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STABILITY OF TRAVELING WAVES FOR THE BURGERS–HILBERT EQUATION
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We consider smooth solutions of the Burgers–Hilbert equation that are a small perturbation δ from a
global periodic traveling wave with small amplitude ϵ. We use a modified energy method to prove the
existence time of smooth solutions on a time scale of 1/(ϵδ), with 0< δ ≪ ϵ ≪ 1, and on a time scale of
ϵ/δ2, with 0< δ ≪ ϵ2

≪ 1. Moreover, we show that the traveling wave exists for an amplitude ϵ in the
range (0, ϵ∗), with ϵ∗

∼ 0.23, and fails to exist for ϵ > 2/e.
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1. Introduction

1A. The Burgers–Hilbert equation (BH). We study the size and stability of traveling waves of the
Burgers–Hilbert equation (BH),

ft = H f + f fx for (x, t) ∈�× R, (1-1)

f (x, 0)= f0(x), (1-2)

where � is the real line R or the torus T = R/2πZ and H f is the Hilbert transform which is defined for
f : R (resp. T)→ R by

H f (x)=
1
π

P.V.
∫

R

f (y)
x − y

dy resp. H f (x)=
1

2π
P.V.

∫ 2π

0
f (y) cot

x − y
2

dy.

Its action in the frequency space is Ĥ f (k)= −i sgn k f̂ (k) for k ̸= 0, and Ĥ f (0)= 0.
This equation arose in [Marsden and Weinstein 1983] as a quadratic approximation for the evolution

of the boundary of a simply connected vorticity patch in two dimensions. Later, Biello and Hunter [2010]
proposed the model as an approximation for describing the dynamics of small slope vorticity fronts in the
2-dimensional incompressible Euler equations. Recently, the validity of this approximation was proved in
[Hunter et al. 2022].
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By standard energy estimates the initial value problem for (BH) is locally well-posed in H s for s > 3
2 .

Bressan and Nguyen [2014] established in global existence of weak solutions for initial data f0 ∈ L2(R),
with f (x, t) ∈ L∞(R) ∩ L2(R) for all t > 0. Bressan and Zhang [2017] constructed locally in time
piecewise continuous solutions to the BH equation with a single discontinuity where the Hilbert transform
generates a logarithmic singularity. Uniqueness for general global weak solutions of [Bressan and Nguyen
2014] is open. But piecewise continuous solutions are shown to be unique in [Krupa and Vasseur 2020].

The Burgers–Hilbert equation can indeed form shocks in finite time. Various numerical simulations
have been performed in [Biello and Hunter 2010; Hunter 2018; Klein and Saut 2015]. Finite time
singularities, in the C1,δ norm, with 0 < δ < 1, were shown to exist in [Castro et al. 2010] for initial
data f0 in L2(R)∩C1,δ(R) that has a point x0 ∈ R such that H( f0)(x0) > 0 and f0(x0)≥ (32π∥ f0∥L2)1/3.
Recently, with a different approach, Saut and Wang [2022] proved shock formation in finite time for (BH)
and Yang [2021] constructed solutions that develop an asymptotic self-similar shock at one single point
with an explicitly computable blowup profile for (BH).

In this paper we are concerned with the dynamics in the small amplitude regime where (BH) can be
viewed as a perturbation of the linearized (BH) equation ft = H [ f ]. Since the nonlinear term in (1-1) is
quadratic and the Hilbert transform is orthogonal in L2, standard energy estimates yield a time of existence
of smooth solutions T ∼ 1/∥ f0∥. Thanks to the effect of the Hilbert transform and using the normal form
method, Hunter, Ifrim, Tataru and Wong (see [Hunter and Ifrim 2012; Hunter et al. 2015]) were able to im-
prove this time of existence. More precisely, if ϵ is the size of the initial data, they prove a lifespan T ∼1/ϵ2

for small enough ϵ (see also [Ehrnström and Wang 2019] for a similar approach with a modified version of
the (BH) equation). The proofs are based on the normal form method and on the modified energy method.
Furthermore, Hunter [2018] showed for 0<ϵ≪1 the existence of C∞-traveling wave solutions of the form

fϵ(x, t)= uϵ(x + vϵ t),
with

uϵ(x)= ϵ cos(x)+ O(ϵ2), (1-3)

vϵ = −1 + O(ϵ2). (1-4)

Notice that, (uϵ(nx)/n, vϵ/n) is also a C∞-traveling wave solution.
Throughout the paper we will assume that the initial data f0 has zero mean. Since (1-1) preserves

the mean, ∫ 2π

0
f (x, t) dx = 0 for all t .

Since in the construction above uϵ also has zero mean,∫ 2π

0
f (x, t) dx = 0 for all t .

1B. The main theorem. In the present work we extend the results in the small amplitude regime in the
following way:

(1) Size of the traveling waves: We show that the traveling waves exist for an amplitude ϵ in the range
(0, ϵ∗), with ϵ∗

∼ 0.23, and fail to exist for ϵ > 2/e.
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(2) Extended lifespan from a traveling wave: We prove that a δ-perturbation of uϵ lives, at least, for a
time T ∼ 1/(δϵ) for 0 < δ ≪ ϵ ≪ 1, and for a time T ∼ ϵ/δ2 for 0 < δ ≪ ϵ2

≪ 1. This is an
improvement compared with the time T ∼ 1/ϵ2 provided by the results in [Hunter and Ifrim 2012;
Hunter et al. 2015]. Indeed, our main theorem reads:

Theorem 1.1. For 0< |ϵ|, δ ≪ 1 let (uϵ, vϵ) ∈ C∞(T)× R be a traveling wave solution of (1-1) as in
(1-3) and (1-4) and

∥ f0 − uϵ∥H4(T) < δ.

Then there exist 0< ϵ0 ≪ 1, T (ϵ, δ) > 0 and a solution of (1-1)

f (x, t) ∈ C([0, T (ϵ, δ)); H 4(T))

such that

(1) if δ ≪ |ϵ| and |ϵ| ≤ ϵ0, then T (ϵ, δ)∼ 1/(ϵδ),

(2) if δ ≪ ϵ2 and |ϵ| ≤ ϵ0, then T (ϵ, δ)∼ ϵ/δ2.

Moreover, there are two differentiable functions ϵ(t) and a(t) such that

∥ f (x, t)− uϵ(t)(x + a(t))∥H4 ≲ δ.

1C. Sketch of the proof of Theorem 1.1. Now we briefly describe the proof of Theorem 1.1. Assume
that the solution

f (x, t)= uϵ(x + vϵ t)+ g(x + vϵ t, t)

is a small perturbation around the traveling wave uϵ(x +vϵ t). Then the linearization of the Burgers–Hilbert
equation (1-1) is

Lϵg := −vϵgx + Hg + (uϵ(x)g)x = 0

so to the first order, the perturbation g solves the equation gt = Lϵg, with solution

g(x, t)= et Lϵg(x, 0).

Therefore the linear evolution of g is determined by the eigenvalues of Lϵ .
The full nonlinear evolution of g is

gt = Lϵg + N (g, g),

where N (g, g) is a nonlinearity that is (at least) quadratic in g. We plug in the linear solution to get

gt = et Lϵ Lϵg(x, 0)+ N (et Lϵg(x, 0), et Lϵg(x, 0))

to second order, which integrates to

g(x, t)= et Lϵg(x, 0)+ et Lϵ
∫ t

0
e−sLϵ N (esLϵg(x, 0), esLϵg(x, 0)) ds.



2112 ÁNGEL CASTRO, DIEGO CÓRDOBA AND FAN ZHENG

Expand (at least formally) the initial data and the nonlinearity in terms of the eigenvectors of Lϵ as

g(x, 0)=

∑
n

cnϕn(x), N (ϕl, ϕm)=

∑
n

clmnϕn,

where the eigenvalue of ϕn is λn . Then

g(x, t)≈

∑
n

cneλn tϕn(x)+
∑
l,m,n

e(λl+λm)t − eλn t

λl + λm − λn
clmnϕn(x) (1-5)

to second order, provided that the denominator λl + λm − λn is not equal to 0, i.e., that the eigenvalues
are “nonresonant”. Then we can integrate (1-1) up to a cubic error term, yielding the “cubic lifespan”,
i.e., initial data of size ϵ leads to a solution that exists for a time at least comparable to ϵ−2. This is the
“normal form transformation”, first proposed by Poincaré in the setting of ordinary differential equations
(see [Arnold 1983] for a book reference). Its application to partial differential equations was initiated by
Shatah [1985] in the study of the nonlinear Klein–Gordon equation, and then extended to the water wave
problem by Germain, Masmoudi and Shatah [Germain et al. 2012; 2015] and Ionescu and Pusateri [2015;
2018], the Burgers–Hilbert equation by Hunter, Ifrim, Tataru and Wang [Hunter et al. 2015], and more
recently, the Einstein–Klein–Gordon equation by Ionescu and Pausader [2022].

Unfortunately, nonresonance fails for Lϵ because 0 is an eigenvalue, and 0 + λn − λn = 0. The
eigenvalue 0 arises from the symmetry of (1-1). Indeed, the initial data uϵ(x + δ) ≈ uϵ(x)+ δu′

ϵ(x)
produces the solution

f (x, t)= uϵ(x + vϵ t + δ)≈ uϵ(x + vϵ t)+ δu′

ϵ(x + vϵ t).

In this case g(x, t)= δu′
ϵ(x), with gt = 0, so u′

ϵ ∈ ker Lϵ . Also, the initial data uϵ+δ(x)≈ uϵ(x)+δ∂ϵuϵ(x)
produces the solution

f (x, t)= uϵ+δ(x + vϵ+δt)≈ uϵ(x + vϵ t)+ δ∂ϵuϵ(x + vϵ t)+ δv′

ϵ tu
′

ϵ(x + vϵ t).

In this case g(x, t)= δ∂ϵuϵ(x)+ δv′
ϵ tu

′
ϵ(x), so

Lϵg = δLϵ∂ϵuϵ = gt = δv′

ϵu
′

ϵ ∈ ker Lϵ,

and thus ∂ϵuϵ is in the generalized eigenspace corresponding to the eigenvalue 0.
These perturbations generate translations and variations along the bifurcation curve. We treat them

separately using a more sophisticated ansatz

f (x, t)= uϵ(t)(x + a(t))+ g(x + a(t), t).

We will show in Proposition 4.1 that if |ϵ0| and ∥ f − uϵ0∥H2/|ϵ0| are sufficiently small, then f can
always be put in the form above, with |ϵ− ϵ0|/|ϵ0| also small and the expansion of g not involving any
eigenvector with eigenvalue 0. This way we remove the resonance caused by the eigenvalue 0 from the
evolution of g.

We also need to analyze the other eigenvalues of Lϵ , a first-order differential operator with variable
coefficients, and a quasilinear perturbation from L0 =∂x+H, whose eigenvectors are the Fourier modes einx.
Just like the Schrödinger operator with potential −1+ V, with a basis of eigenvectors known as the “Jost
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functions”, giving rise to the “distorted Fourier transform” (see [Agmon 1975]), Lϵ can also be diagonalized
using a combination of conjugation and perturbative analysis. More precisely, let g = hx . Then

Lϵg = ((uϵ(x)− vϵ)g)x + Hg = ((uϵ(x)− vϵ)hx + Hh)x ,

so Lϵ is conjugate to the operator h 7→ (uϵ(x)−vϵ)hx + Hh. Let h = h̃ ◦φϵ , where φ′
ϵ(x) is proportional

to (uϵ(x)− vϵ)−1. Then

Lϵg = ((cϵ∂x + H + Rϵ)h̃ ◦φϵ)x ,

where cϵ → 1 as ϵ→ 0, and Rϵ is a small smoothing remainder (i.e., it gains derivatives of arbitrarily high
orders). Thus Lϵ is conjugate to cϵ∂x +H +Rϵ , whose eigenvalues can be approximated by those of cϵ∂x +

H, which are ±(ncϵi − i), n = 1, 2, . . . . The general theory of unbounded analytic operators developed
in [Kato 1976] allows us to justify this approximation up to O(ϵ6) (see Corollary 3.10), and to relate
the eigenvectors of Lϵ to the Fourier modes (see Lemma 3.7), in the sense that another linear map h̃ 7→ h

conjugates Lϵ into a Fourier multiplier whose action on ei(n+sgn n)x is multiplication by λn (n ̸= 0).
At the end of the day we have the following estimate for small ϵ:

|λl + λm − λn|>

{
1
2 , l + m ̸= n,
1
5ϵ

2, l + m = n;

see Proposition 3.11. Because this value appears in the denominator in (1-5), if g has size δ, a direct
application of the normal form transformation yields a lifespan comparable to ϵ2/δ2. To improve on this,
we will make use of the structure of the nonlinearity:

N (h, h)=
1
2h

2
x + O(|ϵ|).

The first term is the usual product-style nonlinearity, which imposes the restriction l +sgn l +m +sgn m =

n + sgn n, and implies l + m − n = ±1 ̸= 0, so the normal form transformation can be carried out as
before. The second term is of size |ϵ| and gains a factor of 1/|ϵ| in the lifespan. Thus the usual energy
estimate can show a lifespan comparable to 1/|ϵδ|, and the normal form transformation can show a
lifespan comparable to |ϵ|/δ2. This decomposition of the nonlinearity into one part satisfying classical
additive frequency restrictions and another part enjoying better estimates analytically was first used by
Germain, Pusateri and Rousset [Germain et al. 2018] to show global well-posedness of the 1-dimensional
Schrödinger equation with potential (see also [Chen and Pusateri 2022]). Our result shows that this
approach can be adapted to quasilinear equations and to the case of discrete spectrum.

