary problems for semilinear equations is Ye’s classical theorem [1991] on foliations
by small CMC spheres on n-dimensional Riemannian manifolds.

The paper is organized as follows. We will start by setting up the problem in Section 2. For clarity
of exposition, in Sections 2 to 4 we have chosen to assume that the matrix A(x) is the identity and
carry out the proof in this context. An essential ingredient of the proof is the computation of asymptotic
expansions for the solution to the Dirichlet problem in small perturbations of a ball of radius ε ≪ 1,
when the constants λ and c scale with the radius as in Theorem 1.1. This computation is carried out
in Section 3. These asymptotic estimates are put to use in Section 4, where we prove Theorem 1.1 in
the particular case when A(x)= I. To obtain the general result, in Section 5 we show that the case of
a general matrix-valued function A(x) reduces to the study of the easiest case A(x) = I subject to an
inessential perturbation of order ε2. Making this precise, however, involves using a heavier notation and
geodesic-type normal coordinates adapted to the matrix A(x) that might unnecessarily obscure the simple
ideas the proof is based on. As a side remark, let us point out that the reason we ask for more regularity of
the matrix A (which is of class C s+2 in contrast with the C s regularity of the other functions) is precisely
due to our use of geodesic coordinates.

2. Setting up the problem

For clarity of exposition, until Section 5 we will assume that A(x)= I. This assumption will enable us to
obtain more compact expressions for the various quantities that appear in the problem and it will make it
easier to point out the salient features of the proof.

Let us fix a point p ∈ Rn and introduce rescaled coordinates z ∈ Rn centered at p as

z :=
x − p
ε

,

where ε is a suitably small nonzero constant. We now consider spherical coordinates (r, ω) ∈ R+
× S

for z, defined as

r := |z| =

∣∣∣∣ x − p
ε

∣∣∣∣, ω :=
z
|z|

=
x − p
|x − p|

.

Here and in what follows,
S := {ω ∈ Rn

: |ω| = 1}

denotes the unit sphere of dimension n − 1. For simplicity of notation, we will notationally omit the
dependence on the point p. Also, with some abuse of notation, we will denote the expression of the
function u(x) in these coordinates simply by u(r, ω).

Let us now consider a C s+1 function B : S → R and, for suitably small ε, let us describe the domain
in terms of the above coordinates as

�p,εB := {r < 1 + εB(ω)}. (2-1)

We now consider (1-2) in the domain �p,εB and choose the constants λ, c as

λ=: ε−2λ̄, c =: ε−1c̄,
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where we think of ε as a small constant and of λ̄, c̄ as positive constants of order 1. Equation (1-2) can
then be rewritten in the rescaled coordinates as

L̃u + λ̄F̃(z, u)= 0, (2-2)

where
F̃(z, u) := F(p + εz, u)

and L̃ is the differential operator
L̃u =1u + εb̃(z) · ∇u,

with b̃i (z) := bi (p + εz). We also denote the functions f0 and f1 in these coordinates as

f̃0(z) := f0(p + εz), f̃1(z) := f1(p + εz).

Here and in what follows, 1 and ∇ denote the Laplacian and gradient operators in the rescaled coordi-
nates z.

The Dirichlet boundary condition on ∂�p,εB can be simply written in rescaled hyperspherical coordi-
nates as

u(1 + εB(ω), ω)= f̃0(1 + εB(ω), ω)=: f̃0(ε, ω). (2-3)

We notice that f̃0(0, ω)= f0(p). Analogously, the Neumann boundary condition reads as

∂νu(1 + εB(ω), ω)= −c̄ f̃1(1 + εB(ω), ω),

where ν is the outwards normal unit vector on ∂�p,εB .
We denote by C s

Dir(B) the space of C s functions on the unit n-dimensional ball B := {|z|< 1} with
zero trace to the boundary. Also, K ⊂ C∞(S) denotes the restriction to the unit sphere of the space of
linear functions on Rn,

K := {V · z : |z| = 1, V ∈ Rn
}.

