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We address the large-scale regularity theory for the stationary Navier–Stokes equations in highly oscillating
bumpy John domains. These domains are very rough, possibly with fractals or cusps, at the microscopic
scale, but are amenable to the mathematical analysis of the Navier–Stokes equations. We prove a
large-scale Calderón–Zygmund estimate, a large-scale Lipschitz estimate, and large-scale higher-order
regularity estimates, namely, C1,γ and C2,γ estimates. These nice regularity results are inherited only at
mesoscopic scales, and clearly fail in general at the microscopic scales. We emphasize that the large-scale
C1,γ regularity is obtained by using first-order boundary layers constructed via a new argument. The
large-scale C2,γ regularity relies on the construction of second-order boundary layers, which allows for
certain boundary data with linear growth at spatial infinity. To the best of our knowledge, our work is the
first to carry out such an analysis. In the wake of many works in quantitative homogenization, our results
strongly advocate in favor of considering the boundary regularity of the solutions to fluid equations as a
multiscale problem, with improved regularity at or above a certain scale.
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1. Introduction

We consider the large-scale boundary regularity for the stationary Navier–Stokes equations
−1uε + ∇ pε = −uε · ∇uε in Bε1,+,
∇ · uε = 0 in Bε1,+,
uε = 0 on 0ε1 ,

(NSε)

in a domain with a rough bumpy boundary. The no-slip boundary condition is prescribed only on the lower
part 0ε1 of ∂Bε1,+. The boundary is rough in two aspects: (i) possible lack of regularity at the microscopic
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scale as the boundary may have fractals or inward cusps; (ii) bumpiness, i.e., the boundary is highly
oscillating. The functions uε = (uε1(x), uε2(x), uε3(x)) ∈ R3 and pε = pε(x) ∈ R denote respectively the
velocity field and the pressure field of the fluid. The definitions of Bεr,+ and 0εr are given in Section 1D. We
will show large-scale regularity estimates, including a Lipschitz estimate (see Theorem A in Section 1A),
a C1,γ estimate (see Theorem B) and a C2,γ estimate (see Theorem C). These improved regularity results at
large scales are generally false at small scales due to the roughness of the boundary. The tools developed in
this paper enable us to decouple the large-scale regularity from the small-scale properties of the boundary.
Therefore, our results (i.e., Theorems A, B and C) show that stationary incompressible Newtonian fluids
are regular above the microscopic scale, regardless of the irregularity of surfaces at the microscopic scale.

Before going into the details of our results and of the mathematical analysis, let us give some more
general perspectives. The study of fluids over rough boundaries plays a prominent role in the field of
hydrodynamics, at least for three reasons.

First, rough, bumpy or corrugated surfaces are ubiquitous in nature and engineering. They appear at any
scales from geophysics (see for instance [Narteau et al. 2001] for the fractal-like core-mantle boundary in
the Earth) to zoology [Pu et al. 2016] and microfluidics [Waheed et al. 2016]. At the microstructure, the
geometry may be anything from fractal to periodic and crenellated. No surface is perfectly smooth, and the
lack of smoothness may actually enable us to resolve certain oddities, such as the no-collision paradox for a
sphere dropped in a viscous fluid under the action of gravity [Smart and Leighton 1989; Joseph et al. 2001;
Davis et al. 2003; Gérard-Varet and Hillairet 2012; Izard et al. 2014]. Moreover, certain roughness patterns
are either selected by biological processes and environmental pressure such as scales of sharks for their
drag reduction properties, or designed for industrial applications especially in aeronautics, microfluidics
and for the transport of fluids in pipes [Pu et al. 2016; Dean and Bhushan 2010; Lee and Jang 2005].

Second, the study of roughness is strongly tied to the derivation of boundary conditions in fluid
mechanics. The question of whether or not fluids slip over surfaces is still a matter of active debate.
Experiments show that there is no universal answer and that the slip behavior depends a lot on the geometry
and microstructure of the surface [Bocquet and Barrat 2007; Lauga et al. 2007]. A widespread idea is that
roughness favors slip. To give one specific example where finding the most accurate boundary condition
is critical, let us cite the field of glaciology. The assessment of various friction laws for the flow of a
glacier over a rough bedrock is crucial in order to understand the speed of glacier discharge and eventually
estimate the sea level rise as a result of global warming [Joughin et al. 2019; Minchew and Joughin 2020].

Third, the study of the impact of roughness on the behavior of fluids accompanied the development of
turbulence research, as underlined in [Jiménez 2004]:

Turbulent flows over rough walls have been studied since the early works of Hagen (1854) and
Darcy (1857), who were concerned with pressure losses in water conduits. They have been
important in the history of turbulence. Had those conduits not been fully rough, turbulence
theory would probably have developed more slowly. The pressure loss in pipes only becomes
independent of viscosity in the fully rough limit, and this independence was the original
indication that something was amiss with laminar theory. Flows over smooth walls never
become fully turbulent, and their theory is correspondingly harder.
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Investigations of the effect of roughness on fluid flows span three distinct regimes. In the laminar
regime, studies focus on the drag-reducing properties of roughness elements [Bechert and Bartenwerfer
1989; García-Mayoral and Jiménez 2011]. As for the onset of turbulence [Schultz and Flack 2007;
Squire et al. 2016], there are some indications that roughness lowers the critical Reynolds number for
the transition from the laminar to turbulent regime [Varnik et al. 2007]. In the fully turbulent regime, a
similarity hypothesis for the flow over flat surfaces and for the flow over rough surfaces was put forward
[Townsend 1956]. The extent to which such a universal law holds is still being disputed [Jiménez 2004;
Castro 2007; Flack et al. 2007; Schlichting and Gersten 2017].

The three main directions raised above are reflected in the mathematical works. The literature is vast.
Therefore we do not aim for exhaustivity.

First, there is an extensive body of works that deal with wall (or friction) laws, or in other words, effective
or homogenized boundary conditions. One aims at replacing rough boundaries by fictitious, smooth or flat
boundaries. In that line of research, it is well known that Navier-slip boundary conditions provide refined
approximations for fluids above bumpy boundaries. Under some quantitative ergodicity assumptions, one
can get error estimates. Historically, periodic roughness profiles were first looked at [Amirat and Simon
1997; Achdou et al. 1998; Jäger and Mikelić 2001; 2003]. Analysis of almost-periodic [Gérard-Varet
and Masmoudi 2010] or random stationary ergodic [Gérard-Varet 2009; Basson and Gérard-Varet 2008]
boundary oscillations was done more recently. Let us also mention a few works that address nonstationary
fluids [Bucur et al. 2010; Higaki 2016], for which the analysis is less developed due to its inherent
difficulties. We also point out that some authors attempted to justify boundary conditions arising in fluid
mechanics starting from boundary conditions at the microscopic scale; see for instance [Casado-Díaz et al.
2003; Bucur et al. 2008; Bonnivard and Bucur 2012] for the derivation of the no-slip boundary condition
from a perfect slip boundary condition at the microscale, or [Dalibard and Gérard-Varet 2011] for the
computation of the homogenized effect starting from Navier-slip boundary conditions at the microscale.

A second topic is the study of the effect of roughness on singular limits. The topics of rotating fluids
and of the homogenized effect of bumpiness on Ekman pumping has been studied in numerous papers
[Gérard-Varet 2003; Gérard-Varet and Dormy 2006; Dalibard and Prange 2014; Dalibard and Gérard-Varet
2017]. The paper [Gérard-Varet et al. 2018] carries out an analysis of the vanishing viscosity limit in a
specific scaling regime. There are also studies concerned with equations in singularly perturbed domains
such as the Stokes equations in rough thin films [Chupin and Martin 2012] or water waves above a rough
topography in the shallow regime [Craig et al. 2012].

Third, rough domains pose considerable numerical challenge. This aspect has certainly driven the
development of wall laws in a model reduction perspective; see for instance [Achdou et al. 1998; Deolmi
et al. 2015]. Other approaches are being elaborated, such as direct numerical simulations [Cardillo et al.
2013], lattice Boltzmann methods that are adapted to intricate geometries [Varnik et al. 2007] and large
eddy simulations [Anderson and Meneveau 2011; Bonnivard and Suárez-Grau 2018] that in this context
cause important parametrization issues of the small scales.

In this work, we tackle these questions from the angle of regularity theory. The following two
general objectives in regularity theory motivate our results: identify building blocks describing the
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local behavior of solutions, and estimate the decay of certain excess quantities at various scales. We
prove that fluids above bumpy boundaries, that are very rough at the microscopic scale, have improved
regularity at large scales. Our results are in the spirit of large-scale regularity estimates pioneered in
[Avellaneda and Lin 1987] for periodic homogenization, and later extended to stochastic homogeniza-
tion; see for instance [Armstrong and Smart 2016; Armstrong and Mourrat 2016; Gloria et al. 2015;
2020] and [Armstrong et al. 2016] for the higher-order large-scale regularity theory. Our research
program was started with the works [Kenig and Prange 2015; 2018] concerned with uniform regularity
estimates above highly oscillating boundaries for elliptic equations. In [Higaki and Prange 2020], the
large-scale Lipschitz and C1,γ estimates for the stationary Navier–Stokes equations were established
above Lipschitz boundaries. A local Navier wall law was also obtained. Finally, let us also mention
[Zhuge 2021], which deals with the large-scale regularity of elliptic equations above arbitrarily rough
microstructures.

1A. Outline of the main results of the paper. We study the large-scale regularity for stationary incom-
pressible viscous fluids modeled by the Stokes or Navier–Stokes equations, in domains that are very rough
and bumpy at the microscale. Our results show that the large-scale regularity is completely independent
of small-scale properties of the boundary.

Let us stress some novel aspects of our results. We refer to Section 1B for a further comparison with a
few related works, and to Section 1C for an outline of the proofs.

First we consider John domains, whose boundaries allow for fractals and inward cusps. Hence, the
boundaries considered in this paper get closer to the modeling of real boundaries found in nature, that in
particular do not need to be graphs. John domains have in a broad sense the minimal properties for the
analysis of incompressible fluids. Indeed, we rely on a Bogovskii operator in John domains to estimate
the pressure. For precise definitions and a more complete discussion, we refer to Section 1D below.

Second, beyond the Lipschitz estimate, we prove higher-order C1,γ and C2,γ estimates for γ ∈ [0, 1),
as stated in Theorems B and C. These require the construction of boundary layer correctors, which is at
the heart of the paper in Section 4; see Section 4B for the first-order boundary layers and Section 4C
for the second-order boundary layers. As far as we know, the present work is the first to construct the
second-order boundary layers with a linear growth in the direction tangential to the boundary. To make the
analysis more tractable, we assume that the boundary is periodic for the structure result of second-order
boundary layers; see Theorems 4.3 and 4.4. We are aware of [Barrenechea et al. 2002; Bresch and
Milisic 2010], where a refined second-order approximation is constructed for the Stokes equations in a
two-dimensional rough channel. However, the boundary layers considered in [Barrenechea et al. 2002;
Bresch and Milisic 2010] only involve data spanned by linear and quadratic polynomials of the vertical
variable, x2 and x2

2 in this two-dimensional case, which are bounded on the bumpy boundary. In our
three-dimensional situation, the class of “no-slip Stokes polynomials” (see Section 4A) is much richer
and involves boundary data with linear growth at spatial infinity.

Third, we provide explicit quantitative regularity estimates in the nonperturbative regime.
Fourth, in the vein of the seminal works [Avellaneda and Lin 1987; 1991] and of [Kenig et al. 2014; Gu

and Zhuge 2019], we provide pointwise estimates for the large-scale decay of the velocity and pressure
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parts of the Green’s function associated to the Stokes system in bumpy John half-spaces; see Section 1C
and Appendix B. These estimates are pivotal to constructing the first-order boundary layers in Section 4B.

We now state the three main theorems of the paper.

Theorem A (large-scale Lipschitz regularity). For all ε ∈
(
0, 1

2

)
, L ∈ (0,∞), M ∈ (0,∞) and δ ∈ (0, 1),

the following statement holds. Let � be a bumpy John domain with constant L according to Definition 1.2
below. If (uε, pε) ∈ H 1(Bε1,+)

3
× L2(Bε1,+) is a weak solution of (NSε) satisfying(

−

∫
Bε1,+

|∇uε|2
)1/2

≤ M (1-1)

(the precise definition of the bumpy cube Bεr,+ = Qr (0)∩�ε can be found in Section 1D). Then, for any
r ∈

(
ε, 1

2

)
, (

−

∫
Bεr,+

|∇uε|2
)1/2

+

(
−

∫
Bεr,+

∣∣∣∣pε − −

∫
Bε1/2,+

pε
∣∣∣∣2 )1/2

≤ C(M + M4+δ), (1-2)

where the constant C is independent of ε, M and r , and depends on L and δ.

Notice that Theorem A, as well as the subsequent results, holds in the nonperturbative regime for
arbitrarily large M in (1-1). This is due to the energy subcritical nature of the stationary Navier–Stokes
equations, which makes it an easier problem than the nonstationary Navier–Stokes system. Note also that
the powers of M in the right-hand side of (1-2) are explicit.

For higher-order C1,γ and C2,γ regularity results, we measure the oscillation of the solution with
respect to modified polynomials that vanish on the bumpy boundary. These modified polynomials are
polynomials of degree 1 and 2 that are corrected by the first-order and second-order boundary layers.

Theorem B (large-scale C1,γ regularity). For all γ ∈ [0, 1), ε ∈
(
0, 1

2

)
, L ∈ (0,∞), M ∈ (0,∞) and

δ ∈ (0, 1), the following statement holds. Let � be a bumpy John domain with constant L according to
Definition 1.2 below. If (uε, pε) ∈ H 1(Bε1,+)

3
× L2(Bε1,+) is a weak solution of (NSε) satisfying (1-1),

then, there exists a constant P1 (depending on pε) such that, for any r ∈
(
ε, 1

2

)
,

inf
(w,π)∈Q1(�)

{
1
r

(
−

∫
Bεr,+

∣∣∣∣uε − εw

(
x
ε

)∣∣∣∣2

dx
)1/2

+

(
−

∫
Bεr,+

∣∣∣∣pε −π

(
x
ε

)
− P1

∣∣∣∣2

dx
)1/2}

≤ Crγ (M + M4+2γ+δ), (1-3)

where Q1(�) is the class of all solutions to the Stokes equations in a bumpy John half-space � with linear
growth at infinity that vanish on ∂�; see (5-1). The constant C is independent of ε, M and r , but depends
on L , γ and δ.

The velocity estimate in (1-3) will be derived via a large-scale estimate of |∇uε − ∇w(x/ε)| and the
Poincaré inequality; see Section 5A.

While Theorem B holds for arbitrary bumpy John half-spaces, for the next result, we work in periodic
John domains. As we outlined above, the extra periodicity assumption makes the analysis of the second-
order boundary layers more manageable.
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Theorem C (large-scale C2,γ regularity). For all γ ∈ [0, 1), ε ∈
(
0, 1

2

)
, L ∈ (0,∞), M ∈ (0,∞) and

δ ∈ (0, 1), the following statement holds. Let � be a periodic bumpy John domain with constant L
according to Definition 1.3 below. If (uε, pε) ∈ H 1(Bε1,+)

3
× L2(Bε1,+) is a weak solution of (NSε)

satisfying (1-1), then, there exists a constant P2 (depending on pε) such that, for any r ∈
(
ε, 1

2

)
,

inf
(w1,q1)∈Q1(�)
(w2,q2)∈Q2(�)

{
1
r

(
−

∫
Bεr,+

∣∣∣∣uε−εw1

(
x
ε

)
−ε2w2

(
x
ε

)∣∣∣∣2

dx
)1/2

+

(
−

∫
Bεr,+

∣∣∣∣pε−π1

(
x
ε

)
−επ2

(
x
ε

)
−P2

∣∣∣∣2

dx
)1/2}

≤ Cr1+γ (M+M6+2γ+δ), (1-4)

where Q1(�) is used in Theorem B and Q2(�) is the class of all solutions to the Stokes equations in a
periodic bumpy John half-space �, with quadratic growth at infinity, that vanish on ∂�; see (5-2). The
constant C is independent of ε, M and r , but depends on L , γ and δ.

We point out that the building blocks in Q1(�) and Q2(�) are defined through the first-order and
second-order boundary layers and play roles of correctors of Stokes system in the bumpy John domain �.
It turns out that the above three regularity results, Theorems A, B and C, hold also for the linear Stokes
equations, with a linear dependence on the size M of the solutions in Ḣ 1(Bε1,+). Therefore, these
statements immediately imply the Liouville theorems for Stokes equations in bumpy John half-spaces
with sublinear (see Corollary 3.1), subquadratic or subcubic growth (see Theorem 5.8).

1B. Comparison to two closely related works. To further underline the novelty of our work, let us
compare our results to the ones of two tightly linked papers.

In [Higaki and Prange 2020], the first and second authors carried out the analysis of the large-scale
Lipschitz and C1,γ regularity for the stationary Navier–Stokes system. The results there, similar to
Theorems A and B here, hold outside the perturbative regime, that is, for arbitrarily large M in (1-1). The
main differences between [Higaki and Prange 2020] and the present work are:

(1) In [Higaki and Prange 2020] the bumpy boundary is given by a Lipschitz graph without structure,
while here we work in bumpy John domains, as defined in Definition 1.2, that are not necessarily graphs,
without structure for the large-scale Lipschitz and C1,γ regularity.

(2) In [Higaki and Prange 2020] the analysis relies on a compactness method originating from [Avellaneda
and Lin 1987] and the first-order boundary layer correctors are needed to prove the large-scale Lipschitz
estimate in Theorem A, while here we resort to a quantitative method, which enables us to by-pass the
use of the first-order boundary layers for the large-scale Lipschitz regularity; see Section 1C.

(3) In [Higaki and Prange 2020] no analysis of the higher-order large-scale regularity is carried out, while
here we build the second-order boundary layer correctors that make it possible to prove Theorem C.

(4) In [Higaki and Prange 2020], no pressure estimate is established, while in the present paper, we estab-
lish the pressure estimates in all cases, following the strategy developed recently in [Gu and Zhuge 2022].

(5) In [Higaki and Prange 2020], the nonlinear estimates are not explicit, while here the dependence on
M in (1-2), (1-3) and (1-4) is given as an explicit polynomial in M.
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In [Zhuge 2021], the third author carried out an analysis of the large-scale Lipschitz regularity for linear
elliptic equations in domains with arbitrary roughness at small scales and quantitative Reifenberg flatness
at large scales. Hence, those domains are much rougher than the bumpy John domains considered here. We
underline that the discrepancy in these assumptions on the domains comes from the fact that for incompress-
ible Navier–Stokes equations, as opposed to elliptic equations, we have to estimate the pressure in terms
of the velocity, which relies on a Bogovskii-type operator as in [Higaki and Prange 2020]; see Section 1C
and Appendix A. To address this point we work in bumpy John domains defined by Definition 1.2.

1C. Outline of the strategy for the proofs. We now point to some essential ingredients and ideas for the
proofs. We mainly focus on two aspects: the lack of smoothness at the microscopic scale, which requires
several innovations, and the higher-order regularity, new even in smoother domains, which requires the
construction of higher-order boundary layers.

Analysis in John domains. We perform the analysis in bumpy John domains, as defined in Definition 1.2.
This type of domain is a good compromise between

• on the one hand a high level of arbitrariness of the boundary, which is not a graph, includes certain
fractals or cusps, does not oscillate with any structure, and hence approaches better the properties
genuinely rough physical surfaces found in real fluids,

• and on the other hand the possibility of being amenable to mathematical analysis, considering the
fact already underlined above that we work with incompressible fluid models that involve estimating
the pressure, rather than elliptic equations which can be studied in even rougher domains.

In John domains, we can rely on the Bogovskii operator of [Acosta et al. 2006], whose properties are
summarized in Theorem A.1. This operator is required from the beginning of our analysis in Section 2A
in order to prove a weak Caccioppoli inequality for the Stokes system (the usual Caccioppoli inequality
seems not available in John domains), which then implies the reverse Hölder inequality (2-2), as a starting
point of the large-scale regularity theory.

All the boundary estimates of this work are mesoscopic estimates in the sense that they involve averaged
quantities smoothing out the possibly rough microscales. Although it is a direct consequence of the weak
Caccioppoli inequality, notice that the reverse Hölder inequality (2-2) is a large-scale estimate. Indeed,
going from the weak Caccioppoli inequality (A-6) to (2-2) uses the Poincaré inequality that holds in
balls large enough, typically at a scale greater than ε. At scales smaller than ε, inward cusps of highly
oscillating bumpy John domains may be seen, preventing Poincaré’s inequality from holding.

In a nutshell: In the works [Kenig and Prange 2018; Higaki and Prange 2020], tools were developed,
particularly for the analysis of the first-order boundary layer correctors, to handle bumpy domains with a
boundary given by the graph of a Lipschitz function without structure. Here, the analysis in bumpy John
domains requires us to push the techniques even further, to the limit, as it seems, of what is technically
possible. There is one particular point, where we are completely unable to transfer the techniques used
above Lipschitz graphs to the present context. Indeed, in [Kenig and Prange 2018; Higaki and Prange
2020] we used a domain decomposition method pioneered in [Gérard-Varet and Masmoudi 2010] to study
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the well-posedness of the Stokes system for the first-order boundary layer correctors. We do not manage
to adapt this strategy, in particular the technique of local energy estimates in the bumpy channel, to our
current situation. In this paper, we develop a different argument to construct the first-order boundary
layers, based on the large-scale Lipschitz estimate proved as an a priori estimate. We will discuss this
intricate point in more details shortly later.

Quantitative method for the large-scale regularity. We rely on a quantitative method for large-scale
regularity, inspired by the Schauder’s theory pioneered by [Armstrong and Smart 2016; Armstrong and
Shen 2016; Shen 2017], the Calderón–Zygmund theory motivated by [Caffarelli and Peral 1998] and
[Shen 2018, Chapter 4] and the pressure estimate developed in [Gu and Xu 2017; Gu and Zhuge 2019;
2022]. This method is based on a perturbation argument. The principle of this method is the following:

(1) Approximate the original rough problem by a smooth problem at any mesoscopic scale and obtain
suboptimal quantitative estimates.

(2) Use the improved regularity of the approximate problem to get the scale-by-scale decay of excess
quantities (measuring for instance, Hölder continuity, Lipschitz, C1,γ , C2,γ , or higher regularity) for
the original rough problem, up to a small error.

(3) Conclude by a real-variable argument such as Theorem 2.5 or an iteration lemma such as Lemma 3.10,
which are in some sense black boxes oblivious to the equations.

In the context of homogenization, the homogenized limit problem with constant coefficients is the
approximate problem. Here, the approximate problem is a Stokes problem in a domain with a flat
boundary. Both problems have improved regularity, in the sense that the solutions are basically as smooth
as one wishes.

We remark that from a high-level point of view all the regularity estimates in this paper follow the
above scheme. For the large-scale W 1,p regularity stated in Theorem 2.4, item (1) above corresponds to
Lemma 2.6, item (2) corresponds to the estimate (2-14) and item (3) corresponds to Theorem 2.5. For the
proof of Lipschitz estimate in Theorem A, item (1) corresponds to Lemma 3.2, item (2) corresponds to
Lemma 3.5 and item (3) corresponds to Lemma 3.10. The proofs of higher-order regularity estimates in
Theorems B and C follow a similar scheme.

We point out that in our quantitative method the nonlinear term u ⊗ u will also be regarded as a
perturbation added to the linear Stokes system. In order to establish the Lipschitz estimate, we use the large-
scale Calderón–Zygmund estimate of Theorem 2.4 in combination with a large-scale Sobolev embedding
stated in Theorem 2.7 to bootstrap the integrability of the nonlinear term. For C1,γ and C2,γ estimates,
the Lipschitz estimate of u in Theorem A leads to the O(r2) smallness of the perturbation term u ⊗ u
near the boundary, which guarantees the higher-order regularity for up to C2,γ with any γ ∈ (0, 1).

Construction of boundary layers. As aforementioned, we develop a different argument to construct the
first-order boundary layers. In fact, the large-scale Lipschitz regularity in Theorem A makes it possible to
construct the velocity and pressure parts of the Green’s function in bumpy John domains, and to estimate
its decay at large scales. This is the purpose of Appendix B, where we prove estimates for the velocity
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part of the Green’s function (see Proposition B.4), its derivatives (see Proposition B.3), and the pressure
part of the Green’s function (see Proposition B.5). These estimates are the key for our new proof of the
existence of the first-order boundary layer correctors; see Theorem 4.1. In this way we are able to by-pass
the difficulties posed by the method used in [Gérard-Varet and Masmoudi 2010; Dalibard and Prange
2014; Dalibard and Gérard-Varet 2017; Kenig and Prange 2018; Higaki and Prange 2020].

To the best of our knowledge, the present work is the first to carry out a thorough analysis of the second-
order boundary layer correctors, allowing for linear growth of the boundary data in the tangential direction.
Our key observation is an algebraic connection between the first-order and second-order boundary layers
on the boundary, which allows us to use the first-order boundary layer correctors in an ansatz for the
second-order boundary layers. Unlike the first-order boundary layers (which form a two-dimensional
vector space), the space of second-order boundary layers is six-dimensional and needs three different
ways of construction, based on the structures of the associated Stokes polynomials; see Sections 4A
and 4C. For our analysis to go through, we also need some good quantitative convergence/decay of the
first-order boundary layers away from the boundary. Hence we work in a periodic framework, according
to Definition 1.3; but this is by no means an optimal assumption. Other structures, such as almost-periodic
structures with a nonresonance condition, or random ergodic with quantitative decorrelation properties at
large scales, would certainly be manageable.

The key outcome of Section 4 handling the construction of boundary layers is summarized in Proposi-
tions 4.6 and 4.7. They are then used in Section 5 to run the excess decay method for the higher-order
regularity in Theorems B and C.

1D. Notation and definitions.

John domains. We first define John domains. These domains were introduced in [John 1961] and named
after John in [Martio and Sarvas 1979].