1D. Outline of the paper. In Section 2 we study the traveling waves solutions for (1-1). For sake of
completeness we sketch the proof of existence which follows from bifurcation theory. In addition we
analyze the size of the traveling waves. In Section 3 we study the linearization of (1-1) around the
traveling waves. In Section 4, we introduce a new frame of reference which will help us to avoid the
resonances found in Section 3. Finally, in Section 5 we prove Theorem 1.1.
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2. Traveling waves

The existence of traveling waves for (1-1) was shown in [Hunter 2018]. Here we will study their size
after we give some details about the existence proof. We look for solutions of (1-1) of the form

fϵ(x, t)= uϵ(x + vϵ t);

thus we have to find (uϵ, vϵ) solving

Huϵ − vϵu′

ϵ + uϵu′

ϵ = 0. (2-1)

If (uϵ, vϵ) is a solution, so is (un
ϵ (x), v

n
ϵ )= (uϵ(nx)/n, vϵ/n). Thus from one solution we can get n-fold

symmetric solutions for all n ≥ 1.
To solve (2-1) we can apply the Crandall–Rabinowitz theorem [1971] to

F : H k,+
r (T)× C → H k−1,−

r (T),

(u, µ) 7→ Hu + uu′
− (−1 +µ)u′,

where

H k,+
r (T)= {2π -periodic, mean zero, even functions analytic in the strip {|Im(z)|< r}},

endowed with the norm
∥ f ∥H k,+

r (T)
=

∑
±

∥ f ( · ± ir)∥H k(T),

and
H k,−

r (T)= {2π -periodic, odd functions analytic in the strip {|Im(z)|< r}},

endowed with the norm
∥ f ∥H k,−

r (T)
=

∑
±

∥ f ( · ± ir)∥H k(T).

Here ∥ · ∥H k(T) is the usual Sobolev norm, and it is enough to take k ≥ 1 and r = 1.
We notice that F(0, µ)= 0 and the derivative of F at u = 0, µ= 0,

Du F(0, 0)h = Hh + h′

has a nontrivial element in its kernel belonging to H k,+
r (T), namely, h = cos(x).

Thus, the application of the Crandall–Rabinowitz theorem allows to show the existence of a branch of
solutions (uϵ, vϵ) ∈ (H 1,+

1 ,R), bifurcating from (0,−1) for (2-1) with the leading-order term

uϵ(x)= ϵ cos(x)+ O(ϵ2), vϵ = −1 + O(ϵ).

We remark that we obtain a bifurcation curve

ϵ → (uϵ, vϵ),

Bδ = {z ∈ C : |z|< δ} → (H k−1,−
r ,R),

(2-2)

which is differentiable and hence analytic on Bδ for δ small enough.
The rest of this section is devoted to proving further properties of these solutions.
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Introducing the asymptotic expansion

uϵ(x)=

∞∑
n=1

un(x)ϵn, vϵ =

∞∑
n=0

vnϵ
n, (2-3)

taking u1 = cos(x), λ0 = −1 and comparing the coefficient in ϵn we obtain that

u′

n + Hun = −vn−1 sin(x)+
n−2∑
m=1

vmu′

n−m −
1
2
∂x

n−1∑
m=1

un−mum = −vn−1 sin(x)+ fn

for n = 2, 3, . . . .
We notice that in order to solve the equation Hu + u′

= f we need ( f, sin(x)) = 0. Therefore we
have to choose vn−1 =

1
π
(sin(x), fn). This gives us a recurrence for (un, vn−1), n ≥ 2, in terms of

{(um, vm−1)}
n−1
m=1. In order to study this recurrence we will introduce the ansatz

un =

n∑
k=2

un,k cos(kx). (2-4)

By induction, one can check that the rest of coefficients in the expansion on cosines of un must be zero.
In addition, if uϵ(x) solves (2-1), u−ϵ(x +π) is also a bifurcation curve in the direction of cos(x), and
then by uniqueness, uϵ(x)= u−ϵ(x +π), which yields un,k = 0 if n − k = 1 (mod 2).

Comparing the coefficient of sin(kx), with k = n (mod 2), and 2 ≤ k ≤ n, we have

(1 − k)un,k + k
n−k∑
m=1

vmun−m,k −
k
4

n−1∑
m=1

min(m,k−1)∑
l=max(1,k−n+m)

um,lun−m,k−l

−
k
2

n−1∑
m=1

min(m,n−m−k)∑
l=1

um,lun−m,k+l = 0. (2-5)

And comparing with sin(x) we have

vn−1 =
1
2

n−1∑
m=1

min(m,n−m−1)∑
l=1

um,lun−m,1+l . (2-6)

Up to order O(ϵ4) we find

uϵ(x)= ϵ cos x −
1
2ϵ

2 cos 2x +
3
8ϵ

3 cos 3x + O(ϵ4),

vϵ = −1 −
1
4ϵ

2
+ O(ϵ4).

(2-7)

The recurrence (2-5)–(2-6) allows us to prove the following result.

Theorem 2.1. The radius of convergence of the series (2-3), with the coefficients given by (2-4)–(2-6), is
not bigger than 2/e.

Proof. From (2-5) and (2-6) we have

(1 − n)un,n =
1
2

n−1∑
k=1

(n − k)uk,kun−k,n−k .

Let

y = y(x)= x +

∞∑
n=2

un,nxn.
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Then y − xy′
= xyy′/2, which, together with y ∼ x for small x , yields y = 2W (x/2), where W is the

Lambert W -function. Since the radius of convergence of W at 0 is 1/e, the radius of convergence of y
at 0 is 2/e, so the radius of convergence of (2-5) and (2-6) is at most 2/e. □

In addition we can get a bound for how large the traveling wave can be.

Theorem 2.2. The series (2-3), with the coefficients given by (2-4)–(2-6), converges for any ϵ < x∗
∼ 0.23.

Proof. This proof is based on the implicit function theorem.
First we introduce the spaces

L2,−
= {odd functions f ∈ L2(T)},

H 1,+
= {even functions f ∈ H 1(T)}.

The space X is the orthogonal complement of the span of cos(x) in H 1,+. We will equip L2,− with the
norm

∥u∥
2
L2,− =

1
π

∫ π

−π

|u(x)|2 dx (2-8)

in such a way that ∥sin(nx)∥L2,− = 1 for n ≥ 1. We also define

∥u∥
2
X =

1
π

∫ π

−π

(|u′(x)|2 + |u(x)|2 − 2u(x)3u(x)) dx . (2-9)

Thus ∥cos(nx)∥X = n − 1 for n ≥ 2. The reason why we take these norms is technical and it will arise
below. Finally we define

X = X × R

equipped with the norm

∥(ũ, ν)∥X =

√
∥ũ∥

2
X + |ν|2.

Since uϵ = ϵ cos x −
1
2ϵ

2 cos 2x + O(ϵ3) and vϵ = −1 + O(ϵ2), we can let

G(ϵ, ũ, µ)

=
1
ϵ2 F

(
ϵ cos x −

1
2ϵ

2 cos 2x + ϵ2ũ, ϵµ
)

= Hũ + ϵ
(
cos x(sin 2x + ũ′)+

( 1
2 cos 2x − ũ

)
(sin x − ϵ sin 2x − ϵũ′)

)
+ ũ′

−µ(sin x − ϵ sin 2x − ϵũ′)

map R ×X to L2,−.
Because of the existence of traveling waves, we already know that there exists ϵ∗ such that, for every

ϵ ∈ [0, ϵ∗), there exist ũϵ and µϵ satisfying

G(ϵ, ũϵ, µϵ)= 0.

In addition we have
dG(ϵ, ũϵ+sṽ,µ+sν)

ds

∣∣∣∣
s=0

≡ dGϵ,ũϵ ,µ(ṽ,ν)

= H ṽ+ϵ
(
ṽ′ cos x−ṽ(sin x−ϵ sin2x−ϵũ′)−ϵ

( 1
2 cos2x−ũ

)
ṽ′

)
+ṽ′

−ν(sin x−ϵ sin2x−ϵũ′)+ϵµṽ′

maps (ṽ, ν) ∈ X linearly to L2,−.
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Thus as far as dGϵ,ũϵ ,µϵ (ũ, µ) is invertible from X to L2,− for ϵ ∈ [0, x∗) we will be able to extend
the solution (uϵ, µϵ) from [0, ϵ∗) to [0, x∗) by the implicit function theorem.

Note that
dG0,0,0(ṽ, ν)= H ṽ+ ṽ′

− ν sin x

is an isometry from X to L2,− under the norms given by (2-8) and (2-9). Therefore one can compute

dGϵ,ũϵ ,µϵ = dG−1
0,0,0(I + dG−1

0,0,0(dGϵ,ũϵ ,µϵ − dG0,0,0)).

By the Neumann series and the fact that dG0,0,0 is an isometry, dGϵ,ũϵ ,µϵ will be invertible, as long as
∥dGϵ,ũϵ ,µϵ − dG0,0,0∥X→L2,− < 1. In order to show this last inequality we will bound

Aϵ := ∥dGϵ,ũϵ ,µϵ − dG0,0,0∥X→L2,−

in terms of ∥ũϵ∥X and µϵ . After that we will bound ∥ũϵ∥X and µϵ . To do it we will use the information
we have about ∂ϵ ũϵ and ∂ϵµϵ .

Along the bifurcation curve,

dGϵ,ũϵ ,µϵ (∂ϵ ũϵ,µ
′

ϵ)

= −∂ϵG(ϵ, ũϵ,µϵ)

= cos x(sin2x+ũ′

ϵ)+
1
2 sin x(cos2x−2ũϵ)−ϵ(cos2x−2ũϵ)(sin2x+ũ′

ϵ)+µϵ(sin2x+ũ′

ϵ). (2-10)

Thus
(∂ϵ ũϵ, µ′

ϵ)= dG−1
ϵ,ũϵ ,µϵ

(−∂ϵG(ϵ, ũϵ, µϵ)).

Therefore √
∥∂ϵ ũϵ∥2

X + |µ′

ϵ |
2
≤

1
1− Aϵ

∥∂ϵG(ϵ, ũϵ, µϵ)∥L2,− . (2-11)

In addition we have, for rϵ =

√
∥ũϵ∥2

X + |µϵ |
2,

∂ϵrϵ ≤

√
∥∂ϵ ũϵ∥2

X + |µ′

ϵ |
2
≤

1
1− Aϵ

∥∂ϵG(ϵ, ũϵ, µϵ)∥L2,− .

Thus, explicit estimates for Aϵ and ∥∂ϵG(ϵ, ũϵ, µϵ)∥L2,− in terms of rϵ and ϵ give a differential
inequality for rϵ which can be used to bound Aϵ .

We will need the following lemmas to bound Aϵ and the norm ∥∂ϵG(ϵ,ũϵ,µϵ)∥L2,− , where ∂ϵG(ϵ,ũϵ,µϵ)
is given by the right-hand side of (2-10).

Lemma 2.3. If f ∈ X then ∥ f sin x − f ′ cos x∥L2 ≤
√

3∥ f ∥X .

Lemma 2.4. If f ∈ X then ∥2 f sin 2x − f ′ cos 2x∥L2 ≤
1
2

√
17∥ f ∥X .

Proof. We only show Lemma 2.3. The proof of Lemma 2.4 is similar.
Let f =

∑
∞

n=2 fn cos nx . Then

2( f sin x − f ′ cos x)= f2 sin x + 2 f3 sin 2x +

∞∑
n=3

n( fn−1 + fn+1) sin nx,
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and

4∥ f sin(x)− f ′ cos(x)∥2
L2 = f 2

2 + 4 f 2
3 +

∞∑
n=3

n2( fn−1 + fn+1)
2

≤ 10 f 2
2 + 20 f 2

3 + 59 f 2
4 + 88 f 2

5 + 18 f2 f4 + 32 f3 f5 + 4
∞∑

n=6

(n2
+ 1) f 2

n .

The infinite sum is bounded by 1.48
∑

∞

n=6(n − 1)2 f 2
n , and it remains a finite-dimensional problem to

show that the remaining terms are bounded by 12
∑5

n=2(n − 1)2 f 2
n . □

Lemma 2.5. If f , g ∈ X then ∥( f g)′∥L2 ≤ B∥ f ∥X∥g∥X , where

B =

√
π2

3
+

869
144

≈ 3.05.

Proof. Let f =
∑

∞

n=2 fn cos nx , g =
∑

∞

n=2 gn cos nx ∈ X . Then

( f g)′ = −
1
2

∑
n≥1

n
∑

|m|≥2,|n−m|≥2

f|m|g|n−m| sin nx,

so by Cauchy–Schwarz,

∥( f g)′∥2
L2 =

1
8

∑
|n|≥1

n2
( ∑

|m|≥2,|n−m|≥2

f|m|g|n−m|

)2

≤ C∥ f ∥
2
X∥g∥

2
X ,

where

C =
1
2

∞

sup
n=1

∑
|m|≥2,|n−m|≥2

n2

(|m| − 1)2(|n − m| − 1)2
=
π2

3
+

869
144

. □

Now, with Lemmas 2.3, 2.5 and 2.4 we are ready to bound the right-hand side of (2-10). Indeed,

∥right-hand side of (2-10)∥L2 ≤

√
10+4ϵ2

4
+ 2rϵ +

√
17
2
ϵ∥ũϵ∥X + Bϵ∥ũϵ∥2

X + ∥ũϵ∥2
X + |µϵ |

2.

Turning to the other side, we have

(dG(ϵ,ũϵ ,µϵ) − dG(0,0,0))(ṽ, ν)

= ϵ
(
ṽ′ cos x − ṽ(sin x − ϵ sin 2x − ϵũ′

ϵ)− ϵ
( 1

2 cos 2x − ũϵ
)
ṽ′

)
+ ϵν(sin 2x + ũ′

ϵ)+ ϵµϵ ṽ
′. (2-12)

Again by Lemmas 2.3, 2.5 and 2.4 we find

∥left-hand side of (2-12)∥L2 ≤

(√
3ϵ+

√
17
4
ϵ2

+ Bϵ2
∥ũϵ∥X + 2ϵ|µϵ |

)
∥ṽ∥X + ϵ(1 + 2∥ũϵ∥X )|ν|

= ϵ(
√

3 + 2|µϵ |, 1 + 2∥ũϵ∥X ) · (∥ṽ∥X , |ν|)+
(√

17
4
ϵ2

+ Bϵ2
∥ũϵ∥X

)
∥ṽ∥X ,

so

Aϵ ≤ 2ϵ+ 2ϵrϵ +

√
17
4
ϵ2

+ Bϵ2rϵ .