Equivalently, K is the eigenspace of the Laplacian 1S of the unit sphere corresponding to the second
eigenvalue, n − 1. Also, in what follows we will denote the partial derivatives of F (or F̃) as

F ′(x, u) := ∂u F(x, u), ∇F(x, u) := ∇x F(x, u), ∂j F(x, u) := ∂x j F(x, u).

The following lemma is a reformulation of [Domínguez-Vázquez et al. 2019, Theorem 2.3 and Proposi-
tion 2.4]. Here s > 2 is assumed to be a noninteger real.

Lemma 2.1. For each p ∈ Rn, there is some λ̄p > 0 such that the following statements hold for all
λ̄ ∈ (0, λ̄p):

(i) There is a unique function φp,λ̄(r) of class C s+2 satisfying the ODE

φp,λ̄
′′(r)+

n − 1
r

φp,λ̄
′(r)+ λ̄F(p, f0(p)+φp,λ̄(r))= 0

and the boundary condition φp,λ̄(1)= 0 which is regular at r = 0. The function φp,λ̄ is well-defined
for r ∈ [0, 1 + δp], with δp > 0. Furthermore, φp,λ̄(r) > 0 for r < 1 and φp,λ̄

′(1) < 0.
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(ii) The operator
Tp,λ̄v :=1v+ λ̄ F ′(p, f0(p)+φp,λ̄(|z|))v

defines an invertible map Tp,λ̄ : C s+1
Dir (B)→ C s−1(B).

(iii) Consider the map Hp,λ̄ defined for each function ψ on the boundary of the ball as

Hp,λ̄ψ := −φp,λ̄
′(1) ∂νvψ +φp,λ̄

′′(1)vψ ,

where vψ is the only solution to the problem Tp,λ̄vψ = 0 on B, vψ |∂B = ψ . Then Hp,λ̄ maps
C s+1(S)→ C s(S), its kernel is K, and its range is the set C s(B)∩K⊥ of C s functions orthogonal
to K. Furthermore,

∥ψ∥Cs+1 ⩽ C p,λ̄∥Hp,λ̄ψ∥Cs (2-4)

for all ψ ∈ C s+1
∩K⊥.

(iv) The function φp,λ̄ satisfies ∥φp,λ̄
′
∥Cs((0,1+δp)) ⩽ C λ̄ and is of class C s in p and λ̄.

Remark 2.2. When the equation is linear (that is, F(x, u)= f (x)), one can take λ̄p arbitrarily large and

φp,λ̄(r)= −
λ̄

2n
f (p) (r2

− 1).

The operator Hp,λ̄ is then

Hp,λ̄ψ =
λ̄

n
f (p) (30ψ −ψ),

where 30 := [(n/2 − 1)2 −1S]
1/2

− n/2 + 1 is the Dirichlet–Neumann map of the ball.

In what follows we shall always assume that λ̄ < λ̄p.

Proposition 2.3. For any ε small enough and any function B ∈ C s+1(S) with ∥B∥Cs+1 < 1, there is a
unique function u = u p,ε,λ̄,B in a small neighborhood of f0(p)+φp,λ̄ in C s+1(�p,εB) that satisfies (2-2)
and the Dirichlet boundary condition (2-3).

Proof. Let χp,εB : B →�p,εB be the diffeomorphism defined in spherical coordinates as

(ρ, ω) 7→ ([1 + εχ(ρ) B(ω)]ρ, ω),

where χ(ρ) is a smooth cutoff function that is zero for ρ < 1
4 and 1 for ρ > 1

2 . Then one can define a map

Hp,λ̄,B : (−εp, εp)× C s+1
Dir (B)→ C s−1(B)

as
Hp,λ̄,B(ε, φ) := [L̃(φ ◦χ−1

p,εB)] ◦χp,εB + E ◦χp,εB + λ̄[F̃( · , f̃0 +φ ◦χ−1
p,εB)] ◦χp,εB,

with the function E defined as
E := L̃ f̃0. (2-5)

Note that ∥E∥Cs−1(�p,εB) ⩽ Cε2 because f̃0(z) := f0(p + εz). Clearly, Hp,λ̄,B(ε, φ) = 0 if and only
if u := f̃0 +φ ◦χ−1

p,εB solves the Dirichlet problem (2-2)-(2-3) in �p,εB .
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Note that, by definition and using (2-5), Hp,λ̄,B(0, φp,λ̄)= 0. Also, a short computation shows that the
derivative of Hp,λ̄,B(ε, φ) with respect to φ satisfies

