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SMALL CAP DECOUPLING FOR THE MOMENT CURVE IN R3

LARRY GUTH AND DOMINIQUE MALDAGUE

We prove sharp small cap decoupling estimates for the moment curve in R3. Our formulation of the small
caps is motivated by a conjecture of Demeter, Guth, and Wang about L p estimates for exponential sums.

1. Introduction

We use high-/low-frequency methods to prove small cap decoupling inequalities for the moment curve
M3

= {(t, t2, t3) : t ∈ [0, 1]} in R3. We begin by describing the problem and our results in terms of
exponential sums. The motivation for this paper is to prove Conjecture 2.5 with n = 3 from [Demeter
et al. 2020], which we state now. We use the standard notation e(t)= e2π i t.

Conjecture 1. For each N ≥ 1, 0 ≤ σ ≤ 2, and s ≥ 1,∫
[0,1]2×[0,1/Nσ ]

∣∣∣∣ N∑
k=1

e(kx1 + k2x2 + k3x3)

∣∣∣∣2s

dx ≤ CεN ε
[N s−σ

+ N 2s−6
].

The s = 1 and s = ∞ versions of this conjecture are easily verified using L2-orthogonality and the
triangle inequality, respectively. When σ = 0, this is Vinogradov’s mean value theorem, solved in three
dimensions by Wooley [2016] and using decoupling for the moment curve by Bourgain, Demeter, and
Guth [Bourgain et al. 2016]. The case of σ = 2 was proven by Bombieri and Iwaniec [1986] and by
Bourgain [2017b] using a different argument. In [Demeter et al. 2020], they prove a slightly more general
statement which implies Conjecture 1 in the range 0 ≤ σ ≤

3
2 . We prove the following general exponential

sum estimate which implies Conjecture 1 for the full range of σ .

Theorem 2. For each N ≥ 1, 0 ≤ σ ≤ 2, interval H of length 1/Nσ, and s ≥ 1,∫
[0,1]2×H

∣∣∣∣ N∑
k=1

ake(kx1 + k2x2 + k3x3)

∣∣∣∣2s

dx ≤ CεN ε
[N s−σ

+ N 2s−6
]

for any ak ∈ C satisfying |ak | ≲ 1.

The terms in the upper bound come from two examples. The upper bound N s−σ follows from taking
random aξ ∈ {±1}, by Khintchine’s inequality. The upper bound N 2s−6 follows from the example aξ = 1
and noting that the integrand is ≳ N 2s on roughly the box [0, 1/N ]×[0, 1/N 2

]×[0, 1/N 3
]. Theorem 2 is

an estimate for the moments of exponential sums over subsets smaller than the full domain of periodicity
(i.e., N 3 in the x3-variable). Bourgain [2017a; 2017b] investigated examples of this type of inequality.
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Theorem 2 is a corollary of a small cap decoupling problem for M3, which we now describe. For
R ≥ 1, and small cap parameter β ∈

[ 1
3 , 1

]
, consider the anisotropic small cap neighborhood

M3(Rβ, R)= {(ξ1, ξ2, ξ3) : ξ1 ∈ [0, 1], |ξ2 − ξ 2
1 | ≤ R−2β, |ξ3 − 3ξ1ξ2 + 2ξ 3

1 | ≤ R−1
}.

This is the anisotropic neighborhood of M3 at scale Rβ (for which canonical decoupling for the moment
curve applies) plus a vertical interval of length R−1. Next we define small caps γ, which form a partition
of M3(Rβ, R) and are defined precisely in Section 2.3. Each γ has the form

γ = {(ξ1, ξ2, ξ3) : l R−β
≤ ξ1 < (l + 1)R−β, |ξ2 − ξ 2

1 | ≤ R−2β, |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ R−1

} (1)

for some integer l, 0 ≤ l < Rβ. If β =
1
3 , then γ coincides with canonical R−1/3

× R−2/3
× R−1

moment curve blocks. In the range 1
3 ≤ β ≤

1
2 , γ is essentially equivalent to the R−1-neighborhood

of a canonical R−β
× R−2β

× R−3β moment curve block. In the range 1
2 ≤ β ≤ 1, γ looks like a

canonical R−β
× R−2β

× R−3β moment curve block plus a vertical R−1-interval. In each case, γ has
dimensions R−β

× R−2β
× R−1. Our definition of small caps using the vertical R−1 neighborhood is

motivated by Theorem 2, which we explain further in Section 1.1. See the paragraph following (2) for
some remarks about the decoupling problem associated to small caps which are the (3-dimensional)
R−1-neighborhood of canonical R−β

× R−2β
× R−3β blocks.

The small cap decoupling theorem we obtain is:

Theorem 3. Let 1
3 ≤ β ≤ 1 and p ≥ 2. Then

∥ f ∥
p
L p(R3)

≤ CεRε(Rβ(p/2−1)
+ Rβ(p−4)−1)

∑
γ

∥ fγ ∥
p
L p(R3)

for any Schwartz function f : R3
→ C with Fourier transform supported in M3(Rβ, R).

The only other result of this form that we are aware of is in [Jung 2023], which essentially proves the
β =

1
2 case of Theorem 3. The proof of Theorem 3 uses the same framework as the high-low argument

from [Guth et al. 2024]. We require a crucial new ingredient, which is small cap decoupling for the cone
established in [Guth and Maldague 2022]. See Section 1.2 for some discussion of the role of small cap
decoupling for the cone in the proof of Theorem 3. Modulo some minor adaptations, our high-low proof
of Theorem 3 with β =

1
3 actually yields the stronger (ℓ2, L p)-decoupling estimates from [Bourgain

et al. 2016] rather than the (ℓp, L p) inequalities stated in Theorem 3. See Section 1.3 for a sketch of
the necessary adaptations. The powers of R in the upper bound of Theorem 3 come from considering
two natural sharp examples for the ratio ∥ f ∥

p
p/

(∑
γ ∥ fγ ∥

q
p
)p/q. The first is the square root cancellation

example, where | fγ | ∼ χBRmax(2β,1) for all γ and f =
∑

γ eγ fγ , where eγ are ±1 signs chosen (using
Khintchine’s inequality) so that ∥ f ∥

p
p ∼ Rβp/2 R3 max(2β,1) and

∥ f ∥
p
p∑

γ ∥ fγ ∥
p
p
≳

Rβ(p/2)R3 max(2β,1)

RβR3 max(2β,1) ∼ Rβ(p/2−1).

The second example is the constructive interference example. Let fγ = Rβ+2β+1η̌γ , where ηγ is a smooth
bump function approximating χγ . Since | f | =

∣∣∑
γ fγ

∣∣ is approximately constant on unit balls and
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| f (0)| ∼ Rβ, we have

∥ f ∥
p
p∑

γ ∥ fγ ∥
p
p
≳

Rβp

RβRβ+2β+1 ∼ Rβ(p−4)−1. (2)

We remark that the arguments in this paper could also be used to analyze small cap decoupling
problem with R−1 neighborhoods of canonical blocks. These are different from taking the vertical R−1

neighborhood in the range 1
2 ≤ β ≤ 1. For example, if we consider the constructive interference example

for the R−1-neighborhood small caps, then each fγ is equal to ∼ 1 on a dual set of size Rβ × R × R,
which leads to the lower bound

∥ f ∥
p
p∑

γ ∥ fγ ∥
p
p
≳

Rβp

RβRβ+1+1 ∼ Rβ(p−2)−2.

If p ≥ 6 + 2/β and 1
2 ≤ β ≤ 1, this is larger than the factors of R in the upper bound from Theorem 3,

so optimal small cap estimates for the R−1 neighborhood would not have the same upper bound as
in Theorem 3. In the R−1 set-up, there is also a third type of example which dominates for certain
parameters β and p: the block example f = η̌θ , with θ a canonical R−1/3

× R−2/3
× R−1 block. This

leads to extra cases and a more complicated proof that we do not present here.
An immediate corollary of Theorem 3 is the following general exponential sum estimate.

Corollary 4. For each 1
3 ≤ β ≤ 1, 2 ≤ p ≤ 6 + 2/β, and r ≥ Rmax(2β,1),

|Qr |
−1

∫
Qr

∣∣∣∣∑
ξ∈4

aξe(x · (ξ, ξ 2, ξ 3))

∣∣∣∣p

dx ≲ε Rβ(p/2)+ε

for any r-cube Qr and any collection 4 ⊂ [0, 1] with |4| ∼ Rβ consisting of ∼ R−β-separated points
and aξ ∈ C with |aξ | ≲ 1.

Note that the corresponding corollary of canonical decoupling M3 only holds in the range r ≥ R3β.
For a, b > 0, the notation a ≲ b means that a ≤ Cb, where C > 0 is a universal constant whose

definition varies from line to line, but which only depends on fixed parameters of the problem. Also,
a ∼ b means C−1b ≤ a ≤ Cb for a universal constant C , and a ≲ε b means that the implicit constant
depends on ε > 0.

The paper is organized as follows. We explain the implications of Theorem 3 in Section 1.1 and give
some intuition for the proof of Theorem 3 in Section 1.2. Then in Section 2, we develop multiscale
high-/low-frequency tools and lemmas. Some of these tools are very similar to those developed in [Guth
et al. 2024], but the high-frequency analysis uses the geometry of the moment curve and relies on small cap
decoupling estimates for the cone recently established in [Guth and Maldague 2022]. We use these tools
in Section 3 to prove a weak (superlevel set) version of Theorem 3 for the critical exponent pc = 6 + 2/β.
Then in Section 3.2, we perform a sequence of pigeonholing steps analogous to those in Section 5 of [Guth
et al. 2024] to show that Theorem 3 follows from the superlevel set version with the critical exponent.
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1.1. Implications of Theorem 3.

Corollary 4 follows from Theorem 3. Let φQr be a nonnegative Schwartz function satisfying φQr ≳ 1
on Qr , supp φ̂Qr ⊂ Br−1 , and

∫
|φQr |

p
∼p |Qr |. Then the function

f (x)=

∑
ξ∈4

aξe(x · (ξ, ξ 2, ξ 3))φQr (x)

satisfies the hypotheses of Theorem 3. Using the triangle inequality, we may split the indexing set 4 into
O(1)many subsets4′ so that each ξ ∈4′ is identified with a unique small cap γ which completely contains
the r−1-neighborhood of (ξ, ξ 2, ξ 3). This is possible because r ≥ Rmax(2β,1), so a ball of radius r−1 can
be completely contained in an R−β

× R−2β
× R−1 small cap γ, whose geometry is described in detail in

Section 2.3. Applying Theorem 3 in the range 2 ≤ p ≤ 6 + 2/β gives∫
Qr

| f |
p ≲ε Rβ(p/2−1)+ε

∑
ξ∈4

∥aξe( · (ξ, ξ 2, ξ 3))φQ R ∥
p
p ∼ Rβ(p/2)+ε|Qr |. □

Theorem 2 follows from Theorem 3. Begin with the integral on the left-hand side of Theorem 2. Perform
the change of variables (x1, x2, x3)= (y1/N , y2/N 2, y3/N 3):∫

[0,1]2×H

∣∣∣∣ N∑
k=1

ake(x · (k, k2, k3))

∣∣∣∣2s

dx = N−6
∫

[0,N ]×[0,N 2]×N 3 H

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))∣∣∣∣2s

dy.

Using the periodicity of the exponential sum in the first two variables,∫
[0,N ]×[0,N 2]×N 3 H

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))∣∣∣∣2s

dy

= N−3
∫

[0,N 3]2×N 3 H

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))∣∣∣∣2s

dy.

Let φH be a bump function which satisfies φH ≳ 1 on [0, N 3
]
2
× N 3 H, supp φ̂H ⊂ [0, N−3

]
2
×[0, Nσ−3

],
and

∫
|φH |

p
∼p N 9−σ. Then∫

[0,N 3]2×N 3 H

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))∣∣∣∣2s

dy ≲
∫

R3

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))
φH (y)

∣∣∣∣2s

dy.

Then apply Theorem 3 with p = 2s, R = N 3−σ, and β defined by Rβ = N, which means that β =

1/(3 − σ) ∈
[ 1

3 , 1
]

(since σ ∈ [0, 2]), giving∫
R3

∣∣∣∣ N∑
k=1

ake
(

y ·

(
k
N
,

k2

N 2 ,
k3

N 3

))
φH (y)

∣∣∣∣2s

dy ≲ε Rε[Rβ(s−1)
+ Rβ(2s−4)−1

]

N∑
k=1

|ak |
2s

∥φH∥
2s
2s .

Incorporate the extra factors from the substitution and the periodicity steps, and use the assumption
|ak | ≲ 1 and the property ∥φH∥

2s
2s ∼s N 9−σ to get the bound∫

[0,1]2×H

∣∣∣∣ N∑
k=1

ake(x · (k, k2, k3))

∣∣∣∣2s

dx ≲ε N−9 Rε[Rβ(s−1)
+ Rβ(2s−4)−1

]N N 9−σ .
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Finally, using the relationship between R, N, β, and σ , the upper bound simplifies to

N ε
[N (s−1)

+ N (2s−4)−(3−σ)
]N 1−σ

= N ε
[N s−σ

+ N 2s−6
],

as desired. □

1.2. Some intuition behind the proof of Theorem 3. Here we describe one of the cases from the proof
of Theorem 3 which illustrates the role of small cap decoupling for the cone. After a series of standard
reductions which are also used in [Guth et al. 2024], to prove Theorem 3 it suffices to show that

α6+2/β
|{x ∈ BRmax(2β,1) : α ≤ | f (x)|}| ≲ε RεR2β+1

∑
γ

∥ fγ ∥2
2, (3)

where α > 0, BRmax(2β,1) is a ball of radius Rmax(2β,1), and we have the extra assumption that ∥ fγ ∥∞ ≲ 1
for all γ. The spatial localization to a ball of radius Rmax(2β,1) is natural since this is the smallest size of
ball that contains an Rβ × R2β

× R wave packet dual to each γ ∗. Consider the special case of maximal α,
so α ∼ #γ ∼ Rβ, and call {x ∈ BRmax(2β,1) : Rβ ∼ | f (x)|} the high set H. Using a local trilinear restriction
estimate for the moment curve, recorded below in Proposition 27, we show roughly that

(Rβ)6|H | ≲
∫
NRβ (H)

∣∣∣∣∑
γ

| fγ |2(x)
∣∣∣∣3

dx .

Suppose that on most of NRβ (H), we have
∑

γ | fγ |2(x)≲
∣∣∑

γ | fγ |2 ∗ η̌>R−β/2(x)
∣∣, where η>R−β/2 is a

smooth approximation of the characteristic function of the set 1
2 R−β

≤|ξ |≤ 2R−β. Each |̂ fγ |2 is supported
in γ − γ. Writing m(t) = (t, t2, t3) and using the definition (1), the support of each |̂ fγ |2η>R−β/2 is
approximately contained in{

Am′(l R−β)+ Bm′′(l R−β)+ Cm′′′(l R−β) :
1
2 R−β

≤ A ≤ R−β, |B| ≤ R−2β, |C | ≤ R−1}.
In Section 2.3, we show that these sets are disjoint for distinct l ∈ {1, . . . , Rβ}, and each of the above sets is
contained in the R−β-dilation of a conical small cap. Note that this is not exactly true when β= 1, which is
why we use cylinders instead of balls to cut out the low set in the actual argument. Ignoring this technicality,
this means that we may apply a small cap decoupling theorem for the cone to bound the integral∫

NRβ (H)

∣∣∣∣∑
γ

| fγ |2 ∗ η̌>R−β/2

∣∣∣∣3

.

