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SCATTERING OF THE THREE-DIMENSIONAL CUBIC NONLINEAR
SCHRÖDINGER EQUATION WITH PARTIAL HARMONIC POTENTIALS

XING CHENG, CHANG-YU GUO, ZIHUA GUO, XIAN LIAO AND JIA SHEN

We consider the following three-dimensional defocusing cubic nonlinear Schrödinger equation (NLS)
with partial harmonic potential: (

i @tuC .�R3 � x
2/uD juj2u;

ujtD0 D u0:
(NLS)

Our main result shows that the solution u scatters for any given initial data u0 with finite mass and energy.
The main new ingredient in our approach is to approximate (NLS) in the large-scale case by a relevant

dispersive continuous resonant (DCR) system. The proof of global well-posedness and scattering of the
new (DCR) system is greatly inspired by the fundamental works of Dodson (2012, 2016) in his study of
scattering for the mass-critical nonlinear Schrödinger equation. The analysis of (DCR) system allows us
to utilize the additional regularity of the smooth nonlinear profile so that the celebrated concentration-
compactness/rigidity argument of Kenig and Merle (2006, 2008) applies.
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1. Introduction

1.1. Background and motivation. Consider the Cauchy problem for the following family of nonlinear
Schrödinger equations in Rd, d 2 N, with harmonic oscillators:�

i @tuC�Rdu� .!
2jyj2Cjxj2/uD �jujp�1u;

ujtD0 D u0;
(1-1)
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where 1 < p <1, .y; x/ 2 Rd1 �Rd2, d D d1C d2, and d1; d2 2 N, d1 � 1. The complex-valued
function u D u.t; y; x/WR�Rd ! C is the unknown wave function. The parameter ! is 0 or 1, with
! D 1 corresponding to the quadratic potential case and ! D 0 corresponding to the partial harmonic
oscillator on the left-hand side. The parameter �D 1 corresponds to the defocusing case and �D�1 to the
focusing case. Equation (1-1) arises as models for diverse physical phenomena, including Bose–Einstein
condensates in a laboratory trap [Josserand and Pomeau 2001; Pitaevskii and Stringari 2003] and the
envelope dynamics of a general dispersive wave in a weakly nonlinear medium. It can also be derived in
the NLS with constant magnetic potential; see, for example, [Fukuizumi and Ohta 2003]. The associated
conserved mass and energy of (1-1) are given by

M.u/.t/D

Z
Rd1�Rd2

ju.t; y; x/j2 dy dx

and

Ed1;d2!;�;p.u/.t/D

Z
Rd1�Rd2

1
2
jry;xu.t;y;x/j

2
C
1
2
.!2jyj2Cjxj2/ju.t;y;x/j2C

�

pC1
ju.t;y;x/jpC1 dy dx:

It is natural to take the initial data from the following weighted Sobolev space:

u0 2
˚
f D f .y; x/ 2 L2y;x.R

d / W

kry;xf kL2y;x.Rd /Ckjxjf kL2y;x.Rd /C!kjyjf kL2y;x.Rd /Ckf kL2y;x.Rd / <1
	
:

In view of the Sobolev embedding

H 1.Rd / ,! Lq.Rd /;

8<:
2� q � 2C 4

d�2
if d � 3;

2� q <1 if d D 2;
2� q �1 if d D 1;

the initial data is of finite energy in the energy-subcritical case�
1 < p < 1C 4

d�2
if d � 3;

1 < p <1 if d D 1; 2;

and we call the critical case p D 1C 4
d�2

, d � 3, the energy critical case.
The global well-posedness of (1-1) has been established in the energy-subcritical case by R. Carles

[2002b; 2008] in the defocusing case �D 1, and by J. Zhang [2005] in the focusing case �D�1 when
the initial energy is assumed to be less than the energy of the ground state of the related elliptic equation.
The Cauchy problem for (1-1) with quadratic potential (that is, ! D 1) in the energy-critical case was
considered by R. Killip, M. Visan, and X. Zhang [Killip et al. 2009b] in the radial case, and in the general
case later by C. Jao [2016; 2018]. They proved the global well-posedness for the defocusing case and also
for the focusing case when the initial energy (resp. kinetic energy) is less than the energy (resp. kinetic
energy) of the ground state. We would also like to mention the work of C. Hao, L. Hsiao and H. Li [Hao
et al. 2007; 2008], where the authors proved the global well-posedness for (1-1) (when ! D 1) with an
additional angular momentum rotational term.
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It is well known that solutions of (1-1) with a quadratic potential (i.e., ! D 1) cannot scatter. However,
intuitively, in the defocusing case, if we turn off the confinement in some instead of all of the directions,
it should suffice for the condensate to evolve asymptotically freely: Indeed, if ! D 0, then the operator
i @t C�y should yield large time dispersion and one expects a scattering theory for (1-1). When ! D 0,
the scattering phenomena for (1-1) in the defocusing case has already been showed by P. Antonelli,
R. Carles and J. D. Silva [Antonelli et al. 2015] (see also [Carles and Gallo 2015]) in the fully weighted
space when ! D 0, � D 1, d1 D 1; 2; 3, d2 D 1 and 1C 4

d1
< p < 1C 4

d1�1
. The focusing case of

(1-1) has been investigated by A. H. Ardila and R. Carles [2021] recently when the energy is strictly less
than the static energy of the ground state. In this aspect, one expects the global-in-time well-posedness
result for the defocusing/focusing (when energy is strictly less than the static energy of the ground state)
energy-critical and subcritical cases for (1-1). On the other hand, the potential influences strongly the
asymptotic dynamics of the solution. In (1-1), the x-direction is not expected to have a global-in-time
dispersive estimate in view of Mehler’s formula

eit.�x�jxj
2/f .y; x/

D .2�i sin.2t//�
d2
2

Z
Rd2

e
i

sin.2t/.
jxj2Cj Qxj2

2
cos.2t/�x� Qx/f .y; Qx/ d Qx for all y 2 Rd1; x 2 Rd2 ;

from which we can only derive the following periodic-in-time dispersive estimate:

keit.�x�jxj
2/f .y; x/kL1x .Rd2 / . j sin.2t/j�

d2
2 kf .y; x/kL1x.Rd2 / for all t 62 �

2
Z; for all y 2 Rd1 :

Nevertheless, we have the following global-in-time dispersive estimate in the y-direction:

keit.�xC�y�jxj
2/f .y; x/kL1y L2x.Rd / . jt j

�
d1
2 kf .y; x/kL1yL2x.Rd /;

where we used the dispersive estimate for the semigroup eit�y together with the L2-norm conservation
for the unitary of the operator eit.�x�jxj

2/. Thus, according to the scattering theory for the nonlinear
Schrödinger equations without potential, see for instance [Staffilani 2013; Tao 2006], one expects a
scattering result in the weighted Sobolev space when ! D 0 in the case 1C 4

d1
� p � 1C 4

d1Cd2�2
, with

d1 C d2 � 2. Generally, to obtain the scattering in the intercritical case, one relies on the Morawetz
estimate; see for instance [Antonelli et al. 2015]. It is difficult to deal with the scattering on the two
endpoints p D 1C 4

d1
and p D 1C 4

d1Cd2�2
, which correspond to the usual d1-dimensional mass-

critical and .d1Cd2/-dimensional energy-critical nonlinear Schrödinger equation without potentials
respectively. For the endpoint p D 1C 4

d1Cd2�2
, the scattering is a byproduct of the proof of the

global well-posedness, and we need to use induction on the energy method [Colliander et al. 2008]
or the concentration-compactness/rigidity argument [Kenig and Merle 2006; 2008] to prove the global
well-posedness. It seems to us one of the main difficulties is to establish a more delicate global-in-time
Strichartz estimate which should be a lot combination of the local Strichartz estimate of three-dimensional
Schrödinger equations as in [Barron 2021; Hani and Pausader 2014]. We refer to [Killip and Vis,an 2013]
for more illustration on the proof of the scattering of the nonlinear Schrödinger equations at critical
regularity Sobolev space. For the endpoint p D 1C 4

d1
, global well-posedness is quite easy to get, and
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the main obstacle is to show the scattering. We cannot prove the scattering by the Morawetz estimate
even when the initial data lies in a better regular Sobolev space H 1

y;x because the Morawetz estimate only
provides an a priori estimate of the nonendpoint Strichartz norm on the PH 1=4

y L2x-level but cannot give an
a priori estimate of the Strichartz norm on the L2-level, which is not enough to yield the scattering in
this case. Therefore, to show the scattering, we still need to use the concentration-compactness/rigidity
argument [Kenig and Merle 2006; Kenig and Merle 2008] and its mass-critical counterpart [Dodson 2012;
2016a; 2016b; Killip et al. 2008; 2009a; Killip and Vis,an 2013; Tao et al. 2007a; 2008] to show the
finiteness of the L2-level Strichartz norm. In the L2-level Strichartz norm, we need to consider not only
the space and time translations of (1-1) as in the case 1C 4

d1
< p � 1C 4

d1Cd2�2
, but also the partial

Galilean invariance
u.t; y; x/ 7! e�it j�0j

2

eiy��0u.t; y � 2�0t; x/;

where �0 2 Rd1, of (1-1). In addition, by a limitation operation, it is realized that a new mass-critical
nonlinear Schrödinger system can be embedded into (1-1): this new mass-critical nonlinear Schrödinger
system inherits the above invariance and also has the scaling invariance in space-time, and its global
well-posedness and scattering should be proven by the argument from [Dodson 2012; 2016a; 2016b;
Killip et al. 2008; 2009a; Killip and Vis,an 2013; Tao et al. 2007a; 2008].

In this paper, we will consider the following Cauchy problem for the defocusing cubic NLS on R3:�
i@tuC .�R3 � x

2/uD juj2u;

ujtD0 D u0;
(1-2)

where uD u.t; y; x/WR�R2 �R! C is an unknown wave function. The following mass and energy
quantities are conserved by the evolution of (1-2):

M.u.t//D

Z
R2�R

ju.t; y; x/j2 dy dx;

E.u.t//D
Z

R2�R

1
2
jry;xu.t; y; x/j

2
C
1
2
x2ju.t; y; x/j2C 1

4
ju.t; y; x/j4 dy dx:

(ME)

Motivated by the mass and energy formulations, we take the initial data in the following weighted Sobolev
space:

u0 2†.R
3/ WD ff 2 L2y;x.R

3/ W kf k†.R3/ WD kryf kL2y;x.R3/Ckf kL2yH1x.R2�R/ <1g;

with kf kH1x.R/ D kf kH1
x .R/
Ckxf kL2x.R/: (1-3)

By the Sobolev embedding H 1.R3/ ,! Lq.R3/, 2� q � 6, the initial data is of finite mass and energy.
Observe that (1-2) is a special case of (1-1), namely, corresponding to d1 D 2, d2 D 1, ! D 0, �D 1,

p D 1C 4
d1
D 3 in (1-1). In this case, the scattering phenomena is not yet clear. As we are in the energy

subcritical case 1<pD 3< 5, the equation (1-2) is globally well-posed and the scattering of the solutions
follows in the small initial data case ku0k†� 1, which is a byproduct of the small-data well-posedness
theorem. We will briefly explore these results in Section 3 and outline the ideas of the proofs, as we did
not find them in the literature.
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1.2. Main results. Our main result in this article is the following scattering result for solutions of the
defocusing cubic NLS (1-2). Recall that †.R3/ is defined in (1-3).

Theorem 1.1. For any initial data u0 2†.R3/, there is a unique global solution u 2 C 0t .R; †.R
3// of

(1-2). Moreover, the solution scatters; namely there exist u˙ 2†.R3/ such that

ku.t/� eit.�R3
�x2/u˙k†.R3/! 0 as t !˙1:

In order to treat the general initial data with finite (but not necessarily small) †-norm ku0k† <1, we
turn to the celebrated concentration-compactness/rigidity argument developed by C. E. Kenig and F. Merle
[2006; 2008], where one key ingredient is the linear and nonlinear profile decompositions for solutions with
bounded †-norm. The proof of Theorem 1.1 shall rely on (a corollary of) Theorem 1.2 given below. More
precisely, we shall use Theorem 1.2 to prove the core result Theorem 4.9 in Section 4.2, which in return
gives Theorem 4.10 in Section 4.3. Theorem 4.10 will be used later in the proof of Theorem 1.1 in Section 5.

As for the nonlinear profile decomposition, we will consider a sequence of solutions exhibiting an
extreme behavior to study the concentration of the data. More precisely, we need to study the behavior of
the nonlinear profile u� when �!1. The (simplified) nonlinear profile u�, �>0, is the solution of (1-2)�

i@tu�C�yu�C .�x � x
2/u� D ju�j

2u�;

u�.0; y; x/D
1
�
�
�y
�
; x
�
;

(1-4)

taking the initial data by rescaling the function � only in the y-variable. Set

w�.t; y; x/D e
�it.�x�x

2/u�.t; y; x/;

and we obtain from (1-4) the following evolutionary equation for w�:�
.i@t C�y/w� D e

�it.�x�x
2/.jeit.�x�x

2/w�j
2eit.�x�x

2/w�/;

w�.0; y; x/D
1
�
�
�y
�
; x
�
:

If we define w�.t; y; x/D Qv�
�
t
�2
; y
�
; x
�
, then Qv satisfies�

.i@t C�y/ Qv D e
�i�2t.�x�x

2/.jei�
2t.�x�x

2/ Qvj2ei�
2t.�x�x

2/ Qv/;

Qv.0; y; x/D �.y; x/:

Denote by …n the orthogonal projector on the n-th eigenspace of ��x C x2 (see Section 2 below for
more details). Applying …n to the equation for Qv, we arrive at the following equation for Qvn D…n Qv:�

.i@t C�y/ Qvn D e
i�2t.2nC1/…n

�P
n1;n2;n32N e

�i�2.2n1�2n2C2n3C1/t Qvn1
NQvn2 Qvn3

�
;

Qvn.0; y; x/D �n.y; x/ WD…n�.y; x/:

Letting �!1, we can formally get a limiting equation�
.i@t C�y/vn.t; y; x/D

P
n1;n2;n32N
n1�n2Cn3Dn

…n.vn1 Nvn2vn3/.t; y; x/;

vn.0; y; x/D �n.y; x/:
(1-5)
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By reversing the above process, we get an approximation solution of u�:

Qu�.t; y; x/D e
it.�x�x

2/
X
n2N

�
1

�
vn

�
t

�2
;
y

�
; x

��
; .t; y; x/ 2 R�R2 �R; (1-6)

where vn is the solution of (1-5).
In the above deduction, the following equivalent form dispersive continuous resonant (DCR) system

enters naturally: �
i @tvC�R2v D F.v/;

v.0; y; x/D �.y; x/;
(DCR)

where the nonlinear term F.v/ is defined by

F.v/ WD
X

n1;n2;n3;n2N
n1�n2Cn3Dn

…n.vn1 Nvn2vn3/:

This (DCR) system can be viewed as a dispersive version of the (CR) system derived by E. Faou,
P. Germain, and Z. Hani [Faou et al. 2016] in their study of the weak turbulence of the nonlinear
Schrödinger equations on compact domains; see also [Buckmaster et al. 2019; Colliander et al. 2010;
Germain et al. 2015; 2016; Dartois et al. 2020; Fennell 2019]. This new (DCR) system is very similar to
the resonant nonlinear Schrödinger system arising in [Biasi et al. 2018; Cheng et al. 2020a; 2020b; Hani
and Pausader 2014; Hani et al. 2015]. The latter has nice local well-posedness theory, and also scatters
for small data in L2yH1x .

In our second main result, we prove the following large-data global well-posedness and scattering
theorem for (DCR), which might be of independent interest.

Theorem 1.2. For any � 2 L2yH1x.R2 � R/, there exists a unique global solution v of (DCR) in
C 0t L

2
yH1x.R�R2 �R/ satisfying

kvkL1t L
2
yH1x\L4t;yH

1
x.R�R2�R/ � C;

where C D C.k�kL2yH1x / is a constant. Moreover, the solution scatters; namely there exist v˙ 2 L2yH1x
such that

kv.t/� eit�yv˙kL2yH1x.R2�R/! 0 as t !˙1:

Theorem 1.2 shall be proved in the final two sections and it takes a vast bulk of the paper. We prove
it again by the concentration-compactness/rigidity argument from [Kenig and Merle 2006; 2008]. The
system (DCR) is essentially a defocusing mass-critical nonlinear Schrödinger system. In the proof,
we follow the framework for scattering of mass-critical nonlinear Schrödinger equation [Dodson 2012;
2016a; 2016b; Tao et al. 2008] and our argument is also partly inspired by the scattering of the resonant
Schrödinger system derived from the NLS on cylinders [Cheng et al. 2020a; 2020b; Hani and Pausader
2014; Hani et al. 2015; Yang and Zhao 2018; Zhao 2019].

We would like to comment briefly on the relation between (DCR) and weak turbulence.
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Remark 1.3 (the (DCR) system and weak turbulence). We can rewrite (1-5) in the Hermite coordinate (see
(2-1) below for the definition of the Hermite functions): taking the solution vn.t; y; x/D cn.t; y/hn.x/
in (1-5), we get an equivalent but simplified equation

.i@t C�R2/cn.t; y/D
X

n1; n2; n32N
n1�n2Cn3Dn

Dn1; n2; n3; ncn1 Ncn2cn3 ; (1-7)

where Dn1;n2;n3;n is the number such that …n.hn1 Nhn2hn3/.x/ D Dn1; n2; n3; nhn.x/, x 2 R. It would
be very interesting to understand Dn1;n2;n3;n.1 Compared with the success of the proof of the weak
turbulence on cylinders given by Z. Hani, B. Pausader, N. Tzvetkov, and N. Visciglia [Hani et al. 2015],
the unclear expression of the nonlinear term of the (DCR) system seems to be one of the main obstacles
to study the weak turbulence of the nonlinear Schrödinger equations with (partial) harmonic potentials;
for more information we refer to [Hani and Thomann 2016]. However, there are some interesting recent
attempts toward this direction in [Gérard et al. 2019; Germain and Thomann 2016].

Remark 1.4 (focusing NLS equations with harmonic potentials). In this paper, we only consider the
scattering of the defocusing NLS with partial harmonic potentials. It is an interesting problem to study
the scattering of the focusing version of (1-2). It seems difficult to find the threshold of the scattering
of the focusing NLS, and if we were able to find it, then most likely the scattering can be proven by
following the argument in [Dodson 2012; 2015; 2016a; 2016b; Killip et al. 2009a; Tao et al. 2007a; 2008].
We refer to [Ardila and Carles 2021; Bellazzini et al. 2017; Cao et al. 2022; Zhang 2020; Stanislavova
and Stefanov 2021] for the study of the instability/stability of soliton which may give some clues on the
threshold of the scattering of the focusing NLS.

1.3. Brief outline of the proofs. The model with partial harmonic potential studied in this paper can be
compared to the NLS on wave-guide R2 �T, which was considered previously in [Yang and Zhao 2018;
Cheng et al. 2020a]. One key difference is that in our case, the linear operator has more complicated
spectral theory; for example the eigenfunctions cannot be written explicitly.

The proof of this paper contains two main ingredients. In the first part, we prove that Theorem 1.2
(or more precisely, the consequence Theorem 4.10 of Theorem 1.2) implies Theorem 1.1. The proof of
Theorem 1.1 has a very standard skeleton based on the concentration-compactness/rigidity argument intro-
duced by C. Kenig and F. Merle [2006], and it consists of three main steps: linear profile decomposition,
the existence of an almost periodic solution to the defocusing cubic NLS (1-2), and a rigidity theorem.

First of all, we establish the linear profile decomposition of Schrödinger operator with partial harmonic
potentials; namely the linear solutions can be divided into several orthogonal bubbles modulo some trans-
forms. This can be viewed as a vector-valued version of linear profile decomposition of the Schrödinger
equation in L2, which was first established by F. Merle and L. Vega [1998] in two dimensions, and then
extended to general dimensions; see for instance [Killip and Vis,an 2013] for more details. The proof of
this part is very similar to the wave-guide case in [Cheng et al. 2020a], and it is essentially related to the

1In [Biasi et al. 2019a; 2019b; Evnin 2020], the authors studied a special structure of the constant Dn1;n2;n3;n, and proved
that it satisfies a certain identity.
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description of the lack of compactness of the embedding eit.�R3
�x2/
W†.R3/ ,! L4t;yH

1��0
x for some

fixed 0 < �0 < 1
2

.

In the second step, we prove the existence of a critical element by the construction of approximation
solutions. Since the nonlinear flow is not commutable with the transform groups derived in the first step,
in order to construct the approximation solutions, we need to assume that the limiting equations, which
is exactly the (DCR) system, is globally well-posed and scatters, as stated in Theorem 1.2. The idea of
using limiting equations was first considered in [Ibrahim et al. 2011], and was widely used in [Cheng et al.
2020a; 2020b; Hani and Pausader 2014; Ionescu and Pausader 2012; Jao 2016]. Then, much as in [Cheng
et al. 2020a], we use the normal form method to exploit additional decay to approximate the nonlinear
profile. In the wave-guide case [Cheng et al. 2020a], the eigenfunctions, which are the plain waves eiy�j,
can be easily computed, and thus the Fourier coefficients are summed naturally. The difficulty in this
step is that we need to sum up the spectral projections of the solution properly. To some extent, the main
innovation of this paper is that we utilize the additional regularity of the smooth nonlinear profile to
update the l1 summation of projections to l2.

In the third step, we borrow the idea used in [Cheng et al. 2020a] to prove the nonexistence of a nontrivial
critical element. The key point is the use of the interaction Morawetz estimate developed by J. Colliander,
M. Keel, G. Staffilani, H. Takaoka and T. Tao [Colliander et al. 2004], which is very important in the
remarkable work [Colliander et al. 2008] on scattering for energy-critical NLS in three dimensions, and
was further developed in [Planchon and Vega 2009; Colliander et al. 2009]. Then, we can arrive at the con-
tradiction similar to [Kenig and Merle 2006; 2008] using the compactness property of the critical element.

The second part of this paper is devoted to the proof of Theorem 1.2. The proof is greatly inspired by
the fundamental work of B. Dodson [2012; 2016a; 2016b] in his study of mass critical NLS. We also refer
to [Yang and Zhao 2018], and the principal difference between that work and this paper is that our system
(DCR) involves the spectral projection of Schrödinger operator with harmonic potential. Here, one key
observation is that the (DCR) system is scaling invariant, which indicates that the classical method as
developed in [Cheng et al. 2020a; 2020b; Tao et al. 2008] could be potentially applied to our situation.
Indeed, the linear profile decomposition developed for the Schrödinger propagator in L2yH1x.R2�R/ (see
Theorem 4.1) can be directly applied here. The essential difficulty occurring in the proof of Theorem 1.2
lies in precluding the almost periodic solution to the (DCR) system.

There are two cases of the critical element: high-to-low frequency cascade and the quasisoliton
scenarios. We exclude these scenarios based on the rigidity argument of B. Dodson [2012; 2016a; 2016b].
The key tool is to establish a vector-valued version of the two-dimensional long-time Strichartz estimate
in [Dodson 2016b]. The long-time Strichartz estimate is developed by B. Dodson to show the scattering
of the mass-critical nonlinear Schrödinger equations and has been proved as an important technique in
the scattering theory of nonlinear dispersive and wave equation. We refer to [Dodson 2019; Dodson and
Lawrie 2015; Dodson et al. 2017; 2020; Killip and Vis,an 2012; Vis,an 2012; Murphy 2014; Rosenzweig
2018] for more applications of this powerful tool. The proof of the long-time Strichartz estimate in our
situation here is rather technical due to the spectral projection and the failure of the two-dimensional
endpoint Strichartz estimate. For the high-to-low frequency cascade scenario, it is more delicate and
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we have to exploit some additional regularity of the critical element through the long-time Strichartz
estimate, and then preclude it using energy conservation law. For the quasisoliton scenario, we mainly
use the long-time Strichartz estimate to control the error terms of low frequency cut-off of the interaction
Morawetz identity. With all these ingredients at hand, the contradiction argument of C. E. Kenig and
F. Merle [2006; 2008] allows us to conclude the proof.

The rest of the paper is organized as follows. Section 2 contains some basic notation and preliminaries.
In Section 3, we record the local well-posedness, the small-data scattering result and the stability theory
for system (1-2). For the convenience of the readers, we present the proofs in the Appendix. In Section 4,
we will give the linear profile decomposition for data in †.R3/ and also analyze the nonlinear profiles;
therefore we reduce the nonscattering in †.R3/ to the existence of an almost-periodic solution. In
Section 5, we will show the extinction of such an almost-periodic solution. The scattering of the (DCR)
system shall be proved in Section 6, where the proofs of two auxiliary theorems are left to the final
Section 7.

2. Basic notation and preliminaries

In this section, we introduce some basic notation used in this paper. We will use the notation X . Y
whenever there exists some constant C >0 so that X �CY. Similarly, we will write X �Y if X .Y .X.
We use N to denote the set of all nonnegative integers.

Throughout the paper, we will take �0 to be some small fixed number in
�
0; 1
2

�
.

2.1. Fourier transform and Sobolev spaces. For any a 2 Rd, d 2N, the Japanese bracket hai is defined
to be hai D .1Cjaj2/1=2. We define the Fourier transform Of WRd ! C of a function f WRd ! C as

Of .�/D
1

.2�/
d
2

Z
Rd
e�iz��f .z/ dz:

For each s 2 R, the fractional differential operator jrjs is defined by 1jrjsf .�/ D j�js Of .�/. We also
define hris as an operator between function spaces by 2hrisf .�/D .1Cj�j2/s=2 Of .�/. In the following
we will use hrxis to emphasize the application of the operator on the x-variable.

We will frequently use the partial Fourier transform Fyf of a complex-valued function f WR2�R!C

defined as

Fyf .�; x/D
1

2�

Z
R2
e�iy��f .y; x/ dy; � 2 R2;

where x 2 R is viewed as a parameter.
We shall also use the Littlewood–Paley projections. Take a cut-off function � 2 C1..0;1// such

that �.r/ D 1 if r 6 1 and �.r/ D 0 if r > 2. For N 2 2Z, let �N .r/ D �.N�1r/ and �N .r/ D
�N .r/ � �N=2.r/. We define the Littlewood–Paley dyadic operator P6Nf WD F�1.�N .j�j/ Of .�//
and PNf WD F�1.�N .j�j/ Of .�//. We also define the partial Littlewood–Paley projections to be
P
y
�Nf .y; x/ WD F�1y .�N .�/.Fyf /.�; x// and P yNf .y; x/ WD F�1y .�N .j�j/.Fyf /.�; x//.
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Next, we denote the usual Lebesgue space as Lp.Rd /, and sometimes we write kf kp D kf kLp.Rd /
for abbreviation. For any s 2 R, we define the Sobolev space as

W s;p.Rd / WD ff 2 Lp.Rd / W kf kW s;p.Rd / WD khri
sf kLp.Rd / <C1g:

We also define H s.Rd /DW s;2.Rd /.

2.2. Harmonic oscillator and Hermite-Sobolev spaces. The harmonic oscillator ��xC x2, x 2 R, has
been studied by many authors, and we refer to the lecture notes of B. Helffer [1988] and also the seminal
work of H. Koch and D. Tataru [2005b] for a few basic facts that we shall record below. The harmonic
oscillator admits a Hilbertian basis of eigenvectors for L2.R/, and, for each n 2 N, we will denote the
n-th eigenspace by En and the corresponding eigenvalue by �nD 2nC1. Each eigenspace En is spanned
by the Hermite functions hn, where

hn.x/D
1

p
nŠ 2

n
2�

1
4

.�1/ne
x2

2
dn

dxn
.e�x

2

/ (2-1)

for n 2 N. We also let …n be the orthogonal projector on the n-th eigenspace En of ��xC x2.
For s 2 R and p � 1, the Hermite-Sobolev space Ws;p.R/ is defined as

W s;p.R/D fu 2 Lpx .R/ W kukWs;p WD khri
sukLpx Ckj � j

sukLpx <1g:

In particular, if p D 2, we denote W s;2
x .R/ by Hsx.R/, and the H1x.R/-norm was given in (1-3). By

[Yajima and Zhang 2004], we have

kukWs;p
x
� k.��C x2/

s
2ukpCkukp:

The Hermite-Sobolev spaces satisfy the usual Sobolev embedding; see for instance [Cazenave 2003].
These spaces also have other stronger Hermite-Sobolev embedding. For instance, we have

L4x.R/ ,!H�1.R/: (2-2)

By duality, to prove (2-2), we only need to show H1.R/ ,! L4=3.R/. This follows from Hölder’s
inequality as follows:

kf kL4=3 . khxi�1kL4xkhxif kL2x . k.1Cjxj
2/
1
2f kL2x . kf kH1x :

The Hermite-Sobolev space LpyHsx with 1� p <1 and s 2 R is defined by

LpyH
s
xD

�
f 2LpyL

2
x.R

2
�R/ W kf kLpyHsx.R2�R/ WD

�Z
R2
kf .y; �/k

p

Hsx.R/
dy
�1
p

D

�Z
R2





�X
n2N

.2nC1/sjfn.y;x/j
2

�1
2




p
L2x.R/

dy
�1
p

<1

�
;
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where fnD…nf . Similarly, for any time interval I �R and u W I �R2�R!C, we define the space-time
norms Lpt W

s;q
y Lrx and Lpt L

q
yHsx of u as

kukLpt W
s;q
y Lrx.I�R2�R/ WD

�Z
I

�Z
R2
khryi

su.t; y; � /k
q

Lrx.R/
dy
�p
q

dt
�1
p

;

kukLpt L
q
yHsx.I�R2�R/ WD

�Z
I

�Z
R2
ku.t; y; � /k

q

Hsx.R/
dy
�p
q

dt
�1
p

;

where 1 � p; q; r �1, and s 2 R. When s D 0 and p D q D r , we shall write Lpt;y;x for Lpt W
s;p
y Lrx .

Similarly, when pD q, we shall write Lpt;yHsx for Lpt L
q
yHsx . We also use the following space-time norm.

For any fun.t; y; x/gn2N, with .t; y; x/ 2 I �R2 �R, we set

kunkLpt L
q
yL

r
xl
2
n.I�R2�R�N/ D kkunkl2nkL

p
t L

q
yL

r
x.I�R2�R/;

where 1� p; q; r �1.

Lemma 2.1. The Dirac function ı0.x/ belongs to H�1x .R/.

Proof. By definition, we have

kı0.x/k
2
H�1x
D

1X
nD0

.2nC 1/�1jcnj
2; (2-3)

where cn D hı0.x/; hn.x/i D hn.0/. Since

e�x
2

D

1X
mD0

.�x2/m

mŠ
D

1X
nD0

dn

dxn

ˇ̌̌
xD0

e�x
2

�
xn

nŠ
;

we have

dn

dxn

ˇ̌̌
xD0

e�x
2

D

8<:
0; n is odd;
.�1/

n
2�

n
2

�
Š
nŠ ; n is even:

Thus

hn.0/D

8<:
0; n is odd;
.�1/n

p
nŠ 2

n
2�

1
4

.�1/
n
2�

n
2

�
Š
nŠ ; n is even:

Together with (2-3), this implies

kı0.x/k
2
H�1x
� ��

1
4

1X
nD0;
n even

nŠ

2n
��
n
2

�
Š
�2
.2nC 1/

.
1X
mD0

1

2m.4mC 1/
. 1: �

3. Local well-posedness and small-data scattering

In this section, we will review the local well-posedness theorem and the stability theorem for solutions of
(1-2), which shall be crucial in proving the existence of the critical element, and then record another impor-
tant theorem on the scattering norm in Theorem 3.4, which says that a weak space-time norm L4t;yH

1��0
x
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is sufficient to prove the scattering result. We shall only state these results in this section and leave the
proofs to the Appendix. In fact, the results in this section can be proved by following the exact arguments
as in [Cheng et al. 2020a, Section 2; 2020b], upon noticing the embedding H.1=2/C.R/ ,! L1.R/.

Different from the Strichartz estimate for the harmonic oscillator, which is a local estimate, we have
a global Strichartz estimate for the partial harmonic oscillator similar to the Schrödinger equation on
waveguides [Cheng et al. 2020a; 2020b; Tarulli 2017; Tzvetkov and Visciglia 2012]. Before giving the
Strichartz estimate, we first introduce the following definition.

Definition 3.1 (Strichartz admissible pair). We call a pair .p; q/ Strichartz admissible if 2 < p �1,
2� q <1, and 1

p
C
1
q
D

1
2

.

We can now state the Strichartz estimate. The proof is almost identical to [Tzvetkov and Visciglia
2012, proof of Proposition 2.1]; we also refer to Proposition 3.1 in [Antonelli et al. 2015], and we omit
the proof here.

Proposition 3.2 (Strichartz estimate for the partial harmonic oscillator). For any Strichartz admissible
pair .p; q/, we have

keit.�R3
�x2/f .y; x/kLpt L

q
yL

2
x.R�R2�R/ . kf kL2y;x :

Meanwhile, for ˛ D 0; 1, it holds

keit�yf .y; x/kLpt L
q
yH˛x.R�R2�R/ . kf kL2yH˛x.R2�R/:

The following nonlinear estimate, which follows from the Hölder and Sobolev inequalities, is useful in
showing the local well-posedness result.

Proposition 3.3 (nonlinear estimate). For any 0 < �0 < 1
2

, we have

ku1u2u3kL4=3t;y H1��0x

. ku1kL4t;yH1��0x

ku2kL4t;yH
1��0
x

ku3kL4t;yH
1��0
x

:

Using Propositions 3.2 and 3.3, one can easily prove the following local well-posedness and small-
data scattering in L2yH1x.R2 �R/ and †.R3/. The local solution can be extended to be global by the
conservation of mass and energy; we refer to [Carles 2002b; Tao 2006]. The proof of the local well-
posedness is given in the Appendix; see also [Antonelli et al. 2015; Ardila and Carles 2021; Carles 2002a;
2002b; 2003; 2011; Carles and Gallo 2015] for a comparison.

Theorem 3.4 (LWP and scattering in L2yH1x and †).

(1) (well-posedness) Let u0 2 L2yH1x . There exists a unique solution u 2 C 0t L
2
yH1x.I �R2 �R/ of (1-2),

where I � R is the maximal lifespan. Furthermore, if u0 2†.R3/, the solution u can be extended to be
global in C 0t †y;x.R�R2 �R/.

(2) (scattering norm) If the solution u 2 C 0t †y;x.R�R3/ of (1-2) satisfies kukL4t;yH
1��0
x .R�R2�R/ �M

for some positive constant M. Then u scatters in †.R3/; that is, there exist u˙ 2†y;x.R2�R/ such that

ku.t; y; x/� eit.�R3
�x2/u˙.y; x/k†y;x ! 0 as t !˙1: (3-1)

We next give the existence of wave operators, whose proof can be found in the Appendix.
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Theorem 3.5 (existence of the wave operators). Let u� 2†. There exists T� > 0 depending on ku�k†,
and a solution u 2 C..�1;�T��; †/ to (1-2) such that

ku.t; y; x/� eit.��x
2/u�.y; x/k†! 0 as t !�1: (3-2)

Similarly, let uC 2†. There exists TC > 0 depending on kuCk†, and a solution u 2 C.ŒTC;1/; †/ to
(1-2) such that

ku.t; y; x/� eit.��x
2/uC.y; x/k†! 0 as t !1:

We now state the stability theory in L2yH1x.R2 �R/. The proof is again given in the Appendix. For a
comparison, see [Colliander et al. 2008; Killip and Vis,an 2013; Koch et al. 2014]; in particular, [Killip and
Vis,an 2013, Theorem 3.7]. We also contend that the result in the following theorem can extended to†.R3/.

Theorem 3.6 (stability theorem). Let I be a compact interval and let Qu be an approximate solution to
(1-2) in the sense that Qu satisfies i @t QuC�R3 Qu� x

2 QuD j Quj2 QuC e for some function e.
Suppose

k QukL1t L
2
yH1x\L4t;yH

1
x
�M

for some positive constant M.
Let t0 2 I and let u.t0/ obey

ku.t0/� Qu.t0/kL2yH1x �M
0 (3-3)

for some M 0 > 0. Assume in addition that the smallness condition

kei.t�t0/.�R3
�x2/.u.t0/� Qu.t0//kL4t;yH

1
x
Ckek

L
4=3
t;y H1x

� � (3-4)

holds for some 0 < � � �1, where �1 D �1.M;M 0/ > 0 is a small constant. Then, there exists a solution u
to (1-2) on I �R2 �R with an initial data u.t0/ at time t D t0 satisfying

ku� QukL4t;yH
1
x
� C.M;M 0/�; ku� QukL1t L

2
yH1x � C.M;M

0/M 0;

kukL1t L
2
yH1x\L4t;yH

1
x
� C.M;M 0/:

4. Existence of an almost-periodic solution

In this section, we will show the existence of an almost-periodic solution by the profile decomposition
and the nonlinear approximation.

4.1. Linear profile decomposition. In this subsection, we will establish the linear profile decomposition in
†.R3/, which depends on the corresponding decomposition in L2.R2/. The linear profile decomposition
in L2 for the mass-critical nonlinear Schrödinger equation has been established by F. Merle and L. Vega
[1998], R. Carles and S. Keraani [2007], and P. Bégout and A. Vargas [2007]. We also refer readers to
[Killip and Vis,an 2013; Koch et al. 2014] for other versions of the linear profile decomposition.

Theorem 4.1 (linear profile decomposition inL2yH1x.R2�R/ and†). Let fukgk�1 be a bounded sequence
in L2yH1x.R2 �R/. Then after passing to a subsequence if necessary, there exists J � 2 f0; 1; : : : g[ f1g,
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so that for any J � J � we have functions �j 2 L2yH1x.R2 �R/, 1 � j � J, rJ
k
2 L2yH1x.R2 �R/, and

mutually orthogonal frames f.�j
k
; t
j

k
; y
j

k
; �
j

k
/gk�1 �RC�R�R2�R2 in the sense that, for any j ¤ j 0,

�
j

k

�
j 0

k

C
�
j 0

k

�
j

k

C�
j

k
�
j 0

k
j�
j

k
� �

j 0

k
j
2
C
jy
j

k
�y

j 0

k
j2

�
j

k
�
j 0

k

C
j.�

j

k
/2t

j

k
� .�

j 0

k
/2t

j 0

k
j

�
j

k
�
j 0

k

!1 as k!1 (4-1)

such that, for every 1� j � J, we have a decomposition

uk.y; x/D

JX
jD1

1

�
j

k

eiy��
j

k .eit
j

k
�

R2�j /

�
y �y

j

k

�
j

k

; x

�
C rJk .y; x/:

In addition,

lim
k!1

�
kukk

2
L2yH1x

�

JX
jD1

k�j k2
L2yH1x

�krJk k
2
L2yH1x

�
D 0; (4-2)

�
j

k
e�it

j

k
�y
�
e�i.�

j

k
yCy

j

k
/ ��
j
n rJk .�

j

k
yCy

j

k
; x/

�
*0 in L2yH

1
x; as k!1; for j � J; (4-3)

lim sup
k!1

keit.�R3
�x2/rJk kL4t;yH

1��0
x

! 0 as J ! J �: (4-4)

Furthermore, if fukgk�1 is a bounded sequence in †.R3/, then in the above conclusion, we can further
take �j

k
!1 or1, as k!1, j�j

k
j�Cj , for every 1�j �J. And we have a slight different decomposition

uk.y; x/D

JX
jD1

�
j

k
.y; x/C rJk .y; x/ WD

JX
jD1

1

�
j

k

eiy��
j

k .eit
j

k
�

R2P
j

k
�j /

�
y �y

j

k

�
j

k

; x

�
C rJk .y; x/;

where

P
j

k
�j .y; x/D

(
�j .y; x/ if limk!1 �

j

k
D 1,

P y
�.�

j

k
/�
�j .y; x/ if limk!1 �

j

k
D1,

and � is some fixed positive sufficiently small number. In addition, we also have a slight different decoupling

lim
k!1

�
E.uk/�

JX
jD1

E.�j
k
/� E.rJk /

�
D 0; (4-5)

lim
k!1

�
M.uk/�

JX
jD1

M.�
j

k
/�M.rJk /

�
D 0; (4-6)

where E and M are given in (ME). Other conclusions (4-1)–(4-4) hold as before.

To prove the above theorem, we need to establish the inverse Strichartz estimate in Proposition 4.6
below. We first recall the following refined Strichartz estimate which is essentially established in [Cheng
et al. 2020a; 2020b].

Proposition 4.2 (refined Strichartz estimate [Cheng et al. 2020a; 2020b]). For any f 2 L2yH
1��0=2
x , we

have

keit�R2f kL4t;y;x.R�R2�R/ . kf k
3
4

L2yH
1��0=2
x

�
sup
Q2D
jQj�

3
22 keit�R2fQkL11=2t;y;x

� 1
4
;
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where
DD

[
j2Z

˚
Œ2jk1; 2

j .k1C 1//� Œ2
jk2; 2

j .k2C 1// W .k1; k2/ 2 Z2
	

is the collection of all dyadic cubes, and fQ is defined by Fy.fQ/D �Q Fyf .

To prove the inverse Strichartz estimate, we shall need the following two facts:

Proposition 4.3 (local smoothing estimate [Constantin and Saut 1988; Vega 1988]). For any given � > 0,
we have Z

R

Z
R2�R

j.jry j
1
2 eit�R2f /.y; x/j2hyi�1�� dy dx dt .� kf k2L2y;x.R2�R/

:

Furthermore, if � � 1, then we haveZ
R

Z
R2�R

j.hryi
1
2 eit�R2f /.y; x/j2hyi�1�� dy dx dt .� kf k2L2y;x.R2�R/

:

Lemma 4.4. For each f 2H1x.R/ and any R > 0, we have

kf kL1x .jxj�R/ .R
� 1
2 .kf .x/kL2x Ckxf .x/k

1
2

L2x
kf 0.x/k

1
2

L2x
/:

Proof. For any f 2H1x.R/, we have

xf 2.x/D

Z x

0

.zf 2.z//0 dz D
Z x

0

f 2.z/C 2zf .z/f 0.z/ dz:

Then by Hölder’s inequality, we get for any R > 0,

kxf 2.x/kL1x .jxj�R/ . kf k
2
L2x
Ckxf .x/kL2xkf

0.x/kL2x :

Therefore,

kf .x/kL1x .jxj�R/ .R
� 1
2 .kf kL2x Ckxf .x/k

1
2

L2x
kf 0.x/k

1
2

L2x
/: �

We also have the following estimate.

Lemma 4.5. By interpolation, the Hölder inequality, (2-2), and Proposition 3.2, we have

keit�yf k
L4t;yH

1��0
x

. keit�yf k
�0
2

L4t;yH
�1
x

keit�yf k
1�

�0
2

L4t;yH
1
x

. keit�yf k
�0
2

L4t;y;x
kf k

1�
�0
2

L2yH1x
: (4-7)

We can now prove the inverse Strichartz estimate.

Proposition 4.6 (inverse Strichartz estimate). For ffkgk�1 � L2yH1x.R2 �R/ satisfying

lim
k!1

kfkkL2yH1x D A and lim
k!1

keit�R2fkkL4t;yH
1��0
x

D �; (4-8)

there exist � 2 L2yH1x and .�k; tk; �k; yk/ 2 RC �R�R2 �R2, so that passing to a further subsequence
if necessary, we have

�ke
�i�k �.�kyCyk/.eitk�R2fk/.�kyCyk; x/ * �.y; x/ in L2yH

1
x; as k!1;
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lim
k!1

.kfkk
2
L2yH1x

�kfk ��kk
2
L2yH1x

/D k�k2
L2yH1x

& A2
�
�

A

�48
�0

; (4-9)

lim sup
k!1

keit�R2 .fk ��k/k
4

L4t;yH
1��0
x

� �
8
�0A

4� 8
�0

�
1� cA2ˇ

�
�

A

�2ˇ
�0

�
; (4-10)

where c and ˇ are small positive constants, and

�k.y; x/D
1

�k
eiy��k .e�i.tk=�

2
k
/�

R2�/

�
y �yk

�k
; x

�
:

Moreover, if ffkgk�1 is bounded in †.R3/, and also

lim
k!1

kfkk† D A and lim
k!1

keit�R2fkkL4t;yH
1��0
x

D �; (4-11)

then we can take �k � 1, j�kj. 1 and � 2 L2yH1x.R2 �R/ such that

�ke
�i�k �.�kyCyk/.eitk�R2fk/.�kyCyk; x/ * �.y; x/ in L2yH

1
x; as k!1; (4-12)

and

lim
k!1

.kfkk
2
†�kfk ��kk

2
†/D lim

k!1
k�kk

2
† & A

2

�
�

A

�48
�0

: (4-13)

Proof. Case 1: ffkgk�1 is bounded inL2yH1x . By Proposition 4.2, (4-7) and (4-8), there exists fQkgk�1�
D so that

�
8
�0A

1� 8
�0 . lim inf

k!1
jQkj

� 3
22 keit�R2 .fk/QkkL11=2t;y;x

: (4-14)

Let �k be the inverse of the side length and �k be the center of the cube Qk . By Hölder’s inequality and
(4-8), we have

lim inf
k!1

jQkj
� 3
22 keit�R2 .fk/QkkL11=2t;y;x

. lim inf
k!1

�
3
11

k
.�

2
�0A

1� 2
�0 /

8
11 keit�R2 .fk/Qkk

3
11

L1t;y;x
:

Together with (4-14), this implies

lim inf
k!1

�kke
it�

R2 .fk/QkkL1t;y;x.R�R2�R/ & �
24
�0A

1� 24
�0 :

Then by Lemma 4.4 and Bernstein’s inequality, we have

lim inf
k!1

�kke
it�

R2 .fk/QkkL1t;y;x.R�R2�fjxj�Rg/

.R�
1
2 lim inf
k!1

�k
�
k.fk/QkkL1t;yL

2
x
Ckjxj.fk/Qk .x/k

1
2

L1t;yL
2
x

k@x..fk/Qk /k
1
2

L1t;yL
2
x

�
.R�

1
2 lim inf
k!1

�k
�
jQkj

1
2 kfkkL1t L

2
y;x
CjQkj

1
2 kxfkk

1
2

L1t L
2
y;x

k@xfkk
1
2

L1t L
2
y;x

�
�R�

1
2 lim inf
k!1

�
kfkkL1t L

2
y;x
Ckxfkk

1
2

L1t L
2
y;x

k@xfkk
1
2

L1t L
2
y;x

�
! 0 as R!1:
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Therefore, we can take R large enough such that

lim inf
k!1

�kke
it�

R2 .fk/QkkL1t;y;x.jxj�R/ .
1
2
�
24
�0A

1� 24
�0 :

As a consequence, there exists .tk; yk; xk/ 2 R�R2 �R with jxkj �R, so that

lim inf
k!1

�kj.e
itk�R2 .fk/Qk /.yk; xk/j& �

24
�0A

1� 24
�0 : (4-15)

Since jxkj �R, we may assume, up to a subsequence, xk! x� as k!1, with jx�j. 1.
By the weak compactness of L2yH1x , we have

�ke
�i�k �.�kyCyk/.eitk�R2fk/.�kyCyk; x/ * �.y; x/ in L2yH

1
x; as k!1:

By the very basic fact in Hilbert space H that

gk*g in H D) kgkk
2
H �kgk �gk

2
H !kgk

2
H ;

we have
lim
k!1

.kfkk
2
L2yH1x

�kfk ��kk
2
L2yH1x

/D k�k2
L2yH1x

:

We now turn to the remaining part (4-9). Define h so that Fyh is the characteristic function of the cube�
�
1
2
; 1
2

�2. By Lemma 2.1, .x; y/ 7! h.y/ı0.x/ 2 L
2
yH�1x .R2 �R/. From (4-15), we obtain

jhh.y/ı0.x/; �.y; xC x
�/iy;xj

D lim
k!1

ˇ̌̌̌�
ı0.x/;

Z
R2

Nh.y/�ke
�i�k �.�kyCyk/.eitk�R2fk/.�kyCyk; xC xk/ dy

�
x

ˇ̌̌̌
D lim
k!1

�kj.e
itk�R2 .fk/Qk /.yk; xk/j& �

24
�0A

1� 24
�0 ; (4-16)

from which it follows
k�.y; xC x�/kL2yH1x & �

24
�0A

1� 24
�0 :

At the same time, since

k�.y; x/kL2yH1x � k�.y; xC x
�/kL2yH1

x
Ckjxj�.y; xC x�/kL2y;x �kjx

�
j�.y; xC x�/kL2y;x

D k�.y; xC x�/kL2yH1x � jx
�
jk�.y; x/kL2y;x ;

we get
k�.y; xC x�/kL2yH1x � k�kL2yH1x Cjx

�
jk�kL2y;x . k�kL2yH1x :

Therefore k�kL2yH1x & �
24=�0A1�24=�0 and (4-9) follows. We turn to (4-10), by Proposition 4.3 and the

Rellich–Kondrachov theorem, we have

eit�R2
�
�ke
�i�k �.�kyCyk/.eitk�R2fk/.�kyCyk; xC xk/

�
! eit�R2�.y; x/ as k!1;

for almost every .t; y; x/ 2 R�R2 �R. By the refined Fatou’s lemma [Lieb and Loss 1997], we obtain

keit�R2fkk
4

L4t;yH
1��0
x

�keit�R2 .fk ��k/k
4

L4t;yH
1��0
x

�keit�R2�kk
4

L4t;yH
1��0
x

! 0 as k!1:
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Thus, by the invariance of Galilean transform, we have

lim sup
k!1

keit�R2 .fk ��k/k
4

L4t;yH
1��0
x

D lim sup
k!1

�
keit�R2fkk

4

L4t;yH
1��0
x

�keit�R2�kk
4

L4t;yH
1��0
x

�
D .�

2
�0A

1� 2
�0 /4�keit�R2�k4

L4t;yH
1��0
x

:

We now take c.t/ 2 C1, which has compact support on Œ�1; 1�, such that

kc.t/eit�hk
L
4=3
t;y
D 1:

Then by (4-16), we haveˇ̌̌̌Z
R

hc.t/h.y/ı0.x/; �.y; xC x
�/iy;x dt

ˇ̌̌̌
& �

24
�0A

1� 24
�0 :

On the other hand, by Hölder’s inequality, Sobolev’s inequality and Lemma 2.1,ˇ̌̌̌Z
R

hc.t/h.y/ı0.x/; �.y; xC x
�/iy;x dt

ˇ̌̌̌
D

ˇ̌̌̌Z
R

heit�y .c.t/h.y/ı0.x//; e
it�y�.y; xC x�/iy;x dt

ˇ̌̌̌
. keit�y .c.t/h.y//k

L
4=3
t;y
keit�y�.y; x/k

L4t;yH
1��0
x

. keit�y�.y; x/k
L4t;yH

1��0
x

:

Therefore, by the above two estimates and (4-17), we get (4-10).

Case 2: ffkgk�1 is bounded in †.R3/. In this case, we have

lim sup
k!1

kP
y
�RfkkL2yH

1��0
x

. hRi��0 lim sup
k!1

kfkk†.R3/! 0 as R!1:

ForR2 2Z large enough depending on A and �, by (4-11), Sobolev embedding, and the Strichartz estimate,
P
y
�Rfk satisfies

lim
k!1

keit�R2P
y
�RfkkL4t;yH

1��0
x

� lim
k!1

keit�R2fkkL4t;yH
1��0
x

� lim
k!1

keit�R2P
y
�RfkkL4t;yH

1��0
x

� lim
k!1

keit�R2fkkL4t;yH
1��0
x

�C lim
k!1

kP
y
�RfkkL2yH

1��0
x

�
1
2
�
2
�0A

1� 2
�0 :

So we can replace fk by P y
�Rfk in the above case, and for RDR.A; �/ > 0 large enough, we may take

fQkgk�1 �D and jQkj.R2 such that �k &R�1, and j�kj.R. As in the proof of Case 1, we still have
(4-12) and also (4-9), (4-10). Furthermore, if lim supk!1 �k <1, then

�ke
�i�k �.�kyCyk/.eitk�R2fk/.�kyCyk; x/ * �.y; x/

holds for some � 2†.R2�R/. To show (4-13), we just need to consider the case when �k!1 because
the situation when lim supk!1 �k <1 is as in Case 1. We note

lim
k!1

k�kk
2
† � lim

k!1
kP

y

���
k

�k2
L2yH1x

& A2
�
�

A

�48
�0

:

Then the decoupling of the †-norm comes from P
���

k
! Id in L2yH1x and (4-12). �
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Proof of Theorem 4.1. The conclusion follows by applying Proposition 4.6 repeatedly until the asymptoti-
cally linear evolution of the remainder is trivial in L4t;yH

1��0
x . The decoupling (4-5) and (4-6) follow

from (4-13) and the orthogonality (4-1). �

Remark 4.7. For a linear profile decomposition for the Schrödinger propagator of the Schrödinger
operator ��Cjxj2 in L2, we refer to the work of C. Jao, R. Killip, and M. Vis,an [Jao et al. 2019] and
C. Jao [2020]; we believe that some part of their argument can be applied in our equation. We also refer
to the linear profile decomposition proved by A. Ardila and R. Carles [2021].

4.2. Approximation of the nonlinear profileW the case of concentrated initial data. In this section, we
will show that the nonlinear profile u� given in (1-4)�

i @tu�C�R3u�� x
2u� D ju�j

2u�;

u�.0; y; x/D
1
�
�
�y
�
; x
�
;

can be approximated by Qu� given in (1-6)

Qu�.t; y; x/D e
it.�R�x

2/
X
n2N

�
1

�
vn

�
t

�2
;
y

�
; x

��
; .t; y; x/ 2 R�R2 �R;

when � is sufficiently large. Here vn is the solution of the (DCR) system (1-5)(
.i @t C�y/vn.t; y; x/D

P
n1; n2; n32N
n1�n2Cn3Dn

…n.vn1 Nvn2vn3/.t; y; x/;

vn.0; y; x/D �n.y; x/D…n�.y; x/:

The following corollary can be proven from Theorem 1.2 by following the argument in [Colliander et al.
2008; Killip and Vis,an 2013]. In particular, we refer to [Colliander et al. 2004, Lemma 3.12].

Corollary 4.8 (corollary of Theorem 1.2: preservation of higher regularity). Suppose � 2L2yH1x.R2�R/

and v is the global solution of (DCR) given as in Theorem 1.2. For any s1 � 0 and s2 � 1, if we assume
further vjtD0 2H

s1
y Hs2x .R2 �R/, then the solution v 2 C 0t H

s1
y Hs2x .R�R2 �R/ and satisfies

kvk
L1t H

s1
y Hs2x \L4tW

s1;4
y Hs2x .R�R2�R/

� C.k�k
H
s1
y Hs2x .R2�R/

/:

Relying on Corollary 4.8, we can now prove the following general result on approximation of the
nonlinear profile in the large-scale case. We will prove it with the help of Theorem 3.6.

Theorem 4.9. For any � 2L2yH1x , 0< �� 1, .�k; tk; yk; �k/2RC�R�R2�R2, j�kj. 1 and �k!1
when k!1. There exists a global solution uk 2 C 0t L

2
yH1x of�

i@tukC�yukC�xuk � x
2uk D jukj

2uk;

uk.0; y; x/D �
�1
k
eiy��k .eitk�yP

���
k
�/
�y�yk
�k

x
�
;

for k large enough, satisfying

kukkL1t L
2
yH1x\L4t;yH

1
x.R�R2�R/ .k�kL2yH1x

1:



3390 XING CHENG, CHANG-YU GUO, ZIHUA GUO, XIAN LIAO AND JIA SHEN

Furthermore, assume that �4 D �4.k�kL2yH1x / is a sufficiently small positive constant and  2H 10
y H10x

such that

k� � kL2yH1x � �4:

Then there exists a solution v 2 C 0t H
2
yH1x.R�R2 �R/ of (DCR), with

v.0; y; x/D  .y; x/ if tk D 0;

lim
t!˙1

kv.t; y; x/� eit�y kL2yH1x D 0 if tk!˙1;

such that for k large enough we have

kukkL1t L
2
yH1x\L4t;yH

1
x.R�R2�R/ . 1;

with

kuk.t/�w�k .t/kL1t L
2
yH1x\L4t;yH

1
x.R�R2�R/! 0 as k!1;

where

w�k .t; y; x/D e
�i.t�tk/j�k j

2

eiy��k��1k eit.�x�x
2/v

�
t

�2
k

C tk;
y �yk � 2�k.t � tk/

�k
; x

�
:

Proof of Theorem 4.9. By translation invariance, we may take yk D 0. By Galilean transformation and
j�kj is bounded, we may take �k D 0. Then

w�k .t; y; x/D �
�1
k eit.�x�x

2/v

�
t

�2
k

C tk;
y

�k
; x

�
:

When tk D 0, we will show w�k is an approximate solution to (1-2). After a simple computation, we see

e�k WD .i@t C�y C�x � x
2/w�k � jw�k j

2w�k

D ���3k

X
n2N

e�it.2nC1/
X

n1; n2; n32N
n1�n2Cn3¤n

e�2it.n1�n2Cn3�n/.…n.vn1 Nvn2vn3//

�
t

�2
k

;
y

�k
; x

�
: (4-17)

We will show this error term is small in the dual Strichartz space. Divide the right-hand side of (4-17)
into three terms:

e�k .t;y;x/

D���3k

X
n2N

e�it.2nC1/
X

n1;n2;n32N

e�2it.n1�n2Cn3�n/P
y

�2�10

�
…n.vn1 Nvn2vn3/

�
t

�2
k

;
y

�k
;x

��
C��3k

X
n2N

e�it.2nC1/
X

n1;n2;n32N
n1�n2Cn3Dn

e�2it.n1�n2Cn3�n/P
y

�2�10

�
…n.vn1 Nvn2vn3/

�
t

�2
k

;
y

�k
;x

��

���3k

X
n2N

e�it.2nC1/
X

n1;n2;n32N
n1�n2Cn3¤n

e�2it.n1�n2Cn3�n/P
y

�2�10

�
…n.vn1 Nvn2vn3/

�
t

�2
k

;
y

�k
;x

��
DW e1�kCe

2
�k
Ce3�k :
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We first consider e1
�k

and shall use Bernstein’s inequality, Leibniz’s rule, Plancherel’s identity and Hölder’s
inequality to estimate as follows:

ke1�k .t; y; x/kL4=3t;y H1x

. ��1k





X
n2N

e�i�
2
k
t.2nC1/

X
n1; n2; n32N

e�2i�
2
k
t.n1�n2Cn3�n/…n.ryvn1 � Nvn2 � vn3/.t; y; x/






L
4=3
t;y H1x

C � � �

� ��1k



ei�2kt.�x�x2/�ei�2kt.�x�x2/ryv � ei�2kt.�x�x2/vei�2kt.�x�x2/v�.t; y; x/

L4=3t;y H1x

. ��1k kryvkL4t;yH1xkvk
2
L4t;yH

1
x
! 0 as k!1; (4-18)

where � � � are the missing two terms with ry acting on Nvn2 and vn3 .
We now turn to the estimate of e2

�k
. Using Bernstein’s inequality and Leibniz’s rule as above, we have

ke2�kkL4=3t;y H1x
. ��1k





X
n2N

e�i�
2
k
t.2nC1/

X
n1; n2; n32N
n1�n2Cn3Dn

…n.ryvn1 � Nvn2vn3/.t; y; x/






L
4=3
t;y H1x

C � � �

� ��1k





�X
n2N

ˇ̌̌̌
hni

1
2

X
n1; n2; n32N
n1�n2Cn3Dn

…n.ryvn1 � Nvn2vn3/.t; y; x/

ˇ̌̌̌2�1
2





L
4=3
t;y L

2
x

C � � � ; (4-19)

where � � � are the missing two terms with ry acting on Nvn2 and vn3 .
We observe the following elementary inequality: for nD n1�n2Cn3

hni
1
2 6 hni�1hni2 6 hni�1hn1i2hn2i2hn3i2:

Using the fact fhni�1gn2N 2 l
2
n , the Minkowski inequality and boundedness of …n, we have



hni 12 X

n1; n2; n32N
n1�n2Cn3Dn

…n.ryvn1 � Nvn2vn3/.t; y; x/






L
4=3
t;y L

2
xl
2
n

.




hni�1 X

n1; n2; n32N
n1�n2Cn3Dn

hn1i
2
hn2i

2
hn3i

2
j…n.ryvn1 � Nvn2vn3/.t; y; x/j






L
4=3
t;y L

2
xl
2
n

.




 X
n1; n2; n32N

hn1i
2
hn2i

2
hn3i

2
k.ryvn1 � Nvn2vn3/.t; y; x/kL2x






L
4=3
t;y

:

By Hölder’s inequality and the embedding H1.R/� L1.R/, we find

k.ryvn1 � Nvn2vn3/.t; y; x/kL2x.R/ . kryvn1.t; y; x/kL2x.R/kvn2.t; y; x/kH1x.R/kvn3.t; y; x/kH1x.R/:

Similar arguments can be applied to the other two terms on the right-hand side of (4-19). All together
this leads to the estimate

ke2�kkL4=3t;y H1x
.��1k



hn1i2hn2i2hn3i2k.ryvn1 � Nvn2vn3/.t;y;x/kL2x

L4=3t;y l1n1 l1n2 l1n3
C��1k



hn1i2hn2i2hn3i2k.vn1 �ryvn2vn3/.t;y;x/kL2x

L4=3t;y l1n1 l1n2 l1n3
C��1k khn1i

2
hn2i

2
hn3i

2
k.vn1 � Nvn2ryvn3/.t;y;x/kL2xkL4=3t;y l

1
n1
l1n2 l

1
n3
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.��1k


hn1i3hn2i3hn3i3kryvn1.t;y; �/kL2kvn2.t;y; �/kH1kvn3.t;y; �/kH1

L4=3t;y l2n1 l2n2 l2n3

.��1k kryvkL4t;yH6xkvk
2
L4t;yH

7
x

.��1k C.k kH1
yH6x /C.k kL2yH7x /! 0 as k!1: (4-20)

Now, we only need to deal with e3
�k

. We will use the normal form transform to exploit additional decay
of �k , since it possesses time nonresonance property. Integrating by parts and direct computation implyZ t

0

ei.t��/.�yC�x�x
2/e3�k .�/d�

D���3k

X
n1;n2;n3;n2N
n1�n2Cn3¤n

Z t

0

eit.�y�2n�1/e�i�
Q�yP

y

�2�10

�
…n.vn1 Nvn2vn3/

�
�

�2
k

;
y

�k
;x

��
d�

D���3k
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where the operator Q�y is defined to be

Q�y WD 2.n1�n2Cn3�n/C�y :

This is a perturbation of the Laplacian operator and we suppress the parameters n1; n2; n3; n. The inverse
operator .� Q�y/�1 is defined by the Fourier transform

Fy..�i Q�y/�1f /.�; x/D
i.Fyf /.�; x/

2.n1�n2Cn3�n/� j�j2
:

This operator is invertible when n1�n2Cn3�n¤ 0 and j�j � 2�10. We will use this expression in the
remaining of the proof.
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Define
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and
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:

Then, we have 
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0
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1
x
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3;1
�k
C e

3;2
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: (4-21)

First, we consider the term e
3;1
�k

. By the boundedness of the operatorP y�2�10.�i Q�y/
�1when n1�n2Cn3¤n

and Minkowski’s inequality, we may estimate as follows:

e
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yH3x /

3
! 0 as k!1: (4-22)

Next, we consider the term e
3;2
�k

. As in the estimate of e3;1
�k

, by the boundedness of the operator
P y�2�10.�i

Q�y/
�1 when n1�n2Cn3¤ n, Minkowski’s inequality, the fractional Leibniz rule, Sobolev’s

inequality and Hölder’s inequality, we have
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Finally, we are left to consider the term e
3;3
�k

. Applying the Strichartz estimate, we obtain
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We observe, after some computation, that
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Therefore, by the above observation, Plancherel’s theorem and Leibniz’s rule, we have

(4-24).




�X

n2N

� X
n1; n2; n32N
n1�n2Cn3¤n

ˇ̌̌̌
e�2it.n1�n2Cn3�n/�it .�i Q�y/

�1P
y

�2�10
@t…n

�
��3k vn1

�
t

�2
k

;
y

�k
; x

�

� vn2

�
t

�2
k

;
y

�k
; x

�
vn3

�
t

�2
k

;
y

�k
; x

��̌̌̌̌�2
hni

�1
2





L1tL

2
yL

2
x

.




�X

n2N

� X
n1; n2; n32N
n1�n2Cn3¤n





@t…n���3k vn1

�
t

�2
k

;
y

�k
; x

�
�vn2

�
t

�2
k

;
y

�k
; x

�
vn3

�
t

�2
k

;
y

�k
; x

��




L2y;x

�2
hni

�1
2





L1t



SCATTERING OF THE THREE-DIMENSIONAL CUBIC NONLINEAR SCHRÖDINGER EQUATION 3395

. ��2k
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2
yH1x : (4-25)

We shall only show how to estimate the first term on the right-hand side of (4-25), as the other two terms
can be estimated similarly. By Hölder’s inequality, and the fact that v satisfies (DCR), we haveX
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Applying Hölder’s inequality and the Sobolev embedding, we have
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where in the last inequality we use the fact that by Corollary 4.8, we have

kvkL3tL
6
yH3x � C.k kL2yH3x /;

k�yvkL3tL
6
yH3x � C.k�y kL2yH3x /:

Combining all these estimates together, we finally obtain

e
3;3
�k
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�
C.k kL2yH3x /

2C.k�y kL2yH3x /

CC.k kL2yH3x /
2C.k k

H
2=3
y H9x

/3
�
! 0 as k!1. (4-26)

To apply Theorem 3.6, we see

lim
k!1

kw�k .0; y; x/�u�k .0; y; x/kL2yH1x D k� � kL2yH1x � �4;
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These together with the estimates (4-18), (4-20), (4-21), (4-22), (4-23), (4-26) and Theorem 1.2 yields
Theorem 4.9 when tk D 0.

If tk!˙1 as k!1, then v is the solution of (DCR) with

lim
t!˙1

kv.t; y; x/� eit�y kL2yH1x D 0:

By the argument in the case tk D 0, we can also obtain Theorem 4.9 in this case. �

4.3. Existence of an almost-periodic solution. Define

ƒ.L/D sup kuk
L4t;yH

1��0
x .R�R2�R/

;

where the supremum is taken over all global solutions u 2 C 0t .R; †.R
3// of (1-2) with

E.u.t//CM.u.t//� L:

The proof of Theorem 3.4 implies ƒ.L/ <1 for sufficiently small L. Let

Lmax D supfL� 0 Wƒ.L/ <1g: (4-27)

If Lmax <1, then following the arguments in [Cheng et al. 2020a; 2020b], one can show the existence
of an almost periodic solution with the help of Theorems 4.1 and 4.9. The proof is rather standard, we
refer to [Cheng et al. 2020a; Cheng et al. 2020b; Killip and Vis,an 2013; Kenig and Merle 2006; 2008;
Tao et al. 2008] and omit the proof here.

Theorem 4.10 (existence of an almost-periodic solution). Assume that Lmax <1. Then there exists a
solution uc 2 C 0t .R; †.R

3// of the defocusing cubic NLS with partial harmonic potential (1-2) satisfying

E.uc/CM.uc/D Lmax and kuckL4t;yH
1��0
x .R�R2�R/

D1: (4-28)

Furthermore, uc is almost periodic in the sense that for any � > 0 there is a Lipschitz function t 7! y.t/

and a sufficiently large positive number C.�/ such thatZ
jyCy.t/j�C.�/

kuc.t; y; x/k
2
H1x

dy < � for all t 2 R: (4-29)

5. Rigidity theorem

In this section, we will exclude the almost-periodic solution in Theorem 4.10 by the interaction Morawetz
estimate with an appropriately chosen weight function. Once the almost-periodic solution is excluded, we
can finish the proof of Theorem 1.1.
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Proposition 5.1 (nonexistence of the almost-periodic solution). The almost-periodic solution uc as in
Theorem 4.10 does not exist.

Proof. For each r0 > 0, we define the interaction Morawetz action

Mr0.t/D

Z
R2�R

Z
R2�R

=.uc.t; y; x/ryuc.t; y; x// � ry r0.jy � Qyj/juc.t; Qy; Qx/j
2 dy dx d Qy d Qx;

where = D Im denotes the imaginary part of a complex number and  r0 WR! R is a radial function
defined as in [Colliander et al. 2009; Planchon and Vega 2009], with

� r0.r/D

Z 1
r

s log
�
s

r

�
wr0.s/ ds;

where

wr0.s/D

� 1
s3

if s � r0;
0 if s < r0:

It is straightforward to verify that r0 is convex and jr r0 j is uniformly bounded (independent of r0), with

��2 r0.r/D
2�

r0
ı0.r/�wr0.r/:

Using the above properties of the weight function  r0 , one can show (see [Colliander et al. 2009,
Section 3.3]) for all T0 > 0Z T0

�T0

Z
R2

ˇ̌
jry j

1
2 .kuc.t; y; x/k

2

L2x.R/
/
ˇ̌2 dy dt . kuck3L1t L2y;xkryuckL1t L2y;x . 1: (5-1)

By (4-29) and the conservation of mass, we have

kuck
2
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2
�

Z
jyCy.t/j�C.mc

100
/
kuc.t; y; x/k

2

L2x
dy; (5-2)

where mc WDM.uc/ > 0 by (4-28).
Therefore, for each T0 > 0, by (5-2), Sobolev’s inequality, and (5-1), we deduce

m2cT0

2
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L2x
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4
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1
2 .kuc.t; y; x/k

2
L2x
/
ˇ̌2 dydt . C

�
mc

100

�
:

Letting T0!1, we obtain a contradiction, and this concludes the proof. �

Finally, we can now prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 3.4, to prove the scattering of solutions to (1-2), it suffices to show
the finiteness of the L4t;yH

1��0
x -norm of the solution of (1-2).
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To this end, let Lmax be given as in (4-27). Then, equivalently, we need show that LmaxD1. Suppose
for a contradiction that Lmax <1. Then Theorem 4.10 would yield an almost-periodic solution of (1-2),
which is impossible in view of Proposition 5.1. �

6. Scattering of equation (DCR)

We will now prove Theorem 1.2, that is, the global well-posedness and scattering of the (DCR) system�
i@tvC�R2v D F.v/;

v.0; y; x/D �.y; x/;

where
F.v/ WD

X
n1; n2; n3; n2N
n1�n2Cn3Dn

…n.…n1v…n2v…n3v/

and …n is the orthogonal projector on the n-th eigenspace En of ��xC x2.
We will mainly follow the approach to the global well-posedness and scattering of the two-dimensional

mass-critical nonlinear Schrödinger equation as in [Dodson 2016b]. The main ingredient is to establish an
infinite-dimensional vector-valued version of the two-dimensional long-time Strichartz estimate, which
helps us to preclude certain almost periodic solutions.

The (DCR) system is Hamiltonian with an energy functional

E.v/D 1

2

X
n2N

Z
R2�R

jryvnj
2 dy dxC 1

4

X
n; n1; n2; n3; n42N
n1�n2Cn3�n4Dn

Z
R2�R

vn1 Nvn2vn3 Nvn4 dy dx;

under the symplectic structure on L2y;x.R
2 �R/ given by !.f; g/ WD =

R
R2�R

f .y; x/g.y; x/ dy dx. It
also conserves the following mass M and kinetic energy E0:

M.v/D

Z
R2�R

jv.t; y; x/j2 dy dx;

E0.v/D
Z

R2�R

j.��xC x
2/
1
2 v.t; y; x/j2 dy dx D

X
n2N

.2nC 1/kvnk
2

L2y;x.R2�R/
D kvk2

L2yH1x.R2�R/
:

We shall divide this section into three subsections. In Section 6.1, we establish the local well-posedness
theory for (DCR) and reduce the scattering to the exclusion of almost periodic solutions. In Section 6.2,
we derive the long-time Strichartz estimate and in Section 6.3, we exclude the almost periodic solution.

6.1. Local well-posedness and reduction to the almost periodic solution. In this subsection, we will
present the well-posedness theory of the (DCR). Then following ideas similar to those in [Tao et al. 2008;
Cheng et al. 2020a; 2020b; Yang and Zhao 2018], we shall prove that there is an almost periodic solution
of (DCR) if the system is not global well-posed and if the solution does not scatter in L2yH1x . That is, we
reduce the global well-posedness and scattering of (DCR) to the exclusion of this almost periodic solution.

6.1.1. Local well-posedness theory and the existence of an almost periodic solution. The local well-
posedness theory of the (DCR) system follows from a more or less standard argument: the Strichartz
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estimate in Proposition 3.2 and the nonlinear estimate in Lemma 6.2. The proof of the nonlinear estimate
relies on the following Strichartz estimate for the harmonic oscillator.

Lemma 6.1 (Strichartz estimate for the harmonic oscillator [Carles 2002b; Keel and Tao 1998]). For
2� q; r �1 with 2

q
C
1
r
D

1
2

, we have the estimate

keit.�x�x
2/f kLqtW

s;r
x .Œ�T1;T1��R/ . kf kHsx.R/

holds for any T1 > 0 and s � 0.

We can now give the nonlinear estimate.

Lemma 6.2. For functions F1; F2; F3 defined on R2 �R, we have
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…n.…n1F1…n2F2…n3F3/






L
4=3
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and consequently, for any ˇ � 0,
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where �3 is a permutation of the set f1; 2; 3g.

Proof. Let F0 2 L4yL
2
x , by Hölder’s inequality and Lemma 6.1, we have� X

n1; n2; n3; n2N
n1�n2Cn3Dn

…n.…n1F1…n2F2…n3F3/; F0

�

D
1

�

X
n1; n2; n3; n2N

Z �

0

e2it.n1�n2Cn3�n/
Z

R2�R

…n1F1…n2F2…n3F3…nF0 dy dx dt

D
1

�

Z �

0

Z
R2�R

eit.��xCx
2/F1.y; x/eit.��xCx

2/F2.y; x/

� eit.��xCx
2/F3.y; x/eit.��xCx

2/F0.y; x/ dy dx dt

.
Z

R2
keit.��xCx

2/F0.y; x/kL1t L
2
x.Œ0;���R/ke

it.��xCx
2/F1.y; x/kL2tL

4
x.Œ0;���R/

� keit.��xCx
2/F2.y; x/kL4tL

8
x.Œ0;���R/ke

it.��xCx
2/F3.y; x/kL4tL

8
x.Œ0;���R/ dy

.
Z

R2
kF0.y; x/kL2x.R/ke

it.��xCx
2/F1.y; x/kL8tL

4
x.Œ0;���R/ke

it.��xCx
2/F2.y; x/kL16=3t L8x.Œ0;���R/

� keit.��xCx
2/F3.y; x/kL16=3t L8x.Œ0;���R/

dy

.
Z

R2
kF0.y; x/kL2xkF1.y; x/kL2xkF2.y; x/kL2xkF3.y; x/kL2x dy:

Therefore,



 X
n1; n2; n3; n2N
n1�n2Cn3Dn

…n.…n1F1…n2F2…n3F3/






L
4=3
y L2x

. kF1kL4yL2xkF2kL4yL2xkF3kL4yL2x ;

which is (6-1). One can similarly prove (6-2) using the fractional Leibniz rule. �
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Lemma 6.2 provides the following estimate for the nonlinearity F.v/.

Lemma 6.3. For each solution v of (DCR), we have

kF.v/k
L
4=3
t;y H˛x

. kvk3
L4t;yH

˛
x
; where ˛ D 0; 1:

Thus by Proposition 3.2, the solution v of (DCR) satisfies the Strichartz estimate

kvkLpt L
q
yH˛x.I�R2�R/ . kv0kL2yH˛x.R2�R/Ckvk

3
L4t;yH

˛
x.I�R2�R/

for ˛ D 0; 1; (6-3)

where I � R, and .p; q/ is a Strichartz admissible pair.

As a consequence of Lemma 6.3 and (6-2), we obtain the following well-posedness theory. Since the
proof is well known (see for instance [Cheng et al. 2020a; 2020b; Tao 2006; Killip and Vis,an 2013]), we
omit it.

Theorem 6.4 (well-posedness and scattering of (DCR)).

(1) (local well-posedness) Assume kv0kL2yH1x <1. The (DCR) admits a unique solution

v 2 .C 0t L
2
yH

1
x \L

4
t;yH

1
x/..�T; T /�R2 �R/

for some T > 0.

(2) (small-data scattering) There is a sufficient small constant ı > 0, such that when kv0kL2yH1x � ı,
(DCR) admits a unique global solution v with v.0/D v0, which scatters in L2yH1x in the sense that there
exist v˙ 2 L2yH1x.R2 �R/ such that

kv.t/� eit�yv˙kL2yH1x ! 0 as t !˙1:

(3) (scattering norm) Suppose v is a maximal lifespan solution on I with kvkL4t;yL2x.I�R2�R/ <1. Then
v globally exists and scatters in L2yH1x .

We also have the stability theorem by Lemmas 6.2 and 6.3. The argument is similar to the proof of
Theorem 3.6, and we also refer to [Colliander et al. 2008; Killip and Vis,an 2013].

Theorem 6.5 (stability). Let l 2 f0; 1g, I be a compact interval and Qv 2 .C 0t L
2
yH1x\L4t;yH1x/.I�R2�R/

be an approximate solution of (DCR) with the error term e D i@t QvC�y Qv�F. Qv/. Then, for any � > 0,
there is ı > 0 such that if

kek
L
4=3
t;y Hlx.I�R2�R/

CkQv.t0/� v0kL2yH1x � ı;

then (DCR) admits a solution v 2 .L1t L
2
yH1x \L4t;yHlx/.I �R2 �R/ with v.t0/D v0 and

k Qv� vkL4t;yH
l
x\L

1
t L

2
yH1x.I�R2�R/ < �:

To prove (DCR) is globally well-posed and scatters for large data, by Theorem 6.4, we need to prove

kvkL4t;yL
2
x.R�R2�R/ <1;
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where v is a solution to (DCR) with initial data v0 2 L2yH1x.R2 �R/. For the solution v of (DCR) with
maximal lifespan interval I, let

S.m/D supfkvkL4t;yL2x.I�R2�R/ W kv.0/kL2yH1x.R2�R/ �mg;

and
m0 D supfm W S. Qm/ <1 for all Qm<mg> 0:

If we have m0 D1, then the global well-posedness and scattering in L2yH1x of (DCR) hold. Following
the argument in [Tao et al. 2008; Killip and Vis,an 2013], and using Theorems 6.5 and 4.1 during the
proof, we have:

Theorem 6.6 (existence of an almost periodic solution to (DCR)). Assume m0 < 1. Then there
exists an nonzero almost periodic solution v 2 C 0t L

2
yH1x \L4t;yL2x.I �R2 �R/ to (DCR) with I the

maximal lifespan interval such that M.v/Dm0. In addition, for any � > 0, there exists C.�/ > 0 and
.y.t/; �.t/; N.t// 2 R2 �R2 �RC such thatZ
jy�y.t/j�C.�/

N.t/

kv.t; y; x/k2H1x
dyC

Z
j���.t/j�C.�/N.t/

k.Fyv/.t; �; x/k2H1x d� < � for all t 2 I: (6-4)

Furthermore, we can take Œ0;1/� I, and N.0/D 1, �.0/D y.0/D 0, with

N.t/� 1; jN 0.t/jC j� 0.t/j.N.t/3 for all t 2 Œ0;1/:

As in [Dodson 2012; 2016a; 2016b; Killip and Vis,an 2013; Rosenzweig 2018], we see the almost
periodic solution in Theorem 6.6 has the following property:

Theorem 6.7. (1) If J � I is an interval which is partitioned into small intervals Jk in the sense that
kvkL4t;yL

2
x.Jk�R2�R/ D 1, then we have

N.Jk/�

Z
Jk

N.t/3 dt � inf
t2Jk

N.t/ and
X
Jk�J

N.Jk/�

Z
J

N.t/3 dt; (6-5)

where N.Jk/D supt2Jk N.t/.

(2) For any interval J � Œ0;1/, we haveZ
J

N.t/2 dt . kvk4
L4t;yL

2
x.J�R2�R/

. 1C
Z
J

N.t/2 dt: (6-6)

Proof of Theorems 6.6 and 6.7. With Theorems 4.1 and 6.5 at hand, one can follow the arguments in
[Cheng et al. 2020a; 2020b; Dodson 2012; 2016a; 2016b; Rosenzweig 2018; Tao et al. 2008; Killip and
Vis,an 2013]. �

6.1.2. Some functional spaces and bilinear Strichartz estimates. As in [Dodson 2016b], due to the failure
of the endpoint Strichartz estimate in two dimensions, we need to utilize the function spaces U p� and V p�
introduced originally in the seminal work [Koch and Tataru 2005a]; see also [Hadac et al. 2009; Koch
and Tataru 2007; Koch et al. 2014] for more detailed study on these spaces. The structure of our (DCR)
system motivates us to introduce the Banach spaces U p�.L

2
x/ and V p� .L

2
x/ as follows.
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Definition 6.8 (U p�.L
2
x/ space). For 1� p <1, let U p�.L

2
x/ be an atomic space, where an atom v
 is

defined to be

v
 .t; y; x/D

NX
kD0

�Œtk ;tkC1/.t/e
it�yv




k
.y; x/; with

NX
kD0

kv



k
.y; x/k

p

L2y;x
D 1:

In the expansion of v
, N may be finite or infinite, t0 D�1, and tNC1 D1 if N is finite. We impose a
norm on k � kUp�.L2x/ as

kvkUp�.L
2
x/
D inf

�X



jc
 j W v D
X



c
v

 ; where v
 are U p�.L

2
x/ atoms

�
:

For a time interval I � R, we define

kvkUp�.L
2
x ;I /
D kv1IkUp�.L

2
x/
:

Let DU p�.L
2
x/ be the space

DU
p
�.L

2
x/D f.i@t C�y/v W v 2 U

p
�.L

2
x/g;

endowed with the norm

k.i@t C�y/v.t; y; x/kDUp�.L
2
x/
D





Z t

0

ei.t�s/�y .i@sC�y/v.s; y; x/ ds





U
p
�.L

2
x/

:

For each time interval I � R, we can similarly define the restriction space DU p�.L
2
x; I /.

Definition 6.9 (V p� .L
2
x/ space). For 1� p <1, V p� .L

2
x/ is defined to be the space of right continuous

functions v 2 L1t L
2
y;x such that

kvk
p

V
p
� .L

2
x/
D kvk

p

L1t L
2
y;x

C sup
ftkgk%

X
k

ke�itkC1�yv.tkC1/� e
�itk�yv.tk/k

p

L2y;x
<1:

When the time is restricted to I �R, We can similarly define the function space V p� .L
2
x; I /. Then we have

.DU
p
�.L

2
x//
�
D V

p0

� .L2x/: (6-7)

The following basic properties are straightforward to verify. For the proofs, see [Hadac et al. 2009;
Koch et al. 2014].

Remark 6.10 (basic properties of U p�.L
2
x/ and V p� .L

2
x/). For any 1 < p < q <1 and a � b � c, we

have
U
p
�.L

2
x/�V

p
� .L

2
x/�U

q
�.L

2
x/; (6-8)

kvkUp�.L
2
x ;Œa;b�/

�kvkUp�.L
2
x ;Œa;c�/

and kvk
p

U
p
�.L

2
x ;Œa;c�/

�kvk
p

U
p
�.L

2
x ;Œa;b�/

Ckvk
p

U
p
�.L

2
x ;Œb;c�/

; (6-9)

kvkUp�.L
2
x/
. kvjtD0kL2y;xCk.i@tC�y/vkDUp�.L2x/: (6-10)

Moreover,

L
p0

t L
r 0

y L
2
x �DU

2
�.L

2
x/; and U

p
�.L

2
x/�L

p
t L

r
yL

2
x; where .p; r/ is Strichartz admissible. (6-11)
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Following the argument in [Dodson 2016b], we also have:

Lemma 6.11. Suppose I D
Sm
jD1 I

j, where I j D Œaj ; bj �, ajC1D bj . If f 2L1tL
2
y;x.I �R2�R/, then,

for all t0 2 I ,



Z t

t0

ei.t��/�yf .�; y; x/ d�





U 2�.L

2
x ;I /

.
mX
jD1





Z
Ij
e�i��yf .�/ d�






L2y;x

C

� mX
jD1

kf k2
DU 2�.L

2
x ;Ij /

�1
2

;

where

kf kDU 2�.L
2
x ;Ij /

D sup
kwk

V2
�
.L2x;I

j /
D1

Z
Ij

Z
R2�R

f .�; y; x/w.�; y; x/ d� dy dx:

By the bilinear Strichartz estimate in [Bourgain 1998], Minkowski’s inequality, Hölder’s inequality,
and interpolation, we have the following two propositions. The proofs are similar to the bilinear Strichartz
estimates in [Dodson 2016a; 2016b].

Proposition 6.12 (bilinear Strichartz estimate, I). Let .p; q/ satisfy 1 < p; q <1, 1
p
C
1
q
D 1. For

M �N , assume suppFyu0 � f� W j�j �N g and suppFyv0 � f� W j�j �M g. Then we have



keit�yu0kL2xkeit�yv0kL2x

Lpt Lqy.R�R2/
.
�
M

N

�1
p

ku0kL2y;xkv0kL2y;x : (6-12)

Furthermore, suppose that g.t; y� Qy/ and h.t; y� QQy/ are convolution kernels with respect to the y-variable
and 

sup

t2R

jg.t; y/j



L1y.R2/

C


sup
t2R

jh.t; y/j



L1y.R2/

. 1:

Then we also have

kg �y eit�yu0kL2x kh�y eit�yv0kL2x

Lpt Lqy.R�R2/
.
�
M

N

�1
p

ku0kL2y;xkv0kL2y;x :

Similar to the argument in the proof of Lemma 3.5 in [Dodson 2016b], we can transfer the estimate
(6-12) to the U p� space. Therefore, we have:

Proposition 6.13 (bilinear Strichartz estimate, II). Let .p; q/ satisfy 1 < p; q <1, 1
p
C

1
q
D 1. For

M �N, assume suppFyu� f� W j�j �N g and suppFyv � f� W j�j �M g. Then we have

kkukL2xkvkL2xkL
p
t L

q
y
.
�
M

N

�1
p

kukUp�.L
2
x/
kvkUp�.L

2
x/
:

6.2. Long time Strichartz estimate. From now on, we shall take our following setting as standard
assumptions. Fix

0 < �3� �2� �1 < 1 and �3 < �
10
2 : (6-13)

By Theorem 6.6, we can take

jN 0.t/jC j� 0.t/j � 2�20�
� 1
2

1 N.t/3 (6-14)
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andZ
jy�y.t/j�2�20�

�1=4
3 =N.t/

kv.t;y;x/k2H1x
dyC

Z
j���.t/j�2�20�

�1=4
3 N.t/

k.Fyv/.t;�;x/k2H1x d� � �22 : (6-15)

If Œ0; T � is an interval with

kvk4
L4t;yL

2
x.Œ0;T ��R2�R/

D 2k0 and
Z T

0

N.t/3 dt D �32k0 for some k0 � 0; (6-16)

then we can partition Œ0; T �D
SM�1
˛D0 J

˛, where J ˛ are intervals that satisfyZ
J˛
.N.t/3C �3kv.t/k

4
L4yL

2
x.R2�R/

/ dt D 2�3: (6-17)

We can define the interval Gj
k

now.

Definition 6.14. For any nonnegative integer j < k0, and nonnegative integer k < 2k0�j, we can define

G
j

k
D

.kC1/2j�1[
˛Dk2j

J ˛: (6-18)

For j � k0, we simply define Gj
k
D Œ0; T �. We let �.Gj

k
/D �.t

j

k
/, where tj

k
is the left endpoint of Gj

k
.

On the time interval Gj
k

defined above, we have:

Lemma 6.15. (1) Let Jl be the small intervals contained in Gj
k

. By (6-5) and (6-17), the following
estimate holds:

X
Jl�G

j

k

N.Jl/.
Z
G
j

k

N.t/3 dt .
.kC1/2j�1X
˛Dk2j

Z
J˛
N.t/3 dt . 2j �3: (6-19)

(2) By (6-14) and Definition 6.14, we have, for each t 2Gj
k

,

j�.t/� �.G
j

k
/j � 2j�19�3�

� 1
2

1 : (6-20)

Thus, for any t 2Gj
k

, and i � j ,

f� W 2i�1� j���.t/j � 2iC1g� f� W 2i�2� j���.G
j

k
/j � 2iC2g� f� W 2i�3� j���.t/j � 2iC3g; (6-21)

and also

f� W j� � �.t/j � 2iC1g � f� W j� � �.G
j

k
/j � 2iC2g � f� W j� � �.t/j � 2iC3g: (6-22)

Lemma 6.16. For the almost periodic solution v.t/ to (DCR), and assume kvkL4t;yL2x.J�R2�R/ � 1 on
J � R, then we have

kvkU 2�.L
2
x ;J /
. 1 and kP

y

>2�4�
�1=4
3 N.J/

vkU 2�.L
2
x ;J /
. �2;

where N.J /D supt2J N.t/.
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Proof. Let J D Œt0; t1�, by (6-10), (6-8), (6-7), and (6-11), we have

kvkU 2�.L
2
x ;J /
. kv.t0/kL2y;x Ckvk

3
L4t;yL

2
x.J�R2�R/

. 1:

By (6-15), we have

kP
y

>2�20�
�1=4
3 N.J/

vkL1t L
2
y;x.J�R2�R/ � kP

y

>2�20�
�1=4
3 N.t/

vkL1t L
2
y;x.J�R2�R/ � �2:

Therefore, by the Strichartz estimate, we have

kP
y

>2�4�
�1=4
3 N.J/

vkU 2�.L
2
x ;J /

. kP y
>2�20�

�1=4
3 N.J/

v.t0/kL2y;x.J�R2�R/CkP
y

>2�4�
�1=4
3 N.J/

F.v/k
L
3=2
t L

6=5
y L2x.J�R2�R/

. �2CkP y
>2�20�

�1=4
3 N.J/

vkL1t L
2
y;x
kvk2

L3tL
6
yL

2
x.J�R2�R/

. �2C �2
�
kv.t0/kL1t L

2
y;x.J�R2�R/Ckvk

3

L4t;yL
2
x.J�R2�R/

�2 . �2: �

We also have the following fact as a consequence of the above lemma.

Remark 6.17. If N.J / < 2i�5�1=23 , we have

kP
y

�.Gi˛/;2i�2�����2iC2
F.v/k

L
3=2
t L

6=5
y L2x.J�R2�R/

. kP y
>2�20�

�1=4
3 N.J/

vkL1t L
2
y;x.J�R2�R/kvk

2

L3tL
6
yL

2
x.J�R2�R/

. �2;

where the operator P y
�.Gi˛/;2i�2�����2iC2

is given in Definition 6.18 below. Thus, for 0 � i � 11, and
N.Gi˛/ < 2

i�5�
1=2
3 , by the fact that Gi˛ is a union of at most 211 small intervals, we have

kP
y

�.Gi˛/;2i�2�����2iC2
F.v/k

L
3=2
t L

6=5
y L2x.G

i
˛�R2�R/

. �2:

We can now define the long-time Strichartz estimate norm as in [Dodson 2012; 2016a; 2016b]; see
also [Cheng et al. 2020a; 2020b].

Definition 6.18 (long-time Strichartz estimate norm). For any Gj
k
� Œ0; T �, let

kvk2
X.G

j

k
/
D

X
0�i<j

2i�j
X

Gi˛�G
j

k

kP
y

�.Gi˛/;2i�2�����2iC2
vk2
U 2�.L

2
x ;G

i
˛/
C

X
i�j

kP
y

�.G
j

k
/;2i�2�����2iC2

vk2
U 2�.L

2
x ;G

j

k
/
;

where
P
y

�.t/;2i�2�����2iC2
v D eiy��.t/P

y

2i�2�����2iC2
.e�iy��.t/v/:

We define the zXk0 norm to be

kvk2
zXk0 .Œ0;T �/

D sup
0�j�k0

sup
G
j

k
�Œ0;T �

kvk2
X.G

j

k
/
:

For any nonnegative integer k� � k0, we take

kvk2
zXk� .Œ0;T �/

D sup
0�j�k�

sup
G
j

k
�Œ0;T �

kvk2
X.G

j

k
/
: (6-23)
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To close our bootstrap argument in the proof of the long-time Strichartz estimate, we also need to
introduce the following norm to measure zXk0 norm of v at scales much higher than N.t/.

Definition 6.19. Let

kvk2
Y.G

j

k
/
D

X
0�i<j

2i�j
X

Gi˛�G
j

k

N.Gi˛/�2
i�5�

1=2
3

kP
y

�.Gi˛/;2i�2�����2iC2
vk2
U 2�.L

2
x ;G

i
˛/

C

X
i�j; i>0

N.G
j

k
/�2i�5�

1=2
3

kP
y

�.G
j

k
/;2i�2���2iC2

vk2
U 2�.L

2
x ;G

j

k
/
:

We can define the norm kvk zYk� .Œ0;T �/ similar to (6-23) in Definition 6.18.

For i < j , and the solution v on the time interval Gj
k

, we can define the Littlewood–Paley projector
around �.t/ of v as

P
y

�.t/;2i
v D eiy��.t/P

y

2i
.e�iy��.t/v/; P

y

�.t/;>2j
v D eiy��.t/P

y

>2j
.e�iy��.t/v/:

Then, as a consequence of (6-7), (6-8), (6-11), the Littlewood–Paley theorem and Proposition 3.2, we
have the following estimates which reveal the relationship between the Strichartz norm L

p
t L

q
yL

2
x of the

Littlewood–Paley projector around �.t/ of v and the long-time Strichartz norm of v. We still refer to
[Dodson 2016a; 2016b] for the argument, without presenting the proof here.

Lemma 6.20. For i < j , we have

kP
y

�.t/;2i
vk
L
p
t L

q
yL

2
x.G

j

k
�R2�R/

. 2
j�i
p kvk zXj .G

j

k
/
; (6-24)

kP
y

�.t/;�2j
vk
L
p
t L

q
yL

2
x.G

j

k
�R2�R/

. kvk
X.G

j

k
/
; (6-25)

where .p; q/ is Strichartz admissible pair.

Our aim is to prove the long-time Strichartz estimate.

Theorem 6.21 (long-time Strichartz estimate). For the almost periodic solution v in Theorem 6.6, which
satisfies (6-13), (6-14) and (6-15), there exists a positive constant C DC.v/ such that, for any nonnegative
integer k0, v and N.t/ satisfy (6-16), we have

kvk zXk0 .Œ0;T �/
� C:

To prove Theorem 6.21, it suffices to show, for any 0� j � k0 and Gj
k
� Œ0; T �,X

0�i<j

2i�j
X

Gi˛�G
j

k

kP
y

�.Gi˛/;2i�2�����2iC2
vk2
U 2�.L

2
x ;G

i
˛/
C

X
i�j

kP
y

�.G
j

k
/;2i�2�����2iC2

vk2
U 2�.L

2
x ;G

j

k
/
� C:

To reach the above estimate, we will perform an induction argument on 0� k� � k0 and then a bootstrap
argument in Sections 6.2.1 and 6.2.2, respectively.
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6.2.1. Basic inductive estimates. First we show the basic estimates to start up our induction.

Lemma 6.22 (basic inductive estimate).

kvk zX0.Œ0;T �/
� C and kvk zY0.Œ0;T �/

� C�
3
4

2 : (6-26)

For 0� k� � k0, we have

kvk2
zXk�C1.Œ0;T �/

� 2kvk2
zXk� .Œ0;T �/

and kvk2
zYk�C1.Œ0;T �/

� 2kvk2
zYk� .Œ0;T �/

: (6-27)

Proof. By Lemma 6.16, we have

kvkU 2�.L
2
x ;J˛/

. 1 for any J ˛ in the decomposition of Gj
k

in (6-18): (6-28)

Therefore, by Strichartz estimate, (6-10), (6-11), (6-8), we have, for t˛ 2 J ˛,�X
i�0

kP
y

�.J˛/;2i�2�����2iC2
vk2
U 2�.L

2
x ;J˛/

�1
2

. kv.t˛/kL2y;x Ckvk
3

L3tL
6
yL

2
x.J˛�R2�R/

. kv.t˛/kL2y;x Ckvk
3

U 2�.L
2
x ;J˛/

. 1:

Thus, kvk zX0.Œ0;T �/ � C .
At the same time, by (6-15), the conservation of mass, and (6-28), we infer that� X

i�0

N.J˛/��
1=2
3 2i�5

kP
y

�.J˛/;2i�2�����2iC2
vk2
U 2�.L

2
x ;J˛/

�1
2

. kP y
�.J˛/;�8�

�1=2
3 N.J˛/

v.t˛/kL2y;x CkP
y

�.J˛/;�8�
�1=2
3 N.J˛/

F.v/kL1tL
2
y;x.J˛�R2�R/

. kP y
�.t/;�4�

�1=2
3 N.t/

vkL1t L
2
y;x.J˛�R2�R/CkP

y

�.t/;�4�
�1=2
3 N.t/

F.v/kL1tL
2
y;x.J˛�R2�R/

. kP y
�.t/;��

�1=2
3 N.t/

vk
3
4

L1t L
2
y;x.J˛�R2�R/

�
kvk

1
4

L1t L
2
y;x.J˛�R2�R/

Ckvk
9
4

U 2�.L
2
x ;J˛/

�
. �

3
4

2 :

Thus, by Definition 6.19, we have kvk zY0.Œ0;T �/ � C�
3=4
2 .

By Definition 6.14, we see GjC1
k
DGj

2k
[Gj

2kC1
, with Gj

2k
\G

j

2kC1
D ∅. Then for 0 � i � j , if

Gi˛ �G
jC1

k
, we have Gi˛ �G

j

2k
or Gi˛ �G

j

2kC1
. ThusX

0�i<jC1

2i�.jC1/
X

Gi˛�G
jC1

k

kP
y

�.Gi˛/;2i�2�����2iC2
vk2
U 2�.L

2
x ;G

i
˛/

� 2�1
X
0�i<j

2i�j
� X
Gi˛�G

j

2k

kP
y

�.Gi˛/;2i�2�����2iC2
vk2
U 2�.L

2
x ;G

i
˛/

C

X
Gi˛�G

j

2kC1

kP
y

�.Gi˛/;2i�2�����2iC2
vk2
U 2�.L

2
x ;G

i
˛/

�

C 2�1
�
kP

y

�.G
j

2k
/;2j�2�����2jC2

vk2
U 2�.L

2
x ;G

j

2k
/
CkP

y

�.G
j

2kC1
/;2j�2�����2jC2

vk2
U 2�.L

2
x ;G

j

2kC1
/

�
�
1
2
.kvk2

X.G
j

2k
/
Ckvk2

X.G
j

2kC1
/
/: (6-29)
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At the same time, by (6-21) and (6-9), we seeX
i�jC1

kP
y

�.G
jC1

k
/;2i�2�����2iC2

vk2
U 2�.L

2
x ;G

jC1

k
/

�

X
i�jC1

�
kP

y

�.G
jC1

k
/;2i�2�����2iC2

vk2
U 2�.L

2
x ;G

j

2k
/
CkP

y

�.G
jC1

k
/;2i�2�����2iC2

vk2
U 2�.L

2
x ;G

j

2kC1
/

�
�

X
i�jC1

�
kP

y

�.G
j

2k
/;2i�3�����2iC3

vk2
U 2�.L

2
x ;G

j

2k
/
CkP

y

�.G
j

2kC1
/;2i�3�����2iC3

vk2
U 2�.L

2
x ;G

j

2kC1
/

�
: (6-30)

Therefore, by (6-29) and (6-30), and Definition 6.18, we get

kvk2
zXk�C1.Œ0;T �/

� 2kvk2
zXk� .Œ0;T �/

:

By a similar argument, we can deduce

kvk2
zYk�C1.Œ0;T �/

� 2kvk2
zYk�.Œ0;T �/

: �

6.2.2. The bootstrap estimate. In the following, we will establish the bootstrap estimate, which is
necessary for the proof of Theorem 6.21. For 0� j � k0 and Gj

k
� Œ0; T �. By Duhamel’s formula, we

have, for 0� i < j ,

kP
y

�.Gi˛/;2i�2�����2iC2
vkU 2�.L

2
x ;G

i
˛/
�kP

y

�.Gi˛/;2i�2�����2iC2
v.t i˛/kL2y;x

C





Z t

t i˛

ei.t��/�yP
y

�.Gi˛/;2i�2�����2iC2
F.v.�//d�






U 2�.L

2
x ;G

i
˛/

: (6-31)

Here we take t i˛ to satisfy

kP
y

�.Gi˛/;2i�2�����2iC2
v.t i˛/kL2y;x D inf

t2Gi˛

kP
y

�.Gi˛/;2i�2�����2iC2
v.t/kL2y;x :

We now consider the first term on the right-hand side of (6-31). By (6-17) and Lemma 6.15, we haveX
0�i<j

2i�j
X

Gi˛�G
j

k

kP
y

�.Gi˛/;2i�2�����2iC2
v.t i˛/k

2
L2y;x

. 2�j ��13
Z
G
j

k

.N.t/3C �3kv.t/k
4
L4yL

2
x.R2�R/

/
X
0�i<j

kP
y

�.t/;2i�3�����2iC3
v.t/k2

L2y;x
dt . 1:

For i � j , we can just take tj
k

to be the left endpoint of Gj
k

. Then we haveX
i�j

kP
y

�.G
j

k
/;2i�2�����2iC2

v.t
j

k
/k2
L2y;x
. kv.tj

k
/k2
L2y;x
. 1:

ThusX
0�i<j

2i�j
X

Gi˛�G
j

k

kP
y

�.Gi˛/;2i�2�����2iC2
v.t i˛/k

2
L2y;x
C

X
i�j

kP
y

�.G
j

k
/;2i�2�����2iC2

v.t
j

k
/k2
L2y;x
. 1: (6-32)

We next consider the second term on the right-hand side of (6-31). Observe that there are at most two
small intervals, called for instance J1 and J2, which intersect Gj

k
but are not contained in Gj

k
. Then by
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Lemma 6.16 and (6-11), we haveX
0�i<j

2i�j
X

Gi˛�G
j

k

kF.v/k2
L1tL

2
y;x..G

i
˛\.J1[J2//�R2�R/

.
X
0�i<j

2i�j kF.v/k2
L1tL

2
y;x..J1[J2/�R2�R/

. kvk6
L3tL

6
yL

2
x.J1�R2�R/

Ckvk6
L3tL

6
yL

2
x.J2�R2�R/

. 1: (6-33)

Then by (6-9), (6-11), (6-33), (6-14), (6-19) and Definition 6.14, we obtain

X
0�i<j

2i�j
X

Gi˛�G
j

k

N.Gi˛/�2
i�5�

1=2
3





Z t

t i˛

ei.t��/�yP
y

�.Gi˛/;2i�2�����2iC2
F.v.�// d�





2
U 2�.L

2
x ;G

i
˛/

.
X
0�i<j

2i�j
X

Gi˛�G
j

k

N.Gi˛/�2
i�5�

1=2
3

X
Jl\G

j

k
¤∅

kP
y

�.Gi˛/;2i�2�����2iC2
F.v/k2

DU 2�.L
2
x ;G

i
˛\Jl /

.
X
0�i<j

2i�j
X

Gi˛�G
j

k

N.Gi˛/�2
i�5�

1=2
3

X
Jl\G

j

k
¤∅

kF.v/k2
L1tL

2
y;x..G

i
˛\Jl /�R2�R/

. 1C
X
0�i<j

2i�j
� X

Jl�G
j

k

N.Jl /�2
i�6�

1=2
3

kF.v/k2
L1tL

2
y;x.Jl�R2�R/

�
. 1C

X
Jl�G

j

k

X
0�i<j;

2i�26�
�1=2
3 N.Jl /

2i�j . 1: (6-34)

On the interval Gj
k

with N.Gj
k
/� 2i�5�

1=2
3 , by (6-14) and (6-17), we haveZ

G
j

k

N.t/2 dt . 1: (6-35)

Thus, by Minkowski’s inequality, (6-3), (6-19), (6-6), and (6-35), we haveX
i�j

N.G
j

k
/�2i�5�

1=2
3

kP
y

�.G
j

k
/;2i�2�����2iC2

F.v/k2
L1tL

2
y;x.G

j

k
�R2�R/
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L1tL

2
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j

k
�R2�R/

. kvk6
L3tL

6
yL

2
x.G

j

k
�R2�R/

. 1: (6-36)

Thus, by (6-31), (6-32), (6-34), and (6-36), we infer

kvk2
X.G

j

k
/
. 1C

X
i�j

N.G
j

k
/�2i�5�
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3





Z t

t
j

k

ei.t��/�yP
y
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j
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F.v.�//d�
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/

C

X
0�i<j

2i�j
X

Gi˛�G
j

k

N.Gi˛/�2
i�5�
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i
˛/

: (6-37)
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We can further get

kvk2
X.G

j

k
/
. 1C

X
i�j;

N.G
j

k
/�2i�10�

1=2
3





Z t

t
j
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y

�.G
j
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2
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X
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F.v.�//d�
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U 2�.L

2
x ;G

i
˛/

; (6-38)

because the contribution of those terms for i satisfying 2i�10�1=23 �N.t/� 2i�5�
1=2
3 in the right-hand

side of (6-37) is small by similar argument as in the proof of (6-37).
By a similar argument as above for (6-38), we also refer to [Dodson 2016b] for more explanation.

