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HUI ZHU

We obtain two results of propagation for the gravity-capillary water wave system. The first result shows
the propagation of oscillations and the spatial decay at infinity; the second result shows a microlocal
smoothing effect under the nontrapping condition of the initial free surface. These results extend the works
of Craig, Kappeler and Strauss (1995), Wunsch (1999) and Nakamura (2005) to quasilinear dispersive
equations. These propagation results are stated for water waves with asymptotically flat free surfaces, of
which we also obtain the existence. To prove these results, we generalize the paradifferential calculus of
Bony (1979) to weighted Sobolev spaces and develop a semiclassical paradifferential calculus. We also
introduce the quasihomogeneous wavefront sets which characterize, in a general manner, the oscillations
and the spatial growth/decay of distributions.

1. Introduction 281
2. Quasihomogeneous microlocal analysis 290
3. Model equations 295
4. Paradifferential calculus 300
5. Asymptotically flat water waves 316
6. Propagation of singularities for water waves 326
List of notation 341
Acknowledgments 341
References 341

1. Introduction

We present two results on the propagation of singularities for the gravity-capillary water wave system,
including a microlocal smoothing effect. To the best of our knowledge, these results are the first of this
type for quasilinear dispersive equations. Before stating the main results, we shall first revisit classical
results of propagation for the linear half-wave equation and the linear Schrödinger equation. They lead us
to a more generalized concept of singularities which is adaptive to various dispersive equations.

1A. Wavefront set and the linear half-wave equation. If u ∈ D ′(M), where M is a smooth manifold
without boundary, then the singular support of u, denoted by sing supp u, is the smallest closed subset
of M outside of which u is smooth. To study the propagation of singularities when u solves some partial

The author is partially supported by the grant “ANAÉ” ANR-13-BS01-0010-03 of the Agence Nationale de la Recherche, and
the Allocation Doctorale of the École Normale Supérieure.
MSC2020: 35A01, 35A18, 35A21, 35S50, 76B15.
Keywords: water wave, smoothing effect, propagation of singularity, wavefront set.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/apde/
https://doi.org/10.2140/apde.2024.17-1
http://msp.org
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


282 HUI ZHU

differential equations, the information given by sing supp u is usually insufficient. Heuristically, if we
consider singularities as accumulations of wavepackets with large wavenumbers, then this is because the
propagation direction of a wavepacket is given by its wavenumber rather than its location. It is probably
with this mindset that Hörmander [1971] introduced the concept of the wavefront set.

The wavefront set of u, denoted by WF(u), lifts sing supp u to the cotangent bundle T ∗M\0 in the sense
that a point x0 ∈ M belongs to sing supp u if and only if there exists ξ0 ̸= 0 such that (x0, ξ0) ∈ WF(u).
We shall recall an equivalent definition of WF(u) essentially due to [Guillemin and Sternberg 1977]:
in local coordinates, a point (x0, ξ0) ∈ T ∗M\0 does not belong to WF(u) if and only if there exists
a ∈ C∞

c (R
2d) with a(x0, ξ0) ̸= 0 such that ∥a(x, h Dx)u∥L2 = O(h∞) for h ∈ (0, 1]. For the definition of

the pseudodifferential operator a(x, h Dx), see (1-7).
In terms of the wavefront set, Hörmander [1971] proved a propagation result for pseudodifferential

equations of real principal type, improving previous works [Courant and Lax 1956; Lax 1957] on wave
propagation.

Theorem 1.1 [Hörmander 1971]. Let M be a smooth manifold without boundary. Let P ∈ 91(M)
admit a real principal symbol σ(P) = σ(P)(x, ξ) ∈ C∞(T ∗M\0,R), and let 8 = 8t(x, ξ) ∈

C∞(R × T ∗M\0, T ∗M\0) be the Hamiltonian flow of σ(P). If u solves the Cauchy problem{
∂t u + i Pu = 0,
u(0)= u0 ∈ L2(M),

(1-1)

then for all (x0, ξ0) ∈ WF(u0) and all t ∈ R, we have 8t(x0, ξ0) ∈ WF(u(t)).

In particular, if P =
√

−1g where g is a Riemannian metric on M, then (1-1) becomes the half-wave
equation and 8 is the corresponding cogeodesic flow on T ∗M. Therefore, we conclude that, for solutions
to the half-wave equation, microlocal singularities travel at speed 1 along cogeodesics. This gives a
justification for the Huygens–Fresnel principal of wavefront propagation.

For the propagation of singularities for the semilinear wave equation, we refer to [Bony 1986; Lebeau
1989]. For the propagation and the reflection of singularities for the linear wave equation on manifolds
with corners, see [Vasy 2008; Melrose, Vasy and Wunsch 2013].

1B. The homogeneous wavefront set and the linear Schrödinger equation. Hörmander’s theorem
(Theorem 1.1) is untrue when the order of P is higher than 1. For example, the Schrödinger propagator
ei t1/2 on Rd sends E ′(Rd) to C∞(Rd) whenever t ̸= 0. We conclude that singularities may appear
and disappear along the Schrödinger flow. These phenomena of “microlocal smoothing effect” and
“microlocal singularity formation” are due to the infinite speed of propagation of the Schrödinger equation,
as wavepackets with large wavenumbers can travel to or back from infinity instantaneously.

The study of the infinite speed of propagation of the Schrödinger equation probably dates back to
[Boutet de Monvel 1975; Lascar 1977; 1978]. They proved that space-time singularities, as elements of
some space-time wavefront sets, travel along geodesics at an infinite speed. They did not obtain, however,
a time-dependent propagation results for wavefront sets with respect to the space variable alone. The
study of the smoothing effect for dispersive equations with an infinite speed of propagation was initiated
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by Kato [1983], who proved a local smoothing effect for generalized KdV equations. Craig, Kappeler
and Strauss [1995] proved microlocal smoothing effects for the linear Schrödinger equation under the
nontrapping condition of the geometry. Their results were later refined by Wunsch [1999] who obtained a
time-dependent propagation after understanding the transformation between singularities and quadratic
oscillations at infinity. The simplest example is the identity

ei t1/2δx0(x)=
1

(2π i t)d/2
ei |x−x0|

2/(2t),

where δx0 is the Dirac measure at x0 ∈ Rd. Wunsch’s results were stated on Riemannian manifolds
endowed with a scattering metric. He introduced the quadratic scattering wavefront set to characterize
quadratic oscillations.

Similar results were later obtained, independently, by Nakamura [2005] via a simpler calculus but
in a less general geometric setting — asymptotically Euclidean geometries, where he introduced the
homogeneous wavefront set. By definition, if u ∈ S ′(Rd), then the homogeneous wavefront set HWF(u)
is a subset of R2d whose complement consists of all (x0, ξ0) admitting a symbol a ∈ C∞

c (R
2d) with

a(x0, ξ0) ̸= 0 such that ∥a(hx, h Dx)u∥L2 = O(h∞) for h ∈ (0, 1]. It was proven by Ito [2006] that
the quadratic scattering wavefront set and the homogeneous wavefront set are essentially equivalent in
asymptotically Euclidean geometries. In fact, heuristically, if x0 ̸= 0 and ξ0 ̸= 0, then the pseudodifferential
operator a(hx, h Dx) is a microlocalization in the region of quadratic oscillation:

|x | ∼ |ξ | ∼ h−1.

Take for example the free Schrödinger equation in Rd, of which the dispersion relation is ω =
1
2 |ξ |2. A

wave packet of frequency ξ ∼ h−1 travels at the group velocity v= dω/ dξ = ξ ∼ h−1. The homogeneously
scaled quantization a 7→ a(hx, h Dx) thus allows us to keep up with the infinite speed of propagation and
obtain an analogue of Hörmander’s theorem.

Theorem 1.2 ([Nakamura 2005], similar results in [Wunsch 1999]). Let g be an asymptotically Euclidean
Riemannian metric on Rd, meaning that there exists ϵ > 0 such that, for all α∈ Nd and all i, j ∈{1, . . . , d},
we have

|∂αx (gi j (x)− δi j )| ≲ ⟨x⟩
−|α|−ϵ . (1-2)

Consider the Cauchy problem of the linear Schrödinger equation{
i∂t u +

1
21gu = 0,

u(0)= u0 ∈ L2(Rd).

Then the following propagation results hold:

(1) If (x0, ξ0) ∈ HWF(u0) and t0 ∈ R such that ξ0 ̸= 0 and x0 + tξ0 ̸= 0 for all t between 0 and t0, then
(x0 + t0ξ0, ξ0) ∈ HWF(u(t0)).

(2) If (x0, ξ0) ∈ WF(u0) is forwardly (resp. backwardly) nontrapping in the sense that the cogeodesic
issued from (x0, ξ0), denoted by {(xt , ξt)}t∈R (with an abuse of notation), satisfies

lim
t→+∞

|xt | = +∞
(
resp. lim

t→−∞
|xt | = +∞

)
,
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then there exists ξ+ ∈ Rd (resp. ξ− ∈ Rd ) satisfying ξ± = limt→±∞ ξt , and moreover, for all t0 > 0
(resp. t0 < 0), we have

(t0ξ+, ξ+) ∈ HWF(u(t0))
(
resp. (t0ξ−, ξ−) ∈ HWF(u(t0))

)
.

Theorem 1.2(1) studies the propagation of oscillations and spatial growth/decay for Schrödinger waves
at infinity and we thus require the condition x0 + tξ0 ̸= 0. In Rd, this result is a consequence of an
Egorov-type argument and the commutation relation[

i∂t +
1
21, a(t, hx, h Dx)

]
= (i∂t a − ξ · ∂xa)(t, hx, h Dx)+O(h2),

where a ∈ C∞

b (R × R2d). A similar argument works in asymptotically Euclidean geometries where we
replace the role of the semiclassical quantization x 7→ hx with the spatial decay of the metric g, i.e., the
condition (1-2).

Theorem 1.2(2) is a microlocal smoothing effect: if (t0ξ±, ξ±) does not belong to HWF(u(t0)), then
(x0, ξ0) cannot be an element of WF(u0). This result is a refinement of the result in [Craig, Kappeler and
Strauss 1995] and can be proven via a positive commutator estimate. In Rd, this estimate has the form[

i∂t +
1
21, a(t, x, h Dx)

]
≳O(h∞),

where a is some well-chosen symbol. For related results, see [Doi 1996; 2000; Burq 2004] for the necessity
of the nontrapping condition; see [Robbiano and Zuily 1999] for a microlocal analytic smoothing effect;
see [Kenig, Ponce and Vega 1998; Szeftel 2005] for local and microlocal smoothing effects for the
semilinear Schrödinger equation. We should also remark that Hörmander [1991] has also introduced
an essentially equivalent counterpart of the homogeneous wavefront set to which a similar definition as
that of Nakamura was given. See [Rodino and Wahlberg 2014; Schulz and Wahlberg 2017] for more
comments. However, Theorem 1.2(2) is unable, via simply reversing the time, to show how oscillations
at infinity form singularities along the Schrödinger flow. Indeed, the information about the locations
of singularities is not contained in quadratic oscillations but rather in linear oscillations at infinity. See
[Hassell and Wunsch 2005; Nakamura 2009] for more on this subject.

1C. Quasihomogeneous wavefront set and the gravity-capillary water wave system. The gravity-
capillary water wave system describes the evolution of inviscid, incompressible and irrotational fluid with
a free surface, in the presence of a gravitational field and the surface tension.

1C1. Formulations of the gravity-capillary water wave system. We shall first recall the Eulerian formu-
lation of the gravity-capillary water wave system. The area occupied by the fluid is a time-dependent
simply connected open subset of Rd+1 and is denoted by �. The boundary of � consists of two parts:
the free surface 6 and the bottom 0. The free surface of the fluid is a time-dependent hypersurface which
is the graph of a function η = η(t, x), where (t, x) ∈ R × Rd, whereas the bottom is independent of time
and is of depth b ∈ (0,∞). Therefore,

�= {−b < y < η}, 6 = {y = η}, 0 = {y = −b}.
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The Eulerian formulation describes water waves in the unknowns (η, v, P) where v : � → Rd is the
Eulerian vector field and P :�→ R is the pressure of the fluid:

∂tv+ v · ∇xyv = −∇xy(P + gy) (Euler equation),
∇xy · v = 0 (incompressibility),
∇xy × v = 0 (irrotationality),
(v · n)y=η = ∂tη/⟨∇η⟩ (kinetic condition at the free surface),
(v · n)y=−b = 0 (kinetic condition at the bottom),
−P|y=η = κH(η), (dynamic condition).

(1-3)

Here g ∈ R is the gravitational acceleration, κ > 0 is the surface tension, n : ∂�→ Sd denotes the exterior
unit normal vector field of ∂�, while

H(η)= ∇ ·

(
∇η√

1 + |∇η|2

)
(1-4)

is the mean curvature of the free surface. In (1-3), the kinetic condition at the free surface implies that
fluid particles which are initially on the free surface will stay on the free surface, whereas the kinetic
condition at the bottom is a rephrasing of the impenetrability of the bottom. The dynamic condition is the
Laplace–Young equation which expresses the balance between the interior pressure P and the surface
tension κ .

One of the main difficulties in the study of the Eulerian formulation of the system (1-3) is the time-
dependence of the domain �. By [Zakharov 1968; Craig and Sulem 1993], we can reformulate (1-3) as a
system in Rd. Note that due to the simply connected geometry of � and the irrotationality of the fluid,
there exists a velocity potential φ :�→ R such that ∇xyφ = v. By the incompressiblity of the fluid, the
potential φ is harmonic. Therefore φ satisfies the Laplace equation with Neumann boundary conditions:

1xyφ = 0, ∂nφ|y=η = ∂tη/⟨∇η⟩, ∂nφ|y=−b = 0.

Define ψ = φ|y=η and define
G(η)ψ = ⟨∇η⟩∂nφ|y=η.

Here G(η) is the Dirichlet–Neumann operator (see Section 5A for a rigorous definition). Then the
system (1-3) can be rewritten in terms of the unknowns (η, ψ):{

∂tη− G(η)ψ = 0,

∂tψ + gη− κH(η)+ 1
2
|∇ψ |

2
−

1
2
(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2
= 0.

(1-5)

We shall assume henceforth that κ = 1 for simplicity.

1C2. Quasihomogeneous wavefront set and model equations. It is known that the linearization of (1-5)
about the stationary solution (η, ψ)= (0, 0) can be symmetrized, up to a smoothing remainder, to the
fraction Schrödinger equation or order 3

2 . Consider the more general model equation

∂t u + i |Dx |
γ u = 0, γ ≥ 1. (1-6)
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It is natural to ask ourselves if we can define a new family of wavefront sets and extend the results from
Theorems 1.1 and 1.2 to (1-6). Note that a wave packet of (1-6) of frequency ξ ∼ h−1 travels at the group
velocity

v =
d|ξ |γ

dξ
= γ |ξ |γ−2ξ ∼ h−(γ−1).

It suggests that we need to use pseudodifferential operators of the form a(hγ−1x, h Dx) as test operators.
In the following definition, we consider the more general quantization with two parameters.

Definition 1.3. If u ∈ S ′(Rd), µ ∈ R∪{∞}, δ ≥ 0 and ρ ≥ 0 with δ+ρ > 0, then the quasihomogeneous
wavefront set WFµδ,ρ(u) is a subset of R2d defined as follows. A point (x0, ξ0) does not belong to WFµδ,ρ(u)
if and only if there exists a ∈ C∞

c (R
2d) with a(x0, ξ0) ̸= 0 such that ∥a(hδx, hρDx)u∥L2 = O(hµ) for

h ∈ (0, 1]. Here,

a(hδx, hρDx)u(x)= (2π)−d
∫∫

R2d
ei(x−y)·ξa(hδx, hρξ)u(y) dy dξ. (1-7)

Note that WFµδ,ρ(u) is invariant under the scaling (x, ξ) 7→ (λδx, λρξ) for all λ > 0. The existence of
(x0, ξ0)∈WFµδ,ρ(u) implies an accumulation of mass near the ray {(λδx0, λ

ρξ0)}λ>0. By choosing different
parameters, we recover the definitions of various wavefront sets from the quasihomogeneous wavefront
set: the wavefront set of Hörmander (δ, ρ, µ)= (0, 1,∞), the homogeneous wavefront set of Nakamura
(δ, ρ, µ)= (1, 1,∞) and the scattering wavefront set of [Melrose 1994] (δ, ρ, µ)= (1, 0,∞).

Theorem 1.4. If u solves (1-6) with initial data u(0)= u0 ∈ L2(Rd) and µ ∈ R ∪{∞}, then the following
results of propagation hold:

(1) If ργ = δ+ ρ, (x0, ξ0) ∈ WFµδ,ρ(u0)\{ξ = 0} and t0 ∈ R, then

(x0 + t0γ |ξ0|
γ−2ξ0, ξ0) ∈ WFµδ,ρ(u(t0)).

(2) If γ > 1, ργ > δ+ ρ, (x0, ξ0) ∈ WFµδ,ρ(u0)\{ξ = 0} and t0 ̸= 0, then

(t0γ |ξ0|
γ−2ξ0, ξ0) ∈ WFµρ(γ−1),ρ(u(t0)).

Note that we do not require x0 + tγ |ξ0|
γ−2ξ0 ̸= 0 in Theorem 1.4(1), while we require x0 + tξ0 ̸= 0 in

Theorem 1.2(1). This is because in Theorem 1.2 the geometry is only Euclidean at infinity.

1C3. Asymptotically flat water waves. Instead of the linearization at (η, ψ)= (0, 0), if we paralinearize
and symmetrize (1-5) as in [Alazard, Burq and Zuily 2011], then we obtain a quasilinear paradifferential
fractional Schrödinger equation of order 3

2 . We require the geometry of the free surface to be Euclidean
at infinity and the velocity field to be zero at infinity to avoid problems caused by the infinite speed of
propagation and the nonlinearity. We shall fulfill this requirement by proving the existence of gravity-
capillary water waves in some weighted Sobolev spaces.

Definition 1.5. If µ, k ∈ R, then Hµ
k = Hµ

k (R
d) is the set of all u ∈ S ′(Rd) such that

∥u∥Hµ
k

= ∥⟨x⟩
k
⟨Dx ⟩

µu∥L2 <+∞.
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If in addition k ∈ N and δ ≥ 0, then define

Hµ,δ
k =

k⋂
j=0

Hµ−δ j
j .

We are mostly interested in the case where δ =
1
2 . The weighted Sobolev space Hµ,1/2

k is a natural
space to apply the energy estimate for the fractional Schrödinger equation of order 3

2 and thus also for the
gravity-capillary water wave system.

Theorem 1.6. If d ≥ 1, µ > 3 +
d
2 , k ≤ 2µ− d − 6 and (η0, ψ0) ∈ Hµ+1/2,1/2

k ×Hµ,1/2
k , then there exist

T > 0 and a unique solution

(η, ψ) ∈ C([−T, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k )

to the Cauchy problem of (1-5) with initial data (η0, ψ0).

The study of the Cauchy problem for the water wave equation dates back to [Nalimov 1974; Kano and
Nishida 1979; Yosihara 1982; 1983]. The local well-posedness in Sobolev spaces with general initial data
were achieved in [Wu 1997; 1999; Beyer and Günther 1998]. Our analysis of the water wave equation
relies on the paradifferential calculus of [Bony 1986], which was introduced to the study of the water
wave equation in [Alazard and Métivier 2009] and later allowed Alazard, Burq and Zuily [2011; 2014] to
prove the local well-posedness with low Sobolev regularities. For recent progress of the Cauchy problem,
see e.g., [Alazard and Delort 2015; de Poyferré and Nguyen 2016; 2017; Deng, Ionescu, Pausader and
Pusateri 2017; Hunter, Ifrim and Tataru 2016; Ifrim and Tataru 2017; Ionescu and Pusateri 2018; Ming,
Rousset and Tzvetkov 2015; Rousset and Tzvetkov 2011; Wang 2020].

To prove Theorem 1.6, we shall combine the analysis in [Alazard, Burq and Zuily 2011] and a
paradifferential calculus in weighted Sobolev spaces. The latter can be achieved by modifying the
definition of paradifferential operators via a spatial dyadic decomposition. More precisely, if a is a
symbol, then we define

Pa =

∑
j∈N

ψj Tψj aψj ,

where {ψj } j∈N ⊂ C∞
c (R

d) is a dyadic partition of unity of Rd, ψj =
∑

|k− j |≤N ψk for some sufficiently
large N ∈ N, and Tψj a is the usual paradifferential operator of Bony. Such dyadic paradifferential calculus
inherits the symbolic calculus and the paralinearization of Bony’s calculus, while at the same time allows
the spatial polynomial growth/decay of symbols to play their roles in estimates.

We do not attempt to lower µ to > 2 +
d
2 as it was in [Alazard, Burq and Zuily 2011]. The range of k

is so chosen such that µ−
k
2 > 3 +

d
2 , enabling us to paralinearize (1-5) in Hµ

k . We should mention that
the existence of gravity water waves (water waves without surface tension) in uniformly local weighted
Sobolev spaces was obtain by [Nguyen 2016] via a periodic spatial decomposition from [Alazard, Burq
and Zuily 2016].

1C4. Propagation at infinity. Our first main result concerns the propagation of quasihomogeneous
wavefront sets with parameters (δ, ρ)=

( 1
2 , 1

)
, corresponding to Theorem 1.4(1).
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Theorem 1.7. Suppose that d ≥ 1, µ > 3 +
d
2 , 3 ≤ k < 2µ− K − d for some K > 0, and

(η, ψ) ∈ C([−T, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ),

where T > 0, solves (1-5). If t0 ∈ [−T, T ] and

(x0, ξ0) ∈ WFµ+1/2+σ

1/2,1 (η(0))∪ WFµ+σ

1/2,1(ψ(0))

such that ξ0 ̸= 0, 0 ≤ σ ≤
k
2 −

3
2 and

x0 +
3
2 t |ξ0|

−1/2ξ0 ̸= 0
for all t between 0 and t0, then(

x0 +
3
2 t0|ξ0|

−1/2ξ0, ξ0
)
∈ WFµ+1/2+σ

1/2,1 (η(t0))∪ WFµ+σ

1/2,1(ψ(t0)).

We will see that, by Lemma 2.15, if (η, ψ) ∈ Hµ+1/2,1/2
k ×Hµ,1/2

k , then

WFµ+1/2
1/2,1 (η)∪ WFµ1/2,1(ψ)⊂ {x = 0} ∪ {ξ = 0}.

By [Alazard and Métivier 2009], we expect σ to be at most µ−α−
d
2 for some α > 0, corresponding to

the gain of regularity by the remainder in the paralinearization procedure. Theorem 1.7 does not give the
optimal upper bound for σ , as it is not our priority, but when k = 2µ− K − d , the parameter σ can still
be as large as µ−

K
2 −

d
2 −

3
2 , almost reaching the paradifferential threshold.

1C5. Microlocal smoothing effect. Our second main result shows that singularities of the initial data
which are nontrapped with respect to the initial geometry instantaneously generate an element in the
quasihomogeneous wavefront set with parameters (δ, ρ)=

(1
2 , 1

)
, corresponding to Theorem 1.4(2).

Observe that if η is sufficiently regular, then 6 endowed with the metric inherited from Rd+1 is
isometric to (Rd , ϱ), where

ϱ =

(
Id+(∇η) t(∇η) ∇η

t(∇η) 1

)
.

Define 60 =6|t=0 and ϱ0 = ϱ|t=0. We identify the cogeodesic flow G on T ∗60 with the Hamiltonian
flow on R2d of the symbol G(x, ξ)=

tξϱ0(x)
−1ξ . Precisely G = Gs(x, ξ) is defined by the equation

∂sGs = (∂ξG,−∂x G)(Gs), G0 = IdR2d . (1-8)

Definition 1.8. A point (x0, ξ0) ∈ Rd
× (Rd

\0) is called forwardly (resp. backwardly) nontrapped with
respect to G if, with an abuse of notation, the cogeodesic {(xs, ξs)= Gs(x0, ξ0)}s∈R satisfies

lim
s→+∞

|xs | = ∞
(
resp. lim

s→−∞
|xs | = ∞

)
.