DφHp,λ̄,B(0, φp,λ̄)= Tp,λ̄,

so it is an invertible map C s+1
Dir (B)→ C s−1(B); see Lemma 2.1. The implicit function theorem in Banach

spaces then ensures that, for any ε close enough to 0, there is a unique function φε in a small neighborhood
of φp,λ̄ in C s+1

Dir (B) satisfying

Hp,λ̄,B(ε, φ
ε)= 0.

Then u p,ε,λ̄,B := f̃0 +φε ◦χ−1
p,εB is the desired solution to the Dirichlet problem in �p,εB . □

We will henceforth denote by

Pp,λ̄,εB : C s+1(S)→ C s+1(�p,εB)

the map ψ 7→ vψ , where vψ is the only solution to the problem

Tp,λ̄vψ = 0 in �p,εB,

with the boundary condition

vψ(1 + εB(ω), ω)= ψ(ω).

Note that the existence and uniqueness of vψ is an easy consequence of Lemma 2.1.
For future reference, let us record here the definition of the associated Dirichlet–Neumann operator

3p,λ̄,εB : C s+1(S)→ C s(S),

3p,λ̄,εBψ(ω) := ν · A∇Pp,λ̄,εBψ(1 + εB(ω), ω).

As 3p,λ̄,εB reduces to the standard Dirichlet–Neumann map 30 when ε = λ̄= 0, it is standard that

∥3p,λ̄,εB −3p,λ̄,0∥Cs+1(S)→Cs(S) ⩽ C |ε|, (2-6)

∥3p,λ̄,εB −30∥Cs+1(S)→Cs(S) ⩽ C(|ε| + λ̄). (2-7)

3. Asymptotic expansions

In this section we compute asymptotic formulas for the solution to the Dirichlet problem in the domain (2-1)
obtained in Proposition 2.3, valid for |ε| ≪ 1. Let us begin with the estimates for the solutions to the
Dirichlet problem:

Proposition 3.1. The function u p,ε,λ̄,B is of the form

u p,ε,λ̄,B = f0(p)+φp,λ̄(r)+ ε{Wp,λ̄(r) · z + Pp,λ̄,εB[∇ f0(p) ·ω−φp,λ̄
′(1) B]} + O(ε2),

where Wp,λ̄ : [0, 1 + δp] → Rn is a function with ∥Wp,λ̄∥Cs+1 ⩽ C λ̄.
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Remark 3.2. In the case when F(x, u)= f (x), the formula is slightly more explicit:

u p,ε,λ̄,B = f0(p)−
λ̄

2n
f (p) (r2

− 1)

+ ε

{[
∇ f0(p)−

λ̄(r2
− 1)

2n + 4

(
∇ f (p)−

f (p)b(p)
n

)]
· z +

λ̄ f (p)
n

PεB B
}

+ O(ε2).

Here we are using the notation PεB ≡ Pp,0,εB , which does not depend on p because F ′
= 0.

Proof. Note that u0 := f0(p)+φp,λ̄(r) satisfies the equation

1u0 + λ̄F(p, u0)= 0, u0|r=1 = f0(p).

Let us write u1 := (u p,ε,λ̄,B − u0)/ε and observe that

F̃(z, u p,ε,λ̄,B)= F(p + εz, u0 + εu1)= F(p, u0)+ ε[∇F(p, u0) · z + F ′(p, u0)u1] + O(ε2).

As L̃u p,ε,λ̄,B + λ̄F̃(z, u p,ε,λ̄,B)= 0 with the boundary condition

u p,ε,λ̄,B(1 + εB(ω), ω)= f̃0(1 + εB(ω), ω)= f0(p)+ ε∇ f0(p) ·ω+ O(ε2),

this ensures that u1 satisfies an equation of the form

Tp,λ̄u1 + λ̄∇F(p, u0) · z + b(p) ·
z
r
φp,λ̄

′(r)+ O(ε)= 0

in �p,εB and the boundary condition

u1(1 + εB(ω), ω)= ∇ f0(p) ·ω−φp,λ̄
′(1) B(ω)+ O(ε).

