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STRONG ILL-POSEDNESS FOR SQG IN CRITICAL SOBOLEYV SPACES

IN-JEE JEONG AND JUNHA KIM

We prove that the inviscid surface quasigeostrophic (SQG) equations are strongly ill-posed in critical
Sobolev spaces: there exists an initial data H*(T?) without any solutions in L®H? Moreover, we
prove strong critical norm inflation for C*-smooth data. Our proof is robust and extends to give similar
ill-posedness results for the family of modified SQG equations which interpolate the SQG with the
two-dimensional incompressible Euler equations.

1. Introduction

1A. Main results. We are concerned with the Cauchy problem for the inviscid surface quasigeostrophic
(SQG) equations on T2 = (R/Z)2,

{8z9+u-V9=0, (SQG)

u=vV=+t(—=A)"1/2.

Our first main result shows that strong norm inflation occurs for the solution map of (SQG) in H2(T?)
with C®°-smooth solutions.

Theorem A (strong norm inflation). For any €, 8, A > 0, there exists 6y € C ®(T?) satisfying

1601l r2nwre < €

such that the unique local-in-time smooth solution 6 to (SQG) with initial data 0y exists on [0, §*] for
some 0 < 8* < § and satisfies

sup [0, )l g2 > A.
1€[0,6]

The above result implies that the solution operator defined from H> N C*> to H? by 6y — () for any
t > 0 cannot be continuous at the trivial solution. On the other hand, the following result shows that
actually it is impossible to define the solution operator from H? to L H?.

Theorem B (nonexistence). For any € > 0, there exists 0y € H> N W1 (T?) satisfying

160l r2Awi0 < €
such that there is no solution to (SQG) with initial data 6y belonging to L*°([0, 81; H*(T?)) with any § > 0.

Remark 1.1. We give a few remarks relevant to the statements above.
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e With a rather straightforward modification of our proof, the space H? in Theorems A and B can be
replaced with W1+2/P-7_ with any p > 1. Later, we shall sketch the proof in the endpoint case p = oo.
Moreover, the domain T? can be replaced with R? or bounded domains having symmetry axes.

« The initial data for which nonexistence occur can be given explicitly; see (4-4) below.

o The arguments we present can be adapted to prove ill-posedness for the case of modified (and loga-
rithmically regularized) SQG equations; see Section 1C below.

1B. Well-posedness theory for SQG. To put the above ill-posedness results into context, let us briefly
recall the well-posedness theory for the SQG equation. Depending on the regularity of the solutions
considered, one has the following categories:

« Strong solutions: local existence and uniqueness. Using the Kato—Ponce commutator estimate [1988],
one obtains the a priori estimate

d
— .\‘< V o0 s
g 101 = ClIVullL= 1101

for a solution of (SQG), which allows one to close ||6(¢) || gs < ||6o]| g+ for t < ||90||g£. once s > 2, using
that | Vu|| L~ < [0 gs. Similarly, H® can be replaced with W* 7, as long as s > 1+ 2/p. Based on this
a priori estimate, one can prove local existence and uniqueness of a strong solution in the class L>°*W*?
with s > 14 2/p. On the other hand, note that the borderline inequality |Vu| o~ < ||6] 2 fails; this
makes the Sobolev space H? (and similarly W!*2/P-P) critical for local well-posedness. This space is
also scaling-critical: the critical norm is left-invariant under the transformation

0(t, x) > 1710, Ax),  u(t,x) > A" u(, Ax). (1-1)

While not much is known for long-time dynamics of (SQG), see a recent breakthrough of [He and Kiselev
2021] for a construction of smooth initial data with Sobolev norms growing at least exponentially for all
times. Moreover, existence of traveling-wave solutions [Li 2009; Cao et al. 2023] and rotating solutions
[Hassainia and Hmidi 2015; de la Hoz et al. 2016; Castro et al. 2016] are known.

o Weak solutions: global existence. Global existence of L”-weak solutions is known, thanks to [Resnick
1995; Marchand 2008; Bae and Granero-Belinch6n 2015]. While such solutions are in general expected
to be nonunique, see [Cordoba et al. 2018] for a uniqueness result for patches. On the other hand, for
“very” weak solutions, nonuniqueness has been established; see [Buckmaster et al. 2019; Cheng et al.
2021; Isett and Ma 2021]. Note the gap of regularity between week and strong solutions.

o Ill-posedness in W1*°: To the best of our knowledge, the only critical space ill-posedness result

concerning (SQG) is the one given in [Elgindi and Masmoudi 2020] for W !>, where a powerful general
method for proving ill-posedness of active scalar systems in L°°-type spaces is developed. To be precise,
in Section 9.2 of that work the authors show that there exist smooth steady states § and a sequence of
perturbations éée) (e — 01) so that the associated (SQG) solution 8(¢) with data 6 + 556) satisfies

1090, ) =0llwie <€, sup [0, ) —Ollwix >c,

O<t<e
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where ¢ > 0 depends only on 6. It is very interesting to note that the authors use well-posedness in critical
Besov spaces with summability index 1. Such Besov well-posedness theory goes back to the pioneering
work [Vishik 1999]. Our result (which applies in the W1 case as well) basically says that one can take
6 = 0 and replace ¢ by e~!. On the other hand, one can restore well-posedness in W !> by assuming
some rotational symmetry and anisotrophic Holder regularity [Elgindi and Jeong 2020b].

The current work settles the issue of strong ill-posedness of (SQG) at critical Sobolev spaces, and
we believe that this could be a first step in understanding the dynamics of “slightly”” supercritical and
subcritical solutions (e.g., evolution of H°®-data with |s — 2| <« 1), thereby bridging the gap between
the theory of weak and strong solutions. Indeed, in the very recent work [Elgindi 2021] on singularity
formation for the three-dimensional Euler equations, one of the key steps was to understand precisely the
mechanism of C'-ill-posedness. Closing this section, let us mention some interesting works which seem
contradictory to our main results:

e Miura [2006] proved that the fractionally dissipative SQG system

{ate +u-Vo+(—A)¥o=0,

u=vi(—na)-12 (1-2)

is actually well-posed in the critical Sobolev space H>~# for all 8 > 0 (for data of any size), and this
seems to suggest H> well-posedness of the inviscid system by taking g — 0! See [Li 2021; Jolly et al.
2021; 2022] for related recent advances.

« An invariant measure defined on H*(T?) which guarantees global well-posedness in L*H 2 for any
initial data in the support of the measure was constructed in [Foldes and Sy 2021]. The data in Theorem B
certainly does not belong to the support of such a measure.

1C. Generalized SQG equations. In the recent years, there has been significant interest in the study of
so-called generalized SQG equations, given by

{8t9+u-V9=0,

u=V=LiP(A)W, (1-3)

where P (A) is some Fourier multiplier, with A = (—A)!/2. Two distinguished cases are P(A) = A~!
(SQG) and P(A) = A~? (two-dimensional incompressible Euler). Of particular interest is the case of
a-SQG systems given by P(A) = A™% with 1 <« <2, which interpolates the SQG and two-dimensional
Euler equations. The L2-based critical Sobolev space is then given by H3~¢, and let us point out that
the methods developed in the current work can handle the entire range 1 < o < 2 without any essential
change in the proof, after deriving a generalized version of the “key lemma”; see the Appendix. One
could consider even more general symbols such as P(A) = A™%log” 7 (10 4+ A), with ¥ > 0, which
give rise to the so-called logarithmically regularized systems [Chae and Wu 2012; Chae et al. 2011;
Dong and Li 2010]. It is known that if the power of the logarithm is sufficiently large, then one can
restore well-posedness in H3~% [Chae and Wu 2012], but at this point it is more appropriate to regard a
logarithmically singularized Sobolev space to be critical. Indeed, one can see from our proof that there
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is a “logarithmic” room! in the arguments and therefore the same proof can cover same ill-posedness
results in the slightly logarithmically regularized systems. We shall not dwell on this issue any further.

1D. Critical space ill-posedness for Euler. It should be emphasized that the strong Sobolev ill-posedness
statements, Theorems A and B, were first established in the groundbreaking works [Bourgain and Li 2015;
2021] for the case of two- and three-dimensional Euler equations, respectively. Further developments,
including the current work, seem to have been strongly inspired by these papers. Recently, Kwon [2021]
settled the problem of strong ill-posedness in H' for logarithmically regularized (strictly speaking, powers
of the log less than or equal to %) two-dimensional Euler equations, nicely complementing previous H '
well-posedness from [Chae and Wu 2012]. On the other hand, much simpler proofs of H' ill-posedness
for two-dimensional Euler, which also shows continuous-in-time degeneration of the solution in Sobolev
spaces, have appeared in [Elgindi and Jeong 2017; Jeong and Yoneda 2021]. Some details of these
simplified arguments will be given in the next section.

2. Ingredients of the proof

The purpose of this section is to sketch the main ingredients of the proof. Several key ideas have already
appeared in earlier works establishing ill-posedness in the Euler case; we briefly review those in Section 2A.
Additional difficulties arising in the (generalized) SQG case and new ideas are covered then in Section 2B.

2A. Strategy in the Euler case. In this section, let us give an overview of the ill-posedness proof in the
two-dimensional Euler case. We recall that in T2 the Euler equations are given by

Vo —
{B,a)—l—u w=0, (Euler)

u=vVi(=A)lw.

In terms of w, the critical L?-based Sobolev space is H'(T?); indeed, w € H' barely fails to guarantee
Vu € L, which is necessary to close the a priori estimate in H .

Choice of data for Euler. As a starting point of discussion, we present an interesting identity observed by
T. Elgindi:

d 1
ool ], gl =5 / 011 ((020)° + (810)°) + 0 B o d. 2-1)
T
For wy € L™, Yudovich theory provides a unique global solution in L ([0, co) x T?), and note that the
last term in (2-1) cannot contribute to a large growth of the H!-norm in a small time interval. Therefore,

to prove existence of an H'! N L*-initial data wy which “escapes” H! instantaneously, the goal would be
to find wo € H' N L> such that

t
/ / 9111 (9rw)* dx = 400 (2-2)
0JT?