Theorem 1.9. If d ≥ 1, µ > 3 +
d
2 , 3 ≤ k < 2

3

(
µ− 1 −

d
2

)
, and

(η, ψ) ∈ C([−T, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ),

where T > 0, solves (1-5). Let

(x0, ξ0) ∈ WFµ+1/2+σ

0,1 (η(0))∪ WFµ+σ

0,1 (ψ(0)),
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where ξ0 ̸= 0 and 0 ≤ σ ≤
3
2 k. If (x0, ξ0) is forwardly (resp. backwardly) nontrapped, and the cogeodesic

{(xs, ξs)}s∈R is defined as above, then there exists ξ+∞ (resp. ξ−∞) in Rd
\{0} such that

lim
s→∞

ξs = ξ+∞

(
resp. lim

s→∞
ξ−s = ξ−∞

)
,

and moreover, for all 0< t0 ≤ T (resp. −T ≤ t0 < 0), we have( 3
2 t0|ξ+∞|

−1/2ξ+∞, ξ+∞

)
∈ WFµ+1/2+σ

1/2,1 (η(t0))∪ WFµ+σ

1/2,1(ψ(t0)),(
resp.

( 3
2 t0|ξ−∞|

−1/2ξ−∞, ξ−∞

)
∈ WFµ+1/2+σ

1/2,1 (η(t0))∪ WFµ+σ

1/2,1(ψ(t0))
)
.

We remark that the asymptotic directions ξ±∞ are determined solely by the geometry of 60. This is
due to the infinite speed of propagation. We can also prove that the nontrapping assumption is, at least
in the following two cases, unnecessary: if d = 1, or if ∇η(0) ∈ L∞ and ∥⟨x⟩∇

2η(0)∥L∞ is sufficiently
small. In both cases we obtain the following local smoothing effect.

Corollary 1.10. Suppose d, µ, k, σ satisfy the hypothesis of the previous theorem, T > 0,

(η, ψ) ∈ C([−T, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k )

solves (1-5), and both of the following two conditions are satisfied:

(1) Either d = 1 or ∥⟨x⟩∇
2η(0)∥L∞ is sufficiently small.

(2) WFµ+1/2+σ

1/2,1 (η(0))∪ WFµ+σ

1/2,1(ψ(0))⊂ {x = 0} ∪ {ξ = 0}.

Then, for all t0 ∈ [−T, T ]\{0} and for all ϵ > 0,

(η(t0), ψ(t0)) ∈ Hµ+1/2+σ−ϵ

loc × Hµ+σ−ϵ

loc .

The second condition is satisfied if, by Lemma 2.15, there exists (k, k ′) ∈ R2 such that

(η(0), ψ(0)) ∈ Hµ+1/2+σ−k
2k × Hµ+σ−k′

2k′ .

This is particularly the case if (η(0), ψ(0)) ∈ E ′(Rd)× E ′(Rd).
We refer to [Christianson, Hur and Staffilani 2009; Alazard, Burq and Zuily 2011] for local smoothing

effects of 2-dimensional capillary-gravity water waves. See also [Alazard, Ifrim and Tataru 2022] for a
Morawetz inequality of 2-dimensional gravity water waves.

1D. Outline of paper. In Section 2, we present basic properties of weighted Sobolev spaces and the
quasihomogeneous wavefront set. In Section 3, we prove Theorem 1.4 by extending the idea of Nakamura.
In Section 4, we review the paradifferential calculus of Bony, and extend it to weighted Sobolev spaces
by a spatial dyadic decomposition. We also develop a quasihomogeneous semiclassical paradifferential
calculus, and study its relations with the quasihomogeneous wavefront set. In Section 5, we study the
Dirichlet–Neumann operator in weighted Sobolev spaces and prove the existence of asymptotically flat
gravity-capillary water waves, i.e., Theorem 1.6. In Section 6, we prove our main results, i.e., Theorem 1.7,
Theorem 1.9 and Corollary 1.10, by extending the proof of Theorem 1.4 to the quasilinear equation using
the paradifferential calculus.
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2. Quasihomogeneous microlocal analysis

In this section we develop the quasihomogeneous semiclassical calculus and discuss its relation with
weighted Sobolev spaces and the quasihomogeneous wavefront set.

2A. Quasihomogeneous semiclassical calculus.

Definition 2.1. For (µ, k) ∈ R2, set mµ
k (x, ξ)= ⟨x⟩

k
⟨ξ⟩µ. Let ah ∈ C∞(R2d). We say that ah ∈ Sµk if for

all α, β ∈ Nd, there exists Cαβ > 0, such that, for all (x, ξ) ∈ R2d ,

sup
h∈(0,1]

|∂αx ∂
β
ξ ah(x, ξ)| ≤ Cαβmµ−|β|

k−|α|
(x, ξ). (2-1)

We say that ah ∈ Sµk is (µ, k)-elliptic if there exist R > 0,C > 0 such that, for |x | + |ξ | ≥ R,

inf
h∈(0,1]

|ah(x, ξ)| ≥ Cmµ
k (x, ξ).

Also write S∞
∞

=
⋃
(µ,k)∈R2 Sµk , and S−∞

−∞ =
⋂
(µ,k)∈R2 Sµk .

We say that ah ∈ S−∞

−∞ is elliptic at (x0, ξ0) if, for some neighborhood � of (x0, ξ0),

inf
h∈(0,1]

inf
(x,ξ)∈�

|ah(x, ξ)|> 0.

Definition 2.2. Let δ, ρ ∈ R such that δ+ ρ > 0 and, for all h ∈ (0, 1], define the scaling

θ
δ,ρ
h : (x, ξ) 7→ (hδx, hρξ), (2-2)

which induces a pullback θ δ,ρh,∗ on S∞
∞

: θ δ,ρh,∗ ah = ah B θ
δ,ρ
h . Then define, by (1-7),

Opδ,ρh (ah)= Op(θ δ,ρh,∗ ah)= a(hδx, hρDx).

The scaling ϑδh u(x)= hδd/2u(hδx) defines an isometry on L2(Rd). Therefore, by the formula

(ϑδh)
−1 Opδ,ρh (a)ϑδh = Op0,δ+ρ

h (a), (2-3)

we deduce the following results from the usual semiclassical calculus, for which we refer to [Zworski 2012].

Proposition 2.3. There exists K > 0 such that, if a ∈ C∞(R2d) with ∥∂αx ∂
β
ξ a∥L∞ ≤ M for all |α|+|β| ≤ d ,

then Opδ,ρh (a) : L2
→ L2 and ∥Opδ,ρh (a)∥L2→L2 ≤ K M.

Proposition 2.4. There exists a bilinear operator ♯δ,ρh : S∞
∞

× S∞
∞

→ S∞
∞

such that

Opδ,ρh (ah)Opδ,ρh (bh)= Opδ,ρh (ah♯
δ,ρ
h bh).

Moreover, if ah ∈ Sµk and bh ∈ Sνℓ , then ah♯
δ,ρ
h bh ∈ Sµ+ν

k+ℓ . For all r > 0, define

ah♯
δ,ρ
h,r bh =

∑
|α|<r

h|α|(δ+ρ)

α!
∂αξ ah Dα

x bh . (2-4)

Then we have
ah♯

δ,ρ
h bh − ah♯

δ,ρ
h,r bh = O(hr(δ+ρ))Sµ+ν−r

k+ℓ−r
.
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Proposition 2.5. There exists a linear operator ζ δ,ρh : S∞
∞

→ S∞
∞

such that

Opδ,ρh (ah)
∗
= Opδ,ρh (ζ

δ,ρ
h ah).

Moreover if ah ∈ Sµk , then ζ δ,ρh ah ∈ Sµk . For r > 0, define

ζ
δ,ρ
h,r ah =

∑
|α|<r

h|α|(δ+ρ)

α!
∂αξ Dα

x āh . (2-5)

Then we have
ζ
δ,ρ
h ah − ζ

δ,ρ
h,r ah = O(hr(δ+ρ))Sµ−r

k−r
.

Proposition 2.6 (sharp Gårding inequality). If δ+ ρ > 0 and ah ∈ S0
0 such that Re ah ≥ 0, then there

exists C > 0 such that, for all u ∈ L2(Rd) and 0< h < 1, we have

Re(Opδ,ρh (ah)u, u)L2 ≥ −Chδ+ρ∥u∥
2
L2 .

2B. Weighted Sobolev spaces. Recall the weighted Sobolev spaces defined in Definition 1.5.

Proposition 2.7. We have S (Rd)=
⋂
µ,k∈R Hµ

k and S ′(Rd)=
⋃
µ,k∈R Hµ

k .

Proof. Clearly S (Rd) ⊂
⋂
µ,k∈R Hµ

k . The converse follows by the Sobolev embedding theorems. As
for the second statement, clearly

⋃
(µ,k)∈R2 Hµ

k ⊂ S ′(Rd). Conversely, if u ∈ S ′(Rd), then there exists
N > 0, such that for all ϕ ∈ S (Rd) we have

⟨u, ϕ⟩S ′,S ≲
∑

|α|+|β|≤N

∥xα∂βx ϕ∥L∞ ≲ ∥Op(m N
N )ϕ∥L2 .

By duality this implies that u ∈ H−N
−N . □

Lemma 2.8. If u ∈ S ′(Rd), then there exists N > 0 such that

u = h−N Opδ,ρh (m−N
−N )O(1)L2 .

Therefore, if δ+ ρ > 0, and ah ∈ O(h∞)S−∞

−∞
, then Opδ,ρh (ah)uh = O(h∞)S .

Proof. By the proof of Proposition 2.7, there exists N > 0 such that, for all ϕ ∈ S (Rd),

⟨u, ϕ⟩S ′,S ≲
∑

|α|+|β|≤N

∥xα∂βx ϕ∥L∞ ≲ h−N
∥Opδ,ρh (m N

N )ϕ∥L2 .

Again we conclude by duality. □

Definition 2.9. We say that a linear operator A : S (Rd)→ S ′(Rd) is of order (ν, ℓ) ∈ R2, and write
A ∈ O ν

ℓ if for all (µ, k) ∈ R2 there exists C > 0 such that for all u ∈ S (Rd) we have

∥Au∥Hµ−ν
k−ℓ

≤ C∥u∥Hµ
k
.

Therefore A extends to a bounded linear operator from Hµ
k to Hµ−ν

k−ℓ . We write A ∈ O−∞

−∞ if A ∈ O ν
ℓ for

all (ν, ℓ) ∈ R2.



292 HUI ZHU

Let A be any nonempty set. Let Aα : S (Rd)→ S ′(Rd) and Cα > 0 be indexed by α ∈ A . We say
Aα = O(Cα)O ν

ℓ
if for all (µ, k) ∈ R2 there exists K > 0 such that, for all α ∈ A , we have

∥Aα∥Hµ
k →Hµ−ν

k−ℓ
≤ K Cα.

By Propositions 2.3 and 2.4, we obtain:

Proposition 2.10. The following mapping properties of pseudodifferential operators hold:

(1) If ah ∈ Sνℓ with (ν, ℓ) ∈ R2, then Op(ah) ∈ O ν
ℓ .

(2) If u ∈ S ′(Rd), then u ∈ Hµ
k if and only if there exists a (µ, k)-elliptic symbol ah ∈ Sµk such that

Op(ah)u = O(1)L2 .

Next, we characterize weighted Sobolev spaces by a dyadic decomposition.

Definition 2.11. The set P consists of all maps of the form

ψ : N → C∞

c (R
d), j 7→ ψj ,

such that the following conditions are satisfied:

(1) There exists C > 1 such that for all j ≥ 1 we have

suppψj ⊂ {x ∈ Rd
: C−12 j

≤ |x | ≤ C2 j
}.

(2) For all j ≥ 0, the function ψj is nonnegative.

(3) There exists C > 1 such that C−1
≤

∑
j∈N ψj ≤ C .

(4) For all α ∈ N there exists Cα such that for all j ∈ N we have

∥∂αx ψj∥L∞ ≤ Cα2− j |α|.

The set P∗ consists of all ψ ∈ P such that

(5)
∑

j∈N ψj = 1, and

(6) suppψj ∩ suppψk = ∅ whenever | j − k|> 2.

If ψ, ψ̃ ∈ P such that ψj ψ̃j = ψj for all j ∈ N, then we write ψ ⋐ ψ̃ .

Proposition 2.12. If µ, k ∈ R, ψ ∈ P and u ∈ S ′(Rd), then u ∈ Hµ
k if and only if∑

j∈N

22 jk
∥ψj u∥

2
Hµ <∞.

Moreover, there exists C > 1 such that, for all u ∈ Hµ
k , we have

C−1
∥u∥

2
Hµ

k
≤

∑
j∈N

22 jk
∥ψj u∥

2
Hµ ≤ C∥u∥

2
Hµ

k
.

Proof. We may assume that ψ ∈ P∗ because if φ1, φ2
∈ P then∑

j∈N

22 jk
∥φ1

j u∥
2
Hµ ≃

∑
j∈N

22 jk
∥φ2

j u∥
2
Hµ .
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Define ψ̃ ∈ P by setting ψ̃j =
∑

|k− j |≤2 ψk for all j ∈ N. Then ψ ⋐ ψ̃ . Note that the family of
multiplication operators {2− jk

⟨x⟩
kψ̃j } j∈N is bounded in O 0

0 , which implies that, for all µ ∈ N, the
family of pseudodifferential operators {2− jk

⟨Dx ⟩
µ
⟨x⟩

kψ̃j ⟨Dx ⟩
−µ

} j∈N is bounded in O 0
0 . Therefore, for

all u ∈ Hµ
k , we have

22 jk
∥ψj u∥

2
Hµ ≲ ∥⟨Dx ⟩

µψj ⟨x⟩
ku∥

2
L2 ≲ ∥ψ̃j ⟨Dx ⟩

µψj ⟨x⟩
ku∥

2
L2 + ∥(1 − ψ̃j )⟨Dx ⟩

µψj ⟨x⟩
ku∥

2
L2 . (2-6)

Apply Proposition 2.4 with (δ, ρ)= (1, 0) and h = 2− j, we obtain that, for all N > 0, the estimate

(1 − ψ̃j )⟨Dx ⟩
µψj ⟨Dx ⟩

−µ
= O(2− j N )L2→L2 (2-7)

holds uniformly for all j ∈ N. Therefore,∑
j∈N

∥(1 − ψ̃j )⟨Dx ⟩
µψj ⟨x⟩

ku∥
2
L2 ≲

∑
j∈N

2−2 j N
∥u∥

2
Hµ

k
≲ ∥u∥

2
Hµ

k
.

For r ∈ {0, 1, . . . , 9}, set
ar =

∑
j∈10N+r

ψ̃j ⟨ξ⟩
µ♯(⟨x⟩

kψj ) ∈ Sµk ,

where ♯= ♯
0,0
1 . Observe that if 0 ̸= j − j ′

∈ 10N, then supp ψ̃j ∩ supp ψ̃j ′ = ∅. Therefore,∑
j∈N

∥ψ̃j ⟨Dx ⟩
µψj ⟨x⟩

ku∥
2
L2 =

9∑
r=0

∑
j∈10N+r

∥ψ̃j ⟨Dx ⟩
µψj ⟨x⟩

ku∥
2
L2 =

9∑
r=0

∥Op(ar )u∥
2
L2 ≲ ∥u∥

2
Hµ

k
. (2-8)

Combining (2-6), (2-7) and (2-8), we prove that if u ∈ Hµ
k then

∑
j∈N 22 jk

∥ψj u∥
2
Hµ ≲ ∥u∥

2
Hµ

k
.

Conversely, assume that
∑

j∈N 22 jk
∥ψj u∥

2
Hµ <∞. Much as above, we have

∞>
∑
j∈N

22 jk
∥⟨Dx ⟩

µψj u∥
2
L2 ≳

9∑
r=0

∑
j∈10N+r

∥ψ̃j ⟨Dx ⟩
µψj ⟨x⟩

ku∥
2
L2

≳
9∑

r=0

∥Op(ar )u∥
2
L2 ≳ ∥Op(a)u∥

2
L2, (2-9)

where a =
∑9

r=0 ar . Observe a is (µ, k)-elliptic, so u ∈ Hµ
k . By the symbolic calculus, there exists

r ∈ S−∞

−∞ such that
∥u∥

2
Hµ

k
≲ ∥Op(a)u∥

2
L2 + ∥Op(r)u∥

2
L2 . (2-10)

For the remainder term, we have

∥Op(r)u∥
2
L2 = (u,Op(r∗♯r)u)L2 =

∑
j∈N

(u,Op(r∗♯r)ψj u)L2 .

For each term in the summation, by the analysis above (2-6), we have, for all N > 0 and ε > 0,

(u,Op(r∗♯r)ψj u)L2 = (Op(mµ
k )u,Op(m−µ

−k ♯r
∗♯r♯m−µ

N−k)⟨Dx ⟩
µ
⟨x⟩

−N+kψj u)L2

≲ ∥u∥Hµ
k
∥⟨Dx ⟩

µ
⟨x⟩

−N+kψj u∥L2

≲ 2− j N
∥u∥Hµ

k
2 jk

∥⟨Dx ⟩
µψj u∥L2

≲ 2− j N (ε∥u∥
2
Hµ

k
+ ε−122 jk

∥⟨Dx ⟩
µψj u∥

2
L2),
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where the constants are independent of ε. Summing up in j ,

∥Op(r)u∥
2
L2 ≲ ε∥u∥

2
Hµ

k
+ ε−1

∑
j∈N

22 jk
∥ψj u∥

2
Hµ . (2-11)

By choosing ε sufficiently small, we conclude by (2-9), (2-10) and (2-11) that

∥u∥
2
Hµ

k
≲

∑
j∈N

22 jk
∥ψj u∥

2
Hµ

and finishes the proof. □

2C. The quasihomogeneous wavefront set. In this section the parameters δ, ρ, µ satisfy the conditions
in Definition 1.3 without further specification. By Lemma 2.8, the following characterization of the
quasihomogeneous wavefront set is easy to prove by the symbolic calculus.

Proposition 2.13. If u ∈ S ′(Rd), then (x0, ξ0) /∈ WFµδ,ρ(u) if and only if there exists ah ∈ S−∞

−∞ which is
elliptic at (x0, ξ0) such that Opδ,ρh (ah)u = O(hµ)L2 for h ∈ (0, 1].

Lemma 2.14. If u ∈ S ′(Rd) and ah ∈ S−∞

−∞ is such that⋃
h∈(0,1]

supp ah ⋐ R2d
\ WFµδ,ρ(u),

then ⟨u,Opδ,ρh (ah)u⟩S ′,S = O(h2µ) and consequently Opδ,ρh (ah)u = O(hµ)L2 for h ∈ (0, 1].

Proof. Let K =
⋃

h∈(0,1]
supp ah and let {�i }i∈I be an open cover of K . Let bi

h ∈ S−∞

−∞ be elliptic
everywhere in �i such that Opδ,ρh (bi

h)u = O(hµ)L2 . By a partition of unity, we may assume that
K ⊂ � := �i0 for some i0 ∈ I, and set bh = bi0

h . By the ellipticity of bh , we can find ch ∈ S−∞

−∞ and
rh =O(hN )S−∞

−∞
for some large N > 0 such that ah = (ζ

δ,ρ
h bh)♯

δ,ρ
h ch♯

δ,ρ
h bh +rh . Therefore, by Lemma 2.8,

⟨u,Opδ,ρh (ah)u⟩S ′,S = (Opδ,ρh (bh)u,Opδ,ρh (ch)Opδ,ρh (bh)u)L2 + ⟨u,Opδ,ρh (rh)u⟩S ′,S

= O(hµ)2 +O(h∞)= O(h2µ).

Next, observe that there exists wh ∈ S−∞

−∞ and r̃h = O(hN )S−∞

−∞
such that suppwh ⊂ K and

Opδ,ρh (ah)
∗ Opδ,ρh (ah)= Opδ,ρh (wh)+ Opδ,ρh (r̃h).

Therefore,
∥Opδ,ρh (ah)u∥

2
L2 = ⟨u,Opδ,ρh (ah)

∗ Opδ,ρh (ah)u⟩S ′,S

= ⟨u,Opδ,ρh (wh)u⟩S ′,S +O(h2µ)= O(h2µ). □

Lemma 2.15. If u ∈ S ′(Rd). Then the following statements hold:

(1) The quasihomogeneous wavefront set WFµδ,ρ(u) is a closed (δ, ρ)-cone. To be precise, this means
θ
δ,ρ
h WFµδ,ρ(u)= WFµδ,ρ(u) for all h > 0 where the scaling θ δ,ρh is defined by (2-2).

(2) If γ > 0 then WFµδ,ρ(u)= WFµ/γδ/γ,ρ/γ (u). Therefore in all situations we can restrict our discussions
to the cases where either δ = 1 or ρ = 1.

(3) For all (x0, ξ0) ∈ R2d , we have (x0, ξ0) ∈ WFµδ,ρ(u) if and only if (ξ0,−x0) ∈ WFµρ,δ(û).
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(4) For all (x0, ξ0) ∈ R2d, we have (x0, ξ0) ∈ WFµδ,ρ(u) if and only if (x0,−ξ0) ∈ WFµδ,ρ(ū).

(5) Define WFµδ,ρ(u)
◦
= WFµδ,ρ(u)\Nδ,ρ , where

Nδ,ρ =


{x = 0} × Rd , δ > 0, ρ = 0,
Rd

× {ξ = 0}, δ = 0, ρ > 0,
{x = 0} × Rd

∪ Rd
× {ξ = 0}, δ > 0, ρ > 0.

(2-12)

If u ∈ Hµ
k with (µ, k) ∈ R2 and ah ∈ S−∞

−∞ such that

Nδ,ρ ∩

⋃
0<h<1

supp ah = ∅, (2-13)

then Opδ,ρh (ah)u = O(hδk+ρµ)L2 and consequently WF δk+ρµ
δ,ρ (u)◦ = ∅.

Proof. The statements (1) and (2) are consequences of the quasihomogeneous scaling (2-2) we used to
define the pseudodifferential operators. To prove (3), note that if ah ∈ S−∞

−∞ and F is the Fourier transform
operator, then

F−1 Opρ,δh (ah)F = Opδ,ρh (bh),

where bh(x, ξ)= ah(ξ,−x). To prove (4), we use Op(ah)uh = Op(ch)ūh , where ch(x, ξ)= ah(x,−ξ).
To prove (5), note that if ah satisfies the condition (2-13), then

(θ
δ,ρ
h,∗ ah)⟨ξ⟩

−µ♯
0,0
1 ⟨x⟩

−k
= O(hδk+ρµ)S0

0
. □

3. Model equations

We prove Theorem 1.4 by combining the ideas of [Nakamura 2005] and simple scaling arguments.

3A. Proof of Theorem 1.4(1). If a ∈ W 1,∞
loc (R × R2d) and A ∈ W 1,∞

loc (R, L2
→ L2), then define

Lt a = ∂t a + {|ξ |γ , a}, LtA = ∂tA+ i[|Dx |
γ ,A].

Here { · , · } denotes the Poisson bracket defined by { f, g} = ∂ξ f · ∂x g − ∂x f · ∂ξg.

Lemma 3.1. If ah ∈ W 1,∞
loc (R, S−∞

−∞) and satisfies the condition⋃
0<h<1

supp ah ∩ {ξ = 0} = ∅,

then there exists bh ∈ L∞

loc(R, S−∞

−∞), with supp bh ⊂ supp ah , such that

Lt Opδ,ρh (ah)= Opδ,ρh (Lt ah)+ hδ+ρ Opδ,ρh (bh)+O(h∞)L∞

loc(R,L
2→L2).

Proof. For all T > 0, there exists ϵ > 0 such that⋃
t∈[−T,T ]

⋃
0<h<1

supp ah(t, · )∩ {|ξ | ≤ ϵ} = ∅.

Let π ∈ C∞(Rd) such that 0 ≤ π ≤ 1, π(ξ)= 0 for |ξ | ≤
ϵ
3 , and π(ξ)= 1 for |ξ | ≥

2ϵ
3 . Then

i[|Dx |
γ ,Opδ,ρh (ah)] = ih−ργ

[|hρDx |
γπ(hρDx),Opδ,ρh (ah)] +O(h∞)L∞([−T,T ],L2→L2).

Now that |ξ |γπ(ξ) ∈ Sγ0 , we conclude by Proposition 2.4 and the hypothesis ργ = δ+ ρ. □
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Assume that µ = ∞, as the proof is similar for µ < ∞. Let (x0, ξ0) ̸∈ WFµδ,ρ(u0) with ξ0 ̸= 0.
We aim to find ah ∈ W 1,∞

loc (R, S−∞

−∞) of the asymptotic expansion ah ∼
∑

j∈N h j (δ+ρ)a j
h , where a j

h ∈

W 1,∞
loc (R, S−∞

−∞), such that, for all t ∈ R, ah(t, · ) is elliptic at (x0 + tγ |ξ0|
γ−2ξ0, ξ0), and

Lt Opδ,ρh (ah)= O(h∞)L∞

loc(R,L
2→L2). (3-1)

If such an ah is found, we let Ah(t)= Opδ,ρh (ah(t)) and

vh(t)= ei t |Dx |
γ

Ah(t)e−i t |Dx |
γ

u0,

then by a direct computation and (3-1), we have

∂tvh = ei t |Dx |
γ

LtAhe−i t |Dx |
γ

u0 = O(h∞)L∞

loc(R,L
2→L2). (3-2)

If we assume that supp ah(0) is sufficiently close to (x0, ξ0) so that⋃
h∈(0,1]

supp ah(0)⋐ R2d
\ WFµδ,ρ(u0),

then by Lemma 2.14, we have vh(0) = Opδ,ρh (ah(0))u0 = O(h∞)L2 . Therefore by (3-2), we have
vh ∈ O(h∞)L∞

loc(R,L
2) and thus Ahu ∈ O(h∞)L∞

loc(R,L
2).

