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We study a three-dimensional, incompressible, viscous, micropolar fluid with anisotropic microstructure
on a periodic domain. Subject to a uniform microtorque, this system admits a unique nontrivial equilibrium.
We prove that when the microstructure is inertially oblate (i.e., pancake-like) this equilibrium is nonlinearly
asymptotically stable.

Our proof employs a nonlinear energy method built from the natural energy dissipation structure of the
problem. Numerous difficulties arise due to the dissipative-conservative structure of the problem. Indeed,
the dissipation fails to be coercive over the energy, which itself is weakly coupled in the sense that, while
it provides estimates for the fluid velocity and microstructure angular velocity, it only provides control of
two of the six components of the microinertia tensor. To overcome these problems, our method relies on
a delicate combination of two distinct tiers of energy-dissipation estimates, together with transport-like
advection-rotation estimates for the microinertia. When combined with a quantitative rigidity result for the
microinertia, these allow us to deduce the existence of global-in-time decaying solutions near equilibrium.
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This paper, together with the companion paper [Remond-Tiedrez and Tice 2021], provides a sharp
nonlinear stability criterion for an anisotropic micropolar fluid subject to a uniform microtorque. The
companion paper is concerned with the unstable regime; we tackle the stable regime here.

Note to the reader: The introduction of Section 1 serves as a “shortest path” to the main result recorded
in Theorem 1.2, providing the necessary physical and mathematical background to appropriately state the
main result. For a more detailed discussion of the problem and the strategy employed to prove nonlinear
stability, we direct the reader’s attention to Section 2.
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1. Introduction

1A. Brief description of the model. Following the tradition of generalized continuum mechanics dating
back to the Cosserat brothers [Cosserat and Cosserat 1909], micropolar fluids were introduced by
Eringen [1966]. The theory of micropolar fluids extends classical continuum mechanics by taking into
account the effects due to the microstructure present in the continuum. For viscous, incompressible
fluids, this results in a model coupling the Navier–Stokes equations to an evolution equation for the rigid
microstructure present at every point in the continuum. This theory has been used to describe aerosols
and colloidal suspensions, such as those appearing in biological fluids [Maurya 1985], blood flow [Bég
et al. 2008; Mekheimer and El Kot 2008; Ramkissoon 1985], lubrication [Allen and Kline 1971; Bayada
and Łukaszewicz 1996; Rajasekhar Nicodemus and Sharma 2012] and the lubrication of human joints
[Sinha et al. 1982], as well as liquid crystals [Eringen 1993; Gay-Balmaz et al. 2013; Lhuillier and Rey
2004] and ferromagnetic fluids [Nochetto et al. 2016].

We now provide a brief description of the model, introducing new terminology and concepts only if they
are necessary to formulate the main result. For a thorough discussion of the model and for its careful deriva-
tion, see [Remond-Tiedrez and Tice 2021, Section 2] and [Remond-Tiedrez 2020, Chapter 1], respectively.

The state of a three-dimensional micropolar fluid at a point in space-time is described by the following
variables: the fluid’s velocity is a vector u ∈ R3, the fluid’s pressure is a scalar p ∈ R, the microstructure’s
angular velocity is a vector ω∈R3, and the microstructure’s moment of inertia is a positive definite symmet-
ric matrix J ∈ R3×3 which is called the microinertia tensor. Here we study homogeneous micropolar fluids,
meaning that the microstructures at any two points of the fluid are identical up to a proper rotation. Equiva-
lently, this means that the microinertia tensors at any two points of the fluid are equal up to conjugation (by
that same rotation). Note that the shape of the microstructure determines the microinertia tensor, but the
converse fails since the same microinertia tensor may be achieved by microstructures of differing shapes.

We restrict our attention to problems in which the microinertia plays a significant role, and so in this
paper we only consider anisotropic micropolar fluids. This means that the microinertia is not isotropic, or
in other words that J has at least two distinct eigenvalues. To be precise, we study micropolar fluids whose
microstructure has an inertial axis of symmetry. That is to say there are physical constants λ, ν > 0 which
depend on the microstructure such that, at every point, J is a symmetric matrix with spectrum {λ, λ, ν}.
Studying microstructures with an inertial axis of symmetry may be viewed as the intermediate case
between the isotropic case where the microinertia has a repeated eigenvalue of multiplicity three and the
“fully” anisotropic case where the microinertia has three distinct eigenvalues.

The equations governing the motion of a micropolar fluid in the periodic spatial domain T3
= R3/Z3

subject to an external microtorque τe3 are

∂t u + (u · ∇)u =
(
µ +

1
2κ
)
1u + κ∇ ×ω − ∇ p on (0, T ) × T3, (1-1a)

∇ · u = 0 on (0, T ) × T3, (1-1b)

J (∂tω + (u · ∇)ω) + ω × Jω

= κ∇ × u − 2κω + (α̃ − γ̃ )∇(∇ ·ω) + γ̃ 1ω + τe3 on (0, T ) × T3, (1-1c)

∂t J + (u · ∇)J = [�, J ] on (0, T ) × T3, (1-1d)
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where [ · , · ] denotes the commutator between two matrices, α̃ = α +
4
3β and γ̃ = β + γ , where µ, κ ,

α, β, and γ are nonnegative physical viscosity constants, τ denotes the magnitude of the microtorque,
and � is the 3 × 3 antisymmetric matrix identified with ω via the identity �v = ω × v for every v ∈ R3.

We are considering the situation in which external forces are absent and the external microtorque
is constant, namely equal to τe3 for some constant τ > 0. Note that the choice of e3 as the direction
of the microtorque is made without loss of generality since the equations of motion are equivariant
under proper rotations. More precisely, if (u, p, ω, J ) is a solution of (1-1) then, for any R ∈ SO(3),
(u, p,Rω,RJRT ) is a solution of (1-1) provided that the microtorque τe3 is replaced by τRe3.

We can motivate the choice to have no external forces and a constant microtorque in two ways. On one
hand it is reminiscent of certain chiral active fluids constituted of self-spinning particles which continually
drive energy into the system [Banerjee et al. 2017], as our constant microtorque does. On the other hand
this choice of an external force-microtorque pair is motivated by the lack of analytical results on anisotropic
micropolar fluids. As a first foray into the world of anisotropic micropolar fluids, it is natural to look
for the simplest external force-microtorque pair which gives rise to nontrivial equilibria for the angular
velocity ω and the microinertia J . The simplest such external force-microtorque pair is precisely (0, τe3).

The equilibrium and its stability. Let us now turn our attention to the aforementioned equilibrium. Subject
to a constant and uniform microtorque, the unique equilibrium of the system is the following: the fluid’s
velocity is quiescent (ueq = 0), the pressure is null (peq = 0), the angular velocity is aligned with the
microtorque (ωeq = τ/(2κ)), and the inertial axis of symmetry of the microstructure is aligned with the
microtorque such that the microinertia is Jeq = diag(λ, λ, ν).

A physically motivated heuristic suggests that the stability of the equilibrium depends on the mi-
crostructure, and more precisely that the equilibrium is stable if ν > λ and unstable if λ > ν. This heuristic
explanation is based on the analysis of the energy associated with the system and with a comparison with
the ODE describing the rotation of a damped rigid body subject to an external torque. While we defer
to the companion paper [Remond-Tiedrez and Tice 2021] for a detailed discussion of this heuristic, the
core of the argument based on the analysis of the energy can be seen from the energy-dissipation relation
recorded later in this paper. In particular, the energy recorded in (1-3) below (which then appears first in
a rigorous setting in Proposition 4.9) only remains positive-definite when ν > λ, which suggests that this
may characterize the stable regime.

In the former case where ν > λ we say that the microstructure is inertially oblate, or pancake-like,
and in the latter case where λ > ν we say that the microstructure is inertially oblong, or rod-like. This
nomenclature is justified by the following fact. For rigid bodies with an axis of symmetry and a uniform
mass density, the terms “oblate”, which essentially means that the body is shorter along its axis of symmetry
than it is wide across it, and “inertially oblate” describe the same thing (and similarly for the terms “oblong”
and “inertially oblong”). Examples of inertially oblong and oblate rigid bodies are provided in Figure 1.

In the companion paper [Remond-Tiedrez and Tice 2021] we prove the instability of inertially oblong
microstructures. In this paper we prove the asymptotic stability of inertially oblate microstructures in
Theorem 1.2. In particular, combining the main results of these two papers produces a sharp nonlinear
stability criterion, recorded in Theorem 1.4.
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This rigid body is inertially oblong if h2 > 6r2. This rigid body is inertially oblate if h2 < 6r2.

Figure 1. Two rigid bodies with uniform density which possess an inertial axis of symmetry.

1B. A brief summary of techniques and difficulties. The main thrust of this paper is to prove that if the
microstructure is inertially oblate then the equilibrium is nonlinearly asymptotically stable with almost
exponential decay to equilibrium. Here “almost exponential” means that the rate of decay is algebraic
and grows unboundedly as further smallness and regularity assumptions are imposed on the initial data.
In order to provide context for our main result and to motivate the presence of the various functionals
used in it, we will now attempt a quick overview of the difficulties associated to (1-1) and our techniques
for dealing with them. A more detailed discussion is presented in Section 2.

As in many viscous fluid problems, the system (1-1) is of mixed dissipative-conservative type, with some
of the unknowns having dissipation mechanisms and others not. This manifests as the mixed parabolic-
hyperbolic structure of the PDEs. Such systems usually have a physical dissipation functional, D, that
couples to a physical energy functional, E, via the energy-dissipation relation

d
dt
E+D = 0. (1-2)

We won’t need the precise form of E and D for our problem here, so we don’t state them precisely,
but they can be found in (2.8) of [Remond-Tiedrez and Tice 2021]. Our technique for analyzing the
problem is based on higher-regularity versions of this structure, and since differentiating linearizes the
PDEs, it’s actually the linearized versions, Elin and Dlin, that are most relevant in our discussion. Indeed,
the questions of if and how the unknowns appear in the linearized versions of Elin and Dlin become
paramount.

In general energy-dissipation relations, if we have a bound Elin ⩽ CDlin, then the dissipation is said
to be coercive, and we expect to be able to prove the exponential decay of Elin via a linearized version
of (1-2) and a Gronwall argument. However, if this inequality does not hold, we say the dissipation fails
to be coercive, and the decay of solutions is no longer obvious. As we will see below, the latter holds for
our problem, system (1-1).

Without coercivity, the role of the energy becomes more complicated. On the one hand, more terms in
the energy means more a priori control, but on the other hand it means more things that the dissipation
may fail to control, further complicating a proof of decay. If all of the unknowns appear in Elin we say
that there is strong coupling, and otherwise we say that there is weak coupling. Based on the above
relation to the dissipation, it may seem that weak coupling is preferable, but this is only true from the
point of view of exploiting the dissipation for decay information.
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In the case of strong coupling we can estimate all of the system’s unknowns at the same time,
with the same derivative counts. In the case of weak coupling only some of the unknowns appear
in the energy, and the remaining quantities must be estimated in other ways. This typically entails
exploiting some sort of conservative hyperbolic structure that scales differently in terms of derivative
counts than the main energy-dissipation part. At the linear level this isn’t a problem because the weak
coupling actually leads to a decoupling of these parts of the linearized problem, and we just get different
estimates for each part. However, the essential difficulty with weak coupling comes at the nonlinear
level, where the scaling mismatch can make dealing with the high-regularity interaction terms extremely
delicate.

Let’s now focus this general discussion onto the specifics of the problem (1-1). In this case, if (v, θ, K )

denotes the linearization of (u, ω, J ) about the equilibrium, then

Elin =

∫
T3

1
2
|v|

2
+

1
2

Jθ · θ +
τ̃ 2

ν − λ

1
2
|a|

2, (1-3)

and
Dlin =

∫
T3

µ

2
|Dv|

2
+ 2κ

∣∣∣12∇ × v − θ

∣∣∣2 + α|∇ · θ |
2
+

β

2
|D0θ |

2
+ 2γ |∇ × θ |

2, (1-4)

where a = (K13, K23), and D and D0 denote twice the symmetric part and twice the traceless symmetric
part of the gradient, respectively, and are defined precisely below (2-4). From these expressions it’s clear
that coercivity fails and that we have weak coupling. Indeed, only two of the six components of the
symmetric matrix K ∈ R3×3 appear in Elin (see Section 2C below for a more detailed discussion of the
special role played by a). To estimate the entirety of K we are forced to appeal to the advection-rotation
equation (1-1d) and its linearization. This is a hyperbolic equation coupling to both u and ω, but at different
levels of regularity, which already reveals potentially problematic mismatches with energy-dissipation
estimates. On the plus side, we can readily obtain Lq -based estimates from (1-1d) for values of q other
than 2. On the down side, the estimates provided at the highest level of regularity are quite bad, as they
grow linearly in time, which makes using them globally in time a delicate proposition.

Our strategy for getting around these problems is to employ a version of the two-tier energy method
introduced in [Guo and Tice 2013a; 2013b] to handle the viscous surface wave problem, which is a
strongly coupled problem with coercivity failure. Roughly, the idea behind this scheme of a priori
estimates is that control of high-regularity terms (the high tier) can be synthesized with decay estimates of
low-regularity terms (the low tier) to simultaneously overcome coercivity and interaction difficulties and
prove the existence of global-in-time algebraically decaying solutions. The two-tier method is a strategy
and not a black box, so it must be adapted to the particulars of each problem. In our case, due to the weak
coupling, the complicated structure of the hyperbolic equation for K , and troubles in interfacing with the
local existence theory, this requires significant work.

To see how decay information can be recovered in the two-tier scheme, consider the following. The
energy-dissipation structure at low regularity will tell us that (assuming that the nonlinear interactions are
brought under control)

d
dt

Elow +
1
2
Dlow ⩽ 0, (1-5)
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where Elow and Dlow are low-regularity energy and dissipation functionals built from Elin and Dlin,
respectively. To be concrete,

Elow ∼ ∥(u, θ)∥2
H2 + ∥a∥

2
H2 + ∥∂t(u, θ)∥2

L2 + ∥∂t a∥
2
L2, (1-6)

where we have introduced the perturbative angular velocity θ = ω − ωeq. The exact form of Dlow is not
relevant here; all that matters is that Elow ≲ E1−σ

high D
σ
low for some high-regularity energy functional Ehigh

and some σ ∈ (0, 1) which behaves as σ ∼ (high − low)/(high − low + 1). Here “low” and “high” are
placeholders for regularities indices precisely measuring the regularity of the solution at each level.
Crucially, this observation may be combined with (1-5), provided that Ehigh is bounded, to deduce the
algebraic decay of Elow at a rate proportional to (high− low). Note that this is precisely almost exponential
decay since the growing rate of decay is dependent on the regularity of the solution. More concretely, for
some nonnegative integer M , we can write Ehigh and Dhigh as

Ehigh =

M∑
j=0

∥∂
j

t (u, θ, a)∥2
H2M−2 j + ∥(K , ∂t K , ∂2

t K )∥2
H2M−3 +

M∑
j=3

∥∂
j

t K∥
2
H2M−2 j+2 (1-7)

and

Dhigh =

M∑
j=0

∥∂
j

t (u, θ)∥2
H2M−2 j+1 +

3∑
j=0

∥∂
j

t a∥
2
H2M− j−1 +

M∑
j=4

∥∂
j

t a∥
2
H2M−2 j+3, (1-8)

where we have introduced the perturbative microinertia K = J − Jeq and where Dhigh is a high-regularity
dissipation functional whose integral in time will remain bounded. Remarkably, although Elow provides
no direct control of K except its components in a = (K13, K23), a special algebraic identity for symmetric
matrices with spectrum {λ, λ, ν} leads to a quantitative rigidity result that will allow us to obtain decay
information about all of K from a alone.

We have now witnessed the first key idea of the two-tier energy method: the decay of the low-level
energy is intimately tied to the boundedness of the high-level energy. In the above sketch this dependence
only goes one way, but in practice it also goes the other way since the transport estimates for K at the
highest derivative count result in an upper bound that grows linearly in time (see Section 2 for a more
thorough discussion). This warrants the introduction of the last functional we need in order to state the main
result. We define Fhigh to contain all terms for which the only control we have is growing in time, namely

Fhigh = ∥K∥
2
H2M+1 + ∥∂t K∥

2
H2M + ∥∂2

t K∥
2
H2M−1 . (1-9)

1C. Statement of the main result. We first introduce the global assumptions at play throughout this paper.

Definition 1.1 (global assumptions). We assume that the initial microinertia J0 has an inertial axis of
symmetry and is inertially oblate, i.e., for every x ∈ T3 the spectrum of J0(x) is {λ, λ, ν}, where ν > λ > 0.
We also assume that the initial velocity u0 has average zero and that the viscosity constants µ, κ , α, β,
and γ are strictly positive.

Note that the assumption that u0 has average zero is justified by the invariance of (1-1) under Galilean
transformations u(t, y) 7→ u(t, y + t ū) − ū for any constant ū ∈ R. We may now state the main result. A
more precise form of this result is found in Theorem 7.6.
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Theorem 1.2 (nonlinear asymptotic stability and decay). Suppose the global assumptions of Definition 1.1
hold, and let

Xeq = (ueq, ωeq, Jeq) =

(
0,

τ

2κ
e3, diag(λ, λ, ν)

)
and peq = 0

be the equilibrium solution of (1-1). For every integer M ⩾ 4 there exists η, C > 0 such that solutions to
system (1-1) exist globally in time for every initial condition in the η-ball defined by

∥(u0, ω0 − ωeq)∥
2
H2M + ∥J0 − Jeq∥

2
H2M+1 < η.

Moreover, the solutions satisfy the estimate

sup
t⩾0

Elow(t)(1 + t)2M−2
+ Ehigh(t) +

Fhigh(t)
(1 + t)

+

∫
∞

0
Dhigh(s) ds

⩽ C(∥(u0, ω0 − ωeq∥
2
H2M + ∥J0 − Jeq∥

2
H2M+1).

Recall that the functionals present on the left-hand side are defined in (1-6)–(1-9).

Note that in Theorem 1.2 the pressure has disappeared from consideration in the estimates. This is
because the pressure only plays an auxiliary role in the problem and may be eliminated altogether from
(1-1a) by projection onto the space of divergence-free vector fields.

At face value Theorem 1.2 only provides us with decay of u, θ , and a in terms of the norms appearing
in Elow. However, we may interpolate between Elow and Ehigh to obtain decay estimates on intermediate
norms of u, θ , and a. Algebraic identities may then be used to show that, if ∥K∥L∞ is sufficiently small,
|K | ≲ |a| pointwise, from which we may deduce the decay of K . Interpolation can then once again
allow us to obtain decay of higher-order norms, in this case obtaining decay of higher-order norms of K .
However, the endpoint estimate at the highest derivative count now involves FM , which may be growing
in time. This causes the decay rates of K to be slightly slower than the decay rates of a.

The precise decay rates are recorded in Corollary 1.3 below (which is proved at the end of Section 7).
Note that this corollary only records the decay of the unknowns and their first time derivative. The decay
rates of higher-order temporal derivatives can then be established by differentiating (1-1); however, since
they are not necessary for our purposes here, we omit them. Crucially, with these decay rates in hand we
deduce that Theorem 1.2 is indeed a proof of asymptotic stability.

Corollary 1.3 (decay rates). Under the hypotheses of Theorem 1.2, the global solution (u, θ, K ) satisfies

sup
t⩾0

(
sup

0⩽s⩽2M+1
∥K (t)∥2

H s (1 + t)2M−4−s(2M−3)/(2M+1)
+ sup

0⩽s⩽2M
∥∂t K (t)∥2

H s (1 + t)2M−4−s(2M−3)/(2M)

+ sup
2⩽s⩽2M

(∥(u, θ, a)(t)∥2
H s + ∥∂t(u, θ, a)(t)∥2

H s−2)(1 + t)2M−s
)

≲ ∥(u0, θ0, K0)∥
2
H2M + ∥K0∥

2
H2M+1 .

Sharp nonlinear stability criterion. We may combine the main result of this paper, namely Theorem 1.2,
with the decay rates of Corollary 1.3 and the main result of [Remond-Tiedrez and Tice 2021] to deduce a
sharp nonlinear stability criterion recorded in Theorem 1.4 below. In order to formulate Theorem 1.4 in a



48 ANTOINE REMOND-TIEDREZ AND IAN TICE

clean, way we define appropriate spaces, namely

H0 = H 2M(T3
; R3) × H 2M(T3

; R3) × H 2M+1(T3
; Sym(3)),

Hs = H 2M(T3
; R3) × H 2M(T3

; R3) × H 2M−4/(2M−3)(T3
; Sym(3)),

Has = H 2M−ε(T3
; R3) × H 2M−ε(T3

; R3) × H 2M−4/(2M−3)−ε(T3
; Sym(3)),

where ε > 0 may be taken to be arbitrarily small. We may now state the sharp nonlinear stability criterion.

Theorem 1.4. Let Xeq = (ueq, ωeq, Jeq) = (0, (τ/(2κ))e3, diag(λ, λ, ν)) be the equilibrium solution
of (1-1).

• If the microstructure is inertially oblong (λ > ν) then the equilibrium is nonlinearly unstable in L2.

• If the microstructure is inertially oblate (ν > λ) then the equilibrium is nonlinearly Hs-stable in H0 and
nonlinearly asymptotically Has-stable in H0.

The notions of nonlinear stability and instability above are those familiar from dynamical systems.
Nonlinear instability in L2 means that there exists a radius δ > 0 and a sequence of initial data {X0

n}
∞

n=0
which converge to Xeq in L2 such that the solutions to (1-1) starting from X0

n exit the δ-ball about Xeq in
finite time (which depends on n). Nonlinear Hs-stability in H0 means that for every ε > 0 there exists a
δ-ball about Xeq in H0 in which (1-1) is globally well-posed and such that solutions remain in the ε-ball
about Xeq in Hs for all time. Nonlinear asymptotic Has-stability in H0 means that nonlinear stability
holds and that, moreover, solutions in that δ-ball about Xeq in H0 converge to Xeq in Has as time t → ∞.

1D. Previous work. The continuum mechanics community has actively and extensively studied micropo-
lar fluids over the past fifty years. While an exhaustive literature review is beyond the scope of this paper, we
highlight the mathematics literature here. To the best of our knowledge, current mathematical results only
consider isotropic microstructure, which means that the microinertia J is a scalar multiple of the identity.
In particular, when a micropolar fluid is isotropic the precession term ω× Jω which appears in (1-1c) now
vanishes and (1-1d), which governs the dynamics of the microinertia, is trivially satisfied. Note that in
two dimensions the microinertia is a scalar, such that all two-dimensional micropolar fluids are isotropic.

The results known about isotropic micropolar fluids follow the pattern of what is known about viscous
fluids. In two dimensions global well-posedness holds [Łukaszewicz 2001], and quantitative rates of decay
are obtained in [Dong and Chen 2009]. In three dimensions, where well-posedness was first discussed
by Galdi and Rionero [1977], weak solutions were constructed globally in time by Łukaszewicz [1990],
who also proved that strong solutions are unique [Łukaszewicz 1989]. More recent work has established
global well-posedness for small data in critical Besov spaces [Chen and Miao 2012] and in the space of
pseudomeasures [Ferreira and Villamizar-Roa 2007], and a blow-up criterion was derived in [Yuan 2010].
There is also a body of work dedicated to the study of partially inviscid limits taking one or more of the
viscosity coefficients to zero. We refer to [Dong and Zhang 2010] for an illustrative example.

Various extensions of the model of incompressible micropolar fluids presented here have been consid-
ered. These extensions treated the compressible case [Liu and Zhang 2016], and coupled the system to heat
transfer [Kalita et al. 2019; Tarasińska 2006] and to magnetic fields [Ahmadi and Shahinpoor 1974; Rojas-
Medar 1997]. Again, to the best of our knowledge all of these works consider isotropic micropolar fluids.
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As mentioned above, we employ a two-tier nonlinear energy method as our scheme of a priori estimates.
This was originally used by Guo and Tice [2013a; 2013b] in the analysis of the viscous surface wave
problem, where the conservative variable is the free surface function, which is strongly coupled. This
technique was also used to deal with the strongly coupled mass density for the compressible surface
wave problem by Jang, Tice, and Wang [Jang et al. 2016]. Two-tier schemes have also proved useful
in magnetohydrodynamic (MHD) problems without magnetic viscosity, where the magnetic field is the
conservative unknown and is weakly coupled according to our above classification: see, for instance, the
works of Ren, Wu, Ziang, and Zhang [Ren et al. 2014], Abidi and Zhang [2017], Tan and Wang [2018],
and Wang [2019]. The weak coupling of our present problem is more complicated than in these MHD
results since some of the components of K , namely a = (K13, K23), are strongly coupled, which means
that K cannot be conveniently “integrated out” by solving for it in terms of the other unknowns.

2. Strategy and difficulties

In this section we describe the various obstructions to proving a stability result like Theorem 1.2 and we
discuss our strategy to overcome them. Since we study the nonlinear stability of a nontrivial equilibrium
it is natural to change variables and use perturbative unknowns. This is done in Section 2A.

In Sections 2B and 2C we then discuss the two main obstructions, namely the lack of a spectral gap
and the weak coupling. In a nutshell, the difficulties are as follows. The lack of a spectral gap leads to a
failure of coercivity. The key in overcoming that is to prove a θ -coercivity estimate. On top of that, weak
coupling means that, even with θ-coercivity, we cannot immediately deduce decay of all the unknowns
(and so this comes after the fact via an algebraic identity and interpolation).

We conclude in Sections 2D–2G with a discussion of the various moving pieces of our proof of
Theorem 1.2. The centerpiece of our proof is the scheme of a priori estimates introduced in Section 2D.
Section 2E describes the local well-posedness theory and Section 2F discusses how to “glue” the local
well-posedness theory and the a priori estimates by means of a continuation argument. Finally, Section 2G
explains how to synthesize the various pieces of the proof in order to deduce global well-posedness and
decay, and hence asymptotic stability.

2A. Perturbative formulation and overall strategy. Since we study the nonlinear stability of (1-1) about
the equilibrium (ueq, peq, ωeq, Jeq) = (0, 0, (τ/(2κ))e3, diag(λ, λ, ν)), we naturally seek to write this
system in terms of the perturbative variables (u, p, θ, K ) = (u, p, ω, J )− (ueq, peq, ωeq, Jeq). We may
then write (1-1) equivalently as

∂t u + u · ∇u =
(
µ +

1
2κ
)
1u + κ∇ × θ − ∇ p on (0, T ) × Tn , (2-1a)

∇ · u = 0 on (0, T ) × Tn , (2-1b)
(Jeq + K )(∂tθ + u · ∇θ) + (ωeq + θ) × (Jeq + K )(ωeq + θ)

= κ∇ × u − 2κθ + (α̃ − γ̃ )∇(∇ · θ) + γ̃ 1θ on (0, T ) × Tn , (2-1c)
∂t K + u · ∇K = [�eq + 2, Jeq + K ]. on (0, T ) × Tn , (2-1d)

where recall that a = (K12, K13). This is the system that will be studied in this paper, and there are two
important remarks to make about (2-1).
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The first remark is that the pressure plays a different role from the other unknowns since it is essentially
the Lagrange multiplier associated with the incompressibility constraint. We will therefore remove the
pressure from consideration by the usual trick of projecting (2-1a) onto the space of divergence-free
vector fields. This is done using the Leray projection PL , which on the three-dimensional torus takes the
simple form PL = −curl ◦ 1−1

◦ curl. We may then deduce from (2-1a) that

∂t u + PL(u · ∇u) =
(
µ +

1
2κ
)
1u + κ∇ × θ. (2-2)

This equation will often be useful, in particular when it comes to the local well-posedness theory where it
is convenient to view (2-1b)–(2-1d) and (2-2) as an ODE.

The second remark builds off of the fact that, as hinted at in Section 1B above and as discussed in
more detail in Section 2C below, a is a component of K which plays a particularly important role. It will
therefore be crucial, when performing energy estimates, to read off from (2-1d) the equation governing
the dynamics of a, namely

∂t a + u · ∇a = −(ν − λ)θ̄⊥
+ (K − K33 I2)θ̄

⊥
+

τ

2κ
a⊥

+ θ3a⊥, (2-3)

where

θ̄ = (θ1, θ2), v⊥
= (−v2, v1) for any v ∈ R2, and K =

(
K11

K21

K12

K22

)
.

To conclude this section we note that it is often useful to consider an alternative formulation of (2-1)
involving the stress tensor T and the couple-stress tensor M . Note that, just as the classical stress tensor T
encodes a fluid’s response to forces, the couple-stress tensor M encodes a micropolar fluid’s response to
torques acting on the microstructure. These tensors are given by

T = µDu + κ ten
( 1

2∇ × u − ω
)
− pI and M = α(∇ ·ω)I + βD0ω + γ ten ∇ ×ω. (2-4)

Here Dv denotes (twice) the symmetric part of the derivative of a vector field v, i.e., Dv = ∇v+∇vT , and
D0v denotes its trace-free part, i.e., D0v = Dv− (2/n)(∇ ·v)I . We may then formulate (2-1) equivalently
as 

∂t u + u · ∇u = (∇ · T )(u, p, θ) on (0, T ) × Tn , (2-5a)

∇ · u = 0 on (0, T ) × Tn , (2-5b)

(Jeq + K )(∂tθ + u · ∇θ) + (ωeq + θ) × (Jeq + K )(ωeq + θ)

= 2 vec T (u, p, θ)+ (∇ · M)(θ) on (0, T ) × Tn , (2-5c)

∂t K + u · ∇K = [�eq + 2, Jeq + K ]. on (0, T ) × Tn . (2-5d)

This formulation is particularly convenient when it comes to identifying the energy-dissipation relation
since it makes it clear which terms contribute to the energy and which contribute to the dissipation. To be
precise, we see that the dissipation comes precisely from the stress and couple-stress tensors since∫

T3
T : (2−∇u)+ M : ∇θ =

∫
T3

µ

2
|Du|

2
+2κ

∣∣∣12∇×u−θ

∣∣∣2 +α|∇ ·θ |
2
+

β

2
|D0θ |

2
+2γ |∇×ω|

2, (2-6)

where the right-hand side denotes the dissipation D(u, θ). In particular note that the dissipation does not
provide any control over the perturbative microinertia K .
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Figure 2. A pictorial summary of the argument carried out in Section 2B, which proves
the lack of a spectral gap.

2B. Lack of spectral gap. In this section we describe the first of the two main obstructions in proving
the asymptotic stability of the equilibrium, namely the provable absence of a spectral gap. To prove
that the linearization of (2-1) about the equilibrium does not have a spectral gap we may leverage the
careful spectral analysis carried out in the companion paper [Remond-Tiedrez and Tice 2021], where the
instability of inertially oblong microstructure is established.

In order to describe this spectral analysis we must first recall the block structure of the linearization.
Upon linearizing (2-1c)–(2-1d) and (2-2) and premultiplying the linearization of (2-1c) by J−1

eq , we see
that the resulting linear operator may be written in block form as B⊕ (τ/(2κ))[R, · ] ⊕ 0. Here the first
block acts on the variables (u, θ, a), the second block acts on K =

( K11
K21

K12
K22

)
, and the third block acts

on K33. Crucially, the last two blocks have trivial dynamics since (τ/(2κ))[R, · ] is a three-dimensional
antisymmetric operator which gives rise to one trivial mode and two conjugate oscillatory modes. The
linear stability of (2-1c)–(2-1d) and (2-2) is therefore dictated by the spectrum of B.

In practice we study the spectrum of the symbol B̂(k), k ∈ (2πZ)3, of B. Note that the torus is rescaled
for convenience since this particular scaling means that ∇̂(k) = ik. A careful spectral analysis (the details
of which can be found in [Remond-Tiedrez and Tice 2021]) then allows us to prove the following. For
any k ∈ (2πZ)3, the spectrum of B̂(k) is contained in the half-slab H = {z ∈ C : Re z ⩽ 0 and |Im z| ⩽ C}

for some constant C > 0. In particular we may find a radius R > C and a cutoff k∗ > 0 such that if
|k| > k∗ then there are precisely three eigenvalues of B̂(k) in H ∩ BR(0): zero (which is associated with
the incompressibility constraint) and a conjugate pair of eigenvalues z(k) and z̄(k). Crucially, this pair of
eigenvalues satisfies Re z(k) → 0 as |k| → ∞. This analysis, summarized pictorially in Figure 2, proves
that B, and hence the linearization itself, does not admit a spectral gap.

At the nonlinear level, the manifestation of the lack of a spectral gap is a failure of coercivity, meaning
that an estimate of the form E ⩽ D is out of reach. To overcome this, we prove a θ-coercivity estimate,
which takes the form E ≲ Dθ for some θ ∈ (0, 1) and leads to algebraic decay. The implementation of
this is discussed in more detail in Section 2D1 below.
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2C. Weak coupling. In this section we discuss the second major obstruction to proving the stability of
the equilibrium, namely the so-called weak coupling of the parabolic part of the problem to its hyperbolic
part.

Recall that as discussed in Section 1B, the term “weak coupling” describes the fact that only some
of the unknowns appear in the energy. The remaining unknowns are solely controlled by conservative
hyperbolic-type estimates. As seen in (1-3), here the weak coupling manifests itself at the level of the
perturbative microinertia K since only two of its components, denoted by a = (K13, K23), appear in the
energy. The reason why only a appears in the energy is due to the precession term ω × Jω from (1-1c).
More precisely, when writing the precession term in perturbative form, as is done in (2-1c), we notice the
appearance of the term ωeq × Jωeq = (τ/(2κ))2(−a2, a1).

At first glance, this means that we only expect decay of a and not of the remaining components of K .
This is how our scheme of a priori estimates is built (see Section 2D below for more details). This means
that the nonlinear estimates are particularly delicate. Indeed, since some terms appearing in the nonlinear
interactions are not assumed to decay — at any level of regularity — it follows that we must be very
careful about playing off these nondecaying terms against terms that decay sufficiently fast.

That being said, it must also be noted that, independent of our scheme of a priori estimates, a minor
miracle of linear algebra occurs. This allows us to prove a quantitative rigidity result: if ∥K∥L∞ ⩽ ν − λ,
then |K | ⩽ 2|a| pointwise. In particular, we may then deduce the L2 decay of K and then bootstrap via
interpolation to obtain the decay of norms of K at higher regularity. Note that this “minor miracle” is
recorded in Proposition 7.7.

Crucially, since the decay of K can be recovered a posteriori via algebraic identities, we do not
incorporate it into our scheme of a priori estimates. Indeed, doing so would not strengthen the final
statement of the theorem, and while it would give us another lever to pull when performing nonlinear
estimates, it would further complicate our scheme of a priori estimates since the numerology of the precise
decay rates of K and ∂t K is not particularly pleasant.

2D. A priori estimates. In this section we discuss the a priori estimates, which are carried out in Section 4.
As mentioned previously, a fundamental observation about the problem at hand is that it is of mixed
type. On one hand, the equations driving the dynamics of the velocity u and the (perturbative) angular
velocity θ are parabolic. On the other hand, the equation driving the dynamics of the (perturbative)
microinertia K is hyperbolic. Having made this fundamental observation, the two questions we seek to
answer are the following:

(1) What kind of decay does the linearized problem possess?

(2) How can we massage the nonlinear structure to push this decay through to the nonlinear problem?

We will address the decay of the linearized problem in Section 2D1 and turn our attention to the
nonlinear effects in Section 2D2. Throughout this discussion, we will underscore how the four pieces of
the a priori estimates, namely (a) closing the energy estimates at the low regularity, (b) closing the energy
estimates at the high regularity, (c) deriving advection-rotation estimates for K , and (d) obtaining the
decay of intermediate norms, are related to one another. This is also summarized pictorially in Figure 3.
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Boundedness of EM & decay of Elow
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Decay of intermediate norms
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Figure 3. Pictorial summary of how the various pieces of the a priori estimates depend
on one another. The arrows indicate the steps taken to close our scheme of a priori
estimates — see Theorem 4.34 for details. In the first pass all estimates obtained are in
terms of the smallness parameter; this is indicated by the dashed arrows. In the second
pass all estimates obtained are in terms of the initial conditions; this is indicated by the
solid arrows. Note that the seventh step of Theorem 4.34 is omitted here since it plays an
essential role in the propagation of the estimates over time but is not essential for their
closure.

