
ANALYSIS & PDE
Volume 17 No. 2 2024

msp



Analysis & PDE
msp.org/apde

EDITOR-IN-CHIEF

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

BOARD OF EDITORS

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Zbigniew Błocki Uniwersytet Jagielloński, Poland
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ON A SPATIALLY INHOMOGENEOUS NONLINEAR FOKKER–PLANCK
EQUATION: CAUCHY PROBLEM AND DIFFUSION ASYMPTOTICS

FRANCESCA ANCESCHI AND YUZHE ZHU

We investigate the Cauchy problem and the diffusion asymptotics for a spatially inhomogeneous kinetic
model associated to a nonlinear Fokker–Planck operator. We derive the global well-posedness result with
instantaneous smoothness effect, when the initial data lies below a Maxwellian. The proof relies on the
hypoelliptic analog of classical parabolic theory, as well as a positivity-spreading result based on the
Harnack inequality and barrier function methods. Moreover, the scaled equation leads to the fast diffusion
flow under the low field limit. The relative phi-entropy method enables us to see the connection between
the overdamped dynamics of the nonlinearly coupled kinetic model and the correlated fast diffusion. The
global-in-time quantitative diffusion asymptotics is then derived by combining entropic hypocoercivity,
relative phi-entropy, and barrier function methods.
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1. Introduction

We consider the kinetic Fokker–Planck operator LFP := ∇v · (∇v + v) and the spatially inhomogeneous
nonlinear drift-diffusion model{

(∂t + v · ∇x) f (t, x, v) = ρ
β

f (t, x) LFP f (t, x, v),

f (0, x, v) = fin(x, v),
(1-1)

for an unknown f (t, x, v) ≥ 0 with t ∈ R+, x ∈ Td or Rd, v ∈ Rd, where Td denotes the d-dimensional
torus with unit volume, the constant β ∈ [0, 1], and

ρ f (t, x) :=

∫
Rd

f (t, x, v) dv.
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Given a constant ϵ ∈ (0, 1), the equation under the low field scaling t 7→ ϵ2t , x 7→ ϵx reads{
(ϵ∂t + v · ∇x) fϵ(t, x, v) =

1
ϵ
ρ

β

fϵ (t, x) LFP fϵ(t, x, v),

fϵ(0, x, v) = fϵ,in(x, v).
(1-2)

Our aim is to show the global well-posedness and the trend to equilibrium with smoothness a priori
estimates for (1-1), and the quantitative asymptotic dynamics of (1-2) as ϵ tends to zero.

1A. Main results. Let us recall that a classical solution of an evolution equation is a nonnegative function
satisfying the equation pointwise everywhere and matching the initial data continuously. Unless otherwise
specified, any solution we consider below is intended in the classical sense. For k ∈ N, define Ck(�) to
be the set of functions having all derivatives of order less than or equal to k continuous in the domain �.
For α ∈ (0, 1), we note that Cα(�) is the classical Hölder space on � with exponent α. In addition, we
define the measure dm := dx dµ, where

µ(v) := (2π)−d/2e−|v|
2/2 and dµ := µ dv

denote the Gaussian function and the Gaussian measure, respectively. A function that takes the form
of Cµ(v) for some constant C > 0 is called a Maxwellian.

Theorem 1.1. Let the space domain �x be equal to Td or Rd and the constants 0 < λ < 3 be given.

(i) If fin ∈ C0(�x × Rd) satisfies 0 ≤ fin ≤ 3µ in �x × Rd, then there exists a solution f to the Cauchy
problem (1-1) such that 0 ≤ f ≤ 3µ in R+ × �x × Rd. Moreover, for any ν ∈ (0, 1), k ∈ N, and any
compact subset K ⊂ (0, T ]× �x , there is some constant CT,ν,k,K > 0 depending only on d , β, λ, 3, T ,
ν, k, K , and the initial data such that

∥µ−ν f ∥Ck(K×Rd ) ≤ CT,ν,k,K .

Additionally, if fin is Hölder continuous and ρ fin ≥ λ in �x , then the solution that lies below any
Maxwellian is unique.

(ii) For �x = Td, if the initial data satisfies λµ ≤ fin ≤ 3µ in Td
× Rd, then, for any k ∈ N, there exists

some constant c > 0 depending only on d , β, λ, 3 and some constant Ck > 0 depending additionally
on k such that, for any t ≥ 1, ∥∥∥∥ f − µ

∫
fin dx dv

√
µ

∥∥∥∥
Ck(Td×Rd )

≤ Cke−ct.

For �x = Rd, if the initial data satisfies λµ ≤ fin ≤ 3µ in Rd
× Rd and fin − M1µ ∈ L1(Rd

× Rd) for
some constant M1 > 0, then there is some constant C ′ > 0 depending only on d, β, λ, 3, M1 such that∥∥∥∥ f − M1µ

√
µ

∥∥∥∥
L2(Rd×Rd )

≤ C ′(1 + ∥ fin − M1µ∥L1(Rd×Rd ))t
−d/4.

Remark 1.2. If the general measurable initial data fin satisfies fin ≤ 3µ and an extra locally uniform
lower bound assumption (see (4-14) below for a precise description), the existence of solutions still holds
in some weak sense, as pointed out in Remark 4.9 below.
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In order to describe the diffusion asymptotics of (1-2), we introduce the (Bregman) distance character-
ized by the relative phi-entropy functional Hβ .

Definition 1.3. Let β ∈ [0, 1]. For any measurable functions h1 ≥ 0 and h2 > 0 defined in Td
× Rd, the

relative phi-entropy of h1 with respect to h2 is defined by

Hβ(h1 |h2) :=

∫
Td×Rd

(ϕβ(h1) − ϕβ(h2) − ϕ′

β(h2)(h1 − h2)) dm,

where ϕβ : R+ → R is defined by

ϕβ(z) :=
1

1 − β
(z2−β

− (2 − β)z + 1 − β)

for β ∈ [0, 1) and ϕ1(z) := z log z − z + 1.

Theorem 1.4. Let the constants α0 ∈ (0, 1) and 0 < λ < 3 be given, and consider a sequence of functions
{ fϵ,in}ϵ∈(0,1) ⊂ Cα0(Td

× Rd) satisfying 0 ≤ fϵ,in ≤ 3µ in Td
× Rd and ρ fϵ,in ≥ λ in Td. Let fϵ be the

solution to (1-2) associated with the initial data fϵ,in.

(i) If there exists some constant ϵ′
∈ (0, 1) and some function ρin ∈ Cα0(Td) valued in [λ, 3] such that

Hβ(µ−1 fϵ,in |ρin) ≤ ϵ′,

then there exist constants M, m > 0 depending only on d , β, λ, 3, α0, ∥ρin∥Cα0 (Td ), and ∥ fϵ,in∥Cα0 (Td×Rd )

such that, for any T > 0,

∥µ−1 fϵ − ρ∥L∞([0,T ];L2(Td×Rd , dm)) ≤ MeMT (ϵ + ϵ′)m,

where ρ(t, x) for (t, x) ∈ R+ × Td is the solution to the fast diffusion equation{
∂tρ(t, x) = ∇x · (ρ−β(t, x)∇xρ(t, x)),

ρ(0, x) = ρin(x).
(1-3)

(ii) If we additionally assume that fϵ,in ≥ λµ in Td
× Rd, then there exist some constants M ′, m′ > 0 with

the same dependence as M and m such that

∥µ−1 fϵ − ρ∥L∞(R+;L2(Td×Rd , dm)) ≤ M ′(ϵ + ϵ′)m′

.

1B. Strategy and background.

1B1. Cauchy problem of the nonlinear model. The well-posedness of the nonlinear model (1-1) was
first studied in [Imbert and Mouhot 2021] mixing Hölder and Sobolev spaces in the torus, and in [Liao
et al. 2018] under the regime of perturbation to the global equilibrium in the whole space. We develop
well-posedness with rough initial data by means of the combination of the hypoelliptic analog of the
parabolic theory with a positivity-spreading result; in particular, the technique we employ allows us to
drop the smallness and lower bound assumptions asserted in Theorem 1.1. In addition, the global behavior
of solutions to (1-1) is derived under the assumption of upper and lower bounds on the initial data only.
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When the drift-diffusion coefficient ρ
β

f in (1-1) is proportional to the local mass of the solution — that
is when β = 1 — (1-1) and (1-2) have the same quadratic homogeneity as the Landau equation, but simpler
global bounds and conservation laws. Due to the complex structure of the Landau equation, most of the
existing results for its classical solutions are about the global theory under the near Maxwellian equilibrium
regime [Guo 2002; Kim et al. 2020] and about the local well-posedness associated with low regularity
and nonperturbative initial data [Henderson et al. 2019; 2020a]. By contrast, the boundedness from above
and from below by Maxwellians of the initial data will be preserved along time for the solutions to (1-1)
and (1-2), and the lack of conservation of momentum and energy of (1-2) reduces its hydrodynamic limit
to the fast diffusion flow (1-3) rather than the Navier–Stokes dynamics of the scaling limit of the Landau
equation, which makes its Cauchy problem and global behavior more tractable in a very general setting.

To address the nonlinear Cauchy problem subject to only one requirement that the initial data lies
below a Maxwellian, we propose a method that involves several ingredients. First, in Section 3 we carry
out a preliminary study on the linear counterpart of (1-1) — that is the Cauchy problem associated to the
Kolmogorov operator

L1 := ∂t + v · ∇x − tr(A(t, x, v)D2
v · ) + B(t, x, v) · ∇v, (1-4)

where the coefficients including the entries of the positive definite d × d real symmetric matrix A and
the d-dimensional vector B are Hölder continuous (B is not necessarily bounded over v ∈ Rd). Even if
the well-posedness theory for the Cauchy problem associated to the linear operator (1-4) was already
well developed in some sense in the existing literature (see [Anceschi and Polidoro 2020; Manfredini
1997]), the Hölder spaces (see Definition 2.3) considered in those works are different from those studied
in [Imbert and Mouhot 2021; Imbert and Silvestre 2021] (see Definition 2.1), which are the ones we
study. Indeed, in contrast to [Imbert and Mouhot 2021], the (Schauder-type) a priori estimates proved in
the previous literature are weaker and not appropriate for bootstrap arguments proving higher regularity
for nonlinear problems (see Section 4C).

Secondly, the treatment of the existence issue for (1-1) in Hölder spaces is based on a fixed-point
argument, where the compactness is provided by hypoelliptic regularization results; see Section 4B. A
breakthrough on such a priori estimates for spatially inhomogeneous kinetic equations with a quasilinear
diffusive structure in velocity was obtained in [Golse et al. 2019] and [Henderson and Snelson 2020;
Imbert and Mouhot 2021], where the authors prove the kinetic (hypoelliptic) counterparts of the De Giorgi–
Nash–Moser theory and the Schauder theory for classical elliptic equations (see for instance [Gilbarg and
Trudinger 2001]), respectively. One may refer to [Mouhot 2018] for a summary. Armed with the Schauder
estimate developed in [Imbert and Mouhot 2021] in kinetic Hölder spaces and the bootstrap procedure
developed in [Imbert and Silvestre 2022] adapted to this case, we are then able to derive instantaneous
C∞ regularization for the solutions to (1-1) in Section 4C, provided that the solution is bounded from
above and bounded away from vacuum, which guarantees the ellipticity in the velocity variable for (1-1).

Thirdly, in order to remove the lower bound assumption on the initial data, in Section 4A we
establish a self-generating lower bound result showing that the positivity of solutions spreads ev-
erywhere instantaneously. Its proof is based on repeated applications of the spreading of positivity
forward in time (see Lemma 4.5) and the spreading for all velocities (see Lemma 4.6), as proposed in
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[Henderson et al. 2020b]. On the one hand, the barrier function argument will be used in the same spirit
as [Henderson et al. 2020b] to show Lemma 4.5. Indeed, a lower (resp. upper) barrier for a certain
equation is a subsolution (resp. supersolution) of the equation which bounds its solution from below (resp.
above) on the boundary; it then follows from the maximum principle that the barrier function performs as
a lower (resp. upper) bound of the solution. On the other hand, combining the local Harnack inequality
obtained in [Golse et al. 2019] with the construction of a Harnack chain yields Lemma 4.6. We remark
that the idea of the Harnack chain was first used in [Moser 1964], and an example of its application to
Kolmogorov equations can be found in [Anceschi et al. 2019]. Essentially, the spreading of positivity
can be seen as a lower bound estimate of the fundamental solution, which is thus related to the result in
[Henderson et al. 2019], where the authors applied a probabilistic method.

A subtle point of the lower bound result lies in the possibilities of the degeneracy of solutions as
t → 0+ or t → ∞, which leads to two delicate issues. First, with the same difficulty as mentioned in
[Henderson et al. 2020a], in order to prove the uniqueness of the Cauchy problem (1-1), the nondegeneracy
of diffusion up to the initial time is required so that the a priori estimates can be still applicable. We
remark that, generally speaking, deriving uniqueness of solutions to nonlinear equations in rough spaces
is always a classical difficulty, and the presence of a vacuum sometimes gives rise to nonuniqueness
phenomenon even for the limiting equation (1-3); see for instance [Daskalopoulos and Kenig 2007].
Under the additional assumptions of Hölder continuity and absence of vacuum on the initial data, we
achieve the uniqueness by using the scaling argument and Grönwall’s lemma, since the Hölder estimate
around the initial time implies that the integrand in the inequality of Grönwall’s type is improved to be
integrable with respect to the time variable; see the proof of Proposition 4.11 for more details. Second,
we are only able to show the convergence to equilibrium if the drift-diffusion coefficient ρ

β

f decays slower
than t−1 as t → ∞ in Proposition 5.1. Therefore, an additional lower Maxwellian bound on the initial
data is imposed in Theorem 1.1(ii) and Theorem 1.4(ii) to ensure the solutions will be away from the
vacuum uniformly along time. It would be expected that such additional lower bound assumption could
be removed, especially when β is small.

1B2. Long time behavior. The drift-diffusion operator LFP acts only on the velocity variable and ceases
to be dissipative on its unique steady state µ, which also ensures that the null space of LFP is spanned
by µ and the conservation law of mass is satisfied. Consequently, the convergence to equilibrium is
to be expected. With the help of the global smoothness a priori estimates, we are able to pass from
the exponential convergence to equilibrium in the L2-framework to the uniform convergence in C∞

in Section 5A, when the spatial domain is compact — that is the periodic box Td. Therein, the L2-
convergence is obtained by the L2-hypocoercivity under a macro-micro (fluid-kinetic) decomposition
scheme, which suggests the construction of some proper entropy (Lyapunov) functional that would
provide an equivalent L2-norm for solutions. The key ingredient is to control the macroscopic part by
means of the microscopic part in view of the decomposition. This hypocoercive theory was studied in
[Esposito et al. 2013; Dolbeault et al. 2015; Hérau 2018] via different approaches, while their ideas are
essentially the same. In [Esposito et al. 2013], the authors intended to develop the nonlinear energy
estimate in an L2-to-L∞ framework. In [Dolbeault et al. 2015] and [Hérau 2018], the authors studied
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the L2-hypocoercivity theory in an abstract setting and in the framework of pseudodifferential calculus,
respectively. In addition, if the spatial domain is Rd — meaning that it is not confined to a compact
region — then the convergence rate slows down to an algebraic decay, for which the hypocoercive theory
was captured in [Bouin et al. 2020]. We remark that the L2-framework allows us to avoid some difficulties
from the nonlinearity of the operator ρ

β

f LFP f , in contrast with H 1-entropic hypocoercivity methods
(see for instance [Villani 2009]).

1B3. Diffusion asymptotics. The diffusion approximation serves as a simplification of collisional kinetic
equations when the mean-free path is much smaller than the typical length of observation in a long time
scale. This approximation for linear Fokker–Planck models can be traced back to [Degond and Mas-Gallic
1987], where the authors applied the Hilbert expansion method. One is also able to achieve the diffusion
limit for (1-2) in some weak sense by applying a similar strategy to the one given in [El Ghani and
Masmoudi 2010]. However, weak convergence is sometimes not appropriate for application, as a precise
description of the convergence is not given. Still, the nonlinearity of the term ρ

β

fϵ LFP fϵ in (1-2) associated
with nonperturbative initial data reveals some difficulties when deriving a quantitative convergence.

In order to overcome this difficulty, in Section 5B we will rely on the phi-entropy of solutions relative
to their limit to see the finite-time asymptotics on the torus. The relative entropy method, which heavily
relies on the regularity of solutions to the target equation, has become an effective tool in the study of
hydrodynamic limits since [Bardos et al. 1993; Yau 1991] (see also [Saint-Raymond 2009]). The method
applied to the diffusion asymptotics of the kinetic Fokker–Planck equation of the type with linear diffusion
can be found in [Markou 2017]. The so-called phi-entropy (relative to the global equilibrium) was used to
study the convergence of certain kinds of Fokker–Planck equations; see for instance [Arnold et al. 2001;
Dolbeault and Li 2018]. Finally, combining the barrier function method with a careful treatment of the
regularity estimate of the target equation enables us to deal with the asymptotic dynamics for the cases
associated with general Hölder continuous initial data.

1C. Physical motivation. The spatially inhomogeneous Fokker–Planck equation (1-1) arises from model-
ing the evolution of some system of a large number of interacting particles from the statistical mechanical
point of view. These models appear for instance in the study of plasma physics and biological dynamics;
see [Chavanis 2008; Villani 2002]. Its solution can be interpreted as the probability density of the particles
lying at the position x at time t with velocity v. The scaled model (1-2) for small ϵ describes the evolution
of the particle density in the small mean-free path and long-time regime, where the nondimensional
parameter ϵ ∈ (0, 1) designates the ratio between the mean-free path (microscopic scale) and the typical
macroscopic length. The limiting equation (1-3) characterizes its macroscopic dynamics.

From the perspective of a stochastic process {(X t , Vt) : t ≥ 0} driven by a Brownian motion {Bt : t ≥ 0}{
dX t = Vt dt,

dVt = ρ
β

f (t, X t)Vt dt +

√
2ρ

β

f (t, X t) dBt ,

the dual equation describing the dynamics of {(X t , Vt) : t ≥ 0} is given by (1-1); see the review paper
[Chandrasekhar 1943]. Indeed, the nonlinear term ρ

β

f LFP f models the collisional interaction of the
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particles, where the mobility of these particles is hampered by their aggregation. More precisely, the
nonlinear dependence on the drift-diffusion coefficient ρ

β

f translates the fact that the effect of friction in
the interaction is positively correlated to the local mass of particles occupying the position x at time t .
Moreover, the low field scaling t 7→ ϵ2t , x 7→ ϵx of (1-1) formally implies (1-2). As ϵ tends to zero, its
spatial diffusion phenomena are characterized by (1-3).

Regarding its physical interpretation, we point out that the factor multiplying the time derivative
in (1-2) takes into account the long time scale. The inverse of the factor multiplying ρ

β

fϵ LFP fϵ stands
for the scaled average distance traveled by particles between each collision, and it is usually referred to
as mean-free path. In the small mean-free path regime, it was noticed in [Chandrasekhar 1943] that the
spatial variation occurs significantly only under the long time scale that is consistent with the particle
motion. In such an overdamped process, also called a low field limit or diffusion limit, the statistics of
the particle motion translates into the macroscopic behavior of the particle system.

Finally, we recall that the associated phi-entropy introduced in Definition 1.3 is also known as Tsallis
entropy in the physics community, which generalizes the Boltzmann–Gibbs entropy (the phi-entropy with
β = 1) in nonextensive statistical mechanics [Tsallis 1988]. It gives some hints for the formulation of
the correlated diffusion, where the index β measures the degree of nonextensivity and nonlocality of the
system; see [Tsallis 2009].

1D. Organization of the paper. The article is organized as follows. In Section 2, we recall some basic
notions related to kinetic Hölder spaces that are adapted to the Fokker–Planck equations. Section 3 is
devoted to the study of the linear Fokker–Planck equation with Hölder continuous coefficients. The
well-posedness result Theorem 1.1(i) is proved in Section 4. The asymptotic behaviors, including
Theorem 1.1(ii) and Theorem 1.4, are proved in Section 5.

2. Preliminaries

This section is devoted to basic notation, including the invariant structure and the kinetic Hölder space for
the equations we are concerned with. Instead of the usual parabolic scaling and translations, the invariant
scaling and transformation associated with the Kolmogorov operator L1 (see (1-4)) is replaced by kinetic
scaling and Galilean transformations, respectively. It then turns out that the appropriate Hölder space as
well as its norm should be adapted to the new scaling and transformation.

2A. The geometry associated to Kolmogorov operators. Let z := (t, x, v) ∈ R × Rd
× Rd. We define the

kinetic scaling
Sr (t, x, v) := (r2t, r3x, rv) for r > 0

and the Galilean transformation

(t0, x0, v0) ◦ (t, x, v) := (t0 + t, x0 + x + tv0, v0 + v) for (t0, x0, v0) ∈ R × Rd
× Rd.

With respect to the product ◦ , we are able to define the inverse of z as z−1
:= (−t, −x + tv, −v). In view

of this structure of scaling and transformation, it is natural to define the cylinder centered at the origin of
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radius r > 0 as
Qr := (−r2, 0] × Br3(0) × Br (0).

More generally, the cylinder centered at z0 = (t0, x0, v0) with radius r is defined by

Qr (z0) := {z0 ◦ Sr (z) : z ∈ Q1} = {(t, x, v) : t0 − r2 < t ≤ t0, |x − x0 − (t − t0)v0| < r3, |v − v0| < r}.

Roughly speaking, for fixed z0 ∈ R1+2d, the Kolmogorov operator L1 is invariant under the kinetic scaling
and left-invariant under the Galilean transformation. It means that if f is a solution to the equation
L1 f = 0 in Qr (z0), then f (z0 ◦ Sr ( · )) solves an equation of the same ellipticity class in Q1.

In addition, the associated quasinorm ∥ · ∥ is defined by

∥z∥ := max{|t |1/2, |x |
1/3, |v|},

and we notice that ∥Sr (z)∥ = r∥z∥ and ∥z0 ◦ z∥ ≤ 3(∥z0∥ + ∥z∥). For further information on the non-
Euclidean geometry associated to Kolmogorov operators, one may refer to [Anceschi and Polidoro 2020;
Imbert and Silvestre 2021].

2B. Kinetic Hölder spaces and differential operators. The proper kinetic Hölder space and kinetic degree
of basic differential operators should be adapted to the above definitions such that they are homogeneous
under these transformations. Their definitions were introduced in [Imbert and Silvestre 2021] (see also
[Imbert and Mouhot 2021]), and we recall them below.

Given a monomial m(t, x, v) = tk0 xk1
1 · · · xkd

d v
kd+1
1 · · · v

k2d
d , we define its kinetic degree

degkin(m) = 2k0 + 3
d∑

j=1

k j +

2d∑
j=d+1

k j .

Any polynomial p ∈ R[t, x, v] can be uniquely written as a linear combination of monomials, and its
kinetic degree degkin(p) is defined by the maximal kinetic degree of the monomials appearing in p. This
definition is justified by the fact that p(Sr (z)) = rdegkin(p) p(z).

Definition 2.1. Let the constant α > 0 and the open subset � ⊂ R × Rd
× Rd be given. We say a

function f : � → R is Cα
l -continuous at a point z0 ∈ � if there exists a polynomial p0 ∈ R[t, x, v] with

degkin(p0) < α and a constant C > 0 such that, for any z ∈ � with z0 ◦ z ∈ �,

| f (z0 ◦ z) − p0(z)| ≤ C∥z∥α. (2-1)

If this property holds for any z0, z on each compact subset of �, then we say f ∈ Cα
l (�). If the constant C

in (2-1) is uniformly bounded for any z0, z ∈ �, we define the smallest value of C as the seminorm
[ f ]Cα

l (�) and the norm ∥ f ∥Cα
l (�) := [ f ]C0

l (�) + [ f ]Cα
l (�), where we additionally define C0

l (�) := C0(�),
the space of continuous functions on �, with the norm ∥ f ∥C0

l (�) := [ f ]C0
l (�) := ∥ f ∥C0(�) = ∥ f ∥L∞(�).

Remark 2.2. For α ∈ [0, 1), this Cα
l -continuity is equivalent to the standard definition of Cα-continuity

with respect to the distance ∥ · ∥. The subscript “l” of Cl stems from the definition of Hölder continuity
above, which is given in terms of a left-invariant distance with respect to the group structure of ◦ .
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We also mention another kind of Hölder space suitable for the study of Kolmogorov operators that was
first used in [Manfredini 1997].

Definition 2.3. Let α ∈ [0, 1) and � ⊂ R × Rd
× Rd be given. The space C2+α

kin (�) consists of functions
f ∈ C0

l (�) such that D2
v f , (∂t + v · ∇x) f ∈ Cα

l (�), and is equipped with the norm

∥ f ∥C2+α
kin (�) := ∥ f ∥C0

l (�) + ∥D2
v f ∥Cα

l (�) + ∥(∂t + v · ∇x) f ∥Cα
l (�).

The consistency between these two definitions is given by [Imbert and Silvestre 2021, Lemma 2.7]
(see also [Imbert and Mouhot 2021, Lemma 2.4]), a result that we state here.

Lemma 2.4. Let α ∈ (0, 1) and f ∈ C2+α
l (Q2). Then there exists some constant C > 0 depending only on

the dimension d such that

∥∇v f ∥Cα
l (Q1) ≤ C∥ f ∥C1+α

l (Q2)
and ∥D2

v f ∥Cα
l (Q1) + ∥(∂t + v · ∇x) f ∥Cα

l (Q1) ≤ C∥ f ∥C2+α
l (Q2)

.

Remark 2.5. For α > 2, one can easily check that the polynomial p0 in (2-1) has the form

p0(t, x, v) = f (z0) + (∂t + v0 · ∇x) f (z0)t + ∇v f (z0) · v +
1
2 D2

v f (z0)v · v + · · · .

In particular, if α ∈ (2, 3), the polynomial expansion is independent of the x-variable.

Remark 2.6. A subtle difference between C2
l and C2

kin comes from the fact that, for f ∈ C2
l , we have D2

v f
and (∂t + v · ∇x) f lying in L∞ rather than C0.

We will also employ the following notions of weighted Hölder norms in Section 3.

Definition 2.7. Let z = (t, x, v) ∈ � := (0, T ]× Rd
× Rd with T ∈ R+. For f ∈ Cα

l (�) with α > 0 and
σ ∈ R, we define

[ f ]
(σ )
0 := sup

z∈�

ισ [ f ]C0
l (Qι(z)), [ f ]

(σ )
α := sup

z∈�

ια+σ
[ f ]Cα

l (Qι(z)), ∥ f ∥
(σ )
α := [ f ]

(σ )
0 + [ f ]

(σ )
α ,

where ι := min{1, t1/2
} measures the distance between z and the (parabolic) boundary of �.

2C. Other notation. Throughout the article, BR denotes the Euclidean ball in Rd centered at the origin
with radius R > 0. We employ the Japanese bracket defined as ⟨ · ⟩ := (1 +| · |

2)1/2. By abuse of notation,
⟨ · ⟩ will also denote the velocity mean in Section 5.

Moreover, we assume 0 < λ < 3. We denote by C a universal constant — that is to say a constant
depending only on β, d, λ, 3, α, σ, α0 specified in context. Finally, we write X ≲ Y to mean that
X ≤ CY for some universal constant C > 0, and X ≲q Y to mean that X ≤ CqY for some Cq > 0
depending only on universal constants and the quantity q.

3. Kolmogorov–Fokker–Planck equation

This section is devoted to the study of the Cauchy problem associated to the operator (1-4),{
L1 f := (∂t + v · ∇x) f − tr(AD2

v f ) − B · ∇v f = s in (0, T ] × Rd
× Rd,

f (0, x, v) = fin(x, v) in Rd
× Rd,

(3-1)
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where the d ×d symmetric matrix A(t, x, v) and the d-dimensional vector B(t, x, v) satisfy the condition{
Aξ · ξ ≥ λ|ξ |

2 for any ξ ∈ Rd,

∥A∥Cα
l
+ ∥B∥Cα

l
≤ 3,

(3-2)

where α ∈ (0, 1) and the norm ∥ · ∥Cα
l (�) of matrix denotes the summation of the norm of each entry. The

boundedness condition at infinity means that the solution shall be bounded, which is intended for the
validity of maximum principle; see the proof of Lemma A.1 below.

The aim of this section is to solve the Cauchy problem (3-1) by virtue of the weighted Hölder norm
(Definition 2.7) and by means of the standard continuity method combined with Schauder-type estimates.
One may refer to [Gilbarg and Trudinger 2001, Subsection 6.5] for the corresponding treatment in classical
elliptic theory.

Throughout this section we work with the domain � := (0, T ]× Rd
× Rd, with T ∈ R+. We shed light

on the fact that all of the results below can be restricted to (0, T ] × Td
× Rd whenever required.

3A. Schauder estimates. In order to apply the continuity method, first of all one needs to prove a global
a priori estimate for solutions to (3-1) with respect to the weighted Hölder norm. In the kinetic setting, we
have at our disposal the interior Schauder estimates proved in [Imbert and Mouhot 2021, Theorem 3.9].

Proposition 3.1 (interior Schauder estimate). Let the constant α ∈ (0, 1) be given and the cylinder Q2r (z0)

be a subset of � with r ∈ (0, 1]. If f satisfies (1-4) with condition (3-2) in Q2r (z0) and s ∈ Cα
l (Q2r (z0)),

then we have

r2+α
[ f ]C2+α

l (Qr (z0))
≲ ∥ f ∥L∞(Q2r (z0)) + r2+α

[s]Cα
l (Q2r (z0)). (3-3)

In particular, the right-hand side controls r2
∥(∂t + v · ∇x) f ∥L∞(Qr (z0)) + r2

∥D2
v f ∥L∞(Qr (z0)).

First of all, we enhance this result to a global estimate for the Cauchy problem (3-1) under a vanishing
condition for the initial data.

Proposition 3.2 (global Schauder estimate). Let � = (0, T ] × Rd
× Rd and the constants α ∈ (0, 1) and

σ ∈ (0, 2) be universal, s ∈ Cα
l (�) such that ∥s∥(2−σ)

α < ∞, and f be a bounded solution to the Cauchy
problem (3-1) under condition (3-2) in �. If the initial data fin equals 0, then we have

∥ f ∥
(−σ)
2+α ≲ ∥s∥(2−σ)

α .

Proof. In view of Proposition 3.1, it suffices to deal with the estimates around the initial time. Without
loss of generality, we assume T ≤ 1.

Let z0 = (t0, x0, v0) ∈ � and 2r = t1/2
0 . Applying the interior Schauder estimate (3-3) yields

r2+α
[ f ]C2+α

l (Qr (z0))
≲ ∥ f ∥L∞(Q2r (z0)) + r2+α

[s]Cα
l (Q2r (z0)).

It then follows from the arbitrariness of z0 that, for any σ < 2 such that [ f ]
(−σ)
0 < ∞,

[ f ]
(−σ)
2+α ≲ [ f ]

(−σ)
0 + [s](2−σ)

α . (3-4)
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With σ ∈ (0, 2), observing that

L1

( 2
σ

[s](2−σ)
0 tσ/2

± f
)

= [s](2−σ)
0 tσ/2−1

± s ≥ 0 in �,

2
σ

[s](2−σ)
0 tσ/2

± f = 0 on {t = 0},

we apply the maximum principle (Lemma A.1) to the function (2/σ)[s](2−σ)
0 tσ/2

± f to deduce that
±t−σ/2 f ≤ (2/σ)[s](2−σ)

0 , which means

[ f ]
(−σ)
0 ≲ [s](2−σ)

0 .

Combining this estimate with (3-4), we get the desired result. □

3B. Cauchy problem for the linear equation. The goal of this subsection is to prove the well-posedness
of the Cauchy problem (3-1) with Hölder continuous coefficients.

Proposition 3.3. Let � = (0, T ] × Rd
× Rd and the constants α ∈ (0, 1) and σ ∈ (0, 2) be universal.

Assume that {
Aξ · ξ ≥ λ|ξ |

2 for any ξ ∈ Rd,

∥A∥Cα
l (�) + ∥⟨v⟩

−1 B∥Cα
l (�) ≤ 3.

(3-5)

Then, for any s ∈ Cα
l (�) such that ∥s∥(2−σ)

α < ∞ and fin ∈ C0(Rd
× Rd), there exists a unique bounded

solution f ∈ C2+α
l (�) to the Cauchy problem (3-1).

Remark 3.4. In contrast with (3-2), condition (3-5) is weaker, which allows the coefficients of B to
not necessarily be bounded globally. This fact will be applied to the Ornstein–Uhlenbeck operator
LOU = (∇v − v) · ∇v in Section 4B.

The simplest possible setting of (3-1) under condition (3-5) is recovered by choosing A = I and B = 0,
which turns out to be the classical Kolmogorov operator L0 := ∂t + v · ∇x −1v . This operator was first
studied in [Kolmogoroff 1934], where its fundamental solution was calculated explicitly as

0(t, x, v) =


( √

3
2π t2

)d

exp
(
−

3
∣∣x +

1
2 tv

∣∣2

t3 −
|v|

2

4t

)
for t > 0,

0 for t ≤ 0.

(3-6)

One can easily see that 0 is smooth outside of its pole (the origin). In fact, in this latter case the following
result holds.

Lemma 3.5. Let � = (0, T ] × Rd
× Rd and α ∈ (0, 1). For any s ∈ Cα

l (�) such that ∥s∥(2−σ)
α < ∞, the

function

f (t, x, v) =

∫
Rd×Rd

0((τ, ξ, η)−1
◦ (t, x, v))s(τ, ξ, η) dτ dξ dη (3-7)

is the unique bounded solution in C2+α
l (�) to (3-1) with L1 replaced by L0 and fin = 0.



390 FRANCESCA ANCESCHI AND YUZHE ZHU

Remark 3.6. When the spatial domain is Td, one can apply Green’s function

G(t, x, v) :=

∑
n∈Zd

0(t, x + n, v),

which is well defined due to the decay of 0.

We are now in a position to apply the standard continuity method to derive Proposition 3.3.

Proof of Proposition 3.3. We split the proof into three steps. In the first step, we establish the case
for vanishing initial data under the stronger assumption (3-2). We point out that the assumption on the
coefficient B can be weakened in the second step. Finally, we deal with general continuous initial data.

Step 1. Assume fin = 0 and condition (3-2) holds. Let the constant σ ∈ (0, 2) be fixed and consider the
Banach space Y := (C2+α

l (�), ∥ · ∥
(−σ)
2+α ). In particular, every function lying in Y vanishes at t = 0.

For τ ∈ [0, 1], we define the operator Lτ := (1 − τ)L0 + τL1, which can be written in the form

Lτ = ∂t + v · ∇x − tr(Aτ D2
v · ) − τ B · ∇v,

where its coefficients Aτ := (1 − τ)I + τ A and τ B still satisfy condition (3-2) (with λ and 3 replaced by
min{1, λ} and max{1, 3}, respectively). For any w ∈ Y , we have

∥Lτw∥
(2−σ)
α ≲ (1 + ∥Aτ∥

(2)
α )∥w∥

(−σ)
2+α + ∥B∥

(2)
α ∥w∥

(−σ)
1+α ≲ ∥w∥

(−σ)
2+α . (3-8)

Let the set I be the collection of τ ∈ [0, 1] such that the Cauchy problem (3-9) is solvable for any
s ∈ Cα

l (�) with ∥s∥(2−σ)
α < ∞: there is a unique bounded solution f ∈ Y satisfying{

Lτ f = s in �,

f (0, x, v) = 0 in Rd
× Rd.

(3-9)

By Lemma 3.5, we see that 0 ∈ I; in particular, I is not empty.
It now suffices to show that 1 ∈ I. Pick τ0 ∈ I. Then the global Schauder estimate provided by

Proposition 3.2 implies that, for any s ∈ Cα
l (�) with ∥s∥(2−σ)

α < ∞, f = L −1
τ0

s satisfies

∥L −1
τ0

s∥(−σ)
2+α ≲ ∥s∥(2−σ)

α . (3-10)

For any w ∈ Y , since τ0 ∈ I and (3-8) holds, the following Cauchy problem is solvable for any s ∈ Cα
l (�)

with ∥s∥(2−σ)
α < ∞: {

Lτ0 f = s + (τ − τ0)(L0 − L1)w in �,

f (0, x, v) = 0 in Rd
× Rd.

Thus, we can define the mapping F : Y → Y by setting F(w) = f . Armed with (3-10) and (3-8), there
exists a universal constant C > 0 such that, for any u, w ∈ Y ,

∥F(u) − F(w)∥
(−σ)
2+α ≤ C |τ − τ0|∥(L0 − L1)(u − w)∥(2−σ)

α ≤ C |τ − τ0|∥u − w∥
(−σ)
2+α .

Hence F is a contraction mapping, provided that |τ − τ0| ≤ δ := (2C)−1. Then, F gives a unique fixed
point f ∈ Y , which is the unique bounded solution to the Cauchy problem (3-9) in Y . By dividing the
interval [0, 1] into subintervals of length less than δ, we conclude that 1 ∈ I.
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Step 2. If fin = 0 and condition (3-5) holds, we approximate the coefficient B by Bn := Bϱn , where
ϱn(v) := ϱ1(v/n) for v ∈ Rd, n ∈ N+, and ϱ1 ∈ C∞

c (B2) is valued in [0, 1] such that ϱ1 ≡ 1 in B1. Then,
for each n ∈ N+, the result obtained in the previous step provides a bounded solution fn to (3-1) with B
replaced by Bn . Indeed, applying the maximum principle (Lemma A.1) to the function ± f − et sup� |s|
implies sup� | fn| ≤ eT sup� |s|. Thanks to the interior Schauder estimate (Proposition 3.1), for any
compact subset K ⊂ �, we have that { fn}n≥N is precompact in C2

kin(K ), provided that N (depending
on K ) is large enough. Sending n → ∞ in the equation satisfied by fn yields that the limit function
f ∈ C2+α

l (�) is a bounded solution to (3-1), which satisfies sup� | f | ≤ eT sup� |s|.

Step 3. For general fin ∈ C0(Rd
× Rd), we approximate fin uniformly as ε → 0 by a sequence of smooth

functions { f ε
in} on Rd

× Rd. Thus, the function f − f ε
in is a solution to (3-1), with the source term equal

to s −L1 f ε
in, and associated with the vanishing initial data. The procedure presented in the previous steps

ensures a unique bounded solution f ε to (3-1) for each f ε
in.

The uniform convergence of { f ε
in} and the maximum principle (Lemma A.1) implies the uniform

convergence of { f ε
}. We may denote its limit by f ∈ C0(�), which satisfies f (0, x, v) = fin(x, v)

on Rd
× Rd. The interior Schauder estimate again implies that { f ε

} is precompact in C2
kin(K ) for any

compact subset K ⊂ �; then sending ε → 0 gives the solution f ∈ C2+α
l (�) to (3-1). Its uniqueness is

again given by the maximum principle. This concludes the proof. □

4. Well-posedness of the nonlinear model

This section is devoted to the proof of Theorem 1.1(i), including a self-generating lower bound given in
Section 4A, the existence and uniqueness given in Section 4B, and a smoothness a priori estimate given
in Section 4C.

First, we recast the Cauchy problem (1-1) in terms of g(t, x, v) := µ(v)−1/2 f (t, x, v), an unknown
function, with gin(x, v) := µ(v)−1/2 fin(x, v) as follows:{

(∂t + v · ∇x)g = R[g]U[g],

g(0, x, v) = gin(x, v),
(4-1)

where R[g] and U[g] on the right-hand side are defined by

R[g] :=

(∫
Rd

gµ1/2 dv

)β

and U[g] := µ−1/2
∇v(µ∇v(µ

−1/2g)) = 1vg +
( 1

2 d −
1
4 |v|

2)g.

The main advantage of this formulation is that it allows us to get rid of the first-order term in v, and the
zeroth-order term is bounded, since g is bounded from above by a Maxwellian.

For convenience, we are also concerned with the substitution h(t, x, v) := µ(v)−1 f (t, x, v) and the
Ornstein–Uhlenbeck operator LOU := (∇v − v) · ∇v. Equation (1-1) is then equivalent to

(∂t + v · ∇x)h(t, x, v) = Rh(t, x) LOU h(t, x, v), Rh(t, x) :=

(∫
Rd

h(t, x, v) dµ

)β

. (4-2)

In contrast with (1-1), the zeroth-order term disappears. Let us begin by exhibiting the global bounds of
solutions to (4-2) in (0, T ) × Td

× Rd, which is a variant of [Imbert and Mouhot 2021, Lemma 4.1].
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Lemma 4.1 (global bounds). Let a(t, x) ∈ L∞((0, T ) × Td) be nonnegative. Assume that, in the
sense of distributions, h(t, x, v) ∈ L∞((0, T ); H 1(Td

× Rd , dm)) satisfies (∂t + v · ∇x)h = a LOU h
in (0, T ) × Td

× Rd. If h(0, · , · ) ≤ 3 in Td
× Rd, then h ≤ 3 in (0, T ) × Td

× Rd ; if h(0, · , · ) ≥ λ

in Td
× Rd, then h ≥ λ in (0, T ) × Td

× Rd.

Proof. Integrating the equation (∂t + v · ∇x)(h − 3) = a LOU(h − 3) against (h − 3)+ yields

1
2

∫
Td×Rd

[(h(t, · , · ) − 3)2
+

− (h(0, · , · ) − 3)2
+
] dm = −

∫
[0,t]×Td×Rd

a|∇v(h − 3)+|
2 dt dm ≤ 0

for any t ∈ [0, T ]. This means that the upper bound is preserved along time. Similarly, the lower bound
can be obtained by integrating the equation (∂t + v · ∇x)(λ − h) = a LOU(λ − h) against (λ − h)+. □

In particular, the above result preserving global bounds holds for solutions to (4-2) and (5-1) in
(0, T )× Td

× Rd. We will also apply such result to the substitution g = µ1/2h appearing in Section 4B.
Unless otherwise specified, throughout this section we set the domain � := (0, T ]×Td

×Rd with T ∈ R+.
Nevertheless, as specified in Remark 4.4, Corollary 4.10, and Proposition 4.11 below, the results of this
section also hold if the spatial domain is Rd.

4A. Self-generating lower bound. Throughout this subsection, we assume that the bounded solution h
of (1-1) lies below the universal constant 3, which is guaranteed by Lemma 4.1 if the initial data lies
below 3. The aim of this subsection is to show the following positivity-spreading result. We remark that
this proposition only relies on the mixing structure of the classical parabolic-type maximum principle and
the transport operator, but not on the structure of the mass conservation.

Proposition 4.2 (lower bound). Let δ > 0, T ∈ (0, T ), and h be a bounded solution to (4-2) in � satisfying

h(0, x, v) ≥ δ1{|x−x0|<r,|v−v0|<r} (4-3)

for some (x0, v0) ∈ Td
× Rd. Then, there exist two positive continuous functions η1(t) and η2(t) on (0, T ]

depending only on universal constants, T , δ, r , and v0 such that, for any (t, x, v) ∈ �,

h(t, x, v) ≥ η1(t)e−η2(t)|v|
2
. (4-4)

Remark 4.3. In particular, the functions η1(t) and η2(t) are positive and bounded on any compact subset
of (0, T ], but η1 might degenerate to zero and η2 may go to infinity as t tends to zero or infinity.

Remark 4.4. If one is concerned with the problem in the whole space — that is � = (0, T ]× Rd
× Rd —

we can proceed along the same lines as the proof in Appendix B to see that (4-3) implies the lower bound

h(t, x, v) ≥ η1(t, x)−1e−η2(t,x)|v|
4
, (4-5)

where the functions η1(t, x) and η2(t, x) on (0, T ] × Rd are positive, continuous and only depend on
universal constants, T, δ, r , and v0. Compared with (4-4), η1(t, x) and η2(t, x) lose the uniformity
in x as Rd is not compact (see Step 3 of the proof of the proposition in Appendix B). In addition, the
exponential tail with respect to v cannot be improved to a Gaussian type, since there is no uniform-in-x
lower bound on the local mass

∫
h dµ such that Step 4 in Appendix B fails.
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We note that the proof of the proposition is composed mainly of two lemmas. On the one hand,
Lemma 4.5 extends the lower bounds forward a short time from a neighborhood of any given point in
Td

× Rd and at any given time. On the other hand, Lemma 4.6 is used to spread the lower bound for all
velocities. The spreading of the lower bound in space is given by selecting the proper velocity to transport
the positivity which is guaranteed by Lemma 4.5. By applying these lemmas repeatedly, as proposed in
[Henderson et al. 2020b], we are able to control the solution from below for any finite time. We postpone
the full proof of Proposition 4.2, obtained by combining these two lemmas, until Appendix B.

Lemma 4.5 (lower bound forward in time). Let δ, τ, r ∈ (0, 1] and h be a bounded solution to (4-2) in �

with
h(0, x, v) ≥ δ1{|x−x0|<r,|v−v0|<r/τ }

for some (x0, v0) ∈ Td
× Rd. Then there exists some universal constant c0 > 0 such that

h ≥
1
8δ1P , P :=

{
t ≤ min{T, τ, c0⟨τr−1

⟩
−2

⟨v0⟩
−2

}, |x − x0 − tv| < 1
2r, |v − v0| < 1

2rτ−1}.
Proof. Let us consider the barrier function

h(t, x, v) := −C0t +
1
2δ(1 − r−2

|x − x0 − tv|
2
− τ 2r−2

|v − v0|
2),

with the constant C0 >0 to be determined. The region Q :={t ≤min{T, τ }, |x−x0−tv|
2
+τ 2

|v−v0|
2 <r2

}

contains P. A direct computation yields

| LOU h| ≤ |1vh| + |v · ∇vh| ≲ δ⟨τr−1
⟩

2
⟨v0⟩

2 in Q.

By choosing C0 := (1/(8c0))δ⟨τr−1
⟩

2
⟨v0⟩

2 for some (small) universal constant c0 > 0, we have

(∂t + v · ∇x − Rh LOU)h ≤ −C0 + 3β
| LOU h| < 0 in Q. (4-6)

In addition, h(t, x, v) ≥
1
8δ in

{
t ≤ c0⟨τr−1

⟩
−2

⟨v0⟩
−2, |x − x0 − tv|

2
+ τ 2

|v − v0|
2 < 1

2r2
}

⊃ P.
Applying the classical maximum principle to h −h in Q after observing that h −h ≤ 0 on the parabolic

boundary {t = 0} ∩Q and {t ≤ min{T, τ }, |x − x0 − tv|
2
+ τ 2

|v − v0|
2
= r2

} yields the result. □

The spreading of lower bound to all velocities relies on the construction of a Harnack chain through
iterative application of the local Harnack inequality [Golse et al. 2019, Theorem 1.6]. Although some
coefficients of (4-2) are unbounded globally over v ∈ Rd, we remark that their local boundedness is
sufficient for us to achieve the result through a careful study on the rescaling during the construction of
the Harnack chain.

Lemma 4.6 (lower bound for all velocities). Let δ > 0, T, R ∈ (0, 1], T ∈ (0, T ), and h be a bounded
solution to (4-2) in � such that, for any t ∈ [0, T ],

h(t, x, v) ≥ δ1{|x−x0−tv0|<R,|v−v0|<R} (4-7)

for some (x0, v0) ∈ Td
× Rd. Then there exists some (large) constant C > 0 depending only on universal

constants, T , δ, R, and v0 such that, for any t ∈ [T , T ], we have

h(t, x, v) ≥ C−1e−C |v|
4
1{|x−x0−tv0|<R/2}. (4-8)
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Proof. For any z := (t, x, v) ∈
{
t ∈ [T , T ], |x − x0 − tv0| < 1

2 R, v ∈ Rd
}
, we will construct a finite

sequence of points to reach z from the region {t ≤ T, |x − x0 − tv0| < R, |v−v0| < R}, where the solution
is positive by assumption. In particular, x does not exit this region. The nonlocality of the coefficient Rh ,
with assumption (4-7), implies the nondegeneracy of the diffusion in velocity so that the positivity of the
solution h propagates over v ∈ Rd in a localized space region.

Step 1. Iterate the Harnack inequality. For i ∈ {1, 2, . . . , N + 1} with N ∈ N, we define zN+1 := z and
zi := (ti , xi , vi ) by the relation

zi = zi+1 ◦ Sr

(
−τ1, 0, −τ2

v − v0

|v − v0|

)
,

where the parameters N , r, τ1, τ2 > 0 will be determined next. Consider the function for z̃ := (t̃, x̃, ṽ)∈ Q1:

hi (z̃) := h(zi ◦ Sr (z̃)) = h(ti + r2 t̃, xi + r3 x̃ + r2 t̃vi , vi + r ṽ).

We observe that, if the following is true for any z̃ ∈ Q1:

ti+1 + r2 t̃ ∈ [0, T ], Nrτ2 ≤ |v − v0|, (4-9)

|xi+1 + r3 x̃ + r2 t̃vi+1 − x0 − (ti+1 + r2 t̃ )v0| < R, (4-10)

then, for 1 ≤ i ≤ N, the function hi+1(z̃) satisfies the equation

(∂t̃ + ṽ · ∇x̃)hi = Rh(zi ◦ Sr (z̃))(1ṽhi − r(vi + r ṽ) · ∇ṽhi ) in Q1,

where the coefficients satisfy

δβ Rdβ ≲ Rh ≲ 1 and |r(vi + r ṽ)| ≤ r(1 + |v0| + |v − v0|) ≤ 1,

provided that r ≤ (1+|v0|+|v−v0|)
−1. Applying the Harnack inequality [Golse et al. 2019, Theorem 1.6]

to hi implies that there exist constants c0, τ1 ∈ (0, 1) depending only on universal constants, δ, and R
such that, for any τ2 ∈ [0, 1 − τ1] and 1 ≤ i ≤ N, we have

h(zi+1) = hi+1(0, 0, 0) ≥ c0hi+1

(
−τ1, 0, −τ2

v − v0

|v − v0|

)
= c0h(zi ). (4-11)

Hence it remains to determine the chain {zi }1≤i≤N+1 such that conditions (4-9) and (4-10) hold and the
point z1 stays in the region {(t, x, v) : t ≤ T, |x − x0 − tv0| < R, |v − v0| < R}.

Step 2. Determine the Harnack chain (including N , r , and τ2) from a proper starting time t1. For M > 0,
we set

t1 := max
{ 1

2 T , t −
1
8 R(1 + |v0| + |v − v0|)

−1} and r :=
R
M

(1 + |v0| + |v − v0|)
−2.

Recalling that T, R ∈ (0, 1], by choosing

M ≥
2
T

+
τ1

1 − τ1

(
8 +

2
T

)
,

we have

r2
≤

1
2 T and τ2 :=

rτ1|v − v0|

t − t1
≤ 1 − τ1.
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To determine the parameter M > 0, we point out that there exists some constant C depending only on
universal constants, T , δ, R, and v0 such that M ≤ C and

N :=
t − t1
r2τ1

∈ N+.

Thus, Nrτ2 = |v − v0|. This setting then guarantees condition (4-9).
It also follows from the iteration relation that v1 = v0, and, for 1 ≤ i ≤ N + 1,

ti = t1 + (i − 1)r2τ1, vi = v0 + (i − 1)rτ2
v − v0

|v − v0|
, xi = x − r2τ1

N∑
j=i

v j+1. (4-12)

Step 3. Determine the starting point x1. For any 1 ≤ i ≤ N, we estimate the departure distance from the
expression (4-12)

|xi+1 − x1 − (ti+1 − t1)v0| =
1
2 i(i + 1)r3τ1τ2 ≤ N 2r3τ1τ2 = (t − t1)|v − v0| ≤

1
8 R.

Therefore, for any x ∈ BR/2(x0 + tv0), there exists some x1 ∈ B5R/8(x0 + t1v0) such that xN+1 = x . In
this setting, for any 1 ≤ i ≤ N, we also have

|xi+1 + r3 x̃ + r2 t̃vi+1 − x0 − (ti+1 + r2 t̃ )v0|

≤ |xi+1 − x1 − (ti+1 − t1)v0| + |x1 − x0 − t1v0| + r2
|r x̃ + t̃vi+1 − t̃v0|

≤
R
8

+
5R
8

+ r2(1 + |v − v0|) <
3R
4

+
R2

M2 < R.

Thus, condition (4-10) ensures the inequality (4-11) is satisfied for 1 ≤ i ≤ N, which yields

h(t, x, v) ≥ cN
0 h(t1, x1, v0) ≥ δe−N log 1/c0.

Recalling that c0 ∈ (0, 1) appears in (4-11) and N ≤ T C2(1 + |v0| + |v − v0|)
4/(τ1 R2), we obtain the

desired result (4-8). □

4B. Existence and uniqueness. Let us begin by summarizing some basic a priori estimates for solutions
to (4-1).

Lemma 4.7 (Hölder estimates). Let �x = Td or Rd, and let g be a solution to (4-1) in [0, T ]×�x × Rd

satisfying
R[g] ≥ λ in [0, T ] ×�x and 0 ≤ gin ≤ 3µ1/2 in �x × Rd.

(i) Let T ∈ (0, T ) and δ ∈
(
0, 1

2

)
. There exists some universal constant α ∈ (0, 1) such that, for any

Q2r (z0) ⊂ [T , T ] ×�x × Rd, we have

∥g∥C2+α
l (Qr (z0))

≲T ,δ µδ(v0). (4-13)

(ii) If gin ∈ Cα0(�x ×Rd) with (universal) α0 ∈ (0, 1), then, for any δ ∈
(
0, 1

2

)
, there exists some universal

constant α ∈ (0, 1) such that

∥g∥Cα
l ([0,T ]×�x×B1(v0)) ≲δ (1 + [gin]Cα0 (�x×Rd ))µ

δ(v0).
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We remark that, armed with Lemma 4.1, the assertions (i) and (ii) in the above lemma directly follow
from [Imbert and Mouhot 2021, Proposition 4.4] and [Zhu 2021, Corollary 4.6], respectively.

Proposition 4.8 (existence). For any gin ∈ C0(Td
×Rd) such that 0 ≤ gin ≤ 3µ1/2 in Td

×Rd, there exists
a (classical) solution g to the Cauchy problem (4-1) satisfying 0 ≤ g ≤ 3µ1/2 in �.

Remark 4.9. For any given nonnegative continuous function gin that is not identically zero, there is some
point (x0, v0) ∈ Td

× Rd and some constants δ, r > 0 such that

gin(x, v) ≥ δ1{|x−x0|<r,|v−v0|<r} in Td
× Rd. (4-14)

We will see that the upper bound gin ≤ 3µ1/2 and the lower bound (4-14) assumptions on the initial
data gin (which could be discontinuous) are sufficient to ensure the existence of a solution g ∈ C2

kin(�) in
the weak sense such that, for any φ ∈ C∞

c ([0, T ) × Td
× Rd),∫

Td×Rd
ginφ|t=0 =

∫
�

{
−g(∂t + v · ∇x)φ +R[g]∇vg · ∇vφ −R[g]

( 1
2 d −

1
4 |v|

2)gφ
}
. (4-15)

As solutions become regular instantaneously, the difference between the weak solution and the classical
one lies only in the continuity around the initial time.

Proof. Let us assume that gin satisfies (4-14) for some point (x0, v0) ∈ Td
× Rd and some constants

δ, r > 0. By Proposition 4.2, for any solution g to (4-1) and for any T ∈ (0, T ), there is some λ∗ > 0
depending only on universal constants, T , T, δ, r , and v0 such that

R[g](t, x) ≥ λ∗ in [T , T ] × Td. (4-16)

Step 1. We first approximate the initial data gin by gϵ
in := gin ∗ ϱε + εµ1/2, where ε ∈ (0, 1], ϱε(x, v) :=

ε−2dϱ1(x/ε, v/ε) with (x, v) ∈ Td
× Rd, and ϱ1 ∈ C∞

c (B1 × B1) is a nonnegative bump function such
that

∫
R2d ϱ1 = 1. Then

εµ1/2
≤ gε

in ≤ (1 + 3)µ1/2 in T d
× Rd.

Let us fix ε ∈ (0, 1]. In order to establish the existence of a solution to (4-1) associated with the initial
data gε

in, we find a fixed point of the mapping F : w 7→ g defined by solving the Cauchy problem{
(∂t + v · ∇x)g = R[w]U[g] in �,

g(0, · , · ) = gε
in in Td

× Rd (4-17)

on the closed convex subset K of the Banach space Cγ

l (�),

K := {w ∈ Cγ

l (�) : ∥w∥Cγ

l (�) ≤ N, εµ1/2
≤ w ≤ (1 + 3)µ1/2 in �},

where the constants γ ∈ (0, 1) and N > 0 are to be determined. We remark that (4-17) is equivalent to

(∂t + v · ∇x)(µ
−1/2g) = R[w] LOU(µ−1/2g).

By Lemma 4.1 and the fact that R[w] ≥ ε, we have εµ1/2
≤ g ≤ (1 +3)µ1/2 in �. In particular, for any

w ∈K, we have the following for the lower-order term:
∣∣R[w]

( 1
2 d −

1
4 |v|

2
)
g
∣∣≲ 1. Thus, the global Hölder

estimate [Zhu 2021, Corollary 4.6] implies that there exist some constants γ ∈ (0, 1) and N > 0 depending
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only on universal constants and ε such that ∥g∥C2γ

l (�) ≤ N , which also implies that the lower-order
term

∣∣R[w]
( 1

2 d −
1
4 |v|

2
)
g
∣∣ is bounded in C2γ

l (�). It then follows from Proposition 3.3 with the interior
Schauder estimate (Proposition 3.1) that the mapping F : K → K∩ C2γ

l (�)∩ C2+2γ

l (�) is well defined.
In addition, with the help of the Arzelà–Ascoli theorem, we know that F(K) is precompact in Cγ

l (�).
As far as the continuity of F is concerned, we take a sequence {wn} converging to w∞ in Cγ

l (�). Since
{F(wn)} is precompact in Cγ

l (�), there exists a converging subsequence whose limit is g∞ ∈ Cγ

l (�)

which satisfies g∞(0, · , · ) = gε
in in Td

× Rd. In view of the interior Schauder estimate (Proposition 3.1),
{F(wn)} is precompact in C2

kin(K ) for any compact subset K ⊂ � and g∞ ∈ C2
kin(�) ∩ C0(�). Sending

n → ∞ in (4-17) satisfied by (w, g) = (wn, F(wn)), we see that (4-17) also holds for the pair of limits
(w, g) = (w∞, g∞). Then, applying the maximum principle (Lemma A.1) to{

(∂t + v · ∇x)(µ
−1/2(g∞ − F(w∞))) = R[w∞] LOU(µ−1/2(g∞ − F(w∞))) in �,

(g∞ − F(w∞))(0, · , · ) = 0 in Td
× Rd,

we arrive at g∞ = F(w∞).
Then, for every ε ∈ (0, 1], we are allowed to apply the Schauder fixed-point theorem (see for instance

[Gilbarg and Trudinger 2001, Corollary 11.2]) to get gε
∈ C2

kin(�) ∩ C0(�) such that F(gε) = gε, which
is a (classical) solution to (4-1) associated with the initial data gε

in.

Step 2. Passage to the limit. Recalling the lower bound (4-16) on the coefficient and the higher-order
Hölder estimate given by Lemma 4.7(i), for any T ∈ (0, T ), we point out that {gε

} is uniformly bounded
in C2+α∗

l ([T , T ] × Td
× Rd) for some constant α∗ ∈ (0, 1) with the same dependence as λ∗. Hence gε

converges uniformly to g in C2
kin([T , T ] × Td

× Rd), up to a subsequence.
Write the equation satisfied by gε in the weak formulation: that is, for any φ ∈ C∞

c (�),∫
Td×Rd

[gε(T, x, v)φ(T, x, v)− gε
in(x, v)φ(0, x, v)]

=

∫
�

{
gε(∂t + v · ∇x)φ −R[gε

]∇vgε
· ∇vφ +R[gε

]
( 1

2 d −
1
4 |v|

2)gεφ
}
. (4-18)

Combining the energy estimate derived by choosing φ = gε above with the upper bound of gε provided
by Lemma 4.1, we have∫

�

|R[gε
]∇vgε

|
2 ≲

∫
�

R[gε
]|∇vgε

|
2
≤

1
2

∫
Td×Rd

|gε
in|

2
+

∫
�

R[gε
]
(1

2 d −
1
4 |v|

2)
|gε

|
2 ≲ 1.

Therefore, after passing to a subsequence, R[gε
]∇vgε converges weakly in L2(�). On account of its

local uniform convergence, we know that its weak limit is R[g]∇vg. In addition, since µ−1/2gε is
uniformly bounded, by their local uniform convergence, we can also derive that the sequences gε and
R[gε

]
( 1

2 d −
1
4 |v|

2
)
gε converge to g and R[g]

( 1
2 d −

1
4 |v|

2
)
g, respectively, weakly in L2(�), up to a

subsequence. Then, for any φ ∈ C∞
c ([0, T ) × Td

× Rd), sending ε → 0 in (4-18) gives (4-15).
Furthermore, if the initial data gin is continuous, then the barrier function method shows that the

continuity around the initial time depends only on the upper bound of the solution and the continuity
of gin; see the derivation of the estimate (5-30) of a general type in Section 5B. Indeed, by (5-30)
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(with ϵ = 1, R = |v1|, hϵ = µ−1/2g, and hϵ,in = µ−1/2gin), we see that, for any fixed δ ∈ (0, 1) and
(x1, v1) ∈ Td

× Rd and for any (t, x, v) ∈ [0, δ/(4(1 + |v1|))] × Bδ(x1, v1),

|g(t, x, v)− gin(x1, v1)| ≲ δ−2
⟨v1⟩

2µ1/2(v1)t + δ−2µ1/2(v1)(|x − x1 − tv|
2
+ |v − v1|

2)

+ µ1/2(v1) sup
Bδ(x1,v1)

|gin(x, v)− gin(x1, v1)|

≲ δ−2(t + |x − x1|
2
+ µ1/2(v1)|v − v1|

2)

+ sup
Bδ(x1,v1)

|gin(x, v)− gin(x1, v1)|. (4-19)

This implies the continuity of the solution g around t = 0 and finishes the proof. □

One may extend the above existence result to the case where the spacial domain Td is replaced by Rd.

Corollary 4.10. For any gin ∈ C0(Rd
×Rd) such that 0 ≤ gin ≤ 3µ1/2 in Rd

×Rd, there exists a solution g
to the Cauchy problem (4-1) satisfying 0 ≤ g ≤ 3µ1/2 in (0, T ]× Rd

× Rd. If additionally hin = µ−1/2gin

satisfies hin ≥ λ and hin − M1 ∈ L1(Rd
× Rd , dm) for some constant M1 > 0, then h = µ−1/2g satisfies

h ≥ λ in (0, T ] × Rd
× Rd and

∥h − M1∥L∞
t ([0,T ];L1(Rd×Rd , dm)) ≤ ∥hin − M1∥L1(Rd×Rd , dm). (4-20)

Proof. For R > 1, we set gR
in = gin1[−R+R−1,R−R−1]d for x ∈ [−R, R]

d with periodic extension to Rd.
In the light of Proposition 4.8, we take a solution gR to (4-1) associated with the initial data gR

in in
(0, T ]×[−R, R]

d
×Rd , where [−R, R]

d is considered as a periodic box. After extracting a subsequence,
we define the function g := limR→∞ gR in (0, T ]×Rd

×Rd pointwise; furthermore, since 0≤µ−1/2gR
≤3

in (0, T ]×[−R, R]
d
×Rd, we know that the limiting function satisfies 0 ≤µ−1/2g ≤3 in (0, T ]×Rd

×Rd.
Similarly, µ−1/2gin ≥ λ in Rd

× Rd implies that µ−1/2g ≥ λ in (0, T ] × Rd
× Rd.

Since the initial data is continuous unless it is identically zero, we assume that gin ≥ δ1{|x−x0|<r,|v−v0|<r}

for some point (x0, v0) ∈ Rd
× Rd and some constants δ, r > 0. Consider R > |x0| + r . Applying the

lower bound of the solution given by (4-5) yields that, for any compact subset K ⊂ (0, T ]× Rd
× Rd, the

coefficient R[gR
] is greater than or equal to λ∗, where the constant λ∗ > 0 only depends on universal

constants, δ, r, v0, and K . In view of the higher-order Hölder estimate given by Lemma 4.7(i), we know
that gR uniformly converges to g in C2

kin(K ), up to a subsequence. Additionally, due to the estimate
derived in (4-19), the limiting function g is a solution to (4-1) that matches the initial data gin continuously.

As for (4-20), we notice that the function (h R
− M1)± with h R

:= µ−1/2gR satisfies

(∂t + v · ∇x)(h R
− M1)± ≤ Rh R LOU(h R

− M1)± in (0, T ] × [−R, R]
d
× Rd.

Integrating the equation against the function
∫
[−R,R]d (h R

− M1)± dx yields∫
[−R,R]d×Rd

(h R(t, · , · ) − M1)± dm −

∫
[−R,R]d×Rd

(h R(0, · , · ) − M1)± dm ≤ 0.

Sending R → ∞, we acquire

∥(h − M1)±∥L∞
t ([0,T ];L1(Rd×Rd , dm)) ≤ ∥(hin − M1)±∥L1(Rd×Rd , dm),

which implies the estimate (4-20) as asserted. □
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The following proposition concerned with the uniqueness of the Cauchy problem (4-1) is derived from a
Grönwall-type argument. The standard scaling technique and the Hölder estimate up to the initial time given
by Lemma 4.7(ii) can improve the integrability with respect to t in the energy estimate so that Grönwall’s
inequality becomes admissible; see (4-25) for the precise expression. This kind of phenomena was also
noticed in [Henderson et al. 2020a] (see the remarks in §1.4.2). The global energy estimate of (4-1) is not
available when the spatial domain is unbounded, since there is no decay of the solution as |x | → ∞. To
work it out, we take advantage of the idea originated from the uniformly local space used in [Henderson et al.
2019; Kato 1975]. We note that such a technique is not necessary when working with the periodic box Td.

Proposition 4.11 (uniqueness). Let the domain �x be Td or Rd, the constant α0 ∈ (0, 1), and the functions
0 ≤ g1, g2 ≲ µ1/2 be two solutions to (4-1) in (0, T ] × �x × Rd associated with the same initial data
gin ∈ Cα0(�x × Rd) such that∫

Rd
ginµ

1/2 dv ≥ λ in �x and 0 ≤ gin ≲ µ1/2 in �x × Rd.

Then g1 = g2 in [0, T ] ×�x × Rd.

Proof. In view of the lower bound given by Lemma 4.5 and Proposition 4.2, we know that there is some
constant λ∗ ∈ (0, 1) depending only on universal constants, T , and the initial data such that∫

Rd
giµ

1/2 dv ≥ λ∗ in [0, T ] ×�x , i = 1, 2. (4-21)

Therefore, we may assume T = 3−1 with 3 > 1. Let us set the difference

g̃ := exp
(
−

1
8 |v|

2t
)
(g1 − g2).

We have to show that g̃ is identically zero.
In view of (4-1), a direct computation yields that the function g̃ satisfies

(∂t + v · ∇x)g̃ +
1
8 |v|

2g̃

= exp
(
−

1
8 |v|

2t
)
(R[g1] −R[g2])U[g1] +R[g2]

(
U[g̃] +

1
2 tv · ∇v g̃ +

(1
4 dt +

1
16 |v|

2t2)g̃
)
, (4-22)

with the initial condition g̃(0, x, v) = 0 in �x × Rd.
Let y ∈ Rd. We introduce a cut-off function φy(x) := φ(x − y), where φ ∈ C∞

c (Rd) is valued in [0, 1]

such that φ|B1 ≡ 1, φ|Bc
2
≡ 0, and |∇φ| ≲ 1 in Rd. For any t ∈ (0, T ], integrating (4-22) against φ2

y g̃
in �x × Rd and applying integration by parts yields

1
2

∫
�x×Rd

φ2
y g̃2(t) =

∫ t

0

∫
�x×Rd

{
(v · ∇φy)φy g̃2

−
1
8 |v|

2φ2
y g̃2

+ exp
(
−

1
8 |v|

2t
)
(R[g1] −R[g2])U[g1]φ

2g̃

−R[g2]
(
|∇v(µ

−1/2g̃)|2µφ2
y +

1
4 dtφ2

y g̃2
−

(1
4 dt +

1
16 |v|

2t2)φ2
y g̃2)}.

Since R[g2] ∈ [0, 3], for any t ∈ (0, T ], we have

1
2

∫
�x×Rd

φ2
y g̃2(t) ≤

∫ t

0

∫
�x×Rd

{
|v||∇φy|φy g̃2

−
1
16 |v|

2φ2
y g̃2

+ µ−1/4
|R[g1] −R[g2]||U[g1]|φ

2
y |g̃|

}
.
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Due to the elementary inequality |zβ
− 1| ≤ |z − 1| (with z ∈ R+) and the lower bound estimate in (4-21),

as well as the boundedness assumption on g1 and g2, we have

|R[g1] −R[g2]| ≤ R[g1]
(β−1)/β

|R[g̃]|
1/β

≤
1
λ∗

∫
Rd

|g̃(t, x, · )|µ1/2 ≲λ∗
1 in [0, 1] ×�x .

It then follows that, for any t ∈ (0, T ],

1
2

∫
�x×Rd

φ2
y g̃2(t) ≤

∫ t

0

∫
�x×Rd

(
|v||∇φy|φy g̃2

−
1

16 |v|
2φ2

y g̃2)
+

1
λ∗

∫ t

0
∥µ−3/8U[g1]∥L∞

x,v

∫
�x×Rd

v

φ2
y |g̃(t, x, v)|µ1/8

∫
Rd

ξ

|g̃(t, x, ξ)|µ1/2 dξ

≲λ∗

∫ t

0

∫
�x×Rd

|∇φy|
2g̃2

+

∫ t

0
∥µ−3/8U[g1]∥L∞

x,v

∫
�x×Rd

φ2
y g̃2, (4-23)

where we used the Cauchy–Schwarz inequality and Hölder’s inequality in the last line. Recalling that
φy(x) = φ(x − y) ∈ C∞

c (Rd) and |∇φ| ≲ 1 in Rd, we have

sup
y∈Rd

∫
�x×Rd

|∇φy|
2g̃2 ≲ sup

y∈Rd

∫
�x×Rd

φ2
y g̃2.

By the definition of U[g1] and the upper bound g1 ≲ µ1/2,

∥µ−3/8U[g1]∥L∞
x,v

≲ 1 + ∥µ−3/81vg1∥L∞
x,v

.

Hence, for any t ∈ (0, T ], taking supremum over y ∈ Rd in (4-23), we obtain

sup
y∈Rd

∫
�x×Rd

φ2
y g̃2(t) ≲λ∗

∫ t

0
(1 + ∥µ−3/81vg1∥L∞

x,v
) sup

y∈Rd

∫
�x×Rd

φ2
y g̃2. (4-24)

Now we have to consider the pointwise estimate on D2
vg1. Let z0 = (t0, x0, v0) ∈ (0, T ] × �x × Rd

and 2r = t1/2
0 . In view of (4-21), Lemma 4.7(ii) implies that there exists some constant α∗ ∈ (0, 1) with

the same dependence as λ∗ such that

∥g1∥Cα∗

l ([0,T ]×�x×B1(v0))
≲λ∗

1 + [gin]Cα0 (�x×Rd ).

Then, applying the interior Schauder estimate (Proposition 3.1) and the upper bound g1 ≲ µ1/2 yields

∥D2
vg1∥L∞(Qr (z0)) ≲λ∗

r−2
∥g1 − g1(z0)∥L∞(Q2r (z0)) + rα∗

[
R[g1]

( 1
2 d −

1
4 |v|

2)g1
]
Cα∗

l (Q2r (z0))

≲λ∗
r−2+α∗/4µ3/8(v0)[g1]

1/4
Cα∗

l (Q2r (z0))
+ µ3/8(v0)[g1]

1/4
Cα∗

l (Q2r (z0))

≲λ∗
t−1+α∗/8
0 µ3/8(v0)(1 + [gin]

1/4
Cα0 (�x×Rd )

).

By the arbitrariness of z0, we know that, for any s ∈ (0, T ],

∥µ−3/81vg1(s)∥L∞(�x×Rd ) ≲λ∗
(1 + [gin]

1/4
Cα0 (�x×Rd )

)s−1+α∗/8.
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Dragging this estimate into (4-24) yields that for any t ∈ (0, T ],

sup
y∈Rd

∫
�x×Rd

φ2
y g̃2(t) ≤ C∗

∫ t

0
ds(1 + s−1+α∗/8) sup

y∈Rd

∫
�x×Rd

φ2
y g̃2(s), (4-25)

where the constant C∗ > 0 depends only on universal constants and the initial data. The desired result is
then given by Grönwall’s inequality. □

4C. Global regularity. The instantaneous smoothness a priori estimate in Theorem 1.1(i) is made up of
the lower bound given by Proposition 4.2 and the following proposition.

Proposition 4.12. Let �x = Td or Rd, let T ∈ (0, T ), and let the function g be a solution to (4-1) in
(0, T ) × Td

× Rd such that

R[g] ≥ λ in [T /4, T ] ×�x and 0 ≤ g ≤ 3µ1/2 in [0, T ] ×�x × Rd. (4-26)

Then, for any ν ∈
(
0, 1

2

)
and k ∈ N, we have

∥µ−νg∥Ck([T ,T ]×�x×Rd ) ≤ CT ,ν,k

for some constant CT ,ν,k > 0 depending only on universal constants, T , ν, and k.

Generally speaking, if g is a solution to (4-1) in (0, T ]×�x ×Rd constructed by Proposition 4.8 (with
�x = Td) or Corollary 4.10 (with �x = Rd), then the uniform positivity assumption (4-26) should be
replaced by

R[g] ≥ λt,x in (0, T ] ×�x and 0 ≤ g ≤ 3µ1/2 in �x × Rd,

where λt,x > 0 may degenerate to zero as t → 0 or t + |x | → ∞; see Proposition 4.2 and Remark 4.4.
As an immediate consequence of the above proposition, for any ν ∈

(
0, 1

2

)
, k ∈ N, and for any compact

subset K ⊂ (0, T ] × �x , there exists some constant Cν,k,K > 0 depending only on universal constants,
ν, k, and K such that

∥µ−νg∥Ck(K×Rd ) ≤ Cν,k,K ,

which is exactly the assertion in Theorem 1.1(i).
In order to show the higher regularity, we will apply the bootstrap procedure developed in [Imbert

and Silvestre 2022] which was intended for the non-cut-off Boltzmann equation. The classical bootstrap
iteration proceeds by differentiating the equation, using a priori estimates to the new equation to improve
the regularity of solutions, and repeating the procedure. Nevertheless, since C2+α

l ̸⊂ C1
x for any α ∈ (0, 1)

by their definitions, the hypoelliptic structure of (4-1) does not gain enough regularity in the x-variable
which disables the x-differentiation at each iteration. Indeed, the Schauder-type estimate provided by
Lemma 4.7(i) only shows that the solution to (4-1) belongs to C(2+α)/3 with respect to the x-variable. In
order to overcome it, we have to apply estimates to increments of the solution to recover a full derivative.
From now on, for y ∈ Rd and w ∈ R × Rd

× Rd, we denote the spatial increment by

δyg(z) := g(w ◦ (0, y, 0)) − g(w).

Let us proceed with the proof of the regularity estimate.
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Proof of Proposition 4.12. We are going to show that, for any multi-index k := (kt , kx , kv) ∈ N×Nd
×Nd

and ν ∈
(
0, 1

2

)
, there exists some constant αk ∈ (0, 1) depending only on |k| such that, for any Qr (z0) ⊂[1

2 T , T
]
× �x × Rd,

∥∂
kt
t ∂kx

x ∂kv
v g∥C2+αk

l (Qr (z0))
≲T ,ν,k µν(v0). (4-27)

For simplicity, we will omit the domain in estimates below, since the estimates can be always localized
around the center z0.

Step 0. The case of k = (0, 0, 0) in (4-27) is a direct consequence of Lemma 4.7(i).

Step 1. We will establish that (4-27) holds for any differential operators of the type ∂
kx
x . It suffices to

show that, for any n ∈ N, kx ∈ Nd with |kx | = n, ν ∈
(
0, 1

2

)
, and y ∈ Br3/4,

∥δy∂
kx
x g∥C2+αn

l
≲T ,ν,n |y|µν(v0). (4-28)

Indeed, sending y → 0 in (4-28) will complete this step.
Based on an induction on |kx | = n, we suppose that (4-28) holds for any |kx | ≤ n − 1, which implies,

for any kx ∈ Nd with |kx | ≤ n,
∥∂kx

x g∥C2+αn
l

≲T ,ν,n µν(v0). (4-29)

We remark that the induction here begins with (4-29) for |kx | = 0, which holds due to the previous step.
Let q := δy∂

kx
x g with |kx | = n. Lemma C.2 and (4-29) gives

∥q∥Cαn
l

≲ ∥∂kx
x g∥C2+αn

l
∥(0, y, 0)∥2 ≲T ,ν,n |y|

2/3µν(v0). (4-30)

Therefore, we have to enhance the exponent 2
3 on the right-hand side to 1; as a sacrifice, the Hölder

exponent on the left-hand side will decrease.
Set τyg(w) := g(w ◦ (0, y, 0)) for y ∈ Rd and w ∈ R × Rd

× Rd. A direct computation shows that q
satisfies

(∂t + v · ∇x)q = R[g]U[q] +

∑
|i |≤n
i≤kx

δy D̂iR[g]U[τy Di g] +

∑
|i |≤n−1

i≤kx

D̂iR[g]U[δy Di g], (4-31)

where the multi-indices i ≤ kx mean each component of i is less than or equal to the corresponding
component of k, and D̂i denotes the differential operator satisfying ∂

kt
t Dkx

x = D̂i ◦ Di .
In view of (4-29), (4-30), and the induction hypothesis, each term in the summations on the right-hand

side of (4-31) is bounded in Cαn
l by Cn∥(0, y, 0)∥2µν′

(v0) for any ν ′
∈ (0, ν). Then, by the interior

Schauder estimate (Proposition 3.1),

∥q∥C2+αn
l

≲T ,ν′,n ∥(0, y, 0)∥2µν′

(v0). (4-32)

Combining Lemma C.1 with (4-30) and (4-32), we obtain (4-28).

Step 2. For the case kv = 0 in (4-27), we proceed with a bidimensional induction on (m, n) = (kt , |kx |)

such that, for any ν ∈
(
0, 1

2

)
,

∥∂
kt
t Dkx

x g∥C2+αm,n
l

≲T ,ν,m,n µν(v0). (4-33)
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Based on the previous step (m = 0), we have to show that (4-33) holds for kt = m ≥ 1 and |kx | = n under
the induction hypothesis that (4-33) holds for any kt ≤ m − 1 and |kx | ≤ n + 1.

With kt = m > 0 and |kx | = n, set q := ∂
kt
t Dkx

x g. Then,

(∂t + v · ∇x)q = R[g]U[q] +

∑
i≤(kt ,kx ,0)
i ̸=(kt ,kx ,0)

D̂iR[g]U[Di g], (4-34)

where we use the notation D̂i for the differential operator satisfying ∂
kt
t Dkx

x = D̂i ◦ Di .
By the induction hypothesis, each term in the remainder (the summation on the right-hand side of (4-34))

with i ̸= (0, 0, 0) can be controlled in Cαm,n
l . It now suffices to deal with the exceptional term ∂

kt
t Dkx

x R[g]

so that the whole remainder can be controlled in Cαm,n
l ; then (4-33) follows from the interior Schauder

estimate (Proposition 3.1). To this end, using Lemma 2.4 and the induction hypothesis with the pair
(m − 1, n) yields

∥(∂t + v · ∇x)∂
m−1
t Dkx

x g∥Cαm,n
l

≲T ,ν,m,n µν(v0). (4-35)

Due to the induction hypothesis with the pair (m − 1, n + 1), for any ν ′
∈ (0, ν),

µ−ν′

(v0)∥(v · ∇x)∂
m−1
t Dkx

x g∥C2+αm,n
l

≲ν,ν′ µ−ν(v0)∥∂
m−1
t ∇x Dkx

x g∥C2+αm,n
l

≲T ,ν,m,n 1. (4-36)

Then, (4-35) and (4-36) produce the bound on µ−ν′

(v0)∥q∥Cαm,n
l

.

Step 3. Similarly, to show (4-27) for any differential operator ∂
kt
t Dkx

x Dkv
v , we proceed with a bidimensional

induction on (m, n) = (kt + |kx |, kv) such that, for any ν ∈
(
0, 1

2

)
,

∥∂
kt
t Dkx

x Dkv
v g∥C2+αm,n

l
≲T ,ν,m,n µν(v0). (4-37)

The case n = 0 is treated in the previous step. By Lemma 2.4 and the induction hypothesis (4-37) with
kt + |kx | = m and |kv| = n − 1, n ≥ 1, we have

∥∂v∂
kt
t ∂kx

x ∂kv
v g∥Cαm,n

l
≲ ∥∂

kt
t ∂kx

x ∂kv
v g∥C1+αm,n

l
≲T ,ν,m,n µν(v0).

Computing the equation satisfied by ∂v∂
kt
t ∂

kx
x ∂n−1

v g and proceeding as in the previous step, we conclude
the proof. □

5. Diffusion asymptotics

This section is devoted to the study of the global-in-time quantitative diffusion asymptotics which
consists of the (uniform-in-ϵ) convergence towards the equilibrium over long times and of the finite-time
asymptotics, including the results of Theorem 1.1(ii) and Theorem 1.4.

We first introduce the required notation. For any scalar or vector-valued function 9 ∈ L1(Rd, dµ), we
denote its velocity mean by

⟨9⟩ :=

∫
Rd

9(v) dµ.
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For any pair of functions (scalars, vectors, or d ×d matrices) 91, 92 ∈ L2(Td
×Rd , dm), we denote their

L2 inner product with respect to the measure dm by

(91, 92) :=

∫
Td×Rd

91(x, v)92(x, v) dm,

where the multiplication between the pair in the integrand is replaced by the scalar contraction product
if 91 and 92 are a pair of vectors or matrices.

Recalling our notation for the Ornstein–Uhlenbeck operator LOU = (∇v − v) · ∇v, we apply the
substitutions fϵ = µhϵ and fϵ,in = µhϵ,in in (1-2) and obtain{

(ϵ∂t + v · ∇x)hϵ(t, x, v) =
1
ϵ
⟨hϵ⟩

β(t, x) LOU hϵ(t, x, v),

hϵ(0, x, v) = hϵ,in(x, v).
(5-1)

In this setting, by applying integration by parts, for any h1, h2 ∈ C∞
c (Td

× Rd), we get

(h1, LOU h2) = −(∇vh1, ∇vh2).

We will use this identity repeatedly in the computation below. Then, the operator LOU is self-adjoint
with respect to the inner product ( · , · ), and the bracket ⟨ · ⟩ is a projection on the null space of LOU.
Moreover, as the total mass is conserved, we define

M0 :=

∫
Td×Rd

hϵ dm =

∫
Td

⟨hϵ⟩ dx . (5-2)

Proceeding with the macro-micro (fluid-kinetic) decomposition, we define the orthogonal complement of
the projection ⟨ · ⟩ of hϵ as

h⊥

ϵ (t, x, v) := hϵ(t, x, v)− ⟨hϵ⟩(t, x).

In this framework, the local mass ⟨hϵ⟩ is the macroscopic (fluid) part and the complement h⊥
ϵ is the

microscopic (kinetic) part. In addition, taking the bracket ⟨ · ⟩ after multiplying the equation in (5-1)
with 1 and v leads to the macroscopic equations

ϵ∂t ⟨hϵ⟩ +∇x · ⟨vhϵ⟩ = 0, (5-3)

ϵ∂t ⟨vhϵ⟩ +∇x · ⟨v⊗2hϵ⟩ = −
1
ϵ
⟨hϵ⟩

β
⟨vhϵ⟩, (5-4)

where ⟨vhϵ⟩ and ⟨v⊗2hϵ⟩ represent the local momentum and the stress tensor, respectively.

5A. Long time behavior. Our aim is to establish the (uniform-in-ϵ) exponential decay towards the
equilibrium M0 for (5-1). In particular, when ϵ = 1, it sets up the exponential convergence in each order
derivative based on the smoothness a priori estimates given in Section 4C.

We note that the classical coercive method is not applicable in our case to obtain the convergence to
equilibrium due to the degeneracy of the ellipticity of the spatially inhomogeneous equation. Indeed, the
Poincaré inequality only produces a spectral gap on the orthogonal complement of the projection ⟨ · ⟩;
see (5-7). As mentioned in Section 1B, there are several ways to achieve the long-time asymptotics. We
mainly follow the argument in [Esposito et al. 2013] (see also [Kim et al. 2020]) in a simpler scenario.
It also allows us to see some similarity among [Dolbeault et al. 2015; Esposito et al. 2013; Hérau 2018].
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Proposition 5.1. Let the function λt : R+ → [0, 3] satisfy λ′
t ≤ 0 on R+. If hϵ is a solution to (5-1)

in R+ × Td
× Rd associated with the initial data 0 ≤ hϵ,in ≤ 3 and satisfying

⟨hϵ⟩
β(t, x) ≥ λt in R+ × Td and

∫
R+

(λt + λ′

t) dt = ∞, (5-5)

then the solution hϵ converges to the state M0 in L2(dm) as t → ∞. More precisely, there exists some
universal constant c > 0 such that, for any t > 0, we have

∥hϵ(t, · , · ) − M0∥
2
L2(dm)

≲ ∥hϵ,in − M0∥
2
L2(dm)

exp
(
−c

∫ t

0
(λs + λ′

s) ds
)

. (5-6)

Proof. Since the velocity mean of the microscopic part vanishes, ⟨h⊥
ϵ ⟩ = 0, using (5-1) and the Poincaré

inequality yields

1
2

d
dt

∥hϵ − M0∥
2
L2(dm)

=
1
ϵ2 (⟨hϵ⟩

β LOU hϵ, hϵ − M0) = −
1
ϵ2 (⟨hϵ⟩

β
∇vh⊥

ϵ , ∇vh⊥

ϵ )

≤ −
λt

ϵ2 ∥∇vh⊥

ϵ ∥
2
L2(dm)

≲ −
λt

ϵ2 ∥h⊥

ϵ ∥
2
L2(dm)

. (5-7)

Now we have to recover a new entropy that would give some bound on the projection ⟨hϵ⟩ − M0.
For every test function v · 9(t, x)µ, with a vector-valued function 9 ∈ H 1

t,x(R
+

× Td , Rd), we write
the weak formulation of (5-1) as

d
dt

(v · 9, hϵ) =
1
ϵ
(v⊗2

: ∇x9, hϵ) + (v · ∂t9, hϵ) +
1
ϵ2 (⟨hϵ⟩

β LOU v · 9, hϵ).

Taking the macro-micro decomposition into account, from the above expression we obtain

d
dt

(v · 9, h⊥

ϵ ) =
1
ϵ
(|v1|

2 tr(∇x9), ⟨hϵ⟩ − M0) +
1
ϵ
(v⊗2

: ∇x9, h⊥

ϵ )

+ (v · ∂t9, h⊥

ϵ ) −
1
ϵ2 (⟨hϵ⟩

βv · 9, h⊥

ϵ ). (5-8)

Let us now introduce an auxiliary function u(t, x): for any fixed t ∈ R+, defined u(t, x) as the solution
of the following elliptic equation under the compatibility condition (5-2):

−1x u = ⟨hϵ⟩ − M0 in Td, (5-9)

whose elliptic estimate states

∥∇x u∥L2
x
+ ∥∇

2
x u∥L2

x
≲ ∥⟨hϵ⟩ − M0∥L2

x
. (5-10)

In addition, observing that ⟨vhϵ⟩=⟨vh⊥
ϵ ⟩, from (5-3) we get

ϵ∂t ⟨hϵ⟩ +∇x · ⟨vh⊥

ϵ ⟩ = 0.

Combining this macroscopic relation with (5-9), we have∫
Td

|∇x(∂t u)|2 =

∫
Td

∂t u∂t ⟨hϵ⟩ = −
1
ϵ

∫
Td

∂t u∇x · ⟨vh⊥

ϵ ⟩ =
1
ϵ

∫
Td

∇x(∂t u) · ⟨vh⊥

ϵ ⟩.
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It then follows from Hölder’s inequality that

∥∇x(∂t u)∥L2
x
≤

1
ϵ
∥⟨vh⊥

ϵ ⟩∥L2
x
≲ 1

ϵ
∥h⊥

ϵ ∥L2(dm). (5-11)

Choosing 9 = ∇x u in (5-8) yields

−
1
ϵ
(|v1|

21x u, ⟨hϵ⟩− M0)+
d
dt

(v · ∇x u, h⊥

ϵ ) ≲

(
1
ϵ
∥∇

2
x u∥L2

x
+∥∇x(∂t u)∥L2

x
+

1
ϵ2 ∥∇x u∥L2

x

)
∥h⊥

ϵ ∥L2(dm).

Applying (5-9)–(5-11), we have

1
ϵ
∥⟨hϵ⟩ − M0∥

2
L2

x
+

d
dt

(v · ∇x u, h⊥

ϵ ) ≲
1
ϵ2 ∥⟨hϵ⟩ − M0∥L2

x
∥h⊥

ϵ ∥L2(dm) +
1
ϵ
∥h⊥

ϵ ∥
2
L2(dm)

.

By the Cauchy–Schwarz inequality, we arrive at

∥⟨hϵ⟩ − M0∥
2
L2

x
+ ϵ

d
dt

(v · ∇x u, h⊥

ϵ ) ≲
1
ϵ2 ∥h⊥

ϵ ∥
2
L2(dm)

. (5-12)

Then, (5-12) combined with (5-7) implies

d
dt

Eϵ(t) ≲ −
1 − δ

ϵ2 ∥h⊥

ϵ ∥
2
L2(dm)

− δλt∥⟨hϵ⟩ − M0∥
2
L2

x
+ δϵλ′

t(v · ∇x u, h⊥

ϵ )

≤ −δλt∥hϵ − M0∥
2
L2(dm)

− δλ′

t |(v · ∇x u, h⊥

ϵ )|,

where the constant δ ∈
(
0, 1

2

)
will be determined and the modified entropy Eϵ is defined by

Eϵ(t) := ∥hϵ − M0∥
2
L2(dm)

+ δϵλt(v · ∇x u, h⊥

ϵ ).

We note that (5-10) also implies

|(v · ∇x u, h⊥

ϵ )| ≲ ∥⟨hϵ⟩ − M0∥L2
x
∥h⊥

ϵ ∥L2(dm) ≤ ∥hϵ − M0∥
2
L2(dm)

. (5-13)

It means that the modified entropy Eϵ is equivalent (independent of ϵ) to the square of the L2(dm)-distance
between hϵ and M0, when the constant δ > 0 is sufficiently small.

Hence we have
d
dt

Eϵ(t) ≲ −(λt + λ′

t)Eϵ(t).

The conclusion (5-6) then follows from Grönwall’s inequality and the equivalence between Eϵ(t)
and ∥hϵ(t, · , · ) − M0∥

2
L2(dm)

. □

We pointed out that the elliptic estimate (5-10) for the Poisson equation (5-9) used in the above proof
resulting from a Poincaré-type inequality essentially relies on the compactness of the spatial domain.
It was shown in [Bouin et al. 2020] that the related elliptic estimate can be recovered by applying the
Nash inequality [1958] when the spatial domain is the whole space Rd, whose argument is under an
abstract setting. Inspired by the proof of Proposition 5.1 above, we are also able to make the construction
of [Bouin et al. 2020] precise to see that the argument still works for the nonlinear equation (5-1). We
remark that the following algebraic decay rate is optimal in the sense that it is the same as in the linear
case; see Appendix A of [Bouin et al. 2020].
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Proposition 5.2. Assume the initial data hϵ,in is valued in [λ, 3] and satisfies hϵ,in − M1 ∈ L1(R2d , dm)

for some universal constant M1 > 0. Let the function hϵ valued in [λ, 3] be a solution to (5-1) in R+×R2d

associated with hϵ |t=0 = hϵ,in. Then, for any t > 0,

∥hϵ − M1∥L2(R2d , dm) ≲ (1 + ∥hϵ,in − M1∥L1(R2d , dm))t
−d/4.

Proof. By the same derivation of (5-7) and (5-8) as in the proof of Proposition 5.1, we have the microscopic
coercivity

d
dt

∥hϵ − M1∥
2
L2(R2d , dm)

≲ −
1
ϵ2 ∥h⊥

ϵ ∥
2
L2(R2d , dm)

, (5-14)

and the identity from the macro-micro decomposition

−(|v1|
21xw, ⟨hϵ⟩ − M0)W + ϵ

d
dt

(v · ∇xw, h⊥

ϵ )W

= (v⊗2
: ∇

2
x w, h⊥

ϵ )W + ϵ(v · ∂t∇xw, h⊥

ϵ )W −
1
ϵ
(⟨hϵ⟩

βv · ∇xw, h⊥

ϵ )W , (5-15)

where ( · , · )W denotes the L2(R2d, dm) inner product, and the function w(t, x)∈ L∞
t ([0, T ]; L1

x ∩L2
x(R

d))

is chosen to be the solution of the following elliptic equation associated with the constant 2 := ⟨|v1|
2
⟩

and the macroscopic source ⟨hϵ⟩ − M1:

w − 21xw = ⟨hϵ⟩ − M1 in Rd. (5-16)

The elliptic estimate is derived by integrating (5-16) against −21xw, so that

2∥∇xw∥
2
L2

x (R
d )

+ 22
∥∇

2
x w∥

2
L2

x (R
d )

= (−21xw, ⟨hϵ⟩ − M1)W

= (⟨hϵ⟩ − M1 − w, ⟨hϵ⟩ − M1)W =: A. (5-17)

It also follows from the same derivation as (5-11) that

∥∇x(∂tw)∥L2
x (R

d ) ≲
1
ϵ
∥h⊥

ϵ ∥L2(R2d , dm).

Combining the above two estimates with (5-15), we obtain

A+ ϵ
d
dt

(v · ∇xw, h⊥

ϵ )W ≲ 1
ϵ
A1/2

∥h⊥

ϵ ∥L2(R2d , dm) + ∥h⊥

ϵ ∥
2
L2(R2d , dm)

,

which implies from the Cauchy–Schwarz inequality that

A+ ϵ
d
dt

(v · ∇xw, h⊥

ϵ )W ≲
1
ϵ2 ∥h⊥

ϵ ∥
2
L2(R2d , dm)

.

Denoting the modified entropy by

Eϵ(t) := ∥hϵ − M1∥
2
L2(R2d , dm)

+ δϵ(v · ∇xw, h⊥

ϵ )W

with a sufficiently small constant δ > 0 and using (5-14), we conclude that

d
dt

Eϵ(t) ≲ −A− ∥h⊥

ϵ ∥
2
L2(R2d , dm)

. (5-18)
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Recalling the similar estimate (5-13), we see that Eϵ is equivalent to the square of the L2(R2d , dm)-
distance between hϵ and M1. It thus suffices to recover ⟨hϵ⟩ − M1 by means of A. By (5-16) and the
convexity of | · |, we know that |w| is a subsolution in the sense that

|w| −21x |w| ≤ |⟨hϵ⟩ − M1| in Rd,

and hence ∥w∥L1
x (R

d ) ≤ ∥⟨hϵ⟩ − M1∥L1
x (R

d ). With the aid of Corollary 4.10,

∥w∥L1
x (R

d ) ≤ ∥h − M1∥L1(R2d , dm) ≤ ∥hϵ,in − M1∥L1(R2d , dm).

Applying (5-17) and the Nash inequality ∥w∥
d+2
L2

x (R
d )
≲ ∥w∥

2
L1

x (R
d )

∥∇xw∥
d
L2

x (R
d )

, we then acquire

∥⟨hϵ⟩ − M1∥
2
L2

x (R
d )
≲A+ ∥w∥

2
L2

x (R
d )
≲A+ ∥hϵ,in − M1∥

4/(d+2)

L1(R2d , dm)
∥∇xw∥

2d/(d+2)

L2
x (R

d )

≲ (A2/(d+2)
+ ∥hϵ,in − M1∥

4/(d+2)

L1(R2d , dm)
)Ad/(d+2).

Since ∥hϵ − M1∥
2
L2

x (R
d )

≤ (3 + M1)∥hϵ,in − M1∥L1(R2d , dm), in both cases

A+ ∥h⊥

ϵ ∥
2
L2(R2d , dm)

≶ ∥hϵ − M1∥
2
L2(R2d , dm)

,

we conclude that

∥hϵ − M1∥
2
L2(R2d , dm)

≲ (1 + ∥hϵ,in − M1∥
4/(d+2)

L1(R2d , dm)
)(A+ ∥h⊥

ϵ ∥
2
L2(R2d , dm)

)d/(d+2).

Combining this with (5-18) and the equivalence between Eϵ and ∥hϵ − M1∥
2
L2(R2d , dm)

, we have

d
dt

Eϵ(t) ≲ −(1 + ∥hϵ,in − M1∥
4/d
L1(R2d , dm)

)−1Eϵ(t)1+2/d,

Since Eϵ(0) ≲ ∥hϵ,in − M1∥L1(R2d , dm), we arrive at

Eϵ(t) ≲ [Eϵ(0)−2/d
+ (1 + ∥hϵ,in − M1∥

4/d
L1(R2d , dm)

)−1t]−d/2 ≲ (1 + ∥hϵ,in − M1∥
2
L1(R2d , dm)

)t−d/2. □

As far as the case ϵ = 1 is concerned, we conclude the result of convergence to equilibrium.

Proof of Theorem 1.1(ii). Consider g := µ1/2h. In view of Proposition 4.8 and Corollary 4.10 with the
assumption on initial data, we know that λ ≤ µ−1/2g ≤ 3 in R+ × �x × Rd for �x = Td or Rd. By
applying Proposition 5.1 to h = µ−1/2g with λt = λ and �x = Td, we have an universal constant c > 0
such that

∥g(t) − M0µ
1/2∥L2(Td×Rd ) ≲ e−2ct.

Combining this with the Sobolev embedding and the interpolation, we derive the following for any k ∈ N

with k ≥ d:

∥g(t) − M0µ
1/2

∥Ck(Td×Rd ) ≲k ∥g(t) − M0µ
1/2

∥H2k(Td×Rd )

≲k ∥g(t) − M0µ
1/2

∥
1/2
H4k(Td×Rd )

∥g(t) − M0µ
1/2

∥
1/2
L2(Td×Rd )

.

Since the H 4k-norm on the right-hand side is bounded due to the global regularity estimate given by
Proposition 4.12, we obtain the exponential convergence to equilibrium in each order derivative.
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The asserted result in the case �x = Rd is a direct consequence of Proposition 5.2. As a side remark,
one is also able to upgrade the long-time convergence to higher-order derivatives of solutions by means
of the global regularity estimate and interpolation as above; it yet gives the algebraic decay rate that is
not optimal. □

5B. Finite-time asymptotics. The study of macroscopic dynamics for the nonlinear kinetic model (5-1)
in this subsection relies on the regularity of the target equation (1-3). On account of this, let us begin
with mentioning some standard results for (1-3) without proof. If the initial data satisfies λ ≤ ρin ≤ 3,
then such bounds are preserved along times, λ ≤ ρ ≤ 3, in the same spirit as Lemma 4.1. Combining the
parabolic De Giorgi–Nash–Moser theory with Schauder theory, we know that the solution ρ is smooth for
any positive time. We state the a priori estimate precisely as follows, where its behavior near the initial
time is taken into account in view of the standard scaling technique.

Lemma 5.3. Let ρin ∈ Cα0(Td) be valued in [λ, 3] with α0 ∈ (0, 1), and let ρ be the solution to (1-3)
in R+ × Td. Then there is some universal constant α ∈ (0, 1) such that

∥ρ∥Cα(R+×Td ) ≲ 1 + ∥ρin∥Cα0 (Td ). (5-19)

Moreover, there exists some constant Cρ > 0 depending only on universal constants and ∥ρin∥Cα0 (Td ) such
that, for any t ∈ (0, 1] and x ∈ Td, we have

t (1−α)/2
|∇xρ(t, x)| + t (2−α)/2

|∂tρ(t, x)| + t (2−α)/2
|∇

2
x ρ(t, x)| + t (3−α)/2

|∂t∇xρ(t, x)| ≤ Cρ, (5-20)

and, for any t ≥ 1, we have

∥∇xρ(t, · )∥L∞(Td ) + ∥∂tρ(t, · )∥L∞(Td ) + ∥∇
2
x ρ(t, · )∥L∞(Td ) + ∥∂t∇xρ(t, · )∥L∞(Td ) ≲ 1. (5-21)

We measure the distance between solutions to the scaled nonlinear kinetic model (1-2) and solutions
to the fast diffusion equation (1-3) by the relative phi-entropy functional Hβ (see Definition 1.3). The
following lemma shows the effectiveness of the relative phi-entropy for measuring L2-distance by virtue
of the uniform convexity of ϕβ . It can be seen as a simple version of the Csiszár–Kullback inequality
on the relative entropy. We give its statement below with a proof taken from [Dolbeault and Li 2018,
Proposition 2.1] for the sake of completeness.

Lemma 5.4. Let h1 and h2 be two functions valued in [0, 3]. Then we have

Hβ(h1 |h2) ≥
(
1 −

1
2β

)
3−β

∥h1 − h2∥
2
L2(dm)

. (5-22)

If we additionally assume the lower bound h1, h2 ≥ λ, then

Hβ(h1 |h2) ≤
(
1 −

1
2β

)
λ−β

∥h1 − h2∥
2
L2(dm)

.

Proof. Since ϕβ(1) = ϕ′

β(1) = 0 and β ∈ [0, 1], for any z ∈ R+, there exists ξz ∈ R+ lying between 1
and z such that

ϕβ(z) =
1
2ϕ′′

β(ξz)(z − 1)2
=

1
2(2 − β)ξ−β

z (z − 1)2.
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Since min{z, 1} ≤ ξz ≤ max{z, 1}, we have∫
Td×Rd

max{h−β

1 , h−β

2 }|h1 − h2|
2 dm ≤

2
2 − β

Hβ(h1 |h2) ≤

∫
Td×Rd

min{h−β

1 , h−β

2 }|h1 − h2|
2 dm,

which implies the desired results by using the boundedness of h1 and h2. □

Let us consider the finite-time diffusion asymptotics.

Proposition 5.5. Let ρin ∈ Cα0(Td) be valued in [λ, 3] with α0 ∈ (0, 1), and let the sequence of functions
{hϵ,in}ϵ∈(0,1) ⊂ Cα0(Td

× Rd) satisfy

⟨hϵ,in⟩ ≥ λ in Td and 0 ≤ hϵ,in ≤ 3 in Td
× Rd.

Let hϵ be the solutions of (5-1) associated with this initial data. Then there exist some universal constants
α ∈ (0, 1) and C > 0, and some constant Cρ > 0 depending only on universal constants and ∥ρin∥Cα0 (Td )

such that, for any ϵ ∈ (0, 1) and for any t ∈ [T , 1] with T ∈ (0, 1), the following estimate holds:

Hβ(hϵ |ρ)(t) ≤ CρHβ(hϵ |ρ)(T ) + Cρϵ(t (α−1)/2
+ ϵt (α−2)/2), (5-23)

where ρ(t, x) is the solution to (1-3) associated with the initial data ρin, and, for any t ≥ 1, we have

Hβ(hϵ |ρ)(t) ≤ [Hβ(hϵ |ρ)(t)(1) + Cϵ(1 + t1/2)]eCt. (5-24)

Proof. For β ∈ [0, 1), the phi-entropy of hϵ relative to ρ reads

Hβ(hϵ |ρ) = Hβ(hϵ |1) −Hβ(ρ |1) −
2 − β

1 − β
(⟨hϵ⟩ − ρ, ρ1−β

− 1).

As far as the entropy Hβ(hϵ |1) is concerned, the entropy dissipation is derived by (5-1), integration by
parts, and using Hölder’s inequality ⟨∇vhϵ⟩

2
≤ ⟨hϵ⟩

β
⟨h−β

ϵ |∇vhϵ |
2
⟩:

d
dt

Hβ(hϵ |1) =
2 − β

1 − β
(h1−β, ht) = −

2 − β

ϵ2 (h−β
ϵ ∇vhϵ, ⟨hϵ⟩

β
∇vhϵ)

≤ −
2 − β

ϵ2 ∥⟨∇vhϵ⟩∥
2
L2

x
= −

2 − β

ϵ2 ∥⟨vhϵ⟩∥
2
L2

x
. (5-25)

In view of the limiting equation (1-3), we have

d
dt

Hβ(ρ |1) =
2 − β

1 − β
(ρ1−β, ∂tρ) = −(2 − β)(ρ−β

∇xρ, ρ−β
∇xρ). (5-26)

A direct computation with the macroscopic equation (5-3) and (1-3) leads to

d
dt

(⟨hϵ⟩ − ρ, ρ1−β
− 1)

= (ρ1−β, ∂t ⟨hϵ⟩) + ((1 − β)ρ−β
⟨hϵ⟩ − (2 − β)ρ1−β, ∂tρ)

=
1 − β

ϵ
(ρ−β

∇xρ, ⟨vhϵ⟩) − ((1 − β)∇x(ρ
−β

⟨hϵ⟩) − (2 − β)ρ−β
∇xρ, ρ−β

∇xρ). (5-27)
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The evolution of Hβ(hϵ |ρ) is then estimated by combining (5-25), (5-26), and (5-27):

1
2 − β

d
dt

Hβ(hϵ |ρ) ≤ −
1
ϵ2 ∥⟨vhϵ⟩∥

2
L2

x
−

1
ϵ
(⟨vhϵ⟩, ρ

−β
∇xρ) + (∇x(ρ

−β
⟨hϵ⟩ − ρ1−β), ρ−β

∇xρ)

= −∥ϵ−1
⟨vhϵ⟩ + ρ−β

∇xρ∥
2
L2

x
+ (ϵ−1

⟨vhϵ⟩, ρ
−β

∇xρ)

+ (∇x ⟨hϵ⟩ +β(1 − ρ−1
⟨hϵ⟩)∇xρ, ρ−2β

∇xρ)

We remark that the above inequality also holds for β = 1 by a similar computation. Abbreviate

Qϵ := ϵ−1
⟨vhϵ⟩ + ρ−β

∇xρ and Rϵ := −∇x · ⟨v ⊗ ∇vhϵ⟩ − ϵ∂t ⟨vhϵ⟩,

and write the macroscopic equation (5-4) in the form ∇x ⟨hϵ⟩ = −ϵ−1
⟨hϵ⟩

β
⟨vhϵ⟩ + Rϵ . We then have

1
2 − β

d
dt

Hβ(hϵ |ρ) ≤ −∥Qϵ∥
2
L2

x
+ ((1 − ρ−β

⟨hϵ⟩
β)Qϵ, ρ

−β
∇xρ) + (Rϵ, ρ

−2β
∇xρ)

+ (ρ−β
⟨hϵ⟩

β
− βρ−1

⟨hϵ⟩ − 1 + β, ρ−2β
|∇xρ|

2)

≤ 2∥ρ−1−β
|∇xρ|∥

2
L∞

t,x
∥⟨hϵ⟩ − ρ∥

2
L2

x
+ (Rϵ, ρ

−2β
∇xρ), (5-28)

where, for the second inequality, we used the Cauchy–Schwarz inequality

2((1 − ρ−β
⟨hϵ⟩

β)Qϵ, ρ
−β

∇xρ) ≤ ∥Qϵ∥
2
L2

x
+ (|1 − ρ−β

⟨hϵ⟩
β
|
2, |ρ−β

∇xρ|
2)

and the following two elementary inequalities with β ∈ [0, 1]:

|zβ
− 1| ≤ |z − 1| and |zβ

− βz − 1 + β| ≤ |z − 1|
2 for any z ∈ R+.

In view of Hölder’s inequality and inequality (5-22) given in Lemma 5.4, we know that

∥⟨hϵ⟩ − ρ∥
2
L2

x
≤ ∥hϵ − ρ∥

2
L2(dm)

≤ 23βHβ(hϵ |ρ).

Combining this with (5-28) and (5-20), we derive that, for any t ∈ (0, 1],

d
dt

Hβ(hϵ |ρ) ≤ Cρ tα−1Hβ(hϵ |ρ) + 2(Rϵ, ρ
−2β

∇xρ), (5-29)

where the constants α ∈ (0, 1) and Cρ > 0 are provided by Lemma 5.3.
We point out that, after integrating in time, the remainder term in (5-29) involving Rϵ is of order O(ϵ)

due to the control of the entropy production and the regularity of the limiting equation. Indeed,∫ t

0
(Rϵ, ρ

−2β
∇xρ) =

∫ t

0
(⟨v ⊗ ∇vhϵ⟩, ∇x(ρ

−2β
∇xρ)) + ϵ

∫ t

0
(⟨vhϵ⟩, ∂t(ρ

−2β
∇xρ))

− ϵ(⟨vhϵ⟩, ρ
−2β

∇xρ)(t) + ϵ(⟨vhϵ⟩, ρ
−2β

∇xρ)(0)

≲ (∥∇x(ρ
−2β

∇xρ)∥L∞
t,x + ϵ∥∂t(ρ

−2β
∇xρ)∥L∞

t,x )

∫ t

0
∥⟨vhϵ⟩∥L2

x

+ ϵ∥ρ−2β
∇xρ∥L∞

t,x ∥⟨vhϵ⟩∥L∞([0,T ];L2
x )
.
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It then follows from (5-20), (5-25), and the global upper bound of hϵ (Lemma 4.1) that, for any t ∈ (0, 1],∫ t

0
(Rϵ, ρ

−2β
∇xρ) ≤ Cρ(t (α−1)/2

+ ϵt (α−2)/2)

(∫ t

0
∥⟨vhϵ⟩∥

2
L2

x

)1/2

+ Cρϵt (α−1)/2

≤ Cρ(ϵt (α−1)/2
+ ϵ2t (α−2)/2) sup

s∈[0,t]

√
Hβ(hϵ |1)(s) + Cρϵt (α−1)/2

≤ Cρ(ϵt (α−1)/2
+ ϵ2t (α−2)/2) + Cρϵt (α−1)/2.

Combining this estimate with (5-29) as well as Grönwall’s inequality, we conclude (5-23). Additionally,
we arrive at (5-24) if we apply Lemma 5.3 with (5-21) instead of (5-20) in the above argument. □

We are now in a position to conclude the global-in-time diffusion asymptotics.

Proof of Theorem 1.4. We are going to combine Propositions 5.1 and 5.5 with a delicate analysis on the
relative entropy around the initial time to get Theorem 1.4. The analysis is based on the barrier function
method. Let us assume the constant α ∈ (0, 1) provided by Proposition 5.5.

Step 1. Pointwise estimate. Let us fix δ ∈ (0, 1) and (x1, v1) ∈ Td
× BR with R > 0 and consider the

function

h̄(t, x, v) := C1t + C2(|x − x1 − ϵ−1tv|
2
+ |v − v1|

2),

where the constants C1, C2 > 0 are to be determined. For any t ≤ ϵδ/(4(1 + R)), we have

h̄ ≥ C2(|x − x1|
2
+ |v − v1|

2
− 2ϵ−1t |x − x1||v|) ≥

1
2C2δ

2
= 3 on ∂ Bδ(x1, v1),

where we chose C2 := 2δ−23. For any (x, v) ∈ Bδ(x1, v1),

|⟨h⟩
β LOU h̄| ≲ |1v h̄| + |v · ∇v h̄| ≲ δ−2(1 + R2)(1 + ϵ−2t2).

Therefore, for any t ≤ ϵδ/(4(1 + R)) and (x, v) ∈ Bδ(x1, v1),

(∂t + ϵ−1v · ∇x − ϵ−2
⟨h⟩

β LOU)h̄ ≥ C1 − C0ϵ
−2δ−2(1 + R2)(1 + ϵ−2t2) ≥ 0,

where the constant C0 > 0 is universal and we chose C1 := 2C0ϵ
−2δ−2(1 + R2). Then, the maximum

principle implies that, for any t ≤ ϵδ/(4(1 + R)) and (x, v) ∈ Bδ(x1, v1),

|hϵ(t, x, v)− hϵ,in(x1, v1)| ≤ h̄(t, x, v)+ sup
Bδ(x1,v1)

|hϵ,in(x, v)− hϵ,in(x1, v1)|. (5-30)

In particular, for any t ≤ ϵδ/(4(1 + R)) and (x1, v1) ∈ Td
× BR ,

|hϵ(t, x1, v1) − hϵ,in(x1, v1)| ≲ ϵ−2δ−2(1 + R2)t + ∥hϵ,in∥Cα0 (Td×Rd )δ
α. (5-31)

As far as the solution ρ to the limiting equation (1-3) is concerned, using the Hölder estimate (5-19) in
Lemma 5.3, we derive that, for any t ∈ R+,

∥ρ(t) − ρin∥L∞(Td ) ≲ (1 + ∥ρin∥Cα0 (Td ))t
α. (5-32)
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Step 2. Estimate of the relative entropy around the initial time. Let us restrict our attention to the time
interval [0, T ] with T ∈ (0, 1) to be determined. Compute the relative entropy Hβ(hϵ |ρ) in terms of
initial data as

Hβ(hϵ |ρ) = Hβ(hϵ,in |ρin)+

∫
Td×Rd

[(ϕβ(hϵ)−ϕβ(hϵ,in))−(ϕβ(ρ)−ϕβ(ρin))] dm

−

∫
Td×Rd

[(ϕ′

β(ρ)−ϕ′

β(ρin))(hϵ,in −ρin)+ϕ′

β(ρ)(hϵ −hϵ,in)−ϕ′

β(ρ)(ρ−ρin)] dm. (5-33)

Consider a truncation in v for the integrals on the right-hand side. Since hϵ, hϵ,in, ρ, and ρin are all
bounded from above (Lemma 4.1), we have∫

Td×Bc
R

[|ϕβ(hϵ) − ϕβ(hϵ,in)| + |ϕβ(ρ) − ϕβ(ρin)|] dm ≲
∫

Bc
R

dµ ≲ R−4. (5-34)

Observe that for any a, b ∈ (0, 3], there exists ξ ∈ R+ lying between a and b such that

ϕβ(a2) − ϕβ(b2) = 2ξϕ′

β(ξ 2)(a − b).

Meanwhile, |ξϕ′

β(ξ 2)| ≲ 1 for any ξ ∈ (0, 3]. Thus,

|ϕβ(hϵ) − ϕβ(hϵ,in)| ≲ |hϵ − hϵ,in|
1/2 and |ϕβ(ρ) − ϕβ(ρin)| ≲ |ρ − ρin|

1/2.

