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SMALL CAP DECOUPLING FOR THE MOMENT CURVE IN R3

LARRY GUTH AND DOMINIQUE MALDAGUE

We prove sharp small cap decoupling estimates for the moment curve in R*. Our formulation of the small
caps is motivated by a conjecture of Demeter, Guth, and Wang about L? estimates for exponential sums.

1. Introduction

We use high-/low-frequency methods to prove small cap decoupling inequalities for the moment curve
M3 ={(t,1%,t%) 1t € [0, 1]} in R%. We begin by describing the problem and our results in terms of
exponential sums. The motivation for this paper is to prove Conjecture 2.5 with n = 3 from [Demeter

et al. 2020], which we state now. We use the standard notation e(r) = ¢2"'.

Conjecture 1. Foreach N > 1, 0<o <2,and s > 1,
N

KO,]]ZX[O,I/N”] Z

k=1

2s
e(kx) +k*x2 +k°x3)| dx < CoNE[N*~° + N*7°].

The s = 1 and s = oo versions of this conjecture are easily verified using L?-orthogonality and the
triangle inequality, respectively. When o = 0, this is Vinogradov’s mean value theorem, solved in three
dimensions by Wooley [2016] and using decoupling for the moment curve by Bourgain, Demeter, and
Guth [Bourgain et al. 2016]. The case of ¢ = 2 was proven by Bombieri and Iwaniec [1986] and by
Bourgain [2017b] using a different argument. In [Demeter et al. 2020], they prove a slightly more general
statement which implies Conjecture 1 in the range 0 <o < % We prove the following general exponential
sum estimate which implies Conjecture 1 for the full range of o.

Theorem 2. For each N > 1, 0 <o <2, interval H of length 1/N°, and s > 1,

/[0,1]2><H

for any ay. € C satisfying |ay| < 1.

N 2s
Zake(kxl +k%xy +kx3)| dx < C.NP[N*~ + N»79]
k=1

The terms in the upper bound come from two examples. The upper bound N°~¢ follows from taking
random ag € {%1}, by Khintchine’s inequality. The upper bound N 2576 follows from the example ag =1
and noting that the integrand is = N2 on roughly the box [0, 1/N] x [0, 1/N2] x [0, 1/N3]. Theorem 2 is
an estimate for the moments of exponential sums over subsets smaller than the full domain of periodicity
(i.e., N3 in the x3-variable). Bourgain [2017a; 2017b] investigated examples of this type of inequality.
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Theorem 2 is a corollary of a small cap decoupling problem for M?, which we now describe. For
R > 1, and small cap parameter 8 € [% 1], consider the anisotropic small cap neighborhood

M3 (RP R) ={(61,6,8):& €10, 11, |6 —&7| < R, |5 — 3615+ 28] < R7'}.

This is the anisotropic neighborhood of M? at scale R? (for which canonical decoupling for the moment
curve applies) plus a vertical interval of length R~!. Next we define small caps y, which form a partition
of M3(RP, R) and are defined precisely in Section 2.3. Each y has the form

y={E1,6,8):IRP <& <+ DR P, |-l <R, |55 -366+28 <R} (D)

for some integer /, 0 </ < RP. If B = i, then y coincides with canonical R™/* x R7*/3 x R~!
moment curve blocks. In the range % < B <1, y is essentially equivalent to the R~'-neighborhood
of a canonical R~? x R~2# x R~3# moment curve block. In the range % < B <1, y looks like a
canonical R~ x R=2 x R—3# moment curve block plus a vertical R~ l-interval. In each case, y has
dimensions R~ x R™2# x R~!. Our definition of small caps using the vertical R~! neighborhood is
motivated by Theorem 2, which we explain further in Section 1.1. See the paragraph following (2) for
some remarks about the decoupling problem associated to small caps which are the (3-dimensional)
R~ '-neighborhood of canonical R~ x R=2# x R~3# blocks.
The small cap decoupling theorem we obtain is:

Theorem 3. Let % <pB<landp=>2 Then

”f”ZP(R%) < CSRE(R,B(p/zfl) + Rﬁ([’*‘l)*l) Z ”fy ||€I)(R3)
14

for any Schwartz function f : R® — C with Fourier transform supported in M>(RP, R).

The only other result of this form that we are aware of is in [Jung 2023], which essentially proves the
B= % case of Theorem 3. The proof of Theorem 3 uses the same framework as the high-low argument
from [Guth et al. 2024]. We require a crucial new ingredient, which is small cap decoupling for the cone
established in [Guth and Maldague 2022]. See Section 1.2 for some discussion of the role of small cap
decoupling for the cone in the proof of Theorem 3. Modulo some minor adaptations, our high-low proof
of Theorem 3 with g = % actually yields the stronger (£, L?)-decoupling estimates from [Bourgain
et al. 2016] rather than the (£7, L?) inequalities stated in Theorem 3. See Section 1.3 for a sketch of
the necessary adaptations. The powers of R in the upper bound of Theorem 3 come from considering
two natural sharp examples for the ratio || f ||£ / (Zy Il fy ||;1,)p / ? The first is the square root cancellation
example, where | fy | ~ XB s, forall y and f = Zy e, fy, where e, are X1 signs chosen (using
Khintchine’s inequality) so that || f||5 ~ RAP/2R3max2B.1) and

||f||[l; - RBW/2) g3 max(28.1)

~ RB(P/2-D)
Zy ”fy”ﬁ RB R3max(28,1)

The second example is the constructive interference example. Let f, = RA+2B+1 11y, wWhere 1, is a smooth
bump function approximating x, . Since |f| = }Zy fy’ is approximately constant on unit balls and
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| £(0)| ~ R?, we have
Ifly o R

~ RB(P—4H—1

We remark that the arguments in this paper could also be used to analyze small cap decoupling
problem with R~! neighborhoods of canonical blocks. These are different from taking the vertical R~
neighborhood in the range % < B < 1. For example, if we consider the constructive interference example
for the R~!-neighborhood small caps, then each fy 1s equal to ~ 1 on a dual set of size RP x R x R,
which leads to the lower bound

115 o R

~ RB(P-2)-2
>, 1A%~ RPRFT K '

If p>6+4+2/8 and % < B <1, this is larger than the factors of R in the upper bound from Theorem 3,
so optimal small cap estimates for the R~ neighborhood would not have the same upper bound as
in Theorem 3. In the R™! set-up, there is also a third type of example which dominates for certain
parameters 8 and p: the block example f = 1jy, with 6 a canonical R~/3 x R=%/3 x R~! block. This
leads to extra cases and a more complicated proof that we do not present here.

An immediate corollary of Theorem 3 is the following general exponential sum estimate.

Corollary 4. For each % <B<1,2<p<6+2/B,andr > R™*CAD

|Qr|—1/
o,

for any r-cube Q, and any collection & C [0, 1] with |E| ~ RP consisting of ~ R™P-separated points
and ag € C with |ag| < 1.

p
Zage(x (€, 82, 8%)| dx <, RP(P/DFE

el

Note that the corresponding corollary of canonical decoupling M?> only holds in the range r > R/,

For a, b > 0, the notation a < b means that a < Ch, where C > 0 is a universal constant whose
definition varies from line to line, but which only depends on fixed parameters of the problem. Also,
a ~ b means C~'b < a < Cb for a universal constant C, and a <¢ b means that the implicit constant
depends on ¢ > 0.

The paper is organized as follows. We explain the implications of Theorem 3 in Section 1.1 and give
some intuition for the proof of Theorem 3 in Section 1.2. Then in Section 2, we develop multiscale
high-/low-frequency tools and lemmas. Some of these tools are very similar to those developed in [Guth
et al. 2024], but the high-frequency analysis uses the geometry of the moment curve and relies on small cap
decoupling estimates for the cone recently established in [Guth and Maldague 2022]. We use these tools
in Section 3 to prove a weak (superlevel set) version of Theorem 3 for the critical exponent p. =6+ 2/8.
Then in Section 3.2, we perform a sequence of pigeonholing steps analogous to those in Section 5 of [Guth
et al. 2024] to show that Theorem 3 follows from the superlevel set version with the critical exponent.
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1.1. Implications of Theorem 3.

Corollary 4 follows from Theorem 3. Let ¢, be a nonnegative Schwartz function satisfying ¢o, 2 1
on Q,, supp ¢p, C B,-1, and [ 1#0,1” ~, |Q:|. Then the function

f) =) ace(x-(£.8,8)¢g, (x)

EeE

satisfies the hypotheses of Theorem 3. Using the triangle inequality, we may split the indexing set & into
O (1) many subsets Z’ so that each & € E’ is identified with a unique small cap y which completely contains
the r~!'-neighborhood of (&, £2, £%). This is possible because » > R™*A. D, 5o a ball of radius ! can
be completely contained in an R~# x R=2# x R~! small cap y, whose geometry is described in detail in
Section 2.3. Applying Theorem 3 in the range 2 < p <642/ gives

f |FI7 Se REPPTDFEN "lace(- (€, 8%, ), I, ~ RFPPH|Q, . O
o el

Theorem 2 follows from Theorem 3. Begin with the integral on the left-hand side of Theorem 2. Perform

the change of variables (x1, x3, x3) = (y1/N, yz/Nz, y3/N3):
i kKK
age|y-| =5 3
AN VAN EA &

Using the periodicity of the exponential sum in the first two variables,
dy

i k k2K
aely | = —. —
W\ N N N
= X N koK
:Ni / ake<y. <_’ N2’ _)>
[0,N3]2><N3Hk2:]: N N2 N3

Let ¢y be a bump function which satisfies ¢y = 1 on [0, N312x N3H, supp ng c [0, N732 x [0, N°3],
and [ |¢u|P ~, N°7°. Then
N 2s
dy 5/
RS

T O G ) TR A o CH ) 2
age y 270 A0 A2 aie y 70 A0 ArR H y
[0,N3]2><N3H k=1 N ]\72 ]\73 k=1 N N2 1\73

Then apply Theorem 3 with p = 2s, R = N3, and B defined by R? = N, which means that 8 =
1/3—0) €[4, 1] (since o € [0, 2]), giving

N kKK
/W Zake(y . <N N2’ m))‘ﬁH(}’)

k=1
Incorporate the extra factors from the substitution and the periodicity steps, and use the assumption

N

v/['O,ljsz Z

k=1

2s

2s
age(x - (k, k>, k%) dx=N"

[0,N]x[0,N2]xN3H

2s

/[O,N]x[o,NZ]me
2s

dy.

2s
dy.