Note that throughout this discussion we will use various versions of the energy and the dissipation.
Their precise forms may be found in Section 3 below. At first pass, the following heuristics may be useful
for the reader: E and D denote the energy and dissipation functionals that naturally arise when performing
the energy estimates, whereas E and D denote improved versions of these functionals.

2D1. Linear analysis. θ -coercivity and the two-tier energy structure. We begin our discussion with the
analysis of the linearized system and how it leads to almost-exponential decay. We will emphasize that
it naturally gives rise to the aforementioned two-tier energy structure where the decay of the low-level
energy is tied to the boundedness of the high-level energy.

The starting point is the energy-dissipation relation, which tells us that

d
dt

E low +Dlow = 0. (2-7)

Note that the mixed parabolic-hyperbolic structure already manifests itself here: the energy E low is a
function of (u, θ, a), whereas the dissipation Dlow is only a function of (u, θ). To derive any decay
estimate from (2-7) we need the dissipation to control the energy in some fashion, which at first glance is
out of reach due to the absence of a in the dissipation.
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Given the structure of the equations, this gap between the energy and the dissipation may not be fully
closed. In particular, note that this energy-dissipation gap is consistent with the lack of spectral gap
discussed in Section 2B. To partially close this energy-dissipation gap we improve the dissipation, i.e.,
leverage auxiliary estimates for a to see that

Dlow(u, θ) ≳ Dlow(u, θ, a).

With this improvement in hand there is hope for the dissipation to control the energy. More precisely,
what we can show is that

E low ≲ E1−θ
M Dθ

low for θ =
2M−2
2M−1

∈ (0, 1), (2-8)

where EM is a high-regularity counterpart to the low-regularity energy E low. When (2-8) holds we say
that the dissipation is θ -coercive over the energy.

Crucially, this θ-coercivity estimate is only useful if we know that the high-regularity energy EM

remains bounded. Thankfully this is immediate from the high-regularity version of the energy-dissipation
relation, which reads

d
dt

EM +DM = 0.

The nonnegativity of DM then tells us that EM(t) ⩽ EM(0).
Combining the θ -coercivity estimate at low regularity, the boundedness of the high-regularity energy,

and a nonlinear Gronwall argument allows us to deduce the decay of the low-regularity energy. Indeed,
we have that, for some C > 0,

d
dt

E low +
CE1/θ

low

EM(0)
1/θ−1 ⩽ 0, and hence E low(t) ≲

EM(0)

(1 + t)2M−2 . (2-9)

It is important to make two remarks here. First we note that as shown above the almost-exponential decay
is not a nonlinear effect. It is the best rate of decay we can expect given the structure of the linearized
problem. Indeed, similar θ-coercivity estimates appear in the viscous surface wave problem, where
algebraic decay rates of the form recorded above are known to be sharp (see [Tice and Zbarsky 2020]).

Second we recall that, as mentioned previously, the two-tier energy structure is significantly more
intricate for the nonlinear problem since in that case the decay of E low and the boundedness of EM are
interdependent on one another, whereas here in this linear setting only the decay of the low-regularity
energy is predicated on the boundedness of the high-regularity energy.

2D2. Nonlinear effects. Decay of intermediate norms. We begin our discussion of the nonlinear effects
with an description of how the decay of the low-level energy and the boundedness of the high-level energy
lead to the (slower) decay of intermediate norms. While this is not, in essence, a nonlinear feature, it is
crucial in order to wrest some of the nonlinear effects under control, as described further below in this
section. We note that this interpolation argument is carried out precisely in Section 4E.

Interpolation theory tells us that if the low-regularity energy decays as in (2-9) and the high-regularity
energy is bounded by its initial value, then

KI (t) ≲
EM(0)

(1 + t)2M−2I for 1 ⩽ I ⩽ M, (2-10)
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where KI = ∥(u, θ, a)(t)∥2
H2I + ∥(∂t u, ∂tθ, ∂t a)(t)∥2

H2I−2 is the sum of the (squared) norms for which
we expect decay. Note that since only (u, θ, a) and ∂t(u, θ, a) appear in E low, these are also the only
terms appearing in KI . In other words, (2-10) does not yield any decay information on higher temporal
derivatives, a fact which will be important later.

Controlling K : advection-rotation estimates. We continue our discussion of the nonlinear effect with an
explanation of why energy estimates are not sufficient to close the scheme of a priori estimates. Then
we discuss how the advection-rotation estimates which give us control over K give rise to a dichotomy
between “good” terms and “bad” terms. The advection-rotation estimates for K are carried out in
Section 4A and culminate in Proposition 4.8.

Energy estimates are not sufficient to close the scheme of a priori estimates for a simple reason: they
produce interactions which are out of control due to the absence of K in the dissipation. Indeed, suppose
that instead of using the equation which governs the dynamics of a in the energy estimates we used the
equation which governs the dynamics of the full perturbative microinertia K . Schematically, we could
then obtain an energy-dissipation relation of the form

d
dt

E(u, θ, K ) +D(u, θ) = I(u, θ, K ),

where I denotes the interaction terms. However, as described in Section 2D1, even after improving the
dissipation we can only wrest a under control, and not K . This is due to the fact that only a appears in the
equation governing the dynamics of θ , and this is where our auxiliary estimates for a begin. Ultimately,
as described previously, this is because K only appears in that equation through the precession term, and
we have the identity ωeq × Kωeq = (τ/(2κ))2ã⊥.

This lack of dissipative control over K is fatal when it comes to gaining control over the interaction
terms. More precisely, when taking α many derivatives we see that one of the interaction terms is∫

T3
∂α([2, K ]) : ∂α K =: I α. (2-11)

We cannot hope to control this term, since we are after an estimate that would allow us to absorb the
interaction term into the dissipation, provided the energy is small, i.e., an estimate of the form |I α

|≲E1/2D.
In light of this inability to close the scheme of a priori estimates by solely relying on energy estimates,
we turn our attention to the equation governing the dynamics of K . This is essentially a reminder that
since the problem is of mixed parabolic-hyperbolic type, we cannot build a complete scheme of a priori
estimates leveraging only the parabolic structure of the problem (i.e., the structure that gives rise to the
energy-dissipation relation) and must also take into account the hyperbolic structure embedded in the
equation governing the dynamics of K .

The equation satisfied by K is an advection-rotation equation since it involves both advective effects
due to the velocity u and rotational effects due to the (perturbative) angular velocity θ . The fundamental
observation is the following: if v is divergence-free, A is antisymmetric, and S is symmetric, then
(provided all unknowns are sufficiently regular)∫

T3
(∂t + v · ∇ − [A, · ])S : S = 0.
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This leads to the following L p estimate. If S solves (∂t + v · ∇ − [A, · ])S = F for some forcing F , then

∥S(t)∥L p ⩽ ∥S(0)∥L p +

∫ t

0
∥Sym(F)(s)∥L p ds.

This immediately grants us control over L p norms of K . To gain control over K in H k we must couple
this L p estimate with high-low estimates. In particular, provided that some low-regularity norms decay
sufficiently fast (which, as discussed in Section 2D1, is expected), we may combine such high-low
estimates with the L p estimate above to deduce that

∥K (t)∥H k ≲ ∥K (0)∥H k +

∫ t

0
∥(u, θ)(s)∥H k ds.

Crucially, there are only two ways in which we can control
∫ t

0 ∥(u, θ)∥H k : (1) through the boundedness
of
∫ t

0 DM and (2) through the decay of the intermediate norms in KI . Comparing (1) and (2), the following
trade-off comes to light: (1) gives us control of K at a higher regularity, at the cost of an upper bound
growing in time. Indeed, on one hand, it follows from (1) and the Cauchy–Schwarz inequality that, for all
k ⩽ 2M + 1, ∫ t

0
∥(u, θ)∥H k ⩽ t

(
/
∫ t

0
∥(u, θ)∥2

H k

)1/2

⩽ (tDM)
1/2

.

On the other hand, combining (2) and the decay of the intermediate norms of (2-10) tells us that, for
k ⩽ 2M − 3, ∫ t

0
∥(u, θ)∥H k ≲

∫ t

0

EM(0)

(1 + s)M−k/2 ds ≲ EM(0).

Note that this trade-off is only at play when two or fewer temporal derivatives hit K . This is because
control of time derivatives of K does not come from advection-rotation estimates. Instead, it comes from
applying derivatives to the equation satisfied by K . For the sake of exposition let us discuss this process
under the assumption that K solves the linearized equation

∂t K = [�eq, K ] + [2, Jeq].

To control ∂
j

t K we apply j − 1 temporal derivatives to the equation. The crux of the argument is this:
since ∂

j−1
t θ is controlled through the high-regularity energy EM in the space H 2M−2 j+2, we see that this

derivative count is below 2M − 3, i.e., 2M − 2 j + 2 ⩽ 2M − 3 precisely when j ⩾ 3. So indeed this
trade-off only concerns the first two temporal derivatives of K .

The practical implication of this trade-off is the following dichotomy between “good” and “bad” terms.
If we seek to control K or one of its time derivatives in H k for k ⩽ 2M − 3, then we are dealing with a
“good” term which is bounded in time. If we seek to control K , ∂t K , or ∂2

t K in H k for k > 2M −3, then
we are dealing with a “bad” term for which the only bound we have is growing in time.

Note that this distinction is by no means purely academic: nonlinear interaction terms appear that
require us to control K (and its temporal derivatives) at high regularity, and for example it is critical to be
able to control K in H 2M+1 due to interactions of the form

∫
T3(∂

α K )θ · ∂αa when |α| = 2M . Since we
seek an upper bound of the form E1/2D even though K is not in the dissipation and a is only controlled
dissipatively up to H 2M−1 (this is precisely the manifestation of the lack of coercivity), we must integrate
by parts, which requires control of K in H 2M+1.



ANISOTROPIC MICROPOLAR FLUIDS SUBJECT TO A UNIFORM MICROTORQUE: THE STABLE CASE 57

As a concluding note regarding the advection-rotation estimates, it is essential to remember that this
control of K is conditioned on the decay of intermediate norms. This is precisely what informs how the
advection-rotation estimates fit in the overall scheme of a priori estimates.

Closing the energy estimates at the low level. We continue our discussion of the nonlinear effects and
sketch how to close the energy estimates at the low level. The key observation here is that we may proceed
as we did in the linear case (discussed in Section 2D1), with two differences. Note that the closure of the
energy estimates at the low level is done in Proposition 4.20, which combines all the pieces from Section 4C.

The first difference is that the microinertia appears as a weight in the energy. This is readily addressed
by the propagation in time of the spectrum of the microinertia since then

∫
T3 Jθ · θ ≍

∫
T3 |θ |

2. The
second difference is that nonlinear interactions appear on the right-hand side of the energy-dissipation
relation of (2-7). As was the case in the linear setting of Section 2D1, we leverage the boundedness of
the high-level energy, which is used here to control these interactions. We may then deduce the decay
of Elow as in (2-9).

Crucially, this decay is once again (as was the case in the linear analysis) predicated on the boundedness
of the high-level energy EM . However, by contrast with the linear case, it is very delicate to ensure that
the high-level energy remains bounded in the nonlinear setting. This is discussed in detail below.

Closing the energy estimates at the high level. We near the end of our discussion of the a priori estimates
and provide a sketch of how to close the energy estimates at the high level, noting in particular the
difficulties that arise due to the presence of K , and describing how to overcome these challenges. This is
carried out rigorously in Section 4D, leading up to the closure of the energy estimates at the high level in
Proposition 4.29.

The fundamental principles used to close the energy estimates at the high level are the same as those
used to close the estimates at the low level: improve the dissipation and control the interactions. However,
difficulties arise due to the presence of K and the fact that, as discussed above, the only control we have
over K , ∂t K , and ∂2

t K at regularity above 2M − 3 is growing in time.
To be precise, let us write the energy-dissipation relation at the high level as

d
dt

EM +DM = IM , (2-12)

where IM denotes the interactions. Immediately, when improving the dissipation and controlling the
interactions, “bad” terms from the advection-rotation estimates for K appear. Since the upper bound
on these bad terms is growing in time, our only hope that their appearance does not break the scheme
of a priori estimates is that they may be counterbalanced by terms which decay in time. The decay of
intermediate norms therefore plays an essential role in the closure of the energy estimates at the high
level. With this careful balancing act in mind, between “bad” terms involving K and terms decaying
sufficiently fast, the estimates establishing the improvement of the dissipation DM and the control of the
interactions IM can be shown to take the form

DM ≲ DM +K2FM and |IM | ≲ E1/2
M DM +K1/2

lowF
1/2
M D1/2

M , (2-13)

where Klow contains all the terms whose decay is needed to counteract the potential growth of FM .
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A particular subtlety, which is worth pointing out, arises when identifying Klow. Indeed, it turns out that
Klow =K2 +∥∂2

t θ∥
2
L2 , where the appearance of ∂2

t θ is ultimately due to the interaction of the commutator
with J∂t . The first term, K2, is immediately known to decay from the decay of intermediate norms
discussed at the beginning of Section 2D2. The decay of ∂2

t θ is not quite so immediate since the norms
in KI only involve one temporal derivative. We are therefore required to perform an auxiliary estimate
for ∂2

t θ , which hinges on the structure of the equation governing the dynamics of θ and the propagation
in time of the spectrum of the microinertia J , to establish that ∂2

t θ decays when K2 decays.
Having established (2-13), the heuristic which guides our next step is, as discussed above, that the

decay of Klow will balance out the potential growth of FM . It turns out that establishing such a result
rigorously can only be carried out in a time-integrated fashion. We end up proving that∫ t

0
K2FM ≲ α

(
1 +

∫ t

0
DM

)
and

∫ t

0
K1/2

lowF
1/2
M D1/2

M ≲ α

∫ t

0
DM , (2-14)

where α > 0 — which depends on the initial conditions and the decay of intermediate norms — can be
made small. Crucially, the estimates above are obtained by leveraging the control of FM afforded to us by
the advection-rotation estimates for K . This shows that closing the energy estimates at the high level is a
delicate affair which relies directly on two of the other three pieces of our scheme of a priori estimates:
the decay of intermediate norms and the advection-rotation estimates for K .

To conclude it suffices to combine (2-13) and (2-14) with the energy-dissipation relation (2-12), from
which we deduce the boundedness of the high-level energy EM .

Synthesis. We conclude our discussion of the a priori estimates with a brief note on how to put all the
pieces together. Each of the four pieces of the a priori estimates, namely closing the energy estimates
at the low regularity, closing the energy estimates at the high regularity, deriving advection-rotation
estimates for K , and obtaining the decay of intermediate norms, depends on one or more of the other. A
careful assembly is therefore required to ensure that the argument does not end up being circular. This is
summarized pictorially in Figure 3 on page 53 and done carefully in Section 4F, culminating in the main
a priori estimates result recorded in Theorem 4.34.

The key insight is to kick off the scheme of a priori estimates by assuming the smallness of the solution.
From there we can take two passes at the estimates: in the first pass we use the smallness assumption to
ensure that all the pieces of our scheme of a priori estimates are in play, and in the second pass we obtain
structured estimates where the smallness parameter disappears from the estimates and all the estimates
obtained are in terms of the initial data.

2E. Local well-posedness. In this section we discuss the local well-posedness. In a nutshell, the key
question is, how much of the nonlinear structure do we keep in order to be able to obtain good estimates
on the sequence of approximate solutions? The local-posedness theory is developed in Section 5, whose
main take-away is Theorem 5.24.

Strategy. We will produce solutions locally in time via a Galerkin scheme. We will (1) solve a sequence of
approximate problems on finite-dimensional subspaces of the solution space, (2) obtain uniform estimates
on the sequence of approximate solutions, and (3) pass to the limit by compactness. Since the domain is
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the torus, it is natural to approximate by cutting off at the first n Fourier modes. More precisely, writing
Wn ⊆ L2 such that f ∈ Wn if and only if f̂ (k) = 0 for all |k| > n, we are looking to solve the approximate
problem

T̃n(K )∂t Z = L Z + PnN (Z) for Z = (u, θ, K ) ∈ Wn, (2-15)

where L is a linear operator with constant coefficients, N accounts for the nonlinearities, and T̃n(K ) is an
appropriate approximation of I3 ⊕ (Jeq + K )⊕ I3×3, namely T̃n(K ) := I3 ⊕ (Jeq + Pn ◦ K )⊕ I3×3 where
(Pn ◦ K )θ := Pn(K θ) for every θ ∈ L2, for Pn denoting the L2-orthogonal projection onto Wn .

A subtle point. Due to the presence of T̃n(K ) we will need to invert Jeq + Pn ◦ K . Whilst fairly
straightforward to do, this must nonetheless be done carefully since we are no longer merely inverting the
matrix Jeq + K pointwise, but rather we are inverting the operator Jeq + Pn ◦ K as an operator from Wn

to itself. The corresponding results are recorded in Section 5A, where we also obtain H k-to-H k bounds
on T̃n(K )−1.

Nonlinear structure. Constructing a sequence of approximate solutions solving (2-15) is easy; however,
we run into trouble when looking for estimates of the approximate solutions. The issue is that in (2-15)
we have stripped away the nonlinear structure of the problem which helps us by providing good energy
estimates.

To make this idea precise let us compare the two systems below. Both systems are cartoon versions
of (2-15), where we neglect the velocity u, dismiss the dissipative contributions, and omit the projection Pn .
Note that we write J = Jeq + K and ω = ωeq + θ . We consider

(1)

{
J∂tθ = f1,

∂t K = F2,
and (2)

{
(J (∂t + u · ∇) + ω × J )∂tθ = f1,

(∂t + u · ∇)K = [�, J ].
(2-16)

The energy associated with both systems is

1
2

∫
T3

Jθ · θ +
1
2

∫
T3

|K |
2,

however, the interaction terms differ. To be precise, the issue is this: when taking α many derivatives the
first system gives rise to an interaction of the form I α

=
∫

T3 ∂α([2, K ])∂αθ · ∂αθ . However, this only
grants us control of θ and K in H |α|, which is not sufficient to control I α . Crucially, this interaction is not
present when performing energy estimates with the second system. The moral of the story is that some
nonlinear structure is optional while some is not. In particular, it is essential to keep the full nonlinear
advection-rotation equation satisfied by K .

A final wrinkle. In the cartoon (2-16) above we brazenly dismissed any mention of the projection Pn . Of
course, since we seek to frame the approximate problem as an ODE on the finite-dimensional space where
only finitely many Fourier modes are nonzero and since that space is not closed under multiplication, the
nonlinearities of (2-16) will require the presence of projections. However, this must be done carefully.
Due to the fact that some nonlinear structure must be kept in the approximate problem (as discussed
above), it turns out that we need to approximate K by using (schematically) twice as many Fourier modes
as are used for the velocities u and θ .
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Discrepancy in the energies. It is important here to note that the energies of the local well-posedness
differ from those of the main scheme of a priori estimates. Schematically, these energies are of the form

Eloc ∼ ∥(u, θ, K )∥2
H2M and Eap ∼ ∥(u, θ, a)∥2

H2M + ∥K∥
2
H2M−3, (2-17)

respectively, where for simplicity we have omitted norms involving temporal derivatives.
In order to explain this discrepancy recall that, as discussed in Section 2D2 above, energy estimates

are not sufficient to close the a priori estimates due to the absence of K from the dissipation and the
appearance of interactions terms as in (2-11). We are thus led to employ advection-rotation estimates to
control K in the scheme of a priori estimates, which means that we control K in H 2M−3 and not H 2M

(as would be the case when employing energy estimates).
However, when it comes to the local well-posedness theory, the interaction I α of (2-11) is harmless

since it can be estimated as |I α
| ≲ E3

loc. Such an estimate would be fatal for the a priori estimates since it
cannot be absorbed into the dissipation but it is harmless locally in time since it is amenable to a nonlinear
Gronwall argument.

The consequence of this discrepancy is that some additional work is required in order to ensure that
the a priori estimates and the local well-posedness theory “glue” together nicely. This is discussed next in
Section 2F.

2F. Continuation argument. In this section we discuss the continuation argument whose purpose is
to allow us to glue together the a priori estimates and the local well-posedness theory. This gluing is
nontrivial, in the sense that it requires a new set of estimates, precisely because of the mismatch between
the energies used for the local well-posedness and the energies used for the a priori estimates (as discussed
at the end of Section 2E above). The gluing is carried out in Section 6, where the key continuation
argument it leads to is recorded in Theorem 6.13.

In order to justify the necessity of this additional set of estimates let us consider Eap and Eloc defined
as in (2-17) as cartoons of the energies used in the a priori estimates and in the local well-posedness
theory, respectively. In particular note that for the sake of exposition we have omitted any mention of
norms controlling temporal derivatives of the unknowns. Let us also consider the following cartoons
of the a priori estimates and of the local well-posedness (which are simplified to the point of technical
inaccuracy, but remain informative nonetheless)

sup
0⩽t⩽T

Eap(t) ⩽ δ =⇒ sup
0⩽t⩽T

Eap(t) +
∥K (t)∥2

H2M

1 + t
⩽ C1 Eap(0) (AP)

and sup
0⩽t⩽T

Eloc(t) ⩽ ρ(Eloc(0)), (LWP)

where ρ : (0, ∞) → (0, ∞) is a strictly increasing function vanishing asymptotically at zero (whose
appearance comes from the nonlinear Gronwall argument used in the local well-posedness theory). Note
that here ∥K∥

2
H2M is a placeholder for the “bad” terms comprising FM (whose appearance is discussed in

detail in Section 2D2). To glue the a priori estimates and the local well-posedness theory it suffices to
fulfill the following goal.
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Goal: If (AP) holds on the time interval [0, T ], find a sufficiently small timescale τ > 0 such that (AP)
continues to hold on the interval [0, T + τ ].

Difficulty: For τ small enough the local well-posedness theory guarantees that we can always continue
the solution from [0, T ] to [0, T + τ ]. The crux of the argument is therefore to ensure that the smallness
hypothesis of (AP) remains satisfied on [0, T + τ ]. However, the growth of the bad term ∥K∥

2
H2M in (AP)

renders this impossible. Indeed, combining (AP) and (LWP) tells us that

sup
T⩽t⩽T +τ

Eap(t) ⩽ sup
T⩽t⩽T +τ

C2 Eloc(t) ⩽ C2ρ(Eloc(T )) ⩽ C2ρ(C3(1 + T )Eap(0)),

and we cannot guarantee that the right-hand side be small independently of the time horizon T .

Solution: The remedy is to prove an estimate of the form

sup
T⩽t⩽T +τ

Eap(t) ⩽ ρ̃(Eap(T )) (E)

for τ > 0 sufficiently small, where ρ̃ is another strictly increasing function which vanishes asymptotically
at zero. We may then couple (E) to (AP) to deduce that

sup
0⩽t⩽T +τ

Eap(t) ⩽ ρ̃(Eap(T )) ⩽ ρ̃(C1 Eap(0)) ⩽ δ,

provided the initial condition is sufficiently small. Note that this estimate is referred to in the sequel as a
reduced energy estimate since it estimates the “reduced” unknown (u, θ, a), in contrast with the “full”
unknown (u, θ, K ). In practice, performing the estimate (E) relies on the same fundamental estimates as
those used to prove (AP), with one fundamental difference: whereas (AP) relies on the smallness of the
energy, (E) relies instead on the smallness of the timescale on which it holds.

2G. Global well-posedness and decay. In this section we discuss how to put together all the pieces of
the puzzle to deduce the main result of Theorem 7.6. This is carried out in Section 7. In a nutshell, the
local well-posedness developed in Section 5 couples to the a priori estimates of Section 4 to produce a
solution which lives in the small energy regime, at which point the continuation argument recorded in
Section 6 kicks in to tell us that the solution lives in the small energy regime globally in time.

The only subtlety in this process comes from coupling the local well-posedness theory to the a priori
estimates. Indeed, the estimates provided by the local well-posedness theory are not quite strong enough
to invoke the a priori estimates, due to insufficient control over K . To close that gap we rely on an
auxiliary estimate for K , which is recorded in Lemma 7.1.

3. Notation

For the reader’s convenience we record here the notation used in this paper.
Throughout, the unknown Z comprises all perturbative variables, i.e., Z = (u, θ, K ), while Y = (u, θ, a)

comprises all variables that are proved to decay.
The constant τ̃ is defined to be τ̃ = τ/(2κ). It is omnipresent in the paper since it is equal to the

magnitude of the angular velocity at equilibrium ωeq.
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Now we record some notation from linear algebra.

• For any vectors a and b, we denote by a ⊗ b the matrix acting via (a ⊗ b)v = (b · v)a for any vector v.

• For any v = (v1, v2, v3) ∈ R3 and any w ∈ R2,

v̄ := (v1, v2), w̃ := (w1, w2, 0), v̄⊥
:= (−v2, v1), and w̃⊥

:= (−w2, w1, 0).

In other words: v 7→ v̄ is the projection onto the e1 − e2 plane, w 7→ w̃ is its canonical right inverse, and
the superscript ⊥ denotes a π

2 (counterclockwise) rotation in the e1 − e2 plane.

• ten and vec denote the canonical identification of R3 with the space of antisymmetric 3 × 3 matrices
using the cross product, and vice versa. To be precise, (ten a)v = a × v and (vec A) × v = Av for any
vectors a, v ∈ R3 and any 3 × 3 antisymmetric matrix A.

• Sym(n) denotes the space of real symmetric n × n matrices. Moreover, for any matrix M , we denote
by Sym(M) its symmetric part, i.e., Sym(M) :=

1
2(M + MT ).

• Given two linear maps L1 : V1 → W1 and L2 : V2 → W2, the linear map L1 ⊕ L2 : V1 × V2 → W1 × W2

is defined as (L1 ⊕ L2)(v1, v2) := (L1v1, L2v2) for every v1 ∈ V1 and v2 ∈ V2.

We now record the various functionals present throughout the paper. In order to do so, we first introduce
parabolic norms.

• For any multi-index α ∈ N1+3 we define the parabolic count of derivatives |α|P to be |α|P = 2α0 +|ᾱ|,
where we have written α = (α0, ᾱ) ∈ N × N3.

• For i, j, k ∈ N satisfying 0 ⩽ i ⩽ j ⩽ 1
2 k, we define the parabolic norms

∥ f ∥
2
Pk =

∑
|α|P⩽k

∥∂α f ∥
2
L2, ∥ f ∥

2
Pk

j
=

∑
|α|P⩽k
α0⩽ j

∥∂α f ∥
2
L2, and ∥ f ∥

2
Pk

i, j
=

∑
|α|P⩽k
i⩽α0⩽ j

∥∂α f ∥
2
L2 . (3-1)

First we record some energy and energy-like functionals. For any nonnegative integer M we define

ẼM =

∑
|α|P⩽2M

1
2

∫
T3

|∂αu|
2
+

1
2

∫
T3

J∂αθ · ∂αθ +
τ̃ 2

ν − λ

1
2

∫
T3

|∂αa|
2 and EM = ∥(u, θ, a)∥2

P2M . (3-2)

In particular, when M = 1 we define

Ẽlow = Ẽ1, E low = E1, and Elow = E low + ∥∂t a∥
2
H1 + ∥∂2

t a∥
2
L2 . (3-3)

When M ⩾ 3 we define

E (K )
M = ∥K∥

2
H2M−3 + ∥∂t K∥

2
H2M−3 + ∥∂2

t K∥
2
H2M−3 +

M∑
j=3

∥∂
j

t K∥
2
H2M−2i+2, (3-4)

EM = EM + E (K )
M , and FM = ∥K∥

2
H2M+1 + ∥∂t K∥

2
H2M + ∥∂2

t K∥
2
H2M−2 . (3-5)

We also define the intermediate energy functionals

KI = ∥(u, θ, a)∥2
P2I

1
and Klow = K2 + ∥∂2

t θ∥
2
L2 . (3-6)



ANISOTROPIC MICROPOLAR FLUIDS SUBJECT TO A UNIFORM MICROTORQUE: THE STABLE CASE 63

We now record the dissipation functionals. The dissipation is given by

D(u, θ) =

∫
T3

µ

2
|Du|

2
+ 2κ

∣∣∣12∇ × u − θ

∣∣∣2 + α|∇ · θ |
2
+

β

2
|D0θ |

2
+ 2γ |∇ × θ |

2, (3-7)

and we define

DM = ∥(u, θ)∥2
P2M+1, Da

M =

3∑
j=0

∥∂
j

t a∥
2
H2M− j−1 +

M∑
j=4

∥∂
j

t a∥
2
H2M−2i+3, and DM = DM +Da

M . (3-8)

When M = 1 we also define

Dlow = D1 and Dlow = Dlow + ∥a∥
2
H1 + ∥∂t a∥

2
L2 . (3-9)

Finally, we write the interaction terms as

I I :=

∑
|α|P⩽2M

I α and I low := I1 (3-10)

for I α as in Lemma 4.10.

4. A priori estimates

In this section we develop the scheme of a priori estimates central to the stability result proven in this
paper. We begin with advection-rotation estimates for K in Section 4A and then turn our attention to
energy estimates in Sections 4B–4D. More precisely, in Section 4B we identify the energy-dissipation
structure of the problem and use it in Sections 4C and 4D to close the energy estimates at the low and high
level, respectively. We then record in Section 4E the interpolation result giving us decay of intermediate
norms provided both the low and high-level energies are controlled. We conclude this section by putting
all the pieces of the scheme of a priori estimates together in Section 4F.

4A. Advection-rotation estimates for K. In this section we record the advection-rotation estimates we
may derive for K based on the advection-rotation equation (2-1d). The culmination of this section is
Proposition 4.8, which synthesizes the estimates obtained in this section. We begin with L p estimates
for the advection-rotation operator encountered in (2-1d) which are foundational for all other advection-
rotation estimates obtained here.

Proposition 4.1 (L p estimates for advection-rotation equations). Let T > 0 be a finite time horizon, and
let 1 ⩽ p < ∞. Let v be a continuously differentiable vector field on [0, T ) × Tn , let M be a continuous
matrix field on [0, T )×Tn , and let F ∈ L∞([0, T ); L p(Tn

; Rn×n)). If S ∈ L∞([0, T ); L p(Tn
; Sym(n)))

is a distributional solution of

(∂t + u · ∇ − [M, · ])S = F on (0, T ) × Tn and S(t = 0) = S0

for some S0 ∈ L p, then it satisfies the estimate

∥S∥L∞

T L p ⩽exp
(∫ t

0

1
p
∥(∇·v)(s)∥L∞ ds

)
∥S0∥L p +

∫ t

0
exp

(∫ s

0

1
p
∥(∇·v)(r)∥L∞ dr

)
∥Sym(F)(s)∥L p ds.
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Proof. The fundamental idea behind this estimate is the following formal computation. First we compute,
in light of Lemma A.5, that

d
dt

∥S∥L p =
d
dt

(∫
Tn

|S|
p
)1/p

=
1
p

(∫
Tn

|S|
p
)1/p−1(∫

Tn
p|S|

p−2S : F −

∫
Tn

p|S|
p−2S : (u · ∇)S

)
.

Now observe that, on one hand,

−p
∫

Tn
|S|

p−2S : (u · ∇)S = −

∫
Tn

(u · ∇)|S|
p
=

∫
Tn

(∇ · u)|S|
p,

whilst on the other hand, since p′(1 − p) = p,∫
Tn

|S|
p−2S : F ⩽

∫
Tn

|S|
p−1

|Sym(F)| ⩽

(∫
Tn

|S|
p
)1/p′(∫

Tn
|Sym(F)|p

)1/p

.

So finally we deduce that

d
dt

∥S∥L p ⩽ 1
p

(∫
Tn

|S|
p
)1/p−1

∥∇ · u∥L∞

(∫
Tn

|S|
p
)

+

(∫
Tn

|S|
p
)1/p−1(∫

Tn
|S|

p
)1/p′

∥Sym(F)∥L p ,

from which the claim would follow upon performing a Gronwall argument.
To make this computation precise it suffices to use standard approximation techniques from the theory

of L p estimates for transport equations. For example, we may approximate s 7→ |s|p by nonnegative C1

functions in a monotone fashion and approximate S0 and F by continuously differentiable functions. The
computation above then holds rigorously at the level of the approximation, and we may pass to the limit
using standard tools from measure theory. □

With the L p estimates above in hand we derive L∞ bounds on both K and ∇K . These bounds are
used to control low-order terms appearing later in this section when we seek to parlay the L p estimates
above into H k estimates for K .

Lemma 4.2 (L∞ estimate for K ). Suppose that K solves (2-1d) for some given u and θ . Then it satisfies
the estimate

∥K (t)∥L∞ ≲ ∥K (0)∥L∞ +

∫ t

0
∥θ̄ (s)∥L∞ ds.

Proof. Since [�eq, Jeq] = 0 (see Lemma A.6), we write (2-1d) as ∂t K +u ·∇K = [�eq + 2, K ]+[2, Jeq].
It then follows from Proposition 4.1 that, for any 1 < p < ∞,

∥K (t)∥L p ⩽ ∥K (0)∥L p +

∫ t

0
∥[2(s), Jeq]∥L p ds.

Note that Lemma A.6 tells us that

[2, Jeq] = −(ν − λ)

(
0 θ̄⊥

(θ̄⊥)
T 0

)
,

from which we deduce that the Frobenius norm of this commutator is |[2, Jeq]| =
√

2(ν − λ)|θ̄ |. Since
∥ · ∥L p ⩽ ∥ · ∥L∞ , we may conclude that

∥K (t)∥L p ⩽ ∥K (0)∥L p +

∫ t

0

√
2(ν − λ)∥θ̄ (s)∥L∞ ds ≲ ∥K (0)∥L p +

∫ t

0
∥θ̄ (s)∥L∞ ds.

The claim holds upon taking p → ∞. □
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Lemma 4.3 (L∞ estimate for ∇K ). Suppose that K solves (2-1d) for some given u and θ . Then ∇K
satisfies the estimate

∥∇K (t)∥L∞ ≲ exp
(∫ t

0
∥∇u(r)∥L∞ dr

)(
∥∇K (0)∥L∞ +

∫ t

0
(1 + ∥K (s)∥L∞)∥∇θ(s)∥L∞ ds

)
.

Proof. Since K solves (2-1d), we see that ∂i K solves

(∂t + u · ∇ − [�eq + 2, · ])∂i K = [∂i2, Jeq + K ] − ∂i u · ∇K .

We note that the L p norm of the right-hand side can be estimated in the following way:

∥(RHS)∥L p ⩽ ∥[∂i2, J ]∥L p + ∥∂i u · ∇K∥L p ≲ ∥∇θ∥L p(1 + ∥K∥L∞) + ∥∇u∥L∞∥∇K∥L p .

Proposition 4.1 therefore tells us that

∥∇K (t)∥L p ≲ exp
(∫ t

0
∥∇u(r)∥L∞ dr

)(
∥∇K (0)∥L p +

∫ t

0
(1 + ∥K (s)∥L∞)∥∇θ(s)∥L p ds

)
,

from which the result follows upon first recalling that ∥ · ∥L p ⩽ ∥ · ∥L∞ and then taking p → ∞. □

We now move towards estimates of K and its time derivatives in H k . We begin with estimating K .

Lemma 4.4 (H k estimate for K ). Suppose that K solves (2-1d) for some given u and θ . Then, for any
k ∈ N, it satisfies the estimate

∥K (t)∥H k ≲ exp
(∫ t

0
∥∇u∥L∞ + ∥θ∥L∞

)(
∥K (0)∥H k +

∫ t

0
(1 + ∥K∥L∞ + ∥∇K∥L∞)∥(u, θ)∥H k

)
.

Proof. Since K solves (2-1d), we know, for any multi-index α with length |α| = k, that ∂α K solves

(∂t + u · ∇ − [�eq + 2, · ])∂α K = [∂α2, Jeq] + [u · ∇, ∂α
]K − [[2, · ], ∂α

]K .