Then, we have
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: (6-39)

Remark 6.23. By Lemma 6.22, Remark 6.17, and (6-11), we haveX
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. 1:

So we can further reduce the summation over i on the right-hand side of (6-38) and (6-39) to i > 11.

Therefore, we have reduced to the proof of the following estimate.

Theorem 6.24 (reduced estimate).X
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5
3
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kvk2
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C �22kvk
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.1Ckvk8
zXj .Œ0;T �/

/: (6-40)
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Once this theorem is proved, we can close the proof of Theorem 6.21 by a bootstrap argument. In the
proof given below, we shall assume Theorem 6.24 holds, while leaving its proof to Section 7.1.

Proof of Theorem 6.21. Suppose

kvk2
zXk� .Œ0;T �/

� C0 and kvk2
zYk� .Œ0;T �/

� C�
3
2

2 � �2;

and from (6-27), we have

kvk2
zXk�C1.Œ0;T �/

� 2C0 and kvk2
zYk�C1.Œ0;T �/

� 2�2:

Then, by (6-38), (6-39), and (6-40), we can further get

kvk zXk�C1.Œ0;T �/
� C.1C �

2
3

2 .2C0/
5
6 C �

3
2

2 C �2.1C 2C0/
8/;

kvk zYk�C1.Œ0;T �/
� C.�

3
4

2 C �
2
3

2 .2C0/
5
6 C �

3
2

2 C �2.1C 2C0/
8/:

If we choose C0 D 26C , and �2 small enough, then we may deduce

kvk zXk�C1.Œ0;T �/
� C

1
2

0 and kvk zYk�C1.Œ0;T �/
� �

1
2

2 :

Theorem 6.21 now follows from this and (6-26) by performing an induction on k�. �
6.2.3. The low-frequency localized interaction Morawetz estimate. As an application of the long-time
Strichartz estimate, we can obtain the low-frequency localized interaction Morawetz estimate of the
(DCR). The Morawetz estimate is a very important tool to prove the scattering of the nonlinear dispersive
equations for the radial case [Lin and Strauss 1978; Morawetz 1968]. In the nonradial case, J. Colliander,
M. Keel, G. Staffilani, H. Takaoka, and T. Tao [Colliander et al. 2004] developed the interaction Morawetz
estimate, which is used to prove the scattering of the nonlinear Schrödinger equation [Colliander et al.
2008; Tao et al. 2007a; 2007b; Dodson 2012; 2016a; 2016b] in the nonradial case. The low-frequency
localized interaction Morawetz estimate will be used to preclude the soliton-like solution in Theorem 6.26.

Theorem 6.25 (low-frequency localized interaction Morawetz estimate). Let v.t; y; x/ be the almost
periodic solution in Theorem 6.6 on Œ0; T � with

R T
0 N.t/3 dt DK. Then we have



Z

R

jry j
1
2 .jP

y

�10��11 K
v.t; y; x/j2/ dx





2
L2t;y.Œ0;T ��R2/

. o.K/: (6-41)

The proof of this theorem follows from similar arguments in [Dodson 2012; 2016a; 2016b] and relies
on Theorem 6.24 (and also some part of the proof). In our (DCR) system, the interaction Morawetz
quantity is

M0.t/D

Z
R

Z
R

Z
R2

Z
R2
jv.t; Qy; Qx/j2

y � Qy

jy � Qyj
=. Nvryv/.t; y; x/ dy d Qy dx d Qx;

which is invariant under the Galilean transform in the R2-component. Following the argument in
[Colliander et al. 2009; Planchon and Vega 2009], we can get



Z

R

jry j
1
2 .jv.t; y; x/j2/ dx





2
L2t;y.Œ0;T ��R2/

. jM0.T /�M0.0/j:
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Replacing v by its low-frequency cut-off P y�10��11 Kv, we then get the low-frequency localized interaction
Morawetz quantity

M.t/D

Z
R

Z
R

Z
R2

Z
R2
jP
y

�10��11 K
v.t; Qy; Qx/j2

y� Qy

jy� Qyj
=.P

y

�10��11 K
vryP

y

�10��11 K
v/.t;y;x/dy d Qy dx d Qx:

Because for any � > 0 independent of �1, by Theorem 6.6 and Bernstein’s inequality, we have

jM.T /jC jM.0/j. �K;

we then obtain 



Z
R

jry j
1
2 .jv.t; y; x/j2/ dx





2
L2t;y.Œ0;T ��R2/

. �KC E ;

where E are the error terms coming from the low-frequency cut-off of the solution of the (DCR). These
error terms can be proven to be o.K/, using Theorem 6.24 and also some estimates from the proof of it.
We shall leave the detailed proof of this theorem to Section 7.2.

6.3. Exclusion of the almost periodic solution.

Theorem 6.26. The almost periodic solution to (DCR) in Theorem 6.6 does not exist.

Proof. We will preclude two scenarios in the following.

Case I:
R1
0 N.t/3 dt <1. By the proof of Theorem 6.21, as in [Dodson 2016a; 2016b], we have

kv.t; y; x/k
L1t

PH3
yL

2
x.Œ0;1/�R2�R/

.m0
�Z 1

0

N.t/3 dt
�3
: (6-42)

By (6-42) and (6-4), we have

keiy ��.t/vk PH1
yL

2
x
.N.t/C.�.t//C �.t/

1
2 ! 0 as t !1:

Thus, for any � >0, we can take a sufficiently large positive constant t0 such that keiy ��.t0/v.t0/k PH1
yL

2
x
� �.

In the following, we can assume t0 D 0 because of the Galilean invariance. By Minkowski’s inequality,
the Gagliardo–Nirenberg inequality, and Hölder’s inequality, we have

E.v.t//D E.v.0//. kv.0/k2
PH1
yL

2
x

. �2:

Because we can take � as small as we wish, this scenario does not exist.

Case II:
R1
0 N.t/3 dt D1. By Hölder’s inequality and Sobolev’s inequality, we haveZ

jy�y.t/j�C. 1
100
kv.0/k2

L2y;x

/=N.t/

Z
R

jP
y

�10��11 K
v.t; y; x/j2 dy dx

.
�C � 1

100
kv.0/k2

L2y;x

�
N.t/

�3
2




Z

R

jry j
1
2 .jP

y

�10��11 K
v.t; y; x/j2/ dx






L2y

:
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By Theorem 6.6, we have for K � C
�
1
100
kvk2

L2y;x

�
,

kvk2
L2y;x

2
�

Z
R

Z
jy�y.t/j�C. 1

100
kvk2

L2y;x

/=N.t/
jP
y

�10��11 K
v.t; y; x/j2 dy dx:

By the above two estimates, together with Theorem 6.25 and the conservation of mass, we have the
following contradiction when K is sufficiently large:

kvk4
L2y;x

K .
Z T

0

N.t/3
�Z
jy�y.t/j�C. 1

100
kvk2

L2y;x

/=N.t/

Z
R

jP
y

�10��11 K
v.t; y; x/j2 dx dy

�2
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.




Z

R

jry j
1
2 .jP

y

�10��11 K
v.t; y; x/j2/ dx





2
L2t;y.Œ0;T ��R2/

. o.K/:

This completes the proof of Theorem 6.26. �

Proof of Theorem 1.2. This is an immediate consequence of Theorems 6.6 and 6.26. �

7. Proof of Theorems 6.24 and 6.25

7.1. Proof of Theorem 6.24. In this section, we complete the proof of Theorem 6.24. To prove this
theorem, we decompose the nonlinear term P

y
�.Gi˛/;2

i�2�����2iC2F.v/ and also use the fact that on the
time interval Gi˛, �.t/ can replace �.Gi˛/ up to 2i�20 by (6-20). Then, we can see it is enough to prove
the estimate the left-hand side of (6-40) with P y

�.Gi˛/;2i�2�����2iC2
F.v/ being replaced by

P
y

�.Gi˛/;2i�2�����2iC2
O
� X
n1;n2;n3;n2N
n1�n2Cn3Dn

…n
�
P
y

�.Gi˛/;�2i�5
vn1P

y

�.t/;�2i�10
vn2vn3

��
(7-1)

CP
y

�.t/;2i�2�����2iC2
O
� X
n1;n2;n3;n2N
n1�n2Cn3Dn

…n
�
P
y

�.t/;�2i�10
vn1P

y

�.Gi˛/;�2i�10
vn2P

y

�.Gi˛/;2i�5�����2iC5
vn3

��
; (7-2)

we also have a similar fact for the nonlinear termP
y
�.G

j

k
/;2i�2�����2iC2F.v/, where the symbol O represents

the different frequencies that will be located in different vnl , l D 1; 2; 3. Since their estimates are almost
identical, we denote them as a single O. The estimate of the Duhamel propagator of the term (7-1) is very
short and easy, and mainly relies on the bilinear Strichartz estimate in Proposition 6.13. The estimate
of the Duhamel propagator of the term (7-2) is lengthy. This is because to prove the estimate of the
Duhamel propagator of the term (7-2), we need to prove the bilinear Strichartz estimates on the union of
the small intervals. It turns out these bilinear Strichartz estimates cannot be proven just by the harmonic
analysis but also rely heavily on the structure of the (DCR) system or more precisely the corresponding
interaction Morawetz estimate of (DCR). During the proof of this part, some terms can be estimated by
the following bilinear Strichartz estimate established recently [Candy 2019] instead of the interaction
Morawetz estimate as in [Dodson 2016b]. This new bilinear Strichartz estimate is very useful in [Shen
and Wu 2020].
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Lemma 7.1 (bilinear Strichartz estimate [Candy 2019]). Let 1 � q; r � 2, 1
q
C

3
2r
< 3
2

, and suppose
M;N 2 2Z satisfy M �N. Then, for any �; 2 L2.R2/,

keit�PN�e
it�PM kLqt L

r
x.R�R2/ .

M 3� 2
q
� 3
r

N 1� 1
r

kPN�kL2.R2/kPM kL2.R2/:

7.1.1. Estimate of (7-1). We first deal with (7-1).

Theorem 7.2. For any fixed Gj
k
� Œ0; T �, j > 0, we haveX

0�i<j

2i�j
X
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j

k
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k
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5
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;

where
F

high
k;j

.v.t//D
X
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…n
�
P
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�
.t/:

Proof. On the time interval Gi˛ with N.Gi˛/� 2
i�10�

1=2
3 , we take w 2 V 2�.L

2
x; G

i
˛/ be normalized so that

.Fyw/.t; �; x/ is supported on
f� W 2i�2 � j� � �.Gi˛/j � 2

iC2
g

for any .t; x/ 2 R�R. By the Cauchy–Schwarz inequality, (6-1), Proposition 6.13, the conservation of
mass, (6-8), (6-11), Lemma 6.20, and (6-15), we inferZ
Gi˛
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�

X
l�i�5
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�1
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: (7-3)
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As in [Dodson 2016b], we see, for any 0 � l � j , Gj
k

overlaps 2j�l intervals Gl
ˇ

and, for 0 � i � l ,
Gl
ˇ

overlaps 2l�i intervals Gi˛. In addition, every Gi˛ is contained in one Gl
ˇ

. Thus, we can divide the
summation in the left-hand side of the following (7-4) and (7-5) into different groups according to l � j
and 0� l < j . Then by some easy calculation and reordering the summation of i and l , we haveX

0�i<j

2i�j
X

Gi˛�G
j

k

N.Gi˛/�2
i�10�

1=2
3

� X
l�i�5

2
i�l
5 kP

y

�.Gi˛/;2l
vk2
U 2�.L

2
x ;G

i
˛/

�
; (7-4)

X
i�j;

N.G
j

k
/�2i�10�

1=2
3

� X
l�i�5

2
i�l
5 kP

y

�.G
j

k
/;2l
vk2
U 2�.L

2
x ;G

j

k
/

�
. kvk2

zYj .Œ0;T �/
: (7-5)

Theorem 7.2 follows from (6-7), (7-3) and (7-4). �

7.1.2. Estimate of (7-2). Now we turn to the estimate of (7-2). Let

F low
k;j .v.t// WD
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P
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y

�.Gi˛/;2i�5�����2iC5
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�
:

Then, we have:

Theorem 7.3. For any 0� i � j , on the time interval Gi˛ �G
j

k
, with N.Gi˛/� 2

i�10�
1=2
3 , we have
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i
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In addition, for i � j , N.Gj
k
/� 2i�10�

1=2
3 , we have
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/4/: (7-7)

Proof of Theorem 7.3. We will only prove (7-6), as (7-7) follows by a similar argument. Fix Gi˛ with
N.Gi˛/� 2

i�10�
1=2
3 . We can see there are no more than two small intervals J1 and J2 which overlap Gi˛

but are not contained in Gi˛. Let zGi˛ DG
i
˛n.J1[J2/, by (6-8), (6-7), (6-9), and (6-11), we have
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Here, we may assume t i˛ 2 zG
i
˛, because if t i˛ 62 zG

i
˛, we may move t i˛ into zGi˛ with the errors being

absorbed by the last two terms on the right-hand side of the above inequality. We can show the last two
terms on the right-hand side of (7-8) are small in the following.

On the intervals Jl for l D 1; 2, by Propositions 6.12 and 6.13, (6-11), the fact N.t/� 2i�5�1=23 on Gi˛ ,
(6-14), (6-15), Lemma 6.16, and (6-11), we can get
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Thus, we can simplify the estimate of (7-8) to the case thatGi˛ is the union of finite many small intervals Jl .
(If not, we just need to add the right-hand side of (7-9)). Let

F
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Then by Lemma 6.11, we have

LHS of (7-8). A1CA2CA3CA4;
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The proof of the first two terms are easy. We first prove the following auxiliary estimate.

Lemma 7.4. Let .p0; q0/ be Strichartz admissible with q0 � 20. Suppose that
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Proof. By (6-14), we see j���.t/j � 2l2C2 implies j���.Jl/j � �
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3 N.Jl/ for t 2 Jl . By the argument

in the proof of Lemma 6.2 and Hölder’s inequality, we haveˇ̌̌̌Z
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By Minkowski’s inequality, Hölder’s inequality, Lemma 6.1, Bernstein’s inequality and the conservation
of mass, we have
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Next, we use the vector-valued version of transference principle to estimate
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Then, using the similar argument of Corollary 1.6 in [Candy 2019], we are reduced to considering
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Therefore, (7-14) follows from (7-15), (7-16) and (7-17). �

We first consider (7-10). By duality, we have

(7-10)D
X

0�l2�i�10

� X
Jl�G

i
˛;
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2
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(7-10).
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We now consider (7-11). By duality and Lemma 7.4, we have
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where Fyw0 is supported on f� W 2i�5 � j� � �.Gi˛/j � 2
iC5g in the above estimate. For fixed i , we take

q0D 20C2i ; then 2i=q0 . 1. For the right-hand side of (7-18), by Hölder’s inequality, Young’s inequality,
(6-14), (6-5), (6-19), and the conservation of mass, we have

(7-11).
X

0�l2�i�10

Jl�G
i
˛

N.Jl /��
1=2
3 2l2�5

sup
kw0kL2y;x

D1

2
2l2
q0 �

1
4
� 1
q0

3 2�
i
2 keit�yw0kLp0t L

q0
y L

2
x.Jl�R2�R/

� kP
y

�.Gi˛/;2i�5�����2iC5
vkU 2�.G

i
˛;L

2
x/

.
X

0�l2�i�10

2
2l2
q0 �

1
4
� 1
q0

3

� X
Jl�G

i
˛

N.Jl /��
1=2
3 2l2�5

keit�yw0k
p0

L
p0
t L

q0
y L

2
x.Jl�R2�R/

� 1
p0

�

� X
Jl�G

i
˛

.2�
i
2 /

p0
p0�1

�p0�1
p0

kP
y

�.Gi˛/;2i�5�����2iC5
vkU 2�.G

i
˛;L

2
x/

.
X

0�l2�i�10

2l2�5��
�1=2
3 N.Jl /

2
2l2
q0 �

1
4
� 1
q0

3 keit�yw0kLp0t L
q0
y L

2
x.G

i
˛�R2�R/

.2
2i

q0C2 /
1
2
C 1
q0

� kP
y

�.Gi˛/;2i�5�����2iC5
vkU 2�.G

i
˛;L

2
x/

.
X

0�l2�i�10

2l2�5��
�1=2
3 N.Jl /

2
2l2
q0 �

1
4
� 1
q0

3 2
i
q0 kP

y

�.Gi˛/;2i�5�����2iC5
vkU 2�.G

i
˛;L

2
x/

. �
1
4

3 kP
y

�.Gi˛/;2i�5�����2iC5
vkU 2�.L

2
x ;G

i
˛/
:

For the estimates of (7-12) and (7-13), we separate the proofs in the next section using two bilinear
Strichartz estimates. �

7.1.3. Two bilinear Strichartz estimates. We have the following:

Theorem 7.5 (first bilinear Strichartz estimate). Let w0 2 L2y;x.R
2 �R/ with suppFyw0 is supported on

f� W 2i�5 � j� � �.Gi˛/j � 2
iC5g. Then, for any 0� l2 � i � 10, we have on Gl2

ˇ
�Gi˛

keit�yw0kL2xkP y�.t/;�2l2vkL2x

2L2t;y.Gl2ˇ �R2/
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4
zXi .G

i
˛/
/: (7-19)

Theorem 7.6 (second bilinear Strichartz estimate). Let w0 2 L2y;x.R
2 �R/ with suppFyw0 supported

on f� W 2i�5 � j� � �.Gi˛/j � 2
iC5g. Then we haveX
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/: (7-20)

With the above two bilinear Strichartz estimates, we can now estimate (7-12) and (7-13).

Estimate of (7-12). For any 0 � l2 � i � 10, by the fact that Gi˛ consists of 210 subintervals Gi�10
ˇ

,
Proposition 6.12 and Theorem 7.5 on the subintervals Gi�10

ˇ
, we get
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For any Gl2
ˇ
�Gi˛ , choose wl2

ˇ
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/: (7-22)

By Proposition 6.13, (6-8), (6-11), and N.Gl2
ˇ
/� �

1=2
3 2l2�5, we can estimate the term in the first bracket

on the right-hand side of (7-22) as follows:
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:

Thus, by the above inequalities, we obtain

(7-12). kP y
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2
x ;G

i
˛/
kvk zYi .Gi˛/

.1Ckvk2
zXi .G

i
˛/
/: �

Estimate of (7-13). Letw02L2y;x have unit norm with Fyw0 supported on f� W2i�2�j���.Gi˛/j�2
iC2g.

By the Hölder inequality and Proposition 6.12, we have
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Then by the Cauchy–Schwarz inequality and (7-20), we have
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Therefore, this completes the proof of Theorem 7.3. Then we can prove Theorem 6.24 by summation
with respect to i in the same way as (7-6) and (7-7) in Theorems 7.3 and 7.2.

7.1.4. Proofs of the bilinear Strichartz estimates. It remains to prove the two bilinear Strichartz estimates,
that is Theorems 7.5 and 7.6. The proofs of these results are basically the same and rely on the interaction
Morawetz estimates of the (DCR) system; the argument here follows from that in [Dodson 2016b]. We
shall only present the proof of Theorem 7.5 here, because argument of the proof of Theorem 7.6 is similar
and also relies on the result of Theorem 7.5 as the proof of the corresponding bilinear Strichartz estimate
in [Dodson 2016b].

Proof of Theorem 7.5. LetwD eit�yw0 and QwDP y
�.t/;�2l2

v. Thenw and Qw satisfy i@twC�ywD0, and
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:
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After some tedious calculation, we getZ
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(7-23)
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By the invariance of the Galilean transformation of M.t/, Hölder’s inequality, and the conservation of
mass, we infer that 2l2�2i sup

t2G
l2
ˇ

jM.t/j can be bounded by the right-hand side of (7-19).
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Estimate of (7-23). By (6-14), (6-17), Bernstein’s inequality, the conservation of mass and the Strichartz
estimate, we have

j(7-23)j. 2l2�2ikN1k
L
4=3
t;y L

2
x.G

l2
ˇ
�R2�R/

k.ry � i�.t// Qwk
L4t;yL

2
x.G

l2
ˇ
�R2�R/

kwk2
L1t L

2
y;x.G

l2
ˇ
�R2�R/

C 2�2ikwk2
L1t L

2
y;x.G

l2
ˇ
�R2�R/

Z
R

Z
G
l2
ˇ

j� 0.t/jkP
y

�.t/;2l2�3�����2l2C3
v.t; y; x/kL2y

� k.ry � i�.t//P
y

�.t/;�2l2
v.t; Qy; x/kL2

Qy
dx dt

.2l2�2ikN1k
L
4=3
t;y L

2
x.G

l2
ˇ
�R2�R/

k.ry�i�.t// Qwk
L4t;yL

2
x.G

l2
ˇ
�R2�R/

kw0k
2
L2y;x
C22l2�2ikw0k

2
L2y;x

:

Let

m.t; �/D
� � �.t/

2l1
�

�
� � �.t/

2l1

�
:

By Minkowski’s inequality, Young’s inequality, supt k.F�1� m/.t; y/kL1y . 1 and (6-24), we get

k.ry � i�.t// Qwk
L4t;yL

2
x.G

l2
ˇ
�R2�R/

.
X

0�l1�l2

k.ry � i�.t//P
y

�.t/;2l1
vk
L4t;yL

2
x.G

l2
ˇ
�R2�R/

.
X

0�l1�l2

2l1




Z j.F�1� m/.t; y � Qy/jk.P

y

�.t/;2l1
v/.t; Qy; x/kL2x d Qy






L4t;y.G

l2
ˇ
�R2/

.
X

0�l1�l2

2l1kP
y

�.t/;2l1
vk
L4t;yL

2
x.G

l2
ˇ
�R2�R/

.
X

0�l1�l2

2l12
l2�l1
4 kvk

zXl2 .G
l2
ˇ
/
. 2l2kvk zXi .Gi˛/:

Thus, it implies
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CP
y

�.t/;�l2

� X
n1;n2;n3;n2N
n1�n2Cn3Dn

…n.v
l
n1
vhn2v

l
n3
/

�
�

X
n1;n2;n3;n2N
n1�n2Cn3Dn

…n
�
P
y

�.t/;�2l2
vln1P

y

�.t/;�2l2
vhn2P

y

�.t/;�2l2
vln3

�
(7-28)

CO
�
P
y

�.t/;�2l2

� X
n1;n2;n3;n2N
n1�n2Cn3Dn

…n.v
h
n1
vhn2vn3/

�
�

X
n1;n2;n3;n2N
n1�n2Cn3Dn

…n
�
P
y

�.t/;�2l2
vhn1P

y

�.t/;�2l2
vhn2P

y

�.t/;�2l2
vn3

��
;

(7-29)

where the O in (7-29) means there are two high-frequency factors in it. Observe that

(7-26)D 0:

We next consider (7-27) and (7-28). Because their estimates are very similar, we only prove (7-27). Since
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We shall only prove estimate (7-31), as the proof of (7-32) is similar.
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By the estimates j� � �j � 2l1 , j�� � j. 2l1 , and the fundamental theorem of calculus, we obtainˇ̌̌̌
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Thus, by Minkowski’s inequality, Hölder’s inequality, (7-34), Lemma 6.20 and the conservation of mass,
we infer
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We now consider (7-29). Since
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and therefore, we have
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Estimate of (7-24). Applying integration by parts, we have
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By the Strichartz estimate, (7-35), (6-14), (6-17), Bernstein’s inequality, and the conservation of mass,
we have
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Estimate of (7-25): By Bernstein’s inequality and the conservation of mass, we have
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where Fj;n consists of j vhn-terms and 4� j vln-terms, for j D 0; 1; 2; 3; 4, in
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We now consider the estimate of the Fj terms, j D 0; 1; 2; 3; 4, as follows.
By (7-36), we have Z
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By Bernstein’s inequality, (6-1) and Lemma 6.20, we have
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By a direct calculation, we haveX
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Since the support of the partial Fourier transform with respect to Qy of
P
n2N F1;n.t; Qy; Qx/ is contained in

f� W j�j � 2l2�4g, we can apply the integration by parts with respect to Qy, the Hardy–Littlewood–Sobolev
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We are now left to show
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Similar to the estimate on the term involved F1 above, from integration by parts, Bernstein’s inequality
and (6-25), we conclude
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We now turn to the estimate of the low-frequency part of F2. First of all, we can decompose F2;n0 as
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we obtain
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For (7-41), by (7-30), (7-34), Lemma 6.20 and the conservation of mass, we have
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To estimate (7-42). We note similar to (7-33), we haveˇ̌̌̌
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Now we turn to the remaining terms in (7-40). Observe that
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Similar to the arguments for (7-43), we have
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Thus, to show (7-39), we just need to consider the term that contains (7-45). By direct calculation, we get
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We may take �.Gl2
ˇ
/D 0 in the right-hand side of the above equality by the invariance of the Galilean

transformation. By the inverse Fourier transform, we have
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D

X
n;n02N

X
n01;n

0
2;n
0
32N;
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2
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2
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2
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as in [Dodson 2016b], we have 1=q.�/ is a convergent sum of terms with operator norm being dominated
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:

Let Gl2
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D Œt0; t1�. Applying integration by parts (with respect to time), we haveZ
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where
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�
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�
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1
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For (7-48), set
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�1C �2C �3C �0

2l2�10

��
1��

�
�0� �.t/

2l2

�
�

�
�2� �.t/
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Then we have
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;

where
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which satisfies
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t

Z
jK.t I z0; z1; z2; z3/j dz1 dz2 dz3 dz0 . 2�2l2 ; (7-53)

by the Coifman–Meyer theorem [Germain et al. 2012]. Thus, by Bernstein’s inequality, (7-53) and the
conservation of mass, we have
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x
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Next, we turn to the estimate of (7-49). By a direct computation, we have
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Z
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Thus, we get
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where K.t I z0; z1; z2; z3/ is given in (7-52).
By (7-53), (6-14), (6-19), Bernstein’s inequality and the conservation of mass, we have
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Integrating (7-55) by parts in space, we derive
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Therefore, by the Hardy–Littlewood–Sobolev inequality, (7-53), Lemma 6.20, the Sobolev embedding
theorem, the fact Gl2

ˇ
�Gi˛, j�.t/j � 2l2 and l2 � i , we have
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By a similar argument, we infer
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Now we turn to (7-50). As (7-48), we have the corresponding integral kernel
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The kernel function zK.t I z0; z1; z2; z3/ satisfies
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Finally, we consider the term (7-51). Following the argument for the estimates (7-48) and (7-50), by the
Bernstein inequality, the conservation of mass and Lemma 6.20, we deduce
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Therefore, we eventually arrive at
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4
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The proof of Theorem 7.5 is complete. �
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7.2. Proof of Theorem 6.25. By Theorem 6.21, we have

kv�k zXk0 .Œ0;�
�2T �/

. 1; (7-57)
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Then a direct calculation similar to [Dodson 2012; 2016a; 2016b; 2009] gives
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Since N.t/� 1, we have N�.t/� �32k0=K. By Theorem 6.6 and the Bernstein inequality, for any � > 0,
if K � C.�/, we have
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Therefore, by the Galilean transformation and the conservation of mass, we get
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We now consider (7-59). As in (7-37), let vl
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We can see Z
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F0.t; Qy; Qx/ d Qx D 0:
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Following the same argument as the proof of (7-25), we may obtainZ
R
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Then by (7-62) and the conservation of mass, we haveˇ̌̌̌Z ��2T

0

Z
R

Z
R

Z
R2

Z
R2
=. NQw.ry�i�.t// Qw/.t; y; x/

y � Qy

jy � Qyj
.F2CF3CF4/.t; Qy; Qx/ dy d Qy dx d Qx dt

ˇ̌̌̌
.�2k0 :

To estimate the contribution of the term with F1 in (7-59), we see the support of the spatial Fourier
transform of

R
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. 2�k0k.ry � i�.t// QwkL4t;yL2x.Œ0;��2T ��R2�R/kv
l
�k
3

L6t;yL
2
x.Œ0;��2T ��R2�R/

:

By the Bernstein inequality, Lemma 6.20, and (7-57), we have

kvl�kL6t;yL
2
x.Œ0;��2T ��R2�R/ .

X
0�l�k0

2
l
3 2

k0�l

6 . 2
k0
3 :

Note that

k.ry � i�.t// QwkL5=2t L10y L
2
x.Œ0;��2T ��R2�R/

.
X

0�l�k0

2l2
2
5
.k0�l/ . 2k0 : (7-63)

Interpolating (7-63) and (7-62), we obtain

k.ry � i�.t// QwkL4t;yL
2
x.Œ0;��2T ��R2�R/ . �

3
8 2k0 : (7-64)

Thus, by the above estimates, we have

(7-59). �
3
8 2k0 :

Now, we turn to (7-60). By (7-35) and (7-57), we have

(7-60). k Qwk2
L1t L

2
y;x.Œ0;��2T ��R2�R/

kN k
L
4=3
t;y L

2
x.Œ0;��2T ��R2�R/

k.ry � i�.t// QwkL4t;yL
2
x.Œ0;��2T ��R2�R/

. �
3
8 2k0 :
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Finally, we consider (7-61). Applying integration by parts, we have

(7-61)� (7-60)C
ˇ̌̌̌Z ��2T

0

Z
R

Z
R

Z
R2

Z
R2
j Qw.t; Qy; Qx/j2

1

jy � Qyj
<. NQwN/.t; y; x/ dy d Qy dx d Qx dt

ˇ̌̌̌
: (7-65)

By (6-1) and (7-36), we see

(7-65).
Z ��2T

0

Z
R2

Z
R2
k Qw.t; Qy; Qx/k2

L2
Qx

1

jy � Qyj
k Qw.t; y; x/kL2xkv

h
�.t; y; x/k

3
L2x

dy d Qy dt (7-66)

C

Z ��2T

0

Z
R2

Z
R2
k Qw.t; Qy; Qx/k2

L2
Qx

1

jy � Qyj
k Qw.t; y; x/kL2xkv

l
�.t; y; x/k

2
L2x
kvh�.t; y; x/kL2x dy d Qy dt:

(7-67)

By the Hardy–Littlewood–Sobolev inequality, (7-62), (7-64), Lemma 6.20, the Sobolev embedding
theorem, the conservation of mass, and interpolation, we have

(7-66). kvh�k
3
L4t;yL

2
x.Œ0;��2T ��R2�R/

k Qwk3
L4t;yL

2
x.Œ0;��2T ��R2�R/

. �
3
8 2k0

and

(7-67). kvh�kL3tL6yL2x.Œ0;��2T ��R2�R/k Qwk
3

L9tL
90=29
y L2x.Œ0;��2T ��R2�R/

� kvl�k
2

L6tL
60=11
y L2x.Œ0;��2T ��R2�R/

. �
1
6 2k0 :

Thus, by the above estimates, we have



Z
R

jry j
1
2 .j Qw.t; y; x/j2/ dx





2
L2t;y.Œ0;�

�2T ��R2/

. �
1
6 2k0 :

Undoing the scaling in (7-58), we finally reach the desired estimate (6-41). �

Appendix: Well-posedness theory for (1-2)

In this appendix, we present the proofs of the recorded results in Section 3. Let

X1.t/D x sin.t/� i cos.t/ @x and X2.t/D x cos.t/C i sin.t/ @x : (A-1)

We have the pointwise identity: for any f 2 S.R3/,

jX1.t/f .y; x/j
2
CjX2.t/f .y; x/j

2
D jxf .y; x/j2Cj@xf .y; x/j

2 for all t 2 R: (A-2)

The next result follows by direct calculation. We refer to [Carles 2002b] for more explanation.

Lemma A.1. The operators X1.t/ and X2.t/ satisfy the following properties:

(1) They correspond to the conjugation of gradient and momentum by the free flow,

X1.t/D e
it.�

R3
�x2/.�i@x/e

�it.�
R3
�x2/;

X2.t/D e
it.�

R3
�x2/xe�it.�R3

�x2/:
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(2) They act on the nonlinearity like derivatives, that is, for j D 1; 2, we have

jXj .t/.juj
2u/j. juj2jXj .t/uj:

As a consequence, for any u˙ 2†, we have

ke�it.�R3
�x2/u.t/�u˙k†Dku.t/�e

it.�
R3
�x2/u˙kL2xH1

y

CkX1.t/.u.t/�e
it.�

R3
�x2/u˙/kL2y;xCkX2.t/.u.t/�e

it.�
R3
�x2/u˙/kL2y;x :

We now show the local well-posedness part of Theorem 3.4 in the following formulation. This is essentially
following the argument in [Cazenave 2003; Tao 2006].

Theorem A.2 (local well-posedness). For any E > 0 and u0 with ku0kL2yH1x.R2�R/ � E, there exists
ı0 D ı0.E/ > 0 such that if

keit.�R3
�x2/u0kL4t;yL

2
x.I�R2�R/

CkX1.t/e
it.�

R3
�x2/u0kL4t;yL

2
x.I�R2�R/CkX2.t/e

it.�
R3
�x2/u0kL4t;yL

2
x.I�R2�R/ � ı0;

where I is the time interval, there exists a unique solution u 2 C 0t L
2
yH1x.I �R2 �R/ of (1-2) satisfying

kukL4t;yH
1
x.I�R2�R/ � 2ke

it.�
R3
�x2/u0kL4t;yH

1
x.I�R2�R/ and kukL1t L

2
yH1x.I�R2�R/ � Cku0kL2yH1x :

Proof. Let

ˆ.u/D eit.�R3
�x2/u0� i

Z t

0

ei.t�s/.�R3
�x2/.juj2u/.s/ ds;

and set the space X to be

X D fu 2 C 0t L
2
yH

1
x W kukL1t L

2
yH1x � 2E; kukL4t;yH

1
x
� 2Cı0g

or

X D
˚
u 2 C 0t L

2
yH

1
x W kukL1t L

2
y;x
� 2E; kukL4t;yL

2
x
� 2Cı0;

kXj .t/ukL1t L
2
y;x
� 2E; kXj .t/ukL4t;yL

2
x
� 2Cı0; j D 1; 2

	
:

For any u 2X, by Proposition 3.2, Hölder’s inequality, Sobolev’s inequality, Lemma A.1, and (A-1), we
have

kˆ.u/kL1t L
2
y;x
. ku0kL2y;x CkukL4t;yL2xkuk

2
L4t;yH

1
x

and

kX1.t/ˆ.u/kL1t L
2
y;x
CkX2.t/ˆ.u/kL1t L

2
y;x

. krxu0kL2y;x Ckxu0kL2y;x Ckuk
2
L4t;yH

1
x
.kX1.t/ukL4t;yL

2
x
CkX2.t/ukL4t;yL

2
x
/:

Thus

kˆ.u/kL1t L
2
y;x
CkX1.t/ˆ.u/kL1t L

2
y;x
CkX2.t/ˆ.u/kL1t L

2
y;x
�EC .2Cı0/

3
� 2E: (A-3)



3438 XING CHENG, CHANG-YU GUO, ZIHUA GUO, XIAN LIAO AND JIA SHEN

Similarly, we can obtain

kˆ.u/kL4t;yL
2
x
CkX1.t/ˆ.u/kL4t;yL

2
x
CkX2.t/ˆ.u/kL4t;yL

2
x
� ı0C .2Cı0/

3
� 2Cı0: (A-4)

In the same time, for any u; v 2X, by the Strichartz estimate, Hölder’s inequality, and Sobolev’s inequality,
we have

kˆ.u/�ˆ.v/kL4t;yL
2
x
.


juj2u� jvj2v



L
4=3
t;y L

2
x

. ku� vkL4t;yL2x .kuk
2
L4t;yH

1
x
Ckvk2

L4t;yH
1
x
/. .2Cı0/2ku� vkL4t;yL2x : (A-5)

Combining (A-3), (A-4), and (A-5), we have for ı0 small enough ˆ W X ! X is a contractive map.
Therefore, the theorem follows from the fixed point theorem. �

We now turn to the proof of the scattering norm in Theorem 3.4.

Proof of the scattering norm part of Theorem 3.4. We need to show

kuk
L4t;yH

1
x\L

4
tW

1;4
y L2x.R�R2�R/

� C.M/: (A-6)

Then by the scattering theory of the nonlinear Schrödinger equations [Antonelli et al. 2015; Carles 2011;
Tao 2006], we have scattering in (3-1). By the well-posedness part of Theorem 3.4, it suffices to prove
(A-6) as an a priori bound.

Divide the time interval R into N �
�
1C L

ı

�4 subintervals Ij D Œtj ; tjC1� such that

kuk
L4t;yH

1��0
x .Ij�R2�R/

� ı; (A-7)

where ı > 0 will be chosen later.
On each Ij , by (A-1), the Strichartz estimate, the Sobolev embedding and (A-7), we have

kuk
L4tW

1;4
y L2x\L

4
t;yH

1
x.Ij�R2�R/

� C
�
ku.tj /k†Ckjuj

2uk
L
4=3
t;y L

2
x
CkX1.t/.juj

2u/k
L
4=3
t;y L

2
x
CkX2.t/.juj

2u/k
L
4=3
t;y L

2
x

�
� C

�
ku.tj /k†Ckuk

2

L4t;yH
1��0
x

.kukL4t;yL
2
x
CkX1.t/ukL4t;yL

2
x

CkX2.t/ukL4t;yL
2
x
/Ckuk

L4tW
1;4
y L2x

kuk2
L4t;yH

1��0
x

�
� C

�
ku.tj /k†Ckuk

2

L4t;yH
1��0
x

.kukL4t;yL
2
x
CkrxukL4t;yL

2
x
CkjxjukL4t;yL

2
x
Ckuk

L4tW
1;4
y L2x

/
�

� C
�
ku.tj /k†C ı

2
kuk

L4tW
1;4
y L2x\L

4
t;yH

1
x

�
:

Choosing ı �
�
1
2C

�1=4 leads to the estimate

kuk
L4tW

1;4
y L2x\L

4
t;yH

1
x.Ij�R2�R/

� 2Cku.tj /k†y;x :

The desired bound (A-6) now follows by adding up the bounds on each subintervals Ij . �

Proof of Theorem 3.5. We only give a sketch for the proof of Theorem 3.5, since it follows essentially by
the same argument as in the proof of Theorem 3.4.
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For u� 2†, let ı > 0 be a small absolute constant to be taken later. Taking T�D T�.u�/ large enough
and then applying the monotone convergence theorem, we obtain

keit.��x
2/u�kL4tW

1;4
y L2x\L

4
t;yH

1
x..�1;�T���R2�R/

� ı:

Solving the integral equation

u.t/D eit.��x
2/u�� i

Z t

�1

ei.t�s/.��x
2/.juj2u/.s/ ds

in L1t L
2
yH1x \ L1t H 1

yL
2
x \ L

4
tW

1;4
y L2x \ L

4
t;yH1x..�1;�T�� � R2 � R/ and keeping u small in

L4tW
1;4
y L2x \L

4
t;yH1x..�1;�T���R2 �R/, the argument in the proof of Theorem A.2 implies that

there exists a solution of (1-2) on .�1;�T���R2�R, which furthermore satisfies (3-2). This completes
the proof for first part of Theorem 3.5. The proof for the second part of Theorem 3.5 is similar and thus
we omit it here. �

We now turn to the proof of Theorem 3.6. First, we show the following short-time version.

Lemma A.3 (short-time stability theorem). Let I be a compact interval and let Qu be an approximate
solution to (1-2) in the sense that i@t QuC�R3 Qu� x

2 QuD j Quj2 QuC e for some function e. Assume that

k QukL1t L
2
yH1x.I�R2�R/ �M (A-8)

for some positive constant M. Let t0 2 I and u.t0/ be such that

ku.t0/� Qu.t0/kL2yH1x �M
0 (A-9)

for some M 0 > 0.
Assume also the smallness conditions hold:

k QukL4tL
4
yH1x.I�R2�R/ � �; (A-10)

kei.t�t0/.�R3
�x2/.u.t0/� Qu.t0//kL4tL

4
yH1x CkekL4=3t L

4=3
y H1x

� � (A-11)

for some 0 < � � �1, where �1 D �1.M;M 0/ > 0 is a small constant. Then, there exists a solution u to
(1-2) on I �R2 �R with initial data u.t0/ at time t D t0 satisfying

ku� QukL4t;yH
1
x
. �; (A-12)

ku� QukL1t L
2
yH1x .M

0; (A-13)

kukL1t L
2
yH1x .M CM

0; (A-14)

kjuj2u� j Quj2 Quk
L
4=3
t L

4=3
y H1x

. �: (A-15)

Proof. By symmetry, we may assume t0 D inf I. Let w D u� Qu. Then w satisfies

i @twC�R3w� x
2w D j QuCwj2. QuCw/� j Quj2 Qu� e:

For t 2 I, we define

D.t/D kj QuCwj2. QuCw/� j Quj2 Quk
L
4=3
t;y H1x.Œt0;t��R2�R/

:
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By (A-10), we have

D.t/. kwkL4t;yH1x .k Quk
2
L4t;yH

1
x
Ckwk2

L4t;yH
1
x
/

. kwk3
L4t;yH

1
x.Œt0;t��R2�R/

C �21kwkL4t;yH
1
x.Œt0;t��R2�R/: (A-16)

On the other hand, by the Strichartz estimate and (A-11), we get

kwkL4t;yH
1
x.Œt0;t��R2�R/ . ke

i.t�t0/.�R3
�x2/w.t0/kL4t;yH

1
x.Œt0;t��R2�R/CD.t/CkekL4=3t;y H1x.Œt0;t��R2�R/

.D.t/C �: (A-17)

Combining (A-16) and (A-17), we obtain

D.t/. .D.t/C �/3C �21.D.t/C �/:

A standard continuity argument then shows that if �1 is taken sufficiently small, then

D.t/. � for all t 2 I;

which implies (A-15).
Using (A-15) and (A-17), one easily derives (A-12). Moreover, by the Strichartz estimate, (A-9) and

(A-15),

kwkL1t L
2
yH1x.I�R2�R/ . kw.t0/kL2yH1x Ckj QuCwj

2. QuCw/� j Quj2 Quk
L
4=3
t;y H1x

Ckek
L
4=3
t;y H1x

.M 0C �;

which establishes (A-13) for �1 D �1.M 0/ sufficiently small.
To prove (A-14), we use the Strichartz estimate, (A-8), (A-9), (A-15) and (A-10),

kukL1t L
2
yH1x.I�R2�R/ . k Qu.t0/kL2yH1xCku.t0/� Qu.t0/kL2yH1xCkjuj

2u�j Quj2 Quk
L
4=3
t;y H1x

Ckj Quj2 Quk
L
4=3
t;y H1x

.MCM 0C�Ck Quk3
L4t;yH

1
x
.MCM 0C�C�31 :

The proof is complete by choosing �1 D �1.M;M 0/ sufficiently small. �

We now show the proof of Theorem 3.6.

Proof of Theorem 3.6. We divide the interval I into N �
�
1C L

�0

�4 subintervals Ij D Œtj ; tjC1�, 0� j �
N � 1, such that

k QukL4t;yH
1
x.Ij�R2�R/ � �1;

where �1 D �1.M; 2M 0/ is given by Lemma A.3.
By choosing �1 sufficiently small depending on J, M and M 0, we can apply Lemma A.3 to obtain, for

each j and all 0 < � < �1,

ku� QukL4t;yH
1
x.Ij�R2�R/ � C.j /�; ku� QukL1t L

2
yH1x.Ij�R2�R/ � C.j /M

0;

kukL1t L
2
yH1x.Ij�R2�R/ � C.j /.M CM

0/; kjuj2u� j Quj2 Quk
L
4=3
t;y H1x.Ij�R2�R/

� C.j /�;

provided we can prove that analogues of (3-3) and (3-4) hold with t0 replaced by tj .
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In order to verify this, we use an inductive argument. By the Strichartz estimate, (3-3), and the inductive
hypothesis,

ku.tj /� Qu.tj /kL2yH1x

. ku.t0/� Qu.t0/kL2yH1x Ckjuj
2u� j Quj2 Quk

L
4=3
t;y H1x.Œt0;tj ��R2�R/

Ckek
L
4=3
t;y H1x.Œt0;tj ��R2�R/

.M 0C
j�1X
kD0

C.k/�C �:

Similarly, by the Strichartz estimate, (3-4), and the inductive hypothesis,

kei.t�tj /.�R3
�x2/.u.tj /� Qu.tj //kL4t;yH

1
x.Ij�R2�R/

. kei.t�t0/.�R3
�x2/.u.t0/� Qu.t0//kL4t;yH

1
x.Ij�R2�R/CkekL4=3t;y H1x.Œt0;tj ��R2�R/

Ckjuj2u� j Quj2 Quk
L
4=3
t;y H1x.Œt0;tj ��R2�R/

. �C
j�1X
kD0

C.k/�:

It is clear now we may choose �1 sufficiently small, depending on N;M and M 0, such that the hypotheses
of Lemma A.3 continue to hold as j varies. This completes the proof of Theorem 3.6. �
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[Biasi et al. 2019b] A. Biasi, P. Bizoń, and O. Evnin, “Solvable cubic resonant systems”, Comm. Math. Phys. 369:2 (2019),
433–456. MR Zbl

[Bourgain 1998] J. Bourgain, “Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity”, Int.
Math. Res. Not. 1998:5 (1998), 253–283. MR Zbl

[Buckmaster et al. 2019] T. Buckmaster, P. Germain, Z. Hani, and J. Shatah, “Analysis of (CR) in higher dimension”, Int. Math.
Res. Not. 2019:4 (2019), 1265–1280. MR Zbl

[Candy 2019] T. Candy, “Multi-scale bilinear restriction estimates for general phases”, Math. Ann. 375:1-2 (2019), 777–843.
MR Zbl

[Cao et al. 2022] D. Cao, B. Feng, and T. Luo, “On the standing waves for the X-ray free electron laser Schrödinger equation”,
Discrete Contin. Dyn. Syst. 42:12 (2022), 6097–6137. MR Zbl

[Carles 2002a] R. Carles, “Critical nonlinear Schrödinger equations with and without harmonic potential”, Math. Models
Methods Appl. Sci. 12:10 (2002), 1513–1523. MR Zbl

[Carles 2002b] R. Carles, “Remarks on nonlinear Schrödinger equations with harmonic potential”, Ann. Henri Poincaré 3:4
(2002), 757–772. MR Zbl

[Carles 2003] R. Carles, “Nonlinear Schrödinger equations with repulsive harmonic potential and applications”, SIAM J. Math.
Anal. 35:4 (2003), 823–843. MR Zbl

[Carles 2008] R. Carles, Semi-classical analysis for nonlinear Schrödinger equations, World Sci., Hackensack, NJ, 2008. MR
Zbl

[Carles 2011] R. Carles, “Nonlinear Schrödinger equation with time dependent potential”, Commun. Math. Sci. 9:4 (2011),
937–964. MR Zbl

[Carles and Gallo 2015] R. Carles and C. Gallo, “Scattering for the nonlinear Schrödinger equation with a general one-
dimensional confinement”, J. Math. Phys. 56:10 (2015), art. id. 101503. MR Zbl

[Carles and Keraani 2007] R. Carles and S. Keraani, “On the role of quadratic oscillations in nonlinear Schrödinger equations, II:
The L2-critical case”, Trans. Amer. Math. Soc. 359:1 (2007), 33–62. MR Zbl

[Cazenave 2003] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Math. 10, Amer. Math. Soc.,
Providence, RI, 2003. MR Zbl

[Cheng et al. 2020a] X. Cheng, Z. Guo, K. Yang, and L. Zhao, “On scattering for the cubic defocusing nonlinear Schrödinger
equation on the waveguide R2 �T”, Rev. Mat. Iberoam. 36:4 (2020), 985–1011. MR Zbl

[Cheng et al. 2020b] X. Cheng, Z. Guo, and Z. Zhao, “On scattering for the defocusing quintic nonlinear Schrödinger equation
on the two-dimensional cylinder”, SIAM J. Math. Anal. 52:5 (2020), 4185–4237. MR Zbl

[Colliander et al. 2004] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Global existence and scattering for rough
solutions of a nonlinear Schrödinger equation on R3”, Comm. Pure Appl. Math. 57:8 (2004), 987–1014. MR Zbl

[Colliander et al. 2008] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Global well-posedness and scattering for
the energy-critical nonlinear Schrödinger equation in R3”, Ann. of Math. .2/ 167:3 (2008), 767–865. MR Zbl

[Colliander et al. 2009] J. Colliander, M. Grillakis, and N. Tzirakis, “Tensor products and correlation estimates with applications
to nonlinear Schrödinger equations”, Comm. Pure Appl. Math. 62:7 (2009), 920–968. MR Zbl

https://doi.org/10.2140/apde.2021.14.1125
http://msp.org/idx/mr/4283691
http://msp.org/idx/zbl/1476.35227
https://doi.org/10.1090/S0002-9947-07-04250-X
https://doi.org/10.1090/S0002-9947-07-04250-X
http://msp.org/idx/mr/2327030
http://msp.org/idx/zbl/1171.35109
https://doi.org/10.1007/s00220-017-2866-1
https://doi.org/10.1007/s00220-017-2866-1
http://msp.org/idx/mr/3638314
http://msp.org/idx/zbl/1367.35150
https://doi.org/10.1103/physreve.98.032222
https://doi.org/10.1103/physreve.98.032222
http://msp.org/idx/mr/3863860
https://doi.org/10.1088/1751-8121/ab4406
https://doi.org/10.1088/1751-8121/ab4406
http://msp.org/idx/mr/4024907
http://msp.org/idx/zbl/1509.35256
https://doi.org/10.1007/s00220-019-03365-z
http://msp.org/idx/mr/3962002
http://msp.org/idx/zbl/1429.83009
https://doi.org/10.1155/S1073792898000191
http://msp.org/idx/mr/1616917
http://msp.org/idx/zbl/0917.35126
https://doi.org/10.1093/imrn/rnx156
http://msp.org/idx/mr/3915301
http://msp.org/idx/zbl/1431.35165
https://doi.org/10.1007/s00208-019-01841-4
http://msp.org/idx/mr/4000257
http://msp.org/idx/zbl/1423.35050
https://doi.org/10.3934/dcds.2022139
http://msp.org/idx/mr/4509336
http://msp.org/idx/zbl/1505.35178
https://doi.org/10.1142/S0218202502002215
http://msp.org/idx/mr/1933935
http://msp.org/idx/zbl/1029.35208
https://doi.org/10.1007/s00023-002-8635-4
http://msp.org/idx/mr/1933369
http://msp.org/idx/zbl/1021.81013
https://doi.org/10.1137/S0036141002416936
http://msp.org/idx/mr/2049023
http://msp.org/idx/zbl/1054.35090
https://doi.org/10.1142/9789812793133
http://msp.org/idx/mr/2406566
http://msp.org/idx/zbl/1153.35070
https://doi.org/10.4310/CMS.2011.v9.n4.a1
http://msp.org/idx/mr/2901811
http://msp.org/idx/zbl/1285.35105
https://doi.org/10.1063/1.4932604
https://doi.org/10.1063/1.4932604
http://msp.org/idx/mr/3406426
http://msp.org/idx/zbl/1328.35207
https://doi.org/10.1090/S0002-9947-06-03955-9
https://doi.org/10.1090/S0002-9947-06-03955-9
http://msp.org/idx/mr/2247881
http://msp.org/idx/zbl/1115.35119
https://doi.org/10.1090/cln/010
http://msp.org/idx/mr/2002047
http://msp.org/idx/zbl/1055.35003
https://doi.org/10.4171/rmi/1155
https://doi.org/10.4171/rmi/1155
http://msp.org/idx/mr/4130825
http://msp.org/idx/zbl/1462.35349
https://doi.org/10.1137/19M1270586
https://doi.org/10.1137/19M1270586
http://msp.org/idx/mr/4147586
http://msp.org/idx/zbl/1448.35464
https://doi.org/10.1002/cpa.20029
https://doi.org/10.1002/cpa.20029
http://msp.org/idx/mr/2053757
http://msp.org/idx/zbl/1060.35131
https://doi.org/10.4007/annals.2008.167.767
https://doi.org/10.4007/annals.2008.167.767
http://msp.org/idx/mr/2415387
http://msp.org/idx/zbl/1178.35345
https://doi.org/10.1002/cpa.20278
https://doi.org/10.1002/cpa.20278
http://msp.org/idx/mr/2527809
http://msp.org/idx/zbl/1185.35250


SCATTERING OF THE THREE-DIMENSIONAL CUBIC NONLINEAR SCHRÖDINGER EQUATION 3443

[Colliander et al. 2010] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Transfer of energy to high frequencies in
the cubic defocusing nonlinear Schrödinger equation”, Invent. Math. 181:1 (2010), 39–113. MR Zbl

[Constantin and Saut 1988] P. Constantin and J.-C. Saut, “Local smoothing properties of dispersive equations”, J. Amer. Math.
Soc. 1:2 (1988), 413–439. MR Zbl

[Dartois et al. 2020] S. Dartois, O. Evnin, L. Lionni, V. Rivasseau, and G. Valette, “Melonic turbulence”, Comm. Math. Phys.
374:2 (2020), 1179–1228. MR Zbl

[Dodson 2012] B. Dodson, “Global well-posedness and scattering for the defocusing, L2-critical nonlinear Schrödinger equation
when d � 3”, J. Amer. Math. Soc. 25:2 (2012), 429–463. MR Zbl

[Dodson 2015] B. Dodson, “Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with
mass below the mass of the ground state”, Adv. Math. 285 (2015), 1589–1618. MR Zbl

[Dodson 2016a] B. Dodson, “Global well-posedness and scattering for the defocusing, L2 critical, nonlinear Schrödinger
equation when d D 1”, Amer. J. Math. 138:2 (2016), 531–569. MR Zbl

[Dodson 2016b] B. Dodson, “Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger
equation when d D 2”, Duke Math. J. 165:18 (2016), 3435–3516. MR Zbl

[Dodson 2019] B. Dodson, “Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension
d D 4”, Ann. Sci. École Norm. Sup. .4/ 52:1 (2019), 139–180. MR Zbl

[Dodson and Lawrie 2015] B. Dodson and A. Lawrie, “Scattering for the radial 3D cubic wave equation”, Anal. PDE 8:2 (2015),
467–497. MR Zbl

[Dodson et al. 2017] B. Dodson, C. Miao, J. Murphy, and J. Zheng, “The defocusing quintic NLS in four space dimensions”,
Ann. Inst. H. Poincaré C Anal. Non Linéaire 34:3 (2017), 759–787. MR Zbl

[Dodson et al. 2020] B. Dodson, A. Lawrie, D. Mendelson, and J. Murphy, “Scattering for defocusing energy subcritical
nonlinear wave equations”, Anal. PDE 13:7 (2020), 1995–2090. MR Zbl

[Evnin 2020] O. Evnin, “Breathing modes, quartic nonlinearities and effective resonant systems”, SIGMA Symmetry Integrability
Geom. Methods Appl. 16 (2020), art. id. 034. MR Zbl

[Faou et al. 2016] E. Faou, P. Germain, and Z. Hani, “The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger
equation”, J. Amer. Math. Soc. 29:4 (2016), 915–982. MR Zbl

[Fennell 2019] J. Fennell, “Resonant Hamiltonian systems associated to the one-dimensional nonlinear Schrödinger equation
with harmonic trapping”, Comm. Partial Differential Equations 44:12 (2019), 1299–1344. MR Zbl

[Fukuizumi and Ohta 2003] R. Fukuizumi and M. Ohta, “Instability of standing waves for nonlinear Schrödinger equations with
potentials”, Differential Integral Equations 16:6 (2003), 691–706. MR Zbl

[Gérard et al. 2019] P. Gérard, P. Germain, and L. Thomann, “On the cubic lowest Landau level equation”, Arch. Ration. Mech.
Anal. 231:2 (2019), 1073–1128. MR Zbl

[Germain and Thomann 2016] P. Germain and L. Thomann, “On the high frequency limit of the LLL equation”, Quart. Appl.
Math. 74:4 (2016), 633–641. MR Zbl

[Germain et al. 2012] P. Germain, N. Masmoudi, and J. Shatah, “Global solutions for 2D quadratic Schrödinger equations”,
J. Math. Pures Appl. .9/ 97:5 (2012), 505–543. MR Zbl

[Germain et al. 2015] P. Germain, Z. Hani, and L. Thomann, “On the continuous resonant equation for NLS, II: Statistical
study”, Anal. PDE 8:7 (2015), 1733–1756. MR Zbl

[Germain et al. 2016] P. Germain, Z. Hani, and L. Thomann, “On the continuous resonant equation for NLS, I: Deterministic
analysis”, J. Math. Pures Appl. .9/ 105:1 (2016), 131–163. MR Zbl

[Hadac et al. 2009] M. Hadac, S. Herr, and H. Koch, “Well-posedness and scattering for the KP-II equation in a critical space”,
Ann. Inst. H. Poincaré C Anal. Non Linéaire 26:3 (2009), 917–941. MR Zbl

[Hani and Pausader 2014] Z. Hani and B. Pausader, “On scattering for the quintic defocusing nonlinear Schrödinger equation on
R�T2”, Comm. Pure Appl. Math. 67:9 (2014), 1466–1542. MR Zbl

[Hani and Thomann 2016] Z. Hani and L. Thomann, “Asymptotic behavior of the nonlinear Schrödinger equation with harmonic
trapping”, Comm. Pure Appl. Math. 69:9 (2016), 1727–1776. MR Zbl

https://doi.org/10.1007/s00222-010-0242-2
https://doi.org/10.1007/s00222-010-0242-2
http://msp.org/idx/mr/2651381
http://msp.org/idx/zbl/1197.35265
https://doi.org/10.2307/1990923
http://msp.org/idx/mr/928265
http://msp.org/idx/zbl/0667.35061
https://doi.org/10.1007/s00220-020-03683-7
http://msp.org/idx/mr/4072238
http://msp.org/idx/zbl/1436.81095
https://doi.org/10.1090/S0894-0347-2011-00727-3
https://doi.org/10.1090/S0894-0347-2011-00727-3
http://msp.org/idx/mr/2869023
http://msp.org/idx/zbl/1236.35163
https://doi.org/10.1016/j.aim.2015.04.030
https://doi.org/10.1016/j.aim.2015.04.030
http://msp.org/idx/mr/3406535
http://msp.org/idx/zbl/1331.35316
https://doi.org/10.1353/ajm.2016.0016
https://doi.org/10.1353/ajm.2016.0016
http://msp.org/idx/mr/3483476
http://msp.org/idx/zbl/1361.35164
https://doi.org/10.1215/00127094-3673888
https://doi.org/10.1215/00127094-3673888
http://msp.org/idx/mr/3577369
http://msp.org/idx/zbl/1361.35164
https://doi.org/10.24033/asens.2385
https://doi.org/10.24033/asens.2385
http://msp.org/idx/mr/3940908
http://msp.org/idx/zbl/1421.35333
https://doi.org/10.2140/apde.2015.8.467
http://msp.org/idx/mr/3345634
http://msp.org/idx/zbl/1329.35206
https://doi.org/10.1016/j.anihpc.2016.05.004
http://msp.org/idx/mr/3633744
http://msp.org/idx/zbl/1367.35154
https://doi.org/10.2140/apde.2020.13.1995
https://doi.org/10.2140/apde.2020.13.1995
http://msp.org/idx/mr/4175819
http://msp.org/idx/zbl/1459.35290
https://doi.org/10.3842/SIGMA.2020.034
http://msp.org/idx/mr/4090357
http://msp.org/idx/zbl/1464.37064
https://doi.org/10.1090/jams/845
https://doi.org/10.1090/jams/845
http://msp.org/idx/mr/3522607
http://msp.org/idx/zbl/1364.35332
https://doi.org/10.1080/03605302.2019.1634725
https://doi.org/10.1080/03605302.2019.1634725
http://msp.org/idx/mr/4000839
http://msp.org/idx/zbl/1428.35508
https://doi.org/10.57262/die/1356060607
https://doi.org/10.57262/die/1356060607
http://msp.org/idx/mr/1973275
http://msp.org/idx/zbl/1031.35131
https://doi.org/10.1007/s00205-018-1295-4
http://msp.org/idx/mr/3900820
http://msp.org/idx/zbl/1412.82034
https://doi.org/10.1090/qam/1435
http://msp.org/idx/mr/3539025
http://msp.org/idx/zbl/1348.37100
https://doi.org/10.1016/j.matpur.2011.09.008
http://msp.org/idx/mr/2914945
http://msp.org/idx/zbl/1244.35134
https://doi.org/10.2140/apde.2015.8.1733
https://doi.org/10.2140/apde.2015.8.1733
http://msp.org/idx/mr/3399137
http://msp.org/idx/zbl/1326.35344
https://doi.org/10.1016/j.matpur.2015.10.002
https://doi.org/10.1016/j.matpur.2015.10.002
http://msp.org/idx/mr/3427942
http://msp.org/idx/zbl/1344.35133
https://doi.org/10.1016/j.anihpc.2008.04.002
http://msp.org/idx/mr/2526409
http://msp.org/idx/zbl/1169.35372
https://doi.org/10.1002/cpa.21481
https://doi.org/10.1002/cpa.21481
http://msp.org/idx/mr/3245101
http://msp.org/idx/zbl/1312.35159
https://doi.org/10.1002/cpa.21594
https://doi.org/10.1002/cpa.21594
http://msp.org/idx/mr/3530362
http://msp.org/idx/zbl/1365.35153


3444 XING CHENG, CHANG-YU GUO, ZIHUA GUO, XIAN LIAO AND JIA SHEN

[Hani et al. 2015] Z. Hani, B. Pausader, N. Tzvetkov, and N. Visciglia, “Modified scattering for the cubic Schrödinger equation
on product spaces and applications”, Forum Math. Pi 3 (2015), art. id. e4. MR Zbl

[Hao et al. 2007] C. Hao, L. Hsiao, and H.-L. Li, “Global well posedness for the Gross–Pitaevskii equation with an angular
momentum rotational term in three dimensions”, J. Math. Phys. 48:10 (2007), art. id. 102105. MR Zbl

[Hao et al. 2008] C. Hao, L. Hsiao, and H.-L. Li, “Global well posedness for the Gross–Pitaevskii equation with an angular
momentum rotational term”, Math. Methods Appl. Sci. 31:6 (2008), 655–664. MR Zbl

[Helffer 1988] B. Helffer, Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Math. 1336,
Springer, 1988. MR Zbl

[Ibrahim et al. 2011] S. Ibrahim, N. Masmoudi, and K. Nakanishi, “Scattering threshold for the focusing nonlinear Klein–Gordon
equation”, Anal. PDE 4:3 (2011), 405–460. MR Zbl

[Ionescu and Pausader 2012] A. D. Ionescu and B. Pausader, “Global well-posedness of the energy-critical defocusing NLS on
R�T3”, Comm. Math. Phys. 312:3 (2012), 781–831. MR Zbl

[Jao 2016] C. Jao, “The energy-critical quantum harmonic oscillator”, Comm. Partial Differential Equations 41:1 (2016), 79–133.
MR Zbl

[Jao 2018] C. Jao, “Energy-critical NLS with potentials of quadratic growth”, Discrete Contin. Dyn. Syst. 38:2 (2018), 563–587.
MR Zbl

[Jao 2020] C. Jao, “Refined mass-critical Strichartz estimates for Schrödinger operators”, Anal. PDE 13:7 (2020), 1955–1994.
MR Zbl

[Jao et al. 2019] C. Jao, R. Killip, and M. Vis,an, “Mass-critical inverse Strichartz theorems for 1d Schrödinger operators”, Rev.
Mat. Iberoam. 35:3 (2019), 703–730. MR Zbl

[Josserand and Pomeau 2001] C. Josserand and Y. Pomeau, “Nonlinear aspects of the theory of Bose–Einstein condensates”,
Nonlinearity 14:5 (2001), R25–R62. MR Zbl

[Keel and Tao 1998] M. Keel and T. Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120:5 (1998), 955–980. MR Zbl

[Kenig and Merle 2006] C. E. Kenig and F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical,
focusing, non-linear Schrödinger equation in the radial case”, Invent. Math. 166:3 (2006), 645–675. MR Zbl

[Kenig and Merle 2008] C. E. Kenig and F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical
focusing non-linear wave equation”, Acta Math. 201:2 (2008), 147–212. MR Zbl

[Killip and Vis,an 2012] R. Killip and M. Vis,an, “Global well-posedness and scattering for the defocusing quintic NLS in three
dimensions”, Anal. PDE 5:4 (2012), 855–885. MR Zbl

[Killip and Vis,an 2013] R. Killip and M. Vis,an, “Nonlinear Schrödinger equations at critical regularity”, pp. 325–437 in
Evolution equations (Zürich, 2008), edited by D. Ellwood et al., Clay Math. Proc. 17, Amer. Math. Soc., Providence, RI, 2013.
MR Zbl

[Killip et al. 2008] R. Killip, M. Visan, and X. Zhang, “The mass-critical nonlinear Schrödinger equation with radial data in
dimensions three and higher”, Anal. PDE 1:2 (2008), 229–266. MR Zbl

[Killip et al. 2009a] R. Killip, T. Tao, and M. Vis,an, “The cubic nonlinear Schrödinger equation in two dimensions with radial
data”, J. Eur. Math. Soc. 11:6 (2009), 1203–1258. MR Zbl

[Killip et al. 2009b] R. Killip, M. Visan, and X. Zhang, “Energy-critical NLS with quadratic potentials”, Comm. Partial
Differential Equations 34:10-12 (2009), 1531–1565. MR Zbl

[Koch and Tataru 2005a] H. Koch and D. Tataru, “Dispersive estimates for principally normal pseudodifferential operators”,
Comm. Pure Appl. Math. 58:2 (2005), 217–284. MR Zbl

[Koch and Tataru 2005b] H. Koch and D. Tataru, “Lp eigenfunction bounds for the Hermite operator”, Duke Math. J. 128:2
(2005), 369–392. MR Zbl

[Koch and Tataru 2007] H. Koch and D. Tataru, “A priori bounds for the 1D cubic NLS in negative Sobolev spaces”, Int. Math.
Res. Not. 2007:16 (2007), art. id. rnm053. MR Zbl

[Koch et al. 2014] H. Koch, D. Tataru, and M. Vis,an, Dispersive equations and nonlinear waves: generalized Korteweg–de Vries,
nonlinear Schrödinger, wave and Schrödinger maps, Oberwolfach Sem. 45, Birkhäuser, Basel, 2014. MR Zbl

https://doi.org/10.1017/fmp.2015.5
https://doi.org/10.1017/fmp.2015.5
http://msp.org/idx/mr/3406826
http://msp.org/idx/zbl/1326.35348
https://doi.org/10.1063/1.2795218
https://doi.org/10.1063/1.2795218
http://msp.org/idx/mr/2362770
http://msp.org/idx/zbl/1152.81463
https://doi.org/10.1002/mma.931
https://doi.org/10.1002/mma.931
http://msp.org/idx/mr/2400070
http://msp.org/idx/zbl/1132.35476
https://doi.org/10.1007/BFb0078115
http://msp.org/idx/mr/960278
http://msp.org/idx/zbl/0647.35002
https://doi.org/10.2140/apde.2011.4.405
https://doi.org/10.2140/apde.2011.4.405
http://msp.org/idx/mr/2872122
http://msp.org/idx/zbl/1270.35132
https://doi.org/10.1007/s00220-012-1474-3
https://doi.org/10.1007/s00220-012-1474-3
http://msp.org/idx/mr/2925134
http://msp.org/idx/zbl/1253.35159
https://doi.org/10.1080/03605302.2015.1095767
http://msp.org/idx/mr/3439464
http://msp.org/idx/zbl/1342.35340
https://doi.org/10.3934/dcds.2018025
http://msp.org/idx/mr/3721867
http://msp.org/idx/zbl/1374.35380
https://doi.org/10.2140/apde.2020.13.1955
http://msp.org/idx/mr/4175818
http://msp.org/idx/zbl/1462.35320
https://doi.org/10.4171/rmi/1067
http://msp.org/idx/mr/3960256
http://msp.org/idx/zbl/1420.35361
https://doi.org/10.1088/0951-7715/14/5/201
http://msp.org/idx/mr/1862803
http://msp.org/idx/zbl/1037.82031
https://doi.org/10.1353/ajm.1998.0039
http://msp.org/idx/mr/1646048
http://msp.org/idx/zbl/0922.35028
https://doi.org/10.1007/s00222-006-0011-4
https://doi.org/10.1007/s00222-006-0011-4
http://msp.org/idx/mr/2257393
http://msp.org/idx/zbl/1115.35125
https://doi.org/10.1007/s11511-008-0031-6
https://doi.org/10.1007/s11511-008-0031-6
http://msp.org/idx/mr/2461508
http://msp.org/idx/zbl/1183.35202
https://doi.org/10.2140/apde.2012.5.855
https://doi.org/10.2140/apde.2012.5.855
http://msp.org/idx/mr/3006644
http://msp.org/idx/zbl/1264.35219
https://www.math.ucla.edu/~visan/ClayLectureNotes.pdf
http://msp.org/idx/mr/3098643
http://msp.org/idx/zbl/1298.35195
https://doi.org/10.2140/apde.2008.1.229
https://doi.org/10.2140/apde.2008.1.229
http://msp.org/idx/mr/2472890
http://msp.org/idx/zbl/1171.35111
https://doi.org/10.4171/JEMS/180
https://doi.org/10.4171/JEMS/180
http://msp.org/idx/mr/2557134
http://msp.org/idx/zbl/1187.35237
https://doi.org/10.1080/03605300903328109
http://msp.org/idx/mr/2581982
http://msp.org/idx/zbl/1188.33015
https://doi.org/10.1002/cpa.20067
http://msp.org/idx/mr/2094851
http://msp.org/idx/zbl/1078.35143
https://doi.org/10.1215/S0012-7094-04-12825-8
http://msp.org/idx/mr/2140267
http://msp.org/idx/zbl/1075.35020
https://doi.org/10.1093/imrn/rnm053
http://msp.org/idx/mr/2353092
http://msp.org/idx/zbl/1169.35055
https://doi.org/10.1007/978-3-0348-0736-4
https://doi.org/10.1007/978-3-0348-0736-4
http://msp.org/idx/mr/3618884
http://msp.org/idx/zbl/1304.35003


SCATTERING OF THE THREE-DIMENSIONAL CUBIC NONLINEAR SCHRÖDINGER EQUATION 3445

[Lieb and Loss 1997] E. H. Lieb and M. Loss, Analysis, Grad. Stud. in Math. 14, Amer. Math. Soc., Providence, RI, 1997. MR
Zbl

[Lin and Strauss 1978] J. E. Lin and W. A. Strauss, “Decay and scattering of solutions of a nonlinear Schrödinger equation”,
J. Funct. Anal. 30:2 (1978), 245–263. MR Zbl

[Merle and Vega 1998] F. Merle and L. Vega, “Compactness at blow-up time forL2 solutions of the critical nonlinear Schrödinger
equation in 2D”, Int. Math. Res. Not. 1998:8 (1998), 399–425. MR Zbl

[Morawetz 1968] C. S. Morawetz, “Time decay for the nonlinear Klein–Gordon equation”, Proc. A 306 (1968), 291–296. MR
Zbl

[Murphy 2014] J. Murphy, “Intercritical NLS: critical PH s-bounds imply scattering”, SIAM J. Math. Anal. 46:1 (2014), 939–997.
MR Zbl

[Pitaevskii and Stringari 2003] L. Pitaevskii and S. Stringari, Bose–Einstein condensation, Int. Ser. Monogr. Phys. 116, Oxford
Univ. Press, 2003. MR Zbl

[Planchon and Vega 2009] F. Planchon and L. Vega, “Bilinear virial identities and applications”, Ann. Sci. École Norm. Sup. .4/
42:2 (2009), 261–290. MR Zbl

[Rosenzweig 2018] M. Rosenzweig, “Global well-posedness and scattering for the elliptic-elliptic Davey–Stewartson system at
L2-critical regularity”, preprint, 2018. arXiv 1808.01955

[Shen and Wu 2020] J. Shen and Y. Wu, “Global well-posedness and scattering of 3D defocusing, cubic Schrödinger equation”,
preprint, 2020. arXiv 2008.10019

[Staffilani 2013] G. Staffilani, “The theory of nonlinear Schrödinger equations”, pp. 207–267 in Evolution equations (Zürich,
2008), edited by D. Ellwood et al., Clay Math. Proc. 17, Amer. Math. Soc., Providence, RI, 2013. MR Zbl

[Stanislavova and Stefanov 2021] M. Stanislavova and A. G. Stefanov, “Ground states for the nonlinear Schrödinger equation
under a general trapping potential”, J. Evol. Equ. 21:1 (2021), 671–697. MR Zbl

[Tao 2006] T. Tao, Nonlinear dispersive equationsW local and global analysis, CBMS Reg. Conf. Ser. Math. 106, Amer. Math.
Soc., Providence, RI, 2006. MR Zbl

[Tao et al. 2007a] T. Tao, M. Visan, and X. Zhang, “Global well-posedness and scattering for the defocusing mass-critical
nonlinear Schrödinger equation for radial data in high dimensions”, Duke Math. J. 140:1 (2007), 165–202. MR Zbl

[Tao et al. 2007b] T. Tao, M. Visan, and X. Zhang, “The nonlinear Schrödinger equation with combined power-type nonlineari-
ties”, Comm. Partial Differential Equations 32:7-9 (2007), 1281–1343. MR Zbl

[Tao et al. 2008] T. Tao, M. Visan, and X. Zhang, “Minimal-mass blowup solutions of the mass-critical NLS”, Forum Math.
20:5 (2008), 881–919. MR Zbl

[Tarulli 2017] M. Tarulli, “Well-posedness and scattering for the mass-energy NLS on Rn�M k”, Analysis .Berlin/ 37:3 (2017),
117–131. MR Zbl

[Tzvetkov and Visciglia 2012] N. Tzvetkov and N. Visciglia, “Small data scattering for the nonlinear Schrödinger equation on
product spaces”, Comm. Partial Differential Equations 37:1 (2012), 125–135. MR Zbl

[Vega 1988] L. Vega, “Schrödinger equations: pointwise convergence to the initial data”, Proc. Amer. Math. Soc. 102:4 (1988),
874–878. MR Zbl

[Vis,an 2012] M. Vis,an, “Global well-posedness and scattering for the defocusing cubic nonlinear Schrödinger equation in four
dimensions”, Int. Math. Res. Not. 2012:5 (2012), 1037–1067. MR Zbl

[Yajima and Zhang 2004] K. Yajima and G. Zhang, “Local smoothing property and Strichartz inequality for Schrödinger
equations with potentials superquadratic at infinity”, J. Differential Equations 202:1 (2004), 81–110. MR Zbl

[Yang and Zhao 2018] K. Yang and L. Zhao, “Global well-posedness and scattering for mass-critical, defocusing, infinite
dimensional vector-valued resonant nonlinear Schrödinger system”, SIAM J. Math. Anal. 50:2 (2018), 1593–1655. MR Zbl

[Zhang 2005] J. Zhang, “Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic
potential”, Comm. Partial Differential Equations 30:10-12 (2005), 1429–1443. MR Zbl

[Zhang 2020] J. Zhang, “Sharp threshold of global existence for nonlinear Schrödinger equation with partial confinement”,
Nonlinear Anal. 196 (2020), art. id. 111832. MR Zbl

https://doi.org/10.1090/gsm/014
http://msp.org/idx/mr/1415616
http://msp.org/idx/zbl/0873.26002
https://doi.org/10.1016/0022-1236(78)90073-3
http://msp.org/idx/mr/515228
http://msp.org/idx/zbl/0395.35070
https://doi.org/10.1155/S1073792898000270
https://doi.org/10.1155/S1073792898000270
http://msp.org/idx/mr/1628235
http://msp.org/idx/zbl/0913.35126
https://doi.org/10.1098/rspa.1968.0151
http://msp.org/idx/mr/234136
http://msp.org/idx/zbl/0157.41502
https://doi.org/10.1137/120898280
http://msp.org/idx/mr/3166962
http://msp.org/idx/zbl/1293.35302
http://msp.org/idx/mr/2012737
http://msp.org/idx/zbl/1110.82002
https://doi.org/10.24033/asens.2096
http://msp.org/idx/mr/2518079
http://msp.org/idx/zbl/1192.35166
http://msp.org/idx/arx/1808.01955
http://msp.org/idx/arx/2008.10019
https://tinyurl.com/theorynonlinear
http://msp.org/idx/mr/3098641
http://msp.org/idx/zbl/1298.35204
https://doi.org/10.1007/s00028-020-00596-9
https://doi.org/10.1007/s00028-020-00596-9
http://msp.org/idx/mr/4238220
http://msp.org/idx/zbl/1464.35331
https://doi.org/10.1090/cbms/106
http://msp.org/idx/mr/2233925
http://msp.org/idx/zbl/1106.35001
https://doi.org/10.1215/S0012-7094-07-14015-8
https://doi.org/10.1215/S0012-7094-07-14015-8
http://msp.org/idx/mr/2355070
http://msp.org/idx/zbl/1187.35246
https://doi.org/10.1080/03605300701588805
https://doi.org/10.1080/03605300701588805
http://msp.org/idx/mr/2354495
http://msp.org/idx/zbl/1187.35245
https://doi.org/10.1515/FORUM.2008.042
http://msp.org/idx/mr/2445122
http://msp.org/idx/zbl/1154.35085
https://doi.org/10.1515/anly-2016-0013
http://msp.org/idx/mr/3682639
http://msp.org/idx/zbl/1368.35081
https://doi.org/10.1080/03605302.2011.574306
https://doi.org/10.1080/03605302.2011.574306
http://msp.org/idx/mr/2864809
http://msp.org/idx/zbl/1247.35004
https://doi.org/10.2307/2047326
http://msp.org/idx/mr/934859
http://msp.org/idx/zbl/0654.42014
https://doi.org/10.1093/imrn/rnr051
https://doi.org/10.1093/imrn/rnr051
http://msp.org/idx/mr/2899959
http://msp.org/idx/zbl/1234.35256
https://doi.org/10.1016/j.jde.2004.03.027
https://doi.org/10.1016/j.jde.2004.03.027
http://msp.org/idx/mr/2060533
http://msp.org/idx/zbl/1060.35121
https://doi.org/10.1137/17M1131830
https://doi.org/10.1137/17M1131830
http://msp.org/idx/mr/3775133
http://msp.org/idx/zbl/1428.35541
https://doi.org/10.1080/03605300500299539
https://doi.org/10.1080/03605300500299539
http://msp.org/idx/mr/2182299
http://msp.org/idx/zbl/1081.35109
https://doi.org/10.1016/j.na.2020.111832
http://msp.org/idx/mr/4074629
http://msp.org/idx/zbl/1437.35644


3446 XING CHENG, CHANG-YU GUO, ZIHUA GUO, XIAN LIAO AND JIA SHEN

[Zhao 2019] Z. Zhao, “Global well-posedness and scattering for the defocusing cubic Schrödinger equation on waveguide
R2 �T2”, J. Hyperbolic Differ. Equ. 16:1 (2019), 73–129. MR Zbl

Received 12 Apr 2021. Revised 20 Jul 2022. Accepted 31 Aug 2023.

XING CHENG: chengx@hhu.edu.cn
School of Mathematics, Hohai University, Nanjing, China

CHANG-YU GUO: changyu.guo@sdu.edu.cn
Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China

and

Department of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland

ZIHUA GUO: zihua.guo@monash.edu
School of Mathematics, Monash University, Clayton, VIC, Australia

XIAN LIAO: xian.liao@kit.edu
Institute for Analysis, Karlsruhe Institute of Technology, Karlsruhe, Germany

JIA SHEN: shenjia@nankai.edu.cn
School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China

mathematical sciences publishers msp

https://doi.org/10.1142/S0219891619500048
https://doi.org/10.1142/S0219891619500048
http://msp.org/idx/mr/3954678
http://msp.org/idx/zbl/1428.35548
mailto:chengx@hhu.edu.cn
mailto:changyu.guo@sdu.edu.cn
mailto:zihua.guo@monash.edu
mailto:xian.liao@kit.edu
mailto:shenjia@nankai.edu.cn
http://msp.org


ANALYSIS AND PDE
Vol. 17 (2024), No. 10, pp. 3447–3476

DOI: 10.2140/apde.2024.17.3447 msp

ON GAGLIARDO–NIRENBERG INEQUALITIES WITH VANISHING SYMBOLS

RAINER MANDEL

We prove interpolation inequalities of Gagliardo–Nirenberg type involving Fourier symbols that vanish
on hypersurfaces in Rd.

1. Introduction

In a recent paper by Fernández, Jeanjean, Mariş and the author the following inequality of Gagliardo–
Nirenberg-type was proved:

kukq . k.jDjs � 1/uk1��2 kuk�2; u 2 S.Rd /: (1)

Here, .jDjs � 1/u D F �1..j � js � 1/ Ou/, the symbol . stands for � C for some positive number C
independent of u and the parameters are supposed to satisfy

s > 0; � �
1

2
; 2� q <1; d 2 N; d � 2 and

2.1� �/

d C 1
�
1

2
�
1

q
�
.1� �/s

d
I (2)

see [Fernández et al. 2022, Theorem 2.6]. In this paper we investigate such inequalities in greater generality
both by extending the analysis to a larger class of exponents, but also by allowing for more general
Fourier symbols. We expect applications in the context of normalized solutions of elliptic PDEs and
orbital stability [Cazenave and Lions 1982; Bartsch et al. 2016; Noris et al. 2014] or long-time behaviour
[Weinstein 1982/1983] of time-dependent PDEs just as in the case of the classical Gagliardo–Nirenberg
inequality [Nirenberg 1959]. In [Fernández et al. 2022; Lenzmann and Weth 2024] applications of (1) to
variational existence results and symmetry-breaking phenomena for biharmonic nonlinear Schrödinger
equations are given. For the existence and qualitative properties of maximizers in classical Gagliardo–
Nirenberg inequalities we refer to [Weinstein 1982/1983; Del Pino and Dolbeault 2002; Bellazzini et al.
2014; Lenzmann and Sok 2021; Zhang 2021]. Interpolation inequalities in different spaces like Lorentz
spaces, Besov spaces, BMO or weighted Lebesgue spaces can be found in [Brezis et al. 2021; Hajaiej
et al. 2011; Brezis and Mironescu 2019; Dao et al. 2022; Caffarelli et al. 1984; McCormick et al. 2013].

We shall be concerned with inequalities of the form

kukq . kP1.D/uk1��r1
kP2.D/uk

�
r2
; (3)

where q; r1; r2 2 Œ1;1�, � 2 Œ0; 1� and P1; P2 W Rd ! R are Fourier symbols that may vanish on a given
smooth compact hypersurface S � Rd, d � 2, with at least k 2 f1; : : : ; d � 1g nonvanishing principal
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curvatures in each point. In the case d D 1 the symbols are allowed to have a finite set of zeros S �R. We
will assume that Pi vanishes of order ˛i on S and behaves like j � jsi at infinity; see assumptions (A1), (A2)
below for a precise statement. This covers (1) as a special case, where d � 2, .˛1; ˛2; s1; s2/D .1; 0; s; 0/
and S is the unit sphere in Rd, so k D d � 1. As an application of our results for (3) we obtain the
following generalization of [Fernández et al. 2022, Theorem 2.6].

Theorem 1. Assume d 2 N, d � 2, � 2 Œ0; 1�, s > 0. Then

kukq . k.jDjs � 1/uk1��r kuk�r ; u 2 S.Rd /;

holds provided that the exponents r 2 Œ1; 2�, q 2 Œ2;1� satisfy

2.1� �/

d C 1
�
1

r
�
1

q
�
.1� �/s

d
and min

�
1

r
;
1

q0

��
�
dC1�2�
2d

if � > 0;

> dC1
2d

if � D 0:

So our result from [Fernández et al. 2022] is recovered, as (2) is nothing but the special case rD 2 in the
above theorem. We even obtain sufficient conditions for general q; r1; r2 2 Œ1;1�. In the one-dimensional
case we obtain the following generalization of [Fernández et al. 2022, Theorem 2.3].

Theorem 2. Assume � 2 Œ0; 1�, s > 0. Then

kukq . k.jDjs � 1/uk1��r1
kuk�r2 ; u 2 S.R/;

holds provided that q; r1; r2 2 Œ1;1� satisfy

1� � �
1� �

r1
C
�

r2
�
1

q
� .1� �/s:

Both our main results arise as special cases of Theorems 18 and 19 where interpolation inequalities of
the form (3) are proved for symbols P1; P2 W Rd ! R that satisfy the following abstract conditions:

(A1) There is a compact hypersurface SDf� 2Rd WF.�/D0g, with F 2C1.Rd /, jrF j¤0 on S and at
least k 2 f1; : : : ; d�1g nonvanishing principal curvatures at each point such that f� 2Rd WPi .�/D 0g�S.
For � near S we have Pi .�/DaiC.�/F.�/

˛i
C
Cai�.�/F.�/

˛i
� for smooth nonvanishing functions aiC; ai�

and ˛i > �1. In the case ˛i D 1, additionally assume ai� D�ai�, and in the case ˛i D 0, additionally
assume ai� D aiC.

(A2) There are s1; s2 2 R, ı > 0 such that for dist.�; S/ � ı > 0 the functions Qi .�/ WD h�isi=Pi .�/
satisfy for some " > 0

j@
Qi .�/j. h�i�j
 j if 
 2 Nd0 ; 0� j
 j � bd=2c;

j@
Qi .�/j. h�i�"�j
 j if 
 2 Nd0 ; j
 j D bd=2cC 1:

Here and in the following we set h�i WD .1 C j�j2/1=2 and j
 j WD j.
1; : : : ; 
d /j WD 
1 C � � � C 
d

for multi-indices 
 2 Nd0 , F.�/C WD maxfF.�/; 0g and F.�/� DW �minfF.�/; 0g. In the case d D 1
assumption (A1) is supposed to mean S D f� 2 R W F.�/ D 0g D f��1 ; : : : ; �

�
Lg, with F;Pi ; aiC; ai�
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as above. Given the importance of the fractional Laplacian .��/s=2 D jDjs we mention that one may
generalize this further by allowing the symbols P1; P2 to vanish at some finite set of points in Rd nS ;
see Remark 10. The choice P1 D P2 or � 2 f0; 1g leads to Sobolev inequalities. In the elliptic case
��� 1 D jDj2 � 1 such results are due to Kenig, Ruiz and Sogge [Kenig et al. 1987, Theorem 2.3],
Gutiérrez [2004, Theorem 6] and Evequoz [2017]. Our most general result from Theorem 19 contains
these results as a special case .k; s1; ˛1; �/D .d �1; 2; 1; 0/. Sharp results for special nonelliptic symbols
with unbounded characteristic set S are due to Kenig, Ruiz and Sogge [Kenig et al. 1987, Theorem 2.1],
Koch and Tataru [2005] and Jeong, Kwon and Lee [Jeong et al. 2016, Theorem 1.1].

Remark 3. (a) In the case S D∅ the main results of this paper hold without any assumptions on ˛1, ˛2.
Similarly, if the Fourier support of the given functions is contained in a fixed compact subset of Rd, then
all conditions involving s1; s2 can be ignored.

(b) Theorems 1 and 2 equally hold for symbols Pi .jDj/, where Pi are polynomials of degree s with
simple zeros only or no zeros at all.

(c) Our analysis may be extended to vectorial differential operators with constant coefficients P1.D/,
P2.D/, where, according to Cramer’s rule, the characteristic set S is then supposed to satisfy
fdet.Pi .�// D 0g � S for i D 1; 2. Such a situation occurs in the context of Maxwell’s equations,
Dirac equations or Lamé equations with constant coefficients.

(d) The Gagliardo–Nirenberg inequalities from this paper hold for functions with Fourier support in
bounded smooth pieces of more general sets S � Rd. In this way, unbounded characteristic sets S or
characteristic sets with singularities as in [Mandel and Schippa 2022, Section 3] may be partially analyzed,
but a full analysis remains to be done. In the special case of the wave and Schrödinger operator one
may nevertheless implement the strategy from [Fernández et al. 2022] to get such inequalities at least for
r D 2; see Section 7.

(e) The admissible set of exponents for Gagliardo–Nirenberg inequalities may become larger by imposing
symmetries. For instance, the Stein–Tomas theorem for O.d � k/�O.k/-symmetric functions from
[Mandel and Oliveira e Silva 2023] may substitute the classical Stein–Tomas theorem in Lemma 13 to
prove better dyadic estimates. The latter yield larger values for A".p; q/ in (17), which allows one to
deduce Gagliardo–Nirenberg inequalities for a wider range of exponents.

Our strategy is as follows. We decompose the pseudodifferential operators P1.D/; P2.D/ dyadically,
both for frequencies close to the critical surface S and at infinity. Assumption (A1) allows us to analyze
the first-mentioned part with the aid of Bochner–Riesz estimates from [Mandel and Schippa 2022; Cho
et al. 2005]. Here, only the parameters ˛1; ˛2 will play a role. Assumption (A2) will be used to estimate
the second-mentioned part that only involves s1; s2. Interpolating the bounds for the dyadic operators in
both frequency regimes then allows us to conclude. We stress that the proof from [Fernández et al. 2022]
does not carry over from the L2.Rd /-setting since Plancherel’s theorem does not have a counterpart in
Lr.Rd / with r ¤ 2.
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2. Preliminaries

In the following we decompose a given Schwartz function u 2 S.Rd / in frequency space. We start by
separating the frequencies close to the critical surface from the others by defining

u1 WD F �1.� Ou/; u2 WD F �1..1� �/ Ou/; where � 2 C10 .R
d /; � D 1 near S: (4)

More precisely, � is chosen in such a way that S admits local parametrizations in Euclidean coordinates
within supp.�/, that aiC; ai� from (A1) are uniformly positive near S and that the functions Qi from
(A2) behave as required for � 2 Rd n supp.�/. The function � is considered as fixed from now on. For
both u1 and u2 we will introduce a dyadic decomposition into infinitely many annular regions in order
to prove our estimates mostly via Bourgain’s summation argument [1985]. We will need the following
abstract version of this result from [Carbery et al. 1999, p. 604].

Lemma 4. Let ˇ1; ˇ2 2R, � 2 .0; 1/, and let .X1; X2/ and .Y1; Y2/ be real interpolation pairs of Banach
spaces. For j 2 N let Tj be linear operators satisfying

kTjf kY1 �M1 2
ˇ1j kf kX1 ; kTjf kY2 �M2 2

ˇ2j kf kX2 :

Then we have 



X
j2N

Tjf





.Y1;Y2/�;1

� C.ˇ1; ˇ2/M
1��
1 M �

2 kf k.X1;X2/�;1 (5)

provided that .1� �/ˇ1C �ˇ2 D 0, with ˇ1; ˇ2 ¤ 0. In the case .1� �/ˇ1C �ˇ2 < 0 we have for all
r 2 Œ1;1� 



X

j2N

Tjf





.Y1;Y2/�;r

� CM 1��
1 M �

2 kf k.X1;X2/�;r : (6)

The whole point of this result is (5); the estimate (6) is a rather trivial consequence of the summability
of the interpolated bounds

kTjf k.Y1;Y2/�;r . 2
j..1��/ˇ1C�ˇ2/kf k.X1;X2/�;r for all r 2 Œ1;1�:

Here, .Y1; Y2/�;r ; .X1; X2/�;r denote real interpolation spaces [Bergh and Löfström 1976]. The choice
Y1 D L

q1.Rd /, Y2 D Lq2.Rd /, with

1

q
D
1� �

q1
C
�

q2
; q1 ¤ q2;

yields the Lorentz space .Y1; Y2/�;r D Lq;r.Rd /, whereas q1 D q2 D q leads to .Y1; Y2/�;r D Lq.Rd /.
In our context, the spaces Xi are defined as the completion of fu 2 S.Rd / W Pi .D/u 2 Lr.Rd /g with
respect to the norm kukXi WD kPi .D/ukr . Exploiting assumptions (A1), (A2) we find that for any given
u2 S.Rd / the function Pi .D/u is a priori well-defined as a function in L1.Rd / because � 7!Pi .�/ Ou.�/

is integrable due to ˛i > �1. (Choosing the completion of a smaller set one may extend the analysis to
˛i � �1.) The link to Gagliardo–Nirenberg-type inequalities is provided by the general interpolation
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property [Bergh and Löfström 1976, Theorem 3.1.2], namely

kf k.X1;X2/�;r � kf k
1��
X1
kf k�X2 ; 0 < � < 1; 1� r �1:

In fact, choosing X1; X2 as above we obtain for u 2 S.Rd /

kuk.X1;X2/�;r � kP1.D/uk
1��
r1
kP2.D/uk

�
r2
; 0 < � < 1; 1� r �1: (7)

The same estimate holds for .X1; X2/�;r replaced by the complex interpolation space ŒX1; X2�� . This
can be deduced from (7) and ŒX1; X2�� � .X1; X2/�;1; see [Bergh and Löfström 1976, Theorem 4.7.1].

3. Large frequency analysis

We start with our analysis for large frequencies or, more precisely, for those frequencies with uniformly
positive distance to the critical surface S given by our assumption (A1). To this end we first choose a
function � such that

� 2 C10 .R/; supp.�/�
�
�2;�1

2

�
[
�
1
2
; 2
�
;

X
j2Z

�.2j � /D 1 almost everywhere on RI

see [Bergh and Löfström 1976, Lemma 6.1.7]. For �0 2 Rd define

Tjf WD F �1.�.2j j� � �0j/ Of /DKj �f; where

Kj .x/ WD F �1.�.2j j� � �0j//.x/D 2�jdF �1.�.j � j//.2�jx/eix��0 :
(8)

Later on, we will choose �0 2 S in order to have Tju2 D 0 for j � j0, where j0 2 Z only depends
on �0 and � . Indeed, (4) implies that Ou2.�/D .1� �.�// Ou.�/ vanishes for frequencies � close to S. As a
consequence, only the bounds for j &�1 will be of importance.

Lemma 5. Assume d 2 N and let � 2 C10 .R/, �0 2 Rd. Then we have for j 2 Z

kTj kp!q . 2�jd.
1
p
� 1
q
/ for 1� p � q �1:

Proof. For all r 2 Œ1;1� we have kKj kr D 2�jdkF �1.�.j � j//.2�j � /kr . 2�jd=r
0

. Hence, for 1� p �
q �1 and 1

r
WD 1C 1

q
�
1
p

we get from Young’s convolution inequality

kTjf kq . kKj krkf kp . 2�j
d
r0 kf kp . 2�jd.

1
p
� 1
q
/
kf kp: �

In the following, we will need a multiplier theorem in L�.Rd / for arbitrary � 2 Œ1;1�. The natural
candidate — Mikhlin’s multiplier theorem [Bergh and Löfström 1976, Theorem 6.1.6] — is only available
for � 2 .1;1/. In order to avoid tiresome separate discussions we first provide a simple sufficient
condition for a given function m WRd !R to be an L�-multiplier for all � 2 Œ1;1�. The following result
essentially says that a function m serves our purpose provided that its derivatives grow a bit slower near
zero and decay a bit faster near infinity compared to the requirements of Mikhlin’s multiplier theorem.
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Proposition 6. Let d 2 N, k WD bd=2cC 1 and m 2 C k.Rd n f0g/. Then m is an L� multiplier for all
� 2 Œ1;1� provided that there is " > 0 such that

j@˛m.�/j. h�i�2"j�j�kC" for all ˛ 2 Nd0 such that j˛j D k:

Proof. We show that the assumptions imply that � WD F �1m is integrable. Once this is shown, the result
follows from Young’s convolution inequality because of

kF �1.m Of /k� D k� �f k� � k�k1kf k�:

We may without loss of generality assume 0 < "� 2k� d . For all ˛ 2 Nd0, j˛j D k we have

jF..�ix/˛�/.�/j D j@˛ O�.�/j D j@˛m.�/j. h�i�2"j�j�kC":

Hence, F.x˛�/ belongs to the space L�1.Rd /\L�2.Rd /, where

�1 WD
d

kC "=2
; �2 WD

d

k� "=2
:

Our choice for " implies 1� �1 � �2 � 2, so the Hausdorff–Young inequality gives

jxjk� 2 L�
0
1.Rd /\L�

0
2.Rd /:

To conclude � 2 L1.Rd / with Hölder’s inequality it remains to check

jxj�k 2 L�1.Rd /CL�2.Rd /:

But this follows from jxj�k1jxj�1 2L�1.Rd / and jxj�k1jxj>1 2L�2.Rd / due to k�1 < d < k�2, which
finishes the proof. �

Next we provide our estimates in the large-frequency regime. To this end we analyze the mapping
properties of Tju WD Tj .u2/, where Tj and u2 D F �1..1� �/ Ou/ were defined in (8), (4), respectively.

Proposition 7. Assume d 2 N and (A2) with s1; s2 2 R. Then, for i D 1; 2,

kTjukq . 2j.si�d.
1
p
� 1
q
//
kPi .D/ukp for 1� p � q �1; j 2 Z:

Proof. In order to use Lemma 5 for �0 2 S we set �i .z/ WD �.z/jzj�si for z 2 R. Then � 2 C10 .R/,
0 … supp.�/ implies �i 2 C10 .R/ for i D 1; 2. Moreover, we have for i D 1; 2 and j 2 Z

TjuD F �1
�
�.2j j� � �0j/ Ou2.�/

�
D F �1

�
�i .2

j
j� � �0j/ .2

j
j� � �0j/

si Ou2.�/
�

D 2jsiF �1
�
�i .2

j
j� � �0j/mi .�/Pi .�/ Ou.�/

�
;

where mi .�/ WD .1� �.�//j�� �0jsi=Pi .�/. Since � is smooth and identically 1 near �0 2 S, a calculation
shows that our assumptions on Pi from (A2) imply that mi satisfies the assumptions of Proposition 6. In
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fact, for j˛j D k WD bd=2cC 1 and Qi ; " > 0 as in assumption (A2),

j@˛mi .�/j.
X

0�
�˛

�˛



�ˇ̌
@˛�


�
.1� �.�//j� � �0j

si h�i�si
�ˇ̌
j@
Qi .�/j

. 1 � j@˛Qi .�/jC
X

0�
<˛

h�i�j˛�
 j�1j@
Qi .�/j

. h�i�"�j
 jCh�i�j˛�
 j�1h�i�j
 j . h�i�minf1;"g�j˛j:

Here we used the Leibniz rule. So, by Proposition 6, mi is an L�-multiplier for all � 2 Œ1;1�. Hence,
Lemma 5 yields for all q 2 Œp;1�

kTjukq . 2jsikF �1.�i .2j j� � �0j/mi .�/2Pi .D/u.�//kq
. 2j.si�d.

1
p
� 1
q
//
kF �1.mi .�/2Pi .D/u.�//kp

. 2j.si�d.
1
p
� 1
q
//
kPi .D/ukp: �

Next we use these dyadic estimates to prove estimates of Gagliardo–Nirenberg type. We deduce our
results from a detailed analysis of the special case Pi .D/D hDisi for s1; s2 2 R. This is possible due to

khDisiu2kp . kPi .D/ukp; 1� p �1; (9)

for symbols P1; P2 as in (A2) thanks to Proposition 6. So we collect some mapping properties of the
Bessel potential operators hDi�s, where s > 0.

Proposition 8. Assume d 2 N, s > 0 and p; q; r 2 Œ1;1�, u 2 S.Rd /.

(i) If 0� 1
p
�
1
q
< s
d

then kukq . khDisukp.

(ii) If 0� 1
p
�
1
q
D

s
d

and 1 < p; q <1 then kukq;r . khDisukp;r and kukq . khDisukp.

(iii) If 0� 1
p
�
1
q
D

s
d

and s D d D 1 then kuk1 . khDiuk1.

(iv) If 0� 1
p
�
1
q
D

s
d

and 1D p < q <1 then kukq;1 . khDisuk1.

Proof. The parts (i), (iv) and the second part of (ii) are given in [Grafakos 2014, Corollary 1.2.6]; the
Lorentz space mapping properties from (ii) follow from real interpolation. The estimate (iii) follows from

kuk1 . ku0k1 D km.D/.hDiu/k1 . khDiuk1; u 2 S.R/:

Here we used that m.�/ WD �.1Cj�j2/�1=2 satisfies the assumptions of Proposition 6. �

We finally use these estimates to prove Gagliardo–Nirenberg inequalities for large frequencies.

Proposition 9. Assume d 2 N, � 2 Œ0; 1� and (A2) for s1; s2 2 R. Then

ku2kq . kP1.D/uk1��r1
kP2.D/uk

�
r2
; u 2 S.Rd /; (10)

holds provided that the exponents q; r1; r2 2 Œ1;1� satisfy 0� 1��
r1
C

�
r2
�
1
q
�
Ns
d

, as well as the following
conditions in the endpoint case 1��

r1
C

�
r2
�
1
q
D
Ns
d

:
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(i) If q D1 then 1
r1
�
s1
d
¤ 0 ¤ 1

r2
�
s2
d

or r1 D r2 D1, s1 D s2 D 0 or d D 1; .r1; r2/ D
�
1
s1
; 1
s2

�
,

s1; s2 2 f0; 1g.

(ii) If 1 < q <1 and 1
r1
�
s1
d
D

1
q
D

1
r2
�
s2
d

and additionally, if r1 D 1; � < 1, then 1 < r2 < q, � � r2
q

or r2 D1, 1
q
� � � 1

q0
.

(iii) If 1 < q <1 and 1
r1
�
s1
d
D

1
q
D

1
r2
�
s2
d

and additionally, if r2 D 1, � > 0, then 1 < r1 < q,
1� � � r1

q
or r1 D1, 1

q
� 1� � � 1

q0
.

Proof. As mentioned before, it is sufficient to prove the estimates in the prototypical case Pi .D/D hDisi.
The case � 2 f0; 1g is covered by Proposition 8(i), (ii), (iii). So we may concentrate on � 2 .0; 1/
in the following. We combine Proposition 7 and Lemma 4 for the Bessel potential spaces Xi WD
Pi .D/

�1Lri .Rd /D hDi�siLri .Rd / and i D 1; 2. Here we use the identity

u2 D

j0X
jD�1

Tju; where kTjukqi . 2
j.si�d. 1ri �

1
qi
//
kukXi .j 2 Z; 1� ri � qi �1/I

see Proposition 7. Our strategy is as follows. We first prove apply Lemma 4 to get strong bounds. This
will cover all nonendpoint cases 0� 1��

r1
C

�
r2
�
1
q
< Ns
d

, as well as the endpoint cases involving q 2 f1;1g.
The remaining discussion for 1 < q <1 and 1 < r1; r2 <1 can be taken from the literature, but the
analysis for fr1; r2g\f1;1g¤∅ is more delicate. We will first address the case 1

r1
�
1
r2
D
s1�s2
d

, where
we prove our claim using complex and real interpolation theory. Finally, in the case 1

r1
�

1
r2
¤

s1�s2
d

we will first deduce restricted weak-type bounds from Lemma 4 and upgrade them to strong bounds by
interpolating the restricted weak-type bounds with each other. We will need in the following that our
assumptions imply Ns � 0.

Step 1: We start the interpolation procedure with (nonendpoint) exponents satisfying

0�
1� �

r1
C
�

r2
�
1

q
<
Ns

d
: (11)

In that case the interpolation estimate (6) with .Y1; Y2; �; r/ WD .Lq1.Rd /; Lq2.Rd /; �; q/ gives the bound

ku2kq D





 j0X
jD�1

Tju





q

(6)
. kuk.X1;X2/�;q

(7)
. khDis1uk1��r1

khDis2uk�r2 :

Here, (6) applies because (11) allows us to find qi 2 Œri ;1� such that

.1� �/

�
s1� d

�
1

r1
�
1

q1

��
C �

�
s2� d

�
1

r2
�
1

q2

��
> 0;

1

q
D
1� �

q1
C
�

q2
:

So the claim is proved for all nonendpoint exponents given by (11).

It remains to discuss the endpoint case 0� 1��
r1
C

�
r2
�
1
q
D
Ns
d

. Using (5) for Y1 D Y2 D Lq.Rd / we
get the claim for all exponents satisfying

0�
1� �

r1
C
�

r2
�
1

q
D
Ns

d
and q �maxfr1; r2g;

1

r1
�
s1

d
¤
1

q
¤
1

r2
�
s2

d
: (12)
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Here the latter two inequalities correspond to ˇ1; ˇ2¤ 0 in Lemma 4. From this we infer that the claimed
endpoint estimates hold for q 2 f1;1g via the following cases:

� Case q D 1: r1 D r2 D 1, s1 D s2 D 0 is trivial.

� Case q D 1: r1 D r2 D 1, Ns D 0, s1 ¤ 0¤ s2 is covered by (12).

� Case q D1: r1 D r2 D1, s1 D s2 D 0 is trivial.

� Case q D1: 1
r1
�
s1
d
¤ 0¤ 1

r2
�
s2
d

is covered by (12).

� Case q D1: .d; r1; r2/D
�
1; 1
s1
; 1
s2

�
, s1; s2 2 f0; 1g is covered by Proposition 8(iii).