To construct ah , let ϕ ∈ C∞
c (R

d
× (Rd

\0)) with ϕ(x0, ξ0) ̸= 0, such that Opδ,ρh (ϕ)u = O(h∞)L2 . Then
we can construct ah with ah|t=0 = ϕ, with a j

h ∈ W ∞,∞
loc (R, S−∞

−∞), by solving iteratively the transportation
equations {

Lt a0
h = 0,

a0
h |t=0 = ϕ,

{
Lt a

j
h + b j−1

h = 0,
a j

h |t=0 = 0, j ≥ 1,

where b j
h ∈ W ∞,∞

loc (R, S−∞

−∞) satisfies, by Lemma 3.1, that

Lt Opδ,ρh (a j
h )= Opδ,ρh (Lt a

j
h )+ hδ+ρ Opδ,ρh (b j

h)+O(h∞)L∞

loc(R,L
2→L2).

Thus we have proved Theorem 1.4(1).

3B. Proof of Theorem 1.4(2). Let β = ργ − (δ+ρ) > 0. For all h > 0, introduce the semiclassical time
variable s = h−β t , and rewrite (1-6) as

∂su + ihβ |Dx |
γ u = 0. (3-3)

If a = a(s, x, ξ) ∈ W 1,∞
loc (R × R2d) and A = A(s) ∈ W 1,∞

loc (R, L2
→ L2), then define

Lsa = ∂sa + {|ξ |γ , a}, Lh
s A = ∂sA+ ihβ[|Dx |

γ ,A].

Lemma 3.2. If φ ∈ C∞
c (R

d) such that φ ≥ 0, φ(0) > 0, and x · ∇φ(x)≤ 0 for all x ∈ Rd, and we define

χ(s, x, ξ)= φ

(
x − sγ |ξ |γ−2ξ − x0

1 + s

)
φ

(
ξ − ξ0

ϵ

)
for s ≥ 0, ϵ > 0, (x0, ξ0) ∈ Rd

× (Rd
\0), then the following statements hold when ϵ is sufficiently small

and |ξ0| is sufficiently large:
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(1) χ ∈ W ∞,∞(R≥0, S−∞

0 ).

(2) Lsχ ∈ W ∞,∞(R≥0, S−∞

−1 ) and Lsχ ≥ 0.

(3) If t0 > 0 and set (τu)(s, x, ξ)= u
(
s, s

t0
x, ξ

)
, then τχ ∈ W ∞,∞(R≥0, S−∞

−∞).

(4) If s is sufficiently large, then (τχ)(s, · ) is elliptic at (t0γ |ξ0|
γ−2ξ0, ξ0).

Proof. Each time we differentiate χ with respect to x , we get a multiplicative factor (1 + s)−1, which is
of size ⟨x⟩

−1 in suppχ as
suppχ ⊂ {C−1s ≤ |x | ≤ Cs} (3-4)

for some C > 0 when |s| and |ξ0| are sufficiently large and ϵ is sufficiently small. Therefore χ ∈

W ∞,∞(R≥0, S−∞

0 ). Clearly τχ(s, · ) is bounded in C∞
c (R

2d). We write

(τχ)(s, x, ξ)= φ

(
x − t0γ |ξ0|

γ−2ξ0

t0(1 + s)/s
−
γ |ξ |γ−2ξ − γ |ξ0|

γ−2ξ0

(1 + s)/s
−

x0

1 + s

)
φ

(
ξ − ξ0

ϵ

)
, (3-5)

where |ξ |γ−2ξ−|ξ0|
γ−2ξ0 =o(1) as ϵ→0, whence τχ(s, · ) is elliptic at (t0γ |ξ0|

γ−2ξ0, ξ0) for sufficiently
large s. To estimate Lsχ , we perform an explicit computation:

∂sχ(s, x,ξ)= −(∇φ)

(
x−sγ |ξ |γ−2ξ−x0

1+s

)
φ

(
ξ−ξ0

ϵ

)
(x−sγ |ξ |γ−2ξ−x0)+(1+s)γ |ξ |γ−2ξ

(1+s)2
,

{|ξ |γ ,χ}(s, x,ξ)=
γ |ξ |γ−2ξ

1+s
·(∇φ)

(
x−sγ |ξ |γ−2ξ−x0

1+s

)
φ

(
ξ−ξ0

ϵ

)
.

Therefore,

Lsχ(s, x, ξ)= −(∇φ)

(
x − sγ |ξ |γ−2ξ − x0

1 + s

)
φ

(
ξ − ξ0

ϵ

)
·

x − sγ |ξ |γ−2ξ − x0

(1 + s)2
≥ 0.

Note that on supp Lsχ , we have

x − sγ |ξ |γ−2ξ − x0

(1 + s)2
= O

(
1 + s
(1 + s)2

)
= O

(
1

1 + s

)
= O

(
1

⟨x⟩

)
.

So we prove similarly that Lsχ ∈ W ∞,∞(R≥0, S−∞

−1 ). □

Now fix t0 > 0 and let µ= ∞ as the other cases are similar. Let ϵ > 0 be sufficiently small and let
{λj } j∈N ⊂ [1, 1 + ϵ) be strictly increasing. Choose φ as in Lemma 3.2, and set

χj (s, x, ξ)= φ

(
x − sγ |ξ |γ−2ξ − x0

λj (1 + s)

)
φ

(
ξ − ξ0

λjϵ

)
.

Then suppχj ⊂ {χj+1 > 0} for all j ∈ N. We aim to construct ah ∈ W ∞,∞(R≥0, S−∞

0 ) such that the
following statements hold:

(1) For all s ≥ 0 and h ∈ (0, 1], we have supp ah ⊂
⋃

j∈N suppχj .

(2) The symbol ah|s=0 is elliptic at (x0, ξ0); more precisely , we have

(ah − (ζ
δ,ρ
h χ0)♯

δ,ρ
h χ0)|s=0 = O(h∞)S−∞

−∞
.
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(3) For t0 > 0, let τ be defined as in the lemma. Then τah ∈ W ∞,∞(R≥0, S−∞

−∞) and τah(s, · ) is elliptic
at (t0γ |ξ0|

γ−2ξ0, ξ0) when s is sufficiently large.

(4) Lh
s Opδ,ρh (ah)≥ O(h∞)L∞(R≥0,L2→L2).

Assume that such an ah is found and that

(t0γ |ξ0|
γ−2ξ0, ξ0) ̸∈ WFµρ(γ−1),ρ(u(t = t0)).

By (1) and (3-5), if we choose φ such that suppφ is sufficiently close to the origin, then for sufficiently
small h > 0 we have

supp θβ,01/h,∗ah|s=h−β t0 ⋐ R2d
\ WF∞

ρ(γ−1),ρ(u|t=t0).

By (3), the symbol θβ,01/h,∗ah|s=h−β t0 ∈ S−∞

−∞ is elliptic at (t0γ |ξ0|
γ−2ξ0, ξ0). Therefore, by Lemma 2.14,

(u,Opδ,ρh (ah)u)L2 |s=h−β t0 = (u,Opρ(γ−1),ρ
h (θ

β,0
1/h,∗ah)u)L2 |s=h−β t0 = O(h∞).

By (3-3), we have
d
ds
(u,Opδ,ρh (ah)u)L2 = (u,Lh

s Opδ,ρh (ah)u)L2,

which implies, by (4), that

(u,Opδ,ρh (ah)u)L2 |s=0 = (u,Opδ,ρh (ah)u)L2 |s=h−β t0 −

∫ h−β t0

0
(u,Lh

s Opδ,ρh (ah)u)L2 ds

≤ O(h∞)+O(h−β
× h∞)= O(h∞).

Therefore, by (2), we have

∥Opδ,ρh (χ0)u|s=0∥
2
L2 = (u,Opδ,ρh (ah)u)L2 |s=0 +O(h∞)= O(h∞).

We conclude that (x0, ξ0) ̸∈ WF∞

δ,ρ(u0).
We shall construct ah in the following form of asymptotic expansion:

ah(s, x, ξ)∼

∑
j∈N

h j (δ+ρ)ϕ j (s)a j
h (s, x, ξ),

where a j
h ∈ W ∞,∞(R≥0, S−∞

0 ), with supp a j
h ⊂ suppχj , and ϕ j

∈ Pj , with

Pj =

{
f (ln(1 + s)) : f (X)=

j∑
k=0

ck X k, ck ≥ 0 for all k
}
. (3-6)

The above asymptotic expansion is in the weak sense that, for some ϵ′ > 0, and all N ∈ N,

ah −

∑
j<N

h j (δ+ρ)ϕ j a j
h ∈ O(hN (δ+ρ−ϵ′))W ∞,∞([0,h−βT ],S−∞

0 ).

The following properties for functions in
⋃

j∈N Pj will be used in the construction of ah .

Lemma 3.3. If ψ ∈ Pj for some j ∈ N, then ψ is smooth and nonnegative on [0,+∞) and

((1 + s)∂s)
−1ψ(s) :=

∫ s

0
(1 + σ)−1ψ(σ) dσ ∈ Pj+1.
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Proof. The function ψ is smooth because it is the composition of a polynomial and the smooth function
s 7→ ln(1 + s). The nonnegativity of ψ is the consequence of the nonnegativity of the coefficients ck

in (3-6) and the fact that ln(1 + s)≥ 0 when s ≥ 0. To prove that ((1 + s)∂s)
−1ψ ∈ Pj+1, note that for all

n ∈ N we have
((1 + s)∂s)

−1(ln(1 + · ))n = (n + 1)−1(ln(1 + · ))n+1.

The claim follows by the linearity of the operator ((1 + s)∂s)
−1. □

To construct ah , we begin by setting ϕ0
≡ 1 and choosing a0

h satisfying

a0
h − (ζ

δ,ρ
h χ0)♯

δ,ρ
h χ0 = O(h∞)W ∞,∞(R≥0,S−∞

0 ),

(a0
h − (ζ

δ,ρ
h χ0)♯

δ,ρ
h χ0)|s=0 = O(h∞)S−∞

−∞
.

By the definition of β and Propositions 2.4 and 2.5, there exists r0
h ∈ L∞(R≥0, S−∞

−1 )with supp r0
h ⊂ suppχ0

such that
Lh

s Opδ,ρh (a0
h)= 2 Opδ,ρh (χ0Lsχ0)+ hδ+ρ Opδ,ρh (r0

h )+O(h∞)L∞(R≥0,L2→L2). (3-7)

By (3-4), we have ⟨s⟩r0
h ∈ L∞(R≥0, S−∞

0 ) and similarly

⟨s⟩χ0Lsχ0 ∈ L∞(R≥0, S−∞

0 ). (3-8)

By Lemma 3.2, we have
χ0Lsχ0 ≥ 0. (3-9)

Recall that, by the sharp Gårding inequality (Proposition 2.6), if a symbol ph ∈ S0
0 satisfies ph ≥ 0, then

Op0,1
h (ph) ≳ −h. By (2-3), we deduce that Op0,1

h (ph) ≳ −hδ+ρ. To be precise, this means there exists
C > 0 which only depends on a finite number of seminorms defined by (2-1), such that, for all u ∈ L2,

⟨u,Opδ,ρh (ph)u⟩L2 ≥ −Chδ+ρ∥u∥
2
L2 .

Take c0
h ∈ L∞(R≥0, S−∞

0 ) such that

supp a0
h ⋐ {c0

h = 1} ⊂ supp c0
h ⊂ {χ1 > 0}.

By (3-7) and (3-9), for all u ∈ L2, we have

⟨u,Lh
s Opδ,ρh (a0

h)u⟩L2 = ⟨Opδ,ρh (ch)u,Lh
s Opδ,ρh (a0

h)Opδ,ρh (ch)u⟩L2 +O(h∞)∥u∥
2
L2

≥ −C⟨s⟩−1hδ+ρ∥Opδ,ρh (ch)u∥
2
L2 +O(h∞),

where the factor ⟨s⟩−1 comes from the estimate (3-8). By the symbolic calculus, there exists bh ∈

L∞(R≥0, S−∞

0 ) such that

Opδ,ρh (bh)− C Opδ,ρh (ch)
∗ Opδ,ρh (ch)= O(h∞)L∞(R≥0,L2→L2)

and supp bh ⊂ supp ch . Therefore,

Lh
s Opδ,ρh (a0

h)≥ −C⟨s⟩−1hδ+ρ Opδ,ρh (ch)
∗ Opδ,ρh (ch)+O(h∞)L∞(R≥0,L2→L2)

≥ −⟨s⟩−1hδ+ρ Opδ,ρh (b0
h)+O(h∞)L∞(R≥0,L2→L2). (3-10)
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Suppose that, for some ℓ ≥ 1, we can find ϕ j
∈ Pj , a j

h for j = 0, . . . , ℓ− 1 and ψℓ−1
∈ Pℓ−1, bℓ−1

h ∈

L∞(R≥0, S−∞

0 ), with supp bℓ−1
h ⊂ {χℓ > 0}, such that

Lh
s Opδ,ρh

( ℓ−1∑
j=0

h j (δ+ρ)ϕ j a j
h

)
≥ −⟨s⟩−1ψℓ−1hℓ(δ+ρ) Opδ,ρh (bℓ−1

h )+O(h∞)L∞(R≥0,L2→L2). (3-11)

If we choose Bℓ > 0 sufficiently large and set ϕℓ = ((1 + s)∂s)
−1ψℓ−1 and aℓh = Bℓχℓ, then by a direct

calculation, we have
Ls(ϕ

ℓaℓh)= Bℓ(1 + s)−1ψℓ−1χℓ + BℓϕℓLsχℓ

≥ Bℓ(1 + s)−1ψℓ−1χℓ ≥ ⟨s⟩−1ψℓ−1bℓ−1
h .

Observe that

Ls(ϕ
ℓaℓh)= O(⟨s⟩−1(ψℓ−1

+ϕℓ))S−∞

0
, ⟨s⟩−1ψℓ−1bℓ−1

h = O(⟨s⟩−1ψℓ−1)S−∞

0
.

Much as above, applying the sharp Gårding inequality to the symbol

Ls(ϕ
ℓaℓh)− ⟨s⟩−1ψℓ−1bℓ−1

h = O(⟨s⟩−1(ϕℓ +ψℓ−1))S−∞

0
,

we can find bℓh ∈ L∞(R≥0, S−∞

0 ) with supp bℓh ⊂ {χℓ+1 > 0} such that

Lh
s Opδ,ρh (ϕℓaℓh)− ⟨s⟩−1ψℓ−1 Opδ,ρh (bℓ−1

h )≥ −⟨s⟩−1ψℓhδ+ρ Opδ,ρh (bℓh)+O(h∞)L2→L2, (3-12)

with ψℓ = ψℓ−1
+ϕℓ ∈ Pℓ. Summing up (3-11) and hℓ(δ+ρ)× (3-12), we close the induction procedure.

Finally we conclude the asymptotic expansion by observing that, for all ϵ′ > 0, we have

∥ϕℓ∥L∞([0,h−βT ]) = O(| log h|
ℓ)= O(h−ϵ′ℓ).

Thus we have proved Theorem 1.4(2).

4. Paradifferential calculus

In this section, we develop a paradifferential calculus on weighted Sobolev spaces and a semiclassical
paradifferential calculus.

4A. Classical paradifferential calculus. We recall some classical results of the paradifferential calculus.
We refer to the original work [Bony 1979] and the books [Hörmander 1997; Métivier 2008; Bahouri,
Chemin and Danchin 2011]. The results and proofs below are mainly based on [Métivier 2008], so we
shall only sketch them. In the meantime, we shall also make some refinements regarding the estimates of
the remainder terms, for the sake of the semiclassical paradifferential calculus that will be developed later.

4A1. Symbol classes and paradifferential operators.

Definition 4.1. For m ∈ R, r ≥ 0, let 0m,r be the space of all a(x, ξ) ∈ L∞

loc(R
d
× (Rd

\0)) such that:

(1) For all x → Rd, the function ξ 7→ a(x, ξ) is smooth.

(2) For all α ∈ Nd, there exists Cα > 0 such that for all ξ ∈ Rd with |ξ | ≥
1
2 , we have

∥∂αξ a( · , ξ)∥W r,∞ ≤ Cα⟨ξ⟩m−|α|.
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If a ∈ 0m,r, then we define for all n ≥ 0 the seminorm

Mm,r
n (a)= sup

|α|≤n
sup

|ξ |≥1/2
⟨ξ⟩|α|−m

∥∂αξ a( · , ξ)∥W r,∞ .

We also define Mm,r (a)= Mm,r
d̃+r
(a), where d̃ = 1 +

[ d
2

]
.

Definition 4.2. A pair of nonnegative functions (χ, π) ∈ C∞(R2d
\0)× C∞(Rd) is called admissible if

the following conditions are satisfied:

(1) The function 1 −π is a cutoff function of the origin. To be precise, if |η| ≥ 1, then π(η)= 1, and if
|η| ≤

1
2 , then π(η)= 0.

(2) The function χ is an even and homogeneous of degree 0, and there exist ϵ1, ϵ2 ∈ (0, 1) with ϵ1 < ϵ2,
such that {

χ(θ, η)= 1, |θ | ≤ ϵ1|η|,

χ(θ, η)= 0, |θ | ≥ ϵ2|η|.
(4-1)

Definition 4.3. If m ∈ R and a ∈ 0m,0, then the paradifferential operator Ta is defined by

T̂au(ξ)= (2π)−d
∫

Rd
χ(ξ − η, η)π(η)â(ξ − η, η)û(η) dη, (4-2)

where (χ, π) is admissible and â(θ, ξ)=
∫

e−i x ·θa(x, ξ) dx . In other words Ta = Op(σa) where

σa( · , ξ)= π(ξ)χ(Dx , ξ)a( · , ξ). (4-3)

Proposition 4.4. If m ∈ R and a ∈ 0m,0, then Ta = O(Mm,0(a))O m
0

.

Remark 4.5. A symbol p satisfies the spectral condition if there exists ϵ ∈ (0, 1) such that

supp p̂ ⊂ {(η, ξ) ∈ R2d
: |η| ≥ ϵ⟨ξ⟩}.

By [Métivier 2008], if a ∈ 0m,0, then σa ∈ 0m,0 and satisfies the spectral condition. The above
Proposition 4.4 is in fact a consequence of the following estimate (4-4) and the mapping property:
if p ∈ 0m,0 satisfies the spectral condition, then Op(p) defines a bounded operator from Hµ+m

→ Hµ

for all µ ∈ R.

Note the definition (4-2) depends on the choice of admissible pairs of functions. The following lemma
and corollary show that if we change the admissible pair, then the error term is regularizing.

Lemma 4.6. If m ∈ R, r ≥ 0 and a ∈ 0m,r, then, for all n ≥ 0, we have

Mm,r
n (σa)≲ Mm,r

n (a). (4-4)

If in addition r ∈ N, then, for all β ∈ Nd with |β| ≤ r , we have

Mm−r+|β|,0
n (∂βx (σa − aπ))≲ Mm,0

n (∇r a). (4-5)

Proof. The first statement is proven in [Métivier 2008]. We only prove the second statement. We shall
only prove the case where β = 0 for the rest is similar. By [Métivier 2008], we have

(σa − aπ)(x, ξ)= π(ξ)

∫
ρ(x, y, ξ)8(y, ξ) dy
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for all (x, ξ) ∈ Rd
× (Rd

\0), where 8( · , ξ)= F−1χ( · , ξ) and

ρ(x, y, ξ)=

∑
|γ |=r

(−y)γ

γ !

∫ 1

0
r(1 − t)r−1∂γx a(x − t y, ξ) dt.

Therefore, if |ξ | ≥
1
2 and |α| ≤ n, then

∥∂αξ ρ( · , y, ξ)∥L∞ ≲ |y|
r
∥∂αξ ∇

r a( · , ξ)∥L∞ ≲ |y|
r
|ξ |m−|α|Mm,0

n (∇r a). (4-6)

Note that the admissibility of (π, χ) implies that, for all α, β ∈ N, there exists Cα,β > 0 such that, for all
(x, ξ) ∈ R2d, we have |xβ∂αξ 8(x, ξ)| ≤ Cα,β⟨ξ⟩d−|α|−|β|. Therefore, for all α ∈ N and all ξ ∈ Rd, there
exists Cα > 0 such that

∥∂αξ 8( · , ξ)∥L1 ≤ Cα⟨ξ⟩−|α|. (4-7)

We conclude (4-5) by estimates (4-6) and (4-7). □

Corollary 4.7. Let a ∈ 0m,r, with m ∈ R and r ∈ N . Let (χ, π) and (χ ′, π ′) be admissible. Denote by Ta

and T ′
a the paradifferential operators respectively defined by these two admissible pairs. Then

Ta − T ′

a = O(Mm,0(∇r a))O m−r
0

+O(Mm,r (a))O−∞

0
.

If in addition aπ = aπ ′
= a, then

Ta − T ′

a = O(Mm,0(∇r a))O m−r
0
.

Proof. Let T ′′
a be the paradifferential operator defined with respect to (χ ′, π); then by Lemma 4.6,

Ta − T ′′
a = O(Mm,0(∇r a))O m−r

0
. Note that T ′′

a − T ′
a is a composition with a paradifferential operator with

a smoothing operator π(Dx)−π
′(Dx), which implies T ′′

a − T ′
a = O(Mm,r (a))O−∞

0
. This term vanishes if

aπ = aπ ′
= a. □

Corollary 4.8. Let ψ ∈ C∞

b (R
d). Then Tψ −ψ ∈ O−∞

0 .

Proof. This is a consequence of (4-5) and the Calderón–Vaillancourt theorem. □

4A2. Symbolic calculus and paralinearization.

Proposition 4.9. If a ∈ 0m,r and b ∈ 0m′,r, where r ∈ N, m ∈ R and m′
∈ R, then

TaTb − Ta♯b = O
(
Mm,r (a)Mm′,0(∇r b)+ Mm,0(∇r a)Mm′,r (b)

)
O m+m′−r

0
+O

(
Mm,r (a)Mm′,r (b)

)
O−∞

0
,

where the symbol a♯b = a♯0,0
1,r b is defined by (2-4). If in addition aπ = a and bπ = b, then

TaTb − Ta♯b = O
(
Mm,r (a)Mm′,0(∇r b)+ Mm,0(∇r a)Mm′,r (b)

)
O m+m′−r

0
.

Proof. By Corollary 4.7, we may choose an admissible pair (π, χ) to define paradifferential operators,
while assuming that ϵ2 <

1
4 . We shall only prove the case where aπ = a and bπ = b, as the general

case follows easily. The following proof follows [Métivier 2008]. Take the decomposition TaTb − Ta♯b =

(I)+ (II), where

(I)= Op(σa)Op(σb)− Op(σa♯σb), (II)= Op(σa♯σb)− Op(σa♯b).
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Write Op(σa)Op(σb)= Op(σ ), where

σ(x, ξ)=
1

(2π)d

∫∫
ei(x−y)·ησa(x, ξ + η)θ(η, ξ)σb(y, ξ) dy dη.

Here θ ∈ C∞(R2d
\0) satisfies that (θ, π) is admissible and θχ = χ . By Taylor’s formula, we have the

decomposition

σa(x, ξ + η)=

∑
|α|<r

1
α!
∂αξ σ(x, ξ)η

α
+

∑
|α|=r

ρα(x, ξ, η)ηα,

where the functions ρα depend on ∇
r
ξσa . Then write σ = σa♯σb +

∑
|α|=r qα, where

qα(x, ξ)=

∫
Rα(x, x − y, ξ)(Dα

x σb)(y, ξ) dy,

Rα(x, y, ξ)= (2π)−2
∫

eiyηρα(x, y, η)θ(η, ξ) dη.

By the same estimate in [Métivier 2008],

∥∂
β
ξ Rα(x, · , ξ)∥L1 ≲ Mm,r (a)⟨ξ⟩m−r−|β|.