1Strictly speaking, some power of the logarithm.
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for any t > 0, where w is the Yudovich solution with data wg and u = V- (—A)"'w. In particular, it is
necessary that at the initial time we have

/ 10,1 (Bw0)* dx = +o0. (2-3)
T2
The choice in [Elgindi and Jeong 2017] was
X1x
wo(X)Z#IIHIXII_", x| < 1, (2-4)

since then [Bahouri and Chemin 1994; Denisov 2015b]
B, (x) = In x|, x| <1, (2-5)
which in particular guarantees (2-3) for a range of o > 0.

Hyperbolic flow. Geometrically, vorticity which is positive on the first quadrant and odd with respect
to both axes (as in (2-4)) induces velocity which is stretching in the x;-direction and contracting in the
other, which leads to squeezing of the vorticity near the x-axis and growth of H'-norm. This so-called
“hyperbolic flow scenario” has been used to produce Euler solutions with gradient growth; see [Kiselev
and Sverdk 2014; Zlatos 2015; Xu 2016; Denisov 2009; 2015a; 2015b; Elgindi and Jeong 2019; 2020a;
Choi and Jeong 2021]. Flattening of the vorticity level sets in such a flow configuration was studied in
detail in [Zlato$ 2018; Jeong 2021].

Regularization effect. The main task is then to ensure that the velocity field, for a small time interval,
retains its logarithmic divergence near the origin: indeed, instantaneous blow-up of the H'-norm is not
too difficult to see for the passive transport equation

0w+ uyg- V=0,

by solving the equation along the flow generated by ug. When one tries to replace ug by u, a fundamental
difficulty arises: anisotropic stretching of the vorticity regularizes the velocity. Indeed, rather involved
computations in [Elgindi and Jeong 2023] suggest the asymptotics || Vu(t)|z~ < ¢!, which is barely
nonintegrable in time; this indicates that it could be a very delicate problem to verify (2-2). This upper
bound of # ! can be seen for instance by solving the passive problem above and recalculating the associated
velocity at later times.

Key lemma and Lagrangian approach. Towards the goal of obtaining a lower bound on the velocity
gradient |Vu(t)| > t~!, one needs to have a robust way of estimating the velocity gradient and proving
some “stability” of the initial data. Regarding the former, the celebrated key lemma of Kiselev and Sverak
asserts that (stated roughly)

ne / N2 0 (y) dy (2-6)

X1 IR RINAL

for w € L*> with odd-odd symmetry. Note that #; = 0 for x; = 0 by symmetry, so that the left-hand side
is an approximation of d;u. The lower bound of the form (2-6) has proven to be extremely powerful in
establishing growth of the vorticity [Kiselev and Sverdk 2014; Zlato$ 2015; Xu 2016; Kiselev et al. 2016;
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Gancedo and Patel 2021; Elgindi 2021; He and Kiselev 2021]. It is interesting to note that [Bourgain and
Li 2015] independently derived similar lower bounds. Next, regarding the issue of showing stability of
the data, the key observation is the hierarchy of vortex dynamics expressed in (2-6): the vorticity around
a point x is being affected mainly by the vorticity supported in |y| > 2|x|. This suggests that the chunk of
vorticity supported far away from the origin is more stable, thereby contributing to the right-hand side of
(2-6) for a longer time interval, to squeeze the vorticity closer to the origin. The proof of such stability
and squeezing phenomena should be done in the Lagrangian variable, using the transport formulas

w(t,x) = wo(®; %), Vol x)= Voo (d, ' (x)Vd, ! (x),

where @, is the flow map at time ¢. In the actual ill-posedness proofs, Lagrangian versions of the formula
(2-1) are used.

2B. Difficulties in the SQG case. Overall, the strategy of the ill-posedness proof in the SQG case is
similar to that explained in the above for two-dimensional Euler. Roughly speaking, the initial data is
now modified to be

X1X2

o~ —=n|x|[™%, |x| <1,
x|

which is odd-odd and nonnegative in the first quadrant. The associated SQG velocity then satisfies the
asymptotics (2-5) with strong hyperbolicity near the origin, which should stretch 0 near the x;-axis. The
issue is whether such a stretching effect is sufficiently strong to remove 8 from the critical Sobolev space
it started from. Let us now explain some main differences with the Euler case and new ideas employed
to handle those.

While the equation for 6 in (SQG) is simply the transport equation exactly as in the two-dimensional
Euler case, probably the most significant difference is that while the L°°-norm is the common strongest
conservation law, it is critical for two-dimensional Euler but one order weaker for SQG. Furthermore, there
is global well-posedness for two-dimensional Euler with wg € L* [Yudovich 1963], and the associated
sharp estimates given by Yudovich theory have been very useful in understanding the dynamics.? On the
other hand, the corresponding quantity in the SQG case, || V8| L~, blows up together with ||0|| 52.

It seems that the only way to handle this issue is to rely entirely on a contradiction argument — we
assume that there is an L ([0, T']; H?)-solution, and then prove that, for any ¢ > 0, the H 2_norm of the
solution must be actually infinite. The whole point in this contradiction argument is that we can use the
hypothetical H2-bound to control the solution, an idea originated in [Bourgain and Li 2015]. Again, the
difficulty in the SQG case is that this hypothetical H? control is the only useful bound, whereas in the Euler
case one has both H' and L control. Fortunately, it turns out that having an H>-bound guarantees that
the velocity is log-Lipschitz, which implies in particular uniqueness in the class L> H? (this guarantees
propagation in time of odd-odd symmetry and nonnegativity) and existence of the flow map. That is, an
L*H 2_solution is Lagrangian, and therefore we can apply transport formulas to understand the dynamics.

2Even in the three-dimensional Euler case, [Bourgain and Li 2021] actually carefully identifies a class of initial data for
which w € L® propagates locally in time. Then, one can prove and utilize estimates similar to Yudovich’s in three dimensions.
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Under the contradiction hypothesis, the main part of the argument is to derive and apply a version
of the key lemma adapted to the SQG case. Series technical difficulties appear; to begin with, in the
remainder estimate of the key lemma (see estimates (3-1) and (3-2) in Lemma 3.2) we are only allowed to
use 6 € H?. As a consequence, the remainder term blows up super-logarithmically (the power % in (3-2))
as the point x approaches the axes, whereas only logarithmic errors are allowed in the nonexistence
proof. It seems that the only way to overcome this issue is to track carefully the geometry of the support
of 6 in time so that the problematic remainder term disappears. To achieve this, we replace 6y with a
disjoint union of dyadic “bubbles” satisfying the same asymptotics as |x| — O (see (4-4) below) and
obtain detailed information on the location of these bubbles for an interval of time inductively, starting
from the largest one. Such refined information appears in technical Claims I, II and III in the proof. In
the context of controlling bubbles, another significant difference with Euler is that the “self-interaction”
of a bubble is not a bounded term anymore. To overcome this issue we need to track the location of the
“top point” of each bubble, which is the slowest point but does not suffer from self-interactions.

Closing this section, we remark that the versions of the key lemma derived in this work should be
useful in improving previous growth results for the active scalar equations, as we handle the remainder
term only with the critical quantity.

2C. Organization of the paper. The rest of this paper is organized as follows. The main technical tool,
which we shall refer to as the key lemma, is stated and proved in Section 3. After that, the proofs of
Theorems B and A are given in Sections 4 and 5, respectively.

3. The key lemma
To begin with, we recall the famous Hardy inequality.

Lemma 3.1 (Hardy’s inequality). Let f be a smooth function defined on the interval (0, l) that vanishes
in a neighborhood of x = 0. Then we have for any [ € [0, 1]

= £ 2 < 208F )2y 172 F G200 < 200% F 07200 -

Proof. By the fundamental theorem of calculus and the assumption for f, we see

l 2 1 /
/ f();) dx=—lf(l)2+2 waf(x)dx <2 &af(x)dx.
0 ! 0o X 0o X

X

Using Holder’s inequality, we have

l 2 l
/ f ) dx§4/ 107 (x)? dx.
0 2 0

X
Similarly, we have

1 2 1 1 l 2
fx) 1 2 [ f(x) 2 [F ) af(x) 1 [ af(x)
A 7 dx = f(l)2+ §A x—38f(x)dx < g/(; 2 dx < 5‘/0 5 dx.

X _ﬁ X X X
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Applying the above estimate, we obtain

) 2 !
/ ACY) dx§2/ 102 £ ()2 dx. 0
0 4 0

X

We shall now state and prove the key lemma. For convenience, we shall normalize the SQG Biot—Savart
law in such a way that

B (x — (y +2m)*
=2 o Y

Lemma 3.2. We impose the following assumptions on 6 € H?:

e 0 is odd with respect to both axes, i.e., 0(x) = —0(x) = 0(—x) = —0(X), where x := (x|, —x3) and

o O vanishes near the axis; to be precise, for any x 7% (0, 0) satisfying either x; = 0 or x, =0, there
exists an open neighborhood of x such that 6 vanishes.

Then, for any x satisfying |x| < ‘l‘ and x1 > x5 > 0, we have

ui(x) yiy2
—12/ “20(y)dy| < B (x) G-1)
X1 o) Iyl
and
uz(x) yiy2 X1 x\?
+12/ =20y dy| < (1+1log— |Ba(x) + (1 +log — | Bs(x), (3-2)
X2 IR X2 *2

where Q(x) :=[2x1, 1] x [0, 1] and B, B;, B3 satisfy

[B1(x)| + [B2(x)| < C(||V29||L2([0,1]2) + 101 oo, 112))
and
1B3()| < CUIV?Ol 12rey + 195 010D 2rey). RGO = [x1/2, 2x1] x [2x, 1]
Remark 3.3. We Clearly have that ||y;1819(y) ||L2(R(x)) < 2||V29 ||L2([0,1]2)‘

Proof. We fix a point x = (x1, x2) satisfying the assumptions of the lemma. After a symmetrization, we
have

(x=(+2n)"  @=G+2))"  (=(=y+2n)"  x=(F+2n)"
w=3 [ - -
72 ’

0(y)dy. (3-3
|X—(y+2n)|3 |x—(§+2n)|3 IX—(—y+2n)|3 IX—()_/+2n)|3) (y»)dy. (3-3)

Estimate of u;. We consider

x2 = (32 +2m) m—m+hﬁ)
I e _ 0 d ’
o /[0,1]2< x—O+2n))P  |x—F+2n))? (y)dy

x2—(—=»m+2n) x2—(—»m+ 2nz)>
I = — — 0 d
2(m) f[0,1]2<|x—(—)’+2n)|3 s—Granp )T

so that from (3-3)
wi(x) =Y (i) + h(n).

nez?
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We think of the cases n = 0 and n # 0 separately. For n # 0, we see that
IL(n) + 1Li(D)] < O(n™ D0l qo X1, o)+ L] < OUnl DO 10,12 %1-
Therefore,

> () + L)

neZ2\{0}

< Cx1 10l oo, 112 -

We now estimate the case of n = 0. Using

1 1 (B2—A%)(A’+AB+ B?)

