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SEMICLASSICAL PROPAGATION THROUGH CONE POINTS

PETER HINTZ

We introduce a general framework for the study of the diffraction of waves by cone points at high frequen-
cies. We prove that semiclassical regularity propagates through cone points with an almost sharp loss even
when the underlying operator has leading-order terms at the conic singularity which fail to be symmetric.
We moreover show improved regularity along strictly diffractive geodesics. Applications include high-
energy resolvent estimates for complex- or matrix-valued inverse square potentials and for the Dirac–
Coulomb equation. We also prove a sharp propagation estimate for the semiclassical conic Laplacian.

The proofs use the semiclassical cone calculus, introduced recently by the author, and combine radial
point estimates with estimates for a scattering problem on an exact cone. A second microlocal refinement
of the calculus captures semiclassical conormal regularity at the cone point and thus facilitates a unified
treatment of semiclassical cone and b-regularity.

1. Introduction

We present a systematic analysis of the propagation of semiclassical regularity through points which are
geometrically singular (cone points), analytically singular (e.g., including inverse square potentials), or
both. The novel aspect of our approach is that it handles leading-order singular terms with ease, regardless
of symmetry or sign conditions.

As a simple application of our main microlocal propagation result, we consider high-energy scattering
by complex-valued potentials on Rn with an inverse square singularity. Denote by H 2

0 (R
n
\ {0}) the

closure of C∞
c (R

n
\{0}) in the topology of H 2(Rn); denote further by1=

∑n
j=1 D2

x j (where D = (1/ i)∂)
the nonnegative Laplacian, and denote polar coordinates on Rn by (r, ω) ∈ (0,∞)× Sn−1.

Theorem 1.1 (high-energy estimates for potential scattering). Let V (x) = V0(x)/|x |
2, where V0 =

V0(r, ω) ∈ C∞
c ([0,∞)r × Sn−1

; C) and V0(0, ω) ≡ Z ∈ C. (Thus V (x) = Z/|x |
2
+ O(|x |

−1) near the
origin.) Suppose that n ≥ 5 and Re

√
((n − 2)/2)2 +Z> 1. Then there exists λ0 > 0 so that for all λ ∈ C

with Re λ > λ0 and 0< Im λ < 1, the operator

1+ V − λ : H 2
0 (R

n
\ {0})→ L2(Rn) (1-1)

is invertible, and its inverse obeys the operator norm bound

∥χ(1+ V − λ)−1χ∥L2→L2 ≤ Cχ,ϵ |λ|−
1
2 +ϵ (1-2)
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for all χ ∈ C∞
c (X) and ϵ > 0. More generally, 1+ V − λ : D → L2(Rn) is invertible for n ≥ 2 and

Z ∈ C \ (−∞,−((n − 2)/2)2] for a suitable domain D (see (5-29) with l = 1), and the estimate (1-2)
holds in this generality as well.

The point is that we can allow for Z to be nonreal, in which case 1+ V is not a symmetric operator
on C∞

c (R
n
\ {0}). (The compact support assumption on V is made only to focus the attention of the

reader on a neighborhood of the singularity at x = 0. The result holds also for V with sufficient decay at
infinity, such as |∂αx V | ≲ ⟨x⟩

−1−δ for all α where δ > 0.) For a general result for matrix-valued inverse
square potentials without symmetry conditions, see Theorem 5.7; Lemma 5.10 verifies the assumptions
of Theorem 5.7 for the case considered in Theorem 1.1. Typical applications of high-energy resolvent
estimates include decay and local smoothing estimates for solutions to wave and Schrödinger equations;
since such applications are orthogonal to the focus of the present paper, we shall not discuss them here.

Burq and Planchon, Stalker, and Tahvildar-Zadeh [Planchon et al. 2003; Burq et al. 2003] proved
Strichartz estimates for exact inverse square potentials in the case of real Z>−((n − 2)/2)2. Duyckaerts
[2006] obtained, by means of estimates for semiclassical defect measures, high-energy resolvent estimates
(without the ϵ-loss) in the more general setting of inverse square potentials at a finite collection of
points pj in Rn, at each of which the coefficient Zj satisfies Zj >−((n − 2)/2)2. We also mention the
work [Baskin and Wunsch 2013] on lossless resolvent estimates in a geometric setting, namely in the
presence of finitely many conic singularities, and the work by [Hillairet and Wunsch 2020] on resonances
in this setting (see also [Galkowski 2017]).

Remark 1.2 (more natural settings). The setting of Theorem 1.1 is chosen here for its simplicity. More
natural examples in which leading-order terms without signs or symmetry properties are present arise
in particular in the study of PDEs on vector bundles. As an example, motivated by the recent work
[Baskin and Wunsch 2023], we prove high-energy resolvent estimates for the Dirac–Coulomb equation
in Section 5C; see Theorem 5.14.

The heart of the proof of Theorem 1.1 is the propagation of semiclassical regularity through r =0,1 which
we prove in this paper for a general class of admissible operators; see Definition 4.1 and Theorem 4.10.
Thus, in addition to inverse square singularities (which may be anisotropic), we allow for the underlying
metric g to have a conic singularity at r = 0, so g = dr2

+ r2k(r, y, dr, dy) for some smooth r -dependent
tensor k, with k|r=0 a Riemannian metric on a closed manifold Y. We moreover allow for further first-order
differential operators of the schematic form r−1 Dr , r−2 Dy to be present. All these singular terms are
allowed to be of the same strength at r = 0: they are, to leading order at r = 0, homogeneous of degree −2
with respect to dilations.

In order to explain the main features of Theorem 1.1, note that the degree −2 homogeneity of the
Laplacian and of the potential r−2 is reflected also in the Hardy inequality, which demonstrates that any
factor of r−1 should be regarded as a derivative as far as analysis near the cone point r = 0 is concerned.
Therefore, when Z in Theorem 1.1 is nonreal, the operator 1+ V −λ is, even to leading order at the cone

1In particular, the choice of the large end of the space, here Rn, is only made for convenience and allows for simple control of
the global structure of the geodesic flow. Thus, we do not discuss the large literature on limiting absorption principles here.
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point, not symmetric. Therefore, techniques rooted in the spectral theory of self-adjoint operators do not
apply. Furthermore, recall that even for solutions of smooth-coefficient PDEs Pu = f where the principal
symbol of P is complex-valued, microlocal regularity of u propagates along the null-bicharacteristics of
Re P only under a sign condition on Im P near the boundary of the support of Im P [Vasy 2018, §4.5];
on a technical level, the term Im P contributes the leading term in a positive commutator argument for
proving the propagation of regularity along null-bicharacteristics of Re P. The absence of sign conditions
on Im V in Theorem 1.1 is thus a significant obstacle for the applicability of existing methods.

In general geometric or analytic settings where one cannot separate variables, propagation estimates
through cone points and other types of singularities have so far largely been restricted to self-adjoint
settings. Melrose and Wunsch [2004] studied the diffraction of waves by conic singularities by combining
microlocal propagation estimates in the edge calculus developed by Mazzeo [1991] with the inversion of
a suitable model operator on an exact cone. This point of view is closely related to that adopted in the
present paper, see Remark 1.4, though by contrast to the present work, [Melrose and Wunsch 2004] takes
full advantage of the self-adjointness of the underlying Laplace operator.

Later works on wave propagation in singular geometries have been based on positive commutator
arguments relative to a quadratic form domain (thus still in self-adjoint settings), following the blueprint
of [Vasy 2008] on the propagation of singularities on smooth manifolds with corners (see [Lebeau 1997]
for the analytic setting). Vasy’s work was extended to the setting of manifolds with edge singularities by
Melrose, Vasy and Wunsch [Melrose et al. 2008], and the same authors established improved regularity of
the strictly diffracted front on manifolds with corners [Melrose et al. 2013]. See [Qian 2009] for the case
of inverse square potentials. We remark that in these works, the underlying geometry near the singularity
is not reflected in the type of singularities which propagate or diffract—for instance, in the case of [Vasy
2008], the geometry is that of a manifold with corners equipped with a smooth (incomplete!) Riemannian
metric, but the correct notion of regularity is conormality at the boundary; thus, these works introduce
mixed differential-pseudodifferential calculi which are compatible with both structures.

Baskin and Marzuola [2022] combined the techniques of [Vasy 2008] with those developed in [Baskin
et al. 2015] to study the long-time behavior of waves on manifolds with conic singularities. An important
ingredient in their work is a high-energy estimate for propagation through the conic singularity. In the
present paper we give an alternative proof which in particular avoids the use of a mixed calculus; see
also Remark 1.5. We also mention that Gannot and Wunsch [2023] analyzed the diffraction by conormal
potentials in the semiclassical setting using direct commutator methods involving paired Lagrangian
distributions, inspired by [de Hoop et al. 2015].

The recent work [Baskin and Wunsch 2023] on diffraction for the Dirac–Coulomb equation is also
rooted in [Melrose and Wunsch 2004; Melrose et al. 2008]. While the (first-order) Dirac–Coulomb
operator is self-adjoint for the range of Coulomb charges considered in [Baskin and Wunsch 2023], the
wave-type operator obtained by taking an appropriate square has nonsymmetric leading-order terms at
the central singularity; thus, the authors work directly with the first-order operator in their proofs of
propagation results. We are able to give a direct proof of high-energy estimates for the resolvent associated
with the wave-type operator arising in [Baskin and Wunsch 2023]; see Section 5C.
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In the high-energy regime under study in the present paper, the strategy for overcoming the issues caused
by the absence of symmetry or self-adjointness properties is the following. We distill the contribution of V
to the high-frequency propagation of regularity (i.e., in Theorem 1.1, the inverse powers of |λ| appearing
in uniform estimates of L2 norms) into a model problem right at the cone point, thus decoupling it from the
real-principal-type propagation away from the cone point (where V plays no role due to its subprincipal
nature). More precisely, in the setting of Theorem 1.1, set h := |λ|−1/2 and z = h2λ = 1 +O(h), and
define the semiclassical rescaling

Ph,z = h2(1+ V −λ)= h21− z +
h2

|x |2
V0 = (h Dr )

2
− i(n −1)

h
r

h Dr +h2r−21Sn−1 − z +
h2

r2 V0. (1-3)

Recall here that V0 ∈ C∞
c ([0,∞)r ×Sn−1

; C) is equal to a constant Z ∈ C at r = 0. The operator Ph,z is a
semiclassical differential operator in r > 0. Its uniform analysis as h → 0, as far as the novel bit near
r = 0 is concerned, is based on two ingredients, discussed in more detail in Section 1A:

(1) Symbolic propagation estimates: real-principal-type propagation in r > 0 in the spirit of [Duistermaat
and Hörmander 1972], and radial point estimates down to r = 0 in the spirit of [Melrose 1994; Vasy
2013] but taking place in the semiclassical cone algebra introduced by the author in [Hintz 2022]. The
advantage of this algebra in the present setting is that Ph,z has a smooth and nondegenerate principal
symbol in this algebra down to r = 0; in this algebra, the proofs of the relevant symbolic estimates are
then essentially standard.

(2) Inversion of a model problem: Passing to the rescaled variable r̂ = r/h and letting h → 0 for fixed r̂
in the resulting expression of Ph,z gives

N (P)= D2
r̂ − i(n − 1)r̂−1 Dr̂ + r̂−21Sn−1 − 1 +

Z

r̂2 . (1-4)

The inversion of N (P) is a scattering problem on an exact cone at unit frequency and requires the existence
of the limiting (outgoing) resolvent. Its analysis is based on b-analysis near the small end of the cone
[Melrose 1993] and on the microlocal approach to scattering theory on spaces with conic infinite ends
pioneered in [Melrose 1994].

The ϵ-loss in the estimate (1-2) is then due to the analogous loss in the limiting absorption principle
for the scattering problem, as one needs to exclude incoming but allow outgoing spherical waves; see
Remark 5.3. (We shall in fact deduce the lossy estimates stated in Theorem 1.1 from sharp results — as far
as the relationship of domain and codomain of Ph,z is concerned — on spaces with variable semiclassical
orders.) For general admissible operators, the decay rates of incoming and outgoing solutions of the
model problem are typically different, and the semiclassical loss upon propagation through the cone
point is equal to their difference (up to an additional ϵ-loss); we give explicit examples in which this
loss indeed occurs in Appendix A, demonstrating that our analysis is sharp up to an ϵ-loss. It seems
impossible to avoid this ϵ-loss if one proves the propagation estimates in the above step-by-step manner:
the microlocal radial point estimates force inequalities on the semiclassical orders (see, however, [Wang
2020] in a Besov space setting), and also on the incoming and outgoing decay orders of the function
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spaces on which the model problem is invertible. Thus, avoiding this ϵ-loss requires the development
of propagation arguments which provide control near r = 0 in one fell swoop. We demonstrate this for
operators Ph,z = h21g − z, z = 1 +O(h), on (nonexact) conic manifolds, for which we are able to obtain
a lossless propagation estimate by means of a positive commutator argument which is global on the level
of the normal operator N (P), i.e., which involves the construction of a commutator which is positive as
an operator on an exact cone, in the spirit of Mourre’s construction [1980/81] and Vasy’s approach [2000;
2001] to many-body scattering; see Theorem 5.4, in particular the estimate (5-6). It is not clear at present
however how to generalize such an argument to more general (in particular nonsymmetric) settings.

The close connection between diffraction by conic singularities and scattering on large ends of cones
was recently studied for exact (or “product”) cones (i.e., the metric is g = dr2

+ r2k(y, dy)) by Yang
[2022], resulting in a partial improvement of the classical analysis by Cheeger and Taylor [1982a; 1982b]
which was based on separation of variables and Bessel function analysis. Recently, Chen Xi [2022]
constructed a detailed parametrix for high-frequency diffraction by (nonexact) conic singularities, i.e., for
the operator (h21g − (1 ± i0))−1, with applications to short-time Strichartz estimates for the Schrödinger
equation; an important ingredient in his work is the precise resolvent construction by Guillarmou, Hassell
and Sikora [Guillarmou et al. 2013], applied on an exact cone which arises similarly to (1-4). (The
history of the study of propagation and diffraction phenomena for solutions of wave-type equations on
manifolds with singularities is long, starting with Sommerfeld’s example [1896] and early developments
by Friedlander [1958] and Keller [1985]. The use of geometric and microlocal techniques for the analysis
of singularities goes back to [Melrose and Sjöstrand 1978; 1982] on manifolds with boundary using
commutator techniques, and [Melrose 1975; Taylor 1976; Melrose and Taylor 2018] using parametrix
constructions.) We also mention the recent work by Keeler and Marzuola [2022] who use estimates for
the resolvent on exact cones perturbed by a radial (but not homogeneous) potential in order to obtain
dispersive estimates for the Schrödinger equation.

Finally, we prove a diffractive improvement which gives finer control on the strength of singularities as
they propagate through the cone point. Combining our framework with the arguments in [Melrose and Wun-
sch 2004; Melrose et al. 2008] for the propagation of coisotropic regularity, we show that, under a nonfocus-
ing condition, the strongest singularities propagating towards the cone point only continue along geometric
geodesics (limits of geodesics barely missing the cone point), whereas away from those, the diffracted
front is smoother; see Section 4F. We do not address here the interesting question of whether one can prove
estimates in the presence of multiple scatterers using such diffractive improvements, as done in [Baskin
and Wunsch 2013]; in particular, we do not recover Duyckaerts’ results [2006] here. See Remark 5.11.

Regarding applications of our high-frequency estimates, we content ourselves with a few conjectural
remarks. First, in the context of [Baskin et al. 2015; 2018; Baskin and Marzuola 2022] and Remark 5.12,
it should be possible to use our results to justify contour-shifting arguments for obtaining asymptotic
expansions (including radiation fields) of solutions to wave-type equations on static conic manifolds with
rather general inverse square potentials in the forward cone. Due to the relationship between edge Sobolev
spaces and semiclassical cone Sobolev spaces discussed in Remark 3.4, it is likely not necessary to prove
b-regularity at the spatial cone point r = 0 (unlike in [Baskin and Marzuola 2022, §8.2.2–8.2.3]); instead,
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Figure 1. The semiclassical cone single space Xch̄ .

edge propagation results at r = 0 (with uniformity as t → ∞ encoded by b-spaces), which directly apply
also to nonsymmetric operators, likely suffice. One does need to show, however, the existence of global
forward solutions by means distinct from energy methods since spectral methods are no longer available
for defining domains of the spatial operator.2 Second, it is not immediately clear how to generalize
local smoothing estimates for Schrödinger equations (e.g., as in [Duyckaerts 2006, Corollaire (2)]) if
the underlying Hamiltonian is not self-adjoint; it is an interesting question however whether, say in the
context of Theorem 1.1, some version of local smoothing (with an ϵ-loss) holds for the evolution defined
in terms of the inverse Fourier transform of the resolvent (1+ V − λ+ i0)−1, λ ∈ R, assuming it exists.
(Estimates in the elliptic regime λ≪ −1 are discussed in [Hintz 2022].) A similar remark applies to
Strichartz estimates.

1A. Sketch of the proof. Consider again the operator Ph,z from (1-3); we work locally near r = 0, thus
on X = [0, 1)r ×Sn−1. In order to achieve a clean separation of the regimes h → 0, r > 0 (corresponding
to semiclassical analysis away from the cone point) and h ∼ r → 0 (where the normal operator N (P)
in (1-4) enters and semiclassical tools cease to be applicable), we work on a resolution of the total space
[0, 1)h × X obtained by a real blow-up of h = r = 0,3

Xch̄ :=
[
[0, 1)h × X; {0} × ∂X

]
.

See Figure 1. We wish to regard h/(h + r) as the “true” semiclassical parameter; we proceed to make
this more precise.

Note first that for h = 1, the rescaling r2 P1,z is a Fuchs-type operator, or b-differential operator in the
terminology of [Melrose 1993], namely a differential operator built out of the vector fields r∂r and ∂y

(which span the space of b-vector fields), where y ∈ Rn−1 denotes local coordinates on ∂X . In this sense,
the rescaled operator r2 P1,z has elliptic principal part given by (r Dr )

2
+ ki j Dyi Dy j , where ki j is the

inverse metric on Sn−1. As h tends to 0, the operator r2 Ph,z is built out of the semiclassical vector fields
hr∂r and h∂y (which span the space of semiclassical b-vector fields). In this semiclassical sense (i.e.,

2A closely related setting in which many of these points are addressed, with the exception of the analysis at a spatial inverse
square singularity, is described in [Hintz 2023]; see in particular §5.3 of that work.

3Recall here that the real blow-up gives an invariant way of introducing polar coordinates around {0} × ∂X . Thus, a
neighborhood of h = r = 0 in Xch̄ is diffeomorphic to [0, 1)ρ ×

[
0, π2

]
θ × ∂X and equipped with a smooth map (the blow-down

map) to [0, 1)× X = [0, 1)× ([0, 1)×Sn−1) given by (ρ, θ, y) 7→ (ρ sin θ, (ρ cos θ, y)), which is a diffeomorphism away from
the front face ρ−1(0). In practice, it is more convenient to work with the smooth functions h+r , h/(h+r) on Xch̄ instead of ρ, θ .
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ignoring terms with extra powers of h), its principal part is

r2 Ph,z ∼ (hr Dr )
2
+ ki j h Dyi h Dy j − r2z.

The characteristic set, i.e., the zero set of its principal symbol ξ 2
bh̄ + |ηbh̄|

2
− r2, becomes singular at

r = 0, which is indicative of the inadequacy of the semiclassical b-setting to capture the behavior of Ph,z

microlocally near h = r = 0 (cf. the above discussion regarding the tension between the geometry and the
notion of regularity in [Melrose and Wunsch 2004; Vasy 2008] and subsequent works). The way out is to
divide by (h + r)2 and thus consider(

r
h + r

)2

Ph,z =: ph,z

(
r, y,

h
h + r

r Dr ,
h

h + r
Dy

)
as a differential operator built out of (h/(h + r)) r∂r and h/((h + r)) ∂yi , which are the prototypical
semiclassical cone vector fields introduced in [Hintz 2022]; see Section 3A. In this sense, the principal
part of (r/(h + r))2 Ph,z (i.e., ignoring terms of size O(h/(h + r))) is(

r
h + r

)2

Ph,z ∼

(
h

h + r
r Dr

)2

+ ki j
(

h
h + r

Dyi

)(
h

h + r
Dy j

)
−

(
r

h + r

)2

z. (1-5)

Put differently, we may note that Ph,z ∼ (h Dr )
2
+ki j (hr−1 Dyi )(hr−1 Dy j )−z is homogeneous of degree 0

with respect to scaling in (h, r), and approximately homogeneous of degree −2 with respect to scaling
in r ; this suggests expressing Ph,z in terms of r/(h + r)= 1 − h/(h + r), leading again to (1-5).

Note that in the regime h/(h + r) ≪ 1, where we are aiming to use semiclassical methods, the
operator (1-5) is now nondegenerate in the sense that its principal symbol

p0,1(r, y, ξ, η)= ξ 2
+ |η|2 − 1

(recall z = 1 +O(h)) has a smooth zero set on which p0,1 vanishes simply. (The microlocal analysis of
semiclassical cone operators in the semiclassical regime is thus concerned with tracking amplitudes of
oscillations

r
i

h/(h+r) ξe
i

h/(h+r)η·y

through the phase space over Xch̄ — more precisely, over the “semiclassical face” h/(h +r)= 0 — whose
fiber variables are (ξ, η).)

The semiclassical cone calculus 9ch̄(X), introduced in [Hintz 2022] and developed further in Section 3,
makes this rigorous. It allows for the symbolic analysis of pseudodifferential operators of the form

Opc,h(p)= “p
(

h
h + r

, h + r, y,
h

h + r
r Dr ,

h
h + r

Dy

)
”

using standard methods from microlocal analysis: there is a semiclassical principal symbol p(0, r, y, ξ, η),
which is a symbol on the aforementioned phase space (defined rigorously after Lemma 3.2). Moreover, as
usual, the commutator i[Opc,h(p),Opc,h(q)] is given by the quantization of the Poisson bracket of p and
q up to operators with an extra factor of h/(h + r). For the operator Ph,z in (1-3), the Hamilton vector
field of its principal symbol is nondegenerate except at two submanifolds of critical points over r = 0;
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these critical sets are saddle points for the Hamilton flow, and are end or starting points of geodesics
hitting the cone point or emanating from it. (See Figure 10.) One can thus prove quantitative microlocal
propagation and radial point estimates on the associated scale of weighted semiclassical cone Sobolev
spaces, which measure L2 norms of derivatives along (h/(h +r)) r Dr , (h/(h +r)) Dy , and which feature
weights which are real powers of r/(h + r) and h + r .

Remark 1.3 (semiclassical cone ps.d.o.s as tools). The (large) pseudodifferential calculus 9ch̄(X) was
introduced in [Hintz 2022] as the space in which inverses and complex powers of elliptic semiclassical
cone operators, such as h21+ 1, live; the goal there was a precise description of their Schwartz kernels.
Here, by contrast, we use semiclassical cone pseudodifferential operators (ps.d.o.s) as tools to understand
propagation phenomena. Correspondingly, we only need to consider the small semiclassical cone calculus,
as our analysis will be based on proving estimates, rather than on the construction and usage of parametrices.
(Parametrices are typically significantly more challenging to construct [Chin 2022] and are very precise
tools; on the flipside, they tend to be less convenient when the need for generalizations or for proofs of
sharp mapping properties on various function spaces arises.) Thus, in Section 3, we provide a perspective
on 9ch̄(X) which makes it easy to work with in nonelliptic settings.

At this point, we control the semiclassical regularity of solutions of Ph,zu = f at h/(h + r)= 0. This
means that we have an estimate of the schematic form

∥u∥ ≲ ∥Ph,zu∥ +∥Eu∥ +

∥∥∥∥ h
h + r

u
∥∥∥∥, (1-6)

where Eu controls u on a transversal to the collection of forward geodesics which encounter r = 0; the
function spaces here are semiclassical cone Sobolev spaces. That is, control of Eu together with weak
control of u at h/(h + r)= 0 (finiteness of the final term) gives stronger control of u (finiteness of the
left-hand side), provided the forcing term Ph,zu has suitable bounds (e.g., equals 0). Notice that the
weights 1 and h/(h + r) in the norms ∥u∥ and ∥hu/(h + r)∥ are comparable for h ∼ r , i.e., at the front
face in Figure 1; thus, the estimate (1-6) does not provide control of u in this regime.

In order to control u globally, including at h = r = 0, one needs to invert the normal operator N (P)
of Ph,z , which is the restriction of Ph,z to the front face of Xch̄; see (1-3)–(1-4) for a concrete example.
The function spaces on which one inverts N (P) need to match the function spaces in which the symbolic
propagation estimates are obtained. As already observed in [Hintz 2022] (see also the earlier paper [Loya
2002]) and demonstrated in detail on the level of function spaces in Section 3C, the correct function spaces
for N (P) are standard Sobolev spaces when r̂ = r/h ≳ 1 (i.e., measuring regularity with respect to Dr̂ and
r̂−1 Dyi ) and b-Sobolev spaces in r̂ ≲ 1 (i.e., measuring regularity with respect to r̂ Dr̂ and Dyi ). Following
[Melrose 1994], we show in Section 4D that the analysis of N (P) on spaces with variable orders of decay
as r̂ → ∞ precisely matches the above symbolic analysis which involves variable semiclassical orders
(powers of h/(h + r)) to accommodate the threshold requirements for propagation into/out of the radial
sets; see [Dyatlov and Zworski 2019, Appendix E.4].

We stress the global (rather than microlocal or symbolic) nature of the requirement that the normal
operator N (P) be invertible; while verifying this in concrete situations is nontrivial, one has many standard
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techniques at one’s disposal (such as boundary-pairing arguments, unique continuation, separation of
variables, etc.). We also remark that the necessity to invert model (or “normal”) operators for the purpose
of controlling solutions of PDE in a singular regime is a typical feature of singular PDE; see for example
the role of the invertibility of the Mellin-transformed normal operator family in the asymptotic behavior
of waves in [Baskin et al. 2015; 2018; Baskin and Marzuola 2019; 2022].

In combination, the symbolic estimates and the normal operator invertibility provide control of u at
both hypersurfaces h/(h + r) = 0 and h + r = 0 of Xch̄: schematically, one estimates the final term
in (1-6) by ∥(h/(h + r)) N (P)u∥ and then replaces N (P) by Ph,z , thereby committing an error term
which vanishes to leading order at the front face h + r = 0; one obtains

∥u∥ ≲ ∥Ph,zu∥ +∥Eu∥ +

∥∥∥∥(h + r)
h

h + r
u
∥∥∥∥≲ ∥Ph,zu∥ +∥Eu∥ + h∥u∥.

The final term can be absorbed into the left-hand side when h is sufficiently small. Thus, we have uniform
control of u as h → 0. (One can package this into an invertibility statement for a modification of Ph,z by
placing complex-absorbing potentials away from r = 0 in the spirit of [Nonnenmacher and Zworski 2009;
Wunsch and Zworski 2011; Datchev and Vasy 2012; Vasy 2013]; see Section 4E.)

Remark 1.4 (relation to edge propagation). The proof of symbolic propagation estimates for wave
equations on conic or edge manifolds using the edge calculus [Mazzeo 1991], as done in [Melrose and
Wunsch 2004, §8] and [Melrose et al. 2008, §11], is closely related, via the Fourier transform in time,
to the semiclassical cone Sobolev spaces associated with 9ch̄(X); see Remark 3.4. Going one step
further in the comparison, we note that the fine analysis of diffraction of [Melrose and Wunsch 2004] for
waves on a conic manifolds uses a normal operator at the cone point which is defined via a rescaled FBI
(Fourier–Bros–Iagolnitzer) transform in time; this normal operator is thus equivalent to the operator N (P)
considered here, but used in a different manner.

Remark 1.5 (second microlocalization). Writing

hr Dr = (h + r)
h

h + r
r Dr and h Dy = (h + r)

h
h + r

Dy

suggests that semiclassical conormal regularity at the cone point (regularity under application of hr Dr

and h Dy) can be captured on the scale of semiclassical cone Sobolev spaces as well. We present a
systematic second microlocal perspective on this in Section 3D, inspired by recent work of Vasy [2021a;
2021b] on the limiting absorption principle on asymptotically conic manifolds (with the conic nature
referring to the large end of the manifold). In view of the characterization of the quadratic form domain
of h21g + 1 as a semiclassical cone Sobolev space in [Hintz 2022, Theorem 6.1], we can thus eliminate
the need of working with a mixed differential-pseudodifferential calculus as in [Baskin and Marzuola
2022], and instead work in a single microlocal framework.

1B. Outline of the paper. In Section 2, we review basic notions from b- and scattering analysis, with
an eye towards the relationship with semiclassical cone analysis. In Section 3, we describe a hands-on
perspective on the semiclassical cone algebra 9ch̄(X) with a focus on its use for symbolic computations.
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The heart of the paper is Section 4: we define the general class of operators to which the analysis
sketched in Section 1A applies (Section 4A) and analyze in detail their symbolic properties (Section 4B),
followed by a general analysis of N (P) (Section 4C). We state and prove the main microlocal result,
Theorem 4.10, in Section 4D. We prove the diffractive improvement in Section 4F. Finally, Section 5
contains applications of the general theory: a sharp version of propagation estimates for h21g − 1 on
conic manifolds in Section 5A, and high-energy resolvent estimates for scattering by inverse square
potentials and the Dirac–Coulomb equation in Sections 5B and 5C.