Since dG(0,0,0) is an isometry, the Neumann series (1 − T )−1
=

∑
∞

n=0 T n shows that if Aϵ < 1, then
dG(ϵ,ũϵ ,µϵ) is invertible, and ∥dG−1

(ϵ,ũϵ ,µϵ)
∥ ≤ (1 − Aϵ)−1, so√

∥∂ϵ ũϵ∥2
X + |µ′

ϵ |
2
≤

1
1 − Aϵ

(√
10+4ϵ2

4
+ 2rϵ +

√
17
2
ϵ∥ũϵ∥X + Bϵr2

ϵ + r2
ϵ

)
.
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Then r0 = 0 and

r ′

ϵ ≤

1
4

√
10 + 4ϵ2 +

(
2 +

√
17
2 ϵ

)
rϵ + Bϵr2

ϵ + r2
ϵ

1 − 2ϵ− 2ϵrϵ −

√
17
4 ϵ2 − Bϵ2rϵ

.

By the comparison principle, rϵ is bounded from above by the solution to

dy
dx

= y′
=

√
10 + 4x2 + (8 + 2

√
17x)y + 4Bxy2

+ 4y2

4 − 8x − 8xy −
√

17x2 − 4Bx2 y
, (2-13)

with y(0)= 0, which is

(2Bx2
+ 4x)y2

+ (8x +
√

17x2
− 4)y + x

√
x2 + 2.5 + 2.5 sinh−1(

√
0.4x)= 0.

When x > 0, the quadratic coefficient and the constant are positive, so this equation has a nonnegative
root if and only if

8x +
√

17x2
− 4 ≤ −2

√
(2Bx2 + 4x)(x

√

x2
+ 2.5 + 2.5 sinh−1(

√
0.4x)),

whose solution is x ≤ x∗
≈ 0.23 numerically. Hence the solution can be extended to ϵ = x∗

≈ 0.23. In
order to achieve this last conclusion we notice that the solution to (2-13), with y(0)= 0 can be extended
only if Aϵ < 1, since 1 − Aϵ arises in the denominator.

The above argument shows that for ϵ ∈ (−x∗, x∗), the bifurcation curve produces a traveling wave
uϵ = ϵ cos x −

1
2ϵ

2 cos 2x + ϵ2ũϵ , which travels at speed vϵ = −1 − ϵµϵ . Since all the operators involved
are analytic in all its arguments, the bifurcation curve is analytic in ϵ on (−x∗, x∗). It may be the case,
however, that the power series for uϵ and vϵ around ϵ = 0 has a smaller radius of convergence than x∗ (for
example, the function f (x)= (x2

+ 1)−1 is analytic on the whole real line, but the radius of convergence
of its power series around 0 is only 1.) We now show that the radius of convergence of the power series
for uϵ and vϵ are indeed at least x∗.

We note that the above argument also works if ϵ is replaced with ϵeia (a ∈ R), so the bifurcation curve
(uϵ, vϵ) is also analytic in a neighborhood of {ϵeia

: ϵ ∈ (−x∗, x∗)}. Hence the curve is analytic in the
disk of radius x∗ centered at 0, so the radius of convergence of its power series around 0 is at least x∗. □

3. Linearization around traveling waves

In this section we will analyze the spectrum of the operator

Lϵg = −vϵgx + Hg + (uϵ(x)g)x

corresponding to the linearization of (1-1) around the traveling wave (uϵ, vϵ) bifurcating from zero in the
direction of the cosine studied in the previous section.

Actually, let
f (x, t)= fϵ(x, t)+ g(x + vϵ t, t),

with fϵ(x, t)= uϵ(x + vϵ t). Then

ft(x, t)= ∂t fϵ(x, t)+ (vϵgx + gt)(x + vϵ t, t)
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and

(H f + f fx)(x, t)= (H fϵ + fϵ∂x fϵ)(x, t)+ Hg(x + vϵ t, t)

+ ∂x( fϵ(x, t)g(x + vϵ t, t))+ g(x + vϵ t, t)∂x g(x + vϵ t, t).

Putting these in (1-1), we get the equation for g(x, t)

∂t g(x, t)= −vϵg(x, t)x + Hg(x, t)+ (uϵ(x)g(x, t))x + g(x, t)g(x, t)x .

The linearization around g = 0 is
∂t g = Lϵg,

where

Lϵg = −vϵgx + Hg + (uϵg)x = Hg + gx︸ ︷︷ ︸
Lg

+

∞∑
n=1

ϵn ((u(n) − v(n))g)x︸ ︷︷ ︸
L(n)g

. (3-1)

3A. The eigenvalue 0. The action of L on the Fourier modes is

F(Lg)(m)= i(m − sgn m)ĝ(m),

with eigenvalues 0 (double), ±i , ±2i , . . . (on L2(T) with zero mean). We first study the perturbation of
the eigenspace corresponding to the double eigenvalue of 0. By translational symmetry, for any δ ∈ R,
uϵ(x + δ) is also a solution to

Hu − vϵu + uu′
= 0.

Differentiation with respect to δ then shows that

Lϵu′

ϵ = Hu′

ϵ − vϵu′

ϵ + (uϵu′

ϵ)
′
= 0.

Also, since uϵ lies on a bifurcation curve, we can differentiate

Huϵ − vϵu′

ϵ + uϵu′

ϵ = 0,
with respect to ϵ to get

Lϵ∂ϵuϵ = H∂ϵuϵ − (∂ϵvϵ)u′

ϵ + uϵ∂ϵu′

ϵ + u′

ϵ∂ϵuϵ = (∂ϵvϵ)u′

ϵ,

so on the span Vϵ of u′
ϵ and ∂ϵuϵ , Lϵ acts nilpotently by the matrix(

0 ∂ϵvϵ

0 0

)
.

3B. Simplifying the linearized operator. We want to solve the eigenvalue problem

Lϵg = ((uϵ − vϵ)g)′ + Hg = λ(ϵ)g.

Let g = h′. Then the antiderivative of the above is

(uϵ − vϵ)h′
+ Hh = λ(ϵ)h (mod 1). (3-2)

Let h = h̃ ◦φϵ , where φϵ satisfies

φ′

ϵ =
2π

uϵ − vϵ

(∫ 2π

0

dy
uϵ(y)− vϵ

)−1

. (3-3)
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Then

(uϵ − vϵ)φ
′

ϵ(h̃
′
◦φϵ)+ H(h̃ ◦φϵ)= λ(ϵ)h̃ ◦φϵ (mod 1).

When ϵ is small enough, φϵ is a diffeomorphism of R/2πZ, so

2π
(∫ 2π

0

dy
uϵ(y)− vϵ

)−1

h̃′
+ H(h̃ ◦φϵ) ◦φ

−1
ϵ = λ(ϵ)h̃ (mod 1).

By the change of variable z = φϵ(y),

H(h̃ ◦φϵ) ◦φ
−1
ϵ (x)=

1
2π

∫ 2π

0
h̃(φϵ(y)) cot

(
φ−1
ϵ (x)− y

2

)
dy

=
1

2π

∫ 2π

0
h̃(z) cot

(
φ−1
ϵ (x)−φ−1

ϵ (z)
2

)
(φ−1
ϵ )′(z) dz.

The convolution kernel of the operator

Rϵ h̃ = H(h̃ ◦φϵ) ◦φ
−1
ϵ − Hh̃

is

Kϵ(x, z)= cot
(
φ−1
ϵ (x)−φ−1

ϵ (z)
2

)
(φ−1
ϵ )′(z)− cot

(
x − z

2

)
(3-4)

and the ϵ-derivative of the kernel is

∂ϵKϵ(x, z)= − csc2
(
φ−1
ϵ (x)−φ−1

ϵ (z)
2

)
∂ϵφ

−1
ϵ (x)− ∂ϵφ−1

ϵ (z)
2

(φ−1
ϵ )′(z)

+ cot
(
φ−1
ϵ (x)−φ−1

ϵ (z)
2

)
∂ϵ(φ

−1
ϵ )′(z).

Near x = 0, csc x −1/x2 and cot x −1/x are smooth, and (φ−1
ϵ )′ is smooth everywhere, so when x − z is

small enough, up to a smooth function in (x, z),

∂ϵKϵ(x, z)
2

= −
(∂ϵφ

−1
ϵ (x)−∂ϵφ−1

ϵ (z))(φ−1
ϵ )′(z)

(φ−1
ϵ (x)−φ−1

ϵ (z))2
+

∂ϵ(φ
−1
ϵ )′(z)

φ−1
ϵ (x)−φ−1

ϵ (z)

=
∂ϵ(φ

−1
ϵ )′(z)(φ−1

ϵ (x)−φ−1
ϵ (z))−(∂ϵφ−1

ϵ (x)−∂ϵφ−1
ϵ (z))(φ−1

ϵ )′(z)

(φ−1
ϵ (x)−φ−1

ϵ (z))2

=
∂ϵ(φ

−1
ϵ )′(z)(x−z)2

∫ 1
0 (1−t)(φ−1

ϵ )′′((1−t)z+t x)dt

(φ−1
ϵ (x)−φ−1

ϵ (z))2

−
(φ−1
ϵ )′(z)(x−z)2

∫ 1
0 (1−t)∂ϵ(φ−1

ϵ )′′((1−t)z+t x)dt

(φ−1
ϵ (x)−φ−1

ϵ (z))2
,

which is itself a smooth function of (x, z) when x − z is small enough (because φ−1
ϵ is smooth). Then

∥∂ϵRϵ h̃(m)∥Ḣ k ≲k,m ∥h̃∥L2/(1), k,m = 0, 1, . . . ,
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where the constant does not depend on ϵ, for all h̃ ∈ H m/(1), or, equivalently,

∥∂ϵRϵ h̃∥Ḣ k ≲k,m ∥h̃∥Ḣ−m , k,m = 0, 1, . . . , (3-5)

where the dot over H means that the norm does not measure frequency zero.

Definition 3.1. We say an operator is of class S if it satisfies (3-5). We say a family of operators is of
class S uniformly if for each k and m there is an implicit constant that makes (3-5) true for all operators
in the family.

Thus ∂ϵRϵ is of class S uniformly in ϵ. Since R0 = 0, Rϵ/ϵ is also of class S uniformly in ϵ.
Now the eigenvalue problem for h̃ is of the form

(cϵ∂x + H + Rϵ)h̃ = λ(ϵ)h̃ (mod 1)

or, equivalently,
(∂x + c−1

ϵ H + c−1
ϵ Rϵ)h̃ = c−1

ϵ λ(ϵ)h̃ (mod 1), (3-6)

where

cϵ = 2π
(∫ 2π

0

dy
uϵ(y)− vϵ

)−1

(3-7)

and Rϵ/ϵ is of class S uniformly in ϵ. Note that since uϵ and vϵ are analytic functions of ϵ on a
neighborhood of 0, with u0 = 0 and v0 = −1, so are φϵ , Rϵ and cϵ with φ0 = I, R0 = 0 and c0 = 1.

3C. Spectral analysis of the linearization. The eigenvalue problem (3-6) is a perturbation of the eigen-
value problem

h̃′
+ Hh̃ = λh̃ (mod 1),

with explicit eigenvalues
0 (double), ni, n = ±1,±2, . . . ,

and eigenfunctions
e±i x, ei(n+sgn n)x, n = ±1,±2, . . . .

They form an orthogonal basis of H k/(1) for any nonnegative integer k.

Definition 3.2. Let T : Ḣ k(T)→ Ḣ k(T) for k ∈ N be a linear operator. We will define

∥T ∥ := ∥T ∥Ḣ k(T)→Ḣ k(T).

The resolvent (∂x + H − z)−1 is also a Fourier multiplier whose action on Fourier modes is

(∂x + H − z)−1e±i(n+1)x
= (±ni − z)−1e±i(n+1)x, n = 0, 1, . . . . (3-8)

The circle
0n =

{
z : |z − ni | =

1
2

}
, n = ±1,±2, . . . ,

encloses a single eigenvalue ±ni , and the circle

00 =
{
z : |z| =

1
2

}
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encloses the double eigenvalue 0. On 0n and 00 we have

|z − mi | ≥
1
2 , m ∈ Z, (3-9)

so by (3-8),
∥(∂x + H − z)−1

∥ ≤ 2, z ∈ 0n, n ∈ Z. (3-10)

Moreover the projection

Pn = −
1

2π i

∫
0n

(∂x + H − z)−1 dz, n = ±1,±2, . . . ,

is the projection on the span of ei(n+sgn n)x and the projection

P0 = −
1

2π i

∫
00

(∂x + H − z)−1 dz

is the projection on the span of ei x and e−i x.
Now when ϵ is small enough and z ∈ 0n , we have

∂x + c−1
ϵ H + c−1

ϵ Rϵ − z = (∂x + H − z)(1 + (∂x + H − z)−1 R′

ϵ),

where
R′

ϵ = (∂x + c−1
ϵ H + c−1

ϵ Rϵ)− (∂x + H)= (c−1
ϵ − 1)H + c−1

ϵ Rϵ (3-11)

is analytic in ϵ near 0, with R′

0 = 0, thanks to the analyticity of cϵ . Taking the inverse gives

(∂x + c−1
ϵ H + c−1

ϵ Rϵ − z)−1
= (1 + (∂x + H − z)−1 R′

ϵ)
−1(∂x + H − z)−1

and the Neumann series

(1 + (∂x + H − z)−1 R′

ϵ)
−1

=

∞∑
n=0

((∂x + H − z)−1 R′

ϵ)
n (3-12)

converges because
∥(∂x + H − z)−1 R′

ϵ∥ ≤ 2∥R′

ϵ∥ ≲k ϵ < 1

when ϵ is small enough (depending on k). Moreover,

∥(1 + (∂x + H − z)−1 R′

ϵ)
−1

− I∥ ≲k ϵ

and so
∥(∂x + c−1

ϵ H + c−1
ϵ Rϵ − z)−1

− (∂x + H − z)−1
∥ ≲ ϵ

uniformly for z ∈ 0n . Hence the projections

Qn(ϵ)= −
1

2π i

∫
0n

(∂x + c−1
ϵ H + c−1

ϵ Rϵ − z)−1 dz, n ∈ Z, (3-13)

exist and satisfy
∥Qn(ϵ)− Pn∥ ≲k ϵ, n ∈ Z, (3-14)

uniformly in n. Then by [Kato 1976, Chapter I, Section 4.6], when ϵ is small enough, Qn(ϵ) is conjugate
to Pn . Thus dim ran Qn(ϵ) = 1 for n ̸= 0 and dim ran Q0(ϵ) = 2. So ∂x + c−1

ϵ H + c−1
ϵ Rϵ has a single
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eigenvalue enclosed by 0n for n ̸= 0. In Section 3A we showed that the action on the range of Q0(ϵ) is
given by a nonzero nilpotent 2-by-2 matrix. If z is outside all these circles, then (3-10) still holds and
the Neumann series (3-12) still converges to show that ∂x + c−1

ϵ H + c−1
ϵ Rϵ − z is invertible, so it has no

other eigenvalues.