These are all cases involving q 2 f1;1g and in particular claim (i) is proved. So we are left with those
endpoint estimates for 1 < q <1 that are not covered by (12).

Step 2: The claim holds for 1 < r1; r2 <1 due to

kukq . khDiNsuk Nr . khDis1uk1��r1
khDis2uk�r2 ;

where 1
Nr
WD

1��
r1
C

�
r2

. This is a consequence of Sobolev’s embedding theorem [Bergh and Löfström
1976, Theorem 6.5.1] and the complex interpolation result from [loc. cit., Theorem 6.4.5(7)]. So we may
in the following assume fr1; r2g\ f1;1g¤∅. As announced earlier, we first deal with 1

r1
�
1
r2
D
s1�s2
d

.

Step 3: Assume we are in the endpoint case with 1 < q <1, 1
r1
�
1
r2
D

s1�s2
d

, r1 � r2 (without loss of
generality) and fr1; r2g \ f1;1g ¤ ∅. Then 1��

r1
C

�
r2
�
1
q
D
Ns
d

implies 1
r1
�
s1
d
D

1
q
D

1
r2
�
s2
d

. We
distinguish the following cases:

� Case r1 D 1, r2 D 1: This case is excluded, so there is nothing to prove.

� Case r1 D 1, 1 < r2 < q: By Proposition 8(ii), (iv), we have kukq;1 . khDis1uk1, as well as
kukq;r2 . khDis2ukr2 . Applying the interpolation identity [loc. cit., Theorem 5.3.1]

Lq.Rd /D .Lq;1.Rd /; Lq;�q.Rd //�;q; � 2 .0; 1�; (13)

we infer for all � 2
�
r2
q
; 1
�

kukq . kuk1��q;1kuk
�
q;�q . kuk

1��
q;1kuk

�
q;r2
. khDis1uk1��1 khDis2uk�r2 :

� Case r1 D 1; r2 D1: We have to prove (10) for 1
q
� � � 1

q0
. It is sufficient to prove the claim first for

� D 1
q

and then for � D 1
q0

. We use kukq;1 . khDis1uk1 and

kuk2q;2 . khDi
d
2
�d
q uk22 D

Z
Rd
hDi

d
q0 u � hDi�

d
q udx � khDis1uk1khDi

s2uk1: (14)

In (14) we subsequently used Proposition 8(ii) and theL2-isometry property of the Fourier transform, as well
as s1D d

q0
, s2D�dq . Real interpolation of these two estimates andLq.Rd /D.Lq;1.Rd /; Lq;2.Rd //2=q;q ,

which is (13) for � D 2
q

, gives

kukq . kuk
1� 2

q

q;1 kuk
2
q

q;2 . khDi
s1uk

1
q0

1 khDi
s2uk

1
q
1: (15)
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So the claim holds for � D 1
q

and we now consider � D 1
q0

. Here we use Stein’s interpolation theorem
[1956] in a more general setting [Voigt 1992, Theorem 2.1] for the family of linear operators T su WD
es
2

hDis=2�d=qu, with s 2 C, 0� Re.s/� 1. We have

kT itukBMO.Rd / D e
�t2
khDiit .hDi�

d
q u/kBMO.Rd / . khDi

�d
q uk1;

kT 1Cituk2 D e1�t
2

khDi
d
2
�d
q uk2

(14)
. khDi

d
q0 uk

1
2

1 khDi
�d
q uk

1
2
1:

Here we used the validity of Mikhlin’s multiplier theorem in BMO.Rd / to deduce that the operator norm
hDiit W L1.Rd /! BMO.Rd / is polynomially bounded with respect to t and thus compensated for by
the mitigating factor e�t

2

as jt j !1. We refer to Proposition 3.4, Theorem 4.4 and the comments on
pages 20-21 in Tao’s lecture notes [2018], where such an application in the context of Stein’s interpolation
theorem is explicitly mentioned. In view of ŒBMO.Rd /; L2.Rd /�� D L2=� .Rd / for 0 < � � 1 we may
plug in � D 2

q
and get in view of s1 D d

q0
; s2 D�

d
q

kukq D kT
2
q ukq . khDi�

d
q uk1��1 .khDi

d
q0 uk

1
2

1 khDi
�d
q uk

1
2
1/

�
D khDis1uk

1
q

1 khDi
s2uk

1
q0

1 :

� Case 1 < r1 < r2 D 1: We have to prove (10) for 1 < q < r1, � � r1
q

. We consider T su WD
es
2

hDis2Cs.s1�s2/u and obtain as before

kT itukBMO.Rd / . khDis2uk1; kT 1Citukr1 . khDi
s1ukr1 :

So we conclude for � WD r1
q
D

s2
s2�s1

kukq D kT �uk r1
�
. khDis2uk1��1 khDi

s1uk�r1 :

This proves the claim for � D r1
q

. Since the desired bound for � D 1 follows from Proposition 8(ii), we
get the claim for � 2

�
r1
q
; 1
�
.

� Case 1 < r1 D r2 D1: This case does not occur because 1��
r1
C

�
r2
�
1
q
D�

1
q
< 0.

Step 4: To prove the remaining estimates we first prove restricted weak-type estimates ku2kq;1 .
kuk.X1;X2/�;1 for all exponents satisfying

0�
1� �

r1
C
�

r2
�
1

q
D
Ns

d
and 1 < q <1 and

1

r1
�
1

r2
¤
s1� s2

d
: (16)

For s1D s2D 0 this is implied by Hölder’s inequality, so we may assume Ns > 0 or NsD 0, .s1; s2/¤ .0; 0/.
For Ns D 0, .s1; s2/¤ .0; 0/, q D r1 D r2 this is implied by the strong estimates in the case (12), so we
may even assume Ns > 0 or Ns D 0, .s1; s2/¤ .0; 0/, .r1; r2/¤ .q; q/. For the remaining exponents the
weak estimate is a consequence of (6) because one can find qi 2 Œri ;1� such that

.1� �/

�
s1� d

�
1

r1
�
1

q1

��
C �

�
s2� d

�
1

r2
�
1

q2

��
D 0;

1

q
D
1� �

q1
C
�

q2
; si � d

�
1

ri
�
1

qi

�
¤ 0; q1 ¤ q2:
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Indeed, this condition is equivalent to 1��
r1
C

�
r2
�
1
q
D
Ns
d

and finding q2 such that

1

q
�
1� �

r1
�
�

q2
�
�

r2
; q2 ¤ q;

1

q
� .1� �/

�
1

r1
�
s1

d

�
¤
�

q2
¤ �

�
1

r2
�
s2

d

�
;

and such a choice is possible due to our assumptions. (In the case NsD 0, .s1; s2/¤ .0; 0/, .r1; r2/¤ .q; q/
choose q2D r2, q1D r1.) In this way we obtain ku2kq;1.kuk.X1;X2/�;1 for all exponents satisfying (16).
We finally interpolate these restricted weak-type estimates with each other to prove strong estimates for
exponents as in (16). To this end let ı > 0 be sufficiently small (but fixed) and " WD ı

�
s1�s2
d
�
1
r1
C

1
r2

�
¤ 0

and define Qq; q�; Q�; �� via 1
Qq
�"D 1

q
D

1
q�
C" and Q��ıD �D ��Cı. Then . Qq; r1; r2; Q�/; .q�; r1; r2; ��/

satisfies (16) and the reiteration property of real interpolation [Bergh and Löfström 1976, Theorem 3.5.3]
gives

ku1kq . ku1k.Lq� .Rd /;L Qq.Rd // 1
2
;q

. kuk..X1;X2/��;1;.X1;X2/ Q�;1/ 1
2
;q

. kuk.X1;X2/�;q
(7)
. kP1.D/uk1��r1

kP2.D/uk
�
r2
:

Here the first bound uses 1
q
D

1
2

�
1
q�
C
1
Qq

�
and the third uses � D 1

2
. Q�C ��/. �

We have thus proved that the Gagliardo–Nirenberg inequality (3) holds for noncritical frequencies
whenever the exponents belong to the set

B.�/ WD f.q; r1; r2/ 2 Œ1;1�3 W .q; r1; r2/ as in Proposition 9g:

Remark 10. (a) The original Gagliardo–Nirenberg inequality krj vkq . krmvk1��r1
kvk�r2 from

[Nirenberg 1959, p. 125] holds for j;m2N provided that 1
q
�
j
d
D .1��/

�
1
r1
�
m
d

�
C
�
r2

and j
m
�1�� <1.

Our result shows that “in most cases” the large-frequency part of this estimate holds provided that
j
m
� 1� � < 1 holds and 1

q
�
j
d
� .1� �/

�
1
r1
�
m
d

�
C

�
r2

. The exceptions are due to the fact that, in
L1.Rd / or L1.Rd /, the term hDiju does not control Dju, i.e., not every single partial derivative of
order j . This is a consequence of the unboundedness of the Riesz transform on these spaces.

(b) Our proof indicates which function spaces to choose in order to get some endpoint estimates in the
exceptional cases as well. Roughly speaking, one may replace Lq.Rd / by Lq;r.Rd / for suitable r > q
and L1.Rd / by BMO.Rd / on the left-hand side. On the right-hand side the Hardy space H1.Rd / may
replace L1.Rd /.

(c) One may as well consider symbols Pi .D/ that vanish at some finite set of points in Rd nS. If for
instance one has Pi .�/D bi .�/j����jti near �� 2Rd nS for t1; t2>�d and nonvanishing bi 2C1.Rd /,
then one finds as in Proposition 9 that the interpolation estimate holds in this frequency regime whenever
1��
r1
C

�
r2
�
1
q
>
Nt
d

, where Nt WD .1��/t1C�t2. Under suitable extra conditions similar to the ones above,
this may be extended to the endpoint case 1��

r1
C

�
r2
�
1
q
D
Nt
d

.

(d) The proof in the important special case 1 < r1; r2; q <1 is much shorter than the complete analysis;
see the beginning of Step 2.
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4. Critical frequency analysis

We introduce a real number A".p; q/ such that k zTj kp!q . 2�jA".p;q/ holds for suitably defined dyadic
operators zTj that play the role of the Tj in the previous section. Unfortunately, the definition of A".p; q/
is rather complicated for d � 2. It involves the number

A.p; q/ WDminfA0; A1; A2; A02; A3; A
0
3; A4; A

0
4g;

where Ai D Ai .p; q/ and A0i D Ai .q
0; p0/ are given by

A0 D 1; A1 D
kC 2

2

�
1

p
�
1

q

�
; A2 D

kC 2

2
�
kC 1

q
;

as well as

A3 D
2d � k

2
�
2d � k� 1

q
; A4 D

kC 2

2

�
1

p
�
1

q

�
C
2d � k� 2

2
�
2d � k� 2

q
:

The values A0; A1; A01; A2; A
0
2 will be important for 1 � p � 2 � q �1, whereas all other exponents

satisfying 1� p � q �1 come with A3; A03; A4; A
0
4. Then we define for " > 0

A".p; q/ WD
1

p
�
1

q
if d D 1; A".p; q/ WD A.p; q/� " � 1.p;q/2E if d � 2: (17)

Here, E denotes a set of exceptional points where we do not have strong bounds, but only weak bounds
or restricted weak-type bounds. It is given by

E WD
�
.p; q/2 Œ1;1�2 W

1

p
D

kC 2

2.kC 1/
;
1

q
�

k2

2.kC 1/.kC 2/
or
1

q
D

k

2.kC 1/
;
1

p
�

k2C 6kC 4

2.kC 1/.kC 2/

�
and coincides with the red points in Figure 1.

We first prove dyadic estimates in the frequency regime close to the critical surface S. The latter
can be locally parametrized as a graph �d D  .� 0/ after some permutation of coordinates, where
� D .� 0; �d / 2 Rd�1 �R' Rd. In view of (A1) we study operators of the form

zTjf WD F �1
�
�.2j .�d � .�

0///�.� 0/ Of .�/
�
D zKj �f; where

zKj WD F �1
�
�.2j .�d � .�

0///�.� 0/
� (18)

and

 2 C1.Rd�1/; � 2 C10 .R
d�1/ and at least k 2 f1; : : : ; d � 1g eigenvalues of

the Hessian D2 are nonzero on supp.�/: (19)

In the degenerate case d D 1 we interpret �.2j .�d � .� 0///�.� 0/ as �.2j .��c// for some constant c 2R.
Our analysis of the mapping properties of zTj follows [Mandel and Schippa 2022, Section 4]. Contrary
to the situation for Tj , only the bounds for j % C1 will be of importance. Repeating the proof of
Lemma 5 gives the following result in the one-dimensional case.

Lemma 11. Assume d D 1 and � 2 C10 .R/. Then we have

k zTj kp!q . 2�j.
1
p
� 1
q
/ for 1� p � q �1; j 2 Z:
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1
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1
q

1

1

A0

A1 A2

A02

A3

A03

A4

A04

1
2

k
2.kC2/

k2

2.kC1/.kC2/

kC4
2.kC2/

1
2

kC2
2.kC1/

Figure 1. Riesz diagram with the bounds for the mapping constant of zTj from Lemma 13.
The exceptional points from E are in bold.

The bounds in higher dimensions are more complicated and depend on the number k 2 f1; : : : ; d � 1g
of nonvanishing principal curvatures of S. We first analyze the kernel function zKj following [Mandel and
Schippa 2022, Lemma 4.4].

Proposition 12. Assume d 2N, d � 2, let �; ; k be as in (19) and � 2 C10 .R/. Then the kernel function
zKj satisfies for j 2 Z, j � j0

k zKj kr . 2�j.
2d�k
2
� 2d�k�1

r
/ if 1� r � 2; k zKj k1 . 2�j : (20)

Proof. The bound k zKj k2 . 2�j=2 follows from Plancherel’s identity and (18). Indeed,

k zKj k
2
2 D

Z
Rd
�.2j .�d � .�

0///2�.� 0/2 d.� 0; �d /

D

Z
Rd�1

�.� 0/2
�Z

R

�.2j t /2 dt

�
d� 0

D 2�j k�k22k�k
2
2:

To prove (20) it thus suffices to show k zKj k1 . 2�j..kC2/=2�d/, as well as k zKj k1 . 2�j , and to apply
the Riesz–Thorin interpolation theorem. These two norm bounds for the kernel function are consequences
of the pointwise bounds for arbitrary N;M 2 N0

j zKj .x/j.N;M 2�j .1C 2�j jxd j/
�M .1Cjx0j/�N if jx0j � cjxd j;

j zKj .x/j.M 2�j .1C 2�j jxd j/
�M .1Cjxd j/

�k
2 if jx0j � cjxd j;

(21)
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where c > 0 is suitably chosen. Indeed, choosing M;N sufficiently large we get

k zKj k1 .N;M
Z

R

�Z
jx0j�cxd

2�j .1C 2�j jxd j/
�M .1Cjxd j/

�k
2 dx0

�
dxd

C

Z
R

�Z
jx0j�cxd

2�j .1C 2�j jxd j/
�M .1Cjx0j/�N dx0

�
dxd

.M;N 2�j
Z

R

.1C 2�j jxd j/
�M
jxd j

d�1.1Cjxd j/
�k
2 dxd

C 2�j
Z

R

.1C 2�j jxd j/
�M .1Cjxd j/

d�N dxd

.M;N 2�j
Z 2j

0

jxd j
d�1.1Cjxd j/

�k
2 dxd C 2

.M�1/j

Z 1
2j
jxd j

d�k
2
�1�M dxd

.M;N 2�j.
kC2
2
�d/:

Here we used 2j � 2j0 > 0. So it remains to prove the pointwise bounds by adapting the arguments from
[Mandel and Schippa 2022]. We have

zKj .x/D cd 2
�j .F �1�/.2�jxd /

Z
Rd�1

ei.x
0��0Cxd .�

0//�.� 0/ d� 0

for some dimensional constant cd > 0. We choose c > 0 so large that the smooth phase function
ˆ.� 0/D x0 � � 0C xd .�

0/ satisfies jrˆ.� 0/j � c�1jx0j for all � 0 2 Rd�1 whenever jx0j � cjxd j. In view
of � 2 C10 .R

d�1/ the method of nonstationary phase gives

j zKj .x/j.N 2�j j.F �1�/.2�jxd /j.1Cjx0j/�N

.N;M 2�j .1C 2�j jxd j/
�M .1Cjx0j/�N for jx0j � cjxd j:

In the second estimate we used that F �1� is a Schwartz function. On the other hand, the theory of
oscillatory integrals gives (see [Stein 1993, p. 361])

j zKj .x/j.M 2�j .1C 2�j jxd j/
�M .1Cjxd j/

�k
2 for jx0j � cjxd j: �

Next we use Proposition 12 to find upper bounds for the operator norms of zTj as maps from Lp.Rd /

to Lq.Rd /, where 1� p � q �1. The latter condition is mandatory since zTj is a translation-invariant
operator covered by Hörmander’s result from [Hörmander 1960, Theorem 1.1].

Lemma 13. Assume d 2N, d � 2 and let �,  , k be as in (19) and �2C10 .R/. Then, for any fixed ">0,

k zTj kp!q . 2�jA".p;q/ for 1� p � q �1; j 2 Z; j � j0:

Proof. We first analyze the range 1� p � 2� q �1. Plancherel’s theorem gives

k zTjf k2 D k�.2
j .�d � .�

0///�.� 0/ Of k2 . k Of k2 D kf k2
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due to �; � 2 L1.Rd /. The Stein–Tomas theorem for surfaces with k nonvanishing principal curvatures
[Stein 1993, p. 365] yields as in [Mandel and Schippa 2022, Lemma 4.3]

k zTjf kq . 2�
j
2 kf k2; k zTjf k2 . 2�

j
2 kf kq0 if

1

q
�

k

2.kC 2/
:

The Restriction-Extension operator f 7! F �1. Of d�M / for compact pieces M of hypersurfaces with k
nonvanishing principal curvatures has the mapping properties from [Mandel and Schippa 2022, Corol-
lary 5.1], so it is bounded for .p; q/ belonging to the pentagonal region

1

p
>

kC 2

2.kC 1/
;

1

q
<

k

2.kC 1/
;

1

p
�
1

q
�

2

kC 2
: (22)

So for these exponents and Mt WD f� D .�
0; �d / 2 supp.�/�R W �d � .�

0/D tg with induced surface
measure d�Mt

D .1Cjr .� 0/j2/1=2 d� 0 we have for Og.�/ WD �.� 0/ Of .�/.1Cjr .� 0/j2/�1=2

k zTjf kq .
Z

R

j�.2j t /jkF �1. Og d�Mt
/kq dt .

Z
R

j�.2j t /jkgkp dt . 2�j kf kp:

Moreover, [Mandel and Schippa 2022, Corollary 5.1] yields restricted weak-type bounds from Lp;1.Rd /

to Lq;1.Rd / for all .p; q/ belonging to the closure of the above-mentioned pentagon, which implies
k zTjf kq;1 . 2�j kf kp;1 in the same manner. Interpolating all these bounds gives

k zTj kp!q . 2�j.minfA0;A1;A2;A02g�"�1.p;q/2E/ D 2�jA".p;q/ for 1� p � 2� q �1; " > 0:

This finishes the analysis in the case 1� p � 2� q �1. For 2� p � q �1 or 1� p � q � 2 we get
from Proposition 12

k zTj k1!1CkzTj k1!1 . k zKj k1 . 2�j.
kC2
2
�d/:

Interpolating the estimates for .p; q/D .1;1/ with the ones for p D 2, q � 2 from above yields the
estimates in the region A03; A

0
4; the dual ones follow analogously. So we get

k zTj kp!q . 2�j minfA3;A03;A4;A
0
4g D 2�jA".p;q/;

which proves the claim. �

The optimality of our constants is open. It would be interesting to see whether recent results and
techniques for oscillatory integral operators by Guth, Hickman and Iliopolou [Guth et al. 2019] or Kwon
and Lee [2020] (Proposition 2.4, Proposition 2.5) can be adapted to prove better bounds, especially
in the range 1 � p � q < 2 or 2 < p � q � 1. Any theorem leading to a larger value of A".p; q/
will automatically provide a larger range of exponents q; r1; r2 for which our Gagliardo–Nirenberg
inequalities hold. Candidates for such values � A".p; q/ are given in [Cho et al. 2005, Lemma 2.2] and
[Mandel and Schippa 2022, Lemma 4.4], but it seems nontrivial to make use of those in our setting. Next
we use the estimates for zTj to discuss the relevant operators at distance 2�j from the critical surface
where j %C1.
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Proposition 14. Assume d 2 N and (A1) with ˛1; ˛2 > �1. Then there are bounded linear operators
Tj W Lp.Rd /! Lq.Rd / and j0 2 Z with

P1
jDj0

TjuD u1 such that, for i D 1; 2 and any given " > 0,
we have, for all u 2 S.Rd /,

kTjukq . 2j.˛i�A".p;q//kPi .D/ukp for 1� p � q �1; j 2 Z; j � j0:

Proof. Recall u1 D F �1.� Ou/, where � was chosen in (4); we first consider the case d � 2. According to
assumption (A1) there are �1; : : : ; �L 2 C10 .R

d / such that �1C � � �C �L D � holds and S \ supp.�l/D
f� 2 supp.�l/ W Q�d D  l. Q� 0/;where Q� D…l�g. Here, …l denotes some permutation of coordinates in Rd.
Since Pi vanishes of order ˛i near the surface in the sense of assumption (A1), we may write

Pi .�/
�1�l.�/D Œ�lC.�/. Q�d � l. Q�

0//
�˛i
C
C �l�.�/. Q�d � l. Q�

0//�˛i� ��l. Q�
0/;

with �lC; �l� 2 C
1
0 .R

d /; �l 2 C
1
0 .R

d�1/; Q� WD…l�; (23)

for suitable functions �l ;  l that satisfy (19). In view of this we define

Tj WD
LX
lD1

T lj ; where T lj u WD F �1
�
�l.�/ Ou.�/ �.2

j . Q�d � l. Q�
0///�l. Q�

0/
�
. Q� D…l�/:

Since 0 does not belong to the support of �, there is j0 2 Z such that u1 D
P1
jDj0

Tju in the sense of
distributions. We introduce the smooth function �i .z/ WD �.z/jzj�˛i . Then Lemma 13 yields

kTjukq .
LX
lD1

kT lj ukq

D

LX
lD1



F �1��.2j . Q�d � l. Q� 0///�l. Q� 0/ �l.�/ Ou.�/�

q
D

LX
lD1



F �1��.2j . Q�d � l. Q� 0///�l. Q� 0/ Pi .�/�1�l.�/2Pi .D/u.�/�

q
(23)
D

LX
lD1

2j˛i


F �1��i .2j . Q�d � l. Q� 0///�l. Q� 0/.�liC.�/C �li�.�//2Pi .D/u.�/�

q

.
LX
lD1

2j.˛i�A".p;q//


F �1�.�liC.�/C �li�.�//2Pi .D/u.�/�

p

. 2j.˛i�A".p;q//kPi .D/ukp:
In the last inequality we used that �liC; �li� are Lp-multipliers since their Fourier transforms are
integrable. �

In the forthcoming analysis we shall need the following auxiliary result. The proof mainly follows
Stein’s analysis of oscillatory integrals [1993, p. 380–386].

Proposition 15. Assume 0� ˛ < 1
2

and that �; are as in (19), � 2 C10 .R
d /; set

L˛u WD F �1..�d � .� 0//�˛C �.� 0/�.�/u/:

Then L˛ W L2.Rd /! Lq.Rd / is a bounded linear operator for q WD 2.kC2/
kC2�4˛

.
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Proof. Define the family of distributions 
s as in [Stein 1993, p. 381] (called ˛s in this book) via


s.y/D
es
2

�.s/
ys�1�.y/1y>0 if <.s/ > 0;

where � is smooth with compact support and �.y/ D 1 for jyj � y0, where y0 is chosen so large that
�.�d � .�

0//D 1 holds whenever �.� 0/�.�/¤ 0. The family .
s/ is extended to all s 2 C via analytic
continuation. Then introduce the family of linear operators

Msf WD F �1.�.� 0/2
s.�d � .� 0// Of /:
Plancherel’s identity gives

kMsf k2 . kf k2 if <.s/D 1:

On the other hand

Msf Dˆ�f; ˆ.z/ WD O
s.�zd / �

Z
Rd�1

�.� 0/2eiz�.�
0; .�0// d� 0:

From equation (15) in [Stein 1993] and equation (32) in [Mandel and Schippa 2022] we infer

jˆ.z/j. .1Cjzd j/�<.s/.1Cjzd j/�
k
2 . 1 if <.s/D�

k

2
:

We conclude

kMsf k1 . kf k1 if <.s/D�
k

2
:

Furthermore, for any given Schwartz functions f; g the function s 7!
R

Rd
.Msf /g is holomorphic in the

open strip �k
2
<<.s/ < 1 with continuous extension to the boundary. So the family Ms is admissible for

Stein’s interpolation theorem [1956, Theorem 1] and we obtain

kM1�2˛f kq . kf kq0 if � 2 Œ0; 1�; 1� 2˛ D .1� �/ �
�
�
k

2

�
C � � 1;

1

q
D
1� �

1
C
�

2
:

This leads to � D 2.kC2�4˛/
2.kC2/

and q D 2.kC2/
kC2�4˛

. In view of 0 < 2˛ < 1 this implies

F �1��.� 0/2.�d � .� 0//�2˛C �.�d � .�
0// Of

�


q
. kf kq0 :

Now we consider functions Of D �2 Og. By choice of � and of y0 we then have

F �1��.� 0/2.�d � .� 0//�2˛C �.�/2 Og
�


q
. kF �1.�2 Og/kq0 . kgkq0 :

This implies the claim given that this operator coincides with L˛L
�
˛. �

We now use the dyadic estimates from Proposition 14 to prove Gagliardo–Nirenberg inequalities in the
special case P1.D/D P2.D/ where the exponents satisfy A".p; q/D ˛ 2 Œ0; 1�. This result plays the
same role in the critical frequency regime as Proposition 8 does in the noncritical regime. For d � 2 we
concentrate on exponents with 1� p � 2� q �1.

Lemma 16. Assume d 2 N and let P WD P1 D P2 satisfy (A1) for ˛ WD ˛1 D ˛2 2 Œ0; 1�. Then
ku1kq . kP.D/ukp holds for all u 2 S.Rd / provided that
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(i) d D 1 and 1� p; q �1 satisfy 1
p
�
1
q
D ˛ and, if 0 < ˛ < 1, .p; q/ …

˚�
1; 1
1�˛

�
;
�
1
˛
;1

�	
,

(ii) d � 2 and 1� p � 2� q �1 satisfy 1
p
�
1
q
D

2˛
kC2

and min
˚
1
p
; 1
q0

	
> kC2˛
2.kC1/

.

The estimate ku1kq;1 . kP.D/ukp holds for exponents as in (i), (ii) or

(iii) d D 1, p D 1, q D 1
1�˛

if ˛ 2 .0; 1/,

(iv) d � 2, 1� p < 2.kC1/
kC2˛

, q D 2.kC1/
kC2�2˛

if ˛ 2
�
1
2
; 1
�
.

Proof. With the same notation as before we have

P.�/�1�l.�/D Œ�lC.�/. Q�d � l. Q�
0//�˛C C �l�.�/.

Q�d � l. Q�
0//�˛� ��l. Q�

0/;

with �lC; �l� 2 C
1
0 .R

d /; �l 2 C
1
0 .R

d�1/; Q� WD…l�;

for functions �l ,  l that satisfy (19). So u1 D
P1
jDj0

Tju. Assuming 1� p � 2� q �1 are chosen as
above we obtain (ii), (iv) as follows:

� Case d � 2, ˛ D 0. Our assumptions give that A".p; q/D ˛ D 0 only occurs for p D q D 2. Here the
estimate ku1k2 . kP.D/uk2 follows from Plancherel’s theorem.

� Case d � 2, ˛ 2 .0; 1/. We first consider the case ˛ < 1
2

. By assumption,
�
1
p
; 1
q

�
lies on the green

diagonal line in Figure 2. By Proposition 15, the claimed inequality holds for the endpoints of that line
given by p D 2, q D 2.kC2/

kC2�4˛
and its dual p D 2.kC2/

kC2C4˛
, q D 2. Interpolating these two estimates with

each other provides the desired inequality for all tuples on the green line in Figure 2 and thus proves the
claim for ˛ < 1

2
.

Now consider the case ˛ � 1
2

. Our assumptions imply that
�
1
p
; 1
q

�
lies on the blue line in Figure 2 with

endpoints excluded. In particular,
�
1
p
; 1
q

�
is in the interior of the A1-region, so A. Qp; Qq/D kC2

2

�
1
Qp
�
1
Qq

�
for

all . Qp; Qq/ close to .p; q/. For small ı >0we choose 1
q1
D
1
q
Cı, 1

q2
D
1
q
�ı. Interpolating the estimates for

.p; q1/ and .p; q2/ with interpolation parameter � D 1
2

gives, due to .1� �/A".p; q1/C �A".p; q2/D ˛,
the weak estimate kukq;1 . kP.D/ukp. Here we used u1 D

P1
jDj0

Tju, the dyadic estimates from
Proposition 14 and the interpolation lemma, Lemma 4. These weak estimates hold for all

�
1
p
; 1
q

�
on the blue

line with endpoints excluded. Interpolating these inequalities with each other gives kukq . kP.D/ukp
for the same set of exponents, which proves (ii) for ˛ 2 .0; 1/.

To prove the weak estimate from (iv) assume ˛ 2
�
1
2
; 1
�
. For any given

�
1
p
; 1
q

�
on the dashed horizontal

blue line in Figure 2 with left endpoint excluded we can choose q1; q2 as above and the same argument
gives kukq;1 . kP.D/ukp. Since these exponents are given by 1� p < 2.kC1/

kC2˛
and q D 2.kC1/

kC2�2˛
, we

are done.

� Case d � 2, ˛ D 1. It was shown in [Mandel and Schippa 2022, Section 5] that the linear operators
.P.D/C iı/�1 W Lp.Rd /! Lq.Rd / are uniformly bounded with respect to small jıj > 0 given that
our additional regularity assumptions on P from (A1) imply that S D f� 2 Rd W P.�/D 0g is a smooth
compact manifold with jrP j ¤ 0 on S. This implies ku1kq . kP.D/ukp and analogous arguments yield
the weak bounds claimed in (iv).



ON GAGLIARDO–NIRENBERG INEQUALITIES WITH VANISHING SYMBOLS 3465

1
p

1
q

1

1

A0

A1 A2

A02

A3

A03

A4

A04

kC2�4˛2
2.kC2/

.dC1�2˛2/kC2�4˛2
2d.kC2/

kC2˛1
2.kC1/

Figure 2. Riesz diagram showing the exponents 1�p�2�q�1 satisfyingA".p; q/D˛
in the case ˛ D ˛1 2

�
1
2
; 1
�

(blue) and for ˛ D ˛2 2
�
0; 1
2

�
(green). For the green resp.

nondashed blue, exponent pairs Lemma 16 (i), (ii) give kukq � kP.D/ukp. In the case
˛ D ˛2 the corresponding estimates from [Mandel and Schippa 2022, Theorem 1.4(ii)]
only hold for exponents on the magenta line. The picture was produced with parameter
values .d; k; ˛1; ˛2/D

�
4; 2; 3

4
; 1
4

�
.

Next we turn to the one-dimensional case d D 1. The representation formula then reads

u1 D

LX
lD1

F �1
�
Œ�lC.�/.� � �

�
l /
�˛
C C �l�.�/.� � �

�
l /
�˛
� �2P.D/u�; (24)

where fP.�/D 0g D f��1 ; : : : ; �
�
Lg. Using our assumption 1

p
�
1
q
D ˛ we obtain the claims (i), (iii) from

the following arguments:

� Case d D 1, ˛ D 0. We then have p D q and we first analyze 1 < p D q <1. In this case the
Hilbert transform f 7! F �1.sign.�/ Of / is bounded on Lp.R/, and so is f 7! F �1.sign.� � ��

l
/ Of / for

l D 1; : : : ; L. So the representation formula (24) implies ku1kp . kP.D/ukp . In the case pD q 2 f1;1g
we make use of our additional regularity assumption �l WD �lC D �l� from (A1), so

ku1kp �

LX
lD1

kF �1.�l2P.D/u/kp .
LX
lD1

kF �1.�l/� .P.D/u/kp . kP.D/ukp:

Here we used that F �1.�l/ is a Schwartz function for l D 1; : : : ; L.

� Case d D 1, ˛ 2 .0; 1/. If 1 < p < q <1 we deduce the claimed estimate from the boundedness of
the Hilbert transform on Lq.R/ and the Riesz potential estimate kF �1.j � j�˛ Of /kq . kf kp. For p D 1,
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0 < ˛ < 1 we have a weak estimate kF �1.j � j�˛ Of /kq;1 . kf k1; see [Grafakos 2014, Theorem 1.2.3].
Note that the Hilbert transform is bounded on Lq;1.R/ as well by real interpolation.

� Case d D 1, ˛D 1. We now have 1
p
�
1
q
D 1, so pD 1; qD1. We exploit the additional smoothness

assumption �lCD��l� from (A1). Then P 2C1.R/ is a smooth function with simple zeros ��1 ; : : : ; �
�
L.

To prove the claimed inequality we start with the trivial estimate kvk1 . kv0k1 D kF �1.i� Ov/k1 for all
v 2 S.R/. Translation in Fourier space gives kvk1 . kF �1.i.����l / Ov/k1 for all u2 S.R/; l D 1; : : : ; L.
So (24) implies as above

ku1k1 .
LX
lD1

kF �1..� � ��l /
�1�l2P.D/u/k1 .

LX
lD1

kF �1.�l2P.D/u/k1 . kP.D/uk1: �

As remarked in Figure 2, claim (ii) of the previous lemma improves upon the corresponding bounds
from [Mandel and Schippa 2022, Theorem 1.4] in the case 0 < ˛ < 1

2
. We finally combine all these

estimates to prove Gagliardo–Nirenberg inequalities in the critical frequency regime. Given the rather
complicated definition of A".p; q/, an explicit characterization of the admissible exponents is possible in
principle, but extremely laborious. We prefer to avoid most of the computations. Instead, we describe the
set of admissible exponents in an abstract way and provide the required computations in the reasonably
simple special case 1� p � 2� q �1 that allows us to prove our main results. Proceeding in this way it
becomes clear how eventual improvements of Lemma 13 affect the final range of exponents. Once more
we exploit Bourgain’s summation argument, which allows us to argue almost as in the large-frequency
regime. On a formal level, comparing Lemma 5 (large frequencies) with Lemma 13 (critical frequencies),
we essentially have to replace si �d

�
1
ri
�
1
qi

�
by A".ri ; qi /�˛i because the summation index now ranges

from some j D j0 to C1 and not from j D j0 to �1. It will be convenient to formulate our sufficient
conditions in terms of N̨ WD .1� �/˛1C �˛2.

We provide a definition of the set A.�/ of exponents .q; r1; r2/ that are admissible for

ku1kq . kP1.D/uk1��r1
kP2.D/uk

�
r2
; u 2 S.Rd /: (25)

Lemma 16 provides the definition for � 2 f0; 1g, namely

A.0/ WD f.q; r1; r2/ 2 Œ1;1�3 W .q; r1; ˛1/ as in Lemma 16(i),(ii)g;

A.1/ WD f.q; r1; r2/ 2 Œ1;1�3 W .q; r2; ˛2/ as in Lemma 16(i),(ii)g:
(26)

In the case 0 < � < 1 the definition is more involved and relies on the interpolation lemma (Lemma 4)
and the dyadic estimates for critical frequencies from Proposition 14. Combining the latter with (6) we
obtain ku1kq . kuk.X1;X2/�;q and deduce (25) for exponents .q; r1; r2/ belonging to the set

A1.�/ WD
�
.q; r1; r2/ 2 Œ1;1�

3
W there are " > 0; q1 2 Œr1;1�; q2 2 Œr2;1� such that

1

q
D
1� �

q1
C
�

q2
and .1� �/A".r1; q1/C �A".r2; q2/ > N̨

�
:
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This result covers all nonendpoint cases in our considerations further below. Using (5) with Y1 D Y2 D
Lq.Rd / we obtain ku1kq . kP1.D/uk1��r1

kP2.D/uk
�
r2

for exponents in

A2.�/ WD
˚
.q; r1; r2/ 2 Œ1;1�

3
W q �maxfr1; r2g and there is " > 0 such that

.1� �/A".r1; q/C �A".r2; q/D N̨ ; A".ri ; q/¤ ˛i ; i D 1; 2
	
:

Next we use kukq D kuk1��q kuk�q to deduce further estimates from Lemma 16 for exponents in

A3.�/ WD f.q; r1; r2/ 2 Œ1;1�3 W .q; r1; ˛1/; .q; r2; ˛2/ as in Lemma 16(i), (ii)g:

Using (5) with Y1 D Lq1.Rd /, Y2 D Lq2.Rd /, we get the weak bound ku1kq;1 . kuk.X1;X2/�;1 for
exponents belonging to

Aw4 .�/ WD
�
.q; r1; r2/ 2 Œ1;1�

3
W there are " > 0; q1 2 Œr1;1�; q2 2 Œr2;1� such that

.1� �/A".r1; q1/C �A".r2; q2/D N̨ ;
1

q
D
1� �

q1
C
�

q2
; ˛i ¤ A".ri ; qi /; q1 ¤ q2

�
:

Interpolating the (weak or strong) endpoint estimates for A2.�/[A3.�/[Aw4 .�/with each other exactly as
in the final step of the proof of Proposition 9 we deduce ku1kq.kuk.X1;X2/�;q.kP1.D/uk1��r1

kP2.D/uk
�
r2

for exponents from

A4.�/ WD
n
.q;r1; r2/2 Œ1;1�

3
W there are "¤ 0;ı > 0; Qq;q� 2 Œ1;1�; Q�;�� 2 .0;1/ with

1

Qq
�"D

1

q
D
1

q�
C"; Q��ıD �D ��Cı and

. Qq;r1; r2/2Aw4 . Q�/[A3. Q�/[A2. Q�/; .q
�; r1; r2/2Aw4 .�

�/[A3.��/[A2.��/
o
:

Summarizing these interpolation results we obtain the following interpolation inequality in the critical
frequency regime.

Proposition 17. Assume d 2 N, � 2 Œ0; 1� and (A1) for ˛1; ˛2 > �1. Then

ku1kq . kP1.D/uk1��r1
kP2.D/uk

�
r2
; u 2 S.Rd /;

holds provided that .q; r1; r2/ 2A.�/ WDA1.�/[A2.�/[A3.�/[A4.�/.

5. Gagliardo–Nirenberg inequalities and proofs of Theorems 1 and 2

We first discuss the one-dimensional case. As before, we use the notation

N̨ WD .1� �/˛1C �˛2 and Ns WD .1� �/s1C �s2:

Theorem 18. Assume d D 1, � 2 Œ0; 1� and that (A1), (A2) hold for s1; s2 2R and ˛1; ˛2 >�1 such that
0 < N̨ � Ns. Then

kukq . kP1.D/uk1��r1
kP2.D/uk

�
r2
; u 2 S.R/;

holds provided that q; r1; r2 2 Œ1;1� satisfy N̨ � 1��
r1
C

�
r2
�
1
q
� Ns, as well as the conditions (i), (ii), (iii)

and (iv), (v), (vi) in the endpoint cases 1��
r1
C

�
r2
�
1
q
D Ns and N̨ D 1��

r1
C

�
r2
�
1
q

, respectively:
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(i) If q D1 then 1
r1
� s1 ¤ 0¤

1
r2
� s2 or .r1; r2/D

�
1
s1
; 1
s2

�
, s1; s2 2 f0; 1g.

(ii) If 1 < q <1, 1
r1
�
s1
d
D

1
q
D

1
r2
�
s2
d

and r1 D 1 then 1 < r2 < q, � � r2
q

or r2 D1, 1
q
� � � 1

q0
.

(iii) If 1 < q <1 and 1
r1
�
s1
d
D

1
q
D

1
r2
�
s2
d

and r2 D 1 then 1 < r1 < q, 1� � � r1
q

or r1 D 1,
1
q
� 1� � � 1

q0
.

(iv) If q D1 then 1
r1
�˛1 ¤ 0¤

1
r2
�˛2 or .r1; r2/D

�
1
˛1
; 1
˛2

�
, ˛1; ˛2 2 f0; 1g.

(v) If 1<q <1, 1
r1
�˛1D

1
q
D

1
r2
�˛2 then ˛1; ˛2 2 Œ0; 1� and r1D 1; � <1 only if 1 < r2 < q, � � r2

q
.

(vi) If 1 < q <1, 1
r1
� ˛1 D

1
q
D

1
r2
� ˛2 then ˛1; ˛2 2 Œ0; 1� and r2 D 1; � > 0 only if 1 < r1 < q,

1� � � r1
q

.

Proof. Proposition 9 shows that the large-frequency part of the inequality (involving s1; s2 and thus (i), (ii)
and (iii)) holds. In view of Proposition 17 it remains to show that all exponents satisfying N̨ � 1��

r1
C
�
r2
�
1
q

with (iv), (v) and (vi) in the endpoint case N̨ D 1��
r1
C

�
r2
�
1
q

are covered by A.�/. In the case � D 0
this holds by definition of A.0/ from (26) because the requirement .r1; q/ …

˚
1; 1
1�˛

; 1
˛
;1

	
if 0 < ˛ < 1

from Lemma 16 (i) is met by (iv), (v) and (vi). The discussion for � D 1 is analogous. So from now on
consider the case 0 < � < 1.

We now retrieve some information about A.�/ by exploiting the formula A".p; q/ D 1
p
�
1
q

for
1� p � q �1; see (17). Going back to the definition of the sets Ai .�/ we find

A1.�/D
�
.q; r1; r2/ 2 Œ1;1�

3
W
1� �

r1
C
�

r2
�
1

q
> N̨

�
;

A2.�/�
�
.q; r1; r2/ 2 Œ1;1�

3
W
1� �

r1
C
�

r2
�
1

q
D N̨ ; 0�

1

ri
�
1

q
¤ ˛i for i D 1; 2

�
;

A3.�/�
�
.q; r1; r2/ 2 Œ1;1�

3
W
1� �

r1
C
�

r2
�
1

q
D N̨ ;

1

ri
�
1

q
D ˛i 2 Œ0; 1� and

.ri ; q/ …

��
1;

1

1�˛i

�
;

�
1

˛i
;1

��
if ˛i 2 .0; 1/ for i D 1; 2

�
:

Since the interpolation inequality holds for these exponents, our claim is proved in the following cases:

�
1��
r1
C

�
r2
�
1
q
> N̨ : see A1.�/.

�
1��
r1
C

�
r2
�
1
q
D N̨ and q D 1: we necessarily have N̨ D 0, r1 D r2 D 1, which is covered by A2.�/ for

˛1; ˛2 ¤ 0 or A3.�/ for ˛1 D ˛2 D 0, respectively.

�
1��
r1
C

�
r2
�
1
q
D N̨ and qD1: 1

r1
�˛1¤ 0¤

1
r2
�˛2 is covered by A2.�/ and 1

r1
�˛1D 0D

1
r2
�˛2

with ˛1; ˛2 2 f0; 1g is covered by A3.�/.

So it remains to show the remaining endpoint estimates dealing with 1 < q <1. By the definition of
Aw4 .�/ we have restricted weak-type estimates for exponents from

Aw4 .�/D
�
.q; r1; r2/ 2 Œ1;1�

3
W
1� �

r1
C
�

r2
�
1

q
D N̨ and there are q1 2 Œr1;1�; q2 2 Œr2;1�

such that q1 ¤ q2;
1

ri
�
1

qi
¤ ˛i .i D 1; 2/;

1� �

q1
C
�

q2
D
1

q

�
D

�
.q; r1; r2/ 2 Œ1;1�

3
W
1� �

r1
C
�

r2
�
1

q
D N̨ ; 1 < q <1

�
:
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(Indeed, thanks to N̨ > 0 we may choose 1
q1
WD

1
r1
� " and �

q2
WD

1
q
�
1��
q1

for small " > 0 provided that
1� r1 <1, analogously for r2 <1.) This implies

A4.�/�
�
.q; r1; r2/ 2 Œ1;1�

3
W
1� �

r1
C
�

r2
�
1

q
D N̨ ; 1 < q <1;

1

r1
�
1

r2
¤ ˛1�˛2

�
:

This yields the claim for the following exponents:

�
1��
r1
C

�
r2
�
1
q
D N̨ , 1 < q <1 and 1

r1
�
1
r2
¤ ˛1�˛2, which is covered by A4.�/,

�
1��
r1
C

�
r2
�
1
q
D N̨ , 1 < q <1 and 1

ri
�
1
q
D ˛i 2 Œ0; 1� with .ri ; q/¤

�
1; 1
1�˛i

�
if ˛i 2 .0; 1/, which

is covered by A3.�/.

So it remains to prove the claim for

1 < q <1;
1

r1
�˛1 D

1

q
D
1

r2
�˛2 and�

r1 D 1 < r2 < q; 1 > � �
r2

q
or r2 D 1 < r1 < q; 1 > 1� � �

r1

q

�
:

By symmetry we may concentrate on r1 D 1 < r2 < q, 1 > � � r2
q

, where the estimate follows from

kukq
(13)
. kuk1��q;1kuk

�
q;�q . kuk

1��
q;1kuk

�
q;r2
. kP1.D/uk1��1 kP2.D/uk

�
r2
:

Here we used Proposition 8(iv) and (ii) (for r D r2). �

Proof of Theorem 2. We apply Theorem 18 to the symbols P1.D/D jDjs � 1; s > 0 and P2.D/D I that
satisfy the hypotheses of the theorem for .˛1; ˛2; s1; s2/D .1; 0; s; 0/. Then N̨ D 1� �, Ns D .1� �/s, so
Theorem 18 implies that the Gagliardo–Nirenberg inequality holds provided that 1�� � 1��

r1
C

�
r2
�
1
q
�

.1� �/s. The latter restriction comes from Theorem 18(i) and one checks that (ii)–(vi) are not restrictive
for our choice of parameters .˛1; ˛2; s1; s2/D .1; 0; s; 0/, s > 0. �

We continue with the higher-dimensional case where a computation of A.�/\B.�/ is rather cumber-
some. To simplify the discussion we concentrate on the special case r1 D r2 D r 2 Œ1; 2� and q 2 Œ2;1�
and only consider the special ansatz q1 D q2 D q in the definition of the sets Ai .�/.

Theorem 19. Assume d 2 N, d � 2; � 2 Œ0; 1� and that (A1), (A2) hold for s1; s2 2 R and ˛1; ˛2 > �1
such that 0� N̨ � 1. Then

kukq . kP1.D/uk1��r kP2.D/uk
�
r ; u 2 S.Rd /;

holds provided that N̨ < 1, ˛1 ¤ ˛2, 0 < � < 1 and the exponents r 2 Œ1; 2�, q 2 Œ2;1� satisfy

2 N̨

kC 2
�
1

r
�
1

q
�
Ns

d
and min

�
1

r
;
1

q0

�
�

kC 2 N̨

2.kC 1/
; (27)

as well as .q; r/¤
�
1; d

Ns

�
if s1 D s2 D Ns 2 .0; d �. In the case N̨ D 1 or ˛1 D ˛2 or � 2 f0; 1g the same is

true provided that the last condition in (27) is replaced by min
˚
1
r
; 1
q0

	
> kC2 N̨
2.kC1/

.
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Proof. The conditions for large frequencies (involving s1; s2) were shown to be sufficient in Proposition 9.
So we concentrate on the critical frequency part involving ˛1; ˛2. The following computations are based
on the formula A".r; q/D A.r; q/� " � 1.p;q/2E , where

A.r; q/Dmin
�
1;
kC 2

2

�
1

r
�
1

q

�
;
kC 2

2
�
kC 1

q
;�
k

2
C
kC 1

r

�
for 1� r � 2� q �1; see (17) and Figure 1. Our definitions of A1.�/;A2.�/;A3.�/ yield in the case
0 < � < 1

A1.�/� f.q; r; r/ 2 Œ2;1�� Œ1; 2�2 W A".r; q/ > N̨ for some " > 0g;

A2.�/� f.q; r; r/ 2 Œ2;1�� Œ1; 2�2 W A".r; q/D N̨ for some " > 0; ˛1 ¤ N̨ ¤ ˛2g;

A3.�/�
�
.q; r; r/ 2 Œ2;1�� Œ1; 2�2 W A".r; q/D N̨ for some " > 0; ˛1 D N̨ D ˛2 2 Œ0; 1�

and min
�
1

r
;
1

q0

�
>

kC 2 N̨

2.kC 1/

�
:

From A.�/�A1.�/[A2.�/[A3.�/ we thus get

A.�/�
�
.q; r; r/ 2 Œ2;1�� Œ1; 2�2 W A".r; q/� N̨ for some " > 0 and

if A".r; q/D N̨ D ˛1 D ˛2 2 Œ0; 1� then min
�
1

r
;
1

q0

�
>

kC 2 N̨

2.kC 1/

�
:

Since A".r; q/� N̨ for some " > 0 is equivalent to

1

r
�
1

q
�

2 N̨

kC 2
and min

�
1

r
;
1

q0

� (
�

kC2 N̨
2.kC1/

if N̨ < 1 and ˛1 ¤ ˛2;

> kC2 N̨
2.kC1/

if N̨ D 1 or ˛1 D ˛2:

This proves the claim for 0<� <1. When � 2 f0; 1g the claim follows from (26) and Lemma 16(i), (ii). �

Proof of Theorem 1. We apply Theorem 19 to P1.D/D jDjs � 1, P2.D/D I. Again, the hypotheses
of the theorem hold for .˛1; ˛2; s1; s2; k/ D .1; 0; s; 0; d � 1/ because S is the unit sphere with d � 1
nonvanishing principal curvatures. �

6. Local Gagliardo–Nirenberg inequalities

In [Fernández et al. 2022] it was shown that a “local” version of Gagliardo–Nirenberg inequalities
is of interest, too. Here one looks for a larger set of exponents where (3) holds under the additional
hypothesis kP1.D/ukr1 � RkP2.D/ukr2 , where R > 0 is fixed; see Corollary 2.10 in that paper. A
simple consequence of our estimates above is the following.

Corollary 20. Assume d 2 N, � 2 Œ0; 1� and (A1), (A2) for s1; s2 2 R and ˛1; ˛2 > �1. Then the
inequality

kukq . .R���1 CR���2/kP1.D/uk1��r1
kP2.D/uk

�
r2

holds for all u2S.Rd / and satisfying kP1.D/ukr1 �RkP2.D/ukr2 provided that for some �1; �2 2 Œ0; ��
we have .q; r1; r2/ 2A.�1/\B.�2/.
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Proof. Choose �1; �2 as required. Then Proposition 17 gives

ku1kq . kP1.D/uk1��1r1
kP2.D/uk

�1
r2

D .kP1.D/ukr1kP2.D/uk
�1
r2
/���1 � kP1.D/uk

1��
r1
kP2.D/uk

�
r2

.R���1kP1.D/uk1��r1
kP2.D/uk

�
r2
:

Similarly, Proposition 9 implies

ku2kq .R���2kP1.D/uk1��r1
kP2.D/uk

�
r2
:

Summing up these inequalities gives the claim. �

In the context of our particular example P1.D/ D jDjs � 1, s > 0, and P2.D/ D I this gives the
following generalization of [Fernández et al. 2022, Corollary 2.10].

Corollary 21. Assume d 2 N, d � 2, � 2 .0; 1/, s > 0. Then

kukq . .R� C 1/k.jDjs � 1/uk1��r kuk�r

holds for all u 2 S.Rd / satisfying k.jDjs � 1/ukr �Rkukr provided that .q; r/¤
�
1; d

s

�
if 0 < s � d

and

(i) d D 1, 1� r; q �1 and 1� � � 1
r
�
1
q
� s or

(ii) d � 2, 1� r � 2� q �1 and 2.1��/
kC2

�
1
r
�
1
q
�

s
d

, min
˚
1
r
; 1
q0

	
�
kC2�2�
2.kC1/

.

Proof. This corresponds to the special case

.�1; �2/D .�; 0/ and .˛1; ˛2; s1; s2; k; r1; r2/D .1; 0; s; 0; d � 1; r; r/

in Corollary 20. The computation of A.�/ and B.0/ can be done as in the proof of Theorem 19. Note
that the assumptions imply N̨ D 1� � 2 .0; 1/, ˛1 ¤ ˛2 and 0 < � < 1. �

7. Gagliardo–Nirenberg inequalities with unbounded characteristic sets

In the previous sections we provided a systematic study of Gagliardo–Nirenberg inequalities, where the
characteristic set S of the symbols is smooth and compact. In the case of unbounded characteristic sets
our analysis works for Schwartz functions whose Fourier transform is supported in a given bounded set,
but an argument for general Schwartz functions is lacking so far, even in the case of simple differentiable
operators with suitable scaling behaviour like the wave operator or the Schrödinger operator. In the
L2-setting, a less technical approach based on Plancherel’s identity can be used. We follow the ideas
presented in [Fernández et al. 2022] to prove Gagliardo–Nirenberg inequalities of the form

kukq . k@t tu��uk1��r kuk�r ; u 2 S.Rd /; (28)

kvkq . ki@tv��vk1��r kvk�r ; v 2 S.Rd /; (29)

where r D 2. We denote the space-time variable by z D .x; t/ 2 Rd�1 �RD Rd .
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Theorem 22. Let d 2 N. Then (28) holds provided that r D 2, q D 2d
d�4C4�

, where 1
2
� � � 1 if d � 3

and 1
2
< � � 1 if d D 2.

Proof. We first consider the case d � 3, and define Ct WD f� D .� 0; �d / 2 Rd W �2
d
� j� 0j2 D tg and the

induced surface measure �t . Then we have the representation formula

u.z/D cd

Z
Rd
Ou.�/eiz�� d� D

cd

2

Z
R

Z
Ct
Ou.�/j�j�1eiz�� d�t .�/ dt;

where cd D .2�/�d=2. Strichartz’ inequality [1977, Theorem I, case III(b)] implies that we have for
2.dC1/
d�1

� q � 2d
d�2

kukq .
Z

R

kF �1. Ouj � j�1 d�t /kq dt

.
Z

R

jt j
d�1
4
� d
2q k Ouj � j�1kL2.Ct ; d�t / dt

.
Z

R

jt j
d�2
4
� d
2q k Ouj � j�

1
2 kL2.Ct ; d�t / dt:

Here, the factor jt j.d�1/=4�d=.2q/ is obtained via scaling and in the last estimate we used j�j �
p
jt j for

� 2 Ct . On the other hand, Plancherel’s theorem gives

k@t tu��uk
2
2 D

Z
Rd
j�2d � j�

0
j
2
j
2
j Ou.�/j2 d�

D
1

2

Z
R

Z
Ct
jt j2 j Ou.�/j2 j�j�1 d�t .�/ dt

D
1

2

Z
R

t2k Ouj � j�
1
2 k
2
L2.Ct ; d�t /

dt

and
kuk22 D

1

2

Z
R

k Ouj � j�
1
2 k
2
L2.Ct ; d�t /

dt:

Writing '.t/ WD k Ouj � j�1=2kL2.Ct ; d�t / it remains to prove that the quotientR
R
jt j

d�2
4
� d
2q '.t/ dt�R

R
t2'.t/2 dt

� 1��
2
�R

R
'.t/2 dt

��
2

is bounded independently of '. According to [Fernández et al. 2022, Lemma 2.1], with w.t/ D
jt j.d�2/=4�d=.2q/, w1.t/D 1 and w2.t/D t , this is the case if and only if the following quantity is finite:

sup
s>0

s
1��
2





 w

.w21 C sw
2
2/
1
2






L2.R/

D sup
s>0

s
1��
2

�Z
R

jt j
d�2
2
�d
q

1C st2
dt

�1
2

D sup
s>0

s
1��
2
� 1
4
.d
2
�d
q
/
�Z

R

j�j
d�2
2
�d
q

1C �2
d�

�1
2

:

This leads to q D 2d
d�4C4�

. In view of 2.dC1/
d�1

� q � 2d
d�2

this requires 1
2
� � � dC2

2.dC1/
, but the upper

bound for � may be removed just as in [Fernández et al. 2022, p. 20–21] by combining the already
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established inequality for 2.dC1/
d�1

with

kukq � kuk
1��
2 kuk�2.dC1/

d�1

; 2� q �
2.d C 1/

d � 1
;

1

q
D
1� �

2
C

�

2.dC1/
d�1

:

In the case d D 2 the analogous reasoning based on [Strichartz 1977, Theorem I, case III(c)]. It is
also shown in that work that the above estimates are valid for 6 D 2.dC1/

d�1
� q < 2d

d�2
D1 and thus

1
2
< � � dC2

2.dC1/
. The same interpolation trick then allows to extend this to the whole range � > 1

2
. �

We now apply this method to the Schrödinger operator.

Theorem 23. Let d 2 N; d � 2. Then (29) holds provided that r D 2; q D 2.dC1/
d�3C4�

and 1
2
� � � 1.

Proof. Define Pt WD f� D .� 0; �d / 2Rd W �d �j�
0j2D tg and the induced surface measure �t . Plancherel’s

identity gives

kvk22 D

Z
R

Z
Rd�1

j Ov.� 0; t Cj� 0j2/j2 d� 0 dt

D

Z
R

jt j
d�1
2

Z
Rd�1

j Ov.
p
t� 0; t .1Cj� 0j2//j2 d� 0 dt

D

Z
R
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d�1
2

Z
Rd�1

j Ovt j
2
p
1C 4j� 0j2 d� 0 dt

D

Z
R

jt j
d�1
2 k Ovtk

2
L2.P1; d�1/

dt;

where Ovt .�/ WD Ov.
p
t� 0; t�d /.1C 4j�

0j2/�1=4. Similarly,

ki@tv��vk
2
2 D

Z
R

t2C
d�1
2 k Ovtk

2
L2.P1; d�1/

dt:

Strichartz’ inequality from [Strichartz 1977, Theorem I, case I] implies for q D 2.dC1/
d�1
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.
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q dt
D
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.
Z

R
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2
�
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We set '.t/ WD jt j.d�1/=4k OvtkL2.P1; d�1/ and it remains to show that the quotientR
R
jt j

d�1
4
�
dC1
2q '.t/ dt�R

R
t2'.t/2 dt

� 1��
2
�R

R
'.t/2 dt

��
2

is bounded independently of '. We apply [Fernández et al. 2022, Lemma 2.1] once more:

sup
s>0

s
1��
2

�Z
R

jt j
d�1
2
�
dC1
q

1C st2
dt

�1
2

D sup
s>0

s
1��
2

��
1
p
s

�dC1
2
�
dC1
q
Z

R

j�j
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2
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dC1
q

1C �2
d�
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2

D sup
s>0

s
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2
�
dC1
8
C
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4q

�Z
R

j�j
d�1
2
�
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q

1C �2
d�

�1
2

:

This term is indeed finite for q D 2.dC1/
d�1

and � D 1
2

, which proves the claim in this special case. The
claim for general � � 1

2
follows as above by interpolation. �

We conjecture that at least for 1 < r � 2� q <1 and 0 < � < 1 the inequality (28) actually holds for
exponents

1

r
�
1

q
D
2.1� �/

d
; min

�
1

r
;
1

q0

�
�

d � 2�

2.d � 1/
; (30)

whereas the corresponding inequality involving the Schrödinger operator holds whenever

1

r
�
1

q
D
2.1� �/

d C 1
; min

�
1

r
;
1

q0

�
�
d C 1� 2�

2d
:

Note that the Sobolev inequalities [Jeong et al. 2016, Theorem 1.1] then take the form of the endpoint
estimate � D 0 in (30).
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SEMICLASSICAL PROPAGATION THROUGH CONE POINTS

PETER HINTZ

We introduce a general framework for the study of the diffraction of waves by cone points at high frequen-
cies. We prove that semiclassical regularity propagates through cone points with an almost sharp loss even
when the underlying operator has leading-order terms at the conic singularity which fail to be symmetric.
We moreover show improved regularity along strictly diffractive geodesics. Applications include high-
energy resolvent estimates for complex- or matrix-valued inverse square potentials and for the Dirac–
Coulomb equation. We also prove a sharp propagation estimate for the semiclassical conic Laplacian.

The proofs use the semiclassical cone calculus, introduced recently by the author, and combine radial
point estimates with estimates for a scattering problem on an exact cone. A second microlocal refinement
of the calculus captures semiclassical conormal regularity at the cone point and thus facilitates a unified
treatment of semiclassical cone and b-regularity.

1. Introduction

We present a systematic analysis of the propagation of semiclassical regularity through points which are
geometrically singular (cone points), analytically singular (e.g., including inverse square potentials), or
both. The novel aspect of our approach is that it handles leading-order singular terms with ease, regardless
of symmetry or sign conditions.

As a simple application of our main microlocal propagation result, we consider high-energy scattering
by complex-valued potentials on Rn with an inverse square singularity. Denote by H 2

0 (R
n
\ {0}) the

closure of C∞
c (R

n
\{0}) in the topology of H 2(Rn); denote further by1=

∑n
j=1 D2

x j (where D = (1/ i)∂)
the nonnegative Laplacian, and denote polar coordinates on Rn by (r, ω) ∈ (0,∞)× Sn−1.

Theorem 1.1 (high-energy estimates for potential scattering). Let V (x) = V0(x)/|x |
2, where V0 =

V0(r, ω) ∈ C∞
c ([0,∞)r × Sn−1

; C) and V0(0, ω) ≡ Z ∈ C. (Thus V (x) = Z/|x |
2
+ O(|x |

−1) near the
origin.) Suppose that n ≥ 5 and Re

√
((n − 2)/2)2 +Z> 1. Then there exists λ0 > 0 so that for all λ ∈ C

with Re λ > λ0 and 0< Im λ < 1, the operator

1+ V − λ : H 2
0 (R

n
\ {0})→ L2(Rn) (1-1)

is invertible, and its inverse obeys the operator norm bound

∥χ(1+ V − λ)−1χ∥L2→L2 ≤ Cχ,ϵ |λ|−
1
2 +ϵ (1-2)
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for all χ ∈ C∞
c (X) and ϵ > 0. More generally, 1+ V − λ : D → L2(Rn) is invertible for n ≥ 2 and

Z ∈ C \ (−∞,−((n − 2)/2)2] for a suitable domain D (see (5-29) with l = 1), and the estimate (1-2)
holds in this generality as well.

The point is that we can allow for Z to be nonreal, in which case 1+ V is not a symmetric operator
on C∞

c (R
n
\ {0}). (The compact support assumption on V is made only to focus the attention of the

reader on a neighborhood of the singularity at x = 0. The result holds also for V with sufficient decay at
infinity, such as |∂αx V | ≲ ⟨x⟩

−1−δ for all α where δ > 0.) For a general result for matrix-valued inverse
square potentials without symmetry conditions, see Theorem 5.7; Lemma 5.10 verifies the assumptions
of Theorem 5.7 for the case considered in Theorem 1.1. Typical applications of high-energy resolvent
estimates include decay and local smoothing estimates for solutions to wave and Schrödinger equations;
since such applications are orthogonal to the focus of the present paper, we shall not discuss them here.

Burq and Planchon, Stalker, and Tahvildar-Zadeh [Planchon et al. 2003; Burq et al. 2003] proved
Strichartz estimates for exact inverse square potentials in the case of real Z>−((n − 2)/2)2. Duyckaerts
[2006] obtained, by means of estimates for semiclassical defect measures, high-energy resolvent estimates
(without the ϵ-loss) in the more general setting of inverse square potentials at a finite collection of
points pj in Rn, at each of which the coefficient Zj satisfies Zj >−((n − 2)/2)2. We also mention the
work [Baskin and Wunsch 2013] on lossless resolvent estimates in a geometric setting, namely in the
presence of finitely many conic singularities, and the work by [Hillairet and Wunsch 2020] on resonances
in this setting (see also [Galkowski 2017]).

Remark 1.2 (more natural settings). The setting of Theorem 1.1 is chosen here for its simplicity. More
natural examples in which leading-order terms without signs or symmetry properties are present arise
in particular in the study of PDEs on vector bundles. As an example, motivated by the recent work
[Baskin and Wunsch 2023], we prove high-energy resolvent estimates for the Dirac–Coulomb equation
in Section 5C; see Theorem 5.14.

The heart of the proof of Theorem 1.1 is the propagation of semiclassical regularity through r =0,1 which
we prove in this paper for a general class of admissible operators; see Definition 4.1 and Theorem 4.10.
Thus, in addition to inverse square singularities (which may be anisotropic), we allow for the underlying
metric g to have a conic singularity at r = 0, so g = dr2

+ r2k(r, y, dr, dy) for some smooth r -dependent
tensor k, with k|r=0 a Riemannian metric on a closed manifold Y. We moreover allow for further first-order
differential operators of the schematic form r−1 Dr , r−2 Dy to be present. All these singular terms are
allowed to be of the same strength at r = 0: they are, to leading order at r = 0, homogeneous of degree −2
with respect to dilations.

In order to explain the main features of Theorem 1.1, note that the degree −2 homogeneity of the
Laplacian and of the potential r−2 is reflected also in the Hardy inequality, which demonstrates that any
factor of r−1 should be regarded as a derivative as far as analysis near the cone point r = 0 is concerned.
Therefore, when Z in Theorem 1.1 is nonreal, the operator 1+ V −λ is, even to leading order at the cone

1In particular, the choice of the large end of the space, here Rn, is only made for convenience and allows for simple control of
the global structure of the geodesic flow. Thus, we do not discuss the large literature on limiting absorption principles here.
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point, not symmetric. Therefore, techniques rooted in the spectral theory of self-adjoint operators do not
apply. Furthermore, recall that even for solutions of smooth-coefficient PDEs Pu = f where the principal
symbol of P is complex-valued, microlocal regularity of u propagates along the null-bicharacteristics of
Re P only under a sign condition on Im P near the boundary of the support of Im P [Vasy 2018, §4.5];
on a technical level, the term Im P contributes the leading term in a positive commutator argument for
proving the propagation of regularity along null-bicharacteristics of Re P. The absence of sign conditions
on Im V in Theorem 1.1 is thus a significant obstacle for the applicability of existing methods.

In general geometric or analytic settings where one cannot separate variables, propagation estimates
through cone points and other types of singularities have so far largely been restricted to self-adjoint
settings. Melrose and Wunsch [2004] studied the diffraction of waves by conic singularities by combining
microlocal propagation estimates in the edge calculus developed by Mazzeo [1991] with the inversion of
a suitable model operator on an exact cone. This point of view is closely related to that adopted in the
present paper, see Remark 1.4, though by contrast to the present work, [Melrose and Wunsch 2004] takes
full advantage of the self-adjointness of the underlying Laplace operator.

Later works on wave propagation in singular geometries have been based on positive commutator
arguments relative to a quadratic form domain (thus still in self-adjoint settings), following the blueprint
of [Vasy 2008] on the propagation of singularities on smooth manifolds with corners (see [Lebeau 1997]
for the analytic setting). Vasy’s work was extended to the setting of manifolds with edge singularities by
Melrose, Vasy and Wunsch [Melrose et al. 2008], and the same authors established improved regularity of
the strictly diffracted front on manifolds with corners [Melrose et al. 2013]. See [Qian 2009] for the case
of inverse square potentials. We remark that in these works, the underlying geometry near the singularity
is not reflected in the type of singularities which propagate or diffract—for instance, in the case of [Vasy
2008], the geometry is that of a manifold with corners equipped with a smooth (incomplete!) Riemannian
metric, but the correct notion of regularity is conormality at the boundary; thus, these works introduce
mixed differential-pseudodifferential calculi which are compatible with both structures.

Baskin and Marzuola [2022] combined the techniques of [Vasy 2008] with those developed in [Baskin
et al. 2015] to study the long-time behavior of waves on manifolds with conic singularities. An important
ingredient in their work is a high-energy estimate for propagation through the conic singularity. In the
present paper we give an alternative proof which in particular avoids the use of a mixed calculus; see
also Remark 1.5. We also mention that Gannot and Wunsch [2023] analyzed the diffraction by conormal
potentials in the semiclassical setting using direct commutator methods involving paired Lagrangian
distributions, inspired by [de Hoop et al. 2015].

The recent work [Baskin and Wunsch 2023] on diffraction for the Dirac–Coulomb equation is also
rooted in [Melrose and Wunsch 2004; Melrose et al. 2008]. While the (first-order) Dirac–Coulomb
operator is self-adjoint for the range of Coulomb charges considered in [Baskin and Wunsch 2023], the
wave-type operator obtained by taking an appropriate square has nonsymmetric leading-order terms at
the central singularity; thus, the authors work directly with the first-order operator in their proofs of
propagation results. We are able to give a direct proof of high-energy estimates for the resolvent associated
with the wave-type operator arising in [Baskin and Wunsch 2023]; see Section 5C.
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In the high-energy regime under study in the present paper, the strategy for overcoming the issues caused
by the absence of symmetry or self-adjointness properties is the following. We distill the contribution of V
to the high-frequency propagation of regularity (i.e., in Theorem 1.1, the inverse powers of |λ| appearing
in uniform estimates of L2 norms) into a model problem right at the cone point, thus decoupling it from the
real-principal-type propagation away from the cone point (where V plays no role due to its subprincipal
nature). More precisely, in the setting of Theorem 1.1, set h := |λ|−1/2 and z = h2λ = 1 +O(h), and
define the semiclassical rescaling

Ph,z = h2(1+ V −λ)= h21− z +
h2

|x |2
V0 = (h Dr )

2
− i(n −1)

h
r

h Dr +h2r−21Sn−1 − z +
h2

r2 V0. (1-3)

Recall here that V0 ∈ C∞
c ([0,∞)r ×Sn−1

; C) is equal to a constant Z ∈ C at r = 0. The operator Ph,z is a
semiclassical differential operator in r > 0. Its uniform analysis as h → 0, as far as the novel bit near
r = 0 is concerned, is based on two ingredients, discussed in more detail in Section 1A:

(1) Symbolic propagation estimates: real-principal-type propagation in r > 0 in the spirit of [Duistermaat
and Hörmander 1972], and radial point estimates down to r = 0 in the spirit of [Melrose 1994; Vasy
2013] but taking place in the semiclassical cone algebra introduced by the author in [Hintz 2022]. The
advantage of this algebra in the present setting is that Ph,z has a smooth and nondegenerate principal
symbol in this algebra down to r = 0; in this algebra, the proofs of the relevant symbolic estimates are
then essentially standard.

(2) Inversion of a model problem: Passing to the rescaled variable r̂ = r/h and letting h → 0 for fixed r̂
in the resulting expression of Ph,z gives

N (P)= D2
r̂ − i(n − 1)r̂−1 Dr̂ + r̂−21Sn−1 − 1 +

Z

r̂2 . (1-4)

The inversion of N (P) is a scattering problem on an exact cone at unit frequency and requires the existence
of the limiting (outgoing) resolvent. Its analysis is based on b-analysis near the small end of the cone
[Melrose 1993] and on the microlocal approach to scattering theory on spaces with conic infinite ends
pioneered in [Melrose 1994].

The ϵ-loss in the estimate (1-2) is then due to the analogous loss in the limiting absorption principle
for the scattering problem, as one needs to exclude incoming but allow outgoing spherical waves; see
Remark 5.3. (We shall in fact deduce the lossy estimates stated in Theorem 1.1 from sharp results — as far
as the relationship of domain and codomain of Ph,z is concerned — on spaces with variable semiclassical
orders.) For general admissible operators, the decay rates of incoming and outgoing solutions of the
model problem are typically different, and the semiclassical loss upon propagation through the cone
point is equal to their difference (up to an additional ϵ-loss); we give explicit examples in which this
loss indeed occurs in Appendix A, demonstrating that our analysis is sharp up to an ϵ-loss. It seems
impossible to avoid this ϵ-loss if one proves the propagation estimates in the above step-by-step manner:
the microlocal radial point estimates force inequalities on the semiclassical orders (see, however, [Wang
2020] in a Besov space setting), and also on the incoming and outgoing decay orders of the function
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spaces on which the model problem is invertible. Thus, avoiding this ϵ-loss requires the development
of propagation arguments which provide control near r = 0 in one fell swoop. We demonstrate this for
operators Ph,z = h21g − z, z = 1 +O(h), on (nonexact) conic manifolds, for which we are able to obtain
a lossless propagation estimate by means of a positive commutator argument which is global on the level
of the normal operator N (P), i.e., which involves the construction of a commutator which is positive as
an operator on an exact cone, in the spirit of Mourre’s construction [1980/81] and Vasy’s approach [2000;
2001] to many-body scattering; see Theorem 5.4, in particular the estimate (5-6). It is not clear at present
however how to generalize such an argument to more general (in particular nonsymmetric) settings.

The close connection between diffraction by conic singularities and scattering on large ends of cones
was recently studied for exact (or “product”) cones (i.e., the metric is g = dr2

+ r2k(y, dy)) by Yang
[2022], resulting in a partial improvement of the classical analysis by Cheeger and Taylor [1982a; 1982b]
which was based on separation of variables and Bessel function analysis. Recently, Chen Xi [2022]
constructed a detailed parametrix for high-frequency diffraction by (nonexact) conic singularities, i.e., for
the operator (h21g − (1 ± i0))−1, with applications to short-time Strichartz estimates for the Schrödinger
equation; an important ingredient in his work is the precise resolvent construction by Guillarmou, Hassell
and Sikora [Guillarmou et al. 2013], applied on an exact cone which arises similarly to (1-4). (The
history of the study of propagation and diffraction phenomena for solutions of wave-type equations on
manifolds with singularities is long, starting with Sommerfeld’s example [1896] and early developments
by Friedlander [1958] and Keller [1985]. The use of geometric and microlocal techniques for the analysis
of singularities goes back to [Melrose and Sjöstrand 1978; 1982] on manifolds with boundary using
commutator techniques, and [Melrose 1975; Taylor 1976; Melrose and Taylor 2018] using parametrix
constructions.) We also mention the recent work by Keeler and Marzuola [2022] who use estimates for
the resolvent on exact cones perturbed by a radial (but not homogeneous) potential in order to obtain
dispersive estimates for the Schrödinger equation.

Finally, we prove a diffractive improvement which gives finer control on the strength of singularities as
they propagate through the cone point. Combining our framework with the arguments in [Melrose and Wun-
sch 2004; Melrose et al. 2008] for the propagation of coisotropic regularity, we show that, under a nonfocus-
ing condition, the strongest singularities propagating towards the cone point only continue along geometric
geodesics (limits of geodesics barely missing the cone point), whereas away from those, the diffracted
front is smoother; see Section 4F. We do not address here the interesting question of whether one can prove
estimates in the presence of multiple scatterers using such diffractive improvements, as done in [Baskin
and Wunsch 2013]; in particular, we do not recover Duyckaerts’ results [2006] here. See Remark 5.11.

Regarding applications of our high-frequency estimates, we content ourselves with a few conjectural
remarks. First, in the context of [Baskin et al. 2015; 2018; Baskin and Marzuola 2022] and Remark 5.12,
it should be possible to use our results to justify contour-shifting arguments for obtaining asymptotic
expansions (including radiation fields) of solutions to wave-type equations on static conic manifolds with
rather general inverse square potentials in the forward cone. Due to the relationship between edge Sobolev
spaces and semiclassical cone Sobolev spaces discussed in Remark 3.4, it is likely not necessary to prove
b-regularity at the spatial cone point r = 0 (unlike in [Baskin and Marzuola 2022, §8.2.2–8.2.3]); instead,
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Figure 1. The semiclassical cone single space Xch̄ .

edge propagation results at r = 0 (with uniformity as t → ∞ encoded by b-spaces), which directly apply
also to nonsymmetric operators, likely suffice. One does need to show, however, the existence of global
forward solutions by means distinct from energy methods since spectral methods are no longer available
for defining domains of the spatial operator.2 Second, it is not immediately clear how to generalize
local smoothing estimates for Schrödinger equations (e.g., as in [Duyckaerts 2006, Corollaire (2)]) if
the underlying Hamiltonian is not self-adjoint; it is an interesting question however whether, say in the
context of Theorem 1.1, some version of local smoothing (with an ϵ-loss) holds for the evolution defined
in terms of the inverse Fourier transform of the resolvent (1+ V − λ+ i0)−1, λ ∈ R, assuming it exists.
(Estimates in the elliptic regime λ≪ −1 are discussed in [Hintz 2022].) A similar remark applies to
Strichartz estimates.

1A. Sketch of the proof. Consider again the operator Ph,z from (1-3); we work locally near r = 0, thus
on X = [0, 1)r ×Sn−1. In order to achieve a clean separation of the regimes h → 0, r > 0 (corresponding
to semiclassical analysis away from the cone point) and h ∼ r → 0 (where the normal operator N (P)
in (1-4) enters and semiclassical tools cease to be applicable), we work on a resolution of the total space
[0, 1)h × X obtained by a real blow-up of h = r = 0,3

Xch̄ :=
[
[0, 1)h × X; {0} × ∂X

]
.

See Figure 1. We wish to regard h/(h + r) as the “true” semiclassical parameter; we proceed to make
this more precise.

Note first that for h = 1, the rescaling r2 P1,z is a Fuchs-type operator, or b-differential operator in the
terminology of [Melrose 1993], namely a differential operator built out of the vector fields r∂r and ∂y

(which span the space of b-vector fields), where y ∈ Rn−1 denotes local coordinates on ∂X . In this sense,
the rescaled operator r2 P1,z has elliptic principal part given by (r Dr )

2
+ ki j Dyi Dy j , where ki j is the

inverse metric on Sn−1. As h tends to 0, the operator r2 Ph,z is built out of the semiclassical vector fields
hr∂r and h∂y (which span the space of semiclassical b-vector fields). In this semiclassical sense (i.e.,

2A closely related setting in which many of these points are addressed, with the exception of the analysis at a spatial inverse
square singularity, is described in [Hintz 2023]; see in particular §5.3 of that work.

3Recall here that the real blow-up gives an invariant way of introducing polar coordinates around {0} × ∂X . Thus, a
neighborhood of h = r = 0 in Xch̄ is diffeomorphic to [0, 1)ρ ×

[
0, π2

]
θ × ∂X and equipped with a smooth map (the blow-down

map) to [0, 1)× X = [0, 1)× ([0, 1)×Sn−1) given by (ρ, θ, y) 7→ (ρ sin θ, (ρ cos θ, y)), which is a diffeomorphism away from
the front face ρ−1(0). In practice, it is more convenient to work with the smooth functions h+r , h/(h+r) on Xch̄ instead of ρ, θ .
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ignoring terms with extra powers of h), its principal part is

r2 Ph,z ∼ (hr Dr )
2
+ ki j h Dyi h Dy j − r2z.

The characteristic set, i.e., the zero set of its principal symbol ξ 2
bh̄ + |ηbh̄|

2
− r2, becomes singular at

r = 0, which is indicative of the inadequacy of the semiclassical b-setting to capture the behavior of Ph,z

microlocally near h = r = 0 (cf. the above discussion regarding the tension between the geometry and the
notion of regularity in [Melrose and Wunsch 2004; Vasy 2008] and subsequent works). The way out is to
divide by (h + r)2 and thus consider(

r
h + r

)2

Ph,z =: ph,z

(
r, y,

h
h + r

r Dr ,
h

h + r
Dy

)
as a differential operator built out of (h/(h + r)) r∂r and h/((h + r)) ∂yi , which are the prototypical
semiclassical cone vector fields introduced in [Hintz 2022]; see Section 3A. In this sense, the principal
part of (r/(h + r))2 Ph,z (i.e., ignoring terms of size O(h/(h + r))) is(

r
h + r

)2

Ph,z ∼

(
h

h + r
r Dr

)2

+ ki j
(

h
h + r

Dyi

)(
h

h + r
Dy j

)
−

(
r

h + r

)2

z. (1-5)

Put differently, we may note that Ph,z ∼ (h Dr )
2
+ki j (hr−1 Dyi )(hr−1 Dy j )−z is homogeneous of degree 0

with respect to scaling in (h, r), and approximately homogeneous of degree −2 with respect to scaling
in r ; this suggests expressing Ph,z in terms of r/(h + r)= 1 − h/(h + r), leading again to (1-5).

Note that in the regime h/(h + r) ≪ 1, where we are aiming to use semiclassical methods, the
operator (1-5) is now nondegenerate in the sense that its principal symbol

p0,1(r, y, ξ, η)= ξ 2
+ |η|2 − 1

(recall z = 1 +O(h)) has a smooth zero set on which p0,1 vanishes simply. (The microlocal analysis of
semiclassical cone operators in the semiclassical regime is thus concerned with tracking amplitudes of
oscillations

r
i

h/(h+r) ξe
i

h/(h+r)η·y

through the phase space over Xch̄ — more precisely, over the “semiclassical face” h/(h +r)= 0 — whose
fiber variables are (ξ, η).)

The semiclassical cone calculus 9ch̄(X), introduced in [Hintz 2022] and developed further in Section 3,
makes this rigorous. It allows for the symbolic analysis of pseudodifferential operators of the form

Opc,h(p)= “p
(

h
h + r

, h + r, y,
h

h + r
r Dr ,

h
h + r

Dy

)
”

using standard methods from microlocal analysis: there is a semiclassical principal symbol p(0, r, y, ξ, η),
which is a symbol on the aforementioned phase space (defined rigorously after Lemma 3.2). Moreover, as
usual, the commutator i[Opc,h(p),Opc,h(q)] is given by the quantization of the Poisson bracket of p and
q up to operators with an extra factor of h/(h + r). For the operator Ph,z in (1-3), the Hamilton vector
field of its principal symbol is nondegenerate except at two submanifolds of critical points over r = 0;
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these critical sets are saddle points for the Hamilton flow, and are end or starting points of geodesics
hitting the cone point or emanating from it. (See Figure 10.) One can thus prove quantitative microlocal
propagation and radial point estimates on the associated scale of weighted semiclassical cone Sobolev
spaces, which measure L2 norms of derivatives along (h/(h +r)) r Dr , (h/(h +r)) Dy , and which feature
weights which are real powers of r/(h + r) and h + r .

Remark 1.3 (semiclassical cone ps.d.o.s as tools). The (large) pseudodifferential calculus 9ch̄(X) was
introduced in [Hintz 2022] as the space in which inverses and complex powers of elliptic semiclassical
cone operators, such as h21+ 1, live; the goal there was a precise description of their Schwartz kernels.
Here, by contrast, we use semiclassical cone pseudodifferential operators (ps.d.o.s) as tools to understand
propagation phenomena. Correspondingly, we only need to consider the small semiclassical cone calculus,
as our analysis will be based on proving estimates, rather than on the construction and usage of parametrices.
(Parametrices are typically significantly more challenging to construct [Chin 2022] and are very precise
tools; on the flipside, they tend to be less convenient when the need for generalizations or for proofs of
sharp mapping properties on various function spaces arises.) Thus, in Section 3, we provide a perspective
on 9ch̄(X) which makes it easy to work with in nonelliptic settings.

At this point, we control the semiclassical regularity of solutions of Ph,zu = f at h/(h + r)= 0. This
means that we have an estimate of the schematic form

∥u∥ ≲ ∥Ph,zu∥ +∥Eu∥ +

∥∥∥∥ h
h + r

u
∥∥∥∥, (1-6)

where Eu controls u on a transversal to the collection of forward geodesics which encounter r = 0; the
function spaces here are semiclassical cone Sobolev spaces. That is, control of Eu together with weak
control of u at h/(h + r)= 0 (finiteness of the final term) gives stronger control of u (finiteness of the
left-hand side), provided the forcing term Ph,zu has suitable bounds (e.g., equals 0). Notice that the
weights 1 and h/(h + r) in the norms ∥u∥ and ∥hu/(h + r)∥ are comparable for h ∼ r , i.e., at the front
face in Figure 1; thus, the estimate (1-6) does not provide control of u in this regime.

In order to control u globally, including at h = r = 0, one needs to invert the normal operator N (P)
of Ph,z , which is the restriction of Ph,z to the front face of Xch̄; see (1-3)–(1-4) for a concrete example.
The function spaces on which one inverts N (P) need to match the function spaces in which the symbolic
propagation estimates are obtained. As already observed in [Hintz 2022] (see also the earlier paper [Loya
2002]) and demonstrated in detail on the level of function spaces in Section 3C, the correct function spaces
for N (P) are standard Sobolev spaces when r̂ = r/h ≳ 1 (i.e., measuring regularity with respect to Dr̂ and
r̂−1 Dyi ) and b-Sobolev spaces in r̂ ≲ 1 (i.e., measuring regularity with respect to r̂ Dr̂ and Dyi ). Following
[Melrose 1994], we show in Section 4D that the analysis of N (P) on spaces with variable orders of decay
as r̂ → ∞ precisely matches the above symbolic analysis which involves variable semiclassical orders
(powers of h/(h + r)) to accommodate the threshold requirements for propagation into/out of the radial
sets; see [Dyatlov and Zworski 2019, Appendix E.4].

We stress the global (rather than microlocal or symbolic) nature of the requirement that the normal
operator N (P) be invertible; while verifying this in concrete situations is nontrivial, one has many standard
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techniques at one’s disposal (such as boundary-pairing arguments, unique continuation, separation of
variables, etc.). We also remark that the necessity to invert model (or “normal”) operators for the purpose
of controlling solutions of PDE in a singular regime is a typical feature of singular PDE; see for example
the role of the invertibility of the Mellin-transformed normal operator family in the asymptotic behavior
of waves in [Baskin et al. 2015; 2018; Baskin and Marzuola 2019; 2022].

In combination, the symbolic estimates and the normal operator invertibility provide control of u at
both hypersurfaces h/(h + r) = 0 and h + r = 0 of Xch̄: schematically, one estimates the final term
in (1-6) by ∥(h/(h + r)) N (P)u∥ and then replaces N (P) by Ph,z , thereby committing an error term
which vanishes to leading order at the front face h + r = 0; one obtains

∥u∥ ≲ ∥Ph,zu∥ +∥Eu∥ +

∥∥∥∥(h + r)
h

h + r
u
∥∥∥∥≲ ∥Ph,zu∥ +∥Eu∥ + h∥u∥.

The final term can be absorbed into the left-hand side when h is sufficiently small. Thus, we have uniform
control of u as h → 0. (One can package this into an invertibility statement for a modification of Ph,z by
placing complex-absorbing potentials away from r = 0 in the spirit of [Nonnenmacher and Zworski 2009;
Wunsch and Zworski 2011; Datchev and Vasy 2012; Vasy 2013]; see Section 4E.)

Remark 1.4 (relation to edge propagation). The proof of symbolic propagation estimates for wave
equations on conic or edge manifolds using the edge calculus [Mazzeo 1991], as done in [Melrose and
Wunsch 2004, §8] and [Melrose et al. 2008, §11], is closely related, via the Fourier transform in time,
to the semiclassical cone Sobolev spaces associated with 9ch̄(X); see Remark 3.4. Going one step
further in the comparison, we note that the fine analysis of diffraction of [Melrose and Wunsch 2004] for
waves on a conic manifolds uses a normal operator at the cone point which is defined via a rescaled FBI
(Fourier–Bros–Iagolnitzer) transform in time; this normal operator is thus equivalent to the operator N (P)
considered here, but used in a different manner.

Remark 1.5 (second microlocalization). Writing

hr Dr = (h + r)
h

h + r
r Dr and h Dy = (h + r)

h
h + r

Dy

suggests that semiclassical conormal regularity at the cone point (regularity under application of hr Dr

and h Dy) can be captured on the scale of semiclassical cone Sobolev spaces as well. We present a
systematic second microlocal perspective on this in Section 3D, inspired by recent work of Vasy [2021a;
2021b] on the limiting absorption principle on asymptotically conic manifolds (with the conic nature
referring to the large end of the manifold). In view of the characterization of the quadratic form domain
of h21g + 1 as a semiclassical cone Sobolev space in [Hintz 2022, Theorem 6.1], we can thus eliminate
the need of working with a mixed differential-pseudodifferential calculus as in [Baskin and Marzuola
2022], and instead work in a single microlocal framework.

1B. Outline of the paper. In Section 2, we review basic notions from b- and scattering analysis, with
an eye towards the relationship with semiclassical cone analysis. In Section 3, we describe a hands-on
perspective on the semiclassical cone algebra 9ch̄(X) with a focus on its use for symbolic computations.
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The heart of the paper is Section 4: we define the general class of operators to which the analysis
sketched in Section 1A applies (Section 4A) and analyze in detail their symbolic properties (Section 4B),
followed by a general analysis of N (P) (Section 4C). We state and prove the main microlocal result,
Theorem 4.10, in Section 4D. We prove the diffractive improvement in Section 4F. Finally, Section 5
contains applications of the general theory: a sharp version of propagation estimates for h21g − 1 on
conic manifolds in Section 5A, and high-energy resolvent estimates for scattering by inverse square
potentials and the Dirac–Coulomb equation in Sections 5B and 5C.

In Appendix B, we provide a brief summary of the Sobolev spaces and pseudodifferential calculi used,
to aid the reader in keeping track of the (meanings of the) various orders involved.

2. Review of b- and scattering calculi

We denote by X a smooth n-dimensional compact manifold with nonempty, connected, and embedded
boundary ∂X . The Lie algebra Vb(X)⊂V(X)=C∞(X; T X) of b-vector fields consists of all smooth vector
fields on X which are tangent to ∂X . The Lie subalgebra Vsc(X)⊂Vb(X) of scattering vector fields consists
of all b-vector fields which vanish, as b-vector fields, at ∂X . Thus, if x ∈ C∞(X) denotes a boundary-
defining function (meaning: ∂X = x−1(0), and dx does not vanish on ∂X ), then Vsc(X)= xVb(X). In
local coordinates (x, y) ∈ [0,∞)× Rn−1 near a point on ∂X , b-vector fields are of the form

a(x, y)x∂x +

n−1∑
j=1

b j (x, y)∂y j , a, b1, . . . , bn−1
∈ C∞, (2-1)

while scattering vector fields are of the form

a(x, y)x2∂x +

n−1∑
j=1

b j (x, y)x∂y j , a, b1, . . . , bn−1
∈ C∞.

Correspondingly, there are natural vector bundles
bT X → X, scT X → X, (2-2)

isomorphic to T X◦ over X◦, but with local frames (in local coordinates as above) given by x∂x ,∂y1, . . . ,∂yn−1

and x2∂x , x∂y1, . . . , x∂yn−1 respectively, so that Vb(X)= C∞(X;
bT X) and Vsc(X)= C∞(X;

scT X). Here,
we implicitly use the bundle maps bT X → T X and scT X → T X (which are isomorphisms over X◦ but not
over ∂X ) to identify C∞(X;

bT X) and C∞(X;
scT X) with subspaces of C∞(X; T X)= V(X). The dual

bundles of (2-2) are the b-cotangent bundle and scattering cotangent bundle, bT ∗X → X and scT ∗X → X ,
with local frames dx/x, dy1, . . . , dyn−1 and dx/x2, dy1/x, . . . , dyn−1/x , respectively. (These 1-forms
are thus smooth, nonzero sections of bT ∗X , resp. scT ∗X , down to ∂X .) Writing the canonical 1-form on
T ∗X◦ as

ξb
dx
x

+

n−1∑
j=1

(ηb)j dy j , resp. ξsc
dx
x2 +

n−1∑
j=1

(ηsc)j
dy j

x
, (2-3)

thus defines fiber-linear coordinates (ξb, ηb), resp. (ξsc, ηsc) ∈ R × Rn−1, on bT ∗X , resp. scT ∗X . The
b-density bundle is denoted by b�1 X = |3n bT ∗X |; in local coordinates, its smooth sections are of the
form a|(dx/x)dy1

· · · dyn−1
|, a ∈ C∞.
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The space of finite linear combinations of up to k-fold compositions of elements of V•(X), where
• = b, sc, is denoted by Diff k

•
(X), and we put Diff•(X) =

⊕
k∈N0

Diff k
•
(X). The space Diffb(X) gives

rise to the notion of conormality (relative to a fixed function space) of distributions on X◦: concretely,
the space

Aα(X)⊂ xαL∞(X◦)

consists of all u so that Au ∈ xαL∞(X◦) for all A ∈ Diffb(X). More generally, for δ≤ 1, one can consider
the space

Aα1−δ(X)⊂ xαL∞(X◦)

of conormal distributions u of type 1 − δ, defined by the condition that for any k ∈ N0 and A ∈ Diff k
b (X),

one has Au ∈ xα−kδL∞(X◦). (Thus, Aα(X)= Aα1 (X).) A more restrictive class than Aα(X) is the class
of classical conormal distributions, Aαcl(X), which is defined simply as

Aαcl(X)= xαC∞(X)⊂ Aα(X).

Given an element u = xαu0 ∈ Aαcl(X), the function u0 is thus not merely conormal (regularity under
x∂x , ∂y), but smooth (regularity under ∂x , ∂y).

As an important example, let E → X denote a smooth real vector bundle of rank N, and consider the
radial compactification E → X , i.e., the fiber bundle whose fiber E x over x ∈ X is equal to the radial
compactification of Ex ∼= RN defined by

RN :=
(
RN

⊔ ([0,∞)ρ × Sn−1)
)
/∼,

RN
\ {0} ∋ ρ−1ω ∼ (ρ, ω) ∈ [0,∞)× Sn−1.

Then the total space E is a manifold with corners which has two boundary hypersurfaces, E∂X (the radial
compactification of E∂X ) and SE (fiber infinity, locally defined by ρ = 0). On E , we regard only SE
as a boundary, in the sense that we declare Vb(E) to consist of all smooth vector fields on E which are
tangent to SE (but not necessarily to E∂X ). For s ∈ R, we then put

Ss(E) := A−s(E).

One can of course consider variants of this, e.g., requiring elements of Vb(E) to be tangent to both
boundary hypersurfaces and defining spaces Ss,r (E) which are conormal of weight −s,−r at SE , E∂X ,
respectively; or one may require classicality at one or both of the boundary hypersurfaces.

2A. b-pseudodifferential operators. We denote fiber infinity of the radial compactification bT ∗X of
bT ∗X by bS∗X . Elements of Ss(bT ∗X) will be symbols of b-pseudodifferential operators (of type (1, 0),
in Hörmander’s (ρ, δ)-terminology [1971, §1.1]). Concretely, consider a ∈ Ss(bT ∗X) with support
contained in a local coordinate patch near a point on ∂X ; thus, for all i, j ∈ N0 and α, β ∈ Nn−1

0 , there
exists a constant Ci jαβ so that

|∂ i
x∂
α
y ∂

j
ξb
∂βηb

a(x, y, ξb, ηb)| ≤ Ci jαβ(1 + |ξb| + |ηb|)
s−( j+|β|).



3488 PETER HINTZ

The (left) quantization of a is then defined by

(Opb(a)u)(x, y) := (2π)−n
∫∫∫∫

exp
(

i
(

x − x ′

x ′
ξb + (y − y′) · ηb

))
φ

(∣∣∣∣log
x
x ′

∣∣∣∣)φ(|y − y′
|)

× a(x, y, ξb, ηb)u(x ′, y′)
dx ′

x ′
dy′ dξb dηb,

where φ ∈ C∞
c ((−1, 1)) is identically 1 near 0. The cutoff φ serves to make C−1x ′

≤ x ≤ Cx ′ and
|y − y′

|< c on the support of the Schwartz kernel of Opb(a) for some C > 1, c > 0, i.e., it localizes near
the diagonal. We define

9s
b(X) := Opb(S

s(bT ∗X))+9−∞

b (X).

Here, if we write πL/R : X2
→ X for the left/right projection, the space 9−∞

b (X) of residual operators
consists of all operators Ċ∞(X)→ Ċ∞(X) (with Ċ∞(X) denoting the space of smooth functions on X
vanishing to infinite order at ∂X ) whose Schwartz kernels κ ∈ C−∞(X2

;π∗

R
b�1 X) (the dual space of

Ċ∞(X2
;π∗

L
b�1 X)) pull back to smooth right b-densities on the b-double space4

X2
b := [X2

; (∂X)2] (2-4)

which vanish to infinite order at the left boundary lbb (the lift of ∂X × X) and the right boundary rbb (the
lift of X × ∂X ) but are smooth down to the front face ffb. (See [Vasy 2018, §6] for more details, and also
[Melrose 1993; Grieser 2001].) One often encounters weighted operators as well,

Diffk,l
b (X) := x l Diff k

b (X), 9
s,l
b (X) := x l9s

b(X).

More generally still, one can consider quantizations of symbols which are conormal of order s at bS∗X
and of order l at bT ∗

∂X X ; this level of generality is occasionally useful; see, e.g., [Vasy 2021b, §5] and
Section 3D. Given an operator A ∈9

s,l
b (X), we denote its Schwartz kernel by K A.

Elements of 9s,l
b (X) define continuous linear operators on Ċ∞(X), and the composition of two

b-ps.d.o.s is again a b-ps.d.o., with orders equal to the sum of the orders of the two factors. The principal
symbol bσs : 9

s,l
b (X) → (x l Ss/x l Ss−1)(bT ∗X) is a *-homomorphism, and maps commutators into

Poisson brackets. In local coordinates (and omitting orders for brevity), this means that for two operators
A, B ∈9b(X) with principal symbols a, b, we have

bσ(i[A, B])= {a, b} = Hab,

Ha = (∂ξba)x∂x + (∂ηba)∂y − (x∂xa)∂ξb − (∂ya)∂ηb .
(2-5)

2B. Scattering pseudodifferential operators. It is important to consider more general symbol classes
than merely Ss(scT ∗X) or x−r Ss(scT ∗X). Namely, for δ ∈

[
0, 1

2

)
, we shall consider the class

Ss,r
1−δ,δ(

scT ∗X)

of symbols which are conormal at scS∗X with weight −s, and conormal of type 1 − δ with weight −r
at scT ∗

∂X X . (The presence of both 1 − δ and δ as subscripts follows the classical literature on symbol

4For a detailed discussion of real blow-ups such as (2-4), we refer the reader to [Melrose 1996]. See [Hintz 2022, Appendix A]
for a brief summary which is sufficient for our purposes.
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classes; see, e.g., [Hörmander 1971].) This means that Ss,r
1−δ,δ(

scT ∗X) consists of all smooth functions a
on scT ∗X which over X◦ are symbols of type (1, 0) and order s, i.e., a|T ∗ X◦ ∈ Ss

1,0(T
∗X◦)= Ss(T ∗X◦),

and which near ∂X satisfy for all i, j ∈ N0 and α, β ∈ Nn−1
0 an estimate

|(x∂x)
i∂αy ∂

j
ξsc
∂βηsc

a(x, y, ξsc, ηsc)| ≤ Ci jαβx−r−(i+ j+|α|+|β|)δ(1 + |ξsc| + |ηsc|)
s−( j+|β|).

In the case δ= 0, we omit the subscript “1−δ, δ”. We then define the (left) scattering quantization of a by

(Opsc(a)u)(x, y) := (2π)−n
∫∫∫∫

exp
(

i
[

x − x ′

x2 ξsc +
y − y′

x
· ηsc

])
φ

(∣∣∣∣log
x
x ′

∣∣∣∣)φ(|y − y′
|)

× a(x, y, ξsc, ηsc)u(x ′, y′)
dx ′

x ′2

dy′

x ′n−1 dξsc dηsc.

(In this generality, scattering ps.d.o.s were introduced by Melrose [1994].) If one were working with
global coordinates, one could remove the cutoffs here due to the rapid decay of the partial (in the fiber
variables) inverse Fourier transform of a as |1/x − 1/x ′

| + |y/x − y′/x ′
| → ∞.5 We then set

9
s,r
sc,1−δ,δ(X) := Opsc(S

s,r
1−δ,δ(

scT ∗X))+9−∞,−∞

sc (X),

where 9−∞,−∞
sc (X) consists of all operators whose Schwartz kernels lie in Ċ∞(X2

;π∗

R�
1 X). We shall

refer to s as the (scattering) differential order, and to r as the (scattering) decay order.
The principal symbol of scattering operators captures their leading-order behavior for large frequencies

as well as at ∂X :
scσs,r :9

s,r
sc,1−δ,δ(X)→ (Ss,r

1−δ,δ/Ss−1,r−1+2δ
1−δ,δ )(scT ∗X).

This is a *-homomorphism. Thus, for Aj ∈9
sj ,rj
sc,1−δ,δ(X), j = 1, 2, we have

[A1, A2] ∈9
s1+s2−1,r1+r2−1+2δ
sc,1−δ,δ (X); (2-6)

the principal symbol (which captures the commutator modulo 9s1+s2−2,r1+r2−2+4δ
sc,1−δ,δ (X)) is given in terms

of the principal symbols a1, a2 of A1, A2 by

scσs1+s2−1,r1+r2−1+2δ(i[A1, A2])= Ha1a2,

x−1 Ha1 = (∂ξsca1)(x∂x + ηsc∂ηsc)+ (∂ηsca1)∂y − ((x∂x + ηsc∂ηsc)a1)∂ξsc − (∂ya1)∂ηsc . (2-7)

We refer the reader to [Vasy 2018, §3] for more details in the special case X = Rn , in which case the
scattering calculus is the same as the standard ps.d.o. calculus on Rn for amplitudes which are product-type
symbols in the base and fiber variables.

A natural setting where one must work with δ > 0 arises when working with operators which have a
variable scattering decay order

r ∈ C∞(scT ∗X).
To wit, for s ∈ R, we define

Ss,r(scT ∗X)

5Importantly, one typically does not want to localize more sharply to |1/x − 1/x ′
| + |y/x − y′/x ′

| ≲ 1 (which is a small
neighborhood of the lifted diagonal in the scattering double space; see [Melrose 1994, §21]), as this would thus destroy the
leading-order commutativity of the scattering calculus at ∂X .
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to consist of all a of the form a = x−ra0, where a0 ∈
⋂
δ∈(0,1/2) Ss,0

1−δ,δ(
scT ∗X). It is easy to check that

Ss,r(scT ∗X)⊂
⋂
δ∈(0,1/2) Ss,r0

1−δ,δ(
scT ∗X) for any r0 > sup r; in fact, differentiating variable-order symbols

produces only logarithmic factors in the boundary-defining function x . Thus, we can quantize such
symbols, giving rise to the space

9s,r
sc (X) := Opsc(S

s,r(scT ∗X))+9−∞,−∞

sc (X)⊂

⋂
δ∈(0, 1

2)

9
s,r0
sc,1−δ,δ(X).

Principal symbols of elements of 9s,r
sc (X) lie in

(
Ss,r/

⋂
δ>0 Ss−1,r−1+2δ

)
(scT ∗X). The (variable) orders

are additive under operator composition; this is a consequence of the formula for the full symbol (in local
coordinates) of the composition of two ps.d.o.s.

We point out that for fixed s ∈ R the space Ss,r(scT ∗X) (and thus 9s,r
sc (X)) only depends on the

restriction of r to scT ∗

∂X X . Indeed, given r′ ∈ C∞(scT ∗X) with r′ − r = 0 at scT ∗

∂X X , we can write
r′ − r = xw, w ∈ C∞(scT ∗X), and therefore x−r′

= x−r exp(−wx log x); by direct differentiation, one then
finds that exp(−wx log x) ∈ S0,0

1−δ,δ(
scT ∗X) for any δ > 0. In view of this, we can define Ss,r(scT ∗X) and

9s,r
sc (X), given a variable order

r ∈ C∞(scT ∗

∂X X),

to be equal to Ss,r̃(scT ∗X) and 9s,r̃
sc (X), respectively, where r̃ ∈ C∞(scT ∗X) is any smooth extension of r.

2C. Sobolev spaces. We next recall the corresponding scales of weighted Sobolev spaces. We have
some flexibility in the choice of the underlying L2-space. Thus, fix any smooth positive b-density
µ0 ∈ C∞(X;

b�1 X), and fix aµ ∈ R. We then set µ := xαµµ0 and

H 0
b (X;µ)≡ L2

b(X;µ)≡ H 0
sc(X;µ)≡ L2

sc(X;µ) := L2(X;µ). (2-8)

These spaces are independent of the choice of µ0 (but not aµ), up to equivalence of norms; the same will
be true for the spaces defined in the sequel. When the density µ is fixed and clear from the context, we
drop it from the notation. Let • = b, sc. For s ≥ 0, we then let

H s
•
(X) := {u ∈ H 0

•
(X) : Au ∈ H 0

•
(X)},

where A ∈ 9s
•
(X) denotes any fixed elliptic operator. For s < 0, we define H s

•
(X) = (H−s

•
(X))∗

with respect to the L2
•
(X) inner product; an equivalent definition is given by H s

•
(X) = {u1 + Au2 :

u1, u2 ∈ H 0
•
(X)}, where A ∈9−s

•
(X) is elliptic. Weighted spaces are defined by

H s,l
b (X)= x l H s

b (X), H s,r
sc (X)= xr H s

sc(X).

Finally, we define scattering Sobolev spaces with variable decay orders r∈C∞(scT ∗

∂X X) by taking r0< inf r
and putting

H s,r
sc (X) := {u ∈ H s,r0

sc (X) : Au ∈ H 0
sc(X)},

where A ∈9s,r
sc (X) is any fixed elliptic operator.