Set R := ϵ−η/4, δ := ϵη/4, and T :=
1
8ϵ2+2η for some constant η ∈ (0, 1) to be determined. In this setting,

T ≤ ϵδ/(4⟨R⟩). It then follows from (5-31), (5-32), and (5-34) that, for any t ≤ T ,∫
Td×Rd

[|ϕβ(hϵ) − ϕβ(hϵ,in)| + |ϕβ(ρ) − ϕβ(ρin)|] dm

≲ R−4
+

∫
Td×BR

[|hϵ − hϵ,in|
1/2

+ |ρ − ρin|
1/2

] dm

≲ ϵη
+ ϵη/2

+ ∥hϵ,in∥
1/2
Cα0 (Td×Rd )

ϵαη/8
+ (1 + ∥ρin∥

1/2
Cα0 (Td )

)ϵα+αη. (5-35)

In addition,
∥hϵ − hϵ,in∥L1(Td×Bc

R , dm) ≲ R−4

and |ϕ′

β |≲ 1 on [λ, 3]. Therefore, combining (5-31) and (5-32) with inequality (5-22) given in Lemma 5.4
yields, for any t ≤ T ,∫

Td×Rd
[|(ϕ′

β(ρ) − ϕ′

β(ρin))(hϵ,in − ρin)| + |ϕ′

β(ρ)(hϵ − hϵ,in)| + |ϕ′

β(ρ)(ρ − ρin)|] dm

≲ ∥hϵ,in − ρin∥L2(Td×Rd , dm) + ∥hϵ − hϵ,in∥L1(Td×Rd , dm) + ∥ρ − ρin∥L1(Td )

≲H1/2
β (hϵ,in |ρin) + R−4

+ ∥hϵ − hϵ,in∥L1(Td×BR, dm) + ∥ρ − ρin∥L1(Td )

≲ ϵ′1/2
+ ϵη

+ ∥hϵ,in∥Cα0 (Td×Rd )ϵ
αη/4

+ (1 + ∥ρin∥Cα0 (Td ))ϵ
2α+2αη. (5-36)

Plugging (5-35) and (5-36) into expression (5-33), we derive, for any t ≤ T ,

Hβ(hϵ |ρ)(t) ≲ (1 + ∥hϵ,in∥Cα0 (Td×Rd ) + ∥ρin∥Cα0 (Td ))(ϵ + ϵ′)αη/8. (5-37)



414 FRANCESCA ANCESCHI AND YUZHE ZHU

Step 3. Conclusion. Recall that we have chosen T =
1
8ϵ2+2η. In view of (5-37) and the estimate (5-23)

given in Proposition 5.5, one may optimize in η to get the result. For simplicity, we pick η := α/(4 − 2α)

so that T =
1
8ϵ(4−α)/(2−α) and ϵ(T (α−1)/2

+ ϵT (α−2)/2) ≲ ϵα/2. It turns out that, for any t ∈ [0, 1],

Hβ(hϵ |ρ)(t) ≤ CρHβ(hϵ |ρ)(T ) + Cρϵ(T (α−1)/2
+ ϵT (α−2)/2) ≤ C∗(ϵ + ϵ′)αη/8, (5-38)

where the constant Cρ > 0 is provided in Proposition 5.5 and the constant C∗ > 0 depends only on universal
constants, ∥ρin∥Cα0 (Td ), and ∥hϵ,in∥Cα0 (Td×Rd ). Then, using the estimate (5-24) given in Proposition 5.5
with (5-22), we arrive at point (i) of Theorem 1.4.

As for point (ii) of Theorem 1.4, applying (5-24) together with (5-22) and (5-38), for any t ∈ [1, T ],
we have

∥hϵ(t) − ρ(t)∥2
L2(dm)

≲ [Hβ(hϵ |ρ)(1) + ϵ(1 + T 1/2)]eCT

≲ [C∗(ϵ + ϵ′)αη/8
+ ϵ(1 + (−ι log(ϵ + ϵ′))1/2)](ϵ + ϵ′)−αη/16 ≲ C∗(ϵ + ϵ′)αη/16,

where we picked T :=−ι log(ϵ+ϵ′) with ι :=αη/(16C). Finally, using Proposition 5.1 with the additional
assumption that hϵ,in ≥ λ, we know from the long-time behavior that there is some universal constant c > 0
such that, for any t ≥ T ,

∥hϵ(t) − ρ(t)∥L2(dm) ≤ ∥hϵ(t) − M0∥L2(dm) + ∥ρ(t) − M0∥L2
x
≲ e−cT

= (ϵ + ϵ′)cι. □

Appendix A: Maximum principle

The following maximum principle (on a not necessarily bounded domain) is repeatedly applied throughout
the article. We state it in a more suitable fashion for the Fokker–Planck equations of our concern, whose
proof is in the same spirit as [Cameron et al. 2018, Lemma A.2].

Lemma A.1. Let the domain ω be a subset of Rd
× Rd and the parabolic cylinder ωT := (0, T ] × ω.

If f ∈ C2
kin(ωT ) ∩ C0(ωT ) is a bounded subsolution in the sense that

L1 f := (∂t + v · ∇x) f − tr(AD2
v f ) − B · ∇v f ≤ 0 in ωT , (A-1)

with the coefficients A(t, x, v), B(t, x, v) ∈ C0(ωT ) satisfying

λ|ξ |
2
≤ A(t, x, v)ξ · ξ ≤ 3|ξ |

2 and |B(t, x, v) · ξ | ≤ 3⟨v⟩|ξ | for any ξ ∈ Rd , (t, x, v) ∈ ωT ,

then supωT
f ≤ sup∂pωT

f , where the parabolic boundary ∂pωT is defined to be [0, T ] ×ω − (0, T ] ×ω.

Proof. If the domain ω is bounded, then the result is classical. For general (unbounded) ω, we consider
the auxiliary functions

φ1(t, v) := eC1t
⟨v⟩

2 and φ2(t, x) := eC2t
⟨x⟩

2

with C1, C2 > 0. Since f is bounded, for any ε1, ε2 > 0, there exists R(ε1), R(ε2) > 0 (independent of C1

and C2) such that f − ε1φ1 − ε2φ2 ≤ sup∂pωT
f in ωT ∩ {|x | ≥ R(ε2) or |v| ≥ R(ε1)}.

By choosing C1 = (d + 2)3, we have

L1φ1 = eC1t(C1⟨v⟩
2
− tr(A) − 2B · v) ≥ (C1 − (d + 2)3)⟨v⟩

2
= 0 in ωT .
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For any R1 ≥ R(ε1), there exists C2 > 0 depending only on R1 such that

L1φ2 = eC2t(C2⟨x⟩
2
+ v · x) ≥ (C2 − 1)⟨x⟩

2
− |v|

2
≥ 0 in ωT ∩ {|v| < R1}.

Therefore, for any R2 > R(ε2), we have that f − ε1φ1 − ε2φ2 is a subsolution to (3-1) in the bounded
domain (0, T ]×(ω∩(BR2 × BR1)) with the data smaller than sup∂pωT

f on the boundary portion contained
in {|x | = R2 or |v| = R1}. Then, applying the classical maximum principle yields

f − ε1φ1 − ε2φ2 ≤ sup
∂pωT

f in (0, T ] × (ω ∩ (BR2 × BR1)).

Sending R2 → 0, ε2 → 0, R1 → 0, and ε1 → 0 in order, we get the conclusion. □

Appendix B: Spreading of positivity

This appendix is devoted to the proof of Proposition 4.2. The argument follows the one presented in
[Henderson et al. 2020b], and it is based on the combination of Lemmas 4.5 and 4.6.

Proof of Proposition 4.2. The proof is split into four steps.

Step 1. Spreading positivity for all velocities for short times. Applying Lemma 4.5 (with τ = 1) yields
that there is some universal constant c0 > 0 such that, for any 0 ≤ t ≤ min{1, T, c0⟨r−1

⟩
−2

⟨v0⟩
−2

},

h(t, x, v) ≥
1
8δ1{|x−x0−tv|<r/2, |v−v0|<r/2} ≥

1
8δ1{|x−x0−tv0|<r/4, |v−v0|<r/4}.

Let r0 := min
{
1, 1

16r
}

and t :=
1
2 T . Then, Lemma 4.6 implies that there exists C0 > 0 depending only on

universal constants, T , δ, r , and v0 such that, for any 0 < t ≤ t ≤ T0 with

T0 := min
{
1, T, c0⟨r−1

⟩
−2

⟨v0⟩
−2, 1

4r0⟨v0⟩
−1}

and v ∈ Rd , we have

h(t, x, v) ≥ C−1
0 e−C0|v−v0|

4
1{|x−x0−tv0|<2r0} ≥ C−1

0 e−C0|v−v0|
4
1{|x−x0|<r0}. (B-1)

Step 2. Spreading positivity in space for short times. For any fixed t ∈ [t, T0] and x̄ ∈ Td, we set
v̄ := (x̄ − x0)/(t − t). In view of (B-1), by Lemma 4.5 (with τ = 2(t − t), v0 = v̄), we deduce that, if
t − t ≤ c0⟨2(t − t)r−1

0 ⟩
−2

⟨v̄⟩
−2 and in particular if

t ≤ t + t0 with t0 :=
c0r2

0

4 + r2
0
⟨x̄ − x0⟩

−2, (B-2)

then there exists δ0 > 0 with the same dependence as C0 such that, for any t ∈ [t, t],

h(t, x, v) ≥ δ01{|x−x0−(t−t)v|<r0/2, 2(t−t)|v−v̄|<r0/2} ≥ δ01{|x−x0−(t−t)v̄|<r0/4, |v−v̄|<r0/4}.

Then, Lemma 4.6 (with v0 = v̄) implies that, for any 0 < 2t ≤ t ≤ t + t0 and v ∈ Rd,

h(t, x, v) ≥ C−1
1 e−C1|v|

4
1{|x−x0−(t−t)v̄|<r0/8} (B-3)
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for some constant C1 > 0 depending only on universal constants, T , δ, r, v0, and |x̄ − x0|. In particular,
for any 0 < 2t ≤ t ≤ t + t0 and v ∈ Rd,

h(t, x̄, v) ≥ C−1
1 e−C1|v|

4
. (B-4)

Step 3. Spreading positivity for any finite time. We observe that the time interval above is restricted
(see (B-2)), but it can be removed by applying the lemmas again. Based on the previous step, it suffices
to deal with the case t > t0. By a similar proof to (B-3), we derive

h(t0, x, v) ≥ δ11{|x−x̄ |<r0/8, |v|<r0/8}

for some constant δ1 > 0 with the same dependence as C1. In view of this data, applying Lemma 4.5 to
h(t0 + · , · , · ) (with τ = 1, v0 = 0), we see that, for any t ∈ [t0, min{T0, t0 + T1}] with T1 := c0⟨8/r0⟩

−2,

h(t, x, v) ≥
1
8δ11{|x−x̄ |<r0/16, |v|<r0/16}.

It then follows from Lemma 4.6 that, for any t ∈ [t0 + t, min{T0, t0 + T1}] and v ∈ Rd,

h(t, x, v) ≥ C−1
2 e−C2|v|

4
1{|x−x̄ |<r0/32}

for some constant C2 > 0 with the same dependence as C1.
Combining this with (B-4) as well as recalling that T = 2t and the space domain Td is compact, we

know that there exists C3 > 0 depending only on universal constants, T , δ, r , and v0 such that, for any
(t, x, v) ∈ [T , min{T0, T1}] × Td

× Rd,

h(t, x, v) ≥ C−1
3 e−C3|v|

4
.

Since T0 and T1 depend only on universal constants, r , and v0, by applying the above arguments iteratively,
we obtain the result for any finite time.

Step 4. Improving the exponential tail. We remark that this step is not necessary for the applications of
the lower bound result, but it shows a more precise decay rate as |v| → ∞.

By the previous step, there is some c > 0 depending only on universal constants, T , T, δ, r , and v0

such that h ≥ c in [T , T ] × Td
× B1. Consider the barrier function

h(t, x, v) := ce−C0(t−T )−1
|v|

2
in [T , T ] × Td

× Bc
1,

where the constant C0 > 1 is to be determined. By recalling (4-2) and performing a direct computation,
we have

(∂t + v · ∇x)h − Rh LOU h =
C0Rhh
(t − T )2 (R−1

h + 2(d − |v|
2)(t − T ) − 4C0|v|

2)

≤
C0Rhh
(t − T )2 (c−β

+ 2dT − 4C0) in (T , T ] × Td
× Bc

1 .

In particular, by choosing C0 sufficiently large (with the same dependence as c), we have

(∂t + v · ∇x)(h − h) − Rh LOU(h − h) ≤ 0 in (T , T ] × Td
× Bc

1 .
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In addition, by its definition, h ≥ h on the boundary {t ∈ [T , T ], |v| = 1} ∪ {t = 2t, |v| ≥ 1}. The
maximum principle (Lemma A.1) then implies that h ≥ h in [T , T ]× Td

× Bc
1 . Therefore, we achieve

the Gaussian-type lower bound for any (t, x, v) ∈ [2T , T ] × Td
× Rd. □

Appendix C: Gaining regularity of spatial increment

This appendix is devoted to the proof of two technical lemmas for spatial increments involved in the
bootstrapping of higher regularity for solutions to (4-1) presented in Section 4C. For the convenience of
the reader, we report a brief proof following the lines of [Imbert and Silvestre 2022, Lemma 8.1] with
s = 1 and α1 = β = 2.

Lemma C.1. Let α ∈ (0, 1), and let a bounded continuous function g be defined in Q4. If there exists
some constant M > 0 such that, for any y ∈ B1,

[δyg]C0
l (Q2)

≤ M and [δyg]C2+α
l (Q2)

≤ M∥(0, y, 0)∥2,

then there exists some universal constant η ∈ (0, 1) such that, for any y ∈ B1,

∥δyg∥Cη
l (Q1)

≲ M∥(0, y, 0)∥3.

Proof. Keeping in mind the assumption and Remark 2.5, for fixed y ∈ B1, we consider the polynomial
expansion p0 of δyg at z0 ∈ Q2 with degkin(p0) = 2:

p0(z) = δyg(z0) + (∂t + v0 · ∇x)δyg(z0)t + ∇vδyg(z0) · v +
1
2 D2

vδyg(z0)v · v

for z := (t, x, v) ∈ R × Rd
× Rd. For any z such that z0 ◦ z ∈ Q4, we have

|δyg(z0 ◦ z) − p0(z)| ≤ M∥(0, y, 0)∥2
∥z∥2+α. (C-1)

In particular, p0(0, y, 0) = δyg(z0), so that, for any y ∈ B1,

|δ2yg(z0) − 2δyg(z0)| = |δyg(z0 ◦ (0, y, 0)) − δyg(z0)| = |δyg(z0 ◦ (0, y, 0)) − p0(0, y, 0)|

≤ M∥(0, y, 0)∥4+α.

It then follows that, for any z0 ∈ Q2 and for any k ∈ N such that z0 ◦ (0, 2k y, 0) ∈ Q4,

|δyg(z0) − 2−kδ2k yg(z0)| ≤

k∑
j=1

2− j
|δ2 j yg(z0) − 2δ2 j−1 yg(z0)|

≤ M∥(0, y, 0)∥4+α

k∑
j=1

2(1+α) j/3
≤ 2M∥(0, y, 0)∥4+α2(1+α)k/3. (C-2)

Picking k ∈ N such that ∥2k−1(0, y, 0)∥ ≤ 1 < ∥2k(0, y, 0)∥ and using the assumption yields

|δyg(z0)| ≤ 2−k
|δ2k yg(z0)| + 2M∥(0, y, 0)∥4+α2(1+α)k/3

≤ ∥δ2k yg∥C0
l (Q2)

∥(0, y, 0)∥3
+ 4M∥(0, y, 0)∥3

≤ 5M∥(0, y, 0)∥3. (C-3)
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It remains to show that there exists some constant η > 0 depending only on α such that

|δyg(z0 ◦ z) − δyg(z0)| ≲ M∥(0, y, 0)∥3
∥z∥η. (C-4)

By (C-1) and Lemma 2.4, we know that, for any z0 ∈ Q1 and z0 ◦ z ∈ Q4,

|δyg(z0 ◦ z) − δyg(z0)| ≤ (|(∂t + v0 · ∇x)δyg(z0)| + |D2
vδyg(z0)|)∥z∥2

+ |∇vδyg(z0)|∥z∥ + M∥(0, y, 0)∥2
∥z∥2+α

≲ ([δyg]C2+α
l (Q2)

∥z∥ + [δyg]
1/2
C2+α

l (Q2)
[δyg]

1/2
C0

l (Q2)
+ [δyg]C0

l (Q2)
)∥z∥

+ M∥(0, y, 0)∥2
∥z∥2+α.

If ∥z∥ ≤ ∥(0, y, 0)∥, then combining the above expression with the assumption and (C-3) implies (C-4)
with η =

1
2 . In particular, if k ∈ N such that ∥z∥ < ∥2k(0, y, 0)∥, then we have

2−k
|δ2k yg(z0 ◦ z) − δ2k ygz(z0)| ≲ 2−k M∥(0, 2k y, 0)∥3

∥z∥η
= M∥(0, y, 0)∥3

∥z∥η. (C-5)

Now, if ∥z∥ ≥ ∥(0, y, 0)∥, applying (C-2) at points z0 and z0 ◦ z, with k ∈ N such that ∥2k−1(0, y, 0)∥ ≤

∥z∥ < ∥2k(0, y, 0)∥, yields

|δyg(z0) − 2−kδ2k yg(z0)| ≤ 4M∥(0, y, 0)∥3
∥z∥1+α, (C-6)

|δyg(z0 ◦ z) − 2−kδ2k yg(z0 ◦ z)| ≤ 4M∥(0, y, 0)∥3
∥z∥1+α. (C-7)

Summing up (C-5), (C-6), and (C-7), we arrive at (C-4). □

Following the lines of the above proof and taking into account that ∥g∥C2+α
l (Q2)

≤ M , one is also able
to prove the following result.

Lemma C.2. If g ∈ C2+α
l (Q2) with α ∈ (0, 1), then, for any y ∈ B1, we have

∥δyg∥Cα
l (Q1) ≲ ∥g∥C2+α

l (Q2)
∥(0, y, 0)∥2.
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STRICHARTZ INEQUALITIES
WITH WHITE NOISE POTENTIAL ON COMPACT SURFACES

ANTOINE MOUZARD AND IMMANUEL ZACHHUBER

We prove Strichartz inequalities for the Schrödinger equation and the wave equation with multiplicative
noise on a two-dimensional manifold. This relies on the Anderson Hamiltonian described using high-order
paracontrolled calculus. As an application, it gives a low-regularity solution theory for the associated
nonlinear equations.

Introduction

Enormous progress has been made in the last decade after Hairer [21] introduced his theory of regularity
structures and the theory of paracontrolled distributions due to Gubinelli, Imkeller, and Perkowski [17] in
the study of singular stochastic PDEs. A particular approach developed recently is the construction of a
random stochastic operator to investigate associated PDEs. The first paper on this, by Allez and Chouk [1],
dealt with the continuum Anderson Hamiltonian, hereafter simply called the Anderson Hamiltonian. They
used the latter theory to make sense of the operator on the two-dimensional torus, formally

H = −1+ ξ,

where ξ is spatial white noise whose spatial regularity is just below −1, that is, the centered random field
with formal covariance

E[ξ(x)ξ(y)] = δ0(x − y).

In the particular case of the torus, it can be constructed as the random Fourier series

ξ(x)=

∑
n∈Z2

ξnein·x ,

with (ξn)n∈Z2 independent and identically distributed standard Gaussian random variables. In general,
the white noise is an isometry from L2(M) to L2(�) the space of random variable with finite variance.
Afterwards this approach was extended to the three-dimensional torus and somewhat reformulated by
Gubinelli, Ugurcan and Zachhuber [19] and by Labbé [23] who used regularity structures and dealt with
both periodic and Dirichlet boundary conditions. Finally, the construction was extended by Mouzard [27]
to the case of two-dimensional manifold using high-order paracontrolled calculus.

Naturally, substantial progress was also made in the field of singular dispersive SPDEs following the
paper [15] by Debussche and Weber on the cubic multiplicative stochastic Schrödinger equation and
[18] by Gubinelli, Koch and Oh on the cubic additive stochastic wave equation. Since the powerful
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tools from singular SPDEs are only directly applicable to parabolic and elliptic SPDEs, these initial
papers were in a not-so-singular regime, the former using an exponential transform to remove the most
singular term and the latter using a “Da Prato–Debussche trick” to do the same. Gubinelli, Ugurcan and
Zachhuber [19] proved some sharpened results on the multiplicative Schrödinger equation and its wave
analogue by reframing it in relation to the Anderson Hamiltonian, as well as extending the results to
dimension 3. Moreover, Tzvetkov and Visciglia [33] extended the results of [15] to a larger range of power
nonlinearities; see also [32]. For the nonlinear wave equation with additive noise, let us mention here the
follow-up paper by Gubinelli, Koch and Oh [20] in three dimensions with quadratic nonlinearity and the
paper [28] by Oh, Robert and Tzvetkov which extends the results of [18] to the case of two-dimensional
surfaces and is thus salient for the current paper.

Let us also mention a related area of research whose aim is to solve deterministic dispersive PDEs
with random initial conditions with low regularity. The study of this, which is intimately related to the
analysis of invariant measures for dispersive PDEs, goes back to the seminal work of Lebowitz, Rose and
Speer [24]. A series of works by Bourgain followed; let us mention here [10] where a renormalisation
procedure similar to the current case appears but for a different reason. See also the work [11] by Burq
and Tzvetkov, which deals with singular random initial condition for which they obtain well-posedness
results for the cubic nonlinear wave equation on a compact manifold.

In this paper, we prove Strichartz inequalities for the Schrödinger and wave equations with white noise
potential on compact surfaces. In a nutshell, Strichartz inequalities leverage dispersion in order to allow
us to trade integrability in time for integrability in space; see Section 2 for a more detailed introduction
and [34] where this kind of approach appeared for the Anderson Hamiltonian. Moreover, we show how
this provides local well-posedness for the associated nonlinear equations in a low-regularity regimes. As
for the deterministic case, the Strichartz estimates obtained depend whether the manifold has a boundary
or not and are improved in the flat case of the torus. By Strichartz inequalities, we generally refer to
space-time bounds on the propagators of Schrödinger and wave equations where the results on integrability
are strictly better than what one gets from the Sobolev embedding so — for definiteness we consider the
Schrödinger case — a bound like

∥ei t H u∥L p(I,Lq ) ≲ ∥u∥Hα ,

with p ∈ [1,∞], q > 2d/(d − 2α), where d denotes the dimension and I ⊂ R is an interval. The overall
approach to the Schrödinger group associated to H we follow is similar to the one in [34], where such
Strichartz estimates were shown for the Anderson Hamiltonian on the two and three-dimensional torus.
However, one gets sharper results in the particular case of flat geometry due to the fact that one has
stronger classical Strichartz inequalities available. In the more general setting of a Riemannian compact
manifold, we work with a result due to Burq, Gerard and Tzvetkov [12], which has been extended to
the case with boundary by Blair, Smith and Sogge [8]. These results can be thought of as quantifying the
statement “finite frequencies travel at finite speeds — in (frequency-dependent) short time the evolution
is morally on flat space”. Let us also mention at this point the recent work by Huang and Sogge [22]
which deals with a similar setting; however, their notion of singular potential refers to low integrability
while in our case singular refers rather to potentials with low regularity.
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For the case of Strichartz estimates for the wave equation related to H, we follow the approach introduced
by Burq, Lebeau and Planchon [13] on domains with boundary. The main idea, which is why this approach
is applicable, is that all that is required is that the operator driving the wave equation satisfies some growth
condition on the Lq bounds on its eigenfunctions and one knows about the asymptotics of the eigenvalues,
in their case the Laplace with boundary conditions. Since a Weyl law for H was obtained by Mouzard [27]
and our result for the Schrödinger equation gives us a suitable Lq bound on the eigenfunctions of H, their
approach turns out to be enough to prove Strichartz estimates that beat the Sobolev embedding. Overall
this approach seems somewhat crude and we assume there to be sharper bounds possible, whereas in the
Schrödinger case, our result is the same as the one without noise obtained in [12] worsened only by an
arbitrarily small regularity loss. The state of the art of Strichartz estimates for wave equations on manifolds
with boundary is the paper [7], the case of manifolds without boundary being comparable to the Strichartz
estimates on Euclidean space because of the finite speed of propagation. In particular, the bounds obtained
on the spectral projectors of the Anderson Hamiltonian are new and of interest themselves.

The second objective of this paper is to use the Strichartz inequalities obtained to prove local well-
posedness for the associated defocussing nonlinear equations, also known as cubic multiplicative stochastic
Schrödinger and wave equations. This will be done using fairly straightforward contraction arguments for
which the Strichartz estimates will be crucial.

We conclude the introduction by a brief outline of the construction of the Anderson Hamiltonian; see
[27] for the details. It is formally given by

H = −1+ ξ,

where ξ is the space white noise and belongs to Cα−2 for any α < 1, where Cβ denotes the Hölder–Besov
spaces recalled in Section 1A. The noise is only a distribution, rough almost surely everywhere as opposed
to potential with a localised singularity; hence Hu is well-defined for u ∈ C∞ but does not belong to L2.
The nature of the noise makes the naive candidate for the domain of H, that is, the closure of

{u ∈ C∞
; Hu ∈ L2

},

with respect to the domain norm, unviable. This is precisely where the paracontrolled calculus comes
into play, one can construct a random space D4 ⊂ L2 such that almost surely

u ∈ D4 =⇒ Hu ∈ L2.

Here 4= (ξ,1−1ξ ·ξ) refers to the enhanced noise; see [27] for its construction. The domain D4 consists
of functions u ∈ L2 paracontrolled by noise-dependent functions X1, X2 of the form

u = P̃u X1 + P̃u X2 + u♯,

with a remainder u♯ ∈ H2 and the P̃u X i are terms which are dominated by X i in terms of regularity. In
particular, smooth functions do not belong to the domain in this peculiar setting. The singularity of the
product is dealt with through a renormalisation procedure which corresponds to the construction of the
singular term X · ξ , where 1X = ξ . Given a regularisation ξε of the noise, the product Xε · ξε diverges
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but one gets a well-defined function after the subtraction of the diverging quantity

cε := E[Xε · ξε].

The analysis of the operator is then done with

1−1ξ · ξ := lim
ε→0

(1−1ξε · ξε − cε),

the Wick product, and the Anderson Hamiltonian corresponds to the limit of the family of operators

Hε = −1+ ξε − cε

as ε goes to 0. In the case of the torus, cε is a constant due to the invariance by translation of the noise
and diverges as |log ε|; for details, see Section 2.1 of [27]. Note that the operator 1 is not invertible and
1−1 has to be interpreted as a parametrix, that is, an inverse up to a smooth term.

While the Anderson Hamiltonian can be interpreted as the electric Laplacian −1+ V with electric
field V = ξ , one can consider as an analogy the magnetic Laplacian with magnetic field B = ξ space
white noise. This is the content of [26], where Morin and Mouzard construct

H = (i∂1 + A1)
2
+ (i∂2 + A2)

2

on the two-dimensional torus with magnetic potential A = (A1, A2) the Lorentz gauge associated to the
white noise magnetic field. Its study is also motivated by supraconductivity where H plays a specific role
in the third critical field of Ginzburg–Landau theory. In particular, the first results, such as self-adjointness,
discrete spectrum and the Weyl law, hold as for the Anderson Hamiltonian, while differences are expected
to appear when one looks at finer properties. Our proof for the Strichartz inequalities for the Schrödinger
group associated to the Anderson Hamiltonian, which is perturbative in nature, can directly be adapted to
obtain a similar result for the random magnetic Laplacian with white noise magnetic field. For Strichartz
estimates for the magnetic Schrödinger equation in the deterministic case, see for example [14].

Organisation of the paper. In Section 1, we give the context for the Strichartz inequalities on manifolds
in the case of the Schrödinger equations and the heat semigroup paracontrolled calculus on manifolds;
see respectively [12] and [27]. We conclude by recalling the construction of the Anderson Hamiltonian
and provide new results needed in the following. In Section 2, we provide Strichartz inequalities for the
Schrödinger group associated to the Anderson Hamiltonian and show how this gives local well-posedness
for the stochastic cubic nonlinear Schrödinger equation with multiplicative white noise. In Section 3, we
use the result on the Schrödinger group to get new bounds on the eigenvalues of the Anderson Hamiltonian
and use it to prove Strichartz inequalities for the wave propagator together with the Weyl-type law. Finally,
we also show how this gives local well-posedness for the stochastic cubic nonlinear wave equation with mul-
tiplicative white noise and give details for the particular case of the torus where one gets improved bounds.

1. Preliminaries

1A. Strichartz inequalities on manifolds. On the torus, regularity of distributions can be measured
using the Littlewood–Paley decomposition. On a manifold, one has an analogue decomposition using
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the eigenfunctions of the Laplace–Beltrami operator 1 as a generalisation of Fourier theory; see for
example Section 2 in [29] by Oh, Robert, Tzvetkov and Wang. Let (M, g) be a two-dimensional compact
Riemannian manifold without boundary or with boundary and Dirichlet boundary conditions. In this
framework, the Laplace–Beltrami operator −1 is a self-adjoint positive operator with discrete spectrum

0 ≤ λ1 < λ2 ≤ λ3 ≤ · · · ,

with the associated normalised eigenfunctions (ϕn)n≥1 belonging to C∞(M). In the case where M has no
boundary, we have λ1 =0 and ϕ1 =Vol(M)−1/2 constant. Furthermore, the Weyl law gives the asymptotics

lim
n→∞

λn

n
=

Vol(M)
4π

.

The basis (ϕn)n≥1 of L2 gives the decomposition

u =

∑
n≥1

⟨u, ϕn⟩ϕn

for any distribution u ∈D′(M). On the torus, this gives the Littlewood–Paley decomposition of u, where the
regularity is measured by the asymptotics behaviour of

∑
λk∼2n ⟨u, ϕk⟩. On a manifold M, this is done with

1n := ψ(−2−2(n+1)1)−ψ(−2−2n1)

for n ≥ 0 and

1−1 := ψ(−1),

with ψ ∈ C∞

0 (R) a nonnegative function with supp(ψ)⊂ [−1, 1] and ψ = 1 on
[
−

1
2 ,

1
2

]
. Recall that for

any function ψ ∈ L∞(R), the operator ψ(1) is defined as

ψ(1)u =

∑
n≥1

ψ(λn)⟨u, ϕn⟩ϕn

and this yields a bounded operator from L2(M) to itself. In this setting, Besov spaces are defined for
α ∈ R and p, q ∈ [1,∞] as

Bαp,q := {u ∈ D′(M) : ∥u∥Bαp,q <∞},

where

∥u∥Bαp,q :=

(
∥1−1u∥

q
L p(M) +

∑
n≥0

2αq
∥1nu∥

q
L p(M)

)1
q

.

In the particular case p = q = ∞, these spaces are called Hölder–Besov spaces and we write

Bα
∞,∞ = Cα.

The case p = q = 2 corresponds to Sobolev spaces and we have

∥u∥
2
Hα = ∥1−1u∥

2
L2(M) +

∑
n≥0

22nα
∥ϕ(2−2n1)u∥

2
L2(M),
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where ϕ(x) := ψ(−x2)−ψ(−x). Burq, Gérard and Tzvetkov [12] proved, in the case where M has no
boundary, the bound

∥ f ∥Lq (M) ≲ ∥ψ(−1) f ∥Lq (M) +

(∑
n≥0

∥ϕ(2−2n1) f ∥
2
Lq (M)

)1
2

,

using that for λ ∈ R we have
ψ(−λ)+

∑
n≥0

ϕ(2−2nλ)= 1.

Applying this to the Schrödinger group, they obtain

∥ei t1v∥L p([0,1],Lq ) ≲ ∥ψ(−1)v∥Lq (M) +

∥∥∥∥(∑
k≥0

∥ei t1ϕ(2−2k1)v∥2
Lq (M)

)1
2
∥∥∥∥

L p([0,1])

;

hence one only needs a bound for spectrally localised data. This is proved using semiclassical analysis
with the use of the WKB expansion; see Proposition 2.9 from [12] which gives(∫

J
∥ei t1ϕ(h21)v∥

p
Lq (M) dt

)1
p

≲ ∥v∥L2(M) (1)

for J an interval of small enough length proportional to h ∈ (0, 1). Moreover, a well-known trick is
to slice up the time interval into small pieces; this will be useful later. The previous bounds with the
Minkowski inequality lead to

∥ei t1v∥L p([0,1],Lq ) ≲ ∥v∥L2(M) +

(∑
k≥0

2
2k
p ∥ϕ(2−2k1)v∥2

L2(M)

)1
2

≲ ∥v∥H1/p .

This yields the following theorem.

Theorem 1.1. Let p ≥ 2 and q <∞ such that

2
p

+
2
q

= 1.

Then
∥ei t1u∥L p([0,1],Lq ) ≲ ∥u∥H1/p .

While this result is optimal on general surfaces in the case p = 2, this can be improved in the flat case
of the torus. In fact, the first result concerning Strichartz inequalities for the Schrödinger equation on a
compact manifold was obtain by Bourgain [10] on the flat torus. In the case of the Anderson Hamiltonian
on a compact surface without boundary, we obtain the same result as Theorem 1.1 with an arbitrarily
small loss of regularity; this is the content of Section 2. In the case of a surface with boundary, the
following result was obtained by Blair, Smith and Sogge [8].

Theorem 1.2. Let M be a surface with boundary. Let p ∈ (3,∞] and q ∈ [2,∞) such that

3
p

+
2
q

= 1.

Then
∥ei t1u∥L p([0,1],Lq ) ≲ ∥u∥H2/p
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and (∫
J
∥ei t1ϕ(h21)v∥

p
Lq (M) dt

)1
p

≲ h−
1
p ∥ϕ(h21)v∥L2(M) (2)

for J an interval of small enough length proportional to h ∈ (0, 1).

We end this section with two classical results that will be needed in this paper. First, one still has the
Bernstein lemma with the Littlewood–Paley decomposition associated to the Laplace–Beltrami operator.

Lemma 1.3. Let g : M → R be a function which has spectral support in an interval [a, b] with 0 <
a < b <∞. Then for any α, β ∈ R we have the following bounds which are the analogue of Bernstein’s
inequality on Euclidean space:

∥g∥Hα ≲ max(bα−β, aα−β)∥g∥Hβ ,

∥g∥Hα ≳ min(bα−β, aα−β)∥g∥Hβ .

The former estimate still holds in the case where a = 0 and α > β. We will chiefly apply these bounds to
Littlewood–Paley projectors where b = 2a = 2 j for j ∈ N.

Proof. The condition on g means that

g =

∑
λk∈[a,b]

(g, φk)φk

and we have

∥g∥
2
Hα =

∑
λk∈[a,b]

(g, φk)
2λ2α

k .

The upper bounds follow directly with

λ2α
k = λ

2β
k λ

2(α−β)

k ≤ λ2β max(b2(α−β), a2(α−β))

and analogously for the lower bounds. □

The space Hσ is an algebra only for σ large enough depending on the dimension; this can be seen
with the following proposition and the Sobolev embedding. These types of estimates are important for
the dispersive equations with cubic nonlinearity considered here.

Lemma 1.4. Let σ ≥ 0. The space Hσ
∩ L∞ is an algebra and one has the bound

∥ f · g∥Hσ ≲ ∥ f ∥Hσ ∥g∥L∞ + ∥g∥Hσ ∥ f ∥L∞ .

1B. Basics on paracontrolled calculus. On the torus, the Littlewood–Paley decomposition can also be
used to study ill-defined products. Recall that for u ∈ D′(T2), it is given by

u =

∑
n≥0

1nu,

where each 1nu is smooth and localised in frequency in an annulus of radius 2n for n ≥ 1, while the
Fourier transform of 10u is contained in a ball around the origin. Given two distributions u, v ∈ D′(T2),
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the product is formally given by

u · v =

∑
n,m≥0

1nu ·1mv

=

∑
n≲m

1nu ·1mv+

∑
n∼m

1nu ·1mv+

∑
m≲n

1nu ·1mv

=: Puv+5(u, v)+ Pvu.

The term Puv is called the paraproduct of v by u and is always well-defined, while the potential singularity
is encoded in the resonant term 5(u, v). Using this decomposition, Gubinelli, Imkeller and Perkowski
introduced the notion of paracontrolled calculus to develop a solution theory for singular stochastic PDEs
in their seminal work [17]; this correspond to Bony’s paraproduct from [9] in this flat case. On a manifold,
an alternative paracontrolled calculus was developed by Bailleul and Bernicot [4] based on the heat
semigroup. Instead of Littlewood–Paley, which is discrete decomposition, they used the Calderón formula

u = lim
t→0

Pt u =

∫ 1

0
Qt u

dt
t

+ P1u

for u ∈ D′(M), with Pt the heat semigroup and Qt = −t∂t Pt . Using Gaussian upper bounds for the heat
kernel and its derivatives, this defines a continuous analogue of the Littlewood–Paley decomposition where
√

t ≃ 2−n and yields descriptions of Besov–Hölder and Sobolev spaces for scalar fields on manifolds.
This can be used to construct a paraproduct P and a resonant product 5, such that

u · v = Puv+5(u, v)+Pvu,

that verify the same important properties of their Fourier analogue P and 5. It was later extended to a
higher-order paracontrolled calculus by Bailleul, Bernicot and Frey [6] to deal with rougher noise than
the initial work of Gubinelli, Imkeller and Perkowski, again in a general geometric framework. While
these different works dealt with parabolic PDEs, the paracontrolled calculus can be used to study singular
random operators. It was first used by Allez and Chouk [1] to study the Anderson Hamiltonian

H = −1+ ξ

on the two-dimensional torus. The same operator was constructed on the torus by Gubinelli, Ugurcan and
Zachhuber [19] on Td with d ∈ {2, 3} to solve associated evolution PDEs. Labbé [23] also constructed
the operator in two and three dimensions with different boundary conditions using regularity structures.
Finally, Mouzard [27] used the heat semigroup paracontrolled calculus to construct the operator on a
two-dimensional manifold and obtained an almost sure Weyl-type law. Note that [27] is self-contained
and is a gentle introduction to the paracontrolled calculus on manifolds in the spatial framework. For
another example of singular random operators, see [26], where Morin and Mouzard construct the magnetic
Laplacian with white noise magnetic field on T2. With this work, we show that this approach is also
well-suited for the study of dispersive PDEs.

The heat semigroup paracontrolled calculus is a theory to study PDEs with singular products on
manifolds. Given a suitable family (Vi )1≤i≤d of first-order differential operators, one can construct a
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paraproduct P and a resonant term 5 based on the heat semigroup associated to

L := −

d∑
i=1

V 2
i .

We briefly outline this construction here; see [5; 6] in the parabolic space-time setting and [27] in the
space setting for the details. In particular, the Laplace–Beltrami operator on a manifold can be written in
this form; see for example Stroock’s book [31]. For any distribution u ∈ D′(M), the heat semigroup

Pt u = e−t Lu

provides a smooth approximation as t goes to 0. Introducing its derivative

Qt := −t∂t Pt ,

one gets an analogue of the Littlewood–Paley decomposition as explained before. While the 1n’s enjoy
proper orthogonal relation in the sense that 1n1m is equal to zero for |n − m|> 1, we only have in this
continuous framework

Qt Qs =
ts

(t + s)2
((t + s)L)2e−t L ,

which is indeed small if s ≪ t or t ≪ s. For a given integer b ∈ N∗, let

Q(b)
t := (t L)be−t L .

Then

Q(b)
t Q(b)

s =

(
ts

(t + s)2

)b

Q(b)
t+s;

hence the parameter b encodes a cancellation property between different scales t and s. Furthermore,
we have ∫ 1

0
Q(b)

t u dt
t

= lim
t→0

P (b)t u = u,

where P (b)0 = Id and
−t∂t P (b)t = Q(b)

t .

In particular, we have P (b)t = pb(t L)e−t L, with pb a polynomial of degree b − 1 such that pb(0) = 1.
Denote by StGCa the family of operators (Qt)t∈[0,1] of the form

Qt = (t
|I |
2 VI )(t L) j e−t L ,

with a = |I | + 2 j and GCa the operator with kernel satisfying Gaussian upper bounds with cancellation
of order a; see Section 1.2 [27] for the definitions. We have

u ·v= lim
t→0

P (b)t (P (b)t u·P (b)t v)

=

∫ 1

0
Q(b)

t (P (b)t u·P (b)t v)
dt
t

+

∫ 1

0
P (b)t (Q(b)

t u·P (b)t v)
dt
t

+

∫ 1

0
P (b)t (P (b)t u·Q(b)

t v)
dt
t

+P (b)1 (P (b)1 u·P (b)1 v).
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After a number of integrations by parts, we get

u · v = Puv+5(u, v)+Pvu,

where Puv is a linear combination of terms of the form∫ 1

0
Q1•

t (Pt u · Q2
t v)

dt
t

and 5(u, v) of ∫ 1

0
P•

t (Q
1
t u · Q2

t v)
dt
t
,

where Q1, Q2
∈ StGCb/2 and P ∈ StGC[0,b]. In general, the operator Vi ’s do not commute, hence the

need for the notation
Q•

t =
(
(t

|I |
2 VI )(t L) j e−t L)

•

:= (t L) j e−t L(t
|I |
2 VI ),

which comes from the integration by parts. For simplicity we state most of the results of this section
in Besov–Hölder spaces. The following proposition gives the continuity estimates of the paraproduct
and the resonant term between Sobolev and Hölder–Besov functions, but they hold in the same way by
replacing all the Sobolev spaces by Besov–Hölder spaces.

Proposition 1.5. Let α, β ∈ (−2b, 2b) be regularity exponents.

• If α ≥ 0, then ( f, g) 7→ P f g is continuous from Hα
× Cβ to Hβ.

• If α < 0, then ( f, g) 7→ P f g is continuous from Hα
× Cβ to Hα+β.

• If α+β > 0, then ( f, g) 7→5( f, g) is continuous from Hα
× Cβ to Hα+β.

While P and 5 are tools to describe products, the intertwined paraproduct P̃ naturally appears when
formulating solutions to PDEs. The intertwining relation is

L ◦ P̃ = P ◦ L;

hence P̃uv is given as a linear combination of∫ 1

0
L−1 Q1•

t (Pt u · Q2
t Lv) dt

t
∼

∫ 1

0
(t L)−1 Q1•

t (Pt u · Q2
t (t L)v) dt

t

∼

∫ 1

0
Q̃1•

t (Pt u · Q̃2
t v)

dt
t
,

with Q̃1
∈ StGCb/2−2 and Q̃2

∈ StGCb/2+2. The operator L is not invertible and everything here is done
up to a smooth error term; see [27]. In particular, P̃ has the same structure as P for large b and satisfies
the same continuity estimates as P. Intuitively, the intertwined operator P̃ describes solutions to elliptic
PDEs of the form

Lu = uξ = Puξ +Pξu +5(u, ξ),

which can be rewritten
u = P̃u(L−1ξ)+ u♯;
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hence this is the operator used to described the domain D4 of the Anderson Hamiltonian. The final
ingredient of paracontrolled calculus is a toolbox of correctors and commutators made to express the
singular product between a paracontrolled functions u and the noise ξ in a form involving only ill-defined
expressions of the noise independent of u. The first one introduced by [17] is in this framework the corrector

C(u, X, ξ) :=5(̃Pu X, ξ)− u5(X, ξ),

which translates the rough paths philosophy: the multiplication of a function that locally looks like X
with ξ is possible if one is given the multiplication of X itself with ξ . This is the content of the following
proposition.

Proposition 1.6. Let α ∈ (0, 1) and β, γ ∈ R. If

α+β < 0 and α+β + γ > 0,

then C extends in a unique continuous operator from Cα × Cβ × Cγ to Cα+β+γ.

While we do not give the proof, one has the following heuristic. For any x ∈ M, we have

C( f, g, h)(x)=5(̃P f g, h)(x)− f (x) ·5(g, f )(x)

=5(̃P f g − f (x) · g, h)(x)

≃5(̃P f − f (x)g, h)(x),

where ≃ is equal up to a smooth term since g ≃ P̃1g. Since f ∈ Cα with α ∈ (0, 1), the term f − f (x)
allows us to gain regularity in the paraproduct using that α + β < 0 ending up with a term of better
regularity α+β+γ > 0. Continuity results on a number of correctors and commutators and their iterated
version are also available; we refer to [27] for further details. For example, one needs the swap operator

S( f, g, h)= PhP̃ f g −P f Phg

for the study of the Anderson Hamiltonian which is continuous from Hα
× Cβ × Cγ to Hα+β+γ for

α, β ∈ R and γ < 0.

1C. Construction of the Anderson Hamiltonian. In this section, we recall the ideas behind the con-
struction of the Anderson Hamiltonian with the heat semigroup paracontrolled calculus as done in [27]
and state the important results we shall use without proofs. We also provide new straightforward results
from the construction needed for our proof of Strichartz inequalities. The Anderson Hamiltonian on a
two-dimensional manifold M is formally given by

H := L + ξ,

where −L is the Laplace–Beltrami operator and ξ is a spatial white noise. The noise belongs almost
surely to Cα−2 for any α < 1; hence the product of ξ with a generic L2-function is not defined almost
surely. As explained, it was first constructed by Allez and Chouk [1] on T2. We work here with the
construction on a two-dimensional manifolds from [27], using the high-order paracontrolled calculus since
this is the setting in which we want to prove Strichartz inequalities. Following the recent development in
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singular stochastic PDEs, the idea is to construct a random almost surely dense subspace D4 of L2 such
that the operator makes sense for u ∈ D4 ⊂ L2, with 4 an enhancement of the noise that depends only
measurably on the noise ξ . One can then prove that H is self-adjoint with discrete spectrum

λ1(4)≤ λ2(4)≤ · · · ≤ λn(4)≤ · · ·

and compare it to the eigenvalues of the Laplace–Beltrami operator (λn)n≥1. While the construction
of the domain D4 relied on the notion of strongly paracontrolled functions in [1; 19], the high-order
paracontrolled calculus gives a finer description of the domain. In particular, it yields sharp bounds on
the eigenvalues of the form

λn − m1
δ(4)≤ λn(4)≤ (1 + δ)λn + m2

δ(4)

for any δ ∈ (0, 1) and m1
δ(4),m2

δ(4) > 0 random constants depending on the enhanced noise 4; see [27]
for a precise construction. In particular, it implies the almost sure Weyl-type law

lim
λ→∞

λ−1
|{n ≥ 0 : λn(4)≤ λ}| =

Vol(M)
4π

.

We briefly present the construction of H and refer to [27] for the details.
Coming from Lyons’ rough paths [25] and Gubinelli’s controlled paths [16], which were developed

as a pathwise approach to stochastic integration, the method used over the last decade to solve singular
stochastic PDEs is to work in random subspaces of classical function spaces built from the noise tailor-
made for the problem under consideration. In the context of singular random operators, this corresponds
to the construction of a random dense domain D4 ⊂ L2 on which the operator almost surely makes sense.
In the framework of paracontrolled calculus, one considers functions u paracontrolled by noise-dependent
reference functions of the form

u = P̃u′ X + u♯,

where the new unknown is (u′, u♯). The function u′ has to be thought as the “derivative” of u with respect
to X , while the error u♯ is a smoother remainder. The goal is to find a paracontrolled expression for
u ∈ L2 such that Hu ∈ L2. Let us first assume that u is smooth. Then we formally get

Lu = Hu − uξ = −Puξ + Hu −Pξu −5(u, ξ) ∈ Hα−2+κ

for any κ > 0. Indeed, the term of lowest regularity is the paraproduct Puξ ∈ Hα−2 since u ∈ L2 and
ξ ∈ Cα−2. Then elliptic regularity theory gives u ∈ Hα and suggests for u the paracontrolled form

u = P̃u X + u♯,

with X =−L−1ξ and u♯ ∈H2α. Given such a function, the resonance between u and ξ can be described by

5(u, ξ)=5(̃Pu X, ξ)+5(u♯, ξ)= u5(X, ξ)+C(u, X, ξ)+5(u♯, ξ)

using the corrector C since5(̃Pu X, ξ) is not defined due to lack of regularity; see Propositions 1.5 and 1.6.
Since 3α+ 2 > 0, the only term on the right-hand side which is potentially undefined is 5(X, ξ) and
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its definition is independent of the study of H ; see [27] for more details including the renormalisation.
Given the enhanced data

4 := (ξ,5(X, ξ)) ∈ Cα−2
× C2α−2

=: X α,

one can define the Anderson Hamiltonian H on

D := {u ∈ L2
; u − P̃u X ∈ H2α

} ⊂ Hα,

with
Hu := Lu +Pξu + u5(X, ξ)+C(u, X, ξ)+5(u♯, ξ).

However, this gives only an unbounded operator (H,D) from Hα
⊂ L2 to H2α−2, which is not a subspace

of L2 and thus H will not takes value in L2 a priori. A finer description of the domain with a second-order
paracontrolled expansion allows us to construct a dense subspace D4 ⊂ L2 such that (H,D4) is an
unbounded operator on L2. Using the classical theory for unbounded operators, it is possible to prove
that H is self-adjoint with pure point spectrum. In the expression for H, the roughest term is

Pξu +Pu5(X, ξ) ∈ H2α−2.

To cancel it with a paracontrolled expansion, we use the commutator S to get

Pξu = Pξ P̃u X +Pξu♯ = PuPξ X + S(u, X, ξ)+Pξu♯;

hence the roughest term is
PuPξ X +Pu5(X, ξ) ∈ H2α−2.

In the end, it is cancelled with the paracontrolled expansion

u = P̃u X1 + P̃u X2 + u♯,

where
X1 := −L−1ξ and X2 := −L−1(Pξ X1 +5(X1, ξ)).

Definition 1.7. We define the space D4 of functions paracontrolled by 4 as

D4 := {u ∈ L2
: u♯ := u − P̃u X1 − P̃u X2 ∈ H2

}.

A powerful tool to investigate the domain D4 and H is the 0 map defined as follows. The domain is
given as

D4 =8−1(H2),

with
8(u) := u − P̃u(X1 + X2).

The map 8 is not necessarily invertible so we introduce a parameter s > 0 and consider the map

8s(u) := u − P̃s
u(X1 + X2),

where P̃s is a truncated paraproduct. In particular, P̃s goes to 0 as s goes to 0 and the difference P̃− P̃s

is smooth for any s > 0. This has to be thought as a frequency cut-off where one gets rid of a number
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of low frequencies in order to make a term small. Thus 8s is a perturbation of the identity of Hβ for
any β ∈ [0, α) and thus is invertible for s = s(4) small enough. We define 0 to be its inverse, which is
implicitly defined by

0u♯ = P̃s
0u♯(X1 + X2)+ u♯

for any u♯ ∈ Hβ . It will be a crucial tool to describe the operator H since

D4 =8−1(H2)= (8s)−1(H2)= 0(H2),

where the equality holds because the difference P̃− P̃s is smooth. Of course the map 0 depends on the
choice of s; however, the above reasoning tells us that the image of 0 does not change by changing s, so
we omit this dependence in the sequel. The maps 8s and 0 satisfy a number of continuity estimates that
we shall use throughout this work; this is the content of the following proposition. Let

sβ(4) :=

(
α−β

m∥4∥X α (1 + ∥4∥X α )

) 4
α−β

for any 0 ≤ β < α. Note that the bounds in Sobolev and Hölder spaces are proved directly, while the
bounds in L p follow by interpolation as in [34].

Proposition 1.8. Let β ∈ [0, α) and s ∈ (0, 1). We have

∥8s(u)− u∥Hβ ≤
m

α−β
s
α−β

4 ∥4∥X α (1 + ∥4∥X α )∥u∥L2 .

If moreover s < sβ(4), this implies

∥0u♯∥Hβ ≤
1

1 −
m
α−β

s
α−β

4 ∥4∥X α (1 + ∥4∥X α )
∥u♯∥Hβ ,

as well as the same bounds in Cβ . The map 8 is also continuous from L p to itself for p ∈ [1,∞] and Hσ

to itself for σ ∈ [0, 1), while the same holds for 0 provided s is small enough.

Let us insist that the norm Hβ of u♯s :=8s(u) is always controlled by ∥u∥Hβ , while s needs to be small
depending on the noise for ∥u∥Hβ to be controlled by ∥u♯s∥Hβ . We also define the map 0ε associated to
the regularised noise 4ε as

0εu♯ = P̃s
0εu♯

X (ε)
1 + P̃s

0εu♯
X (ε)

2 + u♯,
with

−L X (ε)
1 := ξε and − L X (ε)

2 :=5(X (ε)
1 , ξε)− cε +Pξε X (ε)

1 .

It satisfies the same bounds as 0 with constants which depend in an increasing way on ∥4ε∥X α ≲1+∥4∥X α

and the following approximation lemma holds. Thus we may choose s independently of ε.

Lemma 1.9. For any 0 ≤ β < α and 0< s < sβ(4), we have

∥Id −00−1
ε ∥L2→Hβ ≲4,s,β ∥4−4ε∥X α .

In particular, this implies the norm convergence of 0ε to 0 with the bound

∥0−0ε∥Hβ→Hβ ≲4,s,β ∥4−4ε∥X α .
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In particular, this allows us to prove density of the domain.

Corollary. The domain D4 is dense in Hβ for any β ∈ [0, α).

For any u ∈ D4, the operator H is given by

Hu = Lu♯ +Pξu♯ +5(u♯, ξ)+ R(u),

with u♯ =8(u) ∈ H2 and R an explicit operator depending on 4 which is continuous from Hα to H3α−2.
For each s > 0, we have a different representation of H, namely

Hu = H0u♯s = Lu♯s +Pξu♯s +5(u♯s, ξ)+ R(0u♯s)+9
s(0u♯s),

with u♯s =8s(u)∈H2 and9s an explicit operator depending on4 and s continuous from L2 to C∞, which
we henceforth include in the operator R. The operator H0 is thus a perturbation of L; the following proposi-
tion shows that it is a continuous operator from H2 to L2. In Section 2, we show that it is even a lower-order
perturbation of the Laplace–Beltrami operator; this will be crucial to obtain Strichartz inequalities.

Proposition 1.10. For any γ ∈ (−α, 3α− 2) and s as above, we have

∥Hu∥Hγ = ∥H0u♯s∥Hγ ≲ ∥u♯s∥Hγ+2,

with u = 0u♯s ∈ D4. In particular, the result holds for γ ∈ (−1, 1) since the noise belongs to Cα−2 for any
α < 1.

Proof. We have
H0u♯s = Lu♯s +Pξu♯s +5(u♯s, ξ)+ R(u),

with u = 0u♯s . Assume first that 0< γ < 3α− 2; hence

∥H0u♯s∥Hγ ≲ ∥Lu♯s∥Hγ + ∥Pξu♯s +5(u♯s, ξ)∥Hγ + ∥R(u)∥Hγ

≲ ∥u♯s∥Hγ+2 + ∥ξ∥Cα−2∥u♯s∥Hγ+2−α + ∥R(u)∥H3α−2,

where the condition γ > 0 is needed for the resonant term and γ < 3α− 2 for R(u). The result follows
for this case since

∥R(u)∥H3α−2 ≲ ∥u∥Hα ≲ ∥u♯s∥Hα ≲ ∥u♯s∥Hγ+2 .

Assume now that −α < γ ≤ 0. For any δ > 0, we have

∥H0u♯s∥Hγ ≲ ∥Lu♯s∥Hγ + ∥Pξu♯s +5(u♯s, ξ)∥Hγ + ∥R(u)∥Hγ

≲ ∥Lu♯s∥Hγ + ∥Pξu♯s +5(u♯s, ξ)∥Hδ + ∥R(u)∥Hγ

≲ ∥u♯s∥Hγ+2 + ∥ξ∥Cα−2∥u♯s∥Hδ+2−α + ∥R(u)∥H3α−2

using that γ ≤ 0<δ. The proof is complete since γ >−α and δ small enough implies γ+2>δ+2−α. □

As the parameter s > 0 yields different representation of H, the domain D4 is naturally equipped with
the norms

∥u∥
2
D4

:= ∥u∥
2
L2 + ∥u♯s∥

2
H2,
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which are equivalent to the graph norm

∥u∥
2
H := ∥u∥

2
L2 + ∥Hu∥

2
L2 .

In particular, this shows that the operator H is closed on its domain D4.

Proposition 1.11. Let u ∈ D4 and s > 0. For any δ > 0, we have

(1 − δ)∥u♯s∥H2 ≤ ∥Hu∥L2 + m2
δ(4, s)∥u∥L2

and

∥Hu∥L2 ≤ (1 + δ)∥u♯s∥H2 + m2
δ(4, s)∥u∥L2,

with u♯s =8s(u) and m2
δ(4, s) > 0 an explicit constant.

In addition to this comparison between H and L in norm, one has a similar statement in the quadratic
form setting.

Proposition 1.12. Let u ∈ D4 and s > 0. For any δ > 0, we have

(1 − δ)⟨∇u♯s,∇u♯s⟩ ≤ ⟨u, Hu⟩ + m1
δ(4, s)∥u∥

2
L2

and

⟨u, Hu⟩ ≤ (1 + δ)⟨∇u♯s,∇u♯s⟩ + m1
δ(4, s)∥u∥

2
L2,

where u♯s =8s(u) and m1
δ(4, s) > 0 an explicit constant.

One can show that H0 is the limit in norm of Hε0ε as operators from H2 to L2, where

Hε := L + ξε − cε,

with cε a diverging function as ε goes to 0, again; see Section 2.1 of [27]. In particular, one can take
shift cε by a large enough constant to ensure that H is positive. Thus the previous proposition implies
that ∥

√
Hu∥L2 and ∥u♯s∥H1 are equivalent. The diverging quantity is needed to take care of the singularity

as explained in the Introduction; this is the renormalisation procedure with

5(X1, ξ) := lim
ε→0

5(X (ε)
1 , ξε)− cε

in C2α−2. In the case of the torus, the noise is invariant by translation and the function cε is actually a
constant that diverges as |log ε|; see [1]. This allows us to prove that H is a symmetric operator as the
weak limit of the symmetric operators Hε. Being closed and symmetric, it is enough to prove that

(H + k)u = v

admits a solution for some k ∈ R to get self-adjointness for H ; see Theorem X.1 in [30]. This is done
using the Babuška–Lax–Milgram theorem; see [3] and Proposition 1.12, which implies that H is almost
surely bounded below. This implies self-adjointness and since the resolvent is a compact operator from
L2 to itself since D4 ⊂ Hβ for any β ∈ [0, α).
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Corollary 1.13. The operator H is self-adjoint with discrete spectrum (λn(4))n≥1 which is a nondecreas-
ing diverging sequence without accumulation points. Moreover, we have

L2
=

⊕
n≥1

Ker(H − λn(4)),

with each kernel being of finite dimension. We finally have the min-max principle

λn(4)= inf
D

sup
u∈D;∥u∥L2=1

⟨Hu, u⟩,

where D is any n-dimensional subspace of D4; this can also be written as

λn(4)= sup
v1,...,vn−1∈L2

inf
∥u∥L2=1

u∈Vect(v1,...,vn−1)
⊥

⟨Hu, u⟩.

While the regularity of a function can be measured by its coefficients in the basis of the eigenfunction
of the Laplacian, the same is true for the Anderson Hamiltonian and the spaces agree if the regularity one
considers is below the form domain.

Proposition 1.14. For β ∈ (−α, α), there exist two constants c4,C4 > 0 such that

c4∥H
β
2 u∥L2 ≤ ∥u∥Hβ ≤ C4∥H

β
2 u∥L2 .

Proof. Observe first that the statement is clear for β = 0; we consider only the case β ∈ (0, α) since
the case of negative β follows by duality. Again we take (ϕn)n≥1 and (en)n≥1 to denote the basis of
eigenfunctions of −1 and H respectively. We have for any v ∈ D4

∥H
β
2 v∥L2 =

(∑
n≥1

λβn ⟨v, en⟩
2
)1

2

=

(∑
n≥1

λβn ⟨v, en⟩
2β

⟨v, en⟩
2−2β

)1
2

≲

(∑
n≥1

λn⟨v, en⟩
2
)β

2
(∑

n≥1

⟨v, en⟩
2
)1−β

2

≲ ∥H
1
2 v∥

β

L2∥v∥
1−β

L2

using Hölder’s inequality. Thus the equivalence of ∥H 1/2v∥L2 and ∥v
♯
s∥H1 from Proposition 1.12, together

with the continuity of 8s from L2 to itself, yields

∥H
β
2 v∥L2 ≲ ∥v♯s∥

β

H1∥v
♯
∥

1−β

L2 .

Applying this with v = 0(⟨u♯s, ϕn⟩ϕn) gives

∥H
β
20(⟨u♯, ϕn⟩ϕn)∥L2 ≲ ∥⟨u♯, ϕn⟩ϕn∥

β

H1∥⟨u
♯, ϕn⟩ϕn∥

1−β

L2

≲ |⟨u♯, ϕn⟩|∥ϕn∥Hβ .

Thus
∥H

β
2 u∥

2
L2 = ∥H

β
20(u♯s)∥

2
L2 ≤

∑
n≥1

∥H
β
20(⟨u♯s, ϕn⟩ϕn)∥

2
L2

≲
∑
n≥1

|⟨u♯s, ϕn⟩|
2
∥ϕn∥

2
Hβ ≲ ∥u♯s∥

2
Hβ .
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Since β ∈ [0, α), we get
∥H

β
2 u∥L2 ≲ ∥u∥Hβ .

from the boundedness of 0; see Proposition 1.8. The other inequality follows from the same reasoning with

∥v∥Hβ ≲ ∥v♯s∥Hβ ≲ ∥v♯s∥
β

H1∥v
♯
s∥

1−β

L2 ≲ ∥H
1
2 v∥

β

H1∥u∥
1−β

L2 ,

and applying this bound to u =
∑

n≥1⟨u, en⟩en and proceeding as above we get the other direction. □

The operator H and its spectrum do not depend on s > 0 but the different representation of H as

Hu = L8s(u)+Pξ8
s(u)+5(8s(u), ξ)+ R(u)+9s(u)

yields different bounds on the eigenvalues. We state the simpler form for the bounds; see [27] for
the general result. It is sharp enough to obtain an almost sure Weyl-type law from the one for the
Laplace–Beltrami operator.

Proposition 1.15. Let δ ∈ (0, 1). Then there exist two constants m1
δ(4),m2

δ(4) such that

λn − m1
δ(4)≤ λn(4)≤ (1 + δ)λn + m2

δ(4)

for any n ∈ N. This implies the almost sure Weyl-type law

lim
λ→∞

λ−1
|{n ≥ 0; λn(4)≤ λ}| =

Vol(M)
4π

.

2. Strichartz inequalities for the stochastic Schrödinger equation

For the rest of the work, we fix a parameter s > 0 small enough in order to have all the needed continuity
estimates. Every constant may implicitly depend on s and on the norm of the enhanced noise; we do not
explicate the dependence since it is not relevant at this stage. From now on, we will also use that α can
be taken arbitrarily close to 1 since it is given by the regularity of the spatial white noise. We consider
the Schrödinger operator

H ♯
:= 0−1 H0,

which appears naturally when transforming the Schrödinger equation and the wave equation with multi-
plicative noise. In fact, if u solves {

i∂t u + Hu = 0,
u(0)= u0,

then u♯ := 0−1u solves the transformed equation{
i∂t u♯ + H ♯u♯ = 0,
u♯(0)= 0−1u0.

In this section, we show Strichartz inequalities for the associated Schrödinger equation with an arbitrarily
small loss of regularity with respect to the deterministic case. Afterwards, in Section 2B, we detail how
these can be used to get a low-regularity solution theory for the nonlinear Schrödinger equation with
multiplicative noise.
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2A. Strichartz inequalities for the Schrödinger group. As was hinted at in Proposition 1.11, the trans-
formed operator H ♯ it is a lower-order perturbation of the Laplace–Beltrami operator. We obtain the
following result which is somewhat similar to Theorem 6 in [12] by Burq, Gérard and Tzvetkov, where
they proved that the Strichartz inequalities are stable for some lower-order perturbations. This does not
cover the case of the Anderson Hamiltonian; however, our proof is very similar; see also [34].

Proposition 2.1. Let 0 ≤ β < 1. For any κ > 0, we have

∥(H ♯
− L)v∥Hβ ≲ ∥v∥H1+β+κ .

Proof. For u = 0u♯ ∈ D4, recall that

Hu = Lu♯ +Pξu♯ +5(u♯, ξ)+ R(u),

where

R(u) :=5(u,5(X1, ξ))+P5(X1,ξ)u +C(u, X1, ξ)+Pu5(X2, ξ)+D(u, X2, ξ)

+ S(u, X2, ξ)+Pξ P̃u X2 − e−L(Pu X1 +Pu X2).

Thus H ♯v is given by

H ♯v = Lv+Pξv+5(v, ξ)+ R(0v)− P̃H0v(X1 + X2)

and for any κ > 0 and β ∈ [0, α] we have

∥(H ♯
− L)v∥Hβ ≲ ∥Pξv+5(v, ξ)∥Hβ + ∥R(0v)∥Hβ + ∥P̃H0v(X1 + X2)∥Hβ

≲ ∥ξ∥C−1−κ∥v∥Cβ+1+κ + ∥0v∥Hα + ∥H0v∥H−1+κ+β∥X1 + X2∥H1−κ

≲ ∥v∥H1+β+κ + ∥v∥Hα + ∥v∥H1+κ+β

using Proposition 1.10, and the proof is complete since α < 1. □

Since the unitary group associated to H is bounded on L2 and on the domain D4 of H, this implies a
similar result for the “sharpened” group associated with H ♯ in terms of classical Sobolev spaces. Recall
that H ♯

= 0−1 H0, with 0 an isomorphism from L2 to itself; thus ei t H ♯

:= 0−1ei t H0 is well-defined
on L2. We now state some of its properties.

Proposition 2.2. For any 0 ≤ β ≤ 2 and t ∈ R, we have

∥ei t H ♯

v∥Hβ ≲ ∥v∥Hβ .

Moreover, ei t H ♯

is a nonunitary strongly continuous group of L2 bounded operators, namely

ei(t+s)H ♯

v = ei t H ♯

eis H ♯

v

for all s, t ∈ R and v ∈ L2.

Proof. For β = 0, this follows from the continuity of 0 and 0−1 from L2 to itself. For β = 2, we have

∥ei t H ♯

v∥H2 = ∥0−1ei t H0v∥H2 ≲ ∥Hei t H0v∥L2 ≲ ∥ei t H H0v∥L2 ≲ ∥H0v∥L2 ≲ ∥v∥H2,
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having used Proposition 1.11. The result for any β ∈ (0, 2) is obtained by interpolation and the group
property follows simply from the group property of ei t H by observing

ei(t+s)H ♯

v = 0−1ei(t+s)H0v = 0−1ei t H00−1eis H0v = ei t H ♯

eis H ♯v. □

Strichartz inequalities are refinements of the estimates from the previous proposition. The following
statement is such a result, which has an arbitrarily small loss of derivative coming from the irregularity of
the noise in addition to the 1

p loss from the manifold setting without boundary which one sees in [12].
We refer to a pair (p, q) satisfying

2
p

+
2
q

= 1

as a Strichartz pair from now on.

Theorem 2.3. Let M be a two-dimensional compact manifold without boundary and let (p, q) be a
Strichartz pair. Then for any ε > 0

∥ei t H ♯

v∥L p([0,1],Lq ) ≲ ∥v∥H1/p+ε .

This implies the bound
∥ei t H u∥L p([0,1],Lq ) ≲ ∥0−1u∥H1/p+ε ≲ ∥u∥H1/p+ε .

First, we need to prove the following lemma. It gives the difference between the Schrödinger groups
associated to H ♯ and L from the difference between H ♯ and L itself. Moreover it quantifies that their
difference is small in a short time interval if one gives up some regularity.

Lemma 2.4. Given v ∈ H2, we have

(ei(t−t0)H ♯

− ei(t−t0)L)v = i
∫ t

t0
ei(t−s)L(H ♯

− L)ei(s−t0)H ♯

v ds

for any t, t0 ∈ R.

Proof. The “sharpened” group yields the solution of the Schrödinger equation

(i∂t + H ♯)(ei(t−t0)H ♯

v)= 0,

which is equal to v at time t = t0; thus

(i∂t + L)(ei(t−t0)H ♯

v)= (L − H ♯)(ei(t−t0)H ♯

v).

Using the unitary group representation of the solution to the Schrödinger equation associated to L , we
deduce that

(i∂t + L)(ei(t−t0)Lv− ei(t−t0)H ♯

v)= (H ♯
− L)(ei(t−t0)H ♯

v).

Since the solution is equal to 0 at time t = t0, the mild formulation of this last equation yields

(ei(t−t0)H ♯

− ei(t−t0)L)v = i
∫ t

t0
ei(t−s)L(H ♯

− L)ei(s−t0)H ♯

v ds. □

Proof of Theorem 2.3. For N ∈ N∗ to be chosen, we have

∥ei t H ♯

v∥
p
L p([0,1],Lq ) =

N∑
ℓ=0

∥ei t H ♯

v∥
p
L p([tℓ,tℓ+1],Lq ),
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where tℓ := ℓ/N. For t ∈ [tℓ, tℓ+1), the previous lemma gives

ei t H ♯

v = ei(t−tℓ)H ♯

ei tℓH ♯

v = ei(t−tℓ)Lei tℓH ♯

v+ i
∫ t

tℓ
ei(t−s)L(H ♯

− L)eis H ♯

v ds.

Applying this with v =1ku gives

∥1j ei t H ♯

1ku∥
p
L p([0,1],Lq ) ≤

N∑
ℓ=0

∥1j ei(t−tℓ)Lei tℓH ♯

1ku∥
p
L p([tℓ,tℓ+1],Lq )

+

N∑
ℓ=0

∥∥∥∥1j

∫ t

tℓ
ei(t−s)L(H ♯

− L)eis H ♯

1ku ds
∥∥∥∥p

L p([tℓ,tℓ+1],Lq )

.

Assume N ≥ 2 j such that |tℓ+1 − tℓ| ≤ 2− j. For the first term, we have

∥1j ei(t−tℓ)Lei tℓH ♯

1ku∥
p
L p([tℓ,tℓ+1],Lq ) = ∥ei(t−tℓ)L1j ei tℓH ♯

1ku∥
p
L p([tℓ,tℓ+1],Lq )

≲ ∥1j ei tℓH ♯

1ku∥
p
L2 ≲ 2− jδp

∥1j ei tℓH ♯

1ku∥
p
Hδ

≲ 2− jδp2−kδ′ p
∥1ku∥

p
Hδ+δ′

for any δ, δ′ ∈ R using Proposition 2.2, the Strichartz inequality for spectrally localised data from
Section 1A and Bernstein’s lemma; see Lemma 1.3. For the second term, we have∥∥∥∥1j

∫ t

tℓ
ei(t−s)L(H ♯

−L)eis H ♯

1ku ds
∥∥∥∥p

L p([tℓ,tℓ+1],Lq )

=

∥∥∥∥∫ t

tℓ
ei(t−s)L1j (H ♯

−L)eis H ♯

1ku ds
∥∥∥∥p

L p([tℓ,tℓ+1],Lq )

≲

(∫ tℓ+1

tℓ
∥ei(t−s)L1j (H ♯

−L)eis H ♯

1ku∥L p([tℓ,tℓ+1],Lq ) ds
)p

≲

(∫ tℓ+1

tℓ
∥1j (H ♯

−L)eis H ♯

1ku∥L2 ds
)p

≲ 2− jσ p
(∫ tℓ+1

tℓ
∥1j (H ♯

−L)eis H ♯

1ku∥Hσ ds
)p

≲ 2− jσ p
(∫ tℓ+1

tℓ
∥(H ♯

−L)eis H ♯

1ku∥Hσ ds
)p

≲ 2− jσ p
(∫ tℓ+1

tℓ
∥eis H ♯

1ku∥Hσ+1+κ ds
)p

≲ N−p2− jσ p
∥1ku∥

p
H1+σ+κ ≲ N−p2− jσ p2−kσ ′ p

∥1ku∥
p
H1+σ+σ ′+κ

for any σ ∈ (0, 1), σ ′
∈ R and 0 < κ < 1 − α, where again the dyadic factors come from Bernstein’s

lemma and we have used the bounds from Propositions 2.1 and 2.2 with the Strichartz inequality for
spectrally localised data. Summing over the subintervals gives

∥1j ei t H ♯

1ku∥L p([0,1],Lq ) ≲ N
1
p 2− jδ2−kδ′

∥1ku∥Hδ+δ′ + N
1−p

p 2− jσ2−kσ ′

∥1ku∥H1+σ+σ ′+κ .

Let η > 0 small and take

N = 2 j , δ = η+
1
p
, δ′ = σ = σ ′

= η,
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which satisfies in particular N ≥ 2 j and σ ∈ [0, α) to sum over k ≤ j . We get∥∥∥∥∑
k≤ j

1j ei t H ♯

1ku
∥∥∥∥

L p([0,1],Lq )

≲
∑

j

∑
k≤ j

∥1j ei t H ♯

1ku∥L p([0,1],Lq )

≲
∑
j≥0

∑
k≤ j

2
j
p 2− j( 1

p +η)2−kη
∥1ku∥H1/p+2η + 2 j 1−p

p 2− jη2−kη
∥1ku∥H1+2η+κ

≲
∑
j≥0

2− jη
∥1≤ j u∥H1/p+2η + 2 j 1−p

p 2− jη
∥1≤ j u∥H1+2η+κ

≲ ∥u∥H1/p+2η +

∑
j≥0

2− jη2 j 1−p
p 2− j 1−p

p ∥1≤ j u∥H1−1+1/p+2η+κ

≲ ∥u∥H1/p+2η + ∥u∥H1/p+2η+κ ,

having used Bernstein’s inequality, Lemma 1.3, for the projector 1≤ j . For the sum over j ≤ k, we choose
instead

N = 2k, δ = δ′ = σ = σ ′
= η,

with η > 0 small as before. Since j ≤ k, we have N ≥ 2 j and thus get the bound for the other part of the
double sum∥∥∥∥∑

j≤k

1j ei t H ♯

1ku
∥∥∥∥

L p([0,1],Lq )

≲
∑
k≥0

∑
j≤k

∥1j ei t H ♯

1ku∥L p([0,1],Lq )

≲
∑
k≥0

∑
j≤k

2
k
p 2− jη2−kη

∥1ku∥H2η + 2
k(1−p)

p 2− jη2−kη
∥1ku∥H1+2η+κ

≲ ∥u∥H1/p+2η + ∥u∥H1+(1−p)/p+2η+κ

≲ ∥u∥H1/p+2η+κ ,

having used Bernstein’s inequality again. This completes the proof since η and κ can be taken arbitrarily
small. This implies the bound

∥ei t H u∥L p([0,1],Lq ) ≲ ∥0−1u∥H1/p+ε ≲ ∥u∥H1/p+ε

using that 1
p + ε < 1 and Proposition 1.8. □

Remark. We proved that Strichartz inequalities are stable under suitable perturbation, that is, lower-order
perturbation in the sense of Proposition 2.1. This is similar in spirit to Theorem 6 in [12]. One can show
that the magnetic Laplacian with white noise magnetic field constructed in [26] is also a lower-order
perturbation of the Laplacian on the two-dimensional torus in this sense. Thus Theorem 2.3 also gives
Strichartz inequalities for the associated Schrödinger group.

As a corollary, we state the inhomogeneous inequalities needed to solve the nonlinear equation. This
is straightforward; see [34].

Corollary 2.5. In the setting of Theorem 2.3, we have in addition the bound∥∥∥∥∫ t

0
ei(t−s)H ♯

f (s) ds
∥∥∥∥

L p([0,1],Lq )

≲
∫ 1

0
∥ f (s)∥H1/p+ε ds

for all f ∈ L1([0, 1],H1/p+ε).
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The only ingredient in the proof of the theorem where the boundary appears is when we apply the
result for the Laplacian. By using Theorem 1.2 and in particular (2) instead of (1), we immediately get
the following analogous result which is of course weaker.

Theorem 2.6. Let M be a compact surface with boundary. Let p ∈ (3,∞] and q ∈ [2,∞) such that

3
p

+
2
q

= 1.

Then for any ε > 0

∥ei t H ♯

u∥L p([0,1],Lq ) ≲ ∥u∥H2/p+ε

and ∥∥∥∥∫ t

0
ei(t−s)H ♯

f (s) ds
∥∥∥∥

L p([0,1],Lq )

≲
∫ 1

0
∥ f (s)∥H2/p+ε ds

for all f ∈ L1([0, 1],H2/p+ε).

2B. Local well-posedness for multiplicative stochastic cubic NLS. We now apply our results to the
local-in-time well-posedness of the cubic multiplicative stochastic NLS{

i∂t u + Hu = −|u|
2u,

u(0)= u0,

with u0 ∈Hσ where σ ∈
( 1

2 , 1
)

and in the energy space, that is, u0 ∈D(
√

H)=0H1. The latter hypothesis
is natural to assume, since solutions starting in the energy space, usually called energy solutions, are
intimately related to the conserved energy

E(u)(t) :=
1
2
(u(t), Hu(t))+ 1

4

∫
|u(t)|4 = E(u0), (3)

introduced in [19] on the torus and [27] on general surfaces. Thus we refer to D(
√

H) = 0H1 as the
energy space for the Anderson Hamiltonian; see Proposition 1.12. Note that, as is usual in these types of
fixed-point arguments, the sign of the nonlinearity does not play a role for local well-posedness, but for the
sake of definiteness we take the defocussing nonlinearity. We remark also that one can prove similar results
for more general nonlinearities, we considered only the cubic equation in this work. See for example
[33; 32], where they considered generic polynomial nonlinearity and obtained global well-posedness. As
explained in Section 3.2.2 of [19], their result for the equation with white noise potential is weaker than
the one for the deterministic equation since Strichartz inequalities were not known in this singular case.
This was a motivation for the study of Strichartz estimates for the operator H. The well-posedness itself
follows from a fairly straightforward contraction argument, similar to, e.g., Proposition 3.1 in [12]. Finally,
we only consider a surface without boundary; the case with boundary is analogous using Theorem 2.6
instead of Theorem 2.3. The mild formulation is

u(t)= ei t H u0 − i
∫ t

0
ei(t−s)H (|u|

2u)(s) ds
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and applying the 0−1 map introduced in Section 1C yields the mild formulation for the transformed
quantity u♯ = 0−1u. We get

u♯(t)= ei t H ♯

u♯0 − i
∫ t

0
ei(t−s)H ♯

0−1(|0u♯|20u♯)(s) ds,

where u♯0 := 0−1u0; this is where the transformed operator H ♯
= 0−1 H0 appears naturally. Despite the

seemingly complicated nonlinear expression, this new mild formulation is easier to deal with since H ♯ is
a perturbation of the Laplacian and has domain H2; hence it is not as outlandish as H and its domain
which contains no nonzero smooth functions. Now, we have to find a bound for the map

9(v)(t) := ei t H ♯

v0 − i
∫ t

0
ei(t−s)H ♯

0−1(|0v|20v)(s) ds

in a suitable space which allows us to get a unique fixed point. One then recovers a solution to the original
equation with u := 0v and choosing v0 := 0−1u0. Since 0 is an isomorphism on L p for p ∈ [2,∞] and
both 0 and ei t H ♯

are isomorphisms on Hσ to itself for σ ∈ [0, 1), it is natural to consider initial datum v0,
and thus also u0, in Hσ for 0< σ < 1. Therefore we bound 9(v) in Hσ with

∥9(v)(t)∥Hσ ≲ ∥v0∥Hσ +

∫ t

0
∥0v(s)3∥Hσ ds

≲ ∥v0∥Hσ +

∫ t

0
∥0v(s)∥Hσ ∥0v(s)∥2

L∞ ds

≲ ∥v0∥Hσ +

∫ t

0
∥v(s)∥Hσ ∥v(s)∥2

L∞ ds

≲ ∥v0∥Hσ + ∥v∥L∞([0,t],Hσ )∥v∥
2
L2([0,t],L∞)

,

where in the first and third lines we have used the continuity of ei t H ♯

and 0 and Lemma 1.4 in the
second line. For σ < 1, the space Hσ is not an algebra and one cannot simply use its norm to bound the
nonlinearity. However, one may bound it using the L∞-norm in space by observing that one needs less
integrability in time and this is precisely the point where the Strichartz estimates turn out to be useful. As
for the deterministic equation, we work with the function spaces

W β,q(M)= {u ∈ D′(M); (1 −1)
β
2 u ∈ Lq

},

with associated norm
∥u∥W β,q := ∥(1 −1)

β
2 u∥Lq .

For β ∈ [0, 1) and q = 2, one recovers the Sobolev spaces and the norm is equivalent to

∥u∥Hβ = ∥(1 + H)
β
2 u∥L2

by Proposition 1.14. Within this framework, Strichartz inequalities from Theorem 2.3 give us the bound

∥ei t H ♯

w∥L p([0,1],W β,q ) ≲ ∥w∥H1/p+β+κ

for any Strichartz pair (p, q) and κ > 0. Furthermore, the space W β,q is continuously embedded in L∞

for β > 2
q . Let σ ∈ R such that

1
p

+
2
q

+ 2κ ≤ σ.
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Thus for 0< t ≤ 1, we get the bound

∥9(v)∥L p([0,t],W 2/q+κ,q ) ≲ ∥v0∥H1/p+2/q+2κ +

∫ t

0
∥0−1(|0v|20v)(s)∥H1/p+2/q+2κ ds

≲ ∥v0∥Hσ +

∫ t

0
∥0v(s)3∥Hσ ds

≲ ∥v0∥Hσ + ∥v∥L∞([0,t],Hσ )∥v∥
2
L2([0,t],L∞)

≲ ∥v0∥Hσ + ∥v∥L∞([0,t],Hσ )∥v∥
2
L2([0,t],W 2/q+κ,q )

≲ ∥v0∥Hσ + t
p−2

p ∥v∥L∞([0,t],Hσ )∥v∥
2
L p([0,t],W 2/q+κ,q )

using Corollary 2.5 in the first line, Hölder inequality in the last line and bicontinuity of 0 from Hσ to
itself. For 0< t ′

≤ t , we also have

∥9(v)(t ′)∥Hσ ≲ ∥v0∥Hσ +

∫ t ′

0
∥v(s)∥Hσ ∥v(s)∥2

L∞ ds

≲ ∥v0∥Hσ + ∥v∥L∞([0,t ′],Hσ )∥v∥
2
L2([0,t ′],L∞)

,

≲ ∥v0∥Hσ + t ′
p−2

p ∥v∥L∞([0,t ′],Hσ )∥v∥
2
L p([0,t ′],W 2/q+κ,q )

.

This gives us the combined bound

∥9(v)∥L p([0,t],W 2/q+κ,q ) + ∥9(v)∥L∞([0,t],Hσ ) ≲ ∥v0∥Hσ + t
p−2

p ∥v∥L∞([0,t],Hσ )∥v∥
2
L p([0,t],W 2/q+κ,q )

(4)

that will be the main tool for the fixed point. Note that the restrictions
1
p

+
2
q

+ 2κ ≤ σ and 2
p

+
2
q

= 1

give

1 −
1
p

+ 2κ ≤ σ.

Since p ≥ 2 and κ > 0 can be taken arbitrary small, this gives

σ > 1
2

and leads to the following local-in-time well-posedness result. Without Strichartz estimates, even in the
classical case, one could not go beyond the threshold σ ≥ 1.

Theorem 2.7. Let M be a compact surface without boundary, σ > 1
2 and initial data v0 ∈ Hσ. Let κ > 0

and (p, q) a Strichartz pair such that
1
p

+
2
q

+ 2κ ≤ σ.

There exists a time T > 0 until which there exists a unique solution

v ∈ C([0, T ],Hσ )∩ L p([0, T ],W
2
q +κ,q

)

to the mild formulation of the transformed PDE{
i∂tv+ H ♯v = −0−1(|0v|20v),

v(0)= v0.

Moreover, the solution depends continuously on the initial data v0 ∈ Hσ.
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Proof. This is a straightforward contraction argument where the main ingredient is the bound proved in
the preceding arguments. By choosing the radius R of the ball and the final time appropriately, we can
prove that

9 : B(0, R)C([0,T ],Hσ )∩L p(([0,T ],W 2/q+κ,q ) → B(0, R)C([0,T ],Hσ )∩L p(([0,T ],W 2/q+κ,q )

is in fact a contraction. Using the previously established bound (4) and an analogous bound for the
difference, one finds that this can be achieved if one chooses

R = 2C̃∥v0∥Hσ and T =

(
1

3R2C̃

) p
p−2

for some constant C̃ which depends on the norm of the enhanced noise4 and the parameters appearing. □

Finally we give the analogous result for surfaces with boundary, which is of course weaker; however,
we still get a better result than one gets simply from using the algebra property of Sobolev spaces.

Theorem 2.8. Let M be a compact surface with boundary, σ > 2
3 and p, q, κ such that

3
p

+
2
q

= 1 and 2
p

+
2
q

+ 2κ ≤ σ.

For any initial datum v0 ∈ Hσ there exists a unique solution

v ∈ C([0, T ],Hσ )∩ L p([0, T ],W
2
q +κ,q

)

to the mild formulation of the transformed PDE up to a time T > 0 depending on the data which depends
continuously on the initial condition.

3. Strichartz inequalities for the stochastic wave equation

Again, we consider the “sharpened” operator

H ♯
:= 0−1 H0

which appears naturally when transforming the wave equation with multiplicative noise. If u solves{
∂2

t u + Hu = 0,
(u, ∂t u)|t=0 = (u0, u1),

then u♯ := 0−1u solves the transformed equation{
∂2

t u♯ + H ♯u♯ = 0,
(u♯, ∂t u♯)|t=0 = (0−1u0, 0

−1u1).

In this section, we show Strichartz inequalities for the associated wave equation. We will further detail
how these can be used to get a low-regularity solution theory for the nonlinear wave equation with
multiplicative noise. This equation was also considered by Zachhuber [35] on the full space in two and
three dimensions where global well-posedness is obtained using finite speed of propagation.
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3A. Strichartz inequalities for the wave propagator. The propagator associated to the wave equation is

(u0, u1) 7→ cos(t
√

H)u0 +
sin(t

√
H)

√
H

u1,

with initial conditions (u, ∂t u)|t=0 = (u0, u1). As for the Schrödinger equation, the following Strichartz
inequalities hold on a two-dimensional compact Riemannian manifold without boundary; see [7]. We
state the result in the homogeneous case for simplicity; however, one directly obtains inhomogeneous
bounds as in Corollary 2.5. We cite the following Strichartz estimates, which hold on compact surfaces
respectively without and with boundary; see [7].

Theorem 3.1. Let (M, g) be a compact two-dimensional Riemannian manifold without boundary. Let
p, q ∈ [2,∞] such that

2
p

+
1
q

≤
1
2

and consider
1
p

+
2
q

:= 1 − σ.

Then the solution to {
(∂2

t −1g)u = 0,
(u, ∂t u)|t=0 = (u0, u1) ∈ Hσ

×Hσ−1

satisfies the bound
∥u∥L p([0,T ],Lq ) ≲ ∥u0∥Hσ + ∥u1∥Hσ−1 .

In the case where the surface M has a boundary, there is this slightly weaker result.

Theorem 3.2. Let (M, g) be a compact two-dimensional Riemannian manifold with boundary. Let
p ∈ (2,∞] and q ∈ [2,∞) such that

3
p

+
1
q

≤
1
2

and consider σ given by
1
p

+
2
q

= 1 − σ.

Then the solution to {
(∂2

t −1g)u = 0,
(u, ∂t u)|t=0 = (u0, u1) ∈ Hσ

×Hσ−1

satisfies the bound
∥u∥L p([0,T ],Lq ) ≲ ∥u0∥Hσ + ∥u1∥Hσ−1 .

3B. Strichartz inequalities for wave equations with rough potentials. While our proof of the Strichartz
inequalities for the Schrödinger equation with white noise potential strongly relies on the deterministic
result, this is not the case for the wave equation. In this case, we follow the approach from [13] for
which one has two mains ingredients, firstly a Weyl law for the Laplace–Beltrami operator and secondly
Lq bounds on its eigenfunctions. In particular, we treat at the same time the case with and without
boundary here, the only difference being that one has weaker Lq bounds on the eigenfunctions.

An analogous Weyl law for the Anderson Hamiltonian was obtained in [27]; see Proposition 1.15 in
Section 1C, and the analogue of the second part follows from the Strichartz inequalities for the Schrödinger
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group obtained in Section 2. Let (en)n≥1 be an orthonormal family of eigenfunctions of H associated to
(λn(4))n≥1. Since the eigenfunctions belong to the domain D4, they belong in particular to L∞ and we
have the following bounds on its Lq -norm for q ∈ (2,∞). Recall that (λn)n≥1 are the eigenvalues of the
Laplacian.

Proposition 3.3. Let q ∈ (2,∞) and M a compact surface without boundary. We have

∥en∥Lq ≲
√
λn(4)

1
2 −

1
q +κ

for any κ > 0. In particular, this implies

∥en∥Lq ≲ (1 +
√
λn)

1
2 −

1
q +κ ≲ (1 +

√
n)

1
2 −

1
q +κ

.

Proof. We have
∥en∥Lq = ∥ei tλn en∥L p([0,1],Lq ) = ∥ei t H en∥L p([0,1],Lq ),

with (p, q) a Strichartz pair. For any κ > 0, this gives

∥en∥Lq ≲ ∥en∥H1/p+κ ≲ ∥
√

H
1
p +κ

en∥L2 ≲
√
λn(4)

1
p +κ

using Proposition 1.14 and
1
p

=
1
2

−
1
q
.

Finally, Proposition 1.15 gives the bound

λn(4)≲ 1 + λn

and completes the proof. □

Another important operator is the projection onto the eigenspaces of H. Let

5λu :=

∑
λn(4)∈[λ,λ+1)

⟨u, en⟩en

for any λ≥ 0. These spectral projectors satisfy the following bounds.

Proposition 3.4. Let λ≥ 0 and q ∈ (2,∞). We have

∥5λu∥Lq ≲
√
λ+ 1

1
2 −

1
q +ε

∥u∥L2

for any ε > 0.

Proof. Consider ⌊H⌋ the “integer part” of H, which is the self-adjoint operator defined by

⌊H⌋en := ⌊λn(4)⌋en

for n ≥ 1. Then we have for any ε > 0 the bound

∥ei t⌊H⌋v∥L p([0,1],Lq ) ≲ ∥v∥H1/p+ε ,

which follows from the one for H, namely Theorem 2.3. Indeed, we have

ei t⌊H⌋v− ei t Hv = −i
∫ t

0
ei(t−s)H (H − ⌊H⌋)eis⌊H⌋v ds,
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and using Theorem 2.3 and Corollary 2.5, this gives

∥ei t⌊H⌋v∥L p([0,1],Lq ) ≲ ∥ei t Hv∥L p([0,1],Lq ) +

∫ 1

0
∥ei(t−s)⌊H⌋(H − ⌊H⌋)eis H

∥L p([0,1],Lq ) ds

≲ ∥v∥H1/p+ε +

∫ 1

0
∥(H − ⌊H⌋)ei(t−s)⌊H⌋v∥H1/p+ε ds

≲ ∥v∥H1/p+ε

for any ε > 0 using that ∥H − ⌊H⌋∥Hβ→Hβ is bounded by 1 for β < 1, which is true basically by
construction together with Proposition 1.14; see also the proof of Proposition 3.6. Assuming that λ ∈ N,
however, the result follows directly in the same way by shifting ⌊H⌋. For any λ≥ 0, we have

∥ei t⌊H⌋5λu∥L p([0,1],Lq ) = ∥ei tλ5λu∥L p([0,1],Lq ) = ∥5λu∥Lq

since the Weyl law guarantees that the number of eigenvalues in [λ, λ+ 1) is finite. Thus we get using
the Strichartz inequalities from Theorem 2.3

∥5λu∥Lq ≲ ∥5λu∥H1/p+ε ≲
√
λ+ 1

1
p +ε

∥u∥L2 ≲
√
λ+ 1

1
2 −

1
q +ε

∥u∥L2

using again Proposition 1.14. □

As mentioned before, this is the point where there are slightly weaker results in the case of a surface
with boundary. We use Theorem 2.6 instead.

Proposition 3.5. Let q ∈ (2,∞) and M be a compact surface with boundary. We have

∥en∥Lq ≲
√
λn(4)

2
3 −

4
3q +κ

for any κ > 0. In particular, this implies

∥en∥Lq ≲ (1 +

√
λn)

2
3 −

4
3q +κ ≲ (1 +

√
n)

2
3 −

4
3q +κ

.

Moreover, for the operator 5λ we have

∥5λu∥Lq ≲
√
λ+ 1

2
3 −

4
3q +κ

∥u∥L2

for any κ > 0.

Let B be the operator defined by
Ben := ⌊

√
λn(4)⌋en

for any n ≥ 1. The following proposition gives continuity estimates for the unitary groups associated to
√

H and B and bound the difference between the two operators.

Proposition 3.6. For any β ∈ [0, 1) and t ∈ R, we have

∥ei t
√

H u∥Hβ ≲ ∥u∥Hβ ,

∥ei t Bu∥Hβ ≲ ∥u∥Hβ .

Moreover, the difference B −
√

H is bounded on Hβ for any β ∈ [0, 1) and the difference between the
groups is given by

ei t Bu − ei t
√

H
= −i

∫ t

0
ei(t−s)B(

√
H − B)eis

√
H ds.
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Proof. We have
∥ei t

√
Hv∥L2 ≲ ∥v∥L2 .

Thus
∥H

β
2 ei t

√
Hv∥L2 = ∥ei t

√
H H

β
2 v∥L2 ≲ ∥H

β
2 v∥L2

for any β ∈ (0, α). Using Proposition 1.14, this gives

∥ei t
√

Hv∥Hβ ≲ ∥v∥Hβ

and the result for ei t B follows from this. For the difference, ∥B−
√

H∥L2→L2 is bounded by 1 and we have

∥H
β
2 (B −

√
H)u∥L2 = ∥(B −

√
H)H

β
2 u∥L2 ≤ ∥H

β
2 u∥L2

and hence the boundedness of B −
√

H on Hβ . The result on the difference of the groups

ei t Bu − ei t
√

H
= −i

∫ t

0
ei(t−s)B(

√
H − B)eis

√
H ds

follows with the same reasoning as in Lemma 2.4. □

We now have all the ingredients to prove the Strichartz inequalities for the wave propagator associated
to the Anderson Hamiltonian.

Theorem 3.7. Let M be a compact surface without boundary (p, q) ∈ [2,∞)2 and 0< σ < α such that
p ≤ q and

σ =
3
2

−
2
p

+
1
q
.

Then, for any κ > 0, we have the bound∥∥∥∥cos(t
√

H)u0 +
sin(t

√
H)

√
H

u1

∥∥∥∥
L p([0,1],Lq )

≲ ∥(u0, u1)∥Hσ+κ×Hσ−1+κ .

Proof. We start by proving the bound for ei t B using the spectral decomposition

ei t Bu =

∑
n≥0

ei tn5nu

and then bound the difference of the two groups. First, the condition p ≤ q implies

∥ei t Bu∥L p([0,1],Lq (M)) ≤ ∥ei t Bu∥Lq (M,L p([0,1]));

hence it is enough to bound the right-hand side. Using the Sobolev embedding in the time variable and
the Lq bound on the eigenvalues from Proposition 3.4, we have

∥ei t Bu∥
2
Lq (M,L p([0,1])) =

∥∥∥ei t Bu∥
2
L p([0,1])

∥∥
Lq/2(M) ≲

∥∥∥ei t Bu∥
2
H1/2−1/p([0,1])

∥∥
Lq/2(M)

≲
∑
n≥0

∥∥∥ei tn5nu∥
2
H1/2−1/p([0,1])

∥∥
Lq/2(M) ≲

∑
n≥0

∥ei tn
∥

2
H1/2−1/p([0,1])

∥5nu∥
2
Lq (M)

≲
∑
n≥0

(n + 1)1−
2
p (

√
n + 1)1−

2
q +2κ

∥5nu∥
2
L2

≲ ∥
√

H
3
2 −

2
p −

1
q +κ

u∥
2
L2 ≲ ∥u∥

2
H3/2−2/p−1/q+κ ,
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which gives the result for B. To obtain the proof for
√

H , we use

ei t Bu − ei t
√

H
= −i

∫ t

0
ei(t−s)B(

√
H − B)eis

√
H ds.

Indeed, this gives

∥ei t
√

H u∥L p([0,1],Lq ) ≲ ∥ei t Bu∥L p([0,1],Lq ) +

∫ 1

0
∥ei(t−s)B(

√
H − B)eis

√
H
∥L p([0,1],Lq ) ds

≲ ∥u∥Hσ+κ +

∫ 1

0
∥(

√
H − B)ei(t−s)Bu∥Hσ+κ ds ≲ ∥u∥Hσ+κ

for any κ > 0. The proof is directly completed from

cos(t
√

H)=
ei t

√
H

+ e−i t
√

H

2
and

sin(
√

H)
√

H
=

ei t
√

H
− e−i t

√
H

2i
√

H
. □

Again, the inhomogeneous inequalities follow directly and we omit the proof.

Corollary 3.8. Let p, q, σ be as in Theorem 3.7. Then we have the bound∥∥∥∥∫ t

0

sin((t − s)
√

H)
√

H
f (s)

∥∥∥∥
L p([0,1],Lq )

≲
∫ 1

0
∥ f (s)∥Hσ−1+κ ds

for f ∈ L1([0, 1],Hσ−1+κ).

Moreover, we have the analogous result for surfaces with boundary, which is proved analogously by
using Proposition 3.5 instead of Proposition 3.4.

Theorem 3.9. Let M be a compact surface with boundary and p, q ∈ [2,∞) such that p ≤ q and

σ =
5
3

−
2
p

−
4

3q
∈ (0, α).

Then for any κ > 0, we have the bound∥∥∥∥cos(t
√

H)u0 +
sin(t

√
H)

√
H

u1 +

∫ t

0

sin((t − s)
√

H)
√

H
v

∥∥∥∥
L p([0,1],Lq )

≲ ∥(u0, u1)∥Hσ+κ×Hσ−1+κ + ∥v∥L1([0,1],Hσ−1+κ )

for initial data (u0, u1) ∈ Hσ
×Hσ−1 and inhomogeneity v ∈ L1([0, 1],Hσ−1+κ).

3C. Local well-posedness for the multiplicative cubic stochastic wave equation. Now we use the results
from the previous section to prove local well-posedness of stochastic multiplicative wave equations of
the form {

∂2
t u + Hu = −u|u|

2,

(u, ∂t u)|t=0 = (u0, u1)

in a low-regularity regime on general two-dimensional surfaces with or without boundary. While we have
the classical Sobolev embedding

Hν ↪→ L
2

1−ν
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for ν ∈ [0, 1), we also make use of the dual Sobolev bound,

for all σ ∈ (0, 1], L
2

2−σ ↪→ Hσ−1

which is true on general manifolds, see for example the book by Aubin [2]. Using this, we make a
preliminary computation meant to show how far we get by using only the Sobolev embedding result. Then
we will see how the bounds in Theorem 3.7 give better results on general manifolds. We first rewrite the
equation under the mild formulation

u(t)= cos(t
√

H)u0 +
sin(t

√
H)

√
H

u1 +

∫ t

0

sin((t − s)
√

H)
√

H
u(s)3 ds.

Then apply the dual Sobolev bound for σ ∈ (0, 1] and p =
2

2−σ
∈ (1, 2] to get

∥u(t)∥Hσ ≲∥u0∥Hσ + ∥u1∥Hσ−1 + ∥u3
∥L1([0,t],Hσ−1)

≲∥u0∥Hσ + ∥u1∥Hσ−1 + ∥u3
∥L1([0,t],L p)

≲∥u0∥Hσ + ∥u1∥Hσ−1 + ∥u∥L∞([0,t],L2/(1−σ))∥u∥
2
L2([0,t],L4)

,

having applied Hölder with 1
2 +

1−σ
2 =

2−σ
2 . Finally, the Sobolev embedding gives

∥u(t)∥Hσ ≲ ∥u0∥Hσ + ∥u1∥Hσ−1 + ∥u∥L∞([0,t],Hσ )∥u∥
2
L2([0,t],H1/2)

.

This can then lead to a solution by fixed point by choosing σ ≥
1
2 . Clearly this is can be improved by

using more subtle bounds than the Sobolev embedding. The Strichartz inequalities from the previous
section allow us to get local well-posedness below; this is the content of the following theorems. As
before we separately state the cases of surfaces without boundary and with boundary, which are proved in
precisely the same way, just using Theorems 3.7 and 3.9 respectively.

Theorem 3.10. Let M be a compact surface without boundary and σ ∈
( 1

4 ,
1
2

)
and δ > 0 sufficiently small.

Then for any initial data (u0, u1) ∈ Hσ
×Hσ−1 there exists a time T > 0 depending on the data such that

there exists a unique solution

u ∈ C([0, T ],Hσ )∩ L
2

1−δ ([0, T ], L4)

to the mild formulation of the multiplicative cubic stochastic wave equation. Moreover, the solution
depends continuously on the initial data (u0, u1).

Proof. As usual, this is proved in a standard way using the Banach fixed-point theorem. Define the map

9(u)(t) := cos(t
√

H)u0 +
sin(t

√
H)

√
H

u1 +

∫ t

0

sin((t − s)
√

H)
√

H
u(s)3 ds.

For t > 0, we have as above

∥u(t)∥Hσ ≲ ∥u0∥Hσ + ∥u1∥Hσ−1 + ∥u∥L∞([0,t],Hσ )∥u∥
2
L2([0,t],L4)

≲ ∥u0∥Hσ + ∥u1∥Hσ−1 + tδ∥u∥L∞([0,t],Hσ )∥u∥
2
L2/(1−δ)([0,t],L4)
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using Hölder inequality in the last line for δ ∈ (0, 1). We then apply Theorem 3.7 with p =
2

1−δ
and q = 4

and obtain

∥9(u)∥L2/(1−δ)([0,T ],L4) ≲ ∥u0∥H3/2−(1−δ)−1/4+κ + ∥u1∥H1/2−(1−δ)−1/4+κ + ∥u3
∥L1([0,T ],H1/2−(1−δ)−1/4+κ )

≲ ∥u0∥Hσ + ∥u1∥Hσ−1 + ∥u3
∥L1([0,T ],Hσ−1)

using that σ > 1
4 and δ < σ −

1
4 gives 3

2 − (1 − δ)− 1
4 + κ ≤ σ for κ > 0 small enough. Finally, we get

∥9(u)∥L2/(1−δ)([0,T ],L4) ≲ ∥u0∥Hσ + ∥u1∥Hσ−1 + T δ
∥u∥L∞([0,T ],Hσ )∥u∥

2
L2/(1−δ)([0,T ],L4)

as above. Thus we can get a fixed point in

C([0, T ],Hσ )∩ L
2

1−δ ([0, T ], L4)

in the usual way for T > 0 small enough. □

In a completely analogous way we get the following result for the case of surfaces with boundary using
the Strichartz estimates from Theorem 3.9.

Theorem 3.11. Let M be a compact surface with boundary and σ ∈
( 1

3 ,
1
2

)
and δ > 0 sufficiently small.

Then for any initial data (u0, u1) ∈ Hσ
×Hσ−1 there exists a time T > 0 depending on the data such that

there exists a unique solution

u ∈ C([0, T ],Hσ )∩ L
2

1−δ ([0, T ], L4)

to the mild formulation of the multiplicative cubic stochastic wave equation. Moreover, the solution
depends continuously on the initial data (u0, u1).
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CURVEWISE CHARACTERIZATIONS OF MINIMAL UPPER GRADIENTS
AND THE CONSTRUCTION OF A SOBOLEV DIFFERENTIAL

SYLVESTER ERIKSSON-BIQUE AND ELEFTERIOS SOULTANIS

We represent minimal upper gradients of Newtonian functions, in the range 1 ≤ p < ∞, by maximal
directional derivatives along “generic” curves passing through a given point, using plan-modulus duality
and disintegration techniques. As an application we introduce the notion of p-weak charts and prove that
every Newtonian function admits a differential with respect to such charts, yielding a linear approximation
along p-almost every curve. The differential can be computed curvewise, is linear, and satisfies the usual
Leibniz and chain rules.

The arising p-weak differentiable structure exists for spaces with finite Hausdorff dimension and agrees
with Cheeger’s structure in the presence of a Poincaré inequality. In particular, it exists whenever the space
is metrically doubling. It is moreover compatible with, and gives a geometric interpretation of, Gigli’s
abstract differentiable structure, whenever it exists. The p-weak charts give rise to a finite-dimensional
p-weak cotangent bundle and pointwise norm, which recovers the minimal upper gradient of Newtonian
functions and can be computed by a maximization process over generic curves. As a result we obtain new
proofs of reflexivity and density of Lipschitz functions in Newtonian spaces, as well as a characterization
of infinitesimal Hilbertianity in terms of the pointwise norm.
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1. Introduction

1A. Overview. Minimal weak upper gradients of Sobolev-type functions on metric measure spaces were
first introduced by Cheeger [1999], building on the notion of upper gradients from [Heinonen and Koskela
1998]. Shanmugalingam [2000] developed Newtonian spaces N 1,p(X) using the modulus perspective of
[Heinonen and Koskela 1998] and proved that they coincide with the Sobolev space defined by Cheeger
up to modification of its elements on a set of measure zero. Further notions of Sobolev spaces, based on
test plans, were developed by Ambrosio, Gigli and Savaré [Ambrosio et al. 2014], with a corresponding
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notion of minimal gradient. Earlier, Hajłasz [1996] had introduced a Sobolev space whose associated
minimal gradient, however, lacks suitable locality properties. While the various Sobolev spaces (with
the exception of Hajłasz’s definition) are equivalent for generic metric measure spaces, Newtonian spaces
consist of representatives which are absolutely continuous along generic curves, a property central to
the results in this paper.

The minimal p-weak upper gradient g f ∈ L p(X) of a Newtonian function f ∈ N 1,p(X) on a metric
measure space X is a Borel function characterized (up to a null-set) as the minimal function satisfying

|( f ◦ γ )′t | ≤ g f (γt)|γ
′

t | for a.e. t ∈ I, (1-1)

for all absolutely continuous γ : I → X outside a curve family of zero p-modulus. Here |γ ′
t | denotes

the metric derivative of γ for a.e. t ; see Section 2. When X = Rn and f ∈ C∞
c (R

n), g f is given by
g f = ∥∇ f ∥; in this case, for each x ∈ X , there exists a (smooth) gradient curve γ : (−ε, ε)→ X , with
γ0 = x , satisfying

( f ◦ γ )′0 = g f (x)|γ ′

0|. (1-2)

In general, however, despite the minimality of g f , the equality in (1-2) is not always attained. For
example the fat Sierpiński carpet (with the Hausdorff 2-measure and Euclidean metric) constructed in
[Mackay et al. 2013] with a sequence in ℓ2

\ ℓ1, as pointed out in the introduction of that work, gives
zero p-modulus (p > 1) to the family of curves parallel to the x-axis, and thus to the family of gradient
curves of the function f (x, y)= x . We remark that the example above is measure doubling and supports
a Poincaré inequality; in this context an approximate form of (1-2) for Lipschitz functions was proven in
[Cheeger and Kleiner 2009, Theorem 4.2].

Towards a positive answer for generic spaces, an “integral formulation” of (1-2) given by [Gigli 2015,
Theorem 3.14] states that, when p > 1 and f ∈ N 1,p(X), there exist probability measures η on C(I ; X)
(known as test plans representing the gradient of f ) such that

lim
t→0

∫
f (γt)− f (γ0)

t
dη = lim

t→0

∫
1
t

∫ t

0
g f (γs)|γ

′

s | ds dη.

In this paper we obtain a “pointwise” variant of (1-2) for general metric measure spaces using a
combination of plan-modulus duality, developed in [Ambrosio et al. 2015b; Durand-Cartagena et al. 2021;
Honzlová Exnerová et al. 2021], and disintegration techniques. (For p > 1, a pointwise variant also
follows from Gigli’s integral formulation; see Section 3C.) Theorem 1.1 below expresses the minimal
weak upper gradient of a Newtonian function as the supremum of directional derivatives along generic
curves passing through a given point. Here, it is crucial to use Newtonian functions, which are absolutely
continuous along almost every curve.

This curvewise characterization of minimal upper gradients yields the existence of an abundance
of curves in a given region of the space, provided the region supports nontrivial Newtonian functions.
The idea of constructing an abundance of curves goes back to [Semmes 1996] in the presence of a
Poincaré inequality. Under this assumption Cheeger showed that g f = Lip f , where Lip f denotes the
pointwise Lipschitz constant of a Lipschitz function f . Note that inequality Lip f ≤ g for continuous
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upper gradients g of a Lipschitz function f on a geodesic space is a direct, but central, observation made
in [Cheeger 1999, pp. 432–433].

The work of Cheeger lead to many developments, including [Cheeger and Kleiner 2009] pioneering
the idea of using directional derivatives along curves (and the early version of Theorem 1.1, appearing as
Theorem 4.2 in that work) as well as the development and detailed analysis of Lipschitz differentiability
spaces; see [Keith 2004a; Bate 2015; Bate and Speight 2013; Cheeger et al. 2016; Schioppa 2016a;
2016b]. In the latter, curves are replaced by curve fragments whose abundance is expressed using Alberti
representations. Alberti representations are similar to plans used in this paper. The connection between
such representations and the ideas in [Cheeger and Kleiner 2009] was first observed by Preiss, see [Bate
2015, p. 2], and can be used to prove the self-improvement of the Lip-lip inequality to the Lip-lip equality,
see [Bate 2015; Schioppa 2016a; Cheeger et al. 2016].

Similarly the abundance of curves, obtained here using duality, yields geometric information on Sobolev
functions on general metric measure spaces. (Indeed, duality, in the disguise of a minimax principle,
was previously used to find Alberti representations in Lipschitz differentiability spaces; see [Bate 2015,
Theorem 5.1] which uses [Rudin 1980, Lemma 9.4.3].) As an important first application, we use curvewise
directional derivatives to define p-weak charts and a differential for Newtonian functions with respect
to such charts. The arising p-weak differentiable structure, i.e., a covering by p-weak charts, exists far
more generally than for Lipschitz differentiability spaces — indeed metric doubling and finite Hausdorff
measure suffice; see Proposition 5.4. This existence result involves a new and crucial dimension bound
for the charts and the induced differential structure; see Theorem 1.11(c) or Proposition 4.13. With the aid
of Theorem 1.1 we adapt Cheeger’s construction to produce a measurable L∞-bundle, called the p-weak
cotangent bundle, over spaces admitting a p-weak differentiable structure; differentials of Newtonian
functions are sections over this bundle. While the Cheeger differential dC f yields a linearization of a
Lipschitz function f , our p-weak differential d f is given by a linearization along p-almost every curve,
and the pointwise norm of d f recovers the minimal weak upper gradient; see Theorem 1.7.

This definition of a weak differentiable structure seems to be the natural extension of the seminal work
[Cheeger 1999] to settings without a Poincaré inequality and yields a “partial differentiable structure”,
which has been the aim of many authors previously; see [Lučić et al. 2021; Alberti and Marchese 2016;
Schioppa 2016a; Cheeger et al. 2016]. Namely, the p-weak cotangent bundle measures and makes precise
the set of accessible directions (for positive modulus) in the space. By constructing the differential using
directional derivatives along curves, we give it a concrete geometric meaning. A sequence of recent work
has sought such concrete descriptions; see, e.g., [Ikonen et al. 2022; Lučić et al. 2021]. Our approach
yields a new unification of the concrete and abstract cotangent modules of [Cheeger 1999] and [Gigli
2018], respectively; the p-weak cotangent bundle is compatible with Gigli’s cotangent module when
the latter is locally finitely generated, and with Cheeger’s cotangent bundle when the space satisfies a
Poincaré inequality; see Theorems 1.11 and 1.8.

The geometric approach in this paper has many natural applications. We mention here the tensorization
of Cheeger energy, pursued in [Ambrosio et al. 2014; 2015c; Lučić et al. 2021], and the identification
of abstract tangent bundles with geometric tangent cones; see [Alberti and Marchese 2016; Lučić et al.
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2021]. Our methods give tools to generalize and refine the results mentioned above, and moreover enable
a blow-up analysis to study analogues of generalized linearity considered for example in [Cheeger 1999;
Cheeger et al. 2016]. Indeed, blow-ups of plans that define the pointwise norm on a p-weak chart (see
Lemmas 4.1, 4.3 and 4.2) along a sequence of rescaled spaces yield curves in the limiting space along
which limiting maps of rescaled Newtonian maps behave linearly. In this context we highlight [Schioppa
2016a], which gives a similar geometric and blow-up analysis in the context of abstract Weaver derivations.
We leave the detailed exploration and development of these ideas for future work.

1B. Curvewise characterization of minimal upper gradients. Throughout the paper, we fix a metric
measure space X = (X, d, µ), that is, a complete separable metric space (X, d) together with a Radon
measure µ which is finite on bounded sets. A plan is a finite measure η on C(I ; X) that is concentrated
on the set AC(I ; X) of absolutely continuous curves. The natural evaluation map e : C(I ; X)× I → X ,
(γ, t) 7→ γt , gives rise to the barycenter dη#

:= e∗(|γ
′
t | dt dη) of η. If dη#

= ρ dµ for some ρ ∈ Lq(µ),
we say that η is a q-plan (not to be confused with q-test plans, see, e.g., Section 2 or [Ambrosio et al.
2015b]). Every finite measure π on C(I ; X)× I admits a disintegration with respect to e: for e∗π -almost
every x ∈ X , there exists a (unique) measure π x ∈ P(C(I ; X)× I ), concentrated on e−1(x), such that
the collection {π x} satisfies

π(B)=

∫
π x(B) d(e∗π)(x)

for all Borel sets B ⊂ C(I ; X)× I. We refer to [Ambrosio et al. 2008; Bogachev 2007] for more details.
We use these notions to define a “generic curve”: if η is a q-plan on X and {π x} the disintegration

of dπ := |γ ′
t | dt dη with respect to e, then π x -a.e.-curve passes through x , for e∗π-a.e. x ∈ X . In the

forthcoming discussion, we omit the reference to e in the disintegration. We now formulate our first result,
in which the equality in (1-2) is obtained as an essential supremum with respect to the disintegration for
almost every point. In the statement below we write

Diff( f )= {(γ, t) ∈ AC(I ; X)× I : f ◦ γ ∈ AC(I ; R), ( f ◦ γ )′t and |γ ′

t |> 0 exist}

for a µ-measurable function f : X → [−∞,∞].

Theorem 1.1. Let 1 ≤ p < ∞, and let 1 < q ≤ ∞ satisfy 1/p + 1/q = 1. Suppose f ∈ N 1,p(X),
g f is a Borel representative of the minimal p-weak upper gradient of f , and D := {g f > 0}. There
exists a q-plan η with µ|D ≪ η# so that the disintegration {π x} of dπ := |γ ′

t | dt dη is concentrated on
e−1(x)∩ Diff( f ) and

g f (x)=

∥∥∥∥( f ◦ γ )′t

|γ ′
t |

∥∥∥∥
L∞(π x )

(1-3)

for µ-almost every x ∈ D.

Remark 1.2. The statement also holds when f ∈ N 1,p
loc (X), that is, f |B(x,r) ∈ N 1,p(B(x, r)) for each

ball B(x, r)⊂ X . Indeed, a localization argument, replacing f by f ηn with ηn a sequence of Lipschitz
functions with bounded support and ηn|B(x0,n−1) = 1 for some x0, reduces the statement for f ∈ N 1,p

loc (X)
to Theorem 1.1. Similarly, other notions in this paper, such as charts, could use a local Sobolev space,
but to avoid technicalities we do not discuss this point further. A reader can see Lemma 4.5 and its proof
for a prototypical form of such a localization argument.
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In particular, we have the following corollary.

Corollary 1.3. Let p, q and f, g f , D be as in Theorem 1.1. There exists a q-plan η and, for every
ε > 0, a Borel set B = Bε ⊂ Diff( f ) with the following property: if {π x} denotes the disintegration of
dπ := |γ ′

t | dt dη, then π x(B) > 0 and

(1 − ε)g f (x)|γ ′

t | ≤ ( f ◦ γ )′t ≤ g f (x)|γ ′

t | for every (γ, t) ∈ e−1(x)∩ B,

for µ-a.e. x ∈ D.

