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THE PRESCRIBED CURVATURE PROBLEM
FOR ENTIRE HYPERSURFACES IN MINKOWSKI SPACE

CHANGYU REN, ZHIZHANG WANG AND LING XIAO

We prove three results in this paper: First, we prove, for a wide class of functions ¢ € C*(S""!) and
v(X,v)eC 2(R™+! x H™), there exists a unique, entire, strictly convex, spacelike hypersurface M,
satisfying oy (k[M,]) = ¥ (X, v) and u(x) — |x| 4+ ¢(x/|x|) as |x| = oco. Second, when k =n—1,n—2,
we show the existence and uniqueness of an entire, k-convex, spacelike hypersurface M, satisfying
or(k[My]) = ¥ (x,u(x)) and u(x) — |x| + ¢(x/|x]) as |[x| — oo. Last, we obtain the existence and
uniqueness of entire, strictly convex, downward translating solitons M, with prescribed asymptotic
behavior at infinity for o} curvature flow equations. Moreover, we prove that the downward translating
solitons M, have bounded principal curvatures.

1. Introduction

Let R™! be the Minkowski space with the Lorentzian metric
n
ds* = Z dxl.2 — dx,%Jrl
i=1

In this paper, we will devote ourselves to the study of spacelike hypersurfaces with prescribed oy curvature
in Minkowski space R™!. Here, oy, is the k-th elementary symmetric polynomial, i.e.,

Gk(K): § Kiy - Kig-
1<iyj<-<ig<n

Any such hypersurface M can be written locally as a graph of a function x,; = u(x), x € R", satisfying
the spacelike condition

|Du| < 1. (1-1)

More precisely, we focus on the equation
ok (kK [My]) = ¥ (X, v), (1-2)
where X = (x, u(x)) is the position vector of M, = {(x, u(x)) | x € R"}, v = (Du, 1)/y/1 — |Du|? is the
future-directed unit normal lying on the hyperboloid H", and «[M,] = (k, ..., k,) is the set of principal

curvatures of M,,. Thus (1-2) can be rewritten as

ok (kK[My]) =¥ (x, u(x), Du). (1-3)
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Notice that the functions 1 in the right-hand sides of (1-2) and (1-3) are different. Slightly extending the
notation, we use the same symbol here.

The classical Minkowski problem asks for the construction of a strictly convex compact surface X
whose Gaussian curvature is a given positive function f(v(X)), where v(X) denotes the normal to X at X.
This problem has been discussed by Nirenberg [1953], Pogorelov [1978], and Cheng and Yau [1976]. The
general problem of finding strictly convex hypersurfaces with prescribed surface area measures is called
the Christoffel-Minkowski problem. This type of problem can be reduced to a fully nonlinear equation of
the form (1-2). It may be traced back to Aleksandrov [1942], who established the problem of prescribing
zeroth curvature measure. The prescribed curvature measure problem in convex geometry has been
extensively studied by Aleksandrov [1956], Pogorelov [1953], Guan, Lin, and Ma [Guan et al. 2009], and
Guan, Li, and Li [Guan et al. 2012]. A more general form of the prescribed curvature measure problem
can be expressed as (1-3). In particular, Guan, Ren, and Wang [Guan et al. 2015] solved this problem in
Euclidean space for convex hypersurfaces. Other related studies and references about the Minkowski
problem may be found in [Bakelman and Kantor 1974; Caffarelli et al. 1986; 1988; Guan and Guan 2002;
Oliker 1984; Treibergs and Wei 1983].

In Minkowski space, there have been fruitful results on the prescribed curvature problem for spacelike
entire hypersurfaces. In [Treibergs 1982] and [Choi and Treibergs 1990], the authors obtained the
existence of entire hypersurfaces with constant mean curvature. Li [1995] then extended [Treibergs
1982] and proved the existence of constant Gauss curvature hypersurfaces with Gauss image a unit ball.
The existence of constant Gauss curvature hypersurfaces with Gauss image the convex hull in B; of an
arbitrary closed set 7 C S"~! was proved by Guan, Jian, and Schoen [Guan et al. 2006a] and Bayard and
Schniirer [2009]. Later, [Bayard 2006] and [Bayard and Delano€ 2009] considered the prescribed scalar
curvature problem for entire, spacelike hypersurfaces under different settings. More recently, the second
and third authors showed the existence of entire, spacelike, constant oy curvature hypersurfaces in [Wang
and Xiao 2022].

Our goal here is to construct entire, spacelike hypersurfaces satisfying (1-2) in Minkowski space. The
main results of this paper follow.

The first result is to construct entire, strictly convex, spacelike hypersurfaces satisfying (1-2).

Theorem 1. Suppose ¢ is a C* function defined on "', i.e., p € C>(S"™ 1), ¥ (X, v) € C*(R"! x H")
is a positive function, and c¢1 > ¥ (X, v) = ¢y for some positive constants cy, c¢;. We further assume
that Yy, > 0 (or Y, > 0). If either v VK(X, v) is locally strictly convex with respect to X for any v
or  only depends on v, then there exists a unique, entire, strictly convex, spacelike hypersurface
My, ={(x,ux)) | x € R"} satisfying (1-2). Moreover, as |x| — o0,

ulx) — |x|+<p<|i—|). (1-4)
Remark 2. Indeed, from the proof of the C? global estimate Lemma 10, we can see that the assumption
that ¥ (X, v) does not depend on X can be replaced by a weaker assumption; that is, ¥ ~'/%(X, v) is
convex with respect to X, and the corresponding form v (x, u, Du) does not depend on |x|.
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Remark 3. In the proof, we only can see that the hypersurface M, we constructed is convex. In order to
say it’s strictly convex, we need to apply the constant rank theorem (see [Guan et al. 2006b, Theorem 1.2;
Wang and Xiao 2022, Theorem 27]) and the splitting theorem (see [Wang and Xiao 2022, Theorem 28])
to obtain that, if M, has a degenerate point in the interior, then M, = M x R where M! c Rbis a
strictly convex, spacelike hypersurface. This contradicts (1-4).

Before stating our second result, we need the following definition.

Definition 4. A C? regular hypersurface M C R™! is k-convex if the principal curvatures of M at X € M
satisfy k[ X] € T’y for all X € M, where I'; is the Garding cone

Ii={keR"|opk)>0, m=1,...,k}.
Using the newly developed methods in [Ren and Wang 2019; 2023], we are able to generalize results
in [Bayard 2006] to prove the following.

Theorem 5. Suppose ¢ is some C 2 function defined on S"~! and ¥ (x, u(x)) € C 2(R"™ Y isa positive
Sfunction satisfying ¢y 2 V¥ (x, u(x)) = ¢y forcy, ca > 0. We further assume thatk =n—1,n—2 and yr, > 0.
Then there exists a unique, k-convex, spacelike hypersurface M,, = {(x, u(x)) | x € R"} satisfying

ok (kK [My]) = ¥ (x, u(x)). (1-5)
Moreover, as |x| — o0,
un) = Isl+ o (). (1-6)

Remark 6. Notice that unlike in the strictly convex case (Theorem 1), in this theorem, we only prove the
existence result for the case when ¥ depends on x and u(x) (¢ is independent of Du). This is because
the proofs of Lemma 12 (C? boundary estimates for k-convex hypersurfaces) and Lemma 15 (C' local
estimates for k-convex hypersurfaces) crucially rely on the fact that i is independent of Du.

Now, let’s consider the o} curvature flow with a forcing term in Minkowski space:

1/k
dX O (K[Mu])
% ——<C—W>U, (1-7)
k
where k[ M,,] € I'x. This can be rewritten as the equation for the height function u:
w0 MM 8
2 m1/k (1-8)
NG
The downward translating soliton to (1-8) is of the form
u(x,t) =u(x)—r, (1-9)
where u(x) satisfies
<Gk )l/k 1
i) WMD) =C— ———. (1-10)
() V1—Dup?

Equation (1-10) can be viewed as the “degenerate” type of (1-2). In this case, we prove the following.
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Theorem 7. Suppose ¢ is a C* function defined on Sg_l = {x e R" | |x| =C}, where C = /1 — (1/C)2
and C > 1 is a constant. There exists a unique, strictly convex solution u : R" — R of (1-10) such that,

- 1 _ -
u(x)—>C|x|—Ek/nnk10g|x|+<p<(3|§—|). (1-11)

Moreover, M, = {(x, u(x)) | x € R"} has bounded principal curvatures.

When k = 1, (1-10) has been studied in [Ju et al. 2010; Spruck and Xiao 2016]; when k = 2, (1-10)
has been studied in [Bayard 2023].

as |x| — oo,

Remark 8. Under our assumptions on i, we can see that the linearized operators of (1-2), (1-5), and
(1-10) satisfy the maximum principle. Therefore, the uniqueness properties in Theorem 1, 5, and 7 follow
from the maximum principle directly.

The rest of this paper is organized as follows. In Section 2, we introduce some basic formulas and
notation. The solvability of (1-2) and (1-5) on a bounded domain (Dirichlet problem) is discussed in
Section 3. We prove the local C' and C? estimates for solutions of (1-2) and (1-5) in Section 4. This leads
to the completion of the proof of our first two main results, Theorems 1 and 5, in Section 5. Section 6 and
Section 7 are devoted to Theorem 7. In particular, in Section 6, we study the radially symmetric solution
to (1-10), this solution will be used to construct barrier functions in Section 7. We finish the proof of
Theorem 7 in Section 7.

2. Preliminaries

In this paper, we will follow notation in [Wang and Xiao 2022]. For the readers convenience, we will
include some basic notation and formulas in this section. For more details, one can refer to [Choi and
Treibergs 1990; Li 1995]. Readers who are already familiar with calculations in Minkowski space can
skip this section.

We first recall that the Minkowski space R™! is R"*! endowed with the Lorentzian metric

ds? =dx12+- --+dx,21 —dx,fﬂ.
Throughout this paper, (-, -) denotes the inner product in R"™!.

