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THE PRESCRIBED CURVATURE PROBLEM
FOR ENTIRE HYPERSURFACES IN MINKOWSKI SPACE

CHANGYU REN, ZHIZHANG WANG AND LING XIAO

We prove three results in this paper: First, we prove, for a wide class of functions ϕ ∈ C2(Sn−1) and
ψ(X, ν) ∈ C2(Rn+1

× Hn), there exists a unique, entire, strictly convex, spacelike hypersurface Mu

satisfying σk(κ[Mu])= ψ(X, ν) and u(x)→ |x | +ϕ(x/|x |) as |x | → ∞. Second, when k = n−1, n−2,
we show the existence and uniqueness of an entire, k-convex, spacelike hypersurface Mu satisfying
σk(κ[Mu]) = ψ(x, u(x)) and u(x) → |x | + ϕ(x/|x |) as |x | → ∞. Last, we obtain the existence and
uniqueness of entire, strictly convex, downward translating solitons Mu with prescribed asymptotic
behavior at infinity for σk curvature flow equations. Moreover, we prove that the downward translating
solitons Mu have bounded principal curvatures.

1. Introduction

Let Rn,1 be the Minkowski space with the Lorentzian metric

ds2
=

n∑
i=1

dx2
i − dx2

n+1.

In this paper, we will devote ourselves to the study of spacelike hypersurfaces with prescribed σk curvature
in Minkowski space Rn,1. Here, σk is the k-th elementary symmetric polynomial, i.e.,

σk(κ)=

∑
1⩽i1<···<ik⩽n

κi1 · · · κik .

Any such hypersurface M can be written locally as a graph of a function xn+1 = u(x), x ∈ Rn , satisfying
the spacelike condition

|Du|< 1. (1-1)

More precisely, we focus on the equation

σk(κ[Mu])= ψ(X, ν), (1-2)

where X = (x, u(x)) is the position vector of Mu = {(x, u(x)) | x ∈ Rn
}, ν = (Du, 1)/

√
1 − |Du|2 is the

future-directed unit normal lying on the hyperboloid Hn , and κ[Mu] = (κ1, . . . , κn) is the set of principal
curvatures of Mu . Thus (1-2) can be rewritten as

σk(κ[Mu])= ψ(x, u(x), Du). (1-3)

MSC2020: primary 53C42; secondary 35J60, 49Q10, 53C50.
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Notice that the functions ψ in the right-hand sides of (1-2) and (1-3) are different. Slightly extending the
notation, we use the same symbol here.

The classical Minkowski problem asks for the construction of a strictly convex compact surface 6
whose Gaussian curvature is a given positive function f (ν(X)), where ν(X) denotes the normal to 6 at X .
This problem has been discussed by Nirenberg [1953], Pogorelov [1978], and Cheng and Yau [1976]. The
general problem of finding strictly convex hypersurfaces with prescribed surface area measures is called
the Christoffel–Minkowski problem. This type of problem can be reduced to a fully nonlinear equation of
the form (1-2). It may be traced back to Aleksandrov [1942], who established the problem of prescribing
zeroth curvature measure. The prescribed curvature measure problem in convex geometry has been
extensively studied by Aleksandrov [1956], Pogorelov [1953], Guan, Lin, and Ma [Guan et al. 2009], and
Guan, Li, and Li [Guan et al. 2012]. A more general form of the prescribed curvature measure problem
can be expressed as (1-3). In particular, Guan, Ren, and Wang [Guan et al. 2015] solved this problem in
Euclidean space for convex hypersurfaces. Other related studies and references about the Minkowski
problem may be found in [Bakelman and Kantor 1974; Caffarelli et al. 1986; 1988; Guan and Guan 2002;
Oliker 1984; Treibergs and Wei 1983].

In Minkowski space, there have been fruitful results on the prescribed curvature problem for spacelike
entire hypersurfaces. In [Treibergs 1982] and [Choi and Treibergs 1990], the authors obtained the
existence of entire hypersurfaces with constant mean curvature. Li [1995] then extended [Treibergs
1982] and proved the existence of constant Gauss curvature hypersurfaces with Gauss image a unit ball.
The existence of constant Gauss curvature hypersurfaces with Gauss image the convex hull in B1 of an
arbitrary closed set F ⊂ Sn−1 was proved by Guan, Jian, and Schoen [Guan et al. 2006a] and Bayard and
Schnürer [2009]. Later, [Bayard 2006] and [Bayard and Delanoë 2009] considered the prescribed scalar
curvature problem for entire, spacelike hypersurfaces under different settings. More recently, the second
and third authors showed the existence of entire, spacelike, constant σk curvature hypersurfaces in [Wang
and Xiao 2022].

Our goal here is to construct entire, spacelike hypersurfaces satisfying (1-2) in Minkowski space. The
main results of this paper follow.

The first result is to construct entire, strictly convex, spacelike hypersurfaces satisfying (1-2).

Theorem 1. Suppose ϕ is a C2 function defined on Sn−1, i.e., ϕ ∈ C2(Sn−1), ψ(X, ν) ∈ C2(Rn+1
× Hn)

is a positive function, and c1 ⩾ ψ(X, ν) ⩾ c2 for some positive constants c1, c2. We further assume
that ψxn+1 ⩾ 0 (or ψu ⩾ 0). If either ψ−1/k(X, ν) is locally strictly convex with respect to X for any ν
or ψ only depends on ν, then there exists a unique, entire, strictly convex, spacelike hypersurface
Mu = {(x, u(x)) | x ∈ Rn

} satisfying (1-2). Moreover, as |x | → ∞,

u(x)→ |x | +ϕ

(
x
|x |

)
. (1-4)

Remark 2. Indeed, from the proof of the C2 global estimate Lemma 10, we can see that the assumption
that ψ(X, ν) does not depend on X can be replaced by a weaker assumption; that is, ψ−1/k(X, ν) is
convex with respect to X , and the corresponding form ψ(x, u, Du) does not depend on |x |.
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Remark 3. In the proof, we only can see that the hypersurface Mu we constructed is convex. In order to
say it’s strictly convex, we need to apply the constant rank theorem (see [Guan et al. 2006b, Theorem 1.2;
Wang and Xiao 2022, Theorem 27]) and the splitting theorem (see [Wang and Xiao 2022, Theorem 28])
to obtain that, if Mu has a degenerate point in the interior, then Mu = Ml

× Rn−l, where Ml
⊂ Rl,1 is a

strictly convex, spacelike hypersurface. This contradicts (1-4).

Before stating our second result, we need the following definition.

Definition 4. A C2 regular hypersurface M⊂ Rn,1 is k-convex if the principal curvatures of M at X ∈M
satisfy κ[X ] ∈ 0k for all X ∈ M, where 0k is the Gårding cone

0k = {κ ∈ Rn
| σm(κ) > 0, m = 1, . . . , k}.

Using the newly developed methods in [Ren and Wang 2019; 2023], we are able to generalize results
in [Bayard 2006] to prove the following.

Theorem 5. Suppose ϕ is some C2 function defined on Sn−1 and ψ(x, u(x)) ∈ C2(Rn+1) is a positive
function satisfying c1 ⩾ψ(x, u(x))⩾ c2 for c1, c2> 0. We further assume that k = n−1, n−2 and ψu ⩾ 0.
Then there exists a unique, k-convex, spacelike hypersurface Mu = {(x, u(x)) | x ∈ Rn

} satisfying

σk(κ[Mu])= ψ(x, u(x)). (1-5)

Moreover, as |x | → ∞,

u(x)→ |x | +ϕ

(
x
|x |

)
. (1-6)

Remark 6. Notice that unlike in the strictly convex case (Theorem 1), in this theorem, we only prove the
existence result for the case when ψ depends on x and u(x) (ψ is independent of Du). This is because
the proofs of Lemma 12 (C2 boundary estimates for k-convex hypersurfaces) and Lemma 15 (C1 local
estimates for k-convex hypersurfaces) crucially rely on the fact that ψ is independent of Du.

Now, let’s consider the σk curvature flow with a forcing term in Minkowski space:

d X
dt

= −

(
C −

σ
1/k
k (κ[Mu])(n

k

)1/k

)
ν, (1-7)

where κ[Mu] ∈ 0k . This can be rewritten as the equation for the height function u:

ut√
1 − |Du|2

=
σ

1/k
k (κ[Mu])(n

k

)1/k − C. (1-8)

The downward translating soliton to (1-8) is of the form

u(x, t)= u(x)− t, (1-9)

where u(x) satisfies (
σk(n
k

))1/k

(κ[Mu])= C −
1√

1 − |Du|2
. (1-10)

Equation (1-10) can be viewed as the “degenerate” type of (1-2). In this case, we prove the following.
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Theorem 7. Suppose ϕ is a C2 function defined on Sn−1
C̃

:= {x ∈ Rn
| |x | = C̃}, where C̃ =

√
1 − (1/C)2

and C > 1 is a constant. There exists a unique, strictly convex solution u : Rn
→ R of (1-10) such that,

as |x | → ∞,

u(x)→ C̃|x | −
1
C2

k

√
n−k

n
log |x | +ϕ

(
C̃ x
|x |

)
. (1-11)

Moreover, Mu = {(x, u(x)) | x ∈ Rn
} has bounded principal curvatures.

When k = 1, (1-10) has been studied in [Ju et al. 2010; Spruck and Xiao 2016]; when k = 2, (1-10)
has been studied in [Bayard 2023].

Remark 8. Under our assumptions on ψ , we can see that the linearized operators of (1-2), (1-5), and
(1-10) satisfy the maximum principle. Therefore, the uniqueness properties in Theorem 1, 5, and 7 follow
from the maximum principle directly.

The rest of this paper is organized as follows. In Section 2, we introduce some basic formulas and
notation. The solvability of (1-2) and (1-5) on a bounded domain (Dirichlet problem) is discussed in
Section 3. We prove the local C1 and C2 estimates for solutions of (1-2) and (1-5) in Section 4. This leads
to the completion of the proof of our first two main results, Theorems 1 and 5, in Section 5. Section 6 and
Section 7 are devoted to Theorem 7. In particular, in Section 6, we study the radially symmetric solution
to (1-10), this solution will be used to construct barrier functions in Section 7. We finish the proof of
Theorem 7 in Section 7.

2. Preliminaries

In this paper, we will follow notation in [Wang and Xiao 2022]. For the readers convenience, we will
include some basic notation and formulas in this section. For more details, one can refer to [Choi and
Treibergs 1990; Li 1995]. Readers who are already familiar with calculations in Minkowski space can
skip this section.

We first recall that the Minkowski space Rn,1 is Rn+1 endowed with the Lorentzian metric

ds2
= dx2

1 + · · · + dx2
n − dx2

n+1.

Throughout this paper, ⟨ · , · ⟩ denotes the inner product in Rn,1.

2.1. Vertical graphs in Rn,1. A spacelike hypersurface M in Rn,1 is a codimension 1 submanifold whose
induced metric is Riemannian. Locally, M can be written as the graph of a function, i.e.,

Mu = {X = (x, u(x)) | x ∈ Rn
},

satisfying the spacelike condition (1-1). We let E = (0, . . . , 0, 1). Then the height function of M is
u(x)= −⟨X, E⟩. It’s easy to see that the induced metric and second fundamental form of M are given by

gi j = δi j − Dxi u Dx j u, 1 ⩽ i, j ⩽ n,

and
hi j =

uxi x j√
1 − |Du|2

,
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respectively, while the timelike unit normal vector field to M is

ν =
(Du, 1)√
1 − |Du|2

,

where Du = (ux1, . . . , uxn ) and D2u = (uxi x j ) denote the ordinary gradient and Hessian, respectively,
of u. By a straightforward calculation, we have that the principle curvatures of M are eigenvalues of the
symmetric matrix A = (ai j ) given by

ai j =
1
w
γ ikuklγ

l j,

where γ ik
= δik + ui uk/(w(1 +w)) and w =

√
1 − |Du|2. Note that (γ i j ) is invertible with inverse

(γi j )= δi j − ui u j/(1 +w), which is the square root of (gi j ).
Let S be the vector of n × n symmetric matrices and

Sk = {A ∈ S | λ(A) ∈ 0k},

where λ(A)= (λ1, . . . , λn) is the set of eigenvalues of A. Define a function F by

F(A)= σk(λ(A)), A ∈ Sk .

Then (1-3) can be written as

F
( 1
w
γ ikuklγ

l j
)

= ψ(x, u(x), Du). (2-1)

Throughout this paper, we write

F i j (A)=
∂F
∂ai j

(A) and F i j,kl
=

∂2 F
∂ai j∂akl

.

Now, let {τ1, τ2, . . . , τn} be a local orthonormal frame on TM. We will use ∇ to denote the induced
Levi-Civita connection on M. For a function v on M, we write vi = ∇τiv, vi j = ∇τi ∇τjv, etc. In
particular, we have

|∇u| =

√
gi j uxi ux j =

|Du|√
1 − |Du|2

.

Using normal coordinates, we also need the following well-known fundamental equations for a
hypersurface M in Rn,1:

X i j = hi jν (Gauss formula),

(ν)i = hi jτj (Weigarten formula),

hi jk = hik j (Codazzi equation),

Ri jkl = −(hikh jl − hilh jk) (Gauss equation),

(2-2)

and the Ricci identity

hi jkl = hi jlk + hmj Rimlk + him Rjmlk = hkli j − (hmj hil − hmlhi j )hmk − (hmj hkl − hmlhk j )hmi . (2-3)
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2.2. The Gauss map. Let M be an entire, strictly convex, spacelike hypersurface, and let ν(X) be the
timelike unit normal vector to M at X . It’s well known that the hyperbolic space Hn(−1) is canonically
embedded in Rn,1 as the hypersurface

⟨X, X⟩ = −1, xn+1 > 0.

By translation parallel to the origin, we can regard ν(X) as a point in Hn(−1). In this way, we define the
Gauss map

G : M → Hn(−1), X 7→ ν(X).

Next, let’s consider the support function of M. We write

v := ⟨X, ν⟩ =
1√

1 − |Du|2

(∑
i

xi
∂u
∂xi

− u
)
.

Let {e1, . . . , en} be an orthonormal frame on Hn . We will also write {e∗

1, . . . , e∗
n} for the pull-back of ei

by the Gauss map G. Similarly to the convex geometry case, we write

3i j = vi j − vδi j ,

which is the hyperbolic Hessian. Here the vi j denote the covariant derivatives with respect to the hyperbolic
metric.

Let ∇ be the connection of the ambient space. Then we have

X =

∑
i

vi ei − vν

and
∇e∗

j
X =

∑
k

(ej (vk)ek + vk∇ej ek)− vjν− v∇ej ν =

∑
k

3k j ek .

Note also that
gi j = ⟨∇e∗

i
X,∇e∗

j
X⟩ =

∑
k

3ik3k j (2-4)

and
hi j = ⟨∇e∗

i
X,∇ej ν⟩ =3i j . (2-5)

This implies that the eigenvalues of the hyperbolic Hessian are equal to the curvature radius of M.
Therefore, (1-2) can be written as

F(vi j − vδi j )=
1

ψ(X, ν)
, (2-6)

where F(A)= (σn/σn−k)(λ(A)). Moreover, it is clear that

(∇ej ∇ei ν)
⊥

= δi jν, (2-7)

which yields, for k = 1, 2, . . . , n + 1,

∇ej ∇ei xk = xkδi j , (2-8)

where xk is the coordinate function.
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2.3. Legendre transform. Suppose M is an entire, strictly convex, spacelike hypersurface. Then M is
the graph of a convex function

xn+1 = −⟨X, E⟩ = u(x1, . . . , xn),

where E = (0, . . . , 0, 1). We introduce the Legendre transform

ξi =
∂u
∂xi

, u∗
=

∑
xiξi − u.

Next, we calculate the first and second fundamental forms in terms of ξi . Since it is well known that(
∂2u
∂xi∂x j

)
=

(
∂2u∗

∂ξi∂ξj

)−1

,

we have that the first and the second fundamental forms can be rewritten as

gi j = δi j − ξiξj and hi j =
u∗i j√

1 − |ξ |2
,

where (u∗i j ) denotes the inverse matrix of (u∗

i j ) and |ξ |2 =
∑

i ξ
2
i . Now, let W be the Weingarten matrix

of M. Then
(W −1)i j =

√
1 − |ξ |2giku∗

k j .

From the discussion above, we can see that if Mu = {(x, u(x)) | x ∈ Rn
} is an entire, strictly convex,

spacelike hypersurface satisfying σk(κ[M]) = ψ , then the Legendre transform of u, denoted by u∗,
satisfies

F(w∗γ ∗

iku∗

klγ
∗

l j )=
σn

σn−k
(κ∗

[w∗γ ∗

iku∗

klγ
∗

l j ])=
1
ψ
. (2-9)

Here, w∗
=

√
1 − |ξ |2, and (γ ∗

i j )= δi j − ξiξj/(1 +w∗) is the square root of the matrix (gi j ).

3. The Dirichlet problem

We will divide this section into two subsections. In the first subsection, we only consider the convex
solution to (1-2). In the second subsection, we restrict ourselves to the cases when k = n − 1 (n ⩾ 3),
n − 2 (n ⩾ 5), and we will consider the k-convex, spacelike solution to (1-5). When k = 2, this problem
has been studied in [Bayard 2003; Urbas 2003].

3.1. Dirichlet problem for 1 ⩽ k ⩽ n. Recall that in [Wang and Xiao 2022] we proved the following:

Lemma 9. Let F ⊂ Sn−1, F̃ = Conv(F), and u∗ be a solution of{
F̂(w∗γ ∗

iku∗

klγ
∗

l j )=
(n

k

)−1/k in F̃,

u∗
= ϕ on ∂ F̃,

(3-1)

where F̂(w∗γ ∗

iku∗

klγ
∗

l j ) = (σn/σn−k)
1/k(κ∗

[w∗γ ∗

iku∗

klγ
∗

l j ]). Then the Legendre transform of u∗, denoted
by u, satisfies, when x/|x | ∈ F ,

u(x)− |x | → −ϕ

(
x
|x |

)
uniformly as |x | → ∞. (3-2)
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Notice that the proof of the above lemma is independent of the equation that the function u∗ satisfies.
Therefore, adapting the above lemma to the settings in this paper, this lemma tells us that if a strictly convex
function u∗

: B1 → R satisfies u∗(ξ)= −ϕ(ξ) for ξ ∈ ∂B1, then the Legendre transform of u∗, denoted
by u, satisfies u(x) → |x | + ϕ(x/|x |) as |x | → ∞. Moreover, by [Wang and Xiao 2022, Theorem 4],
there exist two solutions u and u such that

σk(κ[Mu])= c1, σk(κ[Mu])= c2,

and, as |x | → ∞,
u(x)− |x |, u(x)− |x | → ϕ

(
x
|x |

)
.

Here, the constants c1, c2 are the same as those in Theorem 1. Throughout this paper, we will denote the
Legendre transforms of u and u by u∗ and u∗, respectively. It’s easy to see that u∗ and u∗ are the super-
and subsolutions of (2-9).

Combining the discussions above with Section 2, we conclude that in order to find an entire, strictly
convex solution u of (1-3), we only need to solve the equation{

F(w∗γ ∗

iku∗

klγ
∗

l j )= ψ∗ in B1,

u∗
= −ϕ on ∂B1,

(3-3)

where
ψ∗(ξ, u∗, Du∗)=

1
ψ(x, u, Du)

=
1

ψ(Du∗, ξ · Du∗ − u∗, ξ)
and

F(w∗γ ∗

iku∗

klγ
∗

l j )=
σn

σn−k
(κ∗

[w∗γ ∗

iku∗

klγ
∗

l j ]).

Note that, by our assumption in Theorem 1, we have

ψ∗

u∗ =
ψu

ψ2 ⩾ 0. (3-4)

Thus, (3-3) possesses the maximum principle.
Notice that (3-3) is degenerate on ∂B1. Therefore, we will consider the approximate equation{

F(w∗γ ∗

iku∗

klγ
∗

l j )= ψ∗ in Br ,

u∗
= u∗ on ∂Br ,

(3-5)

where 0< r < 1.
By the continuity method, we know that, if we can obtain a prior estimates up to the second order, then

we can show (3-5) has a unique, strictly convex solution ur∗. In view of the super- and subsolutions u∗

and u∗, the C0 estimates are easy to obtain. The C1 estimates can be derived by following the argument
in Section 9.2 of [Ren et al. 2020]. The C2 estimate on the boundary can be derived from Lemma 27 in
[Ren et al. 2020] and the argument of Bo Guan [Guan 1999]. In the following, we only need to consider
the global C2 estimate.

Let Mu = {(x, u(x)) | x ∈ Rn
} be a strictly convex, spacelike hypersurface, v = ⟨X, ν⟩ be the support

function of Mu , and u∗ be the Legendre transform of u. From Sections 2.2 and 2.3, we know that
λ[vi j − vδi j ] = κ∗

[w∗γ ∗

iku∗

klγ
∗

l j ]. Therefore, studying the global C2 estimate of (3-5) is equivalent to
studying the global C2 estimate of (2-6).
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For our convenience, we will consider the equation

F̂(3)=

(
σn

σn−k

)1/k

(3)= ψ̃, (3-6)

where 3= (3i j )= (vi j − vδi j ), ψ̃ = ψ−1/k(X, ν), and the vi j are the covariant derivatives with respect
to the hyperbolic metric.

We will write λ[3] = (λ1, λ2, . . . , λn) for the set of eigenvalues of the matrix 3. We define the
Riemann curvature tensor

R(X, Y )= ∇X∇Y − ∇Y ∇X − ∇[X,Y ].

Let {e1, e2, . . . , en} be an orthonormal frame on Hn; we use the notation

Ri jkl = R(ei , ej )ek · el and Rl
i jk = glp Ri jkp.

Then the commutation formulas are

vi jk − vik j = Rl
jkivl and vi jkl − vi jlk = Rm

klivjm + Rm
kl jvim .

Note that, in hyperbolic space, we have

Ri jkl = gik gjl − gil gjk .

Therefore, given an orthonormal frame on Hn, we obtain the geometric formulas

3i jk =3ik j and 3lk j i −3lki j = vlk j i − vlki j = −vl jδik + vliδjk − vjkδil + vikδjl . (3-7)

Lemma 10. Let v be the solution of (3-6) in a bounded domain U ⊂ Hn. Denote the set of eigenvalues of
(vi j − vδi j ) by λ[vi j − vδi j ] = (λ1, . . . , λn). Then

λmax ⩽ max{C, λ|∂U },

where λmax = max{λ1, . . . , λn} and C is a positive constant only depending on U and ψ̃ .

Proof. Set
M = max

P∈U
max
|ξ |=1
ξ∈TP Hn

(log3ξξ + N xn+1),

where xn+1 is the coordinate function. Without loss of generality, we assume M is achieved at an interior
point P0 ∈ U for some direction ξ0. Chose an orthonormal frame {e1, . . . , en} around P0 such that
e1(P0)= ξ0 and 3i j (P0)= λiδi j .

Now, let’s consider the test function
φ = log311 + N xn+1.

At its maximum point P0, we have

0 = φi =
311i

311
+ N (xn+1)i , (3-8)

0 ⩾ φi i =
311i i

311
−
32

11i

32
11

+ N (xn+1)i i . (3-9)
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Note that (xn+1)i j = xn+1δi j ; thus

F̂ i iφi i =
F̂ i i311i i

311
−

F̂ i i32
11i

32
11

+ N xn+1
∑

i

F̂ i i. (3-10)

In view of (3-7),
311i i =3i11i =3i1i1 + vi i − v11 =3i i11 +3i i −311.

This yields
F̂ i i311i i = F̂ i i3i i11 + F̂ i i3i i −311

∑
i

F̂ i i. (3-11)

Differentiating (3-6) twice, we obtain

F̂ i i3i i11 = −F̂ pq,rs3pq13rs1 + ψ̃11 = −F̂ pp,qq3pp13qq1 −

∑
p ̸=q

F̂ pp
− F̂qq

λp − λq
32

pq1 + ψ̃11. (3-12)

By the concavity of (σn/σn−k)
1/k , we can see that the first term on the right-hand side is nonnegative.

Combining (3-10)–(3-12), we have

F̂ i iφi i ⩾
ψ̃11

311
−

1
311

∑
p ̸=q

F̂ pp
− F̂qq

λp − λq
32

pq1 −
F̂ i i32

11i

32
11

+ (N xn+1 − 1)
∑

i

F̂ i i

⩾
ψ̃11

311
+

1
311

∑
i ̸=1

F̂ i i
− F̂11

λ1 − λi
32

11i −
F̂ i i32

11i

32
11

+ (N xn+1 − 1)
∑

i

F̂ i i. (3-13)

We need an explicit expression of F̂ i i. A straightforward calculation gives

k F̂k−1 F̂ i i
=
σ i i

n σn−k − σnσ
i i
n−k

σ 2
n−k

, (3-14)

where σ i i
l = ∂σl/∂λi for 1 ⩽ l ⩽ n. We find that

σ i i
n σn−k − σnσ

i i
n−k = σn−1(λ|i)(λiσn−k−1(λ|i)+ σn−k(λ|i))− λiσn−1(λ|i)σn−k−1(λ|i)

= σn−1(λ|i)σn−k(λ|i).

Here and in the following, σl(λ|a) and σl(λ|ab) are the l-th elementary symmetric polynomials of
λ1, . . . , λn with λa = 0 and λa = λb = 0, respectively. It follows that

k F̂k−1 F̂ i i
=
σn−1(λ|i)σn−k(λ|i)

σ 2
n−k

. (3-15)

Therefore, we get

k F̂k−1(F̂ i i
− F̂11)=

1
σ 2

n−k
[σn−1(λ|i)σn−k(λ|i)− σn−1(λ|1)σn−k(λ|1)]

=
σn−2(λ|1i)
σ 2

n−k
[λ1σn−k(λ|i)− λiσn−k(λ|1)]

=
σn−2(λ|1i)(λ1 − λi )

σ 2
n−k

[(λ1 + λi )σn−k−1(λ|1i)+ σn−k(λ|1i)]. (3-16)
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When i ⩾ 2, we can see that

k F̂k−1
(

F̂ i i
− F̂11

λ1 − λi
−

F̂ i i

λ1

)
=
σn−2(λ|1i)
σ 2

n−k
[(λ1 + λi )σn−k−1(λ|1i)+ σn−k(λ|1i)− σn−k(λ|i)]

=
σn−2(λ|1i)
σ 2

n−k
λiσn−k−1(λ|1i)=

σn−1(λ|1)
σ 2

n−k
σn−k−1(λ|1i) > 0. (3-17)

Plugging (3-17) into (3-13), we obtain

F̂ i iφi i ⩾
ψ̃11

311
− F̂113

2
11i

32
11

+(N xn+1 −1)
∑

i

F̂ i i
=
ψ̃11

311
− F̂11 N 2(yn+1)

2
1 +(N xn+1 −1)

∑
i

F̂ i i. (3-18)

Here, in the last equality, we have used (3-8).
Now, let’s calculate ψ̃11. We denote by ∇ the connection of the ambient space and by {e∗

1, e∗

2, . . . , e∗
n}

the pull back of {e1, e2, . . . , en} via the Gauss map. Differentiating ψ̃ with respect to e1 twice, we get

ψ̃1 = dXψ
−1/k(∇e∗

1
X)+ dνψ−1/k(e1) (3-19)

and

ψ̃11 = dX dXψ
−1/k(∇e∗

1
X,∇e∗

1
X)+ dXψ

−1/k(∇e1∇e∗

1
X)

+ 2dX dνψ−1/k(e1,∇e∗

1
X)+ dνdνψ−1/k(e1, e1)+ dνψ−1/k(∇e1e1)

⩾ c03
2
11 + dXψ

−1/k
(
∇e1

∑
k

3k1ek

)
+ 2dX dνψ−1/k

(
e1,

∑
l

3l1el

)
+ dνdνψ−1/k(e1, e1)+ dνψ−1/k(ν)

⩾ c03
2
11 +

∑
k

dXψ
−1/k(3k11ek +3k1δk1ν)− Cλ1 − C

⩾ c03
2
11 +

∑
k

311kdXψ
−1/k(ek)− Cλ1 − C, (3-20)

where the first inequality comes from the locally strict convexity assumption on ψ−1/k , i.e., for any
spacelike vector ξ ∈ Rn,1,

dX dXψ
−1/k(ξ, ξ)⩾ c0|ξ |

2
E ⩾ c0|ξ |

2
M .

Here c0> 0 is some constant depending on the defining domain, and | · |E and | · |M are the Euclidean norm
and Minkowski norm, respectively. At the point P0, in view of (3-8) and the assumption that ψxn+1 ⩾ 0,
we derive

ψ̃11

311
⩾ c0λ1 − N

∑
k

(xn+1)kdXψ
−1/k(ek)− C −

C
λ1

= c0λ1 +
N
k
ψ−1/k−1dXψ(∇xn+1)− C −

C
λ1

= c0λ1 +
N
k
ψ−1/k−1dXψ

(
−

∂

∂xn+1
+ xn+1ν

)
− C −

C
λ1
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= c0λ1 +
N
k
ψ−1/k−1dXψ

(
|x |

2 ∂

∂xn+1
+ xn+1

n∑
i=1

xi
∂

∂xi

)
− C −

C
λ1

= c0λ1 +
N |x |

2

k
ψ−1/k−1 ∂ψ

∂xn+1
+

N
k
ψ−1/k−1xn+1

n∑
i=1

xi
∂ψ

∂xi
− C −

C
λ1

⩾ c0λ1 +
N
k
ψ−1/k−1xn+1

n∑
i=1

xi
∂ψ

∂xi
− C −

C
λ1

⩾ −C −
C
λ1
. (3-21)

Here, in the last inequality, we have assumed λ1 = λ1(|ψ |C2) > 0 is large at P0. On the other hand, note
that the functional F̂ is concave and homogenous of degree 1. Therefore,∑

i

F̂ i i
= F̂(λ)+

∑
i

F̂ i i (1 − λi )⩾ F̂(1)=

(n
k

)−1/k
. (3-22)

Combining (3-18)–(3-22), we obtain

0 ⩾ F̂ i iφi i ⩾ −C −
C
λ1

−
C
λ1

N 2(xn+1)
2
1 + (N xn+1 − 1)

(n
k

)−1/k
.

Letting N and λ1 be sufficiently large, we obtain a contradiction. This completes the proof of Lemma 10.
Notice that this is the only place we need the locally strict convexity assumption of ψ−1/k in Theorem 1.

It’s also clear that the above proof can be easily modified to the case when ψ−1/k is convex with respect
to X and the corresponding ψ(x, u(x), Du) does not depend on |x | (see the second inequality in (3-21)),
as stated in the Remark 2. Therefore, (3-5) is solvable when either ψ−1/k is locally strictly convex with
respect to X or ψ−1/k is convex with respect to X and ψ(x, u(x), Du(x)) does not depend on |x |. □

3.2. Dirichilet problem for k = n−1, n−2. Let n ∈ N and �n := {x ∈ Rn
| u(x)= n}. We will consider

the Dirichlet problem {
σk(κ[Mu])= ψ(x, u(x)) in �n,

u = n on ∂�n.
(3-23)

Note that since u is strictly convex, �n is strictly convex. It’s easy to see that if u is a solution of (3-23),
then u ⩽ u ⩽ u. Therefore, in order to find a k-convex solution u for (3-23), we only need to study the
C1 and C2 estimates of u.

3.2.1. C1 estimate for (3-23).

Lemma 11. Let u be a solution of (3-23), then |Du|< C < 1. Here C is a constant depending on |Du|�n

and ψ .

Proof. Let V = −⟨ν, E⟩ = 1/
√

1 − |Du|2, and consider the test function φ = ln V + K u, where K > 0 is
to be determined. If φ achieves its maximum at an interior point P0 ∈ Mu , then at this point, we may
choose a normal coordinate {τ1, . . . , τn} such that hi j = κiδi j . Since at P0 we have

φi =
Vi

V
+ K ui = 0 and 0 ⩾ φi i =

Vi i

V
−

V 2
i

V 2 + K ui i ,
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a straightforward calculation yields

0 ⩾ −
⟨∇σk, E⟩

V
−
σ i i

k κ
2
i u2

i

V 2 + K kψV + σ i i
k κ

2
i .

Note that |⟨∇σk, E⟩| ⩽ CV 2, where C only depends on |ψ |C1 . Choosing K > C + 1, we have

−
⟨∇σk, E⟩

V
−
σ i i

k κ
2
i u2

i

V 2 + K kψV + σ i i
k κ

2
i > 0.

This leads to a contradiction. □

3.2.2. C2 boundary estimates for (3-23). Now, we will establish the C2 boundary estimate. For our
convenience, we will consider the solvability of the Dirichlet problem{

G(Du, D2u)= σk
( 1
w
γ ikuklγ

l j)
= ψ(x, u(x)) in �,

u = 0 on ∂�,
(3-24)

where � is strictly convex. We will follow the idea of [Caffarelli et al. 1988].

Infinitesimal stretching. If u is a solution of (3-24), let v(x)= t−1u(t x), where t > 0. Then the principal
curvatures of Mv satisfy κ[Mv(x)] = tκ[Mu(t x)]. Therefore,

G(Dv, D2v)= tkψ(t x, u(t x))= tkψ(t x, tv(x)). (3-25)

We write v̇ = (d/dt)v = −t−2u(t x)+ x · Du(t x); when t = 1,

v̇ = x · Du(x)− u(x).

Differentiating (3-25) with respect to t then evaluating at t = 1, we obtain

Gi j∂i j v̇+ Gs∂s v̇ = kψ +ψz(v+ v̇)+ xψx .

Writing L := Gi j∂i j + Gs∂s , we have

L(x · Du − u)= kψ +ψz(u + x · Du − u)+ xψx = kψ + xψx +ψzx · Du. (3-26)

Infinitesimal rotation in Minkowski space. It is well known that Lorentz boosts are isometries of Rn,1.
Keeping the coordinates x ′

= (x1, . . . , xn−1) fixed, we rotate in the (xn, u) variables:[
cosh θ sinh θ
sinh θ cosh θ

] [
xn

u

]
=

[
cosh θxn + sinh θu
cosh θu + sinh θxn

]
.

To the first order in θ , the image of (x, u(x)) under such a rotation is

(x ′, xn + u(x)θ, u(x)+ xnθ).

Therefore, to the first order in θ , the image of

(x ′, xn − u(x)θ, u(x ′, xn − u(x)θ))

is (x ′, xn, u(x ′, xn − u(x)θ)+ xnθ). Considering this image as the graph of the function

v(x)= u(x ′, xn − u(x)θ)+ xnθ + higher order in θ,
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we have
G(Dv, D2v)= ψ(x ′, xn − u(x)θ, u(x ′, xn − u(x)θ))+ higher order in θ

= ψ(x ′, xn − u(x)θ, v(x)− xnθ)+ higher order in θ.

Notice that (dv/dθ)|θ=0 = xn − unu, so we obtain

Gi j∂i j (xn − unu)+ Gs∂s(xn − unu)= ψn(−u(x))+ψz(xn − unu − xn). (3-27)

Thus, we conclude that
L(xn − uun)= −uψn − unuψz. (3-28)

Lemma 12. Let u be a solution of (3-24), then |D2u|< C on ∂�. Here C is a constant depending on �
and ψ .

Proof. For any p ∈ ∂�, we suppose p is the origin and that the xn-axis is the interior normal of ∂� at p.
We may also assume the boundary near the origin p is represented by

xn =
1
2

n−1∑
α=1

λαx2
α + O(|x ′

|
3), x ′

= (x1, . . . , xn−1),

where λα>0, 1⩽α⩽n−1, are the principal curvatures of ∂� at the origin. Let Tα=∂α+λα(xα∂n−xn∂α).
Note that Gi j ui jα + Gsusα = ψα +ψzuα. In view of the fact that (3-23) is invariant under rotation (see
(3.1) in [Caffarelli et al. 1988]), we get

|LTαu| ⩽ C. (3-29)

Moreover, it’s easy to see we have |Tαu| ⩽ C |x ′
|
2 on ∂� near the origin. In the following, we write

�β :=�∩ {xn < β}. Set
h = (x · Du − u)− δ

β
(xn − uun).

On ∂�∩ ∂�β , note that u = 0, so we have x · Du ⩽ C1|x ′
|
2. This implies, on ∂�∩ ∂�β ,

h = x · Du −
δ

β
xn ⩽

(
C1 −

δ

β
a
)
|x ′

|
2, (3-30)

where a > 0 depends on the principal curvatures of ∂�. Notice that u is a spacelike function, so we
suppose |Du|⩽ θ0 in � for some θ0 ∈ (0, 1). Then we have 0 ⩽−u ⩽ θ0β in �β . Therefore, on {xn = β},

h = βun +

n−1∑
α=1

xαuα − u +
δ

β
uun − δ ⩽ βθ0 + Cβ1/2

+ θ0β + θ2
0 δ− δ ⩽ Cβ1/2

+ δ(θ0 − 1) (3-31)

with C being independent of β and δ. Moreover,

Lh = kψ + xψx +ψzx · Du −
δ

β
(−uψn − unuψz)⩾ kψ − Cβ1/2

− Cδ ⩾ k
2
ψ, (3-32)

where δ and β are small positive constants.
Now choose A = A(δ) > 0 large enough that

Ah ⩽ −|Tαu| on ∂�β and L Ah > |LTαu| in �β .
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By the maximum principle, we conclude that

Ah ± Tαu ⩽ 0 in �β .

On the other hand, we have h(0)= Tαu(0)= 0. Therefore,

|∂nTαu(0)| ⩽ −Ahn(0)⩽
Aδ
β
,

which yields

|unα(0)| ⩽ C. (3-33)

Next, following the notation in Section 2.1, we write ai j =
1
w
γ ikuklγ

l j, where w =
√

1 − |Du|2 and
γ ik

= δik + ui uk/(w(1 +w)). A straightforward calculation yields, at the origin,

aαα =
uαα
w

= −
unλα

w
, aαn =

uαn

w2 for 1 ⩽ α ⩽ n − 1,

ann =
unn

w3 , ai j = 0 for all other 1 ⩽ i, j ⩽ n.
(3-34)

Since ∂� is smooth, we know there exists r0 > 0 and z p = (0, . . . , 0, r0) such that Br0(z p) ⊂ � and
Br0(z p)∩ ∂�= p. Here Br0(z p) is a ball of radius r0 centered at z p. Let

u = −

√
R2

+ r2
0 +

√
R2

+ |x − z p|
2,

where x = (x1, . . . , xn) and R > 0 is a constant to be determined. A straightforward calculation yields

σk

( 1
w
γ ikuklγ

l j
)

=

(n
k

) 1
R
< c2

when R = R(c2) > 0 is sufficiently large. Here c2 is the lower bound for ψ defined in Theorem 5.
Therefore, u is a supersolution of (3-24). By the strong maximum principal, we have u < u in Br0(z p).
Applying the Hopf lemma, we obtain

r0
√

R2
+ r2

0

= −un(p) <−un(p).

In view of (3-34) and [Trudinger 1995, (2.5)], (3-24) can be written as

1
wk

[
1
w2 (−un)

k−1σk−1(λ)unn + P
]

= ψ,

where P depends on w, uαβ , and uαn , which are bounded by some uniform constants depending on n, k,
∂�, ∥u∥C1(�), and λ= (λ1, . . . , λn−1). Moreover, by our assumption that ψ is bounded, we obtain an
upper bound for unn(0). The lower bound for unn(0) comes from the fact that Mu is k-convex, which
implies

∑n
i=1 ai i > 0.

Finally, since p ∈ ∂� is arbitrary, we get

|D2u(x)| ⩽ C for any x ∈ ∂�. □
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3.2.3. C2 global estimate for (3-23). Finally, we will prove the C2 global estimate. In this subsubsection,
for greater generality, we will assume ψ = ψ(X, ν).

Lemma 13. Let u be a solution of (3-24) with ψ = ψ(X, ν), then

|D2u|<max
{
C,max

∂�
|D2u|

}
on �. Here C is a constant depending on |Du|� and ψ .

Proof. We consider the following test function whose form first appeared in [Guan et al. 2015]:

φ = log log P − N ⟨ν, E⟩.

Here, P :=
∑

l eκl , and N is a sufficiently large constant to be determined later.
We may assume that the maximum of φ is achieved at some point P0 ∈ Mu , where u is the solution of

(3-24). Suppose {τ1, τ2, . . . , τn} is a normal coordinate near P0 such that, at P0,

hi j = κiδi j and κ1 ⩾ κ2 ⩾ · · · ⩾ κn.

Differentiating the function φ twice at P0, we have

φi =
Pi

P log P
+ Nhi i ui = 0, (3-35)

and

φi i =
Pi i

P log P
−

P2
i

P2 log P
−

P2
i

(P log P)2
− Nh2

i i ⟨ν, E⟩ +

∑
s

Nushisi

=
1

P log P

[∑
l

eκl hlli i +

∑
l

eκl h2
lli +

∑
p ̸=q

eκp − eκq

κp − κq
h2

pqi −

(
1
P

+
1

P log P

)
P2

i

]
− Nh2

i i ⟨ν, E⟩ +

∑
s

Nushi is .

Contracting with σ i i
k , we get

σ i i
k φi i =

σ i i
k

P log P

[∑
l

eκl hlli i +

∑
l

eκl h2
lli +

∑
p ̸=q

eκp − eκq

κp − κq
h2

pqi −

(
1
P

+
1

P log P

)
P2

i

]
− Nσ i i

k κ
2
i ⟨ν, E⟩ +

∑
s

Nusσ
i i
k hi is . (3-36)

At P0, differentiating (1-2) twice yields

σ i i
k hi il = dXψ(τl)+ κldνψ(τl) (3-37)

and
σ i i

k hi ill + σ
pq,rs

k h pqlhrsl ⩾ −C − Ch2
11 +

∑
s

hslldνψ(τs), (3-38)

where C is some uniform constant only depending on ψ . Note that

hlli i = hi ill − hi i h2
ll + h2

i i hll . (3-39)
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Inserting (3-38) and (3-39) into (3-36), we obtain

σ i i
k φi i ⩾

1
P log P

[∑
l

eκl

(
−C − Cκ2

1 − σ
pq,rs

k h pqlhrsl +

∑
s

hslldνψ(τs)

)
+

∑
l

σ i i
k eκl h2

lli + σ i i
k

∑
p ̸=q

eκp − eκq

κp − κq
h2

pqi −

(
1
P

+
1

P log P

)
σ i i

k P2
i

]

−Nσ i i
k κ

2
i ⟨ν, E⟩ +

∑
s

Nusσ
i i
k hsii − σ i i

k κ
2
i . (3-40)

By (3-35) and (3-37), we have

1
P log P

∑
s

∑
l

eκl hslldνψ(τs)+
∑

s

Nusσ
i i
k hsii ⩾ −C.

Now, for any constant K > 1, we write

Ai = eκi

[
K (σk)

2
i −

∑
p ̸=q

σ
pp,qq

k h ppi hqqi

]
,

Bi = 2
∑
l ̸=i

σ
i i,ll
k eκl h2

lli , Ci = σ i i
k

∑
l

eκl h2
lli ,

Di = 2
∑
l ̸=i

σ ll
k

eκl − eκi

κl − κi
h2

lli , Ei =
1 + log P
P log P

σ i i
k P2

i .

Combining

−

∑
l

σ
pq,rs

k h pqlhrsl =

∑
p ̸=q

σ
pp,qq

k h2
pql −

∑
p ̸=q

σ
pp,qq

k h pplhqql

with (3-40), we get

σ i i
k φi i ⩾

1
P log P

∑
i

(Ai + Bi + Ci + Di − Ei )+ (−N ⟨ν, E⟩ − 1)σ i i
k κ

2
i − Cκ1. (3-41)

Claim 1. For any given 0< ε < 1
2 , we let α = (1 − 2ε)/(1 + ε). There exists a positive constant δ < 1

2
such that, for any |κi | ⩽ δκ1, 1 ⩽ i ⩽ n, if the constant K and the maximum principal curvature κ1 are
both sufficiently large, we have

Ai + Bi + Ci + Di − Ei −
α

P log P
σ i i

k P2
i ⩾ 0.

Applying Lemma 6 in [Ren and Wang 2019], we can see that when K is chosen to be sufficiently
large, we have Ai ⩾ 0. By the Cauchy–Schwarz inequality, we have

P2
i = e2κi h2

i i i + 2
∑
l ̸=i

eκi +κl hi i i hlli +

(∑
l ̸=i

eκl hlli

)2

⩽ e2κi h2
i i i + 2

∑
l ̸=i

eκi +κl hi i i hlli + (P − eκi )
∑
l ̸=i

eκl h2
lli . (3-42)
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Thus,

Bi + Ci + Di − Ei −
α

P log P
σ i i

k P2
i

⩾ 2
∑
l ̸=i

eκlσ
ll,i i
k h2

lli + 2
∑
l ̸=i

eκl − eκi

κl − κi
σ ll

k h2
lli −

1 +α

log P

∑
l ̸=i

eκlσ i i
k h2

lli +
1 +α+ log P

P log P

∑
l ̸=i

eκl+κiσ i i
k h2

lli

+ eκiσ i i
k h2

i i i −
1 +α+ log P

P log P
e2κiσ i i

k h2
i i i − 2

1 +α+ log P
P log P

∑
l ̸=i

eκi +κlσ i i
k hi i i hlli . (3-43)

Let ε be equal to the εT in Lemma 12 of [Ren and Wang 2019]. Then we know there exists a positive
constant δ < ε such that, when |κi |< δκ1,

(2 − ε)
∑
l ̸=i

eκlσ
ll,i i
k h2

lli + (2 − ε)
∑
l ̸=i

eκl − eκi

κl − κi
σ ll

k h2
lli −

1 +α

log P

∑
l ̸=i

eκlσ i i
k h2

lli ⩾ 0. (3-44)

On the other hand, we have∑
l ̸=i,1

eκl+κiσ i i
k h2

lli − 2
∑
l ̸=i,1

eκi +κlσ i i
k hi i i hlli ⩾ −

∑
l ̸=i,1

eκl+κiσ i i
k h2

i i i . (3-45)

It follows that

Bi + Ci + Di − Ei −
α

P log P
σ i i

k P2
i

⩾
1 +α+ log P

P log P
eκ1+κiσ i i

k h2
11i + eκiσ i i

k h2
i i i −

1 +α+ log P
P log P

∑
l ̸=1

eκl+κiσ i i
k h2

i i i

− 2
1 +α+ log P

P log P
eκi +κ1σ i i

k hi i i h11i + εeκ1σ
11,i i
k h2

11i + ε
eκ1 − eκi

κ1 − κi
σ 11

k h2
11i . (3-46)

A straightforward calculation shows that, when κ1 is very large, the following inequalities hold:

eκiσ i i
k h2

i i i −
1 +α+ log P

P log P

∑
l ̸=1

eκl+κiσ i i
k h2

i i i ⩾

(
eκ1

P
−

1 +α

log P

)
eκiσ i i

k h2
i i i ⩾

1
n + 1

eκiσ i i
k h2

i i i ,

and

−2
1 +α+ log P

P log P
eκi +κ1σ i i

k |hi i i h11i | ⩾ −
3
P

eκi +κ1σ i i
k |hi i i h11i | ⩾ −3eκiσ i i

k |hi i i h11i |.

Moreover, it is easy to see that

eκ1σ
11,i i
k h2

11i +
eκ1 −eκi

κ1−κi
σ 11

k h2
11i = eκiσ

11,i i
k h2

11i +
eκ1 −eκi

κ1−κi
σ i i

k h2
11i . (3-47)

By the Taylor expansion, we have

eκ1 −eκi

κ1−κi
σ i i

k h2
11i = eκi

∑
m⩾1

(κ1 − κi )
m−1

m!
σ i i

k h2
11i . (3-48)



THE PRESCRIBED CURVATURE PROBLEM FOR ENTIRE HYPERSURFACES IN MINKOWSKI SPACE 19

Combining the previous four formulas with (3-46), when κ1 is sufficiently large and |κi |< δκ1, we obtain

Bi + Ci + Di − Ei −
α

P log P
σ i i

k P2
i ⩾ eκiσ i i

k

[
1

n + 1
h2

i i i − 3|hi i i h11i | + ε
∑
m⩾1

(κ1 − κi )
m−1

m!
h2

11i

]
⩾ 0.

Therefore, Claim 1 is proved.
Recalling Section 4 of [Ren and Wang 2019] and the proof of Theorem 14 in [Ren and Wang 2023],

we know the following claim is true.

Claim 2. Suppose k = n − 1 (n ⩾ 3) or k = n − 2 (n ⩾ 5). For any index 1 ⩽ i ⩽ n, if the positive
constant K and the maximum principal curvature κ1 are both sufficiently large, we have

Ai + Bi + Ci + Di − Ei ⩾ 0.

By Claims 1 and 2, (3-41) becomes

0 ⩾
∑

|κi |<δκ1

α

(P log P)2
σ i i

k P2
i + (−N ⟨ν, E⟩ − 1)σ i i

k κ
2
i − Cκ1. (3-49)

Here, the constant δ is the constant chosen in Claim 1. Choosing N > 0 such that

σ 11
k κ

2
1 (−N ⟨ν, E⟩ − 1)− Cκ1 > 0,

we get a contradiction. Therefore, our desired estimate follows immediately. □

By Lemmas 11, 12, and 13, we conclude that, when k = n − 1, n − 2, the Dirichlet problem (3-23)
admits a k-convex solution.

4. The local estimates

We will devote this section to establishing the local C1 and C2 estimates for the solution u of (1-3).

4.1. Local C1 estimates. In this subsection, we will prove the local C1 estimate. We will split it into
two cases. In the first case, we will assume u is a convex solution of (1-2); in the second case, we will
assume u is a k-convex solution of (1-5). Note that in both cases our results hold for 1 ⩽ k ⩽ n.

For strictly convex, spacelike hypersurfaces, [Bayard and Schnürer 2009] proved the following local
gradient estimate lemma.

Lemma 14 [Bayard and Schnürer 2009, Lemma 5.1]. Let � ⊂ Rn be a bounded open set, and let
u, u, 9 :�→ Rn be strictly spacelike. Assume that u is strictly convex and u < u in �. Also assume that,
near ∂�, we have 9 > u. Consider the set with u > 9. For every x in this set, we have the following
gradient estimate for u:

1√
1 − |Du|2

⩽
1

u(x)−9(x)
· sup
{u>9}

u −9√
1 − |D9|2

.

For k-convex, spacelike hypersurfaces, [Bayard 2006] proved a similar result when k = 2. In the
following, we will extend it to all k. Our argument is a modification of that in [Bayard 2006]. We would
also like to mention that the basic idea of this argument appeared in [Chou and Wang 2001].
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Lemma 15. Let �⊂ Rn be a bounded open set. Let u, u, 9 :�→ Rn be strictly spacelike. Assume that
Mu = {(x, u(x)) | x ∈�} is a k-convex hypersurface satisfying

σk(κ[Mu])= ψ(x, u(x))

and u ⩽ u in �. Also assume that, near ∂�, we have 9 > u. Consider the set with u >9. For every x in
this set, we have the following gradient estimate for u:

1√
1 − |Du|2

⩽

[
1

u(x)−9(x)
· sup
{u>9}

(u −9)

]N

C.

Here, N = N (n, k) is a uniform constant only depending on n and k, and C = C(u −9, |9|C2, |ψ |C1) is
a uniform constant depending on the upper bound of u −9, 1/

√
1 − |D9|2, D29, and |ψ |C1 .

Proof. Consider the test function
φ = (u −9)N (−⟨ν, E⟩),

where N is a large undetermined constant. Assume the function φ achieves its maximum at P. We may
choose a local normal coordinate {τ1, . . . , τn} such that, at P, we have hi j = κiδi j . Differentiating φ
twice at P, we have

0 =
φi

φ
= N

ui −9i

u−9
+

himum

−⟨ν, E⟩
,

0 ⩾
φi i

φ
−
φ2

i

φ2 = N
ui i −9i i

u−9
−N

(ui −9i )
2

(u−9)2
+

∑
m h2

im(−⟨ν, E⟩)+
∑

m himi um

−⟨ν, E⟩
−

(∑
m himum

)2

(−⟨ν, E⟩)2
.

(4-1)

Contracting with σ i i
k , we get

0 ⩾
σ i i

k φi i

φ
= N

σ i i
k ui i − σ i i

k 9i i

u −9
− N

σ i i
k (ui −9i )

2

(u −9)2
+ σ i i

k κ
2
i +

σ i i
k

∑
m hi imum

−⟨ν, E⟩
−

σ i i
k κ

2
i u2

i

(−⟨ν, E⟩)2
. (4-2)

Without loss of generality, we may assume that, at P,

u2
1 ⩾

|∇u|
2

n
,

where ∇ is the Levi-Civita connection on Mu . By (4-1), we have

κ1 =
N ⟨ν, E⟩

u −9

(
1 −

91

u1

)
.

We may also assume |∇u(P)| is sufficiently large that |91/u1|<
1
2 . Then, at P, we can see

κ1 <
N
2

⟨ν, E⟩

u −9
. (4-3)

Thus, if N is sufficiently large, κ1 is negative and its norm is large. Using inequality (26) in [Lin and
Trudinger 1994], we obtain ∑

i⩾2

σ i i
k κ

2
i ⩾ ησ 11

k κ
2
1 ,
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where η is a uniform constant only depending on n and k. Therefore,

σ i i
k κ

2
i −

σ i i
k κ

2
i u2

i

(−⟨ν, E⟩)2
⩾

∑
i⩾2

σ i i
k κ

2
i −

(
1 −

1
n

) ∑
i⩾2

σ i i
k κ

2
i ⩾

η

n
σ 11

k κ
2
1 := η0σ

11
k κ

2
1 .

By (4-3), we get

σ i i
k κ

2
i −

σ i i
k κ

2
i u2

i

(−⟨ν, E⟩)2
⩾
η0 N 2

4
σ 11

k
(−⟨ν, E⟩)2

(u −9)2
. (4-4)

Inserting (1-2) and (4-4) into (4-2) yields

0 ⩾ N (u −9)[σ i i
k κi (−⟨ν, E⟩)− σ i i

k 9i i ] − Nσ i i
k (ui −9i )

2

+ (u −9)2
∑

m ψmum

−⟨ν, E⟩
+
η0 N 2

4
σ 11

k (−⟨ν, E⟩)2. (4-5)

Noticing that

ψm =

n∑
l=1

ψxl

〈
τm,

∂

∂xl

〉
+ψu⟨−τm, E⟩,

we calculate ∑
m ψmum

−⟨ν, E⟩
⩾ −C(1 + ⟨−ν, E⟩). (4-6)

Combining (4-5) with (4-6), we get

0 ⩾ −(n − k + 1)N (u −9)σk−1|∇
29| − 2(n − k + 1)Nσk−1(|∇u|

2
+ |∇9|

2)

− C(u −9)2(1 + ⟨−ν, E⟩)+
η0 N 2

4
σ 11

k (−⟨ν, E⟩)2. (4-7)

Notice that, when κ1 < 0, we have

σk−1 = κ1σk−2(κ |1)+ σk−1(κ |1)⩽ σ 11
k .

Moreover, −⟨ν, E⟩ =
√

1 + |∇u|2. With N sufficiently large in (4-7), we obtain the desired estimate. □

4.2. The Pogorelov-type local C2 estimates. Recall that in [Wang and Xiao 2022] (see Lemma 24)
we proved the Pogorelov-type local C2 estimate for strictly convex, spacelike, constant σk curvature
hypersurfaces. With small modifications, we can show the following.

Lemma 16. Let ur∗ be the solution of (3-5) and ur be the Legendre transform of ur∗. For any given
s > 2C0 + 1, where C0 >min u is an arbitrary constant, let rs > 0 be a positive number such that, when
r > rs , we have ur

|∂�r > s, where �r = Dur∗(Br ). Let κmax(x) be the largest principal curvature of Mur

at x , where Mur = {(x, ur (x)) | x ∈�r }. Then, for r > rs , we have

max
Mur

(s − ur )κmax ⩽ C. (4-8)

Here, C depends on the local C1 estimates of ur and s.

In the rest of this subsection, we will establish the Pogorelov-type local C2 estimates for the k-convex
solution of (1-2), where k = n − 1 (n ⩾ 3), n − 2 (n ⩾ 5).
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Lemma 17. Let un be the k-convex solution of (3-23) with ψ = ψ(X, ν), where k = n−1 (n ⩾ 3),
n−2 (n ⩾ 5). For any given s > 1, let m > s. Then um

|∂�m = m > s. Let κmax(x) be the largest principal
curvature of Mum at x , where Mum = {(x, um(x)) | x ∈�m}. Then, for m > s, we have

max
Mum

(s − um)κmax ⩽ C.

Here, C depends on the local C1 estimates of um and s.

Proof. In this proof, for our convenience when there is no confusion, we will drop the superscript on um.
Now, on �m , we consider the following test function whose form first appeared in [Guan et al. 2015]:

φ = β log(s − u)+ log log P − N ⟨ν, E⟩.

Here the function P is defined by
P =

∑
l

eκl ,

and β and N are constants to be determined later.
Letting Us = {x ∈ Rn

| u(x) < s}, we may assume that the maximum of φ is achieved at P0 ∈ Us .
Choose a local normal coordinate {τ1, τ2, . . . , τn} such that hi j = κiδi j and κ1 ⩾ κ2 ⩾ · · · ⩾ κn at P0.

Differentiating the function φ twice at P0, we get

φi = −
βui

s − u
+

Pi

P log P
+ Nhi i ui = 0 (4-9)

and

0 ⩾ φi i =
Pi i

P log P
−

P2
i

P2 log P
−

P2
i

(P log P)2
+
βhi i ⟨ν, E⟩

s − u
−

βu2
i

(s − u)2
− Nh2

i i ⟨ν, E⟩ +

∑
s

Nushisi

=
1

P log P

[∑
l

eκl hlli i +

∑
l

eκl h2
lli +

∑
p ̸=q

eκp − eκq

κp − κq
h2

pqi −

(
1
P

+
1

P log P

)
P2

i

]

+
βhi i ⟨ν, E⟩

s − u
−

βu2
i

(s − u)2
− Nh2

i i ⟨ν, E⟩ +

∑
s

Nushi is .

Contracting with σ i i
k , we have

σ i i
k φi i =

σ i i
k

P log P

[∑
l

eκl hlli i +

∑
l

eκl h2
lli +

∑
p ̸=q

eκp − eκq

κp − κq
h2

pqi −

(
1
P

+
1

P log P

)
P2

i

]

+
βσ i i

k κi ⟨ν, E⟩

s − u
−
βσ i i

k u2
i

(s − u)2
− Nσ i i

k κ
2
i ⟨ν, E⟩ +

∑
s

Nusσ
i i
k hi is . (4-10)

At P0, differentiating (1-2) twice yields,

σ i i
k hi il = dXψ(τl)+ κldνψ(τl) (4-11)

and
σ i i

k hi ill + σ
pq,rs

k h pqlhrsl ⩾ −C − Ch2
11 +

∑
s

hslldνψ(τs), (4-12)
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where C is some uniform constant. Note that

hlli i = hi ill − hi i h2
ll + h2

i i hll . (4-13)

Inserting (4-12) and (4-13) into (4-10), we obtain

σ i i
k φi i ⩾

1
P log P

[∑
l

eκl

(
−C − Cκ2

1 − σ
pq,rs

k h pqlhrsl +

∑
s

hslldνψ(∂s)

)
+

∑
l

σ i i
k eκl h2

lli + σ i i
k

∑
p ̸=q

eκp − eκq

κp − κq
h2

pqi −

(
1
P

+
1

P log P

)
σ i i

k P2
i

]

+
βkσk⟨ν, E⟩

s − u
−
βσ i i

k u2
i

(s − u)2
− Nσ i i

k κ
2
i ⟨ν, E⟩ +

∑
s

Nusσ
i i
k hsii − σ i i

k κ
2
i . (4-14)

From (4-9) and (4-11), we deduce

1
P log P

∑
j

∑
l

eκl h jlldνψ(τj )+
∑

j

Nu jσ
i i
k hsii ⩾

∑
l

dνψ(τl)
βul

s − u
− C.

For any constant K > 1, write

Ai = eκi

[
K (σk)

2
i −

∑
p ̸=q

σ
pp,qq

k h ppi hqqi

]
, Bi = 2

∑
l ̸=i

σ
i i,ll
k eκl h2

lli ,

Ci = σ i i
k

∑
l

eκl h2
lli , Di = 2

∑
l ̸=i

σ ll
k

eκl − eκi

κl − κi
h2

lli , Ei =
1 + log P
P log P

σ i i
k P2

i .

Note that
−

∑
l

σ
pq,rs

k h pqlhrsl =

∑
p ̸=q

σ
pp,qq

k h2
pql −

∑
p ̸=q

σ
pp,qq

k h pplhqql .

Therefore, (4-14) becomes

σ i i
k φi i ⩾

1
P log P

∑
i

(Ai + Bi + Ci + Di − Ei )+
βkσk⟨ν, E⟩

s − u
−
βσ i i

k u2
i

(s − u)2

+ (−N ⟨ν, E⟩ − 1)σ i i
k κ

2
i +

∑
l

dνψ(τl)
βul

s − u
− Cκ1. (4-15)

Following the same argument as that in the proof of Lemma 13, from (4-15) we obtain

0 ⩾
∑

|κi |<δκ1

α

(P log P)2
σ i i

k P2
i +

βkσk⟨ν, E⟩

s − u
−
βσ i i

k u2
i

(s − u)2

+ (−N ⟨ν, E⟩ − 1)σ i i
k κ

2
i +

∑
l

dνψ(τl)
βul

s − u
− Cκ1. (4-16)

Here, the constant δ is the same constant as the one chosen in Claim 1 of Lemma 13. Moreover, by (4-9),

−
βσ i i

k u2
i

(s − u)2
⩾ −

σ i i
k

β

[
2
(

Pi

P log P

)2

+ 2N 2u2
i κ

2
i

]
.
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Choosing β > 0 such that αβ > 2, (4-16) implies

0 ⩾
βkσk⟨ν, E⟩

s − u
−

∑
|κi |⩾δκ1

βσ i i
k u2

i

(s − u)2

+ (−N ⟨ν, E⟩ − 1)σ i i
k κ

2
i +

∑
l

dνψ(τl)
βul

s − u
− Cκ1 −

∑
|κi |<δκ1

σ i i
k

β
2N 2u2

i κ
2
i . (4-17)

Now, first choose N > 0 such that
1
2

∑
|κi |⩾δκ1

σ i i
k κ

2
i (−N ⟨ν, E⟩ − 1)− Cκ1 ⩾ 0.

Then choose β = β(N ) sufficiently large such that∑
|κi |<δκ1

(
σ i i

k κ
2
i (−N ⟨ν, E⟩ − 1)−

σ i i
k

β
2N 2u2

i κ
2
i

)
⩾ 0.

We deduce
βC

s − u
+

∑
|κi |⩾δκ1

2βσ i i
k u2

i

(s − u)2
⩾

∑
|κi |⩾δκ1

σ i i
k κ

2
i (−N ⟨ν, E⟩ − 1). (4-18)

If
C

s − u
⩾

∑
|κi |⩾δκ1

2βσ i i
k u2

i

(s − u)2
,

we get
2Cβ
s − u

⩾ σ 11
k κ

2
1 (−N ⟨ν, E⟩ − 1)⩾ c0(N − 1)κ1,

which implies the desired estimate. If
C

s − u
⩽

∑
|κi |⩾δκ1

2βσ i i
k u2

i

(s − u)2
,

we let i0 denote the index of the maximum value element of the set{
2βσ i i

k u2
i

(s − u)2

∣∣∣∣ |κi | ⩾ δκ1

}
.

Then, we obtain the following, which implies our desired estimate:

4n
βσ

i0i0
k u2

i0

(s − u)2
⩾ σ i0i0

k κ2
i0
(−N ⟨ν, E⟩ − 1)⩾ C(N − 1)σ i0i0

k δ2κ2
1 . □

5. The prescribed curvature problem

We will prove Theorem 1 and 5 in this section.
Let’s consider the proof of Theorem 1 first. Recall that in Section 3.1, we have solved the approximate

Dirichlet problem (3-5) on Br for r < 1. We will denote the strictly convex solution of (3-5) by ur∗. We
further denote the Legendre transform of (Br , ur∗) by (�r , ur ), where �r = Dur∗(Br ) is the domain
of ur. By Lemmas 19 and 20 in [Wang and Xiao 2022], we have

u ⩽ ur ⩽ u in �r . (5-1)
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In the following, we will write �̃r = Du∗(Br ) for the domain of ur := u|�̃r
. It is not difficult to see

that these domains are increasing, namely,

�̃r ⊂ �̃s for r < s.

Moreover, by the choice of u in Section 3.1, we have

u|∂�̃r
→ +∞ as r → 1.

Thus, by the comparison principle, we have

ur |∂�r = [ξ · Du∗

r (ξ)− u∗

r (ξ)]|∂Br ⩾ [ξ · Du∗(ξ)− u∗(ξ)]|∂Br = u|∂�̃r
. (5-2)

From this we can see that, as r → 1, ur |∂�r → +∞. This in turn implies, for any compact set K ⊂ Rn ,
there exists a constant cK = c(K) < 1 such that, when r > cK, �r ⊃ K. Therefore, for any compact set
K ⊂ Rn , we can apply Lemmas 14 and 16 to obtain uniform C1 and C2 bounds for ur in K.

More precisely, in order to obtain the local C1 estimate, we introduce a new subsolution u1 of (1-2),
where u1 satisfies

σk(κ1, . . . , κn)= c1 + 100
and, as |x | → ∞,

u1 → |x | +ϕ

(
x
|x |

)
.

By the strong maximum principle, we have, when x ∈ Rn ,

u1(x) < u(x).

Thus, for any compact convex domain K, let

2δ = min
K
(u − u1).

We define a strict spacelike function 9 = u1 + δ. Set K′
= {x ∈ Rn

| 9 ⩽ u}. Since, as |x | → ∞, we
have u1 − u → 0, we know that K′ is a compact set only depending on K. Applying Lemma 14, for any
(�r , ur ), if K′

⊂�r , we have the gradient estimate

sup
K

1√
1 − |Dur |2

⩽
1
δ

sup
K′

u −9√
1 − |D9|2

.

Next, we want to show that, for any given compact set K ⊂ Rn , the set {|D2ur
|} is uniformly bounded

in K. Without loss of generality, let’s consider any BR ⊂ Rn. Let C0 = maxBR u and s = 2C0 + 1 in
Lemma 16. Set Us = {x ∈ Rn

| u(x) < s}. Then by our earlier discussion, it’s easy to see that there exists
rs > 0 such that, when r > rs , we have �r ⊃ Us . Applying Lemma 16, we obtain, when r > rs ,

sup
BR

κmax(Mur )⩽ C.

Here C depends on the upper bound of 1/
√

1 − |Dur |2 on U s , which is independent of r . Using the
classical regularity theorem and convergence theorem, we conclude that (�r , ur ) converges locally
smoothly to an entire, smooth convex function u satisfying (1-2). In view of (5-1) and the asymptotic
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behavior of u and u, we know that, as |x | → ∞, we have u → |x | +ϕ(x/|x |). Moreover, by Remark 2,
we also know that u is strictly convex. Therefore, its Gauss map image is B1, i.e., Du(Rn)= B1.

Theorem 5 follows by replacing Lemmas 14 and 16 in the proof of Theorem 1 with Lemmas 15 and 17.

6. The radial downward translating soliton

We will now study the radially symmetric downward translating soliton. Recall that we say Mu is a
downward translating soliton when its principal curvatures satisfy

σk(κ[Mu])=

(n
k

)(
C −

1√
1 − |Du|2

)k

, (6-1)

where C > 1 is a constant. We want to point out that in this section and the next, C is the fixed constant
in (6-1). We also write

C̃ =

√
1 −

1
C2

as in Theorem 7. The following theorem is a generalization of Theorem 1 in [Bayard 2023].

Theorem 18. Let C > 1 be a positive constant. Then there exists a strictly convex radial solution
u : Rn

→ R of (6-1) satisfying
|Du| → C̃ as |x | → +∞.

Moreover, u(x) has the following asymptotic expansion as |x | → ∞:

u(x)= C̃|x | −
1
C2

k

√
n−k

n
log |x | + c0 + o(1) (6-2)

for some constant c0 ∈ R. In particular, the radial solution u is unique up to the addition of a constant.

For radial solutions, we will reduce (6-1) to an ODE. Let u =u(r) and y =∂u/∂r . Then a straightforward
calculation yields

Di u = y
xi

|x |
and D2

i j u =
y

|x |

(
δi j −

xi x j

|x |2

)
+ y′

xi x j

|x |2
.

Therefore,

κ[Mu] =
1√

1 − y2

(
y′

1 − y2 ,
y
r
, . . . ,

y
r

)
,

and (6-1) becomes
1

(1 − y2)k/2

yk−1

r k−1

(
k
n

y′

1 − y2 +
n − k

n
y
r

)
=

(
C −

1√
1 − y2

)k

. (6-3)

By a small modification of the proof of Proposition 2.1 in [Bayard 2023], we obtain the following.

Proposition 19. Under the hypotheses of Theorem 18, there exists a solution y of (6-3), which is defined
on [0,+∞) and smooth on (0,+∞), such that

y(0)= 0, 0 ⩽ y < C̃, lim
r→+∞

y(r)= C̃, y′(0)= C − 1, and y′ > 0 on [0,+∞).

Moreover, as r → 0+, we have
κ[Mu(r)] → (C − 1)(1, 1, . . . , 1).
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Since the proof is a small modification of the proof of Proposition 2.1 in [Bayard 2023], we skip it
here. Now, let’s study the asymptotic behavior of y.

Proposition 20. Let y be the solution of (6-3). Then y has the following asymptotic expansion as r → ∞:

y(r)= C̃ −
1
C2

k

√
n−k

n
1
r

+ O
(

1
r2

)
.

Proof. By Proposition 19, we may assume

y(r)= C̃ −
z
r
. (6-4)

Then we have√
1 − y2

−
1
C

=
1 − 1/C2

− y2√
1 − y2 + 1/C

=
z
r

A(r), where A(r)=

√
1 − 1/C2 + y√
1 − y2 + 1/C

. (6-5)

Differentiating (6-4) then substituting it into (6-3), we get

k
n

yk−1

1 − y2

(
−

z′

r k +
z

r k+1

)
+

n − k
n

yk

r k = Ck
(√

1 − y2
−

1
C

)k

. (6-6)

By (6-5), (6-6) can be simplified as

k
n

yk−1

1 − y2

(
−z′

+
z
r

)
+

n − k
n

yk
= Ckzk Ak(r).

Thus, we obtain
z′

= −B(r)zk
+ C(r), (6-7)

where

B(r)= Ck n
k

1 − y2

yk−1 Ak(r) and C(r)=
z
r

+
n − k

k
y(1 − y2). (6-8)

Applying Proposition 19, we can see that

lim
r→+∞

B(r)=
n
k
C2k−2C̃ and lim

r→+∞
C(r)=

n − k
k

1
C2 C̃.

Here, we have used limr→∞(z/r)= 0, which is a direct consequence of Proposition 19. The next lemma
is a generalization of Proposition A.2 in [Bayard 2023].

Lemma 21. Assume z : (0,+∞)→ R is a positive solution of the equation

z′
= −A(r)zk

+ B(r),

where A, B : (0,∞)→ R are continuous functions such that

lim
r→+∞

A(r)= A0 > 0 and lim
r→+∞

B(r)= B0 > 0.

Then

lim
r→+∞

z(r)=
k

√
B0

A0
.

Proof. In order to prove this lemma, we only need to prove the following claim.
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Claim 3. Assume z : (0,+∞)→ R is a positive solution of the equation

z′
= A0zk

+ B0,

with A0 < 0 and B0 > 0 constants. Then

lim
r→∞

z(r)=

(
−

B0

A0

)1/k

.

If this claim is true, following the same argument as Proposition A.2 in [Bayard 2023], we can prove
Lemma 21. We will prove this claim below.

Without loss of generality, let’s consider the positive solution of the equation

z′
= B − zk (6-9)

instead. We will show that

lim
r→∞

z(r)= B1/k. (6-10)

First, since z is a positive solution of (6-9), let’s assume 0 < z(r0) = z0 < B1/k. Then we have
z0 < z(r) < B1/k on (r0,∞). Writing z1 = B1/k, we get

zk
− B = (z − z1)(zk−1

+ zk−2z1 + · · · + zk−1
1 ).

Therefore, (6-9) can be written as

−dr =

[
A1

z − z1
+

Qk−2(z)

zk−1 + zk−2z1 + · · · + zk−1
1

]
dz, (6-11)

where A1 = z1−k
1 /k and Qk−2(z) is a polynomial of degree k − 2. It’s easy to see that

Qk−2(z)= −A1zk−2
+ Q(k − 3)(z)

and Qk−3(z) is a polynomial of degree k − 3. Integrating (6-11) from r0 to r yields

−r + r0 = A1 ln
∣∣∣∣ z(r)− z1

z0 − z1

∣∣∣∣ − ∫ z(r)

z0

A1zk−2

zk−1 + zk−2z1 + · · · + zk−1
1

dz

+

∫ z(r)

z0

Qk−3(z)

zk−1 + zk−2z1 + · · · + zk−1
1

dz. (6-12)

Notice that, as r → ∞, the left-hand side of (6-12) goes to −∞, while

−

∫ z(r)

z0

A1zk−2

zk−1 + zk−2z1 + · · · + zk−1
1

dz ⩾ −A1 ln
∣∣∣∣ z1

z0

∣∣∣∣
and ∣∣∣∣∫ z(r)

z0

Qk−3(z)

zk−1 + zk−2z1 + · · · + zk−1
1

dz
∣∣∣∣

is bounded. Therefore, limr→∞ z(r)= z1 = B1/k. We similarly prove the case when z(r0)= z0 > z1. □
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From Lemma 21 and (6-7), we conclude

lim
r→+∞

z(r)=
1
C2

k

√
n − k

n
.

We further assume

z(r)=
1
C2

k

√
n − k

n
+
w(r)

r
.

Inserting it into (6-7), we get

w′
= −D(r)w+ F(r),

where

D(r)= B(r)
k∑

i=1

(k
i

)(
1
C2

k

√
n − k

n

)k−i(
w

r

)i−1

and

F(r)= r
(

C(r)−
B(r)
C2k

n − k
n

)
+
w

r
.

Notice that limr→+∞(w/r)= 0 and D(r) has a uniform positive lower bound. In the following, we want
to find a positive upper bound for F(r). Using the expressions (6-8) for B(r) and C(r), we obtain

F(r)=
w

r
+ z +

n − k
k

1 − y2

yk−1 r
[

yk
−

(
A(r)
C

)k]
=
w

r
+ z +

n − k
k

1 − y2

yk−1 r
(

y −
A(r)
C

) k∑
i=1

yk−i
(

A(r)
C

)i−1

. (6-13)

Therefore, we only need to show r(y − A(r)/C) is bounded as r → ∞. By (6-5), we have

r
(

y −
A(r)
C

)
= r

(
y −

1
C

√
1 − 1/C2 + y√
1 − y2 + 1/C

)

=
r(y

√
1 − y2 − (1/C)

√
1 − 1/C2)√

1 − y2 + 1/C
. (6-14)

Combining (6-14) with the expression for y and (6-5), we can derive

y
√

1 − y2
−

1
C

√
1 −

1
C2 =

(√
1 −

1
C2 −

z
r

)(
1
C

+
z A(r)

r

)
−

1
C

√
1 −

1
C2

=
z
r

(
−

1
C

+ A(r)

√
1 −

1
C2

)
−

z2 A(r)
r2 . (6-15)

From (6-14), (6-15), and Lemma 21, we conclude that r(y − A(r)/C) is uniformly bounded from above.
Thus, F(r) has an uniform upper bound. Applying Proposition A.3 in [Bayard 2023], we obtain a uniform
upper bound for w. □

It’s not hard to see that Theorem 18 follows from Propositions 19 and 20.
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7. The existence results

In this section we will prove Theorem 7. First, we want to prove the following existence theorem.

Proposition 22. Suppose ϕ is a C2 function defined on Sn−1
C̃

:= {x ∈Rn
| |x |= C̃}, where C̃=

√
1 − (1/C)2.

There exists a unique, strictly convex solution u : Rn
→ R of (1-10) such that, as |x | → ∞,

u(x)→ C̃|x | −
1
C2

k

√
n−k

n
log |x | +ϕ

(
C̃ x
|x |

)
. (7-1)

7.1. Constructing barriers. We first construct the barrier functions of (1-10). Following the ideas of
[Spruck and Xiao 2016; Treibergs 1982], we denote the radial solution of (1-10) by zk

0(|x |), whose
asymptotic expansion satisfies (6-2) with c0 = 0. Let

pi (C̃y)= Dϕ(C̃y)+ (−1)i+12M C̃y, i = 1, 2,

for any y ∈ Sn−1. Set

zk
i (x, y)= ϕ(C̃y)− pi (C̃y) · C̃y + zk

0(|x + pi (C̃y)|) for all x ∈ Rn, y ∈ Sn−1.

Then
qk

1 (x)= sup
y∈Sn−1

zk
1(x, y)

is a subsolution of (1-10) and
qk

2 = inf
y∈Sn−1

zk
2(x, y)

is a supersolution of (1-10). Moreover, qk
1 (x)⩽ qk

2 (x), and, when |x | → +∞, we have

qk
i (x)→ C̃|x | −

1
C2

k

√
n−k

n
log |x | +ϕ

(
C̃ x
|x |

)
, i = 1, 2.

7.2. The Dirichlet problem. First, let’s solve (1-10) for the case k = n. For any t >minRn qn
2 , we let

∂�t = {x ∈ Rn
| qn

1 (x) < t < qn
2 (x)}

and �t be a smooth, strictly convex domain in Rn . Consider the Dirichlet problem{
σ 1/n

n (κ(Mut ))= C + ⟨ν, E⟩ in �t ,

ut = t on ∂�t .
(7-2)

By a small modification of [Delanoë 1990], we know that there exists a unique solution ut of (7-2). Then,
applying the local C1 and C2 estimates obtained in [Bayard and Schnürer 2009], we conclude that there
exists a subsequence {uti }

∞

i=1 (ti → ∞ as i → ∞) that converges to an entire, strictly convex solution u
of (1-10) for k = n. Moreover, it’s easy to see that u(x) satisfies the desired asymptotic behavior as
|x | → ∞. From now on, we will denote this solution by un. We will also denote the Legendre transform
of un by un∗.

Next, we consider the case when k < n. We denote the Legendre transform of zk
0 by (zk

0)
∗; that is,

(zk
0)

∗(τ )= r ·
∂zk

0

∂r
− zk

0(r), where τ =
∂zk

0

∂r
.
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Using the asymptotic expansion of z0 derived in Section 6, we know

(zk
0)

∗(τ )=
1
C2

k

√
n−k

n
(log r − 1)+ O

(1
r

)
.

Writing its principal part as

(z̃k
0)

∗(τ )=
1
C2

k

√
n−k

n
(log r(τ )− 1),

it is clear that (z̃k
0)

∗ is unbounded in BC̃ .
To make sure our solution is convex, we consider the dual Dirichlet problem on Bτ for any τ < C̃:

F̂(w∗γ ∗

iku∗

klγ
∗

l j )=

(n
k

)−1/k

C − 1/
√

1 − |ξ |2
in Bτ ,

u∗
= un∗

+ (zk
0)

∗
− (zn

0)
∗ on ∂Bτ .

(7-3)

Here, we have

w∗
=

√
1 − |ξ |2, γ ∗

i j =δi j−
ξiξj

1 +w∗
, u∗

kl =
∂2u
∂ξk∂ξl

, F̂(w∗γ ∗

iku∗

klγ
∗

l j )=

(
σn

σn−k
(κ∗

[w∗γ ∗

iku∗

klγ
∗

l j ])

)1/k

,

and κ∗
[w∗γ ∗

iku∗

klγ
∗

l j ] = (κ∗

1 , . . . , κ
∗
n ) is the set of eigenvalues of the matrix (w∗γ ∗

iku∗

klγ
∗

l j ). The solvability
of (7-3) has been established in Section 3. Therefore, by standard PDE theorems, in order to prove
Proposition 22, we only need to obtain local C1 and C2 estimates for the translating soliton equation (1-10).
In order to do so, we will need the following lemma.

Lemma 23. Let uτ∗ be a solution to (7-3) and uτ be the Legendre transform of uτ∗. Then, for any
x ∈ Duτ∗(Bτ ), we have qk

1 (x)⩽ uτ (x)⩽ qk
2 (x).

Proof. Without causing confusion we shall drop the superscript τ in the proof. We only need to prove that

zk
1(x, y)⩽ u(x)⩽ zk

2(x, y)

for any x ∈ Duτ∗(Bτ ) and y ∈ Sn−1. This is equivalent to proving

(zk
2)

∗(ξ, y)⩽ u∗(ξ)⩽ (zk
1)

∗(ξ, y)

for any ξ ∈ Bτ and y ∈ Sn−1. Since we have

(zk
i )

∗(ξ, y)= (zk
0)

∗(|ξ |)− pi (C̃y) · ξ −ϕ(C̃y)+ pi (C̃y) · C̃y

= (zk
0)

∗(|ξ |)− (zn
0)

∗(|ξ |)+ (zn
i )

∗(ξ, y) (7-4)

and

(zn
2)

∗(ξ, y) < un∗(ξ) < (zn
1)

∗(ξ, y),

we obtain, on ∂Bτ ,

(zk
2)

∗(ξ, y)⩽ u∗(ξ)⩽ (zk
1)

∗(ξ, y).

By the comparison principle, we finish the proof. □
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7.3. Local C1 and C2 estimates. Similar to Lemma 14, we have the following local C1 estimate lemma
for translating solitons.

Lemma 24. Let �⊂ Rn be a bounded open set. Let u, u, 9 :�→ Rn be strictly C-spacelike, i.e.,

|Du|, |Du|, |D9|< C̃.

Assume that u is strictly convex and u ⩽ u in �. Also assume that, near ∂�, we have 9 > u. Consider the
set with u >9. For every x in that set, we have the following gradient estimate for u:

1√
C̃2

− |Du|
2
⩽

1
u(x)−9(x)

· sup
{u>9}

u −9√
C̃2

− |Dψ |
2
.

Since the proof is the same as the proof of Lemma 5.1 in [Bayard and Schnürer 2009], we skip it here.
We now construct 9. Following the argument in Section 4 of [Bayard 2023], let

9(x)= −A0 + C̃
√

1 + |x |2.

It is clear that, when |x | is sufficiently large, we have 9(x) > q2(x). On the other hand, for any compact
set K ⊂ Rn, we can always choose A0 large enough that 9(x) < q1(x) in K. Applying Lemma 24 we
obtain that, for any K ⊂ Rn and any strictly convex function q1(x) < u(x) < q2(x) satisfying (1-10),
whose domain of definition contains K, there exists a local C1 bound CK for u(x) in K that only depends
on K.

Using the idea of [Wang and Xiao 2022], we can prove the following Pogorelov-type local C2 estimate
for translating solitons.

Lemma 25. Let u be the solution of (1-10) defined on �. For any given s > minRn u(x)+ 1, suppose
u|∂� > s. Let κmax(x) be the largest principal curvature of Mu = {(x, u(x)) | x ∈�} at x. Then we have

max
Mu

(s − u)κmax ⩽ C1.

Here, C1 only depends on the local C1 estimate of u. More specifically, C1 depends on the lower bound
of C + ⟨ν, E⟩.

Following the argument in Section 5, we complete the proof of Proposition 22.

7.4. Proof of Theorem 7. In this subsection, we will prove that the hypersurface Mu constructed in
Proposition 22 has bounded principal curvatures. This completes the proof of Theorem 7. For our
convenience, in the following, we will drop the superscript k, and the updated configuration zk

0 now
becomes z0.

Suppose u is a strictly convex solution of (1-10) and u∗ is the Legendre transform of u. Then u∗

satisfies

F̂(w∗γ ∗

iku∗

klγ
∗

l j )=

(n
k

)−1/k

C − 1/
√

1 − |ξ |2
in BC̃ . (7-5)

We also denote the Legendre transform of z0 by z∗

0; that is,

z∗

0(τ )= r ·
∂z0

∂r
− z0(r), where τ =

∂z0

∂r
.



THE PRESCRIBED CURVATURE PROBLEM FOR ENTIRE HYPERSURFACES IN MINKOWSKI SPACE 33

Using the asymptotic expansion of z0 derived in Section 6, we know

z∗

0(τ )=
1
C2

k

√
n−k

n
(log r − 1)+ O

(1
r

)
.

Writing its principal part as

z̃∗

0(τ )=
1
C2

k

√
n−k

n
(log r(τ )− 1),

it is clear that z̃∗

0(τ ) is unbounded in BC̃ .

Lemma 26. Let u∗ and z̃∗

0 be defined as above. Then we have

lim
ξ→ξ0

(u∗(ξ)− z̃∗

0(|ξ |))= −ϕ(ξ0) for any ξ0 ∈ ∂BC̃, ξ ∈ BC̃ . (7-6)

Proof. We use the auxiliary functions zi (x, y), i = 1, 2, constructed in Section 7.1. It’s easy to see that

z1(x, y) < u(x) < z2(x, y) for any x ∈ Rn, y ∈ Sn−1.

By the strict convexity of zi (x, y), we have

z∗

2(ξ, y) < u∗(ξ) < z∗

1(ξ, y) for any ξ ∈ BC̃, y ∈ Sn−1. (7-7)

Notice that
z∗

i (ξ, y)= z∗

0(|ξ |)− pi (C̃y) · ξ −ϕ(C̃y)+ pi (C̃y) · C̃y.

Therefore, letting C̃y = ξ0 and ξ → ξ0, we get

zi (ξ, C̃−1ξ0)− z∗

0(|ξ |)→ −ϕ(ξ0).

This together with (7-7) yields (7-6). □

Now we let

∂ = ξi
∂

∂ξj
− ξj

∂

∂ξi

be the angular derivative. Similar to Section 10 in [Ren et al. 2020], we obtain following lemmas.

Lemma 27. Let u∗ be the solution of (7-5). Then |∂u∗
| is bounded above by a constant depending

on |ϕ|C1 , and ∂2u∗ is bounded above by a constant depending on |ϕ|C2 .

Proof. Noticing that ∂|ξ |2 = 0, we have that the angular derivative of the right-hand side of (7-5) is zero.
Therefore, following the proof of Lemmas 29 and 30 in [Ren et al. 2020], we have

F i jw∗γ ∗

ik(∂(u
∗
− z̃∗

0))klγ
∗

l j = 0 and F i jw∗γ ∗

ik(∂
2(u∗

− z̃∗

0))klγ
∗

l j ⩾ 0.

In view of (7-6) and the maximum principle, we obtain the desired estimates. □

Lemma 28. Let u∗ be the solution of (7-5). There is a positive constant b such that√
C̃2

− |ξ |2|∂2u∗
|< b.

Proof. We consider u∗
− z̃∗

0, which has C0 bound on BC̃ . Since ∂2u∗
= ∂2(u∗

− z̃∗

0), the rest of the proof
is the same as that of Lemma 5.3 in [Li 1995]. □
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Lemma 29. Suppose a0 < r < C̃ for some a0 ∈ (0, C̃) and Sn−1(r) =
{
ξ ∈ Rn

∣∣ ∑
ξ 2

i = r2
}
. For any

point ξ̂ ∈ Sn−1(r), there is a function

u∗

0 = z∗

0 + b1ξ1 + · · · + bnξn + b

such that
u∗

0(ξ̂ )= u∗(ξ̂ )

and
u∗

0(ξ̂ ) > u∗(ξ) for any ξ ∈ Sn−1(r) \ {ξ̂}.

Here, b1, . . . , bn are constants depending on ξ̂ , and b is a positive constant independent of ξ̂ and r.

Proof. The proof is almost the same as the proof of Lemma 5.4 in [Li 1995]. We only need to replace
u, u, and −k̄

√
1 − |x |2 by u∗

− z̃∗

0, u∗

0 − z̃∗

0, and z∗

0 − z̃∗

0, respectively, in Li’s proof. □

Similarly, we can prove the following lemma analogous to Lemma 5.5 in [Li 1995].

Lemma 30. Suppose a0 < r < C̃ for some a0 ∈ (0, C̃) and Sn−1(r) =
{
ξ ∈ Rn

∣∣ ∑
ξ 2

i = r2
}
. For any

point ξ̂ ∈ Sn−1(r), there is a function

u∗

0 = z∗

0 + a1ξ1 + · · · + anξn − a

such that
u∗

0(ξ̂ )= u∗(ξ̂ )

and
u∗

0(ξ̂ ) < u∗(ξ) for any ξ ∈ Sn−1(r) \ {ξ̂}.

Here, a1, . . . , an and a are constants depending on ξ̂ , a > 0, and a
√
C̃2

− |ξ̂ |2 < C1, where C1 is a
positive constant only depending on |ϕ|C2 .

Using Lemmas 29 and 30 we can show the following.

Lemma 31. Let u be the solution of (1-10) and u∗ be the Legendre transform of u. There are positive
constants d2 > d1 such that

0< d1 ⩽ u(C̃2
− |Du|

2)⩽ d2. (7-8)

Here, d2 depends on |u|C0(�), and �= {x ∈ Rn
| |Du| ⩽ a0}.

Proof. We modify the proof of Li [1995]. We first consider the lower bound. For any ξ̂ ∈ Sn−1(r), using
Lemma 29, we have

u∗(ξ̂ )= u∗

0(ξ̂ ) and u∗(ξ) < u∗

0(ξ) for ξ ∈ Sn−1(r) \ {ξ̂}.

Thus, using that u∗

0 is a supersolution, we get u∗(ξ) < u∗

0(ξ) in Br . Therefore, at ξ̂ , we get

u(x̂)= ξ̂ · Du∗
− u∗ > ξ̂ · Du∗

0 − u∗

0 = z0(r̂)− b,

where we assume x̂ = Du∗(ξ̂ ) and z′

0(r̂) := ∂z0/∂r(r̂)= |ξ̂ |. Thus, at x̂ , we have

u(C̃2
− |Du|

2) > z0(r̂)(C̃2
− |z′

0(r̂)|
2)− b(C̃2

− |ξ̂ |2). (7-9)
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Using the asymptotic behavior of z0, we have

z0(C̃2
−|z′

0|
2)=

[
C̃r−

1
C2

k

√
n−k

n
log r+O

(
1
r

)][
C̃2

−

(
C̃−

1
C2

k

√
n−k

n
1
r
+O

(
1
r2

))2]
=2

C̃2

C2
k

√
n−k

n
+o(1)

We write

2c0 = 2
C̃2

C2
k

√
n−k

n
.

Therefore, by (7-9), we obtain
u(C̃2

− |Du|
2) > 1

2 c0

for r sufficiently close to C̃. We further assume r > a0, since for r < a0, without loss of generality, we
can assume u ⩾ 1. Therefore,

u(C̃2
− |ξ̂ |2)⩾ C̃2

− a2
0 .

Thus, we obtain the uniform lower bound. For the upper bound, we apply a similar argument. For r
sufficiently close to C̃ and still assuming r ⩾ a0, we have

u(C̃2
− |Du|

2) < z0(r̂)(C̃2
− |z′

0(r̂)|
2)+ a(C̃2

− |ξ̂ |2)⩽ 3c0 + C1C̃.

We have obtained a uniform upper bound. □

Finally, we are ready to adapt the ideas in [Li 1995; Ren et al. 2020] to estimate the principal curvatures
of Mu .

Proposition 32. Let u be the solution of (1-10). Then the hypersurface Mu = {(x, u(x)) | x ∈ Rn
} has

bounded principal curvatures.

Proof. We will establish a Pogorelov-type interior estimate. For any s > 0, consider

φ = e−s/(s−u)
[u(C + ⟨ν, E⟩)]−N P1/m

m ,

where Pm =
∑

j κ
m
j and m, N > 0 are constants to be determined later. Without loss of generality, we

also assume u ⩾ 1 in Rn. It’s easy to see that φ achieves its local maximum at an interior point of
Us = {x ∈ Rn

| u(x) < s}; we will assume this point is x0. We can choose a local normal coordinate
{τ1, . . . , τn} such that, at x0, we have hi j = κiδi j and κ1 ⩾ κ2 ⩾ · · · ⩾ κn .

Differentiating logφ at x0, we get

φi

φ
=

∑
j κ

m−1
j h j j i

Pm
− N

hi i ⟨τi , E⟩

C + ⟨ν, E⟩
− N

ui

u
−

sui

(s − u)2
= 0 (7-10)

and

φi i

φ
−
φ2

i

φ2 =
1

Pm

[∑
j

κm−1
j h j j i i + (m − 1)

∑
j

κm−2
j h2

j j i +

∑
p ̸=q

κm−1
p − κm−1

q

κp − κq
h2

pqi

]

−
m
P2

m

(∑
j

κm−1
j h j j i

)2

− N
∑

l

hili
⟨τl, E⟩

C + ⟨ν, E⟩
+ Nh2

i i
−⟨ν, E⟩

C + ⟨ν, E⟩

+ Nh2
i i

u2
i

(C + ⟨ν, E⟩)2
+ N

hi i ⟨ν, E⟩

u
+ N

u2
i

u2 + s
hi i ⟨ν, E⟩

(s − u)2
− 2s

u2
i

(s − u)3
⩽ 0. (7-11)
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By (1-10), we derive
σ i i

k hi i j =

(n
k

)
k(C + ⟨ν, E⟩)k−1(−h j j u j )

and

σ i i
k hi i j j = −σ

pq,rs
k h pq j hrs j +

(n
k

)
k(k − 1)(C + ⟨ν, E⟩)k−2h2

j j u
2
j

+

(n
k

)
k(C + ⟨ν, E⟩)k−1

(
−

∑
l

h j jlul + h2
j j ⟨ν, E⟩

)
⩾ −σ

pq,rs
k h pq j hrs j +

(n
k

)
k(C + ⟨ν, E⟩)k−1

(
−

∑
l

h j jlul

)
− K0(C + ⟨ν, E⟩)k−1κ2

1 , (7-12)

where K0 = K0(n, k, C) > 0 is a constant depending on n, k, and C. Recall that, in Minkowski space,

h j j i i = hi i j j + h2
i i h j j − hi i h2

j j .

Thus,
σ i i

k h j j i i = σ i i
k hi i j j + σ i i

k h2
i i h j j − σ i i

k hi i h2
j j ⩾ σ

i i
k hi i j j − k

(n
k

)
(C + ⟨ν, E⟩)kh2

j j . (7-13)

Combining (7-13) with (7-11), we obtain

0 ⩾ σ i i
k
φi i

φ
=
σ i i

k

Pm

[∑
j

κm−1
j h j j i i + (m − 1)

∑
j

κm−2
j h2

j j i +

∑
p ̸=q

κm−1
p − κm−1

q

κp − κq
h2

pqi

]

−
mσ i i

k

P2
m

(∑
j

κm−1
j h j j i

)2

− Nσ i i
k

∑
l

hili
⟨τl, E⟩

(C + ⟨ν, E⟩)
+ Nσ i i

k h2
i i

−⟨ν, E⟩

C + ⟨ν, E⟩

+ Nσ i i
k h2

i i
u2

i

(C + ⟨ν, E⟩)2
+ Nσ i i

k
hi i ⟨ν, E⟩

u
+ Nσ i i

k
u2

i

u2 + s
σ i i

k hi i ⟨ν, E⟩

(s − u)2
− 2s

σ i i
k u2

i

(s − u)3

⩾ −K0(C + ⟨ν, E⟩)k−1κ1 +

∑
i

(Ai + Bi + Ci + Di − Ei )+
(n

k

)
k(C + ⟨ν, E⟩)k−1

−
∑

j,l h j jlκ
m−1
j ul

Pm

− Nk
(n

k

)
(C + ⟨ν, E⟩)k−2

∑
l

κlu2
l + Nσ i i

k κ
2
i

−⟨ν, E⟩

C + ⟨ν, E⟩
+ Nσ i i

k h2
i i

u2
i

(C + ⟨ν, E⟩)2

+ Nσ i i
k

hi i ⟨ν, E⟩

u
+ Nσ i i

k
u2

i

u2 + s
σ i i

k hi i ⟨ν, E⟩

(s − u)2
− 2s

σ i i
k u2

i

(s − u)3
. (7-14)

Here,

Ai =
κm−1

i

Pm

[
K (σk)

2
i −

∑
p,q

σ
pp,qq

k h ppi hqqi

]
for some constant K > 1,

Bi =
2κm−1

j

Pm

∑
j

σ
j j,i i

k h2
j j i , Ci =

m − 1
Pm

σ i i
k

∑
j

κm−2
j h2

j j i ,

Di =
2σ j j

k

Pm

∑
j ̸=i

κm−1
j − κm−1

i

κj − κi
h2

j j i , Ei =
mσ i i

k

P2
m

(∑
j

κm−1
j h j j i

)2

.

By Lemmas 8 and 9 and Corollary 10 in [Li et al. 2016], we can assume the following claim holds.
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Claim 4. There exist two small positive constants δ and η < 1. If κk ⩽ δκ1, we have∑
i

Ai + Bi + Ci + Di −

(
1 +

η

m

)
Ei ⩾ 0, (7-15)

where m > 0 is sufficiently large.

If (7-15) doesn’t hold, we would have κk > δκ1. Since σk ⩽
(n

k

)
Ck, we get

δk−1κk
1 ⩽ κ1κ2 · · · κk ⩽ σk ⩽

(n
k

)
Ck.

Since this gives an upper bound for κ1 at x0 directly, we would be done. Therefore, we assume (7-15)
holds. Plugging (7-15) into (7-14) yields

0 ⩾ −K0(C + ⟨ν, E⟩)k−1κ1 + η
σ i i

k

P2
m

(∑
j

κm−1
j h j j i

)2

− k
(n

k

)
(C + ⟨ν, E⟩)k−1

|∇u|
2
(

N
u

+
s

(s − u)2

)
+ Nσ i i

k κ
2
i

−⟨ν, E⟩

C + ⟨ν, E⟩
+ Nσ i i

k h2
i i

u2
i

(C + ⟨ν, E⟩)2
+ Nσ i i

k
hi i ⟨ν, E⟩

u

+ Nσ i i
k

u2
i

u2 + s
σ i i

k hi i ⟨ν, E⟩

(s − u)2
− 2s

σ i i
k u2

i

(s − u)3
. (7-16)

From (7-10), we obtain(∑
j κ

m−1
j h j j i

Pm

)2

= N 2 κ2
i u2

i

(C + ⟨ν, E⟩)2
+ N 2 u2

i

u2 +
s2u2

i

(s − u)4
− 2N 2 κi u2

i

u(C + ⟨ν, E⟩)

− 2Ns
κi u2

i

(C + ⟨ν, E⟩)(s − u)2
+ 2Ns

u2
i

u(s − u)2
. (7-17)

Inserting (7-17) into (7-16), we derive

0 ⩾ −K0(C+⟨ν, E⟩)k−1κ1 +η
s2σ i i

k u2
i

(s−u)4
+ N (Nη+1)σ i i

k κ
2
i

u2
i

(C+⟨ν, E⟩)2
−2N 2η

σ i i
k κi u2

i

u(C+⟨ν, E⟩)

−2Nsη
σ i i

k κi u2
i

(C+⟨ν, E⟩)(s−u)2
+2Nsη

σ i i
k u2

i

u(s−u)2
+ Nσ i i

k
hi i ⟨ν, E⟩

u
+ N (ηN +1)σ i i

k
u2

i

u2 +s
σ i i

k hi i ⟨ν, E⟩

(s−u)2

−2s
σ i i

k u2
i

(s−u)3
−k

(n
k

)
(C+⟨ν, E⟩)k−1

|∇u|
2
(

N
u

+
s

(s−u)2

)
+ Nσ i i

k κ
2
i

−⟨ν, E⟩

C+⟨ν, E⟩
. (7-18)

It’s clear that

|∇u| =
|Du|√

1 − |Du|2
<−⟨ν, E⟩ ⩽ C. (7-19)

We also notice that, for any 1 ⩽ i ⩽ n, we have σ i i
k κi ⩽

(n
k

)
Ck (no summation). By a simple calculation,

we get, when N > 1/η2,

η
s2σ i i

k u2
i

(s − u)4
+ 2Nsη

σ i i
k u2

i

u(s − u)2
− 2s

σ i i
k u2

i

(s − u)3
⩾ 0. (7-20)
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Moreover, applying Lemma 31, we know there exist two positive constants d̃2 > d̃1 > 0 such that

d̃1 ⩽ u(C + ⟨ν, E⟩)⩽ d̃2. (7-21)

Therefore, for N > 1/η2 sufficiently large, combining (7-19)–(7-21) with (7-18) yields

0 ⩾ −K0(C + ⟨ν, E⟩)k−1κ1 −
2N 2

d̃1
|∇u|

2σ i i
k κi − 2Ns

|∇u|
2σ i i

k κi

(C + ⟨ν, E⟩)(s − u)2

− NCσ i i
k κi − Cσ i i

k κi
s

(s − u)2
− kC2

(n
k

)
(C + ⟨ν, E⟩)k−1 s

(s − u)2

− k
(n

k

)
C2(C + ⟨ν, E⟩)k−1 N + N

c0σkκ1

C + ⟨ν, E⟩
.

It’s easy to see that the above inequality yields, at x0,

κ1 ⩽ K (N , C, d̃1)
s2

(s − u)2
.

Therefore, in Us , by (7-21), we have

φ ⩽ K (N , C, d̃1)e−s/(s−u) s2

(s − u)2
.

Note that, for any t ∈ [0, s],

ϕ(t)= e−s/(s−t) s2

(s − t)2
⩽ 4e−2.

We obtain, at any point x ∈ Us ,

φ ⩽ K (N , C, d̃1). (7-22)

Now, for any x ∈ Rn, we can choose s > 0 large enough that x ∈ Us/2. Then, by (7-22) and (7-21), we
conclude that

κ1(x)⩽ K (N , C, d̃1, d̃2).

Since x is arbitrary, we have finished proving Proposition 32. □

Theorem 7 follows from Propositions 22 and 32 immediately.
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We study a three-dimensional, incompressible, viscous, micropolar fluid with anisotropic microstructure
on a periodic domain. Subject to a uniform microtorque, this system admits a unique nontrivial equilibrium.
We prove that when the microstructure is inertially oblate (i.e., pancake-like) this equilibrium is nonlinearly
asymptotically stable.

Our proof employs a nonlinear energy method built from the natural energy dissipation structure of the
problem. Numerous difficulties arise due to the dissipative-conservative structure of the problem. Indeed,
the dissipation fails to be coercive over the energy, which itself is weakly coupled in the sense that, while
it provides estimates for the fluid velocity and microstructure angular velocity, it only provides control of
two of the six components of the microinertia tensor. To overcome these problems, our method relies on
a delicate combination of two distinct tiers of energy-dissipation estimates, together with transport-like
advection-rotation estimates for the microinertia. When combined with a quantitative rigidity result for the
microinertia, these allow us to deduce the existence of global-in-time decaying solutions near equilibrium.
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This paper, together with the companion paper [Remond-Tiedrez and Tice 2021], provides a sharp
nonlinear stability criterion for an anisotropic micropolar fluid subject to a uniform microtorque. The
companion paper is concerned with the unstable regime; we tackle the stable regime here.
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1. Introduction

1A. Brief description of the model. Following the tradition of generalized continuum mechanics dating
back to the Cosserat brothers [Cosserat and Cosserat 1909], micropolar fluids were introduced by
Eringen [1966]. The theory of micropolar fluids extends classical continuum mechanics by taking into
account the effects due to the microstructure present in the continuum. For viscous, incompressible
fluids, this results in a model coupling the Navier–Stokes equations to an evolution equation for the rigid
microstructure present at every point in the continuum. This theory has been used to describe aerosols
and colloidal suspensions, such as those appearing in biological fluids [Maurya 1985], blood flow [Bég
et al. 2008; Mekheimer and El Kot 2008; Ramkissoon 1985], lubrication [Allen and Kline 1971; Bayada
and Łukaszewicz 1996; Rajasekhar Nicodemus and Sharma 2012] and the lubrication of human joints
[Sinha et al. 1982], as well as liquid crystals [Eringen 1993; Gay-Balmaz et al. 2013; Lhuillier and Rey
2004] and ferromagnetic fluids [Nochetto et al. 2016].

We now provide a brief description of the model, introducing new terminology and concepts only if they
are necessary to formulate the main result. For a thorough discussion of the model and for its careful deriva-
tion, see [Remond-Tiedrez and Tice 2021, Section 2] and [Remond-Tiedrez 2020, Chapter 1], respectively.

The state of a three-dimensional micropolar fluid at a point in space-time is described by the following
variables: the fluid’s velocity is a vector u ∈ R3, the fluid’s pressure is a scalar p ∈ R, the microstructure’s
angular velocity is a vector ω∈R3, and the microstructure’s moment of inertia is a positive definite symmet-
ric matrix J ∈ R3×3 which is called the microinertia tensor. Here we study homogeneous micropolar fluids,
meaning that the microstructures at any two points of the fluid are identical up to a proper rotation. Equiva-
lently, this means that the microinertia tensors at any two points of the fluid are equal up to conjugation (by
that same rotation). Note that the shape of the microstructure determines the microinertia tensor, but the
converse fails since the same microinertia tensor may be achieved by microstructures of differing shapes.

We restrict our attention to problems in which the microinertia plays a significant role, and so in this
paper we only consider anisotropic micropolar fluids. This means that the microinertia is not isotropic, or
in other words that J has at least two distinct eigenvalues. To be precise, we study micropolar fluids whose
microstructure has an inertial axis of symmetry. That is to say there are physical constants λ, ν > 0 which
depend on the microstructure such that, at every point, J is a symmetric matrix with spectrum {λ, λ, ν}.
Studying microstructures with an inertial axis of symmetry may be viewed as the intermediate case
between the isotropic case where the microinertia has a repeated eigenvalue of multiplicity three and the
“fully” anisotropic case where the microinertia has three distinct eigenvalues.

The equations governing the motion of a micropolar fluid in the periodic spatial domain T3
= R3/Z3

subject to an external microtorque τe3 are

∂t u + (u · ∇)u =
(
µ +

1
2κ
)
1u + κ∇ ×ω − ∇ p on (0, T ) × T3, (1-1a)

∇ · u = 0 on (0, T ) × T3, (1-1b)

J (∂tω + (u · ∇)ω) + ω × Jω

= κ∇ × u − 2κω + (α̃ − γ̃ )∇(∇ ·ω) + γ̃ 1ω + τe3 on (0, T ) × T3, (1-1c)

∂t J + (u · ∇)J = [�, J ] on (0, T ) × T3, (1-1d)
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where [ · , · ] denotes the commutator between two matrices, α̃ = α +
4
3β and γ̃ = β + γ , where µ, κ ,

α, β, and γ are nonnegative physical viscosity constants, τ denotes the magnitude of the microtorque,
and � is the 3 × 3 antisymmetric matrix identified with ω via the identity �v = ω × v for every v ∈ R3.

We are considering the situation in which external forces are absent and the external microtorque
is constant, namely equal to τe3 for some constant τ > 0. Note that the choice of e3 as the direction
of the microtorque is made without loss of generality since the equations of motion are equivariant
under proper rotations. More precisely, if (u, p, ω, J ) is a solution of (1-1) then, for any R ∈ SO(3),
(u, p,Rω,RJRT ) is a solution of (1-1) provided that the microtorque τe3 is replaced by τRe3.

We can motivate the choice to have no external forces and a constant microtorque in two ways. On one
hand it is reminiscent of certain chiral active fluids constituted of self-spinning particles which continually
drive energy into the system [Banerjee et al. 2017], as our constant microtorque does. On the other hand
this choice of an external force-microtorque pair is motivated by the lack of analytical results on anisotropic
micropolar fluids. As a first foray into the world of anisotropic micropolar fluids, it is natural to look
for the simplest external force-microtorque pair which gives rise to nontrivial equilibria for the angular
velocity ω and the microinertia J . The simplest such external force-microtorque pair is precisely (0, τe3).

The equilibrium and its stability. Let us now turn our attention to the aforementioned equilibrium. Subject
to a constant and uniform microtorque, the unique equilibrium of the system is the following: the fluid’s
velocity is quiescent (ueq = 0), the pressure is null (peq = 0), the angular velocity is aligned with the
microtorque (ωeq = τ/(2κ)), and the inertial axis of symmetry of the microstructure is aligned with the
microtorque such that the microinertia is Jeq = diag(λ, λ, ν).

A physically motivated heuristic suggests that the stability of the equilibrium depends on the mi-
crostructure, and more precisely that the equilibrium is stable if ν > λ and unstable if λ > ν. This heuristic
explanation is based on the analysis of the energy associated with the system and with a comparison with
the ODE describing the rotation of a damped rigid body subject to an external torque. While we defer
to the companion paper [Remond-Tiedrez and Tice 2021] for a detailed discussion of this heuristic, the
core of the argument based on the analysis of the energy can be seen from the energy-dissipation relation
recorded later in this paper. In particular, the energy recorded in (1-3) below (which then appears first in
a rigorous setting in Proposition 4.9) only remains positive-definite when ν > λ, which suggests that this
may characterize the stable regime.

In the former case where ν > λ we say that the microstructure is inertially oblate, or pancake-like,
and in the latter case where λ > ν we say that the microstructure is inertially oblong, or rod-like. This
nomenclature is justified by the following fact. For rigid bodies with an axis of symmetry and a uniform
mass density, the terms “oblate”, which essentially means that the body is shorter along its axis of symmetry
than it is wide across it, and “inertially oblate” describe the same thing (and similarly for the terms “oblong”
and “inertially oblong”). Examples of inertially oblong and oblate rigid bodies are provided in Figure 1.

In the companion paper [Remond-Tiedrez and Tice 2021] we prove the instability of inertially oblong
microstructures. In this paper we prove the asymptotic stability of inertially oblate microstructures in
Theorem 1.2. In particular, combining the main results of these two papers produces a sharp nonlinear
stability criterion, recorded in Theorem 1.4.
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h

r

h

r

This rigid body is inertially oblong if h2 > 6r2. This rigid body is inertially oblate if h2 < 6r2.

Figure 1. Two rigid bodies with uniform density which possess an inertial axis of symmetry.

1B. A brief summary of techniques and difficulties. The main thrust of this paper is to prove that if the
microstructure is inertially oblate then the equilibrium is nonlinearly asymptotically stable with almost
exponential decay to equilibrium. Here “almost exponential” means that the rate of decay is algebraic
and grows unboundedly as further smallness and regularity assumptions are imposed on the initial data.
In order to provide context for our main result and to motivate the presence of the various functionals
used in it, we will now attempt a quick overview of the difficulties associated to (1-1) and our techniques
for dealing with them. A more detailed discussion is presented in Section 2.

As in many viscous fluid problems, the system (1-1) is of mixed dissipative-conservative type, with some
of the unknowns having dissipation mechanisms and others not. This manifests as the mixed parabolic-
hyperbolic structure of the PDEs. Such systems usually have a physical dissipation functional, D, that
couples to a physical energy functional, E, via the energy-dissipation relation

d
dt
E+D = 0. (1-2)

We won’t need the precise form of E and D for our problem here, so we don’t state them precisely,
but they can be found in (2.8) of [Remond-Tiedrez and Tice 2021]. Our technique for analyzing the
problem is based on higher-regularity versions of this structure, and since differentiating linearizes the
PDEs, it’s actually the linearized versions, Elin and Dlin, that are most relevant in our discussion. Indeed,
the questions of if and how the unknowns appear in the linearized versions of Elin and Dlin become
paramount.

In general energy-dissipation relations, if we have a bound Elin ⩽ CDlin, then the dissipation is said
to be coercive, and we expect to be able to prove the exponential decay of Elin via a linearized version
of (1-2) and a Gronwall argument. However, if this inequality does not hold, we say the dissipation fails
to be coercive, and the decay of solutions is no longer obvious. As we will see below, the latter holds for
our problem, system (1-1).

Without coercivity, the role of the energy becomes more complicated. On the one hand, more terms in
the energy means more a priori control, but on the other hand it means more things that the dissipation
may fail to control, further complicating a proof of decay. If all of the unknowns appear in Elin we say
that there is strong coupling, and otherwise we say that there is weak coupling. Based on the above
relation to the dissipation, it may seem that weak coupling is preferable, but this is only true from the
point of view of exploiting the dissipation for decay information.
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In the case of strong coupling we can estimate all of the system’s unknowns at the same time,
with the same derivative counts. In the case of weak coupling only some of the unknowns appear
in the energy, and the remaining quantities must be estimated in other ways. This typically entails
exploiting some sort of conservative hyperbolic structure that scales differently in terms of derivative
counts than the main energy-dissipation part. At the linear level this isn’t a problem because the weak
coupling actually leads to a decoupling of these parts of the linearized problem, and we just get different
estimates for each part. However, the essential difficulty with weak coupling comes at the nonlinear
level, where the scaling mismatch can make dealing with the high-regularity interaction terms extremely
delicate.

Let’s now focus this general discussion onto the specifics of the problem (1-1). In this case, if (v, θ, K )

denotes the linearization of (u, ω, J ) about the equilibrium, then

Elin =

∫
T3

1
2
|v|

2
+

1
2

Jθ · θ +
τ̃ 2

ν − λ

1
2
|a|

2, (1-3)

and
Dlin =

∫
T3

µ

2
|Dv|

2
+ 2κ

∣∣∣12∇ × v − θ

∣∣∣2 + α|∇ · θ |
2
+

β

2
|D0θ |

2
+ 2γ |∇ × θ |

2, (1-4)

where a = (K13, K23), and D and D0 denote twice the symmetric part and twice the traceless symmetric
part of the gradient, respectively, and are defined precisely below (2-4). From these expressions it’s clear
that coercivity fails and that we have weak coupling. Indeed, only two of the six components of the
symmetric matrix K ∈ R3×3 appear in Elin (see Section 2C below for a more detailed discussion of the
special role played by a). To estimate the entirety of K we are forced to appeal to the advection-rotation
equation (1-1d) and its linearization. This is a hyperbolic equation coupling to both u and ω, but at different
levels of regularity, which already reveals potentially problematic mismatches with energy-dissipation
estimates. On the plus side, we can readily obtain Lq -based estimates from (1-1d) for values of q other
than 2. On the down side, the estimates provided at the highest level of regularity are quite bad, as they
grow linearly in time, which makes using them globally in time a delicate proposition.

Our strategy for getting around these problems is to employ a version of the two-tier energy method
introduced in [Guo and Tice 2013a; 2013b] to handle the viscous surface wave problem, which is a
strongly coupled problem with coercivity failure. Roughly, the idea behind this scheme of a priori
estimates is that control of high-regularity terms (the high tier) can be synthesized with decay estimates of
low-regularity terms (the low tier) to simultaneously overcome coercivity and interaction difficulties and
prove the existence of global-in-time algebraically decaying solutions. The two-tier method is a strategy
and not a black box, so it must be adapted to the particulars of each problem. In our case, due to the weak
coupling, the complicated structure of the hyperbolic equation for K , and troubles in interfacing with the
local existence theory, this requires significant work.

To see how decay information can be recovered in the two-tier scheme, consider the following. The
energy-dissipation structure at low regularity will tell us that (assuming that the nonlinear interactions are
brought under control)

d
dt

Elow +
1
2
Dlow ⩽ 0, (1-5)
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where Elow and Dlow are low-regularity energy and dissipation functionals built from Elin and Dlin,
respectively. To be concrete,

Elow ∼ ∥(u, θ)∥2
H2 + ∥a∥

2
H2 + ∥∂t(u, θ)∥2

L2 + ∥∂t a∥
2
L2, (1-6)

where we have introduced the perturbative angular velocity θ = ω − ωeq. The exact form of Dlow is not
relevant here; all that matters is that Elow ≲ E1−σ

high D
σ
low for some high-regularity energy functional Ehigh

and some σ ∈ (0, 1) which behaves as σ ∼ (high − low)/(high − low + 1). Here “low” and “high” are
placeholders for regularities indices precisely measuring the regularity of the solution at each level.
Crucially, this observation may be combined with (1-5), provided that Ehigh is bounded, to deduce the
algebraic decay of Elow at a rate proportional to (high− low). Note that this is precisely almost exponential
decay since the growing rate of decay is dependent on the regularity of the solution. More concretely, for
some nonnegative integer M , we can write Ehigh and Dhigh as

Ehigh =

M∑
j=0

∥∂
j

t (u, θ, a)∥2
H2M−2 j + ∥(K , ∂t K , ∂2

t K )∥2
H2M−3 +

M∑
j=3

∥∂
j

t K∥
2
H2M−2 j+2 (1-7)

and

Dhigh =

M∑
j=0

∥∂
j

t (u, θ)∥2
H2M−2 j+1 +

3∑
j=0

∥∂
j

t a∥
2
H2M− j−1 +

M∑
j=4

∥∂
j

t a∥
2
H2M−2 j+3, (1-8)

where we have introduced the perturbative microinertia K = J − Jeq and where Dhigh is a high-regularity
dissipation functional whose integral in time will remain bounded. Remarkably, although Elow provides
no direct control of K except its components in a = (K13, K23), a special algebraic identity for symmetric
matrices with spectrum {λ, λ, ν} leads to a quantitative rigidity result that will allow us to obtain decay
information about all of K from a alone.

We have now witnessed the first key idea of the two-tier energy method: the decay of the low-level
energy is intimately tied to the boundedness of the high-level energy. In the above sketch this dependence
only goes one way, but in practice it also goes the other way since the transport estimates for K at the
highest derivative count result in an upper bound that grows linearly in time (see Section 2 for a more
thorough discussion). This warrants the introduction of the last functional we need in order to state the main
result. We define Fhigh to contain all terms for which the only control we have is growing in time, namely

Fhigh = ∥K∥
2
H2M+1 + ∥∂t K∥

2
H2M + ∥∂2

t K∥
2
H2M−1 . (1-9)

1C. Statement of the main result. We first introduce the global assumptions at play throughout this paper.

Definition 1.1 (global assumptions). We assume that the initial microinertia J0 has an inertial axis of
symmetry and is inertially oblate, i.e., for every x ∈ T3 the spectrum of J0(x) is {λ, λ, ν}, where ν > λ > 0.
We also assume that the initial velocity u0 has average zero and that the viscosity constants µ, κ , α, β,
and γ are strictly positive.

Note that the assumption that u0 has average zero is justified by the invariance of (1-1) under Galilean
transformations u(t, y) 7→ u(t, y + t ū) − ū for any constant ū ∈ R. We may now state the main result. A
more precise form of this result is found in Theorem 7.6.
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Theorem 1.2 (nonlinear asymptotic stability and decay). Suppose the global assumptions of Definition 1.1
hold, and let

Xeq = (ueq, ωeq, Jeq) =

(
0,

τ

2κ
e3, diag(λ, λ, ν)

)
and peq = 0

be the equilibrium solution of (1-1). For every integer M ⩾ 4 there exists η, C > 0 such that solutions to
system (1-1) exist globally in time for every initial condition in the η-ball defined by

∥(u0, ω0 − ωeq)∥
2
H2M + ∥J0 − Jeq∥

2
H2M+1 < η.

Moreover, the solutions satisfy the estimate

sup
t⩾0

Elow(t)(1 + t)2M−2
+ Ehigh(t) +

Fhigh(t)
(1 + t)

+

∫
∞

0
Dhigh(s) ds

⩽ C(∥(u0, ω0 − ωeq∥
2
H2M + ∥J0 − Jeq∥

2
H2M+1).

Recall that the functionals present on the left-hand side are defined in (1-6)–(1-9).

Note that in Theorem 1.2 the pressure has disappeared from consideration in the estimates. This is
because the pressure only plays an auxiliary role in the problem and may be eliminated altogether from
(1-1a) by projection onto the space of divergence-free vector fields.

At face value Theorem 1.2 only provides us with decay of u, θ , and a in terms of the norms appearing
in Elow. However, we may interpolate between Elow and Ehigh to obtain decay estimates on intermediate
norms of u, θ , and a. Algebraic identities may then be used to show that, if ∥K∥L∞ is sufficiently small,
|K | ≲ |a| pointwise, from which we may deduce the decay of K . Interpolation can then once again
allow us to obtain decay of higher-order norms, in this case obtaining decay of higher-order norms of K .
However, the endpoint estimate at the highest derivative count now involves FM , which may be growing
in time. This causes the decay rates of K to be slightly slower than the decay rates of a.

The precise decay rates are recorded in Corollary 1.3 below (which is proved at the end of Section 7).
Note that this corollary only records the decay of the unknowns and their first time derivative. The decay
rates of higher-order temporal derivatives can then be established by differentiating (1-1); however, since
they are not necessary for our purposes here, we omit them. Crucially, with these decay rates in hand we
deduce that Theorem 1.2 is indeed a proof of asymptotic stability.

Corollary 1.3 (decay rates). Under the hypotheses of Theorem 1.2, the global solution (u, θ, K ) satisfies

sup
t⩾0

(
sup

0⩽s⩽2M+1
∥K (t)∥2

H s (1 + t)2M−4−s(2M−3)/(2M+1)
+ sup

0⩽s⩽2M
∥∂t K (t)∥2

H s (1 + t)2M−4−s(2M−3)/(2M)

+ sup
2⩽s⩽2M

(∥(u, θ, a)(t)∥2
H s + ∥∂t(u, θ, a)(t)∥2

H s−2)(1 + t)2M−s
)

≲ ∥(u0, θ0, K0)∥
2
H2M + ∥K0∥

2
H2M+1 .

Sharp nonlinear stability criterion. We may combine the main result of this paper, namely Theorem 1.2,
with the decay rates of Corollary 1.3 and the main result of [Remond-Tiedrez and Tice 2021] to deduce a
sharp nonlinear stability criterion recorded in Theorem 1.4 below. In order to formulate Theorem 1.4 in a
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clean, way we define appropriate spaces, namely

H0 = H 2M(T3
; R3) × H 2M(T3

; R3) × H 2M+1(T3
; Sym(3)),

Hs = H 2M(T3
; R3) × H 2M(T3

; R3) × H 2M−4/(2M−3)(T3
; Sym(3)),

Has = H 2M−ε(T3
; R3) × H 2M−ε(T3

; R3) × H 2M−4/(2M−3)−ε(T3
; Sym(3)),

where ε > 0 may be taken to be arbitrarily small. We may now state the sharp nonlinear stability criterion.

Theorem 1.4. Let Xeq = (ueq, ωeq, Jeq) = (0, (τ/(2κ))e3, diag(λ, λ, ν)) be the equilibrium solution
of (1-1).

• If the microstructure is inertially oblong (λ > ν) then the equilibrium is nonlinearly unstable in L2.

• If the microstructure is inertially oblate (ν > λ) then the equilibrium is nonlinearly Hs-stable in H0 and
nonlinearly asymptotically Has-stable in H0.

The notions of nonlinear stability and instability above are those familiar from dynamical systems.
Nonlinear instability in L2 means that there exists a radius δ > 0 and a sequence of initial data {X0

n}
∞

n=0
which converge to Xeq in L2 such that the solutions to (1-1) starting from X0

n exit the δ-ball about Xeq in
finite time (which depends on n). Nonlinear Hs-stability in H0 means that for every ε > 0 there exists a
δ-ball about Xeq in H0 in which (1-1) is globally well-posed and such that solutions remain in the ε-ball
about Xeq in Hs for all time. Nonlinear asymptotic Has-stability in H0 means that nonlinear stability
holds and that, moreover, solutions in that δ-ball about Xeq in H0 converge to Xeq in Has as time t → ∞.

1D. Previous work. The continuum mechanics community has actively and extensively studied micropo-
lar fluids over the past fifty years. While an exhaustive literature review is beyond the scope of this paper, we
highlight the mathematics literature here. To the best of our knowledge, current mathematical results only
consider isotropic microstructure, which means that the microinertia J is a scalar multiple of the identity.
In particular, when a micropolar fluid is isotropic the precession term ω× Jω which appears in (1-1c) now
vanishes and (1-1d), which governs the dynamics of the microinertia, is trivially satisfied. Note that in
two dimensions the microinertia is a scalar, such that all two-dimensional micropolar fluids are isotropic.

The results known about isotropic micropolar fluids follow the pattern of what is known about viscous
fluids. In two dimensions global well-posedness holds [Łukaszewicz 2001], and quantitative rates of decay
are obtained in [Dong and Chen 2009]. In three dimensions, where well-posedness was first discussed
by Galdi and Rionero [1977], weak solutions were constructed globally in time by Łukaszewicz [1990],
who also proved that strong solutions are unique [Łukaszewicz 1989]. More recent work has established
global well-posedness for small data in critical Besov spaces [Chen and Miao 2012] and in the space of
pseudomeasures [Ferreira and Villamizar-Roa 2007], and a blow-up criterion was derived in [Yuan 2010].
There is also a body of work dedicated to the study of partially inviscid limits taking one or more of the
viscosity coefficients to zero. We refer to [Dong and Zhang 2010] for an illustrative example.

Various extensions of the model of incompressible micropolar fluids presented here have been consid-
ered. These extensions treated the compressible case [Liu and Zhang 2016], and coupled the system to heat
transfer [Kalita et al. 2019; Tarasińska 2006] and to magnetic fields [Ahmadi and Shahinpoor 1974; Rojas-
Medar 1997]. Again, to the best of our knowledge all of these works consider isotropic micropolar fluids.
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As mentioned above, we employ a two-tier nonlinear energy method as our scheme of a priori estimates.
This was originally used by Guo and Tice [2013a; 2013b] in the analysis of the viscous surface wave
problem, where the conservative variable is the free surface function, which is strongly coupled. This
technique was also used to deal with the strongly coupled mass density for the compressible surface
wave problem by Jang, Tice, and Wang [Jang et al. 2016]. Two-tier schemes have also proved useful
in magnetohydrodynamic (MHD) problems without magnetic viscosity, where the magnetic field is the
conservative unknown and is weakly coupled according to our above classification: see, for instance, the
works of Ren, Wu, Ziang, and Zhang [Ren et al. 2014], Abidi and Zhang [2017], Tan and Wang [2018],
and Wang [2019]. The weak coupling of our present problem is more complicated than in these MHD
results since some of the components of K , namely a = (K13, K23), are strongly coupled, which means
that K cannot be conveniently “integrated out” by solving for it in terms of the other unknowns.

2. Strategy and difficulties

In this section we describe the various obstructions to proving a stability result like Theorem 1.2 and we
discuss our strategy to overcome them. Since we study the nonlinear stability of a nontrivial equilibrium
it is natural to change variables and use perturbative unknowns. This is done in Section 2A.

In Sections 2B and 2C we then discuss the two main obstructions, namely the lack of a spectral gap
and the weak coupling. In a nutshell, the difficulties are as follows. The lack of a spectral gap leads to a
failure of coercivity. The key in overcoming that is to prove a θ -coercivity estimate. On top of that, weak
coupling means that, even with θ-coercivity, we cannot immediately deduce decay of all the unknowns
(and so this comes after the fact via an algebraic identity and interpolation).

We conclude in Sections 2D–2G with a discussion of the various moving pieces of our proof of
Theorem 1.2. The centerpiece of our proof is the scheme of a priori estimates introduced in Section 2D.
Section 2E describes the local well-posedness theory and Section 2F discusses how to “glue” the local
well-posedness theory and the a priori estimates by means of a continuation argument. Finally, Section 2G
explains how to synthesize the various pieces of the proof in order to deduce global well-posedness and
decay, and hence asymptotic stability.

2A. Perturbative formulation and overall strategy. Since we study the nonlinear stability of (1-1) about
the equilibrium (ueq, peq, ωeq, Jeq) = (0, 0, (τ/(2κ))e3, diag(λ, λ, ν)), we naturally seek to write this
system in terms of the perturbative variables (u, p, θ, K ) = (u, p, ω, J )− (ueq, peq, ωeq, Jeq). We may
then write (1-1) equivalently as

∂t u + u · ∇u =
(
µ +

1
2κ
)
1u + κ∇ × θ − ∇ p on (0, T ) × Tn , (2-1a)

∇ · u = 0 on (0, T ) × Tn , (2-1b)
(Jeq + K )(∂tθ + u · ∇θ) + (ωeq + θ) × (Jeq + K )(ωeq + θ)

= κ∇ × u − 2κθ + (α̃ − γ̃ )∇(∇ · θ) + γ̃ 1θ on (0, T ) × Tn , (2-1c)
∂t K + u · ∇K = [�eq + 2, Jeq + K ]. on (0, T ) × Tn , (2-1d)

where recall that a = (K12, K13). This is the system that will be studied in this paper, and there are two
important remarks to make about (2-1).
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The first remark is that the pressure plays a different role from the other unknowns since it is essentially
the Lagrange multiplier associated with the incompressibility constraint. We will therefore remove the
pressure from consideration by the usual trick of projecting (2-1a) onto the space of divergence-free
vector fields. This is done using the Leray projection PL , which on the three-dimensional torus takes the
simple form PL = −curl ◦ 1−1

◦ curl. We may then deduce from (2-1a) that

∂t u + PL(u · ∇u) =
(
µ +

1
2κ
)
1u + κ∇ × θ. (2-2)

This equation will often be useful, in particular when it comes to the local well-posedness theory where it
is convenient to view (2-1b)–(2-1d) and (2-2) as an ODE.

The second remark builds off of the fact that, as hinted at in Section 1B above and as discussed in
more detail in Section 2C below, a is a component of K which plays a particularly important role. It will
therefore be crucial, when performing energy estimates, to read off from (2-1d) the equation governing
the dynamics of a, namely

∂t a + u · ∇a = −(ν − λ)θ̄⊥
+ (K − K33 I2)θ̄

⊥
+

τ

2κ
a⊥

+ θ3a⊥, (2-3)

where

θ̄ = (θ1, θ2), v⊥
= (−v2, v1) for any v ∈ R2, and K =

(
K11

K21

K12

K22

)
.

To conclude this section we note that it is often useful to consider an alternative formulation of (2-1)
involving the stress tensor T and the couple-stress tensor M . Note that, just as the classical stress tensor T
encodes a fluid’s response to forces, the couple-stress tensor M encodes a micropolar fluid’s response to
torques acting on the microstructure. These tensors are given by

T = µDu + κ ten
( 1

2∇ × u − ω
)
− pI and M = α(∇ ·ω)I + βD0ω + γ ten ∇ ×ω. (2-4)

Here Dv denotes (twice) the symmetric part of the derivative of a vector field v, i.e., Dv = ∇v+∇vT , and
D0v denotes its trace-free part, i.e., D0v = Dv− (2/n)(∇ ·v)I . We may then formulate (2-1) equivalently
as 

∂t u + u · ∇u = (∇ · T )(u, p, θ) on (0, T ) × Tn , (2-5a)

∇ · u = 0 on (0, T ) × Tn , (2-5b)

(Jeq + K )(∂tθ + u · ∇θ) + (ωeq + θ) × (Jeq + K )(ωeq + θ)

= 2 vec T (u, p, θ)+ (∇ · M)(θ) on (0, T ) × Tn , (2-5c)

∂t K + u · ∇K = [�eq + 2, Jeq + K ]. on (0, T ) × Tn . (2-5d)

This formulation is particularly convenient when it comes to identifying the energy-dissipation relation
since it makes it clear which terms contribute to the energy and which contribute to the dissipation. To be
precise, we see that the dissipation comes precisely from the stress and couple-stress tensors since∫

T3
T : (2−∇u)+ M : ∇θ =

∫
T3

µ

2
|Du|

2
+2κ

∣∣∣12∇×u−θ

∣∣∣2 +α|∇ ·θ |
2
+

β

2
|D0θ |

2
+2γ |∇×ω|

2, (2-6)

where the right-hand side denotes the dissipation D(u, θ). In particular note that the dissipation does not
provide any control over the perturbative microinertia K .
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Figure 2. A pictorial summary of the argument carried out in Section 2B, which proves
the lack of a spectral gap.

2B. Lack of spectral gap. In this section we describe the first of the two main obstructions in proving
the asymptotic stability of the equilibrium, namely the provable absence of a spectral gap. To prove
that the linearization of (2-1) about the equilibrium does not have a spectral gap we may leverage the
careful spectral analysis carried out in the companion paper [Remond-Tiedrez and Tice 2021], where the
instability of inertially oblong microstructure is established.

In order to describe this spectral analysis we must first recall the block structure of the linearization.
Upon linearizing (2-1c)–(2-1d) and (2-2) and premultiplying the linearization of (2-1c) by J−1

eq , we see
that the resulting linear operator may be written in block form as B⊕ (τ/(2κ))[R, · ] ⊕ 0. Here the first
block acts on the variables (u, θ, a), the second block acts on K =

( K11
K21

K12
K22

)
, and the third block acts

on K33. Crucially, the last two blocks have trivial dynamics since (τ/(2κ))[R, · ] is a three-dimensional
antisymmetric operator which gives rise to one trivial mode and two conjugate oscillatory modes. The
linear stability of (2-1c)–(2-1d) and (2-2) is therefore dictated by the spectrum of B.

In practice we study the spectrum of the symbol B̂(k), k ∈ (2πZ)3, of B. Note that the torus is rescaled
for convenience since this particular scaling means that ∇̂(k) = ik. A careful spectral analysis (the details
of which can be found in [Remond-Tiedrez and Tice 2021]) then allows us to prove the following. For
any k ∈ (2πZ)3, the spectrum of B̂(k) is contained in the half-slab H = {z ∈ C : Re z ⩽ 0 and |Im z| ⩽ C}

for some constant C > 0. In particular we may find a radius R > C and a cutoff k∗ > 0 such that if
|k| > k∗ then there are precisely three eigenvalues of B̂(k) in H ∩ BR(0): zero (which is associated with
the incompressibility constraint) and a conjugate pair of eigenvalues z(k) and z̄(k). Crucially, this pair of
eigenvalues satisfies Re z(k) → 0 as |k| → ∞. This analysis, summarized pictorially in Figure 2, proves
that B, and hence the linearization itself, does not admit a spectral gap.

At the nonlinear level, the manifestation of the lack of a spectral gap is a failure of coercivity, meaning
that an estimate of the form E ⩽ D is out of reach. To overcome this, we prove a θ-coercivity estimate,
which takes the form E ≲ Dθ for some θ ∈ (0, 1) and leads to algebraic decay. The implementation of
this is discussed in more detail in Section 2D1 below.
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2C. Weak coupling. In this section we discuss the second major obstruction to proving the stability of
the equilibrium, namely the so-called weak coupling of the parabolic part of the problem to its hyperbolic
part.

Recall that as discussed in Section 1B, the term “weak coupling” describes the fact that only some
of the unknowns appear in the energy. The remaining unknowns are solely controlled by conservative
hyperbolic-type estimates. As seen in (1-3), here the weak coupling manifests itself at the level of the
perturbative microinertia K since only two of its components, denoted by a = (K13, K23), appear in the
energy. The reason why only a appears in the energy is due to the precession term ω × Jω from (1-1c).
More precisely, when writing the precession term in perturbative form, as is done in (2-1c), we notice the
appearance of the term ωeq × Jωeq = (τ/(2κ))2(−a2, a1).

At first glance, this means that we only expect decay of a and not of the remaining components of K .
This is how our scheme of a priori estimates is built (see Section 2D below for more details). This means
that the nonlinear estimates are particularly delicate. Indeed, since some terms appearing in the nonlinear
interactions are not assumed to decay — at any level of regularity — it follows that we must be very
careful about playing off these nondecaying terms against terms that decay sufficiently fast.

That being said, it must also be noted that, independent of our scheme of a priori estimates, a minor
miracle of linear algebra occurs. This allows us to prove a quantitative rigidity result: if ∥K∥L∞ ⩽ ν − λ,
then |K | ⩽ 2|a| pointwise. In particular, we may then deduce the L2 decay of K and then bootstrap via
interpolation to obtain the decay of norms of K at higher regularity. Note that this “minor miracle” is
recorded in Proposition 7.7.

Crucially, since the decay of K can be recovered a posteriori via algebraic identities, we do not
incorporate it into our scheme of a priori estimates. Indeed, doing so would not strengthen the final
statement of the theorem, and while it would give us another lever to pull when performing nonlinear
estimates, it would further complicate our scheme of a priori estimates since the numerology of the precise
decay rates of K and ∂t K is not particularly pleasant.

2D. A priori estimates. In this section we discuss the a priori estimates, which are carried out in Section 4.
As mentioned previously, a fundamental observation about the problem at hand is that it is of mixed
type. On one hand, the equations driving the dynamics of the velocity u and the (perturbative) angular
velocity θ are parabolic. On the other hand, the equation driving the dynamics of the (perturbative)
microinertia K is hyperbolic. Having made this fundamental observation, the two questions we seek to
answer are the following:

(1) What kind of decay does the linearized problem possess?

(2) How can we massage the nonlinear structure to push this decay through to the nonlinear problem?

We will address the decay of the linearized problem in Section 2D1 and turn our attention to the
nonlinear effects in Section 2D2. Throughout this discussion, we will underscore how the four pieces of
the a priori estimates, namely (a) closing the energy estimates at the low regularity, (b) closing the energy
estimates at the high regularity, (c) deriving advection-rotation estimates for K , and (d) obtaining the
decay of intermediate norms, are related to one another. This is also summarized pictorially in Figure 3.



ANISOTROPIC MICROPOLAR FLUIDS SUBJECT TO A UNIFORM MICROTORQUE: THE STABLE CASE 53

Smallness
assumption on EM

Closing at the low level
Boundedness of EM

=⇒ decay of Elow

Decay of intermediate norms
Boundedness of EM & decay of Elow

=⇒ decay of intermediate norms

Advection-rotation equations
Decay of intermediate norms

=⇒ control of FM

Closing at the high level
Decay of intermediate norms & control of FM

=⇒ boundedness of EM
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Figure 3. Pictorial summary of how the various pieces of the a priori estimates depend
on one another. The arrows indicate the steps taken to close our scheme of a priori
estimates — see Theorem 4.34 for details. In the first pass all estimates obtained are in
terms of the smallness parameter; this is indicated by the dashed arrows. In the second
pass all estimates obtained are in terms of the initial conditions; this is indicated by the
solid arrows. Note that the seventh step of Theorem 4.34 is omitted here since it plays an
essential role in the propagation of the estimates over time but is not essential for their
closure.

Note that throughout this discussion we will use various versions of the energy and the dissipation.
Their precise forms may be found in Section 3 below. At first pass, the following heuristics may be useful
for the reader: E and D denote the energy and dissipation functionals that naturally arise when performing
the energy estimates, whereas E and D denote improved versions of these functionals.

2D1. Linear analysis. θ -coercivity and the two-tier energy structure. We begin our discussion with the
analysis of the linearized system and how it leads to almost-exponential decay. We will emphasize that
it naturally gives rise to the aforementioned two-tier energy structure where the decay of the low-level
energy is tied to the boundedness of the high-level energy.