In Appendix B, we provide a brief summary of the Sobolev spaces and pseudodifferential calculi used,
to aid the reader in keeping track of the (meanings of the) various orders involved.

2. Review of b- and scattering calculi

We denote by X a smooth n-dimensional compact manifold with nonempty, connected, and embedded
boundary ∂X . The Lie algebra Vb(X)⊂V(X)=C∞(X; T X) of b-vector fields consists of all smooth vector
fields on X which are tangent to ∂X . The Lie subalgebra Vsc(X)⊂Vb(X) of scattering vector fields consists
of all b-vector fields which vanish, as b-vector fields, at ∂X . Thus, if x ∈ C∞(X) denotes a boundary-
defining function (meaning: ∂X = x−1(0), and dx does not vanish on ∂X ), then Vsc(X)= xVb(X). In
local coordinates (x, y) ∈ [0,∞)× Rn−1 near a point on ∂X , b-vector fields are of the form

a(x, y)x∂x +

n−1∑
j=1

b j (x, y)∂y j , a, b1, . . . , bn−1
∈ C∞, (2-1)

while scattering vector fields are of the form

a(x, y)x2∂x +

n−1∑
j=1

b j (x, y)x∂y j , a, b1, . . . , bn−1
∈ C∞.

Correspondingly, there are natural vector bundles
bT X → X, scT X → X, (2-2)

isomorphic to T X◦ over X◦, but with local frames (in local coordinates as above) given by x∂x ,∂y1, . . . ,∂yn−1

and x2∂x , x∂y1, . . . , x∂yn−1 respectively, so that Vb(X)= C∞(X;
bT X) and Vsc(X)= C∞(X;

scT X). Here,
we implicitly use the bundle maps bT X → T X and scT X → T X (which are isomorphisms over X◦ but not
over ∂X ) to identify C∞(X;

bT X) and C∞(X;
scT X) with subspaces of C∞(X; T X)= V(X). The dual

bundles of (2-2) are the b-cotangent bundle and scattering cotangent bundle, bT ∗X → X and scT ∗X → X ,
with local frames dx/x, dy1, . . . , dyn−1 and dx/x2, dy1/x, . . . , dyn−1/x , respectively. (These 1-forms
are thus smooth, nonzero sections of bT ∗X , resp. scT ∗X , down to ∂X .) Writing the canonical 1-form on
T ∗X◦ as

ξb
dx
x

+

n−1∑
j=1

(ηb)j dy j , resp. ξsc
dx
x2 +

n−1∑
j=1

(ηsc)j
dy j

x
, (2-3)

thus defines fiber-linear coordinates (ξb, ηb), resp. (ξsc, ηsc) ∈ R × Rn−1, on bT ∗X , resp. scT ∗X . The
b-density bundle is denoted by b�1 X = |3n bT ∗X |; in local coordinates, its smooth sections are of the
form a|(dx/x)dy1

· · · dyn−1
|, a ∈ C∞.
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The space of finite linear combinations of up to k-fold compositions of elements of V•(X), where
• = b, sc, is denoted by Diff k

•
(X), and we put Diff•(X) =

⊕
k∈N0

Diff k
•
(X). The space Diffb(X) gives

rise to the notion of conormality (relative to a fixed function space) of distributions on X◦: concretely,
the space

Aα(X)⊂ xαL∞(X◦)

consists of all u so that Au ∈ xαL∞(X◦) for all A ∈ Diffb(X). More generally, for δ≤ 1, one can consider
the space

Aα1−δ(X)⊂ xαL∞(X◦)

of conormal distributions u of type 1 − δ, defined by the condition that for any k ∈ N0 and A ∈ Diff k
b (X),

one has Au ∈ xα−kδL∞(X◦). (Thus, Aα(X)= Aα1 (X).) A more restrictive class than Aα(X) is the class
of classical conormal distributions, Aαcl(X), which is defined simply as

Aαcl(X)= xαC∞(X)⊂ Aα(X).

Given an element u = xαu0 ∈ Aαcl(X), the function u0 is thus not merely conormal (regularity under
x∂x , ∂y), but smooth (regularity under ∂x , ∂y).

As an important example, let E → X denote a smooth real vector bundle of rank N, and consider the
radial compactification E → X , i.e., the fiber bundle whose fiber E x over x ∈ X is equal to the radial
compactification of Ex ∼= RN defined by

RN :=
(
RN

⊔ ([0,∞)ρ × Sn−1)
)
/∼,

RN
\ {0} ∋ ρ−1ω ∼ (ρ, ω) ∈ [0,∞)× Sn−1.

Then the total space E is a manifold with corners which has two boundary hypersurfaces, E∂X (the radial
compactification of E∂X ) and SE (fiber infinity, locally defined by ρ = 0). On E , we regard only SE
as a boundary, in the sense that we declare Vb(E) to consist of all smooth vector fields on E which are
tangent to SE (but not necessarily to E∂X ). For s ∈ R, we then put

Ss(E) := A−s(E).

One can of course consider variants of this, e.g., requiring elements of Vb(E) to be tangent to both
boundary hypersurfaces and defining spaces Ss,r (E) which are conormal of weight −s,−r at SE , E∂X ,
respectively; or one may require classicality at one or both of the boundary hypersurfaces.

2A. b-pseudodifferential operators. We denote fiber infinity of the radial compactification bT ∗X of
bT ∗X by bS∗X . Elements of Ss(bT ∗X) will be symbols of b-pseudodifferential operators (of type (1, 0),
in Hörmander’s (ρ, δ)-terminology [1971, §1.1]). Concretely, consider a ∈ Ss(bT ∗X) with support
contained in a local coordinate patch near a point on ∂X ; thus, for all i, j ∈ N0 and α, β ∈ Nn−1

0 , there
exists a constant Ci jαβ so that

|∂ i
x∂
α
y ∂

j
ξb
∂βηb

a(x, y, ξb, ηb)| ≤ Ci jαβ(1 + |ξb| + |ηb|)
s−( j+|β|).
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The (left) quantization of a is then defined by

(Opb(a)u)(x, y) := (2π)−n
∫∫∫∫

exp
(

i
(

x − x ′

x ′
ξb + (y − y′) · ηb

))
φ

(∣∣∣∣log
x
x ′

∣∣∣∣)φ(|y − y′
|)

× a(x, y, ξb, ηb)u(x ′, y′)
dx ′

x ′
dy′ dξb dηb,

where φ ∈ C∞
c ((−1, 1)) is identically 1 near 0. The cutoff φ serves to make C−1x ′

≤ x ≤ Cx ′ and
|y − y′

|< c on the support of the Schwartz kernel of Opb(a) for some C > 1, c > 0, i.e., it localizes near
the diagonal. We define

9s
b(X) := Opb(S

s(bT ∗X))+9−∞

b (X).

Here, if we write πL/R : X2
→ X for the left/right projection, the space 9−∞

b (X) of residual operators
consists of all operators Ċ∞(X)→ Ċ∞(X) (with Ċ∞(X) denoting the space of smooth functions on X
vanishing to infinite order at ∂X ) whose Schwartz kernels κ ∈ C−∞(X2

;π∗

R
b�1 X) (the dual space of

Ċ∞(X2
;π∗

L
b�1 X)) pull back to smooth right b-densities on the b-double space4

X2
b := [X2

; (∂X)2] (2-4)

which vanish to infinite order at the left boundary lbb (the lift of ∂X × X) and the right boundary rbb (the
lift of X × ∂X ) but are smooth down to the front face ffb. (See [Vasy 2018, §6] for more details, and also
[Melrose 1993; Grieser 2001].) One often encounters weighted operators as well,

Diffk,l
b (X) := x l Diff k

b (X), 9
s,l
b (X) := x l9s

b(X).

More generally still, one can consider quantizations of symbols which are conormal of order s at bS∗X
and of order l at bT ∗

∂X X ; this level of generality is occasionally useful; see, e.g., [Vasy 2021b, §5] and
Section 3D. Given an operator A ∈9

s,l
b (X), we denote its Schwartz kernel by K A.

Elements of 9s,l
b (X) define continuous linear operators on Ċ∞(X), and the composition of two

b-ps.d.o.s is again a b-ps.d.o., with orders equal to the sum of the orders of the two factors. The principal
symbol bσs : 9

s,l
b (X) → (x l Ss/x l Ss−1)(bT ∗X) is a *-homomorphism, and maps commutators into

Poisson brackets. In local coordinates (and omitting orders for brevity), this means that for two operators
A, B ∈9b(X) with principal symbols a, b, we have

bσ(i[A, B])= {a, b} = Hab,

Ha = (∂ξba)x∂x + (∂ηba)∂y − (x∂xa)∂ξb − (∂ya)∂ηb .
(2-5)

2B. Scattering pseudodifferential operators. It is important to consider more general symbol classes
than merely Ss(scT ∗X) or x−r Ss(scT ∗X). Namely, for δ ∈

[
0, 1

2

)
, we shall consider the class

Ss,r
1−δ,δ(

scT ∗X)

of symbols which are conormal at scS∗X with weight −s, and conormal of type 1 − δ with weight −r
at scT ∗

∂X X . (The presence of both 1 − δ and δ as subscripts follows the classical literature on symbol

4For a detailed discussion of real blow-ups such as (2-4), we refer the reader to [Melrose 1996]. See [Hintz 2022, Appendix A]
for a brief summary which is sufficient for our purposes.
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classes; see, e.g., [Hörmander 1971].) This means that Ss,r
1−δ,δ(

scT ∗X) consists of all smooth functions a
on scT ∗X which over X◦ are symbols of type (1, 0) and order s, i.e., a|T ∗ X◦ ∈ Ss

1,0(T
∗X◦)= Ss(T ∗X◦),

and which near ∂X satisfy for all i, j ∈ N0 and α, β ∈ Nn−1
0 an estimate

|(x∂x)
i∂αy ∂

j
ξsc
∂βηsc

a(x, y, ξsc, ηsc)| ≤ Ci jαβx−r−(i+ j+|α|+|β|)δ(1 + |ξsc| + |ηsc|)
s−( j+|β|).

In the case δ= 0, we omit the subscript “1−δ, δ”. We then define the (left) scattering quantization of a by

(Opsc(a)u)(x, y) := (2π)−n
∫∫∫∫

exp
(

i
[

x − x ′

x2 ξsc +
y − y′

x
· ηsc

])
φ

(∣∣∣∣log
x
x ′

∣∣∣∣)φ(|y − y′
|)

× a(x, y, ξsc, ηsc)u(x ′, y′)
dx ′

x ′2

dy′

x ′n−1 dξsc dηsc.

(In this generality, scattering ps.d.o.s were introduced by Melrose [1994].) If one were working with
global coordinates, one could remove the cutoffs here due to the rapid decay of the partial (in the fiber
variables) inverse Fourier transform of a as |1/x − 1/x ′

| + |y/x − y′/x ′
| → ∞.5 We then set

9
s,r
sc,1−δ,δ(X) := Opsc(S

s,r
1−δ,δ(

scT ∗X))+9−∞,−∞

sc (X),

where 9−∞,−∞
sc (X) consists of all operators whose Schwartz kernels lie in Ċ∞(X2

;π∗

R�
1 X). We shall

refer to s as the (scattering) differential order, and to r as the (scattering) decay order.
The principal symbol of scattering operators captures their leading-order behavior for large frequencies

as well as at ∂X :
scσs,r :9

s,r
sc,1−δ,δ(X)→ (Ss,r

1−δ,δ/Ss−1,r−1+2δ
1−δ,δ )(scT ∗X).

This is a *-homomorphism. Thus, for Aj ∈9
sj ,rj
sc,1−δ,δ(X), j = 1, 2, we have

[A1, A2] ∈9
s1+s2−1,r1+r2−1+2δ
sc,1−δ,δ (X); (2-6)

the principal symbol (which captures the commutator modulo 9s1+s2−2,r1+r2−2+4δ
sc,1−δ,δ (X)) is given in terms

of the principal symbols a1, a2 of A1, A2 by

scσs1+s2−1,r1+r2−1+2δ(i[A1, A2])= Ha1a2,

x−1 Ha1 = (∂ξsca1)(x∂x + ηsc∂ηsc)+ (∂ηsca1)∂y − ((x∂x + ηsc∂ηsc)a1)∂ξsc − (∂ya1)∂ηsc . (2-7)

We refer the reader to [Vasy 2018, §3] for more details in the special case X = Rn , in which case the
scattering calculus is the same as the standard ps.d.o. calculus on Rn for amplitudes which are product-type
symbols in the base and fiber variables.

A natural setting where one must work with δ > 0 arises when working with operators which have a
variable scattering decay order

r ∈ C∞(scT ∗X).
To wit, for s ∈ R, we define

Ss,r(scT ∗X)

5Importantly, one typically does not want to localize more sharply to |1/x − 1/x ′
| + |y/x − y′/x ′

| ≲ 1 (which is a small
neighborhood of the lifted diagonal in the scattering double space; see [Melrose 1994, §21]), as this would thus destroy the
leading-order commutativity of the scattering calculus at ∂X .
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to consist of all a of the form a = x−ra0, where a0 ∈
⋂
δ∈(0,1/2) Ss,0

1−δ,δ(
scT ∗X). It is easy to check that

Ss,r(scT ∗X)⊂
⋂
δ∈(0,1/2) Ss,r0

1−δ,δ(
scT ∗X) for any r0 > sup r; in fact, differentiating variable-order symbols

produces only logarithmic factors in the boundary-defining function x . Thus, we can quantize such
symbols, giving rise to the space

9s,r
sc (X) := Opsc(S

s,r(scT ∗X))+9−∞,−∞

sc (X)⊂

⋂
δ∈(0, 1

2)

9
s,r0
sc,1−δ,δ(X).

Principal symbols of elements of 9s,r
sc (X) lie in

(
Ss,r/

⋂
δ>0 Ss−1,r−1+2δ

)
(scT ∗X). The (variable) orders

are additive under operator composition; this is a consequence of the formula for the full symbol (in local
coordinates) of the composition of two ps.d.o.s.

We point out that for fixed s ∈ R the space Ss,r(scT ∗X) (and thus 9s,r
sc (X)) only depends on the

restriction of r to scT ∗

∂X X . Indeed, given r′ ∈ C∞(scT ∗X) with r′ − r = 0 at scT ∗

∂X X , we can write
r′ − r = xw, w ∈ C∞(scT ∗X), and therefore x−r′

= x−r exp(−wx log x); by direct differentiation, one then
finds that exp(−wx log x) ∈ S0,0

1−δ,δ(
scT ∗X) for any δ > 0. In view of this, we can define Ss,r(scT ∗X) and

9s,r
sc (X), given a variable order

r ∈ C∞(scT ∗

∂X X),

to be equal to Ss,r̃(scT ∗X) and 9s,r̃
sc (X), respectively, where r̃ ∈ C∞(scT ∗X) is any smooth extension of r.

2C. Sobolev spaces. We next recall the corresponding scales of weighted Sobolev spaces. We have
some flexibility in the choice of the underlying L2-space. Thus, fix any smooth positive b-density
µ0 ∈ C∞(X;

b�1 X), and fix aµ ∈ R. We then set µ := xαµµ0 and

H 0
b (X;µ)≡ L2

b(X;µ)≡ H 0
sc(X;µ)≡ L2

sc(X;µ) := L2(X;µ). (2-8)

These spaces are independent of the choice of µ0 (but not aµ), up to equivalence of norms; the same will
be true for the spaces defined in the sequel. When the density µ is fixed and clear from the context, we
drop it from the notation. Let • = b, sc. For s ≥ 0, we then let

H s
•
(X) := {u ∈ H 0

•
(X) : Au ∈ H 0

•
(X)},

where A ∈ 9s
•
(X) denotes any fixed elliptic operator. For s < 0, we define H s

•
(X) = (H−s

•
(X))∗

with respect to the L2
•
(X) inner product; an equivalent definition is given by H s

•
(X) = {u1 + Au2 :

u1, u2 ∈ H 0
•
(X)}, where A ∈9−s

•
(X) is elliptic. Weighted spaces are defined by

H s,l
b (X)= x l H s

b (X), H s,r
sc (X)= xr H s

sc(X).

Finally, we define scattering Sobolev spaces with variable decay orders r∈C∞(scT ∗

∂X X) by taking r0< inf r
and putting

H s,r
sc (X) := {u ∈ H s,r0

sc (X) : Au ∈ H 0
sc(X)},

where A ∈9s,r
sc (X) is any fixed elliptic operator.

2D. b-scattering operators and Sobolev spaces. In our application, we shall encounter a compact
manifold X whose boundary ∂X has two connected components, say H1, H2, both of which are embedded.
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We can then consider the space Vb,sc(X) of b-scattering vector fields (which localized to a neighborhood
of H1, resp. H2, lie in Vb, resp. Vsc), the corresponding b-scattering tangent bundle b,scT X and its dual
b,scT ∗X , as well as weighted b-scattering Sobolev spaces,

H s,l,r
b,sc (X), s, l ∈ R, r ∈ C∞(scT ∗

H2
X).

Localized to a neighborhood of H1, its elements lie in H s,l
b , and localized to a neighborhood of H2, they

lie in H s,r
sc .

Let us make this even more concrete in the setting which will arise below,

X = [0,∞]x̂ × Y, H1 = x̂−1(0), H2 = x̂−1(∞), (2-9)

where we write [0,∞] for the closure of [0,∞) inside of R; here Y is a compact (n−1)-dimensional
manifold without boundary. Then x̂/(x̂+1) and (1+x̂)−1 are defining functions of H1 and H2, respectively;
hence Vb,sc(X)= (1 + x̂)−1Vb(X). Using local coordinates y1, . . . , yn−1 on an open subset U ⊂ Y, the
collection of 1-forms

(1 + x̂)dx̂
x̂
, (1 + x̂)dy1, . . . , (1 + x̂)dyn−1

is a smooth frame of b,scT ∗X over [0,∞]× U. Denoting the corresponding fiber-linear coordinates on
b,scT ∗X by (ξb,sc, ηb,sc) ∈ R × Rn−1, we can then quantize a symbol6

a ∈ Ss,l,r (b,scT ∗X)=

(
x̂

x̂ + 1

)−l

(1 + x̂)r Ss(b,scT ∗X)

by

(Opb,sc(a)u)(x̂, y) := (2π)−n
∫∫∫

exp
(

i
(

x̂ − x̂ ′

x̂ 1
1+x̂

ξb,sc +
y − y′

1
1+x̂

· ηb,sc

))
×φ

(∣∣∣∣log
x̂
x̂ ′

∣∣∣∣)φ(|y − y′
|)a(x̂, y, ξb,sc, ηb,sc)u(x̂ ′, y′)

×
dx̂ ′

x̂ ′ 1
1+x̂ ′

dy′( 1
1+x̂ ′

)n−1 dξb,sc dηb,sc.
(2-10)

The space 9s,l,r
b,sc (X) of b-scattering ps.d.o.s is then the sum

9
s,l,r
b,sc (X)= Opb,sc(S

s,l,r (b,scT ∗X))+9−∞,l,−∞

b,sc (X).
Here,

9
−∞,l,−∞

b,sc (X)=

(
x̂

x̂ + 1

)−l

9
−∞,0,−∞

b,sc (X)

is defined momentarily. First define the double space

X2
b,sc :=

[
[0,∞)2 × Y 2

; ({0} × Y )2;1∩ ({∞} × Y )2
]
, (2-11)

where [0,∞)2 is the radial compactification (equivalently, the closure of [0,∞)2 inside of R2), and
1⊂ [0,∞)2 ×Y 2 is the diagonal. Then the space9−∞,0,−∞

b,sc (X) consists of all operators whose Schwartz

6We leave the minor, largely notational, changes to accommodate symbols with variable scattering decay orders r to the
reader.
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x̂
0 ∞

x̂
′

0
∞

l

r

s

−∞

−∞

−∞

−∞

Figure 2. The double space X2
b,sc without the factor Y 2. The dashed line is the lifted

diagonal. Indicated are the symbolic orders of Schwartz kernels of elements of 9s,l,r
b,sc (X).

kernels are smooth right b-densities on X2
b,sc which vanish to infinite order at all boundary hypersurfaces ex-

cept for the lift of ({0}×Y )2. See Figure 2. Moreover, Schwartz kernels of elements of9s,0,r
b,sc (X) are conor-

mal of order s to the lifted diagonal in X2
b,sc smoothly down to the lift of ({0}×Y )2, conormal with weight

−r down to the lift of 1∩ ({∞} × Y )2, and vanish to infinite order at all other boundary hypersurfaces.

3. Semiclassical cone calculus

We revisit and generalize the algebra 9ch̄(X) and the associated scale of weighted Sobolev spaces from
[Hintz 2022], give a user-friendly treatment of the symbol calculus (including Poisson brackets), and study
operators and function spaces with variable (semiclassical) orders and their behavior upon restriction
to the transition faces of the semiclassical cone single and double spaces (recalled later in this section).
Throughout this section, we denote by X a compact n-dimensional manifold with nonempty, connected,
and embedded boundary ∂X . We denote by x ∈ C∞(X) a boundary-defining function.

3A. Vector fields, bundles, Poisson brackets. We recall from Section 1A the semiclassical cone single space

Xch̄ :=
[
[0, 1)h × X; {0} × ∂X

]
,

the boundary hypersurfaces of which we denote by cf (conic face, lift of [0, 1)× ∂X ), tf (transition face,
the front face@), and sf (semiclassical face, lift of {0}× X ). See Figure 3. Defining functions of these
boundary hypersurfaces are x/(x + h), x + h, and h/(h + x), respectively. On Xch̄ \ cf, it is convenient
to use the local defining functions x of tf and h/x of sf.

Definition 3.1 (vector fields). We define the space

Vch̄(Xch̄)

of semiclassical cone vector fields to consist of all b-vector fields V ∈ Vb(Xch̄) which are horizontal, i.e.,
tangent to the fibers of Xch̄ → [0, 1)h , and whose restriction to sf vanishes.

Lemma 3.2 (spanning set). Identifying a vector field V ∈ Vb(X) with its horizontal lift to Xch̄ along
Xch̄ → X , the space Vch̄(Xch̄) is spanned over C∞(Xch̄) by (h/(h + x))Vb(X). Moreover, given V,W ∈

Vch̄(Xch̄), we have [V,W ] ∈ (h/(h + x))Vch̄(Xch̄).
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h

x

cf

sf

tf

Figure 3. The semiclassical cone single space Xch̄ .

This allows us to define the graded ring

Diffch̄(X)=

⊕
k∈N0

Diffk
ch̄(X)

of differential operators in the usual manner.

Proof. Directly from the definition, we have (h/(h + x))Vb(X) ⊂ Vch̄(Xch̄). Conversely, suppose
V ∈ Vch̄(Xch̄). Let us work in local coordinates (x, y) ∈ [0,∞)× Rn−1 near a point in ∂X . Near cf, we
use the local coordinates (h, x̂, y) with x̂ := x/h. From the definition, we have

V = a(h, x̂, y)x̂∂x̂ +

n−1∑
j=1

b j (h, x̂, y)∂y j , (3-1)

with a, b j
∈ C∞. Since x̂∂x̂ = x∂x , this expresses V in the desired form.

Near sf on the other hand, we use (ĥ, x, y) with ĥ := h/x . Since V ∈ Vb(Xch̄), we can write

V = a(ĥ, x, y)(x∂x − ĥ∂ĥ)+ ã(ĥ, x, y)ĥ∂ĥ +

n−1∑
j=1

b j (ĥ, x, y)∂y j .

The horizontal nature of V means 0 = V h = V (xĥ) = ãx ĥ, which implies ã ≡ 0 by continuity from
(Xch̄)

◦
= {x > 0, ĥ > 0}. The vanishing of V at ĥ = 0 as a b-vector field implies, in addition, that

a = ĥa′ and b j
= ĥb′

j with a′, b′

j ∈ C∞. Since the horizontal lifts of x∂x , ∂y j ∈ Vb(X) to Xch̄ are equal to
x∂x − ĥ∂ĥ, ∂y j , the claim follows.

Regarding the Lie algebra structure, we compute, for V,W ∈ Vb(X),[
h

h + x
V,

h
h + x

W
]

=
h

h + x

(
h

h + x
[V,W ] + V

(
h

h + x

)
W − W

(
h

h + x

)
V
)
.

Since V,W ∈ Vb(Xch̄), we have V (h/(h + x)),W (h/(h + x)) ∈ (h/(h + x))C∞(Xch̄). □

There exists a vector bundle
ch̄T Xch̄ → Xch̄

together with a smooth bundle map ch̄T Xch̄ →
bT Xch̄ so that the space Vch̄(Xch̄) is equal to the space of

smooth sections of ch̄T Xch̄ . In local coordinates on X , a local frame of ch̄T Xch̄ is given by (the horizontal
lifts to Xch̄ of)

h
h + x

x∂x ,
h

h + x
∂y1, . . . ,

h
h + x

∂yn−1 .
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We call ch̄T Xch̄ the ch̄-tangent bundle and its dual ch̄T ∗Xch̄ the ch̄-cotangent bundle, with local frame

x + h
h

dx
x
,

x + h
h

dy1, . . . ,
x + h

h
dyn−1.

A choice of local coordinates (x, y) ∈ [0,∞)× Rn−1 on an open set U ⊂ X induces a trivialization of
ch̄T ∗Xch̄ over the preimage of [0, 1)×U under Xch̄ → X , with fiber-linear coordinates (ξch̄, ηch̄)∈R×Rn−1

defined by the requirement that the canonical 1-form on T ∗X◦ be equal to

ξch̄
x + h

h
dx
x

+

n−1∑
j=1

(ηch̄)j
x + h

h
dy j . (3-2)

In Xch̄ \ cf, where a smooth frame of ch̄T Xch̄ is given by (h/x)x∂x , (h/x)∂y1 , . . ., (h/x)∂yn−1 , it is com-
putationally simpler to use the fiber-linear coordinates (ξ, η) in which the canonical 1-form takes the form

ξ
x
h

dx
x

+

n−1∑
j=1

ηj
x
h

dy j . (3-3)

We compute the form of the Hamilton vector field Ha of a smooth function a ∈ C∞(ch̄T ∗Xch̄) in
these fiber coordinates, and using (ĥ, x, y) with ĥ = h/x as coordinates on the base. In terms of the
coordinates on bT ∗X used in (2-3), we have (ξ, η) = (h/x)(ξb, ηb) and thus, by changing coordinates
in the expression (2-5),

Ha = ĥ
(
(∂ξa)(x∂x − ĥ∂ĥ − η∂η)+ (∂ηa)∂y − ((x∂x − ĥ∂ĥ − η∂η)a)∂ξa − (∂ya)∂η

)
. (3-4)

3B. Symbols, pseudodifferential operators, Sobolev spaces. A simple symbol class for ch̄-operators
is Ss(ch̄T ∗Xch̄) = A−s(ch̄T ∗Xch̄), where we only regard fiber infinity ch̄ S∗Xch̄ as a boundary, i.e., we
require symbols to be smooth down to ch̄T ∗

•
Xch̄ for • = cf, tf, sf. In practice, we need more general

symbols: for δ ∈
[
0, 1

2

)
and for s, l, α, b ∈ R, we define

Ss,l,α,b
1−δ,δ (

ch̄T ∗Xch̄)=

(
x

x + h

)−l

(x + h)−α
(

h
h + x

)−b

Ss,0,0,0
1−δ,δ (

ch̄T ∗Xch̄)

to consist of all symbols which are conormal with weight −s at ch̄ S∗Xch̄ , conormal with weight −l at
ch̄T ∗

cf Xch̄ and with weight −α at ch̄T ∗

tf Xch̄ , and conormal of type 1 − δ at ch̄T ∗

sf Xch̄ with weight −b. In
the coordinates (3-3), the membership a ∈ Ss,0,0,0

1−δ,δ (
ch̄T ∗Xch̄) is equivalent to a = a(ĥ, x, y, ξ, η) (with

ĥ = h/x) satisfying estimates

|(x∂x)
i∂αy (ĥ∂ĥ)

j∂k
ξ ∂

β
η a(ĥ, x, y, ξ, η)| ≤ Ci jkαβ(1 + |ξ | + |η|)s−(k+|β|)ĥ−(i+ j+k+|α|+|β|)δ

for all i, j, k ∈ N0 and α, β ∈ Nn−1
0 ; in coordinates (h, x̂, y, ξb, ηb) on the ch̄-cotangent bundle over

Xch̄ \ sf, with x̂ = x/h and with the canonical 1-form given by (2-3), a must satisfy∣∣(x̂∂x̂)
i∂αy (h∂h)

j∂k
ξb
∂βηb

a(h, x̂, y, ξb, ηb)
∣∣≤ Ci jkαβ(1 + |ξb| + |ηb|)

s−(k+|β|).