2.1. Vertical graphs in R™1. A spacelike hypersurface M in R™! is a codimension 1 submanifold whose
induced metric is Riemannian. Locally, M can be written as the graph of a function, i.e.,

M, ={X =(x,ulx)) | x e R"},

satisfying the spacelike condition (1-1). We let E = (0, ..., 0, 1). Then the height function of M is
u(x) =—(X, E). It’s easy to see that the induced metric and second fundamental form of M are given by

8ij =98ij — DyuDyu, 1<i,j<n,

and
Ux;x;
h,’j = -

/1= |Dup?’
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respectively, while the timelike unit normal vector field to M is

(Du, 1)
Ve ——
V1 —|Du|?
where Du = (uy,, ..., uy,) and D*u = (u x; x,-) denote the ordinary gradient and Hessian, respectively,

of u. By a straightforward calculation, we have that the principle curvatures of M are eigenvalues of the
symmetric matrix A = (a;;) given by

1 . .
aij = Eylkukz)/lj,
where y* = 8;; + ujui/(w(l +w)) and w = /1 — |Du|?. Note that (y/) is invertible with inverse

(vij) = 6ij —u;uj/(1+w), which is the square root of (g;;).
Let S be the vector of n x n symmetric matrices and

Sk ={A eS| A(A) € T4},
where L(A) = (A, ..., A,) is the set of eigenvalues of A. Define a function F by

F(A) =01 (A(A)), A€k

Then (1-3) can be written as

F (o uay") =y, u(x), Du). -1
Throughout this paper, we write
N oF N 3*F
FU(A)= —(A) and FUH =_—"—
aa,-j aa,-jaakl
Now, let {11, 12, ..., T,} be a local orthonormal frame on 7M. We will use V to denote the induced

Levi-Civita connection on M. For a function v on M, we write v; = Vv, v;; = Vy, Vv, etc. In
particular, we have

— Du
|Vu| = \/g”uxl.uxj = #
V1= |Dul?

Using normal coordinates, we also need the following well-known fundamental equations for a
hypersurface M in R™!:

Xij =hjjv (Gauss formula),
W), =h;;t; (Weigarten formula),

o § (2-2)
hijk = hikj (Codazzi equation),

Rijri = —(hikhji — hithji) (Gauss equation),
and the Ricci identity

hijki = hijik + hmj Rimik + him Rjmix = hiiij — (hmjhit — hnihij) R — (Wi — himihi)) hmi . (2-3)
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2.2. The Gauss map. Let M be an entire, strictly convex, spacelike hypersurface, and let v(X) be the
timelike unit normal vector to M at X. It’s well known that the hyperbolic space H"”(—1) is canonically
embedded in R™! as the hypersurface

(X,X)=—1, xp41>0.

By translation parallel to the origin, we can regard v(X) as a point in H”(—1). In this way, we define the
Gauss map
G: M—H'(-1), X vX).

Next, let’s consider the support function of M. We write
1 au
v:=(X,v)=—< x-——u).
J1—|Dul? Xl: " ox;
Let {ey, ..., e,} be an orthonormal frame on H". We will also write {e], ..., e;} for the pull-back of e;
by the Gauss map G. Similarly to the convex geometry case, we write

Aij = vij — v8jj,

which is the hyperbolic Hessian. Here the v;; denote the covariant derivatives with respect to the hyperbolic
metric.
Let V be the connection of the ambient space. Then we have

X = E vie; — vy
i

ﬁe}«X = Z(ej (vi)er + vk§ejek) —VjV— v?ejv = Z Agjex.
k k

and

Note also that

8ij = <§e;‘X, Ve X) = Z Ak Agj (2-4)
k

and
hl]:<v€l*X7 Ve]v):A,J (2_5)

This implies that the eigenvalues of the hyperbolic Hessian are equal to the curvature radius of M.
Therefore, (1-2) can be written as

1
F i 8 i) — ) 2_6
(vlj v 11) (X, v) (2-6)
where F(A) = (0,/0,—1)(L(A)). Moreover, it is clear that
(Ve Vo)t =8ijv, 2-7)
which yields, fork=1,2,...,n+1,
Ve_,' Ve,' Xk = ngl‘j ’ (2_8)

where x; is the coordinate function.
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2.3. Legendre transform. Suppose M is an entire, strictly convex, spacelike hypersurface. Then M is
the graph of a convex function

Xpp1 = —(X, E) =u(xy, ..., xp),

where £ = (0, ...,0, 1). We introduce the Legendre transform

& = 8_x, u —ZX,S,—u

Next, we calculate the first and second fundamental forms in terms of &;. Since it is well known that

92u 92u* \ !
<8xfaxj) - (asfasj) !

we have that the first and the second fundamental forms can be rewritten as

i

V1=
where (#*/) denotes the inverse matrix of (u} ) and |£|> = D& 2. Now, let W be the Weingarten matrix
of M. Then

gij =26ij—&& and hj; =

Wi = V1 — EPgiku;;.
From the discussion above, we can see that if M, = {(x, u(x)) | x € R"} is an entire, strictly convex,

spacelike hypersurface satisfying oy (k[M]) = 1, then the Legendre transform of u, denoted by u*,
satisfies

1
F(w*ygugv) = k(/c [w*yiug v = " (2-9)
O

Here, w* = /1 — |£€|2, and (yﬁ;) =8;j —&i&; /(1 +w") is the square root of the matrix (g;;).

3. The Dirichlet problem

We will divide this section into two subsections. In the first subsection, we only consider the convex
solution to (1-2). In the second subsection, we restrict ourselves to the cases when k=n—1 (n > 3),
n—2 (n >=5), and we will consider the k-convex, spacelike solution to (1-5). When k = 2, this problem
has been studied in [Bayard 2003; Urbas 2003].

3.1. Dirichlet problem for 1 < k < n. Recall that in [Wang and Xiao 2022] we proved the following:
Lemma?9. Let F C S" !, F = Conv(F), and u* be a solution of
A 1/k L~
F(W*V;“LVU) - ( ) n F’N (3-1)
uw =g ondF,

where ﬁ(w*yl’;uzlyl]) = (0,/0u— k)l/k(/c*[w*yf,‘(uzlyl*]) Then the Legendre transform of u*, denoted

by u, satisfies, when x /|x| € F,

ux) —|x| - —p <|§—|> uniformly as |x| — oo. (3-2)
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Notice that the proof of the above lemma is independent of the equation that the function u* satisfies.
Therefore, adapting the above lemma to the settings in this paper, this lemma tells us that if a strictly convex
function u* : B; — R satisfies u*(§) = —¢(&) for & € 9 By, then the Legendre transform of u*, denoted
by u, satisfies u(x) — |x| + ¢(x/|x|) as |x| - oco. Moreover, by [Wang and Xiao 2022, Theorem 4],
there exist two solutions u and # such that

or(k[Myl) =c1, or(k[Mzg]) =ca,
and, as |x| — o0,
() = bl i) = Il = (5.
Here, the constants ¢y, ¢ are the same as those in Theorem 1. Throughout this paper, we will denote the
Legendre transforms of u and u by u™ and u*, respectively. It’s easy to see that u* and u™* are the super-
and subsolutions of (2-9).
Combining the discussions above with Section 2, we conclude that in order to find an entire, strictly

convex solution u# of (1-3), we only need to solve the equation

Fw*yiuyy®) =v* in By,
{ W™y lezjz 14 1 (3-3)
u'=—¢ onabBy,
where
* * * 1 1
Y&, u”, Du”) = =
Y(x,u, Du) Y (Du*, & - Du* —u* §)
and
o
F(w vy = —— G w*yjuf v
j Onk J
Note that, by our assumption in Theorem 1, we have
Vu
VYo = P = 0. (3-4)
Thus, (3-3) possesses the maximum principle.
Notice that (3-3) is degenerate on d B;. Therefore, we will consider the approximate equation
Fw*y us,v)=v* in B,,
{ (W Vg vy) =V r (3-5)
u*=u* ondB,,

where 0 < r < 1.

By the continuity method, we know that, if we can obtain a prior estimates up to the second order, then
we can show (3-5) has a unique, strictly convex solution u"*. In view of the super- and subsolutions u*
and it*, the C* estimates are easy to obtain. The C! estimates can be derived by following the argument
in Section 9.2 of [Ren et al. 2020]. The C? estimate on the boundary can be derived from Lemma 27 in
[Ren et al. 2020] and the argument of Bo Guan [Guan 1999]. In the following, we only need to consider
the global C? estimate.

Let M, = {(x, u(x)) | x € R"} be a strictly convex, spacelike hypersurface, v = (X, v) be the support
function of M, and u* be the Legendre transform of u. From Sections 2.2 and 2.3, we know that
AMuij —véi;] = K*[w*yi*;cuzlyl}‘f]. Therefore, studying the global C 2 estimate of (3-5) is equivalent to
studying the global C? estimate of (2-6).
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For our convenience, we will consider the equation

A O, l/k ~
F(A) = <0 - ) (AN =1, (3-6)

n—k

where A = (A;j) = (vij —vé;)), 1/7 =~ VKX, v), and the v;; are the covariant derivatives with respect
to the hyperbolic metric.
We will write A[A] = (A, A2, ..., A,) for the set of eigenvalues of the matrix A. We define the
Riemann curvature tensor
R(X, Y) = vay — Vyvx — V[X,Y]-

Let {e, e, ..., e,} be an orthonormal frame on H"; we use the notation
Rijit = R(ei, ej)er-¢; and Rfjk = gl”R,-jkp.
Then the commutation formulas are
Vijk — Vikj = le.,”- voand ik — Vijik = Ry Vim + Ry Vim-

Note that, in hyperbolic space, we have

Rijki = &ik&j1 — 8i18jk-
Therefore, given an orthonormal frame on H", we obtain the geometric formulas

Aijk =Ny and  Agji — Njkij = Vikji — Vikij = —Vij8ik + Viidjx — vjrbi; + vikdji. (3-7)

Lemma 10. Let v be the solution of (3-6) in a bounded domain U C H". Denote the set of eigenvalues of
(vij —vé;;) by Avij —v8;j]= (A1, ..., Ay). Then

Amax < max{C, Alyu},

where Amax = max{Ai, ..., Ay} and C is a positive constant only depending on U and .

Proof. Set
M =max max (logAgg + Nxyp1),

reU 5=l
EETP[H]n

where x,,11 is the coordinate function. Without loss of generality, we assume M is achieved at an interior
point Py € U for some direction &. Chose an orthonormal frame {ey, ..., e,} around Py such that
e1(Po) =& and A;;(Po) = A;d;j.
Now, let’s consider the test function
¢ =log Aj1 +Nxpqy.