2D. b-scattering operators and Sobolev spaces. In our application, we shall encounter a compact
manifold X whose boundary ∂X has two connected components, say H1, H2, both of which are embedded.
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We can then consider the space Vb,sc(X) of b-scattering vector fields (which localized to a neighborhood
of H1, resp. H2, lie in Vb, resp. Vsc), the corresponding b-scattering tangent bundle b,scT X and its dual
b,scT ∗X , as well as weighted b-scattering Sobolev spaces,

H s,l,r
b,sc (X), s, l ∈ R, r ∈ C∞(scT ∗

H2
X).

Localized to a neighborhood of H1, its elements lie in H s,l
b , and localized to a neighborhood of H2, they

lie in H s,r
sc .

Let us make this even more concrete in the setting which will arise below,

X = [0,∞]x̂ × Y, H1 = x̂−1(0), H2 = x̂−1(∞), (2-9)

where we write [0,∞] for the closure of [0,∞) inside of R; here Y is a compact (n−1)-dimensional
manifold without boundary. Then x̂/(x̂+1) and (1+x̂)−1 are defining functions of H1 and H2, respectively;
hence Vb,sc(X)= (1 + x̂)−1Vb(X). Using local coordinates y1, . . . , yn−1 on an open subset U ⊂ Y, the
collection of 1-forms

(1 + x̂)dx̂
x̂
, (1 + x̂)dy1, . . . , (1 + x̂)dyn−1

is a smooth frame of b,scT ∗X over [0,∞]× U. Denoting the corresponding fiber-linear coordinates on
b,scT ∗X by (ξb,sc, ηb,sc) ∈ R × Rn−1, we can then quantize a symbol6

a ∈ Ss,l,r (b,scT ∗X)=

(
x̂

x̂ + 1

)−l

(1 + x̂)r Ss(b,scT ∗X)

by

(Opb,sc(a)u)(x̂, y) := (2π)−n
∫∫∫

exp
(

i
(

x̂ − x̂ ′

x̂ 1
1+x̂

ξb,sc +
y − y′

1
1+x̂

· ηb,sc

))
×φ

(∣∣∣∣log
x̂
x̂ ′

∣∣∣∣)φ(|y − y′
|)a(x̂, y, ξb,sc, ηb,sc)u(x̂ ′, y′)

×
dx̂ ′

x̂ ′ 1
1+x̂ ′

dy′( 1
1+x̂ ′

)n−1 dξb,sc dηb,sc.
(2-10)

The space 9s,l,r
b,sc (X) of b-scattering ps.d.o.s is then the sum

9
s,l,r
b,sc (X)= Opb,sc(S

s,l,r (b,scT ∗X))+9−∞,l,−∞

b,sc (X).
Here,

9
−∞,l,−∞

b,sc (X)=

(
x̂

x̂ + 1

)−l

9
−∞,0,−∞

b,sc (X)

is defined momentarily. First define the double space

X2
b,sc :=

[
[0,∞)2 × Y 2

; ({0} × Y )2;1∩ ({∞} × Y )2
]
, (2-11)

where [0,∞)2 is the radial compactification (equivalently, the closure of [0,∞)2 inside of R2), and
1⊂ [0,∞)2 ×Y 2 is the diagonal. Then the space9−∞,0,−∞

b,sc (X) consists of all operators whose Schwartz

6We leave the minor, largely notational, changes to accommodate symbols with variable scattering decay orders r to the
reader.
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x̂
0 ∞

x̂
′

0
∞

l

r

s

−∞

−∞

−∞

−∞

Figure 2. The double space X2
b,sc without the factor Y 2. The dashed line is the lifted

diagonal. Indicated are the symbolic orders of Schwartz kernels of elements of 9s,l,r
b,sc (X).

kernels are smooth right b-densities on X2
b,sc which vanish to infinite order at all boundary hypersurfaces ex-

cept for the lift of ({0}×Y )2. See Figure 2. Moreover, Schwartz kernels of elements of9s,0,r
b,sc (X) are conor-

mal of order s to the lifted diagonal in X2
b,sc smoothly down to the lift of ({0}×Y )2, conormal with weight

−r down to the lift of 1∩ ({∞} × Y )2, and vanish to infinite order at all other boundary hypersurfaces.

3. Semiclassical cone calculus

We revisit and generalize the algebra 9ch̄(X) and the associated scale of weighted Sobolev spaces from
[Hintz 2022], give a user-friendly treatment of the symbol calculus (including Poisson brackets), and study
operators and function spaces with variable (semiclassical) orders and their behavior upon restriction
to the transition faces of the semiclassical cone single and double spaces (recalled later in this section).
Throughout this section, we denote by X a compact n-dimensional manifold with nonempty, connected,
and embedded boundary ∂X . We denote by x ∈ C∞(X) a boundary-defining function.

3A. Vector fields, bundles, Poisson brackets. We recall from Section 1A the semiclassical cone single space

Xch̄ :=
[
[0, 1)h × X; {0} × ∂X

]
,

the boundary hypersurfaces of which we denote by cf (conic face, lift of [0, 1)× ∂X ), tf (transition face,
the front face@), and sf (semiclassical face, lift of {0}× X ). See Figure 3. Defining functions of these
boundary hypersurfaces are x/(x + h), x + h, and h/(h + x), respectively. On Xch̄ \ cf, it is convenient
to use the local defining functions x of tf and h/x of sf.

Definition 3.1 (vector fields). We define the space

Vch̄(Xch̄)

of semiclassical cone vector fields to consist of all b-vector fields V ∈ Vb(Xch̄) which are horizontal, i.e.,
tangent to the fibers of Xch̄ → [0, 1)h , and whose restriction to sf vanishes.

Lemma 3.2 (spanning set). Identifying a vector field V ∈ Vb(X) with its horizontal lift to Xch̄ along
Xch̄ → X , the space Vch̄(Xch̄) is spanned over C∞(Xch̄) by (h/(h + x))Vb(X). Moreover, given V,W ∈

Vch̄(Xch̄), we have [V,W ] ∈ (h/(h + x))Vch̄(Xch̄).
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h

x

cf

sf

tf

Figure 3. The semiclassical cone single space Xch̄ .

This allows us to define the graded ring

Diffch̄(X)=

⊕
k∈N0

Diffk
ch̄(X)

of differential operators in the usual manner.

Proof. Directly from the definition, we have (h/(h + x))Vb(X) ⊂ Vch̄(Xch̄). Conversely, suppose
V ∈ Vch̄(Xch̄). Let us work in local coordinates (x, y) ∈ [0,∞)× Rn−1 near a point in ∂X . Near cf, we
use the local coordinates (h, x̂, y) with x̂ := x/h. From the definition, we have

V = a(h, x̂, y)x̂∂x̂ +

n−1∑
j=1

b j (h, x̂, y)∂y j , (3-1)

with a, b j
∈ C∞. Since x̂∂x̂ = x∂x , this expresses V in the desired form.

Near sf on the other hand, we use (ĥ, x, y) with ĥ := h/x . Since V ∈ Vb(Xch̄), we can write

V = a(ĥ, x, y)(x∂x − ĥ∂ĥ)+ ã(ĥ, x, y)ĥ∂ĥ +

n−1∑
j=1

b j (ĥ, x, y)∂y j .

The horizontal nature of V means 0 = V h = V (xĥ) = ãx ĥ, which implies ã ≡ 0 by continuity from
(Xch̄)

◦
= {x > 0, ĥ > 0}. The vanishing of V at ĥ = 0 as a b-vector field implies, in addition, that

a = ĥa′ and b j
= ĥb′

j with a′, b′

j ∈ C∞. Since the horizontal lifts of x∂x , ∂y j ∈ Vb(X) to Xch̄ are equal to
x∂x − ĥ∂ĥ, ∂y j , the claim follows.

Regarding the Lie algebra structure, we compute, for V,W ∈ Vb(X),[
h

h + x
V,

h
h + x

W
]

=
h

h + x

(
h

h + x
[V,W ] + V

(
h

h + x

)
W − W

(
h

h + x

)
V
)
.

Since V,W ∈ Vb(Xch̄), we have V (h/(h + x)),W (h/(h + x)) ∈ (h/(h + x))C∞(Xch̄). □

There exists a vector bundle
ch̄T Xch̄ → Xch̄

together with a smooth bundle map ch̄T Xch̄ →
bT Xch̄ so that the space Vch̄(Xch̄) is equal to the space of

smooth sections of ch̄T Xch̄ . In local coordinates on X , a local frame of ch̄T Xch̄ is given by (the horizontal
lifts to Xch̄ of)

h
h + x

x∂x ,
h

h + x
∂y1, . . . ,

h
h + x

∂yn−1 .
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We call ch̄T Xch̄ the ch̄-tangent bundle and its dual ch̄T ∗Xch̄ the ch̄-cotangent bundle, with local frame

x + h
h

dx
x
,

x + h
h

dy1, . . . ,
x + h

h
dyn−1.

A choice of local coordinates (x, y) ∈ [0,∞)× Rn−1 on an open set U ⊂ X induces a trivialization of
ch̄T ∗Xch̄ over the preimage of [0, 1)×U under Xch̄ → X , with fiber-linear coordinates (ξch̄, ηch̄)∈R×Rn−1

defined by the requirement that the canonical 1-form on T ∗X◦ be equal to

ξch̄
x + h

h
dx
x

+

n−1∑
j=1

(ηch̄)j
x + h

h
dy j . (3-2)

In Xch̄ \ cf, where a smooth frame of ch̄T Xch̄ is given by (h/x)x∂x , (h/x)∂y1 , . . ., (h/x)∂yn−1 , it is com-
putationally simpler to use the fiber-linear coordinates (ξ, η) in which the canonical 1-form takes the form

ξ
x
h

dx
x

+

n−1∑
j=1

ηj
x
h

dy j . (3-3)

We compute the form of the Hamilton vector field Ha of a smooth function a ∈ C∞(ch̄T ∗Xch̄) in
these fiber coordinates, and using (ĥ, x, y) with ĥ = h/x as coordinates on the base. In terms of the
coordinates on bT ∗X used in (2-3), we have (ξ, η) = (h/x)(ξb, ηb) and thus, by changing coordinates
in the expression (2-5),

Ha = ĥ
(
(∂ξa)(x∂x − ĥ∂ĥ − η∂η)+ (∂ηa)∂y − ((x∂x − ĥ∂ĥ − η∂η)a)∂ξa − (∂ya)∂η

)
. (3-4)

3B. Symbols, pseudodifferential operators, Sobolev spaces. A simple symbol class for ch̄-operators
is Ss(ch̄T ∗Xch̄) = A−s(ch̄T ∗Xch̄), where we only regard fiber infinity ch̄ S∗Xch̄ as a boundary, i.e., we
require symbols to be smooth down to ch̄T ∗

•
Xch̄ for • = cf, tf, sf. In practice, we need more general

symbols: for δ ∈
[
0, 1

2

)
and for s, l, α, b ∈ R, we define

Ss,l,α,b
1−δ,δ (

ch̄T ∗Xch̄)=

(
x

x + h

)−l

(x + h)−α
(

h
h + x

)−b

Ss,0,0,0
1−δ,δ (

ch̄T ∗Xch̄)

to consist of all symbols which are conormal with weight −s at ch̄ S∗Xch̄ , conormal with weight −l at
ch̄T ∗

cf Xch̄ and with weight −α at ch̄T ∗

tf Xch̄ , and conormal of type 1 − δ at ch̄T ∗

sf Xch̄ with weight −b. In
the coordinates (3-3), the membership a ∈ Ss,0,0,0

1−δ,δ (
ch̄T ∗Xch̄) is equivalent to a = a(ĥ, x, y, ξ, η) (with

ĥ = h/x) satisfying estimates

|(x∂x)
i∂αy (ĥ∂ĥ)

j∂k
ξ ∂

β
η a(ĥ, x, y, ξ, η)| ≤ Ci jkαβ(1 + |ξ | + |η|)s−(k+|β|)ĥ−(i+ j+k+|α|+|β|)δ

for all i, j, k ∈ N0 and α, β ∈ Nn−1
0 ; in coordinates (h, x̂, y, ξb, ηb) on the ch̄-cotangent bundle over

Xch̄ \ sf, with x̂ = x/h and with the canonical 1-form given by (2-3), a must satisfy∣∣(x̂∂x̂)
i∂αy (h∂h)

j∂k
ξb
∂βηb

a(h, x̂, y, ξb, ηb)
∣∣≤ Ci jkαβ(1 + |ξb| + |ηb|)

s−(k+|β|).

See Figure 4. As usual, we omit the subscript “1 − δ, δ” when δ = 0.
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tf
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b [
c~ T

∗
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Figure 4. Illustration of ch̄T ∗Xch̄ (showing only part of the compactified fibers) and the
symbol class Ss,l,α,b(ch̄T ∗Xch̄), indicating the orders at the various boundary hypersur-
faces of ch̄T ∗Xch̄ .

It is occasionally useful to restrict attention to symbols which are classical conormal down to tf, which
amounts to replacing x∂x , h∂h in the above symbol estimates (which are for symbols of order 0 at tf) by
∂x , ∂h . We denote the corresponding symbol classes with a subscript “cl” as in Ss,l,α,b

cl (ch̄T ∗Xch̄).
As in Section 2, the main use of δ > 0 is to accommodate symbols with variable orders. Here, we only

discuss the case of variable semiclassical orders. Thus, consider b ∈ C∞(ch̄T ∗

sf Xch̄), an arbitrary extension
of which to an element of C∞(ch̄T ∗Xch̄) we denote by the same letter; we then put

Ss,l,α,b(ch̄T ∗Xch̄) :=

{(
h

h + x

)b
a0 : a0 ∈

⋂
δ∈(0, 1

2)

Ss,l,α,0
1−δ,δ (

ch̄T ∗Xch̄)

}
,

which is a subset of
⋂
δ∈(0,1/2) Ss,l,α,b0

1−δ,δ (
ch̄T ∗Xch̄) for any b0 > sup b.

We now proceed to quantize symbols a = a(h, x, y, ξch̄, ηch̄), thereby giving meaning to the formal
expression

“ Opc,h(a)= a
(

h, x, y,
h

h + x
x Dx ,

h
h + x

Dy

)
”.

Thus, fixing φ ∈ C∞
c ((−1, 1)), identically 1 near 0, we define, in local coordinates (x, y) on X ,

(Opc,h(a)u)(h, x, y) := (2π)−n
∫∫∫∫

exp
(

i
[

x − x ′

x h
h+x

ξch̄ +
y − y′

h
h+x

· ηch̄

])
×φ

(∣∣∣∣log
x
x ′

∣∣∣∣)φ(|y− y′
|)a(h, x, y, ξch̄, ηch̄)u(h, x ′, y′)

×
dx ′

x ′ h
h+x ′

dy′( h
h+x ′

)n−1 dξch̄ dηch̄ (3-5)

for a and u supported in the coordinate chart; for general a, u, one defines Opc,h(a)u using a partition of
unity.

We interpret this in terms of the ch̄-double space

X2
ch̄ :=

[
[0, 1)h × X2

b; {0} × ffb; {0} ×1b
]
,
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Figure 5. The ch̄-double space X2
ch̄ .

where we denote by 1b ⊂ X2
b the lift of the diagonal in X2 to X2

b; see (2-4) and the subsequent paragraph
for the definition of X2

b and its boundary hypersurfaces lbb, ffb, rbb. First, recall from7 [Hintz 2022,
Definition 3.1] that lb2, rb2, ff2, tf2, sf2, and df2 are the lifts of [0, 1)× lbb, [0, 1)× rbb, [0, 1)× ffb,
{0}× ffb, {0}× X2

b , and {0}×1b, respectively; moreover, 1ch̄ denotes the lift of [0, 1)×1b. See Figure 5.
Then the Schwartz kernel of Opc,h(a) is a conormal distribution of order s −

1
4 at 1ch̄ , conormal down

to ff2, tf2, df2 with weights −l,−α,−b, and vanishes identically in a neighborhood of lb2, rb2, sf2.
The composition of two ch̄-quantizations is almost a ch̄-quantization itself; one merely has to allow

for additional residual terms: Define the space 9−∞

ch̄ (X) of residual operators to consist of all operators
whose Schwartz kernels are conormal sections of the right b-density bundle on X2

ch̄ , with weight 0 at ff2

and tf2, and with infinite order vanishing at lb2, rb2, df2, sf2. We then put

9s
ch̄(X) := Opch̄(S

s(ch̄T ∗Xch̄))+9
−∞

ch̄ (X),

where Opch̄ = (Opc,h)h∈(0,1); this gives the same space as [Hintz 2022, Definition 3.2]. More generally, we
define the quantization of symbols a ∈ Ss,l,α,b

1−δ,δ (
ch̄T ∗Xch̄) by the same formula (3-5); the space of residual

operators is now

9
−∞,l,α,−∞

ch̄ (X) :=

(
x

x + h

)−l

(x + h)−α9−∞

ch̄ (X).

Thus, we can now define the spaces

9
s,l,α,b
ch̄,1−δ,δ(X) := Opch̄(S

s,l,α,b
1−δ,δ (

ch̄T ∗Xch̄))+9
−∞,l,α,−∞

ch̄ (X),

9
s,l,α,b
ch̄ (X) := Opch̄(S

s,l,α,b(ch̄T ∗Xch̄))+9
−∞,l,α,−∞

ch̄ (X),

where in the second line b ∈ C∞(ch̄T ∗

sf Xch̄) is a variable-order function. Their Schwartz kernels can be
characterized as being conormal distributions (of order s −

1
4 and type (1, 0)) at 1ch̄ which are conormal

at ff2 (with weight −l), tf2 (with weight −α), and conormal of type 1 − δ at df2 (with weight −b), and

7We add subscripts “2” here in order to avoid confusion during the frequent changes between Xch̄ and X2
ch̄ later on.
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which vanish to infinite order at lb2, rb2, sf2. One can also consider subalgebras which are classical at tf,
i.e., the symbols are required to be classical conormal at tf, and the residual operators are required to
have classical conormal Schwartz kernels at tf2; we denote these algebras by a subscript “cl”, such as

9
s,l,α,b
ch̄,cl (X).

All such ps.d.o.s define h-dependent families of bounded8 linear maps on Ċ∞(X); compositions of
two such ps.d.o.s give a ps.d.o. in the same class, with orders given by the sum of the orders of the two
factors. The principal symbol map is

ch̄σs,l,α,b :9
s,l,α,b
ch̄,1−δ,δ(X)→ (Ss,l,α,b/Ss−1,l,α,b−1+2δ)(ch̄T ∗Xch̄),

similarly for the variable-order spaces (with δ > 0 then arbitrary), and it is a ∗-homomorphism. These
facts follow from a minor variation of [Hintz 2022, Proposition 3.9] (using weights instead of index sets),
with the statements about principal symbols following by continuity from the corresponding statements
for standard semiclassical operators (of type (1 − δ, δ)) in x > 0 and b-ps.d.o.s in h > 0; we leave the
details to the reader. We moreover have, for Aj ∈9

sj ,lj ,αj ,bj
ch̄,1−δ,δ (X), j = 1, 2, with principal symbols aj ,

Opc,h(i[A1, A2])− Opc,h(Ha1a2) ∈9
s−2,l,α,b−2+4δ
ch̄,1−δ,δ (X),

analogously for variable-order operators. One can evaluate Ha1a2 using the formula (3-4).
Since the principal symbol captures operators to leading order at the union of boundary hypersurfaces

ch̄ S∗Xch̄ ∪ ch̄T ∗

sf Xch̄ , the latter set is also the locus of the elliptic and wave front sets of an operator. Thus,
for A ∈9

s,l,α,b
ch̄ (X), we define

Ells,l,α,b
ch̄ (A), WF ′ l,α

ch̄ (A)⊂
ch̄ S∗Xch̄ ∪ ch̄T ∗

sf Xch̄

as follows: Ells,l,α,b
ch̄ (A) is the set of all ζ so that ch̄σs,l,α,b(A) is elliptic in a neighborhood of ζ , and

WF ′ l,α
ch̄ (A) is the complement of the set of ζ so that the full symbol of A lies in S−∞,l,α,−∞(ch̄T ∗Xch̄)

when localized to a sufficiently small neighborhood of ζ . In particular, we have WF ′ l,α
ch̄ (A)= ∅ if and

only if A ∈9
−∞,l,α,−∞

ch̄ (X). We omit the orders s, l, α, b and l, α when they are clear from the context.
The definitions for type-(1 − δ, δ) and variable-order operators are analogous. See Figure 6.

Finally, we define the corresponding weighted Sobolev spaces. As in (2-8), we first fix a weighted
b-density µ= xαµµ0, where 0< µ0 ∈ C∞(X;

b�1 X) and αµ ∈ R, and define

H 0
c,h(X;µ) := L2(X;µ), H 0,l,α,b

c,h (X;µ) :=

(
x

x + h

)l

(x + h)α
(

h
h + x

)b

H 0
c,h(X;µ).

These spaces depend on αµ, but are independent of µ0 (up to equivalence of norms). When the choice
of µ is clear from the context, we will omit it from the notation. For s ≥ 0, we then define H s,l,α,b

c,h (X) to
consist of all u ∈ H 0,l,α,b

c,h (X) so that Au ∈ H 0
c,h(X) for any (thus all) elliptic A ∈ 9

s,l,α,b
ch̄ (X). We note

for s ∈ N0 the equivalent characterization

H s,l,α,b
c,h (X)= {u ∈ H 0,l,α,b

c,h (X) : V1 · · · Vj u ∈ H 0,l,α,b
c,h (X) for all Vi ∈ Vch̄(Xch̄), 0 ≤ i ≤ j ≤ s}.

8Though not uniformly in h unless b ≥ 0.
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Figure 6. The shaded boundary hypersurfaces are the locus of the elliptic set as well as
of operator and distributional wave front sets; see also Figure 4.

For s< 0, the space H s,l,α,b
c,h (X) can be defined either as the dual space (H−s,−l,−α,−b

c,h (X))∗, or as the space
of all u1+ Au2 where u1, u2 ∈ H 0,l,α,b

c,h (X) and A ∈9−s
ch̄ (X). Lastly, for a variable order b∈ C∞(ch̄T ∗

sf Xch̄),
we pick b0 < inf b and put

H s,l,α,b
c,h (X) := {u ∈ H s,l,α,b0

c,h (X) : Au ∈ H 0
c,h(X)},

where A ∈9
s,l,α,b
ch̄ (X) is any elliptic operator; the space H s,l,α,b

c,h (X) is independent of the choices of b0

and A, up to equivalence of norms.
We can define Sobolev wave front sets in the usual manner. Let l, α ∈ R, and suppose that we are given

a distribution u ∈ H−∞,l,α,−∞

c,h (X), meaning u ∈ H−N ,l,α,−N
c,h (X) for some N ∈ R. Let s, b ∈ R. Then

WFs,l,α,b
ch̄ (u)⊂

ch̄ S∗Xch̄ ∪ ch̄T ∗

sf Xch̄

is the complement of all α so that there exists an operator A∈9
s,l,α,b
ch̄ (X), elliptic at α, so that Au ∈ H 0

c,h(X).
(The a priori assumption on u is familiar from the definition of the b-wave front set, see, e.g., [Vasy
2018, Definition 6.2], and ensures that one then also has Bu ∈ H 0

c,h(X) for any B ∈ 9
s,l,α,b
ch̄ (X) with

WF′

ch̄(B)⊂ Ell′ch̄(A).)

Remark 3.3 (operators on vector bundles). If E, F → X are smooth vector bundles, one can consider
semiclassical cone ps.d.o.s acting between sections of E, F , giving rise to classes 9s

ch̄(X; E, F) and
function spaces H s

c,h(X; E) etc. More generally, one can allow E, F to be vector bundles E, F → Xch̄

over the semiclassical single space, with Schwartz kernels of elements of 9s
ch̄(X; E, F) defined by taking

the tensor product of 9s
ch̄(X) over C∞(X2

ch̄) with C∞(X2
ch̄;π

∗

L E ⊠π∗

R F∗), where πL , πR : X2
ch̄ → Xch̄ are

the stretched left and right projections. Using such ps.d.o.s, one can define Sobolev spaces H s
c,h(X; E)

etc. in this generality.

Remark 3.4 (relationship with edge Sobolev spaces). For the propagation through cone points in the
spacetime setting, many authors [Melrose and Wunsch 2004; Melrose et al. 2008] have utilized Mazzeo’s
edge algebra [1991]. A typical example is the operator −D2

t +1g, where g = g(x, y, dy) is a conic
metric on a manifold X with boundary (see (4-2)); upon multiplication by x2, this is a second-order
differential operator, the principal part of which is a Lorentzian signature quadratic form in the collection
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(x Dt , x Dx , Dy) of edge vector fields. The membership u ∈ H 1
e (Rt × X, |dt dg|)— meaning that u, x Dt u,

x Dx u, Dyu ∈ L2 — can then be characterized by taking the Fourier transform in t as

û(σ ), x |σ |û(σ ), x Dx û(σ ), Dy û(σ ) ∈ L2(Rσ ; L2(X; |dg|)).

Introducing h = ⟨σ ⟩
−1, this is equivalent to the L2(Rσ ; L2(X)) membership of ((h +x)/h)û, x Dx û, Dy û.

Upon multiplication by h/(h + x), we thus find

u ∈ H 1
e (Rt × X, |dt dg|) ⇐⇒ û ∈ L2(Rσ ; H 1,0,0,1

c,⟨σ ⟩−1(X; |dg|)),

and the respective norms of u and û are equivalent. (One can show that similar spectral characterizations
of edge Sobolev spaces remain valid also for spaces with weights and with variable differential orders;
the details will be given elsewhere.)

3C. Restriction to tf. Symbolic arguments for the analysis of semiclassical cone PDEs Pu = f can
at best control u microlocally at ch̄ S∗Xch̄ ∪ ch̄T ∗

sf Xch̄ , i.e., modulo errors which are trivial at infinite
frequencies and at sf. Crucially however, such errors may well be nontrivial at tf, and thus nontrivial
(meaning in particular: not small) as h → 0. To obtain control at tf, one needs to invert the normal
operator N (P), defined in [Hintz 2022, §3.1.2] (denoted by Ntf(P) there) and recalled below. The
following result, already implicit in the definition of the normal operator in [Hintz 2022, §3.1.2], lays the
groundwork for the analysis of N (P).

Lemma 3.5 (restriction to tf: vector fields). The restriction map

Vb(Xch̄) ∋ V 7→ V |tf ∈ Vb(tf)

restricts to a surjective map
N : Vch̄(Xch̄)→ Vb,sc(tf) (3-6)

onto the space Vb,sc(tf) = (h/(h + x))Vb(tf) of vector fields which are b-vector fields near tf ∩ cf and
scattering vector fields near tf ∩ sf. The map (3-6) induces bundle isomorphisms

ch̄Ttf Xch̄ ∼=
b,scT tf, ch̄T ∗

tf Xch̄ ∼=
b,scT ∗tf. (3-7)

Proof. Near tf \ sf, we write V ∈ Vch̄(Xch̄) in the coordinates (h, x̂, y), with x̂ = x/h, as

V = a(h, x̂, y)x̂∂x̂ +

n−1∑
j=1

b j (h, x̂, y)∂y j ; (3-8)

see (3-1). The restriction to tf, in local coordinates given by h−1(0)= [0,∞)x̂ × Rn−1
y , is the b-vector

field

V |tf = a(0, x̂, y)x̂∂x̂ +

n−1∑
j=1

b j (0, x̂, y)∂y j . (3-9)

Conversely, every b-vector field W on [0,∞)× Rn−1 can be written in the form W = a(x̂, y)x̂∂x̂ +∑n−1
j=1 b j (x̂, y)∂y j , and upon taking a(h, x̂, y) and b j (h, x̂, y) to be smooth functions which restrict at

h = 0 to the coefficients a(x̂, y) and b j (x̂, y) of W defines a ch̄-vector field V through (3-8) whose
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restriction (3-9) to tf is precisely W. We remark moreover that (3-9) vanishes if and only if a = hã and b j
=

hb̃ j, where ã, b̃ j are smooth functions of (h, x̂, y), i.e., if and only if V vanishes at tf as a ch̄-vector field.
On tf\cf on the other hand, and using coordinates (ĥ, x, y) with ĥ = h/x , we can write V ∈Vch̄(Xch̄) as

V = ĥa(ĥ, x, y)(x∂x − ĥ∂ĥ)+

n−1∑
j=1

ĥb j (ĥ, x, y)∂y j , (3-10)

with smooth coefficients a, b1, . . . , bn−1. Restriction to tf, which in these coordinates is given by x = 0,
produces

V |tf = −a(ĥ, 0, y)ĥ2∂ĥ +

n−1∑
j=1

b j (ĥ, 0, y)ĥ∂y j , (3-11)

which is a scattering vector field on [0,∞)ĥ × Rn−1
y , as claimed. Conversely, every scattering vector

field W on [0,∞)× Rn−1 can be written in the form W = a(ĥ, y)ĥ2∂ĥ +
∑n−1

j=1 b j (ĥ, y)ĥ∂y j , and upon
taking a(ĥ, x, y) and b j (ĥ, x, y) to be smooth functions which restrict at x =0 to the coefficients −a(ĥ, y)
and b j (ĥ, y) of W defines a ch̄-vector field V through (3-10) whose restriction (3-11) to tf is W. Note
also that (3-11) vanishes if and only if a = xã and b j

= xb̃ j for smooth ã, b̃ j , i.e., if and only if V
vanishes at tf as a ch̄-vector field.

The surjectivity of (3-6) follows from these two calculations via a partition of unity subordinate
to a cover Xch̄ = U ∪ V, where U ∩ sf = ∅ and V ∩ cf = ∅. Our arguments above also prove that
ker N = (x + h)Vch̄(Xch̄). Thus, we have an isomorphism

Vch̄(Xch̄)/(x + h)Vch̄(Xch̄)→ Vb,sc(tf).

This induces the first isomorphism in (3-7) abstractly as follows: if p ∈ tf, then

b,scTptf = Vb,sc(tf)/IpVb,sc(tf),

where Ip ⊂ C∞(tf) is the ideal of functions vanishing at p. The ideal in C∞(Xch̄)/(x + h)C∞(Xch̄) of
elements that restrict to an element of Ip at tf is Jp/(x + h)C∞(Xch̄), where Jp ⊂ C∞(Xch̄) is the ideal
of functions vanishing at p. Since Vch̄(Xch̄)/JpVch̄(Xch̄) =

ch̄Tp Xch̄ , we obtain (3-7). Concretely, the
first isomorphism in (3-7) maps x̂∂x̂ , ∂y j in the coordinates used in (3-8) to x̂∂x̂ , ∂y j (cf. (3-9)), and
ĥ(x∂x − ĥ∂ĥ), ĥ∂y j in the coordinates used in (3-10) to −ĥ2∂ĥ , ĥ∂y j (cf. (3-11)). □

The map (3-6) induces a surjective map

N :

(
x

x + h

)−l( h
h + x

)−b

Diffk
ch̄(X)→

(
x̂

x̂ + 1

)−l

(x̂ + 1)b Diffk
b,sc(tf), x̂ :=

x
h
, (3-12)

into weighted b-scattering differential operators on tf. More generally:

Lemma 3.6 (restriction to the transition face: ps.d.o.s). Let s, l, b ∈ R. Restriction to tf2 ⊂ X2
ch̄

induces a surjective map N : 9
s,l,0,b
ch̄,cl (X) → 9

s,l,b
b,sc (tf).

9 More generally, if b ∈ C∞(ch̄T ∗

sf Xch̄), then

9Recall that the subscript “cl” refers to classicality at tf2, i.e., smoothness of the Schwartz kernels down to tf2.
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Figure 7. Illustration of the map π defined in (3-14).

b′
:= b|tf∩sf ∈ C∞(b,scT ∗

tf∩sf tf), and restriction to tf2 ⊂ X2
ch̄ induces a surjective map

N :9
s,l,0,b
ch̄,cl (X)→9

s,l,b′

b,sc (tf). (3-13)

Proof. This can be proved entirely on the level of Schwartz kernels, since memberships in 9ch̄ or 9b,sc are
characterized as conormal distributions with conormal regularity at various boundary hypersurfaces. The
point then is that tf2 is naturally diffeomorphic to the double space tf2

b,sc in the notation of (2-11), where
we note that tf ∼= [0,∞]x̂ ×∂X is indeed of the form (2-9). This is the route taken in [Hintz 2022, §3.1.2].

Alternatively, we can proceed explicitly for the symbolically nontrivial part using the quantization
map (3-5), and use the Schwartz kernel perspective only to deduce the surjectivity of the restriction map
for residual operators, 9−∞,l,0,−∞

ch̄,cl (X)→9
−∞,l,−∞

b,sc (tf). Indeed, on the level of symbols, note that with
x̂ = x/h, we have

Ss,l,0,b(ch̄T ∗Xch̄)=

(
x

x + h

)−l( h
h + x

)−b

Ss,0,0,0(ch̄T ∗Xch̄)

=

(
x̂

x̂ + 1

)−l

(x̂ + 1)b Ss,0,0,0(ch̄T ∗Xch̄),

and hence Lemma 3.5 implies that restriction to ch̄T ∗

tf Xch̄ induces a surjective map

Ss,l,0,b
cl (ch̄T ∗Xch̄)→ Ss,l,b(b,scT ∗tf).

But changing variables in the ch̄-quantization (3-5) to x̂ = x/h, x̂ ′
= x ′/h produces precisely the b-

scattering quantization (2-10). This proves the lemma for constant orders; the proof in the variable-order
case is the same. □

As a consequence, we can relate semiclassical cone Sobolev spaces to b-scattering Sobolev spaces. In
order to state this, we fix a collar neighborhood U = [0, x0)x × ∂X of ∂X , and define the map

π : [0, 1)h × [0,∞)x̂ × ∂X → [0, 1)h × [0,∞)x × ∂X, π(h, x̂, y)= (h, hx̂, y). (3-14)

Note that (hx̂, y) ∈ U if and only if x̂ < x0h−1. Now, since tf = [0,∞]x̂ × ∂X , the domain of π is
[0, 1)h × (tf \ sf); moreover, for any fixed x̂ ∈ [0,∞) and y ∈ ∂X , the point π(h, x̂, y) converges, as
h ↘ 0, to the point (x̂, y) on the transition face of Xch̄ . See Figure 7.
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With this setup, we have:

Corollary 3.7 (restriction to tf: Sobolev spaces). Suppose χ ∈ A0([0, 1)h × X) has compact support in
[0, 1)×U . Let 0< µ0 ∈ C∞(X;

b�1 X) and 0< µ̂0 ∈ C∞(tf; b�1 X), let αµ ∈ R, and put

µ := xαµµ0, µ̂ := x̂αµµ̂0.

(1) (constant orders) Let s, l, α, b ∈ R. Then

∥χu∥H s,l,α,b
c,h (X;µ)

∼ h
αµ
2 −α

∥π∗(χu)∥H s,l,b−α
b,sc (tf;µ̂), u ∈ H s,l,α,b

c,h (X;µ), (3-15)

in the sense that the left-hand side is bounded by a uniform constant (independent of h and u) times the
right-hand side and vice versa.

(2) (variable orders) Let b ∈ C∞(ch̄T ∗

sf Xch̄) denote a variable order, and let b′
:= b|tf∩sf. If b is invariant

under the lift of the dilation action (x, y) 7→ (λx, y) in U , then

∥χu∥H s,l,α,b
c,h (X;µ)

∼ h
αµ
2 −α

∥π∗(χu)∥H s,l,b′−α
b,sc (tf;µ̂).

For general b, and given δ > 0, there exists x0(δ) ∈ (0, x0] so that for χ ∈ C∞
c ([0, x0(δ))× ∂X), we have

C−1h
αµ
2 −α

∥π∗(χu)∥H s,l,b′−α−δ
b,sc (tf;µ̂) ≤ ∥χu∥H s,l,α,b

c,h (X;µ)
≤ Ch

αµ
2 −α

∥π∗(χu)∥H s,l,b′−α+δ
b,sc (tf;µ̂), (3-16)

where C does not depend on h, u.

Proof. By factoring out h−α, it suffices to consider the case α = 0. Consider first the case of constant
orders. Factoring out the appropriate powers of x/(x + h)= x̂/(x̂ + 1) and h/(h + x)= (x̂ + 1)−1, we
reduce to the case l = b = 0. For s = 0, the equivalence of norms (3-15) then follows from∫∫

|χu|
2 xαµ dx

x
dy =

∫∫
|π∗(χu)|2 hαµ x̂αµ dx̂

x̂
dy.

For s ∈ Z, the conclusion follows from (3-12); for general s ∈ R, use duality and interpolation.
For variable semiclassical orders b (and still with α=0), and under the assumption of dilation-invariance

near tf2, we first pick an elliptic operator Â ∈ 9
s,l,b′

b,sc (tf); we can then extend its Schwartz kernel to a
neighborhood of tf2 to be constant along the orbits of (h, x) 7→ (λh, λx), and then extend it further to an
elliptic operator A ∈9

s,l,0,b
ch̄,cl (X). In this manner, we obtain a right inverse (with special properties) of the

restriction map (3-13). For any fixed b0 < inf b, we thus have

∥χu∥
2
H s,l,0,b

c,h (X;µ)
∼ ∥χu∥

2
H

s,l,0,b0
c,h (X;µ)

+ ∥A(χu)∥2
H0

c,h(X;µ)

∼ h
αµ
2 (∥π∗(χu)∥2

H
s,l,b0
b,sc (tf;µ̂)

+ ∥ Â(π∗(χu))∥2
H0

b,sc(tf;µ̂)
)

∼ h
αµ
2 ∥χu∥

2
H s,l,b′

b,sc (tf;µ̂)
.

The lossy estimate (3-16) is a consequence of this, as the dilation-invariant extension of b′
−δ, resp. b′

+δ

is less, resp. greater than b in a sufficiently small (depending on b and δ) neighborhood of ∂X . □
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3D. Relative semiclassical b-regularity. We now make Remark 1.5 precise and demonstrate how to
combine the notions of semiclassical cone regularity and semiclassical b- (i.e., conormal) regularity.
Recall here that a semiclassical b-vector field is a particular type of h-dependent b-vector field on X ;
namely, it is a vector field on [0, 1)h × X which is horizontal and which vanishes at h = 0. In local
coordinates as in (2-1), such a vector fields can be written as

a(h, x, y)hx∂x +

n−1∑
j=1

b j (h, x, y)h∂y j . (3-17)

The main insight is that the semiclassical b-algebra can be embedded into the semiclassical cone algebra
via a phase space resolution; see Lemma 3.8 below. This can alternatively be phrased as a second
microlocalization of the semiclassical b-algebra at the zero section over ∂X at h = 0; see Remark 3.10.

First, we explain a slightly nonstandard perspective on semiclassical (b-)phase spaces. Let X be an
n-dimensional manifold with nonempty embedded boundary ∂X . Thus, paralleling Definition 3.1, we
define

Xbh̄ := [0, 1)× X,

Vbh̄(Xbh̄) := {V ∈ Vb(Xbh̄) : V is horizontal, V |h=0 = 0}.

It is then easy to see that Vbh̄(Xbh̄) is spanned over C∞(Xbh̄) by hV for V ∈ Vb(X) (see (3-17)),
where we identify V with an h-independent horizontal vector field on Xbh̄ . We then have Vbh̄(Xbh̄)=

C∞(Xbh̄;
bh̄T Xbh̄) for a rank-n vector bundle

bh̄T Xbh̄ → Xbh̄ .

In local coordinates [0,∞)x × Rn−1
y , a smooth frame of this bundle is hx∂x , h∂y1 , . . . , h∂yn−1 . We can

introduce fiber-linear coordinates on the dual bundle bh̄T ∗Xbh̄ by writing the canonical 1-form as

ξbh̄h−1 dx
x

+

n−1∑
j=1

(ηbh̄)j h−1dy j .

Thus, for example, the symbol of the semiclassical b-differential operator hx Dx is ξbh̄ .10 Denote fiber
infinity of the radial compactification bh̄T ∗Xbh̄ by bh̄ S∗Xbh̄ . Given a symbol

a ∈ Ss,l,b(bh̄T ∗Xbh̄)= x−lh−b Ss,0,0(bh̄T ∗Xbh̄)

(i.e., a is conormal with weight −s at bh̄ S∗Xbh̄ , conormal with weight −l at bh̄T ∗

[0,1)×X Xbh̄ , and conormal
with weight −b at h = 0), we can then define the semiclassical quantization

(Opb,h(a)u)(x, y) := (2π)−n
∫∫∫∫

exp
(

i
[

x − x ′

hx
ξbh̄ +

y − y′

h
· ηbh̄

])
φ

(∣∣∣∣log
x
x ′

∣∣∣∣)φ(|y − y′
|)

a(x, y, ξbh̄, ηbh̄)u(x ′, y′)
dx ′

hx ′

dy′

hn−1 dξbh̄ dηbh̄ .

10By contrast, the standard convention is to introduce fiber-linear coordinates (ξb, ηb) on bT ∗X as in (2-3) and declare the
principal symbol of hx Dx to be ξb; the translation to the present convention is accomplished by using (the adjoint of) the bundle
isomorphism bh̄ T Xbh̄ ∼= [0, 1)h ×

bT X induced by division by h (i.e., induced by the map Vbh̄(Xbh̄) ∋ V 7→ (h−1V )h∈[0,1)).
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x

h

ζc~
ζb~

∼=

x

h
ζb~

ζc~

Figure 8. Left: The resolution cbh̄T ∗Xch̄ of the fiber-compactified semiclassical cone
phase space at fiber infinity over tf; see (3-19). (Unlike in Figure 4, we show the full
compactified fibers here.) Right: The resolution of the fiber-compactified semiclassical
b-phase space at x = h = 0 and at the zero section over x = h = 0; see (3-20).

If we make the change of variables

(ξbh̄, ηbh̄)= (x + h)(ξch̄, ηch̄), (3-18)

see (3-2), this exactly matches the ch̄-quantization (3-5). The key point is now that this match has a clean
interpretation on the level of symbol classes on a joint resolution of the semiclassical cone and b-phase
spaces:

Lemma 3.8 (relationship between semiclassical cone and b-phase spaces). Define the cbh̄-phase space

cbh̄T ∗Xch̄ := [ch̄T ∗Xch̄;
ch̄ S∗

tf Xch̄]. (3-19)

Denote by C := bh̄T ∗

{0}×∂X Xbh̄ the semiclassical b-phase space over the corner h = x = 0, and denote by
oC ⊂ C the zero section. Then the identity map on (0, 1)h ×T ∗X◦ extends by continuity to a diffeomorphism

cbh̄T ∗Xch̄
∼=
−→ [bh̄T ∗Xbh̄; C; oC]. (3-20)

We refer to the front face of (3-19) as fbf (“finite b-frequencies”). See Figure 8.

Proof of Lemma 3.8. We work in polar coordinates ρ = x + h, θ = (x, h)/|(x, h)| in the (x, h)-variables.
Thus, local coordinates near ch̄T ∗

tf Xch̄ are (ρ, y, θ, ζch̄), ζch̄ := (ξch̄, ηch̄), while local coordinates near
the front face of [bh̄T ∗Xbh̄; C], away from fiber infinity, are (ρ, y, θ, ζbh̄), ζbh̄ = (ξbh̄, ηbh̄). Coordinates
near the interior of the front face of the final blow-up in (3-20) are then (ρ, y, θ, ζbh̄/ρ)= (ρ, y, θ, ζch̄);
see (3-18). Near the intersection of the lift of oC with that of C, smooth coordinates can be con-
structed by introducing polar coordinates in the fiber variables, giving (ρ/|ζbh̄|, y, θ, |ζbh̄|, ζbh̄/|ζbh̄|);
this matches, up to a permutation, the local coordinates on cbh̄T ∗Xch̄ near the lift of ch̄T ∗

tf Xch̄ given by
(ρ/|ζch̄|

−1, y, θ, |ζch̄|
−1, ζch̄/|ζch̄|). Lastly, near the lift of fiber infinity on the resolved b-phase space,

we can use coordinates (ρ, y, θ, |ζbh̄|
−1, ζbh̄/|ζbh̄|), which matches the local coordinates near the lift of

ch̄ S∗Xch̄ given by (ρ, y, θ, |ζch̄|
−1/ρ, ζch̄/|ζch̄|). □
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x

h s
l

s′

s′

α

b

Figure 9. Illustration of the orders of (symbols of) cbh̄-pseudodifferential operators
in (3-21) and Definition 3.9.

The blow-up of a boundary face does not enlarge the space of conormal distributions, but allows for
more precise accounting of weights. Concretely, define for s, s ′, l, α, b ∈ R the symbol space

Ss,s′,l,α,b(cbh̄T ∗Xch̄), (3-21)

where the orders refer, in this order, to fiber infinity, the front face fbf of (3-19), and the phase space over
the lifts of cf, tf and sf, see Figure 9. Then we have

Ss,l,α,b(ch̄T ∗Xch̄)= Ss,s+α,l,α,b(cbh̄T ∗Xch̄),

Ss,s′,l,α,b(cbh̄T ∗Xch̄)⊂ Smax(s,s′
−α),l,α,b(ch̄T ∗Xch̄).

(3-22)

Note that the second inclusion is false if we use spaces of classical symbols on both sides; after all,
blow-ups do enlarge the space of smooth functions (but preserve the space of conormal functions). Since
we worked with general conormal symbols and ps.d.o.s in Section 3B, we can immediately quantize
symbols on the cbh̄-phase space:

Definition 3.9 (cbh̄-pseudodifferential operators). Let s, s ′, l, α, b ∈ R. Then we define

9
s,s′,l,α,b
cbh̄ (X) := Opch̄(S

s,s′,l,α,b(cbh̄T ∗Xch̄))+9
−∞,l,α,−∞

ch̄ (X).

Operators with variable semiclassical orders b ∈ ch̄T ∗

sf Xch̄ are defined similarly.

Remark 3.10 (second microlocalization). In view of Lemma 3.8, one can view 9cbh̄(X) as a second
microlocalization of the (conormal) semiclassical b-algebra 9bh̄(X) at the zero section over h = x = 0.
In terms of symbol classes, we have

Ss,l,b(bh̄T ∗Xbh̄)= Ss,l+b,l,l+b,b(cbh̄T ∗Xch̄),

Ss,s′,l,α,b(cbh̄T ∗Xch̄)⊂ Ss,l,max(b,s′
−l,α−l)(bh̄T ∗Xbh̄),

(3-23)

and analogous statements hold for ps.d.o.s. However, similarly to [Vasy 2021b, §5] in the context of
b- and scattering algebras, it is analytically advantageous to resolve 9ch̄(X) as in Definition 3.9, as the
second microlocal/resolved algebra involves global (noncommutative) phenomena at h = x = 0 (i.e.,
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the lift of tf, associated to which is the normal operator homomorphism into a noncommutative algebra)
which are directly inherited from 9ch̄(X), but which are not visible on the level of 9bh̄(X).

For two ps.d.o.s Aj ∈9
sj ,s′

j ,lj ,αj ,bj

cbh̄ (X), one can compute the full symbol, i.e., the symbol modulo

S−∞,l1+l2,α1+α2,−∞(ch̄T ∗Xch̄)= S−∞,−∞,l1+l2,α1+α2,−∞(cbh̄T ∗Xch̄),

of the composition A1 ◦ A2 ∈ 9
max(s1,s′

1−α1)+max(s2,s′

2−α2),l1+l2,α1+α2,b1+b2
cbh̄ (X) in local coordinates using

the usual symbol expansion to be the sum of products of derivatives of the full symbols of the two factors
along b-vector fields on ch̄T ∗Xch̄ which vanish, as b-vector fields, at ch̄ S∗Xch̄ (thus vanishing as b-vector
fields at the lift of ch̄ S∗Xch̄ as well as at the front face of (3-19)) and at the lift of ch̄T ∗

sf Xch̄ . Plugging the
cbh̄-symbols of A1, A2 into such an expansion thus shows that, in fact,

A1 ◦ A2 ∈9
s1+s2,s′

1+s′

2,l1+l2,α1+α2,b1+b2
cbh̄ (X).

Similar arguments show that the principal symbol map

cbh̄σ :9
s,s′,l,α,b
cbh̄ (X)→ (Ss,s′,l,α,b/Ss−1,s′

−1,l,α,b−1)(cbh̄T ∗Xch̄)

is well-defined (and a *-homomorphism as usual). One can moreover define an associated scale of Sobolev
spaces

H s,s′,l,α,b
cb,h (X)= {u ∈ H min(s,s′

−α),l,α,b
c,h (X) : Au ∈ L2(X) for all A ∈9

s,s′,l,α,b
cbh̄ (X)}. (3-24)

The relationships (3-22) and (3-23) imply:

Proposition 3.11 (relationships between Sobolev spaces). Let s, s ′, l, α, b ∈ R. Define L2 using the
volume density µ= xαµµ0, 0< µ0 ∈ C∞(X;

b�1 X), with αµ ∈ R. Then

H s,l,α,b
c,h (X)= H s,s+α,l,α,b

cb,h (X),

H s,l,b
b,h (X)= H s,l+b,l,l+b,b

cb,h (X).

One can conversely embed H s,s′,l,α,b
cb,h (X) into H s̃,l̃,α̃,b̃

c,h (X) and H s̃,l̃,b̃
b,h (X) under suitable inequalities

(which can be read off from Proposition 3.11) between the orders. In particular, this allows us to give
a direct proof of [Hintz 2022, Proposition 3.18] on the relationship between Hc,h(X) and Hb,h(X); for
instance, for s, l, α ∈ R (denoted by s, α, τ in the reference), we have

H s,l,α,0
c,h (X)= H s,s+α,l,α,0

cb,h (X)⊂ H s,l,min(0,α−l,α−l+s)
b,h (X), (3-25)

which implies (and is slightly sharper than) the first part of [Hintz 2022, Proposition 3.18]. If one wishes
to translate estimates on cone spaces to b-spaces, the advantage of the resolved cbh̄-Sobolev spaces,
compared with ch̄-Sobolev spaces, is that one can reduce losses in powers of h (or in regularity) in the
conversion; as a simple concrete example, we have

H s,s′
+α,l,α,0

cb,h (X)⊂ H s,l,min(0,α−l,α−l+s′)
b,h (X),

which for s ′
≥ −s− gives an improved bound at h = 0, and for s ′

≥ 0 a bound which is independent of
the differential orders s, s ′, unlike (3-25), which gets lossier as s decreases.
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Remark 3.12 (variable semiclassical orders). The above discussion applies, mutatis mutandis, to symbols
and operators with variable semiclassical orders b as well; here b is a smooth function on the lift of
ch̄T ∗

sf Xch̄ to cbh̄T ∗Xch̄ .

4. Microlocal propagation estimates at cone points and generalizations

Let n ≥ 1. We work locally near a cone point; thus on an n-dimensional manifold

X = [0, 2x0)x × Y, x0 > 0, (4-1)

where Y is a closed connected (n−1)-dimensional manifold, and where X◦
= (0, 2x0)× Y is equipped

with a smooth Riemannian metric g of the form

g = dx2
+ x2k(x, y, dy), (4-2)

where k ∈ C∞([0, x0); C∞(Y, S2T ∗Y )) is a smooth family of smooth Riemannian metrics on the cross
section Y. Any metric which locally near ∂X is of the form dx̃2

+ x̃2k(x̃, y, dx̃, dy), with k|∂X a
Riemannian metric on ∂X , is of the form (4-2) in a suitable smooth collar neighborhood of ∂X , as shown
in [Melrose and Wunsch 2004, §1].

While the above X is not compact, all calculations and estimates will take place in the compact subset
[0, x0] × Y of X ; thus, we shall commit a slight abuse of notation and write ∥u∥H s

c,h(X) etc. for norms of
functions u on X which will always have support in x−1([0, x0]). We fix the volume density

µ= |dg| = xn−1
|dx dk| ∈ xnC∞(X;

b�1 X) (4-3)

on X , and define Sobolev spaces relative to L2(X) := L2(X;µ). We moreover define

x̂ :=
x
h
, ĝ := dx̂2

+ x̂2k(0, y, dy),

ĥ := x̂−1
=

h
x
, µ̂ := |dĝ| = x̂n−1

|dx̂ dk(0)|.
(4-4)

4A. Admissible operators. The class of operators of interest to us is the following.

Definition 4.1 (admissible operators). We call an h-dependent differential operator Ph,z on X◦ admissible
if it is of the form

Ph,z = h21g − z + h2x−2 Q1,z + hx−1q0,z, (4-5)

where Q1,z ∈ Diff1
b(X) and q0,z ∈ C∞(X) depend smoothly on z ∈ C, |z − 1|< Ch.

We shall henceforth take z = z(h) to be a smooth function of h ∈ [0, 1) with z(0)= 1.

Remark 4.2 (vector bundles). Our analysis applies also to operators acting on sections of a vector bundle
E → X ; we explain the necessary (largely notational) changes in Remark 4.11.

Using local coordinates y ∈ Rn−1 on ∂X , let us write

Q1,z = q1,z(x, y, x Dx , Dy), q0,z = q0,z(x, y).
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The normal operator of Ph,z is

N (P) :=1ĝ − 1 + x̂−2q1,1(0, y, x̂ Dx̂ , Dy)+ x̂−1q0,1(0, y)

= D2
x̂ − i(n − 1)Dx̂ + x̂−21k(0) − 1 + x̂−2q1,1(0, y, x̂ Dx̂ , Dy)+ x̂−1q0,1(0, y) (4-6)

on tf = [0,∞]x̂ × ∂X .11

Lemma 4.3 (structural properties). We have

Ph,z ∈

(
x

x + h

)−2

Diff 2
ch̄(X) and N (P) ∈

(
x̂

x̂ + 1

)−2

Diff 2
b,sc(tf).

Furthermore, we have

Ph,z − N (P) ∈ (x + h)
(

x
x + h

)−2

Diff 2
ch̄(X),

where we abuse notation and write N (P) ∈ (x/(x + h))−2 Diff 2
ch̄(X) for any operator whose normal

operator is equal to N (P).

Proof. In local coordinates y1, . . . , yn−1 on Y, the metric k(x, y, dy) is given by an (n−1)× (n−1)
matrix (ki j ) with determinant |k|> 0 and inverse (ki j ), and we have

1g = |k|
−

1
2 x−n+1 Dx(|k|

1
2 xn−1 Dx)+ x−21k(x)

= D2
x − i(n − 1 + xγ )x−1 Dx +

n−1∑
i, j=1

x−2
|k|

−
1
2 Dyi (|k|

1
2 ki j Dy j ),

where γ =
1
2∂x log |k| ∈ C∞. Since

h Dx =
x + h

x
·

h
h + x

x Dx ∈
x + h

x
Vch̄(Xch̄),

hx−1 Dyi =
x + h

x
·

h
h + x

Dyi ∈
x + h

x
Vch̄(Xch̄),

hx−1
=

x + h
x

·
h

h + x
∈

x + h
x

Diff1
ch̄(X),

(4-7)

we find h21g ∈ (x/(x +h))−2 Diff 2
ch̄(X), and its normal operator is D2

x̂ −i(n−1)x̂−1 Dx̂ + x̂−21k(0)=1ĝ .
The remaining terms in (4-5) are analyzed similarly. □

4B. Characteristic set, Hamilton flow. Using the fiber-linear coordinates (ξch̄, ηch̄) on ch̄T ∗Xch̄ from (3-2),
we can read off the principal symbol from (4-7) to be

p :=

(
x

x + h

)2

·
ch̄σ(Ph,z)= ξ 2

ch̄ + |ηch̄|
2
k−1 − 1.

(Here, we use that z = 1 +O(h), hence the principal symbol of z is 1.) This is elliptic at fiber infinity
ch̄ S∗Xch̄ , but has a nonempty characteristic set at finite frequencies. Near sf, it is more convenient to use

11This can be defined more invariantly as an operator on the inward pointing normal bundle +N∂X , which is the natural place
for the b-normal operators q1,1(0, y, x Dx , Dy) and q0,1(0, y) to live; see [Melrose 1993, §4.15; Hintz 2022, §3] for details.
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Σ

Rout

Rin

ξ

η
ĥ

x

Figure 10. Illustration of the flow along the rescaled Hamilton vector field H, see (4-9),
through the radial sets Rin and Rout. Shown is the characteristic set, the fibers of which
over sf are spheres (here 1-spheres); one fiber is drawn as a dotted circle. Also indicated
is (in gray) the linearization of H at Rin/out over tf.

the fiber coordinates (ξ, η) from (3-3), and ĥ = h/x, x, y as coordinates on the base, so that

p = ξ 2
+ ki j (x, y)ηiηj − 1,

6 = p−1(0)∩ ch̄T ∗

sf Xch̄ = {ĥ = 0, ξ 2
+ |η|2k−1 = 1}.

(4-8)

Using (3-4) and writing |η|2 = ki jηiηj , we then compute

H := ĥ−1 Hp = 2ξ(x∂x − ĥ∂ĥ − η∂η)+ (2|η|2 − x∂x ki jηiηj )∂ξ + 2ki jηi∂y j − (∂yk ki j )ηiηj∂ηk . (4-9)

Restricted to x = 0 as a b-vector field on ch̄T ∗Xch̄ , this is

H|x=0 = 2ξ(x∂x − ĥ∂ĥ − η∂η)+ 2|η|2∂ξ + (2ki jηi∂y j − (∂yk ki j )ηiηj∂ηk ). (4-10)

This vanishes as a standard vector field on ĥ = x = 0 if and only if η = 0. The intersection of η−1(0)
with 6 ∩ x−1(0) has two components: the incoming and outgoing radial sets Rin/out ⊂

ch̄T ∗

sf Xch̄ ,

Rin := {(ĥ, x, y, ξ, η) : ĥ = 0, x = 0, y ∈ ∂X, ξ = −1, η = 0},

Rout := {(ĥ, x, y, ξ, η) : ĥ = 0, x = 0, y ∈ ∂X, ξ = +1, η = 0}.
(4-11)

These are saddle points for the rescaled Hamilton vector field H since

x−1Hx = ∓2, ĥ−1Hĥ = ±2, |η|−2H|η|2 = ±4 at Rin/out. (4-12)

(The top sign is for “in”, the bottom sign for “out”.) See Figure 10.
Over ch̄T ∗

tf Xch̄ , the set Rin is a radial source (though this really only makes sense infinitesimally at
tf ∩ sf since the ch̄-calculus is not symbolic over tf \ sf), and Rout is a radial sink. This matches precisely
the familiar situation of scattering theory on the asymptotically conic space (tf, ĝ), see [Melrose 1994],
which we discuss in detail in Section 4C.

In x > 0, the flow of H is a reparametrization of the flow of h−1 Hp = x−1H. Integral curves of H
starting over a point in X◦ never reach ∂X in finite time. Instead, we consider

Hsf := h−1 Hp|ĥ=0

= 2ξ(∂x − x−1η∂η)+ (2x−1
|η|2 − ∂x ki jηiηj )∂ξ + x−1(2ki jηi∂y j − (∂yk ki j )ηiηj∂ηk ). (4-13)
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Given y0 ∈ ∂X , the curves
γI,y0(s) := (−2s, y0,−1, 0), s ∈ (−x0, 0),

γO,y0(s) := (2s, y0, 1, 0), s ∈ (0, x0),
(4-14)

are integral curves of Hsf. Here, γI,y0 strikes ∂X at s = 0 at the incoming radial set over point y0, whereas
γO,y0 emanates from the outgoing radial set over y0 at s = 0.

Lemma 4.4 (incoming/outgoing null-bicharacteristics). Let 0<s0<x0. Suppose γ :(0, s0)→6∩
ch̄T ∗

sf\tf Xch̄

is an integral curve of Hsf tending to ∂X as s ↘ 0 in the weak sense that lim infs↘0 x(γ (s))= 0. Then in
the coordinates (x, y, ξ, η), γ is necessarily of the form γ (s)= γO,y0(s) for some y0 ∈ ∂X. Similarly, if
γ : (−s0, 0)→6∩

ch̄T ∗

sf\tf Xch̄ is an integral curve of Hsf with lim infs↗0 x(γ (s))= 0, then γ (s)= γI,y0(s)
for some y0 ∈ ∂X.

Proof. The vector field

xHsf = H|x=0 = 2ξ(x∂x − η∂η)+ (2|η|2 − x∂x ki jηiηj )∂ξ + (2ki jηi∂y j − (∂yk ki j )ηiηj∂ηk )

vanishes identically at Rout. We study the behavior of xHsf as a vector field on 6 near Rout; we may
use the coordinates x ≥ 0, y ∈ Rn−1, and η ∈ Rn−1, in which ξ is determined by p = 0 as the positive
square root of 1 − ki j (x, y)ηiηj . The linearization of (xHsf )|6 in the normal directions at Rout, defined
by mapping d f to d(xHsf f ) where f ∈ C∞(6), f |Rout = 0, maps

dx 7→ 2 dx, dη 7→ −2 dη,

and is thus hyperbolic; the unstable and stable subbundles of TRout6 for the (xHsf )|6-flow are correspond-
ingly the span of ∂x and ∂η. The unstable manifold theorem, in the form given in [Hirsch et al. 1977,
Theorem 4.1], thus applies inside 6 at Rout and produces an unstable manifold whose tangent space at a
point ζ ∈Rout is the sum of Tζ (Rout) and R∂x . (See the proof of [Melrose and Wunsch 2004, Theorem 1.2]
for similar, albeit more general, considerations.) Since the manifold Rout∪{γO,y0(s) : y0 ∈ ∂X, s ∈ (0, s0)}

is H-invariant with the same tangent space, it must be equal to this unstable manifold. The first part of the
lemma follows from this observation; the second part is completely analogous. □

Definition 4.5 (generalized broken bicharacteristics). Denote by 6̇ the topological space defined as the
quotient 6/∂6. Let I ⊂ R denote an open interval. We then say that a continuous curve γ : I → 6̇ is a
generalized broken bicharacteristic (GBB) if either γ (I )⊂6 \ ∂6 and γ is an integral curve of Hsf, or
there exist s0 ∈ I and yI , yO ∈ ∂X so that γ (s0 + t)= γO,yO (t) for t > 0, s0 + t ∈ I and γ (s0 + t)= γI,yI (t)
for t < 0, s0 + t ∈ I .12 If yO is at distance π from yI with respect to the metric k(0) on ∂X , we say that
γ is a geometric GBB; otherwise γ is a strictly diffractive GBB.

See Figure 11. We remark without proof that geometric GBB are uniform limits of Hsf-integral curves
just barely missing ∂X (see also [Melrose and Wunsch 2004, Lemma 1.5]).

12In light of Lemma 4.4, this is equivalent to the condition that γ is an Hsf-integral curve outside of ∂6, but may enter and
exit the characteristic set over ∂X at different points.
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∂X
∂X

Figure 11. The projection of strictly diffractive (blue) and geometric (red) GBBs to
the base X , as well as geodesics (green) just barely missing the cone tip ∂X . Left: the
geometric picture, where ∂X is collapsed to a point. Right: the resolved picture.

4C. Scattering theory for the normal operator. Propagation through the “cone point” ∂X will require
global control of the normal operator, namely the absence of purely outgoing or purely incoming solutions
(depending on the direction in which one wants to propagate estimates). Let us define fiber-linear
coordinates on the scattering cotangent bundle scT ∗(tf \ cf) via

ξsc
dĥ

ĥ2
+

n−1∑
j=1

(ηsc)j
dy j

ĥ
.

Via the identification (3-7), the radial sets Rin/out defined in (4-11) are then equal to the sets scRin/out ⊂

scT ∗(tf \ cf), where
scRin := {(ĥ, y, ξsc, ηsc) : ĥ = 0, y ∈ ∂X, ξsc = +1, ηsc = 0},

scRout := {(ĥ, y, ξsc, ηsc) : ĥ = 0, y ∈ ∂X, ξsc = −1, ηsc = 0}.

Invariantly, Rin =
scRin is the graph of −(x/h)(dx/x)=−d(ĥ−1)= dĥ/ĥ2, and likewise for Rout =

scRout

but with an overall sign switch.

Definition 4.6 (conditions on the normal operator). Let l, l ′ ∈ R, and recall (4-4).

(1) We say that N (P) is injective at weight l on outgoing functions if the only solution u to the equation
N (P)u = 0 satisfying u ∈

⋃
N∈R H∞,l,−N

b,sc (tf; µ̂) and WFsc(u)⊂
scRout is trivial: u ≡ 0.

(2) We say that N (P)∗ (the formal adjoint with respect to L2(tf; µ̂)) is injective at weight l ′ on incoming
functions if the only solution v to the equation N (P)∗v = 0 satisfying v ∈

⋃
N∈R H∞,l ′,−N

b,sc (tf; µ̂)
and WFsc(v)⊂

scRin is trivial: v ≡ 0.

(3) If condition (1) and condition (2) with l ′ = −l + 2 hold, we say that N (P) is invertible at weight l.

The wave front set assumptions here are the microlocal formulations of outgoing/incoming radiation
conditions. In the special case that N (P) = 1ĝ − 1, these assumptions are indeed equivalent to the
standard Sommerfeld radiation condition. Our goal is to elevate the qualitative conditions of Definition 4.6
to quantitative estimates; see Lemma 4.8.

Changing variables in the expression (4-6) for N (P) to (ĥ, y) gives

N (P)= (ĥ2 Dĥ)
2
+ i(n − 1)ĥ2 Dĥ + ĥ21k(0) − 1 + ĥ2q1,1(0, y,−ĥ Dĥ, Dy)+ ĥq0,1(0, y),
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with scattering principal symbol at scT ∗

tf∩sftf given by

ptf = ξ 2
sc + |ηsc|

2
− 1. (4-15a)

Its Hamilton vector field is

Htf := ĥ−1 Hptf = 2ξsc(ĥ∂ĥ + ηsc∂ηsc)− 2|ηsc|
2∂ξsc + ĥ−1 H|ηsc|2 (4-15b)

by (2-7), which has a source, resp. sink structure at scRin, resp. scRout within the characteristic set p−1
tf (0).

Recall then that microlocal propagation estimates near the radial sets scRin/out require suitable orders —
here the decay order — of weighted Sobolev spaces to be above or below certain threshold values; see
[Melrose 1994, §9], [Vasy 2018, §4.7], and [Dyatlov and Zworski 2019, Appendix E.4].

Definition 4.7 (threshold quantities). Define the functions

r1 := Im
(

bσ1(Q1,1)
(
−

dx
x

)∣∣∣
x=0

)
∈ C∞(∂X),

r0 := Im(q0,1|x=0) ∈ C∞(∂X).

Then the threshold quantities rin/out ∈ R are defined as

rin := −
1
2 +

1
2 sup
∂X
(r1 + r0), rout := −

1
2 +

1
2 inf
∂X
(r1 − r0).

We next recall that at the other end of tf, i.e., the “b-end” tf ∩ cf, the weights l, l ′ in Definition 4.6 are
related to the boundary spectrum of N (P). Concretely, from the expression (4-6), we read off

x̂2 N (P) ∈ (x̂ Dx̂)
2
− i(n − 2)x̂ Dx̂ +1k(0) + q1,1(0, y, x̂ Dx̂ , Dy)+ x̂ Diffb(tf \ sf). (4-16)

Its (dilation-invariant in x̂) normal operator at x̂ = 0 is given by the sum of the first four terms, and the
Mellin transformed normal operator family is defined by formally replacing x̂ Dx̂ by multiplication with
λ ∈ C, giving

N̂ (P)(λ, y, Dy) := λ2
− i(n − 2)λ+1k(0) + q1,1(0, y, λ, Dy). (4-17)

This is a holomorphic family in λ taking values in elliptic elements of Diff 2(∂X). The boundary spectrum
of N (P) is then

specb(N (P)) := {λ ∈ C : N̂ (P)(λ) : C∞(∂X)→ C∞(∂X) is not invertible};

it is a discrete subset of C, and its intersection with |Im λ|< C is finite for any fixed value of C [Melrose
1993, §5.3]. Let us now put

3 := {− Im λ : λ ∈ specb(N (P))}; (4-18)

this is a discrete subset of R.

Lemma 4.8 (estimates for N (P)). Let s, l ∈ R and r ∈ C∞(scT ∗

tf∩sf tf). Suppose that r is constant near
scRin/out and satisfies r> rin at scRin, r< rout at scRout. Suppose moreover that Htf r≤ 0 and

√
−Htf r∈ C∞

on scT ∗

tf∩sf tf ∩ {ptf = 0} in the notation of (4-15a)–(4-15b).
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(1) If N (P) is injective at weight l on outgoing functions and l − n/2 /∈3, then

∥u∥H s,l,r
b,sc (tf;µ̂)

≤ C∥N (P)u∥H s−2,l−2,r+1
b,sc (tf;µ̂) (4-19)

for all u for which both sides are finite.

(2) If N (P)∗ is injective at weight −l + 2 on incoming functions and −l + 2 − n/2 /∈3, then

∥v∥H−s+2,−l+2,−r−1
b,sc (tf;µ̂) ≤ C∥N (P)∗v∥H−s,−l,−r

b,sc (tf;µ̂) (4-20)

for all v for which both sides are finite.

(3) If N (P) is invertible at weight l and l − n/2 /∈3,13then the operator N (P) is invertible as a map

{u ∈ H s,l,r
b,sc (tf; µ̂) : N (P)u ∈ H s−2,l−2,r+1

b,sc (tf; µ̂)} → H s−2,l−2,r+1
b,sc (tf; µ̂).

Proof. This is a standard application of elliptic b-theory at tf ∩ cf and radial point estimates at tf ∩ sf in
the scattering calculus as in [Melrose 1994] and [Vasy 2018, §4.8].

We first prove symbolic estimates for N (P) and N (P)∗ which do not use the injectivity assumptions. In
tf\sf, the operator N (P) is an elliptic weighted b-differential operator. Let φj ∈ C∞

c (tf\sf), j = 0, 1, 2, 3,
be identically 1 near tf ∩ cf, with φ j+1 ≡ 1 on suppφj . Then, only recording the b-regularity and the
weight at cf, we have

∥φ1u∥H s,l
b

≤ C(∥φ2 N (P)u∥H s−2,l−2
b

+ ∥φ2u∥H−N ,l
b

) (4-21)

for any fixed N. Now, recalling (4-4), we have

H s,l
b ([0,∞)x̂ × ∂X; µ̂)= H

s,l− n
2

b

(
[0,∞)× ∂X;

∣∣∣dx̂
x̂

dk(0)
∣∣∣).

Using now that l − n/2 /∈3, we can estimate

∥φ2u∥H−N ,l
b

≤ C∥x̂−2 N̂ (P)(x̂ Dx̂ , y, Dy)(φ2u)∥H−N−2,l−2
b

by passing to the Mellin transform. Since N (P)− x̂−2 N̂ (P)(x̂ Dx , y, Dy) ∈ x̂−1 Diffb by (4-16), this can
be plugged into (4-21) and yields (putting back the scattering decay orders, which at this point are still
arbitrary due to the localizers)

∥φ1u∥H s,l,r
b,sc

≤ C(∥φ3 N (P)u∥H s−2,l−2,r+1
b,sc

+ ∥φ3u∥H−N ,l−1,−N
b,sc

). (4-22)

Turning to the scattering end, and with ψj = 1 −φj , we claim that (now with the b-decay orders being
arbitrary)

∥ψ1u∥H s,l,r
b,sc

≤ C(∥ψ0 N (P)u∥H s−2,l−2,r+1
b,sc

+ ∥ψ0u∥H−N ,−N ,−N
b,sc

). (4-23)

This is proved by means of the scattering calculus by a combination of elliptic estimates (controlling
ψ1u away from 6tf := p−1

tf (0)), radial point estimates at scRin/out, and microlocal real-principal-type
estimates on 6tf \ (

scRin ∪
scRout). We only sketch the argument for the radial points in order to explain

the emergence of the threshold condition on r; details can be found, e.g., in [Vasy 2018, §4.7].

13This condition is automatically satisfied since, for l − n/2 /∈ 3, the operator N (P) is not even Fredholm; see
[Melrose 1993, §6.2].
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We work in [0, 1)ĥ×∂X ⊂ tf, and consider estimates near scRin. Fixing a cutoff function χ ∈C∞
c
([

0, 1
2

))
,

identically 1 near 0 and with χ ′
≤ 0 on

[
0, 1

2

)
, we consider a commutant

a := ĥ−2r−1χ(ĥ/δ)χ(|ηsc|
2)χ((ξsc − 1)2),

A :=
1
2(Opsc(a)+ Opsc(a)

∗) ∈9−∞,2r+1
sc ,

where δ > 0 controls the localization near ĥ = 0. We compute the commutator

2 Im⟨N (P)u, Au⟩ =

〈(
i[N (P), A] + 2

N (P)− N (P)∗
2i

A
)

u, u
〉
.

(This holds directly for sufficiently decaying u, and for u as in the statement of the lemma can be justified
using a regularization argument.) The principal symbol of i[N (P), A] is equal to ĥHtf a. When Htf falls
on the cutoff in ĥ, the result is supported in the elliptic set of N (P), and hence easily controlled. When
Htf falls on either of the second or third cutoff functions, the result is ≤ 0 on supp a in view of the source
character of scRin (or directly using (4-15b)), provided δ > 0 is sufficiently small; at scRin then, the
principal symbol of

i[N (P), A] + 2
N (P)− N (P)∗

2i
A

has a matching definite sign, i.e., is a negative multiple of ĥ−2r, provided that

2 · (+1) · (−2r− 1)+ 2 ·
scσ

(
Q − Q∗

2i

)
< 0,

Q := ĥq1,1(0, y,−ĥ Dĥ, Dy)+ q0,1(0, y), (4-24)

at scRin. But scRin is the graph of the 1-form dĥ/ĥ2; hence

scσ

(
Q − Q∗

2i

)
= Im scσ(Q)

at scRin is equal to

Im bσ(q1,1(0, y,−ĥ Dĥ, Dy))

(
dĥ

ĥ

)
+ Im q0,1 = r1 + r0

in the notation of Definition 4.7. The condition (4-24) thus becomes −2r− 1 + (r1 + r0) < 0, which is
satisfied on all of scRin provided that r > −

1
2 +

1
2 sup(r1 + r0) = rin there. Under this assumption, one

thus obtains control on u microlocally near scRin in the space H s,r
sc by N (P)u measured in H s−2,r+1

sc .
The analysis at scRout is similar, now using the commutant

ĥ−2r−1χ(ĥ/δ)χ(|ηsc|
2)χ((ξsc + 1)2).

The derivatives of the latter two cutoffs along Htf are now positive due to the sink character of scRout, and
the principal symbol of the commutator at the radial set is a negative multiple of ĥ−2r (thus allowing us to
propagate control from a punctured neighborhood of the radial set into the radial set itself) provided that

2 · (−1) · (−2r− 1)+ 2 ·
scσ

(
Q − Q∗

2i

)
< 0 at scRout. (4-25)
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In view of scRout being the graph of −dĥ/ĥ2 and the calculation

Im scσ(Q)|scRout = Im bσ(q1,1(0, y,−ĥ Dĥ, Dy))

(
−

dĥ

ĥ

)
+ Im q0,1 = −r1 + r0,

the condition (4-25) reads 2r+ 1 − r1 + r0 < 0, so r <−
1
2 +

1
2 inf(r1 − r0)= rout.

Putting (4-22) and (4-23) together, we obtain the estimate

∥u∥H s,l,r
b,sc

≤ C(∥N (P)u∥H s−2,l−2,r+1
b,sc

+ ∥u∥H−N ,l−1,−N
b,sc

) (4-26)

for any N ; we choose N to satisfy −N < s and −N <min r.
The estimate (4-26) implies that N (P), acting on H s,l,r

b,sc , has finite-dimensional kernel; any element u
in the kernel automatically lies in H∞,l,r′

b,sc for any variable-order function r′ satisfying r′ < rout at scRout.
Thus, WFsc(u) ⊂

scRout. Under the injectivity assumption on N (P), we thus conclude that u = 0. A
standard functional analytic argument then allows one to drop the error term in (4-26), which gives the
estimate (4-19).

The proof of part (2) is analogous; the direction of propagation in the characteristic set is now reversed,
which is precisely matched by the sign switches in the orders in the estimate (4-20). Part (3) is an
immediate consequence of the first two parts. □

Remark 4.9 (flexibility in the choice of l). If the assumptions of part (1) of the lemma are satisfied for
some value of l, then they continue to hold for all values l̃ with l̃ −n/2 /∈3 for which either l̃ > l, or l̃ ≤ l
but l̃ − n/2 and l − n/2 lie in the same connected component (a, b) of R \3. (Indeed, the claim for l̃ ≤ l
follows from the fact — proved using the Mellin transform upon localizing near tf∩cf — that any element
in the kernel of N (P) on H s,l̃,r

b,sc automatically lies in H s,b+n/2−ϵ,r
b,sc for any ϵ > 0.) A similar statement

holds for part (2): we may increase −l + 2 (or stay in the same connected component of (R \3)+ n/2),
i.e., decrease l. Altogether then, there typically only exists an interval of finite length (possibly empty) of
weights l so that the invertibility condition of part (3) is satisfied.

4D. Statement and proof of the microlocal propagation estimate. We are now ready to state the main
result of the paper:

Theorem 4.10 (microlocal propagation through the cone point). Let Ph,z denote an admissible operator
in the sense of Definition 4.1, and define the threshold quantities rin, rout as in Definition 4.7. Let
6 ⊂

ch̄T ∗

sf Xch̄ denote the characteristic set of Ph,z (see (4-8)). Denote by H= (x/h)Hp ∈ V(ch̄T ∗

sf Xch̄) the
rescaled Hamilton vector field (see (4-9)). Let s, l, α ∈ R, b ∈ C∞(ch̄T ∗

sf Xch̄). Assume that b is constant
near the radial sets Rin/out (see (4-11)) and satisfies b−α > rin at Rin and b−α < rout at Rout; assume
moreover that Hb ≤ 0 and

√
−Hb ∈ C∞ on 6. Let χ, χ̃ ∈ C∞

c (X) be cutoffs, identically 1 near ∂X , and
with χ̃ ≡ 1 on suppχ . Let E ∈90

ch̄(X), with Schwartz kernel supported in [0, 1)h × (χ̃−1(1)× χ̃−1(1)).

(1) (forward propagation) Suppose N(P) is injective at weight l on outgoing functions (see Definition 4.6(1)).
Suppose that (the preimage in 6 of ) all backward GBBs (see Definition 4.5) starting in 6 ∩ suppχ reach
Ellch̄(E) in finite time while remaining inside χ̃−1(1). Then for some small δ > 0, we have

∥χu∥H s,l,α,b
c,h (X) ≤ C(∥χ̃ Ph,zu∥H s−2,l−2,α,b+1

c,h (X) + ∥Eu∥H s,l,α,b
c,h (X) + hδ∥χ̃u∥H−N ,l,α,b

c,h (X)). (4-27)
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(2) (backward propagation) Suppose N (P)∗ is injective at weight −l + 2 on incoming functions (see
Definition 4.6(2)). Suppose that (the preimage in 6 of ) all forward GBBs starting in 6 ∩ suppχ reach
Ellch̄(E) in finite time while remaining inside χ̃−1(1). Then for some small δ > 0, we have
∥χu∥H−s+2,−l+2,−α,−b−1

c,h (X)

≤ C(∥χ̃ P∗

h,zu∥H−s,−l,−α,−b
c,h (X) + ∥Eu∥H−s+2,−l+2,−α,−b−1

c,h (X) + hδ∥χ̃u∥H−N ,−l+2,−α,−b−1
c,h (X)). (4-28)

Since by Lemma 4.3 and the calculations in Section 4B, the operator Ph,z ∈9
2,2,0,0
ch̄ (X) is elliptic at

fiber infinity, and is of real-principal-type (except at the radial points) at sf, the estimates (4-27) and (4-28)
are sharp as far as the relative orders in the norms on u on the left and P (∗)h,z u on the right are concerned.
Indeed, it has the well-known real-principal-type loss of one order at sf and is an elliptic estimate in the
ch̄-differentiability sense.

The improvement of the final (error) terms on the right-hand sides in (4-27) and (4-28) relative to the
space on the left-hand sides is accomplished at sf by microlocal symbolic means, and at tf using global
normal operator estimates. The overall improvement by a positive power of h between error term and
left-hand side allows for the inversion of Ph,z for small h > 0 under suitable assumptions on the global
behavior of the null-bicharacteristic flow; see Sections 4E and 5 for examples.

Remark 4.11 (operators on vector bundles). Let E → X denote a smooth vector bundle. Theorem 4.10
then holds (with the same proof) also for operators Ph,z acting on sections of E , provided Ph,z is admissible
in the sense that

Ph,z = h2x−2 Q2,z + hx−1q0,z − z,

Q2,z ∈ Diff2
b(X; E), q0,z ∈ C∞(X; End(E)),

where x−2 Q2,z (replacing the combination h21g + h2x−2 Q1,z in Definition 4.1) has scalar principal
symbol bσ(x−2 Q2,z) =

bσ(x−21g). That is, bσ(x−2 Q2,z)(ζ ) = |ζ |2g−1 for ζ ∈
bT ∗X , with g the conic

metric (4-2). The normal operator is of class

N (P) ∈

(
x̂

x̂ + 1

)−2

Diff 2
b,sc(tf;π

∗E∂X ),

where π : tf =[0,∞]x̂ ×∂X → ∂X denotes the projection map. The injectivity conditions of Definition 4.6
are unchanged. The definition of the threshold quantities rin/out in Definition 4.7 requires a minor change;
to wit, with respect to a choice of a positive definite fiber inner product on E∂X , we set (top sign for “in”,
bottom sign for “out”)

rin/out := −
1
2

±
1
2

sup
∂X

scσ

( x−2 Q2,1 − (x−2 Q2,1)
∗
+ q0,1 − q∗

0,1

2i

)∣∣∣∣
∓

dx
x2

, (4-29)

where the sup is defined to be the supremum of the largest eigenvalue of the scattering symbol (which
takes values in self-adjoint endomorphisms of E). One may choose different fiber inner products in
the calculation of rin and rout, respectively. A (near-)optimal choice of fiber inner products, resulting
in (almost) the smallest possible rin and largest possible rout, is typically easy to read off in concrete
situations. For example, if Q2,1 = 0 and q0,1|∂X is block-diagonal (or more generally lower triangular)
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with respect to some bundle splitting of E |∂X , then the supremum in (4-29) can be made to be arbitrarily
close to the supremum of Im λ, where λ ranges over all eigenvalues of the diagonal entries of q0,1(y),
y ∈ ∂X , if one chooses the fiber inner product appropriately.

Remark 4.12 (technical assumptions on the variable order). One can replace the assumptions that b be
locally constant near Rin/out and satisfy

√
−Hb ∈ C∞ on 6 by the simpler assumption that Hb ≤ 0 on 6.

This would require the use of the sharp Gårding inequality for the ch̄-calculus, which however we do not
prove here.

Proof of Theorem 4.10. We give details for the proof of part (1); the proof of part (2) is completely
analogous. If backward GBBs starting in WF′

ch̄(B) never pass through ∂6 ⊂
ch̄T ∗

sf∩tf Xch̄ , the orders l
and a are irrelevant, and the estimate (4-27) follows from standard elliptic regularity and real-principal-
type propagation in the (variable-order) semiclassical calculus on X◦. We shall thus work in a small
neighborhood of x = 0.

Step 1: symbolic positive commutator estimate. We first work near the incoming radial set Rin defined
in (4-11); we shall use the coordinates (ĥ, x, y, ξ, η) near ch̄T ∗

sf∩tf Xch̄ defined by (3-3) and (4-4). Fix
cutoffs χ∂ , χsf, χR ∈ C∞

c ([0, 1)), identically 1 near 0 and satisfying χ ′
•
≤ 0 and

√
−χ•χ ′

•
∈ C∞([0, 1)).

Denote a smooth extension of b to ch̄T ∗Xch̄ by the same symbol. For small δ > 0, fixed momentarily, we
then consider a commutant

ǎ = ĥ−b− 1
2 x−αχ∂

(
x
δ

)
χsf

(
ĥ
δ

)
χR

(
ω

δ

)
, ω :=

√
|η|2 + |ξ + 1|2. (4-30)

Thus, supp a is contained in any fixed open neighborhood of Rin when δ > 0 is sufficiently small. We
have ǎ ∈ S−∞,−∞,α,b+1/2(ch̄T ∗Xch̄). Let

Ǎ ∈9
−∞,−∞,α,b+ 1

2
ch̄ (X), ch̄σ( Ǎ)= ǎ, A := Ǎ∗ Ǎ.

Using the L2(X;µ) inner product, we then evaluate the commutator

2 Im⟨ ǍPh,zu, Ǎu⟩ = ⟨C u, u⟩,

C = i[Ph,z, A] + 2
Ph,z − P∗

h,z

2i
A ∈9

−∞,−∞,2a,2b
ch̄ (X). (4-31)

The principal symbol of C is

2ĥǎHǎ + 2 ·
ch̄σ

( Ph,z − P∗

h,z

2i ĥ

)
ĥǎ2. (4-32)

When H hits χ∂ , we obtain a nonnegative contribution (in fact, the square e2 of a smooth function e),
while differentiation of χR gives a nonpositive contribution (in fact, a negative square −b2

R), consistently
with the saddle point structure of H at Rin. Differentiation of χsf produces a symbol with semiclassical
order −∞.

The main term of ĥǎHǎ near Rin arises from differentiation of the weight ĥ−b−1/2x−α; since Hp = ĥH is,
modulo ĥxVb, given by the expression (4-10), we can compute this modulo x S−∞,−∞,2a,2b by substituting
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the expression (4-10) of H|x=0 for H. Thus, the main term is

ĥ−2bx−2α(2ξ(−2α+ 2b+ 1)+O(x))χ2
∂χ

2
sfχ

2
R.

A further contribution arises from the skew-adjoint part of Ph,z at Rin, which is the same as the skew-
adjoint part of N (P) at scRin upon making the identification (3-7); this was already computed in the
proof of Lemma 4.8. Overall then, we can write

ch̄σ(C )= e2
− b2

R − ϵĥǎ2
− f 2ĥǎ2, (4-33)

where

f =

√
−[2(−2(b−α)− 1)+ 2(r1 + r0)] − ϵ

is positive (and smooth) at Rin for small ϵ > 0. Denoting ch̄-quantizations of the lower case symbols by
the corresponding upper case letters, we thus have

C = E∗E − B∗

RBR − ϵ∥ĥ
1
2 Ǎu∥

2
− ∥ĥ

1
2 F Ǎu∥

2
+ R,

where R ∈9
−∞,−∞,2α,2b−1
ch̄ (X) has WF′

ch̄(R)⊂ supp ǎ and arises as the remainder term not controlled
by the previous symbolic considerations. We will plug this into the right-hand side of (4-31); the left-hand
side is bounded from below by

−ϵ∥ĥ
1
2 Ǎu∥

2
− ϵ−1

∥ĥ−
1
2 ǍPh,zu∥

2
≥ −ϵ∥ĥ

1
2 Ǎu∥

2
−Cϵ−1

∥G Ph,zu∥H−N ,−N ,α,b+1
c,h

−Cϵ−1
∥χ̃u∥

2
H−N ,−N ,α,−N

c,h
,

where G ∈90
ch̄(X) is elliptic on supp ǎ; here N ∈ R is arbitrary. Putting B0 := ĥ1/2 F Ǎ ∈9

−∞,−∞,α,b
ch̄ (X)

and dropping the contribution of BR, we thus obtain the estimate

∥B0u∥
2 ≲ ∥G Ph,zu∥

2
H−N ,−N ,α,b+1

c,h
+ ∥Eu∥

2
+ |⟨Ru, u⟩| + ∥χ̃u∥

2
H−N ,−N ,α,−N

c,h
, (4-34)

which provides H−N ,−N ,α,b
c,h -control of u microlocally near Rin provided one has microlocal H−N ,−N ,−N ,b

c,h -
control of u on WF′

ch̄(E)⊂ {0< x < δ, |ξ + 1|< δ}, and provided |⟨Ru, u⟩| is finite; since G is elliptic
near WF′

ch̄(R), we can insert the estimate

|⟨Ru, u⟩| ≲ ∥Gu∥
2
H−N ,−N ,α,b−1/2

c,h
+ ∥χ̃u∥

2
H−N ,−N ,α,−N

c,h

into the right-hand side of (4-34).
Concatenating this radial point estimate with the propagation of regularity from a punctured neigh-

borhood of Rin to a punctured neighborhood of Rout and then a radial point estimate at Rout — proved
by the same method, with the commutant ǎ again given by (4-30) but now with ω = (|η|2 + |ξ − 1|

2)1/2

and using that 2(b− α)+ 1 − r1 + r0 < 0 — and using elliptic estimates away from 6, we obtain the
propagation estimate

∥B1u∥H s,l,α,b
c,h

≲ ∥G Ph,zu∥H s−2,l−2,α,b+1
c,h

+ ∥Eu∥H s,−N ,−N ,b
c,h

+ ∥χ̃u∥H−N ,l,α,b−1/2
c,h

; (4-35)

the operators B1,G, E ∈9
0,0,0,0
ch̄ (X) appearing here are subject to the following conditions: WF′

ch̄(B1)⊂

Ellch̄(G), furthermore G is elliptic on 6∩ x−1(0), and all backward null-bicharacteristics from WF′

ch̄(B1)
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either tend to Rout or enter Ellch̄(E). The orders at cf are unconstrained at this point, but chosen for
compatibility with the normal operator argument below.

Fixing a variable-order function b♭ so that

b♭ −α > rin at Rin, (4-36)
we then have the estimate

∥χu∥H s,l,α,b
c,h

≲ ∥χ̃ Ph,zu∥H s−2,l−2,α,b+1
c,h

+ ∥Eu∥H s,−N ,−N ,b
c,h

+ ∥χ̃u∥
H−N ,l,α,b♭

c,h
(4-37)

under the assumptions on E, χ, χ̃ stated in the theorem. For b♭ ≥ b−
1
2 , this follows directly from (4-35)

(upon replacing the microlocal cutoff G by the less precise cutoff χ̃). For general b♭, note that as long
as (4-36) is satisfied, one can apply this estimate inductively to the error term χ̃u provided supp χ̃ is
sufficiently close to suppχ (so that the same operator Eu satisfies the geometric control assumption for χ̃
in place of χ), increasing supports of the involved cutoff functions by an arbitrarily small but positive
amount and gaining half a semiclassical order at each step. Thus, away from Rin, one can ultimately
take b♭ to be arbitrarily negative, while at Rin, one always needs to have (4-36).

Step 2: normal operator estimate. We now work on the error term χ̃u in (4-37). We first prove the desired
estimate (4-27) under the stronger condition that b−α > rin +1 at Rin. We split χ̃u = χ ♭u + (1−χ ♭)χ ũ,
where χ ♭ ∈ C∞(X) is identically 1 near ∂X and supported in a very small neighborhood of ∂X ; the part
(1 −χ ♭)χ̃u is supported away from cf ∪ tf; hence

∥(1 −χ ♭)χ̃u∥
H−N ,l,α,b♭

c,h
≲ ∥(1 −χ ♭)χ̃u∥

H−N ,−N ,−N ,b♭
c,h

for any N. To estimate χ ♭u, we use the injectivity assumption on N (P) and the resulting estimate (4-19)
together with Corollary 3.7(2) (with αµ = n). For 0 < δ < 1 with b♭ + 2δ < b, and choosing suppχ ♭

sufficiently small, we obtain

∥χ ♭u∥
H−N ,l,α,b♭

c,h
≲ h

n
2 −α

∥π∗(χ ♭u)∥
H

−N ,l,b♭|sf∩tf−α+δ

b,sc

≲ h
n
2 −α

∥N (P)(π∗(χ ♭u))∥
H

−N−2,l−2,b♭|sf∩tf−α+δ+1
b,sc

≲ ∥N (P)(χ ♭u)∥
H−N−2,l−2,α,b♭+1+2δ

c,h
. (4-38)

In the final line, we abuse notation and denote by N (P)∈92,2,0,0
ch̄ (X) any operator whose normal operator

is equal to N (P). Put b♯ := b♭+1+2δ. Using Lemma 4.3, which gives N (P)− Ph,z ∈9
2,2,−1,0
ch̄ (X), we

further estimate

∥N (P)(χ ♭u)∥
H−N−2,l−2,α,b♯

c,h

≤ ∥χ ♭Ph,zu∥
H−N−2,l−2,α,b♯

c,h
+ ∥χ ♭(Ph,z − N (P))u∥

H−N−2,l−2,α,b♯
c,h

+ ∥[N (P), χ ♭]u∥
H−N−2,l−2,α,b♯

c,h
(4-39)

≲ ∥χ ♭Ph,zu∥
H−N−2,l−2,α,b♯

c,h
+ ∥χ ♭u∥

H−N ,l,α−1,b♯
c,h

+ ∥χ ♯u∥
H−N−1,−N ,−N ,b♯−1

c,h
, (4-40)

where χ ♯ ≡ 1 on suppχ ♭. Under the present condition that b−α > rin + 1 at Rin, we can choose b♭ as
in (4-36) so that b♯ < b still. Plugging this into (4-37) finishes the proof of part (1) under this condition.
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In order to prove the theorem as stated, thus only assuming b−α > rin at Rin, we note that the norm
on second term on the right in (4-40) is one order weaker at tf than the left-hand side of the desired
estimate (4-27), but only b♯ − b = b♭ + 1 + 2δ− b< 1 orders stronger at sf. This suggests revisiting the
estimates (4-38)–(4-40) using a more precise cutoff which distinguishes between the regimes ĥ ≲ x and
ĥ ≳ x . To wit, consider ψ♭ = ψ̃♭(ĥ/x), where ψ̃♭ ≡ 0 on [0, 1] and ψ̃♭ ≡ 1 on [2,∞). This is a smooth
function on [Xch̄; sf ∩ tf], and thus conormal on Xch̄ ; in fact, we have

1 −ψ♭ ∈ A0,ζ,−ζ (Xch̄)= (x + h)ζ
(

h
h + x

)−ζ

A0(Xch̄)⊂9
0,0,−ζ,ζ
ch̄ (X) (4-41)

for any ζ ≥ 0, since on supp(1 −ψ♭) we have x ≲ ĥ; thus x + h ≲ h/(h + x). Taking ζ = δ, we can
therefore estimate

∥(1 −ψ♭)χ̃u∥
H−N ,l,α,b♭

c,h
≲ ∥χ̃u∥

H−N ,l,α−δ,b♭+δ
c,h

≤ hδ∥χ̃u∥H−N ,l,α,b
c,h

.

Next, the estimate (4-38) holds without change. (Note that Corollary 3.7 applies for merely conormal
cutoffs.) Finally, we need to estimate (4-39) more carefully. Note that

ψ♭ ∈ A0,−ζ,ζ (Xch̄)⊂9
0,0,ζ,−ζ
ch̄ (X)

for any ζ ≥ 0. Taking ζ = 1 − δ, this gives ψ♭(Ph,z − N (P)) ∈9
2,2,−δ,−1+δ
ch̄ (X); hence

∥ψ♭(Ph,z − N (P))u∥
H−N−2,l−2,α,b♯

c,h
≲ ∥χ̃u∥

H−N ,l,α−δ,b♯−1+δ
c,h

≤ hδ∥χ̃u∥H−N ,l,α,b
c,h

.

For the final, commutator, term in (4-39), we note that we can replace ψ♭ by 1 −ψ♭ and use (4-41) with
ζ = δ, so [N (P), ψ♭] ∈9

1,−∞,−δ,−1+δ
ch̄ (X), which gives

∥[N (P), ψ♭]u∥
H−N−2,l−2,α,b♯

c,h
≲ ∥χ̃u∥

H−N−1,−N ,α−δ,b♯−1+δ
c,h

≤ hδ∥χ̃u∥H−N−1,−N ,α,b
c,h

.

Altogether, we have shown

∥χ̃u∥
H−N ,l,α,b♭

c,h
≲ ∥χ̃ Ph,zu∥

H−N−2,l−2,α,b♯
c,h

+ hδ∥χ̃u∥H−N ,l,α,b
c,h

.

Plugged into (4-37), we have now established the desired estimate (4-27). □

We can sharpen Theorem 4.10 by working with the resolved Sobolev spaces defined in (3-24). This is
straightforward since admissible operators

Ph,z ∈9
2,2,0,0
ch̄ (X)⊂9

2,2,2,0,0
cbh̄ (X)

are elliptic at the front face fbf of cbh̄T ∗Xch̄; indeed, this follows from the ellipticity at fiber infinity
ch̄ S∗

tf Xch̄ ⊂ ch̄T ∗Xch̄ and the classical nature of the principal symbol of Ph,z . Therefore:

Theorem 4.13 (propagation estimates with relative b-regularity). In the notation of Theorem 4.10, and
for any s ′

∈ R, the forward propagation estimate (4-27) generalizes to an estimate on cbh̄-Sobolev spaces,

∥χu∥H s,s′,l,α,b
cb,h (X) ≤ C(∥χ̃ Ph,zu∥H s−2,s′−2,l−2,α,b+1

cb,h (X) + ∥Eu∥H s,s′,l,α,b
cb,h (X) + hδ∥χ̃u∥H−N ,−N ,l,α,b

cb,h (X)).

The backward propagation estimate (4-28) generalizes similarly.
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4E. Global estimates with complex absorption. We upgrade the microlocal estimate proved above into a
quantitative invertibility statement for an operator which effectively localizes the interesting nonelliptic
phenomena near the cone point into a small neighborhood of ∂X via complex absorption.

Let us assume first for simplicity that Y is null-cobordant; see Remark 4.16 below on how to remove
this assumption. With X = [0, 2x0)× Y and g as in (4-1)–(4-2), consider then a compact n-dimensional
manifold X ′

⊃ X with boundary ∂X ′
= ∂X , equipped with a smooth metric g′ which is equal to g on

X ♭
:= [0, x0]×Y. Given an admissible operator Ph,z on X , let P ′

h,z ∈ (x/(x +h))−2 Diff 2
ch̄(X

′) denote an
extension of Ph,z from [0, 1)× X ♭ to [0, 1)× X ′ with principal part equal to h21g′ . For c ∈ (0, 1), let

Kc := X ′
\ ([0, cx0] × Y ).

In order to implement complex absorption, let us take c ∈
(
0, 1

2

)
small and fix an operator

Q ∈9−∞

h ((X ′)◦)

whose Schwartz kernel is supported in Kc × Kc, and so that Q is elliptic on T ∗K2c with nonnegative
principal symbol. We then consider

Ph,z := P ′

h,z − i Q, (4-42)

and assume that
all backward GBBs of P ′

h,z enter Ellh̄(Q) in finite time. (4-43)

By construction, Ph,z is a semiclassically elliptic second-order semiclassical ps.d.o. on (X ′)◦ which is
elliptic over K2c. Moreover, due to the sign condition on the principal symbol of Q, one can propagate
semiclassical regularity for solutions of Ph,zu = f along forward null-bicharacteristics of P ′

h,z; see [Vasy
2013, §2.5] and [Dyatlov and Zworski 2019, §5.6.3]. For our fixed metric g on [0, 2x0)× Y, the control
condition (4-43) is satisfied if we choose c> 0 sufficiently small. Indeed, from the expression (4-13), one
finds that if Hsfx = 2ξ = 0 on the characteristic set, then |η|2 = 1 and thus

H2
sf x = 2Hξ ≥ 2x−1

|η|2 − C |η|2 = 2x−1
− C > c−1

− C > 0

in x < 2c when c is sufficiently small; hence the level sets of x are geodesically convex in x < 2c, which
implies the claim.

Remark 4.14 (relaxed conditions on Q). One can more generally allow Q to be a second-order operator
with real-principal symbol; a concrete choice is then Q = ψ · (h21g′ + 1), where ψ ∈ C∞

c (K
◦
c ) is

identically 1 on K2c.

We then have:

Proposition 4.15 (global estimates with complex absorption). Let s, l, α, b be as in the statement of
Theorem 4.10 ( for the operator Ph,z). Fix the volume density on X ′ to be the metric density |dg′

|. Then
for small h > 0, the operator Ph,z defined by (4-42) is invertible as a map H s,l

b (X ′)→ H s−2,l−2
b (X ′), and

it satisfies the uniform estimate

∥u∥H s,l,α,b
c,h (X ′)

≤ C∥Ph,zu∥H s−2,l−2,α,b+1
c,h (X ′)

= Ch−1
∥(x + h)Ph,zu∥H s−2,l−2,α,b

c,h
. (4-44)



3522 PETER HINTZ

More generally, for any s ′
∈ R, we have

∥u∥H s,s′,l,α,b
cb,h (X ′)

≤ C∥Ph,zu∥H s−2,s′−2,l−2,α,b+1
cb,h

.

Proof. By our assumptions on the complex-absorbing potential Q, we can apply Theorem 4.10(1) with E
and χ supported in X ′

\ Kc. We thus have

∥χu∥H s,l,α,b
c,h

≤ C(∥Ph,zu∥H s−2,l−2,α,b+1
c,h

+ ∥Eu∥H s,−N ,−N ,b
c,h

+ hδ∥χ̃u∥
H−N ,l,α−1,b♭

c,h
).

On the other hand, we can control Eu and (1 − χ)u in H s,l,α,b
c,h (or simply hbH s

h if we take E to be
localized away from x = 0, as we may arrange) by Ph,zu in H s−2,l−2,α,b+1

c,h using a combination of elliptic
estimates and real-principal-type propagation estimates (with complex absorption), starting either from
Ellh̄(Q) or {χ = 1}. Altogether, we obtain

∥u∥H s,l,α,b
c,h

≤ C(∥Ph,zu∥H s−2,l−2,α,b+1
c,h

+ hδ∥u∥H−N ,l,α,b
c,h

). (4-45)

For h0 > 0 with Chδ0 <
1
2 , we can now drop the error term in (4-45) for 0 < h < h0. This proves the

injectivity of Ph,z (with a quantitative estimate). Analogous arguments prove the dual estimate

∥v∥H−s+2,−l+2,−α,−b−1
c,h

≤ C∥P∗

h,zv∥H−s,−l,−α,−b
c,h

,

which implies the surjectivity of Ph,z . □

Remark 4.16 (links Y that are not null-cobordant). When Y is not null-cobordant, we cannot choose X ′

as above. This is a technical issue, independent of the analysis near the cone point x−1(0), which we
circumvent here with the following artificial device: we set X ′

:= [0, 4x0] × Y, and consider h-dependent
families of operators on X ′ which are semiclassical cone operators near x−1(0) and semiclassical scattering
operators [Vasy and Zworski 2000] near x−1(4x0). We then take P ′

h,z ∈ (x/(x + h))−2 Diff2
ch̄,sch̄(X

′)—
the second subscript referring to the semiclassical scattering behavior near x−1(4x0)— to be equal to
Ph,z on [0, 1)× X ♭. We can arrange for P ′

h,z to be elliptic near x−1(4x0) in the semiclassical scattering
algebra, e.g., by taking it to be equal to h21g′ + 1 near x = 4x0, where g′ is a scattering metric on
(x0, 4x0] × Y. We choose the complex absorbing operator Q as before, and so that Ph,z = P ′

h,z − i Q is
elliptic in x > 1

2 x0. Proposition 4.15 then remains valid upon using function spaces for u which near
x−1(4x0) are semiclassical scattering Sobolev spaces with differential order s, semiclassical order b, and
arbitrary decay order r , and similarly for Ph,zu with orders s − 2, b+ 1, r ; this uses elliptic estimates in
the semiclassical scattering algebra near x−1(4x0). (This usage of the semiclassical scattering algebra is
only one of several possibilities in which the invertibility of Ph,z for small h is easy to obtain despite the
presence of a boundary.)

4F. Propagation of Lagrangian regularity: diffractive improvement. By adapting arguments from
[Melrose and Wunsch 2004; Melrose et al. 2008], we improve upon Theorem 4.10 by demonstrating
that, under a nonfocusing condition, strong singularities can only propagate along geometric GBBs. The
key technical result concerns the propagation of Lagrangian regularity with respect to the incoming
and outgoing Lagrangian submanifolds, localized near geometric continuations of a GBB striking the
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cone point. Using the coordinates (ĥ, x, y, ξ, η) and the notation of (4-14), the incoming and outgoing
Lagrangians are given by

F• :=

⋃
y0∈∂X

F•,y0, • = I, O,

where
FI,y0 := γI,y0((−x0, 0))= {(0, x, y0,−1, 0) : x < 2x0},

FO,y0 := γO,y0((−x0, 0))= {(0, x, y0, 1, 0) : x < 2x0}.
(4-46)

(We are making the ĥ-coordinate, which was set to 0 in (4-14), explicit here.)
We shall first show that one can control the Lagrangian regularity of a solution u of Ph,zu = f , with

sufficiently regular forcing f , near FO,y0 by propagating Lagrangian regularity from the union of all F◦

I,y′ ,
with y′ at distance π from y0, into ∂X and then within ∂X to FO,y0 ∩ x−1(0). Localization within the
radial sets Rin/out requires a more careful choice of commutants compared to the symbolic part of the
proof of Theorem 4.10, and the extra Lagrangian regularity is captured using test modules, as introduced
in [Hassell et al. 2008] and used for this purpose in [Melrose et al. 2008; 2013]; see also [Haber and Vasy
2013]. (Test modules also feature prominently in [Baskin et al. 2015; 2018; Gell-Redman et al. 2020].)
Fix x0 < x1 < x2 < x3 < 2x0 and cutoffs

χj ∈ C∞

c ([0, x j )), χj ≡ 1 on [0, x j−1], j = 1, 2, 3.