Using Dα
x σb = σDα

x b, we verify that

∥∂
β
ξ qα( · , ξ)∥L∞ ≲ Mm,r (a)Mm′,0(∇r b)⟨ξ⟩m+m′

−r−|β|,

and consequently, by Remark 4.5,

∥(I)∥H s→H s−m−m′+r ≲
∑
|α|=r

Mm+m′
−r,0(qα)≲ Mm,r (a)Mm′,0(∇r b).

To estimate (II), for all |α|< r , take the decomposition ∂αξ σa Dα
x σb −σ∂αξ aDα

x b = (i)+ (ii)+ (iii), where

(i)= ∂αξ (σa − a)Dα
x σb, (ii)= ∂αξ aDα

x (σb − b), (iii)= ∂αξ aDα
x b − σ∂αξ aDα

x b.

By Lemma 4.6, Leibniz’s rule and interpolation,

Mm+m′
−r,0(i)≲ Mm−r,0(σa − a)Mm′,0(Dα

x σb)≲ Mm,0(∇r a)Mm′,r (b),

Mm+m′
−r,0(ii)≲ Mm,r (a)Mm′

−r+|α|,0(Dα
x (σb − bπ))≲ Mm,r (a)Mm′,0(∇r b),

Mm+m′
−r,0(iii)≲ Mm+m′

−|α|,0(∇r−|α|(∂αξ aDα
x b))

≲ Mm−|α|,0(∇r∂αξ a)Mm′,0(b)+ Mm−|α|,0(∂αξ a)Mm′,0(∇r b)
≲ Mm,0(∇r a)Mm′,r (b)+ Mm,r (a)Mm′,0(∇r b).

By Remark 4.5, these estimates imply that

(II)= O
(
Mm,r (a)Mm′,0(∇r b)+ Mm,0(∇r a)Mm′,r (b)

)
O m+m′−r

0
.

The proposition follows. □

Proposition 4.10. Let a ∈ 0m,r with r ∈ N and m ∈ R. Then

T ∗

a − Ta∗ = O(Mm,0(∇r a))O m−r
0

+O(Mm,r (a))O−∞

0
,
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where the symbol a∗
= ζ

0,0
1,r a is defined by (2-5). If in addition aπ = a, then

T ∗

a − Ta∗ = O(Mm,0(∇r a))O m−r
0
.

Proof. Much as in the proposition for the composition, we shall only prove the case where aπ = a.
Let (θ, π) be admissible such that θχ = χ , then T ∗

a = Op(σ ∗
a ), with

σ ∗

a (x, ξ)= (2π)−d
∫

e−iy·ησ̄a(x + y, ξ + η) dη dy = a∗(x, ξ)+
∑
|α|=r

rα(x, ξ),

where by Taylor’s formula,

rα(x, ξ)=
2π
α!

∫∫∫
R2d×[0,1]

r(1 − t)r−1e−iy·ηDα
x ∂

α
ξ σ̄a(x, ξ + tη)θ(η, ξ) dt dη dy.

The term Dα
x ∂

α
ξ σ̄a(x, ξ + tη) in the integral and the analysis in [Métivier 2008] imply that

Mm−r,0(σ ∗

a − σa∗)≤

∑
|α|=r

Mm−r,0(rα)+ Mm−r,0(a∗
− σa∗)≲ Mm,0(∇r a).

The proposition follows by Remark 4.5. □

Recall the following results of paralinearization. See, e.g., [Métivier 2008].

Proposition 4.11. If a ∈ Hα and b ∈ Hβ with α > d
2 and β > d

2 , then

∥ab − Tab − Tba∥Hα+β−d/2 ≲ ∥a∥Hα∥b∥Hβ .

Proposition 4.12. If F ∈C∞(R) with F(0)= 0, then for all µ> d
2 , there exists a monotonically increasing

function C : R≥0 → R≥0 such that, for all u ∈ Hµ, we have

∥F(u)∥Hµ + ∥F(u)− TF ′(u)u∥H2µ−d/2 ≤ C(∥u∥H s )∥u∥Hµ .

4B. Dyadic paradifferential calculus. Now we develop the theory of paradifferential calculus with
weighted symbols on weighted Sobolev spaces via a dyadic decomposition of the space.

4B1. Weighted symbol classes and dyadic paradifferential operators. We define a family of symbol
classes which take into consideration the spacial decay of symbols.

Definition 4.13. If r ∈ N, k ∈ R, and δ ∈ [0, 1], then W r,∞
k,δ is the set of all u ∈ S ′(Rd) such that

∥u∥W r,∞
k,δ

=

∑
|α|≤r

∥⟨x⟩
−k+δ|α|∂αx u∥L∞ <∞.

Definition 4.14. If m, k ∈ R, r ∈ N and δ ∈ [0, 1], then 0m,r
k,δ is the set of all a(x, ξ) ∈ L∞

loc(R
d
× (Rd

\0))
such that

(1) for all x ∈ Rd the function ξ 7→ a(x, ξ) is smooth, and

(2) for all α ∈ Nd there exists Cα > 0, such that

∥∂αξ a( · , ξ)∥W r,∞
k,δ

≤ Cα⟨ξ⟩m−|α| for all |ξ | ≥
1
2 .
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Moreover, we define
Mm,r

k,δ (a)= sup
|α|≤r+d̃

sup
|ξ |≥1/2

⟨ξ⟩|α|−m
∥∂αξ a( · , ξ)∥W r,∞

k,δ
.

Let 0−∞,r
k,δ =

⋂
m∈R 0

m,r
k,δ and 0m,r

−∞,δ =
⋂

k∈R 0
m,r
k,δ . Then for (m, k) ∈ (R ∪ {−∞})2, define

6
m,r
k,δ =

∑
0≤ j≤r

0
m− j,r− j
k−δ j,δ .

We say that ah =
∑

0≤ j≤r h j a j
h ∈ h6

m,r
k,δ if

sup
0<h<1

∑
0≤ j≤r

Mm− j,r− j
k−δ j,δ (a j

h ) <∞.

We shall define 6m,r
=6

m,r
0,0 and h6

m,r
= h6

m,r
0,0 .

We are mostly interested in the cases where δ ∈ {0, 1}. Note that W r,∞
k,0 = ⟨x⟩

k W r,∞ and thus
0

m,r
k,0 = ⟨x⟩

k0m,r , whereas 0m,r
k,1 is a natural extension of Sm

k to symbols of finite regularities. We will
encounter symbols defined by solutions of the water wave system and thus have coefficients in weighted
Sobolev spaces. We need the following lemma.

Lemma 4.15. If u ∈ Hµ,δ
k , where µ ≥ d̃ , k ∈ N and δ ∈ (0, 1], then, for all α ∈ Nd with |α| ≤

min{(µ− d̃)/(1 + δ), k}, we have ⟨x⟩
|α|∂αx u ∈ L∞ and consequently we have the inclusion

Hµ,δ
k ⊂ W min{[(µ−d̃)/(1+δ)],k},∞

0,1 ∩ ⟨x⟩
− min{[µ−d̃]/δ,k}L∞.

In particular Hµ,1/2
k ⊂ W min{[2(µ−d̃)/3],k},∞

0,1 ∩ ⟨x⟩
− min{k,2[µ−d̃]}L∞.

Proof. The lemma follows directly from the Sobolev injection:

∥⟨x⟩
|α|∂αx u∥L∞ ≲ ∥u∥W |α|,∞

−|α|

≲ ∥u∥
H |α|+d̃

|α|

≲ ∥u∥Hµ,δ
k
,

∥⟨x⟩
nu∥L∞ ≲ ∥u∥W 0,∞

−n,0
≲ ∥u∥H d̃

n
≲ ∥u∥Hµ,δ

k
,

which hold provided |α| + d̃ ≤ µ− δ|α|, |α| ≤ k, d̃ ≤ µ− δn and n ≤ k, that is,

|α| ≤ min
{
µ− d̃
1 + δ

, k
}
, n ≤ min

{
µ− d̃
δ

, k
}
. □

Lemma 4.16. Let A be a linear operator from S (Rd) to S ′(Rd) and let m, k ∈ R. If there exists
{Aj } j∈N ∈ ℓ∞(O m

0 ) and ψ, φ ∈ P such that A =
∑

j∈N 2 jkψjAjφj , then A ∈ O m
k .

Proof. The lemma is a consequence of Proposition 2.12. □

Definition 4.17. Let ψ ∈ P∗ and define ψ ∈ P by setting ψj =
∑

| j−k|≤10 ψk . If a ∈ 0
m,r
k,δ , where

m, k ∈ R, r ∈ N and δ ∈ [0, 1], then define the dyadic paradifferential operator

Pa =

∑
j∈N

ψj Tψj aψj .

Proposition 4.18. If a ∈ 0
m,r
k,δ , then Pa = O(Mm,r

k (a))O m
k

.
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Proof. Note that if a ∈ 0
m,r
k,δ then a ∈ ⟨x⟩

k0m,0. Therefore, by Proposition 4.4, we have

∥Tψj a∥H ν→H ν−m ≲ Mm,0(ψj a)≲ 2− jk Mm,0
k,0 (a).

We conclude by Lemma 4.16. □

4B2. Symbolic calculus.

Proposition 4.19. Let a ∈ 0
m,r
k,δ , b ∈ 0

m′,r
k′,δ , r ∈ N, (m, k), (m′, k ′) ∈ R2, 0 ≤ δ ≤ 1, then

PaPb −Pa♯b = O(Mm,r
k,δ (a)M

m′,r
k′,δ (b))O m+m′−r

k+k′−δr +O−∞

k+k′

,

where

a♯b =

|α|<r∑
α∈Nd

1
α!
∂αξ aDα

x b ∈6
m+m′,r
k+k′,δ .

Proof. Let ψ̃j : N → C∞
c , ψ̃j =

∑
| j− j ′|≤50 ψj ′ , so ψ j ′ψ̃j = ψ j ′ if | j − j ′

| ≤ 20. Then write

PaPb =

| j− j ′
|≤20∑

( j, j ′)∈N2

ψj Tψj aψjψ j ′ Tψj ′ bψ j ′ =

| j− j ′
|≤20∑

( j, j ′)∈N2

ψ̃j Tψj aTψj ′ bψ̃j + ψ̃j Rj, j ′ψ̃j ,

the remainder being

Rj, j ′ = ψj Tψj aψjψ j ′ Tψj ′ bψ j ′ − Tψj aTψj ′ b

= O(2 j (k+k′
−δr)Mm,r

k,δ (a)M
m′,r
k′,δ (b))O m+m′−r

0
+O(2 j (k+k′)Mm,r

k,δ (a)M
m′,r
k′,δ (b))O−∞

0

by Propositions 4.4 and 4.9 and Corollary 4.8. More precisely, when composing Tψj a and Tψj , we use
ψjψj = ψj and have

Tψj aTψj = Tψj a +O
(
Mm,r (ψj a)M0,0(∇rψj )

)
O m−r

0

+O
(
Mm,0(∇r (ψj a))M0,r (ψj )

)
O m−r

0
+O

(
Mm,r (ψj a)M0,r (ψj )

)
O−∞

0
,

where M0,0(∇rψj )= O(2− jr ), Mm,r (ψj a)= O(2 jk), and we use 0 ≤ δ ≤ 1 to induce that

Mm,0(∇r (ψj a))= O
(

max
0≤n≤r

{2− j (r−n)+ j (k−δn)
}
)
= O(2 j (k−δr)).

Similar arguments work for the composition Tψj Tψj a .
Observe that

∑
j ′:| j− j ′|≤20(ψj a)♯ψj ′b = (ψj a)♯b, for all j ∈ N. Hence∑

j ′:| j− j ′|≤20

Tψj aTψj ′ b = ψj Tψj (a♯b)ψj + Rj ,

where the remainder can be estimated much as above:

Rj = O(2 j (k+k′
−δr)Mm,r

k,δ (a)M
m′,r
k′,δ (b))O m+m′−δr

0
+O(2 j (k+k′)Mm,r

k,δ (a)M
m′,r
k′,δ (b))O−∞

0
.

We conclude by Lemma 4.16. □

Proposition 4.20. Let a ∈ 0
m,r
k,δ with (m, k) ∈ R2, and r ∈ N, 0 ≤ δ ≤ 1, then

P∗

a −Pa∗ = O(Mm,r
k,δ (a))O m−r

k−δr +O−∞

k
, (4-8)
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where

a∗
=

|α|<r∑
α∈Nd

1
α!
∂αξ Dα

x ā ∈6
m,r
k,δ .

Proof. Observe that for any real-valued ψ ∈ C∞
c (R

d),

(ψa)∗ = a∗♯ψ. (4-9)

More precisely, this means that

(ψa)∗ =

∑
|γ |<r

1
γ !
∂
γ

ξ Dγ
x (ψ ā)=

∑
|γ |<r

1
γ !

∑
α+β=γ

γ !

α!β!
Dα

xψ∂
γ

ξ Dβ
x ā

=

∑
|α|+|β|<r

1
α!
∂αξ

(
1
β!
∂
β
ξ Dβ

x ā
)

Dα
xψ =

∑
|β|<r

∑
|α|<r−|α|

1
α!
∂αξ

(
1
β!
∂
β
ξ Dβ

x ā
)

Dα
xψ

=

∑
|β|<r

(
1
β!
∂
β
ξ Dβ

x ā
)
♯ψ = a∗♯ψ.

Then write P∗
a −Pa∗ =

∑
j∈N ψj (R1

j + R2
j )ψj , where, by (4-9),

R1
j = T ∗

ψj a − T(ψj a)∗, R2
j = T(ψj a)∗ − Tψj a∗ = Ta∗♯ψj −ψj a∗ .

For R1
j we use Proposition 4.10,

R1
j = O(Mm,0(∇r

x (ψj a)))O m−r
0

= O(2 j (k−δr)Mm,r
k,δ (a))O m−r

0
.

By Lemma 4.16, ∑
j∈N

ψj R1
jψj = O(Mm,r

k,δ (a))O m−r
k−δr +O−∞

k
.

Using
∑

j∈N ψj ≡ 1, we induce that∑
j∈N

∂αx ψj ≡ 0 for all α ∈ Nd
\0,

∑
j∈N

a∗♯ψj −ψj a∗
= 0. (4-10)

Then we write

a∗♯ψj −ψj a∗
=

∑
α ̸=0

|α|+|β|<r

Dα
xψj ·wαβ, wαβ ∈ 0

m−|α|−|β|,r−|β|

k−|β|δ,δ ,

where the symbols wαβ are independent of j . Write∑
j∈N

ψj R2
jψj =

∑
α,β

Rαβ, Rαβ =

∑
j∈N

ψj TDα
xψj ·wαβψj .

By (4-10), we prove similarly to Proposition 4.19 that

ψj Rαβ = ψj

∑
| j− j ′|≤20

ψ j ′ TDα
xψj ′ ·wαβ

ψ j ′

= O(2 j (−|α|+k−|β|δ−(r−|β|)δ)Mm−|α|−|β|,r−|β|

k−|β|δ,δ (wαβ))O m−r−|α|

0
+O(2 j (−|α|+k−|β|δ)Mm−|α|−|β|,r−|β|

k−|β|δ,δ (wαβ))O−∞

0
= O(2 j (k−δr)Mm,r

k,δ (a))O m−r
0

+O(2 jk Mm,r
k,δ (a))O−∞

0
.
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Setting ψ ′

j =
∑

| j ′− j |≤100 ψj ′ . We again conclude by Lemma 4.16, and the identity

Rαβ =

∑
j∈N

ψj Rαβψ ′

j ,

that Rαβ = O(Mm,r
k,δ (a))O m−r

k−δr +O−∞

k
. □

4B3. Paralinearization.

Proposition 4.21. If a ∈ Hα
k , b ∈ Hβ

ℓ with α > d
2 , β > d

2 , k ∈ R, ℓ ∈ R, then, for all ϵ > 0,

∥ab −Pab −Pba∥Hα+β−d/2−ϵ

k+ℓ

≲ ∥a∥Hα
k
∥b∥Hβ

ℓ
.

Consequently if a ∈ Hα,δ
m and b ∈ Hβ,δ

n with δ ≥ 0, α− δm > d
2 , β − δn > d

2 , then, for all ϵ > 0,

∥ab −Pab −Pba∥Hα+β−d/2−ϵ,δ
m+n

≲ ∥a∥Hα,δ
m

∥b∥Hβ,δ
n
.

Proof. Decompose the product ab as

ab =

∑
j∈N

ψj (ψj a)(ψj b)= Pab +Pba + R1
j + R2

j ,

where the remainders R1
j and R2

j are defined by

R1
j = ψj

(
ψj a ·ψj b − Tψj a(ψj b)− Tψj b(ψj a)

)
,

R2
j = ψj (ψj Tψj a − Tψj a)ψj b +ψj (ψj Tψj b − Tψj a)ψj a.

By Proposition 4.11,

∥R1
j ∥Hα+β−d/2 ≲ ∥ψj a∥Hα∥ψj b∥Hβ ≲ 2− j (k+ℓ)

∥a∥Hα
k
∥b∥Hβ

ℓ
.

By Proposition 4.9 and Corollary 4.8 and the Sobolev embedding theorem, for all ϵ > 0 we have

ψj Tψj aψj − Tψj a = 2− jkO(∥a∥Hα
k
)
O
α−d/2−ϵ

0
,

ψj Tψj bψj − Tψj b = 2− jℓO(∥b∥Hβ

ℓ
)
O
β−d/2−ϵ

0
.

We conclude the first statement by Proposition 2.12.
As for the second statement, observe that if 0 ≤ k ≤ m and 0 ≤ ℓ≤ n, then

∥ab −Pab −Pba∥H (α−δk)+(β−δℓ)−d/2−ϵ,δ

k+ℓ

≲ ∥a∥Hα−δk
k

∥b∥Hβ−δℓ

ℓ

≲ ∥a∥Hα,δ
m

∥b∥Hβ,δ
n
.

We conclude by noting that for all p ∈ N ∩ [0,m + n], there exist k ∈ N ∩ [0,m] and ℓ ∈ N ∩ [0, n] such
that p = k + ℓ. □

Proposition 4.22. Let F ∈ C∞(R) with F(0) = 0. For all µ > d
2 , there exists some monotonically

increasing function C : R+ → R+ such that, for all k ≥ 0 and all u ∈ Hµ
k , we have

∥F(u)∥Hµ
k

+ ∥F(u)−PF ′(u)u∥H2µ−d/2
k

≤ C(∥u∥Hµ)∥u∥Hµ
k
.

Consequently, if u ∈ Hµ,δ
k with δ ≥ 0 and µ− δk > d

2 , then

∥F(u)∥Hµ,δ
k

+ ∥F(u)−PF ′(u)u∥H2µ−d/2,2δ
k

≤ C(∥u∥Hµ)∥u∥Hµ,δ
k
.
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Proof. Decompose F(u) as F(u)=
∑

j≥0 ψj F(ψj u). By Proposition 4.12,

∥F(ψj u)∥Hµ ≤ C(∥ψj u∥Hµ)∥ψj u∥Hµ ≤ C(∥u∥Hµ)∥ψj u∥Hµ .

Then write ψj F(ψj u)= ψj Tψj F ′(u)ψj u +ψj Rj , where

Rj = ψj (F(ψj u)− TF ′(ψj u)ψj u)+ψj (ψj TF ′(ψj u) − Tψj F ′(ψj u))ψj u.

By Propositions 4.12 and 4.11 and Corollary 4.8,

∥Rj∥H2µ−d/2 ≤ C(∥u∥Hµ)∥ψj u∥Hµ .

We conclude the first statement with Proposition 2.12. To prove the second statement, note that for all
j ∈ N ∩ [0, k] we have

∥F(u)∥Hµ−δ j
j

+ ∥F(u)−PF ′(u)u∥H2(µ−δ j)−d/2
j

≤ C(∥u∥Hµ−δ j )∥u∥Hµ−δ j
j

. □

4C. Semiclassical paradifferential calculus. We develop a semiclassical dyadic paradifferential calculus
and a quasihomogeneous semiclassical paradifferential calculus, using scaling arguments inspired by
[Métivier and Zumbrun 2005].

4C1. Semiclassical paradifferential operators.

Definition 4.23. For all h ∈ (0, 1], define the scaling operator

τh : u( · ) 7→ hd/2u(h · ). (4-11)

(1) If b ∈ 0m,r, then define T h
b = τ−1

h T
θ

1,0
h,∗bτh .

(2) If a ∈ 0
m,r
k,δ , then define Ph

a =
∑

j∈N ψj T h
ψj aψj .

(3) If ϵ ≥ 0, then define Ph,ϵ
a = Ph

θ
ϵ,0
h,∗a

.

Proposition 4.24. If ϵ ≥ 0 and a ∈ 0
m,0
k,0 , where m ≤ 0, k ≤ 0, then suph∈(0,1] ∥Ph,ϵ

a ∥L2→L2 <∞.

Proof. Observe that θ1+ϵ,0
h,∗ a = O(1)00,0 . We conclude with Lemma 4.16. □

4C2. Semiclassical symbolic calculus.

Definition 4.25. If ah ∈ D ′(R2d) and ϵ ≥ 0, we say that ah ∈ σϵ if⋃
0<h<1

supp ah ∩ Nϵ,1 = ∅.

Proposition 4.26. Let (m, k), (m′, k ′) ∈ (R ∪ {−∞})2, r ∈ N, with r ≥ m + m′, δr ≥ k + k ′. Let
ah ∈ 0

m,r
k,δ ∩ σ0 and bh ∈ 0

m′,r
k′,δ ∩ σ0 such that, for some Rh ≥ 0 depending on h,

supp ah ∩ supp bh ⊂ {|x | ≥ Rh} × Rd . (4-12)

Then, for h > 0 sufficiently small,

Ph
ah
Ph

bh
−Ph

ah♯hbh
= O(hr (1 + Rh)

k+k′
−δr )L2→L2,

where the symbol ah♯hbh = ah♯
0,1
h,r bh ∈ h6

m+m′,r
k+k′,δ is defined by (2-4).
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Proof. By (4-12), if ψj ah ̸= 0 and ψj bh ̸= 0, then j ≳ log2(1 + Rh). We claim that

Ph
a P

h
b =

∑
j≳log2(1+Rh)

| j ′
− j |≤20

ψj T h
ψj ah

ψjψ j ′ T h
ψj ′ bh

ψ j ′

=

∑
j≳log2(1+Rh)

| j ′
− j |≤20

ψj T h
(ψj ah)♯h(ψj ′ bh)

ψ j ′ +O(hr (1 + Rh)
k+k′

−δr )L2→L2 . (4-13)

Then we conclude by ∑
j ′:| j ′− j |≤20

(ψj ah)♯h(ψj ′bh)= ψj (ah♯hbh).

It remains to prove (4-13). We use (4-1) to deduce that F(T
θ

1,0
h,∗(ψj ′ bh)

u) vanishes in a neighborhood of
ξ = 0. By (4-5), for some π ′

∈ C∞(Rd) which vanishes near ξ = 0 and equals 1 outside a neighborhood
of ξ = 0, and, for all m + m′

≤ N ∈ N,

τhT h
ψj ah

ψjψ j ′ T h
ψj ′ bh

τ−1
h = T

θ
1,0
h,∗(ψj ah)

θ
1,0
h,∗(ψjψ j ′)π ′(Dx)Tθ1,0

h,∗(ψj ′ bh)

= T
θ

1,0
h,∗(ψj ah)

T
θ

1,0
h,∗(ψjψ j ′ )⊗π

′ Tθ1,0
h,∗(ψj ′ bh)

+O(Mm,0(ψj ah))O m
0
O(2− j N hN )O−N

0
O(Mm′,0(ψj bh))O m′

0
. (4-14)

Then we use Proposition 4.9 and the fact that ah, bh ∈ σ0 to deduce

T
θ

1,0
h,∗(ψj ah)

T
θ

1,0
h,∗(ψjψ j ′ )⊗π

′ Tθ1,0
h,∗(ψj ′ bh)

= T
θ

1,0
h,∗(ψj ah)♯θ

1,0
h,∗(ψjψ j ′⊗π

′)♯θ
1,0
h,∗(ψj ′ bh)

+O(Mm,0(∇rθ
1,0
h,∗(ψj ah))M0,r (θ

1,0
h,∗(ψjψj ′))Mm′,r (θ

1,0
h,∗(ψj ′bh)))O m+m′−r

0

+O(Mm,r (θ
1,0
h,∗(ψj ah))M0,0(∇rθ

1,0
h,∗(ψjψj ′))Mm′,r (θ

1,0
h,∗(ψj ′bh)))O m+m′−r

0

+O(Mm,r (θ
1,0
h,∗(ψj ah))M0,r (θ

1,0
h,∗(ψjψj ′))Mm′,0(∇rθ

1,0
h,∗(ψj ′bh)))O m+m′−r

0
.