At its maximum point Py, we have

Ay

0=¢i=—+Nxps1)i, (3-8)
A )
A A

02 ¢ii =

110
—+4+N 3-9
ALl A%l + N (Xp41)ii (3-9)



10 CHANGYU REN, ZHIZHANG WANG AND LING XIAO

Note that (xn+1),~j = xn+18ij; thus

L ﬁ‘iiAll__ ﬁiiAZ ) L
F”¢ii — All i A%lllz +an+l Z Fit (3_10)
i

In view of (3-7),
Arrii = A = A Hvii — v = A + Ay — A
This yields
Finyi=F A+ FAj — Ay Y F™ (3-11)
i
Differentiating (3-6) twice, we obtain

EFpp _ Faq

FiliNi = —ﬁpq’”qulArsl +9n = —ﬁpp’qquplAqql - Z A — A
P

P#q

Abgi+v. (3-12)

By the concavity of (0,/0,_x)'/*, we can see that the first term on the right-hand side is nonnegative.

Combining (3-10)—(3-12), we have

yn 1 Fre—Faa ,  FUAZ.
Fligyi>-———) ———— A | — L+ (Nxpp1—1) )y F"
An Ao k=g M A3 Xl:
1l~fl1 1 Fii _ pll 5 ﬁiiA%l' .
>—+— Ay — L+ (Nxyq1—1) )y F'. 3-13
TN Ry ) (NXn41 )Xi: (3-13)

We need an explicit expression of Fii. A straightforward calculation gives

ii ii
0, Op_k —0,0,"
2 9
Ok

kF"kalF’\ii —

(3-14)
where alii = doy/0A; for 1 <1 < n. We find that
0 on—t — 00t = Opt (M) (AiOu—g—1 (A1) + 0 (A1) — Aiou_1 (A]1)0n—k—1 (A ]0)
=0p_1(A|D)op_i(X]i).

Here and in the following, o;(\|a) and o;(\|ab) are the [-th elementary symmetric polynomials of
Al ..., Ay with A, =0 and A, = A, = 0, respectively. It follows that

On—1(A])0n— (A1)

kF* 1R = A 415)
On—k
Therefore, we get
A .. R 1 . .
ka—l(Flt _ Fll) = _02 [on_1(A D)ok (A|T) — o1 (M| Do_i (A 1D)]
n—k
on_2(A|10) ]
= no_z—[)‘lon—k()&“) —Xiou—r (A D]
n—k
On—2(A|10) (A — Ap) . '
_9n=2 . 1 ! [A +A)on—k—1 (A1) +op—r (A 10)]. (3-16)

Ok
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When i > 2, we can see that

ot (FE=FU TN gy (10)
kF*™ | —— = ——5 [ +2)on—k—1 (A | 1i) + 05— (A] 17) — 0k (A |1)]

M—hi A o2,
op—2 (A1) ~_ on—1 (A1) :
= Mot (A1) = = —— o (A1) > 0. (3-17)
On—k On—k

Plugging (3-17) into (3-13), we obtain

~ii wll 2 ii WII ii
i > —F! A“’ +(Nxp1— 1) Z Fil= = — FUN? ()T + Ny — 1) Y F (3-18)
11 11 ;
Here, in the last equality, we have used (3-8).
Now, let’s calculate 1}11. We denote by V the connection of the ambient space and by {e}, €5, ..., e}
the pull back of {e1, es, ..., e,} via the Gauss map. Differentiating ¥ with respect to e; twice, we get
Y1 =dxy Ve X) +doy ™ (e (3-19)

and
Ui =dxdxy " (Ve X, Ve X) +dx 7V (Ve Ve X)
+2dxd, ¥ M (er, Ver X) + dodyy ! (er, e) + d TV E (V1)

> coATy +dxy l/k( ZAklek)+2dxd1ﬁ l/k(l,ZA11el>
/

+dydy ™V (er, er) +du VR ()

> oAt + dellf_l/k(/\kuek + Ar1dg1v) —Ca —C
k

> coAT + Y Adx ¥~ (ex) — Ch = C, (3-20)
k

—1/k

where the first inequality comes from the locally strict convexity assumption on ¥ , 1.e., for any

spacelike vector £ € R™1,
dxdx ™M (E.8) = cols|E = colé I3y

Here cg > 0 is some constant depending on the defining domain, and |- |g and |- | are the Euclidean norm
and Minkowski norm, respectively. At the point Py, in view of (3-8) and the assumption that v,,,, > 0,
we derive

11 1/k C
— > coA — N d —-C—-—
A cor Ek XnrDedx ™" (ex) )»1

N
= cor1 + ;z/f—”"—ldxt/f(v)cm) —C—-—

N
=coh + ?W_l/k_ldxlﬁ<—
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9 " 9 C

— |-C-=

0 n+ 1+xn+lezaxl‘> Al
n

Nlx|? oy Y C
=kt v T IZ% TN
n+

N
= cohi + —w—‘/k—‘dxw<|x|2

N 0 C C
> com+ oy Y-S s oo £ (3-21)
k Xi

Here, in the last inequality, we have assumed A1 = A1 (||c2) > O is large at Py. On the other hand, note
that the functional F is concave and homogenous of degree 1. Therefore,

ZF”—F()»)—FZF”(I—A) F(l)_< ) e (3-22)

i

Combining (3-18)—(3-22), we obtain

N cC C n\—1/k
02 gy > =C = = = = NG} + N = D()
A A

Letting N and A; be sufficiently large, we obtain a contradiction. This completes the proof of Lemma 10.

1/k

Notice that this is the only place we need the locally strict convexity assumption of ¢ ~"/* in Theorem 1.

It’s also clear that the above proof can be easily modified to the case when 1 ~1/%
to X and the corresponding ¥ (x, u(x), Du) does not depend on |x| (see the second inequality in (3-21)),

as stated in the Remark 2. Therefore, (3-5) is solvable when either ¥ ~!/% is locally strictly convex with
1/k

is convex with respect

respect to X or ¥~ /% is convex with respect to X and v (x, u(x), Du(x)) does not depend on |x|. [

3.2. Dirichilet problem for k =n—1,n—2. Letn e N and @, :={x € R" | u(x) = n}. We will consider
the Dirichlet problem

or(k[My]) =¥ (x, u(x in ,,,

{ k(K [My]) = ¢ (x, u(x)) n (3-23)
u=n on 9€2;,.

Note that since u is strictly convex, €2, is strictly convex. It’s easy to see that if u is a solution of (3-23),

then u < u < u. Therefore, in order to find a k-convex solution u for (3-23), we only need to study the

C! and C? estimates of u.
3.2.1. C! estimate for (3-23).

Lemma 11. Let u be a solution of (3-23), then |Du| < C < 1. Here C is a constant depending on |Dulg
and .

Proof. Let V = —(v, E) = 1/y/1 — |Du|?, and consider the test function ¢ =In V + Ku, where K > 0 is
to be determined. If ¢ achieves its maximum at an interior point Py € M,, then at this point, we may

choose a normal coordinate {7y, ..., 7,} such that s;; = k;;;. Since at Py we have
Vi Vi V?
¢_V+KM,—0 and 0 ¢”:7_W+Ku”’
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a straightforward calculation yields

(Voy, E) a,ii/cizuiz
Vv V2

Note that |(Voy, E)| < CV?, where C only depends on |¢|-1. Choosing K > C + 1, we have

0>—

+ KkyV 4ol

Vo, E) ok )
( G"‘/ >—6’<;‘2”’ +KkyV +0lik2 > 0.

This leads to a contradiction. O

3.2.2. C? boundary estimates for (3-23). Now, we will establish the C? boundary estimate. For our
convenience, we will consider the solvability of the Dirichlet problem

{ G(Du, D*u) = op(5y ™ uy") =¥ (x,u(x)) inQ,

(3-24)
u=>0 on 0€2,

where 2 is strictly convex. We will follow the idea of [Caffarelli et al. 1988].

Infinitesimal stretching. If u is a solution of (3-24), let v(x) = ¢~ 'u(tx), where ¢ > 0. Then the principal
curvatures of M, satisfy k[ M, (x)] = tx[M,(tx)]. Therefore,

G(Dv, D*v) = t*yr (tx, u(tx)) = "y (tx, to(x)). (3-25)
We write v = (d/dt)v = —t~2u(tx) +x - Du(tx); when t = 1,
vV=2x-Du(x)—u(x).
Differentiating (3-25) with respect to ¢ then evaluating at t = 1, we obtain
G 3;j0 + G* 350 =k + Y, (v + D) + Xy
Writing L := G"/8;; + G*d;, we have

L(x-Du—u)=k¥ +v,(u+x-Du—u)+x¥ =k +x¥, +,x-Du. (3-26)
Infinitesimal rotation in Minkowski space. It is well known that Lorentz boosts are isometries of R*!,
Keeping the coordinates x" = (xy, ..., x,_1) fixed, we rotate in the (x,, u) variables:
cosh® sinh6 | [x,| [cosh6x, + sinhOu
sinh® cosh® || u | |coshOu +sinhbx, |”

To the first order in 6, the image of (x, #(x)) under such a rotation is
(", 2 +u ()0, u(x) + x,0).
Therefore, to the first order in 9, the image of
(', xp —u(x)0, u(x’, x, —u(x)0))
is (x/, xp, u(x’, x, —u(x)0) + x,0). Considering this image as the graph of the function

v(x) = u(x’, x, —u(x)6) + x,0 + higher order in 6,
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we have
G(Dv, D*v) = ¥ (x', x, —u(x)0, u(x’, x, — u(x)8)) + higher order in 6

=Y (x', x, —u(x)0, v(x) — x,0) + higher order in 6.
Notice that (dv/d0)|g—o = x, — u,u, so we obtain
G 8, (e — untt) + G0 (v — wptt) = Y (—u(x)) + Y (X — ntt — Xp). (3-27)

Thus, we conclude that
L(xp —uuy) = —uyy — upuy,. (3-28)

Lemma 12. Let u be a solution of (3-24), then |D*u| < C on 3. Here C is a constant depending on
and .