Definition 1.1. Let �⊂ Rd be an open bounded set and x̃ ∈�. We say that � is a John domain (or a
bounded John domain) with respect to x̃ and with constant L if, for any y ∈�, there exists a Lipschitz
mapping ρ : [0, |y − x̃ |] → � with Lipschitz constant L ∈ (0,∞) such that ρ(0) = y, ρ(|y − x̃ |) = x̃
and dist(ρ(t), ∂�)≥ t/L for all t ∈ [0, |y − x̃ |].

Our analysis takes advantage of a key property of John domains, namely the existence of a right inverse
of the divergence operator. Such an operator is usually called a Bogovskii operator; see Appendix A
where we state the result of [Acosta et al. 2006].

Examples of John domains are: Lipschitz domains, NTA domains, domains with inward cusps or
certain fractals such as Koch’s snowflake. Notice that domains with outward cusps are not John domains.
For our work, we generalize the above definition from bounded domains to a class of unbounded domains.

Definition 1.2. Let� be a domain containing the upper half-space of R3 and assume ∂�⊂ {−1< x3< 0}.
We say that � is a bumpy John domain (or a bumpy John half-space) with constants (L , K ) if, for any
x ∈ {x3 = 0} and any R ≥ 1, there exists a bounded John domain �R(x) with respect to xR = x + Red
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and with constant L ∈ (0,∞) according to Definition 1.1 such that

BR,+(x)⊂�R(x)⊂ BK R,+(x), (1-5)

where BR,+(x)= Q R(x)∩�. Here Q R(x), defined later, is a cube centered at x with side length 2R.

The above definition guarantees that the constants of John domains are rescaling- and translation-
invariant. This is a natural requirement as we are considering unbounded domains.

Definition 1.3. We say that � is a periodic bumpy John domain if the following hold:

(i) � is a John domain with constant (L , K ).

(ii) � is (2πZ)2-translation-invariant, namely 2π z +�=� for any z ∈ Z2
× {0}.

For simplicity, we assume K = 2 in the whole paper. Otherwise, the constant in our main theorems
will also depend on K.

Throughout the paper, we assume that � is a bumpy John domain satisfying Definition 1.2, or a
periodic bumpy John domain satisfying Definition 1.3. We will always specify in case periodicity is
needed. In fact, periodicity is used to construct the second-order boundary layer correctors in Section 4C
and hence is also an assumption of Theorem C, Proposition 4.7, Section 5B and Theorem 5.8(ii).

Let �ε := ε�= {x ∈ R3
| ε−1x ∈�}. We refer to �ε as a highly oscillating bumpy John domain. Note

that
∂�ε ⊂ {x ∈ R3

| −ε < x3 < 0}. (1-6)

A key fact about �ε is that �ε is still a John domain with the same constants as in Definition 1.2, as these
constants are scale-invariant.

Throughout the paper, we use the notation

Bεr,+ = {x =(x ′, x3) ∈ R3
| x ′

∈ (−r, r)2, x3 < r} ∩�ε,

0εr = {x =(x ′, x3) ∈ R3
| x ′

∈ (−r, r)2} ∩ ∂�ε.

Since the boundary could be very rough at small scales, Bεr,+ and 0εr may have disconnected components.
Fortunately, this will not cause any issue since the solutions will be extended naturally by zero across the
boundary. We also define

Qr = Qr (0)= (−r, r)3, Qr (y)= y + Qr (0), Qε
r = Qr ∩ {x ∈ R3

| x3 >−ε},

Qε
r (y)= Qr (y)∩ {x ∈ R3

| x3 >−ε} and Qr,+(y)= Qr (y)∩ {x ∈ R3
| x3 > 0}. (1-7)

From the definition of Bεr,+, one has Bεr,+ ⊂ Qε
r and |Qε

r \ Bεr | ≤ 4εr2.

Weak solutions. We work in the framework of weak solutions of (NSε). A velocity/pressure pair (uε, pε)∈
H 1(Bε1,+)

3
× L2(Bε1,+) is said to be a weak solution to (NSε) if uε satisfies ∇ · uε = 0 in the sense of

distributions, ψuε ∈ H 1
0 (Q1)

3 for any cut-off function ψ ∈ C∞

0 (Q1), and the weak formulation∫
Bε1,+

∇uε · ∇ϕ−

∫
Bε1,+

pε(∇ ·ϕ)= −

∫
Bε1,+

(uε · ∇uε) ·ϕ (1-8)
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for any ϕ ∈ C∞

0 (B
ε
1,+)

3. The Poincaré inequality is a fundamental tool in our paper. Since the weak
solution vanishes on the lower boundary 0ε1, we extend it to Qε

1 by zero across 0ε1. This enables us
to use for instance [Giaquinta and Martinazzi 2012, Proposition 3.15], to get that, for all fixed bumpy
John domain � with constant L ∈ (0,∞) according to Definition 1.2, for all fixed r ≥ ε, and for all
u ∈ H 1(Bεr,+) such that u = 0 on 0εr , ∫

Bεr,+
|u|

2
≤ Cr2

∫
Bεr,+

|∇u|
2, (1-9)

where C is an absolute constant independent of ε and r . Notice that this estimate is only valid at scales
r ≥ ε. Indeed, below that scale the constant in (1-9) may degenerate because in particular of inward cusps
at small scales.

Other frequently used notation. The notation C denotes a positive constant that varies from line to line,
and may or may not be universal. Whenever needed, we make precise what the constant depends on.
The notation x · y stands for x1 y1 + · · · + xN yN for vectors x, y ∈ CN. The notation a ≲ b (resp. a ≳ b)
means that there exists a universal constant C such that a ≤ Cb (resp. Ca ≥ b). The notation a ≈ b stands
for a ≲ b and a ≳ b.

1E. Outline of the paper. Section 2 is devoted to the proof of the large-scale Calderón–Zygmund estimate
stated in Theorem 2.4. We then use this result to bootstrap the regularity and obtain a large-scale Hölder
estimate for the nonlinear term in the Navier–Stokes equations; see Theorem 2.8. In Section 3, we
prove Theorem A. In Section 4 we construct the first-order and second-order boundary layer correctors.
Theorems B and C are proved in Section 5. There are three appendices. Appendix A is devoted to
the results related to Bogovskii’s operator in John domains. Appendix B handles the construction and
estimates for the Green’s function associated to the Stokes system in bumpy John domains. Appendix C
provides a proof for the iteration Lemma 3.10.

2. Estimates for the nonlinearity

The goal of this section is to obtain some regularity estimates for the nonlinearity −uε⊗uε for the Navier–
Stokes equations. As usual, this follows from a bootstrap argument for the stationary Navier–Stokes
equations. However, since there is no smoothness up to the boundary, we have to carry out a delicate
large-scale bootstrap argument.

2A. Large-scale Calderón–Zygmund estimate. Assume r ≥ ε. Let � be a bumpy John domain with
constant L according to Definition 1.2. Let (uε, pε) ∈ H 1(Bε1,+)

3
× L2(Bε1,+) be a weak solution of the

linear Stokes system 
−1uε + ∇ pε = ∇ · Fε in Bε1,+,
∇ · uε = 0 in Bε1,+
uε = 0 on 0ε1 .

(2-1)

We extend uε and Fε by zero to the whole of Q1 = Q1(0); they are denoted again by uε ∈ H 1(Q1)
3

and Fε ∈ L2(Q1)
3×3 respectively. Note that we also have ∇uε = 0 in Q1(0) \ Bε1,+. For any r ≥ ε and
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Q16r (y)⊂ Q1(0), Lemma A.4 and the Sobolev–Poincaré inequality imply that for any θ ∈ (0, 1)(
−

∫
Qr (y)

|∇uε|2
)1/2

≤ θ

(
−

∫
Q16r (y)

|∇uε|2
)1/2

+
C
θ

(
−

∫
Q16r (y)

|∇uε|6/5
)5/6

+

(
−

∫
Q16r (y)

|Fε|2
)1/2

. (2-2)

Here the constant C depends only on L .
We refer to [Zhuge 2021, Lemma 2.2] for a similar proof of (2-2) in the case of elliptic equations.

The John boundary condition for Stokes system results in additional difficulties as we only have a weak
Caccioppoli inequality in Lemma A.4. Notice that this estimate holds only at large scales, namely, r ≥ ε,
because Lemma A.4 as well as the Sobolev–Poincaré inequality fail for r ≪ ε (inward cusps are allowed in
John domains and these cusps can be seen at a scale less than ε). As a result, we are not able to derive the
full-scale Gehring inequality (e.g., [Giaquinta 1983, Chapter V, Proposition 1.1] or [Bensoussan and Frehse
2002, Theorem 1.10]). Instead, we can show a large-scale Gehring inequality; see Lemma 2.2 below.

For p ∈ [1,∞), define the averaging operator

Mp
t [g](x)=

(
−

∫
Qt (x)

|g|
p
)1/p

.

The important exponents for us are p =
6
5 and p = 2. For convenience, sometimes we write M2

t as Mt

in Section 2B. The following lemma collects useful properties of Mt .

Lemma 2.1. For p ∈ [1,∞) and g ∈ L p(Q1), we have the following properties:

(i) For 1 ≤ p′
≤ p <∞ and Qt(x)⊂ Q1,

Mp′

t [g](x)≤ Mp
t [g](x). (2-3)

(ii) For 0< t1 ≤ t2 < 1 and Qt2(x)⊂ Q1,

Mp
t1[g](x)≤ C

(
t2
t1

)3/p

Mp
t2[g](x). (2-4)

(iii) For 0< t ≤ s with Qs+t(y)⊂ Q1,∫
Qs(y)

|g|
p
≤ C

∫
Qs(y)

Mp
t [g]

p
≤ C

∫
Qs+t (y)

|g|
p. (2-5)

(iv) For 0< t1 ≤ t2 ≤ s with Qs+t1+t2(y)⊂ Q1 and q ∈ [p,∞),

−

∫
Qs(y)

Mp
t2[g]

q
≤ C −

∫
Qs+t2 (y)

Mp
t1[g]

q . (2-6)

(v) For 0< s ≤ t with Qs+t(y)⊂ Q1,

Mp
t [g](y)≤ C −

∫
Qs(y)

Mp
t [g]. (2-7)

Here the constant C depends on p and p′, but not on s, t, t1 or t2.
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Using the averaging operator and Lemma 2.1, we can show a large-scale Gehring inequality (also
known as a self-improving property or Meyers’ estimate).

Lemma 2.2. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
There exists some p0 ∈ (2,∞) so that for any 0< r < 1, ε ≤ t ≤ 1 with Q3r+t(y)⊂ Q1(0),(

−

∫
Qr (y)

|M2
t [∇uε]|p0

)1/p0

≤ C
(

−

∫
Q3r (y)

|M2
t [∇uε]|2

)1/2

+ C
(

−

∫
Q3r (y)

|M2
t [Fε]|p0

)1/p0

, (2-8)

where the constant C and the Lebesgue exponent p0 depend only on L.

Proof. Assume first that r ≥ t . Then by Lemma 2.1, we may rewrite (2-2) as(
−

∫
Qr (y)

|M2
t [∇uε]|2

)1/2

≤ C
(

−

∫
Q2r (y)

|∇uε|2
)1/2

≤ Cθ
(

−

∫
Q32r (y)

|∇uε|2
)1/2

+
C
θ

(
−

∫
Q32r (y)

|∇uε|6/5
)5/6

+ C
(

−

∫
Q32r (y)

|Fε|2
)1/2

≤ Cθ
(

−

∫
Q32r (y)

|M2
t [∇uε]|2

)1/2

+
C
θ

(
−

∫
Q32r (y)

|M2
t [∇uε]|6/5

)5/6

+ C
(

−

∫
Q32r (y)

|M2
t [Fε]|2

)1/2

.

For 0< r < t , Lemma 2.1(v) implies

∥M2
t [∇uε]∥L∞(Qr (y)) ≤ C −

∫
Q4r (y)

M2
t [∇uε].

These imply that a weaker reverse Hölder inequality holds for all scales r ∈ (0, 1) with Q32r+t(y)⊂ Q1(0).
By a version of Gehring’s inequality [Giaquinta 1983, Chapter V, Proposition 1.1] or [Bensoussan and
Frehse 2002, Theorem 1.10], and choosing θ sufficiently small, there exists some p0 > 2 such that for all
r ∈ (0, 1) with Q32r+t(y) ∈ Q1(0),(

−

∫
Qr (y)

|M2
t [∇uε]|p0

)1/p0

≤ C
(

−

∫
Q32r (y)

|M2
t [∇uε]|2

)1/2

+ C
(

−

∫
Q32r (y)

|M2
t [Fε]|2

)1/2

. (2-9)

To conclude the proof, we use a covering argument to adjust the size of cubes. By covering the
cube Q32r (y) by a finite number of cubes Qr (yi ) and applying the last estimate in every Qr (yi ), we get
the estimate(

−

∫
Q32r (y)

|M2
t [∇uε]|p0

)1/p0

≤ C
(

−

∫
Q96r (y)

|M2
t [∇uε]|2

)1/2

+ C
(

−

∫
Q96r (y)

|M2
t [Fε]|2

)1/2

for ε ≤ t ≤ 1 and Q96r+t(y) ⊂ Q1(0), at the price of a larger constant C than in (2-9). Replacing 32r
by r , we obtain the desired estimate. □

Remark 2.3 (covering argument). The covering argument above to adjust the size of cubes should be a
standard technique in analysis. Similar arguments may be used later in this paper.
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The following theorem is a large-scale boundary Calderón–Zygmund estimate, or in other words, a
large-scale boundary W 1,p estimate, for the linear Stokes system.

Theorem 2.4. For all ε ∈
(
0, 1

2

)
, L ∈ (0,∞) and p ∈ (2,∞) the following statement holds. Let � be a

bumpy John domain with constant L according to Definition 1.2. Suppose ε≤ t ≤ r ≤
1
2 , Q5r (x)⊂ Q1(0)

and M2
t [Fε] ∈ L p(Q4r (x)). Then the weak solution uε to (2-1) satisfies(

−

∫
Qr (x)

|M2
t [∇uε]|p

)1/p

≤ C
(

−

∫
Q4r (x)

|M2
t [∇uε]|2

)1/2

+ C
(

−

∫
Q4r (x)

|M2
t [Fε]|p

)1/p

, (2-10)

where the constant C depends only on L and p.

The proof of Theorem 2.4 relies on a combination of a real-variable argument (see Theorem 2.5), and
the quantitative approximation at sufficiently large scales s of the solution uε to the Stokes system in the
bumpy domain by a solution to a Stokes problem in a flat domain (see Lemma 2.6).

We first state the real variable result. The following theorem is taken from [Shen 2018, Theorem 4.2.3],
where it is stated for balls instead of cubes. Notice that we introduce some flexibility for the size of the
cubes as in [Zhuge 2021, Theorem 2.6] and [Shen 2023, Theorem 4.1] to fit the cubes in Lemma 2.6.

Theorem 2.5 [Shen 2018, Theorem 4.2.3]. Let N > 1, 0 < c1 < 1, κ > 0 and λ > 2. Let Q0 be a
cube in R3 and F ∈ L2(λQ0). Let q > 2 and f ∈ L p(λQ0) for some 2< p < q. Suppose that for each
cube Q ⊂ 2Q0 with |Q| ≤ c1|Q0|, there exist two measurable functions FQ and RQ on 2Q such that
|F | ≤ |FQ | + |RQ | on 2Q, and(

−

∫
2Q

|RQ |
q
)1/q

≤ N
(

−

∫
λQ

|F |
2
)1/2

,(
−

∫
2Q

|FQ |
2
)1/2

≤ κ

(
−

∫
λQ

|F |
2
)1/2

+

(
−

∫
λQ

| f |
2
)1/2

.

There exists κ0> 0, depending on λ, p, q, c1 and N, with the property that if 0<κ <κ0, then F ∈ L p(Q0)

and (
−

∫
Q0

|F |
p
)1/p

≤ C
{(

−

∫
λQ0

|F |
2
)1/2

+

(
−

∫
λQ0

| f |
p
)1/p}

,

where C depends on λ, p, q , c1 and N.

We now turn to the approximation. Fix t ≥ ε. To apply Theorem 2.5, we introduce an approximation
of uε at all scales s ≥ t . Fix y ∈ {−1 ≤ x3 ≤ 1}. Let Qε

r (y)= Qr (y)∩ {x3 >−ε}. Let s ≥ t be fixed. By
the coarea formula [Evans and Gariepy 2015, Theorem 3.11, page 139] and the fact that ∇uε ≡ 0 below
the bottom boundary we have∫

Qε
2s(y)

|∇uε|2 dx =

∫ 2s

0

∫
∂Qε

r (y)
|∇uε|2 dσr dr ≥

∫ 2s

s

∫
∂Qε

r (y)
|∇uε|2 dσr dr.
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A contradiction argument then gives that there exists t0 ∈ [1, 2] such that(∫
∂Qε

t0s(y)
|∇uε|2

)1/2

≤
2

s1/2

(∫
Qε

2s(y)
|∇uε|2

)1/2

. (2-11)

Note that t0 depends particularly on the specific solution uε. But this is harmless as t0 is bounded uniformly
in ε in [1, 2]. Now, we construct an approximation of uε in Qt0s(y) by considering the Stokes system

−1ws + ∇qs = 0 in Qε
t0s(y),

∇ ·ws = 0 in Qε
t0s(y),

ws = uε on ∂Qε
t0s(y).

(2-12)

Since ws = 0 on ∂Qε
s (y)∩{x3 = −ε}, we may extend the solution ws naturally across this boundary. For

our purpose, we need some regularity estimates for ws . First of all, the energy estimate implies(
−

∫
Qε

t0s(y)
|∇ws |

2
)1/2

+

(
−

∫
Qε

t0s(y)

∣∣∣∣qs − −

∫
Qε

t0s(y)
qs

∣∣∣∣2 )1/2

≤ C
(

−

∫
Qt0s(y)

|∇uε|2
)1/2

. (2-13)

Second, by the classical regularity theory for the Stokes system over a flat boundary, we have

∥∇ws∥L∞(Qs/2(y)) ≤ C
(

−

∫
Qs(y)

|∇ws |
2
)1/2

≤
C

s3/2

(∫
Qt0s(y)

|∇uε|2
)1/2

= Ct3/2
0

(
−

∫
Qt0s(y)

|∇uε|2
)1/2

≤ C
(

−

∫
Qt0s(y)

|∇uε|2
)1/2

. (2-14)

Finally, since Qε
t0s(y) is a Lipschitz domain and because (2-11) implies ws |∂Qε

t0s(y) ∈ H 1(∂Qε
t0s(y))

3, it
follows from [Fabes et al. 1988] that (∇ws)

∗
∈ L2(∂Qε

t0s(y)), where (∇ws)
∗ is the nontangential maximal

function. More precisely, we have(∫
∂Qε

t0s(y)
|(∇ws)

∗
|
2
)1/2

≤ C
(∫

∂Qε
t0s(y)

|∇uε|2
)1/2

≤
C

s1/2

(∫
Qε

2s(y)
|∇uε|2

)1/2

.

This yields, (∫
Qε

t0s(y)
|∇ws |

3
)1/3

≤
C

s1/2

(∫
Qε

2s(y)
|∇uε|2

)1/2

; (2-15)

see [Wei and Zhang 2014, Lemma 3.3] and [Kenig et al. 2013, Remark 9.3]. The above higher integrability
of ws plays an important role in the following lemma.

Lemma 2.6. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (ws, qs) be given as above. Then there exists σ ∈

(
0, 1

12

]
such that, for any θ ∈ (0, 1), ε ∈ (0, θ],

s ∈ [ε/θ, 1], Q7s(y)⊂ Q1(0),(
−

∫
Qs(y)

|∇uε − ∇ws |
2
)1/2

≤ Cθσ
(

−

∫
Q7s(y)

|∇uε|2
)1/2

+ Cθ

(
−

∫
Q7s(y)

|Fε|2
)1/2

, (2-16)

where C depends only on L , and Cθ depends on L , σ and θ .
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Proof. We rely on the variational definition of the weak solutions of (2-12). First of all, by (2-12), we see
that uε−ws ∈ H 1

0 (Q
ε
t0s(y))

3 and ∇ · (uε−ws)= 0, since uε has been extended by zero. Thus we can test
(2-12) against uε −ws to obtain ∫

Qε
t0s(y)

∇ws · ∇(uε −ws)= 0. (2-17)

Let ηε,+ be a smooth cut-off function so that 0 ≤ηε,+ ≤ 1, ηε,+(x)= 1 if x3>2ε, ηε,+(x)= 0 if x3<ε, and
|∇ηε,+| ≤ Cε−1. It is easy to verify ψ := (uε −ws)η

2
ε,+ ∈ H 1

0 (B
ε
t0s,+(y))

3, where Bεt0s,+(y) := y + Bεt0s,+.
Testing (2-1) against ψ , we obtain∫

Bεt0s,+(y)
∇uε · ∇((uε −ws)η

2
ε,+)

=

∫
Bεt0s,+(y)

(pε −P)((uε −ws) · 2ηε,+∇ηε,+)−

∫
Bεt0s,+(y)

Fε · ∇((uε −ws)η
2
ε,+) (2-18)

for any P ∈ R (to be determined later). Combining (2-17) and (2-18) and using the fact ∇uε = 0 in
Qε

t0s(y) \ Bεt0s,+(y), we arrive at∫
Qε

t0s(y)
∇(uε −ws) · ∇(uε −ws)

=

∫
Bεt0s,+(y)

∇uε · ∇((uε −ws)(1 − η2
ε,+))

+

∫
Bεt0s,+(y)

(pε −P)((uε −ws) · 2ηε,+∇ηε,+)−

∫
Bεt0s,+(y)

Fε · ∇((uε −ws)η
2
ε,+). (2-19)

Now, we are going to estimate the integrals on the right-hand side of the above equation. Note that
1 − η2

ε,+ and ∇ηε,+ are both supported in {−ε < x3 ≤ 2ε}. Let Rεs := Qt0s(y) ∩ {−ε ≤ x3 ≤ 2ε} and
T ε

s = Qt0s(y)∩ {0 ≤ x3 ≤ 2ε}. Clearly, |T ε
s | ≤ |Rεs | ≤ Cεs2. To estimate the first integral, we use the

Poincaré inequality applied in Rεs to obtain∣∣∣∣∫
Bεt0s,+(y)

∇uε · ∇((uε −ws)(1 − η2
ε,+))

∣∣∣∣
≤

(∫
Rεs

|∇uε|2
)1/2(∫

Rεs

|∇((uε −ws)(1 − η2
ε,+))|

2
)1/2

≤ C
(∫

Rεs

|∇uε|2
)1/2{(∫

Rεs

|∇(uε −ws)|
2
)1/2

+ ε−1
(∫

Rεs

|uε −ws |
2
)1/2}

≤ C
(∫

Rεs

|∇uε|2
)1/2{(∫

Rεs

|∇(uε −ws)|
2
)1/2

+

(∫
Rεs

|∇(uε −ws)|
2
)1/2}

≤ C
(∫

Rεs

|∇uε|2
)1/2(∫

Qε
t0s(y)

|∇(uε −ws)|
2
)1/2

. (2-20)

The last integral of ∇(uε −ws) in the above estimate will eventually be absorbed by the left-hand side of
(2-19). The main difficulty in proceeding is to obtain a certain estimate of smallness for ∇uε over the
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thin strip Rεs . This can be done by using Lemma 2.2. In fact, if θ ∈ (0, 1) and s ≥ ε/θ , Lemma 2.2 yields(
−

∫
Q2s(y)

|M2
θs[∇uε]|p0

)1/p0

≤ C
(

−

∫
Q6s(y)

|M2
θs[∇uε]|2

)1/2

+ C
(

−

∫
Q6s(y)

|M2
θs[Fε]|p0

)1/p0

.

Since for any z ∈ Q6s(y)

M2
θs[Fε](z)≤ Cθ

(
−

∫
Q7s(y)

|Fε|2
)1/2

,

together with (2-5), we obtain(
−

∫
Q2s(y)

|M2
θs[∇uε]|p0

)1/p0

≤ C
(

−

∫
Q7s(y)

|∇uε|2
)1/2

+ Cθ

(
−

∫
Q7s(y)

|Fε|2
)1/2

.

It is important to notice that in the last inequality, C is independent of θ and Cθ depends on θ . By an
argument similar to that in [Zhuge 2021], we can now estimate the right-hand side of (2-20) as(

1
|Qs(y)|

∫
Rεs

|∇uε|2
)1/2

≤ C
(
θs
s

)1/2−1/p0
(

−

∫
Q2s(y)

|M2
θs[∇uε]|p0

)1/p0

≤ Cθσ
(

−

∫
Q7s(y)

|∇uε|2
)1/2

+ Cθ

(
−

∫
Q7s(y)

|Fε|2
)1/2

, (2-21)

with some σ ∈
(
0, 1

2

)
. This is the desired estimate of ∇uε in Rεs . Later on we will insert it into (2-20) and

then (2-19) to reach a conclusion.
Let us turn to the estimate of the second integral on the right-hand side of (2-19). Using Hölder’s

inequality and the Poincaré inequality, we have∣∣∣∣∫
Bεt0s,+(y)

(pε −P)((uε −ws) · 2ηε,+∇ηε,+)

∣∣∣∣ ≤ Cε−1
(∫

T εs

|pε −P|
2
)1/2(∫

Rεs

|uε −ws |
2
)1/2

≤ C
(∫

T εs

|pε −P|
2
)1/2(∫

Rεs

|∇(uε −ws)|
2
)1/2

. (2-22)

Now, we pick

P := −

∫
Qt0s,+(y)

pε,

where Qt0s,+(y)= Qt0s(y)∩{x3> 0}. Then the Bogovskii lemma applied in a Lipschitz domain Qt0s,+(y)
implies (∫

T εs

|pε −P|
2
)1/2

≤

(∫
Qt0s,+(y)

|pε −P|
2
)1/2

≤ C
(∫

Qt0s,+(y)
|∇uε|2

)1/2

+ C
(∫

Qt0s,+(y)
|Fε|2

)1/2

≤ C
(∫

Bεt0s,+

|∇uε|2
)1/2

+ C
(∫

Bεt0s,+

|Fε|2
)1/2

. (2-23)

Unlike the previous argument, we want to gain the smallness for (2-24) below from(∫
Rεs

|∇(uε −ws)|
2
)1/2

≤

(∫
Rεs

|∇uε|2
)1/2

+

(∫
Rεs

|∇ws |
2
)1/2

.
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The estimate for ∇uε over Rεs is given (2-21). On the other hand, by (2-15) and the Hölder inequality, we
have (∫

Rεs

|∇ws |
2
)1/2

≤ |Rεs |
1/6

(∫
Rεs

|∇ws |
3
)1/3

≤ C
|Rεs |

1/6

s1/2

(∫
Qε

2s(y)
|∇uε|2

)1/2

≤ C
(
ε

s

)1/6(∫
Qε

2s(y)
|∇uε|2

)1/2

.