See Figure 4. As usual, we omit the subscript “1 − δ, δ” when δ = 0.
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x

h
s [c~S∗Xc~]

l [
c~ T

∗
cf
X c~

]

α
[c
~ T

∗
tf
X c~

]

b [
c~ T

∗
sf
X c~

]

Figure 4. Illustration of ch̄T ∗Xch̄ (showing only part of the compactified fibers) and the
symbol class Ss,l,α,b(ch̄T ∗Xch̄), indicating the orders at the various boundary hypersur-
faces of ch̄T ∗Xch̄ .

It is occasionally useful to restrict attention to symbols which are classical conormal down to tf, which
amounts to replacing x∂x , h∂h in the above symbol estimates (which are for symbols of order 0 at tf) by
∂x , ∂h . We denote the corresponding symbol classes with a subscript “cl” as in Ss,l,α,b

cl (ch̄T ∗Xch̄).
As in Section 2, the main use of δ > 0 is to accommodate symbols with variable orders. Here, we only

discuss the case of variable semiclassical orders. Thus, consider b ∈ C∞(ch̄T ∗

sf Xch̄), an arbitrary extension
of which to an element of C∞(ch̄T ∗Xch̄) we denote by the same letter; we then put

Ss,l,α,b(ch̄T ∗Xch̄) :=

{(
h

h + x

)b
a0 : a0 ∈

⋂
δ∈(0, 1

2)

Ss,l,α,0
1−δ,δ (

ch̄T ∗Xch̄)

}
,

which is a subset of
⋂
δ∈(0,1/2) Ss,l,α,b0

1−δ,δ (
ch̄T ∗Xch̄) for any b0 > sup b.

We now proceed to quantize symbols a = a(h, x, y, ξch̄, ηch̄), thereby giving meaning to the formal
expression

“ Opc,h(a)= a
(

h, x, y,
h

h + x
x Dx ,

h
h + x

Dy

)
”.

Thus, fixing φ ∈ C∞
c ((−1, 1)), identically 1 near 0, we define, in local coordinates (x, y) on X ,

(Opc,h(a)u)(h, x, y) := (2π)−n
∫∫∫∫

exp
(

i
[

x − x ′

x h
h+x

ξch̄ +
y − y′

h
h+x

· ηch̄

])
×φ

(∣∣∣∣log
x
x ′

∣∣∣∣)φ(|y− y′
|)a(h, x, y, ξch̄, ηch̄)u(h, x ′, y′)

×
dx ′

x ′ h
h+x ′

dy′( h
h+x ′

)n−1 dξch̄ dηch̄ (3-5)

for a and u supported in the coordinate chart; for general a, u, one defines Opc,h(a)u using a partition of
unity.

We interpret this in terms of the ch̄-double space

X2
ch̄ :=

[
[0, 1)h × X2

b; {0} × ffb; {0} ×1b
]
,
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Figure 5. The ch̄-double space X2
ch̄ .

where we denote by 1b ⊂ X2
b the lift of the diagonal in X2 to X2

b; see (2-4) and the subsequent paragraph
for the definition of X2

b and its boundary hypersurfaces lbb, ffb, rbb. First, recall from7 [Hintz 2022,
Definition 3.1] that lb2, rb2, ff2, tf2, sf2, and df2 are the lifts of [0, 1)× lbb, [0, 1)× rbb, [0, 1)× ffb,
{0}× ffb, {0}× X2

b , and {0}×1b, respectively; moreover, 1ch̄ denotes the lift of [0, 1)×1b. See Figure 5.
Then the Schwartz kernel of Opc,h(a) is a conormal distribution of order s −

1
4 at 1ch̄ , conormal down

to ff2, tf2, df2 with weights −l,−α,−b, and vanishes identically in a neighborhood of lb2, rb2, sf2.
The composition of two ch̄-quantizations is almost a ch̄-quantization itself; one merely has to allow

for additional residual terms: Define the space 9−∞

ch̄ (X) of residual operators to consist of all operators
whose Schwartz kernels are conormal sections of the right b-density bundle on X2

ch̄ , with weight 0 at ff2

and tf2, and with infinite order vanishing at lb2, rb2, df2, sf2. We then put

9s
ch̄(X) := Opch̄(S

s(ch̄T ∗Xch̄))+9
−∞

ch̄ (X),

where Opch̄ = (Opc,h)h∈(0,1); this gives the same space as [Hintz 2022, Definition 3.2]. More generally, we
define the quantization of symbols a ∈ Ss,l,α,b

1−δ,δ (
ch̄T ∗Xch̄) by the same formula (3-5); the space of residual

operators is now

9
−∞,l,α,−∞

ch̄ (X) :=

(
x

x + h

)−l

(x + h)−α9−∞

ch̄ (X).

Thus, we can now define the spaces

9
s,l,α,b
ch̄,1−δ,δ(X) := Opch̄(S

s,l,α,b
1−δ,δ (

ch̄T ∗Xch̄))+9
−∞,l,α,−∞

ch̄ (X),

9
s,l,α,b
ch̄ (X) := Opch̄(S

s,l,α,b(ch̄T ∗Xch̄))+9
−∞,l,α,−∞

ch̄ (X),

where in the second line b ∈ C∞(ch̄T ∗

sf Xch̄) is a variable-order function. Their Schwartz kernels can be
characterized as being conormal distributions (of order s −

1
4 and type (1, 0)) at 1ch̄ which are conormal

at ff2 (with weight −l), tf2 (with weight −α), and conormal of type 1 − δ at df2 (with weight −b), and

7We add subscripts “2” here in order to avoid confusion during the frequent changes between Xch̄ and X2
ch̄ later on.
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which vanish to infinite order at lb2, rb2, sf2. One can also consider subalgebras which are classical at tf,
i.e., the symbols are required to be classical conormal at tf, and the residual operators are required to
have classical conormal Schwartz kernels at tf2; we denote these algebras by a subscript “cl”, such as

9
s,l,α,b
ch̄,cl (X).

All such ps.d.o.s define h-dependent families of bounded8 linear maps on Ċ∞(X); compositions of
two such ps.d.o.s give a ps.d.o. in the same class, with orders given by the sum of the orders of the two
factors. The principal symbol map is

ch̄σs,l,α,b :9
s,l,α,b
ch̄,1−δ,δ(X)→ (Ss,l,α,b/Ss−1,l,α,b−1+2δ)(ch̄T ∗Xch̄),

similarly for the variable-order spaces (with δ > 0 then arbitrary), and it is a ∗-homomorphism. These
facts follow from a minor variation of [Hintz 2022, Proposition 3.9] (using weights instead of index sets),
with the statements about principal symbols following by continuity from the corresponding statements
for standard semiclassical operators (of type (1 − δ, δ)) in x > 0 and b-ps.d.o.s in h > 0; we leave the
details to the reader. We moreover have, for Aj ∈9

sj ,lj ,αj ,bj
ch̄,1−δ,δ (X), j = 1, 2, with principal symbols aj ,

Opc,h(i[A1, A2])− Opc,h(Ha1a2) ∈9
s−2,l,α,b−2+4δ
ch̄,1−δ,δ (X),

analogously for variable-order operators. One can evaluate Ha1a2 using the formula (3-4).
Since the principal symbol captures operators to leading order at the union of boundary hypersurfaces

ch̄ S∗Xch̄ ∪ ch̄T ∗

sf Xch̄ , the latter set is also the locus of the elliptic and wave front sets of an operator. Thus,
for A ∈9

s,l,α,b
ch̄ (X), we define

Ells,l,α,b
ch̄ (A), WF ′ l,α

ch̄ (A)⊂
ch̄ S∗Xch̄ ∪ ch̄T ∗

sf Xch̄

as follows: Ells,l,α,b
ch̄ (A) is the set of all ζ so that ch̄σs,l,α,b(A) is elliptic in a neighborhood of ζ , and

WF ′ l,α
ch̄ (A) is the complement of the set of ζ so that the full symbol of A lies in S−∞,l,α,−∞(ch̄T ∗Xch̄)

when localized to a sufficiently small neighborhood of ζ . In particular, we have WF ′ l,α
ch̄ (A)= ∅ if and

only if A ∈9
−∞,l,α,−∞

ch̄ (X). We omit the orders s, l, α, b and l, α when they are clear from the context.
The definitions for type-(1 − δ, δ) and variable-order operators are analogous. See Figure 6.

Finally, we define the corresponding weighted Sobolev spaces. As in (2-8), we first fix a weighted
b-density µ= xαµµ0, where 0< µ0 ∈ C∞(X;

b�1 X) and αµ ∈ R, and define

H 0
c,h(X;µ) := L2(X;µ), H 0,l,α,b

c,h (X;µ) :=

(
x

x + h

)l

(x + h)α
(

h
h + x

)b

H 0
c,h(X;µ).

These spaces depend on αµ, but are independent of µ0 (up to equivalence of norms). When the choice
of µ is clear from the context, we will omit it from the notation. For s ≥ 0, we then define H s,l,α,b

c,h (X) to
consist of all u ∈ H 0,l,α,b

c,h (X) so that Au ∈ H 0
c,h(X) for any (thus all) elliptic A ∈ 9

s,l,α,b
ch̄ (X). We note

for s ∈ N0 the equivalent characterization

H s,l,α,b
c,h (X)= {u ∈ H 0,l,α,b

c,h (X) : V1 · · · Vj u ∈ H 0,l,α,b
c,h (X) for all Vi ∈ Vch̄(Xch̄), 0 ≤ i ≤ j ≤ s}.

8Though not uniformly in h unless b ≥ 0.
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Figure 6. The shaded boundary hypersurfaces are the locus of the elliptic set as well as
of operator and distributional wave front sets; see also Figure 4.

For s< 0, the space H s,l,α,b
c,h (X) can be defined either as the dual space (H−s,−l,−α,−b

c,h (X))∗, or as the space
of all u1+ Au2 where u1, u2 ∈ H 0,l,α,b

c,h (X) and A ∈9−s
ch̄ (X). Lastly, for a variable order b∈ C∞(ch̄T ∗

sf Xch̄),
we pick b0 < inf b and put

H s,l,α,b
c,h (X) := {u ∈ H s,l,α,b0

c,h (X) : Au ∈ H 0
c,h(X)},

where A ∈9
s,l,α,b
ch̄ (X) is any elliptic operator; the space H s,l,α,b

c,h (X) is independent of the choices of b0

and A, up to equivalence of norms.
We can define Sobolev wave front sets in the usual manner. Let l, α ∈ R, and suppose that we are given

a distribution u ∈ H−∞,l,α,−∞

c,h (X), meaning u ∈ H−N ,l,α,−N
c,h (X) for some N ∈ R. Let s, b ∈ R. Then

WFs,l,α,b
ch̄ (u)⊂

ch̄ S∗Xch̄ ∪ ch̄T ∗

sf Xch̄

is the complement of all α so that there exists an operator A∈9
s,l,α,b
ch̄ (X), elliptic at α, so that Au ∈ H 0

c,h(X).
(The a priori assumption on u is familiar from the definition of the b-wave front set, see, e.g., [Vasy
2018, Definition 6.2], and ensures that one then also has Bu ∈ H 0

c,h(X) for any B ∈ 9
s,l,α,b
ch̄ (X) with

WF′

ch̄(B)⊂ Ell′ch̄(A).)

Remark 3.3 (operators on vector bundles). If E, F → X are smooth vector bundles, one can consider
semiclassical cone ps.d.o.s acting between sections of E, F , giving rise to classes 9s

ch̄(X; E, F) and
function spaces H s

c,h(X; E) etc. More generally, one can allow E, F to be vector bundles E, F → Xch̄

over the semiclassical single space, with Schwartz kernels of elements of 9s
ch̄(X; E, F) defined by taking

the tensor product of 9s
ch̄(X) over C∞(X2

ch̄) with C∞(X2
ch̄;π

∗

L E ⊠π∗

R F∗), where πL , πR : X2
ch̄ → Xch̄ are

the stretched left and right projections. Using such ps.d.o.s, one can define Sobolev spaces H s
c,h(X; E)

etc. in this generality.

Remark 3.4 (relationship with edge Sobolev spaces). For the propagation through cone points in the
spacetime setting, many authors [Melrose and Wunsch 2004; Melrose et al. 2008] have utilized Mazzeo’s
edge algebra [1991]. A typical example is the operator −D2

t +1g, where g = g(x, y, dy) is a conic
metric on a manifold X with boundary (see (4-2)); upon multiplication by x2, this is a second-order
differential operator, the principal part of which is a Lorentzian signature quadratic form in the collection
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(x Dt , x Dx , Dy) of edge vector fields. The membership u ∈ H 1
e (Rt × X, |dt dg|)— meaning that u, x Dt u,

x Dx u, Dyu ∈ L2 — can then be characterized by taking the Fourier transform in t as

û(σ ), x |σ |û(σ ), x Dx û(σ ), Dy û(σ ) ∈ L2(Rσ ; L2(X; |dg|)).

Introducing h = ⟨σ ⟩
−1, this is equivalent to the L2(Rσ ; L2(X)) membership of ((h +x)/h)û, x Dx û, Dy û.

Upon multiplication by h/(h + x), we thus find

u ∈ H 1
e (Rt × X, |dt dg|) ⇐⇒ û ∈ L2(Rσ ; H 1,0,0,1

c,⟨σ ⟩−1(X; |dg|)),

and the respective norms of u and û are equivalent. (One can show that similar spectral characterizations
of edge Sobolev spaces remain valid also for spaces with weights and with variable differential orders;
the details will be given elsewhere.)

3C. Restriction to tf. Symbolic arguments for the analysis of semiclassical cone PDEs Pu = f can
at best control u microlocally at ch̄ S∗Xch̄ ∪ ch̄T ∗

sf Xch̄ , i.e., modulo errors which are trivial at infinite
frequencies and at sf. Crucially however, such errors may well be nontrivial at tf, and thus nontrivial
(meaning in particular: not small) as h → 0. To obtain control at tf, one needs to invert the normal
operator N (P), defined in [Hintz 2022, §3.1.2] (denoted by Ntf(P) there) and recalled below. The
following result, already implicit in the definition of the normal operator in [Hintz 2022, §3.1.2], lays the
groundwork for the analysis of N (P).

Lemma 3.5 (restriction to tf: vector fields). The restriction map

Vb(Xch̄) ∋ V 7→ V |tf ∈ Vb(tf)

restricts to a surjective map
N : Vch̄(Xch̄)→ Vb,sc(tf) (3-6)

onto the space Vb,sc(tf) = (h/(h + x))Vb(tf) of vector fields which are b-vector fields near tf ∩ cf and
scattering vector fields near tf ∩ sf. The map (3-6) induces bundle isomorphisms

ch̄Ttf Xch̄ ∼=
b,scT tf, ch̄T ∗

tf Xch̄ ∼=
b,scT ∗tf. (3-7)

Proof. Near tf \ sf, we write V ∈ Vch̄(Xch̄) in the coordinates (h, x̂, y), with x̂ = x/h, as

V = a(h, x̂, y)x̂∂x̂ +

n−1∑
j=1

b j (h, x̂, y)∂y j ; (3-8)

see (3-1). The restriction to tf, in local coordinates given by h−1(0)= [0,∞)x̂ × Rn−1
y , is the b-vector

field

V |tf = a(0, x̂, y)x̂∂x̂ +

n−1∑
j=1

b j (0, x̂, y)∂y j . (3-9)

Conversely, every b-vector field W on [0,∞)× Rn−1 can be written in the form W = a(x̂, y)x̂∂x̂ +∑n−1
j=1 b j (x̂, y)∂y j , and upon taking a(h, x̂, y) and b j (h, x̂, y) to be smooth functions which restrict at

h = 0 to the coefficients a(x̂, y) and b j (x̂, y) of W defines a ch̄-vector field V through (3-8) whose
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restriction (3-9) to tf is precisely W. We remark moreover that (3-9) vanishes if and only if a = hã and b j
=

hb̃ j, where ã, b̃ j are smooth functions of (h, x̂, y), i.e., if and only if V vanishes at tf as a ch̄-vector field.
On tf\cf on the other hand, and using coordinates (ĥ, x, y) with ĥ = h/x , we can write V ∈Vch̄(Xch̄) as

V = ĥa(ĥ, x, y)(x∂x − ĥ∂ĥ)+

n−1∑
j=1

ĥb j (ĥ, x, y)∂y j , (3-10)

with smooth coefficients a, b1, . . . , bn−1. Restriction to tf, which in these coordinates is given by x = 0,
produces

V |tf = −a(ĥ, 0, y)ĥ2∂ĥ +

n−1∑
j=1

b j (ĥ, 0, y)ĥ∂y j , (3-11)

which is a scattering vector field on [0,∞)ĥ × Rn−1
y , as claimed. Conversely, every scattering vector

field W on [0,∞)× Rn−1 can be written in the form W = a(ĥ, y)ĥ2∂ĥ +
∑n−1

j=1 b j (ĥ, y)ĥ∂y j , and upon
taking a(ĥ, x, y) and b j (ĥ, x, y) to be smooth functions which restrict at x =0 to the coefficients −a(ĥ, y)
and b j (ĥ, y) of W defines a ch̄-vector field V through (3-10) whose restriction (3-11) to tf is W. Note
also that (3-11) vanishes if and only if a = xã and b j

= xb̃ j for smooth ã, b̃ j , i.e., if and only if V
vanishes at tf as a ch̄-vector field.

The surjectivity of (3-6) follows from these two calculations via a partition of unity subordinate
to a cover Xch̄ = U ∪ V, where U ∩ sf = ∅ and V ∩ cf = ∅. Our arguments above also prove that
ker N = (x + h)Vch̄(Xch̄). Thus, we have an isomorphism

Vch̄(Xch̄)/(x + h)Vch̄(Xch̄)→ Vb,sc(tf).

This induces the first isomorphism in (3-7) abstractly as follows: if p ∈ tf, then

b,scTptf = Vb,sc(tf)/IpVb,sc(tf),

where Ip ⊂ C∞(tf) is the ideal of functions vanishing at p. The ideal in C∞(Xch̄)/(x + h)C∞(Xch̄) of
elements that restrict to an element of Ip at tf is Jp/(x + h)C∞(Xch̄), where Jp ⊂ C∞(Xch̄) is the ideal
of functions vanishing at p. Since Vch̄(Xch̄)/JpVch̄(Xch̄) =

ch̄Tp Xch̄ , we obtain (3-7). Concretely, the
first isomorphism in (3-7) maps x̂∂x̂ , ∂y j in the coordinates used in (3-8) to x̂∂x̂ , ∂y j (cf. (3-9)), and
ĥ(x∂x − ĥ∂ĥ), ĥ∂y j in the coordinates used in (3-10) to −ĥ2∂ĥ , ĥ∂y j (cf. (3-11)). □

The map (3-6) induces a surjective map

N :

(
x

x + h

)−l( h
h + x

)−b

Diffk
ch̄(X)→

(
x̂

x̂ + 1

)−l

(x̂ + 1)b Diffk
b,sc(tf), x̂ :=

x
h
, (3-12)

into weighted b-scattering differential operators on tf. More generally:

Lemma 3.6 (restriction to the transition face: ps.d.o.s). Let s, l, b ∈ R. Restriction to tf2 ⊂ X2
ch̄

induces a surjective map N : 9
s,l,0,b
ch̄,cl (X) → 9

s,l,b
b,sc (tf).

9 More generally, if b ∈ C∞(ch̄T ∗

sf Xch̄), then

9Recall that the subscript “cl” refers to classicality at tf2, i.e., smoothness of the Schwartz kernels down to tf2.
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x̂ < x0h
−1

h

x̂0 ∞

π

x0

h

xsf

cf

tf

x < x0

0

∞
x̂

Figure 7. Illustration of the map π defined in (3-14).

b′
:= b|tf∩sf ∈ C∞(b,scT ∗

tf∩sf tf), and restriction to tf2 ⊂ X2
ch̄ induces a surjective map

N :9
s,l,0,b
ch̄,cl (X)→9

s,l,b′

b,sc (tf). (3-13)

Proof. This can be proved entirely on the level of Schwartz kernels, since memberships in 9ch̄ or 9b,sc are
characterized as conormal distributions with conormal regularity at various boundary hypersurfaces. The
point then is that tf2 is naturally diffeomorphic to the double space tf2

b,sc in the notation of (2-11), where
we note that tf ∼= [0,∞]x̂ ×∂X is indeed of the form (2-9). This is the route taken in [Hintz 2022, §3.1.2].

Alternatively, we can proceed explicitly for the symbolically nontrivial part using the quantization
map (3-5), and use the Schwartz kernel perspective only to deduce the surjectivity of the restriction map
for residual operators, 9−∞,l,0,−∞

ch̄,cl (X)→9
−∞,l,−∞

b,sc (tf). Indeed, on the level of symbols, note that with
x̂ = x/h, we have

Ss,l,0,b(ch̄T ∗Xch̄)=

(
x

x + h

)−l( h
h + x

)−b

Ss,0,0,0(ch̄T ∗Xch̄)

=

(
x̂

x̂ + 1

)−l

(x̂ + 1)b Ss,0,0,0(ch̄T ∗Xch̄),

and hence Lemma 3.5 implies that restriction to ch̄T ∗

tf Xch̄ induces a surjective map

Ss,l,0,b
cl (ch̄T ∗Xch̄)→ Ss,l,b(b,scT ∗tf).

But changing variables in the ch̄-quantization (3-5) to x̂ = x/h, x̂ ′
= x ′/h produces precisely the b-

scattering quantization (2-10). This proves the lemma for constant orders; the proof in the variable-order
case is the same. □

As a consequence, we can relate semiclassical cone Sobolev spaces to b-scattering Sobolev spaces. In
order to state this, we fix a collar neighborhood U = [0, x0)x × ∂X of ∂X , and define the map

π : [0, 1)h × [0,∞)x̂ × ∂X → [0, 1)h × [0,∞)x × ∂X, π(h, x̂, y)= (h, hx̂, y). (3-14)

Note that (hx̂, y) ∈ U if and only if x̂ < x0h−1. Now, since tf = [0,∞]x̂ × ∂X , the domain of π is
[0, 1)h × (tf \ sf); moreover, for any fixed x̂ ∈ [0,∞) and y ∈ ∂X , the point π(h, x̂, y) converges, as
h ↘ 0, to the point (x̂, y) on the transition face of Xch̄ . See Figure 7.
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With this setup, we have:

Corollary 3.7 (restriction to tf: Sobolev spaces). Suppose χ ∈ A0([0, 1)h × X) has compact support in
[0, 1)×U . Let 0< µ0 ∈ C∞(X;

b�1 X) and 0< µ̂0 ∈ C∞(tf; b�1 X), let αµ ∈ R, and put

µ := xαµµ0, µ̂ := x̂αµµ̂0.

(1) (constant orders) Let s, l, α, b ∈ R. Then

∥χu∥H s,l,α,b
c,h (X;µ)

∼ h
αµ
2 −α

∥π∗(χu)∥H s,l,b−α
b,sc (tf;µ̂), u ∈ H s,l,α,b

c,h (X;µ), (3-15)

in the sense that the left-hand side is bounded by a uniform constant (independent of h and u) times the
right-hand side and vice versa.

(2) (variable orders) Let b ∈ C∞(ch̄T ∗

sf Xch̄) denote a variable order, and let b′
:= b|tf∩sf. If b is invariant

under the lift of the dilation action (x, y) 7→ (λx, y) in U , then

∥χu∥H s,l,α,b
c,h (X;µ)

∼ h
αµ
2 −α

∥π∗(χu)∥H s,l,b′−α
b,sc (tf;µ̂).

For general b, and given δ > 0, there exists x0(δ) ∈ (0, x0] so that for χ ∈ C∞
c ([0, x0(δ))× ∂X), we have

C−1h
αµ
2 −α

∥π∗(χu)∥H s,l,b′−α−δ
b,sc (tf;µ̂) ≤ ∥χu∥H s,l,α,b

c,h (X;µ)
≤ Ch

αµ
2 −α

∥π∗(χu)∥H s,l,b′−α+δ
b,sc (tf;µ̂), (3-16)

where C does not depend on h, u.

Proof. By factoring out h−α, it suffices to consider the case α = 0. Consider first the case of constant
orders. Factoring out the appropriate powers of x/(x + h)= x̂/(x̂ + 1) and h/(h + x)= (x̂ + 1)−1, we
reduce to the case l = b = 0. For s = 0, the equivalence of norms (3-15) then follows from∫∫

|χu|
2 xαµ dx

x
dy =

∫∫
|π∗(χu)|2 hαµ x̂αµ dx̂

x̂
dy.

For s ∈ Z, the conclusion follows from (3-12); for general s ∈ R, use duality and interpolation.
For variable semiclassical orders b (and still with α=0), and under the assumption of dilation-invariance

near tf2, we first pick an elliptic operator Â ∈ 9
s,l,b′

b,sc (tf); we can then extend its Schwartz kernel to a
neighborhood of tf2 to be constant along the orbits of (h, x) 7→ (λh, λx), and then extend it further to an
elliptic operator A ∈9

s,l,0,b
ch̄,cl (X). In this manner, we obtain a right inverse (with special properties) of the

restriction map (3-13). For any fixed b0 < inf b, we thus have

∥χu∥
2
H s,l,0,b

c,h (X;µ)
∼ ∥χu∥

2
H

s,l,0,b0
c,h (X;µ)

+ ∥A(χu)∥2
H0

c,h(X;µ)

∼ h
αµ
2 (∥π∗(χu)∥2

H
s,l,b0
b,sc (tf;µ̂)

+ ∥ Â(π∗(χu))∥2
H0

b,sc(tf;µ̂)
)

∼ h
αµ
2 ∥χu∥

2
H s,l,b′

b,sc (tf;µ̂)
.

The lossy estimate (3-16) is a consequence of this, as the dilation-invariant extension of b′
−δ, resp. b′

+δ

is less, resp. greater than b in a sufficiently small (depending on b and δ) neighborhood of ∂X . □
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3D. Relative semiclassical b-regularity. We now make Remark 1.5 precise and demonstrate how to
combine the notions of semiclassical cone regularity and semiclassical b- (i.e., conormal) regularity.
Recall here that a semiclassical b-vector field is a particular type of h-dependent b-vector field on X ;
namely, it is a vector field on [0, 1)h × X which is horizontal and which vanishes at h = 0. In local
coordinates as in (2-1), such a vector fields can be written as

a(h, x, y)hx∂x +

n−1∑
j=1

b j (h, x, y)h∂y j . (3-17)

The main insight is that the semiclassical b-algebra can be embedded into the semiclassical cone algebra
via a phase space resolution; see Lemma 3.8 below. This can alternatively be phrased as a second
microlocalization of the semiclassical b-algebra at the zero section over ∂X at h = 0; see Remark 3.10.

First, we explain a slightly nonstandard perspective on semiclassical (b-)phase spaces. Let X be an
n-dimensional manifold with nonempty embedded boundary ∂X . Thus, paralleling Definition 3.1, we
define

Xbh̄ := [0, 1)× X,

Vbh̄(Xbh̄) := {V ∈ Vb(Xbh̄) : V is horizontal, V |h=0 = 0}.

It is then easy to see that Vbh̄(Xbh̄) is spanned over C∞(Xbh̄) by hV for V ∈ Vb(X) (see (3-17)),
where we identify V with an h-independent horizontal vector field on Xbh̄ . We then have Vbh̄(Xbh̄)=

C∞(Xbh̄;
bh̄T Xbh̄) for a rank-n vector bundle

bh̄T Xbh̄ → Xbh̄ .

In local coordinates [0,∞)x × Rn−1
y , a smooth frame of this bundle is hx∂x , h∂y1 , . . . , h∂yn−1 . We can

introduce fiber-linear coordinates on the dual bundle bh̄T ∗Xbh̄ by writing the canonical 1-form as

ξbh̄h−1 dx
x

+

n−1∑
j=1

(ηbh̄)j h−1dy j .

Thus, for example, the symbol of the semiclassical b-differential operator hx Dx is ξbh̄ .10 Denote fiber
infinity of the radial compactification bh̄T ∗Xbh̄ by bh̄ S∗Xbh̄ . Given a symbol

a ∈ Ss,l,b(bh̄T ∗Xbh̄)= x−lh−b Ss,0,0(bh̄T ∗Xbh̄)

(i.e., a is conormal with weight −s at bh̄ S∗Xbh̄ , conormal with weight −l at bh̄T ∗

[0,1)×X Xbh̄ , and conormal
with weight −b at h = 0), we can then define the semiclassical quantization

(Opb,h(a)u)(x, y) := (2π)−n
∫∫∫∫

exp
(

i
[

x − x ′

hx
ξbh̄ +

y − y′

h
· ηbh̄

])
φ

(∣∣∣∣log
x
x ′

∣∣∣∣)φ(|y − y′
|)

a(x, y, ξbh̄, ηbh̄)u(x ′, y′)
dx ′

hx ′

dy′

hn−1 dξbh̄ dηbh̄ .