3D. Analyticity of eigenvalues and eigenvectors. By (3-8) and (3-9), (∂x + H − z)−1 is analytic in (z, ϵ)
for z in a neighborhood U of

⋃
n∈Z 0n , and ϵ near 0. By (3-11), R′

ϵ is analytic in ϵ near 0, so the series
(3-12) shows that (∂x + c−1

ϵ H + c−1
ϵ Rϵ − z)−1 is analytic in (z, ϵ) for z ∈ U and ϵ near 0, and the integral

(3-13) shows that all the projections Qn(ϵ) (n ∈ Z) are analytic in a neighborhood of 0 independent of n.
Let ψn(ϵ) be the corresponding eigenvectors to Qn(ϵ) for n ̸= 0. Thanks to (3-14), a good choice is

ψn(ϵ)= Qn(ϵ)ei(n+sgn n)x , which is nonzero and analytic in a neighborhood of 0 independent of n. Then
by (3-6),

Qn(ϵ)(∂x + c−1
ϵ (H + Rϵ))ei(n+sgn n)x

= (∂x + c−1
ϵ (H + Rϵ))ψn(ϵ)= c−1

ϵ λn(ϵ)ψn(ϵ).

On the other hand, the left-hand side equals

(n + sgn n)i Qn(ϵ)ei(n+sgn n)x
+ c−1

ϵ Qn(ϵ)(H + Rϵ)e±i(n+sgn n)x ,

which is another vector analytic in ϵ near 0. Then by the next lemma, all the eigenvalues c−1
ϵ λn(ϵ), and

hence λn(ϵ), are analytic in a neighborhood of 0 independent of n.

Lemma 3.3. Let u(ϵ) and v(ϵ) be two vectors analytic in ϵ ∈ U satisfying

u(ϵ) ̸= 0 and v(ϵ)= λ(ϵ)u(ϵ), ϵ ∈ U.

Then λ(ϵ) is analytic in ϵ ∈ U.

Proof. Without loss of generality assume that 0 ∈ U. Since the result is local in ϵ, it suffices to show that
λ(ϵ) is analytic in a smaller neighborhood of 0.

Since u(0) ̸= 0, we can find a linear functional f such that f (u(0)) ̸= 0. Then f (u(ϵ)) ̸= 0 in a
neighborhood of 0, and so

λ(ϵ)=
f (v(ϵ))
f (u(ϵ))

is analytic in a neighborhood of 0. □

Regarding the double eigenvalue 0, in Section 3A we showed that u′
ϵ and ∂ϵuϵ are two generalized

eigenvectors of the operator Lϵ . Using the relation given in Section 3B, they correspond to two generalized
eigenvectors ψ−

0 (ϵ) and ψ+

0 (ϵ) of the operator ∂x + c−1
ϵ H + c−1

ϵ Rϵ , via the relation (ψ−

0 (ϵ) ◦φϵ)
′
= u′

ϵ

and (ψ+

0 (ϵ) ◦φϵ)
′
= ∂ϵuϵ . Then clearly ψ±

0 (ϵ) are both analytic in ϵ.
From the analyticity of the eigenvalues c−1

ϵ λn(ϵ), it is easy to derive bounds on their Taylor coefficients.

Proposition 3.4. For k ≥ 1 and n ̸= 0, the coefficient of ϵk in c−1
ϵ λn(ϵ) is bounded in absolute value

by Ck for a constant C > 0 independent of n,
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Proof. At the end of Section 3C we showed that when ϵ is in a neighborhood of 0 independent of n, the
eigenvalues c−1

ϵ λn(ϵ) are enclosed in the circle 0n . Then

|c−1
ϵ λn(ϵ)− ni |< 1

2 , n = ±1,±2, . . . .

The result follows from Cauchy’s integral formula for Taylor coefficients. □

Corollary 3.5. For k ≥ 0 and n ̸= 0, the coefficient of ϵk in λn(ϵ) is bounded in absolute value by |n|Ck

for a constant C > 0 independent of n.

Proof. Since cϵ is analytic in ϵ near 0 with c0 =1, and λn(0)=ni , the result follows from Leibniz’s rule. □

3E. Conjugation to a Fourier multiplier. We have conjugated the eigenspaces of T = ∂x +c−1
ϵ H +c−1

ϵ Rϵ
(and also of cϵ∂x + H + Rϵ) to Fourier modes via the operator

1 + Wϵ =

∑
n∈Z

Pn Qn(ϵ),

where P0 is the projection onto the span of e±i x, Q0(ϵ) is the projection onto the span of ψ±

0 (ϵ), Pn is the
projection onto the span of ei(n+sgn n)x, and Qn(ϵ) is the projection onto the span ofψn(ϵ), n =±1,±2, . . . .

We will view T as a perturbation of ∂x + c−1
ϵ H and follow the proof of [Kato 1976, Chapter V,

Theorem 4.15a]. In the process we will extract more information from the fact that Rϵ is of class S. Since

P2
n = Pn,

∑
n∈Z

Pn = 1, (3-15)

we have
Wϵ =

∑
n∈Z

Pn(Qn(ϵ)− Pn) (3-16)

and W0 = 0.

Proposition 3.6. Wϵ/ϵ is of class S uniformly in ϵ.

Proof. We bound each term on the right-hand side separately. By [Kato 1976, Chapter V, (4.38)],

Qn(ϵ)− Pn = −c−1
ϵ Qn(ϵ)RϵZn(ϵ)− c−1

ϵ Z ′

n(ϵ)RϵPn,

where
Zn(ϵ)=

1
2π i

∫
0n

(z − (n + (1 − c−1
ϵ ) sgn n)i)−1(∂x + c−1

ϵ H − z)−1 dz,

Z ′

n(ϵ)=
1

2π i

∫
0n

(z − c−1
ϵ λn(ϵ))

−1(T − z)−1 dz.

We now bound the operator norms of the right-hand side, with uniformity in ϵ and decay in n, in order to
show that the sum in n converges.

First note that it is clear from the frequency side that when ϵ is in a neighborhood of 0 independent of n
and z ∈

⋃
n∈Z 0n for all m ≥ 0, the operator (∂x + c−1

ϵ H − z)−1 is bounded from H m to H m, uniformly in
ϵ and z. Since Rϵ/ϵ is of class S uniformly in ϵ (see (3-5) and notice that R0 = 0), it follows from the
Neumann series that ∥(T −z)−1

∥Ḣm→Ḣm is finite and only depends on m. Since |z−(n+(1−c−1
ϵ ) sgn n)i |

and |z − c−1
ϵ λn(ϵ)| are uniformly bounded from below, both Zn(ϵ) and Z ′

n(ϵ) are bounded from Ḣ m
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to Ḣ m, uniformly in ϵ and n. Since Qn(ϵ) is given by a similar integral (3-13), it also has this property,
which is also trivially true for Pn . Now, for all n,m, k ∈ Z, m, k ≥ 0 and h̃ ∈ L2,

∥Z ′

n(ϵ)RϵPn h̃∥Ḣ k ≲k ∥RϵPn h̃∥Ḣ k ≲m,k |ϵ|∥Pn h̃∥Ḣ−m−2

≲m,k |ϵ|(1 + |n|)−2
∥h̃∥Ḣ−m (3-17)

because Pn is the projection onto very specific Fourier modes. For the first term we have

∥RϵZn(ϵ)h̃∥Ḣ k ≲m,k |ϵ|∥Zn(ϵ)h̃∥Ḣ−m ≲m,k |ϵ|∥h̃∥Ḣ−m .

To introduce the action of Qn(ϵ), note that the image of Qn(ϵ) lies in the eigenspace of the operator
cϵ∂x + H + Rϵ , with eigenvalue λn(ϵ), so for n ̸= 0 and u ∈ Im Qn(ϵ) we have

u = λn(ϵ)
−1(cϵu′

+ Hu + Rϵu),

so ∥u∥Ḣ k ≲k |λn(ϵ)|
−1

∥u∥Ḣ k+1 ≲ |n|
−1

∥u∥Ḣ k+1 . Hence

∥Qn(ϵ)RϵZn(ϵ)∥Ḣ k ≲k n−2
∥RϵZn(ϵ)∥Ḣ k+2 ≲m,k |ϵ|(1 + |n|)−2

∥h̃∥Ḣ−m . (3-18)

This also holds for n = 0 because Rϵ/ϵ is of class S uniformly, so Wϵ/ϵ is of class S uniformly in ϵ
thanks to the convergence of

∑
n∈Z(1 + |n|)−2. □

Now for k = 0, 1, . . . , there is a neighborhood of 0 such that when ϵ is in this neighborhood,
∥Wϵ∥Ḣ k→Ḣ k < 1, so 1 + Wϵ : Ḣ k

→ Ḣ k is invertible. By (3-15) and (3-16) it follows easily that

(1 + Wϵ)Qn(ϵ)= Pn(1 + Wϵ), (3-19)

so the eigenspace of T is conjugated to the (span of) Fourier modes, and hence T is conjugated to a
Fourier multiplier.

We have proven the following lemma:

Lemma 3.7. For ϵ small enough, there exists an operator Wϵ such that Wϵ/ϵ is of class S, uniformly in ϵ.
Moreover:

(1) 1 + Wϵ : Ḣ k
→ Ḣ k is invertible.

(2) (1 + Wϵ)Qn(ϵ)= Pn(1 + Wϵ), n ∈ Z.

(3) If ψ is in the closed linear span of the eigenvectors ψn(ϵ) (n ̸= 0) of cϵ∂x + H + Rϵ , then

(1 + Wϵ)(cϵ∂x + H + Rϵ)ψ =3ϵ(1 + Wϵ)ψ,

where 3ϵ is a multiplier such that

3ϵei(n+sgn n)x
= λn(ϵ)ei(n+sgn n)x , n = ±1,±2, . . . .

3F. Taylor expansion of eigenvalues. Now we Taylor expand the eigenvalues λn(ϵ) for n ̸= 0. To do so
it is more convenient to study the eigenvalue problem (3-2) for h:

Lϵg := ((uϵ − vϵ)g)′ + Hg = λ(ϵ)g.
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Recall the operator L = L0 = ∂x + H whose action on the Fourier modes is

F(Lg)(m)= i(m − sgn m)ĝ(m),

with eigenvalues 0 (double), ±i , ±2i , . . . (g mean zero).
Since (uϵ, vϵ) is analytic in ϵ on a neighborhood of 0, and

∥h′
∥L2 ≤ ∥h′

+ Hh∥L2 + ∥Hh∥L2 = ∥Lh∥L2 + ∥h∥L2,

by [Kato 1976, Chapter VII, Theorem 2.6], Lϵ is a holomorphic family of operators of type (A), so by
Chapter VII, Section 2.3, all the results in Chapter II, Sections 1 and 2 apply, and we can compute the
Taylor coefficients of λ(ϵ) as if Lϵ acted on a finite-dimensional vector space.

We start with computing the resolvent of L ,

R(z)= (L − z)−1

whose action on the Fourier modes is

F(R(z)g)(m)= (i(m − sgn m)− z)−1ĝ(m).

Around the eigenvalue ni (n = ±1,±2, . . . ) we have the expansion

R(z)= (ni − z)−1 Pn +

∞∑
k=0

(z − ni)k Sk+1
n ,

where Pn is the projection on the span of ei(n+sgn n)x and

F(Sng)(m)=
ĝ(m)

i(m − sgn m − n)
, m ̸= n + sgn n. (3-20)

By [Kato 1976, (II.2.33)],

λn(ϵ)= ni +

∞∑
k=1

ϵkλ(k)n , n = ±1,±2, . . . ,

where

λ(k)n =

k∑
p=1

(−1)p

p

∑
v1+···+vp=n, vj ≥1

h1+···+h p=p−1

Tr L(vp)S(h p)
n · · · L(v1)S(h1)

n ,

where S(0)n = −Pn and, for h ≥ 1, S(h)n = Sh
n , with Sn defined in (3-20), and L(v) is the coefficient of

ϵv in the Taylor expansion of Lϵ . Note that the constraints in the summation imply that there is some
j ∈ {1, . . . , p} such that h j = 0 and so S(h j )

n = −Pn , so every summand is a finite-rank operator whose
trace is thus well-defined.

Lemma 3.8. If A is a finite-rank operator, then Tr AB = Tr B A.