To estimate the remainders, we see that, for each α ∈ Nd with |α| = r ,

∂αx θ
1,0
h,∗(ψj ah)=

∑
α1+α2=α

α!

α1!α2!
∂α1

x θ
1,0
h,∗ψj∂

α2
x θ

1,0
h,∗ah

=

∑
α1+α2=α

α!

α1!α2!
O(h|α1|2− j |α1| × h|α2|2 j (k−δ|α2|))L∞ = O(hr 2 j (k−δr))L∞,

where we use 0 ≤ δ ≤ 1. Therefore, the first term in the remainder is

O(hr 2 j (k+k′
−δr))L2→L2 = O(hr (1 + Rh)

k+k′
−δr )L2→L2 .

Similar methods apply to the other two terms and we conclude that

T
θ

1,0
h,∗(ψj ah)

T
θ

1,0
h,∗(ψjψ j ′ )⊗π

′ Tθ1,0
h,∗(ψj ′ bh)

= T
θ

1,0
h,∗((ψj ah)♯h(ψj ′ bh))

+O(hr (1 + Rh)
k+k′

−δr )L2→L2 . (4-15)

The estimate (4-13) follows from (4-14) and (4-15). □
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Combining the analysis of Propositions 4.26 and 4.20, using Proposition 4.9, we obtain a similar result
for the adjoint, to the proof of which we shall omit, as it is similar to the above.

Proposition 4.27. Let (m, k) ∈ (R ∪ {−∞})2, r ∈ N, with r ≥ m, δr ≥ k. Let ah ∈ 0
m,r
k,δ ∩ σ0, such that,

for some Rh ≥ 0 depending on h, supp ah ⊂ {|x | ≥ Rh} × Rd, then, for h > 0 sufficiently small,

(Ph
ah
)∗ −Ph

a∗

h
= O(hr (1 + Rh)

k−δr )L2→L2,

where a∗

h = ζ
0,1
h,r ah ∈ h6

m,r
k,δ is defined by (2-5).

Corollary 4.28. Let ϵ ≥ 0, (m, k), (m′, k ′) ∈ (R ∪ {−∞})2, r ∈ N, with r ≥ max{m + m′, k ′
}, k ≤ 0. If

ah ∈ 0
m,r
k,1 ∩ σϵ and bh ∈ 0

m′,r
k′,1 ∩ σ0, then

Ph,ϵ
ah

Ph
bh

−Ph
(θ
ϵ,0
h,∗ah)♯hbh

= O(h(1+ϵ)r−ϵ(k+k′))L2→L2,

Ph
bh
Ph,ϵ

ah
−Ph

bh♯h(θ
ϵ,0
h,∗ah)

= O(h(1+ϵ)r−ϵ(k+k′))L2→L2 .

Proof. It suffices to observe that, if ϵ > 0 then supp θ ϵ,0h,∗ah ⊂ {|x | ≳ h−ϵ
} and θ ϵ,0h,∗ah = O(h−ϵk)0m,r

0,1
. We

conclude by Proposition 4.26. □

Corollary 4.29. Let ϵ ≥ 0, (m, k), (m′, k ′) ∈ (R ∪ {−∞})2, r ∈ N, with r ≥ m + m′, k ≤ 0, k ′
≤ 0. If

ah ∈ 0
m,r
k,1 ∩ σϵ and bh ∈ 0

m′,r
k′,1 ∩ σϵ , then, for h > 0 sufficiently small,

Ph,ϵ
ah

Ph,ϵ
bh

−Ph,ϵ
ah♯

ϵ
hbh

= O(h(1+ϵ)r−ϵ(k+k′))L2→L2,

where the symbol ah♯
ϵ
hbh = ah♯

ϵ,1
h,r ∈ h1+ϵ6

m+m′,r
k+k′,1 is defined by (2-4).

Proof. It suffices to use the identity (θ ϵ,0h,∗ah)♯h(θ
ϵ,0
h,∗bh)= θ

ϵ,0
h,∗(ah♯

ϵ
hbh). □

4C3. Some technical lemmas. The results above only concerned the high frequency regime as we require
the σϵ condition. The next lemma studies the interaction of high frequencies and low frequencies.

Lemma 4.30. Let m ∈ R, ah ∈ 00,0, bh ∈ 00,0 such that, for some R > 0,

supp ah ∈ {|ξ | ≥ R}, supp bh ∈ {|ξ | ≤ h−1 R/4}.

Then Ph
ah
Pbh = O(h∞)L2→L2 .

Remark 4.31. This lemma concerns the estimate of Ph
ah
Pbh , not Ph

ah
Ph

bh
. This is not a typo.

Proof. By definition

T̂ψj bh u(ξ)= (2π)−d
∫
χ(ξ − η, η)π(η)ψ̂j bh(ξ − η, η)û(η) dη.

The admissibility of χ implies supp T̂ψj bh u ⊂ {|ξ | ≤ h−1 R/3}. Therefore, for any | j ′
− j | ≤ 20,

ψj T h
ψj ah

ψjψ j ′ Tψj ′ bhψ j ′ = ψj T h
ψj ah

π(h Dx/R)ψjψ j ′(1 −π(2h Dx/R))Tψj ′ bhψ j ′

= ψjO(h∞)L2→L2ψ j ′ .

We conclude by Lemma 4.16. □
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Corollary 4.32. If a ∈ 0m,0 is homogeneous of degree m with respect to ξ , then, for b ∈ 00,0
∩ σ0 and

h > 0 sufficiently small,
Ph

b (h
mPa −Ph

a )= O(h∞)L2→L2 .

Proof. By a direct verification using (4-2), the homogeneity of a and the admissible function χ , and
Corollary 4.7, we see that hmPa −Ph

a = P ′

ãh
, where P ′ denotes the paradifferential quantization with any

admissible pair (π ′, χ) such that ππ ′
= π ′, and the symbol

ãh(x, ξ)= (π(hξ)−π(ξ))a(x, hξ) ∈ 00,0

satisfies the condition

supp ãh ⊂ Rd
× supp(1 −π(h · ))⊂ Rd

× {|ξ | ≤ 2h−1
}.

We conclude by Lemma 4.30. □

Lemma 4.33. If ah ∈ 0m,r
∩ σ0 with r ≥ max{m, 0} + d̃, then, for h > 0 sufficiently small,

T h
ah

− Oph(ah)= O(hr )L2→L2 .

Proof. By Calderón–Vaillancourt theorem, we have

T h
ah

− Oph(ah)= τ−1
h (T

θ
1,0
h,∗ah

− Op(θ1,0
h,∗ah))τh

= O
( ∑

|α|,|β|≤d̃

∥∂αξ ∂
β
x (σθ1,0

h,∗ah
− θ

1,0
h,∗ah)∥L∞

)
L2→L2

.

By hypothesis r ≥ max{m, 0} + |β| ≥ |β|. We use (4-5) to deduce that

∥∂αξ ∂
β
x (σθ1,0

h,∗ah
− θ

1,0
h,∗ah)∥L∞ ≲ M0,0(∂βx (σθ1,0

h,∗ah
− θ

1,0
h,∗ah))

≲ Mmax{m,0}−r+|β|,0(∂βx (σθ1,0
h,∗ah

− θ
1,0
h,∗ah))

≲ Mmax{m,0},0(∇r
x (θ

1,0
h,∗ah))

≲ hr Mm,0(ah). □

Lemma 4.34. If ah ∈ 0m,∞
∩ σ0 with m ∈ R ∪ {−∞}, then, for h > 0 sufficiently small,

Ph
ah

− Oph(ah)= O(h∞)L2→L2 .

Proof. By Lemmas 4.33 and 4.16,

Ph
ah

−

∑
j∈N

ψj Oph(ψj ah)ψj = O(h∞)L2→L2 .

Note that, uniformly in j ∈ N, we have

ψj♯h(ψj ah)♯hψj = ψj ah +ψjO(h∞)0−∞,∞ .

Therefore, ∑
j∈N

ψj♯h(ψj ah)♯hψj = ah +O(h∞)0−∞,∞ . □



PROPAGATION OF SINGULARITIES FOR GRAVITY-CAPILLARY WATER WAVES 313

4C4. Symbols with limited regularities in (x, ξ). The symbols we have encountered so far have limited
regularities in the x-variable but are smooth with respect to the ξ -variable. When studying the propagation
of singularities for nonlinear equations, we need to solve Hamiltonian equations which transfer the limited
regularity in the x-variable to the ξ -variable. Therefore we need to discuss in this section paradifferential
operators with symbols that have limited regularities in both the x- and ξ -variables. As we do not intend
to obtain optimal regularities, we shall content ourselves with an approach by approximation.

Definition 4.35. For all r ∈ N, the symbol class ϒr is the set of all a ∈ L∞

loc(R
d
× (Rd

\0)) compactly
supported in Rd

× (Rd
\0) such that N r (a) <+∞, where

N r (a)=

∑
α∈N2d ,|α|≤r

∥∂αx,ξa∥
L∞

x W d̃,∞
ξ

.

If a ∈ϒr+1 with r ∈ N, then the paradifferential operator Ta is defined via approximating a by smooth
symbols. To be precise, let�⋐Rd

×(Rd
\0) be an open neighborhood of supp a and let {an}n∈N ⊂ C∞

c (�)

such that
lim

n→∞
N r (an − a)= 0.

Note that such an approximation is always possible because a is compactly supported and we only require
the convergence with respect to the N r -norm (not the N r+1-norm)! By Proposition 4.4 and Lemma 4.6,
for all n,m ∈ N we have

∥Tan − Tam ∥L2→L2 ≲ M0,0
d̃
(an − am)≲ N 0(an − am)≤ N r (an − am).

Therefore, for all u ∈ L2, the sequence {Tan u}n∈N is Cauchy in L2 and we define

Tau = lim
n→∞

Tan u.

Clearly this definition is independent of the choice of the sequence {an}n∈N and extends the definition of
paradifferential operators with symbols that are smooth with respect to ξ . Then we define the operators
T h

a , Pa , Ph
a and Ph

a exactly as before.

Proposition 4.36. If a ∈ ϒr+1 with r ≥ 0, then for all h ∈ (0, 1], we have T h
a : L2

→ L2. Moreover,

sup
h∈(0,1]

∥T h
a ∥L2→L2 ≲ N 0(a).

Consequently, for all ϵ ≥ 0 we have

sup
h∈(0,1]

∥Ph,ϵ
a ∥L2→L2 ≲ N 0(a).

Proof. The general case h ∈ (0, 1] follows from the case h = 1 and we shall assume h = 1. Choose a
convergent sequence {an}n∈N ⊂ C∞

c (�) as above. For all u ∈ L2 with ∥u∥L2 = 1, we have

∥Tau∥L2 ≤ ∥Tau − Tan u∥L2 + ∥Tan u∥L2,

where limn→∞ ∥Tau − Tan u∥L2 = 0 by the definition of Tau and

∥Tan u∥L2 ≲ N 0(an)≲ N 0(a − an)+ N 0(a)→ N 0(a).
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Therefore, passing n → ∞ we conclude that ∥Ta∥L2→L2 ≲ N 0(a). The estimate for Ph,ϵ
a follows similarly

to Proposition 4.18. □

Combining the approximation method above and the analysis in Proposition 4.26, we obtain the
following corollaries similarly to Corollaries 4.28 and 4.29.

Corollary 4.37. Let ϵ≥ 0, (m, k)∈ (R∪{−∞})2, r ∈ N, with r ≥ 0. If ah ∈ϒr+1
∩σϵ and bh ∈0

m,r
k,1 ∩σ0,

then, for all k ′
∈ R such that r ≥ k + k ′, we have

Ph,ϵ
ah

Ph
bh

−Ph
(θ
ϵ,0
h,∗ah)♯hbh

= O(h(1+ϵ)r−ϵ(k+k′)M−m,r
k′,1 (ah)M

m,r
k,1 (bh))L2→L2,

Ph
bh
Ph,ϵ

ah
−Ph

bh♯h(θ
ϵ,0
h,∗ah)

= O(h(1+ϵ)r−ϵ(k+k′)M−m,r
k′,1 (ah)M

m,r
k,1 (bh))L2→L2 .

Proof. Let ah be a sequence of approximating symbols {an
h }n∈N ⊂ C∞

c (R
2d) ∩ σϵ which is bounded,

uniformly in h ∈ (0, 1], with respect to the norm N r ( · ). Note that for all k ′
∈ R, we have M−m,r

k′,1 ( · )≲
N r ( · ). And thus, when n ∈ N is sufficiently large, we have M−m,r

k′,1 (an
h − ah)≤ 2N r (an

h − ah)= o(1). By
Corollary 4.28, if r ≥ k + k ′, we have

Ph,ϵ
an

h
Ph

bh
−Ph

(θ
ϵ,0
h,∗an

h )♯hbh
= O(h(1+ϵ)r−ϵ(k+k′)M−m,r

k′1 (an
h )M

m,r
k,1 (bh))L2→L2

= O(h(1+ϵ)r−ϵ(k+k′)M−m,r
k′,1 (ah)M

m,r
k,1 (bh))L2→L2 + o(1)L2→L2 .

In fact, for all u ∈ S (Rd), as n → ∞, by Proposition 4.36, we have

∥Ph,ϵ
ah

Ph
bh

u −Ph
(θ
ϵ,0
h,∗ah)♯hbh

u∥L2

= ∥(Ph,ϵ
ah

−Ph,ϵ
an

h
)Ph

bh
u∥L2 + ∥Ph

(θ
ϵ,0
h,∗(ah−an

h ))♯hbh
u∥L2 + ∥Ph,ϵ

an
h
Ph

bh
u −Ph

(θ
ϵ,0
h,∗an

h )♯hbh
u∥

= o(1)(∥Ph
bh

u∥L2 + ∥u∥L2)+O(h(1+ϵ)r−ϵ(k+k′)M−m,r
k′,1 (ah)M

m,r
k,1 (bh))∥u∥L2 .

Passing n → ∞ and then use the density of S (Rd) in L2, we conclude that for all u ∈ L2, we have

∥Ph,ϵ
ah

Ph
bh

u −Ph
(θ
ϵ,0
h,∗ah)♯hbh

u∥L2 = O(h(1+ϵ)r−ϵ(k+k′)M−m,r
k′,1 (ah)M

m,r
k,1 (bh))∥u∥L2 .

The estimate for Ph
bh
Ph,ϵ

ah
−Ph

bh♯h(θ
ϵ,0
h,∗ah)

is similar. □

Corollary 4.38. If ϵ ≥ 0 and ah, bh ∈ ϒr+1, where r ∈ N, then

Ph,ϵ
ah

Ph,ϵ
bh

−Ph,ϵ
ah♯

ϵ
hbh

= O(h(1+ϵ)r )L2→L2,

where the symbol ah♯
ϵ
hbh = ah♯

0,ϵ
h,r bh is defined by (2-4).

4C5. Almost sharp Gårding inequality for paradifferential operators. We need an almost sharp Gårding in-
equality for our paradifferential calculus. There are various works on the (almost) sharp Gårding inequality
for pseudodifferential operators with limited regularities; see, e.g., [Taylor 1991; Tataru 2002; Hérau 2002].

Lemma 4.39. If ϵ ∈ (0, 1) and ah ∈ Mn×n(0
0,r ) ∩ σ0 is compactly supported, where n ∈ N, r ≥

max{d̃, ϵ−1
− 1} and Re a ≥ 0, then, for all ϵ ∈ (0, 1), there exists C > 0 such that, for all u ∈ L2,

Re(T h
ah

u, u)L2 ≥ −Ch1−ϵ
∥u∥

2
L2 .
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Proof. By Lemma 4.33 and the condition r ≥ d̃ , we may replace T h
ah

with Oph(ah) in the above inequality.
As ah ∈ σ0 and is compactly supported, we have {bh(x, ξ)= h−1+ϵah(x, hξ)}h∈(0,1] is bounded in 01−ϵ,r.
By [Taylor 1991, §2.4 (2.4.6)], as r ≥ ϵ−1

− 1, we have 1 − ϵ ≤ r/(1 + r) and thus

Re(Op(bh)u, u)L2 ≳ −∥u∥
2
L2 .

We conclude by Op(bh)= h−1+ϵ Oph(ah). □

We are mostly interested in the case where ϵ =
1
2 . In this case, the condition for r is simply r ≥

max
{
d̃,

( 1
2

)−1
− 1

}
= d̃ . Next we show that the almost sharp Gårding inequality also applies to symbols

in ϒ1+r.

Lemma 4.40. If ϵ ∈ (0, 1) and ah ∈ Mn×n(ϒ
1+r ), with n ∈ N, r ≥ max{d̃, ϵ−1

− 1}, then there exists
C > 0 such that, for all u ∈ L2,

Re(T h
ah

u, u)L2 ≥ −Ch1−ϵ
∥u∥

2
L2, Re(Ph

ah
u, u)L2 ≥ −Ch1−ϵ

∥u∥
2
L2 .

Proof. Choose a sequence a j
h ∈ Mn×n(0

0,r ) which converges to ah with respect to the norm N r ( · ) and is
uniformly compactly supported in Rd

× (Rd
\0). Apply the almost sharp Gårding inequality for a j

h ; there
exists a constant C > 0 which is independent of j such that, for all u ∈ L2, we have

Re(T h
ah

u, u)L2 = Re(T h
ah−a j

h
u, u)L2 + Re(T h

a j
h
u, u)L2 ≥ o(1)− Ch1−ϵ

∥u∥
2
L2 .

We conclude the almost sharp Gårding inequality for T h
ah

by passing j → ∞. Therefore,

Re(Ph
ah

u, u)L2 =

∑
j∈N

Re(ψj T h
ψj ah

ψj u, u)L2 =

∑
j∈N

Re(T h
ψj ah

ψj u, ψj u)L2

≳ −h1−ϵ
∑
j∈N

∥ψj u∥
2
L2 ≳ −h1−ϵ

∥u∥
2
L2 . □

4C6. Relation with quasihomogeneous wavefront sets.

Lemma 4.41. If r ≥ 0 and ah =
∑r

j=0 h j a j
h , where a j

h ∈ ϒ1+r− j such that ah is elliptic at (x0, ξ0) ∈

Rd
× (Rd

\0) in the sense that, for some neighborhood � of (x0, ξ0), we have

inf
0<h<1

inf
(x,ξ)∈�

|ah(x, ξ)|> 0,

then for all u ∈ L2 such that T h
ah

u = O(hσ )L2 , where 0 ≤ σ ≤ r , we have (x0, ξ0) ̸∈ WF σ0,1(u).

Proof. Assume that �⊂ Rd
× (Rd

\0). Let bh ∈ S−∞

−∞ with supp bh ⊂�. Then by the symbolic calculus
stated in Corollary 4.38, there exists ch =

∑r
j=0 h j c j

h , where c j
h ∈ ϒ1+r− j, such that

T h
bh

= T h
ch

T h
ah

+O(hr )L2→L2 .

Thus T h
bh

u = O(hσ )L2 . By Lemma 4.33 we have Oph(bh)u = O(hσ )L2 . We conclude by Lemma 2.14. □

Lemma 4.42. Let ϵ ≥ 0, e ∈ 0
m,r
0,0 if ϵ = 0 and e ∈ 0

m,r
0,1 if ϵ > 0, and suppose that e is homogeneous of

degree m with respect to ξ . Then, for f ∈ H s and 0 ≤ σ ≤ (1 + ϵ)r ,

WF s+σ−m
ϵ,1 (Pe f )◦ ⊂ WF s+σ

ϵ,1 ( f )◦.
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If in addition e is elliptic, i.e., for some C > 0 and |ξ | sufficiently large, |e(x, ξ)| ≥ C |ξ |m, then

WF s+σ−m
ϵ,1 (Pe f )◦ = WF s+σ

ϵ,1 ( f )◦.

Proof. For µ ∈ R, define Zµ = P|ξ |µ . Then Z−µZµ − Id ∈ O−∞

−∞ . Therefore,

f − Z−s Z s f ∈ H∞

∞
, Pe f −Pe♯|ξ |−s Z s f ∈ H s+r−m

δr + H∞,

where δ = 0 if ϵ = 0, while δ = 1 if ϵ > 0. By Lemma 2.15 and the fact that Z±s are pseudodifferential
operators with elliptic symbols in S±s

0 , we readily have

WF s+σ
ϵ,1 ( f )◦ = WF σϵ,1(Z

s f )◦, WF s+σ−m
ϵ,1 (Pe f )◦ = WF σ−(m−s)

ϵ,1 (Pe|ξ |−s Z s f )◦.

So we may assume that s = 0. Let a, b ∈ S−∞

−∞ ∩ σϵ such that

supp b ⊂ {a = 1} ⊂ supp a ⊂ R2d
\ WF σϵ,1( f ).

Then by Lemma 2.14,Opϵ,1h (a) f = O(hσ )L2 . By Corollary 4.32, Lemma 4.34, Proposition 4.26, and
Corollary 4.28,

hm Opϵ,1h (b)Pe f = Opϵ,1h (b)Ph
e f +O(h∞)L2

= Opϵ,1h (b)Ph
e Opϵ,1h (a) f + Opϵ,1h (b)Ph

e Opϵ,1h (1 − a) f +O(h∞)L2

= O(1)L2→L2 Opϵ,1h (a) f +O(hr(1+ϵ))L2

= O(hσ )L2,

proving the first statement. The second statement follows by a construction of parametrix. □

5. Asymptotically flat water waves

In this section we prove Theorem 1.6. The idea is to combine the analysis in [Alazard, Burq and Zuily
2011] with the dyadic paradifferential calculus in weighted Sobolev spaces. We shall use the following
formal notations for simplicity. Let w be a function on Rd which is nowhere-vanishing. Then for any
operator A between some function spaces on Rd and, for any function f on Rd, we introduce the following
notations whenever they are well-defined:

A(w) = wAw−1, f (w) = w f.

Note that (A f )(w) = A(w) f (w). For k ∈ R, we also define by an abuse of notation

A(k) = A(⟨x⟩
k), f (k) = f (⟨x⟩

k).

Observe that L2
k = H 0

k is an Hilbert space with the inner product

( f, g)L2
k
= ( f (k), g(k))L2 .

5A. Dirichlet–Neumann operator. We study the Dirichlet–Neumann operator on weighted Sobolev
spaces and its paralinearization. The time variable will be temporarily omitted for simplicity.
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5A1. Boundary flattening. Let η ∈ W 1,∞(Rd), such that

δ := b + inf
x∈Rd

η(x) > 0. (5-1)

Define τ(x, z)= (x, z + η(x)) and set

�̃= τ−1(�)= {−b − η(x)<z<0},

6̃ = τ−1(6)= {z=0},

0̃ = τ−1(0)= {z= − b − η(x)}.

Let τ∗ be the pullback deduced by τ , then

τ∗( dx2
+ dy2)= ( dx dz)ϱ

(
dx
dz

)
,

where

ϱ =

(
Id+(∇η) t(∇η) ∇η

t(∇η) 1

)
.

We verify that

ϱ−1
=

(
Id −∇η

−
t(∇η) 1+|∇η|2

)
.

Let ∇xz = (∇x , ∂z). Then the divergence, gradient and Laplacian with respect to the metric ϱ are

divϱ u = ∇xz · u,

∇ϱu = (∇u − ∇η∂zu,−∇η · ∇u + (1 + |∇η|2)∂zu),

1ϱu = ∂2
z u + (∇ −∇η∂z)

2u.

The exterior unit normal to ∂�̃= 6̃ ∪ 0̃ is

nϱ = ⟨(Dτ)−1
|T ∂�̃, n⟩ =

{t(−∇η, 1 + |∇η|2)/
√

1 + |∇η|2, 6̃,
t(0, 1), 0̃.

Let ψ ∈ H 1/2, and suppose that φ satisfies the equation

1xyφ = 0, φ|6 = ψ, ∂nφ|0 = 0.
Then v = (τ |�̃)∗φ satisfies

1ϱv = 0, v|6̃ = ψ, ∂nϱv|0̃ = 0. (5-2)

The Dirichlet–Neumann operator can now be written as√
1 + |∇η|2

−1
G(η)ψ = ∂nϱv|6̃ = nϱ · ∇xzv|z=0.

5A2. Elliptic estimate. Let χ0 ∈ C∞(R) with χ0(z)= 0 for z ≤ −
δ
2 and χ0(z)= 1 for z ≥ 0. Take the

decomposition v = ṽ+ψ , where

ψ(x, z)= χ0(z)ez⟨Dx ⟩ψ(x).