A3 B3 A3B3(A + B) ’

we have

— ) - = .
I](O)=—4X1/ y1(x2 y2)(|x% v ~-|-3|)C vl |x y|+~|x 71%)
(0.1 lx — yPlx = 3P (x — yl+ x = 3]

Noting that [0, 112 = Q(x) U [0, 2x;] x [2x1, 11U[0, 2x;]?, we estimate the integral for each set.

O(y)dy.

(i) Suppose y € Q(x). In this case we can show that

iyl =slx—=yl<lyl, gyl <=3l =<2yl
because the first inequality comes from
x—y* = xi —yl* = 5y
and
=y ==y e =l = i+ s s
The goal is to prove that

_/ Y12 = y2)(x = yPP +|x = yllx = 5+ |x = §)
00 e =yl = 13 (lx =yl +x = 3])

O(y)dy=:J
satisfies

3 y1y2
‘J — 5/ —=0() d)" < ClIV?0 1 120,11)-
ow) Iyl

We separate J = J; + J,, where

1ya(x = yP 4 Ix = ¥l Ix = 51+ ¥ = 5
I :=/ ! 6(y) dy,
0ox)

e = yPle = 5P (lx =yl +[x = 5])
5 .:_/ yixa(lx =y +1x = yllx = §| + Ix = 5I°)
0wy = yPlx—FP(x =yl +1x =)

6(y)dy.

Using (3-6), we may estimate
1 160(y)]

|2] < Clx] —s——>5—dy
o Y12 1yl?

Note that by Holder’s inequality,

1 16|

x| —
ow 1Y% IyI?

% 1/2
dy§|x|< / r—3dr) Y1200 12000y < CHYIT20D) 220,172 -

2x1

141

(3-4)

(3-5)

(3-6)

(3-7)
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Then with the Hardy’s inequality we have
| 12| < CIIVZ0 20,17 -

On the other hand, regarding J;, we shall show that

Ji— % /Q(x) T;—T;z@(y) dy‘ < CIIV?0 20.11)-
For this purpose we simply write J; = Jy1 + Ji2 + Ji3, where
)
n zfgm =yl f}yfz'iix —y|y|+|x—&|)9(y) @
e -/.Q(x) x —y|3|y;y—2|;|3_<|fc”—xy_|i||x “ple
y)
e :»/Q(x) =Pl f?ﬁ'ﬁx —y|y|+|x—§|)9(y) @

and show that
2
< CIIV Ol 20,112

1 yiy2
-1 / Y023y dy
2 Jow) IyP

for each k =1, 2, 3. We supply the proof only for the case k = 1, since the others can be treated similarly.

We directly compute

1 yiy2 2y —lx = yllx =3P x =y + |x = F])
111——/ —9<y>dy=/ v _ D) ay.
2 Jow P o 2B = yllx = FP0x — vl + Ix — D)

We rewrite the numerator as

20yP = x = yllx = 5P (x =yl +x =)
= (ly? = lx = yP)IylP +1x = yPUy1P = 1x =5 + Uyl = lx = yDIyl* + lx = y[Ayl* = 1x = 51,

and further rewriting

_ Pl —yP
|yl 4+ 1x =yl
we see using (3-6) that

_3 WP =1x =3 Uy +Iyllx = 31+ lx = 3%
x_yl = P

.yl = .
[yl +1x =yl

[yl =[x =yl

2131 = 1x — yl1x = 51 (x =yl +lx = D] < Clx||yl*.
Then, we can infer that
1 12 L 10l
i ‘5/ %ewdy‘ <Cll | —o
o) 1Yl o Y17 Iyl
Collecting the estimates for J; and J;, gives (3-7).

dy < CIV?0ll 2qo.1p)-

(i) Suppose y € [0, 2x1] x [2x1, 1]. In this case, using y; < y,, we can see that

Iy <lx—yl <2y, Iym<lx—7F<2m.
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Thus, Holder’s inequality and Hardy’s inequality imply that

‘_/ Y12 — y)(x — y[*+ 1x — yl|x — | + |x —W)Q(y)dy
[0,2x11%[2x1.1] lx —yPlx =P (x —y|+ [x = 3|
16(y) dy\'?
e / LW 4y <c DY 120l
[0,2x1]x[2x1,1] 2 y2 [0,2x1]x[2x1,1] y2

< CIV20ll2qo.1p)- (3-8)

(iii) Suppose y € [0, 2x;]%. Thanks to 6(y;, 0) = 0, using integration by parts gives

_/ Y1(x2—y2)(|x—YI2+Ix—yllx—il-i-lx—?lz)e(y)dy
[0,2x,12 Ix —yPBlx = JP(x =yl +|x = ¥])
1 1 1
=—— - — )0:20(y) dy
dxi Jooonp \Ix =yl [x =Yl
1 le( 1 1 )
- — — 0(y1,2x1) dyj.
4x1 Jo [(x1 —y1, X2 —=2x)| (1 +y1, x2 —2x1)]

By Holder’s inequality, we estimate the second integral as

1 [ 1 1
= — 0(y;, 2x1)d
‘ xI/o (|<x1—y1,x2—2x1>| |(x1+y1,x2—2x1>|> b RN

We notice that since 6 vanishes near the axis, we have

-1
< Cxy 101l (0,2x172)

sup  [020(y1, -)|
y1€[0,2x1] L2(0,2x1)

< 2x11101020 | 210,24, 12) - (3-9)

2x1
101 (0,26, 12) < SUP / 1320 (y1, y2)| dy2 < (2x1)"/?
y1€[0,2x1]1 J0

Thus, we have
1 /le ( 1 1

xtJo  \l(x1i—yi,x2=2x)[ (1 +y1, x2 —2x1)|
Calculating the first integral with Holder’s inequality, we see that

1 1 1 2 0,0
—/ ( - ~ )829(y)dy 5—/ Mdy
x1 Jo2gp \x =y [x =]

x1 Jio2a2 X — Yl

2 3/4
<— (/ r=l dr) 102011 L4 (0.2, 12
0

=X

)9()’1, 2x1)dy;| < C||V?0 20,172

—1/2
< Cx; IVl L g0 2y
The Gagliardo—Nirenberg interpolation inequality implies

3/4
L2([0,2x11%)

-1/2 ~1/2 1/4 -2
7 21V s qo2npy < Cxp IV 101 50,2,y CX1 2101 20,201
where the constant C > 0 is independent of x;. Applying Hardy’s inequality to it, we have

—1/2 2
X7 18201 40,202y < CIVOI 12026, 1)
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and hence it follows that

1 1 1
1 / ( b )329(y) dy
xt Jjo2gpe \x =yl |x =Yl

Combining the above estimates, we obtain

‘_/ Y12 = y)(Ix = yP+x —yllx = Fl +x =31
[0,2x, 2 lx = yPlx =P Ax =yl +1x =3

2
< CIV Ol 20,172

6(y)dy

We collect the estimates for each region and deduce that

1;(0
1( )—6/ ylysze(y)dy
X1 o) Iyl

< CIIV?0 12011 -

We can estimate
1(0) — 4x, / i +y2)(x +y P+ x +yllx = 5l +1x = 51%)
0,112 X + Bl =P (x + v+ 1x =¥
similarly to 7;(0), resulting in the bound
1>(0) yiy2
6 oiay
x| o) 1Yl
We omit the details. Thus we have (3-1).

6(y)dy

< CIIV*0 12011 -

Estimate of u;. Now we estimate u,. Note that

ua(x) =Y (I3(n) + La(n)),

nez?

x1— (1 +2ny) X1—()’1+2n1)>
I = — 0 dy,
3 /[0,1]2<|x—()’+2n)|3 r—Gtanp )/

x1—(=y14+2n1) x1—(—yn +2n1)>
I = — 0 dy.
4 /[0,1]2<|x—(—)’+2n)|3 r—Gramp )OO

where

Since we can similarly see that

> ) + L))

nez2\{0}

< Cx2l101l o (0,172)5

it suffices to estimate for n = 0. Using (3-5), we have

_ ) _ - 2
13(0):4x2/ y2(x1 =y (lx = y|=+ [x = y[lx = y| + [x — y| )H(y)dy.

[0,172 lx = yPlx =3P Ax =yl +1x =3

2
< CIV Ol L2qo.1p)-

(3-10)

We divide the domain into four regions as [0, 112 = 0(x) U0, x1/2] x [0, 2x1]U [x1/2, 2x1] x [0, 2x1]U

[0, 2x1] x [2x1, 1] and estimate the integral in each region.