2s N
dy Se REIRPO™D 4 REOD-113" 10 g 13,
k=1

lax| < 1 and the property ||¢H||%§ ~s N7 to get the bound
N

—/[0,1]2><H Z

k=1

2s

age(x - (k, k>, k)| dx <, NTOR[RPC~D 4 RPE=H-1 1y N~
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Finally, using the relationship between R, N, 8, and o, the upper bound simplifies to

NS[N(S—I) +N(25—4)—(3—0)]N1—0 — NS[NS—G +N2S_6],

as desired. O

1.2. Some intuition behind the proof of Theorem 3. Here we describe one of the cases from the proof
of Theorem 3 which illustrates the role of small cap decoupling for the cone. After a series of standard
reductions which are also used in [Guth et al. 2024], to prove Theorem 3 it suffices to show that

a® P |(x € Bgmwcnn 1o < | F O Se RERPFY TN £ 115, 3)
4

where & > 0, Bgmacp.n is a ball of radius R™>2A:D_ and we have the extra assumption that || £, |s < 1
for all y. The spatial localization to a ball of radius R™*®#1 is natural since this is the smallest size of
ball that contains an R? x R?# x R wave packet dual to each y* Consider the special case of maximal «,
so o ~#Hy ~ R and call {x € B RMaxQp.1) RP ~ | f(x)|} the high set H. Using a local trilinear restriction
estimate for the moment curve, recorded below in Proposition 27, we show roughly that

(RPY|H| 5/ | £y 12(x)
Nys (H) Xy: ’

Suppose that on most of Nzs (H), we have ZV FARES ’Zy |y * N> g 2(X)
smooth approximation of the characteristic function of the set %R*ﬂ <|&]<2R~P. Each | fﬂz\is supported

3
dx.

’ WEE N-g-#/2 18 a
in y —y. Writing m(¢) = (¢, >, t*) and using the definition (1), the support of each |fy|27’]>R—ﬁ/2 is
approximately contained in

{[AM'(IR™P)+ Bm"(RP)+Cm"(RP): JRP<A<RP |BI<R* |C|<R'}.

In Section 2.3, we show that these sets are disjoint for distinct/ € {1, .. ., RP }, and each of the above sets is
contained in the R~#-dilation of a conical small cap. Note that this is not exactly true when g = 1, which is
why we use cylinders instead of balls to cut out the low set in the actual argument. Ignoring this technicality,
this means that we may apply a small cap decoupling theorem for the cone to bound the integral

//;/Rﬂ(H)

Finally, the functions Y., | f, |* and |}, | f,|* % 7. g 2| are roughly constant on R balls, which implies

3

2 v
Z | fy 17 % 0= 22

14

that for any p > 0, we have

3+p

1
6 2 v
(ROIHI S —5 IR P s p)|  dx.

14

NRﬁ(H)

This is an important observation since we have more factors of R? in the denominator on the right-hand
side and we may choose p so that 3 + p is the critical exponent for the scale of conical small caps that
we have, thus using the full strength of the small cap decoupling theorem for the cone. Our argument
shows that each of these steps can be sharp, which leads to the upper bound (3).
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1.3. Canonical (£*, L?) decoupling in the case f§ = % In this section, we sketch a small variation of
our argument which recovers the sharp (¢2, L?)-decoupling estimates for M3 of [Bourgain et al. 2016].

As in [Guth et al. 2024] for the parabola, pigeonholing arguments combined with a version of
interpolation with L? and L™ estimates may be used to show that proving the critical (£2, L'?)-decoupling
inequality implies sharp (£, L?)-decoupling inequalities for all other p > 2. It further suffices to prove
the following level-set version of the inequality:

6
Ol12|UO[| 58 RE <Z ||fy||%l2(wBR)) ) (4)
Y

where Bg C R3 is any ball of radius R, Uy := {x € Bg : |f(x)| ~ «}, and wp, is a weight function
adapted to Bg. Via pigeonholing steps similar to those in [Guth et al. 2024], we may assume that each f,
is either identically equal to 1 or has a wave packet decomposition f, = ZTV ¥r,, where the T), are a
subset of a tiling of R? by disjoint translates of the dual set y* (which has dimensions R!/?> x R?3 x R),
each function 7, approximately satisfies |7, | ~ xr, (xr, the characteristic function of T,), each T,
intersects Bg, and the number of 7, which appear in the sum f, = ZTY Vr, is ~ A for some constant A that
is independent of y. Notice then that each L'? norm appearing on the right-hand side of (4) is essentially

1/3+2/3+1
”f)/”L]Z(w NAR/+/+ )

and so is uniform in the nonzero f,. We also have || f, A - R? for any 2 < p < oo. Since

”i"(WBR) ~
each f, is made up of wave packets which all have height 1, || f, ||Oo <1

In the proof of Theorem 3, we bound |U,| by dividing U, into O(¢~') many subsets and bounding
each subset separately. Those subsets are H, €2, and L and are defined in Definition 13 below (there are
no Ay when 8 = %) We replace the R? factor which appears in each set by #{y : fy #0} =:#y. The
only further modification needed is to replace R? in the pruning process by #y. Then each FT’; satisfies

I ka loo Se RE(#y /). Considering the bound for | Ay|, for example, the argument then yields

6 <, NG V)3 1/3
oAkl Se R anyuLG(BR)

The right-hand side (without the C, R® factor) is essentially

6
oSy AR ~ a6 (Z I £y ||ilz<WBR>) ’
Y

so we have the desired L'? estimate.

2. Tools for the high/low approach to AM?>

We perform a high/low frequency analysis of square functions at various scales, incorporating the pruning
process for wave packets analogous to [Guth et al. 2024]. We develop language to discuss canonical
caps and small caps of various scales, associated wave packets, and averaged versions of functions which
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satisfy useful locally constant properties. Then we write a series of key lemmas to analyze the high/low
frequency portions of averaged, pruned square functions at various scales.
Begin by fixing some notation. Fix a ball Bgmucs.n) of radius R™>*2A:D The parameter o > 0 describes
the superlevel set
Uy ={x € Bpmaxsn 1 | f(x)| > a}.

Fix 8 [%, 1] and R > 2. Let &£ > 0 be given and consider scales Ry € 8" closest to R** for R™!/3 <
Rk_l/3 < 1, and scales r € 2N closest to R'/3% for R=F < rk_1 <R3 LetN distinguish the index so
that Ry is closest to R. Since R and Ry differ at most by a factor of R®, we will ignore the distinction
between Ry and R in the rest of the argument. Similarly, assume that ry; = R for some index M e N.
The relationship between the parameters is

1/3

1=Ry<R,/” <R A

1/3
k+1 ERN =70="Tm = T'm+1 SrM=Rﬂ-

Next we fix notation for moment curve blocks and small caps of various sizes. For the explicit
definitions, see Section 2.3 below.

(1) {y} are small caps associated to R? and R, meaning ~ R™# x R72f x R73# moment curve blocks
plus the set {(0,0,z): |z] < R™'}.

(2) {yx} are small caps associated to r; and R, meaning ~ r;~
the set {(0,0,z) : |z] < R™'}.

(3) {8} are canonical ~ R~!/3 x R=%/3 x R~! moment curve blocks.

% e 2 x e 3 moment curve blocks plus

(4) {tx} are canonical R, 13 « R, 23 R,;l moment curve blocks.

The specific definitions of y, y, 6, T in Section 2.3 provide the additional property that if yx N yxym # 9,
then yx4+,m C yx (and similarly for the 7).

We assume throughout this section (actually until Section 3.2) that the f, satisfy the extra condition
that

% Sfyllpewsy =2 or | fyllpemwsy =0. (5)

2.1. A pruning step. Here we define wave packets for blocks y4, ¢, and prune the wave packets associated
to fy,, fr, according to their amplitudes.
For each y, fix a dual block y;* with dimensions 7, U'x e 2 x R which is comparable to the convex set

(xeR:|x-&|<1forall & € yx — ).
For each 7, fix a dual block 7;° of dimensions R,i/ 3% R,f/ 3% Ry which is comparable to the convex set
(xeR:|x-&| <1forall &€ € 7 — 7).

The main difference between dual small caps y;* and dual canonical caps ;" is that for each k we have
Y& =i if vk, Vi C 0, whereas the 7;° are all distinct.

We will describe wave packet decompositions for small caps {yx} and for canonical caps {tx} in parallel.
Let T,,, T, be the collection of tubes T}, , T, which are dual to yx, 7%, contain y;*, 7/, and which tile R3,
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respectlvely Next, define associated partitions of unity ¥z, , ¥, . Let ¢(§) be a bump function supported

in [— 411 4] For each m € 73, let

Y () = c/ 312G — y —m) dy,
[—1/2,1/213

where c is chosen so that Y, .5 ¥ (x) = ¢ [ |¢|* = 1. Since |@] is a rapidly decaying function, for
any n € N, there exists C,, > 0 such that

C, n
Y (x) SC/ dy<—"
" 12120 (L+|x —y —m[?)" (1+ |x —m?)n

Define the partitions of unity ¥z, , e wTTk associated to %, T to be IﬂT =YmoA,, wTTk (x) wmoA,k, where

Ay, A,k are linear transformations taking y,*,7;" to [ é, —] and AVk( ) =m+ [ —] A (Ty) =

m—+ [ ] The important properties of /7, , Y7, are rapid decay off of 7, Tr, and Fourier support

contained in y, T translated to the origin.

To prove upper bounds for the size of U,, we will actually bound the sizes of ~ ¢~! many subsets

which will be denoted by U, N H, Uy N Ak, Uy N €2, and U, N L. The pruning process sorts between
important and unimportant wave packets on each of these subsets, as described in Lemma 16 below.

In the following definition, A, >> 1 is a large enough (determined by Lemma 16) constant depending
on ¢ which also satisfies A, > D,, where D, is given by Lemma 14. We partition the wave packets
T, =T5U T)Ijk and T,, = T% U Tlt’k into “good” and “bad” sets, and define corresponding versions of f,
as follows.

Remark. In the following definitions, let K > 1 be a large parameter which will be used to define the
broad set in Proposition 28.

Definition 5 (pruning with respect to y;). Let f]f"[ = f, and f% _, = fym,- Foreach 1 <k < M, let

RP
= : k+1 3 AM—k+1
—H—ik = {T)/k S —l]—yk : ”v/TJ’k f}’k ||L°°([R3) < K As 7}’
k+1 ko k
= Y v i and fE = 3 fE
Ty, dryk Vi CVk—1

Recall that 9 = 6 = 7. Once the wave packets corresponding to all of the small caps have been
pruned, we have f'=3"

Definition 6 (pruning with respect to ;). Let F¥*! = f1, Ff/;/V+1 _ f01‘ For each 1 <k < N, let
k+1 3 Man—ir1 RP
—ﬂ—‘%( = {Tfk € —l]—fk : ”V’Trk ka ||L°°(R3) <K Ag _}’

o
k § k+1 k E
ka = lﬁ‘TTk F‘L'k+ and F.[]\ L=

g
Ty €T3, Tk CTk—1

For each k, define the k-th versions of f, F to be f* = =2 In fk and Fk = Zrk g
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Lemma 7 (properties of /% and F¥). (1) | 7% (v)] < | fAH ()] < #y C v and |[FX ()] < |FEH (0] S
#y C it

Q) 1)o@y < KPAM IR RE Jo and || FE || ooy < KPAY TN IR RE .