Applying Lemmas A.6 and B.3 then tells us that the right-hand side may be estimated as follows:

∥(RH S)∥L2 ⩽ ∥[∂α2, Jeq]∥L2 + ∥[u · ∇, ∂α
]K∥L2 + ∥[[2, · ], ∂α

]K∥L2

≲ ∥∂α θ̄∥L2 + (∥∇u∥L∞ + ∥θ∥L∞)∥K∥H k + (∥K∥L∞ + ∥∇K∥L∞)(∥u∥H k + ∥θ∥H k ).

Summing over |α| and appealing to Proposition 4.1 then yields the claim. □

Once K is under control we can read off estimates on ∂t K from (2-1d). The resulting estimate is
recorded below.

Lemma 4.5 (H k estimates for ∂t K ). Suppose that K solves (2-1d) for some given u and θ . Then, for any
k ∈ N, we have that ∂t K satisfies the estimate

∥∂t K∥H k ≲ ∥K∥H k + (∥u∥L∞ + ∥θ∥L∞)∥K∥H k+1 + (1 + ∥K∥L∞ + ∥∇K∥L∞)(∥u∥H k + ∥θ∥H k ).

Proof. This follows immediately from using the high-low estimates of Corollary B.2 to estimate the
quadratic terms in (2-1d). □

We continue establishing estimates on K and its time derivatives by taking a time derivative of (2-1d)
and thus reading off an estimate for ∂2

t K , which is recorded below.
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Lemma 4.6 (H k estimates for ∂2
t K ). Suppose that K solves (2-1d) for some given u and θ . Then, for any

k ∈ N, we have that ∂t K satisfies the estimate

∥∂2
t K∥H k ≲ ∥∂t K∥H k + (1+∥K∥L∞ +∥∇K∥L∞ +∥∂t K∥L∞ +∥∇∂t K∥L∞)(∥(u, θ)∥H k +∥∂t(u, θ)∥H k )

+ (∥(u, θ)∥L∞ + ∥∂t(u, θ)∥L∞)(∥K∥H k+1 + ∥∂t K∥H k+1).

Proof. As in Lemma 4.5, this follows from the high-low estimates of Corollary B.2 upon noticing that
∂2

t K solves

∂2
t K = [�eq, ∂t K ] + [∂t2, Jeq] + [∂t2, K ] + [2, ∂t K ] − ∂t u · ∇K − u · ∇∂t K . □

We conclude our sequence of estimates on K and its temporal derivatives with an estimate on K when
an arbitrary number of temporal derivatives are applied.

Lemma 4.7 (H k estimates for ∂
j

t K ). Suppose that K solves (2-1d) for some given u and θ . Then, for
any k ∈ N with k > 1

2 n and any j ⩾ 1,

∥∂
j

t K∥H k ≲ ∥∂
j−1

t K∥H k + ∥∂
j−1

t θ∥H k +

j−1∑
l=0

(∥∂ l
t u∥

2
H k + ∥∂ l

t θ∥
2
H k + ∥∂ l

t K∥
2
H k+1).

Proof. The proof is immediate upon noting that taking j − 1 time derivatives of (2-1d) results in

∂
j

t K = [�eq, ∂
j−1

t K ] + [∂
j−1

t 2, Jeq] +

j−1∑
l=0

([∂
( j−1)−l
t 2, ∂ l

t K ] − (∂
( j−1)−l
t u · ∇)∂ l

t K )

and recalling that H k is a Banach algebra precisely when k > 1
2 n. □

Having obtained estimates for K and its time derivatives above, we may now synthesize the results
of this section in Proposition 4.8. Note that, as discussed in Section 2D, this proposition is one of the
four building blocks of the scheme of a priori estimates. Recall that the functionals EM , E (K )

M , FM , KI ,
and DM are defined in (3-2), (3-4), (3-5), (3-6), and (3-8), respectively.

Proposition 4.8 (advection-rotation estimates for K ). Let M ⩾ 3 be an integer and suppose that, for
some time horizon T > 0 and some universal constant C > 0,

sup
1⩽I⩽M

sup
0⩽t⩽T

KI (t)(1 + t)2M−2I
+ EM(t) +

∫ t

0
DM(s) ds =: C0 ⩽ C < ∞. (4-1)

Then, for every 0 ⩽ t ⩽ T ,

E (K )
M (t)1/2 ≲ P f and F1/2

M (t) ≲ F1/2
M (0) + (1 + Pe)

∫ t

0
D1/2

M (s) ds + (1 + P f )K
1/2
M (t),

where the constants appearing in these two estimates depend on C , and where

Pe := P(C1/2
0 , E (K )

M (0)1/2) and P f := P(C1/2
0 , E (K )

M (0)1/2,FM(0)1/2)

for P — which may differ in each instance — a polynomial with nonnegative coefficients which vanishes
at zero.



ANISOTROPIC MICROPOLAR FLUIDS SUBJECT TO A UNIFORM MICROTORQUE: THE STABLE CASE 67

Proof. The strategy of the proof is as follows. The target estimates on E (K )
M and FM follow from putting

together the advection-rotation estimates of Section 4A and appropriately leveraging the decay afforded
to us by (4-1). The key idea is that the potential growth of terms controlled by FM may be offset by the
decay of terms appearing in KI .

We begin by recording, in Step 1, elementary estimates which are consequences of (4-1) and can be
used to control some of the time integrals appearing in the advection-rotation estimates of Section 4A. We
then obtain L∞ bounds on K and ∇K in Step 2 and deduce estimates on K , ∂t K , ∂2

t K , and higher-order
temporal derivatives in Steps 3–6. We conclude in Step 7 by recording how to perform the synthesis of
Steps 1–6 and read off the desired estimates of EM and FM .

Before we begin the proof in earnest, we fix some notation. For x1, . . . , xn ⩾ 0, we denote by
P(x1, . . . , xn) a polynomial of (x1, . . . , xn) which may change from line to line and has the following
properties: it vanishes at zero and it has nonnegative coefficients. In particular, we write

Pe := P(C1/2
0 , E (K )

M (0)1/2) and P f := P(C1/2
0 , E (K )

M (0)1/2,FM(0)1/2).

Step 1: Preliminary estimates. We begin by recording some elementary estimates which are consequences
of (4-1), such as estimates on time integrals of the functionals KI . First, note that, for any 1 ⩽ I ⩽ M −2,∫ t

0
∥(u, θ)(s)∥H2I ds ≲

∫ t

0

C1/2
0

(1 + s)M−I ds ≲ C1/2
0 .

By interpolation, we note that similar estimates also hold for H k norms of u and θ when k is odd. Indeed,
observe first that, for any odd k satisfying 3⩽ k ⩽ 2M −1, if we write k = 2I +1 for some 1⩽ I ⩽ M −1
then we have the following bounds, pointwise-in-time:

∥(u, θ)(t)∥H k ≲ ∥(u, θ)(t)∥1/2
H k−1∥(u, θ)(t)∥1/2

H k+1 ≲
C1/4

0

(1 + t)(M−I )/2

C1/4
0

(1 + t)(M−I−1)/2 =
C1/2

0

(1 + t)M−k/2 .

Therefore, if k ⩽ 2M − 3, we may deduce the time-integrated bound∫ t

0
∥(u, θ)(s)∥H k ds ≲ C1/2

0 . (4-2)

Since the functionals KI which appear in (4-1) also involve temporal derivatives, we may proceed in the
same way to deduce that, for any 2 ⩽ k ⩽ 2M − 5,∫ t

0
∥∂t(u, θ)(s)∥H k ≲ C1/2

0 . (4-3)

The final preliminary estimate, before we being estimating K , has to do with exponential factors that
arise in Lemmas 4.2 and 4.3. In light of (4-1) and (4-2) we see that, for some constants C > 0 which may
change from line to line,

exp
(∫ t

0
∥(∇u, θ)(s)∥L∞ ds

)
⩽ exp

(
C
∫ t

0
∥(u, θ)∥H3

)
⩽ exp(C2C1/2

0 ) ≲ 1, (4-4)

where recall that, as in the statement of the proposition, the constants implied by the notation “≲” may
depend on C .
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Step 2: L∞ estimates on K and ∇K . We are now ready to record the first estimates on K , which are L∞

estimates on K and ∇K coming from Lemmas 4.2 and 4.3. We deduce from Lemma 4.2 the fact that
M ⩾ 3 and from (4-1) that

∥K∥L∞ ≲ ∥K (0)∥H2 +

∫ t

0
∥θ∥H2 ≲ E (K )

M (0)1/2
+ C1/2

0 ≲ Pe. (4-5)

Similarly, we deduce from Lemma 4.3 the fact that M ⩾ 3 and from (4-2), (4-4), and (4-5) that

∥∇K∥L∞ ≲ ∥K (0)∥H3 + (1 + Pe)

∫ t

0
∥θ∥H3 ≲ E (K )

M (0)1/2
+ (1 + Pe)C

1/2
0 ≲ Pe. (4-6)

Step 3: Estimating K . We are now ready to use Lemma 4.4 to estimate K . Combining Lemma 4.4 with
(4-4)–(4-6) tells us that

∥K (t)∥H2M−3 ≲ ∥K (0)∥H2M−3 + (1 + Pe)

∫ t

0
∥(u, θ)∥H2M−3 .

Using (4-2) allows us to conclude that

∥K∥H2M−3 ≲ E (K )
M (0)1/2

+ (1 + Pe)C
1/2
0 ≲ Pe. (4-7)

Combining Lemma 4.4 with (4-4)–(4-6) also tells us that

∥K∥H2M+1 ≲ ∥K (0)∥H2M+1 + (1 + Pe)

∫ t

0
∥(u, θ)∥H2M+1 ≲ FM(0)1/2

+ (1 + Pe)

∫ t

0
D1/2

M . (4-8)

Step 4: Estimating ∂t K . We now estimate ∂t K using Lemma 4.5. Combining Lemma 4.5 with (4-1) and
(4-5)–(4-7) tells us that

∥∂t K∥H2M−3 ≲ ∥K∥H2M−3 + ∥(u, θ)∥L∞∥K∥H2M−2 + (1 + Pe)∥(u, θ)∥H2M−3

≲ Pe + ∥(u, θ)∥L∞∥K∥H2M−2 . (4-9)

The trick now lies in controlling the term ∥(u, θ)∥L∞∥K∥H2M−3 by playing off the decay of ∥(u, θ)∥L∞

against the (potential) growth of ∥K∥H2M−2 . Using (4-1) and (4-8) we see that

∥(u, θ)∥L∞∥K∥H2M−2 ≲
C1/2

0

(1 + t)M−1

(
FM(0)1/2

+ (1 + Pe)

∫ t

0
D1/2

M

)
.

Note that by applying Cauchy–Schwarz to
∫
DM , we see that, by virtue of (4-1),∫ t

0
D1/2

M = t /
∫ t

0
D1/2

M ⩽ t
(

/
∫ t

0
DM

)1/2

= t1/2
(∫ t

0
DM

)1/2

⩽ C1/2
0 t1/2. (4-10)

Therefore, since M ⩾ 2,

∥(u, θ)∥L∞∥K∥H2M−2 ≲ C1/2
0 (FM(0)1/2

+ (1 + Pe)C
1/2
0 )

1 + t1/2

(1 + t)M−1 ≲ P f
(1 + t)1/2

(1 + t)M−1 ≲ P f . (4-11)

So finally, putting (4-9) and (4-11) together, we see that

∥∂t K∥H2M−3 ≲ P f . (4-12)
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We now seek to control ∂t K in H 2M , i.e., through FM . This is slightly easier than controlling K in
H 2M−3 as is done above since now we do not have to deal with “decay-growth” interactions. Combining
Lemma 4.5 with (4-1), (4-5), (4-6), and (4-8) shows that

∥∂t K∥H2M ≲ ∥K∥H2M + ∥(u, θ)∥L∞∥K∥H2M+1 + (1 + Pe)∥(u, θ)∥H2M

≲ (1 + C1/2
0 )

(
FM(0)1/2

+ (1 + Pe)

∫ t

0
D1/2

M

)
+ (1 + Pe)C

1/2
0

≲ F1/2
M (0) + (1 + Pe)

∫ t

0
D1/2

M + (1 + Pe)K
1/2
M (t). (4-13)

Step 5: Estimating ∂2
t K . We now use Lemma 4.6 to control ∂2

t K . Lemma 4.6 tells us that

∥∂2
t K∥H2M−3 ≲ ∥∂t K∥H2M−3 + (∥(u, θ)∥L∞ + ∥∂t(u, θ)∥L∞)(∥K∥H2M−2 + ∥∂t K∥H2M−2)

+ (1 + ∥(K , ∇K )∥L∞ + ∥∂t(K , ∇K )∥L∞)(∥(u, θ)∥H2M−3 + ∥∂t(u, θ)∥H2M−3). (4-14)

In particular, (4-12) allows us to control ∂t K and ∂t∇K in L∞ since M ⩾ 3, and hence

∥∂t(K , ∇K )∥L∞ ≲ ∥∂t K∥H3 ≲ ∥∂t K∥H2M−3 ≲ P f . (4-15)

As in the estimate of ∂t K in H 2M−3, the subtlety now lies in estimating the decay-growth interaction. In
light of (4-1), (4-8), (4-10), (4-13), and the fact that M ⩾ 3,

(∥(u, θ)∥L∞ + ∥∂t(u, θ)∥L∞)(∥K∥H2M−2 + ∥∂t K∥H2M−2)

≲
C1/2

0

(1 + t)M−2

(
P f + (1 + Pe)

∫ t

0
D1/2

M

)
≲ C1/2

0 (1 + P f )C
1/2
0

1 + t1/2

(1 + t)M−2

≲ P f
(1 + t)1/2

(1 + t)M−2 ≲ P f . (4-16)

So finally, combining (4-1), (4-5), (4-6), (4-12), (4-15), and (4-16) tells us that

∥∂2
t K∥H2M−3 ≲ P f . (4-17)

We now seek to control ∂2
t K in H 2M−2. We may put together Lemma 4.6, (4-1), (4-5), (4-6), (4-8),

(4-13), and (4-15) to see that

∥∂2
t K∥H2M−2 ≲ ∥∂t K∥H2M−2 + (∥(u, θ)∥L∞ + ∥∂t(u, θ)∥L∞)(∥K∥H2M−1 + ∥∂t K∥H2M−1)

+ (1 + ∥(K , ∇K )∥L∞ + ∥∂t(K , ∇K )∥L∞)(∥(u, θ)∥H2M−2 + ∥∂t(u, θ)∥H2M−2)

≲ (1 + C1/2
0 )(∥K∥H2M−1 + ∥∂t K∥H2M−1) + (1 + P f )K

1/2
M

≲ F1/2
M (0) + (1 + Pe)

∫ t

0
D1/2

M + (1 + P f )K
1/2
M . (4-18)

Step 6: Estimating ∂
j

t K for j ⩾ 3. We conclude this proof by obtaining control over ∂
j

t K when j ⩾ 3.
We proceed by induction, relying on Lemma 4.7 for both the base case and the induction step, and we
will show that

∥∂
j

t K∥H2M−2 j+2 ≲ P f for every 3 ⩽ j ⩽ M. (4-19)
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Note that the hypotheses of Lemma 4.7 are always satisfied here since 2M −2 j +2 ⩾ 2 > 3
2 when j ⩽ M .

We begin with the base case. By Lemma 4.7, (4-1), (4-7), (4-12), and (4-17) we obtain that

∥∂3
t K∥H2M−4 ≲ ∥∂2

t K∥H2M−4 + ∥∂2
t θ∥H2M−4 +

2∑
l=0

(∥∂ l
t (u, θ)∥2

H2M−4 + ∥∂ l
t (u, θ)∥2

H2M−3)

≲ P f + C1/2
0 + (C0 + P f ) ≲ P f .

We may now proceed with the induction step. Suppose that there is some 3 ⩽ j < M such that

∥∂ l
t K∥H2M−2l+2 ≲ P f for every 3 ⩽ l ⩽ j. (4-20)

Then, by Lemma 4.7, (4-1), (4-7), (4-12), (4-17), and (4-20) we see that

∥∂
j+1

t K∥H2M−2 j ≲ ∥∂
j

t K∥H2M−2 j + ∥∂
j

t θ∥H2M−2 j +

j∑
l=0

(∥∂ l
t (u, θ)∥2

H2M−2 j + ∥∂ l
t K∥

2
H2M−2 j+1)

≲ P f + C1/2
0 + ∥(u, θ)∥2

P2M + P2
f ≲ P f .

This proves that the induction step holds, from which (4-19) follows.

Step 7: Synthesis. We combine (4-7), (4-12), (4-17), and (4-19) to deduce the bound on E (K )
M , and we

combine (4-8), (4-13), and (4-18) to deduce the bound on FM . □

4B. Energy-dissipation structure. In this section we identify the energy-dissipation structure of the
problem and record some related auxiliary results, such as the precise form of the interactions, a comparison
result for the various versions of the energy, and a coercivity estimate for the dissipation. Since the
dissipation D will appear frequently throughout this section we recall that it is defined in (3-7). We begin
with the energy-dissipation relation.

Proposition 4.9 (generic energy-dissipation relation). Let the stress tensors T and M be as defined
in (2-4) and suppose that (v, q, θ, b) solves

(∂t + u · ∇)v = (∇ · T )(v, q, θ)+ f,
∇ · v = 0,

J (∂t + u · ∇)θ + (ω × J )θ + τ̃ 2b̃⊥
+ θ × Jωeq = 2 vec T (v, q, θ)+ (∇ · M)(θ) + g,

(∂t + u · ∇)b = −(ν − λ)θ̄⊥
+ ω3b⊥

+ h,

(4-21)

where (u, ω, J ) are given and satisfy {
∇ · u = 0, (4-22a)

(∂t + u · ∇)J = [�, J ], (4-22b)

and where f , g, and h are given. Then the following energy-dissipation relation holds:

d
dt

(∫
T3

1
2
|v|

2
+

1
2

Jθ · θ +
τ̃ 2

ν − λ

1
2
|b|

2
)

+ D(v, θ) =

∫
T3

f · v + g · θ +
τ̃ 2

ν − λ
h · b. (4-23)

Proof. We multiply by the unknowns and integrate by parts: since u and v are divergence-free,

d
dt

∫
T3

1
2
|v|

2
=

∫
T3

(∂t + u · ∇)v · v =

∫
T3

(∇ · T ) · v +

∫
T3

f · v = −

∫
T3

T : ∇v +

∫
T3

f · v. (4-24)
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Similarly, using the incompressibility of u, (4-22b), and Lemma A.4, we see that

1
2(∂t + u · ∇)Jθ · θ =

1
2 [�, J ]θ · θ = (ω × J )θ · θ,

and from the fact that θ × Jωeq · θ = 0 we obtain

d
dt

∫
T3

1
2 Jθ ·θ =

∫
T3

1
2(∂t +u ·∇)Jθ ·θ+

∫
T3

J (∂t +u ·∇)θ ·θ =

∫
T3

T :�−M :∇ω+g ·θ+τ̃ 2b·θ̄⊥. (4-25)

Finally, we compute

d
dt

∫
T3

1
2 |b|

2
=

∫
T3

(∂t + u · ∇)b · b = −

∫
T3

(ν − λ)θ̄⊥
· b +

∫
T3

h · b. (4-26)

To conclude it suffices to add (4-24), (4-25), and τ̃ 2/(ν − λ) times (4-26) and observe that∫
T3

T (v, q, θ) : (2 − ∇v) + M(θ) : (∇θ) = D(v, θ).

This equation follows from the identities (vec M) · v =
1
2 M : ten v and Skew(∇v) =

1
2 ten ∇ × v and

the fact that Rn×n may be orthogonally decomposed with respect to the Frobenius inner product as
Rn×n ∼= RI ⊕ Dev(n) ⊕ Skew(n), where Dev(n) denotes the set of trace-free symmetric n × n matrices
and Skew(n) denotes the set of antisymmetric n × n matrices.

To conclude we add (4-24), (4-25), and τ̃ 2/(ν − λ) times (4-26) to obtain (4-23). □

Having established the precise form of the energy-dissipation relation we now record the specific form of
the interactions. Lemma 4.10 is a necessary precursor to the interactions estimates of Sections 4C and 4D.

Lemma 4.10 (recording the form of the interactions). If (u, p, θ, K ) solves (2-1) then, for any multi-index
α ∈ N1+3,

d
dt

(∫
T3

1
2
|∂αu|

2
+

1
2

J∂αθ · ∂αθ +
τ̃ 2

ν − λ

1
2
|∂αa|

2
)

+ D(∂αu, ∂αθ) = I α, (4-27)

where

I α
=

∫
T3

[u · ∇, ∂α
]u · ∂αu +

∫
T3

[J∂t , ∂
α
]θ · ∂αθ +

∫
T3

[J (u · ∇), ∂α
]θ · ∂αθ

+

∫
T3

[ω × J, ∂α
]θ · ∂αθ −

∫
T3

[Jωeq×, ∂α
]θ · ∂αθ +

∫
T3

[u · ∇, ∂α
]a · ∂αa

+

∫
T3

[ω3 R, ∂α
]a · ∂αa +

∫
T3

∂α((K − K33 I2)θ̄
⊥) · ∂αa =: I α

1 + · · · + I α
8 .

Proof. The first order of business is to write (2-1) in the form of Proposition 4.9. In order to do this we
note that (2-1) can be written using the stress tensor T and the couple stress tensor M as (2-5). In light
of (2-3) we therefore see that (u, p, θ, a) solves

(∂t + u · ∇)u = (∇ · T )(u, p, θ),

∇ · u = 0,

J (∂t + u · ∇)θ + (ω × J )θ + τ̃ 2b̃⊥
+ θ × Jωeq = 2 vec T (u, p, θ)+ (∇ · M)(θ),

(∂t + u · ∇)a = −(ν − λ)θ̄⊥
+ ω3a⊥

+ (K − K33 I2)θ̄
⊥,

(4-28)
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subject to (∂t + u · ∇)J = [�, J ], where J = Jeq + K and ω = ωeq + θ . Note in particular that the full
precession ω× Jω is present in the third equation of (4-28) since ωeq× Jeqωeq = 0 and ωeq×Kωeq = τ̃ 2ã⊥

such that indeed
ω × Jθ + τ̃ 2b̃⊥

+ θ × Jωeq = ω × Jω.

We may now apply derivatives to (4-28) and use Proposition 4.9. This tells us

d
dt

(∫
T3

1
2
|∂αu|

2
+

1
2

J∂αθ · ∂αθ +
τ̃ 2

ν − λ

1
2
|∂αa|

2
)

+ D(∂αu, ∂αθ)

=

∫
T3

f α
· ∂αu + gα

· ∂αθ + hα
· ∂αa (4-29)

for

f α
= [u · ∇, ∂α

]u, gα
= [J∂t , ∂

α
]θ + [J (u · ∇), ∂α

]θ + [ω × J, ∂α
]θ − [Jωeq×, ∂α

]θ,

and
hα

= [u · ∇, ∂α
]a + [θ3 R, ∂α

]a + ∂α((K − K33 I2)θ̄
⊥),

where R = e2 ⊗ e1 − e1 ⊗ e2 ∈ R2×2 is the (counterclockwise) π
2 rotation in R2, such that (4-29) is

precisely (4-27), as desired. □

We now record two auxiliary results related to the energy-dissipation structure of the problem. First
we record a precise comparison of various versions of the energy, and then we record the coercivity of
the dissipation over H 1. Recall that EM and ẼM are defined in (3-2).

Lemma 4.11 (comparison of the different versions of the energy). There exist constants cE , CE > 0 such
that, for every time horizon T > 0, if

sup
0⩽t<T

∥(u, θ)(t)∥H3 + ∥J (t)∥H3 + ∥∂t(u, θ)(t)∥H2 + ∥∂t J (t)∥H2 < ∞ (4-30)

then, for any nonnegative integer M , we have that cEEM ⩽ ẼM ⩽ CEEM on [0, T ).

Proof. It is crucial here to remember the global assumption according to which the spectrum of J0(x)

is {λ, λ, ν}, where ν > λ > 0, for every x ∈ T3. The key observation is then that we may combine the
assumption (4-30) and Proposition A.3 to deduce that, for every (t, x) ∈ [0, T ) × T3, the spectrum of
J (t, x) is {λ, λ, ν}. Therefore,

λ

∫
T3

|θ |
2 ⩽

∫
T3

Jθ · θ ⩽ ν

∫
T3

|θ |
2,

and the claim follows upon picking cE =
1
2 min(1, λ, τ̃ 2/(ν − λ)) and CE =

1
2 max(1, ν, τ̃ 2/(ν − λ)). □

We now record the coercivity of the dissipation over H 1 in Lemma 4.12 below. Note that this lemma
is copied from Lemma 4.9 of the companion paper [Remond-Tiedrez and Tice 2021], and so we omit the
proof.

Lemma 4.12 (coercivity of the dissipation). There exists a universal constant CD > 0 such that, for every
(u, θ) ∈ H 1 where u has average zero, D(u, θ) ⩾ CD∥(u, θ)∥H1 .
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4C. Closing the estimates at the low level. We now turn our attention to the second of the four building
blocks of the scheme of a priori estimates: closing the energy estimates at the low level. This is carried out
in this section and culminates in Proposition 4.20. In the remainder of this section we proceed as follows:
first we derive auxiliary estimates of a and use them to improve the low-level energy and dissipation, then
we estimate the low-level interactions, and finally we record the θ -coercivity central to the algebraic decay
of the energy at the low level. We recall that the energy, dissipation, and interaction functionals at the low
level, which will appear throughout this section, are defined in (3-3), (3-9), and (3-10), respectively. The
various versions of the high-level energy are defined in (3-2) and (3-5).

We begin with auxiliary estimates for a intended to improve the low-level energy and dissipation.
The strategy is simple: we use the appearance of a in the conservation of angular momentum (2-1c) to
control a via the dissipation, then use (2-3) for ∂t a to bootstrap the control of a to new or better control
of ∂t a in the dissipation and the energy, respectively, and finally use the time-differentiated equation
for ∂t a in order to control ∂2

t a energetically if the additional assumption (2) of Proposition 4.15 holds.

Lemma 4.13 (auxiliary estimate for a). Suppose that (2-1c) holds. For any k ∈ N and any s > 3
2 such

that s ⩾ k, we have the estimate

∥a∥H k ≲ (1 + ∥K∥H s + ∥(u, θ)∥H s + ∥K∥H s ∥(u, θ)∥H s )(∥θ∥H k+2 + ∥∂tθ∥H k + ∥u∥H k+1).

Proof. This estimate follows from isolating a in (2-1c) and using Lemma B.4 to estimate the nonlinearities.
To isolate a in (2-1c) we use the facts that ωeq × Jeqωeq = 0 and ωeq × Kωeq = τ̃ 2ã⊥ to rewrite the
precession term as

(ωeq + θ) × (Jeq + K )(ωeq + θ) = (ωeq + θ) × (Jeq + K )θ + θ × (Jeq + K )ωeq + τ̃ 2ã⊥.

We may then write (2-1c) as

τ̃ 2ã⊥
= −(Jeq + K )(∂tθ + u · ∇θ) − (ωeq + θ) × (Jeq + K )θ − θ × (Jeq + K )ωeq

+ κ∇ × u − 2κθ + (α̃ − γ̃ )∇(∇ · θ) + γ̃ 1θ. □

We continue obtaining auxiliary estimates for a by obtaining an estimate for its first two time derivatives.

Lemma 4.14 (auxiliary estimate for ∂t a and ∂2
t a). Suppose that (2-3) holds. For any k ∈ N and any s > 3

2
such that s ⩾ k, we have the estimates

∥∂t a∥H k ≲ (1 + ∥(u, θ)∥H s )∥a∥H k+1 + (1 + ∥K∥H s )∥θ∥H s

and

∥∂2
t a∥H k ≲ ∥∂t(u, θ)∥H s ∥a∥H k+1 +(1 + ∥(u, θ)∥H s )∥∂t a∥H k+1 +∥∂t K∥H s ∥θ∥H k +(1 + ∥K∥H s )∥∂tθ∥H k .

Proof. The first estimate follows as in Lemma 4.13 from isolating ∂t a in (2-3) and using Lemma B.4 to
estimate the quadratic terms. The second estimate follows from differentiating (2-3) in time and then
proceeding as in Lemma 4.13, namely isolating ∂2

t a and using Lemma B.4. □

With these auxiliary estimates for a and its first two temporal derivatives in hand we may now improve
the low-level energy and dissipation.
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Proposition 4.15 (improvement of the low-level energy and dissipation). Let T > 0 be a time horizon.
Consider the assumptions

(1) sup0⩽t<T ∥(u, θ)(t)∥H3 + ∥K (t)∥H3 ⩽ C < ∞ and

(2) sup0⩽t<T ∥∂t(u, θ)(t)∥H2 + ∥∂t K (t)∥H2 ⩽ C < ∞.

Then we have the following estimates, where the constants implicit in “≲” may depend on C. If (1) holds
then E low ≳ ∥∂t a∥

2
H1 and Dlow ≳ ∥a∥

2
H1 + ∥∂t a∥

2
L2 . If (1) and (2) hold then E low ≳ ∥∂2

t a∥
2
L2 .

Proof. Assumption (1) and Lemma 4.13 tell us that ∥a∥
2
H1 ≲ ∥(u, θ)∥2

H3 + ∥∂tθ∥
2
H1 ≲ Dlow. Then we

may use (1), Lemma 4.14, and the previous estimate to see that

∥∂t a∥
2
L2 ≲ ∥a∥

2
H1 + ∥θ∥

2
L2 ≲ Dlow

and
∥∂t a∥

2
H1 ≲ ∥a∥

2
H2 + ∥θ∥

2
H1 ≲ E low.

Finally, if both assumptions (1) and (2) hold then we may use Lemma 4.14 again to see that

∥∂2
t a∥

2
L2 ≲ ∥a∥

2
H1 + ∥∂t a∥

2
H1 + ∥θ∥

2
L2 + ∥∂tθ∥

2
L2 ≲ E low. □

We now turn our attention to the low-level interactions and record their estimates here. Note that they
may be estimated in a simpler way for the sole purpose of closing the energy estimates at the low level,
but by doing the estimates slightly more carefully as done below we can also use them when we study
the local well-posedness theory (in Section 5).

Lemma 4.16 (careful estimates of the low-level interactions). Recall that I low is defined in (3-10) for I α

as in Lemma 4.10. The following estimate holds:

|I low| ≲ (∥(u, θ)∥P2 + ∥a∥P3 + (1 + ∥(u, θ)∥P2)(∥K∥H3 + ∥∂t K∥L∞))Dlow.

Proof. Recall that, at the low level, |α|P ⩽ 2. In particular, if β + γ = α and β > 0 then (∂α, ∂β, ∂γ )

corresponds to one of five possible cases: (∂2
x , ∂2

x , 0), (∂2
x , ∂x , ∂x), (∂x , ∂x , 0), (∂t , ∂t , 0), and (0, 0, 0),

where ∂k
x indicates a derivative ∂α for a purely spatial multi-index α ∈ N3 of length |α| = k. Note that we

have the bound ∥K∥L∞ + ∥∇K∥L∞ + ∥∇
2K∥L6 ≲ ∥K∥H3 such that, for any |α|P ⩽ 2,

∥∂α K∥L6 ≲ ∥K∥H3 + ∥∂t K∥L∞ . (4-31)

Recall from Lemma 4.10 that I low =
∑

|α|P⩽2
∑8

i=1 I
α
i . In light of (4-31) we may estimate I α

1 –I α
5

and I α
7 easily, obtaining

|I α
1 | ≲ ∥u∥P2Dlow, |I α

2 | ≲ (∥K∥H3 + ∥∂t K∥L∞)Dlow, |I α
3 | ≲ (1 + ∥K∥H3 + ∥∂t K∥L∞)∥u∥P2Dlow,

|I α
4 | ≲ (1 + ∥θ∥P2)(∥K∥H3 + ∥∂t K∥L∞)Dlow + (1 + ∥K∥H3)∥θ∥P2Dlow,

|I α
5 | ≲ (∥K∥H3 + ∥∂t K∥L∞)Dlow, and |I α

7 | ≲ ∥a∥P3Dlow.

The only two terms requiring particularly delicate care are I6 and I8, due to the presence of ∂2
x a. We

provide the details on how to estimate these two interactions below.
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Estimating I α
6 . Recall that

I α
6 = −

∑
β+γ=α

β>0

(
α

β

) ∫
T3

(∂βu · ∇∂γ a) · ∂αa.

The difficulty lies in ∂α
= ∂2

x since then two copies of ∂2
x a may appear and we only control a dissipatively

in H 1. We thus split into two cases, emphasizing that only the first case is somewhat troublesome and
requires particular care. In the first case we consider |ᾱ|= 2 and |β̄|= |γ̄ |= 1 and proceed by interpolation:∣∣∣∣∫

T3
(∂x u · ∇∂xa) · ∂2

x a
∣∣∣∣⩽ ∥∂x u∥L∞∥∂2

x a∥
2
L2 ≲ ∥u∥H3∥a∥

2
H2 ≲ ∥u∥H3(∥a∥

1/2
H1 ∥a∥

1/2
H3 )2 ≲ ∥a∥H3Dlow.

In the second case we consider either |ᾱ| = |β̄| = 2 or |ᾱ| ⩽ 1. Either way, since β > 0 we deduce that
γ = 0, and hence β = α. The estimate is then immediate:∣∣∣∣∫

T3
(∂αu · ∇a) · ∂αa

∣∣∣∣⩽ ∥∂αu∥L6∥∇a∥L2∥∂αa∥L6 ≲ ∥u∥P3∥a∥H1∥a∥P3 ≲ ∥a∥P3Dlow.

Estimating I α
8 . Recall that

I α
8 = −

∑
β+γ=α

∫
T3

∂β(K − K33 I2)∂
γ θ̄⊥

· ∂αa ∼

∑
β+γ=α

∫
T3

(∂β K )∂γ θ · ∂αa,

where the left-hand side is the precise form of the interaction and the right-hand side is its schematic
form which we will work with henceforth. The difficulty lies in ∂α

= ∂2
x since we have no dissipative

control over K and only control a dissipatively in H 1. We must therefore integrate by parts to reduce the
term ∂2

x a to ∂xa. Now we split into two cases. As in the consideration of I α
6 above, only the first case is

somewhat troublesome.
In the first case we consider |ᾱ| = 2. We integrate by parts and estimate each term by hand. We write∑

β+γ=2

∫
T3

(∂β
x K )∂γ

x θ · ∂2
x a =

∑
β+γ=2

∫
T3

(∂β+1
x K )(∂γ

x θ) · ∂xa +

∫
T3

(∂β
x K )(∂γ+1

x θ) · ∂αa =: I + II,

where

|I| ⩽
∣∣∣∣∫

T3
(∂x K )(∂2

x θ)∂xa
∣∣∣∣+ ∣∣∣∣∫

T3
(∂2

x K )(∂xθ) · ∂xa
∣∣∣∣+ ∣∣∣∣∫

T3
(∂3

x K )θ · ∂xa
∣∣∣∣

⩽ (∥∂x K∥L∞∥∂2
x θ∥L6 + ∥∂2

x K∥L6∥∂xθ∥L∞ + ∥∂3
x K∥L2∥θ∥L∞)∥∂xa∥L2

≲ ∥K∥H3∥θ∥H3∥a∥H1 ≲ ∥K∥H3Dlow

and
|I| ⩽

∑
β+γ=2

∥∂β
x K∥L∞∥∂γ+1

x θ∥L2∥∂xa∥L2 ≲ ∥K∥H3∥θ∥H3∥a∥H1 ≲ ∥K∥H3Dlow.

In the second case we consider |ᾱ| ⩽ 1. Note that, as was noted above when considering I α
6 , it then

follows from the constraint β > 0 that γ = 0 and β = α. The estimate is then immediate:

|II| ⩽ ∥∂α K∥L2∥θ∥L∞∥∂αa∥L2 ≲ (∥K∥H3 + ∥∂t K∥L∞)∥θ∥H2(∥a∥H1 + ∥∂t a∥L2)

≲ (∥K∥H3 + ∥∂t K∥L∞)Dlow. □

In particular, for our purposes here it suffices to control the low-level interactions in the following way.
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Corollary 4.17 (control of the low-level interactions). If M ⩾ 3 and EM ⩽ 1 then |I low| ≲ E1/2
M Dlow.