To analyze u1, we start by noting that

u∗

1 := Pp,λ̄,εB[∇ f0(p) ·ω−φp,λ̄
′(1) B(ω)]

satisfies the equation Tp,λ̄u∗

1 = 0 in �p,εB and the boundary condition

u∗

1(1 + εB(ω), ω)= ∇ f0(p) ·ω−φp,λ̄
′(1) B(ω).

It is an easy consequence of Lemma 2.1 that the equation

Tp,λ̄w+ λ̄∇F(p, u0(|z|)) · z + b(p) ·
z
r

u′

0(|z|)= 0 in B, w|∂B = 0,

has a unique solution w, which is then of the form w = Wp,λ̄(|z|) · z for some Rn-valued function Wp,λ̄.
Specifically, its j-th component Wj (r) := Wp,λ̄(r) · ej satisfies the ODE

W ′′

j (r)+
n + 1

r
W ′

j (r)+ λ̄F ′(p, u0(r))Wj (r)+ λ̄ ∂j F(p, u0(r))+ bj (p)
u′

0(r)
r

= 0,

with the boundary condition Wj (1) = 0 and the requirement that Wj must be regular at 0. As u0(r) is
well-defined up to r = 1 + δp, so is Wj (r). The function Wp,λ̄ is obviously bounded as

∥Wp,λ̄∥Cs+1((0,1+δp)) ⩽ C λ̄∥∂j F(p, u0)∥Cs−1((0,1+δp)) + C
∥∥∥∥u′

0

r

∥∥∥∥
Cs−1((0,1+δp))

.

Since ∥u′

0∥Cs((0,1+δp)) ⩽ C λ̄ by Lemma 2.1, we infer that ∥Wp,λ̄∥Cs+1 = O(λ̄) as well.



OVERDETERMINED BOUNDARY PROBLEMS WITH NONCONSTANT DIRICHLET AND NEUMANN DATA 1997

By construction, we immediately obtain that u1 = u∗

1 +w+ O(ε), so the proposition follows. The
expression of Remark 3.2 follows from the same argument taking into account the formula for φp,λ̄

provided in Remark 2.2. □

Next we obtain asymptotic formulas for the normal derivative of u:

Proposition 3.3. The normal derivative of the function u p,ε,λ̄,B satisfies

∂νu p,ε,λ̄,B = φp,λ̄
′(1)+ ε{Hp,λ̄B + [∇ f0(p)+ Vp,λ̄] ·ω} + O(ε2),

where the constant vector Vp,λ̄ ∈ Rn satisfies |Vp,λ̄| ⩽ C λ̄.

Remark 3.4. When F(x, u)= f (x), one can obtain a more compact formula:

∂νu p,ε,λ̄,B

= −
λ̄

n
f (p)+ε

{
−
λ̄

n
f (p) (B −30 B)+∇ f0(p) ·ω−

λ̄

n + 2

(
∇ f (p)−

f (p)b(p)
n

)
·ω

}
+ O(ε2). (3-1)

Proof. Since the boundary of �p,εB is the zero set of the function r − εB(ω)− 1, it is clear that its unit
normal vector at the point (1 + εB(ω), ω) is

ν =

(
ω−

ε

1 + εB(ω)
∇S B(ω)

)(
1 +

ε2

(1 + εB(ω))2
|∇S B(ω)|2

)−1/2

= ω− ε∇S B(ω)+ O(ε2),

where ∇S denotes covariant differentiation on the unit sphere.
Using this formula, it follows from Proposition 3.1 that

∂νu p,ε,λ̄,B = ν · ∇u p,ε,λ̄,B(1 + εB(ω), ω)

= φp,λ̄
′(1 + εB(ω))+ ε{(r Wp,λ̄)

′(1) ·ω+ ν · ∇Pp,λ̄,εB[∇ f0(p) ·ω−φp,λ̄
′(1) B]} + O(ε2).