Finally, the functions
∑

γ | fγ |2 and
∣∣∑

γ | fγ |2 ∗ η̌>R−β/2
∣∣ are roughly constant on Rβ balls, which implies

that for any p ≥ 0, we have

(Rβ)6|H | ≲
1

Rβp

∫
NRβ (H)

∣∣∣∣∑
γ

| fγ |2 ∗ η̌>R−β/2(x)
∣∣∣∣3+p

dx .

This is an important observation since we have more factors of Rβ in the denominator on the right-hand
side and we may choose p so that 3 + p is the critical exponent for the scale of conical small caps that
we have, thus using the full strength of the small cap decoupling theorem for the cone. Our argument
shows that each of these steps can be sharp, which leads to the upper bound (3).
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1.3. Canonical (ℓ2, L p) decoupling in the case β =
1
3 . In this section, we sketch a small variation of

our argument which recovers the sharp (ℓ2, L p)-decoupling estimates for M3 of [Bourgain et al. 2016].
As in [Guth et al. 2024] for the parabola, pigeonholing arguments combined with a version of

interpolation with L2 and L∞ estimates may be used to show that proving the critical (ℓ2, L12)-decoupling
inequality implies sharp (ℓ2, L p)-decoupling inequalities for all other p ≥ 2. It further suffices to prove
the following level-set version of the inequality:

α12
|Uα| ≲ε Rε

(∑
γ

∥ fγ ∥2
L12(wBR )

)6

, (4)

where BR ⊂ R3 is any ball of radius R, Uα := {x ∈ BR : | f (x)| ∼ α}, and wBR is a weight function
adapted to BR . Via pigeonholing steps similar to those in [Guth et al. 2024], we may assume that each fγ
is either identically equal to 1 or has a wave packet decomposition fγ =

∑
Tγ ψTγ , where the Tγ are a

subset of a tiling of R3 by disjoint translates of the dual set γ ∗ (which has dimensions R1/3
× R2/3

× R),
each function ψTγ approximately satisfies |ψTγ | ∼ χTγ (χTγ the characteristic function of Tγ ), each Tγ
intersects BR , and the number of Tγ which appear in the sum fγ =

∑
Tγ ψTγ is ∼ A for some constant A that

is independent of γ. Notice then that each L12 norm appearing on the right-hand side of (4) is essentially

∥ fγ ∥12
L12(wBR )

∼ A · R1/3+2/3+1,

and so is uniform in the nonzero fγ . We also have ∥ fγ ∥
p
L p(wBR )

∼p A · R2 for any 2 ≤ p <∞. Since
each fγ is made up of wave packets which all have height 1, ∥ fγ ∥∞ ≲ 1.

In the proof of Theorem 3, we bound |Uα| by dividing Uα into O(ε−1) many subsets and bounding
each subset separately. Those subsets are H, �k , and L and are defined in Definition 13 below

(
there are

no 3k when β =
1
3

)
. We replace the Rβ factor which appears in each set by #{γ : fγ ̸≡ 0} =: #γ. The

only further modification needed is to replace Rβ in the pruning process by #γ. Then each Fk
τk

satisfies
∥Fk

τk
∥∞ ≲ε Rε(#γ /α). Considering the bound for |3k |, for example, the argument then yields

α6
|3k | ≲ε Rε

(#γ )3

α6

(∑
γ

∥ fγ ∥
1/3
L6(BR)

)3

.

The right-hand side (without the CεRε factor) is essentially

α−6#γ 6 AR2
∼ α−6

(∑
γ

∥ fγ ∥2
L12(wBR )

)6

,

so we have the desired L12 estimate.

2. Tools for the high/low approach to M3

We perform a high/low frequency analysis of square functions at various scales, incorporating the pruning
process for wave packets analogous to [Guth et al. 2024]. We develop language to discuss canonical
caps and small caps of various scales, associated wave packets, and averaged versions of functions which
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satisfy useful locally constant properties. Then we write a series of key lemmas to analyze the high/low
frequency portions of averaged, pruned square functions at various scales.

Begin by fixing some notation. Fix a ball BRmax(2β,1) of radius Rmax(2β,1). The parameter α > 0 describes
the superlevel set

Uα = {x ∈ BRmax(2β,1) : | f (x)| ≥ α}.

Fix β ∈
[ 1

3 , 1
]

and R ≥ 2. Let ε > 0 be given and consider scales Rk ∈ 8N closest to Rkε for R−1/3
≤

R−1/3
k ≤ 1, and scales rk ∈ 2N closest to R1/3+kε for R−β

≤ r−1
k ≤ R−1/3. Let N distinguish the index so

that RN is closest to R. Since R and RN differ at most by a factor of Rε, we will ignore the distinction
between RN and R in the rest of the argument. Similarly, assume that rM = Rβ for some index M ∈ N.
The relationship between the parameters is

1 = R0 ≤ R1/3
k ≤ R1/3

k+1 ≤ R1/3
N = r0 ≤ rm ≤ rm+1 ≤ rM = Rβ .

Next we fix notation for moment curve blocks and small caps of various sizes. For the explicit
definitions, see Section 2.3 below.

(1) {γ } are small caps associated to Rβ and R, meaning ∼ R−β
× R−2β

× R−3β moment curve blocks
plus the set {(0, 0, z) : |z| ≤ R−1

}.

(2) {γk} are small caps associated to rk and R, meaning ∼ r−1
k × r−2

k × r−3
k moment curve blocks plus

the set {(0, 0, z) : |z| ≤ R−1
}.

(3) {θ} are canonical ∼ R−1/3
× R−2/3

× R−1 moment curve blocks.

(4) {τk} are canonical R−1/3
k × R−2/3

k × R−1
k moment curve blocks.

The specific definitions of γ, γk, θ, τk in Section 2.3 provide the additional property that if γk ∩γk+m ̸=∅,
then γk+m ⊂ γk (and similarly for the τk).

We assume throughout this section (actually until Section 3.2) that the fγ satisfy the extra condition
that

1
2 ≤ ∥ fγ ∥L∞(R3) ≤ 2 or ∥ fγ ∥L∞(R3) = 0. (5)

2.1. A pruning step. Here we define wave packets for blocks γk, τk , and prune the wave packets associated
to fγk , fτk according to their amplitudes.

For each γk , fix a dual block γ ∗

k with dimensions r−1
k × r−2

k × R which is comparable to the convex set

{x ∈ R3
: |x · ξ | ≤ 1 for all ξ ∈ γk − γk}.

For each τk , fix a dual block τ ∗

k of dimensions R1/3
k × R2/3

k × Rk which is comparable to the convex set

{x ∈ R3
: |x · ξ | ≤ 1 for all ξ ∈ τk − τk}.

The main difference between dual small caps γ ∗

k and dual canonical caps τ ∗

k is that for each k we have
γ ∗

k = γ̃k
∗ if γk, γ̃k ⊂ θ , whereas the τ ∗

k are all distinct.
We will describe wave packet decompositions for small caps {γk} and for canonical caps {τk} in parallel.

Let Tγk ,Tτk be the collection of tubes Tγk , Tτk which are dual to γk, τk , contain γ ∗

k , τ
∗

k , and which tile R3,
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respectively. Next, define associated partitions of unity ψTγk
, ψTτk . Let ϕ(ξ) be a bump function supported

in
[
−

1
4 ,

1
4

]3. For each m ∈ Z3, let

ψm(x)= c
∫

[−1/2,1/2]3
|qϕ|

2(x − y − m) dy,

where c is chosen so that
∑

m∈Z3 ψm(x) = c
∫

R3 |qϕ|
2
= 1. Since |qϕ| is a rapidly decaying function, for

any n ∈ N, there exists Cn > 0 such that

ψm(x)≤ c
∫

[−1/2,1/2]3

Cn

(1 + |x − y − m|2)n
dy ≤

C̃n

(1 + |x − m|2)n
.

Define the partitions of unityψTγk
, ψTτk associated to γk, τk to beψTγk

=ψm◦Aγk ψTτk (x)=ψm◦Aτk , where
Aγk , Aτk are linear transformations taking γ ∗

k ,τ ∗

k to
[
−

1
2 ,

1
2

]3 and Aγk (Tγk )= m +
[
−

1
2 ,

1
2

]3, Aτk (Tτk )=

m +
[
−

1
2 ,

1
2

]3. The important properties of ψTγk
, ψTτk are rapid decay off of Tγk , Tτk and Fourier support

contained in γk, τk translated to the origin.
To prove upper bounds for the size of Uα, we will actually bound the sizes of ∼ ε−1 many subsets

which will be denoted by Uα ∩ H, Uα ∩3k , Uα ∩�k , and Uα ∩ L . The pruning process sorts between
important and unimportant wave packets on each of these subsets, as described in Lemma 16 below.

In the following definition, Aε ≫ 1 is a large enough (determined by Lemma 16) constant depending
on ε which also satisfies Aε ≥ Dε, where Dε is given by Lemma 14. We partition the wave packets
Tγk = T

g
γk ⊔ Tb

γk
and Tτk = T

g
τk ⊔ Tb

τk
into “good” and “bad” sets, and define corresponding versions of f ,

as follows.

Remark. In the following definitions, let K ≥ 1 be a large parameter which will be used to define the
broad set in Proposition 28.

Definition 5 (pruning with respect to γk). Let f M
γ = fγ and f M

γM−1
= fγM−1 . For each 1 ≤ k < M, let

Tg
γk

=

{
Tγk ∈ Tγk : ∥ψTγk

f k+1
γk

∥L∞(R3) ≤ K 3 AM−k+1
ε

Rβ

α

}
,

f k
γk

=

∑
Tγk ∈T

g
γk

ψTγk
f k+1
γk

and f k
γk−1

=

∑
γk⊂γk−1

f k
γk
.

Recall that γ0 = θ = τN . Once the wave packets corresponding to all of the small caps have been
pruned, we have f 1

=
∑

γ1
f 1
γ1

.

Definition 6 (pruning with respect to τk). Let F N+1
= f 1, F N+1

τN
= f 1

θ . For each 1 ≤ k ≤ N, let

Tg
τk

=

{
Tτk ∈ Tτk : ∥ψTτk Fk+1

τk
∥L∞(R3) ≤ K 3 AM+N−k+1

ε

Rβ

α

}
,

Fk
τk

=

∑
Tτk ∈T

g
τk

ψTτk Fk+1
τk

and Fk
τk−1

=

∑
τk⊂τk−1

Fk
τk
.

For each k, define the k-th versions of f , F to be f k
=

∑
γk

f k
γk

and Fk
=

∑
τk

Fk
τk

.
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Lemma 7 (properties of f k and Fk). (1) | f k
γk
(x)| ≤ | f k+1

γk
(x)| ≲ #γ ⊂ γk and |Fk

τk
(x)| ≤ |Fk+1

τk
(x)| ≲

#γ ⊂ τk .

(2) ∥ f k
γk

∥L∞(R3) ≤ K 3 AM−k+1
ε R3εRβ/α and ∥Fk

τk
∥L∞(R3) ≤ K 3 AM+N−k+1

ε R3εRβ/α.

(3) There is some constant Cε≲ε−2 so that supp f̂ k+1
γk ⊂supp f̂ k

γk
⊂Cεγk and supp F̂k+1

τk ⊂supp f̂ k
τk

⊂Cετk .

Proof. For the first property, recall that
∑

Tγk ∈Tγk
ψTγk

,
∑

Tτk ∈Tτk
ψTτk are partitions of unity so we may

iterate the inequalities

|Fk
τk

| ≤ |Fk+1
τk

| ≤

∑
τk+1⊂τk

|Fk+1
τk+1

| ≤ · · · ≤

∑
τN ⊂τk

|F N
τN

| ≤

∑
γ1⊂τk

| f 1
γ1

|,

| f 1
γ1

| ≤ | f 2
γ1

| ≤

∑
γ2⊂γ1

| f 2
γ2

| ≤ · · · ≤

∑
γN ⊂γ1

| f N
γN

| ≤

∑
γ⊂γ1

∥ fγ ∥L∞(R3).

Then use the assumption that each ∥ fγ ∥L∞(R3) ≲ 1. Now consider the L∞ bound in the second property.
We write

f k
γk
(x)=

∑
Tγk ∈T

g
γk

x∈RεTγk

ψTγk
f k+1
γk

+

∑
Tγk ∈T

g
γk

x /∈RεTγk

ψTγk
f k+1
γk

.

The first sum has at most R3ε terms, and each term has norm bounded by K 3 AN−k
ε Rβ/α, by the definition

of T
g
γk . By the first property, we may trivially bound f k+1

τk
by #γ ⊂ τk maxγ ∥ fγ ∥∞ ≲ R. But if x /∈ RεTγk ,

then ψTγk
(x)≤ R−1000. Thus∣∣∣∣ ∑

Tγk ∈Th
γk

x /∈RεTγk

ψTγk
f k+1
γk

∣∣∣∣≤ ∑
Tγk ∈Th

γk
x /∈RεTγk

R−500ψ
1/2
Tγk
(x)∥ f k+1

γk
∥∞ ≤ R−250 max

γ
∥ fγ ∥∞.

Since α ≲ | f (x)| ≲
∑

γ ∥ fγ ∥∞ ≲ Rβ, we certainly have R−250
≤ Rβ/α. The argument for ∥Fk

τk
∥L∞(R3)

is analogous.
The third property depends on the Fourier supports of ψTγk

, ψTτk , which are contained in γk , τk shifted
to the origin. If each f k+1

γk
has Fourier support in Cγk (that is, a dilated copy of γk by a factor of C , taken

with respect to its centroid), then supp f̂ k
γk

is contained in (1 + C)γk . The same type of argument is true
for the claims about Fk

τk
and Fk+1

τk
. □

Definition 8. Let φ : R → R be a smooth function supported in
[
−

1
4 ,

1
4

]3. Define

w0(t)=

∑
k∈Z

1
(1 + k2)100 (|φ̌|

2(t − k)).

Let w(t1, t2, t3)= w0(t1)w0(t2)w0(t3) and let Q =
[
−

1
2 ,

1
2

]3 denote the unit cube centered at the origin.
For any set U = T (B), where T is an affine transformation T : R3

→ R3, define

wU (x)= |U |
−1w(T −1(x)).
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For γk , τk , let Aγk , Aτk be affine transformations taking γ ∗

k , τ ∗

k to
[
−

1
2 ,

1
2

]3 and define ωγk , ωτk by

ωγk (x)= |γ ∗

k |
−1w(Aγk (x)) and ωτk (x)= |τ ∗

k |
−1w(Aτk (x)).

Let the capital-W version of weight functions denote the L∞-normalized (as opposed to L1-normalized)
versions, so for example, for any cube Qs of sidelength s, WQs (x)= |Qs |wQs (x). If a weight function
has subscript which is only a scale, say s, then the functions ws,Ws are weight function localized to the
s-cube centered at the origin. We will ignore the distinction between an s-ball and an s-cube.

Remark. Note the additional property that ŵ(ξ1, ξ2, ξ3) is supported in
[
−

1
2 ,

1
2

]3, so ws is Fourier
supported in an s−1-cube at the origin. Similarly, ωγk and ωτk are Fourier supported in γk and τk translated
to the origin, respectively. The same is true for the WBs ,Wγ ∗

k
,Wτ ∗

k
weight functions. Finally, note that if

S1 = T1(Q) and S2 = T2(Q), where Ti are anisotropic dilations with respect to the standard basis and
S1 ⊂ S2, then wS1 ∗wS2 ≲ wS2 .