10By contrast, the standard convention is to introduce fiber-linear coordinates (ξb, ηb) on bT ∗X as in (2-3) and declare the
principal symbol of hx Dx to be ξb; the translation to the present convention is accomplished by using (the adjoint of) the bundle
isomorphism bh̄ T Xbh̄ ∼= [0, 1)h ×

bT X induced by division by h (i.e., induced by the map Vbh̄(Xbh̄) ∋ V 7→ (h−1V )h∈[0,1)).
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Figure 8. Left: The resolution cbh̄T ∗Xch̄ of the fiber-compactified semiclassical cone
phase space at fiber infinity over tf; see (3-19). (Unlike in Figure 4, we show the full
compactified fibers here.) Right: The resolution of the fiber-compactified semiclassical
b-phase space at x = h = 0 and at the zero section over x = h = 0; see (3-20).

If we make the change of variables

(ξbh̄, ηbh̄)= (x + h)(ξch̄, ηch̄), (3-18)

see (3-2), this exactly matches the ch̄-quantization (3-5). The key point is now that this match has a clean
interpretation on the level of symbol classes on a joint resolution of the semiclassical cone and b-phase
spaces:

Lemma 3.8 (relationship between semiclassical cone and b-phase spaces). Define the cbh̄-phase space

cbh̄T ∗Xch̄ := [ch̄T ∗Xch̄;
ch̄ S∗

tf Xch̄]. (3-19)

Denote by C := bh̄T ∗

{0}×∂X Xbh̄ the semiclassical b-phase space over the corner h = x = 0, and denote by
oC ⊂ C the zero section. Then the identity map on (0, 1)h ×T ∗X◦ extends by continuity to a diffeomorphism

cbh̄T ∗Xch̄
∼=
−→ [bh̄T ∗Xbh̄; C; oC]. (3-20)

We refer to the front face of (3-19) as fbf (“finite b-frequencies”). See Figure 8.

Proof of Lemma 3.8. We work in polar coordinates ρ = x + h, θ = (x, h)/|(x, h)| in the (x, h)-variables.
Thus, local coordinates near ch̄T ∗

tf Xch̄ are (ρ, y, θ, ζch̄), ζch̄ := (ξch̄, ηch̄), while local coordinates near
the front face of [bh̄T ∗Xbh̄; C], away from fiber infinity, are (ρ, y, θ, ζbh̄), ζbh̄ = (ξbh̄, ηbh̄). Coordinates
near the interior of the front face of the final blow-up in (3-20) are then (ρ, y, θ, ζbh̄/ρ)= (ρ, y, θ, ζch̄);
see (3-18). Near the intersection of the lift of oC with that of C, smooth coordinates can be con-
structed by introducing polar coordinates in the fiber variables, giving (ρ/|ζbh̄|, y, θ, |ζbh̄|, ζbh̄/|ζbh̄|);
this matches, up to a permutation, the local coordinates on cbh̄T ∗Xch̄ near the lift of ch̄T ∗

tf Xch̄ given by
(ρ/|ζch̄|

−1, y, θ, |ζch̄|
−1, ζch̄/|ζch̄|). Lastly, near the lift of fiber infinity on the resolved b-phase space,

we can use coordinates (ρ, y, θ, |ζbh̄|
−1, ζbh̄/|ζbh̄|), which matches the local coordinates near the lift of

ch̄ S∗Xch̄ given by (ρ, y, θ, |ζch̄|
−1/ρ, ζch̄/|ζch̄|). □
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Figure 9. Illustration of the orders of (symbols of) cbh̄-pseudodifferential operators
in (3-21) and Definition 3.9.

The blow-up of a boundary face does not enlarge the space of conormal distributions, but allows for
more precise accounting of weights. Concretely, define for s, s ′, l, α, b ∈ R the symbol space

Ss,s′,l,α,b(cbh̄T ∗Xch̄), (3-21)

where the orders refer, in this order, to fiber infinity, the front face fbf of (3-19), and the phase space over
the lifts of cf, tf and sf, see Figure 9. Then we have

Ss,l,α,b(ch̄T ∗Xch̄)= Ss,s+α,l,α,b(cbh̄T ∗Xch̄),

Ss,s′,l,α,b(cbh̄T ∗Xch̄)⊂ Smax(s,s′
−α),l,α,b(ch̄T ∗Xch̄).

(3-22)

Note that the second inclusion is false if we use spaces of classical symbols on both sides; after all,
blow-ups do enlarge the space of smooth functions (but preserve the space of conormal functions). Since
we worked with general conormal symbols and ps.d.o.s in Section 3B, we can immediately quantize
symbols on the cbh̄-phase space:

Definition 3.9 (cbh̄-pseudodifferential operators). Let s, s ′, l, α, b ∈ R. Then we define

9
s,s′,l,α,b
cbh̄ (X) := Opch̄(S

s,s′,l,α,b(cbh̄T ∗Xch̄))+9
−∞,l,α,−∞

ch̄ (X).

Operators with variable semiclassical orders b ∈ ch̄T ∗

sf Xch̄ are defined similarly.

Remark 3.10 (second microlocalization). In view of Lemma 3.8, one can view 9cbh̄(X) as a second
microlocalization of the (conormal) semiclassical b-algebra 9bh̄(X) at the zero section over h = x = 0.
In terms of symbol classes, we have

Ss,l,b(bh̄T ∗Xbh̄)= Ss,l+b,l,l+b,b(cbh̄T ∗Xch̄),

Ss,s′,l,α,b(cbh̄T ∗Xch̄)⊂ Ss,l,max(b,s′
−l,α−l)(bh̄T ∗Xbh̄),

(3-23)

and analogous statements hold for ps.d.o.s. However, similarly to [Vasy 2021b, §5] in the context of
b- and scattering algebras, it is analytically advantageous to resolve 9ch̄(X) as in Definition 3.9, as the
second microlocal/resolved algebra involves global (noncommutative) phenomena at h = x = 0 (i.e.,
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the lift of tf, associated to which is the normal operator homomorphism into a noncommutative algebra)
which are directly inherited from 9ch̄(X), but which are not visible on the level of 9bh̄(X).

For two ps.d.o.s Aj ∈9
sj ,s′

j ,lj ,αj ,bj

cbh̄ (X), one can compute the full symbol, i.e., the symbol modulo

S−∞,l1+l2,α1+α2,−∞(ch̄T ∗Xch̄)= S−∞,−∞,l1+l2,α1+α2,−∞(cbh̄T ∗Xch̄),

of the composition A1 ◦ A2 ∈ 9
max(s1,s′

1−α1)+max(s2,s′

2−α2),l1+l2,α1+α2,b1+b2
cbh̄ (X) in local coordinates using

the usual symbol expansion to be the sum of products of derivatives of the full symbols of the two factors
along b-vector fields on ch̄T ∗Xch̄ which vanish, as b-vector fields, at ch̄ S∗Xch̄ (thus vanishing as b-vector
fields at the lift of ch̄ S∗Xch̄ as well as at the front face of (3-19)) and at the lift of ch̄T ∗

sf Xch̄ . Plugging the
cbh̄-symbols of A1, A2 into such an expansion thus shows that, in fact,

A1 ◦ A2 ∈9
s1+s2,s′

1+s′

2,l1+l2,α1+α2,b1+b2
cbh̄ (X).

Similar arguments show that the principal symbol map

cbh̄σ :9
s,s′,l,α,b
cbh̄ (X)→ (Ss,s′,l,α,b/Ss−1,s′

−1,l,α,b−1)(cbh̄T ∗Xch̄)

is well-defined (and a *-homomorphism as usual). One can moreover define an associated scale of Sobolev
spaces

H s,s′,l,α,b
cb,h (X)= {u ∈ H min(s,s′

−α),l,α,b
c,h (X) : Au ∈ L2(X) for all A ∈9

s,s′,l,α,b
cbh̄ (X)}. (3-24)

The relationships (3-22) and (3-23) imply:

Proposition 3.11 (relationships between Sobolev spaces). Let s, s ′, l, α, b ∈ R. Define L2 using the
volume density µ= xαµµ0, 0< µ0 ∈ C∞(X;

b�1 X), with αµ ∈ R. Then

H s,l,α,b
c,h (X)= H s,s+α,l,α,b

cb,h (X),

H s,l,b
b,h (X)= H s,l+b,l,l+b,b

cb,h (X).

One can conversely embed H s,s′,l,α,b
cb,h (X) into H s̃,l̃,α̃,b̃

c,h (X) and H s̃,l̃,b̃
b,h (X) under suitable inequalities

(which can be read off from Proposition 3.11) between the orders. In particular, this allows us to give
a direct proof of [Hintz 2022, Proposition 3.18] on the relationship between Hc,h(X) and Hb,h(X); for
instance, for s, l, α ∈ R (denoted by s, α, τ in the reference), we have

H s,l,α,0
c,h (X)= H s,s+α,l,α,0

cb,h (X)⊂ H s,l,min(0,α−l,α−l+s)
b,h (X), (3-25)

which implies (and is slightly sharper than) the first part of [Hintz 2022, Proposition 3.18]. If one wishes
to translate estimates on cone spaces to b-spaces, the advantage of the resolved cbh̄-Sobolev spaces,
compared with ch̄-Sobolev spaces, is that one can reduce losses in powers of h (or in regularity) in the
conversion; as a simple concrete example, we have

H s,s′
+α,l,α,0

cb,h (X)⊂ H s,l,min(0,α−l,α−l+s′)
b,h (X),

which for s ′
≥ −s− gives an improved bound at h = 0, and for s ′

≥ 0 a bound which is independent of
the differential orders s, s ′, unlike (3-25), which gets lossier as s decreases.
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Remark 3.12 (variable semiclassical orders). The above discussion applies, mutatis mutandis, to symbols
and operators with variable semiclassical orders b as well; here b is a smooth function on the lift of
ch̄T ∗

sf Xch̄ to cbh̄T ∗Xch̄ .

4. Microlocal propagation estimates at cone points and generalizations

Let n ≥ 1. We work locally near a cone point; thus on an n-dimensional manifold

X = [0, 2x0)x × Y, x0 > 0, (4-1)

where Y is a closed connected (n−1)-dimensional manifold, and where X◦
= (0, 2x0)× Y is equipped

with a smooth Riemannian metric g of the form

g = dx2
+ x2k(x, y, dy), (4-2)

where k ∈ C∞([0, x0); C∞(Y, S2T ∗Y )) is a smooth family of smooth Riemannian metrics on the cross
section Y. Any metric which locally near ∂X is of the form dx̃2

+ x̃2k(x̃, y, dx̃, dy), with k|∂X a
Riemannian metric on ∂X , is of the form (4-2) in a suitable smooth collar neighborhood of ∂X , as shown
in [Melrose and Wunsch 2004, §1].

While the above X is not compact, all calculations and estimates will take place in the compact subset
[0, x0] × Y of X ; thus, we shall commit a slight abuse of notation and write ∥u∥H s

c,h(X) etc. for norms of
functions u on X which will always have support in x−1([0, x0]). We fix the volume density

µ= |dg| = xn−1
|dx dk| ∈ xnC∞(X;

b�1 X) (4-3)

on X , and define Sobolev spaces relative to L2(X) := L2(X;µ). We moreover define

x̂ :=
x
h
, ĝ := dx̂2

+ x̂2k(0, y, dy),

ĥ := x̂−1
=

h
x
, µ̂ := |dĝ| = x̂n−1

|dx̂ dk(0)|.
(4-4)

4A. Admissible operators. The class of operators of interest to us is the following.

Definition 4.1 (admissible operators). We call an h-dependent differential operator Ph,z on X◦ admissible
if it is of the form

Ph,z = h21g − z + h2x−2 Q1,z + hx−1q0,z, (4-5)

where Q1,z ∈ Diff1
b(X) and q0,z ∈ C∞(X) depend smoothly on z ∈ C, |z − 1|< Ch.

We shall henceforth take z = z(h) to be a smooth function of h ∈ [0, 1) with z(0)= 1.

Remark 4.2 (vector bundles). Our analysis applies also to operators acting on sections of a vector bundle
E → X ; we explain the necessary (largely notational) changes in Remark 4.11.

Using local coordinates y ∈ Rn−1 on ∂X , let us write

Q1,z = q1,z(x, y, x Dx , Dy), q0,z = q0,z(x, y).
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The normal operator of Ph,z is

N (P) :=1ĝ − 1 + x̂−2q1,1(0, y, x̂ Dx̂ , Dy)+ x̂−1q0,1(0, y)

= D2
x̂ − i(n − 1)Dx̂ + x̂−21k(0) − 1 + x̂−2q1,1(0, y, x̂ Dx̂ , Dy)+ x̂−1q0,1(0, y) (4-6)

on tf = [0,∞]x̂ × ∂X .11

Lemma 4.3 (structural properties). We have

Ph,z ∈

(
x

x + h

)−2

Diff 2
ch̄(X) and N (P) ∈

(
x̂

x̂ + 1

)−2

Diff 2
b,sc(tf).

Furthermore, we have

Ph,z − N (P) ∈ (x + h)
(

x
x + h

)−2

Diff 2
ch̄(X),

where we abuse notation and write N (P) ∈ (x/(x + h))−2 Diff 2
ch̄(X) for any operator whose normal

operator is equal to N (P).

Proof. In local coordinates y1, . . . , yn−1 on Y, the metric k(x, y, dy) is given by an (n−1)× (n−1)
matrix (ki j ) with determinant |k|> 0 and inverse (ki j ), and we have

1g = |k|
−

1
2 x−n+1 Dx(|k|

1
2 xn−1 Dx)+ x−21k(x)

= D2
x − i(n − 1 + xγ )x−1 Dx +

n−1∑
i, j=1

x−2
|k|

−
1
2 Dyi (|k|

1
2 ki j Dy j ),

where γ =
1
2∂x log |k| ∈ C∞. Since

h Dx =
x + h

x
·

h
h + x

x Dx ∈
x + h

x
Vch̄(Xch̄),

hx−1 Dyi =
x + h

x
·

h
h + x

Dyi ∈
x + h

x
Vch̄(Xch̄),

hx−1
=

x + h
x

·
h

h + x
∈

x + h
x

Diff1
ch̄(X),

(4-7)

we find h21g ∈ (x/(x +h))−2 Diff 2
ch̄(X), and its normal operator is D2

x̂ −i(n−1)x̂−1 Dx̂ + x̂−21k(0)=1ĝ .
The remaining terms in (4-5) are analyzed similarly. □

4B. Characteristic set, Hamilton flow. Using the fiber-linear coordinates (ξch̄, ηch̄) on ch̄T ∗Xch̄ from (3-2),
we can read off the principal symbol from (4-7) to be

p :=

(
x

x + h

)2

·
ch̄σ(Ph,z)= ξ 2

ch̄ + |ηch̄|
2
k−1 − 1.

(Here, we use that z = 1 +O(h), hence the principal symbol of z is 1.) This is elliptic at fiber infinity
ch̄ S∗Xch̄ , but has a nonempty characteristic set at finite frequencies. Near sf, it is more convenient to use

11This can be defined more invariantly as an operator on the inward pointing normal bundle +N∂X , which is the natural place
for the b-normal operators q1,1(0, y, x Dx , Dy) and q0,1(0, y) to live; see [Melrose 1993, §4.15; Hintz 2022, §3] for details.
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Σ

Rout

Rin

ξ

η
ĥ

x

Figure 10. Illustration of the flow along the rescaled Hamilton vector field H, see (4-9),
through the radial sets Rin and Rout. Shown is the characteristic set, the fibers of which
over sf are spheres (here 1-spheres); one fiber is drawn as a dotted circle. Also indicated
is (in gray) the linearization of H at Rin/out over tf.

the fiber coordinates (ξ, η) from (3-3), and ĥ = h/x, x, y as coordinates on the base, so that

p = ξ 2
+ ki j (x, y)ηiηj − 1,

6 = p−1(0)∩ ch̄T ∗

sf Xch̄ = {ĥ = 0, ξ 2
+ |η|2k−1 = 1}.

(4-8)

Using (3-4) and writing |η|2 = ki jηiηj , we then compute

H := ĥ−1 Hp = 2ξ(x∂x − ĥ∂ĥ − η∂η)+ (2|η|2 − x∂x ki jηiηj )∂ξ + 2ki jηi∂y j − (∂yk ki j )ηiηj∂ηk . (4-9)

Restricted to x = 0 as a b-vector field on ch̄T ∗Xch̄ , this is

H|x=0 = 2ξ(x∂x − ĥ∂ĥ − η∂η)+ 2|η|2∂ξ + (2ki jηi∂y j − (∂yk ki j )ηiηj∂ηk ). (4-10)

This vanishes as a standard vector field on ĥ = x = 0 if and only if η = 0. The intersection of η−1(0)
with 6 ∩ x−1(0) has two components: the incoming and outgoing radial sets Rin/out ⊂

ch̄T ∗

sf Xch̄ ,

Rin := {(ĥ, x, y, ξ, η) : ĥ = 0, x = 0, y ∈ ∂X, ξ = −1, η = 0},

Rout := {(ĥ, x, y, ξ, η) : ĥ = 0, x = 0, y ∈ ∂X, ξ = +1, η = 0}.
(4-11)

These are saddle points for the rescaled Hamilton vector field H since

x−1Hx = ∓2, ĥ−1Hĥ = ±2, |η|−2H|η|2 = ±4 at Rin/out. (4-12)

(The top sign is for “in”, the bottom sign for “out”.) See Figure 10.
Over ch̄T ∗

tf Xch̄ , the set Rin is a radial source (though this really only makes sense infinitesimally at
tf ∩ sf since the ch̄-calculus is not symbolic over tf \ sf), and Rout is a radial sink. This matches precisely
the familiar situation of scattering theory on the asymptotically conic space (tf, ĝ), see [Melrose 1994],
which we discuss in detail in Section 4C.

In x > 0, the flow of H is a reparametrization of the flow of h−1 Hp = x−1H. Integral curves of H
starting over a point in X◦ never reach ∂X in finite time. Instead, we consider

Hsf := h−1 Hp|ĥ=0

= 2ξ(∂x − x−1η∂η)+ (2x−1
|η|2 − ∂x ki jηiηj )∂ξ + x−1(2ki jηi∂y j − (∂yk ki j )ηiηj∂ηk ). (4-13)
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Given y0 ∈ ∂X , the curves
γI,y0(s) := (−2s, y0,−1, 0), s ∈ (−x0, 0),

γO,y0(s) := (2s, y0, 1, 0), s ∈ (0, x0),
(4-14)

are integral curves of Hsf. Here, γI,y0 strikes ∂X at s = 0 at the incoming radial set over point y0, whereas
γO,y0 emanates from the outgoing radial set over y0 at s = 0.

Lemma 4.4 (incoming/outgoing null-bicharacteristics). Let 0<s0<x0. Suppose γ :(0, s0)→6∩
ch̄T ∗

sf\tf Xch̄

is an integral curve of Hsf tending to ∂X as s ↘ 0 in the weak sense that lim infs↘0 x(γ (s))= 0. Then in
the coordinates (x, y, ξ, η), γ is necessarily of the form γ (s)= γO,y0(s) for some y0 ∈ ∂X. Similarly, if
γ : (−s0, 0)→6∩

ch̄T ∗

sf\tf Xch̄ is an integral curve of Hsf with lim infs↗0 x(γ (s))= 0, then γ (s)= γI,y0(s)
for some y0 ∈ ∂X.

Proof. The vector field

xHsf = H|x=0 = 2ξ(x∂x − η∂η)+ (2|η|2 − x∂x ki jηiηj )∂ξ + (2ki jηi∂y j − (∂yk ki j )ηiηj∂ηk )

vanishes identically at Rout. We study the behavior of xHsf as a vector field on 6 near Rout; we may
use the coordinates x ≥ 0, y ∈ Rn−1, and η ∈ Rn−1, in which ξ is determined by p = 0 as the positive
square root of 1 − ki j (x, y)ηiηj . The linearization of (xHsf )|6 in the normal directions at Rout, defined
by mapping d f to d(xHsf f ) where f ∈ C∞(6), f |Rout = 0, maps

dx 7→ 2 dx, dη 7→ −2 dη,

and is thus hyperbolic; the unstable and stable subbundles of TRout6 for the (xHsf )|6-flow are correspond-
ingly the span of ∂x and ∂η. The unstable manifold theorem, in the form given in [Hirsch et al. 1977,
Theorem 4.1], thus applies inside 6 at Rout and produces an unstable manifold whose tangent space at a
point ζ ∈Rout is the sum of Tζ (Rout) and R∂x . (See the proof of [Melrose and Wunsch 2004, Theorem 1.2]
for similar, albeit more general, considerations.) Since the manifold Rout∪{γO,y0(s) : y0 ∈ ∂X, s ∈ (0, s0)}

is H-invariant with the same tangent space, it must be equal to this unstable manifold. The first part of the
lemma follows from this observation; the second part is completely analogous. □

Definition 4.5 (generalized broken bicharacteristics). Denote by 6̇ the topological space defined as the
quotient 6/∂6. Let I ⊂ R denote an open interval. We then say that a continuous curve γ : I → 6̇ is a
generalized broken bicharacteristic (GBB) if either γ (I )⊂6 \ ∂6 and γ is an integral curve of Hsf, or
there exist s0 ∈ I and yI , yO ∈ ∂X so that γ (s0 + t)= γO,yO (t) for t > 0, s0 + t ∈ I and γ (s0 + t)= γI,yI (t)
for t < 0, s0 + t ∈ I .12 If yO is at distance π from yI with respect to the metric k(0) on ∂X , we say that
γ is a geometric GBB; otherwise γ is a strictly diffractive GBB.

See Figure 11. We remark without proof that geometric GBB are uniform limits of Hsf-integral curves
just barely missing ∂X (see also [Melrose and Wunsch 2004, Lemma 1.5]).

12In light of Lemma 4.4, this is equivalent to the condition that γ is an Hsf-integral curve outside of ∂6, but may enter and
exit the characteristic set over ∂X at different points.
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∂X
∂X

Figure 11. The projection of strictly diffractive (blue) and geometric (red) GBBs to
the base X , as well as geodesics (green) just barely missing the cone tip ∂X . Left: the
geometric picture, where ∂X is collapsed to a point. Right: the resolved picture.

4C. Scattering theory for the normal operator. Propagation through the “cone point” ∂X will require
global control of the normal operator, namely the absence of purely outgoing or purely incoming solutions
(depending on the direction in which one wants to propagate estimates). Let us define fiber-linear
coordinates on the scattering cotangent bundle scT ∗(tf \ cf) via

ξsc
dĥ

ĥ2
+

n−1∑
j=1

(ηsc)j
dy j

ĥ
.

Via the identification (3-7), the radial sets Rin/out defined in (4-11) are then equal to the sets scRin/out ⊂

scT ∗(tf \ cf), where
scRin := {(ĥ, y, ξsc, ηsc) : ĥ = 0, y ∈ ∂X, ξsc = +1, ηsc = 0},

scRout := {(ĥ, y, ξsc, ηsc) : ĥ = 0, y ∈ ∂X, ξsc = −1, ηsc = 0}.

Invariantly, Rin =
scRin is the graph of −(x/h)(dx/x)=−d(ĥ−1)= dĥ/ĥ2, and likewise for Rout =

scRout

but with an overall sign switch.

Definition 4.6 (conditions on the normal operator). Let l, l ′ ∈ R, and recall (4-4).

(1) We say that N (P) is injective at weight l on outgoing functions if the only solution u to the equation
N (P)u = 0 satisfying u ∈

⋃
N∈R H∞,l,−N

b,sc (tf; µ̂) and WFsc(u)⊂
scRout is trivial: u ≡ 0.

(2) We say that N (P)∗ (the formal adjoint with respect to L2(tf; µ̂)) is injective at weight l ′ on incoming
functions if the only solution v to the equation N (P)∗v = 0 satisfying v ∈

⋃
N∈R H∞,l ′,−N

b,sc (tf; µ̂)
and WFsc(v)⊂

scRin is trivial: v ≡ 0.

(3) If condition (1) and condition (2) with l ′ = −l + 2 hold, we say that N (P) is invertible at weight l.

The wave front set assumptions here are the microlocal formulations of outgoing/incoming radiation
conditions. In the special case that N (P) = 1ĝ − 1, these assumptions are indeed equivalent to the
standard Sommerfeld radiation condition. Our goal is to elevate the qualitative conditions of Definition 4.6
to quantitative estimates; see Lemma 4.8.

Changing variables in the expression (4-6) for N (P) to (ĥ, y) gives

N (P)= (ĥ2 Dĥ)
2
+ i(n − 1)ĥ2 Dĥ + ĥ21k(0) − 1 + ĥ2q1,1(0, y,−ĥ Dĥ, Dy)+ ĥq0,1(0, y),
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with scattering principal symbol at scT ∗

tf∩sftf given by

ptf = ξ 2
sc + |ηsc|

2
− 1. (4-15a)

Its Hamilton vector field is

Htf := ĥ−1 Hptf = 2ξsc(ĥ∂ĥ + ηsc∂ηsc)− 2|ηsc|
2∂ξsc + ĥ−1 H|ηsc|2 (4-15b)

by (2-7), which has a source, resp. sink structure at scRin, resp. scRout within the characteristic set p−1
tf (0).

Recall then that microlocal propagation estimates near the radial sets scRin/out require suitable orders —
here the decay order — of weighted Sobolev spaces to be above or below certain threshold values; see
[Melrose 1994, §9], [Vasy 2018, §4.7], and [Dyatlov and Zworski 2019, Appendix E.4].

Definition 4.7 (threshold quantities). Define the functions

r1 := Im
(

bσ1(Q1,1)
(
−

dx
x

)∣∣∣
x=0

)
∈ C∞(∂X),

r0 := Im(q0,1|x=0) ∈ C∞(∂X).

Then the threshold quantities rin/out ∈ R are defined as

rin := −
1
2 +

1
2 sup
∂X
(r1 + r0), rout := −

1
2 +

1
2 inf
∂X
(r1 − r0).

We next recall that at the other end of tf, i.e., the “b-end” tf ∩ cf, the weights l, l ′ in Definition 4.6 are
related to the boundary spectrum of N (P). Concretely, from the expression (4-6), we read off

x̂2 N (P) ∈ (x̂ Dx̂)
2
− i(n − 2)x̂ Dx̂ +1k(0) + q1,1(0, y, x̂ Dx̂ , Dy)+ x̂ Diffb(tf \ sf). (4-16)

Its (dilation-invariant in x̂) normal operator at x̂ = 0 is given by the sum of the first four terms, and the
Mellin transformed normal operator family is defined by formally replacing x̂ Dx̂ by multiplication with
λ ∈ C, giving

N̂ (P)(λ, y, Dy) := λ2
− i(n − 2)λ+1k(0) + q1,1(0, y, λ, Dy). (4-17)

This is a holomorphic family in λ taking values in elliptic elements of Diff 2(∂X). The boundary spectrum
of N (P) is then

specb(N (P)) := {λ ∈ C : N̂ (P)(λ) : C∞(∂X)→ C∞(∂X) is not invertible};

it is a discrete subset of C, and its intersection with |Im λ|< C is finite for any fixed value of C [Melrose
1993, §5.3]. Let us now put

3 := {− Im λ : λ ∈ specb(N (P))}; (4-18)

this is a discrete subset of R.

Lemma 4.8 (estimates for N (P)). Let s, l ∈ R and r ∈ C∞(scT ∗

tf∩sf tf). Suppose that r is constant near
scRin/out and satisfies r> rin at scRin, r< rout at scRout. Suppose moreover that Htf r≤ 0 and

√
−Htf r∈ C∞

on scT ∗

tf∩sf tf ∩ {ptf = 0} in the notation of (4-15a)–(4-15b).
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(1) If N (P) is injective at weight l on outgoing functions and l − n/2 /∈3, then

∥u∥H s,l,r
b,sc (tf;µ̂)

≤ C∥N (P)u∥H s−2,l−2,r+1
b,sc (tf;µ̂) (4-19)

for all u for which both sides are finite.

(2) If N (P)∗ is injective at weight −l + 2 on incoming functions and −l + 2 − n/2 /∈3, then

∥v∥H−s+2,−l+2,−r−1
b,sc (tf;µ̂) ≤ C∥N (P)∗v∥H−s,−l,−r

b,sc (tf;µ̂) (4-20)

for all v for which both sides are finite.

(3) If N (P) is invertible at weight l and l − n/2 /∈3,13then the operator N (P) is invertible as a map

{u ∈ H s,l,r
b,sc (tf; µ̂) : N (P)u ∈ H s−2,l−2,r+1

b,sc (tf; µ̂)} → H s−2,l−2,r+1
b,sc (tf; µ̂).

Proof. This is a standard application of elliptic b-theory at tf ∩ cf and radial point estimates at tf ∩ sf in
the scattering calculus as in [Melrose 1994] and [Vasy 2018, §4.8].

We first prove symbolic estimates for N (P) and N (P)∗ which do not use the injectivity assumptions. In
tf\sf, the operator N (P) is an elliptic weighted b-differential operator. Let φj ∈ C∞

c (tf\sf), j = 0, 1, 2, 3,
be identically 1 near tf ∩ cf, with φ j+1 ≡ 1 on suppφj . Then, only recording the b-regularity and the
weight at cf, we have

∥φ1u∥H s,l
b

≤ C(∥φ2 N (P)u∥H s−2,l−2
b

+ ∥φ2u∥H−N ,l
b

) (4-21)

for any fixed N. Now, recalling (4-4), we have

H s,l
b ([0,∞)x̂ × ∂X; µ̂)= H

s,l− n
2

b

(
[0,∞)× ∂X;

∣∣∣dx̂
x̂

dk(0)
∣∣∣).