Proof. Recall that EM ≳ ∥(u, θ, a)∥2
P2M +∥K∥

2
H2M−3 +∥∂t K∥

2
H2M−3 . In particular, since M ⩾ 3 and EM ⩽ 1,

we may deduce the claim from Lemma 4.16. □

We now turn our attention to the last piece needed to close the energy estimates at the low level, namely
the θ -coercivity estimate recorded below. In particular note that below, θ ↑ 1 as M ↑ ∞.

Lemma 4.18 (θ -coercivity). If M ⩾ 2 then E low ≲ E1−θ
M Dθ

low, where θ = (2M − 2)/(2M − 1).

Proof. Since the low-level dissipation controls every term in the low-level energy except ∥a∥
2
H2 , we rely

on an interpolation estimate to control that term using the low-level dissipation and the high-level energy.
More precisely, recall that{E low = ∥(u, θ)∥2

H2 + ∥a∥
2
H2 + ∥∂t(u, θ)∥2

L2 + ∥∂t a∥
2
L2,

Dlow = ∥(u, θ)∥2
H3 + ∥a∥

2
H1 + ∥∂t(u, θ)∥2

H1 + ∥∂t a∥
2
H1 .

So let us write E low − ∥a∥
2
H2 =: Egood. Then

Egood ≲ Dlow and ∥a∥
2
H2 ≲ ∥a∥

2θ
H1∥a∥

2(1−θ)

H2M , where θ =
2M−2
2M−1

.

So finally, since M ⩾ 2, we note that EM ≳ Dlow, and hence we may conclude that, for θ as above,

E low = Egood + ∥a∥
2
H2 ≲ Dlow +Dθ

lowE
1−θ
M ≲ Dθ

lowE
1−θ
M . □

In light of the θ -coercivity result above we now record a particular instance of the Bihari lemma which
applies to the low-level energy. This is recorded here in order to streamline the proof of Proposition 4.20
in which we close the energy estimates at the low level.

Lemma 4.19. Suppose that the function y : [0, ∞) → [0, ∞) is continuously differentiable such that
y′

+ Cy1/θα
1−1/θ

0 ⩽ 0 on [0, ∞) for some α0, C > 0 and θ ∈ (0, 1). Then

y(t) ⩽ α0

((
α0

y(0)

)1/β

+ C̃t
)−β

for β :=

(1
θ

− 1
)−1

> 0 and C̃ = C
(1
θ

− 1
)

> 0.

In particular, note that β ↑ +∞ if θ ↑ 1.

Proof. Integrating in time tells us that

y(t) +

∫ t

0
C y(s)1/θα

1−1/θ

0 ds ⩽ y(0).

We apply the Bihari lemma (Lemma B.5) with f (x) = Cx1/θα
1−1/θ

0 . Using the notation in Bihari’s
lemma, we compute F(x) = (α0/x)1/β/C̃ and F−1(x) = α0(C̃x)

−β , from which the claim follows. □

We conclude this section with Proposition 4.20, which performs the synthesis of the results proved in
this section in order to close the energy estimates at the low level. Recall that, as discussed in Section 2D,
this is one of the four building blocks of the scheme of a priori estimates.

Proposition 4.20 (closing the energy estimates at the low level). Let M ⩾ 3 be an integer. There exist
0 < δlow, δ∗

low ⩽ 1, and CL > 0 such that the following holds: for any time horizon T > 0 and any
0 < δ ⩽ δlow, if sup0⩽t⩽T EM(t)⩽ δ∗

low and sup0⩽t⩽T EM(t)⩽ δ then sup0⩽t⩽T Elow(t)(1 + t)2M−2 ⩽CLδ.
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Proof. The strategy of the proof is as follows. We combine the energy-dissipation relation, the control of
the interactions, and the improvement of the dissipation to see that (d/dt)Ẽlow +Dlow ⩽ 0. This differential
inequality is coupled with the θ -coercivity and the improvement of the low-level energy to deduce the result.

More precisely, recall that, by Lemmas 4.10 and 4.12, (d/dt)Ẽlow +Dlow ≲ I low. Since

sup
0⩽t⩽T

∥(u, θ)∥2
H3 + ∥J∥

2
H3 + ∥∂t(u, θ)∥2

H2 + ∥∂t J∥
2
H2 ⩽ sup

0⩽t⩽T
EM(t) ⩽ 1, (4-32)

it follows from Proposition 4.15 and Corollary 4.17 that Dlow ≳ Dlow and |I low| ≲ E1/2
M Dlow. Therefore,

there exists CE D > 0 such that (d/dt)Ẽlow +Dlow ≲ CE DE
1/2
M Dlow. In particular, if δ∗

low > 0 is chosen
sufficiently small to ensure that CE D(δ∗

low)1/2 ⩽ 1
2 then (d/dt)Ẽlow +

1
2Dlow ⩽ 0. Now note that, as a

consequence of (4-32), Proposition A.3 and Lemma 4.11 tell us that

1
2 cEE low ⩽ Ẽlow ⩽ 1

2CEE low. (4-33)

We may combine this with Lemma 4.18 to deduce, for θ = (2M−2)/(2M−1), that Ẽlow ≲E low ≲E1−θ
M Dθ

low,
and hence there exists a constant C > 0 such that (d/dt)Ẽlow + C Ẽ1/θ

low δ1−1/θ ⩽ 0. We deduce from (4-32)
that θ and J are sufficiently regular for t 7→ Ẽlow(t) to be continuously differentiable. Applying Lemma 4.19
thus tells us that, for 0 ⩽ t ⩽ T ,

Ẽlow(t) ≲ δ

((
δ

Ẽlow(0)

)1/β

+ C̃t
)−β

for some C̃ > 0 and for β = (1/θ − 1)−1
= 2M − 2. Using (4-33) once again we note that

Ẽlow(0) ⩽ 1
2CEE low(0) ⩽ 1

2CEδ,

and hence δ/Ẽlow(0)⩾ 2/CE such that Ẽlow ≲ δ(1 + t)−(2M−2). To conclude this step, note that combining
(4-32) and Proposition 4.15 tells us that Elow ≲ E low, and hence, in light of (4-33), we deduce that
Elow(t)(1 + t)2M−2 ≲ δ for 0 ⩽ t ⩽ T . □

4D. Closing the estimates at the high level. In this section we consider the third of the four building
blocks of the scheme of a priori estimates and close the energy estimates at the high level. This section is
structured similarly, but not identically, to Section 4C, where we close the energy estimates at the low
level. The differences are due to the fact that at the high level the improvements to the dissipation and
the estimates of the interactions only hold in a time-integrated sense, and not pointwise in time as was
the case at the low level. This means that by contrast with the low level, where the auxiliary estimates
relied on product estimates (see Lemma B.4), here at the high level the auxiliary estimates rely instead on
high-low estimates (see Corollary B.2). Recall that the functionals EM and FM , KI and Klow, and DM ,
which will be used throughout this section, are defined in (3-5), (3-6), and (3-8), respectively.

We begin with auxiliary estimates for a, which will allow for improvement of the high-level dissipation.

Lemma 4.21 (auxiliary estimate for a). Suppose that (2-1c) holds. For any k ∈ N and any s > 3
2 such

that s ⩾ k, we have the estimate

∥a∥H k ≲(∥K∥L∞+∥θ∥L∞+∥∇θ∥L∞+∥u∥H s +∥θ∥H s )∥(u,θ)∥Pk+2+(∥u∥L∞+∥θ∥L∞+∥∂tθ∥L∞)∥K∥H k .
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Proof. This estimate is similar to that of Lemma 4.13 since we begin by isolating a in (2-1c). However, we
then use the high-low estimate of Corollary B.2 instead of the product estimate of Lemma B.4 to estimate
the nonlinearities. Note that for cubic terms we perform high-low estimates in the following crude fashion:
∥ f gh∥H k ≲ ∥ f ∥H∞∥gh∥H k +∥ f ∥H k ∥gh∥L∞ , and then use Lemma B.4 and the fact that L∞ is a Banach
algebra. □

We continue our sequence of auxiliary estimates for a with an estimate on its time derivative.

Lemma 4.22 (auxiliary estimate for ∂t a). Suppose that (2-3) holds. For any k ∈ N and any s > 3
2 such

that s ⩾ k, we have the estimate

∥∂t a∥H k ≲ (1 + ∥u∥H s + ∥θ∥H s )∥a∥H k+1 + (1 + ∥K∥L∞)∥θ∥H k + ∥θ∥L∞∥K∥H k .

Proof. This follows immediately from isolating ∂t a in (2-3) and using Corollary B.2 and Lemma B.4. □

We conclude our sequence of auxiliary estimates on a with estimates on its higher-order temporal
derivatives.

Lemma 4.23 (auxiliary estimate for ∂
j

t a). Suppose that (2-3) holds. For any k ∈ N, any s > 3
2 , and any

j ⩾ 1, if s ⩾ k then

∥∂
j

t a∥H k ≲

(
1 +

j−1∑
l=0

∥∂ l
t (u, θ)∥H s

)( j−1∑
l=0

∥∂ l
t a∥H k+1

)
+

(
1 +

j−1∑
l=0

∥∂ l
t K∥H s

)( j−1∑
l=0

∥∂ l
t θ∥H k

)
.

Proof. This is immediate upon applying j−1 temporal derivatives to (2-3) and using Lemma B.4 to
estimate the nonlinearities. □

With these various auxiliary estimates on a in hand we may now improve the high-level dissipation.
Recall that Da

M is defined in (3-8).

Proposition 4.24 (improvement of the dissipation at the high level). If M ⩾ 3 and EM ⩽ 1 then

Da
M ≲ D1/2

M + ∥(u, θ, ∂tθ)∥L∞F1/2
M .

Proof. For simplicity, we will write d := D1/2
M + ∥(u, θ, ∂tθ)∥L∞F1/2

M for the right-hand side of the
inequality we are after. Since M ⩾ 3, since H 2(T3) ↪→ L∞(T3), and since EM ⩽ 1, Lemma 4.21 tells us
that ∥a∥H2M−1 ≲ d and consequently Lemma 4.22 says that ∥∂t a∥H2M−2 ≲ d. To see that

3∑
j=2

∥∂
j

t a∥H2M− j−1 +

M∑
j=4

∥∂
j

t a∥H2M−2 j+3 ≲ d

and thus conclude the proof, it suffices to prove by induction that

∥∂
j

t a∥H k( j) ≲ d for k( j) =

{
2M − j − 1 if j = 2 or j = 3,

2M − 2 j + 3 if j = 4, . . . , M.

This induction argument is immediate: the base cases j = 0 and j = 1 were taken care of above, and the
induction step is precisely given by Lemma 4.23. □
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We now turn our attention towards the control of the high-level interactions. First we record a technical
lemma used to control derivatives of K .

Lemma 4.25. If α ∈ N1+3 satisfies |α|P ⩽ 2M and |ᾱ| ⩽ 2M − 4 then ∥∂α K∥L4 ≲ E1/2
M .

Proof. We split the proof into two cases depending on the number of temporal derivatives hitting K .
Suppose first that α0 ⩽ 1. Then the estimate is immediate: we have ∥∂ ᾱ

x K∥L4 ≲ ∥K∥H1+(2M−4) ≲ E1/2
M and

∥∂t∂
ᾱ
x K∥L4 ≲ ∥∂t K∥H1+(2M−4) ≲ E1/2

M . Suppose now that α0 ⩾ 2. The estimate in this case follows from the
fact that ∂

j
t K is controlled at parabolic order 2M +1 when j ⩾ 2. Therefore, since 1+|α|P −4⩽ 2M −3,

we may deduce that ∥∂α K∥L4 ≲ ∥∂2
t K∥P1+|α|P −4 ≲ E1/2

M . □

We may now state and prove the estimate of the high-level interactions. Recall that DM and IM are
defined in (3-8) and (3-10), respectively.

Proposition 4.26 (control of the high-order interactions). Suppose that M ⩾ 3 and that EM ⩽ 1. Then
|IM | ≲ E1/2

M DM +K1/2
lowF

1/2
M D1/2

M .

Proof. Recall that the interactions are recorded in Lemma 4.10. There are three difficulties that manifest
themselves here.

(1) a appears when hit with a full count of 2M spatial derivatives. This is troublesome because the lack
of dissipative control of a in H 2M is precisely why coercivity fails. To handle this it will be necessary to
integrate by parts. This issue manifests itself in I6 and I8.

(2) We have poorer spatial regularity control over ∂
j

t K when j is small (i.e., j = 0, 1) than when it is
large — this is due to the mixed hyperbolic-parabolic nature of the problem. There is no particularly
clever workaround here besides simply breaking up the estimates into cases depending on the number of
temporal derivatives hitting K and performing the estimates in each case. This manifests itself in I2 –I5

and I8.

(3) In all but one of the interactions where FM must be invoked, its possible growth is counteracted by
the presence of K2. However, in I2 this is not possible. Instead, we may only counteract the growth
of FM by ∥∂2

t θ∥L2 . Since two temporal derivatives of θ are not controlled in the low-level energy, this
term does not, at first pass, have any decay. Producing such decay will require the auxiliary estimate
recorded in Lemma 4.31 in Section 4E below.

For the reader’s sake, we briefly remark on which interaction terms are discussed in detail and why.
The details of the estimates of I1 are provided. This is a simple interaction to estimate but we do use

“hands-on high-low estimates” which form the basis for all the other estimates of the interactions, and
thus warrants a detailed discussion of I1. In particular, I7 is handled in exactly the same way.

The interactions I2 –I5 are handled in essentially the same way. We only discuss I2 in detail since it
has the additional wrinkle of requiring us to invoke ∥∂2

t θ∥L2 to counterbalance FM .
The last two interactions we discuss in detail are I6 and I8. Those are the most difficult interactions to

control since they both require us to integrate by parts to get around the appearance of ∇
2M
x a. Moreover,

temporal derivatives of K appear in I8, which requires us to divide the estimates of that interaction into
further subcases.
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We now estimate the difficult interactions one by one.

Estimating I1 and I7. Recall that

I1 =

∑
|α|P⩽2M

∫
T3

[u · ∇, ∂α
]u · ∂αu = −

∑
|α|P⩽2M

∑
β+γ=α

β>0

(
α

β

) ∫
T3

(∂βu · ∇∂γ u) · ∂αu.

Therefore,

|I1| ≲
∑

|β+γ |P⩽2M
|γ |P⩽2M−3

∣∣∣∣∫
T3

(∂βu · ∇∂γ u) · ∂αu
∣∣∣∣︸ ︷︷ ︸

I

+

∑
|β+γ |P⩽2M
|β|P⩽2M−2
|γ |P⩽2M−1

∣∣∣∣∫
T3

(∂βu · ∇∂γ u) · ∂αu
∣∣∣∣︸ ︷︷ ︸

II

,

where
I ⩽ ∥∂βu∥L4∥∇∂γ u∥L∞∥∂β+γ u∥L4 ≲ ∥∂βu∥H1∥∇∂γ u∥H2∥∂β+γ u∥H1

⩽ ∥u∥P |β|P +1∥u∥P |γ |P +3∥u∥P |β+γ |P +1 ≲ D1/2
M E1/2

M D1/2
M

and

II ⩽ ∥∂βu∥L∞∥∇∂γ u∥L4∥∂β+γ u∥L4 ≲ ∥u∥P |β|P +2∥u∥P |γ |P +2∥u∥P |β+γ |P +1 ≲ E1/2
M D1/2

M D1/2
M

such that |I1| ⩽ E1/2
M DM .

To control I7 we proceed in exactly the same way. Note that the presence of a in I7 is harmless since
there is only at most one copy of ∇

2M
x a which appears, and hence there is no need to integrate by parts

here. Hands-on high-low estimates very similar to those discussed in detail above therefore tell us that
|I7| ≲ E1/2

M DM .

Estimating I2, I3, I4, and I5. Recall that I2 is of particular importance since it is the only term that
requires the incorporation of ∥∂2

t θ∥L2 into the decaying functional Klow. We seek to estimate

I2 =

∑
|α|P⩽2M

∫
T3

[J∂t , ∂
α
]θ · ∂αθ = −

∑
|α|P⩽2M

β+γ=α, β>0

(
α

β

) ∫
T3

(∂β K )(∂t∂
γ θ) · (∂αθ),

where we have used the fact that ∂β J = ∂β K since β > 0 and J and K differ by a constant. There are
two difficulties in handling this term, and so we split I2 accordingly as I2 = I + II.

(1) When few temporal derivatives hit K the only way we have of controlling a high number of spatial
derivatives is through FM . Terms concerned by this issue are grouped in I.

(2) The “better” terms in II are estimated directly. However, due to the poorer spatial regularity of K
and ∂t K relative to ∂

j
t K for j ⩾ 2, we split the estimate of II into two pieces that are handled differently

from one another.

To be precise, we write

−I2 =

∑
|α|P⩽2M

β+γ=α, β>0

(
α

β

) ∫
T3

(∂β K )(∂t∂
γ θ) · (∂αθ) =

∑
···

|β̄|⩾2M−3

· · · +

∑
···

|β̄|⩽2M−4

· · · =: I + II.

Note that the condition |β̄| ⩾ 2M − 3 in the term I is coupled with the usual condition |β|P ⩽ 2M , and
thus requires that β0 = 0, 1. In other words, only K and ∂t K appear in I.
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First we estimate I. Two competing factors are at play here:

(1) ∂β K , for |β̄| ⩾ 2M − 3, must be controlled in FM , and hence ∂t∂
γ θ must be controlled via decaying

factors.

(2) Since only θ and ∂tθ are controlled by Elow, the decay of ∂2
t θ is obtained through Lemma 4.31, which

only yields control of ∂2
t θ in L2. We thus have fairly poor control of ∂2

t θ through decaying factors.

To carefully address this we split I into two:

I =

∑
···

|β̄|⩾2M−2

· · · +

∑
···

|β̄|=2M−3

· · · =: I1 + I2.

To estimate I1, we note that |γ |P = |α|P − |β|P ⩽ |α|P − |β̄| ⩽ 2M − (2M − 2) = 2. Therefore,

|I1| ≲
∑
···

∥∂β K∥L4∥∂t∂
γ θ∥L2∥∂αθ∥L4

≲ max(∥K∥H2M+1, ∥∂t K∥H2M−1) max(∥∂tθ∥H2, ∥∂2
t θ∥L2)∥θ∥P2M+1

≲ F1/2
M (K1/2

2 + ∥∂2
t θ∥L2)D1/2

M ≲ F1/2
M K1/2

lowD
1/2
M .

To estimate I2 we note that now |γ |P ⩽ 3 such that, since M ⩾ 3,

|I2| ≲
∑
···

∥∂β K∥L2∥∂t∂
γ θ∥L4∥∂αθ∥L4 ≲ max(∥K∥H2M−3, ∥∂t K∥H2M−3)∥θ∥P6∥θ∥P2M+1 ≲ E1/2

M DM .

Second we estimate II. Due to the poorer spatial regularity of K and ∂t K relative to ∂ j
t K when j ⩾ 2,

we split II into two:

II =

∑
|α|P⩽2M, |β̄|⩽2M−4

β+γ=α, β>0

(
α

β

) ∫
T3

(∂β K )(∂t∂
γ θ) · (∂αθ) =

∑
···

β0⩽1

· · · +

∑
···

β0⩾2

· · · =: II1 + II2.

Estimating II1 is immediate upon recalling that |γ |P ⩽ 2M − 1 (since β > 0) and using Lemma 4.25:

|II1| ≲
∑
···

∥∂β K∥L4∥∂t∂
γ θ∥L2∥∂αθ∥L4 ≲ E1/2

M ∥θ∥P2+(2M−1)∥θ∥P2M+1 ≲ E1/2
M D1/2

M D1/2
M .

Estimating II2 relies on the crucial observation that ∥∂2
t K∥P2M−3 ≲ E1/2

M . The estimate for II2 is then
immediate:

|II2| ≲
∑
···

∥∂β K∥L4∥∂t∂
γ θ∥L2∥∂αθ∥L4 ≲ ∥∂2

t K∥P1−4+|β|P ∥θ∥P2M+1∥θ∥P2M+1 ≲ E1/2
M D1/2

M D1/2
M .

Putting it all together tells us that |I2| ≲ E1/2
M DM +F1/2

M K1/2
lowD

1/2
M .

We may proceed in a similar fashion to estimate I3, I4, and I5, splitting the interactions terms into cases
depending on the number of temporal derivatives hitting K and using Lemma 4.25 where appropriate.
Proceeding in this fashion we obtain that |I3| + |I4| + |I5| ≲ F1/2

M K1/2
2 D1/2

M + E1/2
M DM .

Estimating I6. We seek to estimate

I6 =

∑
|α|P⩽2M

∫
T3

[u · ∇, ∂α
]a · ∂αa = −

∑
β+γ=α

β>0

(
α

β

) ∫
T3

(∂βu · ∇∂γ a) · ∂αa.
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However, recall that the failure of coercivity manifests itself precisely in the poor dissipative control
over a. We thus treat the case where the multi-index α is purely spatial separately. This interaction is
particularly troublesome when the derivatives are purely spatial and |γ | = 2M − 1 (note that |γ | = 2M is
impossible since the conditions β + γ = α and β > 0 impose that γ < α). In that case the interaction
takes the (schematic) form ∫

T3
(∂x u)(∂2M

x a)(∂2M
x a), (4-34)

where ∂k
x indicates a derivative ∂α for a purely spatial multi-index α ∈ N3 of length |α| = k. This is out

of reach of an estimate of the form E1/2
M DM since we only control a in H 2M−1 dissipatively. We thus

treat this specific interaction (4-34) as a subcase of the case of purely spatial derivatives.
To summarize: (recall that α = (α0, ᾱ) ∈ N1+3)

−I6 =

∑
|α|P⩽2M

∑
β+γ=α

β>0

(
α

β

) ∫
T3

(∂βu · ∇∂γ a) · ∂αa =

∑
|α|P⩽2M

α0=0

∑
···

· · · +

∑
|α|P⩽2M

α0⩾1

∑
···

· · · =: I + II,

where I corresponds to purely spatial derivatives and II corresponds to the remaining terms. We break
up I further: (where now β, γ ∈ N3 and not N1+3 as above)

I =

∑
|β|+|γ |⩽2M

β>0

(
β+γ

β

) ∫
T3

(∂βu ·∇∂γ a)·∂β+γ a

=

∑
|β|+|γ |⩽2M

|β|=1

(
β+γ

β

) ∫
T3

(∂βu ·∇∂γ a)·∂β+γ a+

∑
|β|+|γ |⩽2M

|β|>1

(
β+γ

β

) ∫
T3

(∂βu ·∇∂γ a)·∂β+γ a =: I1 +I2,

where I1 consists of the most troublesome term. We also break up II further:

II =

∑
|α|P⩽2M

α0⩾1

∑
β+γ=α

β>0

(
α

β

) ∫
T3

(∂βu · ∇∂γ a) · ∂αa =

∑
···

∑
···

γ0=0

· · · +

∑
···

∑
···

γ0⩾1

· · · =: II1 + II2.

Again, due to the poorer dissipative control of a compared with ∂t a and higher-order temporal derivatives
of a, we must estimate II1 carefully. Note that by “poorer control” we mean that we have control of
spatial derivatives at a lower parabolic count. To be very clear, we control ∥a∥H2M−1 and ∥∂t a∥H2M−2

dissipatively, which means that we control a at a parabolic count of 2M − 1 and ∂t a at a parabolic count
of (2M − 2) + 2 = 2M .

Estimating I1. The key is to integrate by parts at the cost of having to invoke F , which is possibly growing
in time, to control ∇

2M+1a. Then, where for every γ we pick i such that γ ⩾ ei ,

I1 =

∑
|β|=1

|γ |⩽2M−1

(
β+γ

β

) ∫
T3

(∂βu · ∇∂γ a) · ∂β+γ a

= −

∑
|β|=1

|γ |⩽2M−1

(
β+γ

γ

)(∫
T3

(∂β+ei u · ∇∂γ−ei a) · ∂β+γ a +

∫
T3

(∂βu · ∇∂γ−ei a) · ∂β+γ+ei a
)

.
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I8

α0 = 0
I

α0 ⩾ 1
II

|α| = 2M
I1

|α| ⩽ 2M − 1
|β| = 2M − 2, 2M − 1

I2

|α| ⩽ 2M − 1
|β| ⩽ 2M − 3

I3

β0 = 0
II1

β0 = 1
II2

β0 ⩾ 2 II3

|ρ| = 2M − 2, . . . , 2M + 1

|ρ| ⩽ 2M − 3

|β̄| = 2M − 2, . . . , 2M

|β̄| ⩽ 2M − 3

|β̄| = 2M − 2

|β̄| ⩽ 2M − 3

I11

I12

II11

II12

II21

II22

Figure 4. How the terms in the interaction I8 are broken up in order to be estimated.

Therefore,

|I1| ≲
∑

|γ |⩽2M−1

∥∇
2u∥L∞∥∇∂γ−ei a∥L2∥∇∂γ a∥L2 + ∥∇u∥L∞∥∇∂γ−ei a∥L2∥∇∂γ+ei a∥L2

≲ D1/2
2 D1/2

M E1/2
M +K1/2

2 D1/2
M F1/2

M .

Estimating I2, II1, and II2. These terms are all estimated using standard “hands-on high-low estimates”,
which yield |I2| + |II1| + |II2| ≲ E1/2

M DM . We have thus shown that

|I6| ≲ E1/2
M DM +F1/2

M K1/2
2 D1/2

M .

Estimating I8. This is the trickiest interaction to estimate since it involves both 2M spatial derivatives
of a and temporal derivatives of K . Recall that

I8 =

∑
|α|P⩽2M
β+γ=α

(
α

β

) ∫
T3

∂β((K − K33 I2)θ̄
⊥) · ∂αa ∼

(
α

β

) ∫
T3

(∂β K )(∂γ θ̄ ) · (∂αa) =:

∑
|α|P⩽2M
β+γ=α

I α,β,γ

8 ,

where the left-hand side is the precise form of the interaction and the right-hand side is its schematic form
which we will now estimate. Note that, by contrast with all the other interactions, this one does not come
from a commutator, and therefore there are no restrictions on β and γ besides the fact that β + γ = α

(i.e., there is no restriction β > 0, or equivalently γ < α).
To control I8 we will break it up into several pieces, as summarized pictorially in Figure 4.
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More precisely, we now detail how we go about breaking up I8. First we separate terms for which the
derivatives of a are purely spatial:

I8 =

∑
|α|P⩽2M
β+γ=α

I α,β,γ

8 =

∑
···

α0=0

I α,β,γ

8 +

∑
···

α0⩾1

I α,β,γ

8 =: I + II.

We now split I to account for two factors: the lack of dissipative control of ∂2M
x a and the poorer (i.e.,

through FM and not EM ) control of K when many spatial derivatives are applied to it. Recall that ∂k
x

indicates a derivative ∂α for a purely spatial multi-index α ∈ N3 of length |α| = k.

I =

∑
α0=0

|α|⩽2M
β+γ=α

I α,β,γ

8 =

∑
···

|α|=2M

I α,β,γ

8 +

∑
···

|α|⩽2M−1
|β|=2M−2,2M−1

I α,β,γ

8 +

∑
···

|α|⩽2M−1
|β|⩽2M−3

I α,β,γ

8 =: I1 + I2 + I3.

Estimating I1 is the trickiest part of estimating I8 since we must control K via the energy and do not
have control of ∂2M

x a via the dissipation. To get around this issue we integrate by parts (below, i is an
index dependent of α chosen such that αi ⩾ 0, which may always be done since α ̸= 0):

I1 = −

∑
α0=0, |α|=2M

β+γ=α

(
α

β

)(∫
T3

(∂β+ei K )(∂γ θ̄ ) · (∂α−ei a) +

∫
T3

(∂β K )(∂γ+ei θ̄ ) · (∂α−ei a)

)
.

This allows us to split I1 as

|I1| ≲

∣∣∣∣ ∑
|π |=2M−1

|ρ+σ |=2M+1

∫
T3

(∂ρ K )(∂σ θ̄ ) · (∂πa)

∣∣∣∣⩽ ∣∣∣∣ ∑
···

|ρ|=2M−2,...,2M+1

· · ·

∣∣∣∣+ ∣∣∣∣ ∑
···

|ρ|⩽2M−3

· · ·

∣∣∣∣=: |I11| + |I12|,

where π , ρ, and σ are spatial multi-indices, i.e., they belong to N3 and not N1+3. We now direct our
attention to II (which is easier to handle than I since more temporal derivatives are involved). The key in
the splitting here is that things get easier as more temporal derivatives of K are involved:

II =

∑
α0⩾1, |α|P⩽2M

β+γ=α

I α,β,γ

8 =

∑
···

β0=0

I α,β,γ

8 +

∑
···

β0=1

I α,β,γ

8 +

∑
···

β0⩾2

I α,β,γ

8 =: II1 + II2 + II3.

We finally split II1 and II2 further depending on the number of spatial derivatives hitting K (since this
determines whether we estimate the factor involving K using EM or FM ):

II1 =

∑
α0⩾1, β0=0

|α|P⩽2M, β+γ=α

I α,β,γ

8 =

∑
···

|β̄|=2M−2,...,2M

I α,β,γ

8 +

∑
···

|β̄|⩽2M−3

I α,β,γ

8 =: II11 + II12

and
II2 =

∑
α0⩾1, β0=1

|α|P⩽2M, β+γ=α

I α,β,γ

8 =

∑
···

|β̄|=2M−2

I α,β,γ

8 +

∑
···

|β̄|⩽2M−3

I α,β,γ

8 =: II21 + II22.

Having carefully split I8 into appropriate pieces, we now proceed to estimate each of these pieces.
Note that due to this extensive subdivision of I8 into various pieces, most terms can be handled with
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similar techniques. The table below summarizes how each term is handled.

I11 I12 I2 I3 II11 II12 II21 II22 III

direct X X X X
hands-on high-low X

Corollary B.2 X X
special consideration X X

Direct estimates. The terms I3, II21, and II22 can be estimated directly:

|I3| ≲
∑
···

∥∂β K∥L2∥∂γ θ̄∥L∞∥∂αa∥L2 ≲ ∥K∥H2M−3∥θ̄∥H2M+1∥a∥H2M−1 ≲ E1/2
M D1/2

M D1/2
M ,

|II21| ≲
∑
···

∥∂t∂
β̄
x K∥L2∥θ∥L∞∥∂αa∥L2 ≲ ∥∂t K∥H2M−2∥θ∥H2∥∂t a∥P2M−2 ≲ F1/2

M K1/2
1 D1/2

M ,

|II22| ≲
∑
···

∥∂β K∥L2∥∂γ θ̄∥L∞∥∂αa∥L2 ≲ ∥∂t K∥H2M−3∥θ̄∥P2M ∥∂t a∥P2M−2 ≲ E1/2
M D1/2

M D1/2
M .

Similarly, I2 can be split into precisely three terms which can all be estimated directly:

I2 =

∑
α0=0, α=β
|α|=2M−1

(
α

β

) ∫
T3

(∂β K )θ̄ · (∂αa)

+

∑
α0=0, |α|=2M−1

|β|=2M−2, γ=α−β, |γ |P=1

(
α

β

) ∫
T3

(∂β K )(∂γ θ̄ ) · (∂αa) +

∑
α0=0, α=β
|α|=2M−2

(
α

β

) ∫
T3

(∂β K )θ̄ · (∂αa)

such that

|I2| ≲ ∥∇
2M−1K∥L∞∥θ̄∥L2∥∇

2M−1a∥L2 + ∥∇
2M−2K∥L∞∥∇̄θ∥L2∥∇

2M−1a∥L2

+ ∥∇
2M−2K∥L∞∥θ̄∥L2∥∇

2M−2a∥L2 ≲ ∥K∥H2M+1∥θ̄∥H1∥a∥H2M−1 ≲ F1/2
M K1/2

1 D1/2
M .

Hands-on high-low estimates. II12 can be estimated using “hands-on high-low estimates”. We split II12 as

II12 =

∑
α0⩾1, β0=0, β+γ=α

|α|P⩽2M, |β̄|⩽2M−3

(
α

β

) ∫
T3

(∂β K )(∂γ θ̄ ) · (∂αa) ⩽
∑
···

|β̄|⩽2M−5

| · · · |︸ ︷︷ ︸
(1)

+

∑
···

|γ |P⩽2M−1

| · · · |︸ ︷︷ ︸
(2)

,

where
(1) + (2) ⩽ ∥∂ β̄ K∥L∞∥∂γ θ̄∥L2∥∂αa∥L2 + ∥∂ β̄ K∥L2∥∂γ θ̄∥L∞∥∂αa∥L2 ≲ E1/2

M DM .

Using Corollary B.2. The terms I11 and I12 can be estimated using Corollary B.2, which provides a way
to use the Gagliardo–Nirenberg inequality to obtain bounds on products of derivatives in L2. Indeed,

|I11| ≲
∑

p=2M−1
r=2M−2,...,2M+1

r+s=2M+1

C(p, r)

∫
T3

|∇
r K ||∇

s θ̄ ||∇
pa| ≲

∑
···

∥|∇
r−(2M−2)

∇
2M−2K ||∇

s θ̄ |∥L2∥∇
pa∥L2

≲
∑

r=2M−2,...,2M+1
r+s=2M+1

(∥∇2M−2K∥L∞∥θ̄∥H r+s−(2M−2) + ∥∇
2M−2K∥H r+s−(2M−2)∥θ̄∥L∞)∥a∥H2M−1

≲ (∥K∥H2M ∥θ̄∥H3 + ∥K∥H2M+1∥θ̄∥H2)∥a∥H2M−1 ≲ ∥K∥H2M+1∥θ̄∥H3∥a∥H2M−1
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such that |I11| ≲ F1/2
M K1/2

2 D1/2
M , and, similarly,

|I12| ⩽
∑

p=2M−1
r+s=2M+1

r⩽2M−3

C(p, r)

∫
T3

|∇
r K ||∇

s θ̄ ||∇
pa| ≲

∑
···

∥|∇
r K ||∇

s−4
∇

4θ̄ |∥L2∥∇
pa∥L2 ≲ E1/2

M DM .

Special consideration. Finally, we estimate II11 and II3. Recall that

II11 =

∑
α0⩾1, β0=0, |α|P⩽2M

|β̄|=2M−2,...,2M, β+γ=α

(
α

β

) ∫
T3

(∂β K )(∂γ θ̄ ) · (∂αα).

There are two important observations to make here.

• Since α0 ⩾ 1 and |α|P ⩽ 2M , we control ∂αa in DM in the following way:

∥∂αa∥L2 ≲ ∥∂t a∥P2M−2 ≲ D1/2
M .

• We must use FM to control ∂β K when β0 = 0 and |β̄|⩾ 2M −2, so we therefore ask as little regularity
as possible of θ̄ (to invoke EI for the smallest possible I ). We thus split the estimate depending on whether
or not we can control ∂β K in L∞ via FM .

We obtain

|II11| ≲
∑
···

|β̄|=2M−2,2M−1

· · · +

∑
···

|β̄|=2M

· · · ≲
∑
···

∥∂β K∥L∞∥∂γ θ̄∥L2∥∂αa∥L2 +

∑
···

∥∂β K∥L4∥θ̄∥L4∥∂αa∥L2

≲ ∥K∥H2M+1∥θ̄∥P2∥∂t a∥P2M−2 + ∥K∥H2M+1∥θ̄∥H1∥∂t a∥P2M−2 ≲ F1/2
M K1/2

1 D1/2
M .

Now we estimate II3. Recall that

II3 =

∑
α0⩾1, |α|P⩽2M
β0⩾2, β+γ=α

(
α

β

) ∫
T3

(∂β K )(∂γ θ̄ ) · (∂αa).