The starting point is the energy-dissipation relation, which tells us that

d
dt

E low +Dlow = 0. (2-7)

Note that the mixed parabolic-hyperbolic structure already manifests itself here: the energy E low is a
function of (u, θ, a), whereas the dissipation Dlow is only a function of (u, θ). To derive any decay
estimate from (2-7) we need the dissipation to control the energy in some fashion, which at first glance is
out of reach due to the absence of a in the dissipation.
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Given the structure of the equations, this gap between the energy and the dissipation may not be fully
closed. In particular, note that this energy-dissipation gap is consistent with the lack of spectral gap
discussed in Section 2B. To partially close this energy-dissipation gap we improve the dissipation, i.e.,
leverage auxiliary estimates for a to see that

Dlow(u, θ) ≳ Dlow(u, θ, a).

With this improvement in hand there is hope for the dissipation to control the energy. More precisely,
what we can show is that

E low ≲ E1−θ
M Dθ

low for θ =
2M−2
2M−1

∈ (0, 1), (2-8)

where EM is a high-regularity counterpart to the low-regularity energy E low. When (2-8) holds we say
that the dissipation is θ -coercive over the energy.

Crucially, this θ-coercivity estimate is only useful if we know that the high-regularity energy EM

remains bounded. Thankfully this is immediate from the high-regularity version of the energy-dissipation
relation, which reads

d
dt

EM +DM = 0.

The nonnegativity of DM then tells us that EM(t) ⩽ EM(0).
Combining the θ -coercivity estimate at low regularity, the boundedness of the high-regularity energy,

and a nonlinear Gronwall argument allows us to deduce the decay of the low-regularity energy. Indeed,
we have that, for some C > 0,

d
dt

E low +
CE1/θ

low

EM(0)
1/θ−1 ⩽ 0, and hence E low(t) ≲

EM(0)

(1 + t)2M−2 . (2-9)

It is important to make two remarks here. First we note that as shown above the almost-exponential decay
is not a nonlinear effect. It is the best rate of decay we can expect given the structure of the linearized
problem. Indeed, similar θ-coercivity estimates appear in the viscous surface wave problem, where
algebraic decay rates of the form recorded above are known to be sharp (see [Tice and Zbarsky 2020]).

Second we recall that, as mentioned previously, the two-tier energy structure is significantly more
intricate for the nonlinear problem since in that case the decay of E low and the boundedness of EM are
interdependent on one another, whereas here in this linear setting only the decay of the low-regularity
energy is predicated on the boundedness of the high-regularity energy.

2D2. Nonlinear effects. Decay of intermediate norms. We begin our discussion of the nonlinear effects
with an description of how the decay of the low-level energy and the boundedness of the high-level energy
lead to the (slower) decay of intermediate norms. While this is not, in essence, a nonlinear feature, it is
crucial in order to wrest some of the nonlinear effects under control, as described further below in this
section. We note that this interpolation argument is carried out precisely in Section 4E.

Interpolation theory tells us that if the low-regularity energy decays as in (2-9) and the high-regularity
energy is bounded by its initial value, then

KI (t) ≲
EM(0)

(1 + t)2M−2I for 1 ⩽ I ⩽ M, (2-10)
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where KI = ∥(u, θ, a)(t)∥2
H2I + ∥(∂t u, ∂tθ, ∂t a)(t)∥2

H2I−2 is the sum of the (squared) norms for which
we expect decay. Note that since only (u, θ, a) and ∂t(u, θ, a) appear in E low, these are also the only
terms appearing in KI . In other words, (2-10) does not yield any decay information on higher temporal
derivatives, a fact which will be important later.

Controlling K : advection-rotation estimates. We continue our discussion of the nonlinear effect with an
explanation of why energy estimates are not sufficient to close the scheme of a priori estimates. Then
we discuss how the advection-rotation estimates which give us control over K give rise to a dichotomy
between “good” terms and “bad” terms. The advection-rotation estimates for K are carried out in
Section 4A and culminate in Proposition 4.8.

Energy estimates are not sufficient to close the scheme of a priori estimates for a simple reason: they
produce interactions which are out of control due to the absence of K in the dissipation. Indeed, suppose
that instead of using the equation which governs the dynamics of a in the energy estimates we used the
equation which governs the dynamics of the full perturbative microinertia K . Schematically, we could
then obtain an energy-dissipation relation of the form

d
dt

E(u, θ, K ) +D(u, θ) = I(u, θ, K ),

where I denotes the interaction terms. However, as described in Section 2D1, even after improving the
dissipation we can only wrest a under control, and not K . This is due to the fact that only a appears in the
equation governing the dynamics of θ , and this is where our auxiliary estimates for a begin. Ultimately,
as described previously, this is because K only appears in that equation through the precession term, and
we have the identity ωeq × Kωeq = (τ/(2κ))2ã⊥.

This lack of dissipative control over K is fatal when it comes to gaining control over the interaction
terms. More precisely, when taking α many derivatives we see that one of the interaction terms is∫

T3
∂α([2, K ]) : ∂α K =: I α. (2-11)

We cannot hope to control this term, since we are after an estimate that would allow us to absorb the
interaction term into the dissipation, provided the energy is small, i.e., an estimate of the form |I α

|≲E1/2D.
In light of this inability to close the scheme of a priori estimates by solely relying on energy estimates,
we turn our attention to the equation governing the dynamics of K . This is essentially a reminder that
since the problem is of mixed parabolic-hyperbolic type, we cannot build a complete scheme of a priori
estimates leveraging only the parabolic structure of the problem (i.e., the structure that gives rise to the
energy-dissipation relation) and must also take into account the hyperbolic structure embedded in the
equation governing the dynamics of K .

The equation satisfied by K is an advection-rotation equation since it involves both advective effects
due to the velocity u and rotational effects due to the (perturbative) angular velocity θ . The fundamental
observation is the following: if v is divergence-free, A is antisymmetric, and S is symmetric, then
(provided all unknowns are sufficiently regular)∫

T3
(∂t + v · ∇ − [A, · ])S : S = 0.
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This leads to the following L p estimate. If S solves (∂t + v · ∇ − [A, · ])S = F for some forcing F , then

∥S(t)∥L p ⩽ ∥S(0)∥L p +

∫ t

0
∥Sym(F)(s)∥L p ds.

This immediately grants us control over L p norms of K . To gain control over K in H k we must couple
this L p estimate with high-low estimates. In particular, provided that some low-regularity norms decay
sufficiently fast (which, as discussed in Section 2D1, is expected), we may combine such high-low
estimates with the L p estimate above to deduce that

∥K (t)∥H k ≲ ∥K (0)∥H k +

∫ t

0
∥(u, θ)(s)∥H k ds.

Crucially, there are only two ways in which we can control
∫ t

0 ∥(u, θ)∥H k : (1) through the boundedness
of
∫ t

0 DM and (2) through the decay of the intermediate norms in KI . Comparing (1) and (2), the following
trade-off comes to light: (1) gives us control of K at a higher regularity, at the cost of an upper bound
growing in time. Indeed, on one hand, it follows from (1) and the Cauchy–Schwarz inequality that, for all
k ⩽ 2M + 1, ∫ t

0
∥(u, θ)∥H k ⩽ t

(
/
∫ t

0
∥(u, θ)∥2

H k

)1/2

⩽ (tDM)
1/2

.

On the other hand, combining (2) and the decay of the intermediate norms of (2-10) tells us that, for
k ⩽ 2M − 3, ∫ t

0
∥(u, θ)∥H k ≲

∫ t

0

EM(0)

(1 + s)M−k/2 ds ≲ EM(0).

Note that this trade-off is only at play when two or fewer temporal derivatives hit K . This is because
control of time derivatives of K does not come from advection-rotation estimates. Instead, it comes from
applying derivatives to the equation satisfied by K . For the sake of exposition let us discuss this process
under the assumption that K solves the linearized equation

∂t K = [�eq, K ] + [2, Jeq].

To control ∂
j

t K we apply j − 1 temporal derivatives to the equation. The crux of the argument is this:
since ∂

j−1
t θ is controlled through the high-regularity energy EM in the space H 2M−2 j+2, we see that this

derivative count is below 2M − 3, i.e., 2M − 2 j + 2 ⩽ 2M − 3 precisely when j ⩾ 3. So indeed this
trade-off only concerns the first two temporal derivatives of K .

The practical implication of this trade-off is the following dichotomy between “good” and “bad” terms.
If we seek to control K or one of its time derivatives in H k for k ⩽ 2M − 3, then we are dealing with a
“good” term which is bounded in time. If we seek to control K , ∂t K , or ∂2

t K in H k for k > 2M −3, then
we are dealing with a “bad” term for which the only bound we have is growing in time.

Note that this distinction is by no means purely academic: nonlinear interaction terms appear that
require us to control K (and its temporal derivatives) at high regularity, and for example it is critical to be
able to control K in H 2M+1 due to interactions of the form

∫
T3(∂

α K )θ · ∂αa when |α| = 2M . Since we
seek an upper bound of the form E1/2D even though K is not in the dissipation and a is only controlled
dissipatively up to H 2M−1 (this is precisely the manifestation of the lack of coercivity), we must integrate
by parts, which requires control of K in H 2M+1.
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As a concluding note regarding the advection-rotation estimates, it is essential to remember that this
control of K is conditioned on the decay of intermediate norms. This is precisely what informs how the
advection-rotation estimates fit in the overall scheme of a priori estimates.

Closing the energy estimates at the low level. We continue our discussion of the nonlinear effects and
sketch how to close the energy estimates at the low level. The key observation here is that we may proceed
as we did in the linear case (discussed in Section 2D1), with two differences. Note that the closure of the
energy estimates at the low level is done in Proposition 4.20, which combines all the pieces from Section 4C.

The first difference is that the microinertia appears as a weight in the energy. This is readily addressed
by the propagation in time of the spectrum of the microinertia since then

∫
T3 Jθ · θ ≍

∫
T3 |θ |

2. The
second difference is that nonlinear interactions appear on the right-hand side of the energy-dissipation
relation of (2-7). As was the case in the linear setting of Section 2D1, we leverage the boundedness of
the high-level energy, which is used here to control these interactions. We may then deduce the decay
of Elow as in (2-9).

Crucially, this decay is once again (as was the case in the linear analysis) predicated on the boundedness
of the high-level energy EM . However, by contrast with the linear case, it is very delicate to ensure that
the high-level energy remains bounded in the nonlinear setting. This is discussed in detail below.

Closing the energy estimates at the high level. We near the end of our discussion of the a priori estimates
and provide a sketch of how to close the energy estimates at the high level, noting in particular the
difficulties that arise due to the presence of K , and describing how to overcome these challenges. This is
carried out rigorously in Section 4D, leading up to the closure of the energy estimates at the high level in
Proposition 4.29.

The fundamental principles used to close the energy estimates at the high level are the same as those
used to close the estimates at the low level: improve the dissipation and control the interactions. However,
difficulties arise due to the presence of K and the fact that, as discussed above, the only control we have
over K , ∂t K , and ∂2

t K at regularity above 2M − 3 is growing in time.
To be precise, let us write the energy-dissipation relation at the high level as

d
dt

EM +DM = IM , (2-12)

where IM denotes the interactions. Immediately, when improving the dissipation and controlling the
interactions, “bad” terms from the advection-rotation estimates for K appear. Since the upper bound
on these bad terms is growing in time, our only hope that their appearance does not break the scheme
of a priori estimates is that they may be counterbalanced by terms which decay in time. The decay of
intermediate norms therefore plays an essential role in the closure of the energy estimates at the high
level. With this careful balancing act in mind, between “bad” terms involving K and terms decaying
sufficiently fast, the estimates establishing the improvement of the dissipation DM and the control of the
interactions IM can be shown to take the form

DM ≲ DM +K2FM and |IM | ≲ E1/2
M DM +K1/2

lowF
1/2
M D1/2

M , (2-13)

where Klow contains all the terms whose decay is needed to counteract the potential growth of FM .
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A particular subtlety, which is worth pointing out, arises when identifying Klow. Indeed, it turns out that
Klow =K2 +∥∂2

t θ∥
2
L2 , where the appearance of ∂2

t θ is ultimately due to the interaction of the commutator
with J∂t . The first term, K2, is immediately known to decay from the decay of intermediate norms
discussed at the beginning of Section 2D2. The decay of ∂2

t θ is not quite so immediate since the norms
in KI only involve one temporal derivative. We are therefore required to perform an auxiliary estimate
for ∂2

t θ , which hinges on the structure of the equation governing the dynamics of θ and the propagation
in time of the spectrum of the microinertia J , to establish that ∂2

t θ decays when K2 decays.
Having established (2-13), the heuristic which guides our next step is, as discussed above, that the

decay of Klow will balance out the potential growth of FM . It turns out that establishing such a result
rigorously can only be carried out in a time-integrated fashion. We end up proving that∫ t

0
K2FM ≲ α

(
1 +

∫ t

0
DM

)
and

∫ t

0
K1/2

lowF
1/2
M D1/2

M ≲ α

∫ t

0
DM , (2-14)

where α > 0 — which depends on the initial conditions and the decay of intermediate norms — can be
made small. Crucially, the estimates above are obtained by leveraging the control of FM afforded to us by
the advection-rotation estimates for K . This shows that closing the energy estimates at the high level is a
delicate affair which relies directly on two of the other three pieces of our scheme of a priori estimates:
the decay of intermediate norms and the advection-rotation estimates for K .

To conclude it suffices to combine (2-13) and (2-14) with the energy-dissipation relation (2-12), from
which we deduce the boundedness of the high-level energy EM .

Synthesis. We conclude our discussion of the a priori estimates with a brief note on how to put all the
pieces together. Each of the four pieces of the a priori estimates, namely closing the energy estimates
at the low regularity, closing the energy estimates at the high regularity, deriving advection-rotation
estimates for K , and obtaining the decay of intermediate norms, depends on one or more of the other. A
careful assembly is therefore required to ensure that the argument does not end up being circular. This is
summarized pictorially in Figure 3 on page 53 and done carefully in Section 4F, culminating in the main
a priori estimates result recorded in Theorem 4.34.

The key insight is to kick off the scheme of a priori estimates by assuming the smallness of the solution.
From there we can take two passes at the estimates: in the first pass we use the smallness assumption to
ensure that all the pieces of our scheme of a priori estimates are in play, and in the second pass we obtain
structured estimates where the smallness parameter disappears from the estimates and all the estimates
obtained are in terms of the initial data.

2E. Local well-posedness. In this section we discuss the local well-posedness. In a nutshell, the key
question is, how much of the nonlinear structure do we keep in order to be able to obtain good estimates
on the sequence of approximate solutions? The local-posedness theory is developed in Section 5, whose
main take-away is Theorem 5.24.

Strategy. We will produce solutions locally in time via a Galerkin scheme. We will (1) solve a sequence of
approximate problems on finite-dimensional subspaces of the solution space, (2) obtain uniform estimates
on the sequence of approximate solutions, and (3) pass to the limit by compactness. Since the domain is
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the torus, it is natural to approximate by cutting off at the first n Fourier modes. More precisely, writing
Wn ⊆ L2 such that f ∈ Wn if and only if f̂ (k) = 0 for all |k| > n, we are looking to solve the approximate
problem

T̃n(K )∂t Z = L Z + PnN (Z) for Z = (u, θ, K ) ∈ Wn, (2-15)

where L is a linear operator with constant coefficients, N accounts for the nonlinearities, and T̃n(K ) is an
appropriate approximation of I3 ⊕ (Jeq + K )⊕ I3×3, namely T̃n(K ) := I3 ⊕ (Jeq + Pn ◦ K )⊕ I3×3 where
(Pn ◦ K )θ := Pn(K θ) for every θ ∈ L2, for Pn denoting the L2-orthogonal projection onto Wn .

A subtle point. Due to the presence of T̃n(K ) we will need to invert Jeq + Pn ◦ K . Whilst fairly
straightforward to do, this must nonetheless be done carefully since we are no longer merely inverting the
matrix Jeq + K pointwise, but rather we are inverting the operator Jeq + Pn ◦ K as an operator from Wn

to itself. The corresponding results are recorded in Section 5A, where we also obtain H k-to-H k bounds
on T̃n(K )−1.

Nonlinear structure. Constructing a sequence of approximate solutions solving (2-15) is easy; however,
we run into trouble when looking for estimates of the approximate solutions. The issue is that in (2-15)
we have stripped away the nonlinear structure of the problem which helps us by providing good energy
estimates.

To make this idea precise let us compare the two systems below. Both systems are cartoon versions
of (2-15), where we neglect the velocity u, dismiss the dissipative contributions, and omit the projection Pn .
Note that we write J = Jeq + K and ω = ωeq + θ . We consider

(1)

{
J∂tθ = f1,

∂t K = F2,
and (2)

{
(J (∂t + u · ∇) + ω × J )∂tθ = f1,

(∂t + u · ∇)K = [�, J ].
(2-16)

The energy associated with both systems is

1
2

∫
T3

Jθ · θ +
1
2

∫
T3

|K |
2,

however, the interaction terms differ. To be precise, the issue is this: when taking α many derivatives the
first system gives rise to an interaction of the form I α

=
∫

T3 ∂α([2, K ])∂αθ · ∂αθ . However, this only
grants us control of θ and K in H |α|, which is not sufficient to control I α . Crucially, this interaction is not
present when performing energy estimates with the second system. The moral of the story is that some
nonlinear structure is optional while some is not. In particular, it is essential to keep the full nonlinear
advection-rotation equation satisfied by K .

A final wrinkle. In the cartoon (2-16) above we brazenly dismissed any mention of the projection Pn . Of
course, since we seek to frame the approximate problem as an ODE on the finite-dimensional space where
only finitely many Fourier modes are nonzero and since that space is not closed under multiplication, the
nonlinearities of (2-16) will require the presence of projections. However, this must be done carefully.
Due to the fact that some nonlinear structure must be kept in the approximate problem (as discussed
above), it turns out that we need to approximate K by using (schematically) twice as many Fourier modes
as are used for the velocities u and θ .
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Discrepancy in the energies. It is important here to note that the energies of the local well-posedness
differ from those of the main scheme of a priori estimates. Schematically, these energies are of the form

Eloc ∼ ∥(u, θ, K )∥2
H2M and Eap ∼ ∥(u, θ, a)∥2

H2M + ∥K∥
2
H2M−3, (2-17)

respectively, where for simplicity we have omitted norms involving temporal derivatives.
In order to explain this discrepancy recall that, as discussed in Section 2D2 above, energy estimates

are not sufficient to close the a priori estimates due to the absence of K from the dissipation and the
appearance of interactions terms as in (2-11). We are thus led to employ advection-rotation estimates to
control K in the scheme of a priori estimates, which means that we control K in H 2M−3 and not H 2M

(as would be the case when employing energy estimates).
However, when it comes to the local well-posedness theory, the interaction I α of (2-11) is harmless

since it can be estimated as |I α
| ≲ E3

loc. Such an estimate would be fatal for the a priori estimates since it
cannot be absorbed into the dissipation but it is harmless locally in time since it is amenable to a nonlinear
Gronwall argument.

The consequence of this discrepancy is that some additional work is required in order to ensure that
the a priori estimates and the local well-posedness theory “glue” together nicely. This is discussed next in
Section 2F.

2F. Continuation argument. In this section we discuss the continuation argument whose purpose is
to allow us to glue together the a priori estimates and the local well-posedness theory. This gluing is
nontrivial, in the sense that it requires a new set of estimates, precisely because of the mismatch between
the energies used for the local well-posedness and the energies used for the a priori estimates (as discussed
at the end of Section 2E above). The gluing is carried out in Section 6, where the key continuation
argument it leads to is recorded in Theorem 6.13.

In order to justify the necessity of this additional set of estimates let us consider Eap and Eloc defined
as in (2-17) as cartoons of the energies used in the a priori estimates and in the local well-posedness
theory, respectively. In particular note that for the sake of exposition we have omitted any mention of
norms controlling temporal derivatives of the unknowns. Let us also consider the following cartoons
of the a priori estimates and of the local well-posedness (which are simplified to the point of technical
inaccuracy, but remain informative nonetheless)

sup
0⩽t⩽T

Eap(t) ⩽ δ =⇒ sup
0⩽t⩽T

Eap(t) +
∥K (t)∥2

H2M

1 + t
⩽ C1 Eap(0) (AP)

and sup
0⩽t⩽T

Eloc(t) ⩽ ρ(Eloc(0)), (LWP)

where ρ : (0, ∞) → (0, ∞) is a strictly increasing function vanishing asymptotically at zero (whose
appearance comes from the nonlinear Gronwall argument used in the local well-posedness theory). Note
that here ∥K∥

2
H2M is a placeholder for the “bad” terms comprising FM (whose appearance is discussed in

detail in Section 2D2). To glue the a priori estimates and the local well-posedness theory it suffices to
fulfill the following goal.
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Goal: If (AP) holds on the time interval [0, T ], find a sufficiently small timescale τ > 0 such that (AP)
continues to hold on the interval [0, T + τ ].

Difficulty: For τ small enough the local well-posedness theory guarantees that we can always continue
the solution from [0, T ] to [0, T + τ ]. The crux of the argument is therefore to ensure that the smallness
hypothesis of (AP) remains satisfied on [0, T + τ ]. However, the growth of the bad term ∥K∥

2
H2M in (AP)

renders this impossible. Indeed, combining (AP) and (LWP) tells us that

sup
T⩽t⩽T +τ

Eap(t) ⩽ sup
T⩽t⩽T +τ

C2 Eloc(t) ⩽ C2ρ(Eloc(T )) ⩽ C2ρ(C3(1 + T )Eap(0)),

and we cannot guarantee that the right-hand side be small independently of the time horizon T .

Solution: The remedy is to prove an estimate of the form

sup
T⩽t⩽T +τ

Eap(t) ⩽ ρ̃(Eap(T )) (E)

for τ > 0 sufficiently small, where ρ̃ is another strictly increasing function which vanishes asymptotically
at zero. We may then couple (E) to (AP) to deduce that

sup
0⩽t⩽T +τ

Eap(t) ⩽ ρ̃(Eap(T )) ⩽ ρ̃(C1 Eap(0)) ⩽ δ,

provided the initial condition is sufficiently small. Note that this estimate is referred to in the sequel as a
reduced energy estimate since it estimates the “reduced” unknown (u, θ, a), in contrast with the “full”
unknown (u, θ, K ). In practice, performing the estimate (E) relies on the same fundamental estimates as
those used to prove (AP), with one fundamental difference: whereas (AP) relies on the smallness of the
energy, (E) relies instead on the smallness of the timescale on which it holds.

2G. Global well-posedness and decay. In this section we discuss how to put together all the pieces of
the puzzle to deduce the main result of Theorem 7.6. This is carried out in Section 7. In a nutshell, the
local well-posedness developed in Section 5 couples to the a priori estimates of Section 4 to produce a
solution which lives in the small energy regime, at which point the continuation argument recorded in
Section 6 kicks in to tell us that the solution lives in the small energy regime globally in time.

The only subtlety in this process comes from coupling the local well-posedness theory to the a priori
estimates. Indeed, the estimates provided by the local well-posedness theory are not quite strong enough
to invoke the a priori estimates, due to insufficient control over K . To close that gap we rely on an
auxiliary estimate for K , which is recorded in Lemma 7.1.

3. Notation

For the reader’s convenience we record here the notation used in this paper.
Throughout, the unknown Z comprises all perturbative variables, i.e., Z = (u, θ, K ), while Y = (u, θ, a)

comprises all variables that are proved to decay.
The constant τ̃ is defined to be τ̃ = τ/(2κ). It is omnipresent in the paper since it is equal to the

magnitude of the angular velocity at equilibrium ωeq.
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Now we record some notation from linear algebra.

• For any vectors a and b, we denote by a ⊗ b the matrix acting via (a ⊗ b)v = (b · v)a for any vector v.

• For any v = (v1, v2, v3) ∈ R3 and any w ∈ R2,

v̄ := (v1, v2), w̃ := (w1, w2, 0), v̄⊥
:= (−v2, v1), and w̃⊥

:= (−w2, w1, 0).

In other words: v 7→ v̄ is the projection onto the e1 − e2 plane, w 7→ w̃ is its canonical right inverse, and
the superscript ⊥ denotes a π

2 (counterclockwise) rotation in the e1 − e2 plane.

• ten and vec denote the canonical identification of R3 with the space of antisymmetric 3 × 3 matrices
using the cross product, and vice versa. To be precise, (ten a)v = a × v and (vec A) × v = Av for any
vectors a, v ∈ R3 and any 3 × 3 antisymmetric matrix A.

• Sym(n) denotes the space of real symmetric n × n matrices. Moreover, for any matrix M , we denote
by Sym(M) its symmetric part, i.e., Sym(M) :=

1
2(M + MT ).

• Given two linear maps L1 : V1 → W1 and L2 : V2 → W2, the linear map L1 ⊕ L2 : V1 × V2 → W1 × W2

is defined as (L1 ⊕ L2)(v1, v2) := (L1v1, L2v2) for every v1 ∈ V1 and v2 ∈ V2.

We now record the various functionals present throughout the paper. In order to do so, we first introduce
parabolic norms.

• For any multi-index α ∈ N1+3 we define the parabolic count of derivatives |α|P to be |α|P = 2α0 +|ᾱ|,
where we have written α = (α0, ᾱ) ∈ N × N3.

• For i, j, k ∈ N satisfying 0 ⩽ i ⩽ j ⩽ 1
2 k, we define the parabolic norms

∥ f ∥
2
Pk =

∑
|α|P⩽k

∥∂α f ∥
2
L2, ∥ f ∥

2
Pk

j
=

∑
|α|P⩽k
α0⩽ j

∥∂α f ∥
2
L2, and ∥ f ∥

2
Pk

i, j
=

∑
|α|P⩽k
i⩽α0⩽ j

∥∂α f ∥
2
L2 . (3-1)

First we record some energy and energy-like functionals. For any nonnegative integer M we define

ẼM =

∑
|α|P⩽2M

1
2

∫
T3

|∂αu|
2
+

1
2

∫
T3

J∂αθ · ∂αθ +
τ̃ 2

ν − λ

1
2

∫
T3

|∂αa|
2 and EM = ∥(u, θ, a)∥2

P2M . (3-2)

In particular, when M = 1 we define

Ẽlow = Ẽ1, E low = E1, and Elow = E low + ∥∂t a∥
2
H1 + ∥∂2

t a∥
2
L2 . (3-3)

When M ⩾ 3 we define

E (K )
M = ∥K∥

2
H2M−3 + ∥∂t K∥

2
H2M−3 + ∥∂2

t K∥
2
H2M−3 +

M∑
j=3

∥∂
j

t K∥
2
H2M−2i+2, (3-4)

EM = EM + E (K )
M , and FM = ∥K∥

2
H2M+1 + ∥∂t K∥

2
H2M + ∥∂2

t K∥
2
H2M−2 . (3-5)

We also define the intermediate energy functionals

KI = ∥(u, θ, a)∥2
P2I

1
and Klow = K2 + ∥∂2

t θ∥
2
L2 . (3-6)



ANISOTROPIC MICROPOLAR FLUIDS SUBJECT TO A UNIFORM MICROTORQUE: THE STABLE CASE 63

We now record the dissipation functionals. The dissipation is given by

D(u, θ) =

∫
T3

µ

2
|Du|

2
+ 2κ

∣∣∣12∇ × u − θ

∣∣∣2 + α|∇ · θ |
2
+

β

2
|D0θ |

2
+ 2γ |∇ × θ |

2, (3-7)

and we define

DM = ∥(u, θ)∥2
P2M+1, Da

M =

3∑
j=0

∥∂
j

t a∥
2
H2M− j−1 +

M∑
j=4

∥∂
j

t a∥
2
H2M−2i+3, and DM = DM +Da

M . (3-8)

When M = 1 we also define

Dlow = D1 and Dlow = Dlow + ∥a∥
2
H1 + ∥∂t a∥

2
L2 . (3-9)

Finally, we write the interaction terms as

I I :=

∑
|α|P⩽2M

I α and I low := I1 (3-10)

for I α as in Lemma 4.10.

4. A priori estimates

In this section we develop the scheme of a priori estimates central to the stability result proven in this
paper. We begin with advection-rotation estimates for K in Section 4A and then turn our attention to
energy estimates in Sections 4B–4D. More precisely, in Section 4B we identify the energy-dissipation
structure of the problem and use it in Sections 4C and 4D to close the energy estimates at the low and high
level, respectively. We then record in Section 4E the interpolation result giving us decay of intermediate
norms provided both the low and high-level energies are controlled. We conclude this section by putting
all the pieces of the scheme of a priori estimates together in Section 4F.

4A. Advection-rotation estimates for K. In this section we record the advection-rotation estimates we
may derive for K based on the advection-rotation equation (2-1d). The culmination of this section is
Proposition 4.8, which synthesizes the estimates obtained in this section. We begin with L p estimates
for the advection-rotation operator encountered in (2-1d) which are foundational for all other advection-
rotation estimates obtained here.

Proposition 4.1 (L p estimates for advection-rotation equations). Let T > 0 be a finite time horizon, and
let 1 ⩽ p < ∞. Let v be a continuously differentiable vector field on [0, T ) × Tn , let M be a continuous
matrix field on [0, T )×Tn , and let F ∈ L∞([0, T ); L p(Tn

; Rn×n)). If S ∈ L∞([0, T ); L p(Tn
; Sym(n)))

is a distributional solution of

(∂t + u · ∇ − [M, · ])S = F on (0, T ) × Tn and S(t = 0) = S0

for some S0 ∈ L p, then it satisfies the estimate

∥S∥L∞

T L p ⩽exp
(∫ t

0

1
p
∥(∇·v)(s)∥L∞ ds

)
∥S0∥L p +

∫ t

0
exp

(∫ s

0

1
p
∥(∇·v)(r)∥L∞ dr

)
∥Sym(F)(s)∥L p ds.
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Proof. The fundamental idea behind this estimate is the following formal computation. First we compute,
in light of Lemma A.5, that

d
dt

∥S∥L p =
d
dt

(∫
Tn

|S|
p
)1/p

=
1
p

(∫
Tn

|S|
p
)1/p−1(∫

Tn
p|S|

p−2S : F −

∫
Tn

p|S|
p−2S : (u · ∇)S

)
.

Now observe that, on one hand,

−p
∫

Tn
|S|

p−2S : (u · ∇)S = −

∫
Tn

(u · ∇)|S|
p
=

∫
Tn

(∇ · u)|S|
p,

whilst on the other hand, since p′(1 − p) = p,∫
Tn

|S|
p−2S : F ⩽

∫
Tn

|S|
p−1

|Sym(F)| ⩽

(∫
Tn

|S|
p
)1/p′(∫

Tn
|Sym(F)|p

)1/p

.

So finally we deduce that

d
dt

∥S∥L p ⩽ 1
p

(∫
Tn

|S|
p
)1/p−1

∥∇ · u∥L∞

(∫
Tn

|S|
p
)

+

(∫
Tn

|S|
p
)1/p−1(∫

Tn
|S|

p
)1/p′

∥Sym(F)∥L p ,

from which the claim would follow upon performing a Gronwall argument.
To make this computation precise it suffices to use standard approximation techniques from the theory

of L p estimates for transport equations. For example, we may approximate s 7→ |s|p by nonnegative C1

functions in a monotone fashion and approximate S0 and F by continuously differentiable functions. The
computation above then holds rigorously at the level of the approximation, and we may pass to the limit
using standard tools from measure theory. □

With the L p estimates above in hand we derive L∞ bounds on both K and ∇K . These bounds are
used to control low-order terms appearing later in this section when we seek to parlay the L p estimates
above into H k estimates for K .

Lemma 4.2 (L∞ estimate for K ). Suppose that K solves (2-1d) for some given u and θ . Then it satisfies
the estimate

∥K (t)∥L∞ ≲ ∥K (0)∥L∞ +

∫ t

0
∥θ̄ (s)∥L∞ ds.

Proof. Since [�eq, Jeq] = 0 (see Lemma A.6), we write (2-1d) as ∂t K +u ·∇K = [�eq + 2, K ]+[2, Jeq].
It then follows from Proposition 4.1 that, for any 1 < p < ∞,

∥K (t)∥L p ⩽ ∥K (0)∥L p +

∫ t

0
∥[2(s), Jeq]∥L p ds.

Note that Lemma A.6 tells us that

[2, Jeq] = −(ν − λ)

(
0 θ̄⊥

(θ̄⊥)
T 0

)
,

from which we deduce that the Frobenius norm of this commutator is |[2, Jeq]| =
√

2(ν − λ)|θ̄ |. Since
∥ · ∥L p ⩽ ∥ · ∥L∞ , we may conclude that

∥K (t)∥L p ⩽ ∥K (0)∥L p +

∫ t

0

√
2(ν − λ)∥θ̄ (s)∥L∞ ds ≲ ∥K (0)∥L p +

∫ t

0
∥θ̄ (s)∥L∞ ds.

The claim holds upon taking p → ∞. □
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Lemma 4.3 (L∞ estimate for ∇K ). Suppose that K solves (2-1d) for some given u and θ . Then ∇K
satisfies the estimate

∥∇K (t)∥L∞ ≲ exp
(∫ t

0
∥∇u(r)∥L∞ dr

)(
∥∇K (0)∥L∞ +

∫ t

0
(1 + ∥K (s)∥L∞)∥∇θ(s)∥L∞ ds

)
.

Proof. Since K solves (2-1d), we see that ∂i K solves

(∂t + u · ∇ − [�eq + 2, · ])∂i K = [∂i2, Jeq + K ] − ∂i u · ∇K .

We note that the L p norm of the right-hand side can be estimated in the following way:

∥(RHS)∥L p ⩽ ∥[∂i2, J ]∥L p + ∥∂i u · ∇K∥L p ≲ ∥∇θ∥L p(1 + ∥K∥L∞) + ∥∇u∥L∞∥∇K∥L p .

Proposition 4.1 therefore tells us that

∥∇K (t)∥L p ≲ exp
(∫ t

0
∥∇u(r)∥L∞ dr

)(
∥∇K (0)∥L p +

∫ t

0
(1 + ∥K (s)∥L∞)∥∇θ(s)∥L p ds

)
,

from which the result follows upon first recalling that ∥ · ∥L p ⩽ ∥ · ∥L∞ and then taking p → ∞. □

We now move towards estimates of K and its time derivatives in H k . We begin with estimating K .

Lemma 4.4 (H k estimate for K ). Suppose that K solves (2-1d) for some given u and θ . Then, for any
k ∈ N, it satisfies the estimate

∥K (t)∥H k ≲ exp
(∫ t

0
∥∇u∥L∞ + ∥θ∥L∞

)(
∥K (0)∥H k +

∫ t

0
(1 + ∥K∥L∞ + ∥∇K∥L∞)∥(u, θ)∥H k

)
.

Proof. Since K solves (2-1d), we know, for any multi-index α with length |α| = k, that ∂α K solves

(∂t + u · ∇ − [�eq + 2, · ])∂α K = [∂α2, Jeq] + [u · ∇, ∂α
]K − [[2, · ], ∂α

]K .

Applying Lemmas A.6 and B.3 then tells us that the right-hand side may be estimated as follows:

∥(RH S)∥L2 ⩽ ∥[∂α2, Jeq]∥L2 + ∥[u · ∇, ∂α
]K∥L2 + ∥[[2, · ], ∂α

]K∥L2

≲ ∥∂α θ̄∥L2 + (∥∇u∥L∞ + ∥θ∥L∞)∥K∥H k + (∥K∥L∞ + ∥∇K∥L∞)(∥u∥H k + ∥θ∥H k ).

Summing over |α| and appealing to Proposition 4.1 then yields the claim. □

Once K is under control we can read off estimates on ∂t K from (2-1d). The resulting estimate is
recorded below.

Lemma 4.5 (H k estimates for ∂t K ). Suppose that K solves (2-1d) for some given u and θ . Then, for any
k ∈ N, we have that ∂t K satisfies the estimate

∥∂t K∥H k ≲ ∥K∥H k + (∥u∥L∞ + ∥θ∥L∞)∥K∥H k+1 + (1 + ∥K∥L∞ + ∥∇K∥L∞)(∥u∥H k + ∥θ∥H k ).

Proof. This follows immediately from using the high-low estimates of Corollary B.2 to estimate the
quadratic terms in (2-1d). □

We continue establishing estimates on K and its time derivatives by taking a time derivative of (2-1d)
and thus reading off an estimate for ∂2

t K , which is recorded below.
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Lemma 4.6 (H k estimates for ∂2
t K ). Suppose that K solves (2-1d) for some given u and θ . Then, for any

k ∈ N, we have that ∂t K satisfies the estimate

∥∂2
t K∥H k ≲ ∥∂t K∥H k + (1+∥K∥L∞ +∥∇K∥L∞ +∥∂t K∥L∞ +∥∇∂t K∥L∞)(∥(u, θ)∥H k +∥∂t(u, θ)∥H k )

+ (∥(u, θ)∥L∞ + ∥∂t(u, θ)∥L∞)(∥K∥H k+1 + ∥∂t K∥H k+1).

Proof. As in Lemma 4.5, this follows from the high-low estimates of Corollary B.2 upon noticing that
∂2

t K solves

∂2
t K = [�eq, ∂t K ] + [∂t2, Jeq] + [∂t2, K ] + [2, ∂t K ] − ∂t u · ∇K − u · ∇∂t K . □

We conclude our sequence of estimates on K and its temporal derivatives with an estimate on K when
an arbitrary number of temporal derivatives are applied.

Lemma 4.7 (H k estimates for ∂
j

t K ). Suppose that K solves (2-1d) for some given u and θ . Then, for
any k ∈ N with k > 1

2 n and any j ⩾ 1,

∥∂
j

t K∥H k ≲ ∥∂
j−1

t K∥H k + ∥∂
j−1

t θ∥H k +

j−1∑
l=0

(∥∂ l
t u∥

2
H k + ∥∂ l

t θ∥
2
H k + ∥∂ l

t K∥
2
H k+1).

Proof. The proof is immediate upon noting that taking j − 1 time derivatives of (2-1d) results in

∂
j

t K = [�eq, ∂
j−1

t K ] + [∂
j−1

t 2, Jeq] +

j−1∑
l=0

([∂
( j−1)−l
t 2, ∂ l

t K ] − (∂
( j−1)−l
t u · ∇)∂ l

t K )

and recalling that H k is a Banach algebra precisely when k > 1
2 n. □

Having obtained estimates for K and its time derivatives above, we may now synthesize the results
of this section in Proposition 4.8. Note that, as discussed in Section 2D, this proposition is one of the
four building blocks of the scheme of a priori estimates. Recall that the functionals EM , E (K )

M , FM , KI ,
and DM are defined in (3-2), (3-4), (3-5), (3-6), and (3-8), respectively.

Proposition 4.8 (advection-rotation estimates for K ). Let M ⩾ 3 be an integer and suppose that, for
some time horizon T > 0 and some universal constant C > 0,

sup
1⩽I⩽M

sup
0⩽t⩽T

KI (t)(1 + t)2M−2I
+ EM(t) +

∫ t

0
DM(s) ds =: C0 ⩽ C < ∞. (4-1)

Then, for every 0 ⩽ t ⩽ T ,

E (K )
M (t)1/2 ≲ P f and F1/2

M (t) ≲ F1/2
M (0) + (1 + Pe)

∫ t

0
D1/2

M (s) ds + (1 + P f )K
1/2
M (t),

where the constants appearing in these two estimates depend on C , and where

Pe := P(C1/2
0 , E (K )

M (0)1/2) and P f := P(C1/2
0 , E (K )

M (0)1/2,FM(0)1/2)

for P — which may differ in each instance — a polynomial with nonnegative coefficients which vanishes
at zero.
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Proof. The strategy of the proof is as follows. The target estimates on E (K )
M and FM follow from putting

together the advection-rotation estimates of Section 4A and appropriately leveraging the decay afforded
to us by (4-1). The key idea is that the potential growth of terms controlled by FM may be offset by the
decay of terms appearing in KI .

We begin by recording, in Step 1, elementary estimates which are consequences of (4-1) and can be
used to control some of the time integrals appearing in the advection-rotation estimates of Section 4A. We
then obtain L∞ bounds on K and ∇K in Step 2 and deduce estimates on K , ∂t K , ∂2

t K , and higher-order
temporal derivatives in Steps 3–6. We conclude in Step 7 by recording how to perform the synthesis of
Steps 1–6 and read off the desired estimates of EM and FM .

Before we begin the proof in earnest, we fix some notation. For x1, . . . , xn ⩾ 0, we denote by
P(x1, . . . , xn) a polynomial of (x1, . . . , xn) which may change from line to line and has the following
properties: it vanishes at zero and it has nonnegative coefficients. In particular, we write

Pe := P(C1/2
0 , E (K )

M (0)1/2) and P f := P(C1/2
0 , E (K )

M (0)1/2,FM(0)1/2).

Step 1: Preliminary estimates. We begin by recording some elementary estimates which are consequences
of (4-1), such as estimates on time integrals of the functionals KI . First, note that, for any 1 ⩽ I ⩽ M −2,∫ t

0
∥(u, θ)(s)∥H2I ds ≲

∫ t

0

C1/2
0

(1 + s)M−I ds ≲ C1/2
0 .

By interpolation, we note that similar estimates also hold for H k norms of u and θ when k is odd. Indeed,
observe first that, for any odd k satisfying 3⩽ k ⩽ 2M −1, if we write k = 2I +1 for some 1⩽ I ⩽ M −1
then we have the following bounds, pointwise-in-time:

∥(u, θ)(t)∥H k ≲ ∥(u, θ)(t)∥1/2
H k−1∥(u, θ)(t)∥1/2

H k+1 ≲
C1/4

0

(1 + t)(M−I )/2

C1/4
0

(1 + t)(M−I−1)/2 =
C1/2

0

(1 + t)M−k/2 .

Therefore, if k ⩽ 2M − 3, we may deduce the time-integrated bound∫ t

0
∥(u, θ)(s)∥H k ds ≲ C1/2

0 . (4-2)

Since the functionals KI which appear in (4-1) also involve temporal derivatives, we may proceed in the
same way to deduce that, for any 2 ⩽ k ⩽ 2M − 5,∫ t

0
∥∂t(u, θ)(s)∥H k ≲ C1/2

0 . (4-3)

The final preliminary estimate, before we being estimating K , has to do with exponential factors that
arise in Lemmas 4.2 and 4.3. In light of (4-1) and (4-2) we see that, for some constants C > 0 which may
change from line to line,

exp
(∫ t

0
∥(∇u, θ)(s)∥L∞ ds

)
⩽ exp

(
C
∫ t

0
∥(u, θ)∥H3

)
⩽ exp(C2C1/2

0 ) ≲ 1, (4-4)

where recall that, as in the statement of the proposition, the constants implied by the notation “≲” may
depend on C .
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Step 2: L∞ estimates on K and ∇K . We are now ready to record the first estimates on K , which are L∞

estimates on K and ∇K coming from Lemmas 4.2 and 4.3. We deduce from Lemma 4.2 the fact that
M ⩾ 3 and from (4-1) that

∥K∥L∞ ≲ ∥K (0)∥H2 +

∫ t

0
∥θ∥H2 ≲ E (K )

M (0)1/2
+ C1/2

0 ≲ Pe. (4-5)

Similarly, we deduce from Lemma 4.3 the fact that M ⩾ 3 and from (4-2), (4-4), and (4-5) that

∥∇K∥L∞ ≲ ∥K (0)∥H3 + (1 + Pe)

∫ t

0
∥θ∥H3 ≲ E (K )

M (0)1/2
+ (1 + Pe)C

1/2
0 ≲ Pe. (4-6)

Step 3: Estimating K . We are now ready to use Lemma 4.4 to estimate K . Combining Lemma 4.4 with
(4-4)–(4-6) tells us that

∥K (t)∥H2M−3 ≲ ∥K (0)∥H2M−3 + (1 + Pe)

∫ t

0
∥(u, θ)∥H2M−3 .

Using (4-2) allows us to conclude that

∥K∥H2M−3 ≲ E (K )
M (0)1/2

+ (1 + Pe)C
1/2
0 ≲ Pe. (4-7)

Combining Lemma 4.4 with (4-4)–(4-6) also tells us that

∥K∥H2M+1 ≲ ∥K (0)∥H2M+1 + (1 + Pe)

∫ t

0
∥(u, θ)∥H2M+1 ≲ FM(0)1/2

+ (1 + Pe)

∫ t

0
D1/2

M . (4-8)

Step 4: Estimating ∂t K . We now estimate ∂t K using Lemma 4.5. Combining Lemma 4.5 with (4-1) and
(4-5)–(4-7) tells us that

∥∂t K∥H2M−3 ≲ ∥K∥H2M−3 + ∥(u, θ)∥L∞∥K∥H2M−2 + (1 + Pe)∥(u, θ)∥H2M−3

≲ Pe + ∥(u, θ)∥L∞∥K∥H2M−2 . (4-9)

The trick now lies in controlling the term ∥(u, θ)∥L∞∥K∥H2M−3 by playing off the decay of ∥(u, θ)∥L∞

against the (potential) growth of ∥K∥H2M−2 . Using (4-1) and (4-8) we see that

∥(u, θ)∥L∞∥K∥H2M−2 ≲
C1/2

0

(1 + t)M−1

(
FM(0)1/2

+ (1 + Pe)

∫ t

0
D1/2

M

)
.

Note that by applying Cauchy–Schwarz to
∫
DM , we see that, by virtue of (4-1),∫ t

0
D1/2

M = t /
∫ t

0
D1/2

M ⩽ t
(

/
∫ t

0
DM

)1/2

= t1/2
(∫ t

0
DM

)1/2

⩽ C1/2
0 t1/2. (4-10)

Therefore, since M ⩾ 2,

∥(u, θ)∥L∞∥K∥H2M−2 ≲ C1/2
0 (FM(0)1/2

+ (1 + Pe)C
1/2
0 )

1 + t1/2

(1 + t)M−1 ≲ P f
(1 + t)1/2

(1 + t)M−1 ≲ P f . (4-11)

So finally, putting (4-9) and (4-11) together, we see that

∥∂t K∥H2M−3 ≲ P f . (4-12)
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We now seek to control ∂t K in H 2M , i.e., through FM . This is slightly easier than controlling K in
H 2M−3 as is done above since now we do not have to deal with “decay-growth” interactions. Combining
Lemma 4.5 with (4-1), (4-5), (4-6), and (4-8) shows that

∥∂t K∥H2M ≲ ∥K∥H2M + ∥(u, θ)∥L∞∥K∥H2M+1 + (1 + Pe)∥(u, θ)∥H2M

≲ (1 + C1/2
0 )

(
FM(0)1/2

+ (1 + Pe)

∫ t

0
D1/2

M

)
+ (1 + Pe)C

1/2
0

≲ F1/2
M (0) + (1 + Pe)

∫ t

0
D1/2

M + (1 + Pe)K
1/2
M (t). (4-13)

Step 5: Estimating ∂2
t K . We now use Lemma 4.6 to control ∂2

t K . Lemma 4.6 tells us that

∥∂2
t K∥H2M−3 ≲ ∥∂t K∥H2M−3 + (∥(u, θ)∥L∞ + ∥∂t(u, θ)∥L∞)(∥K∥H2M−2 + ∥∂t K∥H2M−2)

+ (1 + ∥(K , ∇K )∥L∞ + ∥∂t(K , ∇K )∥L∞)(∥(u, θ)∥H2M−3 + ∥∂t(u, θ)∥H2M−3). (4-14)

In particular, (4-12) allows us to control ∂t K and ∂t∇K in L∞ since M ⩾ 3, and hence

∥∂t(K , ∇K )∥L∞ ≲ ∥∂t K∥H3 ≲ ∥∂t K∥H2M−3 ≲ P f . (4-15)

As in the estimate of ∂t K in H 2M−3, the subtlety now lies in estimating the decay-growth interaction. In
light of (4-1), (4-8), (4-10), (4-13), and the fact that M ⩾ 3,

(∥(u, θ)∥L∞ + ∥∂t(u, θ)∥L∞)(∥K∥H2M−2 + ∥∂t K∥H2M−2)

≲
C1/2

0

(1 + t)M−2

(
P f + (1 + Pe)

∫ t

0
D1/2

M

)
≲ C1/2

0 (1 + P f )C
1/2
0

1 + t1/2

(1 + t)M−2

≲ P f
(1 + t)1/2

(1 + t)M−2 ≲ P f . (4-16)

So finally, combining (4-1), (4-5), (4-6), (4-12), (4-15), and (4-16) tells us that

∥∂2
t K∥H2M−3 ≲ P f . (4-17)

We now seek to control ∂2
t K in H 2M−2. We may put together Lemma 4.6, (4-1), (4-5), (4-6), (4-8),

(4-13), and (4-15) to see that

∥∂2
t K∥H2M−2 ≲ ∥∂t K∥H2M−2 + (∥(u, θ)∥L∞ + ∥∂t(u, θ)∥L∞)(∥K∥H2M−1 + ∥∂t K∥H2M−1)

+ (1 + ∥(K , ∇K )∥L∞ + ∥∂t(K , ∇K )∥L∞)(∥(u, θ)∥H2M−2 + ∥∂t(u, θ)∥H2M−2)

≲ (1 + C1/2
0 )(∥K∥H2M−1 + ∥∂t K∥H2M−1) + (1 + P f )K

1/2
M

≲ F1/2
M (0) + (1 + Pe)

∫ t

0
D1/2

M + (1 + P f )K
1/2
M . (4-18)

Step 6: Estimating ∂
j

t K for j ⩾ 3. We conclude this proof by obtaining control over ∂
j

t K when j ⩾ 3.
We proceed by induction, relying on Lemma 4.7 for both the base case and the induction step, and we
will show that

∥∂
j

t K∥H2M−2 j+2 ≲ P f for every 3 ⩽ j ⩽ M. (4-19)
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Note that the hypotheses of Lemma 4.7 are always satisfied here since 2M −2 j +2 ⩾ 2 > 3
2 when j ⩽ M .

We begin with the base case. By Lemma 4.7, (4-1), (4-7), (4-12), and (4-17) we obtain that

∥∂3
t K∥H2M−4 ≲ ∥∂2

t K∥H2M−4 + ∥∂2
t θ∥H2M−4 +

2∑
l=0

(∥∂ l
t (u, θ)∥2

H2M−4 + ∥∂ l
t (u, θ)∥2

H2M−3)

≲ P f + C1/2
0 + (C0 + P f ) ≲ P f .

We may now proceed with the induction step. Suppose that there is some 3 ⩽ j < M such that

∥∂ l
t K∥H2M−2l+2 ≲ P f for every 3 ⩽ l ⩽ j. (4-20)

Then, by Lemma 4.7, (4-1), (4-7), (4-12), (4-17), and (4-20) we see that

∥∂
j+1

t K∥H2M−2 j ≲ ∥∂
j

t K∥H2M−2 j + ∥∂
j

t θ∥H2M−2 j +

j∑
l=0

(∥∂ l
t (u, θ)∥2

H2M−2 j + ∥∂ l
t K∥

2
H2M−2 j+1)

≲ P f + C1/2
0 + ∥(u, θ)∥2

P2M + P2
f ≲ P f .

This proves that the induction step holds, from which (4-19) follows.

Step 7: Synthesis. We combine (4-7), (4-12), (4-17), and (4-19) to deduce the bound on E (K )
M , and we

combine (4-8), (4-13), and (4-18) to deduce the bound on FM . □

4B. Energy-dissipation structure. In this section we identify the energy-dissipation structure of the
problem and record some related auxiliary results, such as the precise form of the interactions, a comparison
result for the various versions of the energy, and a coercivity estimate for the dissipation. Since the
dissipation D will appear frequently throughout this section we recall that it is defined in (3-7). We begin
with the energy-dissipation relation.

Proposition 4.9 (generic energy-dissipation relation). Let the stress tensors T and M be as defined
in (2-4) and suppose that (v, q, θ, b) solves

(∂t + u · ∇)v = (∇ · T )(v, q, θ)+ f,
∇ · v = 0,

J (∂t + u · ∇)θ + (ω × J )θ + τ̃ 2b̃⊥
+ θ × Jωeq = 2 vec T (v, q, θ)+ (∇ · M)(θ) + g,

(∂t + u · ∇)b = −(ν − λ)θ̄⊥
+ ω3b⊥

+ h,

(4-21)

where (u, ω, J ) are given and satisfy {
∇ · u = 0, (4-22a)

(∂t + u · ∇)J = [�, J ], (4-22b)

and where f , g, and h are given. Then the following energy-dissipation relation holds:

d
dt

(∫
T3

1
2
|v|

2
+

1
2

Jθ · θ +
τ̃ 2

ν − λ

1
2
|b|

2
)

+ D(v, θ) =

∫
T3

f · v + g · θ +
τ̃ 2

ν − λ
h · b. (4-23)

Proof. We multiply by the unknowns and integrate by parts: since u and v are divergence-free,

d
dt

∫
T3

1
2
|v|

2
=

∫
T3

(∂t + u · ∇)v · v =

∫
T3

(∇ · T ) · v +

∫
T3

f · v = −

∫
T3

T : ∇v +

∫
T3

f · v. (4-24)
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Similarly, using the incompressibility of u, (4-22b), and Lemma A.4, we see that

1
2(∂t + u · ∇)Jθ · θ =

1
2 [�, J ]θ · θ = (ω × J )θ · θ,

and from the fact that θ × Jωeq · θ = 0 we obtain

d
dt

∫
T3

1
2 Jθ ·θ =

∫
T3

1
2(∂t +u ·∇)Jθ ·θ+

∫
T3

J (∂t +u ·∇)θ ·θ =

∫
T3

T :�−M :∇ω+g ·θ+τ̃ 2b·θ̄⊥. (4-25)

Finally, we compute

d
dt

∫
T3

1
2 |b|

2
=

∫
T3

(∂t + u · ∇)b · b = −

∫
T3

(ν − λ)θ̄⊥
· b +

∫
T3

h · b. (4-26)

To conclude it suffices to add (4-24), (4-25), and τ̃ 2/(ν − λ) times (4-26) and observe that∫
T3

T (v, q, θ) : (2 − ∇v) + M(θ) : (∇θ) = D(v, θ).

This equation follows from the identities (vec M) · v =
1
2 M : ten v and Skew(∇v) =

1
2 ten ∇ × v and

the fact that Rn×n may be orthogonally decomposed with respect to the Frobenius inner product as
Rn×n ∼= RI ⊕ Dev(n) ⊕ Skew(n), where Dev(n) denotes the set of trace-free symmetric n × n matrices
and Skew(n) denotes the set of antisymmetric n × n matrices.

To conclude we add (4-24), (4-25), and τ̃ 2/(ν − λ) times (4-26) to obtain (4-23). □

Having established the precise form of the energy-dissipation relation we now record the specific form of
the interactions. Lemma 4.10 is a necessary precursor to the interactions estimates of Sections 4C and 4D.

Lemma 4.10 (recording the form of the interactions). If (u, p, θ, K ) solves (2-1) then, for any multi-index
α ∈ N1+3,

d
dt

(∫
T3

1
2
|∂αu|

2
+

1
2

J∂αθ · ∂αθ +
τ̃ 2

ν − λ

1
2
|∂αa|

2
)

+ D(∂αu, ∂αθ) = I α, (4-27)

where

I α
=

∫
T3

[u · ∇, ∂α
]u · ∂αu +

∫
T3

[J∂t , ∂
α
]θ · ∂αθ +

∫
T3

[J (u · ∇), ∂α
]θ · ∂αθ

+

∫
T3

[ω × J, ∂α
]θ · ∂αθ −

∫
T3

[Jωeq×, ∂α
]θ · ∂αθ +

∫
T3

[u · ∇, ∂α
]a · ∂αa

+

∫
T3

[ω3 R, ∂α
]a · ∂αa +

∫
T3

∂α((K − K33 I2)θ̄
⊥) · ∂αa =: I α

1 + · · · + I α
8 .

Proof. The first order of business is to write (2-1) in the form of Proposition 4.9. In order to do this we
note that (2-1) can be written using the stress tensor T and the couple stress tensor M as (2-5). In light
of (2-3) we therefore see that (u, p, θ, a) solves

(∂t + u · ∇)u = (∇ · T )(u, p, θ),

∇ · u = 0,

J (∂t + u · ∇)θ + (ω × J )θ + τ̃ 2b̃⊥
+ θ × Jωeq = 2 vec T (u, p, θ)+ (∇ · M)(θ),

(∂t + u · ∇)a = −(ν − λ)θ̄⊥
+ ω3a⊥

+ (K − K33 I2)θ̄
⊥,

(4-28)
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subject to (∂t + u · ∇)J = [�, J ], where J = Jeq + K and ω = ωeq + θ . Note in particular that the full
precession ω× Jω is present in the third equation of (4-28) since ωeq× Jeqωeq = 0 and ωeq×Kωeq = τ̃ 2ã⊥

such that indeed
ω × Jθ + τ̃ 2b̃⊥

+ θ × Jωeq = ω × Jω.

We may now apply derivatives to (4-28) and use Proposition 4.9. This tells us

d
dt

(∫
T3

1
2
|∂αu|

2
+

1
2

J∂αθ · ∂αθ +
τ̃ 2

ν − λ

1
2
|∂αa|

2
)

+ D(∂αu, ∂αθ)

=

∫
T3

f α
· ∂αu + gα

· ∂αθ + hα
· ∂αa (4-29)

for

f α
= [u · ∇, ∂α

]u, gα
= [J∂t , ∂

α
]θ + [J (u · ∇), ∂α

]θ + [ω × J, ∂α
]θ − [Jωeq×, ∂α

]θ,

and
hα

= [u · ∇, ∂α
]a + [θ3 R, ∂α

]a + ∂α((K − K33 I2)θ̄
⊥),

where R = e2 ⊗ e1 − e1 ⊗ e2 ∈ R2×2 is the (counterclockwise) π
2 rotation in R2, such that (4-29) is

precisely (4-27), as desired. □

We now record two auxiliary results related to the energy-dissipation structure of the problem. First
we record a precise comparison of various versions of the energy, and then we record the coercivity of
the dissipation over H 1. Recall that EM and ẼM are defined in (3-2).

Lemma 4.11 (comparison of the different versions of the energy). There exist constants cE , CE > 0 such
that, for every time horizon T > 0, if

sup
0⩽t<T

∥(u, θ)(t)∥H3 + ∥J (t)∥H3 + ∥∂t(u, θ)(t)∥H2 + ∥∂t J (t)∥H2 < ∞ (4-30)

then, for any nonnegative integer M , we have that cEEM ⩽ ẼM ⩽ CEEM on [0, T ).

Proof. It is crucial here to remember the global assumption according to which the spectrum of J0(x)

is {λ, λ, ν}, where ν > λ > 0, for every x ∈ T3. The key observation is then that we may combine the
assumption (4-30) and Proposition A.3 to deduce that, for every (t, x) ∈ [0, T ) × T3, the spectrum of
J (t, x) is {λ, λ, ν}. Therefore,

λ

∫
T3

|θ |
2 ⩽

∫
T3

Jθ · θ ⩽ ν

∫
T3

|θ |
2,

and the claim follows upon picking cE =
1
2 min(1, λ, τ̃ 2/(ν − λ)) and CE =

1
2 max(1, ν, τ̃ 2/(ν − λ)). □

We now record the coercivity of the dissipation over H 1 in Lemma 4.12 below. Note that this lemma
is copied from Lemma 4.9 of the companion paper [Remond-Tiedrez and Tice 2021], and so we omit the
proof.

Lemma 4.12 (coercivity of the dissipation). There exists a universal constant CD > 0 such that, for every
(u, θ) ∈ H 1 where u has average zero, D(u, θ) ⩾ CD∥(u, θ)∥H1 .
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4C. Closing the estimates at the low level. We now turn our attention to the second of the four building
blocks of the scheme of a priori estimates: closing the energy estimates at the low level. This is carried out
in this section and culminates in Proposition 4.20. In the remainder of this section we proceed as follows:
first we derive auxiliary estimates of a and use them to improve the low-level energy and dissipation, then
we estimate the low-level interactions, and finally we record the θ -coercivity central to the algebraic decay
of the energy at the low level. We recall that the energy, dissipation, and interaction functionals at the low
level, which will appear throughout this section, are defined in (3-3), (3-9), and (3-10), respectively. The
various versions of the high-level energy are defined in (3-2) and (3-5).

We begin with auxiliary estimates for a intended to improve the low-level energy and dissipation.
The strategy is simple: we use the appearance of a in the conservation of angular momentum (2-1c) to
control a via the dissipation, then use (2-3) for ∂t a to bootstrap the control of a to new or better control
of ∂t a in the dissipation and the energy, respectively, and finally use the time-differentiated equation
for ∂t a in order to control ∂2

t a energetically if the additional assumption (2) of Proposition 4.15 holds.

Lemma 4.13 (auxiliary estimate for a). Suppose that (2-1c) holds. For any k ∈ N and any s > 3
2 such

that s ⩾ k, we have the estimate

∥a∥H k ≲ (1 + ∥K∥H s + ∥(u, θ)∥H s + ∥K∥H s ∥(u, θ)∥H s )(∥θ∥H k+2 + ∥∂tθ∥H k + ∥u∥H k+1).

Proof. This estimate follows from isolating a in (2-1c) and using Lemma B.4 to estimate the nonlinearities.
To isolate a in (2-1c) we use the facts that ωeq × Jeqωeq = 0 and ωeq × Kωeq = τ̃ 2ã⊥ to rewrite the
precession term as

(ωeq + θ) × (Jeq + K )(ωeq + θ) = (ωeq + θ) × (Jeq + K )θ + θ × (Jeq + K )ωeq + τ̃ 2ã⊥.

We may then write (2-1c) as

τ̃ 2ã⊥
= −(Jeq + K )(∂tθ + u · ∇θ) − (ωeq + θ) × (Jeq + K )θ − θ × (Jeq + K )ωeq

+ κ∇ × u − 2κθ + (α̃ − γ̃ )∇(∇ · θ) + γ̃ 1θ. □

We continue obtaining auxiliary estimates for a by obtaining an estimate for its first two time derivatives.

Lemma 4.14 (auxiliary estimate for ∂t a and ∂2
t a). Suppose that (2-3) holds. For any k ∈ N and any s > 3

2
such that s ⩾ k, we have the estimates

∥∂t a∥H k ≲ (1 + ∥(u, θ)∥H s )∥a∥H k+1 + (1 + ∥K∥H s )∥θ∥H s

and

∥∂2
t a∥H k ≲ ∥∂t(u, θ)∥H s ∥a∥H k+1 +(1 + ∥(u, θ)∥H s )∥∂t a∥H k+1 +∥∂t K∥H s ∥θ∥H k +(1 + ∥K∥H s )∥∂tθ∥H k .

Proof. The first estimate follows as in Lemma 4.13 from isolating ∂t a in (2-3) and using Lemma B.4 to
estimate the quadratic terms. The second estimate follows from differentiating (2-3) in time and then
proceeding as in Lemma 4.13, namely isolating ∂2

t a and using Lemma B.4. □

With these auxiliary estimates for a and its first two temporal derivatives in hand we may now improve
the low-level energy and dissipation.
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Proposition 4.15 (improvement of the low-level energy and dissipation). Let T > 0 be a time horizon.
Consider the assumptions

(1) sup0⩽t<T ∥(u, θ)(t)∥H3 + ∥K (t)∥H3 ⩽ C < ∞ and

(2) sup0⩽t<T ∥∂t(u, θ)(t)∥H2 + ∥∂t K (t)∥H2 ⩽ C < ∞.

Then we have the following estimates, where the constants implicit in “≲” may depend on C. If (1) holds
then E low ≳ ∥∂t a∥

2
H1 and Dlow ≳ ∥a∥

2
H1 + ∥∂t a∥

2
L2 . If (1) and (2) hold then E low ≳ ∥∂2

t a∥
2
L2 .

Proof. Assumption (1) and Lemma 4.13 tell us that ∥a∥
2
H1 ≲ ∥(u, θ)∥2

H3 + ∥∂tθ∥
2
H1 ≲ Dlow. Then we

may use (1), Lemma 4.14, and the previous estimate to see that

∥∂t a∥
2
L2 ≲ ∥a∥

2
H1 + ∥θ∥

2
L2 ≲ Dlow

and
∥∂t a∥

2
H1 ≲ ∥a∥

2
H2 + ∥θ∥

2
H1 ≲ E low.

Finally, if both assumptions (1) and (2) hold then we may use Lemma 4.14 again to see that

∥∂2
t a∥

2
L2 ≲ ∥a∥

2
H1 + ∥∂t a∥

2
H1 + ∥θ∥

2
L2 + ∥∂tθ∥

2
L2 ≲ E low. □

We now turn our attention to the low-level interactions and record their estimates here. Note that they
may be estimated in a simpler way for the sole purpose of closing the energy estimates at the low level,
but by doing the estimates slightly more carefully as done below we can also use them when we study
the local well-posedness theory (in Section 5).

Lemma 4.16 (careful estimates of the low-level interactions). Recall that I low is defined in (3-10) for I α

as in Lemma 4.10. The following estimate holds:

|I low| ≲ (∥(u, θ)∥P2 + ∥a∥P3 + (1 + ∥(u, θ)∥P2)(∥K∥H3 + ∥∂t K∥L∞))Dlow.

Proof. Recall that, at the low level, |α|P ⩽ 2. In particular, if β + γ = α and β > 0 then (∂α, ∂β, ∂γ )

corresponds to one of five possible cases: (∂2
x , ∂2

x , 0), (∂2
x , ∂x , ∂x), (∂x , ∂x , 0), (∂t , ∂t , 0), and (0, 0, 0),

where ∂k
x indicates a derivative ∂α for a purely spatial multi-index α ∈ N3 of length |α| = k. Note that we

have the bound ∥K∥L∞ + ∥∇K∥L∞ + ∥∇
2K∥L6 ≲ ∥K∥H3 such that, for any |α|P ⩽ 2,

∥∂α K∥L6 ≲ ∥K∥H3 + ∥∂t K∥L∞ . (4-31)

Recall from Lemma 4.10 that I low =
∑

|α|P⩽2
∑8

i=1 I
α
i . In light of (4-31) we may estimate I α

1 –I α
5

and I α
7 easily, obtaining

|I α
1 | ≲ ∥u∥P2Dlow, |I α

2 | ≲ (∥K∥H3 + ∥∂t K∥L∞)Dlow, |I α
3 | ≲ (1 + ∥K∥H3 + ∥∂t K∥L∞)∥u∥P2Dlow,

|I α
4 | ≲ (1 + ∥θ∥P2)(∥K∥H3 + ∥∂t K∥L∞)Dlow + (1 + ∥K∥H3)∥θ∥P2Dlow,

|I α
5 | ≲ (∥K∥H3 + ∥∂t K∥L∞)Dlow, and |I α

7 | ≲ ∥a∥P3Dlow.

The only two terms requiring particularly delicate care are I6 and I8, due to the presence of ∂2
x a. We

provide the details on how to estimate these two interactions below.
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Estimating I α
6 . Recall that

I α
6 = −

∑
β+γ=α

β>0

(
α

β

) ∫
T3

(∂βu · ∇∂γ a) · ∂αa.

The difficulty lies in ∂α
= ∂2

x since then two copies of ∂2
x a may appear and we only control a dissipatively

in H 1. We thus split into two cases, emphasizing that only the first case is somewhat troublesome and
requires particular care. In the first case we consider |ᾱ|= 2 and |β̄|= |γ̄ |= 1 and proceed by interpolation:∣∣∣∣∫

T3
(∂x u · ∇∂xa) · ∂2

x a
∣∣∣∣⩽ ∥∂x u∥L∞∥∂2

x a∥
2
L2 ≲ ∥u∥H3∥a∥

2
H2 ≲ ∥u∥H3(∥a∥

1/2
H1 ∥a∥

1/2
H3 )2 ≲ ∥a∥H3Dlow.

In the second case we consider either |ᾱ| = |β̄| = 2 or |ᾱ| ⩽ 1. Either way, since β > 0 we deduce that
γ = 0, and hence β = α. The estimate is then immediate:∣∣∣∣∫

T3
(∂αu · ∇a) · ∂αa

∣∣∣∣⩽ ∥∂αu∥L6∥∇a∥L2∥∂αa∥L6 ≲ ∥u∥P3∥a∥H1∥a∥P3 ≲ ∥a∥P3Dlow.

Estimating I α
8 . Recall that

I α
8 = −

∑
β+γ=α

∫
T3

∂β(K − K33 I2)∂
γ θ̄⊥

· ∂αa ∼

∑
β+γ=α

∫
T3

(∂β K )∂γ θ · ∂αa,

where the left-hand side is the precise form of the interaction and the right-hand side is its schematic
form which we will work with henceforth. The difficulty lies in ∂α

= ∂2
x since we have no dissipative

control over K and only control a dissipatively in H 1. We must therefore integrate by parts to reduce the
term ∂2

x a to ∂xa. Now we split into two cases. As in the consideration of I α
6 above, only the first case is

somewhat troublesome.
In the first case we consider |ᾱ| = 2. We integrate by parts and estimate each term by hand. We write∑

β+γ=2

∫
T3

(∂β
x K )∂γ

x θ · ∂2
x a =

∑
β+γ=2

∫
T3

(∂β+1
x K )(∂γ

x θ) · ∂xa +

∫
T3

(∂β
x K )(∂γ+1

x θ) · ∂αa =: I + II,

where

|I| ⩽
∣∣∣∣∫

T3
(∂x K )(∂2

x θ)∂xa
∣∣∣∣+ ∣∣∣∣∫

T3
(∂2

x K )(∂xθ) · ∂xa
∣∣∣∣+ ∣∣∣∣∫

T3
(∂3

x K )θ · ∂xa
∣∣∣∣

⩽ (∥∂x K∥L∞∥∂2
x θ∥L6 + ∥∂2

x K∥L6∥∂xθ∥L∞ + ∥∂3
x K∥L2∥θ∥L∞)∥∂xa∥L2

≲ ∥K∥H3∥θ∥H3∥a∥H1 ≲ ∥K∥H3Dlow

and
|I| ⩽

∑
β+γ=2

∥∂β
x K∥L∞∥∂γ+1

x θ∥L2∥∂xa∥L2 ≲ ∥K∥H3∥θ∥H3∥a∥H1 ≲ ∥K∥H3Dlow.

In the second case we consider |ᾱ| ⩽ 1. Note that, as was noted above when considering I α
6 , it then

follows from the constraint β > 0 that γ = 0 and β = α. The estimate is then immediate:

|II| ⩽ ∥∂α K∥L2∥θ∥L∞∥∂αa∥L2 ≲ (∥K∥H3 + ∥∂t K∥L∞)∥θ∥H2(∥a∥H1 + ∥∂t a∥L2)

≲ (∥K∥H3 + ∥∂t K∥L∞)Dlow. □

In particular, for our purposes here it suffices to control the low-level interactions in the following way.
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Corollary 4.17 (control of the low-level interactions). If M ⩾ 3 and EM ⩽ 1 then |I low| ≲ E1/2
M Dlow.

Proof. Recall that EM ≳ ∥(u, θ, a)∥2
P2M +∥K∥

2
H2M−3 +∥∂t K∥

2
H2M−3 . In particular, since M ⩾ 3 and EM ⩽ 1,

we may deduce the claim from Lemma 4.16. □

We now turn our attention to the last piece needed to close the energy estimates at the low level, namely
the θ -coercivity estimate recorded below. In particular note that below, θ ↑ 1 as M ↑ ∞.

Lemma 4.18 (θ -coercivity). If M ⩾ 2 then E low ≲ E1−θ
M Dθ

low, where θ = (2M − 2)/(2M − 1).

Proof. Since the low-level dissipation controls every term in the low-level energy except ∥a∥
2
H2 , we rely

on an interpolation estimate to control that term using the low-level dissipation and the high-level energy.
More precisely, recall that{E low = ∥(u, θ)∥2

H2 + ∥a∥
2
H2 + ∥∂t(u, θ)∥2

L2 + ∥∂t a∥
2
L2,

Dlow = ∥(u, θ)∥2
H3 + ∥a∥

2
H1 + ∥∂t(u, θ)∥2

H1 + ∥∂t a∥
2
H1 .

So let us write E low − ∥a∥
2
H2 =: Egood. Then

Egood ≲ Dlow and ∥a∥
2
H2 ≲ ∥a∥

2θ
H1∥a∥

2(1−θ)

H2M , where θ =
2M−2
2M−1

.

So finally, since M ⩾ 2, we note that EM ≳ Dlow, and hence we may conclude that, for θ as above,

E low = Egood + ∥a∥
2
H2 ≲ Dlow +Dθ

lowE
1−θ
M ≲ Dθ

lowE
1−θ
M . □

In light of the θ -coercivity result above we now record a particular instance of the Bihari lemma which
applies to the low-level energy. This is recorded here in order to streamline the proof of Proposition 4.20
in which we close the energy estimates at the low level.

Lemma 4.19. Suppose that the function y : [0, ∞) → [0, ∞) is continuously differentiable such that
y′

+ Cy1/θα
1−1/θ

0 ⩽ 0 on [0, ∞) for some α0, C > 0 and θ ∈ (0, 1). Then

y(t) ⩽ α0

((
α0

y(0)

)1/β

+ C̃t
)−β

for β :=

(1
θ

− 1
)−1

> 0 and C̃ = C
(1
θ

− 1
)

> 0.

In particular, note that β ↑ +∞ if θ ↑ 1.

Proof. Integrating in time tells us that

y(t) +

∫ t

0
C y(s)1/θα

1−1/θ

0 ds ⩽ y(0).

We apply the Bihari lemma (Lemma B.5) with f (x) = Cx1/θα
1−1/θ

0 . Using the notation in Bihari’s
lemma, we compute F(x) = (α0/x)1/β/C̃ and F−1(x) = α0(C̃x)

−β , from which the claim follows. □

We conclude this section with Proposition 4.20, which performs the synthesis of the results proved in
this section in order to close the energy estimates at the low level. Recall that, as discussed in Section 2D,
this is one of the four building blocks of the scheme of a priori estimates.

Proposition 4.20 (closing the energy estimates at the low level). Let M ⩾ 3 be an integer. There exist
0 < δlow, δ∗

low ⩽ 1, and CL > 0 such that the following holds: for any time horizon T > 0 and any
0 < δ ⩽ δlow, if sup0⩽t⩽T EM(t)⩽ δ∗

low and sup0⩽t⩽T EM(t)⩽ δ then sup0⩽t⩽T Elow(t)(1 + t)2M−2 ⩽CLδ.
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Proof. The strategy of the proof is as follows. We combine the energy-dissipation relation, the control of
the interactions, and the improvement of the dissipation to see that (d/dt)Ẽlow +Dlow ⩽ 0. This differential
inequality is coupled with the θ -coercivity and the improvement of the low-level energy to deduce the result.

More precisely, recall that, by Lemmas 4.10 and 4.12, (d/dt)Ẽlow +Dlow ≲ I low. Since

sup
0⩽t⩽T

∥(u, θ)∥2
H3 + ∥J∥

2
H3 + ∥∂t(u, θ)∥2

H2 + ∥∂t J∥
2
H2 ⩽ sup

0⩽t⩽T
EM(t) ⩽ 1, (4-32)

it follows from Proposition 4.15 and Corollary 4.17 that Dlow ≳ Dlow and |I low| ≲ E1/2
M Dlow. Therefore,

there exists CE D > 0 such that (d/dt)Ẽlow +Dlow ≲ CE DE
1/2
M Dlow. In particular, if δ∗

low > 0 is chosen
sufficiently small to ensure that CE D(δ∗

low)1/2 ⩽ 1
2 then (d/dt)Ẽlow +

1
2Dlow ⩽ 0. Now note that, as a

consequence of (4-32), Proposition A.3 and Lemma 4.11 tell us that

1
2 cEE low ⩽ Ẽlow ⩽ 1

2CEE low. (4-33)

We may combine this with Lemma 4.18 to deduce, for θ = (2M−2)/(2M−1), that Ẽlow ≲E low ≲E1−θ
M Dθ

low,
and hence there exists a constant C > 0 such that (d/dt)Ẽlow + C Ẽ1/θ

low δ1−1/θ ⩽ 0. We deduce from (4-32)
that θ and J are sufficiently regular for t 7→ Ẽlow(t) to be continuously differentiable. Applying Lemma 4.19
thus tells us that, for 0 ⩽ t ⩽ T ,

Ẽlow(t) ≲ δ

((
δ

Ẽlow(0)

)1/β

+ C̃t
)−β

for some C̃ > 0 and for β = (1/θ − 1)−1
= 2M − 2. Using (4-33) once again we note that

Ẽlow(0) ⩽ 1
2CEE low(0) ⩽ 1

2CEδ,

and hence δ/Ẽlow(0)⩾ 2/CE such that Ẽlow ≲ δ(1 + t)−(2M−2). To conclude this step, note that combining
(4-32) and Proposition 4.15 tells us that Elow ≲ E low, and hence, in light of (4-33), we deduce that
Elow(t)(1 + t)2M−2 ≲ δ for 0 ⩽ t ⩽ T . □

4D. Closing the estimates at the high level. In this section we consider the third of the four building
blocks of the scheme of a priori estimates and close the energy estimates at the high level. This section is
structured similarly, but not identically, to Section 4C, where we close the energy estimates at the low
level. The differences are due to the fact that at the high level the improvements to the dissipation and
the estimates of the interactions only hold in a time-integrated sense, and not pointwise in time as was
the case at the low level. This means that by contrast with the low level, where the auxiliary estimates
relied on product estimates (see Lemma B.4), here at the high level the auxiliary estimates rely instead on
high-low estimates (see Corollary B.2). Recall that the functionals EM and FM , KI and Klow, and DM ,
which will be used throughout this section, are defined in (3-5), (3-6), and (3-8), respectively.

We begin with auxiliary estimates for a, which will allow for improvement of the high-level dissipation.

Lemma 4.21 (auxiliary estimate for a). Suppose that (2-1c) holds. For any k ∈ N and any s > 3
2 such

that s ⩾ k, we have the estimate

∥a∥H k ≲(∥K∥L∞+∥θ∥L∞+∥∇θ∥L∞+∥u∥H s +∥θ∥H s )∥(u,θ)∥Pk+2+(∥u∥L∞+∥θ∥L∞+∥∂tθ∥L∞)∥K∥H k .
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Proof. This estimate is similar to that of Lemma 4.13 since we begin by isolating a in (2-1c). However, we
then use the high-low estimate of Corollary B.2 instead of the product estimate of Lemma B.4 to estimate
the nonlinearities. Note that for cubic terms we perform high-low estimates in the following crude fashion:
∥ f gh∥H k ≲ ∥ f ∥H∞∥gh∥H k +∥ f ∥H k ∥gh∥L∞ , and then use Lemma B.4 and the fact that L∞ is a Banach
algebra. □

We continue our sequence of auxiliary estimates for a with an estimate on its time derivative.

Lemma 4.22 (auxiliary estimate for ∂t a). Suppose that (2-3) holds. For any k ∈ N and any s > 3
2 such

that s ⩾ k, we have the estimate

∥∂t a∥H k ≲ (1 + ∥u∥H s + ∥θ∥H s )∥a∥H k+1 + (1 + ∥K∥L∞)∥θ∥H k + ∥θ∥L∞∥K∥H k .

Proof. This follows immediately from isolating ∂t a in (2-3) and using Corollary B.2 and Lemma B.4. □

We conclude our sequence of auxiliary estimates on a with estimates on its higher-order temporal
derivatives.

Lemma 4.23 (auxiliary estimate for ∂
j

t a). Suppose that (2-3) holds. For any k ∈ N, any s > 3
2 , and any

j ⩾ 1, if s ⩾ k then

∥∂
j

t a∥H k ≲

(
1 +

j−1∑
l=0

∥∂ l
t (u, θ)∥H s

)( j−1∑
l=0

∥∂ l
t a∥H k+1

)
+

(
1 +

j−1∑
l=0

∥∂ l
t K∥H s

)( j−1∑
l=0

∥∂ l
t θ∥H k

)
.

Proof. This is immediate upon applying j−1 temporal derivatives to (2-3) and using Lemma B.4 to
estimate the nonlinearities. □

With these various auxiliary estimates on a in hand we may now improve the high-level dissipation.
Recall that Da

M is defined in (3-8).

Proposition 4.24 (improvement of the dissipation at the high level). If M ⩾ 3 and EM ⩽ 1 then

Da
M ≲ D1/2

M + ∥(u, θ, ∂tθ)∥L∞F1/2
M .

Proof. For simplicity, we will write d := D1/2
M + ∥(u, θ, ∂tθ)∥L∞F1/2

M for the right-hand side of the
inequality we are after. Since M ⩾ 3, since H 2(T3) ↪→ L∞(T3), and since EM ⩽ 1, Lemma 4.21 tells us
that ∥a∥H2M−1 ≲ d and consequently Lemma 4.22 says that ∥∂t a∥H2M−2 ≲ d. To see that

3∑
j=2

∥∂
j

t a∥H2M− j−1 +

M∑
j=4

∥∂
j

t a∥H2M−2 j+3 ≲ d

and thus conclude the proof, it suffices to prove by induction that

∥∂
j

t a∥H k( j) ≲ d for k( j) =

{
2M − j − 1 if j = 2 or j = 3,

2M − 2 j + 3 if j = 4, . . . , M.

This induction argument is immediate: the base cases j = 0 and j = 1 were taken care of above, and the
induction step is precisely given by Lemma 4.23. □
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We now turn our attention towards the control of the high-level interactions. First we record a technical
lemma used to control derivatives of K .

Lemma 4.25. If α ∈ N1+3 satisfies |α|P ⩽ 2M and |ᾱ| ⩽ 2M − 4 then ∥∂α K∥L4 ≲ E1/2
M .

Proof. We split the proof into two cases depending on the number of temporal derivatives hitting K .
Suppose first that α0 ⩽ 1. Then the estimate is immediate: we have ∥∂ ᾱ

x K∥L4 ≲ ∥K∥H1+(2M−4) ≲ E1/2
M and

∥∂t∂
ᾱ
x K∥L4 ≲ ∥∂t K∥H1+(2M−4) ≲ E1/2

M . Suppose now that α0 ⩾ 2. The estimate in this case follows from the
fact that ∂

j
t K is controlled at parabolic order 2M +1 when j ⩾ 2. Therefore, since 1+|α|P −4⩽ 2M −3,

we may deduce that ∥∂α K∥L4 ≲ ∥∂2
t K∥P1+|α|P −4 ≲ E1/2

M . □

We may now state and prove the estimate of the high-level interactions. Recall that DM and IM are
defined in (3-8) and (3-10), respectively.

Proposition 4.26 (control of the high-order interactions). Suppose that M ⩾ 3 and that EM ⩽ 1. Then
|IM | ≲ E1/2

M DM +K1/2
lowF

1/2
M D1/2

M .

Proof. Recall that the interactions are recorded in Lemma 4.10. There are three difficulties that manifest
themselves here.

(1) a appears when hit with a full count of 2M spatial derivatives. This is troublesome because the lack
of dissipative control of a in H 2M is precisely why coercivity fails. To handle this it will be necessary to
integrate by parts. This issue manifests itself in I6 and I8.

(2) We have poorer spatial regularity control over ∂
j

t K when j is small (i.e., j = 0, 1) than when it is
large — this is due to the mixed hyperbolic-parabolic nature of the problem. There is no particularly
clever workaround here besides simply breaking up the estimates into cases depending on the number of
temporal derivatives hitting K and performing the estimates in each case. This manifests itself in I2 –I5

and I8.

(3) In all but one of the interactions where FM must be invoked, its possible growth is counteracted by
the presence of K2. However, in I2 this is not possible. Instead, we may only counteract the growth
of FM by ∥∂2

t θ∥L2 . Since two temporal derivatives of θ are not controlled in the low-level energy, this
term does not, at first pass, have any decay. Producing such decay will require the auxiliary estimate
recorded in Lemma 4.31 in Section 4E below.

For the reader’s sake, we briefly remark on which interaction terms are discussed in detail and why.
The details of the estimates of I1 are provided. This is a simple interaction to estimate but we do use

“hands-on high-low estimates” which form the basis for all the other estimates of the interactions, and
thus warrants a detailed discussion of I1. In particular, I7 is handled in exactly the same way.

The interactions I2 –I5 are handled in essentially the same way. We only discuss I2 in detail since it
has the additional wrinkle of requiring us to invoke ∥∂2

t θ∥L2 to counterbalance FM .
The last two interactions we discuss in detail are I6 and I8. Those are the most difficult interactions to

control since they both require us to integrate by parts to get around the appearance of ∇
2M
x a. Moreover,

temporal derivatives of K appear in I8, which requires us to divide the estimates of that interaction into
further subcases.
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We now estimate the difficult interactions one by one.

Estimating I1 and I7. Recall that

I1 =

∑
|α|P⩽2M

∫
T3

[u · ∇, ∂α
]u · ∂αu = −

∑
|α|P⩽2M

∑
β+γ=α

β>0

(
α

β

) ∫
T3

(∂βu · ∇∂γ u) · ∂αu.

Therefore,

|I1| ≲
∑

|β+γ |P⩽2M
|γ |P⩽2M−3

∣∣∣∣∫
T3

(∂βu · ∇∂γ u) · ∂αu
∣∣∣∣︸ ︷︷ ︸

I

+

∑
|β+γ |P⩽2M
|β|P⩽2M−2
|γ |P⩽2M−1

∣∣∣∣∫
T3

(∂βu · ∇∂γ u) · ∂αu
∣∣∣∣︸ ︷︷ ︸

II

,

where
I ⩽ ∥∂βu∥L4∥∇∂γ u∥L∞∥∂β+γ u∥L4 ≲ ∥∂βu∥H1∥∇∂γ u∥H2∥∂β+γ u∥H1

⩽ ∥u∥P |β|P +1∥u∥P |γ |P +3∥u∥P |β+γ |P +1 ≲ D1/2
M E1/2

M D1/2
M

and

II ⩽ ∥∂βu∥L∞∥∇∂γ u∥L4∥∂β+γ u∥L4 ≲ ∥u∥P |β|P +2∥u∥P |γ |P +2∥u∥P |β+γ |P +1 ≲ E1/2
M D1/2

M D1/2
M

such that |I1| ⩽ E1/2
M DM .

To control I7 we proceed in exactly the same way. Note that the presence of a in I7 is harmless since
there is only at most one copy of ∇

2M
x a which appears, and hence there is no need to integrate by parts

here. Hands-on high-low estimates very similar to those discussed in detail above therefore tell us that
|I7| ≲ E1/2

M DM .

Estimating I2, I3, I4, and I5. Recall that I2 is of particular importance since it is the only term that
requires the incorporation of ∥∂2

t θ∥L2 into the decaying functional Klow. We seek to estimate

I2 =

∑
|α|P⩽2M

∫
T3

[J∂t , ∂
α
]θ · ∂αθ = −

∑
|α|P⩽2M

β+γ=α, β>0

(
α

β

) ∫
T3

(∂β K )(∂t∂
γ θ) · (∂αθ),

where we have used the fact that ∂β J = ∂β K since β > 0 and J and K differ by a constant. There are
two difficulties in handling this term, and so we split I2 accordingly as I2 = I + II.

(1) When few temporal derivatives hit K the only way we have of controlling a high number of spatial
derivatives is through FM . Terms concerned by this issue are grouped in I.

(2) The “better” terms in II are estimated directly. However, due to the poorer spatial regularity of K
and ∂t K relative to ∂

j
t K for j ⩾ 2, we split the estimate of II into two pieces that are handled differently

from one another.

To be precise, we write

−I2 =

∑
|α|P⩽2M

β+γ=α, β>0

(
α

β

) ∫
T3

(∂β K )(∂t∂
γ θ) · (∂αθ) =

∑
···

|β̄|⩾2M−3

· · · +

∑
···

|β̄|⩽2M−4

· · · =: I + II.

Note that the condition |β̄| ⩾ 2M − 3 in the term I is coupled with the usual condition |β|P ⩽ 2M , and
thus requires that β0 = 0, 1. In other words, only K and ∂t K appear in I.
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First we estimate I. Two competing factors are at play here:

(1) ∂β K , for |β̄| ⩾ 2M − 3, must be controlled in FM , and hence ∂t∂
γ θ must be controlled via decaying

factors.

(2) Since only θ and ∂tθ are controlled by Elow, the decay of ∂2
t θ is obtained through Lemma 4.31, which

only yields control of ∂2
t θ in L2. We thus have fairly poor control of ∂2

t θ through decaying factors.

To carefully address this we split I into two:

I =

∑
···

|β̄|⩾2M−2

· · · +

∑
···

|β̄|=2M−3

· · · =: I1 + I2.

To estimate I1, we note that |γ |P = |α|P − |β|P ⩽ |α|P − |β̄| ⩽ 2M − (2M − 2) = 2. Therefore,

|I1| ≲
∑
···

∥∂β K∥L4∥∂t∂
γ θ∥L2∥∂αθ∥L4

≲ max(∥K∥H2M+1, ∥∂t K∥H2M−1) max(∥∂tθ∥H2, ∥∂2
t θ∥L2)∥θ∥P2M+1

≲ F1/2
M (K1/2

2 + ∥∂2
t θ∥L2)D1/2

M ≲ F1/2
M K1/2

lowD
1/2
M .

To estimate I2 we note that now |γ |P ⩽ 3 such that, since M ⩾ 3,

|I2| ≲
∑
···

∥∂β K∥L2∥∂t∂
γ θ∥L4∥∂αθ∥L4 ≲ max(∥K∥H2M−3, ∥∂t K∥H2M−3)∥θ∥P6∥θ∥P2M+1 ≲ E1/2

M DM .

Second we estimate II. Due to the poorer spatial regularity of K and ∂t K relative to ∂ j
t K when j ⩾ 2,

we split II into two:

II =

∑
|α|P⩽2M, |β̄|⩽2M−4

β+γ=α, β>0

(
α

β

) ∫
T3

(∂β K )(∂t∂
γ θ) · (∂αθ) =

∑
···

β0⩽1

· · · +

∑
···

β0⩾2

· · · =: II1 + II2.

Estimating II1 is immediate upon recalling that |γ |P ⩽ 2M − 1 (since β > 0) and using Lemma 4.25:

|II1| ≲
∑
···

∥∂β K∥L4∥∂t∂
γ θ∥L2∥∂αθ∥L4 ≲ E1/2

M ∥θ∥P2+(2M−1)∥θ∥P2M+1 ≲ E1/2
M D1/2

M D1/2
M .

Estimating II2 relies on the crucial observation that ∥∂2
t K∥P2M−3 ≲ E1/2

M . The estimate for II2 is then
immediate:

|II2| ≲
∑
···

∥∂β K∥L4∥∂t∂
γ θ∥L2∥∂αθ∥L4 ≲ ∥∂2

t K∥P1−4+|β|P ∥θ∥P2M+1∥θ∥P2M+1 ≲ E1/2
M D1/2

M D1/2
M .

Putting it all together tells us that |I2| ≲ E1/2
M DM +F1/2

M K1/2
lowD

1/2
M .

We may proceed in a similar fashion to estimate I3, I4, and I5, splitting the interactions terms into cases
depending on the number of temporal derivatives hitting K and using Lemma 4.25 where appropriate.
Proceeding in this fashion we obtain that |I3| + |I4| + |I5| ≲ F1/2

M K1/2
2 D1/2

M + E1/2
M DM .

Estimating I6. We seek to estimate

I6 =

∑
|α|P⩽2M

∫
T3

[u · ∇, ∂α
]a · ∂αa = −

∑
β+γ=α

β>0

(
α

β

) ∫
T3

(∂βu · ∇∂γ a) · ∂αa.
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However, recall that the failure of coercivity manifests itself precisely in the poor dissipative control
over a. We thus treat the case where the multi-index α is purely spatial separately. This interaction is
particularly troublesome when the derivatives are purely spatial and |γ | = 2M − 1 (note that |γ | = 2M is
impossible since the conditions β + γ = α and β > 0 impose that γ < α). In that case the interaction
takes the (schematic) form ∫

T3
(∂x u)(∂2M

x a)(∂2M
x a), (4-34)

where ∂k
x indicates a derivative ∂α for a purely spatial multi-index α ∈ N3 of length |α| = k. This is out

of reach of an estimate of the form E1/2
M DM since we only control a in H 2M−1 dissipatively. We thus

treat this specific interaction (4-34) as a subcase of the case of purely spatial derivatives.
To summarize: (recall that α = (α0, ᾱ) ∈ N1+3)

−I6 =

∑
|α|P⩽2M

∑
β+γ=α

β>0

(
α

β

) ∫
T3

(∂βu · ∇∂γ a) · ∂αa =

∑
|α|P⩽2M

α0=0

∑
···

· · · +

∑
|α|P⩽2M

α0⩾1

∑
···

· · · =: I + II,

where I corresponds to purely spatial derivatives and II corresponds to the remaining terms. We break
up I further: (where now β, γ ∈ N3 and not N1+3 as above)

I =

∑
|β|+|γ |⩽2M

β>0

(
β+γ

β

) ∫
T3

(∂βu ·∇∂γ a)·∂β+γ a

=

∑
|β|+|γ |⩽2M

|β|=1

(
β+γ

β

) ∫
T3

(∂βu ·∇∂γ a)·∂β+γ a+

∑
|β|+|γ |⩽2M

|β|>1

(
β+γ

β

) ∫
T3

(∂βu ·∇∂γ a)·∂β+γ a =: I1 +I2,

where I1 consists of the most troublesome term. We also break up II further:

II =

∑
|α|P⩽2M

α0⩾1

∑
β+γ=α

β>0

(
α

β

) ∫
T3

(∂βu · ∇∂γ a) · ∂αa =

∑
···

∑
···

γ0=0

· · · +

∑
···

∑
···

γ0⩾1

· · · =: II1 + II2.

Again, due to the poorer dissipative control of a compared with ∂t a and higher-order temporal derivatives
of a, we must estimate II1 carefully. Note that by “poorer control” we mean that we have control of
spatial derivatives at a lower parabolic count. To be very clear, we control ∥a∥H2M−1 and ∥∂t a∥H2M−2

dissipatively, which means that we control a at a parabolic count of 2M − 1 and ∂t a at a parabolic count
of (2M − 2) + 2 = 2M .

Estimating I1. The key is to integrate by parts at the cost of having to invoke F , which is possibly growing
in time, to control ∇

2M+1a. Then, where for every γ we pick i such that γ ⩾ ei ,

I1 =

∑
|β|=1

|γ |⩽2M−1

(
β+γ

β

) ∫
T3

(∂βu · ∇∂γ a) · ∂β+γ a

= −

∑
|β|=1

|γ |⩽2M−1

(
β+γ

γ

)(∫
T3

(∂β+ei u · ∇∂γ−ei a) · ∂β+γ a +

∫
T3

(∂βu · ∇∂γ−ei a) · ∂β+γ+ei a
)

.
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I8

α0 = 0
I

α0 ⩾ 1
II

|α| = 2M
I1

|α| ⩽ 2M − 1
|β| = 2M − 2, 2M − 1

I2

|α| ⩽ 2M − 1
|β| ⩽ 2M − 3

I3

β0 = 0
II1

β0 = 1
II2

β0 ⩾ 2 II3

|ρ| = 2M − 2, . . . , 2M + 1

|ρ| ⩽ 2M − 3

|β̄| = 2M − 2, . . . , 2M

|β̄| ⩽ 2M − 3

|β̄| = 2M − 2

|β̄| ⩽ 2M − 3

I11

I12

II11

II12

II21

II22

Figure 4. How the terms in the interaction I8 are broken up in order to be estimated.

Therefore,

|I1| ≲
∑

|γ |⩽2M−1

∥∇
2u∥L∞∥∇∂γ−ei a∥L2∥∇∂γ a∥L2 + ∥∇u∥L∞∥∇∂γ−ei a∥L2∥∇∂γ+ei a∥L2

≲ D1/2
2 D1/2

M E1/2
M +K1/2

2 D1/2
M F1/2

M .

Estimating I2, II1, and II2. These terms are all estimated using standard “hands-on high-low estimates”,
which yield |I2| + |II1| + |II2| ≲ E1/2

M DM . We have thus shown that

|I6| ≲ E1/2
M DM +F1/2

M K1/2
2 D1/2

M .

Estimating I8. This is the trickiest interaction to estimate since it involves both 2M spatial derivatives
of a and temporal derivatives of K . Recall that

I8 =

∑
|α|P⩽2M
β+γ=α

(
α

β

) ∫
T3

∂β((K − K33 I2)θ̄
⊥) · ∂αa ∼

(
α

β

) ∫
T3

(∂β K )(∂γ θ̄ ) · (∂αa) =:

∑
|α|P⩽2M
β+γ=α

I α,β,γ

8 ,

where the left-hand side is the precise form of the interaction and the right-hand side is its schematic form
which we will now estimate. Note that, by contrast with all the other interactions, this one does not come
from a commutator, and therefore there are no restrictions on β and γ besides the fact that β + γ = α

(i.e., there is no restriction β > 0, or equivalently γ < α).
To control I8 we will break it up into several pieces, as summarized pictorially in Figure 4.
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More precisely, we now detail how we go about breaking up I8. First we separate terms for which the
derivatives of a are purely spatial:

I8 =

∑
|α|P⩽2M
β+γ=α

I α,β,γ

8 =

∑
···

α0=0

I α,β,γ

8 +

∑
···

α0⩾1

I α,β,γ

8 =: I + II.

We now split I to account for two factors: the lack of dissipative control of ∂2M
x a and the poorer (i.e.,

through FM and not EM ) control of K when many spatial derivatives are applied to it. Recall that ∂k
x

indicates a derivative ∂α for a purely spatial multi-index α ∈ N3 of length |α| = k.

I =

∑
α0=0

|α|⩽2M
β+γ=α

I α,β,γ

8 =

∑
···

|α|=2M

I α,β,γ

8 +

∑
···

|α|⩽2M−1
|β|=2M−2,2M−1

I α,β,γ

8 +

∑
···

|α|⩽2M−1
|β|⩽2M−3

I α,β,γ

8 =: I1 + I2 + I3.

Estimating I1 is the trickiest part of estimating I8 since we must control K via the energy and do not
have control of ∂2M

x a via the dissipation. To get around this issue we integrate by parts (below, i is an
index dependent of α chosen such that αi ⩾ 0, which may always be done since α ̸= 0):

I1 = −

∑
α0=0, |α|=2M

β+γ=α

(
α

β

)(∫
T3

(∂β+ei K )(∂γ θ̄ ) · (∂α−ei a) +

∫
T3

(∂β K )(∂γ+ei θ̄ ) · (∂α−ei a)

)
.

This allows us to split I1 as

|I1| ≲

∣∣∣∣ ∑
|π |=2M−1

|ρ+σ |=2M+1

∫
T3

(∂ρ K )(∂σ θ̄ ) · (∂πa)

∣∣∣∣⩽ ∣∣∣∣ ∑
···

|ρ|=2M−2,...,2M+1

· · ·

∣∣∣∣+ ∣∣∣∣ ∑
···

|ρ|⩽2M−3

· · ·

∣∣∣∣=: |I11| + |I12|,

where π , ρ, and σ are spatial multi-indices, i.e., they belong to N3 and not N1+3. We now direct our
attention to II (which is easier to handle than I since more temporal derivatives are involved). The key in
the splitting here is that things get easier as more temporal derivatives of K are involved:

II =

∑
α0⩾1, |α|P⩽2M

β+γ=α

I α,β,γ

8 =

∑
···

β0=0

I α,β,γ

8 +

∑
···

β0=1

I α,β,γ

8 +

∑
···

β0⩾2

I α,β,γ

8 =: II1 + II2 + II3.

We finally split II1 and II2 further depending on the number of spatial derivatives hitting K (since this
determines whether we estimate the factor involving K using EM or FM ):

II1 =

∑
α0⩾1, β0=0

|α|P⩽2M, β+γ=α

I α,β,γ

8 =

∑
···

|β̄|=2M−2,...,2M

I α,β,γ

8 +

∑
···

|β̄|⩽2M−3

I α,β,γ

8 =: II11 + II12

and
II2 =

∑
α0⩾1, β0=1

|α|P⩽2M, β+γ=α

I α,β,γ

8 =

∑
···

|β̄|=2M−2

I α,β,γ

8 +

∑
···

|β̄|⩽2M−3

I α,β,γ

8 =: II21 + II22.

Having carefully split I8 into appropriate pieces, we now proceed to estimate each of these pieces.
Note that due to this extensive subdivision of I8 into various pieces, most terms can be handled with
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similar techniques. The table below summarizes how each term is handled.

I11 I12 I2 I3 II11 II12 II21 II22 III

direct X X X X
hands-on high-low X

Corollary B.2 X X
special consideration X X

Direct estimates. The terms I3, II21, and II22 can be estimated directly:

|I3| ≲
∑
···

∥∂β K∥L2∥∂γ θ̄∥L∞∥∂αa∥L2 ≲ ∥K∥H2M−3∥θ̄∥H2M+1∥a∥H2M−1 ≲ E1/2
M D1/2

M D1/2
M ,

|II21| ≲
∑
···

∥∂t∂
β̄
x K∥L2∥θ∥L∞∥∂αa∥L2 ≲ ∥∂t K∥H2M−2∥θ∥H2∥∂t a∥P2M−2 ≲ F1/2

M K1/2
1 D1/2

M ,

|II22| ≲
∑
···

∥∂β K∥L2∥∂γ θ̄∥L∞∥∂αa∥L2 ≲ ∥∂t K∥H2M−3∥θ̄∥P2M ∥∂t a∥P2M−2 ≲ E1/2
M D1/2

M D1/2
M .

Similarly, I2 can be split into precisely three terms which can all be estimated directly:

I2 =

∑
α0=0, α=β
|α|=2M−1

(
α

β

) ∫
T3

(∂β K )θ̄ · (∂αa)

+

∑
α0=0, |α|=2M−1

|β|=2M−2, γ=α−β, |γ |P=1

(
α

β

) ∫
T3

(∂β K )(∂γ θ̄ ) · (∂αa) +

∑
α0=0, α=β
|α|=2M−2

(
α

β

) ∫
T3

(∂β K )θ̄ · (∂αa)

such that

|I2| ≲ ∥∇
2M−1K∥L∞∥θ̄∥L2∥∇

2M−1a∥L2 + ∥∇
2M−2K∥L∞∥∇̄θ∥L2∥∇

2M−1a∥L2

+ ∥∇
2M−2K∥L∞∥θ̄∥L2∥∇

2M−2a∥L2 ≲ ∥K∥H2M+1∥θ̄∥H1∥a∥H2M−1 ≲ F1/2
M K1/2

1 D1/2
M .

Hands-on high-low estimates. II12 can be estimated using “hands-on high-low estimates”. We split II12 as

II12 =

∑
α0⩾1, β0=0, β+γ=α

|α|P⩽2M, |β̄|⩽2M−3

(
α

β

) ∫
T3

(∂β K )(∂γ θ̄ ) · (∂αa) ⩽
∑
···

|β̄|⩽2M−5

| · · · |︸ ︷︷ ︸
(1)

+

∑
···

|γ |P⩽2M−1

| · · · |︸ ︷︷ ︸
(2)

,

where
(1) + (2) ⩽ ∥∂ β̄ K∥L∞∥∂γ θ̄∥L2∥∂αa∥L2 + ∥∂ β̄ K∥L2∥∂γ θ̄∥L∞∥∂αa∥L2 ≲ E1/2

M DM .

Using Corollary B.2. The terms I11 and I12 can be estimated using Corollary B.2, which provides a way
to use the Gagliardo–Nirenberg inequality to obtain bounds on products of derivatives in L2. Indeed,

|I11| ≲
∑

p=2M−1
r=2M−2,...,2M+1

r+s=2M+1

C(p, r)

∫
T3

|∇
r K ||∇

s θ̄ ||∇
pa| ≲

∑
···

∥|∇
r−(2M−2)

∇
2M−2K ||∇

s θ̄ |∥L2∥∇
pa∥L2

≲
∑

r=2M−2,...,2M+1
r+s=2M+1

(∥∇2M−2K∥L∞∥θ̄∥H r+s−(2M−2) + ∥∇
2M−2K∥H r+s−(2M−2)∥θ̄∥L∞)∥a∥H2M−1

≲ (∥K∥H2M ∥θ̄∥H3 + ∥K∥H2M+1∥θ̄∥H2)∥a∥H2M−1 ≲ ∥K∥H2M+1∥θ̄∥H3∥a∥H2M−1
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such that |I11| ≲ F1/2
M K1/2

2 D1/2
M , and, similarly,

|I12| ⩽
∑

p=2M−1
r+s=2M+1

r⩽2M−3

C(p, r)

∫
T3

|∇
r K ||∇

s θ̄ ||∇
pa| ≲

∑
···

∥|∇
r K ||∇

s−4
∇

4θ̄ |∥L2∥∇
pa∥L2 ≲ E1/2

M DM .

Special consideration. Finally, we estimate II11 and II3. Recall that

II11 =

∑
α0⩾1, β0=0, |α|P⩽2M

|β̄|=2M−2,...,2M, β+γ=α

(
α

β

) ∫
T3

(∂β K )(∂γ θ̄ ) · (∂αα).

There are two important observations to make here.

• Since α0 ⩾ 1 and |α|P ⩽ 2M , we control ∂αa in DM in the following way:

∥∂αa∥L2 ≲ ∥∂t a∥P2M−2 ≲ D1/2
M .

• We must use FM to control ∂β K when β0 = 0 and |β̄|⩾ 2M −2, so we therefore ask as little regularity
as possible of θ̄ (to invoke EI for the smallest possible I ). We thus split the estimate depending on whether
or not we can control ∂β K in L∞ via FM .

We obtain

|II11| ≲
∑
···

|β̄|=2M−2,2M−1

· · · +

∑
···

|β̄|=2M

· · · ≲
∑
···

∥∂β K∥L∞∥∂γ θ̄∥L2∥∂αa∥L2 +

∑
···

∥∂β K∥L4∥θ̄∥L4∥∂αa∥L2

≲ ∥K∥H2M+1∥θ̄∥P2∥∂t a∥P2M−2 + ∥K∥H2M+1∥θ̄∥H1∥∂t a∥P2M−2 ≲ F1/2
M K1/2

1 D1/2
M .

Now we estimate II3. Recall that

II3 =

∑
α0⩾1, |α|P⩽2M
β0⩾2, β+γ=α

(
α

β

) ∫
T3

(∂β K )(∂γ θ̄ ) · (∂αa).

The key observation is the following: when β0 ⩾ 2 we control ∂
β0
t K at parabolic order 2M + 1. Conse-

quently, if |β|P ⩽ 2M − 1 then we control ∂β K in L∞ via EM since

∥∂β K∥L∞ ≲ ∥∂2
t K∥P2+|β|P −4 ≲ ∥∂2

t K∥P2M−3 ≲ E1/2
M .

We may then estimate II3 with the usual “hands-on high-low” estimates. We note that, since |α|P ⩽ 2M
and β+γ =α, it follows from Corollary B.2 that, as long as M ⩾1, either |β|P ⩽2M−1 or |γ |P ⩽2M−1.
Therefore,

|II3| ≲
∑
···

|β|P⩽2M−1

|· · ·|︸︷︷︸
(1)

+

∑
···

|γ |P⩽2M−1

|· · ·|︸︷︷︸
(2)

,

where
(1) + (2) ⩽ ∥∂β K∥L∞∥∂γ θ̄∥L2∥∂αa∥L2 + ∥∂β K∥L2∥∂γ θ̄∥L∞∥∂αa∥L2 ≲ E1/2

M DM .

Putting all these estimates together we see that we have obtained |I8| ≲ E1/2
M DM +F1/2

M K1/2
2 D1/2

M . □
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As mentioned at the beginning of this section, at the high level both the improvement to the dissipation
and the control of the interaction only allows us to close the energy estimates in a time-integrated fashion.
This is because the closure of the estimates relies crucially on playing the potential growth of FM against
the decay of intermediate norms KI and Klow. The next two results record precisely this balancing act
between growth and decay. First we consider the growth-decay interactions arising from the improvement
of the dissipation.

Lemma 4.27. Suppose that M ⩾ 3 and that, for some time horizon T > 0,

sup
1⩽I⩽M

sup
0⩽t⩽T

KI (t)(1 + t)2M−2I
=: C0 < ∞ (4-35)

and, for every 0 ⩽ t ⩽ T ,

F1/2
M (t) ≲ α

1/2
0 + β

1/2
0

∫ t

0
D1/2

M (s) ds + γ
1/2
0 K1/2

M (t)

for some α0, β0, γ0 > 0. Then, for every 0 ⩽ t ⩽ T ,∫ t

0
∥(u, θ, ∂tθ)∥2

L∞FM ≲ α0C0 + (β0 + γ0)C0

∫ t

0
DM(s) ds.

Proof. First we note that by interpolating (4-35) we may obtain decay estimates for fractional Sobolev
norms — this is very similar to what was done by interpolation in Step 1 of Proposition 4.8. Indeed, for
any s ∈ R which satisfies 2 ⩽ s ⩽ 2M , we may pick σ = (2M − s)/(2M − 2) and deduce that

∥(u, θ)∥2
H s ≲ ∥(u, θ)∥2σ

H2∥(u, θ)∥
2(1−θ)

H2M ⩽ Cσ
0 (1 + t)(2M−2)σ C1−σ

0 = C0(1 + t)2M−s

and, similarly, ∥∂t(u, θ)∥2
H s ≲ C0(1 + t)2M−2−s . Crucially, s =

7
4 satisfies both s > 3

2 , such that H 7/4

embeds continuously into L∞, and 2M − 2 − s > 2 (since M ⩾ 3) such that the resulting decaying bound
is integrable. The term ∥(u, θ, ∂tθ)∥2

L∞ may then be shown to decay fast enough, in the space H 7/4, to
justify the estimate.

Using Cauchy–Schwarz on
∫
D1/2

M thus tells us that∫ t

0
∥(u, θ, ∂tθ)∥2

L∞FM ≲
∫ t

0

(
C0

(1 + s)2M−2−7/4

)(
α0 + β0

(∫ s

0
D1/2

M (r) dr
)2

ds
)

+ γ0C0

∫ t

0
DM

≲ α0C0 + β0C0

∫ t

0

s

(1 + s)2M−15/4

(∫ s

0
DM(r) dr

)
ds + γ0C0

∫ t

0
DM

≲ α0C0 + (β0 + γ0)C0

∫ t

0
DM(s) ds. □

Now we consider the growth-decay interactions arising from the control of the high-level interactions.

Lemma 4.28. Suppose that M ⩾ 4, that

F1/2
M (t) ≲ α

1/2
0 + β

1/2
0

∫ t

0
D1/2

M (s) ds + γ
1/2
0 K1/2

M (t)

for some α0, β0, γ0 > 0, and that Klow(t) ≲ min(D2(t), C0(1 + t)−(2M−4)). Then∫ t

0
K1/2

low(s)F1/2
M (s)D1/2

M (s) ds ≲ (α
1/2
0 + β

1/2
0 C1/2

0 + γ
1/2
0 C1/2

0 )

∫ t

0
DM(s) ds.
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Proof. By applying Cauchy–Schwarz to
∫
D1/2

M we deduce that∫ t

0
K1/2

low(s)F1/2
M (s)D1/2

M (s) ds

≲ α
1/2
0

∫ t

0
D1/2

2 D1/2
M + β

1/2
0

∫ t

0

C1/2
0

(1 + s)M−2

(∫ s

0
D1/2

M (r) dr
)
D1/2

M (s) ds + γ
1/2
0 C1/2

0

∫ t

0
DM

≲ (α0 + γ
1/2
0 C1/2

0 )

∫ t

0
DM + β

1/2
0 C1/2

0

∫ t

0

D1/2
M (s)

(1 + s)M−2 s1/2
(∫ t

0
DM(r) dr

)1/2

ds︸ ︷︷ ︸
(⋆)

.

Employing the Cauchy–Schwarz inequality again and noting that 2M − 5 > 1 (since M ⩾ 4), we see that

(⋆) ≲

(∫ t

0

D1/2
M (s)

(1 + s)M−5/2 ds
)(∫ t

0
DM(s) ds

)1/2

⩽

(∫ t

0

1

(1 + s)2M−5 ds
)1/2(∫ t

0
DM(s) ds

)
≲
∫ t

0
DM(s) ds. □

We conclude this section with the third of the four building blocks of the scheme of a priori estimates
and close the interactions at the high level. This is done in Proposition 4.29 which synthesizes the results
of this section. In particular, recall that EM , which appears in Proposition 4.29 below, is defined in (3-2).

Proposition 4.29 (closing the energy estimates at the high level). Let M ⩾ 4 be an integer. There exist
ηM > 0, 0 < δM ⩽ 1, and CH > 0 such that the following holds: for any time horizon T > 0, any
0 < η ⩽ ηM , any 0 < δ ⩽ δM , and any C > 0, if

(EM +FM)(0) ⩽ η, (4-36a)

sup0⩽t⩽T sup1⩽I⩽M KI (t)(1 + t)2M−2I
+Klow(t)(1 + t)2M−4 ⩽ δ, (4-36b)

sup0⩽t⩽T EM(t) ⩽ δ, (4-36c)

FM(t) ⩽ C
(
FM(0) +

(∫ t
0D

1/2
M (s) ds

)2
+KM(t)

)
for all 0 ⩽ t ⩽ T, (4-36d)

then
sup

0⩽t⩽T
EM(t) +

∫ t

0
DM(s) ds ⩽ CH (EM +FM)(0). (4-37)

Proof. The basic idea of the proof is that we want to go from the energy-dissipation of the problem,
namely (d/dt)ẼM +DM ≲ IM , to the more useful energy-dissipation relation (d/dt)ẼM +CDM ⩽ 0, where
C > 0 is a universal constant and where the nonnegativity of the improved dissipation DM ensures the
boundedness of the energy EM . This is done by controlling the interactions and improving the dissipation.
However, both of these steps, which are performed precisely in Propositions 4.26 and 4.24, respectively,
are delicate and lead to the appearance of terms that must be controlled in a time-integrated fashion —
this control is recorded in Lemmas 4.27 and 4.28.

First we note that, in light of (4-36b) and (4-36d), Lemmas 4.27 and 4.28 tell us, respectively, that,
since δM ⩽ 1, ∫ t

0
∥(u, θ, ∂tθ)∥2

L∞FM ≲ FM(0) + δ

∫ t

0
DM (4-38)
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and ∫ t

0
K1/2

lowF
1/2
M D1/2

M ≲ (δ1/2
+F1/2

M (0))

∫ t

0
DM . (4-39)

We may now proceed with the energy estimates. Lemmas 4.10 and 4.12 tell us that

ẼM(t) +

∫ t

0
DM(s) ds ≲ ẼM(0) +

∫ t

0
IM(s) ds. (4-40)

Combining the fact that

sup
0⩽t⩽T

∥(u, θ)∥2
H3 + ∥J∥

2
H3 + ∥∂t(u, θ)∥2

H2 + ∥∂t J∥
2
H2 ⩽ sup

0⩽t⩽T
EM(t) ⩽ 1

with Proposition A.3 and Lemma 4.11, we obtain that

ẼM ≍ EM . (4-41)

We may now use (4-41) and Proposition 4.24 first, then use (4-40), Proposition 4.26, and (4-36c) to see
that

EM(t) +

∫ t

0
DM ≲ ẼM(t) +

∫ t

0
DM +

∫ t

0
∥(u, θ, ∂tθ)∥2

L∞FM

≲ ẼM(0) + δ1/2
∫ t

0
DM +

∫ t

0
K1/2

lowF
1/2
M D1/2

M +

∫ t

0
∥(u, θ, ∂tθ)∥2

L∞FM .

Combining this with (4-38), (4-39), and (4-41) allows us to deduce that there exists Cs > 0 such that

EM(t) +

∫ t

0
DM ⩽ Cs(EM +FM)(0) + Cs(δ

1/2
+F1/2

M (0))

∫ t

0
DM .

In particular, if ηM , δM > 0 are chosen sufficiently small to ensure that Cs(δ
1/2
M + η

1/2
M ) ⩽ 1

2 , then we may
deduce (4-37). □

4E. Decay of intermediate norms. In this section we consider the last of the four building blocks of
our scheme of a priori estimates and proceed with the interpolation argument required to obtain the
decay of intermediate norms provided that both the low-level and high-level energies are controlled. This
is supplemented by an auxiliary estimate for ∂2

t θ whose purpose is to improve K2 in order to control
the term involving ∂2

t θ which appears when controlling the high-order interactions — recall that this is
discussed in detail in Section 2D. Note that the functionals EM , E low, EM , and KI and Klow, which will
be used throughout this section, are defined in (3-2), (3-3), (3-5), and (3-6), respectively. We begin with
the interpolation argument.

Proposition 4.30 (decay of intermediate norms). Suppose that there exists a time horizon T > 0, an
integer M ⩾ 2, and a constant C0 > 0 such that

sup
0⩽t⩽T

E low(t)(1 + t)2M−2
+ EM(t) ⩽ C0. (4-42)

Then there exists a constant C I > 0 which depends on M and is universal otherwise such that we may
estimate sup1⩽I⩽M sup0⩽t⩽T KI (t)(1 + t)2M−2I ⩽ C I C0.
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Proof. This estimate on intermediate norms follows from the interpolation of H s spaces which says that,
if f ∈ H l

∩ H h , then f ∈ H i for any l ⩽ i ⩽ h, with the interpolation estimate ∥ f ∥H i ≲ ∥ f ∥
θ
H l ∥ f ∥

1−θ

H h ,
where θ = (h − i)/(h − l). Therefore, for θ = (M − I )/(M − 1),

KI ≲ ∥(u, θ, a)∥2θ
H2∥(u, θ, a)∥

2(1−θ)

H2M + ∥∂t(u, θ, a)∥2θ
L2∥∂t(u, θ, a)∥

2(1−θ)

H2M−2

⩽ 2(∥(u, θ, a)∥2
H2 + ∥∂t(u, θ, a)∥2

L2)
θ
(∥(u, θ, a)∥2

H2M + ∥∂t(u, θ, a)∥2
H2M−2)

1−θ

≲ Eθ
lowE

1−θ
M ≲

(
C0

(1 + t)2M−2

)θ

C1−θ
0 =

C0

(1 + t)2M−2I . □

We now record an auxiliary estimate for ∂2
t θ which will be used to deduce the decay of ∂2

t θ when K2

decays.

Lemma 4.31 (auxiliary estimate for ∂2
t θ ). Suppose that (2-1c) holds. Then, for J = Jeq + K ,

∥J∂2
t θ∥L2 ≲ ∥∂t a∥L2 + ∥(u, θ)∥P2 + (1 + ∥K∥L∞ + ∥∂t K∥L∞)∥θ∥P1

+ (1 + ∥K∥L∞ + ∥∂t K∥L∞)(1 + ∥(u, θ)∥L∞)∥(u, θ)∥P2 .

Proof. This estimate follows immediately from differentiating (2-1c) in time. □

We now improve the control afforded to us by K2 so as to also control the term involving ∂2
t θ which

appears when controlling the high-level interactions.

Corollary 4.32 (improvement of K2). For any time horizon T > 0, if

sup
0⩽t<T

∥(u, θ)(t)∥H3 + ∥J (t)∥H3 + ∥∂t(u, θ)∥H2 + ∥∂t J∥H2 < ∞ (4-43)

and E3 ⩽ 1 on [0, T ), then ∥∂tθ∥L2 ≲ (1 + E1/2
3 )(∥∂t a∥L2 +K1/2

2 ) holds in [0, T ), where the constant
implicit in “≲” is independent of the time horizon T .

Proof. It is crucial to recall here the global assumption that the spectrum of J0(x) is equal to {λ, λ, ν},
where ν > λ > 0, for every x ∈ T3. The key observation is then that the assumption (4-43) combines with
Proposition A.3 to tell us that ∥∂2

t θ∥L2 ⩽ λ−1
∥J∂2

t θ∥L2 . The result then follows from Lemma 4.31. □

To conclude this section we record the decay of Klow, which is the improved version of K2 which also
controls ∂2

t θ .

Corollary 4.33 (decay of Klow). Suppose that there exists a time horizon T > 0, an integer M ⩾ 2, and a
constant C0 > 0 such that

sup
0⩽t⩽T

E low(t)(1 + t)2M−2
+ EM(t) ⩽ C0 ⩽ 1 and sup

0⩽t⩽T
∥J (t)∥H3 + ∥∂t J (t)∥H2 < ∞.

Then sup0⩽t⩽T Klow(t)(1 + t)2M−4 ⩽ C̃ I C0 for some constant C̃ I > 0, which depends only on M and is
universal otherwise.

Proof. This follows directly from combining Proposition 4.30 and Corollary 4.32. □
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4F. Synthesis. In this section we put together all four building blocks of our scheme of a priori estimates
that we have constructed in Sections 4A–4E. This allows us to state and prove our main “a priori estimates”
result in Theorem 4.34 below. Recall that the various energy and dissipation functionals encountered in
the statement and the proof of the theorem below are defined in (3-2)–(3-8).

Theorem 4.34 (a priori estimates). Let M ⩾ 4. There exist ηap, δap, Cap > 0 depending only on M such
that if (u, p, θ, K ) is a solution of (2-1) on the time interval [0, T ], for any T > 0, which satisfies the
smallness conditions

(EM +FM)(0) =: η0 ⩽ ηap ⩽ 1 (4-44)

and

sup
0⩽t⩽T

EM(t) +

∫ T

0
DM ⩽ δap ⩽ 1, (4-45)

then the following estimates hold:

sup
0⩽t⩽T

Elow(t)(1 + t)2M−2
+ EM(t) + Ea

M(t) +
FM(t)
1 + t

+

∫ T

0
DM ⩽ Cap(EM +FM)(0)

and
sup

0⩽t⩽T
E (K )

M (t) ⩽ Cap(EM +FM)(0).

Proof. We take two passes at the estimates in this proof. During the first pass we obtain unstructured
estimates, meaning that the estimates are in term of the smallness parameter and not the initial conditions.
During the second pass we obtain structured estimates, meaning that the estimates are in terms of the
initial conditions.

Both of these passes rely on the four key results we have proved in Section 4, namely Proposition 4.8
where we record the advection-rotation estimates for K , Proposition 4.20 where we close the energy
estimates at the low level, Proposition 4.29 where we close the energy estimates at the high level, and
Proposition 4.30 and Corollary 4.33 where we obtain the decay of the intermediate norms.

Before beginning the proof in earnest we record the smallness conditions which δap and ηap must
satisfy

(1) δap ⩽ max(δlow, δ∗

low) for δlow and δ∗

low as in Proposition 4.20,

(2) (1 + CL)δap ⩽ 1 for CL as in Proposition 4.20,

(3) (1 + (C I + C̃ I )(1 + CL))δap ⩽1 for C I and C̃ I as in Proposition 4.30 and Corollary 4.33, respectively,

(4) ηap ⩽ ηM for ηM as in Proposition 4.29,

(5) (C I + C̃ I )(1 + CL)δap ⩽ δM for δM as in Proposition 4.29,

(6) δap ⩽ δM ,

(7) CHηap ⩽ δlow for CH as in Proposition 4.29,

(8) (1 + CL)CHηap ⩽ 1, and

(9) (1 + (C I + C̃ I )(1 + CL))CHηap ⩽ 1.
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low-level energy
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intermediate norms
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Legend
99K Unstructured estimates
−→ Structured estimates
n . . . Step n, n = 1, . . . , 7
. . . A Advection-rotation estimates for K
. . . L Closing the low-level energy estimates
. . . H Closing the high-level energy estimates
. . . D Decay of intermediate norms

For example:
3A
−→ indicates that we use the advection-

rotation estimates for K in Step 3 to obtain a structured
estimate.

Figure 5. The strategy of the theorem for the main a priori estimates, namely Theorem 4.34.

To be very clear about the structure of the proof we break it up into seven steps. Note that our scheme
of a priori estimates is also summarized diagrammatically in Figure 5.

Step 1: We close the energy estimates at the low level to deduce the unstructured decay of the low-level
energy. We deduce from (4-45), smallness condition (1), and Proposition 4.20 that

sup
0⩽t⩽T

Elow(t)(1 + t)2M−2 ⩽ CLδap. (4-46)

Step 2: We obtain the unstructured decay of the intermediate norms. Observe that

sup
0⩽t⩽T

∥J (t)∥2
H3 + ∥∂t J (t)∥2

H2 ⩽ sup
0⩽t⩽T

EM(t) < ∞.

Combining this with smallness condition (2) and (4-46), Proposition 4.30 and Corollary 4.33 tell us that

sup
0⩽t⩽T

sup
1⩽I⩽M

KI (t)(1 + t)2M−2I
+Klow(t)(1 + t)2M−4 ⩽ (C I + C̃ I )(1 + CL)δap. (4-47)

Step 3: We obtain our first structured estimate, using the advection-rotation estimates for K to wrest
control over FM . We obtain from (4-44), (4-45), smallness condition (3), (4-47), and Proposition 4.8 that,
for all 0 ⩽ t ⩽ T ,

FM(t) ≲ FM(0) +

(∫ t

0
D1/2

M (s) ds
)2

+KM(t). (4-48)
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Step 4: We close the energy estimates at the high level to obtain the structured boundedness of the
high-level energy (and the time-integrated control over the high-level dissipation). By virtue of (4-44),
(4-45), smallness conditions (4)–(6), (4-47), and (4-48), we may apply Proposition 4.29, which tells us
that

sup
0⩽t⩽T

EM(t) +

∫ t

0
DM(s) ds ⩽ CH (EM +FM)(0). (4-49)

Step 5: We continue our second pass by obtaining structured versions of previously unstructured estimates.
We close the energy estimates at the low level to deduce the structured decay of the low-level energy.
Smallness condition (7), (4-49), and Proposition 4.20 show us that

sup
0⩽t⩽T

Elow(t)(1 + t)2M−2 ⩽ CLCH (EM +FM)(0). (4-50)

Step 6: We revisit Step 2 and obtain the structured decay of intermediate norms. Proposition 4.30 and
Corollary 4.33 tell us, in light of (4-44), smallness condition (8), (4-49), and (4-50), that

sup
0⩽t⩽T

sup
1⩽I⩽M

KI (t)(1 + t)2M−2I
+Klow(t)(1 + t)2M−4 ⩽ (C I + C̃ I )(1 + CL)CH (EM +FM)(0). (4-51)

Step 7: We conclude the proof by using the advection-rotation estimates to get the energetic terms
involving K , i.e., E (K )

M , under control. We deduce from (4-44), smallness condition (9), (4-49), (4-51),
and Proposition 4.8 that sup0⩽t⩽T E (K )

M (t) ≲ (EM +FM)(0), which concludes the proof. □

5. Local well-posedness

In this section we build a local well-posedness theory sufficient to prove the existence of solutions in
the spaces where our a priori estimates apply. We employ a Galerkin scheme to construct a sequence of
approximate solutions of (2-1), and this section is structured as follows. First we formulate appropriate
approximate problems, then in Section 5A we treat in detail the matter of inverting the operator Jeq+Pn◦K
which appears in the approximate problems (where Pn is a projection onto the subspaces where the
approximate solutions live), we obtain various estimates on our sequence of solutions in Section 5B, and
finally we produce local solutions via our Galerkin scheme in Section 5C.

Before writing down the approximate system we will solve, we must introduce the spaces in which we
will solve it. We take V to be the subspace of L2 defined as

V :=

{
Z = (u, θ, K ) ∈ L2(T3

; R3
× R3

× Sym(3)) : ∇ · u = 0 and /
∫

T3
u = 0

}
,

we define σ = σ(δ) > 0 for any δ > 0 such that, for any K ∈ L2(T3
; Sym(3)),

if ∥K∥H3 < σ(δ) then ∥K∥L∞ < 1
2λ and ∥∇K∥L∞ < δ, (5-1)

and we define
U(σ ) := {Z = (u, θ, K ) ∈ V : ∥K∥H3 < σ }. (5-2)

Recall that λ > 0 is the smallest eigenvalue of J0 (and hence of J ) since our global assumption is that
J0(x) has spectrum {λ, λ, ν} for every x ∈ T3, where ν > λ > 0. To define the function spaces where
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the approximate solutions will live, we first define Pn to be the projection onto the Fourier modes with
wavenumber at most n, i.e., P̂n f (k) = 1(|k| ⩽ n) f̂ (k). This allows us to define Pn : V → V via

Pn := Pn ⊕ Pn ⊕ P2n and Vn := PnV = {Z = (u, θ, K ) ∈ V : u, θ ∈ Im Pn and K ∈ Im P2n},

as well as

Un(σ ) := {Zn = (un, θn, Kn) ∈ Vn : ∥Kn∥H3 < σ } = PnU(σ ).

Note that since the projection is performed in a symmetric fashion — i.e., its symbol P̂n(k) = 1(|k| ⩽ n) is
even — it maps real-valued spaces to real-valued spaces. We will produce solutions (un, θn, Kn) ∈ Un(σ )

to the approximate system

∂t un − (∇ · T )(un, θn) = −PnPL(un · ∇un),

∇ · un = 0,

(Jeq + Pn ◦ Kn)∂tθn + Pn((Jeq + Kn)(un · ∇)θn) + Pn((ωeq + θn) × (Jeq + Kn)θn)

+ τ̃ 2ãn
⊥

+ θ × Jeqωeq − 2 vec T (un, θn) − (∇ · M)(θn) = −Pn(θn × Knωeq),

∂t Kn − [2n, Jeq] − [�eq, Kn] = −P2n(un · ∇Kn) + P2n([2n, Kn]),

(5-3)

where (Pn ◦ Kn)v := Pn(Knv) for any v ∈ L2(T3
; R3).

When writing down the associated energy estimate further below we will need to distinguish between
the variables that are viewed as unknowns and those that are viewed as enforcing the constraints. We will
thus recapitulate the system above in the following form (in particular in order to fix notation regarding a
compact way to write down the system above):

∂tvn − (∇ · T )(vn, φn) = f1,

(Jeq + Pn ◦ Kn)∂tφn + Pn((Jeq + Kn)(un · ∇)φn) + Pn((ωeq + θn) × (Jeq + Kn)φn)

+ τ̃ 2b̃⊥
n + φn × Jeqωeq − 2 vec T (vn, φn) − (∇ · M)(φn) = f2,

∂t Hn − [8n, Jeq] − [�eq, Hn] = F3

(5-4)

subject to the constraints{
∇ · un = 0,

∂t Kn + P2n(un · ∇Kn) = P2n([�eq + 2n, Jeq + Kn]).
(5-5)

Here we view (vn, φn, Hn) as the unknowns, where bn = ((Hn)12, (Hn)13) and 8n = ten φn , and
(un, θn, Kn) as the variables enforcing the constraints. In particular, for Zn = (vn, φn, Hn), we have
Wn = (un, θn, Kn) and, for F = ( f1, f2, F3), we may rewrite this form of the system as

T̃n(Kn)∂t Zn −LWn,n Zn = F

subject to the constraints (5-5), where T̃n(Kn) := I3 ⊕ (Jeq + Pn ◦ Kn) ⊕ I3×3 and the operator LWn,n is
given by LWn,n Zn = (−(∇ · T )(vn, φn), (⋆),−[8n, Jeq] − [�eq, Hn]), where

(⋆) = Pn((Jeq + Kn)(un · ∇)φn) + Pn((ωeq + θn) × (Jeq + Kn)φn) + τ̃ 2b̃⊥

n + φn × Jeqωeq

− 2 vec T (vn, φn) − (∇ · M)(φn).
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Since T̃n only has one nontrivial block we will write T̃n(Kn) = I3 ⊕ Tn(Kn) ⊕ I3×3, where we define
Tn(Kn) := Jeq + Pn ◦ Kn . This allows us to rewrite the approximate problem in the form

T̃n(Kn)∂t Zn −LZn,n Zn = Nn(Zn) subject to ∇ · un = 0, (5-6)
where

Nn(Zn) = (−PnPL(un · ∇un), −Pn(θn × Knωeq), −P2n(un · ∇Kn) + P2n([2n, Kn])).

Note that in some situations it is helpful to decompose the linear operator LWn,n into its part that has
constant coefficient and the remainder. More precisely, we write

LWn,n = L0 +LWn,n, (5-7)
where

LWn,n Zn = (0, Pn((Jeq + Kn)(un · ∇)φn) + Pn((ωeq + θn) × (Jeq + Kn)φn) − ωeq × Jeqθn, 0)

and

L0 Zn =

 −(∇ · T )(vn, φn)

τ̃ 2b̃⊥
n + φn × Jeqωeq + ωeq × Jeqθn − 2 vec T (vn, φn) − (∇ · M)(φn)

−[8n, Jeq] − [�eq, Hn]

 .

5A. Inverting T (K ). In this section we deal carefully with the inversion of T (K ) = Jeq + P ◦ K and
the smoothness of its inverse, and we obtain H k-to-H k bounds on the inverse. Note that in this section
we will work in the generic framework where P is an L2-orthogonal projection onto a finite-dimensional
subspace of L2 which is not necessarily Vn (and so P is not necessarily Pn). We begin by establishing
the invertibility of T (K ).

Lemma 5.1 (invertibility of T (K )). Let V ⊆ L2(T3, R3) be a finite-dimensional subspace and let P
denote the L2-orthogonal projection onto V . Let K ∈ L∞(T3, R3×3) be almost everywhere symmetric
and satisfy ∥K∥∞ < 1

2λ. Recall that λ is the repeated eigenvalue of the microinertia, as stated in the
global assumptions of Definition 1.1. Then T (K ) := Jeq + P ◦ K , where (P ◦ K )v := P(Kv) for every
v ∈ L2(T3, R3), is, with respect to the L2 inner product, a self-adjoint invertible operator on V . Moreover,
we have the bound ∥T (K )−1

∥L(V,V ) ⩽ 2/λ.

Proof. The self-adjointness of T (K ) follows from the symmetry of K . Indeed, for every θ, φ ∈ V ,

(T (K )θ, φ)L2 = ((Jeq + P ◦ K )θ, φ)L2 = ((Jeq + K )θ, φ)L2 = (θ, (Jeq + K )φ)L2 = (θ, T (K )φ)L2 .

The invertibility of T (K ) follows from the almost-everywhere invertibility of Jeq + K . Indeed, note that
since T (K ) is a self-adjoint operator it suffices to study the quadratic form that it generates in order to
determine its spectrum. So we note that, for every θ ∈ V ,

(T (K )θ, θ)L2 = ((Jeq + P ◦ K )θ, θ)L2 = ((Jeq + K )θ, θ)L2 > 1
2λ∥θ∥

2
L2,

and hence λmin(T (K ))⩾ 1
2λ. In particular, we deduce that T (K ) is an invertible operator from V to itself,

and we have the bound ∥T (K )−1
∥L(V,V ) ⩽ 2/λ. □

Now that we know that T (K )−1 is well-defined we verify that its dependence on K is smooth.
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Lemma 5.2 (smoothness of T (K )−1). Let V ⊆ L2(T3, R3) and W ⊆ L2(T3, Sym(R3×3)) be finite-
dimensional subspaces, let P denote the L2-orthogonal projection onto V, let U :=

{
K ∈ W : ∥K∥∞ < 1

2λ
}

be the open L∞-ball of radius 1
2λ in W , and let T (K ) := Jeq + P ◦ K for any K ∈ U , where

(P◦K )v := P(Kv) for every v∈ L2(T3, R3). Then the map 8 : U →L(V, V ) defined by 8(K ) :=T (K )−1

is smooth.

Proof. The crucial observation here is that 8 may be written as the composition of T : U → L(V, V ) and
inv : GL(V ) → GL(V ), where GL(V ) := {L ∈ L(V, V ) : L is invertible} and inv(L) := L−1 for every
L ∈ GL(V ). Note that it is precisely Lemma 5.1 which tells us that T (U) ⊆ GL(V ) such that 8 = inv ◦T
is indeed well-defined. All that remains to show is that both T and inv are smooth. The smoothness of inv
is a well-known fact — see for example [Abraham et al. 1988]. To see that T is smooth note that, for every
K , H ∈ U , we have T (K ) − T (H) = P ◦ (K − H). We deduce that T is affine and hence smooth. □

We now turn our attention towards the establishment of H k-to-H k estimates on T (K )−1. In order to
do so we first define the operator M which will be useful when deriving formulae for the derivatives
of T (K )−1.

Definition 5.3. Let V ⊆ L2(T3, R3) be a finite-dimensional subspace and let P denote the L2-orthogonal
projection onto V . For any K ∈ L∞(T3, R3×3), let T (K ) := Jeq + P ◦ K , where (P ◦ K )v := P(Kv)

for any v in L2(T3, R3). We define, for any multi-indices α1, . . . , αm ∈ N3×3 with k := max|αi | and any
K ∈ W k,∞(T3

; R3×3) for which T (K ) is invertible,

M(α1, . . . , αm) := T (K )−1(P ◦ ∂α1 K )T (K )−1(P ◦ ∂α2 K )T (K )−1
· · · T (K )−1(P ◦ ∂αm K )T (K )−1.

With the operator M in hand we may write down useful formulae for derivatives of T (K )−1.

Lemma 5.4 (formula for the derivatives of T (K )−1). Let U and T be as in Lemma 5.2 and let M be as in
Definition 5.3. For any multi-index α ∈ N3×3 and any K ∈ W |α|,∞(T 3, R3×3), we have the identity

∂α(T (K )−1) =

|α|∑
k=1

(−1)k
∑

β1+···+βk=α

M(β1, . . . , βk)(K ).

Proof. The fundamental observations are that taking a single derivative of the maps K 7→ T (K ) and
K 7→ T (K )−1 yields

∂i (T (K )) = P ◦ ∂i K and ∂i (T (K )−1) = −T (K )−1(P ◦ ∂i K )T (K )−1

(see Lemma 5.2 for analogous computations). Using these two identities we may deduce an identity for
derivatives of M :

∂i (M(α1, α2, . . . , αm)(K ))

= M(α1 + ei , α2, . . . , αm)(K ) + · · · + M(α1, α2, . . . , αm + ei )(K )

− M(ei , α1, α2, . . . , αm)(K ) − M(α1, ei , α2, . . . , αm)(K ) − · · · − M(α1, α2, . . . , αm, ei )(K ).

The result then follows by induction. □



ANISOTROPIC MICROPOLAR FLUIDS SUBJECT TO A UNIFORM MICROTORQUE: THE STABLE CASE 97

In light of these formulae for derivatives of T (K )−1 we may now conclude this section and obtain
H k-to-H k bounds on T (K )−1.

Lemma 5.5 (H k bounds on T (K )−1). Let U and T be as in Lemma 5.2. For every k ⩾ 2 and every
K ∈ U ∩ H k+2, we have ∥T (K )−1

∥L(H k ,H k) ≲ ∥K∥H k + ∥K∥
k
H k+2 .

Proof. As a starting point, combining Lemmas 5.1 and 5.4 tells us that, for any multi-indices β1, . . . , βm

and for M as in Definition 5.3, if we write α := β1 + · · · +βm and k = |α| then

∥M(β1, . . . , βm)(K )∥L(L2,L2) ⩽ ∥T (K )−1
∥

k+1
L(L2,L2)

m∏
i=1

∥∂βi K∥L∞ ⩽
(2
λ

)k+1
∥∇K∥

k
W k−1,∞ ≲ ∥K∥

k
H k+2

since, when n = 3, H 2(T3) ↪→ L∞(T3).
We may now combine this inequality with Lemma 5.4 to obtain L2-to-L2 bounds on ∂β(T (K )−1): for

any multi-index β ∈ N3 with |β| = l,

∥∂β(T (K )−1)∥L(L2,L2) ⩽
l∑

i=1

∑
γ1+···+γi =β

∥M(γ1, . . . , γi )(K )∥L(L2,L2) ≲ ∥K∥
l
H l+2 .