The weights ωτk , ωθ =ωτN , and ws are useful when we invoke the locally constant property. By locally
constant property, we mean generally that if a function f has Fourier transform supported in a convex
set A, then, for a bump function ϕA ≡ 1 on A, f = f ∗ ϕ̌A. Since |ϕ̌A| is an L1-normalized function
which is positive on a set dual to A, | f | ∗ |ϕ̌A| is an averaged version of | f | over a dual set A∗. We record
some of the specific locally constant properties we need in the following lemma.

Lemma 9 (locally constant property). For each γk, τk and Tγk ∈ Tγk , Tτk ∈ Tτk respectively,

∥ fγk ∥
2
L∞(Tγk )

≲ | fγk |
2
∗ωγk (x) for any x ∈ Tγk ,

∥ fτk ∥
2
L∞(Tτk )

≲ | fτk |
2
∗ωτk (x) for any x ∈ Tτk .

Also, for any rk-ball Brk or R1/3
k -ball BR1/3

k
,∥∥∥∥∑

γk

| fγk |
2
∥∥∥∥

L∞(Brk )

≲
∑
γk

| fγk |
2
∗wBrk

(x) for any x ∈ Brk ,∥∥∥∥∑
τk

| fτk |
2
∥∥∥∥

L∞(BR1/3
k
)

≲ | fτk |
2
∗wB

R1/3
k

(x) for any x ∈ BR1/3
k
.

Because the pruned versions of f , fγk , and fτk have Fourier supports similar to those of the unpruned
versions (see Lemma 7), the locally constant lemma applies to the pruned versions as well.

Proof of Lemma 9. For the first claim, we write the argument for fτk in detail (the argument for the fγk

is analogous). Let ρτk be a bump function equal to 1 on τk and supported in 2τk . Then using Fourier
inversion and Hölder’s inequality,

| fτk (y)|
2
= | fτk ∗ ρ̌τk (y)|

2
≤ ∥ρ̌τk ∥1 | fτk |

2
∗ |ρ̌τk |(y).

Since ρτk may be taken to be an affine transformation of a standard bump function adapted to the unit ball,
∥ρ̌τk ∥1 is a constant. The function ρ̌τk decays rapidly off of τ ∗

k , so |ρ̌τk | ≲ wτk . Since for any Tτk ∈ Tτk ,
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ωτk (y) is comparable for all y ∈ Tτk , we have

sup
x∈Tτk

| fτk |
2
∗ωτk (x)≤

∫
| fτk |

2(y) sup
x∈Tτk

ωτk (x − y) dy

∼

∫
| fτk |

2(y)ωτk (x − y) dy for all x ∈ Tτk .

For the second part of the lemma, repeat analogous steps as above, except begin with ρrk , which is
identically 1 on a ball of radius 2r−1

k containing γk − γk (which is the Fourier support of | fγk |
2). Then∑

γk

| fγk (y)|
2
=

∣∣∣∣∑
γk

| fγk |
2
∗ ρ̌rk (y)

∣∣∣∣ ≲ ∑
γk

| fγk |
2
∗ |ρ̌rk |(y).

The rest of the argument is analogous to the first part. The argument for
∑

τk
| fτk |

2 is the same. □

For ease of future reference, we record the following standard local and global L2-orthogonality lemma.
For U ⊂ R3, let U∗

= {ξ ∈ R3
: |ξ · x | ≤ 1 for all x ∈ U − U }.

Lemma 10 (local and global L2 orthogonality). Let U = T (Q), where Q is the unit ball centered at the
origin and T : R3

→ R3 is an affine transformation. Let h : R3
→ C be a Schwartz function with Fourier

transform supported in a disjoint union X =
⊔

k Xk , where Xk ⊂ B are Lebesgue measurable. If the
maximum overlap of the sets U∗

+ Xk is L , then∫
|h X |

2wU ≲ L
∑
Xk

∫
|h Xk |

2wU ,

where h Xk =
∫

Xk
ĥ(ξ)e2π i x ·ξ dξ . The corresponding global statement is∫

|h X |
2
=

∑
Xk

∫
|h Xk |

2.

Proof. The global statement is just Plancherel’s theorem. For the local statement, we have∫
|h X |

2wU =

∫
h X h XwU =

∫
ĥ X ĥ X ∗ ŵU

by Plancherel’s theorem again. Next we used the definition of ĥ X and ĥ Xk to write∫
ĥ X ĥ X ∗ ŵU =

∑
Xk

∑
X ′

k

∫
ĥ Xk ĥ X ′

k
∗ ŵU .

The function ĥ Xk is supported in Xk and the function ĥ X ′

k
∗ ŵU is supported in X ′

k + U∗. Write X ′

k ∼ Xk

to denote the property that (Xk + U∗)∩ (X ′

k + U∗) ̸= ∅. By hypothesis, for each Xk , there are at most
L many X ′

k such that X ′

k ∼ Xk . Since Xk ∩ (X ′

k +U∗)⊂ (Xk +U∗)∩ (X ′

k +U∗), this leads to the bound∑
Xk

∑
X ′

k

∫
ĥ Xk ĥ X ′

k
∗ ŵU =

∑
Xk

∑
X ′

k∼Xk

∫
h Xk h X ′

k
wU ≤

∑
Xk

∑
X ′

k∼Xk

∫
(|h Xk |

2
+ |h X ′

k
|
2)wU

≤

∑
Xk

∑
X ′

k∼Xk

∫
(|h Xk |

2
+ |h X ′

k
|
2)wU ≤ 2L

∑
Xk

∫
|h Xk |

2wU . □
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Definition 11 (auxiliary functions). For i = 1, 2, let ϕi : Ri
→ [0,∞) be a radial, smooth bump function

satisfying ϕi (x)= 1 on the unit ball in Ri and supported in the ball of radius 2. Then for each s > 0, let
ρ≤s−1 : R3

→ [0,∞) be defined by

ρ≤s−1(ξ1, ξ2, ξ3)= ϕ2(sξ1, sξ2)ϕ1(ξ3).

Write Cs−1 for the set where ρ≤s−1 = 1.

We will sometimes abuse the notation from the previous definition by writing h ∗ ρ̌>s−1 = h −h ∗ ρ̌≤s−1 .

Definition 12. Let gM(x)=
∑

γ | fγ |2 ∗ωγ (x). For 1 ≤ k ≤ M − 1, let

gk(x)=

∑
γk

| f k+1
γk

|
2
∗ωγk , gℓk(x)= gk ∗ ρ̌

≤r−1
k+1
, and gh

k = gk − gℓk .

For 1 ≤ k ≤ N, let

Gk(x)=

∑
τk

|Fk+1
τk

|
2
∗ωτk , Gℓ

k(x)= Gk ∗ ρ̌
≤R−1/3

k+1
, and Gh

k (x)= Gk − Gℓ
k .

In the following definition, Aε ≫ 1 is the same ε-dependent constant from the pruning definition of f k

and Fk.

Definition 13. Define the high set by

H = {x ∈ BRmax(2β,1) : AεRβ ≤ gM−1(x)}.

For each k = 1, . . . ,M − 2, let H =3M−1 and let

3k =

{
x ∈ BRmax(2β,1) \

M−1⋃
l=k+1

3l : (Aε)(M−k)Rβ ≤ gk(x)
}
.

For each k = 1, . . . , N, let �N+1 =
⋃M−1

l=1 3l and let

�k =

{
x ∈ BRmax(2β,1) \

N+1⋃
l=k+1

�l : (Aε)(M+N−k)Rβ ≤ Gk(x)
}
.

Define the low set to be

L = BRmax(2β,1) \

[(N+1⋃
l=1

�N

)
∪

(M−1⋃
k=1

3k

)]
.

2.2. Lemmas related to the pruning process for wave packets.

Lemma 14 (low lemma). There is a constant D = Dε > 0 depending on ε so that, for each x , we have
|gℓk(x)| ≤ Dεgk+1(x) and |Gℓ

k(x)| ≤ DεGk+1(x).

Proof. Prove the claim in detail for gℓk since the argument for Gℓ
k is analogous. We perform a pointwise

version of the argument in the proof of local/global L2-orthogonality (Lemma 10). For each γ k+1
k , using
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Plancherel’s theorem,

| f k+1
γk

|
2
∗ ρ̌

≤r−1
k+1
(x)=

∫
R3

| f k+1
γk

|
2(x − y)ρ̌

≤r−1
k+1
(y) dy

=

∫
R3

f̂ k+1
γk ∗

̂
f k+1
γk (ξ)e2π i x ·ξρ

≤r−1
k+1
(ξ) dξ

=

∑
γk+1,γ

′

k+1⊂γk

∫
R3

e2π i x ·ξ f̂ k+1
γk+1 ∗

̂
f k+1
γ ′

k+1
(ξ)ρ

≤r−1
k+1
(ξ) dξ.

The integrand is supported in (Cεγk+1 − Cεγ
′

k+1)∩ (2Cr−1
k+1
), where Cε comes from (3) of Lemma 7 and

2Cr−1
k+1

contains the support of ρ
≤r−1

k+1
. The set Cr−1

k+1
is contained in a cylinder with a vertical axis, centered at

the origin and of radius 2r−1
k+1. The distance between the sets Cεγk+1 and Cεγ

′

k+1 is controlled by the
distance of their projections to the (ξ1, ξ2)-plane. This means that the final integral displayed above
vanishes unless γk+1 is within ∼ Cεr−1

k+1 of γ ′

k+1, in which case we write γk+1 ∼ γ ′

k+1. Then∑
γk+1,γ

′

k+1⊂γk

∫
R3

e2π i x ·ξ f̂ k+1
γk+1

∗
̂̄f k+1
γ ′

k+1
(ξ)ρ

≤r−1
k+1
(ξ) dξ =

∑
γk+1,γ

′

k+1⊂γk

γk+1∼γ
′

k+1

∫
R3

e2π i x ·ξ f̂ k+1
γk+1

∗
̂̄f k+1
γ ′

k+1
(ξ)ρ

≤r−1
k+1
(ξ) dξ.

Use Plancherel’s theorem again to return to a convolution in x and conclude that

|gk ∗ ρ̌
≤r−1

k+1
(x)| =

∣∣∣∣ ∑
γk+1,γ

′

k+1⊂γk

γk+1∼γ
′

k+1

( f k+1
γk+1

f k+1
γ ′

k+1
) ∗ωτk ∗ ρ̌

≤r−1
k+1
(x)

∣∣∣∣ ≲ Cε

∑
γk

∑
γk+1⊂γk

| f k+1
γk+1

|
2
∗ωτk ∗ |ρ̌

≤r−1
k+1

|(x).

By the locally constant property (Lemma 9) and (1) of Lemma 7,∑
γk

∑
γk+1⊂γk

| f k+1
γk+1

|
2
∗ωτk ∗ |ρ̌

≤r−1
k+1

|(x)≲
∑
γk

∑
γk+1⊂γk

| f k+2
γk+1

|
2
∗wγk+1 ∗ωτk ∗ |ρ̌

≤r−1
k+1

|(x)≲ gk+1(x).

It remains to note that

wγk+1 ∗ωγk ∗ |ρ̌
≤r−1

k+1
|(x)≲ wγk+1(x)

since γ ∗

k is comparable to a dilation of γ ∗

k+1 and ρ̌
≤r−1

k+1
is an L1-normalized function that is rapidly

decaying away from Brk+1 (actually, it decays rapidly away from the small set B(2)rk+1(0)× B(1)1 (0)). □

Corollary 15 (high-dominance on 3k ,�k). For R large enough depending on ε,

gk(x)≤ 2|gh
k (x)| for all x ∈3k and Gk(x)≤ 2|Gh

k (x)| for all x ∈�k .

Proof. This follows directly from Lemma 14. Indeed, since gk(x) = gℓk(x) + gh
k (x), the inequality

gk(x)> 2|gh
k (x)| implies that gk(x)< 2|gℓk(x)|. Then by Lemma 14, |gk(x)|< 2Dεgk+1(x). Since x ∈3k ,

gk+1(x)≤ AM−k−1
ε Rβ, or in the case that k = M − 1,

gM(x)=

∑
γ

| fγ |2 ∗ωγ (x)≲
∥∥∥∥∑
γ

| fγ |2
∥∥∥∥

∞

≲ Rβ
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using the assumption that ∥ fγ ∥∞ ≲ 1 for all γ. Altogether gives the upper bound

gk(x)≤ 2DεAM−k−1
ε Rβ .

The contradicts the property that on 3k we have AM−k
ε Rβ ≤ gk(x) for Aε sufficiently larger than Dε,

which finishes the proof. The argument for Gk on �k is analogous. □

Lemma 16 (pruning lemma). If Aε is a large enough constant depending on ε, then, for any τ ,∣∣∣∣∑
γk⊂τ

fγk −

∑
γk⊂τ

f k+1
γk

(x)
∣∣∣∣ ≤

α

A1/2
ε K 3

for all x ∈3k,∣∣∣∣∑
τk⊂τ

fτk −

∑
τk⊂τ

Fk+1
τk

(x)
∣∣∣∣ ≤

α

A1/2
ε K 3

for all x ∈�k,∣∣∣∣∑
τ1⊂τ

fτ1 −

∑
τ1⊂τ

F1
τ1
(x)

∣∣∣∣ ≤
α

A1/2
ε K 3

for all x ∈ L.

Proof. Begin by proving the claim about 3k . By the definition of the pruning process, we have

fτ = f M−1
τ + ( f M

τ − f M−1
τ )= · · · = f k+1

τ (x)+
M−1∑

m=k+1

( f m+1
τ − f m

τ ), (6)

where here, the subscript τ means fτ =
∑

γ⊂τ fγ and f m
τ =

∑
γm⊂τ f m

γm
. We will show that each difference

in the sum is much smaller than α. For each M −1 ≥ m ≥ k +1 and γm , use the notation Tb
γm

= Tγm \T
g
γm

and write

| f m
γm
(x)− f m+1

γm
(x)| =

∣∣∣∣ ∑
Tγm ∈Tb

γm

ψTγm
(x) f m+1

γm
(x)

∣∣∣∣ =

∑
Tγm ∈T b

γm

|ψ
1/2
Tγm
(x) f m+1

γm
(x)|ψ1/2

Tγm
(x)

≤

∑
Tγm ∈Tb

γm

K −3 A−(M−m+1)
ε

α

Rβ
∥ψTγm

f m+1
γm

∥L∞(R3)∥ψ
1/2
Tγm

f m+1
γm

∥L∞(R3)ψ
1/2
Tγm
(x)

≲ K −3 A−(M−m+1)
ε

α

Rβ
∑

Tγm ∈Tb
γm

∥ψ
1/2
Tγm

f m+1
γm

∥
2
L∞(R3)

ψ
1/2
Tγm
(x)

≲ K −3 A−(M−m+1)
ε

α

Rβ
∑

Tγm ∈Tb
γm

∑
T̃γm

∥ψTγm
| f m+1
γm

|
2
∥L∞(T̃γm )

ψ
1/2
Tγm
(x)

≲ K −3 A−(M−m+1)
ε

α

Rβ
∑

Tγm ,T̃γm ∈Tγm

∥ψTγm
∥L∞(T̃γm )

∥| f m+1
γm

|
2
∥L∞(T̃γm )

ψ
1/2
Tγm
(x).