(i) Suppose y € Q(x). In this case, we note by %y% + y22 <|x1 — y11* + |x2 + y2|? that

Iyl < lx =3 <2yl
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Recalling (3-6) holds, we can prove similarly to (3-7)

v =y (x —y2+lx —yllx =yl + [x = 3% 3 Yiy2
V bl i omdy+3 [ 2260 ay
0(x) lx —yPlx = yPP(x =yl +[x =y o) 1Y

2
<ClIVOlL2oap-

(i1) Suppose y € [0, 2x;] x [2x1, 1]. It follows that

Iy <lx—yl <2y, y2<lx—7 <2y

Hence, we can show

0(y)dy| < CIV?0l2q0.11)

/ 21 —yD(x —yP+1x = yllx = J| + [x — §?)
[0,2x1]x[2x1,1] lx —yPlx = yP(x —yl+1x =y

in a way similar to (3-8).
(iii) Suppose y € [0, x1/2] x [0, 2x1]. This implies
3x1 < lx—yl <dxy,  x <|x— Y| <4xy,

with y, <2x; we have

‘/ y2(x1 —y)(x —y2+1x — yllx — 3|+ [x — 3%
[0,x1/2]x[0,2x1]

= = 0(y) dy‘
lx —yPlx —JP(x =yl +x =y

| 6(y) 1 R
<Cxy; f —5-dy =Cxy (f 1d)’> ly2 20 210,112
[0,x1/2]x[0,2x1] Y3 [0,x1/2]x[0,2x1]

2
< ClIV Ol r2q0,17)-

(iv) Suppose y € [x1/2,2x1] x [0, 2x1]. We claim that

(1 —yD(x = yP + x — yllx = 3|+ |x — 5%
/ O(y)dy =K
[x1/2,2x1]1x[0,2x1]

Ix —yPlx —yP(x —yl+x =y
satisfies

3/2
X1 _ X1
K| < CIV*0ll2¢0.11) (1 +log Z) +CUIV?0l 20y + 15 lale<y>||Lz(R(x))>(1 +log x—2> . (3-11)

Using integration by parts, we take the decomposition K = K| 4+ K, + K3, where

1 1
K| =—— ( - = >810(y) dy,
4x2 Jix, 2,200x00, 200 \X =Y [x — Y]
1 [ 1 1
Ky :=— ( - )9(2)61, y2) dys,
4x2 Jo [(x1, x2 —y2)|  [(x1, X2+ y2)|

1 2x1 1 1
AT - 0(x1/2, y2) dys.
3 4x2 Jo (|()C1/2,XQ—y2)| |(x1/2,)€2+y2)|) 1/2, y2) dy2
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With (3-9) we may estimate K, as

2x1 ¥20(2x1, y2)
|K>| = dy»
0 1o, x2 — )| 1(xr, x2 + ) (1 (1, X2 — y2)| 4 (1, X2+ 2)[)
2x1
< Cxp? / 0(2x1, y2) dys < Cx 10| 10,26, 1) < CIVOl 200,17 - (3-12)
0

Similarly, we obtain
K31 < CIV*0l 20,11

Noting that

—y2010(y)
K| = = ——dy,
[x1/2,2x11x[0,2x,] [X — Y[ 1x = y[(Jx — y|+ |x — y])
we set K| = K11 + K12, where
—y2016(y)
K1 ;:/ = —dy,
[x1/2.2x11x[0,2x,] [X = Y[1x = Y[(|x = y[+ |x = y])

/ —¥20160(y)
Ky = = -
[ /2,261 1x[260,20] [X = Yl 1x = y[(|x — y|+|x = y])

From |x — y| > x, + y» > y» we have

2 su 1010(y1, y2)I [ 1
|K11| S C/ pyle[x1/2,2x1] y y f dy1 dyz’
0 0

X2+ y2 lx —yl
|K12| < C /ZXI Sup)’IE[Xl/Z,ZXI] |819()’1, YZ)| 2X1 1 dyl dy2
— Jo, X2+ o lx—yl

By the Gagliardo—Nirenberg interpolation inequality with y, < 2x;, we can see that

—1/2 _
v, 2 sup 180G, )l < CUBROC-, vl 12er 2y + 97 1310 C L ¥l 121 /2,200

Yi€lx1/2,2x1]

where the constant C > 0 does not depend on x;. On the other hand,

2x1 1 X1 2
/ oy = / d
o lx—yl 0 24 (X0 — )2

X
=2log(x1 + Vi + (x2 — y2)?) = 2log |xo — y2| < C 10g<1 + |—1> (3-13)

X2 — 2|

i 2 1/2
log(l + —) dyz} ,
X2+ |x2 — y2l

2 12
X1
log<1 + —) dyz} .
|x2 — y2l

Hence, with y, < 2x; and Holder’s inequality, we infer that

2x7
K11l < CUV?0 2o + ||y2_1319(y)||L2([0,1]2)){/
0

2x1

K| < C(|V?0 +1ly; 9,0 {/
(K12l = CUIVOll 2Ry + 1027 910Dl L2(R(x)) 2% X2t Y2
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2 1 [ 261\
dy, < — log———— | d»
x2 Jo |x2 — y2|

2 [n 2 2 2
== <log al ) dy; < C(l +log x_1> ;
X2 Jo X2 = )2 X2

X1
K1 < C||V29||L2([o,1]2) (1 +log x_2>

2 2x1 2
X 1 3x
g<1 + —1> dy, < / <10g ! ) dy,
[x2 — y2 2 Y2 X2 Y2 — X2
3\ 3 3 3
_1 logﬁ 1 log—x1 <C l+log)ﬂ ,
3 X2 3 2x1 — X2 X2

32
_ X1
K12l < CUIV0l 2(rexy) + 15 1319()’)||L2(R(x)))<1 +log x_2) .

Using Hardy’s inequality and that

2x2 1 X
/ log(l + —)
0o X2ty |x2 — y2

we obtain

By the estimate

2x1 1
/ lo
2w, X2+

we have

This implies

3/2
X1 _ X1
K| < C||V29||L2([0,1]2) <1 +log x_z) + C(||V29||L2(R(x)) + 1y, ]319(}7)||L2(R(x)))(1 + log x_2> ,

and collecting the estimates for K|, K, and K3, we obtain (3-11). Therefore, we arrive at

13(0) yiy2
+6/ —=0(y)dy
X2 o) Iyl

3/2
X1 _ X1

< CIIV0l 20,11 | 1 +10g = | + CUIVZOl 2k + 195 910D [l 12(R () [ 1+ log =
X2 X2

Using (3-5), we can estimate

201 +yD (X +y P+ x +ylx = F + x = 517
1,(0) = —4x2/ > =3 - 0(y)dy,
0,172 lx +yPPlx =y (Ix + y| +[x — yD)
similarly to /3(0). Hence we have (3-2), and this completes the proof. O

Lemma 3.4. Let 0 satisfy the assumptions in Lemma 3.2. Then, for any x satisfying |x| < % and
x1 > xp > 0, we have

YO 2 [ M2y ay] < Bico (3-14)
X o) 1yl
e uz(x) yiy2 X1 x\
+12/ —s0(dy| =< <1+10g—)35(X)+(1+10g— Bg(x), (3-15)
X2 o) IVl X2 X2

where By, Bs, Bg satisfy

|B4(x)|+ |Bs(x)| = C(IVO| Lqo,12) + 10l L=o,112)),  1Be(X)| = ClIVO| Lo(R(x))-
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Proof. We follow the proof of Lemma 3.2. To obtain (3-14), we recall (3-4) and have

lur(x)| =

> (i) + L))

nez?

< Cx1l10llL=o,112) + 11(0) + 12(0).

We estimate

2 5 512

X2 — x=y"+x=yllx—=yl+x—
11(0)2—4)61/ yl( 2 )’2)(| . )’| ~3I )’|| )’| ~| yl)
[0.112 lx —yPlx =3P (x =yl +[x =3

for each set Q(x), [0, 2x;] x [2x1, 1], and [0, 2x;]%.

0(y)dy

(i) Suppose y € Q(x). Using the notation J; and J, in Lemma 3.2, it suffices to obtain

3 yiy2
n=3 [ 3R00)dy| 410l £ CITON o (3-16)
o) 1Yl
We already showed that
1 10(y)l
hl<Clal | —5 == dy
o 1YIP Iyl
By (3-6) and Holder’s inequality, we have
L 16(y)] <1 4 .
x| —5 . dy < [x] — dr ) llyl7 0L < yIm 0 L= o,172)-
o 1Y 1yl | 2 (e 0.1
Since 0 vanishes near the axis, it follows
[ 2] = CIIVOl Lo 0,172
Letting J; = J11 + J12 + J13 as in the proof of Lemma 3.2, we can prove that
1 yiy2 1 16(y)
J1k—§f —59(y)dy‘ < Clx| —=——— dy = ClIVOIl (0,112
o) 1Y o YIP 1yl
for each k = 1, 2, 3. Therefore, (3-16) is obtained.
(i1) Suppose y € [0, 2x1] x [2x1, 1]. In (3-8) we observed that
yi —y)(x — yPP 4+ x —yllx =3[ +1x = §) 1 6(y)
‘/ P - 6(y)dy| C — Iy,
[0.2x, 1% [2x1.1] |x = yPlx = yIP(x =yl +[x = YD) 0.2x]x[2x1.1] Y5 V2
Since
1 6(y) 1 -
———dy=C — dy )y, 0D lIiz=qo1p) = ClIIVOIlLoqo,112),  (B-17)
[0.2x/1x[2x1,1] Y5 Y2 [0.2x1]1x[2x1,1] Y5

we have

‘_/ yi(x2 —y2)(Ix — yP+1x — yllx — J|+ [x — 5%
[0,2x1]x[2x1.1] lx —yPlx = FP(x =yl + |x = ¥I)

0(y)dy| = ClIIVO| L= o.1p)-
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(iii) Suppose y € [0, 2x1]%. We recall that

_f Y1(x2—y2)(lx—)’|2+|x—y||x—§|+|x—§|2)0(y)dy
[0,2x, 2 Ix —yPlx —3P(x —yl+Ix =3
1 1 1
=— - — 0260(y) dy
dx1 Joo2ep \Ix =y [x =]
1 [ 1 1
_ — 0(y1, 2x1) dyy.
4x1 Jo (|(X1—y1,x2—2xl)| |(x1—|—y1,x2—2x1)|) Y Y

Using Holder’s inequality, we have

1 1 1 2 1
—/ ( — — )329()’) dy’ < —(/ d)’) 10201l Lo (10,172
xt Jo2gp \x =y [x =Y x1 \Jp0,26,12 1X — ¥

< ClIVO| Lo 10.2x,12)-

From Hoélder’s inequality and the mean value theorem, it follows

= o)
- — 0(y1, 2x1) dy;
x1 Jo [(x1 =y, x2 —2x)| (1 + y1, X2 — 2x1)|

Therefore, we obtain
‘_/ yi(a —y2)(x —y* +lx — yllx — |+ |x — 3%
[0,2x] 2 Ix —yPlx =FP(x =yl +1x =5

Combining the above estimates, it follows that

< CIVO|l Lo(o,172)-

2
< CIIVOllL2qo.1p)-

6(y)dy

1, (0) yiy2
—6/ —= 00 dy| = ClIIVOIlL~(o.11)-
X1 o) Iyl

In a similar way, we can show that

Y12+ ) (x +y2+Ix +ylx — 5|+ x — 5%
[ (0) =4x; / 0(y)dy

[0,1]2 Ix + yPlx = 3P3(x +y|+x — 3]

6L (0) y1iy2
6 Ioay
X2 R2x) |V

We omit the details. Thus we have (3-14).
To estimate u,, we start with

satisfies

< CIVO|l Lo (o.172)-

lua(x)| = < Cx2||01l Lo o,172) + 13(0) + 14(0).