We may now finally obtain H k-to-H k bounds on T (K )−1. For any v ∈ H k(T3, R3),

∥T (K )−1v∥
2
H k =

∑
|α|⩽k

∥∂α(T (K )−1v)∥2
L2 ⩽

∑
|α|⩽k

∑
β+δ

∥∂β(T (K )−1)∥2
L(L2,L2)

∥∂δv∥
2
L2

≲
∑
|α|⩽k

∑
β+δ=α

∥K∥
2|β|

H |β|+2∥v∥
2
H |δ| ≲ (∥K∥

2
H2 + ∥K∥

2k
H k+2)∥v∥

2
H k ,

where note that the last inequality follows by interpolation. □

5B. Estimates for the approximate problem. In this section we obtain two types of estimates; a priori
estimates on the sequence of approximate solutions and estimates of the initial energy (which involves
temporal derivatives) in terms of purely spatial norms.

Note that by contrast with the main scheme of a priori estimates built in Section 4, the a priori estimates
here are almost exclusively centered around energy estimates (some advection-rotation estimates for Kn

are present, but play an auxiliary role). This is because we are working locally in time and therefore can
get away with “sloppier” estimates, in the sense that the nonlinear interactions need not be estimated in
structured ways (e.g., as |I| ≲

√
ED) such that cruder estimates (e.g., |I| ≲ E3/2) suffice.

This section is structured as follows. First we record some projected variants of the advection-rotations
estimates, then we proceed with the energy estimates, and finally we turn our attention to estimates of the
initial energy in terms of purely spatial norms.

As a precursor to H k estimates for the projected advection-rotation operator appearing in the last
equation of system (5-3), we first obtain an L2 estimate. Note that (5-8) in the statement of Lemma 5.6
is equivalent to the last equation of system (5-3) for an appropriate definition of F . It is written in this
slightly different form since it makes it clear which operator produces good L2 estimates, and hence
which operator must be kept on the left-hand side when taking derivatives and performing H k estimates.
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Lemma 5.6 (L2 estimates for projected advection-rotation equations). Let Kn ∈ L2(T3
; Sym(3))∩ Im Pn ,

let u be divergence-free, and let 2 be antisymmetric. If Kn solves

Pn ◦ (∂t + u · ∇ − [�eq + 2, · ])Kn = F, (5-8)

then d
dt ∥Kn∥L2 ⩽ ∥F∥L2 .

Proof. The key observation is that

d
dt

∥Kn∥L2 =
d
dt

(∫
T3

|Kn|
2
)1/2

=
1
2

(∫
T3

|Kn|
2
)−1/2 ∫

T3
2Kn : ∂t Kn =

(Kn, ∂t Kn)L2

∥Kn∥L2
, (5-9)

where we may bound (Kn, ∂t Kn)L2 via a simple energy estimate on (5-8). Indeed it follows from (5-8),
the incompressibility of u, and Lemma A.5 that∫

T3
∂t Kn : Kn =

∫
T3

(∂t + u · ∇ − [�eq + 2, · ])Kn : Kn =

∫
T3

F : Kn. (5-10)

Putting (5-9) and (5-10) together with the Cauchy–Schwarz inequality allows us to conclude. □

With this L2 estimate in hand we may now derive H k estimates for Kn .

Lemma 5.7 (H k estimates for projected advection-rotation equations). Let Kn ∈ L2(T3
; Sym(3))∩Im Pn ,

let u be divergence-free, and let 2 be antisymmetric. If Kn solves Pn ◦ (∂t + u · ∇ − [�eq + 2, · ])Kn = 0
and satisfies ∥Kn∥∞, ∥∇Kn∥∞ ≲ 1, then, for every k ⩾ 0,

∥Kn(t)∥H k ≲ exp
(∫ t

0
∥(u, θ)(s)∥H3 ds

)(
∥Kn(0)∥H k +

∫ t

0
∥(u, θ)(s)∥H k ds

)
.

Proof. Since Pn commutes with ∂α and since ∥Pn∥L(L2,L2) ⩽ 1, we may deduce that

∥[Pn ◦ (u · ∇), ∂α
]Kn∥L2 = ∥(Pn ◦ [u · ∇, ∂α

])Kn∥L2 ⩽ ∥[u · ∇, ∂α
]Kn∥L2,

and similarly
∥[Pn ◦ [2, · ], ∂]Kn∥L2 ⩽ ∥[[2, · ], ∂α

]Kn∥L2 .

With these two commutator inequalities and Lemma 5.6 in hand we may proceed as in Lemma 4.4 to
deduce the claim, keeping in mind that ∥Kn∥L∞, ∥∇Kn∥L∞ ≲ 1. □

We now turn our attention to the energy-dissipation structure of the approximate problem. We begin
by defining appropriate versions of the energy.

Definition 5.8 (versions of the local energies). For Z = (u, θ, K ), we define EK ,loc, ẼM,loc, and EM,loc

as follows:

EK ,loc(u, θ, K ) :=
1
2

∫
T3

|u|
2
+

1
2

∫
T3

(Jeq + K )θ · θ +
1
2

τ̃ 2

ν − λ

∫
T3

|K |
2, (5-11)

while
ẼM,loc(Z) :=

∑
|α|P⩽2M

EK ,loc(∂
α Z) and EM,loc(Z) :=

∑
|α|P⩽2M

∥∂α Z∥
2
L2 . (5-12)

We now precisely compare various versions of the energy. We emphasize that Lemma 5.9 differs from
Lemma 4.11; the former is a consequence of smallness, whereas the latter is a consequence of regularity.
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Lemma 5.9 (comparisons of the different versions of the local energies). Let EM,loc and ẼM,loc be defined
as in Definition 5.8. There exist constants c̃E , C̃E > 0 such that if ∥K∥L∞ < 1

2λ then we have the estimate
c̃EEM,loc ⩽ ẼM,loc ⩽ C̃EEM,loc.

Proof. The key observation is that since the spectrum of Jeq is {λ, λ, ν}, if ∥K∥L∞ < 1
2λ then the spectrum

of Jeq + K is contained in
( 1

2λ, ν +
1
2λ
)
. The claim then follows as in Lemma 4.11. □

We now record an elementary lemma which is crucial in deriving the energy-dissipation relation associ-
ated with the approximate system. Indeed, Lemma 5.10 below is precisely what justifies approximating K
with twice as many Fourier modes as the other variables.

Lemma 5.10 (finite Fourier mode cut-off of products). For any M ∈ L2(T3
; R3×3) and any L2 vector

field v ∈ Im Pn , if P2n M = 0 then Pn(Mv) = 0.

Proof. Suppose that P2n M = 0 and that v ∈ Vn . Then M̂v(k) =
∑

|l|>2n M̂(l)v̂(k − l). In particular, if
|k| ⩽ n and |l| > 2n then |k − l| > n such that, since v ∈ Vn , we have that v̂ j (k − l) = 0. This shows that
M̂v(k) = 0 for any |k| ⩽ n, i.e., indeed Pn(Mv) = 0. □

We are now equipped to state and prove the energy-dissipation relation associated with the approximate
system. In particular, as discussed in more detail in Section 2E, note that in the approximate system
considered below in Proposition 5.11 we use regular time derivatives for the unknowns v and H and
an advective time derivative for φ. We could have used advective derivatives for v and H , but this
formulation makes it more clear which nonlinear structure is optional and which is not. In particular, as
discussed in Section 2E, the nonlinear structure in the equation governing the dynamics of φ is essential
in order to obtain a good energy-dissipation relation.

Proposition 5.11 (generic energy-dissipation relation associated with the approximate system). Suppose
that the unknowns (v, φ, H) and b, where b = (H12, H13) and 8 = ten φ, and the constraint variables
(u, θ, K ) satisfy

∂tv − (∇ · T )(v, φ) = f1,

(Jeq + Pn ◦ K )∂tφ + Pn((Jeq + K )(u · ∇)φ) + Pn((ωeq + θ) × (Jeq + K )φ)

+τ̃ 2b̃⊥
+ φ × Jeqωeq − 2 vec T (v, φ)− (∇ · M)(φ) = f3,

∂t H − [8, Jeq] − [�eq, H ] = F3

subject to the constraints {
∇ · u = 0,

∂t K + P2n(u · ∇K ) = P2n([�eq + 2, Jeq + K ]),
(5-13)

where (v, φ, H) ∈ Vn and K ∈ Im P2n . Then the following energy-dissipation identity holds:

d
dt

(∫
T3

1
2
|v|

2
+

∫
T3

1
2
(Jeq+K )φ ·φ+

∫
T3

1
2

τ̃ 2

ν−λ
|H |

2
)

+D(v, φ) =

∫
T3

f1 ·v+

∫
T3

f2 ·φ+

∫
T3

τ̌ F3 : H,

where τ̌ =
1
2 τ̃ 2/(ν − λ). Recall that the dissipation D is defined in (3-7).
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Proof. We begin by computing the time derivative of the kinetic energy due to u:

d
dt

∫
T3

1
2 |v|

2
=

∫
T3

(∂tv) · v =

∫
T3

(∇ · T )(v, φ) · v +

∫
T3

f1 · v = −

∫
T3

T (v, φ) : ∇v +

∫
T3

f1 · v.

We now compute the time derivative of the kinetic energy due to ω. In light of (5-13) we see that

d
dt

∫
T3

1
2(Jeq + K )φ · φ =

∫
T3

1
2((∂t + u · ∇)K )φ · φ +

∫
T3

(Jeq + K )(∂t + u · ∇)φ · φ =: I + II,

where we may combine the second constraint of (5-13) and Lemma 5.10, and use Lemma A.4 to see that

I =

∫
T3

1
2 Pn(((∂t +u ·∇)K )φ)·φ =

∫
T3

1
2 Pn([�eq +2, Jeq +K ]φ)·φ =

∫
T3

1
2 [�eq +2, Jeq +K ]φ ·φ

=

∫
T3

(ωeq +θ)×(Jeq +K )φ ·φ =

∫
T3

Pn((ωeq +θ)×(Jeq +K )φ)·φ,

and where we may compute directly that

II =

∫
T3

Pn((Jeq + K )(∂t + u · ∇)φ) · φ =

∫
T3

(Jeq + Pn ◦ K )∂tφ + Pn((Jeq + K )(u · ∇)φ)φ.

Adding I and II together therefore tells us that

d
dt

∫
T3

1
2(Jeq + K )φ · φ = −

∫
T3

τ̃ 2b̃⊥
· φ +

∫
T3

2 vec T (v, φ) · φ +

∫
T3

(∇ · M)(φ) · φ +

∫
T3

f2 · φ

=

∫
T3

τ̃ 2b · φ̄⊥
+

∫
T3

T (v, φ) : 8 −

∫
T3

M(φ) : ∇φ +

∫
T3

f2 · φ.

Finally, we compute the energetic contribution from H . As a preliminary, note that we can deduce from
Lemma A.6 that

[8, Jeq] = −(ν − λ)

(
0 φ̄⊥

(φ̄⊥)
T 0

)
.

We may therefore compute that, in light of the equation above and Lemma A.5,

d
dt

∫
T3

1
2 |H |

2
=

∫
T3

(∂t H) : H =

∫
T3

[8, Jeq] : H +

∫
T3

[�eq, H ] : H +

∫
T3

F3 : H

= −(ν − λ)

∫
T3

φ̄⊥
· b +

∫
T3

F3 : H.

To conclude we multiply this last identity by τ̃ 2/(ν − λ) and add it to the identities obtained above for
the evolution of the different components of the kinetic energy. Upon noting that∫

T3
T (v, φ) : (∇v − 8) +

∫
T3

M(φ) : ∇φ = D(v, φ)

(see Proposition 4.9 for details), we deduce the claim. □

With the energy-dissipation in hand, we now tackle the nonlinear interactions. We begin by recording
the precise form of the interactions. Recall that EK ,loc and D are defined in (5-11) and (3-7), respectively.
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Lemma 5.12 (recording the form of the local interactions). Let Z = (u, θ, K ) ∈ Vn solve (5-6). Then for
every multi-index α ∈ N1+3 we have that

d
dt

EK ,loc(∂
α Z) + D(∂αu, ∂αθ) = N α,

where

N α
= −

∫
T3

∂α(u · ∇u) · ∂αu −

∫
T3

∂α(θ × Kωeq) · ∂αθ

− τ̌

∫
T3

∂α(u · ∇K ) : ∂α K + τ̌

∫
T3

∂α([2, K ]) : ∂α K +

∫
T3

[K∂t , ∂
α
]θ · ∂αθ

−

∫
T3

[(Jeq + K )(u · ∇), ∂α
]θ · ∂αθ −

∫
T3

[(ωeq + θ) × (Jeq + K ), ∂α
]θ · ∂αθ

for τ̌ := τ̃ 2/(ν − λ).

Proof. If Z solves (5-6) then, for any multi-index α, we have that ∂α Z solves

T̃n(K )∂t∂
α Z −LZ ,n∂

α Z = ∂α(Nn(Z)) + [T̃n(K )∂t , ∂
α
]Z − [LZ ,n, ∂

α
]Z =: Fα

n

subject to
∇ · u = 0 and ∂t K + P2n(u · ∇K ) = P2n([�eq + 2, Jeq + K ]),

and hence Proposition 5.11 tells us that

d
dt

EK ,loc(∂
α Z) + D(∂αu, ∂αθ) =

∫
T3

Fα
n ·C∂α Z =: N α,

where C = I3 ⊕ I3 ⊕ τ̌ I3×3. To compute N α it suffices to use the fact that Pn and ∂α commute, to recall
that T̃n(K ) = I3 ⊕ (Jeq + Pn ◦ K )⊕ I3×3, and to split LZ ,n into its part with constant coefficients and the
remainder, as is done in (5-7). □

Having recorded the precise form of the interactions we estimate them.

Lemma 5.13 (estimates of the local interactions). Let M ⩾ 4 be an integer and let N :=
∑

|α|P⩽2M N α

for N α as in Lemma 5.12. The following estimate holds:

|N | ≲ ∥∇K∥L∞∥(u, θ)∥2
P2M+1 + ∥(u, θ, K )∥3

P2M + ∥(u, θ, K )∥4
P2M .

Proof. Let us write the terms in N as N α
1 , . . . ,N α

7 , following the indexing of Lemma 5.12, such that

N =

∑
|α|P⩽2M

N α
1 + · · · +N α

7 . (5-14)

We will estimate each of these seven terms in turn. First, however, we note that the interaction term
N α

5 = −
∫

T3[K∂t , ∂
α
]θ · ∂αθ bears a particular importance in this estimate. Indeed, due to the temporal

derivative appearing in the commutator we must invoke a parabolic count of 2M + 1 derivatives acting
on θ , which gives rise to the term ∥∇K∥L∞∥(u, θ, K )∥2

P2M+1 in the estimate. Most notably, N5 is the
only interaction which requires us to invoke a parabolic count of 2M + 1 derivatives.

We now go through the estimates of the interactions one by one — although, due to the great similarity
in estimating many terms, we will only provide details for a few of the interactions.
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Estimating N1. By applying the Leibniz rule we see that

−N α
1 =

∑
β+γ=α
|α|P⩽2M

(
α

β

) ∫
T3

(∂βu · ∇∂γ u) · ∂αu,

where we have used the fact that u is divergence-free to deduce that∫
T3

(u · ∇∂αu) · ∂αu = −
1
2

∫
T3

(∇ · u)|∂αu|
2
= 0.

To estimate N α
1 it then suffices to perform a “hands-on high-low” estimate. Since M ⩾ 3, we note that

(2M − 2) + (2M − 3) > 2M , and hence either |β|P ⩽ 2M − 2 or |γ |P ⩾ 2M − 3, so we may estimate

|N α
1 | ≲

∑
···

|β|P⩽2M−2

∥∂βu∥L∞∥∇∂γ u∥L2∥∂αu∥L2 +

∑
···

|γ |P⩽2M−3

∥∂βu∥L2∥∇∂γ u∥L∞∥∂αu∥L2 ≲ ∥u∥
3
P2M .

Estimating N2, N3, and N4. We proceed as we did for N1 and obtain

|N α
2 | ≲ ∥K∥P2M ∥θ∥

2
P2M , |N α

3 | ≲ ∥K∥
2
P2M ∥u∥P2M , and |N α

4 | ≲ ∥K∥
2
P2M ∥θ∥P2M .

Estimating N5. We split N α
5 into two pieces:

N α
5 =

∑
β+γ=α

β>0

∫
T3

(∂β K )(∂t∂
γ θ) · (∂αθ) =

∑
···

|β|=1

· · · +

∑
···

|β|=2

· · · =: I + II,

where I is the only term in N that requires the use of ∥∇K∥L∞ since it unavoidably contains a parabolic
count of derivatives of 2M + 1. Estimating I is immediate:

|I| =

∣∣∣∣ 3∑
i=1

∫
T3

(∂i K )(∂
α−ei
t θ) · (∂αθ)

∣∣∣∣≲∑
i

∥∇K∥L∞∥∂t∂
α−ei θ∥L2∥∂αθ∥L4 ≲ ∥∇K∥L∞∥θ∥

2
P2M+1 .

Estimating II can be done via “hands-on high-low” estimates very similar to those employed to control N α
1 .

Since M ⩾ 4, we have (2M−2)+ (2M−4) > 2M , and hence |β|P ⩽ 2M−2 or |γ |P ⩽ 2M−4, such that

|II|⩽
∑
···

|β|P⩽2M−2

∥∂β K∥L∞∥∂t∂
γ θ∥L2∥∂αθ∥L2+

∑
···

|γ |P⩽2M−4

∥∂β K∥L2∥∂t∂
γ θ∥L∞∥∂αθ∥L2 ≲∥K∥P2M ∥θ∥

2
P2M .

Estimating N6. We split N6 into two pieces:

N α
6 =

∫
T3

[Jeq(u · ∇), ∂α
]θ · ∂αθ +

∫
T3

[K (u · ∇), ∂α
]θ · ∂αθ

=

∑
β+γ=α

β>0

∫
T3

Jeq(∂
βu · ∇)∂γ θ · ∂αθ +

∑
β+γ+δ=α

β+γ>0

∫
T3

(∂β K )(∂γ u · ∇)∂δθ · ∂αθ =: I + II.

To control I we proceed as we did for N1 and obtain that |I| ≲ ∥(u, θ)∥3
P2M . To control II we proceed in a

similar fashion, namely with “hands-on high-low” estimates. Since the interaction is quartic we will rely
on Lemma B.6 in order to ensure that there are always at least two factors that have a sufficiently low
derivative count.
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More precisely, the key observation is that, since δ < α, all factors in II are controlled in L2 via P2M .
To control II it therefore suffices to ensure that two of the four factors are controlled in L∞ through P2M .
This occurs when

(1) |β| ⩽ |α| − 2 for ∂β K , (2) |γ | ⩽ |α| − 2 for ∂γ u, and (3) |δ| ⩽ |α| − 3 for ∇∂δθ.

Crucially, since M ⩾ 3, and hence (2M − 2)+ (2M − 3) > 2M , Lemma B.6 tells us that at least two out
of (1), (2), or (3) hold. We may then deduce that |II| ≲ ∥K∥P2M ∥(u, θ)∥3

P2M . For example if (1) and (2)
hold then we estimate the interaction as follows:∣∣∣∣∫

T3
(∂β K )(∂γ u · ∇)∂δθ · ∂αθ

∣∣∣∣≲ ∥∂β K∥L∞∥∂γ u∥L∞∥∇∂δθ∥L2∥∂αθ∥L2 ≲ ∥K∥P2M ∥(u, θ)∥3
P2M .

Estimating N7. We proceed similarly to how we handled N6. We begin by splitting N7 into four pieces:

N α
7 =

∫
T3

[ωeq× Jeq, ∂
α
]θ ·∂αθ+

∫
T3

[ωeq×K , ∂α
]θ ·∂αθ+

∫
T3

[θ× Jeq, ∂
α
]θ ·∂αθ+

∫
T3

[θ×K , ∂α
]θ ·∂αθ

=: I+II+III+IV,

where note that I = 0 since [ωeq × Jeq, ∂
α
] = 0. To estimate II and III we proceed as we did for N1 and

obtain that
|II| ≲ ∥K∥P2M ∥θ∥

2
P2M and |III| ≲ ∥θ∥

3
P2M .

Finally, to estimate IV we proceed as we did for II of N6, namely using Lemma B.6 to split up the terms
in a fashion amenable to “hands-on high-low estimates, and obtain that |IV| ≲ ∥K∥P2M ∥θ∥

3
P2M . □

Once the nonlinear interactions are controlled we may deduce the a priori energy estimates recorded in
Lemma 5.14. Recall that ẼM,loc and DM are defined in (5-12) and (3-8), respectively.

Lemma 5.14 (local a priori energy estimates). Suppose that Zn = (un, θn, Kn) ∈ Vn solves (5-6) and
satisfies ∥Kn∥L∞ < 1

2λ. For any integer M ⩾ 4, there exists δloc
ap > 0 such that if ∥∇Kn∥L∞ < δloc

ap then

d
dt

ẼM,loc(Zn) +
1
2DM(un, θn) ⩽ CG(Ẽ3/2

M,loc(Zn) + Ẽ2
M,loc(Zn)). (5-15)

Proof. The energy estimate of Proposition 5.11 combined with Lemma 4.12 tells us that, for N as in
Lemma 5.13,

d
dt

ẼM,loc(Zn) +DM(un, θn) ≲N .

We may combine with the estimate of N of Lemma 5.13 and with Lemma 5.9, since ∥Kn∥L∞ < 1
2λ, to

deduce that there exists C loc
ap > 0 such that

d
dt

ẼM,loc +DM(un, θn) ⩽ C loc
ap ∥∇Kn∥L∞DM(un, θn) + Ẽ3/2

M,loc(Zn) + Ẽ2
M,loc(Zn).

So finally, if we pick δloc
ap > 0 sufficiently small to ensure that C loc

ap δloc
ap ⩽ 1

2 , then we may conclude that
there exists CG > 0 such that (5-15) holds. □

To produce uniform bounds on the approximate solutions from the a priori estimates of Lemma 5.14 it
suffices to couple it with a nonlinear Gronwall-type argument.
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Lemma 5.15 (Bihari argument). Suppose that, for some T > 0, the functions e, d : [0, T ) → [0, ∞) are
continuous and satisfy, for some α0 > 0 and C > 0,

e′(t) + d(t) ⩽ C f (e(t)) for every 0 ⩽ t < T and e(0) ⩽ α0,

where f (x) := x3/2
+ x2 for every x ⩾ 0. Then, for every 0 ⩽ t < min(T, 2F(α0)/C),

e(t) ⩽ F−1(F(α0) −
1
2Ct

)
and

∫ t

0
d(s) ds ⩽ α0 + Ct ( f ◦ F)−1(F(α0) −

1
2Ct

)
,

where F(x) := 1/
√

x − log(1 + 1/
√

x) for every x > 0.

Proof. Bounding e follows from a standard nonlinear Gronwall argument; see for example [Boyer
and Fabrie 2013]. The bound on d follows from integrating the differential inequality in time and the
monotonicity of f . □

We may now state the first of the two main results of this section, obtaining uniform bounds on the
approximate solutions. Recall that ẼM,loc and DM are defined in (5-12) and (3-8), respectively.

Corollary 5.16 (uniform a priori bounds on approximate solutions). Let M ⩾ 4 be an integer, let T > 0
be some time horizon, and let (Zn)n∈N be a sequence of solutions Zn = (un, θn, Kn) ∈ Vn such that, for
every n ∈ N, we have that Zn solves (5-6) and satisfies ∥Kn∥∞ < 1

2λ and ∥∇Kn∥∞ < δloc
ap for δloc

ap as in
Lemma 5.14 on the time interval [0, T ). Then, for every n ∈ N and every α0 > 0, if ẼM,loc(Zn(0)) ⩽ α0 it
follows that, for every 0 ⩽ t < min(T, 2F(α0)/C),

ẼM,loc(Zn(t)) ⩽ F−1(F(α0) −
1
2CG t

)
and ∫ t

0
DM(un(s), θn(s)) ds ⩽ α0 + CG t ( f ◦ F−1)

(
F(α0) −

1
2CG t

)
,

where CG > 0 is as in Lemma 5.14, f (x) := x3/2
+ x2, and F(x) := 1/

√
x − log(1 + 1/

√
x).

Proof. This follows immediately from combining Lemmas 5.14 and 5.15. □

We now turn our attention towards the second of the two main results of this section, namely controlling
the initial energy (which involves temporal derivatives) exclusively in terms of spatial norms. In order to
do so we first record the following estimates of the nonlinearities.

Lemma 5.17 (estimates of the nonlinearities for the approximate problem). Let n, j, k, M ∈ N, where
2 ⩽ j ⩽ M , and let Z = (u, θ, K ) ∈ L2(T3

; R3
× R3

× Sym(3)). The following estimates hold:

(1) ∥LZ ,n Z∥H k ≲ ∥Z∥H k+2 + ∥Z∥
2
H k+1 .

(2) ∥Nn(Z)∥H k ≲ ∥Z∥
2
H k+1 .

(3) ∥[K∂t , ∂
j−1

t ]∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
.

(4) ∥∂
j−1

t (Nn(Z))∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
.

(5) ∥[(Jeq + K )(u · ∇), ∂
j−1

t ]θ∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
+ ∥Z∥

3
P2M

j−1
.

(6) ∥[(ωeq + θ) × (Jeq + K ), ∂
j−1

t ]∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
+ ∥Z∥

3
P2M

j−1
.
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Proof. These estimates rely mostly on the fact that, for s > 3
2 , H s(T3) is a Banach algebra.

To obtain (1) we proceed as in the beginning of Section 5 and split LZ ,n into its part with constant
coefficients and the remainder, writing LZ ,n =L0 +LZ ,n . In particular, the estimate ∥L0 Z∥H k ≲ ∥Z∥H k+2

is immediate. The estimate ∥LZ ,n Z∥H k ≲ ∥Z∥H k+1 +∥Z∥
2
H k+1 follows from the fact that H k+2 is a Banach

algebra and from Lemma B.4. Obtaining (2) follows in the same way.
Obtaining (3)–(6) follows a similar procedure, and we thus only provide the details for (3). Observe that

if a ⩽ j −1 and b ⩽ j −2 then 2M −2a, 2M −2b−2 ⩾ 2M −2 j +2. Crucially, since 2M −2 j +2 ⩾ 2,
we know that H 2M−2 j+2 is a Banach algebra, and hence

∥∂a
t K∂b+1

t θ∥H2M−2 j ≲ ∥∂a
t K∥H2M−2 j+2∥∂b+1

t θ∥H2M−2 j+2 ≲ ∥∂a
t K∥H2M−2 j+2∥∂b+1

t θ∥H2M−2b+2 ≲ ∥Z∥
2
P2M

j−1
.

So finally

∥[K∂t , ∂
j−1

t ]θ∥H2M−2 j ≲
∑

a+b= j−1
b< j−1

∥∂a
t K∂b+1

t θ∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
. □

We may now conclude this section with the second of the two main results of this section and bound
the initial energy in terms of purely spatial norms.

Lemma 5.18 (bounds on the initial energy in terms of purely spatial norms). Let M ⩾ 0 be an integer
and n ∈ N. Then there exist constants C I C , CM > 0 such that if Z = (u, θ, K ) solves

T̃n(K )∂t Z = LZ ,n Z + Nn(Z) (5-16)

and satisfies ∥K∥L∞ < 1
2λ then Z(t) satisfies, for every t for which it is defined,

∥Z(t)∥P2M ⩽ C I C(∥Z(t)∥H2M + ∥Z(t)∥CM
H2M ).

In particular, this holds when t = 0.

Proof. Suppose that Z solves (5-16). Applying j − 1 temporal derivatives then tells us that

T̃n(K )∂t(∂
j−1

t Z) = LZ ,n(∂
j−1

t Z) + [T̃n(K )∂t , ∂
j−1

t ]Z − [LZ ,n, ∂
j−1

t ]Z + ∂
j−1

t (Nn(Z)) =: F j (Z),

where [T̃n(K )∂t , ∂
j−1

t ] = 03 ⊕ Pn ◦ [K∂t , ∂
j−1

t ] ⊕ 03×3 and

[LZ ,n, ∂
j−1

t ] = 03 ⊕ Pn ◦ ([(Jeq + K )(u · ∇), ∂
j−1

t ] + [(ωeq + θ) × (Jeq + K ), ∂
j−1

t ]) ⊕ 03×3.

Therefore,

F j (Z) = LZ ,n(∂
j−1

t Z) + Pn([Kn∂t , ∂
j−1

t ]θ) − Pn([(Jeq + K )(u · ∇), ∂
j−1

t ]θ)

− Pn([(ωeq + θ) × (Jeq + K ), ∂
j−1

t ]θ) + ∂
j−1

t (Nn(Z))

such that, by Lemma 5.17,

∥F j
∥H2M−2 j ≲ ∥∂

j−1
t Z∥H2M−2 j+2 +∥∂

j−1
t Z∥

2
H2M−2 j+1 +∥Z∥

2
P2M

j−1
+∥Z∥

3
P2M

j−1
≲ ∥Z∥P2M

j−1
+∥Z∥

3
P2M

j−1
. (5-17)

In particular, we see that ∂
j

t Z = T̃ (K )−1 F j (Z). We now break into two cases, depending on whether
j ⩽ M − 1 or j = M . For 1 ⩽ j ⩽ M − 1, we have that 2M − 2 j ⩾ 2, so combining Lemma 5.5 with
(5-17) tells us that

∥∂
j

t Z∥H2M−2 j ≲ (∥K∥H2M−2 j + ∥K∥
2M−2 j
H2M−2 j+2)∥F j

∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
+ ∥Z∥

2M−2 j+3
P2M

j−1
. (5-18)
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For j = M , we may not apply Lemma 5.5, since 2M − 2 j = 0 < 2, but we do not need to, since in
that case we are only after an L2 bound, which Lemma 5.1 readily provides. Indeed, using Lemma 5.1
and (5-17) we see that

∥∂M
t Z∥L2 ⩽

2
λ
∥F M−1(Z)∥L2 ≲ ∥Z∥P2M

M−1
+ ∥Z∥

3
P2M

M−1
. (5-19)

Crucially, combining (5-18) and (5-19) tells us that, for 1 ⩽ j ⩽ M ,

∥Z∥P2M
j

≍ ∥Z∥P2M
j−1

+ ∥∂
j

t Z∥H2M−2 j ≲ ∥Z∥P2M
j−1

+ ∥Z∥
2M−2 j+3
P2M

j−1
,

from which the claim follows by induction. □

5C. The Galerkin scheme. In this section we put together the Galerkin scheme that will produce solutions
to (2-1) locally in time. We proceed in a standard manner, first producing local approximate solutions,
then obtaining uniform estimates on the approximates sufficient to obtain a uniform lower bound on the
time of existence and to pass to the limit by compactness. To conclude we pass to the limit and reconstruct
the pressure. We begin by producing local approximate solutions.

Proposition 5.19 (producing local approximate solutions). Let δloc
ap > 0 be as in Lemma 5.14, pick some

0 < σ < σ(δloc
ap ) as in (5-1), and let U(σ ) be defined as in (5-2). For every Z0 = (u0, θ0, K0) ∈ U(σ ) and

every n ∈ N, there exists a maximal time of existence Tn > 0 and a unique solution Zn = (un, θn, Kn) in
C∞([0, Tn); Un(σ )) of {

T̃n(Kn)∂t Zn = LZn,n Zn + Nn(Zn),

Zn(0) = Pn Z0.
(5-20)

Moreover, we have the following blow-up criterion: for any T > 0, if sup0⩽t⩽T ∥Kn(t)∥H3 < σ then
Tn ⩾ T .

Proof. The key is to write (5-20) as a finite-dimensional ODE in the standard form ẋ(t) = f (x(t)).
Observe that by choice of σ > 0 and definition of U(σ ), it follows from Lemma 5.1 that T̃n(Kn) is
invertible for any Zn ∈ Un(σ ). The system (5-20) is thus equivalent to

∂t Zn = T̃n(Kn)
−1

(LZn,n Zn + Nn(Zn)) =: Fn(Zn) and Zn(0) = Pn Z0.

Since Zn 7→ LZn,n Zn + Nn(Zn) is, up to the appearances of the projections Pn and PL , a polynomial in
(Zn, ∇Zn, ∇

2 Zn), it follows from Lemma 5.2 and the equivalence of H s(T3) norms (s ⩾ 0) on Vn that
Zn 7→ Fn(Zn) is a smooth map from Un(σ ) to Vn . Note that deducing that the image of Fn lies in Vn

comes from the fact that the Leray projection PL enforces the divergence-free condition and preserves the
average of the velocity of u since P̂L(0) = I . By standard well-posedness theory for finite-dimensional
ODEs we may now deduce the result, noting that the blow-up criterion follows from the definition
of U(σ ). □

We may now put together the local a priori estimates of Corollary 5.16 and the a priori projected
advection-rotation estimates for Kn of Lemma 5.7 in order to deduce uniform bounds on the approximate
solutions.
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Proposition 5.20 (uniform bounds on approximate solutions and their intervals of existence). Let σ > 0
and U(σ ) be as in Proposition 5.19, let CK > 0 be the constant implicit in the result of Lemma 5.7 when
k = 3, let M ⩾ 4 be an integer, let Z0 = (u0, θ0, K0) ∈ U(σ ) with ∥Z0∥H2M , ∥K0∥H2M+1 < ∞, and

∥K0∥H3 < σ∗ :=
σ

2CK
, (5-21)

and let (Zn)n∈N be the sequence of approximate solutions obtained in Proposition 5.19, with corresponding
maximal times of existence (Tn)n∈N. There exists 0 < Tlwp ⩽ 1 and there exist ρe, ρd : (0, ∞) → (0, ∞)

and ρ f : (0, ∞)2
→ (0, ∞) which are continuous, strictly increasing in each of their arguments, and

asymptotically vanishing at zero such that Tn ⩾ Tlwp for all n ∈ N and
supn∈N sup0⩽ j⩽M∥∂

j
t Zn∥L∞([0,Tlwp],H2M−2 j ) ⩽ ρe(∥Z0∥H2M ),

supn∈N sup0⩽ j⩽M∥(un, θn)∥L2([0,Tlwp],H2M+1−2 j ) ⩽ ρd(∥Z0∥H2M ),

supn∈N∥Kn∥L∞([0,Tlwp],H2M+1) ⩽ ρ f (∥Z0∥H2M , ∥K0∥H2M+1).

(5-22)

Moreover, Tlwp = φ(∥Z0∥H2M ), where φ is nonincreasing.

Proof. More precisely, let us define

σ0 := 2C̃EC2
I C(∥Z0∥

2
H2M + ∥Z0∥

2CM
H2M ), (5-23)

where C̃E , C I C , CM > 0 are as in Lemmas 5.9 and 5.18. We note that,

• by definition of U(σ ) (and of Un(σ )), for every n ∈ N, we have ∥Kn∥H3 < σ on [0, Tn), where σ > 0
is as in Proposition 5.19, and that,

• by Lemmas 5.9 and 5.18, ẼM,loc(Zn(0)) ⩽ σ0.

We may thus use Corollary 5.16 to deduce that, for all n ∈ N and all 0 ⩽ t < min(Tn, 2F(σ0)/CG),

ẼM,loc(Zn(t)) ⩽ F−1(F(σ0) −
1
2CG t

)
and ∫ t

0
DM(un, θn)(s) ds ⩽ σ0 + CG t ( f ◦ F−1)

(
F(σ0) −

1
2CG t

)
,

where recall that ẼM,loc and DM are defined in (5-12) and (3-8), respectively. In particular, if we pick
t =

1
2(2F(σ0)/CG) =:

1
2 TG then we have that F−1

(
F(σ0) −

1
2CG t

)
= F−1

( 1
2 F(σ0)

)
, and hence, for every

n ∈ N and every 0 ⩽ t ⩽ Tn ∧
1
2 TG ∧ 1,

∥Zn(t)∥2
P2M = EM,loc(Zn(t)) ⩽

1
c̃E

ẼM,loc(Zn(t)) ⩽
1

c̃E
F−1( 1

2 F(σ0)
)
=: ρ2

e (∥Z0∥H2M ) (5-24)

and, since /
∫

T3 u = 0, it follows from Lemma 4.12 that, for every n ∈ N,∫ Tn∧
1
2 TG∧1

0
∥(un, θn)(s)∥2

P2M+1 ds ⩽ CD

∫ Tn∧
1
2 TG∧1

0
DM(s) ds

⩽ CD
(
σ0 + CG( f ◦ F−1)

( 1
2 F(σ0)

))
=: ρ2

d(∥Z0∥H2M ). (5-25)
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We may now appeal to the estimates for ∥Kn∥H3 from Lemma 5.7 to obtain a lower bound on Tn

which is uniform in n. Since ∥Kn(0)∥H3 < σ and since M ⩾ 2, we know from Lemma 5.7 and (5-21)
that, for any n ∈ N and any 0 ⩽ t ⩽ Tn ∧

1
2 TG ∧ 1,

sup
0⩽s⩽t

∥Kn(s)∥H3 ⩽ CK etρe(∥Z0∥H2M )
(

σ

2CK
+ tρe(∥Z0∥H2M )

)
=: ω(tρe(∥Z0∥H2M )),

where ω depends on σ . Crucially, observe that ω(0) =
1
2σ and that ω is strictly increasing, so we see

that, for Tsmall := ω−1
( 2

3σ
)
/ρe(∥Z0∥H2M ) and T̃n := Tn ∧

1
2 TG ∧ Tsmall ∧ 1,

sup
0⩽t⩽T̃n

∥Kn(t)∥H3 ⩽ ω(Tsmallρe(∥Z0∥H2M )) ⩽ 2
3σ.

Therefore, by the blow-up criterion, Tn ⩾
1
2 TG ∧ Tsmall ∧ 1 =: Tlwp for every n ∈ N.

Note that

Tlwp =
1
2 TG ∧ Tsmall ∧ 1 =

F(σ0)

CG
∧

ω−1
( 2

3σ
)

ρe(∥Z0∥H2M )
∧ 1.

In light of (5-23) and the facts that F and ρe are strictly decreasing and strictly increasing, respectively,
we deduce that Tlwp is nonincreasing with respect to ∥Z0∥H2M , as desired.

Finally we record the estimates on K obtained in Lemma 5.7. It follows from the energy-dissipation
estimates (5-24) and (5-25) that

sup
0⩽t⩽Tlwp

∥Kn(t)∥H2M+1 ⩽ C ′

K eρeTlwp(∥K0∥H2M+1 + ρd Tlwp) =: ρ f (∥Z0∥H2M + ∥K0∥H2M+1). □

With these uniform bounds in hand we may move towards passing to the limit. First we record the
following technical lemma which is essential in allowing us to pass to the limit.

Lemma 5.21. Let s ⩾ 0 and f ∈ L2([0, T ); H s(Tn)) for T > 0. Then ∥(Pn − I ) f ∥L2 H s → 0 as n → ∞.

Proof. This follows immediately from Tonelli’s theorem and the monotone convergence theorem. □

We may now pass to the limit by compactness.

Proposition 5.22 (compactness and passage to the limit). Let U(σ ) be as in Proposition 5.19, let M ⩾ 4
be an integer, and let Z0 = (u0, θ0, K0) ∈ U(σ ) with ∥Z0∥H2M , ∥K0∥H2M+1 < ∞, and ∥K0∥H3 < σ∗ for
σ∗ > 0 as in Proposition 5.20. There exist 0 < Tlwp ⩽ 1 and Z = (u, θ, K ) ∈ C2([0, Tlwp] × T3) such that
Z(t, · ) ∈ U(σ ) for all 0 ⩽ t ⩽ Tlwp and Z solves (2-1) and (2-2). Moreover, Z satisfies the estimates

sup
0⩽ j⩽M

∥∂
j

t Z∥L∞ H2M−2 j ⩽ ρe(∥Z0∥H2M ), sup
0⩽ j⩽M

∥∂
j

t (u, θ)∥L2 H2M−2 j+1 ⩽ ρd(∥Z0∥H2M ),

∥K∥L∞ H2M+1 ⩽ ρ f (∥Z0∥H2M , ∥K0∥H2M+1)

for ρe, ρd , and ρ f as in Proposition 5.20.

Proof. Let (Zn)n∈N and (Tn)n∈N denote the approximate solutions and their times of existence as obtained
in Proposition 5.19. Note that, as per Proposition 5.20, we know that Tn ⩾ Tlwp > 0 for some Tlwp which
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is independent of n. We also know from Proposition 5.20 that estimates (5-22) holds. It then follows
from Banach–Alaoglu (i.e., weak-* compactness) that, up to a subsequence which we do not relabel,

∂
j

t Zn
∗

⇀ ∂
j

t Z in L∞H 2M−2 j for every 0 ⩽ j ⩽ M,

∂
j

t (un, θn) ⇀ ∂
j

t (u, θ) in L2 H 2M−2 j+1 for every 0 ⩽ j ⩽ M,

Kn
∗

⇀ K in L∞H 2M+1

(5-26)

for some Z = (u, θ, K ) which satisfies, by weak and weak-* lower semicontinuity of the respective
norms,

sup
0⩽ j⩽M

∥∂
j

t Z∥L∞ H2M−2 j ⩽ ∥Z∥L∞ P2M ⩽
√

ρe, sup
0⩽ j⩽M

∥∂
j

t (u, θ)∥L2 H2M−2 j+1 ⩽ ∥(u, θ)∥L2 P2M+1 ⩽
√

ρd ,

∥K∥L∞ H2M+1 ⩽
√

ρ f .

All that remains is passing to the limit, for which we omit the details since this is done with a standard
application of the Aubin–Lions–Simon compactness theorem (see for example [Boyer and Fabrie 2013]) in
combination with Lemma 5.21 and the fact that H s is a Banach algebra when s > 3

2 . In particular, we can
pass to the limit in the nonlinearities uniformly on [0, Tlwp]×T3 such that the following limits hold in C0

t,x :

Pn(Kn∂tθn) → K∂tθ, Pn((Jeq + Kn)(un · ∇)θn) → (Jeq + K )(u · ∇)θ,

Nn(Zn) → N (Z), and Pn((ωeq + θn) × (Jeq + Kn)θn) → (ωeq + θ) × (Jeq + K )θ. □

The last step of our Galerkin scheme is to reconstruct the pressure and the initial condition.

Corollary 5.23 (reconstructing the pressure and the initial condition). Under the assumptions found in
Proposition 5.22, we know that Z(0) = Z0 pointwise and that there exists p ∈ L2 H 2M+1

∩ L∞ P2M
M−1 such

that Z and p solve (2-1).

Proof. Recovering the initial condition is trivial. Since Zn(0) := Pn Z0 with Z0 ∈ H 2, it follows directly
from the weak convergence in Proposition 5.22 that Zn → Z in C0 H 2, and hence Lemma 5.21 tells us that

∥Z(0) − Z0∥C0
x
≲ ∥Z(0) − Zn(0)∥C0

x
+ ∥Zn(0) − Z0∥C0

x
≲ ∥Z − Zn∥C0 H2 + ∥(Pn − I )Z0∥H2 → 0

as n → ∞.
We now reconstruct the pressure. We have split

∂t u + u · ∇u =
(
µ +

1
2κ
)
1u − κ∇ ×ω − ∇ p

subject to ∇ · u = 0 into two parts, namely

∂t u + PL(u · ∇u) =
(
µ +

1
2κ
)
u − κ∇ ×ω and (I − PL)(u · ∇u) = −∇ p,

where PL is the Leray projector, i.e., the L2-orthogonal projection onto divergence-free vector fields given
by P̂L(k) = I − (k ⊗ k)/|k|

2 for every k ∈ Z3, where ((k ⊗ k)/|k|
2)|k=0 := 0. Then I − PL = ∇1−1

∇ · ,
and hence we may define p := −1−1

∇ · (u · ∇u). In particular, for s > 3
2 , we have the estimate

∥p∥H s+1 ≲ ∥u∥H s ∥u∥H s+1 from which we deduce that, using standard “hands-on high-low estimates”,

∥p∥L2 P2M+1 ≲ ∥u∥L∞ P2M ∥u∥L2 P2M+1 and ∥p∥L∞ P2M
M−1

≲ ∥u∥
2
L∞ P2M . □
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In conclusion, we have proved in this section the following local well-posedness result.

Theorem 5.24 (local well-posedness). Let M ⩾ 4 be an integer, let δloc
ap > 0 be as in Lemma 5.14, let

CK > 0 be the constant implicit in the result of Lemma 5.7 when k = 3, let 0 < σ < σ(δ
ap
loc), and let

σ∗ := σ/(2CK ). Let Z0 = (u0, θ0, K0) ∈ L2(T3
; R3

× R3
× Sym(3)) such that

∇ · u0 = 0, /
∫

T3
u0 = 0, ∥K0∥H3 < σ∗, and ∥Z0∥H2M , ∥K0∥H2M+1 < ∞.

There exist 0 < Tlwp ⩽ 1,

Z = (u, θ, K ) ∈ C2([0, Tlwp] × T3
; R3

× R3
× Sym(3)),

and
p ∈ C2([0, Tlwp] × T3

; R)

such that Z and p form the unique strong solution of (2-1). Moreover, Tlwp = φ(∥Z0∥H2M ) for some
nonincreasing function φ, and for every 0 ⩽ t ⩽ Tlwp, the solution satisfies

∇ · u(t, · ) = 0, /
∫

T3
u(t, · ) = 0, and ∥K (t, · )∥H3 < σ,

as well as the estimates
sup

0⩽ j⩽M
∥∂

j
t Z∥L∞ H2M−2 j + sup

0⩽ j⩽M−1
∥∂

j
t p∥L∞ H2M−2 j ⩽ ρe(∥Z0∥H3M ),

sup
0⩽ j⩽M

∥∂
j

t (u, θ)∥L2 H2M−2 j+1 + ∥∂
j

t p∥L2 H2M−2 j+1 ⩽ ρd(∥Z0∥H2M ),

∥K∥L∞ H2M+1 ⩽ ρ f (∥Z0∥H2M , ∥K0∥H2M+1),

where ρe, ρd : (0, ∞) → (0, ∞) and ρ f : (0, ∞)2
→ (0, ∞) are continuous, strictly increasing in each

of their arguments, and asymptotically vanishing at zero.

Proof. This follows from combining the various results of this section. Producing local approximate
solutions is done using Proposition 5.19. We then employ Proposition 5.20 to obtain uniform bounds
on the times of existence and the approximate solutions, which allows us to pass to the limit using
Proposition 5.22. Finally we reconstruct the pressure and the initial condition using Corollary 5.23. Note
that the uniqueness follows from Theorem A.5 of [Remond-Tiedrez and Tice 2021], which is recorded
below in Theorem 5.25 for the reader’s convenience. □

Theorem 5.25 (uniqueness). Suppose that (u1, p1, ω1, J1) and (u2, p2, ω2, J2) are strong solutions
of (1-1) on some common time interval (0, T ) such that they agree at time t = 0. If J1 is uniformly
positive-definite, pi , ∂t(ui , ωi , Ji ) ∈ L2

T L2, (ui , ωi , Ji ), ∇(ui , ωi , Ji ) ∈ L∞

T L∞, and ∂t J1, ∂tω2 ∈ L∞

T L∞,
then these solutions coincide on (0, T ). Note that here L p

T Lq denotes the space L p([0, T ); Lq(T3)).

6. Continuation argument

In this section we derive the estimates necessary to “glue” the a priori estimates of Section 4 and the local
well-posedness theory of Section 5. We begin with “reduced energy estimates” in Section 6A (whose
purposed is detailed in Section 2F). We recall that while the a priori estimates of Section 4 rely on the
smallness of the solution, the estimates here rely on the smallness of the time interval on which they hold.
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Once we have these reduced energy estimates in hand we obtain supplementary estimates in Section 6B
before recording a continuation argument in Section 6C. In some sense this continuation argument is the
technical implementation of what was heuristically described as “gluing” the a priori estimates and the
local well-posedness together.

6A. Local-in-time reduced energy estimates. In this section we derive the local-in-time reduced energy
estimates. We follow a procedure familiar from Sections 4 and 5B: we first introduce appropriate notation,
then record the relevant energy-dissipation relation and the precise form of the nonlinear interactions that
arise, and finally we estimate these nonlinear interactions and close the reduced energy estimates.

Let us introduce compact notation that will be used throughout this section when developing the local-
in-time reduced energy estimates. Considering the functions Y = (v, φ, b) : [0, T )× T3

→ R3
× R3

× R2,
W = (u, θ, K ) : [0, T ) × T3

→ R3
× R3

× Sym(3), and F = ( f1, f2, f3) : [0, T ) × T3
→ R3

× R3
× R2,

we will write the system
∂tv − (∇ · T )(v, φ) = f1,

(Jeq + K )∂tφ + (Jeq + K )(u · ∇)φ + (ωeq + θ) × (Jeq + K )φ

+ τ̃ 2b̃⊥
+ φ × Jeqωeq − 2 vec T (v, φ)+ (∇ · M)(φ) = f2,

∂t b − τ̃b⊥
+ (ν − λ)φ̄⊥

= f3

in a more compact form as T (K )∂t Y −LW Y =F , where T (K ) = I3 ⊕(Jeq + K )⊕ I2 and the operator LW

is given by LW Y = (−(∇ · T )(v, φ), (⋆), −τ̃b⊥
+ (ν − λ)φ̄⊥) for

(⋆) = (Jeq + K )(u · ∇)φ + (ωeq + θ) × (Jeq + K )φ + τ̃ 2b̃⊥
+ φ × Jeqωeq − 2 vec T (v, φ)+ (∇ · M)(φ).

We also define the associated energy, namely

E(Y ; K ) :=
1
2

∫
T3

|v|
2
+

1
2

∫
T3

(Jeq + K )φ · φ +
1
2

τ̃ 2

ν − λ

∫
T3

|b|
2, (6-1)

and its counterpart summed up to a 2M count of parabolic derivatives, i.e.,

ẼM,K (Y ) :=

∑
|α|P⩽2M

E(∂αY ; K ). (6-2)

We now introduce notation used to write the full system in terms of the system introduced above. So
let us define, for p : [0, T ) × T3

→ R, 3(p) := (−∇ p, 0, 0), and, for Z = (u, θ, K ),

N (Z) = (−u · ∇u, −θ × Kωeq, −u · ∇a + θ3a⊥
+ (K − K33 I2)θ̄

⊥). (6-3)

We may then write the full system (2-1) as

T (K )∂t Y −LZ Y = N (Z) + 3(p) (6-4)

subject to
∇ · u = 0 and ∂t K + u · ∇K = [�eq + 2, Jeq + K ].

Note that the form of N3(Z) in (6-3) comes from Lemma A.6 since, for S = [�eq + 2, Jeq + K ],

(S12, S13) = −(ν − λ)θ̄⊥
+ τ̃a⊥

+ (K − K33 I2)θ̄
⊥

+ θ3a⊥.
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We now record a result akin to Lemma 5.9, precisely comparing various versions of the local energy.

Lemma 6.1 (comparisons of the different versions of the reduced energies). Let ẼM,K be defined as
in (6-2). There exist constants c̃E , C̃E > 0 such that if ∥K∥L∞ < 1

2λ then c̃EEM ⩽ ẼM,K ⩽ C̃EEM .

Proof. This follows by choosing c̃E and C̃E exactly as in Lemma 5.9. □

We now turn our attention to the energy-dissipation relation, which we record below.

Lemma 6.2 (generic energy-dissipation relation for the local-in-time reduced energy estimates). Suppose
that Y = (v, φ, b), W = (u, θ, K ), and p satisfy T (K )∂t Y − LW Y = F + 3(p), where we define
3(p) =: (−∇ p, 0, 0), subject to ∇ · u = ∇ · v = 0 and ∂t K + (u · ∇)K = [�eq + 2, Jeq + K ]. Then

d
dt

E(Y ; K ) + D(u, θ) =

∫
T3

CF · Y, (6-5)

where C := I3 ⊕ I3 ⊕ τ̃ 2/(ν − λ)I2 and D is the usual dissipation, as given in (2-6).

Proof. This energy estimate is obtained in the same way as the energy estimate of Proposition 4.9. □

With the energy-dissipation relation in hand we may identify the precise forms of the nonlinear
interactions in Lemma 6.3 below. Recall that the energy E is defined in (6-1).

Lemma 6.3 (recording the form of the interactions for the local-in-time reduced energy estimate). Suppose
that Z = (u, θ, K ), where a = (K12, K12) and p solve (2-1). Then we have that, for every multi-index
α ∈ N1+3,

d
dt

E(∂αu, ∂αθ, ∂αa; K ) + D(∂αu, ∂αθ) = N α,

where, for τ̌ := τ̃ 2/(ν − λ),

N α
=

∫
T3

[K∂t , ∂
α
]θ · ∂αθ −

∫
T3

[(Jeq + K )(u · ∇), ∂α
]θ · ∂αθ −

∫
T3

[(ωeq + θ) × (Jeq + K ), ∂α
]θ · ∂αθ

−

∫
T3

∂α(u · ∇u) · ∂αu −

∫
T3

∂α(θ × Kωeq) · ∂αθ − τ̌

∫
T3

∂α(u · ∇a) · ∂αa

+ τ̌

∫
T3

∂α(θ3a⊥) · ∂αa + τ̌

∫
T3

∂α((K − K33 I2)θ̄
⊥) · ∂αa. (6-6)

Proof. In order to streamline the proof let us write Y = (u, θ, a). Applying a derivative ∂α to (2-1) shows
that ∂αY solves

T (K )∂t∂
αY −LZ∂αY = [T (K )∂t , ∂

α
]Y − [LZ , ∂α

]Y + ∂α(N (Z)) + 3(p) =: Fα
+ 3(∂α p) (6-7)

subject to (2-1b) and (2-1d). We may thus apply Lemma 6.2 to deduce that

d
dt

E(∂αY ; K ) + D(∂αu, ∂αθ) =

∫
T3

CFα
· ∂αY =: N α,

where C = I3 ⊕ I3 ⊕ τ̌ I2 is as in Lemma 6.2 and where

N α
=

∫
T3

C[T (K )∂t , ∂
α
]Y · ∂αY︸ ︷︷ ︸

N α
I

−

∫
T3

C[LZ , ∂α
]Y · ∂αY︸ ︷︷ ︸

−N α
II

+

∫
T3

C∂α(N (Z)) · ∂αY︸ ︷︷ ︸
N α

III

.
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It now suffices to compute N α
I , N α

II, and N α
III. Since [T (K )∂t , ∂

α
] = 03 ⊕ [K∂t , ∂

α
] ⊕ 02, we see that

N α
I =

∫
T3

[K∂t , ∂
α
]θ · ∂αθ. (6-8)

Now note that

[LZ , ∂α
] = 03 ⊕ ([(Jeq + K )(u · ∇), ∂α

] + [(ωeq + θ) × (Jeq + K ), ∂α
]) ⊕ 02,

and hence

N α
II = −

∫
T3

[(Jeq + K )(u · ∇), ∂α
]θ · ∂αθ −

∫
T3

[(ωeq + θ) × (Jeq + K ), ∂α
]θ · ∂αθ. (6-9)

Finally, it follows immediately from the form of N that

N α
III = −

∫
T3

∂α(u · ∇a) · ∂αu −

∫
T3

∂α(θ × Kωeq) · ∂αθ − τ̌

∫
T3

∂α(u · ∇a) · ∂αa

+ τ̌

∫
T3

∂α(θ3a⊥) · ∂αa + τ̌

∫
T3

∂α((K − K33 I2)θ̄
⊥) · ∂αa. (6-10)

To conclude we sum (6-8)–(6-10) and obtain (6-6). □

We now estimate these interactions.

Lemma 6.4 (estimating the interactions for the local-in-time reduced energy estimates). Let M ⩾ 4
be an integer and let N =

∑
|α|P⩽2M N α for N α as in Lemma 6.3. The following estimate holds: for

Y = (u, θ, a),

|N | ≲ ∥∇K∥L∞∥(u, θ)∥2
P2M+1 + ∥K∥P2M (∥Y∥

2
P2M + ∥Y∥

3
P2M ) + ∥Y∥

3
P2M .

Proof. Let us write the terms in N in order as N α1, . . . ,N α8 . These interactions are either identical or
very similar to the interactions Ni , i = 1, . . . , 7, estimated in Lemma 5.13. We will thus provide very
few details here and instead point to the relevant portions of the proof of Lemma 5.13.

Identical interactions. Some terms in N here are identical to terms in N in Lemma 5.13. The correspon-
dence between these terms, and the ensuing estimates, are recorded below:

N 1 = N5, |N 1| ≲ ∥∇K∥L∞∥θ∥
2
P2M+1 + ∥K∥P2M ∥θ∥

2
P2M ,

N 2 = N6, |N 2| ≲ (1 + ∥K∥P2M )∥(u, θ)∥3
P2M ,

N 3 = N7, |N 3| ≲ ∥K∥P2M (∥θ∥
2
P2M + ∥θ∥

3
P2M ) + ∥θ∥

3
P2M ,

N 4 = N1, |N 4| ≲ ∥u∥
3
P2M ,

N 5 = N2, |N 5| ≲ ∥K∥P2M ∥θ∥
2
P2M .

Similar interactions. The terms N 6 –N 8 are similar to N1 in Lemma 5.13, so proceeding similarly yields

|N 6| ≲ ∥u∥P2M ∥a∥
2
P2M , |N 7| ≲ ∥θ∥P2M ∥a∥

2
P2M , and |N 8| ≲ ∥K∥P2M ∥θ∥P2M ∥a∥P2M . □

We may now combine the energy-dissipation relation of Lemma 6.2 and the interactions estimates
of Lemma 6.4 in order to derive a preliminary form of the reduced energy estimates. Recall that ẼM,K

and DM are defined in (6-2) and (3-8), respectively.
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Lemma 6.5 (reduced a priori estimate). There exist δloc
r > 0 and CG > 0 such that if K satisfies

∥K∥L∞ < 1
2λ and ∥∇K∥L∞ < δloc

r , and Y = (u, θ, a) and Z = (u, θ, K ), where a = (K12, K13), and p
solve (2-1) then

d
dt

ẼM,K (Y ) +
1
2DM(u, θ) ⩽ CG(1 + ∥K∥P2M )g(ẼM,K (Y )),

where g(x) = x + x3/2 for every x ⩾ 0.

Proof. Lemma 6.3 tells us that (d/dt)E(∂αY ; K ) + D(∂αu, ∂αθ) = N α for any multi-index α ∈ N1+3.
We may thus sum over |α|P ⩽ 2M and use Lemmas 4.12, 6.1, and 6.4 to deduce that, for some C1 > 0,

d
dt

ẼM,K (Y ) +DM(u, θ) ⩽ C1∥∇K∥L∞DM(u, θ)+ C1(1 + ∥K∥P2M )g(ẼM,K (Y )).

In particular, picking δloc
r > 0 sufficiently small to ensure that C1δ

loc
r ⩽ 1

2 , we may deduce the result. □

The last tool required to derive the reduced energy estimates is a nonlinear Gronwall-type argument:

Lemma 6.6 (local-in-time Bihari argument). Suppose that e, d : [0, T ) → [0, ∞) for some T > 0 are
continuously differentiable and satisfy, for some C > 0, that e′(t)+ d(t) ⩽ Cg(e(t)) for every 0 < t < T ,
where g(x) =: x + x3/2 for every x ⩾ 0. Suppose, moreover, that there are some 0 ⩽ t1 < t2 < T and
α1 > 0 such that e(t1) ⩽ α1 and t2 − t1 ⩽ min(1, G(α1))/C , where G(x) := log(1 + 1/

√
x) for every

x ⩾ 0. Then, for any t1 ⩽ t ⩽ t2,

e(t) ⩽ G−1( 1
2 G(α1)

)
and d(t) ⩽ α1 + (g ◦ G−1)

(1
2 G(α1)

)
.

Proof. Similar to Lemma 5.15, this result follows from a nonlinear Gronwall argument; see for example
[Boyer and Fabrie 2013]. □

We now have in hand all the pieces necessary to prove the local-in-time reduced energy estimates. In
particular, recall that both EM and DM (which are defined in Section 3) are functionals which depend only
on u, θ , and a. This is precisely why this is called a reduced energy estimate. Note that the definitions
of EM and DM may be found in (3-2) and (3-8), respectively.

Proposition 6.7 (local-in-time reduced energy estimate). Let δloc
r > 0 be as in Lemma 6.5. There is a

nonincreasing and continuous function φr : (0, ∞) → (0, ∞) and a strictly decreasing and continuous
function ρr : (0, ∞) → (0, ∞) which vanishes asymptotically at zero such that, for any T > 0 and any
Y = (u, θ, a), Z = (u, θ, K ), where a = (K12, K13), and p satisfying

sup
0⩽t<T

∥K (t)∥L∞ < 1
2λ and sup

0⩽t<T
∥∇K (t)∥L∞ < δloc

r (6-11)

and solving (2-1), if 0 ⩽ t1 < t2 < T satisfy

t2 − t1 ⩽
φr (∥Y (t1)∥P2M )

1 + sup0⩽t⩽t2∥K (t)∥P2M
(6-12)

then the following estimate holds on [t1, t2]:

sup
t1⩽t⩽t2

EM(t) +

∫ t2

t1
DM(s) ds ⩽ ρr (∥Y (t1)∥P2M ).

Recall that EM and DM are defined in Section 3.
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Proof. Let us begin by defining CK := sup0⩽t⩽t2∥K (t)∥P2M and noting that, by virtue of (6-11), Lemma 6.1
tells us that ẼM,K (Y (t1)) ⩽ CE∥Y (t1)∥2

P2M =: α1. Now Lemma 6.5 tells us that

d
dt

ẼM,K (Y ) +DM(u, θ) ⩽ CG(1 + CK )g(α1)

for g(x) := x + x3/2. Therefore, for G(x) := log(1 + 1/
√

x) as in Lemma 6.6 and

φr (α) :=
min(1, G(CEα))

CG
for every α > 0,

(6-12) tells us that we may apply Lemma 6.6. Combining Lemma 6.6 with Lemma 6.1, we deduce that

sup
t1⩽t⩽t2

EM(t) +

∫ t2

t1
DM(s) ds ⩽ 1

ce
G−1( 1

2 G(α1)
)
+ α1 + (g ◦ G−1)

( 1
2 G(α1)

)
=: ρr (∥Y (t1)∥P2M ). □

6B. Supplementary estimates. In this section we record supplementary estimates that are required to
parlay the reduced energy estimates obtained in Section 6A above into a continuation argument (recorded in
Section 6C) capable of gluing together the main a priori estimates of Section 4 and the local well-posedness
theory of Section 5.

Many of the results in this section are variants of results obtained in Section 4 which no longer rely on
any smallness assumption on the solution. Correspondingly, the bounds obtained are often polynomial
(whereas they were linear when a smallness assumption was made). In particular, we will employ the
functionals EM and E low several times, so we recall that their definitions may be found in (3-2) and (3-3),
respectively. We begin by recording a result comparing two versions of the energy, where recall that ẼM

is also defined in (3-2).

Lemma 6.8 (comparisons of different versions of the energies under a smallness condition). There exist
constants c̃E , C̃E > 0 such that if ∥K∥L∞ < 1

2λ then c̃EEM ⩽ ẼM ⩽ C̃EEM .

Proof. This follows by choosing c̃E and C̃E exactly as in Lemma 5.9. □

We now record an auxiliary L∞ estimate for ∂t K which is necessary in order to control the low-level
interactions.

Lemma 6.9 (L∞ estimate for ∂t K ). If K solves (2-1d) then ∥∂t K∥L∞ ≲ ∥θ∥H2 +(1 + ∥(u, θ)∥H2)∥K∥H3 .

Proof. This follows from (2-1d), the fact that L∞ is a Banach algebra, and the embedding H 2 ↪→ L∞. □

With Lemma 6.9 in hand we may record the following reformulation of the control of the low-level
interactions obtained in Lemma 4.16. We recall that Dlow and I low are defined in (3-9) and (3-10),
respectively.

Corollary 6.10 (careful estimates of the low-level interactions). There is a polynomial P with nonnegative
coefficients and which vanishes at zero such that |I low| ⩽ P(∥Y∥P3, ∥K∥H3)Dlow. In particular, if
∥Y∥P3 ⩽ 1 and ∥K∥H3 ⩽ 1 then |I low| ≲ (∥Y∥P3 + ∥K∥H3)Dlow.

Proof. This follows immediately from combining Lemmas 4.16 and 6.9. □
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We now turn our attention to a result similar to Proposition 4.30 where we obtain the decay of interme-
diate norms. The difference here is that the smallness assumption on EM (present in Proposition 4.30) is
replaced by a smallness assumption on ∥K∥H3 since the latter is guaranteed to be small due to the space
in which our local well-posedness theory produces solutions.

Proposition 6.11 (decay of low-level energy provided smallness of the reduced high-level energy). Let
M ⩾ 3 be an integer. There exist δI > 0 and C I > 0 such that, for every T > 0, if

sup
0⩽t<T

∥K (t)∥H3 ⩽ δI and sup
0⩽t<T

EM(t) =: δ0 ⩽
1
2 (6-13)

then
sup

0⩽t<T
E low(t)(1 + t)2M−2 ⩽ C I δ0. (6-14)

Proof. The proof of this result employs the same strategy as the proof of Proposition 4.20 where we
close the energy estimates at the low level, so we omit the details and only discuss how the proof of
Proposition 4.20 must be modified to apply here. There are two key differences: (1) the low-level
interactions are controlled by Corollary 6.10 (and not Corollary 4.17) because here we must clearly
identify how K appears in the low-level interactions and (2) the different versions of the energy are
compared using Lemma 6.8 (instead of Proposition A.3 and Lemma 4.11) since here we use the smallness
of K , instead of the regularity of the solutions, to ensure the positive-definiteness of J = Jeq + K . There
is also a minor difference to take into account: there is no need here to improve the energy, so by contrast
with Proposition 4.20 we do not need to appeal to Proposition 4.15. □

We conclude this section with auxiliary estimates for K which are a consequence of the advection-
rotation estimates proved in Section 4A. Proposition 6.12 is therefore similar to Proposition 4.8 which
performed the synthesis of the advection-rotation estimates proved in Section 4A. The key difference here
is that there are no smallness assumptions being made, and as a result the bounds in both the hypotheses
and the conclusion of Proposition 6.12 below are in terms of nonlinear functions of a smallness parameter.
We note that the various energy and dissipation functionals used below are defined in (3-3)–(3-5) and (3-8).

Proposition 6.12 (auxiliary estimates for K ). Let M ⩾ 3 be an integer. If there is some time horizon
T > 0 such that

sup
0⩽t<T

E low(t)(1 + t)2M−2
+ EM(t) +

∫ T

0
DM(s) ds ⩽ ρap(δ0) ⩽ 1 (6-15)

and
(EM +FM)(0) ⩽ ρ0(δ0) ⩽ 1 (6-16)

for some δ0⩾0 and some ρap, ρ0 : (0, ∞)→ (0, ∞) which are strictly increasing and vanish asymptotically
at zero, then there exists ρK : (0, ∞) → (0, ∞) which is strictly increasing and vanishes asymptotically at
zero such that

sup
0⩽t<T

E (K )
M (t) +

FM(t)
1 + t

⩽ ρK (δ0), (6-17)

where ρK depends on ρap and ρ0. Moreover, if ρap and ρ0 are continuous then so is ρK .
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Proof. In light of (6-15), Proposition 4.30 tells us that

sup
0⩽t<T

sup
1⩽I⩽M

KI (t)(1 + t)2M−2 ≲ ρap(δ0). (6-18)

Combining (6-15), (6-16), and (6-18), we use Proposition 4.8 to deduce that there exist C1, C2 > 0 such
that, for every 0 ⩽ t < T ,

E (K )
M (t) ⩽ C1(ρap(δ0) + ρ0(δ0)) (6-19)

and, also using Cauchy–Schwarz to deal with
∫
D1/2

M ,

FM(t) ⩽ C2

(
FM(0) +

(∫ t

0
D1/2

M (s) ds
)2

+KM(t)
)
⩽ C2((1 + t)ρ0(δ0) + ρap(δ0)). (6-20)

Combining (6-19) and (6-20) yields (6-17). □

6C. Synthesis. In this section we record the continuation argument which allows us to glue together the
local well-posedness theory and our scheme of a priori estimates. Recall that Elow, EM and FM , and DM

are defined in (3-3), (3-5), and (3-8), respectively.

Theorem 6.13 (continuation argument). Let M ⩾ 4 be an integer. There exists ηcont > 0 such that the
following holds: for any finite time horizon T > 0, if we have a solution of (2-1) on [0, T ] whose initial
condition satisfies

(EM +FM)(0) =: η0 ⩽ ηcont (6-21)

and which lives in the small energy regime, i.e.,

sup
0⩽t⩽T

Elow(t)(1 + t)2M−2
+ EM(t) +

FM(t)
1 + t

+

∫ T

0
DM(s) ds ⩽ Capη0 (6-22)

for Cap > 0 as in Theorem 4.34, then there exists a timescale τ > 0 such that the solution can be uniquely
continued on [0, T + τ ] where it continues to live in the small energy regime, i.e., (6-22) holds with T
replaced by T + τ .

Proof. Step 1. We define the smallness parameter η > 0. We begin by picking σ > 0 small enough that

(1) σ ⩽ σ(δloc
ap ) for δloc

ap as in Lemma 5.14 and σ = σ(δ) as in the beginning of Section 5,

(2) σ ⩽ σ(δloc
r ) for δloc

r as in Lemma 6.5 and σ = σ(δ) as in the beginning of Section 5,

(3) σ ⩽ δI for δI as in Proposition 6.12.

We then pick η > 0 sufficiently small to satisfy

(4) η ⩽ σ 2
∗
/Cap for σ∗ = σ/(2CK ) as in Theorem 5.24,

(5) max(Capη, ρr (
√

Capη)) ⩽ 1
2 for ρr as in Proposition 6.7,

(6) η ⩽ 1,

(7) ρr (
√

Capη) + ρK (η) ⩽ 1
2δap for δap as in Theorem 4.34 and ρK as in Proposition 6.12, where ρK

depends on ρ0 and ρap given by ρ0 := id and ρap(x) := max(Capx, ρr (
√

Capx)),

(8) Capη ⩽ 1
2δap, and

(9) η ⩽ ηap for ηap as in Theorem 4.34.
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In particular, note that choosing the parameter η in this way enforces the following implication: since
M ⩾ 3, if (6-22) holds then

sup
0⩽t⩽T

∥K (t)∥2
H3 ⩽ sup

0⩽t⩽T
E (K )

M (t) ⩽ σ 2
∗
, (6-23)

i.e., ∥K (t)∥H3 < σ when the solution lives in the small energy regime.

Step 2. We now identify the timescale τ on which we may both (1) continue the solution and (2) obtain
estimates on the continued solution. Correspondingly, there are two constraints on how large the timescale τ

may be: (1) the first constraint comes from the local well-posedness theory of Theorem 5.24 and (2) the
second constraint comes from the local-in-time reduced energy estimate of Proposition 6.7.

So let us define, for φ as in Theorem 5.24 and φr as in Proposition 6.7,

τlwp := φ(
√

Cap(2 + T )η0), τr :=
φr (

√

Capη0)

1 +

√

Cap(2 + T )η0
, and τ :=

1
3 min(τlwp, τr ).

In particular, note that 2τ < min(τlwp, τr ). Note also that, for every 0 ⩽ t ⩽ T , by virtue of (6-22), if we
write Z = (u, θ, K ) and Y = (u, θ, a) then

φ(∥Z(t)∥H2M ) ⩾ φ((EM +FM)1/2(t)) ⩾ τlwp (6-24)
and

φr (∥Y (t)∥P2M )

1 + sup0⩽s⩽T ∥K (s)∥P2M
⩾

φr (
√

Capη0)

1 + sup0⩽s⩽T (EM +FM)1/2(s)
⩾ τr . (6-25)

Step 3. Having identified the appropriate timescale τ we may now turn the crank of the local well-
posedness theory. Feeding (6-23) and (6-24) into Theorem 5.24 using the initial condition Z(T − τ),
where Z = (u, θ, K ) as usual, we see that the solution may be uniquely continued to [0, T + τ ] where, in
light of (6-23), it satisfies

sup
T −τ⩽t⩽T +τ

∥K (t)∥H3 < σ. (6-26)

Step 4. We conclude by performing estimates on the solution on the time interval [T − τ, T + τ ] that
ensure that the solution remains in the small energy regime of (6-22). In light of (6-25) and (6-26) we
apply the local-in-time reduced energy estimate of Proposition 6.7 on the interval [T − τ, T + τ ] to obtain

sup
T −τ⩽t⩽T +τ

EM(t) +

∫ T +τ

T −τ

DM(s) ds ⩽ ρr (
√

Capη0) (6-27)

for ρr as in Proposition 6.7.
We now string together (6-27) and Propositions 6.11 and 6.12, which tells us that, in light of the

smallness conditions (3)–(5),

sup
T −τ⩽t⩽T +τ

E low(t)(1 + t)2M−2 ⩽ C I max(Capη0, ρr (
√

Capη0)),

where C I is as in Proposition 6.11, and hence, in light of the smallness condition (6),

sup
T −τ⩽t⩽T +τ

E (K )
M (t) +

FM(t)
1 + t

⩽ ρK (η0) (6-28)

for ρK defined as in the smallness condition (7).
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So finally, putting together (6-27) and (6-28) tells us that, in light of the smallness condition (7),

sup
T −τ⩽t⩽T +τ

EM(t) +

∫ T +τ

T −τ

DM(s) ds ⩽ 1
2δap. (6-29)

In light of the smallness condition (8) we may therefore combine (6-22) and (6-29) to see that

sup
0⩽t⩽T +τ

EM(t) +

∫ T +τ

0
DM(s) ds ⩽ δap. (6-30)

To conclude we feed (6-30) into the a priori estimates of Theorem 4.34, which is legal in light of the
smallness condition (9), and obtain

sup
0⩽t⩽T +τ

Elow(t)(1 + t)2M−2
+ EM(t) +

FM(t)
1 + t

+

∫ T +τ

0
DM(s) ds ⩽ Capη0. □

7. Global well-posedness and decay

In this section we put together the a priori estimates of Section 4, the local well-posedness of Section 5,
and the continuation argument of Section 6 in order to obtain the main result of this paper, namely global
well-posedness and decay about equilibrium. This is supplemented by a quantitative rigidity result which
allows us to deduce decay of K .

In order to prove the main result, there are two auxiliary results that we need in addition to the results
proved in Sections 4–6. The first one is the first part of Lemma 7.1, which accounts for the mismatch
between the energies used for the local well-posedness and the a priori estimates. This result ensures that,
close to time t = 0, the local solution lives in the smallness regime to which the a priori estimates apply.
The second one is Proposition 7.5 which allows us to control the initial energy, involving time derivatives,
in terms of purely spatial norms. Note that this is reminiscent of Lemma 5.18 from the local well-posedness
theory, which fulfilled a similar purpose for solutions of the approximate systems. In particular, the first
part of Lemma 7.1 and Lemmas 7.2–7.4 only serve the purpose of leading up to Proposition 7.5.

We begin with Lemma 7.1 below. Note that Lemma 4.7 forms the crux of the argument in the first
part of Lemma 7.1, as it does for similar estimates in Section 4. The difference here (by contrast with
estimates recorded in Section 4) is that we do not make any smallness assumptions. Note that in the first
part of Lemma 7.1 we only control (parts of) E (K )

M , whereas in the second part we control FM as well.

Lemma 7.1 (auxiliary estimates for K ). Let M ⩾ 2 be an integer. There exists a constant CK > 0 such
that if K solves (2-1d) then, for Z = (u, θ, K ), we have the estimates

∥∂2
t K∥

2
H2M−3 +

M∑
j=3

∥∂
j

t K∥
2
H2M−2 j+2 ⩽ CK (∥Z∥

2
P2M + ∥Z∥

(2M+1)

P2M )

and

∥K∥
2
H2M+1 +

M∑
j=1

∥∂
j

t K∥
2
H2M−2 j+2 ⩽ CK (∥Z∥

2
P2M + ∥K∥

2
H2M+1 + (∥Z∥

2
P2M + ∥K∥

2
H2M+1)

(2M )).

Note that the summation on the left-hand side of the second inequality can be written more compactly as
∥K∥P2M+2

1,M
, which comes in handy in the sequel.
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Proof. We begin with the first inequality. For any j ⩾ 1, Lemma 4.7 tells us that

∥∂
j

t K∥H2M−2 j+2 ≲ ∥Z∥P2M + ∥Z∥
2
P2M + ∥∂

j−1
t K∥

2
H2M−2 j+3 . (7-1)

We immediately deduce that, since 2M − 3 = (2M − 2 · 2 + 2) − 1,

∥∂2
t K∥H2M−3 ≲ ∥Z∥P2M−1 + ∥Z∥

2
P2M−1 + ∥∂t K∥

2
H2M−2 ≲ ∥Z∥P2M + ∥Z∥

4
P2M

and
∥∂3

t K∥H2M−4 ≲ ∥Z∥P2M + ∥Z∥
2
P2M + ∥∂2

t K∥
2
H2M−3 ≲ ∥Z∥P2M + ∥Z∥

8
P2M .

To conclude we proceed by induction. Suppose that, for some 3 ⩽ j ⩽ M − 1,

∥∂
j

t K∥H2M−2 j+2 ≲ ∥Z∥P2M + ∥Z∥
(2 j )

P2M .

Then, by (7-1),

∥∂
j+1

t K∥H2M−2 j ≲ ∥Z∥P2M + ∥Z∥
2
P2M + ∥∂

j
t K∥

2
H2M−2 j+1 ≲ ∥Z∥P2M + ∥Z∥

(2 j+1)

P2M ,

and so the claim follows by induction.
We now prove the second inequality. We observe that, since H s is a Banach algebra when s > 3

2 , we
may immediately deduce from (2-1d) that

∥∂
j

t K∥H2M−2 j+2 ≲ ∥Z∥P2M
j−1

+ ∥K∥P2M+1
j−1

+ (∥Z∥P2M
j−1

+ ∥K∥P2M+1
j−1

)2 for every 1 ⩽ j ⩽ M.

For simplicity, we will write pb
a(x) := xa

+ xb. The inequality above may thus be written as

∥∂
j

t K∥H2M−2 j+2 ≲ p2
1(∥Z∥P2M

j−1
+ ∥K∥P2M+1

j−1
) for every 1 ⩽ j ⩽ M. (7-2)

This notation is particularly useful due to its behavior under composition. Indeed, we see immediately
that pb

a ◦ pd
c ≲ pbd

ac . The result now follows from iterating (7-2), and we may induct on 1 ⩽ j ⩽ M to
show that

∥K∥H2M+1 + ∥K∥P2M+2
1, j

≲ p2 j

1 (∥Z∥P2M + ∥K∥H2M+1),

which proves the claim. □

We now turn our attention towards the control of the initial energy in terms of purely spatial norms. In
order to do so, we first record H k bounds on the inverse of Jeq + K reminiscent of Lemma 5.5. However,
such bounds are easier to obtain here since we do not have to deal with any projections, as was the case
in Lemma 5.5. Note that in the lemma below we consider K : T3

→ Sym(3) (i.e., there is no dependence
in time). When K satisfies (2-1) (and is hence time-dependent), this means that the lemma below applies
pointwise in time.

Lemma 7.2 (H k bounds on (Jeq + K )−1). Suppose that Jeq = diag(λ, λ, ν) for ν > λ > 0 and that
K : T3

→ Sym(3) satisfies ∥K∥L∞ < 1
2λ. Then Jeq +K is pointwise invertible and, for every integer k ⩾ 1,

(1) ∥(Jeq + K )−1
∥L(L2;L2) ⩽ 2/λ and

(2) ∥(Jeq + K )−1
∥L(H k ;H k) ≲ ∥K∥H k+2 + ∥K∥

k
H k+2 .
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Proof. The strategy here is the same as that used when studying the inverse of Jeq + Pn ◦ K in Lemmas 5.1,
5.4, and 5.5 of Section 5A when developing the local well-posedness theory.

First we show that Jeq + K is pointwise invertible. This follows from the fact that the quadratic form
that it generates is pointwise positive-definite and indeed, for every x ∈ T3 and every w ∈ R3,

(Jeq + K )(x)w · w = Jeqw · w + K (x)w · w > λ|w|
2
− ∥K∥L∞ |w|

2 > 1
2λ|w|

2. (7-3)

Moreover, we may immediately deduce from (7-3) that ∥(Jeq + K )−1
∥L∞ ⩽ 2/λ from which item (1)

follows.
Now we establish formulae for derivatives of (Jeq + K )−1 reminiscent of the formulae of Lemma 5.4.

Note that ∂i (Jeq + K )−1
= −(Jeq + K )−1(∂i K )(Jeq + K )−1, and hence for any multi-index α ∈ N3,

∂α(Jeq + K ) =

|α|∑
l=1

(−1)l
∑

α1+···+αl=α

M(α1, . . . , αl)(K ),

where

M(α1, α2, . . . , αl)(K ) := (Jeq + K )−1(∂α1 K )(Jeq + K )−1(∂α2 K ) · · · (∂αl K )(Jeq + K )−1.

The crux of the argument now lies in obtaining L2-to-L2 bounds on the operators M. In light of the
L∞ bound on (Jeq + K )−1, we may proceed as in Lemma 5.5 and, for any v ∈ L2 and for k := max|αi |,
estimate ∥M(α1, . . . , αl)(K )∥L(L2;L2) ≲ ∥K∥

l
H k+2 .

We may now conclude the proof and obtain item (2) by proceeding once again as in Lemma 5.5. For
any k ⩾ 2 and any v ∈ H k , the L2-to-L2 bounds on M tells us that

∥(Jeq + K )−1v∥H k ≲ (∥K∥H k+2 + ∥K∥
k
H k+2)∥v∥H k ,

from which item (2) follows. □

We continue our progress towards Proposition 7.5 and record elementary estimates on the nonlinearities
of the problem.

Lemma 7.3 (auxiliary estimates of the nonlinearity). Let (⋆) denote any of the nonlinear terms in (2-1c),
(2-1d), or (2-2), except K∂tθ . Writing Z = (u, θ, K ), we have that, for every j, k ∈ N with j ⩾ 1,

(1) ∥[K∂t , ∂
j−1

t ]θ∥H k ≲ ∥Z∥
2
Pk+2 j

j−1
and (2) ∥∂

j−1
t (⋆)∥H k ≲ ∥Z∥Pk+2 j

j−1
+ ∥Z∥

3
Pk+2 j

j−1
.

Proof. These estimates rely on the fact that H s is a Banach algebra when s > 3
2 and on the product

estimates of Lemma B.4. We omit the details — see Lemma 5.17 for very similar estimates. □

The last result we need in order to prove Proposition 7.5 is reminiscent of Lemma 5.18. In Lemma 7.4
below we show that the parabolic norm of Z can be controlled by a purely spatial norm.

Lemma 7.4 (bounds on the parabolic norm by purely spatial norms). Let M ⩾ 1 be an integer. There
exists a constant CM > 0 such that, for any time horizon T > 0, the following holds: if Z = (u, θ, K )

solves (2-1b)–(2-1d) and (2-2) on [0, T ] and satisfies sup0⩽t⩽T ∥K (t)∥L∞ ⩽ 1
2λ, then, for every 0⩽ t ⩽ T ,

we have that ∥Z(t)∥P2M ≲ ∥Z(t)∥H2M + ∥Z(t)∥CM
H2M . In particular, this holds when t = 0.
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Proof. We proceed as in Lemma 5.18. We apply ∂
j−1

t to (2-1b)–(2-1d) and (2-2), invert Jeq + K (which
is allowed as per Lemma 7.2), and deduce the following. On one hand, for 1 ⩽ j ⩽ M − 1, we may use
Lemmas 7.2 and 7.3 to obtain that, using the notation pb

a(x) := xa
+ xb for a < b and x ⩾ 0,

∥∂
j

t Z∥H2M−2 j ≲ (∥K∥H2M−2 j+2 + ∥K∥
2M−2 j
H2M−2 j+2)(∥Z∥P2M

j−1
+ ∥Z∥

3
P2M

j−1
)

= p2M−2 j
1 (∥K∥H2M )p3

1(∥Z∥P2M
j−1

) ≲ p2M−2 j+3
1 (∥Z∥P2M

j−1
). (7-4)

On the other hand, for j = M , using Lemmas 7.2 and 7.3 tells us that

∥∂M
t Z∥L2 ≲ ∥Z∥P2M

M−1
+ ∥Z∥P2M

M−1
= p3

1(∥Z∥P2M
j−1

). (7-5)

Combining (7-4) and (7-5) and unpacking the definition of ∥ · ∥Pk
j

we see that, for every 1 ⩽ j ⩽ M ,

∥Z∥P2M
j

≍ ∥Z∥P2M
j−1

+ ∥∂
j

t Z∥H2M−2 j ≲ p2M−2 j+3
1 (∥Z∥P2M

j−1
). (7-6)

Iterating this inequality yields

∥Z∥P2M = ∥Z∥P2M
M

≲ (p3
1 ◦ p5

1 ◦ · · · ◦ p2M−1
1 )(∥Z∥P2M

0
), (7-7)

from which, since ∥Z∥P2M
0

= ∥Z∥H2M , the claim follows. In particular, note that, as in Lemma 5.18,

CM =
∏M

j=1(2M − 2 j + 3). □

We may now prove the second auxiliary result of this section required to prove Theorem 7.6 below.
In Proposition 7.5 we prove that the initial energy may be controlled in terms of purely spatial norms.
Recall that EM and FM are defined in (3-5).

Proposition 7.5 (control of the full energy by purely spatial norms). Let M ⩾ 1 be an integer. There
exist Cs, CM > 0 such that, for any time horizon T > 0, the following holds: if Z = (u, θ, K ) solves
(2-1b)–(2-1d) and (2-2) on [0, T ] and satisfies sup0⩽t⩽T ∥K (t)∥L∞ ⩽ 1

2λ, then, for every 0 ⩽ t ⩽ T ,

EM +FM ⩽ Cs(∥Z∥
2
H2M + ∥Z∥

2M+1CM
H2M + ∥K∥

2
H2M+1 + ∥K∥

2M+1

H2M+1).

In particular, this holds when t = 0.

Proof. We proceed in two steps. First we use Lemma 7.1 to show that EM +FM can be controlled by
∥Z∥P2M and ∥K∥H2M+1 , then we use Lemma 7.4 to show that ∥Z∥P2M can be controlled by ∥Z∥H2M .

Before we begin the proof in earnest, note that we may write

EM +FM ≍ ∥Z∥
2
P2M + ∥K∥

2
H2M+1 + ∥K∥

2
P2M+2

1,M
.

It then follows immediately from Lemma 7.1 that

EM +FM ≲ ∥Z∥
2
P2M + ∥Z∥

2M+1

P2M + ∥K∥
2
H2M+1 + ∥K∥

2M+1

H2M+1 .

We may combine this inequality with Lemma 7.4 to conclude that indeed

EM +FM ≲ ∥Z∥
2
H2M + ∥Z∥

2M+1CM
H2M + ∥K∥

2
H2M+1 + ∥K∥

2M+1

H2M+1

for CM > 0 as in Lemma 7.4. □
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We may now prove the main result of this paper. In order to do so, recall first that Elow, EM and FM ,
and DM are defined in (3-3), (3-5), and (3-8), respectively.

Theorem 7.6 (global well-posedness and decay). Let M ⩾ 4 be an integer and recall that the global
assumptions of Definition 1.1 hold. There exist universal constants η, C > 0 depending only on M such
that the following holds: for any Z0 = (u0, θ0, K0) ∈ L2(T3

; R3
× R3

× Sym(3)) satisfying

∇ · u0 = 0, /
∫

T3
u0 = 0, and ∥Z0∥

2
H2M + ∥K∥

2
H2M+1 < η,

there exists a unique strong solution (Z , p) of (2-1), where

Z = (u, θ, K ) ∈ C2([0, ∞) × T3
; R3

× R3
× Sym(3))

and
p ∈ C2([0, ∞) × T3

; R).

Moreover, the solution satisfies the estimate

sup
t⩾0

Elow(t)(1 + t)2M−1
+ EM(t) +

FM

1 + t
+

∫
∞

0
DM(s) ds ⩽ C(∥Z0∥

2
H2M + ∥K0∥

2
H2M+1). (7-8)

Proof. The strategy of the proof is as follows. Coupling the local well-posedness theory of Theorem 5.24
to the auxiliary estimate for K of Lemma 7.1, which allows us to account for the mismatch between the
energies used for the local well-posedness and the energies used for the a priori estimates, we produce a
solution locally in time on which we have enough control to invoke the a priori estimates of Theorem 4.34.
This tells us that this (possibly very short-lived) solution lives in the small energy regime defined by (7-8).
Continuing this solution globally in time then follows immediately from leveraging the continuation
argument of Theorem 6.13.

We begin by defining the smallness parameter η > 0. We pick 0 < η ⩽ 1 satisfying

(1) η1/2 < σ(δloc
ap ) for δloc

ap as in Lemma 6.5 and σ = σ(δ) as in the beginning of Section 5,

(2) (2 + CK )p2M
1 ((ρe + ρd)(η)) < δap for δap as in Theorem 4.34, CK as in Lemma 7.1, ρe and ρd as in

Theorem 5.24, and p2M
1 (x) := x + x2M for all x ⩾ 0,

(3) Csη ⩽ ηap for Cs as in Proposition 7.5 and ηap as in Theorem 4.34, and

(4) Csη ⩽ ηcont for ηcont as in Theorem 6.13.

We may now construct a solution locally in time which lives in the small energy regime, as defined
by (7-8). In light of the smallness condition (1), which tells us that ∥K0∥H3 < η1/2 < σ(δloc

ap ), the local
well-posedness theory of Theorem 5.24 shows that there exists Tlwp > 0 and a strong solution

Z = (u, θ, K ) ∈ C2([0, Tlwp] × T3
; R3

× R3
× Sym(3))

and
p ∈ C2([0, Tlwp] × T3

; R)

which satisfies
sup

0⩽t⩽Tlwp

∥K (t)∥H3 < η1/2 (7-9)
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and

sup
0⩽t⩽Tlwp

∥Z(t)∥2
P2M +

∫ Tlwp

0
DM(s) ds ⩽ (ρe + ρd)(∥Z0∥H2M ), (7-10)

where recall that DM is defined in (3-8). In particular, the auxiliary estimate for K of Lemma 7.1 tells us
that, in light of (7-10) and recalling that E (K )

M is defined in (3-4),

sup
0⩽t⩽Tlwp

∥Z(t)∥2
P2M + E (K )

M (t) ⩽ (1 + CK )p2M
1
(

sup
0⩽t⩽Tlwp

∥Z(t)∥P2M
)

⩽ (1 + CK )p2M
1 ((ρe + ρd)(∥Z0∥H2M )). (7-11)

Putting (7-10) and (7-11) together tells us that, by virtue of the smallness condition (2),

sup
0⩽t⩽Tlwp

EM(t) +

∫ Tlwp

0
DM(s) ds ⩽ (2 + CK )p2M

1 ((ρe + ρd)(∥Z0∥H2M )) ⩽ δap. (7-12)

Note also that we may deduce from the smallness condition (3) and Proposition 7.5 that, since η ⩽ 1,

(EM +FM)(0) ⩽ Cs(∥Z0∥
2
H2M + ∥K0∥

2
H2M+1) ⩽ ηap. (7-13)

Combining (7-12) and (7-13) allows us to use the a priori estimate of Theorem 4.34, from which we
deduce that

sup
0⩽t⩽Tlwp

Elow(t)(1 + t)2M−2
+ EM(t) +

FM(t)
1 + t

+

∫ Tlwp

0
DM(s) ds ⩽ Cap(EM +FM)(0). (7-14)

To conclude we employ a standard continuation argument revolving around the continuation argument
of Theorem 6.13. Let us define, for any T ∈ (0, ∞],

G(T ) := sup
0⩽t⩽T

Elow(t)(1 + t)2M−2
+ EM(t) +

FM(t)
1 + t

+

∫ T

0
DM(s) ds

which we use to define the maximal time of existence

Tmax := sup{T > 0 : ∃! strong solution on [0, T ] and G(T ) ⩽ Cap(EM +FM)(0)}.

By virtue of (7-14), we know that Tmax > Tlwp > 0. Crucially, Theorem 6.13 tells us, in light of the
smallness condition (4) and (7-13) and since Tmax > 0, that Tmax cannot be finite. So indeed the solution
exists globally in time and, since Tmax = ∞, we appeal to Proposition 7.5 one last time to deduce that

G(∞) ⩽ Cap(EM +FM)(0) ≲ ∥Z0∥
2
H2M + ∥K0∥

2
H2M+1,

i.e., indeed (7-8) holds. □

In order to deduce the decay of K from Theorem 7.6 above we need the quantitative rigidity estimate of
Proposition 7.7 below. Note that the term quantitative rigidity is motivated by contrast with the following
qualitative rigidity result: if a = 0 and ∥J − Jeq∥L∞ < ν − λ then J = Jeq (this can be seen by noticing
that if a = 0 then J33 must be an eigenvalue of J , and it cannot be that J33 = λ since that would contradict
the condition ∥J − Jeq∥L∞ < ν − λ).
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Proposition 7.7 (quantitative rigidity). Let T > 0 be a time horizon and suppose that

sup
0⩽t⩽T

∥(u, θ)(t)∥H3 + ∥J (t)∥H3 + ∥∂t(u, θ)∥2
H2 + ∥∂t J∥

2
H2 < ∞. (7-15)

If sup0⩽t⩽T ∥K∥L∞ ⩽ ν − λ then sup0⩽t⩽T ∥K∥L p ⩽ 2 sup0⩽t⩽T ∥a∥L p for any 1 ⩽ p ⩽ ∞.

Proof. Since (7-15) holds we know from Proposition A.3 that J (t, x) is pointwise symmetric with
spectrum {λ, λ, ν}. The key observation now is that we may therefore find a unit vector field n(t, x) such
that J = νn ⊗ n + λ(I − n ⊗ n) pointwise (indeed we may simply take n to be the unit eigenvector of J
corresponding to the eigenvalue ν). Writing Jeq = νe3 ⊗ e3 + λ(I − e3 ⊗ e3), we may then compute

|J − Jeq|
2
= (ν − λ)2

|n ⊗ n − e3 ⊗ e3|
2
= 2(ν − λ)2(1 − n2

3) = 2(ν − λ)2
|n̄|

2.

In particular, if ∥K∥L∞ ⩽ ν − λ then we may deduce that n2
3 ⩾

1
2 pointwise. To conclude we note that

since Ji j = Je j · ei we may compute that a = (ν − λ)n3n̄. So finally

|K |
2
=

2|a|
2

n2
3

⩽ 4|a|
2,

from which the claim follows. □

In light of this quantitative rigidity result we may deduce the decay of K , and hence ∂t K , from the
decay of a. As discussed in Section 1, this argument could be iterated further in order to derive the decay
of higher-order temporal derivatives of K , but this is not done here since that decay is not used in the
scheme of a priori estimates. Recall that KI is defined in (3-6).

Proposition 7.8 (rates of decay of K and ∂t K ). Let M ⩾ 3 be an integer and let T > 0 be a time horizon.
There exists C1 > 0 such that the following holds: if (u, θ, K ) solves (2-1d) and satisfies

C := sup
0⩽t⩽T

∥K (t)∥2
L2(1 + t)2M−4

+K2(1 + t)2M−2
+

FM(t)
1 + t

< ∞, (7-16)

then, for j = 0, 1,
sup

0⩽s⩽s j

sup
0⩽t⩽T

∥∂
j

t K∥
2
H s (1 + t)2M−4−(2M−3)/s j ⩽ C1C,

where s0 = 2M + 1 and s1 = 2M.

Proof. We interpolate between the decay of ∥K∥
2
L2 and the growth of FM in (7-16) to deduce the bounds

on ∥K∥
2
H s recorded here. To obtain the bounds on ∥∂t K∥

2
H s we first use (2-1d) to read off the L2 bound

on ∂t K using Hölder’s inequality and (7-16), and then interpolate between this L2 bound and FM . □

Remark 7.9. Note that the estimates recorded above are not all decay estimates. To be precise, ∥K (t)∥H s

decays when s < 2M − 4/(2M − 3), whereas ∥∂t K∥H s decays when s < 2M − 1 − 3/(2M − 3). In
particular these regularity cut-offs approach 2M and 2M − 1, respectively, asymptotically from below as
M → +∞.

We conclude this section by proving Corollary 1.3, which records the precise decay rates of the
unknowns and their temporal derivatives.

Proof of Corollary 1.3. It suffices to combine Theorem 7.6 and Propositions 4.30, 7.7, and 7.8. □
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Appendix A: Identities involving the microinertia

In this section we record various computations and identities involving the microinertia tensor J which
are used throughout the paper.

We now record two lemmas that are used in the proof of Proposition A.3 below. This proposition is
essential to our scheme of a priori estimates and is a fundamental feature of the micropolar fluid model.
It shows that if the solution is regular enough, then the spectrum of the microinertia is propagated by the
flow. First we record a well-known result showing that the advective derivative is simply a time derivative
up to a change of variables using the flow map (i.e., with respect to Eulerian coordinates).

Lemma A.1 (calculus of advective derivatives). Let η ∈ C2([0, T ) × Rn
; Rn) be a flow map, i.e., for all

0 ⩽ t < T , we have the C1-diffeomorphism ηt := η(t, · ) with velocity u ∈ C1([0, T ) × Rn, Rn) defined by
u(t, x) := ∂tη(t, η−1

t (x)). Then ∂t(det ∇η) = ((∇ · u) ◦ η) det ∇η and, for every f ∈ C1([0, T ) × Rn
; R),

we have ∂t( f ◦ η) = ((∂t + u · ∇) f ) ◦ η, where, for any g : [0, T )× Rn
→ R, we write g ◦ η to denote the

composition (g ◦ η)(t, x) := g(t, η(t, x)).

Proof. The first identity is the well-known Liouville theorem and the second identity follows from the
first by the chain rule. □

We continue our progress towards a proof of Proposition A.3 below with an ODE result recorded in
Lemma A.2. This lemma provides an equivalent characterization of the ODE satisfied by the microinertia
(denoted by S in Lemma A.2) in Lagrangian coordinates in terms of the ODE satisfied by its rotation
matrix (denoted by Q in Lemma A.2).

Lemma A.2 (two-sided integrating factors for ODEs with commutators). Let S, A ∈ C1([0, T ); Rn×n)

be time-dependent symmetric and antisymmetric matrices, respectively, and let S0 be a fixed symmetric
real n × n matrix. The following are equivalent:

(1) S solves the initial value problem ∂t S = [A, S] on (0, T ) and S(0) = S0.

(2) There exists a time-dependent orthogonal matrix Q ∈ C1([0, T ); O(n)) such that S = QS0 QT and Q
solves the initial value problem ∂t Q = AQ on (0, T ) and Q(0) = I .

Here O(n) denotes the space of n × n real orthogonal matrices.

Proof. First we show that (2) =⇒ (1). If (2) holds then ∂t QT
= (AQ)T

= −QT A and therefore,

∂t S = ∂t QS0 QT
+ QS0∂t QT

= AQS0 QT
− QS0∂t QT A = [A, S].

Now we show that (1) =⇒ (2). Suppose that (1) holds and let us define Q(t) := exp
(∫ t

0 A(s) ds
)

such
that Q solves the initial value problem of (2). Since (1) is a linear ODE it has a unique solution, so in
order to show that S = QS0ST it suffices to show that QS0ST is a solution of the initial value problem
of (1). This follows immediately from the same computation as that which was carried out above in order
to show that (2) =⇒ (1). □

We are now ready to prove Proposition A.3 which shows that if the velocity fields and the microinertia
are sufficiently regular then the spectrum of the microinertia is propagated in time.
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Proposition A.3 (persistence of the spectrum for solutions of advection-rotation equations). Suppose
that u ∈ C1([0, T ) × Rn

; Rn) is divergence-free and consider �, J ∈ C1([0, T ) × Rn
; Rn×n), where � is

antisymmetric. If they satisfy
∂t J + u · ∇ J = [�, J ] and J (0, · ) = J0

for some real n×n matrix J0 then there exists a flow map η ∈ C2([0, T ) × Rn
; Rn), where ηt := η(t, · ) is a

C1-diffeomorphism for all 0⩽ t < T , and there exists an Eulerian rotation map R ∈C1([0, T ) × Rn
; O(n))

such that
J = R(J0 ◦ η−1)RT ,

or, more precisely, J (t, x) = R(t, x)J (t, η−1
t (x))RT (t, x). In particular, for every (t, x) ∈ [0, T ) × Rn ,

if we write y = η−1
t (x) then J0(y) and J (t, x) have the same spectrum.

Proof. The key ideas are that (1) by virtue of Lemma A.1, ∂t +u ·∇ is nothing more than a time derivative
up to a change of coordinates and (2) in light of Lemma A.2, solutions of ∂t = [�, · ] are pointwise
conjugate to their initial conditions by some rotation matrix with angular velocity �.

Step 1: We define the flow map η to be the solution of ∂tη = u ◦ η with initial condition η(t = 0) = id.
As a consequence of u being divergence-free, it follows from Lemma A.1 that ∂t(det ∇η) = 0, and hence
det ∇η = det ∇η(t = 0) ≡ 1, so indeed ηt is invertible at all times t . Finally we deduce that ηt is a
C1-diffeomorphism for all times t from the fact that ∇(η−1) = (∇η)−1

◦ η−1.

Step 2: Let us define J and 2 to be the Lagrangian counterparts of J and �, respectively, i.e., J := J ◦η

and 2 := � ◦ η. Then, by Lemma A.1,

∂tJ = ∂t(J ◦ η) = ((∂t + u · ∇)J ) ◦ η = [2,J ] and J (0, · ) = J0 ◦ η0 = J0.

So J solves ∂tJ = [2,J ] with initial condition J (0, · ) = J0.

Step 3: We define the Lagrangian rotation map Q(t, y) := exp
(∫ t

0 2(s, y) ds
)

such that, by Lemma A.2,
J = Q J0 QT . So finally, if we introduce the Eulerian rotation map R := Q ◦ η−1 we may conclude that
J = R(J0 ◦ η−1)RT . □

We now record some elementary identities which are useful throughout the paper. The first identity
allows us to deal with the precession term appearing in the conservation of angular momentum when
deriving energy-dissipation relations.

Lemma A.4. Let A and S be n × n matrices which are antisymmetric and symmetric, respectively. Then
1
2 [A, S] = Sym(AS). In particular, if n = 3 and we let a := vec A then 1

2 [A, S] = Sym(a × S).

Proof. This is immediate: Sym(AS) =
1
2(AS + ST AT ) =

1
2(AS − S A) =

1
2 [A, S]. □

The second identity shows that one of the terms appearing in the conservation of microinertia (1-1d) is
antisymmetric (as a map on the space of symmetric matrices), and hence does not contribute to energy or
transport estimates.

Lemma A.5. Let S and M be real n × n matrices such that S is symmetric. Then [M, S] : S = 0.

Proof. The proof follows from the observation that SM : S = M : ST S = M : SST
= M S : S. □
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Finally we record a detailed computation of the block form of [�, J ], which comes in handy when
reading off the equation governing the dynamics of a.

Lemma A.6 (block form of [�, J ]). Let J be a symmetric 3 × 3 matrix written in (2+1)× (2+1) block
form as

J =

(
J̄ a

aT J33

)
,

and let � = ten ω for some ω ∈ R3. Then we may write the commutator [�, J ] in (2+1) × (2+1) block
form as

[�, J ] =

(
ω3[R, J̄ ]−(ω̄⊥

⊗ a+a ⊗ ω̄⊥) ( J̄−J33 I2)ω̄
⊥
+ω3a⊥

(( J̄−J33 I2)ω̄
⊥
+ω3a⊥)

T 2a · ω̄⊥

)
, (A-1)

where R = e2 ⊗ e1 − e1 ⊗ e2 ∈ R2×2 denotes the (counterclockwise) π
2 rotation in R2.

Proof. Note that we may write � in block form using the rotation matrix R as

� =

(
ω3 R −ω̄⊥

(ω̄⊥)⊥ 0

)
.

We may then compute

�J =

(
ω3 R J̄−ω̄⊥

⊗ a ω3a⊥
−J33ω̄

⊥

(ω̄⊥)
T J̄ ω̄⊥

· a

)
.

Since J� = −(�J )T we deduce that indeed (A-1) holds. □

Appendix B: Analytical results

In this section we record precise statements of well-known analytical results for the reader’s convenience.
First we record the Gagliardo–Nirenberg interpolation inequalities on bounded domains, which is crucial
in several nonlinear estimates.

Theorem B.1 (Gagliardo–Nirenberg interpolation inequalities). Let u ∈ Lq(Tn) with ∇
ku ∈ Lr (Tn) such

that
1
p

−
l
n

= θ
1
q

+ (1 − θ)
(1

r
−

k
n

)
and (1 − θ)k ⩾ l for some 0 ⩽ θ ⩽ 1.

Then ∇
lu ∈ L p(Tn) and we have the estimate ∥∇

lu∥L p(Tn) ≲ ∥u∥
θ
Lq (Tn)∥u∥

1−θ

W k,r (Tn)
.

Proof. This is a standard result. See for example Section 13.3 in [Leoni 2017] for a proof of this result on
cubes which immediately implies the result on the torus. □

In practice the Gagliardo–Nirenberg interpolation inequality is used in the form recorded in Corollary B.2
throughout the paper. In particular, the second inequality recorded in Corollary B.2 is a high-low estimate
which is central to our efforts to balance out terms that grow in time and terms that decay in time when
designing our scheme of a priori estimates.
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Corollary B.2 (estimate of interactions in L2). Let f, g ∈ H k(Tn), and let α and β be multi-indices
satisfying |α| + |β| = k. Then we have the estimates

∥(∂α f )(∂βg)∥L2 ≲ ∥ f ∥L∞∥g∥H k + ∥ f ∥H k ∥g∥L∞

and

∥ f g∥H k ≲ ∥ f ∥L∞∥g∥H k + ∥ f ∥H k ∥g∥L∞ .

Proof. The first estimate follows from the Gagliardo–Nirenberg inequality recorded in Theorem B.1. So
let us define θ := |β|/k, 1/p :=

1
2(1 − θ), and 1/q :=

1
2θ . Then, by the Hölder and Gagliardo–Nirenberg

inequalities,

∥(∂α f )(∂βg)∥L2 ⩽ ∥∂α f ∥L p∥∂βg∥Lq ≲ ∥ f ∥
θ
L∞∥ f ∥

1−θ

H k ∥g∥
1−θ
L∞ ∥g∥

θ
H k ≲ ∥ f ∥L∞∥g∥H k + ∥ f ∥H k ∥g∥L∞,

where we have used Young’s inequality at the end, namely using the fact that, for any x, y ⩾ 0 and any
0 ⩽ θ ⩽ 1, we have xy ⩽ θx1/θ

+ (1 − θ)y1/(1−θ). The second estimate then follows from the first by
using the Leibniz rule. □

From Corollary B.2 we may deduce commutator estimates for transport and multiplication operators.

Lemma B.3 (commutator estimates for transport and multiplication operators). Let u ∈ H k(Tn
; Rn), let

f, g ∈ H k(Tn
; R), and let α ∈ Nn with |α| = k. Then

∥[g, ∂α
] f ∥L2 ≲ ∥g∥L∞∥ f ∥H k + ∥g∥H k ∥ f ∥L∞

and

∥[u · ∇, ∂α
] f ∥L2 ≲ ∥∇u∥L∞∥∇ f ∥H k−1 + ∥∇u∥H k−1∥∇ f ∥L∞ .

Proof. This follows from Corollary B.2 and the Leibniz rule. □

We conclude this section with other well-known analytical results. First, a product estimate in H s

spaces.

Lemma B.4 (product estimate). Let s > 1
2 n and let 0 ⩽ t ⩽ s. There exists C = C(s, t) > 0 such that,

for every f ∈ H s(Tn) and every g ∈ H t(Tn), we have ∥ f g∥H t ⩽ C∥ f ∥H s ∥g∥H t . In other words, H s is a
continuous multiplier on H t .

Proof. The key observation is that H t is the interpolation space of order t/s of the pair (L2, H s). Since
H s ↪→ L∞ and H s is a Banach algebra we know that g 7→ f g is bounded on both L2 and H s . The result
then follows by interpolation. □

We also record a nonlinear Gronwall-type argument which is crucial in closing the energy estimates
at the low level when developing the scheme of a priori estimates, in obtaining uniform bounds on
the approximate solutions when building the local well-posedness, and in deriving the reduced energy
estimates necessary to produce the continuation argument that glues the a priori and the local well-
posedness together.
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Lemma B.5 (Bihari’s lemma). Let f : [0, ∞) → [0, ∞) be nondecreasing and continuous such that
f > 0 on (0, ∞) and

∫
∞

1 1/ f < ∞. Let F be the antiderivative of −1/ f which vanishes at +∞. For
every continuous function y : [0, ∞) → [0, ∞), if there exists α0 > 0 such that

y(t) +

∫ t

0
f (y(s)) ds ⩽ α0 for every t ⩾ 0

then, for every t ⩾ 0, we have y(t) ⩽ F−1(t + F(α0)).

Proof. This is proven in Lemma II.4.12 of [Boyer and Fabrie 2013]. □

We conclude this section with an elementary result which is very handy when it comes to ensuring
that derivatives do not accumulate unduly on a single term in the nonlinear interactions.

Lemma B.6. Let x, y, z, Cx , Cy , and Cz be real numbers such that x, y, z ⩾ 0. If

x + y + z ⩽ min(Cx + Cy, Cy + Cz, Cz + Cx),

then either

(1) x ⩽ Cx and y ⩽ Cy, (2) y ⩽ Cy and z ⩽ Cz, or (3) z ⩽ Cz and x ⩽ Cx .

Proof. This can be seen to be true by contraposition. The key observation is that

(1) or (2) or (3) ⇐⇒ (x ⩽ Cx or y ⩽ Cy) and (y ⩽ Cy or z ⩽ Cz) and (z ⩽ Cz or x ⩽ Cx).

We may then use this equivalence to rewrite the negation of the conclusion of the lemma and deduce that
the contrapositive holds. □

References

[Abidi and Zhang 2017] H. Abidi and P. Zhang, “On the global solution of a 3-D MHD system with initial data near equilibrium”,
Comm. Pure Appl. Math. 70:8 (2017), 1509–1561. MR Zbl

[Abraham et al. 1988] R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, 2nd ed., Appl.
Math. Sci. 75, Springer, 1988. MR Zbl

[Ahmadi and Shahinpoor 1974] G. Ahmadi and M. Shahinpoor, “Universal stability of magneto-micropolar fluid motions”, Int.
J. Engrg. Sci. 12 (1974), 657–663. MR Zbl

[Allen and Kline 1971] S. J. Allen and K. A. Kline, “Lubrication theory for micropolar fluids”, J. Appl. Mech. 38:3 (1971),
646–650. Zbl

[Banerjee et al. 2017] D. Banerjee, A. Souslov, A. G. Abanov, and V. Vitelli, “Odd viscosity in chiral active fluids”, Nature
Commun. 8 (2017), art. id. 1573.

[Bayada and Łukaszewicz 1996] G. Bayada and G. Łukaszewicz, “On micropolar fluids in the theory of lubrication: rigorous
derivation of an analogue of the Reynolds equation”, Int. J. Engrg. Sci. 34:13 (1996), 1477–1490. MR Zbl

[Bég et al. 2008] O. A. Bég, R. Bhargava, S. Rawat, K. Halim, and H. S. Takhar, “Computational modeling of biomagnetic
micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium”, Meccanica 43:4 (2008), 391–410.
MR Zbl

[Boyer and Fabrie 2013] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier–Stokes equations
and related models, Appl. Math. Sci. 183, Springer, 2013. MR Zbl

[Chen and Miao 2012] Q. Chen and C. Miao, “Global well-posedness for the micropolar fluid system in critical Besov spaces”,
J. Differential Equations 252:3 (2012), 2698–2724. MR Zbl

http://dx.doi.org/10.1002/cpa.21645
http://msp.org/idx/mr/3666563
http://msp.org/idx/zbl/1372.35229
http://dx.doi.org/10.1007/978-1-4612-1029-0
http://msp.org/idx/mr/960687
http://msp.org/idx/zbl/0875.58002
http://dx.doi.org/10.1016/0020-7225(74)90042-1
http://msp.org/idx/mr/0443550
http://msp.org/idx/zbl/0284.76009
http://dx.doi.org/10.1115/1.3408868
http://msp.org/idx/zbl/0217.24705
http://dx.doi.org/10.1038/s41467-017-01378-7
http://dx.doi.org/10.1016/0020-7225(96)00031-6
http://dx.doi.org/10.1016/0020-7225(96)00031-6
http://msp.org/idx/mr/1423717
http://msp.org/idx/zbl/0900.76024
http://dx.doi.org/10.1007/s11012-007-9102-6
http://dx.doi.org/10.1007/s11012-007-9102-6
http://msp.org/idx/mr/2430360
http://msp.org/idx/zbl/1163.76454
http://dx.doi.org/10.1007/978-1-4614-5975-0
http://dx.doi.org/10.1007/978-1-4614-5975-0
http://msp.org/idx/mr/2986590
http://msp.org/idx/zbl/1286.76005
http://dx.doi.org/10.1016/j.jde.2011.09.035
http://msp.org/idx/mr/2860636
http://msp.org/idx/zbl/1234.35193


ANISOTROPIC MICROPOLAR FLUIDS SUBJECT TO A UNIFORM MICROTORQUE: THE STABLE CASE 131

[Cosserat and Cosserat 1909] E. Cosserat and F. Cosserat, Théorie des corps déformables, Hermann, Paris, 1909. Zbl

[Dong and Chen 2009] B.-Q. Dong and Z.-M. Chen, “Asymptotic profiles of solutions to the 2D viscous incompressible
micropolar fluid flows”, Discrete Contin. Dyn. Syst. 23:3 (2009), 765–784. MR Zbl

[Dong and Zhang 2010] B.-Q. Dong and Z. Zhang, “Global regularity of the 2D micropolar fluid flows with zero angular
viscosity”, J. Differential Equations 249:1 (2010), 200–213. MR Zbl

[Eringen 1966] A. C. Eringen, “Theory of micropolar fluids”, J. Math. Mech. 16 (1966), 1–18. MR Zbl

[Eringen 1993] A. C. Eringen, “An assessment of director and micropolar theories of liquid crystals”, Int. J. Engrg. Sci. 31:4
(1993), 605–616. MR Zbl

[Ferreira and Villamizar-Roa 2007] L. C. F. Ferreira and E. J. Villamizar-Roa, “Micropolar fluid system in a space of distributions
and large time behavior”, J. Math. Anal. Appl. 332:2 (2007), 1425–1445. MR Zbl

[Galdi and Rionero 1977] G. P. Galdi and S. Rionero, “A note on the existence and uniqueness of solutions of the micropolar
fluid equations”, Int. J. Engrg. Sci. 15:2 (1977), 105–108. MR Zbl

[Gay-Balmaz et al. 2013] F. Gay-Balmaz, T. S. Ratiu, and C. Tronci, “Equivalent theories of liquid crystal dynamics”, Arch.
Ration. Mech. Anal. 210:3 (2013), 773–811. MR Zbl

[Guo and Tice 2013a] Y. Guo and I. Tice, “Almost exponential decay of periodic viscous surface waves without surface tension”,
Arch. Ration. Mech. Anal. 207:2 (2013), 459–531. MR Zbl

[Guo and Tice 2013b] Y. Guo and I. Tice, “Decay of viscous surface waves without surface tension in horizontally infinite
domains”, Anal. PDE 6:6 (2013), 1429–1533. MR Zbl

[Jang et al. 2016] J. Jang, I. Tice, and Y. Wang, “The compressible viscous surface-internal wave problem: stability and vanishing
surface tension limit”, Comm. Math. Phys. 343:3 (2016), 1039–1113. MR Zbl

[Kalita et al. 2019] P. Kalita, J. A. Langa, and G. Łukaszewicz, “Micropolar meets Newtonian: the Rayleigh–Bénard problem”,
Phys. D 392 (2019), 57–80. MR Zbl

[Leoni 2017] G. Leoni, A first course in Sobolev spaces, 2nd ed., Grad. Studies in Math. 181, Amer. Math. Soc., Providence, RI,
2017. MR Zbl

[Lhuillier and Rey 2004] D. Lhuillier and A. D. Rey, “Nematic liquid crystals and ordered micropolar fluids”, J. Non-Newton.
Fluid Mech. 120:1-3 (2004), 169–174. Zbl

[Liu and Zhang 2016] Q. Liu and P. Zhang, “Optimal time decay of the compressible micropolar fluids”, J. Differential Equations
260:10 (2016), 7634–7661. MR Zbl

[Łukaszewicz 1989] G. Łukaszewicz, “On the existence, uniqueness and asymptotic properties for solutions of flows of
asymmetric fluids”, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 13:1 (1989), 105–120. MR Zbl

[Łukaszewicz 1990] G. Łukaszewicz, “On nonstationary flows of incompressible asymmetric fluids”, Math. Methods Appl. Sci.
13:3 (1990), 219–232. MR Zbl

[Łukaszewicz 2001] G. Łukaszewicz, “Long time behavior of 2D micropolar fluid flows”, Math. Comput. Modelling 34:5-6
(2001), 487–509. MR Zbl

[Maurya 1985] R. P. Maurya, “Peripheral-layer viscosity and microstructural effects on the capillary-tissue fluid exchange”,
J. Math. Anal. Appl. 110:1 (1985), 59–73. MR Zbl

[Mekheimer and El Kot 2008] K. S. Mekheimer and M. A. El Kot, “The micropolar fluid model for blood flow through a tapered
artery with a stenosis”, Acta Mech. Sin. 24:6 (2008), 637–644. MR Zbl

[Nochetto et al. 2016] R. H. Nochetto, A. J. Salgado, and I. Tomas, “The equations of ferrohydrodynamics: modeling and
numerical methods”, Math. Models Methods Appl. Sci. 26:13 (2016), 2393–2449. MR Zbl

[Rajasekhar Nicodemus and Sharma 2012] E. Rajasekhar Nicodemus and S. C. Sharma, “Performance characteristics of
micropolar lubricated membrane-compensated worn hybrid journal bearings”, Tribology Trans. 55:1 (2012), 59–70.

[Ramkissoon 1985] H. Ramkissoon, “Flow of a micropolar fluid past a Newtonian fluid sphere”, Z. Angew. Math. Mech. 65:12
(1985), 635–637. MR Zbl

[Remond-Tiedrez 2020] A. Remond-Tiedrez, Nonlinear partial differential equations in fluid dynamics: interfaces, mi-
crostructure, and stability, Ph.D. thesis, Carnegie Mellon University, 2020, available at https://kilthub.cmu.edu/articles/
Nonlinear_Partial_Differential_Equations_in_Fluid_Dynamics_Interfaces_Microstructure_and_Stability/12437075/1.

http://jhir.library.jhu.edu/handle/1774.2/34209
http://msp.org/idx/zbl/40.0862.02
http://dx.doi.org/10.3934/dcds.2009.23.765
http://dx.doi.org/10.3934/dcds.2009.23.765
http://msp.org/idx/mr/2461826
http://msp.org/idx/zbl/1170.35336
http://dx.doi.org/10.1016/j.jde.2010.03.016
http://dx.doi.org/10.1016/j.jde.2010.03.016
http://msp.org/idx/mr/2644133
http://msp.org/idx/zbl/1402.35220
http://dx.doi.org/10.1512/iumj.1967.16.16001
http://msp.org/idx/mr/0204005
http://msp.org/idx/zbl/0145.21302
http://dx.doi.org/10.1016/0020-7225(93)90053-W
http://msp.org/idx/mr/1210394
http://msp.org/idx/zbl/0776.76012
http://dx.doi.org/10.1016/j.jmaa.2006.11.018
http://dx.doi.org/10.1016/j.jmaa.2006.11.018
http://msp.org/idx/mr/2324348
http://msp.org/idx/zbl/1122.35109
http://dx.doi.org/10.1016/0020-7225(77)90025-8
http://dx.doi.org/10.1016/0020-7225(77)90025-8
http://msp.org/idx/mr/0467030
http://msp.org/idx/zbl/0351.76006
http://dx.doi.org/10.1007/s00205-013-0673-1
http://msp.org/idx/mr/3116004
http://msp.org/idx/zbl/1361.76005
http://dx.doi.org/10.1007/s00205-012-0570-z
http://msp.org/idx/mr/3005322
http://msp.org/idx/zbl/1320.35259
http://dx.doi.org/10.2140/apde.2013.6.1429
http://dx.doi.org/10.2140/apde.2013.6.1429
http://msp.org/idx/mr/3148059
http://msp.org/idx/zbl/1292.35206
http://dx.doi.org/10.1007/s00220-016-2603-1
http://dx.doi.org/10.1007/s00220-016-2603-1
http://msp.org/idx/mr/3488552
http://msp.org/idx/zbl/1383.35163
http://dx.doi.org/10.1016/j.physd.2018.12.004
http://msp.org/idx/mr/3944649
http://msp.org/idx/zbl/1451.76057
http://dx.doi.org/10.1090/gsm/181
http://msp.org/idx/mr/3726909
http://msp.org/idx/zbl/1382.46001
http://dx.doi.org/10.1016/j.jnnfm.2004.01.018
http://msp.org/idx/zbl/1143.76375
http://dx.doi.org/10.1016/j.jde.2016.01.037
http://msp.org/idx/mr/3473451
http://msp.org/idx/zbl/1341.35121
http://msp.org/idx/mr/1041744
http://msp.org/idx/zbl/0692.76020
http://dx.doi.org/10.1002/mma.1670130304
http://msp.org/idx/mr/1071441
http://msp.org/idx/zbl/0703.76031
http://dx.doi.org/10.1016/S0895-7177(01)00078-4
http://msp.org/idx/mr/1849013
http://msp.org/idx/zbl/1020.76003
http://dx.doi.org/10.1016/0022-247X(85)90336-1
http://msp.org/idx/mr/803421
http://msp.org/idx/zbl/0605.76007
http://dx.doi.org/10.1007/s10409-008-0185-7
http://dx.doi.org/10.1007/s10409-008-0185-7
http://msp.org/idx/mr/2461933
http://msp.org/idx/zbl/1257.76183
http://dx.doi.org/10.1142/S0218202516500573
http://dx.doi.org/10.1142/S0218202516500573
http://msp.org/idx/mr/3579306
http://msp.org/idx/zbl/1416.76347
http://dx.doi.org/10.1080/10402004.2011.628137
http://dx.doi.org/10.1080/10402004.2011.628137
http://dx.doi.org/10.1002/zamm.19850651218
http://msp.org/idx/mr/832173
http://msp.org/idx/zbl/0579.76006
https://kilthub.cmu.edu/articles/Nonlinear_Partial_Differential_Equations_in_Fluid_Dynamics_Interfaces_Microstructure_and_Stability/12437075/1
https://kilthub.cmu.edu/articles/Nonlinear_Partial_Differential_Equations_in_Fluid_Dynamics_Interfaces_Microstructure_and_Stability/12437075/1


132 ANTOINE REMOND-TIEDREZ AND IAN TICE

[Remond-Tiedrez and Tice 2021] A. Remond-Tiedrez and I. Tice, “Anisotropic micropolar fluids subject to a uniform micro-
torque: the unstable case”, Comm. Math. Phys. 381:3 (2021), 947–999. MR Zbl

[Ren et al. 2014] X. Ren, J. Wu, Z. Xiang, and Z. Zhang, “Global existence and decay of smooth solution for the 2-D MHD
equations without magnetic diffusion”, J. Funct. Anal. 267:2 (2014), 503–541. MR Zbl

[Rojas-Medar 1997] M. A. Rojas-Medar, “Magneto-micropolar fluid motion: existence and uniqueness of strong solution”,
Math. Nachr. 188 (1997), 301–319. MR Zbl

[Sinha et al. 1982] P. Sinha, C. Singh, and K. R. Prasad, “Lubrication of human joints: a microcontinuum approach”, Wear 80:2
(1982), 159–181.

[Tan and Wang 2018] Z. Tan and Y. Wang, “Global well-posedness of an initial-boundary value problem for viscous non-resistive
MHD systems”, SIAM J. Math. Anal. 50:1 (2018), 1432–1470. MR Zbl
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STRONG ILL-POSEDNESS FOR SQG IN CRITICAL SOBOLEV SPACES

IN-JEE JEONG AND JUNHA KIM

We prove that the inviscid surface quasigeostrophic (SQG) equations are strongly ill-posed in critical
Sobolev spaces: there exists an initial data H 2(T2) without any solutions in L∞

t H 2. Moreover, we
prove strong critical norm inflation for C∞-smooth data. Our proof is robust and extends to give similar
ill-posedness results for the family of modified SQG equations which interpolate the SQG with the
two-dimensional incompressible Euler equations.

1. Introduction

1A. Main results. We are concerned with the Cauchy problem for the inviscid surface quasigeostrophic
(SQG) equations on T2

= (R/Z)2, {
∂tθ + u · ∇θ = 0,

u = ∇
⊥(−1)−1/2θ.

(SQG)

Our first main result shows that strong norm inflation occurs for the solution map of (SQG) in H 2(T2)

with C∞-smooth solutions.

Theorem A (strong norm inflation). For any ϵ, δ, A > 0, there exists θ0 ∈ C∞(T2) satisfying

∥θ0∥H2∩W 1,∞ < ϵ

such that the unique local-in-time smooth solution θ to (SQG) with initial data θ0 exists on [0, δ∗
] for

some 0 < δ∗
≤ δ and satisfies

sup
t∈[0,δ∗]

∥θ(t, · )∥H2 > A.

The above result implies that the solution operator defined from H 2
∩ C∞ to H 2 by θ0 7→ θ(t) for any

t > 0 cannot be continuous at the trivial solution. On the other hand, the following result shows that
actually it is impossible to define the solution operator from H 2 to L∞

t H 2.

Theorem B (nonexistence). For any ϵ > 0, there exists θ0 ∈ H 2
∩ W 1,∞(T2) satisfying

∥θ0∥H2∩W 1,∞ < ϵ

such that there is no solution to (SQG) with initial data θ0 belonging to L∞([0, δ]; H 2(T2)) with any δ > 0.

Remark 1.1. We give a few remarks relevant to the statements above.
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• With a rather straightforward modification of our proof, the space H 2 in Theorems A and B can be
replaced with W 1+2/p,p, with any p > 1. Later, we shall sketch the proof in the endpoint case p = ∞.
Moreover, the domain T2 can be replaced with R2 or bounded domains having symmetry axes.

• The initial data for which nonexistence occur can be given explicitly; see (4-4) below.

• The arguments we present can be adapted to prove ill-posedness for the case of modified (and loga-
rithmically regularized) SQG equations; see Section 1C below.

1B. Well-posedness theory for SQG. To put the above ill-posedness results into context, let us briefly
recall the well-posedness theory for the SQG equation. Depending on the regularity of the solutions
considered, one has the following categories:

• Strong solutions: local existence and uniqueness. Using the Kato–Ponce commutator estimate [1988],
one obtains the a priori estimate

d
dt

∥θ∥H s ≤ C∥∇u∥L∞∥θ∥H s

for a solution of (SQG), which allows one to close ∥θ(t)∥H s ≲ ∥θ0∥H s for t ≲ ∥θ0∥
−1
H s once s > 2, using

that ∥∇u∥L∞ ≲ ∥θ∥H s . Similarly, H s can be replaced with W s,p, as long as s > 1 + 2/p. Based on this
a priori estimate, one can prove local existence and uniqueness of a strong solution in the class L∞

t W s,p

with s > 1 + 2/p. On the other hand, note that the borderline inequality ∥∇u∥L∞ ≲ ∥θ∥H2 fails; this
makes the Sobolev space H 2 (and similarly W 1+2/p,p) critical for local well-posedness. This space is
also scaling-critical: the critical norm is left-invariant under the transformation

θ(t, x) 7→ λ−1θ(t, λx), u(t, x) 7→ λ−1u(t, λx). (1-1)

While not much is known for long-time dynamics of (SQG), see a recent breakthrough of [He and Kiselev
2021] for a construction of smooth initial data with Sobolev norms growing at least exponentially for all
times. Moreover, existence of traveling-wave solutions [Li 2009; Cao et al. 2023] and rotating solutions
[Hassainia and Hmidi 2015; de la Hoz et al. 2016; Castro et al. 2016] are known.

• Weak solutions: global existence. Global existence of L p-weak solutions is known, thanks to [Resnick
1995; Marchand 2008; Bae and Granero-Belinchón 2015]. While such solutions are in general expected
to be nonunique, see [Córdoba et al. 2018] for a uniqueness result for patches. On the other hand, for
“very” weak solutions, nonuniqueness has been established; see [Buckmaster et al. 2019; Cheng et al.
2021; Isett and Ma 2021]. Note the gap of regularity between week and strong solutions.

• Ill-posedness in W 1,∞: To the best of our knowledge, the only critical space ill-posedness result
concerning (SQG) is the one given in [Elgindi and Masmoudi 2020] for W 1,∞, where a powerful general
method for proving ill-posedness of active scalar systems in L∞-type spaces is developed. To be precise,
in Section 9.2 of that work the authors show that there exist smooth steady states θ̄ and a sequence of
perturbations θ̃

(ϵ)
0 (ϵ → 0+) so that the associated (SQG) solution θ (ϵ) with data θ̄ + θ̃

(ϵ)
0 satisfies

∥θ (ϵ)(0, · ) − θ̄∥W 1,∞ < ϵ, sup
0<t<ϵ

∥θ (ϵ)(t, · ) − θ̄∥W 1,∞ > c,
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where c > 0 depends only on θ̄ . It is very interesting to note that the authors use well-posedness in critical
Besov spaces with summability index 1. Such Besov well-posedness theory goes back to the pioneering
work [Vishik 1999]. Our result (which applies in the W 1,∞ case as well) basically says that one can take
θ̄ ≡ 0 and replace c by ϵ−1. On the other hand, one can restore well-posedness in W 1,∞ by assuming
some rotational symmetry and anisotrophic Hölder regularity [Elgindi and Jeong 2020b].

The current work settles the issue of strong ill-posedness of (SQG) at critical Sobolev spaces, and
we believe that this could be a first step in understanding the dynamics of “slightly” supercritical and
subcritical solutions (e.g., evolution of H s-data with |s − 2| ≪ 1), thereby bridging the gap between
the theory of weak and strong solutions. Indeed, in the very recent work [Elgindi 2021] on singularity
formation for the three-dimensional Euler equations, one of the key steps was to understand precisely the
mechanism of C1-ill-posedness. Closing this section, let us mention some interesting works which seem
contradictory to our main results:

• Miura [2006] proved that the fractionally dissipative SQG system{
∂tθ + u · ∇θ + (−1)βθ = 0,

u = ∇
⊥(−1)−1/2θ

(1-2)

is actually well-posed in the critical Sobolev space H 2−2β for all β > 0 (for data of any size), and this
seems to suggest H 2 well-posedness of the inviscid system by taking β → 0! See [Li 2021; Jolly et al.
2021; 2022] for related recent advances.

• An invariant measure defined on H 2(T2) which guarantees global well-posedness in L∞
t H 2 for any

initial data in the support of the measure was constructed in [Földes and Sy 2021]. The data in Theorem B
certainly does not belong to the support of such a measure.

1C. Generalized SQG equations. In the recent years, there has been significant interest in the study of
so-called generalized SQG equations, given by{

∂tθ + u · ∇θ = 0,

u = ∇
⊥ P(3)θ,

(1-3)

where P(3) is some Fourier multiplier, with 3 = (−1)1/2. Two distinguished cases are P(3) = 3−1

(SQG) and P(3) = 3−2 (two-dimensional incompressible Euler). Of particular interest is the case of
α-SQG systems given by P(3) = 3−α, with 1 ≤ α ≤ 2, which interpolates the SQG and two-dimensional
Euler equations. The L2-based critical Sobolev space is then given by H 3−α, and let us point out that
the methods developed in the current work can handle the entire range 1 ≤ α ≤ 2 without any essential
change in the proof, after deriving a generalized version of the “key lemma”; see the Appendix. One
could consider even more general symbols such as P(3) = 3−α log−γ (10 + 3), with γ > 0, which
give rise to the so-called logarithmically regularized systems [Chae and Wu 2012; Chae et al. 2011;
Dong and Li 2010]. It is known that if the power of the logarithm is sufficiently large, then one can
restore well-posedness in H 3−α [Chae and Wu 2012], but at this point it is more appropriate to regard a
logarithmically singularized Sobolev space to be critical. Indeed, one can see from our proof that there
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is a “logarithmic” room1 in the arguments and therefore the same proof can cover same ill-posedness
results in the slightly logarithmically regularized systems. We shall not dwell on this issue any further.

1D. Critical space ill-posedness for Euler. It should be emphasized that the strong Sobolev ill-posedness
statements, Theorems A and B, were first established in the groundbreaking works [Bourgain and Li 2015;
2021] for the case of two- and three-dimensional Euler equations, respectively. Further developments,
including the current work, seem to have been strongly inspired by these papers. Recently, Kwon [2021]
settled the problem of strong ill-posedness in H 1 for logarithmically regularized

(
strictly speaking, powers

of the log less than or equal to 1
2

)
two-dimensional Euler equations, nicely complementing previous H 1

well-posedness from [Chae and Wu 2012]. On the other hand, much simpler proofs of H 1 ill-posedness
for two-dimensional Euler, which also shows continuous-in-time degeneration of the solution in Sobolev
spaces, have appeared in [Elgindi and Jeong 2017; Jeong and Yoneda 2021]. Some details of these
simplified arguments will be given in the next section.

2. Ingredients of the proof

The purpose of this section is to sketch the main ingredients of the proof. Several key ideas have already
appeared in earlier works establishing ill-posedness in the Euler case; we briefly review those in Section 2A.
Additional difficulties arising in the (generalized) SQG case and new ideas are covered then in Section 2B.

2A. Strategy in the Euler case. In this section, let us give an overview of the ill-posedness proof in the
two-dimensional Euler case. We recall that in T2 the Euler equations are given by{

∂tω + u · ∇ω = 0,

u = ∇
⊥(−1)−1ω.

(Euler)

In terms of ω, the critical L2-based Sobolev space is H 1(T2); indeed, ω ∈ H 1 barely fails to guarantee
∇u ∈ L∞, which is necessary to close the a priori estimate in H 1.

Choice of data for Euler. As a starting point of discussion, we present an interesting identity observed by
T. Elgindi:

d
dt

(∥∂2ω∥
2
L2 − ∥∂1ω∥

2
L2) =

1
2

∫
T2

∂1u1((∂2ω)2
+ (∂1ω)2) + ω ∂1ω ∂2ω dx . (2-1)

For ω0 ∈ L∞, Yudovich theory provides a unique global solution in L∞([0, ∞)× T2), and note that the
last term in (2-1) cannot contribute to a large growth of the H 1-norm in a small time interval. Therefore,
to prove existence of an H 1

∩ L∞-initial data ω0 which “escapes” H 1 instantaneously, the goal would be
to find ω0 ∈ H 1

∩ L∞ such that ∫ t

0

∫
T2

∂1u1(∂2ω)2 dx = +∞ (2-2)

1Strictly speaking, some power of the logarithm.
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for any t > 0, where ω is the Yudovich solution with data ω0 and u = ∇
⊥(−1)−1ω. In particular, it is

necessary that at the initial time we have∫
T2

∂1u0,1(∂2ω0)
2 dx = +∞. (2-3)

The choice in [Elgindi and Jeong 2017] was

ω0(x) ≃
x1x2

|x |2
|ln |x ||

−α, |x | ≪ 1, (2-4)

since then [Bahouri and Chemin 1994; Denisov 2015b]

∂1u0,1(x) ≃ |ln |x ||
1−α, |x | ≪ 1, (2-5)

which in particular guarantees (2-3) for a range of α > 0.

Hyperbolic flow. Geometrically, vorticity which is positive on the first quadrant and odd with respect
to both axes (as in (2-4)) induces velocity which is stretching in the x1-direction and contracting in the
other, which leads to squeezing of the vorticity near the x1-axis and growth of H 1-norm. This so-called
“hyperbolic flow scenario” has been used to produce Euler solutions with gradient growth; see [Kiselev
and Šverák 2014; Zlatoš 2015; Xu 2016; Denisov 2009; 2015a; 2015b; Elgindi and Jeong 2019; 2020a;
Choi and Jeong 2021]. Flattening of the vorticity level sets in such a flow configuration was studied in
detail in [Zlatoš 2018; Jeong 2021].

Regularization effect. The main task is then to ensure that the velocity field, for a small time interval,
retains its logarithmic divergence near the origin: indeed, instantaneous blow-up of the H 1-norm is not
too difficult to see for the passive transport equation

∂tω + u0 · ∇ω = 0,

by solving the equation along the flow generated by u0. When one tries to replace u0 by u, a fundamental
difficulty arises: anisotropic stretching of the vorticity regularizes the velocity. Indeed, rather involved
computations in [Elgindi and Jeong 2023] suggest the asymptotics ∥∇u(t)∥L∞ ≲ t−1, which is barely
nonintegrable in time; this indicates that it could be a very delicate problem to verify (2-2). This upper
bound of t−1 can be seen for instance by solving the passive problem above and recalculating the associated
velocity at later times.

Key lemma and Lagrangian approach. Towards the goal of obtaining a lower bound on the velocity
gradient |∇u(t)| ≳ t−1, one needs to have a robust way of estimating the velocity gradient and proving
some “stability” of the initial data. Regarding the former, the celebrated key lemma of Kiselev and Šverák
asserts that (stated roughly)

u1(x)

x1
≃

∫
[x1,1]×[x2,1]

y1 y2

|y|4
ω(y) dy (2-6)

for ω ∈ L∞ with odd-odd symmetry. Note that u1 = 0 for x1 = 0 by symmetry, so that the left-hand side
is an approximation of ∂1u1. The lower bound of the form (2-6) has proven to be extremely powerful in
establishing growth of the vorticity [Kiselev and Šverák 2014; Zlatoš 2015; Xu 2016; Kiselev et al. 2016;
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Gancedo and Patel 2021; Elgindi 2021; He and Kiselev 2021]. It is interesting to note that [Bourgain and
Li 2015] independently derived similar lower bounds. Next, regarding the issue of showing stability of
the data, the key observation is the hierarchy of vortex dynamics expressed in (2-6): the vorticity around
a point x is being affected mainly by the vorticity supported in |y| ≥ 2|x |. This suggests that the chunk of
vorticity supported far away from the origin is more stable, thereby contributing to the right-hand side of
(2-6) for a longer time interval, to squeeze the vorticity closer to the origin. The proof of such stability
and squeezing phenomena should be done in the Lagrangian variable, using the transport formulas

ω(t, x) = ω0(8
−1
t x), ∇ω(t, x) = ∇ω0(8

−1
t (x))∇8−1

t (x),

where 8t is the flow map at time t . In the actual ill-posedness proofs, Lagrangian versions of the formula
(2-1) are used.