(3) There is some constant C, <&~ so that supp f)ﬁH C supp j’”;ﬁ C Ceyx andsupp F, ,kfl Csupp j‘:’; CC.r.

f’roof. For.the ﬁrs.t Property, recall that ZTyk €T, v, ZTrk €T, Y, are partitions of unity so we may
iterate the inequalities

k k+1 k+1 N 1
IFEI <P < Y IR < < YRR < Y T UpL

Tk+1CTk INCTk V1CTk
1 2 2 N
SIS D Ul <= Y U< Y Iyl
2 YNCY1 yYon

Then use the assumption that each || f,, || L g3) S 1. Now consider the L* bound in the second property.
We write
ko k+1 k+1
f}’k (x) - Z ‘/nyk f)/k + Z WTyk f}’k *
Ty €T3 Ty €T3
XERT), X¢RTy,
The first sum has at most R*® terms, and each term has norm bounded by K> AN %R /o, by the definition
of T$,. By the first property, we may trivially bound fri“ by #y C trmax, || fy lloo S R. Butif x ¢ R°T,,,
then wTVk (x) < R7'990 Thus

k+1 —500., 1/2 k+1 —-250
> Vn s 2 RN o = R max il fy e
Ty €Ty, Ty €Ty,
XERT,, X¢RTy,

Since @ SIS X, 1 fylloo S RP, we certainly have R~>° < R# /. The argument for ||ka Il oo (w3
is analogous.

The third property depends on the Fourier supports of ¥z, , Y7, , which are contained in yx, 7 shifted
to the origin. If each f)fk“ has Fourier support in Cyy (that is, a dilated copy of yx by a factor of C, taken
with respect to its centroid), then supp f]’jk is contained in (1 + C)y,. The same type of argument is true
for the claims about FX and F}t1. O

Definition 8. Let ¢ : R — R be a smooth function supported in [—i, }1]3 Define

— 1 512
wo(t) = kXZj Ty (P =K.
Let w(t1, tr, t3) = wo(t1)wo(t2)wo(#3) and let Q = [—1,

For any set U = T'(B), where T is an affine transformation 7 : R* — R3, define

3 . .
%] denote the unit cube centered at the origin.

wy (x) = U w(T 1 (x)).
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For yi, ., let A,,, A, be affine transformations taking y,*, 7" to [—%, %]3 and define w,,, @, by
Wy, (X) = [y w(Ay, (x)  and g, (x) = |77 w(Ag, (x)).

Let the capital-W version of weight functions denote the L°°-normalized (as opposed to L'-normalized)
versions, so for example, for any cube Q; of sidelength s, Wy (x) = |Qs|wg, (x). If a weight function
has subscript which is only a scale, say s, then the functions w,, Wy are weight function localized to the
s-cube centered at the origin. We will ignore the distinction between an s-ball and an s-cube.

Remark. Note the additional property that w(&;, &, &) is supported in [—% %]3 so wy is Fourier
supported in an s ~!'-cube at the origin. Similarly, wy, and w, are Fourier supported in y; and 7 translated
to the origin, respectively. The same is true for the Wg , Wy, Wr+ weight functions. Finally, note that if
S1 =T1(Q) and S, = T,(Q), where T; are anisotropic dilations with respect to the standard basis and

S1 C S, then wg, x wg, < ws,.

~

The weights wy,, wg = wy,, and w; are useful when we invoke the locally constant property. By locally
constant property, we mean generally that if a function f has Fourier transform supported in a convex
set A, then, for a bump function ¢4 = 1 on A, f = f % @4. Since |@4]| is an L'-normalized function
which is positive on a set dual to A, | f|#|@a] is an averaged version of | f| over a dual set A*. We record
some of the specific locally constant properties we need in the following lemma.

Lemma 9 (locally constant property). For each yy, tx and T,, € T,,, Ty, € T, respectively,

2 2
”fyk”LOO(Tyk) 5 |fyk| *a))/k(x) forany x € T)’k’

2 2
Il fo. ”L“’(Trk) Sfal"*wq (x)  foranyx € Ty,

Also, for any ry-ball B,, or R,i/3-ball BRm,
k

> 1wl
Yk
> 1l

Because the pruned versions of f, f,, and f;, have Fourier supports similar to those of the unpruned
versions (see Lemma 7), the locally constant lemma applies to the pruned versions as well.

2
SE | fy|” % wp, (x) foranyx € By,
L®B,)

2
S el % WB 15 (x) Jorany x € Byis.
Lo (By113) k ¢

Proof of Lemma 9. For the first claim, we write the argument for f7, in detail (the argument for the f,,
is analogous). Let p, be a bump function equal to 1 on 7; and supported in 27;. Then using Fourier
inversion and Holder’s inequality,

| fa D12 = | fo % Pre DI < 1Bl | fo 1 % 1B | ().

Since p;, may be taken to be an affine transformation of a standard bump function adapted to the unit ball,
| oz I1 is a constant. The function p,, decays rapidly off of 7;*, so |p,| S wy,. Since for any T, € T,
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wy, (y) is comparable for all y € Ty, we have

Sup | for|? % g, (x) < / | l2) sup g, (6 — y)dy

XETrk xeT,k

~ / | fo POy (x — y)dy forall x € Ty,.

For the second part of the lemma, repeat analogous steps as above, except begin with p,,, which is
identically 1 on a ball of radius 2r, ! containing y; — yx (which is the Fourier support of | I ). Then

Sl IF=
Yk

The rest of the argument is analogous to the first part. The argument for ka | fz| is the same. U

> |fyk|2*ﬁrk<y)‘ SY 1l 151,
Yk Yk

For ease of future reference, we record the following standard local and global L2-orthogonality lemma.
ForUcCcRyletU*={6ecR3: |- x| <1forallx e U —U)}.

Lemma 10 (local and global L? orthogonality). Let U = T(Q), where Q is the unit ball centered at the
origin and T : R®> — R? is an affine transformation. Let h : R — C be a Schwartz function with Fourier
transform supported in a disjoint union X = |_|, Xy, where Xi C B are Lebesgue measurable. If the
maximum overlap of the sets U* + Xy, is L, then

[ inxiow 23 [ b Pu.
Xk

where hx, = [ Xy h(E)e2 x5 d&. The corresponding global statement is

[ =3 [
Xy

Proof. The global statement is just Plancherel’s theorem. For the local statement, we have

lhxPwy = / hxhxwy = f hyxhy * by
by Plancherel’s theorem again. Next we used the definition of hx and h x, to write
[ixhrio =35 [l .
Xe X},

The function / x, 18 supported in X and the function h Xy * wy is supported in X; 4+ U* Write X; ~ X
to denote the property that (X; + U*) N (X} + U*) # @. By hypothesis, for each X, there are at most
L many X, such that X; ~ X. Since X; N (X, +U™*) C (Xx +U*)N (X + U™), this leads to the bound

hx by x by = hx by wy < (x> + 1, Hwy
2 2

Xk X/’( Xk X;('\/Xk Xk X;(’VXk

<> > /<|hxk|2+|hx,;|2>wU52LZ/|hxk|2wu. O
Xk

Xk X;(NX]{
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Definition 11 (auxiliary functions). Fori =1, 2, let ¢; : R’ — [0, oo) be a radial, smooth bump function
satisfying ¢; (x) = 1 on the unit ball in R’ and supported in the ball of radius 2. Then for each s > 0, let
p<s-1 : R3 — [0, 00) be defined by

p<s-1(1, &2, 63) = a2 (&1, 552) 01(&3).
Write C,-1 for the set where p_;-1 = 1.
We will sometimes abuse the notation from the previous definition by writing 1% p. 1 =h —h* p_-1.

Definition 12. Let gy (x) =), |fy > %@, (x). For 1 <k <M —1, let
g =Y 1A Proy. g =goxpoo, and g =g — g
Yk

For1 <k <N, let
Gr(x) =Y IFE Pxo,  Gi(x) = Gy pogzp and Gl(x) =Gy —GL.
T
In the following definition, A, >> 1 is the same e-dependent constant from the pruning definition of f*
and F*,
Definition 13. Define the high set by
H = {x € Bgmwepn : AcRP < gpr_1(x)).

Foreachk=1,...,M —2,let H= A)_; and let
M-1

A= {x € Bpmuesn \ U Aj: (Ae)(M_k)Rﬂ < gk(x)}.
I=k+1

Foreachk=1,..., N, let Qyy = U,"iﬂ A; and let

N+1
Q= {x € Bawcsn \ ) @t (A)M VIR < Gk(x)}.
I=k+1

N+1 M—1
L = Bpmaesn \ |:(U QN> U <U Ak)j|.
k=1

=1

Define the low set to be

2.2. Lemmas related to the pruning process for wave packets.

Lemma 14 (low lemma). There is a constant D = D, > 0 depending on ¢ so that, for each x, we have
8¢ (X)| < Degiy1(x) and |G (x)| < DeGry1 (%),

Proof. Prove the claim in detail for g,f since the argument for Gi is analogous. We perform a pointwise
version of the argument in the proof of local/global L?-orthogonality (Lemma 10). For each ykkH, using
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Plancherel’s theorem,
Py () = / AP = 60 () dy

:/ k+1 k+l(€) ZJTlxé' rk:r'l (é)dé

_ 2wix-& k-‘rl k+1
= > /R TR T ©)p, (€) dE.
Vi1 Vi SV
The integrand is supported in (CS Ver1 — Ce yk’ L) N(@C, -~ ) where C, comes from (3) of Lemma 7 and
2C i~ contains the support of ,o< . The setC - is contamed in a cylinder with a vertical axis, centered at
c+ K+
the origin and of radius 2rk I The distance between the sets C.yx41 and C,y) 41 1s controlled by the
distance of their projections to the (&, &)-plane. This means that the final integral displayed above
vanishes unless y; is within ~ C,r,_ +11 of y; |, in which case we write yx11 ~ ¥, ;. Then
2mix-€ k+l k+1 _ 2mix-€ k+1 k+1
> / Rt R @ ®ds = Y / Bt B @)y (6) ds.

’ R3 N / R3
Yi+1 Y1 SV Vi+1: V1 CVk

’
Vk+1™Viy1

Use Plancherel’s theorem again to return to a convolution in x and conclude that

v k+1 ck+1 k 1 ~
|gk*p§,;+1,<x>|=‘ D I reg s p, 0 0| SC Y, D AT P rwg x1po,0 100,
Vi1 Vi CVk Yk Vi1 CVk
Vi1 ™~Viq

By the locally constant property (Lemma 9) and (1) of Lemma 7,
D0 2 M Pren xlhga [0S0 D0 TP e wy, s on 1520 1) S ges1 ().
Vi Vi+1CVk Yk Vi+1CVYk

It remains to note that

Wypyy * Wy * |155r,:ll [(X) S wyyy, (%)

since y;* is comparable to a dilation of y;* | and p < is an L'-normalized function that is rapidly
decaying away from B, (actually, it decays rapidly away from the small set Br(kzjl (0) x B(l)(O)) ([

Corollary 15 (high-dominance on A,Q2;). For R large enough depending on ¢,
g (x) <2lgt(x)| forallx e Ay  and  Gi(x) <2|Gl(x)| forall x € .

Proof. This follows directly from Lemma 14. Indeed, since gi(x) = g,f(x) + g,i’ (x), the inequality
gk (x) > 2|t (x)| implies that g (x) < 2|gt (x)|. Then by Lemma 14, | g (x)| < 2D, gk+1(x). Since x € Ay,
gr+1(x) < Aé”‘k_lRﬂ, orin the case that k =M — 1,

SE

o0

e =Y | fyP o, () S
14
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using the assumption that || f, ||oo < 1 for all y. Altogether gives the upper bound
gi(x) <2DA¥*IRF.