Lemma 5.1. Let n ∈ N, m ∈ R, µ ∈ R, k ∈ R, a ∈ Sm
0 . Then

∥∂n
z Op(a)ψ∥L2

z (R≤0,H
µ−n−m+1/2
k )

≲ ∥ψ∥Hµ
k
.
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Proof. We only prove the case where n = 0. The general case follows with a similar argument and the
identity

∂n
z ψ(x, z)=

n∑
j=0

(n
j

)
χ
(n− j)
0 (z)⟨Dx ⟩

j ez⟨Dx ⟩ψ(x).

Let
b(x, ξ)= a(x, ξ)⟨ξ⟩µ−m

∈ Sµ0 ,

λ(z, ξ)= χ0(z)ez⟨ξ⟩
⟨ξ⟩1/2

∈ L∞

z≤0S1/2
0 .

Then for all N ≥ 0,

∥Op(a)ψ∥L2
z (R≤0,H

µ−m+1/2
k )

≲ ∥Op(λ)Op(b)ψ∥L2
z (R≤0,L2

k)
+ ∥ψ∥H−N

k
.

Observe that
Op(λ)(k) − (Op(λ)(k))∗ ∈ L∞

z≤0O
−1/2
0 ,

(Op(λ)(k))2 − Op(λ2)(k) ∈ L∞

z≤0O
0
0 .

Also note that

σ(ξ) :=

∫ 0

−∞

λ2(z, ξ) dz = ⟨ξ⟩

∫ 0

−∞

χ2
0 (z)e

2⟨ξ⟩z dz ∈ S0
0 .

Therefore,

∥Op(λ)Op(b)ψ∥
2
L2

z (R≤0,L2
k)

= (Op(λ2)Op(b)ψ,Op(b)ψ)L2
z (R≤0,L2

k)
+O(∥ψ∥

2
Hµ

k
)

= (Op(σ )Op(b)ψ,Op(b)ψ)L2
k
+O(∥ψ∥

2
Hµ

k
)= O(∥ψ∥

2
Hµ

k
). □

Lemma 5.2. For all k ∈ R, we have ∥ṽ∥H1
k

≤ C(∥η∥W 1,∞)∥ψ∥H1/2
k

.

Proof. Let H 1,0
ϱ be the completion of the space

{ f ∈ C∞(�̃) : f vanishes in a neighborhood of 6̃},

with respect to the norm

∥u∥H1,0
ϱ

:= ∥∇ϱu∥L2
ϱ
= (∇ϱu,∇ϱu)1/2L2

ϱ
,

where (X, Y )L2
ϱ
:=

∫
�̃
ϱ(X, Y ) dx dz. As b <∞, by the Poincaré inequality,

∥u∥L2 ≤ C(∥η∥L∞)∥∂zu∥L2 ≤ C(∥η∥W 1,∞)∥u∥H1,0
ϱ

for all u ∈ H 1,0
ϱ . Let 0< ζ ∈ C∞(R) be such that ζ(z)= 1 for |z| ≤ 1, and ζ(z)= z for |z| ≥ 2. For some

R > 0 sufficiently large to be determined later, set w(x)= R × ζ(⟨x⟩
k/R). Then ⟨x⟩

k ≲ w(x)≲ R⟨x⟩
k ,

supp ∇w ⊂ {⟨x⟩ ≳ R1/k
}, and |∇w(x)| ≲ R(k−1)/k.

As ṽ satisfies the equation 1ϱṽ = −1ϱψ , we consider ṽ(w) as the variational solution to the equation
B(ṽ(w), · )= −L( · ), where, for u, ϕ ∈ H 1,0

ϱ ,

B(u, ϕ)= (∇(w)
ϱ u,∇(1/w)

ϱ ϕ)L2(�̃), L(ϕ)= (∇(w)
ϱ ψ (w),∇(1/w)

ϱ ϕ)L2(�̃).



PROPAGATION OF SINGULARITIES FOR GRAVITY-CAPILLARY WATER WAVES 319

Observe that ∇
(w±1)
ϱ = ∇ϱ ∓ bw, where bw = (w−1

∇w,−∇η · w−1
∇w) ∈ L∞, satisfies ∥bw∥ ≤

C(∥η∥W 1,∞)R−1/k. We verify that L and B are continuous linear and bilinear forms on H 1,0
ϱ . Moreover B

is coercive when R is sufficiently large; indeed,

B(ϕ, ϕ)= ∥∇ϱϕ∥
2
L2
ϱ
− ∥bwϕ∥

2
L2
ϱ
≥ (1 − C(∥η∥W 1,∞)R−2/k)∥∇ϱϕ∥

2
L2
ϱ
. (5-3)

Therefore, by the Lax–Milgram theorem and Lemma 5.1,

∥ṽ∥H1
k
≲ ∥ṽ(w)∥H1,0

ϱ
≲ ∥L∥

(H1,0
ϱ )∗

≲ ∥ψ∥H1 ≲ ∥ψ∥H1/2
k
. □

Proposition 5.3. Let (η, ψ) ∈ W 1,∞
× H 1/2

k , k ∈ R. Then ∥G(η)ψ∥H−1/2
k

≤ C(∥η∥W 1,∞)∥ψ∥H1/2
k

.

Proof. By Lemmas 5.1 and 5.2, v ∈ L2
z ((−δ, 0), H 1

k )∩ H 1
z ((−δ, 0), L2

k). By a classical interpolation result
(see, e.g., [Alazard, Burq and Zuily 2014, Lemma 2.19]) and the equation satisfied by v, we deduce that

v ∈ C0
z ([−δ, 0], H 1/2

k )∩ C1
z ([−δ, 0], H−1/2

k ). □

5A3. Higher regularity.

Proposition 5.4. Let (η, ψ) ∈ Hµ+1/2
× Hσ+1/2

k , where k ∈ R, µ > 1
2 +

d
2 , 0 ≤ σ ≤

[
µ−

1
2

]
. Then

∥G(η)ψ∥Hσ−1/2
k

≤ C(∥η∥Hµ+1/2)∥ψ∥Hσ+1/2
k

.

Consequently, if (η, ψ) ∈ Hµ+1/2
×Hσ+1/2,δ

k , with δ ≥ 0, k ∈ N and σ − kδ ≥ 0, then

∥G(η)ψ∥Hσ−1/2,δ
k

≤ C(∥η∥Hµ+1/2)∥ψ∥Hσ+1/2,δ
k

.

Proof. We shall only prove the cases where σ ∈ N. The remaining cases follow by interpolation. By
Section 5A2, it suffices to prove that, for all σ ∈

[
0, µ−

1
2

]
∩ N, there exists δ > 0 such that

ṽ ∈ L2((−δ, 0), Hσ+1
k )∩ H 1((−δ, 0), Hσ

k ).

Let Nσ be the corresponding norm of ṽ, we shall prove that Nσ <+∞. The case where σ = 0 has already
been proven by Lemma 5.2. It remains to bound Nσ+1 by Nσ via a mathematical induction. Note that if
χ ∈ C∞

c ((−δ, δ)), then χ∂σx ṽ satisfies the equation

−1ϱ(χ∂
σ
x ṽ)+ K ṽ =1ϱ(χ∂

σ
x ψ)− Kψ. (5-4)

where K = [1ϱ, χ∂
σ
x ]. Note that 1ϱ = P · P with P = (∇ −∇η∂z, ∂z), so

K = P · [P, χ∂σx ] + [P, χ∂σx ] · P.

By an explicit calculation

[P, χ∂σx ] = (−χ [∇η, ∂σx ]∂z − ∇ηχ ′∂σx , χ
′∂σx ).
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Integrating the following pairings by parts using ṽ|z=0 = 0, we have by Lemma 5.1 that

|(χ∂σx ṽ,Kχ∂σx ṽ)L2 L2
k
|≲ ∥P∗(χ∂σx ṽ)∥L2 L2

k
∥[P,χ∂σx ]χṽ∥L2 L2

k
+∥P(χ∂σx ṽ)∥L2 L2

k
∥[P,χ∂σx ]

∗χṽ∥L2 L2
k

≲ Nσ Nσ+1,

|(χ∂σx ṽ,Kχ∂σx ψ)L2 L2
k
|≲ ∥P∗(χ∂σx ṽ)∥L2 L2

k
∥[P,χ∂σx ]χψ∥L2 L2

k
+∥P(χ∂σx ψ)∥L2 L2

k
∥[P,χ∂σx ]

∗χṽ∥L2 L2
k

≲ ∥ψ∥Hσ+1/2(Nσ+Nσ+1),

|(χ∂σx ṽ,−1ϱ(χ∂
σ
x ψ))L2 L2

k
|≲ ∥P(χ∂σx ṽ)∥L2 L2

k
∥P(χ∂σx ψ)∥

2
L2 L2

k
≲ ∥ψ∥Hσ+1/2 Nσ+1.

In the above inequalities, the adjoint operators are taken with respect to L2L2
k . Using again the structure

of 1ϱ, we have by (5-3) that

(χ∂σx ṽ,−1ϱ(χ∂
σ
x ṽ))L2 L2

k
≳ ∥P(χ∂σx ṽ)∥

2
L2 L2

k
− ∥χ∂σx ṽ∥

2
L2 L2

k
≳ ∥χ∂σx ṽ∥

2
H1 H1

k
− N 2

σ .

Pairing (5-4) with χ∂σx ṽ and using the estimates above, for all ϵ > 0,

N 2
σ+1 ≲ ∥χ∂σx ṽ∥

2
H1 H1

k
≲ Nσ Nσ+1 + ∥ψ∥Hσ+1/2(Nσ + Nσ+1)≲ ϵN 2

σ+1 + ϵ−1(N 2
σ + ∥ψ∥

2
Hσ+1/2).

All the constants hidden by ≲ are of the form C(∥η∥Hµ+1/2). We thus conclude the induction by choosing
ϵ > 0 sufficiently small. By interpolation as in Proposition 5.3,

v ∈ C0
z ([−δ, 0], Hσ+1/2

k )∩ C1
z ([−δ, 0], Hσ−1/2

k ).

When ψ ∈ Hσ,δ
k , we apply the above estimate to ψ ∈ Hσ−δ j

j and conclude. □

5B. Paralinearization. Now we paralinearize the system of water waves. The following results are
immediate consequences of the analysis in [Alazard, Burq and Zuily 2011] and our dyadic paradifferential
calculus on weighted Sobolev spaces.

Proposition 5.5. Let (η, ψ) ∈ Hµ+1/2,δ
k ×Hµ,δ

k with µ−
1
2 ∈ N, k ∈ N and µ− δk > 3 +

d
2 . Let

B =
∇η · ∇ψ + G(η)ψ

1 + |∇η|2
, V = ∇ψ − B∇η,

and λ= λ(1) + λ(0) ∈ 0
3/2,µ−1/2−d̃
0,0 +0

1/2,µ−3/2−d̃
0,0 , where

λ(1)(x, ξ)=

√
(1 + |∇η|2)|ξ |2 − (∇η · ξ)2,

λ(0)(x, ξ)=
1 + |∇η|2

2λ(1)
{∇ · (α(1)∇η)+ i∂ξλ(1) · ∇α(1)},

and

α(1)(x, ξ)=
λ(1) + i∇η · ξ

1 + |∇η|2
.

Then
G(η)ψ = Pλ(ψ −PBη)−PV · ∇η+ R(η, ψ),

where R(η, ψ) ∈ Hµ+1/2,δ
k .

We shall define ω = ψ −PBη, which is called the good unknown of Alinhac.
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Proof. We only sketch the proof, for the key ingredients are already given in [Alazard, Burq and Zuily
2011]. We simply replace the paradifferential calculus in [loc. cit.] by our dyadic paradifferential calculus.
Let v be defined as in Section 5A. Rewrite (5-2) as

α∂2
z v+1v+β · ∇∂zv− γ ∂zv = 0,

where α = 1 + |∇η|2, β = −2∇η, γ = 1η. Applying Proposition 4.21, we obtain as in [loc. cit.,
Lemma 3.17],

Pα∂2
z u +1u +Pβ · ∇∂zu −Pγ ∂zu ∈ C([−δ, 0],Hµ,δ

k ), (5-5)

where u = v−P∂zvζ with ζ(x, z)= z + η(x). Define a± = a(1)± + a(0)± ∈ 0
1,µ−1/2−d̃
0,0 +0

0,µ−3/2−d̃
0,0 by

a(1)± (x, ξ)=
1

2α

(
−β · ξ ±

√
4α|ξ |2 − (β · ξ)2

)
,

a(0)± (x, ξ)= ±
1

a(1)− − a(1)+

(
i∂ξa

(1)
− · ∂xa(1)+ −

γ

α
a(1)±

)
.

Then we factorize (5-5) as

Pα(∂z −Pa−
)(∂z −Pa+

)u ∈ C([−δ, 0],Hµ,δ
k ).

Because Re a(1)− ≤ 0, a parabolic estimate (see e.g., [loc. cit., Proposition 3.19]) implies that

(∂zu −Pa+
u)|z=0 ∈ Hµ+1/2,δ

k .

We conclude by setting λ= (1 + |∇η|2)a+ − i∇η · ξ . □

The proofs of the following results are in the same spirit and much simpler. Their proofs are exactly the
same as in [loc. cit.], simply replacing the usual paradifferential calculus with our dyadic paradifferential
calculus, particularly Propositions 4.22 and 4.21. Therefore we shall omit the proofs.

Proposition 5.6. Let η ∈ Hµ+1/2,δ
k , with µ −

1
2 ∈ N, µ − δk > 3 +

d
2 , and define ℓ = ℓ(2) + ℓ(1) ∈

0
2,µ−1/2−d̃
0,0 +0

1,µ−3/2−d̃
0,0 , where

ℓ(2) =
(1 + |∇η|2)|ξ |2 − (∇η · ξ)2

(1 + |∇η|2)3/2
, ℓ(1) = 1

2∂ξ · Dxℓ
(2).

Then H(η)= −Pℓη+ f (η), where f (η) ∈ H2µ−2−d/2,2δ
k .

Proposition 5.7. Let (η, ψ) ∈ Hµ+1/2,δ
k ×Hµ,δ

k , with µ−
1
2 ∈ N, µ− δk > 3 +

d
2 . Then

1
2
|∇ψ | −

1
2
(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2
= PV · ∇ψ −PBPV · ∇η−PB G(η)ψ + f (η, ψ),

where f (η, ψ) ∈ H2µ−2−d/2,2δ
k .

Note that in the above paralinearization results, we do not use the spatial decay of the symbols, as
we only require the symbols to be in the classes 0m,r

0,0 . These results will only be used in the proof of
the Cauchy theorem, where the spatial decay of the symbols is not important. Later when we study the
propagation of singularities, we will heavily use the spatial decay of the symbols.
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Combining Propositions 5.5, 5.6 and 5.7, we obtain the paralinearization of the water wave system.

Proposition 5.8. Let (η, ψ) ∈ Hµ+1/2,δ
k ×Hµ,δ

k , with µ−
1
2 ∈ N, µ− δk > 3 +

d
2 . Then (η, ψ) solves the

water wave equation if and only if

(∂t +PV · ∇ +L)
(
η

ψ

)
= f (η, ψ)

where

L = Q−1
(

0 −Pλ
Pℓ 0

)
Q, with Q =

(
Id 0

−PB Pλ

)
,

and f (η, ψ)= Q−1
( f1

f2

)
∈ Hµ+1/2

k ×Hµ
k is defined by

f1 = G(η)ψ − {Pλ(ψ −PBη)−PV · ∇η},

f2 = −
1
2
|∇ψ |

2
+

1
2
(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2
+ H(η)+PV · ∇ψ −PBPV · ∇η−PB G(η)ψ +Pℓη− gη.

5C. Symmetrization.

Definition 5.9. For T > 0, γ ∈ R and two operators A,B ∈ L∞([0, T ],O
γ

0 ), we say that A ∼γ B, or
simply A ∼ B when there is no ambiguity of the choice of γ , if

A−B ∈ L∞([0, T ],O
γ−3/2
0 ).

By [Alazard, Burq and Zuily 2011], there exist symbols which depend solely on η,

γ = γ (3/2) + γ (1/2), p = p(1/2) + p(−1/2), q = q(0),

whose principal symbols are explicitly

γ (3/2) =
√
ℓ(2)λ(1), p(1/2) = (1 + |∇η|2)−1/2

√

λ(1), q(0) = (1 + |∇η|2)1/4

such that
PpPλ ∼3/2 PγPq , PqPℓ ∼2 PγPp, Pγ ∼3/2 (Pγ )∗. (5-6)

Define the symmetrizer

S =

(
Pp 0
0 Pq

)
Q.

Then the first two relations in (5-6) can be rephrased as

SL ∼

(
0 −Pγ
Pγ 0

)
S. (5-7)

where the equivalence relation ∼ is applied separately to each component of the matrices.

5D. Approximate system. Set the mollifier Jε = P jε , where jε = j (0)ε + j (−1)
ε :

j (0)ε = exp(−εγ (3/2)), j (−1)
ε =

1
2∂ξ · Dx j (0)ε .

Then uniformly for ε > 0, we have
JεPγ ∼3/2 Pγ Jε, J ∗

ε ∼0 Jε.
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Let p̃ = p̃(−1/2)
+ p̃(−3/2), with

p̃(−1/2)
=

1
p(1/2)

, p̃(−3/2)
=

−
(

p̃(−1/2) p(−1/2)
+

1
i ∂ξ p̃(−1/2)

· ∂x p(1/2)
)

p(1/2)
.

Then we have
PpP p̃ ∼0 Id, PqP1/q ∼0 Id.

Let

Lε = LQ−1
(
P p̃ JεPp 0

0 P1/q JεPq

)
Q.

Then as in (5-7) we have

SLε ∼

(
0 −Pγ
Pγ 0

)
JεS. (5-8)

We define the approximate system

(∂t +PV · ∇ Jε +Lε)
(
η

ψ

)
= f (Jεη, Jεψ). (5-9)

5E. A priori estimate. From now on we restrict ourselves to the case where δ=
1
2 . The weighted Sobolev

spaces Hµ+1/2,1/2
k ×Hµ,1/2

k are the spaces where we do the energy estimates.

Proposition 5.10. Let (η, ψ) ∈ C1([0, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ), with µ−
1
2 ∈ N, µ−

k
2 > 3 +

d
2 , solve

the approximate system (5-9). Define

MT = sup
0≤t≤T

∥(η, ψ)(t)∥Hµ+1/2
k ×Hµ

k
, M0 = ∥(η, ψ)(0)∥Hµ+1/2

k ×Hµ
k
.

Then there exists some nondecaying function C : R≥0 → R≥0 such that

MT ≤ C(M0)+ T C(MT ).

Proof. For 0 ≤ j ≤ k, set
M j

T = sup
0≤t≤T

∥(η, ψ)(t)∥Hµ+1/2− j/2
j ×Hµ− j/2

j
,

M j
0 = ∥(η, ψ)(0)∥Hµ+1/2− j/2

j ×Hµ− j/2
j

.

By [Alazard, Burq and Zuily 2011], we know

M0
T ≤ C(M0

0 )+ T C(M0
T ).

It remains to prove that, for 1 ≤ j ≤ k, we have

M j
T ≤ C(M j

0 )+ T C(MT ).

To do this, let 3µj = Pmµ− j/2
j

, and set

8=3
µ
j S

(
η

ψ

)
.

Then

(∂t +PV · ∇ Jε)8+

(
0 −Pγ
Pγ 0

)
Jε8= Fε,
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where Fε = F1
ε + F2

ε + F3
ε , with

F1
ε =3

µ
k S f (Jεη, Jεψ),

F2
ε = [∂t +PV · ∇ Jε,3

µ
j S]

(
η

ψ

)
,

F3
ε =

(
0 −Pγ
Pγ 0

)
Jε3

µ
j S

(
η

ψ

)
−3

µ
j SLε

(
η

ψ

)
.

By Propositions 5.8, 5.5, 5.6 and 5.7,

∥ f (Jεη, Jεψ)∥Hµ+1/2,1/2
k ×Hµ,1/2

k
≤ C(∥(Jεη, Jεψ)∥Hµ+1/2,1/2

k ×Hµ,1/2
k

)≤ C(∥(η, ψ)∥Hµ+1/2,1/2
k ×Hµ,1/2

k
).

Therefore,
∥F1

ε ∥L∞([0,T ],L2) ≤ C(MT ).

As PV · ∇ Jε is a scalar operator, Proposition 4.19 gives

∥[∂t +PV · ∇ Jε,3
µ
j S]∥L∞([0,T ],Hµ+1/2− j/2

j ×Hµ− j/2
j →L2×L2)

≤ C(MT ),

which implies
∥F2

ε ∥L∞([0,T ],L2) ≤ C(MT ).

By (5-8), the operator (
0 −Pγ
Pγ 0

)
JεS − SLε

sends Hµ+1/2
× Hµ to Hµ

× Hµ. Unfortunately,

R :=

(
0 −Pγ
Pγ 0

)
Jε3

µ
k S −3

µ
k SLε

=

(
0 −Pγ
Pγ 0

)
Jε[3

µ
k , S] + [SLε,3

µ
k ] +

((
0 −Pγ
Pγ 0

)
JεS − SLε

)
3
µ
k

=: (I)+ (II)+ (III)

does not send Hµ+1/2− j/2
j × Hµ− j/2

j to L2
× L2 because the subprincipal symbol cannot be canceled out

in the symbolic calculus, due to the existence of 3µj . Particularly, we need to use Proposition 4.19 to
estimate the commutators [3

µ
j , S] and [SLε,3

µ
j ], and obtain∥∥∥∥R

(
η

ψ

)∥∥∥∥
L2×L2

≲ ∥(η, ψ)∥Hµ+1− j/2
j−1 ×Hµ+1/2− j/2

j−1
+ ∥(η, ψ)∥Hµ+1/2− j/2

j ×Hµ− j/2
j

.

More precisely, the first term on the right-hand side comes from (I) and (II), while the second term comes
from (III). When j ≥ 1,

Hµ+1− j/2
j−1 × Hµ+1/2− j/2

j−1 = Hµ+1/2−( j−1)/2
j−1 × Hµ−( j−1)/2

j−1 ⊃ Hµ+1/2,1/2
k ×Hµ,1/2

k ,

and we deduce that
∥F3

ε ∥L∞([0,T ],L2) ≤ C(MT ).
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Finally by the exact same energy estimate as in [Alazard, Burq and Zuily 2011], we conclude that

M j
T ≲ ∥8∥L∞([0,T ],L2) ≤ C(M j

0 )+ T C(MT ). □

5F. Existence.

Lemma 5.11. For all (η0, ψ0) ∈ Hµ+1/2,1/2
k ×Hµ,1/2

k , where µ−
1
2 ∈ N and µ−

k
2 > 3 +

d
2 , and, for all

ε > 0, the Cauchy problem of the approximate system (5-9) has a unique maximal solution

(ηε, ψε) ∈ C([0, Tε),H
µ+1/2,1/2
k ×Hµ,1/2

k ).

Moreover, there exists T0 > 0 such that
inf

ε∈(0,1]

Tε ≥ T0.

Proof. Following [Alazard, Burq and Zuily 2011], the existence follows from the existence theory of
ODEs by writing (5-9) in the compact form

∂t X = Fε(X),

where Fε is a Lipschitz map on Hµ+1/2,1/2
k ×Hµ,1/2

k . Indeed, Jε ∈ O−∞

0 is a smoothing operator.1 The
estimates to proving the Lipschitz regularity can be carried out much as in the proof of Proposition 5.10.
The only nontrivial term that remains is the Dirichlet–Neumann operator, whose regularity follows by
combining Proposition 5.4 and the shape derivative formula (which goes back to [Zakharov 1998],

⟨ dG(η)ψ, ϕ⟩ := lim
h→0

1
h
(G(η+ hϕ)− G(η))ψ = −G(η)(Bϕ)− ∇ · (Vϕ).