> (3(n) + L))

nez?

To estimate

_ 2 _ _ = o2
13(0):4x2/ 2 —=yD(x = yl*+x —yllx =yl +[x =yl )e(y)dy,

(0,112 lx = yPlx = yP(x =yl +|x =¥
we consider [0, 1]? = Q(x) U0, x1/2] x [0, 2x11U[x1/2, 2x1] x [0, 2x1]U[0, 2x;] x [2x1, 1] and estimate
the integral in each region.
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(i) Suppose y € Q(x). In this case, recalling that (3-6) holds, we can prove, proceeding much as for (3-16),

y2(x1 — y)(Ix — yP* +x — ylIx — y| +x — 3% 3 yiy2
V bl i ody+> [ 2220¢)dy
0(x) lx = yPlx = yPP(x =yl +[x =y 2 Jow 1y
= ClIVOlleqop)- (3-18)

(ii) Suppose y € [0, 2x1] x [2x1, 1]. Since in this case we have
ISl —y <2y, y<lx -3 <2y,

with (3-17) we can show that

O(y)dy| < CIVO|l Loo.172)-

lx = yPlx =P (x =yl +[x = ¥])
(iii) Suppose y € [0, x1/2] x [0, 2x1]. This implies

‘/ y2(er =y (x =yl + lx = yllx = 3+ [x = 3
[0,2x1]><[2x1,1]

1 1 .
X1 S x =yl <dxy,  gx1 < |x =y <4x,

we can see that

6(y)dy

/ (1 —y)(Ix =y +lx = yllx — |+ [x — 3%
[0,x1 /21x[0,2x1] Ix —yPlx = 3P3(x —y|+x — 3]

< ClIVOllL(o.172)-

(iv) Suppose y € [x1/2, 2x1] x [0, 2x]. Recalling the notation K, K>, and K3 in the proof of Lemma 3.2,
we claim

2
X1 X1

K1 = ClIVO| L=go1p) (1 +log x_) + CIVO| L r(x)) (1 +log x_) (3-19)
2 2

and
|K2| + |K3| < Cl[VO| Lj0,112)- (3-20)

As in (3-12), we have from the mean value theorem that

—1
K2 < Cx; 101 Loogo.2x,12) < CIIVO oo 112 »
and similarly,
|K3| < ClIVO| Leo.1p)-

Hence, (3-20) follows. We recall K; = K11 + K1,, where

—¥2010(y)
K =/ = — dy,
[x1/2,2x11x[0,26,] [X = Y[ 1x = y[(Jx — y|+|x — y])
/ —¥20160(y)
K, = = —
[v1/2,2x11x (260,201 [X = Y [x = Y[(|x —y|+|x = y[)

From Holder’s inequality and (3-13), we can deduce that

2x 1 X1
|K11l < ClIVO|l L= 0,172) / — IOg(l + —) dys,
0o X2+ lx2 — y2l

2xy 1 X1
1K 1ol < CIVO Lcreey / 10g<1 + —> d.
2, X2+ |x2 — y2l
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Since

] X1 1 [ 2x1
/ log(l + —) dy, < — log—dy, < C(l +log — )
0o X2+ |x2 — 2l x2 Jo |x2 — 2l X2

2x1 1 2x1 1 3 2
/ log(l + _ ) dy, < / log il dy, < C(l +log x—l) ,
2, X2t )2 |x2 — ¥l 2 Y2 — X2 Y2 — X2 X2

it follows

2
X1 X1
|K11| < C||V9||Loo([o,1]2)<1 + log x_2> |K12| < ClIVO|lLoRr@x)) (1 +log x_2> .

This shows (3-19). Combining the estimates, we arrive at

I3(0
lt )+6/ 220y dy
X2 o) Iyl

Using (3-5), we can estimate

2
< ClIIVO| Lo (1 +log — ) + ClIVO| L=(Rrx)) (1 +log )

(01 +yD (X + ¥+ x +ylIx = F + x = 517
1a(0) = —dny [ POEIOEEIE A E TN IS g ) gy,
0,112 Ix +yPlx = yIP(x +yl+1x = yD
similarly to /3(0). Hence we have (3-15), and this completes the proof. Il

4. Nonexistence

In this section, we prove Theorem B. We begin with a simple uniqueness result which in particular
guarantees that the hypothetical solution in L H 2 satisfies the same symmetries with the initial data.

Proposition 4.1. Given 0y € H*> and T > 0, there exists at most one solution to (SQG) belonging to
L>®([0, T1; H?) with initial data 6.

Proof. The proof can be given by simply adapting the inequalities derived in [Yudovich 1963; 1995]. This
statement can be found in [Azzam and Bedrossian 2015] as well. Il
Proof of Theorem B. For convenience, we shall divide the proof into several parts.

Part 1: velocity and flow map: an L H?-solution is Lagrangian. Assume that we are given a solution to
(SQQG) satisfying

sup |6z, ) llg2 < M.
1€[0,T]

Then, by the Sobolev embedding, u = V+(—A)~1/29 satisfies

sup ([Vu(z, -)lIBmo + [lu(t, )llw11) < C sup |lu(z, )|y < CM,
1€[0,T1 10,77

with some absolute constant C > 0. In particular, u is log-Lipschitz: for any x, y € T2, we have

1
sup |u(t, x) —u(t, y)| 5CM|x—y|ln<10+ ) 4-1)
1€[0.7] lx =yl
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On the time interval [0, T'], we consider the flow map & (¢, -) : T2 — T2 defined by
d
%cb(tv x) - M(t, q)(t’ -x))’
®0, x) =x.

(4-2)

It is well known that under the estimate (4-1), there is a unique solution to the ODE (4-2) for any x € T2
[Majda and Bertozzi 2002; Marchioro and Pulvirenti 1994]. The solution & satisfies the estimate

|x — y|ZPEMD < 1D (1, x) — (2, y)| < |x — y[*PEEMD (4-3)

for some absolute constant C > 0, uniformly in x, y € T? satisfying |x — y| < % and ¢ € [0, T]. We have
the representation
0(r, d(t, x)) = bp(x).

The estimate (4-3) shows that, for each ¢t € [0, T], ®(¢,-) is a Holder continuous homeomorphism
T2 — T2, and we denote the inverse map by &, L Then, with this notation, we have

6(z, x) = O (D, (x)).

The inverse map ®, ! is again Holder continuous. As an immediate consequence, we have that if 6 is an
odd function with respect to both axes and satisfies

supp(Bp) U{x : x; =0 or x, =0} C {(0, 0)},

then the same properties are satisfied by 6(¢, - ), as long as 6 € L*°([0, t]; H 2). Indeed, the uniqueness
assertion from Proposition 4.1 guarantees that (¢, - ) is odd with respect to both axes. Furthermore,
Holder continuity of the flow map and its inverse ensures that (¢, - ) vanishes near the axes, possibly
except at the origin. Therefore, the last assumption in Lemma 3.2 is satisfied.

Part 2: choice of initial data. We fix some smooth bump function ¢ : R* — R satisfying the following
properties:

e ¢ is C*°-smooth and radial.
e ¢ is supported in BO(%) and ¢ = 1 in 30(3%)-
Then, we define

o0
60:= ) n B (4-4)

n=ng

for some % <ua< %, where

e(gﬁz)c(x) = 4—n¢(4n(x1 — 4_"_1’ Xy — 4—:2—2))

for x € [0, 1]%. The precise value of o will be determined later, but for now let us just mention that it
will be taken slightly larger than % Next, let us extend each of Géﬁzm (and similarly 6p) to T2 as an odd
function with respect to both axes. Note that by taking ng > 1 sufficiently large in a way depending only
on € > 0, we can guarantee that

1001l 2wico(r2) < €.
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Towards a contradiction, we shall assume that there exists M > 0 and T > 0 such that
sup 1022y < M. (4-5)
1€[0,T]
For simplicity, we shall assume that M > 1. Observe that the assumptions in the key lemma (Lemma 3.2)
are satisfied by 6y. Recalling the discussion above, we have that 6(¢, - ) is odd with respect to both axes
and vanishes near the axes, except at the origin.

Part 3: preliminary bounds on the solution. Let us remark in advance that in the following proof we shall
take T > 0 to be smaller, if necessary, to satisfy 7' < ¢/M for some small absolute constant ¢ > 0. We
shall begin with a simple result:

Lemma 4.2. Assume that 0 is a solution satisfying (4-5) with initial data (4-4). Then, by redefining T to
satisfy T < c/M if necessary, we have

0, y)=0, 0<y;<y, 0<r<T.

Proof. Since 6(¢t, ®(t, x)) = 6p(x), to prove the claim, it suffices to show that, for x € supp(6p)\{(0, 0)},
Dy(t, x) <Dy(t,x) for 0 <t <T. Let us fix some x € supp(6p)\{(0, 0)}. Then, from the choice of initial
data, we have 2x, < x1. From continuity in time of the flow map, there exists some 0 < T* < T such that
Dy (t, x) < Dy(t, x) for 0 <t < T* Then, on this time interval, key lemma is applicable for ® (¢, x) and
we compute

i(@ﬂt,x)) _ Do(1, x) <u2(t, d(1,x)) _ ui(t, @(t,x)))

D (1, x) Dy (t, x) D, (t, x) Dz, x)
< O BI04 |Ba(®( 1) + B(@ (1)) = CM G2,
Therefore, we actually obtain
D, (1, x)
®(x) 2 exp(CMD) < 4
ont € [0, T*], as long as T* < ¢/M for ¢ > 0 depending only on C. This bootstrap procedure allows us
to get /P < % uniformly in x € supp(6p)\{(0, 0)} by the time min{7,c/M}=T. (|

The above lemma guarantees that on [0, T'], the key lemma is applicable to points in supp(0(¢, -)).
Next, let us set €2, := supp(@éﬁ)oc) N{x € T? : x; > x» > 0} and prove that, by reducing ¢ > 0 if necessary,

the bubbles {® (7, 2,)},>n, are “well-ordered” with respect to the xj-axis for r € [0, T] with T < c¢/M.
Claim I. We have

sup @(t,x) <2 1nf Di(t,x) and 2 sup Di(t,x) < mf D (1, x) (4-6)

xXeR, XEQ+1

uniformly for alln > ng and t € [0, T], by reducing T to satisfy T < c/(1 + M) for some small absolute
constant ¢ > 0.