Theorem 1.1 notably covers the case p = 1. In Section 3C we also prove a variant (Theorem 3.6) when
p > 1, using test plans representing a gradient instead of plan-modulus duality.

1C. Application: p-weak differentiable structure. Cheeger [1999] showed that PI-spaces (metric mea-
sure spaces with a doubling measure supporting some Poincaré inequality) admit a countable cover by
Cheeger charts, also called a Lipschitz differentiable structure (see [Keith 2004b]). Let LIP(X) denote the
collection of Lipschitz functions on X , and let LIPb(X) consist those Lipschitz functions with bounded
support. A Cheeger chart (U, ϕ) of dimension n consists of a Borel set U with µ(U ) > 0, and a Lipschitz
function ϕ : X → Rn such that, for every f ∈ LIP(X) and µ-a.e. x ∈ U, there exists a unique linear map
dC,x f : Rn

→ R, called the Cheeger differential of f , such that

f (y)− f (x)= dC,x f (ϕ(y)−ϕ(x))+ o(d(x, y)) as y → x . (1-4)

Not every space admits Lipschitz differentiable structure, as shown by the so called Rickman’s rug
X := [0, 1]

2 equipped with the metric d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|
α, where α ∈ (0, 1)

and µ = L2
|X . Indeed, a Weierstrass-type function in the y-variable combined with [Schioppa 2016a,

Theorem 1.14] would yield nonhorizontal rectifiable curves if the space were a differentiability space,
contradicting the fact that all rectifiable curves in X are horizontal.

Here, we introduce p-weak differentiable structures, which exist in much more generality (including
Rickman’s rug, see the discussion after Definition 1.4), adapting Cheeger’s construction by substituting
(1-4) for a weaker curvewise control. To accomplish this, we replace the pointwise Lipschitz constant
by the minimal p-weak upper gradient in the definition of “infinitesimal linear independence” (1-5) and
use Theorem 1.1 to circumvent the difficulties arising from the fact that the latter is defined only up to a
null-set.

In the remainder of the introduction, we use the notation |D f |p for the minimal p-weak upper gradient
of f ∈ N 1,p

loc (X) and refer to Section 2 for more discussion on this notation. Given p ≥ 1 and N ∈ N, we
say that a Sobolev map ϕ ∈ N 1,p

loc (X; RN ) is p-independent in U ⊂ X if

ess inf
v∈SN−1

|D(v ·ϕ)|p > 0 µ-a.e. in U, (1-5)

and p-maximal in U if no Lipschitz map into a higher-dimensional target is p-independent in a positive
measure subset of U. Here, we use the essential infimum of an uncountable collection, which agrees
µ-a.e. with the pointwise infimum over any countable dense collection of SN−1; see Section A2. Note
that p-maximality does not depend on the particular map ϕ but rather the dimension of its target space.
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Definition 1.4. An N -dimensional p-weak chart (U, ϕ) of X consists of a Borel set U ⊂ X with positive
measure and a Lipschitz function ϕ : X → RN which is p-independent and p-maximal in U. We say
that X admits a p-weak differentiable structure if it can be covered up to a null set by countably many
p-weak charts.

By convention, zero-dimensional p-weak charts satisfy ϕ ≡ 0 and (1-5) is a vacuous condition, while
maximality means that |D f |p = 0 µ-a.e. on U for every f ∈ LIPb(X) (see also Proposition 4.4). In
Section 4F we briefly discuss a lower-regularity requirement in Definition 1.4 and the fact the resulting
notion yields essentially the same p-weak differentiable structure. We also show that an N -dimensional
p-weak chart (U, ϕ) satisfies N ≤ dimH U, where dimH U denotes the Hausdorff dimension of U ; see
Proposition 4.13. In particular, we have the following theorem.

Theorem 1.5. A metric measure space of finite Hausdorff dimension admits a p-weak differentiable
structure for any p ≥ 1. In particular, this holds if the space is metrically doubling.

We refer to Proposition 5.4 for a more technical statement, which immediately implies the theorem.
Next, we give an analogue of the Cheeger differential (1-4) using p-weak charts.

Definition 1.6. Given an N -dimensional p-weak chart (U, ϕ) of X , a p-weak differential of a Newtonian
function f ∈ N 1,p(X) with respect to ϕ is a map d f : U → (RN )∗ (whose value at x ∈ U is denoted
by dx f ) which satisfies

f (γs)− f (γt)= dγt f (ϕ(γs)−ϕ(γt))+ o(|t − s|) for a.e. t ∈ γ−1(U ), as s → t, (1-6)

for p-a.e. absolutely continuous curve γ in X . We say that a function f ∈ N 1,p(X) has a p-weak
differential with respect to ϕ, if such a d f exists.

If the curve γ does not enter U, or only spends zero length in the set, then condition (1-6) becomes
vacuously satisfied with both sides vanishing. The p-weak differential is uniquely determined up to
almost everywhere equivalence by (1-6); see Lemma 4.3. Further, it is also local, i.e., if g ∈ N 1,p(X)
and f |A = g|A on a positive measure subset A ⊂ U, then d f |A = dg|A. The differential satisfies various
natural computation rules; see Propositions 4.10 and 5.7 for the most important ones.

Theorem 1.7. Suppose p ≥ 1, and ϕ : X → RN is a p-weak chart on U. Then any f ∈ N 1,p(X) has a
p-weak differential d f : U → (RN )∗ with respect to ϕ, which is µ-a.e. unique, and the map f 7→ d f is
linear.

Moreover, for µ-a.e. x ∈ U, there is a norm | · |x on (RN )∗ such that x 7→ |ξ |x is Borel for every
ξ ∈ (RN )∗ and

|d f |x = |D f |p(x) for µ-a.e. x ∈ X,

for every f ∈ N 1,p(X).

Whereas Lipschitz functions are differentiable with respect to Cheeger charts, (1-5) yields only the
curvewise control (1-6). Indeed, if there are very few or no rectifiable curves, or if the curves only
point into certain directions, then the p-weak differential vanishes, or measures only these directions,
respectively. For example, given a fat Cantor set K ⊂ Rn with Ln(K ) > 0, X := (K , dEucl,Ln

|K ) is a
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Lipschitz differentiability space but the minimal weak upper gradient of every Lipschitz function is zero.
On the other hand, Rickman’s rug admits nontrivial p-weak charts ϕ(x, y)= x . The p-weak differential
in this case can be identified with the x-derivative, d f ≡ ∂x f , and the only curves with positive p-modulus
are those which are horizontal. These examples demonstrate that p-weak differentiable structures might
exist for spaces not admitting a Cheeger structure, but the two need not coincide even if both exist.
However, if a Poincaré inequality is present, the two structures coincide.

Theorem 1.8. Suppose X is a p-PI space for p ≥1. Then any p-weak chart (U, ϕ) of X is a Cheeger chart.

It follows from the discussion after Definition 1.4 that a p-PI space admits p-weak charts. In Section 1D,
we obtain a precise statement on the relationship between the p-weak and Lipschitz differentiable
structure, as well as a characterization of the existence of p-weak differentiable structures in terms of
Gigli’s cotangent module [2018]. Here we mention a noteworthy corollary of the existence of a p-weak
differentiable structure.

Theorem 1.9. Let p ≥ 1. If X admits a p-weak differential structure, then LIPb(X) is norm-dense
in N 1,p(X).

Theorem 1.9 has been obtained by other methods for p > 1 in [Ambrosio et al. 2013] but is new in the
case p = 1. In particular, we highlight that the density holds if X has finite Hausdorff dimension.

1D. Connections to Cheeger’s and Gigli’s differentiable structures. Together with the pointwise norm
from Theorem 1.7, a p-weak differentiable structure gives rise to a p-weak cotangent bundle T ∗

p X over X ,
analogous to the measurable L∞-cotangent bundle T ∗

C X arising from the Lipschitz differentiable structure
[Cheeger 1999; Keith 2004b], which is equipped with the pointwise norm

|ξ |C,x := Lip(ξ ◦ϕ)(x), ξ ∈ (RN )∗,

for µ-a.e. x ∈ U, where (U, ϕ) is an N -dimensional Cheeger chart. For any f ∈ LIPb(X), the differentials
d f and dC f are sections of the cotangent bundles T ∗

p X and T ∗

C X , respectively. We refer to Section 5 for
the precise definition of measurable L∞-bundles and their sections.

In the next theorem we show that there is a submetric bundle map T ∗

C X → T ∗
p X and give a condition

under which the bundle map is an isometric isomorphism. See Section 5 for the definition of bundle maps.
In the statement, a modulus of continuity is an increasing continuous function ω : [0,∞)→ [0,∞), with
ω(0)= 0, and a linear submetry between normed spaces V and W is a surjective linear map L : V → W ,
with L(BV (r))= BW (r).

Theorem 1.10. Suppose X admits a Cheeger structure and let p ≥ 1. There is a bundle map π = πC,p :

T ∗

C X → T ∗
p X which is a linear submetry µ-a.e. and satisfies

πx(dC,x f )= dx f for µ-a.e. x ∈ X, (1-7)

for every f ∈ LIPb(X). If there exists a collection {ωx}x∈X of moduli of continuity satisfying

Lip f (x)≤ ωx(|D f |p(x)) for µ-a.e. on X,

for every f ∈ LIPb(X), then πC,p is an isometric bijection µ-a.e.
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Theorem 1.10 follows from [Ikonen et al. 2022, Theorem 1.1] and the following theorem, which
identifies the space 0p(T ∗

p X) of p-integrable sections of the p-weak cotangent bundle T ∗
p X with Gigli’s

cotangent module L p(T ∗X). We refer to Section 6 for the relevant definitions, and remark here that
Gigli’s construction is the most general in the sense that L p(T ∗X) can be defined for any metric measure
space. It is a priori defined only as an abstract L p-normed L∞-module in the sense of [Gigli 2015; 2018].

We say that L p(T ∗X) is locally finitely generated if X has a countable Borel partition B so that each
B ∈ B admits a finite generating set in B. Here, a collection V ⊂ L p(T ∗X) is a generating set in B (or
generates L p(T ∗X) in B) if χB L p(T ∗X) is the smallest closed submodule of L p(T ∗X) containing χBv

for every v ∈ V . Gigli’s cotangent modules admit a dimensional decomposition, i.e., a Borel partition
{AN }N∈N∪{∞} of X so that L p(T ∗X) admits a generating set of cardinality N (and no smaller) in AN for
each N. For N = ∞, no finite set generates L p(T ∗X) in AN . The dimensional decomposition is uniquely
determined up to µ-negligible sets.

Below we denote by dG f and | · |G the abstract differential and pointwise norm in the sense of Gigli; see
Theorem 6.1. A morphism between L p-normed L∞-modules (i.e., a continuous L∞-linear map) is said
to be an isometric isomorphism if it preserves the pointwise norm and has an inverse that is a morphism.

Theorem 1.11. Let X be a metric measure space and p ≥ 1. Then X admits a p-weak differentiable
structure if and only if L p(T ∗X) is locally finitely generated. In this case,

(a) there exists an isometric isomorphism ι : 0p(T ∗
p X) → L p(T ∗X) of normed modules satisfying

ι(d f )= dG f for every f ∈ N 1,p(X) and uniquely determined by this property,

(b) each set AN in the dimensional decomposition of X can be covered up to a null-set by N-dimensional
p-weak charts,

(c) N ≤ dimH (AN ) for each N ∈ N.

Theorem 1.11 gives a concrete interpretation of Gigli’s cotangent module, and bounds the Hausdorff
dimension of the sets in the dimensional decomposition. As corollaries we obtain the reflexivity of
N 1,p(X) when p > 1, and a characterization of infinitesimal Hilbertianity in terms of the pointwise norm
of Theorem 1.7 when p = 2, for spaces admitting a p-weak differentiable structure; see Corollary 6.7.
Reflexivity could also be obtained directly from Theorem 1.7 following the argument in [Cheeger 1999,
Section 4].

2. Preliminaries

Throughout this paper X = (X, d, µ) will be a complete separable metric measure space equipped with
a Radon measure µ finite on balls. We denote by C(I ; X) the space of continuous curves γ : I → X
equipped with the metric of uniform convergence and by AC(I ; X) the subset of absolutely continuous
curves in X , where I ⊂ R is an interval. Mostly, we will be concerned with statements independent of
parametrization; thus the choice of the interval I is immaterial. However, when we need to refer to the
end points of the curve, then we will take I = [0, 1].

If γ is a curve, its value at t ∈ I is denoted by γt := γ (t). If f : X → RN is a function, we also use this
notation as ( f ◦ γ )t = f (γt). The derivative of f in the direction of γ at γt , when it exists, is denoted
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by ( f ◦ γ )′t = ( f ◦ γ )′(t). The metric derivative of the curve, in the sense of say [Ambrosio et al. 2008,
Section I.1], is defined as |γ ′

t | = limh→0 d(γt+h, γt)/h, when it exists. The metric derivative is defined
almost everywhere on I for γ ∈ AC(I ; X).

2A. Plans and modulus. A finite measure η on C(I ; X) is called a plan if it is concentrated on AC(I ; X),
and a q-plan if the barycenter dη#

:= e∗(|γ
′
t | dt dη) satisfies dη#

= ρ dµ for some ρ ∈ Lq(µ). We denote
by ACq(I ; X) the space of curves γ ∈ AC(I ; X) satisfying

∫ 1
0 |γ ′

t |
q dt < ∞, and say that a q-plan

η ∈ P(C(I ; X)) is a q-test plan, if it is concentrated on ACq(I ; X) and

et∗η ≤ Cµ for every t ∈ I, and
∫∫ 1

0
|γ ′

t |
q dt dη <∞

for some constant C > 0. Here et : C(I ; X)→ X is the map et(γ )= γt .

Remark 2.1. Every q-test plan is also a q-plan. However, the converse can fail for two reasons. A q-test
plan fixes a given parametrization for curves (with an integrability condition on the speed) and insists
on a compression bound et∗(η)≤ Cµ. However, for each q-plan supported on 0 ⊂ AC(I ; X), one can
construct associated q-test plans supported on reparametrized curves, which are subcurves of curves in 0.

The argument for this is a combination of two observations in [Ambrosio et al. 2015b]. First, for
each q-plan one can reparametrize curves to get a plan with a good “parametric barycenter” [loc. cit.,
Definition 8.1 and Theorem 8.3]. The parametric barycenter depends on the parametrization, while the
barycenter η# does not. The second point concerns the compression bound, where given the previous
plan, one can take subsegments of curves and average these over shifts to get a compression bound, which
is explained as part of the proof of [loc. cit., Theorem 9.4].

This remark would allow, for example, to phrase Theorem 1.1 with test plans instead of plans, if one
were so inclined.

If 0 ⊂ C(I ; X) is a family of curves, then a Borel function ρ : X → [0,∞] is called admissible if∫
γ
ρ ds ≥ 1 for each rectifiable γ ∈ 0. In particular, if there are no rectifiable curves, then this condition

is vacuous. We define, for p ∈ [1,∞),

Modp(0)= inf
ρ

∫
X
ρ p dµ,

where the infimum is over all admissible ρ. We remark, that due to Vitali–Carathéodory, such an infimum
can always be taken with respect to lower semicontinuous functions. Notice that the modulus is supported
on rectifiable curves and is independent of the parametrization of such curves. We say that a property
holds for p-almost every curve if there is a family of curves 0B so that Modp(0B)= 0 and the property
holds for all γ ∈ C(I ; X) \0B . Modulus is invariant of the parametrization of curves, but some of our
statements depend on a parametrization. In those cases, we will say that the property holds for p-almost
every absolutely continuous curve in X (or p-a.e. γ ∈ AC(I ; X)) to emphasize that the property holds for
each γ ∈ AC(I ; X)\0B with Modp(0B)= 0. The reader may consult [Heinonen et al. 2015, Sections 4–7]
for a more in-depth treatment of modulus, upper gradients and Vitali–Carathéodory.

Remark 2.2. A crucial fact we will use is that if 0 satisfies Modp(0)= 0, then for any q-plan η we have
η(0)= 0 (which holds for p ∈ [1,∞) and q its dual exponent). The converse is also true for p ∈ (1,∞).
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See the arguments and discussion in [Ambrosio et al. 2015b, Sections 4 and 9]. One point here is that if
we used q-test plans, this relationship would be more complex, and we would need to consider “stable”
families of curves; see [loc. cit., Theorem 9.4]. The case of p = 1 is also somewhat subtle, and we
will deal with a special case of this issue in Section 3. The argument of Proposition 2.3 would give the
converse for compact families of curves and p = 1. See also, [Honzlová Exnerová et al. 2021] for a much
more detailed exploration of this borderline case.

The previous remark concerns an inequality relating modulus and q-plans. However, there is a closer
connection, and in a sense these are dual to each other. Previously, this has been explored in [Ambrosio
et al. 2015b, Theorem 5.1] for p> 1, and in [Honzlová Exnerová et al. 2021, Theorem 6.3] for p = 1. Due
to its importance for us, we summarize one main consequence of these results. We further briefly describe
the main steps of a direct proof from [David and Eriksson-Bique 2020, Proposition 4.5]. A similar
argument appeared previously in a more specific context in [Durand-Cartagena et al. 2021, Theorem 3.7].

Proposition 2.3. Let p ∈ [1,∞) and q its dual exponent with p−1
+ q−1

= 1. If K ⊂ C(I ; X) is a
compact family of curves, and Modp(K ) ∈ (0,∞), then there exists a q-plan η with spt(η)⊂ K .

Proof. A power of the modulus Modp(K )1/p arises from a convex optimization problem on ρ with a
constraint for every curve γ ∈ K . A dual formulation of this corresponds to a variable for each constraint,
i.e., a measure ν supported on K . Thus, it is reasonable to consider a modified Lagrangian defined by

8(ρ, ν)= ∥ρ∥L p − Modp(K )1/p
∫

K

∫
γ

ρ ds dνγ ,

where ρ : X → [0,∞] is a function and ν is a probability measure supported on K . Let P(K ) be the
collection of these probability measures supported on K equipped with the topology of weak* convergence.
In order to obtain the required continuity, we will restrict to ρ ∈ G, with

G := {ρ : X → [0, 1] : ρ compactly supported and continuous in X}.

The set G is equipped with the topology of uniform convergence. Then 8 : G × P(K )→ R is a functional
with two properties: 8( · , ν) is convex and continuous for each ν ∈ P(K ), and 8(ρ, · ) is concave
and upper semicontinuous for each ρ : X → [0, 1]. Further P(K ) is compact and convex in the weak*
topology and G is a convex subset.

By Sion’s minimax theorem, see, e.g., statement in [David and Eriksson-Bique 2020, Theorem 4.7],
we have

sup
ν∈P(K )

inf
ρ∈G

8(ρ, ν)= inf
ρ∈G

sup
ν∈P(K )

8(ρ, ν).

We can compute infρ∈G supν∈P(K )8(ρ, ν) ≥ 0. Indeed, given any ρ ∈ G, we can use the definition
of modulus to find a γ ∈ K with

∫
γ
ρ ds ≤ ∥g∥p/Modp(K )−1/p. If we choose ν = δγ , a Dirac measure

on γ , the bound immediately follows.
Therefore, we have also supν∈P(K ) infρ∈G 8(ρ, ν) ≥ 0. But, up to showing that this supremum is

attained, there must be some η∈ P(K ) for which we get infρ∈G 8(ρ, η)≥0. After unwinding the definition
of a q-plan, and an application of Radon–Nikodym on X , the measure η is our desired q-plan. □
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2B. Sobolev spaces and functions. A function f : (X, dX ) → (Y, dY ) between two metric spaces is
called Lipschitz if LIP( f ) := supx,y∈X,x ̸=y dY ( f (x), f (y))/dX (x, y) < ∞. A bijection f : X → Y is
called bi-Lipschitz if f and f −1 are Lipschitz. Further, if x ∈ X , we define the local Lipschitz constant as

Lip f (x) := lim sup
y→x,y ̸=x

dY ( f (x), f (y))
dX (x, y)

.

Let LIPb(X) be the collection of Lipschitz maps f : X → R with bounded support.

Definition 2.4. Let f : X → R ∪ {±∞} be measurable, g : X → [0,∞] a Borel function, and γ : I → X
a rectifiable path. We say that g is an upper gradient of f along γ , if

∫
γ

g ds <∞ and

| f (γt)− f (γs)| ≤

∫
γ |[s,t]

g

for each s < t with s, t ∈ I with the convention ∞ − ∞ = ∞. We say that g is an upper gradient of f if
it is an upper gradient along every rectifiable curve, and a p-weak upper gradient if g is an upper gradient
of f along p-a.e. rectifiable curve.

The space N 1,p(X) is defined as all µ-measurable functions f ∈ L p(X) which have an upper gradient g
in L p(X). The (semi-)norm on this space is defined as

∥ f ∥N 1,p = (∥ f ∥
p
L p + inf ∥g∥

p
L p)

1/p,

where the infimum is taken over all L p-integrable upper gradients g of f . The theory of these spaces was
largely developed in [Shanmugalingam 2000]; see also [Heinonen et al. 2015] for most of the classical
theory. By the results there combined with an observation of [Hajłasz 2003] in the case of p = 1, one can
show that there always exists a unique minimal g f , which is an upper gradient along p-almost every path,
and for which ∥ f ∥N 1,p = (∥ f ∥

p
L p + ∥g f ∥

p
L p)

1/p. We call g f the minimal p-upper gradient. Similarly, we
can define f ∈ N 1,p

loc (X) if f η ∈ N 1,p whenever η ∈ LIPb(X). In these cases we also can define a minimal
p-upper gradient g f , so that ηg f ∈ L p(X) for every η ∈ LIPb(X). In other words, g f ∈ L p

loc(X).
We denote by N 1,p(X; RN )≃ N 1,p(X)N the space of functions ϕ : X → RN so that each component

is in N 1,p. Similarly, we define LIPb(X; RN )≃ LIPb(X)N.
Another notion of Sobolev space can be defined using q-test plans and we denote it by W 1,p(X), with

|D f |p denoting the minimal gradient of f ∈ W 1,p(X). Namely, a function f ∈ L p(µ) belongs to the
Sobolev space W 1,p(X) if there exists g ∈ L p(µ) such that∫

| f (γ1)− f (γ0)| dη ≤

∫∫ 1

0
g(γt)|γ

′

t | dt dη

for every q-test plan η on X . The space has a norm ∥ f ∥W 1,p = (∥ f ∥
p
L p + infg ∥g∥

p
L p)

1/p, where the
infimum is over all such functions g. We refer to [Di Marino and Squassina 2019] for details.

Note that any representative of an element of W 1,p(X) still belongs to W 1,p(X), whilst a representative
of an element in N 1,p(X) belongs to N 1,p(X) if and only if they agree outside a p-exceptional set. The
next theorem says that up to this ambiguity of representatives, the two approaches produce the same
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object. The measurability conclusion is also a corollary of [Eriksson-Bique 2023]. We refer to [Ambrosio
et al. 2015a] for a proof.

Theorem 2.5. Let p ∈ (1,∞). If f ∈ N 1,p(X), then f ∈ W 1,p(X) and g f = |D f |p µ-a.e. Conversely, if
f ∈ W 1,p(X), then f has a Borel representative f̄ ∈ N 1,p(X) with g f̄ = |D f |p µ-a.e.

3. Curvewise (almost) optimality of minimal upper gradients

3A. Upper gradients with respect to plans. Given a plan η, we can speak of a gradient along its curves.

Definition 3.1. If η is a q-plan and f ∈ N 1,p(X), then a Borel function g is an η-upper gradient if g is
an upper gradient of f along γ for η-almost every γ .

The following lemma gives a notion of a minimal η-upper gradient and shows how to compute it by
using derivatives along curves.

Lemma 3.2. Suppose g f is a minimal upper gradient and η is any q-plan and dπ = dη|γ ′
t | dt , with

disintegration π x . Then:

(1) gη = ∥( f ◦ γ )′t/γ
′
t ∥L∞(π x ) is a η-upper gradient.

(2) gη ≤ g for any other η-upper gradient for almost every x ∈ X.

(3) gη ≤ g f for almost every x ∈ X.

(4) Suppose η′ is another q-plan and η ≪ η′. Then gη ≤ gη′ .

Proof. Let g f be the minimal p-upper gradient for f . By Lemma A.2 there is a Borel family 00 ⊂ C(I ; X),
so that f is absolutely continuous on each curve γ ̸∈ 0c

0 with upper gradient g f and so that η(00)= 0.
By Corollary A.3 and Lemma A.1 there is a set N ⊂ C(I ; X)× I so that for π(N ) = 0, and for each
(γ, t) ̸∈ N, both ( f ◦γ )′(t) and |γ ′

t | are defined and measurable. Let M0 =00 × I ∪ N. We get π(M0)= 0.
For each curve γ ̸∈ 00 the function f is absolutely continuous with upper gradient ( f ◦ γ )′t/|γ

′
t |. Since

gη(γt)≥ ( f ◦ γ )′t/|γ
′
t | for π -almost every (γ, t) ∈ M0, we have that gη is an η upper gradient.

If g is any other Borel η-upper gradient, then the set of (γ, t)∈ Diff( f )\ M0 with ( f ◦γ )′t/|γ
′
t |> g(γt)

must have null measure, and thus the claim follows by Fubini and the definition in (1).
The function g f is an upper gradient for f on curves in 0c

0, and thus the claim follows again from
curvewise absolute continuity and by showing that the set of (γ, t) with ( f ◦γ )′t/|γ

′
t |> g f (γt) must have

null π -measure. The final claim follows since gη′ must be a η-upper gradient for f . □

3B. Proof of Theorem 1.1. In this subsection we prove Theorem 1.1. The idea is that for each q-plan η we
can associate a gradient “along” the curves of such a plan. Each such gradient must be less than the minimal
upper gradient, and thus the task is to show that by varying over different plans η we can obtain the minimal
upper gradient through maximization. In order to show equality of the result of this maximization, we argue
by contradiction, that if it were not a minimal upper gradient, then we could witness this by a given plan.
This is the core of the following result. It should be compared to [Ambrosio et al. 2015b, Sections 9–11],
where a similar analysis is done, but with different terminology and only for p > 1. In the following
statement we will need to refer to end points of curves, and thus choose the domain of curves as I = [0, 1].
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Lemma 3.3. Let p ∈ [1,∞), and q be its dual exponent. Let f ∈ N 1,p(X). Suppose g is any nonnegative
Borel function so that A = {g < g f } has positive measure. Then there exists a q-plan η, so that for
η-almost every curve γ : [0, 1] → X we have

| f (γ1)− f (γ0)|>

∫
γ

g ds. (3-1)

Proof. By Vitali–Carathéodory we may find a lower semicontinuous g̃ ≥ g which is integrable and so that
Ã = {g̃ < g f } has positive measure. We will suppress the tildes below to simplify notation and thus only
consider the case of g lower semicontinuous. Since g < g f on a positive measure subset, g cannot be a
minimal upper gradient, and thus there must exist a family 0 ⊂ C(I ; X) of curves with Modp(0) > 0, so
that (3-1) holds for each γ ∈ 0. Modulus is invariant under reparametrization of curves and so we may
consider the subset of those γ ∈ 0 which are Lipschitz. We want to find a plan supported on 0. However,
the issue with this is that since p = 1 is allowed the family 0 may not be compact, the duality of modulus
and q-plans may fail. So, we seek to “cover” 0, up to a null modulus family by compact families. This
covering is done in an iterative way.

Fix an R so that the modulus of 0R of those curves in 0, which are contained in a ball B(x0, R) for
some fixed x0 ∈ X , is positive. Since f is measurable and X is complete and separable, Egorov’s theorem
implies the existence of an increasing sequence of compact sets Kn satisfying µ(B(x0, R) \

⋃
Kn)= 0

for which f |Kn is continuous for each n. Define µ(B(x0, R) \ Kn)= εn . By passing to a subsequence
of n, we may assume that

∑
n
√
εn < 1.

Define 0 as the collection of γ ∈0R so that f is absolutely continuous on γ and H1
(
γ \

(⋃
∞

n=1 Kn
))

=0.
This holds for Modp-almost every curve, since f ∈ N 1,p(X) and since p-almost every curve spends
measure zero in the null set X \

⋃
∞

n=1 Kn . Thus, Modp(0) > 0.
Next, let 0m be those curves γ : I → X , which are m-Lipschitz, so that Len(γ ) ≤ m|b − a|,

diam(γ ) ≥ 1/m, γ0, γ1 ∈ Km and (3-1) holds. We will show that every γ ∈ 0 contains a subcurve, up
to reparametrization, in

⋃
∞

m=1 0
m. From this, and [Björn and Björn 2011, Lemma 1.34], it follows that

Modp
(⋃

∞

m=1 0
m
)
> 0, and thus there is some M > 0 so that Modp(0

M) > 0. It is easy to show that 0m

is a closed family of curves in C(I ; X) with respect to uniform convergence, since g is taken to be lower
semicontinuous (see, e.g., [Keith 2003, Proposition 4]).

To obtain the previous fact, consider a nonconstant curve γ ∈ 0. We have

| f (γ1)− f (γ0)|>

∫
γ

g ds.

We may also parametrize γ by constant speed as the claim is invariant under reparametrizations.
Since γ has constant speed, we know

∣∣I \
⋃

∞

n=1 γ
−1(Kn)

∣∣ = 0 and f ◦ γ is continuous. Since∫
γ

g ds<∞ and f ◦γ is continuous, we can find (for all n ≥ N for some N ∈ N) sequences an, bn ∈ [0, 1]

so that limn→∞ an = a, γan ∈ Kn , γbn ∈ Kn and limn→∞ bn = b. Then, for sufficiently large n

| f (γbn )− f (γan )|>

∫
γ |[an ,bn ]

g ds.
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For n large enough we also have Len(γ[an,bn])≤ n|b − a|, diam(γ[an,bn]))≥ 1/n. Since the curves are
parametrized by constant speed, they are n-Lipschitz. So γ ′

= γ[an,bn] is, up to a reparametrization, in 0n

for n large enough, and the claim follows.
Fix M > 0 so that Modp(0

M)> 0. Next, choose δ <min(Modp(0
M), 1). Define δn = ε

1/2p
n . Choose N

so that
∑

∞

n=N
√
εn < δ

1+p/2. Let 0M
t be the family of curves γ ∈ 0M so that

∫
γ

1X\Kn ds ≤ δδn for each
n ≥ N. Since

(∑
n≥N (1X\Kn/(δδn))

p
)1/p is a function admissible for 0M

\0M
t , we have

Modp(0
M

\0M
t )≤

∑
n≥N

εn

δ pδ
p
n
< δ/2.

Thus, by subadditivity of modulus, see, e.g., [Fuglede 1957, Theorem 1],

Modp(0
M
t )≥ Modp(0

M)− Modp(0
M

\0M
t ) > δ/2.

By Lemma 3.4, since 0M is closed, the family 0M
t ⊂ 0M is a compact family of curves in a complete

space. Then, by Proposition 2.3 there exists a q-plan η supported on 0M
t . Each curve γ ∈ 0M

t satisfies
(3-1), and thus the claim follows. □

For the following proof, recall that if A, B ⊂ X , then d(A, B) := infa∈A infb∈B d(a, b), and Nε(A) :=⋃
a∈A B(a, ε) for ε > 0.

Lemma 3.4. Suppose that Kn are compact sets, ηn > 0 constants with limn→∞ ηn = 0, L > 0 and let
0 ⊂ C(I ; X) be a closed family of curves in a complete space X. Let 0n,L be the family of curves γ ∈ 0

for which Len(γ )≤ L , diam(γ )≥ 1/L and which are L-Lipschitz, with
∫
γ

1X\Kn ds ≤ ηn for each n ∈ N.
Then 0n,L is compact.

Proof. Let I = [a, b]. Since 0 and 0n,L are closed, it suffices to show precompactness.
Let γ ∈ 0n,L . We may suppose that ηn < 1/(2L) by restricting to large enough n. Then, we have for

each n ∫
γ

1Kn ds =

∫
γ

1 ds −

∫
γ

1X\Kn ds ≥ diam(γ )− ηn >
1
L

− ηn.

Thus γ ∩ Kn ̸= ∅. Moreover, if t ∈ I, and d(γt , Kn)= s, then there will be a subsegment of length at
least min(s, diam(γk)/2) in X \ Kn . This gives min(s, diam(γ )/2)≤ ηn < 1/(2L). This is only possible
if s ≤ ηn , since diam(γ )/2 ≥ 1/L . Indeed, we have d(γ, Kn)≤ ηn .

To run the usual proof of Arzelà–Ascoli, since we have equicontinuity with the Lipschitz bound, we
only need to show that for each fixed t ∈ I the set At = {γt : γ ∈ 0n,L

} is precompact. However, since X
is complete, it suffices to show that At is totally bounded. Fix ε > 0. We concluded that d(γ, Kn)≤ ηn

for all n ∈ N. Thus, we have for some large n that ηn ≤ ε/4 and that At ⊂ Nηn (Kn)⊂ Nε/4(Kn). Since
Kn is compact, it is totally bounded, and the claim follows by covering Kn by finitely many ε/4 balls and
noting that ε > 0 is arbitrary. □

Proof of Theorem 1.1. Let 5q be the set of all q-plans, and for each η ∈5q , with its disintegration being
given by π x , define

gη(x)=

∥∥∥∥( f ◦ γ )′t

|γ ′
t |

∥∥∥∥
L∞(π x )

.
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Finally, define
|Dπ f | = ess sup

η∈5∞

gπ (x).

Claim 1. There is a q-plan η̃ so that |Dπ f | = gη̃.

By Lemma A.5, we can find a sequence ηn so that

gηn → |Dπ f |

almost everywhere. Consider the measures dπn
:= |γ ′

t | dηn dt on AC(I ; X)× I. Set

an = 1 + ηn(C(I ; X))+
∥∥∥∥dη#

dµ

∥∥∥∥
Lq

+πn(AC(I ; X)× I ),

where η# is the barycenter of η, which is absolutely continuous with respect to µ. Let η̃ =
∑

∞

n=1 a−1
n 2−nηn .

This will be a plan with gη̃ ≥ gηn for each n by Lemma 3.2. For µ-almost every x , we have gη̃ ≥ |Dπ f |.
Then, by Lemma 3.3 we have ∥( f ◦ γ )′t/|γ

′
t |∥L∞(π x ) = |Dπ f |, as stated.

Claim 2. We have |Dπ f | = g f almost everywhere.

Since g f is a p-weak upper gradient, Lemma 3.2 gives |Dπ f | ≤ g f . Suppose for the sake of
contradiction then that |Dπ f |< g f on a positive measure subset. Then, by Lemma 3.2, there exists a
plan η′ so that

| f (γ1)− f (γ0)|>

∫
γ

|Dπ f | ds

for η′-almost every γ .
However, by the definition of a plan upper gradient, we have for η′ almost every curve that

| f (γ1)− f (γ0)| ≤

∫
γ

gη′ ds.

Now, as gη′ ≤ |Dπ f | almost everywhere and as η′ is a q-plan, we have for η′-almost every curve γ that∫
γ

gη′ ds ≤

∫
γ

|Dπ f | ds,

which contradicts the above inequalities.
Finally, since |Dπ f | = gη̃ = g f , we must have µ|D ≪ η̃#. Indeed, otherwise there would be a non-null

Borel set E ⊂ D for which µ(E) > 0 and η̃#(E)= 0. However, then gη̃|E = 0, contradicting the equality
µ-almost everywhere. □

We now prove Corollary 1.3.

Proof. Let f ∈ N 1,p and consider the plan η′ obtained from Theorem 1.1. Let η′′
= r∗(η

′), where
r : C(I ; X) → C(I ; X) is the reversal-map which reverses the orientation of every path. Define
η = η′′

+ η′. Fix ε > 0, and define B = {(γ, t) ∈ Diff( f ) : g f (x) ≥ ( f ◦ γ )′t/|γ
′
t | ≥ (1 − ε)g f (x)}.

Since ∥( f ◦ γ )′t/|γ
′
t |∥L∞(π ′

x )
= g f (x) for µ-almost every x ∈ D, where π ′

x is the disintegration for η′, we
have π x(B) > 0 for µ-almost every x ∈ D where π x is the disintegration corresponding to η. Note that,
we can remove the absolute values from the supremum norm since for each path γ in the support of η′

we include also its reversal, and r preserves η. □
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3C. Alternative curvewise characterizations of upper gradients when p > 1. In this subsection we
assume that p, q ∈ (1,∞) satisfy 1/p + 1/q = 1 and prove a variant Theorem 1.1 using test plans
representing gradients, introduced by Gigli.

Given f ∈ N 1,p(X), a q-test plan η represents g f if

f ◦ et − f ◦ e0

t Ẽ1/q
t

→ g f ◦ e0 and Ẽ1/p
t → g f ◦ e0 in L p(η),

where

Ẽt(γ )=
1
t

∫ t

0
|γ ′

s |
q ds, γ ∈ AC(I ; X), Ẽt(γ )= +∞ otherwise.

A test plan η representing the gradient of a Sobolev map f ∈ N 1,p(X) is concentrated on “gradient curves”
of f in an asymptotic and integrated sense. We refer to [Gigli 2015; Pasqualetto 2022] for discussion
of the definition we are using here. The following result of Gigli states that Sobolev functions always
possess test plans representing their gradient. In the statement, Pq(X) denotes probability measures ν
on X with

∫
d(x0, x)q dν(x) <∞ for some and thus any x0 ∈ X .

Theorem 3.5 [Gigli 2015, Theorem 3.14]. If f ∈ N 1,p(X) and ν ∈ Pq(X) satisfies ν ≤ Cµ for some
C > 0, there exists a q-test plan η representing g f , with e0∗η = ν.

We now state the main result of this subsection.

Theorem 3.6. Let f ∈ N 1,p(X) and g f be a Borel representative of the minimal p-weak upper gradient
of f , with D := {g f > 0} of positive µ-measure. Let η be a q-test plan representing g f with µ|D ≪

e0∗η ≪ µ|D .
For every ε > 0 there exists a Borel set B ⊂ Diff( f ) such that dπ := χB |γ ′

t | dt dη is a positive (finite)
measure with µ|D ≪ e∗π ≪ µ|D , whose disintegration {π x} with respect to e satisfies

(1−ε)g f (x)≤
( f ◦ γ )′t

|γ ′
t |

≤ g f (x) and (1−ε)g f (x)p/q
≤ |γ ′

t | ≤ (1+ε)g f (x)p/q for π x -a.e. (γ, t),

for µ-almost every x ∈ D.

For the proof, we present the following three elementary lemmas. Define

Dt(γ )=
f (γt)− f (γ0)

t
and G t(γ )=

1
t

∫ t

0
g f (γs)

p ds, γ ∈ AC(I ; X),

and +∞ otherwise. The following observation is essentially made in [Pasqualetto 2022, Lemma 1.19]
(we are using different notation for our purposes). See Lemma A.1(3) for the Borel measurability of the
functionals in the claim.

Lemma 3.7. Suppose f ∈ N 1,p(X) and suppose η is a q-test plan representing g f . Then

Dt ,G t , Ẽt → g p
f ◦ e0 in L1(η).

Proof. Since Ẽ1/p
t → g p

f ◦e0 in L p(η), it follows that Ẽt → g p
f ◦e0 in L1(η). The convergence Dt → g p

f ◦e0

is proven in [Pasqualetto 2022, Lemma 1.19], while G t → g p
f ◦ e0 in L1(η) follows from [Gigli 2015,

Proposition 2.11]. □
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Lemma 3.8. For every ε > 0 there exists δ > 0 with the following property: if a, b> 0 and a p/p+bq/q ≤

ab/(1 − δ), then |a p/q/b − 1|< ε.

Proof. The function h : (0,∞)→ (0,∞), given by h(t)= t/p + t−q/p/q , has a global minimum at t = 1,
with h(1)= 1. Thus h|(0,1] and h|[1,∞) have continuous inverses and it follows that for every ε > 0 there
exists δ > 0 such that if |1−h(t)|<δ then |1− t |<ε (expressing the fact that both inverses are continuous
at 1). The claim follows from this by noting that if a p/p + bq/q ≤ ab/(1 − δ) then 0 ≤ h(t)− 1 < δ,
where t := a p/q/b. □

Lemma 3.9. Let h ≤ g be two integrable functions on an interval I = [0, T ], with

lim inf
n→∞

1
Tn

∫ Tn

0
g ds =: A > 0 and lim

n→∞

1
Tn

∫ Tn

0
[g − h] ds = 0

for some sequence Tn → 0. Then, for every ε > 0 and n, the set {(1 − ε)g < h} ∩ [0, Tn] has positive
L1-measure.

Proof. For large enough n we have 0 < A/2 < (1/Tn)
∫ Tn

0 g ds and 0 ≤ (1/Tn)
∫ Tn

0 [g − h] ds < εA/2.
Thus, we may find some n0 for which (1/Tn)

∫ Tn
0 [g − h] ds < (ε/Tn)

∫ Tn
0 g ds for each n > n0. It follows

that
∫ Tn

0 [(1 − ε)g − h] ds < 0 for n > n0, and the claim follows from this. □

We will also need the following technical result; compare Lemma 3.7.

Lemma 3.10. Let E ⊂ X be a Borel set, t > 0, and let

DE,t(γ ) :=
1
t

∫ t

0
χE(γs)( f ◦ γ )′s ds, γ ∈ 0( f ).

Then DE,t → (χE g p
f ) ◦ e0 in L1(η).

Proof. Define

Ft(γ ) :=
1
t

∫ t

0
g f (γs)|γ

′

s | ds.

Since Dt ≤ Ft ≤ (1/p)G t + (1/q)Ẽt η-almost everywhere, Lemma 3.7 implies Ft → g p
f ◦ e0 and thus

(χE ◦ e0)Ft → (χE g p
f ) ◦ e0 in L1(η). We show that (χE ◦ e0)Ft − DE,t → 0 in L1(η).

For η-almost every γ we have

|χE(γ0)Ft(γ )− DE,t(γ )|

=

∣∣∣∣1
t

∫ t

0
[χE(γ0)g f (γs)|γ

′

s | −χE(γs)( f ◦ γ )′s] ds
∣∣∣∣

≤
1
t

∫ t

0

(
|(χE g f )(γs)− (χE g f )(γ0)||γ

′

s | +χE(γ0)|g f (γs)− g f (γ0)||γ
′

s |

+χE(γs)[g f (γs)|γ
′

s | − ( f ◦ γ )′s]
)

ds

≤

[(
1
t

∫ t

0
|(χE g f )(γs)−(χE g f )(γ0)|

p ds
)1/p

+

(
1
t

∫ t

0
|g f (γs)−g f (γ0)|

p ds
)1/p ](

1
t

∫ t

0
|γ ′

s |
q ds

)1/q

+ Ft(γ )− Dt(γ ).
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This estimate, together with the Hölder inequality and Lemma 3.7, yields

lim sup
t→0

∫
|(χE ◦ e0)Ft − DE,t | dη

≤ lim sup
t→0

[(∫
1
t

∫ t

0
|g f (γs)− g f (γ0)|

p ds dη

)1/p

+

(∫
1
t

∫ t

0
|(χE g f )(γs)− (χE g f )(γ0)|

p ds dη

)1/p ]
×

(∫
g p

f ◦ e0 dη

)1/q

= lim sup
t→0

[(
1
t

∫ t

0
∥g f ◦ es − g f ◦ e0∥

p
L p(η) ds

)1/p

+

(
1
t

∫ t

0
∥(χE g f ) ◦ es − (χE g f ) ◦ e0∥

p
L p(η) ds

)1/p ]
×

(∫
g p

f ◦ e0 dη

)1/q

.

Since s 7→ h ◦ es is continuous in L p(η) whenever h ∈ L p(µ) (see [Gigli and Pasqualetto 2020, Proposi-
tion 2.1.4]) all terms above tend to zero, proving the claimed convergence. □

Proof of Theorem 3.6. Let N be the negligible set is as in Corollary A.3. The function

A(γ, t)=
1
p

g f (γt)
p
+

1
q

|γ ′

t |
q , (γ, t) /∈ N , A(γ, t)= +∞, (γ, t) ∈ N ,

is Borel. Let η represent g f and satisfy µ|D ≪ e0∗η ≪ µ|D. Fix ε > 0, let δ > 0 be as in Lemma 3.8,
and set δ0 = min{ε, δ}. We define the Borel function

H(γ, t)= (1 − δ0)A(γ, t)− ( f ◦ γ )′t , (γ, t) /∈ N , H = +∞ otherwise;

see Corollary A.3. The set B := {H ≤ 0} is Borel and, for (γ, t) /∈ N, we have

( f ◦ γ )′t ≤ g f (γt)|γ
′

t | ≤ A(γ, t). (3-2)

Note that

H(γ, t)≤ 0 implies (1 − ε)g f (γt)|γ
′

t | ≤ ( f ◦ γ )′t and
∣∣∣∣1 −

g f (γt)
p/q

|γ ′
t |

∣∣∣∣< ε; (3-3)

see (3-2) and Lemma 3.8. Once we show that dπ := χB |γ ′
t | dt dη satisfies

µ|D ≪ e∗π ≪ µ|D,

it follows from (3-2) and (3-3) that π ′
:= π/π(C(I ; X)× I ) ∈ P(C(I ; X)× I ) satisfies

(1 − ε)g f (γt)|γ
′

t | ≤ ( f ◦ γ )′t ≤ g f (γt) and
g(γt)

p/q

1 + ε
≤ |γ ′

t | ≤
g(γt)

p/q

1 − ε

for π ′-almost every (γ, t), which readily implies the inequalities in the theorem.
To prove e∗π ≪ µ|D observe that (3-3) implies χB |γ ′

t | dt dη ≤ (1 + ε)g(γt)
p/q dt dη and thus∫∫ 1

0
χB(γ, t)χE(γt)|γ

′

t | dt dη ≤ (1 + ε)

∫ 1

0

∫
X
χE g p/q

f et∗(dη) dt ≤ C
∫

E
g p/q

f dµ

for any Borel set E ⊂ X .
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It remains to prove that µ|D ≪ e∗π . Let E ⊂ D be a Borel set with µ(E) > 0. Then e0∗η(E) =

η({γ : γ0 ∈ E}) > 0. Since

0 ≤
1
t

∫ t

0
χE(γs)A(γ, s) ds − DE,t(γ )≤

1
p

G t(γ )+
1
q

Ẽt(γ )− Dt(γ )
t→0
−−→ 0,

DE,t
t→0
−−→ χE g p

f ◦ e0

in L1(η), see Lemmas 3.7 and 3.10 respectively, there exists a sequence Tn → 0 such that for η-almost
every γ ∈ e−1

0 (E) the functions

hγ (s) := χE(γs)( f ◦ γ )′s, gγ (s) := χE(γs)A(γ, s)

satisfy the hypotheses of Lemma 3.9. It follows that for η-almost every γ ∈ e−1
0 (E) the sets

I n
γ := {s ∈ [0, Tn] : (1 − δ0)gγ (s) < hγ (s)} = {s ∈ [0, Tn] : γs ∈ E, H(γ, s)≤ 0}

have positive measure for all n. Notice that, for η-almost every γ , if s ∈ I n
γ then γs ∈ E and |γ ′

s | > 0,
g f (γs) > 0 (since 0< ( f ◦ γ )′s ≤ g f (γt)|γ

′
s |). Consequently∫ 1

0
χB(γ, s)χE(γs)|γ

′

s | ds ≥

∫
I n
γ

|γ ′

s | ds > 0

for η-almost every γ ∈ e−1
0 (E), which in turn implies e∗π(E) > 0. Since E ⊂ D is an arbitrary Borel set

with positive µ-measure, this completes the proof. □

4. Charts and differentials

4A. Notational remarks. In what follows, define for any set U ⊂ X the set of curves which spend
positive length in U :

0+

U =

{
γ ∈ AC(I ; X) :

∫
γ

χU ds > 0
}
.

Having positive length in U is more restrictive than assuming that γ−1(U ) has positive measure. We will
also discuss p-weak differentials and covector fields of the form d f : U → (RN )∗ or ξ : U → (RN )∗ for
measurable subsets U ⊂ X . The values of such a map at x ∈ U are denoted by dx f, ξ x , respectively.

4B. Canonical minimal gradients. Let p ≥ 1 and N ≥ 0 be given. For the next three lemmas we fix
ϕ ∈ N 1,p

loc (X; RN )≃ N 1,p
loc (X)

N, with the convention N 1,p
loc (X; RN )= N 1,p

loc (X)
N

= {0} when N = 0. Our
aim is to construct a “canonical” representative of the minimal weak upper gradients |D(ξ ◦ϕ)|p of the
functions ξ ◦ϕ. We will use a plan to represent it.

Lemma 4.1. There exists a q-plan η and a Borel set D with µ|D ≪ η# such that

8ξ (x) := χD(x)
∥∥∥∥ξ((ϕ ◦ γ )′t)

|γ ′
t |

∥∥∥∥
L∞(π x )

(4-1)

is a representative of |D(ξ ◦ϕ)|p for every ξ ∈ (RN )∗. Here {π x} is the disintegration of dπ := |γ ′
t | dη dt

with respect to the evaluation map e.
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Proof. Let {ξ0, ξ1, . . . } ⊂ (RN )∗ be a countable dense set and, for each n ∈ N, choose Borel represen-
tatives ρn of |D(ξn ◦ ϕ)|p and define Dn := {ρn > 0}. By Theorem 1.1 and the Borel regularity of µ,
for each n ∈ N there exists a q-plan ηn and a Borel set Bn ⊂ Dn with µ(Dn \ Bn) = 0 such that the
disintegration {πn

x} of dπn
:= |γ ′

t | dηn dt satisfies∥∥∥∥ξn((ϕ ◦ γ )′t)

|γ ′
t |

∥∥∥∥
L∞(πn

x )

= ρn(x)

for every x ∈ Bξ .
Define D :=

⋃
n∈N Bn and η =

∑
n 2−na−1

n ηn , where an = 1 + ηn(C(I ; X)) + ∥dη#
n/dµ∥Lq +

πn(AC(I ; X) × I ). Then µ|D ≪ η#. Define 8ξ (x) as in (4-1). By Lemma 3.2 we have ρn = 8ξn

µ-a.e. on X and thus the claim holds for every ξn ∈ A.
We prove the claim in the statement for arbitrary ξ ∈ (RN )∗. Let (ξnl )l ⊂ A be a sequence with

|ξnl − ξ |< 2−l and denote by ϕ1, . . . , ϕN ∈ N 1,p(X) the component functions of ϕ. Since

||D(ξnl ◦ϕ)|p − |D(ξ ◦ϕ)|p| ≤ |D((ξnl − ξ) ◦ϕ)|p ≤ |ξnl − ξ |

N∑
k

|Dϕk |p

µ-a.e., we have |D(ξ ◦ϕ)|p = liml→∞8ξnl
µ-a.e. on X . In particular, |D(ξ ◦ϕ)|p = 0 µ-a.e. on X \ D.

On the other hand, for p-a.e. curve γ , we have

|ξnl ((ϕ ◦ γ )′t)− ξ((ϕ ◦ γ )′t)| ≤ |ξnl − ξ |

N∑
k

|Dϕk |p(γt)|γ
′

t | for a.e. t.

Since η is a q-plan with µ|D ≪ η#, this implies

lim sup
l→∞

∣∣∣∣ξnl ((ϕ ◦ γ )′t)

|γ ′
t |

−
ξ((ϕ ◦ γ )′t)

|γ ′
t |

∣∣∣∣ ≤ lim sup
l→∞

|ξnl − ξ |

N∑
k

|Dϕk |p(x)= 0 for π x -a.e. (γ, t),

for µ-a.e. x ∈ D. Thus 8ξ (x)= liml→∞8ξnl
(x) for µ-a.e. x ∈ D. Since 8ξ = 0 = |D(ξ ◦ϕ)|p µ-a.e. on

X \ D, the proof is completed. □

In the next two lemmas we collect the properties of the Borel function constructed above.

Lemma 4.2. The map 8 : (RN )∗ × X → R given by (4-1) is Borel and satisfies the following:

(1) For every ξ ∈ (RN )∗, 8ξ :=8(ξ, · ) is a representative of |D(ξ ◦ϕ)|p.

(2) For every x ∈ X , 8x
:=8( · , x) is a seminorm in (RN )∗.

Moreover, there exists a path family 0B with Modp(0B)= 0 and for each γ ∈ AC(I ; X) \0B a null-set
Eγ ⊂ I so that, for every ξ ∈ (RN )∗, we have:

(3) 8ξ is an upper gradient of ξ ◦ϕ along γ .

(4) |(ξ ◦ϕ ◦ γ )′t | ≤8ξ (γt)|γ
′
t | for t /∈ Eγ .

Proof of Lemma 4.2. Borel measurability follows from Lemma A.1 and Corollary A.3, and property (1)
follows from Lemma 4.1, while (2) follows from (4-1).
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Fix a countable dense set A ⊂ (RN )∗ and one ξ ∈ A. We have that 8(ξ, x) is a weak upper gradient
for ξ ◦ ϕ, so there is family of curves 0ξ so that ξ ◦ ϕ is absolutely continuous with upper gradient
|D(ξ ◦ ϕ)|p on each γ ∈ 0i , and so that Modp(0 \ 0i ) = 0. Let 0′

=
⋂
ξ∈A 0ξ , whose complement

0B = AC(I ; X) \0′ has null p-modulus.
Since ζ ◦ ϕ has as upper gradient 8ζ (x) on γ for each ζ ∈ A, by considering a sequence ξl in A

converging to ξ ̸∈ A we obtain the same conclusion.
Finally, fixing an absolutely continuous curve γ ̸∈ 0B there is a full measure set F1

γ , where the
components of ϕ ◦ γt are differentiable at t ∈ F1

γ . Both sides of (4) are continuous and defined in ξ on
the set F1

γ . Since 8ξ (x) is an upper gradient for ξ ◦ϕ along γ , there is a full measure subset Fγ ⊂ F1
γ ,

where the inequality holds for ξ ∈ A. Continuity then extends it for all ξ ∈ (RN )∗ and t ∈ Fγ and the
claim follows by setting Eγ = I \ Fγ . □

Next, we collect some basic properties of the canonical minimal gradient. Let 8 be the map given
by (4-1).

Lemma 4.3. Set I (ϕ)(x) := inf∥ξ∥∗=18
x(ξ) for µ-a.e. x ∈ X. Then:

(1) I (ϕ)= ess inf∥ξ∥∗=1 |D(ξ ◦ϕ)|p µ-a.e. in X.

(2) If U ⊂ X and ξ : U → (RN )∗ are Borel, then8x(ξ x)= 0 µ-a.e. x ∈ U if and only if ξγt
((ϕ◦γ )′t)= 0

a.e. t ∈ γ−1(U ) for p-a.e. absolutely continuous γ in X.

(3) If ϕ is p-independent on U and f ∈ N 1,p(X), then the p-weak differential d f with respect to (U, ϕ),
if it exists, must be unique.

Proof of Lemma 4.3. First, we show (1). For any ξ in the unit sphere of (RN )∗, we have8ξ (x)=|D(ξ◦ϕ)|p

almost everywhere by Lemma 4.1. Taking an infimum on the left then gives

inf
∥ζ∥∗=1

8ζ (x)≤ |D(ξ ◦ϕ)|p,

i.e., inf∥ζ∥∗=18ζ (x) ≤ ess inf∥ξ∥∗=1 |D(ξ ◦ ϕ)|p almost everywhere by the definition of an essential
infimum; see Definition A.4.

On the other hand, if ξn , for n ∈ N, is a countably dense collection in the unit sphere of (RN )∗, then we
have8ξn (x)= |D(ξn ◦ϕ)|p ≥ ess inf∥ξ∥∗=1 |D(ξ ◦ϕ)|p almost everywhere. By intersecting the sets where
this holds for different ξn and since the collection is countable, we have that these hold simultaneously on
a full-measure set. Specifically, infn∈N8ξn (x)≥ ess inf∥ξ∥∗=1 |D(ξ ◦ϕ)|p. By Lemma 4.2, we have that
ξ →8ξ (x) is Lipschitz. Thus, almost everywhere,

inf
∥ξ∥∗=1

8(ξ, x)= inf
n∈N

8(ξn, x)≥ ess inf
∥ξ∥∗=1

|D(ξ ◦ϕ)|p,

which gives the claim.
Next fix ξ :U → (RN )∗ as in (2). Assume first that8x(ξ x)=0 forµ-a.e. x ∈U. Set C ={x :8x(ξγx

) ̸=0}

with µ(C)= 0. Since µ(C)= 0, we have Modp(0
+

C )= 0. Let 0B be the family of curves from Lemma 4.2.
We will show the claim for γ ∈ AC(I ; X)\ (0B ∪0+

C ). By Lemma 4.2(4), we obtain a null set Eγ so that
for any ξ ∈ (RN )∗ we have |(ξ ◦ ϕ ◦ γ )′t | ≤ 8ξ (γt)|γ

′
t | and t /∈ Eγ . Let Fγ be the set of t ̸∈ Eγ so that
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|γ ′
t |> 0 and 8γt (ξγt

) ̸= 0. Since 0 =
∫
γ

1C ds ≥
∫

Fγ
|γ ′

t | dt , we have that the measure of Fγ is null. Now,
if t ̸∈ Eγ ∪ Fγ , then either |γ ′

t | = 0 (and the condition is vacuously satisfied), or the claim follows from
8γt (ξγt

)= 0.
On the other hand, suppose that ξγt

((ϕ ◦γ )′t)= 0 for a.e. t ∈ γ−1(U ) and p-a.e. absolutely continuous
curve γ . Let η be the q-plan from Lemma 4.1 and {π x} the disintegration given there. The equality
ξγt
((ϕ ◦ γ )′t)= 0 holds then for η-a.e. curve and a.e. t ∈ γ−1(U ), since η is a q-plan (recall Remark 2.2).

Then for µ-a.e. x we have 8ξ (x)= 0 or we have 8ξ x (x)= ∥ξ x((ϕ ◦ γ )′t)/|γ
′
t |∥L∞(π x ). In the latter case,

since η is a q-plan, we have for µ-a.e. such x and π x -a.e. (γ, t) ∈ Diff( f )∩ e−1(x) that ξ x((ϕ ◦γ )′t)= 0.
Thus, the claim follows together with the properties of disintegrations and Corollary A.3, since the
essential supremum then vanishes.

The final claim about uniqueness follows since, if di f were two p-weak differentials for i = 1, 2,
then we could define ξ x = (d1 f − d2 f )/∥d1 f − d2∥x,∗ when d1 f ̸= d2 f and otherwise ξ x = 0. We then
get immediately from the definition and the second part that 8x(ξ) = 0 for µ-a.e. x ∈ U. This would
contradict independence. □

4C. Charts. The presentation here should be compared to [Cheeger 1999, Section 4], and specifically to
the proof of Theorem 4.38 there, where similar arguments are employed. We first consider 0-dimensional
p-weak charts. These correspond to regions of the space where no curve spends positive time.

Proposition 4.4. Suppose (U, ϕ) is a 0-dimensional p-weak chart. Then

Modp(0
+

U )= 0. (4-2)

Conversely, if U ⊂ X is Borel and satisfies (4-2), then (U, 0) is a 0-dimensional p-weak chart of X.

Proof. Since (U, ϕ) is a 0-dimensional p-weak chart, we have

|D f |p = 0 for µ-a.e. in U, (4-3)

for every f ∈ LIPb(X). Let {xn} ⊂ X be a countable dense subset, and fn := max{1 − d(xn, · ), 0}. By
[Ambrosio et al. 2008, Theorem 1.1.2] (see also its proof) and (4-3) we have

|γ ′

t | = sup
n

|( fn ◦ γ )′t | ≤ sup
n

|D fn|p(γt)|γ
′

t | = 0 for a.e. t ∈ γ−1(U ),

for p-a.e. γ ∈ AC(I ; X). It follows that
∫
γ
χU ds = 0 for p-a.e. γ ∈ AC(I ; X), proving (4-2).

In the converse direction, (4-2) implies, for any f ∈ LIPb(X), that∫ 1

0
χU (γt)|( f ◦ γ )′t | dt ≤ LIP( f )

∫ 1

0
χU (γt)|γ

′

t | dt = 0

for p-a.e. γ ∈ AC(I ; X). Thus |( f ◦ γ )′t | = 0 for p-a.e. γ ∈ AC(I ; X) and a.e. t ∈ γ−1(U ). Then, by
Theorem 1.1, together with measurability considerations from Corollary A.3, this gives |D f |p = 0 µ-a.e.
on U for every f ∈ LIPb(X), showing that (U, 0) is a 0-dimensional p-weak chart. □

For the remainder of this subsection we assume that N ≥ 1 and that (U, ϕ) is an N -dimensional chart
of X . Denote by 8 the canonical minimal gradient of ϕ (see Lemma 4.1).
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Lemma 4.5. The function ξ 7→ 8x(ξ) is a norm on (RN )∗ for µ-a.e. x ∈ U. Moreover, for every
f ∈ LIP(X) there exists a p-weak differential d f . That is, a Borel measurable map d f : U → (RN )∗

satisfying
( f ◦ γ )′t = dγt f ((ϕ ◦ γ )′t) for a.e. t ∈ γ−1(U ),

for p-a.e. absolutely continuous curves γ in X. The map d f is uniquely determined a.e. in U and satisfies
|D f |p(x)=8x(d f ) µ-a.e. in U.

Remark 4.6. The equation in the statement is an equivalent formulation of the definition of the p-weak
differential in Definition 1.6. Indeed, the latter follows by integration of the first, and conversely, the first
follows by Lebesgue differentiation. Further, it would be enough to consider only p-a.e. curve γ ∈ 0+

U .
Indeed, if a curve γ does not spend positive length in the set U, then |γ ′

t | = 0 for a.e. t ∈ γ−1(U ) and
both sides of the equation vanish.

Proof. First, consider f ∈ LIPb(X). Since 8x is a norm if and only if I (ϕ)(x) > 0, Lemma 4.3(1) and
(1-5) imply that 8x is a norm for µ-a.e. x ∈ U.

Next, let f ∈ LIPb(X) and consider the map ψ = (ϕ, f ) : X → RN+1. Let 9 be the canonical minimal
gradient of ψ . Given ξ ∈ (RN )∗ and a ∈ R, we use the notation

(ξ, a) ∈ (RN+1)∗, v = (v′, vN+1) 7→ ξ(v′)+ avN+1.

For µ-a.e. x ∈ U, we have 9x(ξ, 0)=8x(ξ) and 9x(0, a)= |a||D f |p(x) for every ξ ∈ (RN )∗, a ∈ R

(see Lemma 4.2(3) and (4)). Since ϕ is a chart, we have I (ψ)= 0 almost everywhere. Thus, given that
I (ϕ) > 0, ker9x is a 1-dimensional subspace of (RN+1)∗. Thus for µ-a.e. x ∈ U there exists a unique
ξ := dx f ∈ (RN )∗ such that 9x(dx f,−1)= 0, and the map x 7→ dx f is Borel; see, e.g., [Bogachev 2007,
Lemma 6.7.1]. By Lemma 4.3(2), d f : U → (RN )∗ satisfies

0 = (dγt f,−1)((ψ ◦ γ )′t)= dγt f ((ϕ ◦ γ )′t)− ( f ◦ γ )′t for a.e. t ∈ γ−1(U ),

for p-a.e. γ . Moreover, we have

||D f |p(x)−8x(dx f )| ≤ |9x(0,−1)−9x(dx f, 0)| ≤9x(dx f,−1)= 0

for µ-a.e. x ∈ U, completing the proof in the case f ∈ LIPb(X).
The case of f ∈ LIP(X) follows through localization. Indeed, let x0 ∈ X be arbitrary, and consider the

functions ηn(x) := min{max{n −d(x0, d), 0}, 1} for n ∈ N. Then, define fn = ηn f so that fn|B(x0,n−1) =

f |B(x0,n−1). For each fn we can define a differential d fn , and d fn|B(x0,min(m,n)−1) = d fm |B(x0,min(m,n)−1)

(a.e.) for each n,m ∈ N. Thus, we can define d f (x)= d fn(x) for x ∈ B(x0, n−1) with only an ambiguity
on a null set. It is easy to check that d f is a differential. □

4D. Differential and pointwise norm. Let | · |x :=8x and define

0p(T ∗U )= {ξ : U → (RN )∗ Borel : ∥ξ∥0p(T ∗U ) <∞}, ∥ξ∥0p(T ∗U ) :=

(∫
U

|ξ |
p
x dµ

)1/p

(with the usual identification of elements that agree µ-a.e.). Then (0p(T ∗U ), ∥ · ∥0p(T ∗U )) is a normed
space. Observe that, if Vj := U ∩ {I (ϕ)≥ 1/j}, the sets Uj := Vj \

⋃
i< j Vi partition U up to a null-set
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and we have an isometric identification

0p(T ∗U )≃

⊕
l p

0p(T ∗Uj ), where 0p(T ∗Uj )≃ L p(Uj ; (R
N )∗). (4-4)

Thus (0p(T ∗U ), ∥ · ∥0p(T ∗U )) is a Banach space. Recall, that an ℓp-direct sum of Banach spaces Bi with
norms ∥ · ∥Bi with countable index set I is defined by⊕

ℓp

Bi := {(vi )i∈I : ∥(vi )i∈I ∥ = (∥vi∥
p
Bi
)1/p, vi ∈ Bi }.

Lemma 4.7. Suppose ( fn)⊂LIPb(X) is a sequence such that fn → f in L p(X) and d fn → ξ in 0p(T ∗U )
for some f ∈ N 1,p(X) and ξ ∈ 0p(T ∗U ). Then ξ is the (uniquely defined) differential of f in U, and

lim
n→∞

∫
U

|D( fn − f )|p
p dµ= 0.

In particular, 8(ξ , · )= |D f |p µ-a.e. in U.

Proof. By Lemma 4.5 and Fuglede’s theorem [1957, Theorem 3(f)] (applied to the sequence of functions
hn = χU (γt)|dγt fn − ξγt

|γt and fn) we can pass to a subsequence so that

lim
n→∞

∫ 1

0
χU (γt)|( fn ◦ γ )′t − ξγt

((ϕ ◦ γ )′t)| dt ≤ lim
n→∞

∫ 1

0
χU (γt)| dγt fn − ξγt

|γt |γ
′

t | dt = 0,

lim
n→∞

∫ 1

0
| fn(γt)− f (γt)||γ

′

t | dt = 0
(4-5)

for p-a.e. γ ∈ AC(I ; X). Fix a curve γ where (4-5) holds and fn ◦ γ , f ◦ γ are absolutely continuous.
We may assume that γ is constant-speed parametrized. By (4-5), fn ◦ γ → f ◦ γ in L1([0, 1]) and
( fn ◦ γ )′ → g in L1(γ−1(U )), where g(t) := χU (γt)ξγt

((ϕ ◦ γ )′t). It follows that

( f ◦ γ )′t = ξγt
((ϕ ◦ γ )′t) a.e. t ∈ γ−1(U ).

This shows that ξ is the differential of f , and uniqueness follows from Lemma 4.3(3). The identity
(( f − fn) ◦ γ )′t = (ξγt

− d fn)((ϕ ◦ γ )′t) for a.e. t ∈ γ−1(U ), for p-a.e. γ ∈ AC(I ; X), together with
Lemma 3.2(3), implies 8x(ξ −d fn)≤ |D( f − fn)|p for µ-a.e. x ∈ U. By the convergence d( fm − fn)→

ξ − d fn (as m → ∞) we have |D( fm − fn)|p →m→∞ 8x(ξ − d fn) in L p(U ), and thus |D( f − fn)|p ≤

8x(ξ − d fn) µ-a.e. in U. Thus |D( f − fn)|p =8x(ξ − d fn) converges to zero in L p(U ). The equality
8ξ = |D f |p follows, completing the proof. □

We say that a sequence (ξ n)n ⊂ 0p(T ∗U ) is equi-integrable if the sequence {|ξ n|x}n ⊂ L p(U ) is
equi-integrable. Recall, that a collection of integrable functions F is called equi-integrable, if there is a M
so that

∫
X | f |

p dµ≤ M for every f ∈ F and if for every ε > 0, there is an δ > 0 and a positive measure
subset �ε, so that for any measurable set E with µ(E)≤ δ, we have

∫
�c
ε∪E | f |

p dµ≤ ε for each f ∈ F .
By the Dunford–Pettis theorem a set of L1 functions is equi-integrable if and only if it is sequentially
compact; see for example [Dunford and Schwartz 1958, Theorem IV.8.9].

Remark 4.8. It follows from (4-4) that, if (ξ n)n ⊂ 0p(T ∗U ) is equi-integrable, then there exists ξ ∈

0p(T ∗U ) such that ξ n ⇀ ξ weakly in 0p(T ∗U ) up to a subsequence and, by Mazur’s lemma, that a
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convex combination of ξ n’s converges to ξ in 0p(T ∗U ). Indeed, the p > 1 case is direct and the p = 1
case uses the Dunford–Pettis argument above.

Next, we show that any Sobolev function f ∈ N 1,p has a uniquely defined differential with respect to
a chart. Note, however, that here we still postulate the existence of charts.

Proof of Theorem 1.7. The measurable norm | · |x is given by Lemma 4.5. Let f ∈ N 1,p(X). Lemma 4.3(3)
implies that d f , if it exists, is a.e. uniquely determined on U. Let ( fn)⊂ LIPb(X) be such that fn → f
and |D fn|p → |D f |p in L p(µ) as n → ∞, which exists by [Eriksson-Bique 2023, Theorem 1.1]. By
Lemma 4.5, (d fn)n ⊂ 0p(T ∗U ) is equi-integrable. It follows that there exists ξ ∈ 0p(T ∗U ) such that
d fn ⇀ ξ weakly in L p(T ∗U ); see Remark 4.8. By Mazur’s lemma, a sequence (gn) ⊂ LIPb(X) of
convex combinations of the fn’s converges to f in L p(µ) and dgn → ξ in 0p(T ∗U ). By Lemma 4.7,
ξ =: d f is the differential of f . The linearity of f 7→ d f follows from the uniqueness of differentials;
see Lemma 4.3(3). □

The proof above also yields the following corollary. Note that, while the claim initially holds only
after passing to a subsequence, since the limit is unique, the convergence holds along the full sequence.

Corollary 4.9. Let (U, ϕ) be a p-weak chart of X. Suppose that f ∈ N 1,p(X) and ( fn) ⊂ LIPb(X)
converges to f in energy, that is, fn →L p f and |D fn|p →L p |D f |p. Then we have that d fn ⇀ d f weakly
in 0p(T ∗U ).

Using Lemma 4.3 we prove that the differential satisfies natural rules of calculation. The following
properties are stated for f, g ∈ N 1,p(X), but they would equivalently hold if we assumed only we have
the local assumption f, g ∈ N 1,p

loc (X).
For the following, recall that if A ⊂ R is a measurable set, then t is a density point of A if

lim
h→0

|A ∩ [t − h, t + h]|

2h
= 1.

Here | · | denotes the Lebesgue measure of the set.

Proposition 4.10. Let (U, ϕ) be an N-dimensional p-weak chart of X , f, g ∈ N 1,p(X), and F : X → Y
be a Lipschitz map into a metric measure space (Y, d, ν) with F∗µ≤ Cν for some C > 0:

(1) If (V, ψ) is a p-weak chart with ϕ|U∩V = ψ |U∩V then the p-weak differentials of f with respect to
both charts agree µ-a.e. on U ∩ V.

(2) If f |A = g|A for some A, then d f = dg µ-a.e. on A ∩ U.

(3) If f, g ∈ L∞(X)∩ N 1,p(X), then d( f g)= f dg + gd f µ-a.e. on U.

(4) If h ∈ C1(R) and if h ◦ f ∈ N 1,p(X), then d(h ◦ f )= h′( f (x)) d f (x) holds µ-a.e. on U.

(5) Let (V, ψ) be an M-dimensional p-weak chart of Y withµ(U∩F−1(V ))>0. Forµ-a.e. U∩F−1(V )
there exists a unique linear map Dx F : RN

→ RM satisfying the following: if h ∈ N 1,p(Y ) and E is
the set of y ∈ V where the differential dyh does not exist, then µ(U ∩ F−1(E))= 0 and

dx(h ◦ F)= dF(x)h ◦ Dx F for µ-a.e. x ∈ U ∩ F−1(V \ E).
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Proof. Claim (1) follows from Lemma 4.3(2) and the fact that (ϕ ◦γ )′t = (ψ ◦γ )′t for a.e. t ∈ γ−1(U ∩ V ),
for p-a.e. γ ∈ AC(I ; X). Indeed, for p-a.e. curve and a.e. t ∈ γ−1(U ∩ V ) both derivatives agree since a
generic such t will satisfy either |γ ′

t | = 0 or that t is a density point of γ−1(U ∩ V ). In both cases the
equality follows.

Claim (2) is similar. Define d′ f = d f if x ∈ U \ A (when defined) and d′ f = dg for x ∈ A. Now,
suppose for p-almost every absolutely continuous γ we have ( f ◦ γ )′t = d fγt (ϕ ◦ γ )′t for a.e. t ∈ γ−1(U )
and (g◦γ )′t = dgγt (ϕ◦γ )′t . We will verify for almost every t ∈ γ−1(U ) that ( f ◦γ )′t = d′ fγt (ϕ◦γ )′t so that
d′ f is a differential. Then, by uniqueness it agrees with d f . Now, almost every t ∈ γ−1(U ) will satisfy
that ( f ◦γ )′t and (g◦γ )′t exist and one (or more) of the following: |γ ′

t | = 0, t is a density point of γ−1(A),
or t is a density point of γ−1(U \ A). In the first and last cases the equality ( f ◦ γ )′t = d′ fγt (ϕ ◦ γ )′t is
obvious. In the second case ( f ◦ γ )′t = (g ◦ γ )′t because t is a density point.

To prove (3) note that, since we have ( f g◦γ )′t = g(γt)( f ◦γ )′t + f (γt)(g◦γ )′t for a.e. t for p-a.e. curve
γ ∈ AC(I ; X), it follows from (1-6) that

dγt ( f g)((ϕ ◦ γ )′t)= g(γt) d fγt ((ϕ ◦ γ )′t)+ f (γt) dgγt ((ϕ ◦ γ )′t) for a.e. t ∈ γ−1(U ),

for p-a.e. γ ∈ AC(I ; X). By Lemma 4.3(2) and (3) the claimed equality holds.
The argument is similar to before. Indeed, for p-a.e. absolutely continuous γ we have that f ◦ γ is

absolutely continuous and ( f ◦ γ )′t = d fγt (ϕ ◦ γ )′t . Then h ◦ f ◦ γ is differentiable whenever f ◦ γ is,
with derivative (h ◦ f ◦ γ )′t = h′( f (γt))( f ◦ γ )′t . Therefore, h′( f (x))d fx is a p-weak differential, and by
uniqueness it is the p-weak differential.

Finally, for (5), let G = (G1, . . . ,G M) = ψ ◦ F ∈ LIP(X; RM) and define the expression Dx F :=

(dx G1, . . . , dx G M) : RN
→ RM for µ-a.e. x ∈ U ∩ F−1(V ). We have that

(ψ ◦ F ◦ γ )′t = Dγt F((ϕ ◦ γ )′t) for a.e. t ∈ γ−1(U ),

for p-a.e. γ ∈ AC(I ; X). Note that if h and E are as in the claim, then µ(U ∩ F−1(E)) ≤ Cν(E) = 0.
To show the claimed identity, let 00 ⊂ C(I ; Y ) be a path family with Modp 00 = 0 such that

(h ◦α)′t = dαt h((ψ ◦α)′t) for a.e. t ∈ α−1(V ),

for every absolutely continuous α /∈ 00, and set 01 = F−100 := {γ ∈ C(I ; X) : F ◦ γ ∈ 00}. Since
Modp 01 ≤ C LIP(F)p Modp(00)= 0 it follows from the two identities above that

(h ◦ F ◦ γ )′t = dF(γt )h((ψ ◦ F ◦ γ )′t)= dF(γt )h(Dγt ((ϕ ◦ γ )′t)) for a.e. t ∈ γ−1(U ∩ F−1(V )),

for p-a.e. γ ∈ AC(I ; X). Lemma 4.3(2) and (3) imply the claim. □

4E. Dimension bound. In this section we give a geometric condition which guarantees that finite
dimensional weak p-charts exist. This involves a bound on the size of p-independent Lipschitz maps.

As a technical tool we need the notion of a decomposability bundle V (ν) of a Radon measure ν on Rm ;
see [Alberti and Marchese 2016]. We will not fully define this here, as we only need some of its properties.
Firstly, let Gr(m) be the set of linear subspaces of Rm equipped with a metric d(V, V ′) defined as the
Hausdorff distance of V ∩ B(0, 1) to V ′

∩ B(0, 1). The linear dimension of a subspace V is denoted
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by dim(V ). The decomposability bundle is then a certain Borel measurable map Rm
→ Gr(m), which

associates to every x ∈ Rm a subspace V (ν)x ∈ Gr(m). In a sense, this bundle measures the directions
in which a Lipschitz function must be differentiable in (at almost every point). We collect the main
properties we need for this bundle and briefly cite where the proofs of these claims can be found.

Theorem 4.11. Suppose that ν is a Radon measure on Rm. Then there exists a decomposability bundle
V (ν) with the following properties:

(1) If dim(V (ν)x)= m for ν-a.e. x ∈ Rm, then ν ≪ λ.

(2) There is a Lipschitz function f : Rm
→ R so that for ν-a.e. x ∈ Rm we have that the directional

derivative of f does not exist in the direction v for any v ̸∈ V (ν)x .

(3) If ν ′
≪ ν, then V (ν ′)x = V (ν)x for ν ′-a.e. x ∈ Rm.

Proof. The first follows from [De Philippis and Rindler 2016, Theorem 1.14] when combined with
[Alberti and Marchese 2016, Theorem 1.1(i)]. The second claim follows from [loc. cit., Theorem 1.1(ii)].
Note that the second claim is vacuous for those points x ∈ Rm where the decomposability bundle has
dimension m. The third claim is [loc. cit., Proposition 2.9(i)]. □

The following lemma gives a modulus perspective to the decomposability bundle.

Lemma 4.12. Assume N ≥ 1, ϕ : X → RN is Lipschitz, U ⊂ X is a Borel set of bounded measure and
ν = ϕ∗(µ|U ). Then, for p-a.e. curve γ and almost every t ∈ γ−1(U ) we have that (ϕ ◦ γ )′t exists and
(ϕ ◦ γ )′t ∈ V (ν)ϕ(γt ).

Proof. By part (ii) of Theorem 4.11, there is a Lipschitz function f : RN
→ R, so that for ν-almost every

x ∈ RN and any v ̸∈ V (ν)x we have that the directional derivative Dv( f )= limh→0( f (x +hv)− f (x))/h
does not exist. Let A ⊂ RN be a full ν-measure Borel set so that this claim holds.

Let B = ϕ−1(RN
\ A)∩ U, which is µ-null. The family 0+

B has null p-modulus. We will show that
the claim holds for p-a.e. γ ∈ AC(I ; X) \0+

B . The derivatives (ϕ ◦ γ )′t and ( f ◦ϕ ◦ γ )′t exist for almost
every t ∈ γ−1(U ). Also, for a.e. t ∈ I we can either take |γ ′

t | = 0 or γt ̸∈ B and so (ϕ ◦ γ )t ̸∈ A, since
γ ̸∈ 0+

B . If |γ ′
t | = 0, then (ϕ ◦ γ )′t = 0 ∈ V (ν)ϕ(γt ). In the other case, when γt ̸∈ B, the function f does

not have a directional derivative for v ̸∈ V (ν)(ϕ◦γ )t . The only way for both (ϕ ◦ γ )′t and ( f ◦ϕ ◦ γ )′t to
exist then is if (ϕ ◦ γ )′t ∈ V (ν)ϕ(γt ), which gives the claim. □

The following should be compared to [Cheeger 1999, Lemma 4.37].

Proposition 4.13. Suppose ϕ ∈ LIP(X; RN ) is p-independent on U. Then N ≤ dimH U.

Proof. By restriction to a subset of the form U ∩ B(x0, R) for x0 ∈ X , R > 0, of positive measure, it
suffices to assume that U has finite measure. The claim is automatic, if dimH U = ∞. Thus, assume that
the Hausdorff dimension is finite. Set ν = ϕ∗(µ|U ) and let V (ν) be the decomposability bundle of ν. If
V (ν)x has dimension N for almost every x with respect to ν, then ν ≪ λ by Theorem 4.11(1) and thus
HN (ϕ(U )) > 0, since ν is concentrated on ϕ(U ). Then N ≤ dimH (ϕ(U ))≤ dimH (U ).

Suppose then to the contrary, that there exists a subset A ⊂ U with positive ν-measure where V (ν)x has
dimension less than dimH (U ) for each x ∈ A. We can take A to be Borel. Considerµ′

=µ|ϕ−1(A), which has
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push-forward ν ′
= ν|A =ϕ∗(µ

′). By the third part in Theorem 4.11 we have that V (ν ′)x = V (ν)x for ν ′-a.e.
x ∈ A. Further ϕ−1(A)⊂ U, so ϕ is still p-independent on ϕ−1(A)= U ′. Now, by considering U ′ instead
of U and ν ′ instead of ν, we have that V (ν ′)ϕ(x) has dimension less than N for ν ′-almost every x ∈U. In the
following, we simplify notation by dropping the primes, and restricting to the positive measure subset U ′ so
constructed. For ν-almost every x ∈ U, we have that V (ν)ϕ(x) is a strict subspace of RN, and thus there are
vectors perpendicular to these. Since x → V (ν)ϕ(x) is Borel, we can choose a Borel map x → ξ x ∈ (RN )∗

so that ξ x is a unit vector that vanishes on V (ν)ϕ(x) for µ-a.e. x ∈ U (see, e.g., [Bogachev 2007,
Theorem 6.9.1], which is an instance of a Borel selection theorem). Let Ũ ⊂ U be the full measure subset
where these properties hold for every x ∈ Ũ. Now, by Lemma 4.12 we have for p-a.e. curve γ that (ϕ◦γ )′t ∈

V (ν)ϕ(γt ) for almost every t ∈ γ−1(U ). The set U \ Ũ has null measure, and thus 0+

U\Ũ
has null modulus.

Thus, for p-a.e. curve γ ∈ AC(I ; X) and a.e. t ∈ γ−1(U ) we can further assume γt ∈ U or |γ ′
t | = 0.

Therefore, ξγt
((ϕ◦γ )′t)= 0 for almost every t ∈ γ−1(U ) and such curves γ . By part (2) of Lemma 4.3, we

have that I (ϕ)≤8x(ξ x)= 0 for µ-a.e. x ∈ U. This contradicts p-independence and proves the claim. □

4F. Sobolev charts. By definition, a p-weak chart is a Lipschitz map which has target of maximal
dimension with respect to Lipschitz maps. The notions of p-independence and maximality, however,
are well-defined for any Sobolev map, and in fact p-weak charts could be required to have Sobolev
(instead of Lipschitz) regularity. Despite the apparent difference of the alternative definition, the existence
of maximal p-independent Sobolev maps also guarantees the existence of p-weak chart of the same
dimension. This follows from the energy density of Lipschitz functions, see [Eriksson-Bique 2023],
together with results of the previous subsection.

Proposition 4.14. Suppose p ≥ 1, and ϕ ∈ N 1,p(X; RN ) is p-independent and p-maximal in a bounded
Borel set U ⊂ X. For any ε > 0 there exists V ⊂ U with µ(U \ V ) < ε, and a Lipschitz function
ψ : X → RN such that (V, ψ) is an N-dimensional p-weak chart.

Proof. For any V ⊂ U with µ(V ) > 0, let nV be the supremum of numbers n so that there exists
ψ ∈ LIPb(X; Rn) which is p-independent on a positive measure subset of V. By the maximality of N we
have that nV ≤ N. Thus nV is attained for every such V and, by [Keith 2004a, Proposition 3.1], there
is a partition of U up to a null-set by p-weak charts Vi , i ∈ N, of dimension ≤ N. By [Eriksson-Bique
2023, Theorem 1.1], Corollary 4.9 (with a diagonal argument) and Mazur’s lemma we have that, for
each component ϕk ∈ N 1,p(X) of ϕ, there exists a sequence (ψn

k )⊂ LIPb(X) with |D(ϕk −ψn
k )|p → 0

in L p(Vi ). Thus, |D(ϕk −ψn
k )|p → 0 in L p(U ). Here, we use that |D(ϕk −ψn

k )|p ≤ |Dϕk |p + |Dψn
k |p

and the L p-convergence of the right-hand side from [Eriksson-Bique 2023].
If 8 and 9n denote the canonical minimal gradients associated to ϕ and ψn

:= (ψn
1 , . . . , ψ

n
N ), we have

sup
∥ξ∥∗=1

|8(ξ, · )−9n(ξ, · )| ≤ ess sup
∥ξ∥∗=1

|D(ξ ◦ (ϕ−ψn))|p ≤

N∑
k=1

|D(ϕk −ψn
k )|p µ-a.e. in U.

It follows that
lim

n→∞
µ(U \ {I (ψn) > 0})= 0,

completing the proof, since ψn is p-independent and maximal on the set {I (ψn) > 0}. □
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Another condition in this context is strong maximality: a map ϕ ∈ N 1,p(X; RN ) is strongly maximal
in U ⊂ X if no positive measure subset V ⊂ U admits a p-independent Sobolev map into a higher-
dimensional Euclidean space. This condition excludes not only Lipschitz, but also Sobolev functions
into higher-dimensional targets, and is thus a priori stronger than maximality. However, it follows from
Proposition 4.14 that a maximal p-independent Sobolev map is also strongly maximal. Conversely, if one
has a Lipschitz chart, then the Lipschitz chart is also strongly maximal.

4G. p-weak charts in Poincaré spaces. Recall that a metric measure space X = (X, d, µ) is said
to be a p-PI space if µ is doubling, and X supports a weak (1, p)-Poincaré inequality: there exist
constants C, σ > 0 so that, for any f ∈ L1(X) with upper gradient g, we have

−

∫
B

| f − fB | dµ≤ Cr
(

−

∫
σ B

g p dµ
)1/p

for all balls B ⊂ X of radius r . Here hB =−

∫
B h dµ= (1/µ(B))

∫
B h dµ for a ball B ⊂ X and h ∈ L1(B). The

celebrated result from [Cheeger 1999] states that a PI-space admits a Lipschitz differentiable structure. We
will return to this structure in Section 6B, but here recall the constructions from [Cheeger 1999, Section 4].
Cheeger’s paper does not employ the following terminology, but it simplifies and clarifies our presentation.

Given a Lipschitz map ϕ : X → RN and a positive measure subset U ⊂ X the pair (U, ϕ) is called a
Cheeger chart if for every Lipschitz map f : X →R and a.e. x ∈U there is a unique element dC,x f ∈ (RN )∗

satisfying

Lip(dC,x f ◦ϕ− f )(x)= 0. (4-6)

This equality is equivalent to (1-4).

Proof of Theorem 1.8. Let (U, ϕ) be a p-weak chart of dimension N and let f ∈ LIP(X). Denote by 8
the canonical minimal gradient of (ϕ, f ) : X → RN+1; see Lemma 4.1. Since X is a p-PI space, it follows
that Lip h = |Dh|p µ-a.e. for any h ∈ LIP(X); see [Cheeger 1999, Theorem 6.1]. (In fact, the slightly
easier comparability from Lemma 4.35 of that work suffices for the following.) Then, for any ξ ∈ (RN )∗

and for µ-a.e. x ∈ U, we have

Lip(ξ ◦ϕ− f )(x)=8x(ξ,−1), ξ ∈ (RN )∗.

Arguing using in the proof of Lemmas 4.1 and 4.5 we obtain this equality, simultaneously, for a.e. x ∈ U
and for any ξ ∈ A for a dense subset of A ⊂ (RN )∗. From this, and the continuity of both sides in ξ , we
obtain that for µ-a.e. x ∈ U, the equality holds simultaneously for all ξ ∈ (RN )∗.

Since the p-weak differential d f is characterized by the property 8x(d f,−1)= 0 for µ-a.e. x ∈ U,
it follows that, for µ-a.e. x ∈ U, dx f ∈ (RN )∗ satisfies (4-6). Thus (U, ϕ) is a Cheeger chart. The
uniqueness follows from the equality in a similar way. □

Remark 4.15. The proof of Theorem 1.8 also yields the claim under the weaker assumption Lip f ≤

ω(|D f |p) for some collection of moduli of continuity ω (compare Theorem 1.10) since the equality
Lip f = |D f |p follows from this by [Ikonen et al. 2022, Theorem 1.1].
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5. The p-weak differentiable structure

5A. The p-weak cotangent bundle. A measurable L∞-bundle T over X consists of a collection
({Ui , Vi,x})i∈I together with a collection ({φi, j,x}) of transformations with a countable index set I, where:

(1) Ui ⊂ X are Borel sets for each i ∈ I, and cover X up to a µ-null set.

(2) For any i ∈ I and µ-a.e. x ∈ Ui , Vi,x = (Vi , | · |i,x) is a finite-dimensional normed space so that
x 7→ |v|i,x is Borel for any v ∈ Vi .

(3) For any i, j ∈ I and µ-a.e. x ∈Ui ∩Uj , φi, j,x : Vi,x → Vj,x is an isometric bijective linear map satisfy-
ing the cocycle condition: for any i, j, k ∈ I and µ-a.e. x ∈Ui ∩Uj ∩Uk , we have φj,k,x ◦φi, j,x =φi,k,x .

For each i ∈ I and µ-a.e. x ∈ Ui , we denote by Tx the equivalence class of the normed vector space Vi,x

under identification by isometric isomorphisms. By (3), Tx is well-defined for µ-a.e. x ∈ X .
We now show that a p-weak differentiable structure A on X gives rise to a measurable bundle.

Proposition 5.1. Let p ≥ 1, and let {(Ui , ϕi )} be an atlas of p-weak charts on X. The collection
{(Ui , (R

Ni )∗, | · |i,x)} forms a measurable bundle over X , the transformations given by the collection
{D8i, j,x} constructed in Lemma 5.2.

First, we construct the transformation maps.

Lemma 5.2. Let (Ui , ϕ
i ) be Ni -dimensional p-weak charts on X , with corresponding differentials di

and norms | · |i,x for i = 1, 2. If µ(U1 ∩ U2) > 0, then N1 = N2 := N and, for µ-a.e. x ∈ U1 ∩ U2, there
exists a unique bijective isometric isomorphism D81,2,x : ((RN )∗, | · |1,x) → ((RN )∗, | · |2,x) such that
d1 f = d2 f ◦ D81,2,x . Further D81,2,x satisfies the measurability constraint (2).

In the proof, we denote by ϕi
1, . . . , ϕ

i
Ni

the components of ϕi.

Proof. For µ-a.e. x ∈ U1 ∩ U2, define

Dx = D = (d1ϕ1
1, . . . , d2ϕ1

N1
) : RN2 → RN1 .

D is a linear map satisfying, for all ξ ∈ (RN1)∗,

ξ ◦ D((ϕ2
◦ γ )′t)= ξ((ϕ1

◦ γ )′t) for a.e. t ∈ γ−1(U1 ∩ U2), (5-1)

for p-a.e. γ ∈ 0+

U1∩U2
. Note that, by the uniqueness of differentials, D is the unique linear map satisfying

(5-1) for p-a.e. curve. By Lemma 4.3(2) it follows that

|ξ ◦ D|2,x = |ξ |1,x , ξ ∈ (RN1)∗,

for µ-a.e. x ∈ U1 ∩U2. Thus D∗ is an isometric embedding and in particular N1 ≤ N2. Reversing the roles
of ϕ1 and ϕ2 we obtain that N1 = N2 and consequently D81,2,x := D∗

x : ((RN1)∗, | · |1,x)→ ((RN2)∗, | · |2,x)

is an isometric isomorphism for µ-a.e. x ∈ Ui ∩ Uj .
For any f ∈ N 1,p(X), the identity d1

x f = d2
x f ◦ D81,2,x for µ-a.e. x ∈ U1 ∩ U2 follows from (5-1)

and (1-6). □
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Proof of Proposition 5.1. Conditions (1) and (2) are satisfied by Lemma 4.2. The cocycle condition
follows from Lemma 5.2. □

Definition 5.3. We call the measurable bundle given by Proposition 5.1 the p-weak cotangent bundle
and denote it by T ∗

p X . We define T ∗
p,x X = ((RN )∗, | · |x) and Tp,x X = (RN , | · |∗,x) for almost every

x ∈ U, where (U, ϕ) is an N -dimensional p-weak chart and | · |x the norm given by the canonical minimal
gradient 8; see Lemmas 4.1 and 4.5. The spaces Tp,x are here defined pointwise almost everywhere. By
considering the adjoints of transition maps in the definition above, one can patch these together to form a
measurable L∞ tangent bundle, which is dual to T ∗

p X , whose fibers are Tp,x X .

The next proposition establishes the existence of a p-weak differentiable structure under a mild finite
dimensionality condition.

Proposition 5.4. Suppose X is a metric measure space and {X i }i∈N a covering of X with dimH X i <∞.
Then, for any p ≥ 1, X admits a p-weak differentiable structure. Moreover, N ≤ dimH X i whenever
(U, ϕ) is an N-dimensional p-weak chart with µ(U ∩ X i ) > 0.

Proof. For any Borel set U ⊂ X with µ(U ) > 0 there exists i ∈ N such that µ(U ∩ X i ) > 0. By
Proposition 4.13 we have that N ≤ dimH (U ∩ X i ) whenever ϕ ∈ LIPb(X; RN ) is p-independent in a
positive measure subset of U ∩ X i . Using [Keith 2004b, Proposition 3.1] we can cover X up to a null-set
by Borel sets Uk for which there exist ϕk ∈ LIPb(X; RNk ) that are p-independent and p-maximal on Uk .
The collection {(Uk, ϕk)}k∈N is a p-weak differentiable structure on X . The last claim follows by the
argument above. □

5B. Sections of measurable bundles. A measurable bundle T over X comes with a projection map
π : T → X , (x, v) 7→ x , and a section of T is a collection ω = {ωi : Ui → Vi } of Borel measurable
maps satisfying π ◦ωi = idUi µ-a.e. and φi, j,x(ωi )= ωj for each i, j ∈ I and almost every x ∈ Ui ∩ Uj .
Observe that the map x 7→ |ω(x)|x given by

|ω(x)|x := |ωi (x)|i,x for µ-a.e. x ∈ Ui (5-2)

is well-defined up to negligible sets by the cocycle condition and the fact that φi, j,x is isometric.

Definition 5.5. For p ∈ [1,∞], let 0p(T ) be the space of sections ω of T with

∥ω∥p := ∥x 7→ |ω(x)|x∥L p(µ) <∞.

We call 0p(T ) the space of p-integrable sections of T . The space 0p(T ∗
p X) is called the p-weak cotangent

module.

Note that 0p(T ), equipped with the pointwise norm (5-2) and the natural addition and multiplication
operations, is a normed module in the sense of [Gigli 2015]. Recall that an L p-normed L∞-module over X
is a Banach module (M , ∥ · ∥) over L∞(X), equipped with a pointwise norm | · | : X → R that satisfies

|gm| = |g||m| and ∥m∥ =

(∫
X

|m|
p
x dµ(x)

)1/p
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for all m ∈ M and g ∈ L∞(X). We refer to [Gigli 2015; 2018] for a detailed account of the theory of
normed modules.

Next we consider the p-weak cotangent module 0p(T ∗
p X). For a p-weak chart (U, ϕ) of X and

f ∈ N 1,p(X), denote by d(U,ϕ) f the differential of f with respect to (U, ϕ). Lemma 5.2 implies that the
collection of differentials with respect to different charts satisfies the compatibility condition above.

Definition 5.6. Let p ≥ 1, and suppose A is a p-weak differentiable atlas of X . For any f ∈ N 1,p(X),
the differential d f ∈ 0p(T ∗

p X) is the element in the p-weak cotangent module defined by the collection
{d(U,ϕ) f : U → (RN )∗}(U,ϕ)∈A .

We record the following properties of the differential.

Proposition 5.7. Let A ⊂ X be a Borel set and F : X → Y a Lipschitz map to a metric measure space
(Y, d, ν) admitting a p-weak differentiable structure, with F∗µ≤ Cν.

(1) If f, g ∈ N 1,p(X) agree on A ⊂ X , then d f = dg µ-a.e. on A.

(2) If f, g ∈ N 1,p(X)∩ L∞(X), then d( f g)= gd f + f dg µ-a.e.

(3) If E is the set of y ∈ Y for which T ∗
p,yY does not exist, then µ(F−1(E)) = 0 and, for µ-a.e.

x ∈ X \ F−1(E) there exists a unique linear map Dx F : Tp,x X → Tp,F(x)Y such that

dx(h ◦ F)= dF(x)h ◦ Dx F for µ-a.e. x,
for every h ∈ N 1,p(Y ).

(4) If h ∈ C1(R) and if h ◦ f ∈ N 1,p(X), then d(h ◦ f )= h′( f (x)) d f .

(5) If fi ∈ N 1,p(X) and there is a function f ∈ L p and a w ∈ 0p(T ∗
p X) so that limi→∞ fi = f (x)

converges in L p(X) and d fi → w converges in 0p(T ∗
p X), then, there is a function f̃ ∈ N 1,p(X) so

that f̃ = f almost everywhere with d f̃ = w.

Proof. The proofs of the first four claims follow directly from Proposition 4.10 together with the
compatibility condition of sections. Indeed, one can verify the identities for each chart (U, ϕ), from
which the identities follows for everywhere.

Consider now fi ∈ N 1,p(X) which converge in L p(X) to f ∈ L p(X) and so that d fi converge in
0p(T ∗

p X) to w ∈ 0p(T ∗
p X). We have therefore that gi = |D fi |p = |d fi | converges in L p to g = |w|.

By Fuglede’s theorem [1957, Theorem 3(f)] we can pass to a subsequence so that fi → f̃ converges
pointwise and so that ∫

γ

| fi − f̃ | ds → 0 and
∫
γ

|gi − g| ds → 0

for p-a.e. absolutely continuous curves γ : [0, 1] → X . Then, for all such curves, we have that
| fi (γ (0))− fi (γ (1))| ≤

∫
γ

gi ds, which converges to

| f̃ (γ (0))− f̃ (γ (1))| ≤

∫
γ

g ds.

Thus f̃ ∈ N 1,p. Finally, one only needs to show that w = d f̃ . This follows by another diagonal argument
and computing d f̃ in charts using the argument from Lemma 4.7. □
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We finish the subsection with a proof of the density of Lipschitz functions in Newtonian spaces.

Proof of Theorem 1.9. Let f ∈ N 1,p(X). By [Eriksson-Bique 2023], there exists a sequence ( fn)⊂LIPb(X)
with fn → f and |D fn|p → |D f |p in L p(µ). It follows that (d fn) ⊂ 0p(T ∗X) is equi-integrable,
and Remark 4.8 and Lemma 4.7, together with a diagonalization argument over a union of charts
covering X , show that d f̃n →d f in0p(T ∗X) for convex combinations f̃n ∈LIPb(X) of fn’s. Consequently
|D( f̃n − f )|p → 0 in L p(µ). □

5C. Dependence of the p-weak differentiable structures on p. Suppose 1 ≤ p < q. We have that
|D f |p ≤ |D f |q µ-a.e. for every f ∈ LIPb(X), and the inequality may be strict; see [Di Marino and
Speight 2015]. As a consequence, if ϕ ∈ LIPb(X; RN ) is q-maximal in U ⊂ X , then it is p-maximal.
It follows (using this dimension upper bound and [Keith 2004b, Proposition 3.1]) that if X admits a
q-weak differentiable structure then X also admits a p-weak differentiable structure. We remark that the
structures may be different.

For the following statement we say that a bundle map π : T → T ′ between two measurable bundles
T = ({Ui , Vi,x}, {φi,l,x})i∈I and T ′

= ({U ′

j , V ′

j,x}, {ψj,k,x})j∈J over X is a collection of linear maps
{πi, j,x : Vi → V ′

j } for µ-a.e. x ∈ Ui ∩ U ′

j such that

(a) for each i ∈ I, j ∈ J the map x 7→ πi, j,x(v) : Ui ∩ U ′

j → V ′

j is Borel for any v ∈ Vi ,

(b) for each i, l ∈ I, j, k ∈ J and µ-a.e. x ∈ Ui ∩ Ul ∩ U ′

j ∩ U ′

k , we have the compatibility condition
ψj,k,x ◦πi, j,x = φl, j,x ◦πi,l,x .

When the underlying index sets agree and Ui = Vi for all i ∈ I, it is sufficient to consider the family
{πi,x := πi,i,x}, since these determine a unique bundle map.

Proposition 5.8. Suppose q > p ≥ 1 and X admits a q-weak differentiable structure. Then X admits
p-weak differentiable structure and there is a bundle map πp,q : T ∗

q X → T ∗
p X which is a linear 1-Lipschitz

surjection µ-a.e. Moreover, this map satisfies πp,q = πp,s ◦πs,q for q > s > p, and πp,q(dq f ) = dp f
for any f ∈ LIPb(X), where dq f, dp f are the p- and q-weak differentials respectively.

Proof. Since X admits a q-differential structure, we can find q-charts (Ui , ϕq,i ) so that X =
⋃

i∈N Ui ∪ N,
with µ(N )= 0, and ϕq,i ∈ N 1,p(X; Rmi ) is Lipschitz. Assume that Ui are chosen to be pairwise disjoint.
As |D f |p ≤ |D f |q (a.e.) for any f ∈ LIPb(X), any p-independent map is also q-independent. Any map
ϕ ∈ N 1,p(X; Rn) which is p-independent on some positive-measure subset of Ui must have n ≤ mi ; see
Proposition 4.14. By [Keith 2004b, Proposition 3.1] and this dimension bound we can cover X by maximal
p-independent maps, i.e., charts, (Vj , ϕp, j ). By considering the countable collection of sets Vi ∩ Uj , and
reindexing, we may assume that (Ui , ϕq,i ) and (Ui , ϕp,i ) are q- and p- charts, respectively.

We define the matrix Ax for x ∈ Ui by taking as rows the vectors di,pϕ
k
q,i for each component

k = 1, . . . ,mi . We define the bundle map πp,q by setting π x
p,q(ξ)= ξ ◦ Ax for µ-a.e. x ∈ Ui . For each ξ

we get dp(ξ ◦ϕq,i )= ξ ◦ Ax . Thus, for p-a.e. curve γ ∈ AC(I ; X) and a.e. t ∈ γ−1(U ) we have

ξ(ϕq,i ◦ γ )′t = (ξ ◦ Ax)(ϕp,i ◦ γ )′t .
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By the definition of the differential, we get immediately that πp,q(dq f )= dp f for every f ∈ LIPb(X).
Thus, the 1-Lipschitz property follows immediately from the definition of norms combined with |D f |p ≤

|D f |q . The map is clearly a surjective bundle map as well, and by uniqueness of the p-differential, we
automatically get πp,s ◦πs,q = πp,q . □

6. Relationship with Cheeger’s and Gigli’s differentiable structures

6A. Gigli’s cotangent module. Fix p ≥ 1. Gigli’s cotangent module is the L p-normed L∞-module given
by the following theorem.

Theorem 6.1. There exists an L p-normed L∞-module L p(T ∗X), with pointwise norm denoted by | · |G ,
and a bounded linear map dG : N 1,p(X)→ L p(T ∗X) satisfying

|dG f |G = |D f |p, f ∈ N 1,p(X), (6-1)

such that the subspace V defined by

V :=

{ M∑
j

χAj dG f j : (Aj )j Borel partition of X, f j ∈ N 1,p(X)
}

is dense in L p(T ∗X). The module L p(T ∗X) is uniquely determined up to isometric isomorphism of
normed modules by these properties.

Following [Gigli 2018, Definition 1.4.1] we say that a collection {v1, . . . , vN } ⊂ L p(T ∗X) is linearly
independent in a Borel set U ⊂ X if, whenever g1, . . . , gN ∈ L∞(X) satisfy

∣∣∑N
j gjvj

∣∣
G = 0 µ-a.e.

on U, we have g1 = · · · = gN = 0 µ-a.e. in U. A linearly independent collection {v1, . . . , vN } in U
is a basis of L p(T ∗X) in U if, for any v ∈ L p(T ∗X), there exists a Borel partition {Ui }i∈N of U and
gi

1, . . . , gi
N ∈ L∞(X) such that

∣∣v−
∑N

j gi
jvj

∣∣
G = 0 µ-a.e. on Ui , for every i ∈ N.

Definition 6.2. Let p ≥ 1. The cotangent module L p(T ∗X) is locally finitely generated if there exists a
Borel partition such that L p(T ∗X) has a finite basis in each set of the partition.

By [Gigli 2018, Proposition 1.4.5], there exists a Borel partition {AN }N∈N∪{∞} of X such that L p(T ∗X)
has a basis of N elements on AN for each N ∈ N ∪ {∞}. We call the partition {AN } the dimensional
decomposition of X . Notice that L p(T ∗X) is locally finitely generated if and only if µ(A∞)= 0.

In the forthcoming discussion we identify vectors (and vector fields) ξ ∈ RN with their dual element
v 7→ v · ξ where necessary.

Lemma 6.3. Let p ≥ 1, N ≥ 0, ϕ = (ϕ1, . . . , ϕN ) ∈ N 1,p(X)N, and 8 be the canonical minimal gradient
associated to ϕ. If g = (g1, . . . , gN ) ∈ L∞(X; (RN )∗), then∣∣∣∣ N∑

k=1

gkdGϕk

∣∣∣∣
G,x

=8x(g) for µ-a.e. x ∈ X.

In particular, ϕ is p-independent on U ⊂ X if and only if dGϕ1, . . . , dGϕN ∈ L p(T ∗X) are linearly
independent on U.
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Proof. If g1, . . . , gN are simple functions, then g =
∑M

j χAj ξj for disjoint Borel Aj and some ξj ∈ (RN )∗.
It follows that

∑N
k=1 gk dGϕk =

∑M
j χAj dG(ξj ◦ϕ) as elements of L p(T ∗X). Thus∣∣∣∣ N∑

k=1

gk dGϕk

∣∣∣∣
x
=

∣∣∣∣ M∑
j

χAj dG(ξj ◦ϕ)

∣∣∣∣
x
=

M∑
j

χAj |D(ξj ◦ϕ)|p =8x(g)

for µ-a.e. x ∈ X .
The estimate

8x(g)≤

( N∑
k

|gk |
q
)1/q( N∑

k

|Dϕk |
p
p

)1/p

≤ C |g|

N∑
k

|Dϕk |p,

valid for all simple vector-valued g, implies that the equality in the claim is stable under local L∞-
convergence of g. Since simple functions are dense in L∞, the claim follows. The remaining claim
follows in a straightforward way from the equality. □

Remark 6.4. If ϕ ∈ LIP(X; RN ) is a chart in U, and f ∈ N 1,p(X), then for the canonical minimal upper
gradient 8x(a, ξ)) of ( f, ϕ) ∈ N 1,p

loc (X; RN+1) we have by Lemma 4.3(2) that 8x(1,−d f ) = 0. Thus,
by the previous lemma, we get dG f −

∑N
k=1 gk dGϕk = 0, where gk are the components of d f and

ϕk are the components of ϕ. Indeed, this follows by considering this first on the sets UM = {x ∈ U :

|gk(x)| ≤ M, k = 1, . . . , N } and sending M → ∞ combined with locality.

Lemma 6.5. If (U, ϕ) is an N-dimensional p-weak chart in X , then the differentials of the component
functions dGϕ1, . . . , dGϕN form a basis of L p(T ∗X) in U.

Proof. By Lemma 6.3, dGϕ1, . . . , dGϕN ∈ L p(T ∗X) are linearly independent on U. To see that they span
L p(T ∗X) in U, let f ∈ N 1,p(X), and set gk := d f (ek) for each k = 1, . . . , N, where ek is the standard
basis of RN. Then, since dϕk = ek , where ek is the dual basis of (RN )∗, we get d f =

∑N
k=1 gk dϕk . Thus,

by Remark 6.4 we have dG f =
∑N

k=1 gk dGϕk . Since the abstract differentials dG f span L p(T ∗X), this
completes the proof. □

Lemma 6.6. Suppose p ≥ 1 and X admits a p-weak differentiable structure. There exists an isometric
isomorphism ι : 0p(T ∗

p X)→ L p(T ∗X) of normed modules satisfying

ι(d f )= dG f, f ∈ N 1,p(X). (6-2)

The map ι is uniquely determined by (6-2).

Uniqueness here means that if A : 0p(T ∗
p X)→ L p(T ∗X) is L∞-linear and satisfies (6-2) then A = ι.

Proof. The set

W =

{ M∑
j

χAj d f j : (Aj )j Borel partition of X , f j ∈ N 1,p(X)
}

is dense in 0p(T ∗
p X), since it contains all the simple Borel sections of T ∗

p X . We set

ι(v) :=

M∑
j

χAj dG f j , v =

M∑
j

χAj d f j ∈ W.

We have that

|ι(v)|G =

M∑
j

χAj |D f j |p =

M∑
j

χAj |d f j | = |v| µ-a.e.
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for v ∈ W . This implies that ι is well-defined and preserves the pointwise norm on the dense set W . By
Remark 6.4 we have that ι is linear. Since ι(W)= V, it follows that ι extends to an isometric isomorphism
ι : 0p(T ∗

p X)→ L p(T ∗X). Note that ι(d f )= dG f for every f ∈ N 1,p(X), establishing (6-2).
To prove uniqueness, note that if A :0p(T ∗

p X)→ L p(T ∗X) is linear and satisfies (6-2), then A(v)= ι(v)
for all v ∈ W which implies that A = ι by the density of W . □

Proof of Theorem 1.11. If X admits a p-weak differentiable structure, Lemma 6.5 implies that L p(T ∗X)
is locally finitely generated. To prove the converse implication, suppose {AN }N∈N∪{∞} is the dimensional
decomposition of X and µ(A∞)= 0.

Let N ∈ N be such that µ(AN ) ≥ µ(V ) > 0 for some Borel set V, and v1, . . . , vN ∈ L p(T ∗X) is a
basis of L p(T ∗X) on V. By possibly passing to a smaller subset of V, we may assume that there exists
C > 0 for which ∫

V

∣∣∣∣ N∑
k

gkvk

∣∣∣∣p

G
dµ≥

1
C

∫
V

|g|
p dµ for all g = (g1, . . . , gN ) ∈ L∞. (6-3)

For each k = 1, . . . , N there are sequences

vn
k =

Mn
k∑

j

χAn
j,k

dG f n
j,k,

with {An
j,k}j a Borel partition of X and ( f n

j )⊂ N 1,p(X) such that vn
k → vk in L p(T ∗X) as n → ∞, by

the definition of L p(T ∗X). We set J n
= {1, . . . ,Mn

1 } × · · · × {1, . . . ,Mn
N } and define new partitions

An
ȷ̄ := An

j1,1 ∩ · · · ∩ An
jN ,N indexed by ȷ̄ = ( j1, . . . , jN ) ∈ J n. Then

vn
k =

∑
ȷ̄∈J n

χAn
ȷ̄
dG( f n

jk ,k), µ(V )=

∑
ȷ̄∈J n

µ(An
ȷ̄ ∩ V ),

lim
n→∞

∫
X

|vn
k − vk |

p
G dµ= lim

n→∞

∑
ȷ̄∈J n

∫
An
ȷ̄

|dGϕ
n,ȷ̄
k − vk |

p
G dµ= 0

(6-4)

for all n and k = 1, . . . , N. We claim that there exists n so that ϕn,ȷ̄
:= ( f n

j1,1, . . . , f n
jN ,N ) ∈ N 1,p(X; RN )

is p-independent on a positive measure subset of An
ȷ̄ ∩ V for some ȷ̄ ∈ J n.

By (6-3) we have the inequality

1
C

∫
An
ȷ̄∩V

|g|
p dµ≤

∫
An
ȷ̄∩V

∣∣∣∣ N∑
k

gkvk

∣∣∣∣p

dµ

≤ C ′

∫
An
ȷ̄∩V

∣∣∣∣ N∑
k

gkdGϕ
n,ȷ̄
k

∣∣∣∣p

G
dµ+ C ′

∫
An
ȷ̄∩V

∣∣∣∣ N∑
k

gk(dGϕ
n,ȷ̄
k − vk)

∣∣∣∣p

G
dµ

≤ C ′

∫
An
ȷ̄∩V

8n,ȷ̄ (g(x), x) dµ+ C ′′

∫
An
ȷ̄∩V

|g|
p
( N∑

k

|dGϕ
n,ȷ̄
k − vk |

p
G

)
dµ

for all g = (g1, . . . , gN ) ∈ L∞, where 8n,ȷ̄ is the canonical minimal gradient of ϕn,ȷ̄ (see Lemma 6.3).
By (6-4) there exists n ∈ N, ȷ̄ ∈ J n and a Borel set U ⊂ An

ȷ̄ ∩ V with 0< µ(U )≤ µ(An
ȷ̄ ∩ V ) such that
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k |dGϕ

n,ȷ̄
k − vk |

p
G < ε on U, where C ′′ε < 1/(2C). Thus

1
C

∫
U

|g|
p dµ≤ C ′

∫
U
8n,ȷ̄ (g(x), x) dµ+

1
2C

∫
U

|g|
p dµ

for all g = (g1, . . . , gN ) ∈ L∞(U ; RN ) by extending g by zero to V \ U. This readily implies that
I (ϕn,ȷ̄ ) > 0 a.e. in U, proving the p-independence of ϕn,ȷ̄ in U. Note that ϕn,ȷ̄ is also maximal, since the
existence of a Lipschitz map on a positive measure subset of U with a higher-dimensional target would
imply that the local dimension of L p(T ∗X) in V would be > N ; see Lemma 6.3. By Proposition 4.14, U
contains an N -dimensional p-weak chart, and [Keith 2004b, Proposition 3.1] implies that X admits a
differentiable structure.

The argument above shows that each AN with µ(AN ) > 0 can be covered up to a null-set by
N -dimensional p-weak charts, proving (b), while (a) follows directly from Lemma 6.6. Finally, (c)
is implied by Proposition 4.13. □

Theorem 1.11 and [Gigli 2018, Chapter 2] immediately yield the following corollary.

Corollary 6.7. Let p ≥ 1 and suppose X admits a p-weak differentiable structure.

(i) If p > 1, then N 1,p(X) is reflexive.