2B. Difficulties in the SQG case. Overall, the strategy of the ill-posedness proof in the SQG case is
similar to that explained in the above for two-dimensional Euler. Roughly speaking, the initial data is
now modified to be

θ0 ≃
x1x2

|x |
|ln |x ||

−α, |x | ≪ 1,

which is odd-odd and nonnegative in the first quadrant. The associated SQG velocity then satisfies the
asymptotics (2-5) with strong hyperbolicity near the origin, which should stretch θ near the x1-axis. The
issue is whether such a stretching effect is sufficiently strong to remove θ from the critical Sobolev space
it started from. Let us now explain some main differences with the Euler case and new ideas employed
to handle those.

While the equation for θ in (SQG) is simply the transport equation exactly as in the two-dimensional
Euler case, probably the most significant difference is that while the L∞-norm is the common strongest
conservation law, it is critical for two-dimensional Euler but one order weaker for SQG. Furthermore, there
is global well-posedness for two-dimensional Euler with ω0 ∈ L∞ [Yudovich 1963], and the associated
sharp estimates given by Yudovich theory have been very useful in understanding the dynamics.2 On the
other hand, the corresponding quantity in the SQG case, ∥∇θ∥L∞ , blows up together with ∥θ∥H2 .

It seems that the only way to handle this issue is to rely entirely on a contradiction argument — we
assume that there is an L∞([0, T ]; H 2)-solution, and then prove that, for any t > 0, the H 2-norm of the
solution must be actually infinite. The whole point in this contradiction argument is that we can use the
hypothetical H 2-bound to control the solution, an idea originated in [Bourgain and Li 2015]. Again, the
difficulty in the SQG case is that this hypothetical H 2 control is the only useful bound, whereas in the Euler
case one has both H 1 and L∞ control. Fortunately, it turns out that having an H 2-bound guarantees that
the velocity is log-Lipschitz, which implies in particular uniqueness in the class L∞

t H 2 (this guarantees
propagation in time of odd-odd symmetry and nonnegativity) and existence of the flow map. That is, an
L∞

t H 2-solution is Lagrangian, and therefore we can apply transport formulas to understand the dynamics.

2Even in the three-dimensional Euler case, [Bourgain and Li 2021] actually carefully identifies a class of initial data for
which ω ∈ L∞ propagates locally in time. Then, one can prove and utilize estimates similar to Yudovich’s in three dimensions.
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Under the contradiction hypothesis, the main part of the argument is to derive and apply a version
of the key lemma adapted to the SQG case. Series technical difficulties appear; to begin with, in the
remainder estimate of the key lemma (see estimates (3-1) and (3-2) in Lemma 3.2) we are only allowed to
use θ ∈ H 2. As a consequence, the remainder term blows up super-logarithmically (the power 3

2 in (3-2))
as the point x approaches the axes, whereas only logarithmic errors are allowed in the nonexistence
proof. It seems that the only way to overcome this issue is to track carefully the geometry of the support
of θ in time so that the problematic remainder term disappears. To achieve this, we replace θ0 with a
disjoint union of dyadic “bubbles” satisfying the same asymptotics as |x | → 0 (see (4-4) below) and
obtain detailed information on the location of these bubbles for an interval of time inductively, starting
from the largest one. Such refined information appears in technical Claims I, II and III in the proof. In
the context of controlling bubbles, another significant difference with Euler is that the “self-interaction”
of a bubble is not a bounded term anymore. To overcome this issue we need to track the location of the
“top point” of each bubble, which is the slowest point but does not suffer from self-interactions.

Closing this section, we remark that the versions of the key lemma derived in this work should be
useful in improving previous growth results for the active scalar equations, as we handle the remainder
term only with the critical quantity.

2C. Organization of the paper. The rest of this paper is organized as follows. The main technical tool,
which we shall refer to as the key lemma, is stated and proved in Section 3. After that, the proofs of
Theorems B and A are given in Sections 4 and 5, respectively.

3. The key lemma

To begin with, we recall the famous Hardy inequality.

Lemma 3.1 (Hardy’s inequality). Let f be a smooth function defined on the interval (0, l) that vanishes
in a neighborhood of x = 0. Then we have for any l ∈ [0, 1]

∥x−1 f (x)∥L2(0,l) ≤ 2∥∂ f (x)∥L2(0,l), ∥x−2 f (x)∥2
L2(0,l) ≤ 2∥∂2 f (x)∥2

L2(0,l).

Proof. By the fundamental theorem of calculus and the assumption for f , we see∫ l

0

f (x)2

x2 dx = −
1
l

f (l)2
+ 2

∫ l

0

f (x)

x
∂ f (x) dx ≤ 2

∫ l

0

f (x)

x
∂ f (x) dx .

Using Hölder’s inequality, we have∫ l

0

f (x)2

x2 dx ≤ 4
∫ l

0
|∂ f (x)|2 dx .

Similarly, we have∫ l

0

f (x)2

x4 dx = −
1

3l3 f (l)2
+

2
3

∫ l

0

f (x)

x3 ∂ f (x) dx ≤
2
3

∫ l

0

f (x)

x2

∂ f (x)

x
dx ≤

1
2

∫ l

0

∂ f (x)2

x2 dx .
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Applying the above estimate, we obtain∫ l

0

f (x)2

x4 dx ≤ 2
∫ l

0
|∂2 f (x)|2 dx . □

We shall now state and prove the key lemma. For convenience, we shall normalize the SQG Biot–Savart
law in such a way that

u(t, x) =

∑
n∈Z2

∫
[−1,1)2

(x − (y + 2n))⊥

|x − (y + 2n)|3
θ(t, y) dy.

Lemma 3.2. We impose the following assumptions on θ ∈ H 2:

• θ is odd with respect to both axes, i.e., θ(x) = −θ(x̄) = θ(−x) = −θ(x̃), where x̄ := (x1, −x2) and
x̃ := (−x1, x2).

• θ vanishes near the axis; to be precise, for any x ̸= (0, 0) satisfying either x1 = 0 or x2 = 0, there
exists an open neighborhood of x such that θ vanishes.

Then, for any x satisfying |x | < 1
4 and x1 > x2 > 0, we have∣∣∣∣u1(x)

x1
− 12

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ B1(x) (3-1)

and ∣∣∣∣u2(x)

x2
+ 12

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤

(
1 + log

x1

x2

)
B2(x) +

(
1 + log

x1

x2

)3/2

B3(x), (3-2)

where Q(x) := [2x1, 1] × [0, 1] and B1, B2, B3 satisfy

|B1(x)| + |B2(x)| ≤ C(∥∇2θ∥L2([0,1]2) + ∥θ∥L∞([0,1]2))

and
|B3(x)| ≤ C(∥∇2θ∥L2(R(x)) + ∥y−1

2 ∂1θ(y)∥L2(R(x))), R(x) := [x1/2, 2x1] × [2x2, 1].

Remark 3.3. We clearly have that ∥y−1
2 ∂1θ(y)∥L2(R(x)) ≤ 2∥∇

2θ∥L2([0,1]2).

Proof. We fix a point x = (x1, x2) satisfying the assumptions of the lemma. After a symmetrization, we
have

u(x)=
∑
n∈Z2

∫
[0,1]2

(
(x−(y+2n))⊥

|x−(y+2n)|3
−

(x−(ỹ+2n))⊥

|x−(ỹ+2n)|3
+

(x−(−y+2n))⊥

|x−(−y+2n)|3
−

(x−(ȳ+2n))⊥

|x−(ȳ+2n)|3

)
θ(y)dy. (3-3)

Estimate of u1. We consider

I1(n) := −

∫
[0,1]2

(
x2 − (y2 + 2n2)

|x − (y + 2n)|3
−

x2 − (y2 + 2n2)

|x − (ỹ + 2n)|3

)
θ(y) dy,

I2(n) := −

∫
[0,1]2

(
x2 − (−y2 + 2n2)

|x − (−y + 2n)|3
−

x2 − (−y2 + 2n2)

|x − (ȳ + 2n)|3

)
θ(y) dy

so that from (3-3)
u1(x) =

∑
n∈Z2

(I1(n) + I2(n)).



STRONG ILL-POSEDNESS FOR SQG IN CRITICAL SOBOLEV SPACES 141

We think of the cases n = 0 and n ̸= 0 separately. For n ̸= 0, we see that

|I1(n) + I1(ñ)| ≤ O(|n|
−4)∥θ∥L∞([0,1]2)x1, |I2(n) + I2(ñ)| ≤ O(|n|

−4)∥θ∥L∞([0,1]2)x1.

Therefore, ∣∣∣∣ ∑
n∈Z2\{0}

(I1(n) + I2(n))

∣∣∣∣ ≤ Cx1∥θ∥L∞([0,1]2). (3-4)

We now estimate the case of n = 0. Using

1
A3 −

1
B3 =

(B2
− A2)(A2

+ AB + B2)

A3 B3(A + B)
, (3-5)

we have

I1(0) = −4x1

∫
[0,1]2

y1(x2 − y2)(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy.

Noting that [0, 1]
2
= Q(x) ∪ [0, 2x1] × [2x1, 1] ∪ [0, 2x1]

2, we estimate the integral for each set.

(i) Suppose y ∈ Q(x). In this case we can show that

1
4 |y| ≤ |x − y| ≤ |y|, 1

2 |y| ≤ |x − ỹ| ≤ 2|y| (3-6)

because the first inequality comes from

|x − y|
2
≥ |x1 − y1|

2
≥

1
4 y2

1 ≥
1
8 |y|

2, y1 ≥ y2,

and
|x − y|

2
= |x1 − y1|

2
+ |x2 − y2|

2
≥

1
4 y2

1 +
1
4 y2

2 , y1 ≤ y2.

The goal is to prove that

−

∫
Q(x)

y1(x2 − y2)(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy =: J

satisfies ∣∣∣∣J −
3
2

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ C∥∇
2θ∥L2([0,1]2). (3-7)

We separate J = J1 + J2, where

J1 :=

∫
Q(x)

y1 y2(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy,

J2 := −

∫
Q(x)

y1x2(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy.

Using (3-6), we may estimate

|J2| ≤ C |x |

∫
Q(x)

1
|y|2

|θ(y)|

|y|2
dy.

Note that by Hölder’s inequality,

|x |

∫
Q(x)

1
|y|2

|θ(y)|

|y|2
dy ≤ |x |

(∫
∞

2x1

1
r3 dr

)1/2

∥|y|
−2θ(y)∥L2(Q(x)) ≤ C∥|y|

−2θ(y)∥L2([0,1]2).
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Then with the Hardy’s inequality we have

|J2| ≤ C∥∇
2θ∥L2([0,1]2).

On the other hand, regarding J1, we shall show that∣∣∣∣J1 −
3
2

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ C∥∇
2θ∥L2([0,1]2).

For this purpose we simply write J1 = J11 + J12 + J13, where

J11 =

∫
Q(x)

y1 y2|x − y|
2

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy,

J12 =

∫
Q(x)

y1 y2|x − y||x − ỹ|

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy,

J13 =

∫
Q(x)

y1 y2|x − ỹ|
2

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy

and show that ∣∣∣∣J1k −
1
2

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ C∥∇
2θ∥L2([0,1]2)

for each k = 1, 2, 3. We supply the proof only for the case k = 1, since the others can be treated similarly.
We directly compute

J11 −
1
2

∫
Q(x)

y1 y2

|y|5
θ(y) dy =

∫
Q(x)

y1 y2
2|y|

5
− |x − y||x − ỹ|

3(|x − y| + |x − ỹ|)

2|y|5|x − y||x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy.

We rewrite the numerator as

2|y|
5
− |x − y||x − ỹ|

3(|x − y| + |x − ỹ|)

= (|y|
2
− |x − y|

2)|y|
3
+ |x − y|

2(|y|
3
− |x − ỹ|

3) + (|y| − |x − y|)|y|
4
+ |x − y|(|y|

4
− |x − ỹ|

4),

and further rewriting

|y| − |x − y| =
|y|

2
− |x − y|

2

|y| + |x − y|
, |y|

3
− |x − ỹ|

3
=

(|y|
2
− |x − ỹ|

2)(|y|
2
+ |y||x − ỹ| + |x − ỹ|

2)

|y| + |x − ỹ|
,

we see using (3-6) that ∣∣2|y|
5
− |x − y||x − ỹ|

3(|x − y| + |x − ỹ|)
∣∣ ≤ C |x ||y|

4.

Then, we can infer that∣∣∣∣J11 −
1
2

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ C |x |

∫
Q(x)

1
|y|2

|θ(y)|

|y|2
dy ≤ C∥∇

2θ∥L2([0,1]2).

Collecting the estimates for J1 and J2 gives (3-7).

(ii) Suppose y ∈ [0, 2x1] × [2x1, 1]. In this case, using y1 ≤ y2, we can see that

1
2 y2 ≤ |x − y| ≤ 2y2,

1
2 y2 ≤ |x − ỹ| ≤ 2y2.
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Thus, Hölder’s inequality and Hardy’s inequality imply that∣∣∣∣− ∫
[0,2x1]×[2x1,1]

y1(x2 − y2)(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy

∣∣∣∣
≤ C

∫
[0,2x1]×[2x1,1]

1
y2

θ(y)

y2
2

dy ≤ C
(∫

[0,2x1]×[2x1,1]

dy
y2

2

)1/2

∥y−2
2 θ(y)∥L2([0,1]2)

≤ C∥∇
2θ∥L2([0,1]2). (3-8)

(iii) Suppose y ∈ [0, 2x1]
2. Thanks to θ(y1, 0) = 0, using integration by parts gives

−

∫
[0,2x1]2

y1(x2 − y2)(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy

=
1

4x1

∫
[0,2x1]2

(
1

|x − y|
−

1
|x − ỹ|

)
∂2θ(y) dy

−
1

4x1

∫ 2x1

0

(
1

|(x1 − y1, x2 − 2x1)|
−

1
|(x1 + y1, x2 − 2x1)|

)
θ(y1, 2x1) dy1.

By Hölder’s inequality, we estimate the second integral as∣∣∣∣− 1
x1

∫ 2x1

0

(
1

|(x1 − y1, x2 − 2x1)|
−

1
|(x1 + y1, x2 − 2x1)|

)
θ(y1, 2x1) dy1

∣∣∣∣ ≤ Cx−1
1 ∥θ∥L∞([0,2x1]2).

We notice that since θ vanishes near the axis, we have

∥θ∥L∞([0,2x1]2) ≤ sup
y1∈[0,2x1]

∫ 2x1

0
|∂2θ(y1, y2)| dy2 ≤ (2x1)

1/2
∥∥∥∥ sup

y1∈[0,2x1]

|∂2θ(y1, · )|

∥∥∥∥
L2(0,2x1)

≤ 2x1∥∂1∂2θ∥L2([0,2x1]2). (3-9)

Thus, we have∣∣∣∣− 1
x1

∫ 2x1

0

(
1

|(x1 − y1, x2 − 2x1)|
−

1
|(x1 + y1, x2 − 2x1)|

)
θ(y1, 2x1) dy1

∣∣∣∣ ≤ C∥∇
2θ∥L2([0,1]2).

Calculating the first integral with Hölder’s inequality, we see that∣∣∣∣ 1
x1

∫
[0,2x1]2

(
1

|x − y|
−

1
|x − ỹ|

)
∂2θ(y) dy

∣∣∣∣ ≤
2
x1

∫
[0,2x1]2

|∂2θ(y)|

|x − y|
dy

≤
2
x1

(∫ 4x1

0
r−1/3 dr

)3/4

∥∂2θ∥L4([0,2x1]2)

≤ Cx−1/2
1 ∥∇θ∥L4([0,2x1]2).

The Gagliardo–Nirenberg interpolation inequality implies

x−1/2
1 ∥∇θ∥L4([0,2x1]2) ≤ Cx−1/2

1 ∥∇
2θ∥

3/4
L2([0,2x1]2)

∥θ∥
1/4
L2([0,2x1]2)

+ Cx−2
1 ∥θ∥L2([0,2x1]2),

where the constant C > 0 is independent of x1. Applying Hardy’s inequality to it, we have

x−1/2
1 ∥∂2θ∥L4([0,2x1]2) ≤ C∥∇

2θ∥L2([0,2x1]2),
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and hence it follows that∣∣∣∣ 1
x1

∫
[0,2x1]2

(
1

|x − y|
−

1
|x − ỹ|

)
∂2θ(y) dy

∣∣∣∣ ≤ C∥∇
2θ∥L2([0,1]2).

Combining the above estimates, we obtain∣∣∣∣− ∫
[0,2x1]2

y1(x2 − y2)(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy

∣∣∣∣ ≤ C∥∇
2θ∥L2([0,1]2).

We collect the estimates for each region and deduce that∣∣∣∣ I1(0)

x1
− 6

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ C∥∇
2θ∥L2([0,1]2).

We can estimate

I2(0) = 4x1

∫
[0,1]2

y1(x2 + y2)(|x + y|
2
+ |x + y||x − ȳ| + |x − ȳ|

2)

|x + y|3|x − ȳ|3(|x + y| + |x − ȳ|)
θ(y) dy

similarly to I1(0), resulting in the bound∣∣∣∣ I2(0)

x1
− 6

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ C∥∇
2θ∥L2([0,1]2). (3-10)

We omit the details. Thus we have (3-1).

Estimate of u2. Now we estimate u2. Note that

u2(x) =

∑
n∈Z2

(I3(n) + I4(n)),

where

I3(n) :=

∫
[0,1]2

(
x1 − (y1 + 2n1)

|x − (y + 2n)|3
−

x1 − (y1 + 2n1)

|x − (ȳ + 2n)|3

)
θ(y) dy,

I4(n) :=

∫
[0,1]2

(
x1 − (−y1 + 2n1)

|x − (−y + 2n)|3
−

x1 − (−y1 + 2n1)

|x − (ỹ + 2n)|3

)
θ(y) dy.

Since we can similarly see that∣∣∣∣ ∑
n∈Z2\{0}

(I3(n) + I4(n))

∣∣∣∣ ≤ Cx2∥θ∥L∞([0,1]2),

it suffices to estimate for n = 0. Using (3-5), we have

I3(0) = 4x2

∫
[0,1]2

y2(x1 − y1)(|x − y|
2
+ |x − y||x − ȳ| + |x − ȳ|

2)

|x − y|3|x − ȳ|3(|x − y| + |x − ȳ|)
θ(y) dy.

We divide the domain into four regions as [0, 1]
2
= Q(x)∪[0, x1/2]× [0, 2x1]∪ [x1/2, 2x1]× [0, 2x1]∪

[0, 2x1] × [2x1, 1] and estimate the integral in each region.

(i) Suppose y ∈ Q(x). In this case, we note by 1
4 y2

1 + y2
2 ≤ |x1 − y1|

2
+ |x2 + y2|

2 that

1
2 |y| ≤ |x − ȳ| ≤ 2|y|.
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Recalling (3-6) holds, we can prove similarly to (3-7)∣∣∣∣∫
Q(x)

y2(x1 − y1)(|x − y|
2
+ |x − y||x − ȳ| + |x − ȳ|

2)

|x − y|3|x − ȳ|3(|x − y| + |x − ȳ|)
θ(y) dy +

3
2

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣
≤ C∥∇

2θ∥L2([0,1]2).

(ii) Suppose y ∈ [0, 2x1] × [2x1, 1]. It follows that

1
2 y2 ≤ |x − y| ≤ 2y2, y2 ≤ |x − ȳ| ≤ 2y2.

Hence, we can show∣∣∣∣∫
[0,2x1]×[2x1,1]

y2(x1 − y1)(|x − y|
2
+ |x − y||x − ȳ| + |x − ȳ|

2)

|x − y|3|x − ȳ|3(|x − y| + |x − ȳ|)
θ(y) dy

∣∣∣∣ ≤ C∥∇
2θ∥L2([0,1]2)

in a way similar to (3-8).

(iii) Suppose y ∈ [0, x1/2] × [0, 2x1]. This implies

1
2 x1 ≤ |x − y| ≤ 4x1,

1
2 x1 ≤ |x − ȳ| ≤ 4x1,

with y2 ≤ 2x1 we have∣∣∣∣∫
[0,x1/2]×[0,2x1]

y2(x1 − y1)(|x − y|
2
+ |x − y||x − ȳ| + |x − ȳ|

2)

|x − y|3|x − ȳ|3(|x − y| + |x − ȳ|)
θ(y) dy

∣∣∣∣
≤ Cx−1

1

∫
[0,x1/2]×[0,2x1]

θ(y)

y2
2

dy ≤ Cx−1
1

(∫
[0,x1/2]×[0,2x1]

1 dy
)1/2

∥y−2
2 θ(y)∥L2([0,1]2)

≤ C∥∇
2θ∥L2([0,1]2).

(iv) Suppose y ∈ [x1/2, 2x1] × [0, 2x1]. We claim that∫
[x1/2,2x1]×[0,2x1]

y2(x1 − y1)(|x − y|
2
+ |x − y||x − ȳ| + |x − ȳ|

2)

|x − y|3|x − ȳ|3(|x − y| + |x − ȳ|)
θ(y) dy =: K

satisfies

|K | ≤ C∥∇
2θ∥L2([0,1]2)

(
1+ log

x1

x2

)
+C(∥∇2θ∥L2(R(x)) +∥y−1

2 ∂1θ(y)∥L2(R(x)))

(
1+ log

x1

x2

)3/2

. (3-11)

Using integration by parts, we take the decomposition K = K1 + K2 + K3, where

K1 := −
1

4x2

∫
[x1/2,2x1]×[0,2x1]

(
1

|x − y|
−

1
|x − ȳ|

)
∂1θ(y) dy,

K2 :=
1

4x2

∫ 2x1

0

(
1

|(x1, x2 − y2)|
−

1
|(x1, x2 + y2)|

)
θ(2x1, y2) dy2,

K3 := −
1

4x2

∫ 2x1

0

(
1

|(x1/2, x2 − y2)|
−

1
|(x1/2, x2 + y2)|

)
θ(x1/2, y2) dy2.



146 IN-JEE JEONG AND JUNHA KIM

With (3-9) we may estimate K2 as

|K2| =

∣∣∣∣∫ 2x1

0

y2θ(2x1, y2)

|(x1, x2 − y2)||(x1, x2 + y2)|(|(x1, x2 − y2)| + |(x1, x2 + y2)|)
dy2

∣∣∣∣
≤ Cx−2

1

∫ 2x1

0
θ(2x1, y2) dy2 ≤ Cx−1

1 ∥θ∥L∞([0,2x1]2) ≤ C∥∇
2θ∥L2([0,1]2). (3-12)

Similarly, we obtain

|K3| ≤ C∥∇
2θ∥L2([0,1]2).

Noting that

K1 =

∫
[x1/2,2x1]×[0,2x1]

−y2∂1θ(y)

|x − y||x − ȳ|(|x − y| + |x − ȳ|)
dy,

we set K1 = K11 + K12, where

K11 :=

∫
[x1/2,2x1]×[0,2x2]

−y2∂1θ(y)

|x − y||x − ȳ|(|x − y| + |x − ȳ|)
dy,

K12 :=

∫
[x1/2,2x1]×[2x2,2x1]

−y2∂1θ(y)

|x − y||x − ȳ|(|x − y| + |x − ȳ|)
dy.

From |x − ȳ| ≥ x2 + y2 ≥ y2 we have

|K11| ≤ C
∫ 2x2

0

supy1∈[x1/2,2x1]
|∂1θ(y1, y2)|

x2 + y2

∫ 2x1

0

1
|x − y|

dy1 dy2,

|K12| ≤ C
∫ 2x1

2x2

supy1∈[x1/2,2x1]
|∂1θ(y1, y2)|

x2 + y2

∫ 2x1

0

1
|x − y|

dy1 dy2.

By the Gagliardo–Nirenberg interpolation inequality with y2 ≤ 2x1, we can see that

y−1/2
2 sup

y1∈[x1/2,2x1]

|∂1θ(y1, y2)| ≤ C(∥∂2
1θ( · , y2)∥L2(x1/2,2x1) + y−1

2 ∥∂1θ( · , y2)∥L2(x1/2,2x1)),

where the constant C > 0 does not depend on x1. On the other hand,∫ 2x1

0

1
|x − y|

dy1 =

∫ x1

0

2√
τ 2 + (x2 − y2)2

dτ

= 2 log
(
x1 +

√
x2

1 + (x2 − y2)
2)

− 2 log |x2 − y2| ≤ C log
(

1 +
x1

|x2 − y2|

)
. (3-13)

Hence, with y2 ≤ 2x1 and Hölder’s inequality, we infer that

|K11| ≤ C(∥∇2θ∥L2([0,1]2) + ∥y−1
2 ∂1θ(y)∥L2([0,1]2))

{∫ 2x2

0

1
x2 + y2

∣∣∣∣log
(

1 +
x1

|x2 − y2|

)∣∣∣∣2

dy2

}1/2

,

|K12| ≤ C(∥∇2θ∥L2(R(x)) + ∥y−1
2 ∂1θ(y)∥L2(R(x)))

{∫ 2x1

2x2

1
x2 + y2

∣∣∣∣log
(

1 +
x1

|x2 − y2|

)∣∣∣∣2

dy2

}1/2

.
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Using Hardy’s inequality and that∫ 2x2

0

1
x2 + y2

∣∣∣∣log
(

1 +
x1

|x2 − y2|

)∣∣∣∣2

dy2 ≤
1
x2

∫ 2x2

0

(
log

2x1

|x2 − y2|

)2

dy2

=
2
x2

∫ x2

0

(
log

2x1

x2 − y2

)2

dy2 ≤ C
(

1 + log
x1

x2

)2

,

we obtain

|K11| ≤ C∥∇
2θ∥L2([0,1]2)

(
1 + log

x1

x2

)
.

By the estimate∫ 2x1

2x2

1
x2 + y2

∣∣∣∣log
(

1 +
x1

|x2 − y2|

)∣∣∣∣2

dy2 ≤

∫ 2x1

2x2

1
y2 − x2

(
log

3x1

y2 − x2

)2

dy2

=
1
3

(
log

3x1

x2

)3

−
1
3

(
log

3x1

2x1 − x2

)3

≤ C
(

1 + log
x1

x2

)3

,

we have

|K12| ≤ C(∥∇2θ∥L2(R(x)) + ∥y−1
2 ∂1θ(y)∥L2(R(x)))

(
1 + log

x1

x2

)3/2

.

This implies

|K1| ≤ C∥∇
2θ∥L2([0,1]2)

(
1 + log

x1

x2

)
+ C(∥∇2θ∥L2(R(x)) + ∥y−1

2 ∂1θ(y)∥L2(R(x)))

(
1 + log

x1

x2

)3/2

,

and collecting the estimates for K1, K2, and K3, we obtain (3-11). Therefore, we arrive at∣∣∣∣ I3(0)

x2
+ 6

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣
≤ C∥∇

2θ∥L2([0,1]2)

(
1 + log

x1

x2

)
+ C(∥∇2θ∥L2(R(x)) + ∥y−1

2 ∂1θ(y)∥L2(R(x)))

(
1 + log

x1

x2

)3/2

.

Using (3-5), we can estimate

I4(0) = −4x2

∫
[0,1]2

y2(x1 + y1)(|x + y|
2
+ |x + y||x − ỹ| + |x − ỹ|

2)

|x + y|3|x − ỹ|3(|x + y| + |x − ỹ|)
θ(y) dy,

similarly to I3(0). Hence we have (3-2), and this completes the proof. □

Lemma 3.4. Let θ satisfy the assumptions in Lemma 3.2. Then, for any x satisfying |x | < 1
4 and

x1 > x2 > 0, we have ∣∣∣∣u1(x)

x1
− 12

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ B4(x) (3-14)

and ∣∣∣∣u2(x)

x2
+ 12

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤

(
1 + log

x1

x2

)
B5(x) +

(
1 + log

x1

x2

)2

B6(x), (3-15)

where B4, B5, B6 satisfy

|B4(x)| + |B5(x)| ≤ C(∥∇θ∥L∞([0,1]2) + ∥θ∥L∞([0,1]2)), |B6(x)| ≤ C∥∇θ∥L∞(R(x)).
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Proof. We follow the proof of Lemma 3.2. To obtain (3-14), we recall (3-4) and have

|u1(x)| =

∣∣∣∣∑
n∈Z2

(I1(n) + I2(n))

∣∣∣∣ ≤ Cx1∥θ∥L∞([0,1]2) + I1(0) + I2(0).

We estimate

I1(0) = −4x1

∫
[0,1]2

y1(x2 − y2)(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy

for each set Q(x), [0, 2x1] × [2x1, 1], and [0, 2x1]
2.

(i) Suppose y ∈ Q(x). Using the notation J1 and J2 in Lemma 3.2, it suffices to obtain∣∣∣∣J1 −
3
2

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ + |J2| ≤ C∥∇θ∥L∞([0,1]2). (3-16)

We already showed that

|J2| ≤ C |x |

∫
Q(x)

1
|y|3

|θ(y)|

|y|
dy.

By (3-6) and Hölder’s inequality, we have

|x |

∫
Q(x)

1
|y|3

|θ(y)|

|y|
dy ≤ |x |

(∫
∞

|x |

1
r2 dr

)
∥|y|

−1θ(y)∥L∞(Q(x)) ≤ ∥|y|
−1θ(y)∥L∞([0,1]2).

Since θ vanishes near the axis, it follows

|J2| ≤ C∥∇θ∥L∞([0,1]2).

Letting J1 = J11 + J12 + J13 as in the proof of Lemma 3.2, we can prove that∣∣∣∣J1k −
1
2

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ C |x |

∫
Q(x)

1
|y|3

|θ(y)|

|y|
dy ≤ C∥∇θ∥L∞([0,1]2)

for each k = 1, 2, 3. Therefore, (3-16) is obtained.

(ii) Suppose y ∈ [0, 2x1] × [2x1, 1]. In (3-8) we observed that∣∣∣∣∫
[0,2x1]×[2x1,1]

y1(x2 − y2)(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy

∣∣∣∣ C
∫

[0,2x1]×[2x1,1]

1
y2

2

θ(y)

y2
dy.

Since∫
[0,2x1]×[2x1,1]

1
y2

2

θ(y)

y2
dy ≤ C

(∫
[0,2x1]×[2x1,1]

1
y2

2
dy

)
∥y−1

2 θ(y)∥L∞([0,1]2) ≤ C∥∇θ∥L∞([0,1]2), (3-17)

we have∣∣∣∣− ∫
[0,2x1]×[2x1,1]

y1(x2 − y2)(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy

∣∣∣∣ ≤ C∥∇θ∥L∞([0,1]2).
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(iii) Suppose y ∈ [0, 2x1]
2. We recall that

−

∫
[0,2x1]2

y1(x2 − y2)(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy

=
1

4x1

∫
[0,2x1]2

(
1

|x − y|
−

1
|x − ỹ|

)
∂2θ(y) dy

−
1

4x1

∫ 2x1

0

(
1

|(x1 − y1, x2 − 2x1)|
−

1
|(x1 + y1, x2 − 2x1)|

)
θ(y1, 2x1) dy1.

Using Hölder’s inequality, we have∣∣∣∣ 1
x1

∫
[0,2x1]2

(
1

|x − y|
−

1
|x − ỹ|

)
∂2θ(y) dy

∣∣∣∣ ≤
2
x1

(∫
[0,2x1]2

1
|x − y|

dy
)

∥∂2θ∥L∞([0,1]2)

≤ C∥∇θ∥L∞([0,2x1]2).

From Hölder’s inequality and the mean value theorem, it follows∣∣∣∣− 1
x1

∫ 2x1

0

(
1

|(x1 − y1, x2 − 2x1)|
−

1
|(x1 + y1, x2 − 2x1)|

)
θ(y1, 2x1) dy1

∣∣∣∣ ≤ C∥∇θ∥L∞([0,1]2).

Therefore, we obtain∣∣∣∣− ∫
[0,2x1]2

y1(x2 − y2)(|x − y|
2
+ |x − y||x − ỹ| + |x − ỹ|

2)

|x − y|3|x − ỹ|3(|x − y| + |x − ỹ|)
θ(y) dy

∣∣∣∣ ≤ C∥∇
2θ∥L2([0,1]2).

Combining the above estimates, it follows that∣∣∣∣ I1(0)

x1
− 6

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ C∥∇θ∥L∞([0,1]2).

In a similar way, we can show that

I2(0) = 4x1

∫
[0,1]2

y1(x2 + y2)(|x + y|
2
+ |x + y||x − ȳ| + |x − ȳ|

2)

|x + y|3|x − ȳ|3(|x + y| + |x − ȳ|)
θ(y) dy

satisfies ∣∣∣∣ I2(0)

x2
− 6

∫
R(2x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ C∥∇θ∥L∞([0,1]2).

We omit the details. Thus we have (3-14).
To estimate u2, we start with

|u2(x)| =

∣∣∣∣∑
n∈Z2

(I3(n) + I4(n))

∣∣∣∣ ≤ Cx2∥θ∥L∞([0,1]2) + I3(0) + I4(0).

To estimate

I3(0) = 4x2

∫
[0,1]2

y2(x1 − y1)(|x − y|
2
+ |x − y||x − ȳ| + |x − ȳ|

2)

|x − y|3|x − ȳ|3(|x − y| + |x − ȳ|)
θ(y) dy,

we consider [0, 1]
2
= Q(x)∪[0, x1/2]×[0, 2x1]∪[x1/2, 2x1]×[0, 2x1]∪[0, 2x1]×[2x1, 1] and estimate

the integral in each region.
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(i) Suppose y ∈ Q(x). In this case, recalling that (3-6) holds, we can prove, proceeding much as for (3-16),∣∣∣∣∫
Q(x)

y2(x1 − y1)(|x − y|
2
+ |x − y||x − ȳ| + |x − ȳ|

2)

|x − y|3|x − ȳ|3(|x − y| + |x − ȳ|)
θ(y) dy +

3
2

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣
≤ C∥∇θ∥L∞([0,1]2). (3-18)

(ii) Suppose y ∈ [0, 2x1] × [2x1, 1]. Since in this case we have

1
2 y2 ≤ |x − y| ≤ 2y2, y2 ≤ |x − ȳ| ≤ 2y2,

with (3-17) we can show that∣∣∣∣∫
[0,2x1]×[2x1,1]

y2(x1 − y1)(|x − y|
2
+ |x − y||x − ȳ| + |x − ȳ|

2)

|x − y|3|x − ȳ|3(|x − y| + |x − ȳ|)
θ(y) dy

∣∣∣∣ ≤ C∥∇θ∥L∞([0,1]2).

(iii) Suppose y ∈ [0, x1/2] × [0, 2x1]. This implies

1
2 x1 ≤ |x − y| ≤ 4x1,

1
2 x1 ≤ |x − ȳ| ≤ 4x1,

we can see that∣∣∣∣∫
[0,x1/2]×[0,2x1]

y2(x1 − y1)(|x − y|
2
+ |x − y||x − ȳ| + |x − ȳ|

2)

|x − y|3|x − ȳ|3(|x − y| + |x − ȳ|)
θ(y) dy

∣∣∣∣ ≤ C∥∇θ∥L∞([0,1]2).

(iv) Suppose y ∈ [x1/2, 2x1]×[0, 2x1]. Recalling the notation K1, K2, and K3 in the proof of Lemma 3.2,
we claim

|K1| ≤ C∥∇θ∥L∞([0,1]2)

(
1 + log

x1

x2

)
+ C∥∇θ∥L∞(R(x))

(
1 + log

x1

x2

)2

(3-19)

and
|K2| + |K3| ≤ C∥∇θ∥L∞([0,1]2). (3-20)

As in (3-12), we have from the mean value theorem that

|K2| ≤ Cx−1
1 ∥θ∥L∞([0,2x1]2) ≤ C∥∇θ∥L∞([0,1]2),

and similarly,
|K3| ≤ C∥∇θ∥L∞([0,1]2).

Hence, (3-20) follows. We recall K1 = K11 + K12, where

K11 =

∫
[x1/2,2x1]×[0,2x2]

−y2∂1θ(y)

|x − y||x − ȳ|(|x − y| + |x − ȳ|)
dy,

K12 =

∫
[x1/2,2x1]×[2x2,2x1]

−y2∂1θ(y)

|x − y||x − ȳ|(|x − y| + |x − ȳ|)
dy.

From Hölder’s inequality and (3-13), we can deduce that

|K11| ≤ C∥∇θ∥L∞([0,1]2)

∫ 2x2

0

1
x2 + y2

log
(

1 +
x1

|x2 − y2|

)
dy2,

|K12| ≤ C∥∇θ∥L∞(R(x))

∫ 2x1

2x2

1
x2 + y2

log
(

1 +
x1

|x2 − y2|

)
dy2.
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Since ∫ 2x2

0

1
x2 + y2

log
(

1 +
x1

|x2 − y2|

)
dy2 ≤

1
x2

∫ 2x2

0
log

2x1

|x2 − y2|
dy2 ≤ C

(
1 + log

x1

x2

)
,∫ 2x1

2x2

1
x2 + y2

log
(

1 +
x1

|x2 − y2|

)
dy2 ≤

∫ 2x1

2x2

1
y2 − x2

log
3x1

y2 − x2
dy2 ≤ C

(
1 + log

x1

x2

)2

,

it follows

|K11| ≤ C∥∇θ∥L∞([0,1]2)

(
1 + log

x1

x2

)
, |K12| ≤ C∥∇θ∥L∞(R(x))

(
1 + log

x1

x2

)2

.

This shows (3-19). Combining the estimates, we arrive at∣∣∣∣ I3(0)

x2
+ 6

∫
Q(x)

y1 y2

|y|5
θ(y) dy

∣∣∣∣ ≤ C∥∇θ∥L∞([0,1]2)

(
1 + log

x1

x2

)
+ C∥∇θ∥L∞(R(x))

(
1 + log

x1

x2

)2

.

Using (3-5), we can estimate

I4(0) = −4x2

∫
[0,1]2

y2(x1 + y1)(|x + y|
2
+ |x + y||x − ỹ| + |x − ỹ|

2)

|x + y|3|x − ỹ|3(|x + y| + |x − ỹ|)
θ(y) dy,

similarly to I3(0). Hence we have (3-15), and this completes the proof. □

4. Nonexistence

In this section, we prove Theorem B. We begin with a simple uniqueness result which in particular
guarantees that the hypothetical solution in L∞

t H 2 satisfies the same symmetries with the initial data.

Proposition 4.1. Given θ0 ∈ H 2 and T > 0, there exists at most one solution to (SQG) belonging to
L∞([0, T ]; H 2) with initial data θ0.

Proof. The proof can be given by simply adapting the inequalities derived in [Yudovich 1963; 1995]. This
statement can be found in [Azzam and Bedrossian 2015] as well. □

Proof of Theorem B. For convenience, we shall divide the proof into several parts.

Part 1: velocity and flow map: an L∞
t H 2-solution is Lagrangian. Assume that we are given a solution to

(SQG) satisfying
sup

t∈[0,T ]

∥θ(t, · )∥H2 ≤ M.

Then, by the Sobolev embedding, u = ∇
⊥(−1)−1/2θ satisfies

sup
t∈[0,T ]

(∥∇u(t, · )∥BMO + ∥u(t, · )∥W 1,1) ≤ C sup
t∈[0,T ]

∥u(t, · )∥H2 ≤ C M,

with some absolute constant C > 0. In particular, u is log-Lipschitz: for any x, y ∈ T2, we have

sup
t∈[0,T ]

|u(t, x) − u(t, y)| ≤ C M |x − y| ln
(

10 +
1

|x − y|

)
. (4-1)
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On the time interval [0, T ], we consider the flow map 8(t, · ) : T2
→ T2 defined by{ d

dt
8(t, x) = u(t, 8(t, x)),

8(0, x) = x .
(4-2)

It is well known that under the estimate (4-1), there is a unique solution to the ODE (4-2) for any x ∈ T2

[Majda and Bertozzi 2002; Marchioro and Pulvirenti 1994]. The solution 8 satisfies the estimate

|x − y|
exp(C Mt)

≤ |8(t, x) − 8(t, y)| ≤ |x − y|
exp(−C Mt) (4-3)

for some absolute constant C > 0, uniformly in x, y ∈ T2 satisfying |x − y| < 1
2 and t ∈ [0, T ]. We have

the representation
θ(t, 8(t, x)) = θ0(x).

The estimate (4-3) shows that, for each t ∈ [0, T ], 8(t, · ) is a Hölder continuous homeomorphism
T2

→ T2, and we denote the inverse map by 8−1
t . Then, with this notation, we have

θ(t, x) = θ0(8
−1
t (x)).

The inverse map 8−1
t is again Hölder continuous. As an immediate consequence, we have that if θ0 is an

odd function with respect to both axes and satisfies

supp(θ0) ∪ {x : x1 = 0 or x2 = 0} ⊂ {(0, 0)},

then the same properties are satisfied by θ(t, · ), as long as θ ∈ L∞([0, t]; H 2). Indeed, the uniqueness
assertion from Proposition 4.1 guarantees that θ(t, · ) is odd with respect to both axes. Furthermore,
Hölder continuity of the flow map and its inverse ensures that θ(t, · ) vanishes near the axes, possibly
except at the origin. Therefore, the last assumption in Lemma 3.2 is satisfied.

Part 2: choice of initial data. We fix some smooth bump function φ : R2
→ R≥0 satisfying the following

properties:

• φ is C∞-smooth and radial.

• φ is supported in B0
( 1

8

)
and φ = 1 in B0

( 1
32

)
.

Then, we define

θ0 :=

∞∑
n=n0

n−αθ
(n)
0,loc (4-4)

for some 1
2 < α < 3

4 , where

θ
(n)
0,loc(x) := 4−nφ(4n(x1 − 4−n−1, x2 − 4−n−2))

for x ∈ [0, 1]
2. The precise value of α will be determined later, but for now let us just mention that it

will be taken slightly larger than 1
2 . Next, let us extend each of θ

(n)
0,loc (and similarly θ0) to T2 as an odd

function with respect to both axes. Note that by taking n0 ≥ 1 sufficiently large in a way depending only
on ϵ > 0, we can guarantee that

∥θ0∥H2∩W 1,∞(T2) < ϵ.
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Towards a contradiction, we shall assume that there exists M > 0 and T > 0 such that

sup
t∈[0,T ]

∥θ(t)∥Ḣ2(T2) ≤ M. (4-5)

For simplicity, we shall assume that M ≥ 1. Observe that the assumptions in the key lemma (Lemma 3.2)
are satisfied by θ0. Recalling the discussion above, we have that θ(t, · ) is odd with respect to both axes
and vanishes near the axes, except at the origin.

Part 3: preliminary bounds on the solution. Let us remark in advance that in the following proof we shall
take T > 0 to be smaller, if necessary, to satisfy T ≤ c/M for some small absolute constant c > 0. We
shall begin with a simple result:

Lemma 4.2. Assume that θ is a solution satisfying (4-5) with initial data (4-4). Then, by redefining T to
satisfy T ≤ c/M if necessary, we have

θ(t, y) = 0, 0 ≤ y1 ≤ y2, 0 ≤ t ≤ T .

Proof. Since θ(t, 8(t, x)) = θ0(x), to prove the claim, it suffices to show that, for x ∈ supp(θ0)\{(0, 0)},
82(t, x) ≤ 81(t, x) for 0 ≤ t ≤ T. Let us fix some x ∈ supp(θ0)\{(0, 0)}. Then, from the choice of initial
data, we have 2x2 ≤ x1. From continuity in time of the flow map, there exists some 0 < T ∗

≤ T such that
82(t, x) < 81(t, x) for 0 ≤ t < T ∗. Then, on this time interval, key lemma is applicable for 8(t, x) and
we compute

d
dt

(
82(t, x)

81(t, x)

)
=

82(t, x)

81(t, x)

(
u2(t, 8(t, x))

82(t, x)
−

u1(t, 8(t, x))

81(t, x)

)
≤ C

82(t, x)

81(t, x)
(|B1(8(t, x))| + |B2(8(t, x))| + |B3(8(t, x))|) ≤ C M

82(t, x)

81(t, x)
.

Therefore, we actually obtain
82(t, x)

81(t, x)
≤

1
2

exp(C Mt) <
3
4

on t ∈ [0, T ∗
], as long as T ∗

≤ c/M for c > 0 depending only on C . This bootstrap procedure allows us
to get 82/81 < 3

4 uniformly in x ∈ supp(θ0)\{(0, 0)} by the time min{T, c/M} = T. □

The above lemma guarantees that on [0, T ], the key lemma is applicable to points in supp(θ(t, · )).
Next, let us set �n := supp(θ

(n)
0,loc)∩{x ∈ T2

: x1 > x2 > 0} and prove that, by reducing c > 0 if necessary,
the bubbles {8(t, �n)}n≥n0 are “well-ordered” with respect to the x1-axis for t ∈ [0, T ] with T ≤ c/M.

Claim I. We have

sup
x∈�n

81(t, x) ≤ 2 inf
x∈�n

81(t, x) and 2 sup
x∈�n+1

81(t, x) ≤ inf
x∈�n

81(t, x) (4-6)

uniformly for all n ≥ n0 and t ∈ [0, T ], by reducing T to satisfy T ≤ c/(1 + M) for some small absolute
constant c > 0.

For simplicity we let
8̂n

j (t) := sup
x∈�n

8 j (t, x)
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for j = 1, 2. We can prove the Claim I inductively in n, using the key lemma, which gives∣∣∣∣u1(t, x)

x1
− 12

∫
Q(x)

y1 y2

|y|5
θ(t, y) dy

∣∣∣∣ ≤ C M.

In the proof, we shall take T > 0 smaller several times, but in a way which is independent of n. To begin
with, for x ∈ �n0 we have

d
dt

log 81(t, x) ≥ −C M.

Thus,
log 81(t, x) − log x1 ≥ −C Mt.

We also have
d
dt

log 8̂
n0
1 (t) −

d
dt

log 81(t, x) ≤ 2C M,

and thus,
log 8̂

n0
1 (t) − log 81(t, x) ≤ 2C Mt + (log x̂n0

1 − log x1).

Since x̂n0
1 /x1 < 3

2 , we can take T > 0 sufficiently small such that

2C MT + (log x̂n0
1 − log x1) ≤ log 2,

which implies that
8̂

n0
1 (t) ≤ 2 inf

x∈�n0

81(t, x)

for all t ∈ [0, T ]. Indeed, it suffices to take T = c/(1+ M) with a small absolute constant c > 0. To show

28̂
n0+1
1 (t) ≤ inf

x∈�n0

81(t, x) (4-7)

for all t ∈ [0, T ], we use the notation

9̂n
1 (t) := sup

n≤m
8̂m

1 (t).

Then, for x ∈ �n0 , we have

d
dt

log 81(t, x) −
d
dt

log 9̂
n0+1
1 (t) ≥ −12

∫
�n0

81(t, y)82(t, y)

|8(t, y)|5
θ0(y) dy − 2C M.

From the above estimates, it follows∫
�n0

81(t, y)82(t, y)

|8(t, y)|5
θ0(y) dy ≤

(
sup

x∈�n0

x1

81(t, x)

)3 ∫
�n0

θ0(y)

y3
1

dy ≤ C0e3C MT .

Using it, we obtain

d
dt

log 81(t, x) −
d
dt

log 9̂
n0+1
1 (t) ≥ −12C0e3C MT

− 2C M

and
log 81(t, x) − log 9̂

n0+1
1 (t) ≥ −12C0e3C MT t − 2C Mt + (log x1 − log x̂n0+1

1 ).

Since x1/x̂n0+1
1 > 2, we can take T > 0 sufficiently small such that

−12C0e3C MT T − 2C MT + (log x1 − log x̂n0+1
1 ) ≥ log 2.
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Hence, with 9̂
n0+1
1 (t) ≥ 8̂

n0+1
1 (t), we can obtain (4-7). Now let x ∈ �n0+1. Then we have

d
dt

log 81(t, x) ≥ −C M.

Thus,

log 81(t, x) − log x1 ≥ −C Mt.

Since x̂n0+1
1 /x1 takes the same value as in the previous case, we see that

2C MT + (log x̂n0+1
1 − log x1) ≤ log 2,

and therefore, we have

8̂
n0+1
1 (t) ≤ 2 inf

x∈�n0+1
81(t, x)

for all t ∈ [0, T ]. Note that by (4-7),

d
dt

log 81(t, x) −
d
dt

log 9̂
n0+2
1 (t) ≥ −12

∫
�n0+1

81(t, y)82(t, y)

|8(t, y)|5
θ0(y) dy − 2C M.

With the above estimates, we have∫
�n0+1

81(t, y)82(t, y)

|8(t, y)|5
θ0(y) dy ≤

(
sup

x∈�n0+1

x1

81(t, x)

)n0+2 ∫
�n0+1

θ0(y)

yn0+2
1

dy ≤ C0e3C MT .

Using it, we obtain

d
dt

log 81(t, x) −
d
dt

log 9̂
n0+2
1 (t) ≥ −12C0e3C MT

− 2C M

and

log 81(t, x) − log 9̂
n0+2
1 (t) ≥ −12C0e3C MT t − 2C Mt + (log x1 − log x̂n0+2

1 ).

Since x1/x̂n0+2
1 > 2 is the same value as in the previous case, it follows

−12C0e3C MT T − 2C MT + (log x1 − log x̂n0+2
1 ) ≥ log 2

and

28̂
n0+2
1 (t) ≤ inf

x∈�n0+1
81(t, x)

for all t ∈ [0, T ]. Repeating this argument, one can finish the proof of Claim I. □

Claim II. There exists T > 0 and C > 0 such that

log
8̂n

2(T )

x̂n
2

≤ −10
∑

n0≤ j≤n−1

∫ T

0

∫
� j

81(t, y)82(t, y)

|8(t, y)|5
θ0(y) dy dt + C MT

uniformly for all n > n0.

Recall that
u2(x)

x2
≤ −12

∫
Q(x)

y1 y2

|y|5
θ(t, y) dy + C M

(
log

x1

x2

)
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if θ(y) = 0 for y satisfying x1/2 ≤ y1 ≤ 2x1 and 2x2 ≤ y2 ≤ 1. According to the order of the bubbles, for
x ∈ �n , we have ∫

Q(8(t,x))

y1 y2

|y|5
θ(t, y) dy =

∑
n0≤ j≤n−1

∫
� j

81(t, y)82(t, y)

|8(t, y)|5
θ0(y) dy.

And note that

sup
282(t,x)≥8̂n

2(t)
C M

(
log

81(t, x)

82(t, x)

)
≤ C M

(
log

28̂n
1(t)

8̂n
2(t)

)
.

Thus, we can see that

d
dt

log
8̂n

2(t)
x̂n

2
≤ −12

∑
n0≤ j≤n−1

∫
� j

81(t, y)82(t, y)

|8(t, y)|5
θ0(y) dy + C M log

28̂n
1(t)

8̂n
2(t)

≤ −12
∑

n0≤ j≤n−1

∫
� j

81(t, y)82(t, y)

|8(t, y)|5
θ0(y) dy + C M log

8̂n
1(t)
x̂n

1
− C M log

8̂n
2(t)
x̂n

2
+ C M

and

d
dt

(
eC Mt log

8̂n
2(t)
x̂n

2

)
≤ eC Mt

(
−12

∑
n0≤ j≤n−1

∫
� j

81(t, y)82(t, y)

|8(t, y)|5
θ0(y) dy + C M

(
log

8̂n
1(t)
x̂n

1
+ 1

))
.

It suffices to bound the time integral of the right-hand side. Note that from

log
8̂n

1(t)
x̂n

1
≤ 12

∑
n0≤ j≤n−1

∫ t

0

∫
� j

81(τ, y)82(τ, y)

|8(τ, y)|5
θ0(y) dy dτ + C Mt,

we obtain

C M
∫ t

0
log

8̂n
1(τ )

x̂n
1

dτ ≤ 12C Mt
∑

n0≤ j≤n−1

∫ t

0

∫
� j

81(τ, y)82(τ, y)

|8(τ, y)|5
θ0(y) dy dτ + (C Mt)2.

Therefore, using Grönwall’s inequality on the quantity log(8̂n
2(t)/x̂n

2 ) and taking T > 0 small depending
only on C M, we can complete the proof of Claim II. □

Part 4: almost invariant timescales. We shall write 8(t, �n) ∼ �n if

supp(8(t, �n)) ⊂ B((4−n−1, 4−n−2), 4−n−1).

Here, B((4−n−1, 4−n−2), 4−n−1) denotes the ball of radius 4−n−1 centered at (4−n−1, 4−n−2). Recall
from the definition of initial data that

�n = B((4−n−1, 4−n−2), 2−14−n−1).

An immediate consequence of 8(t, �n) ∼ �n is that once we define

In(t) =

∫
�n

81(t, y)82(t, y)

|8(t, y)|5
θ0(y) dy,

we have
In(t) ≥ a0 In(0)

for some absolute constant a0. The following claim gives the sharp bound on the “almost invariant”
timescale for each bubble.
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Claim III. For all n ≥ n0, we have

8(t, �n) ∼ �n for 0 ≤ t ≤ min
{

T,
c

M +
∑n−1

j=n0
j−α

}
=: Tn,

with some constants c, C > 0 independent of n.

This claim can be proved easily with an induction in n. In the base case n = n0, we simply note that,
for x ∈ 8(t, �n0), ∣∣∣∣u j (t, x)

x j

∣∣∣∣ ≤ C M

from which the claim follows in this case. Assume that Claim III holds for all n < n0 + k for some k ≥ 1.
Note that using the key lemma and the induction hypothesis, we have for x ∈ 8(t, �n0+k) that∣∣∣∣u j (t, x)

x j

∣∣∣∣ ≤ C
(

M +

k−1∑
ℓ=0

In0+ℓ

)
, 0 ≤ t ≤ Tn0+k−1.

A simple application of Gronwall’s inequality gives Claim III. □
We have proven that the n-th bubble remains almost invariant for Tn , which is bounded from below by

Tn ≥
c0∑n−1

j=n0
j−α

≥
(1 − α)c0

n1−α

for all n ≥ N with some large N depending only on M, T. Now, we observe that∫ Tn

0
In(t) dt ≳ Tn In(0) ≳ 1

n
,

with constants independent of n, recalling that In(0) ≳ n−α.
(
We shall take α close to 1

2 .
)

Hence,
summation gives

n∑
k=ℓ

Ik(0)Tk ≥ c0

(
1
ℓ

+ · · · +
1
n

)
≥ log

(
n
ℓ

)c0

(4-8)

for some absolute constant c0 > 0, as long as ℓ > N.

Part 5: norm inflation and conclusion the proof. We are now in a position to complete the proof. For
each ℓ > N and n ≫ ℓ (so that log(n/ℓ)c0 ≫ M), we can bound for x ∈ �n

log
8̂n

2(Tℓ)

x̂n
2

≤ C M − 10
n∑

k=ℓ

Ik(0)Tk ≤ log
(

n
ℓ

)−c0

.

In other words, we have the growth
x̂n

2

8̂n
2(Tℓ)

≥

(
n
ℓ

)c0

. (4-9)

Now, we can write the solution in the form

θ =

∞∑
n=n0

n−αθ (n), θ (n)(t, 8(t, x)) = θ
(n)
0,loc(x),
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so that the support of θ (n) is disjoint from each other. We now take t = Tℓ. Since θ (n)(Tℓ, · )= 1 in a region
of area ≳ 4−2n and θ (n′)

= 0 for n′
̸= n in that region, with Hardy’s inequality and (4-9), we obtain that

∥θ (n)(Tℓ)∥
2
Ḣ2 ≳

(
n
ℓ

)4c0

.

This estimate holds for all sufficiently large n. Then

∥θ(Tℓ)∥
2
H2 ≥

∑
n≥n0

n−2α
∥θ (n)(Tℓ)∥

2
Ḣ2 ≳ ℓ−4c0

∑
n≫ℓ

n4c0−2α.

In the last inequality, since c0 > 0 is an absolute constant, and we could have chosen α =
1
2 + c0. This

gives a contradiction to ∥θ(Tℓ)∥H2 < ∞ since
∑

n≫ℓ n−1+c0 = ∞. □

Remark 4.3. The nonexistence of the solution in W 1,∞ is obtained similarly. We define the initial data θ0

with (4-4) for some 0 < α < 1
4 and repeat the above process with Lemma 3.4 instead of Lemma 3.2. Then

we can have an absolute constant c′

0 > 0 with (4-9). Since this implies

∥θ (n)(Tℓ)∥Ẇ 1,∞ ≳

(
n
ℓ

)c′

0

,

it follows that
∥θ(Tℓ)∥W 1,∞ ≥ n−α

∥θ (n)(Tℓ)∥Ẇ 1,∞ ≳ ℓ−c′

0nc′

0−α.

Therefore, taking α = c′

0/2, we complete the proof.

5. Norm inflation for smooth data

We establish Theorem A in this section, by proving a quantitative norm inflation result for data obtained
by truncating the data used in the proof of Theorem B.

Proposition 5.1 (quantitative norm inflation). We consider the C∞-smooth initial data

θ
(N )
0 :=

N∑
n=n0

n−αθ
(n)
0,loc, (5-1)

where φ, α, n0 are the same as in (4-4). Then, there exists N0 ≥ 1 depending only on φ, n0 such that, for
all N ≥ N0, the unique local in time C∞-solution θ (N ) to (SQG) with initial data θ

(N )
0 exists on the time

interval [0, T ∗
] for some 0 < T ∗

≤ TN and satisfies

∥θ
(N )
0 ∥H2∩W 1,∞ ≤ ϵ, sup

t∈[0,T ∗]

∥θ (N )(t)∥H2 > MN , (5-2)

where

MN :=
c0

2
ln N , TN :=

1
MN ln MN

, (5-3)

with c0 > 0 from (4-8).

Proof. We shall establish the proposition with a contradiction argument: let 0 < T ∗
≤ +∞ be the lifespan

of the smooth solution associated with the initial data θ
(N )
0 and assume that

∥θ (N )
∥L∞([0,min{T ∗,TN }];H2) ≤ MN .
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Under this contradiction hypothesis, we can actually prove that T ∗ > TN , so that

∥θ (N )
∥L∞([0,TN ];H2) ≤ MN . (5-4)

This is simply because the H 2-norm gives a blow-up criterion. To illustrate this point, we estimate the
H 3-norm of θ := θ (N ) on [0, TN ]:3 from the equation for 1θ

∂t1θ + u · ∇1θ + 1u · ∇θ + 2
∑

i=1,2

∂i u · ∇∂iθ = 0,

we estimate for j = 1, 2

1
2

d
dt

∥∂ j1θ∥
2
L2 ≤ C(∥∇u∥L∞ + ∥∇θ∥L∞)∥∂ j1θ∥

2
L2 + C∥θ∥H2∥θ∥

2
H3 .

Here, we have used L4 boundedness of the Riesz operator θ 7→ u to bound

∥∇
2u∥L4 + ∥∇

2θ∥L4 ≤ C∥θ∥
1/2
H2 ∥θ∥

1/2
H3 .

Next, we use the logarithmic Sobolev inequality

∥∇θ∥L∞ ≤ C∥θ∥H2 log
(

10 +
∥θ∥H3

∥θ∥H2

)
and

∥∇u∥L∞ ≤ C∥u∥H2 log
(

10 +
∥u∥H3

∥u∥H2

)
≤ C∥θ∥H2 log

(
10 +

∥θ∥H3

∥θ∥H2

)
(we have used the lower bound ∥u∥H2 ≥ C∥θ∥H2). Lastly, using ∥θ∥H2 ≤ MN , we may deduce the a
priori estimate

d
dt

∥θ∥
2
H3 ≤ C MN log(10 + ∥θ∥H3)∥θ∥

2
H3,

which shows that the H 3-norm of θ must remain finite up to t = TN . Higher norms of θ can be similarly
controlled, so that the solution θ remains C∞-smooth up to t = TN .

In the following argument, N0 ≫ n0 will be taken to be sufficiently large (but in a way depending only
on a few absolute constants) whenever it becomes necessary. Recall that we are assuming N ≥ N0. The
following argument is mainly a repetition of the proof of Theorem B above. For convenience, let us fix

ℓN := M3
N . (5-5)

Then, note from the definition of MN in (5-3) that n0 ≪ ℓN ≪ N. Here and in the following, we write
A ≪ B if A/B → 0 as N → ∞, where A and B are some positive expressions involving N.

Observe that the solution θ defined on [0, TN ] satisfies the properties stated in Lemma 4.2 and Claims I,
II, III on the entire time interval [0, TN ] (by taking N0 larger if necessary), simply because we have

TN ≪
1

MN

3For simplicity, from now on we shall refrain from writing out the dependence of the solution θ in N.
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from our choice of TN in (5-3). As in the above, we write the solution in the form

θ =

N∑
n=n0

n−αθ (n), θ (n)(t, 8(t, x)) = θ
(n)
0,loc(x),

and θ (n) will be referred to as the n-th bubble. Then, for any ℓN ≤ k ≤ N, we have that the invariant
timescale Tk for the k-th bubble satisfies

Tk ≤ TN and Tk ≳
1

MN +
∑k−1

j=n0
j−α

≳ kα−1.

We have used that α is close to 1
2 . Now we consider the values of n satisfying

n ≥ CℓN exp(c−1
0 MN ) (5-6)

for a sufficiently large absolute constant C > 0. Then, at t = TℓN , we obtain much as before

∥θ (n)(TℓN )∥2
Ḣ2 ≳

(
n
ℓN

)2c0

whenever n ≤ N satisfies (5-6). Hence

∥θ(TℓN )∥2
H2 ≳

N∑
n=1+⌊CℓN exp(c−1

0 MN )⌋

n−2α

(
n
ℓN

)2c0

≳ ℓ
−2c0
N N 1−2α+2c0 ≫ M2

N ,

recalling the definitions of MN and ℓN . We have used that N ≫ ℓN exp(c−1
0 MN ) to derive the last

inequality. In particular, for all sufficiently large N, we obtain

∥θ(TℓN )∥H2 > MN ,

which is a contradiction. □

Appendix: Key lemma for generalized SQG

We provide a version of the “key lemma” for generalized SQG equations (1-3) with 1 < α < 2.

Lemma A.1. Let θ satisfy the assumptions in Lemma 3.2, and let x satisfy |x | < 1
4 and x1 > x2 > 0. Then,

u = ∇
⊥3−αθ satisfies ∣∣∣∣u1(x)

x1
− 4(4 − α)

∫
Q(2x)

y1 y2

|y|6−α
θ(y) dy

∣∣∣∣ ≤ B7(x) (A-1)

and∣∣∣∣u2(x)

x2
+ 4(4 − α)

∫
Q(2x)

y1 y2

|y|6−α
θ(y) dy

∣∣∣∣ ≤

(
1 + log

x1

x2

)
B8(x) +

(
1 + log

x1

x2

)(5−2α)/2

B9(x), (A-2)

where B7, B8, B9 satisfy

|B7(x)| + |B8(x)| ≤ C(∥∇3−αθ∥L2([0,1]2) + ∥θ∥L∞([0,1]2))

and

|B9(x)| ≤ C(∥∇3−αθ∥L2(S(x)) + ∥y−1
2 ∂1θ(y)∥L2(S(x))), S(x) := [x1/2, 4x1] × [4x2, 1].
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Our proof will be brief, since the structure of the proof is similar to the SQG case. Unfortunately, this
argument cannot be specialized to give the lemma in the SQG case, since the case α = 1 is critical (being
an integer) in some sense.

Proof. We fix a point x = (x1, x2) satisfying the assumptions of the lemma. We write

u(x) =

∑
n∈Z2

∫
[0,1]2

(
(x−(y+2n))⊥

|x−(y+2n)|4−α
−

(x−(ỹ+2n))⊥

|x−(ỹ+2n)|4−α
+

(x−(−y+2n))⊥

|x−(−y+2n)|4−α
−

(x−(ȳ+2n))⊥

|x−(ȳ+2n)|4−α

)
θ(y)dy.

We estimate u1 first. We introduce

I1(n) := −

∫
[0,1]2

(
x2 − (y2 + 2n2)

|x − (y + 2n)|4−α
−

x2 − (y2 + 2n2)

|x − (ỹ + 2n)|4−α

)
θ(y) dy,

I2(n) := −

∫
[0,1]2

(
x2 − (−y2 + 2n2)

|x − (−y + 2n)|4−α
−

x2 − (−y2 + 2n2)

|x − (ȳ + 2n)|4−α

)
θ(y) dy

and we see

u1(x) =

∑
n∈Z2

(I1(n) + I2(n)).

In the case of n ̸= 0, we have

|I1(n) + I1(ñ)| + |I2(n) + I2(ñ)| ≤ O(|n|
−5+α)∥θ∥L∞([0,1]2)x1;

hence, ∣∣∣∣ ∑
n∈Z2\{0}

(I1(n) + I2(n))

∣∣∣∣ ≤ Cx1∥θ∥L∞([0,1]2). (A-3)

For n = 0, we estimate first

I1(0) = −

∫
[0,1]2

(
x2 − y2

|x − y|4−α
−

x2 − y2

|x − ỹ|4−α

)
θ(y) dy.

Using [0, 1]
2
= Q(2x) ∪ [0, 4x1] × [4x1, 1] ∪ [0, 4x1]

2, we estimate the integral for each set.

(i) Suppose y ∈ Q(2x). In this case, we note

−
5
8 |y|

2
≤ |x |

2
− 2x · y ≤ |x |

2
− 2x · ỹ ≤

5
8 |y|

2

from −|x |
2
+ 2x · y ≤ 3|x |

2
+

1
4 |y|

2
≤

3
8 y2

1 +
1
4 |y|

2 and |x |
2
+ 2x1 y1 ≤

5
8 y2

1 . Hence, it holds∣∣∣∣ |x |
2

|y|2
−

2x · y
|y|2

∣∣∣∣ ≤
5
8
,

∣∣∣∣ |x |
2

|y|2
−

2x · ỹ
|y|2

∣∣∣∣ ≤
5
8
.

Then, using the Taylor series expansion

1
(t + 1)(4−α)/2 = 1 −

4 − α

2
t +

(4 − α)(6 − α)

8
t2g(t), −1 < t < 1, (A-4)
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where g is an analytic function on (−1, 1) with g(0) = 1, we can verify

x2 − y2

|x − y|4−α
−

x2 − y2

|x − ỹ|4−α

=
x2 − y2

|y|4−α

(
|x |

2

|y|2
−

2x · y
|y|2

+ 1
)−(4−α)/2

−
x2 − y2

|y|4−α

(
|x |

2

|y|2
−

2x · ỹ
|y|2

+ 1
)−(4−α)/2

=
x2 − y2

|y|4−α

[
2(4 − α)

x1 y1

|y|2
+

(4 − α)(6 − α)

8

{
h
(

|x |
2

|y|2
−

2x · y
|y|2

)
− h

(
|x |

2

|y|2
−

2x · ỹ
|y|2

)}]
,

where h(t) := t2g(t). We set

f (τ ) = h
(

|x |
2

|y|2
−

2x · (y + (τ − 1)(y − ỹ))

|y|2

)
, 0 ≤ τ ≤ 1,

so that
x2 − y2

|x − y|4−α
−

x2 − y2

|x − ỹ|4−α
= 2(4 − α)

x1 y1(x2 − y2)

|y|6−α
+

(4 − α)(6 − α)

8
x2 − y2

|y|4−α
( f (1) − f (0)).

The mean value theorem and (3-6) imply

| f (1) − f (0)| = | f ′(τ )|

=

∣∣∣∣−8
x1 y1

|y|2

(
|x |

2

|y|2
−

2x · (y + (τ − 1)(y − ỹ))

|y|2

)
g
(

|x |
2

|y|2
−

2x · (y + (τ − 1)(y − ỹ))

|y|2

)
− 4

x1 y1

|y|2

(
|x |

2

|y|2
−

2x · (y + (τ − 1)(y − ỹ))

|y|2

)2

g′

(
|x |

2

|y|2
−

2x · (y + (τ − 1)(y − ỹ))

|y|2

)∣∣∣∣
≤ Cx1

|x |

|y|2
.

Thus, we have

x2 − y2

|x − y|4−α
−

x2 − y2

|x − ỹ|4−α
= −2(4 − α)x1

y1 y2

|y|6−α
+ x1|x |O

(
1

|y|5−α

)
and∣∣∣∣− 1

x1

∫
Q(2x)

(
x2 − y2

|x − y|4−α
−

x2 − y2

|x − ỹ|4−α

)
θ(y) dy − 2(4 − α)

∫
Q(2x)

y1 y2

|y|6−α
θ(y) dy

∣∣∣∣
≤ C |x |

∫
Q(2x)

1
|y|2

|θ(y)|

|y|3−α
dy

≤ C∥|y|
−(3−α)θ∥L2([0,1]2).

For y1 ≥ y2, using Lemma 3.1 and [Zhang 2006, Theorem 3.1], we obtain

∥|y|
−(3−α)θ(y)∥L2([0,1]2) ≤ ∥|y1|

−(2−α)y−1
2 θ∥L2([0,1]2)

≤ C∥|y|
−(2−α)∂2θ(y)∥L2([0,1]2) ≤ C∥∇

3−αθ∥L2([0,1]2).

Similarly, we can deduce for y1 ≤ y2 that

∥|y|
−(3−α)θ(y)∥L2([0,1]2) ≤ C∥∇

3−αθ∥L2([0,1]2).
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(ii) Suppose y ∈ [0, 4x1]×[4x1, 1]. In this case, we set f (τ ) = |x −(y −(1−τ)(y − ỹ))|4−α for 0 ≤ τ ≤ 1
to see∣∣∣∣− 1

x1

∫
[0,4x1]×[4x1,1]

(
x2−y2

|x−y|4−α
−

x2−y2

|x−ỹ|4−α

)
θ(y)dy

∣∣∣∣≤ 1
x1

∫
[0,4x1]×[4x1,1]

|x2−y2|| f (1)− f (0)|

|x−y|4−α|x−ỹ|4−α
|θ(y)|dy.

The mean value theorem implies

f (1) − f (0) = f ′(τ ) =
4 − α

2
(−4y1(x1 + y1) + 8τ y2

1)|τ(x − y) + (1 − τ)(x − ỹ)|2−α

= −
4 − α

2
4y1(τ (x1 − y1) + (1 − τ)(x1 + y1))|τ(x − y) + (1 − τ)(x − ỹ)|2−α.

Applying y1 ≤ 4x1 and
1
2 y2 ≤ |x − y| ≤ 2y2,

1
2 y2 ≤ |x − ỹ| ≤ 2y2,

we obtain
|x2 − y2|| f (1) − f (0)|

|x − y|4−α|x − ỹ|4−α
≤ C

x1

y4−α
2

.

Thus, it follows∣∣∣∣− 1
x1

∫
[0,4x1]×[4x1,1]

(
x2 − y2

|x − y|4−α
−

x2 − y2

|x − ỹ|4−α

)
θ(y) dy

∣∣∣∣
≤ C

∫
[0,4x1]×[4x1,1]

1
y2

θ(y)

y3−α
2

dy

≤ C∥|y|
−(3−α)θ(y)∥L2([0,1]2) ≤ C∥∇

3−αθ∥L2([0,1]2). (A-5)

(iii) Suppose y ∈ [0, 4x1]
2. Due to θ(y1, 0) = 0, using integration by parts gives

−
1
x1

∫
[0,4x1]2

(
x2 − y2

|x − y|4−α
−

x2 − y2

|x − ỹ|4−α

)
θ(y) dy

=
1

(2 − α)x1

∫
[0,4x1]2

(
1

|x − y|2−α
−

1
|x − ỹ|2−α

)
∂2θ(y) dy

−
1

(2 − α)x1

∫ 4x1

0

(
1

|(x1 − y1, x2 − 4x1)|2−α
−

1
|(x1 + y1, x2 − 4x1)|2−α

)
θ(y1, 4x1) dy1.

By Hölder’s inequality we estimate the second integral as∣∣∣∣− 1
(2 − α)x1

∫ 4x1

0

(
1

|(x1 − y1, x2 − 4x1)|2−α
−

1
|(x1 + y1, x2 − 4x1)|2−α

)
θ(y1, 4x1) dy1

∣∣∣∣
≤ Cx−(3−α)

1

∫ 4x1

0
y2−α

1 |y−(2−α)
1 θ(y1, 4x1)| dy1 ≤ Cx−1/2

1 ∥y−(2−α)
1 θ(y1, 4x1)∥L2(0,4x1).

Since θ vanishes near the axis, it follows

|θ(y1, 4x1)| ≤

∫ 4x1

0
|∂2θ(y1, τ )| dτ ≤ (4x1)

1/2
∥∂2θ(y1, · )∥L2(0,4x1)
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for all y1 ∈ [0, 4x1]. Then, with [Zhang 2006, Theorem 3.1], we obtain∣∣∣∣− 1
(2 − α)x1

∫ 2x1

0

(
1

|(x1 − y1, x2 − 2x1)|2−α
−

1
|(x1 + y1, x2 − 2x1)|2−α

)
θ(y1, 2x1) dy1

∣∣∣∣
≤ C∥∇

3−αθ∥L2([0,1]2).

On the other hand, using Hölder’s inequality, we have∣∣∣∣ 1
(2 − α)x1

∫
[0,4x1]2

(
1

|x − y|2−α
−

1
|x − ỹ|2−α

)
∂2θ(y) dy

∣∣∣∣
≤

C
x1

∫
[0,4x1]2

|∂2θ(y)|

|x − y|2−α
dy ≤

C
x1

(∫ 8x1

0
r−(3−2α) dr

)1/2

∥∂2θ∥L2([0,4x1]2)

≤ Cx−(2−α)
1 ∥∇θ∥L2([0,4x1]2).

Therefore, we can deduce∣∣∣∣ 1
(2 − α)x1

∫
[0,4x1]2

(
1

|x − y|2−α
−

1
|x − ỹ|2−α

)
∂2θ(y) dy

∣∣∣∣ ≤ C∥∇
3−αθ∥L2([0,1]2).

Combining the above estimates, we obtain∣∣∣∣− 1
x1

∫
[0,2x1]2

(
x2 − y2

|x − y|4−α
−

x2 − y2

|x − ỹ|4−α

)
θ(y) dy

∣∣∣∣ ≤ C∥∇
3−αθ∥L2([0,1]2).

We collect the estimates for each region and deduce that∣∣∣∣ I1(0)

x1
− 2(4 − α)

∫
Q(x)

y1 y2

|y|6−α
θ(y) dy

∣∣∣∣ ≤ C∥∇
3−αθ∥L2([0,1]2).

Similarly, we can show∣∣∣∣ I2(0)

x1
− 2(4 − α)

∫
Q(x)

y1 y2

|y|6−α
θ(y) dy

∣∣∣∣ ≤ C∥∇
3−αθ∥L2([0,1]2).

We omit the details. Thus we have (A-1).
Now we estimate u2. Note that

u2(x) =

∑
n∈Z2

(I3(n) + I4(n)),

where

I3(n) :=

∫
[0,1]2

(
x1 − (y1 + 2n1)

|x − (y + 2n)|4−α
−

x1 − (y1 + 2n1)

|x − (ȳ + 2n)|4−α

)
θ(y) dy,

I4(n) :=

∫
[0,1]2

(
x1 − (−y1 + 2n1)

|x − (−y + 2n)|4−α
−

x1 − (−y1 + 2n1)

|x − (ỹ + 2n)|4−α

)
θ(y) dy.

Since we can similarly see that∣∣∣∣ ∑
n∈Z2\{0}

(I3(n) + I4(n))

∣∣∣∣ ≤ Cx2∥θ∥L∞([0,1]2),

it suffices to estimate for n = 0. We estimate I3(0) by dividing the domain into four regions as [0, 1]
2
=

Q(2x) ∪ [0, x1/2] × [0, 4x1] ∪ [x1/2, 4x1] × [0, 4x1] ∪ [0, 4x1] × [4x1, 1].
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(i) Suppose y ∈ Q(2x). Then we can see ∣∣∣∣ |x |
2

|y|2
−

2x · ȳ
|y|2

∣∣∣∣ ≤
5
8

by |x |
2
+ 2x2 y2 ≤ |x |

2
+ 4x2

2 +
1
4 y2

2 ≤
3
8 y2

1 +
1
4 y2

2 . With (A-4) we can prove∣∣∣∣ 1
x2

∫
Q(2x)

(
x1 − y1

|x − y|4−α
−

x1 − y1

|x − ȳ|4−α

)
θ(y) dy + 2(4 − α)

∫
Q(2x)

y1 y2

|y|6−α
θ(y) dy

∣∣∣∣ ≤ C∥∇
3−αθ∥L2([0,1]2).

(ii) Suppose y ∈ [0, 4x1] × [4x1, 1]. Then it follows

1
2 y2 ≤ |x − y| ≤ 2y2, y2 ≤ |x − ȳ| ≤ 2y2.

Using it, we can show∣∣∣∣ 1
x2

∫
[0,4x1]×[4x1,1]

(
x1 − y1

|x − y|4−α
−

x1 − y1

|x − ȳ|4−α

)
θ(y) dy

∣∣∣∣ ≤ C∥∇
3−αθ∥L2([0,1]2)

in a way similar to how we obtained (A-5).

(iii) Suppose y ∈ [0, x1/2] × [0, 4x1]. We set

f (τ ) = |x − (y − (1 − τ)(y − ȳ))|4−α, 0 ≤ τ ≤ 1.

Then, we can see∣∣∣∣ 1
x2

∫
[0,x1/2]×[0,4x1]

(
x1−y1

|x−y|4−α
−

x1−y1

|x−ȳ|4−α

)
θ(y)dy

∣∣∣∣≤ 1
x2

∫
[0,x1/2]×[0,4x1]

|x1−y1|| f (1)− f (0)|

|x−y|4−α|x−ȳ|4−α
|θ(y)|dy.

Since the mean value theorem implies

f (1) − f (0) = f ′(τ ) = −
4 − α

2
4y2(τ (x2 − y2) + (1 − τ)(x2 + y2))|τ(x − y) + (1 − τ)(x − ỹ)|2−α,

with y2 ≤ 4x1 and
1
2 x1 ≤ |x − y| ≤ 8x1,

1
2 x1 ≤ |x − ȳ| ≤ 8x1,

we have
|x1 − y1|| f (1) − f (0)|

|x − y|4−α|x − ȳ|4−α
≤ C

x2

x4−α
1

.

Thus, we can obtain∣∣∣∣ 1
x2

∫
[0,x1/2]×[0,4x1]

(
x1−y1

|x−y|4−α
−

x1−y1

|x−ȳ|4−α

)
θ(y)dy

∣∣∣∣ ≤ C

x4−α
1

∫
[0,x1/2]×[0,4x1]

|θ(y)|dy

≤ C∥|y|
−(3−α)θ(y)∥L2([0,1]2) ≤ C∥∇

3−αθ∥L2([0,12]).
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(iv) Suppose y ∈ [x1/2, 4x1] × [0, 4x1]. Integration by parts and θ(0, y2) = 0 give

1
x2

∫
[x1/2,4x1]×[0,4x1]

(
x1 − y1

|x − y|4−α
−

x1 − y1

|x − ȳ|4−α

)
θ(y) dy

= −
1

(2 − α)x2

∫
[x1/2,4x1]×[0,4x1]

(
1

|x − y|2−α
−

1
|x − ȳ|2−α

)
∂1θ(y) dy,

+
1

(2 − α)x2

∫ 4x1

0

(
1

|(3x1, x2 − y2)|2−α
−

1
|(3x1, x2 + y2)|2−α

)
θ(4x1, y2) dy2

−
1

(2 − α)x2

∫ 4x1

0

(
1

|(x1/2, x2 − y2)|2−α
−

1
|(x1/2, x2 + y2)|2−α

)
θ(x1/2, y2) dy2.

To estimate the second integral on the right-hand side first, we set

f (τ ) = |(3x1, x2 − (y2 − 2(1 − τ)y2))|
2−α, 0 ≤ τ ≤ 1,

so that∣∣∣∣ 1
(2 − α)x2

∫ 4x1

0

(
1

|(3x1, x2 − y2)|2−α
−

1
|(3x1, x2 + y2)|2−α

)
θ(4x1, y2) dy2

∣∣∣∣
≤

C
x2

∫ 4x1

0

| f (1) − f (0)|

|(3x1, x2 − y2)|2−α|(3x1, x2 + y2)|2−α
|θ(4x1, y2)| dy2.

Using the mean value theorem

f (1) − f (0) = f ′(τ ) =
2 − α

2
4y2(τ (x2 − y2) + (1 − τ)(x2 + y2))|(3x1, x2 − (y2 − 2(1 − τ)y2))|

−α,

we have
| f (1) − f (0)|

|(3x1, x2 − y2)|2−α|(3x1, x2 + y2)|2−α
≤ C

x2

x3−α
1

.

With the simple inequality

|θ(4x1, y2)| ≤

∫ 4x1

0
|∂1θ(τ, y2)| dτ ≤ (4x1)

1/2
∥∂1θ( · , y2)∥L2(0,4x1),

we obtain∣∣∣∣ 1
(2 − α)x2

∫ 4x1

0

(
1

|(3x1, x2 − y2)|2−α
−

1
|(3x1, x2 + y2)|2−α

)
θ(4x1, y2) dy2

∣∣∣∣
≤

C

x2−α
1

∥∂1θ∥L2([0,4x1]2) ≤ C∥∇
3−αθ∥L2([0,1]2).

Similarly, we can show∣∣∣∣ 1
(2 − α)x2

∫ 4x1

0

(
1

|(x1/2, x2 − y2)|2−α
−

1
|(x1/2, x2 + y2)|2−α

)
θ(x1/2, y2) dy2

∣∣∣∣ ≤ C∥∇
3−αθ∥L2([0,1]2).

We omit the details. Now, consider f (τ ) = |x − (y − (1 − τ)(y − ȳ))|2−α, 0 ≤ τ ≤ 1, and note that∣∣∣∣ 1
(2 − α)x2

∫
[x1/2,4x1]×[0,4x1]

(
1

|x − y|2−α
−

1
|x − ȳ|2−α

)
∂1θ(y) dy

∣∣∣∣
≤

C
x2

∫
[x1/2,4x1]×[0,4x1]

| f (1) − f (0)|

|x − y|2−α|x − ȳ|2−α
|∂1θ(y)| dy.
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Since the mean value theorem gives

f (1) − f (0) = f ′(τ ) =
2 − α

2
4y2(τ (x2 − y2) + (1 − τ)(x2 + y2))|τ(x − y) + (1 − τ)(x − ȳ)|−α,

it follows
| f (1) − f (0)|

|x − y|2−α|x − ȳ|2−α
≤

Cx2

|x − y|2−α|x − ȳ|
.

Hence,∣∣∣∣ 1
(2 − α)x2

∫
[x1/2,4x1]×[0,4x1]

(
1

|x − y|2−α
−

1
|x − ȳ|2−α

)
∂1θ(y) dy

∣∣∣∣
≤ C

∫
[x1/2,4x1]×[0,4x1]

1
|x − y|2−α|x − ȳ|

|∂1θ(y)| dy.

By Fubini’s theorem and Hölder’s inequality, we have∫
[x1/2,4x1]×[0,4x1]

1
|x − y|2−α|x − ȳ|

|∂1θ(y)| dy

=

∫ 4x1

0

1
x2 + y2

∫ 4x1

x1/2

1
|x − y|2−α

|∂1θ(y)| dy1 dy2

≤

∫ 4x1

0

1
x2 + y2

∥∂1θ∥L1/(α−1)(x1/2,4x1)

(∫ 4x1

0

1
|x − y|

dy1

)2−α

dy2

≤ C
∫ 4x1

0

1
x2 + y2

∥∂1θ∥L1/(α−1)(x1/2,4x1)

∣∣∣∣log
(

1 +
x1

|x2 − y2|

)∣∣∣∣2−α

dy2.

The Gagliardo–Nirenberg interpolation inequality and y2 ≤ 4x1 yield

y−1/2
2 ∥∂1θ( · , y2)∥L1/(α−1)(x1/2,4x1) ≤ C(∥∂3−α

1 θ( · , y2)∥L2(x1/2,4x1) + y−(2−α)
2 ∥∂1θ( · , y2)∥L2(x1/2,4x1)).

Then, we can have∫ 4x1

0

1
x2 + y2

∥∂1θ∥L1/(α−1)(x1/2,4x1)

(
log

(
1 +

x1

|x2 − y2|

))2−α

dy2

≤ C∥∇
3−αθ∥L2([0,1]2)

(∫ 4x2

0

1
x2 + y2

∣∣∣∣log
(

1 +
x1

|x2 − y2|

)∣∣∣∣2(2−α)

dy2

)1/2

+ C(∥∇3−αθ∥L2(S(x)) + ∥y−(2−α)
2 ∂1θ∥L2(S(x)))

(∫ 4x1

4x2

1
x2 + y2

∣∣∣∣log
(

1 +
x1

|x2 − y2|

)∣∣∣∣2(2−α)

dy2

)1/2

.

As estimating K11 and K12, we can show∫ 4x2

0

1
x2 + y2

∣∣∣∣log
(

1 +
x1

|x2 − y2|

)∣∣∣∣2(2−α)

dy2 ≤ C
(

1 + log
x1

x2

)2

,∫ 4x1

4x2

1
x2 + y2

∣∣∣∣log
(

1 +
x1

|x2 − y2|

)∣∣∣∣2(2−α)

dy2 ≤ C
(

1 + log
x1

x2

)5−2α

.

This implies∣∣∣∣ 1
(2 − α)x2

∫
[x1/2,4x1]×[0,4x1]

(
1

|x − y|2−α
−

1
|x − ȳ|2−α

)
∂1θ(y) dy

∣∣∣∣
≤ C∥∇

3−αθ∥L2([0,1]2)

(
1 + log

x1

x2

)
+ C(∥∇3−αθ∥L2(S(x)) + ∥y−(2−α)

2 ∂1θ∥L2(S(x)))

(
1 + log

x1

x2

)(5−2α)/2

.
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Collecting the above estimates gives∣∣∣∣ I3(0)

x2
+ 2(4 − α)

∫
Q(x)

y1 y2

|y|6−α
θ(y) dy

∣∣∣∣
≤ C∥∇

3−αθ∥L2([0,1]2)

(
1 + log

x1

x2

)
+ C(∥∇3−αθ∥L2(S(x)) + ∥y−(2−α)

2 ∂1θ∥L2(S(x)))

(
1 + log

x1

x2

)(5−2α)/2

,

and we can similarly obtain∣∣∣∣ I4(0)

x2
+ 2(4 − α)

∫
Q(x)

y1 y2

|y|6−α
θ(y) dy

∣∣∣∣
≤ C∥∇

3−αθ∥L2([0,1]2)

(
1 + log

x1

x2

)
+ C(∥∇3−αθ∥L2(S(x)) + ∥y−(2−α)

2 ∂1θ∥L2(S(x)))

(
1 + log

x1

x2

)(5−2α)/2

.

Hence we have (3-2), and this completes the proof. □
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Around the same time, Cordoba and Martinez-Zoroa [2022] proved similar strong ill-posedness results
for SQG in R2. They proved ill-posedness for Sobolev spaces below H 2 as well. We point out that in the
case of R2 (unlike T2), it is not too difficult to pass from norm inflation to nonexistence since one can
keep adding “bubbles” which gives growth further away from previous ones.

References

[Azzam and Bedrossian 2015] J. Azzam and J. Bedrossian, “Bounded mean oscillation and the uniqueness of active scalar
equations”, Trans. Amer. Math. Soc. 367:5 (2015), 3095–3118. MR Zbl

[Bae and Granero-Belinchón 2015] H. Bae and R. Granero-Belinchón, “Global existence for some transport equations with
nonlocal velocity”, Adv. Math. 269 (2015), 197–219. MR Zbl

[Bahouri and Chemin 1994] H. Bahouri and J.-Y. Chemin, “Équations de transport relatives á des champs de vecteurs non-
lipschitziens et mécanique des fluides”, Arch. Ration. Mech. Anal. 127:2 (1994), 159–181. MR Zbl

[Bourgain and Li 2015] J. Bourgain and D. Li, “Strong ill-posedness of the incompressible Euler equation in borderline Sobolev
spaces”, Invent. Math. 201:1 (2015), 97–157. MR Zbl

[Bourgain and Li 2021] J. Bourgain and D. Li, “Strong ill-posedness of the 3D incompressible Euler equation in borderline
spaces”, Int. Math. Res. Not. 2021:16 (2021), 12155–12264. MR Zbl

[Buckmaster et al. 2019] T. Buckmaster, S. Shkoller, and V. Vicol, “Nonuniqueness of weak solutions to the SQG equation”,
Comm. Pure Appl. Math. 72:9 (2019), 1809–1874. MR Zbl

[Cao et al. 2023] D. Cao, G. Qin, W. Zhan, and C. Zou, “Existence and stability of smooth traveling circular pairs for the
generalized surface quasi-geostrophic equation”, Int. Math. Res. Not. 2023:6 (2023), 4761–4804. MR Zbl

[Castro et al. 2016] A. Castro, D. Córdoba, and J. Gómez-Serrano, “Existence and regularity of rotating global solutions for the
generalized surface quasi-geostrophic equations”, Duke Math. J. 165:5 (2016), 935–984. MR Zbl

http://dx.doi.org/10.1090/S0002-9947-2014-06040-6
http://dx.doi.org/10.1090/S0002-9947-2014-06040-6
http://msp.org/idx/mr/3314802
http://msp.org/idx/zbl/1315.35009
http://dx.doi.org/10.1016/j.aim.2014.10.016
http://dx.doi.org/10.1016/j.aim.2014.10.016
http://msp.org/idx/mr/3281135
http://msp.org/idx/zbl/1326.35076
http://dx.doi.org/10.1007/BF00377659
http://dx.doi.org/10.1007/BF00377659
http://msp.org/idx/mr/1288809
http://msp.org/idx/zbl/0821.76012
http://dx.doi.org/10.1007/s00222-014-0548-6
http://dx.doi.org/10.1007/s00222-014-0548-6
http://msp.org/idx/mr/3359050
http://msp.org/idx/zbl/1320.35266
http://dx.doi.org/10.1093/imrn/rnz158
http://dx.doi.org/10.1093/imrn/rnz158
http://msp.org/idx/mr/4300224
http://msp.org/idx/zbl/1490.35257
http://dx.doi.org/10.1002/cpa.21851
http://msp.org/idx/mr/3987721
http://msp.org/idx/zbl/1427.35200
http://dx.doi.org/10.1093/imrn/rnab371
http://dx.doi.org/10.1093/imrn/rnab371
http://msp.org/idx/mr/4565676
http://msp.org/idx/zbl/1511.76111
http://dx.doi.org/10.1215/00127094-3449673
http://dx.doi.org/10.1215/00127094-3449673
http://msp.org/idx/mr/3482335
http://msp.org/idx/zbl/1339.35234


STRONG ILL-POSEDNESS FOR SQG IN CRITICAL SOBOLEV SPACES 169

[Chae and Wu 2012] D. Chae and J. Wu, “Logarithmically regularized inviscid models in borderline Sobolev spaces”, J. Math.
Phys. 53:11 (2012), art. id. 115601. MR Zbl

[Chae et al. 2011] D. Chae, P. Constantin, and J. Wu, “Inviscid models generalizing the two-dimensional Euler and the surface
quasi-geostrophic equations”, Arch. Ration. Mech. Anal. 202:1 (2011), 35–62. MR Zbl

[Cheng et al. 2021] X. Cheng, H. Kwon, and D. Li, “Non-uniqueness of steady-state weak solutions to the surface quasi-
geostrophic equations”, Comm. Math. Phys. 388:3 (2021), 1281–1295. MR Zbl

[Choi and Jeong 2021] K. Choi and I.-J. Jeong, “On vortex stretching for anti-parallel axisymmetric flows”, preprint, 2021.
arXiv 2110.09079

[Córdoba and Martínez-Zoroa 2022] D. Córdoba and L. Martínez-Zoroa, “Non existence and strong ill-posedness in Ck and
Sobolev spaces for SQG”, Adv. Math. 407 (2022), art. id. 108570. MR Zbl

[Córdoba et al. 2018] A. Córdoba, D. Córdoba, and F. Gancedo, “Uniqueness for SQG patch solutions”, Trans. Amer. Math. Soc.
Ser. B 5 (2018), 1–31. MR Zbl

[Denisov 2009] S. A. Denisov, “Infinite superlinear growth of the gradient for the two-dimensional Euler equation”, Discrete
Contin. Dyn. Syst. 23:3 (2009), 755–764. MR Zbl

[Denisov 2015a] S. A. Denisov, “The centrally symmetric V-states for active scalar equations: two-dimensional Euler with
cut-off”, Comm. Math. Phys. 337:2 (2015), 955–1009. MR Zbl

[Denisov 2015b] S. A. Denisov, “Double exponential growth of the vorticity gradient for the two-dimensional Euler equation”,
Proc. Amer. Math. Soc. 143:3 (2015), 1199–1210. MR Zbl

[Dong and Li 2010] H. Dong and D. Li, “On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov
spaces”, J. Differential Equations 248:11 (2010), 2684–2702. MR Zbl

[Elgindi 2021] T. Elgindi, “Finite-time singularity formation for C1,α solutions to the incompressible Euler equations on R3”,
Ann. of Math. (2) 194:3 (2021), 647–727. MR Zbl

[Elgindi and Jeong 2017] T. M. Elgindi and I.-J. Jeong, “Ill-posedness for the incompressible Euler equations in critical Sobolev
spaces”, Ann. PDE 3:1 (2017), art. id. 7. MR Zbl

[Elgindi and Jeong 2019] T. M. Elgindi and I.-J. Jeong, “Finite-time singularity formation for strong solutions to the axi-
symmetric 3D Euler equations”, Ann. PDE 5:2 (2019), art. id. 16. MR Zbl

[Elgindi and Jeong 2020a] T. M. Elgindi and I.-J. Jeong, “On singular vortex patches, II: Long-time dynamics”, Trans. Amer.
Math. Soc. 373:9 (2020), 6757–6775. MR Zbl

[Elgindi and Jeong 2020b] T. M. Elgindi and I.-J. Jeong, “Symmetries and critical phenomena in fluids”, Comm. Pure Appl.
Math. 73:2 (2020), 257–316. MR Zbl

[Elgindi and Jeong 2023] T. Elgindi and I.-J. Jeong, On singular vortex patches, I: Well-posedness issues, Mem. Amer. Math.
Soc. 1400, Amer. Math. Soc., Providence, RI, 2023. MR Zbl

[Elgindi and Masmoudi 2020] T. M. Elgindi and N. Masmoudi, “L∞ ill-posedness for a class of equations arising in hydrody-
namics”, Arch. Ration. Mech. Anal. 235:3 (2020), 1979–2025. MR Zbl

[Földes and Sy 2021] J. Földes and M. Sy, “Invariant measures and global well posedness for the SQG equation”, Arch. Ration.
Mech. Anal. 241:1 (2021), 187–230. MR Zbl

[Gancedo and Patel 2021] F. Gancedo and N. Patel, “On the local existence and blow-up for generalized SQG patches”, Ann.
PDE 7:1 (2021), art. id. 4. MR Zbl

[Hassainia and Hmidi 2015] Z. Hassainia and T. Hmidi, “On the V-states for the generalized quasi-geostrophic equations”,
Comm. Math. Phys. 337:1 (2015), 321–377. MR Zbl

[He and Kiselev 2021] S. He and A. Kiselev, “Small-scale creation for solutions of the SQG equation”, Duke Math. J. 170:5
(2021), 1027–1041. MR Zbl

[de la Hoz et al. 2016] F. de la Hoz, Z. Hassainia, and T. Hmidi, “Doubly connected V-states for the generalized surface
quasi-geostrophic equations”, Arch. Ration. Mech. Anal. 220:3 (2016), 1209–1281. MR Zbl

[Isett and Ma 2021] P. Isett and A. Ma, “A direct approach to nonuniqueness and failure of compactness for the SQG equation”,
Nonlinearity 34:5 (2021), 3122–3162. MR Zbl

http://dx.doi.org/10.1063/1.4725531
http://msp.org/idx/mr/3026546
http://msp.org/idx/zbl/1329.76027
http://dx.doi.org/10.1007/s00205-011-0411-5
http://dx.doi.org/10.1007/s00205-011-0411-5
http://msp.org/idx/mr/2835862
http://msp.org/idx/zbl/1266.76010
http://dx.doi.org/10.1007/s00220-021-04247-z
http://dx.doi.org/10.1007/s00220-021-04247-z
http://msp.org/idx/mr/4340931
http://msp.org/idx/zbl/1477.35272
http://msp.org/idx/arx/2110.09079
http://dx.doi.org/10.1016/j.aim.2022.108570
http://dx.doi.org/10.1016/j.aim.2022.108570
http://msp.org/idx/mr/4452676
http://msp.org/idx/zbl/07574804
http://dx.doi.org/10.1090/btran/20
http://msp.org/idx/mr/3748149
http://msp.org/idx/zbl/1390.35244
http://dx.doi.org/10.3934/dcds.2009.23.755
http://msp.org/idx/mr/2461825
http://msp.org/idx/zbl/1156.76009
http://dx.doi.org/10.1007/s00220-015-2298-8
http://dx.doi.org/10.1007/s00220-015-2298-8
http://msp.org/idx/mr/3339167
http://msp.org/idx/zbl/1322.35108
http://dx.doi.org/10.1090/S0002-9939-2014-12286-6
http://msp.org/idx/mr/3293735
http://msp.org/idx/zbl/1315.35150
http://dx.doi.org/10.1016/j.jde.2010.02.015
http://dx.doi.org/10.1016/j.jde.2010.02.015
http://msp.org/idx/mr/2644145
http://msp.org/idx/zbl/1193.35151
http://dx.doi.org/10.4007/annals.2021.194.3.2
http://msp.org/idx/mr/4334974
http://msp.org/idx/zbl/1492.35199
http://dx.doi.org/10.1007/s40818-017-0027-7
http://dx.doi.org/10.1007/s40818-017-0027-7
http://msp.org/idx/mr/3625192
http://msp.org/idx/zbl/1403.35218
http://dx.doi.org/10.1007/s40818-019-0071-6
http://dx.doi.org/10.1007/s40818-019-0071-6
http://msp.org/idx/mr/4029562
http://msp.org/idx/zbl/1436.35055
http://dx.doi.org/10.1090/tran/8134
http://msp.org/idx/mr/4155190
http://msp.org/idx/zbl/1454.35265
http://dx.doi.org/10.1002/cpa.21829
http://msp.org/idx/mr/4054357
http://msp.org/idx/zbl/1442.76031
http://dx.doi.org/10.1090/memo/1400
http://msp.org/idx/mr/4537304
http://msp.org/idx/zbl/07653281
http://dx.doi.org/10.1007/s00205-019-01457-7
http://dx.doi.org/10.1007/s00205-019-01457-7
http://msp.org/idx/mr/4065655
http://msp.org/idx/zbl/07170065
http://dx.doi.org/10.1007/s00205-021-01650-7
http://msp.org/idx/mr/4271958
http://msp.org/idx/zbl/1472.35392
http://dx.doi.org/10.1007/s40818-021-00095-1
http://msp.org/idx/mr/4235799
http://msp.org/idx/zbl/1473.35473
http://dx.doi.org/10.1007/s00220-015-2300-5
http://msp.org/idx/mr/3324164
http://msp.org/idx/zbl/1319.35188
http://dx.doi.org/10.1215/00127094-2020-0064
http://msp.org/idx/mr/4255049
http://msp.org/idx/zbl/1473.35579
http://dx.doi.org/10.1007/s00205-015-0953-z
http://dx.doi.org/10.1007/s00205-015-0953-z
http://msp.org/idx/mr/3466846
http://msp.org/idx/zbl/1334.35263
http://dx.doi.org/10.1088/1361-6544/abe732
http://msp.org/idx/mr/4260790
http://msp.org/idx/zbl/1473.35580


170 IN-JEE JEONG AND JUNHA KIM

[Jeong 2021] I.-J. Jeong, “Loss of regularity for the 2D Euler equations”, J. Math. Fluid Mech. 23:4 (2021), art. id. 95. MR Zbl
[Jeong and Yoneda 2021] I.-J. Jeong and T. Yoneda, “Enstrophy dissipation and vortex thinning for the incompressible 2D
Navier–Stokes equations”, Nonlinearity 34:4 (2021), 1837–1853. MR

[Jolly et al. 2021] M. S. Jolly, A. Kumar, and V. R. Martinez, “On the existence, uniqueness, and smoothing of solutions to the
generalized SQG equations in critical Sobolev spaces”, Comm. Math. Phys. 387:1 (2021), 551–596. MR Zbl

[Jolly et al. 2022] M. S. Jolly, A. Kumar, and V. R. Martinez, “On local well-posedness of logarithmic inviscid regularizations of
generalized SQG equations in borderline Sobolev spaces”, Commun. Pure Appl. Anal. 21:1 (2022), 101–120. MR Zbl

[Kato and Ponce 1988] T. Kato and G. Ponce, “Commutator estimates and the Euler and Navier–Stokes equations”, Comm. Pure
Appl. Math. 41:7 (1988), 891–907. MR Zbl

[Kiselev and Šverák 2014] A. Kiselev and V. Šverák, “Small scale creation for solutions of the incompressible two-dimensional
Euler equation”, Ann. of Math. (2) 180:3 (2014), 1205–1220. MR Zbl

[Kiselev et al. 2016] A. Kiselev, L. Ryzhik, Y. Yao, and A. Zlatoš, “Finite time singularity for the modified SQG patch equation”,
Ann. of Math. (2) 184:3 (2016), 909–948. MR Zbl

[Kwon 2021] H. Kwon, “Strong ill-posedness of logarithmically regularized 2D Euler equations in the borderline Sobolev
space”, J. Funct. Anal. 280:7 (2021), art. id. 108822. MR Zbl

[Li 2009] D. Li, “Existence theorems for the 2D quasi-geostrophic equation with plane wave initial conditions”, Nonlinearity
22:7 (2009), 1639–1651. MR Zbl

[Li 2021] D. Li, “Optimal Gevrey regularity for supercritical quasi-geostrophic equations”, preprint, 2021. arXiv 2106.12439
[Majda and Bertozzi 2002] A. J. Majda and A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts Appl. Math. 27,
Cambridge Univ. Press, 2002. MR Zbl

[Marchand 2008] F. Marchand, “Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces L p
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LARGE-SCALE REGULARITY FOR
THE STATIONARY NAVIER–STOKES EQUATIONS

OVER NON-LIPSCHITZ BOUNDARIES

MITSUO HIGAKI, CHRISTOPHE PRANGE AND JINPING ZHUGE

We address the large-scale regularity theory for the stationary Navier–Stokes equations in highly oscillating
bumpy John domains. These domains are very rough, possibly with fractals or cusps, at the microscopic
scale, but are amenable to the mathematical analysis of the Navier–Stokes equations. We prove a
large-scale Calderón–Zygmund estimate, a large-scale Lipschitz estimate, and large-scale higher-order
regularity estimates, namely, C1,γ and C2,γ estimates. These nice regularity results are inherited only at
mesoscopic scales, and clearly fail in general at the microscopic scales. We emphasize that the large-scale
C1,γ regularity is obtained by using first-order boundary layers constructed via a new argument. The
large-scale C2,γ regularity relies on the construction of second-order boundary layers, which allows for
certain boundary data with linear growth at spatial infinity. To the best of our knowledge, our work is the
first to carry out such an analysis. In the wake of many works in quantitative homogenization, our results
strongly advocate in favor of considering the boundary regularity of the solutions to fluid equations as a
multiscale problem, with improved regularity at or above a certain scale.
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1. Introduction

We consider the large-scale boundary regularity for the stationary Navier–Stokes equations
−1uε + ∇ pε = −uε · ∇uε in Bε1,+,
∇ · uε = 0 in Bε1,+,
uε = 0 on 0ε1 ,

(NSε)

in a domain with a rough bumpy boundary. The no-slip boundary condition is prescribed only on the lower
part 0ε1 of ∂Bε1,+. The boundary is rough in two aspects: (i) possible lack of regularity at the microscopic
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scale as the boundary may have fractals or inward cusps; (ii) bumpiness, i.e., the boundary is highly
oscillating. The functions uε = (uε1(x), uε2(x), uε3(x)) ∈ R3 and pε = pε(x) ∈ R denote respectively the
velocity field and the pressure field of the fluid. The definitions of Bεr,+ and 0εr are given in Section 1D. We
will show large-scale regularity estimates, including a Lipschitz estimate (see Theorem A in Section 1A),
a C1,γ estimate (see Theorem B) and a C2,γ estimate (see Theorem C). These improved regularity results at
large scales are generally false at small scales due to the roughness of the boundary. The tools developed in
this paper enable us to decouple the large-scale regularity from the small-scale properties of the boundary.
Therefore, our results (i.e., Theorems A, B and C) show that stationary incompressible Newtonian fluids
are regular above the microscopic scale, regardless of the irregularity of surfaces at the microscopic scale.

Before going into the details of our results and of the mathematical analysis, let us give some more
general perspectives. The study of fluids over rough boundaries plays a prominent role in the field of
hydrodynamics, at least for three reasons.

First, rough, bumpy or corrugated surfaces are ubiquitous in nature and engineering. They appear at any
scales from geophysics (see for instance [Narteau et al. 2001] for the fractal-like core-mantle boundary in
the Earth) to zoology [Pu et al. 2016] and microfluidics [Waheed et al. 2016]. At the microstructure, the
geometry may be anything from fractal to periodic and crenellated. No surface is perfectly smooth, and the
lack of smoothness may actually enable us to resolve certain oddities, such as the no-collision paradox for a
sphere dropped in a viscous fluid under the action of gravity [Smart and Leighton 1989; Joseph et al. 2001;
Davis et al. 2003; Gérard-Varet and Hillairet 2012; Izard et al. 2014]. Moreover, certain roughness patterns
are either selected by biological processes and environmental pressure such as scales of sharks for their
drag reduction properties, or designed for industrial applications especially in aeronautics, microfluidics
and for the transport of fluids in pipes [Pu et al. 2016; Dean and Bhushan 2010; Lee and Jang 2005].

Second, the study of roughness is strongly tied to the derivation of boundary conditions in fluid
mechanics. The question of whether or not fluids slip over surfaces is still a matter of active debate.
Experiments show that there is no universal answer and that the slip behavior depends a lot on the geometry
and microstructure of the surface [Bocquet and Barrat 2007; Lauga et al. 2007]. A widespread idea is that
roughness favors slip. To give one specific example where finding the most accurate boundary condition
is critical, let us cite the field of glaciology. The assessment of various friction laws for the flow of a
glacier over a rough bedrock is crucial in order to understand the speed of glacier discharge and eventually
estimate the sea level rise as a result of global warming [Joughin et al. 2019; Minchew and Joughin 2020].

Third, the study of the impact of roughness on the behavior of fluids accompanied the development of
turbulence research, as underlined in [Jiménez 2004]:

Turbulent flows over rough walls have been studied since the early works of Hagen (1854) and
Darcy (1857), who were concerned with pressure losses in water conduits. They have been
important in the history of turbulence. Had those conduits not been fully rough, turbulence
theory would probably have developed more slowly. The pressure loss in pipes only becomes
independent of viscosity in the fully rough limit, and this independence was the original
indication that something was amiss with laminar theory. Flows over smooth walls never
become fully turbulent, and their theory is correspondingly harder.
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Investigations of the effect of roughness on fluid flows span three distinct regimes. In the laminar
regime, studies focus on the drag-reducing properties of roughness elements [Bechert and Bartenwerfer
1989; García-Mayoral and Jiménez 2011]. As for the onset of turbulence [Schultz and Flack 2007;
Squire et al. 2016], there are some indications that roughness lowers the critical Reynolds number for
the transition from the laminar to turbulent regime [Varnik et al. 2007]. In the fully turbulent regime, a
similarity hypothesis for the flow over flat surfaces and for the flow over rough surfaces was put forward
[Townsend 1956]. The extent to which such a universal law holds is still being disputed [Jiménez 2004;
Castro 2007; Flack et al. 2007; Schlichting and Gersten 2017].

The three main directions raised above are reflected in the mathematical works. The literature is vast.
Therefore we do not aim for exhaustivity.

First, there is an extensive body of works that deal with wall (or friction) laws, or in other words, effective
or homogenized boundary conditions. One aims at replacing rough boundaries by fictitious, smooth or flat
boundaries. In that line of research, it is well known that Navier-slip boundary conditions provide refined
approximations for fluids above bumpy boundaries. Under some quantitative ergodicity assumptions, one
can get error estimates. Historically, periodic roughness profiles were first looked at [Amirat and Simon
1997; Achdou et al. 1998; Jäger and Mikelić 2001; 2003]. Analysis of almost-periodic [Gérard-Varet
and Masmoudi 2010] or random stationary ergodic [Gérard-Varet 2009; Basson and Gérard-Varet 2008]
boundary oscillations was done more recently. Let us also mention a few works that address nonstationary
fluids [Bucur et al. 2010; Higaki 2016], for which the analysis is less developed due to its inherent
difficulties. We also point out that some authors attempted to justify boundary conditions arising in fluid
mechanics starting from boundary conditions at the microscopic scale; see for instance [Casado-Díaz et al.
2003; Bucur et al. 2008; Bonnivard and Bucur 2012] for the derivation of the no-slip boundary condition
from a perfect slip boundary condition at the microscale, or [Dalibard and Gérard-Varet 2011] for the
computation of the homogenized effect starting from Navier-slip boundary conditions at the microscale.

A second topic is the study of the effect of roughness on singular limits. The topics of rotating fluids
and of the homogenized effect of bumpiness on Ekman pumping has been studied in numerous papers
[Gérard-Varet 2003; Gérard-Varet and Dormy 2006; Dalibard and Prange 2014; Dalibard and Gérard-Varet
2017]. The paper [Gérard-Varet et al. 2018] carries out an analysis of the vanishing viscosity limit in a
specific scaling regime. There are also studies concerned with equations in singularly perturbed domains
such as the Stokes equations in rough thin films [Chupin and Martin 2012] or water waves above a rough
topography in the shallow regime [Craig et al. 2012].

Third, rough domains pose considerable numerical challenge. This aspect has certainly driven the
development of wall laws in a model reduction perspective; see for instance [Achdou et al. 1998; Deolmi
et al. 2015]. Other approaches are being elaborated, such as direct numerical simulations [Cardillo et al.
2013], lattice Boltzmann methods that are adapted to intricate geometries [Varnik et al. 2007] and large
eddy simulations [Anderson and Meneveau 2011; Bonnivard and Suárez-Grau 2018] that in this context
cause important parametrization issues of the small scales.

In this work, we tackle these questions from the angle of regularity theory. The following two
general objectives in regularity theory motivate our results: identify building blocks describing the
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local behavior of solutions, and estimate the decay of certain excess quantities at various scales. We
prove that fluids above bumpy boundaries, that are very rough at the microscopic scale, have improved
regularity at large scales. Our results are in the spirit of large-scale regularity estimates pioneered in
[Avellaneda and Lin 1987] for periodic homogenization, and later extended to stochastic homogeniza-
tion; see for instance [Armstrong and Smart 2016; Armstrong and Mourrat 2016; Gloria et al. 2015;
2020] and [Armstrong et al. 2016] for the higher-order large-scale regularity theory. Our research
program was started with the works [Kenig and Prange 2015; 2018] concerned with uniform regularity
estimates above highly oscillating boundaries for elliptic equations. In [Higaki and Prange 2020], the
large-scale Lipschitz and C1,γ estimates for the stationary Navier–Stokes equations were established
above Lipschitz boundaries. A local Navier wall law was also obtained. Finally, let us also mention
[Zhuge 2021], which deals with the large-scale regularity of elliptic equations above arbitrarily rough
microstructures.

1A. Outline of the main results of the paper. We study the large-scale regularity for stationary incom-
pressible viscous fluids modeled by the Stokes or Navier–Stokes equations, in domains that are very rough
and bumpy at the microscale. Our results show that the large-scale regularity is completely independent
of small-scale properties of the boundary.

Let us stress some novel aspects of our results. We refer to Section 1B for a further comparison with a
few related works, and to Section 1C for an outline of the proofs.

First we consider John domains, whose boundaries allow for fractals and inward cusps. Hence, the
boundaries considered in this paper get closer to the modeling of real boundaries found in nature, that in
particular do not need to be graphs. John domains have in a broad sense the minimal properties for the
analysis of incompressible fluids. Indeed, we rely on a Bogovskii operator in John domains to estimate
the pressure. For precise definitions and a more complete discussion, we refer to Section 1D below.

Second, beyond the Lipschitz estimate, we prove higher-order C1,γ and C2,γ estimates for γ ∈ [0, 1),
as stated in Theorems B and C. These require the construction of boundary layer correctors, which is at
the heart of the paper in Section 4; see Section 4B for the first-order boundary layers and Section 4C
for the second-order boundary layers. As far as we know, the present work is the first to construct the
second-order boundary layers with a linear growth in the direction tangential to the boundary. To make the
analysis more tractable, we assume that the boundary is periodic for the structure result of second-order
boundary layers; see Theorems 4.3 and 4.4. We are aware of [Barrenechea et al. 2002; Bresch and
Milisic 2010], where a refined second-order approximation is constructed for the Stokes equations in a
two-dimensional rough channel. However, the boundary layers considered in [Barrenechea et al. 2002;
Bresch and Milisic 2010] only involve data spanned by linear and quadratic polynomials of the vertical
variable, x2 and x2

2 in this two-dimensional case, which are bounded on the bumpy boundary. In our
three-dimensional situation, the class of “no-slip Stokes polynomials” (see Section 4A) is much richer
and involves boundary data with linear growth at spatial infinity.

Third, we provide explicit quantitative regularity estimates in the nonperturbative regime.
Fourth, in the vein of the seminal works [Avellaneda and Lin 1987; 1991] and of [Kenig et al. 2014; Gu

and Zhuge 2019], we provide pointwise estimates for the large-scale decay of the velocity and pressure
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parts of the Green’s function associated to the Stokes system in bumpy John half-spaces; see Section 1C
and Appendix B. These estimates are pivotal to constructing the first-order boundary layers in Section 4B.

We now state the three main theorems of the paper.

Theorem A (large-scale Lipschitz regularity). For all ε ∈
(
0, 1

2

)
, L ∈ (0,∞), M ∈ (0,∞) and δ ∈ (0, 1),

the following statement holds. Let � be a bumpy John domain with constant L according to Definition 1.2
below. If (uε, pε) ∈ H 1(Bε1,+)

3
× L2(Bε1,+) is a weak solution of (NSε) satisfying(

−

∫
Bε1,+

|∇uε|2
)1/2

≤ M (1-1)

(the precise definition of the bumpy cube Bεr,+ = Qr (0)∩�ε can be found in Section 1D). Then, for any
r ∈

(
ε, 1

2

)
, (

−

∫
Bεr,+

|∇uε|2
)1/2

+

(
−

∫
Bεr,+

∣∣∣∣pε − −

∫
Bε1/2,+

pε
∣∣∣∣2 )1/2

≤ C(M + M4+δ), (1-2)

where the constant C is independent of ε, M and r , and depends on L and δ.

Notice that Theorem A, as well as the subsequent results, holds in the nonperturbative regime for
arbitrarily large M in (1-1). This is due to the energy subcritical nature of the stationary Navier–Stokes
equations, which makes it an easier problem than the nonstationary Navier–Stokes system. Note also that
the powers of M in the right-hand side of (1-2) are explicit.

For higher-order C1,γ and C2,γ regularity results, we measure the oscillation of the solution with
respect to modified polynomials that vanish on the bumpy boundary. These modified polynomials are
polynomials of degree 1 and 2 that are corrected by the first-order and second-order boundary layers.

Theorem B (large-scale C1,γ regularity). For all γ ∈ [0, 1), ε ∈
(
0, 1

2

)
, L ∈ (0,∞), M ∈ (0,∞) and

δ ∈ (0, 1), the following statement holds. Let � be a bumpy John domain with constant L according to
Definition 1.2 below. If (uε, pε) ∈ H 1(Bε1,+)

3
× L2(Bε1,+) is a weak solution of (NSε) satisfying (1-1),

then, there exists a constant P1 (depending on pε) such that, for any r ∈
(
ε, 1

2

)
,

inf
(w,π)∈Q1(�)

{
1
r

(
−

∫
Bεr,+

∣∣∣∣uε − εw

(
x
ε

)∣∣∣∣2

dx
)1/2

+

(
−

∫
Bεr,+

∣∣∣∣pε −π

(
x
ε

)
− P1

∣∣∣∣2

dx
)1/2}

≤ Crγ (M + M4+2γ+δ), (1-3)

where Q1(�) is the class of all solutions to the Stokes equations in a bumpy John half-space � with linear
growth at infinity that vanish on ∂�; see (5-1). The constant C is independent of ε, M and r , but depends
on L , γ and δ.

The velocity estimate in (1-3) will be derived via a large-scale estimate of |∇uε − ∇w(x/ε)| and the
Poincaré inequality; see Section 5A.

While Theorem B holds for arbitrary bumpy John half-spaces, for the next result, we work in periodic
John domains. As we outlined above, the extra periodicity assumption makes the analysis of the second-
order boundary layers more manageable.
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Theorem C (large-scale C2,γ regularity). For all γ ∈ [0, 1), ε ∈
(
0, 1

2

)
, L ∈ (0,∞), M ∈ (0,∞) and

δ ∈ (0, 1), the following statement holds. Let � be a periodic bumpy John domain with constant L
according to Definition 1.3 below. If (uε, pε) ∈ H 1(Bε1,+)

3
× L2(Bε1,+) is a weak solution of (NSε)

satisfying (1-1), then, there exists a constant P2 (depending on pε) such that, for any r ∈
(
ε, 1

2

)
,

inf
(w1,q1)∈Q1(�)
(w2,q2)∈Q2(�)

{
1
r

(
−

∫
Bεr,+

∣∣∣∣uε−εw1

(
x
ε

)
−ε2w2

(
x
ε

)∣∣∣∣2

dx
)1/2

+

(
−

∫
Bεr,+

∣∣∣∣pε−π1

(
x
ε

)
−επ2

(
x
ε

)
−P2

∣∣∣∣2

dx
)1/2}

≤ Cr1+γ (M+M6+2γ+δ), (1-4)

where Q1(�) is used in Theorem B and Q2(�) is the class of all solutions to the Stokes equations in a
periodic bumpy John half-space �, with quadratic growth at infinity, that vanish on ∂�; see (5-2). The
constant C is independent of ε, M and r , but depends on L , γ and δ.

We point out that the building blocks in Q1(�) and Q2(�) are defined through the first-order and
second-order boundary layers and play roles of correctors of Stokes system in the bumpy John domain �.
It turns out that the above three regularity results, Theorems A, B and C, hold also for the linear Stokes
equations, with a linear dependence on the size M of the solutions in Ḣ 1(Bε1,+). Therefore, these
statements immediately imply the Liouville theorems for Stokes equations in bumpy John half-spaces
with sublinear (see Corollary 3.1), subquadratic or subcubic growth (see Theorem 5.8).

1B. Comparison to two closely related works. To further underline the novelty of our work, let us
compare our results to the ones of two tightly linked papers.

In [Higaki and Prange 2020], the first and second authors carried out the analysis of the large-scale
Lipschitz and C1,γ regularity for the stationary Navier–Stokes system. The results there, similar to
Theorems A and B here, hold outside the perturbative regime, that is, for arbitrarily large M in (1-1). The
main differences between [Higaki and Prange 2020] and the present work are:

(1) In [Higaki and Prange 2020] the bumpy boundary is given by a Lipschitz graph without structure,
while here we work in bumpy John domains, as defined in Definition 1.2, that are not necessarily graphs,
without structure for the large-scale Lipschitz and C1,γ regularity.

(2) In [Higaki and Prange 2020] the analysis relies on a compactness method originating from [Avellaneda
and Lin 1987] and the first-order boundary layer correctors are needed to prove the large-scale Lipschitz
estimate in Theorem A, while here we resort to a quantitative method, which enables us to by-pass the
use of the first-order boundary layers for the large-scale Lipschitz regularity; see Section 1C.

(3) In [Higaki and Prange 2020] no analysis of the higher-order large-scale regularity is carried out, while
here we build the second-order boundary layer correctors that make it possible to prove Theorem C.

(4) In [Higaki and Prange 2020], no pressure estimate is established, while in the present paper, we estab-
lish the pressure estimates in all cases, following the strategy developed recently in [Gu and Zhuge 2022].

(5) In [Higaki and Prange 2020], the nonlinear estimates are not explicit, while here the dependence on
M in (1-2), (1-3) and (1-4) is given as an explicit polynomial in M.



LARGE-SCALE REGULARITY FOR THE STATIONARY NAVIER–STOKES EQUATIONS 177

In [Zhuge 2021], the third author carried out an analysis of the large-scale Lipschitz regularity for linear
elliptic equations in domains with arbitrary roughness at small scales and quantitative Reifenberg flatness
at large scales. Hence, those domains are much rougher than the bumpy John domains considered here. We
underline that the discrepancy in these assumptions on the domains comes from the fact that for incompress-
ible Navier–Stokes equations, as opposed to elliptic equations, we have to estimate the pressure in terms
of the velocity, which relies on a Bogovskii-type operator as in [Higaki and Prange 2020]; see Section 1C
and Appendix A. To address this point we work in bumpy John domains defined by Definition 1.2.

1C. Outline of the strategy for the proofs. We now point to some essential ingredients and ideas for the
proofs. We mainly focus on two aspects: the lack of smoothness at the microscopic scale, which requires
several innovations, and the higher-order regularity, new even in smoother domains, which requires the
construction of higher-order boundary layers.

Analysis in John domains. We perform the analysis in bumpy John domains, as defined in Definition 1.2.
This type of domain is a good compromise between

• on the one hand a high level of arbitrariness of the boundary, which is not a graph, includes certain
fractals or cusps, does not oscillate with any structure, and hence approaches better the properties
genuinely rough physical surfaces found in real fluids,

• and on the other hand the possibility of being amenable to mathematical analysis, considering the
fact already underlined above that we work with incompressible fluid models that involve estimating
the pressure, rather than elliptic equations which can be studied in even rougher domains.

In John domains, we can rely on the Bogovskii operator of [Acosta et al. 2006], whose properties are
summarized in Theorem A.1. This operator is required from the beginning of our analysis in Section 2A
in order to prove a weak Caccioppoli inequality for the Stokes system (the usual Caccioppoli inequality
seems not available in John domains), which then implies the reverse Hölder inequality (2-2), as a starting
point of the large-scale regularity theory.

All the boundary estimates of this work are mesoscopic estimates in the sense that they involve averaged
quantities smoothing out the possibly rough microscales. Although it is a direct consequence of the weak
Caccioppoli inequality, notice that the reverse Hölder inequality (2-2) is a large-scale estimate. Indeed,
going from the weak Caccioppoli inequality (A-6) to (2-2) uses the Poincaré inequality that holds in
balls large enough, typically at a scale greater than ε. At scales smaller than ε, inward cusps of highly
oscillating bumpy John domains may be seen, preventing Poincaré’s inequality from holding.

In a nutshell: In the works [Kenig and Prange 2018; Higaki and Prange 2020], tools were developed,
particularly for the analysis of the first-order boundary layer correctors, to handle bumpy domains with a
boundary given by the graph of a Lipschitz function without structure. Here, the analysis in bumpy John
domains requires us to push the techniques even further, to the limit, as it seems, of what is technically
possible. There is one particular point, where we are completely unable to transfer the techniques used
above Lipschitz graphs to the present context. Indeed, in [Kenig and Prange 2018; Higaki and Prange
2020] we used a domain decomposition method pioneered in [Gérard-Varet and Masmoudi 2010] to study
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the well-posedness of the Stokes system for the first-order boundary layer correctors. We do not manage
to adapt this strategy, in particular the technique of local energy estimates in the bumpy channel, to our
current situation. In this paper, we develop a different argument to construct the first-order boundary
layers, based on the large-scale Lipschitz estimate proved as an a priori estimate. We will discuss this
intricate point in more details shortly later.

Quantitative method for the large-scale regularity. We rely on a quantitative method for large-scale
regularity, inspired by the Schauder’s theory pioneered by [Armstrong and Smart 2016; Armstrong and
Shen 2016; Shen 2017], the Calderón–Zygmund theory motivated by [Caffarelli and Peral 1998] and
[Shen 2018, Chapter 4] and the pressure estimate developed in [Gu and Xu 2017; Gu and Zhuge 2019;
2022]. This method is based on a perturbation argument. The principle of this method is the following:

(1) Approximate the original rough problem by a smooth problem at any mesoscopic scale and obtain
suboptimal quantitative estimates.

(2) Use the improved regularity of the approximate problem to get the scale-by-scale decay of excess
quantities (measuring for instance, Hölder continuity, Lipschitz, C1,γ , C2,γ , or higher regularity) for
the original rough problem, up to a small error.

(3) Conclude by a real-variable argument such as Theorem 2.5 or an iteration lemma such as Lemma 3.10,
which are in some sense black boxes oblivious to the equations.

In the context of homogenization, the homogenized limit problem with constant coefficients is the
approximate problem. Here, the approximate problem is a Stokes problem in a domain with a flat
boundary. Both problems have improved regularity, in the sense that the solutions are basically as smooth
as one wishes.

We remark that from a high-level point of view all the regularity estimates in this paper follow the
above scheme. For the large-scale W 1,p regularity stated in Theorem 2.4, item (1) above corresponds to
Lemma 2.6, item (2) corresponds to the estimate (2-14) and item (3) corresponds to Theorem 2.5. For the
proof of Lipschitz estimate in Theorem A, item (1) corresponds to Lemma 3.2, item (2) corresponds to
Lemma 3.5 and item (3) corresponds to Lemma 3.10. The proofs of higher-order regularity estimates in
Theorems B and C follow a similar scheme.

We point out that in our quantitative method the nonlinear term u ⊗ u will also be regarded as a
perturbation added to the linear Stokes system. In order to establish the Lipschitz estimate, we use the large-
scale Calderón–Zygmund estimate of Theorem 2.4 in combination with a large-scale Sobolev embedding
stated in Theorem 2.7 to bootstrap the integrability of the nonlinear term. For C1,γ and C2,γ estimates,
the Lipschitz estimate of u in Theorem A leads to the O(r2) smallness of the perturbation term u ⊗ u
near the boundary, which guarantees the higher-order regularity for up to C2,γ with any γ ∈ (0, 1).

Construction of boundary layers. As aforementioned, we develop a different argument to construct the
first-order boundary layers. In fact, the large-scale Lipschitz regularity in Theorem A makes it possible to
construct the velocity and pressure parts of the Green’s function in bumpy John domains, and to estimate
its decay at large scales. This is the purpose of Appendix B, where we prove estimates for the velocity
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part of the Green’s function (see Proposition B.4), its derivatives (see Proposition B.3), and the pressure
part of the Green’s function (see Proposition B.5). These estimates are the key for our new proof of the
existence of the first-order boundary layer correctors; see Theorem 4.1. In this way we are able to by-pass
the difficulties posed by the method used in [Gérard-Varet and Masmoudi 2010; Dalibard and Prange
2014; Dalibard and Gérard-Varet 2017; Kenig and Prange 2018; Higaki and Prange 2020].

To the best of our knowledge, the present work is the first to carry out a thorough analysis of the second-
order boundary layer correctors, allowing for linear growth of the boundary data in the tangential direction.
Our key observation is an algebraic connection between the first-order and second-order boundary layers
on the boundary, which allows us to use the first-order boundary layer correctors in an ansatz for the
second-order boundary layers. Unlike the first-order boundary layers (which form a two-dimensional
vector space), the space of second-order boundary layers is six-dimensional and needs three different
ways of construction, based on the structures of the associated Stokes polynomials; see Sections 4A
and 4C. For our analysis to go through, we also need some good quantitative convergence/decay of the
first-order boundary layers away from the boundary. Hence we work in a periodic framework, according
to Definition 1.3; but this is by no means an optimal assumption. Other structures, such as almost-periodic
structures with a nonresonance condition, or random ergodic with quantitative decorrelation properties at
large scales, would certainly be manageable.

The key outcome of Section 4 handling the construction of boundary layers is summarized in Proposi-
tions 4.6 and 4.7. They are then used in Section 5 to run the excess decay method for the higher-order
regularity in Theorems B and C.

1D. Notation and definitions.

John domains. We first define John domains. These domains were introduced in [John 1961] and named
after John in [Martio and Sarvas 1979].

Definition 1.1. Let �⊂ Rd be an open bounded set and x̃ ∈�. We say that � is a John domain (or a
bounded John domain) with respect to x̃ and with constant L if, for any y ∈�, there exists a Lipschitz
mapping ρ : [0, |y − x̃ |] → � with Lipschitz constant L ∈ (0,∞) such that ρ(0) = y, ρ(|y − x̃ |) = x̃
and dist(ρ(t), ∂�)≥ t/L for all t ∈ [0, |y − x̃ |].

Our analysis takes advantage of a key property of John domains, namely the existence of a right inverse
of the divergence operator. Such an operator is usually called a Bogovskii operator; see Appendix A
where we state the result of [Acosta et al. 2006].

Examples of John domains are: Lipschitz domains, NTA domains, domains with inward cusps or
certain fractals such as Koch’s snowflake. Notice that domains with outward cusps are not John domains.
For our work, we generalize the above definition from bounded domains to a class of unbounded domains.

Definition 1.2. Let� be a domain containing the upper half-space of R3 and assume ∂�⊂ {−1< x3< 0}.
We say that � is a bumpy John domain (or a bumpy John half-space) with constants (L , K ) if, for any
x ∈ {x3 = 0} and any R ≥ 1, there exists a bounded John domain �R(x) with respect to xR = x + Red
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and with constant L ∈ (0,∞) according to Definition 1.1 such that

BR,+(x)⊂�R(x)⊂ BK R,+(x), (1-5)

where BR,+(x)= Q R(x)∩�. Here Q R(x), defined later, is a cube centered at x with side length 2R.

The above definition guarantees that the constants of John domains are rescaling- and translation-
invariant. This is a natural requirement as we are considering unbounded domains.

Definition 1.3. We say that � is a periodic bumpy John domain if the following hold:

(i) � is a John domain with constant (L , K ).

(ii) � is (2πZ)2-translation-invariant, namely 2π z +�=� for any z ∈ Z2
× {0}.

For simplicity, we assume K = 2 in the whole paper. Otherwise, the constant in our main theorems
will also depend on K.

Throughout the paper, we assume that � is a bumpy John domain satisfying Definition 1.2, or a
periodic bumpy John domain satisfying Definition 1.3. We will always specify in case periodicity is
needed. In fact, periodicity is used to construct the second-order boundary layer correctors in Section 4C
and hence is also an assumption of Theorem C, Proposition 4.7, Section 5B and Theorem 5.8(ii).

Let �ε := ε�= {x ∈ R3
| ε−1x ∈�}. We refer to �ε as a highly oscillating bumpy John domain. Note

that
∂�ε ⊂ {x ∈ R3

| −ε < x3 < 0}. (1-6)

A key fact about �ε is that �ε is still a John domain with the same constants as in Definition 1.2, as these
constants are scale-invariant.

Throughout the paper, we use the notation

Bεr,+ = {x =(x ′, x3) ∈ R3
| x ′

∈ (−r, r)2, x3 < r} ∩�ε,

0εr = {x =(x ′, x3) ∈ R3
| x ′

∈ (−r, r)2} ∩ ∂�ε.

Since the boundary could be very rough at small scales, Bεr,+ and 0εr may have disconnected components.
Fortunately, this will not cause any issue since the solutions will be extended naturally by zero across the
boundary. We also define

Qr = Qr (0)= (−r, r)3, Qr (y)= y + Qr (0), Qε
r = Qr ∩ {x ∈ R3

| x3 >−ε},

Qε
r (y)= Qr (y)∩ {x ∈ R3

| x3 >−ε} and Qr,+(y)= Qr (y)∩ {x ∈ R3
| x3 > 0}. (1-7)

From the definition of Bεr,+, one has Bεr,+ ⊂ Qε
r and |Qε

r \ Bεr | ≤ 4εr2.

Weak solutions. We work in the framework of weak solutions of (NSε). A velocity/pressure pair (uε, pε)∈
H 1(Bε1,+)

3
× L2(Bε1,+) is said to be a weak solution to (NSε) if uε satisfies ∇ · uε = 0 in the sense of

distributions, ψuε ∈ H 1
0 (Q1)

3 for any cut-off function ψ ∈ C∞

0 (Q1), and the weak formulation∫
Bε1,+

∇uε · ∇ϕ−

∫
Bε1,+

pε(∇ ·ϕ)= −

∫
Bε1,+

(uε · ∇uε) ·ϕ (1-8)
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for any ϕ ∈ C∞

0 (B
ε
1,+)

3. The Poincaré inequality is a fundamental tool in our paper. Since the weak
solution vanishes on the lower boundary 0ε1, we extend it to Qε

1 by zero across 0ε1. This enables us
to use for instance [Giaquinta and Martinazzi 2012, Proposition 3.15], to get that, for all fixed bumpy
John domain � with constant L ∈ (0,∞) according to Definition 1.2, for all fixed r ≥ ε, and for all
u ∈ H 1(Bεr,+) such that u = 0 on 0εr , ∫

Bεr,+
|u|

2
≤ Cr2

∫
Bεr,+

|∇u|
2, (1-9)

where C is an absolute constant independent of ε and r . Notice that this estimate is only valid at scales
r ≥ ε. Indeed, below that scale the constant in (1-9) may degenerate because in particular of inward cusps
at small scales.

Other frequently used notation. The notation C denotes a positive constant that varies from line to line,
and may or may not be universal. Whenever needed, we make precise what the constant depends on.
The notation x · y stands for x1 y1 + · · · + xN yN for vectors x, y ∈ CN. The notation a ≲ b (resp. a ≳ b)
means that there exists a universal constant C such that a ≤ Cb (resp. Ca ≥ b). The notation a ≈ b stands
for a ≲ b and a ≳ b.

1E. Outline of the paper. Section 2 is devoted to the proof of the large-scale Calderón–Zygmund estimate
stated in Theorem 2.4. We then use this result to bootstrap the regularity and obtain a large-scale Hölder
estimate for the nonlinear term in the Navier–Stokes equations; see Theorem 2.8. In Section 3, we
prove Theorem A. In Section 4 we construct the first-order and second-order boundary layer correctors.
Theorems B and C are proved in Section 5. There are three appendices. Appendix A is devoted to
the results related to Bogovskii’s operator in John domains. Appendix B handles the construction and
estimates for the Green’s function associated to the Stokes system in bumpy John domains. Appendix C
provides a proof for the iteration Lemma 3.10.

2. Estimates for the nonlinearity

The goal of this section is to obtain some regularity estimates for the nonlinearity −uε⊗uε for the Navier–
Stokes equations. As usual, this follows from a bootstrap argument for the stationary Navier–Stokes
equations. However, since there is no smoothness up to the boundary, we have to carry out a delicate
large-scale bootstrap argument.

2A. Large-scale Calderón–Zygmund estimate. Assume r ≥ ε. Let � be a bumpy John domain with
constant L according to Definition 1.2. Let (uε, pε) ∈ H 1(Bε1,+)

3
× L2(Bε1,+) be a weak solution of the

linear Stokes system 
−1uε + ∇ pε = ∇ · Fε in Bε1,+,
∇ · uε = 0 in Bε1,+
uε = 0 on 0ε1 .

(2-1)

We extend uε and Fε by zero to the whole of Q1 = Q1(0); they are denoted again by uε ∈ H 1(Q1)
3

and Fε ∈ L2(Q1)
3×3 respectively. Note that we also have ∇uε = 0 in Q1(0) \ Bε1,+. For any r ≥ ε and
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Q16r (y)⊂ Q1(0), Lemma A.4 and the Sobolev–Poincaré inequality imply that for any θ ∈ (0, 1)(
−

∫
Qr (y)

|∇uε|2
)1/2

≤ θ

(
−

∫
Q16r (y)

|∇uε|2
)1/2

+
C
θ

(
−

∫
Q16r (y)

|∇uε|6/5
)5/6

+

(
−

∫
Q16r (y)

|Fε|2
)1/2

. (2-2)

Here the constant C depends only on L .
We refer to [Zhuge 2021, Lemma 2.2] for a similar proof of (2-2) in the case of elliptic equations.

The John boundary condition for Stokes system results in additional difficulties as we only have a weak
Caccioppoli inequality in Lemma A.4. Notice that this estimate holds only at large scales, namely, r ≥ ε,
because Lemma A.4 as well as the Sobolev–Poincaré inequality fail for r ≪ ε (inward cusps are allowed in
John domains and these cusps can be seen at a scale less than ε). As a result, we are not able to derive the
full-scale Gehring inequality (e.g., [Giaquinta 1983, Chapter V, Proposition 1.1] or [Bensoussan and Frehse
2002, Theorem 1.10]). Instead, we can show a large-scale Gehring inequality; see Lemma 2.2 below.

For p ∈ [1,∞), define the averaging operator

Mp
t [g](x)=

(
−

∫
Qt (x)

|g|
p
)1/p

.

The important exponents for us are p =
6
5 and p = 2. For convenience, sometimes we write M2

t as Mt

in Section 2B. The following lemma collects useful properties of Mt .

Lemma 2.1. For p ∈ [1,∞) and g ∈ L p(Q1), we have the following properties:

(i) For 1 ≤ p′
≤ p <∞ and Qt(x)⊂ Q1,

Mp′

t [g](x)≤ Mp
t [g](x). (2-3)

(ii) For 0< t1 ≤ t2 < 1 and Qt2(x)⊂ Q1,

Mp
t1[g](x)≤ C

(
t2
t1

)3/p

Mp
t2[g](x). (2-4)

(iii) For 0< t ≤ s with Qs+t(y)⊂ Q1,∫
Qs(y)

|g|
p
≤ C

∫
Qs(y)

Mp
t [g]

p
≤ C

∫
Qs+t (y)

|g|
p. (2-5)

(iv) For 0< t1 ≤ t2 ≤ s with Qs+t1+t2(y)⊂ Q1 and q ∈ [p,∞),

−

∫
Qs(y)

Mp
t2[g]

q
≤ C −

∫
Qs+t2 (y)

Mp
t1[g]

q . (2-6)

(v) For 0< s ≤ t with Qs+t(y)⊂ Q1,

Mp
t [g](y)≤ C −

∫
Qs(y)

Mp
t [g]. (2-7)

Here the constant C depends on p and p′, but not on s, t, t1 or t2.
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Using the averaging operator and Lemma 2.1, we can show a large-scale Gehring inequality (also
known as a self-improving property or Meyers’ estimate).

Lemma 2.2. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
There exists some p0 ∈ (2,∞) so that for any 0< r < 1, ε ≤ t ≤ 1 with Q3r+t(y)⊂ Q1(0),(

−

∫
Qr (y)

|M2
t [∇uε]|p0

)1/p0

≤ C
(

−

∫
Q3r (y)

|M2
t [∇uε]|2

)1/2

+ C
(

−

∫
Q3r (y)

|M2
t [Fε]|p0

)1/p0

, (2-8)

where the constant C and the Lebesgue exponent p0 depend only on L.