Using now that l − n/2 /∈3, we can estimate

∥φ2u∥H−N ,l
b

≤ C∥x̂−2 N̂ (P)(x̂ Dx̂ , y, Dy)(φ2u)∥H−N−2,l−2
b

by passing to the Mellin transform. Since N (P)− x̂−2 N̂ (P)(x̂ Dx , y, Dy) ∈ x̂−1 Diffb by (4-16), this can
be plugged into (4-21) and yields (putting back the scattering decay orders, which at this point are still
arbitrary due to the localizers)

∥φ1u∥H s,l,r
b,sc

≤ C(∥φ3 N (P)u∥H s−2,l−2,r+1
b,sc

+ ∥φ3u∥H−N ,l−1,−N
b,sc

). (4-22)

Turning to the scattering end, and with ψj = 1 −φj , we claim that (now with the b-decay orders being
arbitrary)

∥ψ1u∥H s,l,r
b,sc

≤ C(∥ψ0 N (P)u∥H s−2,l−2,r+1
b,sc

+ ∥ψ0u∥H−N ,−N ,−N
b,sc

). (4-23)

This is proved by means of the scattering calculus by a combination of elliptic estimates (controlling
ψ1u away from 6tf := p−1

tf (0)), radial point estimates at scRin/out, and microlocal real-principal-type
estimates on 6tf \ (

scRin ∪
scRout). We only sketch the argument for the radial points in order to explain

the emergence of the threshold condition on r; details can be found, e.g., in [Vasy 2018, §4.7].

13This condition is automatically satisfied since, for l − n/2 /∈ 3, the operator N (P) is not even Fredholm; see
[Melrose 1993, §6.2].
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We work in [0, 1)ĥ×∂X ⊂ tf, and consider estimates near scRin. Fixing a cutoff function χ ∈C∞
c
([

0, 1
2

))
,

identically 1 near 0 and with χ ′
≤ 0 on

[
0, 1

2

)
, we consider a commutant

a := ĥ−2r−1χ(ĥ/δ)χ(|ηsc|
2)χ((ξsc − 1)2),

A :=
1
2(Opsc(a)+ Opsc(a)

∗) ∈9−∞,2r+1
sc ,

where δ > 0 controls the localization near ĥ = 0. We compute the commutator

2 Im⟨N (P)u, Au⟩ =

〈(
i[N (P), A] + 2

N (P)− N (P)∗
2i

A
)

u, u
〉
.

(This holds directly for sufficiently decaying u, and for u as in the statement of the lemma can be justified
using a regularization argument.) The principal symbol of i[N (P), A] is equal to ĥHtf a. When Htf falls
on the cutoff in ĥ, the result is supported in the elliptic set of N (P), and hence easily controlled. When
Htf falls on either of the second or third cutoff functions, the result is ≤ 0 on supp a in view of the source
character of scRin (or directly using (4-15b)), provided δ > 0 is sufficiently small; at scRin then, the
principal symbol of

i[N (P), A] + 2
N (P)− N (P)∗

2i
A

has a matching definite sign, i.e., is a negative multiple of ĥ−2r, provided that

2 · (+1) · (−2r− 1)+ 2 ·
scσ

(
Q − Q∗

2i

)
< 0,

Q := ĥq1,1(0, y,−ĥ Dĥ, Dy)+ q0,1(0, y), (4-24)

at scRin. But scRin is the graph of the 1-form dĥ/ĥ2; hence

scσ

(
Q − Q∗

2i

)
= Im scσ(Q)

at scRin is equal to

Im bσ(q1,1(0, y,−ĥ Dĥ, Dy))

(
dĥ

ĥ

)
+ Im q0,1 = r1 + r0

in the notation of Definition 4.7. The condition (4-24) thus becomes −2r− 1 + (r1 + r0) < 0, which is
satisfied on all of scRin provided that r > −

1
2 +

1
2 sup(r1 + r0) = rin there. Under this assumption, one

thus obtains control on u microlocally near scRin in the space H s,r
sc by N (P)u measured in H s−2,r+1

sc .
The analysis at scRout is similar, now using the commutant

ĥ−2r−1χ(ĥ/δ)χ(|ηsc|
2)χ((ξsc + 1)2).

The derivatives of the latter two cutoffs along Htf are now positive due to the sink character of scRout, and
the principal symbol of the commutator at the radial set is a negative multiple of ĥ−2r (thus allowing us to
propagate control from a punctured neighborhood of the radial set into the radial set itself) provided that

2 · (−1) · (−2r− 1)+ 2 ·
scσ

(
Q − Q∗

2i

)
< 0 at scRout. (4-25)
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In view of scRout being the graph of −dĥ/ĥ2 and the calculation

Im scσ(Q)|scRout = Im bσ(q1,1(0, y,−ĥ Dĥ, Dy))

(
−

dĥ

ĥ

)
+ Im q0,1 = −r1 + r0,

the condition (4-25) reads 2r+ 1 − r1 + r0 < 0, so r <−
1
2 +

1
2 inf(r1 − r0)= rout.

Putting (4-22) and (4-23) together, we obtain the estimate

∥u∥H s,l,r
b,sc

≤ C(∥N (P)u∥H s−2,l−2,r+1
b,sc

+ ∥u∥H−N ,l−1,−N
b,sc

) (4-26)

for any N ; we choose N to satisfy −N < s and −N <min r.
The estimate (4-26) implies that N (P), acting on H s,l,r

b,sc , has finite-dimensional kernel; any element u
in the kernel automatically lies in H∞,l,r′

b,sc for any variable-order function r′ satisfying r′ < rout at scRout.
Thus, WFsc(u) ⊂

scRout. Under the injectivity assumption on N (P), we thus conclude that u = 0. A
standard functional analytic argument then allows one to drop the error term in (4-26), which gives the
estimate (4-19).

The proof of part (2) is analogous; the direction of propagation in the characteristic set is now reversed,
which is precisely matched by the sign switches in the orders in the estimate (4-20). Part (3) is an
immediate consequence of the first two parts. □

Remark 4.9 (flexibility in the choice of l). If the assumptions of part (1) of the lemma are satisfied for
some value of l, then they continue to hold for all values l̃ with l̃ −n/2 /∈3 for which either l̃ > l, or l̃ ≤ l
but l̃ − n/2 and l − n/2 lie in the same connected component (a, b) of R \3. (Indeed, the claim for l̃ ≤ l
follows from the fact — proved using the Mellin transform upon localizing near tf∩cf — that any element
in the kernel of N (P) on H s,l̃,r

b,sc automatically lies in H s,b+n/2−ϵ,r
b,sc for any ϵ > 0.) A similar statement

holds for part (2): we may increase −l + 2 (or stay in the same connected component of (R \3)+ n/2),
i.e., decrease l. Altogether then, there typically only exists an interval of finite length (possibly empty) of
weights l so that the invertibility condition of part (3) is satisfied.

4D. Statement and proof of the microlocal propagation estimate. We are now ready to state the main
result of the paper:

Theorem 4.10 (microlocal propagation through the cone point). Let Ph,z denote an admissible operator
in the sense of Definition 4.1, and define the threshold quantities rin, rout as in Definition 4.7. Let
6 ⊂

ch̄T ∗

sf Xch̄ denote the characteristic set of Ph,z (see (4-8)). Denote by H= (x/h)Hp ∈ V(ch̄T ∗

sf Xch̄) the
rescaled Hamilton vector field (see (4-9)). Let s, l, α ∈ R, b ∈ C∞(ch̄T ∗

sf Xch̄). Assume that b is constant
near the radial sets Rin/out (see (4-11)) and satisfies b−α > rin at Rin and b−α < rout at Rout; assume
moreover that Hb ≤ 0 and

√
−Hb ∈ C∞ on 6. Let χ, χ̃ ∈ C∞

c (X) be cutoffs, identically 1 near ∂X , and
with χ̃ ≡ 1 on suppχ . Let E ∈90

ch̄(X), with Schwartz kernel supported in [0, 1)h × (χ̃−1(1)× χ̃−1(1)).

(1) (forward propagation) Suppose N(P) is injective at weight l on outgoing functions (see Definition 4.6(1)).
Suppose that (the preimage in 6 of ) all backward GBBs (see Definition 4.5) starting in 6 ∩ suppχ reach
Ellch̄(E) in finite time while remaining inside χ̃−1(1). Then for some small δ > 0, we have

∥χu∥H s,l,α,b
c,h (X) ≤ C(∥χ̃ Ph,zu∥H s−2,l−2,α,b+1

c,h (X) + ∥Eu∥H s,l,α,b
c,h (X) + hδ∥χ̃u∥H−N ,l,α,b

c,h (X)). (4-27)
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(2) (backward propagation) Suppose N (P)∗ is injective at weight −l + 2 on incoming functions (see
Definition 4.6(2)). Suppose that (the preimage in 6 of ) all forward GBBs starting in 6 ∩ suppχ reach
Ellch̄(E) in finite time while remaining inside χ̃−1(1). Then for some small δ > 0, we have
∥χu∥H−s+2,−l+2,−α,−b−1

c,h (X)

≤ C(∥χ̃ P∗

h,zu∥H−s,−l,−α,−b
c,h (X) + ∥Eu∥H−s+2,−l+2,−α,−b−1

c,h (X) + hδ∥χ̃u∥H−N ,−l+2,−α,−b−1
c,h (X)). (4-28)

Since by Lemma 4.3 and the calculations in Section 4B, the operator Ph,z ∈9
2,2,0,0
ch̄ (X) is elliptic at

fiber infinity, and is of real-principal-type (except at the radial points) at sf, the estimates (4-27) and (4-28)
are sharp as far as the relative orders in the norms on u on the left and P (∗)h,z u on the right are concerned.
Indeed, it has the well-known real-principal-type loss of one order at sf and is an elliptic estimate in the
ch̄-differentiability sense.

The improvement of the final (error) terms on the right-hand sides in (4-27) and (4-28) relative to the
space on the left-hand sides is accomplished at sf by microlocal symbolic means, and at tf using global
normal operator estimates. The overall improvement by a positive power of h between error term and
left-hand side allows for the inversion of Ph,z for small h > 0 under suitable assumptions on the global
behavior of the null-bicharacteristic flow; see Sections 4E and 5 for examples.

Remark 4.11 (operators on vector bundles). Let E → X denote a smooth vector bundle. Theorem 4.10
then holds (with the same proof) also for operators Ph,z acting on sections of E , provided Ph,z is admissible
in the sense that

Ph,z = h2x−2 Q2,z + hx−1q0,z − z,

Q2,z ∈ Diff2
b(X; E), q0,z ∈ C∞(X; End(E)),

where x−2 Q2,z (replacing the combination h21g + h2x−2 Q1,z in Definition 4.1) has scalar principal
symbol bσ(x−2 Q2,z) =

bσ(x−21g). That is, bσ(x−2 Q2,z)(ζ ) = |ζ |2g−1 for ζ ∈
bT ∗X , with g the conic

metric (4-2). The normal operator is of class

N (P) ∈

(
x̂

x̂ + 1

)−2

Diff 2
b,sc(tf;π

∗E∂X ),

where π : tf =[0,∞]x̂ ×∂X → ∂X denotes the projection map. The injectivity conditions of Definition 4.6
are unchanged. The definition of the threshold quantities rin/out in Definition 4.7 requires a minor change;
to wit, with respect to a choice of a positive definite fiber inner product on E∂X , we set (top sign for “in”,
bottom sign for “out”)

rin/out := −
1
2

±
1
2

sup
∂X

scσ

( x−2 Q2,1 − (x−2 Q2,1)
∗
+ q0,1 − q∗

0,1

2i

)∣∣∣∣
∓

dx
x2

, (4-29)

where the sup is defined to be the supremum of the largest eigenvalue of the scattering symbol (which
takes values in self-adjoint endomorphisms of E). One may choose different fiber inner products in
the calculation of rin and rout, respectively. A (near-)optimal choice of fiber inner products, resulting
in (almost) the smallest possible rin and largest possible rout, is typically easy to read off in concrete
situations. For example, if Q2,1 = 0 and q0,1|∂X is block-diagonal (or more generally lower triangular)
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with respect to some bundle splitting of E |∂X , then the supremum in (4-29) can be made to be arbitrarily
close to the supremum of Im λ, where λ ranges over all eigenvalues of the diagonal entries of q0,1(y),
y ∈ ∂X , if one chooses the fiber inner product appropriately.

Remark 4.12 (technical assumptions on the variable order). One can replace the assumptions that b be
locally constant near Rin/out and satisfy

√
−Hb ∈ C∞ on 6 by the simpler assumption that Hb ≤ 0 on 6.

This would require the use of the sharp Gårding inequality for the ch̄-calculus, which however we do not
prove here.

Proof of Theorem 4.10. We give details for the proof of part (1); the proof of part (2) is completely
analogous. If backward GBBs starting in WF′

ch̄(B) never pass through ∂6 ⊂
ch̄T ∗

sf∩tf Xch̄ , the orders l
and a are irrelevant, and the estimate (4-27) follows from standard elliptic regularity and real-principal-
type propagation in the (variable-order) semiclassical calculus on X◦. We shall thus work in a small
neighborhood of x = 0.

Step 1: symbolic positive commutator estimate. We first work near the incoming radial set Rin defined
in (4-11); we shall use the coordinates (ĥ, x, y, ξ, η) near ch̄T ∗

sf∩tf Xch̄ defined by (3-3) and (4-4). Fix
cutoffs χ∂ , χsf, χR ∈ C∞

c ([0, 1)), identically 1 near 0 and satisfying χ ′
•
≤ 0 and

√
−χ•χ ′

•
∈ C∞([0, 1)).

Denote a smooth extension of b to ch̄T ∗Xch̄ by the same symbol. For small δ > 0, fixed momentarily, we
then consider a commutant

ǎ = ĥ−b− 1
2 x−αχ∂

(
x
δ

)
χsf

(
ĥ
δ

)
χR

(
ω

δ

)
, ω :=

√
|η|2 + |ξ + 1|2. (4-30)

Thus, supp a is contained in any fixed open neighborhood of Rin when δ > 0 is sufficiently small. We
have ǎ ∈ S−∞,−∞,α,b+1/2(ch̄T ∗Xch̄). Let

Ǎ ∈9
−∞,−∞,α,b+ 1

2
ch̄ (X), ch̄σ( Ǎ)= ǎ, A := Ǎ∗ Ǎ.

Using the L2(X;µ) inner product, we then evaluate the commutator

2 Im⟨ ǍPh,zu, Ǎu⟩ = ⟨C u, u⟩,

C = i[Ph,z, A] + 2
Ph,z − P∗

h,z

2i
A ∈9

−∞,−∞,2a,2b
ch̄ (X). (4-31)

The principal symbol of C is

2ĥǎHǎ + 2 ·
ch̄σ

( Ph,z − P∗

h,z

2i ĥ

)
ĥǎ2. (4-32)

When H hits χ∂ , we obtain a nonnegative contribution (in fact, the square e2 of a smooth function e),
while differentiation of χR gives a nonpositive contribution (in fact, a negative square −b2

R), consistently
with the saddle point structure of H at Rin. Differentiation of χsf produces a symbol with semiclassical
order −∞.

The main term of ĥǎHǎ near Rin arises from differentiation of the weight ĥ−b−1/2x−α; since Hp = ĥH is,
modulo ĥxVb, given by the expression (4-10), we can compute this modulo x S−∞,−∞,2a,2b by substituting
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the expression (4-10) of H|x=0 for H. Thus, the main term is

ĥ−2bx−2α(2ξ(−2α+ 2b+ 1)+O(x))χ2
∂χ

2
sfχ

2
R.

A further contribution arises from the skew-adjoint part of Ph,z at Rin, which is the same as the skew-
adjoint part of N (P) at scRin upon making the identification (3-7); this was already computed in the
proof of Lemma 4.8. Overall then, we can write

ch̄σ(C )= e2
− b2

R − ϵĥǎ2
− f 2ĥǎ2, (4-33)

where

f =

√
−[2(−2(b−α)− 1)+ 2(r1 + r0)] − ϵ

is positive (and smooth) at Rin for small ϵ > 0. Denoting ch̄-quantizations of the lower case symbols by
the corresponding upper case letters, we thus have

C = E∗E − B∗

RBR − ϵ∥ĥ
1
2 Ǎu∥

2
− ∥ĥ

1
2 F Ǎu∥

2
+ R,

where R ∈9
−∞,−∞,2α,2b−1
ch̄ (X) has WF′

ch̄(R)⊂ supp ǎ and arises as the remainder term not controlled
by the previous symbolic considerations. We will plug this into the right-hand side of (4-31); the left-hand
side is bounded from below by

−ϵ∥ĥ
1
2 Ǎu∥

2
− ϵ−1

∥ĥ−
1
2 ǍPh,zu∥

2
≥ −ϵ∥ĥ

1
2 Ǎu∥

2
−Cϵ−1

∥G Ph,zu∥H−N ,−N ,α,b+1
c,h

−Cϵ−1
∥χ̃u∥

2
H−N ,−N ,α,−N

c,h
,

where G ∈90
ch̄(X) is elliptic on supp ǎ; here N ∈ R is arbitrary. Putting B0 := ĥ1/2 F Ǎ ∈9

−∞,−∞,α,b
ch̄ (X)

and dropping the contribution of BR, we thus obtain the estimate

∥B0u∥
2 ≲ ∥G Ph,zu∥

2
H−N ,−N ,α,b+1

c,h
+ ∥Eu∥

2
+ |⟨Ru, u⟩| + ∥χ̃u∥

2
H−N ,−N ,α,−N

c,h
, (4-34)

which provides H−N ,−N ,α,b
c,h -control of u microlocally near Rin provided one has microlocal H−N ,−N ,−N ,b

c,h -
control of u on WF′

ch̄(E)⊂ {0< x < δ, |ξ + 1|< δ}, and provided |⟨Ru, u⟩| is finite; since G is elliptic
near WF′

ch̄(R), we can insert the estimate

|⟨Ru, u⟩| ≲ ∥Gu∥
2
H−N ,−N ,α,b−1/2

c,h
+ ∥χ̃u∥

2
H−N ,−N ,α,−N

c,h

into the right-hand side of (4-34).
Concatenating this radial point estimate with the propagation of regularity from a punctured neigh-

borhood of Rin to a punctured neighborhood of Rout and then a radial point estimate at Rout — proved
by the same method, with the commutant ǎ again given by (4-30) but now with ω = (|η|2 + |ξ − 1|

2)1/2

and using that 2(b− α)+ 1 − r1 + r0 < 0 — and using elliptic estimates away from 6, we obtain the
propagation estimate

∥B1u∥H s,l,α,b
c,h

≲ ∥G Ph,zu∥H s−2,l−2,α,b+1
c,h

+ ∥Eu∥H s,−N ,−N ,b
c,h

+ ∥χ̃u∥H−N ,l,α,b−1/2
c,h

; (4-35)

the operators B1,G, E ∈9
0,0,0,0
ch̄ (X) appearing here are subject to the following conditions: WF′

ch̄(B1)⊂

Ellch̄(G), furthermore G is elliptic on 6∩ x−1(0), and all backward null-bicharacteristics from WF′

ch̄(B1)
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either tend to Rout or enter Ellch̄(E). The orders at cf are unconstrained at this point, but chosen for
compatibility with the normal operator argument below.

Fixing a variable-order function b♭ so that

b♭ −α > rin at Rin, (4-36)
we then have the estimate

∥χu∥H s,l,α,b
c,h

≲ ∥χ̃ Ph,zu∥H s−2,l−2,α,b+1
c,h

+ ∥Eu∥H s,−N ,−N ,b
c,h

+ ∥χ̃u∥
H−N ,l,α,b♭

c,h
(4-37)

under the assumptions on E, χ, χ̃ stated in the theorem. For b♭ ≥ b−
1
2 , this follows directly from (4-35)

(upon replacing the microlocal cutoff G by the less precise cutoff χ̃). For general b♭, note that as long
as (4-36) is satisfied, one can apply this estimate inductively to the error term χ̃u provided supp χ̃ is
sufficiently close to suppχ (so that the same operator Eu satisfies the geometric control assumption for χ̃
in place of χ), increasing supports of the involved cutoff functions by an arbitrarily small but positive
amount and gaining half a semiclassical order at each step. Thus, away from Rin, one can ultimately
take b♭ to be arbitrarily negative, while at Rin, one always needs to have (4-36).

Step 2: normal operator estimate. We now work on the error term χ̃u in (4-37). We first prove the desired
estimate (4-27) under the stronger condition that b−α > rin +1 at Rin. We split χ̃u = χ ♭u + (1−χ ♭)χ ũ,
where χ ♭ ∈ C∞(X) is identically 1 near ∂X and supported in a very small neighborhood of ∂X ; the part
(1 −χ ♭)χ̃u is supported away from cf ∪ tf; hence

∥(1 −χ ♭)χ̃u∥
H−N ,l,α,b♭

c,h
≲ ∥(1 −χ ♭)χ̃u∥

H−N ,−N ,−N ,b♭
c,h

for any N. To estimate χ ♭u, we use the injectivity assumption on N (P) and the resulting estimate (4-19)
together with Corollary 3.7(2) (with αµ = n). For 0 < δ < 1 with b♭ + 2δ < b, and choosing suppχ ♭

sufficiently small, we obtain

∥χ ♭u∥
H−N ,l,α,b♭

c,h
≲ h

n
2 −α

∥π∗(χ ♭u)∥
H

−N ,l,b♭|sf∩tf−α+δ

b,sc

≲ h
n
2 −α

∥N (P)(π∗(χ ♭u))∥
H

−N−2,l−2,b♭|sf∩tf−α+δ+1
b,sc

≲ ∥N (P)(χ ♭u)∥
H−N−2,l−2,α,b♭+1+2δ

c,h
. (4-38)

In the final line, we abuse notation and denote by N (P)∈92,2,0,0
ch̄ (X) any operator whose normal operator

is equal to N (P). Put b♯ := b♭+1+2δ. Using Lemma 4.3, which gives N (P)− Ph,z ∈9
2,2,−1,0
ch̄ (X), we

further estimate

∥N (P)(χ ♭u)∥
H−N−2,l−2,α,b♯

c,h

≤ ∥χ ♭Ph,zu∥
H−N−2,l−2,α,b♯

c,h
+ ∥χ ♭(Ph,z − N (P))u∥

H−N−2,l−2,α,b♯
c,h

+ ∥[N (P), χ ♭]u∥
H−N−2,l−2,α,b♯

c,h
(4-39)

≲ ∥χ ♭Ph,zu∥
H−N−2,l−2,α,b♯

c,h
+ ∥χ ♭u∥

H−N ,l,α−1,b♯
c,h

+ ∥χ ♯u∥
H−N−1,−N ,−N ,b♯−1

c,h
, (4-40)

where χ ♯ ≡ 1 on suppχ ♭. Under the present condition that b−α > rin + 1 at Rin, we can choose b♭ as
in (4-36) so that b♯ < b still. Plugging this into (4-37) finishes the proof of part (1) under this condition.
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In order to prove the theorem as stated, thus only assuming b−α > rin at Rin, we note that the norm
on second term on the right in (4-40) is one order weaker at tf than the left-hand side of the desired
estimate (4-27), but only b♯ − b = b♭ + 1 + 2δ− b< 1 orders stronger at sf. This suggests revisiting the
estimates (4-38)–(4-40) using a more precise cutoff which distinguishes between the regimes ĥ ≲ x and
ĥ ≳ x . To wit, consider ψ♭ = ψ̃♭(ĥ/x), where ψ̃♭ ≡ 0 on [0, 1] and ψ̃♭ ≡ 1 on [2,∞). This is a smooth
function on [Xch̄; sf ∩ tf], and thus conormal on Xch̄ ; in fact, we have

1 −ψ♭ ∈ A0,ζ,−ζ (Xch̄)= (x + h)ζ
(

h
h + x

)−ζ

A0(Xch̄)⊂9
0,0,−ζ,ζ
ch̄ (X) (4-41)

for any ζ ≥ 0, since on supp(1 −ψ♭) we have x ≲ ĥ; thus x + h ≲ h/(h + x). Taking ζ = δ, we can
therefore estimate

∥(1 −ψ♭)χ̃u∥
H−N ,l,α,b♭

c,h
≲ ∥χ̃u∥

H−N ,l,α−δ,b♭+δ
c,h

≤ hδ∥χ̃u∥H−N ,l,α,b
c,h

.

Next, the estimate (4-38) holds without change. (Note that Corollary 3.7 applies for merely conormal
cutoffs.) Finally, we need to estimate (4-39) more carefully. Note that

ψ♭ ∈ A0,−ζ,ζ (Xch̄)⊂9
0,0,ζ,−ζ
ch̄ (X)

for any ζ ≥ 0. Taking ζ = 1 − δ, this gives ψ♭(Ph,z − N (P)) ∈9
2,2,−δ,−1+δ
ch̄ (X); hence

∥ψ♭(Ph,z − N (P))u∥
H−N−2,l−2,α,b♯

c,h
≲ ∥χ̃u∥

H−N ,l,α−δ,b♯−1+δ
c,h

≤ hδ∥χ̃u∥H−N ,l,α,b
c,h

.

For the final, commutator, term in (4-39), we note that we can replace ψ♭ by 1 −ψ♭ and use (4-41) with
ζ = δ, so [N (P), ψ♭] ∈9

1,−∞,−δ,−1+δ
ch̄ (X), which gives

∥[N (P), ψ♭]u∥
H−N−2,l−2,α,b♯

c,h
≲ ∥χ̃u∥

H−N−1,−N ,α−δ,b♯−1+δ
c,h

≤ hδ∥χ̃u∥H−N−1,−N ,α,b
c,h

.

Altogether, we have shown

∥χ̃u∥
H−N ,l,α,b♭

c,h
≲ ∥χ̃ Ph,zu∥

H−N−2,l−2,α,b♯
c,h

+ hδ∥χ̃u∥H−N ,l,α,b
c,h

.

Plugged into (4-37), we have now established the desired estimate (4-27). □

We can sharpen Theorem 4.10 by working with the resolved Sobolev spaces defined in (3-24). This is
straightforward since admissible operators

Ph,z ∈9
2,2,0,0
ch̄ (X)⊂9

2,2,2,0,0
cbh̄ (X)

are elliptic at the front face fbf of cbh̄T ∗Xch̄; indeed, this follows from the ellipticity at fiber infinity
ch̄ S∗

tf Xch̄ ⊂ ch̄T ∗Xch̄ and the classical nature of the principal symbol of Ph,z . Therefore:

Theorem 4.13 (propagation estimates with relative b-regularity). In the notation of Theorem 4.10, and
for any s ′

∈ R, the forward propagation estimate (4-27) generalizes to an estimate on cbh̄-Sobolev spaces,

∥χu∥H s,s′,l,α,b
cb,h (X) ≤ C(∥χ̃ Ph,zu∥H s−2,s′−2,l−2,α,b+1

cb,h (X) + ∥Eu∥H s,s′,l,α,b
cb,h (X) + hδ∥χ̃u∥H−N ,−N ,l,α,b

cb,h (X)).

The backward propagation estimate (4-28) generalizes similarly.
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4E. Global estimates with complex absorption. We upgrade the microlocal estimate proved above into a
quantitative invertibility statement for an operator which effectively localizes the interesting nonelliptic
phenomena near the cone point into a small neighborhood of ∂X via complex absorption.

Let us assume first for simplicity that Y is null-cobordant; see Remark 4.16 below on how to remove
this assumption. With X = [0, 2x0)× Y and g as in (4-1)–(4-2), consider then a compact n-dimensional
manifold X ′

⊃ X with boundary ∂X ′
= ∂X , equipped with a smooth metric g′ which is equal to g on

X ♭
:= [0, x0]×Y. Given an admissible operator Ph,z on X , let P ′

h,z ∈ (x/(x +h))−2 Diff 2
ch̄(X

′) denote an
extension of Ph,z from [0, 1)× X ♭ to [0, 1)× X ′ with principal part equal to h21g′ . For c ∈ (0, 1), let

Kc := X ′
\ ([0, cx0] × Y ).

In order to implement complex absorption, let us take c ∈
(
0, 1

2

)
small and fix an operator

Q ∈9−∞

h ((X ′)◦)

whose Schwartz kernel is supported in Kc × Kc, and so that Q is elliptic on T ∗K2c with nonnegative
principal symbol. We then consider

Ph,z := P ′

h,z − i Q, (4-42)

and assume that
all backward GBBs of P ′

h,z enter Ellh̄(Q) in finite time. (4-43)

By construction, Ph,z is a semiclassically elliptic second-order semiclassical ps.d.o. on (X ′)◦ which is
elliptic over K2c. Moreover, due to the sign condition on the principal symbol of Q, one can propagate
semiclassical regularity for solutions of Ph,zu = f along forward null-bicharacteristics of P ′

h,z; see [Vasy
2013, §2.5] and [Dyatlov and Zworski 2019, §5.6.3]. For our fixed metric g on [0, 2x0)× Y, the control
condition (4-43) is satisfied if we choose c> 0 sufficiently small. Indeed, from the expression (4-13), one
finds that if Hsfx = 2ξ = 0 on the characteristic set, then |η|2 = 1 and thus

H2
sf x = 2Hξ ≥ 2x−1

|η|2 − C |η|2 = 2x−1
− C > c−1

− C > 0

in x < 2c when c is sufficiently small; hence the level sets of x are geodesically convex in x < 2c, which
implies the claim.