(ii) If p = 2, then N 1,2(X) is infinitesimally Hilbertian if and only if , for µ-a.e. x ∈ X , the pointwise
norm | · |x (see Theorem 1.7) is induced by an inner product. □

6B. Lipschitz differentiability spaces. A space X is said to be a Lipschitz differentiability space if
it admits a Cheeger structure. Recall that a Cheeger structure is a countable collection of Cheeger
charts (Ui , ϕi ), see Section 4G, so that µ

(
X \

⋃
i Ui

)
= 0. Following [Cheeger 1999, Section 4, p. 458],

we note that the differentials dC,i f of a Lipschitz function f with respect to overlapping charts satisfy a
cocycle condition almost everywhere and the transition maps preserve the pointwise norm. Thus, they
define a measurable L∞-bundle T ∗

C X called the measurable cotangent bundle.
Suppose now that X admits a Cheeger structure. Denote by T ∗

C X the associated measurable cotangent
bundle, and by

|ξ |C,x := Lip(ξ ◦ϕ)(x), ξ ∈ (RN )∗,

the pointwise norm for µ-a.e. x ∈ U, where (U, ϕ) is an N -dimensional Cheeger chart of X .
Fix p ≥ 1. Any Lipschitz differentiability space X admits a p-weak differentiable structure. Indeed,

the asymptotic doubling property of the measure (see [Bate and Speight 2013]) implies, by [Bate 2015,
Lemma 8.3], that X decomposes into finite-dimensional pieces. The existence of the p-weak differentiable
structure now follows from Proposition 5.4, and the associated measurable cotangent bundle is denoted
by T ∗

p X . We have the following result from [Ikonen et al. 2022, Theorem 3.4]:

Theorem 6.8. Let p ≥ 1. There exists a morphism P :0p(T ∗

C X)→ L p(T ∗X) of normed modules such that

(a) P(dC f )= dG f for every f ∈ LIP(X),

(b) |P(ω)|G ≤ |ω|C for every ω ∈ 0p(T ∗

C X), and

(c) for every w ∈ L p(T ∗X) there exists ω ∈ P−1(w) with |w|G = |ω|c.
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Remark 6.9. The proof of [Ikonen et al. 2022, Theorem 3.4] can be modified to cover the case p = 1:
the energy density of Lipschitz functions holds for p = 1 by [Eriksson-Bique 2023], and equicontinuity
can be used instead of L p-boundedness to obtain the weakly convergent subsequence in the proof.

Proof of Theorem 1.10. Arguing as in the proof of Proposition 5.8 we may assume that X has a Borel
partition {Ui } and Lipschitz maps ϕi

p = (ϕi
p,1, . . . , ϕ

i
p,Ni

), ϕi
C = (ϕi

C,1, . . . , ϕ
i
C,Mi

) such that (Ui , ϕ
i
p) is

a p-weak chart and (Ui , ϕ
i
C) is a Cheeger chart on X (of possibly different dimensions Ni and Mi ) for

each i ∈ N. For each i and µ-a.e. x ∈ Ui define

σi,x = (dp,xϕ
i
C,1, . . . , dp,xϕ

i
C,Mi

) : RNi → RMi .

It is easy to see that the collection {πi,x = σ ∗

i,x} defines a bundle map T ∗

C X → T ∗
p X satisfying

dp,x f = dC,x f ◦ σx for µ-a.e. x ∈ X,

for every f ∈ N 1,p(X). This proves (1-7). In particular, for each i ∈ N and ξ ∈ (RMi )∗ we have
πi,x(ξ)= ξ ◦ σi,x = dp,x(ξ ◦ϕi

C), and consequently

|πi,x(ξ)|x = |D(ξ ◦ϕi
C)|p(x)≤ Lip(ξ ◦ϕi

C)(x)= |ξ |C,x

for µ-a.e. x ∈ Ui . Moreover, for any ζ ∈ (RNi )∗, setting ξ := dC,x(ζ ◦ϕi
p), we have

πi,x(ξ)= dC,x(ζ ◦ϕi
p) ◦ σx = dp,x(ζ ◦ϕi

p)= ζ,

proving that πi,x is surjective for µ-a.e. x ∈ Ui .
To prove that πi,x is a submetry for µ-a.e. x ∈ Ui , suppose to the contrary that there exists a Borel set

B ⊂ Ui , with 0< µ(B) <∞, such that πi,x is not a submetry for x ∈ B. Then there exists a Borel map
ζ : B → (RNi )∗ with |ζ x |x = 1 and

|ζ x |x = 1 and inf
ξ∈π−1

i,x (ζ x )

|ξ |C,x > 1 for µ-a.e. x ∈ B. (6-5)

We derive a contradiction using Theorem 6.8 and the isometric isomorphism ι : 0p(T ∗
p X)→ L p(T ∗X)

from Theorem 1.11(a). We may view ζ as an element of 0p(T ∗
p X) by extending it by zero outside B.

Set w := ι(ζ ) ∈ L p(T ∗X). Then |w|G = χB . By Theorem 6.8(c) there exists ω ∈ 0p(T ∗

C X) with
P(ω) = w and |ω|C = |w|G = χB µ-a.e. However, since ωx ∈ π−1

i,x (ζ x) for µ-a.e. x ∈ B, we have
|ω|C,x ≥ infξ∈π−1

i,x (ζ x )
|ξ |C,x > 1 for µ-a.e. x ∈ B by (6-5), which is a contradiction. This completes the

proof that πi,x is a submetry for µ-a.e. x ∈ Ui .
If Lip f ≤ ω(|D f |p) holds for every f ∈ LIPb(X), then by [Ikonen et al. 2022, Theorem 1.1] we

have |D f |p = Lip f µ-a.e. for every f ∈ LIPb(X). It follows that p-weak charts are Cheeger charts (see
Theorem 1.8 and Remark 4.15) and that the pointwise norms agree µ-almost everywhere. This implies
that the maps πi,x are isometric bijections for µ-a.e. x . □

Appendix: General measure theory

A1. Measurability questions. Here we record a host of measurability statements that are needed through-
out the paper. See [Gigli and Pasqualetto 2020; Ambrosio et al. 2008; Bogachev 2007] for more details.
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Given f ∈ N 1,p(X) and a Borel representative g of p-weak upper gradient of f , we define

0( f ) := {γ ∈ AC(I ; X) : f ◦ γ ∈ AC(I ; R)},

0( f, g) := {γ ∈ AC(I ; X) : g upper gradient of f along γ } ⊂ 0( f )
and

M D = {(γ, t) ∈ AC(I ; X)× I : |γ ′

t | exists},

Diff( f )= {(γ, t) ∈ AC(I ; X)× I : γ ∈ 0( f ), ( f ◦ γ )′t and |γ ′

t |> 0 exist},

Diff( f, g)= {(γ, t) ∈ Diff( f ) : γ ∈ 0( f, g), |( f ◦ γ )′t | ≤ g f (γt)|γ
′

t |}.

Also, let Len(γ ) be the length of a curve γ , if the curve is rectifiable, and otherwise infinity. The
function der is defined by der(γ, t) := |γ ′

t | = limh→0 d(γt+h, γt)/|h|, when the limit exists, and otherwise
is infinity.

Lemma A.1. (1) The functions Len : C(I ; X)→ [0,∞] and der : AC(I ; X)× I → [0,∞] are Borel
measurable.

(2) If g : X → [0,∞] is a Borel function, then I : AC(I ; X)→ R, given by γ 7→
∫
γ

g ds or ∞ if the
curve is not rectifiable, is Borel.

(3) If H : AC(I ; X)× I → [0,∞] is Borel, then IH (γ ) :=
∫ 1

0 H(γ, s) ds : AC(I ; X)→ [0,∞] is Borel.

(4) The set M D is Borel, and the map M D → R defined by (γ, t)→ |γ ′
t | is Borel.

Proof. (1) The length function is a lower semicontinuous function with respect to uniform convergence,
and thus is Borel. Fix r, p ∈ Q positive. Then define

Ap,r =

⋃
n∈N

⋂
q∈Q∩(−1/n,1/n)

{(γ, t) : |d(γt+q , γt)− qp|< r |q|},

which is Borel. The set M where the metric derivative exists is of the form
⋂

r∈Q∩(0,∞)

⋃
p∈Q∩(0,∞) Ap,r .

On this set we have M ∩ Ap,r = der−1(B(p, r)) and thus der(γ, t) is Borel.

(2) The claims for the integral function being Borel follow from a monotone family argument, and
considering g first a characteristic function of an open set and using lower semicontinuity of the integral
in that case.

(3) If H is a characteristic function of a product set A × B, where A and B are open sets such that
A ⊂ C(I ; X), B ⊂ I, then the claim follows just as in statement (2). Again, by a monotone family
argument, we obtain the claim for all Borel measurable functions.

(4) Define for every q ∈ Q and ε, h > 0 the sets A(ε, q, h) and B(ε, q) by

A(ε, q, h) :=

{
(γ, t) ∈ C(I ; X)× I :

∣∣∣∣d(γt+h, γt)

|h|
− q

∣∣∣∣< ε},
B(ε, q) :=

⋃
δ∈Q+

⋂
h∈(0,δ)∩Q

A(ε, q, h).

We note that |γ ′
t | exists if and only if (γ, t) ∈

⋂
j∈N

⋃
q∈Q B(2− j , q)= M D. On the set M D, where the

limit exists, we can write |γ ′
t | = limn→∞ n(d(γt+n−1, γt)), which shows measurability. □
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Lemma A.2. Let g be a Borel p-weak upper gradient of f ∈ N 1,p(X). There exists a Borel set 00 ⊂

AC(I ; X) with Modp(00)= 0 such that AC \00 ⊂ 0( f, g).
Suppose moreover that f is Borel. Then the set A := 0c

0 × I ∩ Diff( f, g) is Borel, and π(Ac) = 0
whenever π = L1

× η and η is a q-test plan.
If f is Lipschitz, and g = Lip[ f ], then we can choose 00 = ∅, and Diff( f, g)= Diff( f ) is Borel.

Note that we make no claims about the Borel measurability of the set 0( f, g).

Proof. We model the argument after [Pasqualetto 2022, Lemma 1.9]. Since Modp(0( f, g)c)= 0, there
exists an L p-integrable Borel function ρ : X → [0,∞] with

∫
γ
ρ ds = ∞ for every γ /∈ 0 f,g. Then

00 :=
{
γ ∈ AC(I ; X) :

∫
γ
ρ ds = ∞

}
⊃ 0c

f,g is a Borel set, by Lemma A.1 and η(00) = 0 for every
q-plan η (see Remark 2.2). If f is Lipschitz, then 0( f, g)= AC(I ; X). Thus, we can choose 00 = ∅.

For the second part assume f ∈ N 1,p(X) is Borel, and set

A(ε, q, h)=

{
(γ, t) ∈ 0c

0 × I :

∣∣∣∣ f (γt+h)− f (γt)

h
− q

∣∣∣∣< ε},
B(ε, q)=

⋃
δ∈Q+

⋂
h∈(0,δ)∩Q

A(ε, q, h)

for each q ∈ Q and ε, h > 0. It is easy to see that for each γ /∈ 00, ( f ◦ γ )′t exists if and only if

(γ, t) ∈

⋂
j∈N

⋃
q∈Q

B(2− j , q)=: A.

Note that A is a Borel set with A ∩ M D ⊂ Diff( f ). Moreover, (γ, t) 7→ ( f ◦γ )′t is Borel when restricted
to A ∩ M D.

Define the Borel function H(γ, t) = ( f ◦ γ )′t if (γ, t) ∈ A ∩ M D and H = +∞ otherwise, and
G(γ, t)= |H | − g(γt)|γ

′
t | (here we use the convention ∞ −∞ = ∞). Then the set

{G ≤ 0} = 0c
0 × I ∩ Diff( f, g)

is Borel.
Set N := {G > 0}, suppose η is a q-test plan and π := L1

× η. Note that

N ⊂ 00 × I ∪ {(γ, t) ∈ 0c
0 × I : G(γ, t) > 0}.

But, for all γ /∈ 00, we have G(γ, t)≤ 0 for L1-a.e. t ∈ I. Thus

π(N )≤ η(00)+

∫
0c

0

∫ 1

0
χ{G(γ,· )>0}(t) dt dη(γ )= 0,

finishing the proof of the second part. □

Corollary A.3. Every pointwise defined function f ∈ N 1,p(X) has a Borel representative f̄ ∈ N 1,p(X).
Moreover, if f ∈ N 1,p(X) and g is a Borel p-weak upper gradient of f , there exists a Borel set N ⊂

C(I ; X)× I, with N c
⊂ Diff( f, g) and π(N ) = 0 whenever π = L1

× η, η a q-test plan. The map
(γ, t) 7→ ( f ◦ γ )′t if (γ, t) /∈ N and +∞ otherwise is Borel. If f is Lipschitz the representative can be
chosen as the same function.
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Proof. The first claim follows directly from [Eriksson-Bique 2023, Theorem 1.1]. To see the second, let
f̄ ∈ N 1,p(X) be a Borel representative of f . The set E := { f ̸= f̄ } is p-exceptional, i.e., 0E := {γ :

γ−1(E) ̸= ∅} has zero p-modulus. Note that, if f is Lipschitz, then f is automatically Borel and we do
not need to change representatives, and we can set 0E = ∅.

If A is the set in Lemma A.2 for f̄ , g, then A := A \ (0E × I )⊂ Diff( f, g) and N := Ac satisfies the
claim since it is Borel and N ⊂ 0E × I ∪ Ac.

The last claim follows since N c is Borel and, if (γ, t) /∈ N, we have

( f ◦ γ )′t = lim
n→∞

n( f (γt+1/n)− f (γt)). □

A2. Essential supremum.

Definition A.4. Let X be a σ -finite measure space and F a collection of measurable functions on X , then
there exists a function g : X → R ∪ {∞,−∞} which is measurable, and:

(A) For each f ∈ F ,
f ≤ g

almost everywhere.

(B) For each g′ that satisfies (A), will satisfy g ≤ g′ almost everywhere.

We call g = ess sup f ∈F f . Similarly, we define g = ess inf f ∈F f , by switching the directions of the
inequalities and assuming g : X → R ∪ {∞,−∞}.

We will need the following standard lemma. While its proof is standard, we provide it for the sake of
completeness.

Lemma A.5. If X is any σ -finite measure space and F is any collection of measurable functions, then
ess sup f ∈F f and ess inf f ∈F f exists and is unique, and further, there are sequences fn, gn ∈ F so that
ess sup f ∈F f = supn fn and ess inf f ∈F f = infn gn almost everywhere.

Proof. The uniqueness follows from (B) in Definition A.4. Indeed, if g and g′ are essential suprema, they
both satisfy A, and thus g ≤ g′ and g′

≤ g.
By considering {arctan( f ) : f ∈ F}, we can assume that the collection is bounded. Further, by

σ -finiteness, and after exhausting the space by finite measure sets, it suffices to consider a bounded
measure. Define G to be the collection of all functions of the form max( f1, . . . , fk) for some fi ∈ F . By
construction, if g, g′

∈ G, then max(g, g′) ∈ G ′.
Consider U = supg∈G

∫
g dµ. There is a sequence gn so that limn→∞

∫
gn dµ= U. By modifying the

sequence if necessary, we may take it increasing in n, and define g = limn→∞ gn .
We claim that g is an essential supremum for F. First, if f ∈ F , and f > g on a positive measure

set, then limn→∞

∫
max( f, gn) dµ > U, contradicting the definition of U. Thus the condition A in the

definition is satisfied.
Now, if h is any other function satisfying A, then h ≥ gn , and thus h ≥ g almost everywhere, by

construction. Thus B is also satisfied. Finally, the construction gives a countable collection gn formed
each from finitely many fi ∈ F , and thus gives the final claim in the statement. □
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OF SEMILINEAR PARABOLIC EQUATIONS
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The paper is devoted to a comprehensive study of smoothness of inertial manifolds (IMs) for abstract
semilinear parabolic problems. It is well known that in general we cannot expect more than C1,ε-regularity
for such manifolds (for some positive, but small ε). Nevertheless, as shown in the paper, under natural
assumptions, the obstacles to the existence of a Cn-smooth inertial manifold (where n ∈ N is any given
number) can be removed by increasing the dimension and by modifying properly the nonlinearity outside
of the global attractor (or even outside the C1,ε-smooth IM of a minimal dimension). The proof is strongly
based on the Whitney extension theorem.
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1. Introduction

It is believed that in many cases the long-time behaviour of infinite-dimensional dissipative dynamical
systems generated by evolutionary PDEs (at least in bounded domains) can be effectively described by
finitely many parameters (the so-called order parameters in the terminology of I. Prigogine) which obey
a system of ODEs. This system of ODEs (if it exists) is usually referred as an inertial form (IF) of the
considered PDE; see [Hale 1988; Robinson 2001; 2011; Temam 1988; Zelik 2014] and references therein
for more details. However, despite the fundamental significance of this reduction from both theoretical
and applied points of view and big interest during the last 50 years, the nature of such a reduction and its
rigorous justification remains a mystery.

Indeed, it is well understood now that the key question of the theory is how smooth the desired IF
can/should be. For instance, in the case of Hölder continuous IFs, there is a highly developed machinery
for constructing them based on the theory of global attractors and the Mañé projection theorem. We recall
that, by definition, a global attractor is a compact invariant set in the phase space of the dissipative system
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considered which attracts as time goes to infinity the images of bounded sets under the evolutionary
semigroup related to the considered problem. Thus, on the one hand, a global attractor (if it exists) contains
all of the nontrivial dynamics and, on the other hand, it is usually essentially “smaller” than the initial
phase space and this second property allows us to speak about the reduction of degrees of freedom in the
limit dynamics. In particular, one of the main results of the attractors theory tells us that, under relatively
weak assumptions on a dissipative PDE (in a bounded domain), the global attractor exists and has finite
Hausdorff and fractal dimensions. In turn, due to the Mañé projection theorem, this finite-dimensionality
guarantees that this attractor can be projected one-to-one to a generic finite-dimensional plane of the phase
space and that the inverse map is Hölder continuous. Finally, this scheme gives us an IF with Hölder
continuous vector field defined on some compact set of RN which is treated as a rigorous justification of
the above-mentioned finite-dimensional reduction. This approach works, for instance, for 2-dimensional
Navier–Stokes equations, reaction-diffusion systems, pattern formation equations, damped wave equations,
etc.; see [Babin and Vishik 1992; Ben-Artzi et al. 1993; Chepyzhov and Vishik 2002; Hale 1988; Henry
1981; Hunt and Kaloshin 1999; Miranville and Zelik 2008; Robinson 2011; Sell and You 2002; Temam
1988].

However, the above-described scheme has a very essential intrinsic drawback which prevents us from
treating it as a satisfactory solution of the finite-dimensional reduction problem. Namely, the vector
field in the IF thus constructed is Hölder continuous only and there is no way in general to get even its
Lipschitz continuity. As a result, we may lose the uniqueness of solutions for the obtained IF and have to
use the initial infinite-dimensional system at least in order to select the correct solution of the reduced IF.
Another drawback is that the Mañé projection theorem is not constructive, so it is not clear how to choose
this “generic” plane for projection in applications; in addition, the IF constructed in such a way is defined
only on a complicated compact set (the image of the attractor under the projection) and it is not clear how
to extend it on the whole RN preserving the dynamics (surprisingly, this is also a deep open problem; a
partial solution of it is given in [Robinson 1999]).

It is also worth noting that the restriction for IF to be only Hölder continuous is far from being
just a technical problem here. As relatively simple counterexamples show (see [Eden et al. 2013;
Kostianko and Zelik 2018; Mallet-Paret et al. 1993; Romanov 2000; Zelik 2014]) the fractal dimension
of the global attractor may be finite and not big, but the attractor cannot be embedded into any finite-
dimensional Lipschitz (or even log-Lipschitz) finite-dimensional submanifold of the phase space. Even
more importantly, the dynamics on this attractor does not look finite-dimensional at all (despite the
existence of a Hölder continuous (with the Hölder exponent arbitrarily close to 1) IF provided by the
Mañé projection theorem). For instance, it may contain limit cycles with superexponential rate of attraction,
decaying travelling waves in Fourier space and other phenomena which are impossible in the classical
dynamics generated by smooth ODEs. These examples suggest that, in contradiction to the widespread
paradigm, Hölder continuous IF is probably not an appropriate tool for distinguishing between finite and
infinite-dimensional limit behaviour and, as a result, fractal-dimension is not so good for estimating the
number of degrees of freedom for the reduced dynamics; see [Eden et al. 2013; Kostianko and Zelik
2018; Zelik 2014] for more details.
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An alternative, probably more transparent approach to the finite-dimensional reduction problem which
has been suggested in [Foias et al. 1988] is related to the concept of an inertial manifold (IM). By
definition, an IM is a finite-dimensional smooth (at least Lipschitz) invariant submanifold of the phase
space which is globally exponentially stable and possesses the so-called exponential tracking property
(that is, existence of asymptotic phase). Usually this manifold is C1,ε-smooth for some positive ε and is
normally hyperbolic, so the exponential tracking is an immediate corollary of normal hyperbolicity. Then
the corresponding IF is just a restriction of the initial PDE to IM and is also C1,ε-smooth. However, being
a sort of centre manifold, an IM requires a separation of the dependent variable to the “slow” and “fast”
components and this, in turn, leads to extra rather restrictive assumptions which are usually formulated
in terms of spectral gap conditions. Namely, let us consider the following abstract semilinear parabolic
equation in a real Hilbert space H :

∂t u + Au = F(u), u|t=0 = u0, (1-1)

where A : D(A)→ H is a self-adjoint positive operator such that A−1 is compact and F : H → H is a given
nonlinearity which is globally Lipschitz in H with Lipschitz constant L . Let also 0 < λ1 ≤ λ2 ≤ · · · be the
eigenvalues of A enumerated in the nondecreasing order and {en}

∞

n=1 be the corresponding eigenvectors.
Then, the sufficient condition for the existence of an N -dimensional IM reads

λN+1 − λN > 2L . (1-2)

If this condition is satisfied, the desired IM MN is actually a graph of a Lipschitz function MN :

HN → (HN )⊥, where HN = span{e1, . . . , eN } is a spectral subspace spanned by the first N eigenvectors,
and the corresponding IF has the form

d
dt

uN + AuN = PN F(uN + MN (uN )), uN ∈ HN ∼ RN , (1-3)

where PN is the orthoprojector to HN ; see [Chow et al. 1992; Constantin et al. 1989; Foias et al. 1988;
Koksch 1998; Miklavčič 1991; Romanov 1993; Rosa and Temam 1996; Zelik 2014] and also Section 2
below.

We see that, in contrast to the IF constructed via the Mañé projection theorem, the IF which corresponds
to the IM is explicit (uses the spectral projections) and is as smooth as the functions F and MN are. We
mention that although the spectral gap condition (1-2) is rather restrictive (e.g., in the case where A is a
Laplacian in a bounded domain, it is satisfied in 1-dimensional case only) and is known to be sharp in
the class of abstract semilinear parabolic equations (see [Eden et al. 2013; Miklavčič 1991; Romanov
1993; Zelik 2014] for more details), it can be relaxed for some concrete classes of PDEs. For instance,
for scalar 3-dimensional reaction-diffusion equations (using the so-called spatial averaging principle, see
[Mallet-Paret and Sell 1988]), for 1-dimensional reaction-diffusion-advection systems (using the proper
integral transforms, see [Kostianko and Zelik 2017; 2018]), for 3-dimensional Cahn–Hilliard equations
and various modifications of 3-dimensional Navier–Stokes equations (using various modifications of
spatial-averaging, see [Gal and Guo 2018; Kostianko 2018; Kostianko and Zelik 2015; Li and Sun
2020]), for the 3-dimensional complex Ginzburg–Landau equation (using the so-called spatiotemporal



502 ANNA KOSTIANKO AND SERGEY ZELIK

averaging, see [Kostianko 2020]), etc. Note also that the global Lipschitz continuity assumption for
the nonlinearity F is not an essential extra restriction since usually one proves the well-posedness and
dissipativity of the PDE under consideration before constructing the IM. Cutting off the nonlinearity
outside the absorbing ball does not affect the limit dynamics, but reduces the case of locally Lipschitz
continuous nonlinearity (satisfying the proper dissipativity restrictions) to the model case where the
nonlinearity is globally Lipschitz continuous. Of course, this cut-off procedure is not unique and, as we
will see below, choosing it correctly is extremely important in the theory of IMs.

The main aim of the present paper is to study the smoothness of the IFs for semilinear parabolic
equations (1-1) in the ideal situation where the nonlinearity F is smooth and the spectral gap condition (1-2)
is satisfied. As we have already mentioned, in this case we have a C1,ε-smooth IM MN for some ε > 0
and the associated IF (1-3) which is also C1,ε-smooth; see [Zelik 2014]. But, unfortunately, the exponent
ε > 0 here is usually very small (depending on the spectral gap) and in a more or less general situation,
we cannot expect even the C2-regularity of the IM. The spectral gap condition for C2-regular IM is

λN+1 − 2λN > 3L (1-4)

and such exponentially big spectral gaps are not available if A is a finite-order elliptic operator in a bounded
domain. The corresponding counterexamples were given in [Chow et al. 1992]; see also Example 3.11
below. Thus, the existing IM theory does not allow us, even in the ideal situation, to construct more regular
than C1,ε IFs (where ε > 0 is small). This looks to be an essential drawback for at least two reasons:

(1) The lack of regularity prevents us from using higher-order methods for numerical simulations of the
reduced IF (as a result, direct simulations for the initial smooth PDE using the standard methods may be
more effective than simulations based on the reduced nonsmooth ODEs).

(2) C1,ε-regularity is not enough to build up normal forms and/or study the bifurcations properly (for
instance, the simplest saddle-node bifurcation requires C2-smoothness, the Hopf bifurcation needs C3,
etc.; see [Katok and Hasselblatt 1995; Kielhöfer 2004] for more details) and, therefore, we need to return
back to the initial PDE to study these bifurcations.

Thus, the natural question,

“Is it possible to construct a smooth (Ck-smooth for any finite k) or to extend the existing
C1,ε-smooth IF to a more regular one?”

becomes crucial for the theory of inertial manifolds.
Here we give an affirmative answer to this question under the slightly stronger spectral gap assumption

lim sup
N→∞

(λN+1 − λN ) = ∞. (1-5)

In contrast to (1-4), this assumption does not require exponentially big spectral gaps (and is satisfied for
most of the examples where the IMs exist), but guarantees the existence of infinitely many spectral gaps
of size larger than 2L and, consequently, the existence of an infinite tower of the embedded IMs

MN1 ⊂ MN2 ⊂ · · · ⊂ MNn ⊂ · · · (1-6)
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and the corresponding IFs

d
dt

uNn + AuNn = PNn F(uNn + MNn (uNn )), uNn ∈ HNn . (1-7)

Let n ∈ N be given. We say that a Cn,ε-smooth submanifold M̃Nn of the phase space H (which is a graph
of Cn,ε-smooth M̃Nn : HNn → (HNn )

⊥) is a Cn,ε-smooth extension of the initial IM MN1 for some ε > 0 if

(1) MN1 ⊂ M̃Nn ,

(2) the manifold M̃Nn is C1
b -close to the IM MNn .

Then, the first condition guarantees that the Cn,ε-smooth system of ODEs

d
dt

uNn + AuNn = PNn F(uNn + M̃Nn (uNn )), uNn ∈ HNn , (1-8)

will possess the initial IM PNnMN1 as an invariant submanifold. The second condition together with
the robustness theorem for normally hyperbolic manifolds ensures that this manifold will be globally
exponentially stable and normally hyperbolic (in particular, it will possess an exponential tracking property
in HNn ). In this case we refer to the system (1-8) as a Cn,ε-smooth extension of the corresponding IF (1-3);
see Section 3 for more details. Thus, the extended IF is Cn-smooth on the one hand and, on the other
hand, its limit dynamics coincides with the dynamics of the IF which corresponds to the IM MN1 and,
in turn, coincides with the limit dynamics of the initial abstract parabolic problem (1-1). Note that the
manifold M̃Nn is not necessarily invariant under the solution semigroup S(t) generated by the initial
equation (1-1) and this allows us to overcome the standard obstacles to the smoothness of an invariant
manifold (e.g., such as resonances, see Examples 3.11 and 5.6 below).

The main result of the paper is the following theorem which suggests a solution of the smoothness
problem for IMs.

Theorem 1.1. Let the nonlinearity F ∈ C∞

b (H, H) and let the operator A satisfy the spectral gap
condition (1-5). Let also N1 ∈ N be the smallest number for which the spectral gap condition (1-2) is
satisfied and MN1 be the corresponding IM. Then, for every n ∈ N, one can find ε = εn > 0 for which there
exists a Cn,ε-smooth extension of the IM MN1 as well as the Cn,ε-smooth extension of the corresponding
IF in the sense described above.

The proof of this theorem is given in Section 4 and the Appendix. To construct the desired extension M̃Nn ,
we first define it on the manifold PNnMN1 only in a natural way M̃Nn (p) = (1 − PNn )MN1(PN1 p). Then,
we present an explicit construction of Taylor jets of order n for this function via an inductive procedure;
see Section 4. Finally, we check (in the Appendix) the compatibility conditions for the constructed Taylor
jets and get the desired extension by the Whitney extension theorem.

Our main result can be reformulated in the following way.

Corollary 1.2. Let the assumptions of Theorem 1.1 hold. Then, for every n ∈ N, there exists ε = εn > 0
and a Cn−1,ε-smooth “correction” F̃n(u) of the initial nonlinearity F such that:

(1) F̃n(u) = F(u) for all u ∈ MN1 and MN1 is an IM for the modified equation

∂t u + Au = F̃n(u), u|t=0 = u0, (1-9)
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as well. In particular, the dynamics of (1-9) on MN1 coincides with the initial dynamics (generated by
(1-1)) and MN1 possesses an exponential tracking property for solutions of (1-9).

(2) The extended manifold M̃Nn constructed in Theorem 1.1 is an IM (of smoothness Cn,ε) for the modified
equation (1-9); see Corollary 5.4 below.

In this interpretation, the modified nonlinearity F̃n can be considered as a “cut-off” version of the
initial function F and the main result claims that all obstacles for the existence of Cn-smooth IM can be
removed by increasing the dimension of the IM and using a properly chosen cut-off procedure.

To conclude, we note that the main aim of this paper is to verify the principal possibility to get smooth
extensions of an IM rather than to obtain the optimal bounds for the dimensions Nn of the constructed
extensions. For this reason, the obtained bounds look far from being optimal, but we believe that they can
be essentially improved; see Remark 5.7 for the discussion of this problem.

The paper is organized as follows. In Section 2 we recall the standard facts about smooth functions
in Banach spaces, their Taylor jets, direct and converse Taylor theorems and the Whitney extension
theorem, which is the main technical tool for what follows. In Section 3 we collect basic facts about the
construction of IMs for semilinear parabolic equations via the Perron method and discuss known facts
about the smoothness of these IMs. The main result (Theorem 1.1) is presented in Section 4. The proof
of it is also given there by modulo of compatibility conditions for Whitney extension theorem which are
verified in the Appendix. Finally, the applications of the proved theorem as well as a discussion of open
problems and related topics are given in Section 5.

2. Preliminaries, I: Taylor expansions and the Whitney extension theorem

In this section we briefly recall the standard results on Taylor expansions of smooth functions in Banach
spaces and the related Whitney extension theorem, as well as prepare some technical tools which will be
used later. We start with some basic facts from multilinear algebra; see, e.g., [Hájek and Johanis 2014] for
a more detailed exposition. Let X and Y be two normed spaces. For any n ∈ N, we denote by Ls(Xn, Y )

the space of multilinear continuous symmetric maps from Xn to Y endowed by the standard norm

∥M∥Ls(Xn,Y ) := sup
ξi ∈X, ξi ̸=0

{
∥M(ξ1, . . . , ξn)∥

∥ξ1∥ · · · ∥ξn∥

}
.

Every element M ∈ Ls(Xn, Y ) defines a homogeneous continuous polynomial PM of order n on X with
values in Y via

PM(ξ) := M({ξ}
n), where {ξ}

n
:= ξ, . . . , ξ︸ ︷︷ ︸

n-times

.

Vice versa, the multilinear symmetric map M = MP can be restored in a unique way if the corresponding
homogeneous polynomial is known via the polarization equality:

MP(ξ1, . . . , ξn) =
1

2nn!

∑
εi =±1,i=1,...,n

ε1 · · · εn P
(

a +

n∑
j=1

εjξj

)
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for all a, ξ1, . . . , ξn ∈ X ; see, e.g., [Hájek and Johanis 2014]. Thus, there is a one-to-one correspondence
between homogeneous polynomials and multilinear symmetric maps. Moreover, if we introduce the norm

∥P∥Pn(X,Y ) := sup
ξ ̸=0

{
∥P(ξ)∥

∥ξ∥n

}
on the space Pn(X, Y ) of n-homogeneous polynomials, this correspondence becomes an isometry. For
this reason, we will identify below multilinear forms and the corresponding homogeneous polynomials
where this does not lead to misunderstandings. We also mention here the generalization of the Newton
binomial formula; namely, for any P ∈ Pn(X, Y ) and ξ, η ∈ X , we have

P(ξ + η) =

n∑
j=0

C j
n P({ξ}

j , {η}
n− j ), C j

n :=
n!

j !(n − j)!
; (2-1)

see, e.g., [Hájek and Johanis 2014]. Finally, we denote by Pn(X, Y ) the space of all continuous polyno-
mials of order less than or equal to n on X with values in Y, i.e., P(ξ) ∈ Pn(X, Y ) if

P(ξ) =

n∑
j=0

1
j !

Pj (ξ), Pj (ξ) ∈ Pj (X, Y ).

The following standard result is crucial for our purposes.

Lemma 2.1. For every n ∈ N there exist real numbers ak j ∈ R, k, j ∈ {0, . . . , n}, such that for every
P =

∑n
k=0

1
k!

Pk , Pk ∈ Pk(X, Y ) and every k ∈ {0, . . . , n}, we have

Pk(ξ) =

n∑
j=0

ak j P
(

j
n
ξ

)
(2-2)

and, therefore,

∥Pk(ξ)∥ ≤ Kn,k max
j=0,...,n

∥∥∥∥P
(

j
n
ξ

)∥∥∥∥ (2-3)

for some constants Kn,k which are independent of P.

For the proof of this lemma, see [Hájek and Johanis 2014].

Corollary 2.2. Let P(ξ, δ) ∈ Pn(X, Y ) be a family of polynomials of ξ depending on a parameter δ ∈ B,
where B is a set in X containing zero. Assume that

∥P(ξ, δ)∥ ≤ C(∥ξ∥ +∥δ∥)n+α, ξ ∈ X, δ ∈ B, (2-4)

for some α ≥ 0. Then, for any k ∈ {0, . . . , n},

∥Pk( · , δ)∥Pk(X,Y ) ≤ Ck∥δ∥
n−k+α (2-5)

for some constants Ck depending on C , n and k.

Proof. Indeed, according to (2-3) and (2-4), we have

∥Pk(ξ, δ)∥ ≤ C ′(∥ξ∥ +∥δ∥)n+α.
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Assuming that δ ̸= 0 (there is nothing to prove otherwise), replacing ξ by ∥δ∥ξ and using that Pk is
homogeneous of order k, we get

∥Pk(ξ, δ)∥ ≤ C ′(1 + ∥ξ∥)n+α
∥δ∥n−k+α.

Using once more that Pk is homogeneous of order k in ξ , we finally arrive at

∥Pk(ξ, δ)∥ ≤ C ′
∥ξ∥

k(1 + ∥ξ/∥ξ∥∥
n+α)∥δ∥n−k+α

≤ C ′′
∥ξ∥

k
∥δ∥n−k+α,

which gives (2-5) and finishes the proof. □

Let now U ⊂ X be an open set and let F : U → Y be a map. As usual, for any u ∈ U, we denote by
F ′(u) ∈ L(X, Y ) the Fréchet derivative of F at u (if it exists). Analogously, for any n ∈ N, we denote by
F (n)(u) ∈ Ls(Xn, Y ) its n-th Fréchet derivative. The space of all functions F : U → Y such that F (n)(u)

exists and is continuous as a function from U to Ls(Xn, Y ) is denoted by Cn(U, Y ). For any α ∈ (0, 1],
we denote by Cn,α(U, Y ) the space of functions F ∈ Cn(U, Y ) such that F (n) is Hölder continuous with
exponent α on U. The action of F (n)(u) to vectors ξ1, . . . , ξn ∈ X is denoted by F (n)(u)[ξ1, . . . , ξn]. The
Taylor jet of length n + 1 of the function F at the point u and vector ξ ∈ X will be denoted by J n

ξ F(u):

J n
ξ F(u) := F(u) +

1
1!

F ′(u)ξ +
1
2!

F ′′(u)[ξ, ξ ] + · · · +
1
n!

F (n)(u)[{ξ}
n
]. (2-6)

Obviously, the function ξ → J n
ξ F(u) is in Pn(X, Y ) for every u ∈ U. We will also systematically use the

truncated Taylor jets

jn
ξ F(u) :=

1
1!

F ′(u)ξ +
1
2!

F ′′(u)[ξ, ξ ] + · · · +
1
n!

F (n)(u)[{ξ}
n
], (2-7)

which do not contain zero-order terms.

Theorem 2.3 (direct Taylor theorem). Let F ∈ Cn(U, Y ) and take u1, u2 ∈ U such that ut := tu1 +

(1 − t)u2 ∈ U for all t ∈ [0, 1]. Let also ξ := u2 − u1. Then

F(u2) = J n
ξ F(u1) +

1
n!

∫ 1

0
(1 − s)n−1(F (n)(u1 + sξ) − F (n)(u1)) ds[{ξ}

n
]. (2-8)

In particular, if F ∈ Cn,α(U, Y ), then

∥F(u2) − J n
ξ F(u1)∥ ≤ C∥ξ∥

n+α (2-9)

for some positive C.

For the proof of this classical result; see, e.g., [Hájek and Johanis 2014]. We also mention that in terms
of truncated jets formula (2-9) reads

F(u2) − F(u1) = jn
ξ F(u1) + O(∥ξ∥

n+α), ξ := u2 − u1. (2-10)

The above theorem can be inverted as follows.
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Theorem 2.4 (converse Taylor theorem). Let F be a function such that, for any u ∈ U, there exists a
polynomial ξ → P(ξ, u) ∈ Pn(X, Y ) such that, for all u1, u2 ∈ U,

∥F(u2) − P(ξ, u1)∥ ≤ C∥ξ∥
n+α, ξ := u2 − u1, (2-11)

for some C > 0 and α ∈ (0, 1]. Then, F ∈ Cn(U, Y ),

P(ξ, u) = J n
ξ F(u)

for all u ∈ U and F (n)(u) is locally Hölder continuous in U with exponent α. If , in addition, U is convex,
then F ∈ Cn(U, Y ) and

∥F (n)(u2) − F (n)(u1)∥ ≤ C ′
∥u2 − u1∥

α,

where C ′ depends only on n, α and the constant C from (2-11).

For the proof of this theorem, see [Hájek and Johanis 2014].
Keeping in mind the Whitney extension problem, we recall that an arbitrarily chosen set of polynomials

P(ξ, u), u ∈ U, does not define in general a Cn,α- smooth function, but some compatibility conditions
must be satisfied for that. Indeed, let u1 ∈ U and let δ, ξ ∈ X be such that u2 := u1 + δ ∈ U and
u3 := u1 + δ + ξ = u2 + ξ ∈ X . Then, from (2-9), we have

∥F(u3) − P(ξ + δ, u1)∥ ≤ C∥ξ + δ∥n+α,

∥F(u3) − P(ξ, u1 + δ)∥ ≤ C∥ξ∥
n+α.

Therefore,
∥P(ξ + δ, u1) − P(ξ, u1 + δ)∥ ≤ C1(∥ξ∥ +∥δ∥)n+α. (2-12)

These are the desired compatibility conditions. In other words, if we are given a set V ⊂ X and a family
of polynomials

{P(ξ, u) : u ∈ V } ⊂ Pn(X, Y )

and want to find a function F ∈Cn,α(X, Y ) such that J n
ξ F(u)= P(ξ, u) for all u ∈ V, then the compatibility

condition (2-12) must be satisfied for all u1, u1 + δ ∈ V and all ξ ∈ X .
Inequality (2-12) can be rewritten in a more standard form, which usually appears in the statement of

the Whitney extension theorem. Namely, using (2-1), we see that

P(ξ + δ, u1) =

n∑
l=0

1
l!

n∑
k=l

1
(k − l)!

Pk([{ξ}
l, {δ}k−l

], u1),

where P(ξ, u1) =
∑n

l=0(1/ l!)Pl([{ξ}
l
], u1), Pl( · , u1) ∈Pl(X, Y ). Applying now Corollary 2.2 to (2-12),

we get the desired alternative form of the compatibility conditions:∥∥∥∥Pl({ξ}
l, u1 + δ) −

n−l∑
k=0

1
k!

Pl+k([{ξ}
l, {δ}k

], u1)

∥∥∥∥ ≤ C∥ξ∥
l
∥δ∥n−l+α (2-13)

for l = {0, . . . , n}. The compatibility condition (2-13) has a natural interpretation: if Pk({ξ}, u1) =

F (k)(u1)[{ξ}
k
] as we expect, then (2-13) is nothing more than Taylor expansions of F (l)(u1+δ)[{ξ}

l
] at u1.
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The next theorem shows that the introduced compatibility conditions are sufficient for the existence of
F in the case when X is finite-dimensional.

Theorem 2.5 (Whitney extension theorem). Let dim X < ∞ and let V be an arbitrary subset of X.
Assume also that we are given a family of polynomials {P(ξ, u) : u ∈ V } ⊂ Pn(X, Y ) which satisfies the
compatibility condition (2-12) with some α ∈ (0, 1]. Then, there exists a function F ∈ Cn,α(X, Y ) such
that J n

ξ F(u) = P(ξ, u) for all u ∈ V.

For the proof of this theorem, see [Stein 1970; Fefferman 2005]. Note that the theorem fails if the
dimension of X is infinite, but there are no restrictions on the dimension of the space Y ; see [Wells 1973].

3. Preliminaries, II: Spectral gaps and the construction of an inertial manifold

In this section we briefly discuss the classical theory of inertial manifolds for semilinear parabolic
equations; see, e.g., [Zelik 2014] for a more detailed exposition.

Let H be an infinite-dimensional real Hilbert space. Let us consider an abstract parabolic equation in H :

∂t u + Au = F(u), u|t=0 = u0, (3-1)

where A : D(A) → H is a linear self-adjoint positive operator in H with compact inverse and F ∈

C∞

b (H, H) is a smooth bounded function on H such that all its derivatives are also bounded on H.
It is well known that under the above assumptions (3-1) is globally well-posed for any u0 ∈ H in the

class of solutions u ∈ C([0, T ], H) for all T > 0 and, therefore, generates a semigroup in H :

S(t) : H → H, t ≥ 0, S(t)u0 := u(t). (3-2)

Moreover, the solution operators S(t) are in C∞(H, H) for every fixed t ≥ 0; see [Henry 1981; Zelik
2014] for the details.

Let 0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of the operator A enumerated in the nondecreasing order and
let {en}

∞

n=1 be the corresponding orthonormal system of eigenvectors. Then, by the Parseval equality, for
every u ∈ H, we have

∥u∥
2
H =

∞∑
n=1

(u, en)
2, u =

∞∑
n=1

(u, en)en,

where ( · , · ) is an inner product in H. For a given N ∈ N, we denote by PN and QN the orthoprojectors
on the first N and the rest of eigenvectors of A respectively:

PN u :=

N∑
n=1

(u, en)en, QN u :=

∞∑
n=N+1

(u, en)en.

We are now ready to introduce the main object of study in this paper — an inertial manifold (IM).

Definition 3.1. A set M = MN is an inertial manifold of dimension N for problem (3-1) (with the base
HN := PN H ) if

(1) M is invariant with respect to the semigroup S(t): S(t)M = M.
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(2) M is a graph of a Lipschitz continuous function M : HN → QN H :

M = {p + M(p) : p ∈ HN }.

(3) M possesses an exponential tracking property, namely, for every trajectory u(t) of (3-1) there exists
a trace solution ū(t) ∈ M such that

∥u(t) − ū(t)∥ ≤ Ce−θ t , t ≥ 0, (3-3)

for some θ > λN and constant C = Cu which depends on u.

Note that, although only Lipschitz continuity is traditionally required in the definition, usually IMs
are C1,ε-smooth for some ε > 0 (see the discussion below) and are normally hyperbolic. Then the
exponential tracking property (that is, existence of an asymptotic phase), as well as robustness with
respect to perturbations, are the standard corollaries of this normal hyperbolicity; see [Bates et al. 1999;
Fenichel 1972; Katok and Hasselblatt 1995; Rosa and Temam 1996] for the details. We also mention that
these results can be obtained without formally referring to normal hyperbolicity; see, e.g., [Foias et al.
1988], as well as Theorem 3.2 and Corollary 4.4 below.

Note also the dynamics of (3-1) restricted to the IM M is governed by the system of ODEs

d
dt

uN + AuN = PN F(uN + M(uN )), uN := PN u ∈ RN , (3-4)

which is called an inertial form (IF) associated with (3-1). In the case where the spectral subspace HN is
used as a base for IM (like in Definition 3.1), the regularity of the corresponding vector field in the IF is
determined by the regularity of the IM only.

The following theorem is the key result in the theory of IMs.

Theorem 3.2. Let the function F in (3-1) be globally Lipschitz continuous with Lipschitz constant L and
let, for some N ∈ N, the spectral gap condition

λN+1 − λN > 2L (3-5)

be satisfied. Then (3-1) possesses an IM MN of dimension N.

Proof. Although this statement is classical, see, e.g., [Foias et al. 1988; Miklavčič 1991; Romanov 1993;
Zelik 2014], the elements of its proof will be crucially used in what follows, so we sketch them below.

To construct the IM, we will use the so-called Perron method; namely, we will prove that, for every
p ∈ HN , the problem

∂t u + Au = F(u), t ≤ 0, PN u|t=0 = p (3-6)

possesses a unique backward solution u(t) = V (p, t), t ≤ 0, belonging to an appropriately weighted
space, and then define the desired map M : HN → QN H via

M(p) := QN V (p, 0). (3-7)

To solve (3-6) we use the Banach contraction theorem treating the nonlinearity F as a perturbation. To
this end we need the following two lemmas.
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Lemma 3.3. Let θ ∈ (λN , λN+1) and let us consider the equation

∂tv + Av = h(t), t ∈ R, h ∈ L2
eθ t (R, H), (3-8)

where the space L2
eθ t (R, H) is defined via the weighted norm

∥h∥
2
L2

eθ t (R,H)
:=

∫
t∈R

e2θ t
∥h(t)∥2 dt < ∞. (3-9)

Then, problem (3-8) possesses a unique solution u ∈ L2
eθ t (R, H) and the solution operator T : L2

eθ t → L2
eθ t ,

T : h 7→ u satisfies

∥T ∥L(L2
eθ t ,L

2
eθ t )

=
1

min{θ − λN , λN+1 − θ}
. (3-10)

The proof of this identity is just a straightforward calculation based on decomposition of the solution
u(t) with respect to the base {en}

∞

n=1 and solving the corresponding ODEs; see [Zelik 2014].
The second lemma gives the analogue of this formula for the linear equation on a negative semiaxis.

Lemma 3.4. Let θ ∈ (λN , λN+1). Then, for any p ∈ HN and any h ∈ L2
eθ t (R−, H), the problem

∂tv + Av = h(t), t ≤ 0, PN v|t=0 = p (3-11)

possesses a unique solution v ∈ L2
eθ t (R−, H). This solution can be written in the form

v = T h +Hp,

where T is exactly the solution operator constructed in Lemma 3.3 applied to the extension of the
function h(t) by zero for t ≥ 0 and H : HN → L2

eθ t (R−, H) is a solution operator for the problem with
zero right-hand side:

H(p, t) :=

N∑
n=1

(p, en)e−λn t .

Indeed, this lemma is an easy corollary of Lemma 3.3; see [Zelik 2014].
We are now ready to prove the theorem. To this end, we fix the optimal value θ = (λN+1 + λN )/2 and

write (3-6) as a fixed-point problem
u = T ◦ F(u) +H(p) (3-12)

in the space L2
eθ t (R−, H). Since the norm of the operator T is equal to 2/(λN+1 − λN ) and the Lipschitz

constant of F is L , the spectral gap condition (3-5) guarantees that the right-hand side of (3-12) is a
contraction for every p ∈ HN . Thus, by the Banach contraction theorem, for every p ∈ HN , there exists a
unique solution u(t) = V (p, t) of problem (3-6) belonging to L2

eθ t (R−, H) and the map p 7→ V (p, · ) is
Lipschitz continuous. Due to the parabolic smoothing property, we know that

∥u(0)∥ ≤ C(1 + ∥u∥L2([−1,0],H)) and ∥u(0) − w(0)∥ ≤ C∥u∥L2([−1,0],H)

for any two backward solutions u, w of (3-1); see, e.g., [Zelik 2014]. In particular, these formulas show
that the solution V (p, t) is continuous in time (V (p, · ) ∈ Ceθ t (R−, H), where the weighted space of
continuous functions is defined analogously to (3-9)) and the map p 7→ V (p, · ) is Lipschitz continuous as



SMOOTH EXTENSIONS FOR INERTIAL MANIFOLDS OF SEMILINEAR PARABOLIC EQUATIONS 511

a map from HN to Ceθ t (R−, H). Thus, formula (3-7), defines indeed a Lipschitz manifold of dimension N
over the base HN as graph of Lipschitz continuous function M : HN → QN H.

The invariance of this manifold follows by the construction, so we only need to verify the exponential
tracking property.

Let u(t) = S(t)u0 be an arbitrary solution of problem (3-1) and let φ(t) ∈ C∞(R) be a cut-off function
such that φ(t) ≡ 0 for t ≤ 0 and φ(t) ≡ 1 for t ≥ 1. Then the function φ(t)u(t) is defined for all t ∈ R.
We seek for the desired solution ū(t) ∈ M (by the construction of M such solutions are defined for all
t ∈ R) in the form

ū(t) = φ(t)u(t) + v(t). (3-13)

Inserting this anzatz to (3-1), we end up with the following equation for v(t):

∂tv + Av = F(φu + v) − φF(u) − φ′u. (3-14)

Let v ∈ L2
eθ t (R, H) be a solution of this equation. Then, since ū = v for t ≤ 0, we necessarily have ū ∈M

by the construction of the IM. On the other hand, for t ≥ 1, we have v = ū − u ∈ L2
eθ t ([1, ∞), H) and

using the parabolic smoothing again, we get the desired estimate (3-3). Thus, we only need to find such a
solution v(t). To this end, we invert the linear part of (3-14) to get the fixed-point equation

v = T (F(φu + v) − φF(u) − φ′u). (3-15)

It is straightforward to verify using Lemma 3.3 that the right-hand side of (3-15) is a contraction on the
space L2

eθ t (R, H) if the spectral gap condition holds; see [Zelik 2014]. Thus, the Banach contraction
theorem finishes the proof of exponential tracking. □

Remark 3.5. It is well known that the spectral gap condition (3-5) is sharp in the sense that if it is violated
for some N and L , one can find a nonlinearity F such that (3-1) does not possess an IM of dimension N
with base HN ; see [Romanov 1993].

More recent examples show that if the condition

sup
N∈N

{λN+1 − λN } < 2L

is violated for all N, one can construct a smooth nonlinearity F such that (3-1) does not possess any
Lipschitz or even log-Lipschitz finite-dimensional manifold (not necessarily invariant) which contains the
global attractor; see [Eden et al. 2013; Zelik 2014].

Remark 3.6. Theorem 3.2 guarantees the existence of an IM MN for every N such that the spectral gap
condition (3-5) is satisfied. Typically, this N is not unique, instead, we have a whole sequence {Nk}

∞

k=1
of N ’s satisfying the spectral gap condition. Therefore, according to the theorem, we will have a sequence
of IMs {MNk }

∞

k=1 of increasing dimensions: N1 < N2 < N3 < · · · . Moreover, from the explicit description
of an IM using backward solutions of (3-6), we see that

MN1 ⊂ MN2 ⊂ MN3 ⊂ · · · ; (3-16)

see [Foias et al. 1988] for more details. In this case it can be also proved that MNk−1 is a normally
hyperbolic submanifold of MNk .
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Let us now discuss the further regularity of the IM M. To this end, we need one more auxiliary
statement.

Proposition 3.7. Let the spectral gap condition (3-5) hold and let u(t) ∈ C(R−, H) be an arbitrary
function. Let also the exponent θ ∈ (λN , λN+1) satisfy

θ− := L + λN < θ < λN+1 − L := θ+. (3-17)

Then, for any h ∈ L2
eθ t (R−, H) and every p ∈ HN , the corresponding equation of variations

∂tv + Av − F ′(u(t))v = h(t), t ≤ 0, PN v|t=0 = p (3-18)

possesses a unique solution v ∈ L2
eθ t (R−, H) ∩ Ceθ t (R−, H) and the following estimate holds:

∥v∥Ceθ t (R−,H) ≤ C∥v∥L2
eθ t (R−,H) ≤ CL ,θ (∥h∥L2

eθ t (R−,H) + ∥p∥), (3-19)

where the constant CL ,θ is independent of u, h and p.

Indeed, (3-18) can be solved via the Banach contraction theorem treating the term F ′(u)v as a
perturbation analogously to the nonlinear case. Inequalities (3-17) guarantee that the map T F ′(u)v is a
contraction on L2

eθ t (R−, H), due to (3-10).

Corollary 3.8. Let the assumptions of Theorem 3.2 hold and let, in addition, the exponent ε ∈ (0, 1] be
such that

λN+1 − (1 + ε)λN > (2 + ε)L . (3-20)

Assume also that F ∈ C1,ε(H, H). Then the associated IM MN is C1,ε-smooth, for any p, ξ ∈ HN , the
derivative M ′(p)ξ can be found as the value of the QN projection of V ′(t) = V ′(p, t)ξ at t = 0, where
the function V ′ solves the equation of variations

∂t V ′
+ AV ′

− F ′(u(t))V ′
= 0, t ≤ 0, PN V ′

|t=0 = ξ, u(t) := V (p, t), (3-21)
and

∥M ′(p1) − M ′(p2)∥L(HN ,H) ≤ C∥p1 − p2∥
ε

for some constant C independent of p1, p2 ∈ HN .

Proof. Let p1, p2 ∈ HN and ui (t) := V (pi , t) be the corresponding trajectories belonging to the IM. Let
also v(t) := u1(t) − u2(t) and ξ := p1 − p2. Then v solves

∂tv + Av − Lu1,u2(t)v = 0, t ≤ 0, PN v|t=0 = ξ, (3-22)

where Lu1,u2(t) :=
∫ 1

0 F ′(su1(t) + (1 − s)u2(t)) ds. Since the norm of Lu1,u2(t) does not exceed L ,
Proposition 3.7 is applicable to (3-22) and, therefore, for every θ satisfying (3-17), we have the estimate

∥v∥Ceθ t (R−,H) ≤ C∥v∥L2
eθ t (R−,H) ≤ Cθ∥p1 − p2∥. (3-23)

Note also that the function V ′(p, t)ξ is well-defined for all p, ξ ∈ HN due to Proposition 3.7 and satisfies
the analogue of (3-23). Let w(t) := v(t) − V ′(p1, t)ξ , with ξ := p1 − p2. Then, this function solves

∂tw + Aw − F ′(u1)w = F(u1) − F(u2) − F ′(u1)v := hu1,u2(t), PN w|t=0 = 0. (3-24)
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Since F ∈ C1,ε(H, H), by the Taylor theorem, we have

∥hu1,u2(t)∥ ≤ C∥v(t)∥1+ε,

which, due to (3-23), gives

∥hu1,u2∥L2
e(1+ε)θ t (R−,H) ≤ C∥v∥L2

eθ t (R−,H)∥v∥
ε
Ceθ t (R−,H) ≤ C ′

∥ξ∥
1+ε.

Fixing now θ in such a way that θ > θ− and (1 + ε)θ < θ+ (this is possible to do due to assumption
(3-20)) and applying Proposition 3.7 to (3-24), we finally arrive at

∥M(p2) − M(p1) − M ′(p1)ξ∥ = ∥w(0)∥ ≤ C1∥w∥L2
e(1+ε)θ t (R−,H) ≤ C2∥ξ∥

1+ε

and the converse Taylor theorem finishes the proof of the corollary. □

The next corollary claims that the constructed manifold M actually lives in a more regular space
H 2

:= D(A).

Corollary 3.9. Let the assumptions of Corollary 3.8 hold. Then the manifold M is simultaneously a
C1,ε-smooth IM for (3-1) in the phase space H 2

= D(A).

Proof. This is an almost immediate corollary of the parabolic smoothing property. Indeed, let us first
check that M∈ H 2. To this end, it is enough to check that the backward solution (3-6) actually belongs to
Ceθ t (R−, H 2). First, using the L2(H 2)-maximal regularity for the solutions of a linear parabolic equation

∂tv + Av = h(t), t ≤ 0, (3-25)
namely, that

∥v∥Cα(−1,0;H) + ∥∂tv∥L2(−1,0;H) + ∥Av∥L2(−1,0;H) ≤ Cα(∥h∥L2(−2,0,H) + ∥v∥L2(−2,0,H)), (3-26)

where α ∈
(
0, 1

2

)
, we end up with the estimate

∥u∥Cα(−1,0;H) ≤ Cα(∥F(u)∥L2(−2,0;H)+∥u∥L2(−2,0;H))≤ Cα,θ (1+∥u∥L2
eθ t (R−,H))≤ C(1+∥p∥), (3-27)

where α ∈
(
0, 1

2

)
. Second, using the Cα(H)-maximal regularity for solutions of (3-25) and the obvious

estimate
∥F(u)∥Cα(−2,0;H) ≤ ∥F∥Cα(H,H)(1 + ∥u∥

α
Cα(−2,0;H)),

we arrive at

∥∂t u∥Cα(−1,0;H) + ∥Au∥Cα(−1,0;H) ≤ C(∥F(u)∥Cα(−2,0;H) + ∥u∥Cα(−2,0;H))

≤ C1(1 + ∥u∥Cα(−2,0;H)) ≤ C2(1 + ∥p∥) (3-28)

and the fact that M(p) belongs to H 2 is proved. The fact that M is C1,ε-smooth as a map from HN to
H 2 can be verified analogously and the corollary is proved. □

Remark 3.10. The analogue of Corollary 3.8 holds for higher derivatives as well. For instance, if we
want to have a Cn,ε-smooth IM, we need to require that

λN+1 − (n + ε)λN > (n + 1 + ε)L . (3-29)
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To verify this, we just need to define the higher-order Taylor jets for the IM M using second, third,
etc., equations of variations for (3-6) and use again Proposition 3.7. For instance, the second derivative
V ′′

= V ′′(p, t)[ξ, ξ ] solves

∂t V ′′
+AV ′′

−F ′(u(t))V ′′
= F ′′(u(t))[V ′(p, t)ξ,V ′(p, t)ξ ], PN V ′′

|t=0 =0, u(t) := V (p, t). (3-30)

According to Proposition 3.7, in order to be able to solve this equation, we need θ+ > 2θ− (since V ′
∈ L2

eθ t

with θ > θ− and the right-hand side F ′′(u)[V ′, V ′
] ∈ L2

e2θ t ), which gives (3-29) for n = 2.
We believe that sufficient condition (3-29) for the existence of a Cn,ε-smooth IM is sharp for any n

and ε, but we restrict ourselves by recalling below the classical counterexample of G. Sell to the existence
of C2-smooth IM which demonstrates the sharpness of (3-29) for n = 2; see [Chow et al. 1992].

Example 3.11. Let H := l2 (the space of square summable sequences with the standard inner product)
and let us consider the following particular case of (3-1):

d
dt

u1 + u1 = 0,
d
dt

un + 2n−1un = u2
n−1, n = 2, 3, . . . . (3-31)

Here λn = 2n−1 and we have a set of resonances 2λn = λn+1 which prevent the existence of any finite-
dimensional invariant local manifold of dimension greater than zero which is C2-smooth and contains
zero. Note that the nonlinearity here is locally smooth near zero and since we are interested in local
invariant manifolds near zero, the behaviour of it outside the small neighbourhood of zero is not important
(we may always cut-off it outside of the neighbourhood to get global Lipschitz continuity). Moreover,
since F ′(0) = 0, decreasing the size of the neighbourhood we may make the Lipschitz constant L as small
as we want. Thus, according to Corollary 3.8, for any N ∈ N, there exists a local invariant manifold MN

of dimension N with the base HN which is C1,ε-smooth for any ε < 1.
Let us check that a C2-smooth invariant local manifold does not exist. Indeed, let MN be such a

manifold of dimension N. Then, since the tangent plane TMN (0) to this manifold at zero is invariant
with respect to A (due to the fact that F ′(0) = 0), we must have

H ′

N := TMN (0) = span{en1, . . . , enN }

for some n1 < n2 < · · · < nN . Thus, the manifold MN can be presented locally near zero as a graph of
a C2-function M : H ′

N → (H ′

N )⊥ such that M(0) = M ′(0) = 0. In particular, expanding M in Taylor
series near zero, we have

unN +1 = (M(un1, . . . , unN ), enN +1) = cu2
nN

+ · · · .

Let us try to compute the constant c. Inserting this in the (nN +1)-th equation and using the invariance,
we get

∂t unN +1 + 2nN unN +1 = 2c∂t unN unN + 2nN cu2
nN

+ · · ·

= −2c2nN −1u2
nN

+ 2nN cu2
nN

+ · · · = 0 + · · · = u2
nN

, (3-32)

which gives 0 = 1. Thus, the manifold MN cannot be C2-smooth.

Remark 3.12. Note that in the case where A is an elliptic operator of order 2k in a bounded domain �

of Rd , we have λn ∼ Cn2k/d due to the Weyl asymptotic. Thus, one may expect in general only gaps of
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the size
λN+1 − λN ∼ C N 2k/d−1

∼ C ′λ
1−d/(2k)

N , (3-33)

which is much weaker than (3-29) with n > 1. Sometimes the exponent in the right-hand side of (3-33)
may be improved due to multiplicity of eigenvalues (e.g., for the Laplace–Beltrami operator on a sphere Sd,
we have λ

1/2
N instead of λ

1−d/(2k)

N in the right-hand side of (3-33) for infinitely many values of N, no matter
how big the dimension d is), but this exponent is always less than one in all more or less realistic examples.
Thus, the existence of Cn-smooth IMs with n > 1 looks unrealistic and could be obtained in general, but
only for bifurcation problems where, e.g., λ1, . . . , λN are close to zero, λN+1 is of order 1 and L is small.

In contrast to this, if the spectral gap condition (3-5) is satisfied for some N, i.e., λN+1 − λN > 2L ,
we always can find a small positive ε = εN such that λN+1 − (1+ ε)λN > (2+ ε)N and, therefore, (3-20)
will be also satisfied. Thus, if the nonlinearity F is smooth enough, we automatically get a C1,ε-smooth
IM for some small ε depending on N and L .

Remark 3.13. Let ū(t) be a trajectory of (3-1) belonging to the IM, i.e.,

QN ū(t) ≡ MN (PN ū(t))

and let ūN := PN ū(t). Then, we may write a linearization near the trajectory ū(t) in two natural ways.
First, we may just linearize (3-1) without using the fact that ū ∈ MN . This gives the equation

∂tv + Av − F ′(ū)v = h(t), (3-34)

which we have used above to get the existence of the IM, its smoothness and exponential tracking.
Alternatively, we may linearize the reduced ODEs (3-4):

∂tvN + AvN − F ′(ū)(vN + M ′

N (ū)vN ) = hN (t). (3-35)

Of course, these two equations are closely related. Namely, if vN (t) solves (3-35), then the function

v(t) := vN (t) + M ′

N (ū(t))vN (t) (3-36)

solves (3-34) with
h(t) := hN (t) + M ′

N (ū(t))hN (t). (3-37)

Vice versa, if h(t) satisfies (3-37) and the solution v(t) of (3-34) satisfies (3-36) for some t , then it satisfies
(3-36) for all t and vN (t) := PN v(t) solves (3-35).

This equivalence is a straightforward corollary of the invariance of the manifold MN and we leave its
rigorous proof to the reader.

4. Main result

In this section we develop an alternative approach for constructing Cn-smooth IFs which does not require
huge spectral gaps. The key idea is to require instead the existence of many spectral gaps and to use the
second spectral gap in order to solve (3-30) for the second derivative, the third gap to solve the appropriate
equation for the third derivative, etc. Of course, this will not allow us to construct a Cn-smooth IM (we
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know that it may not exist for n > 1, see Example 3.11). Instead, for every p ∈MN2 and the corresponding
trajectory u = V (p, t), we construct the corresponding Taylor jet J n

ξ V (p, t) of length n + 1 belonging
to the space Pn(HNn , H) for all t ≤ 0, where Nk is the dimension of the IM MNk built up on the k-th
spectral gap. These jets must be constructed in such a way that the compatibility conditions are satisfied.
Then, the Whitney embedding theorem will give us the desired smooth extension of the initial IM. To be
more precise, we give the following definition of such a smooth extension.

Definition 4.1. Let (3-1) possess at least two spectral gaps which correspond to the dimensions K1 and K2

and let ε > 0 be a small number. Denote the corresponding IMs by MK1 and MK2 respectively; the
corresponding C1,ε-functions generating these manifolds are denoted by MK1 and MK2 respectively. A
Cn,ε-smooth submanifold M̃K2 (not necessarily invariant) of dimension K2 is called a Cn-extension of
the IM MK1 if the following conditions hold:

(1) M̃K2 is a graph of a Cn,ε-smooth function M̃K2 : PK2 H → QK2 H.

(2) M̃K2 |PK2MK1
= QK2 MK1 and therefore MK1 ⊂ M̃K2 .

(3) M̃K2 is µ-close in the C1
b -norm to MK2 for a sufficiently small µ.

Remark 4.2. The Cn,ε dynamics on the extended IM M̃K2 is naturally defined via

∂t uK2 + AuK2 = PK2 F(uK2 + M̃K2(uK2)), uK2 ∈ HK2, (4-1)

and u(t) :=uK2(t)+M̃K2(uK2(t)). Obviously, the manifold M̃K2 is invariant with respect to the dynamical
system thus defined. Moreover, due to the second condition of Definition 4.1, the C1,ε-submanifold
PK2MK1 ⊂ HK2 is invariant with respect to (4-1) and the restriction of (4-1) coincides with the initial IF
(3-4) generated by the IM MK1 . Thus, system of ODEs (4-1) is indeed a smooth extension of the IF (3-4).

Finally, the third condition of Definition 4.1 guarantees that PK2MK1 is a normally hyperbolic stable
invariant manifold for (4-1) (since it is so for the IF generated by the function MK2). This means that
PK2MK1 also possesses an exponential tracking property. Thus, the limit dynamics generated by the
extended IF coincides with the one generated by the initial abstract parabolic equation (3-1).

We are now ready to state the main result of the paper.

Theorem 4.3. Let the nonlinearity F : H → H in (3-1) be smooth and all its derivatives be globally
bounded. Let also the following form of spectral gap conditions be satisfied:

lim sup
N→∞

(λN+1 − λN ) = ∞. (4-2)

Then, for any n ∈ N and any µ > 0, equation (3-1) possesses a Cn,ε-smooth extension M̃Nn of the initial
IM MN1 (where N1 is the first N which satisfies the spectral gap condition (3-5) and ε > 0 is small
enough) such that M̃Nn is µ-close to the IM MNn in the C1

b -norm.

Proof for n = 2. Let N1 be the first N for which the spectral gap condition (3-5) is satisfied with L :=

∥F ′
∥Cb(H,L(H,H)) and let the corresponding M1 be the C1,ε-smooth IM which exists due to Theorem 3.2

and Corollary 3.8. Recall that for any p ∈ H, we have a solution V (p, t) of problem (3-6) (where p is
replaced by PN1 p) and its Fréchet derivative V ′

ξ (t) := V ′(p, t)ξ in p satisfies the equation of variations
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(3-21), such that both functions V (p, · ) and V ′

ξ ( · ) and belong to the space L2
eθ1t (R−, H) for any θ1

satisfying (3-17), i.e., λN1 + L < θ1 < λN1 − L . Moreover, for any other p1 ∈ H, we have the estimate

∥V (p1, t) − V (p, t) − V ′

ξ (t)∥L2
eθ1(1+ε)t (R−,H) ≤ C∥PN1(p − p1)∥

1+ε, (4-3)

where ε > 0, ξ := p1 − p and C is independent of p and p1.
Let now N2 > N1 be the first N which satisfies

λN2+1 − λN2 − λN1 > 3L (4-4)

(such N exists due to condition (4-2)). Then, we have the corresponding C1,ε-smooth IM MN2 . Let us
denote by W (p, t), p ∈ H, the corresponding solution of (3-6) (where N is replaced by N2 and p is
replaced by PN2 p). This solution belongs to L2

eθ2t (R−, H) with θ2 satisfying (3-17) (with N replaced
by N2). Moreover, analogously to (4-3), we have

∥W (p1, t) − W (p, t) − W ′

ξ (t)∥L2
eθ2(1+ε)t (R−,H) ≤ C∥PN2(p − p1)∥

1+ε, (4-5)

where W ′

ξ (t) = W ′(p, t)ξ solves (3-21) with N replaced by N2. We also know that V (p, t) = W (p, t) if
p ∈ MN1 and, therefore, due to (4-3) and (4-5),

∥V ′(p, · )ξ − W ′(p, · )ξ∥L2
eθ2(1+ε)t (R−,H) ≤ C∥PN2ξ∥

1+ε, ξ = p1 − p, p, p1 ∈ MN1 . (4-6)

Let us define for every p ∈ MN1 and every ξ ∈ H the “second derivative” W ′′

ξ = W ′′(p, t)[ξ, ξ ] of the
trajectory u(t) = W (p, t) = V (p, t) as a solution of the problem

∂t W ′′

ξ +AW ′′

ξ −F ′(V (p, t))W ′′

ξ =2F ′′(V (p, t))[V ′

ξ ,W ′

ξ ]−F ′′(V (p, t))[V ′

ξ ,V ′

ξ ], PN2 W ′′

ξ |t=0 =0. (4-7)

Note that the right-hand side of this equation belongs to the weighted space L2
e(θ1+θ2)t (R−, H), where the

exponents θ1 and θ2 satisfy assumption (3-17) with N = N1 and N = N2 respectively, i.e.,

λN1 + L < θ1 < λN1 − L , λN2 + L < θ2 < λN2 − L .

Moreover, due to assumption (4-4), it is possible to fix θ1 and θ2 in such a way that the exponent θ1 + θ2

still satisfies (3-17) with N = N2. Thus, by Proposition 3.7, there exists a unique solution of (4-7)
belonging to the space L2

e(θ1+θ2)t (R−, H) and the function W ′′

ξ is well-defined and satisfies

∥W ′′

ξ ∥C
e(θ1+θ2)t (R−,H) ≤ C∥W ′′

ξ ∥L2
e(θ1+θ2)t (R−,H) ≤ C2

∥ξ∥
2,

where C is independent of p.
Let us define the desired quadratic polynomial ξ → J 2

ξ W (p, t), p ∈ MN1 , as

J 2
ξ W (p, t) := V (p, t) + W ′(p, t)ξ +

1
2 W ′′(p, t)[ξ, ξ ], ξ ∈ H. (4-8)

We need to verify the compatibility conditions for these “Taylor jets” on p ∈ MN1 . It is straightforward
to check using F ∈ C2,ε, V, W ∈ C1,ε and Proposition 3.7 that

∥W ′′(p1, · )[ξ, ξ ] − W ′′(p, · )[ξ, ξ ]∥L2
e(θ1+θ2+ε)t (R−,H) ≤ C∥ξ∥

2
∥p − p1∥

ε
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for p, p1 ∈ MN1 . This gives us the desired compatibility condition for the second derivative; see (2-13)
for n = l = 2.

Let us now verify the compatibility conditions for the first derivative (l = 1, n = 2 in (2-13)). To
this end, we need to expand the difference w(t) := W ′(p1, t)ξ − W ′(p, t)ξ , p, p1 ∈ MN1 , in terms of
δ = p − p1. By the definition of W ′, this function satisfies the equation

∂tw + Aw − F ′(V (p, t))w = (F ′(V (p1, t)) − F ′(V (p, t)))W ′(p1, t)ξ

= F ′′(V (p, t))[V ′(p, t)δ, W ′(p, t)ξ ] + h(t), PN2w|t=0 = 0, (4-9)

where the reminder h satisfies

∥h∥L2
e(θ1+θ2+ε)t (R−,H) ≤ C∥δ∥1+ε

∥ξ∥

for sufficiently small positive ε (this also follows from the fact that F is smooth and V, W ∈ C1,ε). Thus,
the remainder h in the right-hand side of (4-9) is of higher order in δ and, for this reason, is not essential,
so we need to study the bilinear form (with respect to δ, ξ ) in the right-hand side. Note that, in contrast
to the case where the IM is C2, this form is even not symmetric, so it should be corrected. Namely, we
write the identity

F ′′(V (p, t))[V ′(p, t)δ, W ′(p, t)ξ ]

=
{

F ′′(V (p, t))[V ′(p, t)δ, W ′(p, t)ξ ] + F ′′(V (p, t))[V ′(p, t)ξ, W ′(p, t)δ]
−F ′′(V (p, t))[V ′(p, t)δ, V ′(p, t)ξ ]

}
−F ′′(V (p, t))[V ′(p, t)ξ, W ′(p, t)δ − V ′(p, t)δ] (4-10)

and note that the first term in the right-hand side is nothing more than the symmetric bilinear form which
corresponds to the quadratic form

2F ′′(V (p, t))[V ′(p, t)ξ, W ′(p, t)ξ ] − F ′′(V (p, t))[V ′(p, t)ξ, V ′(p, t)ξ ]

used in (4-7) to define W ′′ and the second term is of order ∥δ∥1+ε
∥ξ∥ due to estimate (4-6) (where ξ

is replaced by δ) and the growth rate of this term does not exceed e−(θ1+θ2+ε)t as t → −∞. Thus, by
Proposition 3.7, we have

∥w − W ′′(p, · )[δ, ξ ]∥L2
e(θ1+θ2+ε)t (R−,H) ≤ C∥δ∥1+ε

∥ξ∥

and the compatibility condition for l = 1 is verified.
Finally, let us check the zero-order compatibility condition (l = 0, n = 2 in (2-13)). Let

R(t) := V (p1, t) − V (p, t) − W ′(p, t)δ −
1
2!

W ′′(p, t)[δ, δ].

Then, as elementary computations show, this function satisfies the equation

∂t R + AR − F ′(V (p, t))R

= {F(V (p1, t)) − F(V (p, t)) − F ′(V (p, t))(V (p1, t) − V (p, t))}

−
1
2!

(
2F ′′(V (p, t))[V ′(p, t)δ, W ′(p, t)δ]

− F ′′(V (p, t))[V ′(p, t)δ, V ′(p, t)δ]
)
, PN2 |t=0 R = 0. (4-11)
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Since F ∈ C2,ε and V ∈ C1,ε, the first term in the right-hand side equals

1
2!

F ′′(V (p, t))[V ′(p, t)δ, V ′(p, t)δ] (4-12)

up to the controllable in L2
e(θ1+θ2+ε)t (R−, H)-norm remainder of order ∥δ∥2+ε. The second term can be

simplified using (4-6) and also equals (4-12) up to higher-order terms. Thus, the right-hand side of (4-11)
vanishes up to terms of order ∥δ∥2+ε and Proposition 3.7 gives us that

∥R∥L2
e(θ1+θ2+ε)t (R−,H) ≤ C∥δ∥2+ε (4-13)

for some positive ε. This finishes the verification of the compatibility conditions.
We are now ready to use the Whitney extension theorem. To this end, we first recall that the IM MN2

is a graph of the C1,ε-function MN2 : PN2 H → QN2 H, which is defined via MN2(p) := QN2 W (p, 0),
p ∈ PN2 H = HN2 (all functions V , W, W ′, W ′′ defined above depend only on PN2-component of p ∈ H,
so without loss of generality we may assume that p, ξ, δ ∈ HN2 (we took them from H in order to
simplify the notation only). Thus, projecting the constructed Taylor jets to t = 0 and QN2 H, we get the
C1,ε-function MN2(p) restricted to the invariant set p ∈ PN2MN1 and a family of quadratic polynomials

J 2
ξ MN2(p) := QN2 J 2

ξ W (p, 0),

which satisfy the compatibility conditions on p ∈ PN2MN1 . Therefore, since HN2 is finite-dimensional,
the Whitney extension theorem gives the existence of a C2,ε-function M̂N2 : PN2 H → QN2 H such that

J 2
ξ M̂N2(p) = J 2

ξ MN2(p), p ∈ PN2MN1 .

Thus, the desired C2+ε-extension of the IM MN1 is “almost” constructed. It only remains to take care
of the closeness in the C1-norm. To this end, for any small ν > 0, we introduce a cut-off function
ρν ∈ C∞(HN2, R) such that ρ(p) ≡ 0 if p belongs to the ν-neighbourhood Oν of PN2MN1 and ρ(p) ≡ 1
if p /∈ O2ν . Moreover, since PN2MN1 is C1,ε-smooth, we may require also that

|∇pρ(p)| ≤ Cν−1, (4-14)

where the constant C is independent of ν. Finally, we define

M̃N2(p) := (1 − ρν(p))M̂N2(p) + ρν(p)(Sν2 MN2)(p), (4-15)

where Sµ is a standard mollifying operator,

(Sµ f )(p) :=

∫
RN2

βµ(p − q) f (q) dq,

and the kernel βµ(p) satisfies βµ(p) = (1/µN2)β1(p/µ) and β1(p) is a smooth, nonnegative function
with compact support satisfying

∫
RN2 β1(p) dp = 1.

We claim that M̃N2 is a desired extension. Indeed, M̃N2(p) ≡ M̂N2(p) in Oν and therefore M̃N2 and
MN2 coincide on PN2MN1 . Obviously, M̃N2 is C2,ε-smooth. To verify closeness, we note that

M̃N2(p) − MN2(p) = (1 − ρν(p))(M̂N2(p) − MN2(p)) + ρν(p)((Sν2 MN2)(p) − MN2(p)). (4-16)
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Using the fact that MN2 ∈ C1,ε together with the standard estimates for the mollifying operator, we get

∥(Sν2 MN2)(p) − MN2(p)∥ ≤ Cν2, ∥∇p(Sν2 MN2)(p) − ∇p MN2(p)∥ ≤ Cν2ε,

which together with (4-14) shows that the C1-norm of the second term in the right-hand side of (4-16)
is of order ν2ε. To estimate the first term, we use that both functions M̂N2(p) and MN2(p) are at least
C1,ε-smooth and

M̂N2(p) = MN2(p), ∇p M̂N2(p) = ∇p MN2(p), p ∈ PN2MN1 .

For this reason,

∥M̂N2(p) − MN2(p)∥ ≤ Cν1+ε, ∥∇p M̂N2(p) − ∇p MN2(p)∥ ≤ Cνε

for all p ∈ O2ν . Thus, using (4-14) again, we see that

∥M̃N2( · ) − MN2( · )∥C1
b (HN2 ,H) ≤ Cνε.

This finishes the proof of the theorem for the case n = 2. □

Proof for general n ∈ N. We will proceed by induction with respect to n. Assume that, for some
n ∈ N, we have already constructed the C1,ε-smooth inertial manifold MNn which is a graph of a
map MNn : PNn H → QNn H and this map is constructed via the solution V (p, t), t ≤ 0, p ∈ H, of the
backward problem (3-6), where N is replaced by Nn . Recall that this manifold is constructed using the
n-th spectral gap. Assume also that, for every p ∈ PNnMN1 , we have already constructed the n-th Taylor
jet J n

ξ V (p, t) such that the compatibility conditions up to order n are satisfied. In contrast to the proof
for the case n = 2, it is convenient for us to write these conditions in the form of (2-12):

∥J n
ξ V (p1, · ) − J n

ξ+δV (p, · )∥L2
e(θn+(n−1)θn−1+ε)t (R−,H) ≤ C(∥δ∥ +∥ξ∥)n+ε. (4-17)

Here ξ ∈ H is arbitrary, δ := p1 − p, ε > 0 and θ1 < θ2 · · · < θn are the exponents which satisfy condition
(3-17) for N = N1, . . . , Nn . In order to simplify the notation, we will write below

J n
ξ V (p1) − J n

ξ+δV (p) = Oθn+(n−1)θn−1+ε((∥δ∥ +∥ξ∥)n+ε) (4-18)

instead of (4-17) and likewise in similar situations. Rewriting (4-18) in terms of truncated jets with the
help of (2-10) (where ξ is replaced by δ), we have

jn
ξ V (p1) + jn

δ V (p) − jn
ξ+δV (p) = Onθn+ε((∥δ∥ +∥ξ∥)n+ε), (4-19)

where we have used that θn−1 < θn . We also need the induction assumption that (4-19) holds for every
m ≤ n, namely,

J m
ξ V (p1) − J m

ξ+δV (p) = Omθn+ε((∥δ∥ +∥ξ∥)m+ε). (4-20)

Let us now consider the (n+1)-th spectral gap at N = Nn+1 which is the first N satisfying

λNn+1 + L + n(λNn+1 − L) < λNn+1+1 − L . (4-21)
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Let MNn+1 be the corresponding IM which is generated by the backward solution W (p, t) of problem (3-6)
with N replaced by Nn+1. We need to define the (n+1)-th Taylor jet J n+1

ξ W (p, t) for the function W (p, t),

J n+1
ξ W (p, t) = W (p, t) +

n+1∑
k=1

1
k!

W (k)(p, t)[{ξ}
k
], (4-22)

ξ ∈ H and p ∈ PNn+1MN1 and to verify the compatibility conditions of order n + 1. Keeping in mind the
already-considered cases n = 1 and n = 2, we introduce the required jet (4-22) as a backward solution
of the equation

∂t J n+1
ξ W (p) + AJ n+1

ξ W (p) = F [n+1](p, ξ), PNn+1 J n+1
ξ (p)|t=0 = PNn+1(p + ξ), (4-23)

where

F [n+1](p, ξ, t) := F(W (p, t)) + F ′(W (p, t)) jn+1
ξ W (p, t)

+

n+1∑
k=2

1
k!

(
k F (k)(W (p, t))[{ jn

ξ V (p, t)}k−1, jn
ξ W (p, t)]

− (k − 1)F (k)(W (p, t))[{ jn
ξ V (p, t)}k

]
)
. (4-24)

The symbol “[n + 1]” means that we have dropped out all terms of order greater than n + 1 from the
right-hand side, so F [n+1] is a polynomial of order n + 1 in ξ ∈ H. Alternatively, the dropping out
procedure means that we use the substitution

{ jn
ξ V (p)}k

→

∑
n1+···+nk≤n+1

ni ∈N

Bn1,...,nk { jn1
ξ V (p), . . . , jnk

ξ V (p)}, (4-25)

where the numbers Bn1,...,nk ∈ R are chosen in such a way that polynomials in the left- and right-hand sides
of (4-25) coincide up to order {ξ}

n+1 inclusively and the term [{ jn
ξ V (p, t)}k−1, jn

ξ W (p, t)] is treated
analogously. The explicit expressions for these coefficients can be found using the formulas for the
higher-order chain rule (Faà di Bruno-type formulas; see, e.g., [Roman 1980; Hájek and Johanis 2014]),
but these expressions are lengthy and not essential for what follows, so we omit them.

Note also that the truncated jets jn
ξ V (p, t) are taken from the induction assumption. We seek the

solution of (4-23) belonging to L2
enθn+θn+1

(R−, H) for some θn+1 satisfying (3-17) with N replaced by Nn+1.
Expanding (4-24) in series with respect to ξ , we get the recurrent equations for finding the “derivatives”
W (k)

ξ (p, t) := W (k)(p, t)[{ξ}
k
]:

∂t W
(k)
ξ + AW (k)

ξ − F ′(W (p))W (k)
ξ = 8( j k−1

ξ W, j k−1
ξ V ), PNn+1 W (k)

ξ |t=0 = 0, (4-26)

for k ≥ 2, where 8 is polynomial of order k in ξ which does not contain W (l)
ξ , with l ≥ k. Thus, the

functions W (k)
ξ can be, indeed, found recursively. Moreover, the spectral gap assumption (4-21) guarantees

that we can find θn+1 satisfying (3-17) with N = Nn+1 such that θn+1 + nθn also satisfies this condition.
Therefore, Proposition 3.7 guarantees the existence and uniqueness of the homogeneous polynomials
W (k)

ξ (p) satisfying

∥W (k)
ξ (p)∥L2

e(θn+1+kθn )t (R−,H) ≤ C∥ξ∥
k (4-27)

for k = 1, . . . , n + 1.



522 ANNA KOSTIANKO AND SERGEY ZELIK

To complete the proof of the theorem, we only need to verify that the jet Jξ W (p, t) satisfies the
compatibility conditions of order n + 1. If this is verified, the rest of the proof coincides with the one
given above for the case n = 2. We postpone this verification till the next section. Thus, the theorem is
proved by modulo of compatibility conditions. □

Corollary 4.4. Let the assumptions of Theorem 4.3 hold with µ > 0 being small enough. Then the
invariant manifold PNnMN1 of the extended IF (4-1) possesses an exponential tracking property in HNn ;
i.e., for every solution uNn (t) of (4-1) there exists the corresponding solution ūNn belonging to this
manifold such that

∥uNn (t) − ūNn (t)∥ ≤ Ce−θ1t (4-28)

for some positive C and θ1.

Proof. As we have already mentioned, this is the standard corollary of the fact that MN1 is normally
hyperbolic and, therefore, persists under small C1-perturbations; see [Bates et al. 1999; Fenichel 1972;
Hirsch et al. 1977; Katok and Hasselblatt 1995]. Nevertheless, for the convenience of the reader, we now
sketch a direct proof that does not use the normal hyperbolicity explicitly.

We first construct an invariant manifold MN1 with the base HN1 in HNn for the extended IF. We do
this exactly as in the proof of Theorem 3.2 by solving the backward problem

∂t uNn + AuNn − PNn F(uNn + M̃Nn (uNn )) = 0, PN1uNn = p (4-29)

in the space L2
eθ t (R−, HNn ) with θ = (λN1 + λN1+1)/2. This equation is (Cµ)-closed to

∂t ūNn + AūNn − PNn F(ūNn + MNn (ūNn )) = 0, PN1 ūNn = p (4-30)

in the C1-norm (since M̃Nn is µ-closed to MNn due to Theorem 4.3). Thus, using Remark 3.13 and
the Banach contraction theorem, we can construct a unique solution uNn (t) of (4-29) in the (Cµ)-
neighbourhood of the corresponding solution ūNn of problem (4-30) and vice versa. This gives us the
existence of the manifold MN1 which is generated by all backward solutions of (4-30) belonging to the
space L2

eθ t (R−, HNn ). Since the solutions belonging to the invariant manifold PNnMN1 satisfy exactly
the same property, we conclude that MN1 = PNnMN1 .

It remains to verify that the manifold MN1 possesses an exponential tracking property. This can be
done as in the proof of Theorem 3.2 by considering the analogue of (3-14) for system (4-1) and using
again that M̃Nn is close to MNn in the C1-norm. This finishes the proof of the corollary. □

Corollary 4.5. Arguing as in Corollary 3.9, we check that the extended IM M̃Nn is also a Cn,ε-submanifold
of H 2

:= D(A).

5. Examples and concluding remarks

We now give several examples of our main theorem, as well as its reinterpretations, and state some
interesting problems for further study. We start with the application to the 1-dimensional reaction-
diffusion equation.
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Example 5.1. Let us consider the following reaction-diffusion system in a 1-dimensional domain � =

(−π, π):
∂t u = a∂2

x u − f (u), u|� = 0, u|t=0 = u0, (5-1)

where u is an unknown function, a > 0 is a given viscosity parameter, and f (u) is a given smooth function
satisfying f (0) = 0 and some dissipativity conditions, for instance,

f (u)u ≥ −C + α|u|
2, u ∈ R.

for some C and α > 0 (e.g., f (u) = u3
− u as in the case of real Ginzburg–Landau equation). Then, due

to the maximum principle, we have the following dissipative estimate for the solutions of (5-1):

∥u(t)∥L∞ ≤ ∥u0∥L∞e−αt
+ C∗, (5-2)

where the constant C∗ is independent of u0; see, e.g., [Babin and Vishik 1992; Chepyzhov and Vishik
2002; Temam 1988]. Thus, the associated solution semigroup S(t) acting in the phase space H := H 1

0 (�)

possesses an absorbing set in C(�), and cutting-off the nonlinearity outside of this ball, we may assume
without loss of generality that f ∈ C∞

0 (R).
After this transformation, (5-1) can be considered as an abstract parabolic equation (3-1) in the Sobolev

space H = H 1
0 (�). Since this space is an algebra with respect to pointwise multiplication (since we have

only one spatial variable), the corresponding nonlinearity F(u)(x) := f (u(x)) is C∞-smooth and all its
derivatives are globally bounded.

Finally, the linear operator A in this example is A = −a∂2
x endowed with the Dirichlet boundary

conditions. Obviously, this operator is self-adjoint, positive definite and its inverse is compact. Moreover,
its eigenvalues

λk = ak2, k ∈ N,

satisfy (4-2). Thus, our main Theorem 4.3 is applicable here and, therefore, problem (5-1) possesses
an IM MN1 of smoothness C1,ε for some ε > 0 and, for every n ∈ N, this IM can be extended to a
manifold M̃Nn of regularity Cn,εn , εn > 0, in the sense of Definition 4.1.

Remark 5.2. Our general theorem is applicable not only for a scalar reaction-diffusion equation (5-1), but
also for systems where the analogue of (5-2) is known, for instance, for the case of 1-dimensional complex
Ginzburg–Landau equation. However, one should be careful in the case where the diffusion matrix is not
self-adjoint and especially when it contains nontrivial Jordan cells. In this case, even Lipschitz IM may
not exist; see [Kostianko and Zelik 2022] for more details.

A bit unusual choice of the phase space H = H 1
0 (�) (instead of the natural one H = L2(�)) is related

to the fact that we need H to be an algebra in order to define Taylor jets for the nonlinearity F and to
verify that it is C∞. This, however, may be relaxed in applications since backward solutions of (3-4) and
(3-18) are usually smooth in space and time if the nonlinearity f is smooth, so the Taylor jets for V (p, t)
will be well-defined even if we consider L2(�) as a phase space and the theory works with minimal
changes. This observation may be useful if we want to remove the assumption f (0) = 0 in (5-1), but in
order to avoid technicalities, we prefer not to go further in this direction here.
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The restriction to the 1-dimensional case is motivated by the fact that the spectral gap condition (4-2)
is naturally satisfied by the Laplacian in 1-dimensional case only (it is an open problem already in the
2-dimensional case).

If we consider higher-order operators, say bi-Laplacian then the analogous result holds also in three
dimensions. The typical example here is given by the Swift–Hohenberg equation in a bounded domain
� ⊂ R3:

∂t u = −(1 + 1)2u + u − u2, u|∂� = 1u|∂� = 0,

where the spectral gap condition (4-2) is also satisfied; see [Zelik 2014]. We also note that although
our main theorem is stated and proved for the case where F maps H to H, it can be generalized in
a very straightforward way to the case where the operator F decreases smoothness and maps H to
H−s

:= D(A−s/2) for some s ∈ (0, 2). The spectral gap assumption (4-2) should be replaced by

lim sup
n→∞

{
λn+1 − λn

λ
s/2
n+1 + λ

s/2
n

}
= ∞.

After this extension, our theorem becomes applicable to equations which contain spatial derivatives in the
nonlinearity. A typical example of such applications is the 1-dimensional Kuramoto–Sivashinsky equation

∂t u + a∂2
x u + ∂4

x u + u∂x u = 0, � = (−π, π), a > 0,

endowed with Dirichlet or periodic boundary conditions; see [Zelik 2014] for more details.

Remark 5.3. As we mentioned in the Introduction, there is some significant recent progress in constructing
IMs for concrete classes of parabolic equations which do not satisfy the spectral gap conditions (such
as scalar reaction-diffusion equations in higher dimensions, 3-dimensional Cahn–Hilliard or complex
Ginzburg–Landau equations, various modifications of Navier–Stokes systems, 1-dimensional reaction-
diffusion-advection systems, etc.). The techniques developed in the present paper are not directly
applicable to such problems (in particular, our technique is strongly based on the Perron method of
constructing the IMs and it is not clear how to use the Perron method here since we do not have the
so-called absolute normal hyperbolicity in the most part of equations mentioned above; see [Kostianko
2018; Kostianko and Zelik 2015] for more details). However, we believe that the proper modification of
our method would allow us to cover these cases as well. We return to this problem elsewhere.

We now give an alternative (probably more transparent and more elegant) formulation of Theorem 4.3.
We recall that in Theorem 4.3, we have directly constructed a smooth extended IF (4-1) for the initial
equation (3-1). This extended IF captures all nontrivial dynamics of (3-1), but the associated smooth
extended IM Mn is not associated with the “true” IM of any system of the form (3-1). This drawback
can be easily corrected in a more or less standard way which leads to the following reformulation of our
main result.

Corollary 5.4. Let the assumptions of Theorem 4.3 be satisfied and let MN1 be the C1,ε1-smooth IM of
(3-1) which corresponds to the first spectral gap. Then, for every n ∈ N, n > 1, there exists a modified
nonlinearity F̃ : H → H which belongs to Cn−1,εn

b (H, H) for some εn > 0 such that:
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(1) The initial IM MN1 is simultaneously an IM for the modified equation

∂t u + Au = F̃n(u). (5-3)

(2) Equation (5-3) possesses a Cn,εn -smooth IM M̃Nn of dimension Nn such that the initial IM M1 is a
normally hyperbolic globally stable submanifold of M̃Nn .

(3) The nonlinearity F̃n(u) depends on the variable uNn := PNn u only and the IF associated with the IM
M̃Nn is given by (4-1) where K2 is replaced by Nn .

Proof. Indeed, we take the manifold M̃Nn constructed in Theorem 4.3 and define the desired function F̃n as

PNn F̃n(u) := PNn F(uNn + M̃Nn (uNn )) (5-4)

and

QNn F̃n(u) := M̃ ′

Nn
(uNn )[−AM̃Nn (uNn ) + PNn F(uNn + M̃Nn (uNn ))] + AM̃Nn (uNn ). (5-5)

Then, due to the choice of PNn -component of F̃n(u), the equation for uNn is decoupled from the equation for
the QNn -component and coincides with the extended IF for (5-3) constructed in Theorem 4.3. On the other
hand, the QNn -component of F̃n is chosen in a form which guarantees that M̃Nn is an invariant manifold
for (5-3). Moreover, if u(t) solves (5-3) with such a nonlinearity and v(t) :=u(t)− PNn u(t)−M̃Nn (uNn (t)),
then this function satisfies

∂tv + Av = 0, PNnv(t) ≡ 0,

and, therefore,

∥v(t)∥H ≤ ∥v(0)∥H e−λNn+1 t .

Thus, M̃Nn is indeed an IM for problem (5-3) and we only need to check the regularity of the modified
function F̃n .

The PNn component (5-4) is clearly Cn,εn -smooth, but the situation with the QNn is a bit more delicate
due to the presence of terms AM̃Nn (uNn ) and M̃ ′

Nn
(uNn ). The first term is not dangerous since we know

that M̃Nn is Cn,εn -smooth as the map from HNn to H 2. The second term is worse and decreases the
smoothness of the F̃n till Cn−1,εn . Thus, the corollary is proved. □

Remark 5.5. The modified nonlinearity F̃n(u) can be interpreted as a “clever” cut-off of the initial
nonlinearity F(u) outside of the global attractor (even outside of the IM of minimal dimension). In this
sense we may say that all obstacles for the existence of Cn,ε-smooth IMs can be removed by appropriately
cutting off the nonlinearity outside of the global attractor, which does not affect the dynamics of the initial
problem. This demonstrates the importance of finding the proper cut off procedure in the theory of IMs.

Example 5.6. We now return to the model example of G. Sell introduced in Example 3.11 and show
how the problem of smoothness of an invariant manifold can be resolved. Since the nonlinearity for this
system is not globally Lipschitz continuous, the above-developed theory is formally not applicable and
we need to cut-off the nonlinearity first. We overcome this problem by considering only local manifolds
in a small neighbourhood of the origin.
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Indeed, it is not difficult to see that system (3-31) has an explicit particular solution

u1(t) = ±e−t , un+1(t) = Cne−2n t t2n
−1, n > 1,

where the coefficients Cn satisfy the recurrence relation

Cn+1 =
1

2n − 1
C2

n , C0 = 1.

This solution determines a 1-dimensional local invariant manifold

M1 = {p + M(p) : p ∈ H1 = R, |p| < β},

where M : R → H is defined by M = (0, M1(p), M2(p), . . . ) and

Mn+1(p) = Cn p2n
(

ln
1

|p|

)2n
−1

, n ∈ N,

which is a 1-dimensional IM for system (3-31) and β is a sufficiently small positive number. Indeed,
since Cn ≤ 2−α2n

for some positive α, this manifold is well-defined as a local submanifold of H = l2

(if β > 0 is small enough) and is C1,ε-smooth for any ε ∈ (0, 1). Moreover, we see that M2(p) is only
C1,ε-smooth and higher components are more regular; in particular, Mn(p) is C2n−1

−1,ε-smooth. This
shows us how to define the extended manifolds of an arbitrary finite smoothness. Namely, let us fix some
n ∈ N and consider the manifold

M̃n :={p+M̃n(p) : p ∈ Hn, |p1|<β}, M̃n(p) := ({0}
n, Mn+1(p1), Mn+2(p1), Mn+3(p1), . . . ). (5-6)

Clearly M̃n is C2n
−1,ε-smooth and M1 is a submanifold of M̃n . Moreover, if we define the modified

nonlinearity F̃n(u) as

F̃n(u) = (0, u2
1, u2

2, . . . , u2
n−1, Mn+1(u1), Mn+2(u1), . . . ), (5-7)

then it will be C2n
−1,ε-smooth and the extended manifold M̃n will be an IM for the corresponding

modified equation (5-3). Finally, the normal hyperbolicity of M1 in M̃n follows from the fact that any
solution on M1 decays to zero no faster than e−t due to the nonzero first component, if we look to the
transversal directions, the smallest decay rate is determined by the second component and this decay is at
least as t3e−2t. Since our model system is explicitly solvable, we leave verifying this normal hyperbolicity
to the reader. We also note that the extended IF in this case reads

d
dt

u1 + u1 = 0,
d
dt

uk + 2k−1uk = u2
k−1, k = 2, . . . , n,

which is nothing more than the Galerkin approximation system to (3-31).

Remark 5.7. We see that, in the toy example of (3-31), we can find the desired extension of the initial
IM explicitly without using the Whitney extension theorem (and even without assuming the global
boundedness of F and its derivatives). Moreover, the dependence of smoothness of the extended IM on its
dimension is very nice; namely, if we want to have a Cn-smooth IM, it is enough to take dim M̃ ∼ log2 n.
Of course, this is partially related to good exponentially growing spectral gaps, but the main reason is



SMOOTH EXTENSIONS FOR INERTIAL MANIFOLDS OF SEMILINEAR PARABOLIC EQUATIONS 527

that we have an extra regularity property for the initial IM, namely, that the smoothness of projections
Qk M(p) grows with k. Unfortunately, this is not true in a more or less general case, which makes the
extension construction much more involved. In particular, we do not know how to gain more than one unit
of smoothness from one spectral gap and have to use n different spectral gaps to get n units of smoothness.
This, in turn, leads to extremely fast growth of the dimension of the manifold with respect to the regularity
(as not difficult to see, in Example 5.1, the dimension of M̃Nn grows as a double exponent with respect to n).

We believe that this problem is technical and the estimates for the dimension can be essentially improved.
Indeed, if we would be able to get n units of extra regularity using one extra (sufficiently large) gap the
above-mentioned growth of the dimension would become linear in n in Example 5.1. We expect that
this linear growth is optimal, and we are even able to construct the corresponding Taylor jets. But these
jets do not satisfy the compatibility conditions and we do not know how to correct them properly.

Appendix: Verifying the compatibility conditions

The aim of this appendix is to show that the jets J n+1
ξ W (p, t), p ∈ PNn+1 H, constructed via (4-23), satisfy

the compatibility conditions up to order n + 1 and, thus, to complete the proof of Theorem 4.3. We will
proceed by induction with respect to the order m ≤ n + 1.

Indeed, the first-order compatibility conditions are trivially satisfied since the functions W (p, t) are
C1,ε-smooth. Assume that the m-th order conditions are satisfied for some m ≤ n +1, and for all m1 ≤ m

J m1
ξ W (p1) − J m1

δ+ξ W (p) = Oθn+1+(m1−1)θn ((∥δ∥ +∥ξ∥)m1+ε) (A-1)

for all ξ ∈ H, p1, p ∈ PNn+1MN1 , ε > 0, δ := p1 − p and some constant C which is independent of p, p1.
Using the fact that V (p, t) = W (p, t) for all p ∈ PNn+1MN1 together with the analogue of (A-1) for the
already constructed jets J m

ξ V (p, t), we end up with

V (p1) = W (p1) = V (p) + jm1
δ V (p) + Om1θn+ε(∥δ∥

m1+ε)

= W (p) + jm1
δ W (p) + Oθn+1+(m1−1)θn+ε(∥δ∥

m1+ε) (A-2)

for all p1, p ∈ PNn+1MN1 , δ := p1 − p and, therefore v(t) := V (p1, t) − V (p, t) satisfies

v = jm1
δ V (p) + Om1θn+ε(∥δ∥

m1+ε) = jm1
δ W (p) + Oθn+1+(m1−1)θn+ε(∥δ∥

m1+ε),

jm1
δ V (p) − jm1

δ W (p) = Oθn+1+(m1−1)θn+ε(∥δ∥
m1+ε).

(A-3)

We now turn to the (m+1)-th jets and start with the following lemma which gives the compatibility
conditions in the particular case ξ = 0.

Lemma A.1. Let the above assumptions hold. Then

v = W (p1) − W (p) = jm+1
δ W (p) + Oθn+1+mθn+ε(∥δ∥

m+1+ε) (A-4)

for all p1, p ∈ PNn+1MN1 and δ := p1 − p. Moreover,

F(V (p1)) = F [m+1](p, δ)+ Oθn+1+mθn+ε(∥δ∥
m+1+ε) (A-5)

for some ε > 0.
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Proof. Let R := v − jm+1
δ W (p). Then, by the definition (4-23), this function solves

∂t R + AR = F(V (p1)) − F [m+1](p, δ), PNn+1 R|t=0 = 0. (A-6)

Let us study the term F [m+1](p, δ) at the right-hand side (which is defined by (4-24)). Using (A-3) and
the trick (4-25), we may replace jm

δ V (p) and jm
δ W (p) by v in all terms in (4-24) which contain the

second and higher derivatives of F (the error will be of order ∥δ∥m+1+ε). Actually, we cannot do this in
the term with the first derivative at the moment since this requires (A-3) for W of order m + 1, which we
are now verifying. This, gives

F [m+1](p, δ) = F(V (p)) + F ′(V (p)) jm+1
δ W (p)

+

m+1∑
k=2

1
k!

F (k)(V (p))[{v}
k
] + Oθn+1+mθn+ε(∥δ∥

m+1+ε). (A-7)

Indeed, let us consider the terms in (A-7) containing jm
δ W only (the terms without it are analogous, but

simpler). Using the analogue of (4-25),

[{ jm
δ V (p)}k−1, jm

δ W (p)] →

∑
n1+···+nk≤m+1

ni ∈N

B ′

n1,...,nk
{ jn1

δ V (p), . . . , jnk−1
δ V (p), jnk

δ W (p)}, (A-8)

the growth exponent of the remainder does not exceed

(n1 + · · · + nk−1)θn + θn+1 + (nk − 1)θn + ε ≤ θn+1 + mθn + ε,

where we have implicitly used our induction assumptions (A-3) and decreased the exponent ε if necessary.
Using now the Taylor theorem for F ∈ Cm+1,ε together with estimate (3-23) for v, we infer that

F(V (p1)) − F [m+1](p, δ) = F ′(V (p))R + Oθn+1+mθn+ε(∥δ∥
m+1+ε)

and, therefore, the function R solves

∂t R + AR − F ′(V (p))R = Oθn+1+mθn+ε(∥δ∥
m+1+ε), PNn+1 R|t=0 = 0. (A-9)

Since by the induction assumption θn < λNn+1 − L , assumption (4-21) guarantees the existence of θn+1

and ε > 0 such that θn+1 +mθn + ε satisfies (3-17) with N replaced by Nn+1. Thus, Proposition 3.7 gives
the estimate

∥R∥L2
e(θn+1+mθn+ε)t (R−,H) ≤ C∥δ∥m+1+ε

and (A-4) is proved. Estimate (A-5) is now a straightforward corollary of (A-7) and the Taylor theorem
(since we are now allowed to replace jm+1

δ W by v). Thus, the lemma is proved. □

We now turn to the general case ξ ̸= 0. To this end we need the following key lemma.

Lemma A.2. Let the above assumptions hold. Then, the following formula is satisfied:

F [m+1](p1, ξ)− F [m+1](p, ξ + δ) = F ′(V (p))
(

jm+1
δ W (p) + jm+1

ξ W (p1) − jm+1
ξ+δ W (p)

)
+ Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε), (A-10)

where ξ ∈ H, p1, p ∈ PNn+1MN1 and δ = p1 − p.
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Proof. Indeed, according to the definition (4-24) and formula (A-5), we have

F [m+1](p1, ξ) = F [m+1](p, δ)+ F ′(V (p1)) jm+1
ξ W (p1)

+

m+1∑
l=2

1
l!

(
l F (l)(V (p1))[ jm

ξ W (p1), { jm
ξ V (p1)}

l−1
] − (l − 1)F (l)(V (p1))[{ jm

ξ V (p1)}
l
]
)

+ Oθn+1+mθn+ε((∥ξ∥ +∥δ∥)m+1+ε). (A-11)

We recall that, according to our agreement and formula (4-25), the right-hand side does not contain the
terms of order larger than m + 1. Expanding now the derivatives F (l)(V (p1)) into Taylor series around
V (p) and using (A-3), we get

F [m+1](p1, ξ) = F [m+1](p, δ)+ F ′(V (p))( jm+1
ξ W (p1) − jm

ξ W (p1))

+

m+1∑
l=1

m+1∑
k=l

1
l!(k − l)!

(
l F (k)(V (p))[{ jm

δ V (p)}k−l, jm
ξ W (p1), { jm

ξ V (p1)}
l−1

]

−(l−1)F (k)(V (p))[{ jm
δ V (p)}k−l, { jm

ξ V (p1)}
l
]
)

+ Oθn+1+mθn+ε((∥ξ∥ +∥δ∥)m+1+ε). (A-12)

Finally, changing the order of summation, we arrive at

F [m+1](p1, ξ) = F [m+1](p, δ)+ F ′(V (p)) jm+1
ξ W (p1)

+

m+1∑
k=2

1
k!

k∑
l=1

C l
k
(
l F (k)(V (p))[{ jm

δ V (p)}k−l, jm
ξ W (p1), { jm

ξ V (p1)}
l−1

]

− (l − 1)F (k)(V (p))[{ jm
δ V (p)}k−l, { jm

ξ V (p1)}
l
]
)

+ Oθn+1+mθn+ε((∥ξ∥ +∥δ∥)m+1+ε). (A-13)

Let us now look to the term F [m+1](p, ξ + δ). According to (4-24), we have

F [m+1](p, ξ + δ)

= F(V (p)) + F ′(V (p)) jm+1
ξ+δ W (p)

+

m+1∑
k=2

1
k!

(
k F (k)(V (p))[ jm

ξ+δW (p), { jm
ξ+δV (p)}k−1

] − (k − 1)F (k)(V (p))[{ jm
ξ+δV (p)}k

]
)
. (A-14)

From the induction assumption, the compatibility assumptions (A-1) hold for jm1
ξ+δW and give

jm1
ξ+δW (p) = jm1

δ W (p) + jm1
ξ W (p1) + Oθn+1+(m1−1)θn+ε((∥δ∥ +∥ξ∥)m1+ε)

for all m1 ≤ m and the analogous identities hold also for jm1
ξ+δV :

jm1
ξ+δV (p) = jm1

δ V (p) + jm1
ξ V (p1) + Om1θn+ε((∥δ∥ +∥ξ∥)m1+ε).

Moreover, using (A-3), we may also get

jm1
ξ+δW (p) = jm1

δ V (p) + jm1
ξ W (p1) + Oθn+1+(m1−1)θn+ε((∥δ∥ +∥ξ∥)m1+ε)
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for all m1 ≤ m. Inserting these formulas to (A-14), we arrive at

F [m+1](p, ξ + δ) = F(V (p)) + F ′(V (p)) jm+1
ξ+δ W (p)

+

m+1∑
k=2

1
k!

(
k F (k)(V (p))[ jm

δ V (p) + jm
ξ W (p1), { jm

δ V (p) + jm
ξ V (p1)}

k−1
]

− (k − 1)F (k)(V (p))[{ jm
δ V (p) + jm

ξ V (p1)}
k
]
)

+ Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε). (A-15)

Using the binomial formula (2-1), we arrive at

F [m+1](p, ξ + δ) = F(V (p)) + F ′(V (p)) jm+1
ξ+δ W (p)

+

m+1∑
k=2

1
k!

( k∑
l=1

kC l−1
k−1 F (k)(V (p))[ jm

ξ W (p1), { jm
δ V (p)}k−l, { jm

ξ V (p1)}
l−1

]

+

k−1∑
l=0

kC l
k−1 F (k)(V (p))[ jm

δ V (p), { jm
δ V (p)}k−l−1, { jm

ξ V (p1)}
l
]

−

k∑
l=0

(k − 1)C l
k F (k)(V (p))[{ jm

δ V (p)}k−l, { jm
ξ V (p1)}

l
]

)
+ Oθn+1+mθn+ε.((∥δ∥ +∥ξ∥)m+1+ε).

(A-16)
We need to compare (A-13) and (A-16). To this end, we first note that

lC l
k = kC l−1

k−1

and, therefore, the terms containing the jets of W in these two formulas coincide. Thus, we only need to
look at the terms without jets of W. In the case l = k, we have only one term in the right-hand side of
(A-16), which obviously coincides with the analogous term in (A-13). Let us now look at the terms with
l = 1, . . . , k − 1. Due to the obvious identity

−(l − 1)C l
k = kC l

k−1 − (k − 1)C l
k,

these terms again coincide. Thus, it remains to look at the extra terms which correspond to l = 0 in (A-16)
and which are absent in the sums of (A-13). Finally, using (A-3) and (A-5), we get the following identity
involving these extra terms:

F(V (p)) +

m+1∑
k=2

1
k!

F (k)(V (p))[{ jm
δ V (p)}k

]

= F [m+1](p, δ)− F ′(V (p)) jm+1
δ W (p) + Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε). (A-17)

This gives the identity

F [m+1](p1, ξ)− F ′(V (p)) jm+1
ξ W (p1)

= F [m+1](p, ξ + δ) − F ′(V (p))( jm+1
ξ+δ W (p) − jm+1

δ W (p)) + Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε) (A-18)

and finishes the proof of the lemma. □



SMOOTH EXTENSIONS FOR INERTIAL MANIFOLDS OF SEMILINEAR PARABOLIC EQUATIONS 531

We are now ready to finish the check of the compatibility conditions. Note that, due to (A-4), we have

J m+1
ξ W (p1) − J m+1

ξ+δ W (p)

= jm+1
δ W (p) + jm+1

ξ W (p1) − jm+1
ξ+δ W (p) + Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε). (A-19)

Let finally U (t) := J m+1
ξ W (p1)− J m+1

ξ+δ W (p). Then, according to definition (4-22), Lemma A.2 and the
fact that δ = p1 − p, this function solves the equation

∂tU + AU − F ′(V (p))U = Oθn+1+mθn+ε(∥δ∥ +∥ξ∥)m+1+ε), PNn+1U |t=0 = 0, (A-20)

and by Proposition 3.7, we arrive at

J m+1
ξ W (p1) − J m+1

ξ+δ W (p) = Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε). (A-21)

Thus, the (m+1)-th order compatibility conditions for J m+1
ξ W (p) are verified. The induction with respect

to m gives us that J n+1
ξ W (p) also satisfies the compatibility conditions (of course, we cannot take m > n

since we need the compatibility conditions of order m for J m
ξ V (p) to proceed). This completes the proof

of our main Theorem 4.3.
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SEMICLASSICAL EIGENVALUE ESTIMATES UNDER MAGNETIC STEPS

WAFAA ASSAAD, BERNARD HELFFER AND AYMAN KACHMAR

We establish accurate eigenvalue asymptotics and, as a by-product, sharp estimates of the splitting between
two consecutive eigenvalues for the Dirichlet magnetic Laplacian with a nonuniform magnetic field having
a jump discontinuity along a smooth curve. The asymptotics hold in the semiclassical limit, which also
corresponds to a large magnetic field limit and is valid under a geometric assumption on the curvature of
the discontinuity curve.

1. Introduction

The paper studies a semiclassical Schrödinger operator with a step magnetic field and Dirichlet boundary
conditions, in a smooth bounded domain. The aim is to give accurate estimates of the lower eigenvalues
in the semiclassical limit.

Let � be an open, bounded, and simply connected subset of R2 with smooth C1 boundary. We consider
a simple smooth curve 0 ⊂ R2 that splits R2 into two disjoint unbounded open sets, P1 and P2, and such
that 0 is a semistraight line when |x | tends to +∞. We assume that 0 decomposes � into two sets �1

and �2 as follows (see Figure 1):

(1) 0 intersects ∂� transversally at two distinct points.

(2) �1 :=�∩ P1 ̸= ∅ and �2 :=�∩ P2 ̸= ∅.

Let h > 0 and F = (F1, F2) ∈ H 1
loc(R

2) be a magnetic potential whose associated magnetic field is

curl F = a11P1 + a21P2, a := (a1, a2) ∈ R2, a1 ̸= a2. (1-1)

When restricted to �, the vector field F satisfies

curl F = a11�1 + a21�2, a := (a1, a2) ∈ R2, a1 ̸= a2 and F ∈ L4(�). (1-2)

Note that the curve 0 separates the two regions �1 and �2 which are assigned with different values of
the magnetic field. For this reason, we refer to 0 as the magnetic edge. We consider the quadratic form
on H 1

0 (�)

u 7→ Qh(u)=

∫
�

|(h∇ − i F)u|
2 dx . (1-3)
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P1 �1
0

�2

P2

Figure 1. The curve 0 transversally cuts ∂� at two points and splits � into two regions,
�1 and �2.

This quadratic form is closed on the form domain H 1
0 (�). By the Friedrichs extension procedure, we can

associate its Dirichlet realization in �

Ph := −(h∇ − i F)2 = −

2∑
j=1

(h∂x j − i Fj )
2, (1-4)

whose domain is

Dom(Ph)= {u ∈ L2(�) : (h∇ − i F) j u ∈ L2(�), j ∈ {1, 2}, u|∂� = 0}. (1-5)

The operator Ph is self-adjoint, has compact resolvent, and its spectrum is an increasing sequence,
(λn(h))n∈N, of real eigenvalues listed with multiplicities.

In this contribution, we aim at giving the asymptotic expansion of the low-lying eigenvalues of Ph , in
the semiclassical limit, i.e., when h tends to 0.

Schrödinger operators with a discontinuous magnetic field, like Ph , appear in many models in
nanophysics such as in quantum transport while studying the transport properties of a bidimensional
electron gas [Reijniers and Peeters 2000; Peeters and Matulis 1993]. In that context, the magnetic edge is
straight and bound states interestingly feature currents flowing along the magnetic edge.

The present contribution addresses another appealing question on the influence of the shape of the
magnetic edge on the energy of the bound states. We give an affirmative answer by providing sharp
semiclassical eigenvalue asymptotics under a single “well” hypothesis on the curvature of the magnetic
edge (see Assumption 1.1 and Theorem 1.2 below). Loosely speaking, our hypothesis says that we perform
a local deformation of the magnetic edge so that its curvature has a unique nondegenerate maximum.