Proof. Assume first that r ≥ t . Then by Lemma 2.1, we may rewrite (2-2) as(
−

∫
Qr (y)

|M2
t [∇uε]|2

)1/2

≤ C
(

−

∫
Q2r (y)

|∇uε|2
)1/2

≤ Cθ
(

−

∫
Q32r (y)

|∇uε|2
)1/2

+
C
θ

(
−

∫
Q32r (y)

|∇uε|6/5
)5/6

+ C
(

−

∫
Q32r (y)

|Fε|2
)1/2

≤ Cθ
(

−

∫
Q32r (y)

|M2
t [∇uε]|2

)1/2

+
C
θ

(
−

∫
Q32r (y)

|M2
t [∇uε]|6/5

)5/6

+ C
(

−

∫
Q32r (y)

|M2
t [Fε]|2

)1/2

.

For 0< r < t , Lemma 2.1(v) implies

∥M2
t [∇uε]∥L∞(Qr (y)) ≤ C −

∫
Q4r (y)

M2
t [∇uε].

These imply that a weaker reverse Hölder inequality holds for all scales r ∈ (0, 1) with Q32r+t(y)⊂ Q1(0).
By a version of Gehring’s inequality [Giaquinta 1983, Chapter V, Proposition 1.1] or [Bensoussan and
Frehse 2002, Theorem 1.10], and choosing θ sufficiently small, there exists some p0 > 2 such that for all
r ∈ (0, 1) with Q32r+t(y) ∈ Q1(0),(

−

∫
Qr (y)

|M2
t [∇uε]|p0

)1/p0

≤ C
(

−

∫
Q32r (y)

|M2
t [∇uε]|2

)1/2

+ C
(

−

∫
Q32r (y)

|M2
t [Fε]|2

)1/2

. (2-9)

To conclude the proof, we use a covering argument to adjust the size of cubes. By covering the
cube Q32r (y) by a finite number of cubes Qr (yi ) and applying the last estimate in every Qr (yi ), we get
the estimate(

−

∫
Q32r (y)

|M2
t [∇uε]|p0

)1/p0

≤ C
(

−

∫
Q96r (y)

|M2
t [∇uε]|2

)1/2

+ C
(

−

∫
Q96r (y)

|M2
t [Fε]|2

)1/2

for ε ≤ t ≤ 1 and Q96r+t(y) ⊂ Q1(0), at the price of a larger constant C than in (2-9). Replacing 32r
by r , we obtain the desired estimate. □

Remark 2.3 (covering argument). The covering argument above to adjust the size of cubes should be a
standard technique in analysis. Similar arguments may be used later in this paper.
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The following theorem is a large-scale boundary Calderón–Zygmund estimate, or in other words, a
large-scale boundary W 1,p estimate, for the linear Stokes system.

Theorem 2.4. For all ε ∈
(
0, 1

2

)
, L ∈ (0,∞) and p ∈ (2,∞) the following statement holds. Let � be a

bumpy John domain with constant L according to Definition 1.2. Suppose ε≤ t ≤ r ≤
1
2 , Q5r (x)⊂ Q1(0)

and M2
t [Fε] ∈ L p(Q4r (x)). Then the weak solution uε to (2-1) satisfies(

−

∫
Qr (x)

|M2
t [∇uε]|p

)1/p

≤ C
(

−

∫
Q4r (x)

|M2
t [∇uε]|2

)1/2

+ C
(

−

∫
Q4r (x)

|M2
t [Fε]|p

)1/p

, (2-10)

where the constant C depends only on L and p.

The proof of Theorem 2.4 relies on a combination of a real-variable argument (see Theorem 2.5), and
the quantitative approximation at sufficiently large scales s of the solution uε to the Stokes system in the
bumpy domain by a solution to a Stokes problem in a flat domain (see Lemma 2.6).

We first state the real variable result. The following theorem is taken from [Shen 2018, Theorem 4.2.3],
where it is stated for balls instead of cubes. Notice that we introduce some flexibility for the size of the
cubes as in [Zhuge 2021, Theorem 2.6] and [Shen 2023, Theorem 4.1] to fit the cubes in Lemma 2.6.

Theorem 2.5 [Shen 2018, Theorem 4.2.3]. Let N > 1, 0 < c1 < 1, κ > 0 and λ > 2. Let Q0 be a
cube in R3 and F ∈ L2(λQ0). Let q > 2 and f ∈ L p(λQ0) for some 2< p < q. Suppose that for each
cube Q ⊂ 2Q0 with |Q| ≤ c1|Q0|, there exist two measurable functions FQ and RQ on 2Q such that
|F | ≤ |FQ | + |RQ | on 2Q, and(

−

∫
2Q

|RQ |
q
)1/q

≤ N
(

−

∫
λQ

|F |
2
)1/2

,(
−

∫
2Q

|FQ |
2
)1/2

≤ κ

(
−

∫
λQ

|F |
2
)1/2

+

(
−

∫
λQ

| f |
2
)1/2

.

There exists κ0> 0, depending on λ, p, q, c1 and N, with the property that if 0<κ <κ0, then F ∈ L p(Q0)

and (
−

∫
Q0

|F |
p
)1/p

≤ C
{(

−

∫
λQ0

|F |
2
)1/2

+

(
−

∫
λQ0

| f |
p
)1/p}

,

where C depends on λ, p, q , c1 and N.

We now turn to the approximation. Fix t ≥ ε. To apply Theorem 2.5, we introduce an approximation
of uε at all scales s ≥ t . Fix y ∈ {−1 ≤ x3 ≤ 1}. Let Qε

r (y)= Qr (y)∩ {x3 >−ε}. Let s ≥ t be fixed. By
the coarea formula [Evans and Gariepy 2015, Theorem 3.11, page 139] and the fact that ∇uε ≡ 0 below
the bottom boundary we have∫

Qε
2s(y)

|∇uε|2 dx =

∫ 2s

0

∫
∂Qε

r (y)
|∇uε|2 dσr dr ≥

∫ 2s

s

∫
∂Qε

r (y)
|∇uε|2 dσr dr.
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A contradiction argument then gives that there exists t0 ∈ [1, 2] such that(∫
∂Qε

t0s(y)
|∇uε|2

)1/2

≤
2

s1/2

(∫
Qε

2s(y)
|∇uε|2

)1/2

. (2-11)

Note that t0 depends particularly on the specific solution uε. But this is harmless as t0 is bounded uniformly
in ε in [1, 2]. Now, we construct an approximation of uε in Qt0s(y) by considering the Stokes system

−1ws + ∇qs = 0 in Qε
t0s(y),

∇ ·ws = 0 in Qε
t0s(y),

ws = uε on ∂Qε
t0s(y).

(2-12)

Since ws = 0 on ∂Qε
s (y)∩{x3 = −ε}, we may extend the solution ws naturally across this boundary. For

our purpose, we need some regularity estimates for ws . First of all, the energy estimate implies(
−

∫
Qε

t0s(y)
|∇ws |

2
)1/2

+

(
−

∫
Qε

t0s(y)

∣∣∣∣qs − −

∫
Qε

t0s(y)
qs

∣∣∣∣2 )1/2

≤ C
(

−

∫
Qt0s(y)

|∇uε|2
)1/2

. (2-13)

Second, by the classical regularity theory for the Stokes system over a flat boundary, we have

∥∇ws∥L∞(Qs/2(y)) ≤ C
(

−

∫
Qs(y)

|∇ws |
2
)1/2

≤
C

s3/2

(∫
Qt0s(y)

|∇uε|2
)1/2

= Ct3/2
0

(
−

∫
Qt0s(y)

|∇uε|2
)1/2

≤ C
(

−

∫
Qt0s(y)

|∇uε|2
)1/2

. (2-14)

Finally, since Qε
t0s(y) is a Lipschitz domain and because (2-11) implies ws |∂Qε

t0s(y) ∈ H 1(∂Qε
t0s(y))

3, it
follows from [Fabes et al. 1988] that (∇ws)

∗
∈ L2(∂Qε

t0s(y)), where (∇ws)
∗ is the nontangential maximal

function. More precisely, we have(∫
∂Qε

t0s(y)
|(∇ws)

∗
|
2
)1/2

≤ C
(∫

∂Qε
t0s(y)

|∇uε|2
)1/2

≤
C

s1/2

(∫
Qε

2s(y)
|∇uε|2

)1/2

.

This yields, (∫
Qε

t0s(y)
|∇ws |

3
)1/3

≤
C

s1/2

(∫
Qε

2s(y)
|∇uε|2

)1/2

; (2-15)

see [Wei and Zhang 2014, Lemma 3.3] and [Kenig et al. 2013, Remark 9.3]. The above higher integrability
of ws plays an important role in the following lemma.

Lemma 2.6. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (ws, qs) be given as above. Then there exists σ ∈

(
0, 1

12

]
such that, for any θ ∈ (0, 1), ε ∈ (0, θ],

s ∈ [ε/θ, 1], Q7s(y)⊂ Q1(0),(
−

∫
Qs(y)

|∇uε − ∇ws |
2
)1/2

≤ Cθσ
(

−

∫
Q7s(y)

|∇uε|2
)1/2

+ Cθ

(
−

∫
Q7s(y)

|Fε|2
)1/2

, (2-16)

where C depends only on L , and Cθ depends on L , σ and θ .
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Proof. We rely on the variational definition of the weak solutions of (2-12). First of all, by (2-12), we see
that uε−ws ∈ H 1

0 (Q
ε
t0s(y))

3 and ∇ · (uε−ws)= 0, since uε has been extended by zero. Thus we can test
(2-12) against uε −ws to obtain ∫

Qε
t0s(y)

∇ws · ∇(uε −ws)= 0. (2-17)

Let ηε,+ be a smooth cut-off function so that 0 ≤ηε,+ ≤ 1, ηε,+(x)= 1 if x3>2ε, ηε,+(x)= 0 if x3<ε, and
|∇ηε,+| ≤ Cε−1. It is easy to verify ψ := (uε −ws)η

2
ε,+ ∈ H 1

0 (B
ε
t0s,+(y))

3, where Bεt0s,+(y) := y + Bεt0s,+.
Testing (2-1) against ψ , we obtain∫

Bεt0s,+(y)
∇uε · ∇((uε −ws)η

2
ε,+)

=

∫
Bεt0s,+(y)

(pε −P)((uε −ws) · 2ηε,+∇ηε,+)−

∫
Bεt0s,+(y)

Fε · ∇((uε −ws)η
2
ε,+) (2-18)

for any P ∈ R (to be determined later). Combining (2-17) and (2-18) and using the fact ∇uε = 0 in
Qε

t0s(y) \ Bεt0s,+(y), we arrive at∫
Qε

t0s(y)
∇(uε −ws) · ∇(uε −ws)

=

∫
Bεt0s,+(y)

∇uε · ∇((uε −ws)(1 − η2
ε,+))

+

∫
Bεt0s,+(y)

(pε −P)((uε −ws) · 2ηε,+∇ηε,+)−

∫
Bεt0s,+(y)

Fε · ∇((uε −ws)η
2
ε,+). (2-19)

Now, we are going to estimate the integrals on the right-hand side of the above equation. Note that
1 − η2

ε,+ and ∇ηε,+ are both supported in {−ε < x3 ≤ 2ε}. Let Rεs := Qt0s(y) ∩ {−ε ≤ x3 ≤ 2ε} and
T ε

s = Qt0s(y)∩ {0 ≤ x3 ≤ 2ε}. Clearly, |T ε
s | ≤ |Rεs | ≤ Cεs2. To estimate the first integral, we use the

Poincaré inequality applied in Rεs to obtain∣∣∣∣∫
Bεt0s,+(y)

∇uε · ∇((uε −ws)(1 − η2
ε,+))

∣∣∣∣
≤

(∫
Rεs

|∇uε|2
)1/2(∫

Rεs

|∇((uε −ws)(1 − η2
ε,+))|

2
)1/2

≤ C
(∫

Rεs

|∇uε|2
)1/2{(∫

Rεs

|∇(uε −ws)|
2
)1/2

+ ε−1
(∫

Rεs

|uε −ws |
2
)1/2}

≤ C
(∫

Rεs

|∇uε|2
)1/2{(∫

Rεs

|∇(uε −ws)|
2
)1/2

+

(∫
Rεs

|∇(uε −ws)|
2
)1/2}

≤ C
(∫

Rεs

|∇uε|2
)1/2(∫

Qε
t0s(y)

|∇(uε −ws)|
2
)1/2

. (2-20)

The last integral of ∇(uε −ws) in the above estimate will eventually be absorbed by the left-hand side of
(2-19). The main difficulty in proceeding is to obtain a certain estimate of smallness for ∇uε over the
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thin strip Rεs . This can be done by using Lemma 2.2. In fact, if θ ∈ (0, 1) and s ≥ ε/θ , Lemma 2.2 yields(
−

∫
Q2s(y)

|M2
θs[∇uε]|p0

)1/p0

≤ C
(

−

∫
Q6s(y)

|M2
θs[∇uε]|2

)1/2

+ C
(

−

∫
Q6s(y)

|M2
θs[Fε]|p0

)1/p0

.

Since for any z ∈ Q6s(y)

M2
θs[Fε](z)≤ Cθ

(
−

∫
Q7s(y)

|Fε|2
)1/2

,

together with (2-5), we obtain(
−

∫
Q2s(y)

|M2
θs[∇uε]|p0

)1/p0

≤ C
(

−

∫
Q7s(y)

|∇uε|2
)1/2

+ Cθ

(
−

∫
Q7s(y)

|Fε|2
)1/2

.

It is important to notice that in the last inequality, C is independent of θ and Cθ depends on θ . By an
argument similar to that in [Zhuge 2021], we can now estimate the right-hand side of (2-20) as(

1
|Qs(y)|

∫
Rεs

|∇uε|2
)1/2

≤ C
(
θs
s

)1/2−1/p0
(

−

∫
Q2s(y)

|M2
θs[∇uε]|p0

)1/p0

≤ Cθσ
(

−

∫
Q7s(y)

|∇uε|2
)1/2

+ Cθ

(
−

∫
Q7s(y)

|Fε|2
)1/2

, (2-21)

with some σ ∈
(
0, 1

2

)
. This is the desired estimate of ∇uε in Rεs . Later on we will insert it into (2-20) and

then (2-19) to reach a conclusion.
Let us turn to the estimate of the second integral on the right-hand side of (2-19). Using Hölder’s

inequality and the Poincaré inequality, we have∣∣∣∣∫
Bεt0s,+(y)

(pε −P)((uε −ws) · 2ηε,+∇ηε,+)

∣∣∣∣ ≤ Cε−1
(∫

T εs

|pε −P|
2
)1/2(∫

Rεs

|uε −ws |
2
)1/2

≤ C
(∫

T εs

|pε −P|
2
)1/2(∫

Rεs

|∇(uε −ws)|
2
)1/2

. (2-22)

Now, we pick

P := −

∫
Qt0s,+(y)

pε,

where Qt0s,+(y)= Qt0s(y)∩{x3> 0}. Then the Bogovskii lemma applied in a Lipschitz domain Qt0s,+(y)
implies (∫

T εs

|pε −P|
2
)1/2

≤

(∫
Qt0s,+(y)

|pε −P|
2
)1/2

≤ C
(∫

Qt0s,+(y)
|∇uε|2

)1/2

+ C
(∫

Qt0s,+(y)
|Fε|2

)1/2

≤ C
(∫

Bεt0s,+

|∇uε|2
)1/2

+ C
(∫

Bεt0s,+

|Fε|2
)1/2

. (2-23)

Unlike the previous argument, we want to gain the smallness for (2-24) below from(∫
Rεs

|∇(uε −ws)|
2
)1/2

≤

(∫
Rεs

|∇uε|2
)1/2

+

(∫
Rεs

|∇ws |
2
)1/2

.
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The estimate for ∇uε over Rεs is given (2-21). On the other hand, by (2-15) and the Hölder inequality, we
have (∫

Rεs

|∇ws |
2
)1/2

≤ |Rεs |
1/6

(∫
Rεs

|∇ws |
3
)1/3

≤ C
|Rεs |

1/6

s1/2

(∫
Qε

2s(y)
|∇uε|2

)1/2

≤ C
(
ε

s

)1/6(∫
Qε

2s(y)
|∇uε|2

)1/2

.

Inserting this into (2-22), we have∣∣∣∣∫
Bεt0s,+(y)

(pε −P)((uε −ws) · 2ηε,+∇ηε,+)

∣∣∣∣
≤ C

{(∫
Bεt0s,+

|∇uε|2
)1/2

+

(∫
Bεt0s,+

|Fε|2
)1/2}{(∫

Rεs

|∇uε|2
)1/2

+

(
ε

s

)1/6(∫
Qε

2s(y)
|∇uε|2

)1/2}
. (2-24)

Finally, for the last integral of (2-19), by the Poincaré inequality, we have∣∣∣∣∫
Bεt0s,+(y)

Fε · ∇((uε −ws)η
2
ε,+)

∣∣∣∣ ≤ C
(∫

Bεt0s,+(y)
|Fε|2

)1/2(∫
Qε

t0s(y)
|∇(uε −ws)|

2
)1/2

. (2-25)

Now, (2-19) together with (2-20), (2-21), (2-24) and (2-25) gives(∫
Qε

t0s(y)
|∇(uε −ws)|

2
)1/2

≤ C
(
θσ +

(
ε

s

)1/12)(∫
Q7s(y)

|∇uε|2
)1/2

+ Cθ

(∫
Q7s(y)

|Fε|2
)1/2

. (2-26)

Since we assumed s ≥ ε/θ , we have ε/s ≤ θ . In view of t0 ∈ [1, 2], (2-26) divided by |Qs(y)|1/2 leads
to (2-16). □

Proof of Theorem 2.4. We will first prove a slightly weaker version of (2-10) when Q57r (x)⊂ Q1(0). Then,
(2-10) can be recovered thanks to a covering argument at the price of enlarging the constant by a numerical
factor; see Remark 2.3 for more details. When Q57r (x) is far away from the boundary 0ε1, the estimate
(2-10) is a consequence of interior regularity. Hence it suffices to prove (2-10) when Q57r (x)∩0ε1 ̸= ∅.
Note that this case can be reduced to the case when x ∈ {z3 = 0} by a covering argument as well as
interior regularity. To apply Theorem 2.5 to Q0 := Qr (x), λ := 56 and F := M2

t [∇uε] in Q56r (x) with
x ∈ {z3 = 0}, we approximate uε in any cube Qs(y) contained in Q2r (x) for any scales for s ≥ ε/θ ,
where θ is as in Lemma 2.6. If Qs(y) is entirely contained in {z3 > 0}, then the well-known interior
estimate for the Stokes system applies. If Qs(y) is contained entirely in {z3 <−ε}, then trivially uε ≡ 0
in Qs(y). Hence, it suffices to focus on the typical boundary case Qs(y) with y ∈ {z3 = 0}. Moreover,
we assume s < r/2 so that Q57s(y)⊂ Q57r (x)⊂ Q1(0) whenever Qs(y)⊂ Q2r (x).

Now, for each Qs(y) with y ∈ {z3 = 0}, we will discuss two cases.

Case 1: s≥4t . By (2-14) and (2-16), there exists ws solving (2-12) and satisfying

∥∇ws∥L∞(Qs/2(y)) ≤ C
(

−

∫
Q2s(y)

|∇uε|2
)1/2

(2-27)
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and (
−

∫
Qs(y)

|∇uε − ∇ws |
2
)1/2

≤ Cθσ
(

−

∫
Q7s(y)

|∇uε|2
)1/2

+

(
−

∫
Q7s(y)

|Cθ Fε|2
)1/2

. (2-28)

Note that the above estimate only holds for s ≥ ε/θ . Therefore, we will use Lemma 2.1 and replace
∇uε and ∇ws by M2

t [∇uε] and M2
t [∇ws], respectively. Precisely, the above two inequalities imply for

s ≥ 4t ≥ ε/θ ,

∥M2
t [∇ws]∥L∞(Qs/4(y)) ≤ C

(
−

∫
Q2s(y)

|M2
t [∇uε]|2

)1/2

≤ C
(

−

∫
Q7s(y)

|M2
t [∇uε]|2

)1/2

and(
−

∫
Qs/4(y)

|M2
t [∇uε] −M2

t [∇ws]|
2
)1/2

≤ Cθσ
(

−

∫
Q7s(y)

|M2
t [∇uε]|2

)1/2

+

(
−

∫
Q7s(y)

|M2
t [Cθ Fε]|2

)1/2

.

Case 2: 0 < s < 4t . In this case M2
t [∇uε] itself satisfies some trivial estimate. Note that for any

z ∈ Qs/2(y), as Qs/2(z)⊂ Qs(y), by Lemma 2.1(v),

M2
t [∇uε](z)≤ C

(
−

∫
Qs/2(z)

|M2
t [∇uε]|2

)1/2

≤ C
(

−

∫
Qs(y)

|M2
t [∇uε]|2

)1/2

,

which yields

∥M2
t [∇uε]∥L∞(Qs/4(y)) ≤ ∥M2

t [∇uε]∥L∞(Qs/2(y))

≤ C
(

−

∫
Qs(y)

|M2
t [∇uε]|2

)1/2

≤ C
(

−

∫
Q7s(y)

|M2
t [∇uε]|2

)1/2

.

This ends the study of the two cases. We now apply Theorem 2.5 with λ := 56, Q0 := Qr (x), q := ∞,
F := M2

t [∇uε] and f := M2
t [Cθ Fε]. Moreover,

FQ =

{
M2

t [∇uε] −M2
t [∇ws], s ≥ 4t,

0, 0< s < 4t,
and

RQ =

{
M2

t [∇ws], s ≥ 4t,
M2

t [∇uε], 0< s < 4t.

For any given p > 2, we may choose θ sufficiently small with Cθσ < κ0 so that the requirement of
Theorem 2.5 is satisfied. Consequently, we arrive at(

−

∫
Qr (x)

|M2
t [∇uε]|p

)1/p

≤ C
(

−

∫
Q56r (x)

|M2
t [∇uε]|2

)1/2

+ C
(

−

∫
Q56r (x)

|M2
t [Cθ Fε]|p

)1/p

(2-29)

for all ε ∈ (0, θ(p)) and ε/(4θ)≤ t ≤ r and Q57r (x)⊂ Q1(0). Estimate (2-10) now follows by a covering
argument (see the proof of Lemma 2.2) and Lemma 2.1 (in order to adjust the size of balls and relax the
condition t ≥ (4θ) to t ≥ ε). To remove the smallness condition ε ∈ (0, θ(p)), we observe that the case
θ(p)≤ ε ≤ t ≤ r ≤

1
2 is trivial as the constant C is allowed to depend on p. □
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2B. Bootstrap argument. In this subsection, we apply the large-scale Calderón–Zygmund estimate
proved previously to study the regularity of the stationary Navier–Stokes equations (NSε). Note that in
Theorem 2.4, Fε is a general function. We will take advantage of the nonlinearity Fε = −uε ⊗ uε. As
usual, the proof relies on a bootstrap argument.

Throughout this subsection, we set Fε = −uε ⊗ uε. To begin with, note that the Sobolev embedding
theorem implies Fε ∈ L3, which yields Mt [Fε] ∈ L3. Hence, (2-10) holds with p = 3. To further improve
the large-scale regularity, we need to lift the regularity of Fε from that of ∇uε.

For any 0 ≤ a < b ≤ ∞, define a new maximal function

M1
(a,b)[g](x)= sup

a<t<b
−

∫
Qt (x)

|g|.

Note that M1
(0,∞) is the usual Hardy–Littlewood maximal function. Clearly, by the L p boundedness of

the Hardy–Littlewood maximal function, M1
(a,b) is uniformly bounded in L p space for p ∈ (1,∞).

Fix t > 0. Define

Kq(r)= Kq,t(r)=

(
−

∫
Qr (0)

M2
t [∇uε]q

)1/q

.

The following estimate is a sort of the large-scale Sobolev embedding theorem.

Theorem 2.7. Let L ∈ (0,∞) and� be a bumpy John domain with constant L according to Definition 1.2.
Let ε ≤ t ≤ r ≤

1
7 and Fε = −uε ⊗ uε. Then for any p > 3 and any q satisfying

1
q
<

1
2p

+
1
3
, (2-30)

we have (
−

∫
Qr (0)

|Mt [Fε]|p
)1/p

≤ Cr2(Kq(5r))2, (2-31)

where the constant C depends only L , p and q.

Proof. Let p > 3 and q satisfy (2-30). Without loss of generality, we assume in addition 1
2p <

1
q . Let

x ∈ Bεr,+(0). We first estimate

Mt [Fε](x)=

(
−

∫
Qt (x)

|Fε|2
)1/2

≤ C
(

−

∫
Qt (x)

|uε|4
)1/2

.

Let x = (x ′, x3). We consider the cases x3 ≥ t and x3 < t separately. Assume first x3 ≥ t and let N be the
natural number so that 2N−1t < x3 ≤ 2N t . Note that uε vanishes in a large portion of Q2N+1t(x). By the
triangle inequality and the Poincaré inequality, we have(

−

∫
Qt (x)

|uε|4
)1/4

≤

(
−

∫
Qt (x)

∣∣∣∣uε − −

∫
Q2t (x)

uε
∣∣∣∣4 )1/4

+

N∑
j=1

∣∣∣∣−∫
Q2 j t (x)

uε − −

∫
Q2 j+1t (x)

uε
∣∣∣∣ + ∣∣∣∣−∫

Q2N+1t (x)
uε

∣∣∣∣
≤ C

N∑
j=0

2 j+1t
(

−

∫
Q2 j+1t (x)

|∇uε|2
)1/2

.
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Now, let α ∈
(
0,min

{1
3 ,

1
q

})
and write

2 j+1t
(

−

∫
Q2 j+1t (x)

|∇uε|2
)1/2

≤ C2 j+1t
(

−

∫
Q2 j+1t (x)

Mt [∇uε]2
)1/2

≤ C2 j+1t
(

−

∫
Q2 j+1t (x)

Mt [∇uε]q
)1/q

≤ C2 j+1t
(

−

∫
Q2 j+1t (x)

Mt [∇uε]q
)α(

−

∫
Q2 j+1t (x)

Mt [∇uε]q
)1/q−α

≤ C(2 j+1t)1−3α
(∫

Q2 j+1t (x)
Mt [∇uε]q

)α(
−

∫
Q2 j+1t (x)

Mt [∇uε]q
)1/q−α

≤ C(2 j+1t)1−3αr3α
(

−

∫
Q5r (0)

Mt [∇uε]q
)α(

−

∫
Q2 j+1t (x)

Mt [∇uε]q
)1/q−α

. (2-32)

Using the definition of Kq and M1
(2t,5r), we obtain

2 j+1t
(

−

∫
Q2 j+1t (x)

|∇uε|2
)1/2

≤ C(2 j+1t)1−3αr3α(Kq(5r))αq(
M1

(2t,5r)[Mt [∇uε]q
](x)

)1/q−α
.

It follows that(
−

∫
Qt (x)

|uε|4
)1/4

≤ C
N∑

j=0

(2 j+1t)1−3αr3α(Kq(5r))αq(
M1

(2t,5r)[Mt [∇uε]q
](x)

)1/q−α

≤ Cr(Kq(5r))αq(
M1

(2t,5r)[Mt [∇uε]q
](x)

)1/q−α
,

which yields

Mt [Fε](x)≤ Cr2(Kq(5r))2αq(
M1

(2t,5r)[Mt [∇uε]q
](x)

)2/q−2α
. (2-33)

On the other hand, if x3 < t , then B2t(x) has a relatively large portion not contained in �ε. Thus, the
Sobolev–Poincaré inequality implies(

−

∫
Qt (x)

|uε|4
)1/4

≤ C
(

−

∫
Q2t (x)

|uε|4
)1/4

≤ Ct
(

−

∫
Q2t (x)

|∇uε|2
)1/2

.

Using the same argument as (2-32), we see that Mt [Fε](x) has the same bound as (2-33) for x3 < t .
Since by assumption, 1

2p <
1
q <

1
2p +

1
3 and 0< α <min

{1
3 ,

1
q

}
is arbitrary, we may choose α so that

1
q >

1
2p +α. This implies p

( 2
q −2α

)
> 1. Thus, using the L p(2/q−2α) boundedness of the Hardy–Littlewood

maximal function, we obtain∫
Qr (0)

|Mt [Fε](x)|p dx ≤ Cr2p(Kq(5r))2αpq
∫

Qr (0)
(M1

(2t,5r)[Mt [∇uε]q
](x))p(2/q−2α) dx

≤ Cr2p(Kq(5r))2αpq
∫

Q5r (0)
(Mt [∇uε](x))2p(1−αq) dx .
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Consequently, (
−

∫
Qr (0)

|Mt [Fε]|p
)1/p

≤ Cr2(Kq(5r))2αq(K2p(1−αq)(5r))2(1−αq).

Now, observe that we may choose α < 1
q −

1
2p but sufficiently close to 1

q −
1

2p . Then q < 2p(1−αq)→ q
as α approaches 1

q −
1

2p . This implies(
−

∫
Qr (0)

|Mt [Fε]|p
)1/p

≤ Cr2(K2p(1−2α)(5r))2 ≤ Cr2(Kq̂(5r))2 (2-34)

for any q̂ > q , where we also used the fact that Km(r)≤ Kn(r) for any 1 ≤ m ≤ n. Finally, to recover the
case with the exact exponent q , we may start with a q̃ < q still satisfying 1

q̃ <
1

2p +
1
3 . Then (2-34) holds

for any q̂ > q̃ , which includes the case q̂ = q . This proves the desired estimate. □

Now, a bootstrap argument between (2-10) and (2-31) shows that both M2
t [∇uε] and M2

t [Fε] are
in L p for any p ≥ 3. In the following, we use this to prove a large-scale Hölder’s estimate for Fε, which
plays an important role in the Lipschitz estimate in the next section.

Theorem 2.8. Let L ∈ (0,∞) and� be a bumpy John domain with constant L according to Definition 1.2.
Let ε ≤ t ≤ r ≤

1
2 . Let M ≥ 0 be such that(

−

∫
Bε1,+

|∇uε|2
)1/2

≤ M.

For every l > 3 and δ > 0 satisfying lδ < 6, we have(
−

∫
Qr

|Mt [Fε]|3
)1/3

≤ Cr2−6/ l(M + M2(4−6/ l+δ)), (2-35)

where the constant C depends only on L , l and δ.

Proof. Note that, by an argument similar to that at the end of the proof of Theorem 2.4, we only have
to prove (2-35) when ε/N0 ≤ t ≤ r ≤ 1/N1 for some N0, N1 ≥ 2. Let l > 3 and δ > 0 with lδ < 6 be
given and fixed for the proof. First of all, by the Sobolev embedding theorem, ∥Fε∥L3(Q1) ≤ C M2. This
implies ∥Mt [Fε]∥L3(Q1/2) ≤ C M2. By Theorem 2.4,(

−

∫
Q1/8

|Mt [∇uε]|3
)1/3

≤ C(M + M2).

Then, applying Theorem 2.7, we obtain that, for any 3 ≤ p <∞,(
−

∫
Q1/40

|Mt [Fε]|p
)1/p

≤ C
(

−

∫
Q1/8

Mt [∇uε]3
)2/3

≤ C(M + M4).

Now, using Theorem 2.4 again combined with a covering argument, we derive from the last inequality that(
−

∫
Q1/80

|Mt [∇uε]|p
)1/p

≤ C(M + M4).
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Now, let p > l. By the interpolation, we have(
−

∫
Q1/80

|Mt [∇uε]|l
)1/ l

≤

(
−

∫
Q1/80

|Mt [∇uε]|3
)θ/3(

−

∫
Q1/80

|Mt [∇uε]|p
)(1−θ)/p

≤ C(M + M2)θ (M + M4)1−θ
≤ C(M + M4−2θ ), (2-36)

where
1
l

=
θ

3
+

1−θ

p
.

For the given δ ∈ (0, 1), we want 4 − 2θ = 4 −
6
l + δ. This implies θ =

3
l −

δ
2 and thus we may choose

p =
6
δ

(
1 −

3
l

+
δ

2

)
.

One can easily verify that θ ∈ (0, 1) by the assumption on l and δ. Consequently, we derive from (2-36) that(
−

∫
Q1/80

|Mt [∇uε]|l
)1/ l

≤ C(M + M4−6/ l+δ).

Finally, we apply Theorem 2.7 to obtain for r ≤
1

400 ,(
−

∫
Qr

|Mt [Fε]|3
)1/3

≤ Cr2
(

−

∫
Q5r

|Mt [∇uε]|l
)2/ l

≤ Cr2−6/ l
(∫

Q5r

|Mt [∇uε]|l
)2/ l

≤ Cr2−6/ l(M + M2(4−6/ l+δ)). □

Note that if ∇uε itself is in L p for p > 3, then Morrey’s inequality implies that uε is C0,1−3/p, which
implies, since uε vanishes on the boundary,(

−

∫
Qr

|Fε|3
)1/3

≤ Cr2−6/p,

where C depends on M, L and p. Hence, (2-35) is consistent with the usual Morrey estimate.

3. Large-scale Lipschitz estimate

In this section, we will establish the large-scale Lipschitz estimate of uε and the oscillation estimate of pε.
We remark, for later use in Section 4B, that Theorem A implies the following Liouville theorem for the
Stokes system 

−1u + ∇ p = 0 in �,
∇ · u = 0 in �,
u = 0 on ∂�,

(3-1)

where � is a John domain in Definition 1.2. The proof of the following statement is standard.

Corollary 3.1. Let � be a bumpy John domain according to Definition 1.2. Let (u, p) be a weak solution
of (3-1). If

lim
R→∞

1
R

(
−

∫
BR(0)∩�

|u|
2
)1/2

= 0,

then u ≡ 0 (hence p is constant).
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3A. Set-up and approximation. First of all, we may write (NSε) as a linear Stokes system
−1uε + ∇ pε = ∇ · Fε in Bε1,+,
∇ · uε = 0 in Bε1,+,
uε = 0 on 0ε1 ,

(Sε)

where Fε = −uε ⊗ uε. As in the classical regularity theory for Stokes system, we will use the large-scale
C0,α estimate of Fε in Theorem 2.8 to prove the large-scale Lipschitz estimate. The proof is based on the
excess decay method.

Similarly to the large-scale Calderón–Zygmund estimate of Theorem 2.4, we also need to approximate
the Stokes system (Sε) at all scales greater than ε. Fix r ∈

[
ε, 1

2

]
and let (vr , qr ) be the weak solution of

the Stokes system 
−1vr + ∇qr = 0 in Qε

t0r ,

∇ · vr = 0 in Qε
t0r ,

vr = uε on ∂Qε
t0r ,

(Sr )

where we have automatically extended uε across the bottom boundary by zero-extension and t0 is a
constant in the interval [1, 2] chosen analogously to those in (2-11) and (2-12). Note that (Sr ) is a special
case of (2-12) with s = r and y = 0, which means the estimates (2-13)–(2-15) hold also for (vr , qr ), in
place of (ws, qs). The following lemma is an analogue of Lemma 2.6.

Lemma 3.2. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (uε, pε) and (vr , qr ) be weak solutions of (Sε) and (Sr ), respectively. If ε∈

(
0, 1

10

]
and r ∈

[
2ε, 1

5

]
, then(

−

∫
Bεr,+

|∇uε − ∇vr |
2
)1/2

+

(
−

∫
Bεr/2,+

∣∣∣∣pε − qr − −

∫
Bεr/2,+

(pε − qr )

∣∣∣∣2 )1/2

≤ C
(
ε

r

)1/12(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ C
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

, (3-2)

where C depends only on L.

Proof. Let us set Rεr = Qε
t0r ∩ {−ε < x3 ≤ 2ε}. By examining the proof of Lemma 2.6, we obtain∫

Bεt0r,+

|∇(uε − vr )|
2
≤ C

∫
Rεr

|∇uε|2 + C
(
ε

r

)1/6∫
Bε2r,+

|∇uε|2 + C
∫

Bε2r,+

|Fε|2. (3-3)

From Lemma 2.1(iii) and Theorem 2.4 with p = 3,(
1

|Bεr,+|

∫
Rεr

|∇uε|2
)1/2

≤ C
(

1
|Bεr,+|

∫
Rεr

|M2
ε[∇uε]|2

)1/2

≤ C
(

|Rεr |
|Bεr,+|

)1/6(
−

∫
Bεr,+

|M2
ε[∇uε]|3

)1/3

≤ C
(
ε

r

)1/6{(
−

∫
Bε5r,+

|∇uε|2
)1/2

+

(
−

∫
Q4r

|M2
ε[Fε]|3

)1/3}
.

Inserting this into (3-3), we have(
−

∫
Bεr,+

|∇uε − ∇vr |
2
)1/2

≤ C
(
ε

r

)1/12(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ C
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

. (3-4)
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Next, we estimate the pressure by using the Bogovskii lemma. The issue is that, in general, Bεr,+ is not
a John domain. By Definition 1.2, for r ≥ 2ε, there exists a John domain �εr with constant L satisfying

Bεr/2,+ ⊂�εr ⊂ Bεr,+.

Note that (uε − vr , pε − qr ) satisfies

−1(uε − vr )+ ∇(pε − qr )= ∇ · Fε in Bεr,+.

Thus, we may use the Bogovskii lemma in �εr and (3-4) to obtain(
−

∫
�εr

∣∣∣∣pε − qr − −

∫
�εr

(pε − qr )

∣∣∣∣2 )1/2

≤ C
(

−

∫
�εr

|∇uε − ∇vr |
2
)1/2

+ C
(

−

∫
�εr

|Fε|2
)1/2

≤ C
(
ε

r

)1/12(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ C
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

, (3-5)

where we also used the fact |�εr | ≈ |Bεr,+|. Using a well-known fact∫
E

∣∣∣∣ f − −

∫
E

f
∣∣∣∣2

= inf
a∈R

∫
E

| f − a|
2 for any open set E,

we derive (
−

∫
Bεr/2,+

∣∣∣∣pε − qr − −

∫
Bεr/2,+

(pε − qr )

∣∣∣∣2 )1/2

≤

(
−

∫
Bεr/2,+

∣∣∣∣pε − qr − −

∫
�εr

(pε − qr )

∣∣∣∣2 )1/2

≤ C
(

−

∫
�εr

∣∣∣∣pε − qr − −

∫
�εr

(pε − qr )

∣∣∣∣2 )1/2

. (3-6)

Combining (3-4), (3-5) and (3-6), we obtain the desired estimate. □

Remark 3.3. The pressure estimate in John domains in the proof of Lemma 3.2 is a standard technique
that we will frequently use throughout this paper. It allows us to transfer the pressure estimate to the
estimates of ∇uε and Fε.

3B. Excess decay. Let P1 = {(ax3, bx3, 0) | a, b ∈ R}. Note that P1 consists of all the linear solutions
(velocity component) of the Stokes equations in the whole space with the no-slip condition on {x3 = 0}.
These linear solutions are dubbed as no-slip Stokes polynomials of degree 1.

For a pair of functions (wε, π ε) ∈ H 1(Bεr,+)
3
× L2(Bεr,+), with r ∈ (0, 1], we set

H(wε, π ε; ρ)= inf
P∈P1

(
−

∫
Bερ,+

|∇wε − ∇ P|
2
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsρ,+

π ε − −

∫
Bεtρ,+

π ε
∣∣∣∣, ρ ∈ (0, r ], (3-7)

8(wε, π ε; ρ)=

(
−

∫
Bερ,+

|∇wε|2
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsρ,+

π ε − −

∫
Bεtρ,+

π ε
∣∣∣∣, ρ ∈ (0, r ]. (3-8)

The quantity H can be dubbed as a zeroth-order excess quantity. In Section 5 we will consider higher-order
excess quantities H1st and H2nd to address the large-scale C1,γ and C2,γ regularity.
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Moreover, for a pair of functions (wr , πr ) ∈ H 1(Qε
r )

3
× L2(Qε

r ) with r ∈ (0, 1], we set

H̃(wr , πr ; ρ)= inf
P∈P1

(
−

∫
Qε
ρ

|∇wr − ∇ P|
2
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε

sρ

πr − −

∫
Qε

tρ

πr

∣∣∣∣, ρ ∈ (0, r ]. (3-9)

The following lemma states the comparability between H(vr , qr ; θr) and H̃(vr , qr ; θr).

Lemma 3.4. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Fix ε ∈

(
0, 1

4

]
, r ∈

[
ε, 1

4

]
and let (vr , qr ) satisfy (Sr ). Then we have the following statements:

(i) For all θ ∈ (0, 1],

H(vr , qr ; θr)≤ C H̃(vr , qr ; θr)+ Cθ−1
(
ε

r

)1/2(
−

∫
Qε
θr

|∇vr |
2
)1/2

. (3-10)

(ii) For all θ ∈ (0, 1],

H̃(vr , qr ; θr)≤ C H(vr , qr ; 2θr)+ Cθ−5/2
(
ε

r

)(
−

∫
Qε

2θr

|∇vr |
2
)1/2

. (3-11)

Here C depends only on L.

Proof. (i) We first deal with vr . Since Bεθr,+ ⊂ Qε
θr and |Bεθr,+| ≈ |Qε

θr |, we have

inf
P∈P1

(
−

∫
Bεθr,+

|∇vr − ∇ P|
2
)1/2

≤ C inf
P∈P1

(
−

∫
Qε
θr

|∇vr − ∇ P|
2
)1/2

.

On the other hand, the triangle inequality implies

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεθsr,+

qr − −

∫
Bεθ tr,+

qr

∣∣∣∣
≤ sup

s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε
θsr

qr − −

∫
Qε
θ tr

qr

∣∣∣∣ + 2 sup
ρ∈[1/16,1/4]

∣∣∣∣−∫
Qε
θρr

qr − −

∫
Bεθρr,+

qr

∣∣∣∣. (3-12)

Combining the above two inequalities, we obtain

H(vr , qr ; θr)≤ C H̃(vr , qr ; θr)+ 2 sup
ρ∈[1/16,1/4]

∣∣∣∣−∫
Qε
θρr

qr − −

∫
Bεθρr,+

qr

∣∣∣∣. (3-13)

Since |Qε
θρr \ Bεθρr,+| is less than Cε(θρr)2, a direct computation yields∣∣∣∣−∫

Qε
θρr

qr − −

∫
Bεθρr,+

qr

∣∣∣∣ ≤

(
1

|Bεθρr,+|
−

1
|Qε

θρr |

)∣∣∣∣∫
Qε
θρr

(
qr − −

∫
Qε
θr

qr

)∣∣∣∣ + 1
|Bεθρr,+|

∣∣∣∣∫
Qε
θρr \Bεθρr,+

(
qr − −

∫
Qε
θr

qr

)∣∣∣∣
≤

(
|Qε

θρr \ Bεθρr,+||Qε
θr |

1/2

|Bεθρr,+||Qε
θρr |

1/2 +
|Qε

θρr \ Bεθρr,+|
1/2

|Qε
θr |

1/2

|Bεθρr,+|

)(
−

∫
Qε
θr

∣∣∣∣qr − −

∫
Qε
θr

qr

∣∣∣∣2 )1/2

≤ C
(
θ−1ρ−5/2

(
ε

r

)
+ θ−1/2ρ−2

(
ε

r

)1/2)(
−

∫
Qε
θr

|∇vr |
2
)1/2

, (3-14)
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where we have applied the Hölder inequality in the second inequality and the Bogovskii lemma in Qε
θr in

the third inequality. Noting ρ ≥
1
16 and using (3-13) and (3-14), we obtain the first inequality (3-10).

(ii) Let P∗ ∈ P1 be such that(
−

∫
Bεθr,+

|∇vr − ∇ P∗|
2
)1/2

= inf
P∈P1

(
−

∫
Bεθr,+

|∇vr − ∇ P|
2
)1/2

.

Since vr (x) − P∗(x + εe3) is a weak solution to (Sr ) with the same pressure qr and P∗(x + εe3) =

P∗(x)+ ε(∇ P∗)e3, by the Bogovskii lemma in Qε
θr , we see that

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε
θsr,+

qr − −

∫
Qε
θ tr,+

qr

∣∣∣∣ ≤ 2 sup
ρ∈[1/16,1/4]

(
−

∫
Qε
θρr

∣∣∣∣qr − −

∫
Qε
θr

qr

∣∣∣∣2)1/2

≤ C
(

−

∫
Qε
θr

|∇vr − ∇ P∗|
2
)1/2

. (3-15)

Moreover, notice that vr − P̃(x + εe3) vanishes on x3 = −ε, so that by the Caccioppoli inequality (see
Lemma A.3 in the rectangular region Qε

2θr translated by e3), we have(
−

∫
Qε
θr

|∇vr − ∇ P∗|
2
)1/2

≤
C
θr

(
−

∫
Qε

2θr

|vr − P∗(x + εe3)|
2 dx

)1/2

≤
C
θr

(
−

∫
Bε2θr,+

|vr − P∗|
2
)1/2

+ Cθ−1
(
ε

r

)
|∇ P∗|

+
C

(θr)5/2

{(∫
Qε

2θr \Bε2θr,+

|vr |
2
)1/2

+

(∫
Qε

2θr \Bε2θr,+

|P∗(x + εe3)|
2
)1/2}

. (3-16)

Now (3-15) and (3-16) combined with the Poincaré inequality imply

H̃(vr , qr ; θr)≤ C H(vr , qr ; 2θr)+ Cθ−1
(
ε

r

)
|∇ P∗|

+
C

(θr)5/2

{(∫
Qε

2θr \Bε2θr,+

|vr |
2
)1/2

+

(∫
Qε

2θr \Bε2θr,+

|P∗(x + εe3)|
2
)1/2}

. (3-17)

By the definition of P∗, we have

|∇ P∗| ≤ C
(

−

∫
Bε2θr,+

|∇vr |
2
)1/2

≤ C
(

−

∫
Qε

2θr

|∇vr |
2
)1/2

. (3-18)

Consequently,

C
(θr)5/2

{(∫
Qε

2θr \Bε2θr,+

|vr |
2
)1/2

+

(∫
Qε

2θr \Bε2θr,+

|P∗(x + εe3)|
2
)1/2}

≤
C

(θr)5/2

{
ε

(∫
Qε

2θr \Bε2θr,+

|∇vr |
2
)1/2

+ ε(εθ2r2)1/2|∇ P∗|

}
≤ C

(
θ−5/2

(
ε

r

)
+ θ−3/2

(
ε

r

)3/2)(
−

∫
Qε

2θr

|∇vr |
2
)1/2

. (3-19)

Hence, we obtain (3-11) from (3-17) combined with (3-18) and (3-19). □
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Lemma 3.5. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Fix α ∈ (0, 1] arbitrarily. For all ε ∈

(
0, 1

2

]
, r ∈

[
ε, 1

2

]
, θ ∈

(
0, 1

8

]
, and (vr , qr ) satisfying (Sr ),

H̃(vr , qr ; θr)≤ C
(
θα + θ−1

(
ε

r

))
H̃(vr , qr ; r), (3-20)

where C depends only on L and α.

Proof. By the regularity of the Stokes equations in flat domains,

vr ∈ C1,α(Qε
r/2), qr ∈ C0,α(Qε

r/2).

Let e3 = (0, 0, 1). The boundary C1,α estimate of vr on {x3 = −ε} implies

|vr (x)− vr (−εe3)− (x3 + ε)∂3vr (−εe3)| ≤ C
|x + εe3|

1+α

rα

(
−

∫
Qε

r/2

|∇vr |
2
)1/2

.

Note that ∂3vr,3(−εe3)= 0 by the condition ∇ · vr = 0. Thus, from vr (−εe3)= 0, there exists P̃(x)=

(∂3vr,1(−εe3), ∂3vr,2(−εe3), 0)x3 ∈ P1 and

|vr (x)− P̃(x + εe3)| ≤ C
|x3 + εe3|

1+α

rα

(
−

∫
Qε

r/2

|∇vr |
2
)1/2

for all x ∈ Qε
θr. Since vr (x)− P̃(x + εe3) is a weak solution to (Sr ) with the same pressure qr , by the

Caccioppoli inequality (see Lemma A.3) in Qε
2θr, we have(

−

∫
Qε
θr

|∇vr − ∇ P̃(x + εe3)|
2 dx

)1/2

≤
C
θr

(
−

∫
Qε

2θr

|vr − P̃(x + εe3)|
2 dx

)1/2

≤ C
(
θα + θ−1

(
ε

r

))(
−

∫
Qε

r/2

|∇vr |
2
)1/2

.

Then the observation P̃(x + εe3)= P̃(x)+ ε(∇ P̃)e3 yields(
−

∫
Qε
θr

|∇vr − ∇ P̃|
2
)1/2

≤ C
(
θα + θ−1

(
ε

r

))(
−

∫
Qε

r/2

|∇vr |
2
)1/2

. (3-21)

The C0,α estimate of qr implies

|qr (x)− qr (0)| ≤ C
|x |

α

rα

(
−

∫
Qε

r/2

|qr − −

∫
Qε

r/2

qr |
2
)1/2

.

Then by the Bogovskii lemma in a Lipschitz domain Qε
r/2, we have

|qr (x)− qr (0)| ≤ C
|x |

α

rα

(
−

∫
Qε

r/2

|∇vr |
2
)1/2

,

which results in

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε
θsr

qr − −

∫
Qε
θ tr

qr

∣∣∣∣ ≤ Cθα
(

−

∫
Qε

r/2

|∇vr |
2
)1/2

. (3-22)



LARGE-SCALE REGULARITY FOR THE STATIONARY NAVIER–STOKES EQUATIONS 199

Hence on the one hand, by (3-21) and (3-22) we see that

H̃(vr , qr ; θr)≤ C
(
θα + θ−1

(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

. (3-23)

On the other hand, since vr (x)− P(x + εe3), for any P ∈ P1, is a weak solution to (Sr ) with the same
pressure qr and P(x + εe3)= P(x)+ ε(∇ P)e3, we may apply (3-23) to vr (x)− P(x + εe3) and obtain

H̃(vr − P(x + εe3), qr ; θr)≤ C
(
θα + θ−1

(
ε

r

))(
−

∫
Qε

r

|∇vr − ∇ P|
2 dx

)1/2

. (3-24)

In particular, we may choose P = P∗ that minimizes(
−

∫
Qε

r

|∇vr − ∇ P|
2
)1/2

.

Then, it is clear that (
−

∫
Qε

r

|∇vr − ∇ P∗|
2
)1/2

≤ H̃(vr , qr ; r). (3-25)

Thus the estimate (3-20) follows from (3-24) with P = P∗ and (3-25). □

Lemma 3.6. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let α ∈ (0, 1] be the number in Lemma 3.5. For all ε ∈

(
0, 1

4

]
, r ∈

[
ε, 1

4

]
, θ ∈

(
0, 1

8

]
, and (vr , qr )

satisfying (Sr ),

H(vr , qr ; θr)≤ CθαH(vr , qr ; 2r)+ Cθ−5/2
(
ε

r

)1/2(
−

∫
Q2r

|∇vr |
2
)1/2

, (3-26)

where C depends only on L and α.

Proof. The estimate (3-26) follows readily from Lemmas 3.4 and 3.5. □

Lemma 3.7. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (uε, pε) be a weak solution of (Sε) and let α ∈ (0, 1] be the number in Lemma 3.5. For all ε ∈

(
0, 1

32

]
,

r ∈
[
2ε, 1

16

]
and θ ∈

(
0, 1

8

]
,

H(uε, pε;θr)≤CθαH(uε, pε;2r)+Cθ−3
(
ε

r

)1/12

8(uε, pε;16r)+Cθ−3
(

−

∫
Q10r

|M2
ε[Fε]|3

)1/3

, (3-27)

where C depends only on L and α.

Proof. The triangle inequality and Lemma 3.6 imply

H(uε, pε; θr)≤ H(vr , qr ; θr)+ H(uε − vr , pε − qr ; θr)

≤ CθαH(vr , qr ; 2r)+ H(uε − vr , pε − qr ; θr)+ Cθ−5/2
(
ε

r

)1/2(
−

∫
Qε

2r

|∇vr |
2
)1/2

≤ CθαH(uε, pε; 2r)+ CθαH(uε − vr , pε − qr ; r)

+ H(uε − vr , pε − qr ; θr)+ Cθ−5/2
(
ε

r

)1/2(
−

∫
Bε4r ,+

|∇uε|2
)1/2

, (3-28)
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where in the last line the energy estimate of (Sr ) is applied. By the definition of H, we find

θαH(uε − vr , pε − qr ; r)+ H(uε − vr , pε − qr ; θr)

≤ C(θα + θ−3)

{(
−

∫
Bεr,+

|∇uε − ∇vr |
2
)1/2

+ sup
ρ∈[1/16,1/4]

−

∫
Bερr,+

∣∣∣∣pε − qr − −

∫
Bεr/2,+

(pε − qr )

∣∣∣∣}. (3-29)

The Poincaré inequality and Lemma 3.2 imply(
−

∫
Bεr,+

|∇uε − ∇vr |
2
)1/2

+ sup
ρ∈[1/16,1/4]

−

∫
Bερr,+

∣∣∣∣pε − qr − −

∫
Bεr/2,+

(pε − qr )

∣∣∣∣
≤ C

{(
−

∫
Bεr,+

|∇uε − ∇vr |
2
)1/2

+

(
−

∫
Bεr/2,+

∣∣∣∣pε − qr − −

∫
Bεr/2,+

(pε − qr )

∣∣∣∣2 )1/2}

≤ C
(
ε

r

)1/12(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ C
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

. (3-30)

Now from (3-28) to (3-30), we obtain the desired estimate (3-27) by the definition of 8 in (3-8). □

3C. Iteration. In the following two lemmas, we prove some properties of H and8 needed when iterating
(3-27).

Lemma 3.8. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (uε, pε) be a weak solution of (Sε). There exists a function h(r) defined on

[
ε, 1

2

]
such that

h(r)≤ C(H(uε, pε; r)+8(uε, pε; r)), (3-31)

8(uε, pε; r)≤ C(H(uε, pε; r)+ h(r)), (3-32)

sup
r1,r2∈[r,2r ]

|h(r1)− h(r2)| ≤ C H(uε, pε; 2r). (3-33)

Here C depends only on L. Notice that the function h depends on uε.

Proof. The proof is similar to [Gu and Zhuge 2022, Lemma 6.1] and hence we provide the outline of the
proof. Let Pr ∈ P1 be such that(

−

∫
Bεr,+

|∇uε − ∇ Pr |
2
)1/2

= inf
P∈P1

(
−

∫
Bεr,+

|∇uε − ∇ P|
2
)1/2

.

We define
h(r)= |∇ Pr |, r ∈

[
ε, 1

2

]
.

Then the inequality (3-31) follows from

h(r)≤ C
(

−

∫
Bεr,+

|∇ Pr |
2
)1/2

≤ C(H(uε, pε; r)+8(uε, pε; r))

and (3-32) is trivial by definition. For (3-33), we observe that for any r1, r2 ∈ [r, 2r ]

|h(r1)− h(r2)| ≤ C
(

−

∫
Bεr,+

|∇ Pr1 − ∇ Pr2 |
2
)1/2

≤ C H(uε, pε; 2r). □
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Lemma 3.9. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (uε, pε) be a weak solution of (Sε). Then for ε ∈

(
0, 1

8

]
, r ∈

[
2ε, 1

4

]
,

sup
τ∈[r,2r ]

8(uε, pε; τ)≤ C8(uε, pε; 2r)+
(

−

∫
Q2r

|M2
ε[Fε]|3

)1/3

, (3-34)

where C depends only on L.

Proof. Let τ ∈ [r, 2r ]. A simple computation implies(
−

∫
Bετ,+

|∇uε|2
)1/2

≤ C
(

−

∫
Bε2r,+

|∇uε|2
)1/2

. (3-35)

For the pressure estimate, by a similar argument as in (3-6),

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsτ,+

pε − −

∫
Bεtτ,+

pε
∣∣∣∣ ≤ C −

∫
Bεr/2,+

∣∣∣∣pε − −

∫
Bεr/2,+

pε
∣∣∣∣

≤ C
{(

−

∫
Bεr,+

|∇uε|2
)1/2

+

(
−

∫
Bεr,+

|Fε|2
)1/2}

, (3-36)

where we need to assume r ≥ 2ε. Then (3-34) follows from (3-35), (3-36) and Lemma 2.1(iii). □

We now state the iteration lemma. Its proof is given in Appendix C.

Lemma 3.10. Let H,8, h : (0, 1] → [0,∞) be nonnegative functions. Let ε ∈
(
0, 1

48

]
. Suppose that there

exist positive constants C0, B0, α, β and θ ∈
(
0, 1

8

]
so that

H(θr)≤
1
2 H(2r)+ C0

((
ε

r

)α
8(16r)+ B0rβ

)
, r ∈

[
ε, 1

16

]
, (3-37a)

H(r)≤ C08(r), r ∈
[
ε, 1

2

]
, (3-37b)

sup
τ∈[r,2r ]

8(τ)≤ C0(8(2r)+ B0rβ), r ∈
[
ε, 1

4

]
, (3-37c)

h(r)≤ C0(H(r)+8(r)), r ∈
[
ε, 1

2

]
, (3-37d)

8(r)≤ C0(H(r)+ h(r)), r ∈
[
ε, 1

2

]
, (3-37e)

sup
r1,r2∈[r,2r ]

|h(r1)− h(r2)| ≤ C0 H(2r), r ∈
[
ε, 1

4

]
. (3-37f)

Then, ∫ 1/2

ε

H(t)
t

dt + sup
r∈[ε,1/2]

8(r)≤ C
(
8

( 1
2

)
+ B0

)
, (3-38)

where the constant C depends only on C0, α, β and θ .

Proof of Theorem A. In the following proof, we actually only need to show (1-2) for the case N0ε≤r ≤1/N1

for some N0, N1 ≥ 2. The case 1
2 ≥ r ≥ 1/N1 follows trivially by enlarging the size of the cube and

a standard pressure estimate (see Remark 3.3); the case ε ≤ r ≤ N0ε follows from the case r = N0ε.
From the previous lemmas, we can choose N0 = 4 and N1 = 16. Hence, we may assume without loss of
generality that r ∈

[
4ε, 1

16

]
.
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We apply Lemma 3.10 to H(r)= H(uε, pε; r) and 8(r)=8(uε, pε; r). Choose θ sufficiently small
so that we have Cθα ≤

1
2 in (3-27) in Lemma 3.7. We need to verify the conditions in Lemma 3.10. Note

that (3-37b) is obvious and (3-37d)–(3-37f) follow from Lemma 3.8. To verify (3-37a) from Lemma 3.7
and (3-37c) from Lemma 3.9 (with ε replaced by 4ε), it suffices to note that Theorem 2.8 implies(

−

∫
Qr

|M2
ε[Fε]|3

)1/3

≤ C(M + M4+2β+2δ)rβ (3-39)

for any β ∈ (0, 2), δ ∈ (0, 1) with β + δ < 2 and r ∈
[
ε, 1

2

]
. Hence, we may apply Lemma 3.10 with

B0 = C(M + M4+2β+2δ) to obtain∫ 1/2

4ε

H(uε, pε; t)
t

dt + sup
r∈[4ε,1/2]

8(uε, pε; r)≤ C(8(uε, pε; )+ (M + M4+2β+2δ))

≤ C(M + M4+2β+2δ), (3-40)

where in the last inequality, we have used a standard pressure estimate (see Remark 3.3) to bound
8

(
uε, pε; 1

2

)
by C(M + M2). Hence, for r ∈

[
4ε, 1

16

]
,(

−

∫
Bεr,+

|∇uε|2
)1/2

≤ C
(
8

(
uε, pε; 1

2

)
+ (M + M4+2β+2δ)

)
≤ C(M + M4+2β+2δ),

which proves the desired estimate of the velocity uε.
Next, we give an estimate for the pressure. For r ∈

[
ε, 1

4

]
, we observe that(

−

∫
Bεr,+

|pε − −

∫
Bε1/2,+

pε|2
)1/2

≤

(
−

∫
Bεr,+

|pε − −

∫
Bεr,+

pε|2
)1/2

+

∣∣∣∣−∫
Bεr,+

pε − −

∫
Bε1/2,+

pε
∣∣∣∣.

Using the technique as in (3-6) and by the Bogovskii lemma, the desired estimate of ∇uε just proved and
(3-39), we have (

−

∫
Bεr,+

∣∣∣∣pε − −

∫
Bεr,+

pε
∣∣∣∣2 )1/2

≤ C
{(

−

∫
Bε2r,+

|∇uε|2
)1/2

+

(
−

∫
Bε2r,+

|Fε|2
)1/2}

≤ C(M + M4+2β+2δ).

On the other hand, let N ∈ N be such that 2N r ∈
[ 1

32 ,
1
16

]
. Then∣∣∣∣−∫

Bεr,+
pε − −

∫
Bε1/2,+

pε
∣∣∣∣ ≤

N−1∑
j=0

∣∣∣∣−∫
Bε

2 j r,+

pε − −

∫
Bε

2 j+1r,+

pε
∣∣∣∣ + ∣∣∣∣−∫

Bε
2N r,+

pε − −

∫
Bε1/2,+

pε
∣∣∣∣.

Now, observe that for each j = 0, 1, . . . , N − 1,∣∣∣∣−∫
Bε

2 j r,+

pε − −

∫
Bε

2 j+1r,+

pε
∣∣∣∣ ≤ 4

∫ 2 j+4r

2 j+3r

1
r̃

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsr̃ ,+

pε − −

∫
Bεtr̃ ,+

pε
∣∣∣∣ dr̃ .
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Thus, (3-40) leads to

N−1∑
j=0

∣∣∣∣−∫
Bε

2 j r,+

pε − −

∫
Bε

2 j+1r,+

pε
∣∣∣∣ ≤ 4

∫ 1/2

ε

1
r̃

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsr̃ ,+

pε − −

∫
Bεtr̃ ,+

pε
∣∣∣∣ dr̃

≤ C(M + M4+2β+2δ).

Finally, by the same trick as in (3-6), we obtain∣∣∣∣−∫
Bε

2N r,+

pε − −

∫
Bε1/2,+

pε
∣∣∣∣ ≤ C

{(
−

∫
Bε1,+

|∇uε|2
)1/2

+

(
−

∫
Bε1,+

|Fε|2
)1/2}

≤ C(M + M2).

Summarizing up the above estimates, we obtain the desired estimate for the pressure pε. □

4. Boundary layers in bumpy John domains

As seen in the previous section, the no-slip Stokes polynomials of degree 1 (i.e., the basis of P1)

P (11)
= (x3, 0, 0), P (12)

= (0, x3, 0) (4-1)

are the key ingredients for the large-scale Lipschitz estimate. Their trace on nonflat bumpy boundaries
can be corrected by adding boundary layer correctors. Consequently, one obtains polynomial solutions of
the Stokes equations in the bumpy John domains considered in this paper.

In Section 4A, we determine the no-slip Stokes polynomials of degree 2 by explicit computation.
The boundary layer equations are introduced as well. Sections 4B and 4C are respectively devoted to
the analysis of the first-order and the second-order boundary layer equations. The estimates for the
Green’s function, obtained in Appendix B using the large-scale Lipschitz estimate of Theorem A, play a
fundamental role. We summarize the estimates for the boundary layers in Section 4D. These estimates
are key to the theory of higher-order regularity in Section 5.

4A. No-slip Stokes polynomials. Let u be a solution of −1u+∇ p = 0 and ∇·u = 0 in Q1,+(0) and u = 0
on ∂R3

+
∩ B1(0). The real analyticity of u in Q1/2,+(0) is classical and well known; see [Masuda 1967;

Giga 1983]. Here we want to identify the form of the no-slip Stokes polynomials of degree 2 of u at 0.
Let P(x)= (P1(x), P2(x), P3(x)) be the no-slip Stokes polynomials of degree 2 of u at 0. First of all,

since u = 0 on ∂R3
+

, then we must have

P1(x)= a1x3 + b11x1x3 + b12x2x3 + b13x2
3 ,

P2(x)= a2x3 + b21x1x3 + b22x2x3 + b23x2
3 ,

P3(x)= b31x1x3 + b32x2x3 + b33x2
3 .

(4-2)

The linear part is familiar. So let us concentrate on the quadratic part. Note that there are no terms
x2

1 , x2
2, or x1x2, because u = 0 on the boundary. If there is no further restriction on u, then there are
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nine free variables bi j , 1 ≤ i, j ≤ 3, as shown in (4-2). If ∇ · u = 0 in Q1/2,+(0), then we claim that P is
also divergence-free. If this claim is true, then we must have

b11 + b22 + 2b33 = 0, b31 = b32 = 0.

Because of this restriction on the coefficients, the dimension for the homogeneous no-slip Stokes polyno-
mials of degree 2 becomes 6. We can find basis polynomials

P (21)
= (x2x3, 0, 0), P (22)

= (x2
3 , 0, 0),

P (23)
= (0, x1x3, 0), P (24)

= (0, x2
3 , 0),

P (25)
= (−2x1x3, 0, x2

3), P (26)
= (0,−2x2x3, x2

3).

(4-3)

Note that these polynomials are solutions to the stationary Stokes system with associated pressure L(2 j)

given by

L(2 j)(x)= 0 for j = 1, 3,

L(22)(x)= 2x1, L(24)(x)= 2x2,

L2 j (x)= 2x3 for j = 5, 6. (4-4)

Now, let us show the claim that P is divergence-free. Since u = P + O(|x |
3), we have that ∇ · u =

∇ · P + O(|x |
2)= 0 in {x3 ≥ 0}∩ B1/2(0). Because of ∇ · P = C0 +C1 · x for some C0 ∈ R and C1 ∈ R3,

we see that C0 +C1 · x = O(|x |
2). Hence we must have C0 = 0 and C1 = 0; otherwise, it is easy to find a

contradiction by taking x = δC1 or −δC1 for sufficiently small δ.
Similarly to the linear solution pairs (P (1 j), 0), the fundamental fact about the polynomial pairs

constructed above is that (P (2 j), L(2 j)) are quadratic solutions of Stokes equations in the upper half-
space R3

+
, namely 

−1P (2 j)
+ ∇L(2 j)

= 0 in R3
+
,

∇ · P (2 j)
= 0 in R3

+
,

P (2 j)
= 0 on ∂R3

+
.

To study the C1,γ and C2,γ regularity of (NSε), the linear and quadratic solutions of Stokes equations
in R3

+
are not enough. We need to construct linear and quadratic solutions in � which vanish on ∂�,

where � is a bumpy John half-space in the sense of Definition 1.2. These solutions will be constructed
based on (P (1 j), 0) and (P (2 j), L(2 j)). Observe that P (i j) does not vanish on ∂�. Therefore we have to
introduce new correctors, called boundary layers, in order to correct the boundary discrepancy on ∂�.
Precisely, we will show the existence of weak solutions (with corresponding sublinear or subquadratic
growth) of the boundary layer equations

−1v+ ∇q = 0 in �,
∇ · v = 0 in �,
v+ P (i j)

= 0 on ∂�,
(BL( j)

i-th)

where i ∈ {1, 2}. Here a couple (v, q) ∈ H 1
loc(�)

3
× L2

loc(�) is said to be a weak solution of (BL( j)
i-th) if

it satisfies ∇ · v = 0 in the sense of distributions, χ(v+ P (i j)) ∈ H 1
0 (�)

3 for any χ ∈ C∞

0 (R
3), and the
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weak formulation ∫
�

∇v · ∇φ−

∫
�

q(∇ ·φ)= 0 for any φ ∈ C∞

0 (�)
3. (4-5)

4B. First-order boundary layers. We consider the first-order boundary layer equations
−1v+ ∇q = 0 in �,
∇ · v = 0 in �,
v+ P (1 j)

= 0 on ∂�,
(BL( j)

1st )

for j ∈ {1, 2}. The solvability of (BL( j)
1st ) follows from the next statement.

Theorem 4.1. Let L ∈ (0,∞) and� be a bumpy John domain with constant L according to Definition 1.2.
For j ∈ {1, 2}, there exists a unique weak solution (v(1 j), q(1 j))∈ H 1

loc(�)
3
× L2

loc(�) of (BL( j)
1st ) satisfying

sup
ξ∈Z2

∫
�∩(ξ+(0,1)2)×R

(|∇v(1 j)
|
2
+ |q(1 j)

|
2)≤ C, (4-6)

where the constant C depends only on L.

In [Higaki and Prange 2020] the well-posedness of the system (BL( j)
1st ) was proved over Lipschitz graphs

by a domain decomposition method: coupling of the Stokes problem in a bumpy channel �∩ {x3 < 0}

with the Stokes problem in the flat half-space {x3 > 0} via a nonlocal Dirichlet-to-Neumann boundary
condition at the interface {x3 = 0}. We face considerable technical difficulties when trying to adapt this
strategy to the case of bumpy John domains. Indeed, the local energy estimates in the bumpy channel
require to estimate the pressure, or to work with divergence-free test functions. In either case, we need to
construct a Bogovskii operator for a sequence of exhausting domains containing �∩ {|x ′

| ≤ k, x3 < 0}

with a constant uniform in k. The construction of the Bogovskii operator of Theorem A.1 by [Acosta et al.
2006] relies on connecting any point in the bumpy John domain to a fixed neighborhood of a reference
point x̃ . Such a procedure gives, for a slim domain such as � ∩ {|x ′

| ≤ k, x3 < 0}, a constant in the
estimate (A-1) that scales proportionately to the horizontal size k of the domain. We are unable to take
advantage of the small vertical extent of the domain to provide a modified construction of the Bogovskii
operator. This would be needed to carry out the downward iteration on the local energy estimates, also
called Saint-Venant estimates, in [Higaki and Prange 2020].

Here we take advantage of the fact that we already proved large-scale Lipschitz estimates by the
quantitative method, without relying on boundary layers as in [Higaki and Prange 2020]. Therefore, we
develop a new strategy using the large-scale Lipschitz estimate to prove the existence of solutions to
(BL( j)

1st ). We rely on the Green’s kernel estimates proved in Appendix B. For N ∈ R, let us set

�≤N :=�∩ {z3 ≤ N }, �≥N :=�∩ {z3 ≥ N }. (4-7)

We also define �<N and �>N in a similar manner.

Proof of Theorem 4.1. We define (v(1 j), q(1 j)) by (v, q), so as not to burden the notation.
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Uniqueness. Let P (1 j)
= 0 in (BL( j)

1st ). Then the Liouville-type result, Corollary 3.1, implies v = 0 in the
class

sup
ξ∈Z2

∫
�∩(ξ+(0,1)2)×R

|∇v|2 <∞.

This implies q = 0 in the class (4-6) as well from the equations.

Existence. Step 1: lifting the boundary data. Let η−(x3) be a smooth cut-off function such that

η−(t) is smooth and nonnegative,

η−(t)= 1 if t < 3 and η−(t)= 0 if t > 4. (4-8)

By writing w = v+ η− P (1 j), we see that w satisfies
−1w+ ∇q = F := −1(η− P (1 j)) in �,
∇ ·w = 0 in �,
w = 0 on ∂�.

(4-9)

Notice that F is a bounded function supported in a slim channel S := {x ∈ R3
| 3 ≤ x3 ≤ 4}. Thus, the

problem is reduced to finding a weak solution of (4-9) satisfying

sup
ξ∈Z2

∫
�∩(ξ+(0,1)2)×R

(|∇w|
2
+ |q|

2)≤ C∥F∥
2
L∞ . (4-10)

We rely on the representation of w and q by the Green’s kernel

w(x)=

∫
�

G(x, y)F(y) dy, q(x)=

∫
�

5(x, y) · F(y) dy.

Thanks to the properties of the Green’s function (G,5), it suffices to prove that ∇w and q are well-defined
and satisfy the estimate (4-10).

In the following proof, we take the zero-extension of (G,5) as is done in Appendix B.

Step 2: estimate on �≥8. For any y ∈ S and x ∈�≥8, by Proposition B.3(i)

|∇x G(x, y)| ≤
C

|x − y|3
.

Then it follows from the Hölder inequality that

|∇w(x)| ≤

∫
S
|∇x G(x, y)||F(y)| dy ≤ ∥F∥L∞

∫
S

C
|x − y|3

dy ≤
C∥F∥L∞

x3
.

A similar computation using Proposition B.5(i) gives the same bound for the pressure q(x) with x3 ≥ 8.
Consequently,

sup
ξ∈Z2

∫
�≥8∩(ξ+(0,1)2)×R

(|∇w|
2
+ |q|

2)≤ C∥F∥
2
L∞ . (4-11)

Step 3: estimate on �≤8. Fix ξ ∈ Z2 arbitrarily. For simplicity, we denote the cubes in R3 centered at
(ξ, 0) by Q R(ξ)= (ξ, 0)+ (−R, R)3. We would like to estimate |∇w| and |q| in the cube Q8(ξ). Notice
that �≤8 ⊂

⋃
ξ∈Z2×{0}

Q8(ξ) with finite overlaps.
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Taking a cube Q40(ξ), we decompose F into two parts as F = FχQ40(ξ)+ F(1−χQ40(ξ)). Correspond-
ingly, we decompose (w, q) into singular and regular parts, namely (w, q)= (wsing, qsing)+ (wreg, qreg),
where {

wsing(x)=
∫
�

G(x, y)F(y)χQ40(ξ)(y) dy,
qsing(x)=

∫
�
5(x, y) · F(y)χQ40(ξ)(y) dy

and {
wreg(x)=

∫
�

G(x, y)F(y)(1 −χQ40(ξ)(y)) dy,
qreg(x)=

∫
�
5(x, y) · F(y)(1 −χQ40(ξ)(y)) dy.

To estimate the regular part (wreg, qreg) in Q8(ξ), we use (B-19) and (B-23) in Proposition B.3 to
obtain (∫

Q8(ξ)

|∇x G(x, y)|2 dx
)1/2

≤
C

|(ξ, 0)− y|3

for any y ∈ S \ Q40(ξ). As a result,(∫
Q8(ξ)

|∇wreg|
2
)1/2

≤ ∥F∥L∞

∫
S\Q40(ξ)

(∫
Q8(ξ)

|∇x G(x, y)|2 dx
)1/2

dy

≤ ∥F∥L∞

∫
S\Q40(ξ)

C
|(ξ, 0)− y|3

dy ≤ C∥F∥L∞ . (4-12)

Similarly, by using (B-38) and (B-39), we can derive the estimate of qreg,(∫
Q8(ξ)

|qreg|
2
)1/2

≤ C∥F∥L∞ . (4-13)

Next, we consider the singular part (wsing, qsing), which actually is a weak solution of
−1wsing + ∇qsing = FχQ40(ξ) in �,
∇ ·wsing = 0 in �,
wsing = 0 on ∂�.

Note that the energy relation yields

∥∇wsing∥L2(�) ≤ C∥F∥L∞, (4-14)

where C is independent of ξ . This gives the local L2 boundedness of wsing in the channel �≤8. On the
other hand, the argument in Step 2, using (B-38), implies that, for any x3 ≥ 8,

|qsing(x)| ≤
C∥F∥L∞

x3
. (4-15)

Let �20(ξ) be the John domain given by Definition 1.2 satisfying

�∩ Q20(ξ)⊂�20(ξ)⊂�∩ Q40(ξ).

By the Bogovskii lemma and (4-14),(
−

∫
�20(ξ)

∣∣∣∣qsing − −

∫
�20(ξ)

qsing

∣∣∣∣2 )1/2

≤ C∥F∥L∞ . (4-16)
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On the other hand, let Q∗

1(ξ)= (ξ, 10)+ (−1, 1)3. By (4-15),∣∣∣∣−∫
Q∗

1(ξ)

qsing

∣∣∣∣ ≤ C∥F∥L∞ . (4-17)

Since Q∗

1(ξ)⊂�20(ξ), by a familiar argument and (4-16), we have∣∣∣∣−∫
Q∗

1(ξ)

qsing − −

∫
�20(ξ)

qsing

∣∣∣∣ ≤ −

∫
Q∗

1(ξ)

∣∣∣∣qsing − −

∫
�20(ξ)

qsing

∣∣∣∣
≤ C −

∫
�20(ξ)

∣∣∣∣qsing − −

∫
�20(ξ)

qsing

∣∣∣∣ ≤ C∥F∥L∞ . (4-18)

This, together with (4-17), implies ∣∣∣∣−∫
�20(ξ)

qsing

∣∣∣∣ ≤ C∥F∥L∞ . (4-19)

Now, combining (4-16) and (4-19), we obtain(
−

∫
�∩Q8(ξ)

|qsing|
2
)1/2

≤

(
−

∫
�∩Q8(ξ)

∣∣∣∣qsing − −

∫
�20(ξ)

qsing

∣∣∣∣2 )1/2

+

∣∣∣∣−∫
�20(ξ)

qsing

∣∣∣∣
≤ C

(
−

∫
�20(ξ)

∣∣∣∣qsing − −

∫
�20(ξ)

qsing

∣∣∣∣2 )1/2

+

∣∣∣∣−∫
�20(ξ)

qsing

∣∣∣∣ ≤ C∥F∥L∞, (4-20)

with C independent of ξ .
Now, combining (4-12), (4-13), (4-14) and (4-20), we have

sup
ξ∈Z2

∫
�∩Q8(ξ)

(|∇w|
2
+ |q|

2)≤ C∥F∥
2
L∞ . (4-21)

Finally, the desired estimate (4-10) is a consequence of (4-11) and (4-21). □

4C. Second-order periodic boundary layers. Let P (2 j) be a no-slip Stokes polynomial of degree 2. We
consider the second-order boundary layer equations

−1v+ ∇q = 0, x ∈�,

∇ · v = 0, x ∈�,

v+ P (2 j)
= 0, x ∈ ∂�.

(BL( j)
2nd)

Constructing solutions to (BL( j)
2nd) for j ∈ {1, 3, 5, 6} with subquadratic growth is much more involved

than constructing solutions to (BL( j)
1st ) with sublinear growth. Indeed, for j ∈ {1, 3, 5, 6}, the boundary data

−P (2 j) in (BL( j)
2nd) grows linearly in the tangential direction. Solutions to (BL( j)

2nd) for j ∈{1, 3, 5, 6} are con-
structed using the first-order correctors solving (BL( j)

1st ); see below. For this construction we rely on conver-
gence/decay properties of the first-order correctors away from the boundary. Hence, we analyze (BL( j)

2nd) un-
der periodicity assumptions. Periodicity ensures exponential convergence/decay away from the boundary.

Throughout this subsection, we assume � is a periodic bumpy John domain according to Definition 1.3.
Consider the fundamental periodic domain

�p =�∩ (−π, π]
2
× (−1,∞).
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We regard �p as a submanifold of T2
× R, where T = R/2πZ is the flat torus. By definition, �p is

open and connected in T2
× R. Moreover, �p ∩ {x3 < 2} is diffeomorphic to a bounded John domain

in R3. We thus have the Bogovskii operator on �p ∩ {x3 < 2}. It is important to notice that there is a
one-to-one correspondence between the functions in �p and the (2πZ)2-periodic functions in �. We say
a function F defined in � is (2πZ)2-periodic if F(x)= F(x + z) for any x ∈� and z ∈ (2πZ)2 ×{0}. In
other words, if f ∈ L2

loc(�p), then there exists a locally L2 function F defined in � so that F(x)= f (x̃),
where x̃ is the representation in �p so that x − x̃ ∈ (2πZ)2 × {0}. In this sense and for convenience, we
do not distinguish between F and f .

Denote by L2(�p) and Ĥ 1
0 (�p) the closure of C∞

0 (�p) under the norms

∥ f ∥L2(�p) :=

(∫
�p

| f |
2
)1/2

, ∥ f ∥Ĥ1(�p)
:=

(∫
�p

|∇ f |
2
)1/2

.

Clearly, Ĥ 1
0 (�p) is a Hilbert space with respect to the inner product ⟨∇ f,∇g⟩�p . Here and below,

⟨ f, g⟩�p :=

∫
�p

f · ḡ,

where ḡ denotes the complex conjugate of g. Let Ĥ 1
0,σ (�p) be the subspace of Ĥ 1

0 (�p)
3 that consists of

all the divergence-free functions, namely, Ĥ 1
0,σ (�p)= { f ∈ Ĥ 1

0 (�p)
3
| ∇ · f = 0}.

We now recall the Fourier series representation for the solutions of (BL( j)
1st ) on the flat half-space

{x3 > 0}. The same formulas are obtained in [Higaki and Prange 2020, Proposition 3] based on the
periodic Poisson kernel. Note that paper uses the fact that the equations are imposed on a domain whose
boundary is given by the graph, but a similar proof is valid if we utilize the zero extension of the functions.

Proposition 4.2. Let L ∈ (0,∞) and � be a periodic bumpy John domain with constant L according to
Definition 1.3. Then the weak solution (v(1 j), q(1 j)) of (BL( j)

1st ) given by Theorem 4.1 satisfies the following:

(i) (v(1 j), q(1 j)) is expanded in Fourier series in {x3 > 0} as

v(1 j)(x)= v̂
(1 j)
(0,0) +

∑
k∈Z2\{(0,0)}

(
v̂
(1 j)
k +

(
−ik
|k|

)
V (1 j)(k)x3

)
e−|k|x3eik·x ′

,

q(1 j)(x)=

∑
k∈Z2\{(0,0)}

2|k|V (1 j)(k)e−|k|x3eik·x ′

,

(4-22)

where V (1 j)(k) is a scalar function of k defined by

V (1 j)(k)= v̂
(1 j)
k,3 − i

k
|k|

· (v̂
(1 j)
k )′, (4-23)

and moreover, v̂(1 j)
k is the Fourier series coefficient of v(1 j)(x ′, 0):

v̂
(1 j)
k =

1
(2π)2

∫
(−π,π)2

v(1 j)(x ′, 0)e−ik·x ′

dx ′, k ∈ Z2. (4-24)

(ii) The third component of v̂(1 j)
(0,0) is zero. Particularly, by setting

v̂
(1 j)
(0,0) =: α(1 j)

= (α
(1 j)
1 , α

(1 j)
2 , 0),
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we have the exponential convergence

|v(1 j)(x)−α(1 j)
| + |∇v(1 j)(x)| + |q(x)| ≤ C∥v(1 j)( · , 0)∥L2((−π,π)2) e−x3/2 for x3 > 1. (4-25)

Here C is a universal constant.

Construction of v(2 j) for j ∈ {1, 3, 5, 6}. We construct the second-order boundary layers v(2 j) corre-
sponding to P (2 j)

= P (2 j)(x) for j ∈ {1, 3, 5, 6}. These boundary layers are solutions to (BL( j)
2nd) with

subquadratic growth; see Theorem 4.3. We begin with the case j = 1, where P (21)(x) = x2x3e3. We
recall that (v(21), q(21)) solves 

−1v+ ∇q = 0 in �,
∇ · v = 0 in �,
v+ x2x3e1 = 0 on ∂�.

(BL(1)2nd)

The difficulty in the analysis of (BL(1)2nd) is that the boundary value is not periodic and has linear growth
as x2 → ∞. We aim at eliminating the growth factor x2 and at recovering the periodic structure. The key
finding is the connection between the first-order and second-order boundary layers on the boundary, namely

v(21)
− x2v

(11)
= 0, x ∈ ∂�. (4-26)

This observation is the basis of the ansatz for v(21). Recall that v(11) converges exponentially fast to
the constant α(11)

∈ R3, when x3 → ∞ by the spectral gap near frequency 0 yielded by the periodicity;
see (4-25). Hence the nondecaying divergence ∇ · (x2v

(11)(x))= v
(11)
2 (x) can be corrected by adding a

corrector −α
(11)
2 x3η+(x3)e3. Here η+( · ) is a function on R satisfying

η+(t) is smooth and nonnegative,

η+(t)= 0 if t < 1
2 and η+(t)= 1 if t > 1. (4-27)

Below, we also need the cut-off η− defined in (4-8).
The following statement gives the existence and the structure of second-order boundary layers with

subquadratic growth.

Theorem 4.3. Let L ∈ (0,∞) and � be a periodic bumpy John domain with constant L according to
Definition 1.3. There exists a weak solution (v(21), q(21)) ∈ H 1

loc(�)
3
× L2

loc(�) to (BL(1)2nd) decomposed as

v(21)(x)= x2v
(11)(x)−α(11)

2 x3η+(x3)e3 + R(21)(x),

q(21)(x)= x2q(11)(x)+ Q(21)(x),
(4-28)

where (R(21), Q(21)) ∈ Ĥ 1
0 (�p)

3
× L2(�p). Moreover, we have

∥∇ R(21)
∥L2(�p) + ∥Q(21)

∥L2(�p) ≤ C, (4-29)

where the constant C depends only on L.

Proof. We aim at proving the existence of (R(21), Q(21)) and estimating it so that (v(21), q(21)) defined by
the right-hand sides in (4-28) gives a weak solution of (BL(1)2nd).
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Existence: By the previous discussion, we begin with a formal examination of x2v
(11)(x)−α(11)

2 x3η+(x3)e3.
First of all, it is easy to see

∇ · (x2v
(11)(x)−α(11)

2 x3η+(x3)e3)= v
(11)
2 (x)−α(11)

2 η+(x3)−α
(11)
2 x3∂3η+(x3)

for all x ∈�p. Notice that the expression above simplifies for x3 > 1:

∇ · (x2v
(11)(x)−α(11)

2 x3η+(x3)e3)= v
(11)
2 (x)−α(11)

2 .

Then, by Proposition 4.2, we get

v
(11)
2 (x)−α(11)

2 =

∑
k∈Z2\{(0,0)}

(v̂
(11)
k,2 − ik2V (11)(k)x3)e−|k|x3eik·x ′

, x3 > 1.

This means that x2v
(11)(x)−α(11)

2 x3η+(x3)e3 is not divergence-free. Thus, our next goal is to construct a
function to correct the divergence for x3 > 1. Define

d(x) :=

∑
k∈Z2, k1 ̸=0

(
1

ik1
(v̂
(11)
k,2 − ik2V (11)(k)x3) e−|k|x3eik·x ′

)
e1

+

∑
k1=0, k2∈Z\{0}

(
1

ik2
(v̂
(11)
k,2 − ik2V (11)(k)x3) e−|k|x3eik·x ′

)
e2, (4-30)

which is an element of H 1(�p,>0)
3, where �p,>0 :=�p ∩ {x3 > 0}. Of course, there is no unique way to

construct a right-inverse of the divergence such as d. We may extend d(x) to the whole domain �p by
multiplying it by η+(x3) and still correct the divergence of x2v

(11)(x)−α(11)
2 x3η+(x3)e3 − d(x)η+(x3).

To check the divergence condition, we calculate

D(x) := ∇ ·
(
x2v

(11)(x)−α(11)
2 x3η+(x3)e3 − d(x)η+(x3)

)
= v

(11)
2 (x)−α(11)

2 η+(x3)− η+(x3)∇ · d(x)− (α(11)
2 x3 + d3(x))∂3η+(x3).

Obviously, D is supported in �p,<2 :=�p ∩ {x3 < 2}, in which we can rely on the Bogovskii operator to
find a right-inverse of the divergence. Let A :=

∫
�p,<2

D. Let χ+(x3) be a smooth cut-off function such that

χ+(x3)= 0 if x3 ≤ 0, and χ+(x3)= (2π)−2 A for x3 > 1. (4-31)

This implies ∂3χ+(x3) is supported in �p,<2 and
∫
�p,<2

∂3χ+ = A. It follows that∫
�p,<2

(D(x)− ∇ · (χ+(x3)e3)) dx =

∫
�p,<2

(D(x)− ∂3χ+(x3)) dx = 0.

Hence, by Appendix A, there is a Bogovskii corrector B ∈ H 1
0 (�p,<2)

3 such that

∇ · B(x)= D(x)− ∂3χ+(x3),

and ∥B∥H1(�p,<2) ≤ C , where C depends only on the John constant L of �. We extend B by zero to the
whole domain �p and denote it again by B ∈ H 1

0 (�p)
3. Let us combine the above correctors and define

C(x)= −d(x)η+(x3)−χ+(x3)e3 − B(x).



212 MITSUO HIGAKI, CHRISTOPHE PRANGE AND JINPING ZHUGE

Note that C ∈ Ĥ 1
0 (�p)

3. In particular, ∥∇C∥L2(�p) ≤ C , where C depends only on the John constant L
of �. By (4-25), the function C converges exponentially fast to −(2π)−2 A as x3 → ∞, and its derivatives
decay exponentially fast to 0 as x3 → ∞.

By the crucial cancellation
x2(−1v

(11)(x)+ ∇q(11)(x))= 0,

as well as the definition of C, we see that the pair

x2v
(11)(x)−α(11)

2 x3η+(x3)e3 + C(x) and x2q(11)(x)

is a weak solution to (BL(1)2nd) with an additional external force

f (21)(x)= −2∂2v
(11)(x)+ q(11)(x)e2 −1(−α

(11)
2 x3η+(x3)e3 + C(x)).

In order to cancel this source term, we consider
−1R(21)

+ ∇Q(21)
= − f (21) in �p,

∇ ·R(21)
= 0 in �p,

R(21)
= 0 on ∂�p.

(4-32)

The weak formulation of (4-32) is written as

⟨∇R(21),∇ϕ⟩�p = −⟨ f (21), ϕ⟩�p, ϕ ∈ Ĥ 1
0,σ (�p). (4-33)

Next, we prove the unique existence of the weak solution of (4-33). By the integration by parts for 1C,

⟨ f (21), ϕ⟩�p = −2⟨∂2v
(11), ϕ⟩�p + ⟨q(11), ϕ2⟩�p +α

(11)
2 ⟨1(x3η+(x3)e3), ϕ⟩�p + ⟨∇C,∇ϕ⟩�p . (4-34)

By the Poincaré inequality in �p,<2 and the Cauchy–Schwarz inequality in �p,

|⟨ f (21), ϕ⟩�p | ≤ C
(
∥∇v(11)

∥L2(�p) + ∥q(11)
∥L2(�p) + ∥1(x3η+(x3))∥L2(�p) + ∥∇C∥L2(�p)

)
∥∇ϕ∥L2(�p)

+

∣∣∣∣∫ ∞

1

∫
(−π,π)2

∂2v
(11)(x)ϕ(x) dx ′ dx3

∣∣∣∣ + ∣∣∣∣∫ ∞

1

∫
(−π,π)2

q(11)(x)ϕ2(x) dx ′ dx3

∣∣∣∣. (4-35)

From Proposition 4.2 again, we have the representation formulas

∂2v
(11)(y)= ∂2

( ∑
k∈Z2\{(0,0)}

(
v̂
(1 j)
k +

(
−ik
|k|

)
V (1 j)(k)x3

)
e−|k|x3eik·x ′

)
,

q(11)(y)= ∂1

( ∑
k∈Z2, k1 ̸=0

2|k|V (1 j)(k)e−|k|x3
eik·x ′

ik1

)
+ ∂2

( ∑
k1=0, k2∈Z\{0}

2|k|V (1 j)(k)e−|k|x3
eik·x ′

ik2

)
.

Thus, by integration by parts in x1 and x2, the last two integrals in (4-35) are bounded by C∥∇ϕ∥L2(�p).
Consequently, in view of (4-6) and (4-35), we obtain

|⟨ f (21), ϕ⟩�p | ≤ C∥∇ϕ∥L2(�p). (4-36)

Then, by the Riesz representation theorem, there is an element R(21)
∈ Ĥ 1

0,σ (�p) solving (4-33) and
satisfying ∥∇R(21)

∥L2(�p) ≤ C . The existence of the pressure Q(21)
∈ L2

loc(�p) can be proved by using
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the Bogovskii lemma. Finally, the existence of the remainder (R(21), Q(21)) in (4-28) is proved if we
set R(21)

= C(21)
+R(21) and Q(21)

= Q(21). Let us emphasize that (R(21), Q(21)) can be “unwrapped”
(without changing the notation) as a (2πZ)2-periodic function in �.

Estimate: The estimate of R(21) is clear. Hence we focus on the pressure term Q(21)
= Q(21). Notice that

since Q(21) is locally L2, it suffices to prove

∥Q(21)
∥L2(�p,>3) ≤ C. (4-37)

We apply the Fourier series expansion in the flat domain {x3 > 3}. We decompose R(21) and Q(21) into
R(21)

= w1 +w2 and Q(21)
= r1 + r2 (up to a constant), where (w1, r1) is a solution of

−1w1 + ∇r1 = 0, x3 > 3,
∇ ·w1 = 0, x3 > 3,
w1(x ′, 3)= R(21)(x ′, 3),

while (w2, r2) solves 
−1w2 + ∇r2 = − f (21), x3 > 3,
∇ ·w2 = 0, x3 > 3,
w2(x ′, 3)= 0.

Using the periodicity of R(21)(x ′, 3) in x ′, the solution (w1, r1) may be written by the Poisson kernel as
in Proposition 4.2, which implies

∥r1∥L2(�p,>3) ≤ C∥∇R(21)
∥L2(�p) ≤ C. (4-38)

On the other hand, observe that the source term − f (21) is represented as

− f (21)(x)=

∑
k∈Z2\{(0,0)}

(F1(k)+F2(k)x3)e−|k|x3eik·x ′

, x3 > 3,

where
|F1(k)| + |F2(k)| ≤ C |k|

2e3|k|
|v̂
(11)
k |,

with v̂(1 j)
k defined in (4-24). Then a simple computation shows that

w2(x)=

∑
k∈Z2\{(0,0)}

(G1(k)+G2(k)x3 +G3(k)x2
3 +G4(k)x3

3)e
−|k|x3eik·x ′

,

r2(x)=

∑
k∈Z2\{(0,0)}

(G5(k)+G6(k)x3 +G7(k)x2
3 +G8(k)x3

3)e
−|k|x3eik·x ′

,

where

|k|

4∑
l=1

|Gl(k)| +
8∑

l=5

|Gl(k)| ≤ C |k|e3|k|
|v̂
(11)
k |.

Now it is easy to see that

∥r2∥L2(�p,>3) ≤ C∥v(11)( · , 0)∥L2((−π,π)2) ≤ C. (4-39)

From (4-38) and (4-39), we obtain (4-37). □
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By a similar consideration, we can obtain the existence of (v(2 j), q(2 j)) for j ∈{3, 5, 6}, whose proofs are
parallel to Theorem 4.3 and therefore omitted. Recall that η+ (resp. η−) is defined in (4-27) (resp. (4-8)).

Theorem 4.4. Let L ∈ (0,∞) and � be a periodic bumpy John domain with constant L according to
Definition 1.3. Let j ∈ {3, 5, 6}. There exists a weak solution (v(2 j), q(2 j))∈ H 1

loc(�)
3
×L2

loc(�) to (BL( j)
2nd)

decomposed as, when j = 3,

v(23)(x)= x1v
(12)(x)−α(12)

1 x3η+(x3)e3 + R(23)(x),

q(23)(x)= x1q(12)(x)+ Q(23)(x),
(4-40)

when j = 5,

v(25)(x)= −2x1v
(11)(x)− x2

3η−(x3)e3 + 2α(11)
1 x3η+(x3)e3 + R(25)(x),

q(25)(x)= −2x1q(11)(x)+ Q(25)(x),
(4-41)

and when j = 6,

v(26)(x)= −2x2v
(12)(x)− x2

3η−(x3)e3 + 2α(12)
2 x3η+(x3)e3 + R(26)(x),

q(26)(x)= −2x2q(12)(x)+ Q(26)(x),
(4-42)

where (R(2 j), Q(2 j)) ∈ Ĥ 1
0 (�p)

3
× L2(�p). Moreover, we have

∥∇ R(2 j)
∥L2(�p) + ∥Q(2 j)

∥L2(�p) ≤ C, (4-43)

where the constant C depends only on L.

Construction of v(22) and v(24). The boundary layers corresponding to P (22) and P (24) can be constructed
by using the Green’s function. The fact that P (22) and P (24) only depend on the vertical variable x3

and that there is no growth in the tangential variable x ′ makes the analysis much easier than for P (2 j),
j ∈ {1, 3, 5, 6}, studied above. The proof of the following proposition is almost identical to the one of
Theorem 4.1. Notice that here we state Theorem 4.5 in the periodic case only for convenience. Indeed
we use these correctors in combination with (v(2 j), q(2 j)) for j ∈ {1, 3, 5, 6} whose existence is stated
in Theorems 4.3 and 4.4 in periodic bumpy John domains. However, the existence of (v(2 j), q(2 j)) for
j ∈ {2, 4} can be proved in general bumpy John domains according to Definition 1.2.

Theorem 4.5. Let L ∈ (0,∞) and � be a periodic bumpy John domain with constant L according to
Definition 1.3. Let j ∈ {2, 4}. There exists a unique weak solution (v(2 j), q(2 j)) ∈ H 1

loc(�)
3
× L2

loc(�) to
(BL( j)

2nd) satisfying

∥∇v(2 j)
∥L2(�p) + ∥q(2 j)

∥L2(�p) ≤ C, (4-44)

where the constant C depends only on L.

4D. Estimates of boundary layers. Before closing this section, we summarize the estimates of the
boundary layers. The following propositions can be proved in a similar manner as in [Higaki and Prange
2020, Lemma 4] combined with a direct computation. The details are omitted here.
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Proposition 4.6. Let L ∈ (0,∞) and� be a bumpy John domain with constant L as in Definition 1.2. For
j ∈ {1, 2}, let (v(1 j), q(1 j)) the weak solution of (BL( j)

1st ) provided by Theorem 4.1. Then, for r ∈ (ε, 1),(
−

∫
Bεr,+

∣∣∣∣(∇v(1 j))

(
x
ε

)∣∣∣∣2

dx
)1/2

+

(
−

∫
Bεr,+

∣∣∣∣q(1 j)
(

x
ε

)∣∣∣∣2

dx
)1/2

≤ C
(
ε

r

)1/2

, (4-45)

where C depends only on L.

Proposition 4.7. Let L ∈ (0,∞) and � be a periodic bumpy John domain with constant L as in
Definition 1.3. For j ∈ {1, . . . , 6}, let (v(2 j), q(2 j)) the weak solution of (BL( j)

2nd) provided by Theorem 4.3
or 4.4. Then, for r ∈ (ε, 1),

1
r

(
−

∫
Bεr,+

∣∣∣∣ε(∇v(2 j))

(
x
ε

)∣∣∣∣2

dx
)1/2

+
1
r

(
−

∫
Bεr,+

∣∣∣∣εq(2 j)
(

x
ε

)∣∣∣∣2

dx
)1/2

≤ C
(
ε

r

)1/2

, (4-46)

where C depends only on L.

5. Higher-order regularity

5A. Large-scale C1,γ estimate. The goal of this subsection is to prove the large-scale C1,γ regularity
stated in Theorem B. We will use the first-order boundary layers and modify the argument of the Lipschitz
estimate.

Recall that P1 = span{P (11), P (12)
}= {(ax3, bx3, 0) | a, b ∈ R}. Let P2 = span{P (2 j)

| j = 1, 2, . . . , 6}.
Let S2 = span{(P (2 j), L(2 j)) | j = 1, 2, . . . , 6}. Note that any element of S2 is a weak solution of the
Stokes system in R3. Let (v(1k), q(1k)), with k = 1, 2, and (v(2 j), q(2 j)), with j = 1, 2, . . . , 6, be the
first-order and second-order boundary layers, respectively. Then define

Q1(�)= span{(P (1k), 0)+ (v(1k), q(1k)) | k = 1, 2}, (5-1)

Q2(�)= span{(P (2 j), L(2 j))+ (v(2 j), q(2 j)) | j = 1, 2, . . . , 6}. (5-2)

Hence, Q1(�) (resp. Q2(�)) is the vector space that contains all the “linear” (resp. “quadratic”) solutions
of the Stokes system in � vanishing on the boundary ∂�; see the Liouville-type results at the end of this
section stated in Theorem 5.8.

Remark 5.1. Note that the pressure part in estimate (1-3) of Theorem B is different from the Lipschitz
estimate in which P is −

∫
Bε1/2,+

pε. Actually, in (1-3), P1 is the average of the corrected pressure over a
small ball, i.e.,

P1 = −

∫
BεO(ε),+

(
pε −π

(
x
ε

))
dx

for some (w, π) ∈ Q1(�); see (5-15). This is reasonable since we are concerned with the C0,γ estimate
of the pressure and P1 plays a role similar to the zeroth-order term in the Taylor expansion of the pressure,
if the boundary is flat. We emphasize that P1 depends on ε. The point here is that P1 is independent of r .

The critical fact we are going to use is that any (w, π) ∈ Q1(�) is a solution of the Stokes system in �
that vanishes on ∂�. Hence, by rescaling, (uε, pε)− (εw(x/ε), π(x/ε)) is still a weak solution with a
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no-slip boundary condition. This observation allows us to capture the regularity beyond the Lipschitz
estimate. To this end, we define the first-order excess by

H1st(uε, pε; ρ)= inf
(w,π)∈Q1(�)

{(
−

∫
Bερ,+

∣∣∣∣∇uε − ∇

(
εw

(
x
ε

))∣∣∣∣2

dx
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsρ,+

(
pε −π

(
x
ε

))
dx − −

∫
Bεtρ,+

(
pε −π

(
x
ε

))
dx

∣∣∣∣}. (5-3)

Recall that (w, π) ∈ Q1(�) means that

(w, π)=

2∑
k=1

ℓk(P (1k)
+ v(1k), q(1k))

for some ℓ1, ℓ2 ∈ R. We will also use the quantity 8(uε, pε; ρ) defined in (3-8).

Lemma 5.2. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (uε, pε) be as in Theorem B, namely, a weak solution of (Sε) in Section 3A satisfying (1-1). For all
ε ∈

(
0, 1

32

]
, r ∈

[
2ε, 1

16

]
and θ ∈

(
0, 1

8

]
,

H1st(uε, pε; θr)≤ C
(
θ + θ−3

(
ε

r

)1/12)
8(uε, pε; 16r)+ Cθ−3

(
−

∫
Q10r

|M2
ε[Fε]|3

)1/3

, (5-4)

where C depends only on L.

Proof. First, we apply Lemma 3.7 with α = 1

H(uε, pε; θr)≤ C
(
θ + θ−3

(
ε

r

)1/12)
8(uε, pε; 16r)+ Cθ−3

(
−

∫
Q10r

|M2
ε[Fε]|3

)1/3

, (5-5)

where we also used the fact H( · , ·, 2r)≤8( · , ·, 2r)≤ C8( · , ·, 16r). Let P∗
= ℓ∗1 P (11)

+ℓ∗2 P (12)
∈ P1

be the linear solution that minimizes H(uε, pε; θr). Then (3-31) implies
2∑

k=1

|ℓ∗k | ≤ C(H(uε, pε; θr)+8(uε, pε; θr))≤ Cθ−3/28(uε, pε; r). (5-6)

By the definition of H1st and H, one has

H1st(uε, pε, θr)

≤

(
−

∫
Bεθr,+

∣∣∣∣∇uε − ∇

( 2∑
k=1

ℓ∗k

(
P (1k)

+ εv(1k)
(

x
ε

)))∣∣∣∣2

dx
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsθr,+

(
pε −

2∑
k=1

ℓ∗kq(1k)
(

x
ε

))
dx − −

∫
Bεtθr,+

(
pε −

2∑
k=1

ℓ∗kq(1k)
(

x
ε

))
dx

∣∣∣∣
≤ H(uε, pε; θr)+

2∑
k=1

|ℓ∗k |

(
−

∫
Bεθr,+

∣∣∣∣(∇v(1k))

(
x
ε

)∣∣∣∣2

dx
)1/2

+ 2 sup
ρ∈[1/16,1/4]

2∑
k=1

|ℓ∗k |

∣∣∣∣−∫
Bερθr,+

q(1k)
(

x
ε

)
dx − −

∫
Bεθr/2,+

q(1k)
(

x
ε

)
dx

∣∣∣∣. (5-7)
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From Proposition 4.6, we have the estimate for the first-order boundary layers

2∑
k=1

{(
−

∫
Bεθr,+

∣∣∣∣(∇v)(1k)
(

x
ε

)
|
2 dx

)1/2

+

(
−

∫
Bεθr,+

∣∣∣∣q(1k)
(

x
ε

)∣∣∣∣2

dx
)1/2}

≤ Cθ−1/2
(
ε

r

)1/2

. (5-8)

Inserting this into (5-7) and using (5-6) and (5-5), we obtain

H1st(uε, pε; θr)≤ H(uε, pε; θr)+ Cθ−3
(
ε

r

)1/2

8(uε, pε; r)

≤ C
(
θ + θ−3

(
ε

r

)1/12)
8(uε, pε; 16r)+ Cθ−3

(
−

∫
Q10r

|M2
ε[Fε]|3

)1/3

. □

Proposition 5.3. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to
Definition 1.2. Let (uε, pε) be as in Theorem B. For any γ ∈ [0, 1), δ ∈ (0, 1), ε ∈

(
0, 1

2

]
and r ∈

[
ε, 1

2

]
,

H1st(uε, pε; r)≤ Crγ (M + M4+2γ+δ), (5-9)

where C depends on L , γ and δ. Here M is the number given in Theorem B.

Proof. Note that it suffices to prove (5-9) for r ∈ [N0ε, 1/N1] with some absolute constant N0, N1 ≥ 2.
The cases for r ∈

(
1/N1,

1
2

]
or ε ≥ 1/(N0 N1) follow directly from the Bogovskii lemma and the Poincaré

inequality. The case r ∈ [ε, N0ε] follows from the case r = N0ε.
Firstly, using (3-39) with β = γ + δ (with δ ∈

(
0, 2−γ

2

)
being arbitrary), we have(

−

∫
Qr

|M2
ε[Fε]|3

)1/3

≤ Cδ(M + M4+2γ+4δ)rγ+δ, (5-10)

with Cδ depending on δ.
Since θ ∈

(
0, 1

8

]
in Lemma 5.2 is arbitrary, we can choose θ sufficiently small so that Cθ ≤

1
2

(
θ
16

)γ
holds in (5-4). For such fixed θ , we can find ε0 ∈

(
0, 1

2

)
depending on γ and θ such that the factor in

(5-4) satisfies

Cθ−3
(
ε

r

)1/12
≤

1
2

(
θ

16

)γ
, r ∈

[
ε

ε0
,

1
16

]
,

in (5-4). Then by (5-10) and (5-4),

H1st(uε, pε; θr)≤

(
θ

16

)γ
8(uε, pε; 16r)+ Cδ(M + M4+2γ+4δ)rγ+δ. (5-11)

Now the key observation is that, for any (w, π) ∈ Q1(�), the pair (U ε,5ε) defined by

U ε(x)= uε(x)− εw
(

x
ε

)
, 5ε(x)= pε(x)−π

(
x
ε

)
is still a weak solution of the Stokes system (Sε) in Section 3A. Therefore, the estimate (5-11) still holds
if we replace 8(uε, pε; 16r) by 8(U ε,5ε

; 16r) for any (w, π) ∈ Q1(�). Then taking the infimum over
all (w, π) ∈ Q1(�), we can further replace 8(U ε,5ε

; 16r) by H1st(uε, pε; 16r). Hence we obtain

H1st(uε, pε; θr)≤

(
θ

16

)γ
H1st(uε, pε; 16r)+ Cδ(M + M4+2γ+4δ)rγ+δ. (5-12)
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This is the first-order excess decay estimate for the C1,γ regularity of (uε, pε). Note that we can eventually
replace 4δ by δ in the right-hand side of (5-12) as δ ∈ (0, 1) is arbitrary. Thus, by a simple iteration, we
have that for ε/ε0 ≤ r ≤

θ
16 ,

H1st(uε, pε; r)≤ rγ (H1st(uε, pε; r0)+ Cδ(M + M4+2γ+δ))

for some r0 ∈
[
θ
16 , 1

]
. Clearly, H1st(uε, pε; r0)≤8(uε, pε; r0). It remains to show

8(uε, pε; r0)≤ C(M + M2).

Indeed, since r0 is comparable to 1, the above estimate follows directly from the Poincaré inequality and
Bogovskii’s lemma. □

The above theorem directly implies the C1,γ estimate for the velocity. To handle the pressure estimate
in Theorem B, we need the following lemma.

Lemma 5.4. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
For a given ρ > 0, let (ℓ1(ρ), ℓ2(ρ)) be the pair of real numbers so that

(w, π)=

2∑
k=1

ℓk(ρ)(P (1k)
+ v(1k), q(1k))

minimizes H1st(uε, pε; ρ). Then there exists a constant ε1 ∈ (0, 1) so that for all ε ∈ (0, ε1] and r ∈[
ε/ε1,

1
2

]
,

sup
r1,r2∈[r,2r ]

2∑
k=1

|ℓk(r1)− ℓk(r2)| ≤ C sup
t∈[r,2r ]

H1st(uε, pε; t), (5-13)

where C depends only on L.

Proof. By the definition of H1st, the triangle inequality and using that the matrices ∇ P (1k) are linearly
independent over R, if r ≤ r1, r2 ≤ 2r ,

2∑
k=1

|ℓk(r1)− ℓk(r2)| ≤ C
(

−

∫
Bεr,+

∣∣∣∣ 2∑
k=1

(ℓk(r1)− ℓk(r2))∇ P (1k)
∣∣∣∣2 )1/2

≤ C
(

−

∫
Bεr,+

∣∣∣∣∇( 2∑
k=1

(ℓk(r1)− ℓk(r2))

(
P (1k)

+ εv(1k)
(

x
ε

)))∣∣∣∣2

dx
)1/2

+ C
2∑

k=1

|ℓk(r1)− ℓk(r2)|

(
−

∫
Bεr,+

∣∣∣∣(∇v(1k))

(
x
ε

)∣∣∣∣2

dx
)1/2

≤ C H1st(uε, pε; r1)+ C H1st(uε, pε; r2)+ C0

(
ε

r

)1/2 2∑
k=1

|ℓk(r1)− ℓk(r2)|,

where in the last inequality, we inserted uε and enlarged the domain from Bεr,+ to Bεri ,+
with i = 1, 2, and

applied Proposition 4.6. Now if r ≥ ε/ε1 for some small ε1 ∈ (0, 1) so that C0ε
1/2
1 < 1

2 , then
2∑

k=1

|ℓk(r1)− ℓk(r2)| ≤ C
2∑

i=1

H1st(uε, pε; ri ).

This gives the desired estimate. □
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Proof of Theorem B. Let ε1 ∈ (0, 1) be the number in Lemma 5.4. Note that it suffices to prove (1-3) when
ε ∈ (0, ε1] and r ∈

[
ε/ε1,

1
16

]
as a familiar argument enables us to remove the smallness condition on ε

and the restriction on r . The velocity estimate in (1-3) follows from the Poincaré inequality and (5-9).
Hence, it suffices to estimate the pressure. Let (ℓ1(ρ), ℓ2(ρ)) be as in Lemma 5.4. For r ∈

[
ε/ε1,

1
16

]
,

let K be the integer so that 4−K r ∈ [ε/ε1, 4ε/ε1). By the triangle inequality, the estimate of q(1 j) in
Proposition 4.6,∣∣∣∣−∫

Bε
4−K r,+

(
pε −

2∑
k=1

ℓk(41−K r)q(1k)
(

x
ε

))
dx − −

∫
Bεr,+

(
pε −

2∑
k=1

ℓk(4r)q(1k)
(

x
ε

))
dx

∣∣∣∣
≤

K∑
i=1

∣∣∣∣−∫
Bε

4i−K−1r,+

(
pε−

2∑
k=1

ℓk(4i−K r)q(1k)
(

x
ε

))
dx − −

∫
Bε

4i−K r,+

(
pε−

2∑
k=1

ℓk(4i−K+1r)q(1k)
(

x
ε

))
dx

∣∣∣∣
≤

K∑
i=1

(
H1st(uε, pε; 4i−K+1r)+

2∑
k=1

|ℓk(4i−K+1r)− ℓk(4i−K r)|
(

ε

4i−K r

)1/2)

≤ C
K∑

i=1

(4i−K+1r)γ (M + M4+2γ+δ)

≤ Crγ (M + M4+2γ+δ), (5-14)

where we have used (5-9) and (5-13) in the third inequality. Define

P1 = −

∫
Bεε/ε1,+

(
pε −

2∑
k=1

ℓk(4ε/ε1)q(1k)
(

x
ε

))
dx . (5-15)

Then by (5-14) and another use of (5-9) and (5-13), we have∣∣∣∣−∫
Bεr,+

(
pε −

2∑
k=1

ℓk(4r)q(1k)
(

x
ε

))
dx − P1

∣∣∣∣ ≤ Crγ (M + M4+2γ+δ).

On the other hand, by Bogovskii’s lemma applied to the John domain between Bεr,+ and Bε2r,+ given by
Definition 1.2 and (5-10) with 4δ replaced by δ, we have(

−

∫
Bεr,+

∣∣∣∣pε −

2∑
k=1

ℓk(4r)q(1k)
(

x
ε

)
− −

∫
Bεr,+

(
pε −

2∑
k=1

ℓk(4r)q(1k)
(

x
ε

))
dx

∣∣∣∣2

dx
)1/2

≤ C
{(

−

∫
Bε2r,+

∣∣∣∣∇uε − ∇

( 2∑
k=1

ℓk(4r)
(

P (1k)
+ εv(1k)

(
x
ε

)))∣∣∣∣2

dx
)1/2

+

(
−

∫
Bε8r ,+

|Fε|2
)1/2}

≤ C H1st(uε, pε; 4r)+ C
(

−

∫
Q8r

|M2
ε[Fε]|3

)1/3

≤ Crγ (M + M4+2γ+δ). (5-16)

Combining the above two inequalities, we obtain the desired estimate in (1-3) for the pressure. □
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5B. Large-scale C2,γ estimate over periodic boundaries. The goal of this subsection is to prove the
large-scale C2,γ regularity stated in Theorem C. In this subsection, we assume � is a periodic bumpy
John domain defined in Definition 1.3. The argument for C2,γ estimate is similar to the C1,γ estimate.
Throughout, we assume (w1, π1) ∈ Q1(�) and (w2, q2) ∈ Q2(�). In other words, for some ℓ1k, ℓ2 j ∈ R,

(w1, π1)=

2∑
k=1

ℓ1k(P (1k)
+ v(1k), q(1k)),

(w2, π2)=

6∑
j=1

ℓ2 j (P (2 j)
+ v(2 j), L(2 j)

+ q(2 j)).

It is important to observe that, by rescaling,(
εw1

(
x
ε

)
+ ε2w2

(
x
ε

)
, π1

(
x
ε

)
+ επ2

(
x
ε

))
is a solution of the Stokes system in �ε with the no-slip boundary condition on ∂�ε.

Define the second-order excess as

H2nd(uε, pε; ρ)

= inf
(w1,q1)∈Q1(�)
(w2,q2)∈Q2(�)

{(
−

∫
Bερ,+

∣∣∣∣∇uε − ∇

(
εw1

(
x
ε

)
+ ε2w2

(
x
ε

))∣∣∣∣2

dx
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsρ,+

(
pε −π1

(
x
ε

)
− επ2

(
x
ε

))
dx − −

∫
Bεtρ,+

(
pε −π1

(
x
ε

)
− επ2

(
x
ε

))
dx

∣∣∣∣}.
Lemma 5.5. Let L ∈ (0,∞) and � be a bumpy periodic John domain with constant L according to
Definition 1.3. Let (uε, pε) be as in Theorem C, namely, a weak solution of (Sε) in Section 3A satisfying
(1-1). For all ε ∈

(
0, 1

32

]
, r ∈

[
2ε, 1

16

]
and θ ∈

(
0, 1

8

]
,

H2nd(uε, pε; θr)≤ C
(
θ2

+ θ−3
(
ε

r

)1/12)
8(uε, pε; 16r)+ Cθ−3

(
−

∫
Q10r

|M2
ε[Fε]|3

)1/3

, (5-17)

where C depends only on L.

Proof. The proof follows from the strategy developed in Section 3, in particular from Lemma 3.2
to Lemma 3.7. Let (vr , qr ) be the solution of the approximate problem (Sr ). We will first use the
C2,1 estimate of vr = (vr,1, vr,2, vr,3) at the lower boundary x3 = −ε. Precisely, in view of no-slip Stokes
polynomials defined in Section 4A, the C2,1 estimate vr gives∣∣∣∣vr (x)−

2∑
k=1

ℓ∗1k P (1k)(x + εe3)−

6∑
j=1

ℓ∗2 j P (2 j)(x + εe3)

∣∣∣∣ ≤ C
|x + εe3|

3

r2

(
−

∫
Qε

r

|∇vr |
2
)1/2

(5-18)

for x ∈ Qε
r/2, where we choose

ℓ∗1k =
∂vr,k

∂x3
(−εe3) for k = 1, 2
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and
ℓ∗21 =

∂2vr,1

∂x2∂x3
(−εe3), ℓ∗22 =

1
2
∂2vr,1

∂x2
3
(−εe3), ℓ∗23 =

∂2vr,2

∂x1∂x3
(−εe3),

ℓ∗24 =
1
2
∂2vr,2

∂x2
3
(−εe3), ℓ∗25 = −

1
2
∂2vr,1

∂x1∂x3
(−εe3), ℓ∗26 = −

1
2
∂2vr,2

∂x2∂x3
(−εe3).

Moreover,
2∑

k=1

|ℓ∗1k | + r
6∑

j=1

|ℓ∗2 j | ≤ C
(

−

∫
Qε

r

|∇vr |
2
)1/2

. (5-19)

Observe that

v∗

r (x)= vr (x)−
2∑

k=1

ℓ∗1k P (1k)(x + εe3)−

6∑
j=1

ℓ∗2 j P (2 j)(x + εe3),

q∗

r (x)= qr (x)−
6∑

j=1

ℓ∗2 j L(2 j)(x + εe3)

is a solution of the Stokes system in Qε
r with a no-slip condition on x3 = −ε. Therefore, for any θ ∈

(
0, 1

8

]
and r > ε, it follows from (5-18) and the Caccioppoli inequality in rectangular region Qε

2θr that(
−

∫
Qε
θr

|∇v∗

r |

)1/2

≤
C
θr

(
−

∫
Qε

2θr

|v∗

r |
2
)1/2

≤ C
(
θ2

+ θ−1
(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

. (5-20)

Then (5-19) implies(
−

∫
Qε
θr

∣∣∣∣∇vr − ∇

( 2∑
k=1

ℓ∗1k P (1k)
+

6∑
j=1

ℓ∗2 j P (2 j)
)∣∣∣∣2 )1/2

≤ C
(
θ2

+ θ−1
(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

. (5-21)

Next, to see the oscillation estimate for the pressure, applying Bogovskii’s lemma to q∗
r and the Caccioppoli

inequality to v∗
r (combined with (5-20)) in Lipschitz domains, we have

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε

sθr

q∗

r − −

∫
Qε

tθr

q∗

r

∣∣∣∣ ≤ C
(
θ2

+ θ−1
(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

. (5-22)

Notice that L(2 j) are linear functions. Thus, an application of (5-19) and the triangle inequality to (5-22)
leads to

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε

sθr

(
qr −

6∑
j=1

ℓ∗2 j L(2 j)
)

− −

∫
Qε

tθr

(
qr −

6∑
j=1

ℓ∗2 j L(2 j)
)∣∣∣∣

≤ C
(
θ2

+ θ−1
(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

. (5-23)

This, combined with (5-21), gives(
−

∫
Qε
θr

∣∣∣∣∇vr − ∇

( 2∑
k=1

ℓ∗1k P (1k)
+

6∑
j=1

ℓ∗2 j P (2 j)
)∣∣∣∣2 )1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε

sθr

(
qr −

6∑
j=1

ℓ∗2 j L(2 j)
)

− −

∫
Qε

tθr

(
qr −

6∑
j=1

ℓ∗2 j L(2 j)
)∣∣∣∣

≤ C
(
θ2

+ θ−1
(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

.
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This is the key second-order excess estimate we need for (vr , qr ) in Qε
r. To proceed, we follow the

similar argument developed in Section 3. Precisely, using an analogue of Lemma 3.4 and taking the
approximation estimate in Lemma 3.2, we can replace (vr , qr ) by (uε, pε) with new errors in uε and Fε.
Combined with the energy estimate for (Sr ), we now have(

−

∫
Bεr,+

∣∣∣∣∇uε − ∇

( 2∑
k=1

ℓ∗1k P (1k)
+

6∑
j=1

ℓ∗2 j P (2 j)
)∣∣∣∣2 )1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsθr,+

(
pε −

6∑
j=1

ℓ∗2 j L(2 j)
)

− −

∫
Bεtθr,+

(
pε −

6∑
j=1

ℓ∗2 j L(2 j)
)∣∣∣∣

≤ C
(
θ2

+ θ−3
(
ε

r

)1/12)(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ Cθ−3
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

. (5-24)

Next, we insert the boundary layers into the above inequality. By (5-8) and

6∑
j=1

{
1
r

(
−

∫
Bεθr,+

∣∣∣∣ε(∇v(2 j))

(
x
ε

)∣∣∣∣2

dx
)1/2

+
1
r

(
−

∫
Bεθr,+

∣∣∣∣εq(2 j)
(

x
ε

)∣∣∣∣2

dx
)1/2}

≤ Cθ−1/2
(
ε

r

)1/2

,

which follows from Proposition 4.7, we obtain from (5-24) and (5-19) along with the energy estimate
for (Sr ) that(

−

∫
Bεθr,+

∣∣∣∣∇uε − ∇

( 2∑
k=1

ℓ∗1k

(
P (1k)

+ εv(1k)
(

x
ε

))
+

6∑
j=1

ℓ∗2 j

(
P (2 j)

+ ε2v(2 j)
(

x
ε

)))∣∣∣∣2

dx
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsθr,+

(
pε −

2∑
k=1

ℓ∗1kq(1k)
(

x
ε

)
−

6∑
j=1

ℓ∗2 j

(
L(2 j)

+ εq(2 j)
(

x
ε

)))
dx

− −

∫
Bεtθr,+

(
pε −

2∑
k=1

ℓ∗1kq(1k)
(

x
ε

)
−

6∑
j=1

ℓ∗2 j

(
L(2 j)

+ εq(2 j)
(

x
ε

)))
dx

∣∣∣∣
≤ C

(
θ2

+ θ−3
(
ε

r

)1/12)(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ Cθ−3
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

. (5-25)

In view of the definition of H2nd, we arrive at

H2nd(uε, pε; θr)≤ C
(
θ2

+ θ−3
(
ε

r

)1/12)(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ Cθ−3
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

,

which implies the desired estimate. □

Proposition 5.6. Let L ∈ (0,∞) and � be a bumpy periodic John domain with constant L according to
Definition 1.3. Let (uε, pε) be as in Theorem C. For any γ ∈ [0, 1), δ ∈ (0, 1), ε ∈

(
0, 1

2

]
and r ∈

[
ε, 1

2

]
,

H2nd(uε, pε; r)≤ Cr1+γ (M + M6+2γ+δ), (5-26)

where C depends on L , γ and δ. Here M is the number in Theorem C.
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Proof. For any γ ∈ [0, 1), we choose an arbitrary δ > 0 small enough so that δ < 1−γ

2 . Then applying
(3-39) with β = 1 + γ + δ, we have(

−

∫
Qr

|M2
ε[Fε]|3

)1/3

≤ C(M + M6+2γ+4δ)r1+γ+δ.

Now, the rest of the proof is parallel to Proposition 5.3. We omit the details. □

The following lemma is parallel to Lemma 5.4.

Lemma 5.7. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
For a given ρ > 0, let ℓ1k(ρ) and ℓ2 j (ρ) be the real numbers so that

(w1, π1)=

2∑
k=1

ℓ1k(ρ)(P (1k)
+ v(1k), q(1k)),

(w2, π2)=

6∑
j=1

ℓ2 j (ρ)(P (2 j)
+ v(2 j), L(2 j)

+ q(2 j))

minimize H2nd(uε, pε; ρ). Then there exists a constant ε2 ∈ (0, 1) so that for all ε∈ (0, ε2] and r ∈
[
ε/ε2,

1
2

]
,

sup
r1,r2∈[r,2r ]

2∑
k=1

|ℓ1k(r1)− ℓ1k(r2)| + sup
r1,r2∈[r,2r ]

6∑
j=1

r |ℓ2 j (r1)− ℓ2 j (r2)| ≤ C sup
t∈[r,2r ]

H2nd(uε, pε; t), (5-27)

where C depends only on L.

Proof. First, observe that, for any ak, b j ∈ R,
2∑

k=1

|ak | +

6∑
j=1

|b j | ≤ C
(

−

∫
B1(0)∩{x3>0}

∣∣∣∣ 2∑
k=1

ak P (1k)
+

6∑
j=1

b j P (2 j)
∣∣∣∣2 )1/2

. (5-28)

This inequality is true because P (1k) and P (2 j) are all linearly independent polynomials. Recall that
P (1k) are homogeneous linear functions and P (2 j) are homogeneous quadratic functions. This means
P (1k)(r x) = r P (1k)(x) and P (2 j)(r x) = r2 P (2 j)(x). Fix r1, r2 ∈ [r, 2r ]. Applying (5-28) with ak =

ℓ1k(r1)− ℓ(r2) and b j = r(ℓ2 j (r1)− ℓ2 j (r2)), we have
2∑

k=1

|ℓ1k(r1)− ℓ1k(r2)| +

6∑
j=1

r |ℓ2 j (r1)− ℓ2 j (r2)|

≤ C
(

−

∫
B1(0)∩{x3>0}

∣∣∣∣ 2∑
k=1

(ℓ1k(r1)− ℓ1k(r2))P (1k)
+

6∑
j=1

r(ℓ2 j (r1)− ℓ2 j (r2))P (2 j)
∣∣∣∣2 )1/2

≤
C
r

(
−

∫
Br (0)∩{x3>0}

∣∣∣∣ 2∑
k=1

(ℓ1k(r1)− ℓ1k(r2))P (1k)
+

6∑
j=1

(ℓ2 j (r1)− ℓ2 j (r2))P (2 j)
∣∣∣∣2 )1/2

≤ C
(

−

∫
Br (0)∩{x3>0}

∣∣∣∣ 2∑
k=1

(ℓ1k(r1)− ℓ1k(r2))∇ P (1k)
+

6∑
j=1

(ℓ2 j (r1)− ℓ2 j (r2))∇ P (2 j)
∣∣∣∣2 )1/2

,
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where the Poincaré inequality has been applied in the last line. Now, inserting uε, v(1k)(x/ε) and v(2 j)(x/ε)
into the right-hand side, and using the triangle inequality, we obtain

2∑
k=1

|ℓ1k(r1)− ℓ1k(r2)| +

6∑
j=1

r |ℓ2 j (r1)− ℓ2 j (r2)|

≤ C
(

−

∫
Bεr,+

∣∣∣∣∇( 2∑
k=1

(ℓ1k(r1)− ℓ1k(r2))

(
P (1k)

+ εv(1k)
(

x
ε

))
+

6∑
j=1

(ℓ2 j (r1)− ℓ2 j (r2))

(
P (2 j)

+ ε2v(2 j)
(

x
ε

)))∣∣∣∣2

dx
)1/2

+ C
2∑

k=1

|ℓ1k(r1)− ℓ1k(r2)|

(
−

∫
Bεr,+

∣∣∣∣(∇v(1 j))

(
x
ε

)∣∣∣∣2

dx
)1/2

+
C
r

6∑
j=1

r |ℓ2 j (r1)− ℓ2 j (r2)|

(
−

∫
Bεr,+

∣∣∣∣ε(∇v(2 j))

(
x
ε

)∣∣∣∣2

dx
)1/2

≤ C H2nd(uε, pε; r1)+ C H2nd(uε, pε; r2)

+ C1

(
ε

r

)1/2 2∑
j=1

|ℓ1k(r1)− ℓ1k(r2)| + C2

(
ε

r

)1/2 6∑
k=1

r |ℓ2 j (r1)− ℓ2 j (r2)|,

where Proposition 4.7 is applied in the last inequality. Thus, if r > ε/ε2 for some sufficiently small
constant ε2 ∈ (0, 1) so that C1(ε/r)1/2 < 1

2 and C2(ε/r)1/2 < 1
2 , then

2∑
k=1

|ℓ1k(r1)− ℓ1k(r2)| +

6∑
j=1

r |ℓ2 j (r1)− ℓ2 j (r2)| ≤ C
2∑

i=1

H2nd(w
ε, π ε; ri ).

This leads to the assertion. □

Proof of Theorem C. The estimate for the velocity is contained in (5-26). The estimate for pressure can be
derived similarly as Theorem B. The details are left to the reader. □

5C. Liouville-type results. As an application of the construction of boundary layers and uniform regu-
larity, a Liouville-type theorem for Stokes systems can be shown by the large-scale Lipschitz, C1,γ and
C2,γ estimates. We point out that our large-scale regularity results hold also for the linear Stokes system,
although with linear dependence on M in the right-hand sides of (1-2), (1-3) and (1-4). The proofs are
simpler, using that the source term Fε = 0. To describe the Liouville-type theorem, consider the Stokes
system in the entire � 

−1u + ∇ p = 0, x ∈�,

∇ · u = 0, x ∈�,

u = 0, x ∈ ∂�,

(5-29)

where� is a bumpy John domain according to Definition 1.2. Let BR = BR(0). We state the Liouville-type
theorem as follows. Its proof follows from a routine rescaling of the large-scale regularity estimates.
Notice that this result complements Corollary 3.1 already stated above.
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Theorem 5.8. Let � be a bumpy John domain according to Definition 1.2. Let (u, p) be a weak solution
of (5-29).

(i) If for some σ ∈ (0, 1)

lim inf
R→∞

1
R1+σ

(
−

∫
BR,+

|u|
2
)1/2

= 0,

then (u, p) ∈ Q1(�) (up to a constant for p).

(ii) In addition, assume � is periodic bumpy John domain according to Definition 1.3. If for some
σ ∈ (0, 1),

lim inf
R→∞

1
R2+σ

(
−

∫
BR,+

|u|
2
)1/2

= 0,

then (u, p) ∈ Q1(�)+ Q2(�) (up to a constant for p).

Appendix A: Bogovskii’s lemma and some applications

For a bounded open set D ⊂ R3 and p ∈ (1,∞), let

Lq
0(D)=

{
f ∈ Lq(D)

∣∣∣∣ −

∫
D

f = 0
}
.

Theorem A.1 [Acosta et al. 2006, Theorem 4.1]. Let �⊂ R3 be a bounded John domain according to
Definition 1.1 with constant L. There exists an operator B : Lq

0(�)→ W 1,q
0 (�)3 satisfying

∇ · B[ f ] = f in �

and
∥B[ f ]∥W 1,q (�) ≤ C∥ f ∥Lq (�), (A-1)

with C depending on L.

Lemma A.2. Let � be a bounded John domain according to Definition 1.1. Set

H 1
0,σ (�) := {u ∈ H 1

0 (�)
3
| ∇ · u = 0 in �}.

Let f ∈ L2(�)3 and F ∈ L2(�)3×3. If u ∈ H 1(�)3 is a weak solution of the Stokes equations in the sense∫
�

∇u · ∇ϕ =

∫
�

f ·ϕ−

∫
�

F · ∇ϕ, ϕ ∈ H 1
0,σ (�),

then there exists a function p ∈ L2(�) unique up to a constant for which we have∫
�

∇u · ∇φ−

∫
�

p(∇ ·φ)=

∫
�

f ·φ−

∫
�

F · ∇φ, φ ∈ H 1
0 (�)

3.

Namely, the pair (u, p) is a weak solution of the Stokes equations. Moreover,∥∥∥∥p − −

∫
�

p
∥∥∥∥

L2(�)

≤ C
(
∥∇u∥L2(�) + diam(�)∥ f ∥L2(�) + ∥F∥L2(�)

)
, (A-2)

where diam(�) denotes the diameter of �.
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A direct application of Bogovskii’s operator is the Caccioppoli inequality for the Stokes equations. Let
Qr,+ = Qr ∩ {x3 > 0}. Suppose (u, p) is a weak solution of

−1u + ∇ p = ∇ · F in Q2r,+,

∇ · u = 0 in Q2r,+,

u = 0 on Q2r ∩ {x3 = 0}.

(A-3)

The following is the Caccioppoli inequality over flat boundaries whose proof is classical [Giaquinta and
Modica 1982, Theorem 1.1] (the interior Caccioppoli inequality is similar).

Lemma A.3. Let F ∈ L2(Q2r,+)
3×3 and let (u, p) ∈ H 1(Q2r,+)

3
× L2(Q2r,+) be a weak solution to

(A-3). Then,

∥∇u∥L2(Qr,+) ≤ C
(

1
r
∥u∥L2(Q2r,+) + ∥F∥L2(Q2r,+)

)
, (A-4)

where the constant C is independent of r .

Now, consider the Stokes equations over John boundaries
−1uε + ∇ pε = ∇ · Fε in Bε4r,+,

∇ · uε = 0 in Bε4r,+,

uε = 0 on 0ε4r .

(A-5)

Unfortunately, the Caccioppoli inequality in the form of (A-4) cannot be derived for the weak solution of
(A-5) by the usual iteration argument (see e.g., [Giaquinta and Modica 1982, Lemma 0.5] or [Giaquinta
1983, Chapter V, Lemma 3.1]) due to the assumption that the John domain condition (after rescaling)
holds only for scales r ≥ ε. Actually, we only have a weaker Caccioppoli inequality valid for r ≥ ε, which
is sufficient for us to show a (large-scale) Meyers estimate.

Lemma A.4 (a weak Caccioppoli inequality). Let L ∈ (0,∞) and � be a bumpy John domain with
constant L according to Definition 1.2. Let ε ∈

(
0, 1

2

]
and Fε ∈ L2(Bε4r,+)

3×3, and let (uε, pε) ∈

H 1(Bε4r,+)
3
× L2(Bε4r,+) be a weak solution to (A-5) with r ≥ ε. Then, for any θ ∈ (0, 1),

∥∇uε∥L2(Bεr,+) ≤ θ∥∇uε∥L2(Bε4r ,+)
+

C
θr

∥uε∥L2(Bε4r,+)
+ C∥Fε∥L2(Bε4r,+)

, (A-6)

where the constant C depends only on L. In particular C is independent of θ, ε and r. Moreover, if
r ≥ 4ε, then by the standard interior Caccioppoli inequality and a covering argument as in the proof of
Lemma 2.2, Bε4r,+ may be replaced by Bε2r,+ on the right-hand side of (A-6).

Proof. Let φr be a smooth cut-off function so that φr (x) = 1 for x ∈ Qr , φ(x) = 0 for x /∈ Q2r and
|∇φ| ≤ C/r . Integrating the first equation of (A-5) against uεφ2, we have∫

Bε2r,+

∇uε · ∇uεφ2
= −2

∫
Bε2r,+

φ∇uε · (∇φ⊗ uε)−
∫

Bε2r,+

∇ pε · uεφ2
−

∫
Bε2r,+

Fε · ∇(uεφ2). (A-7)
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The first and third terms on the right-hand side are routine. For the sake of completeness, let us give some
more details for the third term. We have∣∣∣∣∫

Bε2r,+

Fε · ∇(uεφ2)

∣∣∣∣ ≤

∣∣∣∣∫
Bε2r,+

Fε · ∇uεφ2
∣∣∣∣ + 2

∣∣∣∣∫
Bε2r,+

φFε · (∇φ⊗ uε)
∣∣∣∣

≤ ∥Fε∥L2(Bε2r,+)
∥∇uεφ∥L2(Bε2r,+)

+
C
r

∥Fε∥L2(Bε2r,+)
∥uεφ∥L2(Bε2r,+)

.

We then use Young’s inequality in both terms and absorb the term 1
2∥∇uεφ∥L2(Bε2r,+)

in the left-hand side
of the inequality (A-7). To deal with the pressure, by Definition 1.2 of the bumpy John domain �, we use
the Bogovskii operator in a John domain �ε2r satisfying Bε2r,+ ⊂�ε2r ⊂ Bε4r,+ and (A-2) to obtain(∫

�ε2r

∣∣∣∣pε − −

∫
�ε2r

pε
∣∣∣∣2 )1/2

≤ C(∥∇uε∥L2(�ε2r )
+ ∥Fε∥L2(�ε2r )

).

Let L = −

∫
�ε2r

pε. Then, using the above estimate and ∇ · uε = 0,∣∣∣∣∫
Bε2r,+

∇ pε · uεφ2
∣∣∣∣ =

∣∣∣∣∫
Bε2r,+

∇(pε − L) · uεφ2
∣∣∣∣ =

∣∣∣∣∫
Bε2r,+

(pε − L)uε · 2φ∇φ

∣∣∣∣
≤

C
r
(∥∇uε∥L2(�ε2r )

+ ∥Fε∥L2(�ε2r )
)∥uε∥L2(Bε2r,+)

≤ θ2
∥∇uε∥2

L2(Bε4r,+)
+

C
θ2r2 ∥uε∥2

L2(Bε4r,+)
+ C∥Fε∥2

L2(Bε4r,+)

for any θ ∈ (0, 1). In view of (A-7), this gives the desired estimate by a standard argument. □

Appendix B: Large-scale estimates for the Green’s function

This appendix is devoted to the study of the Green’s function for the Stokes equations in a bumpy John
half-space according to Definition 1.2. The large-scale estimates proved in Section 3 will be applied. The
basic scheme is to derive estimates for the velocity part of the Green’s function directly from the interior
and large-scale boundary Lipschitz estimates. For this we follow the strategy pioneered in [Avellaneda
and Lin 1987; 1991]. Then, we deduce the estimates for the pressure part of the Green’s function from
Bogovskii’s lemma and the estimates for the velocity part.

We use BR(x) = Q R(x) to denote the cube centered at x with side length 2R. If the center is not
important in the context, it is abbreviated as BR . Throughout this appendix, �≤N , �≥N , �<N , and �>N

defined around (4-7) will be used. Moreover, let x̂ denote the projection of x ∈ R3 on ∂R3
+

.

B1. Construction of the Green’s function. Let D be an open set in R3. Denote by Y 1,2(D) the space of
functions

{u ∈ L6(D) | ∇u ∈ L2(D)3} (B-1)

equipped with the norm ∥u∥Y 1,2(D) = ∥u∥L6(D)+∥∇u∥L2(D). Let Y 1,2
0 (D) be the closure of C∞

0 (D) under
∥ · ∥Y 1,2(D). The closed subspace of Y 1,2

0 (D)3

{u ∈ Y 1,2
0 (D)3 | ∇ · u = 0 in D} (B-2)
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is denoted by Y 1,2
0,σ (D). Note that, when the Lebesgue measure of D is finite, we have Y 1,2

0 (D)= H 1,2
0 (D)

by the Sobolev inequality ∥u∥L6(D) ≤ C∥∇u∥L2(D) if u ∈ C∞

0 (D). Moreover, we see that Y 1,2
0,σ (D) as well

as Y 1,2
0 (D)3 is a Hilbert space with an inner product ⟨u, v⟩ =

∫
D ∇u · ∇v.

Let � be a bumpy John domain with constant L ∈ (0,∞) according to the Definition 1.2. Based on
similar proofs in [Hofmann and Kim 2007; Choi and Lee 2017] and using the large-scale Lipschitz estimate
of Theorem A proved in Section 3, we can construct the Green’s function (G,5)= (G(x, y),5(x, y)),
which satisfies the following properties:

(i) For any q ∈
[
1, 3

2

)
, G( · , y) ∈ W 1,q

0,loc(�)
3×3 and G( · , y) ∈ Y 1,2(� \ Br (y))3×3 for each y ∈ � and

r > 0. Moreover, 5( · , y) ∈ L2
loc(� \ Br (y))3×1 for each y ∈� and r > 0.