Proof. By linearity we can assume A has the form A( · )= f ( · )v for some (not necessarily continuous)
linear functional f . Then Tr A = f (v). Since AB( · )= f (B · )v and B A( · )= f ( · )Bv, it follows that
Tr AB = f (Bv)= Tr B A. □
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Using the lemma above, we can simplify the sum in λ(k)n a little. Indeed, there are p circular rotations
of the tuple (h1, . . . , h p). Since

(∑
j h j , p

)
= 1, the p circular rotations are all distinct, so we can choose

the lexicographically smallest one as a representative. For such a representative, h1 = minj h j = 0, so
S(h1)

n = −Pn , and thus we only need to act L(vp)S(h p)
n · · · L(v1) on ei(n+sgn n)x and take the (n+ sgn n)-th

mode to compute the trace. Thus

λ(k)n =

k∑
p=1

(−1)p−1
∑

v1+···+vp=k, vj ≥1
h1+···+h p=p−1

(h1,...,h p) is a representative

F [L(vp)S(h p)
n · · · L(v1)ei(n+sgn n)x

](n + sgn n). (3-21)

Let us compute some terms λ(k)n by using the formula (3-21). We have

λ(1)n = Tr L(1)Pn = 0

because L1 shifts the mode by 1, and

λ(2)n = Tr(L(2)Pn − L(1)Sn L(1)Pn).

Put s = sgn n. We extract the (n+s)-th mode of each term:

Tr L(2)Pn = F [L(2)2ei(n+s)x
](n + s)=

i(n + s)
4

,

L(1)Sn L(1)ei(n+s)x
=

i L(1)Sn

2
((n + s + 1)ei(n+s+1)x

+ (n + s − 1)ei(n+s−1)x)

=
L(1)

2
((n + s + 1)ei(n+s+1)x

− (n + s − 1)ei(n+s−1)x),

Tr L(1)Sn L(1)Pn =
i(n + s + 1)(n + s)− i(n + s − 1)(n + s)

4
=

i(n + s)
2

,

so

λ(2)n =
i(n + s)

4
−

2i(n + s)
4

= −
i(n + s)

4
.

We can further compute that

λn(ϵ)= in −
ϵ2i(n + s)

4
−

11ϵ4i(n + s)
32

−
527iϵ6(n + s)

768
+ On(ϵ

7)

for n = ±1,±2,±3, . . . .

Proposition 3.9. For n = ±1,±2, . . . ,

λ(k)n =

{
0, 2 ∤ k,
ic(k)(n + sgn n), k ≤ 2|n| + 2,

where c(k) is the k-th Taylor coefficient of cϵ as defined in (3-7).
When k ≥ 2|n| + 4, λ(k)n is still purely imaginary but the formula λ(k)n = ic(k)(n + sgn n) does not hold

in general.
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Proof. Firstly we notice that, for n = ±1, the coefficient of ϵ6 in λ±1(ϵ) is

λ1(ϵ)= i −
ϵ2i
2

−
11ϵ4i

16
−

529ϵ6i
384

+ O(ϵ7),

which does not hold for λ(6)
±1 = ±2ic(6).

Next, we prove the fist part of the lemma. In each summand of (3-21), all the coefficients are real,
except that each operator L brings a factor of i to the Fourier coefficients (via the operator ∂x ), and each
operator Sn removes a factor of i (see (3-20)). Hence each summand is purely imaginary, and so is λ(k)n .

In each summand of (3-21), the operator S(h j )
n is a Fourier multiplier that does not shift the modes,

while the operator L(m)g = ((u(m) − v(m))g)′ shifts the modes by at most m because u(m) only contains
modes up to e±imx. Also the amount of shift is equal to m (mod 2). Thus when acting the sequence
L(vp)S(h p)

n · · · L(v1) on ei(n+s)x, the mode is consecutively shifted by at most v1, v2, . . . , vp, and the total
amount of shift is equal to

∑
j vj = k (mod 2). Since in the end we are taking the (n+s)-th mode, the

total amount of shift must be 0 in order to count, so when k is odd λ(k)n = 0. When k is even, the mode
ei(n+s)x can only be shifted as far as ei(n+s±k/2)x ; otherwise it can never be shifted back. Hence when
k ≤ 2|n|+2 = 2|n + s|, the frequency always has the same sign as n or becomes 0. In the former case we
can take sgn m = sgn n in (3-20), while in the latter case the derivative in L kills it, so it does not hurt if
we still take sgn m = sgn n in (3-20). Either way we can take sgn m = sgn n in (3-20). Thus the action of
Sn is the same as that of S′

n , where

F(S′

ng)(m)=
ĝ(m)

i(m − n − sgn n)
, m ̸= n + sgn n.

For n > 0, the operator S′
n is the analog of Sn for L+, with

F(L+g)(m)= i(m − 1)ĝ(m),

i.e., L+g = g′
− ig. Hence λ(k)n remains the same if we replace L with L+. Now we have

L+

ϵ g := L+g +

∞∑
n=1

ϵn L(n)g = −vϵg′
− ig + (uϵg)′ = ((uϵ − vϵ)g)′ − ig,

whose eigenvalue problem is
((uϵ − vϵ)g)′ − ig = λ+(ϵ)g.

Using the same change of variable as in Section 3B, the problem above can be transformed to

h̃′
− ic−1

ϵ h̃ = c−1
ϵ λ

+(ϵ)h̃,

whose eigenvalues are
λ+

n′(ϵ)= n′cϵi − i.

Since when ϵ → 0, λn(ϵ)→ ni and cϵ → 1, we must have n′
= n + 1, and so

λn(ϵ)= (n + 1)cϵi − i + On(ϵ
2n+4).

For n < 0, note that since L preserves real-valued functions, its eigenvalues come in conjugate pairs,
so λn(ϵ)= λ|n|(ϵ)= −λ|n|(ϵ) has the same property. □
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Corollary 3.10. When |ϵ| is small enough,

|λn(ϵ)− (n + sgn n)cϵi + i sgn n|< |n|(Cϵ)2|n|+4 < C ′ϵ6, n ∈ Z\{0},

|λ′

n(ϵ)− (n + sgn n)∂ϵcϵi |< |n|(Cϵ)2|n|+3 < C ′ϵ5, n ∈ Z\{0},

for some constant C , C ′ > 0 independent of n.

Proof. By Proposition 3.9. the Taylor expansions of λn(ϵ) and (n + sgn n)cϵi − i sgn n differ only from
the term ϵ2|n|+4. By Corollary 3.5, the error terms of the former sum up to O

(
|n|

∑
∞

k=2|n|+4(Cϵ)
k
)
=

O(|n|(Cϵ)2|n|+4) if, say, C |ϵ|< 1
2 . The error term of the latter clearly also satisfy this bound.

To extend the chain of inequalities it suffices to note that |n|(Cϵ)2|n|−2 is uniformly bounded for n ̸= 0
if |Cϵ|< 1

2 . □

3G. Time resonance analysis. For m, n and l ∈ Z we consider

λm(ϵ)+ λn(ϵ)+ λl(ϵ)= (m + n + l)cϵi + (sgn m + sgn n + sgn l)(cϵ − 1)i + O(ϵ6).

Proposition 3.11. If m, n, l ∈ Z and mnl ̸= 0, then when ϵ is small enough, |λm(ϵ)+λn(ϵ)+λl(ϵ)|>
1
5ϵ

2.

Proof. By (3-7) and (2-7),

cϵ
2π

=

(∫ 2π

0

dy
uϵ(y)− vϵ

)−1

=

(∫ 2π

0

dy

1 + ϵ cos y −
1
2ϵ

2 cos 2y +
1
4ϵ

2

)−1

+ O(ϵ3)

=

(∫ 2π

0

(
1 − ϵ cos y + ϵ2 cos2 y +

1
2ϵ

2 cos 2y −
1
4ϵ

2) dy
)−1

+ O(ϵ3),

cϵ =
(
1 +

1
4ϵ

2)−1
+ O(ϵ3)= 1 −

1
4ϵ

2
+ O(ϵ3).

We distinguish three cases.

Case 1: m + n + l ̸= 0. Then |m + n + l| ≥ 1. Since cϵ − 1 ≲ ϵ2,

λm(ϵ)+ λn(ϵ)+ λl(ϵ)= (m + n + l)cϵi + O(ϵ2).

Since cϵ → 1 as ϵ → 0, we have |λm(ϵ)+ λn(ϵ)+ λl(ϵ)|>
1
2 |m + n + l| for small ϵ.

Case 2: m + n + l = 0 and mnl ̸= 0. Then

λm(ϵ)+ λn(ϵ)+ λl(ϵ)= −
1
4(sgn m + sgn n + sgn l)ϵ2i + O(ϵ3).

Since |sgn m|= |sgn n|= |sgn l|= 1, we have |sgn m+sgn n+sgn l| ≥ 1, so |λm(ϵ)+λn(ϵ)+λl(ϵ)|>
1
5ϵ

2

when ϵ is small enough. □

When m + n + l = 0 and mnl = 0, since λn(ϵ) is odd in n, it follows that λm(ϵ)+ λn(ϵ)+ λl(ϵ)= 0.
We do have time resonance in this case. We will eliminate this case by choosing a new frame of reference.

4. A new frame of reference

Recall that the traveling wave solution

fϵ(x, t)= uϵ(x + vϵ t)
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satisfies
∂t fϵ = H fϵ + fϵ∂x fϵ,

i.e.,
vϵu′

ϵ = Huϵ + uϵu′

ϵ .

Now we aim to find a new reference frame. Let P±

0 (ϵ) be the projection on the 1-dimensional space
spanned by the eigenvector ϕ+

0 (ϵ)= ∂ϵuϵ and ϕ−

0 (ϵ)= −ϵ−1u′
ϵ , respectively. Then we aim to rewrite

f (x, t)= uϵ(t)(x + a(t))+ g(x + a(t), t),

where ϵ, a ∈ R and P±

0 (ϵ(t))g = 0. We first show that it is always possible, provided that f is close to a
traveling wave.

Proposition 4.1. Let k ≥ 2. Then there is r = r(k) > 0 such that if |ϵ0| < r and ∥ f − uϵ0∥H k < r |ϵ0|,
then there is ϵ ∈ R, a ∈ R/2πZ and g ∈ H k such that

f (x)= uϵ(x + a)+ g(x + a), (4-1)

P±

0 (ϵ)g = 0, (4-2)

|ϵ− ϵ0| + ∥g∥H k ≲ ∥ f − uϵ0∥H k . (4-3)

Moreover, ϵ, a and g depend smoothly on f .

Proof. Define the map F : (−r, r)2 → R2, (ϵ, a) 7→ (y+, y−), with

P±

0 (ϵ)( f (x − a)− uϵ(x))= y±ϕ±

0 (ϵ). (4-4)

We now find the solution to the equation F(ϵ, a) = 0. Since P±

0 (ϵ) is uniformly bounded in L2 and
∥ϕ±

0 (ϵ)∥ is uniformly bounded from below,

|F(ϵ, a)| ≲ ∥ f (x − a)− uϵ∥L2 . (4-5)

Summing the two equations in (4-4) and taking the total derivative yields

− (P+

0 (ϵ)+ P−

0 (ϵ))( f ′(x − a))da −ϕ+

0 (ϵ)dϵ+ (∂ϵP+

0 (ϵ)+ ∂ϵP−

0 (ϵ))( f (x − a)− uϵ(x))dϵ (4-6)

= ϕ+

0 (ϵ)dy+
+ϕ−

0 (ϵ)dy−
+ y+∂ϵϕ

+

0 (ϵ)dϵ+ y−∂ϵϕ
−

0 (ϵ)dϵ. (4-7)

Since ∥ f ∥H2 ≤ ∥uϵ0∥H2 + r |ϵ0| ≲ |ϵ0|, we have

∥ f (x − a)− uϵ∥H1 ≤ ∥ f (x − a)− f (x)∥H1 + ∥ f − uϵ0∥H1 + ∥uϵ − uϵ0∥H1

≲ |aϵ0| + r |ϵ0| + |ϵ− ϵ0|. (4-8)

Since both P±

0 (ϵ) and ∂ϵP±

0 (ϵ) are uniformly bounded on L2, and u′
ϵ = −ϵϕ−

0 (ϵ),

∥(4-6) − ϵϕ−

0 (ϵ)da +ϕ+

0 (ϵ)dϵ∥L2 ≲ (|aϵ0| + r |ϵ0| + |ϵ− ϵ0|)(|da| + |dϵ|).

By (4-5) and (4-8),
∥y±∂ϵϕ

±

0 (ϵ)∥L2 ≲ |F(ϵ, a)| ≲ |aϵ0| + r |ϵ0| + |ϵ− ϵ0|,
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so
∥(4-7) −ϕ+

0 (ϵ)dy+
−ϕ−

0 (ϵ)dy−
∥L2 ≲ (|aϵ0| + r |ϵ0| + |ϵ− ϵ0|)|dϵ|.

Hence the equality between (4-6) and (4-7) gives an estimate of the differential∥∥∥∥d F(ϵ, a)−
(

1 0
0 −ϵ

)∥∥∥∥ ≲ |aϵ0| + r |ϵ0| + |ϵ− ϵ0|.

We assume that the solution (ϵ, a) satisfies |ϵ− ϵ0| + |aϵ0|< r0|ϵ0|, where r0 is small enough. This in
particular implies 1

2 |ϵ0|< |ϵ|< 2|ϵ0|. Then∥∥∥∥d F(ϵ, a)−
(

1 0
0 −ϵ0

)∥∥∥∥ ≲ (r0 + r)|ϵ0|

is also small enough. Let

G = I +

(
d F(ϵ, a)−

(
1 0
0 −ϵ0

)) (
1 0
0 −1/ϵ0

)
.

Then

d F = G
(

1 0
0 −ϵ0

)
and

∥G − I∥ ≲ r0 + r.

If r0 and r are small enough, then ∥G∥ and ∥G−1
∥< 2.

Let (ϵ1, a1)= (ϵ0, 0)− d F(ϵ0, 0)−1 F(ϵ0, 0). Then (recalling (4-5))

|ϵ1 − ϵ0| + |a1ϵ0| ≲ |G−1 F(ϵ0, 0)| ≲ |F(ϵ0, 0)| ≲ ∥ f − uϵ0∥L2 ≲ r |ϵ0|.

Since |∂2
ϵ F | and |∂aϵF | ≲ 1, and |∂2

a F | ≲ ∥ f ∥H2 ≲ |ϵ0|, by Taylor’s theorem,

|F(ϵ1, a1)| ≲ |ϵ1 − ϵ0|
2
+ |ϵ1 − ϵ0||a1| + |ϵ0||a1|

2 ≲ r |F(ϵ0, 0)|.