The key observation is the following: when β0 ⩾ 2 we control ∂
β0
t K at parabolic order 2M + 1. Conse-

quently, if |β|P ⩽ 2M − 1 then we control ∂β K in L∞ via EM since

∥∂β K∥L∞ ≲ ∥∂2
t K∥P2+|β|P −4 ≲ ∥∂2

t K∥P2M−3 ≲ E1/2
M .

We may then estimate II3 with the usual “hands-on high-low” estimates. We note that, since |α|P ⩽ 2M
and β+γ =α, it follows from Corollary B.2 that, as long as M ⩾1, either |β|P ⩽2M−1 or |γ |P ⩽2M−1.
Therefore,

|II3| ≲
∑
···

|β|P⩽2M−1

|· · ·|︸︷︷︸
(1)

+

∑
···

|γ |P⩽2M−1

|· · ·|︸︷︷︸
(2)

,

where
(1) + (2) ⩽ ∥∂β K∥L∞∥∂γ θ̄∥L2∥∂αa∥L2 + ∥∂β K∥L2∥∂γ θ̄∥L∞∥∂αa∥L2 ≲ E1/2

M DM .

Putting all these estimates together we see that we have obtained |I8| ≲ E1/2
M DM +F1/2

M K1/2
2 D1/2

M . □
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As mentioned at the beginning of this section, at the high level both the improvement to the dissipation
and the control of the interaction only allows us to close the energy estimates in a time-integrated fashion.
This is because the closure of the estimates relies crucially on playing the potential growth of FM against
the decay of intermediate norms KI and Klow. The next two results record precisely this balancing act
between growth and decay. First we consider the growth-decay interactions arising from the improvement
of the dissipation.

Lemma 4.27. Suppose that M ⩾ 3 and that, for some time horizon T > 0,

sup
1⩽I⩽M

sup
0⩽t⩽T

KI (t)(1 + t)2M−2I
=: C0 < ∞ (4-35)

and, for every 0 ⩽ t ⩽ T ,

F1/2
M (t) ≲ α

1/2
0 + β

1/2
0

∫ t

0
D1/2

M (s) ds + γ
1/2
0 K1/2

M (t)

for some α0, β0, γ0 > 0. Then, for every 0 ⩽ t ⩽ T ,∫ t

0
∥(u, θ, ∂tθ)∥2

L∞FM ≲ α0C0 + (β0 + γ0)C0

∫ t

0
DM(s) ds.

Proof. First we note that by interpolating (4-35) we may obtain decay estimates for fractional Sobolev
norms — this is very similar to what was done by interpolation in Step 1 of Proposition 4.8. Indeed, for
any s ∈ R which satisfies 2 ⩽ s ⩽ 2M , we may pick σ = (2M − s)/(2M − 2) and deduce that

∥(u, θ)∥2
H s ≲ ∥(u, θ)∥2σ

H2∥(u, θ)∥
2(1−θ)

H2M ⩽ Cσ
0 (1 + t)(2M−2)σ C1−σ

0 = C0(1 + t)2M−s

and, similarly, ∥∂t(u, θ)∥2
H s ≲ C0(1 + t)2M−2−s . Crucially, s =

7
4 satisfies both s > 3

2 , such that H 7/4

embeds continuously into L∞, and 2M − 2 − s > 2 (since M ⩾ 3) such that the resulting decaying bound
is integrable. The term ∥(u, θ, ∂tθ)∥2

L∞ may then be shown to decay fast enough, in the space H 7/4, to
justify the estimate.

Using Cauchy–Schwarz on
∫
D1/2

M thus tells us that∫ t

0
∥(u, θ, ∂tθ)∥2

L∞FM ≲
∫ t

0

(
C0

(1 + s)2M−2−7/4

)(
α0 + β0

(∫ s

0
D1/2

M (r) dr
)2

ds
)

+ γ0C0

∫ t

0
DM

≲ α0C0 + β0C0

∫ t

0

s

(1 + s)2M−15/4

(∫ s

0
DM(r) dr

)
ds + γ0C0

∫ t

0
DM

≲ α0C0 + (β0 + γ0)C0

∫ t

0
DM(s) ds. □

Now we consider the growth-decay interactions arising from the control of the high-level interactions.

Lemma 4.28. Suppose that M ⩾ 4, that

F1/2
M (t) ≲ α

1/2
0 + β

1/2
0

∫ t

0
D1/2

M (s) ds + γ
1/2
0 K1/2

M (t)

for some α0, β0, γ0 > 0, and that Klow(t) ≲ min(D2(t), C0(1 + t)−(2M−4)). Then∫ t

0
K1/2

low(s)F1/2
M (s)D1/2

M (s) ds ≲ (α
1/2
0 + β

1/2
0 C1/2

0 + γ
1/2
0 C1/2

0 )

∫ t

0
DM(s) ds.
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Proof. By applying Cauchy–Schwarz to
∫
D1/2

M we deduce that∫ t

0
K1/2

low(s)F1/2
M (s)D1/2

M (s) ds

≲ α
1/2
0

∫ t

0
D1/2

2 D1/2
M + β

1/2
0

∫ t

0

C1/2
0

(1 + s)M−2

(∫ s

0
D1/2

M (r) dr
)
D1/2

M (s) ds + γ
1/2
0 C1/2

0

∫ t

0
DM

≲ (α0 + γ
1/2
0 C1/2

0 )

∫ t

0
DM + β

1/2
0 C1/2

0

∫ t

0

D1/2
M (s)

(1 + s)M−2 s1/2
(∫ t

0
DM(r) dr

)1/2

ds︸ ︷︷ ︸
(⋆)

.

Employing the Cauchy–Schwarz inequality again and noting that 2M − 5 > 1 (since M ⩾ 4), we see that

(⋆) ≲

(∫ t

0

D1/2
M (s)

(1 + s)M−5/2 ds
)(∫ t

0
DM(s) ds

)1/2

⩽

(∫ t

0

1

(1 + s)2M−5 ds
)1/2(∫ t

0
DM(s) ds

)
≲
∫ t

0
DM(s) ds. □

We conclude this section with the third of the four building blocks of the scheme of a priori estimates
and close the interactions at the high level. This is done in Proposition 4.29 which synthesizes the results
of this section. In particular, recall that EM , which appears in Proposition 4.29 below, is defined in (3-2).

Proposition 4.29 (closing the energy estimates at the high level). Let M ⩾ 4 be an integer. There exist
ηM > 0, 0 < δM ⩽ 1, and CH > 0 such that the following holds: for any time horizon T > 0, any
0 < η ⩽ ηM , any 0 < δ ⩽ δM , and any C > 0, if

(EM +FM)(0) ⩽ η, (4-36a)

sup0⩽t⩽T sup1⩽I⩽M KI (t)(1 + t)2M−2I
+Klow(t)(1 + t)2M−4 ⩽ δ, (4-36b)

sup0⩽t⩽T EM(t) ⩽ δ, (4-36c)

FM(t) ⩽ C
(
FM(0) +

(∫ t
0D

1/2
M (s) ds

)2
+KM(t)

)
for all 0 ⩽ t ⩽ T, (4-36d)

then
sup

0⩽t⩽T
EM(t) +

∫ t

0
DM(s) ds ⩽ CH (EM +FM)(0). (4-37)

Proof. The basic idea of the proof is that we want to go from the energy-dissipation of the problem,
namely (d/dt)ẼM +DM ≲ IM , to the more useful energy-dissipation relation (d/dt)ẼM +CDM ⩽ 0, where
C > 0 is a universal constant and where the nonnegativity of the improved dissipation DM ensures the
boundedness of the energy EM . This is done by controlling the interactions and improving the dissipation.
However, both of these steps, which are performed precisely in Propositions 4.26 and 4.24, respectively,
are delicate and lead to the appearance of terms that must be controlled in a time-integrated fashion —
this control is recorded in Lemmas 4.27 and 4.28.

First we note that, in light of (4-36b) and (4-36d), Lemmas 4.27 and 4.28 tell us, respectively, that,
since δM ⩽ 1, ∫ t

0
∥(u, θ, ∂tθ)∥2

L∞FM ≲ FM(0) + δ

∫ t

0
DM (4-38)
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and ∫ t

0
K1/2

lowF
1/2
M D1/2

M ≲ (δ1/2
+F1/2

M (0))

∫ t

0
DM . (4-39)

We may now proceed with the energy estimates. Lemmas 4.10 and 4.12 tell us that

ẼM(t) +

∫ t

0
DM(s) ds ≲ ẼM(0) +

∫ t

0
IM(s) ds. (4-40)

Combining the fact that

sup
0⩽t⩽T

∥(u, θ)∥2
H3 + ∥J∥

2
H3 + ∥∂t(u, θ)∥2

H2 + ∥∂t J∥
2
H2 ⩽ sup

0⩽t⩽T
EM(t) ⩽ 1

with Proposition A.3 and Lemma 4.11, we obtain that

ẼM ≍ EM . (4-41)

We may now use (4-41) and Proposition 4.24 first, then use (4-40), Proposition 4.26, and (4-36c) to see
that

EM(t) +

∫ t

0
DM ≲ ẼM(t) +

∫ t

0
DM +

∫ t

0
∥(u, θ, ∂tθ)∥2

L∞FM

≲ ẼM(0) + δ1/2
∫ t

0
DM +

∫ t

0
K1/2

lowF
1/2
M D1/2

M +

∫ t

0
∥(u, θ, ∂tθ)∥2

L∞FM .

Combining this with (4-38), (4-39), and (4-41) allows us to deduce that there exists Cs > 0 such that

EM(t) +

∫ t

0
DM ⩽ Cs(EM +FM)(0) + Cs(δ

1/2
+F1/2

M (0))

∫ t

0
DM .

In particular, if ηM , δM > 0 are chosen sufficiently small to ensure that Cs(δ
1/2
M + η

1/2
M ) ⩽ 1

2 , then we may
deduce (4-37). □

4E. Decay of intermediate norms. In this section we consider the last of the four building blocks of
our scheme of a priori estimates and proceed with the interpolation argument required to obtain the
decay of intermediate norms provided that both the low-level and high-level energies are controlled. This
is supplemented by an auxiliary estimate for ∂2

t θ whose purpose is to improve K2 in order to control
the term involving ∂2

t θ which appears when controlling the high-order interactions — recall that this is
discussed in detail in Section 2D. Note that the functionals EM , E low, EM , and KI and Klow, which will
be used throughout this section, are defined in (3-2), (3-3), (3-5), and (3-6), respectively. We begin with
the interpolation argument.

Proposition 4.30 (decay of intermediate norms). Suppose that there exists a time horizon T > 0, an
integer M ⩾ 2, and a constant C0 > 0 such that

sup
0⩽t⩽T

E low(t)(1 + t)2M−2
+ EM(t) ⩽ C0. (4-42)

Then there exists a constant C I > 0 which depends on M and is universal otherwise such that we may
estimate sup1⩽I⩽M sup0⩽t⩽T KI (t)(1 + t)2M−2I ⩽ C I C0.
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Proof. This estimate on intermediate norms follows from the interpolation of H s spaces which says that,
if f ∈ H l

∩ H h , then f ∈ H i for any l ⩽ i ⩽ h, with the interpolation estimate ∥ f ∥H i ≲ ∥ f ∥
θ
H l ∥ f ∥

1−θ

H h ,
where θ = (h − i)/(h − l). Therefore, for θ = (M − I )/(M − 1),

KI ≲ ∥(u, θ, a)∥2θ
H2∥(u, θ, a)∥

2(1−θ)

H2M + ∥∂t(u, θ, a)∥2θ
L2∥∂t(u, θ, a)∥

2(1−θ)

H2M−2

⩽ 2(∥(u, θ, a)∥2
H2 + ∥∂t(u, θ, a)∥2

L2)
θ
(∥(u, θ, a)∥2

H2M + ∥∂t(u, θ, a)∥2
H2M−2)

1−θ

≲ Eθ
lowE

1−θ
M ≲

(
C0

(1 + t)2M−2

)θ

C1−θ
0 =

C0

(1 + t)2M−2I . □

We now record an auxiliary estimate for ∂2
t θ which will be used to deduce the decay of ∂2

t θ when K2

decays.

Lemma 4.31 (auxiliary estimate for ∂2
t θ ). Suppose that (2-1c) holds. Then, for J = Jeq + K ,

∥J∂2
t θ∥L2 ≲ ∥∂t a∥L2 + ∥(u, θ)∥P2 + (1 + ∥K∥L∞ + ∥∂t K∥L∞)∥θ∥P1

+ (1 + ∥K∥L∞ + ∥∂t K∥L∞)(1 + ∥(u, θ)∥L∞)∥(u, θ)∥P2 .

Proof. This estimate follows immediately from differentiating (2-1c) in time. □

We now improve the control afforded to us by K2 so as to also control the term involving ∂2
t θ which

appears when controlling the high-level interactions.

Corollary 4.32 (improvement of K2). For any time horizon T > 0, if

sup
0⩽t<T

∥(u, θ)(t)∥H3 + ∥J (t)∥H3 + ∥∂t(u, θ)∥H2 + ∥∂t J∥H2 < ∞ (4-43)

and E3 ⩽ 1 on [0, T ), then ∥∂tθ∥L2 ≲ (1 + E1/2
3 )(∥∂t a∥L2 +K1/2

2 ) holds in [0, T ), where the constant
implicit in “≲” is independent of the time horizon T .

Proof. It is crucial to recall here the global assumption that the spectrum of J0(x) is equal to {λ, λ, ν},
where ν > λ > 0, for every x ∈ T3. The key observation is then that the assumption (4-43) combines with
Proposition A.3 to tell us that ∥∂2

t θ∥L2 ⩽ λ−1
∥J∂2

t θ∥L2 . The result then follows from Lemma 4.31. □

To conclude this section we record the decay of Klow, which is the improved version of K2 which also
controls ∂2

t θ .

Corollary 4.33 (decay of Klow). Suppose that there exists a time horizon T > 0, an integer M ⩾ 2, and a
constant C0 > 0 such that

sup
0⩽t⩽T

E low(t)(1 + t)2M−2
+ EM(t) ⩽ C0 ⩽ 1 and sup

0⩽t⩽T
∥J (t)∥H3 + ∥∂t J (t)∥H2 < ∞.

Then sup0⩽t⩽T Klow(t)(1 + t)2M−4 ⩽ C̃ I C0 for some constant C̃ I > 0, which depends only on M and is
universal otherwise.

Proof. This follows directly from combining Proposition 4.30 and Corollary 4.32. □
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4F. Synthesis. In this section we put together all four building blocks of our scheme of a priori estimates
that we have constructed in Sections 4A–4E. This allows us to state and prove our main “a priori estimates”
result in Theorem 4.34 below. Recall that the various energy and dissipation functionals encountered in
the statement and the proof of the theorem below are defined in (3-2)–(3-8).

Theorem 4.34 (a priori estimates). Let M ⩾ 4. There exist ηap, δap, Cap > 0 depending only on M such
that if (u, p, θ, K ) is a solution of (2-1) on the time interval [0, T ], for any T > 0, which satisfies the
smallness conditions

(EM +FM)(0) =: η0 ⩽ ηap ⩽ 1 (4-44)

and

sup
0⩽t⩽T

EM(t) +

∫ T

0
DM ⩽ δap ⩽ 1, (4-45)

then the following estimates hold:

sup
0⩽t⩽T

Elow(t)(1 + t)2M−2
+ EM(t) + Ea

M(t) +
FM(t)
1 + t

+

∫ T

0
DM ⩽ Cap(EM +FM)(0)

and
sup

0⩽t⩽T
E (K )

M (t) ⩽ Cap(EM +FM)(0).

Proof. We take two passes at the estimates in this proof. During the first pass we obtain unstructured
estimates, meaning that the estimates are in term of the smallness parameter and not the initial conditions.
During the second pass we obtain structured estimates, meaning that the estimates are in terms of the
initial conditions.

Both of these passes rely on the four key results we have proved in Section 4, namely Proposition 4.8
where we record the advection-rotation estimates for K , Proposition 4.20 where we close the energy
estimates at the low level, Proposition 4.29 where we close the energy estimates at the high level, and
Proposition 4.30 and Corollary 4.33 where we obtain the decay of the intermediate norms.

Before beginning the proof in earnest we record the smallness conditions which δap and ηap must
satisfy

(1) δap ⩽ max(δlow, δ∗

low) for δlow and δ∗

low as in Proposition 4.20,

(2) (1 + CL)δap ⩽ 1 for CL as in Proposition 4.20,

(3) (1 + (C I + C̃ I )(1 + CL))δap ⩽1 for C I and C̃ I as in Proposition 4.30 and Corollary 4.33, respectively,

(4) ηap ⩽ ηM for ηM as in Proposition 4.29,

(5) (C I + C̃ I )(1 + CL)δap ⩽ δM for δM as in Proposition 4.29,

(6) δap ⩽ δM ,

(7) CHηap ⩽ δlow for CH as in Proposition 4.29,

(8) (1 + CL)CHηap ⩽ 1, and

(9) (1 + (C I + C̃ I )(1 + CL))CHηap ⩽ 1.
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Smallness
assumption

Decay of the
low-level energy

Decay of the
intermediate norms

Control of FM

Boundedness of
the high-level energy

Control of E (K )
M

1L

2D 6D

3A

4H

5L
7A

Legend
99K Unstructured estimates
−→ Structured estimates
n . . . Step n, n = 1, . . . , 7
. . . A Advection-rotation estimates for K
. . . L Closing the low-level energy estimates
. . . H Closing the high-level energy estimates
. . . D Decay of intermediate norms

For example:
3A
−→ indicates that we use the advection-

rotation estimates for K in Step 3 to obtain a structured
estimate.

Figure 5. The strategy of the theorem for the main a priori estimates, namely Theorem 4.34.

To be very clear about the structure of the proof we break it up into seven steps. Note that our scheme
of a priori estimates is also summarized diagrammatically in Figure 5.

Step 1: We close the energy estimates at the low level to deduce the unstructured decay of the low-level
energy. We deduce from (4-45), smallness condition (1), and Proposition 4.20 that

sup
0⩽t⩽T

Elow(t)(1 + t)2M−2 ⩽ CLδap. (4-46)

Step 2: We obtain the unstructured decay of the intermediate norms. Observe that

sup
0⩽t⩽T

∥J (t)∥2
H3 + ∥∂t J (t)∥2

H2 ⩽ sup
0⩽t⩽T

EM(t) < ∞.

Combining this with smallness condition (2) and (4-46), Proposition 4.30 and Corollary 4.33 tell us that

sup
0⩽t⩽T

sup
1⩽I⩽M

KI (t)(1 + t)2M−2I
+Klow(t)(1 + t)2M−4 ⩽ (C I + C̃ I )(1 + CL)δap. (4-47)

Step 3: We obtain our first structured estimate, using the advection-rotation estimates for K to wrest
control over FM . We obtain from (4-44), (4-45), smallness condition (3), (4-47), and Proposition 4.8 that,
for all 0 ⩽ t ⩽ T ,

FM(t) ≲ FM(0) +

(∫ t

0
D1/2

M (s) ds
)2

+KM(t). (4-48)
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Step 4: We close the energy estimates at the high level to obtain the structured boundedness of the
high-level energy (and the time-integrated control over the high-level dissipation). By virtue of (4-44),
(4-45), smallness conditions (4)–(6), (4-47), and (4-48), we may apply Proposition 4.29, which tells us
that

sup
0⩽t⩽T

EM(t) +

∫ t

0
DM(s) ds ⩽ CH (EM +FM)(0). (4-49)

Step 5: We continue our second pass by obtaining structured versions of previously unstructured estimates.
We close the energy estimates at the low level to deduce the structured decay of the low-level energy.
Smallness condition (7), (4-49), and Proposition 4.20 show us that

sup
0⩽t⩽T

Elow(t)(1 + t)2M−2 ⩽ CLCH (EM +FM)(0). (4-50)

Step 6: We revisit Step 2 and obtain the structured decay of intermediate norms. Proposition 4.30 and
Corollary 4.33 tell us, in light of (4-44), smallness condition (8), (4-49), and (4-50), that

sup
0⩽t⩽T

sup
1⩽I⩽M

KI (t)(1 + t)2M−2I
+Klow(t)(1 + t)2M−4 ⩽ (C I + C̃ I )(1 + CL)CH (EM +FM)(0). (4-51)

Step 7: We conclude the proof by using the advection-rotation estimates to get the energetic terms
involving K , i.e., E (K )

M , under control. We deduce from (4-44), smallness condition (9), (4-49), (4-51),
and Proposition 4.8 that sup0⩽t⩽T E (K )

M (t) ≲ (EM +FM)(0), which concludes the proof. □

5. Local well-posedness

In this section we build a local well-posedness theory sufficient to prove the existence of solutions in
the spaces where our a priori estimates apply. We employ a Galerkin scheme to construct a sequence of
approximate solutions of (2-1), and this section is structured as follows. First we formulate appropriate
approximate problems, then in Section 5A we treat in detail the matter of inverting the operator Jeq+Pn◦K
which appears in the approximate problems (where Pn is a projection onto the subspaces where the
approximate solutions live), we obtain various estimates on our sequence of solutions in Section 5B, and
finally we produce local solutions via our Galerkin scheme in Section 5C.

Before writing down the approximate system we will solve, we must introduce the spaces in which we
will solve it. We take V to be the subspace of L2 defined as

V :=

{
Z = (u, θ, K ) ∈ L2(T3

; R3
× R3

× Sym(3)) : ∇ · u = 0 and /
∫

T3
u = 0

}
,

we define σ = σ(δ) > 0 for any δ > 0 such that, for any K ∈ L2(T3
; Sym(3)),

if ∥K∥H3 < σ(δ) then ∥K∥L∞ < 1
2λ and ∥∇K∥L∞ < δ, (5-1)

and we define
U(σ ) := {Z = (u, θ, K ) ∈ V : ∥K∥H3 < σ }. (5-2)

Recall that λ > 0 is the smallest eigenvalue of J0 (and hence of J ) since our global assumption is that
J0(x) has spectrum {λ, λ, ν} for every x ∈ T3, where ν > λ > 0. To define the function spaces where
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the approximate solutions will live, we first define Pn to be the projection onto the Fourier modes with
wavenumber at most n, i.e., P̂n f (k) = 1(|k| ⩽ n) f̂ (k). This allows us to define Pn : V → V via

Pn := Pn ⊕ Pn ⊕ P2n and Vn := PnV = {Z = (u, θ, K ) ∈ V : u, θ ∈ Im Pn and K ∈ Im P2n},

as well as

Un(σ ) := {Zn = (un, θn, Kn) ∈ Vn : ∥Kn∥H3 < σ } = PnU(σ ).

Note that since the projection is performed in a symmetric fashion — i.e., its symbol P̂n(k) = 1(|k| ⩽ n) is
even — it maps real-valued spaces to real-valued spaces. We will produce solutions (un, θn, Kn) ∈ Un(σ )

to the approximate system

∂t un − (∇ · T )(un, θn) = −PnPL(un · ∇un),

∇ · un = 0,

(Jeq + Pn ◦ Kn)∂tθn + Pn((Jeq + Kn)(un · ∇)θn) + Pn((ωeq + θn) × (Jeq + Kn)θn)

+ τ̃ 2ãn
⊥

+ θ × Jeqωeq − 2 vec T (un, θn) − (∇ · M)(θn) = −Pn(θn × Knωeq),

∂t Kn − [2n, Jeq] − [�eq, Kn] = −P2n(un · ∇Kn) + P2n([2n, Kn]),

(5-3)

where (Pn ◦ Kn)v := Pn(Knv) for any v ∈ L2(T3
; R3).

When writing down the associated energy estimate further below we will need to distinguish between
the variables that are viewed as unknowns and those that are viewed as enforcing the constraints. We will
thus recapitulate the system above in the following form (in particular in order to fix notation regarding a
compact way to write down the system above):

∂tvn − (∇ · T )(vn, φn) = f1,

(Jeq + Pn ◦ Kn)∂tφn + Pn((Jeq + Kn)(un · ∇)φn) + Pn((ωeq + θn) × (Jeq + Kn)φn)

+ τ̃ 2b̃⊥
n + φn × Jeqωeq − 2 vec T (vn, φn) − (∇ · M)(φn) = f2,

∂t Hn − [8n, Jeq] − [�eq, Hn] = F3

(5-4)

subject to the constraints{
∇ · un = 0,

∂t Kn + P2n(un · ∇Kn) = P2n([�eq + 2n, Jeq + Kn]).
(5-5)

Here we view (vn, φn, Hn) as the unknowns, where bn = ((Hn)12, (Hn)13) and 8n = ten φn , and
(un, θn, Kn) as the variables enforcing the constraints. In particular, for Zn = (vn, φn, Hn), we have
Wn = (un, θn, Kn) and, for F = ( f1, f2, F3), we may rewrite this form of the system as

T̃n(Kn)∂t Zn −LWn,n Zn = F

subject to the constraints (5-5), where T̃n(Kn) := I3 ⊕ (Jeq + Pn ◦ Kn) ⊕ I3×3 and the operator LWn,n is
given by LWn,n Zn = (−(∇ · T )(vn, φn), (⋆),−[8n, Jeq] − [�eq, Hn]), where

(⋆) = Pn((Jeq + Kn)(un · ∇)φn) + Pn((ωeq + θn) × (Jeq + Kn)φn) + τ̃ 2b̃⊥

n + φn × Jeqωeq

− 2 vec T (vn, φn) − (∇ · M)(φn).
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Since T̃n only has one nontrivial block we will write T̃n(Kn) = I3 ⊕ Tn(Kn) ⊕ I3×3, where we define
Tn(Kn) := Jeq + Pn ◦ Kn . This allows us to rewrite the approximate problem in the form

T̃n(Kn)∂t Zn −LZn,n Zn = Nn(Zn) subject to ∇ · un = 0, (5-6)
where

Nn(Zn) = (−PnPL(un · ∇un), −Pn(θn × Knωeq), −P2n(un · ∇Kn) + P2n([2n, Kn])).

Note that in some situations it is helpful to decompose the linear operator LWn,n into its part that has
constant coefficient and the remainder. More precisely, we write

LWn,n = L0 +LWn,n, (5-7)
where

LWn,n Zn = (0, Pn((Jeq + Kn)(un · ∇)φn) + Pn((ωeq + θn) × (Jeq + Kn)φn) − ωeq × Jeqθn, 0)

and

L0 Zn =

 −(∇ · T )(vn, φn)

τ̃ 2b̃⊥
n + φn × Jeqωeq + ωeq × Jeqθn − 2 vec T (vn, φn) − (∇ · M)(φn)

−[8n, Jeq] − [�eq, Hn]

 .

5A. Inverting T (K ). In this section we deal carefully with the inversion of T (K ) = Jeq + P ◦ K and
the smoothness of its inverse, and we obtain H k-to-H k bounds on the inverse. Note that in this section
we will work in the generic framework where P is an L2-orthogonal projection onto a finite-dimensional
subspace of L2 which is not necessarily Vn (and so P is not necessarily Pn). We begin by establishing
the invertibility of T (K ).

Lemma 5.1 (invertibility of T (K )). Let V ⊆ L2(T3, R3) be a finite-dimensional subspace and let P
denote the L2-orthogonal projection onto V . Let K ∈ L∞(T3, R3×3) be almost everywhere symmetric
and satisfy ∥K∥∞ < 1

2λ. Recall that λ is the repeated eigenvalue of the microinertia, as stated in the
global assumptions of Definition 1.1. Then T (K ) := Jeq + P ◦ K , where (P ◦ K )v := P(Kv) for every
v ∈ L2(T3, R3), is, with respect to the L2 inner product, a self-adjoint invertible operator on V . Moreover,
we have the bound ∥T (K )−1

∥L(V,V ) ⩽ 2/λ.

Proof. The self-adjointness of T (K ) follows from the symmetry of K . Indeed, for every θ, φ ∈ V ,

(T (K )θ, φ)L2 = ((Jeq + P ◦ K )θ, φ)L2 = ((Jeq + K )θ, φ)L2 = (θ, (Jeq + K )φ)L2 = (θ, T (K )φ)L2 .

The invertibility of T (K ) follows from the almost-everywhere invertibility of Jeq + K . Indeed, note that
since T (K ) is a self-adjoint operator it suffices to study the quadratic form that it generates in order to
determine its spectrum. So we note that, for every θ ∈ V ,

(T (K )θ, θ)L2 = ((Jeq + P ◦ K )θ, θ)L2 = ((Jeq + K )θ, θ)L2 > 1
2λ∥θ∥

2
L2,

and hence λmin(T (K ))⩾ 1
2λ. In particular, we deduce that T (K ) is an invertible operator from V to itself,

and we have the bound ∥T (K )−1
∥L(V,V ) ⩽ 2/λ. □

Now that we know that T (K )−1 is well-defined we verify that its dependence on K is smooth.
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Lemma 5.2 (smoothness of T (K )−1). Let V ⊆ L2(T3, R3) and W ⊆ L2(T3, Sym(R3×3)) be finite-
dimensional subspaces, let P denote the L2-orthogonal projection onto V, let U :=

{
K ∈ W : ∥K∥∞ < 1

2λ
}

be the open L∞-ball of radius 1
2λ in W , and let T (K ) := Jeq + P ◦ K for any K ∈ U , where

(P◦K )v := P(Kv) for every v∈ L2(T3, R3). Then the map 8 : U →L(V, V ) defined by 8(K ) :=T (K )−1

is smooth.

Proof. The crucial observation here is that 8 may be written as the composition of T : U → L(V, V ) and
inv : GL(V ) → GL(V ), where GL(V ) := {L ∈ L(V, V ) : L is invertible} and inv(L) := L−1 for every
L ∈ GL(V ). Note that it is precisely Lemma 5.1 which tells us that T (U) ⊆ GL(V ) such that 8 = inv ◦T
is indeed well-defined. All that remains to show is that both T and inv are smooth. The smoothness of inv
is a well-known fact — see for example [Abraham et al. 1988]. To see that T is smooth note that, for every
K , H ∈ U , we have T (K ) − T (H) = P ◦ (K − H). We deduce that T is affine and hence smooth. □

We now turn our attention towards the establishment of H k-to-H k estimates on T (K )−1. In order to
do so we first define the operator M which will be useful when deriving formulae for the derivatives
of T (K )−1.

Definition 5.3. Let V ⊆ L2(T3, R3) be a finite-dimensional subspace and let P denote the L2-orthogonal
projection onto V . For any K ∈ L∞(T3, R3×3), let T (K ) := Jeq + P ◦ K , where (P ◦ K )v := P(Kv)

for any v in L2(T3, R3). We define, for any multi-indices α1, . . . , αm ∈ N3×3 with k := max|αi | and any
K ∈ W k,∞(T3

; R3×3) for which T (K ) is invertible,

M(α1, . . . , αm) := T (K )−1(P ◦ ∂α1 K )T (K )−1(P ◦ ∂α2 K )T (K )−1
· · · T (K )−1(P ◦ ∂αm K )T (K )−1.

With the operator M in hand we may write down useful formulae for derivatives of T (K )−1.

Lemma 5.4 (formula for the derivatives of T (K )−1). Let U and T be as in Lemma 5.2 and let M be as in
Definition 5.3. For any multi-index α ∈ N3×3 and any K ∈ W |α|,∞(T 3, R3×3), we have the identity

∂α(T (K )−1) =

|α|∑
k=1

(−1)k
∑

β1+···+βk=α

M(β1, . . . , βk)(K ).

Proof. The fundamental observations are that taking a single derivative of the maps K 7→ T (K ) and
K 7→ T (K )−1 yields

∂i (T (K )) = P ◦ ∂i K and ∂i (T (K )−1) = −T (K )−1(P ◦ ∂i K )T (K )−1

(see Lemma 5.2 for analogous computations). Using these two identities we may deduce an identity for
derivatives of M :

∂i (M(α1, α2, . . . , αm)(K ))

= M(α1 + ei , α2, . . . , αm)(K ) + · · · + M(α1, α2, . . . , αm + ei )(K )

− M(ei , α1, α2, . . . , αm)(K ) − M(α1, ei , α2, . . . , αm)(K ) − · · · − M(α1, α2, . . . , αm, ei )(K ).

The result then follows by induction. □
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In light of these formulae for derivatives of T (K )−1 we may now conclude this section and obtain
H k-to-H k bounds on T (K )−1.

Lemma 5.5 (H k bounds on T (K )−1). Let U and T be as in Lemma 5.2. For every k ⩾ 2 and every
K ∈ U ∩ H k+2, we have ∥T (K )−1

∥L(H k ,H k) ≲ ∥K∥H k + ∥K∥
k
H k+2 .

Proof. As a starting point, combining Lemmas 5.1 and 5.4 tells us that, for any multi-indices β1, . . . , βm

and for M as in Definition 5.3, if we write α := β1 + · · · +βm and k = |α| then

∥M(β1, . . . , βm)(K )∥L(L2,L2) ⩽ ∥T (K )−1
∥

k+1
L(L2,L2)

m∏
i=1

∥∂βi K∥L∞ ⩽
(2
λ

)k+1
∥∇K∥

k
W k−1,∞ ≲ ∥K∥

k
H k+2

since, when n = 3, H 2(T3) ↪→ L∞(T3).
We may now combine this inequality with Lemma 5.4 to obtain L2-to-L2 bounds on ∂β(T (K )−1): for

any multi-index β ∈ N3 with |β| = l,

∥∂β(T (K )−1)∥L(L2,L2) ⩽
l∑

i=1

∑
γ1+···+γi =β

∥M(γ1, . . . , γi )(K )∥L(L2,L2) ≲ ∥K∥
l
H l+2 .

We may now finally obtain H k-to-H k bounds on T (K )−1. For any v ∈ H k(T3, R3),

∥T (K )−1v∥
2
H k =

∑
|α|⩽k

∥∂α(T (K )−1v)∥2
L2 ⩽

∑
|α|⩽k

∑
β+δ

∥∂β(T (K )−1)∥2
L(L2,L2)

∥∂δv∥
2
L2

≲
∑
|α|⩽k

∑
β+δ=α

∥K∥
2|β|

H |β|+2∥v∥
2
H |δ| ≲ (∥K∥

2
H2 + ∥K∥

2k
H k+2)∥v∥

2
H k ,

where note that the last inequality follows by interpolation. □

5B. Estimates for the approximate problem. In this section we obtain two types of estimates; a priori
estimates on the sequence of approximate solutions and estimates of the initial energy (which involves
temporal derivatives) in terms of purely spatial norms.

Note that by contrast with the main scheme of a priori estimates built in Section 4, the a priori estimates
here are almost exclusively centered around energy estimates (some advection-rotation estimates for Kn

are present, but play an auxiliary role). This is because we are working locally in time and therefore can
get away with “sloppier” estimates, in the sense that the nonlinear interactions need not be estimated in
structured ways (e.g., as |I| ≲

√
ED) such that cruder estimates (e.g., |I| ≲ E3/2) suffice.

This section is structured as follows. First we record some projected variants of the advection-rotations
estimates, then we proceed with the energy estimates, and finally we turn our attention to estimates of the
initial energy in terms of purely spatial norms.

As a precursor to H k estimates for the projected advection-rotation operator appearing in the last
equation of system (5-3), we first obtain an L2 estimate. Note that (5-8) in the statement of Lemma 5.6
is equivalent to the last equation of system (5-3) for an appropriate definition of F . It is written in this
slightly different form since it makes it clear which operator produces good L2 estimates, and hence
which operator must be kept on the left-hand side when taking derivatives and performing H k estimates.
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Lemma 5.6 (L2 estimates for projected advection-rotation equations). Let Kn ∈ L2(T3
; Sym(3))∩ Im Pn ,

let u be divergence-free, and let 2 be antisymmetric. If Kn solves

Pn ◦ (∂t + u · ∇ − [�eq + 2, · ])Kn = F, (5-8)

then d
dt ∥Kn∥L2 ⩽ ∥F∥L2 .