The contradicts the property that on Ay we have AY “kRP < gi(x) for A, sufficiently larger than D,,
which finishes the proof. The argument for G4 on €2 is analogous. ]

Lemma 16 (pruning lemma). If A, is a large enough constant depending on &, then, for any t,

o
Z S — Z f;f,:rl(x) = W forall x € Ay,
Yk CT Y CT e K
o
Z Jo — Z FS(H(X) = 173 forall x € Q,
7w Ct 7w CT Ag K
o
Z Jo — Z Ffll(x) =< N forall x € L.
T1cr 11Ct As K

Proof. Begin by proving the claim about A;. By the definition of the pruning process, we have

o= (=D = = 0+ Z =, 6)

m=k+1

where here, the subscript T means f; = Zycr fyand f]" = Zym cr Jy,- We will show that each difference
in the sum is much smaller than «. For each M — 1 > m > k41 and y,,, use the notation T]’jm =T,, \T;‘Zm

and write

Y WP ol )

@) = £t @l=| D v, | =

TVHI e—[r)b/m TVm eTybm
M—m+1) &
< > KA MemEh — g, £ ey 2 £ ey W ()
Tyme—lr}/m
< 3 4 —(M—-m+1) ¥ 1/2 sm+1 1/2
KA; =5 2 W o e ¥z, )
TymeT
-3 M— 10‘ 1,2 1/2
SKPAZMTD NS W, L Pl s, e ()
TV’" E—ITVm TVm
-3 7(M7m+l) 1,2 1/2
SKTA; w5 2 Wm s, WA Pl vz, (0.

TVm ? TVm E—II)/m

Let cF, denote the center of i,m and note the pointwise inequality

Y o, i, Vi () S Iyl (x = ez, ),

TVm



SMALL CAP DECOUPLING FOR THE MOMENT CURVE IN R3 3565

which means that

() — £ ] S K2 A MmED Rﬁwml > =g A Pl )

T}/me—lr}/m
3 4—M—m+1) ¥ | ~ m+12 ~
Se KA, wEal 20 enG—ep DI P, (5,
T}/me-ﬂ—}/m

< K~ 3A (M— m+l) |fm+1| *a)ym(x)

m

where we used the locally constant property in the second-to-last inequality. The last inequality is
justified by the fact that w,,, (x —c7 ) ~ @y, (x —y) forany y € T, .» and we have the pointwise relation
wy,, * 0y, S oy, . The last two inequalities incorporate a dependence on C, from Lemma 7 since the
locally constant property uses that |f%j?|2 is supported in the C.-dilation of y,,, — y;,. It is important to
note that C, is a combinatorial factor that does not depend on A.. Then

(07
3A (M— m+1) Z |fm+l| * @y, ()C)’V K~ 3A (M— m+1)
ylﬂcr

Y=t S

YmCT

At this point, choose A, large enough so that if g, (x) < A¥—™ R, then the above inequality implies that

e — £t

VITI C T

<eK~ 3A 1/2

This finishes the proof since M + N < e, so the number of steps from (6) is controlled. The argument
for the pruning on €2, and on L is analogous. ]

2.3. Geometry related to the high-frequency parts of square functions. We have seen in Corollary 15
that on Ay and €2, gr and Gy are high-dominated. In this subsection, we describe the geometry of the
Fourier supports of g,i’ and GZ, which will allow us to apply certain decoupling theorems for the cone in
Section 2.4. We begin with the precise definitions of canonical blocks and small cap blocks (which we
also call “small caps”) of the moment curve.

Definition 17 (canonical moment curve blocks). For S €2V, §> 10, consider the anisotropic neighborhood

M(S) ={(E1,&,8) 1 & €10, 11, |6 — &7 < S72, |& — 3615 + 28] < S73).

Define canonical moment curve blocks at scale S which partition M3(S) as follows:
5—1
| (G680 <61 <@+ DS, 16— €71 < $72, 16 — 3816 + 28] < S7°).

=0

Definition 18 (“small caps” of the moment curve). Let R > 10 and let S € 2N satisfy R <SS 1<R 13
Consider the anisotropic small cap neighborhood

M, R)={(&1,6,8): &1 €10, 1], 16— &1 <572, |& - 3656 +28 | <R}
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Define small caps y associated to the parameters S and R by
5—1

| |y =]t &80 <tr <+ DS [ —£]1 <572 & -368&+28 <R} (D)
=0

Note that the small caps y are essentially canonical moment curve blocks at scale S plus a vertical
(&3-direction) R_l—neighborhood

To analyze gk, we need to understand the Fourier support of Z k+1 |> outside of a cylinder of
radius r;_ +1 By (3) of Lemma 7, the support of | f]/ka 12 is Covk — Cevi. Suppose that yy is the /-th piece,

meaning that
ve=1(16.8) I <6 <+ D, =8l <17 15 - 365 +26 <R '),
where [ € {0, ..., riy — 1}. The small cap y is comparable to the set
= {mlr, Y+ AU, + Bw ;Y Cm”(rg Y 0< A< Bl < ICI< RTY

in the sense that %ﬂc C vk C 20y (where the dilations are taken with respect to the centroid of ;). Then
Yk — Yk 1s contained in

(A (7Y + Bm"rg Y +ew” (e AL St IBIS i IS RTY.

Recall that 1 — P<rr, is supported outside C, o D{1,8,8) |(€,&)| < rk+1, & < 1}. Intersectlng
C.yx — Ceoyi with the support of 1 — P<ri), forces the relation A2 + + (A2(Ir ) +2B)? > rk+l Using
the upper bounds [A| S C.r, "and |B |<C Srk , it follows that for R large enough depending on ¢, the
support of the high—frequency part of |f/kJm2 is contained in

Vo= { A Arg DY+ Bm (g +Cm” U Al < 1AL S Cor L IBIS Cor 2 ICISCRTYL (8)

Our “high lemmas” will require geometric properties that are recorded in the following propositions.
Proposition 19. The sets yy, varying over yi, are < C, R®-overlapping.
Proof. Suppose that a point corresponding to parameters A, B, C,l and A’, B’, C', I’ respectively is in the

intersection of two sets as in (8). By analyzing the first coordinate, we must have A = A’. By analyzing
the second coordinate, we must have

|A2Lr " — A2l Y S Cer

Therefore, since A 2, r,;rll, we have || —I'| < C.R" O

Next we describe the geometry of a small cap partition for the cone. Let §; € [% 1] and p > 1. Let
S € 2V a dyadic number closest to p'. For the (truncated) cone I' = {£ : €7 + &5 = &7, ; <& <1},
divide [0, 27) into S many intervals Is of length 27 /S and define the small cap partition

N1 (D) =|_| Mg (M) N{(pcost, psing, 2): ¢ € Is))
I

corresponding to parameters 8 and B, =0, as in Theorem 3 from [Guth and Maldague 2022]. After a
linear transformation, we will identify the high parts of sets y;, — yx as subsets of conical small caps.



SMALL CAP DECOUPLING FOR THE MOMENT CURVE IN R3 3567

Proposition 20. Let r—! € [r,;ll, ZOQSrk_l] be a dyadic value and write {£3 ~r~ '} 1= {(51, £,85)eR:
%r‘l <& <r! } There is an affine transformation T : R> — R3 so that the following hold:

) If rk_1 < R™'2, then the collection of y; may be partitioned into <, R* many subsets S; which
satisfy the following. For each S;, there is a conical small cap partition of ~1 x C.r/R x C.r/R blocks
so that, for each yy € S;, r[T (i) N {&3 ~ r~1}] is completely contained in one of the conical small caps.
Collections of r2R ~Umany neighboring yy are identified with the same conical small cap.

) If R71/2 < e U and (Rry h=p1 = e Y for some By € [%, ] then the collection of yx may be
partitioned into <, R* many subsets Si whlch satisfy the following. For each S;, there is a conical small
cap partition 0f~ 1 x Co(r/R)?" x C' r/R blocks so that each r[T (y) N {&3 ~ r =1}, where y C S;, is
completely contained in one of the conical small caps. Each yy € S; is assigned to its own conical small cap.

Proof. Let T : R — R be the affine transformation

T(x.y.2) = (X x—2/6 x+Z/6)
TN V2 V2 )

The image of the set (8) under T is

T(~)—{A(lr—1 L=lr/2 140 /2)+B(1 U/ £>+c(0 -1 L)-
e e SRV 2 a)

1..—1 -1 -2 -1
’”k+1<|A|§Q£”k ) |B|,§Q£rk ,ICISCeR }

Defining w € [%, %] by

, 2V21r;! Pr?
(cosw, sinw) = 5
2+, 2+12 re?

the set T (%) is contained in
{A(cosa), sinw, 1) + B(sinw, —cosw, 0) + C(cos w, sinw, —1) :
r SIAIS Cerg ' IBI S Cer P+ R7D,ICI S CRTY (9)
Suppose that rk_1 < R™'2. Then

T (i) N{& ~r~'} C {A(cosw, sinw, 1) + B(sinw, — cos w, 0) + C(cos w, sinw, —1) :
Ll <Al <r Y IBISCRTY ICISCRT'). (10)

The w = w(y) in (9) form an ~ r; —separated subset of [ ] For a dyadic S closest to C.R/r, we
may sort the w(yx) into different intervals I C [0, 2r) of length S ~1 and note that the r dilation of
T (%) N {& ~ r~ 1) for w(y) € Ig is contained in a single ~ 1 x S~! x S~! conical small cap. If y; and
y,é are within ~ /R of one another then w(y%) and a)(yk/) are assigned to the same /5.

Now suppose that R~1/2 < r, <R~ 13, Then

T (yx) N{&; Nrfl} - {A(cosa),sina), 1)+ B(sinw, — cos w, 0) + C(cos w, sinw, —1) :
Ll <jAl <L Bl S Gt ICI S CRTY (1)
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Let S €2V be chosen so S~A1 1s the smallest dyadic number satisfying C, RS e l<s-h (recalhng that g1 is
defined by (Rrk Yy P = =r,  in the proposition statement). Then Cf ReBr! rkR ' < §7! and so each
r-dilation of T'(y;)N{&s ~r 1} is contained in a single approximate 1 x S~ Pr % =1 conical small cap. If yx
and y/ are conical small caps which are a distance Cr,_ ! from one another, then their corresponding angles
o (yx) and w (yx) are also a distance 2> C e ! and make the sets on the right-hand side of (11) distinct. [J

To analyze G, we need to understand the Fourier support of Z |Fy, k+112 outside of a low set Cr-1/3-
By (3) of Lemma 7, the support of |F"Jr1 |2 is contained in Cety — C Tk B
Proposition 21. Let r be a dyadic value, R, J:{ <rl<cC, R, '3 There is an affine transformation
T :R?® — R3 so that the following holds. We may partition the 1y into <, R® many sets S; which satisfy:
23 X (_/’grzR,:4/3 blocks so that, for
each ty € S;, the r-dilation of the sets T[(Cet — CeTg) \ BRk_+I{3] N{&; ~ r~1Y is contained in one of the
canonical cone blocks.

there is a canonical partition of the cone into approximate 1 x C.r R,

Proof. Suppose that t; is the [-th piece, meaning that

n={E.6.8): IR, <& <A+ DR, 16y — £} < R, 16— 3616, + 267 < R{'),

where [ € {0, ..., Rl/ I 1}. Let T be the affine transformation from the proof of Proposition 20. Then

TI(Cetk = Ceti) \ Bp-151N{&3 ~r ~11 is contained in the set
k+1

{A(cosa), sinw, 1)+ B(sinw, —cosw, 0) + C(cos w, sinw, —1) :

Ll <Al <L BIS GRS CRE

where w € [%, %] is defined by

2W2R'? 2— 2R ‘2/3)

(cossine) = (2—|—12R_2/3 2+ 12R

Since the w = w (tx) form an ~ R_l/ 3—separated set, the r-dilation of each displayed set above is contained
in a canonical cone block of approximate dimensions 1 x C.r Ry, P % C2r 2R, o3, O
2.4. Lemmas related to the high-frequency parts of square functions. First we recall the small cap
decoupling theorem for the cone from [Guth and Maldague 2022]. Subdivide the R~! neighborhood of
the truncated cone I' = {(El, &,&): 512 +$22 = 532, % <& < 1} into R7% x R~ x R~! small caps y,
where B € [% 1] and B, € [0, 1]. Here, R~F corresponds to the flat direction of the cone and R~A
corresponds to the angular direction. The (£7, L?) small cap theorem for I' is the following.