For simplicity we let
CD"(t) = sup ®;(z, x)

xe,
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for j =1, 2. We can prove the Claim I inductively in n, using the key lemma, which gives

f,
M—u/ W26 vydy| < oM.
0

X w P
In the proof, we shall take 7 > 0 smaller several times, but in a way which is independent of n. To begin

with, for x € ©,,, we have

%log O(t,x)>—-CM.
Thus,
log @;(¢, x) —logx; > —CMt.
We also have
% log & (1) — d% log (¢, x) < 2CM,
and thus,

log ®°(r) — log @ (1, x) < 2C Mt + (log £° — log x1).
Since £1°/x; < %, we can take 7 > 0 sufficiently small such that

2CMT + (log £}’ —log x;) < log2,
which implies that
D) < 2 inf @(1,x)
no

for all ¢ € [0, T]. Indeed, it suffices to take T = c¢/(1 4+ M) with a small absolute constant ¢ > 0. To show

207 (1) < inf ®y(1, x) (4-7)

erno
for all ¢t € [0, T'], we use the notation
(1) := sup D7 (1).

n<m

Then, for x € ©,,, we have

D (1, y)Dao(t, y)
|, y)I°

d d Tno+1
— log @ (¢, x) — —log W *° (t)z—lZ/
dr dt ! o

6o(y)dy —2CM.
no

From the above estimates, it follows

(1, y)Do(2, 3 6
/ 1(t,y) 2(5 Y)eo(y) dy < ( sup X ) / 0(3) dy < CoedCMT |
Qg |D(, y)l xeQ,, P1(t, x) o Vi

Using it, we obtain

% log @, (7, x) — d% log B (1) = —12Coe*MT —2CM

and
log @1 (t, x) — log U (1) > —12Coe* M7t — 2C Mt + (log x; — log £}°*").

Since x| /)??OH > 2, we can take T > 0 sufficiently small such that

—12Coe*MTT —2CMT + (log x; —log £1°™") > log 2.
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Hence, with \Ilf‘)Jr (t) > CID'I“’Jr (1), we can obtain (4-7). Now let x € €,,+1. Then we have

gltlogcbl(t x)>—-CM.
Thus,

log @ (¢, x) —logx; > —CMzt.
Since X /x1 takes the same value as in the previous case, we see that

2CMT + (log x| 210t _Jogx) <log2,
and therefore, we have
Pty <2 inf @1, x)

XEQHO+1

for all ¢ € [0, T']. Note that by (4-7),

CD](I, y)cDQ(t’ )7)
@, y)I°

6o(y) dy —2C M.

4 jogd (1, x)— 4 log W) > — /
d Qn0+1

With the above estimates, we have

(2, y)Pa(t, no+2 6
/ 12, y) 2(5 y)Go(y) dy S( sup X ) / o(g dy < CoeCMT.
QnOJrl |q)(t’ y)| ernOJrl q)l(t x) Qn0+1 yil()

Using it, we obtain

% log (¢, x) — (% log U°2(1) > —12Cpe*MT —2CcM

and
log ®1(t, x) —log U (1) > —12Coe>MTt —2C M1t + (log x| — log £1°*2).
Since x; /x""Jr2 > 2 is the same value as in the previous case, it follows
—12Coe*MIT —2CMT + (log x; — log £°*?) > log 2
and
207 (1) < inf @1, x)
Xe nop+1
for all ¢ € [0, T']. Repeating this argument, one can finish the proof of Claim L. 0

Claim I1. There exists T > 0 and C > 0 such that

®1(t, 1) ®alt, y)
<-10 6 dydt+CMT
=-10 // B, pp W ddt

log

np<j<n—1
uniformly for all n > ny.

Recall that

u2 () _ —12/ 2264, y) dy+CM(log )
X2 IR
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if 8(y) = 0 for y satisfying x;/2 < y; <2x; and 2x; < y, < 1. According to the order of the bubbles, for

22 @ (1, y)a(t, y)
0@, y)dy = 0o (y) dy.
/Q(<1>(t x)) |y| (. y)dy= Z / |D (1, y)|5 b(y) dy

x € ,, we have

no<j<n—1

Dy (z, 20" (¢t
sup CM<10g i x)> SCM(log ml )).
20, (1,x) > B (1) Dy (2, x) (1)

Thus, we can see that

d, @50 f @i (t, y)Pa(t, y) 28" (1)
—log——<—-12 Oo(y)dy + CM log —
%9) Z Q; |<D(t? y)|5 Cbn()

And note that

D, (t, y) Do (1, (¢ (¢
<-12 ) / 12, ) o y)G()dy—i-CMlog ]()—CMlog %£)+CM

no<j<n—1 Q;j |CI)(Z‘, y)|5 xl x2
and
At D (1, y)Pa(t, Pt
d(”“lg ())5eCM’<—12 3 / 1. ) 2(5 Y oy )dy+CM(log 1()+1)).
dr # = o, T eyl 7

It suffices to bound the time integral of the right-hand side. Note that from

log ()<12 3 // PLT NPT ) dydr + Mt

5
W 2z, )
we obtain
”( / / D (7, y)P2o(7, y) )
CM/ dr < 12CM1t Op(y)dydr + (CMr1)~.
Z |D (7, y)P

no<j<n—I1

Therefore, using Gronwall’s inequality on the quantity 10g(6g (t)/x%) and taking 7 > 0 small depending
only on C M, we can complete the proof of Claim II. (]

Part 4: almost invariant timescales. We shall write ® (¢, 2,,) ~ €2, if
supp(® (7, £2,)) C B((4—n—l’ 4_”—2)7 4—n—1)'

Here, B((4™"~!,47=2), 4="~1) denotes the ball of radius 4"~! centered at (4", 47"~2). Recall
from the definition of initial data that

Q, = B(@" 1 472, 271y,

An immediate consequence of ®(t, 2,,) ~ 2, is that once we define

[ Pu, ) Pa(z, y)
1) = /Q e R amay,

we have
]n(t) = aOIn(O)

for some absolute constant ag. The following claim gives the sharp bound on the “almost invariant”
timescale for each bubble.
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Claim IIl. For all n > ng, we have

(1, Q) ~ Qn forOftSmin{T < }:: T,,
M4y, i

with some constants ¢, C > 0 independent of n.

This claim can be proved easily with an induction in n. In the base case n = ng, we simply note that,
for x € ®(z, 2p,),
uj(t,x)
Xj

<CM

from which the claim follows in this case. Assume that Claim III holds for all n < ny + k for some k > 1.
Note that using the key lemma and the induction hypothesis, we have for x € ® (¢, €2,,,4«) that

k—1
ui(t,x
M SC(M+ZIn0+€>, Ofthno—G-k—l-
Y =0
A simple application of Gronwall’s inequality gives Claim III. U

We have proven that the n-th bubble remains almost invariant for 7},, which is bounded from below by
6;0 - (1 —IOl)Co
n— o —a
Z Jj=ng J * n

for all n > N with some large N depending only on M, T. Now, we observe that

T, =

T,
/ L(t)dt > T,1,(0) >
0

EI»—

with constants independent of n, recalling that 7,(0) = n™“ (We shall take « close to %) Hence,

summation gives
‘ 1 1 n\
Y ROz co ~+ -+ ) = log( - (4-8)
14 n L
k=t
for some absolute constant cg > 0, as long as £ > N.

Part 5: norm inflation and conclusion the proof. We are now in a position to complete the proof. For
each £ > N and n > £ (so that log(n/£)° > M), we can bound for x € 2,

e,
log 2( Iy <CM—1OZIk(O)Tk<10g<£) .

2
an (&)
2 (f) . (4-9)
11y~ \¢

Now, we can write the solution in the form

In other words, we have the growth

o0

0= n0", 0", o1, x) =061 (x),

n=no
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so that the support of 9 is disjoint from each other. We now take ¢ = T}. Since 6 (Ty, -) =1 in a region
of area > 4~%" and 6" =0 for n’ # n in that region, with Hardy’s inequality and (4-9), we obtain that

o s n 4cq
16T 2 (5 ) -

This estimate holds for all sufficiently large n. Then
1T = > n=2 0" (T 1%, 2 0740 Y nteo2,

nzno n>{
In the last inequality, since co > 0 is an absolute constant, and we could have chosen o = % + co. This

gives a contradiction to (|0(Ty)| 2 < oo since Zn>>e n~1t = oo, Il

Remark 4.3. The nonexistence of the solution in W' is obtained similarly. We define the initial data 6,
with (4-4) for some 0 <« < 4—1‘ and repeat the above process with Lemma 3.4 instead of Lemma 3.2. Then
we can have an absolute constant 06 > 0 with (4-9). Since this implies

&
16 (T 1 > (%) ,

it follows that
16(Tp) [l = 0O (Ty) [0 = £ 0RO,

Therefore, taking a = ¢(,/2, we complete the proof.

5. Norm inflation for smooth data

We establish Theorem A in this section, by proving a quantitative norm inflation result for data obtained
by truncating the data used in the proof of Theorem B.

Proposition 5.1 (quantitative norm inflation). We consider the C*°-smooth initial data
N
05" =Y n70y. (5-1)
n=ng
where ¢, o, ng are the same as in (4-4). Then, there exists Ny > 1 depending only on ¢, ng such that, for
all N > Ny, the unique local in time C*®-solution 6™) to (SQG) with initial data QéN) exists on the time
interval [0, T*] for some 0 < T* < Ty and satisfies

16 e <€, sup 16N @Dz > My, (5-2)
tel0,T*]
where
My:=2IN, T : (5-3)
= —1In/v, =_— _
N 2 N MN In MN

with co > 0 from (4-8).