Proof. The key observation is that

d
dt

∥Kn∥L2 =
d
dt

(∫
T3

|Kn|
2
)1/2

=
1
2

(∫
T3

|Kn|
2
)−1/2 ∫

T3
2Kn : ∂t Kn =

(Kn, ∂t Kn)L2

∥Kn∥L2
, (5-9)

where we may bound (Kn, ∂t Kn)L2 via a simple energy estimate on (5-8). Indeed it follows from (5-8),
the incompressibility of u, and Lemma A.5 that∫

T3
∂t Kn : Kn =

∫
T3

(∂t + u · ∇ − [�eq + 2, · ])Kn : Kn =

∫
T3

F : Kn. (5-10)

Putting (5-9) and (5-10) together with the Cauchy–Schwarz inequality allows us to conclude. □

With this L2 estimate in hand we may now derive H k estimates for Kn .

Lemma 5.7 (H k estimates for projected advection-rotation equations). Let Kn ∈ L2(T3
; Sym(3))∩Im Pn ,

let u be divergence-free, and let 2 be antisymmetric. If Kn solves Pn ◦ (∂t + u · ∇ − [�eq + 2, · ])Kn = 0
and satisfies ∥Kn∥∞, ∥∇Kn∥∞ ≲ 1, then, for every k ⩾ 0,

∥Kn(t)∥H k ≲ exp
(∫ t

0
∥(u, θ)(s)∥H3 ds

)(
∥Kn(0)∥H k +

∫ t

0
∥(u, θ)(s)∥H k ds

)
.

Proof. Since Pn commutes with ∂α and since ∥Pn∥L(L2,L2) ⩽ 1, we may deduce that

∥[Pn ◦ (u · ∇), ∂α
]Kn∥L2 = ∥(Pn ◦ [u · ∇, ∂α

])Kn∥L2 ⩽ ∥[u · ∇, ∂α
]Kn∥L2,

and similarly
∥[Pn ◦ [2, · ], ∂]Kn∥L2 ⩽ ∥[[2, · ], ∂α

]Kn∥L2 .

With these two commutator inequalities and Lemma 5.6 in hand we may proceed as in Lemma 4.4 to
deduce the claim, keeping in mind that ∥Kn∥L∞, ∥∇Kn∥L∞ ≲ 1. □

We now turn our attention to the energy-dissipation structure of the approximate problem. We begin
by defining appropriate versions of the energy.

Definition 5.8 (versions of the local energies). For Z = (u, θ, K ), we define EK ,loc, ẼM,loc, and EM,loc

as follows:

EK ,loc(u, θ, K ) :=
1
2

∫
T3

|u|
2
+

1
2

∫
T3

(Jeq + K )θ · θ +
1
2

τ̃ 2

ν − λ

∫
T3

|K |
2, (5-11)

while
ẼM,loc(Z) :=

∑
|α|P⩽2M

EK ,loc(∂
α Z) and EM,loc(Z) :=

∑
|α|P⩽2M

∥∂α Z∥
2
L2 . (5-12)

We now precisely compare various versions of the energy. We emphasize that Lemma 5.9 differs from
Lemma 4.11; the former is a consequence of smallness, whereas the latter is a consequence of regularity.
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Lemma 5.9 (comparisons of the different versions of the local energies). Let EM,loc and ẼM,loc be defined
as in Definition 5.8. There exist constants c̃E , C̃E > 0 such that if ∥K∥L∞ < 1

2λ then we have the estimate
c̃EEM,loc ⩽ ẼM,loc ⩽ C̃EEM,loc.

Proof. The key observation is that since the spectrum of Jeq is {λ, λ, ν}, if ∥K∥L∞ < 1
2λ then the spectrum

of Jeq + K is contained in
( 1

2λ, ν +
1
2λ
)
. The claim then follows as in Lemma 4.11. □

We now record an elementary lemma which is crucial in deriving the energy-dissipation relation associ-
ated with the approximate system. Indeed, Lemma 5.10 below is precisely what justifies approximating K
with twice as many Fourier modes as the other variables.

Lemma 5.10 (finite Fourier mode cut-off of products). For any M ∈ L2(T3
; R3×3) and any L2 vector

field v ∈ Im Pn , if P2n M = 0 then Pn(Mv) = 0.

Proof. Suppose that P2n M = 0 and that v ∈ Vn . Then M̂v(k) =
∑

|l|>2n M̂(l)v̂(k − l). In particular, if
|k| ⩽ n and |l| > 2n then |k − l| > n such that, since v ∈ Vn , we have that v̂ j (k − l) = 0. This shows that
M̂v(k) = 0 for any |k| ⩽ n, i.e., indeed Pn(Mv) = 0. □

We are now equipped to state and prove the energy-dissipation relation associated with the approximate
system. In particular, as discussed in more detail in Section 2E, note that in the approximate system
considered below in Proposition 5.11 we use regular time derivatives for the unknowns v and H and
an advective time derivative for φ. We could have used advective derivatives for v and H , but this
formulation makes it more clear which nonlinear structure is optional and which is not. In particular, as
discussed in Section 2E, the nonlinear structure in the equation governing the dynamics of φ is essential
in order to obtain a good energy-dissipation relation.

Proposition 5.11 (generic energy-dissipation relation associated with the approximate system). Suppose
that the unknowns (v, φ, H) and b, where b = (H12, H13) and 8 = ten φ, and the constraint variables
(u, θ, K ) satisfy

∂tv − (∇ · T )(v, φ) = f1,

(Jeq + Pn ◦ K )∂tφ + Pn((Jeq + K )(u · ∇)φ) + Pn((ωeq + θ) × (Jeq + K )φ)

+τ̃ 2b̃⊥
+ φ × Jeqωeq − 2 vec T (v, φ)− (∇ · M)(φ) = f3,

∂t H − [8, Jeq] − [�eq, H ] = F3

subject to the constraints {
∇ · u = 0,

∂t K + P2n(u · ∇K ) = P2n([�eq + 2, Jeq + K ]),
(5-13)

where (v, φ, H) ∈ Vn and K ∈ Im P2n . Then the following energy-dissipation identity holds:

d
dt

(∫
T3

1
2
|v|

2
+

∫
T3

1
2
(Jeq+K )φ ·φ+

∫
T3

1
2

τ̃ 2

ν−λ
|H |

2
)

+D(v, φ) =

∫
T3

f1 ·v+

∫
T3

f2 ·φ+

∫
T3

τ̌ F3 : H,

where τ̌ =
1
2 τ̃ 2/(ν − λ). Recall that the dissipation D is defined in (3-7).
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Proof. We begin by computing the time derivative of the kinetic energy due to u:

d
dt

∫
T3

1
2 |v|

2
=

∫
T3

(∂tv) · v =

∫
T3

(∇ · T )(v, φ) · v +

∫
T3

f1 · v = −

∫
T3

T (v, φ) : ∇v +

∫
T3

f1 · v.

We now compute the time derivative of the kinetic energy due to ω. In light of (5-13) we see that

d
dt

∫
T3

1
2(Jeq + K )φ · φ =

∫
T3

1
2((∂t + u · ∇)K )φ · φ +

∫
T3

(Jeq + K )(∂t + u · ∇)φ · φ =: I + II,

where we may combine the second constraint of (5-13) and Lemma 5.10, and use Lemma A.4 to see that

I =

∫
T3

1
2 Pn(((∂t +u ·∇)K )φ)·φ =

∫
T3

1
2 Pn([�eq +2, Jeq +K ]φ)·φ =

∫
T3

1
2 [�eq +2, Jeq +K ]φ ·φ

=

∫
T3

(ωeq +θ)×(Jeq +K )φ ·φ =

∫
T3

Pn((ωeq +θ)×(Jeq +K )φ)·φ,

and where we may compute directly that

II =

∫
T3

Pn((Jeq + K )(∂t + u · ∇)φ) · φ =

∫
T3

(Jeq + Pn ◦ K )∂tφ + Pn((Jeq + K )(u · ∇)φ)φ.

Adding I and II together therefore tells us that

d
dt

∫
T3

1
2(Jeq + K )φ · φ = −

∫
T3

τ̃ 2b̃⊥
· φ +

∫
T3

2 vec T (v, φ) · φ +

∫
T3

(∇ · M)(φ) · φ +

∫
T3

f2 · φ

=

∫
T3

τ̃ 2b · φ̄⊥
+

∫
T3

T (v, φ) : 8 −

∫
T3

M(φ) : ∇φ +

∫
T3

f2 · φ.

Finally, we compute the energetic contribution from H . As a preliminary, note that we can deduce from
Lemma A.6 that

[8, Jeq] = −(ν − λ)

(
0 φ̄⊥

(φ̄⊥)
T 0

)
.

We may therefore compute that, in light of the equation above and Lemma A.5,

d
dt

∫
T3

1
2 |H |

2
=

∫
T3

(∂t H) : H =

∫
T3

[8, Jeq] : H +

∫
T3

[�eq, H ] : H +

∫
T3

F3 : H

= −(ν − λ)

∫
T3

φ̄⊥
· b +

∫
T3

F3 : H.

To conclude we multiply this last identity by τ̃ 2/(ν − λ) and add it to the identities obtained above for
the evolution of the different components of the kinetic energy. Upon noting that∫

T3
T (v, φ) : (∇v − 8) +

∫
T3

M(φ) : ∇φ = D(v, φ)

(see Proposition 4.9 for details), we deduce the claim. □

With the energy-dissipation in hand, we now tackle the nonlinear interactions. We begin by recording
the precise form of the interactions. Recall that EK ,loc and D are defined in (5-11) and (3-7), respectively.
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Lemma 5.12 (recording the form of the local interactions). Let Z = (u, θ, K ) ∈ Vn solve (5-6). Then for
every multi-index α ∈ N1+3 we have that

d
dt

EK ,loc(∂
α Z) + D(∂αu, ∂αθ) = N α,

where

N α
= −

∫
T3

∂α(u · ∇u) · ∂αu −

∫
T3

∂α(θ × Kωeq) · ∂αθ

− τ̌

∫
T3

∂α(u · ∇K ) : ∂α K + τ̌

∫
T3

∂α([2, K ]) : ∂α K +

∫
T3

[K∂t , ∂
α
]θ · ∂αθ

−

∫
T3

[(Jeq + K )(u · ∇), ∂α
]θ · ∂αθ −

∫
T3

[(ωeq + θ) × (Jeq + K ), ∂α
]θ · ∂αθ

for τ̌ := τ̃ 2/(ν − λ).

Proof. If Z solves (5-6) then, for any multi-index α, we have that ∂α Z solves

T̃n(K )∂t∂
α Z −LZ ,n∂

α Z = ∂α(Nn(Z)) + [T̃n(K )∂t , ∂
α
]Z − [LZ ,n, ∂

α
]Z =: Fα

n

subject to
∇ · u = 0 and ∂t K + P2n(u · ∇K ) = P2n([�eq + 2, Jeq + K ]),

and hence Proposition 5.11 tells us that

d
dt

EK ,loc(∂
α Z) + D(∂αu, ∂αθ) =

∫
T3

Fα
n ·C∂α Z =: N α,

where C = I3 ⊕ I3 ⊕ τ̌ I3×3. To compute N α it suffices to use the fact that Pn and ∂α commute, to recall
that T̃n(K ) = I3 ⊕ (Jeq + Pn ◦ K )⊕ I3×3, and to split LZ ,n into its part with constant coefficients and the
remainder, as is done in (5-7). □

Having recorded the precise form of the interactions we estimate them.

Lemma 5.13 (estimates of the local interactions). Let M ⩾ 4 be an integer and let N :=
∑

|α|P⩽2M N α

for N α as in Lemma 5.12. The following estimate holds:

|N | ≲ ∥∇K∥L∞∥(u, θ)∥2
P2M+1 + ∥(u, θ, K )∥3

P2M + ∥(u, θ, K )∥4
P2M .

Proof. Let us write the terms in N as N α
1 , . . . ,N α

7 , following the indexing of Lemma 5.12, such that

N =

∑
|α|P⩽2M

N α
1 + · · · +N α

7 . (5-14)

We will estimate each of these seven terms in turn. First, however, we note that the interaction term
N α

5 = −
∫

T3[K∂t , ∂
α
]θ · ∂αθ bears a particular importance in this estimate. Indeed, due to the temporal

derivative appearing in the commutator we must invoke a parabolic count of 2M + 1 derivatives acting
on θ , which gives rise to the term ∥∇K∥L∞∥(u, θ, K )∥2

P2M+1 in the estimate. Most notably, N5 is the
only interaction which requires us to invoke a parabolic count of 2M + 1 derivatives.

We now go through the estimates of the interactions one by one — although, due to the great similarity
in estimating many terms, we will only provide details for a few of the interactions.
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Estimating N1. By applying the Leibniz rule we see that

−N α
1 =

∑
β+γ=α
|α|P⩽2M

(
α

β

) ∫
T3

(∂βu · ∇∂γ u) · ∂αu,

where we have used the fact that u is divergence-free to deduce that∫
T3

(u · ∇∂αu) · ∂αu = −
1
2

∫
T3

(∇ · u)|∂αu|
2
= 0.

To estimate N α
1 it then suffices to perform a “hands-on high-low” estimate. Since M ⩾ 3, we note that

(2M − 2) + (2M − 3) > 2M , and hence either |β|P ⩽ 2M − 2 or |γ |P ⩾ 2M − 3, so we may estimate

|N α
1 | ≲

∑
···

|β|P⩽2M−2

∥∂βu∥L∞∥∇∂γ u∥L2∥∂αu∥L2 +

∑
···

|γ |P⩽2M−3

∥∂βu∥L2∥∇∂γ u∥L∞∥∂αu∥L2 ≲ ∥u∥
3
P2M .

Estimating N2, N3, and N4. We proceed as we did for N1 and obtain

|N α
2 | ≲ ∥K∥P2M ∥θ∥

2
P2M , |N α

3 | ≲ ∥K∥
2
P2M ∥u∥P2M , and |N α

4 | ≲ ∥K∥
2
P2M ∥θ∥P2M .

Estimating N5. We split N α
5 into two pieces:

N α
5 =

∑
β+γ=α

β>0

∫
T3

(∂β K )(∂t∂
γ θ) · (∂αθ) =

∑
···

|β|=1

· · · +

∑
···

|β|=2

· · · =: I + II,

where I is the only term in N that requires the use of ∥∇K∥L∞ since it unavoidably contains a parabolic
count of derivatives of 2M + 1. Estimating I is immediate:

|I| =

∣∣∣∣ 3∑
i=1

∫
T3

(∂i K )(∂
α−ei
t θ) · (∂αθ)

∣∣∣∣≲∑
i

∥∇K∥L∞∥∂t∂
α−ei θ∥L2∥∂αθ∥L4 ≲ ∥∇K∥L∞∥θ∥

2
P2M+1 .

Estimating II can be done via “hands-on high-low” estimates very similar to those employed to control N α
1 .

Since M ⩾ 4, we have (2M−2)+ (2M−4) > 2M , and hence |β|P ⩽ 2M−2 or |γ |P ⩽ 2M−4, such that

|II|⩽
∑
···

|β|P⩽2M−2

∥∂β K∥L∞∥∂t∂
γ θ∥L2∥∂αθ∥L2+

∑
···

|γ |P⩽2M−4

∥∂β K∥L2∥∂t∂
γ θ∥L∞∥∂αθ∥L2 ≲∥K∥P2M ∥θ∥

2
P2M .

Estimating N6. We split N6 into two pieces:

N α
6 =

∫
T3

[Jeq(u · ∇), ∂α
]θ · ∂αθ +

∫
T3

[K (u · ∇), ∂α
]θ · ∂αθ

=

∑
β+γ=α

β>0

∫
T3

Jeq(∂
βu · ∇)∂γ θ · ∂αθ +

∑
β+γ+δ=α

β+γ>0

∫
T3

(∂β K )(∂γ u · ∇)∂δθ · ∂αθ =: I + II.

To control I we proceed as we did for N1 and obtain that |I| ≲ ∥(u, θ)∥3
P2M . To control II we proceed in a

similar fashion, namely with “hands-on high-low” estimates. Since the interaction is quartic we will rely
on Lemma B.6 in order to ensure that there are always at least two factors that have a sufficiently low
derivative count.
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More precisely, the key observation is that, since δ < α, all factors in II are controlled in L2 via P2M .
To control II it therefore suffices to ensure that two of the four factors are controlled in L∞ through P2M .
This occurs when

(1) |β| ⩽ |α| − 2 for ∂β K , (2) |γ | ⩽ |α| − 2 for ∂γ u, and (3) |δ| ⩽ |α| − 3 for ∇∂δθ.

Crucially, since M ⩾ 3, and hence (2M − 2)+ (2M − 3) > 2M , Lemma B.6 tells us that at least two out
of (1), (2), or (3) hold. We may then deduce that |II| ≲ ∥K∥P2M ∥(u, θ)∥3

P2M . For example if (1) and (2)
hold then we estimate the interaction as follows:∣∣∣∣∫

T3
(∂β K )(∂γ u · ∇)∂δθ · ∂αθ

∣∣∣∣≲ ∥∂β K∥L∞∥∂γ u∥L∞∥∇∂δθ∥L2∥∂αθ∥L2 ≲ ∥K∥P2M ∥(u, θ)∥3
P2M .

Estimating N7. We proceed similarly to how we handled N6. We begin by splitting N7 into four pieces:

N α
7 =

∫
T3

[ωeq× Jeq, ∂
α
]θ ·∂αθ+

∫
T3

[ωeq×K , ∂α
]θ ·∂αθ+

∫
T3

[θ× Jeq, ∂
α
]θ ·∂αθ+

∫
T3

[θ×K , ∂α
]θ ·∂αθ

=: I+II+III+IV,

where note that I = 0 since [ωeq × Jeq, ∂
α
] = 0. To estimate II and III we proceed as we did for N1 and

obtain that
|II| ≲ ∥K∥P2M ∥θ∥

2
P2M and |III| ≲ ∥θ∥

3
P2M .

Finally, to estimate IV we proceed as we did for II of N6, namely using Lemma B.6 to split up the terms
in a fashion amenable to “hands-on high-low estimates, and obtain that |IV| ≲ ∥K∥P2M ∥θ∥

3
P2M . □

Once the nonlinear interactions are controlled we may deduce the a priori energy estimates recorded in
Lemma 5.14. Recall that ẼM,loc and DM are defined in (5-12) and (3-8), respectively.

Lemma 5.14 (local a priori energy estimates). Suppose that Zn = (un, θn, Kn) ∈ Vn solves (5-6) and
satisfies ∥Kn∥L∞ < 1

2λ. For any integer M ⩾ 4, there exists δloc
ap > 0 such that if ∥∇Kn∥L∞ < δloc

ap then

d
dt

ẼM,loc(Zn) +
1
2DM(un, θn) ⩽ CG(Ẽ3/2

M,loc(Zn) + Ẽ2
M,loc(Zn)). (5-15)

Proof. The energy estimate of Proposition 5.11 combined with Lemma 4.12 tells us that, for N as in
Lemma 5.13,

d
dt

ẼM,loc(Zn) +DM(un, θn) ≲N .

We may combine with the estimate of N of Lemma 5.13 and with Lemma 5.9, since ∥Kn∥L∞ < 1
2λ, to

deduce that there exists C loc
ap > 0 such that

d
dt

ẼM,loc +DM(un, θn) ⩽ C loc
ap ∥∇Kn∥L∞DM(un, θn) + Ẽ3/2

M,loc(Zn) + Ẽ2
M,loc(Zn).

So finally, if we pick δloc
ap > 0 sufficiently small to ensure that C loc

ap δloc
ap ⩽ 1

2 , then we may conclude that
there exists CG > 0 such that (5-15) holds. □

To produce uniform bounds on the approximate solutions from the a priori estimates of Lemma 5.14 it
suffices to couple it with a nonlinear Gronwall-type argument.
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Lemma 5.15 (Bihari argument). Suppose that, for some T > 0, the functions e, d : [0, T ) → [0, ∞) are
continuous and satisfy, for some α0 > 0 and C > 0,

e′(t) + d(t) ⩽ C f (e(t)) for every 0 ⩽ t < T and e(0) ⩽ α0,

where f (x) := x3/2
+ x2 for every x ⩾ 0. Then, for every 0 ⩽ t < min(T, 2F(α0)/C),

e(t) ⩽ F−1(F(α0) −
1
2Ct

)
and

∫ t

0
d(s) ds ⩽ α0 + Ct ( f ◦ F)−1(F(α0) −

1
2Ct

)
,

where F(x) := 1/
√

x − log(1 + 1/
√

x) for every x > 0.

Proof. Bounding e follows from a standard nonlinear Gronwall argument; see for example [Boyer
and Fabrie 2013]. The bound on d follows from integrating the differential inequality in time and the
monotonicity of f . □

We may now state the first of the two main results of this section, obtaining uniform bounds on the
approximate solutions. Recall that ẼM,loc and DM are defined in (5-12) and (3-8), respectively.

Corollary 5.16 (uniform a priori bounds on approximate solutions). Let M ⩾ 4 be an integer, let T > 0
be some time horizon, and let (Zn)n∈N be a sequence of solutions Zn = (un, θn, Kn) ∈ Vn such that, for
every n ∈ N, we have that Zn solves (5-6) and satisfies ∥Kn∥∞ < 1

2λ and ∥∇Kn∥∞ < δloc
ap for δloc

ap as in
Lemma 5.14 on the time interval [0, T ). Then, for every n ∈ N and every α0 > 0, if ẼM,loc(Zn(0)) ⩽ α0 it
follows that, for every 0 ⩽ t < min(T, 2F(α0)/C),

ẼM,loc(Zn(t)) ⩽ F−1(F(α0) −
1
2CG t

)
and ∫ t

0
DM(un(s), θn(s)) ds ⩽ α0 + CG t ( f ◦ F−1)

(
F(α0) −

1
2CG t

)
,

where CG > 0 is as in Lemma 5.14, f (x) := x3/2
+ x2, and F(x) := 1/

√
x − log(1 + 1/

√
x).

Proof. This follows immediately from combining Lemmas 5.14 and 5.15. □

We now turn our attention towards the second of the two main results of this section, namely controlling
the initial energy (which involves temporal derivatives) exclusively in terms of spatial norms. In order to
do so we first record the following estimates of the nonlinearities.

Lemma 5.17 (estimates of the nonlinearities for the approximate problem). Let n, j, k, M ∈ N, where
2 ⩽ j ⩽ M , and let Z = (u, θ, K ) ∈ L2(T3

; R3
× R3

× Sym(3)). The following estimates hold:

(1) ∥LZ ,n Z∥H k ≲ ∥Z∥H k+2 + ∥Z∥
2
H k+1 .

(2) ∥Nn(Z)∥H k ≲ ∥Z∥
2
H k+1 .

(3) ∥[K∂t , ∂
j−1

t ]∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
.

(4) ∥∂
j−1

t (Nn(Z))∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
.

(5) ∥[(Jeq + K )(u · ∇), ∂
j−1

t ]θ∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
+ ∥Z∥

3
P2M

j−1
.

(6) ∥[(ωeq + θ) × (Jeq + K ), ∂
j−1

t ]∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
+ ∥Z∥

3
P2M

j−1
.
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Proof. These estimates rely mostly on the fact that, for s > 3
2 , H s(T3) is a Banach algebra.

To obtain (1) we proceed as in the beginning of Section 5 and split LZ ,n into its part with constant
coefficients and the remainder, writing LZ ,n =L0 +LZ ,n . In particular, the estimate ∥L0 Z∥H k ≲ ∥Z∥H k+2

is immediate. The estimate ∥LZ ,n Z∥H k ≲ ∥Z∥H k+1 +∥Z∥
2
H k+1 follows from the fact that H k+2 is a Banach

algebra and from Lemma B.4. Obtaining (2) follows in the same way.
Obtaining (3)–(6) follows a similar procedure, and we thus only provide the details for (3). Observe that

if a ⩽ j −1 and b ⩽ j −2 then 2M −2a, 2M −2b−2 ⩾ 2M −2 j +2. Crucially, since 2M −2 j +2 ⩾ 2,
we know that H 2M−2 j+2 is a Banach algebra, and hence

∥∂a
t K∂b+1

t θ∥H2M−2 j ≲ ∥∂a
t K∥H2M−2 j+2∥∂b+1

t θ∥H2M−2 j+2 ≲ ∥∂a
t K∥H2M−2 j+2∥∂b+1

t θ∥H2M−2b+2 ≲ ∥Z∥
2
P2M

j−1
.

So finally

∥[K∂t , ∂
j−1

t ]θ∥H2M−2 j ≲
∑

a+b= j−1
b< j−1

∥∂a
t K∂b+1

t θ∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
. □

We may now conclude this section with the second of the two main results of this section and bound
the initial energy in terms of purely spatial norms.

Lemma 5.18 (bounds on the initial energy in terms of purely spatial norms). Let M ⩾ 0 be an integer
and n ∈ N. Then there exist constants C I C , CM > 0 such that if Z = (u, θ, K ) solves

T̃n(K )∂t Z = LZ ,n Z + Nn(Z) (5-16)

and satisfies ∥K∥L∞ < 1
2λ then Z(t) satisfies, for every t for which it is defined,

∥Z(t)∥P2M ⩽ C I C(∥Z(t)∥H2M + ∥Z(t)∥CM
H2M ).

In particular, this holds when t = 0.

Proof. Suppose that Z solves (5-16). Applying j − 1 temporal derivatives then tells us that

T̃n(K )∂t(∂
j−1

t Z) = LZ ,n(∂
j−1

t Z) + [T̃n(K )∂t , ∂
j−1

t ]Z − [LZ ,n, ∂
j−1

t ]Z + ∂
j−1

t (Nn(Z)) =: F j (Z),

where [T̃n(K )∂t , ∂
j−1

t ] = 03 ⊕ Pn ◦ [K∂t , ∂
j−1

t ] ⊕ 03×3 and

[LZ ,n, ∂
j−1

t ] = 03 ⊕ Pn ◦ ([(Jeq + K )(u · ∇), ∂
j−1

t ] + [(ωeq + θ) × (Jeq + K ), ∂
j−1

t ]) ⊕ 03×3.

Therefore,

F j (Z) = LZ ,n(∂
j−1

t Z) + Pn([Kn∂t , ∂
j−1

t ]θ) − Pn([(Jeq + K )(u · ∇), ∂
j−1

t ]θ)

− Pn([(ωeq + θ) × (Jeq + K ), ∂
j−1

t ]θ) + ∂
j−1

t (Nn(Z))

such that, by Lemma 5.17,

∥F j
∥H2M−2 j ≲ ∥∂

j−1
t Z∥H2M−2 j+2 +∥∂

j−1
t Z∥

2
H2M−2 j+1 +∥Z∥

2
P2M

j−1
+∥Z∥

3
P2M

j−1
≲ ∥Z∥P2M

j−1
+∥Z∥

3
P2M

j−1
. (5-17)

In particular, we see that ∂
j

t Z = T̃ (K )−1 F j (Z). We now break into two cases, depending on whether
j ⩽ M − 1 or j = M . For 1 ⩽ j ⩽ M − 1, we have that 2M − 2 j ⩾ 2, so combining Lemma 5.5 with
(5-17) tells us that

∥∂
j

t Z∥H2M−2 j ≲ (∥K∥H2M−2 j + ∥K∥
2M−2 j
H2M−2 j+2)∥F j

∥H2M−2 j ≲ ∥Z∥
2
P2M

j−1
+ ∥Z∥

2M−2 j+3
P2M

j−1
. (5-18)
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For j = M , we may not apply Lemma 5.5, since 2M − 2 j = 0 < 2, but we do not need to, since in
that case we are only after an L2 bound, which Lemma 5.1 readily provides. Indeed, using Lemma 5.1
and (5-17) we see that

∥∂M
t Z∥L2 ⩽

2
λ
∥F M−1(Z)∥L2 ≲ ∥Z∥P2M

M−1
+ ∥Z∥

3
P2M

M−1
. (5-19)

Crucially, combining (5-18) and (5-19) tells us that, for 1 ⩽ j ⩽ M ,

∥Z∥P2M
j

≍ ∥Z∥P2M
j−1

+ ∥∂
j

t Z∥H2M−2 j ≲ ∥Z∥P2M
j−1

+ ∥Z∥
2M−2 j+3
P2M

j−1
,

from which the claim follows by induction. □

5C. The Galerkin scheme. In this section we put together the Galerkin scheme that will produce solutions
to (2-1) locally in time. We proceed in a standard manner, first producing local approximate solutions,
then obtaining uniform estimates on the approximates sufficient to obtain a uniform lower bound on the
time of existence and to pass to the limit by compactness. To conclude we pass to the limit and reconstruct
the pressure. We begin by producing local approximate solutions.

Proposition 5.19 (producing local approximate solutions). Let δloc
ap > 0 be as in Lemma 5.14, pick some

0 < σ < σ(δloc
ap ) as in (5-1), and let U(σ ) be defined as in (5-2). For every Z0 = (u0, θ0, K0) ∈ U(σ ) and

every n ∈ N, there exists a maximal time of existence Tn > 0 and a unique solution Zn = (un, θn, Kn) in
C∞([0, Tn); Un(σ )) of {

T̃n(Kn)∂t Zn = LZn,n Zn + Nn(Zn),

Zn(0) = Pn Z0.
(5-20)

Moreover, we have the following blow-up criterion: for any T > 0, if sup0⩽t⩽T ∥Kn(t)∥H3 < σ then
Tn ⩾ T .

Proof. The key is to write (5-20) as a finite-dimensional ODE in the standard form ẋ(t) = f (x(t)).
Observe that by choice of σ > 0 and definition of U(σ ), it follows from Lemma 5.1 that T̃n(Kn) is
invertible for any Zn ∈ Un(σ ). The system (5-20) is thus equivalent to

∂t Zn = T̃n(Kn)
−1

(LZn,n Zn + Nn(Zn)) =: Fn(Zn) and Zn(0) = Pn Z0.

Since Zn 7→ LZn,n Zn + Nn(Zn) is, up to the appearances of the projections Pn and PL , a polynomial in
(Zn, ∇Zn, ∇

2 Zn), it follows from Lemma 5.2 and the equivalence of H s(T3) norms (s ⩾ 0) on Vn that
Zn 7→ Fn(Zn) is a smooth map from Un(σ ) to Vn . Note that deducing that the image of Fn lies in Vn

comes from the fact that the Leray projection PL enforces the divergence-free condition and preserves the
average of the velocity of u since P̂L(0) = I . By standard well-posedness theory for finite-dimensional
ODEs we may now deduce the result, noting that the blow-up criterion follows from the definition
of U(σ ). □

We may now put together the local a priori estimates of Corollary 5.16 and the a priori projected
advection-rotation estimates for Kn of Lemma 5.7 in order to deduce uniform bounds on the approximate
solutions.
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Proposition 5.20 (uniform bounds on approximate solutions and their intervals of existence). Let σ > 0
and U(σ ) be as in Proposition 5.19, let CK > 0 be the constant implicit in the result of Lemma 5.7 when
k = 3, let M ⩾ 4 be an integer, let Z0 = (u0, θ0, K0) ∈ U(σ ) with ∥Z0∥H2M , ∥K0∥H2M+1 < ∞, and

∥K0∥H3 < σ∗ :=
σ

2CK
, (5-21)

and let (Zn)n∈N be the sequence of approximate solutions obtained in Proposition 5.19, with corresponding
maximal times of existence (Tn)n∈N. There exists 0 < Tlwp ⩽ 1 and there exist ρe, ρd : (0, ∞) → (0, ∞)

and ρ f : (0, ∞)2
→ (0, ∞) which are continuous, strictly increasing in each of their arguments, and

asymptotically vanishing at zero such that Tn ⩾ Tlwp for all n ∈ N and
supn∈N sup0⩽ j⩽M∥∂

j
t Zn∥L∞([0,Tlwp],H2M−2 j ) ⩽ ρe(∥Z0∥H2M ),

supn∈N sup0⩽ j⩽M∥(un, θn)∥L2([0,Tlwp],H2M+1−2 j ) ⩽ ρd(∥Z0∥H2M ),

supn∈N∥Kn∥L∞([0,Tlwp],H2M+1) ⩽ ρ f (∥Z0∥H2M , ∥K0∥H2M+1).

(5-22)

Moreover, Tlwp = φ(∥Z0∥H2M ), where φ is nonincreasing.

Proof. More precisely, let us define

σ0 := 2C̃EC2
I C(∥Z0∥

2
H2M + ∥Z0∥

2CM
H2M ), (5-23)

where C̃E , C I C , CM > 0 are as in Lemmas 5.9 and 5.18. We note that,

• by definition of U(σ ) (and of Un(σ )), for every n ∈ N, we have ∥Kn∥H3 < σ on [0, Tn), where σ > 0
is as in Proposition 5.19, and that,

• by Lemmas 5.9 and 5.18, ẼM,loc(Zn(0)) ⩽ σ0.

We may thus use Corollary 5.16 to deduce that, for all n ∈ N and all 0 ⩽ t < min(Tn, 2F(σ0)/CG),

ẼM,loc(Zn(t)) ⩽ F−1(F(σ0) −
1
2CG t

)
and ∫ t

0
DM(un, θn)(s) ds ⩽ σ0 + CG t ( f ◦ F−1)

(
F(σ0) −

1
2CG t

)
,

where recall that ẼM,loc and DM are defined in (5-12) and (3-8), respectively. In particular, if we pick
t =

1
2(2F(σ0)/CG) =:

1
2 TG then we have that F−1

(
F(σ0) −

1
2CG t

)
= F−1

( 1
2 F(σ0)

)
, and hence, for every

n ∈ N and every 0 ⩽ t ⩽ Tn ∧
1
2 TG ∧ 1,

∥Zn(t)∥2
P2M = EM,loc(Zn(t)) ⩽

1
c̃E

ẼM,loc(Zn(t)) ⩽
1

c̃E
F−1( 1

2 F(σ0)
)
=: ρ2

e (∥Z0∥H2M ) (5-24)

and, since /
∫

T3 u = 0, it follows from Lemma 4.12 that, for every n ∈ N,∫ Tn∧
1
2 TG∧1

0
∥(un, θn)(s)∥2

P2M+1 ds ⩽ CD

∫ Tn∧
1
2 TG∧1

0
DM(s) ds

⩽ CD
(
σ0 + CG( f ◦ F−1)

( 1
2 F(σ0)

))
=: ρ2

d(∥Z0∥H2M ). (5-25)
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We may now appeal to the estimates for ∥Kn∥H3 from Lemma 5.7 to obtain a lower bound on Tn

which is uniform in n. Since ∥Kn(0)∥H3 < σ and since M ⩾ 2, we know from Lemma 5.7 and (5-21)
that, for any n ∈ N and any 0 ⩽ t ⩽ Tn ∧

1
2 TG ∧ 1,

sup
0⩽s⩽t

∥Kn(s)∥H3 ⩽ CK etρe(∥Z0∥H2M )
(

σ

2CK
+ tρe(∥Z0∥H2M )

)
=: ω(tρe(∥Z0∥H2M )),

where ω depends on σ . Crucially, observe that ω(0) =
1
2σ and that ω is strictly increasing, so we see

that, for Tsmall := ω−1
( 2

3σ
)
/ρe(∥Z0∥H2M ) and T̃n := Tn ∧

1
2 TG ∧ Tsmall ∧ 1,

sup
0⩽t⩽T̃n

∥Kn(t)∥H3 ⩽ ω(Tsmallρe(∥Z0∥H2M )) ⩽ 2
3σ.

Therefore, by the blow-up criterion, Tn ⩾
1
2 TG ∧ Tsmall ∧ 1 =: Tlwp for every n ∈ N.

Note that

Tlwp =
1
2 TG ∧ Tsmall ∧ 1 =

F(σ0)

CG
∧

ω−1
( 2

3σ
)

ρe(∥Z0∥H2M )
∧ 1.

In light of (5-23) and the facts that F and ρe are strictly decreasing and strictly increasing, respectively,
we deduce that Tlwp is nonincreasing with respect to ∥Z0∥H2M , as desired.

Finally we record the estimates on K obtained in Lemma 5.7. It follows from the energy-dissipation
estimates (5-24) and (5-25) that

sup
0⩽t⩽Tlwp

∥Kn(t)∥H2M+1 ⩽ C ′

K eρeTlwp(∥K0∥H2M+1 + ρd Tlwp) =: ρ f (∥Z0∥H2M + ∥K0∥H2M+1). □

With these uniform bounds in hand we may move towards passing to the limit. First we record the
following technical lemma which is essential in allowing us to pass to the limit.