Remark 4.14 (relaxed conditions on Q). One can more generally allow Q to be a second-order operator
with real-principal symbol; a concrete choice is then Q = ψ · (h21g′ + 1), where ψ ∈ C∞

c (K
◦
c ) is

identically 1 on K2c.

We then have:

Proposition 4.15 (global estimates with complex absorption). Let s, l, α, b be as in the statement of
Theorem 4.10 ( for the operator Ph,z). Fix the volume density on X ′ to be the metric density |dg′

|. Then
for small h > 0, the operator Ph,z defined by (4-42) is invertible as a map H s,l

b (X ′)→ H s−2,l−2
b (X ′), and

it satisfies the uniform estimate

∥u∥H s,l,α,b
c,h (X ′)

≤ C∥Ph,zu∥H s−2,l−2,α,b+1
c,h (X ′)

= Ch−1
∥(x + h)Ph,zu∥H s−2,l−2,α,b

c,h
. (4-44)
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More generally, for any s ′
∈ R, we have

∥u∥H s,s′,l,α,b
cb,h (X ′)

≤ C∥Ph,zu∥H s−2,s′−2,l−2,α,b+1
cb,h

.

Proof. By our assumptions on the complex-absorbing potential Q, we can apply Theorem 4.10(1) with E
and χ supported in X ′

\ Kc. We thus have

∥χu∥H s,l,α,b
c,h

≤ C(∥Ph,zu∥H s−2,l−2,α,b+1
c,h

+ ∥Eu∥H s,−N ,−N ,b
c,h

+ hδ∥χ̃u∥
H−N ,l,α−1,b♭

c,h
).

On the other hand, we can control Eu and (1 − χ)u in H s,l,α,b
c,h (or simply hbH s

h if we take E to be
localized away from x = 0, as we may arrange) by Ph,zu in H s−2,l−2,α,b+1

c,h using a combination of elliptic
estimates and real-principal-type propagation estimates (with complex absorption), starting either from
Ellh̄(Q) or {χ = 1}. Altogether, we obtain

∥u∥H s,l,α,b
c,h

≤ C(∥Ph,zu∥H s−2,l−2,α,b+1
c,h

+ hδ∥u∥H−N ,l,α,b
c,h

). (4-45)

For h0 > 0 with Chδ0 <
1
2 , we can now drop the error term in (4-45) for 0 < h < h0. This proves the

injectivity of Ph,z (with a quantitative estimate). Analogous arguments prove the dual estimate

∥v∥H−s+2,−l+2,−α,−b−1
c,h

≤ C∥P∗

h,zv∥H−s,−l,−α,−b
c,h

,

which implies the surjectivity of Ph,z . □

Remark 4.16 (links Y that are not null-cobordant). When Y is not null-cobordant, we cannot choose X ′

as above. This is a technical issue, independent of the analysis near the cone point x−1(0), which we
circumvent here with the following artificial device: we set X ′

:= [0, 4x0] × Y, and consider h-dependent
families of operators on X ′ which are semiclassical cone operators near x−1(0) and semiclassical scattering
operators [Vasy and Zworski 2000] near x−1(4x0). We then take P ′

h,z ∈ (x/(x + h))−2 Diff2
ch̄,sch̄(X

′)—
the second subscript referring to the semiclassical scattering behavior near x−1(4x0)— to be equal to
Ph,z on [0, 1)× X ♭. We can arrange for P ′

h,z to be elliptic near x−1(4x0) in the semiclassical scattering
algebra, e.g., by taking it to be equal to h21g′ + 1 near x = 4x0, where g′ is a scattering metric on
(x0, 4x0] × Y. We choose the complex absorbing operator Q as before, and so that Ph,z = P ′

h,z − i Q is
elliptic in x > 1

2 x0. Proposition 4.15 then remains valid upon using function spaces for u which near
x−1(4x0) are semiclassical scattering Sobolev spaces with differential order s, semiclassical order b, and
arbitrary decay order r , and similarly for Ph,zu with orders s − 2, b+ 1, r ; this uses elliptic estimates in
the semiclassical scattering algebra near x−1(4x0). (This usage of the semiclassical scattering algebra is
only one of several possibilities in which the invertibility of Ph,z for small h is easy to obtain despite the
presence of a boundary.)

4F. Propagation of Lagrangian regularity: diffractive improvement. By adapting arguments from
[Melrose and Wunsch 2004; Melrose et al. 2008], we improve upon Theorem 4.10 by demonstrating
that, under a nonfocusing condition, strong singularities can only propagate along geometric GBBs. The
key technical result concerns the propagation of Lagrangian regularity with respect to the incoming
and outgoing Lagrangian submanifolds, localized near geometric continuations of a GBB striking the
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cone point. Using the coordinates (ĥ, x, y, ξ, η) and the notation of (4-14), the incoming and outgoing
Lagrangians are given by

F• :=

⋃
y0∈∂X

F•,y0, • = I, O,

where
FI,y0 := γI,y0((−x0, 0))= {(0, x, y0,−1, 0) : x < 2x0},

FO,y0 := γO,y0((−x0, 0))= {(0, x, y0, 1, 0) : x < 2x0}.
(4-46)

(We are making the ĥ-coordinate, which was set to 0 in (4-14), explicit here.)
We shall first show that one can control the Lagrangian regularity of a solution u of Ph,zu = f , with

sufficiently regular forcing f , near FO,y0 by propagating Lagrangian regularity from the union of all F◦

I,y′ ,
with y′ at distance π from y0, into ∂X and then within ∂X to FO,y0 ∩ x−1(0). Localization within the
radial sets Rin/out requires a more careful choice of commutants compared to the symbolic part of the
proof of Theorem 4.10, and the extra Lagrangian regularity is captured using test modules, as introduced
in [Hassell et al. 2008] and used for this purpose in [Melrose et al. 2008; 2013]; see also [Haber and Vasy
2013]. (Test modules also feature prominently in [Baskin et al. 2015; 2018; Gell-Redman et al. 2020].)
Fix x0 < x1 < x2 < x3 < 2x0 and cutoffs

χj ∈ C∞

c ([0, x j )), χj ≡ 1 on [0, x j−1], j = 1, 2, 3.

Mirroring [Melrose et al. 2008, Definition 4.2], we then introduce:

Definition 4.17 (test module). Let F = FI ∪FO . Define the 90
ch̄(X)-module14

M :=

{
A ∈9

0,0,0,1
ch̄ (X) : supp K A ⊂ [0, 1)h × (suppχ2)

2, ch̄σ0

(
h

h + x
A
)∣∣∣∣

F
= 0

}
.

Denote by Mk
⊂9

0,0,0,k
ch̄ (X) the set of finite linear combinations of up to k-fold products of elements

of M. If X is a function space on which 90
ch̄(X) acts continuously, we say that u has Lagrangian

regularity of order k relative to X if Mku ⊂ X . We say that elements of the space MkX satisfy the
nonfocusing condition of degree k relative to X .

Since

9
0,0,0,1
ch̄ (X)=

(
h

h + x

)−1

90
ch̄(X),

regularity with respect to elements of M means that the semiclassical order improves upon differentiation
along suitable elements of 90

ch̄(X). A concrete example of an element of M in local coordinates is

h + x
h

(
h

h + x
Dy j

)
= Dy j .

Lemma 4.18 (properties of M; see [Melrose et al. 2008, Lemma 4.4]). The set M is closed under
commutators. Moreover, M is finitely generated in the sense that there exist A1, . . . , AN ∈9

0,0,0,1
ch̄ (X)

14Recall that K A denotes the Schwartz kernel of A.
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with supp K Aj ∈ [0, 1)h × (suppχ3)
2 so that, with A0 := I , we have

M =

{
A ∈9

0,0,0,1
ch̄ (X) : there exists Q j ∈90

ch̄(X) such that A =

N∑
j=0

Q j Aj

}
.

Concretely, one can take AN to have principal symbol(
h + x

h

)
·

ch̄σ

((
x

x + h

)2

Ph,z

)
,

and one may take Aj , 1 ≤ j ≤ N − 1, to have principal symbol ((h + x)/h)aj , where aj ∈ C∞(ch̄T ∗Xch̄)

vanishes on F and has differential daj which at a point ζ ∈ Rin, resp. ζ ∈ Rout lies in the unstable, resp.
stable eigenspace of the linearization of H (as a vector field on ch̄T ∗

sf Xch̄) at ζ .

Proof. Let B = ((h+x)/h)B0, C = ((h+x)/h)C0 ∈M. Denote the principal symbols of B0,C0 ∈90
ch̄(X)

by b0, c0. We then have [B,C] ∈9
−1,0,0,1
ch̄ (X), and

d :=
ch̄σ0

(
h

h + x
i[B,C]

)
=

h
h + x

Hb

(
h + x

h
c0

)
=

h
h + x

Hb

(
h + x

h

)
c0 + Hbc0.

But by (3-4), Hb|ĥ=0 is a smooth b-vector field for b ∈ S0,0,0,1; thus d ∈ S0(ch̄T ∗Xch̄). Moreover, since
F is a Lagrangian submanifold, Hb is tangent to F ; therefore, Hbc0 = 0 on F since c0|F = 0, and thus
d|F = 0 as well. This proves [B,C] ∈ M.

Let us now work in local coordinates (ĥ, x, y, ξ, η) in which the rescaled Hamilton vector field
H = ĥ−1 Hp of Ph,z takes the form (4-9). The linearization of H at Rout/in as a vector field on ch̄T ∗Xch̄ is
(top sign for “in”, bottom sign for “out”)

∓2(x∂x − ĥ∂ĥ − η∂η)+ 2ki jηi∂y j , (4-47)

which thus has eigenvalue ∓2 (with eigenvector dx), ±2 (with eigenspace spanned by dĥ and dηj ), and 0
(with eigenspace spanned by dξ and dy j

±ki j dηi ). Upon restriction to ĥ = 0, the same statements remain
true except there is no contribution from dĥ anymore. Since F is locally the joint zero set of η1, . . . , ηn−1,
and p, which have linearly independent differentials, every smooth function vanishing on F can be written
as a linear combination (with smooth coefficients) of p and ηj . Thus, we may take quantizations of ĥ−1ηj

for the operators Aj in local coordinates. The full collection of Aj can be defined using a partition of
unity. □

The fact that M is a 90
ch̄(X)-module and a Lie algebra implies that

Mk
=

{∑
|α|≤k

QαAα : Qα ∈90
ch̄(X)

}
, Aα :=

N∏
i=1

Aαi
i , (4-48)

where α= (α1, . . . , αN )∈NN
0 . Modulo90

ch̄(X), the operator AN is a multiple of Ph,z; therefore, regularity
of solutions u of Ph,zu = f , with f having Lagrangian regularity of order k, under application of an
element Qα

∏N
i=1 Aαi

i ∈Mk with αN > 0 is automatic once Lagrangian regularity of order k −1 has been
established. In order to prove regularity of solutions of Ph,zu = f under application of Aj , 1 ≤ j ≤ N −1,
we need to control the commutators of Ph,z with the Aj chosen in Lemma 4.18:
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Lemma 4.19 (commutators; see [Melrose et al. 2008, Lemma 4.5]). With the Aj chosen as in Lemma 4.18,
we have, for j = 1, . . . , N − 1,

i[Ph,z, Aj ] =

N∑
k=0

C jk Ak, C jk ∈9
1,2,0,−1
ch̄ (X),

and ch̄σ1,2,0,−1(C jk)|F∩x−1(0) = 0 for k ̸= 0.

Proof. Denote by aj the principal symbol of ĥ Aj for j = 1, . . . , N − 1, so ch̄σ(Aj ) = ĥ−1aj . Since
Ph,z ∈9

2,2,0,0
ch̄ (X), we have i[Ph,z, Aj ] ∈9

1,2,0,0
ch̄ (X), with principal symbol at sf given by ĥH(ĥ−1aj ) in

the notation used in (4-9). It thus suffices to prove the existence of c jk ∈ S1,2,0,0(ch̄T ∗Xch̄) such that near
ĥ = 0,

ĥH(ĥ−1aj )=

N∑
k=1

ĥc jk ĥ−1ak, c jk |F∩x−1(0) = 0 (k ̸= 0); (4-49)

indeed, if C jk ∈9
1,2,0,−1
ch̄ (X) is a quantization of ĥc jk times a cutoff to a neighborhood of sf, then (4-49)

implies that

C j0 := i[Ph,z, Aj ] −

N∑
k=1

C jk Ak ∈9
0,2,0,−1
ch̄ (X).

In order to verify (4-49), we note that the left-hand side equals ĥ−1(ĥHaj −ajHĥ); but since at F∩x−1(0),
the differentials daj and dĥ are eigenvectors of the linearization of H with the same eigenvalue, as
discussed after (4-47), this vanishes quadratically at F ∩ x−1(0), completing the proof. □

We are now ready to propagate Lagrangian regularity through the radial sets. For s, l, α, b ∈ R and
k ∈ N0, and using the notation (4-48), let

H s,l,α,b;k
c,h (X) := {u ∈ H s,l,α,b

c,h (X) : Aαu ∈ H s,l,α,b
c,h (X) for all |α| ≤ k}.

We recall that we will only encounter distributions on X with compact support, justifying the convenient,
albeit slightly imprecise, notation here.

Proposition 4.20 (microlocalized propagation near the radial sets). Let s, l, α, b ∈ R. Let B, E,G ∈

90
ch̄(X) denote operators with Schwartz kernels supported in [0, 1)h × (suppχ1)

2. Recall the quantities
rin/out from Definition 4.7.

(1) (propagation into Rin) Suppose that all backward integral curves of H starting in 6 ∩ WF′

ch̄(B)
either tend to a subset S ⊂ Rin or enter Ell′ch̄(E) in finite time while remaining inside Ellch̄(G); and
suppose that, for all incoming null-bicharacteristics γI,y0 : (−x0, 0)→6 with γI,y0(0) ∈ S, there exists
s ∈ (−x0, 0) (depending on y0) such that γI,y0((s, 0]) ⊂ Ellch̄(G) and γI,y0(s) ∈ Ellch̄(E). Under the
condition b −α > rin, we then have

∥Bu∥H s,l,α,b;k
c,h (X) ≤ C(∥G Ph,zu∥H s−2,l−2,α,b+1;k

c,h (X) + ∥Eu∥H−N ,l,α,b;k
c,h (X) + ∥χ2u∥H−N ,l,α,b−1/2

c,h (X)). (4-50)

(2) (propagation out of Rout) Suppose that all backward integral curves of H starting in 6 ∩ WF′

ch̄(B)
either tend to a subset S ⊂ Rout or enter WF′

ch̄(E) in finite time while remaining inside Ellch̄(G).
Suppose moreover that S ⊂ Ellch̄(G), and that, for every integral curve γ ⊂ 6 ∩ x−1(0) \ Rout of H
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with lims→∞ γ (s) ∈ S, there exists s so that γ ((s,∞)) ⊂ Ellch̄(G) and γ (s) ∈ Ellch̄(E). Then the
estimate (4-50) holds under the condition b −α < rout.

Proof. We begin with the proof of part (1). By compactness of Rin/out and since Ellch̄ is open, it suffices
to prove microlocal estimates near a single point ζ0 ∈ Rin, which in the coordinate system (ĥ, x, y, ξ, η)
used in (4-46) has coordinates ζ0 = (0, 0, y0,−1, 0).

Now, restricted to x = ĥ = 0 and writing k = k(y, η) for the dual metric function of the metric k(0) on
∂X in local coordinates, we have

H = −2ξη∂η + 2|η|2∂ξ + (∂ηk)∂y − (∂yk)∂η.

Following [Melrose and Zworski 1996, Lemma 2], introducing |η|, η̂ = η/|η|, one has

∂s y = (∂ηk)(y, η̂)|η|, ∂s η̂ = −(∂yk)(y, η̂)|η|

along H-integral curves; reparametrizing to t = t (s) satisfying t ′
= 2|η|, one thus obtains

∂t y =
1
2(∂ηk)(y, η̂), ∂t η̂ = −

1
2(∂yk)(y, η̂), ∂t |η| = −ξ, ∂tξ = |η|.

Thus, ξ(t)= a cos(t +ϕ0) and |η(t)| = a sin(t +ϕ0), where a =
√
ξ 2 + |η|2 is constant, and ϕ0 ∈ [0, π].

Therefore, the function ϒ assigning to (y, ξ, η) near (y0,−1, 0) the limiting point along the backward
H-integral curve is given by evaluation at t = −ϕ0, so

ϒ(y, ξ, η)=

(
expy

((
− arccos

ξ√
ξ 2 + |η|2

)
η

|η|

)
,−1, 0

)
.

In particular, ϒ is smooth, and Hϒ = 0 at ĥ = x = 0. Extending ϒ to a smooth function in a neighborhood
of x = ĥ = 0, with values in Rn−1

× R × Rn−1, we thus have Hϒ = O(x) at ĥ = 0. Since x−1Hx = −2
at ζ0, we can choose C so that in any sufficiently small neighborhood V of ζ0,

H(|ϒ − ζ0|
2
− Cx)≥ x > 0 in V. (4-51)

Fix now cutoffs χS, χ∂ , χsf, χF , χ6 ∈ C∞
c ([0, 1)), identically 1 near 0, with nonpositive derivative and

with
√

−χ•χ ′
•
∈ C∞, and consider the commutant

ǎ = ĥ−b−
1
2 x−αχ∂

(
x
δ

)
χsf

(
ĥ
δ

)
χF

(
δ−1

N−1∑
j=1

a2
j

)
χ6

(
p2

δ

)
χS(δ

−1(|ϒ − ζ0|
2
− Cx)),

where δ > 0 controls the size of supp ǎ. We now proceed as in the first step of the proof of Theorem 4.10.
Thus, in the symbol (4-32) of the commutator appearing in (4-31), and specifically in the term 2ĥǎHǎ,
the main contribution near ζ0 arises from differentiation of the weights (and then the subprincipal symbol
of Ph,z enters in the threshold condition on b − α as there), giving a negative multiple of ĥ−2bx−2α.
Differentiation of χF gives a term of the same sign, namely a negative square, since

∑
a2

j is a local
quadratic defining function of Rin inside of 6∩ x−1(0). In view of (4-51), differentiation of χS produces
x times the negative of a square, thus another term with sign matching that of the main term. Derivatives
falling on χ∂ produce a nonnegative square, corresponding to the a priori control required along γI,y

for y near y0, at x ∼ δ. Finally, differentiation of χ6 produces a term vanishing near 6 which thus can
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be controlled by elliptic regularity, and differentiation of χsf produces a semiclassically trivial (namely,
vanishing near ĥ = 0) term. We can then proceed as in (4-33), obtaining the desired propagation estimate.

For k ≥ 1, we argue as in the proof of [Baskin et al. 2015, Proposition 4.4]: rather than using
Ǎ = Opc,h(ǎ) as the commutant, we use (in the notation (4-48)) the vector of ps.d.o.s ( ǍAα)α∈I , where
I ⊂ NN

0 consists of all α ∈ NN
0 with |α| = k and α0 = αN = 0. The main term of the commutator arises

from Ǎ as before; the new contributions, from commutators of Ph,z with a factor Aj , can be expanded
as in Lemma 4.18, and those which have the maximal number of module factors Al , 1 ≤ l ≤ N − 1,
can be absorbed into this main term due to the vanishing property of the C jk in Lemma 4.18. Thus, one
can control k module derivatives of u in a neighborhood of ζ0 provided one has control of k − 1 module
derivatives in a slightly bigger neighborhood. Thus, one obtains the estimate (4-50) inductively.

The proof of part (2) is completely analogous; one now takes ϒ at x = ĥ = 0 to be the limiting point
along forward H-integral curves. □

Note that for any ζ ∈ ch̄T ∗

sf Xch̄ \F , there exists an element A ∈ M which is elliptic at ζ ; hence
microlocally near such ζ , membership in H s,l,α,b;k

c,h is equivalent to membership in H s,l,α,b+k
c,h .15 In

particular, in6∩x−1(0) but away from the radial sets, the propagation of H s,l,α,b;k
c,h regularity is equivalent

to the standard (real-principal-type) propagation of H s,l,α,b+k
c,h regularity. One can thus concatenate the

radial point estimates of Proposition 4.20 with such real-principal-type estimates. To state this succinctly,
we introduce:

Definition 4.21 (integral curves connecting the radial sets). (1) For a point y ∈ ∂X , denote by 0→(y)⊂

C0([0, π];6) the set of integral curves of H inside 6 ∩ x−1(0), smoothly reparametrized to uniformly
continuous curves γ : (0, π)→6 ∩ x−1(0), which satisfy γ (π)= (0, 0, y, 1, 0) ∈ Rout and γ (0) ∈ Rin.
Denoting by 5 : 6 ∩ x−1(0)→ ∂X the projection to the base, define the set of starting points of such
curves by

Y→(y)= {5(γ (0)) : γ ∈ 0→(y)}.

(2) We call a continuous curve γ : I → 6 a resolved GBB if it is either an integral curve of h−1 Hp

disjoint from x−1(0), or otherwise if, for some y ∈ ∂X and y0 ∈ Y→(y), the curve γ is the concatenation
of γI,y0 , an element γ of 0→(y) with 5(γ (0))= y0, 5(γ (π))= y, and the curve γO,y .

See Figure 12.

Corollary 4.22 (microlocalized propagation of Lagrangian regularity). Let s, l, α ∈ R, b ∈ C∞(ch̄T ∗

sf Xch̄)

and χ ∈ C∞
c (X) with suppχ ⊂ suppχ1 be as in Theorem 4.10, with b−α satisfying the monotonicity and

threshold conditions stated there. Let k ∈ N0. Let B, E,G ∈90
ch̄(X), with Schwartz kernels supported in

[0, 1)h × (χ−1(1)×χ−1(1)). Suppose that all backward resolved GBBs starting at a point in WF′

ch̄(B)
reach Ellch̄(E) in finite time while remaining in Ellch̄(G). Then the estimate (4-50) holds.

A dualization argument gives the propagation of the nonfocusing condition through ∂X . The simplest
setting uses the modification of Ph,z via extension to an operator P ′

h,z on compact manifold X ′
⊃ X and

15That is, for B, B̃ ∈90
ch̄(X) with WF′

ch̄(B)⊂ Ellch̄(B̃) \F , one has ∥Bu∥H s,l,α,b+k
c,h

≲ ∥B̃u∥H s,l,α,b;k
c,h

+ ∥u∥H−N ,l,α,−N
c,h

.
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FO

FI

Rout

Rin

∂X

y

y0

γO,y

γI,y0

Figure 12. Illustration of a part of the characteristic set, with the Lagrangians FI and
FO in red, and a resolved GBB in blue.

the inclusion of a complex absorbing term Q ∈9−∞

h̄ ((X ′)◦) as in Section 4E, resulting in the operator

Ph,z = P ′

h,z − i Q

in (4-42). (This requires ∂X to be null-cobordant; if this is not true, one can use the modification described
in Remark 4.16.) Recall that the Schwartz kernel of Q has empty intersection with x−1([0, cx0])×

x−1([0, cx0]), where 0< c ≪
1
2 . We shall use the notation of Proposition 4.15.

Theorem 4.23 (diffractive improvement). Let s, l, α, b be as in the statement of Theorem 4.10 ( for
the operator Ph,z). Let E,G ∈ 90

ch̄(X
′) be such that all forward resolved GBBs starting at a point

in WF′

ch̄(E) ⊂ Ellch̄(G) remain in Ellch̄(G) until they enter Ellh(Q). Let f+ ∈ H s−2,l−2,α,b+1
c,h (X ′),

f− ∈ Mk H s−2,l−2,α,b+1
c,h (X ′) be such that supp f± ⊂ x−1([0, cx0]). Then the solution u of

Ph,zu = f := f+ + E f−
can be written in the form

u = u+ + Gu−, u+ ∈ H s,l,α,b
c,h (X ′), u− ∈ Mk H s,l,α,b

c,h (X ′).

Note that on the scale of semiclassical cone Sobolev spaces, we have E f− ∈ H s−2,l−2,α,b′
+1

c,h with
b′

= b− k, but typically E f− is no better than this. Thus, Theorem 4.23 (for f+ = 0 for concreteness)
implies that the strong semiclassical singularities of u resulting from the forcing term E f− only propagate
along geometric GBBs (resulting in the term Gu−), whereas microlocally away from these, u has
H s,l,α,b

c,h -regularity.
In a simple case, a formulation of Theorem 4.23 which highlights regularity rather than singularities

reads as follows: Fix y0 ∈ ∂X , and define the set

K := γO,y0 ∪

⋃
γ∈0→(y0)

γ ([0, π])∪
⋃

y∈Y→(y0)

γI,y .

Thus, the quotient K/(K ∩ x−1(0)) contains the image of all backward geometric GBB continuing γO,y0 ,
and K in addition contains all curves inside of 6 ∩ x−1(0) which connect an incoming base point y
(at distance π from y0) with the outgoing base point y0 of geometric GBBs. Fixing any E ∈ 90

ch̄(X
′)

with WF′

ch̄(E) ∩ K = ∅, there then exists G ∈ 90
ch̄(X

′) with WF′

ch̄(G) ∩ K = ∅ which satisfies the
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conditions of Theorem 4.23. Thus, if f satisfies the nonfocusing condition (of some degree k) relative
to H s−2,l−2,α,b+1

c,h , and with f microlocally near K lying in H s−2,l−2,α,b+1
c,h (thus f in particular does not

have strong singularities along the incoming directions γI,y), then the semiclassical wave u forced by f
lies in H s,l,α,b

c,h microlocally near K (thus u in particular does not have a strong singularity along γO,y0).

Proof of Theorem 4.23. As follows from Proposition 4.15 by taking adjoints (or directly from the proof of
Proposition 4.15), the adjoint P∗

h,z is invertible, and

(P∗

h,z)
−1

: H−s,−l,−α,−b
c,h → H−s+2,−l+2,−α,−b−1

c,h

is uniformly bounded. We now apply a backward propagation version of Corollary 4.22 to P∗

h,z: For E∗,G∗

the adjoints of the operators E,G in the statement of the theorem, and for B∗
∈90

ch̄(X
′) so that all forward

resolved GBBs starting at a point in WF′

ch̄(E
∗) remain in Ellch̄(G∗) until they enter Ellch̄(B∗), we have

∥E∗v∥H−s+2,−l+2,−α,−b−1;k
c,h

≤ C(∥G∗ P∗

h,zv∥H−s,−l,−α,−b;k
c,h

+ ∥B∗v∥H−s+2,−l+2,−α,−b−1;k
c,h

+ ∥χu∥H−N ,−l+2,−α,−b−3/2
c,h

)

for any k ∈ N0. In particular, we may take B∗ so that all forward null-bicharacteristics of Ph,z starting
in WF′

ch̄(B
∗) miss the cone point and enter Ellch̄(Q∗) in finite time. The term B∗u is then automatically

controlled for solutions of P∗

h,zv=w when G∗w ∈ H−s,−l,−α,−b;k
c,h by elliptic regularity (on Ellch̄(Q)) and

real-principal-type propagation (along the backward null-bicharacteristic flow) with complex absorption.
We conclude that

(P∗

h,z)
−1

: {w ∈ H−s,−l,−α,−b
c,h : G∗w ∈ H−s,−l,−α,−b;k

c,h }

→ {v ∈ H−s+2,−l+2,−α,−b−1
c,h : E∗v ∈ H−s+2,−l+2,−α,−b−1;k

c,h }.

Upon taking adjoints (see also [Melrose et al. 2013, Appendix A]), this implies that

P−1
h,z : H s−2,l−2,α,b+1

c,h + E(Mk H s−2,l−2,α,b+1
c,h )→ H s,l,α,b

c,h + G(Mk H s,l,α,b
c,h )

is a bounded map. □

Remark 4.24 (second microlocalization at F ). A sharper approach would be to second microlocalize
at FI and FO , thus cleanly decoupling the semiclassical orders at FI and FO (subject to threshold
conditions at the radial sets) and the semiclassical order away from F ; this would allow for a unified
treatment of Lagrangian and nonfocusing spaces and thus for a direct proof of Theorem 4.23. We leave
such refinements for future work. We note that second microlocalization in the semiclassical setting
was studied in [Sjöstrand and Zworski 2007; Vasy and Wunsch 2009] following [Bony 1986]; a second
microlocal refinement (at the outgoing radial set) for the scattering theory of the corresponding normal
operator was recently obtained in [Vasy 2021c].

5. Applications

We now present applications of the propagation estimates proved in Section 4. First, we discuss the
familiar geometric case of h21g −1 in Section 5A, where we can moreover prove a result sharpening both
Theorem 4.10 and the propagation results of [Baskin and Marzuola 2022]. We discuss high-frequency
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scattering by inverse square potentials on Euclidean space in Section 5B, and high-frequency scattering
for the Dirac–Coulomb equation in Section 5C.