(ii) (G( · , y),5( · , y)) satisfies, for each y ∈�,∫
�

∇G( · , y) · ∇φ−

∫
�

5( · , y)(∇ ·φ)= φ(y), φ ∈ C∞

0 (�)
3. (B-3)

(iii) For all f ∈ C∞

0 (�)
3, if the function (u, p)∈ Y 1,2

0,σ (�)
3
×L2

loc(�), with p(x)→ 0 as x3 →∞, satisfies
the Stokes equations in the sense∫

�

∇u · ∇φ−

∫
�

p(∇ ·φ)=

∫
�

f ·φ, φ ∈ C∞

0 (�)
3, (B-4)

then

u(x)=

∫
�

G(x, y) f (y) dy, p(x)=

∫
�

5(x, y) · f (y) dy. (B-5)

We describe how to obtain (G,5) meeting properties (i)–(iii) above. The existence and basic esti-
mates of the velocity component G(x, y) follow from a similar argument as [Hofmann and Kim 2007,
Theorem 4.1] by working in the Hilbert space Y 1,2

0,σ (�). In fact, there is G(x, y) such that u(x) defined in
(B-5) belongs to u ∈ Y 1,2

0,σ (�) and is the unique solution of the Stokes equations in the sense∫
�

∇u · ∇ϕ =

∫
�

f ·ϕ for any ϕ ∈ Y 1,2
0,σ (�). (B-6)

Then, by using Lemma A.2 on each bounded John subdomain, one sees that there is a pressure p ∈ L2
loc(�)

for which we have (B-4), uniquely determined under the condition p(x)→ 0 as x3 → ∞.
When constructing the pressure component 5(x, y) in (B-5), we need a careful analysis since the

domain is unbounded unlike in [Choi and Lee 2017]. Here the oscillation estimate of p will play a crucial
role. For an open set E , define the oscillation of p in E by

osc
E

p = sup
x,y∈E

|p(x)− p(y)|. (B-7)

The following lemma shows a fundamental oscillation estimate for the pressure.

Lemma B.1. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Then we have the following statements:
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(i) Let BR ⊂�. If −1u + ∇ p = 0 and ∇ · u = 0 in BR , then

osc
BR/2

p ≤ C
(

−

∫
BR

|∇u|
2
)1/2

, (B-8)

where C is a universal constant.

(ii) Let z ∈ ∂R3
+

and let R> 2. If −1u+∇ p = 0 and ∇·u = 0 in�∩BR(z) and u = 0 on ∂�∩BR(z), then

osc
�>2∩BR/2(z)

p ≤ C
(

−

∫
�∩BR(z)

|∇u|
2
)1/2

, (B-9)

where C depends on L and is independent of z and R.

Proof. The interior case (i) is classical and the proof is omitted. Let us prove the boundary case (ii). Since
only the case where R is sufficiently large is nontrivial, we assume that R> 32. For any x ∈�>2∩BR/2(z),
the mean value property of harmonic functions yields

p(x)= −

∫
Br (x)

p if Br (x) := {y | |y − x |< r} ⊂�. (B-10)

Here we assume r =
1
2 x3 ≤

1
16 R; hence r > 1. Note that if x3 >

1
8 R, the oscillation can be handled by the

interior estimate (B-8).
Recall that x̂ is the projection of x on ∂R3

+
. Let�4r (x̂) be a John domain given by Definition 1.2 so that

�∩ B4r (x̂)⊂�4r (x̂)⊂�∩ B8r (x̂). Clearly Br (x)⊂�4r (x̂), BR/4(x̂)⊂ B3R/4(z) and BR/2(x̂)⊂ BR(z).
By (B-10) and the Bogovskii lemma,∣∣∣∣p(x)− −

∫
�4r (x̂)

p
∣∣∣∣ ≤ −

∫
Br (x)

∣∣∣∣p − −

∫
�4r (x̂)

p
∣∣∣∣ ≤ C −

∫
�4r (x̂)

∣∣∣∣p − −

∫
�4r (x̂)

p
∣∣∣∣

≤ C
(

−

∫
B8r (x̂)∩�

|∇u|
2
)1/2

≤ C
(

−

∫
BR/2(x̂)∩�

|∇u|
2
)1/2

≤ C
(

−

∫
BR(z)∩�

|∇u|
2
)1/2

, (B-11)

where we also used the Lipschitz estimate of u in the fourth inequality. Similarly, we have∣∣∣∣−∫
B4r (x̂)∩�

p − −

∫
�4r (x̂)

p
∣∣∣∣ ≤ C

(
−

∫
BR(z)∩�

|∇u|
2
)1/2

.

On the other hand, by the pressure estimate for the Stokes system (an analogue of Theorem A with linear
dependence on M), ∣∣∣∣−∫

B4r (x̂)∩�
p − −

∫
BR/4(x̂)∩�

p
∣∣∣∣ ≤ C

(
−

∫
BR(z)∩�

|∇u|
2
)1/2

.

Similar to (B-11), because BR/4(x̂)⊂ B3R/4(z), we obtain∣∣∣∣−∫
BR/4(x̂)∩�

p − −

∫
B3R/4(z)∩�

p
∣∣∣∣ ≤ C

(
−

∫
B2R(z)∩�

|∇u|
2
)1/2

.
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Finally, combining the above estimates, we arrive at∣∣∣∣p(x)− −

∫
B3R/4(z)∩�

p
∣∣∣∣ ≤ C

(
−

∫
B2R(z)∩�

|∇u|
2
)1/2

. (B-12)

Since x ∈�>2 ∩ BR/2(z) is arbitrary, this implies the estimate (B-9) with 2R in the right-hand side instead
of R. Then a covering argument using (B-8) yields the desired estimate (B-9). □

Remark B.2. The interior oscillation estimate holds also for −1u+∇ p = f and ∇ ·u = 0 in BR provided
f ∈ Lq(BR)

3 for some q > 3. Precisely, by classical Schauder theory,

osc
BR/2

p ≤ C
(

−

∫
BR

|∇u|
2
)1/2

+ C R
(

−

∫
BR

| f |
q
)1/q

,

where C is a universal constant.

Now, we are ready to construct 5(x, y) and prove properties (i)–(iii) of (G,5). For a given f ∈

C∞

0 (BR(0)∩�)3 with R > 32, we consider the Stokes equations (B-4) with u given by (B-5) and the
associated pressure p ∈ L2

loc(�). For x ∈ �>2 such that |x | ≥ 4R, we set r =
1
2 |x | ≥ 2R. Since f is

supported in BR(0)∩�, we have −1u +∇ p = 0 in Br (x)∩�. Moreover, by an energy estimate using
(B-6), we have (

−

∫
Br (x)∩�

|∇u|
2
)1/2

≤
C R
r3/2 ∥ f ∥L2(BR(0)∩�). (B-13)

Therefore, Lemma B.1 and a covering argument imply the oscillation estimate of p, namely,

osc
�>2∩B2r (0)\Br(0)

p ≤
C R
r3/2 ∥ f ∥L2(BR(0)∩�).

This further implies

osc
�>2\Br (0)

p ≤

∞∑
k=1

osc
�>2∩B2kr (0)\B2k−1r (0)

p ≤

∞∑
k=1

C R

(2k−1r)3/2
∥ f ∥L2(BR(0)∩�) ≤

C R
r3/2 ∥ f ∥L2(BR(0)∩�). (B-14)

This shows that p(x) converges to a constant as x → ∞. By the assumption that p(x)→ 0 as x3 → ∞,
we know the limiting constant is zero. Hence, in view of (B-14), we derive

|p(x)| ≤
C R

|x |3/2
∥ f ∥L2(BR(0)∩�) (B-15)

for all x ∈�>2 satisfying |x | ≥ 4R. Moreover, by arguing in a similar manner as in Step 3 in the proof of
Theorem 4.1 and using (B-15) instead of (4-15), we find that for sufficiently large R′

≥ R,

∥p∥L2(BR′ (0)∩�) ≤ C(R′)∥ f ∥L2(BR(0)∩�), (B-16)

with a constant C(R′) depending on R′.
On the other hand, for x with either x ∈�≤2 or |x | ≥ 4R, we can connect x to another point x̃ ∈�>2

with |x̃ | ≥ 4R by a chain of a finite number of cubes {Bri (zi ) | i = 1, 2, . . . , N } such that B2ri (zi )⊂�.
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Using Remark B.2 on each Bri (zi ), as well as (B-15) applied to x̃ , we see that for any x, R

|p(x)| ≤ Cq(x, R)∥ f ∥Lq (BR(0)∩�) (B-17)

provided q > 3, where Cq(x, R) is a constant depending only on q, x , and R.
From (B-15) and (B-17), for each fixed x ∈�, the map f 7→ p(x) is a bounded linear functional on

Lq(BR(0)∩�)3. By the Riesz representation theorem, there is a unique function5(x, · )∈ Lq ′

(BR(0)∩�)3

with q ′
∈

[
1, 3

2

)
, so that

p(x)=

∫
BR(0)∩�

5(x, y) · f (y) dy.

Note that the above 5(x, · ) is only defined in BR(0)∩� for a fixed x . As x and R vary, we can obtain a
family of such functions, which can be glued together by the uniqueness of p. Thus we have constructed
a function 5(x, y) defined in the entire �×� satisfying 5(x, · ) ∈ Lq ′

loc(�)
3. To investigate the local

integrability of 5( · , · ), let us fix R > 1 and define a functional S( f, g) for smooth f, g supported in
BR(0)∩� by

S( f, g)=

∫
BR(0)∩�

p(x)g(x) dx =

∫
BR(0)∩�

∫
BR(0)∩�

(5(x, y) · f (y))g(x) dy dx .

From (B-16), by taking a sufficiently large R′
≥ R, we see that

|S( f, g)| ≤ ∥p∥L2(BR(0)∩�)∥g∥L2(BR(0)∩�) ≤ C(R′)∥ f ∥L2(BR(0)∩�)∥g∥L2(BR(0)∩�).

Hence S is a bounded functional on L2(BR(0)∩�)3 × L2(BR(0)∩�), which implies that∫
BR(0)∩�

5(x, · )g(x) dx is in L2(BR(0)∩�)3. (B-18)

Now we can prove that (G,5) satisfies properties (i)–(iii). Property (iii) is obvious from the arguments
so far. Property (ii) follows from property (iii) combined with the Lebesgue differentiation theorem. Here
we use the fact that, for all φ ∈ C∞

0 (�)
3, the function of y∫
�

5(x, y)(∇ ·φ)(x) dx

belongs to L2
loc(�)

3 because of (B-18). The integrability of 5( · , y) in property (i) follows from the weak
form (B-3). Consequently, we have constructed the Green’s function (G,5) meeting properties (i)-(iii).

We should point out that in the above argument for existence, the estimate, for example of 5(x, · ), is
very rough, especially when x is close to the boundary ∂�. This is because the large-scale regularity
of 5(x, · ) is not taken into consideration. In the following, we obtain some more careful estimates of
(G,5) by studying (B-3).

B2. Large-scale estimates of the velocity component. For convenience, let G(x, y) and 5(x, y) be
zero-extended for both x and y. Recall the symmetry G(x, y) = G t(y, x), where G t is the transpose
of G. Thus by definition, G(x, y)= 0 if either x ∈ ∂� or y ∈ ∂� and x ̸= y. Denote by δ(x) the distance
from x to ∂�.
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Notice that ∇x G denotes the derivative of G with respect to the first variable, i.e.,

(∇x G)(x, y)= (∇G( · , y))(x) for all (x, y) ∈�.

Similarly, ∇yG denotes the derivative of G with respect to the second variable. The following estimates
for the derivatives of G are crucial.

Proposition B.3. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to
Definition 1.2. The velocity component G(x, y) satisfies:

(i) For x3 > 2 and y3 > 2,

|∇x G(x, y)| ≤ C min
{

1
|x − y|2

,
δ(y)

|x − y|3

}
, (B-19)

|∇yG(x, y)| ≤ C min
{

1
|x − y|2

,
δ(x)

|x − y|3

}
. (B-20)

(ii) For x3 > 2 and y3 < 2 with |x − y|> 32,(∫
B1(y)

|∇yG(x, z)|2 dz
)1/2

≤ C min
{

1
|x − y|2

,
δ(x)

|x − y|3

}
, (B-21)(∫

B1(y)
|∇x G(x, z)|2 dz

)1/2

≤
C

|x − y|3
. (B-22)

(iii) For x3 < 2 and y3 > 2 with |x − y|> 32,(∫
B1(x)

|∇x G(z, y)|2 dz
)1/2

≤ C min
{

1
|x − y|2

,
δ(y)

|x − y|3

}
, (B-23)(∫

B1(x)
|∇yG(z, y)|2 dz

)1/2

≤
C

|x − y|3
. (B-24)

Here C depends on L.

Notice that G and5 are zero-extended outside�. Therefore, the integrals above make sense even in the
case when B1(x) or B1(y) intersect �c. For the estimates concerned with the oscillation of the pressure,
on the contrary, we make precise when the balls intersect the boundary; see for instance Lemma B.1.

Proof of Proposition B.3. Note that (ii) and (iii) are symmetric. While (i) is the interior estimate whose
proof is similar to (ii) and (iii). Hence, we will only prove (ii). Since we are working on cubes, it is more
convenient to define R = |x − y|∞ := max1≤i≤3 |xi − yi |, which is comparable to the usual distance |x − y|.
Recall that (G(x, · ),5(x, · )) is a weak solution of Stoke system in � \ {x}. To show (B-21), we begin
with the interior and boundary Lipschitz estimates for G(x, · ),(

−

∫
B1(y)

|∇yG(x, z)|2 dz
)1/2

≤ C
(

−

∫
B3(ŷ)

|∇yG(x, z)|2 dz
)1/2

≤ C
(

−

∫
BR/2(ŷ)

|∇yG(x, z)|2 dz
)1/2

, (B-25)

where ŷ is the projection of y on {y3 = 0}.
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To proceed, let F ∈ L2(BR/2(ŷ)∩�)3×3 (zero-extended to the whole of �). Let (u, p) be the weak
solution of 

−1u + ∇ p = ∇ · F in �,
∇ · u = 0 in �,
u = 0 on ∂�.

(B-26)

Recall from (B-5) that

u(x)=

∫
�

G(x, y)∇ · F(y) dy = −

∫
�

∇yG(x, y)F(y) dy. (B-27)

The energy estimate implies ∫
�

|∇u|
2
≤ C

∫
�

|F |
2. (B-28)

Next, we estimate |u(x)| and |∇u(x)|. Let r = x3, which is comparable to δ(x) since x3 > 2. We
consider two cases: r < 1

10 R or r > 1
10 R. If r > 1

10 R, since F is supported in BR/2(ŷ)∩� which does
not intersect with BR/10(x), we can apply the interior Lipschitz estimate to u and (B-28)

|∇u(x)| ≤ C
(

−

∫
BR/10(x)

|∇u|
2
)1/2

≤ C R−3/2
(∫

�

|F |
2
)1/2

. (B-29)

On the other hand, we apply the interior estimate, Sobolev embedding and (B-28) to obtain

|u(x)| ≤ C
(

−

∫
BR/10(x)

|u|
6
)1/6

≤ C R−1/2
(∫

�

|∇u|
2
)1/2

≤ C R−1/2
(∫

�

|F |
2
)1/2

. (B-30)

If r < 1
10 R, by the interior and boundary Lipschitz estimate

|∇u(x)| ≤ C
(

−

∫
Br (x)

|∇u|
2
)1/2

≤ C
(

−

∫
B2r (x̂)

|∇u|
2
)1/2

≤ C
(

−

∫
BR/5(x̂)

|∇u|
2
)1/2

≤ C R−3/2
(∫

�

|F |
2
)1/2

. (B-31)

Moreover, using the Poincaré inequality and the boundary Lipschitz estimate, we have

|u(x)| ≤ C
(

−

∫
Br (x)

|u|
2
)1/2

≤ C
(

−

∫
B2r (x̂)

|u|
2
)1/2

≤ Cr
(

−

∫
B2r (x̂)

|∇u|
2
)1/2

≤ Cr
(

−

∫
BR/5(x̂)

|∇u|
2
)1/2

≤ Cr R−3/2
(∫

�

|F |
2
)1/2

. (B-32)

From the estimates (B-29) - (B-32), (B-27) and duality, we see that(
−

∫
BR/2(ŷ)∩�

|∇x∇yG(x, z)|2 dz
)1/2

≤
C
R3 , (B-33)(

−

∫
BR/2(ŷ)∩�

|∇yG(x, z)|2 dz
)1/2

≤
Cr
R3 . (B-34)
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Note that (B-25) and (B-34) combined lead to (B-21). To see (B-22), notice that (∇x G(x, y),∇x5(x, y))
is a weak solution in y ∈�\{x}. Thus, we may apply (B-33), Poincaré inequality and boundary Lipschitz
estimate to obtain(

−

∫
B1(y)

|∇x G(x, z)|2 dz
)1/2

≤ C
(

−

∫
B3(ŷ)

|∇x G(x, z)|2 dz
)1/2

≤ C
(

−

∫
B3(ŷ)

|∇y∇x G(x, z)|2 dz
)1/2

≤ C
(

−

∫
BR/2(ŷ)

|∇y∇x G(x, z)|2 dz
)1/2

≤
C
R3 .

The proof of (ii) thus is complete. □

Analogously, we can also show the estimates for G itself. The proof is left to the reader.

Proposition B.4. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to
Definition 1.2. The velocity component G(x, y) satisfies:

(i) For x3 > 2 and y3 > 2,

|G(x, y)| ≤ C min
{

1
|x − y|

,
δ(x)

|x − y|2
,
δ(y)

|x − y|2
,
δ(x)δ(y)
|x − y|3

}
. (B-35)

(ii) For x3 > 2 and |x − y|> 32,(∫
B1(y)

|G(x, z)|2 dz
)1/2

≤ C min
{

1
|x − y|

,
δ(x)

|x − y|2
,
δ(y)+ 1
|x − y|2

,
δ(x)(δ(y)+ 1)

|x − y|3

}
. (B-36)

(iii) For y3 > 2 and |x − y|> 32,(∫
B1(x)

|G(z, y)|2 dz
)1/2

≤ C min
{

1
|x − y|

,
δ(y)

|x − y|2
,
δ(x)+ 1
|x − y|2

,
δ(y)(δ(x)+ 1)

|x − y|3

}
. (B-37)

Here C depends on L.

B3. Large-scale estimates of the pressure component. The estimates of 5 are stated as follows.

Proposition B.5. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to
Definition 1.2. The pressure component 5(x, y) satisfies:

(i) For x3 > 2 and y3 > 2,

|5(x, y)| ≤ C min
{

1
|x − y|2

,
δ(y)

|x − y|3

}
. (B-38)

(ii) For x3 < 2 and y3 > 2 with |x − y|> 32,(∫
B1(x)

|5(z, y)|2 dz
)1/2

≤ C min
{

1
|x − y|2

,
δ(y)

|x − y|3

}
. (B-39)

(iii) For x3 > 2 and y3 < 2 with |x − y|> 32,(∫
B1(y)

|5(x, z)|2 dz
)1/2

≤
C

|x − y|3
. (B-40)

Here C depends on L.
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Proof. We will carry out a delicate oscillation estimate of the pressure originating from [Gu and Zhuge
2019]. We first consider the estimate (i), i.e., x3 > 2 and y3 > 2. Consider a point w ∈� with w ̸= y. Let
t = |w− y|∞. We claim

osc
Bt/4(w)∩�>2

5( · , y)≤ C min
{

1
t2 ,

δ(y)
t3

}
, (B-41)

with C independent of t, w, and y. The operator osc is defined in (B-7).
We prove the above claim by considering different situations. If w ∈ By3/2(y), then t < 1

2 y3 and
Bt(w)⊂�. By the interior pressure estimate (B-8) in Lemma B.1 and (B-19),

osc
Bt/4(w)

5( · , y)≤ C
(

−

∫
Bt/2(w)

|∇x G(z, y)|2 dz
)1/2

≤ C min
{

1
t2 ,

δ(y)
t3

}
.

Next, if w /∈ By3/2(y), we consider two subcases: (a) |w3|<
1
4 t ; (b) |w3| ≥

1
4 t . Without loss of generality,

we assume t > 1
2 y3 > 20.

For the case (a), let ŵ be the projection of w on ∂R3
+

. Using the interior and boundary pressure
estimates in John domains from Lemma B.1 combined with a covering argument,

osc
Bt/4(w)∩�>2

5( · , y)≤ C
(

−

∫
Bt/2(ŵ)

|∇x G(z, y)|2 dz
)1/2

≤ C min
{

1
t2 ,

δ(y)
t3

}
, (B-42)

where we have also used (B-19) and (B-23) in the second inequality.
Now, for the case (b), Bt/4(w) may be decomposed as a union of a finite number of cubes Bt/16(wi ),

with i = 1, 2, . . . , K0, where K0 is an absolute constant, so that Bt/8(wi ) is contained in �>2. Thus,

osc
Bt/4(w)

5( · , y)≤

K0∑
i=1

osc
Bt/16(wi )

5( · , y)≤ C
K0∑

i=1

(
−

∫
Bt/8(wi )

|∇x G(z, y)|2 dz
)1/2

≤ C min
{

1
t2 ,

δ(y)
t3

}
,

where we have used (B-19). Thus, the claim (B-41) is proved.
Now, by a covering argument, it is not difficult to see from (B-41) that, for any r > 0,

osc
�>2∩B2r (y)\Br (y)

5( · , y)= osc
(B2r (y)∩�>2)\(Br (y)∩�>2)

5( · , y)≤ C min
{

1
r2 ,

δ(y)
r3

}
.

Consequently,

osc
�>2\Br (y)

5( · , y)≤

∞∑
k=1

osc
�>2∩B2kr (y)\B2k−1r (y)

≤ C min
{

1
r2 ,

δ(y)
r3

}
. (B-43)

This means that for each y with y3 > 2, there exists a function 5̂(y) such that

lim
|x |→∞, x3>2

5(x, y)= 5̂(y).

This convergence is uniform on any compact set in {y3 > 2}. We show that 5̂(y) ≡ 0. In fact, if
f ∈ C∞

0 (�)
3, the pressure of the Stokes equations with the source f is given by

p(x)=

∫
�

5(x, y) · f (y) dy.
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By the definition of the Green’s function, p(x)→ 0 holds as |x3| → ∞. It follows that∫
�

5̂(y) · f (y) dy = 0.

This holds for any f ∈ C∞

0 (�0)
3, where �0 is a bounded open set whose closure is contained in {y3 > 2}.

Thus we have 5̂(y)≡ 0. Therefore, (B-43) implies (B-38) since r is arbitrary.
Next, we prove (ii). Let x3 < 2, y3 > 2, and r := |x − y|∞. Without loss of generality, it suffices to

assume r > 32. For such x = (x1, x2, x3), we pick x̃ = (x1, x2, 3). Because −1< x3< 2 and |x − x̃ |∞< 4,
we have r − 4 ≤ |x̃ − y|∞ ≤ r + 4 and hence by (i),

|5(x̃, y)| ≤ C min
{

1
(r − 4)2

,
δ(y)

(r − 4)3

}
≤ C min

{
1
r2 ,

δ(y)
r3

}
. (B-44)

Next, we consider ∣∣∣∣5(x̃, y)− −

∫
�3(x̂)

5( · , y)
∣∣∣∣,

where x̂ = (x1, x2, 0) is the projection and �3(x̂) is the John domain between �∩ B3(x̂) and �∩ B6(x̂)
given by Definition 1.2. Following the argument in the proof of Lemma B.1, we can show∣∣∣∣5(x̃, y)− −

∫
�3(x̂)

5( · , y)| ≤ C
(

−

∫
�10(x̂)

|∇x G(z, y)
∣∣∣∣2

dz
)1/2

≤ C min
{

1
r2 ,

δ(y)
r3

}
,

where we have used (B-23) as well as (B-19) combined with a covering argument and the fact that
dist(�10(x̂), y)≈ r in the last inequality. On the other hand, observe that �∩ B1(x)⊂�3(x̂). Hence, by
the Bogovskii lemma in �3(x̂) and (B-23) with a covering argument,(

−

∫
B1(x)

|5(z, y)−−

∫
�3(x̂)

5( · , y)|2 dz
)1/2

≤ C
(

−

∫
�3(x̂)

|5(z, y)−−

∫
�3(x̂)

5( · , y)|2 dz
)1/2

≤ C
(

−

∫
�3(x̂)

|∇x G(z, y)|2 dz
)1/2

≤ C min
{

1
r2 ,

δ(y)
r3

}
. (B-45)

Combining the estimates above, we obtain(
−

∫
B1(x)

|5(z, y)|2 dz
)1/2

≤ C min
{

1
r2 ,

δ(y)
r3

}
.

This proves (B-39).
Next, we use a duality method to prove (iii). Let f ∈ C∞

0 (B1(y) ∩�)3, zero-extended to �, and
consider 

−1u + ∇ p = f χB1(y) in �,
∇ · u = 0 in �,
u = 0 on ∂�.

(B-46)

By definition, the solution (u, p) with finite energy can be represented by (B-5). Since we already know
the estimate of ∇x G (namely, (B-22)), we have

|∇u(x)| ≤
C

|x − y|3
∥ f ∥L2(B1(y))
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for |x − y|∞ > 4 with x3 > 2. By a familiar oscillation argument, we obtain

|p(x)| =

∣∣∣∣∫
�

5(x, y) · f (y) dy
∣∣∣∣ ≤

C
|x − y|3

∥ f ∥L2(B1(y)). (B-47)

This implies (B-40). □

Appendix C: Proof of the iteration lemma

Proof of Lemma 3.10. The proof is a variation of the one in [Zhuge 2021]. For fixed r ∈
(
ε, 1

16

)
, the

assumption (3-37f) implies∫ 1/8

r

h(t)
t

dt ≤

∫ 1/8

r

h(2t)
t

dt + C0

∫ 1/8

r

H(2t)
t

dt

≤

∫ 1/4

2r

h(t)
t

dt + C0

∫ 1/4

2r

H(t)
t

dt,

which, combined with (3-37b), (3-37d) and (3-37c), gives∫ 2r

r

h(t)
t

dt ≤

∫ 1/4

1/8

h(t)
t

dt + C0

∫ 1/4

2r

H(t)
t

dt ≤ C
(
8

( 1
2

)
+ B0

)
+ C0

∫ 1/2

r

H(t)
t

dt.

Then from (3-37f) we have∫ 2r

r

h(t)
t

dt ≥

∫ 2r

r

h(r)− C0 H(2t)
t

dt ≥
h(r)

4
− C0

∫ 1/2

r

H(t)
t

dt.

Therefore for r ∈
(
ε, 1

16

)
, we find

h(r)≤ C
(
8

( 1
2

)
+ B0

)
+ C

∫ 1/2

r

H(t)
t

dt. (C-1)

Let δ ∈
(
0,min

{
θ
4 ,

1
(16)2

})
be a small number to be determined later and let us set ε∗ = δ2. We temporarily

assume that ε ∈ (0, θε∗) in the following proof. From (3-37a) we have∫ δ

ε/δ

H(θ t)
t

dt ≤
1
2

∫ δ

ε/δ

H(2t)
t

dt + C0

(∫ δ

ε/δ

(
ε

t

)α
8(16t)

t
dt + B0

∫ δ

ε/δ

tβ−1 dt
)

≤
1
2

∫ 1/2

ε/δ

H(t)
t

dt + C0

(∫ δ

ε/δ

(
ε

t

)α
8(16t)

t
dt +β−1 B0

)
.

From (3-37e) and the estimate (C-1) for h(r), we have∫ δ

ε/δ

(
ε

t

)α
8(16t)

t
dt ≤ C0

∫ δ

ε/δ

(
ε

t

)α H(16t)+ h(16t)
t

dt

≤ C0δ
α

∫ 16δ

16ε/δ

H(t)
t

dt + C
(∫ δ

ε/δ

(
ε

t

)α dt
t

)((
8

(1
2

)
+ B0

)
+

∫ 1/2

16ε/δ

H(t)
t

dt
)

≤ (C0 + C1α
−1)δα

∫ 1/2

ε/δ

H(t)
t

dt + C1α
−1δα

(
8

(1
2

)
+ B0

)
.
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Now let us choose δ sufficiently small depending on α, C0 and C1 so that

1
2

+ C0(C0 + C1α
−1)δα ≤

3
4
.

Then we obtain ∫ θδ

θε/δ

H(t)
t

dt ≤
3
4

∫ 1/2

ε/δ

H(t)
t

dt + C
(
8

(1
2

)
+ B0

)
,

and consequently, from ε/δ < θδ,∫ θδ

θε/δ

H(t)
t

dt ≤ 3
∫ 1/2

θδ

H(t)
t

dt + C
(
8

(1
2

)
+ B0

)
.

Therefore from (3-37b) and (3-37c) we have∫ 1/2

θε/δ

H(t)
t

dt ≤ 4
∫ 1/2

θδ

H(t)
t

dt + C
(
8

(1
2

)
+ B0

)
≤ C

(
8

(1
2

)
+ B0

)
, (C-2)

where we have used
sup

θδ≤r≤1/2
8(r)≤ C

(
8

(1
2

)
+ B0

)
, (C-3)

with some constant C independent of ε, which is proved by applying (3-37c) finitely many times. Hence,
from 4ε < θε/δ, the estimates (C-1) and (C-2) lead to, for r ∈

(
θε/δ, 1

16

)
,

h(r)≤ C
(
8

(1
2

)
+ B0

)
+ C

∫ 1/2

θε/δ

H(t)
t

dt ≤ C
(
8

(1
2

)
+ B0

)
. (C-4)

For r ∈
(
θε/δ, 1

32

)
, from (3-37e), (C-2) and (C-4), we see that∫ 2r

r

8(t)
t

dt ≤ C0

∫ 2r

r

H(t)
t

dt + C0

∫ 2r

r

h(t)
t

dt ≤ C
(
8

(1
2

)
+ B0

)
.

From this, using the following inequality valid for all fixed r ∈
(
2ε, 1

2

)
8(r)≤ C(8(t)+ B0tβ), t ∈ [r, 2r ],

which is a consequence of (3-37c), we find

sup
θε/δ≤r≤1/32

8(r)≤ C
(
8

(1
2

)
+ B0

)
.

Using repeatedly (3-37c) finitely many times, we have

sup
ε≤r≤1/32

8(r)≤ C
(
8

(1
2

)
+ B0

)
, (C-5)

with a constant C independent of ε. On the other hand, (3-37b) and (C-5) imply∫ θε/δ

ε

H(t)
t

dt ≤ C0

∫ θε/δ

ε

8(t)
t

dt ≤ C
(
8

(1
2

)
+ B0

)
. (C-6)

Combining (C-2), (C-3), (C-5) and (C-6), we obtain the assertion (3-38), provided ε ∈ (0, θε∗). Finally,
if ε ∈

(
θε∗,

1
48

)
, (3-38) is trivial by applying (3-37b) and (3-37c) finitely many times. □
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ON A FAMILY
OF FULLY NONLINEAR INTEGRODIFFERENTIAL OPERATORS:

FROM FRACTIONAL LAPLACIAN TO NONLOCAL MONGE–AMPÈRE

LUIS A. CAFFARELLI AND MARÍA SORIA-CARRO

We introduce a new family of intermediate operators between the fractional Laplacian and the nonlocal
Monge–Ampère introduced by Caffarelli and Silvestre that are given by infimums of integrodifferential
operators. Using rearrangement techniques, we obtain representation formulas and give a connection to
optimal transport. Finally, we consider a global Poisson problem prescribing data at infinity, and prove
existence, uniqueness, and C1,1-regularity of solutions in the full space.

1. Introduction

Integro-differential equations arise in the study of stochastic processes with jumps, such as Lévy processes.
A classical elliptic integrodifferential operator is the fractional Laplacian

1su(x0)= cn,s PV
∫

Rn
(u(x0 + x)− u(x0))

1
|x |n+2s dx, s ∈ (0, 1),

which can be understood as an infinitesimal generator of a stable Lévy process. These types of processes
are very well studied in probability, and their generators may be given by

L K u(x0)=

∫
Rn
(u(x0 + x)− u(x0)− x · ∇u(x0))K (x) dx,

where the kernel K is a nonnegative function satisfying some integrability condition.
Recently, there has been significant interest in studying linear and nonlinear integrodifferential equations

from the analytical point of view. In particular, extremal operators like

Fu(x0)= inf
K∈K

L K u(x0) (1-1)

play a fundamental role in the regularity theory. See [Caffarelli and Silvestre 2009; 2011a; 2011b;
Ros-Oton and Serra 2016]. The above equation is an example of a fully nonlinear equation that appears in
optimal control problems and stochastic games [Krylov 1980; Nisio 1988]. The infimum in (1-1) is taken
over a family of admissible kernels K that depends on the applications. In fact, nonlocal Monge–Ampère
equations have been developed in the form (1-1) for some choice of K [Caffarelli and Charro 2015;
Caffarelli and Silvestre 2016; Guillen and Schwab 2012].
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The Monge–Ampère equation arises in several problems in analysis and geometry, such as the mass
transportation problem and the prescribed Gaussian curvature problem [De Philippis and Figalli 2014].
The classical equation prescribes the determinant of the Hessian of some convex function u:

det(D2u)= f.

In the literature, there are different nonlocal versions of the Monge–Ampère operator that Guillen
and Schwab [2012], Caffarelli and Charro [2015], and Caffarelli and Silvestre [2016] have considered.
Maldonado and Stinga [2017] have also given a nonlocal linearized Monge–Ampère equation. These
definitions are motivated by the following property: if B is a positive definite symmetric matrix, then

n det(B)1/n
= inf

A∈A
tr(AT B A), (1-2)

where

A = {A ∈ Mn : A > 0, det(A)= 1}

and Mn is the set of n × n matrices. If a convex function u is C2 at a point x0, then, by the previous
identity with B = D2u(x0), we may write the Monge–Ampère operator as a concave envelope of linear
operators. It follows that

n det(D2u(x0))
1/n

= inf
A∈A

1[u ◦ A](A−1x0).

Caffarelli and Charro [2015] study a fractional version of det(D2u)1/n , replacing the Laplacian by the
fractional Laplacian in the previous identity. More precisely,

Dsu(x0)= inf
A∈A

1s
[u ◦ A](A−1x0)

= cn,s inf
A∈A

PV
∫

Rn

u(x0 + x)− u(x0)

|A−1x |n+2s dx,

where s ∈ (0, 1) and cn,s ≈ 1 − s as s → 1; see also [Guillen and Schwab 2012]. A different approach
based on geometric considerations was given by Caffarelli and Silvestre [2016]. In fact, the authors
consider kernels whose level sets are volume preserving transformations of the fractional Laplacian kernel.
Namely,

MAsu(x0)= cn,s inf
K∈Ks

n

∫
Rn
(u(x0 + x)− u(x0)− x · ∇u(x0))K (x) dx,

where the infimum is taken over the family

Ks
n = {K : Rn

→ R+ : |{x ∈ Rn
: K (x) > r−n−2s

}| = |Br | for all r > 0}. (1-3)

Notice that |A−1x |
−n−2s

∈ Ks
n for any A ∈ A. Therefore,

MAsu(x0)≤ Dsu(x0)≤1su(x0).

Moreover, both MAsu and Dsu converge to det(D2u)1/n , up to some constant, as s → 1.
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In this paper, we introduce a new family of operators of the form

inf
K∈Ks

k

∫
Rn
(u(x0 + x)− u(x0)− x · ∇u(x0))K (x) dx (1-4)

for any integer 1 ≤ k < n, which arises from imposing certain geometric conditions on the kernels.
Moreover, we will see that

|y|
−n−2s

∈ Ks
1 ⊂ Ks

k ⊂ Ks
n for 1< k < n,

and thus, this family will be monotone decreasing, and bounded from above by the fractional Laplacian
and from below by the Caffarelli–Silvestre nonlocal Monge–Ampère.

The paper is organized as follows. In Section 2, we construct the family of admissible kernels Ks
k

and give the precise definition of our operators for C1,1-functions. We introduce in Section 3 the basic
tools from the theory of rearrangements necessary for our goals. In Section 4, we study the infimum
in (1-4) and obtain a representation formula, provided some condition on the level sets is satisfied (see
Theorem 4.1). We also study the limit as s → 1 and give a connection to optimal transport. The Hölder
continuity of F s

k u is proved in Section 5, following similar geometric techniques from [Caffarelli and
Silvestre 2016]. In Section 6, we consider a global Poisson problem prescribing data at infinity, and
introduce a new definition of our operators for functions that are merely continuous and convex. We
show existence of solutions via Perron’s method and C1,1-regularity in the full space by constructing
appropriate barriers. Finally, we discuss some future directions in Section 7.

2. Construction of kernels

Let us start with the construction of the family of admissible kernels. Notice that any kernel K in Ks
n ,

defined in (1-3), will have the same distribution function as the kernel of the fractional Laplacian, since,
for any r > 0,

{x ∈ Rn
: |x |

−n−2s > r−n−2s
} = Br .

Geometrically, this means that the level sets of K are deformations in any direction of Rn of the level sets
of |x |

−n−2s , preserving the n-dimensional volume.
In view of this approach, a natural way of finding an intermediate family of operators between

the nonlocal Monge–Ampère and the fractional Laplacian is to consider kernels whose level sets are
deformations that preserve the k-dimensional Hausdorff measure Hk , with 1 ≤ k < n, of the restrictions
of balls in Rn to hyperplanes generated by {ei }

k
i=1.

We define the set of admissible kernels as follows.

Definition 2.1. We say that K ∈ Ks
k if, for all z ∈ Rn−k and all r > 0,

Hk({y ∈ Rk
: K (y, z) > r−n−2s

})=

{
Hk(B(r2−|z|2)1/2) if |z|< r,
0 if |z| ≥ r,

(2-1)

where B(r2−|z|2)1/2 is the ball in Rk of radius (r2
− |z|2)1/2.
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{K ( · , z) > r−n−2s
} ⟨e1, e2⟩ + ze3

Br ⊂ R3

Figure 1. Area-preserving deformation in R3.

In Figure 1 we illustrate condition (2-1) for k = 2 and n = 3. Note that, for k = n, we recover the
definition of Ks

n . Moreover, |x |
−n−2s

∈ Ks
k for all k.

Proposition 2.2. Let 1 ≤ k < n. Then Ks
k ⊂ Ks

k+1 ⊆ Ks
n .

Proof. Let K ∈ Ks
k . Fix any z ∈ Rn−k−1 and r > 0. Then

Hk+1({y ∈ Rk+1
: K (y, z) > r−n−2s

})=

∫
Rk+1

χ{y∈Rk+1:K (y,z)>r−n−2s}(y) dy

=

∫
R

(∫
Rk
χ{(w,t)∈Rk×R:K (w,t,z)>r−n−2s}(w, t) dw

)
dt

=

∫
R

Hk({w ∈ Rk
: K (w, t, z) > r−n−2s

}) dt ≡ I.

If |z| ≥ r , then for any t ∈ R, we have that (t, z) ∈ Rn−k , with |(t, z)|> r . Therefore, by (2-1), it follows
that I = 0. If |z|< r , then

I =

∫
R

Hk(B(r2−t2−|z|2)1/2) dt = ωk

∫ (r2
−|z|2)1/2

−(r2−|z|2)1/2
(r2

− t2
− |z|2)k/2 dt

= ωk(r2
− |z|2)k/2

∫ (r2
−|z|2)1/2

−(r2−|z|2)1/2

(
1 −

(
t

(r2 − |z|2)1/2

)2 )k/2

dt

= ωk(r2
− |z|2)(k+1)/2

∫ 1

−1
(1 − σ 2)k/2 dσ =

π k/2

0
( 1

2 k + 1
) π1/20

( 1
2 k + 1

)
0

( 1
2(k + 1)+ 1

)(r2
− |z|2)(k+1)/2

= ωk+1(r2
− |z|2)(k+1)/2

= Hk+1(B(r2−|z|2)1/2),

where ωl = Hl(B1)= π l/2/0(l/2 + 1) and B(r2−|z|2)1/2 is the ball of radius (r2
− |z|2)1/2 in Rk+1. □
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Definition 2.3. A function u : Rn
→ R is said to be C1,1 at the point x0, and we write u ∈ C1,1(x0), if

there is a vector p ∈ Rn , a radius ρ > 0, and a constant C > 0 such that

|u(x0 + x)− u(x0)− x · p| ≤ C |x |
2 for all x ∈ Bρ .

We denote by [u]C1,1(x0) the minimum constant for which this property holds, among all admissible
vectors p and radii ρ.

Definition 2.4. Let s ∈
( 1

2 , 1
)

and 1 ≤ k < n. For any u ∈ C0(Rn)∩ C1,1(x0), we define

F s
k u(x0)= cn,s inf

K∈Ks
k

∫
Rn
(u(x0 + x)− u(x0)− x · ∇u(x0))K (x) dx,

where Ks
k is the set of kernels satisfying (2-1) and cn,s is the constant in 1s .

As an immediate consequence of Proposition 2.2, we obtain that the operators are ordered.

Corollary 2.5. Let s ∈
( 1

2 , 1
)

and 1 ≤ k < n. Then, for any u ∈ C0(Rn)∩ C1,1(x0),

MAsu(x0)≤ F s
k u(x0)≤1su(x0).

Moreover, {F s
k }

n−1
k=1 is monotone decreasing.

The regularity condition on u in Definition 2.4 allows us to compute F s
k u at the point x0 in the classical

sense. To obtain a finite number, we need to impose two extra conditions:

(1) An integrability condition at infinity:∫
Rn

|u(x)|
(1 + |x |)n+2s dx <∞. (P1)

(2) A convexity condition at x0:

ũ(x)≡ u(x0 + x)− u(x0)− x · ∇u(x0)≥ 0 for all x ∈ Rn. (P2)

Proposition 2.6. If u ∈ C0(Rn)∩ C1,1(x0) and u satisfies (P1) and (P2), then

0 ≤ F s
k u(x0) <∞.

Proof. Let ρ > 0 be as in Definition 2.3. Then

0 ≤ F s
k u(x0)≤

∫
Rn
(u(x0 + x)− u(x0)− x · ∇u(x0))

1
|x |n+2s dx

≤

∫
Bρ

[u]C1,1(x0)|x |
2

|x |n+2s dx +

∫
Rn\Bρ(x0)

|u(x)|
|x − x0|n+2s dx

+ |u(x0)|

∫
Rn\Bρ

1
|x |n+2s dx + |∇u(x0)|

∫
Rn\Bρ

|x |

|x |n+2s dx

≤ C(s, ρ)(|u(x0)| + |∇u(x0)| + [u]C1,1(x0))

+
1 + |x0| + ρ

ρ

∫
Rn

|u(x)|
(1 + |x |)n+2s dx <∞, since s ∈

( 1
2 , 1

)
. □
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We point out that if u is not convex at x0, then the infimum could be −∞. We show this result in the
next proposition.

Proposition 2.7. Let u ∈ C0(Rn)∩ C1,1(x0). Assume that u satisfies (P1). If there exists x̄ ∈ Rn with
x̄ = (ȳ, 0) and ȳ ∈ Rk such that

ũ(x̄)= u(x0 + x̄)− u(x0)− x̄ · ∇u(x0) < 0,

then F s
k u(x0)= −∞.

Proof. Let K (x)= |x − x̄ |
−n−2s . For any r > 0 and z ∈ Rn−k , if |z|< r , then

Hk({y ∈ Rk
: K (y, z) > r−n−2s

})= Hk({y ∈ Rk
: |y − ȳ|

2
+ |z|2 < r2

})= Hk(B(r2−|z|2)1/2).

Also, the measure is clearly zero if |z| ≥ r . Therefore, K ∈ Ks
k . It follows that

F s
k u(x0)≤

∫
Rn

ũ(x)|x − x̄ |
−n−2s dx

=

∫
Bε(x̄)

ũ(x)|x − x̄ |
−n−2s dx +

∫
Rn\Bε(x̄)

ũ(x)|x − x̄ |
−n−2s dx ≡ I + II.

Since u ∈ C0(Rn)∩ C1,1(x0), we have that ũ is continuous. Hence, given that ũ(x̄) < 0, it follows that
ũ(x) < 0 for all x ∈ Bε(x̄) for some ε > 0. Moreover, since K /∈ L1(Bε(x̄)), we have that I = −∞.
Arguing similarly as in the proof of Proposition 2.6, we see that II<∞. Therefore,

F s
k u(x0)= −∞. □

Remark 2.8. The operators F s
k are not rotation invariant. This is because, for simplicity, in the construction

of the family of admissible kernels Ks
k we chose the first k vectors from the canonical basis of Rn . In

general, we may take any subset of k unitary vectors, τ ={τi }
k
i=1, and replace the first condition on (2-1) by

Hk({y ∈ ⟨τ ⟩⊥ : K (y + zτ) > r−n−2s
})= Hk(B(r2−|z|2)1/2) (2-2)

for all z ∈ ⟨τ ⟩ and r > 0, where ⟨τ ⟩ denotes the span of {τi }
k
i=1 and ⟨τ ⟩⊥ the orthogonal subspace to ⟨τ ⟩.

Let SO(n) be the group of n × n rotation matrices. Since τi = Aei for some A ∈ SO(n), it follows that
any kernel Kτ satisfying (2-2) can be written as Kτ = K ◦ A, where K satisfies (2-1). Therefore, to make
the operators rotation invariant, one possibility is to take the infimum over all possible rotations. Namely,

inf
A∈SO(n)

inf
K∈Ks

k

∫
Rn

ũ(x)K (Ax) dx .

To focus on the main ideas, we will not explore this operator in this work.

3. Rearrangements and measure-preserving transformations

We introduce some definitions and preliminary results regarding rearrangements of nonnegative functions.
For more detailed information, see for instance [Baernstein 2019; Bennett and Sharpley 1988].
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Definition 3.1. Let f : Rn
→ R be a nonnegative measurable function. We define the decreasing

rearrangement of f as the function f ∗ defined on [0,∞) and given by

f ∗(t)= sup{λ > 0 : |{x ∈ Rn
: f (x) > λ}|> t},

and the increasing rearrangement of f as the function f∗ defined on [0,∞) and given by

f∗(t)= inf{λ > 0 : |{x ∈ Rn
: f (x)≤ λ}|> t}.

We use the convention that inf∅ = ∞.

Proposition 3.2. Let f, g : Rn
→ R be nonnegative measurable functions. Then∫

∞

0
f∗(t)g∗(t) dt ≤

∫
Rn

f (x)g(x) dx ≤

∫
∞

0
f ∗(t)g∗(t) dt.

The upper bound is the classical Hardy–Littlewood inequality. For the proof, see [Bennett and Sharpley
1988, Theorem 2.2] or [Baernstein 2019, Corollary 2.16]. For the sake of completeness, we give the proof
of the lower bound.

Proof. For j ≥ 1, let f j = f |Bj and g j = g|Bj , where Bj denotes the ball of radius j centered at 0 in Rn .
By [Baernstein 2019, Corollary 2.18], it follows that∫

|Bj |

0
( f j )∗(t)(g j )

∗(t) dt ≤

∫
Bj

f j (x)g j (x) dx .

Since f, g ≥ 0, we get ∫
Bj

f j (x)g j (x) dx ≤

∫
Rn

f (x)g(x) dx .

Note that, for any t ∈ [0, |Bj |], we have

{λ > 0 : |{x ∈ Bj : f j (x)≤ λ}|> t} ⊂ {λ > 0 : |{x ∈ Rn
: f (x)≤ λ}|> t}.

Hence ( f j )∗(t)≥ f∗(t) and∫
|Bj |

0
( f j )∗(t)(g j )

∗(t) dt ≥

∫
|Bj |

0
f∗(t)(g j )

∗(t) dt.

Moreover, g j ↗ g pointwise on Rn . Then by [Baernstein 2019, Proposition 1.39], we have (g j )
∗
↗ g∗

pointwise on [0,∞) as j → ∞. By the monotone convergence theorem, we get

lim
j→∞

∫
|Bj |

0
f∗(t)(g j )

∗(t) dt =

∫
∞

0
f∗(t)g∗(t) dt.

Combining the previous estimates, we conclude that∫
∞

0
f∗(t)g∗(t) dt ≤

∫
Rn

f (x)g(x) dx . □

Definition 3.3. We say that a measurable function ψ : Rl
→ Rm is a measure-preserving transformation,

or measure-preserving, if, for any measurable set E in Rm ,

Hl(ψ−1(E))= Hm(E).
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Lemma 3.4. If ψ : Rl
→ Rm is measure-preserving, then, for any measurable function f : Rm

→ R and
any measurable set E in Rm , ∫

E
f (y) dy =

∫
ψ−1(E)

f (ψ(z)) dz.

An important result by Ryff [1970] provides a sufficient condition for which we can recover a function
given its decreasing/increasing rearrangement, by means of a measure-preserving transformation.

Theorem 3.5 (Ryff’s theorem). Let f : Rn
→ R be a nonnegative measurable function. If limt→∞ f ∗(t)

equals zero, then there exists a measure-preserving transformation σ : supp( f )→ supp( f ∗) such that

f = f ∗
◦ σ

almost everywhere on the support of f . Similarly, if limt→∞ f∗(t)= ∞, then f = f∗ ◦ σ .

We will call a measure-preserving transformation σ satisfying Ryff’s theorem a Ryff’s map.

Remark 3.6. In general, σ is not invertible. Furthermore, there may not exist a measure-preserving
transformation ψ such that f ∗

= f ◦ψ .

As a consequence of Ryff’s theorem, we obtain a representation formula for the admissible kernels.
We write ωk = Hk(B1).

Lemma 3.7. Let K ∈ Ks
k . Fix z ∈ Rn−k and use the notation Kz(y)= K (y, z). Then

K ∗

z (t)= ((ω−1
k t)2/k

+ |z|2)−(n+2s)/2.

In particular, there exists a measure-preserving transformation σz : supp(Kz)→ (0,∞) such that

K (y, z)= K ∗

z (σz(y)) for a.e. y ∈ supp(Kz).

Proof. Fix z ∈ Rn−k . Then

K ∗

z (t)= sup{λ > 0 : Hk({y ∈ Rk
: K (y, z) > λ}) > t}

= sup{λ < |z|−n−2s
: Hk(B(λ−2/(n+2s)−|z|2)1/2) > t}

= sup{λ < |z|−n−2s
: ωk(λ

−2/(n+2s)
− |z|2)k/2 > t}

= sup{λ < |z|−n−2s
: λ−2/(n+2s) > (ω−1

k t)2/k
+ |z|2} = ((ω−1

k t)2/k
+ |z|2)−(n+2s)/2.

Moreover, limt→∞ K ∗
z (t)= 0. Therefore, the result follows from Theorem 3.5. □

In view of Definition 3.1, we introduce the symmetric rearrangement of a function in Rn with respect to
the first k variables as follows. Fix k ∈ N with 1 ≤ k < n. Given x ∈ Rn , we write x = (y, z) with y ∈ Rk

and z ∈ Rn−k . Furthermore, for z fixed, we call fz the restriction of f to Rk . Namely, fz(y)= f (y, z).

Definition 3.8. Let f : Rn
→ R be a nonnegative measurable function. We define the k-symmetric

decreasing rearrangement of f as the function f ∗,k
: Rn

→ [0,∞] given by

f ∗,k(x)= f ∗

z (ωk |y|
k),

and the k-symmetric increasing rearrangement as the function f∗,k : Rn
→ [0,∞] given by

f∗,k(x)= ( fz)∗(ωk |y|
k).
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When k = n, we obtain the usual symmetric rearrangement.

Remark 3.9. (1) Notice that f ∗,k and f∗,k are radially symmetric and monotone decreasing/increasing,
with respect to y. In the literature, this type of symmetrization is also known as the Steiner symmetrization
[Baernstein 2019, Chapter 6].

(2) By Lemma 3.7, we see that any kernel K ∈ Ks
k satisfies

K ∗,k(x)= |x |
−n−2s for x ̸= 0. (3-1)

4. Analysis of F s
k

Our main goal of this section is to study the infimum in the definition of the operator

F s
k u(x0)= cn,s inf

K∈Ks
k

∫
Rn

ũ(x)K (x) dx,

where ũ(x)=u(x0+x)−u(x0)−x ·∇u(x0). Throughout the section, we assume that u ∈C0(Rn)∩C1,1(x0)

and that u satisfies properties (P1) and (P2), so that 0 ≤ F s
k u(x0) <∞.

Analysis of the infimum. We will study the following cases:

Case 1. For all λ > 0 and z ∈ Rn−k ,

Hk({y ∈ Rk
: ũ(y, z)≤ λ}) <∞.

Case 2. There exists some λ0 > 0 such that, for all z ∈ Rn−k ,

Hk({y ∈ Rk
: ũ(y, z)≤ λ})

{
<∞ for 0< λ < λ0,

= ∞ for λ≥ λ0.

Case 3. For all λ > 0 and z ∈ Rn−k ,

Hk({y ∈ Rk
: ũ(y, z)≤ λ})= ∞.

In Case 1, when all of the level sets of ũ have finite measure, we show that the infimum is attained at
some kernel whose level sets depend on the measure-preserving transformation that rearranges the level
sets of ũ. More precisely:

Theorem 4.1. Suppose that, for all λ > 0 and z ∈ Rn−k ,

Hk({y ∈ Rk
: ũ(y, z)≤ λ}) <∞.

Then, for any z ∈ Rn−k , there exists a measure-preserving transformation σz : Rk
→ [0,∞) such that

F s
k u(x0)= cn,s

∫
Rn−k

∫
Rk

ũ(y, z)

((ω−1
k σz(y))2/k + |z|2)(n+2s)/2

dy dz.

In particular, the infimum is attained.

Remark 4.2. Observe that if ũ( · , z) is constant in some set of positive measure, then the kernel where the
infimum is attained is not unique since the integral is invariant under any measure-preserving rearrangement
of K within this set; see [Ryff 1970].
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Before we give the proof of Theorem 4.1, we need a lemma regarding the k-symmetric increasing
rearrangement of ũ. By Definition 3.8, this is given by the expression

ũ∗,k(y, z)= inf{λ > 0 : Hk({w ∈ Rk
: ũ(w, z)≤ λ}) > ωk |y|

k
}.

Lemma 4.3. Fix z ∈ Rn−k . If Hk({y ∈ Rk
: ũ(y, z)≤ λ}) <∞ for all λ > 0, then

lim
|y|→∞

ũ∗,k(y, z)= ∞.

Proof. Assume there exists M > 0 independent of λ such that

Hk({w ∈ Rk
: ũ(w, z)≤ λ})≤ M for all λ > 0. (4-1)

Then, for any y ∈ Rk with ωk |y|
k > M , we have that

ũ∗,k(y, z)= ∞,

since inf∅=∞. If (4-1) does not hold, then there must be an increasing sequence {Mλ}λ>0 with Mλ→∞

as λ→ ∞ such that
Hk({w ∈ Rk

: ũ(w, z)≤ λ})= Mλ.

Then, for any M > 0, there exists 3 = 3(M) > 0 such that Mλ > M for all λ > 3. Since Mλ is
monotone increasing, we can assume without loss of generality that M3 ≤ M . Otherwise, we take 3 to
be the minimum for which this property holds. Also, 3(M) is monotone increasing, and 3(M)→ ∞

as M → ∞. In particular,

inf{λ > 0 : Mλ > M} ≥3(M)→ ∞ as M → ∞.

Then, for any K > 0, there exists M > 0 such that

inf{λ > 0 : Mλ > M} ≥ K .

Therefore, for any y ∈ Rk with ωk |y|
k > M , we have

ũ∗,k(y, z)= inf{λ > 0 : Mλ > ωk |y|
k
} ≥ inf{λ > 0 : Mλ > M} ≥ K .

We conclude that
lim

|y|→∞

ũ∗,k(y, z)= ∞. □

Proof of Theorem 4.1. Since u is convex at x0, we have that ũ(y, z)≥ 0. Moreover,

F s
k u(x0)= cn,s inf

K∈Ks
k

∫
Rn−k

∫
Rk

ũ(y, z)K (y, z) dy dz.

Fix z ∈ Rn−k and consider the functions f (y)= ũ(y, z) and g(y)= K (y, z). Since

Hk({y ∈ Rk
: ũ(y, z)≤ λ}) <∞

for any λ > 0, then by Lemma 4.3 we have

lim
t→∞

f∗(t)= lim
|y|→∞

f∗,k(x)= ∞,
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with f∗,k(x) = ũ∗,k(y, z) and f∗,k(x) = f∗(ωk |y|
k). By Ryff’s theorem (Theorem 3.5), there exists a

measure-preserving transformation σz : Rk
→ [0,∞) depending on z such that

ũ(y, z)= f∗(σz(y)) (4-2)

for all y ∈ supp ũ( · , z)⊆ Rk .
Let K (y, z)= ((ω−1

k σz(y))2/k
+ |z|2)−(n+2s)/2. For any r > |z|, we have

Hk({y ∈ Rk
: K (y, z) > r−n−2s

})= Hk({y ∈ Rk
: ((ω−1

k σz(y))2/k
+ |z|2)−(n+2s)/2 > r−n−2s

})

= Hk({y ∈ Rk
: σz(y) < ωk(r2

− |z|2)k/2})

= Hk(σ−1
z ((0, ωk(r2

− |z|2)k/2)))= H1((0, ωk(r2
− |z|2)k/2))

= ωk(r2
− |z|2)k/2 = Hk(B(r2−|z|2)k/2),

since σk is measure-preserving (see Definition 3.3). Then K ∈ Ks
k , and thus

F s
k u(x0)≤ cn,s

∫
Rn−k

∫
Rk

ũ(y, z)

((ω−1
k σz(y))2/k + |z|2)(n+2s)/2

dy dz.

To prove the reverse inequality, let K ∈ Ks
k . Applying Proposition 3.2, we see that∫

Rk
ũ(y, z)K (y, z) dy ≥

∫
∞

0
f∗(t)g∗(t) dt =

∫
Rk

f∗(σz(y))g∗(σz(y)) dy =

∫
Rk

ũ(y, z)g∗(σz(y)) dy

by Lemma 3.4 and (4-2). Moreover, by the definition of rearrangements,

g∗(σz(y))= sup{λ > 0 : Hk({w ∈ Rk
: K (w, z) > λ}) > σz(y)} = K ∗,k(ỹ, z),

with ωk |ỹ|
k
= σz(y). By (3-1), we get

g∗(σz(y))= (|ỹ|
2
+ |z|2)−(n+2s)/2

= ((ω−1
k σz(y))2/k

+ |z|2)−(n+2s)/2.

Hence integrating over all z ∈ Rn−k and taking the infimum over all kernels K ∈ Ks
k , we conclude that

F s
k u(x)= cn,s

∫
Rn−k

∫
Rk

ũ(y, z)

((ω−1
k σz(y))2/k + |z|2)(n+2s)/2

dy dz. □

Remark 4.4. A natural question that arises from this result is whether there exists a measure-preserving
transformation ϕz : Rk

→ Rk such that

|ϕz(y)| = (ω−1
k σz(y))1/k .

In that case, we would have that the infimum is attained at a kernel K such that

K (y, z)= |φ(y, z)|−n−2s,

where φ : Rn
→ Rn is measure-preserving with φ(y, z)= (ϕz(y), z).

Recall that Ryff’s theorem gives a representation of a function f in terms of its increasing rearrange-
ment f∗, that is, f = f∗ ◦ σ with σ : Rk

→ R measure-preserving. If this result were also true for the
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symmetric increasing rearrangement, given by f#(x) = f∗(ωk |x |
k), then there would exist a measure-

preserving transformation ϕ : Rk
→ Rk such that f = f# ◦ψ . In particular,

f (x)= f#(ϕ(x))= f∗(ωk |ϕ(x)|k)= f∗(σ (x)).

Hence it seems reasonable that ωk |ϕ(x)|k = σ(x). As far as we know, this is an open problem.

As an immediate consequence of Theorem 4.1, we obtain the following representation of the func-
tion F s

k u in terms of the k-symmetric increasing rearrangement of ũ.

Corollary 4.5. Under the assumptions of Theorem 4.1, we have

F s
k u(x0)=1s ũ∗,k(0).

Proof. Note that ũ∗,k(0) = 0 since ũ(0) = 0. Therefore, using the same notation as in the proof of
Theorem 4.1, we showed that

F s
k u(x0)= cn,s

∫
Rn−k

∫
∞

0
f∗(t)g∗(t) dt dz = ωkcn,s

∫
Rn−k

∫
∞

0
f∗(ωkr k)g∗(ωkr k)r k−1 dr dz

= cn,s

∫
Rn−k

∫
Rk

f∗(ωk |y|
k)g∗(ωk |y|

k) dy dz = cn,s

∫
Rn−k

∫
Rk

ũ∗,k(y, z)K ∗,k(y, z) dy dz

= cn,s

∫
Rn−k

∫
Rk

ũ∗,k(y, z)
(|y|2 + |z|2)(n+2s)/2 dy dz =1s ũ∗,k(0). □

From the previous result and the fact that the family of operators {Fk}
n−1
k=1 is monotone decreasing, we

see that the fractional Laplacian of the k-symmetric rearrangements are ordered at the origin.

Corollary 4.6. Suppose we are under the assumptions of Theorem 4.1. Then

1s ũ∗,k+1(0)≤1s ũ∗,k(0).
Next we treat Case 2.

Theorem 4.7. Suppose that there exists some λ0 > 0 such that, for all z ∈ Rn−k ,

Hk({y ∈ Rk
: ũ(y, z)≤ λ})

{
<∞ for 0< λ < λ0,

= ∞ for λ≥ λ0.

Then there exists a kernel K0 ∈ Ks
k with supp K0( · , z)⊆ {y ∈ Rk

: ũ(y, z)≤ λ0} such that

F s
k u(x0)= cn,s

∫
Rn−k

∫
Rk

ũ(y, z)K0(y, z) dy dz.

In particular, the infimum is attained.

Proof. Fix z ∈ Rn−k . For j ≥ 1, define the set

Aj (z)=

{
y ∈ Rk

: ũ(y, z)≤ λ0 −
1
j

}
.

For simplicity, we drop the notation of z. We have that Hk(Aj ) <∞, Aj ⊆ Aj+1, and

A∞ =

∞⋃
j=1

Aj = {y ∈ Rk
: ũ(y, z) < λ0}.
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Observe that if K ∈ Ks
k , then

Hk({y ∈ Rk
: K (y, z) > 0})= lim

r→0
Hk({y ∈ Rk

: K (y, z) > r})= ∞.

Hence we need to distinguish two subcases:

Case 2A. Assume that Hk(A∞)= ∞. Let K ∈ Ks
k and vj = ũχAj . By Proposition 3.2,∫

Aj

ũ(y, z)K (y, z) dy =

∫
Rk
vj (y, z)K (y, z) dy ≥

∫
∞

0
(vj )∗(t)K ∗(t) dt.

By Lemma 3.4, for any measure-preserving transformation σ : Rk
→ [0,∞), it follows that∫

∞

0
(vj )∗(t)K ∗(t) dt =

∫
Rk
(vj )∗(σ (y))K ∗(σ (y)) dy.

By Ryff’s theorem (Theorem 3.5), there exists σj : Aj → [0,Hk(Aj )] measure-preserving such that
vj = (vj )∗ ◦ σj in Aj . Therefore,∫

Aj

ũ(y, z)K (y, z) dy ≥

∫
Aj

ũ(y, z)K ∗(σj (y)) dy. (4-3)

We claim that σj+1(y)≤ σj (y), for all y ∈ Aj . Indeed, since Aj ⊆ Aj+1, we have{
vj (y)= vj+1(y) for all y ∈ Aj ,

vj (y)≤ vj+1(y) for all y ∈ Aj+1 \ Aj .

In particular,
(vj+1)∗(σj+1(y))= (vj )∗(σj (y))≤ (vj+1)∗(σj (y)) for all y ∈ Aj .

Since (vj+1)∗ is monotone increasing, we must have

σj+1(y)≤ σj (y) for all y ∈ Aj .

Therefore, there exists σ∞ : A∞ → [0,∞) measure-preserving such that

σ∞(y)= lim
j→∞

σj (y).

Define the kernel K0 as

K0(y, z)= ((ω−1
k σ∞(y))k/2 + |z|2)−(n+2s)/2χA∞

(y).

Since Hk(A∞) = ∞, we have that K0 ∈ Ks
k . Furthermore, we note that K0(y, z) = K ∗

0 (σ∞(y)) and
supp K0( · , z) = A∞ = {y ∈ Rk

: ũ(y, z) ≤ λ0} for all y ∈ A∞. Then by Fatou’s lemma, Lemma 3.7,
and (4-3), we get∫

Rk
ũ(y, z)K0(y, z) dy =

∫
A∞

ũ(y, z)K ∗

0 (σ∞(y)) dy ≤ lim inf
j→∞

∫
Aj

ũ(y, z)K ∗

0 (σj (y)) dy

= lim inf
j→∞

∫
Aj

ũ(y, z)K ∗(σj (y)) dy ≤

∫
Rk

ũ(y, z)K (y, z) dy

for any K ∈ Ks
k . Integrating over z and taking the infimum over all kernels K , we conclude the result.
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Case 2B. Assume that Hk(A∞) <∞. Set A = {y ∈ Rk
: ũ(y, z)= λ0}. Then

Hk(A)= ∞, (4-4)

since {y ∈ Rk
: ũ(y, z)≤ λ0} = A∞ ∪ A. Fix ε > 0 and define

vε(y, z)= ũ(y, z)χA∞
(y)+ max{λ0, (λ0 + ε)φ(y, z)}χA(y),

with φ(y, z)= 1−e−|y|
2
−|z|2 . Note that 0<φ≤ 1, φ(y, z)→ 1 as |(y, z)| → ∞, and φ(y, z)≈ |y|

2
+|z|2

as |(y, z)| → 0. Also, {vε}ε>0 is a monotone increasing sequence and

lim
ε→0

vε(y, z)= ũ(y, z)χA∞
(y)+ max

{
λ0, lim

ε→0
(λ0 + ε)φ(y, z)

}
χA(y)

= ũ(y, z)χA∞
(y)+ max{λ0, λ0φ(y, z)}χA(y)= ũ(y, z)χA∞∪A(y). (4-5)

For any j ∈ N with j > 1/ε, consider the set

Bεj (z)=

{
y ∈ Rk

: vε(y, z)≤ λ0 + ε−
1
j

}
.

Then Bεj ⊆ Bεj+1 and Bε
∞

=
⋃

j>1/ε Bεj = {y ∈ Rk
: vε(y, z) < λ0 + ε}. Moreover, we have

Hk(Bεj )≤ Hk(A∞)+Hk
({

y ∈ A : max{λ0, (λ0 + ε)φ(y, z)} ≤ λ0 + ε−
1
j

})
. (4-6)

Choose R > 0 large enough (depending on ε, j , λ0, and z) that

(λ0 + ε)e−R2
−|z|2 <

1
j
.

Then (λ0 + ε)φ(y, z) > λ0 + ε− 1/j > λ0 for all y ∈ Bc
R , and thus

Hk
({

y ∈ A ∩ Bc
R : max{λ0, (λ0 + ε)φ(y, z)} ≤ λ0 + ε−

1
j

})
= 0. (4-7)

By (4-6) and (4-7), we see that

Hk(Bεj (z))≤ Hk(A∞)+Hk(A ∩ BR) <∞.

Furthermore, A ⊆ Bε
∞

, and thus, by (4-4), we get

Hk(Bε
∞
)≥ Hk(A)= ∞.

In particular, vε satisfies the assumptions of Case 2A, so there exists Kε ∈ Ks
k defined by

Kε(y, z)= ((ω−1
k σε(y))k/2 + |z|2)−(n+2s)/2χBε∞(y), (4-8)

with σε : Bε
∞

→ [0,∞) measure-preserving, depending on vε, such that

inf
K∈Ks

k

∫
Rn−k

∫
Rk
vε(y, z)K (y, z) dy dz =

∫
Rn−k

∫
Rk
vε(y, z)Kε(y, z) dy dz. (4-9)
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Finally, we need to pass to the limit. First, we prove that {σε}ε>0 is monotone decreasing. Indeed, let
Vε = {y ∈ Rk

: vε(y, z) = ũ(y, z)}. In particular, A∞ ⊆ Vε ⊆ A∞ ∪ A. Also, Vε2 ⊆ Vε1 for any ε1 ≤ ε2.
By Ryff’s theorem, recall that

vε1(y, z)= (vε1)∗(σε1(y)) and vε2(y, z)= (vε2)∗(σε2(y)).

Since vε2(y, z)= vε1(y, z) for all y ∈ Vε2 and vε1(y, z)≤ vε2(y, z) for all y ∈ Rk , we see that

(vε2)∗(σε2(y))= (vε1)∗(σε1(y))≤ (vε2)∗(σε1(y)) for all y ∈ Vε2 .

Since (vε2)∗ is monotone increasing, we must have that σε2(y)≤ σε1(y) for all y ∈ Vε2 . Hence there exists
σ0 : B∞ → [0,∞) measure-preserving such that

σ0(y)= lim
ε→0

σε(y),

where B∞ =
⋂
ε>0 Bε

∞
= {y ∈ Rk

: ũ(y, z)≤ λ0} = A∞∪ A. In particular, the sequence of kernels {Kε}ε>0

is monotone decreasing. Define
K0(y, z)= lim

ε→0
Kε(y, z). (4-10)

By (4-8) and (4-10), we have

K0(y, z)= ((ω−1
k σ0(y))k/2 + |z|2)−(n+2s)/2χB∞

(y).

Moreover, K0 ∈ Ks
k since Kε ∈ Ks

k , and, for any r > 0, it follows that

k(D0(r))= lim
ε→0

Hk(Dε(r)),

where Dε(r)= {y ∈ Rk
: Kε(y, z) > r−(n+2s)

}.
Finally, using (4-5), (4-9), (4-10), and the monotone convergence theorem, we get∫

Rn−k

∫
Rk

ũ(y, z)K0(y, z) dy dz =

∫
Rn−k

∫
Rk

lim
ε→0

(vε(y, z)Kε(y, z)) dy dz

= lim
ε→0

∫
Rn−k

∫
Rk
vε(y, z)Kε(y, z) dy dz

= lim
ε→0

inf
K∈Ks

k

∫
Rn−k

∫
Rk
vε(y, z)K (y, z) dy dz

≤ inf
K∈Ks

k

∫
Rn−k

∫
Rk

(
lim
ε→0

vε(y, z)
)
K (y, z) dy dz

= inf
K∈Ks

k

∫
Rn−k

∫
Rk

ũ(y, z)(K (y, z)χA∞∪A(y)) dy dz

= inf
K∈Ks

k

∫
Rn−k

∫
Rk

ũ(y, z)K (y, z) dy dz.

The last equality follows from the observation that, since

K̃s
k = {K ∈ Ks

k : supp K ( · , z)⊆ A∞ ∪ A} ⊆ Ks
k,

the infimum over all kernels in Ks
k is less than or equal to the infimum over K̃s

k . Moreover, the reverse
inequality holds trivially. □
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Finally, we deal with Case 3, that is, when all of the level sets of ũ have infinite measure. In particular,
notice that

ũ∗,k(x)= 0 for all x ∈ Rn.

This is the only case where the infimum is not attained. Indeed, we prove in the following theorem that
the infimum is equal to zero.

Theorem 4.8. Suppose that, for all λ > 0 and z ∈ Rn−k ,

Hk({y ∈ Rk
: ũ(y, z)≤ λ})= ∞.

Then F s
k u(x0)= 0.

Proof. From (P2), we have that F s
k u(x0) ≥ 0. To prove the reverse inequality, it is enough to find a

sequence of kernels {Kε}ε>0 ⊂ Ks
k such that

lim inf
ε→0

∫
Rn−k

∫
Rk

ũ(y, z)Kε(y, z) dy dz = 0. (4-11)

Fix ε > 0 and z ∈ Rn−k . For any j ≥ 0, we define the set

Uj (z)= {y ∈ Rk
: ũ(y, z) < ε2− j (n+2s)e−|z|2

}.

Note that Uj+1 ⊆ Uj . Also, by assumption, with λ= ε2− j (1+2s)e−|z|2 , we have that

Hk(Uj )= ∞ for all j ≥ 0.

We will construct Kε ∈ Ks
k by describing first where to locate each level set of the form

A−1 ≡ A−1(z)= {y ∈ Rk
: 0< Kε(y, z)≤ 1},

Aj ≡ Aj (z)= {y ∈ Rk
: 2 j (n+2s) < Kε(y, z)≤ 2( j+1)(n+2s)

} for j ≥ 0.

Recall that K ∈ Ks
k if, for all r > 0, we have

Hk({y ∈ Rk
: K (y, z) > r−(n+2s)

})= Hk({y ∈ Rk
: (|y|

2
+ |z|2)−(n+2s)/2 > r−(n+2s)

}).

In view of this definition, we define the sets

B−1 ≡ B−1(z)= {y ∈ Rk
: 0< (|y|

2
+ |z|2)−(n+2s)/2

≤ 1},

Bj ≡ Bj (z)= {y ∈ Rk
: 2 j (n+2s) < (|y|

2
+ |z|2)−(n+2s)/2

≤ 2( j+1)(n+2s)
} for j ≥ 0.

Note that {
Hk(A−1)= Hk(B−1)= ∞,

Hk(Aj )= Hk(Bj ) <∞ for all j ≥ 0.

More precisely, for j ≥ 0, if |z|< 2−( j+1) < 2− j , then

Hk(Aj )=Hk(B(2−2 j −|z|2)1/2)−Hk(B(2−2( j+1)−|z|2)1/2)=ωk(2−2 j
−|z|2)k/2−ωk(2−2( j+1)

−|z|2)k/2 ≤ωk2−k j .

If 2−( j+1)
≤ |z|< 2− j , then

Hk(Aj )= Hk(B(2−2 j −|z|2)1/2)= ωk(2−2 j
− |z|2)k/2 ≤ ωk

( 3
4

)k/22−k j .
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If |z| ≥ 2− j > 2−( j+1), then
Hk(Aj )= 0.

Therefore, Hk(Aj )≤ c2−k j , where c > 0 only depends on k. It follows that

Hk
( ∞⋃

j=0

Aj

)
=

∞∑
j=0

Hk(Aj )≤ c
∞∑
j=0

2− jk <∞. (4-12)

For any i ≥ 0, let Di be the collection of all dyadic closed cubes of the form

[m2−i , (m + 1)2−i
]
k
= [m2−i , (m + 1)2−i

] × · · · × [m2−i , (m + 1)2−i
].

Note that if Q ∈ Di , then l(Q)= 2−i , where l(Q) denotes the side length of the cube Q. For any j ≥ 0,
since Uj is an open set, by a standard covering argument, we have that there exists a family of dyadic
cubes Fj such that

Uj =

⋃
Q∈Fj

Q

satisfying the following properties:

(1) For any Q ∈ Fj , there exists some i ≥ 0 such that Q ∈ Di .

(2) Int(Q)∩ Int(Q̃) Int(Q̃)= ∅ for any Q, Q̃ ∈ Fj with Q ̸= Q̃.

(3) If x ∈ Q ∈ Fj , then Q is the maximal dyadic cube contained in Uj that contains x .

Analogously, for the sets Bj with j ≥ −1, there exists a family of dyadic cubes F̃j satisfying properties
(1)–(3) such that

Int(Bj )=

⋃
Q∈F̃j

Q.

Note that F̃j ∩ F̃j+1 = ∅ since Bj ∩ Bj+1 = ∅.
We will construct the sets Aj by properly translating the dyadic cubes partitioning the sets Bj into Uj .

In particular, we will prove that
A0 = T0(B0)⊂ U0,

Aj = Tj (Bj )⊂ Uj \
⋃ j−1

i=0 Ai for all j ≥ 1,
A−1 = T−1(B−1)⊂ U0 \

⋃
∞

i=0 Ai ,

for some translation mappings Tj : F̃j → Fj to be determined.
We start with the case j = 0. For any i ≥ 0, write

mi = H0(F0 ∩Di ) and ni = H0(F̃0 ∩Di ),

where H0(E) is equal to the cardinal of the set E . Note that mi , ni ∈ Z+
∪ {∞}.

We will recursively place B0 into U0. First, fix i = 0. If m0 ≥ n0, then, for any Q̃ ∈ F̃0 ∩D0, there
exists some τ ∈ Rk and some Q ∈ F0 ∩D0 such that Q = Q̃ + τ . Then define

T0 : F̃0 ∩D0 → F0 ∩D0, T0(Q̃)= Q. (4-13)
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Moreover, we can define T0 to be one-to-one since m0 ≥ n0, and we can always choose a different Q for
each Q̃. Note that there are p0 cubes in F0 ∩ D0 with p0 = m0 − n0 that have not been used. Hence for
all of these cubes, divide each side in half, so that each cube gives rise to 2k cubes with side length 2−1.
Call this collection of new cubes Q = {Ql}

2kp0
l=1 ⊂ D1 and add them to the family F0 ∩D1. Namely, we

replace F0 ∩D1 by (F0 ∩D1)∪Q.
If m0 < n0, then take q0 cubes in F̃0 ∩D0 with q0 = n0 − m0 and divide each side in half. Call this

collection of new cubes Q̃ = {Q̃l}
2kq0
l=1 ⊂ D1. Then, we replace F̃0 by F̂0, where

F̂0 ∩D0 = (F̃0 \ Q̃)∩D0,

F̂0 ∩D1 = (F̃0 ∪ Q̃)∩D1,

F̂0 ∩Di = F̃0 ∩Di for all i ≥ 2.

If n̂0 = H0(F̂∩D0), then m0 = n̂0. Hence, by the same argument as in the previous case, we find T0 as
in (4-13). For i ≥ 1, we can repeat the same process until we run out of cubes from F̃0 (or the modified
family). We know the process will end since Hk(B0) < Hk(U0). When this happens, we will have
constructed a one-to-one mapping T0 : F̃0 →F0, since F̃0 =

⋃
∞

i=0 F̃0 ∩Di and F0 =
⋃

∞

i=0 F0 ∩Di . Then
define

A0 = T0(B0)⊂ U0.

Iterating this process, we find a sequence of translation mappings {Tj }
∞

j=0 with Tj : F̃j → Fj and a
sequence of disjoint sets {Aj }

∞
j=0 such that

Aj = Tj (Bj )⊂ Uj \

j−1⋃
i=0

Ai .

The case j = −1 is somewhat special since Hk(A−1)= Hk(B−1)= ∞. We will see that

A−1 = T−1(B−1)⊂ U0 \

∞⋃
i=0

Ai .

This is possible because Hk
(
U0 \

⋃
∞

i=0 Ai
)
= ∞ using (4-12). Indeed, we can write

{y ∈ Rk
: 0< Kε(y, z)≤ 1} =

∞⋃
j=0

{2−( j+1)(n+2s) < Kε(y, z)≤ 2− j (n+2s)
}.

Now write
C j = {2−( j+1)(n+2s) < (|y|

2
+ |z|2)−(n+2s)/2

≤ 2− j (n+2s)
} for j ≥ 0.

Then B−1 =
⋃

∞

j=0 C j with Hk(C j ) < ∞ for all j ≥ 0. Hence, instead of partitioning all of B−1 into
dyadic cubes, we partition each of its disjoint components C j . Arguing as before, we place them into
U0 \

⋃
∞

i=0 Ai recursively, according to the following scheme:{
T 0

−1(C0)⊂ U0 \
⋃

∞

i=0 Ai ,

T j
−1(C j )⊂ U0 \

(⋃
∞

i=0 Ai ∪
⋃ j−1

i=0 Ci
)

for j ≥ 1,
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where T j
−1 is defined as before. At the end of this process, we find a translation map T−1 defined by

T−1(Q)= T j
−1(Q) for Q ∈ C j . Therefore, we define

A−1 = T−1(B−1).

Lastly, let y ∈ Rk
= A−1 ∪

(⋃
∞

j=0 Aj
)
. In particular, there exists some j ≥ −1 such that y ∈ Aj .

Furthermore, recall that Aj = Tj (Bj ), where Tj is a one-to-one and onto translation map. Hence there
exists a unique w ∈ Bj such that y = Tj (w) = w+ τ for some τ ∈ Rk . Let Tz : Rk

→ Rk be given by
Tz(y)= w. Note that Tz is measure-preserving. Then we define the kernel

Kε(y, z)= (|Tz(y)|2 + |z|2)−(n+2s)/2.

We have∫
Rk

ũ(y, z)Kε(y, z) dy =

∫
A−1

ũ(y, z)Kε(y, z) dy +

∞∑
j=0

∫
Aj

ũ(y, z)Kε(y, z) dy ≡ I + II.

For I, we use that ũ(y, z)≤ εe−|z|2 , since A−1 ⊂ U0. Then by Lemmas 3.7 and 3.4,

I ≤ εe−|z|2
∫

{0<Kε(y,z)≤1}

Kε(y, z) dy = εe−|z|2
∫

{0<|σz(y)|−n−2s≤1}

|σz(y)|−n−2s dy

= εe−|z|2
∫

{|y|≥1}

|y|
−n−2s dy = Cεe−|z|2,

where C > 0 depends only on n and s. For II, we use that ũ(y, z)≤ ε2− j (n+2s)e−|z|2 , since Aj ⊂ Uj and
Kε(y, z)≤ 2( j+1)(n+2s) in Aj , by definition. Then

II ≤ εe−|z|2
∞∑
j=0

2− j (n+2s)2( j+1)(n+2s)Hk(Aj )≤ cεe−|z|22n+2s
∞∑
j=0

2−k j
≤ Cεe−|z|2,

where C > 0 depends only on n, s, and k.
Integrating over z, we see that∫

Rn−k

∫
Rk

ũ(y, z)Kε(y, z) dy dz ≤ Cε
∫

Rn−k
e−|z|2 dz ≤ C̃ε.

Letting ε→ 0, we conclude (4-11). □

Limit as s → 1. Let u ∈ C2(Rn). We define MAku as the Monge–Ampère operator acting on u with
respect to the first k variables, that is,

MAku(x)= k(det((ui j (x))1≤i, j≤k))
1/k,

with D2u(x) = (ui j (x))1≤i, j≤n . We define 1n−ku as the Laplacian of u with respect to the last n − k
variables, that is,

1n−ku(x)=

n∑
i=k+1

ui i (x).
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Then under some special conditions,

lim
s→1

F s
k u(x)= MAku(x)+1n−ku(x). (4-14)

In particular, the operators in the family {F s
k }

n−1
k=1 can be understood as nonlocal analogs of concave second

order elliptic operators, which are decomposed into a Monge–Ampère operator restricted to Rk and a
Laplacian restricted to Rn−k .

Indeed, by Corollary 4.5, we have F s
k u(x)=1s ũ∗,k(0). Since the k-symmetric rearrangement does

not depend on s and 1s
→1 as s → 1, passing to the limit we see that

lim
s→1

F s
k u(x)=1ũ∗,k(0).

Suppose that ũ∗,k(y, z)= ũ(ϕ−1
z (y), z), where ϕz : Rk

→ Rk is an invertible measure-preserving transfor-
mation with ϕz(0)= 0 and

ωk |ϕz(y)|1/k
= σz(y).

Recall that σz is given in Theorem 4.1 (see also Remark 4.4). In this case,

1ũ∗,k(0)=1y ũ(ϕ−1
z (y), z)+1z ũ(ϕ−1

z (y), z)|(y,z)=(0,0). (4-15)

For the first term, we use

MAku(x)= inf
ψ∈9

1(ũ ◦ψ)(0),

where 9 = {ψ : Rk
→ Rk measure-preserving such that ψ(0) = 0}, and the fact that the infimum is

attained when ũ ◦ψ is a radially symmetric increasing function [Caffarelli and Silvestre 2016]. Hence

1y ũ(ϕ−1
z (y), z)|(y,z)=(0,0) = MAku(x). (4-16)

For the second term, write φ(y, z)= (ϕ−1
z (y), z) and compute

1z(ũ ◦φ)(0)= tr(Dzφ(0)T D2
z ũ(φ(0))Dzφ(0))+ ∇z ũ(φ(0))T ·1zφ(0).

Recall that φ(0)= 0 and ũ(y, z)= u(x + (y, z))− u(x)− ∇yu(x) · y − ∇zu(x) · z. Then

∇z ũ(φ(0))= 0, D2
z ũ(φ(0))= D2

z u(x), and Dzφ(0)= (0, In−k),

where In−k denotes the identity matrix in Mn−k . Therefore,

1z ũ(ϕ−1
z (y), z)|(y,z)=(0,0) =1z(ũ ◦φ)(0)= tr(D2

z u(x))=1n−ku(x). (4-17)

Combining (4-15)–(4-17) we conclude (4-14).

Connection to optimal transport. In Corollary 4.5 we obtained a representation of the function F s
k u in

terms of the k-symmetric increasing rearrangement. Using this representation, we find an equivalent
expression of F s

k u that can be understood from the viewpoint of optimal transport.
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Theorem 4.9. Suppose we are under the assumptions of Theorem 4.1. Then, for any z ∈ Rn−k , z ̸= 0,
there exists an invertible map ϕz : Rk

→ Rk such that

F s
k u(x)= cn,s

∫
Rn−k

∫
Rk

ũ(ϕ−1
z (y), z)

(|y|2 + |z|2)(n+2s)/2 dy dz. (4-18)

Moreover, if σz : Rk
→ [0,∞) is the Ryff’s map given in Theorem 4.1, then ϕz is measure-preserving if

and only if

ωk |ϕz(y)|k = σz(y) for a.e. y ∈ Rk . (4-19)

The key tool to prove Theorem 4.9 is Brenier–McCann’s theorem, a very well-known result in the
theory of optimal transport [Brenier 1991; McCann 1995]. We state it here in the form that we will use it.

Theorem 4.10. Let f, g ∈ L1(Rk). Assume that

∥ f ∥L1(Rk) = ∥g∥L1(Rk).

Then there exists a convex function ψ : Rk
→ R whose gradient ∇ψ pushes forward f dy to g dy. Namely,

for any measurable function h in Rk ,∫
Rk

h(y)g(y) dy =

∫
Rk

h(∇ψ(y)) f (y) dy. (4-20)

Moreover, ∇ψ : Rk
→ Rk is invertible and unique.

In the literature, ∇ψ is known as the (optimal) transport map.

Proof of Theorem 4.9. Fix z ∈ Rn−k , z ̸= 0, and consider fz, gz ∈ L1(Rk) given by

fz(y)= (|y|
2
+ |z|2)−(n+2s)/2 and gz(y)= ((ω−1

k σz(y))2/k
+ |z|2)−(n+2s)/2,

where σz : Rk
→ [0,∞) is given in Theorem 4.1. Note that

∥ f ∥L1(Rk) =

∫
Rk
((ω−1

k σz(y))2/k
+ |z|2)−(n+2s)/2 dy

= kωk

∫
∞

0
(r2

+ |z|2)−(n+2s)/2r k−1 dr

=

∫
Rk
(|y|

2
+ |z|2)−(n+2s)/2 dy = ∥g∥L1(Rk),

since σz is measure-preserving. By Theorem 4.10, there exists a convex function ψz : Rk
→ R (depending

on z) whose gradient ∇ψz pushes forward fz dy to gz dy. Moreover, ∇ψz is invertible and unique. Write
ϕz = (∇ψz)

−1. Using (4-20) with h(y)= ũ(y, z), we see that∫
Rk

ũ(y, z)

((ω−1
k σz(y))2/k + |z|2)(n+2s)/2

dy =

∫
Rk

ũ(ϕ−1
z (y), z)

(|y|2 + |z|2)(n+2s)/2 dy. (4-21)

Integrating over z ∈ Rn−k , we obtain (4-18).
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It remains to show that ϕz is measure-preserving if and only if (4-19) holds. Indeed, for any measurable
set E ⊂ Rk , we have

Hk(ϕ−1
z (E))=

∫
ϕ−1

z (E)
dy =

∫
ϕ−1

z (E)

(|y|
2
+ |z|2)(n+2s)/2

(|y|2 + |z|2)(n+2s)/2 dy

=

∫
ϕ−1

z (E)

(|ϕz(ϕ
−1
z (y))|2 + |z|2)(n+2s)/2

(|y|2 + |z|2)(n+2s)/2 dy

=

∫
E

(|ϕz(y)|2 + |z|2)(n+2s)/2

((ω−1
k σz(y))2/k + |z|2)(n+2s)/2

dy,

where the last equality follows from (4-21) with h(y)= (|ϕz(y)|2 + |z|2)(n+2s)/2χE(y). Therefore,

Hk(ϕ−1
z (E))= Hk(E)

if and only if ωk |ϕz(y)|k = σz(y) for a.e. y ∈ Rk . □

5. Regularity of F s
ku

Given x0 ∈ Rn , we define the sections

Dx0u(t)= {x ∈ Rn
: u(x)− u(x0)− (x − x0) · ∇u(x0)≤ t} for t > 0.

Our main regularity result is the following.

Theorem 5.1. Let s ∈
( 1

2 , 1
)

and 1 ≤ k < n. Let u ∈ C1,1(Rn) be convex. Fix x0 ∈ Rn and r0, ε > 0.
Suppose that 3 = supx∈Br0 (x0)

diam(Dx u(ε)) < ∞ and M = supx∈Br0 (x0)
F s

k u(x) < ∞. Then we have
F s

k u ∈ C0,1−s(Br (x0)) with r <min{r0/4,3, ε/(83)} and

[F s
k ]C0,1−s(Br (x0))

≤ C0[u]C1,1(Rn)

for some constant C0 > 0 depending only on n, k, s, ε, 3, and M.

This theorem will be a consequence of the next proposition.

Proposition 5.2. Fix x0 ∈ Rn and ε > 0. Suppose that3= diam(Dx0u(ε)) <∞ and [u]C1,1(Rn) ≤ 1. Then,
for any x1 ∈ Br (x0) with r ≤ ε/(43), we have

F s
k u(x1)−F s

k u(x0)≤ C31−s
|x1 − x0|

1−s
+

43
ε

|x1 − x0|F s
k u(x0)

for some C > 0 depending only on n, k, and s.

First, we prove Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality, we may assume that [u]C1,1(Rn) ≤ 1. Otherwise, we
consider u/[u]C1,1(Rn). Let r <min{r0/4,3, ε/(83)}. It is enough to show that

[F s
k ]C0,1−s(Br (x0))

≤ C0 (5-1)

for some constant C0 > 0 depending only on n, k, s, ε, 3, and M .
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Let x1, x2 ∈ Br (x0). Then x2 ∈ B2r (x1)⊂ Br0(x0), since 4r < r0. Moreover, diam(Dx1u(ε))≤3<∞.
Hence, applying Proposition 5.2 to u and B2r (x1) in place of Br (x0), we get

F s
k u(x2)−F s

k u(x1)≤ C31−s
|x2 − x1|

1−s
+

43
ε

|x2 − x1|F s
k u(x1)≤ C0|x2 − x1|

1−s,

where C0 = C31−s
+ 431+s M/(ε2s). Since x1 and x2 are arbitrary, we conclude (5-1). □

Before we prove Proposition 5.2, we need several preliminary results.

Lemma 5.3. If f is monotone increasing, then∫
∞

0
f (r)ω(r) dr =

∫
∞

0

∫
∞

µ f (t)
ω(r) dr dt,

with µ f (t)= |{r > 0 : f (r)≤ t}|.

Proof. By Fubini’s theorem, we have∫
∞

0

∫
∞

µ f (t)
ω(r) dr dt =

∫
∞

0
ω(r)

∫
{r>µ f (t)}

dt dr.

Since f is monotone increasing, r > µ f (t) if and only if t < f (r). Therefore,∫
{r>µ f (t)}

dt =

∫ f (r)

0
dt = f (r). □

Proposition 5.4. Let x ∈ Rn . Under the assumptions of Corollary 4.5,

F s
k u(x)= cn,s

∫
∞

0

∫
Rn−k

1
|z|n−k+2s W

(
µx u(t, z)1/k

|z|

)
dz dt,

where µx u(t, z)= ω−1
k Hk({y ∈ Rk

: ũx(y, z)≤ t}) and

W (ρ)= kωk

∫
∞

ρ

r k−1

(1 + r2)(n+2s)/2 dr. (5-2)

Proof. By Corollary 4.5, we have that

F s
k u(x)=1s ũ∗,k(0)= cn,s

∫
Rn−k

1
|z|n+2s

(∫
Rk

ũ∗,k(y, z)
(||z|−1 y|2 + 1)(n+2s)/2 dy

)
dz

= cn,s

∫
Rn−k

1
|z|n−k+2s

(
kωk

∫
∞

0
v(|z|r, z)

r k−1

(r2 + 1)(n+2s)/2 dr
)

dz,

where v(r, z)= ũ∗,k(y, z) for |y| = r .
Next we apply Lemma 5.3 to f (r)= v(|z|r, z) and ω(r)= kωkr k−1(r2

+1)−(n+2s)/2. Note that since v
is the k-symmetric increasing rearrangement of ũ, we have

µ f (t)=
1
|z|

|{r > 0 : v(r, z) < t}| =
ω−1/k

k

|z|
Hk({y ∈ Rk

: ũ(y, z) < t})1/k
=

1
|z|
µx u(t, z)1/k .
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Therefore,

kωk

∫
∞

0
v(|z|r, z)

r k−1

(r2 + 1)(n+2s)/2 dr =

∫
∞

0

(
kωk

∫
∞

µx u(t,z)1/k/|z|

r k−1

(r2 + 1)(n+2s)/2 dr
)

dt

=

∫
∞

0
W

(
µx u(t, z)1/k

|z|

)
dt,

where W is given in (5-2). By Fubini’s theorem, we conclude that

F s
k u(x)= cn,s

∫
∞

0

∫
Rn−k

1
|z|n−k+2s W

(
µx u(t, z)1/k

|z|

)
dz dt. □

Lemma 5.5. Suppose we are under the assumptions of Proposition 5.2. Let x1 ∈ Br (x0) and d = |x1 − x0|.
The following hold:

(a) If t ∈ (23d, ε], then Dx0u(t − 23d)⊂ Dx1u(t).

(b) If t ∈ (ε,∞), then Dx0u(t − 23dt/ε)⊂ Dx1u(t).

Proof. First we prove (a). Fix t ∈ (23d, ε], and let x ∈ Dx0u(t − 23d). Then

u(x)− u(x0)− (x − x0) · ∇u(x0)≤ t − 23d. (5-3)

Using (5-3), convexity, and [u]C1,1(Rn) ≤ 1, we see that

u(x)− u(x1)− (x − x1) · ∇u(x1)= u(x)− u(x0)− (x − x0) · ∇u(x0)

− (u(x1)− u(x0)− (x1 − x0) · ∇u(x0))

+ (x − x1) · (∇u(x0)− ∇u(x1))

≤ t − 23d + |x − x1|d.

Moreover, x ∈ Dx0u(ε), since t ≤ ε, and thus,

|x − x1| ≤ |x − x0| + |x0 − x1| ≤3+ d ≤ 23.

Therefore, x ∈ Dx1u(t).
Next we prove (b). Fix t ∈ (ε,∞), and let x ∈ Dx0u(t − 23dt/ε). By the previous computation, we

have that
u(x)− u(x1)− (x − x1) · ∇u(x1)≤ t − 23dt/ε+ (|x − x0| +3)d. (5-4)

To control |x − x0|, the distance from x to x0, we need to estimate the diameter of Dx0u(t). We take
y ∈ Dx0u(t) \ Dx0u(ε) and let z be in the intersection of ∂Dx0u(ε) and the line segment joining x0 and y.
Then there is some λ > 1 such that y − x0 = λ(z − x0). By convexity of u,

u(z)≤
λ−1
λ

u(x0)+
1
λ

u(y).

Therefore,

λε = λ(u(z)− u(x0)− (z − x0) · ∇u(x0))

≤ (λ− 1)u(x0)+ u(y)− λu(x0)− (y − x0) · ∇u(x0)= u(y)− u(x0)− (y − x0) · ∇u(x0)≤ t,
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so λ≤ t/ε. By convexity, we have that Dx0u(t)⊂ x0 + (t/ε)(Dx0u(ε)− x0). It follows that

diam Dx0u(t)≤
t
ε

diam Dx0u(ε)=
3t
ε
.

Hence |x − x0| ≤3t/ε, and, by (5-4), we get

u(x)− u(x1)− (x − x1) · ∇u(x1)≤ t −
23dt
ε

+

(
3t
ε

+3
)

d ≤ t,

which means that x ∈ Dx1u(t). □

We are ready to give the proof of Proposition 5.2.

Proof of Proposition 5.2. Let x1 ∈ Br (x0) with r ≤ ε/(43), and write d = |x0 − x1|. We will estimate
F s

k u(x1) using Proposition 5.4:

F s
k u(x1)= cn,s

∫
∞

0

∫
Rn−k

1
|z|n−k+2s W

(
µx1u(t, z)1/k

|z|

)
dz dt.

In view of Lemma 5.5, we separate the above integral into terms I + II + III by dividing the integral with
respect to t into three parts as follows:

I : t ∈ (0, 23d], II : t ∈ (23d, ε], III : t ∈ (ε,∞).

Let us start with I. Since u ∈ C1,1(Rn) with [u]C1,1(Rn) ≤ 1, we have

µx1u(t, z)≥ (t − |z|2)k/2+ .

Hence, using that W (ρ) is monotone decreasing, we get

W
(
µx1u(t, z)1/k

|z|

)
≤ W

((
t

|z|2
− 1

)1/2

+

)
.

Therefore,∫
Rn−k

1
|z|n−k+2s W

(
µx1u(t, z)1/k

|z|

)
dz ≤

∫
{|z|<t1/2}

1
|z|n−k+2s W

((
t

|z|2
− 1

)1/2 )
dz

+ W (0)
∫

{|z|>t1/2}

1
|z|n−k+2s dz ≡ I1 + I2.

Note that W (0)= C(n, k, s) <∞. Then

I2 ≲
∫

∞

t1/2

1
ρn−k+2s ρ

n−k−1 dρ ≂ t−s .

For I1, we make the change of variables w = z/t1/2. We see that

I1 =

∫
{|w|<1}

1
t (n−k+2s)/2|w|n−k+2s W

((
1

|w|2
− 1

)1/2 )
t (n−k)/2 dw ≂

1
t s

∫ 1

0

1
ρ1+2s W

((
1
ρ2 − 1

)1/2 )
dρ.

Note that if 0< ρ ≤
1
2 , then (

1
ρ2 − 1

)1/2

≥
1

√
2ρ
.
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Hence

W
((

1
ρ2 − 1

)1/2 )
≤ W

(
1

√
2ρ

)
=

∫
∞

1/(
√

2ρ)

r k−1

(1 + r2)(n+2s)/2 dr ≲ ρn−k+2s .

Therefore,

I1 ≲ t−s
∫ 1/2

0

1
ρ1+2s ρ

n−k+2s dρ+ t−s W (0)
∫ 1

1/2

1
ρ1+2s dρ ≂ t−s,

since n − k > 0. We conclude that

I = cn,s

∫ 23d

0

∫
Rn−k

1
|z|n−k+2s W

(
µx1u(t, z)1/k

|z|

)
dz dt ≲

∫ 23d

0
t−s dt

≂ (23d)1−s
= (23)1−s

|x1 − x0|
1−s .

Next we estimate the integral for t ∈ (23d, ε]. To this end, we use Lemma 5.5 (a) to get

Dx0u(t − 23d)⊂ Dx1u(t).

In particular, for any z ∈ Rn−k fixed, we have

{y ∈ Rk
: ũx0(y, z)≤ t − 23d} ⊂ {y ∈ Rk

: ũx1(y, z)≤ t}.

Hence µx0(t − 23d, z)≤ µx1(t, z), which yields

II = cn,s

∫ ε

23d

∫
Rn−k

1
|z|n−k+2s W

(
µx1u(t, z)1/k

|z|

)
dz dt

≤ cn,s

∫ ε−23d

0

∫
Rn−k

1
|z|n−k+2s W

(
µx0u(t, z)1/k

|z|

)
dz dt.

Finally, we estimate the integral for t ∈ [ε,∞). By Lemma 5.5 (b),

Dx0u
(
t −

23dt
ε

)
⊂ Dx1u(t).

Hence µx0u(t − 23dt/ε, z)≤ µx1u(t, z), and

III = cn,s

∫
∞

ε

∫
Rn−k

1
|z|n−k+2s W

(
µx1u(t, z)1/k

|z|

)
dz dt

≲
∫

∞

ε

∫
Rn−k

1
|z|n−k+2s W

(
µx0u(t − 23dt/ε, z)1/k

|z|

)
dz dt

=
1

1 − 23d/ε

∫
∞

ε−23d

∫
Rn−k

1
|z|n−k+2s W

(
µx0u(t, z)1/k

|z|

)
dz dt.

Note that

II + III ≤
cn,s

1 − 23d/ε

∫
∞

0

∫
Rn−k

1
|z|n−k+2s W

(
µx0u(t, z)1/k

|z|

)
dz dt =

ε

ε− 23d
F s

k u(x0).
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Therefore, we conclude that

F s
k u(x1)−F s

k u(x0)≤ C31−s
|x1 − x0|

1−s
+

(
ε

ε− 23d
− 1

)
F s

k u(x0)

≤ C31−s
|x1 − x0|

1−s
+

43
ε

|x1 − x0|F s
k u(x0),

since d < r ≤ ε/(43), and thus, ε− 23d ≥ ε/2. □

6. A global Poisson problem

We consider the following Poisson problem in the full space:{
F s

k u = u −ϕ in Rn,

(u −ϕ)(x)→ 0 as |x | → ∞,
(6-1)

where ϕ : Rn
→ R is nonnegative, smooth, and strictly convex. Furthermore, we ask that ϕ behaves

asymptotically at infinity as a cone φ, that is,

lim
|x |→∞

(ϕ−φ)(x)= 0. (6-2)

Similar problems have been studied for nonlocal Monge–Ampère operators [Caffarelli and Charro 2015;
Caffarelli and Silvestre 2016].

We will prove the following theorem.

Theorem 6.1. There exists a unique solution u to (6-1) such that u ∈ C1,1(Rn) with

[u]C1,1(Rn) ≤ [ϕ]C1,1(Rn).

To define the notion of a solution, we introduce a natural pointwise definition of F s
k u for functions u

that are merely continuous.

Definition 6.2. Let u ∈ C0(Rn).

(a) We say that a linear function l(y)= y · p + b, with p ∈ Rn and b ∈ R, is a supporting plane of u at a
point x if l(x)= u(x) and l(y)≤ u(y) for all y ∈ Rn .

(b) We define the subdifferential of u at a point x as the set ∂u(x) of all vectors p ∈ Rn such that
l(y)= y · p + b is a supporting plane of u at x for some b ∈ R.

Definition 6.3. Let u ∈ C0(Rn) be a convex function. For x0 ∈ Rn , we define

F s
k u(x0)= cn,s sup

p∈∂u(x0)

inf
K∈Ks

k

∫
Rn
(u(x0 + x)− u(x0)− x · p)K (x) dx .

Remark 6.4. Note that if u ∈ C1,1(x0), then ∂u(x0)= {∇u(x0)}, and the previous definition coincides
with Definition 2.4.

The following properties of F s
k u will be useful for our purposes. The proof is analogous to the one in

[Caffarelli and Silvestre 2016], so we omit it here.
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Lemma 6.5. Let u, v ∈ C0(Rn) be convex functions. The following hold:

(a) (homogeneity) For any λ > 0,
F s

k (λu)= λF s
k u.

(b) (monotonicity) Assume that u(x0)= v(x0) and u(x)≥ v(x) for all x ∈ Rn . Then

F s
k u(x0)≥ F s

kv(x0).

(c) (concavity) For any x ∈ Rn ,

F s
k
( 1

2(u + v)
)
(x)≥

1
2(F

s
k u(x)+F s

kv(x)).

(d) (lower semicontinuity) Assume that u ∈ C1,1(Rn). Then

F s
k u(x0)≤ lim inf

x→x0
F s

k u(x).

Definition 6.6. Let u ∈ C0(Rn) be a convex function. We say that u is a subsolution to F s
k u = u − ϕ

in Rn if
F s

k u(x0)≥ u(x0)−ϕ(x0) for all x0 ∈ Rn.

Similarly, u is a supersolution if

F s
k u(x0)≤ u(x0)−ϕ(x0) for all x0 ∈ Rn.

We say that u is a solution if it is both a subsolution and a supersolution.

Lemma 6.7. If u and v are subsolutions, then max{u, v} is a subsolution.

Proof. Let w= max{u, v}. Then w is continuous and convex. Fix x0 ∈ Rn . Without loss of generality, we
may assume that u(x0)≥ v(x0). Then w(x0)= u(x0) and w(x)≥ u(x) for any x ∈ Rn . By monotonicity
(see Lemma 6.5), we have

F s
kw(x0)≥ F s

k u(x0)≥ u(x0)−ϕ(x0)= w(x0)−ϕ(x0).

Hence w is a subsolution. □

We will show existence and uniqueness of solutions to (6-1) using Perron’s method. The key ingredients
are the comparison principle and the existence of a subsolution (lower barrier) and a supersolution (upper
barrier). We state this in the following proposition. We omit the proof since it is similar to that in
[Caffarelli and Silvestre 2016].

Proposition 6.8. Consider the equation F s
k u = u −ϕ in Rn . The following hold:

(a) (comparison principle) Let u and v be a subsolution and supersolution, respectively. Assume that
u ≤ v in Rn

\� for some bounded domain �⊂ Rn . Then u ≤ v in Rn .

(b) (lower barrier) The function ϕ is a subsolution.

(c) (upper barrier) The function ϕ+w is a supersolution, where w = (I −1s)−11sϕ. In particular,
w(x)≤ C(1 + |x |)1−2s for some C > 0.
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An immediate consequence of the comparison principle is the uniqueness of solutions.

Lemma 6.9 (uniqueness). There exists at most one solution to (6-1).

Proof. Suppose by means of contradiction that there exist two functions u, v ∈ C0(Rn), with u ̸= v,
satisfying (6-1). Then |u(x)− v(x)| → 0 as |x | → ∞. Hence, for any ε > 0, there exists a compact set
�ε ∈ Rn , depending on ε, such that

v(x)− ε ≤ u(x)≤ v(x)+ ε for all x ∈ Rn
\�ε.

Moreover, for any x0 ∈ Rn , the function v+ ε satisfies

F s
k (v+ ε)(x0)= v(x0)−ϕ(x0) < (v(x0)+ ε)−ϕ(x0).

Therefore, v is a supersolution and, by the comparison principle, it follows that u ≤ v+ε in Rn . Similarly,
we see that v− ε is a subsolution and u ≥ v− ε in Rn . Hence

∥u − v∥L∞(Rn) ≤ ε,

and letting ε→ 0, we get u = v in Rn , which is a contradiction. □

To prove existence of a solution, we define

u(x)= sup
v∈S

v(x), (6-3)

where S is the set of admissible subsolutions given by

S = {v ∈ C0,1(Rn) : v a subsolution, ϕ ≤ v ≤ ϕ+w, and [v]C0,1(Rn) ≤ [ϕ]C0,1(Rn)}.

Note that S ̸= ∅ since ϕ ∈ S, and the supremum is finite since v ≤ ϕ+w for any v ∈ S. Moreover, u is
convex and Lipschitz with

[u]C0,1(Rn) ≤ [ϕ]C0,1(Rn).

From ϕ ≤ u ≤ ϕ+w and the upper bound for w in Proposition 6.8, it follows that

0 ≤ (u −ϕ)(x)≤ w(x)≤ C(1 + |x |)1−2s
→ 0

as |x | → ∞, since 1 − 2s < 0.

Proposition 6.10. The function u given in (6-3) is C1,1(Rn) with

[u]C1,1(Rn) ≤ [ϕ]C1,1(Rn).

Proof. We will show that, for any x0, x1 ∈ Rn ,

0 ≤ u(x0 + x1)− u(x0 − x1)− 2u(x0)≤ [ϕ]C1,1(Rn)|x1|
2.

Indeed, the lower bound follows from convexity of u. Hence we only need to prove the upper bound.
Write M = [ϕ]C1,1(Rn). Then

ϕ(x0 + x1)−ϕ(x0 − x1)− M |x1|
2
≤ 2ϕ(x0). (6-4)
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Take any v ∈ S and fix x1 ∈ Rn . Define

v̂(x0)=
1
2(v(x0 + x1)+ v(x0 − x1)− M |x1|

2) for x0 ∈ Rn.

We claim that v̂ is a subsolution to F s
k u = u − ϕ in Rn . Indeed, since F s

k is homogeneous of degree 1,
concave, and translation-invariant (see Lemma 6.5), we have

F s
k v̂(x0)= F s

k
( 1

2v(x0 + x1)+
1
2v(x0 − x1)

)
≥

1
2F

s
kv(x0 + x1)+

1
2F

s
kv(x0 − x1)

≥
1
2(v(x0 + x1)−ϕ(x0 + x1)+ v(x0 − x1)−ϕ(x0 − x1))

=
1
2(v(x0 + x1)− v(x0 − x1)− M |x1|

2)− 1
2(ϕ(x0 + x1)+ϕ(x0 − x1)− M |x1|

2)

≥ v̂(x0)−ϕ(x0).

Moreover, using that v ≤ ϕ+w, we get

v̂(x0)≤
1
2(ϕ(x0 + x1)+ϕ(x0 − x1)− M |x1|

2)+ 1
2(w(x0 + x1)+w(x0 − x1)).

By (6-4) and the upper bound of w in Proposition 6.8 (c), we see that

v̂(x0)−ϕ(x0)≤
1
2C(1 + |x0 + x1|

1−2s)+ 1
2C(1 + |x0 − x1|

1−2s)→ 0

as |x0| → ∞ with x1 fixed, since 1−2s < 0. Then, for all ε > 0, there is some compact set �ε, depending
on ε and x1, such that

v̂(x0)− ε ≤ ϕ(x0) for all x0 ∈ Rn
\�ε.

Consider v̂ε=max{v̂−ε, ϕ}. Then v̂ε is a subsolution, since the maximum of subsolutions is a subsolution
(see Lemma 6.7). Also, v̂ε = ϕ ≤ ϕ+w in Rn

\�ε, and ϕ+w is a supersolution by Proposition 6.8 (c).
Applying the comparison principle, we get ϕ≤ v̂ε ≤ϕ+w. Moreover, [v̂ε]C0,1(Rn)≤[ϕ]C0,1(Rn). Therefore,
v̂ε ∈ S.

Since u(x0)= supv∈S v(x0), it follows that u(x0) ≥ v̂ε(x0) ≥ v̂(x0)− ε. Letting ε→ 0, we conclude
that, for any v ∈ S and x0, x1 ∈ Rn ,

u(x0)≥
1
2(v(x0 + x1)+ v(x0 − x1)− M |x1|

2). (6-5)

Finally, by definition of supremum, for any δ > 0 and x0, x1 ∈ Rn , there exist v1, v2 ∈ S such that
u(x0 + x1)− δ < v1(x0 + x1) and u(x0 − x1)− δ < v2(x0 − x1). Let v = max{v1, v2}. Then using (6-5)
for this v, we get

u(x0)≥
1
2(u(x0 + x1)− δ+ u(x0 − x1)− δ− M |x1|

2).

Letting δ → 0, we conclude that

u(x0 + x1)− u(x0 − x1)− 2u(x0)≤ [ϕ]C1,1(Rn)|x1|
2. □

To complete the proof of Theorem 6.1, it remains to see that u is a solution. Hence, we need to show
that u is both a subsolution and a supersolution. We will prove these results in the next two propositions.
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Lemma 6.11. For any x0 ∈ Rn and ε > 0, the set

Dx0u(ε)= {x ∈ Rn
: u(x)− u(x0)− (x − x0) · ∇u(x0)≤ ε}

is compact.

Proof. Let x0 ∈ Rn and ε > 0. Without loss of generality, we may assume that x0 = 0. Let l be the
supporting plane of u at 0, that is, l(x)= u(0)+ x · ∇u(0). Clearly, Dx0u(ε) is closed. Hence we only
need to show that it is bounded. Recall that

φ(x) < ϕ(x)≤ u(x) for all x ∈ Rn, (6-6)

where φ is a cone. Note that the strict inequality in (6-6) follows from the strict convexity of ϕ. Moreover,
by (6-1) and (6-2) we have

lim
|x |→∞

(u −φ)(x)= 0.

Therefore, Dx0u(ε)⊂ {φ < l + ε}. We claim that

lim
|x |→∞

(φ− l)(x)= ∞. (6-7)

If this condition holds, then, for all M > 0, there exists R > 0 such that

φ(x)− l(x) > M for all |x |> R.

Choosing M = ε, we have {φ < l+ε}⊂ BR for some R depending on ε. Hence the set Dx0u(ε) is bounded.
To prove the claim, we distinguish two cases. If u(0)= 0, then u attains an absolute minimum at 0, so

∇u(0)= 0. In particular, l(x)= 0 for all x ∈ Rn , and thus (6-7) is clearly satisfied. Hence it remains to
show the claim when

u(0) > 0.

We will prove it by contradiction. If (6-7) is not true, then there exists a sequence of points {x j }
∞

j=1 ⊂ Rn

such that |x j | → ∞ as j → ∞ and
lim

j→∞

(φ− l)(x j ) <∞.

Using that φ is continuous and homogeneous of degree 1, and letting j → ∞, we get

φ(x j )

|x j |
−

l(x j )

|x j |
= φ

(
x j

|x j |

)
−

u(0)
|x j |

−
x j

|x j |
· ∇u(0)→ φ(e)− Deu(0)= 0,

where x j/|x j | → e, up to a subsequence. Therefore, φ(e)= Deu(0). For any λ > 0, we have

l(λe)= u(0)+ λe · ∇u(0)= u(0)+ λφ(e)= u(0)+φ(λe).

Since l is a supporting plane of u, we know that u(x)≥ l(x) for all x ∈ Rn , and thus,

u(λe)≥ l(λe)= φ(λe)+ u(0).
Letting λ→ ∞, we see that

0 = lim
λ→∞

(u −φ)(λe)≥ u(0) > 0,

which is a contradiction. □
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Proposition 6.12 (u is a subsolution). The function u given in (6-3) satisfies

F s
k u(x0)≥ u(x0)−ϕ(x0) for all x0 ∈ Rn.

Proof. By Proposition 6.10, we know that u ∈ C1,1(Rn). Without loss of generality, we may assume that
[u]C1,1(Rn) = 1. Otherwise, consider u/[u]C1,1(Rn).

Let x0 ∈ Rn . Then the quadratic polynomial

P(x)= u(x0)+ ∇u(x0) · (x − x0)+ |x − x0|
2

touches u from above at x0. Moreover, we may assume that P touches u strictly from above at x0. If not,
we replace P by P + ε|x − x0|

2 with ε > 0 small.
Fix δ > 0. Then there exists h > 0, with h → 0 as δ → 0, such that

P(x)− u(x)≥ h > 0 for all x ∈ Rn
\ Bδ(x0).

Since u(x)= supv∈S v(x) and v ∈ S is uniformly continuous, there is a monotone sequence {vj }
∞

j=1 ⊂ S
such that vj → u uniformly in compact subsets of Rn . In particular, there exists j0 ≥ 1, depending on h,
such that, for all j > j0,

u(x)− h < vj (x) for all x ∈ Bδ(x0). (6-8)

Write v = vj for some j > j0. It follows that{
P − v ≥ h in Rn

\ Bδ(x0),

P − v < P − u + h in Bδ(x0).

Let d = infRn (P − v). Then d = P(x1)− v(x1) for some x1 ∈ Bh(x0) with 0 ≤ d < h, and{
P(x1)− d = v(x1),

P(x)− d ≥ v(x) for all x ∈ Rn.

Hence P − d is a quadratic polynomial that touches v from above at x1. In particular, since v is convex,
v has a unique supporting plane l at x1, so ∂v(x1)= {∇l}.

Let τ ≥ 0 be such that l + τ is the supporting plane of u at some point x2. Note that x2 approaches x0

as h goes to 0, and thus, there exists some r = r(h) > 0 such that r → 0 as h → 0 and x2 ∈ Br (x0).
Furthermore, since l(x1)+ d = v(x1)+ d = P(x1)≥ u(x1), then τ ≤ d < h (see Figure 2).

Fix ε > 0. By Lemma 6.11, we have that Dx0u(ε) is bounded, so 3= diam Dx0u(ε) <∞. Choose δ
sufficiently small that r < ε/(43). Then by Proposition 5.2,

F s
k u(x2)≤ F s

k u(x0)+ C31−s
|x2 − x0|

1−s
+

43
ε

F s
k u(x0)|x2 − x0| ≤ F s

k u(x0)+ C(r), (6-9)

where C(r)→ 0 as r → 0. Next we will show that

F s
kv(x1)− Cτ 1−s

≤ F s
k u(x2) (6-10)

for some constant C > 0 depending only on n, k, and s. Since ∂v(x1)= {∇l} we have v ∈ C1,1(x1), and
using Proposition 5.4 we get

F s
kv(x1)= cn,s

∫
∞

0

∫
Rn−k

1
|z|n−k+2s W

(
µx1v(t, z)1/k

|z|

)
dz dt,



ON A FAMILY OF FULLY NONLINEAR INTEGRODIFFERENTIAL OPERATORS FROM 1s TO MAs 275

u

v

P

P − d

l

l + τ

Rn
x0

x1

x2
Br (x0)

Figure 2. Geometry involved in the proof of Proposition 6.12.

where µxv(t, z) = ω−1
k Hk({y ∈ Rk

: ṽx(y, z) ≤ t}) and W is the monotone decreasing function given
in (5-2). Observe that since v ≤ u, the supporting plane of v at x1 is l, and the supporting plane of u at x2

is l + τ . Then, for any t > 0, it follows that

Dx2u(t)= {u − (l + τ)≤ t} ⊆ {v− l ≤ t + τ } = Dx1v(t + τ).

In particular, µx2u(t, z)≤ µx1v(t + τ, z) for any z ∈ Rn−k . Therefore,

W (µx2u(t, z))≥ W (µx1v(t + τ, z)),

which yields

F s
k u(x2)≥ cn,s

∫
∞

τ

∫
Rn−k

1
|z|n−k+2s W

(
µx1v(t, z)1/k

|z|

)
dz dt

= F s
kv(x1)− cn,s

∫ τ

0

∫
Rn−k

1
|z|n−k+2s W

(
µx1v(t, z)1/k

|z|

)
dz dt

≥ F s
kv(x1)− Cτ 1−s,

where the last inequality follows from the fact that µx1v(t, z) ≥ C(t − |z|2)k/2+ and W is monotone
decreasing.

Combining (6-9) and (6-10), using that v is a subsolution, and using (6-8), we get

F s
k u(x0)+ C(r)≥ F s

kv(x1)− Cτ 1−s
≥ v(x1)−ϕ(x1)− Cτ 1−s > u(x1)− h −ϕ(x1)− Cτ 1−s .

Letting δ → 0, it follows that h → 0, C(r)→ 0, τ → 0, and x1 → x0. By continuity of u and ϕ, we
conclude the result. □
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Proposition 6.13 (u is a supersolution). The function u given in (6-3) satisfies

F s
k u(x0)≤ u(x0)−ϕ(x0) for all x0 ∈ Rn.

Proof. Assume the statement is false. Then there exists some x0 ∈ Rn such that

F s
k u(x0) > u(x0)−ϕ(x0).

Without loss of generality, we may assume that u(x0) = 0 and ∇u(x0) = 0. Otherwise, consider
v(x)= u(x)− u(x0)− (x − x0) · ∇u(x0). Then there exists some δ > 0 such that

F s
k u(x0)≥ −ϕ(x0)+ δ. (6-11)

Fix ε > 0 and let uε(x)= max{u(x), ε}. We will show that, for ε sufficiently small, uε is an admissible
subsolution, and thus reach a contradiction with u being the largest subsolution. Indeed, uε is convex and
uε ∈ C0,1(Rn) with [uε]C0,1(Rn) ≤ [ϕ]C0,1(Rn). Moreover, note that uε(x)= u(x) for x large. Hence, once
we show that uε is a subsolution, it will follow from the comparison principle that ϕ ≤ uε ≤ ϕ+w.

If x ∈ {uε = u}, then uε(x)= u(x) and uε ≥ u in Rn . By monotonicity (Lemma 6.5),

F s
k uε(x)≥ F s

k u(x)≥ u(x)−ϕ(x)= uε(x)−ϕ(x),

since u is a subsolution, by Proposition 6.12.
If x ∈ {uε > u}, then uε(x)= ε and ∂uε(x)= {0}. In particular,

F s
k uε(x)= F s

k uε(x0). (6-12)

Moreover, for any t > 0, we have Dx0uε(t) = {uε − ε ≤ t} = {u ≤ t + ε} = Dx0u(t + ε). Therefore, in
view of Proposition 5.4, we get

F s
k uε(x0)= F s

k u(x0)−

∫ ε

0

∫
Rn−k

1
|z|n−k+2s W

(
µx0u(t, z)1/k

|z|

)
dz dt ≥ F s

k u(x0)− Cε1−s, (6-13)

since u ∈ C1,1(Rn) and µx0u(t, z)≥ (t − |z|2)k/2+ .
Combining (6-11)–(6-13), we see that

F s
k uε(x)= F s

k uε(x0)≥ F s
k u(x0)− Cε1−s

≥ −ϕ(x0)+ δ− Cε1−s

= uε(x)−ϕ(x)+ (ϕ(x)−ϕ(x0)+ δ− Cε1−s
− ε),

since uε(x)= ε. We need the term inside the parenthesis to be nonnegative. Hence it remains to control
ϕ(x)−ϕ(x0). Since ϕ is smooth,

|ϕ(x)−ϕ(x0)| ≤ [ϕ]C0,1(Rn)|x − x0|.

We distinguish two cases. If {u = 0} = {x0}, then |x − x0| ≤ dε → 0 as ε → 0. Hence, choosing ε
sufficiently small, we see that

ϕ(x)−ϕ(x0)+ δ− Cε1−s
− ε ≥ δ− [ϕ]C0,1(Rn)dε − Cε1−s

− ε ≥ 0.

Therefore, uε ∈ S, which contradicts uε(x0) > u(x0)= supv∈S v(x0)≥ uε(x0).
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Suppose now that {u = 0} contains more than one point. By compactness of {u = 0} and continuity
of ϕ, there exists some x1 ∈ {u = 0} where ϕ attains its maximum. Then

F s
k u(x1)= F s

k u(x0)≥ u(x0)−ϕ(x0)+ δ ≥ u(x1)−ϕ(x1)+ δ.

Moreover, by convexity of {u = 0} (since u ≥ ϕ ≥ 0) and ϕ, we must have that x1 ∈ ∂{u = 0}. Hence there
exists {x j }

∞

j=2 ⊂ {u > 0} such that x j → x1 and u is strictly convex at x j . Namely, there is a supporting
plane that touches u only at x j .

By continuity of u, there exists some j0 ≥ 2 such that

u(x1) > u(x j )−
1
4δ for all j > j0.

By continuity of ϕ, there exists some j1 ≥ 2 such that

ϕ(x1) < ϕ(x j )+
1
4δ for all j > j1.

By lower semicontinuity of F s
k u, up to a subsequence, there exists some j2 ≥ 2 such that

F s
k u(x j ) > F s

k u(x1)−
1
4δ for all j > j2.

Let J >max{ j0, j1, j2}. Then

F s
k u(x J ) > F s

k u(x1)−
1
4δ ≥ u(x1)−ϕ(x1)+

3
4δ > u(x J )−ϕ(x J )+

1
4δ,

and we can repeat the previous argument, replacing x0 by x J . We conclude that

F s
k u(x0)≤ u(x0)−ϕ(x0) for all x0 ∈ Rn. □

7. Future directions

As mentioned in the introduction, the main idea to define a nonlocal analog to the Monge–Ampère
operator is to write it as a concave envelope of linear operators. More precisely,

n det(D2u(x))1/n
= inf

M∈M
tr(M D2u(x)),

where M = {M ∈ Sn
: M > 0, det(M) = 1} and Sn is the set of n × n symmetric matrices. Note

that this identity is equivalent to the one given in (1-2) taking M = AAT and B = D2u(x), since
tr(AT B A)= tr(AAT B). In fact, this extremal property does not only hold for n det(B)1/n with B ∈ Sn

and B > 0. If λ = (λ1, . . . , λn), where λi are the eigenvalues of B, then the function f defined on
0 = {λ ∈ Rn

: λi > 0 for all i = 1, . . . , n} and given by

f (λ)= n
( n∏

i=1

λi

)1/n

= n det(B)1/n

is differentiable, concave, and homogeneous of degree 1. In general, if f satisfies these conditions in an
open convex set 0 in Rn , then

f (λ)= inf
µ∈0

{ f (µ)+ ∇ f (µ) · (λ−µ)} = inf
µ∈0

∇ f (µ) · λ,
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where the second identity follows by Euler’s theorem. Therefore,

f (λ)= inf
M∈M f

tr(M B),

where M f = {M ∈ Sn
: λ(M) ∈ ∇ f (0)}, ∇ f (0) = {∇ f (µ) : µ ∈ 0}, and λ(M) are the eigenvalues

of M .
For instance, the k-Hessian functions introduced by Caffarelli, Nirenberg, and Spruck in [Caffarelli et al.

1985] satisfy these conditions and, in fact, fractional analogs have been recently studied by Wu [2019]. It
would be interesting to explore fractional analogs to a wider class of fully nonlinear concave operators,
like the ones mentioned above.

We remark that the 1-Hessian is equal to the Laplacian, and the n-Hessian is equal to the Monge–
Ampère operator. Moreover, for 1 < k < n, we obtain an intermediate discrete family between these
operators. In view of this observation, a natural question of finding a continuous family connecting the
Laplacian with the Monge–Ampère operator arises. Here we suggest possible families that smoothly
connect these two operators and pass through the k-Hessians, in some sense. Indeed, let α ∈ (0, 1]

n and
write |α| = α1 + · · · +αn . For λ ∈ Rn

+
, we consider the functions

fα(λ)=

(∑
σ∈S

λ
α1
σ(1) · · · λ

αn
σ(n)

)1/|α|

,

where S is the set of all cyclic permutations of {1, . . . , n}. Observe that, for any 1 ≤ k ≤ n, if α=
∑

i∈I ei

with |I| = k, then fα is precisely the k-Hessian function. Consider any smooth simple curve γ : [0, 1] →

(0, 1]
n such that

(1) γ (0)= ei for some 1 ≤ i ≤ n,

(2) γ (tk)=
∑

i∈Ik
ei with |Ik | = k and 0< tk < tk+1 < 1 for all 1< k < n, and

(3) γ (1)= (1, . . . , 1).

Then the family { fα}α∈Im(γ ) is as we described. In particular, fractional analogs of these functions would
give a continuous family from the fractional Laplacian to the nonlocal Monge–Ampère. We will study
this problem in a forthcoming paper.
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FOR GRAVITY-CAPILLARY WATER WAVES
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We obtain two results of propagation for the gravity-capillary water wave system. The first result shows
the propagation of oscillations and the spatial decay at infinity; the second result shows a microlocal
smoothing effect under the nontrapping condition of the initial free surface. These results extend the works
of Craig, Kappeler and Strauss (1995), Wunsch (1999) and Nakamura (2005) to quasilinear dispersive
equations. These propagation results are stated for water waves with asymptotically flat free surfaces, of
which we also obtain the existence. To prove these results, we generalize the paradifferential calculus of
Bony (1979) to weighted Sobolev spaces and develop a semiclassical paradifferential calculus. We also
introduce the quasihomogeneous wavefront sets which characterize, in a general manner, the oscillations
and the spatial growth/decay of distributions.
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1. Introduction

We present two results on the propagation of singularities for the gravity-capillary water wave system,
including a microlocal smoothing effect. To the best of our knowledge, these results are the first of this
type for quasilinear dispersive equations. Before stating the main results, we shall first revisit classical
results of propagation for the linear half-wave equation and the linear Schrödinger equation. They lead us
to a more generalized concept of singularities which is adaptive to various dispersive equations.

1A. Wavefront set and the linear half-wave equation. If u ∈ D ′(M), where M is a smooth manifold
without boundary, then the singular support of u, denoted by sing supp u, is the smallest closed subset
of M outside of which u is smooth. To study the propagation of singularities when u solves some partial
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differential equations, the information given by sing supp u is usually insufficient. Heuristically, if we
consider singularities as accumulations of wavepackets with large wavenumbers, then this is because the
propagation direction of a wavepacket is given by its wavenumber rather than its location. It is probably
with this mindset that Hörmander [1971] introduced the concept of the wavefront set.

The wavefront set of u, denoted by WF(u), lifts sing supp u to the cotangent bundle T ∗M\0 in the sense
that a point x0 ∈ M belongs to sing supp u if and only if there exists ξ0 ̸= 0 such that (x0, ξ0) ∈ WF(u).
We shall recall an equivalent definition of WF(u) essentially due to [Guillemin and Sternberg 1977]:
in local coordinates, a point (x0, ξ0) ∈ T ∗M\0 does not belong to WF(u) if and only if there exists
a ∈ C∞

c (R
2d) with a(x0, ξ0) ̸= 0 such that ∥a(x, h Dx)u∥L2 = O(h∞) for h ∈ (0, 1]. For the definition of

the pseudodifferential operator a(x, h Dx), see (1-7).
In terms of the wavefront set, Hörmander [1971] proved a propagation result for pseudodifferential

equations of real principal type, improving previous works [Courant and Lax 1956; Lax 1957] on wave
propagation.

Theorem 1.1 [Hörmander 1971]. Let M be a smooth manifold without boundary. Let P ∈ 91(M)
admit a real principal symbol σ(P) = σ(P)(x, ξ) ∈ C∞(T ∗M\0,R), and let 8 = 8t(x, ξ) ∈

C∞(R × T ∗M\0, T ∗M\0) be the Hamiltonian flow of σ(P). If u solves the Cauchy problem{
∂t u + i Pu = 0,
u(0)= u0 ∈ L2(M),

(1-1)

then for all (x0, ξ0) ∈ WF(u0) and all t ∈ R, we have 8t(x0, ξ0) ∈ WF(u(t)).

In particular, if P =
√

−1g where g is a Riemannian metric on M, then (1-1) becomes the half-wave
equation and 8 is the corresponding cogeodesic flow on T ∗M. Therefore, we conclude that, for solutions
to the half-wave equation, microlocal singularities travel at speed 1 along cogeodesics. This gives a
justification for the Huygens–Fresnel principal of wavefront propagation.

For the propagation of singularities for the semilinear wave equation, we refer to [Bony 1986; Lebeau
1989]. For the propagation and the reflection of singularities for the linear wave equation on manifolds
with corners, see [Vasy 2008; Melrose, Vasy and Wunsch 2013].

1B. The homogeneous wavefront set and the linear Schrödinger equation. Hörmander’s theorem
(Theorem 1.1) is untrue when the order of P is higher than 1. For example, the Schrödinger propagator
ei t1/2 on Rd sends E ′(Rd) to C∞(Rd) whenever t ̸= 0. We conclude that singularities may appear
and disappear along the Schrödinger flow. These phenomena of “microlocal smoothing effect” and
“microlocal singularity formation” are due to the infinite speed of propagation of the Schrödinger equation,
as wavepackets with large wavenumbers can travel to or back from infinity instantaneously.

The study of the infinite speed of propagation of the Schrödinger equation probably dates back to
[Boutet de Monvel 1975; Lascar 1977; 1978]. They proved that space-time singularities, as elements of
some space-time wavefront sets, travel along geodesics at an infinite speed. They did not obtain, however,
a time-dependent propagation results for wavefront sets with respect to the space variable alone. The
study of the smoothing effect for dispersive equations with an infinite speed of propagation was initiated
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by Kato [1983], who proved a local smoothing effect for generalized KdV equations. Craig, Kappeler
and Strauss [1995] proved microlocal smoothing effects for the linear Schrödinger equation under the
nontrapping condition of the geometry. Their results were later refined by Wunsch [1999] who obtained a
time-dependent propagation after understanding the transformation between singularities and quadratic
oscillations at infinity. The simplest example is the identity

ei t1/2δx0(x)=
1

(2π i t)d/2
ei |x−x0|

2/(2t),

where δx0 is the Dirac measure at x0 ∈ Rd. Wunsch’s results were stated on Riemannian manifolds
endowed with a scattering metric. He introduced the quadratic scattering wavefront set to characterize
quadratic oscillations.

Similar results were later obtained, independently, by Nakamura [2005] via a simpler calculus but
in a less general geometric setting — asymptotically Euclidean geometries, where he introduced the
homogeneous wavefront set. By definition, if u ∈ S ′(Rd), then the homogeneous wavefront set HWF(u)
is a subset of R2d whose complement consists of all (x0, ξ0) admitting a symbol a ∈ C∞

c (R
2d) with

a(x0, ξ0) ̸= 0 such that ∥a(hx, h Dx)u∥L2 = O(h∞) for h ∈ (0, 1]. It was proven by Ito [2006] that
the quadratic scattering wavefront set and the homogeneous wavefront set are essentially equivalent in
asymptotically Euclidean geometries. In fact, heuristically, if x0 ̸= 0 and ξ0 ̸= 0, then the pseudodifferential
operator a(hx, h Dx) is a microlocalization in the region of quadratic oscillation:

|x | ∼ |ξ | ∼ h−1.

Take for example the free Schrödinger equation in Rd, of which the dispersion relation is ω =
1
2 |ξ |2. A

wave packet of frequency ξ ∼ h−1 travels at the group velocity v= dω/ dξ = ξ ∼ h−1. The homogeneously
scaled quantization a 7→ a(hx, h Dx) thus allows us to keep up with the infinite speed of propagation and
obtain an analogue of Hörmander’s theorem.

Theorem 1.2 ([Nakamura 2005], similar results in [Wunsch 1999]). Let g be an asymptotically Euclidean
Riemannian metric on Rd, meaning that there exists ϵ > 0 such that, for all α∈ Nd and all i, j ∈{1, . . . , d},
we have

|∂αx (gi j (x)− δi j )| ≲ ⟨x⟩
−|α|−ϵ . (1-2)

Consider the Cauchy problem of the linear Schrödinger equation{
i∂t u +

1
21gu = 0,

u(0)= u0 ∈ L2(Rd).

Then the following propagation results hold:

(1) If (x0, ξ0) ∈ HWF(u0) and t0 ∈ R such that ξ0 ̸= 0 and x0 + tξ0 ̸= 0 for all t between 0 and t0, then
(x0 + t0ξ0, ξ0) ∈ HWF(u(t0)).

(2) If (x0, ξ0) ∈ WF(u0) is forwardly (resp. backwardly) nontrapping in the sense that the cogeodesic
issued from (x0, ξ0), denoted by {(xt , ξt)}t∈R (with an abuse of notation), satisfies

lim
t→+∞

|xt | = +∞
(
resp. lim

t→−∞
|xt | = +∞

)
,
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then there exists ξ+ ∈ Rd (resp. ξ− ∈ Rd ) satisfying ξ± = limt→±∞ ξt , and moreover, for all t0 > 0
(resp. t0 < 0), we have

(t0ξ+, ξ+) ∈ HWF(u(t0))
(
resp. (t0ξ−, ξ−) ∈ HWF(u(t0))

)
.

Theorem 1.2(1) studies the propagation of oscillations and spatial growth/decay for Schrödinger waves
at infinity and we thus require the condition x0 + tξ0 ̸= 0. In Rd, this result is a consequence of an
Egorov-type argument and the commutation relation[

i∂t +
1
21, a(t, hx, h Dx)

]
= (i∂t a − ξ · ∂xa)(t, hx, h Dx)+O(h2),

where a ∈ C∞

b (R × R2d). A similar argument works in asymptotically Euclidean geometries where we
replace the role of the semiclassical quantization x 7→ hx with the spatial decay of the metric g, i.e., the
condition (1-2).

Theorem 1.2(2) is a microlocal smoothing effect: if (t0ξ±, ξ±) does not belong to HWF(u(t0)), then
(x0, ξ0) cannot be an element of WF(u0). This result is a refinement of the result in [Craig, Kappeler and
Strauss 1995] and can be proven via a positive commutator estimate. In Rd, this estimate has the form[

i∂t +
1
21, a(t, x, h Dx)

]
≳O(h∞),

where a is some well-chosen symbol. For related results, see [Doi 1996; 2000; Burq 2004] for the necessity
of the nontrapping condition; see [Robbiano and Zuily 1999] for a microlocal analytic smoothing effect;
see [Kenig, Ponce and Vega 1998; Szeftel 2005] for local and microlocal smoothing effects for the
semilinear Schrödinger equation. We should also remark that Hörmander [1991] has also introduced
an essentially equivalent counterpart of the homogeneous wavefront set to which a similar definition as
that of Nakamura was given. See [Rodino and Wahlberg 2014; Schulz and Wahlberg 2017] for more
comments. However, Theorem 1.2(2) is unable, via simply reversing the time, to show how oscillations
at infinity form singularities along the Schrödinger flow. Indeed, the information about the locations
of singularities is not contained in quadratic oscillations but rather in linear oscillations at infinity. See
[Hassell and Wunsch 2005; Nakamura 2009] for more on this subject.

1C. Quasihomogeneous wavefront set and the gravity-capillary water wave system. The gravity-
capillary water wave system describes the evolution of inviscid, incompressible and irrotational fluid with
a free surface, in the presence of a gravitational field and the surface tension.

1C1. Formulations of the gravity-capillary water wave system. We shall first recall the Eulerian formu-
lation of the gravity-capillary water wave system. The area occupied by the fluid is a time-dependent
simply connected open subset of Rd+1 and is denoted by �. The boundary of � consists of two parts:
the free surface 6 and the bottom 0. The free surface of the fluid is a time-dependent hypersurface which
is the graph of a function η = η(t, x), where (t, x) ∈ R × Rd, whereas the bottom is independent of time
and is of depth b ∈ (0,∞). Therefore,

�= {−b < y < η}, 6 = {y = η}, 0 = {y = −b}.
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The Eulerian formulation describes water waves in the unknowns (η, v, P) where v : � → Rd is the
Eulerian vector field and P :�→ R is the pressure of the fluid:

∂tv+ v · ∇xyv = −∇xy(P + gy) (Euler equation),
∇xy · v = 0 (incompressibility),
∇xy × v = 0 (irrotationality),
(v · n)y=η = ∂tη/⟨∇η⟩ (kinetic condition at the free surface),
(v · n)y=−b = 0 (kinetic condition at the bottom),
−P|y=η = κH(η), (dynamic condition).

(1-3)

Here g ∈ R is the gravitational acceleration, κ > 0 is the surface tension, n : ∂�→ Sd denotes the exterior
unit normal vector field of ∂�, while

H(η)= ∇ ·

(
∇η√

1 + |∇η|2

)
(1-4)

is the mean curvature of the free surface. In (1-3), the kinetic condition at the free surface implies that
fluid particles which are initially on the free surface will stay on the free surface, whereas the kinetic
condition at the bottom is a rephrasing of the impenetrability of the bottom. The dynamic condition is the
Laplace–Young equation which expresses the balance between the interior pressure P and the surface
tension κ .