Mirroring [Melrose et al. 2008, Definition 4.2], we then introduce:

Definition 4.17 (test module). Let F = FI ∪FO . Define the 90
ch̄(X)-module14

M :=

{
A ∈9

0,0,0,1
ch̄ (X) : supp K A ⊂ [0, 1)h × (suppχ2)

2, ch̄σ0

(
h

h + x
A
)∣∣∣∣

F
= 0

}
.

Denote by Mk
⊂9

0,0,0,k
ch̄ (X) the set of finite linear combinations of up to k-fold products of elements

of M. If X is a function space on which 90
ch̄(X) acts continuously, we say that u has Lagrangian

regularity of order k relative to X if Mku ⊂ X . We say that elements of the space MkX satisfy the
nonfocusing condition of degree k relative to X .

Since

9
0,0,0,1
ch̄ (X)=

(
h

h + x

)−1

90
ch̄(X),

regularity with respect to elements of M means that the semiclassical order improves upon differentiation
along suitable elements of 90

ch̄(X). A concrete example of an element of M in local coordinates is

h + x
h

(
h

h + x
Dy j

)
= Dy j .

Lemma 4.18 (properties of M; see [Melrose et al. 2008, Lemma 4.4]). The set M is closed under
commutators. Moreover, M is finitely generated in the sense that there exist A1, . . . , AN ∈9

0,0,0,1
ch̄ (X)

14Recall that K A denotes the Schwartz kernel of A.
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with supp K Aj ∈ [0, 1)h × (suppχ3)
2 so that, with A0 := I , we have

M =

{
A ∈9

0,0,0,1
ch̄ (X) : there exists Q j ∈90

ch̄(X) such that A =

N∑
j=0

Q j Aj

}
.

Concretely, one can take AN to have principal symbol(
h + x

h

)
·

ch̄σ

((
x

x + h

)2

Ph,z

)
,

and one may take Aj , 1 ≤ j ≤ N − 1, to have principal symbol ((h + x)/h)aj , where aj ∈ C∞(ch̄T ∗Xch̄)

vanishes on F and has differential daj which at a point ζ ∈ Rin, resp. ζ ∈ Rout lies in the unstable, resp.
stable eigenspace of the linearization of H (as a vector field on ch̄T ∗

sf Xch̄) at ζ .

Proof. Let B = ((h+x)/h)B0, C = ((h+x)/h)C0 ∈M. Denote the principal symbols of B0,C0 ∈90
ch̄(X)

by b0, c0. We then have [B,C] ∈9
−1,0,0,1
ch̄ (X), and

d :=
ch̄σ0

(
h

h + x
i[B,C]

)
=

h
h + x

Hb

(
h + x

h
c0

)
=

h
h + x

Hb

(
h + x

h

)
c0 + Hbc0.

But by (3-4), Hb|ĥ=0 is a smooth b-vector field for b ∈ S0,0,0,1; thus d ∈ S0(ch̄T ∗Xch̄). Moreover, since
F is a Lagrangian submanifold, Hb is tangent to F ; therefore, Hbc0 = 0 on F since c0|F = 0, and thus
d|F = 0 as well. This proves [B,C] ∈ M.

Let us now work in local coordinates (ĥ, x, y, ξ, η) in which the rescaled Hamilton vector field
H = ĥ−1 Hp of Ph,z takes the form (4-9). The linearization of H at Rout/in as a vector field on ch̄T ∗Xch̄ is
(top sign for “in”, bottom sign for “out”)

∓2(x∂x − ĥ∂ĥ − η∂η)+ 2ki jηi∂y j , (4-47)

which thus has eigenvalue ∓2 (with eigenvector dx), ±2 (with eigenspace spanned by dĥ and dηj ), and 0
(with eigenspace spanned by dξ and dy j

±ki j dηi ). Upon restriction to ĥ = 0, the same statements remain
true except there is no contribution from dĥ anymore. Since F is locally the joint zero set of η1, . . . , ηn−1,
and p, which have linearly independent differentials, every smooth function vanishing on F can be written
as a linear combination (with smooth coefficients) of p and ηj . Thus, we may take quantizations of ĥ−1ηj

for the operators Aj in local coordinates. The full collection of Aj can be defined using a partition of
unity. □

The fact that M is a 90
ch̄(X)-module and a Lie algebra implies that

Mk
=

{∑
|α|≤k

QαAα : Qα ∈90
ch̄(X)

}
, Aα :=

N∏
i=1

Aαi
i , (4-48)

where α= (α1, . . . , αN )∈NN
0 . Modulo90

ch̄(X), the operator AN is a multiple of Ph,z; therefore, regularity
of solutions u of Ph,zu = f , with f having Lagrangian regularity of order k, under application of an
element Qα

∏N
i=1 Aαi

i ∈Mk with αN > 0 is automatic once Lagrangian regularity of order k −1 has been
established. In order to prove regularity of solutions of Ph,zu = f under application of Aj , 1 ≤ j ≤ N −1,
we need to control the commutators of Ph,z with the Aj chosen in Lemma 4.18:
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Lemma 4.19 (commutators; see [Melrose et al. 2008, Lemma 4.5]). With the Aj chosen as in Lemma 4.18,
we have, for j = 1, . . . , N − 1,

i[Ph,z, Aj ] =

N∑
k=0

C jk Ak, C jk ∈9
1,2,0,−1
ch̄ (X),

and ch̄σ1,2,0,−1(C jk)|F∩x−1(0) = 0 for k ̸= 0.

Proof. Denote by aj the principal symbol of ĥ Aj for j = 1, . . . , N − 1, so ch̄σ(Aj ) = ĥ−1aj . Since
Ph,z ∈9

2,2,0,0
ch̄ (X), we have i[Ph,z, Aj ] ∈9

1,2,0,0
ch̄ (X), with principal symbol at sf given by ĥH(ĥ−1aj ) in

the notation used in (4-9). It thus suffices to prove the existence of c jk ∈ S1,2,0,0(ch̄T ∗Xch̄) such that near
ĥ = 0,

ĥH(ĥ−1aj )=

N∑
k=1

ĥc jk ĥ−1ak, c jk |F∩x−1(0) = 0 (k ̸= 0); (4-49)

indeed, if C jk ∈9
1,2,0,−1
ch̄ (X) is a quantization of ĥc jk times a cutoff to a neighborhood of sf, then (4-49)

implies that

C j0 := i[Ph,z, Aj ] −

N∑
k=1

C jk Ak ∈9
0,2,0,−1
ch̄ (X).

In order to verify (4-49), we note that the left-hand side equals ĥ−1(ĥHaj −ajHĥ); but since at F∩x−1(0),
the differentials daj and dĥ are eigenvectors of the linearization of H with the same eigenvalue, as
discussed after (4-47), this vanishes quadratically at F ∩ x−1(0), completing the proof. □

We are now ready to propagate Lagrangian regularity through the radial sets. For s, l, α, b ∈ R and
k ∈ N0, and using the notation (4-48), let

H s,l,α,b;k
c,h (X) := {u ∈ H s,l,α,b

c,h (X) : Aαu ∈ H s,l,α,b
c,h (X) for all |α| ≤ k}.

We recall that we will only encounter distributions on X with compact support, justifying the convenient,
albeit slightly imprecise, notation here.

Proposition 4.20 (microlocalized propagation near the radial sets). Let s, l, α, b ∈ R. Let B, E,G ∈

90
ch̄(X) denote operators with Schwartz kernels supported in [0, 1)h × (suppχ1)

2. Recall the quantities
rin/out from Definition 4.7.

(1) (propagation into Rin) Suppose that all backward integral curves of H starting in 6 ∩ WF′

ch̄(B)
either tend to a subset S ⊂ Rin or enter Ell′ch̄(E) in finite time while remaining inside Ellch̄(G); and
suppose that, for all incoming null-bicharacteristics γI,y0 : (−x0, 0)→6 with γI,y0(0) ∈ S, there exists
s ∈ (−x0, 0) (depending on y0) such that γI,y0((s, 0]) ⊂ Ellch̄(G) and γI,y0(s) ∈ Ellch̄(E). Under the
condition b −α > rin, we then have

∥Bu∥H s,l,α,b;k
c,h (X) ≤ C(∥G Ph,zu∥H s−2,l−2,α,b+1;k

c,h (X) + ∥Eu∥H−N ,l,α,b;k
c,h (X) + ∥χ2u∥H−N ,l,α,b−1/2

c,h (X)). (4-50)

(2) (propagation out of Rout) Suppose that all backward integral curves of H starting in 6 ∩ WF′

ch̄(B)
either tend to a subset S ⊂ Rout or enter WF′

ch̄(E) in finite time while remaining inside Ellch̄(G).
Suppose moreover that S ⊂ Ellch̄(G), and that, for every integral curve γ ⊂ 6 ∩ x−1(0) \ Rout of H
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with lims→∞ γ (s) ∈ S, there exists s so that γ ((s,∞)) ⊂ Ellch̄(G) and γ (s) ∈ Ellch̄(E). Then the
estimate (4-50) holds under the condition b −α < rout.

Proof. We begin with the proof of part (1). By compactness of Rin/out and since Ellch̄ is open, it suffices
to prove microlocal estimates near a single point ζ0 ∈ Rin, which in the coordinate system (ĥ, x, y, ξ, η)
used in (4-46) has coordinates ζ0 = (0, 0, y0,−1, 0).

Now, restricted to x = ĥ = 0 and writing k = k(y, η) for the dual metric function of the metric k(0) on
∂X in local coordinates, we have

H = −2ξη∂η + 2|η|2∂ξ + (∂ηk)∂y − (∂yk)∂η.

Following [Melrose and Zworski 1996, Lemma 2], introducing |η|, η̂ = η/|η|, one has

∂s y = (∂ηk)(y, η̂)|η|, ∂s η̂ = −(∂yk)(y, η̂)|η|

along H-integral curves; reparametrizing to t = t (s) satisfying t ′
= 2|η|, one thus obtains

∂t y =
1
2(∂ηk)(y, η̂), ∂t η̂ = −

1
2(∂yk)(y, η̂), ∂t |η| = −ξ, ∂tξ = |η|.

Thus, ξ(t)= a cos(t +ϕ0) and |η(t)| = a sin(t +ϕ0), where a =
√
ξ 2 + |η|2 is constant, and ϕ0 ∈ [0, π].

Therefore, the function ϒ assigning to (y, ξ, η) near (y0,−1, 0) the limiting point along the backward
H-integral curve is given by evaluation at t = −ϕ0, so

ϒ(y, ξ, η)=

(
expy

((
− arccos

ξ√
ξ 2 + |η|2

)
η

|η|

)
,−1, 0

)
.

In particular, ϒ is smooth, and Hϒ = 0 at ĥ = x = 0. Extending ϒ to a smooth function in a neighborhood
of x = ĥ = 0, with values in Rn−1

× R × Rn−1, we thus have Hϒ = O(x) at ĥ = 0. Since x−1Hx = −2
at ζ0, we can choose C so that in any sufficiently small neighborhood V of ζ0,

H(|ϒ − ζ0|
2
− Cx)≥ x > 0 in V. (4-51)

Fix now cutoffs χS, χ∂ , χsf, χF , χ6 ∈ C∞
c ([0, 1)), identically 1 near 0, with nonpositive derivative and

with
√

−χ•χ ′
•
∈ C∞, and consider the commutant

ǎ = ĥ−b−
1
2 x−αχ∂

(
x
δ

)
χsf

(
ĥ
δ

)
χF

(
δ−1

N−1∑
j=1

a2
j

)
χ6

(
p2

δ

)
χS(δ

−1(|ϒ − ζ0|
2
− Cx)),

where δ > 0 controls the size of supp ǎ. We now proceed as in the first step of the proof of Theorem 4.10.
Thus, in the symbol (4-32) of the commutator appearing in (4-31), and specifically in the term 2ĥǎHǎ,
the main contribution near ζ0 arises from differentiation of the weights (and then the subprincipal symbol
of Ph,z enters in the threshold condition on b − α as there), giving a negative multiple of ĥ−2bx−2α.
Differentiation of χF gives a term of the same sign, namely a negative square, since

∑
a2

j is a local
quadratic defining function of Rin inside of 6∩ x−1(0). In view of (4-51), differentiation of χS produces
x times the negative of a square, thus another term with sign matching that of the main term. Derivatives
falling on χ∂ produce a nonnegative square, corresponding to the a priori control required along γI,y

for y near y0, at x ∼ δ. Finally, differentiation of χ6 produces a term vanishing near 6 which thus can
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be controlled by elliptic regularity, and differentiation of χsf produces a semiclassically trivial (namely,
vanishing near ĥ = 0) term. We can then proceed as in (4-33), obtaining the desired propagation estimate.

For k ≥ 1, we argue as in the proof of [Baskin et al. 2015, Proposition 4.4]: rather than using
Ǎ = Opc,h(ǎ) as the commutant, we use (in the notation (4-48)) the vector of ps.d.o.s ( ǍAα)α∈I , where
I ⊂ NN

0 consists of all α ∈ NN
0 with |α| = k and α0 = αN = 0. The main term of the commutator arises

from Ǎ as before; the new contributions, from commutators of Ph,z with a factor Aj , can be expanded
as in Lemma 4.18, and those which have the maximal number of module factors Al , 1 ≤ l ≤ N − 1,
can be absorbed into this main term due to the vanishing property of the C jk in Lemma 4.18. Thus, one
can control k module derivatives of u in a neighborhood of ζ0 provided one has control of k − 1 module
derivatives in a slightly bigger neighborhood. Thus, one obtains the estimate (4-50) inductively.

The proof of part (2) is completely analogous; one now takes ϒ at x = ĥ = 0 to be the limiting point
along forward H-integral curves. □

Note that for any ζ ∈ ch̄T ∗

sf Xch̄ \F , there exists an element A ∈ M which is elliptic at ζ ; hence
microlocally near such ζ , membership in H s,l,α,b;k

c,h is equivalent to membership in H s,l,α,b+k
c,h .15 In

particular, in6∩x−1(0) but away from the radial sets, the propagation of H s,l,α,b;k
c,h regularity is equivalent

to the standard (real-principal-type) propagation of H s,l,α,b+k
c,h regularity. One can thus concatenate the

radial point estimates of Proposition 4.20 with such real-principal-type estimates. To state this succinctly,
we introduce:

Definition 4.21 (integral curves connecting the radial sets). (1) For a point y ∈ ∂X , denote by 0→(y)⊂

C0([0, π];6) the set of integral curves of H inside 6 ∩ x−1(0), smoothly reparametrized to uniformly
continuous curves γ : (0, π)→6 ∩ x−1(0), which satisfy γ (π)= (0, 0, y, 1, 0) ∈ Rout and γ (0) ∈ Rin.
Denoting by 5 : 6 ∩ x−1(0)→ ∂X the projection to the base, define the set of starting points of such
curves by

Y→(y)= {5(γ (0)) : γ ∈ 0→(y)}.

(2) We call a continuous curve γ : I → 6 a resolved GBB if it is either an integral curve of h−1 Hp

disjoint from x−1(0), or otherwise if, for some y ∈ ∂X and y0 ∈ Y→(y), the curve γ is the concatenation
of γI,y0 , an element γ of 0→(y) with 5(γ (0))= y0, 5(γ (π))= y, and the curve γO,y .

See Figure 12.

Corollary 4.22 (microlocalized propagation of Lagrangian regularity). Let s, l, α ∈ R, b ∈ C∞(ch̄T ∗

sf Xch̄)

and χ ∈ C∞
c (X) with suppχ ⊂ suppχ1 be as in Theorem 4.10, with b−α satisfying the monotonicity and

threshold conditions stated there. Let k ∈ N0. Let B, E,G ∈90
ch̄(X), with Schwartz kernels supported in

[0, 1)h × (χ−1(1)×χ−1(1)). Suppose that all backward resolved GBBs starting at a point in WF′

ch̄(B)
reach Ellch̄(E) in finite time while remaining in Ellch̄(G). Then the estimate (4-50) holds.

A dualization argument gives the propagation of the nonfocusing condition through ∂X . The simplest
setting uses the modification of Ph,z via extension to an operator P ′

h,z on compact manifold X ′
⊃ X and

15That is, for B, B̃ ∈90
ch̄(X) with WF′

ch̄(B)⊂ Ellch̄(B̃) \F , one has ∥Bu∥H s,l,α,b+k
c,h

≲ ∥B̃u∥H s,l,α,b;k
c,h

+ ∥u∥H−N ,l,α,−N
c,h

.
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FO

FI

Rout

Rin

∂X

y

y0

γO,y

γI,y0

Figure 12. Illustration of a part of the characteristic set, with the Lagrangians FI and
FO in red, and a resolved GBB in blue.

the inclusion of a complex absorbing term Q ∈9−∞

h̄ ((X ′)◦) as in Section 4E, resulting in the operator

Ph,z = P ′

h,z − i Q

in (4-42). (This requires ∂X to be null-cobordant; if this is not true, one can use the modification described
in Remark 4.16.) Recall that the Schwartz kernel of Q has empty intersection with x−1([0, cx0])×

x−1([0, cx0]), where 0< c ≪
1
2 . We shall use the notation of Proposition 4.15.

Theorem 4.23 (diffractive improvement). Let s, l, α, b be as in the statement of Theorem 4.10 ( for
the operator Ph,z). Let E,G ∈ 90

ch̄(X
′) be such that all forward resolved GBBs starting at a point

in WF′

ch̄(E) ⊂ Ellch̄(G) remain in Ellch̄(G) until they enter Ellh(Q). Let f+ ∈ H s−2,l−2,α,b+1
c,h (X ′),

f− ∈ Mk H s−2,l−2,α,b+1
c,h (X ′) be such that supp f± ⊂ x−1([0, cx0]). Then the solution u of

Ph,zu = f := f+ + E f−
can be written in the form

u = u+ + Gu−, u+ ∈ H s,l,α,b
c,h (X ′), u− ∈ Mk H s,l,α,b

c,h (X ′).

Note that on the scale of semiclassical cone Sobolev spaces, we have E f− ∈ H s−2,l−2,α,b′
+1

c,h with
b′

= b− k, but typically E f− is no better than this. Thus, Theorem 4.23 (for f+ = 0 for concreteness)
implies that the strong semiclassical singularities of u resulting from the forcing term E f− only propagate
along geometric GBBs (resulting in the term Gu−), whereas microlocally away from these, u has
H s,l,α,b

c,h -regularity.
In a simple case, a formulation of Theorem 4.23 which highlights regularity rather than singularities

reads as follows: Fix y0 ∈ ∂X , and define the set

K := γO,y0 ∪

⋃
γ∈0→(y0)

γ ([0, π])∪
⋃

y∈Y→(y0)

γI,y .

Thus, the quotient K/(K ∩ x−1(0)) contains the image of all backward geometric GBB continuing γO,y0 ,
and K in addition contains all curves inside of 6 ∩ x−1(0) which connect an incoming base point y
(at distance π from y0) with the outgoing base point y0 of geometric GBBs. Fixing any E ∈ 90

ch̄(X
′)

with WF′

ch̄(E) ∩ K = ∅, there then exists G ∈ 90
ch̄(X

′) with WF′

ch̄(G) ∩ K = ∅ which satisfies the
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conditions of Theorem 4.23. Thus, if f satisfies the nonfocusing condition (of some degree k) relative
to H s−2,l−2,α,b+1

c,h , and with f microlocally near K lying in H s−2,l−2,α,b+1
c,h (thus f in particular does not

have strong singularities along the incoming directions γI,y), then the semiclassical wave u forced by f
lies in H s,l,α,b

c,h microlocally near K (thus u in particular does not have a strong singularity along γO,y0).

Proof of Theorem 4.23. As follows from Proposition 4.15 by taking adjoints (or directly from the proof of
Proposition 4.15), the adjoint P∗

h,z is invertible, and

(P∗

h,z)
−1

: H−s,−l,−α,−b
c,h → H−s+2,−l+2,−α,−b−1

c,h

is uniformly bounded. We now apply a backward propagation version of Corollary 4.22 to P∗

h,z: For E∗,G∗

the adjoints of the operators E,G in the statement of the theorem, and for B∗
∈90

ch̄(X
′) so that all forward

resolved GBBs starting at a point in WF′

ch̄(E
∗) remain in Ellch̄(G∗) until they enter Ellch̄(B∗), we have

∥E∗v∥H−s+2,−l+2,−α,−b−1;k
c,h

≤ C(∥G∗ P∗

h,zv∥H−s,−l,−α,−b;k
c,h

+ ∥B∗v∥H−s+2,−l+2,−α,−b−1;k
c,h

+ ∥χu∥H−N ,−l+2,−α,−b−3/2
c,h

)

for any k ∈ N0. In particular, we may take B∗ so that all forward null-bicharacteristics of Ph,z starting
in WF′

ch̄(B
∗) miss the cone point and enter Ellch̄(Q∗) in finite time. The term B∗u is then automatically

controlled for solutions of P∗

h,zv=w when G∗w ∈ H−s,−l,−α,−b;k
c,h by elliptic regularity (on Ellch̄(Q)) and

real-principal-type propagation (along the backward null-bicharacteristic flow) with complex absorption.
We conclude that

(P∗

h,z)
−1

: {w ∈ H−s,−l,−α,−b
c,h : G∗w ∈ H−s,−l,−α,−b;k

c,h }

→ {v ∈ H−s+2,−l+2,−α,−b−1
c,h : E∗v ∈ H−s+2,−l+2,−α,−b−1;k

c,h }.

Upon taking adjoints (see also [Melrose et al. 2013, Appendix A]), this implies that

P−1
h,z : H s−2,l−2,α,b+1

c,h + E(Mk H s−2,l−2,α,b+1
c,h )→ H s,l,α,b

c,h + G(Mk H s,l,α,b
c,h )

is a bounded map. □

Remark 4.24 (second microlocalization at F ). A sharper approach would be to second microlocalize
at FI and FO , thus cleanly decoupling the semiclassical orders at FI and FO (subject to threshold
conditions at the radial sets) and the semiclassical order away from F ; this would allow for a unified
treatment of Lagrangian and nonfocusing spaces and thus for a direct proof of Theorem 4.23. We leave
such refinements for future work. We note that second microlocalization in the semiclassical setting
was studied in [Sjöstrand and Zworski 2007; Vasy and Wunsch 2009] following [Bony 1986]; a second
microlocal refinement (at the outgoing radial set) for the scattering theory of the corresponding normal
operator was recently obtained in [Vasy 2021c].

5. Applications

We now present applications of the propagation estimates proved in Section 4. First, we discuss the
familiar geometric case of h21g −1 in Section 5A, where we can moreover prove a result sharpening both
Theorem 4.10 and the propagation results of [Baskin and Marzuola 2022]. We discuss high-frequency
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scattering by inverse square potentials on Euclidean space in Section 5B, and high-frequency scattering
for the Dirac–Coulomb equation in Section 5C.

5A. Propagation estimates for conic Laplacians. For a conic metric g as in (4-2) on the manifold
X = [0, 2x0)x × Y of dimension n = dim X ≥ 3, we consider

Ph,z = h21g − z, |z − 1|< Ch.

We fix the volume density µ= |dg| on X .

Lemma 5.1 (admissibility, thresholds, invertibility). The operator Ph,z is admissible in the sense of
Definition 4.1, with threshold quantities rin = −

1
2 and rout = −

1
2 (see Definition 4.7). Moreover, the

normal operator N (P) = 1ĝ − 1, with ĝ given in (4-4), is invertible at weight l (in the sense of
Definition 4.6(3)) for all

l ∈

(
1 −

n − 2
2

, 1 +
n − 2

2

)
. (5-1)

Proof. Only the final statement is nontrivial. In the notation (4-17), and passing to a spectral decomposition
of 1k(0) whose eigenvalues we denote by 0 ≤ λ2

j , j = 0, 1, 2, . . . , one finds that λ ∈ specb(N (P)) if and
only if there exists j with λ2

− i(n − 2)λ+ λ2
j = 0, so

specb(N (P))=

{
i
(

n − 2
2

±

√(
n − 2

2

)2

+ λ2
j

)
: j = 0, 1, 2, . . .

}
.

Therefore, the complement of the set 3 defined in (4-18) contains (−n + 2, 0). As noted in Remark 4.9,
the invertibility of N (P) at weight l is independent of the choice of l inside the shifted interval

n
2

+ (−n + 2, 0)=

(
1 −

n − 2
2

, 1 +
n − 2

2

)
.

The choice l = 1 is particularly natural, as the space H 1,1,0
b,sc (tf; µ̂) is the quadratic form domain of 1ĝ

(as follows from Hardy’s inequality). The invertibility of N (P) at weight l = 1 is then equivalent to the
limiting absorption principle for the exact conic metric ĝ, the proof of which is a standard application of
a boundary-pairing argument [Melrose 1995, §2.3] and unique continuation at infinity. See Lemma 5.10
below for a proof is a more general setting. □

As a consequence, we may apply Theorem 4.10 for l in the range (5-1), any value of s ∈ R, α = 0,
and variable orders b satisfying in particular b>−

1
2 at Rin, b<−

1
2 at Rout, and we may arrange that∣∣b−

(
−

1
2

)∣∣< ϵ for any fixed ϵ > 0. Packaged in the form of Proposition 4.15 using complex absorption,
we thus have, using the volume density |dg| near ∂X ,

∥u∥H s,l,0,b
c,h

≤ C∥Ph,zu∥H s−2,l−2,0,b+1
c,h

; (5-2)

this estimate is sharp in the sense explained after the statement of Theorem 4.10. Lossy estimates on
constant order spaces are given by

∥(x + h)−
1
2 −ϵu∥H s,l,0,0

c,h
∼ h−

1
2 −ϵ

∥u∥H s,l,0,−1/2−ϵ

c,h

≲ h−
1
2 −ϵ

∥Ph,zu∥H s−2,l−2,0,1/2+ϵ

c,h
∼ h−1−2ϵ

∥(x + h)
1
2 +ϵPh,zu∥H s−2,l−2,0,0

c,h
.
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In the special case s = l, and recalling from [Hintz 2022, Theorem 6.3] that the domain

D l
h = D((h21g′ + 1)l/2)

of the (l/2)-th power of the Friedrichs extension of the conic Laplacian h21g′ + 1 is equal to H l,l,0,0
c,h in

present notation, this gives:

Proposition 5.2 (constant-order estimates). In the above setting and with l as in (5-1), we have for all
ϵ > 0 the estimates

∥(x + h)−
1
2 −ϵu∥D l

h
≤ Cϵh−1−2ϵ

∥(x + h)
1
2 +ϵPh,zu∥D l−2

h
, (5-3a)

∥u∥D l
h
≤ Cϵh−1−2ϵ

∥Ph,zu∥D l−2
h
, (5-3b)

as well as more general estimates with D l
h and D l−2

h replaced by H s,l,0,0
c,h and H s−2,l−2,0,0

c,h .

The estimate (5-3b) is an immediate consequence of (5-3a). We recall that in the case l = 1, the
(arbitrarily small) 2ϵ-loss in (5-3b) can be removed, as shown in the semiclassical cone setting by Baskin
and Marzuola [2022] following arguments by Melrose, Wunsch, and Vasy [Melrose and Wunsch 2004;
Melrose et al. 2008]; in the full range of weights l considered here, a lossless estimate was obtained by
the author in [Hintz 2022, §6.2] via reduction to the case l = 1 via conjugation by (1 + h21g′)(l−1)/2 and
reduction to the case l = 1. On the other hand, the estimate (5-3b), even for ϵ = 0, loses a full order at tf
compared to the sharper estimate (5-3a).

Remark 5.3 (limiting absorption principle). The h−1−2ϵ loss in Proposition 5.2 is familiar from (and
essentially arises from) the loss of slightly more than one power of ⟨z⟩ in the limiting absorption principle

(1− 1 ± i0)−1
: ⟨z⟩−

1
2 −ϵL2(Rn)→ ⟨z⟩

1
2 +ϵH 2(Rn)

on Euclidean space, which is a consequence of a sharp variable-order estimate akin to (5-2); see Lemma 4.8.

A natural question is whether one can prove an estimate which removes both the ϵ-loss of (5-3b) while
retaining the lossless character of (5-3a) (or (5-2)) at tf. We answer this in the affirmative:

Theorem 5.4 (sharp propagation estimate). Consider a conic manifold (X, g) as in (4-1)–(4-2) and with
dim X ≥ 3. Let Ph,z = h21g − z, |z − 1| < Ch. Denote the characteristic set of Ph,z by 6 ⊂

ch̄T ∗

sf Xch̄ ;
see (4-8). Let χ, χ̃ ∈ C∞

c (X), with χ̃ ≡ 1 near suppχ , and E ∈ 9−∞

ch̄ (X). Suppose that all backward
GBB from 6∩ suppχ enter Ellch̄(E) in finite time while remaining inside supp χ̃ . Then, for any s, N ∈ R,
we have an estimate

∥χu∥H s,1,0,0
c,h (X) ≤ C(∥χ̃ Ph,zu∥H s−2,−1,0,1

c,h (X) + ∥Eu∥H−N ,−N ,−N ,0
c,h (X) + h

1
2 ∥χ̃u∥H−N ,−N ,0,0

c,h (X)). (5-4)

This holds more generally if the first two norms above are replaced by ∥χu∥H s,s′,1,0,0
cb,h

and ∥χ̃Ph,zu∥H s−2,s′−2,−1,0,1
cb,h

,
with s ′

∈ R arbitrary. Taking s = 1, N = 0 in (5-4) gives

∥χu∥D1
h
≲ h−1

∥(x + h)χ̃ Ph,zu∥D−1
h

+ ∥Eu∥L2 + h
1
2 ∥χ̃u∥L2, (5-5)

and upon adding complex absorption as in Section 4E and (4-42), we have

∥u∥D1
h
= ∥u∥H1,1,0,0

c,h
≲ h−1

∥(x + h)Ph,zu∥D−1
h

= ∥Ph,zu∥H−1,−1,0,1
c,h

. (5-6)
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For comparison, the h-lossless version of (5-3b) for l = 1 reads

∥u∥H1,1,0,0
c,h

≲ h−1
∥Ph,zu∥H−1,−1,0,0

c,h
= ∥Ph,zu∥H−1,−1,1,1

c,h
, (5-7)

which is weaker than Theorem 5.4 in that the required control on Ph,z at tf is one order stronger than in
the theorem.

As discussed after Theorem 4.10, the estimate (5-4) is sharp in the sense that the relative orders on
u on the left and Ph,zu on the right cannot be improved, but here the semiclassical order remains fixed
upon propagation through the cone point.

The proof of Theorem 5.4 uses the global positivity (as an operator) of a commutator on tf, reminiscent
of proofs of similar lossless results in N -body scattering [Vasy 2000; 2001], as well as a splitting of u,
using the functional calculus for h21g, into a part localized near the characteristic set and a part where
h21g − 1 is elliptic and can be inverted by spectral theory. The following technical result is proved at the
end of this section.

Lemma 5.5 (functional calculus). Let φ ∈ C∞
c (R). Then, for all ϵ > 0,

φ(h21g) ∈ A−ϵ,n−ϵ,n−ϵ,0,0,∞(X2
ch̄;

b�
1
2 ), (5-8)

where the orders of the conormal space refer to lb2, ff2, rb2, tf2, df2, sf2 ⊂ X2
ch̄ in this order.

Remark 5.6 (dimension). We only study the case dim X ≥ 3 here. The methods used in [Melrose et al.
2008; Baskin and Marzuola 2022], which are based on quadratic forms, and also the methods in [Melrose
and Wunsch 2004], work in the case dim X = 2 as well. However, the identification of the quadratic
form domain with a semiclassical cone Sobolev space fails in this case (see [Melrose and Wunsch 2004,
equation (3.11)] for h = 1), which is why we do not consider it here.

Proof of Theorem 5.4. We present the proof in the case that Ph,z agrees with its normal operator,
equivalently Ph,z = h21g − 1 with g = dx2

+ x2k(y, dy) an exact conic metric. In the general case, the
error terms arising from Ph,z − N (P) ∈ 9

2,−2,−1,0
ch̄ (X) are handled easily; we leave the details to the

reader. (In particular, since we shall use a global commutator argument which controls u at sf and tf in one
fell swoop, there is no need for a delicate argument for the combination of the symbolic estimate at sf and
a normal operator estimate at tf as in the end of the proof of Theorem 4.10.) We write P ≡ Ph,z for brevity.

Positive commutator argument: Define the operator

A :=
h
2
(x Dx + (x Dx)

∗)− 1 = hx Dx −
inh
2

− 1, a :=
ch̄σ(A)= xξ − 1, (5-9)

where we use the coordinates (3-3). This will be the main piece of the commutant in a positive commutator
calculation, and it is in essence the key term both in the commutator argument of [Vasy 2008], as well
as in the Mourre commutant [1980/81] in classical scattering theory. Let χ = χ(x) be identically 1 near
∂X = x−1(0), with support in any prespecified neighborhood of ∂X , and so that χ ′

≤ 0,
√

−χχ ′ ∈ C∞,
and so that a < 0 has a constant (negative) sign on 6 ∩ suppχ ; arranging the latter property is what the
constant term in (5-9) is for. We then consider the operator

Ã := χ Aχ,
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and estimate in two different ways the expression

2h−1 Im⟨Pu, Ãu⟩ =

〈
i
h
[P, Ã]u, u

〉
. (5-10)

Consider first the commutator term. Since h21g is homogeneous of degree −2, we have (i/h)[P, A]=

−[x∂x , P] = 2h21g, which is the crucial global positive commutator. Therefore,

i
h
[P, χ Aχ ] = 2χh21gχ +

i
h
(χ A[P, χ] + [P, χ]Aχ).

The contribution of the first term to the right-hand side of (5-10) is

2∥h∇g(χu)∥2,

where we write ∥ · ∥ ≡ ∥ · ∥L2 . The second term on the other hand consists of operators with coefficients
supported strictly away from x = 0. It suffices to merely capture its principal symbol, which by (4-9) is
2χah−1 Hpχ = ax−1H(χ2)= 4aξχχ ′; near incoming directions, where ξ < 0, this is negative, whereas
near outgoing directions, where ξ > 0, this is positive and thus has a sign matching that of the above
main commutator term. For a suitable microlocal cutoff E ∈90

ch̄(X) which is elliptic on 6 in the region
ξ < ϵ for some fixed small ϵ ∈ (0, 1), we thus conclude from (5-10) that

2∥h∇g(χu)∥2
≤ 2 Im

〈(
h Dx −

in
2

h
x

)
(χu), h−1xχ Pu

〉
− 2h−1 Im⟨χu, χ Pu⟩ + ∥Eu∥

2. (5-11)

Hardy’s inequality gives
∥∥(h/x)χu

∥∥≤ Cn∥h Dx(χu)∥; hence the first term on the right is bounded from
above by

ϵ∥h Dx(χu)∥2
+ Cϵ∥h−1xχ Pu∥

2.

For the second term in (5-11), we rewrite

⟨χu, χ Pu⟩ = −∥χu∥
2
+ ⟨h∇g(χ

2u), h∇gu⟩

= −∥χu∥
2
+ ∥χh∇gu∥

2
+ ⟨h(∇gχ

2)u, h∇gu⟩;

taking the imaginary part annihilates the first two terms, while for the final term we have

⟨h(∇gχ
2)u, h∇gu⟩ − ⟨h∇gu, h(∇gχ

2)u⟩ = ah2
∇g((∇gχ

2)u)− h2(∇gχ
2) · ∇gu, u⟩

= ⟨h21g(χ
2)u, u⟩, (5-12)

with no derivatives falling on u anymore. Altogether, we obtain from (5-11) the estimate

(2 − Cϵ)∥h∇g(χu)∥2
≤ Cϵ∥h−1xχ Pu∥

2
+ Ch∥χ̃u∥

2
+ ∥Eu∥

2, (5-13)

where χ̃ ≡ 1 on suppχ , used to bound the contribution of (5-12).

Control of χu in H 1,1,0,0
c,h : Since the principal symbol of

h∇g ∈9
1,1,0,0
ch̄ (X; C, ch̄T ∗Xch̄)

(mapping complex-valued functions into sections of ch̄T ∗Xch̄ , see Remark 3.3) is not injective at the zero
section over sf, the estimate (5-13) does not yet give full control of χu in H 1,1,0,0

c,h : an estimate of ∥χu∥
2
L2
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is lacking at this point. (Note that the control of (h/x)χu via Hardy’s inequality degenerates precisely
at sf, i.e., the lift of h = 0.) The key observation is that the characteristic set of P and the set where the
principal symbol of h∇g fails to be injective are disjoint. Thus, for some A1 ∈9

−1,−1,0,0
ch̄ (X;

ch̄T ∗Xch̄,C)

and A2 ∈9
−2,−2,0,0
ch̄ (X), we have

I = A1 ◦ h∇g + A2 P + R, R ∈9
−∞,0,0,−∞

ch̄ (X);

this implies

∥χu∥ ≤ C(∥h∇g(χu)∥H−1,−1,0,0
c,h (X) + ∥P(χu)∥H−2,−2,0,0

c,h (X))+ ∥R(χu)∥L2 . (5-14)

Using [P, χ] ∈9
1,−∞,−∞,−1
ch̄ (X), we can estimate the second term by

∥P(χu)∥H−2,−2,0,0
c,h

≤ ∥χ Pu∥H−2,−2,0,0
c,h

+ ∥[P, χ]u∥H−2,−2,0,0
c,h

≲ ∥h−1xχ Pu∥H−2,−1,0,−1
c,h

+ ∥χ̃u∥H−1,−N ,−N ,−1
c,h

for any N ∈ R. The remainder term in (5-14) is simply estimated by

∥R(χu)∥L2 ≤ C
∥∥∥∥ h

h + x
χu
∥∥∥∥

L2
≤ C

∥∥∥∥h
x
χu
∥∥∥∥

L2
.

Applying Hardy’s inequality to this term, the estimate (5-14) then implies, a fortiori,

∥χu∥L2 ≤ C ′(∥h∇g(χu)∥L2 + ∥h−1xχ Pu∥L2 + h∥χ̃u∥L2).

We can now add η times this, with ηC ′ < 1
2 , to the estimate (5-13) (in which we fix ϵ < C−1), in order

to obtain
∥χu∥

2
D1

h
= ∥χu∥

2
+ ∥h∇g(χu)∥2 ≲ ∥h−1xχ Pu∥

2
+ ∥Eu∥

2
+ h∥χ̃u∥

2. (5-15)

As far as weights in h and x are concerned, this is already the desired estimate. However, the differential
order is forced to be 1 here, and in addition the order of differentiability required on Pu in (5-15) is too
strong (0 instead of −1) even in this special case.

Sharp improvement at tf: The basic idea is to apply the estimate (5-15) to φ(h21g)u, where φ ∈ C∞
c (R) is

equal to 1 on [−4, 4]; on the remaining piece (1−φ(h21g))u, the operator h21g−1 can be inverted directly
using the functional calculus. In order to define h21g as a self-adjoint operator, we need to pass from X
to a compact manifold X ′. If Y = ∂X is null-cobordant, we may choose X ′ so that ∂X ′

= ∂X , and we then
extend g to a Riemannian metric on X ′ which we continue to denote by g. The operator φ(h21g) does
depend on the choice of extension, but its structural properties, as used in the following argument, do not.
If Y is not null-cobordant, we may set X ′

= [0, 6x0]x ×Y and define a smooth metric on X ′ which is equal
to g on [0, 2x0)×Y and equal to the pullback of g along the map (x, y) 7→ (6x0 −x, y) on (4x0, 6x0]×Y ;
we denote this metric g again. Thus, we have two identical cone points at x = 0 and at 6x0 − x = 0.

Concretely then, 8 := φ(h21g) is given by Lemma 5.5, the notation of which we shall use here. Now,
in order to remain localized near ∂X , we apply the estimate (5-15) to

u1 := χ̃8χ̃u.
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Using [P,8] ≡ 0 and χ [P, χ̃ ] ≡ 0, we estimate the first term on the right in (5-15) by

∥h−1xχ Pχ̃8χ̃u∥ ≤

∥∥∥∥ x
h
χ8

h
h + x

(h−1(x + h)χ̃ Pu)
∥∥∥∥+ ∥h−1xχ8[P, χ̃ ]u∥. (5-16)

Denoting the lift of x to the left, resp. right factor of X2
ch̄ by x , resp. x ′, we note that

x
h

h
x ′ + h

∈ A1,1,0,0,0,0(X2
ch̄) =⇒ 9 :=

x
h
χ8

h
x ′ + h

∈ A1−ϵ,n+1−ϵ,n−ϵ,0,0,∞(X2
ch̄).

Passing to a b-density 0< µ0 ∈ C∞(X;
b�1 X), we claim that 9 is continuous as a map

H−∞,−1,0,0
c,h (X; |dg|)= H

−∞,−1−
n
2 ,−

n
2 ,0

c,h (X;µ0)→ H
∞,− n

2 ,−
n
2 ,0

c,h (X;µ0)= H∞,0,0,0
c,h (X; |dg|),

but since 9 is smoothing in the sense of ch̄-differentiability, it suffices to show the boundedness on
L2(X;µ0) of

x
n
29(x ′)−

n
2

(
x ′

x ′ + h

)−1

∈ A
n
2 +1−ϵ,n−ϵ, n

2 −1−ϵ,0,0,∞(X2
ch̄;

b�
1
2 ). (5-17)

Since this kernel is bounded section of b�1/2 (all indices being ≥0), this is a consequence of Schur’s lemma.
The operator acting on u in the second term on the right in (5-16) has Schwartz kernel supported in

x ′
≥ c > 0 and |x − x ′

| > c > 0 (since suppχ ∩ supp dχ̃ = ∅), hence lies in A1−ϵ,∞,∞,∞,∞,∞(X2
ch̄);

therefore, the second term in (5-16) can be bounded by hN
∥χ̃ ♯u∥ for any N, where χ̃ ♯ = 1 on supp χ̃ .

Altogether, forgetting the cutoff χ̃ and renaming χ̃ ♯ as χ̃ , we have proved

∥χu1∥H N ,1,0,0
c,h

≲ h−1
∥(x + h)χ̃ Pu∥H−N ,−1,0,0

c,h
+ ∥Eu∥H−N ,−N ,−N ,0

c,h
+ h

1
2 ∥χ̃u∥H−N ,0,0,0

c,h
(5-18)

for any s, N ∈ R.
It remains to control χu2, where

u2 := u − u1 = u − χ̃8χ̃u.

Let φ♭ ∈ C∞
c ((−3, 3)) be identically 1 on [−2, 2], and let 8♭ = φ♭(h21g). Then χu2 is localized near

high frequencies, in the sense that its localization to low frequencies

8♭(χu2)=8♭(χu)+8♭[8,χ]χ̃u −8♭8χχ̃u =8♭[8,χ]χ̃u (5-19)

(using 8♭8=8♭ and χχ̃ = χ ) is O(h∞) (due to the presence of [8,χ]) near x = 0 and vanishes to an
order h more than u near supp dχ ⊂ X◦. Moreover, χu2 satisfies the equation

P(χu2)= (χ −χ8χ̃)Pu +
(
[P, χ]u − [P, χ]8χ̃u −χ8[P, χ̃ ]u

)
, (5-20)

Altogether, if we put
P♯ := P + 28♭,

then we have

P♯(χu2)= f2 := (χ −χ8χ̃)Pu + [P, χ]u −
(
[P, χ]8χ̃u +χ8[P, χ̃ ]u − 28♭[8,χ]χ̃u

)
. (5-21)

We moreover have P♯ = p♯(h21g), where p♯(σ ) := (σ − 1)+ 2φ♭ ≥
1
2(σ + 1) for σ ≥ 0; hence we can

invert P♯ using the functional calculus for 1g by (P♯)−1
= q♯(h21) where q♯(σ ) = 1/p♯(σ ) is equal
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to (σ − 1)−1 for large σ . One can then show, by a combination of the arguments leading to Lemma 5.5
and [Hintz 2022, Theorem 5.2], that

(P♯)−1
∈

(
x

x + h

)2

9−2
ch̄ (X)+9

−∞,E
ch̄ (X)

where the collection E of index sets is equal to E(−1) in the notation of [Hintz 2022, Theorem 6.1].
Therefore, using (5-21), the mapping properties of elements of (x/(x + h))29−2

ch̄ (X), and estimating the
smoothing contribution in the space 9−∞,E

ch̄ (X) to (P♯)−1 by means of Schur’s lemma, we have

∥χu2∥H s,1,0,0
c,h

= ∥(P♯)−1 f2∥H s,1,0,0
c,h

≲ ∥χ̃ Pu∥H s−2,−1,0,0
c,h

+∥χ̃ [P, χ]u∥H s−2,−1,0,0
c,h

+ h∥χ̃u∥H−N ,−N ,0,0
c,h

. (5-22)

Here, the first term on the right comes from the first term in (5-21) and the boundedness of χ −χ8χ̃ ♯

(with χ̃ ♯ ≡ 1 on supp χ̃ ) on H s−2,−1,0,0
c,h ; this boundedness follows from the boundedness of the Schwartz

kernel of

x
n
2

x
x + h

8

(
x ′

x ′ + h

)−1

(x ′)−
n
2 ∈ A

n
2 +2−ϵ,n+1−ϵ, n

2 −1−ϵ,0,0,∞(X2
ch̄;

b�
1
2 )

similarly to the discussion of 9 in (5-17). The final term in (5-22) comes from the big parenthesis
in (5-21), every term of which involves the localizer 8 to low frequencies as well as a commutator with
a cutoff χ or χ̃ . But χ̃ [P, χ] ∈9

1,−∞,−∞,−1
ch̄ (X); hence the second term on the right is bounded from

above by ∥χ̃u∥H s−1,−N ,−N ,−1
c,h

for any N. By elliptic regularity at infinite semiclassical cone frequencies,
this can be bounded by C(∥χ̃ ♯Pu∥H s−3,−N−2,−N ,−1

c,h
+∥χ̃ ♯u∥H−N ,−N ,−N ,−1

c,h
). Combining the resulting estimate

with (5-18) proves the theorem for Hc,h-spaces. The proof of the more general statement for Hcb,h-spaces
requires only notational changes which are left to the reader. □

To complete the proof, it remains to prove Lemma 5.5.

Proof of Lemma 5.5. This can be proved using the Helffer–Sjöstrand formula [1989] similarly to [Vasy
2000, Lemma 10.1 and Proposition 10.2]. Choosing a compactly supported almost analytic extension
φ̃ ∈ C∞

c (C) of φ (that is, φ̃|R = φ and |∂z̄φ̃| = O(|Im z|N ) for all N ), we have

φ(h21g)=
1

2π i

∫
∂z̄φ̃(z)(h21g − z)−1 dz̄ ∧ dz. (5-23)

For z /∈ R, [Hintz 2022, Theorem 3.10 and §6.1] gives

(h21g − z)−1
∈

(
x

x + h

)2

9−2
ch̄ (X)+9

−∞,E
ch̄ (X), (5-24)

where E = (Elb, Eff, Erb, Etf ), with Re z ≥ 0 for (z, k)∈Elb; Re z ≥n for (z, k)∈Erb; Re z ≥ 2 for (z, k)∈Eff;
and Re z ≥ 0 for (z, k) ∈ Etf. Using that the principal symbol of h21g is real-valued and its normal
operator 1ĝ is self-adjoint, we claim that any fixed seminorm (5-24) is moreover bounded by |Im z|−k

for some k (depending on the seminorm).
To justify this claim, it is instructive to first consider the corresponding statement for (1− z)−1

∈9−2,
z ∈ C \ R, where 1 is the Laplacian on a closed Riemannian manifold: for any N, the construction
of a symbolic parametrix of 1 − z of order N gives QN ,z, Q′

N ,z ∈ 9−2, with seminorms bounded
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by |Im z|−C for some C depending on N and the seminorm, so that (1 − z)QN ,z = I − RN ,z and
Q′

N ,z(1− z) = I − R′

N ,z , where RN ,z, R′

N ,z ∈ 9−N obey such bounds as well. But then (1− z)−1
=

QN ,z + Q′

N ,z RN ,z + R′

N ,z(1− z)−1 RN ,z , where the first two summands as pseudodifferential operators
and the third summand (the “remainder operator”) R′

N ,z(1− z)−1 RN ,z as a map H−N
→ H N obey

such bounds; this uses that ∥(1− z)−1
∥ = |Im z|−1 as an operator on L2. But any seminorm on 9−2 is

continuous on the space of bounded operators H−N
→ H N for sufficiently large N. This implies that

any 9−2-seminorm of (1− z)−1 is bounded by |Im z|−k for some k. (In this simple example, the claim
follows also directly from Beals’ Theorem [1977].)

Analogous arguments can be used to control the inverse of the normal operator 1ĝ − z: in addition
to carrying out N steps of the symbolic parametrix construction, one uses the inverse of the b-normal
operator (which is independent of z) to solve away to order N at the left/right boundary (for the left/right
parametrix) and the b-front face of tf2

b,sc; by virtue of taking only finitely many steps, one ensures
the validity of |Im z|−k bounds on seminorms. The true inverse (1ĝ − z)−1 then obeys such bounds
as well since any seminorm on the space of large b-scattering ps.d.o.s in which (1ĝ − z)−1 lies (see
[Hintz 2022, equation (3.28)] for a general statement) is continuous on the space of remainder operators
H−N ,l1,−N

b,sc → H N ,l2,N
b,sc (for appropriate orders l1, l2, with l2 = −N, resp. l1 = −N in the case of the left,

resp. right parametrix construction) for sufficiently large N.
The |Im z|−k bounds for seminorms of (5-24) can then be proved by completely analogous means,

namely by constructing a parametrix which is accurate to some finite order, and observing that any fixed
seminorm on the space (5-24) is continuous on the relevant space of remainder operators.

Plugging these into (5-23), we conclude that φ(h21g) is of the same class as the resolvent. To improve
the orders, let m ∈ N and write φ(σ)= (σ + C)−mφm(σ ) with C >− inf suppφ. Then

φ(h21g)= (h21g + C)−mφm(h21g).

Applying the previous discussion to φm and using [Hintz 2022, Theorem 6.3(3)] (with w= −m) to control
(h21g +C)−m implies, upon letting m → ∞, that φ(h21g)∈9

−∞,−∞,0,0
ch̄ (X)+A−ϵ,n−ϵ,n−ϵ,0,∞,∞(X2

ch̄).
This gives (5-8). □

5B. Scattering by potentials with inverse square singularities. Complex absorption is a somewhat
drastic method for gaining microlocal control along incoming directions. As a more natural setting, let
us thus consider scattering by potentials on Rn, n ≥ 2, which are singular at the origin 0 ∈ Rn, as in
Theorem 1.1. (Working on more general conic manifolds requires only minor modifications.) That is, the
underlying spatial manifold is

X = [Rn
x ; {0}] ∼= [0,∞)r × Sn−1, g = dx2

= dr2
+ r2gSn−1 . (5-25)

We write 1≡1g =
∑

D2
x j for the (nonnegative) Laplacian. Let N ∈ N, and denote by 1 the Laplacian

acting componentwise on CN -valued functions. We consider scattering by matrix-valued potentials

V (x)= |x |
−2V0(x), V0 ∈ C∞

c (X; CN×N ).
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The assumption of compact support of V can of course be relaxed considerably, but since our interest lies
in understanding the effect of the singularity at r = 0, we shall not concern ourselves with more general
conditions on V at infinity here.

We are interested in high-energy estimates for the resolvent of 1+ V ; concretely, we shall consider
1+ V − σ 2, where Im σ > 0 is bounded and |Re σ | ≫ 1. Upon introducing

h = |σ |
−1, z = (hσ)2 = 1 +O(h), (5-26)

we define

Ph,z := h2(1+ V − σ 2)= h21− z + h2r−2V0. (5-27)

This is admissible in the sense of Definition 4.1, with Q1,z = V0 and q0,z = 0. Since Q1,z has differential
order 0, the threshold quantities in Definition 4.7 are rin = rout = −

1
2 . The normal operator of Ph,z is

computed by passing to r̂ =
r
h and setting h = 0:

N (P)=1ĝ − 1 + r̂−2V∂ ,

ĝ := dr̂2
+ r̂2gSn−1, V∂ := V0|∂X ∈ C∞(∂X; CN×N ).

(5-28)

(Thus V∂(ω)= V0(0, ω) in the coordinates (r, ω) ∈ [0,∞)× S2 on X .)

Theorem 5.7 (potential scattering). Assume that the operator N (P) defined in (5-28) is invertible at
weight l ∈ R (in the sense of Definition 4.6(3)). Let C > 0, and let χ0 ∈ C∞

c (X) be identically 1 near
r = 0. Then there exists C ′ > 0 so that for 0 < Im σ < C and |Re σ | > C ′, the operator 1+ V − σ 2 is
invertible as a map

1+ V − σ 2
: {u ∈ H 2

loc(X
◦) : χ0u ∈ r l H 2

b (X), (1 −χ0)u ∈ H 2(Rn)}

→ { f ∈ L2
loc(X

◦) : χ0 f ∈ r l−2L2(X), (1 −χ0) f ∈ L2(Rn)}. (5-29)

Moreover, in the notation (5-26)–(5-27), the following uniform estimate holds for all ϵ, δ > 0, a suitable
constant Cϵ,δ > 0, and all 0< Im σ < C , |Re σ |> C ′:

∥χ0u∥H s,l,1/2+ϵ,0
c,h

+ ∥(1 −χ0)u∥H s,−1/2−δ

sc,h

≤ Cϵ,δh−1−2ϵ(∥χ0 Ph,zu∥H s−2,l−2,−1/2−ϵ,0
c,h

+ ∥(1 −χ0)Ph,zu∥H s−2,1/2+δ

sc,h
); (5-30)

here, H s,γ
sc = H s,γ

sc (Rn) = ⟨r⟩
−γF−1(⟨h D⟩

−s L2(Rn)) is the semiclassical scattering Sobolev space. In
particular, for l1 ≤ min

(
l, 1

2 + ϵ
)
, l2 ≥ max

(
l − 2,− 1

2 − ϵ
)
, and for any fixed χ ∈ C∞

c (X) we have

∥χ(1+ V − σ 2)−1χ f ∥r l1 L2 ≤ Cϵ,χ |σ |
−1+2ϵ

∥ f ∥r l2 L2 . (5-31)

We recall that for V (x) = |x |
−2V0(x), with real-valued V0 satisfying V0(0) > −((n − 2)/2)2 (and

indeed under relaxed regularity requirements on V0, and allowing for the presence of several such inverse
square singularities), Duyckaerts [2006] obtained cutoff resolvent estimates of the form (5-31) without
the 2ϵ-loss. It is an interesting question — which we do not address here — whether in this setting, or
perhaps even in the general setting of Theorem 5.7, one can prove a lossless estimate using a global
commutator argument similar to the one used in Section 5A.
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Remark 5.8 (meromorphic continuation). For V with compact support as above, the resolvent (1+V−σ2)−1

can be meromorphically continued to the complex plane when n is odd, and the logarithmic cover of C×

when n is even; the estimate (5-31) holds in strips of bounded Im σ for large |Re σ |. The construction of
this continuation can be accomplished along the lines of black box scattering [Sjöstrand and Zworski
1991] (see also [Dyatlov and Zworski 2019, §4]), with those estimates in the references in Im σ ≫ 1
relying on self-adjointness replaced by estimates on the off-spectrum resolvent that follow from [Hintz
2022, Theorem 3.10]. For applications of such estimates to expansions of scattered waves for n odd, we
refer the reader to [Dyatlov and Zworski 2019, §3.2.2].

Remark 5.9 (vector bundles). One may more generally consider potentials valued in endomorphisms
of a vector bundle E → X , with 1 denoting an operator acting on sections of E with scalar principal
symbol given by the dual metric function. The main difference to the case of a trivial bundle is that the
threshold quantities rin, rout depend on subprincipal terms of 1 (and their calculation requires the choice
of a fiber inner product on E ; see Remark 4.11). In the special case of tensor bundles E , and with 1
denoting the tensor Laplacian, the fiber inner product on E induced by g does give rin = rout = −

1
2 .

Proof of Theorem 5.7. Semiclassical propagation estimates near infinity of Rn are standard, see, e.g.,
[Vasy and Zworski 2000, Theorem 1] (following [Melrose 1994]) in a general geometric setting, and
can be combined with the propagation estimates through the singularity at r = 0 given in Theorem 4.10
(where we shall take α =

1
2 + ϵ, b = 2ϵ near Rin, and b = 0 near Rout). Altogether, upon simplifying to

constant orders, we obtain, for any δ > 0, and for 0< h < h0 with h0 > 0 sufficiently small,

∥χ0u∥H s,l,1/2+ϵ,0
c,h

+ ∥(1 −χ0)u∥H s,−1/2−δ

sc,h
≲ ∥χ0 Ph,zu∥H s−2,l−2,1/2+ϵ,1+2ϵ

c,h
+ h−1−2ϵ

∥(1 −χ0)Ph,zu∥H s−2,1/2+δ

sc,h
,

which is the estimate (5-30). (The loss of h−2ϵ in the second term on the right is due to the fact that the
propagation through r = 0 comes with this loss, which then gets propagated out to infinity.) This estimate
also gives the injectivity of Ph,z for small h > 0 and |z − 1|< Ch, with surjectivity following from the
analogous estimate for the adjoint; this proves the first part of the theorem, albeit on function spaces
with weights ⟨r⟩

±(1/2+δ) at infinity. But for any fixed σ with σ 2 /∈ [0,∞), 1+ V − σ 2 is an elliptic
scattering operator near infinity; hence these weights can be removed. (It is only in the high-energy limit
|Re σ | → ∞ with |Im σ/Re σ | → 0 that one loses uniform (in σ ) ellipticity.)

The simplified estimate (5-31) follows by setting s = 2 in

h−1−2ϵ
∥χ Ph,zu∥H s−2,l−2,−1/2−ϵ,0

c,h
≤ h1−2ϵ

∥χ(1+ V − σ 2)u∥
H

s−2,l2,l2,0
c,h

,

∥χu∥H s,l,1/2+ϵ,0
c,h

≤ ∥χu∥
H

s,l1,l1,0
c,h

. □

We describe a few scenarios in which the invertibility assumption on N (P) can be verified:

(1) The operator N (P) is invertible for an open set of V∂ ∈ C∞(Sn−1
; CN×N ). In particular, it holds

when n ≥ 3, l ∈ (1 − (n − 2)/2, 1 + (n − 2)/2), and V∂ ≡ 0 by Lemma 5.1, and therefore also when
∥V∂∥Ck is sufficiently small (depending on l) for some sufficiently large k.

(2) Consider V∂ which depends holomorphically on a parameter w ∈ �, where � ⊂ C is open and
contains 0. (For example, this is the case when V∂(w)=wV∂,0.) Let us write N (Pw) for the w-dependent
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normal operator, and assume that N (P0) is invertible at weight l0; assume moreover that there is a
continuous function l : � → R with l(0) = l0 so that l(w) /∈ − Im specb(N (Pw)). Then there exists a
discrete set D ⊂� so that N (Pw) is invertible at weight l(w) for w ∈� \ D. This follows from analytic
Fredholm theory in w; we leave the details to the reader.

A very concrete third scenario is the following:

Lemma 5.10 (scalar inverse square potentials). Let n ≥ 2, consider the scalar case N = 1, and suppose
V∂ = Z ∈ C\ (−∞,−((n −2)/2)2] is a constant (so V (x)= Z/|x |

2
+O(|x |

−1)). Then N (P) is invertible
at weight l if and only if |l − 1|< Re

√
((n − 2)/2)2 +Z.

Proof of Lemma 5.10. The boundary spectrum of N (P) can be computed, via expansion into spherical
harmonics, as

specb(N (P))=

{
i
(

n − 2
2

±

√(
n − 2

2
+ ℓ

)2

+Z

)
: ℓ ∈ N0

}
.

The condition on Z ensures that

Re

√(
n − 2

2

)2

+Z> 0,

and thus for l as in the statement of the lemma, one has l − n/2 /∈ − Im specb(N (P)).
Expanding an outgoing solution u of N (P)u = 0 at weight l into spherical harmonics, u(r̂ , ω) =∑
|m|≤ℓ uℓm(r̂)Yℓm(ω), the coefficient uℓm satisfies a Bessel ODE

−u′′

ℓm −
n − 1

r̂
u′

ℓm +
ℓ(ℓ+ n − 2)+Z

r̂2 uℓm − uℓm = 0,

and hence is a linear combination of r̂−(n−2)/2 H (1)
νℓ (r̂) and r̂−(n−2)/2 H (2)

νℓ (r̂) where we set

νℓ =

√(
n − 2

2
+ l
)2

+Z.

The outgoing condition can only be satisfied if uℓm is a multiple of r̂−(n−2)/2 H (1)
νℓ (r̂). But for 0< r̂ ≪ 1,

one has
|r̂−

n−2
2 H (1)

νℓ
(r̂)| ≥ cℓr̂−

n−2
2 −Re νℓ ≥ cℓr̂−

n−2
2 −Re ν0,

with cℓ > 0, which lies in r̂ l ′ L2(r̂n−1dr̂) if and only if l ′ < 1 − Re ν0, which is violated for l ′ = l. Hence
necessarily uℓm = 0. This proves that N (P) is injective at weight l on outgoing functions; the injectivity
of N (P)∗ at weight −l + 2 on incoming functions is proved similarly. □

Theorem 1.1 follows from Theorem 5.7 and Lemma 5.10 upon taking σ =
√
λ and l = 2, which allows

for the choice l1 = l2 = 0. Note that for l = 2, the target space in (5-29) in L2(X) = L2(Rn), and the
domain is H 2

0 (R
n
\ {0}) for n ≥ 5 by Hardy’s inequality.

Remark 5.11 (multiple scatterers). By exploiting the diffractive improvement obtained in Section 4F
as in [Baskin and Wunsch 2013], it is conceivable that one can generalize (up to ϵ-losses) Duyckaerts’
high-energy resolvent estimates [2006] for scattering by a finite number of real-valued inverse square
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potentials and analyze the complex-valued case Zj ∈ C\(−∞,−((n −2)/2)2] (or more generally the case
of finitely many matrix-valued inverse square potentials). However, the study of this problem exceeds the
scope of this paper.

Remark 5.12 (operators with inverse square singularities arising in the study of wave equations). Follow-
ing [Baskin and Marzuola 2022], consider a static metric g = −dt2

+dr2
+ r2k, where k is a Riemannian

metric on a closed manifold Z ; e.g., (Z , k)= (Sn−1, gSn−1), in which case g is the Minkowski metric. In
the region t > 1, r/t < 1

2 , we introduce T = 1/t , R = r/t (in the notation of the reference: ρ, x) and
compute

t2□g = −(T DT + RDR)
2
+ i(T DT + RDR)+ D2

R −
i(n − 1)

R
DR + R−21k .

Restricting the coefficients to T = 0 (as a b-operator) and formally passing to the Mellin transform by
replacing T DT with multiplication by σ ∈ C gives

Pσ =1G − (RDR + σ)2 + i(RDR + σ)=1G − σ 2
+ Q, G := dR2

+ R2k,

where Q = iσ − (2σ − i)RDR . When |Im σ | is bounded and |Re σ | → ∞, we let h = |σ |
−1; then the

rescaling
Ph,z = h2 Ph−1z = h21G − z2

+ h2 Q (5-32)

is an admissible operator on
[
0, 1

2

)
R × Z in the sense of Definition 4.1. More generally, consider

the coupling of □g with a potential V = V (r, z) which asymptotes to an inverse square potential
as r → ∞, i.e., V (r, z) = r−2V0(z) + O(r−2−δ) with V0 ∈ C∞(Z). Then we have t2(□g + V ) =

t2□g + R−2V0(z)+O(T δR−2−δ), and therefore the rescaling (5-32) has an additional h2 R−2V0 term, as
studied in the present section; that is, a stationary asymptotically inverse square potential on [0,∞)r × Z
gives rise to an inverse square singularity of Ph,z at R = 0.16 (If V = r−2V0(z) is an exact inverse
square potential, then Ph,z has the same additional term.) Operators of this type, acting on sections
of vector bundles without natural positive definite fiber inner products (and correspondingly without
symmetry conditions on V0), appear in the study of the equations of linearized gravity on stationary and
asymptotically flat spacetimes in certain gauges, and indeed this was the author’s original motivation for
the investigations in the present paper; the details will appear elsewhere.

5C. Scattering for the Dirac–Coulomb equation. Motivated by [Baskin and Wunsch 2023], we consider
the stationary scattering theory for the Dirac–Coulomb equation on Minkowski space at high energies.
As discussed in Section 1, our framework allows us to deal directly with the associated matrix-valued
Klein–Gordon operator — which has nonsymmetric leading-order terms at the Coulomb singularity —
albeit with an arbitrarily small loss upon propagation through the singularity. Moreover, our results
include a larger range of Coulomb charges Z ∈ R than [Baskin and Wunsch 2023] (which requires |Z|< 1

2
for technical reasons); we can even allow for Z which |Z| >

√
3

2 , in which case the Dirac–Coulomb
Hamiltonian is not essentially self-adjoint.

16After the original version of the present paper appeared, this has been worked out in detail by the author in the preprint
[Hintz 2023].
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The underlying spatial manifold is again given by (5-25), now with n = 3. We recall relevant notation
from [Baskin and Wunsch 2023]. Denote the Pauli matrices by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Put further

β := γ 0
:=

(
I 0
0 −I

)
, γ j

:=

(
0 σj

−σj 0

)
,

α j
:= βγ j

=

(
0 σj

σj 0

)
, αr :=

3∑
j=1

x j

r
αj .

The equation governing a massive Dirac field (with mass m ∈ R) minimally coupled to an electromagnetic
potential A = (A0, A1, A2, A3) is

(i∂A − m)ψ = 0, ∂A := γ µ(∂µ + i Aµ),

where ψ takes values in C4. We now take

A0 =
Z

r
+ V, V ∈ C∞(X), Aj ∈ C∞(X), (5-33)

with Z ∈ R the charge of the Coulomb field. As shown in [Baskin and Wunsch 2023, §4.3], the operator
−(i∂A + m)(i∂A − m) is then of the form

P = −

(
Dt +

Z

r

)2

+1+ m2
+ i

Z

r2αr + r−1 R, R ∈ Diff1
b(X; C4). (5-34)

Let us pass to a fixed temporal frequency σ ∈ C, thus replacing Dt in (5-34) by −σ , resulting in the op-
erator family P̂(σ ). Introducing h = |σ |

−1 and z = (hσ)2 and multiplying P̂(σ )= P̂(h−1√z) by h2 gives

Ph,z = h21−

(
√

z −
hZ
r

)2

+
h2

r2 (iZαr + r2m2)+
h2

r2 r R = h21− z + h2r−2 Q1,z + hr−1q0,z,

Q1,z = −Z2
+ iZαr + r2m2

+ r R, q0,z = 2
√

zZ.

(5-35)

When Im σ is bounded while |Re σ | → ∞, one has z = 1 +O(h); thus, Ph,z is an admissible operator
in the sense of Definition 4.1. The threshold quantities in Definition 4.7 take the values

rin = rout = −
1
2

since q0,1 is real and the principal symbol of Q1,z (as a first-order b-differential operator) vanishes at r = 0.
The normal operator of Ph,z is obtained by passing to r̂ = r/h and restricting to h = 0, giving in polar

coordinates (r̂ , ω) ∈ [0,∞] × S2

N (P)= D2
r̂ −

2i
r̂

Dr̂ −

(
1 −

Z

r̂

)2

+ r̂−2(1+ iZαr (ω)). (5-36)

For Z = 0, the operator N (P) is equal to (1ĝ −1)⊗ IdC4 , where ĝ = dr̂2
+ r̂2gS2 , and hence is invertible

at weight l ∈
( 1

2 ,
3
2

)
by Lemma 5.1. For fixed l, this will remain true for Z in a small neighborhood of 0.
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The determination of the largest set of Z for which N (P) is invertible at some weight requires explicit
calculations:

Lemma 5.13 (invertibility of N (P)). Let Z ∈ R be such that |Z| ̸=

√
κ2 −

1
4 for all κ ∈ N. Then the

operator N (P) is invertible at weight l = 1.

The conclusion of the Lemma in particular holds in the range |Z|<
√

3
2 ; this is related to the essential

self-adjointness of Dirac operators; see [Weidmann 1971; Lesch 1997; Baskin and Wunsch 2023, §4.1].

Proof of Lemma 5.13. We begin by separating into spinor spherical harmonics following [Baskin and
Wunsch 2023, §2.1]: For

κ ∈ Z \ {0}, µ ∈
{
−|κ| + 1

2 , . . . , |κ| −
1
2

}
,

define the C2-valued function on S2

�κ,µ(ω)=

(
− sgn(κ)

((
κ +

1
2 −µ

)
/(2κ + 1)

)1/2Yl,µ−1/2(ω)((
κ +

1
2 +µ

)
/(2κ + 1)

)1/2Yl,µ+1/2(ω)

)
, l =

∣∣κ +
1
2

∣∣− 1
2 .

Thus 1�κ,µ = κ(κ + 1)�κ,µ. Moreover,

αr

(
a�κ,µ

b�−κ,µ′

)
=

(
−b�κ,µ′

−a�−κ,µ

)
,

as follows from [Baskin and Wunsch 2023, equations (3), (4), (9)] or [Szmytkowski 2007, equa-
tion (3.1.3)]. Thus, the action of the spherical operator 1+ iZαr ∈ Diff 2(S2

; C4) appearing in (5-36) on
the 2-dimensional space with basis (�κ,µ, 0) and (0, �−κ,µ) is given by the matrix(

κ(κ + 1) −iZ
−iZ κ(κ − 1)

)
. (5-37)

This can be diagonalized when |Z| ̸= |κ|, and it has eigenvalue λ±
κ = κ2

±
√
κ2 −Z2 on the eigenspace

spanned by

Y±

κ,µ(ω) :=

(
iZ�κ,µ(ω)

(κ ∓
√
κ2 −Z2)�−κ,µ(ω)

)
, µ ∈

{
−|κ| + 1

2 , . . . , |κ| −
1
2

}
.

Thus, the action of N (P) on separated functions of the form u(r̂)Y±
κ,µ(ω) is given by the action on u of

the differential operator

N±

κ = D2
r̂ −

2i
r̂

Dr̂ −

(
1 −

Z

r̂

)2

+ r̂−2λ±

κ .

The Mellin-transformed normal operator of r̂2 N±
κ at r̂ = 0 is the polynomial

λ2
− iλ−Z2

+ λ±

κ , λ ∈ C;

for its roots, we have

−(Im λ)+ 3
2 ∈

{
1 −

( 1
2 ±

√
κ2 −Z2

)
, 1 +

( 1
2 ±

√
κ2 −Z2

)}
.



3544 PETER HINTZ

Now if Z2 > κ2, then these two roots have real parts 1
2 and 3

2 , whereas if Z2 < κ2, they are disjoint from
an open interval (1 − δ, 1 + δ) around 1 due to the assumption that κ2

−Z2
̸=

1
4 .

An outgoing solution of N (P) at weight l = 1, expanded into the spherical eigenfunctions Y±
κ,µ, is an

outgoing solution of N±
κ ; one easily finds u = u∞r̂−1−i Z ei r̂

+O(r̂−2) as r̂ → ∞, where u∞ ∈ C, and
the O(r̂−2) term is conormal at r̂ = 0; near r̂ = 0 on the other hand, we have u = A−1/2+δ([0, 1)r̂ ). A
boundary-pairing argument, i.e., the evaluation of

0 = lim
ϵ→0

∫ 1/ϵ

ϵ

((N±

κ u)ū − uN±
κ u) r̂2 dr̂ = 2i lim

ϵ→0
Im(r̂2uu′|

1/ϵ
ϵ )= −2i |u∞|

2,

gives u∞ = 0, and thus u ≡ 0 by standard ODE analysis near r̂ = ∞. This shows that N (P) is injective
at weight l = 1 on outgoing solutions. Since (N±

κ )
∗
= N∓

κ with respect to the L2(r̂2 dr̂) inner product,
the injectivity of N (P)∗ at weight −l + 2 on incoming functions is proved similarly. This completes the
proof when Z is not a nonzero integer.

When Z ∈ Z \ {0} and κ satisfies |Z| = |κ|, then the action of 1+ iZαr on the span of (�κ,µ, 0) and
(0, �−κ,µ′) is not diagonalizable anymore. By inspection of (5-37), it still has the eigenvalue κ2 with
eigenspace spanned by Y+

κ,µ =Y−
κ,µ. Let Ỹκ,µ = (�κ,µ, 0), then an outgoing solution u = u1Y+

κ,µ+u2Ỹκ,µ
of N (P) satisfies a lower triangular ODE system, with a decoupled equation for u1 which implies u1 ≡ 0
by the previous arguments, whence u2 is now an outgoing solution to the same equation as u1 and must
therefore also vanish. □

If we cut A off via multiplication by a cutoff χ ∈ C∞
c (X), the operator Ph,z is equal to h21− z

near infinity and can thus be analyzed as in Section 5B. In this setting, we thus obtain invertibility and
quantitative estimates for Ph,z:

Theorem 5.14 (high-energy estimates for the Dirac–Coulomb equation). Suppose A = (A0, A1, A2, A3)

as in (5-33) has compact support. Let Z ∈ R be such that |Z| ̸=

√
κ2

−
1
4 for all κ ∈ N. Then for l = 1

(and indeed for l sufficiently close to 1), 0< Im z < Ch, and for all sufficiently small h > 0, the operator
Ph,z = h2 P̂(h−1z) defined in (5-34)–(5-35) is invertible as a map between the spaces (5-29) and satisfies
the uniform bound (5-30) as well as the bound (5-31) (with 1g + V − σ 2 replaced by P̂(σ ), where
σ = h−1z) for l1 = l2 = 0.

Remark 5.15 (complex charges). One can also analyze the case of nonreal Z ∈ C, in which case
rin = −

1
2 + ImZ and rout = −

1
2 − ImZ. The difference rout − rin = −2 ImZ results in an additional

2 ImZ loss of powers of the semiclassical parameter h when propagating through the singularity at r = 0.
Nonetheless, the invertibility of N (P) automatically holds for values of Z close to those allowed in
Theorem 5.14, as discussed prior to Lemma 5.10.

Appendix A: A class of examples with sharp semiclassical loss

Note that the semiclassical order b in Theorem 4.10 must decrease from Rin to Rout by more than

D = max(rin − rout, 0); (A-1)
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thus, the estimate (4-27) controls u in L2, say, microlocally near the flow-out of Rout by h−D−ϵ (for any
ϵ > 0) times the L2-norm of the microlocalization of u near the flow-in of Rin. While in many natural
settings, such as those discussed in Section 5, one has D = 0, it is easy to construct examples where
D > 0. The following example (placed into a general context at the end of this appendix) shows that a
loss of h−D typically does occur, whence our estimates are sharp up to an ϵ-loss. This ϵ-loss may be
avoidable, though we are not able to prove or disprove this here.

Consider X = [0, 2)r , µ= |dr |, and

Ph,z = h2
(
−∂2

r −
2
r
∂r

)
− z +

2ih
r

q, z = 1 +O(h),

where q ∈ C is a parameter. (The term in parentheses is the radial part of the Laplacian on R3 in polar
coordinates.) The normal operator is

N (P)= −∂2
r̂ −

2
r̂
∂r̂ − 1 +

2i
r̂

q.

For q = 0, the kernel of N (P) is spanned by r̂−1e±i r̂ ; since r̂−1 barely fails to lie in r̂−1/2L2([0, 1)r̂ , |dr̂ |),
it is easy to see that N (P) is invertible at weight l in the sense of Definition 4.6 for l ∈

(
−

1
2 ,

1
2

)
; this

persists for small values of q ∈ C. (The boundary spectrum of N (P) at r̂ = 0 is independent of q .) In the
notation of Definition 4.7, we have

rin =
1
2 + Re q, rout =

1
2 − Re q, (A-2)

so D = max(2 Re q, 0). The quantities (A-2) correspond precisely to the L2-decay rates of incoming and
outgoing solutions ûin, ûout ∈ ker N (P), which have the asymptotic behavior

ûin ∼ r̂−1−Re qe−i r̂ , ûout ∼ r̂−1+Re qei r̂ , r̂ → ∞. (A-3)

(We omit the explicit expressions involving confluent hypergeometric functions.)
We can now construct an element û ∈ ker N (P) which lies in r̂ l L2, l ∈

(
−

1
2 ,

1
2

)
, near r̂ = 0 and which

is uniquely specified by requiring its incoming data at r̂ = ∞ to be given by ûin. Indeed, û is necessarily
of the form

û(r̂)= ûin + cûout,

where c ∈ C is the “scattering matrix”; necessarily c ̸= 0 (since ûin fails to lie in r̂ l L2 near r̂ = 0). But then

Ph,1uh(r)= 0, uh(r) := û(r/h).

(This exact formula uses the invariance of Ph,1 under dilations in (h, r).) Considering a neighborhood
of r = 1 then, the asymptotics (A-3) for

u•,h(r) := u•(r/h), • = in, out,

imply

uh = uin,h + cuout,h,

uin,h ∼ h1+Re qe−ir/h, uout,h ∼ h1−Re qeir/h (near r = 1).
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This demonstrates the loss of h−2 Re q between the amplitudes h1+Re q , resp. h1−Re q of the incoming,
resp. outgoing pieces of uh . (The fact that there is in fact a gain when Re q < 0 is a peculiar feature of the
1-dimensional situation considered here: the characteristic set of Ph,z has two connected components, with
the incoming and outgoing radial sets lying in different components, and the monotonicity requirement
in Theorem 4.10 does not relate the two components.)

The same idea can applied to produce many more examples with sharp loss D. Indeed, when N (P) is
invertible at weight l, then the solution û = û(r̂ , y) (with y denoting points on ∂X ) of N (P)û = 0, where
û has prescribed incoming data and lies in r̂ l L2 near r̂ = 0, gives rise to a solution uh(r, y)= û(r/h, y)
of Ph,1uh(r, y)= 0, where Ph,1 = N (P) (upon changing coordinates r̂ = r/h). The relative decay rates
of incoming/outgoing solutions of N (P) are then directly reflected in the relative semiclassical orders
of uh near the flow-in/flow-out of the cone point. (Since the characteristic set of Ph,1 is connected when
dim X ≥ 2, the loss is at least 0, see (A-1); after all, even away from the cone point, semiclassical
regularity cannot improve under real-principal-type propagation.)

Appendix B: Sobolev spaces and pseudodifferential calculi

This section consists entirely of figures which illustrate the orders of weighted Sobolev spaces as well as
of spaces of pseudodifferential operators, with references to the original definitions. Concretely, labeling a
boundary hypersurface H by “l” means that the order l of some weighted Sobolev space H ··· ,l,···

···
refers to

ρl
H decay at H of its elements, where ρH is a defining function of H, or l orders of regularity when H is a

boundary hypersurface at fiber infinity of some compactified phase space. For spaces of pseudodifferential
operators on the other hand, the same label “l” refers to a ρ−l

H bound of the full symbol of the operator, or
of its Schwartz kernel at the hypersurface of the double space corresponding to H.

See Figure 13 for b- and scattering Sobolev spaces (or operators), Figure 14 for b, sc-Sobolev spaces,
Figure 15 for semiclassical cone Sobolev spaces, and Figure 16 for cbh̄-Sobolev spaces.

bT ∗
∂XX

bS∗X

l

s

Hs,l
b (X) scT ∗

∂XX

scS∗X

r

s

Hs,r
sc (X)

Figure 13. X is a manifold with boundary ∂X . Left: the orders of H s,l
b (X);

see Section 2A. Right: the orders of H s,r
sc (X); see Section 2B.

b,scT ∗
H1

X

b,scS∗X

b,scT ∗
H2

Xl

s

rHs,l,r
b,sc (X)

Figure 14. X is a manifold with two connected and embedded boundary hypersurfaces
∂X = H1 ⊔ H2. Indicated are the orders for H s,l,r

b,sc (X).
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x

h s
l

α

b

Hs,l,α,b
c,h (X)

Figure 15. X is a manifold with boundary ∂X . Indicated are the orders for H s,l,α,b
c,h (X); see Section 3B.

x

h s
l

s′

s′

α

b

Hs,s′,l,α,b
cb,h (X)

Figure 16. This is essentially a repetition of Figure 9. Indicated are the orders for
H s,s′,l,α,b

cb,h (X); see Section 3D.
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SMALL CAP DECOUPLING FOR THE MOMENT CURVE IN R3

LARRY GUTH AND DOMINIQUE MALDAGUE

We prove sharp small cap decoupling estimates for the moment curve in R3. Our formulation of the small
caps is motivated by a conjecture of Demeter, Guth, and Wang about L p estimates for exponential sums.

1. Introduction

We use high-/low-frequency methods to prove small cap decoupling inequalities for the moment curve
M3

= {(t, t2, t3) : t ∈ [0, 1]} in R3. We begin by describing the problem and our results in terms of
exponential sums. The motivation for this paper is to prove Conjecture 2.5 with n = 3 from [Demeter
et al. 2020], which we state now. We use the standard notation e(t)= e2π i t.

Conjecture 1. For each N ≥ 1, 0 ≤ σ ≤ 2, and s ≥ 1,∫
[0,1]2×[0,1/Nσ ]

∣∣∣∣ N∑
k=1

e(kx1 + k2x2 + k3x3)

∣∣∣∣2s

dx ≤ CεN ε
[N s−σ

+ N 2s−6
].

The s = 1 and s = ∞ versions of this conjecture are easily verified using L2-orthogonality and the
triangle inequality, respectively. When σ = 0, this is Vinogradov’s mean value theorem, solved in three
dimensions by Wooley [2016] and using decoupling for the moment curve by Bourgain, Demeter, and
Guth [Bourgain et al. 2016]. The case of σ = 2 was proven by Bombieri and Iwaniec [1986] and by
Bourgain [2017b] using a different argument. In [Demeter et al. 2020], they prove a slightly more general
statement which implies Conjecture 1 in the range 0 ≤ σ ≤

3
2 . We prove the following general exponential

sum estimate which implies Conjecture 1 for the full range of σ .

Theorem 2. For each N ≥ 1, 0 ≤ σ ≤ 2, interval H of length 1/Nσ, and s ≥ 1,∫
[0,1]2×H

∣∣∣∣ N∑
k=1

ake(kx1 + k2x2 + k3x3)

∣∣∣∣2s

dx ≤ CεN ε
[N s−σ

+ N 2s−6
]

for any ak ∈ C satisfying |ak | ≲ 1.

The terms in the upper bound come from two examples. The upper bound N s−σ follows from taking
random aξ ∈ {±1}, by Khintchine’s inequality. The upper bound N 2s−6 follows from the example aξ = 1
and noting that the integrand is ≳ N 2s on roughly the box [0, 1/N ]×[0, 1/N 2

]×[0, 1/N 3
]. Theorem 2 is

an estimate for the moments of exponential sums over subsets smaller than the full domain of periodicity
(i.e., N 3 in the x3-variable). Bourgain [2017a; 2017b] investigated examples of this type of inequality.
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Theorem 2 is a corollary of a small cap decoupling problem for M3, which we now describe. For
R ≥ 1, and small cap parameter β ∈

[ 1
3 , 1

]
, consider the anisotropic small cap neighborhood

M3(Rβ, R)= {(ξ1, ξ2, ξ3) : ξ1 ∈ [0, 1], |ξ2 − ξ 2
1 | ≤ R−2β, |ξ3 − 3ξ1ξ2 + 2ξ 3

1 | ≤ R−1
}.

This is the anisotropic neighborhood of M3 at scale Rβ (for which canonical decoupling for the moment
curve applies) plus a vertical interval of length R−1. Next we define small caps γ, which form a partition
of M3(Rβ, R) and are defined precisely in Section 2.3. Each γ has the form

γ = {(ξ1, ξ2, ξ3) : l R−β
≤ ξ1 < (l + 1)R−β, |ξ2 − ξ 2

1 | ≤ R−2β, |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ R−1

} (1)

for some integer l, 0 ≤ l < Rβ. If β =
1
3 , then γ coincides with canonical R−1/3

× R−2/3
× R−1

moment curve blocks. In the range 1
3 ≤ β ≤

1
2 , γ is essentially equivalent to the R−1-neighborhood

of a canonical R−β
× R−2β

× R−3β moment curve block. In the range 1
2 ≤ β ≤ 1, γ looks like a

canonical R−β
× R−2β

× R−3β moment curve block plus a vertical R−1-interval. In each case, γ has
dimensions R−β

× R−2β
× R−1. Our definition of small caps using the vertical R−1 neighborhood is

motivated by Theorem 2, which we explain further in Section 1.1. See the paragraph following (2) for
some remarks about the decoupling problem associated to small caps which are the (3-dimensional)
R−1-neighborhood of canonical R−β

× R−2β
× R−3β blocks.

The small cap decoupling theorem we obtain is:

Theorem 3. Let 1
3 ≤ β ≤ 1 and p ≥ 2. Then

∥ f ∥
p
L p(R3)

≤ CεRε(Rβ(p/2−1)
+ Rβ(p−4)−1)

∑
γ

∥ fγ ∥
p
L p(R3)

for any Schwartz function f : R3
→ C with Fourier transform supported in M3(Rβ, R).

The only other result of this form that we are aware of is in [Jung 2023], which essentially proves the
β =

1
2 case of Theorem 3. The proof of Theorem 3 uses the same framework as the high-low argument

from [Guth et al. 2024]. We require a crucial new ingredient, which is small cap decoupling for the cone
established in [Guth and Maldague 2022]. See Section 1.2 for some discussion of the role of small cap
decoupling for the cone in the proof of Theorem 3. Modulo some minor adaptations, our high-low proof
of Theorem 3 with β =

1
3 actually yields the stronger (ℓ2, L p)-decoupling estimates from [Bourgain

et al. 2016] rather than the (ℓp, L p) inequalities stated in Theorem 3. See Section 1.3 for a sketch of
the necessary adaptations. The powers of R in the upper bound of Theorem 3 come from considering
two natural sharp examples for the ratio ∥ f ∥

p
p/

(∑
γ ∥ fγ ∥

q
p
)p/q. The first is the square root cancellation

example, where | fγ | ∼ χBRmax(2β,1) for all γ and f =
∑

γ eγ fγ , where eγ are ±1 signs chosen (using
Khintchine’s inequality) so that ∥ f ∥

p
p ∼ Rβp/2 R3 max(2β,1) and

∥ f ∥
p
p∑

γ ∥ fγ ∥
p
p
≳

Rβ(p/2)R3 max(2β,1)

RβR3 max(2β,1) ∼ Rβ(p/2−1).

The second example is the constructive interference example. Let fγ = Rβ+2β+1η̌γ , where ηγ is a smooth
bump function approximating χγ . Since | f | =

∣∣∑
γ fγ

∣∣ is approximately constant on unit balls and
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| f (0)| ∼ Rβ, we have

∥ f ∥
p
p∑

γ ∥ fγ ∥
p
p
≳

Rβp

RβRβ+2β+1 ∼ Rβ(p−4)−1. (2)

We remark that the arguments in this paper could also be used to analyze small cap decoupling
problem with R−1 neighborhoods of canonical blocks. These are different from taking the vertical R−1

neighborhood in the range 1
2 ≤ β ≤ 1. For example, if we consider the constructive interference example

for the R−1-neighborhood small caps, then each fγ is equal to ∼ 1 on a dual set of size Rβ × R × R,
which leads to the lower bound

∥ f ∥
p
p∑

γ ∥ fγ ∥
p
p
≳

Rβp

RβRβ+1+1 ∼ Rβ(p−2)−2.

If p ≥ 6 + 2/β and 1
2 ≤ β ≤ 1, this is larger than the factors of R in the upper bound from Theorem 3,

so optimal small cap estimates for the R−1 neighborhood would not have the same upper bound as
in Theorem 3. In the R−1 set-up, there is also a third type of example which dominates for certain
parameters β and p: the block example f = η̌θ , with θ a canonical R−1/3

× R−2/3
× R−1 block. This

leads to extra cases and a more complicated proof that we do not present here.
An immediate corollary of Theorem 3 is the following general exponential sum estimate.

Corollary 4. For each 1
3 ≤ β ≤ 1, 2 ≤ p ≤ 6 + 2/β, and r ≥ Rmax(2β,1),

|Qr |
−1

∫
Qr

∣∣∣∣∑
ξ∈4

aξe(x · (ξ, ξ 2, ξ 3))

∣∣∣∣p

dx ≲ε Rβ(p/2)+ε

for any r-cube Qr and any collection 4 ⊂ [0, 1] with |4| ∼ Rβ consisting of ∼ R−β-separated points
and aξ ∈ C with |aξ | ≲ 1.

Note that the corresponding corollary of canonical decoupling M3 only holds in the range r ≥ R3β.
For a, b > 0, the notation a ≲ b means that a ≤ Cb, where C > 0 is a universal constant whose

definition varies from line to line, but which only depends on fixed parameters of the problem. Also,
a ∼ b means C−1b ≤ a ≤ Cb for a universal constant C , and a ≲ε b means that the implicit constant
depends on ε > 0.

The paper is organized as follows. We explain the implications of Theorem 3 in Section 1.1 and give
some intuition for the proof of Theorem 3 in Section 1.2. Then in Section 2, we develop multiscale
high-/low-frequency tools and lemmas. Some of these tools are very similar to those developed in [Guth
et al. 2024], but the high-frequency analysis uses the geometry of the moment curve and relies on small cap
decoupling estimates for the cone recently established in [Guth and Maldague 2022]. We use these tools
in Section 3 to prove a weak (superlevel set) version of Theorem 3 for the critical exponent pc = 6 + 2/β.
Then in Section 3.2, we perform a sequence of pigeonholing steps analogous to those in Section 5 of [Guth
et al. 2024] to show that Theorem 3 follows from the superlevel set version with the critical exponent.
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1.1. Implications of Theorem 3.

Corollary 4 follows from Theorem 3. Let φQr be a nonnegative Schwartz function satisfying φQr ≳ 1
on Qr , supp φ̂Qr ⊂ Br−1 , and

∫
|φQr |

p
∼p |Qr |. Then the function

f (x)=

∑
ξ∈4

aξe(x · (ξ, ξ 2, ξ 3))φQr (x)

satisfies the hypotheses of Theorem 3. Using the triangle inequality, we may split the indexing set 4 into
O(1)many subsets4′ so that each ξ ∈4′ is identified with a unique small cap γ which completely contains
the r−1-neighborhood of (ξ, ξ 2, ξ 3). This is possible because r ≥ Rmax(2β,1), so a ball of radius r−1 can
be completely contained in an R−β

× R−2β
× R−1 small cap γ, whose geometry is described in detail in

Section 2.3. Applying Theorem 3 in the range 2 ≤ p ≤ 6 + 2/β gives∫
Qr

| f |
p ≲ε Rβ(p/2−1)+ε

∑
ξ∈4

∥aξe( · (ξ, ξ 2, ξ 3))φQ R ∥
p
p ∼ Rβ(p/2)+ε|Qr |. □

Theorem 2 follows from Theorem 3. Begin with the integral on the left-hand side of Theorem 2. Perform
the change of variables (x1, x2, x3)= (y1/N , y2/N 2, y3/N 3):∫

[0,1]2×H

∣∣∣∣ N∑
k=1

ake(x · (k, k2, k3))

∣∣∣∣2s

dx = N−6
∫

[0,N ]×[0,N 2]×N 3 H

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))∣∣∣∣2s

dy.

Using the periodicity of the exponential sum in the first two variables,∫
[0,N ]×[0,N 2]×N 3 H

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))∣∣∣∣2s

dy

= N−3
∫

[0,N 3]2×N 3 H

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))∣∣∣∣2s

dy.

Let φH be a bump function which satisfies φH ≳ 1 on [0, N 3
]
2
× N 3 H, supp φ̂H ⊂ [0, N−3

]
2
×[0, Nσ−3

],
and

∫
|φH |

p
∼p N 9−σ. Then∫

[0,N 3]2×N 3 H

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))∣∣∣∣2s

dy ≲
∫

R3

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))
φH (y)

∣∣∣∣2s

dy.

Then apply Theorem 3 with p = 2s, R = N 3−σ, and β defined by Rβ = N, which means that β =

1/(3 − σ) ∈
[ 1

3 , 1
]

(since σ ∈ [0, 2]), giving∫
R3

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))
φH (y)

∣∣∣∣2s

dy ≲ε Rε[Rβ(s−1)
+ Rβ(2s−4)−1

]

N∑
k=1

|ak |
2s

∥φH∥
2s
2s .

Incorporate the extra factors from the substitution and the periodicity steps, and use the assumption
|ak | ≲ 1 and the property ∥φH∥

2s
2s ∼s N 9−σ to get the bound∫

[0,1]2×H

∣∣∣∣ N∑
k=1

ake(x · (k, k2, k3))

∣∣∣∣2s

dx ≲ε N−9 Rε[Rβ(s−1)
+ Rβ(2s−4)−1

]N N 9−σ .
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Finally, using the relationship between R, N, β, and σ , the upper bound simplifies to

N ε
[N (s−1)

+ N (2s−4)−(3−σ)
]N 1−σ

= N ε
[N s−σ

+ N 2s−6
],

as desired. □

1.2. Some intuition behind the proof of Theorem 3. Here we describe one of the cases from the proof
of Theorem 3 which illustrates the role of small cap decoupling for the cone. After a series of standard
reductions which are also used in [Guth et al. 2024], to prove Theorem 3 it suffices to show that

α6+2/β
|{x ∈ BRmax(2β,1) : α ≤ | f (x)|}| ≲ε RεR2β+1

∑
γ

∥ fγ ∥2
2, (3)

where α > 0, BRmax(2β,1) is a ball of radius Rmax(2β,1), and we have the extra assumption that ∥ fγ ∥∞ ≲ 1
for all γ. The spatial localization to a ball of radius Rmax(2β,1) is natural since this is the smallest size of
ball that contains an Rβ × R2β

× R wave packet dual to each γ ∗. Consider the special case of maximal α,
so α ∼ #γ ∼ Rβ, and call {x ∈ BRmax(2β,1) : Rβ ∼ | f (x)|} the high set H. Using a local trilinear restriction
estimate for the moment curve, recorded below in Proposition 27, we show roughly that

(Rβ)6|H | ≲
∫
NRβ (H)

∣∣∣∣∑
γ

| fγ |2(x)
∣∣∣∣3

dx .

Suppose that on most of NRβ (H), we have
∑

γ | fγ |2(x)≲
∣∣∑

γ | fγ |2 ∗ η̌>R−β/2(x)
∣∣, where η>R−β/2 is a

smooth approximation of the characteristic function of the set 1
2 R−β

≤|ξ |≤ 2R−β. Each |̂ fγ |2 is supported
in γ − γ. Writing m(t) = (t, t2, t3) and using the definition (1), the support of each |̂ fγ |2η>R−β/2 is
approximately contained in{

Am′(l R−β)+ Bm′′(l R−β)+ Cm′′′(l R−β) :
1
2 R−β

≤ A ≤ R−β, |B| ≤ R−2β, |C | ≤ R−1}.
In Section 2.3, we show that these sets are disjoint for distinct l ∈ {1, . . . , Rβ}, and each of the above sets is
contained in the R−β-dilation of a conical small cap. Note that this is not exactly true when β= 1, which is
why we use cylinders instead of balls to cut out the low set in the actual argument. Ignoring this technicality,
this means that we may apply a small cap decoupling theorem for the cone to bound the integral∫

NRβ (H)

∣∣∣∣∑
γ

| fγ |2 ∗ η̌>R−β/2

∣∣∣∣3

.

Finally, the functions
∑

γ | fγ |2 and
∣∣∑

γ | fγ |2 ∗ η̌>R−β/2
∣∣ are roughly constant on Rβ balls, which implies

that for any p ≥ 0, we have

(Rβ)6|H | ≲
1

Rβp

∫
NRβ (H)

∣∣∣∣∑
γ

| fγ |2 ∗ η̌>R−β/2(x)
∣∣∣∣3+p

dx .

This is an important observation since we have more factors of Rβ in the denominator on the right-hand
side and we may choose p so that 3 + p is the critical exponent for the scale of conical small caps that
we have, thus using the full strength of the small cap decoupling theorem for the cone. Our argument
shows that each of these steps can be sharp, which leads to the upper bound (3).
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1.3. Canonical (ℓ2, L p) decoupling in the case β =
1
3 . In this section, we sketch a small variation of

our argument which recovers the sharp (ℓ2, L p)-decoupling estimates for M3 of [Bourgain et al. 2016].
As in [Guth et al. 2024] for the parabola, pigeonholing arguments combined with a version of

interpolation with L2 and L∞ estimates may be used to show that proving the critical (ℓ2, L12)-decoupling
inequality implies sharp (ℓ2, L p)-decoupling inequalities for all other p ≥ 2. It further suffices to prove
the following level-set version of the inequality:

α12
|Uα| ≲ε Rε

(∑
γ

∥ fγ ∥2
L12(wBR )

)6

, (4)

where BR ⊂ R3 is any ball of radius R, Uα := {x ∈ BR : | f (x)| ∼ α}, and wBR is a weight function
adapted to BR . Via pigeonholing steps similar to those in [Guth et al. 2024], we may assume that each fγ
is either identically equal to 1 or has a wave packet decomposition fγ =

∑
Tγ ψTγ , where the Tγ are a

subset of a tiling of R3 by disjoint translates of the dual set γ ∗ (which has dimensions R1/3
× R2/3

× R),
each function ψTγ approximately satisfies |ψTγ | ∼ χTγ (χTγ the characteristic function of Tγ ), each Tγ
intersects BR , and the number of Tγ which appear in the sum fγ =

∑
Tγ ψTγ is ∼ A for some constant A that

is independent of γ. Notice then that each L12 norm appearing on the right-hand side of (4) is essentially

∥ fγ ∥12
L12(wBR )

∼ A · R1/3+2/3+1,

and so is uniform in the nonzero fγ . We also have ∥ fγ ∥
p
L p(wBR )

∼p A · R2 for any 2 ≤ p <∞. Since
each fγ is made up of wave packets which all have height 1, ∥ fγ ∥∞ ≲ 1.

In the proof of Theorem 3, we bound |Uα| by dividing Uα into O(ε−1) many subsets and bounding
each subset separately. Those subsets are H, �k , and L and are defined in Definition 13 below

(
there are

no 3k when β =
1
3

)
. We replace the Rβ factor which appears in each set by #{γ : fγ ̸≡ 0} =: #γ. The

only further modification needed is to replace Rβ in the pruning process by #γ. Then each Fk
τk

satisfies
∥Fk

τk
∥∞ ≲ε Rε(#γ /α). Considering the bound for |3k |, for example, the argument then yields

α6
|3k | ≲ε Rε

(#γ )3

α6

(∑
γ

∥ fγ ∥
1/3
L6(BR)

)3

.

The right-hand side (without the CεRε factor) is essentially

α−6#γ 6 AR2
∼ α−6

(∑
γ

∥ fγ ∥2
L12(wBR )

)6

,

so we have the desired L12 estimate.

2. Tools for the high/low approach to M3

We perform a high/low frequency analysis of square functions at various scales, incorporating the pruning
process for wave packets analogous to [Guth et al. 2024]. We develop language to discuss canonical
caps and small caps of various scales, associated wave packets, and averaged versions of functions which
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satisfy useful locally constant properties. Then we write a series of key lemmas to analyze the high/low
frequency portions of averaged, pruned square functions at various scales.

Begin by fixing some notation. Fix a ball BRmax(2β,1) of radius Rmax(2β,1). The parameter α > 0 describes
the superlevel set

Uα = {x ∈ BRmax(2β,1) : | f (x)| ≥ α}.

Fix β ∈
[ 1

3 , 1
]

and R ≥ 2. Let ε > 0 be given and consider scales Rk ∈ 8N closest to Rkε for R−1/3
≤

R−1/3
k ≤ 1, and scales rk ∈ 2N closest to R1/3+kε for R−β

≤ r−1
k ≤ R−1/3. Let N distinguish the index so

that RN is closest to R. Since R and RN differ at most by a factor of Rε, we will ignore the distinction
between RN and R in the rest of the argument. Similarly, assume that rM = Rβ for some index M ∈ N.
The relationship between the parameters is

1 = R0 ≤ R1/3
k ≤ R1/3

k+1 ≤ R1/3
N = r0 ≤ rm ≤ rm+1 ≤ rM = Rβ .

Next we fix notation for moment curve blocks and small caps of various sizes. For the explicit
definitions, see Section 2.3 below.

(1) {γ } are small caps associated to Rβ and R, meaning ∼ R−β
× R−2β

× R−3β moment curve blocks
plus the set {(0, 0, z) : |z| ≤ R−1

}.

(2) {γk} are small caps associated to rk and R, meaning ∼ r−1
k × r−2

k × r−3
k moment curve blocks plus

the set {(0, 0, z) : |z| ≤ R−1
}.

(3) {θ} are canonical ∼ R−1/3
× R−2/3

× R−1 moment curve blocks.

(4) {τk} are canonical R−1/3
k × R−2/3

k × R−1
k moment curve blocks.

The specific definitions of γ, γk, θ, τk in Section 2.3 provide the additional property that if γk ∩γk+m ̸=∅,
then γk+m ⊂ γk (and similarly for the τk).

We assume throughout this section (actually until Section 3.2) that the fγ satisfy the extra condition
that

1
2 ≤ ∥ fγ ∥L∞(R3) ≤ 2 or ∥ fγ ∥L∞(R3) = 0. (5)

2.1. A pruning step. Here we define wave packets for blocks γk, τk , and prune the wave packets associated
to fγk , fτk according to their amplitudes.

For each γk , fix a dual block γ ∗

k with dimensions r−1
k × r−2

k × R which is comparable to the convex set

{x ∈ R3
: |x · ξ | ≤ 1 for all ξ ∈ γk − γk}.

For each τk , fix a dual block τ ∗

k of dimensions R1/3
k × R2/3

k × Rk which is comparable to the convex set

{x ∈ R3
: |x · ξ | ≤ 1 for all ξ ∈ τk − τk}.

The main difference between dual small caps γ ∗

k and dual canonical caps τ ∗

k is that for each k we have
γ ∗

k = γ̃k
∗ if γk, γ̃k ⊂ θ , whereas the τ ∗

k are all distinct.
We will describe wave packet decompositions for small caps {γk} and for canonical caps {τk} in parallel.

Let Tγk ,Tτk be the collection of tubes Tγk , Tτk which are dual to γk, τk , contain γ ∗

k , τ
∗

k , and which tile R3,
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respectively. Next, define associated partitions of unity ψTγk
, ψTτk . Let ϕ(ξ) be a bump function supported

in
[
−

1
4 ,

1
4

]3. For each m ∈ Z3, let

ψm(x)= c
∫

[−1/2,1/2]3
|qϕ|

2(x − y − m) dy,

where c is chosen so that
∑

m∈Z3 ψm(x) = c
∫

R3 |qϕ|
2
= 1. Since |qϕ| is a rapidly decaying function, for

any n ∈ N, there exists Cn > 0 such that

ψm(x)≤ c
∫

[−1/2,1/2]3

Cn

(1 + |x − y − m|2)n
dy ≤

C̃n

(1 + |x − m|2)n
.

Define the partitions of unityψTγk
, ψTτk associated to γk, τk to beψTγk

=ψm◦Aγk ψTτk (x)=ψm◦Aτk , where
Aγk , Aτk are linear transformations taking γ ∗

k ,τ ∗

k to
[
−

1
2 ,

1
2

]3 and Aγk (Tγk )= m +
[
−

1
2 ,

1
2

]3, Aτk (Tτk )=

m +
[
−

1
2 ,

1
2

]3. The important properties of ψTγk
, ψTτk are rapid decay off of Tγk , Tτk and Fourier support

contained in γk, τk translated to the origin.
To prove upper bounds for the size of Uα, we will actually bound the sizes of ∼ ε−1 many subsets

which will be denoted by Uα ∩ H, Uα ∩3k , Uα ∩�k , and Uα ∩ L . The pruning process sorts between
important and unimportant wave packets on each of these subsets, as described in Lemma 16 below.

In the following definition, Aε ≫ 1 is a large enough (determined by Lemma 16) constant depending
on ε which also satisfies Aε ≥ Dε, where Dε is given by Lemma 14. We partition the wave packets
Tγk = T

g
γk ⊔ Tb

γk
and Tτk = T

g
τk ⊔ Tb

τk
into “good” and “bad” sets, and define corresponding versions of f ,

as follows.

Remark. In the following definitions, let K ≥ 1 be a large parameter which will be used to define the
broad set in Proposition 28.

Definition 5 (pruning with respect to γk). Let f M
γ = fγ and f M

γM−1
= fγM−1 . For each 1 ≤ k < M, let

Tg
γk

=

{
Tγk ∈ Tγk : ∥ψTγk

f k+1
γk

∥L∞(R3) ≤ K 3 AM−k+1
ε

Rβ

α

}
,

f k
γk

=

∑
Tγk ∈T

g
γk

ψTγk
f k+1
γk

and f k
γk−1

=

∑
γk⊂γk−1

f k
γk
.

Recall that γ0 = θ = τN . Once the wave packets corresponding to all of the small caps have been
pruned, we have f 1

=
∑

γ1
f 1
γ1

.