Inserting this into (2-22), we have∣∣∣∣∫
Bεt0s,+(y)

(pε −P)((uε −ws) · 2ηε,+∇ηε,+)

∣∣∣∣
≤ C

{(∫
Bεt0s,+

|∇uε|2
)1/2

+

(∫
Bεt0s,+

|Fε|2
)1/2}{(∫

Rεs

|∇uε|2
)1/2

+

(
ε

s

)1/6(∫
Qε

2s(y)
|∇uε|2

)1/2}
. (2-24)

Finally, for the last integral of (2-19), by the Poincaré inequality, we have∣∣∣∣∫
Bεt0s,+(y)

Fε · ∇((uε −ws)η
2
ε,+)

∣∣∣∣ ≤ C
(∫

Bεt0s,+(y)
|Fε|2

)1/2(∫
Qε

t0s(y)
|∇(uε −ws)|

2
)1/2

. (2-25)

Now, (2-19) together with (2-20), (2-21), (2-24) and (2-25) gives(∫
Qε

t0s(y)
|∇(uε −ws)|

2
)1/2

≤ C
(
θσ +

(
ε

s

)1/12)(∫
Q7s(y)

|∇uε|2
)1/2

+ Cθ

(∫
Q7s(y)

|Fε|2
)1/2

. (2-26)

Since we assumed s ≥ ε/θ , we have ε/s ≤ θ . In view of t0 ∈ [1, 2], (2-26) divided by |Qs(y)|1/2 leads
to (2-16). □

Proof of Theorem 2.4. We will first prove a slightly weaker version of (2-10) when Q57r (x)⊂ Q1(0). Then,
(2-10) can be recovered thanks to a covering argument at the price of enlarging the constant by a numerical
factor; see Remark 2.3 for more details. When Q57r (x) is far away from the boundary 0ε1, the estimate
(2-10) is a consequence of interior regularity. Hence it suffices to prove (2-10) when Q57r (x)∩0ε1 ̸= ∅.
Note that this case can be reduced to the case when x ∈ {z3 = 0} by a covering argument as well as
interior regularity. To apply Theorem 2.5 to Q0 := Qr (x), λ := 56 and F := M2

t [∇uε] in Q56r (x) with
x ∈ {z3 = 0}, we approximate uε in any cube Qs(y) contained in Q2r (x) for any scales for s ≥ ε/θ ,
where θ is as in Lemma 2.6. If Qs(y) is entirely contained in {z3 > 0}, then the well-known interior
estimate for the Stokes system applies. If Qs(y) is contained entirely in {z3 <−ε}, then trivially uε ≡ 0
in Qs(y). Hence, it suffices to focus on the typical boundary case Qs(y) with y ∈ {z3 = 0}. Moreover,
we assume s < r/2 so that Q57s(y)⊂ Q57r (x)⊂ Q1(0) whenever Qs(y)⊂ Q2r (x).

Now, for each Qs(y) with y ∈ {z3 = 0}, we will discuss two cases.

Case 1: s≥4t . By (2-14) and (2-16), there exists ws solving (2-12) and satisfying

∥∇ws∥L∞(Qs/2(y)) ≤ C
(

−

∫
Q2s(y)

|∇uε|2
)1/2

(2-27)
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and (
−

∫
Qs(y)

|∇uε − ∇ws |
2
)1/2

≤ Cθσ
(

−

∫
Q7s(y)

|∇uε|2
)1/2

+

(
−

∫
Q7s(y)

|Cθ Fε|2
)1/2

. (2-28)

Note that the above estimate only holds for s ≥ ε/θ . Therefore, we will use Lemma 2.1 and replace
∇uε and ∇ws by M2

t [∇uε] and M2
t [∇ws], respectively. Precisely, the above two inequalities imply for

s ≥ 4t ≥ ε/θ ,

∥M2
t [∇ws]∥L∞(Qs/4(y)) ≤ C

(
−

∫
Q2s(y)

|M2
t [∇uε]|2

)1/2

≤ C
(

−

∫
Q7s(y)

|M2
t [∇uε]|2

)1/2

and(
−

∫
Qs/4(y)

|M2
t [∇uε] −M2

t [∇ws]|
2
)1/2

≤ Cθσ
(

−

∫
Q7s(y)

|M2
t [∇uε]|2

)1/2

+

(
−

∫
Q7s(y)

|M2
t [Cθ Fε]|2

)1/2

.

Case 2: 0 < s < 4t . In this case M2
t [∇uε] itself satisfies some trivial estimate. Note that for any

z ∈ Qs/2(y), as Qs/2(z)⊂ Qs(y), by Lemma 2.1(v),

M2
t [∇uε](z)≤ C

(
−

∫
Qs/2(z)

|M2
t [∇uε]|2

)1/2

≤ C
(

−

∫
Qs(y)

|M2
t [∇uε]|2

)1/2

,

which yields

∥M2
t [∇uε]∥L∞(Qs/4(y)) ≤ ∥M2

t [∇uε]∥L∞(Qs/2(y))

≤ C
(

−

∫
Qs(y)

|M2
t [∇uε]|2

)1/2

≤ C
(

−

∫
Q7s(y)

|M2
t [∇uε]|2

)1/2

.

This ends the study of the two cases. We now apply Theorem 2.5 with λ := 56, Q0 := Qr (x), q := ∞,
F := M2

t [∇uε] and f := M2
t [Cθ Fε]. Moreover,

FQ =

{
M2

t [∇uε] −M2
t [∇ws], s ≥ 4t,

0, 0< s < 4t,
and

RQ =

{
M2

t [∇ws], s ≥ 4t,
M2

t [∇uε], 0< s < 4t.

For any given p > 2, we may choose θ sufficiently small with Cθσ < κ0 so that the requirement of
Theorem 2.5 is satisfied. Consequently, we arrive at(

−

∫
Qr (x)

|M2
t [∇uε]|p

)1/p

≤ C
(

−

∫
Q56r (x)

|M2
t [∇uε]|2

)1/2

+ C
(

−

∫
Q56r (x)

|M2
t [Cθ Fε]|p

)1/p

(2-29)

for all ε ∈ (0, θ(p)) and ε/(4θ)≤ t ≤ r and Q57r (x)⊂ Q1(0). Estimate (2-10) now follows by a covering
argument (see the proof of Lemma 2.2) and Lemma 2.1 (in order to adjust the size of balls and relax the
condition t ≥ (4θ) to t ≥ ε). To remove the smallness condition ε ∈ (0, θ(p)), we observe that the case
θ(p)≤ ε ≤ t ≤ r ≤

1
2 is trivial as the constant C is allowed to depend on p. □
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2B. Bootstrap argument. In this subsection, we apply the large-scale Calderón–Zygmund estimate
proved previously to study the regularity of the stationary Navier–Stokes equations (NSε). Note that in
Theorem 2.4, Fε is a general function. We will take advantage of the nonlinearity Fε = −uε ⊗ uε. As
usual, the proof relies on a bootstrap argument.

Throughout this subsection, we set Fε = −uε ⊗ uε. To begin with, note that the Sobolev embedding
theorem implies Fε ∈ L3, which yields Mt [Fε] ∈ L3. Hence, (2-10) holds with p = 3. To further improve
the large-scale regularity, we need to lift the regularity of Fε from that of ∇uε.

For any 0 ≤ a < b ≤ ∞, define a new maximal function

M1
(a,b)[g](x)= sup

a<t<b
−

∫
Qt (x)

|g|.

Note that M1
(0,∞) is the usual Hardy–Littlewood maximal function. Clearly, by the L p boundedness of

the Hardy–Littlewood maximal function, M1
(a,b) is uniformly bounded in L p space for p ∈ (1,∞).

Fix t > 0. Define

Kq(r)= Kq,t(r)=

(
−

∫
Qr (0)

M2
t [∇uε]q

)1/q

.

The following estimate is a sort of the large-scale Sobolev embedding theorem.

Theorem 2.7. Let L ∈ (0,∞) and� be a bumpy John domain with constant L according to Definition 1.2.
Let ε ≤ t ≤ r ≤

1
7 and Fε = −uε ⊗ uε. Then for any p > 3 and any q satisfying

1
q
<

1
2p

+
1
3
, (2-30)

we have (
−

∫
Qr (0)

|Mt [Fε]|p
)1/p

≤ Cr2(Kq(5r))2, (2-31)

where the constant C depends only L , p and q.

Proof. Let p > 3 and q satisfy (2-30). Without loss of generality, we assume in addition 1
2p <

1
q . Let

x ∈ Bεr,+(0). We first estimate

Mt [Fε](x)=

(
−

∫
Qt (x)

|Fε|2
)1/2

≤ C
(

−

∫
Qt (x)

|uε|4
)1/2

.

Let x = (x ′, x3). We consider the cases x3 ≥ t and x3 < t separately. Assume first x3 ≥ t and let N be the
natural number so that 2N−1t < x3 ≤ 2N t . Note that uε vanishes in a large portion of Q2N+1t(x). By the
triangle inequality and the Poincaré inequality, we have(

−

∫
Qt (x)

|uε|4
)1/4

≤

(
−

∫
Qt (x)

∣∣∣∣uε − −

∫
Q2t (x)

uε
∣∣∣∣4 )1/4

+

N∑
j=1

∣∣∣∣−∫
Q2 j t (x)

uε − −

∫
Q2 j+1t (x)

uε
∣∣∣∣ + ∣∣∣∣−∫

Q2N+1t (x)
uε

∣∣∣∣
≤ C

N∑
j=0

2 j+1t
(

−

∫
Q2 j+1t (x)

|∇uε|2
)1/2

.
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Now, let α ∈
(
0,min

{1
3 ,

1
q

})
and write

2 j+1t
(

−

∫
Q2 j+1t (x)

|∇uε|2
)1/2

≤ C2 j+1t
(

−

∫
Q2 j+1t (x)

Mt [∇uε]2
)1/2

≤ C2 j+1t
(

−

∫
Q2 j+1t (x)

Mt [∇uε]q
)1/q

≤ C2 j+1t
(

−

∫
Q2 j+1t (x)

Mt [∇uε]q
)α(

−

∫
Q2 j+1t (x)

Mt [∇uε]q
)1/q−α

≤ C(2 j+1t)1−3α
(∫

Q2 j+1t (x)
Mt [∇uε]q

)α(
−

∫
Q2 j+1t (x)

Mt [∇uε]q
)1/q−α

≤ C(2 j+1t)1−3αr3α
(

−

∫
Q5r (0)

Mt [∇uε]q
)α(

−

∫
Q2 j+1t (x)

Mt [∇uε]q
)1/q−α

. (2-32)

Using the definition of Kq and M1
(2t,5r), we obtain

2 j+1t
(

−

∫
Q2 j+1t (x)

|∇uε|2
)1/2

≤ C(2 j+1t)1−3αr3α(Kq(5r))αq(
M1

(2t,5r)[Mt [∇uε]q
](x)

)1/q−α
.

It follows that(
−

∫
Qt (x)

|uε|4
)1/4

≤ C
N∑

j=0

(2 j+1t)1−3αr3α(Kq(5r))αq(
M1

(2t,5r)[Mt [∇uε]q
](x)

)1/q−α

≤ Cr(Kq(5r))αq(
M1

(2t,5r)[Mt [∇uε]q
](x)

)1/q−α
,

which yields

Mt [Fε](x)≤ Cr2(Kq(5r))2αq(
M1

(2t,5r)[Mt [∇uε]q
](x)

)2/q−2α
. (2-33)

On the other hand, if x3 < t , then B2t(x) has a relatively large portion not contained in �ε. Thus, the
Sobolev–Poincaré inequality implies(

−

∫
Qt (x)

|uε|4
)1/4

≤ C
(

−

∫
Q2t (x)

|uε|4
)1/4

≤ Ct
(

−

∫
Q2t (x)

|∇uε|2
)1/2

.

Using the same argument as (2-32), we see that Mt [Fε](x) has the same bound as (2-33) for x3 < t .
Since by assumption, 1

2p <
1
q <

1
2p +

1
3 and 0< α <min

{1
3 ,

1
q

}
is arbitrary, we may choose α so that

1
q >

1
2p +α. This implies p

( 2
q −2α

)
> 1. Thus, using the L p(2/q−2α) boundedness of the Hardy–Littlewood

maximal function, we obtain∫
Qr (0)

|Mt [Fε](x)|p dx ≤ Cr2p(Kq(5r))2αpq
∫

Qr (0)
(M1

(2t,5r)[Mt [∇uε]q
](x))p(2/q−2α) dx

≤ Cr2p(Kq(5r))2αpq
∫

Q5r (0)
(Mt [∇uε](x))2p(1−αq) dx .
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Consequently, (
−

∫
Qr (0)

|Mt [Fε]|p
)1/p

≤ Cr2(Kq(5r))2αq(K2p(1−αq)(5r))2(1−αq).

Now, observe that we may choose α < 1
q −

1
2p but sufficiently close to 1

q −
1

2p . Then q < 2p(1−αq)→ q
as α approaches 1

q −
1

2p . This implies(
−

∫
Qr (0)

|Mt [Fε]|p
)1/p

≤ Cr2(K2p(1−2α)(5r))2 ≤ Cr2(Kq̂(5r))2 (2-34)

for any q̂ > q , where we also used the fact that Km(r)≤ Kn(r) for any 1 ≤ m ≤ n. Finally, to recover the
case with the exact exponent q , we may start with a q̃ < q still satisfying 1

q̃ <
1

2p +
1
3 . Then (2-34) holds

for any q̂ > q̃ , which includes the case q̂ = q . This proves the desired estimate. □

Now, a bootstrap argument between (2-10) and (2-31) shows that both M2
t [∇uε] and M2

t [Fε] are
in L p for any p ≥ 3. In the following, we use this to prove a large-scale Hölder’s estimate for Fε, which
plays an important role in the Lipschitz estimate in the next section.

Theorem 2.8. Let L ∈ (0,∞) and� be a bumpy John domain with constant L according to Definition 1.2.
Let ε ≤ t ≤ r ≤

1
2 . Let M ≥ 0 be such that(

−

∫
Bε1,+

|∇uε|2
)1/2

≤ M.

For every l > 3 and δ > 0 satisfying lδ < 6, we have(
−

∫
Qr

|Mt [Fε]|3
)1/3

≤ Cr2−6/ l(M + M2(4−6/ l+δ)), (2-35)

where the constant C depends only on L , l and δ.

Proof. Note that, by an argument similar to that at the end of the proof of Theorem 2.4, we only have
to prove (2-35) when ε/N0 ≤ t ≤ r ≤ 1/N1 for some N0, N1 ≥ 2. Let l > 3 and δ > 0 with lδ < 6 be
given and fixed for the proof. First of all, by the Sobolev embedding theorem, ∥Fε∥L3(Q1) ≤ C M2. This
implies ∥Mt [Fε]∥L3(Q1/2) ≤ C M2. By Theorem 2.4,(

−

∫
Q1/8

|Mt [∇uε]|3
)1/3

≤ C(M + M2).

Then, applying Theorem 2.7, we obtain that, for any 3 ≤ p <∞,(
−

∫
Q1/40

|Mt [Fε]|p
)1/p

≤ C
(

−

∫
Q1/8

Mt [∇uε]3
)2/3

≤ C(M + M4).

Now, using Theorem 2.4 again combined with a covering argument, we derive from the last inequality that(
−

∫
Q1/80

|Mt [∇uε]|p
)1/p

≤ C(M + M4).
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Now, let p > l. By the interpolation, we have(
−

∫
Q1/80

|Mt [∇uε]|l
)1/ l

≤

(
−

∫
Q1/80

|Mt [∇uε]|3
)θ/3(

−

∫
Q1/80

|Mt [∇uε]|p
)(1−θ)/p

≤ C(M + M2)θ (M + M4)1−θ
≤ C(M + M4−2θ ), (2-36)

where
1
l

=
θ

3
+

1−θ

p
.

For the given δ ∈ (0, 1), we want 4 − 2θ = 4 −
6
l + δ. This implies θ =

3
l −

δ
2 and thus we may choose

p =
6
δ

(
1 −

3
l

+
δ

2

)
.

One can easily verify that θ ∈ (0, 1) by the assumption on l and δ. Consequently, we derive from (2-36) that(
−

∫
Q1/80

|Mt [∇uε]|l
)1/ l

≤ C(M + M4−6/ l+δ).

Finally, we apply Theorem 2.7 to obtain for r ≤
1

400 ,(
−

∫
Qr

|Mt [Fε]|3
)1/3

≤ Cr2
(

−

∫
Q5r

|Mt [∇uε]|l
)2/ l

≤ Cr2−6/ l
(∫

Q5r

|Mt [∇uε]|l
)2/ l

≤ Cr2−6/ l(M + M2(4−6/ l+δ)). □

Note that if ∇uε itself is in L p for p > 3, then Morrey’s inequality implies that uε is C0,1−3/p, which
implies, since uε vanishes on the boundary,(

−

∫
Qr

|Fε|3
)1/3

≤ Cr2−6/p,

where C depends on M, L and p. Hence, (2-35) is consistent with the usual Morrey estimate.

3. Large-scale Lipschitz estimate

In this section, we will establish the large-scale Lipschitz estimate of uε and the oscillation estimate of pε.
We remark, for later use in Section 4B, that Theorem A implies the following Liouville theorem for the
Stokes system 

−1u + ∇ p = 0 in �,
∇ · u = 0 in �,
u = 0 on ∂�,

(3-1)

where � is a John domain in Definition 1.2. The proof of the following statement is standard.

Corollary 3.1. Let � be a bumpy John domain according to Definition 1.2. Let (u, p) be a weak solution
of (3-1). If

lim
R→∞

1
R

(
−

∫
BR(0)∩�

|u|
2
)1/2

= 0,

then u ≡ 0 (hence p is constant).
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3A. Set-up and approximation. First of all, we may write (NSε) as a linear Stokes system
−1uε + ∇ pε = ∇ · Fε in Bε1,+,
∇ · uε = 0 in Bε1,+,
uε = 0 on 0ε1 ,

(Sε)

where Fε = −uε ⊗ uε. As in the classical regularity theory for Stokes system, we will use the large-scale
C0,α estimate of Fε in Theorem 2.8 to prove the large-scale Lipschitz estimate. The proof is based on the
excess decay method.

Similarly to the large-scale Calderón–Zygmund estimate of Theorem 2.4, we also need to approximate
the Stokes system (Sε) at all scales greater than ε. Fix r ∈

[
ε, 1

2

]
and let (vr , qr ) be the weak solution of

the Stokes system 
−1vr + ∇qr = 0 in Qε

t0r ,

∇ · vr = 0 in Qε
t0r ,

vr = uε on ∂Qε
t0r ,

(Sr )

where we have automatically extended uε across the bottom boundary by zero-extension and t0 is a
constant in the interval [1, 2] chosen analogously to those in (2-11) and (2-12). Note that (Sr ) is a special
case of (2-12) with s = r and y = 0, which means the estimates (2-13)–(2-15) hold also for (vr , qr ), in
place of (ws, qs). The following lemma is an analogue of Lemma 2.6.

Lemma 3.2. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (uε, pε) and (vr , qr ) be weak solutions of (Sε) and (Sr ), respectively. If ε∈

(
0, 1

10

]
and r ∈

[
2ε, 1

5

]
, then(

−

∫
Bεr,+

|∇uε − ∇vr |
2
)1/2

+

(
−

∫
Bεr/2,+

∣∣∣∣pε − qr − −

∫
Bεr/2,+

(pε − qr )

∣∣∣∣2 )1/2

≤ C
(
ε

r

)1/12(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ C
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

, (3-2)

where C depends only on L.

Proof. Let us set Rεr = Qε
t0r ∩ {−ε < x3 ≤ 2ε}. By examining the proof of Lemma 2.6, we obtain∫

Bεt0r,+

|∇(uε − vr )|
2
≤ C

∫
Rεr

|∇uε|2 + C
(
ε

r

)1/6∫
Bε2r,+

|∇uε|2 + C
∫

Bε2r,+

|Fε|2. (3-3)

From Lemma 2.1(iii) and Theorem 2.4 with p = 3,(
1

|Bεr,+|

∫
Rεr

|∇uε|2
)1/2

≤ C
(

1
|Bεr,+|

∫
Rεr

|M2
ε[∇uε]|2

)1/2

≤ C
(

|Rεr |
|Bεr,+|

)1/6(
−

∫
Bεr,+

|M2
ε[∇uε]|3

)1/3

≤ C
(
ε

r

)1/6{(
−

∫
Bε5r,+

|∇uε|2
)1/2

+

(
−

∫
Q4r

|M2
ε[Fε]|3

)1/3}
.

Inserting this into (3-3), we have(
−

∫
Bεr,+

|∇uε − ∇vr |
2
)1/2

≤ C
(
ε

r

)1/12(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ C
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

. (3-4)
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Next, we estimate the pressure by using the Bogovskii lemma. The issue is that, in general, Bεr,+ is not
a John domain. By Definition 1.2, for r ≥ 2ε, there exists a John domain �εr with constant L satisfying

Bεr/2,+ ⊂�εr ⊂ Bεr,+.

Note that (uε − vr , pε − qr ) satisfies

−1(uε − vr )+ ∇(pε − qr )= ∇ · Fε in Bεr,+.

Thus, we may use the Bogovskii lemma in �εr and (3-4) to obtain(
−

∫
�εr

∣∣∣∣pε − qr − −

∫
�εr

(pε − qr )

∣∣∣∣2 )1/2

≤ C
(

−

∫
�εr

|∇uε − ∇vr |
2
)1/2

+ C
(

−

∫
�εr

|Fε|2
)1/2

≤ C
(
ε

r

)1/12(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ C
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

, (3-5)

where we also used the fact |�εr | ≈ |Bεr,+|. Using a well-known fact∫
E

∣∣∣∣ f − −

∫
E

f
∣∣∣∣2

= inf
a∈R

∫
E

| f − a|
2 for any open set E,

we derive (
−

∫
Bεr/2,+

∣∣∣∣pε − qr − −

∫
Bεr/2,+

(pε − qr )

∣∣∣∣2 )1/2

≤

(
−

∫
Bεr/2,+

∣∣∣∣pε − qr − −

∫
�εr

(pε − qr )

∣∣∣∣2 )1/2

≤ C
(

−

∫
�εr

∣∣∣∣pε − qr − −

∫
�εr

(pε − qr )

∣∣∣∣2 )1/2

. (3-6)

Combining (3-4), (3-5) and (3-6), we obtain the desired estimate. □

Remark 3.3. The pressure estimate in John domains in the proof of Lemma 3.2 is a standard technique
that we will frequently use throughout this paper. It allows us to transfer the pressure estimate to the
estimates of ∇uε and Fε.

3B. Excess decay. Let P1 = {(ax3, bx3, 0) | a, b ∈ R}. Note that P1 consists of all the linear solutions
(velocity component) of the Stokes equations in the whole space with the no-slip condition on {x3 = 0}.
These linear solutions are dubbed as no-slip Stokes polynomials of degree 1.

For a pair of functions (wε, π ε) ∈ H 1(Bεr,+)
3
× L2(Bεr,+), with r ∈ (0, 1], we set

H(wε, π ε; ρ)= inf
P∈P1

(
−

∫
Bερ,+

|∇wε − ∇ P|
2
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsρ,+

π ε − −

∫
Bεtρ,+

π ε
∣∣∣∣, ρ ∈ (0, r ], (3-7)

8(wε, π ε; ρ)=

(
−

∫
Bερ,+

|∇wε|2
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsρ,+

π ε − −

∫
Bεtρ,+

π ε
∣∣∣∣, ρ ∈ (0, r ]. (3-8)

The quantity H can be dubbed as a zeroth-order excess quantity. In Section 5 we will consider higher-order
excess quantities H1st and H2nd to address the large-scale C1,γ and C2,γ regularity.
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Moreover, for a pair of functions (wr , πr ) ∈ H 1(Qε
r )

3
× L2(Qε

r ) with r ∈ (0, 1], we set

H̃(wr , πr ; ρ)= inf
P∈P1

(
−

∫
Qε
ρ

|∇wr − ∇ P|
2
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε

sρ

πr − −

∫
Qε

tρ

πr

∣∣∣∣, ρ ∈ (0, r ]. (3-9)

The following lemma states the comparability between H(vr , qr ; θr) and H̃(vr , qr ; θr).

Lemma 3.4. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Fix ε ∈

(
0, 1

4

]
, r ∈

[
ε, 1

4

]
and let (vr , qr ) satisfy (Sr ). Then we have the following statements:

(i) For all θ ∈ (0, 1],

H(vr , qr ; θr)≤ C H̃(vr , qr ; θr)+ Cθ−1
(
ε

r

)1/2(
−

∫
Qε
θr

|∇vr |
2
)1/2

. (3-10)

(ii) For all θ ∈ (0, 1],

H̃(vr , qr ; θr)≤ C H(vr , qr ; 2θr)+ Cθ−5/2
(
ε

r

)(
−

∫
Qε

2θr

|∇vr |
2
)1/2

. (3-11)

Here C depends only on L.

Proof. (i) We first deal with vr . Since Bεθr,+ ⊂ Qε
θr and |Bεθr,+| ≈ |Qε

θr |, we have

inf
P∈P1

(
−

∫
Bεθr,+

|∇vr − ∇ P|
2
)1/2

≤ C inf
P∈P1

(
−

∫
Qε
θr

|∇vr − ∇ P|
2
)1/2

.