Let cT̃γm
denote the center of T̃γm and note the pointwise inequality∑

Tγm

∥ψTγm
∥L∞(T̃γm )

ψ
1/2
Tγm
(x)≲ |γ ∗

m |ωγm (x − cT̃γm
),
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which means that

| f m
γm
(x)− f m+1

γm
(x)| ≲ K −3 A−(M−m+1)

ε

α

Rβ
|γ ∗

m |

∑
T̃γm ∈Tγm

ωγm (x − cT̃γm
)∥| f m+1

γm
|
2
∥L∞(T̃γm )

≲ε K −3 A−(M−m+1)
ε

α

Rβ
|γ ∗

m |

∑
T̃γm ∈Tγm

ωγm (x − cT̃γm
)| f m+1

γm
|
2
∗ωγm (cT̃γm

)

≲ε K −3 A−(M−m+1)
ε

α

Rβ
| f m+1
γm

|
2
∗ωγm (x),

where we used the locally constant property in the second-to-last inequality. The last inequality is
justified by the fact that ωγm (x − cT̃γm

)∼ ωγm (x − y) for any y ∈ T̃γm , and we have the pointwise relation
ωγm ∗ωγm ≲ ωγm . The last two inequalities incorporate a dependence on Cε from Lemma 7 since the
locally constant property uses that ̂| f m+1

γm
|
2 is supported in the Cε-dilation of γm − γm . It is important to

note that Cε is a combinatorial factor that does not depend on Aε. Then∣∣∣∣ ∑
γm⊂τ

f m
γm
(x)− f m+1

γm
(x)

∣∣∣∣ ≲ε K −3 A−(M−m+1)
ε

α

Rβ
∑
γm⊂τ

| f m+1
γm

|
2
∗ωγm (x)∼ε K −3 A−(M−m+1)

ε

α

Rβ
gm(x).

At this point, choose Aε large enough so that if gm(x)≤ AM−m
ε Rβ, then the above inequality implies that∣∣∣∣ ∑

γm⊂τ

f m
γm
(x)− f m+1

γm
(x)

∣∣∣∣ ≤ εK −3 A−1/2
ε α.

This finishes the proof since M + N ≲ ε−1, so the number of steps from (6) is controlled. The argument
for the pruning on �k and on L is analogous. □

2.3. Geometry related to the high-frequency parts of square functions. We have seen in Corollary 15
that on 3k and �k , gk and Gk are high-dominated. In this subsection, we describe the geometry of the
Fourier supports of gh

k and Gh
k , which will allow us to apply certain decoupling theorems for the cone in

Section 2.4. We begin with the precise definitions of canonical blocks and small cap blocks (which we
also call “small caps”) of the moment curve.

Definition 17 (canonical moment curve blocks). For S ∈2N, S ≥10, consider the anisotropic neighborhood

M3(S)= {(ξ1, ξ2, ξ3) : ξ1 ∈ [0, 1], |ξ2 − ξ 2
1 | ≤ S−2, |ξ3 − 3ξ1ξ2 + 2ξ 3

1 | ≤ S−3
}.

Define canonical moment curve blocks at scale S which partition M3(S) as follows:
S−1⊔
l=0

{(ξ1, ξ2, ξ3) : l S−1
≤ ξ1 < (l + 1)S−1, |ξ2 − ξ 2

1 | ≤ S−2, |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ S−3

}.

Definition 18 (“small caps” of the moment curve). Let R ≥ 10 and let S ∈ 2N satisfy R−1
≤ S−1

≤ R−1/3.
Consider the anisotropic small cap neighborhood

M3(S, R)= {(ξ1, ξ2, ξ3) : ξ1 ∈ [0, 1], |ξ2 − ξ 2
1 | ≤ S−2, |ξ3 − 3ξ1ξ2 + 2ξ 3

1 | ≤ R−1
}.
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Define small caps γ associated to the parameters S and R by⊔
γ =

S−1⊔
l=0

{(ξ1, ξ2, ξ3) : l S−1
≤ ξ1 < (l + 1)S−1, |ξ2 − ξ 2

1 | ≤ S−2, |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ R−1

}. (7)

Note that the small caps γ are essentially canonical moment curve blocks at scale S plus a vertical
(ξ3-direction) R−1-neighborhood.

To analyze gh
k , we need to understand the Fourier support of

∑
γk

| f k+1
γk

|
2 outside of a cylinder of

radius r−1
k+1. By (3) of Lemma 7, the support of ̂| f k+1

γk
|
2 is Cεγk − Cεγk . Suppose that γk is the l-th piece,

meaning that

γk = {(ξ1, ξ2, ξ3) : lr−1
k ≤ ξ1 < (l + 1)r−1

k , |ξ2 − ξ 2
1 | ≤ r−2

k , |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ R−1

},

where l ∈ {0, . . . , rk − 1}. The small cap γk is comparable to the set

γk = {m(lr−1
k )+ Am′(lr−1

k )+ Bm′′(lr−1
k )+ Cm′′′(lr−1

k ) : 0 ≤ A ≤ r−1
k , |B| ≤ r−2

k , |C | ≤ R−1
}

in the sense that 1
20γk ⊂ γk ⊂ 20γk (where the dilations are taken with respect to the centroid of γk). Then

γk − γk is contained in

{Am′(lr−1
k )+ Bm′′(lr−1

k )+ Cm′′′(lr−1
k ) : |A| ≲ r−1

k , |B| ≲ r−2
k , |C | ≲ R−1

}.

Recall that 1 − ρ
≤r−1

k+1
is supported outside Cr−1

k+1
⊇ {(ξ1, ξ2, ξ3) : |(ξ1, ξ2)| ≤ r−1

k+1, |ξ3| ≤ 1}. Intersecting
Cεγk − Cεγk with the support of 1 − ρ

≤r−1
k+1

forces the relation A2
+ (A2(lr−1

k )+ 2B)2 ≥ r−2
k+1. Using

the upper bounds |A| ≲ Cεr−1
k and |B| ≲ Cεr−2

k , it follows that for R large enough depending on ε, the
support of the high-frequency part of ̂| f k+1

γk
|
2 is contained in

γ̃k :=
{

Am′(lr−1
k )+ Bm′′(lr−1

k )+Cm′′′(lr−1
k ) : 1

2r−1
k+1 ≤ |A|≲Cεr−1

k , |B|≲Cεr−2
k , |C |≲CεR−1}. (8)

Our “high lemmas” will require geometric properties that are recorded in the following propositions.

Proposition 19. The sets γ̃k , varying over γk , are ≤ CεRε-overlapping.

Proof. Suppose that a point corresponding to parameters A, B,C, l and A′, B ′,C ′, l ′ respectively is in the
intersection of two sets as in (8). By analyzing the first coordinate, we must have A = A′. By analyzing
the second coordinate, we must have

|A2lr−1
k − A2l ′r−1

k | ≲ Cεr−2
k .

Therefore, since A ≳ r−1
k+1, we have |l − l ′| ≲ CεRε. □

Next we describe the geometry of a small cap partition for the cone. Let β1 ∈
[1

2 , 1
]

and ρ ≥ 1. Let
S ∈ 2N a dyadic number closest to ρβ1. For the (truncated) cone 0 =

{
ξ : ξ 2

1 + ξ 3
2 = ξ 2

3 ,
1
2 ≤ ξ3 ≤ 1

}
,

divide [0, 2π) into S many intervals IS of length 2π/S and define the small cap partition

NS−1(0)=

⊔
IS

NS−1(0)∩ {(ρ cos ζ, ρ sin ζ, z) : ζ ∈ IS)}

corresponding to parameters β1 and β2 = 0, as in Theorem 3 from [Guth and Maldague 2022]. After a
linear transformation, we will identify the high parts of sets γk − γk as subsets of conical small caps.
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Proposition 20. Let r−1
∈ [r−1

k+1, 20Cεr−1
k ] be a dyadic value and write {ξ3 ∼ r−1

} :=
{
(ξ1, ξ2, ξ3) ∈ R3

:

1
2r−1

≤ ξ3 ≤ r−1
}
. There is an affine transformation T : R3

→ R3 so that the following hold:

(1) If r−1
k ≤ R−1/2, then the collection of γk may be partitioned into ≲ε R2ε many subsets Si which

satisfy the following. For each Si , there is a conical small cap partition of ∼ 1 × Cεr/R × Cεr/R blocks
so that, for each γk ∈ Si , r [T (γ̃k)∩ {ξ3 ∼ r−1

}] is completely contained in one of the conical small caps.
Collections of r2

k R−1 many neighboring γk are identified with the same conical small cap.

(2) If R−1/2
≤ r−1

k and (Rr−1
k )−β1 = r−1

k for some β1 ∈
[ 1

2 , 1
]
, then the collection of γk may be

partitioned into ≲ε R2ε many subsets Si which satisfy the following. For each Si , there is a conical small
cap partition of ∼ 1×Cε(r/R)β1 ×C

β−1
1
ε r/R blocks so that each r [T (γ̃k)∩{ξ3 ∼ r−1

}], where γk ⊂ Si , is
completely contained in one of the conical small caps. Each γk ∈Si is assigned to its own conical small cap.

Proof. Let T : R3
→ R3 be the affine transformation

T (x, y, z) :=

(
y
2
,

x − z/6
√

2
,

x + z/6
√

2

)
.

The image of the set (8) under T is

T (γ̃k)=

{
A
(

lr−1
k ,

1 − l2r−2
k /2

√
2

,
1 + l2r−2

k /2
√

2

)
+ B

(
1,

−lr−1
k

√
2
,

lr−1
k

√
2

)
+ C

(
0,

−1
√

2
,

1
√

2

)
:

1
2r−1

k+1 ≤ |A| ≲ Cεr−1
k , |B| ≲ Cεr−2

k , |C | ≲ CεR−1
}
.

Defining ω ∈
[
π
4 ,

π
2

]
by

(cosω, sinω)=

(
2
√

2lr−1
k

2 + l2r−2
k

,
2 − l2r−2

k

2 + l2r−2
k

)
,

the set T (γ̃k) is contained in{
A(cosω, sinω, 1)+ B(sinω,− cosω, 0)+ C(cosω, sinω,−1) :

r−1
k+1 ≤ |A| ≲ Cεr−1

k , |B| ≲ Cε(r−2
k + R−1), |C | ≲ CεR−1}. (9)

Suppose that r−1
k ≤ R−1/2. Then

T (γ̃k)∩ {ξ3 ∼ r−1
} ⊂

{
A(cosω, sinω, 1)+ B(sinω,− cosω, 0)+ C(cosω, sinω,−1) :

1
2r−1

≤ |A| ≤ r−1, |B| ≲ CεR−1, |C | ≲ CεR−1}. (10)

The ω = ω(γk) in (9) form an ∼ r−1
k -separated subset of

[
π
4 ,

π
2

]
. For a dyadic S closest to CεR/r , we

may sort the ω(γk) into different intervals IS ⊂ [0, 2π) of length S−1 and note that the r dilation of
T (γ̃k)∩ {ξ3 ∼ r−1

} for ω(γk) ∈ IS is contained in a single ∼ 1 × S−1
× S−1 conical small cap. If γk and

γ ′

k are within ∼ rk/R of one another, then ω(γk) and ω(γ ′

k) are assigned to the same IS .
Now suppose that R−1/2

≤ r−1
k ≤ R−1/3. Then

T (γ̃k)∩ {ξ3 ∼ r−1
} ⊂

{
A(cosω, sinω, 1)+ B(sinω,− cosω, 0)+ C(cosω, sinω,−1) :

1
2r−1

≤ |A| ≤ r−1, |B| ≲ Cεr−2
k , |C | ≲ CεR−1}. (11)
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Let S ∈2N be chosen so S−β1 is the smallest dyadic number satisfying CεRεr−1
k ≤ S−β1 (recalling that β1 is

defined by (Rr−1
k )−β1 = r−1

k in the proposition statement). Then C
β−1

1
ε Rεβ

−1
1 rk R−1

≤ S−1 and so each
r -dilation of T (γ̃k)∩{ξ3 ∼ r−1

} is contained in a single approximate 1×S−β1 ×S−1 conical small cap. If γk

and γ ′

k are conical small caps which are a distance Cr−1
k from one another, then their corresponding angles

ω(γk) and ω(γk) are also a distance ≳ Cr−1
k and make the sets on the right-hand side of (11) distinct. □

To analyze Gh
k , we need to understand the Fourier support of

∑
τk

|Fk+1
τk

|
2 outside of a low set CR−1/3

k+1
.

By (3) of Lemma 7, the support of ̂|Fk+1
γk

|
2 is contained in Cετk − Cετk .

Proposition 21. Let r be a dyadic value, R−1/3
k+1 ≤ r−1

≤ CεR−1/3
k . There is an affine transformation

T : R3
→ R3 so that the following holds. We may partition the τk into ≲ε Rε many sets Si which satisfy:

there is a canonical partition of the cone into approximate 1 ×Cεr R−2/3
k ×C2

εr
2 R−4/3

k blocks so that, for
each τk ∈ Si , the r-dilation of the sets T [(Cετk − Cετk) \ BR−1/3

k+1
] ∩ {ξ3 ∼ r−1

} is contained in one of the
canonical cone blocks.

Proof. Suppose that τk is the l-th piece, meaning that

τk = {(ξ1, ξ2, ξ3) : l R−1/3
k ≤ ξ1 < (l + 1)R−1/3

k , |ξ2 − ξ 2
1 | ≤ R−2/3

k , |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ R−1

k },

where l ∈ {0, . . . , R1/3
k − 1}. Let T be the affine transformation from the proof of Proposition 20. Then

T [(Cετk − Cετk) \ BR−1/3
k+1

] ∩ {ξ3 ∼ r−1
} is contained in the set{

A(cosω, sinω, 1)+ B(sinω,− cosω, 0)+ C(cosω, sinω,−1) :

1
2r−1

≤ |A| ≤ r−1, |B| ≲ CεR−2/3
k , |C | ≲ CεR−1

k

}
.

where ω ∈
[
π
4 ,

π
2

]
is defined by

(cosω, sinω)=

(
2
√

2l R−1/3
k

2 + l2 R−2/3
k

,
2 − l2 R−2/3

k

2 + l2 R−2/3
k

)
.

Since the ω=ω(τk) form an ∼ R−1/3
k -separated set, the r -dilation of each displayed set above is contained

in a canonical cone block of approximate dimensions 1 × Cεr R−2/3
k × C2

εr
2 R−4/3

k . □

2.4. Lemmas related to the high-frequency parts of square functions. First we recall the small cap
decoupling theorem for the cone from [Guth and Maldague 2022]. Subdivide the R−1 neighborhood of
the truncated cone 0 =

{
(ξ1, ξ2, ξ3) : ξ 2

1 + ξ 2
2 = ξ 2

3 ,
1
2 ≤ ξ3 ≤ 1

}
into R−β2 × R−β1 × R−1 small caps γ,

where β1 ∈
[ 1

2 , 1
]

and β2 ∈ [0, 1]. Here, R−β2 corresponds to the flat direction of the cone and R−β1

corresponds to the angular direction. The (ℓp, L p) small cap theorem for 0 is the following.

Theorem 22 [Guth and Maldague 2022, Theorem 3]. Let β1 ∈
[ 1

2 , 1
]

and β2 ∈ [0, 1]. For p ≥ 2,∫
R3

| f |
p
≤ CεRε(R(β1+β2)(p/2−1)

+ R(β1+β2)(p−2)−1
+ R(β1+β2−1/2)(p−2))

∑
γ

∥ fγ ∥
p
L p(R3)

for any Schwartz function f : R3
→ C with Fourier transform supported in NR−1(0).
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Lemma 23 (high lemma I). Suppose that R−β
≤ r−1

k ≤ R−1/2. Then∫
|gh

k |
4
≤ CεRεr−1

k R
∑
ζ

∥∥∥∥∑
γk⊂ζ

| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1

∥∥∥∥4

L4(R3)

,

where the ζ are disjoint collections of r2
k R−1 many adjacent γk .