Theorem 22 [Guth and Maldague 2022, Theorem 3]. Let B € [, 1] and B, € [0, 11. For p > 2,

/ | fIP < C, RE(R(ﬂl-i-ﬁz)(P/Z D 4 RBIHAI(p=2=1 | p(Bi+h—1/2)(p— 2))Z||f7||LP(R3)

14

for any Schwartz function f : R> — C with Fourier transform supported in Np-1 ().
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Lemma 23 (high lemma I). Suppose that R~# < rk_l < R~Y2. Then

& —1 k+1)2 v
f|g| < CeR'r RZ D Py xp o

Y C¢
where the ¢ are disjoint collections of ry, 2R~ many adjacent y.

4

9

LYR3)

Proof. Let T be the affine transformation from Proposition 20 and write Tx = Ax + b for a 3 x 3 invertible
matrix A and b € R? Then

gl (x) = |det A| eI bgh o T (A H*x). (12)

Perform the change of variables x — A*x to get

/|g,’§(x)|4dx:|detA|—3/|§,§oT—‘(x)|4dx.

Let r be a dyadic parameter in the range r,_ +11 <r-l<cC ele ' Let 5, : R3 — [0, 00) be a smooth function
with compact support in the set {(éj 1,6,8): %r‘l <& <r! } =:{&~ r~!} and satisfying the property
that the sum of 7, over dyadic r is identically 1 on the support of g,’(Z o T~!. By dyadic pigeonholing,
there is an r so that

|detA|_3/|gA,i’oT_l(x)|4dx§C8(10gR)4|detA|_3/|(gA,i’oT_])nr(x)|4dx.

Finally, perform the change of variables x — rx to get

|detA|3r3/ (gl o T~ Y, (r)|* dx.
Now, note that

(8f o Ty, (rx) = Zm S Py = poy Do T onl ()

= Z S L Py 1 — P DT ] (),
i Yk €S;
where S; is one of the <, R® many sets partitioning the y; from (1) of Proposition 20. Apply the triangle
inequality in the first sum over i and then apply Theorem 22 with parameters C;'(R/r), p1 = 1, and
=0 to obtain

/|gk| . log RYR® (7| R)|det A 32/
YeCe

where ¢ are disjoint collections of ~ r; 2R~ many neighboring y;. This number comes about since one

4
S L0 Pa, (1 - P DT ] ()

has r;, many y;’s and they get sorted into ~ R/ry many conical small caps, so each conical small cap

contains ~ ri/(R/ry) =rj 2R~ many y;’s. It remains to undo the initial steps which allowed us to apply

small cap decoupling for the cone. First do the change of variables x +— r~!x:

%Z/ 4dx

S LA Py (1 - o1 Do T~ ] (r)

YeCE _ Z/

4
S LA Ry (1= )0 T 1 ()| d.
eCE
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By Young’s convolution inequality (since multiplication on the Fourier side by 7, is equivalent to
convolution on the spatial side by 7,., which is Ll—normalized),

4
Z/ S a1 — oy o | < Zf S LT Pl (1= poyr o T
YC¢ W C¢
Perform the change of variables x — (A~!)*x and use (12) to get
4
et AP Y [ 1R 1= oy 0T Z |0 oo
¢ YC¢ % Ce
which finishes the proof. O

Lemma 24 (high lemma II). Suppose that max(R—#, R='/?) <r;' < R™'/3 Then

L oo 14 _1 k 1 4+4
/lgzl +2/B1 <C R'*¢r RZ“ + L4+4//€1(R3)’

where B € [%, 1] satisfies (rek R~ P = 1y,

Proof. Repeat the argument from the proof of Lemma 23, using (2) in place of (1) from Proposition 20
and applying Theorem 22 with B; as in the hypothesis of the lemma and 8, = 0. The result is

/ g1 7P <o R™(r ‘1R>Z f Il "+1|2cbyk(1—pf,k-;g]vﬁﬁ/ﬂ‘.

The R'* factor is to account for the fact that the Fourier support of gk may only be identified up to some

R? factors with small caps of the cone. Since 1 — p <ro)l = P<C. — P, ON the support of | f | 12, by
="k+ = ="k+

Young’s convolution inequality, we have

J AP 1= o WP [T = [ gy, O

Lemma 25. For eachm, 1 <m < N,

3
f G,1° < C.R* (Z ||F;",l+‘||Lu(R3)> :

Tm

Proof. Repeat the argument from the proof of Lemma 23, using Proposition 21 in place of Proposition 20
and applying canonical L° cone decoupling [Bourgain and Demeter 2015] instead of small cap decoupling.

h 6 8 1 716
f (Gl® < R 82 / 1 F2 P, (1= p_ga)] [

o —

/3 on the support of | F 'ZH |2, by Young’s convolution inequality, we

The result is

Since 1 — p_p-13 = p<c, —

—"m+1 p<R

have

/| Fﬁ—i_l (l)r,,,(l P <R 1/3)] | /|(|Fm+1 2) | /|Fm+l 12 0
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Theorem 26 (cylindrical decoupling over P'). Let P! = {(¢,t?) : 0 <t < 1} and for § > 0, let N3(P")
denote the 8-neighborhood of P' in R%. If h : R®> — C is a Schwartz function with Fourier transform
supported in N3(P") x R, then, for each 4 < p <6,

/2
AP Se 87 D llell; ’
. ~E ¢ LP(IR3) ’
¢

where the ¢ are products of ~ 8'/% x § rectangles that partition Ns(P') with R.

Proof. Begin by using Fourier inversion to write
po'oe = [ [ R e e g ag
NP JR
For each x3, the function

o / / h(E', &)™ 50 dgse™™ ' ag!
Ns (P JR
satisfies the hypotheses of the decoupling theorem for P!. Use Fubini’s theorem to apply the £2-decoupling
theorem for P! from [Bourgain and Demeter 2015] to the inner integral
P 2/p\pr/2
f/ |h(x', x3)|” dx’ dxs ,gg/as (Z([ dx’) ) dxs,
R JR2 R — \J/R2

where {v} form a partition of NVs(P!) into ~ §'/2 x § blocks. By the triangle inequality, the right-hand
side above (omitting C.§~?) is bounded by

(L) avan) )

The sets v x R are the ¢ in the statement of the lemma. (Il

/ f h(g' &)™ PTIEN dgs ag!
vJR

/ / h(g', )™ 2T dgs g’
v JR

Remark. The implicit upper bound in the statement of Theorem 26 is uniform in 4 < p < 6. For the
specific exponent p = 4, the implicit C,5§~¢ upper bound may be replaced by an absolute constant B
which does not depend on §.

2.5. Local trilinear restriction for M3. The weight function Wp_ in the following theorem decays by a
factor of 10 off of the ball B,. It is specifically defined in Definition 8.

Proposition 27. Let s > 10r > 10 and let f : R* — C be a Schwartz function with Fourier transform
supported in N,-1 (M?). Suppose that 'r]], rlz, ‘513 are canonical moment curve blocks at scale R 11 /3 Wwhich
satisfy (rf, rIJ) > s~ fori # j. Then

fBr|ff;f,gf,;|2§s3|8r|—2(/|ff;|2WB,)(/|fflz|2WB,) (/|fT;|2WB,)-

The weight function Wp, is the generic ball weight defined in Definition 8.
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Proof Let m(¢) = (¢, t%, t3) and let B,-1 be the ball of radius r~1in R3 centered at the origin. Then

W, (x) foi (x) = / Wi, # fos (61)e™™ % ag!

‘[f-i—Br,l

B / O Wa ok [ (€] 8, 5D dg g
Tll-"_Br7l

= f / Wa, # fi (m(ED + (0, )+ MEDTOD) gel dof,
l{wi €R%:|w;|<2r =1} JI;

where B,-1 +supp fi C {m(&]) + (0, ) :£f € I, |oi] <r~'}. Let {w; € R? : || <2r~'} = B?). Then
for w = (w1, wy, w3), we have

i

/ |Wa, (x) fr1 (X)W, (x) f2(x) W, (x) frls(x)|2dx
3
=/ H/ / Wi, * o (] + (0, )™ MEHOD dgl doy
B/ li szjl I !
=< Ws, % f.(mE) + (0, 0))e™ ™D d&i| do
/l;r [B:?l )3 Eflz 1 1 1

3 , 2 1/2 2
= (/(B&) )3 </B 1_[/1 WBr *fr{ (m(gf) + (0, wi))eznix'm(gi)dsf dx) da)) -

i=11i
Foreachw € (Br(%)I )3, analyze the inner integral in x. Use the abbreviation WB, * frf (- 4+, w))= fr“l.’f( )
1

2
dx

3 2

dx

and further manipulate the innermost integral as a function of x:

3
[ / W, * fr,((E]) + (0, ;)™ ™D dg]
i=1 71 A A - ; i
= f £ mED) £ mED) £ (m(e])) i ImEDHmED +mED] gy
hixhxly T i

where & = (Ell, 512, 513). Perform the change of variables £ = m(éll) + m(f;‘lz) + m(éf). The Jacobian
factor is 1/|det J|, where det J is defined explicitly in terms of &; by

1 1 1
det | 28! 28 28 |=6&E—-&)(&—&)(E—&),
3(61)% 3(ED)? 3(&)?
using the formula for the determinant of a Vandermonde matrix. Note that since (/;, I;) > s~l—2r71>0,
|det J| is nonzero. The change of variables yields

Aail 1 Aa;z 2 "a;3 3\y 2mix-E d~, 14
/m(11)+m(12>+m(13) f,l (m(§, ))f,1 (m(§; ))fr1 (m(&7))e et 7 D)l § (14)

where we interpret & in the integrand as implicitly depending on &. Define F©(€) by
1

£\ £O0I1 1\) f@2 2\ f@3 3
Xm()-+m(i) i) () S (D) [27(MED) /5" (m(ET)) et T )]
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so that we may view the integral in (14) as the inverse Fourier transform of F®. The summary of the
inequality so far, picking up from (13) and using the change of variables and the definition of F%, is

_ 12 \2
/ |ff;<x)fflz<x>f,;<x>|2dx5( /. ( / |Fw<x)|2dx) dw>.
B, (B~}

By Plancherel’s theorem, the right-hand side above equals

12 \2
([, ([ir@ra) a).
B 7))

By Cauchy—Schwarz, this is bounded above by

(B2 |/ /|Fw(g)| dE dow ~r~ /@ fIF”’(E)Izd%dw-
(B?))?