Hence the iteration (ϵn+1, an+1)= (ϵn, an)+ d F(ϵn, an)
−1 F(ϵn, an) converges when r is small enough.

Moreover |ϵn − ϵ0| + |anϵ0| ≲ |F(ϵ0, 0)|. Then (ϵ, a) := limn→∞(ϵn, an) satisfies F(ϵ, a) = 0 and
|ϵ− ϵ0| + |aϵ0| ≲ |F(ϵ0, 0)| ≲ r |ϵ0|< r0|ϵ0| if r is small compared to r0.

Let g = f (x − a)− uϵ . Then (4-1) and (4-2) clearly hold. Moreover,

∥g∥H k = ∥g(x + a)∥H k = ∥ f (x)− uϵ(x + a)∥H k

≤ ∥ f − uϵ0∥H k + ∥uϵ(x + a)− uϵ0(x)∥H k

≲ ∥ f − uϵ0∥H k + |ϵ− ϵ0| + |aϵ0|

≲ ∥ f − uϵ0∥H k + |F(ϵ0, 0)| ≲ ∥ f − uϵ0∥H k

showing (4-3). The smooth dependence of ϵ, a and g on f is also clear. □

By translation symmetry, if f is r |ϵ0|-close to uϵ0(x + a) for some a ∈ R/2πZ, we can reach a similar
conclusion. Then we can write

f (x, t)= uϵ(t)(x + a(t))+ g(x + a(t), t).



STABILITY OF TRAVELING WAVES FOR THE BURGERS–HILBERT EQUATION 2133

We will obtain an energy estimate for g. Combined with local well-posedness of (1-1) and Proposition 4.1,
we can show that the solution extends as long as the energy estimate closes, see the end of Section 5B.

To get the energy estimate, we first need to derive an evolution equation for g. Since f is differentiable
in t , so are ϵ(t), a(t) and g, and we get

ft(x, t)= a′(t)(u′

ϵ + gx)(x + a(t))+ ϵ′(t)∂ϵuϵ(x + a(t))+ gt(x + a(t), t)

and

(H f + f fx)(x, t)= (Huϵ + uϵu′

ϵ)(x + a(t))+ Hg(x + a(t), t)
+ ∂x(uϵ(x + a(t))g(x + a(t), t))+ (ggx)(x + a(t), t).

The equation for g is then

gt = vϵu′

ϵ − a′(t)(u′

ϵ + gx)− ϵ
′(t)∂ϵuϵ + Hg + (uϵg)x + ggx

= Lϵg + (vϵ − a′(t))(u′

ϵ + gx)− ϵ
′(t)∂ϵuϵ + ggx .

Since P±

0 (ϵ)g(t)= 0, we have P±

0 (ϵ)gt = −ϵ′(t)∂ϵP±

0 (ϵ)g, so the action of the projections P±

0 (ϵ) on
the above equation is

(vϵ − a′(t))P+

0 (ϵ)gx + ϵ′(t)(∂ϵP+

0 (ϵ)g − ∂ϵuϵ)+ P+

0 (ϵ)(ggx)= 0,

(vϵ − a′(t))(u′

ϵ + P−

0 (ϵ)gx)+ ϵ
′(t)∂ϵP−

0 (ϵ)g + P−

0 (ϵ)(ggx)= 0.

Since P±

0 (ϵ) are bounded on L2, we have ∥P±

0 (ϵ)gx∥L2 ≲ ∥g∥H1 . Since P±

0 (ϵ) are analytic in ϵ, we have
∥∂ϵP±

0 (ϵ)g∥L2 ≲ ∥g∥L2 . Since P±

0 (ϵ) is a projection, we have P±

0 (ϵ)
2
= P±

0 (ϵ). Taking the derivative
in ϵ and using the constraint P±

0 (ϵ)g = 0, we have P±

0 (ϵ)∂ϵP±

0 (ϵ)g = ∂ϵP±

0 (ϵ)g, i.e., ∂ϵP±

0 (ϵ)g is in
the 1-dimensional space spanned by ϕ±

0 (ϵ). Hence

|P±

0 (ϵ)gx/ϕ
+

0 (ϵ)| ≲ ∥g∥H1, |∂ϵP±

0 (ϵ)g/ϕ
±

0 (ϵ)| ≲ ∥g∥L2 .

Thus, dividing the two equations by ϕ±

0 (ϵ) we get∣∣∣∣((
0 1
ϵ 0

)
+ O(∥g∥H1)

) (
vϵ − a′(t)
ϵ′(t)

)∣∣∣∣ =

∣∣∣∣(P+

0 (ϵ)(ggx)/ϕ
+

0 (ϵ)

P−

0 (ϵ)(ggx)/ϕ
−

0 (ϵ)

)∣∣∣∣ ≲ ∥g(t)∥2
H1 .

Assuming ∥g(t)∥H1/|ϵ| is small enough we have(
vϵ − a′(t)
ϵ′(t)

)
=

(
O(∥g(t)∥2

H1/|ϵ|)

O(∥g(t)∥2
H1)

)
. (4-9)

4A. Diagonalization. To find the evolution of other modes, we diagonalize the equation for g. Let
g = hx and h = h̃ ◦φϵ , where φϵ satisfies (3-3). Recall from (3-1) that Lϵg = −vϵgx + Hg + (uϵg)x , so

ht = −vϵhx + Hh + uϵhx − ϵ′(t)∂ϵUϵ + (vϵ − a′(t))(uϵ + hx)+
1
2 h2

x (mod 1),

where Uϵ is a primitive of uϵ . Differentiating h = h̃ ◦φϵ with respect to ϵ we get

ht = h̃t ◦φϵ + ϵ′(t)(∂ϵφϵ)(h̃x ◦φϵ).
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On the other hand,

(−vϵhx + Hh + uϵhx)x = Lϵg = (((cϵ∂x + H + Rϵ)h̃) ◦φϵ)x ,

so

h̃t = (cϵ∂x + H + Rϵ)h̃ − ϵ′(t)(∂ϵφϵ ◦φ−1
ϵ )h̃x − ϵ′(t)∂ϵUϵ ◦φ−1

ϵ

+ (vϵ − a′(t))(uϵ + hx) ◦φ
−1
ϵ +

1
2 h2

x ◦φ−1
ϵ (mod 1).

By the chain rule, hx = φ′
ϵ(h̃x ◦φϵ), so hx ◦φ−1

ϵ = (φ′
ϵ ◦φ−1

ϵ )h̃x , and

h̃t = (cϵ∂x + H + Rϵ)h̃ +8ϵ h̃x − ϵ′(t)∂ϵUϵ ◦φ−1
ϵ + (vϵ − a′(t))uϵ ◦φ−1

ϵ +
1
2(φ

′

ϵ ◦φ−1
ϵ )2h̃2

x (mod 1),

8ϵ = −ϵ′(t)(∂ϵφϵ ◦φ−1
ϵ )+ (vϵ − a′(t))(φ′

ϵ ◦φ−1
ϵ ).

Using the operator Wϵ from Lemma 3.7 we have

(1 + Wϵ)(cϵ∂x + H + Rϵ)=3ϵ(1 + Wϵ),

where 3ϵ is a Fourier multiplier whose action on the Fourier mode ei(n+sgn n)x is multiplication by λn(ϵ).
Since Wϵ/ϵ is of class S, uniformly in ϵ, for any smooth function F , the operator

h̃ 7→ Rϵ(F)h̃ := (1 + Wϵ)(Fh̃x)− F((1 + Wϵ)h̃)x

is of class S, with the implicit constants depending on the Ck norms of F .
Let h = (1 + Wϵ)h̃. Then

(1 + Wϵ)h̃t =3ϵh+8ϵhx − ϵ′(t)(1 + Wϵ)(∂ϵUϵ ◦φ−1
ϵ )

+ (vϵ − a′(t))(1 + Wϵ)(uϵ ◦φ−1
ϵ )+ Nϵ[h, h] +Rϵ(8ϵ)h̃ (mod 1),

where
Nϵ[h, h] =

1
2(φ

′

ϵ ◦φ−1
ϵ )2((1 + Wϵ)

−1h)2x . (4-10)

Both Rϵ(∂ϵφϵ ◦φ−1
ϵ ) and Rϵ(φ

′
ϵ ◦φ−1

ϵ − 1)/ϵ are of class S, uniformly in ϵ when ϵ is small. Moreover,
since Wϵ is analytic in ϵ with W0 = 0, so is Rϵ(1) with R0(1)= 0. Hence Rϵ(1)/ϵ is of class S uniformly
in ϵ, and so is Rϵ(φ

′
ϵ ◦φ−1

ϵ )/ϵ.
Since ∂ϵuϵ and u′

ϵ are in the generalized eigenspace of Lϵ associated with the eigenvalue 0, we have
∂ϵUϵ ◦φ−1

ϵ and uϵ ◦φ−1
ϵ are in the corresponding space of cϵ∂x + H + Rϵ , so (1 + Wϵ)(∂ϵUϵ ◦φ−1

ϵ ) and
(1 + Wϵ)(uϵ ◦φ−1

ϵ ) are in the space spanned by sin x and cos x , according to Lemma 3.7.
Now we have

ht = (1 + Wϵ)h̃t + ϵ′(t)∂ϵWϵ h̃

=3ϵh+8ϵhx + Nϵ[h, h] + Rest (mod 1, sin x, cos x), (4-11)

where Nϵ[h, h] is given by (4-10) and

Rest = ϵ′(t)(∂ϵWϵ)h̃ +Rϵ(8ϵ)h̃

is also of class S uniformly in ϵ when ϵ is small.
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Recall that ϵ′(t) and a′(t) are chosen such that P0(ϵ)g(t)= 0 for all t , where P0(ϵ) is the projection
onto the span of ∂ϵuϵ and u′

ϵ . This implies Q0(ϵ)h̃(t)= 0 for all t , where Q0(ϵ) is the projection onto
the span of ∂ϵUϵ ◦φ−1

ϵ and uϵ ◦φ−1
ϵ . Since 1 + Wϵ maps the span of ∂ϵUϵ ◦φ−1

ϵ and uϵ ◦φ−1
ϵ to the span

of sin x and cos x , we have ĥ(1)= ĥ(−1)= 0 for all t .

5. Energy estimates

Since ĥ(1)= ĥ(−1)= 0 for all t , for k = 0, 1, . . . we define the energy

Ek =
1
2∥h∥2

Ḣ k =
1
2∥h∥2

H k/(1,sin x,cos x)

and aim to control its growth.
Using the evolution equation (4-11) for h and the anti-self-adjointness of 3ϵ we get

d
dt

Ek(t)= E8(t)+ EN (t)+ ERest(t),

E8(t)= ⟨8ϵhx , h⟩Ḣ k ,

EN (t)= ⟨Nϵ[h(t), h(t)], h(t)⟩Ḣ k ,

ERest(t)= ⟨ϵ′(t)∂ϵWϵ h̃(t)+Rϵ(8ϵ)h̃(t), h(t)⟩Ḣ k .

Recall that g = hx , h = h̃ ◦φϵ and h = (1 + Wϵ)h̃. When ϵ is small enough, the last two are bounded
operators with bounded inverse between Ḣ k, k = 0, 1, . . . , so

∥g∥H k ≈k ∥h∥Ḣ k+1 ≈k ∥h̃∥Ḣ k+1 ≈k ∥h∥Ḣ k+1 . (5-1)

Since Rϵ(∂ϵφϵ ◦φ−1
ϵ ), Rϵ(φ

′
ϵ ◦φ−1

ϵ )/ϵ and ∂ϵWϵ are of class S uniformly in ϵ,

∥(ϵ′(t)∂ϵWϵ − ϵ′(t)Rϵ(∂ϵφϵ ◦φ−1
ϵ ))h̃(t)∥Ḣ k ≲k ∥g(t)∥2

H1∥h̃(t)∥Ḣ1 ≲k E2(t)3/2,

∥(vϵ − a′(t))Rϵ(φ
′

ϵ ◦φ−1
ϵ )h̃(t)∥Ḣ k ≲k (∥g(t)∥2

H1/ϵ)ϵ∥h̃(t)∥Ḣ1 ≲k E2(t)3/2

so
|ERest(t)| ≲k E2(t)3/2 Ek(t)1/2. (5-2)

To bound E8 we use (4-9) and (5-1) to get

∥8′

ϵ∥Ck ≲k ∥g(t)∥2
H1 + (∥g(t)∥2

H1/|ϵ|)|ϵ| ≲k E2(t).

Since E8 loses only one derivative in h, we have

|E8(t)− ⟨8ϵ∂
k+1
x h(t), ∂k

xh(t)⟩L2/(1)| ≲k E2(t)Ek(t). (5-3)

For the sake of bounding this term, since the inner product is taken in the space L2/(1), we can without
loss of generality assume that ĥ(0)= 0 (which is not true in general) and integrate by parts to get

2⟨8ϵ∂
k+1
x h(t), ∂k

xh(t)⟩L2/(1) =

∫ 2π

0
8ϵ∂x(∂

k
xh(t))

2 dx = −

∫ 2π

0
8′

ϵ(∂
k
xh(t))

2 dx

so again by (4-9) and (5-1),
|E8(t)| ≲k E2(t)Ek(t). (5-4)
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Combining (5-2), (5-3) and (5-4) shows that∣∣∣ d
dt

Ek(t)− EN (t)
∣∣∣ ≲k E2(t)Ek(t). (5-5)

5A. Normal form transformation. To bound EN we recall the expression of Nϵ from (4-10). Since Nϵ
does not depend on the constant mode of h, we can also assume without loss of generality that ĥ(0)= 0.
We further have the decompositions

EN (t)= EN1(t)+ EN2(t),

EN1(t)=
1
2

∫ 2π

0
∂k

xh(t)∂
k
x (∂xh(t))2 dx =

[k/2]+1∑
j=2

ck j

∫ 2π

0
∂k

xh(t)∂
k+2− j
x h(t)∂ j

x h(t),
(5-6)

where ck j ∈ R are constants and we integrated by parts to get rid of the terms with k +1 derivatives falling
on a single factor of h.