Proof. For any p € €2, we suppose p is the origin and that the x,-axis is the interior normal of 92 at p.
We may also assume the boundary near the origin p is represented by

n—1
Ny =2 D haxZHOUXP), ¥ = (),
a=1
where Ay >0, 1 <o <n—1, are the principal curvatures of 9<2 at the origin. Let T,, = 0y +Aq (Xq 0 — X1, 05).
Note that GV u;jq + G ttsq = Yo + YUy In view of the fact that (3-23) is invariant under rotation (see
(3.1) in [Caffarelli et al. 1988]), we get
|ILT,u| < C. (3-29)

Moreover, it’s easy to see we have |Tyu| < C|x’|? on 9% near the origin. In the following, we write
Qg :=QN{x, < B}. Set

h=(x-Du—u)— %(xn —uuy).

On 92N 3y, note that u = 0, so we have x - Du < Cy|x’|%. This implies, on 92 N 32,
) ( 1) /2
h=x-Du— =x, < Cl——a)|x| , (3-30)
B p
where a > 0 depends on the principal curvatures of 92. Notice that u is a spacelike function, so we
suppose |Du| < 6y in Q for some 6 € (0, 1). Then we have 0 < —u < 0opB in Q4. Therefore, on {x, = B},

n—1
h = Bu, + Zxaua —u+ %uun —8 < PO+ CBYE+ 008 +038 -8 <CBYV P +580Bp—1) (3-31)

a=1

with C being independent of 8 and §. Moreover,

=~

Lh=ky 4+ x¥, +.x - Du — %(—wn —uqu,) = ky —CY2—C8 = Zv, (3-32)

where § and f are small positive constants.

[\

Now choose A = A(8) > 0 large enough that
Ah < —|Tyu| on 082 and LAh > |LTyu| in Qg.
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By the maximum principle, we conclude that
Ah£T,u<0 in Q.

On the other hand, we have h(0) = T,u(0) = 0. Therefore,

18, Tt (0)] < — Al (0) < %,

which yields
luna (0)] < C. (3-33)
Next, following the notation in Section 2.1, we write a;; = %y”‘uklylj , where w = /1 — |Du|? and
yi* =8k +ujur/(w(l +w)). A straightforward calculation yields, at the origin,

Uga UnAg Uan

aaa:—:— s al)tl’l:_z fOrlgagn_l,
Mw w w (3-34)
a,m:i;’, ajj=0 for all other 1 <, j<n.
w
Since 0€2 is smooth, we know there exists ryp > 0 and z, = (0, ..., 0, rp) such that B, (z,) C @ and

E,O (zp) N0 = p. Here B, (z,) is a ball of radius r centered at z,,. Let

i= VR4 VR +x -2,

where x = (x1, ..., x,) and R > 0 is a constant to be determined. A straightforward calculation yields

o7 ) = () g

Uk(wV Uay = ) =\ R <2

when R = R(cp) > 0 is sufficiently large. Here c; is the lower bound for ¥ defined in Theorem 5.
Therefore, u is a supersolution of (3-24). By the strong maximum principal, we have u < u in B, (z).
Applying the Hopf lemma, we obtain

ro

————= = —up(p) < —un(p).
R2 + rg n n
In view of (3-34) and [Trudinger 1995, (2.5)], (3-24) can be written as

11 k1
o [m(—un) Ok—1 (M) Uy + P] =,
where P depends on w, uqg, and u,, which are bounded by some uniform constants depending on n, k,
092, ||”||c1(§)> and L = (A1, ..., Ay,—1). Moreover, by our assumption that ¢ is bounded, we obtain an
upper bound for u,,(0). The lower bound for u,,(0) comes from the fact that M, is k-convex, which
implies > »_; a;; > 0.

Finally, since p € 92 is arbitrary, we get

|D%u(x)| < C forany x € 9. O
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3.2.3. C? global estimate for (3-23). Finally, we will prove the C? global estimate. In this subsubsection,
for greater generality, we will assume ¥ = ¥ (X, v).

Lemma 13. Lef u be a solution of (3-24) with = (X, v), then
|D2u| < maX{C, max |D2u|}
ET9)
on 2. Here C is a constant depending on |Du|q and .
Proof. We consider the following test function whose form first appeared in [Guan et al. 2015]:
¢ =loglog P — N(v, E).

Here, P :=) , ¢, and N is a sufficiently large constant to be determined later.
We may assume that the maximum of ¢ is achieved at some point Py € M,,, where u is the solution of
(3-24). Suppose {11, 12, ..., T,} is a normal coordinate near Py such that, at Py,

h[j=K,'5ij and K1 2/(22---2/(,,.

Differentiating the function ¢ twice at Pp, we have

i = + Nhjiu; =0, (3-35)

l
PlogP
and

P;; P P?

— L d — Nh% (v, E) N
PlogP PZlogP (PlogP)? v, +Z ushisi

I ) - I I
— h i K1h2_ —h2 R P-2
PlogP[Xl:e . +21:€ ”l+1§£ kp—kg P (P+P10gP) !

th (v, E) +ZNU hiis.

dii =

Contracting with o/, we get

W alii err — ek 1 1 2
gk¢ii_P10gP|:Z 1h11u+2 ]hlll+z Kp—Kg pql_(F-i_PlogP P;

P#q

—Noj'k? (v, E)+ Y Nugo{'hiis. (3-36)
S

At Py, differentiating (1-2) twice yields

o' hiit = dx ¥ (@) +Kady Y () (3-37)
and
ol hiin + 0" hpgihrg = —C — Ch3 |+ Y hody (7). (3-38)
N
where C is some uniform constant only depending on 1. Note that

huii = hiy — hiihd + hhyp. (3-39)
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Inserting (3-38) and (3-39) into (3-36), we obtain
ii 1 K \rs
O bii Z 5 og P {; e (—C — Cki =" b pgihyg + Z hslldvlﬁ(‘[s))

FEoterol 4L b (5 g

P#q

—NO’” 2(1} E) —i—ZNu O’k Thii — O’,éll(z. (3-40)
S

By (3-35) and (3-37), we have

1 ii
Plog P Z ; eklhslldVW(Ts) + Z N”sak hsii = —C.
Now, for any constant K > 1, we write

A =i [K(ak),? -> a,{””‘f‘fhp,,,-hqq,},
P#q

ii,ll K[2 i K1 7,2
Bi=2) o'e"hf, Ci=of' Y ehy,,

i I
I+logP ;; »
—220’ lll’ Ei:mglilpi‘
1#i g
Combining
- Z Ukpq’rshpqlhrsl = Z Ukpp qqhiql Z pplhqql
l P#q P#q

with (3-40), we get

(v, E) = D)a}'k? — Ck. (3-41)

ol i > P

Claim 1. For any given 0 < ¢ < 4, we let a = (1 —2¢) /(1 + ¢€). There exists a positive constant § < %

such that, for any |k;| < k1, 1 <21 < n, if the constant K and the maximum principal curvature k| are
both sufficiently large, we have
o i p2
Ai+Bi+Ci+Di_Ei_WgP0k Pz' > 0.
Applying Lemma 6 in [Ren and Wang 2019], we can see that when K is chosen to be sufficiently
large, we have A; > 0. By the Cauchy—Schwarz inequality, we have

2
P} =e™h}; +2 Z e iy + (Z €K’hzli>

I#i I#i

<G +2) e iy + (P — €)Y ehyy,. (3-42)
1#i 1#i
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Thus,
B,“f‘C,“FDi—E,‘— « O']iiP~2
Plog P !
l+o . l+a-+logP
11, 52 2 i
2226 o llhlll+2z P lll ﬁzeklalélhlli—FWZekl—H( o'lth”l
1£i = ez g 1£i
1+a+logP l+a+logP _ .
i 2 2 2 i
+ e by — TgP oy by — 2W Z ol hijihy.  (3-43)

1#i

Let ¢ be equal to the er in Lemma 12 of [Ren and Wang 2019]. Then we know there exists a positive
constant § < ¢ such that, when |«;| < 8«1,

1,ii — et ll l+o iig?2
(2—8)§6 o hll,+(2—e)§ - ol'h2; — 10gp§ekla,yhm>o. (3-44)

On the other hand, we have

Z Moy hjy; —2 Z o hyihy > — Z il (3-45)
1#i,1 1,1 1#i,1
It follows that
o i p2
Bi+Ci+D; —E; — PlogPGk P;
l+a+logP ., & o2 l+a+logP Kitki i 2
>We ! Ok h111+e htu_TgP;el Ok hlll
l+a+logP i el — et
ORI gy 4 eeio) T e G R, (346
PlogP € k it € 11i K| — K ILi- ( )

A straightforward calculation shows that, when k| is very large, the following inequalities hold:

1 log P . AL | . 1
”hzzzt - u Z eK]+KiO'Iilhi2ii > e_ - o ekio—lélhizii > ”hzzlz,
PlogP I P logP n+1
and
l+o+logh . i 3 . ii i
-2 PlOgP eK'—HqG]éllhiiihllH = —FEK’-H“O]( |h,’iih11,‘| > —36K’0k |]’l,',','h11,'|.

Moreover, it is easy to see that

K1 Ki Kl_
e —e . e

eKl 11”hllz Ok“h%li K[ 11””111
K1 —K; K1 —K;

Lolih?,.. (3-47)

By the Taylor expansion, we have

e —e (k1 — &)
Ki m =" Z l ”hllz (3-48)

K1—
m=>1
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Combining the previous four formulas with (3-46), when « is sufficiently large and |«;| < 8k, we obtain

X ip2s idi| L2 (k1 — k)"~ >
Bi+ci+Di_Ei_WgPUk PS> "oy mhm—3|hiiih11i|+SZThni 2 0.
m>1

Therefore, Claim 1 is proved.
Recalling Section 4 of [Ren and Wang 2019] and the proof of Theorem 14 in [Ren and Wang 2023],
we know the following claim is true.

Claim 2. Suppose k =n—1n =23)ork=n—2(n > 5). For any index 1 < i < n, if the positive
constant K and the maximum principal curvature k| are both sufficiently large, we have

Ai+Bi+Ci+D;—E; >20.
By Claims 1 and 2, (3-41) becomes

o i p2 i
02 2. (plogpy®h Bl (N W B) = Dof's — Ca. (3-49)

[rci | <8y

Here, the constant § is the constant chosen in Claim 1. Choosing N > 0 such that
o'k} (=N (v, E) — 1) — Ck; > 0,
we get a contradiction. Therefore, our desired estimate follows immediately. g

By Lemmas 11, 12, and 13, we conclude that, when k =n — 1, n — 2, the Dirichlet problem (3-23)
admits a k-convex solution.