Definition 6 (pruning with respect to τk). Let F N+1
= f 1, F N+1

τN
= f 1

θ . For each 1 ≤ k ≤ N, let

Tg
τk

=

{
Tτk ∈ Tτk : ∥ψTτk Fk+1

τk
∥L∞(R3) ≤ K 3 AM+N−k+1

ε

Rβ

α

}
,

Fk
τk

=

∑
Tτk ∈T

g
τk

ψTτk Fk+1
τk

and Fk
τk−1

=

∑
τk⊂τk−1

Fk
τk
.

For each k, define the k-th versions of f , F to be f k
=

∑
γk

f k
γk

and Fk
=

∑
τk

Fk
τk

.
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Lemma 7 (properties of f k and Fk). (1) | f k
γk
(x)| ≤ | f k+1

γk
(x)| ≲ #γ ⊂ γk and |Fk

τk
(x)| ≤ |Fk+1

τk
(x)| ≲

#γ ⊂ τk .

(2) ∥ f k
γk

∥L∞(R3) ≤ K 3 AM−k+1
ε R3εRβ/α and ∥Fk

τk
∥L∞(R3) ≤ K 3 AM+N−k+1

ε R3εRβ/α.

(3) There is some constant Cε≲ε−2 so that supp f̂ k+1
γk ⊂supp f̂ k

γk
⊂Cεγk and supp F̂k+1

τk ⊂supp f̂ k
τk

⊂Cετk .

Proof. For the first property, recall that
∑

Tγk ∈Tγk
ψTγk

,
∑

Tτk ∈Tτk
ψTτk are partitions of unity so we may

iterate the inequalities

|Fk
τk

| ≤ |Fk+1
τk

| ≤

∑
τk+1⊂τk

|Fk+1
τk+1

| ≤ · · · ≤

∑
τN ⊂τk

|F N
τN

| ≤

∑
γ1⊂τk

| f 1
γ1

|,

| f 1
γ1

| ≤ | f 2
γ1

| ≤

∑
γ2⊂γ1

| f 2
γ2

| ≤ · · · ≤

∑
γN ⊂γ1

| f N
γN

| ≤

∑
γ⊂γ1

∥ fγ ∥L∞(R3).

Then use the assumption that each ∥ fγ ∥L∞(R3) ≲ 1. Now consider the L∞ bound in the second property.
We write

f k
γk
(x)=

∑
Tγk ∈T

g
γk

x∈RεTγk

ψTγk
f k+1
γk

+

∑
Tγk ∈T

g
γk

x /∈RεTγk

ψTγk
f k+1
γk

.

The first sum has at most R3ε terms, and each term has norm bounded by K 3 AN−k
ε Rβ/α, by the definition

of T
g
γk . By the first property, we may trivially bound f k+1

τk
by #γ ⊂ τk maxγ ∥ fγ ∥∞ ≲ R. But if x /∈ RεTγk ,

then ψTγk
(x)≤ R−1000. Thus∣∣∣∣ ∑

Tγk ∈Th
γk

x /∈RεTγk

ψTγk
f k+1
γk

∣∣∣∣≤ ∑
Tγk ∈Th

γk
x /∈RεTγk

R−500ψ
1/2
Tγk
(x)∥ f k+1

γk
∥∞ ≤ R−250 max

γ
∥ fγ ∥∞.

Since α ≲ | f (x)| ≲
∑

γ ∥ fγ ∥∞ ≲ Rβ, we certainly have R−250
≤ Rβ/α. The argument for ∥Fk

τk
∥L∞(R3)

is analogous.
The third property depends on the Fourier supports of ψTγk

, ψTτk , which are contained in γk , τk shifted
to the origin. If each f k+1

γk
has Fourier support in Cγk (that is, a dilated copy of γk by a factor of C , taken

with respect to its centroid), then supp f̂ k
γk

is contained in (1 + C)γk . The same type of argument is true
for the claims about Fk

τk
and Fk+1

τk
. □

Definition 8. Let φ : R → R be a smooth function supported in
[
−

1
4 ,

1
4

]3. Define

w0(t)=

∑
k∈Z

1
(1 + k2)100 (|φ̌|

2(t − k)).

Let w(t1, t2, t3)= w0(t1)w0(t2)w0(t3) and let Q =
[
−

1
2 ,

1
2

]3 denote the unit cube centered at the origin.
For any set U = T (B), where T is an affine transformation T : R3

→ R3, define

wU (x)= |U |
−1w(T −1(x)).
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For γk , τk , let Aγk , Aτk be affine transformations taking γ ∗

k , τ ∗

k to
[
−

1
2 ,

1
2

]3 and define ωγk , ωτk by

ωγk (x)= |γ ∗

k |
−1w(Aγk (x)) and ωτk (x)= |τ ∗

k |
−1w(Aτk (x)).

Let the capital-W version of weight functions denote the L∞-normalized (as opposed to L1-normalized)
versions, so for example, for any cube Qs of sidelength s, WQs (x)= |Qs |wQs (x). If a weight function
has subscript which is only a scale, say s, then the functions ws,Ws are weight function localized to the
s-cube centered at the origin. We will ignore the distinction between an s-ball and an s-cube.

Remark. Note the additional property that ŵ(ξ1, ξ2, ξ3) is supported in
[
−

1
2 ,

1
2

]3, so ws is Fourier
supported in an s−1-cube at the origin. Similarly, ωγk and ωτk are Fourier supported in γk and τk translated
to the origin, respectively. The same is true for the WBs ,Wγ ∗

k
,Wτ ∗

k
weight functions. Finally, note that if

S1 = T1(Q) and S2 = T2(Q), where Ti are anisotropic dilations with respect to the standard basis and
S1 ⊂ S2, then wS1 ∗wS2 ≲ wS2 .

The weights ωτk , ωθ =ωτN , and ws are useful when we invoke the locally constant property. By locally
constant property, we mean generally that if a function f has Fourier transform supported in a convex
set A, then, for a bump function ϕA ≡ 1 on A, f = f ∗ ϕ̌A. Since |ϕ̌A| is an L1-normalized function
which is positive on a set dual to A, | f | ∗ |ϕ̌A| is an averaged version of | f | over a dual set A∗. We record
some of the specific locally constant properties we need in the following lemma.

Lemma 9 (locally constant property). For each γk, τk and Tγk ∈ Tγk , Tτk ∈ Tτk respectively,

∥ fγk ∥
2
L∞(Tγk )

≲ | fγk |
2
∗ωγk (x) for any x ∈ Tγk ,

∥ fτk ∥
2
L∞(Tτk )

≲ | fτk |
2
∗ωτk (x) for any x ∈ Tτk .

Also, for any rk-ball Brk or R1/3
k -ball BR1/3

k
,∥∥∥∥∑

γk

| fγk |
2
∥∥∥∥

L∞(Brk )

≲
∑
γk

| fγk |
2
∗wBrk

(x) for any x ∈ Brk ,∥∥∥∥∑
τk

| fτk |
2
∥∥∥∥

L∞(BR1/3
k
)

≲ | fτk |
2
∗wB

R1/3
k

(x) for any x ∈ BR1/3
k
.

Because the pruned versions of f , fγk , and fτk have Fourier supports similar to those of the unpruned
versions (see Lemma 7), the locally constant lemma applies to the pruned versions as well.

Proof of Lemma 9. For the first claim, we write the argument for fτk in detail (the argument for the fγk

is analogous). Let ρτk be a bump function equal to 1 on τk and supported in 2τk . Then using Fourier
inversion and Hölder’s inequality,

| fτk (y)|
2
= | fτk ∗ ρ̌τk (y)|

2
≤ ∥ρ̌τk ∥1 | fτk |

2
∗ |ρ̌τk |(y).

Since ρτk may be taken to be an affine transformation of a standard bump function adapted to the unit ball,
∥ρ̌τk ∥1 is a constant. The function ρ̌τk decays rapidly off of τ ∗

k , so |ρ̌τk | ≲ wτk . Since for any Tτk ∈ Tτk ,
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ωτk (y) is comparable for all y ∈ Tτk , we have

sup
x∈Tτk

| fτk |
2
∗ωτk (x)≤

∫
| fτk |

2(y) sup
x∈Tτk

ωτk (x − y) dy

∼

∫
| fτk |

2(y)ωτk (x − y) dy for all x ∈ Tτk .

For the second part of the lemma, repeat analogous steps as above, except begin with ρrk , which is
identically 1 on a ball of radius 2r−1

k containing γk − γk (which is the Fourier support of | fγk |
2). Then∑

γk

| fγk (y)|
2
=

∣∣∣∣∑
γk

| fγk |
2
∗ ρ̌rk (y)

∣∣∣∣ ≲ ∑
γk

| fγk |
2
∗ |ρ̌rk |(y).

The rest of the argument is analogous to the first part. The argument for
∑

τk
| fτk |

2 is the same. □

For ease of future reference, we record the following standard local and global L2-orthogonality lemma.
For U ⊂ R3, let U∗

= {ξ ∈ R3
: |ξ · x | ≤ 1 for all x ∈ U − U }.

Lemma 10 (local and global L2 orthogonality). Let U = T (Q), where Q is the unit ball centered at the
origin and T : R3

→ R3 is an affine transformation. Let h : R3
→ C be a Schwartz function with Fourier

transform supported in a disjoint union X =
⊔

k Xk , where Xk ⊂ B are Lebesgue measurable. If the
maximum overlap of the sets U∗

+ Xk is L , then∫
|h X |

2wU ≲ L
∑
Xk

∫
|h Xk |

2wU ,

where h Xk =
∫

Xk
ĥ(ξ)e2π i x ·ξ dξ . The corresponding global statement is∫

|h X |
2
=

∑
Xk

∫
|h Xk |

2.

Proof. The global statement is just Plancherel’s theorem. For the local statement, we have∫
|h X |

2wU =

∫
h X h XwU =

∫
ĥ X ĥ X ∗ ŵU

by Plancherel’s theorem again. Next we used the definition of ĥ X and ĥ Xk to write∫
ĥ X ĥ X ∗ ŵU =

∑
Xk

∑
X ′

k

∫
ĥ Xk ĥ X ′

k
∗ ŵU .

The function ĥ Xk is supported in Xk and the function ĥ X ′

k
∗ ŵU is supported in X ′

k + U∗. Write X ′

k ∼ Xk

to denote the property that (Xk + U∗)∩ (X ′

k + U∗) ̸= ∅. By hypothesis, for each Xk , there are at most
L many X ′

k such that X ′

k ∼ Xk . Since Xk ∩ (X ′

k +U∗)⊂ (Xk +U∗)∩ (X ′

k +U∗), this leads to the bound∑
Xk

∑
X ′

k

∫
ĥ Xk ĥ X ′

k
∗ ŵU =

∑
Xk

∑
X ′

k∼Xk

∫
h Xk h X ′

k
wU ≤

∑
Xk

∑
X ′

k∼Xk

∫
(|h Xk |

2
+ |h X ′

k
|
2)wU

≤

∑
Xk

∑
X ′

k∼Xk

∫
(|h Xk |

2
+ |h X ′

k
|
2)wU ≤ 2L

∑
Xk

∫
|h Xk |

2wU . □
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Definition 11 (auxiliary functions). For i = 1, 2, let ϕi : Ri
→ [0,∞) be a radial, smooth bump function

satisfying ϕi (x)= 1 on the unit ball in Ri and supported in the ball of radius 2. Then for each s > 0, let
ρ≤s−1 : R3

→ [0,∞) be defined by

ρ≤s−1(ξ1, ξ2, ξ3)= ϕ2(sξ1, sξ2)ϕ1(ξ3).

Write Cs−1 for the set where ρ≤s−1 = 1.

We will sometimes abuse the notation from the previous definition by writing h ∗ ρ̌>s−1 = h −h ∗ ρ̌≤s−1 .

Definition 12. Let gM(x)=
∑

γ | fγ |2 ∗ωγ (x). For 1 ≤ k ≤ M − 1, let

gk(x)=

∑
γk

| f k+1
γk

|
2
∗ωγk , gℓk(x)= gk ∗ ρ̌

≤r−1
k+1
, and gh

k = gk − gℓk .

For 1 ≤ k ≤ N, let

Gk(x)=

∑
τk

|Fk+1
τk

|
2
∗ωτk , Gℓ

k(x)= Gk ∗ ρ̌
≤R−1/3

k+1
, and Gh

k (x)= Gk − Gℓ
k .

In the following definition, Aε ≫ 1 is the same ε-dependent constant from the pruning definition of f k

and Fk.

Definition 13. Define the high set by

H = {x ∈ BRmax(2β,1) : AεRβ ≤ gM−1(x)}.

For each k = 1, . . . ,M − 2, let H =3M−1 and let

3k =

{
x ∈ BRmax(2β,1) \

M−1⋃
l=k+1

3l : (Aε)(M−k)Rβ ≤ gk(x)
}
.

For each k = 1, . . . , N, let �N+1 =
⋃M−1

l=1 3l and let

�k =

{
x ∈ BRmax(2β,1) \

N+1⋃
l=k+1

�l : (Aε)(M+N−k)Rβ ≤ Gk(x)
}
.

Define the low set to be

L = BRmax(2β,1) \

[(N+1⋃
l=1

�N

)
∪

(M−1⋃
k=1

3k

)]
.

2.2. Lemmas related to the pruning process for wave packets.

Lemma 14 (low lemma). There is a constant D = Dε > 0 depending on ε so that, for each x , we have
|gℓk(x)| ≤ Dεgk+1(x) and |Gℓ

k(x)| ≤ DεGk+1(x).

Proof. Prove the claim in detail for gℓk since the argument for Gℓ
k is analogous. We perform a pointwise

version of the argument in the proof of local/global L2-orthogonality (Lemma 10). For each γ k+1
k , using
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Plancherel’s theorem,

| f k+1
γk

|
2
∗ ρ̌

≤r−1
k+1
(x)=

∫
R3

| f k+1
γk

|
2(x − y)ρ̌

≤r−1
k+1
(y) dy

=

∫
R3

f̂ k+1
γk ∗

̂
f k+1
γk (ξ)e2π i x ·ξρ

≤r−1
k+1
(ξ) dξ

=

∑
γk+1,γ

′

k+1⊂γk

∫
R3

e2π i x ·ξ f̂ k+1
γk+1 ∗

̂
f k+1
γ ′

k+1
(ξ)ρ

≤r−1
k+1
(ξ) dξ.

The integrand is supported in (Cεγk+1 − Cεγ
′

k+1)∩ (2Cr−1
k+1
), where Cε comes from (3) of Lemma 7 and

2Cr−1
k+1

contains the support of ρ
≤r−1

k+1
. The set Cr−1

k+1
is contained in a cylinder with a vertical axis, centered at

the origin and of radius 2r−1
k+1. The distance between the sets Cεγk+1 and Cεγ

′

k+1 is controlled by the
distance of their projections to the (ξ1, ξ2)-plane. This means that the final integral displayed above
vanishes unless γk+1 is within ∼ Cεr−1

k+1 of γ ′

k+1, in which case we write γk+1 ∼ γ ′

k+1. Then∑
γk+1,γ

′

k+1⊂γk

∫
R3

e2π i x ·ξ f̂ k+1
γk+1

∗
̂̄f k+1
γ ′

k+1
(ξ)ρ

≤r−1
k+1
(ξ) dξ =

∑
γk+1,γ

′

k+1⊂γk

γk+1∼γ
′

k+1

∫
R3

e2π i x ·ξ f̂ k+1
γk+1

∗
̂̄f k+1
γ ′

k+1
(ξ)ρ

≤r−1
k+1
(ξ) dξ.

Use Plancherel’s theorem again to return to a convolution in x and conclude that

|gk ∗ ρ̌
≤r−1

k+1
(x)| =

∣∣∣∣ ∑
γk+1,γ

′

k+1⊂γk

γk+1∼γ
′

k+1

( f k+1
γk+1

f k+1
γ ′

k+1
) ∗ωτk ∗ ρ̌

≤r−1
k+1
(x)

∣∣∣∣ ≲ Cε

∑
γk

∑
γk+1⊂γk

| f k+1
γk+1

|
2
∗ωτk ∗ |ρ̌

≤r−1
k+1

|(x).

By the locally constant property (Lemma 9) and (1) of Lemma 7,∑
γk

∑
γk+1⊂γk

| f k+1
γk+1

|
2
∗ωτk ∗ |ρ̌

≤r−1
k+1

|(x)≲
∑
γk

∑
γk+1⊂γk

| f k+2
γk+1

|
2
∗wγk+1 ∗ωτk ∗ |ρ̌

≤r−1
k+1

|(x)≲ gk+1(x).

It remains to note that

wγk+1 ∗ωγk ∗ |ρ̌
≤r−1

k+1
|(x)≲ wγk+1(x)

since γ ∗

k is comparable to a dilation of γ ∗

k+1 and ρ̌
≤r−1

k+1
is an L1-normalized function that is rapidly

decaying away from Brk+1 (actually, it decays rapidly away from the small set B(2)rk+1(0)× B(1)1 (0)). □

Corollary 15 (high-dominance on 3k ,�k). For R large enough depending on ε,

gk(x)≤ 2|gh
k (x)| for all x ∈3k and Gk(x)≤ 2|Gh

k (x)| for all x ∈�k .

Proof. This follows directly from Lemma 14. Indeed, since gk(x) = gℓk(x) + gh
k (x), the inequality

gk(x)> 2|gh
k (x)| implies that gk(x)< 2|gℓk(x)|. Then by Lemma 14, |gk(x)|< 2Dεgk+1(x). Since x ∈3k ,

gk+1(x)≤ AM−k−1
ε Rβ, or in the case that k = M − 1,

gM(x)=

∑
γ

| fγ |2 ∗ωγ (x)≲
∥∥∥∥∑
γ

| fγ |2
∥∥∥∥

∞

≲ Rβ
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using the assumption that ∥ fγ ∥∞ ≲ 1 for all γ. Altogether gives the upper bound

gk(x)≤ 2DεAM−k−1
ε Rβ .

The contradicts the property that on 3k we have AM−k
ε Rβ ≤ gk(x) for Aε sufficiently larger than Dε,

which finishes the proof. The argument for Gk on �k is analogous. □

Lemma 16 (pruning lemma). If Aε is a large enough constant depending on ε, then, for any τ ,∣∣∣∣∑
γk⊂τ

fγk −

∑
γk⊂τ

f k+1
γk

(x)
∣∣∣∣ ≤

α

A1/2
ε K 3

for all x ∈3k,∣∣∣∣∑
τk⊂τ

fτk −

∑
τk⊂τ

Fk+1
τk

(x)
∣∣∣∣ ≤

α

A1/2
ε K 3

for all x ∈�k,∣∣∣∣∑
τ1⊂τ

fτ1 −

∑
τ1⊂τ

F1
τ1
(x)

∣∣∣∣ ≤
α

A1/2
ε K 3

for all x ∈ L.

Proof. Begin by proving the claim about 3k . By the definition of the pruning process, we have

fτ = f M−1
τ + ( f M

τ − f M−1
τ )= · · · = f k+1

τ (x)+
M−1∑

m=k+1

( f m+1
τ − f m

τ ), (6)

where here, the subscript τ means fτ =
∑

γ⊂τ fγ and f m
τ =

∑
γm⊂τ f m

γm
. We will show that each difference

in the sum is much smaller than α. For each M −1 ≥ m ≥ k +1 and γm , use the notation Tb
γm

= Tγm \T
g
γm

and write

| f m
γm
(x)− f m+1

γm
(x)| =

∣∣∣∣ ∑
Tγm ∈Tb

γm

ψTγm
(x) f m+1

γm
(x)

∣∣∣∣ =

∑
Tγm ∈T b

γm

|ψ
1/2
Tγm
(x) f m+1

γm
(x)|ψ1/2

Tγm
(x)

≤

∑
Tγm ∈Tb

γm

K −3 A−(M−m+1)
ε

α

Rβ
∥ψTγm

f m+1
γm

∥L∞(R3)∥ψ
1/2
Tγm

f m+1
γm

∥L∞(R3)ψ
1/2
Tγm
(x)

≲ K −3 A−(M−m+1)
ε

α

Rβ
∑

Tγm ∈Tb
γm

∥ψ
1/2
Tγm

f m+1
γm

∥
2
L∞(R3)

ψ
1/2
Tγm
(x)

≲ K −3 A−(M−m+1)
ε

α

Rβ
∑

Tγm ∈Tb
γm

∑
T̃γm

∥ψTγm
| f m+1
γm

|
2
∥L∞(T̃γm )

ψ
1/2
Tγm
(x)

≲ K −3 A−(M−m+1)
ε

α

Rβ
∑

Tγm ,T̃γm ∈Tγm

∥ψTγm
∥L∞(T̃γm )

∥| f m+1
γm

|
2
∥L∞(T̃γm )

ψ
1/2
Tγm
(x).

Let cT̃γm
denote the center of T̃γm and note the pointwise inequality∑

Tγm

∥ψTγm
∥L∞(T̃γm )

ψ
1/2
Tγm
(x)≲ |γ ∗

m |ωγm (x − cT̃γm
),
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which means that

| f m
γm
(x)− f m+1

γm
(x)| ≲ K −3 A−(M−m+1)

ε

α

Rβ
|γ ∗

m |

∑
T̃γm ∈Tγm

ωγm (x − cT̃γm
)∥| f m+1

γm
|
2
∥L∞(T̃γm )

≲ε K −3 A−(M−m+1)
ε

α

Rβ
|γ ∗

m |

∑
T̃γm ∈Tγm

ωγm (x − cT̃γm
)| f m+1

γm
|
2
∗ωγm (cT̃γm

)

≲ε K −3 A−(M−m+1)
ε

α

Rβ
| f m+1
γm

|
2
∗ωγm (x),

where we used the locally constant property in the second-to-last inequality. The last inequality is
justified by the fact that ωγm (x − cT̃γm

)∼ ωγm (x − y) for any y ∈ T̃γm , and we have the pointwise relation
ωγm ∗ωγm ≲ ωγm . The last two inequalities incorporate a dependence on Cε from Lemma 7 since the
locally constant property uses that ̂| f m+1

γm
|
2 is supported in the Cε-dilation of γm − γm . It is important to

note that Cε is a combinatorial factor that does not depend on Aε. Then∣∣∣∣ ∑
γm⊂τ

f m
γm
(x)− f m+1

γm
(x)

∣∣∣∣ ≲ε K −3 A−(M−m+1)
ε

α

Rβ
∑
γm⊂τ

| f m+1
γm

|
2
∗ωγm (x)∼ε K −3 A−(M−m+1)

ε

α

Rβ
gm(x).

At this point, choose Aε large enough so that if gm(x)≤ AM−m
ε Rβ, then the above inequality implies that∣∣∣∣ ∑

γm⊂τ

f m
γm
(x)− f m+1

γm
(x)

∣∣∣∣ ≤ εK −3 A−1/2
ε α.

This finishes the proof since M + N ≲ ε−1, so the number of steps from (6) is controlled. The argument
for the pruning on �k and on L is analogous. □

2.3. Geometry related to the high-frequency parts of square functions. We have seen in Corollary 15
that on 3k and �k , gk and Gk are high-dominated. In this subsection, we describe the geometry of the
Fourier supports of gh

k and Gh
k , which will allow us to apply certain decoupling theorems for the cone in

Section 2.4. We begin with the precise definitions of canonical blocks and small cap blocks (which we
also call “small caps”) of the moment curve.

Definition 17 (canonical moment curve blocks). For S ∈2N, S ≥10, consider the anisotropic neighborhood

M3(S)= {(ξ1, ξ2, ξ3) : ξ1 ∈ [0, 1], |ξ2 − ξ 2
1 | ≤ S−2, |ξ3 − 3ξ1ξ2 + 2ξ 3

1 | ≤ S−3
}.

Define canonical moment curve blocks at scale S which partition M3(S) as follows:
S−1⊔
l=0

{(ξ1, ξ2, ξ3) : l S−1
≤ ξ1 < (l + 1)S−1, |ξ2 − ξ 2

1 | ≤ S−2, |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ S−3

}.

Definition 18 (“small caps” of the moment curve). Let R ≥ 10 and let S ∈ 2N satisfy R−1
≤ S−1

≤ R−1/3.
Consider the anisotropic small cap neighborhood

M3(S, R)= {(ξ1, ξ2, ξ3) : ξ1 ∈ [0, 1], |ξ2 − ξ 2
1 | ≤ S−2, |ξ3 − 3ξ1ξ2 + 2ξ 3

1 | ≤ R−1
}.
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Define small caps γ associated to the parameters S and R by⊔
γ =

S−1⊔
l=0

{(ξ1, ξ2, ξ3) : l S−1
≤ ξ1 < (l + 1)S−1, |ξ2 − ξ 2

1 | ≤ S−2, |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ R−1

}. (7)

Note that the small caps γ are essentially canonical moment curve blocks at scale S plus a vertical
(ξ3-direction) R−1-neighborhood.

To analyze gh
k , we need to understand the Fourier support of

∑
γk

| f k+1
γk

|
2 outside of a cylinder of

radius r−1
k+1. By (3) of Lemma 7, the support of ̂| f k+1

γk
|
2 is Cεγk − Cεγk . Suppose that γk is the l-th piece,

meaning that

γk = {(ξ1, ξ2, ξ3) : lr−1
k ≤ ξ1 < (l + 1)r−1

k , |ξ2 − ξ 2
1 | ≤ r−2

k , |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ R−1

},

where l ∈ {0, . . . , rk − 1}. The small cap γk is comparable to the set

γk = {m(lr−1
k )+ Am′(lr−1

k )+ Bm′′(lr−1
k )+ Cm′′′(lr−1

k ) : 0 ≤ A ≤ r−1
k , |B| ≤ r−2

k , |C | ≤ R−1
}

in the sense that 1
20γk ⊂ γk ⊂ 20γk (where the dilations are taken with respect to the centroid of γk). Then

γk − γk is contained in

{Am′(lr−1
k )+ Bm′′(lr−1

k )+ Cm′′′(lr−1
k ) : |A| ≲ r−1

k , |B| ≲ r−2
k , |C | ≲ R−1

}.

Recall that 1 − ρ
≤r−1

k+1
is supported outside Cr−1

k+1
⊇ {(ξ1, ξ2, ξ3) : |(ξ1, ξ2)| ≤ r−1

k+1, |ξ3| ≤ 1}. Intersecting
Cεγk − Cεγk with the support of 1 − ρ

≤r−1
k+1

forces the relation A2
+ (A2(lr−1

k )+ 2B)2 ≥ r−2
k+1. Using

the upper bounds |A| ≲ Cεr−1
k and |B| ≲ Cεr−2

k , it follows that for R large enough depending on ε, the
support of the high-frequency part of ̂| f k+1

γk
|
2 is contained in

γ̃k :=
{

Am′(lr−1
k )+ Bm′′(lr−1

k )+Cm′′′(lr−1
k ) : 1

2r−1
k+1 ≤ |A|≲Cεr−1

k , |B|≲Cεr−2
k , |C |≲CεR−1}. (8)

Our “high lemmas” will require geometric properties that are recorded in the following propositions.

Proposition 19. The sets γ̃k , varying over γk , are ≤ CεRε-overlapping.

Proof. Suppose that a point corresponding to parameters A, B,C, l and A′, B ′,C ′, l ′ respectively is in the
intersection of two sets as in (8). By analyzing the first coordinate, we must have A = A′. By analyzing
the second coordinate, we must have

|A2lr−1
k − A2l ′r−1

k | ≲ Cεr−2
k .

Therefore, since A ≳ r−1
k+1, we have |l − l ′| ≲ CεRε. □

Next we describe the geometry of a small cap partition for the cone. Let β1 ∈
[1

2 , 1
]

and ρ ≥ 1. Let
S ∈ 2N a dyadic number closest to ρβ1. For the (truncated) cone 0 =

{
ξ : ξ 2

1 + ξ 3
2 = ξ 2

3 ,
1
2 ≤ ξ3 ≤ 1

}
,

divide [0, 2π) into S many intervals IS of length 2π/S and define the small cap partition

NS−1(0)=

⊔
IS

NS−1(0)∩ {(ρ cos ζ, ρ sin ζ, z) : ζ ∈ IS)}

corresponding to parameters β1 and β2 = 0, as in Theorem 3 from [Guth and Maldague 2022]. After a
linear transformation, we will identify the high parts of sets γk − γk as subsets of conical small caps.
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Proposition 20. Let r−1
∈ [r−1

k+1, 20Cεr−1
k ] be a dyadic value and write {ξ3 ∼ r−1

} :=
{
(ξ1, ξ2, ξ3) ∈ R3

:

1
2r−1

≤ ξ3 ≤ r−1
}
. There is an affine transformation T : R3

→ R3 so that the following hold:

(1) If r−1
k ≤ R−1/2, then the collection of γk may be partitioned into ≲ε R2ε many subsets Si which

satisfy the following. For each Si , there is a conical small cap partition of ∼ 1 × Cεr/R × Cεr/R blocks
so that, for each γk ∈ Si , r [T (γ̃k)∩ {ξ3 ∼ r−1

}] is completely contained in one of the conical small caps.
Collections of r2

k R−1 many neighboring γk are identified with the same conical small cap.

(2) If R−1/2
≤ r−1

k and (Rr−1
k )−β1 = r−1

k for some β1 ∈
[ 1

2 , 1
]
, then the collection of γk may be

partitioned into ≲ε R2ε many subsets Si which satisfy the following. For each Si , there is a conical small
cap partition of ∼ 1×Cε(r/R)β1 ×C

β−1
1
ε r/R blocks so that each r [T (γ̃k)∩{ξ3 ∼ r−1

}], where γk ⊂ Si , is
completely contained in one of the conical small caps. Each γk ∈Si is assigned to its own conical small cap.

Proof. Let T : R3
→ R3 be the affine transformation

T (x, y, z) :=

(
y
2
,

x − z/6
√

2
,

x + z/6
√

2

)
.

The image of the set (8) under T is

T (γ̃k)=

{
A
(

lr−1
k ,

1 − l2r−2
k /2

√
2

,
1 + l2r−2

k /2
√

2

)
+ B

(
1,

−lr−1
k

√
2
,

lr−1
k

√
2

)
+ C

(
0,

−1
√

2
,

1
√

2

)
:

1
2r−1

k+1 ≤ |A| ≲ Cεr−1
k , |B| ≲ Cεr−2

k , |C | ≲ CεR−1
}
.

Defining ω ∈
[
π
4 ,

π
2

]
by

(cosω, sinω)=

(
2
√

2lr−1
k

2 + l2r−2
k

,
2 − l2r−2

k

2 + l2r−2
k

)
,

the set T (γ̃k) is contained in{
A(cosω, sinω, 1)+ B(sinω,− cosω, 0)+ C(cosω, sinω,−1) :

r−1
k+1 ≤ |A| ≲ Cεr−1

k , |B| ≲ Cε(r−2
k + R−1), |C | ≲ CεR−1}. (9)

Suppose that r−1
k ≤ R−1/2. Then

T (γ̃k)∩ {ξ3 ∼ r−1
} ⊂

{
A(cosω, sinω, 1)+ B(sinω,− cosω, 0)+ C(cosω, sinω,−1) :

1
2r−1

≤ |A| ≤ r−1, |B| ≲ CεR−1, |C | ≲ CεR−1}. (10)

The ω = ω(γk) in (9) form an ∼ r−1
k -separated subset of

[
π
4 ,

π
2

]
. For a dyadic S closest to CεR/r , we

may sort the ω(γk) into different intervals IS ⊂ [0, 2π) of length S−1 and note that the r dilation of
T (γ̃k)∩ {ξ3 ∼ r−1

} for ω(γk) ∈ IS is contained in a single ∼ 1 × S−1
× S−1 conical small cap. If γk and

γ ′

k are within ∼ rk/R of one another, then ω(γk) and ω(γ ′

k) are assigned to the same IS .
Now suppose that R−1/2

≤ r−1
k ≤ R−1/3. Then

T (γ̃k)∩ {ξ3 ∼ r−1
} ⊂

{
A(cosω, sinω, 1)+ B(sinω,− cosω, 0)+ C(cosω, sinω,−1) :

1
2r−1

≤ |A| ≤ r−1, |B| ≲ Cεr−2
k , |C | ≲ CεR−1}. (11)
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Let S ∈2N be chosen so S−β1 is the smallest dyadic number satisfying CεRεr−1
k ≤ S−β1 (recalling that β1 is

defined by (Rr−1
k )−β1 = r−1

k in the proposition statement). Then C
β−1

1
ε Rεβ

−1
1 rk R−1

≤ S−1 and so each
r -dilation of T (γ̃k)∩{ξ3 ∼ r−1

} is contained in a single approximate 1×S−β1 ×S−1 conical small cap. If γk

and γ ′

k are conical small caps which are a distance Cr−1
k from one another, then their corresponding angles

ω(γk) and ω(γk) are also a distance ≳ Cr−1
k and make the sets on the right-hand side of (11) distinct. □

To analyze Gh
k , we need to understand the Fourier support of

∑
τk

|Fk+1
τk

|
2 outside of a low set CR−1/3

k+1
.

By (3) of Lemma 7, the support of ̂|Fk+1
γk

|
2 is contained in Cετk − Cετk .

Proposition 21. Let r be a dyadic value, R−1/3
k+1 ≤ r−1

≤ CεR−1/3
k . There is an affine transformation

T : R3
→ R3 so that the following holds. We may partition the τk into ≲ε Rε many sets Si which satisfy:

there is a canonical partition of the cone into approximate 1 ×Cεr R−2/3
k ×C2

εr
2 R−4/3

k blocks so that, for
each τk ∈ Si , the r-dilation of the sets T [(Cετk − Cετk) \ BR−1/3

k+1
] ∩ {ξ3 ∼ r−1

} is contained in one of the
canonical cone blocks.

Proof. Suppose that τk is the l-th piece, meaning that

τk = {(ξ1, ξ2, ξ3) : l R−1/3
k ≤ ξ1 < (l + 1)R−1/3

k , |ξ2 − ξ 2
1 | ≤ R−2/3

k , |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ R−1

k },

where l ∈ {0, . . . , R1/3
k − 1}. Let T be the affine transformation from the proof of Proposition 20. Then

T [(Cετk − Cετk) \ BR−1/3
k+1

] ∩ {ξ3 ∼ r−1
} is contained in the set{

A(cosω, sinω, 1)+ B(sinω,− cosω, 0)+ C(cosω, sinω,−1) :

1
2r−1

≤ |A| ≤ r−1, |B| ≲ CεR−2/3
k , |C | ≲ CεR−1

k

}
.

where ω ∈
[
π
4 ,

π
2

]
is defined by

(cosω, sinω)=

(
2
√

2l R−1/3
k

2 + l2 R−2/3
k

,
2 − l2 R−2/3

k

2 + l2 R−2/3
k

)
.

Since the ω=ω(τk) form an ∼ R−1/3
k -separated set, the r -dilation of each displayed set above is contained

in a canonical cone block of approximate dimensions 1 × Cεr R−2/3
k × C2

εr
2 R−4/3

k . □

2.4. Lemmas related to the high-frequency parts of square functions. First we recall the small cap
decoupling theorem for the cone from [Guth and Maldague 2022]. Subdivide the R−1 neighborhood of
the truncated cone 0 =

{
(ξ1, ξ2, ξ3) : ξ 2

1 + ξ 2
2 = ξ 2

3 ,
1
2 ≤ ξ3 ≤ 1

}
into R−β2 × R−β1 × R−1 small caps γ,

where β1 ∈
[ 1

2 , 1
]

and β2 ∈ [0, 1]. Here, R−β2 corresponds to the flat direction of the cone and R−β1

corresponds to the angular direction. The (ℓp, L p) small cap theorem for 0 is the following.

Theorem 22 [Guth and Maldague 2022, Theorem 3]. Let β1 ∈
[ 1

2 , 1
]

and β2 ∈ [0, 1]. For p ≥ 2,∫
R3

| f |
p
≤ CεRε(R(β1+β2)(p/2−1)

+ R(β1+β2)(p−2)−1
+ R(β1+β2−1/2)(p−2))

∑
γ

∥ fγ ∥
p
L p(R3)

for any Schwartz function f : R3
→ C with Fourier transform supported in NR−1(0).
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Lemma 23 (high lemma I). Suppose that R−β
≤ r−1

k ≤ R−1/2. Then∫
|gh

k |
4
≤ CεRεr−1

k R
∑
ζ

∥∥∥∥∑
γk⊂ζ

| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1

∥∥∥∥4

L4(R3)

,

where the ζ are disjoint collections of r2
k R−1 many adjacent γk .

Proof. Let T be the affine transformation from Proposition 20 and write T x = Ax +b for a 3×3 invertible
matrix A and b ∈ R3. Then

gh
k (x)= |det A|

−1e−2π i x ·b
∧

ĝh
k ◦ T −1((A−1)∗x). (12)

Perform the change of variables x 7→ A∗x to get∫
|gh

k (x)|
4 dx = |det A|

−3
∫

|

∧

ĝh
k ◦ T −1(x)|4 dx .

Let r be a dyadic parameter in the range r−1
k+1 ≤ r−1

≤ Cεr−1
k . Let ηr : R3

→ [0,∞) be a smooth function
with compact support in the set

{
(ξ1, ξ2, ξ3) :

1
2r−1

≤ ξ3 ≤ r−1
}

=: {ξ3 ∼ r−1
} and satisfying the property

that the sum of ηr over dyadic r is identically 1 on the support of ĝh
k ◦ T −1. By dyadic pigeonholing,

there is an r so that

|det A|
−3

∫
|

∧

ĝh
k ◦ T −1(x)|4 dx ≤ Cε(log R)4|det A|

−3
∫

|

∧

(ĝh
k ◦ T −1)ηr (x)|4 dx .

Finally, perform the change of variables x 7→ r x to get

|det A|
−3r3

∫
|

∧

(ĝh
k ◦ T −1)ηr (r x)|4 dx .

Now, note that
∧

(ĝh
k ◦ T −1)ηr (r x)=

∑
γk

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q(r x)

=

∑
i

∑
γk∈Si

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q(r x),

where Si is one of the ≲ε Rε many sets partitioning the γk from (1) of Proposition 20. Apply the triangle
inequality in the first sum over i and then apply Theorem 22 with parameters C−1

ε (R/r), β1 = 1, and
β2 = 0 to obtain∫

|gh
k |

4 ≲ε (log R)R6ε(r−1
k R)|det A|

−3r3
∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q(r x)

∣∣∣∣4

dx,

where ζ are disjoint collections of ∼ r2
k R−1 many neighboring γk . This number comes about since one

has rk many γk’s and they get sorted into ∼ R/rk many conical small caps, so each conical small cap
contains ∼ rk/(R/rk)= r2

k R−1 many γk’s. It remains to undo the initial steps which allowed us to apply
small cap decoupling for the cone. First do the change of variables x 7→ r−1x :

r3
∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q(r x)

∣∣∣∣4

dx

=

∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q(x)

∣∣∣∣4

dx .
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By Young’s convolution inequality (since multiplication on the Fourier side by ηr is equivalent to
convolution on the spatial side by η̌r , which is L1-normalized),∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q

∣∣∣∣4

≲
∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

]
q

∣∣∣∣4

.

Perform the change of variables x 7→ (A−1)∗x and use (12) to get

|det A|
3
∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

]
q

∣∣∣∣4

≲
∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)]q

∣∣∣∣4

,

which finishes the proof. □

Lemma 24 (high lemma II). Suppose that max(R−β, R−1/2)≤ r−1
k ≤ R−1/3. Then∫

|gh
k |

2+2/β1 ≤ CεR14εr−1
k R

∑
γk

∥ f k+1
γk

∥
4+4/β1

L4+4/β1 (R3)
,

where β1 ∈
[ 1

2 , 1
]

satisfies (rk R−1)−β1 = rk .

Proof. Repeat the argument from the proof of Lemma 23, using (2) in place of (1) from Proposition 20
and applying Theorem 22 with β1 as in the hypothesis of the lemma and β2 = 0. The result is∫

|gh
k |

2+2/β1 ≲ε R14ε(r−1
k R)

∑
γk

∫
|[
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)]q

|
2+2/β1 .

The R14ε factor is to account for the fact that the Fourier support of gh
k may only be identified up to some

Rε factors with small caps of the cone. Since 1 − ρ
≤r−1

k+1
= ρ≤Cε

− ρ
≤r−1

k+1
on the support of ̂| f k+1

γk
|
2, by

Young’s convolution inequality, we have∫
|[
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)]q

|
2+2/β1 ≲

∫
|(

̂
| f k+1
γk |2)q|2+2/β1 =

∫
| f k+1
γk

|
4+4/β1 . □

Lemma 25. For each m, 1 ≤ m ≤ N,∫
|Gh

m |
6
≤ CεRε

(∑
τm

∥Fm+1
τm

∥
4
L12(R3)

)3

.

Proof. Repeat the argument from the proof of Lemma 23, using Proposition 21 in place of Proposition 20
and applying canonical L6 cone decoupling [Bourgain and Demeter 2015] instead of small cap decoupling.
The result is ∫

|Gh
m |

6 ≲ε R8ε
∑
τm

∫
|[

̂
|Fm+1
τm |2ω̂τm (1 − ρ

≤R−1/3
m+1
)]q

|
6.

Since 1 − ρ
≤R−1/3

m+1
= ρ≤Cε

− ρ
≤R−1/3

m+1
on the support of ̂

|Fm+1
τm |2, by Young’s convolution inequality, we

have ∫
|[

̂
|Fm+1
τm |2ω̂τm (1 − ρ

≤R−1/3
m+1
)]q

|
6 ≲

∫
|(

̂
|Fm+1
τm |2)q|6 =

∫
|Fm+1
τm

|
12. □
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Theorem 26 (cylindrical decoupling over P1). Let P1
= {(t, t2) : 0 ≤ t ≤ 1} and for δ > 0, let Nδ(P

1)

denote the δ-neighborhood of P1 in R2. If h : R3
→ C is a Schwartz function with Fourier transform

supported in Nδ(P
1)× R, then, for each 4 ≤ p ≤ 6,∫

R3
|h|

p ≲ε δ
−ε

(∑
ζ

∥hζ∥2
L p(R3)

)p/2

,

where the ζ are products of ∼ δ1/2
× δ rectangles that partition Nδ(P

1) with R.

Proof. Begin by using Fourier inversion to write

h(x ′, x3)=

∫
Nδ(P1)

∫
R

ĥ(ξ ′, ξ3)e2π iξ ·x ′

e2π iξ3x3 dξ3 dξ ′.

For each x3, the function

x ′
7→

∫
Nδ(P1)

∫
R

ĥ(ξ ′, ξ3)e2π iξ3x3 dξ3e2π iξ ·x ′

dξ ′

satisfies the hypotheses of the decoupling theorem for P1. Use Fubini’s theorem to apply the ℓ2-decoupling
theorem for P1 from [Bourgain and Demeter 2015] to the inner integral∫

R

∫
R2

|h(x ′, x3)|
p dx ′ dx3 ≲ε

∫
R

δ−ε
(∑

ν

(∫
R2

∣∣∣∣∫
ν

∫
R

ĥ(ξ ′,ξ3)e2π iξ ·x ′

e2π iξ3x3 dξ3 dξ ′

∣∣∣∣p

dx ′

)2/p )p/2

dx3,

where {ν} form a partition of Nδ(P
1) into ∼ δ1/2

× δ blocks. By the triangle inequality, the right-hand
side above (omitting Cεδ−ε) is bounded by(∑

ν

(∫
R

∫
R2

∣∣∣∣∫
ν

∫
R

ĥ(ξ ′, ξ3)e2π iξ ·x ′

e2π iξ3x3 dξ3 dξ ′

∣∣∣∣p

dx ′ dx3

)2/p )p/2

.

The sets ν× R are the ζ in the statement of the lemma. □

Remark. The implicit upper bound in the statement of Theorem 26 is uniform in 4 ≤ p ≤ 6. For the
specific exponent p = 4, the implicit Cεδ−ε upper bound may be replaced by an absolute constant B
which does not depend on δ.

2.5. Local trilinear restriction for M3. The weight function WBr in the following theorem decays by a
factor of 10 off of the ball Br . It is specifically defined in Definition 8.

Proposition 27. Let s ≥ 10r ≥ 10 and let f : R3
→ C be a Schwartz function with Fourier transform

supported in Nr−1(M3). Suppose that τ 1
1 , τ

2
1 , τ

3
1 are canonical moment curve blocks at scale R1/3

1 which
satisfy (τ i

1, τ
j

1 )≥ s−1 for i ̸= j . Then∫
Br

| fτ 1
1

fτ 2
1

fτ 3
1
|
2 ≲ s3

|Br |
−2

(∫
| fτ 1

1
|
2WBr

)(∫
| fτ 2

1
|
2WBr

)(∫
| fτ 3

1
|
2WBr

)
.

The weight function WBr is the generic ball weight defined in Definition 8.
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Proof. Let m(t)= (t, t2, t3) and let Br−1 be the ball of radius r−1 in R3 centered at the origin. Then

WBr (x) fτ i
1
(x)=

∫
τ i

1+Br−1

ŴBr ∗ f̂τ i
1
(ξ i )e2π i x ·ξ i

dξ i

=

∫
τ i

1+Br−1

ŴBr ∗ f̂τ i
1
(ξ i

1, ξ
i
2, ξ

i
3)e

2π i x ·(ξ i
1,ξ

i
2,ξ

i
2) dξ i

1ξ
i
2ξ

i
3

=

∫
|{ωi ∈R2:|ωi |≤2r−1}

∫
Ii

ŴBr ∗ f̂τ i
1
(m(ξ i

1)+ (0, ωi ))e2π i x ·(m(ξ i
1)+(0,ωi )) dξ i

1 dωi ,

where Br−1 + supp fτ i
1
⊂ {m(ξ i

1)+ (0, ωi ) : ξ
i
1 ∈ I1, |ωi | ≤ r−1

}. Let {ωi ∈ R2
: |ωi | ≤ 2r−1

} = B(2)r−1 . Then
for ω = (ω1, ω2, ω3), we have∫

|WBr (x) fτ 1
1
(x)WBr (x) fτ 2

1
(x)WBr (x) fτ 3

1
(x)|2 dx

=

∫
Br

∣∣∣∣ 3∏
i=1

∫
B(2)

r−1

∫
Ii

ŴBr ∗ f̂τ i
1
(m(ξ i

1)+ (0, ωi ))e2π i x ·(m(ξ i
1)+(0,ωi )) dξ i

1 dωi

∣∣∣∣2

dx

≤

∫
Br

∣∣∣∣∫
(B(2)

r−1 )
3

∣∣∣∣ 3∏
i=1

∫
Ii

ŴBr ∗ f̂τ i
1
(m(ξ i

1)+ (0, ωi ))e2π i x ·m(ξ i
1) dξ i

1

∣∣∣∣ dω
∣∣∣∣2

dx

≤

(∫
(B(2)

r−1 )
3

(∫
Br

∣∣∣∣ 3∏
i=1

∫
Ii

ŴBr ∗ f̂τ i
1
(m(ξ i

1)+ (0, ωi ))e2π i x ·m(ξ i
1) dξ i

1

∣∣∣∣2

dx
)1/2

dω
)2

. (13)

For eachω ∈ (B(2)r−1)
3, analyze the inner integral in x . Use the abbreviation ŴBr ∗ f̂τ i

1
( · + (0, ωi ))= f̂ ωi

τ i
1
( · )

and further manipulate the innermost integral as a function of x :
3∏

i=1

∫
Ii

ŴBr ∗ f̂τi (m(ξ
i
1)+ (0, ωi ))e2π i x ·m(ξ i

1) dξ i
1

=

∫
I1×I2×I3

f̂ ω1

τ 1
1
(m(ξ 1

1 )) f̂ ω2

τ 2
1
(m(ξ 2

1 )) f̂ ω3

τ 3
1
(m(ξ 3

1 ))e
2π i x ·[m(ξ i

1)+m(ξ2
1 )+m(ξ3

1 )] dξ1,

where ξ1 = (ξ 1
1 , ξ

2
1 , ξ

3
1 ). Perform the change of variables ξ̃ = m(ξ 1

1 )+m(ξ 2
1 )+m(ξ 3

1 ). The Jacobian
factor is 1/|det J |, where det J is defined explicitly in terms of ξ1 by

det

 1 1 1
2ξ 1

1 2ξ 2
1 2ξ 3

1
3(ξ 1

1 )
2 3(ξ 2

1 )
2 3(ξ 3

1 )
2

 = 6(ξ2 − ξ1)(ξ3 − ξ1)(ξ3 − ξ2),

using the formula for the determinant of a Vandermonde matrix. Note that since (Ii , I j )≥ s−1
−2r−1 > 0,

|det J | is nonzero. The change of variables yields∫
m(I1)+m(I2)+m(I3)

f̂ ω1

τ 1
1
(m(ξ 1

1 )) f̂ ω2

τ 2
1
(m(ξ 2

1 )) f̂ ω3

τ 3
1
(m(ξ 3

1 ))e
2π i x ·ξ̃ 1

|det J (ξ1)|
d ξ̃ , (14)

where we interpret ξ1 in the integrand as implicitly depending on ξ̃ . Define Fω(ξ̃ ) by

χm(I1)+m(I2)+m(I3)(ξ̃ ) f̂ ω1

τ 1
1
(m(ξ 1

1 )) f̂ ω2

τ 2
1
(m(ξ 2

1 )) f̂ ω3

τ 3
1
(m(ξ 3

1 ))
1

|det J (ξ1)|
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so that we may view the integral in (14) as the inverse Fourier transform of Fω. The summary of the
inequality so far, picking up from (13) and using the change of variables and the definition of Fω, is∫

Br

| fτ 1
1
(x) fτ 2

1
(x) fτ 3

1
(x)|2 dx ≲

(∫
(B(2)

r−1 )
3

(∫
| qFω(x)|2 dx

)1/2

dω
)2

.

By Plancherel’s theorem, the right-hand side above equals(∫
(B(2)

r−1 )
3

(∫
|Fω(ξ̃ )|2 d ξ̃

)1/2

dω
)2

.

By Cauchy–Schwarz, this is bounded above by

|(B(2)r−1)
3
|

∫
(B(2)

r−1 )
3

∫
|Fω(ξ̃ )|2 d ξ̃ dω ∼ r−6

∫
(B(2)

r−1 )
3

∫
|Fω(ξ̃ )|2 d ξ̃ dω.

Undo the change of variables, again writing ξ̃ = m(ξ 1
1 )+m(ξ 2

1 )+m(ξ 3
1 ) to get

r−6
∫
(B(2)

r−1 )
3

∫
I1×I2×I3

| f̂ ω1

τ 1
1
(m(ξ 1

1 )) f̂ ω2

τ 2
1
(m(ξ 2

1 )) f̂ ω3

τ 3
1
(m(ξ 3

1 ))|
2
|det J (ξ1)|

−1 dξ1 dω.

Note that |det J (ξ1)| ≳ s−3, so the previous line is bounded by

r−6s3
∫
(B(2)

r−1 )
3

∫
| f̂ ω1

τ 1
1
(m(ξ 1

1 )) f̂ ω2

τ 2
1
(m(ξ 2

1 )) f̂ ω3

τ 3
1
(m(ξ 3

1 ))|
2 dξ1 dω ∼ r−6s3

3∏
i=1

∫
Nr−1 (τi )

|ŴBr ∗ f̂τ i
1
(ξ)|2 dξ.

By Plancherel’s theorem, this is bounded by

r−6s3
3∏

i=1

∫
R3

| fτ i
1
(x)|2WBr dx . □

3. A weak version of Theorem 3 for the critical exponent

3.1. The broad part of Uα . For three canonical blocks τ 1
1 , τ

2
1 , τ

3
1 (with dimensions ∼ R−1/3

1 ×R−2/3
1 ×R−1

1 )
which are pairwise ≥ 10CεR−ε/3-separated, where Cε is from Lemma 7, define the broad part of Uα to be

BrK
α =

{
x ∈ Uα : α ≤ K | fτ 1

1
(x) fτ 2

1
(x) fτ 3

1
(x)|1/3, max

τ i
1

| fτ i
1
(x)| ≤ α

}
.

We bound the broad part of Uα in the following proposition.

Proposition 28. Let R, K ≥ 1. Suppose that ∥ fγ ∥L∞(R3) ≤ 2 for all γ. Then

α6+2/β
|BrK

α | ≲ε K 50 R10εA10(M+N )
ε R2β+1

∑
γ

∥ fγ ∥2
L2(R3)

.

Proof of Proposition 28. Begin by observing that we may assume that Rβ ≤ α2. Indeed, if α2
≤ Rβ, then

we have
α6+2/β

|Uα| ≤ R2β+1
∥ f ∥

2
L2(R3)

≤ R2β+1
∑
γ

∥ fγ ∥2
2

using L2-orthogonality. Assume for the remainder of the argument that Rβ ≤ α2.
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We bound each of the sets BrK
α ∩3k , BrK

α ∩�m , and BrK
α ∩L in separate cases. It suffices to consider

the case that R is at least some constant depending on ε since if R ≤ Cε, we may prove the proposition
using trivial inequalities.

Case 1: bounding |BrK
α ∩3k |. By Lemma 16,

|BrK
α ∩3k | ≤ |

{
x ∈ Uα ∩3k : α ≲ K | f k+1

τ 1
1
(x) f k+1

τ 2
1
(x) f k+1

τ 3
1
(x)|1/3, max

τ i
1

| fτ i
1
(x)| ≤ α

}
.

By Lemma 7, the Fourier supports of f k+1
τ 1

1
, f k+1

τ 2
1

, f k+1
τ 3

1
are contained in the Cεr−1

k -neighborhood of
Cετ

1
1 ,Cετ

2
1 ,Cετ

3
1 respectively, which are ≥ CεR−ε/3-separated blocks of the moment curve. Let {Brk }

be a finitely overlapping cover of BrK
α ∩3k by rk-balls. For R large enough depending on ε, apply

Proposition 27 to get∫
Brk

| f k+1
τ 1

1
f k+1
τ 2

1
f k+1
τ 3

1
|
2 ≲ε Rε|Brk |

−2
(∫

| f k+1
τ 1

1
|
2WBrk

)(∫
| f k+1
τ 2

1
|
2WBrk

)(∫
| f k+1
τ 3

1
|
2WBrk

)
.

Using local L2-orthogonality (Lemma 10), each integral on the right-hand side above is bounded by

Cε

∫ ∑
τk

| f k+1
γk

|
2 WBrk

.

If x ∈ BrK
α ∩3k ∩ Brk , then the above integral is bounded by

Cε

∫ ∑
γk

| f k+1
γk

|
2
∗ωγk WBrk

≲ Cε|Brk |

∑
γk

| f k+1
γk

|
2
∗ωγk (x)

by the locally constant property (Lemma 9) and properties of the weight functions. The summary of the
inequalities so far is that

α6
|BrK

α ∩3k ∩ Brk | ≲ε K 6
∫

Brk

| f k+1
τ 1

1
f k+1
τ 2

1
f k+1
τ 3

1
|
2 ≲ε RεK 6

|Brk |gk(x)3,

where x ∈ BrK
α ∩3k ∩ Brk .

Recall that since x ∈3k , we have the lower bound AM−k
ε Rβ ≤ gk(x) (where Aε is from Definition 13),

which leads to the inequality

α6
|BrK

α ∩3k ∩ Brk | ≲ε K 6 Rε
1

(AM−k
ε Rβ)p

|Brk |gk(x)3+p

for any p ≥ 0. By Corollary 15, we also have the upper bound |gk(x)| ≤ 2|gh
k (x)|, so that

α6
|BrK

α ∩3k ∩ Brk | ≲ε K 6 Rε
1

(AM−k
ε Rβ)p

|Brk ||g
h
k (x)|

3+p

for any p ≥ 0. By the locally constant property applied to gh
k , |gh

k |
3+p ≲ε |gh

k ∗wBrk
|
3+p and by Cauchy–

Schwarz, |gh
k ∗wBrk

|
3+p ≲ |gh

k |
3+p

∗wBrk
. Combine this with the previous displayed inequality to get

α6
|BrK

α ∩3k ∩ Brk | ≲ε K 6 Rε
1

(AM−k
ε Rβ)p

∫
|gh

k |
3+pWBrk

.
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Summing over the balls Brk in our finitely overlapping cover of BrK
α ∩3k , we conclude that

α6
|BrK

α ∩3k | ≲ε K 6 Rε
1

(AM−k
ε Rβ)p

∫
R3

|gh
k |

3+p. (15)

We are done using the properties of the set BrK
α ∩3k , which is why we now integrate over all of R3 on

the right-hand side. We will choose different p > 0 and analyze the high part gh
k in two subcases which

depend on the size of rk .

Subcase 1a: R−β
≤ r−1

k ≤ R−1/2. This case only appears if 1
2 ≤ β. Choose p = 1 in (15) and use

Lemma 23 to obtain

α6
|BrK

α ∩3k | ≲ε K 6 Rε
1

AM−k
ε Rβ

CεRεr−1
k R

∑
ζ

∥∥∥∥∑
γk⊂ζ

| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1

∥∥∥∥4

L4(R3)

,

where ζ are collections of r2
k R−1 many adjacent γk .

The Fourier supports of the terms in the L4 norm are still approximately disjoint (actually Cε-
overlapping, see Proposition 19), so by Plancherel’s theorem and L2-orthogonality, we have∥∥∥∥∑
γk⊂ζ

| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1

∥∥∥∥4

L4(R3)

≲ε Rε
∥∥∥∥∑
γk⊂ζ

| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1

∥∥∥∥2

L∞(R3)

∑
γk⊂ζ

∥| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1
∥

2
L2(R3)

(16)

for each ζ . First bound the L∞ norm by∥∥∥∥∑
γk⊂ζ

| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1

∥∥∥∥2

L∞(R3)

≲ (#γk ⊂ ζ )2 max
γk

∥ f k+1
γk

∥
4
L∞(R3)

≲ (r2
k R−1)2 max

γk
∥ f k+1

γk
∥

4
L∞(R3)

,

where we used that ∥ωk ∗ ρ̌>r−1
k+1

∥1 ∼ 1. To bound each of the L2 norms in (16), we use cylindrical L4-
decoupling the parabola (Theorem 26) and unravel the pruning process using properties from Lemma 7:

∥| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1
∥

2
L2(R3)

≲ ∥ f k+1
γk

∥
4
L4(R3)

(by Young’s inequality)

≲ε Rε
2
( ∑
γk+1⊂γk

∥ f k+1
γk+1

∥
2
L4(R3)

)2

(by cylindrical L4-decoupling for P1)

≲

( ∑
γk+1⊂γk

∥ f k+2
γk+1

∥
2
L4(R3)

)2

(by (1) from Lemma 7)

≲ · · · ≲

( ∑
γN ⊂γk

∥ f N
γN

∥
2
L4(R3)

)2

≲

( ∑
γ⊂γk

∥ fγ ∥2
L4(R3)

)2

(by iterating the previous two inequalities).

Note that each application of L4-decoupling involves an explicit constant B in the upper bound, so it does
not depend on a scale R. The accumulated constant in the unwinding-the-pruning process above is BCε−1
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since there are fewer than ∼ ε−1 many different scales of γk until we arrive at γ. Use Cauchy–Schwarz
to bound the expression in the final upper bound above by

#γ ⊂ γk

∑
γ⊂γk

∥ fγ ∥4
L4(R3)

≲ (r−1
k Rβ)

∑
γ⊂γk

∥ fγ ∥4
L4(R3)

.

Using the assumption ∥ fγ ∥∞ ≲ 1 for each γ, we have ∥ fγ ∥4
L4(R4)

≲ ∥ fγ ∥2
L2(R3)

. The summary of the
argument in this case so far is that

α6
|BrK

α ∩3k | ≲ε K 6 R2εR−βr−1
k R

∑
ζ

(r2
k R−1)2 max

γk
∥ f k+1

γk
∥

4
∞
(r−1

k Rβ)
∑
γk⊂ζ

∥ fγ ∥2
2

≲ε K 6 R2εr2
k R−1 max

γk
∥ f k+1

γk
∥

4
∞

∑
γ

∥ fγ ∥2
2.

For the remainder of the proof, we use the notation ⪅ to mean ≲ε R8ε. It now suffices to verify that
r2

k R−1 maxγk ∥ f k+1
γk

∥
4
∞

⪅ R2β+1α−2/β. We will use the upper bounds

∥ f k+1
γk

∥∞ ≲ min
(

r−1
k Rβ, K 3 AM−k

ε

Rβ

α

)
(from (1) and (2) in Lemma 7). Suppose that rk <α. Use ∥ f k+1

γk
∥∞ ≲ K 3 AM−k

ε Rβ/α and β ≥
1
2 to check

(rk)
2/β−2

≤(Rβ)2/β−2
=⇒ r2

k R−1+4β
≤R2β+1r4−2/β

k

=⇒ r2
k R−1

(
Rβ

α

)4

≤ R2β+1α−2/β

=⇒ r2
k R−1 max

γk
∥ f k+1

γk
∥

4
∞
≲A4(M−k)

ε R2β+1α−2/β,

as desired. Now suppose that rk ≥ α. Then use ∥ f k+1
γk

∥∞ ≲ r−1
k Rβ and check

(rk)
2/β−2

≤ (Rβ)2/β−2
=⇒ r2

k R−1(r−1
k Rβ)4 ≤ R2β+1(rk)

−2/β

=⇒ r2
k R−1 max

γk
∥ f k+1

γk
∥

4
∞

≲ R2β+1(α)−2/β,

which finishes this subcase.

Subcase 1b: max(R−β, R−1/2)≤ r−1
k ≤ R−1/3. In this case, let β1 ∈

[1
2 , 1

]
satisfy (r−1

k R)−β1 = r−1
k and

take p = 2/β1 − 1 in (15). Then by Lemma 24

α6
|BrK

α ∩3k | ≲ε K 6 Rε
1

Rβ(2/β1−1)CεRεr−1
k R

∑
γk

∥ f k+1
γk

∥
4+4/β1

L4+4/β1 (R3)
.

Majorize each L4+4/β1 norm by a combination of L∞ and L6 norms to get

α6
|BrK

α ∩3k | ≲ε K 6 R2ε 1
Rβ(2/β1−1) r

−1
k R

∑
γk

max
γk

∥ f k+1
γk

∥
4/β1−2
∞

∥ f k+1
γk

∥
6
L6(R3)

.
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Repeat the unwinding-the-pruning argument from Subcase 1a to obtain

∥ f k+1
γk

∥
6
L6(R3)

≲ Bε5 Rε
4
( ∑
γ⊂γk

∥ fγ ∥2
L6(R3)

)3

≲ Bε5 Rε
4
(r−1

k Rβ)2
∑
γ⊂γk

∥ fγ ∥2
L2(R3)

,

where we used Cauchy–Schwarz and the assumption ∥ fγ ∥∞ ≲ 1 in the final inequality. Note that we
have the additional constant Bε

−1

ε5 Rε
4

due the accumulation of ≤ ε−1 many factors of the upper bound
Bε5 Rε

5
for L6-decoupling of the parabola with small parameter ε5. In summary,

α6
|BrK

α ∩3k | ≲ε K 6 R3ε 1
Rβ(2/β1−1) r

−1
k R

∑
γk

max
γk

∥ f k+1
γk

∥
4/β1−2
∞

(r−1
k Rβ)2

∑
γ⊂γk

∥ fγ ∥2
L2(R3)

.

It suffices to check that
1

Rβ(2/β1−1) r
−1
k R max

γk
∥ f k+1

γk
∥

4/β1−2
∞

(r−1
k Rβ)2 ⪅ R2β+1α−2/β,

which simplifies to
Rβ(1−2/β1)r−3

k max
γk

∥ fγk ∥
4/β1−2
∞

⪅ α−2/β .

Using ∥ f k+1
γk

∥∞ ≤ K 3 A(M−k)
ε Rβ/α, it further suffices to verify the inequality r−3

k Rβ(2/β1−1) ⪅ α4/β1−2−2/β.
Suppose that the exponent 4/β1 − 2 − 2/β ≥ 0. Use r−1

k ≤ R−1/3 and Rβ ≤ α2 to verify

(Rβ)2/β1−1−1/β
≤ (α2)2/β1−1−1/β

=⇒ r−3
k Rβ(2/β1−1)

≤ α4/β1−2−2/β .

Now suppose that the exponent 4/β1 −2−2/β < 0. Using Cauchy–Schwarz, the locally constant property,
and the definition of 3k , for x ∈ Uα ∩3k , we have

α2 ≲ #γk+1
∑
γk+1

| f k+2
γk+1

|
2 ≲ Rεrk gk+1(x)≲ Rεrk A(M−k−1)

ε Rβ .

Also use r1/β1
k = r−1

k R to verify

R−1
≤ r−1/β

k =⇒ r−3
k R ≤ (r−1

k R)2r−1−1/β
k

=⇒ r−3
k R ≤ r2/β1−1−1/β

k

=⇒ r−3
k R(RεA(M−k−1)

ε Rβ)2/β1−1−1/β
≤ (α2)2/β1−1−1/β

=⇒ r−3
k Rβ(2/β1−1)

≤ (RεA(M−k−1)
ε )8α4/β1−2−2/β,

as desired.

Case 2: bounding |BrK
α ∩�m |. Repeat the reasoning at the beginning of Case 1. By Lemma 16,

|BrK
α ∩�m | ≤ |

{
x ∈ Uα ∩�m : α ≲ K |Fm+1

τ 1
1
(x)Fm+1

τ 2
1
(x)Fm+1

τ 3
1
(x)|1/3, max

τ i
1

| fτ i
1
(x)| ≤ α

}
.

Let {BR1/3
m

} be a finitely overlapping cover of BrK
α ∩�m by R1/3

m -balls. Then by Proposition 27, for R
large enough depending on ε,∫

B
R1/3

m

|Fm+1
τ 1

1
Fm+1
τ 2

1
Fm+1
τ 3

1
|
2 ≲ε Rε|BR1/3

m
|
−2

(∫
|Fm+1
τ 1

1
|
2WB

R1/3
m

)(∫
|Fm+1
τ 2

1
|
2WB

R1/3
m

)(∫
|Fm+1
τ 3

1
|
2WB

R1/3
m

)
.



3578 LARRY GUTH AND DOMINIQUE MALDAGUE

The integrals on the right-hand side are bounded by

Cε

∫ ∑
τm

|Fm+1
τm

|
2WB

R1/3
m

using local L2-orthogonality (Lemma 10). If x ∈ BrK
α ∩�m ∩ BR1/3

m
, then the above integral is bounded by

Cε

∫ ∑
τm

|Fm+1
τm

|
2
∗ωτm WB

R1/3
m

≲ Cε
∑
τm

|Fm+1
τm

|
2
∗ωτm (x)= CεGm(x)

by the locally constant property. Recall that since x ∈�m , we have the lower bound AM+N−m
ε Rβ ≤ Gm(x).

Also, by Corollary 15, Gm(x)≤ 2|Gh
m(x)|. Combining the information so far yields

α6
|BrK

α ∩�m ∩ BR1/3
m

| ≲ε K 6 Rε
1

(AM+N−m
ε Rβ)3

|BR1/3
m

||Gh
m(x)|

6.

Use the locally constant property for Gh
m and sum over all BR1/3

m
to get

α6
|BrK

α ∩�m | ≲ε K 6 Rε
1

R3β

∫
R3

|Gh
m |

6.

Note that we dropped the unnecessary factors of AM+N−m
ε ≥ 1 and that we are done using the properties

of the set BrR1/3
m
α (τ, τ ′, τ ′′), which is why we now integrate over all of R3 on the right-hand side.

By Lemma 25, ∫
R3

|Gh
m |

6 ≲ε Rε
(∑
τm

∥Fm+1
τm

∥
4
L12(R3)

)3

.

Use Cauchy–Schwarz and then (2) (with Fm+1
τm+1

) of Lemma 7 to bound the L12 norm by a combination
of L∞ and L6 norms:(∑

τm

∥Fm+1
τm

∥
4
L12(R3)

)3

≤ RεK 6
(

K 3 AM+N−m
ε

Rβ

α

)6(∑
τm+1

∥Fm+1
τm+1

∥
2
L6(R3)

)3

.

Next, we use cylindrical L6-decoupling over the parabola to unwind the pruning process. For each τm+1,
we have

∥Fm+1
τm+1

∥
6
L6(R3)

≤ ∥Fm+2
τm+1

∥
6
L6(R3)

(by (1) of Lemma 7)

≤ Bε5 Rε
5
( ∑
τm+2⊂τm+1

∥ f m+2
τm+2

∥
2
L6(R3)

)3

(by cylindrical L6-decoupling for P1)

≤ · · · ≤ (Bε5 Rε
5
)N

( ∑
τN ⊂τm+1

∥ f N+1
τN

∥
2
L6(R3)

)3

(by iterating the previous two inequalities).

Note that {τN } are canonical blocks of the moment curve. Our goal is to have an expression involving the
small caps γ. We defined the γ so that they lie in the cylindrical region over canonical R−β

× R−2β blocks
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of P1. Therefore, we may continue unwinding the pruning process using Theorem 26, ultimately obtaining( ∑
τm+1

∥Fm+1
τm+1

∥
2
L6(R3)

)3

≤ (Bε5 Rε
5
)M+N

(∑
γ

∥ fγ ∥2
L6(R3)

)3

.

By Cauchy–Schwarz and using the assumption ∥ fγ ∥∞ ≲ 1, we have(∑
γ

∥ fγ ∥2
L6(R3)

)3

≤ #γ 2
∑
γ

∥ fγ ∥6
L6(R3)

≲ R2β
∑
γ

∥ fγ ∥2
L2(R3)

.

The summary in this case is that

α6
|BrK

α ∩�m | ≲ε K 30 R3εA10(M+N )
ε

1
R3β

(
Rβ

α

)6

(R2β)
∑
γ

∥ fγ ∥2
L2(R3)

.

It suffices to verify that R5βα−6
≤ R2β+1α−2/β. This follows immediately from the relation Rβ ≤ α2.

Case 3: bounding |Uα ∩ L|. Begin by using Lemma 16 to bound

α6+2/β
|BrK

α ∩L| ≲ K 12
∫

Uα∩L
| f |

2
|F1|

4+2/β .

Then use Cauchy–Schwarz and the locally constant property for G1 to get∫
Uα∩L

| f |
2
|F1|

4+2/β ≲ε Rε
∫

Uα∩L
| f |

2G2+1/β
1 .

Using the definition of L , we bound the factors of G1 by∫
Uα∩L

| f |
2(AM+N

ε Rβ)2+1/β .

Finally, use L2 orthogonality to conclude

α6+2/β
|BrK

α ∩L| ≲ε K 12 R2εA10(M+N )
ε R2β+1

∑
γ

∥ fγ ∥2
L2(R3)

. □

3.2. Wave packet decomposition and pigeonholing. To prove Theorem 3, it suffices to prove a local
version presented in the next lemma.

Lemma 29. Let 1
3 ≤ β ≤ 1 and p ≥ 2. Then, for any Rmax(2β,1)-ball BRmax(2β,1) ⊂ R3, suppose that

∥ f ∥
p
L p(BRmax(2β,1) )

≤ CεRε(Rβ(p/2−1)
+ Rβ(p−4)−1)

∑
γ

∥ fγ ∥
p
L p(R3)

for any Schwartz function f : R3
→ C with Fourier transform supported in M3(Rβ, R). Then Theorem 3

is true.

Proof. Write

∥ f ∥
p
L p(R3)

≲
∑

BRmax(2β,1)

∫
BRmax(2β,1)

| f |
p,
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where the sum is over a finitely overlapping cover of R3 by Rmax(2β,1)-balls. Let φB be a weight function
decaying by order 100 away from BRmax(2β,1) , satisfying φB ≳ 1 on BRmax(2β,1) , and with Fourier transform
supported in an R− max(2β,1) neighborhood of the origin. The Fourier support of each fγφB is contained
in a 2R−β

× 4R−2β
× 21/βR−1 small cap. By the triangle inequality, there is a subset S of the small

caps γ so that for each γ ∈ S, the Fourier support of fγφB is contained in a unique small cap and

∥ f ∥
p
L p(BRmax(2β,1) )

≲

∥∥∥∥∑
γ∈S

fγφB

∥∥∥∥p

L p(BRmax(2β,1) )

.

Then by applying the hypothesized local version of small cap decoupling,∥∥∥∥∑
γ∈S

fγφB

∥∥∥∥p

L p(BRmax(2β,1) )

≤ CεRε(Rβ(p/2−1)
+ Rβ(p−4)−1)

∑
γ∈S

∥ fγφB∥
p
L p(R3)

.

It remains to note that
∑

BRmax(2β,1)

∫
| fγ |pφ

p
B ≲

∫
| fγ |p. □

It further suffices to prove a weak, level-set version of Theorem 3.

Lemma 30. Let p ≥ 2. For each BR2 and Schwartz function f : R3
→ C with Fourier transform supported

in M3(Rβ, R), there exists α > 0 such that

∥ f ∥
p
L p(BRmax(2β,1) )

≲p (log R)α p
|{x ∈ BRmax(2β,1) : α ≤ | f (x)|}| + R−500p

∑
γ

∥ fγ ∥
p
L p(R3)

.

Proof. Split the integral as∫
BRmax(2β,1)

| f |
p
=

∑
R−1000≤λ≤1

∫
{x∈BRmax(2β,1) :λ∥ f ∥L∞(B

Rmax(2β,1) )≤| f (x)|≤2λ∥ f ∥L∞(B
Rmax(2β,1) )}

| f |
p

+

∫
{x∈BRmax(2β,1) :| f (x)|≤R−1000∥ f ∥L∞(Rmax(2β,1))}

| f |
p,

in which λ varies over dyadic values in the range [R−1000, 1]. If one of the ≲ log R many terms in the
first sum dominates, then we are done. Suppose instead that the second expression dominates:∫

BRmax(2β,1)

| f |
p
≤ 2

∫
{x∈BRmax(2β,1) :| f (x)|≤R−1000∥ f ∥L∞(Rmax(2β,1))}

| f |
p ≲ R3 R−1000p

∥ f ∥
p
L∞(BRmax(2β,1) )

.

Then by Hölder’s inequality, we have∫
BRmax(2β,1)

| f |
p ≲ R3 R−1000p+(p−1)

∑
γ

∥ fγ ∥
p
L∞(BRmax(2β,1) )

.

Finally, by the locally constant property and Hölder’s inequality,

∥ fγ ∥
p
L∞(BRmax(2β,1) )

≲ ∥| fγ | ∗ωγ ∗∥
p
L∞(BRmax(2β,1) )

≲p ∥| fγ |p
∗ωγ ∗∥L∞(BRmax(2β,1) ) ≲

∫
R3

| fγ |p. □

Use the notation
Uα = {x ∈ BRmax(2β,1) : α ≤ | f (x)|}.
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We will show that to estimate the size of Uα , it suffices to replace f with a version whose wave packets
have been pigeonholed. Write

f =

∑
γ

∑
T ∈Tγ

ψT fγ , (17)

where, for each γ, {ψT }T ∈Tγ is the partition of unity from a partition of unity from Section 2.1. If

α ≤ Cε(log R)R−500 max
γ

∥ fγ ∥∞,

then by an argument analogous to the one dealing with the low integral over {x : | f (x)| ≤ R−1000
∥ f ∥∞}

in the proof of Lemma 30, bounding α p
|Uα| by the right-hand side of the small cap decoupling theorem

is trivial. Let φB be the weight function from Lemma 29.

Proposition 31 (wave packet decomposition). Let α > Cε(log R)R−100maxγ ∥ fγ ∥L∞(R3). There exist
subsets S ⊂ {γ } and T̃γ ⊂ Tγ , as well as a constant A > 0 with the following properties:

|Uα| ≲ (log R)
∣∣∣∣{x ∈ Uα : α ≲

∣∣∣∣∑
γ∈S

∑
T ∈T̃γ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣, (18)

∥∥∥∥ ∑
T ∈T̃γ

ψTφB fγ

∥∥∥∥
L∞(R3)

∼ A for all γ ∈ S, (19)

#T̃γ Ap Rβ+2β+1 ≲

∥∥∥∥ ∑
T ∈T̃γ

ψTφB fγ

∥∥∥∥
L p(R3)

≲ R3pε#T̃γ Ap Rβ+2β+1 for all γ ∈ S. (20)

Proof. Split the sum (17) into

φB f =

∑
γ

∑
T ∈Tc

γ

ψTφB fγ +

∑
γ

∑
T ∈T

f
γ

ψTφB fγ , (21)

where the close set is
Tc
γ := {T ∈ Tγ : T ∩ R10 BRmax(2β,1) ̸= ∅}

and the far set is
T f
γ := {T ∈ Tγ : T ∩ R10 BRmax(2β,1) = ∅}.

Using decay properties of the partition of unity, for each x ∈ BRmax(2β,1) ,∣∣∣∣∑
γ

∑
T ∈T

f
γ

ψT (x)φB(x) fγ (x)
∣∣∣∣ ≲ R−1000 max

γ
∥φB fγ ∥L∞(BRmax(2β,1) ).

Therefore, using the assumption that α is at least R−100 maxγ ∥ fγ ∥L∞(BRmax(2β,1) ),

|Uα| ≤ 2
∣∣∣∣{x ∈ Uα : α ≤ 2

∣∣∣∣∑
γ

∑
T ∈T̃c

γ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣.

The close set has cardinality |Tc
γ | ≤ R33. Let

M = max
γ

max
T ∈Tc

γ

∥ψTφB fγ ∥L∞(R3). (22)
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Split the remaining wave packets into∑
γ

∑
T ∈Tc

γ

ψTφB fγ =

∑
γ

∑
R−103

≤λ≤1

∑
T ∈Tc

γ,λ

ψTφB fγ +

∑
γ

∑
T ∈Tc

γ,s

ψTφB fγ , (23)

where λ is a dyadic number in the range [R−103
, 1],

Tc
γ,λ := {T ∈ Tc

γ : ∥ψTφB fγ ∥L∞(R3) ∼ λM},

Tc
γ,s := {T ∈ Tc

γ : ∥ψTφB fγ ∥L∞(R3) ≤ R−1000 M}.

Again using the lower bound for α, the small wave packets cannot dominate and we have

|Uα| ≤ 4
∣∣∣∣{x ∈ Uα : α ≤ 4

∣∣∣ ∑
γ

∑
R−103

≤λ≤1

∑
T ∈Tc

γ,λ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣.

By dyadic pigeonholing, for some λ ∈ [R−1000, 1],

|Uα| ≲ (log R)
∣∣∣∣{x ∈ Uα : α ≲ (log R)

∣∣∣∣∑
γ

∑
T ∈Tc

γ,λ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣.

Finally, we analyze the L p norm for each p ≥ 2 and each γ. Note that we have the pointwise inequality∣∣∣∣ ∑
T ∈Tc

γ,λ

ψT (x)φB(x) fγ (x)
∣∣∣∣ =

∣∣∣∣ ∑
T ∈Tc

γ,λ

x∈RεT

ψT (x)φB(x) fγ (x)
∣∣∣∣ + ∣∣∣∣ ∑

T ∈Tc
γ,λ

x ̸∈RεT

ψT (x)φB(x) fγ (x)
∣∣∣∣

≤

∣∣∣∣ ∑
T ∈Tc

γ,λ

x∈RεT

ψT (x)φB(x) fγ (x)
∣∣∣∣ + CεR−1000

|φB(x) fγ (x)|.

Let S ′ be the subset of {γ } for which∥∥∥∥ ∑
T ∈Tc

γ,λ

ψTφB fγ

∥∥∥∥
L∞(R3)

≥ CεR−500 max
γ

∥φB fγ ∥L∞(R3).

Using the lower bound for α, we then have

|Uα| ≲ (log R)
∣∣∣∣{x ∈ Uα : α ≲ (log R)

∣∣∣ ∑
γ∈S ′

∑
T ∈Tc

γ,λ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣.

It follows from the pointwise inequality above that, for each γ ∈ S ′,

λM ≲

∥∥∥∥ ∑
T ∈Tc

γ,λ

ψTφB fγ

∥∥∥∥
L∞(R3)

≲ R3ελM.

Perform one more dyadic pigeonholing step to obtain a dyadic µ ∈ [1, Rε] for which

|Uα| ≲ (log R)2
∣∣∣∣{x ∈ Uα : α ≲ (log R)2

∣∣∣ ∑
γ∈S

∑
T ∈Tc

γ,λ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣,

where S is the set of γ satisfying
∥∥∑

T ∈Tc
γ,λ
ψTφB fγ

∥∥
L∞(R3)

∼ µM.
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It remains to check the property about the L p norms. For each γ ∈ S, using the locally constant
property, we have

#Tc
γ,λRβ+2β+1(µM)p ≲

∑
T ∈Tc

γ,λ

∫
|ψTφB fγ |p ≲

∫ ∣∣∣∣ ∑
T ∈Tc

γ,λ

ψTφB fγ

∣∣∣∣p

≲
∫ ∣∣∣∣ ∑

T ∈Tc
γ,λ

x∈RεT

ψT (x) fγ (x)
∣∣∣∣p

dx + CεR−1000p
∥φB fγ ∥

p
L p(R3)

≲ R3pε#Tc
γ,λRβ+2β+1(µM)p

+ CεR−1000p
∥φB fγ ∥

p
L p(R3)

.

By construction, we have M ≥ CεR−501 maxγ ∥ fγ ∥L∞(R3). It follows that

CεR−1000p
∥φB fγ ∥

p
L p(R3)

≲ R−100#Tc
γ,λRβ+2β+1(µM)p,

which concludes the proof. □

3.3. Trilinear reduction. We will present a broad/narrow analysis to show that Proposition 28 implies
the following level set version of Theorem 3 for the critical p = 6 + 2/β.

Theorem 32. For any R ≥ 2, 1
3 ≤ β ≤ 1, and α > 0,

α6+2/β
|Uα| ≲ε RO(ε)R2β+1

∑
γ

∥ fγ ∥2
2

for any Schwartz function f : R3
→ C with Fourier transform supported in M3(Rβ, R) and satisfying

∥ fγ ∥∞ ≤ 2 for all γ.

Proposition 28 implies Theorem 32. We present an algorithm incorporating a broad-narrow argument. For
each k, 1 ≤ k ≤ N, recall that {τk} is a collection of canonical ∼ R−1/3

k × R−2/3
k × R−1

k moment curve
blocks. Write ℓ(τ )= r−1 to denote that τ is a canonical r−1

× r−2
× r−3 moment curve block.

Step 1 of the algorithm is as follows. Let Eε be a constant we choose to be larger than 10Cε, where
Cε is from Lemma 7. We have the broad/narrow inequality

| f (x)| ≤ 4Eε max
τ1

| fτ1(x)| + R2ε max
d(τ i

1,τ
j

1 )≥EεR−1/3
1

| fτ 1
1
(x) fτ 2

1
(x) fτ 3

1
(x)|1/3, (24)

where the second term is the maximum over 3-tuples of τ1 which are pairwise ≥ EεR−1/3
1 -separated. In-

deed, suppose that the set {τ1 : | fτ1(x)|≥ R−1/3
1 maxτ ′

1
| fτ ′

1
(x)|} has at least 3Eε elements. Then we can find

three τ 1
1 , τ

2
1 , τ

3
1 which are pairwise ≥ EεR−1/3

1 -separated and satisfy | f (x)|≤ R2ε
| fτ 1

1
(x) fτ 2

1
(x) fτ 3

1
(x)|1/3.

If there are fewer than 3Eε elements, then | f (x)| ≤ 3Eε maxτ ′

1
| fτ ′

1
(x)| + maxτ ′

1
| fτ ′

1
(x)|.

Suppose that

|Uα| ≤ 2
∣∣{x ∈ Uα : max

τ1
| fτ1(x)| ≤ α

}∣∣.
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If this does not hold, then proceed to Step 2 of the algorithm. Further suppose that there are blocks τ i
1

which satisfy d(τ i
1, τ

j
1 )≥ EεR−1/3

1 and

|Uα| ≲ R3ε∣∣{x ∈ Uα : α ≤ 2R2ε
| fτ 1

1
(x) fτ 2

1
(x) fτ 3

1
(x)|1/3, max

τ1
| fτ1(x)| ≤ α

}∣∣. (25)

If (25) does not hold, then proceed to Step 2 of the algorithm. Assuming (25), apply Proposition 28 to
get the inequality

α6+2/β
|Uα| ≲ε RO(ε)R2β+1

∑
γ

∥ fγ ∥2
2,

which terminates the algorithm.
Next, we describe step k of the algorithm for k ≥ 2 and R2/3

k−1 ≤ R1−β. The input for step k is

|Uα| ≲ε (log R)k−1∣∣{x ∈ Uα : α ≲ (log R)k−1 max
τk−1

| fτk−1(x)|
}∣∣. (26)

For each τk−1, we have the broad-narrow inequality

| fτk−1(x)| ≤ 2Eε max
τk⊂τk−1

| fτk (x)| + R2ε max
τ i

k⊂τk−1

d(τ i
k ,τ

j
k )≥EεR−1/3

k

| fτ 1
k
(x) fτ 2

k
(x) fτ 3

k
(x)|1/3.

Either proceed to Step k + 1 or assume that

|Uα| ≲ (log R)k−1∣∣{x ∈ Uα : α ≲ (log R)k−1 max
τk−1

| fτk−1(x)|, max
τk

| fτk (x)| ≤ α
}∣∣.

Again, either proceed to Step k + 1 or assume further that there are τ i
k ⊂ τk−1 which are pairwise

≥ EεR−1/3
k -separated and satisfy

|Uα| ≤ (log R)k R3ε
∑
τk−1

∣∣{x ∈ Uα : α ≲ (log R)k−1 Rε| fτ 1
k
(x) fτ 2

k
(x) fτ 3

k
(x)|1/3, max

τk
| fτk (x)| ≤ α

}∣∣.
By rescaling for the moment curve, there exists a linear transformation T so that | fτ i

k
◦ T | = |gτ i

k
|, where

the τ i
k are pairwise ≳ EεR−1/3

1 -separated blocks and g is Fourier supported in the anisotropic neighborhood
M3(R−1/3

k−1 Rβ, R−1
k−1 R). Indeed, suppose that τk−1 is the l-th piece

τk−1 = {(ξ1, ξ2, ξ3) : l R−1/3
k−1 ≤ ξ1 < (l + 1)R−1/3

k−1 , |ξ2 − ξ 2
1 | ≤ R−2/3

k−1 , |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ R−1

k−1}.

Since the Fourier support of f is in M3(Rβ, R) by hypothesis, the Fourier support of fτk−1 is in τk−1 ∩

M3(Rβ, R). Define the affine transformation L(ξ1, ξ2, ξ3) by

ξ1 7→ R1/3
k−1(ξ1 − l R−1/3

k−1 ),

ξ2 7→ R2/3
k−1(ξ2 − l2 R−2/3

k−1 )− 2l R1/3
k−1(ξ1 − l R−1/3

k−1 ),

ξ3 7→ Rk−1(ξ3 − l3 R−1
k−1)− 3l R2/3

k−1(ξ2 − l2 R−2/3
k−1 )+ 3l2 R1/3

k−1(ξ1 − l R−1/3
k−1 ).

This affine map satisfies L(τk−1 ∩M3(Rβ, R))= M3(R−1/3
k−1 Rβ, R−1

k−1 R). If we write L−1(ξ1, ξ2, ξ3)=

A(ξ1, ξ2, ξ3) + b, where A is a linear map, then the rescaling map T above is equal to (A−1)∗. In
this step, we have assumed that Rk−1 R−1

≤ R1/3
k−1 R−β. One may then verify that L(γ ) = γ are
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∼ R1/3
k−1 R−β

×R2/3
k−1 R−2β

×Rk−1 R−1 small caps partitioning M3(R−1/3
k−1 Rβ, R−1

k−1 R). Apply Proposition 28
to the rescaled functions to obtain the inequality

α6+2/β ′∣∣{x ∈ Uα : α ≲ (log R)k−1 Rε|gτ 1
k
(x)gτ 2

k
(x)gτ 3

k
(x)|1/3, max

τ k⊂τ k−1
|gτ k (x)| ≤ α

}∣∣
≲ε R3ε+10ε(R−1

k−1 R)2β
′
+1

∑
γ

∥gγ ∥2
2,

where β ′
∈

[ 1
3 , 1

]
is defined by (Rk−1 R−1)β

′

= R1/3
k−1 R−β. By undoing the rescaling change of variables

and summing over τk−1, this implies

α6+2/β ′

|Uα| ≲ε R13ε(R−1
k−1 R)2β

′
+1

∑
γ

∥ fγ ∥2
2.

It suffices to verify that (R−1
k−1 R)2β

′
+1 ⪅ R2β+1/α2/β−2/β ′

. Use the upper bound α ⪅ R−1/3
k−1 Rβ from

the step we are considering so that it suffices to verify (R−1
k−1 R)2β

′
+1(R−1/3

k−1 Rβ)2/β−2/β ′

⪅ R2β+1, which
simplifies to R−2β ′

−1−2/3β+2/3β ′

k−1 ⪅ R2β−2β ′
−2+2β/β ′

. Using the definition of β ′, this further simplifies to
R−2β ′

−1−2/3β+2/3β ′

k−1 ⪅ R(−β
′
+1/3)(2+2/β ′)

k−1 , which is true since β ≤ 2. In this case, the algorithm terminates.
Next, we describe step k with k ≥ 2 and R2/3

k−1 ≥ R1−β. The input for step k is

|Uα| ≤ (log R)k−1∣∣{x ∈ Uα : α ≲ (log R)k−1 max
τk−1

| fτk−1(x)|
}∣∣. (27)

Let {ζ } be a partition of M3(Rβ, R) into ∼ R2/3
k−1 R−1

× R4/3
k−1 R−2

× R−1 small caps. By Proposition 31,
we may assume that there are versions f̃τk−1 of the fτk−1 whose wave packets corresponding to ζ have
been localized and pigeonholed and which satisfy

|Uα| ≲ (log R)k
∣∣{x ∈ Uα : α ≲ (log R)k max

τk−1
| f̃τk−1(x)|

}∣∣.
As in the previous case, either we proceed to Step k + 1 or we have

|Uα| ≤ (log R)k R3ε
∑
τk−1

∣∣{x ∈ Uα : α ≲ (log R)k | f̃τ 1
k
(x) f̃τ 2

k
(x) f̃τ 3

k
(x)|1/3, max

τk⊂τk−1
| f̃τk (x)| ≤ α

}∣∣.
By the same rescaling argument as above, let T be the linear transformation so that | f̃τ i

k
◦T |= |gτ i

k
| and the

τ i
k are pairwise ≳ EεR−1/3

1 -separated blocks and g is Fourier supported in the anisotropic neighborhood
M3(R−1/3

k−1 Rβ, R−1
k−1 R). Note that each | f̃ζ ◦ T | = |gζ |, where ζ is an Rk−1 R−1

× R2
k−1 R−2

× Rk−1 R−1

small cap. Apply Proposition 28 to the rescaled functions (maxζ ∥gζ∥∞)
−1(gτ 1

k
+ gτ 2

k
+ gτ 3

k
) to obtain

the inequality

α8∣∣{x ∈ Uα : α ≤ (log R)k |gτ 1
k
(x)gτ 2

k
(x)gτ 3

k
(x)|1/3, max

τ k
|gτ k (x)| ≤ α

}∣∣
≲ε R10ε(R−1

k−1 R)2(1)+1 max
ζ

∥gζ∥6
∞

∑
ζ

∥gζ∥2
2.

By undoing the rescaling change of variables and summing over τk−1, this implies

α8
|Uα| ≲ε R10ε(R−1

k−1 R)3(max
ζ

∥ f̃ζ∥∞)
6
∑
ζ

∥ f̃ζ∥2
2.
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By properties of the pigeonholing lemma, for each ζ , (maxζ ∥ f̃ζ∥∞)
6
∥ f̃ζ∥2

2 ≲ε R3ε(R2/3
k−1 R−1 Rβ)2∥ fζ∥6

6.
By cylindrical L6-decoupling (Theorem 26), for each ζ ,

∥ fζ∥6
6 ≲ε Rε

(∑
γ⊂ζ

∥ fγ ∥2
6

)3

≲ε Rε(R2/3
k−1 R−1 Rβ)2

∑
γ⊂ζ

∥ fγ ∥2
2.

The summary of step k in this case is that

α8
|Uα| ≲ε R3ε+20ε(R−1

k−1 R)3(R2/3
k−1 R−1 Rβ)4

∑
γ

∥ f̃γ ∥2
2.

It remains to verify that R−1/3
k−1 R4β−1 ⪅ R2β+1/α2/β−2. This is true since R1/3

k−1 ≥ 1 and α ≤ Rβ. The
algorithm terminates in this case.

The final step, if the algorithm has not terminated yet, gives the case

|Uα| ≲ (log R)N
∣∣{x ∈ Uα : α ≲ (log R)N max

τN
| fτN (x)|

}∣∣.
Write τN = θ and use trivial inequalities:

α6+2/β∣∣{x ∈ Uα : α ≲ (log R)N max
θ

| fθ (x)|
}∣∣ ≲ε (log R)N

∑
θ

∫
| fθ |6+2/β

≲ε (log R)N
∑
θ

max
θ

∥ fθ∥4+2/β
∞

∫
| fθ |2

≲ε (log R)N
∑
θ

max
θ
(#γ ⊂ θ)4+2/β

∫ ∑
γ⊂θ

| fγ |2

≲ε (log R)N R(β−1/2)(4+2/β)
∑
γ

∥ fγ ∥2
2,

where we used Lemma 7 for the L∞ bound. Technically, our algorithm could give us a version of f whose
wave packets have been pigeonholed at a few scales. In that case, we incorporate a process analogous to
that of “unwinding the pruning” from the proof of Proposition 28 into the trivial argument above. Noting
that N ∼ ε−1, and (log R)N (log R)N ≲ε Rε, we are done since (β − 1/2)(4 + 2/β) ≤ 2β + 1, which is
equivalent to β ≤ 1. □

3.4. Proof that Theorem 32 implies Theorem 3. We divide the work into two propositions. First, in
Proposition 33, we show that Theorem 32 implies the critical exponent p = 6+2/β version of Theorem 3.
Then, we show that the general Theorem 3 follows from the critical exponent case.

Proposition 33. Theorem 3 holds for the critical exponent p = 6 + 2/β.

Proof. Fix p = 6 + 2/β. By Lemma 29, it suffices to bound the L p norm of f on a fixed ball BRmax(2β,1) .
By Lemma 30, there is a constant α > 0 (which we may assume is ≥ Cε(log R)R−100 maxγ ∥ fγ ∥∞) so
that it suffices to bound α p

|Uα| for Uα = {x ∈ BRmax(2β,1) : α ≤ | f (x)|}. Finally, by Proposition 31, we may
replace f by a pigeonholed and localized version f̃ . One of the properties of the pigeonholed version is
that, for all γ, either ∥ f̃γ ∥∞ ∼ A or ∥ f̃γ ∥∞ = 0 for some constant A.
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Apply Theorem 32 to the function f̃ /A to obtain the inequality

(α/A)p
|Uα| ≲ε R20εR2β+1

∑
γ

∥ f̃γ /A∥
2
L2(R3)

.

It remains to note that by (20) from the pigeonholing proposition,

Ap−2
∥ f̃γ ∥2

L2(Rmax(2β,1))
≲ R6εAp#T̃γ Rβ+2β+1 ≲ R6ε

∥ f̃γ ∥
p
L p(R3)

.

Since | f̃γ | ≲ | fγ | for each γ, this concludes the proof. □

Next, we show that Theorem 3 for general p follows from Theorem 3 at the critical exponent p =6+2/β
via an interpolation argument with L2 and L∞ estimates.

Proof of Theorem 3. Let p ≥ 2. Repeat the initial steps in the proof of Proposition 33 so that it suffices to
prove

α p
|Uα| ≲ε Rε(Rβ(p/2−1)

+ Rβ(p−4)−1)
∑
γ

∥ fγ ∥
p
L p(R3)

,

where f has been pigeonholed and localized as in Proposition 31. First suppose that 2 ≤ p ≤ 6 + 2/β.
By Proposition 33, we have

α6+2/β
|Uα| ≲ε RεR2β+1

∑
γ

∥ fγ ∥
6+2/β
L6+2/β (R3)

.

Write A ∼ maxγ ∥ fγ ∥∞. We would be done if R2β+1 A6+2/β−p ≲ Rβ(p/2−1)α6+2/β−p, which simplifies
to Rβ/2 A ≲ α. If this does not hold, then using L2 orthogonality,

α p
|Uα| ≲ Rβ(p/2−1)Ap−2

∑
γ

∥ fγ ∥2
2.

By (20), Ap−2
∥ fγ ∥2

2 ≲ R3ε
∥ fγ ∥

p
p, which finishes this case.

Next, assume that 6 + 2/β ≤ p. Then by Proposition 33,

α p
|Uα| ≲ε RεR2β+1

∑
γ

α p−6−2/β
∥ fγ ∥

6+2/β
6+2/β .

We would be done if R2β+1α p−6−2/β ≲ Rβ(p−4)−1 Ap−6−2/β, which simplifies to α ≲ Rβ A. Since
α ≲ | f (x)| =

∣∣∑
γ fγ (x)

∣∣ and #γ ≲ Rβ, this is true. □
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THE QUERMASSINTEGRAL-PRESERVING MEAN CURVATURE FLOW
IN THE SPHERE

ESTHER CABEZAS-RIVAS AND JULIAN SCHEUER

We introduce a mean curvature flow with global term of convex hypersurfaces in the sphere, for which
the global term can be chosen to keep any quermassintegral fixed. Then, starting from a strictly convex
initial hypersurface, we prove that the flow exists for all times and converges smoothly to a geodesic
sphere. This provides a workaround to an issue present in the volume-preserving mean curvature flow in
the sphere introduced by Huisken (1987). We also classify solutions for some constant curvature-type
equations in space forms, as well as solitons in the sphere and in the upper branch of the De Sitter space.

1. Introduction and statement of main results

Let n ≥ 2, and let Mn
⊂ Mn+1

K be a smooth, closed, embedded hypersurface in a simply connected space
form Mn+1

K of constant curvature K ∈ R, given by the embedding x0. We consider a family of embeddings
x = x(t, · ) satisfying the mean curvature-type flow with a global forcing term

∂t x = (µ(t)cK (r)− H)ν, (1-1)

which has initial condition x(0, · )= x0. Here H is the mean curvature and ν the outward unit normal of
the evolving hypersurfaces Mt . For convex hypersurfaces (i.e., with κ1 ≥ 0, where κ1 ≤ · · · ≤ κn denote
the principal curvatures), the sign conventions are taken so that −Hν points inwards. Moreover, let r
denote the radial distance to a given point O ∈ Mn+1

K , which we call the origin in the sequel. This means
that the flow (1-1) depends on the choice of the origin and, in fact, along the flow we will change the
origin in a controlled way. We use the notation

cK (r)= s′

K (r), where sK (r)=


K −1/2 sin(

√
Kr) if K > 0,

r if K = 0,
|K |

−1/2 sinh(
√

|K |r) if K < 0.
(1-2)

If σℓ represents the ℓ-th elementary symmetric function, we define the time-dependent term by

µ(t)=

∫
M Hσℓ dVt∫
M cKσℓ dVt

(1-3)
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for each ℓ= 0, 1, . . . , n, where dVt denotes the volume element of Mt . This choice guarantees that (1-1)
gives a family of globally constrained mean curvature flows, where µ can be chosen to preserve any of
the n+1 quermassintegrals Wℓ(�t) of the evolving hypersurfaces Mt (see Section 2.1 for a review of the
quermassintegrals). Here �t denotes the convex region enclosed by Mt = x(t,Sn)— note that we may
assume that the common domain of the embeddings is Sn due to convexity.

Let us stress that, for ℓ= 0 and K = 0, the flow (1-1) with nonlocal term as in (1-3) coincides with the
volume-preserving mean curvature flow (VPMCF) introduced by Huisken [1987]. He proved that strictly
convex hypersurfaces in Rn+1 remain convex and embedded under the flow, and the solution exists for all
times and converges to a round sphere smoothly as t → ∞. Since then it was still an open question of
extending the result to an (n+1)-dimensional sphere Sn+1

K , K > 0, where convexity can be lost under
VPMCF, as pointed out in [Huisken 1987, p. 38].

Our main result settles this question by proposing the flow (1-1) as the most natural generalization of
the VPMCF to a space form with positive curvature. Indeed, such a definition preserves convexity under
the flow, and allows us to prove the following version of Huisken’s original result within the half sphere,
where, for a point p ∈ Sn+1

K , we denote by H(p) the open hemisphere around p.

Theorem 1.1. Let n ≥ 2, and let M0 ⊂ Sn+1
K be a strictly convex hypersurface enclosing a domain �0.

Then there exists a finite system of origins (Oi )0≤i≤m and numbers 0 = t0 < t1 < · · · < tm < tm+1 = ∞

such that the problem
∂t x = (µi (t)cK (ri )− H)ν, t ∈ [ti , ti+1), 0 ≤ i ≤ m,

x(0,M)= M0,

x(ti ,M)= lim
t↗ti

Mt , 1 ≤ i ≤ m,

where ri is the distance to Oi and µi is given as in (1-3) to keep the quermassintegral Wℓ(�t) fixed for
any ℓ= 0, 1, . . . , n, has a solution

x : [0,∞)× Sn
→ Sn+1

K .

For every t ≥ 0, the embeddings x(t, · ) smoothly map Sn to strictly convex hypersurfaces, with

Oi ∈�t and Mt ⊂ H(Oi ) for all t ∈ [ti , ti+1),

and satisfy spatial C∞-estimates which are uniform in time. The restriction

x : [tm,∞)× Sn
→ Sn+1

K

is smooth and converges for t → ∞ in C∞ to a geodesic sphere around Om with radius determined by
Wℓ(Br )= Wℓ(�0).

At this stage we should mention that Guan and Li [2015] invented a purely local mean curvature-type
flow in the sphere, which is volume-preserving and drives star-shaped hypersurfaces to geodesic spheres.
There is also a flow of Guan–Li-type that preserves Wℓ−1(�t) and decreases Wℓ(�t), which has so far
refused to allow curvature estimates (see [Chen et al. 2022] for an overview of known results).
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However, notice that nonlocal flows are more challenging than their corresponding local counterparts,
as the evolution depends heavily on the global shape of the hypersurface Mt and the presence of the
term µ(t) in all the relevant evolution equations causes a plethora of extra complications; e.g., comparison
principles and preservation of key properties fail (see [Cabezas-Rivas and Miquel 2016]), and embedded
hypersurfaces may develop self-intersections (see [Mayer and Simonett 2000]).

In this framework, our flow (1-1) is, to the best of our knowledge, the first known curvature flow in the
sphere which preserves any desired quermassintegral by a suitable choice of the global term µ and which
enjoys smooth convergence to a geodesic sphere.

Elliptic counterpart: rigidity results. As a byproduct of the pinching estimates (see Proposition 4.3) that
we require to prove Theorem 1.1, we can also classify hypersurfaces in a space form Mn+1

K which have a
rotationally symmetric curvature function under suitable assumptions on the sectional curvature.

With this goal, we work with curvature functions more general than H . Let 0 ⊂ Rn be a symmetric,
open cone containing the positive cone

0+ = {κ ∈ Rn
: κi > 0,∀i = 1, . . . , n},

and consider a symmetric function f ∈ C2(0). Let

F(A)= f (κ1, . . . , κn)

be the corresponding operator-dependent function, where A denotes the Weingarten or shape operator.
We assume the following:

Conditions 1.2. Let f (κ) = F(A) be a C2 symmetric function defined on an open, symmetric cone
0 ⊃ 0+. We ask further that

(a) f is strictly increasing in each argument,

(b) f is homogeneous of degree 1,

(c) f is normalized so that f (1, . . . , 1)= n.

Notice that (a) implies that F defines a strictly elliptic operator on M , as proved in [Huisken and
Polden 1999]. We say that f is inverse concave/convex if the dual function

f̃ (κ1, . . . , κn)= f (κ−1
1 , . . . , κ−1

n )

is concave/convex (see Section 8.1 for a more detailed introduction).
A classical result by Alexandrov [1962] says that if a compact hypersurface embedded in Rn+1 has H

equal to a constant, it must be a round sphere. Later on, Ros [1987] extended this result to the constancy
of higher-order symmetric functions σℓ. Hypersurfaces in a model space Mn+1

K which have a constant
curvature function F were often called Weingarten hypersurfaces in the previous literature. It was shown
in [Espinar et al. 2009, Theorem 28] that round spheres are the only examples of compact Weingarten
hypersurfaces in the hyperbolic space Hn+1. In this spirit, we obtain similar rigidity results for F radially
symmetric instead of constant.
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Theorem 1.3. Let n ≥ 2, K ∈ R and |α| ≥ 1, and let Mn
⊂ Mn+1

K be a convex hypersurface, which is
located in the northern hemisphere for K > 0, such that

SecM ≥ −αK .

Suppose that F is a convex function satisfying Conditions 1.2, which is a solution to

F = γ cαK

for some constant γ . Then M is a geodesic sphere which is centered at the origin provided K ̸= 0. If α= 1
the convexity assumption on M can be dropped, while if α = −1 the convexity of F may be replaced by
inverse concavity.