On the other hand, the triangle inequality implies

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεθsr,+

qr − −

∫
Bεθ tr,+

qr

∣∣∣∣
≤ sup

s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε
θsr

qr − −

∫
Qε
θ tr

qr

∣∣∣∣ + 2 sup
ρ∈[1/16,1/4]

∣∣∣∣−∫
Qε
θρr

qr − −

∫
Bεθρr,+

qr

∣∣∣∣. (3-12)

Combining the above two inequalities, we obtain

H(vr , qr ; θr)≤ C H̃(vr , qr ; θr)+ 2 sup
ρ∈[1/16,1/4]

∣∣∣∣−∫
Qε
θρr

qr − −

∫
Bεθρr,+

qr

∣∣∣∣. (3-13)

Since |Qε
θρr \ Bεθρr,+| is less than Cε(θρr)2, a direct computation yields∣∣∣∣−∫

Qε
θρr

qr − −

∫
Bεθρr,+

qr

∣∣∣∣ ≤

(
1

|Bεθρr,+|
−

1
|Qε

θρr |

)∣∣∣∣∫
Qε
θρr

(
qr − −

∫
Qε
θr

qr

)∣∣∣∣ + 1
|Bεθρr,+|

∣∣∣∣∫
Qε
θρr \Bεθρr,+

(
qr − −

∫
Qε
θr

qr

)∣∣∣∣
≤

(
|Qε

θρr \ Bεθρr,+||Qε
θr |

1/2

|Bεθρr,+||Qε
θρr |

1/2 +
|Qε

θρr \ Bεθρr,+|
1/2

|Qε
θr |

1/2

|Bεθρr,+|

)(
−

∫
Qε
θr

∣∣∣∣qr − −

∫
Qε
θr

qr

∣∣∣∣2 )1/2

≤ C
(
θ−1ρ−5/2

(
ε

r

)
+ θ−1/2ρ−2

(
ε

r

)1/2)(
−

∫
Qε
θr

|∇vr |
2
)1/2

, (3-14)
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where we have applied the Hölder inequality in the second inequality and the Bogovskii lemma in Qε
θr in

the third inequality. Noting ρ ≥
1
16 and using (3-13) and (3-14), we obtain the first inequality (3-10).

(ii) Let P∗ ∈ P1 be such that(
−

∫
Bεθr,+

|∇vr − ∇ P∗|
2
)1/2

= inf
P∈P1

(
−

∫
Bεθr,+

|∇vr − ∇ P|
2
)1/2

.

Since vr (x) − P∗(x + εe3) is a weak solution to (Sr ) with the same pressure qr and P∗(x + εe3) =

P∗(x)+ ε(∇ P∗)e3, by the Bogovskii lemma in Qε
θr , we see that

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε
θsr,+

qr − −

∫
Qε
θ tr,+

qr

∣∣∣∣ ≤ 2 sup
ρ∈[1/16,1/4]

(
−

∫
Qε
θρr

∣∣∣∣qr − −

∫
Qε
θr

qr

∣∣∣∣2)1/2

≤ C
(

−

∫
Qε
θr

|∇vr − ∇ P∗|
2
)1/2

. (3-15)

Moreover, notice that vr − P̃(x + εe3) vanishes on x3 = −ε, so that by the Caccioppoli inequality (see
Lemma A.3 in the rectangular region Qε

2θr translated by e3), we have(
−

∫
Qε
θr

|∇vr − ∇ P∗|
2
)1/2

≤
C
θr

(
−

∫
Qε

2θr

|vr − P∗(x + εe3)|
2 dx

)1/2

≤
C
θr

(
−

∫
Bε2θr,+

|vr − P∗|
2
)1/2

+ Cθ−1
(
ε

r

)
|∇ P∗|

+
C

(θr)5/2

{(∫
Qε

2θr \Bε2θr,+

|vr |
2
)1/2

+

(∫
Qε

2θr \Bε2θr,+

|P∗(x + εe3)|
2
)1/2}

. (3-16)

Now (3-15) and (3-16) combined with the Poincaré inequality imply

H̃(vr , qr ; θr)≤ C H(vr , qr ; 2θr)+ Cθ−1
(
ε

r

)
|∇ P∗|

+
C

(θr)5/2

{(∫
Qε

2θr \Bε2θr,+

|vr |
2
)1/2

+

(∫
Qε

2θr \Bε2θr,+

|P∗(x + εe3)|
2
)1/2}

. (3-17)

By the definition of P∗, we have

|∇ P∗| ≤ C
(

−

∫
Bε2θr,+

|∇vr |
2
)1/2

≤ C
(

−

∫
Qε

2θr

|∇vr |
2
)1/2

. (3-18)

Consequently,

C
(θr)5/2

{(∫
Qε

2θr \Bε2θr,+

|vr |
2
)1/2

+

(∫
Qε

2θr \Bε2θr,+

|P∗(x + εe3)|
2
)1/2}

≤
C

(θr)5/2

{
ε

(∫
Qε

2θr \Bε2θr,+

|∇vr |
2
)1/2

+ ε(εθ2r2)1/2|∇ P∗|

}
≤ C

(
θ−5/2

(
ε

r

)
+ θ−3/2

(
ε

r

)3/2)(
−

∫
Qε

2θr

|∇vr |
2
)1/2

. (3-19)

Hence, we obtain (3-11) from (3-17) combined with (3-18) and (3-19). □
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Lemma 3.5. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Fix α ∈ (0, 1] arbitrarily. For all ε ∈

(
0, 1

2

]
, r ∈

[
ε, 1

2

]
, θ ∈

(
0, 1

8

]
, and (vr , qr ) satisfying (Sr ),

H̃(vr , qr ; θr)≤ C
(
θα + θ−1

(
ε

r

))
H̃(vr , qr ; r), (3-20)

where C depends only on L and α.

Proof. By the regularity of the Stokes equations in flat domains,

vr ∈ C1,α(Qε
r/2), qr ∈ C0,α(Qε

r/2).

Let e3 = (0, 0, 1). The boundary C1,α estimate of vr on {x3 = −ε} implies

|vr (x)− vr (−εe3)− (x3 + ε)∂3vr (−εe3)| ≤ C
|x + εe3|

1+α

rα

(
−

∫
Qε

r/2

|∇vr |
2
)1/2

.

Note that ∂3vr,3(−εe3)= 0 by the condition ∇ · vr = 0. Thus, from vr (−εe3)= 0, there exists P̃(x)=

(∂3vr,1(−εe3), ∂3vr,2(−εe3), 0)x3 ∈ P1 and

|vr (x)− P̃(x + εe3)| ≤ C
|x3 + εe3|

1+α

rα

(
−

∫
Qε

r/2

|∇vr |
2
)1/2

for all x ∈ Qε
θr. Since vr (x)− P̃(x + εe3) is a weak solution to (Sr ) with the same pressure qr , by the

Caccioppoli inequality (see Lemma A.3) in Qε
2θr, we have(

−

∫
Qε
θr

|∇vr − ∇ P̃(x + εe3)|
2 dx

)1/2

≤
C
θr

(
−

∫
Qε

2θr

|vr − P̃(x + εe3)|
2 dx

)1/2

≤ C
(
θα + θ−1

(
ε

r

))(
−

∫
Qε

r/2

|∇vr |
2
)1/2

.

Then the observation P̃(x + εe3)= P̃(x)+ ε(∇ P̃)e3 yields(
−

∫
Qε
θr

|∇vr − ∇ P̃|
2
)1/2

≤ C
(
θα + θ−1

(
ε

r

))(
−

∫
Qε

r/2

|∇vr |
2
)1/2

. (3-21)

The C0,α estimate of qr implies

|qr (x)− qr (0)| ≤ C
|x |

α

rα

(
−

∫
Qε

r/2

|qr − −

∫
Qε

r/2

qr |
2
)1/2

.

Then by the Bogovskii lemma in a Lipschitz domain Qε
r/2, we have

|qr (x)− qr (0)| ≤ C
|x |

α

rα

(
−

∫
Qε

r/2

|∇vr |
2
)1/2

,

which results in

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε
θsr

qr − −

∫
Qε
θ tr

qr

∣∣∣∣ ≤ Cθα
(

−

∫
Qε

r/2

|∇vr |
2
)1/2

. (3-22)
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Hence on the one hand, by (3-21) and (3-22) we see that

H̃(vr , qr ; θr)≤ C
(
θα + θ−1

(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

. (3-23)

On the other hand, since vr (x)− P(x + εe3), for any P ∈ P1, is a weak solution to (Sr ) with the same
pressure qr and P(x + εe3)= P(x)+ ε(∇ P)e3, we may apply (3-23) to vr (x)− P(x + εe3) and obtain

H̃(vr − P(x + εe3), qr ; θr)≤ C
(
θα + θ−1

(
ε

r

))(
−

∫
Qε

r

|∇vr − ∇ P|
2 dx

)1/2

. (3-24)

In particular, we may choose P = P∗ that minimizes(
−

∫
Qε

r

|∇vr − ∇ P|
2
)1/2

.

Then, it is clear that (
−

∫
Qε

r

|∇vr − ∇ P∗|
2
)1/2

≤ H̃(vr , qr ; r). (3-25)

Thus the estimate (3-20) follows from (3-24) with P = P∗ and (3-25). □

Lemma 3.6. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let α ∈ (0, 1] be the number in Lemma 3.5. For all ε ∈

(
0, 1

4

]
, r ∈

[
ε, 1

4

]
, θ ∈

(
0, 1

8

]
, and (vr , qr )

satisfying (Sr ),

H(vr , qr ; θr)≤ CθαH(vr , qr ; 2r)+ Cθ−5/2
(
ε

r

)1/2(
−

∫
Q2r

|∇vr |
2
)1/2

, (3-26)

where C depends only on L and α.

Proof. The estimate (3-26) follows readily from Lemmas 3.4 and 3.5. □

Lemma 3.7. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (uε, pε) be a weak solution of (Sε) and let α ∈ (0, 1] be the number in Lemma 3.5. For all ε ∈

(
0, 1

32

]
,

r ∈
[
2ε, 1

16

]
and θ ∈

(
0, 1

8

]
,

H(uε, pε;θr)≤CθαH(uε, pε;2r)+Cθ−3
(
ε

r

)1/12

8(uε, pε;16r)+Cθ−3
(

−

∫
Q10r

|M2
ε[Fε]|3

)1/3

, (3-27)

where C depends only on L and α.

Proof. The triangle inequality and Lemma 3.6 imply

H(uε, pε; θr)≤ H(vr , qr ; θr)+ H(uε − vr , pε − qr ; θr)

≤ CθαH(vr , qr ; 2r)+ H(uε − vr , pε − qr ; θr)+ Cθ−5/2
(
ε

r

)1/2(
−

∫
Qε

2r

|∇vr |
2
)1/2

≤ CθαH(uε, pε; 2r)+ CθαH(uε − vr , pε − qr ; r)

+ H(uε − vr , pε − qr ; θr)+ Cθ−5/2
(
ε

r

)1/2(
−

∫
Bε4r ,+

|∇uε|2
)1/2

, (3-28)
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where in the last line the energy estimate of (Sr ) is applied. By the definition of H, we find

θαH(uε − vr , pε − qr ; r)+ H(uε − vr , pε − qr ; θr)

≤ C(θα + θ−3)

{(
−

∫
Bεr,+

|∇uε − ∇vr |
2
)1/2

+ sup
ρ∈[1/16,1/4]

−

∫
Bερr,+

∣∣∣∣pε − qr − −

∫
Bεr/2,+

(pε − qr )

∣∣∣∣}. (3-29)

The Poincaré inequality and Lemma 3.2 imply(
−

∫
Bεr,+

|∇uε − ∇vr |
2
)1/2

+ sup
ρ∈[1/16,1/4]

−

∫
Bερr,+

∣∣∣∣pε − qr − −

∫
Bεr/2,+

(pε − qr )

∣∣∣∣
≤ C

{(
−

∫
Bεr,+

|∇uε − ∇vr |
2
)1/2

+

(
−

∫
Bεr/2,+

∣∣∣∣pε − qr − −

∫
Bεr/2,+

(pε − qr )

∣∣∣∣2 )1/2}

≤ C
(
ε

r

)1/12(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ C
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

. (3-30)

Now from (3-28) to (3-30), we obtain the desired estimate (3-27) by the definition of 8 in (3-8). □

3C. Iteration. In the following two lemmas, we prove some properties of H and8 needed when iterating
(3-27).

Lemma 3.8. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (uε, pε) be a weak solution of (Sε). There exists a function h(r) defined on

[
ε, 1

2

]
such that

h(r)≤ C(H(uε, pε; r)+8(uε, pε; r)), (3-31)

8(uε, pε; r)≤ C(H(uε, pε; r)+ h(r)), (3-32)

sup
r1,r2∈[r,2r ]

|h(r1)− h(r2)| ≤ C H(uε, pε; 2r). (3-33)

Here C depends only on L. Notice that the function h depends on uε.

Proof. The proof is similar to [Gu and Zhuge 2022, Lemma 6.1] and hence we provide the outline of the
proof. Let Pr ∈ P1 be such that(

−

∫
Bεr,+

|∇uε − ∇ Pr |
2
)1/2

= inf
P∈P1

(
−

∫
Bεr,+

|∇uε − ∇ P|
2
)1/2

.

We define
h(r)= |∇ Pr |, r ∈

[
ε, 1

2

]
.

Then the inequality (3-31) follows from

h(r)≤ C
(

−

∫
Bεr,+

|∇ Pr |
2
)1/2

≤ C(H(uε, pε; r)+8(uε, pε; r))

and (3-32) is trivial by definition. For (3-33), we observe that for any r1, r2 ∈ [r, 2r ]

|h(r1)− h(r2)| ≤ C
(

−

∫
Bεr,+

|∇ Pr1 − ∇ Pr2 |
2
)1/2

≤ C H(uε, pε; 2r). □
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Lemma 3.9. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (uε, pε) be a weak solution of (Sε). Then for ε ∈

(
0, 1

8

]
, r ∈

[
2ε, 1

4

]
,

sup
τ∈[r,2r ]

8(uε, pε; τ)≤ C8(uε, pε; 2r)+
(

−

∫
Q2r

|M2
ε[Fε]|3

)1/3

, (3-34)

where C depends only on L.

Proof. Let τ ∈ [r, 2r ]. A simple computation implies(
−

∫
Bετ,+

|∇uε|2
)1/2

≤ C
(

−

∫
Bε2r,+

|∇uε|2
)1/2

. (3-35)

For the pressure estimate, by a similar argument as in (3-6),

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsτ,+

pε − −

∫
Bεtτ,+

pε
∣∣∣∣ ≤ C −

∫
Bεr/2,+

∣∣∣∣pε − −

∫
Bεr/2,+

pε
∣∣∣∣

≤ C
{(

−

∫
Bεr,+

|∇uε|2
)1/2

+

(
−

∫
Bεr,+

|Fε|2
)1/2}

, (3-36)

where we need to assume r ≥ 2ε. Then (3-34) follows from (3-35), (3-36) and Lemma 2.1(iii). □

We now state the iteration lemma. Its proof is given in Appendix C.

Lemma 3.10. Let H,8, h : (0, 1] → [0,∞) be nonnegative functions. Let ε ∈
(
0, 1

48

]
. Suppose that there

exist positive constants C0, B0, α, β and θ ∈
(
0, 1

8

]
so that

H(θr)≤
1
2 H(2r)+ C0

((
ε

r

)α
8(16r)+ B0rβ

)
, r ∈

[
ε, 1

16

]
, (3-37a)

H(r)≤ C08(r), r ∈
[
ε, 1

2

]
, (3-37b)

sup
τ∈[r,2r ]

8(τ)≤ C0(8(2r)+ B0rβ), r ∈
[
ε, 1

4

]
, (3-37c)

h(r)≤ C0(H(r)+8(r)), r ∈
[
ε, 1

2

]
, (3-37d)

8(r)≤ C0(H(r)+ h(r)), r ∈
[
ε, 1

2

]
, (3-37e)

sup
r1,r2∈[r,2r ]

|h(r1)− h(r2)| ≤ C0 H(2r), r ∈
[
ε, 1

4

]
. (3-37f)

Then, ∫ 1/2

ε

H(t)
t

dt + sup
r∈[ε,1/2]

8(r)≤ C
(
8

( 1
2

)
+ B0

)
, (3-38)

where the constant C depends only on C0, α, β and θ .

Proof of Theorem A. In the following proof, we actually only need to show (1-2) for the case N0ε≤r ≤1/N1

for some N0, N1 ≥ 2. The case 1
2 ≥ r ≥ 1/N1 follows trivially by enlarging the size of the cube and

a standard pressure estimate (see Remark 3.3); the case ε ≤ r ≤ N0ε follows from the case r = N0ε.
From the previous lemmas, we can choose N0 = 4 and N1 = 16. Hence, we may assume without loss of
generality that r ∈

[
4ε, 1

16

]
.
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We apply Lemma 3.10 to H(r)= H(uε, pε; r) and 8(r)=8(uε, pε; r). Choose θ sufficiently small
so that we have Cθα ≤

1
2 in (3-27) in Lemma 3.7. We need to verify the conditions in Lemma 3.10. Note

that (3-37b) is obvious and (3-37d)–(3-37f) follow from Lemma 3.8. To verify (3-37a) from Lemma 3.7
and (3-37c) from Lemma 3.9 (with ε replaced by 4ε), it suffices to note that Theorem 2.8 implies(

−

∫
Qr

|M2
ε[Fε]|3

)1/3

≤ C(M + M4+2β+2δ)rβ (3-39)

for any β ∈ (0, 2), δ ∈ (0, 1) with β + δ < 2 and r ∈
[
ε, 1

2

]
. Hence, we may apply Lemma 3.10 with

B0 = C(M + M4+2β+2δ) to obtain∫ 1/2

4ε

H(uε, pε; t)
t

dt + sup
r∈[4ε,1/2]

8(uε, pε; r)≤ C(8(uε, pε; )+ (M + M4+2β+2δ))

≤ C(M + M4+2β+2δ), (3-40)

where in the last inequality, we have used a standard pressure estimate (see Remark 3.3) to bound
8

(
uε, pε; 1

2

)
by C(M + M2). Hence, for r ∈

[
4ε, 1

16

]
,(

−

∫
Bεr,+

|∇uε|2
)1/2

≤ C
(
8

(
uε, pε; 1

2

)
+ (M + M4+2β+2δ)

)
≤ C(M + M4+2β+2δ),

which proves the desired estimate of the velocity uε.
Next, we give an estimate for the pressure. For r ∈

[
ε, 1

4

]
, we observe that(

−

∫
Bεr,+

|pε − −

∫
Bε1/2,+

pε|2
)1/2

≤

(
−

∫
Bεr,+

|pε − −

∫
Bεr,+

pε|2
)1/2

+

∣∣∣∣−∫
Bεr,+

pε − −

∫
Bε1/2,+

pε
∣∣∣∣.

Using the technique as in (3-6) and by the Bogovskii lemma, the desired estimate of ∇uε just proved and
(3-39), we have (

−

∫
Bεr,+

∣∣∣∣pε − −

∫
Bεr,+

pε
∣∣∣∣2 )1/2

≤ C
{(

−

∫
Bε2r,+

|∇uε|2
)1/2

+

(
−

∫
Bε2r,+

|Fε|2
)1/2}

≤ C(M + M4+2β+2δ).

On the other hand, let N ∈ N be such that 2N r ∈
[ 1

32 ,
1
16

]
. Then∣∣∣∣−∫

Bεr,+
pε − −

∫
Bε1/2,+

pε
∣∣∣∣ ≤

N−1∑
j=0

∣∣∣∣−∫
Bε

2 j r,+

pε − −

∫
Bε

2 j+1r,+

pε
∣∣∣∣ + ∣∣∣∣−∫

Bε
2N r,+

pε − −

∫
Bε1/2,+

pε
∣∣∣∣.

Now, observe that for each j = 0, 1, . . . , N − 1,∣∣∣∣−∫
Bε

2 j r,+

pε − −

∫
Bε

2 j+1r,+

pε
∣∣∣∣ ≤ 4

∫ 2 j+4r

2 j+3r

1
r̃

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsr̃ ,+

pε − −

∫
Bεtr̃ ,+

pε
∣∣∣∣ dr̃ .
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Thus, (3-40) leads to

N−1∑
j=0

∣∣∣∣−∫
Bε

2 j r,+

pε − −

∫
Bε

2 j+1r,+

pε
∣∣∣∣ ≤ 4

∫ 1/2

ε

1
r̃

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsr̃ ,+

pε − −

∫
Bεtr̃ ,+

pε
∣∣∣∣ dr̃

≤ C(M + M4+2β+2δ).

Finally, by the same trick as in (3-6), we obtain∣∣∣∣−∫
Bε

2N r,+

pε − −

∫
Bε1/2,+

pε
∣∣∣∣ ≤ C

{(
−

∫
Bε1,+

|∇uε|2
)1/2

+

(
−

∫
Bε1,+

|Fε|2
)1/2}

≤ C(M + M2).

Summarizing up the above estimates, we obtain the desired estimate for the pressure pε. □

4. Boundary layers in bumpy John domains

As seen in the previous section, the no-slip Stokes polynomials of degree 1 (i.e., the basis of P1)

P (11)
= (x3, 0, 0), P (12)

= (0, x3, 0) (4-1)

are the key ingredients for the large-scale Lipschitz estimate. Their trace on nonflat bumpy boundaries
can be corrected by adding boundary layer correctors. Consequently, one obtains polynomial solutions of
the Stokes equations in the bumpy John domains considered in this paper.

In Section 4A, we determine the no-slip Stokes polynomials of degree 2 by explicit computation.
The boundary layer equations are introduced as well. Sections 4B and 4C are respectively devoted to
the analysis of the first-order and the second-order boundary layer equations. The estimates for the
Green’s function, obtained in Appendix B using the large-scale Lipschitz estimate of Theorem A, play a
fundamental role. We summarize the estimates for the boundary layers in Section 4D. These estimates
are key to the theory of higher-order regularity in Section 5.

4A. No-slip Stokes polynomials. Let u be a solution of −1u+∇ p = 0 and ∇·u = 0 in Q1,+(0) and u = 0
on ∂R3

+
∩ B1(0). The real analyticity of u in Q1/2,+(0) is classical and well known; see [Masuda 1967;

Giga 1983]. Here we want to identify the form of the no-slip Stokes polynomials of degree 2 of u at 0.
Let P(x)= (P1(x), P2(x), P3(x)) be the no-slip Stokes polynomials of degree 2 of u at 0. First of all,

since u = 0 on ∂R3
+

, then we must have

P1(x)= a1x3 + b11x1x3 + b12x2x3 + b13x2
3 ,

P2(x)= a2x3 + b21x1x3 + b22x2x3 + b23x2
3 ,

P3(x)= b31x1x3 + b32x2x3 + b33x2
3 .

(4-2)

The linear part is familiar. So let us concentrate on the quadratic part. Note that there are no terms
x2

1 , x2
2, or x1x2, because u = 0 on the boundary. If there is no further restriction on u, then there are
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nine free variables bi j , 1 ≤ i, j ≤ 3, as shown in (4-2). If ∇ · u = 0 in Q1/2,+(0), then we claim that P is
also divergence-free. If this claim is true, then we must have

b11 + b22 + 2b33 = 0, b31 = b32 = 0.

Because of this restriction on the coefficients, the dimension for the homogeneous no-slip Stokes polyno-
mials of degree 2 becomes 6. We can find basis polynomials

P (21)
= (x2x3, 0, 0), P (22)

= (x2
3 , 0, 0),

P (23)
= (0, x1x3, 0), P (24)

= (0, x2
3 , 0),

P (25)
= (−2x1x3, 0, x2

3), P (26)
= (0,−2x2x3, x2

3).

(4-3)

Note that these polynomials are solutions to the stationary Stokes system with associated pressure L(2 j)

given by

L(2 j)(x)= 0 for j = 1, 3,

L(22)(x)= 2x1, L(24)(x)= 2x2,

L2 j (x)= 2x3 for j = 5, 6. (4-4)

Now, let us show the claim that P is divergence-free. Since u = P + O(|x |
3), we have that ∇ · u =

∇ · P + O(|x |
2)= 0 in {x3 ≥ 0}∩ B1/2(0). Because of ∇ · P = C0 +C1 · x for some C0 ∈ R and C1 ∈ R3,

we see that C0 +C1 · x = O(|x |
2). Hence we must have C0 = 0 and C1 = 0; otherwise, it is easy to find a

contradiction by taking x = δC1 or −δC1 for sufficiently small δ.
Similarly to the linear solution pairs (P (1 j), 0), the fundamental fact about the polynomial pairs

constructed above is that (P (2 j), L(2 j)) are quadratic solutions of Stokes equations in the upper half-
space R3

+
, namely 

−1P (2 j)
+ ∇L(2 j)

= 0 in R3
+
,

∇ · P (2 j)
= 0 in R3

+
,

P (2 j)
= 0 on ∂R3

+
.

To study the C1,γ and C2,γ regularity of (NSε), the linear and quadratic solutions of Stokes equations
in R3

+
are not enough. We need to construct linear and quadratic solutions in � which vanish on ∂�,

where � is a bumpy John half-space in the sense of Definition 1.2. These solutions will be constructed
based on (P (1 j), 0) and (P (2 j), L(2 j)). Observe that P (i j) does not vanish on ∂�. Therefore we have to
introduce new correctors, called boundary layers, in order to correct the boundary discrepancy on ∂�.
Precisely, we will show the existence of weak solutions (with corresponding sublinear or subquadratic
growth) of the boundary layer equations

−1v+ ∇q = 0 in �,
∇ · v = 0 in �,
v+ P (i j)

= 0 on ∂�,
(BL( j)

i-th)

where i ∈ {1, 2}. Here a couple (v, q) ∈ H 1
loc(�)

3
× L2

loc(�) is said to be a weak solution of (BL( j)
i-th) if

it satisfies ∇ · v = 0 in the sense of distributions, χ(v+ P (i j)) ∈ H 1
0 (�)

3 for any χ ∈ C∞

0 (R
3), and the
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weak formulation ∫
�

∇v · ∇φ−

∫
�

q(∇ ·φ)= 0 for any φ ∈ C∞

0 (�)
3. (4-5)

4B. First-order boundary layers. We consider the first-order boundary layer equations
−1v+ ∇q = 0 in �,
∇ · v = 0 in �,
v+ P (1 j)

= 0 on ∂�,
(BL( j)

1st )

for j ∈ {1, 2}. The solvability of (BL( j)
1st ) follows from the next statement.