4. The local estimates
We will devote this section to establishing the local C! and C? estimates for the solution u of (1-3).

4.1. Local C! estimates. In this subsection, we will prove the local C! estimate. We will split it into
two cases. In the first case, we will assume u is a convex solution of (1-2); in the second case, we will
assume u is a k-convex solution of (1-5). Note that in both cases our results hold for 1 <k < n.

For strictly convex, spacelike hypersurfaces, [Bayard and Schniirer 2009] proved the following local
gradient estimate lemma.

Lemma 14 [Bayard and Schniirer 2009, Lemma 5.1]. Let Q C R" be a bounded open set, and let
u,u, V:Q — R" be strictly spacelike. Assume that u is strictly convex and u < u in Q2. Also assume that,
near 02, we have V > u. Consider the set with u > V. For every x in this set, we have the following

gradient estimate for u:
1 1 u—w

< - sup —Y/——.
V1—|Dul2 u@x)—=VYx) wswvy/1—|D¥|?

For k-convex, spacelike hypersurfaces, [Bayard 2006] proved a similar result when £ = 2. In the

following, we will extend it to all k. Our argument is a modification of that in [Bayard 2006]. We would
also like to mention that the basic idea of this argument appeared in [Chou and Wang 2001].
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Lemma 15. Let Q C R" be a bounded open set. Let u, u, ¥V : Q — R" be strictly spacelike. Assume that
My, ={(x,ux)) | x € Q} is a k-convex hypersurface satisfying

ok (K[My]) =¥ (x, u(x))

and u < u in Q2. Also assume that, near 0S2, we have V > u. Consider the set with u > W. For every x in

this set, we have the following gradient estimate for u:

1 1 _ N
g[ - sup (u—\If):| C.

m u(x) —W(ix) {u>w}

Here, N = N (n, k) is a uniform constant only depending on n and k, and C = C(u — W, |WV|c2, |[¥|c1) is

a uniform constant depending on the upper bound of i — WV, 1/\/1—|DW |2, D>V, and |/ |c1.

Proof. Consider the test function

¢=@w—V)"(—(v, E),

where N is a large undetermined constant. Assume the function ¢ achieves its maximum at P. We may
choose a local normal coordinate {7y, ..., 7,} such that, at P, we have h;; = «;6;;. Differentiating ¢

twice at P, we have
bi ui—V;  hipuy

0=—=N ,
o) u—Vv —( E) @1
5 -
05 $i B _ i Vir @i %07 3 (<0 BN+ it (Y himtn)
9 ¢? u—w —‘I’)z —(v, E) (—(v, E))?
Contracting with o/, we get
0> ol i _ foliiuii — ol B Na,ii(ui —;)? T o'y hiimtm B ollctu? 4-2)
T 9 u— w—w)2 —(v, E) (—(v, EN)?
Without loss of generality, we may assume that, at P,
\V/ 2
u% > [Vu| ’
n
where V is the Levi-Civita connection on M. By (4-1), we have
N{v, E) ( \111)
kj=———(1——.
u—w uj
We may also assume |Vu(P)] is sufficiently large that Wy /u;| < 5. Then, at P, we can see
N (v, E)
K1<Eu_qj. (4-3)

Thus, if N is sufficiently large, «; is negative and its norm is large. Using inequality (26) in [Lin and

Zo_u 2 770/311612,

i>2

Trudinger 1994], we obtain
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where 7 is a uniform constant only depending on n and k. Therefore,

i 2 o' i i 2 oiik? > 1ol 1,2
o} K UE)2/ZakK—<——>Z =100} Ki.
By (4-3), we get
olik? ollktu? >noN2 1 (—(v, E)? (4-4)

0 EN2° 4 * w—wz
Inserting (1-2) and (4-4) into (4-2) yields
0> N(u—W)o}'ki(—(v, E) — 0" W;;]— Noj' (u; — ¥;)?

\11)2 Zm 'S//mum nONZ O_kll
—<\), E) 4

+ (u — (—(v, E)?. (4-5)

Noticing that
“ 3
Ym = Z lpxz<'[m’ a_xl>+ Vul—Tm, E),
=1

we calculate
Zm Ymitm

gy 2 U (v B)). (4-6)

Combining (4-5) with (4-6), we get
—(n—k+4+ DN@@ —W)op_1 VW] —2(n —k + DNoy_1(|Vu)* + V¥ |?)

_ noN?
—Cu—V)*(1+(—v, E) + n ol (—=(v, EN? (47
Notice that, when k1 < 0, we have

o1 = K102 (k| 1) +op_1 (k| 1) < ol

Moreover, —(v, E) = /1 + |Vu|2. With N sufficiently large in (4-7), we obtain the desired estimate. []

4.2. The Pogorelov-type local C? estimates. Recall that in [Wang and Xiao 2022] (see Lemma 24)
we proved the Pogorelov-type local C? estimate for strictly convex, spacelike, constant o curvature
hypersurfaces. With small modifications, we can show the following.

Lemma 16. Let u”™ be the solution of (3-5) and u” be the Legendre transform of u”*. For any given
s > 2Co+ 1, where Cy > minu is an arbitrary constant, let ry > 0 be a positive number such that, when
r>rg, we have u” |yq, > s, where 2, = Du"*(B,). Let kmax(x) be the largest principal curvature of M-
at x, where My,r ={(x,u"(x)) | x € Q,}. Then, forr > rg, we have

—u ) kmax < C. 4-8
r/x\l/lax(s u' )k (4-8)

Here, C depends on the local C' estimates of u” and s.

In the rest of this subsection, we will establish the Pogorelov-type local C? estimates for the k-convex
solution of (1-2), where k=n—1(n =>3), n—2(n > 5).
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Lemma 17. Let u" be the k-convex solution of (3-23) with v = ¥ (X, v), where k = n—1(n > 3),
n—2(n = 5). For any given s > 1, let m > s. Then u™|yq, =m > s. Let kmax(x) be the largest principal
curvature of Mym at x, where Mym = {(x, u™(x)) | x € Qy,}. Then, for m > s, we have

max(s — u™)kmax < C.

Here, C depends on the local C' estimates of u™ and s.

Proof. In this proof, for our convenience when there is no confusion, we will drop the superscript on u™.
Now, on €2,,, we consider the following test function whose form first appeared in [Guan et al. 2015]:

¢ = pBlog(s —u)+loglog P — N(v, E).
Here the function P is defined by

P=Ze"’,
I

and B and N are constants to be determined later.
Letting Uy = {x € R" | u(x) < s}, we may assume that the maximum of ¢ is achieved at Py € U;.
Choose a local normal coordinate {71, 72, ..., T,} such that h;; = «;6;; and k1 = k2 > - - - 2> K, at Py.
Differentiating the function ¢ twice at Py, we get

g = — P4 -~ B Nhiui=0 (4-9)
s — PlogP
and
P P2 P? hii (v, E 2
0= d¢ii = . - : Phiilv. E) IBut 1\”’12 (v, E) +ZNUS isi

PlogP_leogP_(PlogP)2 s—u (s —u)?

er _ ok 1 1 2
[Ze i +Ze’”h”l +I§I b — &g qu B (F—'_ P log P)Pi]
+/8h”<v7 E) ﬁu?

2
P IR Nh? vE+ZNuS

Contracting with o/, we have

. 1 1 2
O]él¢ii I log P |:Ze lhllll + Zemh”l + Z pql — (— + P log P) Pi ]

+ﬁ0k Ki(”vE> Boi'u;

p— (s—u)2 — Noj'«? (v, E) —|—ZNu o' hiis.  (4-10)

At Py, differentiating (1-2) twice yields,

o hii = dx ¥ (1) + kidy ¥ (1) (4-11)
and
o' hiint + 0" hpgihrg > —C — Chiy + Z hsudy ¥ (z5), (4-12)
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where C is some uniform constant. Note that
huii = hiii — highd 4 b3y
Inserting (4-12) and (4-13) into (4-10), we obtain

. 1
O’Iél¢ii = ng |:Z s <_C - CK] - 0]([711 ”hpqlhrsl + Z hsllde(as)>

l

efr — e*a 1 1 .
+ § : ii I([h + ii § : h2 =+ ”P<2
Oy € Ny T 0y — Ky pqi p p lOg p O L

p#q
k ,E ii, 2
PR B éf_u)z Vol E)+ Y N o'

N

From (4-9) and (4-11), we deduce
1 . Bu,;
1o p 2o 2 hindw (@) + Y Nujohi = Y du(m)— —
ogP —4 ; ; s
For any constant K > 1, write

i , ii,ll
Ap = [K(Gk)z'z -2l q"h,,,,,-hqqi], B =23 o n,
P#q i

. ) ”e — el 42 I+logP ;i ,
=o' Y ey, Di=2) o hijis Eiszfﬁf’i-
/ I£i

Note that

pq,r pp q9
- E O qlhrvl = E hpql E plhqql
)

p#q p#q
Therefore, (4-14) becomes

Bkoy(v, E)  Boj'uj
S—u (s—u)2

ol i > Z(Ai+Bi+Ci+Di_Ei)+
i

Plog P

+(=N(v, E) — Do{'k? + Xl:de(r,)sﬁ_”l

Following the same argument as that in the proof of Lemma 13, from (4-15) we obtain

¥ 2, PRowv. E) _ poi du?
> (Plo P)2 S—u (s—u)2

|ki| <8k
+(=N(v, E) — K2+Zd v(m):

Bui

—CK1.
u

—C1.

23

(4-13)

(4-14)

(4-15)

(4-16)

Here, the constant § is the same constant as the one chosen in Claim 1 of Lemma 13. Moreover, by (4-9),

:3 ii 2 O.Ié'i P' 5
(s—u)2 >_7[2<P10g13> N ]
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Choosing 8 > 0 such that o > 2, (4-16) implies

ii 2
02 ﬁkUk(U,E)_ Z ﬂ 2
PGl

+(=N(v, E) = Doj'x? +ledv:/f(n>f ——Cai— Y

|ki| <Ky

S—u

Now, first choose N > 0 such that
1 2
2 E o,él/c (=N{(v,E)—1)—Cky =0.

ki | =8k

Then choose 8 = B(N) sufficiently large such that

ii
Z (Ulél’fz( N{v,E)—1)— %21\[2”1'2’(1'2) > 0.