Since φp,λ̄(r) is C s+1-smooth for r < 1 + δp, let us now expand φp,λ̄
′ and use the definition of the

operator 3p,λ̄,εB to write

∂νu p,ε,λ̄,B = φp,λ̄
′(1)+ε{φp,λ̄

′′(1)B −φp,λ̄
′(1)3p,λ̄,εB B +3p,λ̄,εB(∇ f0(p) ·ω)+ W ′

p,λ̄(1) ·ω}+ O(ε2).

Let us now recall that Hp,λ̄B := φp,λ̄
′′(1)B − φp,λ̄

′(1)3p,λ̄,0 B (see Lemma 2.1) and that the usual
Dirichlet–Neumann map of the ball satisfies 30(V ·ω)= V ·ω for all V ∈ Rn. Therefore, we can use the
bounds (2-6)-(2-7) and the estimate |Vp,λ̄| ⩽ C λ̄ with

Vp,λ̄ := W ′

p,λ̄(1),

proven in Proposition 3.1, to obtain the formula of the statement. The expression of Remark 3.4 follows
from the above argument after taking into account the expression for u p,ε,λ̄,B given in Remark 3.2. □

4. Proof of Theorem 1.1 when A(x) = I

For any given point p ∈ Rn, let us now define a map

Fp,λ̄ : (−εp, εp)× X1
s+1 → C s(S),
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with X1
s := {b ∈ C s(S) : ∥b∥Cs < 1}, as

Fp,λ̄(ε, B) := ∂νu p,ε,λ̄,B −
φp,λ̄

′(1)

f1(p)
f̃1.

Roughly speaking, this map measures how far the Dirichlet solution u p,ε,λ̄,B is from satisfying the
Neumann condition in the domain �p,εB with a constant

c̄ := −
φp,λ̄

′(1)

f1(p)
> 0.

An immediate consequence of the asymptotic formulas for ∂νu p,ε,λ̄,B proved in Proposition 3.3 and
the fact that

f̃1(1 + εB(ω), ω)= f1(p)+ ε∇ f1(p) ·ω+ O(ε2),

is the following:

Proposition 4.1. For any fixed p ∈ Rn, any B ∈ X1
s+1(S) and any |ε|< εp,

Fp,λ̄(ε, B)= ε

{
Hp,λ̄B +

[
∇ f0(p)−

φp,λ̄
′(1)

f1(p)
∇ f1(p)+ Vp,λ̄

]
·ω

}
+ O(ε2).

Remark 4.2. When F(x, u)= f (x), one can obtain a slightly more explicit formula:

Fp,λ̄(ε, B)= ε

{
−
λ̄

n
f (p) (B −30 B)+

[
∇ f0(p)+

λ̄ f (p)
n f1(p)

∇ f1(p)
]

·ω

−
λ̄

n + 2

[
∇ f (p)−

f (p)b(p)
n

]
·ω

}
+ O(ε2). (4-1)

It then follows that the function Fp,λ̄(ε, B)/ε can be defined at ε = 0 by continuity. Furthermore, its
derivative with respect to B involves the operator Hp,λ̄, whose kernel was shown to be the space K in
Lemma 2.1. Consequently, let us define the spaces

Xs := {b ∈ C s(S) : PKb = 0}, X 1
s := {b ∈ Xs : ∥b∥Cs < 1},

with PK being the orthogonal projector onto the subspace K. We also define the operator

Pb := b −PKb.

It is clear from these expressions that P maps each space C s(S) into itself and X 1
s ⊂ X1

s .
By Proposition 4.1, we can now define a map

Gp,λ̄ : (−εp, εp)×X 1
s+1 → Xs

as

Gp,λ̄(ε, B) :=
PFp,λ̄(ε, B)

ε
.



OVERDETERMINED BOUNDARY PROBLEMS WITH NONCONSTANT DIRICHLET AND NEUMANN DATA 1999

Lemma 4.3. Let U ⊂ Rn be any bounded domain. For any λ̄ ∈ (0, λ̄U ), with

λ̄U := inf
p∈U

λ̄p > 0,

there exist some εU,λ̄ > 0 and a C s function Yε,λ̄ : U → Rn such that

∂νu p,ε,λ̄,Bε,p,λ̄
−
φp,λ̄

′(1)

f1(p)
f̃1 = Yε,λ̄(p) ·ω

for all p ∈ U and all |ε|< εU,λ̄. Here Yε,λ̄(p) := Y (ε, p, λ̄) is of class C s in all its arguments, and can be
interpreted as a family of parametrized vector fields on U , and Bε,p,λ̄ is a certain function in X 1

s+1.