One of the main difficulties in the study of the Eulerian formulation of the system (1-3) is the time-
dependence of the domain �. By [Zakharov 1968; Craig and Sulem 1993], we can reformulate (1-3) as a
system in Rd. Note that due to the simply connected geometry of � and the irrotationality of the fluid,
there exists a velocity potential φ :�→ R such that ∇xyφ = v. By the incompressiblity of the fluid, the
potential φ is harmonic. Therefore φ satisfies the Laplace equation with Neumann boundary conditions:

1xyφ = 0, ∂nφ|y=η = ∂tη/⟨∇η⟩, ∂nφ|y=−b = 0.

Define ψ = φ|y=η and define
G(η)ψ = ⟨∇η⟩∂nφ|y=η.

Here G(η) is the Dirichlet–Neumann operator (see Section 5A for a rigorous definition). Then the
system (1-3) can be rewritten in terms of the unknowns (η, ψ):{

∂tη− G(η)ψ = 0,

∂tψ + gη− κH(η)+ 1
2
|∇ψ |

2
−

1
2
(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2
= 0.

(1-5)

We shall assume henceforth that κ = 1 for simplicity.

1C2. Quasihomogeneous wavefront set and model equations. It is known that the linearization of (1-5)
about the stationary solution (η, ψ)= (0, 0) can be symmetrized, up to a smoothing remainder, to the
fraction Schrödinger equation or order 3

2 . Consider the more general model equation

∂t u + i |Dx |
γ u = 0, γ ≥ 1. (1-6)
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It is natural to ask ourselves if we can define a new family of wavefront sets and extend the results from
Theorems 1.1 and 1.2 to (1-6). Note that a wave packet of (1-6) of frequency ξ ∼ h−1 travels at the group
velocity

v =
d|ξ |γ

dξ
= γ |ξ |γ−2ξ ∼ h−(γ−1).

It suggests that we need to use pseudodifferential operators of the form a(hγ−1x, h Dx) as test operators.
In the following definition, we consider the more general quantization with two parameters.

Definition 1.3. If u ∈ S ′(Rd), µ ∈ R∪{∞}, δ ≥ 0 and ρ ≥ 0 with δ+ρ > 0, then the quasihomogeneous
wavefront set WFµδ,ρ(u) is a subset of R2d defined as follows. A point (x0, ξ0) does not belong to WFµδ,ρ(u)
if and only if there exists a ∈ C∞

c (R
2d) with a(x0, ξ0) ̸= 0 such that ∥a(hδx, hρDx)u∥L2 = O(hµ) for

h ∈ (0, 1]. Here,

a(hδx, hρDx)u(x)= (2π)−d
∫∫

R2d
ei(x−y)·ξa(hδx, hρξ)u(y) dy dξ. (1-7)

Note that WFµδ,ρ(u) is invariant under the scaling (x, ξ) 7→ (λδx, λρξ) for all λ > 0. The existence of
(x0, ξ0)∈WFµδ,ρ(u) implies an accumulation of mass near the ray {(λδx0, λ

ρξ0)}λ>0. By choosing different
parameters, we recover the definitions of various wavefront sets from the quasihomogeneous wavefront
set: the wavefront set of Hörmander (δ, ρ, µ)= (0, 1,∞), the homogeneous wavefront set of Nakamura
(δ, ρ, µ)= (1, 1,∞) and the scattering wavefront set of [Melrose 1994] (δ, ρ, µ)= (1, 0,∞).

Theorem 1.4. If u solves (1-6) with initial data u(0)= u0 ∈ L2(Rd) and µ ∈ R ∪{∞}, then the following
results of propagation hold:

(1) If ργ = δ+ ρ, (x0, ξ0) ∈ WFµδ,ρ(u0)\{ξ = 0} and t0 ∈ R, then

(x0 + t0γ |ξ0|
γ−2ξ0, ξ0) ∈ WFµδ,ρ(u(t0)).

(2) If γ > 1, ργ > δ+ ρ, (x0, ξ0) ∈ WFµδ,ρ(u0)\{ξ = 0} and t0 ̸= 0, then

(t0γ |ξ0|
γ−2ξ0, ξ0) ∈ WFµρ(γ−1),ρ(u(t0)).

Note that we do not require x0 + tγ |ξ0|
γ−2ξ0 ̸= 0 in Theorem 1.4(1), while we require x0 + tξ0 ̸= 0 in

Theorem 1.2(1). This is because in Theorem 1.2 the geometry is only Euclidean at infinity.

1C3. Asymptotically flat water waves. Instead of the linearization at (η, ψ)= (0, 0), if we paralinearize
and symmetrize (1-5) as in [Alazard, Burq and Zuily 2011], then we obtain a quasilinear paradifferential
fractional Schrödinger equation of order 3

2 . We require the geometry of the free surface to be Euclidean
at infinity and the velocity field to be zero at infinity to avoid problems caused by the infinite speed of
propagation and the nonlinearity. We shall fulfill this requirement by proving the existence of gravity-
capillary water waves in some weighted Sobolev spaces.

Definition 1.5. If µ, k ∈ R, then Hµ
k = Hµ

k (R
d) is the set of all u ∈ S ′(Rd) such that

∥u∥Hµ
k

= ∥⟨x⟩
k
⟨Dx ⟩

µu∥L2 <+∞.
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If in addition k ∈ N and δ ≥ 0, then define

Hµ,δ
k =

k⋂
j=0

Hµ−δ j
j .

We are mostly interested in the case where δ =
1
2 . The weighted Sobolev space Hµ,1/2

k is a natural
space to apply the energy estimate for the fractional Schrödinger equation of order 3

2 and thus also for the
gravity-capillary water wave system.

Theorem 1.6. If d ≥ 1, µ > 3 +
d
2 , k ≤ 2µ− d − 6 and (η0, ψ0) ∈ Hµ+1/2,1/2

k ×Hµ,1/2
k , then there exist

T > 0 and a unique solution

(η, ψ) ∈ C([−T, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k )

to the Cauchy problem of (1-5) with initial data (η0, ψ0).

The study of the Cauchy problem for the water wave equation dates back to [Nalimov 1974; Kano and
Nishida 1979; Yosihara 1982; 1983]. The local well-posedness in Sobolev spaces with general initial data
were achieved in [Wu 1997; 1999; Beyer and Günther 1998]. Our analysis of the water wave equation
relies on the paradifferential calculus of [Bony 1986], which was introduced to the study of the water
wave equation in [Alazard and Métivier 2009] and later allowed Alazard, Burq and Zuily [2011; 2014] to
prove the local well-posedness with low Sobolev regularities. For recent progress of the Cauchy problem,
see e.g., [Alazard and Delort 2015; de Poyferré and Nguyen 2016; 2017; Deng, Ionescu, Pausader and
Pusateri 2017; Hunter, Ifrim and Tataru 2016; Ifrim and Tataru 2017; Ionescu and Pusateri 2018; Ming,
Rousset and Tzvetkov 2015; Rousset and Tzvetkov 2011; Wang 2020].

To prove Theorem 1.6, we shall combine the analysis in [Alazard, Burq and Zuily 2011] and a
paradifferential calculus in weighted Sobolev spaces. The latter can be achieved by modifying the
definition of paradifferential operators via a spatial dyadic decomposition. More precisely, if a is a
symbol, then we define

Pa =

∑
j∈N

ψj Tψj aψj ,

where {ψj } j∈N ⊂ C∞
c (R

d) is a dyadic partition of unity of Rd, ψj =
∑

|k− j |≤N ψk for some sufficiently
large N ∈ N, and Tψj a is the usual paradifferential operator of Bony. Such dyadic paradifferential calculus
inherits the symbolic calculus and the paralinearization of Bony’s calculus, while at the same time allows
the spatial polynomial growth/decay of symbols to play their roles in estimates.

We do not attempt to lower µ to > 2 +
d
2 as it was in [Alazard, Burq and Zuily 2011]. The range of k

is so chosen such that µ−
k
2 > 3 +

d
2 , enabling us to paralinearize (1-5) in Hµ

k . We should mention that
the existence of gravity water waves (water waves without surface tension) in uniformly local weighted
Sobolev spaces was obtain by [Nguyen 2016] via a periodic spatial decomposition from [Alazard, Burq
and Zuily 2016].

1C4. Propagation at infinity. Our first main result concerns the propagation of quasihomogeneous
wavefront sets with parameters (δ, ρ)=

( 1
2 , 1

)
, corresponding to Theorem 1.4(1).
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Theorem 1.7. Suppose that d ≥ 1, µ > 3 +
d
2 , 3 ≤ k < 2µ− K − d for some K > 0, and

(η, ψ) ∈ C([−T, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ),

where T > 0, solves (1-5). If t0 ∈ [−T, T ] and

(x0, ξ0) ∈ WFµ+1/2+σ

1/2,1 (η(0))∪ WFµ+σ

1/2,1(ψ(0))

such that ξ0 ̸= 0, 0 ≤ σ ≤
k
2 −

3
2 and

x0 +
3
2 t |ξ0|

−1/2ξ0 ̸= 0
for all t between 0 and t0, then(

x0 +
3
2 t0|ξ0|

−1/2ξ0, ξ0
)
∈ WFµ+1/2+σ

1/2,1 (η(t0))∪ WFµ+σ

1/2,1(ψ(t0)).

We will see that, by Lemma 2.15, if (η, ψ) ∈ Hµ+1/2,1/2
k ×Hµ,1/2

k , then

WFµ+1/2
1/2,1 (η)∪ WFµ1/2,1(ψ)⊂ {x = 0} ∪ {ξ = 0}.

By [Alazard and Métivier 2009], we expect σ to be at most µ−α−
d
2 for some α > 0, corresponding to

the gain of regularity by the remainder in the paralinearization procedure. Theorem 1.7 does not give the
optimal upper bound for σ , as it is not our priority, but when k = 2µ− K − d , the parameter σ can still
be as large as µ−

K
2 −

d
2 −

3
2 , almost reaching the paradifferential threshold.

1C5. Microlocal smoothing effect. Our second main result shows that singularities of the initial data
which are nontrapped with respect to the initial geometry instantaneously generate an element in the
quasihomogeneous wavefront set with parameters (δ, ρ)=

(1
2 , 1

)
, corresponding to Theorem 1.4(2).

Observe that if η is sufficiently regular, then 6 endowed with the metric inherited from Rd+1 is
isometric to (Rd , ϱ), where

ϱ =

(
Id+(∇η) t(∇η) ∇η

t(∇η) 1

)
.

Define 60 =6|t=0 and ϱ0 = ϱ|t=0. We identify the cogeodesic flow G on T ∗60 with the Hamiltonian
flow on R2d of the symbol G(x, ξ)=

tξϱ0(x)
−1ξ . Precisely G = Gs(x, ξ) is defined by the equation

∂sGs = (∂ξG,−∂x G)(Gs), G0 = IdR2d . (1-8)

Definition 1.8. A point (x0, ξ0) ∈ Rd
× (Rd

\0) is called forwardly (resp. backwardly) nontrapped with
respect to G if, with an abuse of notation, the cogeodesic {(xs, ξs)= Gs(x0, ξ0)}s∈R satisfies

lim
s→+∞

|xs | = ∞
(
resp. lim

s→−∞
|xs | = ∞

)
.

Theorem 1.9. If d ≥ 1, µ > 3 +
d
2 , 3 ≤ k < 2

3

(
µ− 1 −

d
2

)
, and

(η, ψ) ∈ C([−T, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ),

where T > 0, solves (1-5). Let

(x0, ξ0) ∈ WFµ+1/2+σ

0,1 (η(0))∪ WFµ+σ

0,1 (ψ(0)),
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where ξ0 ̸= 0 and 0 ≤ σ ≤
3
2 k. If (x0, ξ0) is forwardly (resp. backwardly) nontrapped, and the cogeodesic

{(xs, ξs)}s∈R is defined as above, then there exists ξ+∞ (resp. ξ−∞) in Rd
\{0} such that

lim
s→∞

ξs = ξ+∞

(
resp. lim

s→∞
ξ−s = ξ−∞

)
,

and moreover, for all 0< t0 ≤ T (resp. −T ≤ t0 < 0), we have( 3
2 t0|ξ+∞|

−1/2ξ+∞, ξ+∞

)
∈ WFµ+1/2+σ

1/2,1 (η(t0))∪ WFµ+σ

1/2,1(ψ(t0)),(
resp.

( 3
2 t0|ξ−∞|

−1/2ξ−∞, ξ−∞

)
∈ WFµ+1/2+σ

1/2,1 (η(t0))∪ WFµ+σ

1/2,1(ψ(t0))
)
.

We remark that the asymptotic directions ξ±∞ are determined solely by the geometry of 60. This is
due to the infinite speed of propagation. We can also prove that the nontrapping assumption is, at least
in the following two cases, unnecessary: if d = 1, or if ∇η(0) ∈ L∞ and ∥⟨x⟩∇

2η(0)∥L∞ is sufficiently
small. In both cases we obtain the following local smoothing effect.

Corollary 1.10. Suppose d, µ, k, σ satisfy the hypothesis of the previous theorem, T > 0,

(η, ψ) ∈ C([−T, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k )

solves (1-5), and both of the following two conditions are satisfied:

(1) Either d = 1 or ∥⟨x⟩∇
2η(0)∥L∞ is sufficiently small.

(2) WFµ+1/2+σ

1/2,1 (η(0))∪ WFµ+σ

1/2,1(ψ(0))⊂ {x = 0} ∪ {ξ = 0}.

Then, for all t0 ∈ [−T, T ]\{0} and for all ϵ > 0,

(η(t0), ψ(t0)) ∈ Hµ+1/2+σ−ϵ

loc × Hµ+σ−ϵ

loc .

The second condition is satisfied if, by Lemma 2.15, there exists (k, k ′) ∈ R2 such that

(η(0), ψ(0)) ∈ Hµ+1/2+σ−k
2k × Hµ+σ−k′

2k′ .

This is particularly the case if (η(0), ψ(0)) ∈ E ′(Rd)× E ′(Rd).
We refer to [Christianson, Hur and Staffilani 2009; Alazard, Burq and Zuily 2011] for local smoothing

effects of 2-dimensional capillary-gravity water waves. See also [Alazard, Ifrim and Tataru 2022] for a
Morawetz inequality of 2-dimensional gravity water waves.

1D. Outline of paper. In Section 2, we present basic properties of weighted Sobolev spaces and the
quasihomogeneous wavefront set. In Section 3, we prove Theorem 1.4 by extending the idea of Nakamura.
In Section 4, we review the paradifferential calculus of Bony, and extend it to weighted Sobolev spaces
by a spatial dyadic decomposition. We also develop a quasihomogeneous semiclassical paradifferential
calculus, and study its relations with the quasihomogeneous wavefront set. In Section 5, we study the
Dirichlet–Neumann operator in weighted Sobolev spaces and prove the existence of asymptotically flat
gravity-capillary water waves, i.e., Theorem 1.6. In Section 6, we prove our main results, i.e., Theorem 1.7,
Theorem 1.9 and Corollary 1.10, by extending the proof of Theorem 1.4 to the quasilinear equation using
the paradifferential calculus.
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2. Quasihomogeneous microlocal analysis

In this section we develop the quasihomogeneous semiclassical calculus and discuss its relation with
weighted Sobolev spaces and the quasihomogeneous wavefront set.

2A. Quasihomogeneous semiclassical calculus.

Definition 2.1. For (µ, k) ∈ R2, set mµ
k (x, ξ)= ⟨x⟩

k
⟨ξ⟩µ. Let ah ∈ C∞(R2d). We say that ah ∈ Sµk if for

all α, β ∈ Nd, there exists Cαβ > 0, such that, for all (x, ξ) ∈ R2d ,

sup
h∈(0,1]

|∂αx ∂
β
ξ ah(x, ξ)| ≤ Cαβmµ−|β|

k−|α|
(x, ξ). (2-1)

We say that ah ∈ Sµk is (µ, k)-elliptic if there exist R > 0,C > 0 such that, for |x | + |ξ | ≥ R,

inf
h∈(0,1]

|ah(x, ξ)| ≥ Cmµ
k (x, ξ).

Also write S∞
∞

=
⋃
(µ,k)∈R2 Sµk , and S−∞

−∞ =
⋂
(µ,k)∈R2 Sµk .

We say that ah ∈ S−∞

−∞ is elliptic at (x0, ξ0) if, for some neighborhood � of (x0, ξ0),

inf
h∈(0,1]

inf
(x,ξ)∈�

|ah(x, ξ)|> 0.

Definition 2.2. Let δ, ρ ∈ R such that δ+ ρ > 0 and, for all h ∈ (0, 1], define the scaling

θ
δ,ρ
h : (x, ξ) 7→ (hδx, hρξ), (2-2)

which induces a pullback θ δ,ρh,∗ on S∞
∞

: θ δ,ρh,∗ ah = ah B θ
δ,ρ
h . Then define, by (1-7),

Opδ,ρh (ah)= Op(θ δ,ρh,∗ ah)= a(hδx, hρDx).

The scaling ϑδh u(x)= hδd/2u(hδx) defines an isometry on L2(Rd). Therefore, by the formula

(ϑδh)
−1 Opδ,ρh (a)ϑδh = Op0,δ+ρ

h (a), (2-3)

we deduce the following results from the usual semiclassical calculus, for which we refer to [Zworski 2012].

Proposition 2.3. There exists K > 0 such that, if a ∈ C∞(R2d) with ∥∂αx ∂
β
ξ a∥L∞ ≤ M for all |α|+|β| ≤ d ,

then Opδ,ρh (a) : L2
→ L2 and ∥Opδ,ρh (a)∥L2→L2 ≤ K M.

Proposition 2.4. There exists a bilinear operator ♯δ,ρh : S∞
∞

× S∞
∞

→ S∞
∞

such that

Opδ,ρh (ah)Opδ,ρh (bh)= Opδ,ρh (ah♯
δ,ρ
h bh).

Moreover, if ah ∈ Sµk and bh ∈ Sνℓ , then ah♯
δ,ρ
h bh ∈ Sµ+ν

k+ℓ . For all r > 0, define

ah♯
δ,ρ
h,r bh =

∑
|α|<r

h|α|(δ+ρ)

α!
∂αξ ah Dα

x bh . (2-4)

Then we have
ah♯

δ,ρ
h bh − ah♯

δ,ρ
h,r bh = O(hr(δ+ρ))Sµ+ν−r

k+ℓ−r
.



PROPAGATION OF SINGULARITIES FOR GRAVITY-CAPILLARY WATER WAVES 291

Proposition 2.5. There exists a linear operator ζ δ,ρh : S∞
∞

→ S∞
∞

such that

Opδ,ρh (ah)
∗
= Opδ,ρh (ζ

δ,ρ
h ah).

Moreover if ah ∈ Sµk , then ζ δ,ρh ah ∈ Sµk . For r > 0, define

ζ
δ,ρ
h,r ah =

∑
|α|<r

h|α|(δ+ρ)

α!
∂αξ Dα

x āh . (2-5)

Then we have
ζ
δ,ρ
h ah − ζ

δ,ρ
h,r ah = O(hr(δ+ρ))Sµ−r

k−r
.

Proposition 2.6 (sharp Gårding inequality). If δ+ ρ > 0 and ah ∈ S0
0 such that Re ah ≥ 0, then there

exists C > 0 such that, for all u ∈ L2(Rd) and 0< h < 1, we have

Re(Opδ,ρh (ah)u, u)L2 ≥ −Chδ+ρ∥u∥
2
L2 .

2B. Weighted Sobolev spaces. Recall the weighted Sobolev spaces defined in Definition 1.5.

Proposition 2.7. We have S (Rd)=
⋂
µ,k∈R Hµ

k and S ′(Rd)=
⋃
µ,k∈R Hµ

k .

Proof. Clearly S (Rd) ⊂
⋂
µ,k∈R Hµ

k . The converse follows by the Sobolev embedding theorems. As
for the second statement, clearly

⋃
(µ,k)∈R2 Hµ

k ⊂ S ′(Rd). Conversely, if u ∈ S ′(Rd), then there exists
N > 0, such that for all ϕ ∈ S (Rd) we have

⟨u, ϕ⟩S ′,S ≲
∑

|α|+|β|≤N

∥xα∂βx ϕ∥L∞ ≲ ∥Op(m N
N )ϕ∥L2 .

By duality this implies that u ∈ H−N
−N . □

Lemma 2.8. If u ∈ S ′(Rd), then there exists N > 0 such that

u = h−N Opδ,ρh (m−N
−N )O(1)L2 .

Therefore, if δ+ ρ > 0, and ah ∈ O(h∞)S−∞

−∞
, then Opδ,ρh (ah)uh = O(h∞)S .

Proof. By the proof of Proposition 2.7, there exists N > 0 such that, for all ϕ ∈ S (Rd),

⟨u, ϕ⟩S ′,S ≲
∑

|α|+|β|≤N

∥xα∂βx ϕ∥L∞ ≲ h−N
∥Opδ,ρh (m N

N )ϕ∥L2 .

Again we conclude by duality. □

Definition 2.9. We say that a linear operator A : S (Rd)→ S ′(Rd) is of order (ν, ℓ) ∈ R2, and write
A ∈ O ν

ℓ if for all (µ, k) ∈ R2 there exists C > 0 such that for all u ∈ S (Rd) we have

∥Au∥Hµ−ν
k−ℓ

≤ C∥u∥Hµ
k
.

Therefore A extends to a bounded linear operator from Hµ
k to Hµ−ν

k−ℓ . We write A ∈ O−∞

−∞ if A ∈ O ν
ℓ for

all (ν, ℓ) ∈ R2.
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Let A be any nonempty set. Let Aα : S (Rd)→ S ′(Rd) and Cα > 0 be indexed by α ∈ A . We say
Aα = O(Cα)O ν

ℓ
if for all (µ, k) ∈ R2 there exists K > 0 such that, for all α ∈ A , we have

∥Aα∥Hµ
k →Hµ−ν

k−ℓ
≤ K Cα.

By Propositions 2.3 and 2.4, we obtain:

Proposition 2.10. The following mapping properties of pseudodifferential operators hold:

(1) If ah ∈ Sνℓ with (ν, ℓ) ∈ R2, then Op(ah) ∈ O ν
ℓ .

(2) If u ∈ S ′(Rd), then u ∈ Hµ
k if and only if there exists a (µ, k)-elliptic symbol ah ∈ Sµk such that

Op(ah)u = O(1)L2 .

Next, we characterize weighted Sobolev spaces by a dyadic decomposition.

Definition 2.11. The set P consists of all maps of the form

ψ : N → C∞

c (R
d), j 7→ ψj ,

such that the following conditions are satisfied:

(1) There exists C > 1 such that for all j ≥ 1 we have

suppψj ⊂ {x ∈ Rd
: C−12 j

≤ |x | ≤ C2 j
}.

(2) For all j ≥ 0, the function ψj is nonnegative.

(3) There exists C > 1 such that C−1
≤

∑
j∈N ψj ≤ C .

(4) For all α ∈ N there exists Cα such that for all j ∈ N we have

∥∂αx ψj∥L∞ ≤ Cα2− j |α|.

The set P∗ consists of all ψ ∈ P such that

(5)
∑

j∈N ψj = 1, and

(6) suppψj ∩ suppψk = ∅ whenever | j − k|> 2.

If ψ, ψ̃ ∈ P such that ψj ψ̃j = ψj for all j ∈ N, then we write ψ ⋐ ψ̃ .

Proposition 2.12. If µ, k ∈ R, ψ ∈ P and u ∈ S ′(Rd), then u ∈ Hµ
k if and only if∑

j∈N

22 jk
∥ψj u∥

2
Hµ <∞.

Moreover, there exists C > 1 such that, for all u ∈ Hµ
k , we have

C−1
∥u∥

2
Hµ

k
≤

∑
j∈N

22 jk
∥ψj u∥

2
Hµ ≤ C∥u∥

2
Hµ

k
.

Proof. We may assume that ψ ∈ P∗ because if φ1, φ2
∈ P then∑

j∈N

22 jk
∥φ1

j u∥
2
Hµ ≃

∑
j∈N

22 jk
∥φ2

j u∥
2
Hµ .



PROPAGATION OF SINGULARITIES FOR GRAVITY-CAPILLARY WATER WAVES 293

Define ψ̃ ∈ P by setting ψ̃j =
∑

|k− j |≤2 ψk for all j ∈ N. Then ψ ⋐ ψ̃ . Note that the family of
multiplication operators {2− jk

⟨x⟩
kψ̃j } j∈N is bounded in O 0

0 , which implies that, for all µ ∈ N, the
family of pseudodifferential operators {2− jk

⟨Dx ⟩
µ
⟨x⟩

kψ̃j ⟨Dx ⟩
−µ

} j∈N is bounded in O 0
0 . Therefore, for

all u ∈ Hµ
k , we have

22 jk
∥ψj u∥

2
Hµ ≲ ∥⟨Dx ⟩

µψj ⟨x⟩
ku∥

2
L2 ≲ ∥ψ̃j ⟨Dx ⟩

µψj ⟨x⟩
ku∥

2
L2 + ∥(1 − ψ̃j )⟨Dx ⟩

µψj ⟨x⟩
ku∥

2
L2 . (2-6)

Apply Proposition 2.4 with (δ, ρ)= (1, 0) and h = 2− j, we obtain that, for all N > 0, the estimate

(1 − ψ̃j )⟨Dx ⟩
µψj ⟨Dx ⟩

−µ
= O(2− j N )L2→L2 (2-7)

holds uniformly for all j ∈ N. Therefore,∑
j∈N

∥(1 − ψ̃j )⟨Dx ⟩
µψj ⟨x⟩

ku∥
2
L2 ≲

∑
j∈N

2−2 j N
∥u∥

2
Hµ

k
≲ ∥u∥

2
Hµ

k
.

For r ∈ {0, 1, . . . , 9}, set
ar =

∑
j∈10N+r

ψ̃j ⟨ξ⟩
µ♯(⟨x⟩

kψj ) ∈ Sµk ,

where ♯= ♯
0,0
1 . Observe that if 0 ̸= j − j ′

∈ 10N, then supp ψ̃j ∩ supp ψ̃j ′ = ∅. Therefore,∑
j∈N

∥ψ̃j ⟨Dx ⟩
µψj ⟨x⟩

ku∥
2
L2 =

9∑
r=0

∑
j∈10N+r

∥ψ̃j ⟨Dx ⟩
µψj ⟨x⟩

ku∥
2
L2 =

9∑
r=0

∥Op(ar )u∥
2
L2 ≲ ∥u∥

2
Hµ

k
. (2-8)

Combining (2-6), (2-7) and (2-8), we prove that if u ∈ Hµ
k then

∑
j∈N 22 jk

∥ψj u∥
2
Hµ ≲ ∥u∥

2
Hµ

k
.

Conversely, assume that
∑

j∈N 22 jk
∥ψj u∥

2
Hµ <∞. Much as above, we have

∞>
∑
j∈N

22 jk
∥⟨Dx ⟩

µψj u∥
2
L2 ≳

9∑
r=0

∑
j∈10N+r

∥ψ̃j ⟨Dx ⟩
µψj ⟨x⟩

ku∥
2
L2

≳
9∑

r=0

∥Op(ar )u∥
2
L2 ≳ ∥Op(a)u∥

2
L2, (2-9)

where a =
∑9

r=0 ar . Observe a is (µ, k)-elliptic, so u ∈ Hµ
k . By the symbolic calculus, there exists

r ∈ S−∞

−∞ such that
∥u∥

2
Hµ

k
≲ ∥Op(a)u∥

2
L2 + ∥Op(r)u∥

2
L2 . (2-10)

For the remainder term, we have

∥Op(r)u∥
2
L2 = (u,Op(r∗♯r)u)L2 =

∑
j∈N

(u,Op(r∗♯r)ψj u)L2 .

For each term in the summation, by the analysis above (2-6), we have, for all N > 0 and ε > 0,

(u,Op(r∗♯r)ψj u)L2 = (Op(mµ
k )u,Op(m−µ

−k ♯r
∗♯r♯m−µ

N−k)⟨Dx ⟩
µ
⟨x⟩

−N+kψj u)L2

≲ ∥u∥Hµ
k
∥⟨Dx ⟩

µ
⟨x⟩

−N+kψj u∥L2

≲ 2− j N
∥u∥Hµ

k
2 jk

∥⟨Dx ⟩
µψj u∥L2

≲ 2− j N (ε∥u∥
2
Hµ

k
+ ε−122 jk

∥⟨Dx ⟩
µψj u∥

2
L2),
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where the constants are independent of ε. Summing up in j ,

∥Op(r)u∥
2
L2 ≲ ε∥u∥

2
Hµ

k
+ ε−1

∑
j∈N

22 jk
∥ψj u∥

2
Hµ . (2-11)

By choosing ε sufficiently small, we conclude by (2-9), (2-10) and (2-11) that

∥u∥
2
Hµ

k
≲

∑
j∈N

22 jk
∥ψj u∥

2
Hµ

and finishes the proof. □

2C. The quasihomogeneous wavefront set. In this section the parameters δ, ρ, µ satisfy the conditions
in Definition 1.3 without further specification. By Lemma 2.8, the following characterization of the
quasihomogeneous wavefront set is easy to prove by the symbolic calculus.

Proposition 2.13. If u ∈ S ′(Rd), then (x0, ξ0) /∈ WFµδ,ρ(u) if and only if there exists ah ∈ S−∞

−∞ which is
elliptic at (x0, ξ0) such that Opδ,ρh (ah)u = O(hµ)L2 for h ∈ (0, 1].

Lemma 2.14. If u ∈ S ′(Rd) and ah ∈ S−∞

−∞ is such that⋃
h∈(0,1]

supp ah ⋐ R2d
\ WFµδ,ρ(u),

then ⟨u,Opδ,ρh (ah)u⟩S ′,S = O(h2µ) and consequently Opδ,ρh (ah)u = O(hµ)L2 for h ∈ (0, 1].

Proof. Let K =
⋃

h∈(0,1]
supp ah and let {�i }i∈I be an open cover of K . Let bi

h ∈ S−∞

−∞ be elliptic
everywhere in �i such that Opδ,ρh (bi

h)u = O(hµ)L2 . By a partition of unity, we may assume that
K ⊂ � := �i0 for some i0 ∈ I, and set bh = bi0

h . By the ellipticity of bh , we can find ch ∈ S−∞

−∞ and
rh =O(hN )S−∞

−∞
for some large N > 0 such that ah = (ζ

δ,ρ
h bh)♯

δ,ρ
h ch♯

δ,ρ
h bh +rh . Therefore, by Lemma 2.8,

⟨u,Opδ,ρh (ah)u⟩S ′,S = (Opδ,ρh (bh)u,Opδ,ρh (ch)Opδ,ρh (bh)u)L2 + ⟨u,Opδ,ρh (rh)u⟩S ′,S

= O(hµ)2 +O(h∞)= O(h2µ).

Next, observe that there exists wh ∈ S−∞

−∞ and r̃h = O(hN )S−∞

−∞
such that suppwh ⊂ K and

Opδ,ρh (ah)
∗ Opδ,ρh (ah)= Opδ,ρh (wh)+ Opδ,ρh (r̃h).

Therefore,
∥Opδ,ρh (ah)u∥

2
L2 = ⟨u,Opδ,ρh (ah)

∗ Opδ,ρh (ah)u⟩S ′,S

= ⟨u,Opδ,ρh (wh)u⟩S ′,S +O(h2µ)= O(h2µ). □

Lemma 2.15. If u ∈ S ′(Rd). Then the following statements hold:

(1) The quasihomogeneous wavefront set WFµδ,ρ(u) is a closed (δ, ρ)-cone. To be precise, this means
θ
δ,ρ
h WFµδ,ρ(u)= WFµδ,ρ(u) for all h > 0 where the scaling θ δ,ρh is defined by (2-2).

(2) If γ > 0 then WFµδ,ρ(u)= WFµ/γδ/γ,ρ/γ (u). Therefore in all situations we can restrict our discussions
to the cases where either δ = 1 or ρ = 1.

(3) For all (x0, ξ0) ∈ R2d , we have (x0, ξ0) ∈ WFµδ,ρ(u) if and only if (ξ0,−x0) ∈ WFµρ,δ(û).
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(4) For all (x0, ξ0) ∈ R2d, we have (x0, ξ0) ∈ WFµδ,ρ(u) if and only if (x0,−ξ0) ∈ WFµδ,ρ(ū).

(5) Define WFµδ,ρ(u)
◦
= WFµδ,ρ(u)\Nδ,ρ , where

Nδ,ρ =


{x = 0} × Rd , δ > 0, ρ = 0,
Rd

× {ξ = 0}, δ = 0, ρ > 0,
{x = 0} × Rd

∪ Rd
× {ξ = 0}, δ > 0, ρ > 0.

(2-12)

If u ∈ Hµ
k with (µ, k) ∈ R2 and ah ∈ S−∞

−∞ such that

Nδ,ρ ∩

⋃
0<h<1

supp ah = ∅, (2-13)

then Opδ,ρh (ah)u = O(hδk+ρµ)L2 and consequently WF δk+ρµ
δ,ρ (u)◦ = ∅.

Proof. The statements (1) and (2) are consequences of the quasihomogeneous scaling (2-2) we used to
define the pseudodifferential operators. To prove (3), note that if ah ∈ S−∞

−∞ and F is the Fourier transform
operator, then

F−1 Opρ,δh (ah)F = Opδ,ρh (bh),

where bh(x, ξ)= ah(ξ,−x). To prove (4), we use Op(ah)uh = Op(ch)ūh , where ch(x, ξ)= ah(x,−ξ).
To prove (5), note that if ah satisfies the condition (2-13), then

(θ
δ,ρ
h,∗ ah)⟨ξ⟩

−µ♯
0,0
1 ⟨x⟩

−k
= O(hδk+ρµ)S0

0
. □

3. Model equations

We prove Theorem 1.4 by combining the ideas of [Nakamura 2005] and simple scaling arguments.

3A. Proof of Theorem 1.4(1). If a ∈ W 1,∞
loc (R × R2d) and A ∈ W 1,∞

loc (R, L2
→ L2), then define

Lt a = ∂t a + {|ξ |γ , a}, LtA = ∂tA+ i[|Dx |
γ ,A].

Here { · , · } denotes the Poisson bracket defined by { f, g} = ∂ξ f · ∂x g − ∂x f · ∂ξg.

Lemma 3.1. If ah ∈ W 1,∞
loc (R, S−∞

−∞) and satisfies the condition⋃
0<h<1

supp ah ∩ {ξ = 0} = ∅,

then there exists bh ∈ L∞

loc(R, S−∞

−∞), with supp bh ⊂ supp ah , such that

Lt Opδ,ρh (ah)= Opδ,ρh (Lt ah)+ hδ+ρ Opδ,ρh (bh)+O(h∞)L∞

loc(R,L
2→L2).

Proof. For all T > 0, there exists ϵ > 0 such that⋃
t∈[−T,T ]

⋃
0<h<1

supp ah(t, · )∩ {|ξ | ≤ ϵ} = ∅.

Let π ∈ C∞(Rd) such that 0 ≤ π ≤ 1, π(ξ)= 0 for |ξ | ≤
ϵ
3 , and π(ξ)= 1 for |ξ | ≥

2ϵ
3 . Then

i[|Dx |
γ ,Opδ,ρh (ah)] = ih−ργ

[|hρDx |
γπ(hρDx),Opδ,ρh (ah)] +O(h∞)L∞([−T,T ],L2→L2).

Now that |ξ |γπ(ξ) ∈ Sγ0 , we conclude by Proposition 2.4 and the hypothesis ργ = δ+ ρ. □
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Assume that µ = ∞, as the proof is similar for µ < ∞. Let (x0, ξ0) ̸∈ WFµδ,ρ(u0) with ξ0 ̸= 0.
We aim to find ah ∈ W 1,∞

loc (R, S−∞

−∞) of the asymptotic expansion ah ∼
∑

j∈N h j (δ+ρ)a j
h , where a j

h ∈

W 1,∞
loc (R, S−∞

−∞), such that, for all t ∈ R, ah(t, · ) is elliptic at (x0 + tγ |ξ0|
γ−2ξ0, ξ0), and

Lt Opδ,ρh (ah)= O(h∞)L∞

loc(R,L
2→L2). (3-1)

If such an ah is found, we let Ah(t)= Opδ,ρh (ah(t)) and

vh(t)= ei t |Dx |
γ

Ah(t)e−i t |Dx |
γ

u0,

then by a direct computation and (3-1), we have

∂tvh = ei t |Dx |
γ

LtAhe−i t |Dx |
γ

u0 = O(h∞)L∞

loc(R,L
2→L2). (3-2)

If we assume that supp ah(0) is sufficiently close to (x0, ξ0) so that⋃
h∈(0,1]

supp ah(0)⋐ R2d
\ WFµδ,ρ(u0),

then by Lemma 2.14, we have vh(0) = Opδ,ρh (ah(0))u0 = O(h∞)L2 . Therefore by (3-2), we have
vh ∈ O(h∞)L∞

loc(R,L
2) and thus Ahu ∈ O(h∞)L∞

loc(R,L
2).

To construct ah , let ϕ ∈ C∞
c (R

d
× (Rd

\0)) with ϕ(x0, ξ0) ̸= 0, such that Opδ,ρh (ϕ)u = O(h∞)L2 . Then
we can construct ah with ah|t=0 = ϕ, with a j

h ∈ W ∞,∞
loc (R, S−∞

−∞), by solving iteratively the transportation
equations {

Lt a0
h = 0,

a0
h |t=0 = ϕ,

{
Lt a

j
h + b j−1

h = 0,
a j

h |t=0 = 0, j ≥ 1,

where b j
h ∈ W ∞,∞

loc (R, S−∞

−∞) satisfies, by Lemma 3.1, that

Lt Opδ,ρh (a j
h )= Opδ,ρh (Lt a

j
h )+ hδ+ρ Opδ,ρh (b j

h)+O(h∞)L∞

loc(R,L
2→L2).

Thus we have proved Theorem 1.4(1).

3B. Proof of Theorem 1.4(2). Let β = ργ − (δ+ρ) > 0. For all h > 0, introduce the semiclassical time
variable s = h−β t , and rewrite (1-6) as

∂su + ihβ |Dx |
γ u = 0. (3-3)

If a = a(s, x, ξ) ∈ W 1,∞
loc (R × R2d) and A = A(s) ∈ W 1,∞

loc (R, L2
→ L2), then define

Lsa = ∂sa + {|ξ |γ , a}, Lh
s A = ∂sA+ ihβ[|Dx |

γ ,A].

Lemma 3.2. If φ ∈ C∞
c (R

d) such that φ ≥ 0, φ(0) > 0, and x · ∇φ(x)≤ 0 for all x ∈ Rd, and we define

χ(s, x, ξ)= φ

(
x − sγ |ξ |γ−2ξ − x0

1 + s

)
φ

(
ξ − ξ0

ϵ

)
for s ≥ 0, ϵ > 0, (x0, ξ0) ∈ Rd

× (Rd
\0), then the following statements hold when ϵ is sufficiently small

and |ξ0| is sufficiently large:
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(1) χ ∈ W ∞,∞(R≥0, S−∞

0 ).

(2) Lsχ ∈ W ∞,∞(R≥0, S−∞

−1 ) and Lsχ ≥ 0.

(3) If t0 > 0 and set (τu)(s, x, ξ)= u
(
s, s

t0
x, ξ

)
, then τχ ∈ W ∞,∞(R≥0, S−∞

−∞).

(4) If s is sufficiently large, then (τχ)(s, · ) is elliptic at (t0γ |ξ0|
γ−2ξ0, ξ0).

Proof. Each time we differentiate χ with respect to x , we get a multiplicative factor (1 + s)−1, which is
of size ⟨x⟩

−1 in suppχ as
suppχ ⊂ {C−1s ≤ |x | ≤ Cs} (3-4)

for some C > 0 when |s| and |ξ0| are sufficiently large and ϵ is sufficiently small. Therefore χ ∈

W ∞,∞(R≥0, S−∞

0 ). Clearly τχ(s, · ) is bounded in C∞
c (R

2d). We write

(τχ)(s, x, ξ)= φ

(
x − t0γ |ξ0|

γ−2ξ0

t0(1 + s)/s
−
γ |ξ |γ−2ξ − γ |ξ0|

γ−2ξ0

(1 + s)/s
−

x0

1 + s

)
φ

(
ξ − ξ0

ϵ

)
, (3-5)

where |ξ |γ−2ξ−|ξ0|
γ−2ξ0 =o(1) as ϵ→0, whence τχ(s, · ) is elliptic at (t0γ |ξ0|

γ−2ξ0, ξ0) for sufficiently
large s. To estimate Lsχ , we perform an explicit computation:

∂sχ(s, x,ξ)= −(∇φ)

(
x−sγ |ξ |γ−2ξ−x0

1+s

)
φ

(
ξ−ξ0

ϵ

)
(x−sγ |ξ |γ−2ξ−x0)+(1+s)γ |ξ |γ−2ξ

(1+s)2
,

{|ξ |γ ,χ}(s, x,ξ)=
γ |ξ |γ−2ξ

1+s
·(∇φ)

(
x−sγ |ξ |γ−2ξ−x0

1+s

)
φ

(
ξ−ξ0

ϵ

)
.

Therefore,

Lsχ(s, x, ξ)= −(∇φ)

(
x − sγ |ξ |γ−2ξ − x0

1 + s

)
φ

(
ξ − ξ0

ϵ

)
·

x − sγ |ξ |γ−2ξ − x0

(1 + s)2
≥ 0.

Note that on supp Lsχ , we have

x − sγ |ξ |γ−2ξ − x0

(1 + s)2
= O

(
1 + s
(1 + s)2

)
= O

(
1

1 + s

)
= O

(
1

⟨x⟩

)
.

So we prove similarly that Lsχ ∈ W ∞,∞(R≥0, S−∞

−1 ). □

Now fix t0 > 0 and let µ= ∞ as the other cases are similar. Let ϵ > 0 be sufficiently small and let
{λj } j∈N ⊂ [1, 1 + ϵ) be strictly increasing. Choose φ as in Lemma 3.2, and set

χj (s, x, ξ)= φ

(
x − sγ |ξ |γ−2ξ − x0

λj (1 + s)

)
φ

(
ξ − ξ0

λjϵ

)
.

Then suppχj ⊂ {χj+1 > 0} for all j ∈ N. We aim to construct ah ∈ W ∞,∞(R≥0, S−∞

0 ) such that the
following statements hold:

(1) For all s ≥ 0 and h ∈ (0, 1], we have supp ah ⊂
⋃

j∈N suppχj .

(2) The symbol ah|s=0 is elliptic at (x0, ξ0); more precisely , we have

(ah − (ζ
δ,ρ
h χ0)♯

δ,ρ
h χ0)|s=0 = O(h∞)S−∞

−∞
.
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(3) For t0 > 0, let τ be defined as in the lemma. Then τah ∈ W ∞,∞(R≥0, S−∞

−∞) and τah(s, · ) is elliptic
at (t0γ |ξ0|

γ−2ξ0, ξ0) when s is sufficiently large.

(4) Lh
s Opδ,ρh (ah)≥ O(h∞)L∞(R≥0,L2→L2).

Assume that such an ah is found and that

(t0γ |ξ0|
γ−2ξ0, ξ0) ̸∈ WFµρ(γ−1),ρ(u(t = t0)).

By (1) and (3-5), if we choose φ such that suppφ is sufficiently close to the origin, then for sufficiently
small h > 0 we have

supp θβ,01/h,∗ah|s=h−β t0 ⋐ R2d
\ WF∞

ρ(γ−1),ρ(u|t=t0).

By (3), the symbol θβ,01/h,∗ah|s=h−β t0 ∈ S−∞

−∞ is elliptic at (t0γ |ξ0|
γ−2ξ0, ξ0). Therefore, by Lemma 2.14,

(u,Opδ,ρh (ah)u)L2 |s=h−β t0 = (u,Opρ(γ−1),ρ
h (θ

β,0
1/h,∗ah)u)L2 |s=h−β t0 = O(h∞).

By (3-3), we have
d
ds
(u,Opδ,ρh (ah)u)L2 = (u,Lh

s Opδ,ρh (ah)u)L2,

which implies, by (4), that

(u,Opδ,ρh (ah)u)L2 |s=0 = (u,Opδ,ρh (ah)u)L2 |s=h−β t0 −

∫ h−β t0

0
(u,Lh

s Opδ,ρh (ah)u)L2 ds

≤ O(h∞)+O(h−β
× h∞)= O(h∞).

Therefore, by (2), we have

∥Opδ,ρh (χ0)u|s=0∥
2
L2 = (u,Opδ,ρh (ah)u)L2 |s=0 +O(h∞)= O(h∞).

We conclude that (x0, ξ0) ̸∈ WF∞

δ,ρ(u0).
We shall construct ah in the following form of asymptotic expansion:

ah(s, x, ξ)∼

∑
j∈N

h j (δ+ρ)ϕ j (s)a j
h (s, x, ξ),

where a j
h ∈ W ∞,∞(R≥0, S−∞

0 ), with supp a j
h ⊂ suppχj , and ϕ j

∈ Pj , with

Pj =

{
f (ln(1 + s)) : f (X)=

j∑
k=0

ck X k, ck ≥ 0 for all k
}
. (3-6)

The above asymptotic expansion is in the weak sense that, for some ϵ′ > 0, and all N ∈ N,

ah −

∑
j<N

h j (δ+ρ)ϕ j a j
h ∈ O(hN (δ+ρ−ϵ′))W ∞,∞([0,h−βT ],S−∞

0 ).

The following properties for functions in
⋃

j∈N Pj will be used in the construction of ah .

Lemma 3.3. If ψ ∈ Pj for some j ∈ N, then ψ is smooth and nonnegative on [0,+∞) and

((1 + s)∂s)
−1ψ(s) :=

∫ s

0
(1 + σ)−1ψ(σ) dσ ∈ Pj+1.
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Proof. The function ψ is smooth because it is the composition of a polynomial and the smooth function
s 7→ ln(1 + s). The nonnegativity of ψ is the consequence of the nonnegativity of the coefficients ck

in (3-6) and the fact that ln(1 + s)≥ 0 when s ≥ 0. To prove that ((1 + s)∂s)
−1ψ ∈ Pj+1, note that for all

n ∈ N we have
((1 + s)∂s)

−1(ln(1 + · ))n = (n + 1)−1(ln(1 + · ))n+1.

The claim follows by the linearity of the operator ((1 + s)∂s)
−1. □

To construct ah , we begin by setting ϕ0
≡ 1 and choosing a0

h satisfying

a0
h − (ζ

δ,ρ
h χ0)♯

δ,ρ
h χ0 = O(h∞)W ∞,∞(R≥0,S−∞

0 ),

(a0
h − (ζ

δ,ρ
h χ0)♯

δ,ρ
h χ0)|s=0 = O(h∞)S−∞

−∞
.

By the definition of β and Propositions 2.4 and 2.5, there exists r0
h ∈ L∞(R≥0, S−∞

−1 )with supp r0
h ⊂ suppχ0

such that
Lh

s Opδ,ρh (a0
h)= 2 Opδ,ρh (χ0Lsχ0)+ hδ+ρ Opδ,ρh (r0

h )+O(h∞)L∞(R≥0,L2→L2). (3-7)

By (3-4), we have ⟨s⟩r0
h ∈ L∞(R≥0, S−∞

0 ) and similarly

⟨s⟩χ0Lsχ0 ∈ L∞(R≥0, S−∞

0 ). (3-8)

By Lemma 3.2, we have
χ0Lsχ0 ≥ 0. (3-9)

Recall that, by the sharp Gårding inequality (Proposition 2.6), if a symbol ph ∈ S0
0 satisfies ph ≥ 0, then

Op0,1
h (ph) ≳ −h. By (2-3), we deduce that Op0,1

h (ph) ≳ −hδ+ρ. To be precise, this means there exists
C > 0 which only depends on a finite number of seminorms defined by (2-1), such that, for all u ∈ L2,

⟨u,Opδ,ρh (ph)u⟩L2 ≥ −Chδ+ρ∥u∥
2
L2 .

Take c0
h ∈ L∞(R≥0, S−∞

0 ) such that

supp a0
h ⋐ {c0

h = 1} ⊂ supp c0
h ⊂ {χ1 > 0}.

By (3-7) and (3-9), for all u ∈ L2, we have

⟨u,Lh
s Opδ,ρh (a0

h)u⟩L2 = ⟨Opδ,ρh (ch)u,Lh
s Opδ,ρh (a0

h)Opδ,ρh (ch)u⟩L2 +O(h∞)∥u∥
2
L2

≥ −C⟨s⟩−1hδ+ρ∥Opδ,ρh (ch)u∥
2
L2 +O(h∞),

where the factor ⟨s⟩−1 comes from the estimate (3-8). By the symbolic calculus, there exists bh ∈

L∞(R≥0, S−∞

0 ) such that

Opδ,ρh (bh)− C Opδ,ρh (ch)
∗ Opδ,ρh (ch)= O(h∞)L∞(R≥0,L2→L2)

and supp bh ⊂ supp ch . Therefore,

Lh
s Opδ,ρh (a0

h)≥ −C⟨s⟩−1hδ+ρ Opδ,ρh (ch)
∗ Opδ,ρh (ch)+O(h∞)L∞(R≥0,L2→L2)

≥ −⟨s⟩−1hδ+ρ Opδ,ρh (b0
h)+O(h∞)L∞(R≥0,L2→L2). (3-10)
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Suppose that, for some ℓ ≥ 1, we can find ϕ j
∈ Pj , a j

h for j = 0, . . . , ℓ− 1 and ψℓ−1
∈ Pℓ−1, bℓ−1

h ∈

L∞(R≥0, S−∞

0 ), with supp bℓ−1
h ⊂ {χℓ > 0}, such that

Lh
s Opδ,ρh

( ℓ−1∑
j=0

h j (δ+ρ)ϕ j a j
h

)
≥ −⟨s⟩−1ψℓ−1hℓ(δ+ρ) Opδ,ρh (bℓ−1

h )+O(h∞)L∞(R≥0,L2→L2). (3-11)

If we choose Bℓ > 0 sufficiently large and set ϕℓ = ((1 + s)∂s)
−1ψℓ−1 and aℓh = Bℓχℓ, then by a direct

calculation, we have
Ls(ϕ

ℓaℓh)= Bℓ(1 + s)−1ψℓ−1χℓ + BℓϕℓLsχℓ

≥ Bℓ(1 + s)−1ψℓ−1χℓ ≥ ⟨s⟩−1ψℓ−1bℓ−1
h .

Observe that

Ls(ϕ
ℓaℓh)= O(⟨s⟩−1(ψℓ−1

+ϕℓ))S−∞

0
, ⟨s⟩−1ψℓ−1bℓ−1

h = O(⟨s⟩−1ψℓ−1)S−∞

0
.

Much as above, applying the sharp Gårding inequality to the symbol

Ls(ϕ
ℓaℓh)− ⟨s⟩−1ψℓ−1bℓ−1

h = O(⟨s⟩−1(ϕℓ +ψℓ−1))S−∞

0
,

we can find bℓh ∈ L∞(R≥0, S−∞

0 ) with supp bℓh ⊂ {χℓ+1 > 0} such that

Lh
s Opδ,ρh (ϕℓaℓh)− ⟨s⟩−1ψℓ−1 Opδ,ρh (bℓ−1

h )≥ −⟨s⟩−1ψℓhδ+ρ Opδ,ρh (bℓh)+O(h∞)L2→L2, (3-12)

with ψℓ = ψℓ−1
+ϕℓ ∈ Pℓ. Summing up (3-11) and hℓ(δ+ρ)× (3-12), we close the induction procedure.

Finally we conclude the asymptotic expansion by observing that, for all ϵ′ > 0, we have

∥ϕℓ∥L∞([0,h−βT ]) = O(| log h|
ℓ)= O(h−ϵ′ℓ).

Thus we have proved Theorem 1.4(2).

4. Paradifferential calculus

In this section, we develop a paradifferential calculus on weighted Sobolev spaces and a semiclassical
paradifferential calculus.

4A. Classical paradifferential calculus. We recall some classical results of the paradifferential calculus.
We refer to the original work [Bony 1979] and the books [Hörmander 1997; Métivier 2008; Bahouri,
Chemin and Danchin 2011]. The results and proofs below are mainly based on [Métivier 2008], so we
shall only sketch them. In the meantime, we shall also make some refinements regarding the estimates of
the remainder terms, for the sake of the semiclassical paradifferential calculus that will be developed later.

4A1. Symbol classes and paradifferential operators.

Definition 4.1. For m ∈ R, r ≥ 0, let 0m,r be the space of all a(x, ξ) ∈ L∞

loc(R
d
× (Rd

\0)) such that:

(1) For all x → Rd, the function ξ 7→ a(x, ξ) is smooth.

(2) For all α ∈ Nd, there exists Cα > 0 such that for all ξ ∈ Rd with |ξ | ≥
1
2 , we have

∥∂αξ a( · , ξ)∥W r,∞ ≤ Cα⟨ξ⟩m−|α|.
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If a ∈ 0m,r, then we define for all n ≥ 0 the seminorm

Mm,r
n (a)= sup

|α|≤n
sup

|ξ |≥1/2
⟨ξ⟩|α|−m

∥∂αξ a( · , ξ)∥W r,∞ .

We also define Mm,r (a)= Mm,r
d̃+r
(a), where d̃ = 1 +

[ d
2

]
.

Definition 4.2. A pair of nonnegative functions (χ, π) ∈ C∞(R2d
\0)× C∞(Rd) is called admissible if

the following conditions are satisfied:

(1) The function 1 −π is a cutoff function of the origin. To be precise, if |η| ≥ 1, then π(η)= 1, and if
|η| ≤

1
2 , then π(η)= 0.

(2) The function χ is an even and homogeneous of degree 0, and there exist ϵ1, ϵ2 ∈ (0, 1) with ϵ1 < ϵ2,
such that {

χ(θ, η)= 1, |θ | ≤ ϵ1|η|,

χ(θ, η)= 0, |θ | ≥ ϵ2|η|.
(4-1)

Definition 4.3. If m ∈ R and a ∈ 0m,0, then the paradifferential operator Ta is defined by

T̂au(ξ)= (2π)−d
∫

Rd
χ(ξ − η, η)π(η)â(ξ − η, η)û(η) dη, (4-2)

where (χ, π) is admissible and â(θ, ξ)=
∫

e−i x ·θa(x, ξ) dx . In other words Ta = Op(σa) where

σa( · , ξ)= π(ξ)χ(Dx , ξ)a( · , ξ). (4-3)

Proposition 4.4. If m ∈ R and a ∈ 0m,0, then Ta = O(Mm,0(a))O m
0

.

Remark 4.5. A symbol p satisfies the spectral condition if there exists ϵ ∈ (0, 1) such that

supp p̂ ⊂ {(η, ξ) ∈ R2d
: |η| ≥ ϵ⟨ξ⟩}.

By [Métivier 2008], if a ∈ 0m,0, then σa ∈ 0m,0 and satisfies the spectral condition. The above
Proposition 4.4 is in fact a consequence of the following estimate (4-4) and the mapping property:
if p ∈ 0m,0 satisfies the spectral condition, then Op(p) defines a bounded operator from Hµ+m

→ Hµ

for all µ ∈ R.

Note the definition (4-2) depends on the choice of admissible pairs of functions. The following lemma
and corollary show that if we change the admissible pair, then the error term is regularizing.

Lemma 4.6. If m ∈ R, r ≥ 0 and a ∈ 0m,r, then, for all n ≥ 0, we have

Mm,r
n (σa)≲ Mm,r

n (a). (4-4)

If in addition r ∈ N, then, for all β ∈ Nd with |β| ≤ r , we have

Mm−r+|β|,0
n (∂βx (σa − aπ))≲ Mm,0

n (∇r a). (4-5)

Proof. The first statement is proven in [Métivier 2008]. We only prove the second statement. We shall
only prove the case where β = 0 for the rest is similar. By [Métivier 2008], we have

(σa − aπ)(x, ξ)= π(ξ)

∫
ρ(x, y, ξ)8(y, ξ) dy
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for all (x, ξ) ∈ Rd
× (Rd

\0), where 8( · , ξ)= F−1χ( · , ξ) and

ρ(x, y, ξ)=

∑
|γ |=r

(−y)γ

γ !

∫ 1

0
r(1 − t)r−1∂γx a(x − t y, ξ) dt.

Therefore, if |ξ | ≥
1
2 and |α| ≤ n, then

∥∂αξ ρ( · , y, ξ)∥L∞ ≲ |y|
r
∥∂αξ ∇

r a( · , ξ)∥L∞ ≲ |y|
r
|ξ |m−|α|Mm,0

n (∇r a). (4-6)

Note that the admissibility of (π, χ) implies that, for all α, β ∈ N, there exists Cα,β > 0 such that, for all
(x, ξ) ∈ R2d, we have |xβ∂αξ 8(x, ξ)| ≤ Cα,β⟨ξ⟩d−|α|−|β|. Therefore, for all α ∈ N and all ξ ∈ Rd, there
exists Cα > 0 such that

∥∂αξ 8( · , ξ)∥L1 ≤ Cα⟨ξ⟩−|α|. (4-7)

We conclude (4-5) by estimates (4-6) and (4-7). □

Corollary 4.7. Let a ∈ 0m,r, with m ∈ R and r ∈ N . Let (χ, π) and (χ ′, π ′) be admissible. Denote by Ta

and T ′
a the paradifferential operators respectively defined by these two admissible pairs. Then

Ta − T ′

a = O(Mm,0(∇r a))O m−r
0

+O(Mm,r (a))O−∞

0
.

If in addition aπ = aπ ′
= a, then

Ta − T ′

a = O(Mm,0(∇r a))O m−r
0
.

Proof. Let T ′′
a be the paradifferential operator defined with respect to (χ ′, π); then by Lemma 4.6,

Ta − T ′′
a = O(Mm,0(∇r a))O m−r

0
. Note that T ′′

a − T ′
a is a composition with a paradifferential operator with

a smoothing operator π(Dx)−π
′(Dx), which implies T ′′

a − T ′
a = O(Mm,r (a))O−∞

0
. This term vanishes if

aπ = aπ ′
= a. □

Corollary 4.8. Let ψ ∈ C∞

b (R
d). Then Tψ −ψ ∈ O−∞

0 .

Proof. This is a consequence of (4-5) and the Calderón–Vaillancourt theorem. □

4A2. Symbolic calculus and paralinearization.

Proposition 4.9. If a ∈ 0m,r and b ∈ 0m′,r, where r ∈ N, m ∈ R and m′
∈ R, then

TaTb − Ta♯b = O
(
Mm,r (a)Mm′,0(∇r b)+ Mm,0(∇r a)Mm′,r (b)

)
O m+m′−r

0
+O

(
Mm,r (a)Mm′,r (b)

)
O−∞

0
,

where the symbol a♯b = a♯0,0
1,r b is defined by (2-4). If in addition aπ = a and bπ = b, then

TaTb − Ta♯b = O
(
Mm,r (a)Mm′,0(∇r b)+ Mm,0(∇r a)Mm′,r (b)

)
O m+m′−r

0
.

Proof. By Corollary 4.7, we may choose an admissible pair (π, χ) to define paradifferential operators,
while assuming that ϵ2 <

1
4 . We shall only prove the case where aπ = a and bπ = b, as the general

case follows easily. The following proof follows [Métivier 2008]. Take the decomposition TaTb − Ta♯b =

(I)+ (II), where

(I)= Op(σa)Op(σb)− Op(σa♯σb), (II)= Op(σa♯σb)− Op(σa♯b).
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Write Op(σa)Op(σb)= Op(σ ), where

σ(x, ξ)=
1

(2π)d

∫∫
ei(x−y)·ησa(x, ξ + η)θ(η, ξ)σb(y, ξ) dy dη.

Here θ ∈ C∞(R2d
\0) satisfies that (θ, π) is admissible and θχ = χ . By Taylor’s formula, we have the

decomposition

σa(x, ξ + η)=

∑
|α|<r

1
α!
∂αξ σ(x, ξ)η

α
+

∑
|α|=r

ρα(x, ξ, η)ηα,

where the functions ρα depend on ∇
r
ξσa . Then write σ = σa♯σb +

∑
|α|=r qα, where

qα(x, ξ)=

∫
Rα(x, x − y, ξ)(Dα

x σb)(y, ξ) dy,

Rα(x, y, ξ)= (2π)−2
∫

eiyηρα(x, y, η)θ(η, ξ) dη.

By the same estimate in [Métivier 2008],

∥∂
β
ξ Rα(x, · , ξ)∥L1 ≲ Mm,r (a)⟨ξ⟩m−r−|β|.

Using Dα
x σb = σDα

x b, we verify that

∥∂
β
ξ qα( · , ξ)∥L∞ ≲ Mm,r (a)Mm′,0(∇r b)⟨ξ⟩m+m′

−r−|β|,

and consequently, by Remark 4.5,

∥(I)∥H s→H s−m−m′+r ≲
∑
|α|=r

Mm+m′
−r,0(qα)≲ Mm,r (a)Mm′,0(∇r b).

To estimate (II), for all |α|< r , take the decomposition ∂αξ σa Dα
x σb −σ∂αξ aDα

x b = (i)+ (ii)+ (iii), where

(i)= ∂αξ (σa − a)Dα
x σb, (ii)= ∂αξ aDα

x (σb − b), (iii)= ∂αξ aDα
x b − σ∂αξ aDα

x b.

By Lemma 4.6, Leibniz’s rule and interpolation,

Mm+m′
−r,0(i)≲ Mm−r,0(σa − a)Mm′,0(Dα

x σb)≲ Mm,0(∇r a)Mm′,r (b),

Mm+m′
−r,0(ii)≲ Mm,r (a)Mm′

−r+|α|,0(Dα
x (σb − bπ))≲ Mm,r (a)Mm′,0(∇r b),

Mm+m′
−r,0(iii)≲ Mm+m′

−|α|,0(∇r−|α|(∂αξ aDα
x b))

≲ Mm−|α|,0(∇r∂αξ a)Mm′,0(b)+ Mm−|α|,0(∂αξ a)Mm′,0(∇r b)
≲ Mm,0(∇r a)Mm′,r (b)+ Mm,r (a)Mm′,0(∇r b).

By Remark 4.5, these estimates imply that

(II)= O
(
Mm,r (a)Mm′,0(∇r b)+ Mm,0(∇r a)Mm′,r (b)

)
O m+m′−r

0
.

The proposition follows. □

Proposition 4.10. Let a ∈ 0m,r with r ∈ N and m ∈ R. Then

T ∗

a − Ta∗ = O(Mm,0(∇r a))O m−r
0

+O(Mm,r (a))O−∞

0
,
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where the symbol a∗
= ζ

0,0
1,r a is defined by (2-5). If in addition aπ = a, then

T ∗

a − Ta∗ = O(Mm,0(∇r a))O m−r
0
.

Proof. Much as in the proposition for the composition, we shall only prove the case where aπ = a.
Let (θ, π) be admissible such that θχ = χ , then T ∗

a = Op(σ ∗
a ), with

σ ∗

a (x, ξ)= (2π)−d
∫

e−iy·ησ̄a(x + y, ξ + η) dη dy = a∗(x, ξ)+
∑
|α|=r

rα(x, ξ),

where by Taylor’s formula,

rα(x, ξ)=
2π
α!

∫∫∫
R2d×[0,1]

r(1 − t)r−1e−iy·ηDα
x ∂

α
ξ σ̄a(x, ξ + tη)θ(η, ξ) dt dη dy.

The term Dα
x ∂

α
ξ σ̄a(x, ξ + tη) in the integral and the analysis in [Métivier 2008] imply that

Mm−r,0(σ ∗

a − σa∗)≤

∑
|α|=r

Mm−r,0(rα)+ Mm−r,0(a∗
− σa∗)≲ Mm,0(∇r a).

The proposition follows by Remark 4.5. □

Recall the following results of paralinearization. See, e.g., [Métivier 2008].

Proposition 4.11. If a ∈ Hα and b ∈ Hβ with α > d
2 and β > d

2 , then

∥ab − Tab − Tba∥Hα+β−d/2 ≲ ∥a∥Hα∥b∥Hβ .

Proposition 4.12. If F ∈C∞(R) with F(0)= 0, then for all µ> d
2 , there exists a monotonically increasing

function C : R≥0 → R≥0 such that, for all u ∈ Hµ, we have

∥F(u)∥Hµ + ∥F(u)− TF ′(u)u∥H2µ−d/2 ≤ C(∥u∥H s )∥u∥Hµ .

4B. Dyadic paradifferential calculus. Now we develop the theory of paradifferential calculus with
weighted symbols on weighted Sobolev spaces via a dyadic decomposition of the space.

4B1. Weighted symbol classes and dyadic paradifferential operators. We define a family of symbol
classes which take into consideration the spacial decay of symbols.

Definition 4.13. If r ∈ N, k ∈ R, and δ ∈ [0, 1], then W r,∞
k,δ is the set of all u ∈ S ′(Rd) such that

∥u∥W r,∞
k,δ

=

∑
|α|≤r

∥⟨x⟩
−k+δ|α|∂αx u∥L∞ <∞.

Definition 4.14. If m, k ∈ R, r ∈ N and δ ∈ [0, 1], then 0m,r
k,δ is the set of all a(x, ξ) ∈ L∞

loc(R
d
× (Rd

\0))
such that

(1) for all x ∈ Rd the function ξ 7→ a(x, ξ) is smooth, and

(2) for all α ∈ Nd there exists Cα > 0, such that

∥∂αξ a( · , ξ)∥W r,∞
k,δ

≤ Cα⟨ξ⟩m−|α| for all |ξ | ≥
1
2 .
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Moreover, we define
Mm,r

k,δ (a)= sup
|α|≤r+d̃

sup
|ξ |≥1/2

⟨ξ⟩|α|−m
∥∂αξ a( · , ξ)∥W r,∞

k,δ
.

Let 0−∞,r
k,δ =

⋂
m∈R 0

m,r
k,δ and 0m,r

−∞,δ =
⋂

k∈R 0
m,r
k,δ . Then for (m, k) ∈ (R ∪ {−∞})2, define

6
m,r
k,δ =

∑
0≤ j≤r

0
m− j,r− j
k−δ j,δ .

We say that ah =
∑

0≤ j≤r h j a j
h ∈ h6

m,r
k,δ if

sup
0<h<1

∑
0≤ j≤r

Mm− j,r− j
k−δ j,δ (a j

h ) <∞.

We shall define 6m,r
=6

m,r
0,0 and h6

m,r
= h6

m,r
0,0 .

We are mostly interested in the cases where δ ∈ {0, 1}. Note that W r,∞
k,0 = ⟨x⟩

k W r,∞ and thus
0

m,r
k,0 = ⟨x⟩

k0m,r , whereas 0m,r
k,1 is a natural extension of Sm

k to symbols of finite regularities. We will
encounter symbols defined by solutions of the water wave system and thus have coefficients in weighted
Sobolev spaces. We need the following lemma.

Lemma 4.15. If u ∈ Hµ,δ
k , where µ ≥ d̃ , k ∈ N and δ ∈ (0, 1], then, for all α ∈ Nd with |α| ≤

min{(µ− d̃)/(1 + δ), k}, we have ⟨x⟩
|α|∂αx u ∈ L∞ and consequently we have the inclusion

Hµ,δ
k ⊂ W min{[(µ−d̃)/(1+δ)],k},∞

0,1 ∩ ⟨x⟩
− min{[µ−d̃]/δ,k}L∞.

In particular Hµ,1/2
k ⊂ W min{[2(µ−d̃)/3],k},∞

0,1 ∩ ⟨x⟩
− min{k,2[µ−d̃]}L∞.

Proof. The lemma follows directly from the Sobolev injection:

∥⟨x⟩
|α|∂αx u∥L∞ ≲ ∥u∥W |α|,∞

−|α|

≲ ∥u∥
H |α|+d̃

|α|

≲ ∥u∥Hµ,δ
k
,

∥⟨x⟩
nu∥L∞ ≲ ∥u∥W 0,∞

−n,0
≲ ∥u∥H d̃

n
≲ ∥u∥Hµ,δ

k
,

which hold provided |α| + d̃ ≤ µ− δ|α|, |α| ≤ k, d̃ ≤ µ− δn and n ≤ k, that is,

|α| ≤ min
{
µ− d̃
1 + δ

, k
}
, n ≤ min

{
µ− d̃
δ

, k
}
. □

Lemma 4.16. Let A be a linear operator from S (Rd) to S ′(Rd) and let m, k ∈ R. If there exists
{Aj } j∈N ∈ ℓ∞(O m

0 ) and ψ, φ ∈ P such that A =
∑

j∈N 2 jkψjAjφj , then A ∈ O m
k .

Proof. The lemma is a consequence of Proposition 2.12. □

Definition 4.17. Let ψ ∈ P∗ and define ψ ∈ P by setting ψj =
∑

| j−k|≤10 ψk . If a ∈ 0
m,r
k,δ , where

m, k ∈ R, r ∈ N and δ ∈ [0, 1], then define the dyadic paradifferential operator

Pa =

∑
j∈N

ψj Tψj aψj .

Proposition 4.18. If a ∈ 0
m,r
k,δ , then Pa = O(Mm,r

k (a))O m
k

.
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Proof. Note that if a ∈ 0
m,r
k,δ then a ∈ ⟨x⟩

k0m,0. Therefore, by Proposition 4.4, we have

∥Tψj a∥H ν→H ν−m ≲ Mm,0(ψj a)≲ 2− jk Mm,0
k,0 (a).

We conclude by Lemma 4.16. □

4B2. Symbolic calculus.

Proposition 4.19. Let a ∈ 0
m,r
k,δ , b ∈ 0

m′,r
k′,δ , r ∈ N, (m, k), (m′, k ′) ∈ R2, 0 ≤ δ ≤ 1, then

PaPb −Pa♯b = O(Mm,r
k,δ (a)M

m′,r
k′,δ (b))O m+m′−r

k+k′−δr +O−∞

k+k′

,

where

a♯b =

|α|<r∑
α∈Nd

1
α!
∂αξ aDα

x b ∈6
m+m′,r
k+k′,δ .

Proof. Let ψ̃j : N → C∞
c , ψ̃j =

∑
| j− j ′|≤50 ψj ′ , so ψ j ′ψ̃j = ψ j ′ if | j − j ′

| ≤ 20. Then write

PaPb =

| j− j ′
|≤20∑

( j, j ′)∈N2

ψj Tψj aψjψ j ′ Tψj ′ bψ j ′ =

| j− j ′
|≤20∑

( j, j ′)∈N2

ψ̃j Tψj aTψj ′ bψ̃j + ψ̃j Rj, j ′ψ̃j ,

the remainder being

Rj, j ′ = ψj Tψj aψjψ j ′ Tψj ′ bψ j ′ − Tψj aTψj ′ b

= O(2 j (k+k′
−δr)Mm,r

k,δ (a)M
m′,r
k′,δ (b))O m+m′−r

0
+O(2 j (k+k′)Mm,r

k,δ (a)M
m′,r
k′,δ (b))O−∞

0

by Propositions 4.4 and 4.9 and Corollary 4.8. More precisely, when composing Tψj a and Tψj , we use
ψjψj = ψj and have

Tψj aTψj = Tψj a +O
(
Mm,r (ψj a)M0,0(∇rψj )

)
O m−r

0

+O
(
Mm,0(∇r (ψj a))M0,r (ψj )

)
O m−r

0
+O

(
Mm,r (ψj a)M0,r (ψj )

)
O−∞

0
,

where M0,0(∇rψj )= O(2− jr ), Mm,r (ψj a)= O(2 jk), and we use 0 ≤ δ ≤ 1 to induce that

Mm,0(∇r (ψj a))= O
(

max
0≤n≤r

{2− j (r−n)+ j (k−δn)
}
)
= O(2 j (k−δr)).

Similar arguments work for the composition Tψj Tψj a .
Observe that

∑
j ′:| j− j ′|≤20(ψj a)♯ψj ′b = (ψj a)♯b, for all j ∈ N. Hence∑

j ′:| j− j ′|≤20

Tψj aTψj ′ b = ψj Tψj (a♯b)ψj + Rj ,

where the remainder can be estimated much as above:

Rj = O(2 j (k+k′
−δr)Mm,r

k,δ (a)M
m′,r
k′,δ (b))O m+m′−δr

0
+O(2 j (k+k′)Mm,r

k,δ (a)M
m′,r
k′,δ (b))O−∞

0
.

We conclude by Lemma 4.16. □

Proposition 4.20. Let a ∈ 0
m,r
k,δ with (m, k) ∈ R2, and r ∈ N, 0 ≤ δ ≤ 1, then

P∗

a −Pa∗ = O(Mm,r
k,δ (a))O m−r

k−δr +O−∞

k
, (4-8)
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where

a∗
=

|α|<r∑
α∈Nd

1
α!
∂αξ Dα

x ā ∈6
m,r
k,δ .

Proof. Observe that for any real-valued ψ ∈ C∞
c (R

d),

(ψa)∗ = a∗♯ψ. (4-9)

More precisely, this means that

(ψa)∗ =

∑
|γ |<r

1
γ !
∂
γ

ξ Dγ
x (ψ ā)=

∑
|γ |<r

1
γ !

∑
α+β=γ

γ !

α!β!
Dα

xψ∂
γ

ξ Dβ
x ā

=

∑
|α|+|β|<r

1
α!
∂αξ

(
1
β!
∂
β
ξ Dβ

x ā
)

Dα
xψ =

∑
|β|<r

∑
|α|<r−|α|

1
α!
∂αξ

(
1
β!
∂
β
ξ Dβ

x ā
)

Dα
xψ

=

∑
|β|<r

(
1
β!
∂
β
ξ Dβ

x ā
)
♯ψ = a∗♯ψ.

Then write P∗
a −Pa∗ =

∑
j∈N ψj (R1

j + R2
j )ψj , where, by (4-9),

R1
j = T ∗

ψj a − T(ψj a)∗, R2
j = T(ψj a)∗ − Tψj a∗ = Ta∗♯ψj −ψj a∗ .

For R1
j we use Proposition 4.10,

R1
j = O(Mm,0(∇r

x (ψj a)))O m−r
0

= O(2 j (k−δr)Mm,r
k,δ (a))O m−r

0
.

By Lemma 4.16, ∑
j∈N

ψj R1
jψj = O(Mm,r

k,δ (a))O m−r
k−δr +O−∞

k
.

Using
∑

j∈N ψj ≡ 1, we induce that∑
j∈N

∂αx ψj ≡ 0 for all α ∈ Nd
\0,

∑
j∈N

a∗♯ψj −ψj a∗
= 0. (4-10)

Then we write

a∗♯ψj −ψj a∗
=

∑
α ̸=0

|α|+|β|<r

Dα
xψj ·wαβ, wαβ ∈ 0

m−|α|−|β|,r−|β|

k−|β|δ,δ ,

where the symbols wαβ are independent of j . Write∑
j∈N

ψj R2
jψj =

∑
α,β

Rαβ, Rαβ =

∑
j∈N

ψj TDα
xψj ·wαβψj .

By (4-10), we prove similarly to Proposition 4.19 that

ψj Rαβ = ψj

∑
| j− j ′|≤20

ψ j ′ TDα
xψj ′ ·wαβ

ψ j ′

= O(2 j (−|α|+k−|β|δ−(r−|β|)δ)Mm−|α|−|β|,r−|β|

k−|β|δ,δ (wαβ))O m−r−|α|

0
+O(2 j (−|α|+k−|β|δ)Mm−|α|−|β|,r−|β|

k−|β|δ,δ (wαβ))O−∞

0
= O(2 j (k−δr)Mm,r

k,δ (a))O m−r
0

+O(2 jk Mm,r
k,δ (a))O−∞

0
.
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Setting ψ ′

j =
∑

| j ′− j |≤100 ψj ′ . We again conclude by Lemma 4.16, and the identity

Rαβ =

∑
j∈N

ψj Rαβψ ′

j ,

that Rαβ = O(Mm,r
k,δ (a))O m−r

k−δr +O−∞

k
. □

4B3. Paralinearization.

Proposition 4.21. If a ∈ Hα
k , b ∈ Hβ

ℓ with α > d
2 , β > d

2 , k ∈ R, ℓ ∈ R, then, for all ϵ > 0,

∥ab −Pab −Pba∥Hα+β−d/2−ϵ

k+ℓ

≲ ∥a∥Hα
k
∥b∥Hβ

ℓ
.

Consequently if a ∈ Hα,δ
m and b ∈ Hβ,δ

n with δ ≥ 0, α− δm > d
2 , β − δn > d

2 , then, for all ϵ > 0,

∥ab −Pab −Pba∥Hα+β−d/2−ϵ,δ
m+n

≲ ∥a∥Hα,δ
m

∥b∥Hβ,δ
n
.

Proof. Decompose the product ab as

ab =

∑
j∈N

ψj (ψj a)(ψj b)= Pab +Pba + R1
j + R2

j ,

where the remainders R1
j and R2

j are defined by

R1
j = ψj

(
ψj a ·ψj b − Tψj a(ψj b)− Tψj b(ψj a)

)
,

R2
j = ψj (ψj Tψj a − Tψj a)ψj b +ψj (ψj Tψj b − Tψj a)ψj a.

By Proposition 4.11,

∥R1
j ∥Hα+β−d/2 ≲ ∥ψj a∥Hα∥ψj b∥Hβ ≲ 2− j (k+ℓ)

∥a∥Hα
k
∥b∥Hβ

ℓ
.

By Proposition 4.9 and Corollary 4.8 and the Sobolev embedding theorem, for all ϵ > 0 we have

ψj Tψj aψj − Tψj a = 2− jkO(∥a∥Hα
k
)
O
α−d/2−ϵ

0
,

ψj Tψj bψj − Tψj b = 2− jℓO(∥b∥Hβ

ℓ
)
O
β−d/2−ϵ

0
.

We conclude the first statement by Proposition 2.12.
As for the second statement, observe that if 0 ≤ k ≤ m and 0 ≤ ℓ≤ n, then

∥ab −Pab −Pba∥H (α−δk)+(β−δℓ)−d/2−ϵ,δ

k+ℓ

≲ ∥a∥Hα−δk
k

∥b∥Hβ−δℓ

ℓ

≲ ∥a∥Hα,δ
m

∥b∥Hβ,δ
n
.

We conclude by noting that for all p ∈ N ∩ [0,m + n], there exist k ∈ N ∩ [0,m] and ℓ ∈ N ∩ [0, n] such
that p = k + ℓ. □

Proposition 4.22. Let F ∈ C∞(R) with F(0) = 0. For all µ > d
2 , there exists some monotonically

increasing function C : R+ → R+ such that, for all k ≥ 0 and all u ∈ Hµ
k , we have

∥F(u)∥Hµ
k

+ ∥F(u)−PF ′(u)u∥H2µ−d/2
k

≤ C(∥u∥Hµ)∥u∥Hµ
k
.

Consequently, if u ∈ Hµ,δ
k with δ ≥ 0 and µ− δk > d

2 , then

∥F(u)∥Hµ,δ
k

+ ∥F(u)−PF ′(u)u∥H2µ−d/2,2δ
k

≤ C(∥u∥Hµ)∥u∥Hµ,δ
k
.
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Proof. Decompose F(u) as F(u)=
∑

j≥0 ψj F(ψj u). By Proposition 4.12,

∥F(ψj u)∥Hµ ≤ C(∥ψj u∥Hµ)∥ψj u∥Hµ ≤ C(∥u∥Hµ)∥ψj u∥Hµ .

Then write ψj F(ψj u)= ψj Tψj F ′(u)ψj u +ψj Rj , where

Rj = ψj (F(ψj u)− TF ′(ψj u)ψj u)+ψj (ψj TF ′(ψj u) − Tψj F ′(ψj u))ψj u.

By Propositions 4.12 and 4.11 and Corollary 4.8,

∥Rj∥H2µ−d/2 ≤ C(∥u∥Hµ)∥ψj u∥Hµ .

We conclude the first statement with Proposition 2.12. To prove the second statement, note that for all
j ∈ N ∩ [0, k] we have

∥F(u)∥Hµ−δ j
j

+ ∥F(u)−PF ′(u)u∥H2(µ−δ j)−d/2
j

≤ C(∥u∥Hµ−δ j )∥u∥Hµ−δ j
j

. □

4C. Semiclassical paradifferential calculus. We develop a semiclassical dyadic paradifferential calculus
and a quasihomogeneous semiclassical paradifferential calculus, using scaling arguments inspired by
[Métivier and Zumbrun 2005].

4C1. Semiclassical paradifferential operators.

Definition 4.23. For all h ∈ (0, 1], define the scaling operator

τh : u( · ) 7→ hd/2u(h · ). (4-11)

(1) If b ∈ 0m,r, then define T h
b = τ−1

h T
θ

1,0
h,∗bτh .

(2) If a ∈ 0
m,r
k,δ , then define Ph

a =
∑

j∈N ψj T h
ψj aψj .

(3) If ϵ ≥ 0, then define Ph,ϵ
a = Ph

θ
ϵ,0
h,∗a

.

Proposition 4.24. If ϵ ≥ 0 and a ∈ 0
m,0
k,0 , where m ≤ 0, k ≤ 0, then suph∈(0,1] ∥Ph,ϵ

a ∥L2→L2 <∞.

Proof. Observe that θ1+ϵ,0
h,∗ a = O(1)00,0 . We conclude with Lemma 4.16. □

4C2. Semiclassical symbolic calculus.

Definition 4.25. If ah ∈ D ′(R2d) and ϵ ≥ 0, we say that ah ∈ σϵ if⋃
0<h<1

supp ah ∩ Nϵ,1 = ∅.

Proposition 4.26. Let (m, k), (m′, k ′) ∈ (R ∪ {−∞})2, r ∈ N, with r ≥ m + m′, δr ≥ k + k ′. Let
ah ∈ 0

m,r
k,δ ∩ σ0 and bh ∈ 0

m′,r
k′,δ ∩ σ0 such that, for some Rh ≥ 0 depending on h,

supp ah ∩ supp bh ⊂ {|x | ≥ Rh} × Rd . (4-12)

Then, for h > 0 sufficiently small,

Ph
ah
Ph

bh
−Ph

ah♯hbh
= O(hr (1 + Rh)

k+k′
−δr )L2→L2,

where the symbol ah♯hbh = ah♯
0,1
h,r bh ∈ h6

m+m′,r
k+k′,δ is defined by (2-4).
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Proof. By (4-12), if ψj ah ̸= 0 and ψj bh ̸= 0, then j ≳ log2(1 + Rh). We claim that

Ph
a P

h
b =

∑
j≳log2(1+Rh)

| j ′
− j |≤20

ψj T h
ψj ah

ψjψ j ′ T h
ψj ′ bh

ψ j ′

=

∑
j≳log2(1+Rh)

| j ′
− j |≤20

ψj T h
(ψj ah)♯h(ψj ′ bh)

ψ j ′ +O(hr (1 + Rh)
k+k′

−δr )L2→L2 . (4-13)

Then we conclude by ∑
j ′:| j ′− j |≤20

(ψj ah)♯h(ψj ′bh)= ψj (ah♯hbh).

It remains to prove (4-13). We use (4-1) to deduce that F(T
θ

1,0
h,∗(ψj ′ bh)

u) vanishes in a neighborhood of
ξ = 0. By (4-5), for some π ′

∈ C∞(Rd) which vanishes near ξ = 0 and equals 1 outside a neighborhood
of ξ = 0, and, for all m + m′

≤ N ∈ N,

τhT h
ψj ah

ψjψ j ′ T h
ψj ′ bh

τ−1
h = T

θ
1,0
h,∗(ψj ah)

θ
1,0
h,∗(ψjψ j ′)π ′(Dx)Tθ1,0

h,∗(ψj ′ bh)

= T
θ

1,0
h,∗(ψj ah)

T
θ

1,0
h,∗(ψjψ j ′ )⊗π

′ Tθ1,0
h,∗(ψj ′ bh)

+O(Mm,0(ψj ah))O m
0
O(2− j N hN )O−N

0
O(Mm′,0(ψj bh))O m′

0
. (4-14)

Then we use Proposition 4.9 and the fact that ah, bh ∈ σ0 to deduce

T
θ

1,0
h,∗(ψj ah)

T
θ

1,0
h,∗(ψjψ j ′ )⊗π

′ Tθ1,0
h,∗(ψj ′ bh)

= T
θ

1,0
h,∗(ψj ah)♯θ

1,0
h,∗(ψjψ j ′⊗π

′)♯θ
1,0
h,∗(ψj ′ bh)

+O(Mm,0(∇rθ
1,0
h,∗(ψj ah))M0,r (θ

1,0
h,∗(ψjψj ′))Mm′,r (θ

1,0
h,∗(ψj ′bh)))O m+m′−r

0

+O(Mm,r (θ
1,0
h,∗(ψj ah))M0,0(∇rθ

1,0
h,∗(ψjψj ′))Mm′,r (θ

1,0
h,∗(ψj ′bh)))O m+m′−r

0

+O(Mm,r (θ
1,0
h,∗(ψj ah))M0,r (θ

1,0
h,∗(ψjψj ′))Mm′,0(∇rθ

1,0
h,∗(ψj ′bh)))O m+m′−r

0
.

To estimate the remainders, we see that, for each α ∈ Nd with |α| = r ,

∂αx θ
1,0
h,∗(ψj ah)=

∑
α1+α2=α

α!

α1!α2!
∂α1

x θ
1,0
h,∗ψj∂

α2
x θ

1,0
h,∗ah

=

∑
α1+α2=α

α!

α1!α2!
O(h|α1|2− j |α1| × h|α2|2 j (k−δ|α2|))L∞ = O(hr 2 j (k−δr))L∞,

where we use 0 ≤ δ ≤ 1. Therefore, the first term in the remainder is

O(hr 2 j (k+k′
−δr))L2→L2 = O(hr (1 + Rh)

k+k′
−δr )L2→L2 .

Similar methods apply to the other two terms and we conclude that

T
θ

1,0
h,∗(ψj ah)

T
θ

1,0
h,∗(ψjψ j ′ )⊗π

′ Tθ1,0
h,∗(ψj ′ bh)

= T
θ

1,0
h,∗((ψj ah)♯h(ψj ′ bh))

+O(hr (1 + Rh)
k+k′

−δr )L2→L2 . (4-15)

The estimate (4-13) follows from (4-14) and (4-15). □
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Combining the analysis of Propositions 4.26 and 4.20, using Proposition 4.9, we obtain a similar result
for the adjoint, to the proof of which we shall omit, as it is similar to the above.

Proposition 4.27. Let (m, k) ∈ (R ∪ {−∞})2, r ∈ N, with r ≥ m, δr ≥ k. Let ah ∈ 0
m,r
k,δ ∩ σ0, such that,

for some Rh ≥ 0 depending on h, supp ah ⊂ {|x | ≥ Rh} × Rd, then, for h > 0 sufficiently small,

(Ph
ah
)∗ −Ph

a∗

h
= O(hr (1 + Rh)

k−δr )L2→L2,

where a∗

h = ζ
0,1
h,r ah ∈ h6

m,r
k,δ is defined by (2-5).

Corollary 4.28. Let ϵ ≥ 0, (m, k), (m′, k ′) ∈ (R ∪ {−∞})2, r ∈ N, with r ≥ max{m + m′, k ′
}, k ≤ 0. If

ah ∈ 0
m,r
k,1 ∩ σϵ and bh ∈ 0

m′,r
k′,1 ∩ σ0, then

Ph,ϵ
ah

Ph
bh

−Ph
(θ
ϵ,0
h,∗ah)♯hbh

= O(h(1+ϵ)r−ϵ(k+k′))L2→L2,

Ph
bh
Ph,ϵ

ah
−Ph

bh♯h(θ
ϵ,0
h,∗ah)

= O(h(1+ϵ)r−ϵ(k+k′))L2→L2 .

Proof. It suffices to observe that, if ϵ > 0 then supp θ ϵ,0h,∗ah ⊂ {|x | ≳ h−ϵ
} and θ ϵ,0h,∗ah = O(h−ϵk)0m,r

0,1
. We

conclude by Proposition 4.26. □

Corollary 4.29. Let ϵ ≥ 0, (m, k), (m′, k ′) ∈ (R ∪ {−∞})2, r ∈ N, with r ≥ m + m′, k ≤ 0, k ′
≤ 0. If

ah ∈ 0
m,r
k,1 ∩ σϵ and bh ∈ 0

m′,r
k′,1 ∩ σϵ , then, for h > 0 sufficiently small,

Ph,ϵ
ah

Ph,ϵ
bh

−Ph,ϵ
ah♯

ϵ
hbh

= O(h(1+ϵ)r−ϵ(k+k′))L2→L2,

where the symbol ah♯
ϵ
hbh = ah♯

ϵ,1
h,r ∈ h1+ϵ6

m+m′,r
k+k′,1 is defined by (2-4).

Proof. It suffices to use the identity (θ ϵ,0h,∗ah)♯h(θ
ϵ,0
h,∗bh)= θ

ϵ,0
h,∗(ah♯

ϵ
hbh). □

4C3. Some technical lemmas. The results above only concerned the high frequency regime as we require
the σϵ condition. The next lemma studies the interaction of high frequencies and low frequencies.

Lemma 4.30. Let m ∈ R, ah ∈ 00,0, bh ∈ 00,0 such that, for some R > 0,

supp ah ∈ {|ξ | ≥ R}, supp bh ∈ {|ξ | ≤ h−1 R/4}.

Then Ph
ah
Pbh = O(h∞)L2→L2 .

Remark 4.31. This lemma concerns the estimate of Ph
ah
Pbh , not Ph

ah
Ph

bh
. This is not a typo.

Proof. By definition

T̂ψj bh u(ξ)= (2π)−d
∫
χ(ξ − η, η)π(η)ψ̂j bh(ξ − η, η)û(η) dη.

The admissibility of χ implies supp T̂ψj bh u ⊂ {|ξ | ≤ h−1 R/3}. Therefore, for any | j ′
− j | ≤ 20,

ψj T h
ψj ah

ψjψ j ′ Tψj ′ bhψ j ′ = ψj T h
ψj ah

π(h Dx/R)ψjψ j ′(1 −π(2h Dx/R))Tψj ′ bhψ j ′

= ψjO(h∞)L2→L2ψ j ′ .

We conclude by Lemma 4.16. □
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Corollary 4.32. If a ∈ 0m,0 is homogeneous of degree m with respect to ξ , then, for b ∈ 00,0
∩ σ0 and

h > 0 sufficiently small,
Ph

b (h
mPa −Ph

a )= O(h∞)L2→L2 .

Proof. By a direct verification using (4-2), the homogeneity of a and the admissible function χ , and
Corollary 4.7, we see that hmPa −Ph

a = P ′

ãh
, where P ′ denotes the paradifferential quantization with any

admissible pair (π ′, χ) such that ππ ′
= π ′, and the symbol

ãh(x, ξ)= (π(hξ)−π(ξ))a(x, hξ) ∈ 00,0

satisfies the condition

supp ãh ⊂ Rd
× supp(1 −π(h · ))⊂ Rd

× {|ξ | ≤ 2h−1
}.

We conclude by Lemma 4.30. □

Lemma 4.33. If ah ∈ 0m,r
∩ σ0 with r ≥ max{m, 0} + d̃, then, for h > 0 sufficiently small,

T h
ah

− Oph(ah)= O(hr )L2→L2 .

Proof. By Calderón–Vaillancourt theorem, we have

T h
ah

− Oph(ah)= τ−1
h (T

θ
1,0
h,∗ah

− Op(θ1,0
h,∗ah))τh

= O
( ∑

|α|,|β|≤d̃

∥∂αξ ∂
β
x (σθ1,0

h,∗ah
− θ

1,0
h,∗ah)∥L∞

)
L2→L2

.

By hypothesis r ≥ max{m, 0} + |β| ≥ |β|. We use (4-5) to deduce that

∥∂αξ ∂
β
x (σθ1,0

h,∗ah
− θ

1,0
h,∗ah)∥L∞ ≲ M0,0(∂βx (σθ1,0

h,∗ah
− θ

1,0
h,∗ah))

≲ Mmax{m,0}−r+|β|,0(∂βx (σθ1,0
h,∗ah

− θ
1,0
h,∗ah))

≲ Mmax{m,0},0(∇r
x (θ

1,0
h,∗ah))

≲ hr Mm,0(ah). □

Lemma 4.34. If ah ∈ 0m,∞
∩ σ0 with m ∈ R ∪ {−∞}, then, for h > 0 sufficiently small,

Ph
ah

− Oph(ah)= O(h∞)L2→L2 .

Proof. By Lemmas 4.33 and 4.16,

Ph
ah

−

∑
j∈N

ψj Oph(ψj ah)ψj = O(h∞)L2→L2 .

Note that, uniformly in j ∈ N, we have

ψj♯h(ψj ah)♯hψj = ψj ah +ψjO(h∞)0−∞,∞ .

Therefore, ∑
j∈N

ψj♯h(ψj ah)♯hψj = ah +O(h∞)0−∞,∞ . □
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4C4. Symbols with limited regularities in (x, ξ). The symbols we have encountered so far have limited
regularities in the x-variable but are smooth with respect to the ξ -variable. When studying the propagation
of singularities for nonlinear equations, we need to solve Hamiltonian equations which transfer the limited
regularity in the x-variable to the ξ -variable. Therefore we need to discuss in this section paradifferential
operators with symbols that have limited regularities in both the x- and ξ -variables. As we do not intend
to obtain optimal regularities, we shall content ourselves with an approach by approximation.

Definition 4.35. For all r ∈ N, the symbol class ϒr is the set of all a ∈ L∞

loc(R
d
× (Rd

\0)) compactly
supported in Rd

× (Rd
\0) such that N r (a) <+∞, where

N r (a)=

∑
α∈N2d ,|α|≤r

∥∂αx,ξa∥
L∞

x W d̃,∞
ξ

.

If a ∈ϒr+1 with r ∈ N, then the paradifferential operator Ta is defined via approximating a by smooth
symbols. To be precise, let�⋐Rd

×(Rd
\0) be an open neighborhood of supp a and let {an}n∈N ⊂ C∞

c (�)

such that
lim

n→∞
N r (an − a)= 0.

Note that such an approximation is always possible because a is compactly supported and we only require
the convergence with respect to the N r -norm (not the N r+1-norm)! By Proposition 4.4 and Lemma 4.6,
for all n,m ∈ N we have

∥Tan − Tam ∥L2→L2 ≲ M0,0
d̃
(an − am)≲ N 0(an − am)≤ N r (an − am).

Therefore, for all u ∈ L2, the sequence {Tan u}n∈N is Cauchy in L2 and we define

Tau = lim
n→∞

Tan u.

Clearly this definition is independent of the choice of the sequence {an}n∈N and extends the definition of
paradifferential operators with symbols that are smooth with respect to ξ . Then we define the operators
T h

a , Pa , Ph
a and Ph

a exactly as before.

Proposition 4.36. If a ∈ ϒr+1 with r ≥ 0, then for all h ∈ (0, 1], we have T h
a : L2

→ L2. Moreover,

sup
h∈(0,1]

∥T h
a ∥L2→L2 ≲ N 0(a).

Consequently, for all ϵ ≥ 0 we have

sup
h∈(0,1]

∥Ph,ϵ
a ∥L2→L2 ≲ N 0(a).

Proof. The general case h ∈ (0, 1] follows from the case h = 1 and we shall assume h = 1. Choose a
convergent sequence {an}n∈N ⊂ C∞

c (�) as above. For all u ∈ L2 with ∥u∥L2 = 1, we have

∥Tau∥L2 ≤ ∥Tau − Tan u∥L2 + ∥Tan u∥L2,

where limn→∞ ∥Tau − Tan u∥L2 = 0 by the definition of Tau and

∥Tan u∥L2 ≲ N 0(an)≲ N 0(a − an)+ N 0(a)→ N 0(a).
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Therefore, passing n → ∞ we conclude that ∥Ta∥L2→L2 ≲ N 0(a). The estimate for Ph,ϵ
a follows similarly

to Proposition 4.18. □

Combining the approximation method above and the analysis in Proposition 4.26, we obtain the
following corollaries similarly to Corollaries 4.28 and 4.29.

Corollary 4.37. Let ϵ≥ 0, (m, k)∈ (R∪{−∞})2, r ∈ N, with r ≥ 0. If ah ∈ϒr+1
∩σϵ and bh ∈0

m,r
k,1 ∩σ0,

then, for all k ′
∈ R such that r ≥ k + k ′, we have

Ph,ϵ
ah

Ph
bh

−Ph
(θ
ϵ,0
h,∗ah)♯hbh

= O(h(1+ϵ)r−ϵ(k+k′)M−m,r
k′,1 (ah)M

m,r
k,1 (bh))L2→L2,

Ph
bh
Ph,ϵ

ah
−Ph

bh♯h(θ
ϵ,0
h,∗ah)

= O(h(1+ϵ)r−ϵ(k+k′)M−m,r
k′,1 (ah)M

m,r
k,1 (bh))L2→L2 .

Proof. Let ah be a sequence of approximating symbols {an
h }n∈N ⊂ C∞

c (R
2d) ∩ σϵ which is bounded,

uniformly in h ∈ (0, 1], with respect to the norm N r ( · ). Note that for all k ′
∈ R, we have M−m,r

k′,1 ( · )≲
N r ( · ). And thus, when n ∈ N is sufficiently large, we have M−m,r

k′,1 (an
h − ah)≤ 2N r (an

h − ah)= o(1). By
Corollary 4.28, if r ≥ k + k ′, we have

Ph,ϵ
an

h
Ph

bh
−Ph

(θ
ϵ,0
h,∗an

h )♯hbh
= O(h(1+ϵ)r−ϵ(k+k′)M−m,r

k′1 (an
h )M

m,r
k,1 (bh))L2→L2

= O(h(1+ϵ)r−ϵ(k+k′)M−m,r
k′,1 (ah)M

m,r
k,1 (bh))L2→L2 + o(1)L2→L2 .

In fact, for all u ∈ S (Rd), as n → ∞, by Proposition 4.36, we have

∥Ph,ϵ
ah

Ph
bh

u −Ph
(θ
ϵ,0
h,∗ah)♯hbh

u∥L2

= ∥(Ph,ϵ
ah

−Ph,ϵ
an

h
)Ph

bh
u∥L2 + ∥Ph

(θ
ϵ,0
h,∗(ah−an

h ))♯hbh
u∥L2 + ∥Ph,ϵ

an
h
Ph

bh
u −Ph

(θ
ϵ,0
h,∗an

h )♯hbh
u∥

= o(1)(∥Ph
bh

u∥L2 + ∥u∥L2)+O(h(1+ϵ)r−ϵ(k+k′)M−m,r
k′,1 (ah)M

m,r
k,1 (bh))∥u∥L2 .

Passing n → ∞ and then use the density of S (Rd) in L2, we conclude that for all u ∈ L2, we have

∥Ph,ϵ
ah

Ph
bh

u −Ph
(θ
ϵ,0
h,∗ah)♯hbh

u∥L2 = O(h(1+ϵ)r−ϵ(k+k′)M−m,r
k′,1 (ah)M

m,r
k,1 (bh))∥u∥L2 .

The estimate for Ph
bh
Ph,ϵ

ah
−Ph

bh♯h(θ
ϵ,0
h,∗ah)

is similar. □

Corollary 4.38. If ϵ ≥ 0 and ah, bh ∈ ϒr+1, where r ∈ N, then

Ph,ϵ
ah

Ph,ϵ
bh

−Ph,ϵ
ah♯

ϵ
hbh

= O(h(1+ϵ)r )L2→L2,

where the symbol ah♯
ϵ
hbh = ah♯

0,ϵ
h,r bh is defined by (2-4).

4C5. Almost sharp Gårding inequality for paradifferential operators. We need an almost sharp Gårding in-
equality for our paradifferential calculus. There are various works on the (almost) sharp Gårding inequality
for pseudodifferential operators with limited regularities; see, e.g., [Taylor 1991; Tataru 2002; Hérau 2002].

Lemma 4.39. If ϵ ∈ (0, 1) and ah ∈ Mn×n(0
0,r ) ∩ σ0 is compactly supported, where n ∈ N, r ≥

max{d̃, ϵ−1
− 1} and Re a ≥ 0, then, for all ϵ ∈ (0, 1), there exists C > 0 such that, for all u ∈ L2,

Re(T h
ah

u, u)L2 ≥ −Ch1−ϵ
∥u∥

2
L2 .
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Proof. By Lemma 4.33 and the condition r ≥ d̃ , we may replace T h
ah

with Oph(ah) in the above inequality.
As ah ∈ σ0 and is compactly supported, we have {bh(x, ξ)= h−1+ϵah(x, hξ)}h∈(0,1] is bounded in 01−ϵ,r.
By [Taylor 1991, §2.4 (2.4.6)], as r ≥ ϵ−1

− 1, we have 1 − ϵ ≤ r/(1 + r) and thus

Re(Op(bh)u, u)L2 ≳ −∥u∥
2
L2 .

We conclude by Op(bh)= h−1+ϵ Oph(ah). □

We are mostly interested in the case where ϵ =
1
2 . In this case, the condition for r is simply r ≥

max
{
d̃,

( 1
2

)−1
− 1

}
= d̃ . Next we show that the almost sharp Gårding inequality also applies to symbols

in ϒ1+r.

Lemma 4.40. If ϵ ∈ (0, 1) and ah ∈ Mn×n(ϒ
1+r ), with n ∈ N, r ≥ max{d̃, ϵ−1

− 1}, then there exists
C > 0 such that, for all u ∈ L2,

Re(T h
ah

u, u)L2 ≥ −Ch1−ϵ
∥u∥

2
L2, Re(Ph

ah
u, u)L2 ≥ −Ch1−ϵ

∥u∥
2
L2 .

Proof. Choose a sequence a j
h ∈ Mn×n(0

0,r ) which converges to ah with respect to the norm N r ( · ) and is
uniformly compactly supported in Rd

× (Rd
\0). Apply the almost sharp Gårding inequality for a j

h ; there
exists a constant C > 0 which is independent of j such that, for all u ∈ L2, we have

Re(T h
ah

u, u)L2 = Re(T h
ah−a j

h
u, u)L2 + Re(T h

a j
h
u, u)L2 ≥ o(1)− Ch1−ϵ

∥u∥
2
L2 .

We conclude the almost sharp Gårding inequality for T h
ah

by passing j → ∞. Therefore,

Re(Ph
ah

u, u)L2 =

∑
j∈N

Re(ψj T h
ψj ah

ψj u, u)L2 =

∑
j∈N

Re(T h
ψj ah

ψj u, ψj u)L2

≳ −h1−ϵ
∑
j∈N

∥ψj u∥
2
L2 ≳ −h1−ϵ

∥u∥
2
L2 . □

4C6. Relation with quasihomogeneous wavefront sets.

Lemma 4.41. If r ≥ 0 and ah =
∑r

j=0 h j a j
h , where a j

h ∈ ϒ1+r− j such that ah is elliptic at (x0, ξ0) ∈

Rd
× (Rd

\0) in the sense that, for some neighborhood � of (x0, ξ0), we have

inf
0<h<1

inf
(x,ξ)∈�

|ah(x, ξ)|> 0,

then for all u ∈ L2 such that T h
ah

u = O(hσ )L2 , where 0 ≤ σ ≤ r , we have (x0, ξ0) ̸∈ WF σ0,1(u).

Proof. Assume that �⊂ Rd
× (Rd

\0). Let bh ∈ S−∞

−∞ with supp bh ⊂�. Then by the symbolic calculus
stated in Corollary 4.38, there exists ch =

∑r
j=0 h j c j

h , where c j
h ∈ ϒ1+r− j, such that

T h
bh

= T h
ch

T h
ah

+O(hr )L2→L2 .

Thus T h
bh

u = O(hσ )L2 . By Lemma 4.33 we have Oph(bh)u = O(hσ )L2 . We conclude by Lemma 2.14. □

Lemma 4.42. Let ϵ ≥ 0, e ∈ 0
m,r
0,0 if ϵ = 0 and e ∈ 0

m,r
0,1 if ϵ > 0, and suppose that e is homogeneous of

degree m with respect to ξ . Then, for f ∈ H s and 0 ≤ σ ≤ (1 + ϵ)r ,

WF s+σ−m
ϵ,1 (Pe f )◦ ⊂ WF s+σ

ϵ,1 ( f )◦.
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If in addition e is elliptic, i.e., for some C > 0 and |ξ | sufficiently large, |e(x, ξ)| ≥ C |ξ |m, then

WF s+σ−m
ϵ,1 (Pe f )◦ = WF s+σ

ϵ,1 ( f )◦.

Proof. For µ ∈ R, define Zµ = P|ξ |µ . Then Z−µZµ − Id ∈ O−∞

−∞ . Therefore,

f − Z−s Z s f ∈ H∞

∞
, Pe f −Pe♯|ξ |−s Z s f ∈ H s+r−m

δr + H∞,

where δ = 0 if ϵ = 0, while δ = 1 if ϵ > 0. By Lemma 2.15 and the fact that Z±s are pseudodifferential
operators with elliptic symbols in S±s

0 , we readily have

WF s+σ
ϵ,1 ( f )◦ = WF σϵ,1(Z

s f )◦, WF s+σ−m
ϵ,1 (Pe f )◦ = WF σ−(m−s)

ϵ,1 (Pe|ξ |−s Z s f )◦.

So we may assume that s = 0. Let a, b ∈ S−∞

−∞ ∩ σϵ such that

supp b ⊂ {a = 1} ⊂ supp a ⊂ R2d
\ WF σϵ,1( f ).

Then by Lemma 2.14,Opϵ,1h (a) f = O(hσ )L2 . By Corollary 4.32, Lemma 4.34, Proposition 4.26, and
Corollary 4.28,

hm Opϵ,1h (b)Pe f = Opϵ,1h (b)Ph
e f +O(h∞)L2

= Opϵ,1h (b)Ph
e Opϵ,1h (a) f + Opϵ,1h (b)Ph

e Opϵ,1h (1 − a) f +O(h∞)L2

= O(1)L2→L2 Opϵ,1h (a) f +O(hr(1+ϵ))L2

= O(hσ )L2,

proving the first statement. The second statement follows by a construction of parametrix. □

5. Asymptotically flat water waves

In this section we prove Theorem 1.6. The idea is to combine the analysis in [Alazard, Burq and Zuily
2011] with the dyadic paradifferential calculus in weighted Sobolev spaces. We shall use the following
formal notations for simplicity. Let w be a function on Rd which is nowhere-vanishing. Then for any
operator A between some function spaces on Rd and, for any function f on Rd, we introduce the following
notations whenever they are well-defined:

A(w) = wAw−1, f (w) = w f.

Note that (A f )(w) = A(w) f (w). For k ∈ R, we also define by an abuse of notation

A(k) = A(⟨x⟩
k), f (k) = f (⟨x⟩

k).

Observe that L2
k = H 0

k is an Hilbert space with the inner product

( f, g)L2
k
= ( f (k), g(k))L2 .

5A. Dirichlet–Neumann operator. We study the Dirichlet–Neumann operator on weighted Sobolev
spaces and its paralinearization. The time variable will be temporarily omitted for simplicity.
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5A1. Boundary flattening. Let η ∈ W 1,∞(Rd), such that

δ := b + inf
x∈Rd

η(x) > 0. (5-1)

Define τ(x, z)= (x, z + η(x)) and set

�̃= τ−1(�)= {−b − η(x)<z<0},

6̃ = τ−1(6)= {z=0},

0̃ = τ−1(0)= {z= − b − η(x)}.

Let τ∗ be the pullback deduced by τ , then

τ∗( dx2
+ dy2)= ( dx dz)ϱ

(
dx
dz

)
,

where

ϱ =

(
Id+(∇η) t(∇η) ∇η

t(∇η) 1

)
.

We verify that

ϱ−1
=

(
Id −∇η

−
t(∇η) 1+|∇η|2

)
.

Let ∇xz = (∇x , ∂z). Then the divergence, gradient and Laplacian with respect to the metric ϱ are

divϱ u = ∇xz · u,

∇ϱu = (∇u − ∇η∂zu,−∇η · ∇u + (1 + |∇η|2)∂zu),

1ϱu = ∂2
z u + (∇ −∇η∂z)

2u.

The exterior unit normal to ∂�̃= 6̃ ∪ 0̃ is

nϱ = ⟨(Dτ)−1
|T ∂�̃, n⟩ =

{t(−∇η, 1 + |∇η|2)/
√

1 + |∇η|2, 6̃,
t(0, 1), 0̃.

Let ψ ∈ H 1/2, and suppose that φ satisfies the equation

1xyφ = 0, φ|6 = ψ, ∂nφ|0 = 0.
Then v = (τ |�̃)∗φ satisfies

1ϱv = 0, v|6̃ = ψ, ∂nϱv|0̃ = 0. (5-2)

The Dirichlet–Neumann operator can now be written as√
1 + |∇η|2

−1
G(η)ψ = ∂nϱv|6̃ = nϱ · ∇xzv|z=0.

5A2. Elliptic estimate. Let χ0 ∈ C∞(R) with χ0(z)= 0 for z ≤ −
δ
2 and χ0(z)= 1 for z ≥ 0. Take the

decomposition v = ṽ+ψ , where

ψ(x, z)= χ0(z)ez⟨Dx ⟩ψ(x).

Lemma 5.1. Let n ∈ N, m ∈ R, µ ∈ R, k ∈ R, a ∈ Sm
0 . Then

∥∂n
z Op(a)ψ∥L2

z (R≤0,H
µ−n−m+1/2
k )

≲ ∥ψ∥Hµ
k
.
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Proof. We only prove the case where n = 0. The general case follows with a similar argument and the
identity

∂n
z ψ(x, z)=

n∑
j=0

(n
j

)
χ
(n− j)
0 (z)⟨Dx ⟩

j ez⟨Dx ⟩ψ(x).

Let
b(x, ξ)= a(x, ξ)⟨ξ⟩µ−m

∈ Sµ0 ,

λ(z, ξ)= χ0(z)ez⟨ξ⟩
⟨ξ⟩1/2

∈ L∞

z≤0S1/2
0 .

Then for all N ≥ 0,

∥Op(a)ψ∥L2
z (R≤0,H

µ−m+1/2
k )

≲ ∥Op(λ)Op(b)ψ∥L2
z (R≤0,L2

k)
+ ∥ψ∥H−N

k
.

Observe that
Op(λ)(k) − (Op(λ)(k))∗ ∈ L∞

z≤0O
−1/2
0 ,

(Op(λ)(k))2 − Op(λ2)(k) ∈ L∞

z≤0O
0
0 .

Also note that

σ(ξ) :=

∫ 0

−∞

λ2(z, ξ) dz = ⟨ξ⟩

∫ 0

−∞

χ2
0 (z)e

2⟨ξ⟩z dz ∈ S0
0 .

Therefore,

∥Op(λ)Op(b)ψ∥
2
L2

z (R≤0,L2
k)

= (Op(λ2)Op(b)ψ,Op(b)ψ)L2
z (R≤0,L2

k)
+O(∥ψ∥

2
Hµ

k
)

= (Op(σ )Op(b)ψ,Op(b)ψ)L2
k
+O(∥ψ∥

2
Hµ

k
)= O(∥ψ∥

2
Hµ

k
). □

Lemma 5.2. For all k ∈ R, we have ∥ṽ∥H1
k

≤ C(∥η∥W 1,∞)∥ψ∥H1/2
k

.

Proof. Let H 1,0
ϱ be the completion of the space

{ f ∈ C∞(�̃) : f vanishes in a neighborhood of 6̃},

with respect to the norm

∥u∥H1,0
ϱ

:= ∥∇ϱu∥L2
ϱ
= (∇ϱu,∇ϱu)1/2L2

ϱ
,

where (X, Y )L2
ϱ
:=

∫
�̃
ϱ(X, Y ) dx dz. As b <∞, by the Poincaré inequality,

∥u∥L2 ≤ C(∥η∥L∞)∥∂zu∥L2 ≤ C(∥η∥W 1,∞)∥u∥H1,0
ϱ

for all u ∈ H 1,0
ϱ . Let 0< ζ ∈ C∞(R) be such that ζ(z)= 1 for |z| ≤ 1, and ζ(z)= z for |z| ≥ 2. For some

R > 0 sufficiently large to be determined later, set w(x)= R × ζ(⟨x⟩
k/R). Then ⟨x⟩

k ≲ w(x)≲ R⟨x⟩
k ,

supp ∇w ⊂ {⟨x⟩ ≳ R1/k
}, and |∇w(x)| ≲ R(k−1)/k.

As ṽ satisfies the equation 1ϱṽ = −1ϱψ , we consider ṽ(w) as the variational solution to the equation
B(ṽ(w), · )= −L( · ), where, for u, ϕ ∈ H 1,0

ϱ ,

B(u, ϕ)= (∇(w)
ϱ u,∇(1/w)

ϱ ϕ)L2(�̃), L(ϕ)= (∇(w)
ϱ ψ (w),∇(1/w)

ϱ ϕ)L2(�̃).
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Observe that ∇
(w±1)
ϱ = ∇ϱ ∓ bw, where bw = (w−1

∇w,−∇η · w−1
∇w) ∈ L∞, satisfies ∥bw∥ ≤

C(∥η∥W 1,∞)R−1/k. We verify that L and B are continuous linear and bilinear forms on H 1,0
ϱ . Moreover B

is coercive when R is sufficiently large; indeed,

B(ϕ, ϕ)= ∥∇ϱϕ∥
2
L2
ϱ
− ∥bwϕ∥

2
L2
ϱ
≥ (1 − C(∥η∥W 1,∞)R−2/k)∥∇ϱϕ∥

2
L2
ϱ
. (5-3)

Therefore, by the Lax–Milgram theorem and Lemma 5.1,

∥ṽ∥H1
k
≲ ∥ṽ(w)∥H1,0

ϱ
≲ ∥L∥

(H1,0
ϱ )∗

≲ ∥ψ∥H1 ≲ ∥ψ∥H1/2
k
. □

Proposition 5.3. Let (η, ψ) ∈ W 1,∞
× H 1/2

k , k ∈ R. Then ∥G(η)ψ∥H−1/2
k

≤ C(∥η∥W 1,∞)∥ψ∥H1/2
k

.

Proof. By Lemmas 5.1 and 5.2, v ∈ L2
z ((−δ, 0), H 1

k )∩ H 1
z ((−δ, 0), L2

k). By a classical interpolation result
(see, e.g., [Alazard, Burq and Zuily 2014, Lemma 2.19]) and the equation satisfied by v, we deduce that

v ∈ C0
z ([−δ, 0], H 1/2

k )∩ C1
z ([−δ, 0], H−1/2

k ). □

5A3. Higher regularity.

Proposition 5.4. Let (η, ψ) ∈ Hµ+1/2
× Hσ+1/2

k , where k ∈ R, µ > 1
2 +

d
2 , 0 ≤ σ ≤

[
µ−

1
2

]
. Then

∥G(η)ψ∥Hσ−1/2
k

≤ C(∥η∥Hµ+1/2)∥ψ∥Hσ+1/2
k

.

Consequently, if (η, ψ) ∈ Hµ+1/2
×Hσ+1/2,δ

k , with δ ≥ 0, k ∈ N and σ − kδ ≥ 0, then

∥G(η)ψ∥Hσ−1/2,δ
k

≤ C(∥η∥Hµ+1/2)∥ψ∥Hσ+1/2,δ
k

.

Proof. We shall only prove the cases where σ ∈ N. The remaining cases follow by interpolation. By
Section 5A2, it suffices to prove that, for all σ ∈

[
0, µ−

1
2

]
∩ N, there exists δ > 0 such that

ṽ ∈ L2((−δ, 0), Hσ+1
k )∩ H 1((−δ, 0), Hσ

k ).

Let Nσ be the corresponding norm of ṽ, we shall prove that Nσ <+∞. The case where σ = 0 has already
been proven by Lemma 5.2. It remains to bound Nσ+1 by Nσ via a mathematical induction. Note that if
χ ∈ C∞

c ((−δ, δ)), then χ∂σx ṽ satisfies the equation

−1ϱ(χ∂
σ
x ṽ)+ K ṽ =1ϱ(χ∂

σ
x ψ)− Kψ. (5-4)

where K = [1ϱ, χ∂
σ
x ]. Note that 1ϱ = P · P with P = (∇ −∇η∂z, ∂z), so

K = P · [P, χ∂σx ] + [P, χ∂σx ] · P.

By an explicit calculation

[P, χ∂σx ] = (−χ [∇η, ∂σx ]∂z − ∇ηχ ′∂σx , χ
′∂σx ).



320 HUI ZHU

Integrating the following pairings by parts using ṽ|z=0 = 0, we have by Lemma 5.1 that

|(χ∂σx ṽ,Kχ∂σx ṽ)L2 L2
k
|≲ ∥P∗(χ∂σx ṽ)∥L2 L2

k
∥[P,χ∂σx ]χṽ∥L2 L2

k
+∥P(χ∂σx ṽ)∥L2 L2

k
∥[P,χ∂σx ]

∗χṽ∥L2 L2
k

≲ Nσ Nσ+1,

|(χ∂σx ṽ,Kχ∂σx ψ)L2 L2
k
|≲ ∥P∗(χ∂σx ṽ)∥L2 L2

k
∥[P,χ∂σx ]χψ∥L2 L2

k
+∥P(χ∂σx ψ)∥L2 L2

k
∥[P,χ∂σx ]

∗χṽ∥L2 L2
k

≲ ∥ψ∥Hσ+1/2(Nσ+Nσ+1),

|(χ∂σx ṽ,−1ϱ(χ∂
σ
x ψ))L2 L2

k
|≲ ∥P(χ∂σx ṽ)∥L2 L2

k
∥P(χ∂σx ψ)∥

2
L2 L2

k
≲ ∥ψ∥Hσ+1/2 Nσ+1.

In the above inequalities, the adjoint operators are taken with respect to L2L2
k . Using again the structure

of 1ϱ, we have by (5-3) that

(χ∂σx ṽ,−1ϱ(χ∂
σ
x ṽ))L2 L2

k
≳ ∥P(χ∂σx ṽ)∥

2
L2 L2

k
− ∥χ∂σx ṽ∥

2
L2 L2

k
≳ ∥χ∂σx ṽ∥

2
H1 H1

k
− N 2

σ .

Pairing (5-4) with χ∂σx ṽ and using the estimates above, for all ϵ > 0,

N 2
σ+1 ≲ ∥χ∂σx ṽ∥

2
H1 H1

k
≲ Nσ Nσ+1 + ∥ψ∥Hσ+1/2(Nσ + Nσ+1)≲ ϵN 2

σ+1 + ϵ−1(N 2
σ + ∥ψ∥

2
Hσ+1/2).

All the constants hidden by ≲ are of the form C(∥η∥Hµ+1/2). We thus conclude the induction by choosing
ϵ > 0 sufficiently small. By interpolation as in Proposition 5.3,

v ∈ C0
z ([−δ, 0], Hσ+1/2

k )∩ C1
z ([−δ, 0], Hσ−1/2

k ).

When ψ ∈ Hσ,δ
k , we apply the above estimate to ψ ∈ Hσ−δ j

j and conclude. □

5B. Paralinearization. Now we paralinearize the system of water waves. The following results are
immediate consequences of the analysis in [Alazard, Burq and Zuily 2011] and our dyadic paradifferential
calculus on weighted Sobolev spaces.

Proposition 5.5. Let (η, ψ) ∈ Hµ+1/2,δ
k ×Hµ,δ

k with µ−
1
2 ∈ N, k ∈ N and µ− δk > 3 +

d
2 . Let

B =
∇η · ∇ψ + G(η)ψ

1 + |∇η|2
, V = ∇ψ − B∇η,

and λ= λ(1) + λ(0) ∈ 0
3/2,µ−1/2−d̃
0,0 +0

1/2,µ−3/2−d̃
0,0 , where

λ(1)(x, ξ)=

√
(1 + |∇η|2)|ξ |2 − (∇η · ξ)2,

λ(0)(x, ξ)=
1 + |∇η|2

2λ(1)
{∇ · (α(1)∇η)+ i∂ξλ(1) · ∇α(1)},

and

α(1)(x, ξ)=
λ(1) + i∇η · ξ

1 + |∇η|2
.

Then
G(η)ψ = Pλ(ψ −PBη)−PV · ∇η+ R(η, ψ),

where R(η, ψ) ∈ Hµ+1/2,δ
k .

We shall define ω = ψ −PBη, which is called the good unknown of Alinhac.
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Proof. We only sketch the proof, for the key ingredients are already given in [Alazard, Burq and Zuily
2011]. We simply replace the paradifferential calculus in [loc. cit.] by our dyadic paradifferential calculus.
Let v be defined as in Section 5A. Rewrite (5-2) as

α∂2
z v+1v+β · ∇∂zv− γ ∂zv = 0,

where α = 1 + |∇η|2, β = −2∇η, γ = 1η. Applying Proposition 4.21, we obtain as in [loc. cit.,
Lemma 3.17],

Pα∂2
z u +1u +Pβ · ∇∂zu −Pγ ∂zu ∈ C([−δ, 0],Hµ,δ

k ), (5-5)

where u = v−P∂zvζ with ζ(x, z)= z + η(x). Define a± = a(1)± + a(0)± ∈ 0
1,µ−1/2−d̃
0,0 +0

0,µ−3/2−d̃
0,0 by

a(1)± (x, ξ)=
1

2α

(
−β · ξ ±

√
4α|ξ |2 − (β · ξ)2

)
,

a(0)± (x, ξ)= ±
1

a(1)− − a(1)+

(
i∂ξa

(1)
− · ∂xa(1)+ −

γ

α
a(1)±

)
.

Then we factorize (5-5) as

Pα(∂z −Pa−
)(∂z −Pa+

)u ∈ C([−δ, 0],Hµ,δ
k ).

Because Re a(1)− ≤ 0, a parabolic estimate (see e.g., [loc. cit., Proposition 3.19]) implies that

(∂zu −Pa+
u)|z=0 ∈ Hµ+1/2,δ

k .

We conclude by setting λ= (1 + |∇η|2)a+ − i∇η · ξ . □

The proofs of the following results are in the same spirit and much simpler. Their proofs are exactly the
same as in [loc. cit.], simply replacing the usual paradifferential calculus with our dyadic paradifferential
calculus, particularly Propositions 4.22 and 4.21. Therefore we shall omit the proofs.

Proposition 5.6. Let η ∈ Hµ+1/2,δ
k , with µ −

1
2 ∈ N, µ − δk > 3 +

d
2 , and define ℓ = ℓ(2) + ℓ(1) ∈

0
2,µ−1/2−d̃
0,0 +0

1,µ−3/2−d̃
0,0 , where

ℓ(2) =
(1 + |∇η|2)|ξ |2 − (∇η · ξ)2

(1 + |∇η|2)3/2
, ℓ(1) = 1

2∂ξ · Dxℓ
(2).

Then H(η)= −Pℓη+ f (η), where f (η) ∈ H2µ−2−d/2,2δ
k .

Proposition 5.7. Let (η, ψ) ∈ Hµ+1/2,δ
k ×Hµ,δ

k , with µ−
1
2 ∈ N, µ− δk > 3 +

d
2 . Then

1
2
|∇ψ | −

1
2
(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2
= PV · ∇ψ −PBPV · ∇η−PB G(η)ψ + f (η, ψ),

where f (η, ψ) ∈ H2µ−2−d/2,2δ
k .

Note that in the above paralinearization results, we do not use the spatial decay of the symbols, as
we only require the symbols to be in the classes 0m,r

0,0 . These results will only be used in the proof of
the Cauchy theorem, where the spatial decay of the symbols is not important. Later when we study the
propagation of singularities, we will heavily use the spatial decay of the symbols.
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Combining Propositions 5.5, 5.6 and 5.7, we obtain the paralinearization of the water wave system.

Proposition 5.8. Let (η, ψ) ∈ Hµ+1/2,δ
k ×Hµ,δ

k , with µ−
1
2 ∈ N, µ− δk > 3 +

d
2 . Then (η, ψ) solves the

water wave equation if and only if

(∂t +PV · ∇ +L)
(
η

ψ

)
= f (η, ψ)

where

L = Q−1
(

0 −Pλ
Pℓ 0

)
Q, with Q =

(
Id 0

−PB Pλ

)
,

and f (η, ψ)= Q−1
( f1

f2

)
∈ Hµ+1/2

k ×Hµ
k is defined by

f1 = G(η)ψ − {Pλ(ψ −PBη)−PV · ∇η},

f2 = −
1
2
|∇ψ |

2
+

1
2
(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2
+ H(η)+PV · ∇ψ −PBPV · ∇η−PB G(η)ψ +Pℓη− gη.

5C. Symmetrization.

Definition 5.9. For T > 0, γ ∈ R and two operators A,B ∈ L∞([0, T ],O
γ

0 ), we say that A ∼γ B, or
simply A ∼ B when there is no ambiguity of the choice of γ , if

A−B ∈ L∞([0, T ],O
γ−3/2
0 ).

By [Alazard, Burq and Zuily 2011], there exist symbols which depend solely on η,

γ = γ (3/2) + γ (1/2), p = p(1/2) + p(−1/2), q = q(0),

whose principal symbols are explicitly

γ (3/2) =
√
ℓ(2)λ(1), p(1/2) = (1 + |∇η|2)−1/2

√

λ(1), q(0) = (1 + |∇η|2)1/4

such that
PpPλ ∼3/2 PγPq , PqPℓ ∼2 PγPp, Pγ ∼3/2 (Pγ )∗. (5-6)

Define the symmetrizer

S =

(
Pp 0
0 Pq

)
Q.

Then the first two relations in (5-6) can be rephrased as

SL ∼

(
0 −Pγ
Pγ 0

)
S. (5-7)

where the equivalence relation ∼ is applied separately to each component of the matrices.

5D. Approximate system. Set the mollifier Jε = P jε , where jε = j (0)ε + j (−1)
ε :

j (0)ε = exp(−εγ (3/2)), j (−1)
ε =

1
2∂ξ · Dx j (0)ε .

Then uniformly for ε > 0, we have
JεPγ ∼3/2 Pγ Jε, J ∗

ε ∼0 Jε.
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Let p̃ = p̃(−1/2)
+ p̃(−3/2), with

p̃(−1/2)
=

1
p(1/2)

, p̃(−3/2)
=

−
(

p̃(−1/2) p(−1/2)
+

1
i ∂ξ p̃(−1/2)

· ∂x p(1/2)
)

p(1/2)
.

Then we have
PpP p̃ ∼0 Id, PqP1/q ∼0 Id.

Let

Lε = LQ−1
(
P p̃ JεPp 0

0 P1/q JεPq

)
Q.

Then as in (5-7) we have

SLε ∼

(
0 −Pγ
Pγ 0

)
JεS. (5-8)

We define the approximate system

(∂t +PV · ∇ Jε +Lε)
(
η

ψ

)
= f (Jεη, Jεψ). (5-9)

5E. A priori estimate. From now on we restrict ourselves to the case where δ=
1
2 . The weighted Sobolev

spaces Hµ+1/2,1/2
k ×Hµ,1/2

k are the spaces where we do the energy estimates.

Proposition 5.10. Let (η, ψ) ∈ C1([0, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ), with µ−
1
2 ∈ N, µ−

k
2 > 3 +

d
2 , solve

the approximate system (5-9). Define

MT = sup
0≤t≤T

∥(η, ψ)(t)∥Hµ+1/2
k ×Hµ

k
, M0 = ∥(η, ψ)(0)∥Hµ+1/2

k ×Hµ
k
.

Then there exists some nondecaying function C : R≥0 → R≥0 such that

MT ≤ C(M0)+ T C(MT ).

Proof. For 0 ≤ j ≤ k, set
M j

T = sup
0≤t≤T

∥(η, ψ)(t)∥Hµ+1/2− j/2
j ×Hµ− j/2

j
,

M j
0 = ∥(η, ψ)(0)∥Hµ+1/2− j/2

j ×Hµ− j/2
j

.

By [Alazard, Burq and Zuily 2011], we know

M0
T ≤ C(M0

0 )+ T C(M0
T ).

It remains to prove that, for 1 ≤ j ≤ k, we have

M j
T ≤ C(M j

0 )+ T C(MT ).

To do this, let 3µj = Pmµ− j/2
j

, and set

8=3
µ
j S

(
η

ψ

)
.

Then

(∂t +PV · ∇ Jε)8+

(
0 −Pγ
Pγ 0

)
Jε8= Fε,
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where Fε = F1
ε + F2

ε + F3
ε , with

F1
ε =3

µ
k S f (Jεη, Jεψ),

F2
ε = [∂t +PV · ∇ Jε,3

µ
j S]

(
η

ψ

)
,

F3
ε =

(
0 −Pγ
Pγ 0

)
Jε3

µ
j S

(
η

ψ

)
−3

µ
j SLε

(
η

ψ

)
.

By Propositions 5.8, 5.5, 5.6 and 5.7,

∥ f (Jεη, Jεψ)∥Hµ+1/2,1/2
k ×Hµ,1/2

k
≤ C(∥(Jεη, Jεψ)∥Hµ+1/2,1/2

k ×Hµ,1/2
k

)≤ C(∥(η, ψ)∥Hµ+1/2,1/2
k ×Hµ,1/2

k
).

Therefore,
∥F1

ε ∥L∞([0,T ],L2) ≤ C(MT ).

As PV · ∇ Jε is a scalar operator, Proposition 4.19 gives

∥[∂t +PV · ∇ Jε,3
µ
j S]∥L∞([0,T ],Hµ+1/2− j/2

j ×Hµ− j/2
j →L2×L2)

≤ C(MT ),

which implies
∥F2

ε ∥L∞([0,T ],L2) ≤ C(MT ).

By (5-8), the operator (
0 −Pγ
Pγ 0

)
JεS − SLε

sends Hµ+1/2
× Hµ to Hµ

× Hµ. Unfortunately,

R :=

(
0 −Pγ
Pγ 0

)
Jε3

µ
k S −3

µ
k SLε

=

(
0 −Pγ
Pγ 0

)
Jε[3

µ
k , S] + [SLε,3

µ
k ] +

((
0 −Pγ
Pγ 0

)
JεS − SLε

)
3
µ
k

=: (I)+ (II)+ (III)

does not send Hµ+1/2− j/2
j × Hµ− j/2

j to L2
× L2 because the subprincipal symbol cannot be canceled out

in the symbolic calculus, due to the existence of 3µj . Particularly, we need to use Proposition 4.19 to
estimate the commutators [3

µ
j , S] and [SLε,3

µ
j ], and obtain∥∥∥∥R

(
η

ψ

)∥∥∥∥
L2×L2

≲ ∥(η, ψ)∥Hµ+1− j/2
j−1 ×Hµ+1/2− j/2

j−1
+ ∥(η, ψ)∥Hµ+1/2− j/2

j ×Hµ− j/2
j

.

More precisely, the first term on the right-hand side comes from (I) and (II), while the second term comes
from (III). When j ≥ 1,

Hµ+1− j/2
j−1 × Hµ+1/2− j/2

j−1 = Hµ+1/2−( j−1)/2
j−1 × Hµ−( j−1)/2

j−1 ⊃ Hµ+1/2,1/2
k ×Hµ,1/2

k ,

and we deduce that
∥F3

ε ∥L∞([0,T ],L2) ≤ C(MT ).
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Finally by the exact same energy estimate as in [Alazard, Burq and Zuily 2011], we conclude that

M j
T ≲ ∥8∥L∞([0,T ],L2) ≤ C(M j

0 )+ T C(MT ). □

5F. Existence.

Lemma 5.11. For all (η0, ψ0) ∈ Hµ+1/2,1/2
k ×Hµ,1/2

k , where µ−
1
2 ∈ N and µ−

k
2 > 3 +

d
2 , and, for all

ε > 0, the Cauchy problem of the approximate system (5-9) has a unique maximal solution

(ηε, ψε) ∈ C([0, Tε),H
µ+1/2,1/2
k ×Hµ,1/2

k ).

Moreover, there exists T0 > 0 such that
inf

ε∈(0,1]

Tε ≥ T0.

Proof. Following [Alazard, Burq and Zuily 2011], the existence follows from the existence theory of
ODEs by writing (5-9) in the compact form

∂t X = Fε(X),

where Fε is a Lipschitz map on Hµ+1/2,1/2
k ×Hµ,1/2

k . Indeed, Jε ∈ O−∞

0 is a smoothing operator.1 The
estimates to proving the Lipschitz regularity can be carried out much as in the proof of Proposition 5.10.
The only nontrivial term that remains is the Dirichlet–Neumann operator, whose regularity follows by
combining Proposition 5.4 and the shape derivative formula (which goes back to [Zakharov 1998],

⟨ dG(η)ψ, ϕ⟩ := lim
h→0

1
h
(G(η+ hϕ)− G(η))ψ = −G(η)(Bϕ)− ∇ · (Vϕ).

A standard abstract argument then shows that Tε has a strictly positive lower bound, we refer to [Alazard,
Burq and Zuily 2011] for more details. □

Proof of Theorem 1.6. By Lemma 5.11, we obtain a sequence {(ηε, ψε)}0<ε≤1 which satisfies (5-9) and is
uniformly bounded in L∞([0, T ],Hµ+1/2,1/2

k ×Hµ,1/2
k ) for some T > 0. By (5-9), the time derivatives

{(∂tηε, ∂tψε)}0<ε≤1 are uniformly bounded in L∞([0, T ],Hµ−1,1/2
k ×Hµ−3/2,1/2

k )). By [Alazard, Burq
and Zuily 2011], there exists

(η, ψ) ∈ C([0, T ], Hµ+1/2
× Hµ), (5-10)

which solves (1-5), such that as ε→0, we have (ηε,ψε)→(η,ψ)weakly in L2([0,T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ),
and strongly in C([0, T ],Hµ−1,1/2

k ×Hµ−3/2,1/2
k ). We then prove that, for 1 ≤ j ≤ k,

8=8(η,ψ) :=3
µ
j S(η, ψ)

(
η

ψ

)
lies in C([0, T ], L2), where 3µj is defined in Proposition 5.10, and S = S(η, ψ) is the symmetrizer. Up
to an extraction of a subsequence, we may assume by weak convergence that

(η, ψ) ∈ L∞([0, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ),

(∂tη, ∂tψ) ∈ L∞([0, T ],Hµ−1,1/2
k ×Hµ−3/2,1/2

k ),

1We do not need Jε ∈ O−∞
−∞

because the operators such as PV · ∇,L, etc., are all of nonpositive orders with respect to the
spatial decay.
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with

∥(η, ψ)∥L∞([0,T ],Hµ+1/2,1/2
k ×Hµ

k )∩W 1,∞([0,T ],Hµ−1,1/2
k ×Hµ−3/2

k )
≤ C(∥(η0, ψ0)∥Hµ+1/2,1/2

k ×Hµ,1/2
k

).

This already implies that (η, ψ) is weakly continuous in Hµ+1/2,1/2
k × Hµ,1/2

k . By the analysis in the
previous section,

(∂t +PV · ∇)8+

(
0 −Pγ
Pγ 0

)
8= F,

with
∥F∥L∞([0,T ],L2) ≤ C(∥(η0, ψ0)∥Hµ+1/2,1/2

k ×Hµ,1/2
k

).

Let Jh = Oph(e
−|x |

2
−|ξ |2). Now that e−h2

|x |
2
−h2

|ξ |2
∈ S0

0 , we have the commutator estimate

[Jh,PV · ∇] = O(1)O 0
−1
, [Jh,Pγ ] = O(1)

O
1/2
−1
.

Because k ≥ 1, by the same spirit of estimating R in Proposition 5.10, we obtain the energy estimate

d
dt

∥Jh8(t)∥2
L2 ≤ C(∥(η0, ψ0)∥Hµ+1/2,1/2

k ×Hµ,1/2
k

).

Therefore, t 7→ ∥Jh8(t)∥2
L2 are uniformly Lipschitzian. Consequently, by the Arzelà–Ascoli theorem,

t 7→ ∥8(t)∥2
L2 is continuous, because Jh8→8 as h → 0. Combining the weak continuity, we deduce

by functional analysis that 8 ∈ C([0, T ], L2). By (5-10), the paradifferential calculus, and the definition
of 8, we deduce that

(η, ψ) ∈ C([0, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ).

Thus we finish the proof of Theorem 1.6. □

6. Propagation of singularities for water waves

6A. Finer paralinearization and symmetrization. To study the propagation of singularities, we need
much finer results of paralinearization and symmetrization than Propositions 5.5 and 5.8 so as to gain
regularities in the remainder terms.

Proposition 6.1. If (η, ψ) ∈ Hµ+1/2
× Hµ, with µ −

1
2 ∈ N and µ > 3 +

d
2 , then there exists λ =

λ(1) + λ(0) + · · · ∈61,µ−1/2−d̃ such that

G(η)ψ = Pλ(ψ −PBη)−PV · ∇η+ R(η, ψ),

where R(η, ψ) ∈ H 2µ−K−d/2 for some K > 0 independent of the dimension d. Moreover λ(1− j), when it
is defined, is a function of derivatives ∂αx η, where |α| ≤ 1 + j .

Proof. This theorem follows by replacing the usual paradifferential calculus with the dyadic paradifferential
calculus in the analysis of [Alazard and Métivier 2009]. In that work, the explicit expression for λ is
given. We write it down for the sake of later applications:

λ= (1 + |∇η|2)a+ − i∇η · ξ,
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where a± =
∑

j≤1 a( j)
± ∈61,µ−1−d/2 is defined as follows. Setting c = 1/(1 + |∇η|2), we have

a(1)− = ic∇η · ξ −

√
c|ξ |2 − (c∇η · ξ)2, a(1)+ = ic∇η · ξ +

√
c|ξ |2 − (c∇η · ξ)2,

a(0)− =
i∂ξa

(1)
− · ∂xa(1)+ − c1ηa(1)−

a(1)+ − a(1)−

, a(0)+ =
i∂ξa

(1)
− · ∂xa(1)+ − c1ηa(1)+

a(1)− − a(1)+

.

Suppose that a( j)
± are defined for m ≤ j ≤ 1. Then we define

a(m−1)
− =

1

a(1)− − a(1)+

∑
m≤k≤1

∑
m≤ℓ≤1

∑
|α|=k+ℓ−m

1
α!
∂αξ a(k)− Dα

x a(ℓ)+ ,

a(m−1)
+ = −a(m−1)

− .

The principal and subprincipal symbols of λ coincide with the ones given by Proposition 5.5. □

Proposition 6.2. Let (η, ψ)∈ Hµ+1/2
× Hµ, with µ−

1
2 ∈ N and µ> 3+

d
2 . Let3µ =P(γ (3/2))2µ/3 , and set

w =3µU S
(
η

ψ

)
, U =

(
−i 1

i 1

)
.

Then there exist Q ∈ M2×2(6
0,µ−1/2−2−d̃
0,0 ) and ζ ∈6

−1/2,µ−1/2−2−d̃
0,0 such that, for some K > 0 which is

independent of the dimension d, we have

(∂t +PV · ∇ +PQ)w+ iPγ
(

1 0
0 −1

)
w+

ig
2
Pζ

(
1 −1
1 −1

)
∈ Hµ−K−d/2. (6-1)

Remark 6.3. Because χ in the definition of paradifferential operators is an even function, we verify that
3µ, Pp, Pq , PB all map real-valued functions to real-valued functions. Therefore,

w =

(
u
ū

)
, with u =3µ(−i, 1)S

(
η

ψ

)
=3µPqω− i3µPpη, (6-2)

recalling that ω = ψ −PBη is the good unknown of Alinhac.