We use the normal form transformation to bound them. Define the trilinear map

Dϵ[ f1, f2, f3] =

∑
mnl ̸=0

1
λm(ϵ)+ λn(ϵ)+ λl(ϵ)

∫ 2π

0
f̂1(m + sgn m)ei(m+sgn m)x

× f̂2(n + sgn n)ei(n+sgn n)x f̂3(l + sgn l)ei(l+sgn l)x dx

and put
D1,k, j (t)= Dϵ(t)[∂

k
xh(t), ∂

k+2− j
x h(t), ∂ j

x h(t)].

Then
d
dt

D1,k, j (t)= ϵ′(t)(∂ϵDϵ)[∂k
xh(t), ∂

k+2− j
x h(t), ∂ j

x h(t)]

+ Dϵ[∂k
x ∂th(t), ∂k+2− j

x h(t), ∂ j
x h(t)]

+ Dϵ[∂k
xh(t), ∂

k+2− j
x ∂th(t), ∂ j

x h(t)]

+ Dϵ[∂k
xh(t), ∂

k+2− j
x h(t), ∂ j

x ∂th(t)].

Note that EN1(t) is a linear combination of the last three lines on the right-hand side, with ∂t replaced
with 3ϵ , so (d/dt)

∑[k/2]+1
j=2 cjk D1,k, j (t)− EN1(t) is a linear combination of

ϵ′(t)(∂ϵDϵ)[∂k
xh(t), ∂

k+2− j
x h(t), ∂ j

x h(t)], (5-7)

Dϵ[∂k
x (∂t −3ϵ)h(t), ∂k+2− j

x h(t), ∂ j
x h(t)], (5-8)

Dϵ[∂k
xh(t), ∂

k+2− j
x (∂t −3ϵ)h(t), ∂ j

x h(t)], (5-9)

Dϵ[∂k
xh(t), ∂

k+2− j
x h(t), ∂ j

x (∂t −3ϵ)h(t)]. (5-10)

We estimate these terms one by one.
By the definition of Dϵ ,

(5-7) = ϵ′(t)
∑

mnl ̸=0

(λ′
m(ϵ)+λ

′
n(ϵ)+λ

′

l(ϵ))

2(λm(ϵ)+λn(ϵ)+λl(ϵ))2

×

∫ 2π

0
ĥ(m+sgnm, t)∂k

x ei(m+sgnm)x ĥ(n+sgnn, t)∂k+2− j
x ei(n+sgnn)x ĥ(l+sgn l, t)∂ j

x ei(l+sgn l)x dx .
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We first bound the fraction. By Corollary 3.10, when ϵ is small enough,

λ′

m(ϵ)+ λ
′

n(ϵ)+ λ
′

l(ϵ)= (m + n + l + sgn m + sgn n + sgn l)∂ϵcϵi + O(ϵ5)

≲ (|m + n + l| + 1)|ϵ|. (5-11)

On the other hand, the integral vanishes unless

m + n + l + sgn m + sgn n + sgn l = 0, (5-12)

in which case m + n + l is an odd number, and so is nonzero. Then by Case 1 of Proposition 3.11,

|λm(ϵ)+ λn(ϵ)+ λl(ϵ)|>
1
2 |m + n + l|, (5-13)

so
|λ′

m(ϵ)+ λ
′
n(ϵ)+ λ

′

l(ϵ)|

|λm(ϵ)+ λn(ϵ)+ λl(ϵ)|2
≲ |ϵ|. (5-14)

Then for k ≥ 3,

|(5-7)| ≲ |ϵ(t)ϵ′(t)|
∑
mnl ̸=0
(5-12)

|(m + sgn m)k ĥ(m + sgn m, t)

× (n + sgn n)k+2− j ĥ(n + sgn n, t)(l + sgn l) j ĥ(l + sgn l, t)|

≈ |ϵ(t)ϵ′(t)|
∣∣∣∣∫ 2π

0
∂k

x H(x, t)∂k+2− j
x H(x, t)∂ j

x H(x, t)
∣∣∣∣ dx

≲k |ϵ(t)ϵ′(t)|∥H(x, t)∥2
H k

x
∥H(x, t)∥W [k/2]+1,∞

x
≲k |ϵ(t)ϵ′(t)|∥H(x, t)∥3

H k
x

(5-15)

since k ≥ [k/2] + 2, where

H(x, t)=

∑
m ̸=0

|ĥ(m + sgn m, t)|ei(m+sgn m)x

satisfies

∥H(x, t)∥H k
x

= ∥h(t)∥Ḣ k ≲ Ek(t)1/2

so by (4-9) and (5-1),

|(5-7)| ≲k |ϵ|E2(t)Ek(t)3/2. (5-16)

To bound the other terms (5-8), (5-9) and (5-10), we use the evolution equation (4-11) of h, which
loses one derivative in h, so

∥(∂t −3ϵ)h(t)∥Ḣ k−1 ≲ (∥g∥
2
H1/|ϵ|)∥h(t)∥Ḣ k + ∥h(t)∥2

Ḣ k .

If ∥g(t)∥H1/|ϵ| is small enough and k ≥ 2, the first term is dominated by the second term thanks to (5-1).
Since in the summation of Dϵ it holds that m + n + l ̸= 0, the denominator is uniformly bounded from
below thanks to (5-13). Unless j = 2 in (5-8) and (5-9), we can integrate by parts if necessary to ensure
that at most k − 1 derivatives in x hit each factor of j . Then similarly to (5-15) it follows that for k ≥ 5,

|((5-8), j ≥ 3)+ ((5-9), j ≥ 3)+ (5-10)| ≲k Ek(t)2. (5-17)
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For j = 2, by symmetry of Dϵ it is clear that

((5-9), j =2)= ((5-8), j =2), (5-18)

which according to (4-11) equals

Dϵ[∂k
x (8ϵhx(t)+ Nϵ[h(t), h(t)] + R(t)), ∂k

xh(t), ∂
2
xh(t)].

Similarly to (5-15),
|Dϵ[∂k

x R(t), ∂k
xh(t), ∂

2
xh(t)]| ≲k E3(t)2 Ek(t)1/2. (5-19)

Similarly to (5-3),

|Dϵ[∂k
x (8ϵhx(t))−8ϵ∂k+1

x h(t), ∂k
xh(t), ∂

2
xh(t)]| ≲k E3(t)3/2 Ek(t). (5-20)

By the definition of Dϵ ,

Dϵ[8ϵ∂k+1
x hx(t), ∂k

xh(t), ∂
2
xh(t)]

=

∑
mm′nl ̸=0

1
λm′(ϵ)+ λn(ϵ)+ λl(ϵ)

∫ 2π

0
8̂ϵ(p)ei px ĥ(m+sgn m, t)∂k+1

x ei(m+sgn m)x ĥ(n+sgn n, t)

× ∂k
x ei(n+sgn n)x ĥ(l + sgn l, t)∂2

x ei(l+sgn l)x dx, (5-21)

where m′
+ sgn m′

= p + m + sgn m ̸= 0,±1. We break the summation into several parts.

Part 1: |p| ≥
1
3 |m + sgn m|. Then we can transfer the extra derivative from h to 8ϵ , and compute as in

(5-3) to get
|Part 1| ≲k E3(t)3/2 Ek(t). (5-22)

Part 2: |p|< |m + sgn m|/3 but |p| ≥ |n + sgn n|/3. If |n + sgn n| ≥ |m|/3 then |p| ≥ |m|/9, and we get
the same bound as before. Otherwise, since the integral vanishes unless

p + m + n + l + sgn m + sgn n + sgn l = 0 (5-23)

in which case we have |l + sgn l|> |n + sgn n|/3, we can transfer the extra derivative to the factor ∂2
xh to

get (note that ∥8ϵ∥Ck ≲k ∥g∥
2
H1/|ϵ|)

|Part 2| ≲k (∥g(t)∥2
H1/|ϵ|)E4(t)1/2 Ek(t)≲ E4(t)Ek(t) (5-24)

provided that ∥g(t)∥H1/|ϵ| is small enough.

Part 3: |p| < 1
3 |m + sgn m| and |p| < 1

3 |n + sgn n|. Then sgn(m′
+ sgn m′) = sgn(m + sgn m), i.e.,

sgn m′
= sgn m, so m′

= m + p. By symmetry,

Part 3 =

∑
mnl ̸=0

|p|<|m+sgnm|/3
|p|<|n+sgnn|/3

1
2

λm+p(ϵ)+λn(ϵ)+λl(ϵ)

∫ 2π

0
ĥ(l+sgn l, t)∂2

x ei(l+sgn l)x8̂ϵ(p)ei px ĥ(m+sgnm, t)

×∂k+1
x ei(m+sgnm)x ĥ(n+sgnn, t)∂k

x ei(n+sgnn)x dx

+

∑
mnl ̸=0

|p|<|m+sgnm|/3
|p|<|n+sgnn|/3

1
2

λm(ϵ)+λn+p(ϵ)+λl(ϵ)

∫ 2π

0
ĥ(l+sgn l, t)∂2

x ei(l+sgn l)x8̂ϵ(p)ei px ĥ(m+sgnm, t)

×∂k
x ei(m+sgnm)x ĥ(n+sgnn, t)∂k+1

x ei(n+sgnn)x dx .
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Note that the two denominators are uniformly bounded from below. Also, sgn(m + p) = sgn m and
|m + p| > 1

3(2|m| − 1), and similarly for l. Then by Corollary 3.10, the two denominators differ by
O(|m|ϵ4|m|/3+3

+ |n|ϵ4|n|/3+3), so

Part 3 =

∑
mnl ̸=0

|p|<|m+sgnm|/3
|p|<|n+sgnn|/3

1
2

λm+p(ϵ)+λn(ϵ)+λl(ϵ)

∫ 2π

0
ĥ(l+sgn l, t)∂2

x ei(l+sgn l)x8̂ϵ(p)ei px∂x(ĥ(m+sgnm, t)

×∂k
x ei(m+sgnm)x ĥ(n+sgnn, t)∂k

x ei(n+sgnn)x)dx

+

∑
(5-23)

O(|m|ϵ4|m|/3+3
+|n|ϵ4|n|/3+3)

∫ 2π

0
|(l+sgn l)2ĥ(l+sgn l, t)8̂ϵ(p)(m+sgnm)k

×ĥ(m+sgnm, t)(n+sgnn)k+1ĥ(n+sgnn, t)|

=

∑
mnl ̸=0

|p|<|m+sgnm|/3
|p|<|n+sgnn|/3

−
1
2

λm+p(ϵ)+λn(ϵ)+λl(ϵ)

∫ 2π

0
∂x(ĥ(l+sgn l, t)∂2

x ei(l+sgn l)x8̂ϵ(p)ei px)ĥ(m+sgnm, t)

×∂k
x ei(m+sgnm)x ĥ(n+sgnn, t)∂k

x ei(n+sgnn)x dx

+

∑
(5-23)

O(ϵ4)

∫ 2π

0
|(l+sgn l)2ĥ(l+sgn l, t)

×8̂ϵ(p)(m+sgnm)k ĥ(m+sgnm, t)(n+sgnn)k ĥ(n+sgnn, t)|,

where we integrated by parts in the first integral and used the bounds |m|ϵ4|m|/3+3 and

|n(n + sgn n)ϵ4|n|/3+3
| ≲ ϵ4

in the second. Then as in (5-15) it follows that

|Part 3| ≲k (∥g(t)∥2
H1/|ϵ|)E4(t)1/2 Ek(t)+ ϵ4(∥g(t)∥2

H1/|ϵ|)E3(t)1/2 Ek(t)

≲ E4(t)Ek(t) (5-25)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough.
Combining (5-20), (5-22), (5-24) and (5-25) shows that

|Dϵ[∂k
x (8ϵhx(t)), ∂k

xh(t), ∂
2
xh(t)]| ≲k E4(t)(1 + E4(t)1/2)Ek(t) (5-26)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough.
We now turn to Dϵ[∂

k
x Nϵ[h(t), h(t)], ∂k

xh(t), ∂
2
xh(t)]. Similarly to (5-3),∣∣Dϵ[∂k

x Nϵ[h(t),h(t)],∂k
xh(t),∂

2
xh(t)]

−Dϵ[(φ′

ϵ◦φ
−1
ϵ )2∂x((1+Wϵ)

−1h(t))(∂k+1
x (1+Wϵ)

−1h(t)),∂k
xh(t),∂

2
xh(t)]

∣∣≲k |ϵ|E3(t)1/2 Ek(t)3/2. (5-27)

Since Wϵ/ϵ is of class S uniformly in ϵ, so is ((1 + Wϵ)
−1

− 1)/ϵ, so

|Dϵ[(φ′

ϵ ◦φ−1
ϵ )2(∂x(1 + Wϵ)

−1h(t))(∂k+1
x ((1 + Wϵ)

−1
− 1)h(t)), ∂k

xh(t), ∂
2
xh(t)]|

≲k |ϵ|E3(t)3/2 Ek(t)1/2. (5-28)
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Finally, Dϵ[(φ′
ϵ ◦φ

−1
ϵ )2(∂x(1+Wϵ)

−1h(t))(∂k+1
x h(t)), ∂k

xh(t), ∂
2
xh(t)] is of the same form as the left-hand

side of (5-21), so we trace the same argument to get

|Part 1| ≲k E3(t)Ek(t),

|Part 2| ≲k E4(t)Ek(t),

|Part 3| ≲k E4(t)Ek(t)+ ϵ4 E3(t)Ek(t)≲ E4(t)Ek(t)

provided that ϵ is small enough. Hence

|Dϵ[(φ′

ϵ ◦φ−1
ϵ )2(∂x(1 + Wϵ)

−1h(t))(∂k+1
x h(t)), ∂k

xh(t), ∂
2
xh(t)]| ≲k E4(t)Ek(t). (5-29)

Combining (5-27), (5-28) and (5-29) shows that, for k ≥ 4,

|Dϵ[∂k
x Nϵ[h(t), h(t)], ∂k

xh(t), ∂
2
xh(t)]| ≲k E4(t)1/2 Ek(t)3/2 (5-30)

provided that ϵ is small enough.
Combining (5-19), (5-26) and (5-30) shows that, for k ≥ 4,

|((5-8), j = 2)| ≲k E4(t)1/2(1 + E4(t)1/2)Ek(t)3/2 (5-31)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough.
Finally, combining (5-16), (5-17), (5-18) and (5-31) shows that, for k ≥ 5,∣∣∣∣ d

dt

[k/2]+1∑
j=2

cjk D1,k, j (t)− EN1(t)
∣∣∣∣ ≲k (1 + E4(t)1/2)Ek(t)2 (5-32)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough.