Theorem 4.1. Let L ∈ (0,∞) and� be a bumpy John domain with constant L according to Definition 1.2.
For j ∈ {1, 2}, there exists a unique weak solution (v(1 j), q(1 j))∈ H 1

loc(�)
3
× L2

loc(�) of (BL( j)
1st ) satisfying

sup
ξ∈Z2

∫
�∩(ξ+(0,1)2)×R

(|∇v(1 j)
|
2
+ |q(1 j)

|
2)≤ C, (4-6)

where the constant C depends only on L.

In [Higaki and Prange 2020] the well-posedness of the system (BL( j)
1st ) was proved over Lipschitz graphs

by a domain decomposition method: coupling of the Stokes problem in a bumpy channel �∩ {x3 < 0}

with the Stokes problem in the flat half-space {x3 > 0} via a nonlocal Dirichlet-to-Neumann boundary
condition at the interface {x3 = 0}. We face considerable technical difficulties when trying to adapt this
strategy to the case of bumpy John domains. Indeed, the local energy estimates in the bumpy channel
require to estimate the pressure, or to work with divergence-free test functions. In either case, we need to
construct a Bogovskii operator for a sequence of exhausting domains containing �∩ {|x ′

| ≤ k, x3 < 0}

with a constant uniform in k. The construction of the Bogovskii operator of Theorem A.1 by [Acosta et al.
2006] relies on connecting any point in the bumpy John domain to a fixed neighborhood of a reference
point x̃ . Such a procedure gives, for a slim domain such as � ∩ {|x ′

| ≤ k, x3 < 0}, a constant in the
estimate (A-1) that scales proportionately to the horizontal size k of the domain. We are unable to take
advantage of the small vertical extent of the domain to provide a modified construction of the Bogovskii
operator. This would be needed to carry out the downward iteration on the local energy estimates, also
called Saint-Venant estimates, in [Higaki and Prange 2020].

Here we take advantage of the fact that we already proved large-scale Lipschitz estimates by the
quantitative method, without relying on boundary layers as in [Higaki and Prange 2020]. Therefore, we
develop a new strategy using the large-scale Lipschitz estimate to prove the existence of solutions to
(BL( j)

1st ). We rely on the Green’s kernel estimates proved in Appendix B. For N ∈ R, let us set

�≤N :=�∩ {z3 ≤ N }, �≥N :=�∩ {z3 ≥ N }. (4-7)

We also define �<N and �>N in a similar manner.

Proof of Theorem 4.1. We define (v(1 j), q(1 j)) by (v, q), so as not to burden the notation.
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Uniqueness. Let P (1 j)
= 0 in (BL( j)

1st ). Then the Liouville-type result, Corollary 3.1, implies v = 0 in the
class

sup
ξ∈Z2

∫
�∩(ξ+(0,1)2)×R

|∇v|2 <∞.

This implies q = 0 in the class (4-6) as well from the equations.

Existence. Step 1: lifting the boundary data. Let η−(x3) be a smooth cut-off function such that

η−(t) is smooth and nonnegative,

η−(t)= 1 if t < 3 and η−(t)= 0 if t > 4. (4-8)

By writing w = v+ η− P (1 j), we see that w satisfies
−1w+ ∇q = F := −1(η− P (1 j)) in �,
∇ ·w = 0 in �,
w = 0 on ∂�.

(4-9)

Notice that F is a bounded function supported in a slim channel S := {x ∈ R3
| 3 ≤ x3 ≤ 4}. Thus, the

problem is reduced to finding a weak solution of (4-9) satisfying

sup
ξ∈Z2

∫
�∩(ξ+(0,1)2)×R

(|∇w|
2
+ |q|

2)≤ C∥F∥
2
L∞ . (4-10)

We rely on the representation of w and q by the Green’s kernel

w(x)=

∫
�

G(x, y)F(y) dy, q(x)=

∫
�

5(x, y) · F(y) dy.

Thanks to the properties of the Green’s function (G,5), it suffices to prove that ∇w and q are well-defined
and satisfy the estimate (4-10).

In the following proof, we take the zero-extension of (G,5) as is done in Appendix B.

Step 2: estimate on �≥8. For any y ∈ S and x ∈�≥8, by Proposition B.3(i)

|∇x G(x, y)| ≤
C

|x − y|3
.

Then it follows from the Hölder inequality that

|∇w(x)| ≤

∫
S
|∇x G(x, y)||F(y)| dy ≤ ∥F∥L∞

∫
S

C
|x − y|3

dy ≤
C∥F∥L∞

x3
.

A similar computation using Proposition B.5(i) gives the same bound for the pressure q(x) with x3 ≥ 8.
Consequently,

sup
ξ∈Z2

∫
�≥8∩(ξ+(0,1)2)×R

(|∇w|
2
+ |q|

2)≤ C∥F∥
2
L∞ . (4-11)

Step 3: estimate on �≤8. Fix ξ ∈ Z2 arbitrarily. For simplicity, we denote the cubes in R3 centered at
(ξ, 0) by Q R(ξ)= (ξ, 0)+ (−R, R)3. We would like to estimate |∇w| and |q| in the cube Q8(ξ). Notice
that �≤8 ⊂

⋃
ξ∈Z2×{0}

Q8(ξ) with finite overlaps.
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Taking a cube Q40(ξ), we decompose F into two parts as F = FχQ40(ξ)+ F(1−χQ40(ξ)). Correspond-
ingly, we decompose (w, q) into singular and regular parts, namely (w, q)= (wsing, qsing)+ (wreg, qreg),
where {

wsing(x)=
∫
�

G(x, y)F(y)χQ40(ξ)(y) dy,
qsing(x)=

∫
�
5(x, y) · F(y)χQ40(ξ)(y) dy

and {
wreg(x)=

∫
�

G(x, y)F(y)(1 −χQ40(ξ)(y)) dy,
qreg(x)=

∫
�
5(x, y) · F(y)(1 −χQ40(ξ)(y)) dy.

To estimate the regular part (wreg, qreg) in Q8(ξ), we use (B-19) and (B-23) in Proposition B.3 to
obtain (∫

Q8(ξ)

|∇x G(x, y)|2 dx
)1/2

≤
C

|(ξ, 0)− y|3

for any y ∈ S \ Q40(ξ). As a result,(∫
Q8(ξ)

|∇wreg|
2
)1/2

≤ ∥F∥L∞

∫
S\Q40(ξ)

(∫
Q8(ξ)

|∇x G(x, y)|2 dx
)1/2

dy

≤ ∥F∥L∞

∫
S\Q40(ξ)

C
|(ξ, 0)− y|3

dy ≤ C∥F∥L∞ . (4-12)

Similarly, by using (B-38) and (B-39), we can derive the estimate of qreg,(∫
Q8(ξ)

|qreg|
2
)1/2

≤ C∥F∥L∞ . (4-13)

Next, we consider the singular part (wsing, qsing), which actually is a weak solution of
−1wsing + ∇qsing = FχQ40(ξ) in �,
∇ ·wsing = 0 in �,
wsing = 0 on ∂�.

Note that the energy relation yields

∥∇wsing∥L2(�) ≤ C∥F∥L∞, (4-14)

where C is independent of ξ . This gives the local L2 boundedness of wsing in the channel �≤8. On the
other hand, the argument in Step 2, using (B-38), implies that, for any x3 ≥ 8,

|qsing(x)| ≤
C∥F∥L∞

x3
. (4-15)

Let �20(ξ) be the John domain given by Definition 1.2 satisfying

�∩ Q20(ξ)⊂�20(ξ)⊂�∩ Q40(ξ).

By the Bogovskii lemma and (4-14),(
−

∫
�20(ξ)

∣∣∣∣qsing − −

∫
�20(ξ)

qsing

∣∣∣∣2 )1/2

≤ C∥F∥L∞ . (4-16)
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On the other hand, let Q∗

1(ξ)= (ξ, 10)+ (−1, 1)3. By (4-15),∣∣∣∣−∫
Q∗

1(ξ)

qsing

∣∣∣∣ ≤ C∥F∥L∞ . (4-17)

Since Q∗

1(ξ)⊂�20(ξ), by a familiar argument and (4-16), we have∣∣∣∣−∫
Q∗

1(ξ)

qsing − −

∫
�20(ξ)

qsing

∣∣∣∣ ≤ −

∫
Q∗

1(ξ)

∣∣∣∣qsing − −

∫
�20(ξ)

qsing

∣∣∣∣
≤ C −

∫
�20(ξ)

∣∣∣∣qsing − −

∫
�20(ξ)

qsing

∣∣∣∣ ≤ C∥F∥L∞ . (4-18)

This, together with (4-17), implies ∣∣∣∣−∫
�20(ξ)

qsing

∣∣∣∣ ≤ C∥F∥L∞ . (4-19)

Now, combining (4-16) and (4-19), we obtain(
−

∫
�∩Q8(ξ)

|qsing|
2
)1/2

≤

(
−

∫
�∩Q8(ξ)

∣∣∣∣qsing − −

∫
�20(ξ)

qsing

∣∣∣∣2 )1/2

+

∣∣∣∣−∫
�20(ξ)

qsing

∣∣∣∣
≤ C

(
−

∫
�20(ξ)

∣∣∣∣qsing − −

∫
�20(ξ)

qsing

∣∣∣∣2 )1/2

+

∣∣∣∣−∫
�20(ξ)

qsing

∣∣∣∣ ≤ C∥F∥L∞, (4-20)

with C independent of ξ .
Now, combining (4-12), (4-13), (4-14) and (4-20), we have

sup
ξ∈Z2

∫
�∩Q8(ξ)

(|∇w|
2
+ |q|

2)≤ C∥F∥
2
L∞ . (4-21)

Finally, the desired estimate (4-10) is a consequence of (4-11) and (4-21). □

4C. Second-order periodic boundary layers. Let P (2 j) be a no-slip Stokes polynomial of degree 2. We
consider the second-order boundary layer equations

−1v+ ∇q = 0, x ∈�,

∇ · v = 0, x ∈�,

v+ P (2 j)
= 0, x ∈ ∂�.

(BL( j)
2nd)

Constructing solutions to (BL( j)
2nd) for j ∈ {1, 3, 5, 6} with subquadratic growth is much more involved

than constructing solutions to (BL( j)
1st ) with sublinear growth. Indeed, for j ∈ {1, 3, 5, 6}, the boundary data

−P (2 j) in (BL( j)
2nd) grows linearly in the tangential direction. Solutions to (BL( j)

2nd) for j ∈{1, 3, 5, 6} are con-
structed using the first-order correctors solving (BL( j)

1st ); see below. For this construction we rely on conver-
gence/decay properties of the first-order correctors away from the boundary. Hence, we analyze (BL( j)

2nd) un-
der periodicity assumptions. Periodicity ensures exponential convergence/decay away from the boundary.

Throughout this subsection, we assume � is a periodic bumpy John domain according to Definition 1.3.
Consider the fundamental periodic domain

�p =�∩ (−π, π]
2
× (−1,∞).
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We regard �p as a submanifold of T2
× R, where T = R/2πZ is the flat torus. By definition, �p is

open and connected in T2
× R. Moreover, �p ∩ {x3 < 2} is diffeomorphic to a bounded John domain

in R3. We thus have the Bogovskii operator on �p ∩ {x3 < 2}. It is important to notice that there is a
one-to-one correspondence between the functions in �p and the (2πZ)2-periodic functions in �. We say
a function F defined in � is (2πZ)2-periodic if F(x)= F(x + z) for any x ∈� and z ∈ (2πZ)2 ×{0}. In
other words, if f ∈ L2

loc(�p), then there exists a locally L2 function F defined in � so that F(x)= f (x̃),
where x̃ is the representation in �p so that x − x̃ ∈ (2πZ)2 × {0}. In this sense and for convenience, we
do not distinguish between F and f .

Denote by L2(�p) and Ĥ 1
0 (�p) the closure of C∞

0 (�p) under the norms

∥ f ∥L2(�p) :=

(∫
�p

| f |
2
)1/2

, ∥ f ∥Ĥ1(�p)
:=

(∫
�p

|∇ f |
2
)1/2

.

Clearly, Ĥ 1
0 (�p) is a Hilbert space with respect to the inner product ⟨∇ f,∇g⟩�p . Here and below,

⟨ f, g⟩�p :=

∫
�p

f · ḡ,

where ḡ denotes the complex conjugate of g. Let Ĥ 1
0,σ (�p) be the subspace of Ĥ 1

0 (�p)
3 that consists of

all the divergence-free functions, namely, Ĥ 1
0,σ (�p)= { f ∈ Ĥ 1

0 (�p)
3
| ∇ · f = 0}.

We now recall the Fourier series representation for the solutions of (BL( j)
1st ) on the flat half-space

{x3 > 0}. The same formulas are obtained in [Higaki and Prange 2020, Proposition 3] based on the
periodic Poisson kernel. Note that paper uses the fact that the equations are imposed on a domain whose
boundary is given by the graph, but a similar proof is valid if we utilize the zero extension of the functions.

Proposition 4.2. Let L ∈ (0,∞) and � be a periodic bumpy John domain with constant L according to
Definition 1.3. Then the weak solution (v(1 j), q(1 j)) of (BL( j)

1st ) given by Theorem 4.1 satisfies the following:

(i) (v(1 j), q(1 j)) is expanded in Fourier series in {x3 > 0} as

v(1 j)(x)= v̂
(1 j)
(0,0) +

∑
k∈Z2\{(0,0)}

(
v̂
(1 j)
k +

(
−ik
|k|

)
V (1 j)(k)x3

)
e−|k|x3eik·x ′

,

q(1 j)(x)=

∑
k∈Z2\{(0,0)}

2|k|V (1 j)(k)e−|k|x3eik·x ′

,

(4-22)

where V (1 j)(k) is a scalar function of k defined by

V (1 j)(k)= v̂
(1 j)
k,3 − i

k
|k|

· (v̂
(1 j)
k )′, (4-23)

and moreover, v̂(1 j)
k is the Fourier series coefficient of v(1 j)(x ′, 0):

v̂
(1 j)
k =

1
(2π)2

∫
(−π,π)2

v(1 j)(x ′, 0)e−ik·x ′

dx ′, k ∈ Z2. (4-24)

(ii) The third component of v̂(1 j)
(0,0) is zero. Particularly, by setting

v̂
(1 j)
(0,0) =: α(1 j)

= (α
(1 j)
1 , α

(1 j)
2 , 0),
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we have the exponential convergence

|v(1 j)(x)−α(1 j)
| + |∇v(1 j)(x)| + |q(x)| ≤ C∥v(1 j)( · , 0)∥L2((−π,π)2) e−x3/2 for x3 > 1. (4-25)

Here C is a universal constant.

Construction of v(2 j) for j ∈ {1, 3, 5, 6}. We construct the second-order boundary layers v(2 j) corre-
sponding to P (2 j)

= P (2 j)(x) for j ∈ {1, 3, 5, 6}. These boundary layers are solutions to (BL( j)
2nd) with

subquadratic growth; see Theorem 4.3. We begin with the case j = 1, where P (21)(x) = x2x3e3. We
recall that (v(21), q(21)) solves 

−1v+ ∇q = 0 in �,
∇ · v = 0 in �,
v+ x2x3e1 = 0 on ∂�.

(BL(1)2nd)

The difficulty in the analysis of (BL(1)2nd) is that the boundary value is not periodic and has linear growth
as x2 → ∞. We aim at eliminating the growth factor x2 and at recovering the periodic structure. The key
finding is the connection between the first-order and second-order boundary layers on the boundary, namely

v(21)
− x2v

(11)
= 0, x ∈ ∂�. (4-26)

This observation is the basis of the ansatz for v(21). Recall that v(11) converges exponentially fast to
the constant α(11)

∈ R3, when x3 → ∞ by the spectral gap near frequency 0 yielded by the periodicity;
see (4-25). Hence the nondecaying divergence ∇ · (x2v

(11)(x))= v
(11)
2 (x) can be corrected by adding a

corrector −α
(11)
2 x3η+(x3)e3. Here η+( · ) is a function on R satisfying

η+(t) is smooth and nonnegative,

η+(t)= 0 if t < 1
2 and η+(t)= 1 if t > 1. (4-27)

Below, we also need the cut-off η− defined in (4-8).
The following statement gives the existence and the structure of second-order boundary layers with

subquadratic growth.

Theorem 4.3. Let L ∈ (0,∞) and � be a periodic bumpy John domain with constant L according to
Definition 1.3. There exists a weak solution (v(21), q(21)) ∈ H 1

loc(�)
3
× L2

loc(�) to (BL(1)2nd) decomposed as

v(21)(x)= x2v
(11)(x)−α(11)

2 x3η+(x3)e3 + R(21)(x),

q(21)(x)= x2q(11)(x)+ Q(21)(x),
(4-28)

where (R(21), Q(21)) ∈ Ĥ 1
0 (�p)

3
× L2(�p). Moreover, we have

∥∇ R(21)
∥L2(�p) + ∥Q(21)

∥L2(�p) ≤ C, (4-29)

where the constant C depends only on L.

Proof. We aim at proving the existence of (R(21), Q(21)) and estimating it so that (v(21), q(21)) defined by
the right-hand sides in (4-28) gives a weak solution of (BL(1)2nd).
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Existence: By the previous discussion, we begin with a formal examination of x2v
(11)(x)−α(11)

2 x3η+(x3)e3.
First of all, it is easy to see

∇ · (x2v
(11)(x)−α(11)

2 x3η+(x3)e3)= v
(11)
2 (x)−α(11)

2 η+(x3)−α
(11)
2 x3∂3η+(x3)

for all x ∈�p. Notice that the expression above simplifies for x3 > 1:

∇ · (x2v
(11)(x)−α(11)

2 x3η+(x3)e3)= v
(11)
2 (x)−α(11)

2 .

Then, by Proposition 4.2, we get

v
(11)
2 (x)−α(11)

2 =

∑
k∈Z2\{(0,0)}

(v̂
(11)
k,2 − ik2V (11)(k)x3)e−|k|x3eik·x ′

, x3 > 1.

This means that x2v
(11)(x)−α(11)

2 x3η+(x3)e3 is not divergence-free. Thus, our next goal is to construct a
function to correct the divergence for x3 > 1. Define

d(x) :=

∑
k∈Z2, k1 ̸=0

(
1

ik1
(v̂
(11)
k,2 − ik2V (11)(k)x3) e−|k|x3eik·x ′

)
e1

+

∑
k1=0, k2∈Z\{0}

(
1

ik2
(v̂
(11)
k,2 − ik2V (11)(k)x3) e−|k|x3eik·x ′

)
e2, (4-30)

which is an element of H 1(�p,>0)
3, where �p,>0 :=�p ∩ {x3 > 0}. Of course, there is no unique way to

construct a right-inverse of the divergence such as d. We may extend d(x) to the whole domain �p by
multiplying it by η+(x3) and still correct the divergence of x2v

(11)(x)−α(11)
2 x3η+(x3)e3 − d(x)η+(x3).

To check the divergence condition, we calculate

D(x) := ∇ ·
(
x2v

(11)(x)−α(11)
2 x3η+(x3)e3 − d(x)η+(x3)

)
= v

(11)
2 (x)−α(11)

2 η+(x3)− η+(x3)∇ · d(x)− (α(11)
2 x3 + d3(x))∂3η+(x3).

Obviously, D is supported in �p,<2 :=�p ∩ {x3 < 2}, in which we can rely on the Bogovskii operator to
find a right-inverse of the divergence. Let A :=

∫
�p,<2

D. Let χ+(x3) be a smooth cut-off function such that

χ+(x3)= 0 if x3 ≤ 0, and χ+(x3)= (2π)−2 A for x3 > 1. (4-31)

This implies ∂3χ+(x3) is supported in �p,<2 and
∫
�p,<2

∂3χ+ = A. It follows that∫
�p,<2

(D(x)− ∇ · (χ+(x3)e3)) dx =

∫
�p,<2

(D(x)− ∂3χ+(x3)) dx = 0.

Hence, by Appendix A, there is a Bogovskii corrector B ∈ H 1
0 (�p,<2)

3 such that

∇ · B(x)= D(x)− ∂3χ+(x3),

and ∥B∥H1(�p,<2) ≤ C , where C depends only on the John constant L of �. We extend B by zero to the
whole domain �p and denote it again by B ∈ H 1

0 (�p)
3. Let us combine the above correctors and define

C(x)= −d(x)η+(x3)−χ+(x3)e3 − B(x).
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Note that C ∈ Ĥ 1
0 (�p)

3. In particular, ∥∇C∥L2(�p) ≤ C , where C depends only on the John constant L
of �. By (4-25), the function C converges exponentially fast to −(2π)−2 A as x3 → ∞, and its derivatives
decay exponentially fast to 0 as x3 → ∞.

By the crucial cancellation
x2(−1v

(11)(x)+ ∇q(11)(x))= 0,

as well as the definition of C, we see that the pair

x2v
(11)(x)−α(11)

2 x3η+(x3)e3 + C(x) and x2q(11)(x)

is a weak solution to (BL(1)2nd) with an additional external force

f (21)(x)= −2∂2v
(11)(x)+ q(11)(x)e2 −1(−α

(11)
2 x3η+(x3)e3 + C(x)).

In order to cancel this source term, we consider
−1R(21)

+ ∇Q(21)
= − f (21) in �p,

∇ ·R(21)
= 0 in �p,

R(21)
= 0 on ∂�p.

(4-32)

The weak formulation of (4-32) is written as

⟨∇R(21),∇ϕ⟩�p = −⟨ f (21), ϕ⟩�p, ϕ ∈ Ĥ 1
0,σ (�p). (4-33)

Next, we prove the unique existence of the weak solution of (4-33). By the integration by parts for 1C,

⟨ f (21), ϕ⟩�p = −2⟨∂2v
(11), ϕ⟩�p + ⟨q(11), ϕ2⟩�p +α

(11)
2 ⟨1(x3η+(x3)e3), ϕ⟩�p + ⟨∇C,∇ϕ⟩�p . (4-34)

By the Poincaré inequality in �p,<2 and the Cauchy–Schwarz inequality in �p,

|⟨ f (21), ϕ⟩�p | ≤ C
(
∥∇v(11)

∥L2(�p) + ∥q(11)
∥L2(�p) + ∥1(x3η+(x3))∥L2(�p) + ∥∇C∥L2(�p)

)
∥∇ϕ∥L2(�p)

+

∣∣∣∣∫ ∞

1

∫
(−π,π)2

∂2v
(11)(x)ϕ(x) dx ′ dx3

∣∣∣∣ + ∣∣∣∣∫ ∞

1

∫
(−π,π)2

q(11)(x)ϕ2(x) dx ′ dx3

∣∣∣∣. (4-35)

From Proposition 4.2 again, we have the representation formulas

∂2v
(11)(y)= ∂2

( ∑
k∈Z2\{(0,0)}

(
v̂
(1 j)
k +

(
−ik
|k|

)
V (1 j)(k)x3

)
e−|k|x3eik·x ′

)
,

q(11)(y)= ∂1

( ∑
k∈Z2, k1 ̸=0

2|k|V (1 j)(k)e−|k|x3
eik·x ′

ik1

)
+ ∂2

( ∑
k1=0, k2∈Z\{0}

2|k|V (1 j)(k)e−|k|x3
eik·x ′

ik2

)
.

Thus, by integration by parts in x1 and x2, the last two integrals in (4-35) are bounded by C∥∇ϕ∥L2(�p).
Consequently, in view of (4-6) and (4-35), we obtain

|⟨ f (21), ϕ⟩�p | ≤ C∥∇ϕ∥L2(�p). (4-36)

Then, by the Riesz representation theorem, there is an element R(21)
∈ Ĥ 1

0,σ (�p) solving (4-33) and
satisfying ∥∇R(21)

∥L2(�p) ≤ C . The existence of the pressure Q(21)
∈ L2

loc(�p) can be proved by using
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the Bogovskii lemma. Finally, the existence of the remainder (R(21), Q(21)) in (4-28) is proved if we
set R(21)

= C(21)
+R(21) and Q(21)

= Q(21). Let us emphasize that (R(21), Q(21)) can be “unwrapped”
(without changing the notation) as a (2πZ)2-periodic function in �.

Estimate: The estimate of R(21) is clear. Hence we focus on the pressure term Q(21)
= Q(21). Notice that

since Q(21) is locally L2, it suffices to prove

∥Q(21)
∥L2(�p,>3) ≤ C. (4-37)

We apply the Fourier series expansion in the flat domain {x3 > 3}. We decompose R(21) and Q(21) into
R(21)

= w1 +w2 and Q(21)
= r1 + r2 (up to a constant), where (w1, r1) is a solution of

−1w1 + ∇r1 = 0, x3 > 3,
∇ ·w1 = 0, x3 > 3,
w1(x ′, 3)= R(21)(x ′, 3),

while (w2, r2) solves 
−1w2 + ∇r2 = − f (21), x3 > 3,
∇ ·w2 = 0, x3 > 3,
w2(x ′, 3)= 0.