Such results have been obtained for σℓ by integral methods: for instance, [Wu and Xia 2014] studies
constant linear combinations of higher-order mean curvatures, [Wu 2016] analyses the constancy of cKσℓ

in Hn+1, and [Kwong et al. 2018] deals with hypersurfaces having radially symmetric higher-order mean
curvatures in general Mn+1

K under mild convexity assumptions. But those integral techniques are restricted
to the σℓ because they are divergence-free in space forms. Our maximum principle approach enables us
to relax the assumptions on the curvature functions at the cost of having to impose a condition on the
sectional curvature of the hypersurface. However, notice that if (1 +α)K > 0 this assumption is weaker
than convexity, while if this product is ≤ 0 the condition already implies convexity.

Classification of solitons. In the study of singularity formation along curvature flows, especially the
mean curvature flow, the class of self-shrinking solutions, simply called solitons subsequently, plays an
important role. For the mean curvature flow in Euclidean space, they arise as blow-up limits of type-I
singularities (see [Huisken 1990]), and they satisfy the elliptic equation

H = ⟨x, ν⟩.

Huisken [1990] showed that the only compact mean-convex solitons are spheres.
A similar recent result with H replaced by the Gauss curvature K (see [Brendle et al. 2017]) settled the

long-standing open problem of whether the flow by certain powers of the Gauss curvature of n-dimensional
hypersurfaces, n ≥ 3, converges to a round sphere; the convergence to a soliton had already been proved
in [Andrews et al. 2016].

The study of solitons for more general curvature functions has received plenty of attention, as well as
in space forms; see, e.g., [Gao and Ma 2019; Gao et al. 2018; 2022; McCoy 2011]. Here one considers
the general equation

Fβ = u, (1-4)

where β ∈ R, F is a function of the principal curvatures with suitable assumptions, and

u = sK (r)⟨∂r , ν⟩ (1-5)

is the generalized support function. From a well-known duality relation by means of the Gauss map
for hypersurfaces of the sphere and itself, from Theorem 1.3 we can deduce a new classification result
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for convex solitons in the sphere Sn+1
1 , and similarly, from a duality relation between hypersurfaces

of the hyperbolic and De Sitter space, from Theorem 1.3 we can deduce a new classification result
for convex solitons in the upper branch of the (n+1)-dimensional De Sitter space Sn,1 with sectional
curvature K = 1, i.e.,

Sn,1
=

{
y ∈ Rn+2

: −(y0)2 +

n+1∑
i=1

(yi )2 = 1, y0 > 0
}
.

More precisely, with the notation

sgn(M)=

{
1, M = Sn+1

1 ,

−1, M = Sn,1,
(1-6)

we prove the following result.

Corollary 1.4. Let n ≥ 2, |β| ≤ 1, β ̸= 0, and let M be either Sn+1
1 or Sn,1. Consider Mn

⊂ M a closed
strictly convex hypersurface, and, in the case ((1 −β)/β) sgn(M) > 0, we assume further that

SecM ≤
sgn(M)
1 −β

.

If F is an inverse convex function satisfying Conditions 1.2, which is a solution to the soliton equation (1-4),
then M is a geodesic sphere centered at the origin. In the case β = 1, the inverse convexity may be
replaced by concavity.

Remark 1.5. Corollary 1.4 is remarkable in several ways. Firstly, to our knowledge this is the first
such result, where the β-regime ranges down to zero. This is surprising, as in the Euclidean space, for
F = K 1/n and β ≤ n/(n + 2) the result is false; see [Andrews 2000; Brendle et al. 2017]. Note however
that K 1/n is not inverse convex. Secondly, in all of the previous results of this type, the inverse concavity
of F was exploited crucially. The duality approach allows us to deal with a further class of curvature
functions, which could not be treated by earlier methods.

Notice that, while Weingarten hypersurfaces are known to be geodesic spheres in Sn,1 (see [Roldán
2022]), we are not aware of rigidity results for solitons in this setting. On the other hand, to have some
model examples in mind, F = |A| satisfies the assumptions of Theorem 1.3, and the harmonic mean
curvature is suitable for Corollary 1.4.

The problem of extending a nonlocal flow to curved spaces. As said before, Huisken [1987] introduced
the VPMCF of convex hypersurfaces in the Euclidean space:

∂t x = (µ(t)− H)ν, (1-7)

where the global term is the average mean curvature µ= H = /
∫

Mt
H . Taking µ as in (1-3) for K = 0,

McCoy [2004] obtained convergence of convex hypersurfaces in Rn+1 to round spheres under a flow
that preserves any quermassintegral (which in the Euclidean case coincide with the mixed volumes; see
Section 2.1).

Huisken already pointed out that an interesting problem is to extend his result to non-Euclidean
ambient spaces, with the warning that the generalization will not be straightforward because (1-7) does
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not preserve convexity in general Riemannian manifolds, due to terms with an unfavorable sign in
the evolution equation of the second fundamental form. In particular, for hypersurfaces in Mn+1

K , the
Weingarten matrix hi

j evolves according to

(∂t −1)hi
j = (|A|

2
− nK )hi

j + 2K Hδi
j −µ(hi

ℓh
ℓ
j + K δi

j ).

Notice that for K < 0 the bad term is 2K Hδi
j , which comes from the background geometry and causes

that convexity is not preserved in general. This failure is independent of the nonlocal nature of the flow;
indeed, if we replace convexity by h-convexity (κ1 > |K |), Miquel and the first author [Cabezas-Rivas
and Miquel 2007] proved that h-convex hypersurfaces can be deformed under (1-7) to a geodesic sphere;
this was extended by Andrews and Wei [2018] for a class of quermassintegral-preserving flows. The
curvature condition was relaxed to positive sectional curvature (κ1κ2 > |K |) by Andrews, Chen and Wei
[Andrews et al. 2021] in the volume-preserving case.

Notice that the complication for K > 0 is of a completely different nature, since the fatal term is
now −µK δi

j , and thus comes directly from the global term. Indeed, Huisken [1987] illustrated this with
an intuitive example: if the flow starts with a convex hypersurface of Sn+1 with a portion M∗ C2-close
to the equator, then in this region H ≫ H and hence M∗ moves in the outward direction crossing the
equator, and thus the evolving hypersurface becomes nonconvex.

This obstruction to the preservation of convexity in an ambient sphere supports the claim that the flow
(1-7) is, geometrically, not the most natural generalization of the same flow in the Euclidean case to
the spherical ambient space. Indeed, our alternative flow (1-1) does preserve pinching of the principal
curvatures, and hence, it succeeds in driving any convex initial hypersurface to a geodesic sphere. Notice
that Huisken’s example is actually the motivation for the definition of (1-1), as the effect of multiplying
the global term by cK (r) is to slow down the motion as the hypersurfaces approach the equator.

In short, to extend Huisken’s results to the hyperbolic space one needs to strengthen the notion of
convexity, whereas for the ambient sphere we propose a different generalization of the flow (notice that
(1-1) and (1-7) coincide for the Euclidean space), which works for convex hypersurfaces.

The isoperimetric nature of the flow. In addition, under (1-7) the surface area is nonincreasing, and hence
Huisken’s theorem provides an alternative proof of the isoperimetric inequality for convex hypersurfaces
of Rn+1. An interesting side effect of the extra term in (1-1) is that this flow is no longer of isoperimetric
nature in the classical sense, because if we choose µ to preserve enclosed volume, the surface area is no
longer decreasing necessarily.

However, the flow (1-1), with global term chosen to preserve the weighted volume
∫
�t

cK , has decreasing
surface area, which suggests that in principle it is the right flow to prove the isoperimetric type inequality∫

�0

cK ≤ φ(|M0|),

with equality if and only if �0 is a ball centered at the origin. Here φ is a function that gives equality on
the slices. This was originally shown in [Girão and Pinheiro 2017, Proposition 4] by other means, and
hence we do not pursue any further investigation in this matter here.
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This reinforces the idea that our new flow has a geometric meaning beyond the generalization of
Huisken’s result, and we hope that in the future some interesting new applications will follow.

Structure of the paper. The contents of this paper are organized as follows. We first introduce in Section 2
the basic notation and evolution equations that ensure that our flow preserves the quermassintegrals,
while Section 3 gathers new estimates for strictly convex hypersurfaces in the sphere, which may be
of independent interest, like a refined outradius bound (Theorem 3.3) or inradius control in terms of
pinching (Corollary 3.2). Then in Section 4 we prove that the pinching deficit decreases exponentially
under the flow as time evolves, which is the key to get convergence of the evolving hypersurfaces. To
achieve upper curvature bounds, we perform a technically intricate process in Section 5, which includes
a delicate iterative changing of origin to ensure an optimal configuration that enables us to gain some
uniform bound on the global term for some controlled time interval. This is a novel method, providing an
alternative to proving initial value-independent curvature bounds after a waiting time. To finish the proof
of Theorem 1.1, in Section 6 we establish long-time existence, and convergence to a geodesic sphere is
done in Section 7. Finally, the elliptic results are proved in Section 8.

2. Notation, conventions and preliminary results

Hypersurfaces in space forms. Let x : M ↪→ Mn+1
K be the embedding of a smooth hypersurface in a

simply connected space form Mn+1
K enclosing a bounded domain �. Then the metric in polar coordinates

is given by
ḡ = dr2

+ s2
K (r)σ,

where r is the radial distance to a fixed point O ∈ Mn+1
K and σ is the round metric on Sn .

The trigonometric functions in (1-2) satisfy the computational rules

c′

K = −K sK , c2
K + K s2

K = 1.

We will also use the related notation coK (r)= cK (r)/sK (r).
For the outward pointing unit normal ν, we define the second fundamental form h = (hi j ) by

∇X Y = ∇X Y − h(X, Y )ν,

where ∇ is the Levi-Civita connection of the metric ḡ = ⟨ · , · ⟩ on Mn+1
K , and X and Y are vector fields

on M . We adopt the summation convention throughout, and latin indices indicate components with
respect to a coordinate frame (∂i )1≤i≤n on the domain of the embedding x .

If the induced metric on M is denoted by g, then we write 1 for its Laplace–Beltrami operator and
define the Weingarten operator A = (hi

j ) via

hi j = g(A(∂i ), ∂ j )= gikhk
j .

Recall that the symmetry of h and the Codazzi equations

∇i h jk = ∇ j hik
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imply that the tensor ∇A is totally symmetric. Moreover, one can relate the geometry of a hypersurface M
with the ambient manifold Mn+1

K by means of the Gauss equation

Ri jkℓ = hikh jℓ − hiℓh jk + K (gik g jℓ − giℓg jk). (2-1)

On the other hand, if

κ1 ≤ · · · ≤ κn

denote the eigenvalues of the operator A, that is, the principal curvatures of M , we consider the normalized
mean curvatures Hℓ defined as

Hℓ =

(n
ℓ

)−1
σℓ, with σℓ =

∑
1≤i1<···<iℓ≤n

κi1 · · · κiℓ .

In particular, H1 = H/n and Hn equals the Gauss curvature. We use the convention that H0 = 1. For
convex hypersurfaces, these symmetric functions satisfy the Newton–MacLaurin inequalities [Wang and
Xia 2014]

Hℓ−1 Hk ≥ HℓHk−1 for 1 ≤ k < ℓ≤ n. (2-2)

We will also use the Hsiung–Minkowski identities [Guan and Li 2015]

(ℓ+ 1)
∫

M
uσℓ+1 = (n − ℓ)

∫
M

cKσℓ (2-3)

for ℓ= 0, . . . , n − 1.
Later on, we need to control the support function from below, given that there is a uniform ball enclosed

by the evolving domain. Fortunately, for strictly convex domains, such control is easy to obtain. We
furnish quantities like r and u with a hat if their reference point is not the origin. The right reference
point will then be displayed as a subscript, and in cases where the reference point is clear by context, it is
suppressed.

Lemma 2.1. Let � ⊂ Mn+1
K be a strictly convex domain with p ∈ � and M = ∂�. Then the support

function

û p = sK (r̂p)⟨∂r̂p , ν⟩,

where r̂p is the distance to the point p, satisfies

û p ≥ min
M

û p = min
M

sK (r̂p)= sK (dist(p,M)).

Proof. At a global minimum of the support function, we have ∇û p = 0. It is well known (see [Guan and
Li 2015]) that

∇i û p = h j
i ∇ j

(
1 − cK

K

)
= −h j

i
c′

K

K
∇ j r̂p = sK (r̂p)h

j
i ∇ j r̂p. (2-4)

Accordingly, due to the invertibility of A, we also have ∇r̂p = 0. Hence, at such a point and for K > 0,

û p = sK (r̂p)≥ min
(
sK

(
min

M
r̂p

)
, sK

(
max

M
r̂p

))
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due to the concavity of sK within the interval [0, π/
√

K ]. In the case K ≤ 0, we have that sK is increasing,
so we are done. Now suppose that

sK
(
max

M
r̂p

)
< sK

(
min

M
r̂p

)
. (2-5)

Due to the symmetries of the sine function we must then have

min
M

r̂p >
π

√
K

− max
M

r̂p.

At a point ξ ∈ M , where r̂p is maximized, the geodesic which connects p and ξ intersects M in another
point, say ζ ∈ M . Due to the convexity of M , we have

π
√

K
> dist(ζ, ξ)= r̂p(ζ )+ r̂p(ξ)≥ r̂p(ζ )+

π
√

K
− min

M
r̂p ≥

π
√

K
,

a contradiction. Hence (2-5) cannot be valid and the proof is complete. □

2.1. Mixed volumes and quermassintegrals. We define the curvature integrals or mixed volumes as

Vn−ℓ(�)=

∫
M

Hℓ dV for ℓ= 0, . . . , n.

On the other hand, for any connected domain � ⊂ Mn+1
K bounded by a compact hypersurface of

class C3, the quermassintegrals are given by (see [Solanes 2006] or [Santaló 1976, Chapter 17])

Wℓ(�)=
(n + 1 − ℓ)ωℓ−1 · · ·ω0

(n + 1)ωn−1 · · ·ωn−ℓ

∫
Lℓ
χ(Lℓ ∩�) d Lℓ, ℓ= 1, . . . , n. (2-6)

Here Lℓ represents the space of ℓ-dimensional totally geodesic subspaces Lℓ in Mn+1
K , where one can

define a natural invariant measure d Lℓ, and ωn = |Sn
| is the area of the n-dimensional unit sphere in Rn+1.

If � is a convex set, then the function χ is equal to 1 if Lℓ ∩� ̸= ∅ and 0 otherwise.
One typically sets

W0(�)= |�| and Wn+1(�)=
ωn

n + 1
.

Moreover, using the Cauchy–Crofton formula (see [Santaló 1976]), we recover the area of the hypersurface

|∂�| = (n + 1)W1(�).

Accordingly, volume- and area-preserving flows can be regarded as particular cases of quermassintegral-
preserving flows.

Mixed volumes and quermassintegrals are related (see [Solanes 2006, Proposition 7]) in a space of
constant curvature Mn+1

K by means of

1
n + 1

Vn−ℓ(�)= Wℓ+1(�)− K
ℓ

n + 2 − ℓ
Wℓ−1(�), ℓ= 1, . . . , n,

Vn(�)= (n + 1)W1(�)= |∂�|.

(2-7)

Notice that in Rn+1 the mixed volumes coincide with the quermassintegrals, up to a constant factor.
The next result gathers the evolution equations of the quantities defined above under a normal variation.
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Lemma 2.2. If Mt is a hypersurface of Mn+1
K evolving along a flow given by ∂t x = ϕν, then

(a) ∂t Vol(�t)=

∫
M
ϕ dVt and ∂t |Mt | =

∫
M
ϕH dVt ,

(b) ∂t

∫
M

Hℓ dVt =

∫
M
ϕ((n − ℓ)Hℓ+1 − KℓHℓ−1) dVt , ℓ= 0, . . . , n,

(c) ∂t Wℓ(�t)=
n+1−ℓ

n+1

∫
M
ϕHℓ dVt , ℓ= 0, . . . , n,

(d) ∂t gi j = 2ϕhi j ,

(e) ∂t hi
j = −gik

∇
2
k jϕ−ϕhi

khk
j − Kϕδi

j .

Proof. The formulas in (a) and (b) were deduced in [Reilly 1973]. The evolution in (c) follows by
induction on ℓ and using the relation (2-7); see [Wang and Xia 2014, Proposition 3.1] for K = −1. The
evolution for the metric and the Weingarten operator are standard, e.g., [Gerhardt 2006, Chapter 2]. □

Corollary 2.3. If the global term in (1-1) is chosen as in (1-3), then the quermassintegral Wℓ(�t) is
constant along the flow (1-1).

The fact that µ(t) > 0 for strictly convex hypersurfaces is heavily used within the proof of Theorem 1.1.

Remark 2.4. Notice that a global term given by

µ(t)=

∫
M H((n − ℓ)Hℓ+1 − KℓHℓ−1) dVt∫
M cK ((n − ℓ)Hℓ+1 − KℓHℓ−1) dVt

leads to a flow that preserves the mixed volume Vn−ℓ(�t). Unlike the quermassintegral-preserving case,
this term does not have a sign for convex hypersurfaces if K > 0. For K < 0 this difficulty disappears, but
another type of mixed volume-preserving curvature flows for h-convex hypersurfaces in the hyperbolic
space was already studied in [Makowski 2012].

We use the following conventions for constants. Indexed letters C , i.e., C0, C1, etc. will retain a
specific meaning throughout the whole paper, while the letter C denotes a generic constant, which is
always allowed to change from line to line and depends on the quantities listed in the formulation of the
lemma or theorem. Capital letters also stand for “large” constants. A similar convention holds for lower
case letters, which stand for “small” constants. The only exception from this convention concerns the
use of various versions of the letter t , like T , τ , τ̂ , etc. Those always refer in some way to time and t
denotes the time variable, while T , τ , τ̂ , etc. will, once defined, not change value.

3. Geometry and location of strictly convex hypersurfaces in the sphere

This section presents some geometric results for strictly convex hypersurfaces of the sphere, which are
required to prove Theorem 1.1. In particular, we obtain inradius estimates in terms of pinching, as well
as a suitable outball configuration in terms of pinching and the value of any given Wℓ(�). Throughout
Sections 3–5, we make the standing assumption that M ⊂ Sn+1

K is a strictly convex hypersurface enclosing
a domain �.
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Let Br denote a geodesic ball of radius r in Sn+1
K . The outer radius of � is given by

ρ+(�)= inf{R > 0 :�⊂ BR(q) for some q ∈ Sn+1
K },

and the inner radius is given by

ρ−(�)= sup{ρ > 0 : Bρ(p)⊂� for some p ∈ Sn+1
K }.

In [Andrews 1994a], it was shown that pinched hypersurfaces of the Euclidean space satisfy a uniform
control of the outer radius by inner radius, and a version for a positive ambient space can be found
in [Gerhardt 2015, Section 6]. The proof of this version relied on uniform positivity of the smallest
principal curvature, which is insufficient for our purposes. Hence we provide a more general version in
the following proposition.

Proposition 3.1. If , for some number C0 > 0, we have the pinching estimate κn ≤ C0κ1 in M , then the
outer radius is estimated from above according to

ρ+(�)≤ C1ρ−(�)

for some positive constant C1 = C1(n, K ,C0).

Proof. For simplicity but without loss of generality, we assume K = 1. Due to a classical result [do Carmo
and Warner 1970],

0< ρ+(�) <
1
2π

because M lies in some open hemisphere. Hence, there is a center q such that

�⊂ Bρ+
(q),

and it is true that q ∈ � (see [Santaló 1946, p. 455]). By moving q slightly inwards, we can achieve
M ⊂ Bπ/2(q), and that M is star-shaped around q .

Now consider the stereographic projection from the antipodal point −q, where q is mapped to the
origin 0 ∈ Rn+1. It follows (see [Gerhardt 2015, (6.15)]) that the metric ḡ of Sn+1 is conformal to the
Euclidean metric; more precisely,

ḡ = e2ψ(dr2
+ r2σ), with ψ(r)= − ln

(
1 +

1
4r2).

Hereafter, we denote by tilde the Euclidean geometric quantities. On Bπ/2(q) the metric ḡ is uniformly
equivalent to the Euclidean metric.

Next, from [Gerhardt 2006, (1.1.51)], we get

eψκi = κ̃i + dψ(ν̃)

and hence, from our pinching assumption,

0< C−1
0 ≤

κ1

κn
=
κ̃1 + dψ(ν̃)
κ̃n + dψ(ν̃)

≤ 1.

Thus
κ̃1 + dψ(ν̃)≥ C−1

0 (κ̃n + dψ(ν̃))
and

κ̃1 ≥ C−1
0 κ̃n + (C−1

0 − 1)ψ ′(r)⟨∂r , ν̃⟩ ≥ C−1
0 κ̃n
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because ψ ′ < 0 and M̃ is star-shaped, i.e., ⟨∂r , ν̃⟩> 0. Therefore, the Euclidean hypersurface M̃ ⊂ B̃2(0)
is pinched, which from [Andrews 1994a, Lemma 5.4] leads to

ρ+(�)≤ C ρ̃+(�)≤ C ρ̃−(�)≤ C1ρ−(�),

where we have used the uniform equivalence of the ambient metrics. □

Corollary 3.2. If , for some number C0 > 0, we have the pinching estimate κn ≤ C0κ1 in M , then one can
find positive constants d1 and C2, depending on n, K , C0 and Wℓ(�), such that

d1 ≤ ρ−(�)≤ C2 <
π

2
√

K
.

Proof. By the definition of inner and outer radius, we can find points p, q ∈ Sn+1
K such that

Bρ−(�)(p)⊂�⊂ Bρ+(�)(q).

From (2-6), the quermassintegrals Wℓ are clearly monotone under the inclusion of convex domains,
and hence

Wℓ(Bρ−(�)(p))≤ Wℓ(�)≤ Wℓ(Bρ+(�)(q)).

We obtain, with Proposition 3.1,

C2 := f −1
ℓ (Wℓ(�))≥ ρ−(�)≥ C−1

1 ρ+(�)≥ C−1
1 f −1

ℓ (Wℓ(�))=: d1,

where fℓ denotes the increasing function given by fℓ(r)= Wℓ(Br ). □

The trivial outer radius estimate
ρ+(�) <

π

2
√

K

is not good enough for our purposes. Now we present a refined estimate which should be of independent
interest in the future.

Theorem 3.3. The outer radius satisfies

ρ+(�)≤
π

2
√

K
−

log Wℓ(H)− log Wℓ(�)

(n + 1 − ℓ)maxM H
=:

π

2
√

K
−

d2

maxM H
,

where H is an open hemisphere.

Proof. From the initial hypersurface M0 = M , we start the curvature flow

x : [0, T ∗)× Sn
→ Sn+1

K , ∂t x =
Hℓ−1

Hℓ
ν. (3-1)

Then Lemma 2.2 (c) ensures that Wℓ evolves in time according to

∂t Wℓ(�t)=
n + 1 − ℓ

n + 1
Vn−ℓ+1(�t)≤ (n + 1 − ℓ)Wℓ(�t),

where the inequality follows from (2-7).
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From [Gerhardt 2015; Makowski and Scheuer 2016], we know that (3-1) preserves the strict convexity
and the solution converges smoothly to an equator, while we also have the estimate

Wℓ(�t)≤ Wℓ(�)e(n+1−ℓ)t .

Hence the maximal existence time of (3-1) is at least

T ∗
≥

1
n + 1 − ℓ

(log Wℓ(H)− log Wℓ(�))

because we know that Wℓ(�) must converge to Wℓ(H) at T ∗.
Now [Makowski and Scheuer 2016, Lemma 4.7] leads to the curvature bound

max
Mt

H ≤ max
M0

H for all 0 ≤ t < T ∗.

Due to the convexity this implies a full second fundamental form bound, as well as a bound

Hℓ
Hℓ−1

≤ H1 ≤ max
M0

H, (3-2)

which follows by application of (2-2) for k = 1.
Next, let E = ∂H be the limiting equator of the flow, and let r be the radial distance from the center

of H, which contains all Mt . Define

r̃(t)= max
Sn

r(t, · )= r(t, ξt),

where ξt is chosen to be any point where the maximum is realized. The function r̃ is Lipschitz and hence
differentiable almost everywhere. At each time t , where r̃ is differentiable, we have

d
dt

r̃(t)=
Hℓ−1

Hℓ
(t, ξt),

where we used that ν(t, ξt)= ∂r . Integration and (3-2) yield

π

2
√

K
− r̃(0)= r̃(T ∗)− r̃(0)=

∫ T ∗

0

d
dt

r̃ ≥
log Wℓ(H)− log Wℓ(�)

(n + 1 − ℓ)maxM0 H
.

Hence

max
M0

r = r̃(0)≤
π

2
√

K
−

log Wℓ(H)− log Wℓ(�)

(n + 1 − ℓ)maxM0 H
.

Accordingly, M0 fits into a neighborhood of the origin of size given by the right-hand side of the latter
inequality, and therefore the outer radius is controlled by the very same quantity. □

Remark 3.4. A lune, i.e., the intersection of two hemispheres, shows that an outer radius bound in terms
of Wℓ(�) cannot be independent of max H .

Theorem 3.3 enables us to find, for a given strictly convex hypersurface of the sphere, a suitable origin,
which allows a ball of controlled size within � and at the same time ensures a controlled positive distance
of M to the equator.
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Lemma 3.5. There exists an origin O ∈� such that, with the constant d2 from Theorem 3.3, we have

B4ϵ(O)⊂� and max
M

r ≤
π

2
√

K
− 4ϵ (3-3)

for all

ϵ ≤
1
4

min
(

d2

2 maxM H
,

1
2π − tan−1(maxM H/

√
K )

2
√

K

)
.

Proof. If Bρ+(�) denotes an outball for � with center O, then we know that O ∈�. The distance of focal
points from M can be calculated from the evolution of the Weingarten operator in Lemma 2.2 along the
normal variation with speed ϕ = −1. Then the largest principal curvature is controlled by the solution to
the ODE

y′
= y2

+ K ,

y(0)= max
M

H,

which exists for all t < t0, with

t0 :=
π

2
√

K
−

tan−1(maxM H/
√

K )
√

K
.

Hence, around all points belonging to the set{
x ∈� : dist(x,M)=

1
2 t0

}
,

there exists an interior ball of radius 1
2 t0. In addition, if we shift O by a distance of d2/(2 maxM H) in

any direction, there still is the same amount of space between M and the new equator. Therefore, if we
shift O into � along a perpendicular geodesic only by the amount

ϵ ≤ ϵ0 =
1
4

min
(

d2

2 maxM H
,

t0
2

)
,

then (3-3) holds. □

4. Monotonicity of the pinching deficit

The geometric results from Section 3 depend on the quality of the pinching and the size of the quermass-
integral. In the following we investigate how these quantities behave under the flow (1-1). As this flow is
defined to be quermassintegral-preserving, the key ingredient for proving Theorem 1.1 is the pinching
estimate to be proven in this section.

Again, we assume K > 0, unless stated otherwise. As a first step, we need the following evolution
equations.

Lemma 4.1. For every choice of origin O, along (1-1), the induced metric g and second fundamental
form h satisfy the evolution equations

∂t gi j = 2(µcK − H)hi j ,

∂t hi
j =1hi

j + (|A|
2
− nK )hi

j + 2K Hδi
j −µ(cK hi

khk
j + K uhi

j ),

where u is the generalized support function in (1-5) of Mt with respect to the origin O.
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Proof. The evolution of the metric comes from Lemma 2.2 (d). For the evolution of A, we depart from
the standard evolution equation

∂t hi j = ∇
2
i j (H −µcK )+ (µcK − H)(hikhk

j − K gi j )

(see [Andrews 1994b, Theorem 3-15]) and use the Simons-type identity

∇
2
i j H =1hi j + (|A|

2
− nK )hi j + H(K gi j − hk

i h jk).

Now we expand the second derivatives of cK :

−∇
2
i j cK = dcK (ν)hi j − ∇

2cK (xi , x j )= c′

K ⟨∂r , ν⟩hi j + K cK gi j , (4-1)

where we have used
∇

2cK = −K cK ḡ.

The proof is complete, using the evolution of the metric to revert to hi
j . □

Remark 4.2. Notice that the strong maximum principle for tensors applied to the evolution of hi
j already

implies that the property of strict convexity is preserved for all times. Accordingly, H > 0, and the
quotient κ1/H is well defined as long as the flow exists.

Next we deduce an evolution equation that is the key to convergence of the flow.

Proposition 4.3. Let κ1 be the smallest eigenvalue of A. Then, for every choice of origin O, under the
flow (1-1) with initial data M , the function

p =
κ1

H
is a supersolution to the following evolution equation in the viscosity sense, as long as the flow exists:

∂t p −1p =
2
H

n∑
k=1

∑
j>D

(∇kh1
j )

2

κ j − κ1
+ 2 dp(∇ log H)+

µ

H
cK | Å|

2 p +µcKκ1

(1
n

− p
)

+ 2nK
(1

n
− p

)
,

where D is the multiplicity of κ1.

Proof. Assume that the flow is defined on a maximal time interval [0, T ). Let (t0, ξ0) ∈ (0, T )× M ,
and let η be a smooth lower support of p at (t0, ξ0), i.e., η is defined on a spacetime neighborhood U
of (t0, ξ0), and we have

η(t0, ξ0)= p(t0, ξ0), η ≤ p|U .

Hence ϕ = Hη is a smooth lower support for κ1.
Now we take coordinates with the properties

gi j = δi j , hi
j = κ jδ

i
j at (t0, ξ0).

If we denote by D the multiplicity of κ1(t0, ξ0), then at the point (t0, ξ0) and for all 1 ≤ i , j ≤ D, we
have (see [Brendle et al. 2017, Lemma 5])

∂t hi
j = δi

j∂tϕ, ∇khi
j = δi

j∇kϕ
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and

∇
2
kkϕ ≤ ∇

2
kkh1

1 − 2
∑
j>D

(∇kh1
j )

2

κ j − κ1
. (4-2)

Next, write

Gi
j = ∂t hi

j −1hi
j ,

and compute at (t0, ξ0)

∂tη =
∂t h1

1

H
−

ϕ

H 2 ∂t H =
G1

1 + gkl
∇

2
klh

1
1

H
−

ϕ

H 2 ∂t H

≥
1
H

n∑
k=1

(
∇

2
kkϕ+ 2

∑
j>D

(∇kh1
j )

2

κ j − κ1

)
+

G1
1

H
−

ϕ

H 2 ∂t H

=
2
H

n∑
k=1

∑
j>D

(∇kh1
j )

2

κ j − κ1
+

G1
1

H
+1η+ 2 dη(∇ log H)−

η

H
Gk

k .

On the other hand, we know by Lemma 4.1 that

Gi
j = (|A|

2
− nK )hi

j + 2K Hδi
j −µ(cK hi

khk
j + K uhi

j ).

Accordingly, we get

G1
1 − ηGk

k = −µcKκ
2
1 + ηµcK |A|

2
+ 2K H(1 − nη).

Finally, by means of

|A|
2
= | Å|

2
+

1
n

H 2,

we obtain

G1
1 − ηGk

k = ηµcK | Å|
2
+µcKκ1 H

(1
n

− η
)

+ 2K H(1 − nη). □

Corollary 4.4. For every choice of origin O for which M ⊂ H(O), the flow (1-1) with initial data M
stays in H(O) and improves every pinching, i.e., the pinching deficit

ω(t)=
1
n

− min
Mt

κ1

H
is exponentially decreasing:

ω(t)≤ ω(s)e−2nK (t−s) for all 0 ≤ s ≤ t < T,

where T is the maximal time of existence of the flow with initial data M.

Proof. We need the evolution equation of cK . From (1-1) and (4-1), we obtain

∂t cK = c′

K ∂tr = −K sK dr(∂t x)= K u(H −µcK )=1cK + K cK (n −µu).

The preservation of cK > 0 follows immediately by the strong maximum principle, as long as the flow
exists.



THE QUERMASSINTEGRAL-PRESERVING MEAN CURVATURE FLOW IN THE SPHERE 3605

The strict convexity is also preserved from Remark 4.2. The statement about the pinching deficit
follows from the strong maximum principle for viscosity solutions, e.g., see [Da Lio 2004], and from the
fact that

∂tω ≤ −2nKω,

where we can discard the terms including µ because cK > 0 and µ(t) > 0 by convexity. □

In particular, for s = 0, we reach a pinching relation between the biggest and smallest principal
curvatures of Mt :

κ1 ≥

(
min
M0

κ1

H

)
H ≥ C−1

0 κn, (4-3)

provided that an origin is chosen such that the strictly convex initial hypersurface is contained in the open
hemisphere centered at that origin.

5. Upper curvature bounds

Notice that, unlike in previous treatments of quermassintegral-preserving curvature flows, an upper
bound for the global term does not come automatically from an upper bound for H , since the cK in the
denominator of µ is not uniformly bounded away from zero, at least not without further work. Moreover,
we need some uniform control of µ to get bounds for H .

To overcome these difficulties, the idea is to choose the origin such that a configuration as in Lemma 3.5
is achieved, which will allow us to deduce uniform bounds on the curvature and the global term in a
short but controlled interval [0, τ (ϵ)] (Lemma 5.4). Then, since the pinching is at least as good as at the
beginning, we can repeat this process as often as needed, in order to keep the flow going as long as we
like (Lemma 6.1). During this evolution, the pinching improves exponentially and at some point will
be strong enough that Mt is very close to a sphere. From here the flow is very easy to estimate and no
further shifting of the origin is necessary. Now we will implement all the required steps to make this
argument rigorous.

A key idea to obtain a curvature bound is to adapt a well-known trick from [Tso 1985], which consists
in a suitable combination of the generalized support function with the mean curvature. For this we need
control on the size of inballs during the flow.

A lower bound for the support function of an arbitrary inball. For a domain � and a point p ∈�, we
say that B is an inball at p if p is the center of B and B has maximal radius with the property that B ⊂�.
In the sequel we are going to prove that, along the flow, the radii of inballs at p don’t decrease too quickly.
We give a quantitative estimate.

We need to be careful because now we are dealing with two different support functions: we denote
by u the support function with respect to the origin O that is implicit in the flow equation, while for a
given point p ∈�,

û ≡ û p = sK (r̂p)⟨∂r̂p , ν⟩
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takes another interior point p as the origin of distances. Accordingly, r and r̂ mean distance from O
and p, respectively. Similar notations will apply to the corresponding trigonometric functions, i.e.,

ŝK := sK (r̂p) and ĉK := cK (r̂p).

Note that for brevity we suppress the dependence on the point p within the notation û and r̂ .

Lemma 5.1. For every choice of origin, along (1-1), the evolution equations of the mean curvature H
and the support function û = û p are given by

∂t H =1H + H(|A|
2
+ K n)−µ(cK |A|

2
+ uK H),

∂t û =1û + û|A|
2
+ (µcK − 2H)ĉK +µK sK ŝK ⟨∇r,∇r̂⟩.

Proof. The formula for H follows directly by taking the trace in the evolution equation for hi
j from

Lemma 4.1. On the other hand, a standard calculation leads to

∂t û = ⟨∇ t(ŝK ∂r̂ ), ν⟩ + ⟨ŝK ∂r̂ ,∇ tν⟩

= (µcK − H)ĉK + ŝK ⟨∂r̂ ,∇(H −µcK )⟩

=1û + (µcK − 2H)ĉK + û|A|
2
−µ ŝK ⟨∂r̂ ,∇cK ⟩,

where we applied well-known formulas for 1û and ∇ t(ŝK ∂r̂ ) on Mn+1
K (see [Cabezas-Rivas and Miquel

2007, (4.6) and (4.11)]). The stated formula follows by realizing that

⟨∂r̂ ,∇cK ⟩ = −K sK ⟨∂r̂ ,∇r⟩. □

Proposition 5.2. For every choice of origin O for which M ⊂ H(O), and for every p ∈� and radius ρ
with the property Bρ(p)⊂�, the solution Mt = ∂�t of (1-1), with initial data M and maximal existence
time T > 0, satisfies the following:

(i) There is a positive constant τ̃ = τ̃ (n, K , ρ) with the property

Bρ/4(p)⊂�t for all t ∈ [0,min(τ̃ , T )).

(ii) One can find positive constants d3 ≤ 1/(2
√

K ) and τ , depending on n, K , C0 and Wℓ(�), with the
property

û p� − 2d3 ≥ 2d3 > 0 for all t ∈ [0,min(τ, T )),

where p� is the center of an inball corresponding to the inradius ρ−(�).

Proof. (i) Let us first obtain the evolution of the distance r̂ = r̂p from the fixed point p to the points
on Mt under the flow (1-1):

∂t r̂ = dr̂(∂t x)= (µcK − H)⟨ν, ∂r̂ ⟩. (5-1)

On the other hand, r(t) denotes the radius of a geodesic sphere centered at p that moves under the
ordinary mean curvature flow starting at r(0)=

1
2ρ, that is,

r′(t)= −ncoK (r(t)),
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whose solution is given by
cK (r(t))= eK nt cK

( 1
2ρ

)
for t ≥ 0.

As cK is a decreasing function,

r(t)≥
1
4ρ ⇐⇒ eK nt cK

( 1
2ρ

)
≤ cK

( 1
4ρ

)
,

meaning that

r(t)≥
1
4ρ ⇐⇒ t ≤

1
K n

log
cK

( 1
4ρ

)
cK

( 1
2ρ

) =: τ̃ .

Set f (t, · )= r̂(t, · )− r(t) for t ∈ [0,min(τ, T )). Then f (0, · ) > 0, and f evolves according to

∂t f = (µcK − H)⟨ν, ∂r̂ ⟩ + ncoK (r(t)).

If there exists a first time t1 such that the geodesic sphere Br(t1) touches the hypersurface Mt1 at some point
x1, then at this first minimum for f we have H(x1, t1) ≤ ncoK (r(t1)), ⟨∂r̂ , ν⟩ = 1 and ∂t f (x1, t1) ≤ 0.
Consequently, taking into account that cK > 0 and strict convexity is preserved, we have

∂t f (x1, t1)≥ µ(t1)cK (r(t1)) > 0,

which is a contradiction, and hence the statement follows.

(ii) Apply (i) with p = p� and ρ = ρ−(�), and obtain the desired τ due to Corollary 3.2. Using
Lemma 2.1, we get

û p� ≥ sK
( 1

4ρ−(�)
)
≥ sK

( 1
4 d1

)
=: 4d3, (5-2)

where we applied the lower bound in Corollary 3.2. □

An upper bound for the mean curvature. To estimate the mean curvature along a solution with suitably
located initial data, we use the well-known auxiliary function

8p =
H

û p − d3
,

which, after choosing the origin O as in Proposition 5.2, is well defined for a while for some suitable
p ∈�. Routine computations lead to the evolution of 8, where we suppress the dependence on p within
the notation.

Lemma 5.3. Under the assumptions of Proposition 5.2, along the flow (1-1), the function 8 evolves
according to

∂t8=18+
2

û − d3
⟨∇8,∇û⟩ +8

(
nK −

d3

û − d3
|A|

2
)

+ 282ĉK

−µK8u −
µ

û − d3
(cK |A|

2
+8(K sK ŝK ⟨∇r,∇r̂⟩ + cK ĉK )).

Unlike in previous literature, we cannot neglect all the terms including µ, as some do not have a sign.
Nor is it known at this point that µ is bounded. The novelty of our approach is to make use of Lemma 3.5,
a configuration which enables us to gain some control on µ and then get an estimate on 8 and H .
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Another complication arises from the necessity of using an iterative change of origin. The configuration
of Lemma 3.5 depends on curvature. Hence we need a very precise estimate of curvature as the flow
progresses, and it is insufficient to estimate the curvature by a multiple of its initial value, as then our time
interval, along which Bϵ(O)⊂�t is valid, would decrease and we would not be able to prove long-time
existence.

For this reason, we introduce a novel method, which also gives an interesting alternative to proving initial
value-independent curvature bounds after a waiting time, as for example in [McCoy 2004, Equation (17)].
It provides a bound on 8, which is uniform in p lying within a certain region.

With this purpose, we define a modified auxiliary function

9 : [0, T )× Sn
× Sn+1

K → R, (t, ξ, p) 7→

{
(dist(p,Mt)− 2d3)8p, p ∈ Vt ,

0, otherwise,

with

Vt := {p ∈�t : dist(p,Mt) > 2d3},

and where for p /∈� the distance to Mt is defined to be negative. In short,

9(t, ξ, p)= max
(
0,min

Mt
r̂p − 2d3

)
8p.

Note that 9 is Lipschitz, because when minMt r̂p = dist(p,Mt)≥ 2d3, then, by Lemma 2.1,

û p ≥ sK
(
min

Mt
r̂p

)
≥ sK (2d3)

due to minMt r̂p < π/(2
√

K ). Furthermore,

û p ≥ sK (2d3)=
1

√
K

sin(2d3
√

K )≥
6
5 d3,

where we used sin x ≥
3
5 x for x ∈

[
0, 1

2π
]
. Hence 8p is well defined for p ∈ V t . In the sequel we write,

for brevity,

max
Mt

9 = max
Sn×Sn+1

K

9(t, · ).

Lemma 5.4. There exists an origin O ∈ �, a constant C3(n, K ,C0,Wℓ(�)), and constants τ and ϵ1,
depending on n, K , C0, Wℓ(�), max(C3,maxM0 9), such that, for the solution Mt = ∂�t of (1-1) with
initial data M0 = M and maximal existence time T > 0, we have:

(i) Mt ⊂ H(O) for all t ∈ [0,min(τ, T )].

(ii) û p� ≥ 4d3 and Bϵ1(O)⊂�t for all t ∈ [0,min(τ, T )).

(iii) The function 9 satisfies

max
(
C3,max

Mt
9

)
≤ max

(
C3,max

M
9

)
for all t ∈ [0,min(τ, T )).
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Proof. Define the functions

ϵ0(y)=
1
4

min
(

d2d3
√

K
2y

,

1
2π − tan−1(y/d3K )

2
√

K

)
for y > 0

and

q(y)=
nπCℓ+1

0
√

K

(
1 +

5π
√

K d3

)
y

ϵ0(y)
+

nπ2

4
y +

π
√

K
y2

−
d2

3

n
y3,

where d3 and C0 are the constants from Proposition 5.2 and (4-3), respectively. It is clear that q(y)
converges to −∞ as y → ∞, and hence it has a largest zero ȳ, which only depends on n, K , C0

and Wℓ(�). Let ψ0 = maxt=09, and define

ϵ1 = ϵ0(max(ȳ, ψ0)).

(i) & (ii) With p� from Proposition 5.2 (ii) and by definition of d3 in (5-2), along M0 = M we have

H = (û p� − d3)8p� ≤
8p�
√

K
≤

sK (minM r̂p�)− 2d3

2d3

8p�
√

K
≤

1

d3
√

K
ψ0,

and hence

ϵ1 ≤ ϵ0
(
d3

√
K max

M
H

)
<

π

2
√

K
,

where the latter estimate is due to the definition of ϵ0. This is exactly the threshold required to apply
Lemma 3.5.

Then we can apply Lemma 3.5 with ϵ = ϵ1 in order to obtain a suitable origin O ∈ � with the
property (3-3). From the first part of Proposition 5.2 applied to p = O and ρ = 4ϵ1, as well as from
the second part of Proposition 5.2, we obtain τ = τ(n, K ,C0,Wℓ(�), ϵ1), up to which the claimed
properties of (ii) are satisfied. Property (i) is then clear from the fact that, at the equator, cK = 0, and
hence (d/dt)max r < 0.

(iii) Next, we bound the function9. Suppose9 attains a positive maximum over the set [0, t̄ ]×Sn
×Sn+1

K
at some (t̄, ξ̄ , p̄). Define the Lipschitz function

9 p̄(t)= max
Sn

9(t, · , p̄),

which is positive in some small interval J := [t̄ − δ, t̄ ]. Thus we have

dist( p̄,Mt) > 2d3 for all t ∈ J.

Hence in J the function 8 p̄ is smooth, and

9 p̄(t)=
(
min

Mt
r̂ p̄ − 2d3

)
max

Mt
8 p̄

is differentiable almost everywhere in J .
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For almost every t ∈ J , using (5-1) and ⟨∂r̂ p̄ , ν⟩> 0 because p̄ ∈�t for all t ∈ J , we have

d
dt
9 p̄ =

d
dt

min
Mt

r̂ p̄ max
Mt

8 p̄ +
(
min

Mt
r̂ p̄ − 2d3

) d
dt

max
Mt

8 p̄

=
(
cK (r)µ− H

(
t̄, x

(
t̄, argminMt̄

r̂ p̄
)))

⟨∂r̂ p̄ , ν⟩ max
Mt

8 p̄ +
(
min

Mt̄
r̂ p̄ − 2d3

) d
dt

max
Mt

8 p̄

≤ µmax
Mt

8 p̄ +
(
min

Mt̄
r̂ p̄ − 2d3

) d
dt

max
Mt

8 p̄.

Inserting the evolution equation from Lemma 5.3, discarding two good terms, and using ∇8 p̄(t, ξt)= 0
at all maximizers ξt , we obtain

d
dt
9 p̄ ≤ µmax

Mt
8 p̄ +

(
min

Mt̄
r̂ p̄ − 2d3

)(
max

Mt
8 p̄

(
nK −

d3

û p̄ − d3
|A|

2
)

+ 2 max
Mt

82
p̄

−
µ

û p̄ − d3

(
max

Mt
8 p̄(K sK ŝK ⟨∇r,∇r̂ p̄⟩ + cK ĉK )

))
,

where we used that u and cK are positive due to Mt ⊂ H(O) and O ∈�t . Using sK ≤ K −1/2 and

minMt̄ r̂ p̄ − 2d3

û p̄ − d3
(K sK ŝK ⟨∇r,∇r̂ p̄⟩ + cK ĉK )≤ 2 ·

π/(2
√

K )
1
5 d3

=
5π

d3
√

K
,

we get

d
dt
9 p̄ ≤

(
1 +

5π
√

K d3

)
µmax

Mt
8 p̄ + nK9 p̄ + 29 p̄ max

Mt
8 p̄ −

d2
3

n
9 p̄ max

Mt
82

p̄.

By means of the Hsiung–Minkowski identity (2-3) and Lemma 2.1, we estimate, for all 0 ≤ t ≤ τ ,

µ(t)≤ n
( n
ℓ+1

) ∫
Mt
κℓ+1

n∫
Mt

uσℓ+1
≤

n
sK (ϵ1)

∫
Mt
κℓ+1

n∫
Mt
κℓ+1

1

≤
2nCℓ+1

0

ϵ1
, (5-3)

where the constant C0 comes from the pinching (4-3). Hence

d
dt
9 p̄ ≤ 2nCℓ+1

0

(
1 +

5π
√

K d3

)
maxMt 8 p̄

ϵ0(max(ȳ, ψ0))
+ nK9 p̄ + 29 p̄ max

Mt
8 p̄ −

d2
3

n
9 p̄ max

Mt
82

p̄

=
2nCℓ+1

0

minMt̄ r̂ p̄ − 2d3

(
1 +

5π
√

K d3

)
9 p̄

ϵ0(max(ȳ, ψ0))
+ nK9 p̄

+
2

minMt̄ r̂ p̄ − 2d3
92

p̄ −
d2

3

n(minMt̄ r̂ p̄ − 2d3)2
93

p̄.

Multiplication with (minMt̄ r̂ p̄ − 2d3)
2 gives, for almost every t ∈ J ,

(
min

Mt̄
r̂ p̄ − 2d3

)2 d
dt
9 p̄ ≤

nπCℓ+1
0

√
K

(
1 +

5π
√

K d3

)
9 p̄

ϵ0(max(ȳ, ψ0))
+

nπ2

4
9 p̄ +

π
√

K
92

p̄ −
d2

3

n
93

p̄,
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which is strictly negative whenever max(ȳ, ψ0) < 9 p̄(t). To conclude the argument, suppose that

9(t̄, ξ̄ , p̄)= max
[0,t̄ ]×Sn×Sn+1

K

9 >max(ȳ, ψ0).

We know that

9 p̄(t)≤9(t̄, ξ̄ , p̄),

with equality at t = t̄ . But previously we showed that, for t close to t̄ , we have (d/dt)9 p̄ < 0 almost
everywhere, which is impossible. Hence we obtain the desired estimate with C3 = ȳ. □

Higher-order curvature bounds. We use the estimate from Lemma 5.4 to control the global term and
estimate the derivatives of curvature.

Lemma 5.5. For the origin O ∈ � from Lemma 5.4 and the solution Mt = ∂�t of (1-1) with initial
data M and maximal existence time T > 0 and for all m ∈ N, there exists

C4 = C4
(
n,m, K ,C0,Wℓ(�),max

(
C3,max

M
9

))
with the property

µ(t)+ |∇
m A| ≤ C4 for all t ∈ [0,min(τ, T )),

where τ is the number from Lemma 5.4. In particular, we have T ≥ τ , and the flow exists smoothly
on [0, τ ].

Proof. Up to the time min(τ, T ), (5-3) holds, i.e., with the notation from the proof of Lemma 5.4, we
have

µ(t)≤
2nCℓ+1

0

ϵ1
=

2nCℓ+1
0

ϵ0(max(C3, ψ0))
.

The curvature derivative bound can be proved by a well-known induction argument, as for example in
[Huisken 1984]. First, due to convexity and Lemma 5.4 (ii) and (iii),

|A|
2
≤ H 2

≤
82

p�

K
≤

1
d2

3 K

(
max

(
C3,max

M
9

))2
.

Assuming that all derivatives up to order m − 1 are bounded by a constant of the form C4, we obtain the
evolution equation of |∇

m A|:

∂t |∇
m A|

2
≤1|∇

m A|
2
− 2|∇

m+1 A|
2
+ C(µu + K )|∇m A|

2

+ C
∑

i+ j+k=m

(µ|∇
i cK | + |∇

i A|)|∇ j A||∇
k A||∇

m A|,

where we used that ∇u = A ∗ ∇cK ; see (2-4). Here S ∗ T denotes any linear combination of tensors
formed by contracting S and T by means of g.

Then we claim

|∇
m A|

2
≤ C for all t ∈ [0,min(τ, T )). (5-4)
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As µ and u are bounded, we get

(∂t −1)|∇m A|
2
≤ −2|∇

m+1 A|
2
+ C |∇

m A|
2
+ C

( m∑
i=0

|∇
i cK | + 1

)
|∇

m A|.

Notice that cK (r) and |∇cK | are bounded as well. Moreover, from (4-1), one has, for ℓ ≥ 0, the
covariant derivatives

∇
ℓ+2cK = ∇

ℓcK ∗ K + u ∗ ∇
ℓA +

∑
i+ j+k=ℓ

∇
i cK ∗ ∇

j A ∗ ∇
k A,

which are controlled by uniform constants arguing by induction. In short, we reach

(∂t −1)|∇m A|
2
≤ −2|∇

m+1 A|
2
+ C |∇

m A|(1 + |∇
m A|),

which leads to (5-4) by standard maximum principle arguments, as for example in the proof of [Huisken
1987, Theorem 4.1].

As the right-hand side of the flow equation and all higher derivatives of the curvature remain uniformly
bounded, we conclude (as in [Huisken 1984, pp. 257 ff.]) that, if T < τ , then Mt converges (as t → T in
the C∞-topology) to a unique, smooth and strictly convex hypersurface.1 Now we can apply short-time
existence to continue the solution after T , contradicting the maximality of T . Hence the solution of (1-1)
starting at a strictly convex hypersurface exists on [0, τ ). On this interval we have uniform smooth
estimates, and hence the flow also exists on [0, τ ]. □

6. Construction of a global solution

In the previous section we achieved existence and uniform estimates of any solution to (1-1) with strictly
convex initial data M on a time interval [0, τ ] from Lemma 5.4, the length of which only depends on
preserved data of the problem. Those are, in particular, the hemisphere H(O), the pinching constant C0,
the quermassintegral Wℓ(�) and the number max(C3,maxM 9). The full curvature derivative bounds
also only depend on those quantities.

Hence we can start an iteration process and shift, at time iτ with i ∈ N, the origin according to
Lemma 5.4 applied to the new strictly convex initial hypersurface Miτ . The constant C4 from Lemma 5.5
is then uniform among the integers i , because it only depends on quantities which are always preserved.
The following lemma makes this precise.

Lemma 6.1. Let M0 ⊂ Sn+1
K be a strictly convex hypersurface enclosing a domain �. Then there exists

a sequence of origins (Oi )i∈N∪{0} and positive numbers τ0, ϵ1(0) depending only on n, K , C0, Wℓ(�0),
max(C3,maxM0 9), such that the problem

∂t x = (µi (t)cK (ri )− H)ν for all t ∈ [iτ0, (i + 1)τ0),

x(0,Sn)= M0,

x((i + 1)τ0,Sn)= lim
t↗(i+1)τ0

Mt ,

1Note that, due to the bound on µ, it can be seen from Lemma 5.1 that H is bounded from below on every finite time interval.
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where ri is the distance to Oi and µi is given as in (1-3) to keep the quermassintegral Wℓ(�t) fixed for
any ℓ= 0, 1, . . . , n, has a solution

x : [0,∞)× Sn
→ Sn+1

K .

For every t ≥ 0, Mt is strictly convex and we have

Bϵ1(0)(Oi )⊂�t and Mt ⊂ H(Oi ) for all t ∈ [iτ0, (i + 1)τ0). (6-1)

The mappings x(t, · ) satisfy spatial C∞-estimates which are uniform in time.

Proof. For M0, pick O0 according to Lemma 5.4. From Lemma 5.5 we conclude that the solution Mt

of (1-1) with initial data M0 exists on [0, τ0], where τ0 and ϵ1(0) depend on n, K , C0, Wℓ(�0), and
max(C3,maxM0 9). The derivatives of A are bounded by

C4 = C4
(
n,m, K ,C0,Wℓ(�0),max

(
C3,max

M0
9

))
.

Now suppose that, for i ≥ 0, the hypersurface Miτ0 , the origin Oi and the solution (Mt)t∈[iτ0,(i+1)τ0)

were already constructed such that (6-1),

max
(
C3,max

Mt
9

)
≤ max

(
C3,max

M0
9

)
,

as well as
µi (t)+ |∇

m A| ≤ C4
(
n,m, K ,C0,Wℓ(�0),max

(
C3,max

M0
9

))
(6-2)

all hold for all t ∈ [iτ0, (i + 1)τ0]. Then apply Lemma 5.4 to the initial hypersurface M(i+1)τ0 , and obtain
an origin Oi+1 such that the solution Mt of (1-1) with initial data M(i+1)τ0 satisfies (6-1),

max
(
C3,max

Mt
9

)
≤ max

(
C3, max

M(i+1)τ0

9
)
≤ max

(
C3,max

M0
9

)
and

µi+1(t)+ |∇
m A| ≤ C4

(
n,m, K ,C0,Wℓ(�0),max

(
C3,max

M0
9

))
during the interval [(i + 1)τ0, (i + 2)τ0] and with the same ϵ1(0). Here we also used that C0 and Wℓ

are preserved. This means that the construction can be carried out infinitely often to obtain the desired
long-time solution. □

7. Asymptotic estimates and convergence to a spherical cap

In the previous sections we have put ourselves into a position where we have a strictly convex flow
(Mt)0≤t<∞ in the sphere. This flow is not necessarily smooth in time, but it satisfies spatial Ck-estimates
which are uniform with respect to time and has a uniformly bounded global term, due to the proof of
Lemma 6.1.

Additionally, by means of Corollary 4.4 and the curvature bounds, we get
n∑

i=1

(κi − κ1)= H − nκ1 ≤ nHω(t)≤ nCe−2nK t ,
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which implies exponential decay of the traceless second fundamental form

| Å|
2
=

1
n

∑
i< j

(κ j − κi )
2
≤ Ce−4nK t . (7-1)

Using this property, in the following we are going to apply some recent estimates of almost-umbilical
type due to De Rosa and Gioffré [2021], to show that the process of picking new origins actually terminates
after finitely many steps and that the flow will then converge to a geodesic sphere of a uniquely determined
radius. The crucial ingredient is the following result.

Theorem 7.1 [De Rosa and Gioffrè 2021, Theorem 1.3]. Let n ≥ 2, let 6 be a closed hypersurface
in Rn+1 and let p > n be given. We assume that there exists c0 > 0 such that 6 satisfies the conditions

|6| = |Sn
|, ∥A∥L p(6) ≤ c0.

There exist positive numbers δ,C > 0, depending only on n, p, c0, with the following property: if

∥ Å∥L p(6) ≤ δ,

then there exists a vector c = c(6), such that 6 − c is a graph over the sphere; namely, there exists a
parametrization

ψ : Sn
→6, ψ(x)= e f (x)x + c,

and f satisfies the estimate
∥ f ∥W 2,p(Sn) ≤ C∥ Å∥L p(6).

In the following we will use this result to prove that the surfaces become exponentially C2-close to
geodesic spheres and that the necessity to pick new origins vanishes.

Lemma 7.2. In the situation of Lemma 6.1, there exists an integer m > 0 depending on n, K and M , such
that, in Lemma 6.1, the origins Oi , i > m, may be chosen constantly equal to Om .

Proof. Let m be a positive integer to be specified during the proof. Let Om be the flow origin associated
to the interval Im := [mτ0, (m + 1)τ0). By stereographic projection from the antipodal point of Om , the
family (Mt)t∈Im can be viewed as a flow in the Euclidean space, which we denote by (M̃t)t∈Im . Geometric
quantities of this flow, denoted by a tilde, are related to the original ones as follows, see [Gerhardt 2006,
Proposition 1.1.11], where e2ϕ is the conformal factor:

g = e2ϕ g̃, ν = e−ϕ ν̃,

eϕA = Ã + dϕ(ν̃) id, eϕH = H̃ + n dϕ(ν̃).
In particular, we obtain

˚̃A = eϕ Å.

The surface areas of Mt and M̃t are related by

|Mt | =

∫
Mt

1 =

∫
M̃t

enϕ,
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and hence

C−1
|Mt | ≤ |M̃t | ≤ |Mt |,

where C depends on |ϕ|C0(Mt ). Now define the scaled hypersurface

M̂t = λM̃t , with λn
=

|Sn
|

|M̃t |
,

so that |M̂t | = |Sn
|. Now the associated Weingarten operator is

Â = λ−1 Ã =
eϕ

λ
A − λ−1 dϕ(ν̃) id,

and similarly for the traceless Weingarten operator. Hence

∥ Â∥L∞(M̂t )
≤ C(∥A∥L∞(Mt ) + 1)

and

∥
˚̂A∥L∞(M̂t )

≤ C∥ Å∥L∞(Mt ),

where C depends on n, |ϕ|C1(Mt ) and |Mt |.

Then ∥ Â∥L∞(M̂t )
is bounded by Lemma 5.5 and (7-1) ensures that ∥

˚̂A∥L∞ is as small as needed for
m big enough. Therefore, we can apply Theorem 7.1 for sufficiently large m to get a function f̂ which,
from the embedding theorems of Sobolev spaces into Hölder spaces, satisfies

∥ f̂ ∥C1(Sn) ≤ C∥
˚̂A∥L∞(M̂t )

≤ C∥ Å∥L∞(Mt ) ≤ Ce−2nK t for all t ∈ Im .

Then, due to our curvature bounds (5-4), we have full Ck-bounds on f̂ for all k. By iteration of
interpolation arguments for Ck bounds (see [Gerhardt 2011, Corollary 6.2]), this implies that

∥ f̂ ∥Ck(Sn) ≤ Ce−2nK t for all t ∈ Im .

In other words, M̂t is exponentially Ck-close to a sphere Ŝt for all k ∈ N and for all t ∈ Im . As the
area along the Mt is uniformly bounded above and below by Corollary 3.2, we get Ck bounds for the
conformal factor as well, and this property of closeness to a sphere St carries over to the original flow
in Sn+1

K . Note that the radii of the spheres St converge to a well-defined limit, which is strictly less than
π/(2

√
K ), determined by the initial value of Wℓ(�0). Hence the curvature of Mt is uniformly bounded

from below.
On the other hand, the radial distance to the origin Om satisfies

∂tr = (µcK − H)v−1, with v2
= 1 + s−2

K |dr |
2
σ . (7-2)

Hence, for an error δm that converges to zero when m → ∞,

∂tr =

( ∫
Mt
σℓH∫

Mt
σℓcK

cK − H
)
v−1

≤

(
cK

/
∫
St

cK
− 1

)
HSt

v
+ δm, (7-3)
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where HSt is the mean curvature of the sphere St . At points which maximize r , we have that cK is
minimized. At such points the first term on the right-hand side of (7-3) is strictly negative if cK is not
constant. Hence, for large m, if St is uniformly off-center, maxMt r is decreasing and a similar estimate
shows that minMt r is increasing. Hence, from then on, there is no longer a need to adjust the origin. □

Convergence to a spherical cap. To complete the proof of Theorem 1.1, it only remains to show that
the immortal solution coming from Lemma 6.1 actually converges to a limit geodesic sphere. After
m-fold picking of a new origin, we now may, without loss of generality, assume that origins have not
been changed at all. We will exploit the C∞-estimates for the flow hypersurfaces Mt coming from (5-4).
We already know from Lemma 7.2 that every limit point of the flow must be a round sphere.

Now we prove that only the sphere centered at the origin can arise as a limit. Notice that the radius R
of any limit sphere is determined by the initial hypersurfaces by means of the equality Wℓ(BR)= Wℓ(�0).
Denote by HR the mean curvature of such a sphere SR . Hence, from the evolution (7-2) of the radial
distance and for an error δ that converges to zero when Mtk → SR , we get

∂tr =

(
cK

/
∫

M cK
− 1

)
HR

v
+ δ. (7-4)

As above, at points which maximize r , we have that cK is minimized, thus at such points the first term on
the right-hand side of (7-4) is strictly negative if cK is not constant. Therefore the function maxMt r is
strictly decreasing in sufficiently small C2-neighborhoods of any noncentered sphere, which excludes
those as limits. Thus subsequential limits are unique and the whole flow must converge.

8. The elliptic case: rigidity results

In order to prove Theorem 1.3, we first have to get the elliptic viscosity equation of the pinching deficit
for general curvature function F . Let us first gather some prerequisites about these functions.

8.1. Symmetric curvature functions. If M is a hypersurface of Mn+1
K , then we set

F(x)= f (κ1(x), . . . , κn(x)),

which can be alternatively seen as a function defined on the diagonalizable endomorphisms, F = F(A),
or as a function of a symmetric and a positive definite bilinear form, F = F(g, h). In the latter case, we
write

F i j
=
∂F
∂hi j

, F i j,kl
=

∂2 F
∂hi j∂hkl

.

With these conventions, the covariant derivatives are given by

∇i F = F jk
∇i h jk . (8-1)

On strictly convex hypersurfaces M , we can define the so-called inverse curvature function by

F̃(A)=
1

F(A−1)
.
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A curvature function F is called inverse concave if F̃ is concave. Notice that concavity/convexity with
respect to the matrix variables is equivalent to the same property with respect to the eigenvalues (see
[Andrews 2007; Gerhardt 2006] for further information). Next we gather several useful properties.

Lemma 8.1. (a) If F is inverse concave and M is strictly convex, then

F i j,kl
∇1hi j∇1hkl + 2

∑
j

F i i

κ j
(∇1hi j )

2
≥

2
F
(∇1 F)2. (8-2)

(b) Under Conditions 1.2, we have:

(i) If F is convex, then it is inverse concave (see [Gerhardt 2006, Lemmas 2.2.12 and 2.2.14]).

(ii) Euler’s formula F i iκi = F implies that F is strictly positive.

Rigidity for radial curvature functions. We start with a result that contains an elliptic version of
Proposition 4.3.

Lemma 8.2. Suppose F satisfies Conditions 1.2. Then:

(i) The Weingarten operator satisfies the elliptic equation

−Frs
∇

2
rshi j = F pq,rs

∇i h pq∇ j hrs − ∇
2
i j F + Frshmshm

r hi j + K Fgi j − Fhmj hm
i − K Frs grshi j .

(ii) For the function p = κ1/F , we have

−F Fkl
∇

2
kl p ≥ 2

∑
j>D

Fkk(∇kh1
j )

2

κ j − κ1
+ F pq,rs

∇1h pq∇1hrs + 2Fkl
∇k p∇l F

+ pFkl
∇kl F − ∇11 F + F i i Seci1(κi − κ1)

in the viscosity sense, where D is the multiplicity of κ1.

Proof. (i) We differentiate (8-1) to get

∇
2
i j F = F pq,rs

∇i h pq∇ j hrs + Frs
∇

2
i j hrs .

Now combine the commutator formula for second covariant derivatives with the Gauss equation (2-1) to
deduce

Frs
∇

2
i j hrs = Frs(∇2

rshi j + Rm
is j hmr + Rm

rs j hmi )

= Frs
∇

2
rshi j + Frs(hmshi j − hmj his + K gms gi j − K gmj gis)hm

r

+ Frs(hmshr j − hmj hrs + K gms gr j − K gmj grs)hm
i

= Frs(∇2
rshi j + hmshm

r hi j )+ K Fgi j − Fhmj hm
i − K Frs grshi j .

(ii) As in the proof of Proposition 4.3, let η be a smooth lower support of p at ξ0 ∈ M , and define ϕ = ηF .
Then, in coordinates with

gi j = δi j , hi j = κiδi j , (8-3)
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we have inequality (4-2), which combined with (i) leads to

−F Fkl
∇

2
klη = −Fkl

∇
2
klϕ+

ϕ

F
Fkl

∇
2
kl F + 2Fkl

∇kη∇l F

≥ 2Fkl
∇kη∇l F + 2

∑
j>D

Fkk(∇kh1
j )

2

κ j − κ1
+ F pq,rs

∇1h pq∇1hrs

+ ηFkl
∇

2
kl F − ∇

2
11 F + F i i (κiκ1 + K )(κi − κ1). □

In order to prove Theorem 1.3, let F = γ cαK . Then taking derivatives and using (4-1), we get

∇
2
kl F = αγ cα−1

K ∇
2
klcK +α(α− 1)γ cα−2

K ∇kcK ∇lcK = K
( u

cK
hkl − gkl

)
αF +

2ϵ
F

∇k F∇l F,

where

ϵ =
α−1
2α

=
1
2

−
1

2α
. (8-4)

This implies

pFkl
∇

2
kl F − ∇

2
11 F = pαK F

( u
cK

F − Fkl gkl

)
−αK F

( u
cK
κ1 − 1

)
+

2ϵp
F

Fkl
∇k F∇l F −

2ϵ
F
(∇1 F)2

= KαF i i (κi − κ1)+
2ϵ
F
(pFkl

∇k F∇l F − (∇1 F)2). (8-5)

Here we have used Euler’s relation, and computations are done in the coordinates (8-3).

Proof of Theorem 1.3. As |α| ≥ 1, we have that ϵ ∈ [0, 1] for ϵ defined as in (8-4). Then using that M is
convex, we can estimate

2
∑
j>D

Fkk(∇kh1
j )

2

κ j − κ1
≥ 2ϵ

n∑
j=1

Fkk(∇kh1
j )

2

κ j
− 2ϵ

p
F

Fkl
∇k F∇l F + T ∗ ∇ p,

where we also used the following (see [Brendle et al. 2017, Lemma 5]):

∇kϕδi j = ∇khi j for all 1 ≤ i, j ≤ D.

Plugging this into Lemma 8.2 (ii) and using the convexity of F , we get

−F Fkl
∇

2
kl p ≥ 2ϵ

n∑
j=1

Fkk(∇kh1
j )

2

κ j
− 2ϵ

p
F

Fkl
∇k F∇l F + ϵF pq,rs

∇1h pq∇1hrs

+ pFkl
∇kl F − ∇11 F + F i i Seci1(κi − κ1)+ T ∗ ∇ p

≥
(8-5)

2ϵ
n∑

j=1

Fkk(∇kh1
j )

2

κ j
+ ϵF pq,rs

∇1h pq∇1hrs −
2ϵ
F
(∇1 F)2

+ F i i (Seci1 +αK )(κi − κ1)+ T ∗ ∇ p.

Notice that in the case α = −1, we have ϵ = 1 and therefore we do not need the convexity of F in the
first inequality above.
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By Lemma 8.1 (b) our F is inverse concave, and hence (8-2) leads to

−F Fkl
∇

2
kl p + T ∗ ∇ p ≥ F i i (Seci1 +αK )(κi − κ1).

This completes the proof using the strong maximum principle for viscosity solutions. We conclude that M
has to be centered at the origin provided K ̸= 0, since only in this case can cK be constant. □

Remark 8.3. Note that this approach also provides a direct maximum principle proof of Liebmann’s
soap bubble theorem (the convex case of Alexandrov’s theorem); see [Liebmann 1900].

Solitons. We complete this paper by proving Corollary 1.4.

Proof of Corollary 1.4. For the given hypersurface M , there is a dual hypersurface M̃ ⊂ Mn+1
K , where

K = sgn(M) as in (1-6) and with the properties

κ̃i =
1
κi
, c̃K = u;

see [Gerhardt 2006, Theorems 10.4.4 and 10.4.9] and [Scheuer 2021]. Hence M̃ satisfies the equation

c̃1/β
K = F(κi )= F(κ̃−1

i )=
1

F̃(κ̃i )
,

i.e., with α = −1/β, we have
F̃

|M̃ = c̃αK ,

where F̃ is the inverse curvature function of F . Therefore to complete the proof it only remains to check
the conditions of Theorem 1.3 for M̃ , which hold provided that, for any g̃-orthonormal frame, we have

S̃eci j ≥ −αK .

In coordinates that diagonalize Ã, the Gauss equation (2-1) for M̃ gives

R̃i j i j +αK = h̃i i h̃ j j − h̃i j h̃i j + (1 +α)K =
1
κiκ j

+ (1 +α)K ≥ 0,

provided
1
κiκ j

≥
1 −β

β
K .

Notice that if ((1 −β)/β)K ≤ 0, this is guaranteed by convexity of M ; otherwise, the inequality follows
by the assumption on SecM . Hence the statement follows by direct application of Theorem 1.3. □
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1. Introduction

The purpose of this work is to prove an upper bound for the number of resonances for even asymptotically
hyperbolic manifolds with real-analytic (but a priori not exactly hyperbolic) ends. Let us recall that
an asymptotically hyperbolic manifold is a Riemannian manifold (M, g) such that M is the interior
of a compact manifold with boundary M and there is an identification of a neighborhood of ∂M with
[0, ϵ[y1 × ∂M y′ that puts the metric g into the form

g =
dy2

1 + g1(y1, y′, dy′)

y2
1

, (1)

where g1(y1, y′, dy′) is a family of metrics on ∂M depending on y1. We say that (M, g) is even if g1 is a
smooth function of y2

1 . We refer to [Dyatlov and Zworski 2019, §5.1] for a detailed discussion of this notion.
Letting 1 denote the (nonpositive) Laplace operator on an even asymptotically hyperbolic manifold

(M, g) of dimension n, one commonly introduces the family of operators, depending on the complex
parameter λ, (

−1−
1
4(n − 1)2 − λ2)−1

: L2(M)→ L2(M), Im λ > 0. (2)
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Since the essential spectrum of −1 is [(n − 1)2/4,+∞[, this family of operators is well-defined and
meromorphic for Im λ> 0, with maybe a finite number of poles between 0 and i(n−1)/2 on the imaginary
axis, corresponding to the eigenvalues of −1 in ]0, (n − 1)2/4[. Notice that the residues of these poles
have finite ranks.

The scattering resolvent of (M, g) is then defined as the meromorphic continuation of (2), as provided
by the following result.

Theorem 1 [Mazzeo and Melrose 1987; Guillarmou 2005]. Let (M, g) be an even asymptotically
hyperbolic manifold of dimension n. Then the resolvent (2) admits a meromorphic extension Rscat(λ) to C

as an operator from C∞
c (M) to D′(M), with residues of finite rank.

In the case of manifolds that are exactly hyperbolic near infinity, one may also refer to [Guillopé and
Zworski 1995a]. Notice that we do not use here the same spectral parameter as in [Mazzeo and Melrose
1987; Guillarmou 2005; Guillopé and Zworski 1995a]. The spectral parameter from these references
is given in terms of our λ as ζ = (n − 1)/2 − iλ. Another proof of Theorem 1 has been given by Vasy
[2013a] (see also [Vasy 2013b; Zworski 2016; Dyatlov and Zworski 2019, Chapter 5]).

The poles of the scattering resolvent (the meromorphic continuation of (2)) are called the resonances
of (M, g). If µ ̸= 0 is a scattering resonance for (M, g) then we define the multiplicity of µ as the rank
of the operator

i
π

∫
γ

λRscat(λ) dλ, (3)

where γ is a small positively oriented circle around µ (so that the index of µ with respect to γ is 1, and
the index of any other resonance is zero). That this operator has finite rank follows from the fact that
the residues of Rscat(λ) have finite ranks. Another definition for the multiplicity of resonances may be
found for instance in [Guillopé and Zworski 1997, Definition 1.2], but it coincides with the one we gave
when µ is nonzero (see [Guillopé and Zworski 1997, Proposition 2.11]). The definition of the multiplicity
of 0 as a resonance is more subtle (and will not matter in our case), see the discussion after Theorem 1 in
[Zworski 1997]. Notice that in [Mazzeo and Melrose 1987; Vasy 2013a], the scattering resolvent Rscat(λ)

is constructed as an operator from the space Ċ∞(M) of smooth functions on M that vanish at infinite
orders on ∂M to its dual. Since C∞

c (M) is contained in Ċ∞(M), we stated in Theorem 1 a weaker result.
Notice however that, since C∞

c (M) is dense in Ċ∞(M), this simplification does not modify the notion of
multiplicity of a resonance.

Our main result is an upper bound on the number of resonances for even asymptotically hyperbolic
manifolds with real-analytic ends (as defined in Section 4.1).

Theorem 2. Let (M, g) be an even asymptotically hyperbolic manifold real-analytic near infinity (as
defined in Section 4.1) of dimension n. For r > 0, let N (r) denote the number of resonances of (M, g) of
modulus less than r , counted with multiplicities. Then

N (r) =
r→+∞

O(rn). (4)
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This upper bound is natural, since it is coherent with the asymptotic for the number of eigenvalues for
the Laplacian on a closed Riemannian manifold given by Weyl law. There are also noncompact examples
for which the bound (4) is optimal; see the lower bounds from [Guillopé and Zworski 1997; Borthwick
2008] discussed below.

There is a long tradition of studies of such counting problems in scattering theory, going back to
the work of Tullio Regge [1958]. Results similar to Theorem 2 have been established in the context
of scattering (e.g., by a compactly supported potential or by certain black boxes) on odd-dimensional
Euclidean spaces [Melrose 1984; Zworski 1989; Sjöstrand and Zworski 1991; Vodev 1992]. In the
context of asymptotically hyperbolic manifolds, the bound (4) is known for manifolds with exactly
hyperbolic ends [Guillopé and Zworski 1995b; Cuevas and Vodev 2003; Borthwick 2008]. Still in the
case of manifolds with exactly hyperbolic ends, we also have some lower bounds available: in the case
of surfaces Guillopé and Zworski [1997] proved that r2

= O(N (r)), which implies that (4) is optimal
in that case. In higher dimension n, Borthwick [2008] proved a similar lower bound rn

= O(N sc(r)) for
compact perturbations of conformally compact hyperbolic manifolds (a stronger assumption than just
having exactly hyperbolic ends). This lower bound is obtained for the counting function N sc(r) associated
to a larger set of resonances than N (r), and that also satisfies (4). However, a few cases in which the
same lower bound for N (r) follows are given in [Borthwick 2008]. Finally, a lower bound for N (r) of
the form

lim sup
r→+∞

log N (r)
log r

= n

is proven for generic compact perturbations of a manifold with exactly hyperbolic ends in [Borthwick
et al. 2011].

Leaving the context of manifolds with exactly hyperbolic ends, much less is known on the asymptotic of
the counting function N (r). The bound (4) was established by Borthwick and Philipp [2014] in the case of
asymptotically hyperbolic manifolds with warped-product ends, that is, for which the coordinates (y1, y′)

in (1) may be chosen so that g1(y1, y′, dy′)= g1(y′, dy′) does not depend on y1. The proof of a similar
bound is sketched in [Froese and Hislop 2000] for a class of asymptotically hyperbolic manifolds with
ends that are asymptotically warped. Wang [2019] established, for certain real-analytic asymptotically
hyperbolic metrics on R3, a polynomial bound O(r6) for the number of resonances in a sector of the form{

z ∈ C : ϵ < |z|< r,−1
2π + ϵ < arg z < 3

2π − ϵ
}

(5)

when r tends to +∞ while ϵ > 0 is fixed. The evenness assumption is not made in [Wang 2019], hence the
necessity to count resonances in sectors of the form (5) rather than in disks (one has to avoid the essential
singularities that can appear in the noneven case according to [Guillarmou 2005]). In the even case, our
result, Theorem 2, improves the bound from [Wang 2019], not only because we can count resonances in a
disk, but also because our result, valid in any dimension, gives a better exponent in the 3-dimensional case.

Let us point out that the upper bound (4) is also satisfied by the counting functions for the Ruelle
resonances of a real-analytic Anosov flow, as follows from a result of Fried [1995] based on techniques
introduced by Rugh [1992; 1996]. We gave a new proof of this result in [Bonthonneau and Jézéquel 2020],
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adapting techniques originally developed in [Helffer and Sjöstrand 1986; Sjöstrand 1996]. The tools
of real-analytic microlocal analysis that we use in the present paper rely heavily on [Bonthonneau and
Jézéquel 2020].

The main idea behind the proof of Theorem 2 is to adapt the method of Vasy [2013a] to construct the
scattering resolvent, by introducing tools of real-analytic microlocal analysis. The method of Vasy does
not only apply to even asymptotically hyperbolic manifolds, it may also be used to study resonances
associated to the wave equation on Schwarzschild–de Sitter spacetimes (in this context, resonances
are also called quasinormal frequencies). The interested reader may for instance refer to [Dafermos
and Rodnianski 2013, §6] for a description of the geometry of Schwarzschild–de Sitter spacetimes.
Consequently, our method also gives an upper bound on the number of resonances (or quasinormal
frequencies) for Schwarzschild–de Sitter spacetimes.

Theorem 3. The number of quasinormal frequencies of modulus less than r for a Schwarzschild–de Sitter
spacetime is O(r3) when r tends to +∞.

It is proven in [Sá Barreto and Zworski 1997] that the quasinormal frequencies for a Schwarzschild–de
Sitter spacetime are well approximated by the pseudopoles

c
(
±ℓ±

1
2 − i

(
k +

1
2

))
,

for k ∈ N and ℓ∈ N∗, the corresponding pole having multiplicity 2ℓ+1. Here, c is a constant depending on
the mass of the black hole and the cosmological constant. However, the approximation given in [loc. cit.]
is only effective for a pseudopole µ such that |µ| tends to +∞ while the imaginary part of µ remains
bounded from below. Consequently, while Theorem 3 seems reasonable in view of the approximation
result from [loc. cit.], these two results discuss two different asymptotics. The result from [loc. cit.]
cannot be used to prove Theorem 3, nor to prove that Theorem 3 is sharp (even though it suggest that it
should be the case).

It may be possible that the method of the proof of Theorems 2 and 3 generalizes to the case of slowly
rotating Kerr–de Sitter black holes (as the method of Vasy [2013a, §6] also applies in this context).
However, there are some additional technical difficulties that would probably arise in that case, due to
the microlocal geometry being more complicated than in the Schwarzschild–de Sitter case. In particular,
there are bicharacteristics that originate at the source above the event horizon, then enter the domain
of outer communication and eventually leave it. Our strategy of proof would require the propagation
of singularities along these bicharacteristics using real-analytic microlocal analysis. Consequently, in
order to deal with Kerr–de Sitter spacetimes, one cannot use real-analytic tools only near the event and
cosmological horizon, as it is the case in the proof of Theorem 3; see Remark 4. Since the coefficients
of Kerr–de Sitter spacetimes are real-analytic on the whole domain of outer communication, it is not
unlikely that this problem may be solved. In any case, we expect that one would need to use an escape
function more carefully designed than in our analysis below.

Idea of the proof. As mentioned above, the proof of Theorems 2 and 3 is based on an adaptation of
the method of Vasy [2013a] to construct the scattering resolvent, by introducing tools of real-analytic
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microlocal analysis. Our approach of the method of Vasy is mostly based on the exposition from [Dyatlov
and Zworski 2019, Chapter 5].

The starting point of the proof of Theorems 2 and 3 is the following observation. When using the
method of Vasy to construct the scattering resolvent, one will construct a meromorphic extension to (2)
on a half plane of the form

{λ ∈ C : Im λ >−C} (6)

for a given C > 0, by studying the action of a modified Laplacian on a functional space HC that depends
on C . The constant C may be chosen arbitrarily large, so that we get indeed a meromorphic continuation
to C, but this requires a change in the space on which the modified Laplacian is acting.

In the context of even asymptotically hyperbolic manifolds, the space HC is constructed in the
following manner: one embeds M as a relatively compact subset of a manifold X , and replaces the
operator −1− (n − 1)2/4 − λ2 by a family of modified Laplacians. These modified Laplacians are
elliptic on M but have a source/sink structure above the boundary of M in X . One can then set up
a Fredholm theory for the modified Laplacians by using microlocal radial estimates (see for instance
[Dyatlov and Zworski 2019, §E.4]). However, radial estimates in the C∞ category are limited by a
threshold condition. In our setting, it imposes choosing space HC as a space of functions with a number
of derivatives proportional to C in order to get a meromorphic continuation of (2) on the half-plane (6).

Consequently, working only with C∞ tools, one will a priori only have access to bound on the number
of resonances when restricting to a half-plane of the form (6). A natural idea to tackle this difficulty is to
work with a space “H∞” of functions that are smooth near the boundary of M in X (in our case, this
would be real-analytic objects). If one is able to prove a real-analytic version of the radial estimates, it
should be possible to bypass the threshold condition and construct directly the meromorphic continuation
of (2) to the whole C, working on a single space H∞. One can then hope that this functional analytic
setting can be used to prove a global bound on the number of resonances, without the need to restrict to a
half-plane of the form (6). We will use the tools from [Bonthonneau and Jézéquel 2020], based on [Helffer
and Sjöstrand 1986; Sjöstrand 1996], to prove an estimate that is in some sense a real-analytic version of
a radial estimate (see also [Galkowski and Zworski 2022]). Notice that similar estimates are proved in
[Galkowski and Zworski 2021; Guedes-Bonthonneau et al. 2024] in different geometric contexts, and
with a focus more on the hypoellipticity statement that may be deduced from the radial estimates rather
than on the functional analytic consequences. In some sense, the results on resonances for zeroth order
pseudodifferential operators in [Galkowski and Zworski 2022] and the results on real-analytic and Gevrey
Anosov flows from [Bonthonneau and Jézéquel 2020] are already implicitly based on real-analytic radial
estimates.

There is an important technical difference between the idea of the proof of Theorems 2 and 3 as
depicted above and the way the proof is actually written. Indeed, we cannot work with a space H∞ of
functions that are analytic everywhere on X (in particular because we do not want to assume that g is
analytic everywhere in M). Due to the lack of real-analytic bump functions, it is not easy to construct a
space of functions that are real-analytic somewhere but have (at most) finite differentiability somewhere
else, and that can be used to construct the scattering resolvent. We solve this issue using a strategy that



3628 MALO JÉZÉQUEL

was already present in [Guedes-Bonthonneau et al. 2024]: we introduce a semiclassical parameter h > 0
and work with a space of distributions H on X that depends on h. Let us point out that the space H really
depends on h, not only its norm. As h tends to 0, the elements of H are more and more regular near the
boundary of M in X . We can then invert a rescaled modified Laplacian acting on H after the addition of
a trace class operator whose trace class norm is controlled as h tends to 0, and the upper bound from
Theorems 2 and 3 will follow.

Structure of the paper. In Section 2, we introduce a set of general assumptions that will allow us to deal
simultaneously with the analysis in the context of Theorems 2 and 3. The point of these assumptions is
not to cover a wide generality, but to avoid to write the same proof twice with only notational changes.
We state in Section 2 a general result, Proposition 5, from which Theorems 2 and 3 will be deduced.

In Sections 3 and 4, we prove respectively Theorems 3 and 2.
In Section 5, we recall and extend some results from [Bonthonneau and Jézéquel 2020] that will be

needed for the proof of Proposition 5.
Finally, Section 6 is the main technical part of the paper, as it contains the proof of Proposition 5.

2. A general statement

In order to deal with the cases of asymptotically hyperbolic manifolds and of Schwarzschild–de Sitter
spacetimes simultaneously, we introduce here an abstract set of assumptions that are enough to make our
analysis work.

2.1. General assumption. We will use the notion of semiclassical differential operator, so let us recall
very briefly what it means (see [Zworski 2012] or [Dyatlov and Zworski 2019, Appendix E] for more
details on semiclassical analysis). A semiclassical differential operator Q of order m ∈ N on a smooth
manifold X is a differential operator on X , depending on a small, so-called semiclassical, implicit
parameter h > 0, of the form

Q =

m∑
k=0

hk Qk,

where Qk is a differential operator of order k on X that does not depend on h, for k = 0, . . . ,m. With Q
one may associate its (semiclassical) principal symbol q : T ∗X → C, which is a polynomial of degree m
in each fiber of T ∗X . We may define q as the unique h-independent function on T ∗X such that, for every
smooth function ϕ : M → C and x ∈ X , we have

e−i ϕ(x)h Q(ei ϕh )(x) =
h→0

q(x, dxϕ)+O(h).

Notice that q =
∑m

k=0 qm , where qk denotes the (classical) homogeneous principal symbol of the differential
operator Qk for k = 0, . . . ,m. In the applications from Sections 3 and 4, the introduction of the
semiclassical parameter h will be somehow artificial, this is just a technical trick.

Now that this reminder is done, we are ready to state our set of general assumptions.
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Let X be a closed real-analytic manifold of dimension n. We endow X with a real-analytic Riemannian
metric (this is always possible; see [Morrey 1958]). Let Y be an open subset of X with real-analytic
boundary ∂Y . Consider a family of differential operators

Ph(ω)= P2 +ωP1 +ω2 P0, (7)

where ω ∈ C and the operator Pj for j ∈ {0, 1, 2} is a semiclassical differential operator (that does
not depend on ω) on X of order j with principal symbol p j . We assume that there is ϵ > 0 and a
neighborhood U of ∂Y with real-analytic coordinates (x1, x ′) : U →]−ϵ, ϵ[×∂Y such that {x1 = 0}= ∂Y
and {x1 > 0} = Y ∩ U . We require in addition that P0, P1 and P2 have real-analytic coefficients in U and
that the following properties hold:

(a) For (x1, x ′, ξ1, ξ
′) ∈ T ∗U ≃ T ∗(]−ϵ, ϵ[×∂Y ), we have p2(x1, x ′, ξ1, ξ

′)=w(x1)ξ
2
1 +q1(x1, x ′, ξ ′)

where q1 is a homogeneous real-valued symbol of order 2 on ]−ϵ, ϵ[× T ∗∂Y and w : ]−ϵ, ϵ[ → R

is a real-analytic function such that w(0)= 0 and w′(0) > 0.

(b) There is a constant C > 0 such that for (x1, x ′, ξ1, ξ
′) ∈ T ∗U we have q1(x1, x ′, ξ ′)≥ C−1

|ξ ′
|
2.

(c) The symbol p1 is real-valued, p1(x1, x ′, ξ1, ξ
′) = p1(x1, ξ1) does not depend on (x ′, ξ ′) for

(x1, x ′, ξ1, ξ
′) ∈ T ∗U , and there is C > 0 such that

p1(x1, ξ1)

ξ1
≤ −C−1,

in particular the sign of p1(x1, ξ1) is the same as the sign of −ξ1.

(d) The symbol p2 is real-valued and positive on T ∗Y \ {0}.

(e) The symbol p0 is real-valued and negative on a neighborhood of Y .

Remark 4. Let us explain the significance of these assumptions. In the context of the proof of Theorem 2,
the manifold X will be an even extension for M, and Y will be M seen as a subset of the even extension X .
In the context of Theorem 3, Y will be the domain of outer communication and ∂Y corresponds to the event
and cosmological horizons. In both cases, Ph(ω) will be a (semiclassically rescaled) family of modified
operators. For instance, in the context of Theorem 2, we replace the operator −h21−h2(n−1)2/4−ω2 by
a modified Laplacian Ph(ω) (see for instance [Dyatlov and Zworski 2019, §5.3]). The new operator Ph(ω)

is defined on the whole X , and, for f smooth and compactly supported in Y , solving for u the equation
Ph(ω)u = f with u satisfying a regularity condition near ∂Y amounts to solving for ũ the equation
(−h21− h2(n − 1)2/4 −ω2)ũ = f̃ while imposing a certain behavior at infinity for ũ (here f̃ depends
on f and is smooth and compactly supported in M).

A method to construct the scattering resolvent is then to construct a meromorphic inverse Ph(ω)
−1

for Ph(ω). In Proposition 5 below, we give a new construction of this meromorphic inverse (maybe
after modifying Ph(ω) away from Y , which is harmless since we only care about what happens on Y ).
This new construction is inspired by the method of Vasy [2013a] (see also [Dyatlov and Zworski 2019,
Chapter 5]) with the addition of tools of real-analytic microlocal analysis near ∂Y .
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Let us explain very briefly how it works. The idea is to set up a Fredholm theory for Ph(ω). Inside Y ,
the operator Ph(ω) is elliptic (due to (d)), so there is no problem here. Outside of Y , we are allowed
to modify Ph(ω), and we can consequently deal with this part of X by adding to Ph(ω) a well-chosen
elliptic operator. This is similar to the addition of a complex absorbing potential in [Vasy 2013a], and
possible because of the hyperbolic structure of Ph(ω) near ∂Y in X \ Y . Hence, the most important point
is to understand what happens at ∂Y , where Ph(ω) stops being elliptic. At that place, the operator Ph(ω)

has a source/sink structure on its characteristic set (this is a consequence of the assumptions (a) and (b)),
so that one can use radial estimates (see for instance to [Dyatlov and Zworski 2019, §E.4]) to set up a
Fredholm theory for Ph(ω). However, the C∞ versions of the radial estimates are restricted by a threshold
condition: they can be used to construct the scattering resolvent, but they do not give a bound on the
number of resonances in disks as in Theorem 2. This is where real-analytic microlocal analysis becomes
useful: using methods as in [Bonthonneau and Jézéquel 2020; Galkowski and Zworski 2022] (see also
[Galkowski and Zworski 2021; Guedes-Bonthonneau et al. 2024]), we are able to get an estimate which
is in some sense a Cω version of a radial estimate and allows us to prove Theorem 2. This estimate
corresponds to the fourth and fifth case in the proof of Lemma 26.

There are some technical reasons that make our set of assumptions very specific. The (e) is rather
artificial, this is just a way to ensure that our family of Fredholm operators will be invertible at a point. The
assumptions (a), (b) and (c) impose that the source/sink structure of Ph(ω) on its characteristic set is very
particular. This specific structure will allow us to work in the real-analytic category only near ∂Y , which is
essential because we are not able to ensure that Ph(ω) is analytic away from ∂Y . Concretely, this ensures
that near ∂Y in X \ Y , the projection on X of the bicharacteristics curve of Ph(ω) that are contained in its
characteristic set go either toward or away from ∂Y . This allows us to set up a propagation estimate by
working on spaces weighted by eψ/h , where ψ is a function on X monotone along the projection to X
of the bicharacteristics of Ph(ω). This estimate does not require real-analytic coefficients, so it can be
used to make the link between ∂Y (where we really need real-analytic machinery) and the place in X \ Y
where Ph(ω) is artificially made elliptic by the addition of a differential operator with C∞ coefficients.

2.2. General result. The assumptions from Section 2.1 allow us to state an abstract result from which
Theorems 2 and 3 follow.

Proposition 5. Under the assumptions from Section 2.1, we may modify the operator Ph(ω) away from Y
into a new operator Ph(ω) so that the following holds. There are two Hilbert spaces H1,H2 (depending
on h) and a constant κ > 0 (that does not depend on h) such that the following properties hold when h is
small enough:

(i) For j = 1, 2, there are continuous inclusions C∞(X)⊆ H j ⊆ D′(X).

(ii) For j = 1, 2, the elements of H j are continuous on a neighborhood of ∂Y .

(iii) Ph(ω) : H1 → H2 is a holomorphic family of bounded operators.

(iv) There is ν > 0 such that Ph(iν) : H1 → H2 is invertible.
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(v) For every open and relatively compact subset V of {z ∈ C : Im z >−κ}, if h is small enough then,
for every ω ∈ V , the operator Ph(ω) : H1 → H2 is Fredholm of index 0. Moreover, this operator has
a meromorphic inverse ω 7→ Ph(ω)

−1 on V with poles of finite rank.

(vi) If δ ∈ ]0, κ[, there is C > 0 such that for every h small enough, the number of ω in the disk of center 0
and radius δ such that Ph(ω) : H1 → H2 is not invertible (counted with null multiplicity) is less
than Ch−n .

Remark 6. The notion of null multiplicity used in the statement of Proposition 5 is defined using
Gohberg–Sigal theory (see for instance [Dyatlov and Zworski 2019, §C.4]). In our context, we can use
the following definition: if ω0 is such that the meromorphic inverse ω 7→ Ph(ω) is defined near ω0, then
the null multiplicity of Ph(ω) at ω0 is the trace of the residue of ω 7→ Ph(ω)

−1∂ωPh(ω) at ω0 (which is a
finite rank operator).

Remark 7. The modification of Ph(ω) needed to get Proposition 5 will be obtained by modifying the
coefficients of P0, P1 and P2 away from Y , so that the general assumption are still satisfied by Ph(ω)

after this modification.

3. Schwarzschild–de Sitter spacetimes (proof of Theorem 3)

In this section, we explain how the general framework from Section 2 can be used to prove Theorem 3.
We start with this case because the setting is slightly simpler than in Theorem 2 that we prove in Section 4
below. We recall a few basic facts about Schwarzschild–de Sitter spacetimes in Section 3.1 and then apply
Proposition 5 in Section 3.2. Finally, in Section 3.3, we discuss the number of resonances for the operators
obtained by decomposing functions on Schwarzschild–de Sitter spacetimes on spherical harmonics.

3.1. The model. We start by recalling the definition of Schwarzschild–de Sitter spacetimes and of the
associated quasinormal frequencies. The interested reader may refer to [Dafermos and Rodnianski 2013]
for the geometry of Schwarzschild–de Sitter spacetimes (and other notions from general relativity). For
the definition of the resonances, one may refer to [Sá Barreto and Zworski 1997] or [Vasy 2013a]. Fix
two constants

M0 > 0 and 0<3<
1

9M2
0
.

The constant M0 is called the mass of the black hole and 3 the cosmological constant. We define the
function

G(r)= 1 −
3r2

3
−

2M0

r
for r > 0.

Let then r−<r+ be the positive roots of the polynomial rG(r). Define M =]r−, r+[r ×S2
y and M̂ =Rt ×M.

Let g be the Lorentzian metric

g = −Gdt2
+ G−1dr2

+ r2gS(y, dy),

where gS denotes the standard metric on S2. The Lorentzian manifold (M̂, g) is called a Schwarzschild–
de Sitter spacetime. The hypersurfaces {r−} × S2 and {r+} × S2 are called respectively the event and the
cosmological horizons.
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In order to understand the asymptotic of the solution to the wave equation on (M̂, g), one studies the
meromorphic continuation of the resolvant (PSdS − λ2)−1, where

PSdS = Gr−2 Dr (r2G)Dr − Gr−21S2 .

Here, Dr = −i∂r and 1S2 is the (nonpositive) Laplace operator on the sphere S2. The operator PSdS is
self-adjoint and nonnegative on the Hilbert space L2(]r−, r+[ × S2

; G−1r2 dr dy), where dy denotes the
standard volume form on S2. Consequently, the operator (PSdS − λ2)−1 is well-defined on this space
when Im λ > 0. It is proven for instance in [Sá Barreto and Zworski 1997, §2] that (PSdS − λ2)−1 has a
meromorphic continuation RSdS(λ) to C, with poles of finite rank, as an operator from C∞

c (]r−, r+[ × S2)

to D′(]r−, r+[ × S2). The poles of this meromorphic continuation are called the quasinormal frequencies
for the Schwarzschild–de Sitter spacetime. If λ0 ̸= 0 is a quasinormal frequency, we define its multiplicity
as the rank of the operator

i
π

∫
γ

λRSdS(λ) dλ,

where γ is a positively oriented circle around λ0, small enough so that the index of any other quasinormal
frequency with respect to γ is zero.

3.2. Upper bound on the number of quasinormal frequencies. Our proof of Theorem 3 is based on
the method of Vasy [2013a] to construct the resolvent RSdS(λ), following mostly the exposition from
[Dyatlov and Zworski 2019, Exercise 16, p. 376]. We start with a standard modification of the operator
PSdS − λ2, with some minor changes that will be convenient to check the assumptions from Section 2.1.

Let us embed a neighborhood of [r−, r+] in the circle S1 and set X = S1
× S2 and Y = ]r−, r+[× S2.

Let ρ : ]r−, r+[ → [−1, 1] be a C∞ function, identically equal to ±1 near r±. Let then F : ]r−, r+[ → R

be a primitive of

F ′(r)= ρ(r)
(

1
G(r)

−
1

2(1 − (9M2
03)

1/3)

)
(8)

and introduce, for λ ∈ C, the operator

G−1e−iλF(r)(PSdS − λ2)eiλF(r),

which is explicitly given by the formula

G D2
r − r−21S2 +

(
2λF ′G − i

(
2G
r

+ G ′

))
Dr − iλ

(
2G F ′

r
+ G ′F ′

+ G F ′′

)
−λ2 (1 − G2(F ′)2)

G
. (9)

The coefficients of this differential operator extend as real-analytic functions near r− and r+. Indeed, the
definition of F ensures that F ′G continues analytically passed r− and r+. Moreover, near r± a direct
computation yields

G ′F ′
+ G F ′′

= ∓
G ′

2(1 − (9M2
03)

1/3)

and
1 − G2(F ′)2

G
=

1
1 − (9M2

03)
1/3

−
G

4(1 − (9M2
03)

1/3)2
.
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Letting χ be a C∞ function supported in a small neighborhood of [r−, r+] and identically equal to 1
on a smaller neighborhood of [r−, r+], we can define a family of operators on X by

2(λ)= χ(r)× (9).

Finally, for ω ∈ C, we define the semiclassical differential operator

Ph(ω) := h22(h−1ω).

Notice that this operator depends on the implicit semiclassical parameter h as in Section 2. It is of the
form (7) with

P0 = χ(r)
(

Gh2 D2
r − r−2h21S2 − i

(
2G
r

+ G ′

)
h2 Dr

)
,

P1 = χ(r)
(

2F ′Gh Dr − ih
(

2G F ′

r
+ G ′F ′

+ G F ′′

))
,

P2 = −χ(r)
1 − G2(F ′)2

G
,

where it is understood that the factor in parentheses continues analytically in r passed r− and r+. Let us
check that the general assumptions from Section 2.1 are satisfied by this family of operator.

We already mentioned that Ph(ω) is of the form (7), and it follows from the expression for the Pj ’s
given above that they are semiclassical differential operators of order j with analytic coefficients on a
neighborhood of ∂Y . Moreover, the principal symbols of the Pj ’s are given on Y by

p2(r, y, ρ, η)= G(r)ρ2
+ r−2η2, p1(r, y, ρ, η)= 2F ′(r)G(r)ρ, p0(r, y)= −

1 − G(r)2 F ′(r)2

G(r)
.

We get the values of these symbols on a neighborhood of Y by continuing these formulas analytically in r .
We can define the coordinates (x1, x ′) near ∂Y by taking x1 = r −r− (when r is near r−) or x1 = r+ −r

(when r is near r+) and x ′
= y. Beware here that this change of coordinates reverses the orientation of the

real line near r+. Then, we see that the (a) holds withw(x1)= G(r±∓x1) and q1(x1, y, η)= (r±∓x1)
−2η2.

In particular, we have w′(0)= ∓G ′(r±) > 0. The point (b) follows from the definition of q1. To get (c),
one only needs to notice that the value at r± of the real-analytic extension of F ′(r)G(r) is ±1 (and that
our change of variable reverses orientation near r+). Since G is positive on ]r−, r+[, we get (d). In order
to check (e), write

p0(r, y)=

ρ(r)2
(

1 −
G(r)

2(1−(9M2
03)

1/3)

)2

− 1

G(r)
.

Since 1 − (9M2
03)

1/3 is an upper bound for G on ]r−, r+[, we find that p0(r, y) < 0 for r ∈ ]r−, r+[.
Using that ρ(r)2 is equal to 1 when r is near r±, we find that

p0(r±, y)= −
1

1 − (9M2
03)

1/3
< 0,

and thus (e) holds.
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Consequently, we can modify Ph(ω) away from Y in order to get a family of operator Ph(ω) that
satisfies Proposition 5. With κ as in Proposition 5, we let V be a connected, relatively compact and open
subset of {z ∈ C : Im z >−κ} that contains the closed disk of center 0 and radius 3κ/4. Let ι2 denote the
injection of C∞

c (Y ) in H2 and ι1 denote the map from H1 to D′(Y ) obtained by composing the injection
H1 → D′(X) with the restriction map D′(X)→ D′(Y ).

If λ ∈ h−1V , we define the resolvent

Rh(λ)= eiλF(r)h2ι1 Ph(λh)−1ι2e−iλF(r)G−1
: C∞

c (Y )→ D′(Y ). (10)

This is a meromorphic family of operators. We just got a new construction of the meromorphic continuation
RSdS(λ) of the L2 resolvent (PSdS − λ2)−1, as we will now demonstrate.

Lemma 8. If λ ∈ h−1V is such that Im λ > 0, then Rh(λ) is the restriction to C∞
c (Y ) of the L2 resolvent

(PSdS − λ2)−1. In particular Rh(λ) does not depend on h.

Proof. Let λ ∈ h−1V be such that Im λ > 0. Let u ∈ C∞
c (Y ). Notice that

(PSdS − λ2)Rh(λ)u = GeiλF(r)G−1e−iλF(r)(PSdS − λ2)eiλF(r)h2ι1 Ph(λh)−1ι2e−iλF(r)G−1u

= GeiλF(r)Ph(λh)ι1 Ph(λh)−1ι2e−iλF(r)G−1u = u,

where we used that h2G−1e−iλF(r)(PSdS − λ2)eiλF(r)ι1 = Ph(λh)ι1 = ι3 Ph(λh), where ι3 is the map
obtained by composing the injection H2 →D′(X) with the restriction map D′(X)→D′(Y ). Consequently,
we only need to prove that the distribution Rh(λ)u belongs to the space L2(]r−, r+[ × S2

; G−1r2 dr dy).
Since PSdS is elliptic, we know that u is smooth, and thus bounded on all compact subsets of Y . It remains
to understand the behavior of u near ∂Y .

Notice that Rh(λ)u = eiλF(r)v, where v is the restriction to Y of an element of H1. In particular, since
the elements of H1 are continuous near ∂Y , there is a compact subset K of Y such that v is continuous
and bounded outside of K . Let us study for instance the behavior of u near r = r− (the behavior near r+

is similar). From (8), we see that

F(r) =
r→r−

−
ln |r − r−|

G ′(r−)
+O(1).

Consequently, we have that eiλF(r) is O(|r −r−|
Im λ/G ′(r−)) when r tends to r−. Working similarly near r+,

we find that u belongs to the Hilbert space L2(]r−, r+[ × S2
; G−1r2 dr dy). □

Remark 9. It follows from Lemma 8 that Rh(λ) = RSdS(λ) on h−1V . In particular, λ ∈ h−1V is a
quasinormal frequency if an only if it is a pole of Rh(λ) and, if in addition λ ̸= 0, its multiplicity is the
rank of the operator

i
π

∫
γ

µRh(µ) dµ,

where γ is a small circle around λ.

With this new construction of the resolvent RSdS(λ) at our disposal, we are ready to prove Theorem 3.
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Proof of Theorem 3. Considering the bound on the number of points where Ph(ω) is not invertible given in
Proposition 5, we only need to prove that if λ is a nonzero complex number of modulus less than κ/(4h)
then its multiplicity as a quasinormal frequency is less than the null multiplicity of ω 7→ Ph(ω) at λh.