Proof. Let T be the affine transformation from Proposition 20 and write T x = Ax +b for a 3×3 invertible
matrix A and b ∈ R3. Then

gh
k (x)= |det A|

−1e−2π i x ·b
∧

ĝh
k ◦ T −1((A−1)∗x). (12)

Perform the change of variables x 7→ A∗x to get∫
|gh

k (x)|
4 dx = |det A|

−3
∫

|

∧

ĝh
k ◦ T −1(x)|4 dx .

Let r be a dyadic parameter in the range r−1
k+1 ≤ r−1

≤ Cεr−1
k . Let ηr : R3

→ [0,∞) be a smooth function
with compact support in the set

{
(ξ1, ξ2, ξ3) :

1
2r−1

≤ ξ3 ≤ r−1
}

=: {ξ3 ∼ r−1
} and satisfying the property

that the sum of ηr over dyadic r is identically 1 on the support of ĝh
k ◦ T −1. By dyadic pigeonholing,

there is an r so that

|det A|
−3

∫
|

∧

ĝh
k ◦ T −1(x)|4 dx ≤ Cε(log R)4|det A|

−3
∫

|

∧

(ĝh
k ◦ T −1)ηr (x)|4 dx .

Finally, perform the change of variables x 7→ r x to get

|det A|
−3r3

∫
|

∧

(ĝh
k ◦ T −1)ηr (r x)|4 dx .

Now, note that
∧

(ĝh
k ◦ T −1)ηr (r x)=

∑
γk

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q(r x)

=

∑
i

∑
γk∈Si

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q(r x),

where Si is one of the ≲ε Rε many sets partitioning the γk from (1) of Proposition 20. Apply the triangle
inequality in the first sum over i and then apply Theorem 22 with parameters C−1

ε (R/r), β1 = 1, and
β2 = 0 to obtain∫

|gh
k |

4 ≲ε (log R)R6ε(r−1
k R)|det A|

−3r3
∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q(r x)

∣∣∣∣4

dx,

where ζ are disjoint collections of ∼ r2
k R−1 many neighboring γk . This number comes about since one

has rk many γk’s and they get sorted into ∼ R/rk many conical small caps, so each conical small cap
contains ∼ rk/(R/rk)= r2

k R−1 many γk’s. It remains to undo the initial steps which allowed us to apply
small cap decoupling for the cone. First do the change of variables x 7→ r−1x :

r3
∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q(r x)

∣∣∣∣4

dx

=

∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q(x)

∣∣∣∣4

dx .
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By Young’s convolution inequality (since multiplication on the Fourier side by ηr is equivalent to
convolution on the spatial side by η̌r , which is L1-normalized),∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

· ηr ]
q

∣∣∣∣4

≲
∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

]
q

∣∣∣∣4

.

Perform the change of variables x 7→ (A−1)∗x and use (12) to get

|det A|
3
∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[(
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)) ◦ T −1

]
q

∣∣∣∣4

≲
∑
ζ

∫ ∣∣∣∣∑
γk⊂ζ

[
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)]q

∣∣∣∣4

,

which finishes the proof. □

Lemma 24 (high lemma II). Suppose that max(R−β, R−1/2)≤ r−1
k ≤ R−1/3. Then∫

|gh
k |

2+2/β1 ≤ CεR14εr−1
k R

∑
γk

∥ f k+1
γk

∥
4+4/β1

L4+4/β1 (R3)
,

where β1 ∈
[ 1

2 , 1
]

satisfies (rk R−1)−β1 = rk .

Proof. Repeat the argument from the proof of Lemma 23, using (2) in place of (1) from Proposition 20
and applying Theorem 22 with β1 as in the hypothesis of the lemma and β2 = 0. The result is∫

|gh
k |

2+2/β1 ≲ε R14ε(r−1
k R)

∑
γk

∫
|[
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)]q

|
2+2/β1 .

The R14ε factor is to account for the fact that the Fourier support of gh
k may only be identified up to some

Rε factors with small caps of the cone. Since 1 − ρ
≤r−1

k+1
= ρ≤Cε

− ρ
≤r−1

k+1
on the support of ̂| f k+1

γk
|
2, by

Young’s convolution inequality, we have∫
|[
̂

| f k+1
γk |2ω̂γk (1 − ρ

≤r−1
k+1
)]q

|
2+2/β1 ≲

∫
|(

̂
| f k+1
γk |2)q|2+2/β1 =

∫
| f k+1
γk

|
4+4/β1 . □

Lemma 25. For each m, 1 ≤ m ≤ N,∫
|Gh

m |
6
≤ CεRε

(∑
τm

∥Fm+1
τm

∥
4
L12(R3)

)3

.

Proof. Repeat the argument from the proof of Lemma 23, using Proposition 21 in place of Proposition 20
and applying canonical L6 cone decoupling [Bourgain and Demeter 2015] instead of small cap decoupling.
The result is ∫

|Gh
m |

6 ≲ε R8ε
∑
τm

∫
|[

̂
|Fm+1
τm |2ω̂τm (1 − ρ

≤R−1/3
m+1
)]q

|
6.

Since 1 − ρ
≤R−1/3

m+1
= ρ≤Cε

− ρ
≤R−1/3

m+1
on the support of ̂

|Fm+1
τm |2, by Young’s convolution inequality, we

have ∫
|[

̂
|Fm+1
τm |2ω̂τm (1 − ρ

≤R−1/3
m+1
)]q

|
6 ≲

∫
|(

̂
|Fm+1
τm |2)q|6 =

∫
|Fm+1
τm

|
12. □
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Theorem 26 (cylindrical decoupling over P1). Let P1
= {(t, t2) : 0 ≤ t ≤ 1} and for δ > 0, let Nδ(P

1)

denote the δ-neighborhood of P1 in R2. If h : R3
→ C is a Schwartz function with Fourier transform

supported in Nδ(P
1)× R, then, for each 4 ≤ p ≤ 6,∫

R3
|h|

p ≲ε δ
−ε

(∑
ζ

∥hζ∥2
L p(R3)

)p/2

,

where the ζ are products of ∼ δ1/2
× δ rectangles that partition Nδ(P

1) with R.

Proof. Begin by using Fourier inversion to write

h(x ′, x3)=

∫
Nδ(P1)

∫
R

ĥ(ξ ′, ξ3)e2π iξ ·x ′

e2π iξ3x3 dξ3 dξ ′.

For each x3, the function

x ′
7→

∫
Nδ(P1)

∫
R

ĥ(ξ ′, ξ3)e2π iξ3x3 dξ3e2π iξ ·x ′

dξ ′

satisfies the hypotheses of the decoupling theorem for P1. Use Fubini’s theorem to apply the ℓ2-decoupling
theorem for P1 from [Bourgain and Demeter 2015] to the inner integral∫

R

∫
R2

|h(x ′, x3)|
p dx ′ dx3 ≲ε

∫
R

δ−ε
(∑

ν

(∫
R2

∣∣∣∣∫
ν

∫
R

ĥ(ξ ′,ξ3)e2π iξ ·x ′

e2π iξ3x3 dξ3 dξ ′

∣∣∣∣p

dx ′

)2/p )p/2

dx3,

where {ν} form a partition of Nδ(P
1) into ∼ δ1/2

× δ blocks. By the triangle inequality, the right-hand
side above (omitting Cεδ−ε) is bounded by(∑

ν

(∫
R

∫
R2

∣∣∣∣∫
ν

∫
R

ĥ(ξ ′, ξ3)e2π iξ ·x ′

e2π iξ3x3 dξ3 dξ ′

∣∣∣∣p

dx ′ dx3

)2/p )p/2

.

The sets ν× R are the ζ in the statement of the lemma. □

Remark. The implicit upper bound in the statement of Theorem 26 is uniform in 4 ≤ p ≤ 6. For the
specific exponent p = 4, the implicit Cεδ−ε upper bound may be replaced by an absolute constant B
which does not depend on δ.

2.5. Local trilinear restriction for M3. The weight function WBr in the following theorem decays by a
factor of 10 off of the ball Br . It is specifically defined in Definition 8.

Proposition 27. Let s ≥ 10r ≥ 10 and let f : R3
→ C be a Schwartz function with Fourier transform

supported in Nr−1(M3). Suppose that τ 1
1 , τ

2
1 , τ

3
1 are canonical moment curve blocks at scale R1/3

1 which
satisfy (τ i

1, τ
j

1 )≥ s−1 for i ̸= j . Then∫
Br

| fτ 1
1

fτ 2
1

fτ 3
1
|
2 ≲ s3

|Br |
−2

(∫
| fτ 1

1
|
2WBr

)(∫
| fτ 2

1
|
2WBr

)(∫
| fτ 3

1
|
2WBr

)
.

The weight function WBr is the generic ball weight defined in Definition 8.
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Proof. Let m(t)= (t, t2, t3) and let Br−1 be the ball of radius r−1 in R3 centered at the origin. Then

WBr (x) fτ i
1
(x)=

∫
τ i

1+Br−1

ŴBr ∗ f̂τ i
1
(ξ i )e2π i x ·ξ i

dξ i

=

∫
τ i

1+Br−1

ŴBr ∗ f̂τ i
1
(ξ i

1, ξ
i
2, ξ

i
3)e

2π i x ·(ξ i
1,ξ

i
2,ξ

i
2) dξ i

1ξ
i
2ξ

i
3

=

∫
|{ωi ∈R2:|ωi |≤2r−1}

∫
Ii

ŴBr ∗ f̂τ i
1
(m(ξ i

1)+ (0, ωi ))e2π i x ·(m(ξ i
1)+(0,ωi )) dξ i

1 dωi ,

where Br−1 + supp fτ i
1
⊂ {m(ξ i

1)+ (0, ωi ) : ξ
i
1 ∈ I1, |ωi | ≤ r−1

}. Let {ωi ∈ R2
: |ωi | ≤ 2r−1

} = B(2)r−1 . Then
for ω = (ω1, ω2, ω3), we have∫

|WBr (x) fτ 1
1
(x)WBr (x) fτ 2

1
(x)WBr (x) fτ 3

1
(x)|2 dx

=

∫
Br

∣∣∣∣ 3∏
i=1

∫
B(2)

r−1

∫
Ii

ŴBr ∗ f̂τ i
1
(m(ξ i

1)+ (0, ωi ))e2π i x ·(m(ξ i
1)+(0,ωi )) dξ i

1 dωi

∣∣∣∣2

dx

≤

∫
Br

∣∣∣∣∫
(B(2)

r−1 )
3

∣∣∣∣ 3∏
i=1

∫
Ii

ŴBr ∗ f̂τ i
1
(m(ξ i

1)+ (0, ωi ))e2π i x ·m(ξ i
1) dξ i

1

∣∣∣∣ dω
∣∣∣∣2

dx

≤

(∫
(B(2)

r−1 )
3

(∫
Br

∣∣∣∣ 3∏
i=1

∫
Ii

ŴBr ∗ f̂τ i
1
(m(ξ i

1)+ (0, ωi ))e2π i x ·m(ξ i
1) dξ i

1

∣∣∣∣2

dx
)1/2

dω
)2

. (13)

For eachω ∈ (B(2)r−1)
3, analyze the inner integral in x . Use the abbreviation ŴBr ∗ f̂τ i

1
( · + (0, ωi ))= f̂ ωi

τ i
1
( · )

and further manipulate the innermost integral as a function of x :
3∏

i=1

∫
Ii

ŴBr ∗ f̂τi (m(ξ
i
1)+ (0, ωi ))e2π i x ·m(ξ i

1) dξ i
1

=

∫
I1×I2×I3

f̂ ω1

τ 1
1
(m(ξ 1

1 )) f̂ ω2

τ 2
1
(m(ξ 2

1 )) f̂ ω3

τ 3
1
(m(ξ 3

1 ))e
2π i x ·[m(ξ i

1)+m(ξ2
1 )+m(ξ3

1 )] dξ1,

where ξ1 = (ξ 1
1 , ξ

2
1 , ξ

3
1 ). Perform the change of variables ξ̃ = m(ξ 1

1 )+m(ξ 2
1 )+m(ξ 3

1 ). The Jacobian
factor is 1/|det J |, where det J is defined explicitly in terms of ξ1 by

det

 1 1 1
2ξ 1

1 2ξ 2
1 2ξ 3

1
3(ξ 1

1 )
2 3(ξ 2

1 )
2 3(ξ 3

1 )
2

 = 6(ξ2 − ξ1)(ξ3 − ξ1)(ξ3 − ξ2),

using the formula for the determinant of a Vandermonde matrix. Note that since (Ii , I j )≥ s−1
−2r−1 > 0,

|det J | is nonzero. The change of variables yields∫
m(I1)+m(I2)+m(I3)

f̂ ω1

τ 1
1
(m(ξ 1

1 )) f̂ ω2

τ 2
1
(m(ξ 2

1 )) f̂ ω3

τ 3
1
(m(ξ 3

1 ))e
2π i x ·ξ̃ 1

|det J (ξ1)|
d ξ̃ , (14)

where we interpret ξ1 in the integrand as implicitly depending on ξ̃ . Define Fω(ξ̃ ) by

χm(I1)+m(I2)+m(I3)(ξ̃ ) f̂ ω1

τ 1
1
(m(ξ 1

1 )) f̂ ω2

τ 2
1
(m(ξ 2

1 )) f̂ ω3

τ 3
1
(m(ξ 3

1 ))
1

|det J (ξ1)|
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so that we may view the integral in (14) as the inverse Fourier transform of Fω. The summary of the
inequality so far, picking up from (13) and using the change of variables and the definition of Fω, is∫

Br

| fτ 1
1
(x) fτ 2

1
(x) fτ 3

1
(x)|2 dx ≲

(∫
(B(2)

r−1 )
3

(∫
| qFω(x)|2 dx

)1/2

dω
)2

.

By Plancherel’s theorem, the right-hand side above equals(∫
(B(2)

r−1 )
3

(∫
|Fω(ξ̃ )|2 d ξ̃

)1/2

dω
)2

.

By Cauchy–Schwarz, this is bounded above by

|(B(2)r−1)
3
|

∫
(B(2)

r−1 )
3

∫
|Fω(ξ̃ )|2 d ξ̃ dω ∼ r−6

∫
(B(2)

r−1 )
3

∫
|Fω(ξ̃ )|2 d ξ̃ dω.

Undo the change of variables, again writing ξ̃ = m(ξ 1
1 )+m(ξ 2

1 )+m(ξ 3
1 ) to get

r−6
∫
(B(2)

r−1 )
3

∫
I1×I2×I3

| f̂ ω1

τ 1
1
(m(ξ 1

1 )) f̂ ω2

τ 2
1
(m(ξ 2

1 )) f̂ ω3

τ 3
1
(m(ξ 3

1 ))|
2
|det J (ξ1)|

−1 dξ1 dω.

Note that |det J (ξ1)| ≳ s−3, so the previous line is bounded by

r−6s3
∫
(B(2)

r−1 )
3

∫
| f̂ ω1

τ 1
1
(m(ξ 1

1 )) f̂ ω2

τ 2
1
(m(ξ 2

1 )) f̂ ω3

τ 3
1
(m(ξ 3

1 ))|
2 dξ1 dω ∼ r−6s3

3∏
i=1

∫
Nr−1 (τi )

|ŴBr ∗ f̂τ i
1
(ξ)|2 dξ.