Using the periodicity of R(21)(x ′, 3) in x ′, the solution (w1, r1) may be written by the Poisson kernel as
in Proposition 4.2, which implies

∥r1∥L2(�p,>3) ≤ C∥∇R(21)
∥L2(�p) ≤ C. (4-38)

On the other hand, observe that the source term − f (21) is represented as

− f (21)(x)=

∑
k∈Z2\{(0,0)}

(F1(k)+F2(k)x3)e−|k|x3eik·x ′

, x3 > 3,

where
|F1(k)| + |F2(k)| ≤ C |k|

2e3|k|
|v̂
(11)
k |,

with v̂(1 j)
k defined in (4-24). Then a simple computation shows that

w2(x)=

∑
k∈Z2\{(0,0)}

(G1(k)+G2(k)x3 +G3(k)x2
3 +G4(k)x3

3)e
−|k|x3eik·x ′

,

r2(x)=

∑
k∈Z2\{(0,0)}

(G5(k)+G6(k)x3 +G7(k)x2
3 +G8(k)x3

3)e
−|k|x3eik·x ′

,

where

|k|

4∑
l=1

|Gl(k)| +
8∑

l=5

|Gl(k)| ≤ C |k|e3|k|
|v̂
(11)
k |.

Now it is easy to see that

∥r2∥L2(�p,>3) ≤ C∥v(11)( · , 0)∥L2((−π,π)2) ≤ C. (4-39)

From (4-38) and (4-39), we obtain (4-37). □
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By a similar consideration, we can obtain the existence of (v(2 j), q(2 j)) for j ∈{3, 5, 6}, whose proofs are
parallel to Theorem 4.3 and therefore omitted. Recall that η+ (resp. η−) is defined in (4-27) (resp. (4-8)).

Theorem 4.4. Let L ∈ (0,∞) and � be a periodic bumpy John domain with constant L according to
Definition 1.3. Let j ∈ {3, 5, 6}. There exists a weak solution (v(2 j), q(2 j))∈ H 1

loc(�)
3
×L2

loc(�) to (BL( j)
2nd)

decomposed as, when j = 3,

v(23)(x)= x1v
(12)(x)−α(12)

1 x3η+(x3)e3 + R(23)(x),

q(23)(x)= x1q(12)(x)+ Q(23)(x),
(4-40)

when j = 5,

v(25)(x)= −2x1v
(11)(x)− x2

3η−(x3)e3 + 2α(11)
1 x3η+(x3)e3 + R(25)(x),

q(25)(x)= −2x1q(11)(x)+ Q(25)(x),
(4-41)

and when j = 6,

v(26)(x)= −2x2v
(12)(x)− x2

3η−(x3)e3 + 2α(12)
2 x3η+(x3)e3 + R(26)(x),

q(26)(x)= −2x2q(12)(x)+ Q(26)(x),
(4-42)

where (R(2 j), Q(2 j)) ∈ Ĥ 1
0 (�p)

3
× L2(�p). Moreover, we have

∥∇ R(2 j)
∥L2(�p) + ∥Q(2 j)

∥L2(�p) ≤ C, (4-43)

where the constant C depends only on L.

Construction of v(22) and v(24). The boundary layers corresponding to P (22) and P (24) can be constructed
by using the Green’s function. The fact that P (22) and P (24) only depend on the vertical variable x3

and that there is no growth in the tangential variable x ′ makes the analysis much easier than for P (2 j),
j ∈ {1, 3, 5, 6}, studied above. The proof of the following proposition is almost identical to the one of
Theorem 4.1. Notice that here we state Theorem 4.5 in the periodic case only for convenience. Indeed
we use these correctors in combination with (v(2 j), q(2 j)) for j ∈ {1, 3, 5, 6} whose existence is stated
in Theorems 4.3 and 4.4 in periodic bumpy John domains. However, the existence of (v(2 j), q(2 j)) for
j ∈ {2, 4} can be proved in general bumpy John domains according to Definition 1.2.

Theorem 4.5. Let L ∈ (0,∞) and � be a periodic bumpy John domain with constant L according to
Definition 1.3. Let j ∈ {2, 4}. There exists a unique weak solution (v(2 j), q(2 j)) ∈ H 1

loc(�)
3
× L2

loc(�) to
(BL( j)

2nd) satisfying

∥∇v(2 j)
∥L2(�p) + ∥q(2 j)

∥L2(�p) ≤ C, (4-44)

where the constant C depends only on L.

4D. Estimates of boundary layers. Before closing this section, we summarize the estimates of the
boundary layers. The following propositions can be proved in a similar manner as in [Higaki and Prange
2020, Lemma 4] combined with a direct computation. The details are omitted here.
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Proposition 4.6. Let L ∈ (0,∞) and� be a bumpy John domain with constant L as in Definition 1.2. For
j ∈ {1, 2}, let (v(1 j), q(1 j)) the weak solution of (BL( j)

1st ) provided by Theorem 4.1. Then, for r ∈ (ε, 1),(
−

∫
Bεr,+

∣∣∣∣(∇v(1 j))

(
x
ε

)∣∣∣∣2

dx
)1/2

+

(
−

∫
Bεr,+

∣∣∣∣q(1 j)
(

x
ε

)∣∣∣∣2

dx
)1/2

≤ C
(
ε

r

)1/2

, (4-45)

where C depends only on L.

Proposition 4.7. Let L ∈ (0,∞) and � be a periodic bumpy John domain with constant L as in
Definition 1.3. For j ∈ {1, . . . , 6}, let (v(2 j), q(2 j)) the weak solution of (BL( j)

2nd) provided by Theorem 4.3
or 4.4. Then, for r ∈ (ε, 1),

1
r

(
−

∫
Bεr,+

∣∣∣∣ε(∇v(2 j))

(
x
ε

)∣∣∣∣2

dx
)1/2

+
1
r

(
−

∫
Bεr,+

∣∣∣∣εq(2 j)
(

x
ε

)∣∣∣∣2

dx
)1/2

≤ C
(
ε

r

)1/2

, (4-46)

where C depends only on L.

5. Higher-order regularity

5A. Large-scale C1,γ estimate. The goal of this subsection is to prove the large-scale C1,γ regularity
stated in Theorem B. We will use the first-order boundary layers and modify the argument of the Lipschitz
estimate.

Recall that P1 = span{P (11), P (12)
}= {(ax3, bx3, 0) | a, b ∈ R}. Let P2 = span{P (2 j)

| j = 1, 2, . . . , 6}.
Let S2 = span{(P (2 j), L(2 j)) | j = 1, 2, . . . , 6}. Note that any element of S2 is a weak solution of the
Stokes system in R3. Let (v(1k), q(1k)), with k = 1, 2, and (v(2 j), q(2 j)), with j = 1, 2, . . . , 6, be the
first-order and second-order boundary layers, respectively. Then define

Q1(�)= span{(P (1k), 0)+ (v(1k), q(1k)) | k = 1, 2}, (5-1)

Q2(�)= span{(P (2 j), L(2 j))+ (v(2 j), q(2 j)) | j = 1, 2, . . . , 6}. (5-2)

Hence, Q1(�) (resp. Q2(�)) is the vector space that contains all the “linear” (resp. “quadratic”) solutions
of the Stokes system in � vanishing on the boundary ∂�; see the Liouville-type results at the end of this
section stated in Theorem 5.8.

Remark 5.1. Note that the pressure part in estimate (1-3) of Theorem B is different from the Lipschitz
estimate in which P is −

∫
Bε1/2,+

pε. Actually, in (1-3), P1 is the average of the corrected pressure over a
small ball, i.e.,

P1 = −

∫
BεO(ε),+

(
pε −π

(
x
ε

))
dx

for some (w, π) ∈ Q1(�); see (5-15). This is reasonable since we are concerned with the C0,γ estimate
of the pressure and P1 plays a role similar to the zeroth-order term in the Taylor expansion of the pressure,
if the boundary is flat. We emphasize that P1 depends on ε. The point here is that P1 is independent of r .

The critical fact we are going to use is that any (w, π) ∈ Q1(�) is a solution of the Stokes system in �
that vanishes on ∂�. Hence, by rescaling, (uε, pε)− (εw(x/ε), π(x/ε)) is still a weak solution with a
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no-slip boundary condition. This observation allows us to capture the regularity beyond the Lipschitz
estimate. To this end, we define the first-order excess by

H1st(uε, pε; ρ)= inf
(w,π)∈Q1(�)

{(
−

∫
Bερ,+

∣∣∣∣∇uε − ∇

(
εw

(
x
ε

))∣∣∣∣2

dx
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsρ,+

(
pε −π

(
x
ε

))
dx − −

∫
Bεtρ,+

(
pε −π

(
x
ε

))
dx

∣∣∣∣}. (5-3)

Recall that (w, π) ∈ Q1(�) means that

(w, π)=

2∑
k=1

ℓk(P (1k)
+ v(1k), q(1k))

for some ℓ1, ℓ2 ∈ R. We will also use the quantity 8(uε, pε; ρ) defined in (3-8).

Lemma 5.2. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Let (uε, pε) be as in Theorem B, namely, a weak solution of (Sε) in Section 3A satisfying (1-1). For all
ε ∈

(
0, 1

32

]
, r ∈

[
2ε, 1

16

]
and θ ∈

(
0, 1

8

]
,

H1st(uε, pε; θr)≤ C
(
θ + θ−3

(
ε

r

)1/12)
8(uε, pε; 16r)+ Cθ−3

(
−

∫
Q10r

|M2
ε[Fε]|3

)1/3

, (5-4)

where C depends only on L.

Proof. First, we apply Lemma 3.7 with α = 1

H(uε, pε; θr)≤ C
(
θ + θ−3

(
ε

r

)1/12)
8(uε, pε; 16r)+ Cθ−3

(
−

∫
Q10r

|M2
ε[Fε]|3

)1/3

, (5-5)

where we also used the fact H( · , ·, 2r)≤8( · , ·, 2r)≤ C8( · , ·, 16r). Let P∗
= ℓ∗1 P (11)

+ℓ∗2 P (12)
∈ P1

be the linear solution that minimizes H(uε, pε; θr). Then (3-31) implies
2∑

k=1

|ℓ∗k | ≤ C(H(uε, pε; θr)+8(uε, pε; θr))≤ Cθ−3/28(uε, pε; r). (5-6)

By the definition of H1st and H, one has

H1st(uε, pε, θr)

≤

(
−

∫
Bεθr,+

∣∣∣∣∇uε − ∇

( 2∑
k=1

ℓ∗k

(
P (1k)

+ εv(1k)
(

x
ε

)))∣∣∣∣2

dx
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsθr,+

(
pε −

2∑
k=1

ℓ∗kq(1k)
(

x
ε

))
dx − −

∫
Bεtθr,+

(
pε −

2∑
k=1

ℓ∗kq(1k)
(

x
ε

))
dx

∣∣∣∣
≤ H(uε, pε; θr)+

2∑
k=1

|ℓ∗k |

(
−

∫
Bεθr,+

∣∣∣∣(∇v(1k))

(
x
ε

)∣∣∣∣2

dx
)1/2

+ 2 sup
ρ∈[1/16,1/4]

2∑
k=1

|ℓ∗k |

∣∣∣∣−∫
Bερθr,+

q(1k)
(

x
ε

)
dx − −

∫
Bεθr/2,+

q(1k)
(

x
ε

)
dx

∣∣∣∣. (5-7)
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From Proposition 4.6, we have the estimate for the first-order boundary layers

2∑
k=1

{(
−

∫
Bεθr,+

∣∣∣∣(∇v)(1k)
(

x
ε

)
|
2 dx

)1/2

+

(
−

∫
Bεθr,+

∣∣∣∣q(1k)
(

x
ε

)∣∣∣∣2

dx
)1/2}

≤ Cθ−1/2
(
ε

r

)1/2

. (5-8)

Inserting this into (5-7) and using (5-6) and (5-5), we obtain

H1st(uε, pε; θr)≤ H(uε, pε; θr)+ Cθ−3
(
ε

r

)1/2

8(uε, pε; r)

≤ C
(
θ + θ−3

(
ε

r

)1/12)
8(uε, pε; 16r)+ Cθ−3

(
−

∫
Q10r

|M2
ε[Fε]|3

)1/3

. □

Proposition 5.3. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to
Definition 1.2. Let (uε, pε) be as in Theorem B. For any γ ∈ [0, 1), δ ∈ (0, 1), ε ∈

(
0, 1

2

]
and r ∈

[
ε, 1

2

]
,

H1st(uε, pε; r)≤ Crγ (M + M4+2γ+δ), (5-9)

where C depends on L , γ and δ. Here M is the number given in Theorem B.

Proof. Note that it suffices to prove (5-9) for r ∈ [N0ε, 1/N1] with some absolute constant N0, N1 ≥ 2.
The cases for r ∈

(
1/N1,

1
2

]
or ε ≥ 1/(N0 N1) follow directly from the Bogovskii lemma and the Poincaré

inequality. The case r ∈ [ε, N0ε] follows from the case r = N0ε.
Firstly, using (3-39) with β = γ + δ (with δ ∈

(
0, 2−γ

2

)
being arbitrary), we have(

−

∫
Qr

|M2
ε[Fε]|3

)1/3

≤ Cδ(M + M4+2γ+4δ)rγ+δ, (5-10)

with Cδ depending on δ.
Since θ ∈

(
0, 1

8

]
in Lemma 5.2 is arbitrary, we can choose θ sufficiently small so that Cθ ≤

1
2

(
θ
16

)γ
holds in (5-4). For such fixed θ , we can find ε0 ∈

(
0, 1

2

)
depending on γ and θ such that the factor in

(5-4) satisfies

Cθ−3
(
ε

r

)1/12
≤

1
2

(
θ

16

)γ
, r ∈

[
ε

ε0
,

1
16

]
,

in (5-4). Then by (5-10) and (5-4),

H1st(uε, pε; θr)≤

(
θ

16

)γ
8(uε, pε; 16r)+ Cδ(M + M4+2γ+4δ)rγ+δ. (5-11)

Now the key observation is that, for any (w, π) ∈ Q1(�), the pair (U ε,5ε) defined by

U ε(x)= uε(x)− εw
(

x
ε

)
, 5ε(x)= pε(x)−π

(
x
ε

)
is still a weak solution of the Stokes system (Sε) in Section 3A. Therefore, the estimate (5-11) still holds
if we replace 8(uε, pε; 16r) by 8(U ε,5ε

; 16r) for any (w, π) ∈ Q1(�). Then taking the infimum over
all (w, π) ∈ Q1(�), we can further replace 8(U ε,5ε

; 16r) by H1st(uε, pε; 16r). Hence we obtain

H1st(uε, pε; θr)≤

(
θ

16

)γ
H1st(uε, pε; 16r)+ Cδ(M + M4+2γ+4δ)rγ+δ. (5-12)
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This is the first-order excess decay estimate for the C1,γ regularity of (uε, pε). Note that we can eventually
replace 4δ by δ in the right-hand side of (5-12) as δ ∈ (0, 1) is arbitrary. Thus, by a simple iteration, we
have that for ε/ε0 ≤ r ≤

θ
16 ,

H1st(uε, pε; r)≤ rγ (H1st(uε, pε; r0)+ Cδ(M + M4+2γ+δ))

for some r0 ∈
[
θ
16 , 1

]
. Clearly, H1st(uε, pε; r0)≤8(uε, pε; r0). It remains to show

8(uε, pε; r0)≤ C(M + M2).

Indeed, since r0 is comparable to 1, the above estimate follows directly from the Poincaré inequality and
Bogovskii’s lemma. □

The above theorem directly implies the C1,γ estimate for the velocity. To handle the pressure estimate
in Theorem B, we need the following lemma.

Lemma 5.4. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
For a given ρ > 0, let (ℓ1(ρ), ℓ2(ρ)) be the pair of real numbers so that

(w, π)=

2∑
k=1

ℓk(ρ)(P (1k)
+ v(1k), q(1k))

minimizes H1st(uε, pε; ρ). Then there exists a constant ε1 ∈ (0, 1) so that for all ε ∈ (0, ε1] and r ∈[
ε/ε1,

1
2

]
,

sup
r1,r2∈[r,2r ]

2∑
k=1

|ℓk(r1)− ℓk(r2)| ≤ C sup
t∈[r,2r ]

H1st(uε, pε; t), (5-13)

where C depends only on L.

Proof. By the definition of H1st, the triangle inequality and using that the matrices ∇ P (1k) are linearly
independent over R, if r ≤ r1, r2 ≤ 2r ,

2∑
k=1

|ℓk(r1)− ℓk(r2)| ≤ C
(

−

∫
Bεr,+

∣∣∣∣ 2∑
k=1

(ℓk(r1)− ℓk(r2))∇ P (1k)
∣∣∣∣2 )1/2

≤ C
(

−

∫
Bεr,+

∣∣∣∣∇( 2∑
k=1

(ℓk(r1)− ℓk(r2))

(
P (1k)

+ εv(1k)
(

x
ε

)))∣∣∣∣2

dx
)1/2

+ C
2∑

k=1

|ℓk(r1)− ℓk(r2)|

(
−

∫
Bεr,+

∣∣∣∣(∇v(1k))

(
x
ε

)∣∣∣∣2

dx
)1/2

≤ C H1st(uε, pε; r1)+ C H1st(uε, pε; r2)+ C0

(
ε

r

)1/2 2∑
k=1

|ℓk(r1)− ℓk(r2)|,

where in the last inequality, we inserted uε and enlarged the domain from Bεr,+ to Bεri ,+
with i = 1, 2, and

applied Proposition 4.6. Now if r ≥ ε/ε1 for some small ε1 ∈ (0, 1) so that C0ε
1/2
1 < 1

2 , then
2∑

k=1

|ℓk(r1)− ℓk(r2)| ≤ C
2∑

i=1

H1st(uε, pε; ri ).

This gives the desired estimate. □
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Proof of Theorem B. Let ε1 ∈ (0, 1) be the number in Lemma 5.4. Note that it suffices to prove (1-3) when
ε ∈ (0, ε1] and r ∈

[
ε/ε1,

1
16

]
as a familiar argument enables us to remove the smallness condition on ε

and the restriction on r . The velocity estimate in (1-3) follows from the Poincaré inequality and (5-9).
Hence, it suffices to estimate the pressure. Let (ℓ1(ρ), ℓ2(ρ)) be as in Lemma 5.4. For r ∈

[
ε/ε1,

1
16

]
,

let K be the integer so that 4−K r ∈ [ε/ε1, 4ε/ε1). By the triangle inequality, the estimate of q(1 j) in
Proposition 4.6,∣∣∣∣−∫

Bε
4−K r,+

(
pε −

2∑
k=1

ℓk(41−K r)q(1k)
(

x
ε

))
dx − −

∫
Bεr,+

(
pε −

2∑
k=1

ℓk(4r)q(1k)
(

x
ε

))
dx

∣∣∣∣
≤

K∑
i=1

∣∣∣∣−∫
Bε

4i−K−1r,+

(
pε−

2∑
k=1

ℓk(4i−K r)q(1k)
(

x
ε

))
dx − −

∫
Bε

4i−K r,+

(
pε−

2∑
k=1

ℓk(4i−K+1r)q(1k)
(

x
ε

))
dx

∣∣∣∣
≤

K∑
i=1

(
H1st(uε, pε; 4i−K+1r)+

2∑
k=1

|ℓk(4i−K+1r)− ℓk(4i−K r)|
(

ε

4i−K r

)1/2)

≤ C
K∑

i=1

(4i−K+1r)γ (M + M4+2γ+δ)

≤ Crγ (M + M4+2γ+δ), (5-14)

where we have used (5-9) and (5-13) in the third inequality. Define

P1 = −

∫
Bεε/ε1,+

(
pε −

2∑
k=1

ℓk(4ε/ε1)q(1k)
(

x
ε

))
dx . (5-15)

Then by (5-14) and another use of (5-9) and (5-13), we have∣∣∣∣−∫
Bεr,+

(
pε −

2∑
k=1

ℓk(4r)q(1k)
(

x
ε

))
dx − P1

∣∣∣∣ ≤ Crγ (M + M4+2γ+δ).

On the other hand, by Bogovskii’s lemma applied to the John domain between Bεr,+ and Bε2r,+ given by
Definition 1.2 and (5-10) with 4δ replaced by δ, we have(

−

∫
Bεr,+

∣∣∣∣pε −

2∑
k=1

ℓk(4r)q(1k)
(

x
ε

)
− −

∫
Bεr,+

(
pε −

2∑
k=1

ℓk(4r)q(1k)
(

x
ε

))
dx

∣∣∣∣2

dx
)1/2

≤ C
{(

−

∫
Bε2r,+

∣∣∣∣∇uε − ∇

( 2∑
k=1

ℓk(4r)
(

P (1k)
+ εv(1k)

(
x
ε

)))∣∣∣∣2

dx
)1/2

+

(
−

∫
Bε8r ,+

|Fε|2
)1/2}

≤ C H1st(uε, pε; 4r)+ C
(

−

∫
Q8r

|M2
ε[Fε]|3

)1/3

≤ Crγ (M + M4+2γ+δ). (5-16)

Combining the above two inequalities, we obtain the desired estimate in (1-3) for the pressure. □
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5B. Large-scale C2,γ estimate over periodic boundaries. The goal of this subsection is to prove the
large-scale C2,γ regularity stated in Theorem C. In this subsection, we assume � is a periodic bumpy
John domain defined in Definition 1.3. The argument for C2,γ estimate is similar to the C1,γ estimate.
Throughout, we assume (w1, π1) ∈ Q1(�) and (w2, q2) ∈ Q2(�). In other words, for some ℓ1k, ℓ2 j ∈ R,

(w1, π1)=

2∑
k=1

ℓ1k(P (1k)
+ v(1k), q(1k)),

(w2, π2)=

6∑
j=1

ℓ2 j (P (2 j)
+ v(2 j), L(2 j)

+ q(2 j)).

It is important to observe that, by rescaling,(
εw1

(
x
ε

)
+ ε2w2

(
x
ε

)
, π1

(
x
ε

)
+ επ2

(
x
ε

))
is a solution of the Stokes system in �ε with the no-slip boundary condition on ∂�ε.

Define the second-order excess as

H2nd(uε, pε; ρ)

= inf
(w1,q1)∈Q1(�)
(w2,q2)∈Q2(�)

{(
−

∫
Bερ,+

∣∣∣∣∇uε − ∇

(
εw1

(
x
ε

)
+ ε2w2

(
x
ε

))∣∣∣∣2

dx
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsρ,+

(
pε −π1

(
x
ε

)
− επ2

(
x
ε

))
dx − −

∫
Bεtρ,+

(
pε −π1

(
x
ε

)
− επ2

(
x
ε

))
dx

∣∣∣∣}.
Lemma 5.5. Let L ∈ (0,∞) and � be a bumpy periodic John domain with constant L according to
Definition 1.3. Let (uε, pε) be as in Theorem C, namely, a weak solution of (Sε) in Section 3A satisfying
(1-1). For all ε ∈

(
0, 1

32

]
, r ∈

[
2ε, 1

16

]
and θ ∈

(
0, 1

8

]
,

H2nd(uε, pε; θr)≤ C
(
θ2

+ θ−3
(
ε

r

)1/12)
8(uε, pε; 16r)+ Cθ−3

(
−

∫
Q10r

|M2
ε[Fε]|3

)1/3

, (5-17)

where C depends only on L.

Proof. The proof follows from the strategy developed in Section 3, in particular from Lemma 3.2
to Lemma 3.7. Let (vr , qr ) be the solution of the approximate problem (Sr ). We will first use the
C2,1 estimate of vr = (vr,1, vr,2, vr,3) at the lower boundary x3 = −ε. Precisely, in view of no-slip Stokes
polynomials defined in Section 4A, the C2,1 estimate vr gives∣∣∣∣vr (x)−

2∑
k=1

ℓ∗1k P (1k)(x + εe3)−

6∑
j=1

ℓ∗2 j P (2 j)(x + εe3)

∣∣∣∣ ≤ C
|x + εe3|

3

r2

(
−

∫
Qε

r

|∇vr |
2
)1/2

(5-18)

for x ∈ Qε
r/2, where we choose

ℓ∗1k =
∂vr,k

∂x3
(−εe3) for k = 1, 2
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and
ℓ∗21 =

∂2vr,1

∂x2∂x3
(−εe3), ℓ∗22 =

1
2
∂2vr,1

∂x2
3
(−εe3), ℓ∗23 =

∂2vr,2

∂x1∂x3
(−εe3),

ℓ∗24 =
1
2
∂2vr,2

∂x2
3
(−εe3), ℓ∗25 = −

1
2
∂2vr,1

∂x1∂x3
(−εe3), ℓ∗26 = −

1
2
∂2vr,2

∂x2∂x3
(−εe3).