Let us consider a quasinormal frequency λ of modulus less than κ/(4h). Since Ph(ω) is a holomorphic
family of operators with a meromorphic inverse near λh (because λh belongs to V ), it follows from the
Gohberg–Sigal theory [Dyatlov and Zworski 2019, Theorem C.10], that there are holomorphic families
of invertible operators U1(ω) and U2(ω) for ω near λh, respectively on H2 and from H1 to H2, an
integer M ≥ 0, operators P0, . . . , PM on H2 and nonzero integers k1, . . . , kM such that

Ph(ω)= U1(ω)

(
P0 +

M∑
m=1

(ω− λh)km Pm

)
U2(ω) (11)

for ω near λh. Moreover, P1, . . . , PM are rank 1 and PℓPm = δℓ,m Pm for 0 ≤ ℓ,m ≤ M. We also have
that I =

∑M
m=0 Pm , since Ph(ω) is invertible for ω ̸= λh near λh. Notice that the km’s must be positive,

since Ph(ω) is holomorphic in ω, and that the null multiplicity of Ph(ω) at λh is
∑M

m=1 km .
It follows from (11) that

Ph(ω)
−1

= U2(w)
−1

(
P0 +

M∑
m=1

(ω− λh)−km Pm

)
U1(ω)

−1. (12)

From (10) we get

Rh(µ)= A1(µ)+ A2(µ),

where A1 and A2 are obtained by replacing the inverse Ph(ω)
−1 respectively by U2(ω)

−1 P0U1(ω)
−1 and

by U2(ω)
−1 ∑M

m=1(ω−λh)−km PmU1(ω)
−1 in (10), with ω=µh. Notice that A1(µ) is holomorphic in µ,

so that ∫
γ

µRh(µ) dµ=

∫
γ

µA2(µ) dµ. (13)

The operator µA2(µ) is of the form B1(µ)
(∑M

k=1(µ− λ)−km Pm
)
B2(µ), where B1(µ) and B2(µ) are

holomorphic near λ. Writing the Taylor expansions for B1(µ) and B2(µ),

B j (µ)=

∑
ℓ≥0

(µ− λ)ℓC j,l,

we find that the residue of µA2(µ) at λ is ∑
m,k,ℓ

k+ℓ=km−1

C1,k PmC2,ℓ.

This operator is the sum of
∑M

m=1 km operators of rank at most 1, and thus is of rank at most
∑M

m=1 km .
It follows then from Remark 9 and (13) that the multiplicity of λ as a scattering resonance is at most∑M

m=1 km , which is the null multiplicity of ω 7→ Ph(ω) at λh. □
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3.3. Decomposition on spherical harmonics. Notice that the Schwarzschild–de Sitter spacetime is
radially symmetric. It is standard to use this kind of symmetry to study quasinormal frequencies by
decomposing the operator PSdS on spherical harmonics (see for instance [Sá Barreto and Zworski 1997]
or [Hintz and Xie 2022]). Let ℓ ∈ N and Y be a spherical harmonics satisfying −1S2Y = ℓ(ℓ+ 1)Y . The
action of PSdS on functions of the form u(r)Y (y) is then equivalent to the action of the operator

PℓSdS = Gr−2 Dr (r2G)Dr + Gr−2ℓ(ℓ+ 1).

The operator (PℓSdS −λ2)−1 defined for Im λ> 0 by the spectral theory on L2(]r−, r+[; G−1r2 dr) admits
a meromorphic continuation to C. The poles of this extension are quasinormal frequencies corresponding
to angular momentum ℓ.

We can then apply Proposition 5 as in Section 3.2 to get:

Theorem 10. The number of quasinormal frequencies corresponding to the angular momentum ℓ of
modulus less than r is O(r) when r tends to +∞.

4. Scattering on asymptotically hyperbolic manifolds (proof of Theorem 2)

In this section, we specify the geometric assumptions from Theorem 2 and explain how one can use
Proposition 5 to prove Theorem 2. In Section 4.1 we describe the class of asymptotically hyperbolic
manifolds with real-analytic ends that we are going to study. In Sections 4.2 and 4.3, we check the
assumptions from Section 2.1 in order to use Proposition 5 and prove Theorem 2 in Section 4.4.

Sections 4.1, 4.2 and 4.3 are based on the exposition in [Dyatlov and Zworski 2019, Chapter 5] of the
method of Vasy [2013a] to construct the scattering resolvent, with a few additional technicalities required
to deal with real-analytic ends and apply Proposition 5.

4.1. Geometric assumptions. We explain here how the definition of asymptotically hyperbolic manifold
may be modified to obtain the definition of asymptotically hyperbolic manifolds with real-analytic ends
that appears in Theorem 2. Let us consider a Riemannian manifold (M, g) where M is a real-analytic
manifold but the metric g is a priori only C∞. One could just say that (M, g) is asymptotically hyperbolic
with real-analytic ends if M is the interior of a compact real-analytic manifold with boundary M such
that g may be put into the form (1), with g1 real-analytic, near ∂M , using a real-analytic diffeomorphism
between [0, ϵ[ × ∂M and a neighborhood of ∂M . This is for instance the assumption that is made in
[Zuily 2017]. However, it may seem a priori too restrictive to assume the existence of such coordinates
defined on a neighborhood of the whole ∂M . Consequently, we will rather make a local assumption on g
and then see that it implies that g takes the form (1) in real-analytic coordinates.

Definition 11. Let M be a real-analytic manifold and g be a smooth (C∞) Riemannian metric on M. We
assume that M is the interior of a compact real-analytic manifold with boundary M . Assume that, for
every x0 ∈ ∂M , there is a neighborhood U of x0 in M and a real-analytic function y1 from U to R such that

(i) y1 ≥ 0 on U and ∂M ∩ U = {y1 = 0};

(ii) dy1(x) ̸= 0 for every x ∈ ∂M ∩ U ;
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(iii) y2
1 g extends to a real-analytic metric g̃ on U ;

(iv) |dy1|g̃ = 1 on ∂M ∩ U .

Then we say that (M, g) is an asymptotically hyperbolic manifold real-analytic near infinity.

A function that satisfies (i) and (ii) is called a boundary defining function for M . Notice that if y1 and ỹ1

are two real-analytic boundary defining functions, then there is a real-analytic real-valued function f ,
defined wherever y1 and ỹ1 are both defined, and such that ỹ1 = e f y1. In particular, the validity of (iii)
and (iv) does not depend on the choice of the boundary defining function y1. One can check that if (M, g)
is an asymptotically hyperbolic manifold real-analytic near infinity, then it is also an asymptotically hyper-
bolic manifold in the standard (C∞) sense (see for instance [Dyatlov and Zworski 2019, Definition 5.2]).

Let us fix an asymptotically hyperbolic manifold real-analytic near infinity (M, g), and let M be as in
Definition 11. The existence of a real-analytic boundary defining function defined on a neighborhood
of ∂M does not seem obvious, and will be established in Lemma 13 below. However, notice that one
easily shows that there are C∞ boundary defining functions defined on the whole M and let us define the
conformal class of Riemannian metrics on ∂M :

[g]∂M =
{
(y2

1 g)|∂M : y1 ∈ C∞(M) is a boundary defining function
}
.

It will be convenient to know that:

Lemma 12. The conformal class [g]∂M admits a real-analytic representative.

Proof. Let g0 be any C∞ representative of [g]∂M . Let ĝ be a real-analytic Riemannian metric on ∂M
(whose existence is guaranteed by [Morrey 1958]). For every x ∈ ∂M , let B(x) be the self-adjoint
(for ĝ(x)) endomorphism of Tx∂M such that g0(x)= ĝ(x)(B(x) · , · ). Let g1 be the metric defined by
g1(x)= g0(x)/∥B(x)∥, where the operator norm of B(x) is defined using the metric ĝ(x). From its very
definition, g1 is a representative of [g]∂M . Let us prove that g1 is real-analytic.

Let x0 ∈ ∂M . From our assumption above (Definition 11), there is a neighborhood V of x0 in ∂M and
a real-analytic metric g2 on V such that g2 is conformal to g0 on V . We have g0 = e2 f g2 for some C∞

function f on V . For x ∈ V , we have

g1(x)=
g0(x)

∥B(x)∥
= ĝ(x)

(
B(x)

∥B(x)∥
· , ·

)
= ĝ(x)

(
e−2 f (x)B(x)

∥e−2 f (x)B(x)∥
· , ·

)
.

On the other hand, for x ∈ V , we have

g2(x)= ĝ(x)(e−2 f (x)B(x) · , · ).

Since g2 and ĝ are real-analytic, it follows that x 7→ e−2 f (x)B(x) is real-analytic on V , and thus so is g1. □

We can then establish the existence of a real-analytic diffeomorphism on a neighborhood of ∂M that
puts the metric g into the form (1) (this is also known as a canonical product structure). The C∞ version
of this result is standard; see for instance [Dyatlov and Zworski 2019, Theorem 5.4].
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Lemma 13. Let g0 be a real-analytic representative of [g]∂M . Then there is a real-analytic boundary
function y1 defined on a neighborhood U of ∂M such that

|dy1|y2
1 g = 1 on a neighborhood of ∂M and g0 = (y2

1 g)|∂M . (14)

Moreover, there is a real-analytic map y′ from U to ∂M such that y′ is the identity on ∂M , the map
9 = (y1, y′) is a diffeomorphism from U to [0, ϵ[ × ∂M for some ϵ > 0, and the pushforward of g under
this map has the form

(9−1)∗g =
dy2

1 + g1(y1, y′, dy′)

y2
1

,

where g1(y1, y′, dy′) is a real-analytic family of Riemannian metrics on ∂M.

Proof. We start by constructing y1 locally. Let x0 ∈ ∂M . Let ỹ1 be a real-analytic boundary function
defined on a neighborhood U of x0 as in Definition 11. Up to multiplying ỹ1 by a real-analytic function,
we may assume that (ỹ2

1 g)
|∂M∩U = g0. We want to construct y1 on a neighborhood of x0 of the form

y1 = e f ỹ1 with f real-analytic that vanishes on ∂M . The condition |dy1|y2
1 g = 1 may be rewritten as an

eikonal equation, F(x, d f (x))= 0, noncharacteristic with respect to ∂M , like in [Dyatlov and Zworski
2019, (5.1.11)–(5.1.12)], which in our case has real-analytic coefficients. We can then use [Taylor 2011,
Theorem 1.15.3] to find a (unique) solution f to this equation near x0, which happens to be real-analytic.
Thus, we constructed a boundary defining function y1 that satisfies (14) near x0.

Notice that if y1 and y2 are boundary defining functions that satisfy (14) on open sets U1 and U2 of M ,
then y1 and y2 coincide on all the connected components of U1 ∩ U2 that intersect ∂M . Indeed, we can
write y1 = e f y2 with f that satisfies an eikonal equation as above and vanishes on ∂M , and there is only
one solution to this equation near ∂M . We get the coincidence of y1 and y2 on the whole connected
component of U1 ∩ U2 by analytic continuation.

We can consequently glue the local solutions to (14) to get a solution defined on a neighborhood of the
whole ∂M .

Finally, we construct the normal coordinates (y1, y′) by integrating the gradient vector field ∇
y2

1 g y1

starting on ∂M as in the proof of [Dyatlov and Zworski 2019, Theorem 5.4]. □

Definition 14. Using the notation from Lemma 13, we say that (M, g) is even if for every integer k,
we have

∂2k+1
y1

g1(0, y′, dy′)= 0. (15)

From now on, we will always assume that (M, g) satisfies the evenness assumption Definition 14.
Notice that Definitions 11 and 14 together are the hypotheses from Theorem 2. It is also worth noticing
that the evenness assumption (15) does not depend on the choice of the canonical product structure; see
[Dyatlov and Zworski 2019, Theorem 5.6].

4.2. Even extension. We define an even extension X for M in the following way. We fix a canonical
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product structure (y1, y′) on a neighborhood U ≃ [0, ϵ[× ∂M of ∂M , as in Lemma 13. Let us define the
real-analytic diffeomorphisms

ψ+ : U ∩ M → ]0, ϵ2
[ × ∂M, x 7→ (y1(x)2, y′(x)),

ψ− : U ∩ M → ]−1 − ϵ2,−1[ × ∂M, x 7→ (−1 − y1(x)2, y′(x)).

We let X be the closed real-analytic manifold obtained by gluing ]−1− ϵ2, ϵ2
[× ∂M with two distinct

copies of M using the maps ψ− and ψ+. We let x1 be the function on X given by the first coordinate in
]−1 − ϵ2, ϵ2

[ × ∂M . Up to making ϵ smaller, we extend x1 to a smooth function on X , real-analytic on
]−1 − ϵ2, ϵ2

[ × ∂M , and such that ]−1 − ϵ2, ϵ2
[ × ∂M = {−1 − ϵ2 < x1 < ϵ

2
}.

The features of the even extension X of M in {x1 < 0} are somehow irrelevant: we are only concerned
by the analysis in {x1 ≥ 0} (but it is more convenient to work on a closed real-analytic manifold). In
particular, we will identify Y := {x1 > 0} with M. We will never do that with {x1 <−1}. Notice however
that Y ⊆ X does not have the same smooth structure as M as defined above (the manifold Y is the even
compactification of M).

Notice that the diffeomorphism ψ+ : U ∩ M → ]0, ϵ2
[x1 × ∂M x ′ puts the metric g into the form

(ψ−1
+
)∗g =

dx2
1

4x2
1

+
g1(

√
x1, x ′, dx ′)

x1
.

It follows from our evenness assumption, Definition 14, that the family x1 7→ g1(
√

x1, x ′, dx ′) of real-
analytic metrics on ∂M has a real-analytic extension to {−ζ < x1 < ζ } for some ζ > 0.

4.3. The modified Laplacian. Let η > 0 be smaller than ζ/2, ϵ2/2 and 1 (where ζ and ϵ are defined in
the previous section), and choose a function ρ : R → R such that ρ(x)= x for |x | ≤ η and ρ(x)= ±3η/2
for |x | ≥ 2η (where ± is the sign of x). Notice that we can choose ρ such that ρ ′(x)x/ρ(x) ≤ 1 for
positive x . Define then the function

x̃1 = ρ

(
4x1

(1 + x1)2

)
on X . For λ ∈ C, let us consider the operator on M ≃ Y

x̃
iλ
2 −

n+3
4

1

(
−1g −

(n − 1)2

4
− λ2

)
x̃

n−1
4 −

iλ
2

1 , (16)

where1g is the (nonpositive) Laplacian on M. Usingψ+ to identify the set {0< x1<η} with ]0, η[x1×∂Mx ′ ,
we see that the operator (16) takes the form

−x1(1 + x1)
2∂2

x1
−
(1 + x1)

2

4
1g1 + (1 + x1)

(
(n − 2 − iλ)x1 + iλ− 1 − γ x1(1 + x1)

)
∂x1

−

(
n − 1

2
− iλ

)(
x1

n − 1
2

+ iλ− 1 − γ
(1 + x1)(1 − x1)

2

)
(17)

there. Here 1g1 is the Laplacian for the metric g1(
√

x1, x ′, dx ′) on ∂M , the function γ is the logarithmic
derivative J−1 ∂ J

∂x1
with respect to x1 of the Jacobian J of the metric g1(

√
x1, x ′, dx ′) on ∂M . The
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Jacobian J may be defined by taking local coordinates on ∂M . While J depends on the choice of
coordinates, the logarithmic derivative γ does not. It follows from our evenness assumption that γ extends
to a real-analytic function on {−η < x1 < η}⊆ X . Notice that the expression (17) extends real-analytically
to {−η < x1 < η} ⊆ X .

Remark 15. Here, we differ from the exposition in [Dyatlov and Zworski 2019, Chapter 5] where, instead
of (16), the operator

x
iλ
2 −

n+3
4

1

(
−1g −

(n − 1)2

4
− λ2

)
x

n−1
4 −

iλ
2

1 (18)

is considered. This is an artificial modification that we introduce in order to be able to check (e) from
Section 2.1. The formula (17) for (16) can be deduced from the formula for (18) given in [Dyatlov and
Zworski 2019, Lemma 5.10].

Let χ : R → [0, 1] be a smooth function such that χ(t)= 0 for t ≤ −2η/3 and χ(t)= 1 for t ≥ −η/3.
Define then for λ ∈ C the differential operator P(λ) on X by

P(λ)=


x̃

iλ
2 −

n+3
4

1

(
−1g −

(n−1)2

4
− λ2

)
x̃

n−1
4 −

iλ
2

1 on Y ≃ M,

χ(x1)× (17) on {−η < x1 < η},

0 on {x1 <−2η/3}.

Notice that the differential operator P(λ) has real-analytic coefficients on the set {−η/3< x1 < η}.
Let us define for ω ∈ C and h > 0 the semiclassical operator

Ph(ω)= h2 P(ω/h).

Let us check that this family of operators satisfy the general assumptions from Section 2.1. We recall that
the manifold X and its open subset Y have been defined at the end of Section 4.2. It follows from (17)
that Ph(ω) is of the form (7) with P0, P1 and P2 that have real-analytic coefficients in the neighborhood
{−η/3< x1 < η} of ∂Y .

Let p j denote the principal symbol of Pj for j = 0, 1, 2. For x in the interior of Y , we have

p2(x, ξ)=
(1 + x1)

2

4x1
|ξ |2g(x),

p1(x, ξ)= −
(1 + x1)

2

4x1

〈
ξ,

dx̃1

x̃1

〉
g(x)
,

p0(x)=
(1 + x1)

2

4x1

(∣∣∣∣dx̃1

2x̃1

∣∣∣∣2

g(x)
− 1

)
.

Near ∂Y , we can express these symbols in the (x1, x ′) coordinates to find

p2(x1, x, ξ1, ξ
′)= x1(1 + x1)

2ξ 2
1 +

(1 + x1)
2

4
|ξ ′

|
2
g1(

√
x1,x ′),

p1(x1, x, ξ1, ξ
′)= −(1 + x1)(1 − x1)ξ1,

p0(x1, x ′)= −1.
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We are now in position to check that the assumptions from Section 2.1 are satisfied. We see that (a) holds
with w(x1)= x1(1 + x1) and q1(x1, x ′, ξ ′)=

1
4(1 + x1)|ξ

′
|
2
g1(

√
x1,x ′)

. It is clear from the definition of q1

that (b) also holds. The validity of (c) and (d) follows immediately from the formulae for p1(x1, x, ξ1, ξ
′)

and p2(x, ξ) above.
It remains to prove (e), that is, that p0 is negative on a neighborhood of Y . It is clear that p0 is negative

on a neighborhood of ∂Y from the formula above, so that we only need to check that∣∣∣∣dx̃1

2x̃1

∣∣∣∣
g(x)

< 1

on the interior of Y .
Notice that we have

dx̃1

2x̃1
=

ρ ′

( 4x1
(1+x1)2

)
ρ
( 4x1
(1+x1)2

) 4x1

(1 + x1)2

1 − x1

1 + x1

dx1

2x1
.

Since
∣∣dx1

2x1

∣∣
g(x) = 1 when 0< x1 < 2η, we get

∣∣∣∣dx̃1

2x̃1

∣∣∣∣
g(x)

=

∣∣∣∣∣∣∣
ρ ′

( 4x1
(1+x1)2

)
ρ
( 4x1
(1+x1)2

) 4x1

(1 + x1)2

∣∣∣∣∣∣∣
1 − x1

1 + x1
≤

1 − x1

1 + x1
,

and the validity of the (e) follows.

4.4. Upper bound on the number of resonances. Since the assumptions from Section 2.1 are satisfied
by the operator Ph(ω) introduced in Section 4.3, we may modify Ph(ω) to get an operator Ph(ω) that
satisfies Proposition 5.

From here, the strategy to prove Theorem 2 is the same as in Section 3.2. We let κ be as in Proposition 5
and choose a connected, relatively compact and open subset V of {z ∈ C : Im z >−κ} that contains the
closed disk of center 0 and radius 3κ/4. We write ι2 for the inclusion of C∞

c (M) in H2 and ι1 for the
map obtained by composition of the inclusion of H1 in D′(X) and the restriction map D′(X)→ D′(M).

For λ ∈ h−1V , define the resolvent

Rh(λ)= x̃
n−1

4 −
iλ
2

1 ι1h2 Ph(hλ)−1ι2 x̃
iλ
2 −

n+3
4

1 : C∞

c (M)→ D′(M).

As in Section 3.2, we get:

Lemma 16. If h is small enough, λ is in h−1V and Im λ > 0, then Rh(λ) coincides with the inverse of
−1g −

1
4(n − 1)2 − λ2 on L2(M). In particular, Rh(λ) does not depend on h for λ ∈ h−1K .

Proof. The proof is the same as for Lemma 8. One just needs to notice that if Im λ > 0 then the function
x̃ (n−1)/4−iλ/2

1 belongs to L2(M). □

Notice that Lemma 16 implies that for λ∈ h−1V the scattering resolvent Rscat(λ) coincides with Rh(λ).
With Proposition 5 and Lemma 16 at our disposal, the proof of Theorem 2 follows exactly the same lines
as the proof of Theorem 3 given in Section 3.2. Consequently, we do not repeat it.
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5. Real-analytic Fourier–Bros–Iagolnitzer transform

In this section, we detail the tools of real-analytic microlocal analysis that will be used in the proof of
Proposition 5 in Section 6. The main ingredient that we need is a real-analytic Fourier–Bros–Iagolnitzer
transform as we studied in [Bonthonneau and Jézéquel 2020].

In Section 5.1, we recall the main feature of such an FBI transform, and prove a slight generalization,
Proposition 18, of [Bonthonneau and Jézéquel 2020, Proposition 2.10]. In Section 5.2, we give a
description, Proposition 20, of the dual of a Hilbert space defined in Section 5.1. This result will be
useful to construct the injection of the spaces H1 and H2 in D′(X) in the proof of Proposition 5 (see
Proposition 21) and to reuse results from [Guedes-Bonthonneau et al. 2024] in Section 5.3, where we
study the specificities of certain spaces defined using FBI transform and logarithmic weights (rather than
weight of order 1 as in [Bonthonneau and Jézéquel 2020]).

5.1. Generality. Let us recall the tools from [Bonthonneau and Jézéquel 2020] that we need for the proof
of Proposition 5. As in Section 2, we let X be a closed real-analytic manifold, and we endow it with a
real-analytic metric gX (which is possible due to [Morrey 1958]). We endow T ∗X with an associated
metric gKN which is given, using the decomposition into horizontal and vertical direction

Tα(T ∗X)≃ Tαx X ⊕ T ∗

αx
X ≃ Tαx X ⊕ Tαx X

for α = (αx , αξ ) ∈ T ∗M, by the formula

gKN,α((u, v), (u, v))= gX,αx (u, u)+
gX,αx (v, v)

1 + gX,αx (αξ , αξ )

for (u, v) ∈ Tαx X ⊕ Tαx X . This metric can be used to give a characterization of Kohn–Nirenberg symbols
(see for instance [Bonthonneau and Jézéquel 2020, Remark 2.5]), and we will consequently call it a
Kohn–Nirenberg metric. Let X̃ be a complexification of X (endowed with any smooth distance) and T ∗ X̃
its cotangent bundle. If r > 0 is small, we let (X)r denote the Grauert tube (see for instance [Guillemin
and Stenzel 1991; 1992]) of size r for X , that is, the image of

{(x, v) ∈ T X : gX,x(v, v)≤ r2
} (19)

by the map
(x, v) 7→ expx(iv),

which is well-defined on (19) if r is small enough (here we use the holomorphic extension of the exponential
map for gX ). We define similarly the Grauert tube (T ∗X)r ⊆ T ∗ X̃ by using the Kohn–Nirenberg metric
on T ∗X . Because of the noncompactness of T ∗X , it is not clear a priori that (T ∗X)r is well-defined.
However, one can reduce the study of the Kohn–Nirenberg metric on T ∗X to its study near the zero
section and the study of its pullbacks by the dilations (αx , αξ ) 7→ (αx , λαξ ) for λ≥ 1 on a bounded subset
of T ∗X (for instance the space between the spheres of radii 1 and 2 in each fiber). Since these pullbacks
are uniformly analytic and positive definite, we see in particular that (T ∗X)r is well-defined when r is
small enough.
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Working in the holomorphic extension of real-analytic coordinates on X , we get a holomorphic
trivialization (x̃, ξ̃ ) = (x + iy, ξ + iη) of T ∗ X̃ in which T ∗X is described by {y = η = 0}. Using the
same dilation trick as above, one may then check that, for every compact subset K of the domain of the
coordinate patch x̃ , there is C > 0 such that, for every r > 0 small enough, the image of (T ∗X)r above K
in this trivialization is intermediate between

T ∗

K X̃ ∩ {|y| ≤ C−1r, |η| ≤ C−1(1 + |ξ |)r}

and
T ∗

K X̃ ∩ {|y| ≤ Cr, |η| ≤ C(1 + |ξ |)r}.

Here, we write T ∗

K X̃ for the reciprocal image of K by the canonical projection T ∗ X̃ → X̃ .
If m is a real number, r >0 is small and a is a smooth function on (T ∗X)r , we say that a ∈ Sm

KN((T
∗X)r )

is a Kohn–Nirenberg symbol of order m on (T ∗X)r if, for every compact subset of the domain of a
coordinate patch as above and every k, k ′, ℓ, ℓ′ ∈ Nn there is a constant C > 0 such that on the image of
T ∗

K X̃ ∩ (T ∗X)r by the trivialization of T ∗ X̃ associated to the coordinate patch, we have

|∂k
x ∂

k′

y ∂
ℓ
ξ ∂
ℓ′

η a(x̃, ξ̃ )| ≤ C(1 + |ξ |)m(1 + |ξ |)−|ℓ|−|ℓ′|.

We define similarly symbols of logarithmic order by replacing (1 + |ξ |)m by log(2 + |ξ |).
Let us fix a real C∞ metric g̃ on the vector bundle T ∗ X̃ → X (seen as a real vector bundle) and define

for α = (x, ξ) ∈ T ∗ X̃ the Japanese bracket

⟨|α|⟩ =

√
2 + g̃x(ξ).

This is just a more convenient way to denote the size of α than taking the norm of ξ directly, notice in
particular that ⟨|α|⟩ and log⟨|α|⟩ are bounded from below. Notice that if r > 0 is small enough, then the
function α 7→ ⟨|α|⟩ is a Kohn–Nirenberg symbol of order 1 on (T ∗X)r , as defined above.

It will also be useful to endow T ∗ X̃ with a distance adapted to Kohn–Nirenberg symbols. One way to
do that is to endow T X̃ with a smooth Hermitian metric, which gives an identification of T ∗ X̃ with T X̃ .
Then, one may define a Kohn–Nirenberg metric on T X̃ as above when X̃ , seen as a real manifold, is
endowed with a smooth Riemannian metric (e.g., the real part of the Hermitian metric). We let dKN denote
the associated distance. Restricting to a compact subset K of X̃ , one may check that α, β ∈ T ∗

K X̃ are
close for dKN if their position variables are close to each other and, in local coordinates, their momentum
variables have the same order of magnitude and the Euclidean distance between them is small with respect
to this order of magnitude. This can be proved using a rescaling argument as described above.

For R ≫ 1, so that (X)1/R is defined, we let ẼR(X) denote the space of bounded holomorphic functions
on the interior of (X)1/R , endowed with the supremum norm. Then, we let ER(X) denote the closure
of ẼR′(X) in ER(X) for any R′ < R large enough so that (X)1/R′ is well-defined. It follows from the
Oka–Weil theorem [Forstnerič 2017, Theorems 2.3.1 and 2.5.2] that the space ER(X) does not depend
on the choice of R′. Let E ′

R(X) denote the dual of ER(X), and notice that if R > R′ are such that (X)1/R

and (X)1/R′ are well-defined, then the injection of ER′(X) in ER(X) has dense image (because it contains
ẼR′′(X) for some R′′ < R′), so that the adjoint of this map defines an injection of E ′

R(X) into E ′

R′(X).
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We choose a real-analytic FBI transform T : D′(X)→ C∞(T ∗X) on X , as defined in [Bonthonneau
and Jézéquel 2020, Definition 2.1]. This is a transform defined by a real-analytic kernel KT :

Tu(α)=

∫
X

KT (α, x)u(x) dx

for u ∈ D′(X) and α ∈ T ∗X . Here, dx denotes the Lebesgue density associated to the Riemannian metric
gX on X . The kernel KT , and thus T, depends on the implicit semiclassical parameter h > 0 introduced
in the beginning of Section 2.1. Unless the opposite is explicitly stated, all the estimates below will
be uniform in h. The fact that T is a real-analytic FBI transform [loc. cit., Definition 2.1] means that
the kernel KT has a holomorphic extension to (T ∗X)r × (X)r for some small r > 0, which satisfies the
following properties:

• For every δ > 0, there is r ′ > 0 such that if (α, x) ∈ (T ∗X)r ′ × (X)r ′ are such that d(αx , x)≥ δ then

|KT (α, x)| ≤ (r ′)−1 exp
(

−r ′
⟨|α|⟩

h

)
. (20)

• There is δ > 0 and r ′ > 0 such that if (α, x) ∈ (T ∗X)r ′ × (X)r ′ are such that d(αx , x)≤ δ then

|KT (α, x)− ei 8T (α,x)
h a(α, x)| ≤ (r ′)−1 exp

(
−r ′

⟨|α|⟩

h

)
. (21)

Here, a(α, x) is an analytic symbol defined near the diagonal, elliptic in the class of h−3n/4
⟨|α|⟩

n/4,
meaning that for r ′, δ > 0 small enough, there is a constant C > 0 such that a(α, x) is holomorphic in
{(α, x) ∈ (T ∗X)r ′ × (X)r ′ : d(αx , x) < δ} and satisfies on that set the estimate

C−1h−
3n
4 ⟨|α|⟩

n
4 ≤ |a(α, x)| ≤ Ch−

3n
4 ⟨|α|⟩

n
4 .

The phase 8T (α, x) from (21) is an analytic symbol of order 1 on the set

{(α, x) ∈ (T ∗X)r ′ × (X)r ′ : d(αx , x) < δ}

(it is holomorphic and bounded by C⟨α⟩ for some C > 0), which satisfies in addition the following
properties:

• For α ∈ T ∗X , we have 8T (α, αx)= 0.

• For α ∈ T ∗X , we have dx8T (α, αx)= −αξ .

• There is C > 0 such that, if (α, x) ∈ T ∗X × X and d(αx , x) < δ, then

Im(8T (α, x))≥ C−1
⟨|α|⟩d(αx , x)2. (22)

According to [loc. cit., Theorem 6], such a FBI transform exists. Moreover, if we endow T ∗X with the
volume associated to the canonical symplectic form, then we may assume that the formal adjoint S := T ∗

of T is a left inverse for T, i.e., that T is an isometry on its image. Notice that S has a real-analytic kernel
KS that satisfies for α and x real

KS(x, α)= KT (α, x).
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In particular, KS is negligible away from the diagonal, and may be described near the diagonal in a similar
fashion as KT .

Let us fix some small r > 0, and let G0 be a Kohn–Nirenberg symbol of order 1 on (T ∗X)r and set
G = τG0 for some small τ > 0 (the function G is sometimes called an escape function). We let 3=3G

be the submanifold of (T ∗X)r defined by

3= eHωI
G T ∗X, (23)

where HωI
G is the Hamiltonian vector field of G for the symplectic form ωI = Imω, where ω denotes the

canonical complex symplectic form on T ∗ X̃ . By taking τ small, we ensure that 3 is C∞ close to T ∗X
(this statement can be made uniform by pulling back 3 to a bounded subset of T ∗ X̃ using dilation in
the fibers as above). Notice that in [Bonthonneau and Jézéquel 2020, Definition 2.2], the symbol G0

was assumed to be supported in (T ∗X)r ′ for some r ′ < r . The only reason for that was to ensure that
the flow of HωI

G is complete, which implies that (23) makes sense. However, taking τ small (which we
will always do) is enough to ensure that (23) is well-defined. Moreover, we see that 3 only depends on
the values of G on (T ∗X)r ′ for some r ′ < r , so that the assumption on the support of G0 from [loc. cit.,
Definition 2.2] may be lifted without harm.

We will say that a smooth function a on 3 is a symbol of order m ∈ R, and write a ∈ Sm
KN(3), if the

function a ◦ eHωI
G is a symbol of order m, in the standard Kohn–Nirenberg class on T ∗X . We define

similarly symbols on 3×3.
On 3, we can construct a real-valued symbol H of order 1 such that dH = − Im θ where θ denotes the

canonical complex 1-form on T ∗ X̃ (see [loc. cit., §2.1.1], in particular equation (2.9) there). Notice also
that ωR = Reω is a symplectic form on 3 if τ is small enough. We let dα = ωn

R/n! denote the associated
volume form.

Notice that if u ∈ E ′

R(X) with R large enough, then Tu is well-defined and holomorphic on (T ∗X)r
for some small r > 0, so that if τ is small enough, Tu is defined on 3. We can consequently define
the FBI transform T3 associated to 3 by restriction T3u = (Tu)|3. Notice that since the kernel of S is
holomorphic, we also have an operator S3 that is a left inverse for T3 (see [loc. cit., Lemma 2.7]). We
will work with the spaces

L2
k(3) := L2(3, ⟨|α|⟩

2ke−
2H
h dα) for k ∈ R,

Hk
3 := {u ∈ E ′

R(X) : T3u ∈ L2
k(3)}.

Here, R needs to be large enough so that ER(X) is well-defined, and τ small enough depending on R
(but the particular choice of R is irrelevant when τ is small). According to [loc. cit., Corollary 2.2],
we know that Hk

3 is a Hilbert space. We let also Hk
3,FBI ⊆ L2

k(3) denote the (closed) image of Hk
3

by T3. The structure of the projector 53 := T3S3 on the image of T3 has been studied in [loc. cit.,
§2.2]. The orthogonal projector B3 on H0

3,FBI in L2
0(3) is studied in [loc. cit., §2.3]. Notice that in order

to prove Proposition 5, we will work with a symbol G0 which is of logarithmic order. As explained
in Section 5.3 (see also [Guedes-Bonthonneau et al. 2024]), it implies that Hk

3 is in fact a space of
distributions. Consequently, we could have worked from the beginning only with distributions (and avoid



3646 MALO JÉZÉQUEL

the introduction of the space E ′

R(X)). However, we decided to start from the context of [Bonthonneau
and Jézéquel 2020] and then specify to the case of logarithmic weights in Section 5.3. This is because
we will need some extensions of the results from [loc. cit.] that are not made easier by assuming that
G0 is of logarithmic order. It is also useful to see the case of logarithmic weights as a particular case of
[loc. cit.], as it allows us to use the results from this reference.

Assume that A(α, β) is a smooth function on 3×3 and let A be the associated operator

Au(α)=

∫
3

A(α, β)u(β) dβ for α ∈3.

The operator A may be defined for instance as an operator from the space of smooth compactly supported
functions u on 3 to the space of smooth functions on 3. In order to understand the action of A on L2

0(3),
one has to study the reduced kernel of A:

Ared(α, β)= A(α, β)e
H(β)−H(α)

h .

To study the action of A from L2
k(3) to L2

ℓ(3), one can study the kernel Ared(α, β)⟨|β|⟩
−2k

⟨|α|⟩
2ℓ. We

will say that the kernel A is negligible if

Ared(α, β)= OC∞(h∞(⟨|α|⟩ + ⟨|β|⟩)−∞). (24)

Here, the C∞ estimates may be understood by identifying 3 with T ∗X using eHωI
G , taking a trivialization

for T ∗X and then asking for all partial derivatives of Ared to be O(h∞(⟨|α|⟩+⟨|β|⟩)−∞). We do not need
to ask for symbolic estimates in that case, as it is automatic for something that decays that fast. Notice
that an operator whose reduced kernel satisfies (24) is bounded from L2

k(3) to L2
ℓ(3) for every k, ℓ ∈ R,

with norm O(h∞). An operator whose reduced kernel satisfy (24) will be called a negligible operator.
Recall the phase 8T S(α, β) from [Bonthonneau and Jézéquel 2020, §2.2], which is the critical value

of y 7→8T (α, y)+8S(y, β). Here, 8S is the phase that appear when describing the kernel KS(y, β) of
S locally as we do for KT in (21). That is, 8S(y, β)= −8T (β, y). The following fact follows from the
analysis in [loc. cit.].

Lemma 17. Let δ > 0 be small enough. Assume that τ > 0 and h > 0 are small enough. Assume that
A(α, β) is a smooth function on 3×3 and let A be the associated operator. Let m ∈ R. Assume that
there is a symbol a ∈ Sm

KN(3×3) supported in {(α, β) ∈3×3, dKN(α, β) < δ} such that

Ared(α, β)=
1

(2πh)n
e

H(β)+i8T S(α,β)−H(α)
h a(α, β)+OC∞(h∞(⟨|α|⟩ + ⟨|β|⟩)−∞). (25)

Then, A is bounded from L2
k(3) to L2

k−m(3) for every k ∈ R, and there is a symbol σ ∈ Sm
KN(3) such that

the operators B3AB3 and B3σ B3 differ by a negligible operator.
Moreover, σ coincides with α 7→ a(α, α) up to O(h) in Sm−1

KN (3).

Indeed, the boundedness statement follows from the proof of [loc. cit., Proposition 2.4]. Our assumption
on the kernel of A implies that A belongs to the class of FIO from [loc. cit., Definition 2.5], and thus the
proof of [loc. cit., Proposition 2.10] may be rewritten replacing the operator “ f T3P S3” by the operator A.
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This gives the symbol σ such that B3AB3 − B3σ B3 is a negligible operator. The proof gives that σ
coincides with α 7→ g0(α)a(α, α) for a symbol g0 of order 0 that does not depend on A. To see that one
can take g0 = 1, just notice that the operator 53 = T3S3 satisfies the hypotheses from Lemma 17 with
α 7→ a(α, α) identically equal to 1 up to O(h) in S−1

KN(3), according to [Bonthonneau and Jézéquel 2020,
Lemma 2.10], and that B353B3 = B3B3. Moreover, one may retrieve the leading part of a symbol σ
from restriction to the diagonal of the kernel of the operator B3σ B3 (the kernel may be computed by the
stationary phase method as in [loc. cit., Lemma 2.16]).

We need to extend certain results from [loc. cit.] to a slightly more general context in order to prove
Proposition 5. Let P be a semiclassical differential operator of order m with C∞ coefficients and let p be
the principal symbol of P . We make the following assumption:

for every x ∈ X either G0(y, ξ)= 0 for every y near x

and ξ ∈ T ∗

y X, or P has real-analytic coefficients near x . (26)

Notice that under the assumption (26) the principal symbol p of P may be restricted to 3 provided τ is
small enough. Indeed, for every x ∈ X , either p has a holomorphic extension near T ∗

x X or 3 coincides
with T ∗X near T ∗

x X . We let p3 denote this restriction. If P is an operator that satisfies (26), we may
define T3P S3 as the operator with kernel

T3P S3(α, β)=

∫
M

KT (α, y)Py(KS(y, β)) dy. (27)

The reason for which we use this definition is because since P is a priori not an operator with real-analytic
coefficients, it is not straightforward to define the action of P on elements of E ′

R(X). Notice that the
following result allows to define P as an operator from Hk

3 to Hk−m
3 . When we will specify to the case of

logarithmic weights in Section 5.3, the spaces Hk
3’s will be included in D′(M), and the natural relation

T3Pu = T3P S3T3u will be satisfied; see Lemma 23.

Proposition 18. Under the assumption (26), if τ is small enough, then the operator T3P S3 is bounded
from L2

k(3) to L2
k−m(3). Moreover, if ℓ ∈ R and f ∈ SℓKN(3), there is a symbol σ ∈ Sm+ℓ

KN (3) and an
operator L with negligible kernel such that

B3 f T3P S3B3 = B3σ B3 + L .

In addition, σ coincides with f p3 up to O(h⟨|α|⟩
m+ℓ−1).

The proof of Proposition 18 is based on applications of the stationary and nonstationary phase methods
with complex phase. We will apply both the C∞ and the holomorphic versions of these methods. We are
not aware of a reference stating the C∞ version of the nonstationary phase method with complex phase
that would cover all the cases we are going to consider (for the stationary phase method, see [Melin and
Sjöstrand 1974], and for a standard version of the non stationary phase method with complex phase, see
[Hörmander 1983, Theorem 7.7.1]), so that we prove here a statement adapted to our needs. This result
and its proof should be no surprise for specialists.
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Lemma 19. Let m, n be integer. Let U, V be open subsets respectively of Rm and Rn . Let8 : U ×V → C

be a C∞ function. Let K1 and K2 be compact subsets respectively of U and V . Assume that for every
(x, y) ∈ K1 × K2 we have Im8(x, y) ≥ 0 and dy8(x, y) ̸= 0. Then, for every L , N > 0, there are
constants k ∈ N and λ0 > 0 such that, for every λ≥ λ0, every Ck function u supported in K2 and every
x ∈ U such that d(x, K1)≤ L log λ/λ, we have∣∣∣∣∫

V
eiλ8(x,y)u(y) dy

∣∣∣∣ ≤ λ−N
∥u∥Ck .

Proof. Let x ∈ U be such that d(x, K1) ≤ L log λ/λ. From our nonstationary assumption, we see that
if λ is large enough then dy8(x, y) ̸= 0 for every y ∈ K2. We can consequently introduce the differential
operator

L x = −i
n∑

j=1

∂y j8(x, y)
|∇y8(x, y)|2

∂y j ,

and notice that L x(eiλ8(x,y))= λeiλ8(x,y). Letting k be a large integer and t L x denote the formal adjoint
of L x , we find that ∫

V
eiλ8(x,y)u(y) dy = λ−k

∫
V

eiλ8(x,y)t Lk
x u(y) dy.

Then, we notice that the L∞ norm of t Lk
x u is controlled by the Ck norm of u. Moreover, since d(x, K1)≤

L log λ/λ, we find that for every y ∈ K2, if λ is large enough, we have Im8(x, y)≥ −C8L log λ/λ for
some constant C8 that does not depend on k nor u. Consequently, for λ large, we have∣∣∣∣∫

V
eiλ8(x,y)u(y) dy

∣∣∣∣ ≤ Cλ−k+C8L
∥u∥Ck .

Here the constant C may depend on k and 8, but not on λ nor u. Taking k large enough, we ensure that
k − C8L > N and the result follows. □

We have now at our disposal all the tools to prove Proposition 18.

Proof of Proposition 18. We want to apply Lemma 17 to the operators T3P S3 and f T3P S3. Let us
introduce the open sets

U1 = {x ∈ X : G0(y, ξ)= 0 for every y near x and ξ ∈ T ∗

y X},

U2 = {x ∈ X : P has real-analytic coefficients near x}.

By assumption X =U1∪U2. We start by proving that for every δ > 0, provided τ is small enough, we have

T3P S3(α, β)e
H(β)−H(α)

h = O(h∞(⟨|α|⟩ + ⟨|β|⟩)−∞) (28)

whenever α, β ∈3 are such that dKN(α, β)≥ δ. Let us write α = eHωI
G (x, ξ) and β = eHωI

G (y, η) where
(x, ξ) and (y, η) are in T ∗X . Assume first that x and y are at distance larger than δ/L for some large
constant L ≫ 1. We can then write

T3P S3(α,β)=
(∫

D(x,δ/10L)
+

∫
D(y,δ/10L)

+

∫
X\(D(x,δ/10L)∪D(y,δ/10L))

)
KT (α, z)Pz(KS(z,β))dz. (29)
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We write D(w, r) for the ball of center w and radius r in X . Notice that, provided τ is small enough,
the third integral in (29) is O(exp(−(⟨|α|⟩ + ⟨|β|⟩)/Ch)) since the kernel KT and KS are negligible
away from the diagonal (20). Since e(H(β)−H(α))/h is O(exp(Cτ(⟨|α|⟩ + ⟨|β|⟩))), we see that for τ small
enough we have

e
H(β)−H(α)

h

∫
X\(D(x,δ/10L)∪D(y,δ/10L))

KT (α, z)Pz(KS(z, β)) dz = O
(

exp
(

−
⟨|α|⟩ + ⟨|β|⟩

Ch

))
= O(h∞(⟨|α|⟩ + ⟨|β|⟩)−∞),

and we only need to care about the two other terms.
Let us deal with the first term in (29). Up to a negligible term, it is given by∫

D(x,δ/10L)
ei 8T (α,z)

h a(α, z)Pz(KS(z, β)) dz. (30)

By taking L large enough, we have either D(x, δ/10L)⊆ U1 or D(x, δ/10L)⊆ U2.
Let us begin with the case of D(x, δ/10L) ⊆ U1. In that case, the differential operator P has a

priori only C∞ coefficients on D(x, δ/10L) so that we find that Pz(KS(z, β)) is O(exp(−⟨|β|⟩/Ch))
in C∞. Notice also that dy8T (α, αx)= −αξ and that the imaginary part of 8T (α, z) is nonnegative when
z ∈ D(x, δ/10L). Hence, provided L is large enough, we can use the C∞ nonstationary phase method
(apply Lemma 19 with a rescaling argument) to find that (30) is

O(h∞
⟨|α|⟩

−∞ exp(−⟨|β|⟩/Ch)).

Here, the integrand is not supported away from the boundary of the domain of integration, but since the
imaginary part of the phase is larger than C−1

⟨|α|⟩/h near the boundary of the domain of integration,
we may just introduce a bump function to fix that. The same trick allows to remove the dependence
on x of the domain of integration. Using that x ∈ U1, we find that α = (x, ξ) and that H(α) = 0 (see
[Bonthonneau and Jézéquel 2020, (2.9)]), so that

e
H(β)−H(α)

h = e
H(β)

h = O
(

exp
(

Cτ
⟨|β|⟩

h

))
.

Hence, for τ small enough, we find that

e
H(β)−H(α)

h

∫
D(x,δ/10L)

ei 8T (α,z)
h a(α, z)Pz(KS(z, β)) dz = O(h∞(⟨|α|⟩ + ⟨|β|⟩)−∞). (31)

When D(x, δ/10L)⊆ U2, the coefficients of P are analytic, and Pz(KS(z, β)) is O(exp(−⟨|β|⟩/Ch))
as a real-analytic function. Hence, provided L is large enough, we can use the holomorphic nonstationary
phase method (see for instance [loc. cit., Proposition 1.1], and use a rescaling argument) as in the proof
of [loc. cit., Lemma 2.9] to see that (30) is O(exp(−(⟨|α|⟩ + ⟨|β|⟩)/Ch)), provided τ is small enough.
Hence, if τ is small enough, this is enough to beat the potential growth of the factor e(H(β)−H(α))/h , so
that we also have (31) in that case.

We deal similarly with the second term in (29), distinguishing the cases D(y, δ/10L) ⊆ U1 and
D(y, δ/10L)⊆ U2.
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Let us now prove (28) when the distance between x and y is less than δ/L (and consequently ξ and η are
away from each other in a trivialization of T ∗X ). As above, we can discard the z’s that are away from x (and
thus from y) and write up to a negligible term the kernel of T3P S3 as (the error term coming from the ap-
proximation (21) is dealt with by an application of the nonstationary phase method as in the previous case)∫

D(x,10δ/L)
ei 8T (α,z)+8S(z,β)

h a(α, z)b̃(z, β) dz, (32)

where the symbol b̃ is defined by

b̃(z, β)= e−i 8S(z,β)
h Pz(e

i 8S(z,β)
h b(z, β)).

Notice that the phase in (32) is holomorphic and nonstationary. Indeed, working in coordinates and
assuming that L is large enough, we find that, for some C > 0 and every z ∈ D(x, 10δ/L),

|∇z(8T (α, z)+8S(z, β))| = |βξ −αξ | +O
(

max(⟨|α|⟩, ⟨|β|⟩)

L

)
≥ C−1 max(⟨|α|⟩, ⟨|β|⟩).

Moreover, provided τ is small enough, the imaginary part of the phase is larger than C−1 max(⟨|α|⟩, ⟨|β|⟩)

when z is on the boundary of D(x, 10δ/L) (because z is away from αx and βx ), and is always nonnegative
when D(x, 10δ/L)⊆ U1. We can apply the C∞ nonstationary phase method when D(x, 10δ/L)⊆ U1

and the holomorphic nonstationary phase method when D(x, 10δ/L) ⊆ U2 (for this second case, see
the similar computation in the proof of [Bonthonneau and Jézéquel 2020, Lemma 2.9]). Indeed, in the
latter case b̃ is holomorphic in z, while in the first case it is only C∞. In the first case, we get that (32)
is O(h∞(⟨|α|⟩ + ⟨|β|⟩)−∞) and in the second case that it is O(exp(−(⟨|α|⟩ + ⟨|β|⟩)/Ch)). Noticing that
in the first case H(α)= H(β)= 0, we find that (28) holds.

Notice that differentiating the kernel of KT or of KS (in a local trivialization of T ∗X ) amount to
replace the symbols a and b by symbols of higher orders (in terms of α, β and h). Thus, all the estimates
that we established when α and β are away from each other actually hold in C∞.

We must now understand what happens when α and β are close to each other. We write as above
α = eHωI

G (x, ξ) and β = eHωI
G (y, η) where (x, ξ) and (y, η) are in T ∗X . Then, up to negligible terms,

the kernel of T3P S3 at (α, β) is given as above, for some small δ > 0, by∫
D(x,δ)

ei 8T (α,z)+8S(z,β)
h a(α, z)b̃(z, β) dz.

As above, the error coming from the approximation (21) is dealt with by an application of the nonstationary
phase method. The asymptotic of this integral when ⟨|α|⟩/h tends to +∞ is given by the stationary phase
method. Indeed, when α = β, the rescaled phase y 7→ (8T (α, y)+8S(y, β))/⟨|α|⟩ has a uniformly
nondegenerate critical point at y = αx = βx , as a consequence of (22). Moreover, when D(x, δ)⊆ U1,
the imaginary part of this phase is nonnegative on D(x, δ), provided the distance between αx and βx is
way smaller than δ. When D(x, δ)⊆ U2, we may ensure that the imaginary part of the (rescaled) phase
is uniformly positive on the boundary of D(x, δ) by taking τ small enough. As above, we apply the
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stationary phase method in the C∞ category (see [Melin and Sjöstrand 1974, §2]) when D(x, δ)⊆ U1

and in the Cω category when D(x, δ) ⊆ U2 (see [Sjöstrand 1982, §2] for the general method and the
proof of [Bonthonneau and Jézéquel 2020, Lemma 2.10] in the case s = 1, page 111, for the details of the
computation in our particular setting). In both cases, we can use the fact that the imaginary part of the phase
is positive on the boundary of the domain of integration to remove the dependence of this domain on x . In
the first case we get an expansion with an error term of the form O(h∞

⟨|α|⟩
−∞) and in the second case of

the form O(exp(−⟨|α|⟩/Ch)). Since in the first case we have H(α)= H(β)= 0, we see that in both cases
we get the desired expansion (25) for the reduced kernel of T3P S3, with an error term of the required size.

We can then apply Lemma 17 to end the proof. Indeed, we just saw that the kernel of f T3P S3 is of
the form (25). Moreover, it follows from the application of the stationary phase method that, up to O(h)
in Sm−1

KN (3), the symbol α 7→ a(α, α) coincides with f p3g0, where g0 is a symbol of order 0 that does
not depend on P . Thus, the operator f T3P S3 − f p353 is also of the form (25) but with an a such
that a 7→ a(α, α) is O(h) in Sm+ℓ−1

KN (3). Consequently, there is a symbol σ̃ ∈ hSm+ℓ−1
KN (3) such that

B3( f T3P S3 − f p353)B3 − B3σ̃ B3 = B3 f T3P S3B3 − B3( f p3 + σ̃ )B3 is a negligible operator.
We get the announced result with σ = f p3 + σ̃ . □

5.2. Duality statement. In [Bonthonneau and Jézéquel 2020, Lemma 2.24], an identification between H−k
3

and the dual of Hk
3 is given. However, the pairing used to define this identification is not the L2 pairing.

We explain here how to describe the dual of Hk
3 using the L2 pairing. This will allow us in particular to

reuse results from [Guedes-Bonthonneau et al. 2024] in Section 5.3.
Let us first recall that there is an antiholomorphic involution α 7→ α on (T ∗X)r such that

{α ∈ (T ∗X)r : α = α} = T ∗X;

see [Guillemin and Stenzel 1991]. Let G be a symbol of order 1 on (T ∗X)r as above (of the form
G = τG0 with τ small) and 3 be defined by (23). Let us introduce a new symbol G∗(α) = −G(α),
and notice that the Lagrangian associated to G∗ by (23) is 3, that is, the image of 3 by the involution
α 7→ α. Notice also that changing G to G∗, we have to replace H by the function H∗ on 3 given by
H∗(α)= −H(α).

Consequently, if u ∈ Hk
3 and v ∈ H−k

3
, we may define the pairing

⟨u, v⟩ =

∫
3

T3u(α)T3v(α) dα, (33)

for which we can prove:

Proposition 20. Let R ≫ 1. Assume that τ is small enough. The pairing (33) induces an identification
between H−k

3
and the dual of Hk

3. Moreover, if u or v belongs to ER(X) then (33) is just the natural
(sesquilinear) pairing between elements of ER(X) and E ′

R(X).

Proof. Assume that u is in ER(X) and that v ∈ H−k
3

. Since T is an isometry on its image, we know that∫
X

uv dx =

∫
T ∗ X

TuTv dα. (34)
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Notice that the function α 7→ Tu(α)Tv(α) is holomorphic on (T ∗X)r . Moreover, from [Bonthonneau
and Jézéquel 2020, Lemmas 2.4 and 2.5, Corollary 2.2], we see that, provided τ is small enough, there is
r > 0 such that Tu(α)Tv(α) decays exponentially fast in (T ∗X)r . This allows us to shift contour in (34)
to find that

∫
X uv dx coincides with (33), provided τ is small enough. By symmetry, we have the same

equality when v is assumed to belong to ER(X).
Consequently, the (antilinear) map from H−k

3
to the dual of Hk

3 induced by the pairing (33) is injective.
Let us prove that it is surjective. Let l be a continuous linear form on Hk

3. It follows from [loc. cit.,
Proposition 2.4] that S3 is bounded from L2

k(3) to Hk
3, and we can thus define a linear form l̃ on L2

k(3)

by the formula l̃(w)= l(S3w). Notice that if u ∈ Hk
3 then l(u)= l̃(T3u). Let then h1 be the element of

L2
k(3) such that

l̃(w)=

∫
3

w(α)h1(α)⟨|α|⟩
2ke−

2H(α)
h dα

for every w ∈ L2
k(3). Let us define the function h2 on 3 by

h2(α)= h1(α)⟨|α|⟩
2ke−

2H(α)
h ,

and notice that h2 belongs to L2
−k(3), so that v := S3h2 belongs to H−k

3
. Let u ∈ ER(X), then with the

pairing above, we have

⟨u, v⟩ =

∫
3

T3u(α)53h2(α) dα.

Notice that the kernel of the operators 53 and 53 are obtained by restricting respectively to 3×3 and
3×3 the holomorphic kernel of the operator 5 = T S. We write 5(α, β) for this kernel. Since S is
the adjoint of T, we find by analytic continuation that 5(α, β)=5(β, α). It follows then from Fubini’s
theorem that

⟨u, v⟩ =

∫
3

53T3u(α)h2(α) dα

=

∫
3

T3u(α)h1(α)⟨|α|⟩
2ke−

2H(α)
h dα = l(u).

The equality on the first line can be proved first by replacing h2 by a rapidly decaying function and then
using an approximation argument. It follows from [loc. cit., Corollary 2.3] and the Oka–Weil theorem
that ER(X) is dense in Hk

3 and the result follows. □

5.3. Particularity of logarithmic weights. When applying the FBI transform techniques that we describe
here in Section 6, the weight G0 will be of logarithmic order. This is a strategy that we already applied in
[Guedes-Bonthonneau et al. 2024]. It amounts to doing C∞ microlocal analysis with respect to the large
parameter ⟨|α|⟩ but real-analytic microlocal analysis with respect to the small parameter h.

Using a logarithmic weight allows us to construct spaces that are intermediate between C∞(X)
and D′(X).
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Proposition 21. Assume that G0 has logarithmic order. Assume that τ and h are small enough. Then,
for every k ∈ R, there are continuous injections C∞(X)⊆ Hk

3 ⊆ D′(X). Moreover, these injections are
natural in the following sense: the diagram

C∞(X) Hk
3(X) E ′

R(X)

D′(X)

is commutative, with R as in the definition of Hk
3. The arrows that are not given by the proposition are the

standard injections.

Proof. It follows from Lemma 19, using for instance [Bonthonneau and Jézéquel 2020, (2.9)] to bound H ,
that C∞(X) is contained in Hk

3, where we identify an element of C∞(X) with an element of E ′

R(X) using
the L2 pairing (see also [Guedes-Bonthonneau et al. 2024, Lemma 4.10]). The proof of this result actually
proves that the injection is continuous (even if the estimates are not uniform in h). Notice that C∞(X)
is dense in Hk

3 as a consequence of [Bonthonneau and Jézéquel 2020, Corollary 2.3]. Replacing G
by G∗, we find that C∞(X) is also a dense subset of H−k

3
, with continuous injection. Consequently, the

pairing (33) induces a continuous injection of Hk
3 into D′(X) according to Proposition 20. Since the

pairing (33) coincides with the L2 pairing when u or v is in ER(X), we see that the diagram above is
indeed commutative. □

Remark 22. It follows from Propositions 20 and 21 that if u ∈ Hk
3 and v ∈ H−k

3
are such that u or v

is in C∞(X), then the pairing (33) coincides with the natural pairing between a smooth function and a
distribution.

When G0 is of logarithmic order, we may identify the Hk
3’s with spaces of distributions, and con-

sequently it makes sense to let a differential operator P with C∞ coefficients act on the elements of
the Hk

3’s. In the following lemma, we see that under the assumption (26) we can relate the action of P
on these spaces with the action of the operator T3P S3 that we studied in Proposition 18.

Lemma 23. Assume that G0 has logarithmic order. Let P be a semiclassical operator of order m ∈ N that
satisfy (26). Assume that τ is small enough. Then, for every k ∈ R, the operator P is bounded from Hk

3

to Hk−m
3 and for every u ∈ Hk

3 we have

T3Pu = (T3P S3)T3u,

where we recall that T3P S3 is the operator with kernel (27).

Proof. For α ∈3, we have by definition

T3Pu(α)=

∫
M

Pu(y)KT (α, y) dy =

∫
M

u(y)tPy(KT (α, y)) dy, (35)

where tP denotes the adjoint of P for the bilinear (rather than sesquilinear) L2 pairing on M. Notice that
for α ∈3, the function hα : y 7→

tPy(KT (α, y)) is C∞. Consequently, one may use the C∞ nonstationary
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phase method, Lemma 19, to find that tShα(β) decays faster than the inverse of any polynomial when β
becomes large while its imaginary part remains bounded (from the Kohn–Nirenberg point of view) by
L log⟨|β|⟩/⟨|β|⟩ (for any large constant L). Notice however that this estimate is not uniform in h (we
apply Lemma 19 with h fixed and ⟨|β|⟩, rather than ⟨|β|⟩/h, as a large parameter). Consequently, we can
shift contour in the integral equality tT tShα =

t(ST )hα = hα to find

hα(x)=

∫
3

KT (β, x)
(∫

M
KS(y, β)hα(y) dy

)
dβ

=

∫
3

KT (β, x)T3P S3(α, β) dβ.

Using the fast decay of tShα, we see that this integral actually converges in C∞(X), and plugging this
equality into (35), we get T3Pu = (T3P S3)T3u. It follows from Proposition 18 that T3Pu ∈ L2

k−m(3),
that is, Pu ∈ Hk−m

3 (3). □

The following result will be used in the demonstration of Proposition 5 to prove that the elements of
the spaces H1 and H2 are bounded near ∂Y .

Proposition 24. Let K be a compact subset of X. Assume that G0 has logarithmic order and that there is
C > 0 such that if α ∈ T ∗

K X is large enough then

G0(α)≤ −C−1 log⟨|α|⟩.

Assume that τ is small enough. Then, for every k ∈ R, if h is small enough then the elements of Hk
3 are

continuous on a neighborhood of K .

Proof. Let N > n. It follows from [Guedes-Bonthonneau et al. 2024, Lemmas 4.2 and 4.9] that, for h small
enough, there is a neighborhood U of K such that if v is in H−N (X) and supported in U then v belongs
to H−k

3
and its norm in this space is less than C∥v∥H−N , where the constant C may depend on h but not on v.

Let u ∈Hk
3. If χ is a C∞ function supported in the intersection of U with a coordinates patch, then we

see that in these coordinates the Fourier transform of χu decays faster than ⟨ξ⟩−N. Indeed, the H−N norm
of the functions given in coordinates by χ(x)ei xξ decays like ⟨ξ⟩−N when ξ tends to +∞. Thus, the
same is true for the norm of these functions in H−k

3
. It follows then from Remark 22 that χ̂u(ξ), which

is the L2 pairing of u with one of these functions, decays like ⟨ξ⟩−N when ξ tends to +∞. Consequently,
the distribution χu is a continuous function, and the result follows by a partition of unity argument. □

6. General construction (proof of Proposition 5)

The aim of this section is to prove Proposition 5. We will use the notation that we introduced in Section 2.1.
In Section 6.1, we fix the value of certain parameters that play an important role in the proof of

Proposition 5 and define the modification Ph(ω) of Ph(ω). In Section 6.2, we define the spaces that will
be H1 and H2 in Proposition 5, and explain how the action of Ph(ω) on these spaces is related to the
values of a certain symbol (Proposition 25). In Section 6.3, we prove ellipticity estimates on this symbol
(Lemmas 26 and 28). In Section 6.4, we use these estimates to study the functional analytic properties
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of Ph(ω) acting on the spaces defined in Section 6.3: we prove that Ph(ω) is Fredholm by proving that
it is invertible after perturbation by a compact operator (Lemmas 30 and 32 and Proposition 36), and
that Ph(iν) is invertible for some ν > 0 (Lemmas 31 and 33 and Proposition 36). In Section 6.5, we
prove the crucial point (vi) from Proposition 5 (from which our upper bounds on resonances, Theorems 2
and 3, follow). This is done by evaluating the trace class norm of the compact perturbation that we use to
make Ph(ω) invertible (Lemmas 37 and 38). Finally, in Section 6.6, we put all these information together
in order to get a full proof of Proposition 5.

Notice that, in most of this section, we are not working directly with the operator Ph(ω), but rather
with an operator P̃h(ω), defined in Section 6.1, which is conjugated to Ph(ω), but simpler to apprehend.

6.1. Choice of parameters and modification of the operator. We use the notation from Section 2.1.
Up to making ϵ smaller, we may assume that w′(x1) > ϵ for every x1 ∈ ]−ϵ, ϵ[ and p0(x) < −ϵ for
every x ∈ U ∪ Y (this second point is a consequence of assumption (e)). We may also assume that x1

extends to a smooth function on the whole X (analytic on U ) such that U = {−ϵ < x1 < ϵ}, Y = {x1 > 0}

and X \ Y = {x1 < 0}.
Let us introduce on T ∗U ≃ T ∗(]−ϵ, ϵ[)(x1,ξ1) × T ∗∂Y(x ′,ξ ′) the symbol of logarithmic order

G1(x1, x ′, ξ1, ξ
′)= log(2 + ξ 2

1 + |ξ ′
|
2)

and denote by HG1 the Hamiltonian flow of G1 for the canonical symplectic form on T ∗U . Here, the
quantity |ξ ′

|
2 is computed using any smooth Riemannian metric on ∂Y , e.g., the restriction of gX . Let us

compute HG1 p2 where we recall that p2 is the principal symbol of the order 2 differential operator P2

from (7). Using local coordinates on ∂Y , we find that

HG1 p2(x1, x ′, ξ1, ξ
′)=

2ξ1

2 + ξ 2
1 + |ξ ′|2

w′(x1)ξ
2
1 +

2ξ1

2 + ξ 2
1 + |ξ ′|2

∂q1

∂x1
(x1, x ′, ξ ′)

+
∇ξ ′(|ξ ′

|
2)

2 + ξ 2
1 + |ξ ′|2

· ∇x ′q1(x1, x ′, ξ ′)−
∇x ′(|ξ ′

|
2)

2 + ξ 2
1 + |ξ ′|2

· ∇ξ ′q1(x1, x ′, ξ ′).

Since w′(x1) > ϵ, the first term on the right-hand side is elliptic of order 1 whenever ξ1 is larger than a
fixed proportion of |ξ ′

|. Moreover, this term has the same sign as ξ1. The other terms are also of order 1,
and they can be made arbitrarily small by assuming that ξ1 is much larger than ξ ′. Hence, there is some
small ϵ1 ∈ ]0, ϵ[ such that if (x1, x ′, ξ1, ξ

′) ∈ T ∗U and |ξ1| ≥ ϵ−1
1 (1 + |ξ ′

|) we have

HG1 p2(x1, x ′, ξ1, ξ
′)

ξ1
≥ C−1 (36)

for some constant C > 0.
Let then C0 be a bound for the derivative of w on ]−ϵ, ϵ[. We choose ϵ0 ∈ ]0, ϵ[ small enough so that

if (x1, x ′, ξ1, ξ
′) ∈ T ∗U and |ξ1| ≤ 2ϵ−1

1 (1 + |ξ ′
|) we have, with ξ = (ξ1, ξ

′),

−C0ϵ0ξ
2
1 + |ξ |2 + 1 ≥ C−1(1 + |ξ |2), (37)

−C0ϵ0ξ
2
1 + q1(x1, x ′, ξ ′)+ 1 ≥ C−1(1 + |ξ |2). (38)

Here, |ξ |2 is defined using the metric gX on X , and we used the ellipticity condition on q1 (assumption (b)).
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Let χ : R → [0, 1] be a smooth function such that χ(t)= 0 for t ≤ −ϵ0 and χ(t)= 1 for t ≥ −5ϵ0/6.
Let ψ be a real-analytic function from R to R such that tψ ′(t) ≤ 0 for t ∈ R and tψ ′(t) < 0 for t ̸= 0.
One can take for instance ψ(t)= −t2/2.

Let Q be a semiclassical differential operator of order 2 with principal symbol q. We assume that Q
has the following properties:

• The coefficients of Q are supported in {x1 <−ϵ0/2}.

• The principal symbol of Q is
q(x, ξ)= χ1(x1)(1 + |ξ |2),

where χ1 : R → [0, 1] is a smooth function supported in ]−∞,−ϵ0/2] and that takes value 1 on
]−∞,−2ϵ0/3]. For instance, one can take Q = χ1(I − h21gX ).

The modification Ph(ω) of the operator Ph(ω) for which Proposition 5 will be established is

Ph(ω)= χ(x1)Ph(ω)+ e−
ψ(x1)

h Qe
ψ(x1)

h , (39)

but we will rather study the conjugated operator

P̃h(ω)= e
ψ(x1)

h χ(x1)Ph(ω)e
−
ψ(x1)

h + Q.

For (x, ξ)= (x1, x ′, ξ1, ξ
′) ∈ T ∗U ≃ T ∗(]−ϵ, ϵ[ × ∂Y ), the principal symbol of p̃(x, ξ ;ω) of P̃h(ω)

is given by

p̃(x,ξ ;ω)=χ(x1)
(
w(x1)ξ

2
1 +q1(x1, x ′,ξ ′)+2iw(x1)ψ

′(x1)ξ1+ωp1(x1,ξ1)

+iωp1(x1,ψ
′(x1))+ω

2 p0(x)−ψ ′(x1)
2w(x1)

)
+χ1(x1)(1+|ξ |2). (40)

Finally, let φ be a C∞ function from R to [0, 1], supported in ]−ϵ0/3, ϵ0[, such that φ(t) = 1 for
t ∈ [−ϵ0/6, 2ϵ0/3] and tφ′(t)≤ 0 for every t ∈ R.

Our choices of parameters are summed up in Figure 1, where the black line represent the x1-axis. The
colored zones in this drawing correspond to places where we will use different mechanisms to prove the
Fredholm property for P̃h(ω). In the purple zone (which is compactly contained in Y ), we will use the
ellipticity of P̃h(ω), which follows from our assumption (d) in Section 2.1. In the green zone (which is
away from Y ), the operator P̃h(ω) is also elliptic, but this is just because Q is. Finally, the most interesting
part is the blue zone, where two phenomena occur: in some places P̃h(ω) is elliptic and in other places
we need to use propagation and radial estimates to get the Fredholm property. See Section 6.3 for the
details on how Figure 1 can be turned into actual estimates.

6.2. Definition of the spaces. We define the symbol G0 on T ∗X by

G0(x, ξ)= −φ(x1)G1(x, ξ) for (x, ξ) ∈ T ∗X.

Then, for some small r > 0, we extend G0 to (T ∗X)r as a symbol of logarithmic order. The particular
features of the extension are irrelevant as soon as we have symbolic estimates, and that G0 is identically
equal to 0 away from a small neighborhood of the support of φ, so that all derivatives of G0 vanish at any
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0− ε0
6

− ε0
3− ε0

2− 2ε0
3

− 5ε0
6

−ε0
ε0
3

2ε0
3

ε0

φ ≡ 1

φ vanishes outside of this region

χ1 ≡ 0 on the
right of this point

χ1 ≡ 1 on the
left of this point

χ ≡ 1 on the
right of this point

χ ≡ 0 on the
left of this point

Figure 1. Some relevant places near ∂Y.

point of T ∗X such that x1 ≤ −ϵ0/3 or x1 ≥ ϵ0 (even derivatives in directions that are not tangent to T ∗X ).
As above we define the escape function G = τG0 for some small τ > 0. We let 3 = eHωI

G T ∗X be the
associated Lagrangian deformation and (Hk

3)k∈R the associated family of Hilbert spaces (see Section 5).
Notice that these are spaces of distributions according to Proposition 21. For k ∈ R, define the Hilbert space

Fk = {u ∈ D′(X) : e
ψ

h u ∈ Hk
3}, (41)

where we recall thatψ is defined in Section 6.1. The spaces H1 and H2 in Proposition 5 will be respectively
{u ∈ Fk : Ph(0)u ∈ Fk−1} and Fk−1.

Notice that it is equivalent to study Ph(ω) acting on the Fk’s or P̃h(ω) acting on the Hk
3’s. Also, we

can write P̃h(ω)= P̃2 +ω P̃1 +ω2 P̃0 where the P̃j ’s are semiclassical differential operator with analytic
coefficients near the support of φ. Consequently, these operators satisfy the assumption (26) and it makes
sense to restrict their principal symbols (and thus the principal symbol p̃( · ;ω) of P̃h(ω)) to 3, see the
remark below (26). Applying Proposition 18 and Lemma 23 to the operators P̃0, P̃1 and P̃2, we find:

Proposition 25. Assume that τ and h are small enough. Let m ∈ R and f be a symbol of order m on 3.
Let ω ∈ C. Let k1 and k2 be such that k1 + k2 = m + 1. Then, there is a constant C such that for every
u, v ∈ H∞

3 , we have∣∣∣∣∫
3

f T3 P̃h(ω)uT3ve−
2H
h dα−

∫
3

f (α) p̃(α;ω)T3uT3ve−
2H
h dα

∣∣∣∣ ≤ Ch∥u∥Hk1
3

∥v∥Hk2
3

.

Here, the constant C depends continuously on ω and p̃( · ;ω) denotes the principal symbol of P̃h(ω). We
also wrote H∞

3 for
⋂

k∈R Hk
3.

Another consequence of Proposition 18 and Lemma 23 that it will be useful to remember is that, under
the assumptions of Proposition 25, for every k ∈ R the family ω 7→ P̃h(ω)− P̃h(0) is a holomorphic
family of bounded operators from Hk

3 to Hk−1
3 .

6.3. Ellipticity estimates. In order to use Proposition 25, let us introduce the following subsets of T ∗X :

VR = {x1 ≤ −2ϵ0/3} ∪ {x1 ≥ ϵ0/3} ∪ ({−5ϵ0/6 ≤ x1 ≤ 2ϵ0/3} ∩ {|ξ1| ≤ 2ϵ−1
1 (1 + |ξ ′

|)}),

V+ = {−5ϵ0/6 ≤ x1 ≤ 2ϵ0/3} ∩ {ξ1 ≥ ϵ−1
1 (1 + |ξ ′

|)},

V− = {−5ϵ0/6 ≤ x1 ≤ 2ϵ0/3} ∩ {ξ1 ≤ −ϵ−1
1 (1 + |ξ ′

|)}.
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Here, we see the function x1 : X → R as a function on T ∗X by composition by the canonical projection
T ∗X → X , and the constant ϵ1 has been defined in Section 6.1. Notice that a point of T ∗X for which x1 is
between −ϵ and ϵ is in T ∗U ≃ T ∗(]−ϵ, ϵ[)×T ∗(∂Y ), and may consequently be written as (x1, x ′, ξ1, ξ

′)

with (x1, ξ1) ∈ T ∗(]−ϵ, ϵ[) and (x ′, ξ ′) ∈ T ∗∂Y . This is how we make sense of ξ ′ in the equation above.
We use the same metric on T ∗∂Y as in Section 6.1.

We let also WR,W+ and W− denote the images respectively of VR, V+ and V− by eHωI
G . Notice that

T ∗X = VR ∪ V+ ∪ V− so that 3 = WR ∪ W+ ∪ W−. We are going to prove two ellipticity estimates,
Lemmas 26 and 28, that will be used in Section 6.4 below to prove that P̃h(ω) is Fredholm for a certain
range of ω’s and invertible for at least one of these ω’s.

Lemma 26. Let τ > 0 be small and fixed. There is κ > 0 (depending on τ ) such that the following holds.
For every compact subset K of {z ∈ C : Im z ≥ −κ}, there is a constant CK such that for ω ∈ K and α ∈3

such that ⟨|α|⟩ ≥ CK we have
Re p̃(α;ω)≥ C−1

K ⟨|α|⟩ if α ∈ WR,

Im p̃(α;ω)≤ −C−1
K ⟨|α|⟩ if α ∈ W+,

Im p̃(α;ω)≥ C−1
K ⟨|α|⟩ if α ∈ W−.

Proof. Let us write α = eHωI
G (x, ξ) for (x, ξ) ∈ T ∗X . We will distinguish the different cases that appear

in the definitions of VR, V+ and V−.

First case: (x, ξ) ∈ {x1 ≤ −2ϵ0/3}. In that case, we see that G0 is null on a neighborhood of (x, ξ) so
that α = (x, ξ). Moreover χ1(x1)= 1, so that q(x, ξ)= 1 + |ξ |2. Using that χ(x1)= 0 for x1 ≤ −ϵ0, we
find from (40) that the real part of p̃(x, ξ ;ω) is greater than

−C0ϵ0ξ
2
1 − C(1 + |ξ1|)+ |ξ |2. (42)

Here, C > 0 is some constant that depends continuously on ω (and does not depend on α). Thanks to our
assumption (37) on ϵ0, we see that (42) is larger than C−1

⟨|α|⟩
2 and hence that C−1

⟨|α|⟩ when α is large
enough.

Second case: (x, ξ) ∈ {x1 ≥ ϵ0/3}. Notice that HωI
G p̃(α; h) is O(⟨|α|⟩ log⟨|α|⟩), with symbolic estimates

(it follows from the fact that G has logarithmic order). Consequently, we have

p̃(α; h)= p̃(x, ξ ;ω)+O(⟨|α|⟩ log⟨|α|⟩)

= p(x, ξ + iψ ′(x1)dx1;ω)+O(⟨|α|⟩ log⟨|α|⟩)

= p2(x, ξ)+O(⟨|α|⟩ log⟨|α|⟩).

Thanks to our assumption (d) of ellipticity on p2 in Section 2.1, we see that this quantity is larger than
C−1

⟨|α|⟩
2 and hence that C−1

⟨|α|⟩ when α is large enough.

Third case: (x, ξ)∈{−5ϵ0/6 ≤ x1 ≤ 2ϵ0/3}∩{|ξ1| ≤ 2ϵ−1
1 (1 + |ξ ′

|)}. In that case, we notice that χ(x1)=

1 and that p̃(α;ω)= p̃(x, ξ ;ω)+O(⟨|α|⟩ log⟨|α|⟩) as above. Using (40), we find that

Re p̃(α;ω)≥ q1(x1, x ′, ξ ′)− C0ϵ0ξ
2
1 − C⟨|α|⟩ log⟨|α|⟩.
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Using that |ξ1| ≤ 2ϵ−1
1 (1 + |ξ ′

|) and our assumption (38) on ϵ0, we see that for α large enough, this real
part is larger than C−1

⟨|α|⟩
2 and hence that C−1

⟨|α|⟩.

Fourth case: (x, ξ) ∈ V+. Notice that we have

Im p̃(α;ω)= Im p̃(x, ξ ;ω)+ τHωI
G0

Im p̃(x, ξ ;ω)+O((log⟨|α|⟩)2). (43)

We want to estimate HωI
G0

Im p̃(x, ξ ;ω). First, notice that p̃( · ;ω)− p2 is a symbol of order 1 on a
neighborhood of the support of G0, so that

HωI
G0

Im p̃(x, ξ ;ω)= HωI
G0

Im p2(x, ξ)+O(log⟨|α|⟩)

= −HωI
Im p2

G0(x, ξ)+O(log⟨|α|⟩).

Notice that the symbol Im p2 vanishes on the real cotangent bundle T ∗X , which is a Lagrangian subman-
ifold for the symplectic form ωI . Consequently, the Hamiltonian vector field HωI

Im p2
is tangent to T ∗X

(this is why we only care about the value of G0 on T ∗X ). Recall that ωR denotes the real part of the
canonical symplectic form ω on (T ∗X)r . For u tangent to T ∗X , we have

ωR(u, HωI
Im p2

)= Im(iω(u, HωI
Im p2

))= Im(ω(iu, HωI
Im p2

))

= d(Im p2) · (iu)= d(Re p2) · u

= ωR(u, Hp2), (44)

where Hp2 is the Hamiltonian vector field of p2 for the (real) canonical symplectic form on the real
cotangent bundle T ∗X . We used the Cauchy–Riemann equation on the second line of (44). On the last
line, we used the fact that p2 is real-valued on T ∗X and that the pullback of ωR on T ∗X is the canonical
symplectic form on T ∗X . Since ωR is symplectic on T ∗X and the vector fields Hp2 and HωI

Im p2
are parallel

to T ∗X , we find that HωI
Im p2

coincides with Hp2 on T ∗X . It follows that

HωI
G0

Im p̃(x, ξ ;ω)= HG0 p2(x, ξ)+O(log⟨|α|⟩)

= −φ(x1)HG1 p2(x, ξ)+ 2w(x1)φ
′(x1)G1(x, ξ)ξ1 +O(log⟨|α|⟩)

≤ −C−1φ(x1)ξ1 + Cω log⟨|α|⟩

for some constant Cω > 0 that depends continuously on ω and some constant C that does not depend on ω.
Here, we used (36), which is valid thanks to the assumption (x, ξ)∈ V+, and the fact that w(x1)φ

′(x1)≤ 0.
Then, we plug this estimate into (43) to find that

Im p̃(α;ω)≤ 2w(x1)ψ
′(x1)ξ1 + Imωp1(x1, ξ1)− C−1τφ(x1)ξ1 + Cω(log⟨|α|⟩)2

≤ −C−1(−w(x1)ψ
′(x1)+ τφ(x1)+ Imω)ξ1 + Cω(log⟨|α|⟩)2,

where the constants C may change from one line to another but still does not depend on ω. We used here
that p1(x1, ξ1) is elliptic of order 1 with the same sign as −ξ1, that is, our (c) from Section 2.1. Notice
that w(x1)ψ

′(x1) has the same sign as x1ψ
′(x1), and consequently there is a constant κ > 0 such that

−w(x1)ψ
′(x1)+ τφ(x1) > κ for −5ϵ0/6< x1 < 2ϵ0/3. Hence, if Imω >−κ , we see that Im p̃(α;ω) is

less than −C−1
⟨|α|⟩ when α is large.

Fifth case: (x, ξ) ∈ V−. This is the same as the fourth case up to a few sign flips. □
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Remark 27. Let us point out how the five cases in the proof of Lemma 26 correspond to different places
in Figure 1. The first and the second cases correspond respectively to the green and the purple zone.
The last three cases correspond to the blue zone (to distinguish these cases one need to consider the
momentum variable which is not represented on Figure 1).

Lemma 28. Assume that ν is large enough. Assume that τ is small enough (depending on ν). Then there
is a constant C > 0 such that for every α ∈3 we have

Re p̃(α; iν)≥ C−1
⟨|α|⟩ if α ∈ WR,

Im p̃(α; iν)≤ −C−1
⟨|α|⟩ if α ∈ W+,

Im p̃(α; iν)≥ C−1
⟨|α|⟩ if α ∈ W−.

Proof. We write as above α = eHωI
G (x, ξ) for (x, ξ) ∈ T ∗X . We review the same five cases as in the proof

of Lemma 26, with the additional assumption that ω = iν with ν > 0 large.

First case: (x, ξ) ∈ {x1 ≤ −2ϵ0/3}. The symbol q(x, ξ) is still 1 + |ξ |2 in that case. Notice that we have
here p0(x) < −ϵ (see the beginning of Section 6.1). Looking at (40), we find that, for some constant
C > 0, the real part of p̃(x, ξ ; iν) is larger than

χ(x1)(−C0ϵ0ξ
2
1 + ϵν2

− C(1 + ν))+ (1 + |ξ |2)≥ −C0ϵ0ξ
2
1 + (1 + |ξ |2),

provided ν is large enough so that ϵν2
− C(1 + ν)≥ 0. Using our assumption (37), we see that the real

part of p̃(α; iν) is indeed larger than C−1
⟨|α|⟩.

Second case: (x, ξ) ∈ {x1 ≥ ϵ0/3}. Notice that p̃( · ; iν)= p̃2 + iν p̃1 − ν2 p̃0, where for j = 0, 1, 2, the
principal symbol p̃ j of P̃j is a symbol of order j that does not depend on ν. It follows that HωI

G p̃( · ; iν)
is O(τ (⟨|α|⟩ log⟨|α|⟩ + ν2 log⟨|α|⟩/⟨|α|⟩)), uniformly in ν and τ and with symbolic estimates.

Consequently, we have in this second case

Re p̃(α; iν)= Re p̃(x, ξ ; iν)+O
(
τ

(
⟨|α|⟩ log⟨|α|⟩ + ν2 log⟨|α|⟩

⟨|α|⟩

))
= Re p(x, ξ + iψ ′(x1)dx1; iν)+O(τν2

⟨|α|⟩ log⟨|α|⟩)

= p2(x, ξ)− ν2 p0(x)+O(ν+ τν2
⟨|α|⟩ log⟨|α|⟩),

uniformly in τ and ν. We start by taking ν large enough so that p2(x, ξ)− ν2 p0(x)+O(ν) is larger than
C−1

⟨|α|⟩
2 (which is possible by our ellipticity assumptions on p2 and p0). Then, by taking τ small enough,

we ensure that O(τν2
⟨|α|⟩ log⟨|α|⟩) is smaller than C−1

⟨|α|⟩
2, which gives the required estimate. Let us

point out here that how small τ needs to be depend on ν, but how large ν has to be does not depend on τ .

Third case: (x, ξ) ∈ {−5ϵ0/6 ≤ x1 ≤ 2ϵ0/3} ∩ {|ξ1| ≤ 2ϵ−1
1 (1 + |ξ ′

|)}. As in the previous case, we no-
tice that

p̃(α; iν)= p̃(x, ξ ; iν)+O(τν2
⟨|α|⟩ log⟨|α|⟩).
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Then, we use (40) to find that

Re p̃(x, ξ ; iν)≥ −C0ϵ0ξ
2
1 + q1(x1, x ′, ξ ′)+ ϵν2

− C(1 + ν),

for some C > 0 that does not depend on ν, nor τ . Using (38), we find that if ν is large enough we have

Re p̃(x, ξ ; iν)≥ C−1(1 + |ξ |2).

Consequently, we have

Re p̃(α; iν)≥ C−1(1 + |ξ |2)− Cτν2
⟨|α|⟩ log⟨|α|⟩,

where the constant C > 0 may have changed, but still does not depend on ν, nor τ . Taking τ small enough
(depending on ν), we get rid of the term −Cτν2

⟨|α|⟩ log⟨|α|⟩. Thus, we get the required estimate. As
above, it is crucial here that how small τ needs to be depend on ν, but how large ν has to be does not
depend on τ .

Fourth case: (x, ξ) ∈ V+. Writing p̃( · ; iν)= p̃2 + iν p̃1 − ν2 p̃0, we find that

Im p̃(α; iν)= Im p̃(x, ξ ; iν)+ τHωI
G0

Im p̃(x, ξ ; iν)+O(τ 2ν2(log⟨|α|⟩)2).

Then, we notice that on a neighborhood of the support of G0, the symbol p̃( · ; iν)− p2 is the sum of
a symbol of order 1, a symbol of order 1 multiplied by ν and a symbol of order 0 multiplied by ν2.
Consequently, we have

HωI
G0

Im p̃(x, ξ ; iν)= HωI
G0

Im p2(x, ξ)+O(ν2 log⟨|α|⟩).

Using (36) as in the proof of Lemma 26, we see that HωI
G0

Im p2(x, ξ) is nonpositive. We recall (40) and
the fact that w(x1)ψ

′(x1) is nonpositive, to find, for some C > 0 that does not depend on τ nor α, that

Im p̃(α; iν)≤ νp1(x1, ξ1)+ Cτν2(log⟨|α|⟩)2. (45)

Since (x, ξ) ∈ V+, we know that ξ1 is nonzero. Moreover, p1(x1, ξ1) is negative and elliptic. Thus, we
only need to take τ small enough to get rid of the last term in (45) and the required estimate follows.
Once again here, see that τ depends on ν, but ν does not depend on τ .

Fifth case: (x, ξ) ∈ V−. This is the same as the fourth case up to a few sign flips. □

6.4. Invertibility and Fredholm properties. With the estimates from Section 6.3, we are now ready to
study the functional analytic properties of P̃h(ω) acting on suitable spaces.

Let ν be large enough and τ be small enough so that Lemma 28 and Proposition 25 hold. Let then
κ be as in Lemma 26. Let δ ∈ ]0, κ[ and V be a relatively compact open subset of {z ∈ C : Im z >−κ}.
Without loss of generality, we may assume that V is connected and contains the compact set

{z ∈ C : |Re z| ≤ ν+ κ,−δ ≤ Im z ≤ 2ν+ κ}.

Let then CK be the constant from Lemma 26 applied with K = V . We shall always assume that h is
small enough so that Proposition 25 holds. Let k be any real number.
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Let a be a compactly supported smooth function from 3 to R+ such that

inf
ω∈K

inf
α∈3

⟨|α|⟩≤2CK

a(α)+ Re p̃(α;ω) > 0. (46)

We let then A be the operator
A := S3B3aB3T3, (47)

where we recall that S3 is a left inverse for T3, and B3 is the orthogonal projector on H0
3,FBI in L2

0(3)

(see page 3645). The operator A : C∞(X)→ D′(X) extends to a bounded operator from Hm
3 to Hℓ

3 for
every m, ℓ ∈ R, see for instance [Bonthonneau and Jézéquel 2020, Proposition 2.4 and Remark 2.20].

Let us define the domain of P̃h(ω) on Hk
3 as

Dk = {u ∈ Hk
3 : P̃h(0)u ∈ Hk−1

3 }.

We put a Hilbert space structure on Dk by endowing it with the norm

∥u∥
2
Dk

= ∥u∥
2
Hk
3

+ ∥P̃h(0)u∥
2
Hk−1
3

.

We will need the following approximation result.

Lemma 29. Let u ∈ Dk . Then P̃h(ω)u belongs to Hk−1
3 and there is a sequence (un)n∈N of elements of

H∞

3 such that (un)n∈N tends to u in Hk
3 and (P̃h(ω)un)n∈N converges to P̃h(ω)u in Hk−1

3 .

Proof. Start by noticing that

P̃h(ω)u = (P̃h(ω)− P̃h(0))u + P̃h(0)u.

Since P̃h(ω)− P̃h(0) is bounded from Hk
3 to Hk−1

3 , we see that P̃h(ω)u belongs to Hk−1
3 when u belongs

to Dk .
Let then Iϵ be the operator

Iϵ = S3B3sϵB3T3,

where sϵ is a symbol on 3 defined by sϵ(α)= θ(ϵ⟨|α|⟩), where θ is a compactly supported function in R,
identically equal to 1 near 0. It follows for instance from [loc. cit., Proposition 2.4 and Remark 2.20] that
if u ∈ Hk

3 then Iϵu ∈ H∞

3 . We see that for u ∈ Hk
3, we have

∥Iϵu − u∥Hk
3

= ∥53B3sϵT3u − T3u∥L2
k(3)

= ∥B3(sϵ − 1)T3u∥L2
k(3)

≤ C∥(sϵ − 1)T3u∥L2
k(3)

.

It follows that Iϵu converges to u in Hk
3 when ϵ tends to 0.

If u belongs to Dk , we see that

P̃h(ω)Iϵu = Iϵ P̃h(ω)u + [P̃h(ω), Iϵ]u.

From the analysis above, we have that Iϵ P̃h(ω)u converges to P̃h(ω)u in Hk−1
3 when ϵ tends to 0. Notice

that the symbol sϵ is uniformly bounded as a symbol of order 0 on 3. Hence, it follows from [loc. cit.,
Proposition 2.12], as in the proof of [loc. cit., Lemma 3.4], that the operator [P̃h(ω), Iϵ] is uniformly
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bounded from Hk
3 to Hk−1

3 when ϵ tends to 0. If u is in H∞

3 , the analysis above implies that [P̃h(ω), Iϵ]u
tends to 0 in Hk−1

3 . Thanks to the uniform boundedness of [P̃h(ω), Iϵ] when ϵ tends to 0, we see that the
same holds when u is only in Hk−1

3 . □

We first use Lemma 26 to find:

Lemma 30. There is C > 0 such that for h small enough and every ω ∈ V and u ∈ Dk we have

∥u∥Hk
3

≤ C∥(P̃h(ω)+ A)u∥Hk−1
3
.

Proof. Thanks to Lemma 29, we only need to prove this estimate for u ∈ H∞

3 . Let f+, f−, fR and fa be
symbols of order 0 on 3 such that f+ + f− + fR + fa = 1. Moreover, we assume that f+, f− and fR are
supported in the intersection of {⟨|α|⟩ ≥ CK } respectively with W+,W− and WR and that fa is supported
in {⟨|α|⟩ ≤ 2CK }.

For u ∈ H∞

3 and ω ∈ K , we have, from Proposition 25,

Re
(∫

3

fR(α)⟨|α|⟩
2k−1T3(P̃h(ω)+ A)uT3u e−

2H(α)
h dα

)
≥

∫
3

fR(α)⟨|α|⟩
2k−1 Re( p̃(α;ω)+ a(α))|T3u(α)|2 e−

2H(α)
h dα− Ch∥u∥

2
Hk
3

≥ C−1
∫
3

fR(α)⟨|α|⟩
2k

|T3u(α)|2 e−
2H(α)

h dα− Ch∥u∥
2
Hk
3

,

where we used Lemma 26 in the last line (since a takes positive values it does not harm the positivity of
the real part of p̃). From Cauchy–Schwarz inequality, we find that∫

3

fR(α)⟨|α|⟩
2k

|T3u(α)|2 e−
2H(α)

h dα ≤ C∥(P̃h(ω)+ A)u∥Hk−1
3

∥u∥Hk
3

+ Ch∥u∥
2
Hk
3

.

Replacing the real part by an imaginary part, and varying the sign, we get the same estimates with fR

replaced by f+ and f−. Using (46), we get the same estimates with fR replaced by fa . Summing these
four estimates, we find that

∥u∥
2
Hk
3

≤ C∥(P̃h(ω)+ A)u∥Hk−1
3

∥u∥Hk
3

+ Ch∥u∥
2
Hk
3

.

When h is small enough, we can get rid of the second term in the right-hand side. Dividing by ∥u∥Hk
3

the
result follows (the result is trivial when u = 0). □

The same proof using Lemma 28 instead of Lemma 26 gives:

Lemma 31. There is C > 0 such that for h small enough and every u ∈ Dk we have

∥u∥Hk
3

≤ C∥P̃h(iν)u∥Hk−1
3
.

Applying Proposition 18 as in the justification of Proposition 25, we find that, for every ω ∈ V , there
is a symbol σω of order 2 on 3 and an operator Z with negligible kernel on 3×3 such that

B3T3 P̃h(ω)S3B3 = B3σωB3 + Z = B3σωB3 + B3Z B3.
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Let us identify the dual of Hk
3 with H−k

3 as in [Bonthonneau and Jézéquel 2020, Lemma 2.24], that is
using the pairing

⟨u, v⟩3 :=

∫
3

T3uT3ve−
2H
h dα. (48)

Notice that it is a priori not the L2 pairing (recall that the L2 pairing identifies the dual of Hk
3 with H−k

3
,

see Section 5.2). Under this identification, the formal adjoint of P̃h(ω) may be defined as

P̃h(ω)
∗
= S3(B3σωB3 + B3Z∗B3)T3

By this, we just mean that if u, v ∈ H∞

3 then

⟨P̃h(ω)u, v⟩3 = ⟨u, P̃h(ω)
∗v⟩3.

Notice that we do not claim that P̃h(ω)
∗ is the adjoint of P̃h(ω) for a Hilbert space structure. We define

the domain of P̃h(ω)
∗ as

D∗

−k = {u ∈ H−k+1
3 : P̃h(0)∗u ∈ H−k

3 }.

Notice that we have σω(α)= p̃(α;ω)+O(h⟨|α|⟩). Hence, the operator P̃h(ω)
∗ satisfies Proposition 25

with p̃ replaced by ¯̃p. In order to introduce the symbol f , one may use [loc. cit., Proposition 2.12].
Consequently, we can use Lemmas 26 and 28, as in the proofs of Lemmas 30 and 31, to get:

Lemma 32. There is C > 0 such that for h small enough and every ω ∈ V and u ∈ D∗

−k we have

∥u∥H−k+1
3

≤ C∥(P̃h(ω)+ A)∗u∥H−k
3
.

In this statement, (P̃h(ω)+ A)∗ = P̃h(ω)
∗
+ A is the formal adjoint of P̃h(ω)+ A for the pairing (48).

Lemma 33. There is C > 0 such that for h small enough and every u ∈ D∗

−k we have

∥u∥H−k+1
3

≤ C∥P̃h(iν)∗u∥H−k
3
.

Remark 34. Here, we used (48) rather than the L2 pairing to describe the dual of Hk
3 because this

identification makes A self-adjoint, so that we can reuse directly the estimates from Lemmas 26 and 28.
We expect however that the L2 pairing studied in Section 5.2 would allow to get similar estimates that we
could also use in the proofs below.

From Lemmas 30, 31, 32 and 33, we deduce:

Proposition 35. There is C > 0 such that for h small enough and ω ∈ V the operators P̃h(ω)+ A and
P̃h(iν) are invertible as operators from Dk to Hk−1

3 . Moreover, the operator norms of their inverses is
bounded by C.

Proof. From Lemma 30, we find that P̃h(ω)+ A is injective on Dk and that its image is closed in Hk−1
3 .

Let us consider and element v ∈ H−k+1
3 such that ⟨u, v⟩3 = 0 for every u ∈ Hk−1

3 in the image of
P̃h(ω)+ A. In particular, if u ∈ H∞

3 , we have ⟨(P̃h(ω)+ A)u, v⟩ = 0. Notice that H∞

3 is dense in H−k+1
3

(for instance because it contains all real-analytic functions due to Proposition 20, and they form a dense
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subset of H−k+1
3 according to [Bonthonneau and Jézéquel 2020, Corollary 2.3], one can also work as in

Lemma 29). Consequently, we have

⟨(P̃h(ω)+ A)u, v⟩3 = ⟨u, (P̃h(ω)+ A)∗v⟩3

for every u ∈ H∞

3 , since this equality holds when v ∈ H∞

3 . Hence, we have ⟨u, (P̃h(ω)+ A)∗v⟩ = 0 for
every u ∈ H∞

3 , and thus (P̃h(ω)+ A)∗v = 0. It follows from Lemma 32 that v = 0.
We just proved that the image of P̃h(ω)+ A is dense in Hk−1

3 , and thus P̃h(ω)+ A is invertible. The
estimate on the operator norm of the inverse immediately follows from Lemma 30.

The argument to invert P̃h(iν) is the same using Lemmas 31 and 33 instead of Lemmas 30 and 32. □

The analytic Fredholm theory then implies that:

Proposition 36. Assume that h is small enough. For every ω ∈ V , the operator P̃h(ω) : Dk → Hk−1
3 is

Fredholm of index 0. Moreover, the operator P̃h(ω) : Dk →Hk−1
3 has a meromorphic inverse ω 7→ P̃h(ω)

−1

with poles of finite rank on V .

Proof. From [loc. cit., Proposition 21.3] or Lemma 38 below, we find that A is a compact operator
from Dk to Hk−1

3 . Hence, it follows from Proposition 35 that P̃h(ω) : Dk → Hk−1
3 is Fredholm for ω ∈ V .

Since P̃h(ω)− P̃h(0) is a holomorphic family of bounded operators from Hk
3 to Hk−1

3 , we see that
P̃h(ω) is a holomorphic family of operators from Dk to Hk−1

3 , for ω in V . Since this operator is invertible
for ω = iν and V is connected, we find that the index of P̃h(ω) is 0. Finally, the analytic Fredholm
theorem [Dyatlov and Zworski 2019, Theorem C.8] implies the existence of the meromorphic inverse
ω 7→ P̃h(ω)

−1, with poles of finite rank. □

6.5. Counting resonances. We will now use the functional analytic framework from Section 6.4 to
prove the point (vi) in Proposition 5. The bounds on the number of resonances from Theorems 2 and 3
ultimately come from the following lemma.

Lemma 37. Recall that δ ∈ ]0, κ[. There is C > 0 such that, for every h small enough, the number of
ω’s in the disk of center 0 and radius δ such that P̃h(ω) : Dk → Hk−1

3 is not invertible (counted with null
multiplicity) is less than Ch−n .

Before being able to prove Lemma 37, we need to establish a bound on the trace class operator norm
of A, which is defined by (47).

Lemma 38. The operator A : Dk → Hk−1
3 is trace class, with trace class norm O(h−n).

Proof. We only need to prove that the operator Ã = B3aB3 is trace class from L2
k(3) to L2

k−1(3), with
trace class norm O(h−n).

For every N > 0, introduce the operator □N := B3⟨|α|⟩
N B3. Using [Bonthonneau and Jézéquel 2020,

Proposition 2.12] to make a parametrix construction, we see that there is a symbol σN of order −N
on 3 such that □N B3σN B3− B3 and B3σN B3□N − B3 are negligible operators, in particular they are
O(h∞) as operators from L2

s1
(3)→ L2

s2
(3) for any s1, s2 ∈ R. Hence, for h small enough, we get an

inverse □−1
N : H0

3,FBI → HN
3,FBI for □N , which is bounded uniformly in h and satisfies the equation

□−1
N B3 = B3σN B3 + B3σN B3(B3 −□N B3σN B3)+ (B3 − B3σN B3□N )□

−1
N (B3 −□N B3σN B3).
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Thus, we see that □−1
N B3 is equal to B3σN B3 up to a negligible operator. Let us recall that Hk

3,FBI is
the image of Hk

3 by T3 (which is also the image of L2
k(3) by B3).

Fix N > n. Notice that Ã is bounded, uniformly in h, as an operator from L2
k(3) to L2

k+N (3) (since B3
is bounded on L2

k(3) and on L2
k+N (3)). We can then write

Ã = ι□−1
k □−1

N B3□N□k Ã. (49)

On the left-hand side, Ã is seen as an operator from L2
k(3) to L2

k−1(3). On the right-hand side, Ã sends
L2

k(3) into Hk+N
3,FBI, the operator □k sends Hk+N

3,FBI into HN
3,FBI, the operator □N sends HN

3,FBI into H0
3,FBI,

the operator □−1
N B3 sends H0

3,FBI into H0
3,FBI, the operator □−1

k sends H0
3,FBI into Hk

3,FBI and ι is the
inclusion of Hk

3,FBI into L2
k−1(3). With these mapping properties, the operators Ã,□k,□N ,□

−1
k and

ι on the right-hand side of (49) are bounded uniformly in h. From [Bonthonneau and Jézéquel 2020,
Lemma 2.25], we see that □−1

N B3 is trace class on L2
0(3) (since B3σN B3 is). Moreover, its trace is

given by the integral of its kernel on the diagonal, which is O(h−n). Indeed, □−1
N B3 is a “complex FIO

associated to 13 of order −N” in the sense of [loc. cit., Definition 2.5] as a consequence of [loc. cit.,
Lemmas 2.16 and 2.23]. Since H0

3,FBI is a closed subset of L2
0(3), we see that □−1

N B3 is also a trace
class operator from H0

3,FBI to itself, with the same trace. Moreover, □−1
N B3 is a positive self adjoint

operator on H0
3,FBI with h small enough (because ⟨|α|⟩

N is positive), so that its trace class norm coincides
with its trace. This ends the proof of the lemma. □

Proof of Lemma 37. For ω ∈ V , let us introduce the spectral determinant

fh(ω)= det(I − (P̃h(ω)+ A)−1 A).

Since P̃h(ω) − P̃h(0) is a holomorphic family of bounded operators from Hk
3 to Hk−1

3 , we see that
P̃h(ω)+ A is a holomorphic family of operators from Dk to Hk−1

3 . From Proposition 35, the operators
(P̃h(ω)+ A)−1

: Hk−1
3 → Dk are bounded uniformly in ω ∈ V , and thus it is a holomorphic family of

operators in V . Consequently, the spectral determinant fh(ω) is holomorphic in V .
The logarithmic derivative of fh is given by

f ′

h(ω)

fh(ω)
= tr

(
(I − (P̃h(ω)+ A)−1 A)−1(P̃h(ω)+ A)−1∂ω P̃h(ω)(P̃h(ω)+ A)−1 A

)
= tr

(
(P̃h(ω)+ A)−1 A(I − (P̃h(ω)+ A)−1 A)−1(P̃h(ω)+ A)−1∂ω P̃h(ω)

)
.

Let us then write

(P̃h(ω)+ A)−1 A(I − (P̃h(ω)+ A)−1 A)−1(P̃h(ω)+ A)−1∂ω P̃h(ω)

= ((I − (P̃h(ω)+ A)−1 A)−1
− I )(P̃h(ω)+ A)−1∂ω P̃h(ω)

= P̃h(ω)
−1∂ω P̃h(ω)− (P̃h(ω)+ A)−1∂ω P̃h(ω) (50)

Hence, if ω0 is in V , the residue of the family of operators (50) at ω0 is the same as the residue of the
family of operators ω 7→ P̃h(ω)

−1∂ω P̃h(ω). Consequently, the order of annulation of fh at ω0 coincides
with the null multiplicity of ω 7→ P̃h(ω) at ω0.
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Since V is open, there is η > 0 such that the closed disk of center iν and radius ν+ δ+2η is contained
in V . Since the poles of P̃h(ω)

−1 are isolated, we may choose 0 ≤ η′
≤ η such that there is no poles of

P̃h(ω)
−1 on the circle of center iν and radius ν+ δ+ η+ η′. For r ≥ 0, let nh(r) denote the number of

zeros of fh in the disk of center iν and radius r . Notice that

nh(ν+ δ)≤
ν+ δ+ η

η

∫ ν+δ+η

ν+δ

nh(r)
r

dr ≤
ν+ δ+ η

η

∫ ν+δ+η+η′

0

nh(r)
r

dr. (51)

From Jensen’s formula, we know that∫ ν+δ+η+η′

0

nh(r)
r

dr ≤ − log | fh(iν)| + sup
|ω−iν|=ν+δ+η+η′

log | fh(ω)|. (52)

From Proposition 35 and Lemma 38, we know that the trace class norm of the operator (P̃h(ω)+ A)−1 A
is O(h−n) uniformly in h and in ω on the circle of center iν and radius ν + δ + η + η′. Then, from
[Gohberg et al. 2000, Theorem IV.5.2], we find that

sup
|ω−iν|=ν+δ+η+η′

log | fh(ω)| ≤ Ch−n, (53)

for some C > 0 and h small enough. In order to estimate | fh(iν)| from below, let us write

(I − (P̃h(iν)+ A)−1 A)−1
= I + P̃h(iν)−1 A.

From Proposition 35 and Lemma 38, we see that the trace class operator norm of (I −(P̃h(iν)+A)−1)−1
−I

is O(h−n). Since
fh(iν)−1

= det((I − (P̃h(iν)+ A)−1)−1),

we find using [Gohberg et al. 2000, Theorem IV.5.2] again that

− log | fh(iν)| ≤ Ch−n (54)

for some C > 0 and h small enough. From (51), (52), (53) and (54), we find that nh(ν+δ) is O(h−n). The
result follows since the disk of center 0 and radius δ is contained in the disk of center iν and radius ν+δ. □

6.6. Summary. Let us put together the definitions from Sections 6.1 and 6.2 and the results from
Sections 6.4 and 6.5 to check that Proposition 5 holds.

Proof of Proposition 5. We just need to collect facts that we already proved. We recall that the mod-
ification Ph(ω) of Ph(ω) is given by (39). Recalling (41), we let H1 = {u ∈ D′(X) : eψ/hu ∈ Dk} =

{u ∈ Fk : Ph(0)u ∈ Fk−1} and H2 = Fk−1 (for any value of k ∈ R).
The inclusions C∞(X) ⊆ H j ⊆ D′(X) for j = 1, 2 are given by Proposition 21. The fact that the

elements of H j are continuous near ∂Y follows from Proposition 24.
All the properties needed for Ph(ω) :H1 →H2 follow from the same properties for P̃h(ω) : Dk →Hk−1

3 .
The holomorphic dependence on ω follows from the remark after Proposition 25. The invertibility for
ω = iν with a ν > 0 is given by Proposition 35. Point (v) follows from Proposition 36.

Finally, the counting bound (vi) is given by Lemma 37. □
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