By Plancherel’s theorem, this is bounded by

r−6s3
3∏

i=1

∫
R3

| fτ i
1
(x)|2WBr dx . □

3. A weak version of Theorem 3 for the critical exponent

3.1. The broad part of Uα . For three canonical blocks τ 1
1 , τ

2
1 , τ

3
1 (with dimensions ∼ R−1/3

1 ×R−2/3
1 ×R−1

1 )
which are pairwise ≥ 10CεR−ε/3-separated, where Cε is from Lemma 7, define the broad part of Uα to be

BrK
α =

{
x ∈ Uα : α ≤ K | fτ 1

1
(x) fτ 2

1
(x) fτ 3

1
(x)|1/3, max

τ i
1

| fτ i
1
(x)| ≤ α

}
.

We bound the broad part of Uα in the following proposition.

Proposition 28. Let R, K ≥ 1. Suppose that ∥ fγ ∥L∞(R3) ≤ 2 for all γ. Then

α6+2/β
|BrK

α | ≲ε K 50 R10εA10(M+N )
ε R2β+1

∑
γ

∥ fγ ∥2
L2(R3)

.

Proof of Proposition 28. Begin by observing that we may assume that Rβ ≤ α2. Indeed, if α2
≤ Rβ, then

we have
α6+2/β

|Uα| ≤ R2β+1
∥ f ∥

2
L2(R3)

≤ R2β+1
∑
γ

∥ fγ ∥2
2

using L2-orthogonality. Assume for the remainder of the argument that Rβ ≤ α2.
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We bound each of the sets BrK
α ∩3k , BrK

α ∩�m , and BrK
α ∩L in separate cases. It suffices to consider

the case that R is at least some constant depending on ε since if R ≤ Cε, we may prove the proposition
using trivial inequalities.

Case 1: bounding |BrK
α ∩3k |. By Lemma 16,

|BrK
α ∩3k | ≤ |

{
x ∈ Uα ∩3k : α ≲ K | f k+1

τ 1
1
(x) f k+1

τ 2
1
(x) f k+1

τ 3
1
(x)|1/3, max

τ i
1

| fτ i
1
(x)| ≤ α

}
.

By Lemma 7, the Fourier supports of f k+1
τ 1

1
, f k+1

τ 2
1

, f k+1
τ 3

1
are contained in the Cεr−1

k -neighborhood of
Cετ

1
1 ,Cετ

2
1 ,Cετ

3
1 respectively, which are ≥ CεR−ε/3-separated blocks of the moment curve. Let {Brk }

be a finitely overlapping cover of BrK
α ∩3k by rk-balls. For R large enough depending on ε, apply

Proposition 27 to get∫
Brk

| f k+1
τ 1

1
f k+1
τ 2

1
f k+1
τ 3

1
|
2 ≲ε Rε|Brk |

−2
(∫

| f k+1
τ 1

1
|
2WBrk

)(∫
| f k+1
τ 2

1
|
2WBrk

)(∫
| f k+1
τ 3

1
|
2WBrk

)
.

Using local L2-orthogonality (Lemma 10), each integral on the right-hand side above is bounded by

Cε

∫ ∑
τk

| f k+1
γk

|
2 WBrk

.

If x ∈ BrK
α ∩3k ∩ Brk , then the above integral is bounded by

Cε

∫ ∑
γk

| f k+1
γk

|
2
∗ωγk WBrk

≲ Cε|Brk |

∑
γk

| f k+1
γk

|
2
∗ωγk (x)

by the locally constant property (Lemma 9) and properties of the weight functions. The summary of the
inequalities so far is that

α6
|BrK

α ∩3k ∩ Brk | ≲ε K 6
∫

Brk

| f k+1
τ 1

1
f k+1
τ 2

1
f k+1
τ 3

1
|
2 ≲ε RεK 6

|Brk |gk(x)3,

where x ∈ BrK
α ∩3k ∩ Brk .

Recall that since x ∈3k , we have the lower bound AM−k
ε Rβ ≤ gk(x) (where Aε is from Definition 13),

which leads to the inequality

α6
|BrK

α ∩3k ∩ Brk | ≲ε K 6 Rε
1

(AM−k
ε Rβ)p

|Brk |gk(x)3+p

for any p ≥ 0. By Corollary 15, we also have the upper bound |gk(x)| ≤ 2|gh
k (x)|, so that

α6
|BrK

α ∩3k ∩ Brk | ≲ε K 6 Rε
1

(AM−k
ε Rβ)p

|Brk ||g
h
k (x)|

3+p

for any p ≥ 0. By the locally constant property applied to gh
k , |gh

k |
3+p ≲ε |gh

k ∗wBrk
|
3+p and by Cauchy–

Schwarz, |gh
k ∗wBrk

|
3+p ≲ |gh

k |
3+p

∗wBrk
. Combine this with the previous displayed inequality to get

α6
|BrK

α ∩3k ∩ Brk | ≲ε K 6 Rε
1

(AM−k
ε Rβ)p

∫
|gh

k |
3+pWBrk

.
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Summing over the balls Brk in our finitely overlapping cover of BrK
α ∩3k , we conclude that

α6
|BrK

α ∩3k | ≲ε K 6 Rε
1

(AM−k
ε Rβ)p

∫
R3

|gh
k |

3+p. (15)

We are done using the properties of the set BrK
α ∩3k , which is why we now integrate over all of R3 on

the right-hand side. We will choose different p > 0 and analyze the high part gh
k in two subcases which

depend on the size of rk .

Subcase 1a: R−β
≤ r−1

k ≤ R−1/2. This case only appears if 1
2 ≤ β. Choose p = 1 in (15) and use

Lemma 23 to obtain

α6
|BrK

α ∩3k | ≲ε K 6 Rε
1

AM−k
ε Rβ

CεRεr−1
k R

∑
ζ

∥∥∥∥∑
γk⊂ζ

| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1

∥∥∥∥4

L4(R3)

,

where ζ are collections of r2
k R−1 many adjacent γk .

The Fourier supports of the terms in the L4 norm are still approximately disjoint (actually Cε-
overlapping, see Proposition 19), so by Plancherel’s theorem and L2-orthogonality, we have∥∥∥∥∑
γk⊂ζ

| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1

∥∥∥∥4

L4(R3)

≲ε Rε
∥∥∥∥∑
γk⊂ζ

| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1

∥∥∥∥2

L∞(R3)

∑
γk⊂ζ

∥| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1
∥

2
L2(R3)

(16)

for each ζ . First bound the L∞ norm by∥∥∥∥∑
γk⊂ζ

| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1

∥∥∥∥2

L∞(R3)

≲ (#γk ⊂ ζ )2 max
γk

∥ f k+1
γk

∥
4
L∞(R3)

≲ (r2
k R−1)2 max

γk
∥ f k+1

γk
∥

4
L∞(R3)

,

where we used that ∥ωk ∗ ρ̌>r−1
k+1

∥1 ∼ 1. To bound each of the L2 norms in (16), we use cylindrical L4-
decoupling the parabola (Theorem 26) and unravel the pruning process using properties from Lemma 7:

∥| f k+1
γk

|
2
∗ωγk ∗ ρ̌>r−1

k+1
∥

2
L2(R3)

≲ ∥ f k+1
γk

∥
4
L4(R3)

(by Young’s inequality)

≲ε Rε
2
( ∑
γk+1⊂γk

∥ f k+1
γk+1

∥
2
L4(R3)

)2

(by cylindrical L4-decoupling for P1)

≲

( ∑
γk+1⊂γk

∥ f k+2
γk+1

∥
2
L4(R3)

)2

(by (1) from Lemma 7)

≲ · · · ≲

( ∑
γN ⊂γk

∥ f N
γN

∥
2
L4(R3)

)2

≲

( ∑
γ⊂γk

∥ fγ ∥2
L4(R3)

)2

(by iterating the previous two inequalities).

Note that each application of L4-decoupling involves an explicit constant B in the upper bound, so it does
not depend on a scale R. The accumulated constant in the unwinding-the-pruning process above is BCε−1
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since there are fewer than ∼ ε−1 many different scales of γk until we arrive at γ. Use Cauchy–Schwarz
to bound the expression in the final upper bound above by

#γ ⊂ γk

∑
γ⊂γk

∥ fγ ∥4
L4(R3)

≲ (r−1
k Rβ)

∑
γ⊂γk

∥ fγ ∥4
L4(R3)

.

Using the assumption ∥ fγ ∥∞ ≲ 1 for each γ, we have ∥ fγ ∥4
L4(R4)

≲ ∥ fγ ∥2
L2(R3)

. The summary of the
argument in this case so far is that

α6
|BrK

α ∩3k | ≲ε K 6 R2εR−βr−1
k R

∑
ζ

(r2
k R−1)2 max

γk
∥ f k+1

γk
∥

4
∞
(r−1

k Rβ)
∑
γk⊂ζ

∥ fγ ∥2
2

≲ε K 6 R2εr2
k R−1 max

γk
∥ f k+1

γk
∥

4
∞

∑
γ

∥ fγ ∥2
2.

For the remainder of the proof, we use the notation ⪅ to mean ≲ε R8ε. It now suffices to verify that
r2

k R−1 maxγk ∥ f k+1
γk

∥
4
∞

⪅ R2β+1α−2/β. We will use the upper bounds

∥ f k+1
γk

∥∞ ≲ min
(

r−1
k Rβ, K 3 AM−k

ε

Rβ

α

)
(from (1) and (2) in Lemma 7). Suppose that rk <α. Use ∥ f k+1

γk
∥∞ ≲ K 3 AM−k

ε Rβ/α and β ≥
1
2 to check

(rk)
2/β−2

≤(Rβ)2/β−2
=⇒ r2

k R−1+4β
≤R2β+1r4−2/β

k

=⇒ r2
k R−1

(
Rβ

α

)4

≤ R2β+1α−2/β

=⇒ r2
k R−1 max

γk
∥ f k+1

γk
∥

4
∞
≲A4(M−k)

ε R2β+1α−2/β,

as desired. Now suppose that rk ≥ α. Then use ∥ f k+1
γk

∥∞ ≲ r−1
k Rβ and check

(rk)
2/β−2

≤ (Rβ)2/β−2
=⇒ r2

k R−1(r−1
k Rβ)4 ≤ R2β+1(rk)

−2/β

=⇒ r2
k R−1 max

γk
∥ f k+1

γk
∥

4
∞

≲ R2β+1(α)−2/β,

which finishes this subcase.

Subcase 1b: max(R−β, R−1/2)≤ r−1
k ≤ R−1/3. In this case, let β1 ∈

[1
2 , 1

]
satisfy (r−1

k R)−β1 = r−1
k and

take p = 2/β1 − 1 in (15). Then by Lemma 24

α6
|BrK

α ∩3k | ≲ε K 6 Rε
1

Rβ(2/β1−1)CεRεr−1
k R

∑
γk

∥ f k+1
γk

∥
4+4/β1

L4+4/β1 (R3)
.

Majorize each L4+4/β1 norm by a combination of L∞ and L6 norms to get

α6
|BrK

α ∩3k | ≲ε K 6 R2ε 1
Rβ(2/β1−1) r

−1
k R

∑
γk

max
γk

∥ f k+1
γk

∥
4/β1−2
∞

∥ f k+1
γk

∥
6
L6(R3)

.
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Repeat the unwinding-the-pruning argument from Subcase 1a to obtain

∥ f k+1
γk

∥
6
L6(R3)

≲ Bε5 Rε
4
( ∑
γ⊂γk

∥ fγ ∥2
L6(R3)

)3

≲ Bε5 Rε
4
(r−1

k Rβ)2
∑
γ⊂γk

∥ fγ ∥2
L2(R3)

,

where we used Cauchy–Schwarz and the assumption ∥ fγ ∥∞ ≲ 1 in the final inequality. Note that we
have the additional constant Bε

−1

ε5 Rε
4

due the accumulation of ≤ ε−1 many factors of the upper bound
Bε5 Rε

5
for L6-decoupling of the parabola with small parameter ε5. In summary,

α6
|BrK

α ∩3k | ≲ε K 6 R3ε 1
Rβ(2/β1−1) r

−1
k R

∑
γk

max
γk

∥ f k+1
γk

∥
4/β1−2
∞

(r−1
k Rβ)2

∑
γ⊂γk

∥ fγ ∥2
L2(R3)

.

It suffices to check that
1

Rβ(2/β1−1) r
−1
k R max

γk
∥ f k+1

γk
∥

4/β1−2
∞

(r−1
k Rβ)2 ⪅ R2β+1α−2/β,

which simplifies to
Rβ(1−2/β1)r−3

k max
γk

∥ fγk ∥
4/β1−2
∞

⪅ α−2/β .

Using ∥ f k+1
γk

∥∞ ≤ K 3 A(M−k)
ε Rβ/α, it further suffices to verify the inequality r−3

k Rβ(2/β1−1) ⪅ α4/β1−2−2/β.
Suppose that the exponent 4/β1 − 2 − 2/β ≥ 0. Use r−1

k ≤ R−1/3 and Rβ ≤ α2 to verify

(Rβ)2/β1−1−1/β
≤ (α2)2/β1−1−1/β

=⇒ r−3
k Rβ(2/β1−1)

≤ α4/β1−2−2/β .

Now suppose that the exponent 4/β1 −2−2/β < 0. Using Cauchy–Schwarz, the locally constant property,
and the definition of 3k , for x ∈ Uα ∩3k , we have

α2 ≲ #γk+1
∑
γk+1

| f k+2
γk+1

|
2 ≲ Rεrk gk+1(x)≲ Rεrk A(M−k−1)

ε Rβ .

Also use r1/β1
k = r−1

k R to verify

R−1
≤ r−1/β

k =⇒ r−3
k R ≤ (r−1

k R)2r−1−1/β
k

=⇒ r−3
k R ≤ r2/β1−1−1/β

k

=⇒ r−3
k R(RεA(M−k−1)

ε Rβ)2/β1−1−1/β
≤ (α2)2/β1−1−1/β

=⇒ r−3
k Rβ(2/β1−1)

≤ (RεA(M−k−1)
ε )8α4/β1−2−2/β,

as desired.

Case 2: bounding |BrK
α ∩�m |. Repeat the reasoning at the beginning of Case 1. By Lemma 16,

|BrK
α ∩�m | ≤ |

{
x ∈ Uα ∩�m : α ≲ K |Fm+1

τ 1
1
(x)Fm+1

τ 2
1
(x)Fm+1

τ 3
1
(x)|1/3, max

τ i
1

| fτ i
1
(x)| ≤ α

}
.

Let {BR1/3
m

} be a finitely overlapping cover of BrK
α ∩�m by R1/3

m -balls. Then by Proposition 27, for R
large enough depending on ε,∫

B
R1/3

m

|Fm+1
τ 1

1
Fm+1
τ 2

1
Fm+1
τ 3

1
|
2 ≲ε Rε|BR1/3

m
|
−2

(∫
|Fm+1
τ 1

1
|
2WB

R1/3
m

)(∫
|Fm+1
τ 2

1
|
2WB

R1/3
m

)(∫
|Fm+1
τ 3

1
|
2WB

R1/3
m

)
.
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The integrals on the right-hand side are bounded by

Cε

∫ ∑
τm

|Fm+1
τm

|
2WB

R1/3
m

using local L2-orthogonality (Lemma 10). If x ∈ BrK
α ∩�m ∩ BR1/3

m
, then the above integral is bounded by

Cε

∫ ∑
τm

|Fm+1
τm

|
2
∗ωτm WB

R1/3
m

≲ Cε
∑
τm

|Fm+1
τm

|
2
∗ωτm (x)= CεGm(x)

by the locally constant property. Recall that since x ∈�m , we have the lower bound AM+N−m
ε Rβ ≤ Gm(x).