Moreover,
2∑

k=1

|ℓ∗1k | + r
6∑

j=1

|ℓ∗2 j | ≤ C
(

−

∫
Qε

r

|∇vr |
2
)1/2

. (5-19)

Observe that

v∗

r (x)= vr (x)−
2∑

k=1

ℓ∗1k P (1k)(x + εe3)−

6∑
j=1

ℓ∗2 j P (2 j)(x + εe3),

q∗

r (x)= qr (x)−
6∑

j=1

ℓ∗2 j L(2 j)(x + εe3)

is a solution of the Stokes system in Qε
r with a no-slip condition on x3 = −ε. Therefore, for any θ ∈

(
0, 1

8

]
and r > ε, it follows from (5-18) and the Caccioppoli inequality in rectangular region Qε

2θr that(
−

∫
Qε
θr

|∇v∗

r |

)1/2

≤
C
θr

(
−

∫
Qε

2θr

|v∗

r |
2
)1/2

≤ C
(
θ2

+ θ−1
(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

. (5-20)

Then (5-19) implies(
−

∫
Qε
θr

∣∣∣∣∇vr − ∇

( 2∑
k=1

ℓ∗1k P (1k)
+

6∑
j=1

ℓ∗2 j P (2 j)
)∣∣∣∣2 )1/2

≤ C
(
θ2

+ θ−1
(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

. (5-21)

Next, to see the oscillation estimate for the pressure, applying Bogovskii’s lemma to q∗
r and the Caccioppoli

inequality to v∗
r (combined with (5-20)) in Lipschitz domains, we have

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε

sθr

q∗

r − −

∫
Qε

tθr

q∗

r

∣∣∣∣ ≤ C
(
θ2

+ θ−1
(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

. (5-22)

Notice that L(2 j) are linear functions. Thus, an application of (5-19) and the triangle inequality to (5-22)
leads to

sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε

sθr

(
qr −

6∑
j=1

ℓ∗2 j L(2 j)
)

− −

∫
Qε

tθr

(
qr −

6∑
j=1

ℓ∗2 j L(2 j)
)∣∣∣∣

≤ C
(
θ2

+ θ−1
(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

. (5-23)

This, combined with (5-21), gives(
−

∫
Qε
θr

∣∣∣∣∇vr − ∇

( 2∑
k=1

ℓ∗1k P (1k)
+

6∑
j=1

ℓ∗2 j P (2 j)
)∣∣∣∣2 )1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Qε

sθr

(
qr −

6∑
j=1

ℓ∗2 j L(2 j)
)

− −

∫
Qε

tθr

(
qr −

6∑
j=1

ℓ∗2 j L(2 j)
)∣∣∣∣

≤ C
(
θ2

+ θ−1
(
ε

r

))(
−

∫
Qε

r

|∇vr |
2
)1/2

.
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This is the key second-order excess estimate we need for (vr , qr ) in Qε
r. To proceed, we follow the

similar argument developed in Section 3. Precisely, using an analogue of Lemma 3.4 and taking the
approximation estimate in Lemma 3.2, we can replace (vr , qr ) by (uε, pε) with new errors in uε and Fε.
Combined with the energy estimate for (Sr ), we now have(

−

∫
Bεr,+

∣∣∣∣∇uε − ∇

( 2∑
k=1

ℓ∗1k P (1k)
+

6∑
j=1

ℓ∗2 j P (2 j)
)∣∣∣∣2 )1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsθr,+

(
pε −

6∑
j=1

ℓ∗2 j L(2 j)
)

− −

∫
Bεtθr,+

(
pε −

6∑
j=1

ℓ∗2 j L(2 j)
)∣∣∣∣

≤ C
(
θ2

+ θ−3
(
ε

r

)1/12)(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ Cθ−3
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

. (5-24)

Next, we insert the boundary layers into the above inequality. By (5-8) and

6∑
j=1

{
1
r

(
−

∫
Bεθr,+

∣∣∣∣ε(∇v(2 j))

(
x
ε

)∣∣∣∣2

dx
)1/2

+
1
r

(
−

∫
Bεθr,+

∣∣∣∣εq(2 j)
(

x
ε

)∣∣∣∣2

dx
)1/2}

≤ Cθ−1/2
(
ε

r

)1/2

,

which follows from Proposition 4.7, we obtain from (5-24) and (5-19) along with the energy estimate
for (Sr ) that(

−

∫
Bεθr,+

∣∣∣∣∇uε − ∇

( 2∑
k=1

ℓ∗1k

(
P (1k)

+ εv(1k)
(

x
ε

))
+

6∑
j=1

ℓ∗2 j

(
P (2 j)

+ ε2v(2 j)
(

x
ε

)))∣∣∣∣2

dx
)1/2

+ sup
s,t∈[1/16,1/4]

∣∣∣∣−∫
Bεsθr,+

(
pε −

2∑
k=1

ℓ∗1kq(1k)
(

x
ε

)
−

6∑
j=1

ℓ∗2 j

(
L(2 j)

+ εq(2 j)
(

x
ε

)))
dx

− −

∫
Bεtθr,+

(
pε −

2∑
k=1

ℓ∗1kq(1k)
(

x
ε

)
−

6∑
j=1

ℓ∗2 j

(
L(2 j)

+ εq(2 j)
(

x
ε

)))
dx

∣∣∣∣
≤ C

(
θ2

+ θ−3
(
ε

r

)1/12)(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ Cθ−3
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

. (5-25)

In view of the definition of H2nd, we arrive at

H2nd(uε, pε; θr)≤ C
(
θ2

+ θ−3
(
ε

r

)1/12)(
−

∫
Bε5r,+

|∇uε|2
)1/2

+ Cθ−3
(

−

∫
Q4r

|M2
ε[Fε]|3

)1/3

,

which implies the desired estimate. □

Proposition 5.6. Let L ∈ (0,∞) and � be a bumpy periodic John domain with constant L according to
Definition 1.3. Let (uε, pε) be as in Theorem C. For any γ ∈ [0, 1), δ ∈ (0, 1), ε ∈

(
0, 1

2

]
and r ∈

[
ε, 1

2

]
,

H2nd(uε, pε; r)≤ Cr1+γ (M + M6+2γ+δ), (5-26)

where C depends on L , γ and δ. Here M is the number in Theorem C.
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Proof. For any γ ∈ [0, 1), we choose an arbitrary δ > 0 small enough so that δ < 1−γ

2 . Then applying
(3-39) with β = 1 + γ + δ, we have(

−

∫
Qr

|M2
ε[Fε]|3

)1/3

≤ C(M + M6+2γ+4δ)r1+γ+δ.

Now, the rest of the proof is parallel to Proposition 5.3. We omit the details. □

The following lemma is parallel to Lemma 5.4.

Lemma 5.7. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
For a given ρ > 0, let ℓ1k(ρ) and ℓ2 j (ρ) be the real numbers so that

(w1, π1)=

2∑
k=1

ℓ1k(ρ)(P (1k)
+ v(1k), q(1k)),

(w2, π2)=

6∑
j=1

ℓ2 j (ρ)(P (2 j)
+ v(2 j), L(2 j)

+ q(2 j))

minimize H2nd(uε, pε; ρ). Then there exists a constant ε2 ∈ (0, 1) so that for all ε∈ (0, ε2] and r ∈
[
ε/ε2,

1
2

]
,

sup
r1,r2∈[r,2r ]

2∑
k=1

|ℓ1k(r1)− ℓ1k(r2)| + sup
r1,r2∈[r,2r ]

6∑
j=1

r |ℓ2 j (r1)− ℓ2 j (r2)| ≤ C sup
t∈[r,2r ]

H2nd(uε, pε; t), (5-27)

where C depends only on L.

Proof. First, observe that, for any ak, b j ∈ R,
2∑

k=1

|ak | +

6∑
j=1

|b j | ≤ C
(

−

∫
B1(0)∩{x3>0}

∣∣∣∣ 2∑
k=1

ak P (1k)
+

6∑
j=1

b j P (2 j)
∣∣∣∣2 )1/2

. (5-28)

This inequality is true because P (1k) and P (2 j) are all linearly independent polynomials. Recall that
P (1k) are homogeneous linear functions and P (2 j) are homogeneous quadratic functions. This means
P (1k)(r x) = r P (1k)(x) and P (2 j)(r x) = r2 P (2 j)(x). Fix r1, r2 ∈ [r, 2r ]. Applying (5-28) with ak =

ℓ1k(r1)− ℓ(r2) and b j = r(ℓ2 j (r1)− ℓ2 j (r2)), we have
2∑

k=1

|ℓ1k(r1)− ℓ1k(r2)| +

6∑
j=1

r |ℓ2 j (r1)− ℓ2 j (r2)|

≤ C
(

−

∫
B1(0)∩{x3>0}

∣∣∣∣ 2∑
k=1

(ℓ1k(r1)− ℓ1k(r2))P (1k)
+

6∑
j=1

r(ℓ2 j (r1)− ℓ2 j (r2))P (2 j)
∣∣∣∣2 )1/2

≤
C
r

(
−

∫
Br (0)∩{x3>0}

∣∣∣∣ 2∑
k=1

(ℓ1k(r1)− ℓ1k(r2))P (1k)
+

6∑
j=1

(ℓ2 j (r1)− ℓ2 j (r2))P (2 j)
∣∣∣∣2 )1/2

≤ C
(

−

∫
Br (0)∩{x3>0}

∣∣∣∣ 2∑
k=1

(ℓ1k(r1)− ℓ1k(r2))∇ P (1k)
+

6∑
j=1

(ℓ2 j (r1)− ℓ2 j (r2))∇ P (2 j)
∣∣∣∣2 )1/2

,
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where the Poincaré inequality has been applied in the last line. Now, inserting uε, v(1k)(x/ε) and v(2 j)(x/ε)
into the right-hand side, and using the triangle inequality, we obtain

2∑
k=1

|ℓ1k(r1)− ℓ1k(r2)| +

6∑
j=1

r |ℓ2 j (r1)− ℓ2 j (r2)|

≤ C
(

−

∫
Bεr,+

∣∣∣∣∇( 2∑
k=1

(ℓ1k(r1)− ℓ1k(r2))

(
P (1k)

+ εv(1k)
(

x
ε

))
+

6∑
j=1

(ℓ2 j (r1)− ℓ2 j (r2))

(
P (2 j)

+ ε2v(2 j)
(

x
ε

)))∣∣∣∣2

dx
)1/2

+ C
2∑

k=1

|ℓ1k(r1)− ℓ1k(r2)|

(
−

∫
Bεr,+

∣∣∣∣(∇v(1 j))

(
x
ε

)∣∣∣∣2

dx
)1/2

+
C
r

6∑
j=1

r |ℓ2 j (r1)− ℓ2 j (r2)|

(
−

∫
Bεr,+

∣∣∣∣ε(∇v(2 j))

(
x
ε

)∣∣∣∣2

dx
)1/2

≤ C H2nd(uε, pε; r1)+ C H2nd(uε, pε; r2)

+ C1

(
ε

r

)1/2 2∑
j=1

|ℓ1k(r1)− ℓ1k(r2)| + C2

(
ε

r

)1/2 6∑
k=1

r |ℓ2 j (r1)− ℓ2 j (r2)|,

where Proposition 4.7 is applied in the last inequality. Thus, if r > ε/ε2 for some sufficiently small
constant ε2 ∈ (0, 1) so that C1(ε/r)1/2 < 1

2 and C2(ε/r)1/2 < 1
2 , then

2∑
k=1

|ℓ1k(r1)− ℓ1k(r2)| +

6∑
j=1

r |ℓ2 j (r1)− ℓ2 j (r2)| ≤ C
2∑

i=1

H2nd(w
ε, π ε; ri ).

This leads to the assertion. □

Proof of Theorem C. The estimate for the velocity is contained in (5-26). The estimate for pressure can be
derived similarly as Theorem B. The details are left to the reader. □

5C. Liouville-type results. As an application of the construction of boundary layers and uniform regu-
larity, a Liouville-type theorem for Stokes systems can be shown by the large-scale Lipschitz, C1,γ and
C2,γ estimates. We point out that our large-scale regularity results hold also for the linear Stokes system,
although with linear dependence on M in the right-hand sides of (1-2), (1-3) and (1-4). The proofs are
simpler, using that the source term Fε = 0. To describe the Liouville-type theorem, consider the Stokes
system in the entire � 

−1u + ∇ p = 0, x ∈�,

∇ · u = 0, x ∈�,

u = 0, x ∈ ∂�,

(5-29)

where� is a bumpy John domain according to Definition 1.2. Let BR = BR(0). We state the Liouville-type
theorem as follows. Its proof follows from a routine rescaling of the large-scale regularity estimates.
Notice that this result complements Corollary 3.1 already stated above.
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Theorem 5.8. Let � be a bumpy John domain according to Definition 1.2. Let (u, p) be a weak solution
of (5-29).

(i) If for some σ ∈ (0, 1)

lim inf
R→∞

1
R1+σ

(
−

∫
BR,+

|u|
2
)1/2

= 0,

then (u, p) ∈ Q1(�) (up to a constant for p).

(ii) In addition, assume � is periodic bumpy John domain according to Definition 1.3. If for some
σ ∈ (0, 1),

lim inf
R→∞

1
R2+σ

(
−

∫
BR,+

|u|
2
)1/2

= 0,

then (u, p) ∈ Q1(�)+ Q2(�) (up to a constant for p).

Appendix A: Bogovskii’s lemma and some applications

For a bounded open set D ⊂ R3 and p ∈ (1,∞), let

Lq
0(D)=

{
f ∈ Lq(D)

∣∣∣∣ −

∫
D

f = 0
}
.

Theorem A.1 [Acosta et al. 2006, Theorem 4.1]. Let �⊂ R3 be a bounded John domain according to
Definition 1.1 with constant L. There exists an operator B : Lq

0(�)→ W 1,q
0 (�)3 satisfying

∇ · B[ f ] = f in �

and
∥B[ f ]∥W 1,q (�) ≤ C∥ f ∥Lq (�), (A-1)

with C depending on L.

Lemma A.2. Let � be a bounded John domain according to Definition 1.1. Set

H 1
0,σ (�) := {u ∈ H 1

0 (�)
3
| ∇ · u = 0 in �}.

Let f ∈ L2(�)3 and F ∈ L2(�)3×3. If u ∈ H 1(�)3 is a weak solution of the Stokes equations in the sense∫
�

∇u · ∇ϕ =

∫
�

f ·ϕ−

∫
�

F · ∇ϕ, ϕ ∈ H 1
0,σ (�),

then there exists a function p ∈ L2(�) unique up to a constant for which we have∫
�

∇u · ∇φ−

∫
�

p(∇ ·φ)=

∫
�

f ·φ−

∫
�

F · ∇φ, φ ∈ H 1
0 (�)

3.

Namely, the pair (u, p) is a weak solution of the Stokes equations. Moreover,∥∥∥∥p − −

∫
�

p
∥∥∥∥

L2(�)

≤ C
(
∥∇u∥L2(�) + diam(�)∥ f ∥L2(�) + ∥F∥L2(�)

)
, (A-2)

where diam(�) denotes the diameter of �.
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A direct application of Bogovskii’s operator is the Caccioppoli inequality for the Stokes equations. Let
Qr,+ = Qr ∩ {x3 > 0}. Suppose (u, p) is a weak solution of

−1u + ∇ p = ∇ · F in Q2r,+,

∇ · u = 0 in Q2r,+,

u = 0 on Q2r ∩ {x3 = 0}.

(A-3)

The following is the Caccioppoli inequality over flat boundaries whose proof is classical [Giaquinta and
Modica 1982, Theorem 1.1] (the interior Caccioppoli inequality is similar).

Lemma A.3. Let F ∈ L2(Q2r,+)
3×3 and let (u, p) ∈ H 1(Q2r,+)

3
× L2(Q2r,+) be a weak solution to

(A-3). Then,

∥∇u∥L2(Qr,+) ≤ C
(

1
r
∥u∥L2(Q2r,+) + ∥F∥L2(Q2r,+)

)
, (A-4)

where the constant C is independent of r .

Now, consider the Stokes equations over John boundaries
−1uε + ∇ pε = ∇ · Fε in Bε4r,+,

∇ · uε = 0 in Bε4r,+,

uε = 0 on 0ε4r .

(A-5)

Unfortunately, the Caccioppoli inequality in the form of (A-4) cannot be derived for the weak solution of
(A-5) by the usual iteration argument (see e.g., [Giaquinta and Modica 1982, Lemma 0.5] or [Giaquinta
1983, Chapter V, Lemma 3.1]) due to the assumption that the John domain condition (after rescaling)
holds only for scales r ≥ ε. Actually, we only have a weaker Caccioppoli inequality valid for r ≥ ε, which
is sufficient for us to show a (large-scale) Meyers estimate.

Lemma A.4 (a weak Caccioppoli inequality). Let L ∈ (0,∞) and � be a bumpy John domain with
constant L according to Definition 1.2. Let ε ∈

(
0, 1

2

]
and Fε ∈ L2(Bε4r,+)

3×3, and let (uε, pε) ∈

H 1(Bε4r,+)
3
× L2(Bε4r,+) be a weak solution to (A-5) with r ≥ ε. Then, for any θ ∈ (0, 1),

∥∇uε∥L2(Bεr,+) ≤ θ∥∇uε∥L2(Bε4r ,+)
+

C
θr

∥uε∥L2(Bε4r,+)
+ C∥Fε∥L2(Bε4r,+)

, (A-6)

where the constant C depends only on L. In particular C is independent of θ, ε and r. Moreover, if
r ≥ 4ε, then by the standard interior Caccioppoli inequality and a covering argument as in the proof of
Lemma 2.2, Bε4r,+ may be replaced by Bε2r,+ on the right-hand side of (A-6).

Proof. Let φr be a smooth cut-off function so that φr (x) = 1 for x ∈ Qr , φ(x) = 0 for x /∈ Q2r and
|∇φ| ≤ C/r . Integrating the first equation of (A-5) against uεφ2, we have∫

Bε2r,+

∇uε · ∇uεφ2
= −2

∫
Bε2r,+

φ∇uε · (∇φ⊗ uε)−
∫

Bε2r,+

∇ pε · uεφ2
−

∫
Bε2r,+

Fε · ∇(uεφ2). (A-7)
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The first and third terms on the right-hand side are routine. For the sake of completeness, let us give some
more details for the third term. We have∣∣∣∣∫

Bε2r,+

Fε · ∇(uεφ2)

∣∣∣∣ ≤

∣∣∣∣∫
Bε2r,+

Fε · ∇uεφ2
∣∣∣∣ + 2

∣∣∣∣∫
Bε2r,+

φFε · (∇φ⊗ uε)
∣∣∣∣

≤ ∥Fε∥L2(Bε2r,+)
∥∇uεφ∥L2(Bε2r,+)

+
C
r

∥Fε∥L2(Bε2r,+)
∥uεφ∥L2(Bε2r,+)

.

We then use Young’s inequality in both terms and absorb the term 1
2∥∇uεφ∥L2(Bε2r,+)

in the left-hand side
of the inequality (A-7). To deal with the pressure, by Definition 1.2 of the bumpy John domain �, we use
the Bogovskii operator in a John domain �ε2r satisfying Bε2r,+ ⊂�ε2r ⊂ Bε4r,+ and (A-2) to obtain(∫

�ε2r

∣∣∣∣pε − −

∫
�ε2r

pε
∣∣∣∣2 )1/2

≤ C(∥∇uε∥L2(�ε2r )
+ ∥Fε∥L2(�ε2r )

).

Let L = −

∫
�ε2r

pε. Then, using the above estimate and ∇ · uε = 0,∣∣∣∣∫
Bε2r,+

∇ pε · uεφ2
∣∣∣∣ =

∣∣∣∣∫
Bε2r,+

∇(pε − L) · uεφ2
∣∣∣∣ =

∣∣∣∣∫
Bε2r,+

(pε − L)uε · 2φ∇φ

∣∣∣∣
≤

C
r
(∥∇uε∥L2(�ε2r )

+ ∥Fε∥L2(�ε2r )
)∥uε∥L2(Bε2r,+)

≤ θ2
∥∇uε∥2

L2(Bε4r,+)
+

C
θ2r2 ∥uε∥2

L2(Bε4r,+)
+ C∥Fε∥2

L2(Bε4r,+)

for any θ ∈ (0, 1). In view of (A-7), this gives the desired estimate by a standard argument. □

Appendix B: Large-scale estimates for the Green’s function

This appendix is devoted to the study of the Green’s function for the Stokes equations in a bumpy John
half-space according to Definition 1.2. The large-scale estimates proved in Section 3 will be applied. The
basic scheme is to derive estimates for the velocity part of the Green’s function directly from the interior
and large-scale boundary Lipschitz estimates. For this we follow the strategy pioneered in [Avellaneda
and Lin 1987; 1991]. Then, we deduce the estimates for the pressure part of the Green’s function from
Bogovskii’s lemma and the estimates for the velocity part.

We use BR(x) = Q R(x) to denote the cube centered at x with side length 2R. If the center is not
important in the context, it is abbreviated as BR . Throughout this appendix, �≤N , �≥N , �<N , and �>N

defined around (4-7) will be used. Moreover, let x̂ denote the projection of x ∈ R3 on ∂R3
+

.

B1. Construction of the Green’s function. Let D be an open set in R3. Denote by Y 1,2(D) the space of
functions

{u ∈ L6(D) | ∇u ∈ L2(D)3} (B-1)

equipped with the norm ∥u∥Y 1,2(D) = ∥u∥L6(D)+∥∇u∥L2(D). Let Y 1,2
0 (D) be the closure of C∞

0 (D) under
∥ · ∥Y 1,2(D). The closed subspace of Y 1,2

0 (D)3

{u ∈ Y 1,2
0 (D)3 | ∇ · u = 0 in D} (B-2)
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is denoted by Y 1,2
0,σ (D). Note that, when the Lebesgue measure of D is finite, we have Y 1,2

0 (D)= H 1,2
0 (D)

by the Sobolev inequality ∥u∥L6(D) ≤ C∥∇u∥L2(D) if u ∈ C∞

0 (D). Moreover, we see that Y 1,2
0,σ (D) as well

as Y 1,2
0 (D)3 is a Hilbert space with an inner product ⟨u, v⟩ =

∫
D ∇u · ∇v.

Let � be a bumpy John domain with constant L ∈ (0,∞) according to the Definition 1.2. Based on
similar proofs in [Hofmann and Kim 2007; Choi and Lee 2017] and using the large-scale Lipschitz estimate
of Theorem A proved in Section 3, we can construct the Green’s function (G,5)= (G(x, y),5(x, y)),
which satisfies the following properties:

(i) For any q ∈
[
1, 3

2

)
, G( · , y) ∈ W 1,q

0,loc(�)
3×3 and G( · , y) ∈ Y 1,2(� \ Br (y))3×3 for each y ∈ � and

r > 0. Moreover, 5( · , y) ∈ L2
loc(� \ Br (y))3×1 for each y ∈� and r > 0.

(ii) (G( · , y),5( · , y)) satisfies, for each y ∈�,∫
�

∇G( · , y) · ∇φ−

∫
�

5( · , y)(∇ ·φ)= φ(y), φ ∈ C∞

0 (�)
3. (B-3)

(iii) For all f ∈ C∞

0 (�)
3, if the function (u, p)∈ Y 1,2

0,σ (�)
3
×L2

loc(�), with p(x)→ 0 as x3 →∞, satisfies
the Stokes equations in the sense∫

�

∇u · ∇φ−

∫
�

p(∇ ·φ)=

∫
�

f ·φ, φ ∈ C∞

0 (�)
3, (B-4)

then

u(x)=

∫
�

G(x, y) f (y) dy, p(x)=

∫
�

5(x, y) · f (y) dy. (B-5)

We describe how to obtain (G,5) meeting properties (i)–(iii) above. The existence and basic esti-
mates of the velocity component G(x, y) follow from a similar argument as [Hofmann and Kim 2007,
Theorem 4.1] by working in the Hilbert space Y 1,2

0,σ (�). In fact, there is G(x, y) such that u(x) defined in
(B-5) belongs to u ∈ Y 1,2

0,σ (�) and is the unique solution of the Stokes equations in the sense∫
�

∇u · ∇ϕ =

∫
�

f ·ϕ for any ϕ ∈ Y 1,2
0,σ (�). (B-6)

Then, by using Lemma A.2 on each bounded John subdomain, one sees that there is a pressure p ∈ L2
loc(�)

for which we have (B-4), uniquely determined under the condition p(x)→ 0 as x3 → ∞.
When constructing the pressure component 5(x, y) in (B-5), we need a careful analysis since the

domain is unbounded unlike in [Choi and Lee 2017]. Here the oscillation estimate of p will play a crucial
role. For an open set E , define the oscillation of p in E by

osc
E

p = sup
x,y∈E

|p(x)− p(y)|. (B-7)

The following lemma shows a fundamental oscillation estimate for the pressure.

Lemma B.1. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to Definition 1.2.
Then we have the following statements:
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(i) Let BR ⊂�. If −1u + ∇ p = 0 and ∇ · u = 0 in BR , then

osc
BR/2

p ≤ C
(

−

∫
BR

|∇u|
2
)1/2

, (B-8)

where C is a universal constant.

(ii) Let z ∈ ∂R3
+

and let R> 2. If −1u+∇ p = 0 and ∇·u = 0 in�∩BR(z) and u = 0 on ∂�∩BR(z), then

osc
�>2∩BR/2(z)

p ≤ C
(

−

∫
�∩BR(z)

|∇u|
2
)1/2

, (B-9)

where C depends on L and is independent of z and R.

Proof. The interior case (i) is classical and the proof is omitted. Let us prove the boundary case (ii). Since
only the case where R is sufficiently large is nontrivial, we assume that R> 32. For any x ∈�>2∩BR/2(z),
the mean value property of harmonic functions yields

p(x)= −

∫
Br (x)

p if Br (x) := {y | |y − x |< r} ⊂�. (B-10)

Here we assume r =
1
2 x3 ≤

1
16 R; hence r > 1. Note that if x3 >

1
8 R, the oscillation can be handled by the

interior estimate (B-8).
Recall that x̂ is the projection of x on ∂R3

+
. Let�4r (x̂) be a John domain given by Definition 1.2 so that

�∩ B4r (x̂)⊂�4r (x̂)⊂�∩ B8r (x̂). Clearly Br (x)⊂�4r (x̂), BR/4(x̂)⊂ B3R/4(z) and BR/2(x̂)⊂ BR(z).
By (B-10) and the Bogovskii lemma,∣∣∣∣p(x)− −

∫
�4r (x̂)

p
∣∣∣∣ ≤ −

∫
Br (x)

∣∣∣∣p − −

∫
�4r (x̂)

p
∣∣∣∣ ≤ C −

∫
�4r (x̂)

∣∣∣∣p − −

∫
�4r (x̂)

p
∣∣∣∣

≤ C
(

−

∫
B8r (x̂)∩�

|∇u|
2
)1/2

≤ C
(

−

∫
BR/2(x̂)∩�

|∇u|
2
)1/2

≤ C
(

−

∫
BR(z)∩�

|∇u|
2
)1/2

, (B-11)

where we also used the Lipschitz estimate of u in the fourth inequality. Similarly, we have∣∣∣∣−∫
B4r (x̂)∩�

p − −

∫
�4r (x̂)

p
∣∣∣∣ ≤ C

(
−

∫
BR(z)∩�

|∇u|
2
)1/2

.

On the other hand, by the pressure estimate for the Stokes system (an analogue of Theorem A with linear
dependence on M), ∣∣∣∣−∫

B4r (x̂)∩�
p − −

∫
BR/4(x̂)∩�

p
∣∣∣∣ ≤ C

(
−

∫
BR(z)∩�

|∇u|
2
)1/2

.