[Ki| <dK1
We deduce 2
ﬂc 2ﬂ ll . 2
s—u+ Z (s — )2> Z oy ki (=N (v, E) = 1).
[rei | =811 [rei | =811
If 2
C 2 ll
s—u 2 Z (IB— u)?’
[k | =6k
we get
2C,B

ok /{1( N{v,E)—1) > co(N — 1k,
s—u

which implies the desired estimate. If

C 2[30_11 2
<

s —u Z ( —u)2

|ici | =8k

we let iy denote the index of the maximum value element of the set

2 ll 2
{(ﬂ )2 lici | >5K1}-
S —
Then, we obtain the following, which implies our desired estimate:
i0io 2
’8 lolo 2

4p—= 2 2(=N{v,E)—1) > C(N — 1)0;"*8%.

(s — u)2 Z %k
5. The prescribed curvature problem

We will prove Theorem 1 and 5 in this section.

k2N2 2 2'

4-17)

(4-18)

Let’s consider the proof of Theorem 1 first. Recall that in Section 3.1, we have solved the approximate

Dirichlet problem (3-5) on B, for r < 1. We will denote the strictly convex solution of (3-5) by u"*. We
further denote the Legendre transform of (B,, u"*) by (2;, u"), where @, = Du"*(B,) is the domain

of u”. By Lemmas 19 and 20 in [Wang and Xiao 2022], we have

u<u <u in Q,.

(5-1)
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In the following, we will write §~2r = Du*(B,) for the domain of u, := u |, - It is not difficult to see
that these domains are increasing, namely,

ﬁrcﬁs for r <s.
Moreover, by the choice of u in Section 3.1, we have
ulyg, — +oo as r— L
Thus, by the comparison principle, we have

urlag, =& - Duy(§) —uy (§)lap, = [§ - Du™ () —u™(E)llos, = ulyg, - (5-2)

From this we can see that, as r — 1, u,|3q, — +oc. This in turn implies, for any compact set £ C R",
there exists a constant cx = ¢(K) < 1 such that, when r > cx, 2, D K. Therefore, for any compact set
K C R", we can apply Lemmas 14 and 16 to obtain uniform C' and C? bounds for u” in K.
More precisely, in order to obtain the local C I estimate, we introduce a new subsolution u; of (1-2),
where u satisfies
or(k1, ..., kp) =c1 + 100

and, as |x| — o0,

up — |x| +<p<i|).

|x

By the strong maximum principle, we have, when x € R”,
up(x) < u(x).
Thus, for any compact convex domain /C, let
28 = H}Cin(zt —uy).

We define a strict spacelike function ¥ = u; 4+ 3. Set K' = {x € R" | ¥ < i}. Since, as |x| — 0o, we
have u; — i — 0, we know that K’ is a compact set only depending on K. Applying Lemma 14, for any
(2,,u"), if K' C Q,, we have the gradient estimate

sup LY
x V1= |Du? 8 k' J1—|DU}?

Next, we want to show that, for any given compact set K C R", the set {| D?u"|} is uniformly bounded
in K. Without loss of generality, let’s consider any Bg C R". Let Cp = maxp, # and s =2Cp+ 1 in
Lemma 16. Set Uy = {x € R" | u(x) < s}. Then by our earlier discussion, it’s easy to see that there exists
rg > 0 such that, when r > ry, we have Q, D Uy. Applying Lemma 16, we obtain, when r > ry,

Sup kmax (Myr) < C.

Bg
Here C depends on the upper bound of 1//1 — |Du’|? on Uy, which is independent of r. Using the
classical regularity theorem and convergence theorem, we conclude that (€2, u") converges locally
smoothly to an entire, smooth convex function u satisfying (1-2). In view of (5-1) and the asymptotic
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behavior of u and u, we know that, as |x| — oo, we have u — |x| 4+ ¢(x/|x|). Moreover, by Remark 2,
we also know that u is strictly convex. Therefore, its Gauss map image is By, i.e., Du(R") = Bj.
Theorem 5 follows by replacing Lemmas 14 and 16 in the proof of Theorem 1 with Lemmas 15 and 17.

6. The radial downward translating soliton

We will now study the radially symmetric downward translating soliton. Recall that we say M, is a
downward translating soliton when its principal curvatures satisfy

n 1 k
oLk [M,]) = (k)<c m) (6-1)
where C > 1 is a constant. We want to point out that in this section and the next, C is the fixed constant
in (6-1). We also write
~ 1

C=,/1- oz
as in Theorem 7. The following theorem is a generalization of Theorem 1 in [Bayard 2023].

Theorem 18. Let C > 1 be a positive constant. Then there exists a strictly convex radial solution
u:R"* = R of (6-1) satisfying

|Du| — C as |x| = 4o00.
Moreover, u(x) has the following asymptotic expansion as |x| — oo:

~ 1 —k
u(x)=C|x|—a v nn

log |x| 4+ co + o(1) (6-2)

for some constant cg € R. In particular, the radial solution u is unique up to the addition of a constant.

For radial solutions, we will reduce (6-1) to an ODE. Let u =u(r) and y =0u/dr. Then a straightforward
calculation yields

Xi 2 y x,-xj /xixj
Diu=y— and Dju=-—\6j——|+y—5.
= i |x|(” |x|2) TP

1 yooy M
M,] = R B
[M,] T2 y2<1 vy ,

Therefore,

and (6-1) becomes

1 k—1 k l —k 1 k
AN L A LA ) e——— 6-3)
(1 —y2)k2 pk=1\n1—y? nor /1—y2
By a small modification of the proof of Proposition 2.1 in [Bayard 2023], we obtain the following.

Proposition 19. Under the hypotheses of Theorem 18, there exists a solution y of (6-3), which is defined
on [0, +00) and smooth on (0, +00), such that

y(0)=0, 0<y<C, lim yr)=C, Y©0)=C—1, and y >0 on [0,+00).
r—-+400

Moveover, as r — 0+, we have
kM, —> C-D(1,1,...,1).
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Since the proof is a small modification of the proof of Proposition 2.1 in [Bayard 2023], we skip it
here. Now, let’s study the asymptotic behavior of y.

Proposition 20. Let y be the solution of (6-3). Then y has the following asymptotic expansion as r — 00:

~ 1 n—k1 1
—(C — k — —
Y =C—J r+0<r2).

Proof. By Proposition 19, we may assume

Yy =C-=. (6-4)
r

Then we have

1 1—1/C*—y? 1-1/c
Vi—y? - - #:EAU), where A(r)=@. (6-5)
C Ji—y+1/c r V1—=y2+1/C

Differentiating (6-4) then substituting it into (6-3), we get

k yk—! ’ —k vk I
Ky (_Z_+ Z )+7’ln y :Ck(/l—yZ——>- (6-6)

nl—yz\ rk = pk+l rk C
By (6-5), (6-6) can be simplified as
k yk=1 z n—k
=L (—z’+ —) +——yk = Ake).
nl—y r n
Thus, we obtain
7 ==Br+Cw), (6-7)
where
B(r)=¢C e A%(r) and C(r)=-+——y(l—y"). (6-8)
y r k
Applying Proposition 19, we can see that
. _ k25 . _"_ki~
rl}rfoo B(r) = kC C and rl}r-il-loo C(r)= r CZC.

Here, we have used lim,_, o, (z/r) = 0, which is a direct consequence of Proposition 19. The next lemma
is a generalization of Proposition A.2 in [Bayard 2023].

Lemma 21. Assume z : (0, +00) — R is a positive solution of the equation
7' =AM + B,
where A, B : (0, 0c0) — R are continuous functions such that

lim A(r)=A9g>0 and hrf B(r) = By > 0.
r— 100

r——+00
B
lim z(r) = 2.
r—+00 AO

Proof. In order to prove this lemma, we only need to prove the following claim.

Then
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Claim 3. Assume z : (0, +00) — R is a positive solution of the equation

7 = Aoz* + By,

with Ay < 0 and By > 0 constants. Then

; S 1/k
Jm ) ={~%,) -

If this claim is true, following the same argument as Proposition A.2 in [Bayard 2023], we can prove
Lemma 21. We will prove this claim below.
Without loss of generality, let’s consider the positive solution of the equation

7=B-7ZF (6-9)
instead. We will show that
lim z(r) = B'/. (6-10)
r—00

First, since z is a positive solution of (6-9), let’s assume 0 < z(rg) = z0 < B 1/k. Then we have

17k on (ry, 00). Writing z; = B/¥, we get

z0<z(r)<B
F—B=@-)@ "+ 4+ —l—zll‘_l).
Therefore, (6-9) can be written as

_dr:|: GANN Qi2(2) ]dz, (6-11)

- - i
-2 k2 4 2

where A| = z%_k/ k and Qy_»(z) is a polynomial of degree k — 2. It’s easy to see that
Qi) = =M1 2+ 0k =3)(2)

and Qy_3(z) is a polynomial of degree k — 3. Integrating (6-11) from r¢ to r yields

_ z(r) A k—2
—r—l—ro=A11nZ(r)—Zl —/ 1 7 4z
20— 21 o N2 447
z(r)
+ / Qi3() —dz. (6-12)
2 Zk—1+zk—2zl+...+zl
Notice that, as r — 00, the left-hand side of (6-12) goes to —oo, while
z(r) A k—2
—/ ~ —dz>—A |2
20 Zk—1+zk—zzl+...+zl 20
and
2 0r-3(2)
p= dz
2 Zk—l+zk—2zl+...+zl

1/k

is bounded. Therefore, lim,_, o, z(r) = z; = B'/*. We similarly prove the case when z(r¢) = z9 > z;. U
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From Lemma 21 and (6-7), we conclude

. B 1 ,/n—k
r—}{il-looz(r)_ Cc? n

We further assume
Jn—k w(r)

1
W= :
Inserting it into (6-7), we get

w' =—-D@r)w+ F(r),

k o\ k—i i—1
D(r) = B<r)2(f)<é & k) <%>
i=1

F(r) :r(C(r) = %—";]v + 2

where

and

r

Notice that lim,_, ;oo (w/r) = 0 and D(r) has a uniform positive lower bound. In the following, we want
to find a positive upper bound for F (7). Using the expressions (6-8) for B(r) and C(r), we obtain

—k1—y? A\
F(r)=$+z+nkk yk_yl r[y"—($>]

w n—k1—y? A(r) L w—i (A(r) !
=— - “—= . 6-13
r et k yk=l r(y C ;y C (6-13)
Therefore, we only need to show r(y — A(r)/C) is bounded as r — oo. By (6-5), we have
r(y— A(r)) —r(y— 11— l/Cz—i-y)
C Cy1—y2+1/C
_r(yy/1=y2—=(1/C)y/1-1/C?)