Also, by Corollary 15, Gm(x)≤ 2|Gh
m(x)|. Combining the information so far yields

α6
|BrK

α ∩�m ∩ BR1/3
m

| ≲ε K 6 Rε
1

(AM+N−m
ε Rβ)3

|BR1/3
m

||Gh
m(x)|

6.

Use the locally constant property for Gh
m and sum over all BR1/3

m
to get

α6
|BrK

α ∩�m | ≲ε K 6 Rε
1

R3β

∫
R3

|Gh
m |

6.

Note that we dropped the unnecessary factors of AM+N−m
ε ≥ 1 and that we are done using the properties

of the set BrR1/3
m
α (τ, τ ′, τ ′′), which is why we now integrate over all of R3 on the right-hand side.

By Lemma 25, ∫
R3

|Gh
m |

6 ≲ε Rε
(∑
τm

∥Fm+1
τm

∥
4
L12(R3)

)3

.

Use Cauchy–Schwarz and then (2) (with Fm+1
τm+1

) of Lemma 7 to bound the L12 norm by a combination
of L∞ and L6 norms:(∑

τm

∥Fm+1
τm

∥
4
L12(R3)

)3

≤ RεK 6
(

K 3 AM+N−m
ε

Rβ

α

)6(∑
τm+1

∥Fm+1
τm+1

∥
2
L6(R3)

)3

.

Next, we use cylindrical L6-decoupling over the parabola to unwind the pruning process. For each τm+1,
we have

∥Fm+1
τm+1

∥
6
L6(R3)

≤ ∥Fm+2
τm+1

∥
6
L6(R3)

(by (1) of Lemma 7)

≤ Bε5 Rε
5
( ∑
τm+2⊂τm+1

∥ f m+2
τm+2

∥
2
L6(R3)

)3

(by cylindrical L6-decoupling for P1)

≤ · · · ≤ (Bε5 Rε
5
)N

( ∑
τN ⊂τm+1

∥ f N+1
τN

∥
2
L6(R3)

)3

(by iterating the previous two inequalities).

Note that {τN } are canonical blocks of the moment curve. Our goal is to have an expression involving the
small caps γ. We defined the γ so that they lie in the cylindrical region over canonical R−β

× R−2β blocks
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of P1. Therefore, we may continue unwinding the pruning process using Theorem 26, ultimately obtaining( ∑
τm+1

∥Fm+1
τm+1

∥
2
L6(R3)

)3

≤ (Bε5 Rε
5
)M+N

(∑
γ

∥ fγ ∥2
L6(R3)

)3

.

By Cauchy–Schwarz and using the assumption ∥ fγ ∥∞ ≲ 1, we have(∑
γ

∥ fγ ∥2
L6(R3)

)3

≤ #γ 2
∑
γ

∥ fγ ∥6
L6(R3)

≲ R2β
∑
γ

∥ fγ ∥2
L2(R3)

.

The summary in this case is that

α6
|BrK

α ∩�m | ≲ε K 30 R3εA10(M+N )
ε

1
R3β

(
Rβ

α

)6

(R2β)
∑
γ

∥ fγ ∥2
L2(R3)

.

It suffices to verify that R5βα−6
≤ R2β+1α−2/β. This follows immediately from the relation Rβ ≤ α2.

Case 3: bounding |Uα ∩ L|. Begin by using Lemma 16 to bound

α6+2/β
|BrK

α ∩L| ≲ K 12
∫

Uα∩L
| f |

2
|F1|

4+2/β .

Then use Cauchy–Schwarz and the locally constant property for G1 to get∫
Uα∩L

| f |
2
|F1|

4+2/β ≲ε Rε
∫

Uα∩L
| f |

2G2+1/β
1 .

Using the definition of L , we bound the factors of G1 by∫
Uα∩L

| f |
2(AM+N

ε Rβ)2+1/β .

Finally, use L2 orthogonality to conclude

α6+2/β
|BrK

α ∩L| ≲ε K 12 R2εA10(M+N )
ε R2β+1

∑
γ

∥ fγ ∥2
L2(R3)

. □

3.2. Wave packet decomposition and pigeonholing. To prove Theorem 3, it suffices to prove a local
version presented in the next lemma.

Lemma 29. Let 1
3 ≤ β ≤ 1 and p ≥ 2. Then, for any Rmax(2β,1)-ball BRmax(2β,1) ⊂ R3, suppose that

∥ f ∥
p
L p(BRmax(2β,1) )

≤ CεRε(Rβ(p/2−1)
+ Rβ(p−4)−1)

∑
γ

∥ fγ ∥
p
L p(R3)

for any Schwartz function f : R3
→ C with Fourier transform supported in M3(Rβ, R). Then Theorem 3

is true.

Proof. Write

∥ f ∥
p
L p(R3)

≲
∑

BRmax(2β,1)

∫
BRmax(2β,1)

| f |
p,
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where the sum is over a finitely overlapping cover of R3 by Rmax(2β,1)-balls. Let φB be a weight function
decaying by order 100 away from BRmax(2β,1) , satisfying φB ≳ 1 on BRmax(2β,1) , and with Fourier transform
supported in an R− max(2β,1) neighborhood of the origin. The Fourier support of each fγφB is contained
in a 2R−β

× 4R−2β
× 21/βR−1 small cap. By the triangle inequality, there is a subset S of the small

caps γ so that for each γ ∈ S, the Fourier support of fγφB is contained in a unique small cap and

∥ f ∥
p
L p(BRmax(2β,1) )

≲

∥∥∥∥∑
γ∈S

fγφB

∥∥∥∥p

L p(BRmax(2β,1) )

.

Then by applying the hypothesized local version of small cap decoupling,∥∥∥∥∑
γ∈S

fγφB

∥∥∥∥p

L p(BRmax(2β,1) )

≤ CεRε(Rβ(p/2−1)
+ Rβ(p−4)−1)

∑
γ∈S

∥ fγφB∥
p
L p(R3)

.

It remains to note that
∑

BRmax(2β,1)

∫
| fγ |pφ

p
B ≲

∫
| fγ |p. □

It further suffices to prove a weak, level-set version of Theorem 3.

Lemma 30. Let p ≥ 2. For each BR2 and Schwartz function f : R3
→ C with Fourier transform supported

in M3(Rβ, R), there exists α > 0 such that

∥ f ∥
p
L p(BRmax(2β,1) )

≲p (log R)α p
|{x ∈ BRmax(2β,1) : α ≤ | f (x)|}| + R−500p

∑
γ

∥ fγ ∥
p
L p(R3)

.

Proof. Split the integral as∫
BRmax(2β,1)

| f |
p
=

∑
R−1000≤λ≤1

∫
{x∈BRmax(2β,1) :λ∥ f ∥L∞(B

Rmax(2β,1) )≤| f (x)|≤2λ∥ f ∥L∞(B
Rmax(2β,1) )}

| f |
p

+

∫
{x∈BRmax(2β,1) :| f (x)|≤R−1000∥ f ∥L∞(Rmax(2β,1))}

| f |
p,

in which λ varies over dyadic values in the range [R−1000, 1]. If one of the ≲ log R many terms in the
first sum dominates, then we are done. Suppose instead that the second expression dominates:∫

BRmax(2β,1)

| f |
p
≤ 2

∫
{x∈BRmax(2β,1) :| f (x)|≤R−1000∥ f ∥L∞(Rmax(2β,1))}

| f |
p ≲ R3 R−1000p

∥ f ∥
p
L∞(BRmax(2β,1) )

.

Then by Hölder’s inequality, we have∫
BRmax(2β,1)

| f |
p ≲ R3 R−1000p+(p−1)

∑
γ

∥ fγ ∥
p
L∞(BRmax(2β,1) )

.

Finally, by the locally constant property and Hölder’s inequality,

∥ fγ ∥
p
L∞(BRmax(2β,1) )

≲ ∥| fγ | ∗ωγ ∗∥
p
L∞(BRmax(2β,1) )

≲p ∥| fγ |p
∗ωγ ∗∥L∞(BRmax(2β,1) ) ≲

∫
R3

| fγ |p. □

Use the notation
Uα = {x ∈ BRmax(2β,1) : α ≤ | f (x)|}.
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We will show that to estimate the size of Uα , it suffices to replace f with a version whose wave packets
have been pigeonholed. Write

f =

∑
γ

∑
T ∈Tγ

ψT fγ , (17)

where, for each γ, {ψT }T ∈Tγ is the partition of unity from a partition of unity from Section 2.1. If

α ≤ Cε(log R)R−500 max
γ

∥ fγ ∥∞,

then by an argument analogous to the one dealing with the low integral over {x : | f (x)| ≤ R−1000
∥ f ∥∞}

in the proof of Lemma 30, bounding α p
|Uα| by the right-hand side of the small cap decoupling theorem

is trivial. Let φB be the weight function from Lemma 29.

Proposition 31 (wave packet decomposition). Let α > Cε(log R)R−100maxγ ∥ fγ ∥L∞(R3). There exist
subsets S ⊂ {γ } and T̃γ ⊂ Tγ , as well as a constant A > 0 with the following properties:

|Uα| ≲ (log R)
∣∣∣∣{x ∈ Uα : α ≲

∣∣∣∣∑
γ∈S

∑
T ∈T̃γ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣, (18)

∥∥∥∥ ∑
T ∈T̃γ

ψTφB fγ

∥∥∥∥
L∞(R3)

∼ A for all γ ∈ S, (19)

#T̃γ Ap Rβ+2β+1 ≲

∥∥∥∥ ∑
T ∈T̃γ

ψTφB fγ

∥∥∥∥
L p(R3)

≲ R3pε#T̃γ Ap Rβ+2β+1 for all γ ∈ S. (20)

Proof. Split the sum (17) into

φB f =

∑
γ

∑
T ∈Tc

γ

ψTφB fγ +

∑
γ

∑
T ∈T

f
γ

ψTφB fγ , (21)

where the close set is
Tc
γ := {T ∈ Tγ : T ∩ R10 BRmax(2β,1) ̸= ∅}

and the far set is
T f
γ := {T ∈ Tγ : T ∩ R10 BRmax(2β,1) = ∅}.

Using decay properties of the partition of unity, for each x ∈ BRmax(2β,1) ,∣∣∣∣∑
γ

∑
T ∈T

f
γ

ψT (x)φB(x) fγ (x)
∣∣∣∣ ≲ R−1000 max

γ
∥φB fγ ∥L∞(BRmax(2β,1) ).

Therefore, using the assumption that α is at least R−100 maxγ ∥ fγ ∥L∞(BRmax(2β,1) ),

|Uα| ≤ 2
∣∣∣∣{x ∈ Uα : α ≤ 2

∣∣∣∣∑
γ

∑
T ∈T̃c

γ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣.

The close set has cardinality |Tc
γ | ≤ R33. Let

M = max
γ

max
T ∈Tc

γ

∥ψTφB fγ ∥L∞(R3). (22)
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Split the remaining wave packets into∑
γ

∑
T ∈Tc

γ

ψTφB fγ =

∑
γ

∑
R−103

≤λ≤1

∑
T ∈Tc

γ,λ

ψTφB fγ +

∑
γ

∑
T ∈Tc

γ,s

ψTφB fγ , (23)

where λ is a dyadic number in the range [R−103
, 1],

Tc
γ,λ := {T ∈ Tc

γ : ∥ψTφB fγ ∥L∞(R3) ∼ λM},

Tc
γ,s := {T ∈ Tc

γ : ∥ψTφB fγ ∥L∞(R3) ≤ R−1000 M}.

Again using the lower bound for α, the small wave packets cannot dominate and we have

|Uα| ≤ 4
∣∣∣∣{x ∈ Uα : α ≤ 4

∣∣∣ ∑
γ

∑
R−103

≤λ≤1

∑
T ∈Tc

γ,λ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣.

By dyadic pigeonholing, for some λ ∈ [R−1000, 1],

|Uα| ≲ (log R)
∣∣∣∣{x ∈ Uα : α ≲ (log R)

∣∣∣∣∑
γ

∑
T ∈Tc

γ,λ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣.

Finally, we analyze the L p norm for each p ≥ 2 and each γ. Note that we have the pointwise inequality∣∣∣∣ ∑
T ∈Tc

γ,λ

ψT (x)φB(x) fγ (x)
∣∣∣∣ =

∣∣∣∣ ∑
T ∈Tc

γ,λ

x∈RεT

ψT (x)φB(x) fγ (x)
∣∣∣∣ + ∣∣∣∣ ∑

T ∈Tc
γ,λ

x ̸∈RεT

ψT (x)φB(x) fγ (x)
∣∣∣∣

≤

∣∣∣∣ ∑
T ∈Tc

γ,λ

x∈RεT

ψT (x)φB(x) fγ (x)
∣∣∣∣ + CεR−1000

|φB(x) fγ (x)|.

Let S ′ be the subset of {γ } for which∥∥∥∥ ∑
T ∈Tc

γ,λ

ψTφB fγ

∥∥∥∥
L∞(R3)

≥ CεR−500 max
γ

∥φB fγ ∥L∞(R3).

Using the lower bound for α, we then have

|Uα| ≲ (log R)
∣∣∣∣{x ∈ Uα : α ≲ (log R)

∣∣∣ ∑
γ∈S ′

∑
T ∈Tc

γ,λ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣.

It follows from the pointwise inequality above that, for each γ ∈ S ′,

λM ≲

∥∥∥∥ ∑
T ∈Tc

γ,λ

ψTφB fγ

∥∥∥∥
L∞(R3)

≲ R3ελM.

Perform one more dyadic pigeonholing step to obtain a dyadic µ ∈ [1, Rε] for which

|Uα| ≲ (log R)2
∣∣∣∣{x ∈ Uα : α ≲ (log R)2

∣∣∣ ∑
γ∈S

∑
T ∈Tc

γ,λ

ψT (x)φB(x) fγ (x)
∣∣∣∣}∣∣∣∣,

where S is the set of γ satisfying
∥∥∑

T ∈Tc
γ,λ
ψTφB fγ

∥∥
L∞(R3)

∼ µM.
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It remains to check the property about the L p norms. For each γ ∈ S, using the locally constant
property, we have

#Tc
γ,λRβ+2β+1(µM)p ≲

∑
T ∈Tc

γ,λ

∫
|ψTφB fγ |p ≲

∫ ∣∣∣∣ ∑
T ∈Tc

γ,λ

ψTφB fγ

∣∣∣∣p

≲
∫ ∣∣∣∣ ∑

T ∈Tc
γ,λ

x∈RεT

ψT (x) fγ (x)
∣∣∣∣p

dx + CεR−1000p
∥φB fγ ∥

p
L p(R3)

≲ R3pε#Tc
γ,λRβ+2β+1(µM)p

+ CεR−1000p
∥φB fγ ∥

p
L p(R3)

.

By construction, we have M ≥ CεR−501 maxγ ∥ fγ ∥L∞(R3). It follows that

CεR−1000p
∥φB fγ ∥

p
L p(R3)

≲ R−100#Tc
γ,λRβ+2β+1(µM)p,

which concludes the proof. □

3.3. Trilinear reduction. We will present a broad/narrow analysis to show that Proposition 28 implies
the following level set version of Theorem 3 for the critical p = 6 + 2/β.

Theorem 32. For any R ≥ 2, 1
3 ≤ β ≤ 1, and α > 0,

α6+2/β
|Uα| ≲ε RO(ε)R2β+1

∑
γ

∥ fγ ∥2
2

for any Schwartz function f : R3
→ C with Fourier transform supported in M3(Rβ, R) and satisfying

∥ fγ ∥∞ ≤ 2 for all γ.