Proof. Combining Propositions 6.1 and 5.8, and moving the term gη to the left-hand side,

(∂t +PV · ∇ +L)
(
η

ψ

)
+ g

(
0
η

)
= f (η, ψ),

where

f (η, ψ)= Q−1
(

f1

f2

)
∈ H 2µ+1/2−K−d/2

× H 2µ−K−d/2

for some K > 0 and

f1 = G(η)ψ − {Pλ(ψ −PBη)−PV · ∇η},

f2 = −
1
2
|∇ψ |

2
+

1
2
(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2
+ H(η)+PV · ∇ψ −PBPV · ∇η−PB G(η)ψ +Pℓη.
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Given two time-dependent operators A,B : S → S ′, we say that A ∼ B if

A−B ∈ L∞([0, T ],O
−µ+d/2+K
0 ).

By the ellipticity of γ (3/2), p(1/2) and q(0), we can find paradifferential operators 3̃µ and S̃ by a routine
construction of a parametrix such that 3̃µ3µ ∼ Id, S̃S ∼ Id. We can find ζ ∈ 6−1/2,µ−1/2−2−d̃ with
principal symbol ζ (−1/2)

= q(0)/p(1/2), which implies (note that the only nonzero entries in the following
matrices are in the lower left corners)(

0 0
Pζ 0

)
3µS −3µS

(
0 0
1 0

)
∼ 0.

Then by (5-7) and the fact that the Poisson bracket between the symbol of 3µ and γ vanishes, we find
by the symbolic calculus two symbols A, B ∈ M2×2(6

0,µ−1/2−2−d̃) such that

A := [∂t +PV · ∇,3µS] ∼ [∂t +PV · ∇,3µS]S̃3̃µ3µS ∼ PA3
µS,

B :=

(
0 −Pγ
Pγ 0

)
3µS −3µSL ∼

((
0 −Pγ
Pγ 0

)
−3µSLS̃3̃µ

)
3µS ∼ PB3

µS.

In fact, by Proposition 4.19, the symbol A is a finite sum of symbols which is given by the symbolic
calculus of the operator [∂t +PV ·∇,3µS]S̃3̃µ, whereas the symbol B is given by the symbolic calculus
of the operator (

0 −Pγ
Pγ 0

)
−3µSLS̃3̃µ.

Clearly A is of zeroth order. The reason why B is of zeroth order is the condition (5-7) according to
which we constructed the symbols γ, p, q .

Let 8=3µS
(
η
ψ

)
, and write

g
(

0
η

)
=

(
0 0
g 0

) (
η

ψ

)
,

we obtain by the analysis above that

(∂t +PV · ∇)8+

(
0 −Pγ
Pγ 0

)
8+

(
0 0

gPζ 0

)
8= PA8+PB8+ F,

where

F = (A+B)
(
η

ψ

)
−PA+B8+

(
0 0

gPζ 0

)
8− g3µS

(
0
η

)
+3µS f (η, ψ) ∈ Hµ−K−d/2.

Finally, observe that

U
(

0 −Pγ
Pγ 0

)
U−1

= i
(
Pγ 0
0 −Pγ

)
,

U
(

0 0
Pζ 0

)
U−1

=
i
2

(
Pζ −Pζ
Pζ −Pζ

)
,

We conclude by setting
Q = −

1
2U (A + B)U−1. □
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Remark 6.4. By Proposition 6.1 and the symbolic calculus, the symbols that we have encountered, such
as λ, ζ and Q etc., are of the form a = a(m) + a(m−1)

+ · · · such that a(m− j), whenever it is defined, is a
function of (∇η, . . . ,∇ j+1η). To be precise a(m− j)

= f j (∇η, . . . ,∇
j+1η, ξ), where f j is homogeneous

of degree m− j in ξ and f0(0, . . . , 0, ξ)= |ξ |m , f j (0, . . . , 0, ξ)= 0 for j ≥ 1. Note that if η∈Hµ+1/2,1/2
k ,

then for all j ≤ µ+
1
2 − d̃ , we have ∇

jη ∈ Hµ+1/2− j,1/2
k . Therefore, by Lemma 4.15,

∇
jη ∈ W min{[2(µ+1/2− j−d̃)/3],k},∞

0,1 ∩ ⟨x⟩
− min{2(µ+1/2− j−d̃),k}L∞, (6-3)

and consequently

a(m) − |ξ |m ∈ 0
m,0
− min{2µ−1−2d̃,k},0

, a(m− j)
∈ 0

m− j,0
− min{2µ−1−2 j−2d̃,k},0

. (6-4)

As another consequence of (6-3), we also have

a(m) − |ξ |m ∈ 0
m,min{[2(µ−1/2−d̃)/3],k}

0,1 ,

a(m− j)
∈ 0

m− j,min{[2(µ−1/2− j−d̃)/3],k}

− j,1 ⊂ 0
m− j,min{[2(µ−1/2−d̃)/3],k}− j
− j,1 .

(6-5)

Lemma 6.5. Let u be defined as in (6-2). If (η, ψ)∈ Hµ+1/2
×Hµ, withµ−

1
2 ∈N, then, for 0≤σ ≤r ∈N,

with r < µ−
1
2 − 1 − d̃ ,

WF σ0,1(u)
◦
= WFµ+1/2+σ

0,1 (η)◦ ∪ WFµ+σ

0,1 (ψ)◦.

If (η, ψ) ∈ Hµ+1/2
k ×Hµ

k , with k ≤
2
3(µ− 1 − d̃), then, for 0 ≤ σ ≤

3
2 k,

WF σ1/2,1(u)
◦
= WFµ+1/2+σ

1/2,1 (η)◦ ∪ WFµ+σ

1/2,1(ψ)
◦.

Proof. Clearly if η ∈ Hµ+1/2, then (γ (3/2))2µ/3 ∈ 0µ,r , p(1/2) ∈ 01/2,r , q(0) ∈ 00,r , B ∈ 00,r. By (6-5), if
η ∈ Hµ+1/2

k , then (γ (3/2))2µ/3 ∈ 0
µ,k
0,1 , p(1/2) ∈ 01/2,k

0,1 , q(0) ∈ 00,k
0,1 , B ∈ 0

0,k
0,1 . By Lemma 4.42 and (6-2),

for either ϵ = 0 or ϵ =
1
2 ,

WF σϵ,1(u)
◦
= WF σϵ,1(3

µPpη)
◦
∪ WF σϵ,1(3

µPq(ψ −PBη))
◦

= WFµ+1/2+σ

ϵ,1 (η)◦ ∪ WFµ+σ

ϵ,1 (ψ −PBη)
◦

⊂ WFµ+1/2+σ

ϵ,1 (η)◦ ∪ (WFµ+σ

ϵ,1 (ψ)◦ ∪ WFµ+σ

ϵ,1 (PBη)
◦)

⊂ WFµ+1/2+σ

ϵ,1 (η)◦ ∪ (WFµ+σ

ϵ,1 (ψ)◦ ∪ WFµ+σ

ϵ,1 (η)◦)

= WFµ+1/2+σ

ϵ,1 (η)◦ ∪ WFµ+σ

ϵ,1 (ψ)◦.

Conversely, as WFµ+σ

ϵ,1 (PBη)
◦
⊂ WFµ+1/2+σ

ϵ,1 (η)◦, we have

WFµ+1/2+σ

ϵ,1 (η)◦ ∪ WFµ+σ

ϵ,1 (ψ)◦

= WFµ+1/2+σ

ϵ,1 (η)◦ ∪ (WFµ+σ

ϵ,1 (ψ)◦\ WFµ+1/2+σ

ϵ,1 (η)◦)

= WFµ+1/2+σ

ϵ,1 (η)◦ ∪ (WFµ+σ

ϵ,1 (ψ −PBη)
◦
\ WFµ+1/2+σ

ϵ,1 (η)◦)

= WFµ+1/2+σ

ϵ,1 (η)◦ ∪ WFµ+σ

ϵ,1 (ψ −PBη)
◦

= WF σϵ,1(u)
◦.

The lemma follows. □
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6B. Proof of Theorem 1.7. By Lemma 6.5, it is equivalent to prove the following theorem.

Theorem 6.6. Under the hypothesis of Theorem 1.7, let u be defined by (6-2), and let

(x0, ξ0) ∈ WF σ1/2,1(u0)
◦,

with 0 ≤ σ < k
2 −

3
2 . Let t0 ∈ [0, T ], and suppose that

x0 +
3
2 t |ξ0|

−1/2ξ0 ̸= 0

for all t ∈ [0, t0]. Then (
x0 +

3
2 t0|ξ0|

−1/2ξ0, ξ0
)
∈ WF σ1/2,1(u(t0))

◦.

Proof. For ν ∈ R, define

Xν
=

∑
k∈Z

H ν−k/2
k .

By Lemma 2.15, if f ∈ Xν, then WF ν1/2,1( f )◦ = ∅. Also note that if f ∈ Xν and a ∈ 6
m,r
0,1 , then

Pa f ∈ Xν−m . As k < 2µ− d , we have V ∈ Hµ
k ⊂ ⟨x⟩

k Hµ−k/2
⊂ ⟨x⟩

−k L∞, which implies

PV · ∇w ⊂ PV H−1
⊂ H−1

k ⊂ X k/2−1.

By Remark 6.4, particularly (6-4),

PQw ∈

∑
j<µ−d̃

H j
min{2µ−1−2 j−2d̃,k}

⊂

∑
j<µ−d̃

Xmin{µ−1−d̃, j+k/2}
⊂ X k/2.

Similarly

Pγw−P|ξ |3/2w ∈

∑
j<µ−d̃

H j−3/2
min{2µ−1−2 j−2d̃,k}

⊂ X k/2−3/2,

Pζw−P|ξ |−1/2w ∈

∑
j<µ−d̃

H j+1/2
min{2µ−1−2 j−2d̃,k}

⊂ X k/2+1/2.

By the hypothesis on m, we thus obtain

∂tw
′
+ i |Dx |

3/2
(

1 0
0 −1

)
w′

+
ig
2

|Dx |
−1/2

(
1 −1
1 −1

)
w′

∈ X k/2−3/2, (6-6)

where w′
= π(Dx)w, and π ∈ C∞(Rd), which vanishes near the origin, and equals 1 outside a neighbor-

hood of the origin. Moreover, we require that suppπ ⊂ {π̃ = 1} such that 1 − π̃ ∈ C∞
c (R

d) and π̃(ξ)= 0
if |ξ |2 ≤ |g|. Observe that the matrix

M = |ξ |3/2
(

1 0
0 −1

)
+

g
2
|ξ |−1/2

(
1 −1
1 −1

)
is symmetrizable when restricted to suppπ . Indeed, let

P =
1
2

(
1 + θ 1 − θ

−(1 − θ) −(1 + θ)

)
,
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where θ =
√
π̃(ξ) · (g|ξ |−2 + 1). Then P ∈ O 0

0 . For ξ ∈ suppπ , we have

P M P−1
= |ξ |3/2θ(ξ)

(
1 0
0 −1

)
.

Set

w̃ = P(Dx)w
′
= P(Dx)

(
u′

u′

)
=

(
Re u′

+ iθ(Dx) Im u′

− Re u′ + iθ(Dx) Im u′

)
,

where u′
= π(Dx)u, then

∂t w̃+ |Dx |
3/2θ(Dx)

(
1 0
0 −1

)
w̃ ∈ X k/2−3/2.

Finally, let v = Re u′
+ iθ(Dx) Im u′. Then WF σ1/2,1(u)

◦
= WF σ1/2,1(v)

◦, and

∂tv+ |Dx |
3/2θ(Dx)v ∈ X k/2−3/2.

We are left to prove that if (x0, ξ0) ∈ WF σ1/2,1(v(0))
◦, then(

x0 +
3
2 t0|ξ0|

−1/2ξ0, ξ0
)
∈ WF σ1/2,1(v(t0)).

Because θ(ξ) ∼ 1 in the high-frequency regime, a proof similar to that of Theorem 1.4(1) yields the
conclusion. □

6C. Proof of Theorem 1.9.

6C1. Hamiltonian flow. Let 8=8s : Rd
× (Rd

\0)→ Rd
× (Rd

\0) be the Hamiltonian flow of

H(x, ξ)= γ (3/2)(0, x, ξ)=

(
|ξ |2 −

(∇η0 · ξ)2

1 + |∇η0|2

)3/4

.

That is

∂s8s(x, ξ)= X H (8s(x, ξ)), 8|s=0 = IdRd×(Rd\0),

where X H = (∂ξ H,−∂x H). We use s to denote the time variable in accordance to the semiclassical time
variable in the following section. Observe that:

Lemma 6.7. For (x, ξ) ∈ Rd
× (Rd

\0), we have

8s(x, ξ)= Gϕs(x,ξ)(x, ξ),

where G is the geodesic flow defined in Section 1C5, and

ϕs(x, ξ)=
3
4

∫ s

0
G(8σ (x, ξ))−1/4 dσ.

Proof. We have Gϕ0(x,ξ)(x, ξ)= G0(x, ξ)= (x, ξ)=80(x, ξ). Then observe that

H(x, ξ)= G(x, ξ)3/4 = ϱ−1
x (ξ, ξ)3/4.
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Therefore,
d
ds

Gϕs(x,ξ)(x, ξ)=
d
ds
ϕs(x, ξ)

( d
ds

G
)
ϕs(x,ξ)

(x, ξ)

=
3
4 G(Gϕs(x,ξ)(x, ξ))

−1/4 XG(Gϕs(x,ξ)(x, ξ))

= X H (Gϕs(x,ξ)(x, ξ)).

We conclude by the uniqueness of solutions to Hamiltonian ODEs. □

Lemma 6.8. Suppose that, for some ϵ > 0, ∇η0 ∈ W 0,∞
1/2+ϵ , ∇

2η0 ∈ W 0,∞
1+ϵ . Let (x0, ξ0) ∈ Rd

× (Rd
\0)

such that the cogeodesic {(xs, ξs)=8s(x0, ξ0)}s∈R is forwardly nontrapping. Set

zs = xs − x0 −
3
2

∫ s

0
|ξσ |

−1/2ξσ dσ.

Then there exists (z+∞, ξ+∞) ∈ Rd
× (Rd

\0) such that

lim
s→+∞

(zs, ξs)= (z+∞, ξ+∞).

Consequently, by Lemma 6.7, let (x ′
s, ξ

′
s)= Gs(x0, ξ0), and then

lim
s→+∞

ξ ′

s = ξ+∞.

Proof. Because {(xs, ξs)}s∈R is forwardly nontrapping and we only consider the limiting behavior
when s → +∞, we may assume that ε0 := ∥⟨x⟩∇

2η0∥L∞ is sufficiently small. As ∇η0 ∈ L∞, we have
H( · , ξ)≃ |ξ |3/2. Then

d
ds
(xs · ξs)= ∂ξ H(xs, ξs) · ξs − xs · ∂x H(xs, ξs),

where
∂ξ H(xs, ξs) · ξs =

3
2 H(xs, ξs)=

3
2 H(x0, ξ0)≃ |ξ0|

3/2

and
∂x H(xs, ξs)=

3
4 H(xs, ξs)

−1/3∂x G(xs, ξs)

=
3
4 H(xs, ξs)

−1/3
(

2∇η0 · ξs

1 + |∇η0|2
∇

2η0ξs −
2(∇η0 · ξs)

2

(1 + |∇η0|2)2
∇

2η0∇η0

)∣∣∣∣
x=xs

.

Therefore
xs · ∂x H(xs, ξs)= O(ε|ξs |

3/2)= O(ε|ξ0|
2),

and consequently,
d
ds
(xs · ξs)≳ |ξ0|

3/2. (6-7)

So, for any bounded set B ⊂ Rd,

λ(s ≥ 0 : xs ∈ B)≲
sup{|x · ξ | : (x, ξ) ∈ B × Rd , H(x, ξ)= H(x0, ξ0)}

|ξ0|3/2
≲ sup

x∈B
|x |⟨ξ0⟩

−1/2, (6-8)

where λ is the Lebesgue measure on R. Let

E(x, ξ)= H(x, ξ)− |ξ |3/2.
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Then by the hypothesis of the decay of η0, we have E ∈ 0
3/2,1
−1−ϵ,0. By the definition of zs , we have

d
ds
(zs, ξs)= (∂ξ E,−∂x E)(xs, ξs)= O(⟨xs⟩

−1−ϵ),

where we used the conversation of H(xs, ξs) to deduce the boundedness of ξs . By (6-8),∫
∞

0
⟨xs⟩

−1−ϵ ds = (1 + ϵ)

∫
∞

0
tϵλ(s ≥ 0 : ⟨xs⟩

−1 > t) dt ≲
∫ 1

0
tϵ

√
t−2 − 1 dt <∞.

Therefore, for any 0< s− < s+ with s−
→ ∞,

|(zs+, ξs+)− (zs−, ξs−)| ≲
∫ s+

s−

⟨xσ ⟩−1−ϵ dσ → 0,

implying that (xs, ξs) is a Cauchy sequence as s → ∞. □

6C2. Construction of symbol. For h ≥ 0, and h1/2s ≤ T. Set

Hh(s, x, ξ)= γ (3/2)(h1/2s, x, ξ),

so in particular H(x, ξ)≡ H0(s, x, ξ). For h > 0, the semiclassical time variable s = h−1/2 t was inspired
by Lebeau [Lebeau 1992]; see also [Zhu 2020] for an application in theory of control for water waves.

For a ∈ C∞([0, h−1/2T )× R2d), set

L ±

h,sa = ∂sa ± {Hh, a}.

Lemma 6.9. Suppose that, for some ϵ > 0, ∇η0 ∈ W 0,∞
1/2+ϵ , ∇

2η0 ∈ W 0,∞
1+ϵ , ∇

3η0 ∈ W 0,∞
3/2+ϵ . Let

(x0, ξ0)∈ Rd
×(Rd

\0) such that the cogeodesic {(xs, ξs)=8s(x0, ξ0)}s∈R is forwardly nontrapping. Then
there exists s0 > 0, K > 0 and

χ±
∈ W 1,∞(R≥0, ϒ

µ−K−d̃)∩ W 1,∞(R≥s0, S−∞

0 ) (6-9)

in the sense that
∥Nµ−K−d̃(χ±)∥L∞(R≥0) + ∥Nµ−K−d̃(∂sχ

±)∥L∞(R≥0) <+∞,

and satisfies the following conditions:

(1) χ±(0, x, ξ) ∈ S−∞

−∞ is elliptic at (x0,±ξ0).

(2) For all t0 > 0, χ±
(
s, s

t0
x, ξ

)
∈ S−∞

−∞ is elliptic at
( 3

2 t0|ξ∞|
−1/2ξ∞,±ξ∞

)
for sufficiently large s.

(3) If � is a neighborhood of
( 3

2 t0|ξ∞|
−1/2ξ∞,±ξ∞

)
, then χ± can be chosen such that

suppχ±

(
s, s

t0
x, ξ

)
⊂�

for sufficiently large s.

Moreover, if (η, ψ) ∈ Hµ+1/2
k ×Hµ

k , with µ > 3 +
d
2 and m ≥ 2, then

L ±

h,sχ
±

∈ L∞([0, h−1/2T ], ⟨x⟩
−1ϒµ−K−d̃−1)

and
L ±

h,sχ
±

≥ O(h1/2)L∞([0,h−1/2T ],⟨x⟩−1ϒµ−K−d̃−1)
. (6-10)
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Proof. Let φ ∈ C∞
c (R

d) such that

(i) φ ≥ 0, φ(x)= 1 for |x | ≤
1
2 and φ(x)= 0 for |x | ≥ 1, suppφ = {|x | ≤ 1},

(ii) x · ∇φ(x)≤ 0 for all x ∈ Rd ,

(iii) y · ∇φ(x)= 0 for all x, y ∈ Rd, with x · y = 0.

Such φ can be constructed by setting φ(x)= ϕ(|x |), where ϕ : R → R satisfies 0 ≤ ϕ ≤ 1, ϕ(z)= 1 if
z ≤

1
2 , ϕ(z)= 0 if z ≥ 1. For ρ > 0, δ > 0, λ > 0, ν > 0 and sufficiently large s > 0, set

χ̃±(s, x, ξ)= φ

(
x − xs

ρλδs

)
φ

(
ξ ∓ ξs

ρ(δ− s−ν)

)
.

We verify that L ±

0,s χ̃
±(s, · )≥ 0 for s > 0 sufficient large. Indeed,

L ±

0,s χ̃
±(s, x,ξ)=

(
±
∂ξ H(x,ξ)−∂ξ H(xs,∓ξs)

ρλδs
−

x−xs

ρλδs2

)
∇φ

(
x−xs

ρλδs

)
φ

(
ξ∓ξs

ρ(δ−s−ν)

)
+

(
±
∂x H(xs,∓ξs)−∂x H(x,ξ)

ρ(δ−s−ν)
−ν

ξ∓ξs

ρ(δ−s−ν)2sν+1

)
φ

(
x−xs

ρλδs

)
∇φ

(
ξ∓ξs

ρ(δ−s−ν)

)
.

By (i),

suppφ
(

· − xs

ρλδs

)
⊂ {x ∈ Rd

: |x − xs | ≤ ρλδs},

suppφ
(

· ∓ ξs

ρ(δ− s−ν)

)
⊂ {ξ ∈ Rd

: |ξ ∓ ξs | ≤ ρ(δ− s−ν)},

supp ∇φ

(
· − xs

ρλδs

)
⊂

{
x ∈ Rd

:
1
2ρλδs ≤ |x − xs | ≤ ρλδs

}
,

supp ∇φ

(
· ∓ ξs

ρ(δ− s−ν)

)
⊂

{
ξ ∈ Rd

:
1
2ρ(δ− s−ν)≤ |ξ ∓ ξs | ≤ ρ(δ− s−ν)

}
.

By Lemma 6.8,

xs = x0 +
3
2

∫ s

0
|ξσ |

−1/2ξσ dσ + zs =
3
2

s|ξ∞|
−1/2ξ∞ + o(s).

Therefore, by writing

χ̃±

(
s,

s
t0

x, ξ
)

= φ

(
x −

3
2 t0|ξ∞|

−1/2ξ∞ + o(1)
ρλδt0

)
φ

(
ξ ∓ ξ∞ + o(1)
ρ(δ− s−ν)

)
,

we see that χ̃±
(
s, s

t0
x, ξ

)
is elliptic at

( 3
2 t0|ξ∞|

−1/2ξ∞,±ξ∞
)

for sufficiently large s. Moreover, if ρλδ is
sufficiently small and s is sufficiently large, then

suppφ
(

· − xs

ρλδs

)
⊂ {x ∈ Rd

: |x | ≳ s}.

Therefore, by the hypothesis on η0, we have, for (x, ξ) ∈ supp χ̃±(s, · ),

∇
2
xξ H(x, ξ)=

(
∇

2
x H ∇x∇ξ H

∇ξ∇x H ∇
2
ξ H

)
(x, ξ)=

(
O(s−2−ϵ) O(s−3/2−ϵ)

O(s−3/2−ϵ) O(1)

)
,
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and consequently, by the finite increment formula,

|∂ξ H(xs,∓ξs)− ∂ξ H(x, ξ)| ≲ s−3/2−ϵ
|x − xs | + |ξ ∓ ξs | ≲ s−1/2−ϵρλδ+ ρδ,

|∂x H(xs,∓ξs)− ∂x H(x, ξ)| ≲ s−2−ϵ
|x − xs | + s−3/2−ϵ

|ξ ∓ ξs | ≲ ρλδs−1−ϵ
+ ρδs−3/2−ϵ .

By (iii) and the estimates above,

(∂ξ H(x, ξ)− ∂ξ H(xs,∓ξs)) · ∇φ

(
x − xs

ρλδs

)
= (∂ξ H(x, ξ)− ∂ξ H(xs,∓ξs)) ·

x − xs

|x − xs |
2 (x − xs) · ∇φ

(
x − xs

ρλδs

)
= O(s−3/2−ϵ

+ λ−1s−1)(x − xs) · ∇φ

(
x − xs

ρλδs

)
,

(∂x H(xs,∓ξs)− ∂x H(x, ξ)) · ∇φ
(

ξ ∓ ξs

ρ(δ− s−ν)

)
= (∂x H(xs,∓ξs)− ∂x H(x, ξ)) ·

ξ ∓ ξs

|ξ ∓ ξs |
2 (ξ ∓ ξs) · ∇φ

(
ξ ∓ ξs

ρ(δ− s−ν)

)
= O(λs−1−ϵ

+ s−3/2−ϵ)(ξ ∓ ξs) · ∇φ

(
ξ ∓ ξs

ρ(δ− s−ν)

)
.

Finally, we fix 0< ν < ϵ, δ > 0. Then, when λ is sufficiently large, and s ≥ s0 − 1> 0, with s0 being
sufficiently large, by (ii),

L ±

0,s χ̃
±

= −
1 +O(s−1/2−ϵ

+ λ−1)

ρλδs2 (x − xs) · ∇φ

(
x − xs

ρλδs

)
φ

(
ξ ∓ ξs

ρ(δ− s−ν)

)
−

ν−O(λ)sν−ϵ

ρ(δ− s−ν)2sν+1 (ξ ∓ ξs) ·φ

(
x − xs

ρλδs

)
∇φ

(
ξ ∓ ξs

ρ(δ− s−ν)

)
≥ 0. (6-11)

We verify as in Lemma 3.2 that

χ̃±
∈ W ∞,∞(R≥s0, S−∞

0 ), L ±

0,s χ̃
±

∈ W ∞,∞(R≥s0, 0
−∞,µ−K−d̃
−1,0 ).

We then choose ρ > 0 sufficiently small such that ρλδ is small and that supp χ̃±
(
s, s

t0
x, ξ

)
⊂� when s

is large. Next, we set, for s ≥ s0,

χ±(s, x, ξ)= χ̃±(s, x, ξ).

To define χ± for s ≤ s0, we choose ρ ∈ C∞(R) such that 0 ≤ ρ ≤ 1, ρ(s)= 1 for s ≥ s0, and ρ(s)= 0
for s ≤ s0 −α for some small α > 0 to be specified later, and solve the transport equation on [0, s0],

L ±

0,sχ
±(s, x, ξ)= ρ(s)L ±

0,s χ̃
±(s, x, ξ), χ±(s0, x, ξ)= χ̃±(s0, x, ξ).

Because the vector field involved in the definition of L ±

0,s is in Wµ−K−d̃,∞ with respect to the x-variable,
we deduce that χ±

∈ W 1,∞(R≥0, ϒ
µ−K−d̃) and thus χ± satisfies (6-9). Clearly

L ±

0,sχ
±

≥ 0. (6-12)
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Moreover, because

χ±(s, x, ξ)= χ̃±(s0,8±(s0−s)(x, ξ))−
∫ s0

s
ρ(σ)L ±

0,s χ̃
±(σ,8±(σ−s)(x, ξ)) dσ,

if we choose α > 0 sufficiently small, then

χ±(0, x0,±ξ0)= χ̃±(s0, xs0,±ξs0)−

∫ s0

s0−α

ρ(σ)L ±

0,s χ̃
±(σ, xσ ,±ξσ ) dσ

≥ 1 − ∥L ±

0,s χ̃
±(σ, xσ ,±ξσ )∥L1

σ ([s0−α,s0]) > 0.

Therefore, χ±(0, · ) is elliptic at (x0,±ξ0).
To estimate L ±

h,sχ
±, we use

Hh(s, x, ξ)− H0(s, x, ξ)= Hh(s, x, ξ)− Hh(0, x, ξ)

=

∫ s

0
(∂s Hh)(σ, x, ξ) dσ = h1/2

∫ s

0
(∂tγ

(3/2))(h1/2σ, x, ξ) dσ,

and write

L ±

h,sχ
±(s, · )− L ±

0,sχ
±(s, · )= ±{Hh − H0, χ

±
}(s, · )

= ±h1/2
∫ s

0
{∂tγ

(3/2)(h1/2σ, · ), χ±(s, · )} dσ.

Observe that

∂tγ
(3/2)

= −
3
2

(
|ξ |2 −

(∇η · ξ)2

1 + |∇η|2

)−1/4(
∇η · ξ

1 + |∇η|2
∇G(η)ψ · ξ −

(∇η · ξ)2

(1 + |∇η|2)2
∇G(η)ψ · ∇η

)
.

By hypothesis and Proposition 5.4, ∇G(η)ψ ∈ Hµ−2,1/2
k ⊂ Hµ−3

2 as k ≥ 2. Therefore,

∂tγ
(3/2)(h1/2

· , · ) ∈ L∞([0, h−1/2T ], 0
3/2,µ−K−d̃
−2,0 ).

Using |x | ∼ s on suppχ±(s, · ), we have, uniformly for all s ∈ [0, h−1/2T ],

⟨s⟩{∂tγ
(3/2)(h1/2σ, · ), χ±(s, · )} ∈ L∞

σ ([0, h−1/2T ], ⟨x⟩
−1ϒµ−K−d̃−1).

Therefore,

L ±

h,sχ
±(s, · )− L ±

0,sχ
±(s, · )= ±h1/2

⟨s⟩−1
∫ s

0
O(1)L∞([0,h−1/2T ],⟨x⟩−1ϒµ−K−d̃−1)

dσ

= ±h1/2
⟨s⟩−1O(s)

⟨x⟩−1ϒµ−K−d̃−1

= O(h1/2)
⟨x⟩−1ϒµ−K−d̃−1,

which, together with (6-12), proves (6-10). □

6C3. Propagation. Now we prove Theorem 1.9. By Lemmas 6.5 and 6.7, it suffices to prove the following
propagation theorem for u defined as in (6-2).

Theorem 6.10. Under the hypothesis of Theorem 1.9, let u be defined as (6-2). Let

(x0, ξ0) ∈ WF σ0,1(u0)
◦,
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with 0≤σ <min{(µ−K−d̃)/2, 3k/2} for some K >0, such that the cogeodesic {(xs, ξs)=8s(x0, ξ0)}s∈R

is forwardly nontrapping. Set
ξ∞ = lim

s→+∞
ξs .

Then, for all t0 ∈ (0, T ], we have( 3
2 t0|ξ∞|

−1/2ξ∞, ξ∞
)
∈ WF σ1/2,1(u(t0)).

Under the semiclassical time variable s = h−1/2t , (6-1) becomes

(∂s + h1/2PV · ∇ + h1/2PQ)w+ ih1/2
(
Pγ 0
0 −Pγ

)
w+

ih1/2g
2

Pζ
(

1 −1
1 −1

)
w = Fh = O(h1/2)Hµ−K−d̃

for some K > 0. We define Lh
s , which applies to time-dependent operators A : S → S ′,

Lh
s A = ∂sA+ h1/2

[
PV · ∇ +PQ + iPγ

(
1 0
0 −1

)
+

ig
2
Pζ

(
1 −1
1 −1

)
,A

]
.

We also define L h
s , which applies to symbols of the diagonal form A =

( A+

0
0

A−

)
:

L h
s A =

(
L +

h,s A+ 0
0 L −

h,s A−

)
.

Proof of Theorem 6.10. We shall from now on write ρ = µ− K − d̃ for some sufficiently large K > 0,
also define Ih = [0, h−1/2T ] and

Y ρh = L∞

(
Ih,M2×2

( ρ∑
j=0

h jϒρ− j
))

for simplicity. More precisely, a symbol Ah =
∑ρ

j=0 h j A j
h ∈ Y ρh if

sup
h∈(0,1]

sup
s∈[0,h−1/2T ]

Nρ− j (A j
h) <+∞,

where the norm Nρ− j (A j
h) is applied to every component of A j

h . Choose a strictly increasing sequence
{λj } j≥0 ⊂ [1, 1+ ϵ) with ϵ > 0 being sufficiently small. Define χ±

j as in Lemma 6.9, where we replace φ
with φ( · /λj ). Then

suppχ±

j ⊂ {χ±

j+1 > 0}

for all j ∈ N. Set

χj =

(
χ+

j 0
0 χ−

j

)
.

We shall construct an operator Ah ∈ L∞(Ih, L2
→ L2) such that:

(1) Ah is a paradifferential operator; more precisely, there exists

A±

h ∈ W 1,∞(R≥0, ϒ
ρ+1)∩ W 1,∞(R≥s0, S−∞

0 )

for some s0 > 0, such that

Ah −Ph
Ah

= O(hρ)L∞(Ih ,L2→L2), Ah =

(
A+

h 0
0 A−

h

)
.
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Moreover, we require that
supp A±

h ⊂

⋃
j≥0

suppχ±

j .

(2) A±

h (0, x, ξ) is elliptic at (x0,±ξ0).

(3) A±

h

(
s, s

t0
x, ξ

)
∈ S−∞

−∞ is elliptic at
( 3

2 t0|ξ∞|
−1/2ξ∞, ξ∞

)
for s > 0 sufficiently large.

(4) Lh
s Ah ≥ O(hρ)L∞(Ih ,L2→L2).

We shall construct Ah of the form

Ah =

2ρ∑
j≥0

h j/2ϕ jA j
h,

where ϕ ∈ Pj , recalling the definition (3-6), and A j
h ∈ L∞(Ih, L2

→ L2). We begin by setting

A0
h = (Ph

χ0
)∗Ph

χ0
, ϕ0

≡ 1.

Therefore, by the symbolic calculus, Lemma 6.9 and Corollary 4.32 (observe that the symbol of A0
h

belongs to σ0, and that γ is a sum of homogeneous symbols),

∂sA0
h + h1/2

[
iPγ

(
1 0
0 −1

)
,A0

h

]
= 2Ph

χ0L h
s χ0

+ hPh
b0

h
+O(hρ)L∞(Ih ,L2→L2)

for some symbol b0
h such that ⟨x⟩b0

h ∈ Y ρh . This ⟨x⟩ factor comes from the spatial decay of ∂x,ξγ . Moreover,
we have supp b0

h ⊂ suppχ0, which implies ⟨s⟩b0
h ∈ Y ρh . Similarly,

h1/2
[PV · ∇,A0

h] = h1/2Ph
b1

h
+O(hρ)L∞(Ih ,L2→L2),

where ⟨s⟩b1
h ∈ Y ρh , with supp b1

h ⊂ suppχ0. Be careful that, because Q and Pζ
( 1

1
−1
−1

)
are not diagonal

matrices, their commutators with A0
h do not gain an extra h, for the principal symbols do not cancel each

other. So,
h1/2

[PQ,A0
h] = h1/2Ph

b2
h
+O(hρ)L∞(Ih ,L2→L2),

h1/2
[
Pζ

(
1 −1
1 −1

)
,A0

h

]
= hPh

b3
h
+O(hρ)L∞(Ih ,L2→L2),

where ⟨s⟩b2
h, ⟨s⟩b

3
h ∈ Y ρh , with supp b2

h ∪ supp b3
h ⊂ suppχ0. By Lemma 6.9,

χ0L
h
s χ0 ≥ h1/2b4

h,

where ⟨s⟩b4
h ∈ Y ρh , with supp b4

h ⊂ suppχ0. Therefore, combining the idea described above (3-10) and the
paradifferential Gårding inequality

(
Lemma 4.40, where we take ϵ =

1
2

)
,

Ph
χ0L h

s χ0
− h1/2P4

b4
h
≥ h1/2Ph

b5
h
+O(hρ)L2→L2

for some b5
h ∈ Y ρh with supp b5

h ⊂ {χ1 > 0}. In fact, choose ch ∈ L∞(R≥0, S−∞

0 ) such that

supp ah ⊂ {ch = 1} ⊂ supp ch ⊂ suppχ1.
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Then, for all v ∈ L2, we have

⟨v, (Ph
χ0L h

s χ0
− h1/2P4

b4
h
)v⟩L2 = ⟨Pchv, (P

h
χ0L h

s χ0
− h1/2P4

b4
h
)Pchv⟩L2 +O(hρ)

≳ −Ch1/2
∥Pchv∥

2
L2 +O(hρ).

Therefore, it suffices to choose b5
h such that

Pb5
h
− CP∗

ch
Pch = O(hρ)L∞(Ih ,L2→L2),

which can be achieved by Propositions 4.26 and 4.27. Set

α0
h = ⟨s⟩(b1

h + b2
h + 2b4

h + 2b5
h) ∈ Y ρh , β0

h = ⟨s⟩(b0
h + b3

h) ∈ Y ρh .

Then
Lh

s A
0
h ≥ h1/2

⟨s⟩−1Ph
α0

h+h1/2β0
h
+O(hρ)L∞(Ih ,L2→L2).

Suppose that we have found A j
h ∈ L∞(Ih, L2

→ L2), ϕ j
∈ Pj for j = 0, . . . , ℓ− 1, and ψℓ−1

∈ Pℓ−1,
αℓ−1

h , βℓ−1
h ∈ Y ρh , with

suppαℓ−1
h ∪ suppβℓ−1

h ⊂ {χℓ > 0},

such that

Lh
s

( ℓ−1∑
j=0

h j/2ϕ jA j
h

)
≥ hℓ/2⟨s⟩−1ψℓ−1Ph

αℓ−1
h +h1/2βℓ−1

h
+O(hρ)L∞(Ih ,L2→L2). (6-13)

Then as in the proof of Theorem 1.4(2), we set

ϕℓ(s)=

∫ s

0
(1 + σ)−1ψℓ−1(σ ) dσ, Aℓh = CℓϕℓPh

χℓ
,

where the constant Cℓ is sufficiently large, such that by Lemma 6.9, in the sense of positivity of matrices,

CℓL s
h (ϕ

ℓχℓ)= Cℓ(1 + s)−1ψℓ−1χℓ + CℓϕℓL s
h χℓ

≥ ⟨s⟩−1ψℓ−1αℓ−1
h +ϕℓh1/2

⟨s⟩−1β̃ℓh

for some β̃ℓh ∈ Y ρh . By the paradifferential Gårding inequality, and a routine construction of a parametrix,
we find α̃ℓh ∈ Y ρh , with supp α̃ℓh ⊂ {χℓ+1 > 0}, such that

Ph
CℓL s

h (ϕ
ℓχℓ)

− ⟨s⟩−1Ph
ψℓ−1αℓ−1

h +h1/2ϕℓβ̃ℓh
≥ h⟨s⟩−1Ph

(ψℓ−1+ϕℓ)α̃ℓh
+O(hρ)L∞(Ih ,L2→L2).

Similar to the estimate of A0
h , by a symbolic calculus, we find αℓh, β

ℓ
h ∈ Y ρh , with

suppαℓh ∪ suppβℓh ⊂ suppχℓ
such that

Lh
s A

ℓ
h = Ph

CℓL s
h (ϕ

ℓχℓ)
+ h1/2

⟨s⟩−1ϕℓPαℓh+h1/2βℓh
+O(hρ)L∞(Ih ,L2→L2).

Summing up the two inequalities above,

Lh
s A

ℓ
h − ⟨s⟩−1ψℓ−1Ph

αℓ−1
h

≥ h1/2
⟨s⟩−1Ph

ϕℓ(aℓh+β̃ℓh)+h1/2(ψℓ−1+ϕℓ)α̃ℓh+h1/2ϕℓβℓh
+O(hρ)L∞(Ih ,L2→L2). (6-14)
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Therefore, combining (6-13) and (6-14),

Lh
s

( ℓ∑
j=0

h j/2ϕ jA j
h

)
≥ h(ℓ+1)/2

⟨s⟩−1ψℓPh
αℓh+h1/2βℓh

+O(hρ)L∞(Ih ,L2→L2),

where

ψℓ = 1 +ψℓ−1
+ϕℓ, αℓh =

ψℓ−1

ψℓ
βℓ−1

h +
φℓ

ψℓ
(αℓh + β̃ℓh), βℓh =

ψℓ−1
+ϕℓ

ψℓ
α̃ℓh +

ϕℓ

ψℓ
βℓh .

Thus we close the induction procedure.
To finish the proof, suppose that( 3

2 t0|ξ∞|
−1/2ξ∞, ξ∞

)
̸∈ WF σ1/2,1(u(t0)),( 3

2 t0|ξ∞|
−1/2ξ∞,−ξ∞

)
̸∈ WF σ1/2,1(u(t0)).

By Lemma 6.9, we can choose φ such that, for sufficiently small h > 0,

supp θ1/2,0
1/h,∗χ

+

j |s=h−1/2t0 ⊂ R2d
\ WF σ1/2,1(u(t0)),

supp θ1/2,0
1/h,∗χ

−

j |s=h−1/2t0 ⊂ R2d
\ WF σ1/2,1(u(t0)).

So by Lemmas 4.34 and 2.14,

(Ahw,w)L2 |s=h−1/2t0 = O(h2σ ).

By our construction, ϕℓ(0)= 0 for all ℓ≥ 1, so

Ah|s=0 = A0
h|s=0 = (Ph

χ0
)∗Ph

χ0
|s=0.

Because Fh = O(h1/2)Hρ , we have, by Lemma 2.15, that Ah Fh = O(hρ+1/2)L2 . Therefore, by (4),

∥Ph
χ0
w|s=0∥

2
L2 = Re(Ahw,w)L2 |s=h−1/2t0 −

∫ h−1/2t0

0
Re(Lh

s Ahw,w)L2 ds −

∫ h−1/2t0

0
Re(Ah Fh, w)L2 ds

≤ O(h2σ )+O(hρ−1/2)= O(h2σ ).

Observe that χ0|s=0 is of compact support with respect to x , and we have

Ph
χ0|s=0

= T h
βh

+O(hρ)L2→L2,

where

βh =

∑
j≥0

ψjχ0|s=0♯hψj ∈

ρ∑
j=0

h jϒρ− j

is a finite summation. By Lemma 4.41 and (6-5), we conclude that, if (x0, ξ0) ̸∈ WF σ0,1(u0) provided
σ ≤

3
2r , where

r = min
{[ 2

3(µ− 1 − d̃)
]
, k

}
,

then under the hypothesis of theorem we have r = k. □



PROPAGATION OF SINGULARITIES FOR GRAVITY-CAPILLARY WATER WAVES 341

6D. Proof of Corollary 1.10. The case when d = 1 is trivial. For the second case, we shall prove that,
on any cogeodesic {(xt , ξt)}t∈R,

lim
t→+∞

xt · ξt = ∞, (6-15)

so no geodesics can be trapped. The proof of (6-15) is almost finished by the proof of Lemma 6.8. Indeed,
similar calculations imply

d
dt
(xt · ξt)≳ |ξ0|

2.

List of notation

WFµ(u) wavefront set
WFµδ,ρ(u) quasihomogeneous wavefront set
Op(a) pseudodifferential operator
Oph(a) semiclassical pseudodifferential operator
Opδ,ρh (a) quasihomogeneous semiclassical pseudodifferential operator
Ta paradifferential operator
Pa dyadic paradifferential operator
Ph

a semiclassical dyadic paradifferential operator
Ph,ϵ

a quasihomogeneous semiclassical dyadic paradifferential operator
a♯δ,ρh b composition of symbols
ζ
δ,ρ
h a adjoint of symbols

S, S ′ Schwartz function space and tempered distribution space
Hµ,δ

k , W r,∞
k,δ weighted Sobolev spaces

0m,r paradifferential symbol class
0

m,r
k,δ weighted paradifferential symbol class
6

m,r
k,δ weighted paradifferential polysymbol class

Mm,r, Mm,r
k,δ symbol norm and weighted symbol norm

θ
δ,ρ
h phase-space scaling operator
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SHIFT EQUIVALENCES
THROUGH THE LENS OF CUNTZ–KRIEGER ALGEBRAS

TOKE MEIER CARLSEN, ADAM DOR-ON AND SØREN EILERS

Motivated by Williams’ problem of measuring novel differences between shift equivalence (SE) and strong
shift equivalence (SSE), we introduce three equivalence relations that provide new ways to obstruct SSE
while merely assuming SE.

Our shift equivalence relations arise from studying graph C*-algebras, where a variety of intermediary
equivalence relations naturally arise. As a consequence we realize a goal sought after by Muhly, Pask
and Tomforde, measure a delicate difference between SSE and SE in terms of Pimsner dilations for
C*-correspondences of adjacency matrices, and use this distinction to refute a proof from a previous paper.

1. Introduction

Initially recognized in the 40’s as the right object to model quantum phenomena, C*-algebras are applied
today in a variety of areas including theoretical physics, topology, differential geometry and dynamical
systems. Such applications drive the impetus for obtaining structural and classification results for
C*-algebras, especially in relation with Elliott’s classification programme [14; 45; 49; 50]. One fantastic
application of C*-algebras in dynamics, using tools from classification of C*-algebras, is the classification
of Cantor minimal systems up to orbit equivalence by their dimension groups [17; 18]. Similar to this,
our work here deals with subtle invariants arising from C*-algebras associated to subshifts of finite type
(SFTs), with the aim of distinguishing SFTs up to conjugacy.

In a seminal 1973 paper [47], Williams recast conjugacy and eventual conjugacy for SFTs purely
in terms of equivalence relations between adjacency matrices of the directed graphs. These are called
strong shift equivalence (SSE) and shift equivalence (SE) respectively. Williams expected SSE and SE
to be the same [47, Proposition 7.2], but after around 25 years the last hope for a positive answer to
Williams’ problem, even under the most restrictive conditions, was extinguished by Kim and Roush [28].
Although these counterexamples are concrete, aperiodic and irreducible 7 × 7 matrices, showing that they
are not strong shift equivalent requires an invariant which is very difficult to compute. Thus, finding new

Toke M. Carlsen was supported by the Research Council of the Faroe Islands. Adam Dor-On was supported by NSF grant DMS-
1900916 and the European Union’s Horizon 2020 Marie Skłodowska-Curie grant 839412-IRIOA. Søren Eilers was supported by
the DFF-Research Project 2 “Automorphisms and invariants of operator algebras”, no. 7014-00145B. Finally, this project was
partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy-EXC 2044-390685587, Mathematics Münster: Dynamics-Geometry-Structure; the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation), Project-ID 427320536-SFB 1442, and ERC Advanced Grant 834267-AMAREC.
MSC2020: primary 37A55, 46L55; secondary 37B10, 37A35, 46L08, 46L35.
Keywords: shift equivalence, Williams’ problem, Cuntz–Krieger algebras, Cuntz–Pimsner algebras, compatible shift

equivalence, Pimsner dilations.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/apde/
https://doi.org/10.2140/apde.2024.17-1
https://doi.org/10.2140/apde.2024.17.345
http://msp.org
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


346 TOKE MEIER CARLSEN, ADAM DOR-ON AND SØREN EILERS

obstructions to strong shift equivalence when two matrices are only assumed to be shift equivalent is an
important endeavor, even just for 2 × 2 matrices (see [31, Example 7.3.13]).

Definition 1.1 [47]. Let A and B be matrices indexed by sets V and W respectively, with (possibly
infinite) cardinal entries. We say that A and B are:

(1) Shift equivalent with lag m ∈ N \ {0} if there are a V × W matrix R and a W × V matrix S with
cardinal entries such that

Am
= RS, Bm

= S R,

S A = BS, AR = RB.

(2) Elementary shift related if they are shift equivalent with lag 1.

(3) Strong shift equivalent if they are equivalent in the transitive closure of elementary shift relation.

In tandem with early attacks on Williams’ problem, Cuntz and Krieger [8] created a bridgehead between
symbolic dynamics and operator algebras, where several natural properties of subshifts of finite type are
expressed through associated C*-algebras. In fact, by [8, Proposition 2.17] we know that strong shift
equivalence of A and B implies that the Cuntz–Krieger C*-algebras OA and OB are stably isomorphic in
a way preserving their gauge actions γ A and γ B and their diagonal subalgebras DA and DB . On the other
hand, by a theorem of Krieger [29] we know that the dimension group triples of SFTs are isomorphic if
and only if the associated matrices are SE. Since these dimension group triples coincide with K -theoretical
data of crossed products of Cuntz–Krieger C*-algebras by their gauge action, Krieger’s theorem implies
as a corollary (see Section 7) that if two Cuntz–Krieger algebras OA and OB are stably isomorphic in
a way preserving their gauge actions γ A and γ B, then their defining adjacency matrices A and B are
shift equivalent. Through the lens of Cuntz–Krieger algebras, this provides several natural equivalence
relations between SSE and SE, and it then becomes important to orient them and determine whether they
coincide with SSE, SE or perhaps a completely new equivalence relation strictly between SSE and SE.
Such distinctions may pave the way towards more concrete and computable invariants that distinguish
SFTs up to conjugacy.

In this paper we introduce, study and orient three equivalence relations that provide new ways of
measuring the difference between SSE and SE. Before we discuss these, let us first mention the state of
the art.

A partial converse of the corollary to Krieger’s theorem was obtained by Bratteli and Kishimoto [4],
using deep machinery from C*-algebra K-theory classification, involving the essential concept of Rokhlin
towers. More precisely, using their work it can be shown that if A and B are two aperiodic and irreducible
adjacency matrices then

A is SE to B ⇐⇒ (OA ⊗ K, γ A
⊗ id)≃ (OB ⊗ K, γ B

⊗ id). (1-1)

This converse to Krieger’s corollary for essential matrices remains a subtle and important classification
problem in this line of research, and is one of the key motivating problems for our work here.

After a major undertaking pioneered by Matsumoto [33; 34], it is now known that several key concepts
in symbolic dynamics may be fully understood in terms of operator algebraic descriptions. Indeed, both
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SSE as well as flow equivalence (FE) of subshifts of finite type may be given an inherently operator-
algebraic characterization. Suppose A and B are finite adjacency matrices defining two-sided SFTs
(X A, σA) and (X B, σB) respectively (see Section 2). When A and B are irreducible, Matsumoto and
Matui [35] established that

(X A, σA) is FE to (X B, σB) ⇐⇒ (OA ⊗ K,DA ⊗ c0)≃ (OB ⊗ K,DB ⊗ c0),

where K is the C*-algebra of compact operators on ℓ2(N) and c0 is its subalgebra of diagonal operators.
This was later extended to cover all two-sided SFTs by the first-named and third-named authors with
Ortega and Restorff [6].

For conjugacy, the first-named author and Rout [5] proved that (X A, σA) is conjugate to (X B, σB)

precisely when the associated Cuntz–Krieger algebras OA and OA are stably isomorphic in a way preserving
both the gauge actions and the diagonals (this time with no additional restrictions on A and B). More
precisely, and combining with Williams’ characterization of conjugacy, we have

A is SSE to B ⇐⇒ (OA ⊗ K, γ A
⊗ id,DA ⊗ c0)≃ (OB ⊗ K, γ B

⊗ id,DB ⊗ c0). (1-2)

The equivalences in (1-1) and (1-2) provide a fresh perspective for symbolic dynamics via C*-algebras,
and reinterpret Williams’ problem via the counterexamples provided by Kim and Roush [27; 28]. More
precisely, the examples of Kim and Roush show that two adjacency matrices can be shift equivalent and
with flow equivalent two-sided SFTs without being strong shift equivalent. Hence, in terms of C*-algebras,
this shows it is not always possible to trade in two isomorphisms — one respecting the diagonal, and one
respecting the gauge action — for one which respects both.

Another research agenda motivating this work is the graded isomorphism problem of Hazrat from the
theory of Leavitt path algebras, where one studies graded isomorphisms of pure algebras by means of
graded K-theory. In work of Hazrat [19], it was shown that the relevant graded K-theoretical data is in
fact the same as Krieger’s dimension group triple, and Hazrat conjectured that this invariant is complete
when the class of the unit is added to the dimension triple as part of the invariant. Thus, the converse to
Krieger’s corollary is a topological analogue of Hazrat’s conjecture. Although substantial advances have
been made [2; 3], Hazrat’s conjecture remains elusive.

For a V × W matrix F = [Fi j ] with cardinal entries, we define

EF := {(v,w, α) | 0 ≤ α < Fvw, v ∈ V, w ∈ W },

so that r(v,w, α) = w and s(v,w, α) = v, α is an ordinal, and Fvw is interpreted as the least ordinal
with cardinality Fvw. When V = W, this makes G F := (V, EF ) into a directed graph in its own right.
For two matrices C over V × W and D over W × X with cardinal entries, we define the fibered product

EC × ED := {cd | c ∈ EC , d ∈ ED, r(c)= s(d)}.

Note here that we write cd to mean the pair (c, d) for which r(c)= s(d), which should be thought of as
concatenation of edges, even if there are no actual graphs. When V = W, for any n ∈ N we denote by En

C
the n-fold product of EC with itself, so that En

C is naturally identified with ECn .
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One might also consider EC × ED as a pullback of W, and indicate the role of W in the notation. We
refrain from doing so for the sake of readability.

The following definition was dubbed “specified equivalence” by Nasu [38] in his study of shift
equivalences between textile systems.

Definition 1.2. Let A and B be matrices with cardinal entries over V × W. A path isomorphism is a
bijection φ : E A → EB such that s(φ(e))= s(e) and r(φ(e))= r(e) for every e ∈ E A.

Using path isomorphism, we define our first equivalence relation of compatible shift equivalence (CSE)
(see Definition 4.1). The mere existence of path isomorphisms φR, φS, ψA, ψB in Definition 4.1 implies
shift equivalence, so that CSE is a direct strengthening of shift equivalence. In Theorem 7.3 we show
that CSE coincides with SSE, and this allows for a direct comparison between SSE and SE via CSE.
Motivated by Williams’ problem, another related notion called adapted shift equivalence was studied
by Parry [39] and was also shown to be equivalent to SSE. More precisely, instead of a requirement
on compatibility of path isomorphisms between shift equivalent matrices, adapted shift equivalence
is a shift equivalence of lag m ∈ N \ {0} between the adjacency matrices of the m-line graphs of A
and B.

It is known that shift equivalence is decidable by Kim and Roush [25; 26], but the problem of decidability
of strong shift equivalence remains a fundamental open problem in symbolic dynamics. In fact, this was
the original motivation in Williams’ paper [47]. The identification between path isomorphisms in the
definition of CSE illustrates in what way the algorithm of Kim and Roush would need to improve were
SSE turn out to be decidable.

Our second equivalence relation is called representable shift equivalence (RSE) (see Definition 5.1). It
arises naturally when one attempts to represent shift equivalence as bounded operators on Hilbert space.

Surprisingly, by merely representing the relations of shift equivalence as bounded operator on Hilbert
space, we get SSE (see Theorem 7.3). Considering the counterexamples of Kim and Roush, we see that if
A and B are shift equivalent but not strong shift equivalent, then it follows that one of the four relations
of shift equivalence must fail when representing everything on the same Hilbert space (see Section 5 for
more details).

In what follows, we will say that a matrix is essential if it has no zero rows and no zero columns.
In the work of Pimsner [40], Pimsner dilations were introduced and were subsequently studied by
several authors [13; 15; 22; 37]. Pimsner dilations offer a “reversible” perspective for Cuntz–Pimsner
C*-algebras, showing that they are always generated by an imprimitivity bimodule that contains the
original C*-correspondence. In [37, Remark 5.5] an equivalent formulation of strong shift equivalence
in terms of Pimsner dilations was sought. This leads us to our third equivalence relation, which we call
strong Morita shift equivalence (SMSE) (see Definition 6.1). Let A and B be finite essential matrices.
Denote by X (A)∞ and X (B)∞ the Pimsner dilations of their graph C*-correspondences (see Section 3)
and by C∗(GA) and C∗(G B) their Cuntz–Krieger graph C*-algebras. Our main theorem provides an
equivalent formulation sought by Muhly, Pask and Tomforde, and orients CSE and RSE in one fell swoop
(see Theorem 7.3).
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Theorem 1.3. Suppose A and B are two finite essential matrices with entries in N. Then the following
are equivalent:

(1) A and B are strong shift equivalent.

(2) A and B are compatible shift equivalent.

(3) A and B are representable shift equivalent.

(4) X (A)∞ and X (B)∞ are strong Morita shift equivalent.

(5) C∗(GA) and C∗(G B) are equivariantly stably isomorphic in a way that respects the diagonals.

For some time now, several experts have been perplexed about certain Pimsner dilation techniques (see
for instance [37, Remark 5.5], the incorrect proof of [22, Theorem 5.8], and the subsequent corrigendum
of [22]), and many are still wondering whether they can be used to show that shift equivalence of A
and B implies strong Morita equivalence of the Pimsner dilations X (A)∞ and X (B)∞ (in the sense of
Abadie, Eilers and Exel [1, Section 4] or Muhly and Solel [36]). The importance of this question is
further elevated because of Theorem 3.17 and the discussion succeeding it, where we show that a positive
answer to it is equivalent to the converse to Krieger’s corollary. Combining our main theorem with the
celebrated counterexamples of Kim and Roush [28], as well as the work of Bratteli and Kishimoto [4],
we obtain the following cutoff result. This result addresses the ambiguities mentioned above, and refutes
the proof of [22, Theorem 5.8] (see Theorem 7.4).

Theorem 1.4. There exist finite aperiodic 7 × 7 irreducible matrices A and B with entries in N such that
X (A)∞ and X (B)∞ are strong Morita equivalent, but not strong Morita shift equivalent.

Since the validity of [22, Theorem 5.8] is in question, so is the validity of [22, Corollary 5.11]. This
latter result states that shift equivalence of A and B implies the (not necessarily equivariant) stable
isomorphisms of C∗(GA) and C∗(G B). However, thanks to Ara, Hazrat and Li [3] this result can still be
recovered. Indeed, in work of the third author with Restorff, Ruiz and Sørensen [12] it was shown that
filtered, ordered K-theory classifies unital graph C*-algebras up to stable isomorphism. By showing that
filtered ordered K-theory is an invariant of shift equivalence, Ara, Hazrat and Li [3] ipso facto show that
shift equivalence implies the stable isomorphisms of unital graph C*-algebras.

This paper contains eight sections, including this introductory section. In Section 2 we discuss
some of the basic theory of directed graphs, subshifts of finite type, groupoid C*-algebra description
of graph C*-algebras and Cuntz–Krieger C*-algebras. In Section 3 we discuss some of the theory of
C*-correspondences, Cuntz–Pimsner algebras, Pimsner dilations and equivariant isomorphisms. We
provide there a characterization of the existence of an equivariant stable isomorphism between Cuntz–
Pimsner algebras in terms of Pimsner dilations. In Section 4 we introduce CSE, show it is an equivalence
relation, and that it is implied by SSE. In Section 5 we introduce RSE, show that it is implied by CSE, and
upgrade representations to be faithful on associated graph C*-algebras. In Section 6 we explain how to
concretely construct inductive limits related to Pimsner dilations, introduce SMSE, show that RSE implies
SMSE and show that SMSE implies the existence of a stable equivariant diagonal-preserving isomorphism
between graph C*-algebras. Finally in Section 7 we discuss dimension triples for graph C*-algebras,
orient different equivalence relations on adjacency matrices and prove the main results stated above.
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2. Preliminaries

In this section we explain some of the basic theory of directed graphs, subshifts of finite type, groupoid
C*-algebra descriptions of graph C*-algebras, Cuntz–Krieger algebras and dimension triples. We recom-
mend [31] for the basics of symbolic dynamics.

A directed graph G = (V, E, r, s) is comprised of a vertex set V and an edge set E together with range
and source maps r, s : E → V.

We say that a directed graph G = (V, E) has finite out-degrees if s−1(v) is finite for every v ∈ V.
We say that G is finite if both V and E are finite. When G has finite out-degrees and has no sources
(i.e., r is surjective) and no sinks (i.e., s is surjective), we may define the two-sided edge shift to be the
pair (X E , σE) where X E is the set of bi-infinite paths

X E = {(en)n∈Z | s(ei+1)= r(ei )} ⊆

∏
i∈Z

E,

with the product topology, and σE : X E → X E is the left shift homeomorphism given by σE((en)n∈Z)=

(en+1)n∈Z. The one-sided edge shift (X+

E , σ
+

E ) is defined as above, by replacing every occurrence of Z

with N.
Given a directed graph G = (V, E), we may always form its V × V adjacency matrix with cardinal

entries given for v,w ∈ V by

AE(v,w)= |{e ∈ E | s(e)= v, r(e)= w}|.

Conversely, we have seen that given a matrix A indexed by V with cardinal entries, one may form a
directed graph GA = (V, E A, r, s), where E A is the set of triples (v,w, α) such that v,w∈ V, 0 ≤α< Avw
is an ordinal, Avw is interpreted as the least ordinal with cardinality Avw, while r(v,w, α) = w and
s(v,w, α)= v. It is clear that GAE and G are isomorphic directed graphs and that AE A = A.

The following shows that under countability/finiteness assumptions, shift equivalence with arbitrary
cardinals becomes the standard notion we know from the literature.

Proposition 2.1. Let A and B be matrices with cardinal entries, indexed by sets V and W. Suppose that
V and W are countable/finite, and suppose that A and B are over N ∪ {ℵ0} / over N, respectively. If A
and B are shift equivalent, then the matrices R and S realizing shift equivalence can be chosen to be with
entries in N ∪ {ℵ0} / in N, respectively.

Proof. Suppose now that V and W are countable/finite, and that A and B are with entries in N∪{ℵ0} / in N

respectively. If R and S implement shift equivalence of lag m between A and B, denote by R′ and S′ the
matrices obtained from R and S by replacing all noncountable/nonfinite entries with zeros (respectively).
As the matrices Am and Bm are with entries in N∪{ℵ0} / in N (respectively), we still have that R′S′

= Am

and S′ R′
= Bm, as well as S′ A = BS′ and AR′

= R′B. Hence, A and B are shift equivalent via R′ and S′,
and we are done. □

In this paper we will conduct our study through the lens of graph C*-algebras, which include the class of
Cuntz–Krieger C*-algebras. We recommend [16; 41] for more on graph C*-algebras. We will sometimes
assume that our graphs have finite out-degree, which is often called “row-finiteness” in the literature.
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Definition 2.2. Let G = (V, E, r, s) be a directed graph. A family of operators (Sv, Se)v∈V,e∈E on a
Hilbert space H is called a Cuntz–Krieger family if

(1) (Sv)v∈V is a family of pairwise orthogonal projections,

(2) S∗
e Se = Sr(e) for all e ∈ E , and

(3)
∑

e∈s−1(v) Se S∗
e = Sv for all v ∈ V with 0< |s−1(v)|<∞.

The graph C*-algebra C∗(G) of G is the universal C*-algebra generated by a Cuntz–Krieger families.

Universality of C∗(G) gives rise to a point-norm continuous gauge action of the unit circle γ : T →

Aut(C∗(G)) given by

γz(Sv)= Sv and γz(Se)= z · Se for z ∈ T, v ∈ V, e ∈ E .

With this gauge action, C∗(G) becomes a Z-graded C*-algebra whose graded components are C∗(G)n :=

{T ∈ C∗(G) | γz(T )= zn
· T }.

We will sometime assume that our graphs have finite out-degree, which is often called “row-finiteness”
in the literature. We shall need the groupoid C*-algebra description of C∗(G), as specified in [5]. Indeed,
if G = (V, E) is a directed graph with finite out-degree, no sources and no sinks, we may construct the
locally compact, Hausdorff etale groupoid

GE := {(x,m − n, y) ∈ X+

E × Z × X+

E | x, y ∈ X E , m, n ∈ N, σm
E (x)= σ n

E(y)},

with product (x, k, y)(w, ℓ, z)= (x, k + ℓ, z) if y = w (otherwise undefined), and inverse (x, k, y)−1
=

(y,−k, x). The topology on GE is generated by subsets of the form

Z(U,m, n, V )= {(x,m − n, y) ∈ GE | x ∈ U, y ∈ V },

where m, n ∈ N and U, V ⊆ X+

E are clopen such that σm
E |U is injective, σ n

E |V is injective, and σm
E (U )=

σ n
E(V ). The map x 7→ (x, 0, x) then provides a homeomorphism from X+

E into the unit space G0
E of GE . It

is well known that C∗(G)∼= C∗(GE) is the groupoid C*-algebra of GE , and that DE := C0(G(0)E )∼= C0(X+

E )

is the subalgebra of continuous functions on units of GE . This subalgebra is often called the diagonal
subalgebra of C∗(G), and is given by

DE = span{SµS∗

µ | µ ∈ En, n ∈ N}.

In what follows, recall that K denotes compact operators on ℓ2(N), which contains a natural copy
of diagonal compact operators c0 ⊆ K. We will consider γ ⊗ idK as the standard gauge action on the
stabilization C∗(G)⊗ K. It was shown in [5, Theorem 5.1] that for any two finite graphs without sources
and sinks G = (V, E) and G ′

= (V ′, E ′) we have that (X E , σE) and (X E ′, σE ′) are conjugate if and only
if there is an equivariant isomorphism ϕ : C∗(G)⊗ K → C∗(G ′)⊗ K such that ϕ(DE ⊗ c0)= DE ′ ⊗ c0.

Suppose that A = (Avw)n−1
v,w=0 is an essential n × n matrix with nonnegative integer entries. The

Cuntz–Krieger algebra of A is the universal C*-algebra OA generated by a family

{S(v,w,m) | v,w,m ∈ N, 0 ≤ v,w < n, 0 ≤ m < Avw}



352 TOKE MEIER CARLSEN, ADAM DOR-ON AND SØREN EILERS

of partial isometries satisfying

(1) S∗

(v,w,m)S(v,w,m) =
∑n−1

u=0
∑Awu−1

ℓ=0 S(w,u,ℓ)S∗

(w,u,ℓ),

(2)
∑n−1

v,w=0
∑Avw−1

m=0 S(v,w,m)S∗

(v,w,m) = 1.

For each family as above, we get projections Sw = S∗

(v,w,m)S(v,w,m) (independent of v and m), so that the
family (Sv, S(v′,w′,m)) becomes a Cuntz–Krieger family for the directed graph GA (see [8, Remark 2.16]
and [41, Remark 2.8]). Hence, there is a ∗-isomorphism between OA and C∗(GA) which maps the
generators S(v,w,m) of OA to edge generators for C∗(GA). This isomorphism between OA and C∗(GA)

induces the usual gauge action on OA from [8] (which is also built from the universality of OA, see
[20, Remark 2.2(2)]) and sends the natural diagonal subalgebra of OA to the diagonal subalgebra DE

inside C∗(GA). Thus, there is no loss of generality arising from considering graph C*-algebras instead of
Cuntz–Krieger C*-algebras.

Notation 2.3. Whenever X, Y ⊆ L(E) are norm-closed subspaces, we denote by XY or by X · Y the
closed linear span of products x · y with x ∈ X and y ∈ Y.

3. Shift equivalence and Cuntz–Pimsner algebras

In this section we discuss C*-correspondences of adjacency matrices, Cuntz–Pimsner C*-algebras and
Pimsner dilations. The main result of this section is a characterization of equivariant stable isomorphism
of Cuntz–Pimsner algebras in terms of Pimsner dilations.

We will need some of the theory of C*-correspondences. We mention some of the basic definitions,
but will assume some familiarity with the theory of Hilbert C*-modules as in [30; 32].

Definition 3.1. A C*-correspondence from A to B (or B -A C*-correspondence) is a right Hilbert
A-module E with a *-representation φE : B → L(E), where L(E) is the C*-algebra of adjointable
operators on E . We denote by K(E) the ideal of L(E) which is closed linear span of rank-1 operators θξ,η
given by θξ,η(ζ )= ξ⟨η, ζ ⟩.

We will say that two B -A correspondences E and F are unitarily isomorphic (and denote this by
E ∼= F) if there is an isometric surjection U : E → F such that for every a ∈A, b ∈ B and ξ ∈ E we have

U (φE(b)ξa)= φF (b)U (ξ)a.

We will assume throughout this note that C*-correspondences E are nondegenerate (sometimes called
essential) in the sense that φE(B)E = E . We say that a B -A C*-correspondence E is regular if its left
action φE is injective and φE(B) ⊆ K(E). When the context is clear, we write bξ to mean φE(b)ξ for
b ∈ B and ξ ∈ E . Finally, we say that a B -A C*-correspondence E is full if A is equal to the ideal ⟨E, E⟩

defined as the closed linear span of ⟨ξ, η⟩ for ξ, η ∈ E .
The most important examples of C*-correspondences in our study are the ones coming from adjacency

matrices. Let V and W be sets, and let C be a V × W matrix so that Cvw is some cardinal. We define

EC := {(v,w, α) | 0 ≤ α < Cvw, v ∈ V, w ∈ W }.
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When C is a V × W matrix with cardinal entries, we may construct a c0(V )-c0(W ) correspondence
X (C) by taking the Hausdorff completion of all finitely supported functions on EC with respect to the
inner product

⟨ξ, η⟩(w)=

∑
(v,w,α)∈EC

ξ(v,w, α)η(v,w, α),

where ξ and η are finitely supported on EC . The left actions of c0(V ) and the right action of c0(W ) on
X (C) are then given by

( f · ξ · g)(v,w, α)= f (v)ξ(v,w, α)g(w) for f ∈ c0(V ) and g ∈ c0(W ).

When V = W, it is clear that X (C) coincides with the graph C*-correspondence X (GC) of the directed
GC = (V, EC), as is explained in the discussion preceding [10, Theorem 6.2], with range and source
interchanged in the definitions of inner product and bimodule actions.

We will need to know that in the above way we obtain all c0(V )-c0(W ) correspondences. This type of
result was first shown by Kaliszewski, Patani and Quigg [23] when C is a square matrix indexed by a
countable set and with countable entries.

Proposition 3.2. Let V and W be sets, and E a c0(V )-c0(W ) correspondence. Then there exists a unique
V × W matrix C with cardinal entries such that E is unitarily isomorphic to X (C).

Proof. Let v ∈ V and w ∈ W, and let pv ∈ c0(V ) and pw ∈ c0(W ) be the characteristic functions
of {v} and {w} respectively. Since pvEpw is a Hilbert space, we let Cvw be its dimension, and let
{e(v,w,α)}0≤α<Cvw be an orthonormal basis for it, indexed by ordinals 0 ≤ α < Cvw. Then clearly C is a
V × W matrix with cardinal values. We define a map U : X (C)→ E on finitely supported functions
by setting U (ξ) =

∑
(v,w,α)∈EC

ξ(v,w, α)e(v,w,α) for finitely supported ξ ∈ X (C). Now, for a finitely
supported function ξ ∈ X (C) we have for fixed w ∈ W that

|U (ξ)|2(w)=

∑
(v,w,α)∈EC

|ξ(v,w, α)|2 = |ξ |2(w).

Hence, U extends to an isometry on X (C), and since the linear span of

{e(v,w,α) | v ∈ V, w ∈ W, 0 ≤ α < Cvw}

is dense in E , we get that U is a unitary isomorphism.
As for uniqueness, suppose F is another c0(W )-c0(V )-correspondence which is unitarily isomorphic

to E via a unitary U. Hence, if C E and C F are the matrices associated to E and F via the first paragraph,
we must have C F

vw = C E
vw, and we are done. □

For a B -A correspondence E and a C-B correspondence F, we can form the interior tensor product
C-A correspondence F ⊗B E of E and F as follows. Let F ⊗alg E denote the quotient of the algebraic
tensor product by the subspace generated by elements of the form

ηb ⊗ ξ − η⊗ bξ for ξ ∈ E, η ∈ F, b ∈ B.
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Define an A-valued semi-inner product and left C-action by setting

⟨η1 ⊗ ξ1, η2 ⊗ ξ2⟩ = ⟨ξ1, ⟨η1, η2⟩ · ξ2⟩ for ξ1, ξ2 ∈ E, η1, η2 ∈ F,

c · (η⊗ ξ)= (c · η)⊗ ξ for η ∈ E, ξ ∈ F, c ∈ C.

We denote by F ⊗B E the separated completion of F ⊗alg E with respect to the A-valued semi-inner
product defined above. One then verifies that F ⊗B E is a C-A correspondence (see for example [30,
Proposition 4.5]). We will often abuse notation and write F ⊗ E for F ⊗B E when the context is clear. If
E is an A-A correspondence (a C*-correspondence over A), then we denote by E⊗n the n-fold interior
tensor product of E with itself.

Proposition 3.3. Let I, J, K be sets, and let C be an I × J matrix and D be a J × K matrix, both with
cardinal entries. Then there is a unitary isomorphism U : X (C)⊗ X (D)→ X (C D).

Proof. For each i ∈ I , j ∈ J and k ∈ K , let Ci j = |X i j |, D jk = |Y jk | for some sets X i j and Y jk . Then
(C D)ik is the cardinality of the disjoint union of Cartesian products

⊔
j∈J X i j × Y jk .

Now, clearly both X (C)⊗ X (D) and X (C D) are c0(I )-c0(K ) correspondences, so that by the unique-
ness part of Proposition 3.2 it will suffice to show for every i ∈ I and k ∈ K that the dimension of the
Hilbert space pi X (C)⊗ X (D)pk is equal to (C D)ik .

So let {ex}x∈X i j be an orthonormal basis for pi X (C)p j for i ∈ I and j ∈ J and let {ey}y∈Y j ′k
be

an orthonormal basis for p j ′ X (D)pk for j ′
∈ J and k ∈ K . Then, for x ∈ X i j and y ∈ Y j ′k we have

ex ⊗ ey ̸= 0 if and only if j = j ′. Hence, an orthonormal basis for pi X (C)⊗ X (D)pk is given by
{ex ⊗ ey | x ∈ X i j , y ∈ Y jk, j ∈ J }. The cardinality of this basis is clearly equal to (C D)ik , so the proof
is concluded. □

The following definition of shift equivalence of C*-correspondences first appeared in [22].

Definition 3.4. Let E and F be C*-correspondences over A and B respectively. We say that E and F are:

(1) Shift equivalent with lag m if there are m ∈ N \ {0}, an A-B correspondence R and a B -A correspon-
dence S, together with unitary isomorphisms

E⊗m ∼= R ⊗ S, F⊗m ∼= S ⊗ R,

S ⊗ E ∼= F ⊗ S, E ⊗ R ∼= R ⊗ F.

(2) Elementary shift related if they are shift equivalent with lag 1.

(3) Strong shift equivalent if they are equivalent in the transitive closure of the elementary shift relation.

The following shows that shift equivalence between two C*-correspondences generalizes shift equiva-
lence of adjacency matrices.

Proposition 3.5. Let A and B be matrices with cardinal entries, indexed by sets V and W. Then, A and B
are shift equivalent if and only if X (A) and X (B) are shift equivalent.

Proof. By Proposition 3.3 we see that if A and B are shift equivalent with lag m via matrices C and D,
then the C*-correspondences X (A) and X (B) are shift equivalent with lag m via the C*-correspondences
X (C) and X (D).
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Conversely, suppose R and S are c0(V )-c0(W ) and c0(W )-c0(V ) correspondences implementing shift
equivalence of lag m for X (A) and X (B). By Proposition 3.2 there are a V × W matrix C and W × V
matrix D with unitary isomorphisms R ∼= X (C) and S ∼= X (D). Hence, the uniqueness portion in
Proposition 3.2 guarantees that C and D implement a shift equivalence of A and B with lag m. □

Every path isomorphism φ : E A → EB induces a unitary isomorphism 8 : X (A)→ X (B) by setting
8(ξ)(v,w, α) = ξ(φ−1(v,w, α)). However, the converse is in general false; it is easy to construct a
unitary isomorphism U : X (A) → X (B) for which there is no path isomorphism φ : E A → EB such
that U is the induced unitary isomorphism from φ. The point of Proposition 3.5 is that we only need
to find some path isomorphisms for each one of the four relations appearing in the definition of shift
equivalence, and not necessarily path isomorphisms which induce the same four isomorphisms we started
with at the level of C*-correspondences.

Remark 3.6. From considerations similar to the above we see that strong shift equivalence of matrices
implies the strong shift equivalence of their associated C*-correspondences. The converse, however, is
unknown.

Next we discuss Cuntz–Pimsner algebras and Pimsner dilations. More material on Cuntz–Pimsner
algebras, with a special emphasis on C*-correspondences of graphs, can be found in [41, Chapter 8].
We note immediately that what we call a rigged representation here is often referred to as an isometric
representation in the literature (see [36]).

Definition 3.7. Let E be a C*-correspondence from A to B, and C some C*-algebra. A rigged repre-
sentation of E is a triple (πA, πB, t) such that πA : A → C and πB : B → C are *-homomorphisms and
t : E → C is a linear map such that

(1) πB(b)t (ξ)πA(a)= t (b · ξ · a) for a ∈ A, b ∈ B and ξ ∈ E ,

(2) t (ξ)∗t (η)= πA(⟨ξ, η⟩).

We say that (πA, πB, t) is injective if both πA and πB are injective *-homomorphisms. We denote by
C∗(πA, πB, t) the C*-algebra generated by the images of πA, πB and t .

We will mostly be concerned with the situation where A = B and πA = πB, in which case we will
define π := πA = πB, and refer to the representation as a pair (π, t), and the generated C*-algebra by
C∗(π, t).

Now let E be a C*-correspondence over A. The Toeplitz–Pimsner algebra T (E) is then the universal
C*-algebra generated by a rigged representation of E . Universality of T (E) implies that it comes equipped
with a point-norm continuous gauge action γ : T → Aut(T (E)) given by

γz(π(a))= π(a) and γz(t (ξ))= z · t (ξ) for z ∈ T, ξ ∈ E, a ∈ A.

Toeplitz–Pimsner algebras have a canonical quotient, also known as the Cuntz–Pimsner algebra, which
was originally defined by Pimsner in [40] and refined by Katsura in [24].

Definition 3.8. For a C*-correspondence E over A, we define Katsura’s ideal JE in A by

JE := {a ∈ A | φE(a) ∈ K(E) and ab = 0 for all b ∈ kerφE }.
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For a rigged representation (π, t) of a C*-correspondence E over A, it is known there is a well-defined
*-homomorphism ψt : K(E)→ C∗(π, t) given by ψt(θξ,η)= t (ξ)t (η)∗ for ξ, η ∈ E (see for instance [21,
Lemma 2.2]).

Definition 3.9. A rigged representation (π, t) is said to be covariant if π(a)= ψt(φE(a)) for all a ∈ JE .

The Cuntz–Pimsner algebra O(E) is then the universal C*-algebra generated by a covariant repre-
sentation of E . Suppose now that (π, t) and (π̄, t̄ ) are universal rigged and covariant representations
respectively, so that T (E)= C∗(π, t) and O(E)= C∗(π̄, t̄ ). We denote by JE the kernel of the natural
quotient map from T (E) onto O(E), which is the ideal generated by elements of the form π(a)−ψt(φE(a))
for a ∈ JE . Since the ideal JE is gauge-invariant, we see there is an induced point-norm continuous circle
action γ : T → Aut(O(E)) given by

γz(π(a))= π(a) and γz(t (ξ))= z · t (ξ) for z ∈ T, ξ ∈ E, a ∈ A.

It follows that O(E) then becomes a Z-graded C*-algebra, with its n-th graded component given by
O(E)n := {c ∈ O(E) | γz(c) = zn

· c}. By [42, Theorem 3] we see that there is a bijective correspon-
dence between topologically Z-graded C∗-algebras, with graded *-homomorphisms and C∗-algebras
equipped with a circle action, together with equivariant *-homomorphisms. In particular, an isomorphism
ϕ : O(E)→ O(F) between two Cuntz–Pimsner algebras is equivariant if and only if it is graded.

Example 3.10. When G = (V, E) is a directed graph we know that the graph C*-algebra C∗(G) coincides
with the Cuntz–Pimsner algebra of the correspondence X (AE) by an isomorphism that intertwines the
gauge action of C∗(G) and the gauge action of O(X (AE)). See [41, Section 8] for more details.

Definition 3.11. Let E, F be C*-correspondences over A and B, respectively. Denote by γ E and γ F

the gauge actions on O(E) and O(F) respectively. We say that O(E) and O(F) are equivariantly stably
isomorphic if there is a ∗-isomorphism ϕ :O(E)⊗K →O(F)⊗K such that ϕ ◦(γ E

z ⊗ id)= (γ F
z ⊗ id)◦ϕ

for every z ∈ T.

Equivariant stable isomorphisms arise naturally in the classification of groupoid C*-algebras, but
always in a way which respects diagonal subalgebras. For instance in [7], equivariant stable isomorphisms
which respect diagonal subalgebras are characterized in terms of isomorphisms of graded groupoids. We
will get back to such isomorphisms in Section 6.

The following definition is similar to Definition 3.1, and we will provide a precise distinction between
the two in the remark that follows.

Definition 3.12. Suppose E and F are C*-correspondences over C*-algebras A and B respectively. We
say that E and F are unitarily isomorphic (denoted by E ∼= F) if there exist a surjective, isometric map
U : E → F and a *-isomorphism ρ : A → B such that U (b · ξ · a)= ρ(b) · U (ξ) · ρ(a) for all a, b ∈ A,
ξ ∈ E .

Remark 3.13. Suppose now that E and F are C*-correspondences over C*-algebras A and B respectively,
and that U : E → F is a unitary isomorphism implemented by a *-isomorphism ρ : A → B. By the
discussion in [9, Subsection 2.1] we may “twist” the C*-correspondence F to a C*-correspondence Fρ
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over A so that U : E → Fρ becomes a unitary isomorphism as in Definition 3.1. More precisely, the new
operations on Fρ are given by

⟨ξ, η⟩ρ := ρ−1(⟨ξ, η⟩B) for ξ, η ∈ F,

a · ξ = ρ(a) · ξ and ξ · a := ξ · ρ(a) for all ξ ∈ F and a ∈ A,

and the identity map idρF : F → Fρbecomes a unitary isomorphism as in Definition 3.12. Then, the
isometric surjection idρF ◦ U is a unitary isomorphism as in Definition 3.1. Hence, we can go back and
forth between the two definitions of unitary isomorphism.

We warn the reader that unitary isomorphism as in Definition 3.12 is not the same as having an isometric
surjection U implemented via two potentially different *-isomorphisms ρ1 : A → B and ρ2 : A → B
in the sense that U (b · ξ · a) = ρ1(a)U (ξ)ρ2(b) for a, b ∈ A. We also note that whenever one of our
C*-correspondences has possibly different left and right coefficient C*-algebras, we only consider one
notion of unitary isomorphism, which is the one in Definition 3.1.

In what follows, we say that M is an imprimitivity A-B correspondence (from B to A) if it is full and
its left action φM is a ∗-isomorphism onto K(E). The following was introduced by Muhly and Solel [36]
in their study of tensor algebras of C*-correspondences.

Definition 3.14. Let E and F be C*-correspondences over C*-algebras A and B respectively. We say that
E and F are strongly Morita equivalent if there are an imprimitivity A-B bimodule M and an isometric
surjective linear map U : E ⊗ M → M ⊗ F such that for every ξ ∈ E ⊗ M , a ∈ A and b ∈ B we have
U (aξb)= aU (ξ)b.

When M is an imprimitivity A-B-bimodule, there is an “inverse” imprimitivity B -A-bimodule M∗

satisfying M ⊗ M∗ ∼= A and M∗
⊗ M ∼= B. If moreover A = B, it follows from [1, Theorem 2.9] that the

Z-graded components of O(M) are given for n ∈ N by

• O(M)n ∼= M⊗n for n > 0,

• O(M)0 ∼= A, and

• O(M)n ∼= (M⊗n)∗ for n < 0.

Proposition 3.15. Let E and F be C*-correspondences over C*-algebras A and B respectively. If E
and F are unitarily equivalent, then O(E) and O(F) are equivariantly isomorphic. If moreover E and F
are imprimitivity bimodules, then E and F are unitarily equivalent if and only if O(E) and O(F) are
equivariantly isomorphic.

Proof. Let (π̄, t̄ ) be a universal covariant representation for O(E). Assume that E and F are unitarily
equivalent. By the implication (1)⇒ (4) of [10, Corollary 3.5] we get that T (E) and T (F) are graded
isomorphic, and hence equivariantly isomorphic. Then, [10, Theorem 3.1] gives rise to an induced
isomorphism between O(E) and O(F), which is actually equivariant since the ideals JE and JF are
gauge-invariant.

Conversely, if E and F are imprimitivity bimodules, and ϕ : O(E)→ O(F) is an equivariant isomor-
phism, then ϕ is Z-graded, and we get that the restriction U := ϕ|O(E)1 : O(E)1 → O(F)1 is an isometric



358 TOKE MEIER CARLSEN, ADAM DOR-ON AND SØREN EILERS

O(E)0-O(F)0 bimodule isomorphism, implemented by the ∗-isomorphism ρ :=ϕ|O(E)0 :O(E)0 →O(F)0.
From the identifications in the discussion preceding the theorem, we get that E and F are unitarily
isomorphic. □

Given a C*-correspondence E over A, we may form the external minimal tensor product E ⊗K, which
is a C*-correspondence over A⊗ K as defined in [30, p. 34]. A consequence of [10, Proposition 2.10]
is that O(E ⊗ K) is canonically isomorphic to O(E) ⊗ K via a map induced by the representation
(π̄ ⊗ id, t̄ ⊗ id).

Corollary 3.16. Let E and F be C*-correspondences over C*-algebras A and B respectively. If E ⊗ K

and F ⊗K are unitarily equivalent, then O(E) and O(F) are equivariantly stably isomorphic. If moreover
E and F are imprimitivity bimodules, then E ⊗ K and F ⊗ K are unitarily equivalent if and only if O(E)
and O(F) are equivariantly stably isomorphic.

Proof. Since E ⊗ K and F ⊗ K are unitarily equivalent, by Proposition 3.15 we get that O(E ⊗ K) ∼=

O(F ⊗ K) equivariantly.
Suppose now that (π̄, t̄ ) is a universal covariant representation of E . By [10, Proposition 2.10], we get

that the representation (π̄ ⊗ id, t̄ ⊗ id) induces an isomorphism ρ̄ : O(E ⊗ K)→ O(E)⊗ K satisfying
ρ̄(ξ ⊗ K )= t̄(ξ)⊗ K for every ξ ∈ E and K ∈ K. Hence ρ̄ must be equivariant. It is similarly shown
that O(F ⊗ K)∼= O(F)⊗ K equivariantly. Hence, we get equivariantly that

O(E)⊗ K ∼= O(E ⊗ K)∼= O(F ⊗ K)∼= O(F)⊗ K.

With this, we obtain the first part of our result.
Conversely, if moreover E and F are imprimitivity bimodules, then so are E ⊗ K and F ⊗ K. Thus,

we are done by Proposition 3.15 and the above identifications. □

Let E be a C*-correspondence over a C*-algebra A, and (π̄, t̄ ) a universal covariant representation
of E . We denote by

A∞ = O(E)0 = span{π̄(A), ψt̄m (K(E⊗m)) | m ≥ 1}

the fixed point algebra of O(E) under the gauge action γ . It is well known that A∞ is the direct limit of
C*-subalgebras An given by

An = span{π̄(A), ψt̄m (K(E⊗m)) | 1 ≤ m ≤ n}.

When E has an injective left action, we get that An =ψt̄n (K(E⊗m)) for each n ∈ N, and we define En :=

t̄(E)An inside O(E). Then, En becomes a C*-correspondence from An to An+1, where the left action
of An+1 is defined by left multiplication in O(E). By taking the direct limit E∞ := t̄(E) ·A∞ =

⋃
∞

n=1 En ,
we obtain a C*-correspondence over A∞ called the Pimsner dilation of E .

It was shown by Pimsner in [40, Theorem 2.5(2)] that the identification E ⊗A∞
∼= E∞ gives rise to

an equivariant ∗-injection T (E)→ T (E∞), which then induces an equivariant isomorphism O(E) ∼=

O(E∞) between the quotients. When E is also regular and full, the C*-correspondence E∞ becomes an
imprimitivity bimodule.
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Theorem 3.17. Let E and F be regular and full C*-correspondences over σ -unital C*-algebras A and B
respectively. Then, O(E) and O(F) are equivariantly stably isomorphic if and only if E∞ and F∞ are
strong Morita equivalent.

Proof. Since E and F are regular and full, we get that E∞ and F∞ are imprimitivity bimodules. Hence,
by Corollary 3.16 we get that O(E) and O(F) are equivariantly stably isomorphic if and only if E∞ ⊗ K

and F∞ ⊗ K are unitarily isomorphic.
Since A and B are σ -unital C*-algebras, so are A∞ and B∞. Hence, every strong Morita equivalence M

for E∞ and F∞ must be a σ -TRO in the sense of [13, p. 6], so that a combination of [13, Theorem 5.2]
and [13, Proposition 3.1] shows that E∞ ⊗ K and F∞ ⊗ K are unitarily equivalent if and only if E∞

and F∞ are strongly Morita equivalent. □

It is important to say a few words about the assumptions in Theorem 3.17 and what they mean for
C*-correspondences of adjacency matrices with entries in N. Suppose A is a square adjacency matrix
with entries in N, and indexed by a set V. First note that V is countable if and only if c0(V ) is σ -unital if
and only if C∗(GA)0 is σ -unital. Moreover, by [41, Proposition 8.8] the following hold:

(1) A has finitely supported rows if and only if GA has finite out-degrees, if and only if the left action of
X (A) has image in K(X (A)).

(2) A has no zero rows if and only if GA has no sinks, if and only if X (A) has an injective left action.

(3) A has no zero columns if and only if GA has no sources, if and only if X (A) is full.

So we see that in order to apply Theorem 3.17 to X (A), we must verify that A is over a countable
set V, has finitely supported rows and is essential. In this case, Theorem 3.17 shows that the existence of
an equivariant stable isomorphism between graph C*-algebras C∗(GA) and C∗(G B) coincides with the
existence of a strong Morita equivalence of the Pimsner dilations X (A)∞ and X (B)∞.

4. Compatible shift equivalence

In this section we introduce and study compatible shift equivalence, which is formulated in terms of
adjacency matrices and path isomorphisms. We show that it is indeed an equivalence relation, and that
strong shift equivalence implies compatible shift equivalence. In what follows, for a matrix A we write
idA to mean idE A .

Definition 4.1. Let A and B be matrices indexed by V and W respectively, with entries in N. Suppose
there are a lag m ∈ N \ {0} and matrices R over V × W and S over W × V with entries in N together
with path isomorphisms

φR : E A × ER → ER × EB, φS : EB × ES → ES × E A,

ψA : ER × ES → Em
A , ψB : ES × ER → Em

B .

We say that R and S are compatible if

φ
(m)
R = (idR ×ψB)(ψ

−1
A × idR), φ

(m)
S = (idS ×ψA)(ψ

−1
B × idS), (4-1)
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where
φ
(m)
R := (φR × idBm−1)(idA ×φR × idBm−2) · · · (idAm−1 ×φR),

φ
(m)
S := (φS × idAm−1)(idB ×φS × idAm−2) · · · (idBm−1 ×φS).

Finally, we say that A and B are compatibly shift equivalent if they are shift equivalent via a compatible
pair of matrices R and S.

The following lemma shows that certain relations between the maps φR, φS, ψA, ψB are automatic
when R and S are compatible.

Lemma 4.2. Suppose A and B are essential matrices over V and W respectively, with entries in N.
Suppose A and B are compatibly shift equivalent with lag m, matrices R and S, and path isomorphisms
φR, φS , ψA, ψB . Then

(ψA × idA)(idR ×φS)= (idA ×ψA)(φ
−1
R × idS),

(ψB × idB)(idS ×φR)= (idB ×ψB)(φ
−1
S × idR).

Proof. First note that by compatible shift equivalence we have that

(ψA × idR × idS)= (φ
(m)
R × idS)

−1(idR ×ψB × idS)

= (φ
(m)
R × idS)

−1(idR ×φ
(m)
S )−1(idR × idS ×ψA).

However, since

(ψA × idR × idS)(idR × idS ×ψ−1
A )= (idAm ×ψ−1

A )(ψA × idAm ),

we actually get that

(ψA × idAm )= (idAm ×ψA)(φ
(m)
R × idS)

−1(idR ×φ
(m)
S )−1. (4-2)

Now let (r, s, a) ∈ ER × ES × E A. Define r0 = r , s0 = s and a0 = a. Since A is essential, we can
find a1, . . . , am, am+1, . . . , a2m−1 ∈ E A so that a0a1 · · · amam+1 · · · · ·a2m−1 ∈ Em+1

A . We may then define
inductively rk ∈ ER , sk ∈ ES and a′

k ∈ E A for 0 ≤ k ≤ 2m − 1 so that

(φ−1
R × idS)(idR ×φ−1

S )(rk, sk, ak)= (a′

k, rk+1, sk+1).

From (4-2) we get that ψA(r0, s0) = a′

0 · · · a′

m−1, that ψA(r1, s1) = a′

1 · · · a′
m and that a0 · · · am−1 =

ψA(rm, sm)= a′
m · · · a′

2m−1. In particular, we see that a = a0 = a′
m .

To prove the first equality in the statement, we compute

(idA×ψA)(φ
−1
R ×idS)(idR ×φ−1

S )(r, s, a)= (idA×ψ)(a′

0, r1, s1)

= a′

0a′

1 · · · a′

m = ψA(r, s)a′

m = ψA(r, s)a = (ψA×id)(r, s, a).

This shows that (idA ×ψA)(φ
−1
R × idS)(idR × φ−1

S ) = (ψA × id), which is then equivalent to the first
equality (ψA × idA)(idR ◦φS)= (idA ×ψA)(φ

−1
R × idS). A symmetric argument works to show the second

equality as well. □
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Remark 4.3. Notice from the proof that we also get that ψA and ψB are uniquely determined by φR

and φS . Indeed, from (4-2) we get that

(ψA ×ψ−1
A )= (φ

(m)
R × idS)

−1(idR ×φ
(m)
S )−1,

so that compressing to the first part yields back ψA. A similar argument then works for ψB as well.

Proposition 4.4. Compatible shift equivalence is an equivalence relation on the collection of essential
matrices with entries in N.

Proof. That compatible shift equivalence is reflexive and symmetric is clear. Thus, we need to show
transitivity.

Let A, B and C be essential matrices over N. Suppose that A and B are compatibly shift equivalent
with lag m, matrices R, S and path isomorphisms ψA, ψB , φR , φS , while B and C are compatibly shift
equivalent with lag m′, matrices R′, S′ and path isomorphisms ψ ′

B, ψ
′

C , φR′, φS′ . We claim that A and C
are compatibly shift equivalent with lag m + m′, matrices R R′, S′S and path isomorphisms ψ ′

A, ψC ,
φR R′ , φS′S given by

ψ ′

A := (idAm′ ×ψA)((φ
(m′)
R )−1

× idS)(idR ×ψ ′

B × idS),

ψC := (idCm ×ψ ′

C)((φ
(m)
S′ )

−1
× idR′)(idS′ ×ψB × idR′),

φR R′ := (idR ×φR′)(φR × idR′),

φS′S := (idS ×φS′)(φS × idS′).

It is easy to see that R R′S′S = Am+m′

, S′S R R′
= Cm+m′

, R R′C = AR R′ and C S′S = S′S A. Moreover,
it is clear that ψ ′

A, ψC , φR R′ , φS′S are path isomorphisms. Thus, in order to show that the above data
yields a compatible shift equivalence, we need only show

φ
(m+m′)
R R′ (ψ ′

A × idR R′)= idR R′ ×ψC ,

φ
(m+m′)
S′S (ψC × idS′S)= idS′S ×ψ ′

A.

We will show the first of these equalities, and the second will follow from a symmetric argument.
First, let r1r ′

1s ′sr2r ′

2 ∈ ER R′ × ES′S × ER R′ , and define

µAr3 := (φ
(m′)
R )−1(r1ψ

′

B(r
′

1s ′)) and r ′

3µC := φ
(m)
R′ (ψB(sr2)r ′

2). (4-3)
Then we get that

ψ ′

A(r1r ′

1s ′s)= (idAm ×ψA)((φ
(m)
R )−1

× idS)(r1ψ
′

B(r
′s ′)s)

= (idAm ×ψA)(µAr3s)= µAψA(r3s),

and from Lemma 4.2 we also get that

ψC(s ′sr2r ′

2)= (idCm ×ψ ′

C)((φ
(m)
S′ )

−1
× idR′)(s ′ψB(sr2)r ′

2)

= (ψ ′

C × idCm )(idS′ ×φ
(m)
R′ )(s ′ψB(sr2)r ′

2)= ψ ′

C(s
′r ′

3)µC .

Thus, together we obtain

ψ ′

A(r1r ′

1s ′s)= µAψA(r3s) and ψC(s ′sr2r ′

2)= ψ ′

C(s
′r ′

3)µC . (4-4)
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Next, from compatibility we also get

φ
(m)
R (ψA(r3s)r2)= r3ψB(sr2) and φ

(m)
R′ (ψ

′

B(r
′

1s ′)r ′

3)= r ′

1ψ
′

C(s
′r ′

3). (4-5)

Combining (4-3), (4-4), (4-5), we compute

φ
(m+m′)
R R′ (ψ ′

A × idR R′)(r1r ′

1s ′sr2r ′

2)= φ
(m+m′)
R R′ (µAψA(r3s)r2r ′

2)

= (idR ×φ
(m+m′)
R′ )(φ

(m+m′)
R × idR′)(µAψA(r3s)r2r ′

2)

= (idR ×φ
(m+m′)
R′ )(φ

(m′)
R × idBm × idR′)(µAr3ψB(sr2)r ′

2)

= (idR ×φ
(m+m′)
R′ )(r1ψ

′

B(r
′

1s ′)ψB(sr2)r ′

2)

= (idR ×φ
(m′)
R′ × idCm )(r1ψ

′

B(r
′

1s ′)r ′

3µC)

= r1r ′

1ψ
′

C(s
′r ′

3)µC

= r1r ′

1ψC(s ′sr2r ′

2)

= (idR R′ ×ψC)(r1r ′

1s ′sr2r ′

2).

Thus, we have shown φ(m+m′)
R R′ (ψ ′

A × idR R′)= idR R′ ×ψC as desired. □

Corollary 4.5. Let A and B be essential matrices over V and W respectively, with entries in N. If A
and B are strong shift equivalent, then they are compatibly shift equivalent.

Proof. By Proposition 4.4 we know that compatible shift equivalence is an equivalence relation. Hence, it
will suffice to show that if A and B are elementary shift related via R and S, then R and S are compatible.

Since A and B are elementary shift related via R and S, we have that A = RS and B = S R. So choose
some path isomorphisms ψA : ER × ES → E A and ψB : ES × ES → EB and define

φR : E A × ER → ER × E A and φS : EB × ES → ES × E A

by setting φR := (idR × ψB)(ψ
−1
A × idR) and φS := (idS × ψA)(ψ

−1
B × idS). Since the lag is m = 1,

compatibility follows by definition of φR and φS . □

Remark 4.6. When A and B are essential matrices with entries in N over V and W respectively, it can be
shown directly that compatible shift equivalence implies conjugacy of (X E A , σE A) and (X EB , σEB ) with a
formula for the homeomorphism h : X E A → X EB which implements the conjugacy. Thus, by Williams’
theorem, it follows that A and B are strong shift equivalent. We skip the argument here, because it will
follow from Theorem 7.3 that the converse of Corollary 4.5 holds.

5. Representable shift equivalence

Our goal in this section is to determine when a shift equivalence between two matrices can be represented
as operators on Hilbert space. This leads to the notion of representable shift equivalence. We show that
compatible shift equivalence implies representable shift equivalence, and that a representation of shift
equivalence can be chosen so that the graph C*-algebras act faithfully on the Hilbert space.
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Let A and B be matrices over N indexed by V and W respectively, and suppose that R and S are
matrices over N indexed by V × W and W × V respectively. To ease some of our notation, we define two
matrices indexed by V ⊔ W,

C =

[
A 0
0 B

]
and D =

[
0 R
S 0

]
,

so that A and B are shift equivalent with lag m via R and S if and only if

C D = DC and D2
= Cm .

From shift equivalence, there exist path isomorphisms

φR : E A × ER → ER × EB, φS : EB × ES → ES × E A,

ψA : ER × ES → Em
A , ψB : ES × ER → Em

B .

We may define path isomorphisms φ : EC × ED → ED × EC and ψ : E2
D → Em

C given by

ψ =

[
ψA 0
0 ψB

]
and φ =

[
0 φR

φS 0

]
.

Conversely, all path isomorphisms φ : EC × ED → ED × EC and ψ : E2
D → Em

C must be of the above form
for some path isomorphisms φR, φS, ψA, ψB as above. Hence, we see that A and B are compatibly shift
equivalent with lag m via R and S if and only if there exist path isomorphisms φ : EC × ED → ED × EC

and ψ : E2
D → Em

C such that
φ(m) = (idD ×ψ)(ψ−1

× idD), (5-1)

where φ(m) : Em
C × ED → ED × Em

C is the path isomorphism given by

φ(m) := (φ× idCm−1)(idC ×φ× idCm−2) · · · (idCm−1 ×φ).

The following is the natural way to represent shift equivalence as bounded operators on Hilbert space,
via some choice of path isomorphisms as above.

Definition 5.1. Let A and B be square matrices indexed by V and W respectively, with entries in N. Let
m ∈ N \ {0} and suppose there are matrices R over V × W and S over W × V with entries in N for which
there exist path isomorphisms

φ : EC × ED → ED × EC and ψ : E2
D → Em

C .

We say that R and S are representable via φ and ψ if there are Cuntz–Krieger families (Pv, Sc) for GC

and (Pv, Td) for GD on the same Hilbert space H with Pv ̸= 0 for all v ∈ V ⊔ W such that

Td1d2 = Sc1···cm , when ψ(d1d2)= c1 · · · cm for d1d2 ∈ E2
D, (5-2)

ScTd = Td ′ Sc′, when φ(cd)= d ′c′ for cd ∈ EC × ED. (5-3)

We say that A and B are representable shift equivalent if there are R and S and φ and ψ as above so that
R and S are representable via φ and ψ .
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Remark 5.2. When A and B both have no zero columns we may define R and S to be representable via
φ and ψ by specifying a priori separate Cuntz–Krieger families (Sv, Sc) for GC and (Tw, Td) for GD . It
then follows from (5-2) that Sv = Tv for every v ∈ V ⊔ W. Indeed, since no vertex is a source, for every
v ∈ V there exists c1 · · · cm ∈ Em

C with r(cm)= v, so we may take ψ−1(c1 · · · cm)= d1d2 with d1d2 ∈ E2
D

and r(d2)= v. So that
Sv = S∗

c1···cm
Sc1···cm = T ∗

d1d2
Td1d2 = Tv.

Proposition 5.3. Let A and B be essential matrices indexed by V and W respectively, with entries in N

and finitely supported rows. Suppose there are a lag m ∈ N \ {0} and matrices R over V × W and S over
W × V with entries in N, and path isomorphisms

φR : E A × ER → ER × EB, φS : EB × ES → ES × E A,

ψA : ER × ES → Em
A , ψB : ES × ER → Em

B
such that

(ψA × idA)(idR ×φS)= (idA ×ψA)(φ
−1
R × idS) (5-4)

and
φ
(m)
S = (idS ×ψA)(ψ

−1
B × idS). (5-5)

Then R and S are representable via φ and ψ .

Proof. Let X+

ED
be the one-sided subshift for GD = (V ⊔ W, ED), and let {ex}x∈X+

ED
be an orthonormal

basis for ℓ2(X+

ED
). We denote by V X+

ED
and W X+

ED
the clopen subsets of those x ∈ X+

ED
such that

s(x) ∈ V and s(x) ∈ W respectively. We then have the homeomorphisms ψ∞

A : V X+

ED
→ X+

E A
and

ψ∞

B : W X+

ED
→ X+

EB
given by

ψ∞

A (r0s0r1s1 · · · )= ψA(r0s0)ψA(r1s1) · · · ,

ψ∞

B (s0r0s1r1 · · · )= ψB(s0r0)ψB(s1r1) · · ·

for ri ∈ ER and si ∈ ES .
We define Pv for v ∈ V ⊔ W by

Pv(ex)=

{
ex if v = s(x),
0 otherwise.

For a ∈ E A and x ∈ X+

ED
, define Sa via

Sa(ex)=

{
ey if r(a)= s(x),
0 otherwise,

where y := (ψ∞

A )
−1(aψ∞

A (r0s0r1s1 · · · )) when we write x = r0s0 · · · for elements ri ∈ ER and si ∈ ES

in case that r(a)= s(x).
For b ∈ EB and x ∈ X+

ED
, define Sb via

Sb(ex)=

{
ey if r(b)= s(x),
0 otherwise,

where y := (idS ×ψ∞

A )
−1(φS(bs0)ψ

∞

A (r0s1r1s2 · · · )) when we write x = s0r0 · · · for elements si ∈ ES ,
ri ∈ ER in the case that r(b)= s(x).
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Finally, we define for d ∈ ED the operator Td via

Td(ex)=

{
edx if r(d)= s(x),
0 otherwise.

It is straightforward to verify that (Pv, Td) is a Cuntz–Krieger family for GD. So we first verify
that (Pv, Sc) is a Cuntz–Krieger family for GC . Since concatenation for Sa is done simply through
the homeomorphism ψ∞

A , it is easy to show that, for a ∈ E A or v ∈ V, we have S∗
a Sa = Pr(a) and∑

s(e)=v Se S∗
e = Pv . Now, to show the same for b ∈ EB , for y = s ′

0r ′

0s ′

1r ′

1 · · · , when s ′

i ∈ ES and r ′

i ∈ ER

we write (idB × idS ×ψ∞

A )
−1(φ−1

S × id)(s ′

0ψ
∞

A (r
′

0s ′

1r ′

1 · · · ))= b′s0r0 · · · for b′
∈ EB , si ∈ ES , ri ∈ ER ,

so that
S∗

b (ey)=

{
es0r0··· if r(b)= s(x), b = b′,

0 otherwise.

From this formula it follows that S∗

b Sb = Pr(b), and that for w ∈ W we have
∑

s(e)=w Se S∗
e = Pw. Thus,

we see that (Pv, Sc) is a Cuntz–Krieger family for GC . Since clearly Pv ̸= 0 for every v ∈ V ⊔ W, we are
left with verifying (5-2) and (5-3).

It is clear from the definition of Sa for a ∈ E A that for r ∈ ER and s ∈ ES we have Trs = Sa1···am when
ψA(rs)= a1 · · · am . We next show that SbTs = Ts′ Sa when φS(bs)= s ′a for b ∈ EB and s ∈ ES . Indeed,
let x ∈ X+

ED
with s(x) ∈ V, and write x = r0s0 · · · so that SbTs(ex)= ez and Ts′ Sa(ex)= ez′ , where

z = (idS ×ψ∞

A )
−1φS(bs)ψ∞

A (r0s0 · · · ),

z′
= s ′(ψ∞

A )
−1(aψ∞

A (r0s0 · · · )).

Since φ(bs)= s ′a, it follows that z = z′, so that SbTs = Ts′ Sa .
Next, we show that Tsr = Sb1···bm when ψB(sr)= b1 · · · bm . Indeed, let x ∈ X+

ED
with s(x) ∈ W, and

write x = s0r0 · · · . Then we have that Sb1···bm (ex)= ez , where

z = (idS ×ψ∞

A )
−1(φ

(m)
S (b1 · · · bms0)ψ

∞

A (r0s1 · · · )).

From (5-5) it follows that
z = (ψB)

−1(b1 · · · bm)s0r0s1 · · · .

Thus, we see that if ψB(sr)= b1 · · · bm , then Tsr = Sb1···bm .
Finally, we show that when φR(ar)= r ′b we have SaTr = Tr ′ Sb. Indeed, let x ∈ X+

ED
with s(x) ∈ W,

and write x = s0r0 · · · so that SaTr (ex)= ez and Tr ′ Sb(ex)= ez′ , where

z = (ψ∞

A )
−1(aψ∞

A (rs0r0 · · · )),

z′
= r ′(idS ×ψ∞

A )
−1(φS(bs0)ψ

∞

A (r0s1r1 · · · )).

But by (5-4) and the fact that φR(ar)= r ′b we get

z′
= (ψ∞

A )
−1(idA ×ψA)(φ

−1
R × idS)(r ′bs0)ψ

∞

A (r0s1r1 · · · )

= (ψ∞

A )
−1(idA ×ψA)(ars0 ·ψ∞

A (r0s1r1 · · · ))= (ψ∞

A )
−1(aψ∞

A (rs0r0 · · · ))= z.

Hence, we get that z′
= z, so that SaTr = Tr ′ Sb. Thus, we have shown that R and S are representable via

φ and ψ . □
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Remark 5.4. We note that for two essential matrices A and B with entries in N to be representable shift
equivalent, we need only know the validity of the two asymmetric equations (5-4) and (5-5), as opposed
to the symmetric equations in (4-1).

Using Szymański’s uniqueness theorem [44, Theorem 1.2], we can upgrade a representation of a shift
equivalence to be injective in the following sense.

Corollary 5.5. Let A and B be essential matrices indexed by V and W respectively, with entries in N

and finitely supported rows. Suppose that A and B are compatibly shift equivalent via R and S and path
isomorphisms φ and ψ . Then R and S are representable via φ and ψ . In fact, there are Cuntz–Krieger
families (Pv, Sc) for GC and (Pv, Td) for GD satisfying (5-2) and (5-3) so that both of the canonical
surjections qC : C∗(GC)→ C∗(Pv, Sc) and qD : C∗(GD)→ C∗(Pv, Td) are injective.

Proof. From Lemma 4.2 we know (5-4) holds. Since (5-5) holds by definition, by Proposition 5.3 there
are Cuntz–Krieger families S := (Pv, Sc) for GC and T := (Pv, Td) for GD satisfying (5-2) and (5-3).

Let z ∈ T be some unimodular scalar. Then we may define two operator families S(z) := (Pv, z · Sc)

and T (z)
:= (Pv, T (z)

d ), where

T (z)
d :=

{
Td if d ∈ ER,

zm
· Td if d ∈ ES.

Then clearly S(z) and T (z) are Cuntz–Krieger families satisfying (5-2) and (5-3).
Let (zn)n∈N be a countable dense subset of T. We take S′

:=
⊕

∞

n=1 S(zn) and T ′
:=

⊕
∞

n=1 T (zn), which
are still Cuntz–Krieger families satisfying (5-2) and (5-3). By Szymański’s uniqueness theorem [44,
Theorem 1.2], it suffices to show that for every cycle c1 · · · cℓ without exits in GC , and every cycle
d1 · · · d2t without exits in GD (which is necessarily of even length since GD is bipartite), the spectrum of
the operators Sc1···cℓ and Td1···d2t contains the entire unit circle.

Since Sc1···cℓ and Td1···d2t are unitaries on the ranges of Ps(c1) and Ps(d1) respectively, each of their
spectra must contain some element in the unit circle. But since for every n ∈ N we have that zℓn · Sc1···cℓ is
a direct summand of S′

c1···cℓ , and zm·t
n · Td1···d2t is a direct summand of T ′

d1···d2t
, we see that the spectra of

S′
c1···cℓ and T ′

d1···d2t
both contain a dense subset of T, and hence T itself. Thus, by Szymański’s uniqueness

theorem we get that the canonical surjections C∗(GC) → C∗(P ′
v, S′

c) and C∗(GD) → C∗(P ′
v, T ′

d) are
injective. □

Remark 5.6. Suppose we have two essential matrices A and B with entries in N indexed by V and W
respectively, and that R, S are matrices that comprise a representable shift equivalence of lag m via path
isomorphisms φ and ψ . It can be shown directly that A and B are compatible shift equivalent with lag m
via R and S, together with the 1-1 and 2-2 corners of ψ and the 1-2 and 2-1 corners of φ. We skip the
proof since representable shift equivalence implies compatible shift equivalence by Theorem 7.3.

6. Strong Morita shift equivalence

In this section we introduce and study strong Morita shift equivalence. This equivalence relation is
expressed in terms of a specific strong Morita equivalence between Pimsner dilations and is implied by
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representable shift equivalence. Strong Morita shift equivalence turns out to imply the existence of a
stable equivariant isomorphism of graph C*-algebras that also preserves the diagonal subalgebras.

Suppose A and B are essential matrices over N indexed by V and W respectively and have finitely
supported rows. Suppose there are matrices R and S with entries in N, and let C and D be as described
in the previous section. Suppose further that we (only) have a path isomorphism ψ : E2

D → Em
C , which is

then the direct sum of path isomorphisms

ψA : ER × ES → Em
A and ψB : ES × ER → Em

B .

Now let (Sv, Sc) be a CK family that generates the graph C*-algebra C∗(GC)= C∗(GA)⊕ C∗(G B)

of GC , and let (Tv, Td) be a CK family that generates the graph C*-algebra C∗(GD). We define

AC
n := span{SλS∗

λ′ | λ, λ
′
∈ En

C , r(λ) ∈ V }, BC
n := span{SλS∗

λ′ | λ, λ
′
∈ En

C , r(λ) ∈ W },

AD
n := span{TµT ∗

µ′ | µ,µ
′
∈ En

D, r(µ) ∈ V }, BD
n := span{TµT ∗

µ′ | µ,µ
′
∈ En

D, r(µ) ∈ W },

with direct limits AC
∞

, BC
∞

, AD
∞

and BD
∞

. Then it follows that AC
∞

⊕BC
∞

is canonically isomorphic to the
fixed-point algebra C∗(GC)0 of C∗(GC) with its canonical gauge action, and that AD

∞
⊕BD

∞
is canonically

isomorphic to the fixed-point algebra C∗(GD)0 of C∗(GD) with its canonical gauge action.
Thinking of X (A) and X (B) as block diagonal C*-subcorrespondences of X (C) in the natural way,

we get that the Pimsner dilations X (A)∞ and X (B)∞ are naturally identified with the direct limits of
C*-correspondences

X (A)n := span{SλS∗

λ′ | λ ∈ En+1
C , λ′

∈ En
C , s(λ) ∈ V },

which is a C*-correspondence from AC
n to AC

n+1, and

X (B)n := span{SλS∗

λ′ | λ ∈ En+1
C , λ′

∈ En
C , s(λ) ∈ W },

which is a C*-correspondence from BC
n to BC

n+1.
Similarly, thinking of X (R) and X (S) as the off-diagonal C*-subcorrespondences of X (D) in the

natural way, we get the C*-correspondences (which are only denoted as) X (R)∞ and X (S)∞ as the direct
limits of C*-correspondences

X (R)n := span{TµT ∗

µ′ | µ ∈ En+1
D , µ′

∈ En
D, s(µ) ∈ V },

which is a C*-correspondence from BD
n to AD

n+1, and

X (S)n := span{TµT ∗

µ′ | µ ∈ En+1
D , µ′

∈ En
D, s(µ) ∈ W },

which is a C*-correspondence from AD
n to BD

n+1. Note, however, that X (R)∞ and X (S)∞ are not Pimsner
dilations in the sense described in Section 3, because they are C*-correspondences over possibly different
left and right coefficient C*-algebras.

Recall that X (D)∞ is the C*-correspondence over C∗(GD)0 = AD
∞

⊕BD
∞

given by X (D)∞ = X (D) ·
(AD

∞
⊕BD

∞
), which is identified with the direct limit

span{TµT ∗

µ′ | µ ∈ En+1
D , µ′

∈ En
D, n ∈ N}.
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The BD
∞

-AD
∞

correspondence X (R)∞ and the AD
∞

-BD
∞

correspondence X (S)∞ coincide with the 1-2 corner
and 2-1 corner (respectively) of the Pimsner dilation X (D)∞ and satisfy the equalities

X (R)∞ = X (R) ·BD
∞
, X (S)∞ = X (S) ·AD

∞
.

Now, using the map ψ : E2
D → Em

C , for each k ∈ N and µ1, . . . , µk ∈ E2
D such that µ1 · · ·µk ∈ E2k

D
we may define ψk : E2k

D → Emk
C by setting ψk(µ1 · · ·µk) = ψ(µ1) · · ·ψ(µk). This then gives rise

to ∗-isomorphisms 9 A
k : AD

2k → AC
mk and 9B

k : BD
2k → BC

mk by setting 9 A
k (TµT ∗

µ′

1
) = Sψk(µ)S

∗

ψk(µ′)

and 9B
k (TµT ∗

µ′) = Sψk(µ)S
∗

ψk(µ′). Since these maps are compatible with direct limits, we obtain two
∗-isomorphisms 9 A

∞
: AD

∞
→ AC

∞
and 9B

∞
: BD

∞
→ BC

∞
that we will use as identifications between the

coefficient C*-algebras. For instance, this allows us to turn X (R)∞ into a BC
∞

-AC
∞

-bimodule, where the
left and right actions are implemented via 9 A

∞
and 9B

∞
respectively, and the inner product via 9B

∞
.

Definition 6.1. Let A and B be essential matrices over N indexed by V and W respectively, with finitely
supported rows. We say that X (A)∞ and X (B)∞ are strong Morita shift equivalent if there are a lag
m ∈ N \ {0} and matrices R over V × W and S over W × V over N together with path isomorphisms

ψA : ER × ES → Em
A , ψB : ES × ER → Em

B

such that X (R)∞ is a strong Morita equivalence between X (A)∞ and X (B)∞, up to the identifications
9 A

∞
and 9B

∞
. More precisely, when X (R)∞ is considered as a BC

∞
-AC

∞
-bimodule via 9 A

∞
and 9B

∞
, there

exists a unitary bimodule isomorphism U : X (A)∞ ⊗ X (R)∞ → X (R)∞ ⊗ X (B)∞ such that for every
a ∈ AC

∞
, b ∈ BC

∞
and ξ ∈ X (A)∞ ⊗ X (R)∞ we have

U (a · ξ · b)= a · U (ξ) · b.

Henceforth, we will no longer belabor the point of distinguishing between AC
∞

and AD
∞

and between
BC

∞
and BD

∞
. However, we emphasize that this identification is important in the above definition, and

depends on the choice of the maps ψA and ψB . We have already seen that

X (A)∞ = X (A) ·A∞, X (B)∞ = X (B) ·B∞,

X (R)∞ = X (R) ·B∞, X (S)∞ = X (S) ·A∞,

so that by the above discussion and identifications using 9 A
∞

and 9B
∞

, as B∞-A∞ correspondences we
may canonically identify

X (A)∞ ⊗A∞
X (R)∞ ∼= X (A)⊗A X (R) ·B∞,

X (R)∞ ⊗B∞
X (B)∞ ∼= X (R)⊗B X (B) ·B∞.

Proposition 6.2. Let A and B be essential matrices over N indexed by V and W respectively, with finitely
supported rows. Suppose A and B are representable shift equivalent with lag m ∈ N via R and S, together
with path isomorphisms φ and ψ . Then X (A)∞ and X (B)∞ are strong Morita shift equivalent with lag m
via R, S and ψ .

Proof. By Corollary 5.5 we have a Cuntz–Krieger family (Pv, Sc) for GC generating C∗(GC) and a
Cuntz–Krieger family (Pv, Td) for GD generating C∗(GD) on the same Hilbert space H, satisfying (5-2)
and (5-3). Thus, we are in the context of the discussion above.
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By the identifications preceding the theorem, we may define maps

UAR : X (A)∞ ⊗A∞
X (R)∞ → X (A) · X (R) ·B∞,

URB : X (R)∞ ⊗B∞
X (B)∞ → X (R) · X (B) ·B∞

(where the notation X (A) · X (R) ·B∞ and X (R) · X (B) ·B∞ are understood as the closed linear span of
products), by setting

UAR(Sa ⊗ Tr ·w)= SaTr ·w and URB(Tr ⊗ Sb ·w)= Tr Sb ·w

for a ∈ E A, r ∈ Er , b ∈ EB and w ∈B∞. It is straightforward to show that UAR and URB are well-defined
unitary right B∞-module maps. Thus, we are left with showing that UAR and URB are left A∞-module
maps.

We first show that UAR is a left A∞-module map. We let SλS∗

λ′ ∈ A∞ for λ, λ′
∈ Emk

A , and note that it
will suffice to show that for a ∈ E A and r ∈ ER we have

UAR(SλS∗

λ′(Sa ⊗ Tr ))= SλS∗

λ′ SaTr .

To prove this, let e ∈ E A be some edge so that s(e)= r(λ)= r(λ′), and suppose that λ= a1ν and λ′
= a′

1ν
′

for a1, a′

1 ∈ E A. Write

νe = ψ(r1s1) · · ·ψ(rksk) and ν ′e = ψ(r ′

1s ′

1) · · ·ψ(r
′

ks ′

k)

for ri , r ′

i ∈ ER and si , s ′

i ∈ ES . Then, we have

SλS∗

λ′ Sa ⊗ Tr = δa,a′

1
· Sa1 SνS∗

ν′ ⊗ Tr = δa,a′

1
· Sa1

∑
e∈s−1(r(λ))

Sνe S∗

ν′e ⊗ Tr

= δa,a′

1
· Sa1 ⊗

∑
e∈s−1(r(λ))

Tr1s1···rksk T ∗

r ′

1s′

1···r
′

ks′

k
Tr

= δa,a′

1
· Sa1 ⊗ Tr1

∑
e∈s−1(r(λ))

δr ′

1,r · Ts1···rksk T ∗

s′

1···r
′

ks′

k

= δa,a′

1
· Sa1 ⊗ Tr1

∑
e∈s−1(r(λ))

δr ′

1,r ·

∑
f ∈s−1(r(λe))

Sψ−1
k (s1···rksk f )Sψ−1

k (s′

1···r
′

ks′

k f ),

where in the above calculations we used the identifications via 9 A
∞

and 9B
∞

. Essentially the same
calculation, using (5-2) instead, will show that

SλS∗

λ′ SaTr = δa,a′

1
· Sa1 Tr1

∑
e∈s−1(r(λ))

δr1,r ·

∑
f ∈s−1(r(λe))

Sψ−1
k (s1···rksk f )Sψ−1

k (s′

1···r
′

ks′

k f ).

Thus, we see that UAR is a left A∞-module map.
Next, we show that URB is a left A∞-module map. We let SλS∗

λ′ ∈ A∞ with λ, λ′
∈ Emk

A , and note that
it will suffice to show that for r ∈ ER and b ∈ EB we have

URB(SλS∗

λ′ Tr ⊗ Sb)= SλS∗

λ′ Tr Sb.
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Write λ = ψ(r1s1) · · ·ψ(rksk) and λ′
= ψ(r ′

1s ′

1) · · ·ψ(r
′

ks ′

k), and then further write ψ(s1r2) = b1σ and
ψ(s ′

1r ′

2)= b′

1σ
′ for b1, b′

1 ∈ EB . Then, we have

SλS∗

λ′ Tr ⊗ Sb = Tr1s1···rksk T ∗

r ′

1s′

1·r
′

ks′

k
Tr ⊗ Sb

= δr ′

1,r Tr1

∑
r∈r−1(λ)

Ts1r2···skr T ∗

s′

1r ′

2···s
′

kr ⊗ Sb

= δr ′

1,r Tr1 ⊗

∑
r∈r−1(λ)

Sψ(s1r2)···ψ(skr)S∗

ψ(s′

1r ′

2)···ψ(s
′

kr)Sb

= δr ′

1,rδb′

1,b · Tr1 ⊗ Sb1

∑
r∈r−1(λ)

Sσψ(s2r3)···ψ(skr)S∗

σ ′ψ(s′

2r ′

3)···ψ(s
′

kr),

where in the above calculation we used the identifications via 9 A
∞

and 9B
∞

. Essentially the same
calculation, using (5-2) instead, will show that

SλS∗

λ′ Tr Sb = δr ′

1,rδb′

1,b · Tr1 Sb1

∑
r∈r−1(λ)

Sσψ(s2r3)···ψ(skr)S∗

σ ′ψ(s′

2r ′

3)···ψ(s
′

kr).

Thus, we see that UBR is a left A∞-module map.
Thus, to conclude the proof we need only show the equality

X (A) · X (R) ·B∞ = X (R) · X (B) ·B∞.

However, it is clear from (5-3) that X (A) · X (R) = X (R) · X (B), so we are done. Thus, the map
U−1

RB ◦ UAR is a unitary isomorphism, showing that X (R)∞ is a strong Morita equivalence between
X (A)∞ and X (B)∞. □

Suppose A and B are matrices indexed by V and W respectively, and suppose there are matrices R
and S, so that C and D are as described in the previous section. Suppose we have a path isomorphism
ψ : E2

D → Em
C .

Assume we have a unitary U : X (A)∞ ⊗ X (R)∞ → X (R)∞ ⊗ X (B)∞ such that for every ξ ∈

X (A)∞⊗X (R)∞ and every a ∈A∞ and b ∈B∞ we have U (bξa)=bU (ξ)a. We refer the reader to [1] and
[36, Section 2] for the basic theory of Morita equivalence, linking algebras and crossed products by Hilbert
bimodules that we shall need in what follows. We denote by L the linking algebra of X (R)∞ given by

L :=

[
A∞ X (R)∞

X (R)∗
∞

B∞

]
,

and by W the L-imprimitivity bimodule

W :=

[
X (A)∞ X (R)∞ ⊗B∞

X (B)∞
X (R)∗

∞
⊗A∞

X (A)∞ X (B)∞

]
.

It is shown in the proof of [1, Theorem 4.2] that there are two complementary and full projections
pA, pB ∈ M(O(W )) (corresponding to the 2 × 2 block form of W ) together with two ∗-isomorphisms
ϕE : O(X (A)∞)→ pAO(W )pA and ϕF : O(X (B)∞)→ pBO(W )pB given as follows. For ξ ∈ X (A)∞
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and η ∈ X (B)∞ we let

ξ̃ :=

[
ξ 0
0 0

]
and η̃ :=

[
0 0
0 η

]
,

so that the maps ϕE and ϕF are given by

ϕE(Sξ )= Sξ̃ and ϕF (Sη)= Sη̃.

In particular, we see that ϕE and ϕF are gauge equivariant.
Since W is an imprimitivity bimodule, again by [1, Theorem 2.9] we get that O(W )0 ∼=L. In particular,

we get that up to the same identification, the direct sum of diagonal subalgebras DE A ⊕DEB , according to
pA, pB ∈ M(O(W )), coincides with

DW := span{Sζ S∗

ζ ′ | ζ, ζ
′
∈ W ⊗n, n ∈ N}.

Hence, we get that ϕE(DE A)= pADW pA and ϕF (DEB )= pBDW pB . Let

N (DW )= {n ∈ O(W ) | n∗DW n, nDW n∗
⊆ DW }

be the set of normalizers of DW , and denote by

N⋆(DW )= {n ∈ N (DW ) | there exists k ∈ Z such that γz(n)= zkn}

the homogeneous normalizers of DW .

Proposition 6.3. Let A and B be essential matrices over N, indexed by V and W respectively, with finitely
supported rows. Suppose that X (A)∞ and X (B)∞ are strong Morita shift equivalent. Then there is an
equivariant ∗-isomorphism ϕ : C∗(GA)⊗ K → C∗(G B)⊗ K, with ϕ(DE A ⊗ c0)= DEB ⊗ c0.

Proof. We are in the situation where we can apply the implication (7)⇒ (8) in [7, Corollary 11.3]. By the
description of C∗(GA)∼= C∗(GE A) and C∗(G B)∼= C∗(GEB ) as groupoid C*-algebras, we get that item (8)
in [7, Corollary 11.3] is equivalent to C∗(GA) and C∗(G B) being stably equivariant diagonal-isomorphic.
Indeed, this is because Z-coactions correspond to topological Z-gradings by [42, Remark 6], which in
turn correspond to T-actions by [42, Theorem 3]. This means that the second equality in item (8) of [7,
Corollary 11.3] is equivalent to equivariance of the isomorphism.

Thus, to prove our result it will suffice to prove item (7) in [7, Corollary 11.3]. Everything is set up in
the discussion preceding the proposition, except for one thing. We are left with showing that pAO(W )pB

is the closed linear span of pA N∗(DW )pB . However, we know that O(W ) is the closed linear span of its
graded subspaces O(W )n for n ∈ Z. Hence, pAO(W )pB is the closed linear span of pAO(W )n pB . By
[1, Theorem 2.9] we have for all n ∈ Z that

(1) O(W )n ∼= W ⊗n for n > 0,

(2) O(W )0 ∼= L, and

(3) O(W )n ∼= (W ⊗n)∗ for n < 0.

Thus, we are left with showing that each pAO(W )n pB is the closed linear span of its normalizers
(which are automatically n-homogeneous).
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For n = 0 we get that pAO(W )0 pB ∼= X (R)∞, for n> 0 we get that pAO(W )n pB ∼= X (A)n
∞

⊗ X (R)∞,
and for n < 0 we get that pAO(W )n pB ∼= (X (A)∗

∞
)n ⊗ X (R)∞.

Thus, pAO(W )n pB is the closed linear span of elements of the form SλS∗

λ′ SαTr (for n ≥ 0) or SλS∗

λ′ S∗
αTr

(for n < 0) for λ, λ′
∈ EℓA, α ∈ E |n|

A and r ∈ ER for some ℓ ∈ N. In order to show that these elements are
normalizers for DW , and since SλS∗

λ′ Sα, SλS∗

λ′ S∗
α ∈ N (DE A), it will suffice to show that TrDEB T ∗

r ⊆ DE A

and that T ∗
r DE A Tr ⊆ DEB for r ∈ ER .

We know already from the inclusions DE A ⊆ A∞ and DEB ⊆ B∞ that DE A is the closed linear span of
elements of the form

Sψk(r1s1···rksk)S
∗

ψk(r1s1···rksk)

for paths r1s1 · · · rksk ∈ E2k
D with ri ∈ ER and si ∈ ES , and that DEB is the closed linear span of elements

of the form
Sψk(s1r1···skrk)S

∗

ψk(s1r1···skrk)

for paths s1r1 · · · skrk ∈ E2k
D , with ri ∈ ER and si ∈ ES . So for such paths we compute

Tr Sψk(s1r1···skrk)S
∗

ψk(s1r1···skrk)
T ∗

r =

∑
s∈ES

Tr Ts1r1···skrks T ∗

s1r1···skrks T ∗

r =

∑
s∈ES

Sψk+1(rs1r1···skrks)S∗

ψk+1(rs1r1···skrks)

is in DEB . On the other hand,

T ∗

r Sψk(r1s1···rksk)S
∗

ψk(r1s1···rksk)
Tr = δr,r1 ·

∑
r∈ER

Sψk(s1···rkskr)S∗

ψk(s1···rkskr)

is in DE A . Thus, TrDEB T ∗
r ⊆ DE A and T ∗

r DE A Tr ⊆ DEB as required. □

7. Shift equivalences through the lens

In this section we orient various equivalence relations between strong shift equivalence and shift equiva-
lence. We will assume some familiarity with crossed product C*-algebras and K-theory of C*-algebras.
We recommend [48] for the basic theory of crossed product C*-algebras, [43] for the basic K-theory for
C*-algebras, and especially [41, Chapter 7] for K-theory and crossed products of graph algebras by their
gauge actions.

Suppose now that G = (V, E) is a directed graph, and let γ be the gauge unit circle action on C∗(G).
We denote by γ̂ the dual Z action on C∗(G)⋊γ T. By [48, Lemma 2.75] we have that [C∗(G)⋊T] ⊗ K

and [C∗(G)⊗ K] ⋊ T are ∗-isomorphic via the map f ⊗ K 7→ f · K defined for f ∈ C(T; C∗(G))
and K ∈ K, and that this map intertwines the action γ̂ G

⊗ id with the dual action
∧

γ G
⊗ id. Using this

equivariant identification together with [48, Corollary 2.48] we obtain the following standard fact which
we leave for the reader to verify.

Proposition 7.1. Let G and G ′ be directed graphs, and suppose there exists a ∗-isomorphism ϕ :

C∗(G)⊗ K → C∗(G ′)⊗ K such that ϕ ◦ (γ G
⊗ id)z = (γ G ′

⊗ id)z ◦ ϕ for all z ∈ T. Then there exists
a ∗-isomorphism ϕ⋊ id : [C∗(G)⋊γ G T] ⊗ K → [C∗(G ′)⋊γ G T] ⊗ K such that [ϕ⋊ id] ◦ [γ̂ G

⊗ id] =

[γ̂ G ′

⊗ id] ◦ [ϕ⋊ id].
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Let A be a finite essential matrix with entries in N. We denote by (DA, D+

A ) the inductive limit of the
inductive system of ordered abelian groups acting on columns

(ZV ,ZV
+
)

AT

−−−→ (ZV ,ZV
+
)

AT

−−−→ (ZV ,ZV
+
)

AT

−−−→ · · ·

and let dA : DA → DA be the homomorphism induced by the following diagram:

ZV AT

−−−→ ZV AT

−−−→ ZV AT

−−−→ · · · DAyAT

yAT

yAT

ydA

ZV AT

−−−→ ZV AT

−−−→ ZV AT

−−−→ · · · DA

The triple (DA, D+

A , dA) is called the dimension group triple of A.
Let Hi be an abelian group, H+

i a submonoid of Hi , and αi an automorphism of Hi for i = 1, 2. We
say two triples (Hi , H+

i , αi ) are isomorphic if there is a group isomorphism φ : H1 → H2 such that
φ(H+

1 )= H+

2 and φ ◦α1 = α2 ◦φ.
From work of Wagoner [46, Corollary 2.9] we have that (DA, D+

A , dA) is isomorphic to a dimension
group triple constructed from the edge shift (X E A , σE A) associated to A. On the other hand, the dimen-
sion group triple (DA, D+

A , dA) also coincides with a K-theory triple arising from the crossed product
C*-algebra C∗(GA)⋊γ A T, where γ A is the gauge unit circle action. More precisely, noting that arrow
directions in [41] are reversed to ours, it follows from [41, Corollary 7.14] together with the discussion
preceding [41, Lemma 7.15] that the triple (DA, D+

A , dA) is isomorphic to the triple(
K0(C∗(GA)⋊γ A T), K0(C∗(GA)⋊γ A T)+, K0(γ̂

A
1 )

−1),
where γ̂ A is the dual action of Z on C∗(GA)⋊γ A T. The implication (3)⇒ (4) below is what we referred
to as Krieger’s corollary in the Introduction.

Corollary 7.2. Suppose now that A and B are two finite essential matrices with entries in N. The former
conditions imply the latter:

(1) A and B are strong shift equivalent.

(2) C∗(GA) and C∗(G B) are equivariantly stably isomorphic in a way that respects the diagonals.

(3) C∗(GA) and C∗(G B) are equivariantly stably isomorphic.

(4) A and B are shift equivalent.

Proof. By Williams’ theorem [47, Theorem 7.5.8] (see also [31]), strong shift equivalence of A and B coin-
cides with conjugacy of two-sided edge shifts (X E A , σE A) and (X EB , σEB ) (see [31, Theorem 7.2.7]), so we
get that (1) implies (2) by the implication (III )⇒ (II ) of [5, Theorem 5.1] (see also [8, Proposition 2.17]).

Clearly (2)⇒ (3), so we are left with showing (3)⇒ (4). To do this, we use Proposition 7.1 to get
that [C∗(G)⋊γ A T]⊗ K and [C∗(G ′)⋊γ B T]⊗ K are equivariantly isomorphic with actions γ̂ A

⊗ id and
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γ̂ B
⊗ id respectively. Hence, by applying K-theory we get an isomorphism of the triples(

K0(C∗(G)⋊γ A T), K0(C∗(G)⋊γ A T)+, K0(γ̂
A

1 )
)
,(

K0(C∗(G ′)⋊γ B T), K0(C∗(G ′)⋊γ B T)+, K0(γ̂
B

1 )
)
.

By Krieger’s theorem [11, Theorem 6.4] (see also [29]), and up to the identification with dimension
triples, we get that the triples above are isomorphic if and only if A and B are shift equivalent. Hence,
(3)⇒ (4). □

From the perspective of C*-algebras, we get that compatible, representable, and strong Morita shift
equivalences are between strong shift equivalence and shift equivalence. The work done in the previous
sections allows us to orient them, and show that each one provides a new way of obstructing SSE when
merely assuming SE. The equivalence between (1) and (4) in the theorem below realizes a goal sought
after by Muhly, Pask and Tomforde in [37, Remark 5.5], and provides a characterization of strong shift
equivalence of matrices in terms of strong Morita shift equivalence.

Theorem 7.3. Suppose A and B are two finite essential matrices with entries in N. Then the following
are equivalent:

(1) A and B are strong shift equivalent.

(2) A and B are compatibly shift equivalent.

(3) A and B are representable shift equivalent.

(4) X (A)∞ and X (B)∞ are strong Morita shift equivalent.

(5) C∗(GA) and C∗(G B) are equivariantly stably isomorphic in a way that respects the diagonals.

Proof. It follows from Corollary 4.5 that (1) ⇒ (2), from Corollary 5.5 that (2) ⇒ (3), and from
Proposition 6.2 that (3)⇒ (4). The implication (4)⇒ (5) is provided by Proposition 6.3. Finally, the impli-
cation (5)⇒ (1) is granted to us by combining the implication (II )⇒ (III ) of [5, Theorem 5.1] and the fact
that conjugacy of two-sided subshifts coincides with strong shift equivalence (Williams’ theorem [47]). □

We note here that if the construction in [22, Section 5] is applied to E := X (A), F := X (B) and
X := X (D) (as in the notation of [22]), we obtain again the correspondences E∞, F∞ and X∞ as in
[22, Section 5]. This follows from uniqueness of Pimsner dilations [22, Theorem 3.9]. In particular, the
correspondence X (R)∞ coincides with “R∞” in [22, Section 5] as the 1-2 corner of X∞ = X (D)∞.

Hence, when we specify to E := X (A) and F := X (B), in the proof of [22, Theorem 5.8] it is erroneously
claimed that X (R)∞ is the imprimitivity bimodule that implements a strong Morita equivalence between
X (A)∞ and X (B)∞, through the identifications coming from ψA and ψB . However, by our result this
would show that shift equivalence implies strong shift equivalence. Hence, the strategy of proof in [22,
Theorem 5.8] cannot be made to work, as the following cutoff result demonstrates.

Theorem 7.4. There exist finite aperiodic irreducible matrices A and B with entries in N that such that
X (A)∞ and X (B)∞ are strong Morita equivalent, but not strong Morita shift equivalent.
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Proof. Let A and B be the aperiodic and irreducible counterexamples of Kim and Roush from [28], so
that they are shift equivalent but not strong shift equivalent. By the result of Bratteli and Kishimoto [4]
we know that C∗(GA) and C∗(G B) are equivariantly stably isomorphic, so that by Theorem 3.17 we get
that X (A)∞ and X (B)∞ are strong Morita equivalent.

On the other hand, since A and B are not strong shift equivalent, by Theorem 7.3 we get that X (A)∞
and X (B)∞ cannot be strong Morita shift equivalent. □

Remark 7.5. Suppose A and B are aperiodic and irreducible matrices over N, and not 1 × 1. Then the
following conditions are equivalent:

(1) A and B are shift equivalent.

(2) X (A) and X (B) are shift equivalent.

(3) X (A)∞ and X (B)∞ are strong Morita equivalent.

(4) C∗(GA) and C∗(G B) are equivariantly stably isomorphic.

(5) The triples (DA, D+

A , dA) and (DB, D+

B , dB) are isomorphic.

Indeed, Krieger’s theorem shows that (1)⇔ (5), Proposition 3.5 shows that (1)⇔ (2), Theorem 3.17
shows that (3)⇔ (4), and Corollary 7.2 shows that (1)⇒ (4). Finally, from Bratteli and Kishimoto [4,
Corollary 4.3] we get (5)⇒ (4), which finishes the proof.

Note that the above proof avoids the implication (2)⇒ (3). Since now the validity of [22, Theorem 5.8]
is in question, it is unknown whether one can prove (2)⇒ (3) directly, without classification techniques
as in [4].
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