(6-14)

1—y2+1/C
Combining (6-14) with the expression for y and (6-5), we can derive

1 1 1 2\/1 zA@)\ 1 1

Vi—y?——J1l—==(,1-=-2)(= ——1=—=

Y cV T2 ( 2 r>(0+ r ) cV T2

z( 1 1 2A(r)
=-l-—=-+A 1——= |- . -1

From (6-14), (6-15), and Lemma 21, we conclude that »(y — A(r)/C) is uniformly bounded from above.
Thus, F(r) has an uniform upper bound. Applying Proposition A.3 in [Bayard 2023], we obtain a uniform
upper bound for w. O

It’s not hard to see that Theorem 18 follows from Propositions 19 and 20.
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7. The existence results

In this section we will prove Theorem 7. First, we want to prove the following existence theorem.

Proposition 22. Suppose ¢ is a C? function defined on Sg_l :={x eR"||x|=C}, where C=/1— (1/C)2.

There exists a unique, strictly convex solution u : R* — R of (1-10) such that, as |x| — oo,

~ 1 —k ~
u(x)—>C|x|—E"/nn 10g|x|+<p<C|§—|>. (7-1)

7.1. Constructing barriers. We first construct the barrier functions of (1-10). Following the ideas of
[Spruck and Xiao 2016; Treibergs 1982], we denote the radial solution of (1-10) by zg(|x|), whose
asymptotic expansion satisfies (6-2) with ¢y = 0. Let

pi(Cy) = Do(Cy)+ (—=D)*'2MCy, i=1,2,
for any y € S"~!. Set

Z(x, y) =9 (Cy) — pi(Cy)-Cy +z5(Ix + pi(Cy)) forall x eR", yeS" "

Then
qf(x) = sup zj(x,y)
yeSn—1
is a subsolution of (1-10) and
k . k
= inf z,(x,
q> yegn 2(x,y)

is a supersolution of (1-10). Moreover, q’f x) < qé‘ (x), and, when |x| — 400, we have

~ 1 —k
k n
g (1) > Clx| = /=

log x| + (éi>, i=1,2.
glx[+¢ ]

7.2. The Dirichlet problem. First, let’s solve (1-10) for the case k = n. For any ¢ > ming» g5, we let
02 ={x eR" | g (x) <t <gj(x)}
and ; be a smooth, strictly convex domain in R”. Consider the Dirichlet problem

{ ol /Me(M,y,)) =CH+ (v, E) in ;,

7-2
Uy =t on 3Qt ( )

By a small modification of [Delanoé 1990], we know that there exists a unique solution u, of (7-2). Then,
applying the local C! and C? estimates obtained in [Bayard and Schniirer 2009], we conclude that there
exists a subsequence {u;}2, (t; — oo as i — 00) that converges to an entire, strictly convex solution u
of (1-10) for k = n. Moreover, it’s easy to see that u(x) satisfies the desired asymptotic behavior as
|x| = oo. From now on, we will denote this solution by #". We will also denote the Legendre transform
of u" by u"*.
Next, we consider the case when k < n. We denote the Legendre transform of z’(‘, by (z’é)*; that is,
azé 8215

(Z](;)*(‘L') =r-—= —zg(r), where 7 = P
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Using the asymptotic expansion of zg derived in Section 6, we know

1 —
@)@ = 53" logr — 1)+ 0(1).
Writing its principal part as

=K (logr(1) — 1),

(Zo)*(f) = a v

it is clear that (Z(';)* is unbounded in B;.
To make sure our solution is convex, we consider the dual Dirichlet problem on B; for any 7 < C:
- "
Fw*yiu; = in By,
(W Vi v) = c— 11 P T (7-3)
u* =u"™ 4 (z25)* — (z8)* on dB;.

Here, we have
&g 0%u
=VIZER vi=dimy e i=ggagy FOriuh)=

and k*[w*yjug vl = (7, ..., k) is the set of eigenvalues of the matrix (w*y;uy;¥,;). The solvability
of (7-3) has been established in Section 3. Therefore, by standard PDE theorems, in order to prove
Proposition 22, we only need to obtain local C! and C? estimates for the translating soliton equation (1-10).

1/k
- —(k* [w*yféuizml)) ,
l’l

In order to do so, we will need the following lemma.

Lemma 23. Let u™ be a solution to (7- 3) and u® be the Legendre transform of u*. Then, for any
x € Du™(B;), we have q{‘(x) u®(x) <q, k(x).

Proof. Without causing confusion we shall drop the superscript T in the proof. We only need to prove that

2, y) Sulx) <5, y)

for any x € Du™(B,) and y € $"~!. This is equivalent to proving

()", y) <u* () < @D E )

for any £ € B; and y € "~ Since we have

@&, y) = @) ED — pi(Cy) - & —(Cy) + pi(Cy) - Cy
= (Z)* (&) — @ED*ED + ¥, y) (7-4)

and

(25" (&, y) <u™ (&) < @*E, »),

we obtain, on 0 B,
(Z5)* (&, y) <u*E) < @) E, y).

By the comparison principle, we finish the proof. O
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7.3. Local C' and C? estimates. Similar to Lemma 14, we have the following local C! estimate lemma
for translating solitons.

Lemma 24. Let Q C R" be a bounded open set. Let u, u, V : Q2 — R" be strictly C-spacelike, i.e.,
|Du|, |Dii|, |D¥| < C.

Assume that u is strictly convex and u < u in Q. Also assume that, near 02, we have ¥ > u. Consider the
set with u > V. For every x in that set, we have the following gradient estimate for u:

1 1 u—w

5 < ©SUp ———.
\/C2—|—Dlzt|2 u(x) =) v Cz—|Dt/f|2

Since the proof is the same as the proof of Lemma 5.1 in [Bayard and Schniirer 2009], we skip it here.

We now construct W. Following the argument in Section 4 of [Bayard 2023], let

W(x)=—Ag+Cyv1+|x|2

It is clear that, when |x| is sufficiently large, we have W (x) > ¢2(x). On the other hand, for any compact
set L C R", we can always choose Ag large enough that W(x) < g;(x) in K. Applying Lemma 24 we
obtain that, for any I C R" and any strictly convex function q;(x) < u(x) < g»(x) satisfying (1-10),
whose domain of definition contains K, there exists a local C' bound Cx for u(x) in K that only depends
on K.

Using the idea of [Wang and Xiao 2022], we can prove the following Pogorelov-type local C? estimate
for translating solitons.

Lemma 25. Let u be the solution of (1-10) defined on 2. For any given s > mings u(x) + 1, suppose
ulgq > s. Let kmax (X) be the largest principal curvature of M, = {(x, u(x)) | x € Q} at x. Then we have

max(s — u)kmax < Ci.
M

u

Here, Cy only depends on the local C' estimate of u. More specifically, Cy depends on the lower bound
of C+ (v, E).

Following the argument in Section 5, we complete the proof of Proposition 22.
7.4. Proof of Theorem 7. In this subsection, we will prove that the hypersurface M, constructed in

Proposition 22 has bounded principal curvatures. This completes the proof of Theorem 7. For our
convenience, in the following, we will drop the superscript k, and the updated configuration zlé now

becomes zg.
Suppose u is a strictly convex solution of (1-10) and u* is the Legendre transform of u. Then u*
satisfies
: ()"
Fwyugy)) = (7-5)
ik“kl71lj C—l/ 1_|$|2

We also denote the Legendre transform of zg by z;; that is,

0 0
() =r- § —z0(r), where T = g.
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Using the asymptotic expansion of zg derived in Section 6, we know

1 /n—k 1
ko) —
(0 = 55 "= (ogr = + 0(;).
Writing its principal part as
l Jn—k
C\ n

Zp(1) = (logr(t) —1),

it is clear that Zj(7) is unbounded in B.
Lemma 26. Let u* and Zjy be defined as above. Then we have
Slingo(u*(ﬁ) —Z20(1€D) = —¢(0) forany § € 0Bz, & € B. (7-6)

Proof. We use the auxiliary functions z; (x, y), i = 1, 2, constructed in Section 7.1. It’s easy to see that

z21(x, y) <u(x) <za(x,y) forany x eR", yeS" L
By the strict convexity of z;(x, y), we have

236, y) <u*(§) <zj(6.y) forany § € B;, yeS" (7-7)
Notice that

2/ (€. 3) = 25(18) = pi(Cy) -& — 9(Cy) + pi(Cy) - Cy.
Therefore, letting C y=4§pand § — &y, we get
zi(5.C60) = 2515 ) — —9(60)-

This together with (7-7) yields (7-6). Il

Now we let

] a
3=5ia_£__j_$ja_éi

be the angular derivative. Similar to Section 10 in [Ren et al. 2020], we obtain following lemmas.

Lemma 27. Let u* be the solution of (7-5). Then |0u*| is bounded above by a constant depending
on |¢|c1, and 3*u* is bounded above by a constant depending on |¢|c2.

Proof. Noticing that 3|£|> = 0, we have that the angular derivative of the right-hand side of (7-5) is zero.
Therefore, following the proof of Lemmas 29 and 30 in [Ren et al. 2020], we have

FIw*yi@@* =Z)uy; =0 and  FUw*y3@°w* —Z5)uy] = 0.
In view of (7-6) and the maximum principle, we obtain the desired estimates. O
Lemma 28. Let u™ be the solution of (7-5). There is a positive constant b such that
V@ — |€*19%u*| < b.

Proof. We consider u* — Z;j, which has C 9 bound on B;. Since %u* = 3% (u* — Z3), the rest of the proof
is the same as that of Lemma 5.3 in [Li 1995]. O
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Lemma 29. Suppose ag <r < C for some ag € (0,C) and S"~'(r) = {S e R" | ZEI.Z = rz}. For any
pointé e S"~X(r), there is a function

uy=zo+b1&+--+b+b

such that
ay(§) = u*(€)
and
uy(€) > u*(§) forany § € S () \ (§).
Here, by, ..., b, are constants depending on § , and b is a positive constant independent of é andr.