5A. Propagation estimates for conic Laplacians. For a conic metric g as in (4-2) on the manifold
X = [0, 2x0)x × Y of dimension n = dim X ≥ 3, we consider

Ph,z = h21g − z, |z − 1|< Ch.

We fix the volume density µ= |dg| on X .

Lemma 5.1 (admissibility, thresholds, invertibility). The operator Ph,z is admissible in the sense of
Definition 4.1, with threshold quantities rin = −

1
2 and rout = −

1
2 (see Definition 4.7). Moreover, the

normal operator N (P) = 1ĝ − 1, with ĝ given in (4-4), is invertible at weight l (in the sense of
Definition 4.6(3)) for all

l ∈

(
1 −

n − 2
2

, 1 +
n − 2

2

)
. (5-1)

Proof. Only the final statement is nontrivial. In the notation (4-17), and passing to a spectral decomposition
of 1k(0) whose eigenvalues we denote by 0 ≤ λ2

j , j = 0, 1, 2, . . . , one finds that λ ∈ specb(N (P)) if and
only if there exists j with λ2

− i(n − 2)λ+ λ2
j = 0, so

specb(N (P))=

{
i
(

n − 2
2

±

√(
n − 2

2

)2

+ λ2
j

)
: j = 0, 1, 2, . . .

}
.

Therefore, the complement of the set 3 defined in (4-18) contains (−n + 2, 0). As noted in Remark 4.9,
the invertibility of N (P) at weight l is independent of the choice of l inside the shifted interval

n
2

+ (−n + 2, 0)=

(
1 −

n − 2
2

, 1 +
n − 2

2

)
.

The choice l = 1 is particularly natural, as the space H 1,1,0
b,sc (tf; µ̂) is the quadratic form domain of 1ĝ

(as follows from Hardy’s inequality). The invertibility of N (P) at weight l = 1 is then equivalent to the
limiting absorption principle for the exact conic metric ĝ, the proof of which is a standard application of
a boundary-pairing argument [Melrose 1995, §2.3] and unique continuation at infinity. See Lemma 5.10
below for a proof is a more general setting. □

As a consequence, we may apply Theorem 4.10 for l in the range (5-1), any value of s ∈ R, α = 0,
and variable orders b satisfying in particular b>−

1
2 at Rin, b<−

1
2 at Rout, and we may arrange that∣∣b−

(
−

1
2

)∣∣< ϵ for any fixed ϵ > 0. Packaged in the form of Proposition 4.15 using complex absorption,
we thus have, using the volume density |dg| near ∂X ,

∥u∥H s,l,0,b
c,h

≤ C∥Ph,zu∥H s−2,l−2,0,b+1
c,h

; (5-2)

this estimate is sharp in the sense explained after the statement of Theorem 4.10. Lossy estimates on
constant order spaces are given by

∥(x + h)−
1
2 −ϵu∥H s,l,0,0

c,h
∼ h−

1
2 −ϵ

∥u∥H s,l,0,−1/2−ϵ

c,h

≲ h−
1
2 −ϵ

∥Ph,zu∥H s−2,l−2,0,1/2+ϵ

c,h
∼ h−1−2ϵ

∥(x + h)
1
2 +ϵPh,zu∥H s−2,l−2,0,0

c,h
.



SEMICLASSICAL PROPAGATION THROUGH CONE POINTS 3531

In the special case s = l, and recalling from [Hintz 2022, Theorem 6.3] that the domain

D l
h = D((h21g′ + 1)l/2)

of the (l/2)-th power of the Friedrichs extension of the conic Laplacian h21g′ + 1 is equal to H l,l,0,0
c,h in

present notation, this gives:

Proposition 5.2 (constant-order estimates). In the above setting and with l as in (5-1), we have for all
ϵ > 0 the estimates

∥(x + h)−
1
2 −ϵu∥D l

h
≤ Cϵh−1−2ϵ

∥(x + h)
1
2 +ϵPh,zu∥D l−2

h
, (5-3a)

∥u∥D l
h
≤ Cϵh−1−2ϵ

∥Ph,zu∥D l−2
h
, (5-3b)

as well as more general estimates with D l
h and D l−2

h replaced by H s,l,0,0
c,h and H s−2,l−2,0,0

c,h .

The estimate (5-3b) is an immediate consequence of (5-3a). We recall that in the case l = 1, the
(arbitrarily small) 2ϵ-loss in (5-3b) can be removed, as shown in the semiclassical cone setting by Baskin
and Marzuola [2022] following arguments by Melrose, Wunsch, and Vasy [Melrose and Wunsch 2004;
Melrose et al. 2008]; in the full range of weights l considered here, a lossless estimate was obtained by
the author in [Hintz 2022, §6.2] via reduction to the case l = 1 via conjugation by (1 + h21g′)(l−1)/2 and
reduction to the case l = 1. On the other hand, the estimate (5-3b), even for ϵ = 0, loses a full order at tf
compared to the sharper estimate (5-3a).

Remark 5.3 (limiting absorption principle). The h−1−2ϵ loss in Proposition 5.2 is familiar from (and
essentially arises from) the loss of slightly more than one power of ⟨z⟩ in the limiting absorption principle

(1− 1 ± i0)−1
: ⟨z⟩−

1
2 −ϵL2(Rn)→ ⟨z⟩

1
2 +ϵH 2(Rn)

on Euclidean space, which is a consequence of a sharp variable-order estimate akin to (5-2); see Lemma 4.8.

A natural question is whether one can prove an estimate which removes both the ϵ-loss of (5-3b) while
retaining the lossless character of (5-3a) (or (5-2)) at tf. We answer this in the affirmative:

Theorem 5.4 (sharp propagation estimate). Consider a conic manifold (X, g) as in (4-1)–(4-2) and with
dim X ≥ 3. Let Ph,z = h21g − z, |z − 1| < Ch. Denote the characteristic set of Ph,z by 6 ⊂

ch̄T ∗

sf Xch̄ ;
see (4-8). Let χ, χ̃ ∈ C∞

c (X), with χ̃ ≡ 1 near suppχ , and E ∈ 9−∞

ch̄ (X). Suppose that all backward
GBB from 6∩ suppχ enter Ellch̄(E) in finite time while remaining inside supp χ̃ . Then, for any s, N ∈ R,
we have an estimate

∥χu∥H s,1,0,0
c,h (X) ≤ C(∥χ̃ Ph,zu∥H s−2,−1,0,1

c,h (X) + ∥Eu∥H−N ,−N ,−N ,0
c,h (X) + h

1
2 ∥χ̃u∥H−N ,−N ,0,0

c,h (X)). (5-4)

This holds more generally if the first two norms above are replaced by ∥χu∥H s,s′,1,0,0
cb,h

and ∥χ̃Ph,zu∥H s−2,s′−2,−1,0,1
cb,h

,
with s ′

∈ R arbitrary. Taking s = 1, N = 0 in (5-4) gives

∥χu∥D1
h
≲ h−1

∥(x + h)χ̃ Ph,zu∥D−1
h

+ ∥Eu∥L2 + h
1
2 ∥χ̃u∥L2, (5-5)

and upon adding complex absorption as in Section 4E and (4-42), we have

∥u∥D1
h
= ∥u∥H1,1,0,0

c,h
≲ h−1

∥(x + h)Ph,zu∥D−1
h

= ∥Ph,zu∥H−1,−1,0,1
c,h

. (5-6)
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For comparison, the h-lossless version of (5-3b) for l = 1 reads

∥u∥H1,1,0,0
c,h

≲ h−1
∥Ph,zu∥H−1,−1,0,0

c,h
= ∥Ph,zu∥H−1,−1,1,1

c,h
, (5-7)

which is weaker than Theorem 5.4 in that the required control on Ph,z at tf is one order stronger than in
the theorem.

As discussed after Theorem 4.10, the estimate (5-4) is sharp in the sense that the relative orders on
u on the left and Ph,zu on the right cannot be improved, but here the semiclassical order remains fixed
upon propagation through the cone point.

The proof of Theorem 5.4 uses the global positivity (as an operator) of a commutator on tf, reminiscent
of proofs of similar lossless results in N -body scattering [Vasy 2000; 2001], as well as a splitting of u,
using the functional calculus for h21g, into a part localized near the characteristic set and a part where
h21g − 1 is elliptic and can be inverted by spectral theory. The following technical result is proved at the
end of this section.

Lemma 5.5 (functional calculus). Let φ ∈ C∞
c (R). Then, for all ϵ > 0,

φ(h21g) ∈ A−ϵ,n−ϵ,n−ϵ,0,0,∞(X2
ch̄;

b�
1
2 ), (5-8)

where the orders of the conormal space refer to lb2, ff2, rb2, tf2, df2, sf2 ⊂ X2
ch̄ in this order.

Remark 5.6 (dimension). We only study the case dim X ≥ 3 here. The methods used in [Melrose et al.
2008; Baskin and Marzuola 2022], which are based on quadratic forms, and also the methods in [Melrose
and Wunsch 2004], work in the case dim X = 2 as well. However, the identification of the quadratic
form domain with a semiclassical cone Sobolev space fails in this case (see [Melrose and Wunsch 2004,
equation (3.11)] for h = 1), which is why we do not consider it here.

Proof of Theorem 5.4. We present the proof in the case that Ph,z agrees with its normal operator,
equivalently Ph,z = h21g − 1 with g = dx2

+ x2k(y, dy) an exact conic metric. In the general case, the
error terms arising from Ph,z − N (P) ∈ 9

2,−2,−1,0
ch̄ (X) are handled easily; we leave the details to the

reader. (In particular, since we shall use a global commutator argument which controls u at sf and tf in one
fell swoop, there is no need for a delicate argument for the combination of the symbolic estimate at sf and
a normal operator estimate at tf as in the end of the proof of Theorem 4.10.) We write P ≡ Ph,z for brevity.

Positive commutator argument: Define the operator

A :=
h
2
(x Dx + (x Dx)

∗)− 1 = hx Dx −
inh
2

− 1, a :=
ch̄σ(A)= xξ − 1, (5-9)

where we use the coordinates (3-3). This will be the main piece of the commutant in a positive commutator
calculation, and it is in essence the key term both in the commutator argument of [Vasy 2008], as well
as in the Mourre commutant [1980/81] in classical scattering theory. Let χ = χ(x) be identically 1 near
∂X = x−1(0), with support in any prespecified neighborhood of ∂X , and so that χ ′

≤ 0,
√

−χχ ′ ∈ C∞,
and so that a < 0 has a constant (negative) sign on 6 ∩ suppχ ; arranging the latter property is what the
constant term in (5-9) is for. We then consider the operator

Ã := χ Aχ,
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and estimate in two different ways the expression

2h−1 Im⟨Pu, Ãu⟩ =

〈
i
h
[P, Ã]u, u

〉
. (5-10)

Consider first the commutator term. Since h21g is homogeneous of degree −2, we have (i/h)[P, A]=

−[x∂x , P] = 2h21g, which is the crucial global positive commutator. Therefore,

i
h
[P, χ Aχ ] = 2χh21gχ +

i
h
(χ A[P, χ] + [P, χ]Aχ).

The contribution of the first term to the right-hand side of (5-10) is

2∥h∇g(χu)∥2,

where we write ∥ · ∥ ≡ ∥ · ∥L2 . The second term on the other hand consists of operators with coefficients
supported strictly away from x = 0. It suffices to merely capture its principal symbol, which by (4-9) is
2χah−1 Hpχ = ax−1H(χ2)= 4aξχχ ′; near incoming directions, where ξ < 0, this is negative, whereas
near outgoing directions, where ξ > 0, this is positive and thus has a sign matching that of the above
main commutator term. For a suitable microlocal cutoff E ∈90

ch̄(X) which is elliptic on 6 in the region
ξ < ϵ for some fixed small ϵ ∈ (0, 1), we thus conclude from (5-10) that

2∥h∇g(χu)∥2
≤ 2 Im

〈(
h Dx −

in
2

h
x

)
(χu), h−1xχ Pu

〉
− 2h−1 Im⟨χu, χ Pu⟩ + ∥Eu∥

2. (5-11)

Hardy’s inequality gives
∥∥(h/x)χu

∥∥≤ Cn∥h Dx(χu)∥; hence the first term on the right is bounded from
above by

ϵ∥h Dx(χu)∥2
+ Cϵ∥h−1xχ Pu∥

2.

For the second term in (5-11), we rewrite

⟨χu, χ Pu⟩ = −∥χu∥
2
+ ⟨h∇g(χ

2u), h∇gu⟩

= −∥χu∥
2
+ ∥χh∇gu∥

2
+ ⟨h(∇gχ

2)u, h∇gu⟩;

taking the imaginary part annihilates the first two terms, while for the final term we have

⟨h(∇gχ
2)u, h∇gu⟩ − ⟨h∇gu, h(∇gχ

2)u⟩ = ah2
∇g((∇gχ

2)u)− h2(∇gχ
2) · ∇gu, u⟩

= ⟨h21g(χ
2)u, u⟩, (5-12)

with no derivatives falling on u anymore. Altogether, we obtain from (5-11) the estimate

(2 − Cϵ)∥h∇g(χu)∥2
≤ Cϵ∥h−1xχ Pu∥

2
+ Ch∥χ̃u∥

2
+ ∥Eu∥

2, (5-13)

where χ̃ ≡ 1 on suppχ , used to bound the contribution of (5-12).

Control of χu in H 1,1,0,0
c,h : Since the principal symbol of

h∇g ∈9
1,1,0,0
ch̄ (X; C, ch̄T ∗Xch̄)

(mapping complex-valued functions into sections of ch̄T ∗Xch̄ , see Remark 3.3) is not injective at the zero
section over sf, the estimate (5-13) does not yet give full control of χu in H 1,1,0,0

c,h : an estimate of ∥χu∥
2
L2
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is lacking at this point. (Note that the control of (h/x)χu via Hardy’s inequality degenerates precisely
at sf, i.e., the lift of h = 0.) The key observation is that the characteristic set of P and the set where the
principal symbol of h∇g fails to be injective are disjoint. Thus, for some A1 ∈9

−1,−1,0,0
ch̄ (X;

ch̄T ∗Xch̄,C)

and A2 ∈9
−2,−2,0,0
ch̄ (X), we have

I = A1 ◦ h∇g + A2 P + R, R ∈9
−∞,0,0,−∞

ch̄ (X);

this implies

∥χu∥ ≤ C(∥h∇g(χu)∥H−1,−1,0,0
c,h (X) + ∥P(χu)∥H−2,−2,0,0

c,h (X))+ ∥R(χu)∥L2 . (5-14)

Using [P, χ] ∈9
1,−∞,−∞,−1
ch̄ (X), we can estimate the second term by

∥P(χu)∥H−2,−2,0,0
c,h

≤ ∥χ Pu∥H−2,−2,0,0
c,h

+ ∥[P, χ]u∥H−2,−2,0,0
c,h

≲ ∥h−1xχ Pu∥H−2,−1,0,−1
c,h

+ ∥χ̃u∥H−1,−N ,−N ,−1
c,h

for any N ∈ R. The remainder term in (5-14) is simply estimated by

∥R(χu)∥L2 ≤ C
∥∥∥∥ h

h + x
χu
∥∥∥∥

L2
≤ C

∥∥∥∥h
x
χu
∥∥∥∥

L2
.

Applying Hardy’s inequality to this term, the estimate (5-14) then implies, a fortiori,

∥χu∥L2 ≤ C ′(∥h∇g(χu)∥L2 + ∥h−1xχ Pu∥L2 + h∥χ̃u∥L2).

We can now add η times this, with ηC ′ < 1
2 , to the estimate (5-13) (in which we fix ϵ < C−1), in order

to obtain
∥χu∥

2
D1

h
= ∥χu∥

2
+ ∥h∇g(χu)∥2 ≲ ∥h−1xχ Pu∥

2
+ ∥Eu∥

2
+ h∥χ̃u∥

2. (5-15)

As far as weights in h and x are concerned, this is already the desired estimate. However, the differential
order is forced to be 1 here, and in addition the order of differentiability required on Pu in (5-15) is too
strong (0 instead of −1) even in this special case.

Sharp improvement at tf: The basic idea is to apply the estimate (5-15) to φ(h21g)u, where φ ∈ C∞
c (R) is

equal to 1 on [−4, 4]; on the remaining piece (1−φ(h21g))u, the operator h21g−1 can be inverted directly
using the functional calculus. In order to define h21g as a self-adjoint operator, we need to pass from X
to a compact manifold X ′. If Y = ∂X is null-cobordant, we may choose X ′ so that ∂X ′

= ∂X , and we then
extend g to a Riemannian metric on X ′ which we continue to denote by g. The operator φ(h21g) does
depend on the choice of extension, but its structural properties, as used in the following argument, do not.
If Y is not null-cobordant, we may set X ′

= [0, 6x0]x ×Y and define a smooth metric on X ′ which is equal
to g on [0, 2x0)×Y and equal to the pullback of g along the map (x, y) 7→ (6x0 −x, y) on (4x0, 6x0]×Y ;
we denote this metric g again. Thus, we have two identical cone points at x = 0 and at 6x0 − x = 0.

Concretely then, 8 := φ(h21g) is given by Lemma 5.5, the notation of which we shall use here. Now,
in order to remain localized near ∂X , we apply the estimate (5-15) to

u1 := χ̃8χ̃u.
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Using [P,8] ≡ 0 and χ [P, χ̃ ] ≡ 0, we estimate the first term on the right in (5-15) by

∥h−1xχ Pχ̃8χ̃u∥ ≤

∥∥∥∥ x
h
χ8

h
h + x

(h−1(x + h)χ̃ Pu)
∥∥∥∥+ ∥h−1xχ8[P, χ̃ ]u∥. (5-16)

Denoting the lift of x to the left, resp. right factor of X2
ch̄ by x , resp. x ′, we note that

x
h

h
x ′ + h

∈ A1,1,0,0,0,0(X2
ch̄) =⇒ 9 :=

x
h
χ8

h
x ′ + h

∈ A1−ϵ,n+1−ϵ,n−ϵ,0,0,∞(X2
ch̄).

Passing to a b-density 0< µ0 ∈ C∞(X;
b�1 X), we claim that 9 is continuous as a map

H−∞,−1,0,0
c,h (X; |dg|)= H

−∞,−1−
n
2 ,−

n
2 ,0

c,h (X;µ0)→ H
∞,− n

2 ,−
n
2 ,0

c,h (X;µ0)= H∞,0,0,0
c,h (X; |dg|),

but since 9 is smoothing in the sense of ch̄-differentiability, it suffices to show the boundedness on
L2(X;µ0) of

x
n
29(x ′)−

n
2

(
x ′

x ′ + h

)−1

∈ A
n
2 +1−ϵ,n−ϵ, n

2 −1−ϵ,0,0,∞(X2
ch̄;

b�
1
2 ). (5-17)

Since this kernel is bounded section of b�1/2 (all indices being ≥0), this is a consequence of Schur’s lemma.
The operator acting on u in the second term on the right in (5-16) has Schwartz kernel supported in

x ′
≥ c > 0 and |x − x ′

| > c > 0 (since suppχ ∩ supp dχ̃ = ∅), hence lies in A1−ϵ,∞,∞,∞,∞,∞(X2
ch̄);

therefore, the second term in (5-16) can be bounded by hN
∥χ̃ ♯u∥ for any N, where χ̃ ♯ = 1 on supp χ̃ .

Altogether, forgetting the cutoff χ̃ and renaming χ̃ ♯ as χ̃ , we have proved

∥χu1∥H N ,1,0,0
c,h

≲ h−1
∥(x + h)χ̃ Pu∥H−N ,−1,0,0

c,h
+ ∥Eu∥H−N ,−N ,−N ,0

c,h
+ h

1
2 ∥χ̃u∥H−N ,0,0,0

c,h
(5-18)

for any s, N ∈ R.
It remains to control χu2, where

u2 := u − u1 = u − χ̃8χ̃u.

Let φ♭ ∈ C∞
c ((−3, 3)) be identically 1 on [−2, 2], and let 8♭ = φ♭(h21g). Then χu2 is localized near

high frequencies, in the sense that its localization to low frequencies

8♭(χu2)=8♭(χu)+8♭[8,χ]χ̃u −8♭8χχ̃u =8♭[8,χ]χ̃u (5-19)

(using 8♭8=8♭ and χχ̃ = χ ) is O(h∞) (due to the presence of [8,χ]) near x = 0 and vanishes to an
order h more than u near supp dχ ⊂ X◦. Moreover, χu2 satisfies the equation

P(χu2)= (χ −χ8χ̃)Pu +
(
[P, χ]u − [P, χ]8χ̃u −χ8[P, χ̃ ]u

)
, (5-20)

Altogether, if we put
P♯ := P + 28♭,

then we have

P♯(χu2)= f2 := (χ −χ8χ̃)Pu + [P, χ]u −
(
[P, χ]8χ̃u +χ8[P, χ̃ ]u − 28♭[8,χ]χ̃u

)
. (5-21)

We moreover have P♯ = p♯(h21g), where p♯(σ ) := (σ − 1)+ 2φ♭ ≥
1
2(σ + 1) for σ ≥ 0; hence we can

invert P♯ using the functional calculus for 1g by (P♯)−1
= q♯(h21) where q♯(σ ) = 1/p♯(σ ) is equal
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to (σ − 1)−1 for large σ . One can then show, by a combination of the arguments leading to Lemma 5.5
and [Hintz 2022, Theorem 5.2], that

(P♯)−1
∈

(
x

x + h

)2

9−2
ch̄ (X)+9

−∞,E
ch̄ (X)

where the collection E of index sets is equal to E(−1) in the notation of [Hintz 2022, Theorem 6.1].
Therefore, using (5-21), the mapping properties of elements of (x/(x + h))29−2

ch̄ (X), and estimating the
smoothing contribution in the space 9−∞,E

ch̄ (X) to (P♯)−1 by means of Schur’s lemma, we have

∥χu2∥H s,1,0,0
c,h

= ∥(P♯)−1 f2∥H s,1,0,0
c,h

≲ ∥χ̃ Pu∥H s−2,−1,0,0
c,h

+∥χ̃ [P, χ]u∥H s−2,−1,0,0
c,h

+ h∥χ̃u∥H−N ,−N ,0,0
c,h

. (5-22)

Here, the first term on the right comes from the first term in (5-21) and the boundedness of χ −χ8χ̃ ♯

(with χ̃ ♯ ≡ 1 on supp χ̃ ) on H s−2,−1,0,0
c,h ; this boundedness follows from the boundedness of the Schwartz

kernel of

x
n
2

x
x + h

8

(
x ′

x ′ + h

)−1

(x ′)−
n
2 ∈ A

n
2 +2−ϵ,n+1−ϵ, n

2 −1−ϵ,0,0,∞(X2
ch̄;

b�
1
2 )

similarly to the discussion of 9 in (5-17). The final term in (5-22) comes from the big parenthesis
in (5-21), every term of which involves the localizer 8 to low frequencies as well as a commutator with
a cutoff χ or χ̃ . But χ̃ [P, χ] ∈9

1,−∞,−∞,−1
ch̄ (X); hence the second term on the right is bounded from

above by ∥χ̃u∥H s−1,−N ,−N ,−1
c,h

for any N. By elliptic regularity at infinite semiclassical cone frequencies,
this can be bounded by C(∥χ̃ ♯Pu∥H s−3,−N−2,−N ,−1

c,h
+∥χ̃ ♯u∥H−N ,−N ,−N ,−1

c,h
). Combining the resulting estimate

with (5-18) proves the theorem for Hc,h-spaces. The proof of the more general statement for Hcb,h-spaces
requires only notational changes which are left to the reader. □

To complete the proof, it remains to prove Lemma 5.5.

Proof of Lemma 5.5. This can be proved using the Helffer–Sjöstrand formula [1989] similarly to [Vasy
2000, Lemma 10.1 and Proposition 10.2]. Choosing a compactly supported almost analytic extension
φ̃ ∈ C∞

c (C) of φ (that is, φ̃|R = φ and |∂z̄φ̃| = O(|Im z|N ) for all N ), we have

φ(h21g)=
1

2π i

∫
∂z̄φ̃(z)(h21g − z)−1 dz̄ ∧ dz. (5-23)

For z /∈ R, [Hintz 2022, Theorem 3.10 and §6.1] gives

(h21g − z)−1
∈

(
x

x + h

)2

9−2
ch̄ (X)+9

−∞,E
ch̄ (X), (5-24)

where E = (Elb, Eff, Erb, Etf ), with Re z ≥ 0 for (z, k)∈Elb; Re z ≥n for (z, k)∈Erb; Re z ≥ 2 for (z, k)∈Eff;
and Re z ≥ 0 for (z, k) ∈ Etf. Using that the principal symbol of h21g is real-valued and its normal
operator 1ĝ is self-adjoint, we claim that any fixed seminorm (5-24) is moreover bounded by |Im z|−k

for some k (depending on the seminorm).
To justify this claim, it is instructive to first consider the corresponding statement for (1− z)−1

∈9−2,
z ∈ C \ R, where 1 is the Laplacian on a closed Riemannian manifold: for any N, the construction
of a symbolic parametrix of 1 − z of order N gives QN ,z, Q′

N ,z ∈ 9−2, with seminorms bounded
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by |Im z|−C for some C depending on N and the seminorm, so that (1 − z)QN ,z = I − RN ,z and
Q′

N ,z(1− z) = I − R′

N ,z , where RN ,z, R′

N ,z ∈ 9−N obey such bounds as well. But then (1− z)−1
=

QN ,z + Q′

N ,z RN ,z + R′

N ,z(1− z)−1 RN ,z , where the first two summands as pseudodifferential operators
and the third summand (the “remainder operator”) R′

N ,z(1− z)−1 RN ,z as a map H−N
→ H N obey

such bounds; this uses that ∥(1− z)−1
∥ = |Im z|−1 as an operator on L2. But any seminorm on 9−2 is

continuous on the space of bounded operators H−N
→ H N for sufficiently large N. This implies that

any 9−2-seminorm of (1− z)−1 is bounded by |Im z|−k for some k. (In this simple example, the claim
follows also directly from Beals’ Theorem [1977].)

Analogous arguments can be used to control the inverse of the normal operator 1ĝ − z: in addition
to carrying out N steps of the symbolic parametrix construction, one uses the inverse of the b-normal
operator (which is independent of z) to solve away to order N at the left/right boundary (for the left/right
parametrix) and the b-front face of tf2

b,sc; by virtue of taking only finitely many steps, one ensures
the validity of |Im z|−k bounds on seminorms. The true inverse (1ĝ − z)−1 then obeys such bounds
as well since any seminorm on the space of large b-scattering ps.d.o.s in which (1ĝ − z)−1 lies (see
[Hintz 2022, equation (3.28)] for a general statement) is continuous on the space of remainder operators
H−N ,l1,−N

b,sc → H N ,l2,N
b,sc (for appropriate orders l1, l2, with l2 = −N, resp. l1 = −N in the case of the left,

resp. right parametrix construction) for sufficiently large N.
The |Im z|−k bounds for seminorms of (5-24) can then be proved by completely analogous means,

namely by constructing a parametrix which is accurate to some finite order, and observing that any fixed
seminorm on the space (5-24) is continuous on the relevant space of remainder operators.

Plugging these into (5-23), we conclude that φ(h21g) is of the same class as the resolvent. To improve
the orders, let m ∈ N and write φ(σ)= (σ + C)−mφm(σ ) with C >− inf suppφ. Then

φ(h21g)= (h21g + C)−mφm(h21g).

Applying the previous discussion to φm and using [Hintz 2022, Theorem 6.3(3)] (with w= −m) to control
(h21g +C)−m implies, upon letting m → ∞, that φ(h21g)∈9

−∞,−∞,0,0
ch̄ (X)+A−ϵ,n−ϵ,n−ϵ,0,∞,∞(X2

ch̄).
This gives (5-8). □

5B. Scattering by potentials with inverse square singularities. Complex absorption is a somewhat
drastic method for gaining microlocal control along incoming directions. As a more natural setting, let
us thus consider scattering by potentials on Rn, n ≥ 2, which are singular at the origin 0 ∈ Rn, as in
Theorem 1.1. (Working on more general conic manifolds requires only minor modifications.) That is, the
underlying spatial manifold is

X = [Rn
x ; {0}] ∼= [0,∞)r × Sn−1, g = dx2

= dr2
+ r2gSn−1 . (5-25)

We write 1≡1g =
∑

D2
x j for the (nonnegative) Laplacian. Let N ∈ N, and denote by 1 the Laplacian

acting componentwise on CN -valued functions. We consider scattering by matrix-valued potentials

V (x)= |x |
−2V0(x), V0 ∈ C∞

c (X; CN×N ).
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The assumption of compact support of V can of course be relaxed considerably, but since our interest lies
in understanding the effect of the singularity at r = 0, we shall not concern ourselves with more general
conditions on V at infinity here.