Lemma 5.21. Let s ⩾ 0 and f ∈ L2([0, T ); H s(Tn)) for T > 0. Then ∥(Pn − I ) f ∥L2 H s → 0 as n → ∞.

Proof. This follows immediately from Tonelli’s theorem and the monotone convergence theorem. □

We may now pass to the limit by compactness.

Proposition 5.22 (compactness and passage to the limit). Let U(σ ) be as in Proposition 5.19, let M ⩾ 4
be an integer, and let Z0 = (u0, θ0, K0) ∈ U(σ ) with ∥Z0∥H2M , ∥K0∥H2M+1 < ∞, and ∥K0∥H3 < σ∗ for
σ∗ > 0 as in Proposition 5.20. There exist 0 < Tlwp ⩽ 1 and Z = (u, θ, K ) ∈ C2([0, Tlwp] × T3) such that
Z(t, · ) ∈ U(σ ) for all 0 ⩽ t ⩽ Tlwp and Z solves (2-1) and (2-2). Moreover, Z satisfies the estimates

sup
0⩽ j⩽M

∥∂
j

t Z∥L∞ H2M−2 j ⩽ ρe(∥Z0∥H2M ), sup
0⩽ j⩽M

∥∂
j

t (u, θ)∥L2 H2M−2 j+1 ⩽ ρd(∥Z0∥H2M ),

∥K∥L∞ H2M+1 ⩽ ρ f (∥Z0∥H2M , ∥K0∥H2M+1)

for ρe, ρd , and ρ f as in Proposition 5.20.

Proof. Let (Zn)n∈N and (Tn)n∈N denote the approximate solutions and their times of existence as obtained
in Proposition 5.19. Note that, as per Proposition 5.20, we know that Tn ⩾ Tlwp > 0 for some Tlwp which
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is independent of n. We also know from Proposition 5.20 that estimates (5-22) holds. It then follows
from Banach–Alaoglu (i.e., weak-* compactness) that, up to a subsequence which we do not relabel,

∂
j

t Zn
∗

⇀ ∂
j

t Z in L∞H 2M−2 j for every 0 ⩽ j ⩽ M,

∂
j

t (un, θn) ⇀ ∂
j

t (u, θ) in L2 H 2M−2 j+1 for every 0 ⩽ j ⩽ M,

Kn
∗

⇀ K in L∞H 2M+1

(5-26)

for some Z = (u, θ, K ) which satisfies, by weak and weak-* lower semicontinuity of the respective
norms,

sup
0⩽ j⩽M

∥∂
j

t Z∥L∞ H2M−2 j ⩽ ∥Z∥L∞ P2M ⩽
√

ρe, sup
0⩽ j⩽M

∥∂
j

t (u, θ)∥L2 H2M−2 j+1 ⩽ ∥(u, θ)∥L2 P2M+1 ⩽
√

ρd ,

∥K∥L∞ H2M+1 ⩽
√

ρ f .

All that remains is passing to the limit, for which we omit the details since this is done with a standard
application of the Aubin–Lions–Simon compactness theorem (see for example [Boyer and Fabrie 2013]) in
combination with Lemma 5.21 and the fact that H s is a Banach algebra when s > 3

2 . In particular, we can
pass to the limit in the nonlinearities uniformly on [0, Tlwp]×T3 such that the following limits hold in C0

t,x :

Pn(Kn∂tθn) → K∂tθ, Pn((Jeq + Kn)(un · ∇)θn) → (Jeq + K )(u · ∇)θ,

Nn(Zn) → N (Z), and Pn((ωeq + θn) × (Jeq + Kn)θn) → (ωeq + θ) × (Jeq + K )θ. □

The last step of our Galerkin scheme is to reconstruct the pressure and the initial condition.

Corollary 5.23 (reconstructing the pressure and the initial condition). Under the assumptions found in
Proposition 5.22, we know that Z(0) = Z0 pointwise and that there exists p ∈ L2 H 2M+1

∩ L∞ P2M
M−1 such

that Z and p solve (2-1).

Proof. Recovering the initial condition is trivial. Since Zn(0) := Pn Z0 with Z0 ∈ H 2, it follows directly
from the weak convergence in Proposition 5.22 that Zn → Z in C0 H 2, and hence Lemma 5.21 tells us that

∥Z(0) − Z0∥C0
x
≲ ∥Z(0) − Zn(0)∥C0

x
+ ∥Zn(0) − Z0∥C0

x
≲ ∥Z − Zn∥C0 H2 + ∥(Pn − I )Z0∥H2 → 0

as n → ∞.
We now reconstruct the pressure. We have split

∂t u + u · ∇u =
(
µ +

1
2κ
)
1u − κ∇ ×ω − ∇ p

subject to ∇ · u = 0 into two parts, namely

∂t u + PL(u · ∇u) =
(
µ +

1
2κ
)
u − κ∇ ×ω and (I − PL)(u · ∇u) = −∇ p,

where PL is the Leray projector, i.e., the L2-orthogonal projection onto divergence-free vector fields given
by P̂L(k) = I − (k ⊗ k)/|k|

2 for every k ∈ Z3, where ((k ⊗ k)/|k|
2)|k=0 := 0. Then I − PL = ∇1−1

∇ · ,
and hence we may define p := −1−1

∇ · (u · ∇u). In particular, for s > 3
2 , we have the estimate

∥p∥H s+1 ≲ ∥u∥H s ∥u∥H s+1 from which we deduce that, using standard “hands-on high-low estimates”,

∥p∥L2 P2M+1 ≲ ∥u∥L∞ P2M ∥u∥L2 P2M+1 and ∥p∥L∞ P2M
M−1

≲ ∥u∥
2
L∞ P2M . □
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In conclusion, we have proved in this section the following local well-posedness result.

Theorem 5.24 (local well-posedness). Let M ⩾ 4 be an integer, let δloc
ap > 0 be as in Lemma 5.14, let

CK > 0 be the constant implicit in the result of Lemma 5.7 when k = 3, let 0 < σ < σ(δ
ap
loc), and let

σ∗ := σ/(2CK ). Let Z0 = (u0, θ0, K0) ∈ L2(T3
; R3

× R3
× Sym(3)) such that

∇ · u0 = 0, /
∫

T3
u0 = 0, ∥K0∥H3 < σ∗, and ∥Z0∥H2M , ∥K0∥H2M+1 < ∞.

There exist 0 < Tlwp ⩽ 1,

Z = (u, θ, K ) ∈ C2([0, Tlwp] × T3
; R3

× R3
× Sym(3)),

and
p ∈ C2([0, Tlwp] × T3

; R)

such that Z and p form the unique strong solution of (2-1). Moreover, Tlwp = φ(∥Z0∥H2M ) for some
nonincreasing function φ, and for every 0 ⩽ t ⩽ Tlwp, the solution satisfies

∇ · u(t, · ) = 0, /
∫

T3
u(t, · ) = 0, and ∥K (t, · )∥H3 < σ,

as well as the estimates
sup

0⩽ j⩽M
∥∂

j
t Z∥L∞ H2M−2 j + sup

0⩽ j⩽M−1
∥∂

j
t p∥L∞ H2M−2 j ⩽ ρe(∥Z0∥H3M ),

sup
0⩽ j⩽M

∥∂
j

t (u, θ)∥L2 H2M−2 j+1 + ∥∂
j

t p∥L2 H2M−2 j+1 ⩽ ρd(∥Z0∥H2M ),

∥K∥L∞ H2M+1 ⩽ ρ f (∥Z0∥H2M , ∥K0∥H2M+1),

where ρe, ρd : (0, ∞) → (0, ∞) and ρ f : (0, ∞)2
→ (0, ∞) are continuous, strictly increasing in each

of their arguments, and asymptotically vanishing at zero.

Proof. This follows from combining the various results of this section. Producing local approximate
solutions is done using Proposition 5.19. We then employ Proposition 5.20 to obtain uniform bounds
on the times of existence and the approximate solutions, which allows us to pass to the limit using
Proposition 5.22. Finally we reconstruct the pressure and the initial condition using Corollary 5.23. Note
that the uniqueness follows from Theorem A.5 of [Remond-Tiedrez and Tice 2021], which is recorded
below in Theorem 5.25 for the reader’s convenience. □

Theorem 5.25 (uniqueness). Suppose that (u1, p1, ω1, J1) and (u2, p2, ω2, J2) are strong solutions
of (1-1) on some common time interval (0, T ) such that they agree at time t = 0. If J1 is uniformly
positive-definite, pi , ∂t(ui , ωi , Ji ) ∈ L2

T L2, (ui , ωi , Ji ), ∇(ui , ωi , Ji ) ∈ L∞

T L∞, and ∂t J1, ∂tω2 ∈ L∞

T L∞,
then these solutions coincide on (0, T ). Note that here L p

T Lq denotes the space L p([0, T ); Lq(T3)).

6. Continuation argument

In this section we derive the estimates necessary to “glue” the a priori estimates of Section 4 and the local
well-posedness theory of Section 5. We begin with “reduced energy estimates” in Section 6A (whose
purposed is detailed in Section 2F). We recall that while the a priori estimates of Section 4 rely on the
smallness of the solution, the estimates here rely on the smallness of the time interval on which they hold.
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Once we have these reduced energy estimates in hand we obtain supplementary estimates in Section 6B
before recording a continuation argument in Section 6C. In some sense this continuation argument is the
technical implementation of what was heuristically described as “gluing” the a priori estimates and the
local well-posedness together.

6A. Local-in-time reduced energy estimates. In this section we derive the local-in-time reduced energy
estimates. We follow a procedure familiar from Sections 4 and 5B: we first introduce appropriate notation,
then record the relevant energy-dissipation relation and the precise form of the nonlinear interactions that
arise, and finally we estimate these nonlinear interactions and close the reduced energy estimates.

Let us introduce compact notation that will be used throughout this section when developing the local-
in-time reduced energy estimates. Considering the functions Y = (v, φ, b) : [0, T )× T3

→ R3
× R3

× R2,
W = (u, θ, K ) : [0, T ) × T3

→ R3
× R3

× Sym(3), and F = ( f1, f2, f3) : [0, T ) × T3
→ R3

× R3
× R2,

we will write the system
∂tv − (∇ · T )(v, φ) = f1,

(Jeq + K )∂tφ + (Jeq + K )(u · ∇)φ + (ωeq + θ) × (Jeq + K )φ

+ τ̃ 2b̃⊥
+ φ × Jeqωeq − 2 vec T (v, φ)+ (∇ · M)(φ) = f2,

∂t b − τ̃b⊥
+ (ν − λ)φ̄⊥

= f3

in a more compact form as T (K )∂t Y −LW Y =F , where T (K ) = I3 ⊕(Jeq + K )⊕ I2 and the operator LW

is given by LW Y = (−(∇ · T )(v, φ), (⋆), −τ̃b⊥
+ (ν − λ)φ̄⊥) for

(⋆) = (Jeq + K )(u · ∇)φ + (ωeq + θ) × (Jeq + K )φ + τ̃ 2b̃⊥
+ φ × Jeqωeq − 2 vec T (v, φ)+ (∇ · M)(φ).

We also define the associated energy, namely

E(Y ; K ) :=
1
2

∫
T3

|v|
2
+

1
2

∫
T3

(Jeq + K )φ · φ +
1
2

τ̃ 2

ν − λ

∫
T3

|b|
2, (6-1)

and its counterpart summed up to a 2M count of parabolic derivatives, i.e.,

ẼM,K (Y ) :=

∑
|α|P⩽2M

E(∂αY ; K ). (6-2)

We now introduce notation used to write the full system in terms of the system introduced above. So
let us define, for p : [0, T ) × T3

→ R, 3(p) := (−∇ p, 0, 0), and, for Z = (u, θ, K ),

N (Z) = (−u · ∇u, −θ × Kωeq, −u · ∇a + θ3a⊥
+ (K − K33 I2)θ̄

⊥). (6-3)

We may then write the full system (2-1) as

T (K )∂t Y −LZ Y = N (Z) + 3(p) (6-4)

subject to
∇ · u = 0 and ∂t K + u · ∇K = [�eq + 2, Jeq + K ].

Note that the form of N3(Z) in (6-3) comes from Lemma A.6 since, for S = [�eq + 2, Jeq + K ],

(S12, S13) = −(ν − λ)θ̄⊥
+ τ̃a⊥

+ (K − K33 I2)θ̄
⊥

+ θ3a⊥.
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We now record a result akin to Lemma 5.9, precisely comparing various versions of the local energy.

Lemma 6.1 (comparisons of the different versions of the reduced energies). Let ẼM,K be defined as
in (6-2). There exist constants c̃E , C̃E > 0 such that if ∥K∥L∞ < 1

2λ then c̃EEM ⩽ ẼM,K ⩽ C̃EEM .

Proof. This follows by choosing c̃E and C̃E exactly as in Lemma 5.9. □

We now turn our attention to the energy-dissipation relation, which we record below.

Lemma 6.2 (generic energy-dissipation relation for the local-in-time reduced energy estimates). Suppose
that Y = (v, φ, b), W = (u, θ, K ), and p satisfy T (K )∂t Y − LW Y = F + 3(p), where we define
3(p) =: (−∇ p, 0, 0), subject to ∇ · u = ∇ · v = 0 and ∂t K + (u · ∇)K = [�eq + 2, Jeq + K ]. Then

d
dt

E(Y ; K ) + D(u, θ) =

∫
T3

CF · Y, (6-5)

where C := I3 ⊕ I3 ⊕ τ̃ 2/(ν − λ)I2 and D is the usual dissipation, as given in (2-6).

Proof. This energy estimate is obtained in the same way as the energy estimate of Proposition 4.9. □

With the energy-dissipation relation in hand we may identify the precise forms of the nonlinear
interactions in Lemma 6.3 below. Recall that the energy E is defined in (6-1).

Lemma 6.3 (recording the form of the interactions for the local-in-time reduced energy estimate). Suppose
that Z = (u, θ, K ), where a = (K12, K12) and p solve (2-1). Then we have that, for every multi-index
α ∈ N1+3,

d
dt

E(∂αu, ∂αθ, ∂αa; K ) + D(∂αu, ∂αθ) = N α,

where, for τ̌ := τ̃ 2/(ν − λ),

N α
=

∫
T3

[K∂t , ∂
α
]θ · ∂αθ −

∫
T3

[(Jeq + K )(u · ∇), ∂α
]θ · ∂αθ −

∫
T3

[(ωeq + θ) × (Jeq + K ), ∂α
]θ · ∂αθ

−

∫
T3

∂α(u · ∇u) · ∂αu −

∫
T3

∂α(θ × Kωeq) · ∂αθ − τ̌

∫
T3

∂α(u · ∇a) · ∂αa

+ τ̌

∫
T3

∂α(θ3a⊥) · ∂αa + τ̌

∫
T3

∂α((K − K33 I2)θ̄
⊥) · ∂αa. (6-6)

Proof. In order to streamline the proof let us write Y = (u, θ, a). Applying a derivative ∂α to (2-1) shows
that ∂αY solves

T (K )∂t∂
αY −LZ∂αY = [T (K )∂t , ∂

α
]Y − [LZ , ∂α

]Y + ∂α(N (Z)) + 3(p) =: Fα
+ 3(∂α p) (6-7)

subject to (2-1b) and (2-1d). We may thus apply Lemma 6.2 to deduce that

d
dt

E(∂αY ; K ) + D(∂αu, ∂αθ) =

∫
T3

CFα
· ∂αY =: N α,

where C = I3 ⊕ I3 ⊕ τ̌ I2 is as in Lemma 6.2 and where

N α
=

∫
T3

C[T (K )∂t , ∂
α
]Y · ∂αY︸ ︷︷ ︸

N α
I

−

∫
T3

C[LZ , ∂α
]Y · ∂αY︸ ︷︷ ︸

−N α
II

+

∫
T3

C∂α(N (Z)) · ∂αY︸ ︷︷ ︸
N α

III

.
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It now suffices to compute N α
I , N α

II, and N α
III. Since [T (K )∂t , ∂

α
] = 03 ⊕ [K∂t , ∂

α
] ⊕ 02, we see that

N α
I =

∫
T3

[K∂t , ∂
α
]θ · ∂αθ. (6-8)

Now note that

[LZ , ∂α
] = 03 ⊕ ([(Jeq + K )(u · ∇), ∂α

] + [(ωeq + θ) × (Jeq + K ), ∂α
]) ⊕ 02,

and hence

N α
II = −

∫
T3

[(Jeq + K )(u · ∇), ∂α
]θ · ∂αθ −

∫
T3

[(ωeq + θ) × (Jeq + K ), ∂α
]θ · ∂αθ. (6-9)

Finally, it follows immediately from the form of N that

N α
III = −

∫
T3

∂α(u · ∇a) · ∂αu −

∫
T3

∂α(θ × Kωeq) · ∂αθ − τ̌

∫
T3

∂α(u · ∇a) · ∂αa

+ τ̌

∫
T3

∂α(θ3a⊥) · ∂αa + τ̌

∫
T3

∂α((K − K33 I2)θ̄
⊥) · ∂αa. (6-10)

To conclude we sum (6-8)–(6-10) and obtain (6-6). □

We now estimate these interactions.

Lemma 6.4 (estimating the interactions for the local-in-time reduced energy estimates). Let M ⩾ 4
be an integer and let N =

∑
|α|P⩽2M N α for N α as in Lemma 6.3. The following estimate holds: for

Y = (u, θ, a),

|N | ≲ ∥∇K∥L∞∥(u, θ)∥2
P2M+1 + ∥K∥P2M (∥Y∥

2
P2M + ∥Y∥

3
P2M ) + ∥Y∥

3
P2M .

Proof. Let us write the terms in N in order as N α1, . . . ,N α8 . These interactions are either identical or
very similar to the interactions Ni , i = 1, . . . , 7, estimated in Lemma 5.13. We will thus provide very
few details here and instead point to the relevant portions of the proof of Lemma 5.13.

Identical interactions. Some terms in N here are identical to terms in N in Lemma 5.13. The correspon-
dence between these terms, and the ensuing estimates, are recorded below:

N 1 = N5, |N 1| ≲ ∥∇K∥L∞∥θ∥
2
P2M+1 + ∥K∥P2M ∥θ∥

2
P2M ,

N 2 = N6, |N 2| ≲ (1 + ∥K∥P2M )∥(u, θ)∥3
P2M ,

N 3 = N7, |N 3| ≲ ∥K∥P2M (∥θ∥
2
P2M + ∥θ∥

3
P2M ) + ∥θ∥

3
P2M ,

N 4 = N1, |N 4| ≲ ∥u∥
3
P2M ,

N 5 = N2, |N 5| ≲ ∥K∥P2M ∥θ∥
2
P2M .

Similar interactions. The terms N 6 –N 8 are similar to N1 in Lemma 5.13, so proceeding similarly yields

|N 6| ≲ ∥u∥P2M ∥a∥
2
P2M , |N 7| ≲ ∥θ∥P2M ∥a∥

2
P2M , and |N 8| ≲ ∥K∥P2M ∥θ∥P2M ∥a∥P2M . □

We may now combine the energy-dissipation relation of Lemma 6.2 and the interactions estimates
of Lemma 6.4 in order to derive a preliminary form of the reduced energy estimates. Recall that ẼM,K

and DM are defined in (6-2) and (3-8), respectively.
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Lemma 6.5 (reduced a priori estimate). There exist δloc
r > 0 and CG > 0 such that if K satisfies

∥K∥L∞ < 1
2λ and ∥∇K∥L∞ < δloc

r , and Y = (u, θ, a) and Z = (u, θ, K ), where a = (K12, K13), and p
solve (2-1) then

d
dt

ẼM,K (Y ) +
1
2DM(u, θ) ⩽ CG(1 + ∥K∥P2M )g(ẼM,K (Y )),

where g(x) = x + x3/2 for every x ⩾ 0.

Proof. Lemma 6.3 tells us that (d/dt)E(∂αY ; K ) + D(∂αu, ∂αθ) = N α for any multi-index α ∈ N1+3.
We may thus sum over |α|P ⩽ 2M and use Lemmas 4.12, 6.1, and 6.4 to deduce that, for some C1 > 0,

d
dt

ẼM,K (Y ) +DM(u, θ) ⩽ C1∥∇K∥L∞DM(u, θ)+ C1(1 + ∥K∥P2M )g(ẼM,K (Y )).

In particular, picking δloc
r > 0 sufficiently small to ensure that C1δ

loc
r ⩽ 1

2 , we may deduce the result. □

The last tool required to derive the reduced energy estimates is a nonlinear Gronwall-type argument:

Lemma 6.6 (local-in-time Bihari argument). Suppose that e, d : [0, T ) → [0, ∞) for some T > 0 are
continuously differentiable and satisfy, for some C > 0, that e′(t)+ d(t) ⩽ Cg(e(t)) for every 0 < t < T ,
where g(x) =: x + x3/2 for every x ⩾ 0. Suppose, moreover, that there are some 0 ⩽ t1 < t2 < T and
α1 > 0 such that e(t1) ⩽ α1 and t2 − t1 ⩽ min(1, G(α1))/C , where G(x) := log(1 + 1/

√
x) for every

x ⩾ 0. Then, for any t1 ⩽ t ⩽ t2,

e(t) ⩽ G−1( 1
2 G(α1)

)
and d(t) ⩽ α1 + (g ◦ G−1)

(1
2 G(α1)

)
.

Proof. Similar to Lemma 5.15, this result follows from a nonlinear Gronwall argument; see for example
[Boyer and Fabrie 2013]. □

We now have in hand all the pieces necessary to prove the local-in-time reduced energy estimates. In
particular, recall that both EM and DM (which are defined in Section 3) are functionals which depend only
on u, θ , and a. This is precisely why this is called a reduced energy estimate. Note that the definitions
of EM and DM may be found in (3-2) and (3-8), respectively.

Proposition 6.7 (local-in-time reduced energy estimate). Let δloc
r > 0 be as in Lemma 6.5. There is a

nonincreasing and continuous function φr : (0, ∞) → (0, ∞) and a strictly decreasing and continuous
function ρr : (0, ∞) → (0, ∞) which vanishes asymptotically at zero such that, for any T > 0 and any
Y = (u, θ, a), Z = (u, θ, K ), where a = (K12, K13), and p satisfying

sup
0⩽t<T

∥K (t)∥L∞ < 1
2λ and sup

0⩽t<T
∥∇K (t)∥L∞ < δloc

r (6-11)

and solving (2-1), if 0 ⩽ t1 < t2 < T satisfy

t2 − t1 ⩽
φr (∥Y (t1)∥P2M )

1 + sup0⩽t⩽t2∥K (t)∥P2M
(6-12)

then the following estimate holds on [t1, t2]:

sup
t1⩽t⩽t2

EM(t) +

∫ t2

t1
DM(s) ds ⩽ ρr (∥Y (t1)∥P2M ).

Recall that EM and DM are defined in Section 3.
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Proof. Let us begin by defining CK := sup0⩽t⩽t2∥K (t)∥P2M and noting that, by virtue of (6-11), Lemma 6.1
tells us that ẼM,K (Y (t1)) ⩽ CE∥Y (t1)∥2

P2M =: α1. Now Lemma 6.5 tells us that

d
dt

ẼM,K (Y ) +DM(u, θ) ⩽ CG(1 + CK )g(α1)

for g(x) := x + x3/2. Therefore, for G(x) := log(1 + 1/
√

x) as in Lemma 6.6 and

φr (α) :=
min(1, G(CEα))

CG
for every α > 0,

(6-12) tells us that we may apply Lemma 6.6. Combining Lemma 6.6 with Lemma 6.1, we deduce that

sup
t1⩽t⩽t2

EM(t) +

∫ t2

t1
DM(s) ds ⩽ 1

ce
G−1( 1

2 G(α1)
)
+ α1 + (g ◦ G−1)

( 1
2 G(α1)

)
=: ρr (∥Y (t1)∥P2M ). □

6B. Supplementary estimates. In this section we record supplementary estimates that are required to
parlay the reduced energy estimates obtained in Section 6A above into a continuation argument (recorded in
Section 6C) capable of gluing together the main a priori estimates of Section 4 and the local well-posedness
theory of Section 5.

Many of the results in this section are variants of results obtained in Section 4 which no longer rely on
any smallness assumption on the solution. Correspondingly, the bounds obtained are often polynomial
(whereas they were linear when a smallness assumption was made). In particular, we will employ the
functionals EM and E low several times, so we recall that their definitions may be found in (3-2) and (3-3),
respectively. We begin by recording a result comparing two versions of the energy, where recall that ẼM

is also defined in (3-2).

Lemma 6.8 (comparisons of different versions of the energies under a smallness condition). There exist
constants c̃E , C̃E > 0 such that if ∥K∥L∞ < 1

2λ then c̃EEM ⩽ ẼM ⩽ C̃EEM .

Proof. This follows by choosing c̃E and C̃E exactly as in Lemma 5.9. □

We now record an auxiliary L∞ estimate for ∂t K which is necessary in order to control the low-level
interactions.

Lemma 6.9 (L∞ estimate for ∂t K ). If K solves (2-1d) then ∥∂t K∥L∞ ≲ ∥θ∥H2 +(1 + ∥(u, θ)∥H2)∥K∥H3 .

Proof. This follows from (2-1d), the fact that L∞ is a Banach algebra, and the embedding H 2 ↪→ L∞. □

With Lemma 6.9 in hand we may record the following reformulation of the control of the low-level
interactions obtained in Lemma 4.16. We recall that Dlow and I low are defined in (3-9) and (3-10),
respectively.

Corollary 6.10 (careful estimates of the low-level interactions). There is a polynomial P with nonnegative
coefficients and which vanishes at zero such that |I low| ⩽ P(∥Y∥P3, ∥K∥H3)Dlow. In particular, if
∥Y∥P3 ⩽ 1 and ∥K∥H3 ⩽ 1 then |I low| ≲ (∥Y∥P3 + ∥K∥H3)Dlow.

Proof. This follows immediately from combining Lemmas 4.16 and 6.9. □
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We now turn our attention to a result similar to Proposition 4.30 where we obtain the decay of interme-
diate norms. The difference here is that the smallness assumption on EM (present in Proposition 4.30) is
replaced by a smallness assumption on ∥K∥H3 since the latter is guaranteed to be small due to the space
in which our local well-posedness theory produces solutions.

Proposition 6.11 (decay of low-level energy provided smallness of the reduced high-level energy). Let
M ⩾ 3 be an integer. There exist δI > 0 and C I > 0 such that, for every T > 0, if

sup
0⩽t<T

∥K (t)∥H3 ⩽ δI and sup
0⩽t<T

EM(t) =: δ0 ⩽
1
2 (6-13)

then
sup

0⩽t<T
E low(t)(1 + t)2M−2 ⩽ C I δ0. (6-14)

Proof. The proof of this result employs the same strategy as the proof of Proposition 4.20 where we
close the energy estimates at the low level, so we omit the details and only discuss how the proof of
Proposition 4.20 must be modified to apply here. There are two key differences: (1) the low-level
interactions are controlled by Corollary 6.10 (and not Corollary 4.17) because here we must clearly
identify how K appears in the low-level interactions and (2) the different versions of the energy are
compared using Lemma 6.8 (instead of Proposition A.3 and Lemma 4.11) since here we use the smallness
of K , instead of the regularity of the solutions, to ensure the positive-definiteness of J = Jeq + K . There
is also a minor difference to take into account: there is no need here to improve the energy, so by contrast
with Proposition 4.20 we do not need to appeal to Proposition 4.15. □

We conclude this section with auxiliary estimates for K which are a consequence of the advection-
rotation estimates proved in Section 4A. Proposition 6.12 is therefore similar to Proposition 4.8 which
performed the synthesis of the advection-rotation estimates proved in Section 4A. The key difference here
is that there are no smallness assumptions being made, and as a result the bounds in both the hypotheses
and the conclusion of Proposition 6.12 below are in terms of nonlinear functions of a smallness parameter.
We note that the various energy and dissipation functionals used below are defined in (3-3)–(3-5) and (3-8).

Proposition 6.12 (auxiliary estimates for K ). Let M ⩾ 3 be an integer. If there is some time horizon
T > 0 such that

sup
0⩽t<T

E low(t)(1 + t)2M−2
+ EM(t) +

∫ T

0
DM(s) ds ⩽ ρap(δ0) ⩽ 1 (6-15)

and
(EM +FM)(0) ⩽ ρ0(δ0) ⩽ 1 (6-16)

for some δ0⩾0 and some ρap, ρ0 : (0, ∞)→ (0, ∞) which are strictly increasing and vanish asymptotically
at zero, then there exists ρK : (0, ∞) → (0, ∞) which is strictly increasing and vanishes asymptotically at
zero such that

sup
0⩽t<T

E (K )
M (t) +

FM(t)
1 + t

⩽ ρK (δ0), (6-17)

where ρK depends on ρap and ρ0. Moreover, if ρap and ρ0 are continuous then so is ρK .
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Proof. In light of (6-15), Proposition 4.30 tells us that

sup
0⩽t<T

sup
1⩽I⩽M

KI (t)(1 + t)2M−2 ≲ ρap(δ0). (6-18)

Combining (6-15), (6-16), and (6-18), we use Proposition 4.8 to deduce that there exist C1, C2 > 0 such
that, for every 0 ⩽ t < T ,

E (K )
M (t) ⩽ C1(ρap(δ0) + ρ0(δ0)) (6-19)

and, also using Cauchy–Schwarz to deal with
∫
D1/2

M ,

FM(t) ⩽ C2

(
FM(0) +

(∫ t

0
D1/2

M (s) ds
)2

+KM(t)
)
⩽ C2((1 + t)ρ0(δ0) + ρap(δ0)). (6-20)

Combining (6-19) and (6-20) yields (6-17). □

6C. Synthesis. In this section we record the continuation argument which allows us to glue together the
local well-posedness theory and our scheme of a priori estimates. Recall that Elow, EM and FM , and DM

are defined in (3-3), (3-5), and (3-8), respectively.

Theorem 6.13 (continuation argument). Let M ⩾ 4 be an integer. There exists ηcont > 0 such that the
following holds: for any finite time horizon T > 0, if we have a solution of (2-1) on [0, T ] whose initial
condition satisfies

(EM +FM)(0) =: η0 ⩽ ηcont (6-21)

and which lives in the small energy regime, i.e.,

sup
0⩽t⩽T

Elow(t)(1 + t)2M−2
+ EM(t) +

FM(t)
1 + t

+

∫ T

0
DM(s) ds ⩽ Capη0 (6-22)

for Cap > 0 as in Theorem 4.34, then there exists a timescale τ > 0 such that the solution can be uniquely
continued on [0, T + τ ] where it continues to live in the small energy regime, i.e., (6-22) holds with T
replaced by T + τ .

Proof. Step 1. We define the smallness parameter η > 0. We begin by picking σ > 0 small enough that

(1) σ ⩽ σ(δloc
ap ) for δloc

ap as in Lemma 5.14 and σ = σ(δ) as in the beginning of Section 5,

(2) σ ⩽ σ(δloc
r ) for δloc

r as in Lemma 6.5 and σ = σ(δ) as in the beginning of Section 5,

(3) σ ⩽ δI for δI as in Proposition 6.12.

We then pick η > 0 sufficiently small to satisfy

(4) η ⩽ σ 2
∗
/Cap for σ∗ = σ/(2CK ) as in Theorem 5.24,

(5) max(Capη, ρr (
√

Capη)) ⩽ 1
2 for ρr as in Proposition 6.7,

(6) η ⩽ 1,

(7) ρr (
√

Capη) + ρK (η) ⩽ 1
2δap for δap as in Theorem 4.34 and ρK as in Proposition 6.12, where ρK

depends on ρ0 and ρap given by ρ0 := id and ρap(x) := max(Capx, ρr (
√

Capx)),

(8) Capη ⩽ 1
2δap, and

(9) η ⩽ ηap for ηap as in Theorem 4.34.
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In particular, note that choosing the parameter η in this way enforces the following implication: since
M ⩾ 3, if (6-22) holds then

sup
0⩽t⩽T

∥K (t)∥2
H3 ⩽ sup

0⩽t⩽T
E (K )

M (t) ⩽ σ 2
∗
, (6-23)

i.e., ∥K (t)∥H3 < σ when the solution lives in the small energy regime.

Step 2. We now identify the timescale τ on which we may both (1) continue the solution and (2) obtain
estimates on the continued solution. Correspondingly, there are two constraints on how large the timescale τ

may be: (1) the first constraint comes from the local well-posedness theory of Theorem 5.24 and (2) the
second constraint comes from the local-in-time reduced energy estimate of Proposition 6.7.

So let us define, for φ as in Theorem 5.24 and φr as in Proposition 6.7,

τlwp := φ(
√

Cap(2 + T )η0), τr :=
φr (

√

Capη0)

1 +

√

Cap(2 + T )η0
, and τ :=

1
3 min(τlwp, τr ).

In particular, note that 2τ < min(τlwp, τr ). Note also that, for every 0 ⩽ t ⩽ T , by virtue of (6-22), if we
write Z = (u, θ, K ) and Y = (u, θ, a) then

φ(∥Z(t)∥H2M ) ⩾ φ((EM +FM)1/2(t)) ⩾ τlwp (6-24)
and

φr (∥Y (t)∥P2M )

1 + sup0⩽s⩽T ∥K (s)∥P2M
⩾

φr (
√

Capη0)

1 + sup0⩽s⩽T (EM +FM)1/2(s)
⩾ τr . (6-25)

Step 3. Having identified the appropriate timescale τ we may now turn the crank of the local well-
posedness theory. Feeding (6-23) and (6-24) into Theorem 5.24 using the initial condition Z(T − τ),
where Z = (u, θ, K ) as usual, we see that the solution may be uniquely continued to [0, T + τ ] where, in
light of (6-23), it satisfies

sup
T −τ⩽t⩽T +τ

∥K (t)∥H3 < σ. (6-26)

Step 4. We conclude by performing estimates on the solution on the time interval [T − τ, T + τ ] that
ensure that the solution remains in the small energy regime of (6-22). In light of (6-25) and (6-26) we
apply the local-in-time reduced energy estimate of Proposition 6.7 on the interval [T − τ, T + τ ] to obtain

sup
T −τ⩽t⩽T +τ

EM(t) +

∫ T +τ

T −τ

DM(s) ds ⩽ ρr (
√

Capη0) (6-27)

for ρr as in Proposition 6.7.
We now string together (6-27) and Propositions 6.11 and 6.12, which tells us that, in light of the

smallness conditions (3)–(5),

sup
T −τ⩽t⩽T +τ

E low(t)(1 + t)2M−2 ⩽ C I max(Capη0, ρr (
√

Capη0)),

where C I is as in Proposition 6.11, and hence, in light of the smallness condition (6),

sup
T −τ⩽t⩽T +τ

E (K )
M (t) +

FM(t)
1 + t

⩽ ρK (η0) (6-28)

for ρK defined as in the smallness condition (7).
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So finally, putting together (6-27) and (6-28) tells us that, in light of the smallness condition (7),

sup
T −τ⩽t⩽T +τ

EM(t) +

∫ T +τ

T −τ

DM(s) ds ⩽ 1
2δap. (6-29)

In light of the smallness condition (8) we may therefore combine (6-22) and (6-29) to see that

sup
0⩽t⩽T +τ

EM(t) +

∫ T +τ

0
DM(s) ds ⩽ δap. (6-30)

To conclude we feed (6-30) into the a priori estimates of Theorem 4.34, which is legal in light of the
smallness condition (9), and obtain

sup
0⩽t⩽T +τ

Elow(t)(1 + t)2M−2
+ EM(t) +

FM(t)
1 + t

+

∫ T +τ

0
DM(s) ds ⩽ Capη0. □

7. Global well-posedness and decay

In this section we put together the a priori estimates of Section 4, the local well-posedness of Section 5,
and the continuation argument of Section 6 in order to obtain the main result of this paper, namely global
well-posedness and decay about equilibrium. This is supplemented by a quantitative rigidity result which
allows us to deduce decay of K .