Similar to (B-11), because BR/4(x̂)⊂ B3R/4(z), we obtain∣∣∣∣−∫
BR/4(x̂)∩�

p − −

∫
B3R/4(z)∩�

p
∣∣∣∣ ≤ C

(
−

∫
B2R(z)∩�

|∇u|
2
)1/2

.
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Finally, combining the above estimates, we arrive at∣∣∣∣p(x)− −

∫
B3R/4(z)∩�

p
∣∣∣∣ ≤ C

(
−

∫
B2R(z)∩�

|∇u|
2
)1/2

. (B-12)

Since x ∈�>2 ∩ BR/2(z) is arbitrary, this implies the estimate (B-9) with 2R in the right-hand side instead
of R. Then a covering argument using (B-8) yields the desired estimate (B-9). □

Remark B.2. The interior oscillation estimate holds also for −1u+∇ p = f and ∇ ·u = 0 in BR provided
f ∈ Lq(BR)

3 for some q > 3. Precisely, by classical Schauder theory,

osc
BR/2

p ≤ C
(

−

∫
BR

|∇u|
2
)1/2

+ C R
(

−

∫
BR

| f |
q
)1/q

,

where C is a universal constant.

Now, we are ready to construct 5(x, y) and prove properties (i)–(iii) of (G,5). For a given f ∈

C∞

0 (BR(0)∩�)3 with R > 32, we consider the Stokes equations (B-4) with u given by (B-5) and the
associated pressure p ∈ L2

loc(�). For x ∈ �>2 such that |x | ≥ 4R, we set r =
1
2 |x | ≥ 2R. Since f is

supported in BR(0)∩�, we have −1u +∇ p = 0 in Br (x)∩�. Moreover, by an energy estimate using
(B-6), we have (

−

∫
Br (x)∩�

|∇u|
2
)1/2

≤
C R
r3/2 ∥ f ∥L2(BR(0)∩�). (B-13)

Therefore, Lemma B.1 and a covering argument imply the oscillation estimate of p, namely,

osc
�>2∩B2r (0)\Br(0)

p ≤
C R
r3/2 ∥ f ∥L2(BR(0)∩�).

This further implies

osc
�>2\Br (0)

p ≤

∞∑
k=1

osc
�>2∩B2kr (0)\B2k−1r (0)

p ≤

∞∑
k=1

C R

(2k−1r)3/2
∥ f ∥L2(BR(0)∩�) ≤

C R
r3/2 ∥ f ∥L2(BR(0)∩�). (B-14)

This shows that p(x) converges to a constant as x → ∞. By the assumption that p(x)→ 0 as x3 → ∞,
we know the limiting constant is zero. Hence, in view of (B-14), we derive

|p(x)| ≤
C R

|x |3/2
∥ f ∥L2(BR(0)∩�) (B-15)

for all x ∈�>2 satisfying |x | ≥ 4R. Moreover, by arguing in a similar manner as in Step 3 in the proof of
Theorem 4.1 and using (B-15) instead of (4-15), we find that for sufficiently large R′

≥ R,

∥p∥L2(BR′ (0)∩�) ≤ C(R′)∥ f ∥L2(BR(0)∩�), (B-16)

with a constant C(R′) depending on R′.
On the other hand, for x with either x ∈�≤2 or |x | ≥ 4R, we can connect x to another point x̃ ∈�>2

with |x̃ | ≥ 4R by a chain of a finite number of cubes {Bri (zi ) | i = 1, 2, . . . , N } such that B2ri (zi )⊂�.
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Using Remark B.2 on each Bri (zi ), as well as (B-15) applied to x̃ , we see that for any x, R

|p(x)| ≤ Cq(x, R)∥ f ∥Lq (BR(0)∩�) (B-17)

provided q > 3, where Cq(x, R) is a constant depending only on q, x , and R.
From (B-15) and (B-17), for each fixed x ∈�, the map f 7→ p(x) is a bounded linear functional on

Lq(BR(0)∩�)3. By the Riesz representation theorem, there is a unique function5(x, · )∈ Lq ′

(BR(0)∩�)3

with q ′
∈

[
1, 3

2

)
, so that

p(x)=

∫
BR(0)∩�

5(x, y) · f (y) dy.

Note that the above 5(x, · ) is only defined in BR(0)∩� for a fixed x . As x and R vary, we can obtain a
family of such functions, which can be glued together by the uniqueness of p. Thus we have constructed
a function 5(x, y) defined in the entire �×� satisfying 5(x, · ) ∈ Lq ′

loc(�)
3. To investigate the local

integrability of 5( · , · ), let us fix R > 1 and define a functional S( f, g) for smooth f, g supported in
BR(0)∩� by

S( f, g)=

∫
BR(0)∩�

p(x)g(x) dx =

∫
BR(0)∩�

∫
BR(0)∩�

(5(x, y) · f (y))g(x) dy dx .

From (B-16), by taking a sufficiently large R′
≥ R, we see that

|S( f, g)| ≤ ∥p∥L2(BR(0)∩�)∥g∥L2(BR(0)∩�) ≤ C(R′)∥ f ∥L2(BR(0)∩�)∥g∥L2(BR(0)∩�).

Hence S is a bounded functional on L2(BR(0)∩�)3 × L2(BR(0)∩�), which implies that∫
BR(0)∩�

5(x, · )g(x) dx is in L2(BR(0)∩�)3. (B-18)

Now we can prove that (G,5) satisfies properties (i)–(iii). Property (iii) is obvious from the arguments
so far. Property (ii) follows from property (iii) combined with the Lebesgue differentiation theorem. Here
we use the fact that, for all φ ∈ C∞

0 (�)
3, the function of y∫
�

5(x, y)(∇ ·φ)(x) dx

belongs to L2
loc(�)

3 because of (B-18). The integrability of 5( · , y) in property (i) follows from the weak
form (B-3). Consequently, we have constructed the Green’s function (G,5) meeting properties (i)-(iii).

We should point out that in the above argument for existence, the estimate, for example of 5(x, · ), is
very rough, especially when x is close to the boundary ∂�. This is because the large-scale regularity
of 5(x, · ) is not taken into consideration. In the following, we obtain some more careful estimates of
(G,5) by studying (B-3).

B2. Large-scale estimates of the velocity component. For convenience, let G(x, y) and 5(x, y) be
zero-extended for both x and y. Recall the symmetry G(x, y) = G t(y, x), where G t is the transpose
of G. Thus by definition, G(x, y)= 0 if either x ∈ ∂� or y ∈ ∂� and x ̸= y. Denote by δ(x) the distance
from x to ∂�.
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Notice that ∇x G denotes the derivative of G with respect to the first variable, i.e.,

(∇x G)(x, y)= (∇G( · , y))(x) for all (x, y) ∈�.

Similarly, ∇yG denotes the derivative of G with respect to the second variable. The following estimates
for the derivatives of G are crucial.

Proposition B.3. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to
Definition 1.2. The velocity component G(x, y) satisfies:

(i) For x3 > 2 and y3 > 2,

|∇x G(x, y)| ≤ C min
{

1
|x − y|2

,
δ(y)

|x − y|3

}
, (B-19)

|∇yG(x, y)| ≤ C min
{

1
|x − y|2

,
δ(x)

|x − y|3

}
. (B-20)

(ii) For x3 > 2 and y3 < 2 with |x − y|> 32,(∫
B1(y)

|∇yG(x, z)|2 dz
)1/2

≤ C min
{

1
|x − y|2

,
δ(x)

|x − y|3

}
, (B-21)(∫

B1(y)
|∇x G(x, z)|2 dz

)1/2

≤
C

|x − y|3
. (B-22)

(iii) For x3 < 2 and y3 > 2 with |x − y|> 32,(∫
B1(x)

|∇x G(z, y)|2 dz
)1/2

≤ C min
{

1
|x − y|2

,
δ(y)

|x − y|3

}
, (B-23)(∫

B1(x)
|∇yG(z, y)|2 dz

)1/2

≤
C

|x − y|3
. (B-24)

Here C depends on L.

Notice that G and5 are zero-extended outside�. Therefore, the integrals above make sense even in the
case when B1(x) or B1(y) intersect �c. For the estimates concerned with the oscillation of the pressure,
on the contrary, we make precise when the balls intersect the boundary; see for instance Lemma B.1.

Proof of Proposition B.3. Note that (ii) and (iii) are symmetric. While (i) is the interior estimate whose
proof is similar to (ii) and (iii). Hence, we will only prove (ii). Since we are working on cubes, it is more
convenient to define R = |x − y|∞ := max1≤i≤3 |xi − yi |, which is comparable to the usual distance |x − y|.
Recall that (G(x, · ),5(x, · )) is a weak solution of Stoke system in � \ {x}. To show (B-21), we begin
with the interior and boundary Lipschitz estimates for G(x, · ),(

−

∫
B1(y)

|∇yG(x, z)|2 dz
)1/2

≤ C
(

−

∫
B3(ŷ)

|∇yG(x, z)|2 dz
)1/2

≤ C
(

−

∫
BR/2(ŷ)

|∇yG(x, z)|2 dz
)1/2

, (B-25)

where ŷ is the projection of y on {y3 = 0}.
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To proceed, let F ∈ L2(BR/2(ŷ)∩�)3×3 (zero-extended to the whole of �). Let (u, p) be the weak
solution of 

−1u + ∇ p = ∇ · F in �,
∇ · u = 0 in �,
u = 0 on ∂�.

(B-26)

Recall from (B-5) that

u(x)=

∫
�

G(x, y)∇ · F(y) dy = −

∫
�

∇yG(x, y)F(y) dy. (B-27)

The energy estimate implies ∫
�

|∇u|
2
≤ C

∫
�

|F |
2. (B-28)

Next, we estimate |u(x)| and |∇u(x)|. Let r = x3, which is comparable to δ(x) since x3 > 2. We
consider two cases: r < 1

10 R or r > 1
10 R. If r > 1

10 R, since F is supported in BR/2(ŷ)∩� which does
not intersect with BR/10(x), we can apply the interior Lipschitz estimate to u and (B-28)

|∇u(x)| ≤ C
(

−

∫
BR/10(x)

|∇u|
2
)1/2

≤ C R−3/2
(∫

�

|F |
2
)1/2

. (B-29)

On the other hand, we apply the interior estimate, Sobolev embedding and (B-28) to obtain

|u(x)| ≤ C
(

−

∫
BR/10(x)

|u|
6
)1/6

≤ C R−1/2
(∫

�

|∇u|
2
)1/2

≤ C R−1/2
(∫

�

|F |
2
)1/2

. (B-30)

If r < 1
10 R, by the interior and boundary Lipschitz estimate

|∇u(x)| ≤ C
(

−

∫
Br (x)

|∇u|
2
)1/2

≤ C
(

−

∫
B2r (x̂)

|∇u|
2
)1/2

≤ C
(

−

∫
BR/5(x̂)

|∇u|
2
)1/2

≤ C R−3/2
(∫

�

|F |
2
)1/2

. (B-31)

Moreover, using the Poincaré inequality and the boundary Lipschitz estimate, we have

|u(x)| ≤ C
(

−

∫
Br (x)

|u|
2
)1/2

≤ C
(

−

∫
B2r (x̂)

|u|
2
)1/2

≤ Cr
(

−

∫
B2r (x̂)

|∇u|
2
)1/2

≤ Cr
(

−

∫
BR/5(x̂)

|∇u|
2
)1/2

≤ Cr R−3/2
(∫

�

|F |
2
)1/2

. (B-32)

From the estimates (B-29) - (B-32), (B-27) and duality, we see that(
−

∫
BR/2(ŷ)∩�

|∇x∇yG(x, z)|2 dz
)1/2

≤
C
R3 , (B-33)(

−

∫
BR/2(ŷ)∩�

|∇yG(x, z)|2 dz
)1/2

≤
Cr
R3 . (B-34)
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Note that (B-25) and (B-34) combined lead to (B-21). To see (B-22), notice that (∇x G(x, y),∇x5(x, y))
is a weak solution in y ∈�\{x}. Thus, we may apply (B-33), Poincaré inequality and boundary Lipschitz
estimate to obtain(

−

∫
B1(y)

|∇x G(x, z)|2 dz
)1/2

≤ C
(

−

∫
B3(ŷ)

|∇x G(x, z)|2 dz
)1/2

≤ C
(

−

∫
B3(ŷ)

|∇y∇x G(x, z)|2 dz
)1/2

≤ C
(

−

∫
BR/2(ŷ)

|∇y∇x G(x, z)|2 dz
)1/2

≤
C
R3 .

The proof of (ii) thus is complete. □

Analogously, we can also show the estimates for G itself. The proof is left to the reader.

Proposition B.4. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to
Definition 1.2. The velocity component G(x, y) satisfies:

(i) For x3 > 2 and y3 > 2,

|G(x, y)| ≤ C min
{

1
|x − y|

,
δ(x)

|x − y|2
,
δ(y)

|x − y|2
,
δ(x)δ(y)
|x − y|3

}
. (B-35)

(ii) For x3 > 2 and |x − y|> 32,(∫
B1(y)

|G(x, z)|2 dz
)1/2

≤ C min
{

1
|x − y|

,
δ(x)

|x − y|2
,
δ(y)+ 1
|x − y|2

,
δ(x)(δ(y)+ 1)

|x − y|3

}
. (B-36)

(iii) For y3 > 2 and |x − y|> 32,(∫
B1(x)

|G(z, y)|2 dz
)1/2

≤ C min
{

1
|x − y|

,
δ(y)

|x − y|2
,
δ(x)+ 1
|x − y|2

,
δ(y)(δ(x)+ 1)

|x − y|3

}
. (B-37)

Here C depends on L.

B3. Large-scale estimates of the pressure component. The estimates of 5 are stated as follows.

Proposition B.5. Let L ∈ (0,∞) and � be a bumpy John domain with constant L according to
Definition 1.2. The pressure component 5(x, y) satisfies:

(i) For x3 > 2 and y3 > 2,

|5(x, y)| ≤ C min
{

1
|x − y|2

,
δ(y)

|x − y|3

}
. (B-38)

(ii) For x3 < 2 and y3 > 2 with |x − y|> 32,(∫
B1(x)

|5(z, y)|2 dz
)1/2

≤ C min
{

1
|x − y|2

,
δ(y)

|x − y|3

}
. (B-39)

(iii) For x3 > 2 and y3 < 2 with |x − y|> 32,(∫
B1(y)

|5(x, z)|2 dz
)1/2

≤
C

|x − y|3
. (B-40)

Here C depends on L.
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Proof. We will carry out a delicate oscillation estimate of the pressure originating from [Gu and Zhuge
2019]. We first consider the estimate (i), i.e., x3 > 2 and y3 > 2. Consider a point w ∈� with w ̸= y. Let
t = |w− y|∞. We claim

osc
Bt/4(w)∩�>2

5( · , y)≤ C min
{

1
t2 ,

δ(y)
t3

}
, (B-41)

with C independent of t, w, and y. The operator osc is defined in (B-7).
We prove the above claim by considering different situations. If w ∈ By3/2(y), then t < 1

2 y3 and
Bt(w)⊂�. By the interior pressure estimate (B-8) in Lemma B.1 and (B-19),

osc
Bt/4(w)

5( · , y)≤ C
(

−

∫
Bt/2(w)

|∇x G(z, y)|2 dz
)1/2

≤ C min
{

1
t2 ,

δ(y)
t3

}
.

Next, if w /∈ By3/2(y), we consider two subcases: (a) |w3|<
1
4 t ; (b) |w3| ≥

1
4 t . Without loss of generality,

we assume t > 1
2 y3 > 20.

For the case (a), let ŵ be the projection of w on ∂R3
+

. Using the interior and boundary pressure
estimates in John domains from Lemma B.1 combined with a covering argument,

osc
Bt/4(w)∩�>2

5( · , y)≤ C
(

−

∫
Bt/2(ŵ)

|∇x G(z, y)|2 dz
)1/2

≤ C min
{

1
t2 ,

δ(y)
t3

}
, (B-42)

where we have also used (B-19) and (B-23) in the second inequality.
Now, for the case (b), Bt/4(w) may be decomposed as a union of a finite number of cubes Bt/16(wi ),

with i = 1, 2, . . . , K0, where K0 is an absolute constant, so that Bt/8(wi ) is contained in �>2. Thus,

osc
Bt/4(w)

5( · , y)≤

K0∑
i=1

osc
Bt/16(wi )

5( · , y)≤ C
K0∑

i=1

(
−

∫
Bt/8(wi )

|∇x G(z, y)|2 dz
)1/2

≤ C min
{

1
t2 ,

δ(y)
t3

}
,

where we have used (B-19). Thus, the claim (B-41) is proved.
Now, by a covering argument, it is not difficult to see from (B-41) that, for any r > 0,

osc
�>2∩B2r (y)\Br (y)

5( · , y)= osc
(B2r (y)∩�>2)\(Br (y)∩�>2)

5( · , y)≤ C min
{

1
r2 ,

δ(y)
r3

}
.

Consequently,

osc
�>2\Br (y)

5( · , y)≤

∞∑
k=1

osc
�>2∩B2kr (y)\B2k−1r (y)

≤ C min
{

1
r2 ,

δ(y)
r3

}
. (B-43)

This means that for each y with y3 > 2, there exists a function 5̂(y) such that

lim
|x |→∞, x3>2

5(x, y)= 5̂(y).

This convergence is uniform on any compact set in {y3 > 2}. We show that 5̂(y) ≡ 0. In fact, if
f ∈ C∞

0 (�)
3, the pressure of the Stokes equations with the source f is given by

p(x)=

∫
�

5(x, y) · f (y) dy.
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By the definition of the Green’s function, p(x)→ 0 holds as |x3| → ∞. It follows that∫
�

5̂(y) · f (y) dy = 0.

This holds for any f ∈ C∞

0 (�0)
3, where �0 is a bounded open set whose closure is contained in {y3 > 2}.

Thus we have 5̂(y)≡ 0. Therefore, (B-43) implies (B-38) since r is arbitrary.
Next, we prove (ii). Let x3 < 2, y3 > 2, and r := |x − y|∞. Without loss of generality, it suffices to

assume r > 32. For such x = (x1, x2, x3), we pick x̃ = (x1, x2, 3). Because −1< x3< 2 and |x − x̃ |∞< 4,
we have r − 4 ≤ |x̃ − y|∞ ≤ r + 4 and hence by (i),

|5(x̃, y)| ≤ C min
{

1
(r − 4)2

,
δ(y)

(r − 4)3

}
≤ C min

{
1
r2 ,

δ(y)
r3

}
. (B-44)

Next, we consider ∣∣∣∣5(x̃, y)− −

∫
�3(x̂)

5( · , y)
∣∣∣∣,

where x̂ = (x1, x2, 0) is the projection and �3(x̂) is the John domain between �∩ B3(x̂) and �∩ B6(x̂)
given by Definition 1.2. Following the argument in the proof of Lemma B.1, we can show∣∣∣∣5(x̃, y)− −

∫
�3(x̂)

5( · , y)| ≤ C
(

−

∫
�10(x̂)

|∇x G(z, y)
∣∣∣∣2

dz
)1/2

≤ C min
{

1
r2 ,

δ(y)
r3

}
,

where we have used (B-23) as well as (B-19) combined with a covering argument and the fact that
dist(�10(x̂), y)≈ r in the last inequality. On the other hand, observe that �∩ B1(x)⊂�3(x̂). Hence, by
the Bogovskii lemma in �3(x̂) and (B-23) with a covering argument,(

−

∫
B1(x)

|5(z, y)−−

∫
�3(x̂)

5( · , y)|2 dz
)1/2

≤ C
(

−

∫
�3(x̂)

|5(z, y)−−

∫
�3(x̂)

5( · , y)|2 dz
)1/2

≤ C
(

−

∫
�3(x̂)

|∇x G(z, y)|2 dz
)1/2

≤ C min
{

1
r2 ,

δ(y)
r3

}
. (B-45)

Combining the estimates above, we obtain(
−

∫
B1(x)

|5(z, y)|2 dz
)1/2

≤ C min
{

1
r2 ,

δ(y)
r3

}
.

This proves (B-39).
Next, we use a duality method to prove (iii). Let f ∈ C∞

0 (B1(y) ∩�)3, zero-extended to �, and
consider 

−1u + ∇ p = f χB1(y) in �,
∇ · u = 0 in �,
u = 0 on ∂�.

(B-46)

By definition, the solution (u, p) with finite energy can be represented by (B-5). Since we already know
the estimate of ∇x G (namely, (B-22)), we have

|∇u(x)| ≤
C

|x − y|3
∥ f ∥L2(B1(y))
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for |x − y|∞ > 4 with x3 > 2. By a familiar oscillation argument, we obtain

|p(x)| =

∣∣∣∣∫
�

5(x, y) · f (y) dy
∣∣∣∣ ≤

C
|x − y|3

∥ f ∥L2(B1(y)). (B-47)

This implies (B-40). □

Appendix C: Proof of the iteration lemma

Proof of Lemma 3.10. The proof is a variation of the one in [Zhuge 2021]. For fixed r ∈
(
ε, 1

16

)
, the

assumption (3-37f) implies∫ 1/8

r

h(t)
t

dt ≤

∫ 1/8

r

h(2t)
t

dt + C0

∫ 1/8

r

H(2t)
t

dt

≤

∫ 1/4

2r

h(t)
t

dt + C0

∫ 1/4

2r

H(t)
t

dt,

which, combined with (3-37b), (3-37d) and (3-37c), gives∫ 2r

r

h(t)
t

dt ≤

∫ 1/4

1/8

h(t)
t

dt + C0

∫ 1/4

2r

H(t)
t

dt ≤ C
(
8

( 1
2

)
+ B0

)
+ C0

∫ 1/2

r

H(t)
t

dt.

Then from (3-37f) we have∫ 2r

r

h(t)
t

dt ≥

∫ 2r

r

h(r)− C0 H(2t)
t

dt ≥
h(r)

4
− C0

∫ 1/2

r

H(t)
t

dt.

Therefore for r ∈
(
ε, 1

16

)
, we find

h(r)≤ C
(
8

( 1
2

)
+ B0

)
+ C

∫ 1/2

r

H(t)
t

dt. (C-1)

Let δ ∈
(
0,min

{
θ
4 ,

1
(16)2

})
be a small number to be determined later and let us set ε∗ = δ2. We temporarily

assume that ε ∈ (0, θε∗) in the following proof. From (3-37a) we have∫ δ

ε/δ

H(θ t)
t

dt ≤
1
2

∫ δ

ε/δ

H(2t)
t

dt + C0

(∫ δ

ε/δ

(
ε

t

)α
8(16t)

t
dt + B0

∫ δ

ε/δ

tβ−1 dt
)

≤
1
2

∫ 1/2

ε/δ

H(t)
t

dt + C0

(∫ δ

ε/δ

(
ε

t

)α
8(16t)

t
dt +β−1 B0

)
.

From (3-37e) and the estimate (C-1) for h(r), we have∫ δ

ε/δ

(
ε

t

)α
8(16t)

t
dt ≤ C0

∫ δ

ε/δ

(
ε

t

)α H(16t)+ h(16t)
t

dt

≤ C0δ
α

∫ 16δ

16ε/δ

H(t)
t

dt + C
(∫ δ

ε/δ

(
ε

t

)α dt
t

)((
8

(1
2

)
+ B0

)
+

∫ 1/2

16ε/δ

H(t)
t

dt
)

≤ (C0 + C1α
−1)δα

∫ 1/2

ε/δ

H(t)
t

dt + C1α
−1δα

(
8

(1
2

)
+ B0

)
.
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Now let us choose δ sufficiently small depending on α, C0 and C1 so that

1
2

+ C0(C0 + C1α
−1)δα ≤

3
4
.

Then we obtain ∫ θδ

θε/δ

H(t)
t

dt ≤
3
4

∫ 1/2

ε/δ

H(t)
t

dt + C
(
8

(1
2

)
+ B0

)
,

and consequently, from ε/δ < θδ,∫ θδ

θε/δ

H(t)
t

dt ≤ 3
∫ 1/2

θδ

H(t)
t

dt + C
(
8

(1
2

)
+ B0

)
.

Therefore from (3-37b) and (3-37c) we have∫ 1/2

θε/δ

H(t)
t

dt ≤ 4
∫ 1/2

θδ

H(t)
t

dt + C
(
8

(1
2

)
+ B0

)
≤ C

(
8

(1
2

)
+ B0

)
, (C-2)

where we have used
sup

θδ≤r≤1/2
8(r)≤ C

(
8

(1
2

)
+ B0

)
, (C-3)

with some constant C independent of ε, which is proved by applying (3-37c) finitely many times. Hence,
from 4ε < θε/δ, the estimates (C-1) and (C-2) lead to, for r ∈

(
θε/δ, 1

16

)
,

h(r)≤ C
(
8

(1
2

)
+ B0

)
+ C

∫ 1/2

θε/δ

H(t)
t

dt ≤ C
(
8

(1
2

)
+ B0

)
. (C-4)

For r ∈
(
θε/δ, 1

32

)
, from (3-37e), (C-2) and (C-4), we see that∫ 2r

r

8(t)
t

dt ≤ C0

∫ 2r

r

H(t)
t

dt + C0

∫ 2r

r

h(t)
t

dt ≤ C
(
8

(1
2

)
+ B0

)
.

From this, using the following inequality valid for all fixed r ∈
(
2ε, 1

2

)
8(r)≤ C(8(t)+ B0tβ), t ∈ [r, 2r ],

which is a consequence of (3-37c), we find

sup
θε/δ≤r≤1/32

8(r)≤ C
(
8

(1
2

)
+ B0

)
.

Using repeatedly (3-37c) finitely many times, we have

sup
ε≤r≤1/32

8(r)≤ C
(
8

(1
2

)
+ B0

)
, (C-5)

with a constant C independent of ε. On the other hand, (3-37b) and (C-5) imply∫ θε/δ

ε

H(t)
t

dt ≤ C0

∫ θε/δ

ε

8(t)
t

dt ≤ C
(
8

(1
2

)
+ B0

)
. (C-6)

Combining (C-2), (C-3), (C-5) and (C-6), we obtain the assertion (3-38), provided ε ∈ (0, θε∗). Finally,
if ε ∈

(
θε∗,

1
48

)
, (3-38) is trivial by applying (3-37b) and (3-37c) finitely many times. □
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