A standard abstract argument then shows that Tε has a strictly positive lower bound, we refer to [Alazard,
Burq and Zuily 2011] for more details. □

Proof of Theorem 1.6. By Lemma 5.11, we obtain a sequence {(ηε, ψε)}0<ε≤1 which satisfies (5-9) and is
uniformly bounded in L∞([0, T ],Hµ+1/2,1/2

k ×Hµ,1/2
k ) for some T > 0. By (5-9), the time derivatives

{(∂tηε, ∂tψε)}0<ε≤1 are uniformly bounded in L∞([0, T ],Hµ−1,1/2
k ×Hµ−3/2,1/2

k )). By [Alazard, Burq
and Zuily 2011], there exists

(η, ψ) ∈ C([0, T ], Hµ+1/2
× Hµ), (5-10)

which solves (1-5), such that as ε→0, we have (ηε,ψε)→(η,ψ)weakly in L2([0,T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ),
and strongly in C([0, T ],Hµ−1,1/2

k ×Hµ−3/2,1/2
k ). We then prove that, for 1 ≤ j ≤ k,

8=8(η,ψ) :=3
µ
j S(η, ψ)

(
η

ψ

)
lies in C([0, T ], L2), where 3µj is defined in Proposition 5.10, and S = S(η, ψ) is the symmetrizer. Up
to an extraction of a subsequence, we may assume by weak convergence that

(η, ψ) ∈ L∞([0, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ),

(∂tη, ∂tψ) ∈ L∞([0, T ],Hµ−1,1/2
k ×Hµ−3/2,1/2

k ),

1We do not need Jε ∈ O−∞
−∞

because the operators such as PV · ∇,L, etc., are all of nonpositive orders with respect to the
spatial decay.
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with

∥(η, ψ)∥L∞([0,T ],Hµ+1/2,1/2
k ×Hµ

k )∩W 1,∞([0,T ],Hµ−1,1/2
k ×Hµ−3/2

k )
≤ C(∥(η0, ψ0)∥Hµ+1/2,1/2

k ×Hµ,1/2
k

).

This already implies that (η, ψ) is weakly continuous in Hµ+1/2,1/2
k × Hµ,1/2

k . By the analysis in the
previous section,

(∂t +PV · ∇)8+

(
0 −Pγ
Pγ 0

)
8= F,

with
∥F∥L∞([0,T ],L2) ≤ C(∥(η0, ψ0)∥Hµ+1/2,1/2

k ×Hµ,1/2
k

).

Let Jh = Oph(e
−|x |

2
−|ξ |2). Now that e−h2

|x |
2
−h2

|ξ |2
∈ S0

0 , we have the commutator estimate

[Jh,PV · ∇] = O(1)O 0
−1
, [Jh,Pγ ] = O(1)

O
1/2
−1
.

Because k ≥ 1, by the same spirit of estimating R in Proposition 5.10, we obtain the energy estimate

d
dt

∥Jh8(t)∥2
L2 ≤ C(∥(η0, ψ0)∥Hµ+1/2,1/2

k ×Hµ,1/2
k

).

Therefore, t 7→ ∥Jh8(t)∥2
L2 are uniformly Lipschitzian. Consequently, by the Arzelà–Ascoli theorem,

t 7→ ∥8(t)∥2
L2 is continuous, because Jh8→8 as h → 0. Combining the weak continuity, we deduce

by functional analysis that 8 ∈ C([0, T ], L2). By (5-10), the paradifferential calculus, and the definition
of 8, we deduce that

(η, ψ) ∈ C([0, T ],Hµ+1/2,1/2
k ×Hµ,1/2

k ).

Thus we finish the proof of Theorem 1.6. □

6. Propagation of singularities for water waves

6A. Finer paralinearization and symmetrization. To study the propagation of singularities, we need
much finer results of paralinearization and symmetrization than Propositions 5.5 and 5.8 so as to gain
regularities in the remainder terms.

Proposition 6.1. If (η, ψ) ∈ Hµ+1/2
× Hµ, with µ −

1
2 ∈ N and µ > 3 +

d
2 , then there exists λ =

λ(1) + λ(0) + · · · ∈61,µ−1/2−d̃ such that

G(η)ψ = Pλ(ψ −PBη)−PV · ∇η+ R(η, ψ),

where R(η, ψ) ∈ H 2µ−K−d/2 for some K > 0 independent of the dimension d. Moreover λ(1− j), when it
is defined, is a function of derivatives ∂αx η, where |α| ≤ 1 + j .

Proof. This theorem follows by replacing the usual paradifferential calculus with the dyadic paradifferential
calculus in the analysis of [Alazard and Métivier 2009]. In that work, the explicit expression for λ is
given. We write it down for the sake of later applications:

λ= (1 + |∇η|2)a+ − i∇η · ξ,
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where a± =
∑

j≤1 a( j)
± ∈61,µ−1−d/2 is defined as follows. Setting c = 1/(1 + |∇η|2), we have

a(1)− = ic∇η · ξ −

√
c|ξ |2 − (c∇η · ξ)2, a(1)+ = ic∇η · ξ +

√
c|ξ |2 − (c∇η · ξ)2,

a(0)− =
i∂ξa

(1)
− · ∂xa(1)+ − c1ηa(1)−

a(1)+ − a(1)−

, a(0)+ =
i∂ξa

(1)
− · ∂xa(1)+ − c1ηa(1)+

a(1)− − a(1)+

.

Suppose that a( j)
± are defined for m ≤ j ≤ 1. Then we define

a(m−1)
− =

1

a(1)− − a(1)+

∑
m≤k≤1

∑
m≤ℓ≤1

∑
|α|=k+ℓ−m

1
α!
∂αξ a(k)− Dα

x a(ℓ)+ ,

a(m−1)
+ = −a(m−1)

− .

The principal and subprincipal symbols of λ coincide with the ones given by Proposition 5.5. □

Proposition 6.2. Let (η, ψ)∈ Hµ+1/2
× Hµ, with µ−

1
2 ∈ N and µ> 3+

d
2 . Let3µ =P(γ (3/2))2µ/3 , and set

w =3µU S
(
η

ψ

)
, U =

(
−i 1

i 1

)
.

Then there exist Q ∈ M2×2(6
0,µ−1/2−2−d̃
0,0 ) and ζ ∈6

−1/2,µ−1/2−2−d̃
0,0 such that, for some K > 0 which is

independent of the dimension d, we have

(∂t +PV · ∇ +PQ)w+ iPγ
(

1 0
0 −1

)
w+

ig
2
Pζ

(
1 −1
1 −1

)
∈ Hµ−K−d/2. (6-1)

Remark 6.3. Because χ in the definition of paradifferential operators is an even function, we verify that
3µ, Pp, Pq , PB all map real-valued functions to real-valued functions. Therefore,

w =

(
u
ū

)
, with u =3µ(−i, 1)S

(
η

ψ

)
=3µPqω− i3µPpη, (6-2)

recalling that ω = ψ −PBη is the good unknown of Alinhac.

Proof. Combining Propositions 6.1 and 5.8, and moving the term gη to the left-hand side,

(∂t +PV · ∇ +L)
(
η

ψ

)
+ g

(
0
η

)
= f (η, ψ),

where

f (η, ψ)= Q−1
(

f1

f2

)
∈ H 2µ+1/2−K−d/2

× H 2µ−K−d/2

for some K > 0 and

f1 = G(η)ψ − {Pλ(ψ −PBη)−PV · ∇η},

f2 = −
1
2
|∇ψ |

2
+

1
2
(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2
+ H(η)+PV · ∇ψ −PBPV · ∇η−PB G(η)ψ +Pℓη.
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Given two time-dependent operators A,B : S → S ′, we say that A ∼ B if

A−B ∈ L∞([0, T ],O
−µ+d/2+K
0 ).

By the ellipticity of γ (3/2), p(1/2) and q(0), we can find paradifferential operators 3̃µ and S̃ by a routine
construction of a parametrix such that 3̃µ3µ ∼ Id, S̃S ∼ Id. We can find ζ ∈ 6−1/2,µ−1/2−2−d̃ with
principal symbol ζ (−1/2)

= q(0)/p(1/2), which implies (note that the only nonzero entries in the following
matrices are in the lower left corners)(

0 0
Pζ 0

)
3µS −3µS

(
0 0
1 0

)
∼ 0.

Then by (5-7) and the fact that the Poisson bracket between the symbol of 3µ and γ vanishes, we find
by the symbolic calculus two symbols A, B ∈ M2×2(6

0,µ−1/2−2−d̃) such that

A := [∂t +PV · ∇,3µS] ∼ [∂t +PV · ∇,3µS]S̃3̃µ3µS ∼ PA3
µS,

B :=

(
0 −Pγ
Pγ 0

)
3µS −3µSL ∼

((
0 −Pγ
Pγ 0

)
−3µSLS̃3̃µ

)
3µS ∼ PB3

µS.

In fact, by Proposition 4.19, the symbol A is a finite sum of symbols which is given by the symbolic
calculus of the operator [∂t +PV ·∇,3µS]S̃3̃µ, whereas the symbol B is given by the symbolic calculus
of the operator (

0 −Pγ
Pγ 0

)
−3µSLS̃3̃µ.

Clearly A is of zeroth order. The reason why B is of zeroth order is the condition (5-7) according to
which we constructed the symbols γ, p, q .

Let 8=3µS
(
η
ψ

)
, and write

g
(

0
η

)
=

(
0 0
g 0

) (
η

ψ

)
,

we obtain by the analysis above that

(∂t +PV · ∇)8+

(
0 −Pγ
Pγ 0

)
8+

(
0 0

gPζ 0

)
8= PA8+PB8+ F,

where

F = (A+B)
(
η

ψ

)
−PA+B8+

(
0 0

gPζ 0

)
8− g3µS

(
0
η

)
+3µS f (η, ψ) ∈ Hµ−K−d/2.

Finally, observe that

U
(

0 −Pγ
Pγ 0

)
U−1

= i
(
Pγ 0
0 −Pγ

)
,

U
(

0 0
Pζ 0

)
U−1

=
i
2

(
Pζ −Pζ
Pζ −Pζ

)
,

We conclude by setting
Q = −

1
2U (A + B)U−1. □
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Remark 6.4. By Proposition 6.1 and the symbolic calculus, the symbols that we have encountered, such
as λ, ζ and Q etc., are of the form a = a(m) + a(m−1)

+ · · · such that a(m− j), whenever it is defined, is a
function of (∇η, . . . ,∇ j+1η). To be precise a(m− j)

= f j (∇η, . . . ,∇
j+1η, ξ), where f j is homogeneous

of degree m− j in ξ and f0(0, . . . , 0, ξ)= |ξ |m , f j (0, . . . , 0, ξ)= 0 for j ≥ 1. Note that if η∈Hµ+1/2,1/2
k ,

then for all j ≤ µ+
1
2 − d̃ , we have ∇

jη ∈ Hµ+1/2− j,1/2
k . Therefore, by Lemma 4.15,

∇
jη ∈ W min{[2(µ+1/2− j−d̃)/3],k},∞

0,1 ∩ ⟨x⟩
− min{2(µ+1/2− j−d̃),k}L∞, (6-3)

and consequently

a(m) − |ξ |m ∈ 0
m,0
− min{2µ−1−2d̃,k},0

, a(m− j)
∈ 0

m− j,0
− min{2µ−1−2 j−2d̃,k},0

. (6-4)

As another consequence of (6-3), we also have

a(m) − |ξ |m ∈ 0
m,min{[2(µ−1/2−d̃)/3],k}

0,1 ,

a(m− j)
∈ 0

m− j,min{[2(µ−1/2− j−d̃)/3],k}

− j,1 ⊂ 0
m− j,min{[2(µ−1/2−d̃)/3],k}− j
− j,1 .

(6-5)

Lemma 6.5. Let u be defined as in (6-2). If (η, ψ)∈ Hµ+1/2
×Hµ, withµ−

1
2 ∈N, then, for 0≤σ ≤r ∈N,

with r < µ−
1
2 − 1 − d̃ ,

WF σ0,1(u)
◦
= WFµ+1/2+σ

0,1 (η)◦ ∪ WFµ+σ

0,1 (ψ)◦.

If (η, ψ) ∈ Hµ+1/2
k ×Hµ

k , with k ≤
2
3(µ− 1 − d̃), then, for 0 ≤ σ ≤

3
2 k,

WF σ1/2,1(u)
◦
= WFµ+1/2+σ

1/2,1 (η)◦ ∪ WFµ+σ

1/2,1(ψ)
◦.

Proof. Clearly if η ∈ Hµ+1/2, then (γ (3/2))2µ/3 ∈ 0µ,r , p(1/2) ∈ 01/2,r , q(0) ∈ 00,r , B ∈ 00,r. By (6-5), if
η ∈ Hµ+1/2

k , then (γ (3/2))2µ/3 ∈ 0
µ,k
0,1 , p(1/2) ∈ 01/2,k

0,1 , q(0) ∈ 00,k
0,1 , B ∈ 0

0,k
0,1 . By Lemma 4.42 and (6-2),

for either ϵ = 0 or ϵ =
1
2 ,

WF σϵ,1(u)
◦
= WF σϵ,1(3

µPpη)
◦
∪ WF σϵ,1(3

µPq(ψ −PBη))
◦

= WFµ+1/2+σ

ϵ,1 (η)◦ ∪ WFµ+σ

ϵ,1 (ψ −PBη)
◦

⊂ WFµ+1/2+σ

ϵ,1 (η)◦ ∪ (WFµ+σ

ϵ,1 (ψ)◦ ∪ WFµ+σ

ϵ,1 (PBη)
◦)

⊂ WFµ+1/2+σ

ϵ,1 (η)◦ ∪ (WFµ+σ

ϵ,1 (ψ)◦ ∪ WFµ+σ

ϵ,1 (η)◦)

= WFµ+1/2+σ

ϵ,1 (η)◦ ∪ WFµ+σ

ϵ,1 (ψ)◦.

Conversely, as WFµ+σ

ϵ,1 (PBη)
◦
⊂ WFµ+1/2+σ

ϵ,1 (η)◦, we have

WFµ+1/2+σ

ϵ,1 (η)◦ ∪ WFµ+σ

ϵ,1 (ψ)◦

= WFµ+1/2+σ

ϵ,1 (η)◦ ∪ (WFµ+σ

ϵ,1 (ψ)◦\ WFµ+1/2+σ

ϵ,1 (η)◦)

= WFµ+1/2+σ

ϵ,1 (η)◦ ∪ (WFµ+σ

ϵ,1 (ψ −PBη)
◦
\ WFµ+1/2+σ

ϵ,1 (η)◦)

= WFµ+1/2+σ

ϵ,1 (η)◦ ∪ WFµ+σ

ϵ,1 (ψ −PBη)
◦

= WF σϵ,1(u)
◦.

The lemma follows. □
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6B. Proof of Theorem 1.7. By Lemma 6.5, it is equivalent to prove the following theorem.

Theorem 6.6. Under the hypothesis of Theorem 1.7, let u be defined by (6-2), and let

(x0, ξ0) ∈ WF σ1/2,1(u0)
◦,

with 0 ≤ σ < k
2 −

3
2 . Let t0 ∈ [0, T ], and suppose that

x0 +
3
2 t |ξ0|

−1/2ξ0 ̸= 0

for all t ∈ [0, t0]. Then (
x0 +

3
2 t0|ξ0|

−1/2ξ0, ξ0
)
∈ WF σ1/2,1(u(t0))

◦.

Proof. For ν ∈ R, define

Xν
=

∑
k∈Z

H ν−k/2
k .

By Lemma 2.15, if f ∈ Xν, then WF ν1/2,1( f )◦ = ∅. Also note that if f ∈ Xν and a ∈ 6
m,r
0,1 , then

Pa f ∈ Xν−m . As k < 2µ− d , we have V ∈ Hµ
k ⊂ ⟨x⟩

k Hµ−k/2
⊂ ⟨x⟩

−k L∞, which implies

PV · ∇w ⊂ PV H−1
⊂ H−1

k ⊂ X k/2−1.

By Remark 6.4, particularly (6-4),

PQw ∈

∑
j<µ−d̃

H j
min{2µ−1−2 j−2d̃,k}

⊂

∑
j<µ−d̃

Xmin{µ−1−d̃, j+k/2}
⊂ X k/2.

Similarly

Pγw−P|ξ |3/2w ∈

∑
j<µ−d̃

H j−3/2
min{2µ−1−2 j−2d̃,k}

⊂ X k/2−3/2,

Pζw−P|ξ |−1/2w ∈

∑
j<µ−d̃

H j+1/2
min{2µ−1−2 j−2d̃,k}

⊂ X k/2+1/2.

By the hypothesis on m, we thus obtain

∂tw
′
+ i |Dx |

3/2
(

1 0
0 −1

)
w′

+
ig
2

|Dx |
−1/2

(
1 −1
1 −1

)
w′

∈ X k/2−3/2, (6-6)

where w′
= π(Dx)w, and π ∈ C∞(Rd), which vanishes near the origin, and equals 1 outside a neighbor-

hood of the origin. Moreover, we require that suppπ ⊂ {π̃ = 1} such that 1 − π̃ ∈ C∞
c (R

d) and π̃(ξ)= 0
if |ξ |2 ≤ |g|. Observe that the matrix

M = |ξ |3/2
(

1 0
0 −1

)
+

g
2
|ξ |−1/2

(
1 −1
1 −1

)
is symmetrizable when restricted to suppπ . Indeed, let

P =
1
2

(
1 + θ 1 − θ

−(1 − θ) −(1 + θ)

)
,
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where θ =
√
π̃(ξ) · (g|ξ |−2 + 1). Then P ∈ O 0

0 . For ξ ∈ suppπ , we have

P M P−1
= |ξ |3/2θ(ξ)

(
1 0
0 −1

)
.

Set

w̃ = P(Dx)w
′
= P(Dx)

(
u′

u′

)
=

(
Re u′

+ iθ(Dx) Im u′

− Re u′ + iθ(Dx) Im u′

)
,

where u′
= π(Dx)u, then

∂t w̃+ |Dx |
3/2θ(Dx)

(
1 0
0 −1

)
w̃ ∈ X k/2−3/2.

Finally, let v = Re u′
+ iθ(Dx) Im u′. Then WF σ1/2,1(u)

◦
= WF σ1/2,1(v)

◦, and

∂tv+ |Dx |
3/2θ(Dx)v ∈ X k/2−3/2.

We are left to prove that if (x0, ξ0) ∈ WF σ1/2,1(v(0))
◦, then(

x0 +
3
2 t0|ξ0|

−1/2ξ0, ξ0
)
∈ WF σ1/2,1(v(t0)).

Because θ(ξ) ∼ 1 in the high-frequency regime, a proof similar to that of Theorem 1.4(1) yields the
conclusion. □

6C. Proof of Theorem 1.9.

6C1. Hamiltonian flow. Let 8=8s : Rd
× (Rd

\0)→ Rd
× (Rd

\0) be the Hamiltonian flow of

H(x, ξ)= γ (3/2)(0, x, ξ)=

(
|ξ |2 −

(∇η0 · ξ)2

1 + |∇η0|2

)3/4

.

That is

∂s8s(x, ξ)= X H (8s(x, ξ)), 8|s=0 = IdRd×(Rd\0),

where X H = (∂ξ H,−∂x H). We use s to denote the time variable in accordance to the semiclassical time
variable in the following section. Observe that:

Lemma 6.7. For (x, ξ) ∈ Rd
× (Rd

\0), we have

8s(x, ξ)= Gϕs(x,ξ)(x, ξ),

where G is the geodesic flow defined in Section 1C5, and

ϕs(x, ξ)=
3
4

∫ s

0
G(8σ (x, ξ))−1/4 dσ.

Proof. We have Gϕ0(x,ξ)(x, ξ)= G0(x, ξ)= (x, ξ)=80(x, ξ). Then observe that

H(x, ξ)= G(x, ξ)3/4 = ϱ−1
x (ξ, ξ)3/4.
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Therefore,
d
ds

Gϕs(x,ξ)(x, ξ)=
d
ds
ϕs(x, ξ)

( d
ds

G
)
ϕs(x,ξ)

(x, ξ)

=
3
4 G(Gϕs(x,ξ)(x, ξ))

−1/4 XG(Gϕs(x,ξ)(x, ξ))

= X H (Gϕs(x,ξ)(x, ξ)).

We conclude by the uniqueness of solutions to Hamiltonian ODEs. □

Lemma 6.8. Suppose that, for some ϵ > 0, ∇η0 ∈ W 0,∞
1/2+ϵ , ∇

2η0 ∈ W 0,∞
1+ϵ . Let (x0, ξ0) ∈ Rd

× (Rd
\0)

such that the cogeodesic {(xs, ξs)=8s(x0, ξ0)}s∈R is forwardly nontrapping. Set

zs = xs − x0 −
3
2

∫ s

0
|ξσ |

−1/2ξσ dσ.

Then there exists (z+∞, ξ+∞) ∈ Rd
× (Rd

\0) such that

lim
s→+∞

(zs, ξs)= (z+∞, ξ+∞).

Consequently, by Lemma 6.7, let (x ′
s, ξ

′
s)= Gs(x0, ξ0), and then

lim
s→+∞

ξ ′

s = ξ+∞.

Proof. Because {(xs, ξs)}s∈R is forwardly nontrapping and we only consider the limiting behavior
when s → +∞, we may assume that ε0 := ∥⟨x⟩∇

2η0∥L∞ is sufficiently small. As ∇η0 ∈ L∞, we have
H( · , ξ)≃ |ξ |3/2. Then

d
ds
(xs · ξs)= ∂ξ H(xs, ξs) · ξs − xs · ∂x H(xs, ξs),

where
∂ξ H(xs, ξs) · ξs =

3
2 H(xs, ξs)=

3
2 H(x0, ξ0)≃ |ξ0|

3/2

and
∂x H(xs, ξs)=

3
4 H(xs, ξs)

−1/3∂x G(xs, ξs)

=
3
4 H(xs, ξs)

−1/3
(

2∇η0 · ξs

1 + |∇η0|2
∇

2η0ξs −
2(∇η0 · ξs)

2

(1 + |∇η0|2)2
∇

2η0∇η0

)∣∣∣∣
x=xs

.

Therefore
xs · ∂x H(xs, ξs)= O(ε|ξs |

3/2)= O(ε|ξ0|
2),

and consequently,
d
ds
(xs · ξs)≳ |ξ0|

3/2. (6-7)

So, for any bounded set B ⊂ Rd,

λ(s ≥ 0 : xs ∈ B)≲
sup{|x · ξ | : (x, ξ) ∈ B × Rd , H(x, ξ)= H(x0, ξ0)}

|ξ0|3/2
≲ sup

x∈B
|x |⟨ξ0⟩

−1/2, (6-8)

where λ is the Lebesgue measure on R. Let

E(x, ξ)= H(x, ξ)− |ξ |3/2.
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Then by the hypothesis of the decay of η0, we have E ∈ 0
3/2,1
−1−ϵ,0. By the definition of zs , we have

d
ds
(zs, ξs)= (∂ξ E,−∂x E)(xs, ξs)= O(⟨xs⟩

−1−ϵ),

where we used the conversation of H(xs, ξs) to deduce the boundedness of ξs . By (6-8),∫
∞

0
⟨xs⟩

−1−ϵ ds = (1 + ϵ)

∫
∞

0
tϵλ(s ≥ 0 : ⟨xs⟩

−1 > t) dt ≲
∫ 1

0
tϵ

√
t−2 − 1 dt <∞.

Therefore, for any 0< s− < s+ with s−
→ ∞,

|(zs+, ξs+)− (zs−, ξs−)| ≲
∫ s+

s−

⟨xσ ⟩−1−ϵ dσ → 0,

implying that (xs, ξs) is a Cauchy sequence as s → ∞. □

6C2. Construction of symbol. For h ≥ 0, and h1/2s ≤ T. Set

Hh(s, x, ξ)= γ (3/2)(h1/2s, x, ξ),

so in particular H(x, ξ)≡ H0(s, x, ξ). For h > 0, the semiclassical time variable s = h−1/2 t was inspired
by Lebeau [Lebeau 1992]; see also [Zhu 2020] for an application in theory of control for water waves.

For a ∈ C∞([0, h−1/2T )× R2d), set

L ±

h,sa = ∂sa ± {Hh, a}.

Lemma 6.9. Suppose that, for some ϵ > 0, ∇η0 ∈ W 0,∞
1/2+ϵ , ∇

2η0 ∈ W 0,∞
1+ϵ , ∇

3η0 ∈ W 0,∞
3/2+ϵ . Let

(x0, ξ0)∈ Rd
×(Rd

\0) such that the cogeodesic {(xs, ξs)=8s(x0, ξ0)}s∈R is forwardly nontrapping. Then
there exists s0 > 0, K > 0 and

χ±
∈ W 1,∞(R≥0, ϒ

µ−K−d̃)∩ W 1,∞(R≥s0, S−∞

0 ) (6-9)

in the sense that
∥Nµ−K−d̃(χ±)∥L∞(R≥0) + ∥Nµ−K−d̃(∂sχ

±)∥L∞(R≥0) <+∞,

and satisfies the following conditions:

(1) χ±(0, x, ξ) ∈ S−∞

−∞ is elliptic at (x0,±ξ0).

(2) For all t0 > 0, χ±
(
s, s

t0
x, ξ

)
∈ S−∞

−∞ is elliptic at
( 3

2 t0|ξ∞|
−1/2ξ∞,±ξ∞

)
for sufficiently large s.