In order to prove the main result, there are two auxiliary results that we need in addition to the results
proved in Sections 4–6. The first one is the first part of Lemma 7.1, which accounts for the mismatch
between the energies used for the local well-posedness and the a priori estimates. This result ensures that,
close to time t = 0, the local solution lives in the smallness regime to which the a priori estimates apply.
The second one is Proposition 7.5 which allows us to control the initial energy, involving time derivatives,
in terms of purely spatial norms. Note that this is reminiscent of Lemma 5.18 from the local well-posedness
theory, which fulfilled a similar purpose for solutions of the approximate systems. In particular, the first
part of Lemma 7.1 and Lemmas 7.2–7.4 only serve the purpose of leading up to Proposition 7.5.

We begin with Lemma 7.1 below. Note that Lemma 4.7 forms the crux of the argument in the first
part of Lemma 7.1, as it does for similar estimates in Section 4. The difference here (by contrast with
estimates recorded in Section 4) is that we do not make any smallness assumptions. Note that in the first
part of Lemma 7.1 we only control (parts of) E (K )

M , whereas in the second part we control FM as well.

Lemma 7.1 (auxiliary estimates for K ). Let M ⩾ 2 be an integer. There exists a constant CK > 0 such
that if K solves (2-1d) then, for Z = (u, θ, K ), we have the estimates

∥∂2
t K∥

2
H2M−3 +

M∑
j=3

∥∂
j

t K∥
2
H2M−2 j+2 ⩽ CK (∥Z∥

2
P2M + ∥Z∥

(2M+1)

P2M )

and

∥K∥
2
H2M+1 +

M∑
j=1

∥∂
j

t K∥
2
H2M−2 j+2 ⩽ CK (∥Z∥

2
P2M + ∥K∥

2
H2M+1 + (∥Z∥

2
P2M + ∥K∥

2
H2M+1)

(2M )).

Note that the summation on the left-hand side of the second inequality can be written more compactly as
∥K∥P2M+2

1,M
, which comes in handy in the sequel.
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Proof. We begin with the first inequality. For any j ⩾ 1, Lemma 4.7 tells us that

∥∂
j

t K∥H2M−2 j+2 ≲ ∥Z∥P2M + ∥Z∥
2
P2M + ∥∂

j−1
t K∥

2
H2M−2 j+3 . (7-1)

We immediately deduce that, since 2M − 3 = (2M − 2 · 2 + 2) − 1,

∥∂2
t K∥H2M−3 ≲ ∥Z∥P2M−1 + ∥Z∥

2
P2M−1 + ∥∂t K∥

2
H2M−2 ≲ ∥Z∥P2M + ∥Z∥

4
P2M

and
∥∂3

t K∥H2M−4 ≲ ∥Z∥P2M + ∥Z∥
2
P2M + ∥∂2

t K∥
2
H2M−3 ≲ ∥Z∥P2M + ∥Z∥

8
P2M .

To conclude we proceed by induction. Suppose that, for some 3 ⩽ j ⩽ M − 1,

∥∂
j

t K∥H2M−2 j+2 ≲ ∥Z∥P2M + ∥Z∥
(2 j )

P2M .

Then, by (7-1),

∥∂
j+1

t K∥H2M−2 j ≲ ∥Z∥P2M + ∥Z∥
2
P2M + ∥∂

j
t K∥

2
H2M−2 j+1 ≲ ∥Z∥P2M + ∥Z∥

(2 j+1)

P2M ,

and so the claim follows by induction.
We now prove the second inequality. We observe that, since H s is a Banach algebra when s > 3

2 , we
may immediately deduce from (2-1d) that

∥∂
j

t K∥H2M−2 j+2 ≲ ∥Z∥P2M
j−1

+ ∥K∥P2M+1
j−1

+ (∥Z∥P2M
j−1

+ ∥K∥P2M+1
j−1

)2 for every 1 ⩽ j ⩽ M.

For simplicity, we will write pb
a(x) := xa

+ xb. The inequality above may thus be written as

∥∂
j

t K∥H2M−2 j+2 ≲ p2
1(∥Z∥P2M

j−1
+ ∥K∥P2M+1

j−1
) for every 1 ⩽ j ⩽ M. (7-2)

This notation is particularly useful due to its behavior under composition. Indeed, we see immediately
that pb

a ◦ pd
c ≲ pbd

ac . The result now follows from iterating (7-2), and we may induct on 1 ⩽ j ⩽ M to
show that

∥K∥H2M+1 + ∥K∥P2M+2
1, j

≲ p2 j

1 (∥Z∥P2M + ∥K∥H2M+1),

which proves the claim. □

We now turn our attention towards the control of the initial energy in terms of purely spatial norms. In
order to do so, we first record H k bounds on the inverse of Jeq + K reminiscent of Lemma 5.5. However,
such bounds are easier to obtain here since we do not have to deal with any projections, as was the case
in Lemma 5.5. Note that in the lemma below we consider K : T3

→ Sym(3) (i.e., there is no dependence
in time). When K satisfies (2-1) (and is hence time-dependent), this means that the lemma below applies
pointwise in time.

Lemma 7.2 (H k bounds on (Jeq + K )−1). Suppose that Jeq = diag(λ, λ, ν) for ν > λ > 0 and that
K : T3

→ Sym(3) satisfies ∥K∥L∞ < 1
2λ. Then Jeq +K is pointwise invertible and, for every integer k ⩾ 1,

(1) ∥(Jeq + K )−1
∥L(L2;L2) ⩽ 2/λ and

(2) ∥(Jeq + K )−1
∥L(H k ;H k) ≲ ∥K∥H k+2 + ∥K∥

k
H k+2 .
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Proof. The strategy here is the same as that used when studying the inverse of Jeq + Pn ◦ K in Lemmas 5.1,
5.4, and 5.5 of Section 5A when developing the local well-posedness theory.

First we show that Jeq + K is pointwise invertible. This follows from the fact that the quadratic form
that it generates is pointwise positive-definite and indeed, for every x ∈ T3 and every w ∈ R3,

(Jeq + K )(x)w · w = Jeqw · w + K (x)w · w > λ|w|
2
− ∥K∥L∞ |w|

2 > 1
2λ|w|

2. (7-3)

Moreover, we may immediately deduce from (7-3) that ∥(Jeq + K )−1
∥L∞ ⩽ 2/λ from which item (1)

follows.
Now we establish formulae for derivatives of (Jeq + K )−1 reminiscent of the formulae of Lemma 5.4.

Note that ∂i (Jeq + K )−1
= −(Jeq + K )−1(∂i K )(Jeq + K )−1, and hence for any multi-index α ∈ N3,

∂α(Jeq + K ) =

|α|∑
l=1

(−1)l
∑

α1+···+αl=α

M(α1, . . . , αl)(K ),

where

M(α1, α2, . . . , αl)(K ) := (Jeq + K )−1(∂α1 K )(Jeq + K )−1(∂α2 K ) · · · (∂αl K )(Jeq + K )−1.

The crux of the argument now lies in obtaining L2-to-L2 bounds on the operators M. In light of the
L∞ bound on (Jeq + K )−1, we may proceed as in Lemma 5.5 and, for any v ∈ L2 and for k := max|αi |,
estimate ∥M(α1, . . . , αl)(K )∥L(L2;L2) ≲ ∥K∥

l
H k+2 .

We may now conclude the proof and obtain item (2) by proceeding once again as in Lemma 5.5. For
any k ⩾ 2 and any v ∈ H k , the L2-to-L2 bounds on M tells us that

∥(Jeq + K )−1v∥H k ≲ (∥K∥H k+2 + ∥K∥
k
H k+2)∥v∥H k ,

from which item (2) follows. □

We continue our progress towards Proposition 7.5 and record elementary estimates on the nonlinearities
of the problem.

Lemma 7.3 (auxiliary estimates of the nonlinearity). Let (⋆) denote any of the nonlinear terms in (2-1c),
(2-1d), or (2-2), except K∂tθ . Writing Z = (u, θ, K ), we have that, for every j, k ∈ N with j ⩾ 1,

(1) ∥[K∂t , ∂
j−1

t ]θ∥H k ≲ ∥Z∥
2
Pk+2 j

j−1
and (2) ∥∂

j−1
t (⋆)∥H k ≲ ∥Z∥Pk+2 j

j−1
+ ∥Z∥

3
Pk+2 j

j−1
.

Proof. These estimates rely on the fact that H s is a Banach algebra when s > 3
2 and on the product

estimates of Lemma B.4. We omit the details — see Lemma 5.17 for very similar estimates. □

The last result we need in order to prove Proposition 7.5 is reminiscent of Lemma 5.18. In Lemma 7.4
below we show that the parabolic norm of Z can be controlled by a purely spatial norm.

Lemma 7.4 (bounds on the parabolic norm by purely spatial norms). Let M ⩾ 1 be an integer. There
exists a constant CM > 0 such that, for any time horizon T > 0, the following holds: if Z = (u, θ, K )

solves (2-1b)–(2-1d) and (2-2) on [0, T ] and satisfies sup0⩽t⩽T ∥K (t)∥L∞ ⩽ 1
2λ, then, for every 0⩽ t ⩽ T ,

we have that ∥Z(t)∥P2M ≲ ∥Z(t)∥H2M + ∥Z(t)∥CM
H2M . In particular, this holds when t = 0.
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Proof. We proceed as in Lemma 5.18. We apply ∂
j−1

t to (2-1b)–(2-1d) and (2-2), invert Jeq + K (which
is allowed as per Lemma 7.2), and deduce the following. On one hand, for 1 ⩽ j ⩽ M − 1, we may use
Lemmas 7.2 and 7.3 to obtain that, using the notation pb

a(x) := xa
+ xb for a < b and x ⩾ 0,

∥∂
j

t Z∥H2M−2 j ≲ (∥K∥H2M−2 j+2 + ∥K∥
2M−2 j
H2M−2 j+2)(∥Z∥P2M

j−1
+ ∥Z∥

3
P2M

j−1
)

= p2M−2 j
1 (∥K∥H2M )p3

1(∥Z∥P2M
j−1

) ≲ p2M−2 j+3
1 (∥Z∥P2M

j−1
). (7-4)

On the other hand, for j = M , using Lemmas 7.2 and 7.3 tells us that

∥∂M
t Z∥L2 ≲ ∥Z∥P2M

M−1
+ ∥Z∥P2M

M−1
= p3

1(∥Z∥P2M
j−1

). (7-5)

Combining (7-4) and (7-5) and unpacking the definition of ∥ · ∥Pk
j

we see that, for every 1 ⩽ j ⩽ M ,

∥Z∥P2M
j

≍ ∥Z∥P2M
j−1

+ ∥∂
j

t Z∥H2M−2 j ≲ p2M−2 j+3
1 (∥Z∥P2M

j−1
). (7-6)

Iterating this inequality yields

∥Z∥P2M = ∥Z∥P2M
M

≲ (p3
1 ◦ p5

1 ◦ · · · ◦ p2M−1
1 )(∥Z∥P2M

0
), (7-7)

from which, since ∥Z∥P2M
0

= ∥Z∥H2M , the claim follows. In particular, note that, as in Lemma 5.18,

CM =
∏M

j=1(2M − 2 j + 3). □

We may now prove the second auxiliary result of this section required to prove Theorem 7.6 below.
In Proposition 7.5 we prove that the initial energy may be controlled in terms of purely spatial norms.
Recall that EM and FM are defined in (3-5).

Proposition 7.5 (control of the full energy by purely spatial norms). Let M ⩾ 1 be an integer. There
exist Cs, CM > 0 such that, for any time horizon T > 0, the following holds: if Z = (u, θ, K ) solves
(2-1b)–(2-1d) and (2-2) on [0, T ] and satisfies sup0⩽t⩽T ∥K (t)∥L∞ ⩽ 1

2λ, then, for every 0 ⩽ t ⩽ T ,

EM +FM ⩽ Cs(∥Z∥
2
H2M + ∥Z∥

2M+1CM
H2M + ∥K∥

2
H2M+1 + ∥K∥

2M+1

H2M+1).

In particular, this holds when t = 0.

Proof. We proceed in two steps. First we use Lemma 7.1 to show that EM +FM can be controlled by
∥Z∥P2M and ∥K∥H2M+1 , then we use Lemma 7.4 to show that ∥Z∥P2M can be controlled by ∥Z∥H2M .

Before we begin the proof in earnest, note that we may write

EM +FM ≍ ∥Z∥
2
P2M + ∥K∥

2
H2M+1 + ∥K∥

2
P2M+2

1,M
.

It then follows immediately from Lemma 7.1 that

EM +FM ≲ ∥Z∥
2
P2M + ∥Z∥

2M+1

P2M + ∥K∥
2
H2M+1 + ∥K∥

2M+1

H2M+1 .

We may combine this inequality with Lemma 7.4 to conclude that indeed

EM +FM ≲ ∥Z∥
2
H2M + ∥Z∥

2M+1CM
H2M + ∥K∥

2
H2M+1 + ∥K∥

2M+1

H2M+1

for CM > 0 as in Lemma 7.4. □
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We may now prove the main result of this paper. In order to do so, recall first that Elow, EM and FM ,
and DM are defined in (3-3), (3-5), and (3-8), respectively.

Theorem 7.6 (global well-posedness and decay). Let M ⩾ 4 be an integer and recall that the global
assumptions of Definition 1.1 hold. There exist universal constants η, C > 0 depending only on M such
that the following holds: for any Z0 = (u0, θ0, K0) ∈ L2(T3

; R3
× R3

× Sym(3)) satisfying

∇ · u0 = 0, /
∫

T3
u0 = 0, and ∥Z0∥

2
H2M + ∥K∥

2
H2M+1 < η,

there exists a unique strong solution (Z , p) of (2-1), where

Z = (u, θ, K ) ∈ C2([0, ∞) × T3
; R3

× R3
× Sym(3))

and
p ∈ C2([0, ∞) × T3

; R).

Moreover, the solution satisfies the estimate

sup
t⩾0

Elow(t)(1 + t)2M−1
+ EM(t) +

FM

1 + t
+

∫
∞

0
DM(s) ds ⩽ C(∥Z0∥

2
H2M + ∥K0∥

2
H2M+1). (7-8)

Proof. The strategy of the proof is as follows. Coupling the local well-posedness theory of Theorem 5.24
to the auxiliary estimate for K of Lemma 7.1, which allows us to account for the mismatch between the
energies used for the local well-posedness and the energies used for the a priori estimates, we produce a
solution locally in time on which we have enough control to invoke the a priori estimates of Theorem 4.34.
This tells us that this (possibly very short-lived) solution lives in the small energy regime defined by (7-8).
Continuing this solution globally in time then follows immediately from leveraging the continuation
argument of Theorem 6.13.

We begin by defining the smallness parameter η > 0. We pick 0 < η ⩽ 1 satisfying

(1) η1/2 < σ(δloc
ap ) for δloc

ap as in Lemma 6.5 and σ = σ(δ) as in the beginning of Section 5,

(2) (2 + CK )p2M
1 ((ρe + ρd)(η)) < δap for δap as in Theorem 4.34, CK as in Lemma 7.1, ρe and ρd as in

Theorem 5.24, and p2M
1 (x) := x + x2M for all x ⩾ 0,

(3) Csη ⩽ ηap for Cs as in Proposition 7.5 and ηap as in Theorem 4.34, and

(4) Csη ⩽ ηcont for ηcont as in Theorem 6.13.

We may now construct a solution locally in time which lives in the small energy regime, as defined
by (7-8). In light of the smallness condition (1), which tells us that ∥K0∥H3 < η1/2 < σ(δloc

ap ), the local
well-posedness theory of Theorem 5.24 shows that there exists Tlwp > 0 and a strong solution

Z = (u, θ, K ) ∈ C2([0, Tlwp] × T3
; R3

× R3
× Sym(3))

and
p ∈ C2([0, Tlwp] × T3

; R)

which satisfies
sup

0⩽t⩽Tlwp

∥K (t)∥H3 < η1/2 (7-9)
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and

sup
0⩽t⩽Tlwp

∥Z(t)∥2
P2M +

∫ Tlwp

0
DM(s) ds ⩽ (ρe + ρd)(∥Z0∥H2M ), (7-10)

where recall that DM is defined in (3-8). In particular, the auxiliary estimate for K of Lemma 7.1 tells us
that, in light of (7-10) and recalling that E (K )

M is defined in (3-4),

sup
0⩽t⩽Tlwp

∥Z(t)∥2
P2M + E (K )

M (t) ⩽ (1 + CK )p2M
1
(

sup
0⩽t⩽Tlwp

∥Z(t)∥P2M
)

⩽ (1 + CK )p2M
1 ((ρe + ρd)(∥Z0∥H2M )). (7-11)

Putting (7-10) and (7-11) together tells us that, by virtue of the smallness condition (2),

sup
0⩽t⩽Tlwp

EM(t) +

∫ Tlwp

0
DM(s) ds ⩽ (2 + CK )p2M

1 ((ρe + ρd)(∥Z0∥H2M )) ⩽ δap. (7-12)

Note also that we may deduce from the smallness condition (3) and Proposition 7.5 that, since η ⩽ 1,

(EM +FM)(0) ⩽ Cs(∥Z0∥
2
H2M + ∥K0∥

2
H2M+1) ⩽ ηap. (7-13)

Combining (7-12) and (7-13) allows us to use the a priori estimate of Theorem 4.34, from which we
deduce that

sup
0⩽t⩽Tlwp

Elow(t)(1 + t)2M−2
+ EM(t) +

FM(t)
1 + t

+

∫ Tlwp

0
DM(s) ds ⩽ Cap(EM +FM)(0). (7-14)

To conclude we employ a standard continuation argument revolving around the continuation argument
of Theorem 6.13. Let us define, for any T ∈ (0, ∞],

G(T ) := sup
0⩽t⩽T

Elow(t)(1 + t)2M−2
+ EM(t) +

FM(t)
1 + t

+

∫ T

0
DM(s) ds

which we use to define the maximal time of existence

Tmax := sup{T > 0 : ∃! strong solution on [0, T ] and G(T ) ⩽ Cap(EM +FM)(0)}.

By virtue of (7-14), we know that Tmax > Tlwp > 0. Crucially, Theorem 6.13 tells us, in light of the
smallness condition (4) and (7-13) and since Tmax > 0, that Tmax cannot be finite. So indeed the solution
exists globally in time and, since Tmax = ∞, we appeal to Proposition 7.5 one last time to deduce that

G(∞) ⩽ Cap(EM +FM)(0) ≲ ∥Z0∥
2
H2M + ∥K0∥

2
H2M+1,

i.e., indeed (7-8) holds. □

In order to deduce the decay of K from Theorem 7.6 above we need the quantitative rigidity estimate of
Proposition 7.7 below. Note that the term quantitative rigidity is motivated by contrast with the following
qualitative rigidity result: if a = 0 and ∥J − Jeq∥L∞ < ν − λ then J = Jeq (this can be seen by noticing
that if a = 0 then J33 must be an eigenvalue of J , and it cannot be that J33 = λ since that would contradict
the condition ∥J − Jeq∥L∞ < ν − λ).
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Proposition 7.7 (quantitative rigidity). Let T > 0 be a time horizon and suppose that

sup
0⩽t⩽T

∥(u, θ)(t)∥H3 + ∥J (t)∥H3 + ∥∂t(u, θ)∥2
H2 + ∥∂t J∥

2
H2 < ∞. (7-15)

If sup0⩽t⩽T ∥K∥L∞ ⩽ ν − λ then sup0⩽t⩽T ∥K∥L p ⩽ 2 sup0⩽t⩽T ∥a∥L p for any 1 ⩽ p ⩽ ∞.

Proof. Since (7-15) holds we know from Proposition A.3 that J (t, x) is pointwise symmetric with
spectrum {λ, λ, ν}. The key observation now is that we may therefore find a unit vector field n(t, x) such
that J = νn ⊗ n + λ(I − n ⊗ n) pointwise (indeed we may simply take n to be the unit eigenvector of J
corresponding to the eigenvalue ν). Writing Jeq = νe3 ⊗ e3 + λ(I − e3 ⊗ e3), we may then compute

|J − Jeq|
2
= (ν − λ)2

|n ⊗ n − e3 ⊗ e3|
2
= 2(ν − λ)2(1 − n2

3) = 2(ν − λ)2
|n̄|

2.

In particular, if ∥K∥L∞ ⩽ ν − λ then we may deduce that n2
3 ⩾

1
2 pointwise. To conclude we note that

since Ji j = Je j · ei we may compute that a = (ν − λ)n3n̄. So finally

|K |
2
=

2|a|
2

n2
3

⩽ 4|a|
2,

from which the claim follows. □

In light of this quantitative rigidity result we may deduce the decay of K , and hence ∂t K , from the
decay of a. As discussed in Section 1, this argument could be iterated further in order to derive the decay
of higher-order temporal derivatives of K , but this is not done here since that decay is not used in the
scheme of a priori estimates. Recall that KI is defined in (3-6).

Proposition 7.8 (rates of decay of K and ∂t K ). Let M ⩾ 3 be an integer and let T > 0 be a time horizon.
There exists C1 > 0 such that the following holds: if (u, θ, K ) solves (2-1d) and satisfies

C := sup
0⩽t⩽T

∥K (t)∥2
L2(1 + t)2M−4

+K2(1 + t)2M−2
+

FM(t)
1 + t

< ∞, (7-16)

then, for j = 0, 1,
sup

0⩽s⩽s j

sup
0⩽t⩽T

∥∂
j

t K∥
2
H s (1 + t)2M−4−(2M−3)/s j ⩽ C1C,

where s0 = 2M + 1 and s1 = 2M.

Proof. We interpolate between the decay of ∥K∥
2
L2 and the growth of FM in (7-16) to deduce the bounds

on ∥K∥
2
H s recorded here. To obtain the bounds on ∥∂t K∥

2
H s we first use (2-1d) to read off the L2 bound

on ∂t K using Hölder’s inequality and (7-16), and then interpolate between this L2 bound and FM . □

Remark 7.9. Note that the estimates recorded above are not all decay estimates. To be precise, ∥K (t)∥H s

decays when s < 2M − 4/(2M − 3), whereas ∥∂t K∥H s decays when s < 2M − 1 − 3/(2M − 3). In
particular these regularity cut-offs approach 2M and 2M − 1, respectively, asymptotically from below as
M → +∞.

We conclude this section by proving Corollary 1.3, which records the precise decay rates of the
unknowns and their temporal derivatives.

Proof of Corollary 1.3. It suffices to combine Theorem 7.6 and Propositions 4.30, 7.7, and 7.8. □
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Appendix A: Identities involving the microinertia

In this section we record various computations and identities involving the microinertia tensor J which
are used throughout the paper.

We now record two lemmas that are used in the proof of Proposition A.3 below. This proposition is
essential to our scheme of a priori estimates and is a fundamental feature of the micropolar fluid model.
It shows that if the solution is regular enough, then the spectrum of the microinertia is propagated by the
flow. First we record a well-known result showing that the advective derivative is simply a time derivative
up to a change of variables using the flow map (i.e., with respect to Eulerian coordinates).

Lemma A.1 (calculus of advective derivatives). Let η ∈ C2([0, T ) × Rn
; Rn) be a flow map, i.e., for all

0 ⩽ t < T , we have the C1-diffeomorphism ηt := η(t, · ) with velocity u ∈ C1([0, T ) × Rn, Rn) defined by
u(t, x) := ∂tη(t, η−1

t (x)). Then ∂t(det ∇η) = ((∇ · u) ◦ η) det ∇η and, for every f ∈ C1([0, T ) × Rn
; R),

we have ∂t( f ◦ η) = ((∂t + u · ∇) f ) ◦ η, where, for any g : [0, T )× Rn
→ R, we write g ◦ η to denote the

composition (g ◦ η)(t, x) := g(t, η(t, x)).

Proof. The first identity is the well-known Liouville theorem and the second identity follows from the
first by the chain rule. □

We continue our progress towards a proof of Proposition A.3 below with an ODE result recorded in
Lemma A.2. This lemma provides an equivalent characterization of the ODE satisfied by the microinertia
(denoted by S in Lemma A.2) in Lagrangian coordinates in terms of the ODE satisfied by its rotation
matrix (denoted by Q in Lemma A.2).

Lemma A.2 (two-sided integrating factors for ODEs with commutators). Let S, A ∈ C1([0, T ); Rn×n)

be time-dependent symmetric and antisymmetric matrices, respectively, and let S0 be a fixed symmetric
real n × n matrix. The following are equivalent:

(1) S solves the initial value problem ∂t S = [A, S] on (0, T ) and S(0) = S0.

(2) There exists a time-dependent orthogonal matrix Q ∈ C1([0, T ); O(n)) such that S = QS0 QT and Q
solves the initial value problem ∂t Q = AQ on (0, T ) and Q(0) = I .

Here O(n) denotes the space of n × n real orthogonal matrices.

Proof. First we show that (2) =⇒ (1). If (2) holds then ∂t QT
= (AQ)T

= −QT A and therefore,

∂t S = ∂t QS0 QT
+ QS0∂t QT

= AQS0 QT
− QS0∂t QT A = [A, S].

Now we show that (1) =⇒ (2). Suppose that (1) holds and let us define Q(t) := exp
(∫ t

0 A(s) ds
)

such
that Q solves the initial value problem of (2). Since (1) is a linear ODE it has a unique solution, so in
order to show that S = QS0ST it suffices to show that QS0ST is a solution of the initial value problem
of (1). This follows immediately from the same computation as that which was carried out above in order
to show that (2) =⇒ (1). □

We are now ready to prove Proposition A.3 which shows that if the velocity fields and the microinertia
are sufficiently regular then the spectrum of the microinertia is propagated in time.
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Proposition A.3 (persistence of the spectrum for solutions of advection-rotation equations). Suppose
that u ∈ C1([0, T ) × Rn

; Rn) is divergence-free and consider �, J ∈ C1([0, T ) × Rn
; Rn×n), where � is

antisymmetric. If they satisfy
∂t J + u · ∇ J = [�, J ] and J (0, · ) = J0

for some real n×n matrix J0 then there exists a flow map η ∈ C2([0, T ) × Rn
; Rn), where ηt := η(t, · ) is a

C1-diffeomorphism for all 0⩽ t < T , and there exists an Eulerian rotation map R ∈C1([0, T ) × Rn
; O(n))

such that
J = R(J0 ◦ η−1)RT ,

or, more precisely, J (t, x) = R(t, x)J (t, η−1
t (x))RT (t, x). In particular, for every (t, x) ∈ [0, T ) × Rn ,

if we write y = η−1
t (x) then J0(y) and J (t, x) have the same spectrum.

Proof. The key ideas are that (1) by virtue of Lemma A.1, ∂t +u ·∇ is nothing more than a time derivative
up to a change of coordinates and (2) in light of Lemma A.2, solutions of ∂t = [�, · ] are pointwise
conjugate to their initial conditions by some rotation matrix with angular velocity �.

Step 1: We define the flow map η to be the solution of ∂tη = u ◦ η with initial condition η(t = 0) = id.
As a consequence of u being divergence-free, it follows from Lemma A.1 that ∂t(det ∇η) = 0, and hence
det ∇η = det ∇η(t = 0) ≡ 1, so indeed ηt is invertible at all times t . Finally we deduce that ηt is a
C1-diffeomorphism for all times t from the fact that ∇(η−1) = (∇η)−1

◦ η−1.

Step 2: Let us define J and 2 to be the Lagrangian counterparts of J and �, respectively, i.e., J := J ◦η

and 2 := � ◦ η. Then, by Lemma A.1,

∂tJ = ∂t(J ◦ η) = ((∂t + u · ∇)J ) ◦ η = [2,J ] and J (0, · ) = J0 ◦ η0 = J0.

So J solves ∂tJ = [2,J ] with initial condition J (0, · ) = J0.

Step 3: We define the Lagrangian rotation map Q(t, y) := exp
(∫ t

0 2(s, y) ds
)

such that, by Lemma A.2,
J = Q J0 QT . So finally, if we introduce the Eulerian rotation map R := Q ◦ η−1 we may conclude that
J = R(J0 ◦ η−1)RT . □

We now record some elementary identities which are useful throughout the paper. The first identity
allows us to deal with the precession term appearing in the conservation of angular momentum when
deriving energy-dissipation relations.

Lemma A.4. Let A and S be n × n matrices which are antisymmetric and symmetric, respectively. Then
1
2 [A, S] = Sym(AS). In particular, if n = 3 and we let a := vec A then 1

2 [A, S] = Sym(a × S).

Proof. This is immediate: Sym(AS) =
1
2(AS + ST AT ) =

1
2(AS − S A) =

1
2 [A, S]. □

The second identity shows that one of the terms appearing in the conservation of microinertia (1-1d) is
antisymmetric (as a map on the space of symmetric matrices), and hence does not contribute to energy or
transport estimates.

Lemma A.5. Let S and M be real n × n matrices such that S is symmetric. Then [M, S] : S = 0.

Proof. The proof follows from the observation that SM : S = M : ST S = M : SST
= M S : S. □
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Finally we record a detailed computation of the block form of [�, J ], which comes in handy when
reading off the equation governing the dynamics of a.

Lemma A.6 (block form of [�, J ]). Let J be a symmetric 3 × 3 matrix written in (2+1)× (2+1) block
form as

J =

(
J̄ a

aT J33

)
,

and let � = ten ω for some ω ∈ R3. Then we may write the commutator [�, J ] in (2+1) × (2+1) block
form as

[�, J ] =

(
ω3[R, J̄ ]−(ω̄⊥

⊗ a+a ⊗ ω̄⊥) ( J̄−J33 I2)ω̄
⊥
+ω3a⊥

(( J̄−J33 I2)ω̄
⊥
+ω3a⊥)

T 2a · ω̄⊥

)
, (A-1)

where R = e2 ⊗ e1 − e1 ⊗ e2 ∈ R2×2 denotes the (counterclockwise) π
2 rotation in R2.

Proof. Note that we may write � in block form using the rotation matrix R as

� =

(
ω3 R −ω̄⊥

(ω̄⊥)⊥ 0

)
.

We may then compute

�J =

(
ω3 R J̄−ω̄⊥

⊗ a ω3a⊥
−J33ω̄

⊥

(ω̄⊥)
T J̄ ω̄⊥

· a

)
.

Since J� = −(�J )T we deduce that indeed (A-1) holds. □

Appendix B: Analytical results

In this section we record precise statements of well-known analytical results for the reader’s convenience.
First we record the Gagliardo–Nirenberg interpolation inequalities on bounded domains, which is crucial
in several nonlinear estimates.

Theorem B.1 (Gagliardo–Nirenberg interpolation inequalities). Let u ∈ Lq(Tn) with ∇
ku ∈ Lr (Tn) such

that
1
p

−
l
n

= θ
1
q

+ (1 − θ)
(1

r
−

k
n

)
and (1 − θ)k ⩾ l for some 0 ⩽ θ ⩽ 1.

Then ∇
lu ∈ L p(Tn) and we have the estimate ∥∇

lu∥L p(Tn) ≲ ∥u∥
θ
Lq (Tn)∥u∥

1−θ

W k,r (Tn)
.

Proof. This is a standard result. See for example Section 13.3 in [Leoni 2017] for a proof of this result on
cubes which immediately implies the result on the torus. □

In practice the Gagliardo–Nirenberg interpolation inequality is used in the form recorded in Corollary B.2
throughout the paper. In particular, the second inequality recorded in Corollary B.2 is a high-low estimate
which is central to our efforts to balance out terms that grow in time and terms that decay in time when
designing our scheme of a priori estimates.
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Corollary B.2 (estimate of interactions in L2). Let f, g ∈ H k(Tn), and let α and β be multi-indices
satisfying |α| + |β| = k. Then we have the estimates

∥(∂α f )(∂βg)∥L2 ≲ ∥ f ∥L∞∥g∥H k + ∥ f ∥H k ∥g∥L∞

and

∥ f g∥H k ≲ ∥ f ∥L∞∥g∥H k + ∥ f ∥H k ∥g∥L∞ .

Proof. The first estimate follows from the Gagliardo–Nirenberg inequality recorded in Theorem B.1. So
let us define θ := |β|/k, 1/p :=

1
2(1 − θ), and 1/q :=

1
2θ . Then, by the Hölder and Gagliardo–Nirenberg

inequalities,

∥(∂α f )(∂βg)∥L2 ⩽ ∥∂α f ∥L p∥∂βg∥Lq ≲ ∥ f ∥
θ
L∞∥ f ∥

1−θ

H k ∥g∥
1−θ
L∞ ∥g∥

θ
H k ≲ ∥ f ∥L∞∥g∥H k + ∥ f ∥H k ∥g∥L∞,

where we have used Young’s inequality at the end, namely using the fact that, for any x, y ⩾ 0 and any
0 ⩽ θ ⩽ 1, we have xy ⩽ θx1/θ

+ (1 − θ)y1/(1−θ). The second estimate then follows from the first by
using the Leibniz rule. □

From Corollary B.2 we may deduce commutator estimates for transport and multiplication operators.

Lemma B.3 (commutator estimates for transport and multiplication operators). Let u ∈ H k(Tn
; Rn), let

f, g ∈ H k(Tn
; R), and let α ∈ Nn with |α| = k. Then

∥[g, ∂α
] f ∥L2 ≲ ∥g∥L∞∥ f ∥H k + ∥g∥H k ∥ f ∥L∞

and

∥[u · ∇, ∂α
] f ∥L2 ≲ ∥∇u∥L∞∥∇ f ∥H k−1 + ∥∇u∥H k−1∥∇ f ∥L∞ .

Proof. This follows from Corollary B.2 and the Leibniz rule. □

We conclude this section with other well-known analytical results. First, a product estimate in H s

spaces.

Lemma B.4 (product estimate). Let s > 1
2 n and let 0 ⩽ t ⩽ s. There exists C = C(s, t) > 0 such that,

for every f ∈ H s(Tn) and every g ∈ H t(Tn), we have ∥ f g∥H t ⩽ C∥ f ∥H s ∥g∥H t . In other words, H s is a
continuous multiplier on H t .

Proof. The key observation is that H t is the interpolation space of order t/s of the pair (L2, H s). Since
H s ↪→ L∞ and H s is a Banach algebra we know that g 7→ f g is bounded on both L2 and H s . The result
then follows by interpolation. □

We also record a nonlinear Gronwall-type argument which is crucial in closing the energy estimates
at the low level when developing the scheme of a priori estimates, in obtaining uniform bounds on
the approximate solutions when building the local well-posedness, and in deriving the reduced energy
estimates necessary to produce the continuation argument that glues the a priori and the local well-
posedness together.
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Lemma B.5 (Bihari’s lemma). Let f : [0, ∞) → [0, ∞) be nondecreasing and continuous such that
f > 0 on (0, ∞) and

∫
∞

1 1/ f < ∞. Let F be the antiderivative of −1/ f which vanishes at +∞. For
every continuous function y : [0, ∞) → [0, ∞), if there exists α0 > 0 such that

y(t) +

∫ t

0
f (y(s)) ds ⩽ α0 for every t ⩾ 0

then, for every t ⩾ 0, we have y(t) ⩽ F−1(t + F(α0)).

Proof. This is proven in Lemma II.4.12 of [Boyer and Fabrie 2013]. □

We conclude this section with an elementary result which is very handy when it comes to ensuring
that derivatives do not accumulate unduly on a single term in the nonlinear interactions.

Lemma B.6. Let x, y, z, Cx , Cy , and Cz be real numbers such that x, y, z ⩾ 0. If

x + y + z ⩽ min(Cx + Cy, Cy + Cz, Cz + Cx),

then either

(1) x ⩽ Cx and y ⩽ Cy, (2) y ⩽ Cy and z ⩽ Cz, or (3) z ⩽ Cz and x ⩽ Cx .

Proof. This can be seen to be true by contraposition. The key observation is that

(1) or (2) or (3) ⇐⇒ (x ⩽ Cx or y ⩽ Cy) and (y ⩽ Cy or z ⩽ Cz) and (z ⩽ Cz or x ⩽ Cx).

We may then use this equivalence to rewrite the negation of the conclusion of the lemma and deduce that
the contrapositive holds. □
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