Proof. The proof is almost the same as the proof of Lemma 5.4 in [Li 1995]. We only need to replace

u, i, and —k/1 — |x|2 by u* — 73, Uy — g, and z5 — 7, respectively, in Li’s proof. O
Similarly, we can prove the following lemma analogous to Lemma 5.5 in [Li 1995].

Lemma 30. Suppose ag <r < C for some ag € (0,C) and S"~'(r) = {5 e R" | > fiz = rz}. For any

pointé € S""X(r), there is a function

uy =2z +aig1+---+ag, —a
such that
ug(§) = u*(€)
and
up€) <u*(€) forany £ €S )\ {£).
Here, ay, ..., a, and a are constants depending on é, a > 0, and av c?— |§|2 < Cy, where Cy is a
positive constant only depending on |¢|c2.

Using Lemmas 29 and 30 we can show the following.

Lemma 31. Let u be the solution of (1-10) and u* be the Legendre transform of u. There are positive
constants dp > dy such that
0<d <u(C®—|Dul®) < do. (7-8)

Here, d; depends on |u|co(q), and Q@ = {x € R" | [Du| < ao}.

Proof. We modify the proof of Li [1995]. We first consider the lower bound. For any EcS"™ (), using
Lemma 29, we have

W€ =ugE) and  w*(€) <up®) for & € ")\ (£).
Thus, using that ﬁg is a supersolution, we get u*(§) < ﬁg (&) in B,.. Therefore, at é, we get
u(®) =& - Du* —u* > & - D}y — i}y = zo(F) — b,
where we assume X = Du*(é) and z()(7) := 0z0/0r (7) = |§|. Thus, at X, we have

(@ = [Dul®) > oM (C* = 12y *) — b(C* — E?). (7-9)
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Using the asymptotic behavior of zg, we have

o o s 1 ik NIl (5 1 Jackl [ 1\V] &
ZO(CZ—|ZO|2)=|:CF—Eknn logr—i—O(;):H:Cz—(C—@knn ;+0<r—2>):|=251‘n +o (1)

We write

Czkn k

200 = 262

Therefore, by (7-9), we obtain
u(C*—|Dul*) > 4co

for r sufficiently close to C. We further assume r > ap, since for r < ag, without loss of generality, we
can assume u > 1. Therefore,
52 82 52 2
ulC-—1&1°) =2C" —aq.

Thus, we obtain the uniform lower bound. For the upper bound, we apply a similar argument. For r
sufficiently close to C and still assuming r > ag, we have

u(@ = Dul?) < 20(F) (€ = 1z5(A)I*) +a(C — [§1*) <3¢+ CiC.
We have obtained a uniform upper bound. U

Finally, we are ready to adapt the ideas in [Li 1995; Ren et al. 2020] to estimate the principal curvatures
of M,.

Proposition 32. Let u be the solution of (1-10). Then the hypersurface M,, = {(x, u(x)) | x € R"} has
bounded principal curvatures.

Proof. We will establish a Pogorelov-type interior estimate. For any s > 0, consider
¢ =e e+ v, ENITVR,M

where P, = Z " and m, N > 0 are constants to be determined later. Without loss of generality, we
also assume u > 1 in R". It’s easy to see that ¢ achieves its local maximum at an interior point of
Us = {x € R" | u(x) < s}; we will assume this point is xo. We can choose a local normal coordinate
{t1,..., Tx} such that, at xo, we have h;; = k;8;j and k1 = Kk = - - > ky.

leferentlatmg log ¢ at xg, we get

1
b 2ok hyji Nhii<fi»E> uj Su;

Pi _ _ N = (7-10)
o P, C+ (v, E) u (s—u)?
and
¢ii ¢12 1 m—1 m—2712 [7 _Km_l 2
?_(ﬁ p ZK hJJ”+(m_1)ZK h]]l+Z > — Ky hpqi
p;ﬁq
m—1 fl, 2 —<V, E>
h i —N ll Nh
PZ(ZK ”> Z e E) T (v, E)
2 2 2
- hii  E - hi(v, E ;
+Nh2 ul +N (U ) +Nu_l + 5 <v ) —zs ul < 0 (7‘11)

(CH (v, E))? u G C CEI R
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By (1-10), we derive
ii n -
ot hisj = (k€ + v, EN (—hjju)
and

o iy = =0 “hpajhe; & (4 otk = D+ 0, D'y

+ (k€ + v, B! <— D hjjiur +h (v, E>)
l
2—0,5"1*”hmhmj+< )k(c+ (v, E)* 1( thul)—Ko(C+(v, ENSlt,  (7-12)

where Ko = Ko(n, k, C) > 0 is a constant depending on n, k, and C. Recall that, in Minkowski space,
hijii = hiijj + hizhjj — hiih3;.
Thus,
of' hjjii = o' gy + ol Wy = oithiah?y > ol higgy — k() €+ v, BN (-13)
Combining (7-13) with (7-11), we obtain

mfl
i o 3 _
0=o0 ”_ s |:§ Km jll+(m_1) E Km zhjzjl + E p hiqii|

P#q
mdk m—1 i (v, E iip2 —(v, E)
k' h —No +No/'h;;——————
(Z ”’) ¢ Z e+ EY >) “TC+ (v, E)
2 2 ii ii 2
u; hii{v, E) o hii (v, E) o
N uh2 i N i "l N l_l k — 2 KU
HRAL "(CH (v, ))2Jr u + 2+s (s —u)? (S—M)3
—Z~ h"le_lul
—Ko(C+ (v, B!+ Y (A1 + By + i Dy = )+ (§ Jk€ + (v, B =L
. m
1
—(v, E) - u?
—Nk< )C E k 2 N ll 2— N llh“—l
( +<V ZKlul + C—i—(v, E) + Oy ll(C+<v, E))z
hii (v, E) u;  oj'hii(v, E) o'u;
N il N il l 7_14
+ —u + 3 +s—(s_u)2 Srrgmpnct (7-14)
Here,
m—1
A = [K(ak)iz —Za,fp’qthpihqqi] for some constant K > 1,
m p-q
B — 2/{]’."_1 Z j]llhz ka 2h2
TP, jiie jii
J
2ijj K,mil_"lmil 2 mf’k m—1
Di=—7=) “e— o Ei= (Z hul>-
M S

By Lemmas 8 and 9 and Corollary 10 in [Li et al. 2016], we can assume the following claim holds.
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Claim 4. There exist two small positive constants 6 and n < 1. If k; < 8k, we have
ZA,-+Bi+ci+Di—(1+%)Ei>o, (7-15)
i
where m > 0 is sufficiently large.
If (7-15) doesn’t hold, we would have ki > 8ky. Since oy < (7)C*, we get

_ n
sk IK{‘ <Kiky -k S o < (k)Ck.

Since this gives an upper bound for «; at xo directly, we would be done. Therefore, we assume (7-15)
holds. Plugging (7-15) into (7-14) yields

0> —Ko(C+ (v, E)' ]K1+77 (ZK’" lhm) — ( )(C—l—(v ENvu? <N u )

(s —u)?
i 2~ E) i W i hii (v, E)
N e e TN e T
2 il ii 2
U o' hii(v, E) o
Nol'—L k P e 7-16
AL u2+s (s —u)? (s—u)3 (7-16)
From (7-10), we obtain
2K thJ‘ _ 2 K 2”_1‘2 s%u? _ o2 kilt]
=N + N + 2N
Pm (C+ (v, E))? uz  (s—u)* u(C+{v, E))
K,u2 u?
—2Ns i S +2Ns——. (7-17)
CH+ (v, EY)(s —u) u(s —u)
Inserting (7-17) into (7-16), we derive
2 _ii, 2 2 ii 2
S0, M u: O, Kil;
0> —Ko(C+ (v, EN* i1+ kLA N(Np+ Do} —t——— — 2N p—
oGl BN e t N Dok e e TN e v B
2Nsn oi' ki £2Nsy o' u; Ot i M E) v 2+ o hiilv, )
— —_— o" —_— e —
Tt EnG-w? G —u? u 1 ¢ (s—u)?
oliu? n N s (v, E)
B PO S —k<)c CENS v (= Noiig2 2= 7-18
S(s_u)3 k (C+ (v, E)" " |Vu| u+(s_u)2 +Noy « ‘et E) (7-18)
It’s clear that
[Dul
Vu|=——" < _(v,E)<C. (7-19)
1 —|Dul?

We also notice that, for any 1 <i < n, we have ak < (Z)C" (no summation). By a simple calculation,
we get, when N > 1/5?,

2 __ii 2 i, 2 ii 2
S O'k O'k Mi O'k

(s—u)4 Snu(s—u)z B s(s—u)3 -

n (7-20)
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Moreover, applying Lemma 31, we know there exist two positive constants d> > dy > 0 such that
di <uC+ (v, E) < da. (7-21)

Therefore, for N > 1/5? sufficiently large, combining (7-19)—(7-21) with (7-18) yields

i 2N% _ |Vul*o) k;
0> —Ko(CH+ (v, E))" k1 — —=—I|Vul“o'k; —2Ns 5
d, (CH+ (v, E)(s —u)

i i, S (N k-1 S
~ Neofis = Coflii s — ke (Q)e+w. En P
n _ CoOkK1
— k() CHC+ o, ENFTIN N
R)CETED C+ (v, E)
It’s easy to see that the above inequality yields, at xq,
~ 52
<K(N,C,d )
K1 ( 1) G2
Therefore, in Uy, by (7-21), we have
2
¢ <K(N,C, dpes/c—0 2
(s —u)?
Note that, for any ¢ € [0, s],
2
—s/(s— N —
o(t) =e /6 ”—(s — S 2,
We obtain, at any point x € Us,
¢ <K(N,C,dy). (7-22)

Now, for any x € R", we can choose s > 0 large enough that x € Uy . Then, by (7-22) and (7-21), we
conclude that

k1(x) < K(N,C,di, do).
Since x is arbitrary, we have finished proving Proposition 32. (|

Theorem 7 follows from Propositions 22 and 32 immediately.
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