Undo the change of variables, again writing £ =m(g; )+ m(Sf) +m( 13 ) to get
e ) £ P det s 60 derdo
B® 3 Jnxnxr 0 i T
Note that |det J (&1)| 2 573, so the previous line is bounded by

o f 52, / 7 m@ED S mED) F2 @I dér doo~ 31‘[ / (g = oy @ .

—1(%)

By Plancherel’s theorem, this is bounded by
3
—6.3 RNY)
r s H/R{qu(x)l Wp, dx. O
1=

3. A weak version of Theorem 3 for the critical exponent

3.1. The broad part of U,. For three canonical blocks rll , 112, 713 (with dimensions ~ R, 135 R, 7" XRy b

which are pairwise > 10C; R~¢/3-separated, where C, is from Lemma 7, define the broad part of U, to be

2/3

Bry = {x € Uy & < K| fo) (%) f2 () fr (0|2, max | fy (0)] < ).

We bound the broad part of U, in the following proposition.
Proposition 28. Let R, K > 1. Suppose that || fy || L3y <2 for all y. Then

O{6+2/ﬁ|Bra | 58 KSORlOSA;O(M-i-N)Rzﬂ-‘rl Z ||fy ||22(R3)‘
Y

Proof of Proposition 28. Begin by observing that we may assume that R? < o?. Indeed, if @> < R”, then
we have

| < R g < R T 112
Y

using L%-orthogonality. Assume for the remainder of the argument that R? < o2
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‘We bound each of the sets Brg NAg, Brg N2, and Brf ML in separate cases. It suffices to consider
the case that R is at least some constant depending on ¢ since if R < C,, we may prove the proposition
using trivial inequalities.

Case 1: bounding |BrK NAg|. By Lemma 16,

Bry DAl < I{x € Uu N Ak S KIfT 0S5 LT I, max | £y (0] < e}
T

By Lemma 7, the Fourier supports of f ket k+], k3+1 are contained in the C.r 1—neighborhood of

8/3

C rl ,C 7,'1 ,C rl respectively, which are > C. R- -separated blocks of the moment curve. Let {B;, }

be a finitely overlapping cover of BrX NA; by ry-balls. For R large enough depending on &, apply
Proposition 27 to get

/ |fk+1fk+1 kelj2 < Rngrk|_2<[|frﬁ1+l|2W )(/|fk+1 )<f|f§+l|2WBrk)'

Using local L?-orthogonality (Lemma 10), each integral on the right-hand side above is bounded by

le k12

Ifxe Brf NAx N By, then the above integral is bounded by

/D F P, Wy, < C |Brk|Z| 2 4, (1)

by the locally constant property (Lemma 9) and properties of the weight functions. The summary of the
inequalities so far is that

oOIBrK NAN B, | <o K° f PR AR S ROKOB e (o),

where x € Br¥ nA, N B,,.
Recall that since x € Ay, we have the lower bound AY—¥RF < g, (x) (where A, is from Definition 13),
which leads to the inequality

Btk NN B, | < KOR® | By |8k (x)**7

(A" RPYP
for any p > 0. By Corollary 15, we also have the upper bound |g¢ (x)| < 2|g,}(’ (x)], so that

o®|BrX NA N B,,| <. KOR® | Byl (07

for any p > 0. By the locally constant property applied to gk, ¥ hi3+r <, |g,}<’ *wp, |>*7 and by Cauchy—
Schwarz, | gk kwp, e < & R134P sew B,,- Combine this with the previous displayed inequality to get

1
6 K 6 pe h 3+
o’ |Br A B |<.K°RE————— PWg. .
| “ ¢ rkl ~ (Aéw kRﬂ)P / |gk| By,
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Summing over the balls B,, in our finitely overlapping cover of Brf NAg, we conclude that
1
6K 6 pe h3+
Br, NAx| <: K°R P 15
o | rOl klw&‘ (Ag,[_leB)p /R} |gk| ( )

We are done using the properties of the set Brf NAy, which is why we now integrate over all of R* on
the right-hand side. We will choose different p > 0 and analyze the high part g,i’ in two subcases which
depend on the size of ry.

Subcase la: R~# < r, <R 12 This case only appears if % < B. Choose p =1 in (15) and use
Lemma 23 to obtain
4

§ : k+1 x
| | * Wy, >k'O>r,:+11
YeCE

’

1
a®Brf nAy | <o KSR ——— Rsr,;IRZ
A L4(R3)

where ¢ are collections of r; 2R~ many adjacent y;.
The Fourier supports of the terms in the L* norm are still approximately disjoint (actually C,-
overlapping, see Proposition 19), so by Plancherel’s theorem and L2-orthogonality, we have

4
k+1)2 ~
Z| o KDy XLyl
e CE LY®)
2
k+12 4 k+1)2 ~ 2
Se R DU Prepnp o | DN P x o bn g, (16)
YkC¢ L2®) yecg

for each ¢. First bound the L*° norm by

k+1,2 v
DA PRy xp,
Yk C¢

2

2 k+1 2 p—1\2 k+1
< (#Vk C C) maX ”f + ||L°°(R3) S (rkR ) rr}/ax ”f * ||L°°([R3)’
L (R3)

where we used that ||wy * ’5>’k_]1 ll; ~ 1. To bound each of the L? norms in (16), we use cylindrical L
+
decoupling the parabola (Theorem 26) and unravel the pruning process using properties from Lemma 7:

k+12 « 2
ISy |7 @y % Pril, ||L2(R3)

SIS L4R%) (by Young’s inequality)
2
( Z [Wonnll L4(R3)> (by cylindrical L*-decoupling for P!)
Vi+1CVk
2
( Z Il £, ;ﬁtlzlle;(Rs)) (by (1) from Lemma 7)
Yi+1CVk
2 2
S ( Z [N ”i‘*([&*)) N ( Z I fy ”i‘*(W)) (by iterating the previous two inequalities).
YN CVk YTk

Note that each application of L*-decoupling involves an explicit constant B in the upper bound, so it does
not depend on a scale R. The accumulated constant in the unwinding-the-pruning process above is B¢¢ -
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1

since there are fewer than ~ ¢~ many different scales of y; until we arrive at y. Use Cauchy—Schwarz

to bound the expression in the final upper bound above by
#y Cve Y 1l lags S 0 R Y L ae)-
Y Tk Y CVk

Using the assumption || f oo S 1 for each y, we have || f,, 14 Sy 1% L2 The summary of the

LAR4) ~
argument in this case so far is that

oOIBrE NALl So KSR RPr'R Z<r2R‘1>2max AR Cuy OB DY VAT
YkCe
: KOR*rR™ maXIIfk“II Z”fy”z

For the remainder of the proof, we use the notation S to mean <, R3¢ 1t now suffices to verify that
rE R~ max,, ||f)fk+] 14, < R*+1a=2/P. We will use the upper bounds

RB
[FAAR ISP min(r,:lRﬂ, K3A£4—’<7)

(from (1) and (2) in Lemma 7). Suppose that r; < . Use ||f}ﬂ‘k+1 oo SK3AM*RP /o and B > % to check
()P 2<(ROMP2 = IR <RI P
RA\!
= rfR™! <_) < R2BH1 2B
a

N R max ||fk+1||4 <A4(M 0 R2B+14,=2/8

as desired. Now suppose that ry > «. Then use || f,, k1) o < e 'R and check

)P <RPMF2 = RV 7'RPY < R ()P
= R max £ S S R o™

which finishes this subcase.
Subcase 1b: max(R~#, R™1/?) < rk_1 < R~!3. In this case, let 8 € [%, 1] satisfy (rk_lR)_f81 = rk_1 and
take p =2/B; — 1 in (15). Then by Lemma 24

o |BrK mAk| < KﬁRS Ré‘rk—lR Z || k+1 4-‘1—4/,31

RBC/B1— L‘”“/’S’ (GIN

Majorize each L***/#1 norm by a combination of L> and L% norms to get

1
K 2 1 14/B1— 1
o |Brk NALl <e KOR amrk RZH}/?X [l el W [ 1126 (Ray-
Vi
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Repeat the unwinding-the-pruning argument from Subcase 1a to obtain

3
4 4
LA 1S o gy S Bes R ( > ||fy||ib(R3)> SBsR (R Y Ny ey
Y CVk Y CVk
where we used Cauchy—Schwarz and the assumption | f, |l < 1 in the final inequality. Note that we

-1

have the additional constant BS ¢! due the accumulation of < &~ many factors of the upper bound

B,s R¢” for LS- -decoupling of the parabola with small parameter &°. In summary,

1
6 K 6 p3¢ -1 }: k+1,4/B1—2 71ﬁ2§: 2
(04 |Br¢x mAkl SS K R Rﬂ(z/ﬁl_])rk R n}/ilx ||f)’k ||oo ! (rk R ) ”f]/”LZ(RS)
Yk Y CVk
It suffices to check that
1

—1 k+1y4/81—2,,.—1 2 28+1 -2
papn e R AR S R,

which simplifies to

Rﬂ(l—z/ﬂl)rk—3 max ”ka ”iéﬂl_z é a 2B,
Yk

Using || f]’ka lloo < K3AMH R? Ja, it further suffices to verify the inequality rk_3 RPQ/BI=D < 4/ P1=2-2/B,
Suppose that the exponent 4/8; —2—2/8 > 0. Use rk’1 < R™'3 and R? < o? to verify

(Rﬂ)z/ﬂl—l—l/ﬁ S (aZ)z/ﬂl—l—l/ﬂ = rk_3Rﬁ(2/ﬂl_1) S a4/l3l_2_2/'3.

Now suppose that the exponent 4/8; —2—2/8 < 0. Using Cauchy—Schwarz, the locally constant property,
and the definition of Ay, for x € U, N Ay, we have

o Sty Y AP S R kg1 (0) S R AMTFDRE,

)’k+1
Vi+1

Also use r,l/ﬂ' =r; 'R to verify
Rl < ’,I:I/ﬁ N r,:3R < (rkflR)zrkflfl/ﬁ
L R < ARV
—  rT3R(REAMKD RAYIB-IZUB < () 2Ri-1-1/p
= r3RPQIBITD < (REAM—K=D)BGHAI-2-2B,

as desired.