Another important occurrence of magnetic Laplace operators is in the Ginzburg–Landau model of
superconductivity [Saint-James and de Gennes 1963]. In bounded domains, the spectral properties of
these operators can describe interesting physical situations. In the context of superconductivity, accurate
information about the lowest eigenvalues is important for giving a precise description of the concentration
of superconductivity in a type-II superconductor. Moreover, it improves the estimates of the third critical
field, HC3 , that marks the onset of superconductivity in the domain. We refer the reader to [Assaad and
Kachmar 2022; Assaad 2021] for discontinuous field cases, and to [Fournais and Helffer 2006; Helffer
and Pan 2003; Lu and Pan 1999a; 1999b; 2000; Bonnaillie-Noël and Fournais 2007; Bonnaillie-Noël
and Dauge 2006; Bernoff and Sternberg 1998; Tilley and Tilley 1990] for a further discussion in smooth



SEMICLASSICAL EIGENVALUE ESTIMATES UNDER MAGNETIC STEPS 537

fields cases. In the present paper, the Dirichlet realization of Ph in the bounded domain � can physically
correspond to a superconductor which is set in the normal (nonsuperconducting) state at its boundary.

Using symmetry and scaling arguments, one can reduce the problem to the study of cases of a = (a1, a2),
where a1 = 1 and a2 = a ∈ [−1, 1). Moreover, we will soon make a more restrictive choice of cases of a
(see (1-11) below). Towards justifying the upcoming choice of a, we introduce the effective operator
ha[ξ ] with a discontinuous field, defined on R and parametrized by ξ ∈ R:

ha[ξ ] = −
d2

dτ 2 + (ξ + ba(τ )τ )
2, (1-6)

where
ba(τ )= 1R+

(τ )+ a1R−
(τ ). (1-7)

This operator arises from the approximation by the case where �= R2 and 0= {x2 = 0}, τ corresponding
to the variable x2 and ξ being the dual variable of x1. The known spectral properties of ha[ξ ], obtained
earlier in [Hislop et al. 2016; Assaad et al. 2019; Assaad and Kachmar 2022], are recalled in Section 2A.
Here, we only present some features of this operator that are useful to this introduction. The bottom
of the spectrum of ha[ξ ], denoted by µa(ξ), is a simple eigenvalue for a ̸= 0, usually called the band
function in the literature. Minimizing the band function leads us to introduce

βa = inf
ξ∈R

µa(ξ). (1-8)

We list the following properties of βa , depending on the values of a:

Case a = −1: In the case where � = R2 and 0 = {x2 =0}, this case is called the “symmetric trapping
magnetic steps” and is well-understood in the literature (see, e.g., [Hislop et al. 2016]). In this case, the
study of ha[ξ ] can be reduced to that of the de Gennes operator (a harmonic oscillator on the half-axis
with Neumann condition at the origin). We refer the reader to [Fournais and Helffer 2010] for the spectral
properties of this operator. Here,

20 := β−1 ≊ 0.59 (1-9)

is attained by µ−1( · ) at a unique and nondegenerate minimum ξ0 = −
√
20. Moreover, β−1 = µ−1(ξ0)

is a simple eigenvalue of h−1[ξ0].

Case −1< a < 0: This case is called the “asymmetric trapping magnetic steps” and is studied in many
works (see [Assaad and Kachmar 2022; Assaad et al. 2019; Hislop et al. 2016]). We have |a|20 < βa <

min(|a|,20) and βa is attained by µa( · ) at a unique ζa < 0 [Assaad and Kachmar 2022]

µa(ζa)= βa. (1-10)

Moreover, the minimum is nondegenerate, i.e., µ′′
a(ζa) > 0.

Case a = 0: This corresponds to the “magnetic wall” case studied for instance in [Reijniers and Peeters
2000; Hislop et al. 2016]. We refer to [Hislop et al. 2016, Section 2] for this case.

For ξ ≤ 0, we have
σ(ha[ξ ])= σess(ha[ξ ])= [ξ 2,+∞),

where σ and σess respectively denote the spectrum and essential spectrum.
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For ξ > 0,
σess(ha[ξ ])= [ξ 2,+∞)

and ha[ξ ] may have positive eigenvalues λ < ξ2. Consequently, β0 = µ0(0)= inf σessh0[0] = 0, and β0

is not an eigenvalue of ha[ξ ] for all ξ ∈ R.

Case 0< a < 1: This corresponds with the “nontrapping magnetic steps” case; see [Assaad et al. 2019;
Hislop and Soccorsi 2015; Iwatsuka 1985]. Here, βa = a and µa( · ) doesn’t achieve a minimum; the
infimum is attained at +∞.

A key ingredient in establishing the asymptotics of the eigenvalues λn(h) is that βa is an eigenvalue
of ha[ξ ] for some ξ ∈ R. We will use the corresponding eigenfunction in constructing quasimodes of
the operator Ph . The above discussion shows that βa is an eigenvalue only when a ∈ [−1, 0). The case
a = −1 is excluded from our study, despite the fact that β−1 is an eigenvalue of h−1[ξ0]. Except when 0
is an axis of symmetry of � as in [Hislop et al. 2016], the situation is more difficult and the curvature
will play a more important role. We hope to treat this case in a future work. This explains our choice to
work under the following assumption on a (thus on the magnetic field curl F) throughout the paper:

a = (1, a), with − 1< a < 0. (1-11)

Under assumption (1-11), we introduce two spectral invariants

c2(a)=
1
2
µ′′

a(ζa) > 0 and M3(a)=
1
3

(1
a

− 1
)
ζaφa(0)φ′

a(0) < 0, (1-12)

where µa and ζa are introduced in (1-8) and (1-10), and φa is the positive L2-normalized eigenfunction
of ha[ζa] corresponding to βa .

Furthermore, we work under the following assumption:

Assumption 1.1. The curvature 0 ∋ s 7→ k(s) at the magnetic edge has a unique maximum

k(s) < k(s0)=: kmax for s ̸= s0.

This maximum is attained in 0 ∩� and is nondegenerate:

k2 := k ′′(s0) < 0.

The goal of this paper is to prove the following theorem:

Theorem 1.2. Let n ∈ N∗ and a = (1, a), with −1 < a < 0. Under Assumption 1.1, the n-th eigen-
value λn(h) of Ph , defined in (1-4), satisfies, as h → 0,

λn(h)= hβa + h3/2kmax M3(a)+ h7/4(2n − 1)

√
k2 M3(a)c2(a)

2
+O(h15/8),

where βa , c2(a) and M3(a) are the spectral quantities introduced in (1-8) and (1-12).

Remark 1.3. This theorem extends [Assaad and Kachmar 2022, Theorem 4.5], where the first two terms
in the expansion of the first eigenvalue were determined with a remainder in O(h5/3). The proof of
Theorem 1.2 partially relies on decay estimates of the eigenfunctions with the right scale; see Section 6
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and [Assaad and Kachmar 2022]. In fact, away from the edge 0, the eigenfunctions decay exponentially
at the scale h−1/2 of the distance to 0, while, along 0, they decay exponentially with a scale of h−1/8 of
the tangential distance on 0 to the point with maximum curvature.

Comparison with earlier situations. It is useful to compare the asymptotics of λn(h) in Theorem 1.2 with
those obtained in the literature for regular domains submitted to uniform magnetic fields. In bounded
planar domains with smooth boundary, subject to unit magnetic fields and when the Neumann boundary
condition is imposed, the low-lying eigenvalues of the linear operator, analogous to Ph , admit the following
asymptotics as h tends to 0 (see, e.g., [Fournais and Helffer 2006]):

λn(h)= h20 − h3/2k̃maxC1 + h7/4C12
1/4
0 (2n − 1)

√
3
2 k̃2 +O(h15/8),

where 20 is as in (1-9), C1 > 0 is some spectral value, and k̃max and k̃2 are positive constants introduced
in what follows. In this uniform field/Neumann condition situation, the eigenstates localize near the
boundary of the domain. More precisely, they localize near the point s̃ with maximum curvature k(s̃)
of this boundary, assuming the uniqueness and nondegeneracy of this point. We define k̃max = k(s̃) and
k̃2 = −k ′′(s̃) > 0. In [Fournais and Helffer 2006], the foregoing localization of eigenstates restricted the
study to the boundary, involving a family of one-dimensional effective operators which act in the normal
direction to the boundary. These are the de Gennes operators

hN
[ξ ] = −

d2

dτ 2 + (ξ + τ)2,

defined on R+ with Neumann boundary condition at τ = 0, and parametrized by ξ ∈ R. We recover the
value 20 as an effective energy associated to (hN

[ξ ])ξ ,

20 = inf
ξ∈R

µN (ξ),

where µN (ξ) is the bottom of the spectrum σ(hN
[ξ ]) of hN

[ξ ], for ξ ∈ R.
Back to our discontinuous field case with Dirichlet boundary condition, we prove that our eigenstates

are localized near the magnetic edge 0, and more particularly, near the point with maximum curvature of
this edge (see Section 6). Analogously to the aforementioned uniform field/Neumann condition situation,
our study near 0 involves the family of one-dimensional effective operators (ha[ξ ])ξ∈R which act in the
normal direction to the edge 0, along with the associated effective energy βa .

At this stage, it is natural to discuss our problem when the Dirichlet boundary conditions are replaced
by Neumann boundary ones. In this situation, one can prove the concentration of the eigenstates of the
operator Ph near the points of intersection between the edge 0 and the boundary ∂�. This was shown in
[Assaad 2021, Theorem 6.1] at least for the lowest eigenstate. In such settings, a geometric condition is
usually imposed related to the angles formed at the intersection 0∩∂�; see [Assaad 2021, Assumption 1.3
and Remark 1.4]. The localization of the eigenstates near 0 ∩ ∂� will involve effective models that are
genuinely two-dimensional, i.e., they cannot be fibered to one-dimensional operators; see [Assaad 2021,
Section 3]. Studying this case may show similarity features with the case of piecewise smooth bounded
domains with corners submitted to uniform magnetic fields, treated in [Bonnaillie-Noël and Dauge 2006];
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see also [Bonnaillie-Noël et al. 2007; Bonnaillie-Noël 2005; Bonnaillie-Noël 2003; 2007] for studies
on corner domains. Such similarities were first revealed in [Assaad 2021, Section 1.3]. More precisely,
one expects the result in the discontinuous field/Neumann condition situation to be similar to that in
[Bonnaillie-Noël and Dauge 2006, Theorem 7.1]. Such a result is worth establishing in a future work.

Theorem 1.2 permits us to deduce the splitting between the ground-state energy (lowest eigenvalue)
and the energy of the first excited state of Ph . More precisely, introducing the spectral gap

1(h) := λ2(h)− λ1(h),

we get by Theorem 1.2:

Corollary 1.4. Under the conditions in Theorem 1.2, we have as h → 0

1(h)= h7/4
√

2k2 M3(a)c2(a)+O(h15/8).

Apart from its own interest, estimating the foregoing spectral gap has potential applications in nonlinear
bifurcation problems, for instance, in the context of the Ginzburg–Landau model of superconductivity
(see [Fournais and Helffer 2010, Section 13.5.1]).

Remark 1.5. Altering the regularity/geometry of the edge 0 may lead to radical changes in Theorem 1.2.

• If 0 is a piecewise smooth curve (a broken edge) then we have to analyze a new model in the full plane
(reminiscent of a model in [Assaad 2021]). We expect analogies with domains with corners in a uniform
magnetic field [Bonnaillie-Noël 2003].

• If we relax Assumption 1.1 by allowing the curvature k to have two symmetric maxima, then a tunnel
effect may occur and the splitting in Theorem 1.2 becomes of exponential order. This was recently
analyzed in [Fournais et al. 2022] based on the analysis of this paper and [Bonnaillie-Noël et al. 2022].

• If the curvature along 0 or a part of 0 is constant, then we expect that the magnitude of the splitting
in Theorem 1.2 will change too, probably leading to multiple eigenvalues. It would be desirable to get
accurate estimates in this setting. We expect analogies with disc domains in a nonuniform magnetic field
[Fournais and Persson-Sundqvist 2015].

Heuristics of the proofs. Our proof of Theorem 1.2 is purely variational. The derivation of the eigenvalue
upper bound is rather standard. It is obtained by computing the energy of a well-chosen trial state, vapp

h,n ,
constructed by expressing the operator in a Frenet frame near the point of maximum curvature and doing
WKB like expansions (for the operator and the trial state).

Proving the eigenvalue lower bound is more involved. The idea is to project the actual bound state, vh,n ,
on the trial state vapp

h,n , and to prove that this provides us with a well-chosen trial state for a one-dimensional
effective operator, H harm

a = −c2(a)∂2
σ −

1
2 k2 M3(a)σ 2. To validate this method, we need sharp estimates

of the tangential derivative of the actual bound state, which we derive via a simple, but lengthy and quite
technical method involving Agmon estimates and other implementations from one-dimensional model
operators. At this stage, one advantage of our approach seems its applicability with weaker regularity
assumptions on the magnetic edge or the magnetic field, which could be useful in other situations as well,
like the study of the three-dimensional problem in [Helffer and Morame 2004].
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Outline of the paper. The paper is organized as follows. Sections 2 and 3 contain the necessary material
on the model one-dimensional problems for flat and curved magnetic edges, respectively. Section 4 is
devoted to the eigenvalue upper bounds matching with the asymptotics of Theorem 1.2. Here, we give
the construction of the aforementioned trial state vapp

h,n .
In Sections 5 and 6, we estimate the tangential derivative of the actual bound states, after being

truncated and properly expressed in rescaled variables. The tangential derivative estimate of the L2 norm
will follow straightforwardly from the main result of Section 5. However, a higher-regularity estimate
will require additional work in Section 6.

In Section 7, using the actual bound states, we construct trial states for the effective one-dimensional
operator, and eventually prove the eigenvalue lower bounds of Theorem 1.2. Finally, we give two
appendices, Appendix A on the Frenet coordinates near the magnetic edge, and Appendix B on the control
of a remainder term that we meet in Section 7.

2. Fiber operators

2A. Band functions. Let a ∈ [−1, 0). We first introduce some constants whose definition involves the
following family of fiber operators in L2(R):

ha[ξ ] = −
d2

dτ 2 + Va(ξ, τ ), (2-1)

where ξ ∈ R is a parameter,

Va(ξ, τ )= (ξ + ba(τ )τ )
2, ba(τ )= 1R+

(τ )+ a1R−
(τ ), (2-2)

and the domain of ha[ξ ] is given by

Dom(ha[ξ ])= B2(R).

Here the space Bn(I ) is defined for a positive integer n and an open interval I ⊂ R as

Bn(I )=

{
u ∈ L2(I ) : τ i d j u

dτ j ∈ L2(I ) for all i, j ∈ N such that i + j ≤ n
}
. (2-3)

The operator ha[ξ ] is essentially self-adjoint and has compact resolvent. Actually, it can also be defined
as the Friedrichs realization starting from the closed quadratic form

u 7→ qa[ξ ](u)=

∫
R

(|u′(τ )|2 + Va(ξ, τ )|u(τ )|2) dτ (2-4)

defined on B1(R).
For (a, ξ) ∈ [−1, 0)× R, the ground-state energy (bottom of the spectrum) µa(ξ) of ha[ξ ] can be

characterized by

µa(ξ)= inf
u∈B1(R),u ̸=0

qa[ξ ](u)
∥u∥

2
L2(R)

, (2-5)

and ξ 7→ µa(ξ) will be called the band function.
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We then introduce the step constant at a by

βa := inf
ξ∈R

µa(ξ). (2-6)

For a = −1, it is easy to identify by symmetrization µ−1(ξ) with the ground-state energy of the Neumann
realization of −(d2/dτ 2)+ (τ + ξ)2 in R+ and therefore

β−1 =20, (2-7)

where 20 is the celebrated de Gennes constant.
By the general theory for the Schrödinger operator, µa(ξ) is, for each ξ ∈ R, a simple eigenvalue, that

we associate with a unique positive L2-normalized eigenfunction denoted by ϕa,ξ , i.e., satisfying

ϕa,ξ > 0, (ha[ξ ] −µa(ξ))ϕa,ξ = 0 and
∫

R

|ϕa,ξ (τ )|
2 dτ = 1. (2-8)

By Kato’s theory, the band function µa is an analytic function on R. Its derivative was computed in
[Hislop and Soccorsi 2015] (see also [Assaad et al. 2019, Proposition A.4]),

µ′

a(ξ)=

(
1 −

1
a

)(
ϕ′

a,ξ (0)
2
+ (µa(ξ)− ξ

2)ϕa,ξ (0)2
)
, (2-9)

which results from the following Feynman–Hellmann formula (see [Assaad et al. 2019, equation (A.9);
Bolley and Helffer 1993; Dauge and Helffer 1993]):

µ′

a(ξ)= 2
∫

R

(ξ + ba(τ )τ )|ϕa,ξ (τ )|
2 dτ. (2-10)

2B. Properties of band functions/states. For a ∈ (−1, 0), the following results were recently established
in [Assaad and Kachmar 2022; Assaad et al. 2019; Hislop et al. 2016]:

(1) |a|20 < βa <min(|a|,20).

(2) There exists a unique ζa ∈ R such that βa = µa(ζa).

(3) ζa < 0, µ′′
a(ζa) > 0 and the ground state φa := ϕa,ζa satisfies

φ′

a(0) < 0 and ζa = −

√
βa + (φ

′2
a (0)/φ

2
a(0)).

In particular, using (2-10) for ξ = ζa , we observe that the functions φa and (ζa +ba(τ )τ )φa are orthogonal∫
R

(ζa + ba(τ )τ )|φa(τ )|
2 dτ = 0. (2-11)

Moreover, the ground-state φa satisfies the following decay estimates:

Proposition 2.1. Let a ∈ [−1, 0). For any γ > 0, there exists a positive constant Cγ such that∫
R

eγ |τ |(|φa(τ )|
2
+ |φ′

a(τ )|
2) dτ ≤ Cγ .
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Consequently, for all n ∈ N∗ there exists Cn > 0 such that∫
R

|τ |n|φa(τ )|
2 dτ ≤ Cn. (2-12)

The proof is classical by using Agmon’s approach for proving decay estimates. We omit it and refer the
reader to [Fournais and Helffer 2010, Theorem 7.2.2] or to the proof of Lemma 2.4 below.

2C. Moments. Later in the paper, we will encounter the moments

Mn(a)=

∫
+∞

−∞

1
ba(τ )

(ζa + ba(τ )τ )
n
|φa(τ )|

2 dτ, (2-13)

which are finite according to (2-12).
For n ∈ {1, 2, 3}, they were computed in [Assaad and Kachmar 2022] and we have

M1(a)= 0, (2-14)

M2(a)= −
1
2
βa

∫
+∞

−∞

1
ba(τ )

|φa(τ )|
2 dτ +

1
4

(1
a

− 1
)
ζaφa(0)φ′

a(0), (2-15)

M3(a)=
1
3

(1
a

− 1
)
ζaφa(0)φ′

a(0). (2-16)

Remark 2.2. From the properties of the band function recalled in Section 2B, we get that M3(a) is
negative for −1< a < 0 and vanishes for a = −1.

Remark 2.3. The next identities follow in a straightforward manner from the foregoing formulas of the
moments: ∫

+∞

−∞

τ(ζa + ba(τ )τ )|φa(τ )|
2 dτ = M2(a),∫

+∞

−∞

τ(ζa + ba(τ )τ )
2
|φa(τ )|

2 dτ = M3(a)− ζa M2(a),∫
+∞

−∞

ba(τ )τ
2(ζa + ba(τ )τ )|φa(τ )|

2 dτ = M3(a)− 2ζa M2(a),∫
+∞

−∞

τ |φa(τ )|
2 dτ = −ζa

∫
+∞

−∞

1
ba(τ )

|φa(τ )|
2 dτ,∫

+∞

−∞

τ |φ′

a(τ )|
2 dτ = βaζa

∫
+∞

−∞

1
ba(τ )

|φa(τ )|
2 dτ + 2M3(a)− 2ζa M2(a).

We will also encounter the moment

I2(a) :=

∫
R

(ζa + ba(τ )τ )φaRa[(ζa + ba(τ )τ )φa] dτ, (2-17)

involving the resolvent Ra , which is an operator defined on L2(R) by means of the following lemma:

Lemma 2.4. If u ∈ L2(R) is orthogonal to φa , we define (ha[ζa] − βa)
−1u in L2(R) as the unique

solution v orthogonal to φa to
(ha[ζa] −βa)v = u.
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We introduce the regularized resolvent Ra in L(L2(R)) by

Ra(u)=

{
0 if u ∥ φa,

(ha[ζa] −βa)
−1u if u ⊥ φa

(2-18)

(extended by linearity). Then, for any γ ≥ 0, Ra and (d/dτ) ◦ Ra are two bounded operators on
L2(R, exp(γ |τ |) dτ).

Proof. We follow Agmon’s approach. Consider v ∈ Dom(ha[ζa]) and u ∈ L2(R, exp(γ |τ |) dτ) such that

(ha[ζa] −βa)v = u.

For all γ > 0 and N > 1, consider the continuous function on R

8γ,N (τ )= min(γ |τ |, N ).

Observe that 8γ,N ∈ H 1
loc(R) and

|8′

γ,N (τ )| =

{
γ if γ |τ |< N ,
0 if γ |τ |> N .

Integration by parts yields

⟨u, e28γ,N v⟩ = ⟨(ha[ζa] −βa)v, e28γ,N v⟩

= ∥(e8γ,N v)′∥2
+

∫
R

((ζa + bτ)2 −βa)|e8γ,N v|2 dτ − ∥8′

γ,N e8ε,N v∥2

≥ ∥(e8γ,N v)′∥2
+

∫
R

((ζa + bτ)2 −βa − γ 2)|e8γ,N v|2 dτ.

Choose Aγ > 1 so that, for |τ | ≥ Aγ , we have (ζa + bτ)2 −βa − γ 2
≥ 1; consequently, for N ≥ γ Aγ ,

⟨u, e28γ,N v⟩ ≥ ∥(e8γ,N v)′∥2
+

∫
{|τ |≥Aγ }

|e8γ,N v|2 dτ − (βa + γ 2)e2γ Aγ ∥v∥2.

Using the Cauchy–Schwarz inequality, we get further

∥e8γ,N u∥∥e8γ,N v∥ ≥ ∥(e8γ,N v)′∥2
+

∫
{|τ |≥Aγ }

|e8γ,N v|2 dτ − (βa + γ 2)e2γ Aγ ∥v∥2.

Rearranging the terms in (2-19) and using Cauchy’s inequality

∥e8γ,N u∥∥e8γ,N v∥ ≤ 2∥e8γ,N u∥
2
+

1
2∥e8γ,N v∥2,

we get

∥(e8γ,N v)′∥2
+

1
2

∫
{|τ |≥Aγ }

|e8γ,N v|2 dτ ≤ (βa + γ 2
+ 1)e2γ Aγ ∥v∥2

+ 2∥e8γ,N u∥
2.

We end up with the estimate∫
|e8γ,N v′

|
2 dτ +

∫
|e8γ,N v|2 dτ ≤ Cγ (∥v∥2

+ ∥e8γ u∥
2),

where we note that the right-hand side is independent of N.
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Since8γ,N is nonnegative and monotone increasing with respect to N, we get by monotone convergence
that e8γ v and e8γ v′ belong to L2(R) and satisfy∫

|e8γ v′
|
2 dτ +

∫
|e8γ v|2 dτ ≤ Cγ (∥v∥2

+ ∥e8γ u∥
2), (2-19)

where
8γ (τ )= lim

N→+∞

8γ,N (τ )= γ |τ |.

To finish the proof, we note that, since the regularized resolvent is bounded and 8γ ≥ 0,

∥v∥2
= ∥Rau∥

2
≤ ∥Ra∥

2
∥u∥

2
≤ ∥Ra∥

2
∥e8γ u∥

2. □

Proposition 2.5. For any a ∈ (−1, 0), it holds

µ′′

a(ζa)= 2(1 − 4I2(a)) > 0. (2-20)

Proof. First we notice (ζa+ba(τ )τ )φa is orthogonal to φa in L2(R) (see (2-10)). Thus Ra[(ζa+ba(τ )τ )φa]

is well-defined as (ha[ζa] −βa)
−1(ζa + ba(τ )τ )φa . Let z ∈ R, and Ea(z) be the lowest eigenvalue of the

operator Ha(z), defined on L2(R) as

Ha(z) := ha[ζa + z] = −
d2

dτ 2 + (ζa + z + ba(τ )τ )
2.

We adopt the same proof of [Fournais and Helffer 2006, Proposition A.3] (replacing P0 by Ha(0)−βa

there) to get the identity in (2-20). Finally, by [Assaad and Kachmar 2022], µ′′(ζa) > 0. □

3. One-dimensional model involving the curvature

We consider a new family of fiber operators which are obtained by adding to the fiber operators in Section 2
new terms that will be related to the geometry of the magnetic edge. This family was introduced earlier
in [Assaad and Kachmar 2022] and their definition is reminiscent of the weighted operators introduced in
the context of the Neumann Laplacian with a uniform magnetic field [Helffer and Morame 2001].

We introduce the parameters

a ∈ (−1, 0), δ ∈
(
0, 1

12

)
, M > 0, h0 > 0 and κ ∈ [−M,M],

which satisfy
Mh1/2−δ

0 < 1
3 ,

and will be fixed throughout this section.
Consider on (−h−δ, h−δ) the positive function aκ,h(τ )=(1−κh1/2τ), the Hilbert space L2((−h−δ, h−δ);

aκ,h dτ) with the inner product

⟨u, v⟩ =

∫ h−δ

−h−δ

u(τ )v(τ ) (1 − κh1/2τ) dτ,

and, for ξ ∈ R, the operator

Ha,ξ,κ,h =−
d2

dτ 2 +(ba(τ )τ+ξ)
2
+κh1/2(1−κh1/2τ)−1∂τ+2κh1/2τ

(
ba(τ )τ+ξ−κh1/2ba(τ )

τ 2

2

)2

− κh1/2ba(τ )τ
2(ba(τ )τ + ξ)+ κ2hba(τ )

2 τ
4

4
, (3-1)
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where ba is the function in (2-2) and

Dom(Ha,ξ,κ,h)= {u ∈ H 2(−h−δ, h−δ) : u(±h−δ)= 0}. (3-2)

The operator Ha,ξ,κ,h is a self-adjoint operator in L2((−h−δ, h−δ); aκ,h dτ) with compact resolvent. We
denote by (λn(Ha,ξ,κ,h))n≥1 its sequence of min-max eigenvalues. The first eigenvalue can be expressed as

λ1(Ha,ξ,κ,h)= inf{qa,ξ,κ,h(u) : u ∈ H 1
0 (−h−δ, h−δ) and ∥u∥L2((−h−δ,h−δ);aκ,h dτ) = 1}, (3-3)

where

qa,ξ,κ,h(u)=
∫ h−δ

−h−δ

(
|u′(τ )|2+(1+2κh1/2τ)

(
ba(τ )τ+ξ−κh1/2ba(τ )

τ 2

2

)2
u2(τ )

)
(1−κh1/2τ) dτ. (3-4)

By Cauchy’s inequality, we write, for any ε ∈ (0, 1),(
ba(τ )τ + ξ − κh1/2ba(τ )

τ 2

2

)2
≥ (1 − ε)(ba(τ )τ + ξ)2 − ε−1κ2hba(τ )

2 τ
4

4
.

Noticing that hτ 4
≤h1−4δ for τ ∈ (h−δ, hδ) and optimizing with respect to ε, we choose ε=h1/2−2δ and get(

ba(τ )τ + ξ − κh1/2ba(τ )
τ 2

2

)2
≥ (1 − h1/2−2δ)(ba(τ )τ + ξ)2 − κ2ba(τ )

2h1/2−2δ. (3-5)

We plug (3-5) in (3-4) to get, for some C0 > 0,

qa,ξ,κ,h(u)≥ (1 − C0h1/2−2δ)qa[ξ ](u)− C0h1/2−2δ
∥u∥

2
L2(−h−δ,h−δ)

, (3-6)

where qa[ξ ] is the quadratic form in (2-4). The min-max principle ensures that

qa[ξ ](u)≥ βa∥u∥
2
L2(−h−δ,h−δ)

for all u ∈ H 1
0 (−h−δ, h−δ). (3-7)

Since βa > 0, (3-6) and (3-7) imply

qa,ξ,κ,h(u)≥ (1 − Ch1/2−2δ)qa[ξ ](u), (3-8)

with C = (1+β−1
a )C0. From (3-8) and the min-max principle we deduce the lower bounds in Lemma 3.1

below (see [Assaad and Kachmar 2022, Section 4.2] for details).

Lemma 3.1. Given a ∈ (−1, 0), there exist positive constants ε0(a), ε1(a), ε2(a), c0(a), h0(a),C0(a)
such that, for all h ∈ (0, h0(a)),

• For |ξ − ζa| ≥ ε0(a), we have
λ1(Ha,ξ,κ,h)≥ βa + c0(a).

• For ε2(a)h1/4−δ
≤ |ξ − ζa| ≤ ε0(a), we have

λ1(Ha,ξ,κ,h)≥ βa + ε1(a)(ξ − ζa)
2.

• For |ξ − ζa| ≤ ε2(a)h1/4−δ, we have

λ1(Ha,ξ,κ,h)≥ βa + c2(a)|ξ − ζa|
2
+ κM3(a)h1/2

− C0(a)max(h1/2
|ξ − ζa|, |ξ − ζa|

3, h),
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where
c2(a)=

1
2µ

′′

a(ζa) > 0. (3-9)

We can now state the following:

Proposition 3.2. There exists ĉ0(a) > 0 and, for all ε ∈ (0, 1), there exist Cε, hε > 0 such that, for all
h ∈ (0, hε) and ξ ∈ R, the following inequality holds:

λ1(Ha,ξ,κ,h)≥ βa + ĉ0(a)min((ξ − ζa)
2, ε)+ κM3(a)h1/2

− Cεh.

Proof. In the third item of Lemma 3.1, we estimate the remainder term

max(h1/2
|ξ − ζa|, |ξ − ζa|

3, h)≤ (η−1
+ 1)h + η|ξ − ζa|

2
+ |ξ − ζa|

3

for all η ∈ (0, 1). Choosing η = c2(a)/(4C0(a)), where C0(a) is the constant in Lemma 3.1, we deduce
from Lemma 3.1 the lower bound for the eigenvalue λ1(Ha,ξ,κ,h), with

ĉ0(a)=
1
2

min
(
ε1(a),

c0(a)
ε0(a)2

, c0(a)
)
. □

4. Upper bound

We establish an upper bound of the n-th eigenvalue λn(h) of Ph , which was defined in (1-4). This
will involve the spectral value βa introduced in (2-6), the moment M3(a) < 0 introduced in (2-16), and
c2(a) > 0 the value defined in (3-9). In this section, we consider two parameters η ∈

(
0, 1

8

)
and δ ∈

(
0, 1

2

)
.

Theorem 4.1. Let n ∈ N∗ and a = (1, a), with −1 < a < 0. Under Assumption 1.1, there exist h0 > 0
and C0 > 0 such that, for all h ∈ (0, h0), the n-th eigenvalue λn(h) of the operator Ph defined in (1-4)
satisfies

λn(h)≤ hβa + h3/2kmax M3(a)+ h7/4(2n − 1)

√
k2 M3(a)c2(a)

2
+ C0h15/8, (4-1)

where c2(a) and M3(a) were introduced in (1-12).

Proof. The approach is similar to the one used in the literature in establishing upper bounds for the
low-lying eigenvalues of operators defined on smooth bounded domains, like Schrödinger operators with
uniform magnetic fields (and Neumann boundary conditions) or the Laplacian (with Robin boundary
conditions). For instance, one can see [Bernoff and Sternberg 1998; Fournais and Helffer 2006; Helffer
and Kachmar 2017]. The proof relies on the construction of quasimodes localized near the point of
maximal curvature on 0.

Let h ∈ (0, 1). Working near 0, we start by expressing the operator Ph in the adapted (s, t)-coordinates
there (see Appendix A):

P̃h = −a−1(h∂s − i F̃1)a
−1(h∂s − i F̃1)− a−1(h∂t − i F̃2)a(h∂t − i F̃2). (4-2)

Recall that we assume that the maximum is attained for s = 0, hence kmax = k(0), and having Lemma A.1,
we perform a global change of gauge ω such that the magnetic potential F satisfies in � near the edge 0,
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when expressed in the (s, t)-coordinates,

F̃(s, t)=

(
−ba(t)

(
t −

1
2 t2k(s)

)
0

)
, (4-3)

where t 7→ ba(t) is defined by
ba(t)= 1R+

(t)+ a1R−
(t), t ∈ R.

Performing the change of variables

σ = h−1/8s and τ = h−1/2t,

the operator P̃h becomes in the (σ, τ )-coordinates

P̌h = −ǎ−1(h7/8∂σ + ih1/2ba(τ )τ ǎ2)ǎ
−1(h7/8∂σ + ih1/2ba(τ )τ ǎ2)− hǎ−1∂τ ǎ∂τ , (4-4)

with
ǎ(σ, τ ; h)= 1 − h1/2τk(h1/8σ) and ǎ2(σ, τ ; h)= 1 −

1
2 h1/2τk(h1/8σ). (4-5)

It is convenient to introduce the operator

Pnew
h = e−iσζa/h3/8

h−1P̌heiσζa/h3/8
−βa, (4-6)

where ζa is introduced in Section 2B and we get

Pnew
h = −ǎ−1∂τ ǎ∂τ −βa − ǎ−1(h3/8∂σ + i(ζa + ba(τ )τ )− iba(τ )τ (1 − ǎ2)

)
× ǎ−1(h3/8∂σ + i(ζa + ba(τ )τ )− iba(τ )τ (1 − ǎ2)

)
.

Using the boundedness and the smoothness of k, and the fact that k ′(0)= 0 and k ′′(0) < 0, we write

ǎ(σ, τ ; h)= 1 − h1/2τk(0)− h3/4τσ 2 k ′′(0)
2

+ h7/8e1,h(σ, τ ),

ǎ2(σ, τ ; h)= 1 − h1/2τ
k(0)

2
− h3/4τσ 2 k ′′(0)

4
+ h7/8e2,h(σ, τ ),

ǎ−1(σ, τ ; h)= 1 + h1/2τk(0)+ h3/4τσ 2 k ′′(0)
2

+ h7/8e3,h(σ, τ ),

ǎ−2(σ, τ ; h)= 1 + 2h1/2τk(0)+ h3/4τσ 2k ′′(0)+ h7/8e4,h(σ, τ ),

where (ei,h)i=1,...,4 are functions of σ and τ having the property that there exist C and h0 such that,1 for
h ∈ (0, h0), σ ∈ (−h−η, h−η) and τ ∈ (−h−ρ, h−ρ) we have

|e1,h(σ, τ )| + |e2,h(σ, τ )| ≤ C |τσ 3
|, |e3,h(τ, σ )| + |e4,h(τ, σ )| ≤ C(σ 6

+ τ 4
+ 1), (4-7)

and
4∑

i=1

( 2∑
j=1

(
|∂ j
τ ei,h(σ, τ )| + |∂ j

σ ei,h(σ, τ )|
)
+ |∂2

στ ei,h(σ, τ )|

)
≤ C(|σ |

5
+ |τ |3 + 1). (4-8)

1The following conditions on the length scales of τ and σ (namely that σ ∈ (−h−δ, h−δ) and τ ∈ (−h−ρ , h−ρ)), as well
as (4-7) and (4-8) below, are set for a later use in the paper.
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Hence,

Pnew
h = P0 + h3/8 P1 + h1/2 P2 + h3/4 P3 + h7/8 Qh, (4-9)

where

P0 = −∂2
τ + (ζa + ba(τ )τ )

2
−βa,

P1 = −2i(ζa + ba(τ )τ )∂σ ,

P2 = k(0)[2τ(ζa + ba(τ )τ )
2
− ba(τ )τ

2(ζa + ba(τ )τ )] + k(0)∂τ ,

P3 = −∂2
σ +

k ′′(0)
2

σ 2
[2τ(ζa + ba(τ )τ )

2
− ba(τ )τ

2(ζa + ba(τ )τ )] +
k ′′(0)

2
σ 2∂τ ,

(4-10)

and

Qh = E1,h(σ, τ )∂
2
σ + E2,h(σ, τ )∂σ + E3,h(σ, τ )∂τ + E4,h(σ, τ ). (4-11)

Here the terms (Ei,h)i=1,...,4 are functions in σ and τ having the property that there exist C and h0 such
that, for h ∈ (0, h0), σ ∈ (−h−η, h−η) and τ ∈ (−h−ρ, h−ρ), we have

|Ei,h(σ, τ )| + |∂σEi,h(σ, τ )| + |∂τEi,hσ, τ)| ≤ C (|σ |
6
+ |τ |6 + 1). (4-12)

In what follows, we will construct, for each n ∈ N∗, a trial function φn ∈ DomPnew
h satisfying∥∥∥∥Pnew

h φn −

(
h1/2kmax M3(a)+ h3/4(2n − 1)

√
k2 M3(a)c2(a)

2

)
φn

∥∥∥∥
L2(R2,h5/8ã dσ dτ)

= O(h7/8)∥φn∥L2(R2,h5/8ã dσ dτ) (4-13)

(recall k2 = k ′′(0)).
The result in (4-13), once established, will imply by the spectral theorem the existence of an eigenvalue

λnew
n (h) of Pnew

h such that

λnew
n (h)= h1/2kmax M3(a)+ h3/4(2n − 1)

√
k2 M3(a)c2(a)

2
+O(h7/8). (4-14)

Furthermore, by the definition of Pnew
h in (4-6) we have

σ(Ph)= h σ(Pnew
h ).

Thus, (4-14) will yield the result in (4-1). Hence, the discussion above shows that establishing (4-13) is
sufficient to complete the proof of the theorem.

We construct the trial functions in the form

φh(σ, τ )= h−5/16χ(hησ)χ(hρτ)g(σ, τ ), (4-15)

where χ is a smooth cut-off function supported in (−1, 1) and g = g[h] will be determined in L2(R2)

with rapid decay at infinity. First we set

g[h] = g0 + h3/8g1 + h1/2g2 + h3/4g3, (4-16)
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with gi ∈ L2(R2) for i = 0, . . . , 3, and

µ= µ(h)= µ0 + h3/8µ1 + h1/2µ2 + h3/4µ3, (4-17)

with µi ∈ R for i = 0, . . . , 3. We will search for µ and g satisfying on R2

(Pnew
h −µ)g = O(h7/8). (4-18)

More precisely, using the expansion of Pnew
h in (4-9), we will search for µi and gi satisfying the system

of equations 
(e0): (P0 −µ0)g0 = 0,
(e1): (P0 −µ0)g1 + (P1 −µ1)g0 = 0,
(e2): (P0 −µ0)g2 + (P2 −µ2)g0 = 0,
(e3): (P0 −µ0)g3 + (P1 −µ1)g1 + (P3 −µ3)g0 = 0.

Let u0 = φa be the positive normalized eigenfunction of the operator ha[ζa] (in (2-1)) corresponding
to the lowest eigenvalue βa .

Obviously, the pair
(µ0, g0)= (0, u0 f ) (4-19)

is a solution of (e0) for any f ∈ S(Rσ ).
We implement this choice of (µ0, g0) in (e1) and write

P0g1 = −(P1 −µ1)g0 = [2i(ζa + ba(τ )τ )∂σ +µ1]u0 f.

Noticing that (ζa +ba(τ )τ )u0 is orthogonal to u0 in L2(R), Ra[(ζa +ba(τ )τ )u0] is well-defined with Ra

in (2-18) (see (2-11) and Remark 2.2), and the pair

(µ1, g1)=
(
0, 2iRa[(ζa + ba(τ )τ )u0]∂σ f

)
(4-20)

is a solution of (e1).
Similarly,

P0g2 = −(P2 −µ2)g0 =
[
−kmax

(
2τ(ζa + ba(τ )τ )

2
− ba(τ )τ

2(ζa + ba(τ )τ )
)
+µ2

]
u0 f − kmax f ∂τu0.

From Remark 2.3, we observe that [2τ(ζa + ba(τ )τ )
2
− ba(τ )τ

2(ζa + ba(τ )τ )− M3(a)]u0 is orthogonal
to u0 in L2(R). Moreover, the normalization of u0 in L2(R) yields ∂τu0 ⊥ u0. Hence, the pair

(µ2, g2)=
(
kmax M3(a),

−kmaxRa([2τ(ζa + ba(τ )τ )
2
− ba(τ )τ

2(ζa + ba(τ )τ )− M3(a)]u0 + ∂τu0) f
)

(4-21)

is a solution of equation (e2).
Finally, we consider equation (e3):

P0g3 = −P1g1 − (P3 −µ3)g0.

We will search for µ3 and f satisfying(
P1g1(σ, · )+ (P3 −µ3)g0(σ, · )

)
⊥ u0( · ) (4-22)
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for every fixed σ . This orthogonality result will allow us to choose

g3(σ, · )= −Ra[P1g1(σ, · )+ (P3 −µ3)g0(σ, · )] (4-23)

in order to satisfy (e3). To that end, the aforementioned choice of g0, g1 and g2 gives for any fixed σ

⟨P1g1(σ, · )+ (P3 −µ3)g0(σ, · ), u0( · )⟩L2(R)

= 4∂2
σ f (σ )

∫
R

(ζa + ba(τ )τ )u0Ra[(ζa + ba(τ )τ )u0] dτ +
k2

2
σ 2 f (σ )

∫
R

u0∂τu0 dτ

+

∫
R

(
−∂2

σ f (σ )+
k2

2
σ 2 f (σ )[2τ(ζa + ba(τ )τ )

2
− ba(τ )τ

2(ζa + ba(τ )τ )] −µ3 f (σ )
)

u2
0 dτ

= −(1 − 4I2(a))∂2
σ f (σ )+

k2 M3(a)
2

σ 2 f (σ )−µ3 f (σ ) (using ∥u0∥L2(R) = 1)

= −c2(a)∂2
σ f (σ )+

k2 M3(a)
2

σ 2 f (σ )−µ3 f (σ ), (4-24)

where I2(a) is introduced in (2-17) and (2-20), and c2(a) is introduced in (1-12).
We consider the harmonic oscillator on R

H harm
a := −c2(a)

d2

dσ 2 +
1
2

k2 M3(a)σ 2. (4-25)

For each n ∈ N∗, let fn ∈ S(R) be the n-th normalized eigenfunction of H harm
a corresponding to the

eigenvalue (2n − 1)
√

k2 M3(a)c2(a)/2. The choice

f = fn and µ3 = (2n − 1)

√
k2 M3(a)c2(a)

2
(4-26)

makes the expression in (4-24) equal to zero, hence realizing the orthogonality result in (4-22).
We can now gather the above results. For each n ∈ N∗, we choose µ in (4-17) and g = g(n) in (4-16)

such that µi , gi and f are as in (4-19)–(4-21), (4-23) and (4-26).
For h sufficiently small, using the properties of Qh in (4-11) and (4-12), the fact that f ∈ S(R), the

decay properties of φa in Proposition 2.1 and those of the resolvent Ra in (2-18), the foregoing choice of
g and µ implies (4-18).

Now, we consider the trial function (see (4-15)) associated with g(n). Using again the decay properties
of u0 and f , and Lemma 2.4 for getting the same properties for the gj , one can neglect the effect of the
cut-off functions in the computation while concluding from (4-18) the desired result in (4-13). We omit
further details of the computation, and refer the reader to [Fournais and Helffer 2006, Sections 2–3]. □

Remark 4.2. The formal construction of the pairs (µi , gi )i=0,...,3 in the proof of Theorem 4.1 can be
pushed to any order, assuming that the curve 0 is C∞ smooth. Using the same approach we can construct
pairs (µi , gi )i∈N∗ for defining quasimodes yielding an accurate upper bound of the eigenvalue λn(h), which
is an infinite expansion of powers of h1/8. This upper bound will agree with the one in Theorem 4.1 up to
the order h7/4; see [Bernoff and Sternberg 1998; Fournais and Helffer 2006; Helffer and Kachmar 2017].
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Remark 4.3. In the derivation of the lower bound in Section 7, the operator H harm
a introduced in (4-25)

plays the role of an effective operator in the tangential variable. In light of (4-16), (4-19), (4-20), (4-21)
and (4-26), the quasimode

v
app
h,n = φa(τ ) fn(σ )+ 2ih3/8Ra

(
(ζa + ba(τ )τ )φa(τ )

)
∂σ fn(σ )+ h1/2g2(σ, τ )

is a candidate for the profile of an actual eigenfunction of the operator Ph , after rescaling and a gauge
transformation.

5. Functions localized near the magnetic edge

In this section, we consider functions satisfying the energy bound2 in (5-1), which are consequently
localized near the maximum of the curvature of the magnetic edge 0. We will be able to estimate the
tangential derivative of such functions.

As we shall see in Section 5A, bound states and their first-order tangential derivatives are examples of
the functions we discuss in this section.

5A. Localization hypotheses. We fix t0 > 0 so that the Frenet coordinates recalled in Appendix A are
valid in {d(x, 0) < t0}. We recall our assumption that the curvature of 0 attains its maximum at a unique
point defined by the tangential coordinate s = 0.

Let θ ∈
(
0, 3

8

)
be a fixed constant. Consider a family of functions (gh)h∈(0,h0] in H 1(�) for which

there exist positive constants C1, C2 such that, for h ∈ (0, h0],

Qh(gh)≤ (hβa + h3/2 M3(a)kmax + C1h7/4)∥gh∥
2
L2(�)

+ C2h5/2−θ , (5-1)

where Qh is the quadratic form introduced in (1-3).
Suppose also that there exist constants α,C > 0 and a family (rh)h∈(0,h0] ⊂ R+ such that

lim sup
h→0+

rh <+∞, (5-2)

and the following two estimates hold:∫
�

(
|gh|

2
+ h−1

|(h∇ − i F)gh|
2) exp(αh−1/2d(x, 0)) dx ≤ Crh, (5-3)∫

d(x,0)≤t0

(
|gh(x)|2 + h−1

|(h∇ − i F)gh|
2) exp(αh−1/8

|s(x)|) dx ≤ Crh . (5-4)

We can derive from the decay estimates in (5-3) and (5-4) four estimates.
The two first estimates follow from the inequality ez

≥ zN/N ! for z ≥ 0 and read: for N ≥ 1, there
exist CN , hN > 0 such that, for all h ∈ (0, hN ], we have

AN (gh) :=

∫
�

(d(x, 0))N (
|gh(x)|2 + h−1

|(h∇ − i F)gh(x)|2
)

dx ≤ CN hN/2rh, (5-5)

2This is coherent with (4-1) if we consider the function a normalized bound state.
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and, for ρ ∈
(
0, 1

2

)
, there exist CN ,ρ, hN ,ρ > 0 such that, for all h ∈ (0, hN ,ρ],

BN (gh) :=

∫
d(x,0)≤hρ

|s(x)|N (
|gh(x)|2 + h−1

|(h∇ − i F)gh(x)|2
)

dx ≤ CN hN/8rh . (5-6)

The two last estimates imply that, for a fixed ρ ∈
(
0, 1

2

)
, and N ≥ 1, there exist CN ,ρ, hN ,ρ > 0 such

that, for all h ∈ (0, hN ,ρ], we have∫
d(x,0)≥hρ

(
|gh(x)|2 + h−1

|(h∇ − i F)gh(x)|2
)

dx ≤ CN ,ρ hN rh, (5-7)

and for η ∈
(
0, 1

8

)
, there exist CN ,ρ,η, hN ,ρ,η > 0 such that, for all h ∈ (0, hN ,ρ,η], we have∫

d(x,0)≤hρ
|s(x)|≥hη

(
|gh(x)|2 + h−1

|(h∇ − i F)gh|
2) dx ≤ CN ,ρ,η hN rh . (5-8)

In fact, (5-7) and (5-8) follow in a straightforward manner from (5-3) and (5-4) after noticing that∫
d(x,0)≥hρ

(
|gh(x)|2 + h−1

|(h∇ − i F)gh|
2) dx ≤ Crh exp(−αhρ−1/2),∫

d(x,0)≤hρ
|s(x)|≥hη

(
|gh(x)|2 + h−1

|(h∇ − i F)gh|
2) dx ≤ Crh exp(−αhη−1/8).

5B. Rescaled functions and tangential estimates. Let δ ∈
(
0, 1

12

)
and η ∈

(
0, 1

8

)
be two fixed constants.

Consider the function wh defined as

wh(σ, τ )= h5/16χ(hησ)χ(hδτ)g̃h(h1/8σ, h1/2τ), (5-9)

where g̃h is the function assigned to gh by the Frenet coordinates as in (A-3), namely

g̃h(s, t)= gh(x),

and χ ∈ C∞
c (R), suppχ ⊂ [−1, 1], 0 ≤ χ ≤ 1 and χ = 1 on

[
−

1
2 ,

1
2

]
.

Note that, due to our conditions on δ and η, wh can be seen as a function on R2, and its L2-norm can
be estimated by using (A-7) and (5-5) as follows:

∥wh∥
2
L2(R2)

= (1 +O(h1/2))∥gh∥
2
L2(�)

. (5-10)

Under our hypotheses on the function gh (particularly (5-1) for θ ∈
(
0, 3

8

)
and (5-3)–(5-4)), we can

estimate the tangential derivative of the function wh .

Proposition 5.1. For all θ ∈
(
0, 3

8

)
, there exist constants Cθ , hθ > 0 such that, if h ∈ (0, hθ ], and gh

satisfies (5-1)θ , (5-3) and (5-4), then the function wh introduced in (5-9) satisfies the estimate

∥(h3/8∂σ − iζa)wh∥L2(R2) ≤ Ch3/8−θ/2(∥wh∥L2(R2) +
√

rh + h3/8−3θ/4). (5-11)

Proof. The proof is split into four steps.
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Step 1: We localize the integrals defining the L2-norm and the quadratic form of gh to the neighborhood,
Nh = {x ∈� : d(x, 0)≤ h1/2−δ, |s(x)| ≤ hη}, of the point of maximal curvature, s = 0. In fact, by the
decay estimates in (5-7) and (5-8),

∥gh∥
2
L2(�)

=

∫
Nh

|gh(x)|2 dx +O(h∞) and Qh(gh)=

∫
Nh

|(h∇ − i F)gh|
2 dx +O(h∞).

We refine the localization of these integrals by using the decay estimates in (5-5) and (5-6), the change of
variable formulas in (A-7) and the expansions

k(s)= κ +O(s2), a(s, t)= 1 − tκ +O(s2t), a−2
= 1 + 2tκ +O(s2t),

where we set κ = kmax. More precisely,

∥gh∥
2
L2(�)

=

∫
R

∫ h1/2−δ

−h1/2−δ

|g̃h|
2(1 − tκ) ds dt +

∫
R

∫ h1/2−δ

−h1/2−δ

O(s2t)|g̃h|
2 ds dt +O(h∞).

To estimate the second term in the right-hand side we use the Cauchy–Schwarz inequality to obtain∫
R

∫ h1/2−δ

−h1/2−δ

s2
|t ||g̃h|

2 ds dt ≤

(∫
R

∫ h1/2−δ

−h1/2−δ

t2
|g̃h|

2 ds dt
)1/2(∫

R

∫ h1/2−δ

−h1/2−δ

s4
|g̃h|

2 ds dt
)1/2

.

Hence by (5-5) (with N = 2) and (5-6) (with N = 4) we get∫
R

∫ h1/2−δ

−h1/2−δ

s2
|t ||g̃h(s, t)|2 ds dt = O(h3/4)rh .

Implementing the above, we have

∥gh∥
2
L2(�)

≤

∫
R

∫ h−δ

−h−δ

|wh|
2(1 − h1/2τκ) dσ dτ +O(h3/4)rh +O(h∞) (5-12)

and

Qh(gh)=

∫
R

∫ h1/2−δ

−h1/2−δ

(
|h∂t g̃h|

2
+ (1 + 2κt)

∣∣∣(h∂s + iba(t)
(

t −
κt2

2

))
g̃h

∣∣∣2)
(1 − κt) ds dt

+O(h∞)+O(Rh), (5-13)

where

Rh =

∫
R2

s2
|t |

(
|h∂t g̃h|

2
+

∣∣∣(h∂s + iba(t)
(

t −
k(s)t2

2

))
g̃h

∣∣∣2)
ds dt

+

∫
R2

s4t4
|g̃h|

2 ds dt +

(∫
R2

s4t4
|g̃h|

2 ds dt
)1/2

∥(h∇ − i F)gh∥L2(�).

Proceeding as above for the treatment of
∫

R2 s4t4
|g̃h|

2 ds dt , we infer from (5-1), (5-5) and (5-6) that

Rh ≤ C
(
(A2(gh)B4(gh))

1/2h + (A8(gh)B8(gh))
1/2

+ (A8(gh)B8(gh))
1/4h1/2)

= O(h7/4rh).
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Now, coming back to (5-1), we get after performing a change of variable and dividing by h that3∫
R

∫ h−δ

−h−δ

(
|∂τwh|

2
+ (1 + 2κh1/2τ)

∣∣∣(h3/8∂σ + i
(

ba(τ )τ − κh1/2ba(τ )
τ 2

2

))
wh

∣∣∣2)
(1 − κh1/2τ) dσ dτ

≤ (βa + h1/2 M3(a)κ +O(h3/4))mh +O(h3/4rh)+O(h3/2−θ ), (5-14)
where

mh :=

∫
R

∫ h−δ

−h−δ

|wh|
2(1 − κh1/2τ) dσ dτ = (1 + o(1))∥wh∥

2
L2(R2)

. (5-15)

In the sequel, we set
Mh = mh + rh . (5-16)

Next we perform a Fourier transform with respect to σ and denote the transform of wh by

ŵh(ξ, t)=
1

√
2π

∫
R

wh(σ, t)e−iσξ dσ.

Then it is immediate from (5-14) and (5-15) that we have∫
R

∫ h−δ

−h−δ

(
|∂τ ŵh|

2
+ (1+2κh1/2τ)

∣∣∣(h3/8ξ +ba(τ )τ −κh1/2ba(τ )
τ 2

2

)
ŵh

∣∣∣2)
(1−κh1/2τ) dξ dτ

≤ (βa + h1/2 M3(a)κ)mh +O(h3/4 Mh)+O(h3/2−θ ), (5-17)

and mh introduced in (5-15) now satisfies

mh =

∫
R

∫ h−δ

−h−δ

|ŵh|
2(1 − κh1/2τ) dξ dτ. (5-18)

Step 2: We introduce
fh(ξ)= qa,ζ,κ,h(ŵh)

∣∣
ζ=h3/8ξ

, (5-19)

where qa,ζ,κ,h is the quadratic form introduced in (3-4). We rewrite (5-17) as∫
R

fh(ξ) dξ ≤ (βa + h1/2 M3(a)κ)mh +O(h3/4 Mh)+O(h3/2−θ ). (5-20)

Fix a positive constant ε < 1. Then by Proposition 3.2,

fh(ξ)≥

∫ h−δ

−h−δ

(
βa + ĉ0(a)min((h3/8ξ − ζa)

2, ε)+ h1/2 M3(a)κ − Cεh
)
|ŵh|

2(1 − h1/2κτ) dτ. (5-21)

Inserting this into (5-20) we get∫
R

∫ h−δ

−h−δ

ĉ0(a)min((h3/8ξ − ζa)
2, ε)|ŵh|

2(1 − h1/2κτ) dξ dτ = O(h3/4 Mh)+O(h3/2−θ ),

from which we infer the two estimates∫
|h3/8ξ−ζa |2<ε

∫ h−δ

−h−δ

|h3/8ξ − ζa|
2
|ŵh|

2(1 − h1/2κτ) dξ dτ = O(h3/4 Mh)+O(h3/2−θ ), (5-22)∫
|h3/8ξ−ζa |2≥ε

∫ h−δ

−h−δ

|ŵh|
2(1 − h1/2κτ) dξ dτ = O(h3/4 Mh)+O(h3/2−θ ). (5-23)

3Replacing the cut-off functions in (5-9) by 1 in the integrals produces O(h∞) errors by (5-7) and (5-8).
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Step 3: Noticing the simple decomposition∫
R

∫ h−δ

−h−δ

|ŵh|
2(1 − h1/2κτ) dξ dτ

=

∫
|h3/8ξ−ζa |2<ε

∫ h−δ

−h−δ

|ŵh|
2(1 − h1/2κτ) dξ dτ +

∫
|h3/8ξ−ζa |2≥ε

∫ h−δ

−h−δ

|ŵh|
2(1 − h1/2κτ) dξ dτ, (5-24)

we get from (5-23) and (5-18)∫
|h3/8ξ−ζa |2<ε

∫ h−δ

−h−δ

|ŵh|
2(1 − h1/2κτ) dξ dτ = mh +O(h3/4 Mh)+O(h3/2−θ ). (5-25)

Similarly, we decompose the integral in (5-20) as∫
R

fh(ξ) dξ =

∫
|h3/8ξ−ζa |2<ε

fh(ξ) dξ +

∫
|h3/8ξ−ζa |2≥ε

fh(ξ) dξ. (5-26)

We write a lower bound of the integral on {|h3/8ξ − ζa|
2
≥ ε} by using (5-21). Noting that ĉ0(a) > 0, we

get, by (5-25),∫
|h3/8ξ−ζa |2<ε

fh(ξ) dξ ≥
(
βa + h1/2 M3(a)κ +O(h)

)
mh +O(h3/4 Mh)+O(h3/2−θ ).

Inserting this into (5-26) and using (5-20), we get∫
|h3/8ξ−ζa |2≥ε

fh(ξ) dξ = O(h3/4 Mh)+O(h3/2−θ ). (5-27)

Step 4: We write a lower bound for fh(ξ) by gathering (5-19) and (3-8), thereby obtaining∫
|h3/8ξ−ζa |2≥ε

fh(ξ) dξ ≥ (1 − Ch1/2−2δ)

∫
|h3/8ξ−ζa |2≥ε

∫
R

(
|∂τ ŵh|

2
+ |(ba(τ )τ + h3/8ξ)ŵh|

2) dξ dτ.

Using (5-27) and the inequality (note that |ba| ≤ 1 since |a|< 1)

(ba(τ )τ + h3/8ξ)2 ≥
1
2(h

3/8ξ)2 − 2τ 2,

we get

1
2

∫
|h3/8ξ−ζa |2≥ε

∫
R

|h3/8ξŵh|
2 dξ dτ ≤2

∫
|h3/8ξ−ζa |2≥ε

∫
R

τ 2
|ŵh|

2 dξ dτ+O(h3/4 Mh)+O(h3/2−θ ). (5-28)

Let p = 1/θ and q = 1/(1 − θ). By the Hölder inequality, (5-5) and (5-23), we write∫
|h3/8ξ−ζa |2≥ε

∫
R

τ 2
|ŵh|

2︸ ︷︷ ︸
=τ 2|ŵh |2θ |ŵh |2−2θ

dξ dτ

≤

(∫
|ξh−ζa |2≥ε

∫
R

τ 2p
|ŵh|

2pθ dξ dτ
)1/p(∫

|ξh−ζa |2≥ε

∫
R

|ŵh|
q(2−2θ) dξ dτ

)1/q

≤

(∫
R2
τ 2p

|wh|
2 dτ ds

)1/p(∫
|ξh−ζa |2≥ε

∫
R

|ŵh|
2 dξ dτ

)1/q

= O(h3/4(1−θ)Mh)+O(Mθ
h h(1−θ)(3/2−θ))

= O(h3/4(1−θ)Mh)+O(h3/2−5θ/2),
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where, in the last step, we used Young’s inequality,

Mθ
h h(1−θ)(3/2−θ)

= Mhθhθ(3/4−θ)h(1−θ)(3/2−θ)−θ(3/4−θ)

≤ θMhh3/4−θ
+ (1 − θ)h3/2−θh−(3/4−θ)θ/(1−θ)

≤ θMhh3/4−θ
+ (1 − θ)h3/2−5θ/2 for 0< θ < 3

8 .

Inserting this estimate into (5-28), we get∫
|h3/8ξ−ζa |2≥ε

∫
R

|h3/8ξŵh|
2 dξ dτ = O(h3/4−θMh)+O(h3/2−5θ/2).

Collecting the foregoing estimate and those in (5-22) and (5-23), we deduce that∫
R2

|(h3/8∂σ − iζa)wh|
2 dσ dτ =

∫
R

∫ h−δ

−h−δ

|h3/8ξ − ζa|
2
|ŵh|

2 dξ dτ = O(h3/4−θMh)+O(h3/2−5θ/2).

With (5-15) and (5-16) in mind, this implies (5-11) as stated in the proposition. □

6. Localization of bound states

In this section, we fix a labeling n ≥ 1 and denote by ψh,n a normalized eigenfunction of the operator Ph

with eigenvalue λn(h). By Theorem 4.1, it holds

Qh(ψh,n)≤ (hβa + h3/2 M3(a)kmax + C1h7/4)∥ψh,n∥
2
L2(�)

, (6-1)

where Qh is the quadratic form introduced in (1-3).
The decay estimates in Sections 6A and 6B follow by standard semiclassical Agmon estimates. We

refer to [Helffer and Morame 2001; Fournais and Helffer 2006] for details in the case of the Laplacian
with a smooth magnetic field, and to [Assaad and Kachmar 2022] for adaptations in the piecewise constant
field discussed here.

Using the aforementioned decay estimates, the bound state ψh,n satisfies the hypotheses in Section 5.
Namely the estimates in (5-1)θ , (5-3) and (5-4) hold with gh = ψh,n , rh = 1 and for any θ ∈

(
0, 3

8

)
.

Consequently, we will be able to estimate its tangential derivative (see Proposition 6.2). Estimating the
second-order tangential derivative of ψh,n (as in Proposition 6.3) requires the analysis of the decay of its
first-order tangential derivative in order to verify the hypotheses of Section 5.

6A. Decay away from the edge. The derivation of an Agmon decay estimate relies on the following
useful lower bound of the quadratic form [Assaad and Kachmar 2022, Section 4.3]. For every R0 > 1,
there exists a positive constant C0 and h0 > 0 such that, for h ∈ (0, h0],

Qh(u)≥

∫
�

(Uh,a(x)− C0 R−2
0 h)|u(x)|2 dx (u ∈ H 1

0 (�)), (6-2)

where Qh is introduced in (1-3) and

Uh,a(x)=

{
|a|h if dist(x, 0) > R0h1/2,

βah if dist(x, 0) < R0h1/2.
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Note that the decay property is a consequence of βa < |a|. Following [Fournais and Helffer 2010,
Theorem 8.2.4], it results from the foregoing lower bound that the eigenfunction ψh,n decays roughly like
exp(−α0h−1/2d(x, 0)) for some constant α0 > 0. More precisely, the following holds:∫

�

(
|ψh,n|

2
+ h−1

|(h∇ − i F)ψh,n|
2) exp(2α0h−1/2 d(x, 0)) dx ≤ C. (6-3)

6B. Decay along the edge. Here we discuss tangential estimates along the edge 0. Recall that s = 0
corresponds to the (unique) point of maximal curvature.

The starting point is the following refined lower bound of the quadratic form [Assaad and Kachmar
2022, Section 4.3]:

Qh(u)≥

∫
�

(U0
h,a(x)− C0h7/4)|u|

2 dx (u ∈ H 1
0 (�)), (6-4)

where, with x =8(s, t), κ(s)= kmax − ε0s2 and ε0 a positive constant,

U0
h,a(x)=

{
|a|h if dist(x, 0)≥ 2h1/6,

βah + M3(a)κ(s)h3/2 if dist(x, 0) < 2h1/6.

Here we recall that M3(a) is negative so the potential in the second zone is minimal at the point of
maximal curvature. The lower bound (6-4) can be derived along the same arguments in [Fournais and
Helffer 2010, Proposition 8.3.3, Remark 8.3.6] and by using Proposition 3.2.

The eigenfunctionψn,h decays exponentially roughly like exp(−α1h−1/8s(x)) for some constant α1>0.
More precisely, picking t0 sufficiently small so that the Frenet coordinates recalled in Appendix A are
valid in {d(x, 0) < t0}, we have∫

d(x,0)≤t0

(
|ψh,n(x)|2 + h−1

|(h∇ − i F)ψh,n|
2) exp(2α1h−1/8

|s(x)|) dx ≤ C. (6-5)

Remark 6.1. We observe, by collecting (6-1), (6-3) and (6-5), that the eigenfunction gh = ψh,n satisfies
the hypotheses of Proposition 5.1, namely

• (5-1) holds for any θ ∈
(
0, 3

8

)
,

• (5-3) and (5-4) hold with 0< α ≤ min(2α1, 2α2) and rh = 1.

6C. Estimating tangential frequency. The localization of the eigenfunction ψh,n is to be measured by
two parameters ρ ∈

(
0, 1

2

)
and η ∈

(
0, 1

8

)
. We will choose ρ =

1
2 −δ with δ ∈

(
0, 1

12

)
; i.e., we are assuming

5
12 < ρ <

1
2 .

We introduce the function

uh,n(σ, τ )= h5/16χ(hησ)χ(hδτ)ψ̃h,n(h1/8σ, h1/2τ), (6-6)

where ψ̃h,n is the function assigned to ψh,n by the Frenet coordinates as in (A-3), χ ∈ C∞
c (R), suppχ ⊂

[−1, 1], 0 ≤ χ ≤ 1 and χ = 1 on
[
−

1
2 ,

1
2

]
. Note that uh,n can be seen as a function on R2, and by (5-10)
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(applied with gh = ψh,n), its L2-norm satisfies

∥uh,n∥
2
L2(R2)

= ∥ψh,n∥
2
L2(�)

(1 +O(h1/2))= 1 +O(h1/2), (6-7)

since ψh,n is normalized in L2(�).
Using Proposition 5.1, we can estimate the tangential derivative of uh,n . More precisely, we apply

this proposition with gh = ψh,n , rh = 1 and any 0< θ < 3
8 (see Remark 6.1). In this case, the function

introduced in (5-9) is given by wh = uh,n .

Proposition 6.2. For all θ ∈
(
0, 3

8

)
, there exist constants Cθ , hθ > 0 such that, for all h ∈ (0, hθ ],

∥(h3/8∂σ − iζa)uh,n∥L2(R2) ≤ Cθ h3/8−θ .

We can estimate higher-order tangential derivatives of uh,n .

Proposition 6.3. For all θ ∈
(
0, 3

4

)
, there exist constants Cθ , hθ > 0 such that, for all h ∈ (0, hθ ],

∥(h3/8∂σ − iζa)
2uh,n∥L2(R2) ≤ Cθ h3/4−θ , (6-8)

where uh,n is introduced in (6-6).

Before proceeding with the proof of Proposition 6.3, we introduce the notation, rh = Õ(hγ ) for a
positive number γ , to mean

for all θ ∈ (0, γ ), there exists Cθ , hθ > 0 such that, for all h ∈ (0, hθ ), |rh| ≤ Cθhγ−θ. (6-9)

Proof of Proposition 6.3. We will apply Proposition 5.1 with an adequate choice of the function gh

defining the function wh in (5-9).
We introduce the function ϕh on � as

ϕh(x)= f (x)ψh,n(x), (6-10)

where f (x) = (1 − χ(dist(x, ∂�)/t1)) χ(dist(x, 0)/t0), t1 and t0 are constants so that the set {x ∈ � :

dist(x, ∂�) > t1} contains the point of maximum curvature and the transformation in (A-1) is a diffeo-
morphism, χ ∈ C∞

c (R), suppχ ⊂ [−1, 1], 0 ≤ χ ≤ 1 and χ = 1 on
[
−

1
2 ,

1
2

]
. Then we define

g̃h(s, t)= (h1/2∂s − iζa)ϕ̃h(s, t), (6-11)

where ϕ̃h is the function assigned to ϕh by (A-3). Notice that, using the notation in (6-9), the conclusion
of Proposition 6.2 can be written as

∥gh∥L2(�) = Õ(h3/8). (6-12)

We will show that gh satisfies (5-1)θ for any θ ∈
(
0, 3

8

)
, and that (5-3) and (5-4) hold with

rh = ∥gh∥
2
L2(�)

+ h3/4. (6-13)

This will be done in several steps outlined below.
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• In Step 1, we establish rough decay estimates for gh in the normal and tangential directions (see (6-20)).
These estimates are nevertheless weaker than the estimates in (5-3) and (5-4) that we wish to prove.

• In Step 2, we show that gh is in the domain of the operator Ph introduced in (1-4).

• In Step 3, using the rough estimates obtained in Steps 1 and 2, we can verify that (5-1) holds for any
θ ∈

(
0, 3

8

)
.

• In Step 4, using the estimates obtained in Steps 1 and 3, and the Agmon method, we derive the decay
estimates for gh as in (5-3) and (5-4) with rh given in (6-13).

• In Step 5, we can apply the conclusion of Proposition 5.1 and conclude the proof of Proposition 6.3.

Step 1: We show that the function gh decays exponentially in the normal and tangential directions. We
select the constant t0 so that the two functions

x 7→ dist(x, 0) and x 7→ s(x)

are smooth in the neighborhood, 02t0 , of the edge 0. Consequently, the transformation in (A-1) is valid
in 02t0 . Since we encounter integrals of the function gh , which is supported in 0t0 ∩�, we select the
gauge given in Lemma A.1. In particular, by (A-4), we have

|F(x)| = O(dist(x, 0)) on �∩0t0 . (6-14)

Let α2 ∈
(
0, 1

2 min(α0, α1)
)
, where α0, α1 are the positive constants in (6-3) and (6-5). We introduce on �

the weight functions

8norm(x)= exp
(
α2 dist(x, 0)

h1/2

)
and 8tan(x)= exp

(
α2 s(x)

h1/8

)
. (6-15)

By Remark 6.1, we can use (5-5) for ψh,n . It results from (6-5), (6-14), the Hölder inequality, and our
choice of α2, that, for j ∈ {1, 2},∫

�

|F|
2 j

|ψh,n|
282

tan dx =

∫
�∩0t0

|F|
2 j

|ψh,n|
282

tan dx +O(h∞)

≤ A4 j (ψh,n)
1/2

∥82
tanψh,n∥L2(�) +O(h∞)= O(h j ), (6-16)

where A4 j ( · ) is defined in (5-5) and∫
�

|F · (h∇ − i F)ψh,n|
282

tan dx =

∫
�∩0t0

|F · (h∇ − i F)ψh,n|
282

tan dx +O(h∞)

≤ A4(ψh,n)
1/2

∥82
tan(h∇ − i F)ψh,n∥L2(�) +O(h∞)= O(h2).

Similarly, we estimate the L2(�)-norms of Fψh,n8norm, (F · F)ψh,n8norm and 8norm F · (h∇ − i F)ψh,n

using (6-3). Eventually, we get the estimates

∥Fψh,n8norm∥L2(�∩02t0 ;R2) + ∥Fψh,n8tan∥L2(�∩02t0 ;R2)

≤ Ch1/2
∥F · ∇(ψh,n8norm)∥L2(�∩02t0 ;R2) + ∥F · ∇(ψh,n8tan)∥L2(�∩02t0 )

≤ C. (6-17)
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Furthermore, the following two estimates hold:

∥ψh,n8norm∥L2(�∩02t0 )
+ ∥ψh,n8tan∥L2(�∩02t0 )

≤ C,

∥ψh,n8norm∥H1(�∩02t0 )
+ ∥ψh,n8tan∥H1(�∩02t0 )

≤ Ch−1/2.
(6-18)

Notice that for w# := ψh,n8#, (# ∈ {norm, tan}), we have, with Ph the operator introduced in (1-4),

Phw# = λn(h)w# − 2h∇8# · (h∇ − i F)ψh,n − h218# ψh,n.

Hence, noting that Ph = −h21+ 2ih F · ∇ + ih divF + |F|
2, we find by (4-1), (6-16) and (6-17),

h2
∥1w#∥L2(�∩02t0 )

≤
(
∥Phw#∥L2(�) + ∥(h∇ − i F)w#∥L2(�∩02t0 )

+ h∥div Fw#∥L2(�∩02t0 )

+ 2h∥F · ∇w#∥L2(�∩0t0 )
+ ∥|F|

2w#∥L2(�∩02t0 )

)
= O(h).

By the L2-elliptic estimates for the Dirichlet problem in 02t0 ∩�, and noting that w# satisfies the Dirichlet
condition,

∥w#∥H2(�∩0t0 )
≤ C(t0, �)(∥1w#∥L2(�∩02t0 )

+ ∥w#∥L2(�∩02t0 )
).

Consequently, we get the estimate

∥ψh,n8norm∥H2(�∩0t0 )
+ ∥ψh,n8tan∥H2(�∩0t0 )

≤ Ch−1. (6-19)

Now we can derive decay estimates of the function gh introduced in (6-11). Controlling the decay of the
magnetic gradient of gh requires a decay estimate of ψh,n in the H 2 norm. Actually, collecting (6-18)
and (6-19), we observe that

∥gh8norm∥L2(0t0 )
+ h−1/2

∥((h∇ − i F)gh)8norm∥L2(0t0 ;R2) ≤ C,

∥gh8tan∥L2(0t0 )
+ h−1/2

∥((h∇ − i F)gh)8tan∥L2(0t0 ;R2) ≤ C. (6-20)

Step 2: By the definition of gh in (6-11), this function is compactly supported in �∩0t0 . Hence, there
exists a regular open set ω such that, for h ∈ (0, h0], supp gh ⊂ ω ⊂ ω̄ ⊂ � ∩ 02t0 . Consequently gh

satisfies the Dirichlet boundary condition on ∂ω. To prove that gh is in the domain of the operator Ph , it
suffices to establish that

∂sψ̃h,n ∈ H 2(8−1(ω)). (6-21)

To that end, we consider the spectral equation satisfied by the eigenfunction ψh,n

−(h∇ − i F)2ψh,n = λn(h)ψh,n. (6-22)

Using (A-5) with the potential F̃ in (4-3), (6-22) reads in the (s, t)-coordinates as

−
(
a−1(h∂s − i F̃1)a

−1(h∂s − i F̃1)+ h2a−1∂ta∂t
)
ψ̃h,n = λn(h)ψ̃h,n, (6-23)

that is,

h2(a−2∂2
s ψ̃h,n + ∂2

t ψ̃h,n)= f1(s, t)∂sψ̃h,n + f2(s, t)∂t ψ̃h,n + f3(s, t)ψ̃h,n, (6-24)
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where

f1(s, t)= −h2a−3tk ′(s)− 2ia−2ba(t)
(

t −
t2

2
k(s)

)
,

f2(s, t)= h2a−1k(s),

f3(s, t)= −iha−3tk ′(s)ba(t)
(

t −
t2

2
k(s)

)
+ ha−2 t2

2
k ′(s)+ a−2b2

a(t)
(

t −
t2

2
k(s)

)2
− λn(h).

We differentiate with respect to s in (6-24), and get

h2(a−2∂2
s + ∂2

t )(∂sψ̃h,n)

= ( f1 − h2∂sa
−2)∂2

s ψ̃h,n + f2 ∂s∂t ψ̃h,n + (∂s f1 + f3) ∂sψ̃h,n + ∂s f2 ∂t ψ̃h,n + ∂s f3 ψ̃h,n. (6-25)

Having s 7→ k(s) smooth, a = 1 − tk(s) for t ∈ (−2t0, 2t0), and ψn,h ∈ DomPh ensures that the function
in the right-hand side of (6-25) is in L2(8−1(�∩02t0)). Hence ∂sψ̃h,n ∈ H 1(�∩02t0) and satisfies

(a−2∂2
s + ∂2

t )∂sψ̃h,n ∈ L2(8−1(�∩02t0)). (6-26)

Hence (6-21) follows from (6-26) using the interior elliptic estimates associated with the differential
operator L := (a−2∂2

s + ∂2
t ).

Step 3: We prove that
Qh(gh)= λn(h)∥gh∥

2
L2(�)

+ Õ(h5/2), (6-27)

where Qh is the quadratic form introduced in (1-3).
With the notation introduced in (6-9), the estimates in (4-1) and (6-27) yield (5-1) for any θ ∈

(
0, 3

8

)
.

We start by noticing that

⟨Phϕh,Gh⟩L2(�) = λn(h)⟨ϕh,Gh⟩L2(�) + ⟨(Ph − λn(h))ϕh,Gh⟩L2(�), (6-28)

where ϕh is defined in (6-10) and
G̃h(s, t)= −(h1/2∂s − iζa)gh .

Recall that ϕh and Gh are compactly supported in �∩0t0 so that we can use the Frenet coordinates valid
near the edge 0. By (6-19) we have

∥(Ph − λn(h))ϕh∥L2(�) = O(h∞) (6-29)

and by (6-20)
∥Gh∥L2(�) = O(1). (6-30)

By Hölder’s inequality, we infer from (6-29) and (6-30)

⟨(Ph − λn(h))ϕh,Gh⟩L2(�) = O(h∞). (6-31)

Furthermore, computing the integrals in the Frenet coordinates and integrating by parts, we find

⟨ϕh,Gh⟩L2(�) = ⟨a(h1/2∂s − iζa)ϕ̃h + h1/2(∂sa)ϕ̃h, g̃h⟩L2(R2) = ∥gh∥
2
L2(�)

+O(h9/8)∥gh∥L2(�). (6-32)
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Here we get the O(h9/8) remainder by using that ∂sa = O(ts), the Hölder inequality and Remark 6.1 on
the decay estimates in (5-5) and (5-6) for ψh,n as follows:

|⟨a(∂sa)ϕ̃h, g̃h⟩L2(R2)| ≤ C(A4(ψh,n)B4(ψh,n))
1/4

∥gh∥L2(R2) = O(h5/8)∥gh∥L2(R2).

By (4-1) and (6-12), we infer from (6-32)

λn(h)⟨ϕh,Gh⟩L2(�) = λn(h)∥gh∥
2
L2(�)

+ Õ(h5/2). (6-33)

Therefore, inserting the estimates in (6-33) and (6-31) into (6-28), we find

⟨Phϕh,Gh⟩L2(�) = λn(h)∥gh∥
2
L2(�)

+ Õ(h5/2). (6-34)

Now, by Lemma A.2 (used with φ = 0), we get

Re⟨Phϕh,Gh⟩ = Qh(gh)− h1/2 Re⟨Rh, gh⟩L2(�), (6-35)

where the function Rh is defined via (A-3) as

R̃h(s, t)= (h∂s − i F̃1)
(
(∂sa

−1
− ia−1∂s F̃1)(h∂s − i F̃1)ϕ̃h − ia−1(∂s F̃1)ϕ̃h

)
+ h2∂t(∂sa)∂t ϕ̃h . (6-36)

Our choice of gauge in Lemma A.1 ensures that F̃2 = 0 and F̃1 = O(t). By Remark 6.1 and (A-7), we
have ∫

R

∫ t0

−t0
|t |N (

|ϕ̃h|
2
+ a−1h−1

|(h∂s − i F̃1)ϕ̃h|
2
+ h|∂t ϕ̃h|

2)a ds dt = O(hN/2),∫
R

∫ t0

−t0
|s|N (

|ϕ̃h|
2
+ a−1h−1

|(h∂s − i F̃1)ϕ̃h|
2
+ h|∂t ϕ̃h|

2)a ds dt = O(hN/8).

Furthermore, by (6-19), ∫
R

∫ t0

−t0
|t |N (|∂2

s ϕ̃h|
2
+ |∂2

t ϕ̃h|
2) ds dt = O(hN/2−2),∫

R

∫ t0

−t0
|s|N (|∂2

s ϕ̃h|
2
+ |∂2

t ϕ̃h|
2) ds dt = O(hN/8−2).

Now we can estimate R̃h in (6-36), by expressing it as

R̃h = m1(h∂s − i F̃1)
2ϕ̃h + (m2 + h∂sm1)(h∂s − i F̃1)ϕ̃h + h(∂sm2)ϕ̃h + h2m3∂

2
t ϕ̃h + h2(∂t m3)∂t ϕ̃h,

where
m1 = ∂sa

−1
− ia−1∂s F̃1 = O(ts), ∂sm1 = O(t),

m2 = −ia−1∂s F̃1 = O(t2s), ∂sm2 = O(t3s2),

m3 = ∂sa = O(ts), ∂t m3 = O(s).

We get then that the norm of Rh satisfies

∥Rh∥L2(�) = O(h13/8). (6-37)
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By Hölder’s inequality, we infer from (6-37) and (6-12) the estimate

h1/2
| Re⟨Rh, gh⟩L2(�)| ≤ h1/2

∥Rh∥L2(�)∥gh∥L2(�) = Õ(h5/2).

Consequently, (6-34) and (6-35) yield (6-27).

Step 4: We refine the exponential decay of gh . To that end, consider a fixed constant 0< α < 1
4α2, where

α2 is the constant in (6-15), and a real-valued Lipschitz function φh,α ≥ 0, which will be either

φh,α(x)= φnorm
h,α (x) := αh−1/2 dist(x, 0) or φh,α(x)= φtan

h,α(x) := αh−1/8s(x).

We introduce the function Gh,α defined via (A-3) as

G̃h,α(s, t)= −(h1/2∂s − iζa)(e2φh,α g̃h(s, t)).

Since α < 1
4α2, we infer from (6-18) and (6-20)∫

�

(dist(x, 0))2|eφh,αϕh(x)|2 dx = O(h),∫
�

(s(x))2|eφh,αϕh(x)|2 dx = O(h1/4),

∥Gh,α∥L2(�) = O(1),
and also

⟨Phϕh,Gh,α⟩L2(�) = λn(h)∥eφh,αgh∥
2
L2(�)

+ Õ(h19/8),

which results similarly to (6-34).
Now, we write by Lemma A.2,

Re⟨Phϕh,Gh,α⟩ = Qh(eφh,αgh)− h2
∥|∇φh,α|eφh,αgh∥

2
L2(�)

− h1/2 Re⟨Rh, e2φh,αgh⟩L2(�),

where Rh is introduced in (6-36). Since α < 1
4α2, we get from (6-18) and (6-19),

∥eφh,α Rh∥L2(�) = O(h9/8) and ⟨Rh, e2φh,αgh⟩L2(�) = O(h9/8)∥gh∥L2(�).

Collecting the foregoing estimates, we get

Qh(eφh,αgh)= λn(h)∥eφh,αgh∥
2
L2(�)

+ Õ(h5/2). (6-38)

Now we can select α > 0 small enough so that the following two estimates hold. The first estimate is∫
�

(
|gh|

2
+ h−1

|(h∇ − i F)gh|
2) exp(αh−1/2 d(x, 0)) dx ≤ C∥gh∥

2
L2(�)

+ Õ(h3/2), (6-39)

and it follows after choosing φh,α = αh−1/2 dist(x, 0) and using (6-2). The second estimate follows by
choosing φh,α = αh−1/8s(x) and using (5-4); it reads as∫

�

(
|gh|

2
+ h−1

|(h∇ − i F)gh|
2) exp(αh−1/8s(x)) dx ≤ C∥gh∥

2
L2(�)

+ Õ(h). (6-40)
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Step 5: Let θ ∈
(
0, 3

8

)
. Collecting the estimates in (6-27), (6-39) and (6-40), we observe that the function gh

satisfies (5-1)θ , (5-3) and (5-4) with rh = O(h3/4−θ ). We can then apply Proposition 5.1 and get (recall
that ∥wh∥L2(�) ∼ ∥gh∥L2(�) ≤

√
rh by (5-10))

∥(h3/8∂σ − iζa)wh∥L2(�) ≤ Cθh3/8−θ/2(
∥gh∥L2(�) +

√
rh + h3/8−3θ/4)

= O(h3/4−5θ/4).

Since this holds for any θ ∈
(
0, 3

8

)
, we get that ∥(h3/8∂σ − iζa)wh∥L2(�) = Õ(h3/4), thereby finishing the

proof of Proposition 6.3. □

7. Lower bound

We fix a labeling n ≥ 1 corresponding to the eigenvalue λn(h) of the operator Ph introduced in (1-4).
The purpose of this section is to obtain an accurate lower bound for λn(h). This will be done by doing a
spectral reduction via various auxiliary operators.

7A. Useful operators. We introduce operators, on the real line and in the plane, which will be useful to
carry out a spectral reduction for the operator Ph and deduce the eigenvalue lower bounds that match
with the established eigenvalue asymptotics in Theorem 1.2.

These new operators are defined via the spectral characteristics of the model operator introduced in
Section 2B, namely, the spectral constants βa > 0 and ζa < 0 introduced in (1-10) and (1-12), and the
positive normalized eigenfunction φa ∈ L2(R) corresponding to βa . We introduce the two operators

R−

0 : ψ ∈ L2(R2) 7→

∫
R

φa(τ )ψ( · , τ ) dτ ∈ L2(R), (7-1)

R+

0 : f ∈ L2(R) 7→ f ⊗φa ∈ L2(R2), (7-2)

where ( f ⊗φa)(σ, τ ) := f (σ )φa(τ ).
Note that R+

0 R−

0 is an orthogonal projector on L2(R2) whose image is L2(R)⊗ span(φa). It is easy to
check that the operator norms of R±

0 are equal to 1; hence, for any f ∈ L2(R) and ψ ∈ L2(R2), we have

∥R+

0 f ∥L2(R) ≤ ∥ f ∥L2(R), ∥R−

0 ψ∥L2(R) ≤ ∥ψ∥L2(R2), ∥R+

0 R−

0 ψ∥L2(R2) ≤ ∥ψ∥L2(R2). (7-3)

If we denote by πa the projector in L2(Rτ ) on the vector space generated by φa , we notice that

50 := R+

0 R−

0 = I ⊗πa. (7-4)

7B. Structure of bound states. Our aim is to determine a rough approximation of the bound state ψh,n

of Ph satisfying

Phψh,n = λn(h)ψh,n, (7-5)

this approximation being valid near the point of maximum curvature and reading as follows in the Frenet
coordinates:

ψ̃h,n(s, t)≈ h−5/16eiζas/h1/2
φa(h−1/2t).
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Associated with ψh,n , we introduced in (6-6) the function uh,n which can be seen as a function on R2

with L2-norm satisfying (6-7). We recall that

uh,n(σ, τ )= h5/16χ(hησ)χ(hδτ)ψ̃h,n(h1/8σ, h1/2τ),

where ψ̃h,n is the function assigned to ψh,n by (A-3), χ ∈ C∞
c (R), suppχ ⊂ [−1, 1], 0 ≤ χ ≤ 1 and

χ = 1 on
[
−

1
2 ,

1
2

]
.

We consider the function defined as

vh,n(σ, τ )= e−iζaσ/h3/8
uh,n(σ, τ ). (7-6)

Approximating the function vh,n ∼ χ(hησ)χ(hδτ)φa(τ ) is the aim of the next proposition, which also
yields an approximation of the bound state ψh,n by the previous considerations.

Proposition 7.1. Let Pnew
h be the operator in (4-6). The following hold:

(1) ∥Pnew
h vh,n − (h−1λn(h)−βa)vh,n∥L2(R2) = O(h∞).

(2) ∥vh,n∥L2(R2) = 1 +O(h1/2).

(3) ∥vh,n −50vh,n∥L2(R2) = O(h1/4).

(4) ∥∂τvh,n − ∂τ50vh,n∥L2(R2) + ∥τ(vh,n −50vh,n)∥L2(R2) = O(h1/4).

Proof. Proof of item (1). Let zh be the function supported near 0 and defined in the Frenet coordinates
by means of (A-3) as

z̃h(s, t)= χ(h−1/8+ηs)χ(h−1/2+δt). (7-7)

We introduce the function involving the commutator of Ph and zh acting on ψh,n ,

fh = [Ph, zh]ψh,n = (Phzh − zhPh)ψh,n. (7-8)

By Remark 6.1, we may use the localization estimates in (5-7) and (5-8) with gh = ψh,n and rh = 1.
Consequently, ∫

R2
| f̃h(s, t)|2 ds dt ≤ C

∫
�

| fh(x)|2 dx = O(h∞),

where f̃h which is assigned to the function fh in (7-8) is supported in the set{{
|s| ≥

1
2 hη−1/8}

∪ {|t | ≥
1
2 hδ−1/2

}
}
∩ {{|s| ≤ hη−1/8

} ∩ {|t | ≤ hδ−1/2
}}.

We infer from (7-5), (4-2), (4-4) and (6-6),

P̌huh,n − λn(h)uh,n = h5/16 f̌h,

where
f̌h(σ, τ )= f̃h(h1/8σ, h1/2τ).

Consequently, after performing the change of variable (σ = h−1/8s, τ = h−1/2t),

∥P̌huh,n − λn(h)uh,n∥
2
L2(R2)

= ∥ f̃h∥
2
L2(R2)

= O(h∞). (7-9)
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By (4-6) and (7-6), we observe that

P̌huh,n = heiζaσ/h3/8
(Pnew

h +βa)vh,n,

which after being inserted into (7-9), yields the estimate in item (1).

Remark 7.2. By (6-21), ∂σvh,n ∈ H 2(R2). Furthermore, by (6-19), the function fh in (7-8) satisfies
∥∂σ f̌h∥L2(R2) = O(h∞). A slight adjustment of the proof of item (1) then yields

∥∂σPnew
h vh,n − (h−1λn(h)−βa)∂σvh,n∥L2(R2) = O(h∞).

Proof of item (2). By the normalization of ψh,n and Remark 6.1, we have

1 =

∫
�

|ψh,n|
2 dx =

∫
{|s(x)|<h−η+1/8,|t (x)|<h−δ+1/2}

|ψh,n|
2 dx +O(h∞),∫

�

(1 − z2
h)|ψh|

2 dx = O(h∞),∫
�

dist(x, 0)|ψh,n|
2 dx = O(h1/2).

We notice that the function zh introduced above in (7-7) equals 1 in
{
|s(x)|< 1

2 h−η+1/8, |t (x)|< 1
2 h−δ+1/2

}
.

Now we infer from (A-7)∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

|ψ̃h,n(s, t)|2|t | ds dt ≤ C
∫
�

dist(x, 0)|ψh,n|
2 dx = O(h1/2)

and∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

|ψ̃h,n(s, t)|2 ds dt =

∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

|ψ̃h,n(s, t)|2(1 − tk(s)) ds dt

+

∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

|ψ̃h,n(s, t)|2 tk(s) ds dt

= 1 +O(h1/2).

Similarly we get ∫
{|s|< 1

2 h−η+1/8, |t |< 1
2 h−δ+1/8}

(1 − z̃2
h) |ψ̃h,n(s, t)|2 ds dt = O(h1/2).

Consequently, returning to (7-6), doing a change of variables and noticing that z̃h is supported in
{|s|< h−η+1/8, |t |< h−δ+1/8

}, we get

∥vh,n∥
2
L2(R2)

=

∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

|ψ̃h,n|
2 ds dt −

∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

(1 − z̃2
h)|ψ̃h|

2 ds dt

= 1 +O(h1/2).

Proof of items (3) and (4).

Step 1: We recall that the Õ notation was introduced in (6-9). Note that Proposition 6.2 yields

∥h3/8∂σvh,n∥L2(R2) = Õ(h3/8). (7-10)
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By Remark 6.1, we can use (5-13) and (5-14) with gh = ψh,n , rh = 1 (and wh = ǔh,n). In the same vein,
we can use (5-5) and (5-6) too. Since uh,n = eiζaσ/h3/8

vh,n , we get∫
R2

(
|∂τvh,n|

2
+ |h3/8∂σvh,n + i(ba(τ )τ + ζa)vh,n|

2) dτ dσ ≤ (βa +O(h1/2))∥vh,n∥
2
L2(R2)

. (7-11)

By Cauchy’s inequality and (7-10), we obtain, for any ε > 0,∫
R2

|h3/8∂σvh,n+i(ba(τ )τ+ζa)vh,n|
2 dσ dτ ≥

∫
R2

(
(1−ε)|(ba(τ )τ+ζa)vh,n|

2
−ε−1

|h3/8∂σvh,n|
2) dσ dτ

≥ (1−ε)

∫
R2

|(ba(τ )τ+ζa)vh,n|
2 dσ dτ−Õ(ε−1h3/4).

We choose ε = h3/8 and insert the resulting inequality into (7-11) to get∫
R2

(
|∂τvh,n|

2
+ |(ba(τ )τ + ζa)vh,n|

2) dτ dσ ≤ βa + Õ(h3/8). (7-12)

Step 2: In light of (7-4), let us introduce

r :=50vh,n and r⊥ := (I −50)vh,n = (I ⊗ (I −πa))vh,n. (7-13)

Using the last relation, and since the orthogonal projection πa commutes with the operator ha[ζa], we
have the following two identities for almost every σ ∈ R:∫

R

|vh,n(σ, τ )|
2 dτ =

∫
R

|r(σ, τ )|2 dτ +

∫
R

|r⊥(σ, τ )|
2 dτ

and

qζa (vh,n(σ, · )) :=

∫
R

(
|∂τvh,n(σ, τ )|

2
+ |(ba(τ )τ + ζa)vh,n(σ, τ )|

2) dτ

= qζa (r(σ, · ))+ qζa (r⊥(σ, · ))

≥ βa

∫
R

|r(σ, τ )|2 dτ +µ2(ζa)

∫
R

|r⊥(σ, τ )|
2 dτ, (7-14)

by the min-max principle, where µ2(ζa) is the second eigenvalue of the operator ha[ζa], satisfying
µ2(ζa) > βa (see Section 2A). Integrating with respect to σ , we get∫

R2

(
|∂τvh,n(σ, τ )|

2
+ |(ba(τ )τ + ζa)vh,n(σ, τ )|

2) dσ dτ

≥ βa

∫
R2

|r(σ, τ )|2 dσ dτ +µ2(ζa)

∫
R2

|r⊥(σ, τ )|
2 dσ dτ. (7-15)

We deduce from (7-12) and the first item in Proposition 7.1

(µ2(ζa)−βa)

∫
R2

|r⊥(σ, τ )|
2 dσ dτ ≤ Õ(h3/8)

∫
R2

|r(σ, τ )|2 dσ dτ, (7-16)∫
R2

|r(σ, τ )|2 dσ dτ = 1 + Õ(h3/8), (7-17)∫
R2

(
|∂τr⊥(σ, τ )|

2
+ |(ba(τ )τ + ζa)r⊥(σ, τ )|

2) dσ dτ ≤ Õ(h3/8)

∫
R2

|r(σ, τ )|2 dσ dτ. (7-18)
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Step 3: Coming back to the definition of r⊥ in (7-13), we still have to improve the error term in (7-16) to
get the estimate of the third item in Proposition 7.1.

To that end, we will estimate the terms involving ∂σvh,n in (7-11). By (7-4) and dominated convergence,
it is clear that 50 commutes with ∂σ when acting on compactly supported functions of H 1(R2):

50∂σ = ∂σ50. (7-19)

By (2-11), φa is orthogonal to (ba(τ )τ + ζa)φa in L2(R), so

πa(ba(τ )τ + ζa)πa = 0,

which implies, by taking the tensor product,

50(ba(τ )τ + ζa)50 = 0. (7-20)

By (7-13), (7-19) and (7-20), we get

⟨r(σ, τ ), i(ba(τ )τ + ζa)∂σ r(σ, τ )⟩L2(R2) = 0.

Now, we inspect the term

⟨∂σvh,n, i(ba(τ )τ + ζa)r⟩L2(R2)

= −⟨vh,n, i(ba(τ )τ + ζa)∂σ r⟩L2(R2)

= −⟨r, i(ba(τ )τ + ζa)∂σ r⟩L2(R2)︸ ︷︷ ︸
=0

− ⟨r⊥, i(ba(τ )τ + ζa)∂σ r⟩L2(R2)

= −⟨r⊥, i(ba(τ )τ + ζa)∂σ r⟩L2(R2) = −⟨(ba(τ )τ + ζa)r⊥, i∂σ r⟩L2(R2). (7-21)

Since
∥h3/8∂σ r∥L2(R2) = h3/8

∥50∂σvh,n∥L2(R2) (by (7-19))

≤ h3/8
∥∂σvh,n∥L2(R2) (by (7-3))

= Õ(h3/8) (by (7-10)),

we get by the Cauchy–Schwarz inequality, (7-21) and (7-18)

h3/8
|⟨∂σvh,n, i(ba(τ )τ + ζa)r⟩L2(R2)| ≤ ∥(ba(τ )τ + ζa)r⊥∥L2(R2)∥h3/8∂σ r∥L2(R2) = Õ(h9/16). (7-22)

Now, we can estimate the following inner product term by using (7-13) and (7-22):

⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)vh,n⟩L2(R2)

= ⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)r⊥⟩L2(R2) + ⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)r⟩L2(R2)

= ⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)r⊥⟩L2(R2) + Õ(h9/16). (7-23)

By the Cauchy–Schwarz inequality, (7-10), (7-18) and (7-23), we get

|⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)vh,n⟩L2(R2)| ≤ ∥h3/8∂σvh,n∥∥(ba(τ )τ + ζa)r⊥∥ + Õ(h9/16)

= Õ(h9/16)= o(h1/2). (7-24)
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Consequently,

∥h3/8∂σvh,n + i(ba(τ )τ + ζa)vh,n∥
2
L2(R2)

= ∥h3/8∂σvh,n∥
2
L2(R2)

+ ∥(ba(τ )τ + ζa)vh,n∥
2
L2(R2)

+ 2 Re⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)vh,n⟩L2(R2)

≥ ∥(ba(τ )τ + ζa)vh,n∥
2
L2(R2)

+ o(h1/2).

Inserting the previous inequality into (7-11) we get the following improvement of (7-12):∫
R2
(|∂τvh,n|

2
+ |(ba(τ )τ + ζa)vh,n|

2) dτ dσ ≤ βa +O(h1/2). (7-25)

Step 4: Now we are ready to finish the proof of items (3) and (4). By (7-15) and (7-14), we infer from
(7-25) and (7-13),

(µ2(ζa)−βa)

∫
R2

|r⊥(σ, τ )|
2 dσ dτ ≤ O(h1/2)

∫
R2

|r(σ, τ )|2 dσ dτ,∫
R2

(
|∂τr⊥(σ, τ )|

2
+ |(ba(τ )τ + ζa)r⊥(σ, τ )|

2) dσ dτ ≤ O(h1/2)

∫
R2

|r(σ, τ )|2 dσ dτ.

With (7-17) in hand, we get the estimates of items (3) and (4) of Proposition 7.1. □

7C. Projection on a refined quasimode. We wish to improve the approximation vh,n ∼χ(hησ)χ(hδτ)φa(τ )

obtained in Proposition 7.1 by two ways which eventually are correlated: displaying the curvature effects
in vh,n and getting better estimates of the errors. Along the proof of Proposition 7.1, curvature effects
were neglected and absorbed in the error terms. Not neglecting the curvature, we get the approximation
vh,n ∼ χ(hησ)χ(hδτ)φa,h(τ ), where φa,h(τ ) corrects φa(τ ) via curvature-dependent terms (see (7-31)).
This is precisely stated in Proposition 7.3 after introducing the necessary preliminaries.

7C1. Preliminaries. In this subsection, we write κ = k(0) = kmax and k2 = k ′′(0). We consider the
weighted L2 space

Xh,δ = L2((−h−δ, h−δ); (1 − h1/2κτ) dτ
)

(7-26)

endowed with the Hilbertian norm

∥ f ∥Xh,δ =

(∫ h−δ

−h−δ

| f (τ )|2(1 − h1/2κτ) dτ
)1/2

.

This norm is equivalent to the usual norm of L2(−h−δ, h−δ) provided h is sufficiently small.
With domain H 2(−h−δ, h−δ)∩ H 1

0 (−h−δ, h−δ), consider the operator in (3-1) for ξ = ζa:

Ha,κ,h = −
d2

dτ 2 + (ba(τ )τ + ζa)
2
+ κh1/2(1 − κh1/2τ)−1∂τ + 2κh1/2τ

(
ba(τ )τ + ζa − κh1/2ba(τ )

τ 2

2

)2

− κh1/2ba(τ )τ
2(ba(τ )τ + ζa)+ κ

2hba(τ )
2 τ

4

4
, (7-27)

which is self-adjoint on the space Xh,δ. This operator can be decomposed as follows:

Ha,κ,h = h[ζa] + κh1/2h(1)[ζa] + hLh, (7-28)
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where h[ζa] is introduced in (2-1) and

h(1)[ζa] = ∂τ + 2τ(ba(τ )τ + ζa)
2
− ba(τ )τ

2(ba(τ )τ + ζa) (7-29)

and
Lh = q1,h(τ )∂τ + q2,h(τ ), with |q1,h(τ )| ≤ C1|τ |, |q2,h(τ )| ≤ C2(1 + |τ |5), (7-30)

where C1,C2 are positive constants independent of h, τ .
We introduce the following quasimode in the space Xh,δ:

φa,h(τ )= χ(hδτ)
(
φa(τ )+ h1/2κ φcor

a (τ )
)
, (7-31)

where χ ∈ C∞
c (R; [0, 1]), suppχ ⊂ [−1, 1], χ = 1 on

[
−

1
2 ,

1
2

]
. The function φa is the positive ground

state of h[ζa] with corresponding ground state energy βa:

(h[ζa] −βa)φa = 0.

We now explain the construction of φcor
a . By (7-28), starting from some φcor

a to be determined,

(Ha,κ,h −βa − h1/2κM3(a))(φa + h1/2κ φcor
a )

= κh1/2((h[ζa]−)φ
cor
a + (h(1)[ζa] − M3(a))φa

)
+ hRa,h, (7-32)

where
Ra,h = Lh(φa + h1/2κ φcor

a )+ κ2(h(1)[ζa] − M3(a))φcor
a .

Note that, by Remark 2.3, h(1)[ζa]φa − M3(a)φa is orthogonal to φa in L2(R). Hence we can choose

φcor
a = −Ra(h

(1)
[ζa]φa − M3(a)φa), (7-33)

so that the coefficient of h1/2 in (7-32) vanishes. In this way, we infer from (7-32),(
Ha,κ,h −βa − h1/2κM3(a)

)
(φa + h1/2κφcor

a )= hRa,h .

Notice that φa,h is constructed so that it has compact support in (−h−δ, h−δ) and hence satisfies the
Dirichlet conditions at τ = ±h−δ. Since, φa and φcor

a decay exponentially at infinity by Lemma 2.4, we
deduce

∥Ha,κ,hφa,h − (βa + h1/2κM3(a))φa,h∥Xh,δ = O(h). (7-34)

We denote by φgs
a,h the normalized ground state of the Dirichlet realization of Ha,κ,h in the weighted

space Xh,δ (i.e., in L2((−h−δ, h−δ); (1−h1/2κτ)dτ)). By (3-8), the min-max principle and Proposition 3.2,
we have

λ1(Ha,κ,h)= βa + h1/2κM3(a)+O(h) and λ2(Ha,κ,h)≥ µ2(ζa)+ o(1), (7-35)

so we infer from (7-34) and the Hölder inequality〈
(Ha,κ,hφa,h − λ1(Ha,κ,h))(φ

gs
a,h −φa,h), φ

gs
a,h −φa,h

〉
Xh,δ

= O(h)∥φgs
a,h −φa,h∥Xh,δ .

Thus, by the spectral theorem,

∥φ
gs
a,h −φa,h∥Xh,δ + ∥τ(φ

gs
a,h −φa,h)∥Xh,δ + ∥∂τ (φ

gs
a,h −φa,h)∥Xh,δ = O(h). (7-36)
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7C2. New projections. We fix h0 > 0 so that 1 − h1/2−δ

0 κ > 1
2 . In the sequel, the parameter h varies in

the interval (0, h0). Consider the space

X2
h,δ = L2(R × (−h−δ, hδ); (1 − h1/2κτ) dσ dτ

)
(7-37)

endowed with the weighted norm

∥v∥X2
h,δ

=

(∫
R

∫ h−δ

−h−δ

|v(σ, τ )|2(1 − h1/2κτ) dσ dτ
)1/2

,

which is equivalent to the usual norm of L2(R × (−h−δ, hδ)).
We introduce the two operators

R−

h : v ∈ X2
h,δ 7→

∫
R

φa,h(τ )v( · , τ )(1 − h1/2κτ) dτ ∈ L2(R), (7-38)

R+

h : f ∈ L2(R) 7→ f ⊗φa,h ∈ X2
h,δ, where f ⊗φa,h(σ, τ )= f (σ )φa,h(τ ). (7-39)

The image of R+

h R−

h is L2(R)⊗ span(φa,h). Furthermore, for all v ∈ X2
h,δ, the functions R+

h R−

h v and
v− R+

h R−

h v are orthogonal in X2
h,δ, since the operator R+

h R−

h can be expressed as

5h := R+

h R−

h = I ⊗πa,h, (7-40)

where πa,h is the orthogonal projection, in the weighted Hilbert space Xh,δ , on the space spanφa,h . With
this projection in hand, we can approximate the truncated bound state vh,n , introduced in (7-6), with
better error terms, thereby improving Proposition 7.1.

Proposition 7.3. The following holds:

∥vh,n −5hvh,n∥X2
h,δ

+ ∥∂τ (vh,n −5hvh,n)∥X2
h,δ

+ ∥τ(vh,n −5hvh,n)∥X2
h,δ

= Õ(h5/16),

where 5h is the projection in (7-40).

Remark 7.4. By (7-31) and (7-32), we observe that

∥(5h −50)vh,n∥L2(R2) + ∥(∂τ5h − ∂τ50)vh,n∥L2(R2) + ∥τ(5h −50)vh,n∥L2(R2) = O(h1/2),

where 50 is the projection introduced in (7-4). Since the norm of X2
h,δ is equivalent to the usual norm

of L2, Proposition 7.3 yields the following improvement of Proposition 7.1:

∥vh,n −50vh,n∥L2(R2) + ∥∂τ (vh,n −50vh,n)∥L2(R2) + ∥τ(vh,n −50vh,n)∥L2(R2) = Õ(h5/16), (7-41)

where 50 is the projection in (7-4). This remark will be useful in the next subsection.

Proof of Proposition 7.3. Step 1: We give here preliminary estimates that we will use in Step 3 below.
Firstly, by Remark 6.1, ∫

R2
τ 4

|vh,n(σ, τ )|
2 dσ dτ = O(1). (7-42)
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Secondly, we will prove that

⟨h3/8∂σvh,n, (ba(τ )τ + ζa)vh,n⟩L2(R2) = Õ(h5/8). (7-43)

By (7-10) and Proposition 7.1,

|⟨h3/8∂σvh,n, (ba(τ )τ + ζa)(vh,n −50vh,n)⟩L2(R2)|

≤ ∥h3/8∂σvh,n∥L2(R2)∥(ba(τ )τ + ζa)(vh,n −50vh,n)∥L2(R2) = Õ(h5/8).

Similarly, using (7-19) and Hölder’s inequality, we write

|⟨(ba(τ )τ + ζa)h3/8∂σ50vh,n, vh,n −50vh,n⟩L2(R2)|

≤ ∥h3/850∂σvh,n∥L2(R2)∥(ba(τ )τ + ζa)(vh,n −50vh,n)∥L2(R2) = Õ(h5/8).

Now, writing vh,n =50vh,n + (vh,n −50vh,n) and collecting the foregoing estimates, we get

⟨h3/8∂σvh,n, (ba(τ )τ + ζa)vh,n⟩L2(R2)

= ⟨h3/8∂σvh,n, (ba(τ )τ + ζa)50vh,n⟩L2(R2) + Õ(h5/8)

= −⟨(ba(τ )τ + ζa)vh,n, h3/8∂σ50vh,n⟩L2(R2) + Õ(h5/8) (by integration by parts).

Again, decomposing vh,n by the projection 50 and observing that (7-20) yields

⟨(ba(τ )τ + ζa)50vh,n, h3/8∂σ50vh,n⟩L2(R2) = 0,

we get

⟨h3/8∂σvh,n, (ba(τ )τ + ζa)vh,n⟩L2(R2)

= −⟨(ba(τ )τ + ζa)h3/8∂σ50vh,n, vh,n −50vh,n⟩L2(R2) + Õ(h5/8)= Õ(h5/8),

thereby obtaining (7-43).

Step 2: We introduce operators involving the ground state φgs
a,h as follows. First we introduce the operators

R̃−

h : v ∈ X2
h,δ 7→

∫
R

φ
gs
a,h(τ )v( · , τ )(1 − h1/2κτ) dτ ∈ L2(R), (7-44)

R̃+

h : f ∈ L2(R) 7→ f ⊗φ
gs
a,h ∈ X2

h,δ, where ( f ⊗φ
gs
a,h)(σ, τ )= f (σ )φgs

a,h(τ ). (7-45)

Denoting by π̃a,h the orthogonal projection, in Xh,δ, on the space spanφgs
a,h , we introduce

5̃h := R̃+

h R̃−

h = I ⊗ π̃a,h . (7-46)

By (7-36) and (7-40), we observe that, for all g ∈ Xh,δ and f ∈ X2
h,,δ, we have

∥(R̃−

h − R−

h )g∥Xh,δ = O(h)∥g∥Xh,δ , ∥(5̃h −5h) f ∥X2
h,δ

= O(h)∥ f ∥X2
h,δ
.

So if we prove that

∥vh,n − 5̃hvh,n∥X2
h,δ

+ ∥∂τ (vh,n − 5̃hvh,n)∥X2
h,δ

+ ∥τ(vh,n − 5̃hvh,n)∥X2
h,δ

= Õ(h5/16), (7-47)

then we deduce the estimate in Proposition 7.3.
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Step 3: Adapting the proof of Proposition 7.1, we prove now (7-47). By Remark 6.1, we can use (5-14)
with wh = uh,n , rh = 1, mh = ∥uh,n∥

2
X2

h,δ
= 1 +O(h1/2) and θ =

1
4 . Thus∫

R

∫ h−δ

−h−δ

(
|∂τuh,n|

2
+(1+2κh1/2τ)

∣∣∣(h3/8∂σ + i
(

baτ−κh1/2ba
τ 2

2

))
uh,n

∣∣∣2)
(1−κh1/2τ) dσ dτ

≤ (βa + h1/2 M3(a)κ +O(h3/4))∥uh,n∥
2
X2

h,δ
. (7-48)

Since uh,n = eiζaσ/h3/8
vh,n (by (7-6)), we get∫

R

∫ h−δ

−h−δ

|∂τvh,n|
2(1 − κh1/2τ) dσ dτ

+

∫
R

∫ h−δ

−h−δ

(1 + 2κh1/2τ)

∣∣∣(h3/8∂σ + i
(

baτ + ζa − κh1/2ba
τ 2

2

))
vh,n

∣∣∣2
(1 − κh1/2τ) dσ dτ

≤ (βa + h1/2 M3(a)κ +O(h3/4))∥vh,n∥
2
X2

h,δ
. (7-49)

Using (7-10), (7-43) and (7-42), we deduce the following estimate from (7-49):∫
R

∫ h−δ

−h−δ

(
|∂τvh,n|

2
+ (1 + 2κh1/2τ)

∣∣∣(baτ + ζa − κh1/2ba
τ 2

2

)
vh,n

∣∣∣2)
(1 − κh1/2τ) dσ dτ

≤ (βa + h1/2 M3(a)κ + Õ(h5/8))∥vh,n∥
2
X2

h,δ
, (7-50)

where we used also that ∥vh,n∥
2
X2

h,δ
= 1 +O(h1/2), by (6-7) and (7-6).

Now we get (7-47) by decomposing vh,n in X2
h,δ in the form

vh,n = r̃h + r̃h,⊥, r̃h := 5̃hvh,n, r̃h,⊥ = (I − 5̃h)vh,n,

and by using the spectral asymptotics for the operator Hh,a,κ , recalled in (7-35). □

7D. Quasimodes for the effective operator. Let us start with some heuristic considerations. The derivation
of the eigenvalue upper bound of Theorem 4.1 suggested in the tangent variable the following one-
dimensional effective operator (see (4-25)):

H harm
a = −c2(a)∂2

σ −
M3(a)k ′′(0)

2
σ 2, (7-51)

where c2(a) > 0 is introduced in (1-12).
Moreover, by Remark 4.3, it is natural to consider the quasimode

v
app
h,n =

(
φa(τ )+ 2Ra((ζa + ba(τ )τ )φa)ih3/8∂σ + kmaxh1/2φcor

a (τ )
)

fn(σ ),

where Ra is the regularized resolvent introduced in (2-18), φcor
a is the function in (7-33), and fn is

the normalized n-th eigenfunction of the operator H harm
a . Denoting by 5app

h,n the orthogonal projection,
in L2(R2), on the space generated by vapp

h,n , we observe formally, by neglecting the terms with coefficients
having order lower than h3/4,

c2(a)5
app
h,nP

new
h ≈ h1/2(M3(a)kmax + h1/4 H harm

a )5new
n ,
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where 5new
n is the projection, in L2(R2), on the space generated by the function ϕa(τ ) fn(σ ), and

ϕa(τ ) := φa(τ )− 4(ba(τ )τ + ζa)Ra((ba(τ )τ + ζa)φa(τ )). (7-52)

Guided by these heuristic observations, we will use the truncated bound state vh,n in (7-6) to construct
quasimodes of the operator H harm

a by projecting vh,n on the vector space generated by the function ϕa

introduced in (7-52). To that end, we introduce the operator

Rnew
0 : v ∈ L2(R2) 7→

∫
R

ϕa(τ )v( · , τ ) dτ ∈ L2(R). (7-53)

We will prove the following proposition.

Proposition 7.5. Let n ∈ N be fixed. The following hold:

(1) ∥Rnew
0 vh,n − (1 − 4I2(a))R−

0 vh,n∥L2(R) = O(h1/4), where R−

0 is the operator in (7-1) and I2(a) is
introduced in (2-17).

(2) ∥Rnew
0 vh,n∥L2(R) = 1 − 4I2(a)+O(h1/4).

(3) For every n ∈ N, there exists hn > 0 such that, for all h ∈ (0, hn),

⟨Rnew
0 vh,k, Rnew

0 vh,k′⟩L2(R) = (1 − 4I2(a))2δk,k′ + o(1) (1 ≤ k, k ′
≤ n), (7-54)

and

Mn = span(Rnew
0 vh,k, 1 ≤ k ≤ n) satisfies dim(Mn)= n. (7-55)

(4) We have as h → 0+〈
(H harm

a − h−3/43n(h))Rnew
0 vh,n, Rnew

0 vh,n
〉
L2(R)

= o(1)∥Rnew
0 vh,n∥

2
L2(R)

,

where

3n(h)= h−1λn(h)−βa − M3(a)kmaxh1/2,

and H harm
a is the operator introduced in (7-51).

Proof. Proof of item (1). Consider 50 = R+

0 R−

0 the projection introduced in (7-4). By (2-17), Rnew
0 R+

0 =

(1 − 4I2(a))Id; hence, composing by R−

0 on the right gives

Rnew
0 50 = (1 − 4I2(a))R−

0 .

Writing vh,n =50vh,n + (vh,n −50vh,n), we get

Rnew
0 vh,n = Rnew

0 50vh,n + Rnew
0 (vh,n −50vh,n)

= (1 − 4I2(a))R−

0 vh,n + Rnew
0 (vh,n −50vh,n).

Then we observe that

∥Rnew
0 (vh,n −50vh,n)∥L2(R) ≤ ∥ϕa∥L2(R)∥vh,n −50vh,n∥L2(R2) = O(h1/4)

by Hölder’s inequality and Proposition 7.1. This yields the conclusion of item (1).
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Proof of item (2). By (2-20), 1 − 4I2(a) > 0. By (7-1) and Proposition 7.1, we have

∥R−

0 vh,n∥L2(R) = ∥50vh,n∥L2(R2) = 1 +O(h1/4).

Now item (2) follows from item (1).

Proof of item (3). If 1 ≤ k, k ′
≤ n and k ̸= k ′, we have as h → 0+,

⟨vh,k, vh,k′⟩L2(R2) = o(1)+ δk,k′ .

By Proposition 7.1, we get further

⟨R−

0 vh,k, R−

0 vh,k′⟩L2(R) = ⟨50vh,k,50vh,k′⟩L2(R2) = o(1)+ δk,k′ .