Proof. We shall establish the proposition with a contradiction argument: let 0 < 7* < +o00 be the lifespan
of the smooth solution associated with the initial data OéN) and assume that

N
16¢ )||Lw([0,min{T*,TN}];H2) < My.
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Under this contradiction hypothesis, we can actually prove that T* > Ty, so that
16 0,7 152) < M. (5-4)

This is simply because the H>-norm gives a blow-up criterion. To illustrate this point, we estimate the
H?3-norm of 6 :== 0™ on [0, Ty]:> from the equation for A@

WAO+u-VAO+ Au-VO+2 Z du-Vo0 =0,
i=1,2
we estimate for j =1, 2

1d
Egllaleliz < C(|Vull o + VO] L) [10; A0 72 + ClIO 1 2116 1175-
Here, we have used L* boundedness of the Riesz operator 6 > u to bound
172, 411/2
IV2ull s + V2014 < CON 210117

Next, we use the logarithmic Sobolev inequality

161 3
VO[> < Cl10]| g2 log| 10+
161 2

and
3 0|l g3
IVull < Clull g2 log<10+ w) < Cll] log(10+ m)
el g2 101 72
(we have used the lower bound ||u| 2 > C||0| y2). Lastly, using [|0]| g2 < My, we may deduce the a
priori estimate

d
EIIHIIiﬂ < CMy log(10+ 101l ) 161135

which shows that the H3-norm of 6 must remain finite up to r = Ty. Higher norms of 6 can be similarly
controlled, so that the solution 6 remains C*°-smooth up to t = Ty.

In the following argument, No > ng will be taken to be sufficiently large (but in a way depending only
on a few absolute constants) whenever it becomes necessary. Recall that we are assuming N > Ny. The
following argument is mainly a repetition of the proof of Theorem B above. For convenience, let us fix

Oy =My, (5-5)

Then, note from the definition of My in (5-3) that ny < £y < N. Here and in the following, we write
AL Bif A/B— 0as N — oo, where A and B are some positive expressions involving N.

Observe that the solution 6 defined on [0, T ] satisfies the properties stated in Lemma 4.2 and Claims I,
I, III on the entire time interval [0, Ty ] (by taking Ny larger if necessary), simply because we have

1
T .
N <K My

3For simplicity, from now on we shall refrain from writing out the dependence of the solution 8 in N.
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from our choice of Ty in (5-3). As in the above, we write the solution in the form
N
0= n0", 0" o1, x) =01 (x),
n=noq
and ™ will be referred to as the n-th bubble. Then, for any £y < k < N, we have that the invariant
timescale T} for the k-th bubble satisfies

1
k=1 ._4
MN =+ Zj:no J

We have used that « is close to % Now we consider the values of n satisfying

Te<Ty and Tj > > ket

n> Clyexp(c, My) (5-6)
for a sufficiently large absolute constant C > 0. Then, at ¢ = T;,,, we obtain much as before
2co
(n) 2 n
167 (Ten) g2 2 (a>

whenever n < N satisfies (5-6). Hence

N 2¢o
_ n —2¢ _
16(Te )32 2 > n 2“(—) 20 ONT 0 5 M3
Iy
n=1+|Cty exp(cy ' Mn)]

recalling the definitions of My and £y. We have used that N > £y exp(c, "M ) to derive the last
inequality. In particular, for all sufficiently large N, we obtain

10(Tey) 12 > My,

which is a contradiction. O

Appendix: Key lemma for generalized SQG

We provide a version of the “key lemma” for generalized SQG equations (1-3) with 1 <« < 2.

Lemma A.1. Let 0 satisfy the assumptions in Lemma 3.2, and let x satisfy |x| < ‘11 and x1 > xo > 0. Then,
u = VEAT0 satisfies

N 44w 222 6(y) dy| < By(x) A-D
X1 0(2x) |y[o~«
and
us(x) yiy2 X1 x0T
+4(4 —a) 0y dy| = (1 +log —) Bg(x) + (1 + log —> By(x), (A-2)
X2 0x) 1Yl *2 2

where By, Bg, By satisfy

|B7(x)] + | Bs(x)| < C(IV> ™0l L2q0.112) + 101l L qo.172))
and

|Bo(0)| < CUIVP Ol 2y + 155 00l 2gsiey)s - S 1= [x1/2, 4x1] x [4x2, 1.
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Our proof will be brief, since the structure of the proof is similar to the SQG case. Unfortunately, this
argument cannot be specialized to give the lemma in the SQG case, since the case o = 1 is critical (being
an integer) in some sense.

Proof. We fix a point x = (x1, xp) satisfying the assumptions of the lemma. We write

- =20 (= (G42m)t (x—(—y+2n>>L_<x—<y+2n>>L)
u(x)= Z/ouz(lx Gr2m e —Gtem i V(2 x—Gampe )0

We estimate 1 first. We introduce

X2 — (y2 +2n2) x2— (y2+2n) )
1 =— 6(y)dy,
1(m) /01]2(|x—()’+2”)|4 “ T h—Grampe )OO

Xy — (_yl + 2]’12) Xy — (_y2 + 21’12) )
I e B ; .
2(n) /[o 12 ( X — (—y+2n)[*  |x— (G +2n) [+ (y)dy

and we see

w(x) =Y _ (L) + hLn)).
nez?

In the case of n # 0, we have

[ (n) + L ()| + | L) + L) < O(n| > )0 Lo o) X1

hence,

> () + L)

nez2\{0}

< Cx11101l e 0,172)- (A-3)

For n = 0, we estimate first

X2 =N - N
1(0) = —f ( - >0<y> dy.
0.2\ Jx — y[4« | — e

Using [0, 117 = Q(2x) U0, 4x;] x [4x1, 17UJO0, 4x;]?, we estimate the integral for each set.

(1) Suppose y € Q(2x). In this case, we note
—aP = xlP =2x-y < P =225 < 3y

from —|x|? +2x -y < 3|x >+ |y> < 3y? + 1Iy[* and |x|? 4+ 2x;y; < 3y7. Hence, it holds

x> 2x- 5 x> 2x- 5
7 Iyl2 =8 e Iyl2 =%
Then, using the Taylor series expansion
1 4 — 4 — a)(6—
% GZDOD 0 1< <, (A-4)

R ) 8
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where g is an analytic function on (—1, 1) with g(0) = 1, we can verify
Xo2—Y2  X2—W»
lx —y|4=  |x — 4@
_ =y (ﬁ C2x-y 1)—(4—01)/2_ X — s (ﬁ 2 X 1)—(4—00/2
Iyl \Iyl> Iyl?

Iy« \yl>  |y?

— 4—a)(6— 2 2. 2 2%y
_ X 4yz[2(4_a)x1y21 L @ a){h<%_ X Zy)_h<%_ x zy)”’
[y |yl 8 [yl [yl [yl |yl

where h(t) :=t?g(t). We set

2 . _ 3
f(r):h<:;%_2x (y+(Ty|21)(y y))>, 0<z<l,

so that

X2—y X2—y xiy1x2—y2) @G—-a)6—a)xy—y

— = =24~ 2(f(1) = £(0)).
|x—y|4—0‘ |x—y|4—0‘ ( (x) (f() f( ))

ly|6— 8 |ly|4-

The mean value theorem and (3-6) imply

M= FOI=1f"(D)
:)_leyl(w 2x-(y+(r—1)<y—y>>) <|x|2 2x-(y+<r—1><y—y)))

EEANCE Iy 2|y|2_ IyI2
B xm(@_bc-(yﬂr—l)(y—y))) (ﬁ_zx-(w(z—l)(y—y)))'
Iy \IyI? |yI? lyl? |yI?
cxn L
TP
Thus, we have
X2 =y X2 =y y2 1
— — =-2(4—-a)x +x1 |x|0(—)
Ix —yl4=e  |x — |4 |y|6— ly|>—
and
1/ < X2— X2— Y2 ) yiy2
- — = O(y)dy —2(4 —a) 0(y)dy
x1 Joao \Jx —y[*=*  |x —F+e 0@ [y16=
1 16
§C|x|/ Lo,
o) IYIFIylP~

<C| |y|_(3_a)9”L2([0,1]2)-
For y; > y,, using Lemma 3.1 and [Zhang 2006, Theorem 3.1], we obtain
Hy1=C~0 20,11 < 311~ y3 0l 20,11
< ClyI"* R0 I 2qo.11) < CIV Ol 20,11

Similarly, we can deduce for y; < y, that

NY17C~ 20 20112 < CIV ™0l 12 0.172)-
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(i1) Suppose y € [0, 4x1] x [4x1, 1]. In this case, we setf(t) = |x — (y — (1 —D(y—y)**for0<t<1
to see

‘_i/ ( X2—y2  X—y
X1 J[04x ) xdx, 1\ X =Y [x—F |4

The mean value theorem implies

>9(y)dy 16(y)|dy.

1 / |x2—y2| | F (D)= f(0)]

< __
X1 Jj0.4x)x[4xy.1] X =Y |4 ¥ | x =y

4
fH=£f0O)=f'(v)= Ta(—4y1(X1 +y) 8Dt =)+ (L —1)(x —H)**

4—o oy
= =M@ =y + =D +Hy)lrl =y + 1 =D = HIF
Applying y; < 4x; and
I <lx =y <2y, iy <Ix—3F <2y,

we obtain
2= yllf (D= fOI _ . x

=yl — g T e

Thus, it follows

1 X2—y2 X2—y2
‘__/ ( 4—a S14—a O(y)dy
X1 J10,4x11x[4x, 11 \1X — Y lx — y|

ccf 100
[

0,41 ]x[4x1,1] Y2 yg_“
< C|lly|"C g < C|V3p A-5
<Clllyl ()’)||L2([o,1]2) =C| l22q0,172)-  ( )

(iii) Suppose y € [0, 4x]%. Due to 6(y;, 0) = 0, using integration by parts gives

1 ( X2—y X2 =y )
—— - — 6(y)dy
x1 Jjoanp \x —y*=o  |x —F4-«

I e )
= — - = 020(y)dy
Q2—a)x; Joanp\Ix —y>=®  |x -y~

1 /4x' 1 1
- — 0(y1,4x1)dy;.
C—wx J <|<x1—y1,x2—4x1>|2—“ |(x1+y1,x2—4x1)|2-“) YN

By Holder’s inequality we estimate the second integral as

‘ 1 f‘“ﬂ 1 1
- — 0(y1,4x1)dy;
2—-a)x1 Jo (l(xl—yl,xz—4x1)|2_“ |(x1+y1,x2—4x1)|2—°‘)
4x;
—(3— — —-2— —1/2,, —(Q2—
<Cx; %7 / Y2y G0, 4x) dyr < Cxp Py F0(n, dx) 2 0.4x)-
0

Since 6 vanishes near the axis, it follows

4x;
10 (y1,4x1)] 5/ 1820 (y1, T)| dT < (4x1)"218,0 (31, M z20,4x))
0
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for all y; € [0, 4x;]. Then, with [Zhang 2006, Theorem 3.1], we obtain