Case 2: bounding |BrX NQ,,|. Repeat the reasoning at the beginning of Case 1. By Lemma 16,

IBry NQul < |{x € Us N Q1 < K|F;:;+1(x)F:1;+1(x)F:§+1(x)|1/3, max | f; ()| < al.
a1

Let {B 13} be a finitely overlapping cover of Brf N, by R,i,/ 3 balls. Then by Proposition 27, for R
large enough depending on &,

1 1 1,2 -2 1,2 1,2 1,2
[ R R S R By ( [ ez ws 1/3) ( [ ey ./3) ( [ ey 1/3)
B 1/3 1 1 1 m 1 Ry 1 Ry Ry
Rm
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The integrals on the right-hand side are bounded by
Ce / Z |F:,1,1+1| WBngl/s
T

using local L2-orthogonality (Lemma 10). If x € Br¥ ng,, N By1/3, then the above integral is bounded by

DI P rwn, We 1y S Ce Y 1P P n, (1) = CGp (%)

Tm Tm

by the locally constant property. Recall that since x € §2,,, we have the lower bound AY+N-"RP < G, (x).
Also, by Corollary 15, G,,(x) <2|G" (x)|. Combining the information so far yields

o |Brk NQy N Bis| < KOR Byl |G (x)[°.

Use the locally constant property for Gm and sum over all B3 to get
1
a®|BrX N, | <, K(’Rg / |G"|°.

Note that we dropped the unnecessary factors of AMTN=" > 1 and that we are done using the properties
l
of the set Br " (r, 7', ), which is why we now integrate over all of R? on the right-hand side.
By Lemma 25,

3
f NG < R (Z | F ||112(R3)) :
R Tm

Use Cauchy—Schwarz and then (2) (with Fr’flnirl]) of Lemma 7 to bound the L'? norm by a combination
of L™ and L% norms:

3 3
(Z IF 1||L12(R3)) <R€K6<K3AM+N " ) (Zn Fpt! ||L6(Rz).

Tm+1

Next, we use cylindrical L®-decoupling over the parabola to unwind the pruning process. For each 7,1,

we have
LEZ S 6 sy < IFmt 206 (by (1) of Lemma 7)
3
< B,s R85< Z Il f ;Zi_zz”ic(w)) (by cylindrical L°®-decoupling for P)

Tmn+2CTm+1
3
5 . . . . ..
<..-<(BsR* )N< Z Il f+ N+1 ||L6(R3)> (by iterating the previous two inequalities).
TN CTn+1

Note that {r} are canonical blocks of the moment curve. Our goal is to have an expression involving the
small caps y. We defined the y so that they lie in the cylindrical region over canonical R—# x R~2# blocks
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of P!, Therefore, we may continue unwinding the pruning process using Theorem 26, ultimately obtaining

3 3
5
(§ ] ||L6<R3)) < (BsR? )M+N<§ ||fy||is(R3)>.
14

Tm+1

By Cauchy—Schwarz and using the assumption || f}, o < 1, we have

3
<Z Ify ||is(R3)> <# Y 1 sy S R D N A 1w
Y Y 14

The summary in this case is that

1
«®[BrX NQ,,| <. K30R35A10(M+N)R3ﬂ< )(Rzﬁ)Z”fy”Lz(Rs

It suffices to verify that R*%a =% < R?#*1¢~2/F This follows immediately from the relation R? < o?.
Case 3: bounding |U, N L|. Begin by using Lemma 16 to bound
o P IBry NLI S K2 / | FIPIF 2P
UsNL

Then use Cauchy—Schwarz and the locally constant property for G; to get

241
/ |f|2|F1|4+2/ﬂ58R£/ | FPGEVE,
Uy,NL

Uy,NL

Using the definition of L, we bound the factors of G| by
/ |f|2(AM+NR,B)2+1/ﬂ
U,NL ¢

Finally, use L? orthogonality to conclude

||L2(IR3)' D
14

3.2. Wave packet decomposition and pigeonholing. To prove Theorem 3, it suffices to prove a local
version presented in the next lemma.

Lemma 29. Let % < B <land p>2. Then, for any R™B:D_pall Bpmuxcs.n C R, suppose that

2—1 —4)—1
”f”ip(BRmdx(Zﬁ I)) S C RS(R/E([)/ ) + Rﬂ([’ ) ) Z ”f)/ “ip(Rg)
4

for any Schwartz function f : R? — C with Fourier transform supported in M>(RP, R). Then Theorem 3
is true.

Proof. Write
0 S D / 1f17,

BRmax(Zﬁ, 1) BRmax(Zﬁ, D



3580 LARRY GUTH AND DOMINIQUE MALDAGUE

where the sum is over a finitely overlapping cover of R* by R™>*2A.D_balls. Let ¢ 5 be a weight function
decaying by order 100 away from B pmaxcp.1), satisfying ¢ = 1 on Bgmaxcp.1), and with Fourier transform
supported in an R~™28-1) neighborhood of the origin. The Fourier support of each f, ¢p is contained
ina 2R P x 4R™%8 x 2/ R~ small cap. By the triangle inequality, there is a subset S of the small
caps y so that for each y € S, the Fourier support of f),¢p is contained in a unique small cap and

ny¢B

yeS

p

P <
||f”LP(BRmaX(2ﬂ11)) ~
LP(Bgmax28,1))

Then by applying the hypothesized local version of small cap decoupling,

P
2-1 —4)-1
> fos < CRERPPPD L RPN N 65117 o
yes LP(B gmax2p.1)) yes
It remains to note that ZBRmax(Zﬁ‘l) (15,1705 < [1£,1P. O

It further suffices to prove a weak, level-set version of Theorem 3.

Lemma 30. Let p > 2. For each B> and Schwartz function f : R> — C with Fourier transform supported
in M3(RP, R), there exists o > 0 such that

1108 ncopryy S (108 R)P i € Bmacsn o0 < [ FQON+RP Y 1 fy 1] )
Y

Proof. Split the integral as

[ =¥ £
B pmax(28,1) €8 gmax@8.1) A 11208 max2p,1) =1 OISZAN SN L0 (B L 2p,10)}

R_]OOOS)\.SI

+f | 117,
{(x€B pmaxp, 1| f (D)< R™IO0| £ Il oo (gmax(2.1),}

in which A varies over dyadic values in the range [R~'°%, 1]. If one of the < log R many terms in the
first sum dominates, then we are done. Suppose instead that the second expression dominates:

P < p3 p—1000p p
1P <R’R ||f||Lw(BRmax<2ﬁ,1))'

[ =z
B pmax(26,1) {x€B gmax2p.) LS OISRV F1l oo gmaxc2p.1), }

Then by Holder’s inequality, we have

P < p3 p—1000p+(p—1) Z p
L |f| ~ R R ”f]/ ”LOO(BRmax(Z/S,l))'
RmMax(2B,1) Y

Finally, by the locally constant property and Holder’s inequality,

p p
||fy||L°°(BRmax(2ﬁ.1)) 5 I||fy| *wy*”LOO(BRmax(Zﬁ.l)) Sp |||fy|p *wy*”LOO(BRmaX(z,;,l)) S, /[R{3 |fy|p- O

Use the notation
Ua = {x S BRmaX(Zﬁvl) ra < |f(x)|}
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We will show that to estimate the size of Uy, it suffices to replace f with a version whose wave packets

have been pigeonholed. Write
F=Y2> vk (17)
y TeT,

where, for each y, {{/r}rer, is the partition of unity from a partition of unity from Section 2.1. If

a < Ce(log R)R max | £, Il oo,
Y

then by an argument analogous to the one dealing with the low integral over {x : | f(x)] < R™'%|| £1ls0}
in the proof of Lemma 30, bounding «” |U,| by the right-hand side of the small cap decoupling theorem
is trivial. Let ¢p be the weight function from Lemma 29.

Proposition 31 (wave packet decomposition). Let « > C.(log R)R_loomaxy I fy Il Loo(m3)- There exist
subsets S C {y} and TT), C Ty, as well as a constant A > 0 with the following properties:

Ual S (log R) {x €Up:a (Y. D) Yr()ep)fy(x) ” (18)
yes TeT,
> vresf, ~A forally €S, (19)
Tet, Lo ®)
#T, APRPFPHL N yrgp f, 3 SRIPHT, APRPFPHY forally € S. (20)
; L ()
TeT,

Proof. Split the sum (17) into

¢f=Y_ > Vrésfy+Y_ Y. Vrésfy, 21)

v TeTj 4 TE-U—‘;
where the close set is
TS :={T €T, : T N R"Bgmucrn # )
and the far set is
T/ :={T €T, : TN R"Bgmwcsn = 2}

Using decay properties of the partition of unity, for each x € Bgmacs.n),

DN vrn)es@) fy (x)

4 TeWTf

—1000
S R m)iix ”¢B f)/ ”LOO(BRmax(Zﬂ,l))‘

Therefore, using the assumption that « is at least R~'% max,, || f, [| o< Bpmax2p.1))>

|

= o 2
m)?x;ne@[r);( Y1 dB fyll Lo ms (22)

Ual <2 DY Yr@esx) £, (x)

4 TET

{xEUa:aSZ

The close set has cardinality |T;| <R3 Let
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Split the remaining wave packets into

S wresfy =Y > D Yrésfr+Y. Y. VYrésfy.

14 TE—[F)C, Y R_]03§}»§l Te-ﬂ—;)h 14 TET;‘S
where A is a dyadic number in the range [R _103, 1],
T =AT €Ty, 1Vrds fyll Loy ~ AM},
Ty =T €Ty V165 fy i~ < RTOM).

Again using the lower bound for «, the small wave packets cannot dominate and we have

{era.a<4|Z > ZwT(x)ch(x)fy(x)H

R- 103 <x<l T€—|T

|Ual <4

By dyadic pigeonholing, for some A € [R~19%, 1],

|Ual S (log R) 0D Yr)es() £y (x)

Yy Tely,

{era:aS(logR)

(23)

Finally, we analyze the L? norm for each p > 2 and each y. Note that we have the pointwise inequality

D Ures() f,()| =] Y Yrn)es) f, (0| +

Te'[l"y'j Te'l]';A Te'ﬂ"

XERT x¢R€
D Yres() f, ()| + CeR™'|pp(x) £, (x)].

Te'l]';,k

XERT

Let &’ be the subset of {y} for which
> Yrésf, > C.R™ max |5 fy | Lo ws)-

L®(R3) Y

Tely ,

Using the lower bound for «, we then have

|Ua| < (log R)

|

{x €U, :a < (logR) ) Z Z Yr(x)dp(x) fry (x)

yeS’ TeWT;.A

It follows from the pointwise inequality above that, for each y € &,

Z Vrosfy

Tely,

AM < < R¥*AM.

Lo°(R3)

Perform one more dyadic pigeonholing step to obtain a dyadic u € [1, R?] for which

|Uy| < (log R)?

’

{x € Uy :a < (log R)? ‘ Z Z Yr(x)dp(x) fry (x)

yeS TET;’A

|

where S is the set of y satisfying H Y Tete . Vros fy HLOC(Rs) ~ uM.
Y,

D Yr(0¢sx) fy (x)
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It remains to check the property about the L” norms. For each y € S, using the locally constant
property, we have

> 1/’T¢ny

TGT‘

#TS, RPPPH (uanyr < / Wrsfyl” S f

TGW
Te?]']”/,A

< \/
~Y
XERET

< RIPHTS , R (uM)? + C. RO |1 f, |17

p
dx + CsRilOOOP ||¢Bf)/ ”ip(R.?)