Thus, by item (1),
⟨Rnew

0 vh,k, Rnew
0 vh,k′⟩L2(R) = o(1)+ δk,k′ .

With item (2) in hand, we get the conclusion of item (3).

Proof of item (4).

Step 1: We introduce the operator

R̃new
h : v ∈ H 1(R2) 7→

∫
R

φnew
a,h (τ, i∂σ )v( · , τ ) dτ ∈ L2(R), (7-56)

where φnew
a,h (τ, i∂σ ) is the first-order differential operator

φnew
a,h (τ, i∂σ ) := φa(τ )+ 2h3/8Ra((ba(τ )τ + ζa)φa(τ ))i∂σ + κh1/2φcor

a (τ ), (7-57)

κ = kmax and φcor
a is the function introduced in (7-33).

By Hölder’s inequality, there exists a constant C1 such that, for all v ∈ H 1(R2),

∥R̃new
h v∥L2(R) ≤ C1(∥v∥L2(R2) + ∥∂σv∥L2(R2)). (7-58)

Thus, by Proposition 7.1 and Remark 7.2,

∥R̃new
h Pnew

h vh,n − (h−1λn(h)−βa)R̃new
h vh,n∥L2(R) = O(h∞), (7-59)

where Pnew
h is the operator in (4-6).

Step 2: We prove the estimate〈(
c2(a)R̃new

h Pnew
h − M3(a)kmaxh1/2 Rnew

0 − h3/4 H harm
a Rnew

0
)
vh,n, Rnew

0 vh,n
〉
L2(R)

= o(h3/4). (7-60)

We first observe that it results from (7-1), (7-10), (7-56), and (7-57),

∥R̃new
h vh,n − R−

0 vh,n∥L2(R) = O(h1/2). (7-61)

For the sake of simplicity, we write κ = k(0)= kmax. We introduce the functions in L2(R):

f1 = 2Ra((ba(τ )τ + ζa)φa) (7-62)
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and (see (7-29) and (7-33))

f2 = φcor
a = Ra

(
M3(a)φa −φ′

a − 2τ(ba(τ )τ + ζa)
2φa + ba(τ )τ

2(ba(τ )τ + ζa)φa
)
. (7-63)

Recall the operators P0, P1, P2, P3, Qh introduced in (4-10) and (4-11). Noticing the decomposition
in (4-9), we write, for any function v with compact support in R2,

R̃new
h Pnew

h v =

∫
R

φa(τ )P0v(σ, τ ) dτ + h3/8
∫

R

(i f1(τ )∂σ P0 +φa(τ )P1)v(σ, τ ) dτ

+ h1/2
∫

R

(φa(τ )P2 + κ f2(τ )P0)v(σ, τ ) dτ

+ h3/4
∫

R

(φa(τ )P3 + i f1(τ )∂σ P1)v(σ, τ ) dτ + Rh,nv, (7-64)

where

Rh,nv = h7/8 R̃new
h Qhv+h7/8

∫
R

(i f1(τ )∂σ P2 +κ f2(τ )P0)v(σ, τ ) dτ +hκ
∫

R

f2(τ )P2v(σ, τ ) dτ

+ h5/4κ

∫
R

f2(τ )P3v(σ, τ ) dτ + h9/8κ

∫
R

i f1(τ )∂σ P3v(σ, τ ) dτ. (7-65)

We now compute the first three terms on the right side of (7-64):
For the first term, since P0 is self-adjoint in L2(R), we have∫

R

φa(τ )P0v(σ, τ ) dτ =

∫
R

P0φa(τ )v(σ, τ ) dτ = 0.

For the second term, we have∫
R

i f1(τ )∂σ P0v(σ, τ ) dτ =

∫
R

i P0 f1(τ )∂σv(σ, τ ) dτ

=

∫
R

2iφa(τ )(ba(τ )τ + ζa)∂σv(σ, τ ) dτ.

Hence we find, by (4-10), ∫
R

(
i f1(τ )∂σ P0 +φa(τ )P1

)
v(σ, τ ) dτ = 0.

For the third term, noticing that

P0 f2 = M3(a)φa −φ′

a − 2τ(ba(τ )τ + ζa)
2φa + ba(τ )τ

2(ba(τ )τ + ζa)φa

and∫
R

φa(τ )P2v(σ, τ ) dτ = κ

∫
R

(
−φ′

a(τ )+ 2τ(ba(τ )τ + ζa)
2φa(τ )− ba(τ )τ

2(ba(τ )τ + ζa)φa(τ )
)
v dτ,

we get

(W2v)(σ ) :=

∫
R

(
φa(τ )P2 + κ f2(τ )P0

)
v(σ, τ ) dτ

=

∫
R

(
φa(τ )P2 + κ(P0 f2(τ ))

)
v(σ, τ ) dτ

= κ

∫
R

(
M3(a)φa(τ )− 2φ′

a(τ )
)
v(σ, τ ) dτ.



578 WAFAA ASSAAD, BERNARD HELFFER AND AYMAN KACHMAR

By the forgoing computations, (7-64) becomes

R̃new
h Pnew

h v = h1/2W2v+ h3/4W3v+ Rh,nv, (7-66)

with

(W3v)(σ ) :=

∫
R

(
φa(τ )P3 + i f1(τ )∂σ P1

)
v(σ, τ ) dτ. (7-67)

We estimate W2vh,n by writing vh,n =50vh,n + (vh,n −50vh,n), with 50 the projection introduced in
(7-4), and by using (7-41). Eventually, since P050 = 0 and ⟨φa, φ

′
a⟩L2(R) = 0, we get by Remark 2.3,

∥W2vh,n − M3(a)κR−

0 vh,n∥L2(R) = o(h1/4). (7-68)

We still have to estimate the terms involving W3 and Rh,n in (7-66) when v = vh,n . By choosing η small
enough, the error term

rn(σ, h) := Rh,nvh,n, (7-69)

with Rh,n introduced in (7-65), satisfies

⟨rn( · , h), Rnew
0 vh,n⟩L2(R) = o(h3/4). (7-70)

The technical proof of (7-70) is given in Appendix B. So we are left (see (7-67)) with estimating

W3vh,n = w1 +w2, (7-71)

where

w1(σ ) :=

∫
R

φa(τ )P3vh,n(σ, τ ) dτ,

w2(σ ) :=

∫
R

i f1(τ )∂σ P1vh,n(σ, τ ) dτ.

In light of the definition of P3 in (4-10) and R−

0 in (7-1), we write

w1(σ )= −∂2
σ R−

0 vh,n(σ )+
k ′′(0)σ 2

2
w(σ),

where

w(σ)=

∫
R

(
∂τ + 2τ(ba(τ )τ + ζa)

2
− ba(τ )τ (ba(τ )τ + ζa)

)
φa(τ ) vh,n(σ, τ ) dτ.

Using Proposition 7.1 and that vh,n is supported in {|σ | ≤ h−η
}, we get

∥σ 2(w− M3(a)R−

0 vh,n)∥L2(R) = O(h1/4−2η).

Hence ∥∥∥∥w1 −

(
−∂2

σ +
k ′′(0)M3(a)

2
σ 2

)
R−

0 vh,n

∥∥∥∥
L2(R)

= O(h1/4−2η). (7-72)

Furthermore, by (4-10) and (7-62), the term w2 can be expressed as

w2(σ )= 2∂2
σ

∫
R

f1(τ )(ζa + ba(τ )τ )vh,n(σ, τ ) dτ

= 4∂2
σ

∫
R

(ba(τ )τ + ζa)Ra
(
(ba(τ )τ + ζa)φa(τ )

)
vh,n(σ, τ ) dτ. (7-73)
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Collecting (7-72) and (7-73), along with the definition of Rnew
0 in (7-53), we infer from (7-71)∥∥∥∥W3vh,n −

(
−∂2

σ Rnew
0 +

k ′′(0)M3(a)
2

σ 2 R−

0

)
vh,n

∥∥∥∥
L2(R)

= O(h1/4−2η). (7-74)

By Hölder’s inequality, we infer from (7-68) and (7-74)

h1/2
⟨(W2 − M3(a)κR−

0 )vh,n, Rnew
0 vh,n⟩L2(R)

+h3/4
〈
W3vh,n −

(
−∂2

σ Rnew
0 +

k ′′(0)M3(a)
2

σ 2 R−

0

)
vh,n, Rnew

0 vh,n

〉
L2(R)

= o(h3/4)∥Rnew
0 vh,n∥L2(R).

By (7-66) and (7-70), we get from the above estimate〈(
R̃new

h Pnew
h − h1/2 M3(a)κR−

0 − h3/4 H̃
)
vh,n, Rnew

0 vh,n
〉
L2(R)

= o(h3/4)∥Rnew
0 vh,n∥L2(R),

where

H̃ := −∂2
σ Rnew

0 +
k ′′(0)M3(a)

2
σ 2 R−

0 .

Finally, by item (1) and Proposition 2.5, we get (7-60).

Step 3: Using Steps 1 and 2, we are now able to finish the proof of item (4). By (1-12) and (2-20),
c2(a)= 1 − 4I2(a); hence (7-61) and item (1) yield that

∥c2(a)R̃new
h vh,n − Rnew

0 vh,n∥L2(R) = O(h1/4). (7-75)

Collecting (7-59), (7-60) and (7-75), we get〈
h3/4 H harm

a Rnew
0 vh,n −3n(h)Rnew

0 vh,n, Rnew
0 vh,n

〉
L2(R)

= O(|3n(h)|h1/4)+ o(h3/4),

where, by (6-4) and Theorem 4.1,

|3n(h)| = |h−1λn(h)−βa − M3(a)kmaxh1/2
| = o(h1/2).

Thus, we obtain 〈
h3/4 H harm

a Rnew
0 vh,n −3n(h)Rnew

0 vh,n, Rnew
0 vh,n

〉
L2(R)

= o(h3/4).

Dividing by h3/4 and using item (2), we get item (4). □

With Proposition 7.5 in hand, we can now finish the proof of Theorem 1.2.

Proof of Theorem 1.2. The upper bound of λn(h) follows from Theorem 4.1. For the lower bound
of λn(h), consider u =

∑n
k=1 ak Rnew

0 vh,k such that ∥u∥L2(R) = 1, where Rnew
0 is introduced in (7-53).

From Proposition 7.5 we have

((1 − 4I2(a))2 + o(1))
n∑

k=1

|ak |
2
= 1

and

⟨(H harm
a − h−3/43n(h))u, u⟩L2(R) ≤ o(1)

n∑
k=1

|ak |
2.
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Consequently,
max

u∈Mn, ∥u∥=1
⟨(H harm

a − h−3/43n(h))u, u⟩L2(R) = o(1),

where Mn is the space defined in (7-55). By the min-max principle√
M3(a)k ′′(0)c2(a)

2
(2n − 1)≤ h−3/43n(h)+ o(1),

thereby leading to

λn(h)≥ βah + M3(a)kmaxh3/2
+

√
M3(a)k ′′(0)c2(a)

2
(2n − 1)h7/4

+ o(h7/4). □

Appendix A: Frenet coordinates near the magnetic edge

We introduce the Frenet coordinates near 0. We refer the reader to [Fournais and Helffer 2010, Appendix F]
and [Assaad et al. 2019] for a similar setup.

Let s 7→ M(s) ∈ 0 be the arc length parametrization of 0 such that

• ν(s) is the unit normal of 0 at the point M(s) pointing towards P1,

• T (s) is the unit tangent vector of 0 at the point M(s), such that (T (s), ν(s)) is a direct frame, i.e.,
det(T (s), ν(s))= 1.

We define the curvature k of 0 as T ′(s)= k(s)ν(s). Working under Assumption 1.1, we assume without
loss of generality that s0 = 0, where s0 is the unique maximum of the curvature at 0 (k(0)= kmax).

For t0 > 0, we define the transformation 8=8t0 as

8 : R × (−t0, t0)→ 0t0 := {x ∈ R2
: dist(x, 0) < t0}, (s, t) 7→ M(s)+ tν(s). (A-1)

We pick t0 sufficiently small so that 8 is a diffeomorphism, whose Jacobian is

a(s, t) := J8(s, t)= 1 − t k(s). (A-2)

We consider the following correspondence between functions u in H 1
loc(0t0) and those ũ in H 1

loc(R×(−t0,t0)):

ũ(s, t)= u(8(s, t)), (A-3)
and vice versa.

Moreover, we assign to the potential F in (1-1) a vector field F̃ ∈ H 1
loc(R × (−t0, t0)) as

F(x)= (F1(x), F2(x)) 7→ F̃(s, t)= (F̃1(s, t), F̃2(s, t)),
where

F̃1(s, t)= a(s, t)F(8(s, t)) · T (s) and F̃2(s, t)= F(8(s, t)) · ν(s). (A-4)

Consequently,

(h∇ − i F)2 = a−1(h∂s − i F̃1)a
−1(h∂s − i F̃1)+ a−1(h∂t − i F̃2)a(h∂t − i F̃2). (A-5)

Note that
curl F̃(s, t)= (1 − tk(s)) curl F(8(s, t))= (1 − tk(s))(1{t>0} + a1{t<0}), (A-6)

where curl F̃ = ∂s F̃2 − ∂t F̃1 and curl F = ∂x1 F2 − ∂x2 F1 is as in (1-2).
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Furthermore, we present the change of variable formulas (for functions compactly supported in 0t0):∫
0t0

|u|
2 dx =

∫
R

∫ t0

−t0
|ũ|

2 a dt ds,∫
0t0

|(h∇ − i F)u|
2 dx =

∫
R

∫ t0

−t0

(
a−2

|(h∂s − i F̃1)ũ|
2
+ |(h∂t − i F̃2)ũ|

2)a dt ds.
(A-7)

Now, we make a global change of gauge ω as follows:

Lemma A.1. There exists a function ω ∈ H 2(8−1(0t0 ∩�)) such that

F̃ − ∇s,tω =

(
−ba(t)

(
t −

1
2 t2k(s)

)
0

)
in 8−1(0t0 ∩�),

where t 7→ ba(t) is defined by ba(t)= 1{t>0} + a1{t<0}.

Proof. For (s, t)∈8−1(0t0 ∩�), let ω(s, t)=
∫ t

0 F̃2(s, t ′) dt ′
+

∫ s
0 F̃1(s ′, 0) ds ′. This choice of ω and (A-6)

establish the lemma. □

The gauge of Lemma A.1 is adequate when working with functions localized near the edge 0. With
this choice of gauge, we have the following identity which is useful to analyze the decay of functions
localized near 0.

Lemma A.2. Assume that ϕ ∈ H 2(�) with compact support in �∩0t0 . Let g and G be the functions
defined (by means of (A-3)) as

g̃(s, t)= (h1/2∂s − iζa)ϕ̃(s, t) and G̃(s, t)= −(h1/2∂s − iζa)(e2φ̃ g̃),

where ζa is the constant in Section 2B and φ is a Lipschitz real-valued function on �. If g ∈ H 2(�), then

Re⟨Phϕ,G⟩L2(�) = Qh(eφg)− h2
∥|∇g|eφϕ∥

2
L2(�)

− h1/2 Re(Th).

Here Qh is the quadratic form introduced in (4-11) and

Th =
〈
(h∂s − i F̃1)

(
(∂sa

−1
− ia−1∂s F̃1)(h∂s − i F̃1)ϕ̃− ia−1(∂s F̃1)ϕ̃

)
+ h2∂t(∂sa)∂t ϕ̃, e2φ̃ g̃

〉
L2(R)

.

Proof. We assume that F̃2 = 0 and get from (A-5) and (A-2)

⟨Phϕ,G⟩L2(�) = ⟨(h∂s − i F̃1)a
−1(h∂s − i F̃1)ϕ+ h2∂ta∂tϕ, (h1/2∂s − iζa)(e2φg)⟩L2(R2), (A-8)

where we dropped the tildes from the notation for the sake of simplicity. Notice that

(h1/2∂s − iζa)∂ta∂tϕ = ∂t((h1/2∂s − iζa)a∂tϕ)

= ∂t(a∂t(h1/2∂s − iζa)ϕ)+ h1/2∂t(∂sa)∂tϕ

= ∂ta∂t g + h1/2∂t(∂sa)∂tϕ,
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and

(h1/2∂s − iζa)(h∂s − i F̃1)a
−1(h∂s − i F̃1)ϕ

= (h∂s − i F̃1)
(
(h1/2∂s − iζa)− ih1/2(∂s F̃1)

)
a−1(h∂s − i F̃1)ϕ

= (h∂s − i F̃1)
(
a−1(h∂s − i F̃1)(h1/2∂s − iζa)ϕ− ih1/2(∂s F̃1)a

−1(h∂s − i F̃1)ϕ
)

+ h1/2(h∂s − i F̃1)
(
(∂sa

−1)(h∂s − i F̃1)ϕ− ia−1(∂s F̃1)ϕ
)

= (h∂s − i F̃1)a
−1(h∂s − i F̃1)g +h1/2(h∂s − i F̃1)

(
(∂sa

−1
− ia−1∂s F̃1)(h∂s − i F̃1)ϕ− ia−1(∂s F̃1)ϕ

)
.

By integration by parts, we infer from (A-8)

⟨Phϕ,G⟩L2(�) = ⟨Phg, e2φg⟩L2(�) − h1/2Th . (A-9)

Finally, by integration by parts, we get

Re⟨Phg, e2φg⟩L2(�) = Qh(eφg)− h2
∥|∇φ|eφg∥

2
L2(�)

. □

Appendix B: Control of a remainder term

The aim of this appendix is to prove the estimate in (7-70). We fix a positive integer n ≥ 1 and two
positive constants η ∈

(
0, 1

8

)
and δ ∈

(
0, 1

12

)
.

For all h > 0, let vh,n be the function introduced in (7-6) which is supported in {|σ |< h−η, |τ |< h−δ
}.

Moreover, by (7-6) and Propositions 6.2 and 6.3, we observe that,

for all θ ∈
(
0, 3

8

)
, there exists Cθ > 0 such that ∥∂ j

σvh,n∥L2(R2) ≤ Cθh− jθ (0 ≤ j ≤ 2). (B-1)

Consider two functions f ∈ L2(R) and p ∈ L1
loc(R

2) so that,

for all α ≥ 1, τα f (τ ) ∈ L2(R),

and there exist k ≥ 1 and C such that

|p(σ, τ )| ≤ C(|σ |
k
+ |τ |k + 1) (σ, τ ∈ R).

For j ∈ {0, 1, 2}, we introduce the function

wj (σ )=

∫
R

f (τ )p(σ, τ )∂ j
σvh,n(σ, τ ) dτ, (B-2)

whose support is included in {|σ |< h−η
}, by the considerations on the support of vh,n .

Lemma B.1. Given η ∈
(
0, 1

8

)
, there exist two positive constants h0,C > 0 such that

∥wj∥L2(R) ≤ C h−(k+ j/2)η

for all h ∈ (0, h0) and j ∈ {0, 1, 2}.

Proof. By Hölder’s inequality

|wj (σ )|
2
≤

(∫
R

| f (τ )|2|p(σ, τ )|2 dτ
)(∫

R

|∂ j
σvh,n(σ, τ )|

2 dτ
)
. (B-3)
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For σ in the support of wj , we have∫
R

| f (τ )|2|p(σ, τ )|2 dτ ≤ C
∫

R

| f (τ )|2(1 + |τ |k + |σ |
k)2 dτ ≤ C̃k(1 + h−2kη).

Inserting this into (B-3) then integrating with respect to σ , we get∫
R

|wj (σ )|
2 dσ ≤ C̃k(1 + h−2kη)

∫
R2

|∂ j
σvh,n(σ, τ )|

2 dσ dτ.

Finally, we use (B-1) with θ = η. □

We will encounter functions of the form

wj (σ )=

∫
R

g(τ )q(σ )∂ j
τ vh,n(σ, τ ) dτ ( j ∈ {1, 2}, σ ∈ R), (B-4)

where g ∈ H j (R) and q ∈ H 1
loc(R) satisfy,

for all α ≥ 1, ταg(i)(τ ) ∈ L2(R) (1 ≤ i ≤ j),

and

there exists k ≥ 1 such that there exists Ck > 0 such that |q(σ )| ≤ Ck(1 + |σ |
k) (σ ∈ R).

Lemma B.2. Given η ∈
(
0, 1

8

)
, there exist two positive constants h0 and C such that

∥wj∥L2(R) ≤ Ch−(k+1)η

for all h ∈ (0, h0] and j ∈ {1, 2}.

Proof. Using integration by parts and that vh,n is with compact support, we get

wj (σ )= (−1) j
∫

R

g( j)(τ )q(σ )vh,n(σ, τ ) dτ.

This function has the form of functions in Lemma B.1, with f (τ )= g( j)(τ ) and p(σ, τ )= q(σ ). □

The inner product of the remainder, rn(σ, h) in (7-69), and the function, Rnew
0 vh,n in (7-53), can be

expressed as the inner product of a linear combination of functions having the forms in Lemmas B.1
and B.2. The polynomials we encounter are of degree 6 at most. More precisely,

⟨rn( · , h), Rnew
0 vh,n⟩L2(R) = h7/8 A1 + h7/8 A2 + h A3 + h9/8 A4 + h5/4 A5,

where

A1 = ⟨a1,1, b1⟩L2(R) + h3/8
⟨a1,2, b2⟩L2(R) + h1/2

⟨a1,3, b1⟩L2(R),

A2 = ⟨a2,1, b2⟩L2(R) + ⟨a2,2, b1⟩L2(R),

A3 = ⟨a3, b1⟩L2(R), A4 = ⟨a4, b2⟩L2(R), A5 = ⟨a5, b1⟩L2(R),

and

a1,1 =

∫
R

g1(τ )Qhvh,n dτ, a1,2 =

∫
R

g2(τ )Qhvh,n dτ, a1,3 =

∫
R

g3(τ )Qhvh,n dτ,

a2,1 =

∫
R

f1(τ )P2vh,ndτ, a2,2 = κ

∫
R

f2(τ )P0vh,n dτ,
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a3 = κ

∫
R

f2(τ )P2vh,n dτ, a4 = κ

∫
R

f1(τ )P3vh,n dτ, a5 = κ

∫
R

f2(τ )P3vh,n dτ,

b1 =

∫
R

g(τ )vh,n dτ, b2 = i
∫

R

g(τ )∂σvh,n dτ.

Here, Qh is the operator introduced in (4-11), P0, P1, P2, P3 are the operators introduced in (4-10), f1, f2

are the functions introduced in (7-62)-(7-63), the functions g1, g2, g3 and g are defined as follows (see
(7-57) and (7-53))

g1 = φa, g2 = f1 = 2Ra((ba(τ )τ + ζa)φa),

g3 = κ f2 = κRa
(
M3(a)φa −φ′

a − 2τ(ba(τ )τ + ζa)
2φa + ba(τ )τ

2(ba(τ )τ + ζa)φa
)
,

g = φa − 4(ba(τ )τ + ζa)Ra((ba(τ )τ + ζa)φa).

So, we get
⟨rn( · , h), Rnew

0 vh,n⟩L2(R) = O(h7/8−8η).

By choosing η < 1
64 , we get (7-70).
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NECESSARY DENSITY CONDITIONS FOR SAMPLING AND INTERPOLATION
IN SPECTRAL SUBSPACES OF ELLIPTIC DIFFERENTIAL OPERATORS

KARLHEINZ GRÖCHENIG AND ANDREAS KLOTZ

We prove necessary density conditions for sampling in spectral subspaces of a second-order uniformly
elliptic differential operator on Rd with slowly oscillating symbol. For constant-coefficient operators, these
are precisely Landau’s necessary density conditions for bandlimited functions, but for more general elliptic
differential operators it has been unknown whether such a critical density even exists. Our results prove
the existence of a suitable critical sampling density and compute it in terms of the geometry defined by the
elliptic operator. In dimension d = 1, functions in a spectral subspace can be interpreted as functions with
variable bandwidth, and we obtain a new critical density for variable bandwidth. The methods are a combi-
nation of the spectral theory and the regularity theory of elliptic partial differential operators, some elements
of limit operators, certain compactifications of Rd, and the theory of reproducing kernel Hilbert spaces.

1. Introduction

The classical Paley–Wiener space is the subspace PW�={ f ∈ L2(R) : supp f̂ ⊆[−�,�]} of L2(R). Using
Fourier inversion, one sees that the point evaluation f 7→ f (x) is bounded on PW�. The fundamental
questions about PW� are originally motivated by problems in signal processing and information theory:
when is f ∈ PW� completely and stably determined by its samples { f (s) : s ∈ S} on a set S ⊆ R? On
which sets S ⊆ R can every sequence (as)s∈S ∈ ℓ2(S) be interpolated by a function f in PW�, so that
f (s)= as for all s ∈ S? These questions were answered by Beurling [1989] and Landau [1967].

Theorem A. (i) Assume that S is uniformly separated and

A∥ f ∥
2
2 ≤

∑
s∈S

| f (s)|2 ≤ B∥ f ∥
2
2 for all f ∈ PW�. (1-1)

Then

D−(S)= lim inf
r→∞

inf
x∈R

#(S ∩ [x − r, x + r ])

2r
≥
�

π
. (1-2)

(ii) If for all a ∈ ℓ2(S) there exists f ∈ PW� such that f (s)= as , s ∈ S, then

D+(S)= lim sup
r→∞

sup
x∈R

#(S ∩ [x − r, x + r ])

2r
≤
�

π
. (1-3)
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In the established terminology, a set that satisfies a sampling inequality of the form (1-1) is called a
sampling set for the underlying space PW�, or a set of stable sampling. A set on which arbitrary ℓ2-data
can be interpolated is called a set of interpolation. The expressions D−(S) and D+(S) are called the
lower and the upper Beurling density.

The number�/π in (1-2) and (1-3) is an important invariant of the space PW� and has an interpretation
in information theory. Since, roughly speaking, the densities D±(S) measure the average number of
samples in S per unit length, the necessary density conditions of Theorem A say that at least �/π samples
per unit length are required to recover a function in PW� from f |S , whereas at most �/π values per unit
length are permitted to solve the interpolation problem in PW�. Thus the density�/π represents a critical
value below which (stable) sampling is impossible, and above which interpolation is impossible. Indeed,
these questions about sampling and interpolation were at the origin of Shannon’s information theory [1948],
and the uniform sampling theorem with S = αZ is still considered the basis of analog-digital conversion in
modern signal processing. The ratio D±(S)/� is a measure for the redundancy, thus for the performance
quality, of the sampling set S. The theory of Beurling, Kahane, and Landau provides a rigorous mathemati-
cal formulation for the existence of a critical density for arbitrary sets S (in place of αZ). Although we will
not touch this question here, we mention that the conditions of Theorem A yield almost a characterization of
sets of sampling and of interpolation: in dimension d = 1, if S is uniformly separated and D−(S) > 1, then
S is a sampling set for PW�, and if D+(S)<1, then S is a set of interpolation for PW�. See [Kahane 1962;
Beurling 1989; Seip 2004] for an exposition of the sampling theory in the classical Paley–Wiener space.

The connection with partial differential operators comes from the observation that PW� is a spectral
subspace of the differential operator H = −d2/dx2. Using the Fourier transform F , this differential
operator is unitarily equivalent to the multiplication operator F (−d2 f/dx2)(ξ) = ξ 2 f̂ (ξ). In this
representation of −d2/dx2 the spectral projection on the interval [0, �] is given by χ[0,�](H) f =

F−1(χ[0,�](ξ
2) f̂ ). This implies

PW� = χ[0,�2](H)L
2(R).

This observation is the starting point for many generalizations of Paley–Wiener spaces and sampling
theorems. In this work we study the question of necessary density conditions for sampling and interpolation
in the spectral subspaces of a self-adjoint uniformly elliptic differential operator

Ha = −

d∑
j,k=1

∂j ajk(x)∂k

acting on L2(Rd)with a smooth positive definite (matrix) symbol a = (ajk(x))j,k=1,...,d . The Paley–Wiener
space associated to Ha is the spectral subspace

PW�(Ha)= χ[0,�](Ha)L2(Rd),

where, as usual, χ[0,�](Ha) is the orthogonal projection corresponding to the spectrum [0, �].
If the symbol a(x)= a is constant, then Ha is similar to the Laplace operator, and the corresponding

spectral subspace can be described with Fourier techniques. For this case necessary density conditions
for sampling and interpolation are already contained in [Landau 1967]. Optimal sufficient conditions
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for sampling in Rd in terms of a covering density were obtained in [Beurling 1966]. However, if Ha is
a uniformly elliptic differential operator with variable coefficients, then the standard techniques break
down, and it was an open question whether a critical density exists for sampling and interpolation in the
spectral subspaces of Ha , and how to compute this critical density.

We will answer this question for a class uniformly elliptic operators. We say a smooth symbol with all
derivatives bounded, a ∈ C∞

b (R
d,Cd×d), is slowly oscillating if lim|x |→∞ |∂ka(x)| = 0 for k = 1, . . . , d .

Theorem B. If a is slowly oscillating, then there exists a critical density for sampling and interpolation
for PW�(Ha).

Adapting the measure to the geometry associated to the differential operator Ha , the critical density
can be determined explicitly. This is our main result.

Theorem C. Assume Ha = −
∑d

j,k=1 ∂j ajk∂k is a self-adjoint uniformly elliptic operator with slowly
oscillating symbol a ∈ C∞

b (R
d,Cd×d). Let dν(x)= (det a(x))−1/2 dx be the associated measure.

(i) If S ⊆ Rd is a set of stable sampling for PW�(Ha) then

D−

ν (S)= lim inf
r→∞

inf
x∈Rd

#(S ∩ Br (x))
ν(Br (x))

≥
|B1|

(2π)d
�d/2.

(ii) If S ⊆ Rd is a set of interpolation for PW�(Ha), then

D+

ν (S)= lim sup
r→∞

sup
x∈Rd

#(S ∩ Br (x))
ν(Br (x))

≤
|B1|

(2π)d
�d/2.

Except for the modified definition of the density, the formulation of the theorem is identical to Landau’s
theorem [1967]. By contrast, the method of proof is vastly different as Fourier methods are not available
for the proof of Theorem C. In addition we draw the new insight that the appropriate notion of density
must be linked to the geometry defined by a. For compact manifolds the link between density and
geometry was already observed in [Ortega-Cerdà and Pridhnani 2012].

For the special case of a symbol that is asymptotically constant at infinity we can use the standard
Beurling densities in Rd from (1-2) and (1-3) (with intervals replaced by Euclidean balls Br (x)) and
obtain the following consequence.

Corollary D. Assume that a ∈ C∞

b (R
d,Cd×d) is asymptotically constant, i.e., limx→∞ a(x) = b. Let

6b
� = {ξ ∈ Rd

: bξ · ξ ≤�}.

(i) If S ⊆ Rd is a set of sampling for the Paley–Wiener space PW�(Ha), then

D−(S)≥
|6b

�|

(2π)d
= (det b)−1/2 |B1|

(2π)d
�d/2.

(ii) If S ⊆ Rd is a set of interpolation for the Paley–Wiener space PW�(Ha), then

D+(S)≤
|6b

�|

(2π)d
.



590 KARLHEINZ GRÖCHENIG AND ANDREAS KLOTZ

We note that the same critical density holds for the Paley–Wiener space of the constant-coefficient
differential operator Hb. Since Ha may be considered a perturbation of Hb and since the Beurling
density D±(S) is an asymptotic quantity, it is to be expected that the necessary density for PW�(Ha)

coincides with the necessary density for PW�(Hb).
Let us put these statements into context.

Sampling in spectral subspaces. Several researchers have created an extensive qualitative theory of
sampling in spectral subspaces of a general unbounded, positive, self-adjoint operator H on a Hilbert
space H . In this case the abstract Paley–Wiener space is defined as PW[0,�](H)= χ[0,�](H)H . Usually
H = L2(X, µ) and PW[0,�](H) is a reproducing kernel Hilbert space. In this situation many authors have
proved the existence of sampling sets [Coulhon et al. 2012; Feichtinger et al. 2016; Filbir and Mhaskar
2011; Feichtinger and Pesenson 2004; Pesenson 2000; 2001; Pesenson and Zayed 2009]. In particular the
set-up of [Coulhon et al. 2012; Pesenson 1999; Pesenson and Zayed 2009] covers the case of H being
a self-adjoint uniformly elliptic differential operator on L2(Rd). The construction of sampling sets in
these abstract Paley–Wiener spaces requires some smoothness properties of functions in PW�(H) and a
Bernstein-type inequality (see (2-1) below). The result then is that a “sufficiently dense” subset in X is a
sampling set and a “sufficiently sparse” subset of X is a set of interpolation. What remained unknown
is the existence of a critical density against which one could compare the quality of the construction.
Theorems B, C, and Corollary D address this gap for uniformly elliptic differential operators. Once a
critical sampling density is established, one may aim for sampling sets near the critical density. The
question of optimal sampling sets in spectral subspaces is wide open; in fact, it has become meaningful
only after the critical density is known explicitly. This problem is already difficult for multivariate
bandlimited functions PWK = { f ∈ L2(Rd) : supp f̂ ⊆ K } for compact spectrum K ⊆ Rd and was solved
only recently in [Matei and Meyer 2010; Olevskiı̆ and Ulanovskii 2008]. A possible general approach is
via the construction of Fekete sets and weak limits, as was carried out in [Gröchenig et al. 2019] for Fock
spaces with a general weight.

Insight for partial differential operators. Although the spectral subspaces of a partial differential operator
are natural objects, they seem to have received little attention. To the best of our knowledge, nothing
is known about the nature of the corresponding reproducing kernel and the behavior of functions in the
spectral subspaces PW�. Our investigation reveals several properties of the reproducing kernel, such as
the behavior of its diagonal and some form of off-diagonal decay. These are key properties for the proofs
of Theorems B and C, and we hope that these also hold some interest for partial differential operators.

Variable bandwidth. Our original motivation comes from a new concept of variable bandwidth. In
[Gröchenig and Klotz 2017] we argued that the spectral subspaces of the Sturm–Liouville operator
−(d/dx)a(d/dx) on L2(R) for some function a > 0 can be taken as spaces with variable bandwidth. We
proved that a(x)−1/2 is a measure for the bandwidth near x (the largest active frequency at position x).
The function a thus parametrizes the local bandwidth. For a = const., the spectral subspace is just
the classical Paley–Wiener space PW�. For the special case of an eventually constant parametrizing
function a, i.e., a is constant outside an interval [−R, R], we computed the critical density for sampling in
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PW�(−(d/dx)a(d/dx)). The proof required intricate details of the scattering theory of one-dimensional
Schrödinger operators. Theorem C, formulated for dimension d = 1, yields a significant extension of the
density theorem for the sampling of functions of variable bandwidth.

Corollary E. Assume that a ∈ C∞

b (R) is bounded, a > 0, and limx→±∞ a′(x)= 0. Let PW�(Ha) be the
Paley–Wiener space associated to Ha .

If S is a sampling set for PW�(Ha), then

D−

ν (S)≥
�1/2

π
.

Similarly, if S is a set of interpolation for PW�(Ha), then

D+

ν (S)≤
�1/2

π
.

Methods. The proofs of Theorems B and C combine ideas and techniques from several areas of analysis.

Critical density in reproducing kernel Hilbert spaces. Originally, density theorems in the style of Landau —
and there are dozens in analysis — were proved from scratch. In our approach we apply the results on
sampling and interpolation in general reproducing kernel Hilbert spaces from [Führ et al. 2017]. The
main insight was that it suffices to verify some geometric conditions on the measure space, such as a
doubling condition of the underlying measure, and of the reproducing kernel, such as some form of
off-diagonal decay. Once these conditions are satisfied, one obtains the existence of a critical density and
can calculate it in terms of the averaged trace of the reproducing kernel. Since the geometric conditions
are trivially satisfied for Rd, our main technical difficulty is to understand the reproducing kernel of the
spectral subspaces of a self-adjoint uniformly elliptic differential operator.

Regularity theory and heat kernel estimates. To study this reproducing kernel, we use the fundamental
results of the regularity theory of elliptic differential operators. With these tools we investigate the
smoothness of the reproducing kernel and compare various Sobolev norms on PW�(Ha). See Lemma 2.1
and Proposition 2.2. For an important technical detail (Proposition 2.2) we will need Gaussian estimates
for the heat kernel, which we expect to play a key role in extensions of our theory.

Limit operators and slowly varying symbols. To connect asymptotic properties of the symbol a of a partial
differential operator Ha to the spectral theory of Ha , we use the notion of limit operators. Although we
do not use any elaborate results from this theory (see [Georgescu 2011; Rabinovich et al. 2004a; Špakula
and Willett 2017]), limit operators are central to our arguments.

Higson compactification of Rd. An important structure underlying the proof of Theorem C is a compacti-
fication of Rd, the so-called Higson compactification. This is the compactification arising as the maximal
ideal space of the C∗-algebra of slowly oscillating functions on Rd. By Gelfand theory every slowly
oscillating function can be identified with a continuous function on the Higson compactification hRd ;
see, e.g., [Rabinovich et al. 2004a; Roe 2003; Shteinberg 2000]. On a technical level we will show that
for slowly oscillating symbols the mapping x → T−x kx of centered reproducing kernels can be extended
continuously to the compactification hRd (Proposition 6.3).
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The underlying philosophy is summarized in the following diagram; we write Tx f (z)= f (z − x) for
the translation operator and kx for the reproducing kernel of PW�(Ha):

{T−xa : x ∈ Rd
} compact =⇒ {T−x HaTx : x ∈ Rd

} compact =⇒ {T−x kx : x ∈ Rd
} compact.

Thus, if Txn a → b in a suitable topology, then T−xn HaTxn → Hb and the sequence of centered reproducing
kernels T−xn kxn converges to the reproducing kernel of PW�(Hb). In the considered examples the limit
operator Hb is simpler than the original operator Ha , and this facilitates information about the reproducing
kernel of PW�(Ha).

The paper is organized as follows. Section 2 prepares the background material on regularity theory,
symbol classes for partial differential operators, and reproducing kernel Hilbert spaces. We prove the
basic properties of the Paley–Wiener space PW�(Ha). Section 3 gives the precise formulation of the
general density theorem for PW�(Ha). Its proof is given in Sections 4 and 5. In Section 6 we calculate
the critical density for sampling in PW�(Ha) for the class of slowly varying symbols (Theorem C and
Corollary D). We conclude with an outlook and collect additional material in Appendices A and B.

2. Preliminaries

2A. Notation. For a function f on Rd and x, z ∈ Rd we define the translation operator Tx f (z)= f (z−x).
The open Euclidean ball of radius r at x is Br (x), and Br = Br (0).

We use standard multi-index notation; thus the differential operator Dα is ∂ |α|/(∂xα1
1 · · · ∂xαd

d ) and the
multivariate binomial symbol is

(
α
γ

)
=

∏d
j=1

(
αj
γj

)
for multi-indices α, γ ∈ Nd

0 .
We will denote the space of uniformly continuous and bounded functions on Rd with values in a

Banach space X by Cu
b (R

d , X). The indices c, ∞, and 0 refer to the subspaces of compactly supported,
smooth, and vanishing-at-infinity functions in C(Rd). Thus C∞

b (R
d , X) consists of all smooth X -valued

functions with bounded derivatives of all orders. The space C∞(Rd , X) has the Fréchet space topology
induced by the seminorms | f |R,α = supx∈BR(0)∥Dα f (x)∥X . If X = C, we write C∞

b (R
d), etc.

The Fourier transform of f ∈ L1(Rd) is

F f (ω)= f̂ (ω)= (2π)−d/2
∫

Rd
f (x)e−i x ·ω dx,

and F extends to a unitary operator on L2(Rd) as usual. For every s ≥0 the Sobolev space W s
2 is defined by

W s
2 =

{
f ∈ L2(Rd) : ∥ f ∥W s

2
=

[
(2π)−d/2

∫
Rd

| f̂ (ω)|2(1 + |ω|
2)s dω

]1/2

<∞

}
.

If s ∈ N, then ∥ f ∥W s
2
≍

∑
|α|≤s∥Dα f ∥2. By the Sobolev embedding theorem, W s

2 ↪→ C0(R
d) for s > d/2.

Recall that a reproducing kernel Hilbert space H is a Hilbert space of functions defined on a set X
such that f (x)= ⟨ f, kx ⟩H for all f ∈ H and x ∈ X . We write k(x, y)= kx(y) for the reproducing kernel
of H . See, e.g., [Aronszajn 1950]. In particular, the Sobolev space W s

2 is a reproducing kernel Hilbert
space with reproducing kernel Txκ , x ∈ Rd, where κ̂(ω)= κ̂s(ω)= (1 + |ω|

2)−s, by direct computation
or by [Wendland 2005].
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2B. The generalized Paley–Wiener space and its basic properties. Pesenson’s idea [1998; 2001] (see
also [Pesenson and Zayed 2009]) was to define an abstract Paley–Wiener space as a spectral subspace
associated to an arbitrary positive, self-adjoint operator H ≥ 0 with domain D(H) on a Hilbert space H

and a spectral interval [0, �]. Let χ[0,�](H) be the spectral projection of H. Then the generalized
Paley–Wiener space is defined as

PW�(H)= χ[0,�](H)H .

Equivalently, for a positive, self-adjoint operator, one can define the Paley–Wiener space PW�(H) by a
Bernstein-type inequality: f ∈ PW�(H), if and only if f ∈ D(H k) for all k ∈ N, and

∥H k f ∥2 ≤�k
∥ f ∥2 for all k ∈ N. (2-1)

This is an easy consequence of the spectral theorem; see [Gröchenig and Klotz 2010; Pesenson 2001;
Pesenson and Zayed 2009].

If H = −d2/dx2 on L2(R), then

PW�(H)= { f ∈ L2(R) : supp f̂ ⊆ [−
√
�,

√
�]}

is precisely the classical Paley–Wiener space, or in engineering language the space of band-limited
functions with bandwidth 2

√
�.

Convention. In this work we consider positive, formally self-adjoint differential expressions H = Ha of
the form

Ha f = −

d∑
j,k=1

∂j ajk∂k f, f ∈ W 2
2 . (2-2)

Here the matrix symbol a ∈ C∞

b (R
d,Cd×d) is positive definite; i.e., ajk = āk j ∈ C∞

b (R
d) and there exists

θ > 0 such that a(x)ξ · ξ ≥ θ |ξ |2 for all ξ, x ∈ Rd. Then Ha is a positive, uniformly elliptic self-adjoint
operator on Rd with domain D(Ha)= W 2

2 . In particular C∞
c (R

d) is a core for Ha; i.e., Ha is the operator
closure of Ha|C∞

c (R
d ). The regularity theory of elliptic differential operators asserts that for every k ∈ N0

there is a ck ∈ R such that
H k

a + ck : W 2k
2 → L2(Rd)

is a Hilbert space isomorphism. See [Zimmer 1990, Theorem 6.3.12] or the standard references [Agmon
1965; Shubin 1992]. For further use we record the fact that a uniformly elliptic operator is one-to-one on
its domain and thus

0 is not an eigenvalue of Ha. (2-3)

To see this, we use the ellipticity and f ∈ W 2
2 . Then the identity

⟨Ha f, f ⟩ =

∫ ∑
j,k

ajk∂k f (x)∂j f (x) dx = 0

implies that ∂j f ≡ 0; thus f = 0.

Remark. We regard the mapping a 7→ Ha as a mapping from functions to operators (a symbolic
calculus) and refer to a as the (matrix) symbol of the operator. This terminology differs slightly from
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the usage in PDE, where the (principal) symbol of the differential operator
∑

|α|≤m aαDα is the function
p(x, ξ) =

∑
|α|=m aαξα on R2d. For the second-order differential operator Ha in (2-2) the principal

symbol is p(x, ξ)= a(x)ξ · ξ . Since Ha is self-adjoint, the coefficients aα are all real for |α| = 2.

First we verify that PW�(Ha) embeds in every Sobolev space.

Lemma 2.1. The Paley–Wiener space PW�(Ha) is continuously embedded in all Sobolev spaces W s
2 , s≥0,

and in C∞

0 (R
d). As a consequence, on PW�(Ha), the L2-norm and the Sobolev norms are equivalent.

Proof. Let f ∈ PW�(Ha) and k ∈ N. By elliptic regularity and Bernstein’s inequality (2-1), ∥ f ∥W 2k
2

≍

∥(H k
+ck) f ∥2 ≤ (�k

+|ck |)∥ f ∥2. Consequently, f ∈
⋂

k∈N W 2k
2 =

⋂
s≥0 W s

2 ⊆ C∞

0 (R
d) via the Sobolev

embedding. □

Embeddings of Paley–Wiener spaces different from Lemma 2.1 can be found in [Feichtinger and
Pesenson 2004].

Next we show that PW�(Ha) is a reproducing kernel Hilbert space in L2(Rd).

Proposition 2.2. There exists a reproducing kernel kx ∈ PW�(Ha) such that χ[0,�](Ha) f (x)= ⟨ f, kx ⟩

for all f ∈ L2(Rd) and all x ∈ Rd. In addition, there are positive constants c, C such that

0< c ≤ ∥kx∥2 ≤ C for all x ∈ Rd . (2-4)

Proof. Let f ∈ PW�(Ha) and s > d/2. By Lemma 2.1, f ∈ W s
2 and ∥ f ∥2 ≍ ∥ f ∥W s

2
. Since W s

2 is a
reproducing kernel Hilbert space, we obtain

| f (x)| = |⟨ f, Txκ⟩W s
2
| ≤ ∥Txκ∥W s

2
∥ f ∥W s

2
≤ C∥ f ∥2.

Thus PW�(Ha) is a reproducing kernel Hilbert space with kernel kx ∈ PW�(Ha).
For the lower bound in (2-4) we do not have a proof based exclusively on regularity theory. Instead

we refer to [Coulhon et al. 2012, Lemma 3.19], where the lower bound for the reproducing kernel was
derived by means of heat kernel estimates. As some details and notation differ, we reproduce the proof in
Appendix B. □

Proposition 2.3. The mapping x 7→ kx is continuous from Rd to W s
2 , s ≥ 0.

Proof. Since kx ∈ PW�(Ha) and ∥kx∥2 is bounded by (2-4), Lemma 2.1 and the Sobolev embedding
theorem imply that C1 = supx,y∈R |∇kx(y)| is finite; therefore

∥kx − ky∥
2
W s

2
≤ C∥kx − ky∥

2
2 = C

(
kx(x)− kx(y)− ky(x)+ ky(y)

)
≤ 2C sup

z,w
|∇kz(w)||x − y| ≤ C ′

|x − y|.

Consequently x → kx is continuous. □

2C. Sampling and interpolation in PW�(Ha) and the Beurling densities. Let µ be a Borel measure
on Rd that is equivalent to Lebesgue measure in the sense that dµ= h dx for a measurable function h
with 0< c ≤ h(x)≤ C for all x ∈ Rd.
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The lower Beurling density of S with respect to µ is defined as

D−

µ (S)= lim inf
r→∞

inf
x∈Rd

#(S ∩ Br (x))
µ(Br (x))

, (2-5)

and the upper Beurling density of S is

D+

µ (S)= lim sup
r→∞

sup
x∈Rd

#(S ∩ Br (x))
µ(Br (x))

.

If dµ= dx we omit the subscript and write D±(S).
For sampling in reproducing kernel Hilbert spaces the relevant measure is dµ(x)= k(x, x) dx . We call

the Beurling density with respect to this measure the dimension-free density and write D±

0 (S) for D±
µ (S).

We say that the reproducing kernel k of a reproducing kernel Hilbert space H ⊆ L2(Rd , dx) satisfies
the weak localization property (WL) if for every ε > 0 there is a constant r = r(ε) such that

sup
x∈Rd

∫
Rd\Br (x)

|k(x, y)|2 dy < ε2. (WL)

The discrete analog of the weak localization is the so-called homogeneous approximation property (HAP)
of the reproducing kernel: Assume that S is such that {ks : s ∈ S} is a Bessel sequence for H ; i.e., S
satisfies the upper sampling inequality

∑
s∈S| f (s)|2 ≤ C∥ f ∥

2
2 for all f ∈ H . Then for every ε > 0 there

is a constant r = r(ε) such that
sup
x∈Rd

∑
s∈S\Br (x)

|k(x, s)|2 < ε2. (HAP)

Under the assumptions of weak localization (WL) and (2-4), an upper sampling inequality implies that
for some (and hence all) ρ > 0

max
x∈Rd

#(S ∩ Bρ(x)) <∞.

We call such a set S relatively separated. See also [Führ et al. 2017, Lemma 3.7].
The two localization properties (WL) and (HAP) are the key properties of the reproducing kernel

required for an abstract density theorem to hold. For reproducing kernel Hilbert spaces embedded in
L2(Rd) this can be stated as follows [Führ et al. 2017, Corollary 4.1].

Theorem 2.4. Let H ⊆ L2(Rd, dx) be a reproducing kernel Hilbert space with kernel k. Assume that k
satisfies the boundedness property (2-4) on the diagonal, the weak localization (WL) and the homogeneous
approximation property (HAP).

(i) If S is a sampling set for H , then D−

0 (S)≥ 1.

(ii) If S is an interpolating set for H , then D+

0 (S)≤ 1.

This result holds under a set of natural assumptions on metric measure spaces and conditions on the
reproducing kernel. We will not dwell on the geometric conditions, e.g., doubling measure, as these
are clearly satisfied for Rd with µ equivalent to Lebesgue measure. We want to verify Theorem 2.4 for
H = PW�(Ha) for a suitable class of symbols a. The boundedness of the diagonal of the kernel was
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already established in Proposition 2.2, (2-4). To prove Theorems B and C we therefore need to verify the
properties (WL) and (HAP) for the reproducing kernel Hilbert space PW�(Ha).

Observe that (WL) is equivalent to the condition

sup
x∈Rd

∫
Rd\Br (0)

|T−x kx(y)|2 dy < ε2 (2-6)

for the centered reproducing kernels. We will show the stronger statement that the set {T−x kx : x ∈ Rd
}

is relatively compact in L2(Rd). The Riesz–Kolmogorov compactness theorem then implies (2-6) and
thus (WL).

The proof of (HAP) requires some additional local regularity of kx . We will use prominently elliptic
regularity theory to show that {T−x kx : x ∈ Rd

} is relatively compact in all Sobolev spaces W s
2 . For the

proof of (HAP) it is fundamental that the point evaluation on PW�(Ha) can be expressed two-fold as

f (x)= ⟨ f, kx ⟩L2 = ⟨ f, Txκ⟩W s
2

for all f ∈ PW�(Ha). (2-7)

2D. Classes of symbols, limit operators. First we define the relevant symbol classes. Let

τx(Ha)= T−x HaTx = HT−x a (2-8)

be the conjugation of Ha by the translation Tx . If a ∈ C∞

b (R
d,Cd×d), observe that τx(Ha) is again a

self-adjoint, uniformly elliptic operator with domain W 2
2 and core C∞

c (R
d). In this section we describe

symbol classes that ensure that {τx(Ha) f : x ∈ Rd
} is relatively compact in L2(Rd) for all f ∈ C∞

c (R
d).

Equivalently, every sequence τxk (Ha) f has a norm-convergent subsequence. If (xk) is bounded, this
follows from the continuity of x 7→ Tx f . To treat unbounded sequences we need some terminology.

Since in Section 6 we will deal with a nonmetrizable compactification of Rd, we formulate most results
for nets (xλ)λ∈3 instead of sequences. (Here 3 is a directed set with a partial order ⪰ and we write
limλ xλ for the limit of a net when it exists.)

Definition 2.5. Assume a ∈ C∞

b (R
d,Cd×d). If the net (xλ)λ∈3 ⊂ Rd diverges to infinity and there is an

operator H ∈ B(W 2
2 , L2(Rd)) such that limλ τxλ(Ha) f = H f for all f ∈ C∞

c (R
d), then H is called a

limit operator of Ha .

Remark 2.6. (i) Existence and uniqueness of the limit operator follow from the Banach–Steinhaus
theorem.

(ii) We do not even scratch the surface of the method of limit operators: see, amongst many others,
[Rabinovich et al. 2004a; 2004b; Špakula and Willett 2017], and in the C∗-algebra setting [Davies
and Georgescu 2013; Georgescu 2011; 2018].

(iii) Limit operators are related to compactifications of Rd. An example can be found in Section 6B.

2D1. Compact orbits. Identity (2-8) suggests that compactness properties of {τx(Ha) : x ∈ Rd
} are related

to compactness properties of {T−xa : x ∈ Rd
}, so we investigate these first.

Lemma 2.7. (i) If f ∈ C∞

b (R
d), then {Tx f : x ∈ Rd

} is relatively compact in the Fréchet space C∞(Rd)

with respect to its topology of uniform convergence of all derivatives on compact sets.
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(ii) In particular, if limλ Txλ f = g pointwise, then limλ Txλ f = g in C∞(Rd). The limit function g is
again in C∞

b (R
d).

Proof. (i) The space C∞(Rd) has the Heine–Borel property [Rudin 1973, 1.46], so it suffices to verify
that {Tx f : x ∈ Rd

} is bounded in C∞(Rd), which means that

∥DαTx f ∥L∞(Br (0)) < Cα,r for all x ∈ Rd and all r > 0, α ∈ Nd
0 .

But this is trivial for f ∈ C∞

b (R
d), since all derivatives are globally bounded.

(ii) We apply the following observation: A net converges to a limit g if and only if every subnet has
a subnet that converges to g. By (i) every subnet of (Txλ f )k∈N has a subnet (Tzλ f )k∈N that converges
in C∞(Rd) (to the limit function g). We conclude that (Txλ f )k∈N converges to g in C∞(Rd). As all
functions and their derivatives of all orders are bounded and continuous, this is true for the limit as well. □

Proposition 2.8. Let a ∈ C∞

b (R
d,Cd×d), k,m ∈ N0, and assume limλ T−xλa = b pointwise. Then, for

every f ∈ W 2m+2k
2

lim
λ

∥(τxλ(H
k
a )− H k

b ) f ∥W 2m
2

= 0.

Proof. We treat the case k = 1 first and assume for the moment that f ∈ C∞
c (R

d). Set a(λ) = T−xλa. We
can express Ha in the form Ha =

∑
|β|≤2 aβDβ, with coefficients aβ ∈ C∞

b (R
d), and estimate, for every

multindex α with |α| ≤ 2m,

|Dα(Ha(λ) − Hb) f | =

∣∣∣∣Dα
∑
|β|≤2

(a(λ)β − bβ)Dβ f
∣∣∣∣ =

∣∣∣∣ ∑
|β|≤2

∑
|γ |≤|α|

(
α

γ

)
Dγ (a(λ)β − bβ)Dα−γ+β f

∣∣∣∣.
By Lemma 2.7 we have limλ Dγ a(λ) = Dγ b uniformly on compact sets, so the convergence is actually
uniform on supp f , and thus

lim
λ

∥Dα(Ha(λ) − Hb) f ∥∞ = 0.

Consequently

∥(Ha(λ) − Hb) f ∥W 2m
2

≤ C max
|α|≤2m

∥Dα(Ha(λ) − Hb) f ∥2

≤ C |supp f |
1/2 max

|α|≤2m
∥Dα(Ha(λ) − Hb) f ∥∞ → 0.

As C∞
c (R

d) is dense in W 2m+2
2 , and the operators Ha(λ) are uniformly bounded from W 2m+2

2 to W 2m
2 , a

standard density argument (see, e.g., [Teschl 2009, Lemma 1.14]) implies ∥(Ha(λ) − Hb) f ∥W 2m
2

→ 0 for
all f ∈ W 2m+2

2 .
For k > 1 observe that

H k
a f − H k

b f = H k−1
a (Ha f − Hb f )+ (H k−1

a − H k−1
b )Hb f.

As limλ∥(Ha(λ) − Hb) f ∥W 2m
2

= 0 for f ∈ W 2m+2
2 , the result follows by induction on k. □

Remark. The statement of the proposition and its proof are valid under the following more general
conditions: aλ, b ∈ C∞

b (R
d), aλ

C∞

−→ b, and (Haλ) is uniformly bounded from W 2
2 to L2(Rd).

Though not needed in the sequel, we state an interesting corollary that shows how compactness
properties of the orbit {Txa : x ∈ Rd

} are transferred to compactness properties of {τx(Ha) : x ∈ Rd
}.
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Corollary 2.9. If a ∈ C∞

b (R
d,Cd×d) and f ∈ C∞

c (R
d) the set {τx(Ha) f : x ∈ Rd

} is relatively compact
in every Sobolev space W s

2 , s > 0.

Proof. The set {Txa : x ∈ Rd
} is relatively compact in C∞(Rd) by Lemma 2.7, and Proposition 2.8 says

that the mapping a 7→ Ha f is continuous from {Txa : x ∈ Rd}
C∞(Rd ) to W s

2 . □

2D2. Slowly oscillating symbols. In the next step we single out a subclass of operators for which the
spectral theory is sufficiently simple. In our approach it is essential that the limit operators do not have the
endpoint 0 and � of the spectrum as eigenvalues. The limits of translates of slowly oscillating symbols
are constant, if they exist (Lemma 2.13 below), so the limit operators are similar to the Laplacian. This
will be used in Section 6 to compute the critical density.

Definition 2.10. An X -valued function f ∈ Cu
b (R

d , X) is slowly oscillating1 if for all compact subsets
M ⊂ Rd

lim
|x |→∞

sup
m∈M

∥ f (x)− f (x + m)∥X = 0.

In fact, it suffices to use the closed unit ball B1 instead of an arbitrary compact set M.
We denote the space of all slowly oscillating functions on Rd by Ch(R

d , X) and define C∞

h (R
d , X)=

Ch(R
d , X)∩ C∞

b (R
d, X).

The space Ch(R
d) with the ∥·∥∞-norm and pointwise multiplication is a commutative C∗-subalgebra

of Cu
b (R

d).
We will need the following characterization of C∞

h (R
d , X). The statement is folklore, but we do not

know a formal reference. For completeness we sketch the simple proof.

Lemma 2.11. A function f is in C∞

h (R
d , X) if and only if f ∈ C∞

b (R
d, X) and lim|x |→∞ ∂k f (x)= 0 for

all 1 ≤ k ≤ d.

Proof. Assume that f ∈ C∞

b (R
d, X) and lim|x |→∞ ∂k f (x)= 0 for all 1 ≤ k ≤ d and choose M = [−h, h]

d.
Writing m ∈ M as m =

∑d
k=1 hkek with |hk | ≤ h, the difference in Definition 2.10 is

f
(

x +

d∑
k=1

hkek

)
− f (x)=

d−1∑
k=0

∫ x+
∑

l≤k+1 hl el

x+
∑

l≤k hl el

∂k+1 f.

This implies that supm∈M∥ f (x + m)− f (x)∥X → 0 for |x | → ∞.
Conversely, assume that f ∈ C∞

h (R
d , X). Fix ε > 0 and let η ∈ C∞

c (R
d) with supp η ⊂ B1, η ≥ 0,∫

Rd η(x) dx = 1. Then ητ (x) = τ−dη(τ−1x), τ > 0, is an approximate unit. This implies that for
f ∈ Cb

u (R
d , X) bounded and uniformly continuous

lim
τ→0+

sup
x∈Rd

∥ f (x)− f ∗ ητ (x)∥X = 0. (2-9)

To estimate the partial derivative of f ∈ C∞

h (R
d , X) we introduce the approximate unit:

∥∂k f (x)∥X ≤ ∥∂k f (x)− ητ ∗ ∂k f (x)∥X + ∥ητ ∗ ∂k f (x)∥X = Iτ + IIτ .

1In the literature f is also called “of vanishing oscillation at infinity” or a Higson function.
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Since all derivatives of f ∈ C∞

h (R
d , X) are bounded and uniformly continuous, by (2-9) there exists τ0

such that Iτ <ε/2 for t<τ0. Fix τ <τ0 and observe that ητ∗∂k f =∂kητ∗ f and that
∫

Rd ∂kητ (y) dy =0. So

IIτ = ∥ητ ∗ ∂k f (x)∥X =

∥∥∥∥∫
Rd
( f (x)− f (y))∂kητ (x − y) dy

∥∥∥∥
X

≤ sup
y∈Bτ (x)

∥ f (x)− f (y)∥X

∫
Rd

|∂kητ (x − y)| dy

≤ Cτ sup
y∈Bτ (0)

∥ f (x)− f (x + y)∥X .

As f ∈ C∞

h (R
d , X), there is R > 0 such that IIτ ≤ ε/(2Cτ ) for |x |> R, and thus ∥ητ ∗ ∂k f (x)∥X < ε

for |x |> R. □

Example 2.12. A typical example of a genuinely slowly oscillating function is a(x)= sin |x |
1/2(1−ϕ(x))

for some ϕ ∈ C∞
c (R

d) with ϕ(x) = 1 near 0. (The cut-off of the singularity at 0 serves to make all
derivatives of a bounded, but, of course, it is immaterial for the asymptotic behavior.)

Our interest in Ch(R
d , X) stems from the following fact (see [Rabinovich et al. 2004a, Proposi-

tion 2.4.1]):

Lemma 2.13. Assume that f ∈ Ch(R
d , X) and (xλ)λ∈3 ⊂ Rd diverges to infinity, |xλ| → ∞. If

limλ T−xλ f (x)= g(x) exists for all x ∈ Rd, then g is constant.

Proof. Let x, x ′
∈ Rd. Definition 2.10 with M = {x, x ′

} shows that for all ε > 0 there exists an index
λε = λε(x, x ′) such that ∥ f (x +xλ)− f (xλ)∥X <ε/2 and ∥ f (x ′

+xλ)− f (xλ)∥X <ε/2 for all λ⪰ λε. So
∥ f (x +xλ)− f (x ′

+xλ)∥X <ε for all λ⪰λε. If g = limλ T−xλ f exists, it follows that ∥g(x)−g(x ′)∥X ≤ ε.
As ε > 0 was arbitrary, g must be constant. □

3. Statement of the density theorem

We state our main theorems. A first version describes a general setup for symbols in the class C∞

b (R
d,Cd×d)

under additional assumptions on the spectra of the limit operators. We then formulate a corollary for
slowly oscillating symbols, where the assumptions on the limit operators are automatically satisfied. We
discuss possible applications of the general version in Section 7.

Theorem 3.1. Assume that Ha = −
∑d

j,k=1 ∂j ajk∂k is uniformly elliptic with symbol a ∈ C∞

b (R
d,Cd×d).

Let PW�(Ha) be the Paley–Wiener space as defined in Section 2B. Assume that � is not an eigenvalue of
any limit operator Hb.

• If S is a set of stable sampling for PW�(Ha), then

D−

0 (S)≥ 1.

• If S is a set of interpolation for PW�(Ha), then

D+

0 (S)≤ 1.



600 KARLHEINZ GRÖCHENIG AND ANDREAS KLOTZ

The following consequence is a more explicit version of Theorem B of the Introduction, where we
have used the equivalence of Lemma 2.11 to avoid the formal definition of C∞

h (R
d).

Corollary 3.2. Assume that Ha = −
∑d

j,k=1 ∂j ajk∂k is uniformly elliptic with symbol a ∈ C∞

h (R
d ,Cd×d).

• If S is a set of stable sampling for PW�(Ha), then D−

0 (S)≥ 1.

• If S is a set of interpolation for PW�(Ha), then D+

0 (S)≤ 1.

Proof of Corollary 3.2. If a ∈ C∞

h (R
d ,Cd×d), then by Lemma 2.7 every net (xλ)λ∈3 ⊂ Rd that diverges

to infinity has a subnet (xµ)µ∈M such that limµ T−xµa = b in the topology of C∞(Rd) for a symbol b.
This symbol b is constant by Lemma 2.13 and positive definite; so Hb is similar to the Laplacian and has
no point spectrum. □

4. Proof of weak localization of the kernel

To prove Theorem 3.1 we invoke Theorem 2.4 and verify its main hypotheses (WL) and (HAP) on the
reproducing kernel.

Let Qh = [−h/2, h/2]
d be the cube of side-length h, and let ϕh

x (y)= h−dχQh ((y − x)/h)= Txϕ
h
0 (y)

be the usual approximate unit.

Lemma 4.1. We have limh→0∥χ[0,�](Ha)ϕ
h
x − kx∥2 = 0 uniformly in x ∈ Rd.

Proof. Let f ∈ PW�(Ha). Then

|⟨ f, χ[0,�](Ha)ϕ
h
x − kx ⟩| = |⟨ f, ϕh

x ⟩ − f (x)| = h−d
∣∣∣∣∫

Qh(x)
( f (y)− f (x)) dy

∣∣∣∣
≤ h−d

∫
Qh(x)

| f (y)− f (x)| dy ≤ sup
z∈Rd

|∇ f (z)| h−d
∫

Qh(x)
|y − x | dy

≤ C∥∇ f ∥∞ h.

Since f ∈ W s
2 (R

d) for all s ≥ 0, we apply first the Sobolev embedding (with s > d/2 + 1) and then
Lemma 2.1 and obtain

∥∇ f ∥∞ ≤ C1∥ f ∥W s
2
≤ C∥ f ∥2,

since f ∈ PW�(Ha). Consequently,

|⟨ f, χ[0,�](Ha)ϕ
h
x − kx ⟩| ≤ Ch∥ f ∥2.

Taking the supremum over f ∈ PW�(Ha), we obtain

∥χ[0,�](Ha)ϕ
h
x − kx∥2 = sup

f ∈PW�(Ha),∥ f ∥2=1
⟨ f, χ[0,�](Ha)ϕ

h
x − kx ⟩ ≤ Ch.

As this estimate is independent of x , we have shown that χ[0,�](Ha)ϕ
h
x → kx in L2(Rd) uniformly in x . □

The following result relates the reproducing kernel of a limit operator of Ha to the original kernel. It
expresses a form of continuous dependence of the reproducing kernel of the matrix symbol of Ha . We
will denote the point spectrum of an operator H by σp(H).
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Theorem 4.2. Let Ha with symbol a ∈C∞

b (R
d,Cd×d), and let (xλ)λ∈3⊂Rd be an unbounded net such that

limλ T−xλa = b pointwise. Assume that � /∈ σp(Hb). Let k̃ be the reproducing kernel of PW�(Hb). Then

lim
λ

T−xλkxλ = k̃0,

with convergence in W s
2 for every s ≥ 0.

Before the proof we remind the reader of the following standard facts of spectral theory; see, e.g.,
[Teschl 2009, Chapter 6.6]. Although in the literature these results are formulated for sequences of
operators, the statements and proofs are equally valid for nets.2

Let Hλ, λ ∈3, and Hb be self-adjoint operators with a common core D . If Hλ f → Hb f for all f ∈ D ,
then, for every F ∈ Cb(R),

F(Hλ) f → F(Hb) f for all f ∈ L2(Rd). (4-1)

Furthermore, if χ{α}(Hb)= χ{β}(Hb)= 0, i.e., α, β ̸∈ σp(Hb), then

χ[α,β](Hλ) f → χ[α,β](Hb) f for all f ∈ L2(Rd). (4-2)

Proof of Theorem 4.2. We split the difference T−xλkxλ − k̃0 into three terms and then estimate their
W s

2 -norms separately:

∥T−xλkxλ−k̃0∥W s
2

≤ ∥T−xλkxλ−T−xλχ[0,�](Ha)ϕ
h
xλ∥W s

2
+∥T−xλχ[0,�](Ha)ϕ

h
xλ−χ[0,�](Hb)ϕ

h
0 ∥W s

2
+∥χ[0,�](Hb)ϕ

h
0 −k̃0∥W s

2

= (I )+(II )+(III ).

Choose ε > 0.

Step 1: Expression (I ) can be estimated by

∥T−xλkxλ − T−xλχ[0,�](Ha)ϕ
h
xλ∥W s

2
= ∥kxλ −χ[0,�](Ha)ϕ

h
xλ∥W s

2
≤ Cs∥kxλ −χ[0,�](Ha)ϕ

h
xλ∥2.

The first equality holds by the translation invariance of the Sobolev norm; the second inequality is a
consequence of Lemma 2.1. By Lemma 4.1 there exists hε > 0 such that, for every 0< h < hε,

∥kx −χ[0,�](Ha)ϕ
h
x ∥2 <

ε

3Cs

for all x ∈ Rd. So for h < hε, we obtain (I ) < ε/3. Similarly, we achieve (III ) < ε/3 for every h < h′
ε.

Step 2: To bound the decisive term (II ), we bring in limit operators and elliptic regularity theory. Set
aλ = T−xλa. First note that

T−xλχ[0,�](Ha)ϕ
h
xλ = T−xλχ[0,�](Ha)Txλϕ

h
0 = χ[0,�](τxλ Ha)ϕ

h
0 = χ[0,�](Haλ)ϕ

h
0 .

We have to verify that
lim
λ

∥χ[0,�](Haλ)ϕ
h
0 −χ[0,�](Hb)ϕ

h
0 ∥W s

2
= 0. (4-3)

2The cited results use the strong operator topology. As this topology is metrizable on bounded sets, the convergence of nets is
equivalent to the convergence of sequences.
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For L2-convergence (s = 0) we argue as follows. By Lemma 2.7 the translates T−xλa converge to the
matrix b uniformly on compact sets. Proposition 2.8 implies that HT−xλa f → Hb f for f ∈ W s

2 , s ≥ 0.
To apply (4-2), we note that C∞

c (R
d) is a common core for all Haλ and for Hb and that 0 /∈ σp(Hb) by

(2-3) and � /∈ σp(Hb) by assumption. Therefore (4-3) follows from (4-2).
For the convergence of (4-3) in general Sobolev spaces W s

2 it suffices to treat the case s = 2k for every
integer k. Recall that by the results on elliptic regularity in Section 2B the operator (H k

a + ck) defines an
isomorphism from W 2k

2 (R
d) to L2(Rd), and since τxλ(H

k
a + ck)= H k

aλ + ck we obtain

∥H k
aλ + ck∥W 2k

2 →L2 = ∥H k
a + ck∥W 2k

2 →L2 <∞.

The Sobolev norm can be estimated by the L2-norm

∥ f ∥W 2k
2

= ∥Tx f ∥W 2k
2

≤ Cs∥(H k
a + ck)Tx f ∥2 = Cs∥T−x(H k

a + ck)Tx f ∥2

independently of x ∈ Rd . Thus (II ) can be estimated by the L2-norm, namely

∥χ[0,�](Haλ)ϕ
h
0 −χ[0,�](Hb)ϕ

h
0 ∥W s

2
≤ Cs∥(H k

aλ + ck)χ[0,�](Haλ)ϕ
h
0 − (H k

aλ + ck)χ[0,�](Hb)ϕ
h
0 ∥2

≤ Cs∥(H k
aλ + ck)χ[0,�](Haλ)ϕ

h
0 − (H k

b + ck)χ[0,�](Hb)ϕ
h
0 ∥2

+ Cs∥(H k
b + ck)χ[0,�](Hb)ϕ

h
0 − (H k

aλ + ck)χ[0,�](Hb)ϕ
h
0 ∥2

= Aλ + Bλ.

By Proposition 2.8 we have (H k
aλ + ck) f → (H k

b + ck) f in L2-norm for all f ∈ W 2k
2 . In particular, this

holds for f = χ[0,�](Hb)ϕ
h
0 ; thus limλ Bλ = 0.

For the first term we use spectral theory again. Define F ∈ Cc(R) such that its restriction to [0, �]

satisfies

F(t)= tk
+ ck for t ∈ [0, �].

Then F(t)χ[0,�](t)= (tk
+ ck)χ[0,�](t), and limλ F(τxλ(Ha)) f = F(Hb) f for all f ∈ L2(Rd) by (4-1).

Since the product of bounded operators is continuous in the strong operator topology, it follows that

lim
λ
(H k

aλ + ck)χ[0,�](Haλ)ϕ
h
0 = lim

λ
F(Haλ)

(
lim
λ
χ[0,�](Haλ)ϕ

h
0
)

= F(Hb)χ[0,�](Hb)ϕ
h
0 = (H k

b + ck)χ[0,�](Hb)ϕ
h
0 ,

and so limλ Aλ = 0.
We can finish the proof as follows. We have already chosen h <min{hε, h′

ε} so that the terms (I ) and
(III ) are < ε/3 for all λ ∈3. For this fixed h > 0 we can find an index λ0 such that

(II )≤ Cs∥(H k
aλ + ck)χ[0,�](Haλ)ϕ

h
0 − (H k

aλ + ck)χ[0,�](Hb)ϕ
h
0 ∥2 <

ε

3

for all λ⪰ λ0. Altogether we obtain ∥T−xλkxλ − k̃0∥2 ≤ (I )+ (II )+ (III ) < ε. □

Theorem 4.3. Assume that Ha is uniformly elliptic with symbol a ∈ C∞

b (R
d,Cd×d) and that no limit

operator has the eigenvalue �. Then the set {T−x kx : x ∈ Rd
} is relatively compact in W s

2 for every s ≥ 0.
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Proof. This follows directly from Theorem 4.2. Let (xn)n∈N ⊆ Rd be an arbitrary sequence. By Lemma 2.7
the sequence T−xn a has a C∞-convergent subsequence T−xnl

a. If (xnl )l∈N is bounded, we can assume
without loss of generality that xnl → x ∈ Rd, and T−xnl

kxnl
→ T−x kx in W s

2 by the continuity of the
translations and Proposition 2.3. If (xnl )l∈N is unbounded, we can assume |xnl | → ∞. This case is settled
by Theorem 4.2 and yields the convergence of T−xnl

kxnl
. □

A combination of the above arguments yields the weak localization (WL) .

Theorem 4.4. Assume that Ha is uniformly elliptic with symbol a ∈ C∞

b (R
d,Cd×d) and that no limit

operator has the eigenvalue �. Let k be the reproducing kernel of PW�(Ha). Then k satisfies the weak
localization property (WL), i.e.,

lim
R→∞

∫
|y−x |>R

|k(x, y)|2 dy = 0.

Proof. By Theorem 4.3 (for s = 0) the set {T−x kx : x ∈ Rd
} is relatively compact in L2(Rd). The

Riesz–Kolmogorov theorem implies that for all ε > 0 there is R > 0 such that for all x ∈ Rd∫
Rd\BR(0)

|T−x kx(y)|2 dy < ε2.

By a change of variable this expression reads as∫
|y−x |>R

|k(x, y)|2 dy < ε2,

and this is (WL). □

5. Proof of the homogeneous approximation property (HAP)

Next we prove the homogeneous approximation property. Recall that Txκ is the reproducing kernel for
W s

2 with κ̂(ω)= (1 + |ω|
2)−s.

Lemma 5.1. If S is a relatively separated set in Rd, then {Txκ : x ∈ S} is a Bessel sequence for W s
2 ,

s > d/2.

Proof. By standard facts of frame theory (see, e.g., [Heil 2011, Theorem 7.6]) the Bessel property
is equivalent to the boundedness of the Gramian G = (⟨Txκ, Tyκ⟩W s

2
)x,y∈S on ℓ2(S). To deduce the

boundedness of G we first show that G possesses exponential off-diagonal decay and then apply Schur’s
test. The off-diagonal decay follows from a (well-known) calculation. Let Jr denote the Bessel function
of the first kind and Kr the modified Bessel function of the second kind. Then by [Wendland 2005,
Theorem 6.13] or [Grafakos 2004, Appendix B]

⟨Txκ, Tyκ⟩W s
2
= (2π)−d/2

∫
Rd

T̂xκ(ω)T̂yκ(ω)(1 + |ω|
2)s dω

= (2π)−d/2
∫

Rd
e−i(x−y)ω(1 + |ω|

2)−s dω

= C |x − y|
−(d−2)/2

∫
∞

0
(1 + r2)−sJ(d−2)/2(r |x − y|)rd/2 dr

= C ′
|x − y|

s−d/2Ks−d/2(|x − y|).
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Using the asymptotic decay Kr (x)∼
√
π/(2x)e−x for x → ∞, see, e.g., [DLMF 2020, equation 10.25.3],

the off-diagonal decay of G is

|⟨Txκ, Tyκ⟩W s
2
| ≤ C ′′

|x − y|
s−d/2−1/2e−|x−y| (|x − y| → ∞). (5-1)

The off-diagonal decay of the Gramian implies the boundedness of the Gramian as follows. By (5-1)
there exists N0 ∈ N such that |Gxy| ≤ Ce−c|x−y| if |x − y|> N0. Obviously, |Gxy| ≤ ∥κ∥2

W s
2

is bounded
for all x, y.

For x ∈ S and k ∈ N0 set Ak(x)= {y ∈ S : k < |y − x | ≤ k + 1}. Since S ⊂ Rd is relatively separated,
there exists r > 0 such that

max #(S ∩ Br (x)) <∞.

A covering argument (of a large ball BR(z) by balls Br (x)) implies that #(S ∩ BR(z)) = O(Rd) for
arbitrary R > 0. Consequently we also obtain #Ak(x)≤ Ckd independent of x . Then∑

y∈S

|Gxy| =

∞∑
k=0

∑
y∈Ak(x)

|Gxy| =

N0∑
k=0

∑
y∈Ak(x)

|Gxy| +
∑

k>N0

∑
y∈Ak(x)

|Gxy|

≤ C0 #(BN0+1(x)∩ S)+ C
∑

k>N0

e−ck #Ak(x)

≤ C1(N0 + 1)d + C2
∑

k>N0

e−ckkd .

This expression is bounded independently of x . Now Schur’s test implies that the Gramian is bounded
on ℓ2(S). □

Theorem 5.2 (HAP). Assume that Ha is uniformly elliptic with symbol a ∈ C∞

b (R
d,Cd×d) and that

� /∈ σp(Hb) for every limit operator Hb. Let {kx : x ∈ S} be a Bessel sequence in PW�(Ha). Then for
every ε > 0 there exists an R > 0 such that for all y ∈ Rd∑

x∈S\BR(y)

|k(y, x)|2 < ε2.

Proof. If {kx : x ∈ S} is a Bessel sequence of reproducing kernels, then S is relatively separated in Rd (see
[Führ et al. 2017, Lemma 3.7]). Lemma 5.1 implies that {Txκ : x ∈ S} is also a Bessel sequence in W s

2
for s > d/2.

Choose ε > 0. Since {T−x kx : x ∈ Rd
} is relatively compact in W s

2 for s ≥ 0 by Theorem 4.3, the
Riesz–Kolmogorov theorem for translation-invariant Banach spaces [Feichtinger 1984] asserts that there
exists a R = Rε > 0 and a function ψ ∈ C∞

c (R
d) satisfying ψ |BR/2(0) = 1, suppψ ⊆ BR(0) such that

∥T−x kx(1 −ψ)∥W s
2
≤ ε for all x ∈ Rd .

We now use the fundamental observation (2-7) that the point evaluation in PW�(Ha) can be expressed in
two ways. For f = kx we have

k(y, x)= ⟨ky, kx ⟩L2 = ⟨ky, Txκ⟩W s
2
. (5-2)
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Since {Txκ : x ∈ S} is a Bessel sequence in W s
2 with bound B, the set {Tx−yκ : x ∈ S} is a Bessel sequence

with the same bound. Observe that for |u|> R we obtain

⟨ψT−yky, Tuκ⟩W s
2
= T−yky(u)ψ(u)= 0.

This implies ∑
x∈S\BR(y)

|⟨ky, Txκ⟩W s
2
|
2
=

∑
x∈S\BR(y)

|⟨T−yky, Tx−yκ⟩W s
2
|
2

=

∑
x∈S\BR(y)

|⟨(1 −ψ)T−yky, Tx−yκ⟩W s
2
|
2

≤ B∥(1 −ψ)T−yky∥
2
W s

2
≤ Bε2,

and this is the homogeneous approximation property, (HAP). □

Proof of Theorem 3.1. After the verification of the properties (WL) and (HAP) of the reproducing kernel,
the version for the dimension-free density of Theorem 2.4 is applicable and yields Theorem 3.1. The
statement asserts the existence of a critical density for sampling and interpolation with the dimension-free
Beurling density D±

0 (S). □

6. Geometric Beurling densities

In this section we derive results for the geometric densities (2-5). According to Theorem 2.4 this step
requires the computation of the averaged trace |µ(Br (x))|−1

∫
Br (x)

k(x, x) dµ(x) of the reproducing kernel.
This version of the density theorems is of interest because it relates the critical density in PW�(Ha) to the
geometry defined by the differential operator Ha . The explicit computation of the averaged trace becomes
possible by introducing a suitable compactification of Rd and then extending the centered kernels T−x kx

to this compactification.

6A. The basic computation: constant coefficients. For reference we mention the case when Hb =

−
∑

j,k ∂j bjk∂k = −
∑

j,k bjk∂j∂k is a differential operator with constant coefficients bjk . Define

6b
� = {ξ ∈ Rd

: bξ · ξ ≤�} = b−1/2 B�1/2(0),
with volume

|6b
�| = det(b−1/2)|B�1/2(0)| = det(b−1/2)�d/2

|B1|. (6-1)

Since Ĥb f (ξ)=
∑

j,k bjkξjξk f̂ (ξ)= (bξ · ξ) f̂ (ξ), the spectral subspace is

PW�(Hb)= χ[0,�](Hb)L2(Rd)= { f ∈ L2(Rd) : supp f̂ ⊆6b
�}.

The kernel of PW�(Hb) is
k̃(x, y)= (2π)−d/2(F−1χ6b

�
)(x − y), (6-2)

whence

k̃(x, x)= (2π)−d/2(F−1χ6b
�
)(0)=

|6b
�|

(2π)d
=

|B1|

(2π)d
det(b−1/2)�d/2.

By Landau’s theorem [1967] a sampling set S for PW�(Hb) has Beurling density at least D−(S) ≥

|6b
�|/(2π)d.
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6B. The Higson compactification. We recall how a compactification arises in Gelfand theory. Let
Cγ (Rd) be a unital C∗ algebra of functions on Rd satisfying the embeddings C0(R

d)⊂ Cγ (Rd)⊂ Cb(R
d).

The maximal ideal space Mγ of Cγ (Rd) is the space of all multiplicative homomorphisms ϕ :Cγ (Rd)→ C.
Equipped with the weak-star topology Mγ is a compact Hausdorff space. The point evaluations
δx( f ) = f (x) constitute an embedding γ of Rd into Mγ via γ (x) = δx , and γ (Rd) is dense in Mγ

and homeomorphic to Rd. Thus, the pair (γ,Mγ ) is a compactification of Rd, which we will call γRd. The
corona of γRd is ∂γRd

= γRd
\γ (Rd). By abuse of notation we will identify a point x ∈ Rd with its point

evaluation δx . Then Cγ (Rd) is isometrically isomorphic to C(γRd). We denote the image of f ∈ Cγ (Rd)

in C(γRd) by f̄ . See, e.g., [Engelking 1977] for the basics of compactifications, and [Gamelin 1969] for
compactifications of function algebras.

As noted in Section 2D2 the space Ch(R
d) of slowly oscillating functions with supremum norm is a

commutative unital C∗-algebra. Thus there is a compactification hRd of Rd, the Higson compactification,
such that Ch(R

d) is isometrically isomorphic to C(hRd). It is known that hRd is nonmetrizable, and even
more, points of the corona hRd

\ Rd can only be reached by nets; see, e.g., [Rabinovich et al. 2004a,
2.4.10]. Therefore we need to work with nets instead of sequences.

The relevance of the Higson compactification and the algebra of slowly oscillating functions in our
context is given by the fact that translations act trivially on the corona ∂hRd.

Lemma 6.1. If xλ → η ∈ ∂hRd, then x + xλ → η for all x ∈ Rd.

Proof. By definition, xλ → η ∈ ∂hRd if f (xλ)→ f̄ (η)= η( f ) for every f ∈ Ch(R
d). From the definition

of Ch(R
d) we obtain

lim
λ

| f (xλ)− f (x + xλ)| = 0

for every x ∈ Rd, so f (xλ + x)→ f̄ (η) for every f ∈ Ch(R
d) as well. □

One can show that hRd is the maximal compactification of Rd with this property: every Cγ (Rd) as
above with translations acting trivially on ∂γRd is a subalgebra of Ch(R

d).
We need the following fact [Roe 2003].

Proposition 6.2. Let Cγ (Rd) be a C∗-algebra of functions on Rd as above with corresponding compacti-
fication γRd of Rd. If f ∈ Cγ (Rd) satisfies

f̄ |∂γRd ≡ 0

then f ∈ C0(R
d).

Proof. Let (xλ)λ∈3 ⊂ Rd be an unbounded net, limλ|xλ| = ∞. As γRd is compact, every subnet of (xλ)
has a convergent subnet (xµ)µ∈M , and limµ xµ = η ∈ ∂γRd by the assumption of unboundedness. So
limµ f (xµ) = f̄ (η) = 0 for a subnet of a given subnet, and therefore limλ f (xλ) = 0. This means
f ∈ C0(R

d). □

We next study uniformly elliptic operators Ha with a symbol in a ∈ C∞

h (R
d ,Cd×d). By definition a

has a continuous extension to hRd. Thus for η ∈ ∂hRd the symbol ā(η)= limx→η a(x) is well-defined, and
by Lemma 2.13 Hā(η) is a differential operator with constant coefficients. Let kη denote the reproducing
kernel of PW�(Hā(η)). We show that the mapping x 7→ T−x kx has a continuous extension to hRd.
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Proposition 6.3. Let the symbol a ∈ C∞

h (R
d ,Cd×d) be the symbol of the operator Ha and let kx be the

reproducing kernel of PW�(Ha). Set K (x)= T−x kx ∈ L2(Rd). Then K extends to a continuous function
from hRd to L2(Rd) by setting K (η)= kη0 for η ∈ hRd. In particular, the diagonal k(x, x)= ∥kx∥

2
2 is a

slowly oscillating function.

Proof. By Proposition 2.3 the centered reproducing kernel K is continuous from Rd to L2(Rd). To show
that K ∈ Ch(R

d , L2), we need to extend K to the Higson corona ∂hRd .
This is accomplished by means of Theorem 4.2. Let (xλ) ⊆ Rd be an unbounded net such that

xλ → η ∈ ∂hRd. Since a ∈ Ch(R
d ,Cd×d), there is a continuous function ā ∈ C(hRd ,Cd×d) such that

limλ a(xλ)= ā(η). Furthermore, for x ∈ Rd arbitrary, x + xλ → η by Lemma 6.1, and this fact implies
the pointwise convergence

lim
λ

T−xλa(x)= ā(η).

Clearly, the spectrum of the (constant-coefficient) operator Hā(η) is continuous and does not contain any
eigenvalues. The assumptions of Theorem 4.2 are thus satisfied.

To formulate its conclusion, denote the reproducing kernel of PW�(Hā(η)) by kη. Then by Theorem 4.2

lim
λ

T−xλkxλ = kη0

in the L2-norm, and this holds for every net (xλ) with xλ → η. Thus we must take the limiting function
to be

K (η)= kη0 = (2π)−d/2F−1(χ
6

ā(η)
�
),

with the explicit formula for the kernel given by (6-2).
It remains to be shown that the limiting kernel K is continuous on ∂hRd. Let ηλ → η ∈ ∂hRd . Then

with the definition of 6b
� and (6-1) we obtain

∥kηλ0 − kη0∥
2
2 = (2π)−d

∥χ
6

ā(ηλ)
�

−χ
6

ā(η)
�

∥
2
2

= (2π)−d(|6
ā(ηλ)
� | + |6

ā(η)
� | − 2|6

ā(ηλ)
� ∩6

ā(η)
� |).

As a ∈Ch(R
d ,Cd×d), ā is continuous on ∂hRd, and this expression tends to 0, whence K is also continuous

on the corona ∂hRd . □

6C. Geometric densities for slowly oscillating symbols. In order to obtain values for the critical densities
D±
µ (S) we need the averaged traces

tr−µ (k)= lim inf
r→∞

inf
x∈Rd

1
µ(Br (x))

∫
Br (x)

k(z, z) dz

and tr+µ (k). For the comparison of averaged traces we will need the following well-known fact, whose
proof is supplied in Appendix A for completeness.

For f ∈ Cb(R
d) set

tr−( f )= lim inf
r→∞

inf
y∈Rd

1
|Br (y)|

∫
Br (y)

f (x) dx,

and define tr+( f ) similarly with sup instead of inf.
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Lemma 6.4. Assume that f, g ∈ Cb(R
d) and limx→∞ | f (x)− g(x)| = 0. Then

tr−( f )= tr−(g) and tr+( f )= tr+(g).

Proposition 6.5. If the symbol a is in C∞

h (R
d ,Cd×d), then the trace of the reproducing kernel satisfies

lim
r→∞

sup
y∈Rd

∣∣∣∣ 1
|Br (y)|

∫
Br (y)

(k(x, x)−
|B1|

(2π)d
�d/2

det a(x)1/2
) dx

∣∣∣∣ = 0. (6-3)

Equivalently, using the Borel measure ν(B)=
∫

B det a(x)−1/2 dx ,

lim
r→∞

sup
y∈Rd

∣∣∣∣ 1
ν(Br (y))

∫
Br (y)

k(x, x) dx −
|B1|

(2π)d
�d/2

∣∣∣∣ = 0. (6-4)

Consequently, the averaged trace is

tr+ν (k)= tr−ν (k)=
|B1|

(2π)d
�d/2. (6-5)

Proof. We apply Lemma 6.4 to the functions f (x)= k(x, x) and g(x)= (|B1|�
d/2/(2π)d) det a(x)−1/2.

Then k(x, x) is bounded by Proposition 2.2 and continuous by Proposition 2.3. Likewise det a(x)−1/2 is
bounded and continuous by elliptic regularity. By assumption on a and Proposition 6.3 both functions are
in Ch(R

d) and thus possess the limits ā(η) and ∥K (η)∥2
2; in particular for a this means that

lim
xλ→η

det a(xλ)−1/2
= det ā(η)−1/2.

Using the notation of Section 6A and Proposition 6.3, we obtain

lim
xλ→η

∥kxλ∥
2
2 = lim

xλ→η
∥T−xλkxλ∥

2
2 = ∥kη0∥

2
2 = |6

ā(η)
� | =

|B1|�
d/2

(2π)d
det ā(η)−1/2.

We conclude that both f and g have the same limit function, and therefore f − g ∈ C0(R
d) by

means of Proposition 6.2. Lemma 6.4 now yields (6-3). Equation (6-4) follows after multiplying
with |Br (y)|/ν(Br (y)) and taking limits. Finally, (6-5) is a direct consequence of (6-4). □

Equation (6-4) allows us to state our main result on geometric Beurling densities for operators with
slowly oscillating symbols in a simple form. In order to do so we need an elementary result on the relation
between density and a change of measure.

Lemma 6.6. Let dµ = h dx for a positive, continuous function h on Rd, bounded above and below,
0< c ≤ h(z)≤ C for all z ∈ Rd. Then the dimension-free density condition

D−

0 (S)= lim inf
r→∞

inf
x∈Rd

#(S ∩ Br (x))∫
Br (x)

k(y, y) dy
≥ 1

holds, if and only if
D−

µ (S)≥ tr−µ (k).

Similarly
D+

0 (S)≤ 1 if and only if D+

µ (S)≤ tr−µ (k).
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Proof. The inequality D−

0 (S)≥ 1 means that for all ε > 0 there is an rε > 0 such that for all r > rε

#(S ∩ Br (x))≥ (1 − ε)

∫
Br (x)

k(y, y) dy,

or equivalently,
#(S ∩ Br (x))
µ(Br (x))

≥ (1 − ε)
1

µ(Br (x))

∫
Br (x)

k(y, y) dy.

Written in terms of the Beurling density, this is

D−

µ (S)≥ lim inf
r→∞

inf
x∈Rd

∫
Br (x)

k(y, y) dy

µ(Br (x))
= tr−µ (k).

The converse is obtained by reading the argument backwards. □

As a direct consequence we obtain the main result on geometric Beurling densities for uniformly
elliptic operators with slowly oscillating symbols. This is Theorem C of the Introduction.

Theorem 6.7. Assume that Ha = −
∑d

j,k=1 ∂j ajk∂k is uniformly elliptic with symbol a ∈ C∞

h (R
d ,Cd×d).

Let PW�(Ha) = χ[0,�](Ha)L2(Rd) be the corresponding Paley–Wiener space and set dν(x) =

det(a(x))−1/2 dx.

• If S ⊆ Rd is a set of stable sampling for PW�(Ha) then

D−

ν (S)≥
|B1|

(2π)d
�d/2.

• If S ⊆ Rd is a set of interpolation for PW�(Ha), then

D+

ν (S)≤
|B1|

(2π)d
�d/2.

Proof. We only verify the first assertion. By Corollary 3.2, if S is a set of stable sampling, then D−

0 (S)≥ 1.
By Lemma 6.6 this is equivalent to

D−

ν (S)≥ tr−ν (k).

The averaged trace tr−ν (k) was computed in (6-5) to be (|B1|/(2π)d)�d/2. □

Example 6.8. We consider some special cases of Theorem 6.7.

(i) Asymptotically constant symbols. Assume that a ∈ C∞

b (R
d,Cd×d) and limx→∞ a(x)= b. Then it is

straightforward to verify that a ∈ C∞

h (R
d ,Cd×d) and D±

ν (S)= (det b)1/2 D±(S). Thus we may use the
original Beurling density, and Theorem 6.7 implies that a sampling set S ⊆ Rd for PW�(Ha) must have
density

D−(S)= (det b)−1/2 D−

ν (S)≥ (det b)−1/2 |B1|

(2π)d
�d/2

=
|6b

�|

(2π)d
,

and a set of interpolation S in PW�(Ha) must satisfy D+(S)≤ |6b
�|/(2π)d . This is Corollary D of the

Introduction. As was to be expected, this coincides with the critical density for the classical Paley–Wiener
space PW�(Hb); see [Landau 1967].
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(ii) Symbols with radial limits. Let us consider the class of symbols that possess radial limits at ∞. We
say that a ∈ C∞

b (R
d,Cd×d) is spherically continuous, if it possesses radial limits in the following sense.

There exists a continuous matrix function b ∈ C(Sd−1,Cd×d) such that

lim
r→∞

sup
η∈Sd−1

∥a(rη)− b(η)∥X = 0.

A 3ε-argument shows that these symbols are slowly oscillating. Consequently Theorem 6.7 holds for
spherically continuous symbols in C∞

b (R
d,Cd×d). Spherically continuous symbols are related to another

compactification, the spherical compactification with corona Sd−1. In contrast to the Higson compactifica-
tion, it is metrizable, but it is much smaller. See [Cordes 1979] for its use in partial differential equations.

6D. Variable bandwidth in dimension d = 1. Let Ha be the differential operator

Ha f = −
d

dx

(
a d

dx
f
)

on L2(R). This is a Sturm–Liouville operator on R, and the ellipticity assumption amounts to the conditions
infx∈R a(x) > 0 and a ∈ C∞

b (R
d). In [Gröchenig and Klotz 2017] we argued that the spectral subspaces

of Ha can be interpreted as spaces of locally variable bandwidth. Intuitively, the quantity a(x)−1/2 is a
measure for the bandwidth in a neighborhood of x . We apply Theorem 6.7 to Ha . The relevant measure
is dν(x) = a−1/2(x) dx , and ν(I ) =

∫
I a(x)−1/2 dx for I ⊆ R. Then we have the following necessary

density condition for functions of variable bandwidth (Corollary E of the Introduction).

Corollary 6.9. Assume that a ∈ C∞

b (R) and limx→±∞ a′(x) = 0. Let PW�(Ha) be the Paley–Wiener
space associated to Ha .

(i) If S is a sampling set for PW�(Ha), then

D−

ν (S)= lim inf
r→∞

inf
x∈R

#(S ∩ [x − r, x + r ])

ν([x − r, x + r ])
≥
�1/2

π
. (6-6)

(ii) If S is a set of interpolation for PW�(Ha), then D+
ν (S)≤�1/2/π .

Arguing as in Lemma 6.6, equation (6-6) says that for ε > 0 and r large enough we have

#(S ∩ [x − r, x + r ])≥

(
�1/2

π
− ε

) ∫ x+r

x−r
a(y)−1/2 dy.

Thus the number of samples in an interval [x − r, x + r ] is determined by a(x)−1/2, which is in line with
our interpretation of a−1/2 as the local bandwidth.

Corollary 6.9 is precisely the formulation of the necessary density conditions in [Gröchenig and
Klotz 2017]. However, the main result of that work was proved under the restrictive assumption that
a is constant outside an interval [−R, R]. The proof there dwelt heavily on the scattering theory of
one-dimensional Schrödinger operators. The method of this paper yields a significantly more general
result with a completely different method of proof. Corollary 6.9 was our dream that motivated this work.
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Finally we remark that the density conditions of Theorem 6.7 suggest that the Paley–Wiener spaces
PW�(Ha) associated to a uniformly elliptic differential operator may be taken as an appropriate general-
ization of variable bandwidth to higher dimensions.

7. Outlook

We have proved necessary density conditions for sampling and interpolation in spectral subspaces
of uniformly elliptic partial differential operators with slowly oscillating coefficients. These spectral
subspaces may be taken as a suitable generalization of the notion of variable bandwidth to higher
dimensions. The emphasis has been on a new method that combines elements from limit operators,
regularity theory and heat kernel estimates, and the use of compactifications.

Clearly one can envision manifold extensions of our results and methods. Theorem 3.1 is stated for
a significantly larger class of operators and symbols. For instance, it could be applied to higher-order
partial differential operators or to Schrödinger operators and to symbols with less smoothness or to almost
periodic symbols. However, the spectral theory of such operators is more involved and one needs to find
conditions that prevent their limit operators from having a point spectrum at the ends of the spectral
interval. As these questions belong to spectral theory rather than sampling theory, we plan to pursue them
in a separate publication.

In a different direction one may consider the graph Laplacian on an infinite graph or even a metric
measure space endowed with a kernel that satisfies Gaussian estimates [Coulhon et al. 2012]. While many
steps of our proofs remain in place, this set-up opens numerous new questions.

Finally several hidden connections beg to be explored. The identity (6-3) resembles the famous
Weyl formula for the asymptotic density of eigenvalues in a spectral interval [Hörmander 1968]. This
observation invites the comparison of the Beurling density with the density of states in spectral theory.
We plan to investigate some of these issues in future work.

Appendix A: Averaged traces

For completeness we provide the proof of Lemma 6.4. Recall that

tr−( f )= lim inf
r→∞

inf
y∈Rd

1
|Br (y)|

∫
Br (y)

f (x) dx .

If f, g ∈ Cb(R
d) and lim|x |→∞ | f (x)− g(x)| = 0, then

tr−( f )= tr−(g) and tr+( f )= tr+(g).

Proof. Set h = f − g, then limx→∞ h(x)= 0. We split the relevant averages as

1
|Br (y)|

∫
Br (y)

|h(x)| dx =
1

|Br (y)|

[∫
Br (y)∩Bc

R(0)
+

∫
Br (y)∩BR(0)

]
|h(x)| dx = (I )+ (II ).
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Given ε > 0, there exists an Rε > 0 such that sup|x |≥Rε |h(x)|< ε/2. So,

(I ) <
|Br (y)∩ Bc

Rε(0)|

|Br (y)|
ε

2
<
ε

2
,

independent of y. For the second term observe that

(II ) < ∥h∥∞

|Br (y)∩ BRε(0)|
|Br (y)|

≤ ∥h∥∞

|BRε |

|Br (y)|
<
ε

2

for r >
( 2
ε
∥h∥∞

)1/d Rε. Consequently,

lim
r→∞

sup
y∈Rd

1
|Br (y)|

∫
Br (y)

| f − g| = 0.

It follows that

tr−( f )≤ lim inf
r→∞

inf
y∈Rd

1
|Br (y)|

∫
Br (y)

g + lim
r→∞

sup
y∈Rd

1
|Br (y)|

∫
Br (y)

| f − g| = tr−(g).

Interchanging f and g yields equality. The equality tr+( f )= tr+(g) is proved in the same way. □

Appendix B: The lower bound for the reproducing kernel

We verify the lower bound for ∥kx∥2 in the proof of Proposition 2.2. This fact is proved in [Coulhon et al.
2012, Lemma 3.19(a)]. For completeness we reproduce that proof with some necessary modifications
and adjustments. The idea is to relate the reproducing kernel to the heat kernel of e−t Ha via functional
calculus.

We write k� for the reproducing kernel of PW� (Ha). For a bounded, nonnegative Borel function
F ≥ 0 with support in [0, �] we define k F

x = F(Ha)k�x and the corresponding integral kernel k F (x, y) :=
F(Ha)(x, y) := k F

x (y). The last expression is well-defined, as k F
x ∈ PW�(Ha). The kernel k F (x, y) is

symmetric, because F(Ha) is self-adjoint:

k F
x (y)= ⟨F(Ha)k�x , k�y ⟩ = ⟨k�x , F(Ha)k�y ⟩ = ⟨F(Ha)k�y , k�x ⟩ = k F

y (x).

Consequently, F(Ha) is an integral operator. For f ∈ L2(Rd)

F(Ha) f (x)= ⟨F(Ha) f, k�x ⟩ = ⟨ f, F(Ha)k�x ⟩ = ⟨ f, k F
x ⟩ =

∫
Rd

k F (y, x) f (y) dy.

If 0 ≤ G ≤ F , then

0 ≤ kG(x, x)≤ k F (x, x) (B-1)

for all x ∈ Rd. For the proof observe that F − G ≥ 0 implies that

k F (x, x)= ⟨F(Ha)k�x , k�x ⟩ ≥ ⟨G(Ha)k�x , k�x ⟩ = kG(x, x).
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The heat operator e−t Ha is bounded and has a kernel pt(x, y) that satisfies on diagonal estimates.
There are positive constants c,C such that for all x ∈ Rd and t > 0

ct−d/2
≤ pt(x, x)≤ Ct−d/2.

This is well known; see, e.g., [Ouhabaz 2006].

Claim. We have 0< c < k�(x, x) < C for all x ∈ Rd.

Proof. As χ�(u)≤ e · e−u/�χ[0,∞)(u) and χ[0,∞)(Ha)= Id, we obtain

k�(x, x)= χ[0,�](Ha)(x, x)≤ ee−�−1 Ha (x, x)≤ C�d/2, (B-2)

which gives an explicit upper bound for ∥kx∥
2
2 in Proposition 2.2.

For the proof of the lower bound, we use a dyadic decomposition:

χ[0,T )(u)e−tu
≤ χ[0,∞)(u)e−tu

= χ[0,�](u)e−tu
+

∑
k≥0

χ(2k�,2k+1�](u)e
−tu

≤ χ[0,�](u)+
∑
k≥0

χ[0,2k+1�](u)e
−t2k�, t > 0.

One can verify that this inequality remains true as an operator inequality

χ[0,T ](Ha)e−t Ha ≤ χ[0,�](Ha)+
∑
k≥0

χ[0,2k+1�](Ha)e−t2k�,

with strong convergence of the sum, and every term is an integral operator. By (B-1) and (B-2) the
operator inequality can be transferred to a corresponding inequality of the diagonals of the integral kernel
as follows:

(χ[0,T ](Ha)e−t Ha )(x, x)≤ χ[0,�](Ha)(x, x)+
∑
k≥0

χ[0,2k+1�](Ha)(x, x)e−t2k�

≤ χ[0,�](Ha)(x, x)+ C�d/2
∑
k≥0

2(k+1)d/2 e−t2k�.

In [Coulhon et al. 2012, equation (3.46)] it is shown that pt(x, y) = limT →∞(χ[0,T ](Ha)e−t Ha )(x, y),
consequently

ct−d/2
≤ pt(x, x)≤ χ[0,�](Ha)(x, x)+ C�d/2

∑
k≥0

2(k+1)d/2 e−t2k�.

We choose t = 2r/� for r ∈ N to be specified later. Then

c�d/22−rd/2
≤ χ[0,�](Ha)(x, x)+ C�d/2

∑
k≥0

e−2k2r
2(k+1)d/2

= χ[0,�](Ha)(x, x)+ C2d/2�d/22−rd/2
∑
k≥0

e−2k+r
2(k+r)d/2

≤ χ[0,�](Ha)(x, x)+ C2d/2�d/22−rd/2
∑
k≥r

e−2k
2kd/2.



614 KARLHEINZ GRÖCHENIG AND ANDREAS KLOTZ

Hence,

�d/22−rd/2
(

c − C ′2d/2
∑
k≥r

e−2k
2kd/2

)
≤ χ[0,�](Ha)(x, x)= k�(x, x).

For r ∈ N sufficiently large, this implies the lower bound for k�(x, x). □
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We study singularity formation for the quadratic wave equation in the energy supercritical case, i.e.,
for d � 7. We find in closed form a new, nontrivial, radial, self-similar blow-up solution u� which
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1. Introduction

In this paper, we are concerned with the quadratic wave equation

.@2t ��x/u.t; x/D u.t; x/
2; (1-1)

where .t; x/ 2 I �Rd , for some interval I � R containing zero.
It is well known that in all space dimensions (1-1) admits solutions that blow up in finite time, starting

from smooth and compactly supported initial data. This follows from a classical result by Levine [1974],
which provides an open set of such initial data. However, Levine’s argument is indirect, and therefore
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does not give insight into the blow-up profile. A more concrete example can be produced using the
well-known ODE solution

uODE
T .t; x/ WD

6

.T � t /2
; T > 0: (1-2)

By truncating the initial data .uODE
T .0; � /; @tu

ODE
T .0; � // outside a ball of radius larger than T and using

finite speed of propagation, one constructs smooth and compactly supported initial data that lead to
blowup at t D T . What is more, invariance of (1-1) under the rescaling

u.t; x/ 7! u�.t; x/ WD �
�2u

�
t

�
;
x

�

�
; � > 0; (1-3)

allows one to look for self-similar blow-up solutions of the form

u.t; x/D
1

.T � t /2
�

�
x

T � t

�
:

Note that (1-2) is a self-similar solution with trivial profile � � 6. We note that the rescaling (1-3)
leaves invariant the energy norm PH 1.Rd /�L2.Rd / of .u.t; � /; @tu.t; � // precisely when d D 6, in which
case (1-1) is referred to as energy critical. In this case, it can be easily shown that in addition to (1-2) no
other radial and smooth self-similar solutions to (1-1) exist; see [Kavian and Weissler 1990]. However,
in the energy supercritical case, i.e., for d � 7, numerics [Kycia 2011] indicate that in addition to (1-2)
there are nontrivial, radial, globally defined, smooth, and decaying similarity profiles. In fact, for d D 7,
there are infinitely many of them, all of which are positive, as proven by Dai and Duyckaerts [2021]. A
similar result is expected to hold for all 7� d � 15; see [Kycia 2011].

From the point of view of the Cauchy problem for (1-1), the relevant similarity profiles appear to be
the trivial one (1-2) and its first nontrivial “excitation”. Namely, numerical work on supercritical power
nonlinearity wave equations in the radial case [Bizoń et al. 2004; Glogić et al. 2020] yields evidence that
generic blowup is described by the ODE profile, while the threshold separating generic blowup from
global existence is given by the stable manifold of the first excited profile; see also [Bizoń 2001]. The
first step in showing such genericity results would be to establish stability of the ODE profile and show
that its first excitation is codimension-1 stable (which indicates that the stable manifold splits the phase
space locally into two connected components). The only result so far for (1-1) in this direction is by
Donninger and the third author [Donninger and Schörkhuber 2017], who proved radial stability of uT for
all odd d � 7. In this paper, we exhibit in closed form what appears to be the first excitation of (1-2) for
every d � 7. Namely, we have the following self-similar solution to (1-1):

u�.t; x/ WD
1

t2
U

�
jxj

t

�
; (1-4)

where

U.�/D
c1� c2�

2

.c3C �2/2
; (1-5)

with
c1 D

4
25
..3d � 8/d0C 8d

2
� 56d C 48/; c2 D

4
5
d0; c3 D

1
15
.3d � 18C d0/;
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and d0 D
p
6.d � 1/.d � 6/. We note that c3 > 0 when d � 7, and thus U 2 C1Œ0;1/. To the best

of our knowledge, this solution has not been known before, and with the intent of studying threshold
behavior, the main object of this paper is to show a variant of codimension-1 stability of u�.

Note that U has precisely one zero at �� D ��.d/ > 2. In particular, this profile is not positive and
therefore not a member of the family of self-similar profiles constructed in [Dai and Duyckaerts 2021].
However, it is strictly positive inside the backward light cone of the blow-up point .0; 0/. Hence, in this
local sense u� provides a solution to the more frequently studied focusing equation

.@2t ��x/u.t; x/D ju.t; x/ju.t; x/: (1-6)

What is more, as an outcome of our stability analysis we get that small perturbations of both the ODE
profile and u� stay positive under the evolution of (1-1) and therefore yield solutions to (1-6) as well.

1A. Main results.

Preliminaries. By action of symmetries, the solution (1-4) gives rise to a .2dC1/-parameter family of
(in general nonradial) blow-up solutions. Namely, (1-1) is invariant under spacetime translations

ST;x0.t; x/ WD .t �T; x� x0/

for T > 0; x0 2 Rd , time reflections
R.t; x/ WD .�t; x/;

as well as Lorentz boosts, which we write in terms of hyperbolic rotations as

ƒ.a/ WDƒd .ad / ıƒd�1.ad�1/ ı � � � ıƒ1.a1/;

where a 2 Rd and ƒj .aj / for j D 1; : : : ; d are given by8<:
t 7! t cosh.aj /C xj sinh.aj /;
xj 7! t sinh.aj /C xj cosh.aj /;
xk 7! xk .k ¤ j /:

We then let
ƒT;x0.a/ WDR ıƒ.a/ ıST;x0 ; (1-7)

and thereby obtain the following .2dC1/-parameter family of solutions to (1-1):

u�T;x0;a.t; x/ WD u
�
ıƒT;x0.a/.t; x/:

We note that, for
.t 0; x0/ WDƒT;x0.a/.t; x/;

we have
jx0j2� t 02 D jx� x0j

2
� .T � t /2: (1-8)

Furthermore, for �; a 2 Rd , we set1

.�; a/ WD A0.a/�Aj .a/�
j ; (1-9)

1For simplicity, we use Einstein’s summation convention throughout the paper.
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where
A0.a/ WD cosh.a1/ cosh.a2/ � � � cosh.ad /;

A1.a/ WD sinh.a1/ cosh.a2/ � � � cosh.ad /;

A2.a/ WD sinh.a2/ cosh.a3/ � � � cosh.ad /;
:::

Ad .a/ WD sinh.ad /:

Then, it is easy to check that

t 0 D .T � t /

�
x� x0

T � t
; a

�
and x0j D .t �T /@aj 

�
x� x0

T � t
; a

�
Bj .a/ (1-10)

for j D 1; : : : ; d, where

Bj .a/D

dY
iDjC1

cosh.ai /�1:

Now, by using relations (1-8) and (1-10) we find more explicitly that

u�T;x0;a.t; x/D
1

.T � t /2
Ua

�
x� x0

T � t

�
; (1-11)

with Ua W Rd ! R given by

Ua.�/D
.c1� c2/.�; a/

2C c2.1� j�j
2/

..1C c3/.�; a/2Cj�j2� 1/2
: (1-12)

Note that for aD 0, we have U0.�/DU.j�j/ with U being the radial profile in (1-5). Also, since c1 > c2
for all d � 7, there exists a positive constant c0 D c0.d/ such that

Ua � c0 > 0 on Bd (1-13)

for all a 2Rd , where Bd denotes the open unit ball in Rd . In summary, we have that, for a 2Rd , x0 2Rd ,
and T > 0, (1-1) admits an explicit solution (1-11), which starts off smooth, blows up at x D x0 as
t ! T �, and is strictly positive on the backward light cone

CT;x0 WD
[

t2Œ0;T /

ftg �BdT�t .x0/

of the blow-up point .T; x0/— see Section 1C for the notation — which makes it a solution inside CT;x0
to (1-6) as well. Furthermore, simply by scaling we have that, for k 2 N0,Ua� � � x0T � t

�
PHk.BdT�t .x0//

' .T � t /
d
2
�k; (1-14)

and hence
ku�T;x0;a.t; � /k PHk.BdT�t .x0//

' .T � t /
d
2
�2�k;

which implies that the solution blows up in local homogeneous Sobolev seminorms of order k>scD 1
2
d�2.

Here, sc denotes the critical regularity, i.e., PH sc .Rd / is left-invariant under the rescaling (1-3).
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Conditional stability of blowup via u�. The main goal of this paper is to investigate stability of blowup
governed by u�. For T D 1, x0 D 0, and aD 0, the blow-up initial data are given by

u�1;0;0.0; x/D U.jxj/ and @tu
�
1;0;0.0; x/D 2U.jxj/CjxjU

0.jxj/:

We can now formulate the following stability result, where we restrict ourselves to the case d D 9.

Theorem 1.1. Let d D 9. Define functions hj W R9! R, j D 1; 2, by

h1.x/D
1

.7C 5jxj2/3
and h2.x/D

35� 5jxj2

.7C 5jxj2/4
: (1-15)

There exist constantsM >0, ı > 0, and ! > 0 such that, for all real-valued .f; g/ 2C1.B92/�C
1.B92/

satisfying

k.f; g/kH6.B92/�H
5.B92/

�
ı

M
;

the following holds: There are parameters a 2 B9
Mı=!

, x0 2 B9
ı
, T 2 Œ1� ı; 1C ı�, and ˛ 2 Œ�ı; ı�

depending Lipschitz-continuously on .f; g/ such that, for initial data

u.0; � /D U.j � j/Cf C˛h1 and @tu.0; � /D 2U.j � j/Cj � jU
0.j � j/CgC˛h2; (1-16)

there exists a unique solution u 2 C1.CT;x0/ to (1-1). Furthermore, this solution blows up at .T; x0/ and
can be written as

u.t; x/D
1

.T � t /2

�
Ua

�
x� x0

T � t

�
C'.t; x/

�
;

where k'.t; � /kL1.B9T�t .x0// . .T � t /
! and

.T � t /k�
9
2 k'.t; � /k PHk.B9T�t .x0//

. .T � t /!

for k D 0; : : : ; 5. In particular,

(T � t /k�
5
2 ku.t; � /�u�T;x0;a.t; � /k PHk.B9T�t .x0//

. .T � t /!;

(T � t /k�
5
2 k@tu.t; � /� @tu

�
T;x0;a

.t; � /k PHk�1.B9T�t .x0//
. .T � t /!

(1-17)

for k D 1; : : : ; 5. Moreover, u is strictly positive on CT;x0 , and hence the statement above applies to (1-6)
as well.

We note that the normalizing factor on the left-hand side of (1-17) appears naturally and corresponds
to the behavior of the blow-up solution we perturbed around; see (1-14).

Some further remarks on the result are in order.

Remark 1.2. The proof of Theorem 1.1 relies on stability analysis in similarity coordinates, in which the
above set of perturbations has a codimension-1 interpretation. More precisely, we construct a Lipschitz
manifold which is of codimension 11, where ten codimensions are related to instabilities caused by
translation symmetries of the equation and the remaining codimension is characterized by .h1; h2/. This
is elaborated on in Section 2; see in particular Propositions 2.1 and 2.4. We believe that this manifold
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gives rise to a proper codimension-1 manifold in a suitable physical data space. However, by the local
nature of our approach and the presence of translation symmetries, this is not entirely clear.

Remark 1.3 (Regularity of the initial data). It is only the transformation from similarity coordinates to
physical coordinates that induces the higher-regularity assumption on the data, from which we can easily
deduce the Lipschitz-dependence on the blow-up parameters. We nonetheless believe that this can be
optimized by a more refined analysis.

Remark 1.4 (Persistence of regularity). While persistence of regularity is standard for the wave equation
in physical coordinates, it has not yet been considered for the local problem in similarity coordinates. In
fact, all of the related works so far, such as [Chatzikaleas and Donninger 2019; Donninger and Schörkhuber
2016; Glogić and Schörkhuber 2021], are based on a notion of strong solutions in similarity coordinates.
In this paper, we close this gap and rigorously prove regularity of solutions for smooth initial data. Our
proof relies on estimates for the free wave evolution in similarity coordinates in arbitrarily high Sobolev
spaces; see Proposition 3.1 on page 629.