(3) If � is a neighborhood of
( 3

2 t0|ξ∞|
−1/2ξ∞,±ξ∞

)
, then χ± can be chosen such that

suppχ±

(
s, s

t0
x, ξ

)
⊂�

for sufficiently large s.

Moreover, if (η, ψ) ∈ Hµ+1/2
k ×Hµ

k , with µ > 3 +
d
2 and m ≥ 2, then

L ±

h,sχ
±

∈ L∞([0, h−1/2T ], ⟨x⟩
−1ϒµ−K−d̃−1)

and
L ±

h,sχ
±

≥ O(h1/2)L∞([0,h−1/2T ],⟨x⟩−1ϒµ−K−d̃−1)
. (6-10)
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Proof. Let φ ∈ C∞
c (R

d) such that

(i) φ ≥ 0, φ(x)= 1 for |x | ≤
1
2 and φ(x)= 0 for |x | ≥ 1, suppφ = {|x | ≤ 1},

(ii) x · ∇φ(x)≤ 0 for all x ∈ Rd ,

(iii) y · ∇φ(x)= 0 for all x, y ∈ Rd, with x · y = 0.

Such φ can be constructed by setting φ(x)= ϕ(|x |), where ϕ : R → R satisfies 0 ≤ ϕ ≤ 1, ϕ(z)= 1 if
z ≤

1
2 , ϕ(z)= 0 if z ≥ 1. For ρ > 0, δ > 0, λ > 0, ν > 0 and sufficiently large s > 0, set

χ̃±(s, x, ξ)= φ

(
x − xs

ρλδs

)
φ

(
ξ ∓ ξs

ρ(δ− s−ν)

)
.

We verify that L ±

0,s χ̃
±(s, · )≥ 0 for s > 0 sufficient large. Indeed,

L ±

0,s χ̃
±(s, x,ξ)=

(
±
∂ξ H(x,ξ)−∂ξ H(xs,∓ξs)

ρλδs
−

x−xs

ρλδs2

)
∇φ

(
x−xs

ρλδs

)
φ

(
ξ∓ξs

ρ(δ−s−ν)

)
+

(
±
∂x H(xs,∓ξs)−∂x H(x,ξ)

ρ(δ−s−ν)
−ν

ξ∓ξs

ρ(δ−s−ν)2sν+1

)
φ

(
x−xs

ρλδs

)
∇φ

(
ξ∓ξs

ρ(δ−s−ν)

)
.

By (i),

suppφ
(

· − xs

ρλδs

)
⊂ {x ∈ Rd

: |x − xs | ≤ ρλδs},

suppφ
(

· ∓ ξs

ρ(δ− s−ν)

)
⊂ {ξ ∈ Rd

: |ξ ∓ ξs | ≤ ρ(δ− s−ν)},

supp ∇φ

(
· − xs

ρλδs

)
⊂

{
x ∈ Rd

:
1
2ρλδs ≤ |x − xs | ≤ ρλδs

}
,

supp ∇φ

(
· ∓ ξs

ρ(δ− s−ν)

)
⊂

{
ξ ∈ Rd

:
1
2ρ(δ− s−ν)≤ |ξ ∓ ξs | ≤ ρ(δ− s−ν)

}
.

By Lemma 6.8,

xs = x0 +
3
2

∫ s

0
|ξσ |

−1/2ξσ dσ + zs =
3
2

s|ξ∞|
−1/2ξ∞ + o(s).

Therefore, by writing

χ̃±

(
s,

s
t0

x, ξ
)

= φ

(
x −

3
2 t0|ξ∞|

−1/2ξ∞ + o(1)
ρλδt0

)
φ

(
ξ ∓ ξ∞ + o(1)
ρ(δ− s−ν)

)
,

we see that χ̃±
(
s, s

t0
x, ξ

)
is elliptic at

( 3
2 t0|ξ∞|

−1/2ξ∞,±ξ∞
)

for sufficiently large s. Moreover, if ρλδ is
sufficiently small and s is sufficiently large, then

suppφ
(

· − xs

ρλδs

)
⊂ {x ∈ Rd

: |x | ≳ s}.

Therefore, by the hypothesis on η0, we have, for (x, ξ) ∈ supp χ̃±(s, · ),

∇
2
xξ H(x, ξ)=

(
∇

2
x H ∇x∇ξ H

∇ξ∇x H ∇
2
ξ H

)
(x, ξ)=

(
O(s−2−ϵ) O(s−3/2−ϵ)

O(s−3/2−ϵ) O(1)

)
,
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and consequently, by the finite increment formula,

|∂ξ H(xs,∓ξs)− ∂ξ H(x, ξ)| ≲ s−3/2−ϵ
|x − xs | + |ξ ∓ ξs | ≲ s−1/2−ϵρλδ+ ρδ,

|∂x H(xs,∓ξs)− ∂x H(x, ξ)| ≲ s−2−ϵ
|x − xs | + s−3/2−ϵ

|ξ ∓ ξs | ≲ ρλδs−1−ϵ
+ ρδs−3/2−ϵ .

By (iii) and the estimates above,

(∂ξ H(x, ξ)− ∂ξ H(xs,∓ξs)) · ∇φ

(
x − xs

ρλδs

)
= (∂ξ H(x, ξ)− ∂ξ H(xs,∓ξs)) ·

x − xs

|x − xs |
2 (x − xs) · ∇φ

(
x − xs

ρλδs

)
= O(s−3/2−ϵ

+ λ−1s−1)(x − xs) · ∇φ

(
x − xs

ρλδs

)
,

(∂x H(xs,∓ξs)− ∂x H(x, ξ)) · ∇φ
(

ξ ∓ ξs

ρ(δ− s−ν)

)
= (∂x H(xs,∓ξs)− ∂x H(x, ξ)) ·

ξ ∓ ξs

|ξ ∓ ξs |
2 (ξ ∓ ξs) · ∇φ

(
ξ ∓ ξs

ρ(δ− s−ν)

)
= O(λs−1−ϵ

+ s−3/2−ϵ)(ξ ∓ ξs) · ∇φ

(
ξ ∓ ξs

ρ(δ− s−ν)

)
.

Finally, we fix 0< ν < ϵ, δ > 0. Then, when λ is sufficiently large, and s ≥ s0 − 1> 0, with s0 being
sufficiently large, by (ii),

L ±

0,s χ̃
±

= −
1 +O(s−1/2−ϵ

+ λ−1)

ρλδs2 (x − xs) · ∇φ

(
x − xs

ρλδs

)
φ

(
ξ ∓ ξs

ρ(δ− s−ν)

)
−

ν−O(λ)sν−ϵ

ρ(δ− s−ν)2sν+1 (ξ ∓ ξs) ·φ

(
x − xs

ρλδs

)
∇φ

(
ξ ∓ ξs

ρ(δ− s−ν)

)
≥ 0. (6-11)

We verify as in Lemma 3.2 that

χ̃±
∈ W ∞,∞(R≥s0, S−∞

0 ), L ±

0,s χ̃
±

∈ W ∞,∞(R≥s0, 0
−∞,µ−K−d̃
−1,0 ).

We then choose ρ > 0 sufficiently small such that ρλδ is small and that supp χ̃±
(
s, s

t0
x, ξ

)
⊂� when s

is large. Next, we set, for s ≥ s0,

χ±(s, x, ξ)= χ̃±(s, x, ξ).

To define χ± for s ≤ s0, we choose ρ ∈ C∞(R) such that 0 ≤ ρ ≤ 1, ρ(s)= 1 for s ≥ s0, and ρ(s)= 0
for s ≤ s0 −α for some small α > 0 to be specified later, and solve the transport equation on [0, s0],

L ±

0,sχ
±(s, x, ξ)= ρ(s)L ±

0,s χ̃
±(s, x, ξ), χ±(s0, x, ξ)= χ̃±(s0, x, ξ).

Because the vector field involved in the definition of L ±

0,s is in Wµ−K−d̃,∞ with respect to the x-variable,
we deduce that χ±

∈ W 1,∞(R≥0, ϒ
µ−K−d̃) and thus χ± satisfies (6-9). Clearly

L ±

0,sχ
±

≥ 0. (6-12)
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Moreover, because

χ±(s, x, ξ)= χ̃±(s0,8±(s0−s)(x, ξ))−
∫ s0

s
ρ(σ)L ±

0,s χ̃
±(σ,8±(σ−s)(x, ξ)) dσ,

if we choose α > 0 sufficiently small, then

χ±(0, x0,±ξ0)= χ̃±(s0, xs0,±ξs0)−

∫ s0

s0−α

ρ(σ)L ±

0,s χ̃
±(σ, xσ ,±ξσ ) dσ

≥ 1 − ∥L ±

0,s χ̃
±(σ, xσ ,±ξσ )∥L1

σ ([s0−α,s0]) > 0.

Therefore, χ±(0, · ) is elliptic at (x0,±ξ0).
To estimate L ±

h,sχ
±, we use

Hh(s, x, ξ)− H0(s, x, ξ)= Hh(s, x, ξ)− Hh(0, x, ξ)

=

∫ s

0
(∂s Hh)(σ, x, ξ) dσ = h1/2

∫ s

0
(∂tγ

(3/2))(h1/2σ, x, ξ) dσ,

and write

L ±

h,sχ
±(s, · )− L ±

0,sχ
±(s, · )= ±{Hh − H0, χ

±
}(s, · )

= ±h1/2
∫ s

0
{∂tγ

(3/2)(h1/2σ, · ), χ±(s, · )} dσ.

Observe that

∂tγ
(3/2)

= −
3
2

(
|ξ |2 −

(∇η · ξ)2

1 + |∇η|2

)−1/4(
∇η · ξ

1 + |∇η|2
∇G(η)ψ · ξ −

(∇η · ξ)2

(1 + |∇η|2)2
∇G(η)ψ · ∇η

)
.

By hypothesis and Proposition 5.4, ∇G(η)ψ ∈ Hµ−2,1/2
k ⊂ Hµ−3

2 as k ≥ 2. Therefore,

∂tγ
(3/2)(h1/2

· , · ) ∈ L∞([0, h−1/2T ], 0
3/2,µ−K−d̃
−2,0 ).

Using |x | ∼ s on suppχ±(s, · ), we have, uniformly for all s ∈ [0, h−1/2T ],

⟨s⟩{∂tγ
(3/2)(h1/2σ, · ), χ±(s, · )} ∈ L∞

σ ([0, h−1/2T ], ⟨x⟩
−1ϒµ−K−d̃−1).

Therefore,

L ±

h,sχ
±(s, · )− L ±

0,sχ
±(s, · )= ±h1/2

⟨s⟩−1
∫ s

0
O(1)L∞([0,h−1/2T ],⟨x⟩−1ϒµ−K−d̃−1)

dσ

= ±h1/2
⟨s⟩−1O(s)

⟨x⟩−1ϒµ−K−d̃−1

= O(h1/2)
⟨x⟩−1ϒµ−K−d̃−1,

which, together with (6-12), proves (6-10). □

6C3. Propagation. Now we prove Theorem 1.9. By Lemmas 6.5 and 6.7, it suffices to prove the following
propagation theorem for u defined as in (6-2).

Theorem 6.10. Under the hypothesis of Theorem 1.9, let u be defined as (6-2). Let

(x0, ξ0) ∈ WF σ0,1(u0)
◦,
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with 0≤σ <min{(µ−K−d̃)/2, 3k/2} for some K >0, such that the cogeodesic {(xs, ξs)=8s(x0, ξ0)}s∈R

is forwardly nontrapping. Set
ξ∞ = lim

s→+∞
ξs .

Then, for all t0 ∈ (0, T ], we have( 3
2 t0|ξ∞|

−1/2ξ∞, ξ∞
)
∈ WF σ1/2,1(u(t0)).

Under the semiclassical time variable s = h−1/2t , (6-1) becomes

(∂s + h1/2PV · ∇ + h1/2PQ)w+ ih1/2
(
Pγ 0
0 −Pγ

)
w+

ih1/2g
2

Pζ
(

1 −1
1 −1

)
w = Fh = O(h1/2)Hµ−K−d̃

for some K > 0. We define Lh
s , which applies to time-dependent operators A : S → S ′,

Lh
s A = ∂sA+ h1/2

[
PV · ∇ +PQ + iPγ

(
1 0
0 −1

)
+

ig
2
Pζ

(
1 −1
1 −1

)
,A

]
.

We also define L h
s , which applies to symbols of the diagonal form A =

( A+

0
0

A−

)
:

L h
s A =

(
L +

h,s A+ 0
0 L −

h,s A−

)
.

Proof of Theorem 6.10. We shall from now on write ρ = µ− K − d̃ for some sufficiently large K > 0,
also define Ih = [0, h−1/2T ] and

Y ρh = L∞

(
Ih,M2×2

( ρ∑
j=0

h jϒρ− j
))

for simplicity. More precisely, a symbol Ah =
∑ρ

j=0 h j A j
h ∈ Y ρh if

sup
h∈(0,1]

sup
s∈[0,h−1/2T ]

Nρ− j (A j
h) <+∞,

where the norm Nρ− j (A j
h) is applied to every component of A j

h . Choose a strictly increasing sequence
{λj } j≥0 ⊂ [1, 1+ ϵ) with ϵ > 0 being sufficiently small. Define χ±

j as in Lemma 6.9, where we replace φ
with φ( · /λj ). Then

suppχ±

j ⊂ {χ±

j+1 > 0}

for all j ∈ N. Set

χj =

(
χ+

j 0
0 χ−

j

)
.

We shall construct an operator Ah ∈ L∞(Ih, L2
→ L2) such that:

(1) Ah is a paradifferential operator; more precisely, there exists

A±

h ∈ W 1,∞(R≥0, ϒ
ρ+1)∩ W 1,∞(R≥s0, S−∞

0 )

for some s0 > 0, such that

Ah −Ph
Ah

= O(hρ)L∞(Ih ,L2→L2), Ah =

(
A+

h 0
0 A−

h

)
.
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Moreover, we require that
supp A±

h ⊂

⋃
j≥0

suppχ±

j .

(2) A±

h (0, x, ξ) is elliptic at (x0,±ξ0).

(3) A±

h

(
s, s

t0
x, ξ

)
∈ S−∞

−∞ is elliptic at
( 3

2 t0|ξ∞|
−1/2ξ∞, ξ∞

)
for s > 0 sufficiently large.

(4) Lh
s Ah ≥ O(hρ)L∞(Ih ,L2→L2).

We shall construct Ah of the form

Ah =

2ρ∑
j≥0

h j/2ϕ jA j
h,

where ϕ ∈ Pj , recalling the definition (3-6), and A j
h ∈ L∞(Ih, L2

→ L2). We begin by setting

A0
h = (Ph

χ0
)∗Ph

χ0
, ϕ0

≡ 1.

Therefore, by the symbolic calculus, Lemma 6.9 and Corollary 4.32 (observe that the symbol of A0
h

belongs to σ0, and that γ is a sum of homogeneous symbols),

∂sA0
h + h1/2

[
iPγ

(
1 0
0 −1

)
,A0

h

]
= 2Ph

χ0L h
s χ0

+ hPh
b0

h
+O(hρ)L∞(Ih ,L2→L2)

for some symbol b0
h such that ⟨x⟩b0

h ∈ Y ρh . This ⟨x⟩ factor comes from the spatial decay of ∂x,ξγ . Moreover,
we have supp b0

h ⊂ suppχ0, which implies ⟨s⟩b0
h ∈ Y ρh . Similarly,

h1/2
[PV · ∇,A0

h] = h1/2Ph
b1

h
+O(hρ)L∞(Ih ,L2→L2),

where ⟨s⟩b1
h ∈ Y ρh , with supp b1

h ⊂ suppχ0. Be careful that, because Q and Pζ
(1

1
−1
−1

)
are not diagonal

matrices, their commutators with A0
h do not gain an extra h, for the principal symbols do not cancel each

other. So,
h1/2

[PQ,A0
h] = h1/2Ph

b2
h
+O(hρ)L∞(Ih ,L2→L2),

h1/2
[
Pζ

(
1 −1
1 −1

)
,A0

h

]
= hPh

b3
h
+O(hρ)L∞(Ih ,L2→L2),

where ⟨s⟩b2
h, ⟨s⟩b

3
h ∈ Y ρh , with supp b2

h ∪ supp b3
h ⊂ suppχ0. By Lemma 6.9,

χ0L
h
s χ0 ≥ h1/2b4

h,

where ⟨s⟩b4
h ∈ Y ρh , with supp b4

h ⊂ suppχ0. Therefore, combining the idea described above (3-10) and the
paradifferential Gårding inequality

(
Lemma 4.40, where we take ϵ =

1
2

)
,

Ph
χ0L h

s χ0
− h1/2P4

b4
h
≥ h1/2Ph

b5
h
+O(hρ)L2→L2

for some b5
h ∈ Y ρh with supp b5

h ⊂ {χ1 > 0}. In fact, choose ch ∈ L∞(R≥0, S−∞

0 ) such that

supp ah ⊂ {ch = 1} ⊂ supp ch ⊂ suppχ1.
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Then, for all v ∈ L2, we have

⟨v, (Ph
χ0L h

s χ0
− h1/2P4

b4
h
)v⟩L2 = ⟨Pchv, (P

h
χ0L h

s χ0
− h1/2P4

b4
h
)Pchv⟩L2 +O(hρ)

≳ −Ch1/2
∥Pchv∥

2
L2 +O(hρ).

Therefore, it suffices to choose b5
h such that

Pb5
h
− CP∗

ch
Pch = O(hρ)L∞(Ih ,L2→L2),

which can be achieved by Propositions 4.26 and 4.27. Set

α0
h = ⟨s⟩(b1

h + b2
h + 2b4

h + 2b5
h) ∈ Y ρh , β0

h = ⟨s⟩(b0
h + b3

h) ∈ Y ρh .

Then
Lh

s A
0
h ≥ h1/2

⟨s⟩−1Ph
α0

h+h1/2β0
h
+O(hρ)L∞(Ih ,L2→L2).

Suppose that we have found A j
h ∈ L∞(Ih, L2

→ L2), ϕ j
∈ Pj for j = 0, . . . , ℓ− 1, and ψℓ−1

∈ Pℓ−1,
αℓ−1

h , βℓ−1
h ∈ Y ρh , with

suppαℓ−1
h ∪ suppβℓ−1

h ⊂ {χℓ > 0},

such that

Lh
s

( ℓ−1∑
j=0

h j/2ϕ jA j
h

)
≥ hℓ/2⟨s⟩−1ψℓ−1Ph

αℓ−1
h +h1/2βℓ−1

h
+O(hρ)L∞(Ih ,L2→L2). (6-13)

Then as in the proof of Theorem 1.4(2), we set

ϕℓ(s)=

∫ s

0
(1 + σ)−1ψℓ−1(σ ) dσ, Aℓh = CℓϕℓPh

χℓ
,

where the constant Cℓ is sufficiently large, such that by Lemma 6.9, in the sense of positivity of matrices,

CℓL s
h (ϕ

ℓχℓ)= Cℓ(1 + s)−1ψℓ−1χℓ + CℓϕℓL s
h χℓ

≥ ⟨s⟩−1ψℓ−1αℓ−1
h +ϕℓh1/2

⟨s⟩−1β̃ℓh

for some β̃ℓh ∈ Y ρh . By the paradifferential Gårding inequality, and a routine construction of a parametrix,
we find α̃ℓh ∈ Y ρh , with supp α̃ℓh ⊂ {χℓ+1 > 0}, such that

Ph
CℓL s

h (ϕ
ℓχℓ)

− ⟨s⟩−1Ph
ψℓ−1αℓ−1

h +h1/2ϕℓβ̃ℓh
≥ h⟨s⟩−1Ph

(ψℓ−1+ϕℓ)α̃ℓh
+O(hρ)L∞(Ih ,L2→L2).

Similar to the estimate of A0
h , by a symbolic calculus, we find αℓh, β

ℓ
h ∈ Y ρh , with

suppαℓh ∪ suppβℓh ⊂ suppχℓ
such that

Lh
s A

ℓ
h = Ph

CℓL s
h (ϕ

ℓχℓ)
+ h1/2

⟨s⟩−1ϕℓPαℓh+h1/2βℓh
+O(hρ)L∞(Ih ,L2→L2).

Summing up the two inequalities above,

Lh
s A

ℓ
h − ⟨s⟩−1ψℓ−1Ph

αℓ−1
h

≥ h1/2
⟨s⟩−1Ph

ϕℓ(aℓh+β̃ℓh)+h1/2(ψℓ−1+ϕℓ)α̃ℓh+h1/2ϕℓβℓh
+O(hρ)L∞(Ih ,L2→L2). (6-14)
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Therefore, combining (6-13) and (6-14),

Lh
s

( ℓ∑
j=0

h j/2ϕ jA j
h

)
≥ h(ℓ+1)/2

⟨s⟩−1ψℓPh
αℓh+h1/2βℓh

+O(hρ)L∞(Ih ,L2→L2),

where

ψℓ = 1 +ψℓ−1
+ϕℓ, αℓh =

ψℓ−1

ψℓ
βℓ−1

h +
φℓ

ψℓ
(αℓh + β̃ℓh), βℓh =

ψℓ−1
+ϕℓ

ψℓ
α̃ℓh +

ϕℓ

ψℓ
βℓh .

Thus we close the induction procedure.
To finish the proof, suppose that( 3

2 t0|ξ∞|
−1/2ξ∞, ξ∞

)
̸∈ WF σ1/2,1(u(t0)),( 3

2 t0|ξ∞|
−1/2ξ∞,−ξ∞

)
̸∈ WF σ1/2,1(u(t0)).

By Lemma 6.9, we can choose φ such that, for sufficiently small h > 0,

supp θ1/2,0
1/h,∗χ

+

j |s=h−1/2t0 ⊂ R2d
\ WF σ1/2,1(u(t0)),

supp θ1/2,0
1/h,∗χ

−

j |s=h−1/2t0 ⊂ R2d
\ WF σ1/2,1(u(t0)).

So by Lemmas 4.34 and 2.14,

(Ahw,w)L2 |s=h−1/2t0 = O(h2σ ).

By our construction, ϕℓ(0)= 0 for all ℓ≥ 1, so

Ah|s=0 = A0
h|s=0 = (Ph

χ0
)∗Ph

χ0
|s=0.

Because Fh = O(h1/2)Hρ , we have, by Lemma 2.15, that Ah Fh = O(hρ+1/2)L2 . Therefore, by (4),

∥Ph
χ0
w|s=0∥

2
L2 = Re(Ahw,w)L2 |s=h−1/2t0 −

∫ h−1/2t0

0
Re(Lh

s Ahw,w)L2 ds −

∫ h−1/2t0

0
Re(Ah Fh, w)L2 ds

≤ O(h2σ )+O(hρ−1/2)= O(h2σ ).

Observe that χ0|s=0 is of compact support with respect to x , and we have

Ph
χ0|s=0

= T h
βh

+O(hρ)L2→L2,

where

βh =

∑
j≥0

ψjχ0|s=0♯hψj ∈

ρ∑
j=0

h jϒρ− j

is a finite summation. By Lemma 4.41 and (6-5), we conclude that, if (x0, ξ0) ̸∈ WF σ0,1(u0) provided
σ ≤

3
2r , where

r = min
{[ 2

3(µ− 1 − d̃)
]
, k

}
,

then under the hypothesis of theorem we have r = k. □
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6D. Proof of Corollary 1.10. The case when d = 1 is trivial. For the second case, we shall prove that,
on any cogeodesic {(xt , ξt)}t∈R,

lim
t→+∞

xt · ξt = ∞, (6-15)

so no geodesics can be trapped. The proof of (6-15) is almost finished by the proof of Lemma 6.8. Indeed,
similar calculations imply

d
dt
(xt · ξt)≳ |ξ0|

2.

List of notation

WFµ(u) wavefront set
WFµδ,ρ(u) quasihomogeneous wavefront set
Op(a) pseudodifferential operator
Oph(a) semiclassical pseudodifferential operator
Opδ,ρh (a) quasihomogeneous semiclassical pseudodifferential operator
Ta paradifferential operator
Pa dyadic paradifferential operator
Ph

a semiclassical dyadic paradifferential operator
Ph,ϵ

a quasihomogeneous semiclassical dyadic paradifferential operator
a♯δ,ρh b composition of symbols
ζ
δ,ρ
h a adjoint of symbols

S, S ′ Schwartz function space and tempered distribution space
Hµ,δ

k , W r,∞
k,δ weighted Sobolev spaces

0m,r paradifferential symbol class
0

m,r
k,δ weighted paradifferential symbol class
6

m,r
k,δ weighted paradifferential polysymbol class

Mm,r, Mm,r
k,δ symbol norm and weighted symbol norm

θ
δ,ρ
h phase-space scaling operator
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