Proof. Let us begin by showing that the Fréchet derivative DBGp,λ̄(0, 0) : Xs+1 → Xs is one-to-one. To
see this, note that Proposition 4.1 and the fact that P(A ·ω)= 0 for any A ∈ Rn imply that the derivative
of Gp,λ̄ with respect to B is of the form

DBGp,λ̄(ε, 0)= Hp,λ̄ + E,

with ∥E∥Xs+1→Xs ⩽ C |ε|. Here we have used that, by Lemma 2.1, PHp,λ̄ = Hp,λ̄ because the range of the
elliptic first-order operator Hp,λ̄ is contained in K⊥. The estimate (2-4) then ensures that DBGp,λ̄(ε, 0) is
an invertible map Xs+1 → Xs provided that ε is small enough.

As Gp,λ̄(0, 0)= 0, the invertibility of DBGp,λ̄(ε, 0) implies, via the implicit function theorem, that for
any ε small enough, there is a unique function Bε,p,λ̄ in a small neighborhood of 0 such that

Gp,λ̄(ε, Bε,p,λ̄)= 0.

By the definition of Fp,λ̄ and the fact that K={Y ·ω :Y ∈Rn
}, this implies that there is some Y (ε, p, λ̄)∈Rn

such that

∂νu p,ε,λ̄,Bε,p,λ̄
−
φp,λ̄

′(1)

f1(p)
f̃1 = Y (ε, p, λ̄) ·ω.

Furthermore, Y (ε, p, λ̄) is a C s-smooth function of its arguments because so is the left-hand side of this
identity. □

Let us now note that the asymptotic expression of the vector field Yε,λ̄(p) can be read off Proposition 4.1:

Lemma 4.4. The vector field Yε,λ̄ is of the form

Yε,λ̄(p)= ε

[
∇ f0(p)−

φp,λ̄
′(1)

f1(p)
∇ f1(p)+ Vp,λ̄

]
+ O(ε2).

When F(x, u)= f (x), one can write down the more precise expression

Yε,λ̄(p)= ε

{
∇ f0(p)+

λ̄ f (p)
n f1(p)

∇ f1(p)−
λ̄

n + 2

[
∇ f (p)−

f (p)b(p)
n

]}
+ O(ε2).
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Proof of Theorem 1.1 when A(x) = I and of Remark 1.2. Let us suppose that p∗ is a nondegenerate
critical point of the function f0. As φp,λ̄

′(1)= O(λ̄) by Lemma 2.1, Lemma 4.4 implies that

Yε,λ̄(p)
ε

= ∇ f0(p)+ E,

with an error bounded as ∥E∥C1(U ) ⩽ CU |λ̄| + CU |ε| for any bounded domain U ∋ p∗. If |λ̄| and |ε| are
small enough, it is then standard that there is a unique point pε,λ̄ in a small neighborhood of p∗ such that

Yε,λ̄(pε,λ̄)= 0.

By Lemma 4.3, and setting c̄ := −φ′

pε,λ̄,λ̄
(1)/ f1(pε,λ̄), this ensures that

∂νuε,pε,λ̄,λ̄,Bε,p,λ̄ + c̄ f̃1 ≡ 0,

which implies the claim of the theorem with the domain �pε,λ̄,εBε,p,λ̄ .
To prove Remark 1.2 on overdetermined solutions for the torsion problem, let us assume that F(x, u)=

f (x)= 1 and that p∗ is a nondegenerate critical point of the function f0+κ log f1 for some constant κ > 0.
In this case, since f (x)= 1 and b(x)= 0, Lemma 4.4 implies that

Yε,λ̄(p)
ε

= ∇ f0(p)+
λ̄

n
∇ log f1(p)+ E ′,

with ∥E ′
∥C1(U )⩽CUε. As one can pick any positive value of λ̄ by Remark 2.2, let us fix λ̄= λ̄∗