We are interested in high-energy estimates for the resolvent of 1+ V ; concretely, we shall consider
1+ V − σ 2, where Im σ > 0 is bounded and |Re σ | ≫ 1. Upon introducing

h = |σ |
−1, z = (hσ)2 = 1 +O(h), (5-26)

we define

Ph,z := h2(1+ V − σ 2)= h21− z + h2r−2V0. (5-27)

This is admissible in the sense of Definition 4.1, with Q1,z = V0 and q0,z = 0. Since Q1,z has differential
order 0, the threshold quantities in Definition 4.7 are rin = rout = −

1
2 . The normal operator of Ph,z is

computed by passing to r̂ =
r
h and setting h = 0:

N (P)=1ĝ − 1 + r̂−2V∂ ,

ĝ := dr̂2
+ r̂2gSn−1, V∂ := V0|∂X ∈ C∞(∂X; CN×N ).

(5-28)

(Thus V∂(ω)= V0(0, ω) in the coordinates (r, ω) ∈ [0,∞)× S2 on X .)

Theorem 5.7 (potential scattering). Assume that the operator N (P) defined in (5-28) is invertible at
weight l ∈ R (in the sense of Definition 4.6(3)). Let C > 0, and let χ0 ∈ C∞

c (X) be identically 1 near
r = 0. Then there exists C ′ > 0 so that for 0 < Im σ < C and |Re σ | > C ′, the operator 1+ V − σ 2 is
invertible as a map

1+ V − σ 2
: {u ∈ H 2

loc(X
◦) : χ0u ∈ r l H 2

b (X), (1 −χ0)u ∈ H 2(Rn)}

→ { f ∈ L2
loc(X

◦) : χ0 f ∈ r l−2L2(X), (1 −χ0) f ∈ L2(Rn)}. (5-29)

Moreover, in the notation (5-26)–(5-27), the following uniform estimate holds for all ϵ, δ > 0, a suitable
constant Cϵ,δ > 0, and all 0< Im σ < C , |Re σ |> C ′:

∥χ0u∥H s,l,1/2+ϵ,0
c,h

+ ∥(1 −χ0)u∥H s,−1/2−δ

sc,h

≤ Cϵ,δh−1−2ϵ(∥χ0 Ph,zu∥H s−2,l−2,−1/2−ϵ,0
c,h

+ ∥(1 −χ0)Ph,zu∥H s−2,1/2+δ

sc,h
); (5-30)

here, H s,γ
sc = H s,γ

sc (Rn) = ⟨r⟩
−γF−1(⟨h D⟩

−s L2(Rn)) is the semiclassical scattering Sobolev space. In
particular, for l1 ≤ min

(
l, 1

2 + ϵ
)
, l2 ≥ max

(
l − 2,− 1

2 − ϵ
)
, and for any fixed χ ∈ C∞

c (X) we have

∥χ(1+ V − σ 2)−1χ f ∥r l1 L2 ≤ Cϵ,χ |σ |
−1+2ϵ

∥ f ∥r l2 L2 . (5-31)

We recall that for V (x) = |x |
−2V0(x), with real-valued V0 satisfying V0(0) > −((n − 2)/2)2 (and

indeed under relaxed regularity requirements on V0, and allowing for the presence of several such inverse
square singularities), Duyckaerts [2006] obtained cutoff resolvent estimates of the form (5-31) without
the 2ϵ-loss. It is an interesting question — which we do not address here — whether in this setting, or
perhaps even in the general setting of Theorem 5.7, one can prove a lossless estimate using a global
commutator argument similar to the one used in Section 5A.
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Remark 5.8 (meromorphic continuation). For V with compact support as above, the resolvent (1+V−σ2)−1

can be meromorphically continued to the complex plane when n is odd, and the logarithmic cover of C×

when n is even; the estimate (5-31) holds in strips of bounded Im σ for large |Re σ |. The construction of
this continuation can be accomplished along the lines of black box scattering [Sjöstrand and Zworski
1991] (see also [Dyatlov and Zworski 2019, §4]), with those estimates in the references in Im σ ≫ 1
relying on self-adjointness replaced by estimates on the off-spectrum resolvent that follow from [Hintz
2022, Theorem 3.10]. For applications of such estimates to expansions of scattered waves for n odd, we
refer the reader to [Dyatlov and Zworski 2019, §3.2.2].

Remark 5.9 (vector bundles). One may more generally consider potentials valued in endomorphisms
of a vector bundle E → X , with 1 denoting an operator acting on sections of E with scalar principal
symbol given by the dual metric function. The main difference to the case of a trivial bundle is that the
threshold quantities rin, rout depend on subprincipal terms of 1 (and their calculation requires the choice
of a fiber inner product on E ; see Remark 4.11). In the special case of tensor bundles E , and with 1
denoting the tensor Laplacian, the fiber inner product on E induced by g does give rin = rout = −

1
2 .

Proof of Theorem 5.7. Semiclassical propagation estimates near infinity of Rn are standard, see, e.g.,
[Vasy and Zworski 2000, Theorem 1] (following [Melrose 1994]) in a general geometric setting, and
can be combined with the propagation estimates through the singularity at r = 0 given in Theorem 4.10
(where we shall take α =

1
2 + ϵ, b = 2ϵ near Rin, and b = 0 near Rout). Altogether, upon simplifying to

constant orders, we obtain, for any δ > 0, and for 0< h < h0 with h0 > 0 sufficiently small,

∥χ0u∥H s,l,1/2+ϵ,0
c,h

+ ∥(1 −χ0)u∥H s,−1/2−δ

sc,h
≲ ∥χ0 Ph,zu∥H s−2,l−2,1/2+ϵ,1+2ϵ

c,h
+ h−1−2ϵ

∥(1 −χ0)Ph,zu∥H s−2,1/2+δ

sc,h
,

which is the estimate (5-30). (The loss of h−2ϵ in the second term on the right is due to the fact that the
propagation through r = 0 comes with this loss, which then gets propagated out to infinity.) This estimate
also gives the injectivity of Ph,z for small h > 0 and |z − 1|< Ch, with surjectivity following from the
analogous estimate for the adjoint; this proves the first part of the theorem, albeit on function spaces
with weights ⟨r⟩

±(1/2+δ) at infinity. But for any fixed σ with σ 2 /∈ [0,∞), 1+ V − σ 2 is an elliptic
scattering operator near infinity; hence these weights can be removed. (It is only in the high-energy limit
|Re σ | → ∞ with |Im σ/Re σ | → 0 that one loses uniform (in σ ) ellipticity.)

The simplified estimate (5-31) follows by setting s = 2 in

h−1−2ϵ
∥χ Ph,zu∥H s−2,l−2,−1/2−ϵ,0

c,h
≤ h1−2ϵ

∥χ(1+ V − σ 2)u∥
H

s−2,l2,l2,0
c,h

,

∥χu∥H s,l,1/2+ϵ,0
c,h

≤ ∥χu∥
H

s,l1,l1,0
c,h

. □

We describe a few scenarios in which the invertibility assumption on N (P) can be verified:

(1) The operator N (P) is invertible for an open set of V∂ ∈ C∞(Sn−1
; CN×N ). In particular, it holds

when n ≥ 3, l ∈ (1 − (n − 2)/2, 1 + (n − 2)/2), and V∂ ≡ 0 by Lemma 5.1, and therefore also when
∥V∂∥Ck is sufficiently small (depending on l) for some sufficiently large k.

(2) Consider V∂ which depends holomorphically on a parameter w ∈ �, where � ⊂ C is open and
contains 0. (For example, this is the case when V∂(w)=wV∂,0.) Let us write N (Pw) for the w-dependent
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normal operator, and assume that N (P0) is invertible at weight l0; assume moreover that there is a
continuous function l : � → R with l(0) = l0 so that l(w) /∈ − Im specb(N (Pw)). Then there exists a
discrete set D ⊂� so that N (Pw) is invertible at weight l(w) for w ∈� \ D. This follows from analytic
Fredholm theory in w; we leave the details to the reader.

A very concrete third scenario is the following:

Lemma 5.10 (scalar inverse square potentials). Let n ≥ 2, consider the scalar case N = 1, and suppose
V∂ = Z ∈ C\ (−∞,−((n −2)/2)2] is a constant (so V (x)= Z/|x |

2
+O(|x |

−1)). Then N (P) is invertible
at weight l if and only if |l − 1|< Re

√
((n − 2)/2)2 +Z.

Proof of Lemma 5.10. The boundary spectrum of N (P) can be computed, via expansion into spherical
harmonics, as

specb(N (P))=

{
i
(

n − 2
2

±

√(
n − 2

2
+ ℓ

)2

+Z

)
: ℓ ∈ N0

}
.

The condition on Z ensures that

Re

√(
n − 2

2

)2

+Z> 0,

and thus for l as in the statement of the lemma, one has l − n/2 /∈ − Im specb(N (P)).
Expanding an outgoing solution u of N (P)u = 0 at weight l into spherical harmonics, u(r̂ , ω) =∑
|m|≤ℓ uℓm(r̂)Yℓm(ω), the coefficient uℓm satisfies a Bessel ODE

−u′′

ℓm −
n − 1

r̂
u′

ℓm +
ℓ(ℓ+ n − 2)+Z

r̂2 uℓm − uℓm = 0,

and hence is a linear combination of r̂−(n−2)/2 H (1)
νℓ (r̂) and r̂−(n−2)/2 H (2)

νℓ (r̂) where we set

νℓ =

√(
n − 2

2
+ l
)2

+Z.

The outgoing condition can only be satisfied if uℓm is a multiple of r̂−(n−2)/2 H (1)
νℓ (r̂). But for 0< r̂ ≪ 1,

one has
|r̂−

n−2
2 H (1)

νℓ
(r̂)| ≥ cℓr̂−

n−2
2 −Re νℓ ≥ cℓr̂−

n−2
2 −Re ν0,

with cℓ > 0, which lies in r̂ l ′ L2(r̂n−1dr̂) if and only if l ′ < 1 − Re ν0, which is violated for l ′ = l. Hence
necessarily uℓm = 0. This proves that N (P) is injective at weight l on outgoing functions; the injectivity
of N (P)∗ at weight −l + 2 on incoming functions is proved similarly. □

Theorem 1.1 follows from Theorem 5.7 and Lemma 5.10 upon taking σ =
√
λ and l = 2, which allows

for the choice l1 = l2 = 0. Note that for l = 2, the target space in (5-29) in L2(X) = L2(Rn), and the
domain is H 2

0 (R
n
\ {0}) for n ≥ 5 by Hardy’s inequality.

Remark 5.11 (multiple scatterers). By exploiting the diffractive improvement obtained in Section 4F
as in [Baskin and Wunsch 2013], it is conceivable that one can generalize (up to ϵ-losses) Duyckaerts’
high-energy resolvent estimates [2006] for scattering by a finite number of real-valued inverse square
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potentials and analyze the complex-valued case Zj ∈ C\(−∞,−((n −2)/2)2] (or more generally the case
of finitely many matrix-valued inverse square potentials). However, the study of this problem exceeds the
scope of this paper.

Remark 5.12 (operators with inverse square singularities arising in the study of wave equations). Follow-
ing [Baskin and Marzuola 2022], consider a static metric g = −dt2

+dr2
+ r2k, where k is a Riemannian

metric on a closed manifold Z ; e.g., (Z , k)= (Sn−1, gSn−1), in which case g is the Minkowski metric. In
the region t > 1, r/t < 1

2 , we introduce T = 1/t , R = r/t (in the notation of the reference: ρ, x) and
compute

t2□g = −(T DT + RDR)
2
+ i(T DT + RDR)+ D2

R −
i(n − 1)

R
DR + R−21k .

Restricting the coefficients to T = 0 (as a b-operator) and formally passing to the Mellin transform by
replacing T DT with multiplication by σ ∈ C gives

Pσ =1G − (RDR + σ)2 + i(RDR + σ)=1G − σ 2
+ Q, G := dR2

+ R2k,

where Q = iσ − (2σ − i)RDR . When |Im σ | is bounded and |Re σ | → ∞, we let h = |σ |
−1; then the

rescaling
Ph,z = h2 Ph−1z = h21G − z2

+ h2 Q (5-32)

is an admissible operator on
[
0, 1

2

)
R × Z in the sense of Definition 4.1. More generally, consider

the coupling of □g with a potential V = V (r, z) which asymptotes to an inverse square potential
as r → ∞, i.e., V (r, z) = r−2V0(z) + O(r−2−δ) with V0 ∈ C∞(Z). Then we have t2(□g + V ) =

t2□g + R−2V0(z)+O(T δR−2−δ), and therefore the rescaling (5-32) has an additional h2 R−2V0 term, as
studied in the present section; that is, a stationary asymptotically inverse square potential on [0,∞)r × Z
gives rise to an inverse square singularity of Ph,z at R = 0.16 (If V = r−2V0(z) is an exact inverse
square potential, then Ph,z has the same additional term.) Operators of this type, acting on sections
of vector bundles without natural positive definite fiber inner products (and correspondingly without
symmetry conditions on V0), appear in the study of the equations of linearized gravity on stationary and
asymptotically flat spacetimes in certain gauges, and indeed this was the author’s original motivation for
the investigations in the present paper; the details will appear elsewhere.

5C. Scattering for the Dirac–Coulomb equation. Motivated by [Baskin and Wunsch 2023], we consider
the stationary scattering theory for the Dirac–Coulomb equation on Minkowski space at high energies.
As discussed in Section 1, our framework allows us to deal directly with the associated matrix-valued
Klein–Gordon operator — which has nonsymmetric leading-order terms at the Coulomb singularity —
albeit with an arbitrarily small loss upon propagation through the singularity. Moreover, our results
include a larger range of Coulomb charges Z ∈ R than [Baskin and Wunsch 2023] (which requires |Z|< 1

2
for technical reasons); we can even allow for Z which |Z| >

√
3

2 , in which case the Dirac–Coulomb
Hamiltonian is not essentially self-adjoint.

16After the original version of the present paper appeared, this has been worked out in detail by the author in the preprint
[Hintz 2023].
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The underlying spatial manifold is again given by (5-25), now with n = 3. We recall relevant notation
from [Baskin and Wunsch 2023]. Denote the Pauli matrices by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Put further

β := γ 0
:=

(
I 0
0 −I

)
, γ j

:=

(
0 σj

−σj 0

)
,

α j
:= βγ j

=

(
0 σj

σj 0

)
, αr :=

3∑
j=1

x j

r
αj .

The equation governing a massive Dirac field (with mass m ∈ R) minimally coupled to an electromagnetic
potential A = (A0, A1, A2, A3) is

(i∂A − m)ψ = 0, ∂A := γ µ(∂µ + i Aµ),

where ψ takes values in C4. We now take

A0 =
Z

r
+ V, V ∈ C∞(X), Aj ∈ C∞(X), (5-33)

with Z ∈ R the charge of the Coulomb field. As shown in [Baskin and Wunsch 2023, §4.3], the operator
−(i∂A + m)(i∂A − m) is then of the form

P = −

(
Dt +

Z

r

)2

+1+ m2
+ i

Z

r2αr + r−1 R, R ∈ Diff1
b(X; C4). (5-34)

Let us pass to a fixed temporal frequency σ ∈ C, thus replacing Dt in (5-34) by −σ , resulting in the op-
erator family P̂(σ ). Introducing h = |σ |

−1 and z = (hσ)2 and multiplying P̂(σ )= P̂(h−1√z) by h2 gives

Ph,z = h21−

(
√

z −
hZ
r

)2

+
h2

r2 (iZαr + r2m2)+
h2

r2 r R = h21− z + h2r−2 Q1,z + hr−1q0,z,

Q1,z = −Z2
+ iZαr + r2m2

+ r R, q0,z = 2
√

zZ.

(5-35)

When Im σ is bounded while |Re σ | → ∞, one has z = 1 +O(h); thus, Ph,z is an admissible operator
in the sense of Definition 4.1. The threshold quantities in Definition 4.7 take the values

rin = rout = −
1
2

since q0,1 is real and the principal symbol of Q1,z (as a first-order b-differential operator) vanishes at r = 0.
The normal operator of Ph,z is obtained by passing to r̂ = r/h and restricting to h = 0, giving in polar

coordinates (r̂ , ω) ∈ [0,∞] × S2

N (P)= D2
r̂ −

2i
r̂

Dr̂ −

(
1 −

Z

r̂

)2

+ r̂−2(1+ iZαr (ω)). (5-36)

For Z = 0, the operator N (P) is equal to (1ĝ −1)⊗ IdC4 , where ĝ = dr̂2
+ r̂2gS2 , and hence is invertible

at weight l ∈
( 1

2 ,
3
2

)
by Lemma 5.1. For fixed l, this will remain true for Z in a small neighborhood of 0.
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The determination of the largest set of Z for which N (P) is invertible at some weight requires explicit
calculations:

Lemma 5.13 (invertibility of N (P)). Let Z ∈ R be such that |Z| ̸=

√
κ2 −

1
4 for all κ ∈ N. Then the

operator N (P) is invertible at weight l = 1.

The conclusion of the Lemma in particular holds in the range |Z|<
√

3
2 ; this is related to the essential

self-adjointness of Dirac operators; see [Weidmann 1971; Lesch 1997; Baskin and Wunsch 2023, §4.1].

Proof of Lemma 5.13. We begin by separating into spinor spherical harmonics following [Baskin and
Wunsch 2023, §2.1]: For

κ ∈ Z \ {0}, µ ∈
{
−|κ| + 1

2 , . . . , |κ| −
1
2

}
,

define the C2-valued function on S2

�κ,µ(ω)=

(
− sgn(κ)

((
κ +

1
2 −µ

)
/(2κ + 1)

)1/2Yl,µ−1/2(ω)((
κ +

1
2 +µ

)
/(2κ + 1)

)1/2Yl,µ+1/2(ω)

)
, l =

∣∣κ +
1
2

∣∣− 1
2 .

Thus 1�κ,µ = κ(κ + 1)�κ,µ. Moreover,

αr

(
a�κ,µ

b�−κ,µ′

)
=

(
−b�κ,µ′

−a�−κ,µ

)
,

as follows from [Baskin and Wunsch 2023, equations (3), (4), (9)] or [Szmytkowski 2007, equa-
tion (3.1.3)]. Thus, the action of the spherical operator 1+ iZαr ∈ Diff 2(S2

; C4) appearing in (5-36) on
the 2-dimensional space with basis (�κ,µ, 0) and (0, �−κ,µ) is given by the matrix(

κ(κ + 1) −iZ
−iZ κ(κ − 1)

)
. (5-37)

This can be diagonalized when |Z| ̸= |κ|, and it has eigenvalue λ±
κ = κ2

±
√
κ2 −Z2 on the eigenspace

spanned by

Y±

κ,µ(ω) :=

(
iZ�κ,µ(ω)

(κ ∓
√
κ2 −Z2)�−κ,µ(ω)

)
, µ ∈

{
−|κ| + 1

2 , . . . , |κ| −
1
2

}
.

Thus, the action of N (P) on separated functions of the form u(r̂)Y±
κ,µ(ω) is given by the action on u of

the differential operator

N±

κ = D2
r̂ −

2i
r̂

Dr̂ −

(
1 −

Z

r̂

)2

+ r̂−2λ±

κ .

The Mellin-transformed normal operator of r̂2 N±
κ at r̂ = 0 is the polynomial

λ2
− iλ−Z2

+ λ±

κ , λ ∈ C;

for its roots, we have

−(Im λ)+ 3
2 ∈

{
1 −

( 1
2 ±

√
κ2 −Z2

)
, 1 +

( 1
2 ±

√
κ2 −Z2

)}
.
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Now if Z2 > κ2, then these two roots have real parts 1
2 and 3

2 , whereas if Z2 < κ2, they are disjoint from
an open interval (1 − δ, 1 + δ) around 1 due to the assumption that κ2

−Z2
̸=

1
4 .

An outgoing solution of N (P) at weight l = 1, expanded into the spherical eigenfunctions Y±
κ,µ, is an

outgoing solution of N±
κ ; one easily finds u = u∞r̂−1−i Z ei r̂

+O(r̂−2) as r̂ → ∞, where u∞ ∈ C, and
the O(r̂−2) term is conormal at r̂ = 0; near r̂ = 0 on the other hand, we have u = A−1/2+δ([0, 1)r̂ ). A
boundary-pairing argument, i.e., the evaluation of

0 = lim
ϵ→0

∫ 1/ϵ

ϵ

((N±

κ u)ū − uN±
κ u) r̂2 dr̂ = 2i lim

ϵ→0
Im(r̂2uu′|

1/ϵ
ϵ )= −2i |u∞|

2,

gives u∞ = 0, and thus u ≡ 0 by standard ODE analysis near r̂ = ∞. This shows that N (P) is injective
at weight l = 1 on outgoing solutions. Since (N±

κ )
∗
= N∓

κ with respect to the L2(r̂2 dr̂) inner product,
the injectivity of N (P)∗ at weight −l + 2 on incoming functions is proved similarly. This completes the
proof when Z is not a nonzero integer.

When Z ∈ Z \ {0} and κ satisfies |Z| = |κ|, then the action of 1+ iZαr on the span of (�κ,µ, 0) and
(0, �−κ,µ′) is not diagonalizable anymore. By inspection of (5-37), it still has the eigenvalue κ2 with
eigenspace spanned by Y+

κ,µ =Y−
κ,µ. Let Ỹκ,µ = (�κ,µ, 0), then an outgoing solution u = u1Y+

κ,µ+u2Ỹκ,µ
of N (P) satisfies a lower triangular ODE system, with a decoupled equation for u1 which implies u1 ≡ 0
by the previous arguments, whence u2 is now an outgoing solution to the same equation as u1 and must
therefore also vanish. □

If we cut A off via multiplication by a cutoff χ ∈ C∞
c (X), the operator Ph,z is equal to h21− z

near infinity and can thus be analyzed as in Section 5B. In this setting, we thus obtain invertibility and
quantitative estimates for Ph,z:

Theorem 5.14 (high-energy estimates for the Dirac–Coulomb equation). Suppose A = (A0, A1, A2, A3)

as in (5-33) has compact support. Let Z ∈ R be such that |Z| ̸=

√
κ2

−
1
4 for all κ ∈ N. Then for l = 1

(and indeed for l sufficiently close to 1), 0< Im z < Ch, and for all sufficiently small h > 0, the operator
Ph,z = h2 P̂(h−1z) defined in (5-34)–(5-35) is invertible as a map between the spaces (5-29) and satisfies
the uniform bound (5-30) as well as the bound (5-31) (with 1g + V − σ 2 replaced by P̂(σ ), where
σ = h−1z) for l1 = l2 = 0.

Remark 5.15 (complex charges). One can also analyze the case of nonreal Z ∈ C, in which case
rin = −

1
2 + ImZ and rout = −

1
2 − ImZ. The difference rout − rin = −2 ImZ results in an additional

2 ImZ loss of powers of the semiclassical parameter h when propagating through the singularity at r = 0.
Nonetheless, the invertibility of N (P) automatically holds for values of Z close to those allowed in
Theorem 5.14, as discussed prior to Lemma 5.10.

Appendix A: A class of examples with sharp semiclassical loss

Note that the semiclassical order b in Theorem 4.10 must decrease from Rin to Rout by more than

D = max(rin − rout, 0); (A-1)



SEMICLASSICAL PROPAGATION THROUGH CONE POINTS 3545

thus, the estimate (4-27) controls u in L2, say, microlocally near the flow-out of Rout by h−D−ϵ (for any
ϵ > 0) times the L2-norm of the microlocalization of u near the flow-in of Rin. While in many natural
settings, such as those discussed in Section 5, one has D = 0, it is easy to construct examples where
D > 0. The following example (placed into a general context at the end of this appendix) shows that a
loss of h−D typically does occur, whence our estimates are sharp up to an ϵ-loss. This ϵ-loss may be
avoidable, though we are not able to prove or disprove this here.

Consider X = [0, 2)r , µ= |dr |, and

Ph,z = h2
(
−∂2

r −
2
r
∂r

)
− z +

2ih
r

q, z = 1 +O(h),

where q ∈ C is a parameter. (The term in parentheses is the radial part of the Laplacian on R3 in polar
coordinates.) The normal operator is

N (P)= −∂2
r̂ −

2
r̂
∂r̂ − 1 +

2i
r̂

q.

For q = 0, the kernel of N (P) is spanned by r̂−1e±i r̂ ; since r̂−1 barely fails to lie in r̂−1/2L2([0, 1)r̂ , |dr̂ |),
it is easy to see that N (P) is invertible at weight l in the sense of Definition 4.6 for l ∈

(
−

1
2 ,

1
2

)
; this

persists for small values of q ∈ C. (The boundary spectrum of N (P) at r̂ = 0 is independent of q .) In the
notation of Definition 4.7, we have

rin =
1
2 + Re q, rout =

1
2 − Re q, (A-2)

so D = max(2 Re q, 0). The quantities (A-2) correspond precisely to the L2-decay rates of incoming and
outgoing solutions ûin, ûout ∈ ker N (P), which have the asymptotic behavior

ûin ∼ r̂−1−Re qe−i r̂ , ûout ∼ r̂−1+Re qei r̂ , r̂ → ∞. (A-3)

(We omit the explicit expressions involving confluent hypergeometric functions.)
We can now construct an element û ∈ ker N (P) which lies in r̂ l L2, l ∈

(
−

1
2 ,

1
2

)
, near r̂ = 0 and which

is uniquely specified by requiring its incoming data at r̂ = ∞ to be given by ûin. Indeed, û is necessarily
of the form

û(r̂)= ûin + cûout,

where c ∈ C is the “scattering matrix”; necessarily c ̸= 0 (since ûin fails to lie in r̂ l L2 near r̂ = 0). But then

Ph,1uh(r)= 0, uh(r) := û(r/h).

(This exact formula uses the invariance of Ph,1 under dilations in (h, r).) Considering a neighborhood
of r = 1 then, the asymptotics (A-3) for

u•,h(r) := u•(r/h), • = in, out,

imply

uh = uin,h + cuout,h,

uin,h ∼ h1+Re qe−ir/h, uout,h ∼ h1−Re qeir/h (near r = 1).
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This demonstrates the loss of h−2 Re q between the amplitudes h1+Re q , resp. h1−Re q of the incoming,
resp. outgoing pieces of uh . (The fact that there is in fact a gain when Re q < 0 is a peculiar feature of the
1-dimensional situation considered here: the characteristic set of Ph,z has two connected components, with
the incoming and outgoing radial sets lying in different components, and the monotonicity requirement
in Theorem 4.10 does not relate the two components.)

The same idea can applied to produce many more examples with sharp loss D. Indeed, when N (P) is
invertible at weight l, then the solution û = û(r̂ , y) (with y denoting points on ∂X ) of N (P)û = 0, where
û has prescribed incoming data and lies in r̂ l L2 near r̂ = 0, gives rise to a solution uh(r, y)= û(r/h, y)
of Ph,1uh(r, y)= 0, where Ph,1 = N (P) (upon changing coordinates r̂ = r/h). The relative decay rates
of incoming/outgoing solutions of N (P) are then directly reflected in the relative semiclassical orders
of uh near the flow-in/flow-out of the cone point. (Since the characteristic set of Ph,1 is connected when
dim X ≥ 2, the loss is at least 0, see (A-1); after all, even away from the cone point, semiclassical
regularity cannot improve under real-principal-type propagation.)

Appendix B: Sobolev spaces and pseudodifferential calculi

This section consists entirely of figures which illustrate the orders of weighted Sobolev spaces as well as
of spaces of pseudodifferential operators, with references to the original definitions. Concretely, labeling a
boundary hypersurface H by “l” means that the order l of some weighted Sobolev space H ··· ,l,···

···
refers to

ρl
H decay at H of its elements, where ρH is a defining function of H, or l orders of regularity when H is a

boundary hypersurface at fiber infinity of some compactified phase space. For spaces of pseudodifferential
operators on the other hand, the same label “l” refers to a ρ−l

H bound of the full symbol of the operator, or
of its Schwartz kernel at the hypersurface of the double space corresponding to H.

See Figure 13 for b- and scattering Sobolev spaces (or operators), Figure 14 for b, sc-Sobolev spaces,
Figure 15 for semiclassical cone Sobolev spaces, and Figure 16 for cbh̄-Sobolev spaces.

bT ∗
∂XX

bS∗X

l

s

Hs,l
b (X) scT ∗

∂XX

scS∗X

r

s

Hs,r
sc (X)

Figure 13. X is a manifold with boundary ∂X . Left: the orders of H s,l
b (X);

see Section 2A. Right: the orders of H s,r
sc (X); see Section 2B.

b,scT ∗
H1

X

b,scS∗X

b,scT ∗
H2

Xl

s

rHs,l,r
b,sc (X)

Figure 14. X is a manifold with two connected and embedded boundary hypersurfaces
∂X = H1 ⊔ H2. Indicated are the orders for H s,l,r

b,sc (X).
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x

h s
l

α

b

Hs,l,α,b
c,h (X)

Figure 15. X is a manifold with boundary ∂X . Indicated are the orders for H s,l,α,b
c,h (X); see Section 3B.

x

h s
l

s′

s′

α

b

Hs,s′,l,α,b
cb,h (X)

Figure 16. This is essentially a repetition of Figure 9. Indicated are the orders for
H s,s′,l,α,b

cb,h (X); see Section 3D.
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