Remark 1.5 (Generalization to other space dimensions). Large parts of the proof of Theorem 1.1 can be
generalized to other odd space dimensions. However, the analysis of the underlying spectral problem
is quite delicate and only for d D 9 we are able to solve it rigorously. Nevertheless, from numerical
computations, we have strong evidence that the situation is analogous in other space dimensions in the
sense that the linearization has exactly one genuine unstable eigenvalue.

Stable ODE blowup without symmetry. For both (1-1) and (1-6), stability of the ODE blow-up solution
under small radial perturbations has been proven by Donninger and the third author [Donninger and
Schörkhuber 2017] in all odd space dimensions d � 7. By exploiting the framework of the proof of
Theorem 1.1, we generalize the result from that paper to nonradial perturbations in dimensions d D 7
and d D 9.

Before we state the result, we apply the symmetry transformations (1-7) to the ODE profile (1-2) to
obtain the following family of blow-up solutions to both (1-1) and (1-6):

uODE
T;x0;a

.t; x/ WD
1

.T � t /2
�a

�
x� x0

T � t

�
; (1-18)

where
�a.�/D 6.�; a/

�2: (1-19)

To shorten the notation, we write CT WD CT;0 for the backward light cone with vertex .T; 0/.

Theorem 1.6. Let d 2 f7; 9g. There are constants C > 0, ı > 0, and ! > 0 such that, for any real-valued
.f; g/ 2 C1.Bd2 /�C

1.Bd2 / satisfying

k.f; g/kH .dC3/=2.Bd2 /�H
.dC1/=2.Bd2 /

�
ı

C
; (1-20)

the following holds: There exist parameters a 2 Bd
Cı=!

and T 2 Œ1 � ı; 1C ı� depending Lipschitz
continuously on .f; g/ such that, for initial data

u.0; � /D 6Cf and @tu.0; � /D 12Cg;
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there exists a unique solution u 2C1.CT / to (1-1). This solution blows up at .T; 0/ and can be written as

u.t; x/D
1

.T � t /2

�
�a

�
x

T � t

�
C'.t; x/

�
;

where ' satisfies k'.t; � /kL1.BdT�t / . .T � t /
! and

.T � t /k�
d
2 k'.t; � /k PHk.BdT�t /

. .T � t /!

for k D 0; : : : ; 1
2
.d C 1/. In particular,

(T � t /k�
d
2
C2
ku.t; � /�uODE

T;0;a.t; � /k PHk.BdT�t /
. .T � t /! ;

(T � t /k�
d
2
C2
k@tu.t; � /� @tu

ODE
T;0;a.t; � /k PHk�1.BdT�t /

. .T � t /!
(1-21)

for k D 1; : : : ; 1
2
.d C 1/. Furthermore, u is strictly positive and the statement above therefore applies

to (1-6) as well.

We note that due to the invariance of uODE
1;0;0 under spatial translations the blow-up location x0D 0 does

not change under small perturbations.

Remark 1.7. Stability of the ODE blow-up solution for energy supercritical wave equations outside radial
symmetry was established in d D 3 by Donninger and the third author [Donninger and Schörkhuber 2016].
For the cubic wave equation, the corresponding result was obtained by Chatzikaleas and Donninger [2019]
in d D 5; 7. Compared to these works, one important improvement in Theorem 1.6 is the regularity of
the solution which allows for the classical interpretation. Furthermore, we prove Lipschitz dependence
of the blow-up time and the blow-up point on the initial data. Finally, from a technical perspective, the
adapted inner product defined in Section 3 is simpler than the corresponding expressions in [Chatzikaleas
and Donninger 2019] and can easily be generalized.

1B. Related results. Wave equations with focusing power nonlinearities provide the simplest possible
models for the study of nonlinear wave dynamics and have been investigated intensively in the past
decades. Consequently, local well-posedness and the behavior of solutions for small initial data are
by now well understood; see, e.g., [Lindblad and Sogge 1995]. Concerning global dynamics for large
initial data, substantial progress has been made more recently for energy critical problems. This includes
fundamental works on the characterization of the threshold between finite-time blowup and dispersion in
terms of the well-known stationary ground state solution; see [Kenig and Merle 2008; Krieger et al. 2015].

In contrast, large data results for energy supercritical equations are rare. For various models, the ODE
blowup is known to provide a stable blow-up mechanism and Theorem 1.6 further extends these results;
see Remark 1.7. In [Bizoń et al. 2007], nontrivial self-similar solutions are constructed for odd supercritical
nonlinearities in dimension 3, and [Dai and Duyckaerts 2021] provides a generalization to d � 4. Also,
in the three-dimensional case, large global solutions were obtained for a supercritical nonlinearity in
[Krieger and Schlag 2017]. Finally, for d � 11 and large enough nonlinearities, manifolds of codimension
greater than or equal to two have been constructed in [Collot 2018] that lead to non-self-similar blowup
in finite time.
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In the description of threshold dynamics for energy supercritical wave equations, self-similar solutions
appear to play the key role. This has been observed numerically for power-type nonlinearities [Bizoń et al.
2004; Glogić et al. 2020], but also for more physically relevant models such as wave maps [Biernat et al.
2017; Bizoń et al. 2000] or the Yang–Mills equation in equivariant symmetry [Bizoń and Tabor 2001;
Bizoń 2002]. We note that the latter reduces essentially to a radial quadratic wave equation in d � 7,
hence (1-1) provides a toy model. From an analytic point of view, threshold phenomena for energy
supercritical wave equations are entirely unexplored. Moreover, results analogous to the energy critical
case seem completely out of reach.

However, very recently, the first explicit candidate for a self-similar threshold solution has been found
by the second and third authors in [Glogić and Schörkhuber 2021] for the focusing cubic wave equation in
all supercritical space dimensions d � 5. In d D 7, by the conformal symmetry of the linearized equation,
the genuine unstable direction could be given in closed form, see also [Glogić et al. 2020], which allowed
for a rigorous stability analysis. Interestingly, the same effect occurs for the quadratic wave equation and
the new self-similar solution (1-4) in d D 9, which explains the specific choice of the space dimension in
Theorem 1.1. In view of our results, we conjecture that the self-similar profile U given in (1-5) plays an
important role in the threshold dynamics for (1-1) and (1-6).

In the proofs of Theorems 1.1 and 1.6 we build on methods developed in earlier works, in particular,
[Donninger and Schörkhuber 2016; Glogić and Schörkhuber 2021]. However, several aspects, in particular
the spectral analysis, are specific to the problem and rather delicate. Furthermore, we add important
generalizations such as the preservation of regularity, which improves the statements of these earlier
works. The presentation of our results is completely self-contained and all necessary details are provided
in the proofs.

1C. Notation. Throughout the whole paper the Einstein summation convention is in force, i.e., we
sum over repeated upper and lower indices, where latin indices run from 1 to d . We write N for the
natural numbers f1; 2; 3; : : : g and N0 WD f0g[N. Furthermore, RC WD fx 2 R W x > 0g. Also, H stands
for the closed complex right half-plane. By BdR.x0/ we denote the open ball of radius R > 0 in Rd

centered at x0 2Rd . The unit ball is abbreviated by Bd WDBd1 .0/, and Sd�1 WD @Bd . The notation a. b
means a � Cb for an absolute constant C > 0, and we write a' b if a . b and b . a. If a � C"b for a
constant C" > 0 depending on some parameter ", we write a ." b.

By L2.BdR.x0// and Hk.BdR.x0//, k 2N0, we denote the Lebesgue and Sobolev spaces, respectively,
obtained from the completion of C1.BdR.x0// with respect to the usual norm

kuk2
Hk.BdR.x0//

WD

X
j˛j�k

k@˛uk2
L2.BdR.x0//

;

with ˛ 2Nd0 denoting a multi-index and @˛uD @˛11 � � � @
˛d
d
u, where @iu.x/D @xju.x/. For vector-valued

functions, we use boldface letters, e.g., f D .f1; f2/ and we sometime write Œf �1 WDf1 to extract a single
component. Throughout the paper, W.f; g/ denotes the Wronskian of two functions f; g 2C 1.I /, I �R,
where we use the convention W.f; g/D fg0�f 0g, with f 0 denoting the first derivative. On a Hilbert
space H we denote by B.H/ the set of bounded linear operators. For a closed linear operator .L;D.L//
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on H, we define the resolvent set �.L/ as the set of all � 2 C such that RL.�/ WD .� � L/�1 exists
as a bounded operator on the whole underlying space. Furthermore, the spectrum of L is defined as
�.L/ WD C n �.L/ and the point spectrum is denoted by �p.L/� �.L/.

Spherical harmonics. Fix a dimension d � 3. For ` 2 N0, an eigenfunction for the Laplace–Beltrami
operator on Sd�1 with eigenvalue `.`C d � 2/ is called a spherical harmonic function of degree `. For
each ` 2 N, we denote by Md;` the number of linearly independent spherical harmonics of degree `, and
for �` WD f1; : : : ;Md;`g we designate by fY`;m Wm 2�`g a set of orthonormal spherical harmonics, i.e.,Z

Sd�1
Y`;m.!/Y`;m0.!/ d�.!/D ımm0 :

Obviously, one has�0Df1g and�1Df1; : : : ; dg, and we can take Y0;1.!/Dc1 and Y1;m.!/D Qcm!m for
suitable normalization constants c1; Qcm 2R. For g 2C1.Sd�1/, we define P` WL2.Sd�1/!L2.Sd�1/

by
P`g.!/ WD

X
m2�`

.g jY`;m/L2.Sd�1/Y`;m.!/:

It is well known, see, e.g., [Atkinson and Han 2012], that P` defines a self-adjoint projection on L2.Sd�1/
and that limn!1

g�Pn
`D0 P`g


L2.Sd�1/

D 0. This can be extended to Sobolev spaces, in particular,
limn!1

g�Pn
`D0 P`g


Hk.Sd�1/

D 0 for all g 2 C1.Sd�1/, see, e.g., [Donninger and Schörkhuber
2016], Lemma A.1. Furthermore, given f 2 C1.BdR/, by setting

ŒP`f �.x/ WD
X
m2�`

.f .jxj � /jY`;m/L2.Sd�1/Y`;m

�
x

jxj

�
; (1-22)

we have that (see for example Lemma A.2 in [Donninger and Schörkhuber 2016])

lim
n!1

f � nX
`D0

P`f


Hk.BdR/

D 0: (1-23)

2. The stability problem in similarity coordinates

In this section we formulate (1-1) in similarity variables. The advantage of the new setting is the fact that
self-similar solutions become time-independent and stability of finite-time blowup turns into asymptotic
stability of static solutions. Then we state the main results in the new coordinate system.

Given T > 0 and x0 2 Rd , we define similarity coordinates

� WD � log.T � t /C logT and � WD
x� x0

T � t
:

Note that in .�; �/, the backward light cone CT;x0 corresponds to the infinite cylinder

Z WD
[
��0

f�g �Bd:

Furthermore, by setting

 .�; �/ WD T 2e�2�u.T �Te�� ; Te���C x0/;
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(1-1) transforms into

.@2� C 5@� C 2� � r@� C .� � r/
2
��C 5� � r C 6/ .�; �/D  .�; �/2: (2-1)

To get a first-order formulation we define

 1.�; �/ WD  .�; �/ and  2.�; �/ WD @� .�; �/C � � r .�; �/C 2 .�; �/; (2-2)

and let ‰.�/D . 1.�; � /;  2.�; � //, by means of which (2-1) can be written as

@�‰.�/D zL‰.�/CF .‰.�//; (2-3)

where

zLu.�/D

�
�� � ru1.�/� 2u1.�/Cu2.�/

�u1.�/� � � ru2.�/� 3u2.�/

�
and F .u/D

�
0

u21

�
for uD .u1; u2/. Note that in the new variables, the solutions u�T;x0;a and uODE

T;x0;a
become static. Namely,

every a 2 Rd yields smooth, positive, and � -independent solutions

Ua D .U1;a; U2;a/ and �a D .�1;a; �2;a/

of (2-3) given by
U1;a.�/D Ua.�/; U2;a.�/D � � rUa.�/C 2Ua.�/;

�1;a.�/D �a.�/; �2;a.�/D � � r�a.�/C 2�a.�/:

We study (2-3) for small perturbations of Ua and �a in the Hilbert space

H WDH
dC1
2 .Bd /�H

d�1
2 .Bd /

equipped with the standard norm

kuk2 WD ku1k
2
H .dC1/=2.Bd /

Cku2k
2
H .d�1/=2.Bd /

:

Also, write BR WD fu 2H W kuk �Rg.
In Proposition 3.1 on page 629 we show that, for d 2 f7; 9g, the operator

zL W C1.Bd /�C1.Bd /�H!H;

which describes the free wave evolution in similarity coordinates, is closable and its closure, which we
denote by

L W D.L/�H!H;

generates a strongly continuous one-parameter semigroup .S .�//��0 � B.H/. By using the Sobolev
embedding, it is easy to see that the nonlinearity satisfies

kF .u/k D ku21kH .d�1/=2.Bd / � ku
2
1kH .dC1/=2.Bd / . ku1k2H .dC1/=2.Bd /

. kuk2

for all u 2H; hence F is well defined on H.
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2A. Stability of Ua. The key to proving Theorem 1.1 is the following result, which establishes, for d D 9,
conditional orbital asymptotic stability of the family of static solutions fUa W a 2 R9g.

Proposition 2.1. Let d D 9. There are constants C > 0 and ! > 0 such that the following holds. For all
sufficiently small ı > 0 there exists a codimension-11 Lipschitz manifold MDMı;C � Bı=C with 0 2M
such that, for any ˆ0 2M, there are ‰ 2 C.Œ0;1/;H/ and a 2 B9

ı=!
such that

‰.�/D S .�/.U0Cˆ0/C

Z �

0

S .� � �/F .‰.�// d� (2-4)

and

k‰.�/�Uak. ıe�!�

for all � � 0.

The number of codimensions in Proposition 2.1 is related to the number of unstable eigenvalues of the
linearization around Ua and the dimension of the corresponding eigenspaces; see Section 5. In fact, ten
of these instabilities are caused by the translation symmetries of the problem, and can be controlled by
choosing appropriately the blow-up parameters .T; x0/. There is, therefore, only one genuine unstable
direction. Next, we state a persistence of regularity result for solutions to (2-4).

Proposition 2.2. If the initial data ˆ0 from Proposition 2.1 is in C1.B9/�C1.B9/ then the corre-
sponding solution ‰ of (2-3) belongs to C1.Z/�C1.Z/. In particular, ‰ satisfies (2-3) in the classical
sense.

Remark 2.3. That this proposition is not vacuous, i.e., that there exists ˆ0 2M\ .C1.B9/�C1.B9//,
follows from Proposition 2.4.

The proofs of Propositions 2.1 and 2.2 are provided in Section 7D.
In order to derive Theorem 1.1 from the above results we prescribe in physical variables initial data of

the form

u.0; � /D u�1;0;0.0; � /Cf and @tu.0; � /D @tu
�
1;0;0.0; � /Cg (2-5)

for free functions .f; g/ defined on a suitably large ball centered at the origin. In similarity variables, this
transforms into initial data ‰.0/D U0Cˆ0 for (2-3), with

ˆ0 D ‡..f; g/; T; x0/; (2-6)

where

‡..f; g/; T; x0/ WDR..f; g/; T; x0/CR.U0; T; x0/�R.U0; 1; 0/ (2-7)

and

R..f1; f2/; T; x0/D
�
T 2f1.T � Cx0/

T 3f2.T � Cx0/

�
:

The next statement asserts that, for all small .f; g/, there is a choice of parameters x0, T , and ˛ for
which ‡..f C˛h1; gC˛h2/; T; x0/ belongs to the manifold M from Proposition 2.1.
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Proposition 2.4. Let .h1; h2/ be defined as in (1-15). There exists M > 0 such that, for all sufficiently
small ı > 0, the following holds. For any .f; g/ 2H 6.B92/�H

5.B92/ satisfying

k.f; g/kH6.B92/�H
5.B92/

�
ı

M 2
;

there are x0 2 B9
ı=M

, T 2 Œ1� ı=M; 1C ı=M�, and ˛ 2 Œ�ı=M; ı=M� depending Lipschitz continuously
on .f; g/ such that

‡..f C˛h1; gC˛h2/; T; x0/ 2Mı;C ;

where Mı;C is the manifold from Proposition 2.1.

Theorem 1.1 is then obtained by transforming the results of Propositions 2.1, 2.2, and 2.4 back to
coordinates .t; x/.

Remark 2.5. We note that when proving stability of the ODE blow-up solution for d 2 f7; 9g similar
results are obtained. In fact, the proof implies the existence of a Lipschitz manifold N of codimension dC1
in the Hilbert space H, according to dC1 directions of instability induced by translation invariance. A
result similar to Proposition 2.4 guarantees that for any small enough data .f; g/ one can suitably adjust
the blow-up time T and the blow-up point x0 such that ‡..f; g/; T; x0/ 2N , which gives Theorem 1.6
on stable blowup. This point of view further justifies using codimension-1 terminology to describe the
stability of u�.

Time-evolution for small perturbationsW modulation ansatz. In the following, we assume that aD a.�/,
a.0/D 0, and lim�!1 a.�/D a1. Inserting the ansatz

‰.�/D Ua.�/Cˆ.�/ (2-8)

into (2-3) we obtain
@�ˆ.�/D . zLCL

0
a.�//ˆ.�/CF .ˆ.�//� @�Ua.�/;

with

L0a.�/uD

�
0

Va.�/u1

�
and Va.�/D 2Ua.�/:

In the following, we define

Ga.�/.ˆ.�// WD ŒL
0
a.�/�L

0
a1
�ˆ.�/CF .ˆ.�//

and study the evolution equation

@�ˆ.�/D Œ zLCL
0
a1
�ˆ.�/CGa.�/.ˆ.�//� @�Ua.�/; (2-9)

with initial data ˆ.0/ D u 2 H. This naturally splits into three parts: First, in Section 3, we study
the time evolution governed by zL using semigroup theory. In Section 4, we analyze the linearized
problem, where we consider zLCL0a1 as a (compact) perturbation of the free evolution and investigate
the underlying spectral problem, restricting to d D 9. Resolvent bounds allow us to transfer the spectral
information to suitable growth estimates for the linearized time evolution. The nonlinear problem will be
analyzed in integral form in Section 7, using modulation theory and fixed-point arguments. Also, we
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prove Propositions 2.1–2.4 and, based on this, Theorem 1.1. In Section 8 we give the main arguments to
prove Theorem 1.6.

3. The free wave evolution in similarity variables

In this section we prove well-posedness of the linear version of (2-3) in H. In other words, we show that
the (closure of the) operator zL generates a strongly continuous one-parameter semigroup of bounded
operators on H. What is more, in view of the regularity result Proposition 2.2, we consider the evolution
in Sobolev spaces of arbitrarily high integer order. In Section 4 we then restrict the problem again to H.

For k � 1, let

Hk WDHk.Bd /�Hk�1.Bd /

be equipped with the standard norm denoted by k � kHk.Bd /�Hk�1.Bd /. We set

D. zL/ WD C1.Bd /�C1.Bd /

and consider the densely defined operator

zL W D. zL/�Hk!Hk :

We now state the central result of this section.

Proposition 3.1. Let d 2 f7; 9g and k � 3. The operator zL WD. zL/�Hk!Hk is closable and its closure
Lk WD.Lk/�Hk!Hk generates a strongly continuous semigroup Sk W Œ0;1/!B.Hk/ which satisfies

kSk.�/ukHk.Bd /�Hk�1.Bd / �Mke
� 1
2
�
kukHk.Bd /�Hk�1.Bd / (3-1)

for all u 2Hk , all � � 0, and some Mk > 1. Furthermore, the following holds for the spectrum of Lk:

�.Lk/�
˚
z 2 C W Re z � �1

2

	
; (3-2)

and the resolvent has the bound

kRLk .�/f kHk.Bd /�Hk�1.Bd / �
Mk

Re�C 1
2

kf kHk.Bd /�Hk�1.Bd /

for � 2 C with Re� > �1
2

and f 2Hk .

Remark 3.2. We prove Proposition 3.1 via the Lumer–Phillips Theorem. By using the standard inner
product on Hk , one can easily prove existence of the semigroup .Sk.�//��0, but in order to show that
it decays exponentially and to prove the growth bound (3-1) in particular, we need to introduce an
appropriate equivalent inner product. The necessity for such an approach will become apparent in the
proof of Lemma 3.4 in the Appendix. We note that, for d D 9, the restriction on k is optimal within the
class of integer Sobolev spaces. In particular, for scaling reasons exponential decay cannot be expected at
lower integer regularities. For d D 7, a similar statement can be obtained for k D 2.
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For d 2 f7; 9g and k � 3 we define the sesquilinear form

. � j � /Hk W .C
1.Bd /�C1.Bd //2! C; .ujv/Hk D

kX
jD1

.ujv/j ;

where

.ujv/1 D

Z
Sd�1

@iu1.!/@iv1.!/ d�.!/C

Z
Sd�1

u1.!/v1.!/ d�.!/C

Z
Sd�1

u2.!/v2.!/ d�.!/;

.ujv/2 D

Z
Bd
@i�u1.�/@i�v1.�/ d�C

Z
Bd
@i@ju2.�/@i@j v2.�/ d�C

Z
Sd�1

@iu2.!/@iv2.!/ d�.!/;

.ujv/3 D 4

Z
Bd
@i@j @ku1.�/@

i@j @kv1.�/ d�C 4

Z
Bd
@i@ju2.�/@i@j v2.�/ d�

C 4

Z
Sd�1

@i@ju1.!/@i@j v1.!/ d�.!/;

and for j � 4 we use the standard PH j .Bd /� PH j�1.Bd / inner product

.ujv/j D .u1 jv1/ PHj .Bd /
C .u2 jv2/ PHj�1.Bd /

: (3-3)

We then set
kukHk WD

p
.uju/Hk :

For brevity, we will use the notation . � j � /j D k � k2j , j D 1; : : : ; k, for different parts of . � j � /Hk .

Lemma 3.3. Let d 2 f7; 9g and k � 3. We have

kukHk ' kukHk.Bd /�Hk�1.Bd /

for all u 2 C1.Bd /�C1.Bd /. In particular, k � kHk defines an equivalent norm on Hk .

Proof. Note that it suffices to prove

kuk2
H3.Bd /�H2.Bd /

.
3X

jD1

kuk2j . kuk
2
H3.Bd /�H2.Bd /

: (3-4)

The first estimate in (3-4) follows from the fact that

kuk2
L2.Bd /

. kruk2
L2.Bd /

Ckuk2
L2.Sd�1/

for all u 2 C1.Bd /, which is a simple consequence of the identityZ
Sd�1

ju.!/j2 d�.!/D

Z
Bd

div.�ju.�/j2/ d�

D

Z
Bd
.d ju.�/j2C � iu.�/@iu.�/C �

iu.�/@iu.�// d�: (3-5)

Using this, it is easy to see that

kukH2.Bd / .
Z

Bd
@i@ju.�/@i@ju.�/ d�C

Z
Sd�1

@iu.!/@iu.!/ d�.!/C

Z
Sd�1

ju.!/j2 d�.!/
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for all u 2 C1.Bd /. Similar bounds imply the first inequality in (3-4). Another consequence of (3-5) is
the trace theorem, which asserts thatZ

Sd�1
ju.!/j2 d�.!/. kuk2

H1.Bd /

for all u 2 C1.Bd /; using this, it is straightforward to obtain the second inequality in (3-4). Hence we
obtain the claimed estimates in Lemma 3.3 for all u 2 C1.Bd /�C1.Bd / and, by density, we extend
this to all of Hk . �

Now we turn to proving Proposition 3.1. As the first auxiliary result, we have the following dissipation
property of zL.

Lemma 3.4. Let d 2 f7; 9g and k � 3. Then

Re. zLuju/Hk � �
1
2
kuk2Hk

for all u 2 D. zL/.

The proof is provided in the Appendix. To apply the Lumer–Phillips theorem, we also need the
following density property of zL.

Lemma 3.5. Let d 2 f7; 9g and k � 3. There exists � > �1
2

such that ran.�� zL/ is dense in Hk .

Proof. Let d 2 f7; 9g and k � 3. We prove the statement by showing that there exists a � such
that, given f 2 Hk and " > 0, there is some f" in the "-neighborhood of f for which the equation
.�� zL/uD f" admits a solution in D. zL/. First, by density, there is Qf 2 C1.Bd /�C1.Bd / for which
k Qf �f kHk.Bd /�Hk�1.Bd / <

1
2
". Then, for n 2 N, we define fn WD .f1;n; f2;n/ with

f1;n D

nX
`D0

P` Qf1 and f2;n D

nX
`D0

P` Qf2;

where the P` are the projection operators defined in (1-22). Furthermore, according to (1-23) there exists
an index N 2 N for which kfN � Qf kHk.Bd /�Hk�1.Bd / <

1
2
". It is therefore sufficient to consider

.�� zL/uD fN (3-6)

and produce a solution u 2 D. zL/. First, we rewrite (3-6) as a system of equations in u1 and u2:

�.ıij � � i�j /@i@ju1.�/C 2.�C 3/�
i@iu1.�/C .�C 3/.�C 2/u1.�/D gN .�/; (3-7)

u2.�/D �
i@iu1.�/C .�C 1/u1.�/�f1;N .�/; (3-8)

where
gN .�/D �

i@if1;N .�/C .�C 3/f1;N .�/Cf2;N .�/:

We now treat the case d D 9, for which we choose �D 5
2

. With this choice, (3-7) reads as

�.ıij � � i�j /@i@ju1.�/C 11�
i@iu1.�/C

99
4
u1.�/D gN .�/: (3-9)
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Note that gN is a finite linear combination of spherical harmonics, and this allows us to decompose
the PDE (3-9) which is posed on B9 into a finite number of ODEs posed on the interval .0; 1/. To this
end, we switch to spherical coordinates � D j�j and ! D �=j�j. In particular, the relevant differential
expressions transform in the following way:

� i@iu.�/D �@�u.�!/;

� i�j @i@ju.�/D �
2@2�u.�!/;

@i@iu.�/D

�
@2�C

8

�
@�C

1

�2
�S8

!

�
u.�!/:

Consequently, (3-9) becomes�
�.1� �2/@2�C

�
�
8

�
C 11�

�
@�C

99

4
�
1

�2
�S8

!

�
u.�!/D gN .�!/: (3-10)

Now we take the decomposition of the right-hand side of (3-10) into spherical harmonics:

gN .�!/D

NX
`D0

X
m2�`

g`;m.�/Y`;m.!/

for some g`;m 2 C1Œ0; 1�. Then by inserting the ansatz

u1.�!/D

NX
`D0

X
m2�`

u`;m.�/Y`;m.!/ (3-11)

into (3-10), we obtain the system of ODEs�
�.1� �2/@2�C

�
�
8

�
C 11�

�
@�C

`.`C 7/

�2
C
99

4

�
u`;m.�/D g`;m.�/ (3-12)

for ` D 0; : : : ; N and m 2 �`. For later convenience, we first set v`;m.�/ D �3u`;m.�/ and thereby
transform (3-12) into�

�.1� �2/@2�C

�
�
2

�
C 5�

�
@�C

.`C 4/.`C 3/

�2
C
15

4

�
v`;m.�/D �

3g`;m.�/: (3-13)

Then, by means of a further change of variables v`;m.�/D �`C3w`;m.�2/, we turn the homogeneous
version of (3-13) into a hypergeometric equation in its canonical form:

z.1� z/w00`;m.z/C .c � .aC bC 1/z/w
0
`;m.z/� abwl;m.z/D 0; (3-14)

where

aD 1
4
.9C 2`/; b D aC 1

2
D

1
4
.11C 2`/; and c D 2aD 1

2
.9C 2`/:

Equation (3-14) admits the two solutions

�0;`.z/D 2F1
�
a; aC 1

2
; 2a; z

�
and �1;`.z/D 2F1

�
a; aC 1

2
; 3
2
; 1� z

�
;
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which are analytic around z D 0 and z D 1, respectively; see [DLMF 2010]. In fact, the functions �0;`
and �1;` can be expressed in closed form as

�0;`.z/D
1

p
1� z

�
2

1C
p
1� z

�7
2
C`

;

�1;`.z/D
p
1� z

��
1

1�
p
1� z

�7
2
C`

�

�
1

1C
p
1� z

�7
2
C`�
I

see [DLMF 2010, pp. 386-387]. Now by undoing the change of variables from above, we get solutions
 `;0 D �

`C3�0;`.�
2/ and  `;1 D �`C3�1;`.�2/ to the homogeneous version of (3-13). Furthermore,

the Wronskian is W. 0;`;  1;`/.�/D C`.1� �2/�3=2��2 for some nonzero constant C`. Then, by the
variation of constants formula we obtain a solution to (3-13) on .0; 1/:

v`;m.�/D� `;0.�/

Z 1

�

 `;1.s/

W. `;0;  `;1/.s/

s3g`;m.s/

1� s2
ds� `;1.�/

Z �

0

 `;0.s/

W. `;0;  `;1/.s/

s3g`;m.s/

1� s2
ds

D� `;0.�/

Z 1

�

 `;1.s/
p
1� sh`;m.s/ ds� `;1.�/

Z �

0

 `;0.s/
p
1� sh`;m.s/ ds; (3-15)

where h`;m 2 C1Œ0; 1�. Obviously v`;m 2 C1.0; 1/. We claim that v`;m 2 C1.0; 1�. To see this, we
note that, at �D 1, the set of Frobenius indices of (3-13) is

˚
�
1
2
; 0
	
. Hence near �D 1, there is another

solution, linearly independent of  `;1, which has the form .1� �/�1=2 `;2.�/, where  `;2 is analytic
at �D 1. Hence

 `;0.�/D c`;1 `;1.�/C c`;2
 `;2.�/
p
1� �

(3-16)

for some constants c`;1 and c`;2. Now, by letting

˛`;m WD

Z 1

0

 `;0.s/
p
1� sh`;m.s/ ds

and inserting (3-16) into (3-15), we get

v`;m.�/D�c`;2
 `;2.�/
p
1� �

Z 1

�

 `;1.s/
p
1� sh`;m.s/ ds

�˛`;m `;1.�/C c`;2 `;1.�/

Z 1

�

 `;2.s/h`;m.s/ ds:

The second and the third term above are obviously smooth up to �D 1; for the first term, the square root
factors in fact cancel out, as can easily be seen via the substitution s D �C .1� �/t , and smoothness of
v`;m up to �D 1 follows. Consequently, the function u1 defined in (3-11) belongs to C1.B9 n f0g/, and
it solves (3-9) in the classical sense away from zero. Furthermore, from (3-15) one can check that u`;m
and u0

`;m
are bounded near zero, and hence u1 2H 1.B9/. In particular, u1 solves (3-9) in the weak sense

on B9, and since the right-hand side is a smooth function, we conclude that u1 2 C1.B9/ by elliptic
regularity. Consequently, u1 2 C1.B9/, and therefore u2 2 C1.B9/ according to (3-8). In conclusion,
u WD .u1; u2/ 2 D. zL/ solves (3-6).
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For d D 7, the same proof can be repeated by choosing �D 3
2

. Namely, by taking the decomposition
of the functions into spherical harmonics and by introducing the new variable

Qv`;m.�/D �
2u`;m.�/;

the problem is reduced to�
�.1� �2/@2�C

�
�
2

�
C 5�

�
@�C

.`C 3/.`C 2/

�2
C
15

4

�
Qv`;m.�/D �

2g`;m.�/;

which is the same as (3-13) up to a shift in ` and the weight on the right-hand side. Hence the same
reasoning applies. �

Proof of Proposition 3.1. Based on Lemmas 3.4 and 3.5, the Lumer–Phillips theorem (see [Engel and
Nagel 2000, p. 83, Theorem 3.15]) together with Lemma 3.3 implies that zL is closable in Hk , and that its
closure Lk generates a semigroup .Sk.�//��0 for which (3-1) holds. The rest of the proposition follows
from standard semigroup theory results; see, e.g., [Engel and Nagel 2000, p. 55, Theorem 1.10]. �

We conclude this section by proving certain restriction properties of the semigroups .Sk.�//��0. This
will be crucial in showing persistence of regularity for the nonlinear equation.

Lemma 3.6. Let d 2 f7; 9g and k � 3. For any j 2 N, the semigroup .SkCj .�//��0 is the restriction of
.Sk.�//��0 to HkCj , i.e.,

SkCj .�/D Sk.�/jHkCj

for all � � 0. In particular, we have the growth bound

kSk.�/ukHkCj .Bd /�HkCj�1.Bd / .j e
� 1
2
�
kukHkCj .Bd /�HkCj�1.Bd /

for all u 2HkCj and all � � 0.

Proof. Let d 2 f7; 9g and k � 3. We prove the claim only for j D 1, as the general case follows from the
arbitrariness of k. The crucial ingredients of the proof are continuity of the embedding HkC1 ,! Hk
and the fact that D. zL/ is a core for both Lk and LkC1. First, we prove that LkC1 is a restriction of Lk ;
more precisely we show

D.LkC1/� D.Lk/ and LkC1uDLku (3-17)

for all u 2 D.LkC1/. For u 2 D. zL/, from the definition of LkC1 and Lk it follows that

u 2 D.LkC1/\D.Lk/ and LkC1uDLkuD zLu:

Let now u 2D.LkC1/. Since .LkC1;D.LkC1// is closed, there exists a sequence .un/n2N �D. zL/ such
that

un
HkC1
����! u and zLun

HkC1
����!LkC1u:

From the embedding HkC1 ,!Hk we infer

un
Hk
��! u and zLun

Hk
��!LkC1u;
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and by the closedness ofLk it follows that u2D.Lk/ andLkC1uDLku. Now let �2 �.LkC1/\�.Lk/.
From (3-17) we get that RLkC1.�/DRLk .�/jHkC1 . Now, given u 2HkC1, we get by the Post–Widder
inversion formula (see [Engel and Nagel 2000, p. 223, Corollary 5.5]) and the embedding HkC1 ,!Hk
that, for every � > 0,

SkC1.�/uD lim
n!1

h
n

�
RLkC1

�
n

�

�in
uD lim

n!1

h
n

�
RLk

�
n

�

�in
uD Sk.�/u:

This proves that .SkC1.�//��0 is the restriction of .Sk.�//��0 to HkC1. As a result, from Proposition 3.1
we have

kSk.�/ukHkC1.Bd /�Hk.Bd / D kSkC1.�/ukHkC1.Bd /�Hk.Bd / . e�
1
2
�
kukHkC1.Bd /�Hk.Bd /

for all u 2HkC1 and all � � 0. �

4. Linearization around a self-similar solution: preliminaries on the structure of the spectrum

From now on, for fixed d 2 f7; 9g, we work solely in the Sobolev space H .dC1/=2.Bd /�H .d�1/=2.Bd /,
which we earlier denoted by H.dC1/=2. To abbreviate the notation, we write

H WDH.dC1/=2:

We also denote by .S .�//��0 and L W D.L/�H!H the corresponding semigroup .Sk.�//��0 and
its generator Lk , respectively, for k D 1

2
.d C 1/.

With an eye towards studying the flow near the orbit fUa W a 2 Rd g— see the section on page 628 —
in this section we describe some general properties of the underlying linear operator

zLCL0a; L0au WD

�
0

Vau1

�
;

where

Va.�/ WD 2Ua.�/; (4-1)

with Ua given in (1-12).

Remark 4.1. We emphasize that the results of this section apply to any smooth Va W Bd ! R that
depends smoothly on the parameter a. Obviously, such potentials arise in the linearization around smooth
self-similar profiles.

Proposition 4.2. Fix d 2 f7; 9g. For every a 2Rd , the operatorL0a WH!H is compact, and the operator

La WDLCL
0
a; D.La/ WD D.L/�H!H;

generates a strongly continuous semigroup Sa W Œ0;1/! B.H/. Furthermore, given ı > 0, there isK >0

such that

kLa �Lbk �Kja� bj

for all a; b 2 Bd
ı

.
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Proof. The compactness of L0a follows from the smoothness of Va and the compactness of the embedding
H .dC1/=2.Bd / ,! H .d�1/=2.Bd /. The fact that La generates a semigroup is a consequence of the
bounded perturbation theorem; see, e.g., [Engel and Nagel 2000, p. 158]. For the Lipschitz dependence
on the parameter a, we first note that by the fundamental theorem of calculus we have

Va.�/�Vb.�/D .a
j
� bj /

Z 1

0

@
j̨
V˛.s/.�/ ds (4-2)

for ˛.s/D bC s.a� b/. This implies that, given ı > 0, we have

kVa �Vbk PHk.Bd /
.k ja� bj (4-3)

for all a; b 2 Bd
ı

. In particular,
kVa �VbkW .d�1/=2;1.Bd / . ja� bj;

and we thus have

k.Va �Vb/ukH .d�1/=2.Bd / . ja� bjkukH .d�1/=2.Bd / . ja� bjkukH .dC1/=2.Bd /

for all u 2 C1.Bd / and all a; b 2 Bd
ı

, which implies the claim. �

Next, we show that the unstable spectrum of La W D.La/�H!H consists of isolated eigenvalues
and is confined to a compact region. This is achieved by proving bounds on the resolvent and using
compactness of the perturbation.

Proposition 4.3. Fix d 2 f7; 9g. Let " > 0 and ı > 0. Then there are constants � > 0 and c > 0 such that

kRLa.�/k � c (4-4)

for all a 2 Bd
ı

and for all � 2 C satisfying Re�� �1
2
C " and j�j � �. Furthermore, if � 2 �.La/ with

Re� > �1
2

, then � is an isolated eigenvalue.

Proof. Let � 2 C with Re� >�1
2

. Then Proposition 3.1 implies that � 2 �.L/, and we therefore have the
identity

��La D Œ1�L
0
aRL.�/�.��L/: (4-5)

In what follows we prove that, for suitably chosen �, the Neumann series
P1
kD0ŒL

0
aRL.�/�

k converges.
According to (4-5), this yields

RLa.�/DRL.�/

1X
kD0

ŒL0aRL.�/�
k;

and then (4-4) follows from Proposition 3.1. First, observe that, given ı > 0, we have

kL0aRL.�/f k D kVaŒRL.�/f �1kH .d�1/=2.B/d . kŒRL.�/f �1kH .d�1/=2.Bd / (4-6)

for all a 2 Bd
ı

and all f 2H. Now, given f 2H, let uDRL.�/f . Since .��L/uD f , from the first
component of this equation, we get

�j @ju1.�/C .�C 2/u1.�/�u2.�/D f1.�/
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in the weak sense on the ball Bd . Consequently,

ku1kH .d�1/=2.Bd / .
1

j�C 2j
.ku1kH .dC1/=2.Bd /Cku2kH .d�1/=2.Bd /Ckf1kH .d�1/=2.Bd //:

Then Proposition 3.1 implies that, given " > 0,

kŒRL.�/f �1kH .d�1/=2.Bd / . j�j�1.kRL.�/f kCkf k/. j�j�1kf k

for all � 2 C with Re�� �1
2
C " and all f 2H. Together with (4-6), this gives

kL0aRL.�/f k. j�j�1kf k;

and the uniform bound (4-4) holds for some c > 0 when we restrict to j�j � � for suitably large �.
The second statement follows from the compactness of L0a. Indeed, if Re� > �1

2
then � 2 �.L/, and

according to (4-5) we have that � 2 �.La/ only if 1�L0aRL.�/ is not a bounded invertible operator,
which is equivalent to 1 being an eigenvalue of the compact operator L0aRL.�/, which according to (4-5)
implies that � is an eigenvalue of La. The fact that � is isolated follows from the analytic Fredholm
theorem (see [Simon 2015, Theorem 3.14.3, p. 194]) applied to the mapping � 7!L0aRL.�/ defined on
H�1=2 D

˚
� 2 C W Re� > �1

2

	
. �

Remark 4.4. The previous proposition implies that there are finitely many unstable spectral points of La,
i.e., the ones belonging to H WD f� 2 C W Re� � 0}, all of which are eigenvalues. This can actually be
abstractly shown just by using the compactness of L0a; see [Glogić 2022, Theorem B.1]. We nonetheless
need Proposition 4.3 as it allows us later on to reduce the spectral analysis of La for all small a to the
case aD 0; see Section 5C.

Note that the eventual presence of unstable spectral points of La prevents decay of the associated
semigroup .Sa.�//��0 on the whole space H. What is more, since L0a is compact, a spectral mapping
theorem for the unstable spectrum holds (see [Glogić 2022, Theorem B.1]), and hence eventual growing
modes of .Sa.�//��0 are completely determined by the unstable spectrum of La and the associated
eigenspaces. Therefore, in what follows we turn to spectral analysis of La. First, we show an important
result which relates solvability of the spectral equation .��La/uD 0 for aD 0, � 2H, to the existence
of smooth solutions to a certain ordinary differential equation. We note that, for aD 0, the potential Va is
radial; more precisely,

V0.�/D 2U0.�/D 2U.j�j/DW V.j�j/;

with U given in (1-5).

Proposition 4.5. Fix d 2 f7; 9g. Let � 2 C with Re�� 0. Then � 2 �.L0/ if and only if there are ` 2N0

and f 2 C1Œ0; 1� such that

T .d/
`

.�/f .�/ WD .1� �2/f 00.�/C

�
d � 1

�
� 2.�C 3/�

�
f 0.�/

�

�
.�C 2/.�C 3/C

`.`C d � 2/

�2
�V.�/

�
f .�/D 0 (4-7)

for all � 2 .0; 1/.
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Proof. Let � 2 H \ �.L0/. By Proposition 4.3, � is an eigenvalue, and hence there is a nontrivial
u 2 D.L0/ satisfying .��L0/uD 0. By a straightforward calculation, we get that the components u1
and u2 satisfy the equations

�.ıij � � i�j /@i@ju1.�/C 2.�C 3/�
j @ju1.�/C .�C 3/.�C 2/u1.�/�V0.�/u1.�/D 0 (4-8)

and

u2.�/D �
j @ju1.�/C .�C 2/u1.�/ (4-9)

weakly on Bd . Since u1 2H .dC1/=2.Bd /, we get by elliptic regularity that u1 2 C1.Bd /. Furthermore,
we may take the decomposition of u1 into spherical harmonics:

u1.�/D

1X
`D0

X
m2�`

.u1.j�j � /jY`;m/L2.Sd�1/Y`;m

�
�

j�j

�
D

1X
`D0

X
m2�`

u`;m.�/Y`;m.!/; (4-10)

where � D j�j and ! D �=j�j. To be precise, the expansion above holds in Hk.Bd1��/ for any k 2 N

and � > 0; see (1-22) and (1-23). Since the potential V0 is radially symmetric, (4-8) decouples by means
of (4-10) into a system of infinitely many ODEs:

T .d/
`

.�/u`;m.�/D 0; (4-11)

posed on the interval .0; 1/, where the operator T .d/
`

.�/ is given by (4-7). Since u1 is nontrivial,
there are indices ` 2 N0 and m 2 �` such that u`;m is nonzero and satisfies (4-11). Furthermore,
since u1 2 C1.Bd / \ H .dC1/=2.Bd /, we have that u`;m 2 C1Œ0; 1/ \ H .dC1/=2

�
1
2
; 1
�
. Now we

prove that u`;m is smooth up to � D 1. Note that � D 1 is a regular singular point of (4-11), and the
corresponding set of Frobenius indices is f0; 2��g when d D 9, and f0; 1��g when d D 7. In the first
case, if � … f0; 1; 2g, then u`;m is either analytic or behaves like .1� �/2�� near �D 1. If � 2 f0; 1; 2g,
then the nonanalytic behavior can be described by .1��/2 log.1��/, .1��/ log.1��/, or log.1��/. In
each case, singularity can be excluded by the requirement that u`;m 2H 5

�
1
2
; 1
�
. This implies that u`;m

belongs to C1Œ0; 1� and solves (4-7) on .0; 1/. The same reasoning applies to the case d D 7. Implication
in the other direction is now obvious. �

Remark 4.6. Note that Frobenius theory implies that smooth solutions f from Proposition 4.5 are in fact
analytic on Œ0; 1�, in the sense that they can be extended to an analytic function on an open interval that
contains Œ0; 1�. Consequently, determining the unstable spectrum of L0 amounts to solving the connection
problem for a family of ODEs. We note that the connection problem is so far completely resolved only for
hypergeometric equations, i.e., the ones with three regular singular points, while the ODE (4-7) has six of
them. In fact, their number can, by a suitable change of variables, be reduced to four, but this nonetheless
renders the standard ODE theory useless. Nevertheless, by building on the techniques developed recently
to treat such problems (see [Costin et al. 2016; 2017; Glogić 2018; Glogić and Schörkhuber 2021]),
for d D 9, we are able to solve the connection problem for (4-7) and we thereby provide in the following
section a complete characterization of the unstable spectrum of L0.
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5. Spectral analysis for perturbations around Ua: the case d D 9

From now on we restrict ourselves to d D 9.

5A. Analysis of the spectral ODE. In this section we investigate the ODE (4-7) for d D 9, and for
convenience we shorten the notation by letting T`.�/ WD T .9/

`
.�/, i.e., we have

T`.�/f .�/ WD .1� �2/f 00.�/C
�
8

�
� 2.�C 3/�

�
f 0.�/�

�
.�C 2/.�C 3/C

`.`C 7/

�2
�V.�/

�
f .�/;

where the potential is given by

V.�/D
480.7� �2/

.7C 5�2/2
:

Now, in view of Proposition 4.5, given ` 2 N0, we define the set

†` WD f� 2 H W there exists f`. � I�/ 2 C
1Œ0; 1� satisfying T`.�/f`. � I�/D 0 on .0; 1/g:

The central result of our spectral analysis is the following proposition.

Proposition 5.1. The structure of †` is as follows:

(1) For `D 0, we have †0 D f1; 3g, with corresponding solutions

f0.�I 1/D
1� �2

.7C 5�2/3
and f0.�I 3/D

1

.7C 5�2/3
;

which are unique up to a constant multiple.

(2) For `D 1, we have †1 D f0; 1g, and the corresponding solutions are

f1.�I 0/D
�.7� 3�2/

.7C 5�2/3
and f1.�I 1/D

�.77� 5�2/

.7C 5�2/3
:

(3) For all `� 2, we have †` D¿.

To prove this proposition, we use an adaptation of the ODE techniques devised in [Costin et al. 2016;
2017; Glogić 2018; Glogić and Schörkhuber 2021]. We will therefore occasionally refer to these works
throughout the proof. Also, we found it convenient to split the proof into two cases: ` 2 f0; 1g and `� 2.

Proof of Proposition 5.1 for ` 2 f0; 1g. For a detailed heuristic discussion of our approach we refer the
reader to [Glogić and Schörkhuber 2021, Section 4.1]. Namely, the first step is to transform T`.�/f .�/D 0
to an “isospectral” equation with four regular singular points. For this, we let x D �2, and we define the
new dependent variable y via

f .�/D �`
�
7
5
C �2

��3
y.�2/:

This yields the following equation in its canonical Heun form (see [DLMF 2010]):

y00.x/C

�
.`/

x
C
ı.�/

x� 1
�

6

x��

�
y0.x/C

˛.`; �/ˇ.`; �/x� q.`; �/

x.x� 1/.x��/
y.x/D 0; (5-1)
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with singularities at x 2 f0; 1; �;1g, where �D�7
5

, .`/D 1
2
.9C 2`/, ı.�/D �� 1,

˛.`; �/D 1
2
.�� 3C `/; ˇ.`; �/D 1

2
.�� 4C `/;

q.`; �/D� 1
20
.7.�� 3/.�C 8/C 7`2C .14�C 95/`/:

By Frobenius’ theory, any y 2 C1Œ0; 1� that solves (5-1) on .0; 1/ is in fact analytic on the closed
interval Œ0; 1�. Furthermore, the Frobenius indices of (5-1) at x D 0 are s1 D 0 and s2 D �12.7C 2`/.
Therefore, for every � 2C there is a unique solution (up to a constant multiple) to (5-1), which is analytic
at x D 0. Furthermore, this solution has a power series expansion of the form

y`;�.x/D

1X
nD0

an.`; �/x
n; a0.`; �/D 1: (5-2)

To determine the coefficients an, we insert the ansatz (5-2) into (5-1) and obtain the recurrence relation

anC2.`; �/D An.`; �/anC1.`; �/CBn.`; �/an.`; �/; (5-3)

where

An.`; �/D
7�.�C 9/C 7`2C `.8nC 14�C 103/C 8n2C 4.7�C 34/n� 40

14.nC 2/.2`C 2nC 11/
(5-4)

and

Bn.`; �/D
5.�C `C 2n� 4/.�C `C 2n� 3/

14.nC 2/.2`C 2nC 11/
; (5-5)

with the initial condition

a�1.`; �/D 0 and a0.`; �/D 1: (5-6)

Now, note that � 2†` precisely when the radius of convergence of the series (5-2) is larger than 1. To
analyze this radius, we resort to results from the theory of difference equations with variable coefficients.
Namely, since

lim
n!1

An.`; �/D
2
7

and lim
n!1

Bn.`; �/D
5
7
;

the so-called characteristic equation of (5-3) is

t2� 2
7
t � 5

7
D 0;

and according to Poincaré’s theorem (see, for example, [Elaydi 2005, p. 343], or [Glogić and Schörkhuber
2021, Appendix A]) we have that either an.`; �/D 0 eventually in n or

lim
n!1

anC1.`; �/

an.`; �/
D 1 or lim

n!1

anC1.`; �/

an.`; �/
D�

5
7
:

To explore this further, we treat cases `D 0 and `D 1 separately.

The case `D 0. First, we observe that in this case there are explicit polynomial solutions for � D 1
and �D 3, given by

y0;1.x/D 1� x and y0;3.x/D 1; (5-7)
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respectively. These in turn correspond to f0. � I 1/ and f0. � I 3/, stated in Proposition 5.1. So we have
that f1; 3g � †0. We now show the reverse inclusion. Let � 2 H n f1; 3g. Since `D 0, from (5-4) and
(5-5) we have

An.0; �/D
7�.�C 9/C 8n2C 4.7�C 34/n� 40

14.nC 2/.2nC 11/
and Bn.0; �/D

5.�C 2n� 4/.�C 2n� 3/

14.nC 2/.2nC 11/
:

Now, note that the assumption that an.0; �/D 0 eventually in n contradicts the initial condition (5-6), as
follows by backward substitution. Consequently, we have that either

lim
n!1

anC1.0; �/

an.0; �/
D 1; (5-8)

or

lim
n!1

anC1.0; �/

an.0; �/
D�

5
7
: (5-9)

We prove that (5-8) holds, from which it follows that the radius of convergence of the series (5-2) (that is
when `D 0) is 1, and therefore � …†0. To that end, we first compute

a2.0; �/D
1

5544
.�� 3/.�� 1/.7�2C 126�C 680/

and
a3.0; �/D

1
3027024

.�� 3/.�� 1/.49�4C 1519�3C 18494�2C 84224�C 46080/:

Then we define

r2.0; �/ WD
a3.0; �/

a2.0; �/
;

where the common factor .�� 3/.�� 1/ (which is an artifact of the existence of the polynomial solu-
tions (5-7)) is canceled, and consequently, according to (5-3), for n� 2, we let

rnC1.0; �/D An.0; �/C
Bn.0; �/

rn.0; �/
: (5-10)

To show (5-8), our strategy is the following. For (5-10) we construct an approximate solution Qrn (which
we also call a quasi-solution) for which limn!1 Qrn.0; �/D 1 and which is provably close enough to rn
so as to rule out (5-9). The quasi-solution we use is

Qrn.0; �/ WD
�2

2.2nC 9/.nC 1/
C

�.4nC 9/

2.2nC 9/.nC 1/
C
2nC 2

2nC 9
: (5-11)

We have elaborated on constructing such expressions in [Glogić and Schörkhuber 2021, Section 4.2.2]
and in [Costin et al. 2016, Section 4.1]; one can also check [Glogić 2018, Sections 2.6.3 and 2.7.2].
Concerning (5-11), suffice it to say here that we chose a quadratic polynomial in �with rational coefficients
in n so as to emulate the behavior of rn.0; �/ for both large and small values of the participating parameters.
To show that the quasi-solution indeed resembles rn.0; �/, we define the relative difference function

ın.0; �/ WD
rn.0; �/

Qrn.0; �/
� 1 (5-12)
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and show that it is small uniformly in � and n. To this end we substitute (5-12) into (5-10) and thereby
derive the recurrence relation for ın:

ınC1.0; �/D "n.0; �/�Cn.0; �/
ın.0; �/

1C ın.0; �/
; (5-13)

where

"n.0; �/D
An.0; �/ Qrn.0; �/CBn.0; �/

Qrn.0; �/ QrnC1.0; �/
� 1 and Cn.0; �/D

Bn.0; �/

Qrn.0; �/ QrnC1.0; �/
: (5-14)

We have the following result.

Lemma 5.2. For all n� 6 and � 2 H, the following estimates hold:

jı6.0; �/j �
1

5
; j"n.0; �/j �

3

140
C

23

40n
; and jCn.0; �/j �

5

7
�
23

10n
: (5-15)

Note that from (5-15) and (5-13), by a simple induction we infer that jın.0; �/j � 1
5

for all n � 6.
This then via (5-12) and the fact that limn!1 Qrn.0; �/D 1 excludes (5-9), and we are done. It therefore
remains to prove the preceding lemma.

Proof. First we show that for n� 6 the functions ı6.0; � /, "n.0; � /, and Cn.0; � / are analytic in H. This,
based on (5-12) and (5-14), follows from the fact that the zeros of Qrn.0; � / and the poles of r6.0; � / are
all contained in the (open) left half-plane. This is immediate for Qrn.0; � / as it is a quadratic polynomial
with two negative zeros. As for the zeros of the denominator of r6.0; �/, which is a polynomial of
degree 10, this, although it can be proven by elementary means, can be straightforwardly checked by the
Routh–Hurwitz stability criterion; see [Glogić and Schörkhuber 2021, Section A.2]. Furthermore, being
rational functions, ı6.0; � /, "n.0; � /, and Cn.0; � / are all polynomially bounded in H. Therefore, to prove
the lemma, it is enough to establish the estimates (5-15) on the imaginary axis only as they can be then
extended to all of H by the Phragmen–Lindelöf principle (in its sectorial form); see, e.g., [Titchmarsh
1939, p. 177].

In the following we prove only the third estimate in (5-15), as the first two are shown similarly. We
proceed with writing CnC6.0; �/ (note the shift in the index) as the ratio of two polynomials P1.n; �/
and P2.n; �/, both of which belong to ZŒn; ��. Then, for t 2 R, we have the following representation on
the imaginary line:

jPj .n; i t/j
2
DQj .n; t

2/

for j 2 f1; 2g, where Q1.n; t2/ 2 ZŒn; t2� and Q2.n; t2/ 2 N0Œn; t
2�. Now the desired estimate is

equivalent to
Q1.n; t

2/

Q2.n; t2/
�

�
5

7
�

23

10.nC 6/

�2
;

which is in turn equivalent to

.50nC 139/2Q2.n; t
2/� .70.nC 6//2Q1.n; t

2/� 0:

Finally, the last inequality trivially holds as the polynomial on the left (when expanded) has manifestly
positive coefficients. �
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The case `D 1. We proceed similarly to the previous case, and we therefore only provide the relevant
expressions. For �D 0 and �D 1, we have explicit polynomial solutions

y1;0.x/D 1�
3
7
x and y1;1.x/D 1�

5
77
x;

respectively, which correspond to f1. � I 0/ and f1. � I 1/ from the statement of the proposition. Therefore
f0; 1g �†1, and we proceed by showing that there are no additional elements in †1. Let � 2 H n f0; 1g.
For ` D 1, the series (5-2) yields a solution to (5-1), which is analytic at x D 0. According to (5-3),
we have

anC2.1; �/D An.1; �/anC1.1; �/CBn.1; �/an.1; �/; (5-16)

where

An.1; �/D
7.�C 1/.�C 10/C 8n2C 4.7�C 36/n

14.nC 2/.2nC 13/

and

Bn.1; �/D
5.�C 2n� 3/.�C 2n� 2/

14.nC 2/.2nC 13/
:

Since

a2.1; �/D
1

8008
�.�� 1/.7�2C 133�C 786/

and

a3.1; �/D
1

720720
�.�� 1/.7�4C 238�3C 3263�2C 17828�C 22476/;

we define

r2.1; �/ WD
a3.1; �/

a2.1; �/
;

where the common linear factors are canceled, and according to (5-16) we define rn for n � 2 by the
recurrence

rnC1.1; �/D An.1; �/C
Bn.1; �/

rn.1; �/
:

As a quasi-solution, we let

Qrn.1; �/ WD
�2

2.2nC 11/.nC 1/
C

.4nC 11/�

2.2nC 11/.nC 1/
C
nC 1

nC 4
;

and analogously to the previous case we define ın.1; �/, "n.1; �/, and Cn.1; �/. Also, by the same
method as above, we establish the following result.

Lemma 5.3. For nD 5, we have jı5.1; �/j � 1
5

. Furthermore, for every n� 5,

j"n.1; �/j �
3

140
C

5

8.nC1/
and jCn.1; �/j �

5

7
�

5

2.nC1/
(5-17)

uniformly for all � 2 H. Consequently, jın.1; �/j � 1
5

for all n � 5 and � 2 H. This implies
limn!1 rn.1; �/D 1.
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Proof of Proposition 5.1 for `� 2. Since the parameter ` is now free, the analysis is more complicated.
Namely, in addition to having to emulate the global behavior in ` as well, a quasi-solution also has to
approximate the actual solution well enough so as to, with an additional parameter `, obey the estimates
analogous to (5-17). We note that a similar problem was treated by the second and the third authors in
[Glogić and Schörkhuber 2021, Sections 4.2.1 and 4.2.2], and we closely follow their approach. First,
we introduce the change of variable x D 12�2=.5�2C 7/; by means of which the singular points �D 0
and � D 1 remain fixed, while the remaining finite singularity (which corresponds to � D1) is now
further away from the unit disk at x D 12

5
. Furthermore, by applying also the transformation

f .�/D x
`
2

�
12
5
� x

��C3
2 Qy.x/

to T`.�/f .�/D 0, we arrive at a Heun equation for Qy:

Qy00.x/C

�
Q.`/

x
C

Qı.�/

x� 1
C

�

x� Q�

�
Qy0.x/C

Q̨ .`; �/ Q̌.`; �/x� Qq.`; �/

x.x� 1/.x��/
Qy.x/D 0; (5-18)

where Q�D 12
5

, Q.`/D 1
2
.9C 2`/, Qı.�/D �� 1, � D 3

2
, Q̨ .�/D 1

2
.�� 3C `/, Q̌.�/D 1

2
.�C 11C `/,

and

Qq.`; �/D 1
20
.17`2C 2`.55C 12�/� 7�2C 80�� 303/:

The Frobenius indices of (5-18) at x D 0 are s1 D 0 and s2 D�12.7C 2`/. Therefore, we consider the
(normalized) analytic solution at x D 0:

Qy.x/D

1X
nD0

Qan.`; �/x
n; Qa0.`; �/D 1: (5-19)

Inserting (5-19) into (5-18) yields

QanC2.`; �/D QAn.`; �/ QanC1.`; �/C zBn.`; �/ Qan.`; �/; (5-20)

with

QAn.`; �/D
68n2C .48�C 68`C 356/nC 7�2C 17`2C 24�`C 128�C 178`� 15

24.nC 2/.2nC 2`C 11/

and
zBn.`; �/D

�5.2nC�C `C 11/.2nC�C `� 3/

24.nC 2/.2nC 2`C 11/
;

supplied with the initial condition Qa�1.`; �/D 0 and Qa0.`; �/D 1. Now, limn!1 QAn.`; �/D 17
12

and
limn!1 zBn.`; �/D � 5

12
, and consequently the characteristic equation of (5-3) is t2 � 17

12
t C 5

12
D 0;

with solutions t1 D 5
12

and t2 D 1. Hence, for

Orn.`; �/ WD
QanC1.`; �/

Qan.`; �/
;

either Qan.`; �/D 0 eventually in n or

lim
n!1

Orn.`; �/D 1 (5-21)
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or
lim
n!1

Orn.`; �/D
5
12
: (5-22)

Now, for � 2 H, similarly to the previous cases, we exclude the first option by backward substitution.
Then, from (5-20), we derive the recurrence relation for Orn

OrnC1.`; �/D QAn.`; �/C
zBn.`; �/

Orn.`; �/
; (5-23)

along with the initial condition r0.`; �/D A�1.`; �/. For a quasi-solution to (5-23) we use

Rn.`; �/ WD
7�2

24.nC 1/.2nC 2`C 9/
C

�.6nC 3`C 10/

3.nC 1/.2nC 2`C 9/
C

17`

48.nC 1/
C
n� 1

nC 1
:

Again, for the exact way of constructing such quasi-solutions we refer the reader to [Glogić and Schörkhu-
ber 2021, Section 4.2.2] or [Glogić 2018, Section 2.7.2]. Thereupon we set

Qın.`; �/ WD
Orn.`; �/

Rn.`; �/
� 1 (5-24)

to obtain

QınC1.`; �/D Q"n.`; �/� zCn.`; �/
Qın.`; �/

1C Qın.`; �/
;

where

Q"n.`; �/D
QAn.`; �/Rn.`; �/C zBn.`; �/

Rn.`; �/RnC1.`; �/
� 1 and zCn.`; �/D

zBn.`; �/

Rn.`; �/RnC1.`; �/
:

Now, similarly to the previous cases, we establish the following lemma.

Lemma 5.4. For all `� 2, n� 3, and � 2 H, the following estimates hold:

j Qı3.`; �/j �
1
3
; j Q"n.`; �/j �

1
8
; and j zCn.`; �/j �

5
12
:

As a consequence, j Qın.`; �/j � 1
3

for all n� 3.

From this lemma, (5-24), and the fact that limn!1Rn.`; �/D 1, we exclude (5-22) and we therefore
have limn!1 Qrn.`; �/ D 1. Hence, given � 2 H, there are no solutions to (5-18) which are analytic
on Œ0; 1�, and consequently †` D¿.

5B. The spectrum of L0. With the results from above at hand, we can provide a complete description
of the unstable spectrum of L0.

Proposition 5.5. There exists !0 2
�
0; 1
2

�
such that

�.L0/\f� 2 C W Re� > �!0g D f�0; �1; �2g; (5-25)

where �0 D 0, �1 D 1, and �2 D 3 are eigenvalues. The geometric eigenspace of �2 is spanned by
h0 D .h0;1; h0;2/, where

h0;1.�/D
1

.7C 5j�j2/3
and h0;2.�/D �

i@ih0;1.�/C 5h0;1.�/: (5-26)
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Moreover, the geometric eigenspaces of �1 and �0 are spanned by fg.k/0 g
9
kD0
D f.g

.k/
0;1; g

.k/
0;2/g

9
kD0

and
fq
.j /
0 g

9
jD1 D f.q

.j /
0;1; q

.j /
0;2/g

9
jD1, respectively, where we have in closed form

g
.0/
0;1.�/D

1� j�j2

.7C 5j�j2/3
; g

.0/
0;2.�/D �

i@ig
.0/
0;1.�/C 3g

.0/
0;1.�/;

g
.j /
0;1.�/D

�j .77� 5j�j2/

.7C 5j�j2/3
; g

.j /
0;2.�/D �

i@ig
.j /
0;1.�/C 3g

.j /
0;1.�/

(5-27)

for j D 1; : : : ; 9 as well as

q
.j /
0;1.�/D

�j .7� 3j�j2/

.7C 5j�j2/3
and q

.j /
0;2.�/D �

i@iq
.j /
0;1.�/C 2q

.j /
0;1.�/: (5-28)

Remark 5.6. Recall that Ua solves the stationary equation LUaCF .Ua/D 0. By the chain rule we get,
for any k D 1; : : : ; d ,

.LCF 0.Ua//@akUa DLa@akUa D 0:

This implies that @akUa is an eigenvector of La with eigenvalue �D 0. In particular, a direct calculation
shows that q.j /0;1.�/D c@ajUa.�/jaD0.

Proof. From Propositions 4.3, 4.5, and 5.1 we deduce the existence of !0 2
�
0; 1
2

�
for which (5-25) holds.

To determine the eigenspaces, we do the following. First, in view of Proposition 5.1, if �D 3 then `D 0,
and setting u0;1.�/D .7C 5�2/�3 in the expansion (4-10) yields (5-26). If �D 1, then either `D 0 and
u0;mD f0. � I 1/, or `D 1 and u1;mD f1. � I 1/, formD 1; : : : ; 9. Since we can choose Y1;m.!/D Qcm!m
for mD 1; : : : ; 9, these yield (5-27). For �D 0, we have `D 1 with u1;m D f1. � ; 0/, which similarly
leads to (5-28). �

In what follows, we prove that for each unstable eigenvalue the geometric and the algebraic eigenspaces
are the same. To this end, we define the associated Riesz projections. Namely, we set

H0 WD
1

2�i

Z
2

RL0.�/ d�; P0 WD
1

2�i

Z
1

RL0.�/ d�; and Q0 WD
1

2�i

Z
0

RL0.�/ d�;

where j .s/D �j C 1
2
!0e

2i�s for s 2 Œ0; 1� and j D 0; 1; 2.

Lemma 5.7. We have

dim ranH0 D 1; dim ranP0 D 10; and dim ranQ0 D 9:

Proof. We start with the observation that the ranges of the projections are finite-dimensional. Indeed,
�j would otherwise belong to the essential spectrum of L0 (see [Kato 1976, Theorems 5.28 and 5.33])
which coincides with the essential spectrum of L (since L0 is a compact perturbation of L), but this is in
contradiction with (3-2). Now we show that dim ranP0 D 10. We know from properties of the Riesz
integral that ker.L0��1/� ranP0. We therefore only need to prove the reverse inclusion. First, note
that the space ranP0 reduces the operator L0, and we have

�.L0jran P0/D f1gI
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see, e.g., [Hislop and Sigal 1996, Proposition 6.9]. Consequently, since P0 is finite-rank, the operator
1�L0jran P0 is nilpotent; i.e., there is m 2N such that .1�L0jran P0/

mD 0: Note that it suffices to show
that mD 1. We argue by contradiction, and hence assume that m� 2. Then there is u 2D.L0/ such that

.1�L0/uD v

for a nontrivial v 2 ker.1�L0/. This yields for u1 the elliptic equation

�.ıij � � i�j /@i@ju1.�/C 2.�C 3/�
j @ju1.�/C .�C 3/.�C 2/u1.�/�V0.�/u1.�/D F.�/; (5-29)

where �D 1 and
F.�/D � i@iv1.�/C .�C 3/v1.�/C v2.�/:

Since v 2 ker.1�L0/D span.g.0/0 ; : : : ;g
.9/
0 /, we have that vD

P9
kD0 ˛kg

.k/
0 for some ˛0; : : : ; ˛9 2C,

not all of which are zero. To avoid cumbersome notation we let gk D g
.k/
0;1. In the new notation, based on

(5-27), we have

F.�/D

9X
kD0

˛k.2�
i@�igkC 7gk/:

Furthermore, according to Proposition 5.1 we can rewrite F in polar coordinates as

F.�!/D ˛0.2�f
0
0.�/C 7f0.�//Y0;1.!/C

9X
iD1

˛i .2�f
0
1.�/C 7f1.�//Y1;i .!/;

where we write f0 D f0. � I 1/ and f1 D f1. � I 1/. By taking the decomposition of u1 into spherical
harmonics as in (4-10), (5-29) can be written as a system of ODEs:

T0.1/u0;1 D�˛0G0; T1.1/u1;j D� j̨G1; j D 1; : : : ; 9; (5-30)

posed on the interval .0; 1/, where Gi .�/D 2�f 0i .�/C7fi .�/ for i D 0; 1. Moreover, from the properties
of u1, we infer that u`;m 2C1Œ0; 1/\H 5

�
1
2
; 1
�
, and by the Sobolev embedding we have u`;m 2C 2Œ0; 1�.

To obtain a contradiction, we show that if some ˛k is nonzero then the corresponding ODE in (5-30) does
not admit a C 2Œ0; 1� solution. To start, we assume that ˛0 ¤ 0. For convenience, we can without loss of
generality assume that ˛0 D�1. Then u0;1 solves the ODE

.1� �2/u00.�/C
�
8

�
� 8�

�
u0.�/� .12�V.�//u.�/DG0.�/; (5-31)

where

G0.�/D
5�4� 102�2C 49

.7C 5�2/4
:

Note that

u1.�/D f0.�/D
1� �2

.7C 5�2/3

is a solution to the homogeneous version of (5-31), and by reduction of order we find a second solution:

u2.�/D u1.�/

Z �

1=2

ds

s8u1.s/2
D

1� �2

.7C 5�2/3

Z �

1=2

.7C 5s2/6

s8.1� s2/2
ds:
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Furthermore, a simple calculation yields

u2.�/' �
�7 as �! 0C

and
u2.�/D 864� 3456.1� �/ ln.1� �/CO.1� �/ as �! 1�: (5-32)

With the fundamental system fu1; u2g at hand, we can solve (5-31) by the variation of parameters formula.
Namely, we have

u.�/D c1u1.�/C c2u2.�/�u1.�/

Z �

0

u2.s/G0.s/s
8

1� s2
dsCu2.�/

Z �

0

u1.s/G0.s/s
8

1� s2
ds

for some constants c1; c2 2 C. If u 2 C 2Œ0; 1�, then c2 must be equal to zero in the above expression,
owing to the singular behavior of u2.�/ near �D 0. Then by differentiation we obtain, for � 2 .0; 1/,

u0.�/D c1u
0
1.�/�u

0
1.�/

Z �

0

u2.s/G0.s/s
8

1� s2
dsCu02.�/

Z �

0

u1.s/G0.s/s
8

1� s2
ds:

Now we inspect the asymptotic behavior of u0 as �! 1�. We first note that u01 is bounded near �D 1.
Furthermore, note thatZ 1

0

u1.s/G0.s/s
8

1� s2
ds D

Z 1

0

s2

1� s2
d

ds

�
s7.1� s2/2

.7C 5s2/6

�
ds D�2

Z 1

0

s8.1� s2/

.7C 5s2/6
DW �C

for some C > 0, which can be calculated explicitly, and C < 4� 10�8. Hence, based on (5-32), we have

u02.�/

Z �

0

u1.s/G0.s/s
8

1� s2
ds ��3456 C ln.1� �/ as �! 1�:

Moreover,

�u01.�/

Z �

0

u2.s/G0.s/s
8

1� s2
ds �

1

864
ln.1� �/ as �! 1�:

Finally, we infer that the two integral terms cannot cancel, and thus

u0.�/' ln.1� �/ as �! 1�:

In conclusion, there is no choice of c1 and c2 for which u belongs to C 2Œ0; 1�.
We similarly treat j̨ for j 2 f1; : : : ; 9g. It is enough to consider just ˛1, and without loss of generality

assume that ˛1 D�1. Then (5-30) yields the ODE

.1� �2/u00.�/C

�
8

�
� 8�

�
u0.�/�

�
12C

8

�2
�V.�/

�
u.�/DG1.�/; (5-33)

where

G1.�/D
�.4851� 1610�2� 25�4/

.7C 5�2/4
:

Note that

u1.�/D f1.�/D
�.77� 5�2/

.7C 5�2/3
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is a solution for the homogeneous problem. Similarly as above, we obtain another solution by the reduction
formula

u2.�/D u1.�/

Z �

1

ds

s8u1.s/2
D
�.77� 5�/

.7C 5�2/3

Z �

1

.7C 5s2/6

s10.77� 5s/2
ds;

and by inspection of the integral we get u2.�/' ��8 near the origin and u2.�/' 1�� near �D 1. Now,
the general solution of (5-33) on .0; 1/ is given by

u.�/D c1u1.�/C c2u2.�/�u1.�/

Z �

0

u2.s/G1.s/s
8

1� s2
dsCu2.�/

Z �

0

u1.s/G1.s/s
8

1� s2
ds: (5-34)

Assumption that u belongs to C 2Œ0; 1� forces c2 D 0 above, due to the singular behavior of u2 at �D 0.
Furthermore, from the last term in (5-34) we see that u0.�/' ln.1� �/ as �! 1�. In conclusion, (5-33)
admits no C 2Œ0; 1� solutions, and this finishes the proof for P0.

The remaining two projections are treated similarly, so we omit some details. For H0 we obtain the
analogue of (5-29) with

F.�/D 2� i@ih0;1.�/C 11h0;1.�/:

This leads to the ODE

.1� �2/u00.�/C
�
8

�
� 12�

�
u0.�/� .30�V.�//u.�/DH.�/ (5-35)

for

H.�/D
77� 5�2

.7C 5�2/4
:

The argument, similarly as above, reduces to showing that (5-35) does not admit C 2Œ0; 1� solutions. By
Proposition 5.1, we have that u1.�/D .7C 5�2/�3 solves the homogeneous variant of (5-35), with the
reduction formula yielding another solution

u2.�/D u1.�/

Z �

1=2

ds

s8.1� s2/2u1.s/2
D

1

.7C 5�2/3

Z �

1=2

.7C 5s2/6

s8.1� s2/2
ds: (5-36)

Note that u2 is singular at both �D 0 and �D 1; more precisely

u2.�/' �
�7 as �! 0C and u2.�/' .1� �/

�1 as �! 1�:

With u1 and u2 at hand, the general solution of (5-35) on the interval .0; 1/ can be written as

u.�/D c1u1.�/C c2u2.�/�u1.�/

Z �

0

.1� s2/s8H.s/u2.s/ dsCu2.�/

Z �

0

.1� s2/s8H.s/u1.s/ ds;

where the parameters c1; c2 2 C are free. The assumption that u is bounded near � D 0 forces c2 to
equal 0. Note that the first and the third term in (5-36) are bounded near � D 1. However, due to the
singular behavior of u2, the last term is unbounded near � D 1, owing to the integrand being strictly
positive on .0; 1/. In conclusion, the general solution u in (5-36) is unbounded on .0; 1/.

Finally, for Q0, we have

F.�/D

9X
jD1

j̨ .2�
i@�iq

j
0;1.�/C 5q

j
0;1.�//;
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and the accompanying analogue of (5-31) is

.1� �2/u00.�/C

�
8

�
� 6�

�
u0.�/�

�
6C

8

�2
�V.�/

�
DQ.�/;

where

Q.�/D
15�5� 406�3C 343�

.7C 5�2/4
:

A fundamental solution set to the homogeneous version of the above ODE is given by

u1.�/D
�.7� 3�2/

.7C 5�2/3
and u2.�/D u1.�/

Z �

1

1� s2

s8u1.s/2
ds;

and therefore any solution to it on .0; 1/ can be written as

u.�/D c1u1.�/C c2u2.�/�u1.�/

Z �

0

u2.s/Q.s/s
8

.1� s2/2
dsCu2.�/

Z �

0

u1.s/Q.s/s
8

.1� s2/2
ds

for a choice of c1; c2 2 C. Again, by similar asymptotic considerations as above, we infer that u00 is
necessarily unbounded on .0; 1/, and this concludes the proof. �

5C. The spectrum of La for a ¤ 0. We now investigate the spectrum of La. In particular, by a
perturbative argument we show that, for small a, an analogue of Proposition 5.5 holds for La as well.

Lemma 5.8. There exists ı� > 0 such that, for all a 2 B9
ı�

, the following holds:

�.La/\
˚
� 2 C W Re�� �1

2
!0
	
D f�0; �1; �2g;

where !0 is the constant from Proposition 5.5 and �0 D 0, �1 D 1, and �2 D 3 are eigenvalues. The
geometric eigenspace of �2 is spanned by ha D .ha;1; ha;2/, where

ha;1.�/D
.�; a/

.12.�; a/2C 5j�j2� 5/3
and ha;2.�/D �

j @jha;1.�/C 5ha;1.�/:

Moreover, the geometric eigenspaces of �0 and �1 are spanned by fg.k/a g9kD0 D f.g
.k/
a;1; g

.k/
a;2/g

9
kD0

and
fq
.j /
a g

9
jD1 D f.q

.j /
a;1; q

.j /
a;2/g

9
jD1, respectively, where

g
.0/
a;1.�/D

.j�j2� 1/.�; a/

.12.�; a/2C 5j�j2� 5/3
; g

.0/
a;2.�/D �

j @�j g
.0/
a;1.�/C 3g

.0/
a;1.�/;

g
.k/
a;1.�/D

.72.�; a/2C 5� 5j�j2/@aj .�; a/

.12.�; a/2C 5j�j2� 5/3
; g

.k/
a;2.�/D �

j @�j g
.k/
a;1.�/C 3g

.k/
a;1.�/;

and
q
.j /
a;1.�/D @ajUa.�/ and q

.j /
a;2.�/D �

j @j q
.j /
a;1.�/C 2q

.j /
a;1.�/:

Additionally, the eigenfunctions depend Lipschitz continuously on the parameter a, i.e.,

kha �hbkCkg
.k/
a �g

.k/

b
kCkq.j /a � q

.j /

b
k. ja� bj

for all a; b 2 B9
ı�

.
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Proof. Let "D�1
2
!0C

1
2

and ı > 0. Then take � defined by Proposition 4.3, and introduce the sets

�D
˚
z 2 C W Re z � �1

2
!0 and jzj � �

	
and

z�D
˚
z 2 C W Re z � �1

2
!0
	
n�:

Note that Proposition 4.3 implies that z�� �.La/ for all a 2 B9
ı
. Hence we only need to investigate the

spectrum in the compact set �. First, note that by Proposition 4.3, the set � contains a finite number
of eigenvalues. By a direct calculation it can be checked that q.j /a , g.k/a , and ha are eigenfunctions that
correspond to �0 D 0, �1 D 1, and �2 D 3, respectively. Note that we get the explicit expression above
simply by Lorentz transforming the corresponding eigenfunctions for aD 0. We now show that there are
no other eigenvalues in �. For this, we utilize the Riesz projection onto the spectrum contained in �;
see (5-39). This, however, necessitates that @� � �.La/, and we now show that this holds for small
enough a. First, note that for � 2 @� we have the identity

��La D Œ1� .L
0
a �L

0
0/RL0.�/�.��L0/: (5-37)

Then, from Proposition 4.2, we have

kL0a �L
0
0kkRL0.�/k. jaj max

�2@�
kRL0.�/k

for all a 2 B9
ı
. Therefore, there is small enough ı� > 0 such that

kL0a �L
0
0kkRL0.�/k< 1 (5-38)

for all � 2 @� and all a 2 B9
ı�

. Now from (5-38) and (5-37) we infer that @�� �.La/ for all a 2 B9
ı�

.
Thereupon we define the projection

zTa D
1

2�i

Z
@�

RLa.�/ d�: (5-39)

For a D 0, by Lemma 5.7 the rank of the operator zTa is 20. Furthermore, continuity of a 7! RLa.�/

(which follows from (5-37)) implies continuity of a 7! zTa on B9
ı�

. Thus, we conclude that dim ran zTaD20
for all a 2 B9

ı�
; see, e.g., [Kato 1976, p. 34, Lemma 4.10]. By this, we exclude any further eigenvalues.

Lipschitz continuity for the eigenfunctions follows from the fact that they depend smoothly on a; see
(4-2) and (4-3). �

6. Perturbations around Ua: bounds for the linearized time-evolution

We fix ı� > 0 as in Lemma 5.8 for the rest of this paper. In this section we propagate Lemma 5.7 to La.
For that, given a 2 B9

ı�
, we define the Riesz projections

Ha WD
1

2�i

Z
2

RLa.�/ d�; Pa WD
1

2�i

Z
1

RLa.�/ d�; and Qa WD
1

2�i

Z
0

RLa.�/ d�;

where j .s/D �j C 1
4
!0e

2�is for s 2 Œ0; 1�.
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Lemma 6.1. We have

ranHa D span.ha/; ranPa D span.g.0/a ; : : : ;g.9/a /; and ranQa D span.q.1/a ; : : : ; q.9/a /

for all a 2 B9
ı�

. Moreover, the projections are mutually transversal,

HaPa DPaHa DHaQa DQaHa DQaPa DPaQa D 0;

and depend Lipschitz continuously on the parameter a, i.e.,

kHa �HbkCkPa �PbkCkQa �Qbk. ja� bj
for all a; b 2 B9

ı�
.

Proof. The Riesz projections depend continuously on a, hence the dimensions of the ranges remain the
same. Transversality follows from the definition of Riesz projections. The Lipschitz bounds follow from
the second resolvent identity and Proposition 4.2. �

Since Pa and Qa are finite-rank, for every f 2H, there are ˛k 2 C and ˇj 2 C such that

Paf D

9X
kD0

˛kg.k/a and Qaf D

9X
jD1

ˇjq.j /a :

We thereby define the projections

P.k/a f WD ˛kg.k/a and Q.j /a f WD ˇjq.j /a :

Clearly, the projections satisfy the identities

Pa D

9X
kD0

P.k/a ; Qa D

9X
jD1

Q.j /a and P.i/a P
.j /
a D ı

ijP.i/a ; Q.k/a Q.l/a D ı
klQ.k/a :

We also define
Ta WD I �Ha �Pa �Qa:

By Lemma 6.1, we have that Ta is Lipschitz continuous with respect to a and the projections Ta, Ha,
P
.k/
a , and Q.j /a are mutually transversal. Moreover, the Lipschitz continuity of Qa and Pa with respect

to a implies

kQ.j /a �Q
.j /

b
k. ja� bj; j D 1; : : : ; 9; and kP.k/a �P

.k/

b
k. ja� bj; k D 0; : : : ; 9;

for all a; b 2 B9
ı�

. We now describe the interaction of the semigroup .Sa.�//��0 with these projections.

Proposition 6.2. The projection operatorsHa, P.k/a , andQ.j /a commute with the semigroup Sa.�/, i.e.,

ŒSa.�/;Ha�D ŒSa.�/;P
.k/
a �D ŒSa.�/;Q

.j /
a �D 0 (6-1)

for j D 1; : : : ; 9, k D 0; : : : ; 9, and � � 0. Furthermore,

Sa.�/Ha D e
3�Ha; Sa.�/P

.k/
a D e

�P.k/a ; and Sa.�/Q
.j /
a DQ

.j /
a ; (6-2)
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and there exists ! > 0 such that

kSa.�/Tauk. e�!�kTauk (6-3)

for all u 2H, a 2 B9
ı�

, and � � 0. Moreover, we have

kSa.�/Ta �Sb.�/Tbk. e�!� ja� bj (6-4)

for all a; b 2 B9
ı�

and � � 0.

Proof. Equation (6-1) follows from the properties of the Riesz projections Ha, Pa, and Qa. In particular,
they commute with Sa.�/, and this yields, for example, that

P.k/a Sa.�/uDPaP
.k/
a Sa.�/uDP

.k/
a SaPa.�/uD e

�P.k/a PauD Sa.�/P
.k/
a u:

Equation (6-2) follows from the correspondence between point spectra of a semigroup and its generator.
Equation (6-3) follows from Gearhart–Prüss theorem. More precisely, we have that ranTa reduces
both La and Sa.�/, and furthermore

RLajran Ta
.�/ exists in

˚
z 2 C W Re z � �1

2
!0
	

and is uniformly bounded there, i.e., according to Proposition 4.3 there exists c > 0 such that

kRLajran Ta
.�/k � c

for all Re���1
2
!0 and all a 2B9

ı�
. Hence, by the Gearhart–Prüss theorem (see [Engel and Nagel 2000,

p. 302, Theorem 1.11]), for every " > 0, we have

kSa.�/jran Tak." e
�.!0

2
�"/� (6-5)

for all a 2 B9
ı�

and � � 0. From here (6-3) holds for any ! < 1
2
!0. We remark in passing that (6-3) also

follows from purely abstract considerations; see [Glogić 2022, Theorem B.1]. Finally, to obtain (6-4) we
do the following. First, for u 2 D.La/ we define the function

ˆa;b.�/D
Sa.�/Tau�Sb.�/Tbu

ja� bj
:

Note that this function satisfies the evolution equation

@�ˆa;b.�/DLaTaˆa;b.�/C
LaTa �LbTb

ja� bj
Sb.�/Tbu

with the initial condition

ˆa;b.0/D
Tau�Tbu

ja� bj
;

and therefore by Duhamel’s principle we have

ˆa;b.�/D Sa.�/Ta
Tau�Tbu

ja� bj
C

Z �

0

Sa.� � �
0/Ta

LaTa �LbTb

ja� bj
Sb.�

0/Tbu d�
0:



654 ELEK CSOBO, IRFAN GLOGIĆ AND BIRGIT SCHÖRKHUBER

Now, from Proposition 4.2 and Lemma 6.1, we get

kLaTa �LbTbk. ja� bj;

and from this and (6-5) we obtain

kˆa;b.�/k. e�.
!0
2
�"/�

.1C �/kuk. e�.
!0
2
�2"/
kuk:

By choosing " > 0 such that ! D 1
2
!0� 2" > 0, we conclude the proof. �

7. Nonlinear theory

With the linear theory at hand, we turn to studying the Cauchy problem for the nonlinear equation (2-9).
Following the usual approach of first constructing strong solutions, we recast (2-9) in an integral form
à la Duhamel,

ˆ.�/D Sa1.�/ˆ.0/C

Z �

0

Sa1.� � �/.Ga.�/.ˆ.�//� @�Ua.�// d� (7-1)

(where .Sa1.�//��0 is the semigroup generated by La1), and resort to fixed-point arguments. Our aim
is to construct global and decaying solutions to (7-1). An obvious obstruction to that is the presence of
growing modes of Sa1.�/, see (6-2), and we deal with them in the following way. First, we note that the
instabilities coming from Qa1 and Pa1 are not genuine, as they arise from the Lorentz and space-time
translation symmetries of (1-1).

We take care of the Lorentz instability by modulation. Namely, the presence of the unstable space
ranQa1 is related to the freedom of choice of the function a W Œ0;1/ 7! R9 in the ansatz (2-8), and,
roughly speaking, we prove that given small enough initial data ˆ.0/, there is a way to choose a such
that it leads to a solution ˆ of (7-1) which eventually (in � ) gets stripped of any remnant of the unstable
space ranQa1 brought about by initial data.

With the rest of the instabilities, which cause exponential growth, we deal differently. Namely, we
introduce to the initial data suitable correction terms which serve to suppress the growth. Also, as
mentioned, the unstable space ranPa1 is another apparent instability as it is an artifact of the spacetime
translation symmetries, and we use it to prove that the corrections corresponding toPa1 can be annihilated
by a proper choice of the parameters x0 and T , which appear in the initial data ˆ.0/; see (2-6). The
remaining instability, coming from Ha1 , is the only genuine one, and the correction corresponding to it
is reflected in the modification of the initial data in the main result; see (1-16).

To formalize the process described above, we first make some technical preparations. For the rest of
this paper, we fix ! > 0 from Proposition 6.2. Then, we introduce the function spaces

X WD fˆ 2 C.Œ0;1/;H/ W kˆkX <1g; where kˆkX WD sup
�>0

e!�kˆ.�/k;

and

X WD fa 2 C 1.Œ0;1/;R9/ W a.0/D 0; kakX <1g; where kakX WD sup
�>0

Œe!� j Pa.�/jC ja.�/j�:
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For a 2X , we define

a1 WD lim
�!1

a.�/:

Furthermore, for ı > 0, we set

Xı WD fˆ 2 X W kˆkX � ıg and Xı WD
n
a 2X W sup

�>0

Œe!� j Pa.�/j�� ı
o
:

To ensure that all terms in (7-1) are defined, we must impose some size restriction on the function a.
Note that it is enough to consider a 2Xı for ı < ı�!, as then ja.�/j � ı=! < ı� for all � � 0. We will
also frequently make use of the inequality

ja1� a.�/j �

Z 1
�

j Pa.�/j d� �
ı

!
e�!�: (7-2)

Furthermore, note that, for a; b 2Xı and � � 0, we have ja.�/�b.�/j � ka�bkX ; in particular, we have
ja1� b1j � ka� bkX .

7A. Estimates of the nonlinear terms. With an eye toward setting up a fixed-point scheme for (7-1), we
now establish necessary bounds for the nonlinear terms. Namely, we treat

Ga.�/.ˆ.�//D ŒL
0
a.�/�L

0
a1
�ˆ.�/CF .ˆ.�//:

Lemma 7.1. Given ı 2 .0; ı�!/, we have

kGa.�/.ˆ.�//k. ı2e�2!�;

kGa.�/.ˆ.�//�Gb.�/.‰.�//k. ıe�2!� .kˆ�‰kX Cka� bkX /
(7-3)

for all ˆ;‰ 2 Xı , a; b 2Xı , and � � 0, where the implicit constants in the above estimates are absolute.

Proof. First, since H 5.B9/ is a Banach algebra, we have that

ku21� v
2
1kH4.B9/ . ku1C v1kH5ku1� v1kH5 ;

and hence

kF .u/�F .v/k. .kukCkvk/ku� vk (7-4)

for all u; v 2 H. Next, we prove the second estimate in Lemma 7.1, as the first one follows from it.
From (7-4), Proposition 4.2, and inequality (7-2), we obtain

kF .ˆ.�//�F .‰.�//k. ıe�2!�kˆ�‰kX ;

kŒL0a.�/�L
0
a1
�.ˆ.�/�‰.�//k. ıe�2!�kˆ�‰kX

(7-5)

for ˆ;‰ 2 Xı and a 2Xı . Furthermore, using the fact that

Va1.�/�Va.�/.�/D

Z 1
�

@sVa.s/.�/ ds D

Z 1
�

Pak.s/'a.s/;k.�/ ds; (7-6)
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with 'a;k.�/D @akVa.�/, together with the smoothness of 'a;k , we infer

k.ŒL0a.�/�L
0
a1
��ŒL0b.�/�L

0
b1
�/uk. ku1kH4.B9/

Z 1
�

k Pak.s/'a.s/;k.�/�Pb
k.s/'b.s/;k.�/kW 4;1.B9/ds

. kuk
Z 1
�

j Pa.s/�Pb.s/jdsCkuk

Z 1
�

j Pa.s/jja.s/�b.s/jds

. kuk
Z 1
�

e�!ska�bkX ds:

Hence
k.ŒL0a.�/�L

0
a1
�� ŒL0b.�/�L

0
b1
�/‰.�/k. ıe�2!�ka� bkX

for a; b 2Xı and ‰ 2 Xı , and this together with (7-5) concludes the proof. �

7B. Suppressing the instabilities. In this section we formalize the process of taming the instabilities. In
particular, by introducing correction terms to the initial data we arrive at a modified equation, to which
we prove existence of global and decaying solutions.

We first derive the so-called modulation equation for the parameter a. Recall that

@�Ua.�/ D Paj .�/q
.j /

a.�/
D

9X
jD1

Paj .�/q
.j /

a.�/
I

see Remark 5.6. We introduce a smooth cut-off function � W Œ0;1/! Œ0; 1� satisfying �.�/ D 1 for
� 2 Œ0; 1�, �.�/ D 0 for � � 4, and j�0.�/j � 1 for all � 2 .0;1/. The aim is to construct a function
a W Œ0;1/ 7! R9 such that it yields a solution ˆ to (7-1) for which

Q.j /a1ˆ.�/D �.�/Q
.j /
a1
ˆ.0/ (7-7)

for all � � 0. In that case, although Q.j /a1ˆ.0/¤ 0 in general, we have that Q.j /a1ˆ.�/D 0 eventually
in � . According to (7-1) and Proposition 6.2, (7-7) adopts the form

.1��.�//Q.j /a1uC

Z �

0

.Q.j /a1Ga.�/.ˆ.�//�Q
.j /
a1
Pai .�/q

i
a.�// d� D 0;

where for convenience we write u instead of ˆ.0/. Using Q.j /a1q
.i/
a1 D ı

ijq
.j /
a1 , we get the modulation

equation

aj .�/q.j /a1 D�

Z �

0

�0.�/Q.j /a1u d� C

Z �

0

.Q.j /a1Ga.�/.ˆ.�//�Q
.j /
a1
Pai .�/.q

.i/

a.�/
� q.i/a1// d�

for j D 1; : : : ; 9. By introducing the notation

Aj .a;ˆ;u/.�/ WD �
0.�/Q.j /a1uC .Q

.j /
a1
Ga.�/.ˆ.�//�Q

.j /
a1
Pai .�/.q

.i/

a.�/
� q.i/a1//;

the modulation equation can be written succinctly as

aj .�/D Aj . � ; ˆ;u/ WD kq
.j /
a1
k
�2

Z �

0

.Aj .a;ˆ;u/.�/jq
.j /
a1
/ d�; j D 1; : : : ; 9: (7-8)

In the following we prove that, for small enough ˆ and u, the system (7-8) admits a global (in � ) solution.
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Lemma 7.2. For all sufficiently small ı > 0 and all sufficiently large C >0, the following holds: For every
u 2H satisfying kuk � ı=C and every ˆ 2 Xı , there exists a unique a D a.ˆ;u/ 2 Xı such that (7-8)
holds for � � 0. Moreover,

ka.ˆ;u/� a.‰; v/kX . kˆ�‰kX Cku� vk (7-9)

for all ˆ;‰ 2 Xı and u; v 2 Bı=C .

Proof. We use a fixed-point argument. Using the bounds from Lemma 7.1, one can show that, given u
and ˆ that satisfy the above assumptions, the following estimates hold:

kAj .a;ˆ;u/.�/k.
�
ı

C
C ı2

�
e�2!� and kAj .a;ˆ;u/.�/�Aj .b;ˆ;u/.�/k. ıe�!�ka� bkX

for all a; b 2Xı . From here, according to the definition in (7-8), we have that, for all small enough ı > 0
and all large enough C > 0, given ˆ 2 Xı and u 2 Bı=C , the ball Xı is invariant under the action of the
operator A. � ; ˆ;u/, which is furthermore a contraction on Xı . Hence (7-8) has a unique solution in Xı .
The Lipschitz continuity of the solution map follows from the estimate

ka� bkX � kA.a;ˆ;u/�A.b;ˆ;u/kX CkA.b;ˆ;u/�A.b;ˆ; v/kX CkA.b;ˆ; v/�A.b;‰; v/kX

. ıka� bkX Cku� vkCkˆ�‰kX
by taking small enough ı > 0. �

For the remaining instabilities, we introduce the correction terms

C1.ˆ; a;u/ WDPa1

�
uC

Z 1
0

e�� .Ga.�/.ˆ.�//� @�Ua.�// d�

�
;

C2.ˆ; a;u/ WDHa1

�
uC

Z 1
0

e�3� .Ga.�/.ˆ.�//� @�Ua.�// d�

�
;

and set C WD C1CC2. Consequently, we investigate the modified integral equation

ˆ.�/D Sa1.�/.u�C .ˆ; a;u//C

Z �

0

Sa1.� � �/.Ga.�/.ˆ.�//� @�Ua.�// d�

DWK .ˆ; a;u/.�/: (7-10)

Proposition 7.3. For all sufficiently small ı > 0 and all sufficiently large C > 0, the following holds: For
every u 2H with kuk � ı=C there exist functions ˆ 2 Xı and a 2 Xı such that (7-10) holds for � � 0.
Furthermore, the solution map u 7! .ˆ.u/; a.u// is Lipschitz continuous, i.e.,

kˆ.u/�ˆ.v/kX Cka.u/� a.v/kX . ku� vk (7-11)

for all u; v 2 Bı=C .

Proof. We choose C >0 and ı > 0 such that Lemma 7.2 holds. Then, for fixed u2Bı=C , there is a unique
aD a.ˆ;u/ 2Xı associated to every ˆ 2 Xı such that the modulation equation (7-8) is satisfied. Hence
we can define Ku.ˆ/ WDK .ˆ; a;u/. We intend to show that for small enough ı > 0 the operator Ku is a
contraction on Xı . To show the necessary bounds, we first split Ku.ˆ/ according to projections Pa1 ,
Qa1 , Ha1 , and Ta1 , and then estimate each part separately.
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First, note that the transversality of the projections implies

Pa1Ku.ˆ/.�/D�

Z 1
�

e���Pa1.Ga.�/.ˆ.�//� @�Ua.�// d�

and

Ha1Ku.ˆ/.�/D�

Z 1
�

e3.���/Ha1.Ga.�/.ˆ.�//� @�Ua.�// d�:

Now, since

@�Ua.�/ D Paj .�/q
.j /
a1
C Paj .�/Œq

.j /

a.�/
� q.j /a1 �

and

kq
.j /

a.�/
� q.j /a1k. ıe

�!�;

we have

kHa1@�Ua.�/kCkPa1@�Ua.�/kCk.1�Qa1/@�Ua.�/k. ı2e�2!� (7-12)

for all a 2Xı . This, together with Lemma 7.1 and the fact that

Qa1Ku.ˆ/.�/D �.�/Qa1u (7-13)

(see (7-7)), yields the bounds

kHa1Ku.ˆ/.�/kCkPa1Ku.ˆ/.�/k. ı2e�2!�;

kQa1Ku.ˆ/.�/k.
ı

C
e�2!�

(7-14)

for all ˆ 2 Xı . On the other hand, for the stable subspace we have

Ta1Ku.ˆ/.�/D Sa1.�/Ta1uC

Z �

0

Sa1.� � �/Ta1.Ga.�/.ˆ.�//� @�Ua.�// d�;

and by Lemma 7.1, Proposition 6.2, and (7-12), we get

kTa1Ku.ˆ/.�/k.
�
ı

C
C ı2

�
e�!� (7-15)

for all ˆ 2 Xı . Now, from (7-14) and (7-15) we see that Ku maps Xı into itself for all ı > 0 sufficiently
small and all C > 0 sufficiently large. The contraction property of Ku is established similarly. Namely,
there is the analogue of (7-12):

kHa1@�Ua.�/�Hb1@�Ub.�/kCkPa1@�Ua.�/�Pb1@�Ub.�/k

Ck.1�Qa1/@�Ua.�/� .1�Qb1/@�Ub.�/k. ı
2e�2!�

for all a; b 2Xı . Furthermore, by Lemma 7.1, (7-13), and Lemma 7.2, we get the analogous estimates
to (7-14); namely, we have

kHa1Ku.ˆ/.�/�Hb1Ku.‰/.�/kCkPa1Ku.ˆ/.�/�Pb1Ku.‰/.�/k

CkQa1Ku.ˆ/.�/�Qb1Ku.‰/.�/k. ıe�2!�kˆ�‰kX
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for all ˆ;‰ 2 Xı , where aD a.ˆ;u/ and b D a.‰;u/. Also, in line with (7-15), we have

kTa1Ku.ˆ/.�/�Tb1Ku.‰/.�/k. ıe�!�kˆ�‰kX

for all ˆ;‰ 2 Xı . By combining these estimates we get

kKu.ˆ/�Ku.‰/kX . ıkˆ�‰kX (7-16)

for all ˆ;‰ 2 Xı , and contractivity follows by taking small enough ı > 0.
For the Lipschitz continuity, similarly to proving (7-9), we use the integral equation (7-10) to show

that, given sufficiently small ı > 0,
kˆ.u/�ˆ.v/kX . ku� vk

for all u 2 Bı=C , and then (7-9) implies (7-11). �

7C. Conditional stability in similarity variables. According to Proposition 7.3 and (2-8) there exists
a family of initial data close to U0 which lead to global (strong) solutions to (2-3), which furthermore
converge to Ua1 for some a1 close to a D 0; with minimal modifications, the same argument can
be carried out for Ua for any a ¤ 0. In conclusion, we have conditional asymptotic orbital stability
of the family fUa W a 2 R9g, the condition being that the initial data belong to the set which ensures
global existence and convergence. In this section we show that this set represents a Lipschitz manifold of
codimension 11.

Let ı > 0 and C > 0 be as in Proposition 7.3, and let u 2 Bı=C . Also, let us write

C .u/ WD C .ˆ.u/; a.u/;u/;

where the mapping u 7! .ˆ.u/; a.u// is defined in Proposition 7.3. Moreover, we denote the projection
corresponding to all unstable directions by

Ja WDPaCHa:

Note that by definition Ja1C .u/D C .u/, and we have the Lipschitz estimate

kJa �Jbk. ja� bj
for all a; b 2Xı .

Proposition 7.4. There existsC >0 such that, for all sufficiently small ı>0, there exists a codimension-11
Lipschitz manifold MDMı;C �H with 0 2M, defined as the graph of a Lipschitz continuous function
M W kerJ0\Bı=2C ! ranJ0,

M WD
n
vCM .v/ W v 2 kerJ0; kvk �

ı

2C

o
� fu 2 Bı=C W C .u/D 0g:

Furthermore, for every u 2M, there exists .ˆ; a/D .ˆu; au/ 2 Xı �Xı satisfying

ˆ.�/D Sa1.�/uC

Z �

0

Sa1.� � �/.Ga.�/.ˆ.�//� @�Ua.�// d� (7-17)

for all � � 0. Moreover, there exists K > C such that fu 2 Bı=K W C .u/D 0g �Mı;C :
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Proof. First, we show that, for small enough ı > 0, we have C .u/D 0 if and only if J0C .u/D 0. Assume
that J0C .u/D 0. Then we obtain the estimate

kC .u/k � kJ0C .u/C .Jau;1 �J0/C .u/k. jau;1jkC .u/k:

Since au;1DO.ı/, we get C .u/D 0. The other direction is obvious. Now we construct the mapping M.
Let u 2H and take the decomposition uD vCw 2 kerJ0˚ ranJ0. Fix v 2 kerJ0 and define

zCv W ranJ0! ranJ0; zCv.w/D J0C .vCw/:

We establish that this mapping is invertible at zero, provided v is small enough, and we obtainwD zC�1v .0/.
This defines a mapping

M W kerJ0! ranJ0; M .v/ WD zC�1v .0/:

To show this, we use a fixed-point argument. Recall the definition of the correction terms C D C1CC2,
C1 D

P9
kD0C

k
1 with

C k1 .ˆ; a;u/DP
.k/
a1
uCP.k/a1I1.ˆ; a/

and
C2.ˆ; a;u/DHa1uCHa1I2.ˆ; a/;

where

I1.ˆ; a/ WD

Z 1
0

e�� ŒGa.�/.‰.�//� @�Ua.�/� d�

and

I2.ˆ; a/ WD

Z 1
0

e�3� ŒGa.�/.‰.�/� @�Us.�//� d�:

We write

F1.u/ WD

9X
kD0

F k1 .u/D

9X
kD0

P.k/a1I1.ˆu; au/

and
F2.u/ WDHa1I2.ˆu; au/:

By Lemma 7.1 and (7-12) we infer

kF k1 .u/k. ı
2 and kF2.u/k. ı2: (7-18)

Now, for v 2 kerJ0, we get

zCv.w/D J0C .vCw/D J0Ja1.vCw/CJ0.F1.vCw/CF2.vCw//

D J 20wCJ0.Ja1 �J0/wCJ0Ja1vCJ0.F1.vCw/CF2.vCw//

DwCJ0.Ja1 �J0/.vCw/CJ0.F1.vCw/CF2.vCw//:

Introducing the notation

�v.w/ WD J0.J0�Ja1/.vCw/�J0.F1.vCw/CF2.vCw//;

we rewrite equation zCv.w/D 0 as
wD�v.w/: (7-19)
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Now, for ı > 0 and C > 0 from Proposition 7.3, we set

zBı=C .v/ WD
n
w 2 ranJ0 W kvCwk �

ı

C

o
:

We show that �v W zBı=C .v/! zBı=C .v/ is a contraction mapping for sufficiently small v. Let v 2H with
kvk � ı=.2C /, and let w 2 zBı=C .v/. Using (7-18), we estimate

k�v.w/k � kJ0�Ja1kkvCwkCkF1.vCw/kCkF1.vCw/k.
ı2

C
C ı2:

Hence, by fixing C > 0, we have kvC�v.w/k � ı=C for all small enough ı > 0. So the ball zBı=C .v/ is
invariant under the action of �v. To prove contractivity, first, for w; Qw 2 zBı=C .v/, we associate to vCw
and vC Qw the functions .ˆ; a/ and .‰; b/ in Xı �Xı by Proposition 7.3, respectively. Then we obtain

k�v.w/��v. Qw/k � kJ0.J0�Ja1/.vCw/�J0.J0�Jb1/.vC Qw/k

CkF1.vCw/�F1.vC Qw/kCkF2.vCw/�F2.vC Qw/k;

and writing

J0.J0�Ja1/.vCw/�J0.J0�Jb1/.vC Qw/D J0.J0�Ja1/.w� Qw/�J0.Ja1 �Jb1/.vC Qw/

we get by Proposition 7.3 the estimate

kJ0.J0�Ja1/.w� Qw/kCkJ0.Ja1 �Jb1/.vC Qw/k. ja1jkw� QwkC ja1� b1jkvCwk

. ıkw� QwkC ı

C
ka� bkX

. ıkw� Qwk:

On the other hand, by Lemma 7.1 and (7-12), we obtain, for k D 0; : : : ; 9, that

kP.k/a1I1.ˆ; a/�P
.k/

b1
I2.‰; b/k. ı.kˆ�‰kX Cka� bkX /

and

kHa1I2.ˆ; a/�Hb1I2.‰; b/k. ı.kˆ�‰kX Cka� bkX /:

Thus we get the Lipschitz estimate

kF1.vCw/�F1.vC Qw/kCkF2.vCw/�F2.vC Qw/k. ıkw� Qwk;

and we conclude that, for all small enough ı > 0, the operator �v W zBı=C .v/! zBı=C .v/ is contractive,
with the contraction constant 1

2
. Consequently, by the contraction map principle we get that, for every

v 2 kerJ0\Bı=2C , there exists a unique w 2 zBı=C .v/ that solves (7-19); hence C .vCw/D zCv.w/D 0.
Next, we establish the Lipschitz-continuity of the mapping v 7!M .v/. Let v; Qv 2 kerJ0\Bı=2C and

w; Qw 2 zBı=C be the corresponding solutions to (7-19). We get

kM .v/�M . Qv/k D kw� Qwk � k�v.w/��v. Qw/kCk�v. Qw/��Qv. Qw/k

�
1
2
kw� QwkCk�v. Qw/��Qv. Qw/k:



662 ELEK CSOBO, IRFAN GLOGIĆ AND BIRGIT SCHÖRKHUBER

The second term we estimate with

k�v. Qw/��Qv. Qw/k D
J0.J0�JavC Qw;1

/.vC Qw/�J0.F1.vC Qw/CF2.vC Qw//

�J0.J0�Ja QvC Qw;1/CJ0.F1. QvC Qw/CF2. QvC Qw//


. kJ0.Ja QvC Qw;1�JavC Qw;1
/ QwkCkJ0.JavC Qw;1

v�Ja QvC Qw;1w/k

CkJ0.F1. QvC Qw/CF2. Qv/C Qw/k

. jaQvC Qw;1� avC Qwjk QwkCk Qv� vkC jaQvC Qw;1jk QvkC ık Qv� vk

. ı

C
k Qv� vkC

ı

2C
k Qv� vkC ık Qv� vk

. k Qv� vk:

Thereby we obtain the claimed Lipschitz estimate

kM .v/�M . Qv/k � 2k�v. Qw/��. Qw/k. kv� Qvk:

We note that, for u D 0, the associated .ˆ; a/ is trivial, i.e., ˆ D 0 and a D 0. Thus, we have
C .0/D F1.0/CF2.0/D 0. Moreover, uD vCwD 0 if and only if v D wD 0. Since in this case v
satisfies the smallness condition, w solving C .0Cw/D 0 is unique; hence M .0/D 0.

Finally, let u 2H satisfy C .u/D 0. Then, since 1�J0 is a bounded operator on H,

k.1�J0/uk. kuk:

We obtain vu WD .1 � J0/u 2 kerJ0 and kvuk � ı=.2C / for kuk � ı=K for K > C large enough.
Uniqueness yields wu WD J0uDM .vu/, and hence u 2Mı;C . �

Remark 7.5. For each correction term, the same argument yields the existence of Lipschitz manifolds
M1;M2 �H of codimensions 10 and 1, respectively, characterized by the vanishing of C1 and C2. In
particular, M can be characterized as a subset of the intersection M1 \M2 in a small neighborhood
around zero.

7D. Proofs of Propositions 2.1 and 2.2.

Proof of Proposition 2.1. Let ˆ0 2Mı;C , where Mı;C is the manifold defined in Proposition 7.4. In
particular, kˆ0k� ı=C and C .ˆ0/D 0. By Proposition 7.4 there is a pair .ˆ; a/2Xı �Xı which solves
(7-17) with initial data uDˆ0. Furthermore, after substituting the variation of constants formula

Sa1.�/D S .�/C

Z �

0

S .� � �/L0a1Sa1.�/ d�

into (7-17), a straightforward calculation yields that ‰.�/ WD Ua.�/Cˆ.�/ satisfies

‰.�/D S .�/.U0Cˆ0/C

Z �

0

S .� � �/F .‰.�// d� (7-20)

for all � � 0. Then, based on (4-3) and (7-2) we infer that

k‰.�/�Ua1k � kˆ.�/kCkUa.�/�Ua1k. ıe�!�

for all � � 0, as claimed. �
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Proof of Proposition 2.2. Let ˆ0 2M\ .C1.B9/�C1.B9//, and let ‰ 2C.Œ0;1/;H/ be the solution
of (7-20) associated to ˆ0 via Proposition 2.1. To prove smoothness of ‰.�/ (for fixed �) we use the
representation (7-20). Recall that we defined S .�/ WD Sk.�/ for k D 1

2
.d C 1/ D 5 with .Sk.�//��0

denoting the free wave evolution of Proposition 3.1. Now, using Lemma 3.6, we infer from (7-20) that

k‰.�/kH6.B9/�H5.B9/ . e�
�
2 kU0Cˆ0kH6.B9/�H5.B9/C

Z �

0

e�
���
2 kF .‰.�//kH6.B9/�H5.B9/d�

. e�
�
2 kU0Cˆ0kH6.B9/�H5.B9/C

Z �

0

e�
���
2 k‰.�/k2

H5.B9/�H4.B9/
d� . 1

for all � � 0. Then inductively, for k � 5, we get

k‰.�/kHk.B9/�Hk�1.B9/ . 1

for all � � 0. Consequently, by the Sobolev embedding we have ‰.�/ 2C1.B9/�C1.B9/ for all � � 0.
To get regularity in � we do the following. First, by local Lipschitz continuity of F WHk 7!Hk for

every k � 5 and Gronwall’s lemma we get from (7-20) that ‰ W Œ0; T � 7!Hk is Lipschitz continuous for
every T >0 and k � 5. Consequently, F .‰. � //;LF .‰. � // W Œ0; T � 7!Hk are Lipschitz continuous. The
latter is immediate from interpreting L as a map from Hk to HkC2 and using the Lipschitz continuity
of ‰. Therefore, ‰ 2 C 1.Œ0;1/;Hk/, with

@�‰.�/DL‰.�/CF .‰.�//

D S .�/L.U0Cˆ0/C

Z �

0

S .� � �/LF .‰.�// d� CF .‰.�// (7-21)

for every � � 0; see, e.g., [Pazy 1983, p. 108, Corollary 2.6]. Consequently, by regularity of F ,
F .‰. � //;LmF .‰. � // 2 C 1.Œ0;1/;Hk/ for all m� 0 and k � 5. Therefore, from the second equality
of (7-21), we get that @�‰ 2 C 1.Œ0;1/;Hk/, with

@2�‰.�/D S .�/L
2.U0Cˆ0/C

Z �

0

S .� � �/L2F .‰.�// d� CLF .‰.�//C @�F .‰.�// (7-22)

for all � � 0. Inductively, we get that ‰ 2 Cm.Œ0;1/;Hk/ for all m � 0 and k � 5. In particular,
by the Sobolev embedding, @m� ‰.�/ 2 C

1.B9/�C1.B9/. Additionally, by the Sobolev embedding
Hk.B9/ ,! L1.B9/ for k � 5, we get that the derivatives in � hold pointwise. As a consequence, by
(a strong version of) the Schwarz theorem (see, e.g., [Rudin 1976, p. 235, Theorem 9.41]), we get that
mixed derivatives of all orders in � and � exist, so ‰ 2 C1.Z/�C1.Z/, and the first equality of (7-21)
holds classically. �

7E. Variation of blow-up parameters and proof of Proposition 2.4. In this section we prove boundedness
and continuity properties of the initial data operator ‡ (see (2-6)) which are necessary to establish
Proposition 2.4. We assume that x0 2 B9

1=2
and T 2

�
1
2
; 3
2

�
DW I . We also introduce the notation

Y WDH 6.B92/�H
5.B92/;

and denote by BY the unit ball in Y .
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Lemma 7.6. The initial data operator ‡ W BY � I �B9
1=2
!H is Lipschitz continuous, i.e.,

k‡.v; T1; x0/�‡.w; T2; y0/k. kv�wkY CjT1�T2jC jx0�y0j

for all v;w 2 BY , all T1; T2 2 I , and all x0; y0 2B9
1=2

. Furthermore, for ı > 0 sufficiently small, we have

k‡.v; T; x0/k. ı

for all v 2 Y with kvkY � ı, all T 2 Œ1� ı; 1C ı�� I , and all x0 2 B9
ı
.

Proof. Let v 2 C1.B92/. Let T 2
�
1
2
; 3
3

�
and x0; y0 2 B9

1=2
. Then we get by the fundamental theorem of

calculus that

v.T �C x0/� v.T �Cy0/D .x
i
0�y

i
0/

Z 1

0

@iv.T �Cy0C s.x0�y0// ds:

This implies that kv.T � Cx0/� v.T � Cy0/kL2.B9/ . kvkH1.B92/
jx0 � y0j. The same argument yields,

for all k 2 N, that

kv.T � Cx0/� v.T � Cy0/kHk.B9/ . kvkHkC1.B92/
jx0�y0j: (7-23)

Similarly, we get, for all T1; T2 2
�
1
2
; 3
2

�
and all x0 2 B9

1=2
, that

kv.T1 � Cx0/� v.T2 � Cx0/kHk.B9/ . kvkHkC1.B92/
jT1�T2j; (7-24)

where k 2 N. The estimates (7-23) and (7-24) can be extended to v 2HkC1.B92/ by density. Now let
v;w 2 Y , T1; T2 2

�
1
2
; 3
2

�
, and x0; y0 2 B9

1=2
. Inequalities (7-23) and (7-24) imply

kR.v; T1; x0/�R.w; T2; y0/k. kvkY.jT1�T2jC jx0�y0j/Ckv�wkY : (7-25)

Moreover, since U0 is smooth, we have

kR.U0; T1; x0/�R.U0; T2; y0/k. jT1�T2jC jx0�y0j (7-26)

for all T1; T2 2
�
1
2
; 3
2

�
and x0; y0 2 B9

1=2
. Now the inequalities (7-25) and (7-26) imply the first part of

the statement. The same inequalities imply

k‡.v; T; x0/k. kvkY CjT � 1jC jx0j;

which proves the second part of the statement. �

We have the following result, which has Proposition 2.4 as a direct consequence. To shorten the
notation, we write h WD h0.