Proposition 28 implies Theorem 32. We present an algorithm incorporating a broad-narrow argument. For
each k, 1 ≤ k ≤ N, recall that {τk} is a collection of canonical ∼ R−1/3

k × R−2/3
k × R−1

k moment curve
blocks. Write ℓ(τ )= r−1 to denote that τ is a canonical r−1

× r−2
× r−3 moment curve block.

Step 1 of the algorithm is as follows. Let Eε be a constant we choose to be larger than 10Cε, where
Cε is from Lemma 7. We have the broad/narrow inequality

| f (x)| ≤ 4Eε max
τ1

| fτ1(x)| + R2ε max
d(τ i

1,τ
j

1 )≥EεR−1/3
1

| fτ 1
1
(x) fτ 2

1
(x) fτ 3

1
(x)|1/3, (24)

where the second term is the maximum over 3-tuples of τ1 which are pairwise ≥ EεR−1/3
1 -separated. In-

deed, suppose that the set {τ1 : | fτ1(x)|≥ R−1/3
1 maxτ ′

1
| fτ ′

1
(x)|} has at least 3Eε elements. Then we can find

three τ 1
1 , τ

2
1 , τ

3
1 which are pairwise ≥ EεR−1/3

1 -separated and satisfy | f (x)|≤ R2ε
| fτ 1

1
(x) fτ 2

1
(x) fτ 3

1
(x)|1/3.

If there are fewer than 3Eε elements, then | f (x)| ≤ 3Eε maxτ ′

1
| fτ ′

1
(x)| + maxτ ′

1
| fτ ′

1
(x)|.

Suppose that

|Uα| ≤ 2
∣∣{x ∈ Uα : max

τ1
| fτ1(x)| ≤ α

}∣∣.
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If this does not hold, then proceed to Step 2 of the algorithm. Further suppose that there are blocks τ i
1

which satisfy d(τ i
1, τ

j
1 )≥ EεR−1/3

1 and

|Uα| ≲ R3ε∣∣{x ∈ Uα : α ≤ 2R2ε
| fτ 1

1
(x) fτ 2

1
(x) fτ 3

1
(x)|1/3, max

τ1
| fτ1(x)| ≤ α

}∣∣. (25)

If (25) does not hold, then proceed to Step 2 of the algorithm. Assuming (25), apply Proposition 28 to
get the inequality

α6+2/β
|Uα| ≲ε RO(ε)R2β+1

∑
γ

∥ fγ ∥2
2,

which terminates the algorithm.
Next, we describe step k of the algorithm for k ≥ 2 and R2/3

k−1 ≤ R1−β. The input for step k is

|Uα| ≲ε (log R)k−1∣∣{x ∈ Uα : α ≲ (log R)k−1 max
τk−1

| fτk−1(x)|
}∣∣. (26)

For each τk−1, we have the broad-narrow inequality

| fτk−1(x)| ≤ 2Eε max
τk⊂τk−1

| fτk (x)| + R2ε max
τ i

k⊂τk−1

d(τ i
k ,τ

j
k )≥EεR−1/3

k

| fτ 1
k
(x) fτ 2

k
(x) fτ 3

k
(x)|1/3.

Either proceed to Step k + 1 or assume that

|Uα| ≲ (log R)k−1∣∣{x ∈ Uα : α ≲ (log R)k−1 max
τk−1

| fτk−1(x)|, max
τk

| fτk (x)| ≤ α
}∣∣.

Again, either proceed to Step k + 1 or assume further that there are τ i
k ⊂ τk−1 which are pairwise

≥ EεR−1/3
k -separated and satisfy

|Uα| ≤ (log R)k R3ε
∑
τk−1

∣∣{x ∈ Uα : α ≲ (log R)k−1 Rε| fτ 1
k
(x) fτ 2

k
(x) fτ 3

k
(x)|1/3, max

τk
| fτk (x)| ≤ α

}∣∣.
By rescaling for the moment curve, there exists a linear transformation T so that | fτ i

k
◦ T | = |gτ i

k
|, where

the τ i
k are pairwise ≳ EεR−1/3

1 -separated blocks and g is Fourier supported in the anisotropic neighborhood
M3(R−1/3

k−1 Rβ, R−1
k−1 R). Indeed, suppose that τk−1 is the l-th piece

τk−1 = {(ξ1, ξ2, ξ3) : l R−1/3
k−1 ≤ ξ1 < (l + 1)R−1/3

k−1 , |ξ2 − ξ 2
1 | ≤ R−2/3

k−1 , |ξ3 − 3ξ1ξ2 + 2ξ 3
1 | ≤ R−1

k−1}.

Since the Fourier support of f is in M3(Rβ, R) by hypothesis, the Fourier support of fτk−1 is in τk−1 ∩

M3(Rβ, R). Define the affine transformation L(ξ1, ξ2, ξ3) by

ξ1 7→ R1/3
k−1(ξ1 − l R−1/3

k−1 ),

ξ2 7→ R2/3
k−1(ξ2 − l2 R−2/3

k−1 )− 2l R1/3
k−1(ξ1 − l R−1/3

k−1 ),

ξ3 7→ Rk−1(ξ3 − l3 R−1
k−1)− 3l R2/3

k−1(ξ2 − l2 R−2/3
k−1 )+ 3l2 R1/3

k−1(ξ1 − l R−1/3
k−1 ).

This affine map satisfies L(τk−1 ∩M3(Rβ, R))= M3(R−1/3
k−1 Rβ, R−1

k−1 R). If we write L−1(ξ1, ξ2, ξ3)=

A(ξ1, ξ2, ξ3) + b, where A is a linear map, then the rescaling map T above is equal to (A−1)∗. In
this step, we have assumed that Rk−1 R−1

≤ R1/3
k−1 R−β. One may then verify that L(γ ) = γ are
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∼ R1/3
k−1 R−β

×R2/3
k−1 R−2β

×Rk−1 R−1 small caps partitioning M3(R−1/3
k−1 Rβ, R−1

k−1 R). Apply Proposition 28
to the rescaled functions to obtain the inequality

α6+2/β ′∣∣{x ∈ Uα : α ≲ (log R)k−1 Rε|gτ 1
k
(x)gτ 2

k
(x)gτ 3

k
(x)|1/3, max

τ k⊂τ k−1
|gτ k (x)| ≤ α

}∣∣
≲ε R3ε+10ε(R−1

k−1 R)2β
′
+1

∑
γ

∥gγ ∥2
2,

where β ′
∈

[ 1
3 , 1

]
is defined by (Rk−1 R−1)β

′

= R1/3
k−1 R−β. By undoing the rescaling change of variables

and summing over τk−1, this implies

α6+2/β ′

|Uα| ≲ε R13ε(R−1
k−1 R)2β

′
+1

∑
γ

∥ fγ ∥2
2.

It suffices to verify that (R−1
k−1 R)2β

′
+1 ⪅ R2β+1/α2/β−2/β ′

. Use the upper bound α ⪅ R−1/3
k−1 Rβ from

the step we are considering so that it suffices to verify (R−1
k−1 R)2β

′
+1(R−1/3

k−1 Rβ)2/β−2/β ′

⪅ R2β+1, which
simplifies to R−2β ′

−1−2/3β+2/3β ′

k−1 ⪅ R2β−2β ′
−2+2β/β ′

. Using the definition of β ′, this further simplifies to
R−2β ′

−1−2/3β+2/3β ′

k−1 ⪅ R(−β
′
+1/3)(2+2/β ′)

k−1 , which is true since β ≤ 2. In this case, the algorithm terminates.
Next, we describe step k with k ≥ 2 and R2/3

k−1 ≥ R1−β. The input for step k is

|Uα| ≤ (log R)k−1∣∣{x ∈ Uα : α ≲ (log R)k−1 max
τk−1

| fτk−1(x)|
}∣∣. (27)

Let {ζ } be a partition of M3(Rβ, R) into ∼ R2/3
k−1 R−1

× R4/3
k−1 R−2

× R−1 small caps. By Proposition 31,
we may assume that there are versions f̃τk−1 of the fτk−1 whose wave packets corresponding to ζ have
been localized and pigeonholed and which satisfy

|Uα| ≲ (log R)k
∣∣{x ∈ Uα : α ≲ (log R)k max

τk−1
| f̃τk−1(x)|

}∣∣.
As in the previous case, either we proceed to Step k + 1 or we have

|Uα| ≤ (log R)k R3ε
∑
τk−1

∣∣{x ∈ Uα : α ≲ (log R)k | f̃τ 1
k
(x) f̃τ 2

k
(x) f̃τ 3

k
(x)|1/3, max

τk⊂τk−1
| f̃τk (x)| ≤ α

}∣∣.
By the same rescaling argument as above, let T be the linear transformation so that | f̃τ i

k
◦T |= |gτ i

k
| and the

τ i
k are pairwise ≳ EεR−1/3

1 -separated blocks and g is Fourier supported in the anisotropic neighborhood
M3(R−1/3

k−1 Rβ, R−1
k−1 R). Note that each | f̃ζ ◦ T | = |gζ |, where ζ is an Rk−1 R−1

× R2
k−1 R−2

× Rk−1 R−1

small cap. Apply Proposition 28 to the rescaled functions (maxζ ∥gζ∥∞)
−1(gτ 1

k
+ gτ 2

k
+ gτ 3

k
) to obtain

the inequality

α8∣∣{x ∈ Uα : α ≤ (log R)k |gτ 1
k
(x)gτ 2

k
(x)gτ 3

k
(x)|1/3, max

τ k
|gτ k (x)| ≤ α

}∣∣
≲ε R10ε(R−1

k−1 R)2(1)+1 max
ζ

∥gζ∥6
∞

∑
ζ

∥gζ∥2
2.

By undoing the rescaling change of variables and summing over τk−1, this implies

α8
|Uα| ≲ε R10ε(R−1

k−1 R)3(max
ζ

∥ f̃ζ∥∞)
6
∑
ζ

∥ f̃ζ∥2
2.
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By properties of the pigeonholing lemma, for each ζ , (maxζ ∥ f̃ζ∥∞)
6
∥ f̃ζ∥2

2 ≲ε R3ε(R2/3
k−1 R−1 Rβ)2∥ fζ∥6

6.
By cylindrical L6-decoupling (Theorem 26), for each ζ ,

∥ fζ∥6
6 ≲ε Rε

(∑
γ⊂ζ

∥ fγ ∥2
6

)3

≲ε Rε(R2/3
k−1 R−1 Rβ)2

∑
γ⊂ζ

∥ fγ ∥2
2.

The summary of step k in this case is that

α8
|Uα| ≲ε R3ε+20ε(R−1

k−1 R)3(R2/3
k−1 R−1 Rβ)4

∑
γ

∥ f̃γ ∥2
2.

It remains to verify that R−1/3
k−1 R4β−1 ⪅ R2β+1/α2/β−2. This is true since R1/3

k−1 ≥ 1 and α ≤ Rβ. The
algorithm terminates in this case.

The final step, if the algorithm has not terminated yet, gives the case

|Uα| ≲ (log R)N
∣∣{x ∈ Uα : α ≲ (log R)N max

τN
| fτN (x)|

}∣∣.
Write τN = θ and use trivial inequalities:

α6+2/β∣∣{x ∈ Uα : α ≲ (log R)N max
θ

| fθ (x)|
}∣∣ ≲ε (log R)N

∑
θ

∫
| fθ |6+2/β

≲ε (log R)N
∑
θ

max
θ

∥ fθ∥4+2/β
∞

∫
| fθ |2

≲ε (log R)N
∑
θ

max
θ
(#γ ⊂ θ)4+2/β

∫ ∑
γ⊂θ

| fγ |2

≲ε (log R)N R(β−1/2)(4+2/β)
∑
γ

∥ fγ ∥2
2,

where we used Lemma 7 for the L∞ bound. Technically, our algorithm could give us a version of f whose
wave packets have been pigeonholed at a few scales. In that case, we incorporate a process analogous to
that of “unwinding the pruning” from the proof of Proposition 28 into the trivial argument above. Noting
that N ∼ ε−1, and (log R)N (log R)N ≲ε Rε, we are done since (β − 1/2)(4 + 2/β) ≤ 2β + 1, which is
equivalent to β ≤ 1. □

3.4. Proof that Theorem 32 implies Theorem 3. We divide the work into two propositions. First, in
Proposition 33, we show that Theorem 32 implies the critical exponent p = 6+2/β version of Theorem 3.
Then, we show that the general Theorem 3 follows from the critical exponent case.

Proposition 33. Theorem 3 holds for the critical exponent p = 6 + 2/β.

Proof. Fix p = 6 + 2/β. By Lemma 29, it suffices to bound the L p norm of f on a fixed ball BRmax(2β,1) .
By Lemma 30, there is a constant α > 0 (which we may assume is ≥ Cε(log R)R−100 maxγ ∥ fγ ∥∞) so
that it suffices to bound α p

|Uα| for Uα = {x ∈ BRmax(2β,1) : α ≤ | f (x)|}. Finally, by Proposition 31, we may
replace f by a pigeonholed and localized version f̃ . One of the properties of the pigeonholed version is
that, for all γ, either ∥ f̃γ ∥∞ ∼ A or ∥ f̃γ ∥∞ = 0 for some constant A.
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Apply Theorem 32 to the function f̃ /A to obtain the inequality

(α/A)p
|Uα| ≲ε R20εR2β+1

∑
γ

∥ f̃γ /A∥
2
L2(R3)

.

It remains to note that by (20) from the pigeonholing proposition,

Ap−2
∥ f̃γ ∥2

L2(Rmax(2β,1))
≲ R6εAp#T̃γ Rβ+2β+1 ≲ R6ε

∥ f̃γ ∥
p
L p(R3)

.

Since | f̃γ | ≲ | fγ | for each γ, this concludes the proof. □

Next, we show that Theorem 3 for general p follows from Theorem 3 at the critical exponent p =6+2/β
via an interpolation argument with L2 and L∞ estimates.

Proof of Theorem 3. Let p ≥ 2. Repeat the initial steps in the proof of Proposition 33 so that it suffices to
prove

α p
|Uα| ≲ε Rε(Rβ(p/2−1)

+ Rβ(p−4)−1)
∑
γ

∥ fγ ∥
p
L p(R3)

,

where f has been pigeonholed and localized as in Proposition 31. First suppose that 2 ≤ p ≤ 6 + 2/β.
By Proposition 33, we have

α6+2/β
|Uα| ≲ε RεR2β+1

∑
γ

∥ fγ ∥
6+2/β
L6+2/β (R3)

.

Write A ∼ maxγ ∥ fγ ∥∞. We would be done if R2β+1 A6+2/β−p ≲ Rβ(p/2−1)α6+2/β−p, which simplifies
to Rβ/2 A ≲ α. If this does not hold, then using L2 orthogonality,

α p
|Uα| ≲ Rβ(p/2−1)Ap−2

∑
γ

∥ fγ ∥2
2.

By (20), Ap−2
∥ fγ ∥2

2 ≲ R3ε
∥ fγ ∥

p
p, which finishes this case.

Next, assume that 6 + 2/β ≤ p. Then by Proposition 33,

α p
|Uα| ≲ε RεR2β+1

∑
γ

α p−6−2/β
∥ fγ ∥

6+2/β
6+2/β .

We would be done if R2β+1α p−6−2/β ≲ Rβ(p−4)−1 Ap−6−2/β, which simplifies to α ≲ Rβ A. Since
α ≲ | f (x)| =

∣∣∑
γ fγ (x)

∣∣ and #γ ≲ Rβ, this is true. □
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