> Yr0) fy @)

LP(R3)"

By construction, we have M > C, R maxy, || fy [l oo gs)- It follows that

< R—IOO#'["C Rﬂ+2ﬁ+l(/,LM)p,

CSR_lOOOP ||¢B f)/ ||LP(|Rx) ~

which concludes the proof. U

3.3. Trilinear reduction. We will present a broad/narrow analysis to show that Proposition 28 implies
the following level set version of Theorem 3 for the critical p =6+2/8.

Theorem 32. Forany R >2, s < <1,and o > 0,
a2 B U, | Se ROORPHN | £, 113
¥

for any Schwartz function f : R — C with Fourier transform supported in M>(RP, R) and satisfying
”fy”oo <2 forally.

Proposition 28 implies Theorem 32. We present an algorithm incorporating a broad-narrow argument. For
-1/3 -2/3
k X R,

moment curve block.

each k, 1 <k < N, recall that {r;} is a collection of canonical ~ R X Ry ' moment curve

blocks. Write £(7) = r~! to denote that 7 is a canonical r ~' x r=2 x r =3
Step 1 of the algorithm is as follows. Let E, be a constant we choose to be larger than 10C,, where

C, is from Lemma 7. We have the broad/narrow inequality

)] < 4B max | fo, ()] + R* max 1100 () f (01, (24)
d(‘[l t1)>E R,

where the second term is the maximum over 3-tuples of 7; which are pairwise > E ngl/ 3

-separated. In-
deed, suppose that the set {77 : | f7, (x)| > Rl_l/ 3 max, | fff (x)|} has at least 3E, elements. Then we can find
three rll, tlz, r13 which are pairwise > E8R1_1/3—separated and satisfy | f(x)| < stlf.[ll (x)frﬁ (x)frf (x)|'/3.
If there are fewer than 3E, elements, then | f(x)| < 3E, max,/ |f,1r )|+ max,/ |fr1’ (x)].

Suppose that
[Uq| < 2\{)6 € Uy :rnt?x|ff1 €3] EQH
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If this does not hold, then proceed to Step 2 of the algorithm. Further suppose that there are blocks rf
which satisty d (], tj) > E‘SR;I/3 and

Ual S R¥[{x € Us 100 < 2R%| 11 (1) f2 () frp0)I'2, max | o, ()] < e} |- (25)

If (25) does not hold, then proceed to Step 2 of the algorithm. Assuming (25), apply Proposition 28 to
get the inequality
aH P UL e ROORPIIN ) £, 13,

14

which terminates the algorithm.

2/3

Next, we describe step k of the algorithm for k > 2 and R, < R'~P. The input for step k is

|Ual Se (log B! {x € Uy : o0 S (log R) ™ max | fr,_, (1)1} (26)
For each t;_;, we have the broad-narrow inequality

[fac (O] S2Ee max |fy@I+R*  max | fu(@) fe(0)fp@l'.

T, CTh—1

PICTRTOET N

Either proceed to Step k + 1 or assume that
Ual S (log RY[{x € Uy s @ 5 (log B max| foy_, ()], max | fy, (0)] < @}

Again, either proceed to Step k + 1 or assume further that there are r,f C 1x—1 which are pairwise
> E.R, Y 3-separated and satisfy

|Uo| < (log RY*R* ) "|{x € Uy 1 S (log R* ' R¥| f1 () f2(x) f2 (03, max | f, ()] < @}

Tk—1
By rescahng for the moment curve there exists a linear transformation 7 so that | f; i 0 T|=| 81 |, where

the 7; are pa1rw1se ZER, —separated blocks and g is Fourier supported in the amsotroplc nelghborhood

M3 (R, 1/3Rf3 R,_ 1R) Indeed suppose that 7;_ is the [-th piece

G ={(EL &, E) IR <& < U+ DR, 16a— €2 < RP, 16 — 3816+ 287 < R}

Since the Fourier support of f is in M3(R?, R) by hypothesis, the Fourier support of f;, , is in 7_; N
M3(RP, R). Define the affine transformation L (&, &, &) by

g~ R & — IR,

£ R (& — PR — 2R (5 — IR,
£ R 1(& — PR —3IR (& — IR 2/‘)+312 13 & — IR,

1/3

This affine map satisfies L(tx_1 N M3 (R?, R)) = J\/l3(R_l/3R'3 R R). If we write L™' (&1, &, &) =

A(&1, %, 83) + b, where A is a linear map, then the rescaling map 7T above is equal to (A~ % In

1/3

this step, we have assumed that R, _|R™' < R, R™ A One may then verify that L(y) = y are
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2/3 1 /3

~R, /3 R p xR, R™ 2B % Ry_1 R~" small caps partitioning M3(R
to the rescaled functlons to obtain the inequality

R?, R, 1R) Apply Proposition 28

oS {x € Uy s S (log R R g1 ()82 (0) g2 (077, max |gg, (v)] < af|

Se RFHER RPN gy 113,
14

where ' €[4, 1] is defined by (Ry_1R™)F = R;”’, R~P. By undoing the rescaling change of variables
and summing over t_1, this implies

aPP U, Se R (R RPN £ 15
It suffices to verify that (R, ' R)?/*! g Rzﬁ“/az/ﬁ_z/ﬂ/ Use the upper bound o < R, 1/3R/3 from
the step we are considering so that it suffices to verify (R, ', R)** +1(R_1/ 3 RAY2/B=2/ p S Rzﬁ“ which
51mp11ﬁes to R 2’13 —1=2/3p42/36 < RP-26'-2+2/F . Using the definition of g/, this further simplifies to

Rk_ 2’13 —1=2/38 +2/ 3 < R( ’3 +1/3)2+2/8) , which is true since B < 2. In this case, the algorithm terminates.

2/3

Next, we descrlbe step k with k > 2 and R, > R'~P. The input for step k is

|Ual = (log R~ |{x € Uy 2 o S (log R max| o, ()1} 27)
Let {¢} be a partition of M3(R, R) into ~ R;”” R~ x R},

we may assume that there are versions f,kf1 of the fr._, whose wave packets corresponding to ¢ have

R~2 x R~! small caps. By Proposition 31,

been localized and pigeonholed and which satisfy
|Ual S (log R |{x € Uy : & 5 (log B) max | fy,_, (1)}
As in the previous case, either we proceed to Step k + 1 or we have

k p3e . k7 7 z 1/3 =
|Ual < Gog R R* Y |{x € Un e S (log B! Ify () Jp ) Frp (01", max | ()] < |

Tk—1

By the same rescaling argument as above, let T be the linear transformation so that | fr, oT|=| 81 | and the
) are pairwise 2 E¢ R, o173 -separated blocks and g is Fourier supported in the anisotropic neighborhood
M3(R,(__1{3Rﬂ, Rk__llR). Note that each |f~§ oT|=g¢|, where ¢ is an Ri_ 1R ' x R,,f_lR_2 X Re_1R™!
small cap. Apply Proposition 28 to the rescaled functions (max; ||g, lloo) ! (g, ! + 822 + gr_z) to obtain
the inequality

oF|{x € Uy o = (log R)f g} (1)@ (¥)g ()|, max|gr, ()] =<

Se ROR RO maxlige 5, D llgc
- 4

By undoing the rescaling change of variables and summing over tx_1, this implies

@*Ual Se R (R R (max | fe o) D 11 fo 1
¢
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By properties of the pigeonholing lemma, for each ¢, (max; ||ﬂ ||OO)6||f~¢ ||% <e R38(RZ£31R_1R5)2||f§ ||g.

By cylindrical L®-decoupling (Theorem 26), for each ¢,

3
2/3
I fellS e R‘f(} ||fy||§> Se RERERTRE2D £ 13
yC¢ yC¢

The summary of step k in this case is that

— 2/3 H— 3
0¥ |Ual S R R R RERTRO S F 13
Y

It remains to verify that Rk__lfl’?A'ﬂ*1 < R?PH1/o?/B=2_ This is true since R,i/_31 > 1 and @ < RP. The
algorithm terminates in this case.
The final step, if the algorithm has not terminated yet, gives the case

Uq| < (log RN [{x € Uy 1 S (log BV H}I%xlf,N(x)l}|.

Write Ty = 6 and use trivial inequalities:

o P|{x € Uy ra < (log RYY max | fy ()I}] e (log BN ) / [fol*2F
0
S Qo BV Y max |15 [ 1foP
0

S Qog RV Y maxty <O [ 317,
0

yCo
Se (log RYNRETVDERID N £ )13,
¥
where we used Lemma 7 for the L* bound. Technically, our algorithm could give us a version of f whose
wave packets have been pigeonholed at a few scales. In that case, we incorporate a process analogous to
that of “unwinding the pruning” from the proof of Proposition 28 into the trivial argument above. Noting
that N ~ ¢, and (log R)N (log R)N <, R?, we are done since (8 — 1/2)(4+2/8) <2 + 1, which is
equivalent to g < 1. ]

3.4. Proof that Theorem 32 implies Theorem 3. We divide the work into two propositions. First, in
Proposition 33, we show that Theorem 32 implies the critical exponent p = 6+4-2/8 version of Theorem 3.
Then, we show that the general Theorem 3 follows from the critical exponent case.

Proposition 33. Theorem 3 holds for the critical exponent p =6+ 2/8.

Proof. Fix p =6+2/8. By Lemma 29, it suffices to bound the L?” norm of f on a fixed ball Bgmaxeg.1).
By Lemma 30, there is a constant & > 0 (which we may assume is > C,(log R)R™100 max,, || fy lloc) SO
that it suffices to bound a”|U,| for Uy, = {x € Brmaxes.ny : o <|f(x)|}. Finally, by Proposition 31, we may
replace f by a pigeonholed and localized version f. One of the properties of the pigeonholed version is
that, for all y, either || fy [lc ~ A or || f; lloo = O for some constant A.
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Apply Theorem 32 to the function f/A to obtain the inequality

(/A |Uq| Se RPORPID N f /Al 2,
1
It remains to note that by (20) from the pigeonholing proposition,

A2 fy 172 gy S R APHT, RFVZPELS RO £ 117, s -

Since | f,,l < | fy| for each y, this concludes the proof. U

Next, we show that Theorem 3 for general p follows from Theorem 3 at the critical exponent p =642/
via an interpolation argument with L? and L estimates.

Proof of Theorem 3. Let p > 2. Repeat the initial steps in the proof of Proposition 33 so that it suffices to
prove

O[p|UOl| SE RE(R'B(p/Z_l) + R'B(p_4)_1) Z ”f)/ “ip(R3)a
14

where f has been pigeonholed and localized as in Proposition 31. First suppose that 2 < p <6+2/8.
By Proposition 33, we have

642
oI U, | Se RERPEDY A

¥
Write A ~ max, || f, loo- We would be done if R?T1A+2/F=p < RA(r/2=1) 642/ which simplifies
to RP/2A < «. If this does not hold, then using L? orthogonality,
af|Uq| S RPPPDAPZN | f 15
¥
By (20), A2 £, 113 < R*|| f, II5, which finishes this case.
Next, assume that 6 +2/8 < p. Then by Proposition 33,

P |Uy| Se RERPHELD " aP=0=218) £, 10 5/K

6+2/B"
v
We would be done if R?+1qP—6-2/8 < RP(P=H=1Ar=6-2/8 which simplifies to « < RPA. Since
a<|f(x)]= |Zy fy (x)| and #y < RP, this is true. O
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