:= nκ > 0.
The previous argument then allows us to conclude that, for any ε small enough, there exists some point pε
close to p∗ for which Yε,λ̄(pε)= 0. Note that the condition that p∗ is a nondegenerate critical point of
f0 + κ log f1 is crucially used to solve

∇ f0(pε)+ κ ∇ log f1(pε)= −E ′

for small ε > 0 via the inverse function theorem. As above, this implies the existence of solutions to the
overdetermined torsion problem. The case of f0 = 0, f1 = 1 and F(x, u)= f (x) is handled similarly, so
Remark 1.2 then follows. □

5. Introduction of a nonconstant matrix A(x) and conclusion of the proof

In this section we will show why the proof of Theorem 1.1 carried out for the case when A(x)= I remains
valid, with only minor variations, in the case of a general matrix A(x).

The key idea is that we are constructing domains that are small deformations of the ball of radius ε,
with ε≪ 1. Over scales of order ε, the function A(x) is essentially constant, so it stands to reason that
one might be able to compensate for the effect of having a nonconstant matrix A(x) (at least, to some
orders when considering an asymptotic expansion in ε) by deforming the balls accordingly. More visually,
this would correspond essentially to picking an ellipsoidal domain at each point x with axes determined
by the matrix A(x).

The way to implement this idea is through (a rescaling of) the normal coordinates associated with the
matrix-valued function A, which we now regard as a Riemannian metric on Rn of class C s+2. These are
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defined through the exponential map at a point p ∈ Rn,

expA
p : Up → Rn,

which maps a certain domain Up ⊂ Rn diffeomorphically onto its image. It is standard [DeTurck and
Kazdan 1981] that expA

p (Z) is a C s+1 function of Z ∈ Up and of p ∈ Rn. The normal coordinates at p
are just the Cartesian coordinates Z = (Z1, . . . , Zn) on Up ⊂ Rn. In these coordinates, the metric reads
as Â(Z) = I + O(|Z |

2). More precisely, Â(Z) = (âi j (Z)) is given by the pullback by the exponential
map of the metric tensor, which is well known to be of the form

(expA
p )

∗
[ai j (x) dxi dx j ] =: âi j (Z) d Zi d Z j ,

with functions âi j of class C s(Up) such that

âi j (0)= δi j , ∂Zk âi j (0)= 0.

Therefore, normal coordinates enable us to write the matrix as the identity plus a C s-smooth quadratic
error. Incidentally, it is well known that the leading-order contribution of the error is determined by the
curvature of the metric A at the point p.

We are now ready to reformulate the overdetermined problem with a general function A as a small
perturbation of the case A(x)= I. For each function B ∈ C s+1(S) with ∥B∥Cs+1 < 1 and each ε small
enough, one can then define the domain �p,εB ⊂ Rn (which will play the same role as (2-1)) as

�p,εB := {expA
p (εz) : |z|< 1 + εB(z/|z|)}.

Note that, in terms of the spherical coordinates associated with a point z,

r := |z| ∈ (0,∞), ω :=
z
|z|

∈ S,

the above condition reads simply as r < 1 + εB(ω). In the domain �p,εB , (1-2) reads in the rescaled
normal coordinates z at p as

L̂u + λ̄F̂(z, u)= 0,

where F̂(z, u) := F(expA
p (εz), u) and now the linear operator L̂ is of the form

L̂u := âi j (εz) ∂zi z j u + εb̂i (εz) ∂zi u,

with âi j (Z) as above and some functions b̂i (Z) of class C s.
Therefore,

L̂u =1u + εb̂i (εz) ∂zi u + Eu,

where the error term is bounded as ∥Eu∥Cs−1 ⩽ Cε2
∥u∥Cs+1 and L̂u − Eu is just like the operator L̃u

introduced below (2-2). One can now go over the proof of Theorem 1.1 and readily see that all the
arguments remain valid when one introduces an error of this form in the expressions. This is not surprising,
as the proof only uses the formulas for the terms in the equations that are of zeroth and first order in ε.
Since the nondegenerate critical points of f0 do not depend on the coordinate system, Theorem 1.1 is
then proven for a general matrix-valued function A.
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