5B. Lifespan when δ ≪ ϵ. In this section we will obtain a preliminary bound for EN2 = EN − EN1 and
show a lifespan of 1/(ϵδ) when ∥g0∥H5(T) = δ ≪ ϵ, i.e., δ ≤ cϵ for some c > 0 independent of ϵ.

Recall from (5-6) that

EN (t)=
1
2

∫ 2π

0
∂k

xh(t)∂
k
x ((φ

′

ϵ ◦φ−1
ϵ )2((1 + Wϵ)

−1h(t))2x) dx .

Similarly to (5-3), for k ≥ 3,∣∣∣∣EN (t)−
∫ 2π

0
(φ′

ϵ ◦φ−1
ϵ )2∂k

xh(t)∂
k
x (((1 + Wϵ)

−1hx(t))2) dx
∣∣∣∣ ≲k |ϵ|Ek(t)3/2.

Since ((1 + Wϵ)
−1

− 1)/ϵ is of class S uniformly in ϵ,∣∣∣∣∫ 2π

0
(φ′

ϵ ◦φ−1
ϵ )2∂k

xh(t)∂
k
x (((1 + Wϵ)

−1hx(t)− hx(t))2) dx
∣∣∣∣ ≲k ϵ

2 Ek(t)3/2,

2
∣∣∣∣∫ 2π

0
(φ′

ϵ ◦φ−1
ϵ )2∂k

xh(t)∂
k
x (((1 + Wϵ)

−1hx(t)− hx(t))hx(t)) dx

−

∫ 2π

0
(φ′

ϵ ◦φ−1
ϵ )2((1 + Wϵ)

−1hx(t)− hx(t))∂k
xh(t)∂

k+1
x h(t) dx

∣∣∣∣ ≲k |ϵ|Ek(t)3/2.
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Finally, by integration by parts,∣∣∣∣2 ∫ 2π

0
(φ′

ϵ ◦φ−1
ϵ )2((1 + Wϵ)

−1hx(t)− hx(t))∂k
xh(t)∂

k+1
x h(t) dx

∣∣∣∣
=

∣∣∣∣∫ 2π

0
∂x((φ

′

ϵ ◦φ−1
ϵ )2((1 + Wϵ)

−1hx(t)− hx(t)))(∂k
xh(t))

2 dx
∣∣∣∣ ≲k |ϵ|Ek(t)3/2.

Combining the bounds above shows that, for k ≥ 3,

|EN2(t)| = |EN (t)− EN1(t)| ≲k |ϵ|Ek(t)3/2 (5-33)

provided that ϵ is small enough.
Now combining (5-5), (5-32) and (5-33) shows that, for k ≥ 5,

d
dt

∣∣∣∣[k/2]+1∑
j=2

cjk D1,k, j (t)− Ek(t)
∣∣∣∣ ≲k (1 + E4(t)1/2)Ek(t)2 + |ϵ|Ek(t)3/2. (5-34)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough. Hence

Ek(t)− Ek(0)=

[k/2]+1∑
j=2

cjk(D1,k, j (t)− D1,k, j (0))+ Ok(∥(1 + E1/2
4 )E2

k + |ϵ|E3/2
k ∥L1([0,t])).

Similarly to (5-15),

|D1,k, j (t)| = |Dϵ(t)[∂
k
xh(t), ∂

k+2− j
x h(t), ∂ j

x h(t)]| ≲k Ek(t)3/2.

Now we are able to show a lifespan longer than what follows from local well-posedness. Assume that
the initial data is

f (x, 0)= uϵ(x)+ g(x),

where |ϵ| ≤ ϵ0 is small enough, the energy Ek(0) computed from g is Ek(0)= δ2, and |δ/ϵ| is also small
enough. Let

T ∗
= sup

{
T : there exists a solution f (x, t)= uϵ(t)(x + a(t))+ g(x + a(t), t), (5-35)

t ∈ [0, T ] such that 1
2 |ϵ| ≤ |ϵ(t)| ≤ 2|ϵ|, Ek(t)≤ 4δ2}. (5-36)

Then the above conditions hold for all t < T ∗. Moreover, the energy estimate implies

Ek(t)= δ2
+ Ok(δ

3
+ t (δ4

+ |ϵ|δ3))= δ2
+ Ok(δ

3(1 + t |ϵ|)).

Then there is ck > 0 such that if T ∗
≤ ck/|ϵ|δ, then Ek(t)≤ 2δ2. Also,

|∥ f (x, t)∥L2 − ∥uϵ∥L2 | = |∥ f (x, 0)∥L2 − ∥uϵ∥L2 | ≤ ∥g∥L2 ≲ δ

by conservation of the L2 norm. Meanwhile |∥ f (x, t)∥L2 −∥uϵ(t)∥L2 | ≲ δ, so |∥uϵ(t)∥L2 −∥uϵ∥L2 | ≲ δ.
When |ϵ| is small enough, ∥uϵ∥L2 is differentiable in ϵ with nonzero derivative at ϵ = 0. Since |δ/ϵ| is
small enough, |ϵ(t)− ϵ| ≲ δ.
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By local well-posedness, the solution can be extended to a time t∗ > T ∗, with

∥ f (x, t)− f (x, T ∗)∥H2 ≲ (t∗
− T ∗)(∥ f (x, t)∥H3 + ∥ f (x, t)∥2

H3)≤ (t∗
− T ∗)|ϵ|

for t ∈ [T ∗, t∗
]. Then ∥ f (x, t)− uϵ(T ∗)(x + a(T ∗))∥H2 ≲ (t∗

− T ∗)|ϵ| + δ. Take t∗
= T ∗

+ δ/|ϵ|. Then
f (x, t) satisfies the conditions in Proposition 4.1, so (5-35) holds up to time t∗. Since f (x, T ∗) is small
in H 4, f (x, t) is uniformly bounded in H 4 on [T ∗, t∗

], so it stays within a compact set in H 2. Since ϵ
is differentiable in f ∈ H 2, |ϵ(t)− ϵ(T ∗)| ≲ (t∗

− T ∗)|ϵ| ≲ δ, so |ϵ(t)− ϵ| ≲ δ, so |ϵ|/2 ≤ |ϵ(t)| ≤ 2|ϵ|

holds up to time t∗. The energy estimate then implies Ek ≤ 3δ2 also up to time t∗, so (5-36) holds up to
time t∗, contradicting the definition of T ∗. Hence the lifespan T ∗ ≳k 1/|ϵ|δ.

5C. Longer lifespan when δ ≪ ϵ2. When the perturbation g is very small compared to ϵ2, that is,
∥g0∥H5(T) = δ ≪ ϵ2, we can obtain a longer lifespan by applying the normal form transformation to

EN2 = EN − EN1 = EN21 + EN22 + EN23 + EN24,

where

EN21 =

[k/2]+1∑
j=1

c′

k j

∫ 2π

0
∂k

xh(t)∂
k+2− j
x ((φ′

ϵ ◦φ−1
ϵ )((1 + Wϵ)

−1
− 1)h(t))∂ j

x ((φ
′

ϵ ◦φ−1
ϵ )(1 + Wϵ)

−1h(t)) dx,

EN22 =

[k/2]+1∑
j=1

k+2− j∑
i=1

ck ji

∫ 2π

0
∂k

xh(t)∂
i
x(φ

′

ϵ ◦φ−1
ϵ )∂k+2−i− j

x h(t)∂ j
x ((φ

′

ϵ ◦φ−1
ϵ )(1 + Wϵ)

−1h(t)) dx,

EN23 =

[k/2]+1∑
j=2

ck j

∫ 2π

0
∂k

xh(t)(φ
′

ϵ ◦φ−1
ϵ − 1)∂k+2− j

x h(t)∂ j
x ((φ

′

ϵ ◦φ−1
ϵ )(1 + Wϵ)

−1h(t)) dx,

EN24 =

[k/2]+1∑
j=2

ck j

∫ 2π

0
∂k

xh(t)∂
k+2− j
x h(t)∂ j

x ((φ
′

ϵ ◦φ−1
ϵ )(1 + Wϵ)

−1h− h) dx,

where ck j , c′

k j and ck ji ∈ R are constants and we integrated by parts to get rid of the terms with
k + 1 derivatives falling on a single factor of h, except for the term with j = 1 in EN21, in which
the k + 1 derivatives do not matter in view of the fact that the operator (φ′

ϵ ◦φ−1
ϵ )((1 + Wϵ)

−1
− 1) is of

class S.
Now we define

Dϵ,21[ f1, f2, f3]

=

[k/2]+1∑
j=1

mnl ̸=0

c′

k j

λm(ϵ)+ λn(ϵ)+ λl(ϵ)

∫ 2π

0
f̂1(m + sgn m)ei(m+sgn m)x

× ∂k+2− j
x ((φ′

ϵ ◦φ−1
ϵ )((1 + Wϵ)

−1
− 1) f̂2(n + sgn n)ei(n+sgn n)x)

× ∂ j
x ((φ

′

ϵ ◦φ−1
ϵ )(1 + Wϵ)

−1 f̂3(l + sgn l)ei(l+sgn l)x),

and
D21(t)= Dϵ,21[h(t), h(t), h(t)],
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and similarly define D22, D23 and D24. Then

d
dt

D21(t)− EN21(t)= ϵ′(t)(∂ϵDϵ,21)[h(t), h(t), h(t)] (5-37)

+ Dϵ,21[(∂t −3ϵ)h(t), h(t), h(t)] (5-38)

+ Dϵ,21[h(t), (∂t −3ϵ)h(t), h(t)] (5-39)

+ Dϵ,21[h(t), h(t), (∂t −3ϵ)h(t)]. (5-40)

We estimate these terms one by one.
For (5-37), (5-11) still holds, but there are nontrivial actions on h in the slots, so no frequency restriction

such as (5-12) exists. When m + n + l ̸= 0, we are in Case 1 of Proposition 3.11, so (5-13), and hence
(5-14), still hold. When m + n + l = 0, by Case 2 of Proposition 3.11, when ϵ is small enough,

|λm(ϵ)+ λn(ϵ)+ λl(ϵ)|>
1
5ϵ

2, (5-41)

which, combined with (5-11), shows that the multiplier in ∂ϵDϵ is bounded by

|λ′
m(ϵ)+ λ

′
n(ϵ)+ λ

′

l(ϵ)|

|λm(ϵ)+ λn(ϵ)+ λl(ϵ)|2
≲ |ϵ|−3 (5-42)

instead of (5-14). Since both (φ′
ϵ ◦ φ−1

ϵ )((1 + Wϵ)
−1

− 1)/ϵ and ∂ϵ(φ′
ϵ ◦ φ−1

ϵ )((1 + Wϵ)
−1

− 1) are of
class S uniformly in ϵ, it follows that, for k ≥ 3,

|(5-37)| ≲k |ϵ′(t)|ϵ−2 Ek(t)3/2 ≲ ϵ−2 E2(t)Ek(t)3/2 (5-43)

provided that ϵ is small enough.
The terms (5-38), (5-39) and (5-40) are like (5-8), (5-9) and (5-10) respectively, except that instead of

the uniform lower bound of λm(ϵ)+λn(ϵ)+λl(ϵ) we now have (5-41), which loses two factors of ϵ, but
we are helped by the ϵ-smallness of (φ′

ϵ ◦φ−1
ϵ )((1 + Wϵ)

−1
− 1), which wins back a factor of ϵ. All told

we lose a factor of ϵ compared to (5-32), so, for k ≥ 5,

|(5-38) + (5-39) + (5-40)| ≲k |ϵ|−1(1 + E4(t)1/2)Ek(t)2 (5-44)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough.
Combining (5-43) and (5-44) shows that, for k ≥ 5,∣∣∣ d

dt
D21(t)− EN21(t)

∣∣∣ ≲k |ϵ|−1(1 + E4(t)1/2)Ek(t)2 (5-45)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough. We can also save a factor of ϵ in the other terms
EN22, EN23 and EN24 thanks to the ϵ-smallness of (φ′

ϵ ◦φ−1
ϵ )′ and φ′

ϵ ◦φ−1
ϵ − 1. Hence the bound (5-45)

also holds for EN22, EN23 and EN24.
Combining (5-5), (5-32) and (5-45) shows that, for k ≥ 5,

Ek(t)− Ek(0)=

[k/2]+1∑
j=2

cjk(D1,k, j (t)− D1,k, j (0))+
4∑

j=1

(D2 j (t)− D2 j (0))

+ Ok(|ϵ|
−1

∥(1 + E1/2
4 )E2

k ∥L1([0,t]))
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provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough. Similarly to (5-33), for k ≥ 3,

|D2,k, j (t)| ≲k ϵ(t)−2
|ϵ(t)|Ek(t)3/2 = Ek(t)3/2/|ϵ|.

Hence if Ek(0)= δ2 ≲ 1 and Ek ≤ 2δ2 on [0, t] then

Ek(t)= δ2
+ |ϵ|−1δ3

+ Ok(t |ϵ|−1δ4).

Assume δ/ϵ2 is small. Then the second term on the right-hand side is ≲ δ5/2, so we close the estimate for
a time t ≲k |ϵ|/δ2, which is also the lifespan in this case.
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