Rl A e 2o
_ - 0 (y1, 2x1) dy;
(2 —a)x; fo [(x1 —y1, X2 —2x) 177 |(x1 4+ y1, x2 —2x1)|>7¢
< CIV™ Ol 2q0.1p)-

On the other hand, using Holder’s inequality, we have

it Joe (v )
—_— - ~ 329(}’)dy‘
‘ Q2—o)xi Joayp\lx—yl>* |x =y«

c 200 _C ([ i )
<— Topa W =— r O dr ) 119201 20,41,
X1 Jio,4x72 1X — ¥l X1 \Jo

—(2—
< Cx; T NV0 20,00, )-

Therefore, we can deduce

o Jyoe oy e
—_— - ~ 020(y)dy
Q—o)xi Jjoayp\Ix —y>7% |x —§>7¢

Combining the above estimates, we obtain

1 / ( X2 =2 X2 —=y2 ) .
X - = 0(y)dy| < CIVOll 2 0.1 -
x1 Jioep \x =yl Jx = F|+e (10.17)

<C|Vi e 220, 112)-

We collect the estimates for each region and deduce that

I (O) yiy2 —
~2(4-a) ) dy| < CIVI Ol 20,11
X1 o 1Yl
Similarly, we can show
12(0) yiy2 —
—2(4—a) 0y dy| = CIV*™OllL2q0,1)-

X1 o) 1167

We omit the details. Thus we have (A-1).
Now we estimate u,. Note that

ur(x) =Y (I3(n) + La(n)),

neZ?

L) = /[O 1]2( x1— (y1+2ny) x1— (y1+2n1) )0(y) dy.

where

x— (y+2m) 1 |x— (54204

x1—(—y1+2n1) X1 _(_y1+2n1)>
= - 0(y) dy.
4(n) ‘/[voql]z(lx - (_y —|—2n)|4—a |x _ (5) _|_2n)|4_a (y) y

Since we can similarly see that

> 5) + Ln))

nez2\(0}

< Cx2|101 o o,172)»

it suffices to estimate for n = 0. We estimate /3(0) by dividing the domain into four regions as [0, 1]> =
0@2x)UI0, x1/2] x [0, 4x;]U [x1/2, 4x1] x [0, 4x1]U [0, 4x1] x [4x1, 1].
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(i) Suppose y € Q(2x). Then we can see

x> 2x-y
Iy> Iyl?

<3
-8

by |x]24+2x2y, < |x]? —|—4x22 + %y% < %y% + ;lly%. With (A-4) we can prove

1/ ( YN 1N ) yiy2 -
_ — e O dy+2(4 —a) 6(y)dy| < CIIV>~01l 120,11
x2 Jooo \Jx —y|**  |x —y[+e o) 1715 L2([0.112)

(ii) Suppose y € [0, 4x1] x [4x], 1]. Then it follows

Iy <lx—yl <2y, y<lx—7 <2y

Using it, we can show

1 f < X1 — V1 X1 — V1 ) 3
%2 Jioaxxpan, N X = 470 |x =y (10.112)

in a way similar to how we obtained (A-5).
(iii) Suppose y € [0, x1/2] x [0, 4x;]. We set
fO=k-0-0-D@-M"" 0<t<L

Then, we can see

1 X1—Y1 X1—Y1 1 lx1=y1l1f(1)—f(0)]
= ( - Jema| = [ WAD=T O 51 ay.
X2 J10,x1 /2110, 4,1 \ X =Y lx—y| X2 J10,x1 /2% 10,4611 1X—Y1* ¥ x—Y|

Since the mean value theorem implies

4—
f=fO)=f(r)= —Ta4y2(f(x2 — )+ 1=+ y))tx—y) + 1 - =,

with y, <4x; and
1 1 _
X1 < x =yl <8x1, Fx1 < [|x—Yy] <8xy,

we have

= nllf ) = FOI _ .

v =y — e = e

Thus, we can obtain

1 X1—y1 X1—y1 C
_/ ( o i WAy = 54— 16(y)|dy
X2 J10,x, /21x[0,4x,1 \ X =Y lx—yI X1 J10.31/21%00.4x1]

<Clyl 0l 2qo.1p) < CIV Ol 120.12))-
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(iv) Suppose y € [x1/2, 4x1] x [0, 4x;]. Integration by parts and 8(0, y,) = 0 give

1 X1 —y1 X1 —y1 )
- - = 6(y)dy
X2 J1x1/2,4x11x[0,4x1] ( lx =yl |Jx— [+

oan e
- _ - - 010(y) dy,
Q2 —a)x2 Jix paxxi0ae X —y[>7%  |x —y|27«
1 /‘“ﬂ( 1 1 )
b = 0(4x1, y2)d
C-amlo UG-y [Gx,xatype) 03202

1 41 1 1
- - 0(x1/2, y2) dyz.
Q—am /0 (l(xl 2030 — ) |(x1/2. 30+ )’2)|2“)
To estimate the second integral on the right-hand side first, we set

f@O=1Gx1, 00— —2(1—-D)»)*™*, 0<t<I,

so that

1 4X1 1 1

- 6(4x, d
(Z_O‘)XZ/O <|(3x1,x2—y2)|2_°‘ |(3X1,X2+y2)|2_°‘) (51, 2) dy2
c [* £ (1) = £(0)]

<
“x2Jo 1Bx1,x2— y) 7By, x2 4+ y2) |27

|0(4x1, y2)[ dy>.
Using the mean value theorem
2
fH=fO)=f'(r)= Ta4yz(f(X2 —y2) + (=) (x2+ y2)IGx1, x2 — (2 = 2(1 = D) y2)) 77,

we have

|f (D) = fQO) .

G132 = )P 1Grn 12+ )P = e
1, X2 = )2 1, X2+ ¥ ;

With the simple inequality

4x1
16 (4x1, y2)| 5/ 110 (z, y2) | dt < @x) 21810+, y2) Il 12(0.4x)
0

we obtain

- 0(4x1, y2) dys
(2—01)362/(; |Bx1, 02— y) 7% |(Bx1, x2+ y2) >

3—
10101l 12(0.4x,12) < CIV"Oll L2j0.172)-

=3
- —u
X

Similarly, we can show

1 4 1 1
'(2—a>x2 fo (|<x1/2, -y /2, x2+y2>|2“)9(x‘/ 22 vz
We omit the details. Now, consider f(t)=|x—(y— (1 —1)(y — y))|2*“, 0 <t <1, and note that
‘;f ( Lo ! )ale(wdy'
2 —a)x2 Jix paxxi04a WX —y[>7%  |x —y|2@

C - f(©
_c SD=SOL o

T X2 i 2,400 1x00,40] X = YPx — 2

37
< CIV"70l L2q0.172)-
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Since the mean value theorem gives
—

2
= fO)=f(r)= T4y2(T(X2 —»)+U -+t -—+A - -y,

it follows

fD-fOI  _ Cxy

X =y x =327 T x -y x =y
Hence,

oo (=75
2 —a)x2 Jix paxxi04aa X — Y272 |x —y|2@

>810(y) dY'

Scf e 0101 dy.
[x1/2.4x1]x[0.4x,] [X — Y77 ]x — ¥]

By Fubini’s theorem and Hélder’s inequality, we have

—[0:0(y)[dy

/[x./2,4x.]><[0,4x1] Ix — y[>=%|x — ¥
4x1 1 4x; 1
= ————1[016(y)|dy; dy2
/0 X2+ /xl/Z |x —y|>~

4x; 1 4x; 1 2—a
< 319 1/(a—1) </ d l) d 2
/0 - 10161 L1/ (x, /2,4x1) AT y

4x; X1 2—«a
<C 0160 am log{14+ ——
/o P 10101 L1/@=1(x, /2,4x1) g( |x2—y2|>

dy».
The Gagliardo—Nirenberg interpolation inequality and y, < 4x; yield
— —(2—
Yo N0 (-, vl pren(x, 2,40y < C(||313 “OC, )l r2x 2,411 ‘H’z( 0,0, Y L20x1 /2,4x1))-

—1/2

Then, we can have

4)(1 1 x] r—a
10161l 1/@-v (lo <1 + —>> dys
/(; X2+ y2 L (x1/2.4x1) | 108 X2 — |

o 20-a)  \1)2
3—a X1
< CIIV70 20,1 (/ log(l + —) d)’2>
0 lx2 — y2

X2+ y2
3- —(2—a) i X1
+CUVT Ol 250y + 11y~ 010125 xy) (/ log (1 + = yzl)

4, X2+»
2
X1
dy; < C<1 +log—) ,
X2

202—a) X0
dyzSC(l—I—log—) .

202-a) 1/2
dyz) .

As estimating K; and K,, we can show

4x; 1 X
/ log(l + —)
0o X2+ |x2 — yal

4x1 1 X1
f log<1 + —)
4x, X2+ |x2 — ¥2

o (o
2 —a)x2 Jix paxxi0dx X —y[>7%  |x — |27

(5-2a)/2
- X1 _ —2— X1
<C|V? “Oll 20112 (1 +log x_2> +C(Iv? “Oll 25y + 1y, ( a)819||L2(S(x)))(1 +log x_2> .

22—a)

This implies

)319()’)d)"
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Collecting the above estimates gives

;0
3O 4w ylg_zae(y)dy‘
ow) 1Yl

X2

(5-2a)/2
— X1 _ —(2— X1
<CIV> "Bl 120,11 <1 +log x_2> +CUIVI O 25y + 113 a)aIOHLZ(S(x)))(l +log x_2> ,
and we can similarly obtain

14(0
1O o ylgzae(y)dy‘
X2 o) 1Yl
(5-2a)/2
_ X1 _ —(2— X1
< CIIV ™0l 20,1 (1 +log x—2> + OV 25y + 17 a)819||L2(S(x)))<1 +log x—2> :
Hence we have (3-2), and this completes the proof. 0
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Around the same time, Cordoba and Martinez-Zoroa [2022] proved similar strong ill-posedness results
for SQG in R?. They proved ill-posedness for Sobolev spaces below H? as well. We point out that in the
case of R? (unlike T?), it is not too difficult to pass from norm inflation to nonexistence since one can
keep adding “bubbles” which gives growth further away from previous ones.
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