Lemma 7.7. There exists M > 0 such that, for all sufficiently small ı > 0, the following holds: For
every real-valued v 2 Y that satisfies kvkY � ı=M 2, there exist ˆ 2 Xı , a 2 Xı , and parameters
˛ 2 Œ�ı=M; ı=M�, T 2 Œ1� ı=M; 1C ı=M��

�
1
2
; 3
2

�
, and x0 2 B9

ı=M
� B9

1=2
such that

C .ˆ; a;‡.vC˛h0; T; x0//D 0: (7-27)
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Moreover, the parameters depend Lipschitz continuously on the data, i.e.,

j˛.v/�˛.w/jC jT .v/�T .w/jC jx0.v/� x0.w/j. kv�wkY

for all v;w 2 Y satisfying the above assumptions. In particular, ‡.vC˛h; T; x0/ 2Mı;C .

Proof. Fix constants C > 0 and K > 0 from Proposition 7.4. By Lemma 7.6, we have that, for all M > 0

large enough and all ı > 0 small enough, the inequality

k‡.vC˛h; T; x0/k �
ı

K
(7-28)

holds for every kvkY � ı=M , ˛ 2 Œ�ı=M; ı=M�, T 2 Œ1�ı=M; 1Cı=M�, and x0 2B9
ı=M

. Furthermore,
in view of (7-28) and Proposition 7.3, we get that, given kvkY � ı=M 2, for every ˛ 2 Œ�ı=M; ı=M�,
T 2 Œ1� ı=M; 1C ı=M�, and x0 2 B9

ı=M
, there are functions

ˆDˆ.vC˛h; T; x0/ and aD a.vC˛h; T; x0/

which solve the modified integral equation

ˆ.�/D Sa1.�/.‡.v; T; x0/�C .ˆ; a;‡.v; T; x0///

C

Z �

0

Sa1.� � �/.Ga.�/.ˆ.�//� @�Ua.�// d� (7-29)

for all � �0. For suchˆ and a, we show that one can associate to any kvkY � ı=M 2 suitable parameters T ,
x0, and ˛ such that (7-27) holds. From this, via Proposition 7.4, we conclude that‡.vC˛h; T; x0/2Mı;C .
Recall that the correction terms can be written as C D C1CC2 D

P9
kD0C

k
1 CC2, where

C k1 .ˆ; a;u/DP
.k/
a1
uCP.k/a1I1.ˆ; a/ and C2.ˆ; a;u/DHa1uCHa1I2.ˆ; a/;

and where the integrals are denoted by

I1.ˆ; a/D

Z 1
0

e�� .Ga.�/.ˆ.�//� @�Ua.�// d�;

I2.ˆ; a/D

Z 1
0

e�3� .Ga.�/.ˆ.�//� @�Ua.�// d�;

and we have
kP.k/a1I1.ˆ; a/k. ı

2 and kHa1I2.ˆ; a/k. ı2I (7-30)

see (7-18). We will show that there are parameters T , ˛, and x0 such that, for k D 0; : : : ; 9,

.C k1 .ˆ; a;‡.vC˛h; T; x0//jg
.k/
a1
/D 0 and .C2.ˆ; a;‡.vC˛h; T; x0//jha1/D 0; (7-31)

which implies (7-27). To this end we expand the initial data operator. First, by Taylor expansion we get,
for T 2 Œ1� ı=M; 1C ı=M� and x0 2 B9

ı=M
,

R.U0; T; x0/�R.U0; 1; 0/D c0.T � 1/g
.0/
0 C

9X
jD1

cjx
j
0g

.j /
0 C r.T; x0/;

where the remainder satisfies

kr.T; x0/� r. zT ; Qx0/k. ı.jT � zT jC jx0� Qx0j/:
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Hence we obtain

‡.vC˛h; T; x0/DR.vC˛h; T; x0/C c0.T � 1/g.0/a1 C
9X

jD1

cjx
j
0g

.j /
a1
C ra1.T; x0/;

where

ra1.T; x0/D c0.T � 1/.g
.0/
0 �g

.0/
a1
/C

9X
jD1

cjx
j
0 .g

.j /
0 �g

.j /
a1
/C r.T; x0/:

It is straightforward to check that

kra.T; x0/� rb. zT ; Qx0/k. ı.ja� bjC jT � zT jC jx0� Qx0j/ (7-32)

for all a; b 2 B9
ı
, T; zT 2 Œ1� ı=M; 1C ı=M�, and x0; Qx0 2 B9

ı=M
. We now write

R.vC˛h; T; x0/DR.v; T; x0/C˛R.ha1 ; T; x0/C˛R.h�ha1 ; T; x0/:

The last term can be estimated by
kR.h�ha1 ; T; x0/k. ja1j:

By taking the Taylor expansion of R.ha1 ; T; x0/ at .T; x0/D .1; 0/, we obtain

R.vC˛h; T; x0/DR.v; T; x0/C˛ha1 C˛ Qra.T; x0/;

where the remainder satisfies

kQra.T; x0/� Qrb. zT ; Qx0/k. ja� bjC jT � zT jC jx0� Qx0j: (7-33)

Hence we obtain the expansion

‡.vC˛h; T; x0/DR.v; T; x0/C˛ha1Cc0.T �1/g
.0/
a1
C

9X
jD1

cjx
j
0g

.j /
a1
Cra1.T; x0/C˛ Qra1.T; x0/:

By applying the projections to the initial data operator we get

P.0/a1‡.vC˛h; T; x0/DP
.0/
a1

R.v; T; x0/C c0.T � 1/g.0/a1 CP
.0/
a1
ra1.T; x0/C˛P

.0/
a1
Qra1.T; x0/;

P.j /a1‡.vC˛h; T; x0/DP
.j /
a1

R.v; T; x0/C cjx
j
0g

.j /
a1
CP.j /a1ra1.T; x0/C˛P

.j /
a1
Qra1.T; x0/;

Ha1‡.vC˛h; T; x0/DHa1R.v; T; x0/C˛ha1 CHa1ra1.T; x0/C˛Ha1 Qra1.T; x0/:

Hence, by introducing the notation ˇ D T � 1, we define, for k D 0; : : : ; 9,

�
.k/
v .˛; ˇ; x0/DP

.k/
a1

R.v; ˇC 1; x0/CP.k/a1ra1.ˇ; x0/C˛P
.k/
a1
Qra1.ˇ; x0/CP

.k/
a1
I1.˛; ˇ; x0/;

�
.10/
v .˛; ˇ; x0/DHa1R.v; ˇC 1; x0/CHa1ra1.ˇ; x0/C˛Ha1 Qra1.ˇ; x0/CHa1I2.˛; ˇ; x0/:

Using this notation we can rewrite (7-31) as

ˇ D �
.0/
v .˛; ˇ; x0/ WD Qc0.�

.0/
v .˛; ˇ; x0/jg

.0/
a1
/;

x
j
0 D �

.j /
v .˛; ˇ; x0/ WD Qcj .�

.j /
v .˛; ˇ; x0/jg

.j /
a1
/;

˛ D �
.10/
v .˛; ˇ; x0/ WD Qc10.�

.10/
v .˛; ˇ; x0/jha1/

(7-34)
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for j D 1; : : : ; 9 and some constants Qc0; Qcj ; Qc10 2 R. We will show that �v D .�
.0/
v ; : : : ; �

.10/
v / is a

contraction on B11
ı=M

for sufficiently small ı > 0 and for sufficiently large M > 0. Thereby the first part
of the statement follows by Banach’s fixed-point theorem.

First we observe that �v maps B11
ı=M

into itself. Indeed, by the proof of Lemma 7.6, we know that
kR.v; 1Cˇ; x0/k. kvkY . Now estimates (7-32)–(7-33), and the integral estimates (7-30) imply

�
.j /
v .˛; ˇ; x0/DO

�
ı

M 2

�
CO.ı2/

for all j D 0; : : : ; 10. Thus, there is a choice of large enough M > 0 such that, for all sufficiently small
ı > 0, the inequality

j�v.˛; ˇ; x0/j �
ı

M

holds for all .˛; ˇ; x0/ 2 B11
ı=M

. Next we show that by restricting, if necessary, to even smaller ı > 0, the
operator �v is a contraction on B11

ı=M
. Let .ˆ; a/2Xı�Xı be the functions solving (7-29) corresponding

to parameters vC˛h, T D1Cˇ, and x0. Furthermore, let .‰; b/2Xı�Xı be the functions corresponding
to vC Q̨h, zT D 1C Q̌, and Qx0. Then, we obtain

kˆ�‰kX Cka� bkX . k‡.vC˛h; T; x0/�‡.vC Q̨h; zT ; Qx0/k. j˛� Q̨ jC jˇ� Q̌jC jx0� Qx0j:

Hence, by Lemma 7.1, we get, for k D 0; : : : ; 9, that

kP.k/a1I1.ˆ; a/�P
.k/

b1
I1.‰; b/k. ı.kˆ�‰kX Cka� bkX /. ı.j˛� Q̨ jC jˇ� Q̌jC jx0� Qx0j/

and

kHa1I2.ˆ; a/�Hb1I2.‰; b/k. ı.j˛� Q̨ jC jˇ� Q̌jC jx0� Qx0j/:

Furthermore, by (7-25) and the Lipschitz continuity of the Riesz projections P.k/a and Ha, we obtain

kP.k/a1R.v; T; x0/�P
.k/

b1
R.v; zT ; Qx0/kCkHa1R.v; T; x0/�Hb1R.v; zT ; Qx0/k

. kvkY.ka� bkX CjT � zT jC jx0� Qx0j/. ı.j˛� Q̨ jC jˇ� Q̌jC jx0� Qx0j/:

Moreover, for k D 0; : : : ; 9, we have

kP.k/a1ra1.T; x0/�P
.k/

b1
rb1.

zT ; Qx0/kCk˛P
.k/
a1
Qra1.T; x0/� Q̨P

.k/

b1
Qrb1.

zT ; Qx0/k

. ı.j˛� Q̨ jC jˇ� Q̌jC jx0� Qx0j/

and

kHa1ra1.T; x0/�Hb1rb1.
zT ; Qx0/kCk˛Ha1 Qra1.T; x0/� Q̨Hb1 Qrb1.

zT ; Qx0/k

. ı.j˛� Q̨ jC jˇ� Q̌jC jx0� Qx0j/:

From these estimates we infer that

k�
.j /
v .˛; ˇ; x0/��

.j /
v . Q̨ ; Q̌; Qx0/k. ı.j˛� Q̨ jC jˇ� Q̌jC jx0� Qx0j/ (7-35)
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for j D 0; : : : ; 10. Therefore, �v is a contraction for all small enough ı > 0, and this concludes the proof
of the first part of the statement.

It remains to establish the Lipschitz continuity of the parameters with respect to the initial data. Let
v;w 2 Y satisfy the smallness condition and let .˛; ˇ; x0/ and . Q̨ ; Q̌; Qx0/ be the corresponding set of
parameters. The first line in (7-34) implies

jˇ� Q̌j D j�
.0/
v .˛; ˇ; x0/��

.0/
w . Q̨ ; Q̌; Qx0/j

. j�.0/v .˛; ˇ; x0/��
.0/
w .˛; ˇ; x0/jC j�

.0/
w .˛; ˇ; x0/��

.0/
w . Q̨ ; Q̌; Qx0/j:

The second term can be estimated with (7-35). To estimate the first term, we use the Lipschitz continuity
of the Riesz projections to get

kP
.0/

a1.v;ˇ;x0/
R.v; 1Cˇ; x0/�P

.0/

a1.w;ˇ;x0/
R.w; 1Cˇ; x0/k

. kvkYka1.v; ˇ; x0/� a1.w; ˇ; x0/kX Ckv�wkY . kv�wkY :

Similar estimates using (7-32)–(7-33) and Lemma 7.1 yield

j�
.0/
v .˛; ˇ; x0/��

.0/
w .˛; ˇ; x0/j. kv�wkY :

In summary, we obtain

jˇ� Q̌j. ı.j˛� Q̨ jC jˇ� Q̌jC jx0� Qx0j/Ckv�wkY ;

and similar estimates for the remaining components yield

j˛� Q̨ jC jˇ� Q̌jC jx0� Qx0j. ı.j˛� Q̨ jC jˇ� Q̌jC jx0� Qx0j/Ckv�wkY ;

which concludes the proof. �

7F. Proof of Theorem 1.1. Let M > 0 be from Proposition 2.4. For ı > 0 define ı0 WD ı=M . Then
consider .f; g/ 2 C1.B92/�C

1.B92/ satisfying

k.f; g/kH6.B92/�H
5.B92/

�
ı0

M
D

ı

M 2
:

By Propositions 2.4 and 2.1, we have that, for all ı > 0 sufficiently small, there exist a 2 B9
Mı 0=!

,
T 2 Œ1� ı0; 1C ı0�, x0 2 B9

ı 0
, and ˛ 2 Œ�ı0; ı0�, depending Lipschitz continuously on .f; g/ with respect

to the norm on Y , as well a function ‰ 2 C.Œ0;1/;H/ that solves

‰.�/D S .�/ŒU0C‡..f; g/C˛h; T; x0/�C

Z �

0

S .� � �/F .‰.�// d�; (7-36)

and obeys the estimate
k‰.�/�Uak. ıe�!� (7-37)

for all � � 0. By standard arguments, ‰ is the unique solution to (7-36) in C.Œ0;1/;H/. Now, from
the smoothness of f and g, we have that the initial data ‰.0/D U0C‡..f; g/C ˛h; T; x0/ belongs
to C1.B92/�C

1.B92/, and therefore from Proposition 2.2 we infer that ‰ is smooth and solves (2-3)
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classically. More precisely, by writing‰.�/D . 1.�; � /;  2.�; � //, we have that  j 2C1.Z/ for j D 1; 2
and

@� 1.�; �/D�� � r 1.�; �/� 2 1.�; �/C 2.�; �/;

@� 2.�; �/D� 1.�; �/� � � r 2.�; �/� 3 2.�; �/;C 1.�; �/
2

for .�; �/ 2 Z , with

 1.0; � /D T
2ŒU0�1.T � Cx0/CT

2f .T � Cx0/C˛T
2h1.T � Cx0/;

 2.0; � /D T
3ŒU0�2.T � Cx0/CT

3g.T � Cx0/C˛T
3h2.T � Cx0/:

Furthermore, by writing ˆ.�/D‰.�/�Ua, where ˆ.�/D .'1.�; � /; '2.�; � //, from (7-37) we have

k'1.�; � /kH5.B9/ . ıe�!� and k'2.�; � /kH4.B9/ . ıe�!� (7-38)

for all � � 0. Furthermore, by the Sobolev embedding we have, for the first component, that

k'1.�; � /kL1.B9/ . ıe�!� (7-39)

for all � � 0. Now, we translate these results back to physical coordinates and let

u.t; x/D
1

.T � t /2
 1

�
� log.T � t /C logT;

x� x0

T � t

�
:

Based on the smoothness properties of  1, we conclude that u 2 C1.CT;x0/. Furthermore, u solves

.@2t ��x/u.t; x/D u.t; x/
2

on CT;x0 and satisfies

u.0; � /D U.j � j/Cf C˛h1; @tu.0; � /D 2U.j � j/Cj � jU
0.j � j/CgC˛h2

on B9T .x0/. Uniqueness of u follows from uniqueness of ‰, though it also follows by standard results
concerning wave equations in physical coordinates. Furthermore,

u.t; x/D
1

.T � t /2

�
Ua

�
x� x0

T � t

�
C'.t; x/

�
;

with '.t; x/ WD '1.� log.T � t /C logT; .x� x0/=.T � t //. The bound (7-39) yields

k'.t; � /kL1.B9T�t .x0//
D k'1.� log.T � t /C logT; � /kL1.B9/ . ı.T � t /! (7-40)

for all t 2 Œ0; T /. Furthermore, by (7-38),

.T � t /k�
9
2 k'.t; � /k PHk.B9T�t .x0//

D k'1.� log.T � t /C logT; � /k PHk.B9/
. .T � t /!

for k D 0; : : : ; 5, which implies the first line in (1-17). The second line follows also from (7-38) and the
fact that

@tu.t; x/D
1

.T � t /3
 2

�
� log.T � t /C logT;

x� x0

T � t

�
:
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Relabelling ı0 with ı concludes the proof of Theorem 1.1 for (1-1). Now, let c0 be the constant from (1-13).
Recall that the above conclusions hold for all sufficiently small ı > 0. Therefore, from (7-40) we see that
we can choose small enough ı > 0 so as to ensure

k'.t; � /kL1.B9T�t .x0//
�
1
2
c0

for all t 2 Œ0; T /. As a consequence, u is strictly positive on CT;x0 and therefore provides a solution
to (1-6) as well. �

8. Proof of Theorem 1.6: stable ODE blowup

The proof of Theorem 1.6 follows mutatis mutandis the proof of Theorem 1.1. However, for the
convenience of the reader we outline the most important steps and stick to the notation introduced above.
Starting with (2-3), we consider solutions of the form ‰.�/D �a.�/Cˆ.�/, which yields

@�ˆ.�/D ŒLCL
0
�a1

�ˆ.�/C zGa.�/.ˆ.�//� @��a.�/; (8-1)

where

L0�au.�/D

�
0

2�a.�/u1.�/

�
and

zGa.�/.ˆ.�//D ŒL
0
�a.�/
�L0�a1

�ˆ.�/CF .ˆ.�//:

In this equation, L W D.L/�H!H denotes, as usual, the operator describing the free wave evolution.
This is fully characterized for both d D 7 and d D 9 in Section 3; recall that H WDHk for k D 1

2
.d C 1/.

For the perturbation theory, the spectral analysis is crucial. Once this is obtained, most results are purely
abstract and the proofs can be adapted from previous sections.

Since L0�a is compact and depends Lipschitz continuously on a, the results of Section 4 apply. In
particular, for small enough a, the spectrum of LCL0�a in the right half-plane consists of isolated
eigenvalues confined to a compact region. Furthermore, an analogous result to Proposition 4.5 holds
with V replaced by a constant. This substantially simplifies the spectral analysis and with the above
prerequisites it is easy to derive the following statement. For all of the ensuing statements, d 2 f7; 9g.

Proposition 8.1. There are constants ı� > 0 and ! > 0 such that the following holds: For any a 2 Bd
ı�

,
the operator L C L0�a W D.L/ � H ! H generates a strongly continuous semigroup .S�a.�//��0
on H. Furthermore, there exist projections zPa; zQ

.k/
a 2 B.H/, k D 1; : : : ; d , of rank 1 that are mutually

transversal and depend Lipschitz continuously on a. Furthermore, they commute with S�a.�/ and, for all
u 2H and � � 0,

S�a.�/
zPauD e

�u and S�a.�/
zQ.k/a uD u;

as well as
kS�a.�/Œ1�

zPa � zQa�uk. e�!�kŒ1� zPa � zQa�uk

with zQa D
Pd
kD1
zQ
.k/
a . Moreover,

kS�a.�/Œ1�
zPa � zQa��S�b .�/Œ1�

zPb � zQb�k. e�!� ja� bj (8-2)
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for all a; b 2 B9
ı�

and � � 0. Also,

ran zPa D span. Qga/ and ran zQ.k/a D span. Qq.k/a /; (8-3)

where

Qga.�/D

 
A0.a/ŒA0.a/�Aj �

j ��3

3A0.a/
2ŒA0.a/�Aj �

j ��4

!
and Qq.k/a D @ak�a (8-4)

for k D 1; : : : ; d .

Proof. We only sketch the main steps of the proof, since many parts are abstract operator theory and can
be copied verbatim from previous sections.

The results of Section 3 together with the bounded perturbation theorem immediately imply that
LCL0�a generates a strongly continuous semigroup, which we denote by .S�a.�//��0. Furthermore,
the results of Propositions 4.3 and 4.5 hold in particular for our case at hand, and we infer that, for
Re� > �1

2
, the spectrum of LCL0�a consists of isolated eigenvalues confined to a compact region.

For aD 0, Proposition 4.5 holds mutatis mutandis with V replaced by the constant potential 2�0 D 12.
In this case, in the spectral ODE the number of regular singular points can be reduced to three, and we
can therefore resolve the connection problem by using the standard theory of hypergeometric equations.
This is outlined in the following, where we show that there exists 0 < �0 � 1

2
such that

�.LCL0�0/� f� 2 C W Re�� ��0g[ f0; 1g:

In fact, we convince ourselves that

f� 2 C W Re�� 0g n f0; 1g � �.LCL0�0/: (8-5)

We argue by contradiction. Let us assume that � 2 �.LCL0�0/ n f0; 1g and Re� � 0. Then, for
some ` 2 N0, (4-7) with potential 2�0 must have an analytic solution on Œ0; 1�. We show that this cannot
be the case. By changing variables and setting f .�/ D �`v.�2/, (4-7) transforms into the standard
hypergeometric form

z.1� z/v00.z/C .c � .aC bC 1/z/v0.z/C abv.z/D 0;

with
aD 1

2
.�C `� 1/; b D 1

2
.�C `C 6/; and c D 1

2
d C `:

Fundamental systems around the regular singular points � D 0 and � D 1 are given by fv0; Qv0g and
fv1; Qv1g, respectively, where

v0.z/D 2F1.a; bI cI z/;

Qv0.z/D z
1�c

2F1.aC 1� c; bC 1� cI 2� cI z/;

v1.z/D 2F1.a; bI aC bC 1� cI 1� z/;

Qv1.z/D .1� z/
c�a�b

2F1.c � a; c � bI 1C c � a� bI 1� z/:

In fact, this holds if aC b � c ¤ 0, and, for aC b � c D 0, the function Qv1 behaves logarithmically.
In either case, the solutions Qv1 and Qv0 are not admissible since they are not analytic for Re� � 0. We
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therefore look for � which connect v0 and v1, i.e., for which v0 and v1 are constant multiples of each
other. For the hypergeometric equation, the connection coefficients are known explicitly and we have

v0.z/D
�.c/�.c � a� b/

�.c � a/�.c � b/
v1.z/C

�.c/�.aC b� c/

�.a/�.b/
Qv1.z/I

see [DLMF 2010]. So the condition that quantifies our eigenvalues is

�.c/�.aC b� c/

�.a/�.b/
D 0:

This can only be the case if a or b is a pole of the gamma function, i.e., �a 2N0 or �b 2N0. In particular,
this implies that � 2R. Since Re�� 0, we can exclude �b 2N0. On the other hand, �a 2N0 is possible
only if �2 f0; 1g, which contradicts our assumption and proves (8-5). For �D 1 and �D 0, one can easily
check that explicit solutions to the eigenvalue equation are given by Qg0 and Qq.k/0 , respectively, where

Qg0 D

�
1

3

�
and Qq

.k/
0 D @ak�ajaD0 D 6

�
�k
3�k

�
for k D 1; : : : ; d . Similar to the above reasoning one shows that these functions indeed span the
eigenspaces for the corresponding eigenvalues, i.e., the geometric multiplicities of �D 1 and �D 0 are 1
and d , respectively. The algebraic multiplicities are determined by the dimension of the ranges of the
corresponding Riesz projections

zP0 D
1

2�i

Z
1

RLCL0�0
.�/ d� and zQ0 D

1

2�i

Z
0

RLCL0�0
.�/ d�;

where, for j 2 f0; 1g, we have j .s/D �j C 1
4
!0e

2�is for s 2 Œ0; 1�. An ODE argument analogous to the
proof of Lemma 5.7 yields

ran zP0 D span. Qg0/ and ran zQ0 D span. Qq.1/0 ; : : : ; Qq
.d/
0 /:

The perturbative characterization of the spectrum of LCL0�a for a 2 Bd
ı�

is purely abstract. Along the
lines of the proof of Lemma 5.8, one shows that

�.LCL0�a/�
˚
� 2 C W Re� < �1

2
!0
	
[f0; 1g;

where for �D 0 and �D 1, the eigenfunctions are Lorentz boosted versions of Qg0 and Qq.k/0 . In fact, one
can check by direct calculations that the functions Qga and Qq.k/a stated in (8-4) solve the corresponding
eigenvalue equations. Equation (8-3) for the spectral projections

zPa D
1

2�i

Z
1

RLCL0�a
.�/ d� and zQa D

1

2�i

Z
0

RLCL0�a
.�/ d�

follows from the abstract arguments provided in the proof of Lemma 6.1. The same holds for the Lipschitz
dependence of the projections on the parameter a. The growth bounds for the semigroup follow from the
structure of the spectrum, resolvent bounds and the Gearhart–Prüss theorem analogous to the proof of
Proposition 6.2. Finally, the proof for the Lipschitz continuity (8-2) can be copied verbatim. �
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The analysis of the integral equation

ˆ.�/D S�a1 .�/uC

Z �

0

S�a1 .� � �/.
zGa.�/.ˆ.�//� @��a.�// d�

is completely analogous to Section 7. In particular, to derive the modulation equation for a, one uses the
fact that @��a.�/ D Pak.�/ Qq

.k/
0 . By introducing the correction

zC .ˆ; a;u/D zPa1uC
zPa1

Z 1
0

e�� . zGa.�/.ˆ.�//� @��a.�// d�;

it is straightforward to prove the following result.

Proposition 8.2. There exists ! > 0 such that, for all sufficiently large C > 0 and all sufficiently small
ı > 0, the following holds: For every kvkY � ı=C , every T 2 Œ1� ı=C; 1C ı=C �, and every x0 2 Bd

ı=C
,

there exist functions ˆ 2 Xı and a 2Xı such that the integral equation

ˆ.�/DS�a1 .�/.‡.v; T; x0/�
zC .ˆ; a;‡.v; T; x0///C

Z �

0

S�a1 .���/.
zGa.�/.ˆ.�//�@�ˇ�a.�// d�

holds for � � 0, and also kˆ.�/k . ıe�!� for all � � 0. Moreover, the solution map is Lipschitz
continuous, i.e.,

kˆ.v; T1; x0/�ˆ.w; T2; y0/kX Cka.v; T1; x0/� a.w; T2; y0/kX . kv�wkY CjT1�T2jC jx0�y0j

for all v;w2Y satisfying the smallness assumption, all T1; T2 2 Œ1�ı=C; 1Cı=C �, and all x0; y0 2Bd
ı=C

.

We note that similarly to the manifold M one can construct a manifold N � ker zP0 ˚ ran zP0 of
codimension .1C d/ characterized by the vanishing of the correction term zC . However, in the context
of stable blowup this is not of much interest, since the existence of this manifold is solely caused by
the translation instability. In particular, no correction of the physical initial data is necessary, if blow-up
time and point are chosen appropriately, i.e., for suitably small .f; g/, there are T and x0 such that
‡.v; T; x0/ 2N . This is contained in the following result, where Y DH .dC3/=2.Bd /�H .dC1/=2.Bd /.

Lemma 8.3. There exists C > 0 such that, for all sufficiently small ı > 0, the following holds: For every
v 2 Y satisfying kvkY � ı=C 2, there is a choice of parameters T 2 Œ1� ı=C; 1C ı=C � and x0 2 Bd

ı=C
in

Proposition 8.2 such that
zC .ˆ; a;‡.v; T; x0//D 0:

Moreover, the parameters depend Lipschitz continuously on the data, i.e.,

jT .v/�T .w/jC jx0.v/� x0.w/j. kv�wkY

for all v;w 2 Y satisfying the above smallness assumption.

The proof is along the lines of the proof of Lemma 7.7 on page 668 with obvious simplifications. With
these results, in combination with persistence of regularity that is completely analogous to Proposition 2.2,
Theorem 1.6 is obtained by the same arguments as in Section 7F.
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Appendix: Proof of Lemma 3.4

We will frequently use the identities

2ReŒ�j @jf .�/ Nf .�/�D @j Œ�j jf .�/j2�� d jf .�/j2 (A-1)

and
@i1@i2 � � � @ik Œ�

j @jf �D k@i1@i2 � � � @ikf .�/C �
j @j @i1@i2 � � � @ikf .�/; (A-2)

which hold for all k 2 N and f 2 C1.Bd /. Furthermore, by the divergence theorem, we haveZ
Bd
@i�u.�/@iv.�/ d� D�

Z
Bd
�u.�/�v.�/ d�C

Z
Sd�1

�u.!/!i@iv.!/ d�.!/ (A-3)

for smooth u and v, and similarlyZ
Bd
@i�u.�/@iv.�/ d� D�

Z
Bd
@i@ju.�/@j @iv.�/ d�C

Z
Sd�1

!j @
j @iu.!/@iv.!/ d�.!/: (A-4)

We first prove the result for d D 9, starting with those parts of . � j � /Hk that correspond to the standard
PHk � PHk�1 inner product.

For the sake of concreteness, we consider the case k D 5, which corresponds to the space we are going
to use later on. Using the above identities, we infer

Re
Z

B9
@i@j @k@l@mŒ zLu�1.�/@

i@j @k@l@mu1.�/ d�

D Re
Z

B9
@i@j @k@l@mu2.�/@

i@j @k@l@mu1.�/ d� �
5
2

Z
B9
@i@j @k@l@mu1.�/@

i@j @k@l@mu1.�/ d�

�
1
2

Z
S8
@i@j @k@l@mu1.!/@

i@j @k@l@mu1.!/ d�.!/:

Similarly,

Re
Z

B9
@i@j @k@l Œ zLu�2.�/@

i@j @k@lu2.�/ d�

D�
5
2

Z
B9
@i@j @k@lu2.�/@

i@j @k@lu2.�/ d� �Re
Z

B9
@i@j @k@l@mu1.�/@

i@j @k@l@mu2.�/ d�

�
1
2

Z
S8
@i@j @k@lu2.!/@

i@j @k@lu2.!/ d�.!/

CRe
Z

S8
!m@i@j @k@l@mu1.!/@

i@j @k@lu2.!/ d�.!/: (A-5)

Hence

Re. zLuju/5 � �52kuk
2
5�

1
2

Z
S8
@i@j @k@l@mu1.!/@

i@j @k@l@mu1.!/ d�.!/

�
1
2

Z
S8
@i@j @k@lu2.!/@

i@j @k@lu2.!/ d�.!/

CRe
Z

S8
!m@i@j @k@l@mu1.!/@

i@j @k@lu2.!/ d�.!/� �
5
2
kuk25; (A-6)
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where we used Re.a Nb/� 1
2
.jaj2Cjbj2/ as well as the boundˇ̌̌̌X

k

!k@ku.!/

ˇ̌̌̌2
�

X
k

.!k/
2
X
k

j@ku.!/j
2
D

X
k

j@ku.!/j
2:

A similar calculation yields
Re. zLju/4 � �32kuk

2
4:

In view of the logic of these estimates, it is clear that we cannot use the standard homogeneous inner
products for integer regularities lower than j D 3, since the bound shifts to the right and will be positive
eventually. For this reason, we use tailor-made expressions for the remaining H 3.B9/�H 2.B9/ part. In
the following, we prove that

3X
jD1

Re. zLuju/j � �12

3X
jD1

kuk2j ; (A-7)

which in combination with the above bounds implies the first claim in Lemma 3.4 for d D 9 and kD 5 (and
in fact for any 3� k � 5.) For higher regularities, we add again the corresponding standard homogeneous
parts. Analogous to the above calculations, one shows that

Re
Z

B9
@i1���ik Œ

zLu�1.�/@i1���iku1.�/ d�

D
�
5
2
� k

� Z
B9
@i1���iku1.�/@

i1���iku1.�/ d� �
1
2

Z
S8
@i1���iku1.!/@

i1���iku1.!/ d�.!/

CRe
Z

B9
@i1���iku1.�/@

i1���iku2.�/ d�

and

Re
Z

B9
@i1���ik�1 Œ

zLu�2.�/@i1���ik�1u2.�/ d�

D
�
5
2
� k

� Z
B9
@i1���ik�1u2.�/@

i1���ik�1u2.�/ d� �Re
Z

B9
@i1���iku1.�/@

i1���iku2.�/ d�

CRe
Z

S8
!ik@i1���iku1.!/@

i1���ik�1u2.!/ d�.!/�
1
2

Z
S8
@i1���ik�1u2.!/@

i1���ik�1u2.!/ d�.!/:

As in (A-6), we thus obtain for j � 6 the bound

Re. zLuju/j �
�
5
2
� j

�
kuk2j :

It is left to prove (A-7). We first consider Re. zLuju/3. Using (A-2), (A-1), and the divergence theorem,
we calculate

Re
Z

B9
@i@j @kŒ zLu�1.�/@

i@j @ku1.�/ d�

D�
1
2

Z
B9
@i@j @ku1.�/@

i@j @ku1.�/ d� �
1
2

Z
S8
@i@j @ku1.!/@

i@j @ku1.!/ d�.!/

CRe
Z

B9
@i@j @ku2.�/@

i@j @ku1.�/ d�:
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An application of (A-4) shows

Re
Z

B9
@i@j Œ zLu�2.�/@i@ju2.�/ d�

D Re
Z

B9
@i@j @

k@ku1.�/@
i@ju2.�/ d� �

1
2

Z
B9
@i@ju2.�/@i@ju2.�/ d�

�
1
2

Z
S8
@i@ju2.!/@i@ju2.!/ d�.!/

D Re
Z

S8
!k@k@i@ju1.!/@

i@ju2.!/ d�.!/�Re
Z

B9
@i@j @ku1.�/@

i@j @ku2.�/ d�

�
1
2

Z
B9
@i@ju2.�/@i@ju2.�/ d� �

1
2

Z
S8
@i@ju2.!/@i@ju2.!/ d�.!/;

and finallyZ
S8
@i@j Œ zLu�1.!/@i@ju1.!/ d�.!/

D�Re
Z

S8
!k@k@i@ju1.!/@

i@ju1.!/ d�.!/

� 4

Z
S8
@i@ju1.!/@i@ju1.!/ d�.!/CRe

Z
S8
@i@ju2.!/@i@ju1.!/ d�.!/:

In summary, we infer that

Re. zLuju/3 D�12kuk
2
3� 12

Z
S8
@i@ju1.!/@i@ju1.!/ d�.!/C 4

Z
S8
A.!/ d�.!/;

where

A.!/D�1
2
@i@j @ku1.!/@

i@j @ku1.!/�
1
2
@i@ju2.!/@i@ju2.!/

�
1
2
@i@ju1.!/@i@ju1.!/CRe.!k@i@j @ku1.!/@i@ju2.!//

�Re.!k@i@j @ku1.!/@i@ju1.!//CRe.@i@ju2.!/@i@ju1.!//:
By using the inequality

Re.a Nb/CRe.a Nc/�Re.b Nc/� 1
2
.jaj2Cjbj2Cjcj2/; a; b; c 2 C;

we get A.!/� 0. Analogously, to estimate Re. zLuju/2, we get

Re
Z

B9
@i@

j @j Œ zLu�1.�/@i@l@
lu1.�/ d�

D�
1
2

Re
Z

B9
@i@

j @ju1.�/@i@l@
lu1.�/ d� �

1
2

Z
S8
@i@

j @ju1.!/@i@l@
lu1.!/ d�.!/

CRe
Z

B9
@i@

j @ju1.�/@i@l@
lu2.�/ d�

and

Re
Z

S8
@i Œ zLu�2.!/@iu2.!/ d�.!/

D Re
Z

S8
@i@

j @ju1.!/@iu2.!/ d�.!/

�Re
Z

S8
!j @i@ju2.!/@iu2.!/ d�.!/� 4Re

Z
S8
@iu2.!/@iu2.!/ d�.!/:
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For the remaining term, we do a similar calculation as in (A-5), but we use instead (A-3) in order to
cancel the mixed term. In summary, we obtain

Re. zLuju/2 D�12kuk
2
2� 3

Z
S8
@iu2.!/@iu2.!/ d�.!/C

Z
S8
B.!/ d�.!/;

where

B.!/D�1
2
@i@

j @ju1.!/@i@l@
lu1.!/�

1
2
@i@ju2.!/@i@ju2.!/�

1
2
@iu2.!/@iu2.!/

CRe.!k@i@j @ju1.!/@i@ku2.!//CRe.@i@j @ju1.!/@iu2.!//�Re.!j @i@ju2.!/@iu2.!//;

and we observe that B.!/� 0. Now, we consider Re. zLuju/1, which consists only of boundary integrals.
For the first term, we get

Re
Z

S8
@i ŒLu�1.!/@iu1.!/ d�.!/

D�3Re
Z

S8
@iu1.!/@iu1.!/ d�.!/�Re

Z
S8
!j @i@ju1.!/@iu1.!/ d�.!/

CRe
Z

S8
@iu2.!/@iu1.!/ d�.!/:

By the Cauchy–Schwarz inequality,

Re
Z

S8
.@iu2.!/�!

j @i@ju1.!//@iu1.!/ d�.!/

�
1
2

Z
S8
@iu1.!/@iu1.!/ d�.!/C

Z
S8
@iu2.!/@iu2.!/ d�.!/C

Z
S8
@i@ju1.!/@i@ju1.!/ d�.!/;

which implies

Re
Z

S8
@i ŒLu�1.!/@iu1.!/ d�.!/

��
5
2

Re
Z

S8
@iu1.!/@iu1.!/ d�.!/C

Z
S8
@iu2.!/@iu2.!/ d�.!/C

Z
S8
@i@ju1.!/@i@ju1.!/ d�.!/:

Analogously,

Re
Z

S8
Œ zLu�2.!/u2.!/ d�.!/

D�3

Z
S8
ju2.!/j

2 d�.!/CRe
Z

S8
@i@iu1.!/u2.!/ d�.!/�Re

Z
S8
!i@iu2.!/u2.!/ d�.!/

� �
5
2

Z
S8
ju2.!/j

2 d�.!/C

Z
S8
j�u1.!/j

2 d�.!/C

Z
S8
@iu2.!/@iu2.!/ d�.!/;

Re
Z

S8
Œ zLu�1.!/u1.!/ d�.!/

D�2

Z
S8
ju1.!/j

2 d�.!/�Re
Z

S8
!i@iu1.!/u1.!/ d�.!/CRe

Z
S8
u2.!/u1.!/ d�.!/

� �
3
2

Z
S8
ju1.!/j

2 d�.!/C

Z
S8
@iu1.!/@iu1.!/ d�.!/C

Z
S8
ju2.!/j

2 d�.!/;
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and hence

Re. zLuju/1 � �32kuk
2
1C 2

Z
S8
@iu2.!/@iu2.!/ d�.!/

C

Z
S8
@i@ju1.!/@i@ju1.!/ d�.!/C

Z
S8
j�u1.!/j

2 d�.!/:

In conclusion,

3X
jD1

Re. zLuju/j � �12

3X
jD1

kuk2j � 11

Z
S8
@i@ju1.!/@i@ju1.!/ d�.!/C

Z
S8
j�u1.!/j

2 d�.!/:

By the Cauchy–Schwarz inequality,

j�u.!/j2 �

ˇ̌̌̌ 9X
iD1

@2i u.!/

ˇ̌̌̌2
� 9

9X
iD1

j@2i u.!/j
2
� 9

9X
i;jD1

j@i@ju.!/j
2;

which proves (A-7).
Analogous calculations for d D 7 and k � 3 yield an even better bound, namely,

Re. zLuju/Hk � �
3
2
kuk2Hk (A-8)

for all u 2 D. zL/, from which we obtain in particular the claimed estimate. Another way to see that (A-8)
holds is by Lemma 3:2 of [Glogić and Schörkhuber 2021], which is formulated in terms of the above
inner product for the specific case d D 7 and k D 3. The operator considered there corresponds to zL
shifted by a constant, which immediately gives the inequality (A-8). �
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ARNOLD’S VARIATIONAL PRINCIPLE AND
ITS APPLICATION TO THE STABILITY OF PLANAR VORTICES

THIERRY GALLAY AND VLADIMÍR ŠVERÁK

We consider variational principles related to V. I. Arnold’s stability criteria for steady-state solutions of
the two-dimensional incompressible Euler equation. Our goal is to investigate under which conditions the
quadratic forms defined by the second variation of the associated functionals can be used in the stability
analysis, both for the Euler evolution and for the Navier–Stokes equation at low viscosity. In particular,
we revisit the classical example of Oseen’s vortex, providing a new stability proof with stronger geometric
flavor. Our analysis involves a fairly detailed functional-analytic study of the inviscid case, which may be
of independent interest, and a careful investigation of the influence of the viscous term in the particular
example of the Gaussian vortex.

1. Introduction

We investigate the applicability of V. I. Arnold’s geometric methods to certain stability problems related
to Navier–Stokes vortices at high Reynolds number. Our main goal is a “proof of concept” that such
applications are possible, at least in simple cases, even though much of the geometric structure behind the
inviscid stability analysis does not survive the addition of the viscosity term. In particular, we give a new
proof of a known result concerning the stability of Oseen’s vortex as a steady state of the Navier–Stokes
equation in self-similar variables. We expect that the approach we advertise here will be useful to tackle
stability problems involving solutions that are less symmetric and less explicit than the classical Oseen
vortex. In such cases one may not have good alternative methods for proving stability in the presence of
viscosity. Our investigation leads to a detailed study of the quadratic forms naturally arising in Arnold’s
approach. Some of their functional-analytic properties, which are established in the course of our analysis,
may be of independent interest.

1A. A finite-dimensional model. Following the seminal paper [Arnold 1965], we first illustrate the issues
we want to address in a model situation where the “phase space” is finite-dimensional. We consider the
ordinary differential equation

ẋ = b(x), x ∈ Rn, (1-1)

where b is a smooth vector field in Rn. Let us assume that f, g1, . . . , gm : Rn
→ R are (sufficiently

smooth) conserved quantities for the evolution (1-1), with m < n. This means

f ′(x)b(x)= 0 and g′

j (x)b(x)= 0, x ∈ Rn, j = 1, . . . ,m, (1-2)
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where we adopt the standard notation f ′(x) for the linear form given by the first derivative of f at x . The
situation we have ultimately in mind is somewhat more specific: it corresponds to the case where the
phase space Rn is equipped with a Poisson bracket { · , · }, where system (1-1) is of the form

ẋ = { f, x}, (1-3)

and where g1, . . . , gm are Casimir functions. The Poisson structure is of course important in many
respects, but for our arguments here it does not play a big role. We can therefore proceed in the general
context of (1-1) and (1-2).

For any c = (c1, . . . , cm) ∈ Rm, let us define Xc = {x ∈ Rn
: g1(x)= c1, . . . , gm(x)= cm}. We assume

that, for some c ∈ Rm, the function f attains a nondegenerate local maximum on Xc at some point x̄ ∈ Xc

and that the derivatives g′

1(x̄), . . . , g′
m(x̄) are linearly independent. The stationarity condition at x̄ gives

the linear relation

f ′(x̄)−
m∑

j=1

λj g′

j (x̄)= 0 (1-4)

for some Lagrange multipliers λ1, . . . ,λm ∈R. Moreover, the second-order differential1 of the function f |Xc

(the restriction of f to Xc) at x̄ is given by the restriction to the tangent space Tx̄ Xc of the quadratic form

Q = f ′′(x̄)−
m∑

j=1

λj g′′

j (x̄), (1-5)

where we denote by f ′′(x̄) the quadratic form given by the Hessian of f at x̄ , and similarly for
g′′

1 (x̄), . . . , g′′
m(x̄). Our nondegeneracy assumption means that the restriction of the form Q to Tx̄ Xc is

strictly negative definite. Now, let B = b′(x̄) be the n × n matrix corresponding to the linearization
of (1-1) at the point x̄ , which is a steady state by construction [Arnold 1965]. If we differentiate twice the
relations (1-2) and use (1-4) together with b(x̄)= 0, we see that the evolution defined by the linearized
equation ξ̇ = Bξ leaves the form Q invariant. In other words,

d
dt
Q(ξ, ξ)= Q(Bξ, ξ)+Q(ξ, Bξ)= 0 for all ξ ∈ Rn. (1-6)

The above structure2 gives various options for the stability analysis of the equilibrium x̄ of (1-1),
depending on the index of the quadratic form Q in (1-5). Our assumptions readily imply that x̄ is stable
in the sense of Lyapunov with respect to perturbations on the invariant submanifold Xc. Moreover, since
a neighborhood of x̄ in Rn is foliated by submanifolds of this form for nearby values of the parameter
c = (c1, . . . , cm), one can show that x̄ is in fact Lyapunov stable with respect to small unconstrained
perturbations [Arnold 1965]. The perspective changes qualitatively if we add to the vector field b in
(1-1) a small “dissipative” term, with the effect that the quantities f and g1, . . . , gm are no longer exactly

1We recall that the second-order differential of a function on a manifold is intrinsically defined at the points where the
first-order differential vanishes.

2Pointed out in [Arnold 1965] in the form we use here, although in the finite-dimensional case these ideas go back to the
founders of the analytical mechanics.
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conserved under the modified evolution. This is in the spirit of what we intend to do in the infinite-
dimensional case, when we consider the Navier–Stokes equation as a perturbation of the Euler equation.
Since the evolution no longer takes place on the manifolds Xc, the argument above leading to unconstrained
Lyapunov stability is not applicable anymore. However, in good situations, stability can still be obtained
if the quadratic form Q in (1-5) happens to be negative definite not just on Tx̄ Xc, but on larger subspaces
as well, for instance on the whole space Rn. This is, roughly speaking, the idea we shall pursue in the
infinite-dimensional case, to study the stability of vortex-like solutions of the Navier–Stokes equation.

To conclude with the (unmodified) evolution (1-1), we emphasize that the problem of determining
the index of the form (1-5) is also very natural from the viewpoint of the usual constrained optimization
theory. Clearly, the “Lagrange function”

L(x)= f (x)−
m∑

j=1

λj gj (x), x ∈ Rn, (1-7)

when considered on the whole space Rn, has a critical point at x̄ (and a local maximum at x̄ when
restricted to Xc). The form Q will be strictly negative definite3 in the whole space Rn if and only if L
has a nondegenerate unconstrained maximum at x̄ . As is explained in Section 2D, this is related to the
concavity of the function

(c1, . . . , cm) 7−→ M(c1, . . . , cm) := sup
x∈Xc

f (x). (1-8)

1B. Arnold’s geometric view of the two-dimensional incompressible Euler equation. V. I. Arnold
[1966b; 1966a] (see also [Arnold and Khesin 1998]) carried out the analogue of the above calculations in
an infinite-dimensional setting to handle in particular the two-dimensional incompressible Euler equation
∂tω+ u · ∇ω = 0, where u denotes the velocity of the fluid and ω = curl u is the associated vorticity. In
this case the evolution is generated by the Hamiltonian function, which represents the kinetic energy of
the fluid, and the constraints are given by the Casimir functionals

C8(ω)=

∫
�

8(ω(x)) dx, (1-9)

where � ⊂ R2 is the fluid domain and 8 is an “arbitrary” function on R. The idea of maximizing or
minimizing the energy on the set of vorticities satisfying suitable constraints has been widely used since
then to study the stability of steady-state solutions of the two-dimensional Euler equations and related
fluid models; see [Arnold and Khesin 1998; Burton 2005; Cao et al. 2019].

Let us briefly recall the setup relevant for our goals here, making the similarities with the finite-
dimensional case as transparent as possible. Our main objects will be the following:

(1) The phase space P = {ω : R2
→ (0,∞) : ω is smooth and decays “sufficiently fast” at ∞}. This is

our infinite-dimensional replacement for the manifold Rn in the finite-dimensional model. We restrict
ourselves to positive vorticity distributions defined on �= R2, because this is the appropriate framework
to study the stability of radially symmetric vortices in the whole plane. Admittedly, the definition above

3Our use of the terms “positive definite” and “negative definite” allows for vanishing along some directions. When this is not
the case, we speak of strictly positive definite or strictly negative definite forms.
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is somewhat vague, but it serves only as a motivation and our results will be independent of the vague
parts of the definitions. There is a natural Poisson structure on P that is relevant for the Euler equation,
see Section A5, but here we only need some of its Casimir functionals (to be specified now).

(2) The Casimir functionals, which play the role of the constraints gj in the finite-dimensional example.
These are linear combinations of elementary functionals of the form

h(a, ω)= |{ω > a}| =

∫
R2
χ(ω(x)− a) dx, a > 0, (1-10)

where χ = 1(0,∞) is the indicator function of (0,∞). Here and in what follows, we denote by |S| the
Lebesgue measure of any (Borel) set S ⊂ R2. Due to our assumptions on the vorticities in P, the functions
a 7→ h(a, ω) are finite and nonincreasing on (0,∞). In general, they do not have to be continuous in a
but they will have this property in the examples considered later. Similarly, the functionals ω 7→ h(a, ω)
may in general not be differentiable in every direction, but they will be in our examples. It is useful to
single out the quantity

M0(ω)=

∫
R2
ω(x) dx =

∫
∞

0
h(a, ω) da, (1-11)

which will be referred to as the “mass” of the vorticity distribution ω ∈ P.

(3) The orbits defined for any ω̄ ∈ P by

Oω̄ = {ω ∈ P : h(a, ω)= h(a, ω̄) for all a ∈ (0,∞)}. (1-12)

These subsets of the phase space are the analogues of the manifolds Xc defined by the constraints and
can be considered as a measure-theoretical replacement for the symplectic leaves

OSDiff
ω̄ = {ω ∈ P : ω = ω̄ ◦φ for some φ ∈ SDiff} ⊂ Oω̄,

where SDiff denotes the group of area-preserving diffeomorphisms in R2. In contrast to OSDiff
ω̄ , the orbit Oω̄

does not carry any topological information about ω̄, since ω ∈ Oω̄ as soon as ω is a measure-preserving
rearrangement of ω̄.

(4) The Hamiltonian (or energy functional) E : P → R, given by

E(ω)= −
1
2

∫
R2
ψ(x)ω(x) dx = −

1
4π

∫
R2

∫
R2

log |x − y|ω(x) ω(y) dx dy, (1-13)

where ψ =1−1ω is the stream function defined by

ψ(x)=
1

2π

∫
R2

log |x − y|ω(y) dy, x ∈ R. (1-14)

This is an analogue of the function f in the finite-dimensional example. Note that the usual kinetic energy
defined by 1

2

∫
R2 |u|

2 dx , where u = ∇
⊥ψ , is infinite for ω ∈ P. However, both definitions of the energy

coincide when
∫

R2 ω dx = 0, which is the case for instance if ω is the difference of two vorticities in P
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with the same mass. It is also worth observing that the functional E is not invariant under the scaling
transformation ω(x) 7→ ω(λ)(x) := λ2ω(λx) when M0 =

∫
R2 ω dx ̸= 0. In fact, one can easily check that

E(ω(λ))= E(ω)+
M2

0

4π
log λ for all λ > 0.

(5) The conserved quantities induced by Euclidean symmetries. These are the first-order moments M1,M2

and the symmetric second-order moment I defined by

Mj (ω)=

∫
R2

x jω(x) dx, j = 1, 2, I (ω)=

∫
R2

|x |
2ω(x) dx . (1-15)

Note that M1,M2 are associated to the translational symmetry, via Noether’s theorem, and I to the
rotational symmetry.

With these definitions, the Euler equation can be written in the form ∂tω = {E(ω), ω}, where { · , · }

denotes the Poisson bracket on P; see Section A5. Any steady state ω̄ ∈ P is a critical point of the
Hamiltonian E on the orbit Oω̄. Stability can be inferred when the restriction of the energy E to Oω̄ has a
strict local extremum at ω̄. In what follows, we focus on the maximizers of the energy, which correspond
to radially symmetric vortices.

1C. The constrained maximization of the energy in P. Under our assumptions, it is easy to determine
the maximizers of the Hamiltonian E under the constraints given by the functions h(a, ω) for a ∈ (0,∞).
Indeed, for any ω ∈ P, the orbit Oω contains a unique element ω∗ that is radially symmetric and
nonincreasing in the radial direction; this is the symmetric decreasing rearrangement of ω [Lieb and
Loss 1997]. The Riesz’s rearrangement inequality then shows that E(ω)≤ E(ω∗) for all ω ∈ Oω∗ , with
equality if and only if ω is a translate of ω∗; see [Carlen and Loss 1992, Lemma 2]. Of course ω∗ is a
stationary solution of the Euler equation, which represents a radially symmetric vortex with nonincreasing
vorticity profile. Our main focus here will be on the analogue of the quadratic form (1-5) for the steady
state ω̄ = ω∗.

First, the analogue of the Lagrange function (1-7) is

E(ω)−
∫

∞

0
3(a)h(a, ω) da = E(ω)−

∫
∞

0
3(a)

(∫
R2
χ(ω(x)− a) dx

)
da,

where the quantities 3(a) for a ∈ (0,∞) can be thought of as the Lagrange multipliers. The role of the
discrete index j in (1-7) is now played by the continuous parameter a > 0. Defining4

8(s)= −

∫
∞

0
3(a)χ(s − a) da = −

∫ s

0
3(a) da, s > 0, (1-16)

we see that the Lagrange function can also be expressed as

F(ω)= E(ω)+
∫

R2
8(ω(x)) dx, ω ∈ P. (1-17)

4The reason for the minus sign in (1-16) will become clear later.
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This quantity will be referred to later as the “free energy” of the vorticity distribution ω, a terminology
that will be discussed in Section 1D below.

Next, the analogue of the stationarity condition (1-4) at ω̄ = ω∗ is F ′(ω̄)= 0, where the linear form
η 7→ F ′(ω̄)η is defined for all η ∈ Tω̄P by

F ′(ω̄)η =

∫
R2

(
−ψ̄(x)+8′(ω̄(x))

)
η(x) dx, ψ̄(x)=

1
2π

∫
R2

log |x − y| ω̄(y) dy.

Stationarity is thus equivalent to the relation ψ̄(x) = 8′(ω̄(x)) for all x ∈ R2. Finally the analogue of
(1-5) is the quadratic form η 7→ F ′′(ω̄)[η, η], where

F ′′(ω̄)[η, η] =

∫
R2
(−ϕη+8′′(ω̄)η2) dx, ϕ(x)=

1
2π

∫
R2

log |x − y| η(y) dy.

Using the relation ∇ψ̄(x)=8′′(ω̄(x))∇ω̄(x), the second variation can be rewritten in the form

F ′′(ω̄)[η, η] =

∫
R2

(
−ϕη+

∇ψ̄

∇ω̄
η2
)

dx = 2E(η)+
∫

R2

∇ψ̄

∇ω̄
η2 dx, (1-18)

which is well known from Arnold’s work. Note that the ratio ∇ψ̄/∇ω̄ is meaningful only when the
vector ∇ω̄(x) is nonzero and colinear with ∇ψ̄(x) for almost all x ∈ R2. This condition is obviously
satisfied for all radially symmetric vortices with strictly decreasing vorticity profile.

1D. Overview of our results. We are now able to describe more precisely the results of this paper.
We consider a general family of radially symmetric vortices ω̄ ∈ P with vorticity profile satisfying
Hypotheses 2.1 below. Typical examples are the “algebraic vortex” ω̄(x)= (1+|x |

2)−κ, where κ > 1 is a
parameter, and the Oseen vortex for which ω̄(x)= e−|x |

2/4.

1D1. Arnold’s quadratic forms with and without constraints. In Section 2, we study in detail the quadratic
form (1-18) associated with the second variation of the Lagrange function (1-17) at the steady state ω̄ ∈P,
paying some attention to the functional-analytic questions. First of all, while we know from the constrained
maximization result that the restriction of that form to the tangent space Tω̄Oω̄ is negative, it is not clear
if this restriction is strictly negative definite, and if so in which function space. Our first main result is
Theorem 2.5, where we show that, if two neutral directions corresponding to translational symmetry
are disregarded, the restriction to Tω̄Oω̄ of the quadratic form (1-18) is indeed strictly negative in an
appropriate weighted L2 space. The proof ultimately relies on a variant of the Krein–Rutman theorem.

We next investigate the index of the quadratic form (1-18) on a much larger subspace, corresponding
to perturbations η ∈ Tω̄P satisfying

∫
R2 η(x) dx = 0. In other words, we relax all constraints given by the

Casimir functions (1-10), except for the mass M0 defined in (1-11), which is still supposed to be constant.
A priori there is no reason why the form (1-18) should be negative definite in this larger sense, and indeed
Theorem 2.8 shows that this is not always the case. More precisely, we show that negativity holds in
the large sense if and only if the optimal constant in some weighted Hardy inequality (where the weight
function depends on the vorticity profile ω̄) is smaller than 1. While that condition is not easy to check in
general, we deduce from Corollary 2.11 that it is fulfilled at least for the Oseen vortex, as well as for the
algebraic vortex ω̄(x)= (1 + |x |

2)−κ if κ ≥ 2.



ARNOLD’S VARIATIONAL PRINCIPLE AND ITS APPLICATION TO THE STABILITY OF PLANAR VORTICES 687

Although the mass constraint is rather natural, one may wonder if, for some vorticity profiles, the
quadratic form (1-18) can be negative definite for all perturbations η ∈ Tω̄P; this question is briefly
discussed in Section 2C. Finally, in Section 2D, we give a fairly explicit expression of the energy E(ω̄)
in terms of the constraints h(a, ω̄) for all a > 0; see Proposition 2.18. One obtains in this way an
infinite-dimensional analogue of the quantity M(c1, . . . , cn) defined in (1-8). Among other things, we
justify our claim that the index of the quadratic form (1-5) is related to the concavity of the function (1-8)
(which is a well-known fact), and we discuss a similar link in the infinite-dimensional case.

As an aside, we mention here that the stability of radially symmetric vortices for the two-dimensional
Euler equations can also be studied using other conserved quantities, such as the second-order symmetric
moment I defined in (1-15); see, e.g., [Marchioro and Pulvirenti 1994, Chapter 3].

1D2. The global maximizers of the free energy. Let ψ̄ be the stream function associated with the radially
symmetric vortex ω̄. We have seen that the analogue of the Lagrange function (1-7) is given by the “free
energy” (1-17), where the function8 is defined, up to an additive constant, by the relation ψ̄(x)=8′(ω̄(x)).
The appellation “free energy” is partially justified by a (loose) analogy of formula (1-17) with the classical
thermodynamical expression for the free energy

F = U − T S. (1-19)

Here U is the internal energy (of a suitable system), T is the temperature, and S is the entropy. In (1-17),
the energy E is analogous to U, the integral

∫
R2 8(ω(x)) dx is analogous to S, and one can argue that it is

reasonable to take T =−1. Of course, T has nothing to do with the real temperature of the fluid, but should
roughly be thought of as the statistical mechanics temperature of our system in the sense of [Onsager 1949].
We have not attempted to make this connection rigorous, which would take us in a different direction.

In Section 3, we consider vortices ω̄ which are global maximizers of the free energy F(ω) for all ω ∈P

satisfying
∫

R2 ω dx =
∫

R2 ω̄ dx . Such equilibria can be expected to have strong stability properties, and
may be useful for other purposes too. Using a direct approach, in the sense of the calculus of variations,
we prove the existence of global maximizers under fairly general assumptions on the function 8; see
Theorem 3.4. However, we do not have any efficient method to determine if a given vortex ω̄ is a global
maximizer or not. A necessary condition is of course that the quadratic form (1-18) be negative on
perturbations η with zero mean, see Theorem 2.8, but there is no reason to believe that this is sufficient.
Numerical evidence indicates that the Oseen vortex is a global maximizer, and so are the algebraic
vortices ω̄(x)= (1 +|x |

2)−κ for κ ≥ 2. In the particular case κ = 2, maximality can be deduced from the
logarithmic Hardy–Littlewood–Sobolev inequality∫

R2

∫
R2

log
1

|x − y|
ω(x)ω(y) dx dy ≤

1
2

∫
R2
ω(x) log(ω(x))+

1 + log(π)
2

, (1-20)

which holds for all ω ∈P with M0(ω)= 1; see [Carlen and Loss 1992]. We mention that (1-20) is related
to Onofri’s sharp version [1982] of the Moser–Trudinger inequality.

1D3. The effect of viscosity: application to Oseen vortices. In Section 4, we consider the stability of the
Gaussian vortex under the evolution defined by the Navier–Stokes equation ∂tω+ u · ∇ω = ν1ω, where
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ν > 0 is the viscosity parameter. More precisely, we show that the quadratic form (1-18) can be used to
give an alternative proof of the local stability results established in [Gallay and Wayne 2005]. We believe
that a proof relying on the second variation of the energy is of some interest, because the analogue of the
form (1-18) can be defined for more complicated vortex structures as well, whereas the simpler approach
in [Gallay and Wayne 2005] may be more difficult to adapt.

The addition of the viscous term results in important new issues: the radial vortices are no longer steady
states and the orbits (1-12) are no longer invariant under the evolution, so that much of the geometric
picture underlying the Euler equation is destroyed. The first problem is settled by introducing self-similar
variables and restricting ourselves to Oseen’s vortex, which is a stationary solution of the Navier–Stokes
equation in these new coordinates. Thanks to Theorem 2.8 and Corollary 2.11, the quadratic form (1-18)
is positive definite for all perturbations with zero mean. This form is invariant under the evolution defined
by the linearized Euler equation at the vortex, but not under the Navier–Stokes evolution due to the
viscous term and the nonlinearity. The effect of viscosity is measured by a second quadratic form, which
happens to have a favorable sign; see Theorem 4.2. We do not know if this is just a lucky coincidence, or
if there are deeper reasons behind that. In any event, this nice structure allows us to recover the local
stability result of [Gallay and Wayne 2005], except for a slight difference in the choice of the function
space; see Theorem 4.5. Again, we emphasize that the functional setting used in that work relies in an
essential way on the radial symmetry of Oseen’s vortex, through the existence of conserved quantities
such as the moment I in (1-15), whereas our new approach can, at least in principle, be adapted to more
general situations, where other methods do not work.

2. The second variation of the energy

In this section we study the coercivity, on various subspaces, of the quadratic form (1-18) which represents
the second variation of the free energy (1-17) at a radially symmetric vortex ω̄ ∈ P. We assume that
ω̄(x)= ω∗(|x |) for all x ∈ R2 and that the vorticity profile ω∗ : [0,+∞)→ R is a C2 function with the
following properties:

Hypotheses 2.1. The vorticity profile ω∗ ∈ C2([0,+∞)) satisfies

(1) ω∗(0) > 0, ω′
∗
(0)= 0, and ω′′

∗
(0) < 0,

(2) ω′
∗
(r) < 0 for all r > 0, and ω∗(r)→ 0 as r → +∞,

(3) there exist C > 0 and β > 2 such that |ω′
∗
(r)| ≤ C(1 + r)−β−1 for all r > 0.

It follows in particular from (2) and (3) that ω∗(r)= −
∫

∞

r ω′
∗
(s) ds, so that

0< ω∗(r)≤
C

(1 + r)β
for all r > 0 and 0<

∫
∞

0
rω∗(r) dr <∞. (2-1)

Let ψ̄ be the stream function associated with ω̄ as in (1-14). We have ψ̄(x)= ψ∗(|x |), where the stream
profile ψ∗ : [0,+∞)→ R satisfies

ψ ′′

∗
(r)+ 1

r
ψ ′

∗
(r)= ω∗(r); hence ψ ′

∗
(r)=

1
r

∫ r

0
sω∗(s) ds for all r > 0. (2-2)
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We introduce the weight function A : [0,+∞)→ R defined by A(0)= −ω∗(0)/(2ω′′
∗
(0)) and

A(r)= −
ψ ′

∗
(r)

ω′
∗
(r)

= −
1

rω′
∗
(r)

∫ r

0
sω∗(s) ds, r > 0. (2-3)

Hypotheses 2.1 ensure that A ∈ C0([0,+∞))∩ C1((0,+∞)). Moreover, there exists a constant C > 0
such that A(r)≥ C(1 + r)β for all r ≥ 0.

Let A : R2
→ (0,∞) be the radially symmetric extension of A to R2, namely A(x)= A(|x |) for all

x ∈ R2. We introduce the weighted L2 space X defined by

X =

{
ω ∈ L2(R2) : ∥ω∥

2
X :=

∫
R2

A(x)|ω(x)|2 dx <∞

}
, (2-4)

so that ω ∈ X if and only if A1/2ω ∈ L2(R2). Our assumptions ensure that A−1
∈ L1(R2), and using

Hölder’s inequality we easily deduce that X ↪→ L1(R2). We also consider the closed subspaces X1 ⊂

X0 ⊂ X defined by

X0 =

{
ω ∈ X :

∫
R2
ω(x) dx = 0

}
,

X1 =

{
ω ∈ X0 :

∫
R2

x j

|x |
ω(x) dx = 0 for j = 1, 2

}
.

(2-5)

We observe that, for anyω∈X , the energy E(ω) introduced in (1-13) is well-defined. This a consequence
of the following classical estimate, whose proof is reproduced in Section A1 for the reader’s convenience.

Proposition 2.2. Assume that ω ∈ L1(R2) satisfies∫
R2

|ω(x)| log(1 + |x |) dx <∞ and
∫

R2
|ω(x)| log

(
1 + |ω(x)|

)
dx <∞. (2-6)

Then the last member in (1-13) is well-defined, and the energy E(ω) satisfies the bound

|E(ω)| ≤ C∥ω∥L1

(∫
R2

|ω(x)| log(2 + |x |) dx +

∫
R2

|ω(x)| log+

|ω(x)|
∥ω∥L1

dx
)
, (2-7)

where log+(a)= max(log(a), 0). If , moreover,
∫

R2 ω(x) dx = 0, then E(ω)=
1
2

∫
R2 |u|

2 dx , where

u(x)= ∇
⊥ψ(x)=

1
2π

∫
R2

(x − y)⊥

|x − y|2
ω(y) dy, x ∈ R2. (2-8)

Since any ω ∈ X obviously satisfies (2-6), we can consider the quadratic form J on X defined by
J (ω)=

1
2∥ω∥

2
X − E(ω), or explicitly

J (ω)=
1
2

∫
R2

A(x)ω(x)2 dx +
1

4π

∫
R2

∫
R2

log |x − y|ω(x) ω(y) dx dy, ω ∈ X. (2-9)

In the particular case where ω ∈ X0, namely when ω has zero average over R2, Proposition 2.2 gives the
alternative expression

J (ω)=
1
2

∫
R2
(A(x)ω(x)2 − |u(x)|2) dx, ω ∈ X0, (2-10)
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where u is the velocity field associated with ω via the Biot–Savart formula (2-8). In view of (1-18)
and (2-3), we have J = −

1
2 F ′′(ω̄), where F ′′(ω̄) is the second variation of the free energy (1-17) at the

equilibrium ω̄. It is clear that X is the largest function space on which this second variation is well-defined.
Our main goal in this section is to study the positivity and coercivity properties of the quadratic form J

on the spaces X , X0, and X1 defined in (2-4), (2-5). To formulate our results, it is useful to take the
decomposition X = Xrs ⊕ X⊥

rs , where

Xrs = {ω ∈ X : ω is radially symmetric}, (2-11)

and X⊥
rs is the orthogonal complement of Xrs in the Hilbert space X . Referring to the geometric picture

of Section 1B, we consider X⊥
rs as the tangent space to the orbit Oω̄ at ω̄. This interpretation can be

formally justified as follows: if ω̄ ∈ X is smooth, the tangent space Tω̄Oω̄ is spanned by vorticities
of the form v · ∇ω̄, where v is a (smooth and localized) divergence-free vector field, and using polar
coordinates as in Section 2A below one verifies that such vorticities are indeed orthogonal in X to all
radially symmetric functions. A contrario, since there is a one-to-one correspondence in P between
orbits and symmetric decreasing rearrangements, it is clear that any radially symmetric perturbation of
the equilibrium ω̄ is transverse to the orbit Oω̄.

It is easy to verify that J (ω1+ω2)= J (ω1)+ J (ω2) when ω1 ∈ Xrs and ω2 ∈ X⊥
rs , so that the restrictions

of J to Xrs and X⊥
rs can be studied separately. We first consider the tangent space X⊥

rs in Section 2A, and
postpone the study of radially symmetric perturbations (with zero or nonzero mass) to Sections 2B and 2C.

Remark 2.3. Differentiating the first equality in (2-2), we see that the function φ = ψ ′
∗

satisfies

(L0φ)(r) := −φ′′(r)− 1
r
φ′(r)+ 1

r2φ(r)=
1

A(r)
φ(r), r > 0, (2-12)

where A(r)≥ C(1+r)β. Since φ > 0, Sturm–Liouville theory asserts that µ= 1 is the lowest eigenvalue of
the (generalized) eigenvalue problem L0φ=µA−1φ on R+, with boundary conditions φ(0)=φ(+∞)=0;
see [Coddington and Levinson 1955; Hartman 1964]. This observation will be used later.

Remark 2.4. Hypotheses 2.1 are sufficient for our results to hold, but can be relaxed in several ways. In
particular, we can consider vortices that are not smooth at the origin, but the assumption that ω′

∗
(r) < 0

for all r > 0 seems essential. This excludes vortices with compact support from our considerations, but
as our motivation comes from applications to the Navier–Stokes equations, Hypotheses 2.1 are good
enough for our purposes here. Of course, extensions of the theory that would include compactly supported
vortices might be relevant in other situations and can probably be constructed, although they may require
additional work.

2A. Positivity of the quadratic form J on X⊥
rs.

Theorem 2.5. Under Hypotheses 2.1, the quadratic form J defined by (2-10) is nonnegative on the
space X⊥

rs ⊂ X0. Moreover, there exists a constant γ > 0 such that

J (ω)≥
γ

2

∫
R2

A(x)ω(x)2 dx for all ω ∈ X⊥

rs ∩ X1. (2-13)
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Proof. We introduce polar coordinates (r, θ) in R2, and given anyω∈ X⊥
rs we use the Fourier decomposition

ω(r cos(θ), r sin(θ))=

∑
k ̸=0

ωk(r)eikθ , r > 0, θ ∈ R/(2πZ), (2-14)

where the sum runs over all nonzero integers k ∈ Z \ {0}. By Parseval’s relation we have∫
R2

A(x)ω(x)2 dx = 2π
∑
k ̸=0

∫
∞

0
A(r) |ωk(r)|2 r dr,∫

R2
|u(x)|2 dx =

∫
R2
(−1−1ω)(x) ω(x) dx = 2π

∑
k ̸=0

∫
∞

0
Bk[ωk](r) ω̄k(r) r dr,

(2-15)

where Bk is the integral operator on the half-line R+ defined by the formula

(Bk[ f ])(r)=
1

2|k|

∫
∞

0
min

(r
s
,

s
r

)|k|

f (s) s ds, r > 0. (2-16)

Note that g = Bk[ f ] is the unique solution of the ODE

−g′′(r)− 1
r

g′(r)+ k2

r2 g(r)= f (r), r > 0, (2-17)

which is regular at the origin and converges to zero at infinity.
In view of (2-15), the proof of Theorem 2.5 reduces to the study of the one-dimensional inequality∫

∞

0
(Bk[ f ])(r) f̄ (r) r dr ≤ Ck

∫
∞

0
A(r)| f (r)|2 r dr, (2-18)

which depends on the angular Fourier parameter k ∈ Z \ {0}. More precisely, the quadratic form J is
nonnegative on X⊥

rs if and only if, for all k ̸= 0, inequality (2-18) holds with some constant Ck ≤ 1. In
addition, we have the lower bound (2-13) on the subspace X⊥

rs ∩ X1 if and only if inequality (2-18) holds
with a better constant Ck ≤1−γ for all k ̸=0, assuming when |k|=1 that f satisfies the additional condition∫

∞

0
f (r) r dr = 0. (2-19)

It remains to establish inequality (2-18) for all k ∈ Z \ {0}. We obviously have the pointwise bound
|(Bk[ f ])(r)|≤ (Bk[| f |])(r), so that we can restrict ourselves to nonnegative functions f . Moreover the op-
erator Bk preserves positivity, and an inspection of the formula (2-16) reveals that 0 ≤ Bk[ f ]≤ |k|

−1 B1[ f ]

if f ≥ 0. As a consequence, to show that J is nonnegative on X⊥
rs , it is sufficient to prove inequality

(2-18) in the particular case where |k| = 1 and f ≥ 0. Setting h = A1/2 f , we write that inequality in the
equivalent form ∫

∞

0
(B̃1[h])(r) h(r) r dr ≤ C1

∫
∞

0
h(r)2 r dr, (2-20)

where B̃1[h] = A−1/2 B1[A−1/2h]. The following assertions play a crucial role in our argument:

Claim 1: The operator B̃1 is self-adjoint and compact in the (real) space Y = L2(R+, r dr).



692 THIERRY GALLAY AND VLADIMÍR ŠVERÁK

Indeed, take h ∈ Y with ∥h∥Y ≤ 1, and define f = A−1/2h, g = B1[ f ] = A1/2 B̃1[h]. Applying (2-16)
with |k| = 1, we see that

g(r)=
1
2r

∫ r

0
A(s)−1/2 h(s) s2 ds +

r
2

∫
∞

r
A(s)−1/2 h(s) ds, r > 0,

and using Hölder’s inequality we deduce

|g(r)| ≤

{
1
2r

(∫ r

0
A(s)−1 s3 ds

)1/2

+
r
2

(∫
∞

r
A(s)−1 s−1 ds

)1/2}
∥h∥Y . (2-21)

As A(r)≥ C(1 + r)β with β > 2, the right-hand side of (2-21) is uniformly bounded, so that ∥g∥L∞ ≤ C
for some universal constant C . It also follows from (2-21) that g(r)→ 0 as r → 0 and r → +∞. On
the other hand, since g satisfies the ODE (2-17) with k = 1 and f = A−1/2h, a standard energy estimate
yields the bound∫

∞

0

(
g′(r)2 +

g(r)2

r2

)
r dr =

∫
∞

0
g(r) A(r)−1/2 h(r) r dr ≤ ∥g∥L∞∥A−1/2

∥Y ∥h∥Y ≤ C. (2-22)

In view of (2-21) and (2-22), the Fréchet–Kolmogorov theorem [Reed and Simon 1978, Theorem XIII.66]
implies that the function B̃1[h] = A−1/2g lies in a compact set of Y, so that the operator B̃1 is compact.
To prove that B̃1 is self-adjoint, we take h1, h2 ∈ Y and observe that∫

∞

0
(B̃1[h1])(r) h2(r) r dr =

∫
∞

0

(
g′

1(r)g
′

2(r)+
g1(r)g2(r)

r2

)
r dr,

where gj = B1[A−1/2h j ] for j = 1, 2. This expression is clearly a symmetric function of (h1, h2).

Claim 2: The spectral radius of B̃1 is equal to 1, and λ= 1 is a simple eigenvalue of B̃1.
To see that, we first observe that λ= 1 is an eigenvalue of B̃1 with a positive eigenfunction. Indeed,

using (2-2), it is straightforward to verify that the function g = ψ ′
∗

satisfies the ODE (2-17) with k = 1
and f = −ω′

∗
. This shows that B1[−ω

′
∗
] = ψ ′

∗
; hence defining h = A−1/2ψ ′

∗
= −A1/2ω′

∗
we conclude

that B̃1[h] = h. On the other hand, assume that λ > 0 is an eigenvalue of B̃1, with eigenfunction h ∈ Y.
Defining f = A−1/2h, we see that B1[ f ] = λA f , so that the function g = B1[ f ] satisfies the generalized
eigenvalue problem

−g′′(r)−
1
r

g′(r)+
1
r2 g(r)= µ

g(r)
A(r)

, r > 0, (2-23)

with the boundary conditions g(0) = g(+∞) = 0, where µ = 1/λ, We already observed that µ = 1 is
the lowest eigenvalue of (2-23); see Remark 2.3. It follows that λ = 1 is the largest eigenvalue of the
integral operator B̃1, whose spectral radius is therefore equal to 1. The argument above also shows that
all positive eigenvalues of B̃1 are simple, because (2-23) is a second-order differential equation.

It is now a simple task to conclude the proof of Theorem 2.5. Claims 1 and 2 imply the validity
of inequality (2-20) with C1 = 1. We deduce that (2-18) holds for |k| = 1 with Ck = 1, and (since
Bk ≤ |k|

−1 B1) for |k| ≥ 2 with Ck ≤ 1/|k|. This shows that the quadratic form J is nonnegative on X⊥
rs .

On the other hand, if we assume that ω ∈ X⊥
rs ∩ X1, the function f =ω±1 satisfies condition (2-19), which



ARNOLD’S VARIATIONAL PRINCIPLE AND ITS APPLICATION TO THE STABILITY OF PLANAR VORTICES 693

means that h = A1/2 f is orthogonal in Y to the one-dimensional subspace Y0 spanned by the positive
function χ = A−1/2. It is clear that Y ⊥

0 does not contain any positive function, and in particular does
not include the principal eigenfunction h0 = −A1/2ω′

∗
of the operator B̃1. So, applying Lemma 4.7 and

Remark 4.8 below, we deduce that 1 − B̃1 > 0 on Y ⊥

0 , which means that inequality (2-20) holds on Y ⊥

0
with some constant C ′

1 < 1. Taking into account the other values of k, for which Ck ≤ 1/|k| ≤
1
2 , we

conclude that estimate (2-13) holds with γ = min
( 1

2 , 1−C ′

1

)
. □

Remark 2.6. The Krein–Rutman theorem [Deimling 1985, Theorem 19.2] asserts that the spectral
radius of the compact and positivity-preserving operator B̃1 is an eigenvalue with positive eigenfunction.
However, since the cone of positive functions has empty interior in Y, we cannot apply Theorem 19.3 in
[Deimling 1985] to conclude that B̃1 has a unique eigenvalue with positive eigenfunction, which is thus
equal to the spectral radius. For this reason, we prefer invoking Sturm–Liouville theory to prove that 1 is
the largest eigenvalue of B̃1.

Remark 2.7. If β > 4 in Hypotheses 2.1, the conclusion of Theorem 2.5 remains valid, with the same
proof, if the subspace X1 is replaced by

X1 =

{
ω ∈ X0 :

∫
R2

x j ω(x) dx = 0 for j = 1, 2
}
. (2-24)

This possibility will be used in Section 4.

2B. Positivity of the quadratic form J on Xrs ∩ X0. The quadratic form J is not necessarily positive
when considered on the subspace Xrs ∩ X0, which consists of radially symmetric functions with zero
mean. This question is related to the optimal constant in the weighted Hardy inequality∫

∞

0
f (r)2 dr

r
≤ CH

∫
∞

0
A(r) f ′(r)2 dr

r
, (2-25)

where f : [0,+∞)→ R is an absolutely continuous function with f (0)= f (+∞)= 0. Weighted Hardy
inequalities are extensively studied in the literature; see, e.g., [Mazya 2011, Section 1.3.2]. In particular,
it is known that (2-25) holds for some constant CH > 0 if and only if the positive function A satisfies

lim sup
r→0

(
log

1
r

)∫ r

0

s
A(s)

ds <∞ and lim sup
r→+∞

log(r)
∫

∞

r

s
A(s)

ds <∞. (2-26)

Both conditions in (2-26) are fulfilled in our case, since A(r)≥ C(1 + r)β for some β > 2.

Theorem 2.8. Under Hypotheses 2.1, the quadratic form J defined by (2-10) is coercive on Xrs ∩ X0 if
and only if Hardy’s inequality (2-25) holds for some CH < 1. In that case we have

J (ω)≥
γ

2

∫
R2

A(x)ω(x)2 dx for all ω ∈ Xrs ∩ X0, (2-27)

where γ = 1 − CH .

Proof. Given ω ∈ Xrs ∩ X0, we write ω(x)= ω0(|x |) and we consider the stream function ψ0 defined (up
to an irrelevant additive constant) by

ψ ′

0(r)=
1
r

∫ r

0
sω0(s) ds = −

1
r

∫
∞

r
sω0(s) ds, r > 0.



694 THIERRY GALLAY AND VLADIMÍR ŠVERÁK

Defining f (r)=rψ ′

0(r), we see that f is absolutely continuous on R+ with f (0)= f (+∞)=0. Moreover
we have ω0(r) = f ′(r)/r and u0(r) := ψ ′

0(r) = f (r)/r by construction. Finally the assumption that
ω0 ∈ Xrs ∩ X0 ensures that A1/2ω0 and u0 belong to the space Y = L2(R+, r dr). We thus have

J (ω)= π

∫
∞

0

(
A(r)ω0(r)2 − u0(r)2

)
r dr = π

∫
∞

0

(
A(r) f ′(r)2 − f (r)2

) dr
r
, (2-28)

and using (2-25) we conclude that (2-27) holds with γ = 1 − CH . This proves that the quadratic form J
is coercive on Xrs ∩ X0 if CH < 1. Conversely, if (2-27) holds for some γ > 0, it follows from (2-28) that
inequality (2-25) is valid with CH = 1 − γ . □

As is well known, the optimal constant in Hardy’s inequality (2-25) is related to the lowest eigenvalue
of a self-adjoint operator. A convenient way of seeing this is to apply the change of variables r = ex,
h(x)= f (ex), B(x)= e−2x A(ex), which transforms (2-25) into the equivalent inequality∫

R

h(x)2 dx ≤ CH

∫
R

B(x)h′(x)2 dx . (2-29)

The integral in the right-hand side of (2-29) defines a closed quadratic form on the Hilbert space H = L2(R),
with dense domain D = {h ∈ H : B1/2h′

∈ H}. Let

B : D(B)−→ H, h 7−→ −∂x(B(x)∂x h),

be the self-adjoint operator in H associated with the quadratic form (2-29) by Friedrich’s representation
theorem [Kato 1966]. Since B(x) > 0 for all x ∈ R we know that B is positive, and using the fact that
x2 B(x)−1

→ 0 as |x |→∞ it is easy to verify that B has compact resolvent in H , and hence purely discrete
spectrum. The optimal constant in CH in (2-29) is precisely the inverse of the lowest eigenvalue of B:

CH = max{λ−1
: λ ∈ spec(B)}. (2-30)

By Sturm–Liouville theory, ifµ=C−1
H is the lowest eigenvalue of B, there exists a positive eigenfunction

h ∈ D(B) such that Bh = µh. Setting h(x)= f (ex), we see that f is a positive solution of the ODE

−∂r

(
A(r)

r
∂r f (r)

)
= µ

f (r)
r
, r > 0, (2-31)

satisfying the boundary conditions f (0) = f (+∞) = 0. Moreover
∫

∞

0 A(r) f ′(r)2 dr/r <∞ by con-
struction. It is not easy to guess from (2-31) whether µ is smaller or larger than 1, but under additional
assumptions on the vortex profile it is possible to make another change of variables which puts (2-31)
into a form that allows for a comparison with (2-12).

Lemma 2.9. If the function A in (2-3) satisfies

A ∈ C2([0,+∞)) and sup
r≥1

(
A(r)
r2 +

A′(r)2

r2 A(r)

)∫
∞

r

s
A(s)

ds <∞, (2-32)

then the function g : [0,+∞)→ R defined by g(r)= A(r)1/2 f (r)/r is a solution of the ODE

−g′′(r)−
1
r

g′(r)+
1
r2 g(r)+ V (r)g(r)=

µ

A(r)
g(r), (2-33)
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with boundary conditions g(0)= g(+∞)= 0, where

V (r)= χ ′′(r)− 1
r
χ ′(r)+χ ′(r)2 and χ(r)=

1
2

log(A(r)). (2-34)

Proof. Since f satisfies (2-31), a direct calculation shows that g(r) := A(r)1/2 f (r)/r is a solution
of (2-33), where the potential V is defined by (2-34). As for the boundary conditions, we recall that∫

∞

0 A(r) f ′(r)2 dr/r <∞; hence
∫

∞

0 | f ′(r)| dr <∞. As f (r)=
∫ r

0 f ′(s) ds, we have

| f (r)|
r

≤
1
r

(∫ r

0

s
A(s)

ds
)1/2(∫ r

0
A(s) f ′(s)2

ds
s

)1/2

r→0−−−→ 0,

which shows that g(r)→ 0 as r → 0. Similarly, since f (r)= −
∫

∞

r f ′(s) ds, we have

|g(r)| ≤
A(r)1/2

r

(∫
∞

r

s
A(s)

ds
)1/2(∫ ∞

r
A(s) f ′(s)2

ds
s

)1/2

r→+∞
−−−−→ 0,

thanks to (2-32). □

Remark 2.10. The same arguments show that r2g′(r)→ 0 as r → 0 and g′(r)→ 0 as r → +∞, at least
along appropriate sequences.

Let L be the differential operator defined by

L = L0 + V = −∂2
r −

1
r
∂r +

1
r2 + V (r), (2-35)

where L0 was introduced in (2-12). We know from (2-33) that Lg =µA−1g, where µ= C−1
H and g is the

positive function defined in Lemma 2.9. On the other hand, we observed in Remark 2.3 that L0φ = A−1φ,
where φ = ψ ′

∗
is also a positive function vanishing at the origin and at infinity. Using Sturm–Liouville

theory, we easily deduce the following useful criterion:

Corollary 2.11. Under assumptions (2-32), if the function V defined by (2-34) does not change sign, the
optimal constant in Hardy’s inequality (2-25) satisfies CH ≤ 1 if V ≥ 0, and CH ≥ 1 if V ≤ 0; moreover,
CH = 1 only if V is identically zero.

Proof. With the notation above, we have L0φ− A−1φ = 0 and

L0g − A−1g = Lg − (A−1
+ V )g = R, where R = (µ− 1)A−1g − V g. (2-36)

Since rRφ = r(φ(L0g)− g(L0φ))= (d/dr)(r(φ′g − g′φ)), we have for r1 > r0 > 0 the identity∫ r1

r0

R(r)φ(r)r dr = r
(
φ′(r)g(r)− g′(r)φ(r)

)∣∣r=r1

r=r0
. (2-37)

Now, we let r0 tend to 0 and r1 to +∞ along appropriate sequences, in such a way that the right-hand
side of (2-37) converges to zero. This possible, because we know that φ(r)= O(r) and φ′(r)= O(1) as
r → 0, while φ(r) = O(1/r) and φ′(r) = O(1/r2) as r → +∞; moreover, the behavior of g in these
limits is given in Lemma 2.9 and Remark 2.10. We thus deduce from (2-37) that

∫
∞

0 Rφr dr = 0, which
is impossible if the function R has a constant sign and is not identically zero. So, if V does not change
sign, we must have µ≥ 1 if V ≥ 0 and µ≤ 1 if V ≤ 0; moreover, µ= 1 is possible only if V ≡ 0. Since
µ= C−1

H , this gives the desired conclusion. □
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Remark 2.12. As is easily verified, the optimal constant CH in Hardy’s inequality (2-25) is unchanged if
the function A(r) is replaced by λ−2 A(λr) for some λ > 0. This corresponds to a rescaling of the vortex
profile ω∗.

We now give two important examples where the sign of CH − 1 can be determined.

Example 2.13 (algebraic vortex). Given κ > 1, we define

ω∗(r)=
1

(1 + r2)κ
, ψ ′

∗
(r)=

1
2(κ−1)r

(
1 −

1
(1 + r2)κ−1

)
. (2-38)

We have

A(r)= −
ψ ′

∗
(r)

ω′
∗
(r)

=
1

4κ(κ−1)r2 ((1 + r2)κ+1
− (1 + r2)2).

When κ = 2 (Kaufmann–Scully vortex), inequality (2-25) holds with optimal constant CH = 1, and is
saturated for f (r)= r2/(1+r2)2. Indeed, it is easy to verify that A(r)= (1+r2)2/8 and V (r)= 0 in that
particular case. Taking g(r)= r/(1 + r2), a direct calculation shows that Lg = A−1g, so that CH = 1.

If κ > 2, we prove in Section A2 that the potential V is positive, so that CH < 1 by Corollary 2.11.
Finally, if 1< κ < 2, the potential V is negative, implying that CH > 1. Summarizing, for the family of
algebraic vortices (2-38), the quadratic form J is coercive on Xrs ∩ X0 if and only if κ > 2.

Example 2.14 (Gaussian vortex). We next consider the Oseen vortex given by

ω∗(r)= e−r2/4, ψ ′

∗
(r)=

2
r
(1 − e−r2/4), A(r)=

4
r2 (e

r2/4
− 1). (2-39)

In that case too, the potential V defined in (2-34) is positive; see Section A2. By Corollary 2.11, we
conclude that CH < 1, so that the quadratic form J is coercive on Xrs ∩ X0. A numerical calculation
gives the approximate value CH ≈ 0.57, so that γ ≈ 0.43.

Remark 2.15. In a finite-dimensional situation, one can use statements such as Theorems 2.5 and 2.8 for
showing the nonlinear Lyapunov stability of the corresponding steady solution, at least if the smoothness
class of the relevant objects is C2. More precisely, if a flow ẋ = b(x) on a finite-dimensional manifold
preserves a C2 function f which attains a nondegenerate local maximum at x̄ , then the sets { f (x) >
f (x̄)− ϵ} are invariant under the flow and for small ϵ are well-approximated by the small balls given by
the quadratic form −

1
2 f ′′(x̄)[x − x̄, x − x̄]. A standard way to see this is to write f (x) > f (x̄)− ϵ as

−
1
2

f ′′(x̄)[x − x̄, x − x̄] −

∫ 1

0
(1 − t)

(
f ′′((1 − t)x̄ + t x)− f ′′(x̄)

)
[x − x̄, x − x̄] dt < ϵ.

When f ′′ is continuous at x̄ and x is close to x̄ , the integral in this inequality is dominated by a small
multiple of −

1
2 f ′′(x̄)[x − x̄, x − x̄] and the usual Lyapunov stability statements follow. In our situation

here the set Oω̄ is not a C2 submanifold and the free energy functional ω 7→ E(ω)+
∫

R2 8(ω(x)) dx is
not of class C2. It is not hard to see directly that the expression

−

∫
R2

∫ 1

0
(1 − t)8′′

(
(1 − t)ω̄(x)+ tω(x)

)
(ω(x)− ω̄(x))2 dt dx
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cannot be dominated by −
1
2

∫
R2 8

′′(ω̄)(ω(x) − ω̄(x))2 dx in a suitable way. One may still use the
invariance of the sets Uω̄,ϵ := {ω ∈ Oω̄ ∩ X1 : E(ω) > E(ω̄)− ϵ} under the Euler evolution, and possibly
also the conservation of the second-order moment I (ω) defined in (1-15), to obtain Lyapunov-type
stability statements. For results in this spirit when the domain occupied by the fluid is compact, the reader
can consult [Burton 2005] and [Arnold and Khesin 1998, Section II.4]. Our situation here is somewhat
complicated by the noncompactness of our flow domain R2, but under our assumptions one still has⋂
ϵ>0 Uω̄,ϵ = {ω̄} (by using the uniqueness of the maximizers discussed in [Carlen and Loss 1992], for

example). This could be turned into Lyapunov-type stability statements, although not quite of the same
form as in the C2 case. The important point is that there are estimates for the proximity of “almost
maximizers” to the exact maximizers, an issue that also appears in other problems, such as the stability of
the isoperimetric inequality [Fusco et al. 2008], and of the Sobolev inequality [Bianchi and Egnell 1991].

In the present work our focus is on quadratic forms, due to their applicability to the viscous case. Of
course, at the level of the linearized inviscid equation ωt + ū · ∇ω+ u · ∇ω̄ = 0, the quadratic form J
does provide Lyapunov stability in the space X1 if inequality (2-25) holds with CH < 1. We note that the
linearized analysis in other topologies can be more complicated; see for example [Bedrossian et al. 2019].

2C. The quadratic form J without mass constraint. In this short section we make a few remarks on
the index of the quadratic form (2-9) when considered on the whole space X defined by (2-4), and not
only on the subspace X0 given by (2-5). Our first observation is that, due to lack of scale invariance in
this context, the form J cannot be positive on X if the underlying steady state ω̄ is sharply concentrated
near the origin. To see this, we consider the rescaled vortex ω̄λ(x)= λ2ω̄(λx) and the associated weight
function Aλ(x)= λ−2A(λx); see Remark 2.12. We denote by Jλ the quadratic form on X corresponding
to the steady state ω̄λ, namely the form (2-9) where A is replaced by Aλ. If ω ∈ X and ωλ(x)= λ2ω(λx),
a simple calculation shows that

Jλ(ωλ)= J (ω)−
M2

0

4π
log(λ), where M0 =

∫
R2
ω(x) dx .

If M0 ̸= 0, it is clear that Jλ(ωλ) < 0 when λ> 0 is sufficiently large, so that the quadratic form Jλ cannot
be positive in this regime.

Remark 2.16. The negative direction arising by such a rescaling is related to a particular choice of the unit
of length implicitly involved in the kernel 1

2π log |x |. In writing log |x |, we imply that x is dimensionless.
When x is measured in some units of length, we should write the kernel as 1

2π log(|x |/r0), where r0 is a
reference length. The choice of r0 does not affect the behavior of the system, and in the stability analysis
based on J it can be compensated for by adding to the quadratic form J a suitable multiple of the quantity(∫

R2 ω(x, t) dx
)2, which is preserved by the evolution. Hence, as one can expect, the stability analysis is

independent of the choice of the reference length r0, or, equivalently, of the scaling parameter λ above.

We next argue that, for any vortex ω̄ satisfying Hypotheses 2.1, the index of the quadratic form is well-
defined in the sense that J has (at most) a finite number of negative directions. In view of Theorem 2.5, it is
sufficient to evaluate J on radially symmetric functions ω ∈ Xrs. The following expression will be useful:
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Lemma 2.17. For any ω ∈ Xrs, we have

J (ω)= π

∫
∞

0
A(r)ω(r)2r dr +π

∫
∞

0

∫
∞

0
log(max(r, s))r ω(r) s ω(s) dr ds. (2-40)

Proof. Here and below, with a slight abuse of notation, we consider any ω ∈ Xrs as a function of the
one-dimensional variable r = |x |. For such vorticities, the first integral in (2-9) obviously gives the first
term in (2-40), so it remains to establish the following expression of the energy:

E(ω)= −π

∫
∞

0

∫
∞

0
log(max(r, s))r ω(r) s ω(s) dr ds, ω ∈ Xrs. (2-41)

To this end, we introduce polar coordinates x = reiθ, y = seiζ to compute the right-hand side of (1-13),
and we use the identity∫ 2π

0

∫ 2π

0
log |reiθ

− seiζ
| dθ dζ = 2π

∫ 2π

0
log |reiθ

− s| dθ = 4π2 log(max(r, s)). (2-42)

The formula (2-42) is well known and can be derived in many ways. For example, assuming that r is a
fixed positive number, we interpret the last integral as a function of s ∈ C. This expression obviously
depends only on |s|, is continuous everywhere, and is analytic both inside and outside of the circle |s| = r .
Inside the circle it has to be constant and outside the circle it coincides with the potential of a point
particle of mass 2π located at the origin, which is 2π log |s|. This gives (2-42), and (2-41) follows. □

Applying the change of variables w(r)= ω(r)A(r)1/2, so that w ∈ Y = L2(R+, r dr) when ω ∈ Xrs,
the formula (2-40) becomes

1
π

J (ω)=

∫
∞

0
w(r)2r dr −

∫
∞

0

∫
∞

0
k(r, s)w(r)w(s)rs dr ds, (2-43)

where k(r, s) = − log(max(r, s))A(r)−1/2 A(s)−1/2. Under Hypotheses 2.1, we have the lower bound
A(r)≥ C(1 + r)β for some β > 2, which implies that∫

∞

0

∫
∞

0
k(r, s)2 rs dr ds <∞.

This means that the right-hand side of (2-43) is the quadratic form in Y associated with a self-adjoint
operator of the form 1 − K, where 1 is the identity and K is a Hilbert–Schmidt perturbation. By
compactness, this operator has (at most) a finite number of negative eigenvalues, which means that the
index of the quadratic form J on X is well-defined.

The eigenvalues of K can also be thought of as eigenvalues of the quadratic form (2-41) with respect
to the reference form ω 7→ π

∫
∞

0 A(r)ω(r)2r dr . As is easily verified, if λ is such an eigenvalue, the
corresponding eigenfunction ω satisfies

−ψ(r)= λA(r)ω(r), where ψ(r)=

∫
∞

0
log(max(r, s)) s ω(s) ds. (2-44)

Since ω(r)= ψ ′′(r)+ (1/r)ψ ′(r), the first relation in (2-44) is an ordinary differential equation for the
stream function ψ : R+ → R, to be solved with the boundary conditions

ψ ′(0)= 0 and lim
r→+∞

(
ψ(r) log(2r)−ψ(2r) log(r)

)
= 0,
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which can be deduced from the expression of ψ in (2-44). For the Lamb–Oseen vortex (2-39) a numerical
computation gives the largest eigenvalue λ≈ 0.7127, thus suggesting that the form J is strictly positive
definite on the whole space Xrs in that case. In contrast, the largest eigenvalue for the algebraic vor-
tices (2-38) seems to exceed the threshold value 1, indicating that for those vortices the form J is not
positive definite without additional constraints on ω.

2D. The maximal energy as a function of the constraints. In Section 1A we considered the classical prob-
lem of maximizing a function f : Rn

→ R under a family of constraints of the form g1 = c1, . . . , gm = cm ,
where g1, . . . , gm : Rn

→ R. Given c = (c1, . . . , cm) ∈ Rm, we recall the notation Xc = {x ∈ Rn
:

g1(x)= c1, . . . , gm(x)= cm}. Assuming that f reaches a nondegenerate maximum on Xc at some point
x̄ ∈ Xc where the first-order derivatives g′

1(x̄), . . . , g′
m(x̄) are linearly independent, we introduced the

quadratic form Q defined by (1-5), which is the second-order differential of the Lagrange function (1-7) at x̄ .
In the present section, we are interested in the index of the form Q on larger subspaces than Tx̄ Xc. As was
already mentioned, this question is closely related to concavity properties of the function M defined by (1-8)
or, almost equivalently, to convexity properties of the set S = {(g1(x), . . . , gm(x), f (x)) : x ∈ Rn

} ⊂ Rm+1

near its “upper boundary”.
The situation becomes particularly transparent if we use adapted coordinates which, as it turns out,

have a fairly complete analogy in the two-dimensional Euler case. Let us assume that we can introduce
new coordinates (c1, . . . , cm, y1, . . . , yn−m) in Rn such that, as before, c1, . . . , cm are the values of
the constraints g1, . . . , gm , and the additional coordinates y1, . . . , yn−m are chosen so that the points
having coordinates (c1, . . . , cm, 0, . . . , 0) are those where f attains its maximum on Xc.5 Writing
M(c1, . . . , cm)= f (c1, . . . , cm, 0, . . . , 0) as in (1-8), one verifies that

∂M
∂cj

(c1, . . . , cm)= λj , j = 1, . . . ,m, (2-45)

where λ1, . . . , λm are the Lagrange multipliers introduced in (1-4). Moreover the extremality condition
on Xc implies that

∂ f
∂yk

(c1, . . . , cm, 0, . . . , 0)= 0, k = 1, . . . , n − m.

We infer that

D2 f (c1, . . . , cm, 0, . . . , 0)=

(
(∂2 f/(∂ci∂cj ))

m
i, j=1 0

0 (∂2 f/(∂yk∂yℓ))n−m
k,ℓ=1

)
, (2-46)

where all derivatives are evaluated at the point (c1, . . . , cm, 0, . . . , 0). The first submatrix in the right-hand
side of (2-46) is precisely the Hessian of M, and the second submatrix is always negative definite, due
to our assumption that f reaches a maximum at (y1, . . . , yn−m) = (0, . . . , 0) for any fixed value of
c1, . . . , cm . So we conclude that the quadratic form Q defined in (1-5) is negative definite at x̄ if and only
if the Hessian of M is negative definite at (c1, . . . , cm), where cj = gj (x̄) for j = 1, . . . ,m.

5In a nondegenerate situation, the local existence of such a coordinate system is clear by standard arguments, but globally the
situation can, of course, be more complicated.
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Another interesting object is the function

N (λ1, . . . , λm)= sup
x∈Rn

( f (x)− λ1g1(x)− · · · − λm gm(x))

= sup
c∈Rm

(M(c1, . . . , cm)− λ1c1 − · · · − λmcm), (2-47)

which is the Legendre transform of M. Under appropriate assumptions, the main one being the concavity
of M, this quantity is well-defined and the relation (2-45) can be inverted (at least locally) via the formula

cj = −
∂N
∂λj

(λ1, . . . , λm), j = 1, . . . ,m. (2-48)

We now return to the infinite-dimensional framework of the two-dimensional Euler equation, with
the manifold Rn replaced by the phase space P introduced in Section 1B, the function f replaced by
the energy E in (1-13), the constraints gj replaced by the Casimir functionals h(a, ω) in (1-10), and the
submanifolds Xc replaced by the orbits Oω in (1-12). In that case we have

max
ω∈Oω̄

E(ω)= E(ω̄∗), (2-49)

where, as before, ω̄∗ denotes the symmetric decreasing rearrangement of an element ω̄ ∈ P. As Oω̄ is
characterized in terms of the functionals h(a, ω) defined in (1-10), the energy of the maximizer ω̄∗ in Oω̄

can also be expressed in terms of the constraint function a → h(a, ω̄). It turns out that the representation
formula is quite explicit.

Proposition 2.18. Given ω̄ ∈ P, we define h(a)= π−1h(a, ω̄)= π−1
|{ω̄ > a}| for any a > 0. Then

E(h) := max
ω∈P

h( · ,ω)=πh

E(ω)=
π

8

∫ m

0

∫ m

0
L(h(a), h(b)) da db +

1
8π

M2
0 , (2-50)

where m = max ω̄, M0 =
∫

R2 ω̄ dx = π
∫ m

0 h(a) da, and

L(R, S)= −RS log max(R, S)− 1
2 min(R, S)2. (2-51)

Proof. Replacing ω̄ with ω̄∗ (an operation that does not affect the function h), we can assume that ω̄ is
radially symmetric and nonincreasing in the radial direction. In view of (2-49), we then have E(h)= E(ω̄),
and if we consider ω̄ as a function of the radius r = |x |, we observe that h(a)= (ω̄−1(a))2 wherever ω̄ is
strictly decreasing. To compute E(ω̄), we start from the expression (2-41), and we introduce the functions

k(r, s)= −rs log max(r, s), K (R, S)= L(R, S)+ RS.

Clearly K (R, 0)= 0, K (0, S)= 0 for R, S > 0, and one can verify by direct calculation that K (R, S)
is twice continuously differentiable on (0,∞)× (0,∞), with

∂2K
∂R∂S

(R, S)= − log max(R, S), R, S > 0.

So the function (r, s) 7→ K (r2, s2) is twice continuously differentiable on [0,∞)× [0,∞) and

1
8
∂2

∂r∂s
K (r2, s2)= k(r, s).
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Integrating by parts in (2-41) and recalling that m = max ω̄, we can thus write

E(ω̄)=
π

8

∫
∞

0

∫
∞

0

∂2

∂r∂s
K (r2, s2) ω̄(r) ω̄(s) dr ds =

π

8

∫
∞

0

∫
∞

0
K (r2, s2) dω̄(r) dω̄(s)

=
π

8

∫ m

0

∫ m

0
K
(
(ω̄−1(a))2, (ω̄−1(b))2

)
da db =

π

8

∫ m

0

∫ m

0
K (h(a), h(b)) da db

=
π

8

∫ m

0

∫ m

0
L(h(a), h(b)) da db +

1
8π

M2
0 , (2-52)

where we have formally used the substitutions ω̄(r)= a, ω̄(s)= b. This is straightforward when ω̄ is
strictly decreasing, and the general case where ω̄ is nonincreasing can be treated by integrating only over
the intervals where ω̄ is strictly decreasing. □

We now make a more precise comparison with the finite-dimensional situation above. Let us assume
that ω̄ ∈ P is radially symmetric with ∂r ω̄(r) < 0 for all r > 0 and ∂2

r ω̄(0) < 0. To eliminate the
translational symmetries, we work with the manifold

P̃ = {ω ∈ P : M0(ω)= M0(ω̄), Mj (ω)= 0, j = 1, 2}, (2-53)

where M0,Mj are as in (1-11), (1-15). If η ∈ X1 (see (2-24)) is smooth and compactly supported with
sufficiently small C2 norm, then ω̄+ η ∈ P̃. Denoting by ηrs the projection of η onto the subspace Xrs

defined in (2-11), we can take the quantities h(a, ω̄+ηrs) and η⊥
rs := η−ηrs as the (approximate) analogues

of the coordinates cj and yk , respectively. The analogy is not perfect, due to the stronger-than-ideal
assumptions on η, but it is sufficient for concluding that, when ω̄= ω̄∗, the negative-definiteness of Arnold’s
form (1-18) on the tangent space Tω̄P̃ is strongly related to the concavity of the energy E in the variable6

h at the function h̄(a) = π−1h(a, ω̄). In some sense the expression (2-50) is “trying to be concave”,
although not quite achieving this: the function L(R, S) is separately concave, but not concave. The second
variation on the space X0 is given by the quadratic form which takes a function ξ(a)with

∫ m
0 ξ(a) da =0 to

π

8

∫ m

0

∫ m

0

(
D2

1 L(h(a), h(b))ξ(a)2 + 2D1 D2L(h(a), h(b))ξ(a)ξ(b)+ D2
2 L(h(a), h(b))ξ(b)2

)
da db.

Due to the separate concavity of L the first term and the third term are negative, but the second one can lead
to the form being indefinite. In view of our previous considerations, the negativity of the form is equivalent
to the validity of the Hardy inequality (2-25) with CH ≤ 1, and it is not hard to verify directly that this is in-
deed the case. As an analogue of (2-45), we also note that the variational derivative of E with respect to h is

1
π

δE

δh
(a)=3(a)= −8′(a). (2-54)

We will not go into the details as we will not work with this expression. The reader can also derive the
analogue of (2-48) (under appropriate assumptions).

6It is perhaps worth recalling that E is convex in ω on the subspace given by
∫

R2 ω dx = 0. However, in some regions it may
be concave in h, at least on the subspace given by

∫
∞

0 h(a) da = 0.
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3. Global maximization of the free energy

In the previous section we observed that some radially symmetric vortices ω̄, including the Gaussian
vortex (2-39) and the algebraic vortex (2-38) with κ > 2, are nondegenerate local maxima of the associated
free energy functional (1-17) once restricted to the manifold P̃ defined in (2-53). This was established by
showing that the second-order differential F ′′(ω̄) is strictly negative definite on the tangent space Tω̄P̃.
We now follow a different approach, which relies on the direct method in the calculus of variations:
under appropriate assumptions on the function 8 in (1-17), we show that the free energy F(ω) has a
global maximum on the set of all vorticity distributions with a fixed mass M. By construction, if ω̄
is any maximizer obtained in this way, the conclusion of Theorem 2.8 applies with γ ≥ 0, so that
Hardy’s inequality (2-25) holds with CH ≤ 1. Note also that, according to the discussion in Section 2D,
prescribing 8 amounts to fixing the “Lagrange multipliers” in our constrained maximization problem.

We start with a preliminary result, which is probably well known. For the reader’s convenience, the
proof is reproduced in Section A1.

Proposition 3.1. Assume that f ∈ L1(Rn) is nonnegative and that M :=
∫

Rn f (x) dx > 0. Then

M +

∫
Rn
(log− |x |) f (x) dx ≲ M +

∫
Rn

(
log+

f (x)
M

)
f (x) dx, (3-1)

M +

∫
Rn
(log+ |x |) f (x) dx ≳ M +

∫
Rn

(
log−

f (x)
M

)
f (x) dx, (3-2)

where the implicit constants only depend on the space dimension n. Moreover, if f is radially symmetric
and nonincreasing in the radial direction, then the reverse inequalities also hold.

We next specify the function space in which we shall solve our maximization problem.

Definition 3.2. Given any M > 0, we denote by X M the set of all ω ∈ L1(R2) such that ω(x) ≥ 0 for
almost all x ∈ R2 and∫

R2
ω(x) dx = M,

∫
R2
ω(x) log(1 + |x |) dx <∞,

∫
R2
ω(x) log(1 +ω(x)) dx <∞. (3-3)

For later use we observe that, if ω ∈ X M and if ω∗ denotes the symmetric nonincreasing rearrangement
of ω, then

∫
R2 ω

∗(x) dx =
∫

R2 ω(x) dx = M and∫
R2
ω∗(x) log(1 + |x |) dx ≤

∫
R2
ω(x) log(1 + |x |) dx <∞,∫

R2
ω∗(x) log(1 +ω∗(x)) dx =

∫
R2
ω(x) log(1 +ω(x)) dx <∞.

This shows that the set X M ⊂ L1(R2) is invariant under the action of the symmetric nonincreasing
rearrangement.

For ω ∈ X M , we consider the free energy defined by F(ω)= E(ω)+ S(ω), where

E(ω)=
1

4π

∫
R2

∫
R2

log 1
|x−y|

ω(x) ω(y) dx dy, S(ω)=

∫
R2
8(ω(x)) dx .
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We have shown in Proposition 2.2 that the energy E(ω) is finite for any ω ∈ X M . Unlike in Section 2, the
function 8 in the entropy term is not related here to any radially symmetric vortex, but is an arbitrary
function satisfying the following properties:

Hypotheses 3.3. The function 8 : [0,+∞) → R is continuous with 8(0) = 0. Moreover, there exist
constants C1 ∈ R, C2 < M/(8π), and C3 > M/(8π) such that

8(ω)≤ C1ω+ C2ω log M
ω
, when ω ≤ M,

8(ω)≤ C1ω− C3ω log ω
M
, when ω ≥ M.

(3-4)

Under Hypotheses 3.3, the positive part of8 satisfies8+(ω)≤ Cω(1+| log(ω/M)|) for some constant
C > 0, and this implies in particular that the entropy S(ω) is well-defined in R ∪ {−∞} for any ω ∈ X M .
We are now in a position to state the main result of this section.

Theorem 3.4. Fix any M > 0. Under Hypotheses 3.3, there exists ω̄ ∈ X M such that

F(ω̄)= E(ω̄)+ S(ω̄)= sup
ω∈X M

(E(ω)+ S(ω)).

Moreover ω̄ can be chosen to be radially symmetric and nonincreasing in the radial direction.

The proof of Theorem 3.4 is divided into two parts. The first one consists in showing that the free
energy F is bounded from above on X M , and that there exists a maximizing sequence which is convergent
in L1(R2). We formulate this in a separate statement:

Proposition 3.5. Under Hypotheses 3.3, the free energy F = E+S is bounded from above on the space X M :

FM := sup
ω∈X M

(E(ω)+ S(ω)) <∞.

Moreover, there exists a maximizing sequence (ωj ) j∈N in X M which converges in L1(R2) to some limiting
profile ω̄ = ω̄∗

∈ X M as j → +∞, and we have S(ω̄) >−∞.

Proof. Our starting point is the logarithmic Hardy–Littlewood–Sobolev inequality

E(ω)+
M
8π

∫
R2
ω log

M
ω

dx ≤
M2

8π
(1 + logπ), (3-5)

which holds for all ω ∈ X M ; see [Carlen and Loss 1992]. In view of (3-4), we deduce from (3-5) that

E(ω)+ S(ω)+
(

M
8π

− C2

)∫
ω<M

ω log
M
ω

dx +

(
C3 −

M
8π

)∫
ω>M

ω log
ω

M
dx

≤ E(ω)+ C1 M +
M
8π

∫
R2
ω log

M
ω

dx ≤ C1 M +
M2

8π
(1 + logπ). (3-6)

Since C2 < M/(8π) and C3 > M/(8π), this proves that FM ≤ C1 M + M2(1 + logπ)/(8π).
Now, let (ωj ) j∈N be a sequence in X M such that E(ωj )+ S(ωj )→ FM as j → +∞. If we denote

by (ωj )
∗
∈ X M the symmetric nonincreasing rearrangement of ωj , we know that E((ωj )

∗)≥ E(ωj ) and
S((ωj )

∗)= S(ωj ) for all j ∈ N, so that ((ωj )
∗) j∈N is a fortiori a maximizing sequence. So we assume
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henceforth that ωj = (ωj )
∗; i.e., ωj is radially symmetric and nonincreasing in the radial direction. In that

case, there exists a constant C0 > 0 such that∫
R2
ωj (x)

∣∣∣∣log
ωj (x)

M

∣∣∣∣ dx ≤ C0 and
∫

R2
ωj (x)|log |x || dx ≤ C0 (3-7)

for all j ∈ N. Indeed, the first inequality in (3-7) follows directly from (3-6), and the second one is a
consequence of the first inequality and of Proposition 3.1, since ωj = (ωj )

∗.
It remains to verify that one can extract from (ωj ) j∈N a convergent subsequence in L1(R2). We recall

that ωj (x) is a nonincreasing function of the radial variable |x |, which satisfies the uniform pointwise
estimate 0 ≤ ωj (x) ≤ M/(π |x |

2); see (A-3) below. By Helly’s selection theorem [Rudin 1953], there
exists a subsequence, still denoted by (ωj ) j∈N, which converges pointwise to some limit ω̄ : R2

→ R+ as
j → +∞. It is clear that ω̄ is radially symmetric and nonincreasing, so that ω̄ = ω̄∗, and Fatou’s lemma
implies that

∫
R2 ω̄(x) dx ≤ M. Using in addition (3-7), we obtain similarly∫

R2
ω̄(x)

∣∣∣∣log
ω̄(x)

M

∣∣∣∣ dx ≤ C0 and
∫

R2
ω̄(x)|log |x || dx ≤ C0. (3-8)

To prove the convergence in L1(R2) we take the decomposition, for any ϵ ∈ (0, 1),∫
R2

|ωj (x)− ω̄(x)| dx =

∫
Aϵ

|ωj (x)− ω̄(x)| dx +

∫
R2\Aϵ

|ωj (x)− ω̄(x)| dx, (3-9)

where Aϵ ={x ∈ R2
: ϵ≤ |x | ≤ ϵ−1

}. The integral over Aϵ converges to zero as j →+∞ by the dominated
convergence theorem, and in view of (3-7), (3-8) the integral over R2

\ Aϵ is bounded by 2C0/| log ϵ|
uniformly in j . It thus follows from (3-9) that

lim sup
j→+∞

∫
R2

|ωj (x)− ω̄(x)| dx ≤
2C0

| log ϵ| ϵ→0−−−→ 0,

which shows that ωj → ω̄ in L1(R2). In particular
∫

R2 ω̄(x) dx = M, so that ω̄ ∈ X M .
Finally, if we take the decomposition 8=8+ −8−, where 8+,8− denote the positive and negative

parts of 8, we have the lower bound

S(ω̄)≥ −

∫
R2
8−(ω̄(x)) dx ≥ − lim inf

j→+∞

∫
R2
8−(ωj (x)) dx, (3-10)

where the second inequality is again obtained by Fatou’s lemma. But we have the identity∫
R2
8−(ωj (x)) dx =

∫
R2
8+(ωj (x)) dx − S(ωj )=

∫
R2
8+(ωj (x)) dx + E(ωj )− F(ωj ),

where the first two terms in the right-hand side are bounded uniformly in j by (3-7), in view of
Hypotheses 3.3 and Proposition 2.2, whereas F(ωj ) is bounded from below since (ωj ) is a maximizing
sequence for F. We conclude that the right-hand side of (3-10) is finite, so that S(ω̄) >−∞. □
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To conclude the proof of Theorem 3.4, it remains to show that the free energy is upper semicontinuous
along the maximizing sequence constructed in Proposition 3.5, namely

E(ω̄)+ S(ω̄)≥ lim sup
j→+∞

(E(ωj )+ S(ωj ))= FM . (3-11)

This will imply that E(ω̄)+ S(ω̄)= FM , which is the desired result.

Proof of Theorem 3.4. Let (ωj ) j∈N be the maximizing sequence defined in Proposition 3.5, and ω̄ ∈ X M

be the limiting profile. Given any sufficiently large R > 0, we take the decomposition

ωj (x)= ωj (x) 1{|x |≤R} +ωj (x) 1{|x |>R} =: ω1
j R(x)+ω

2
j R(x),

ω̄(x)= ω̄(x) 1{|x |≤R} + ω̄(x) 1{|x |>R} =: ω̄1
R(x)+ ω̄

2
R(x)

for all x ∈ R2. We thus have

E(ωj )+ S(ωj )= E(ω1
j R)+ S(ω1

j R)+ 2E(ω1
j R, ω

2
j R)+ E(ω2

j R)+ S(ω2
j R),

E(ω̄)+ S(ω̄)= E(ω̄1
R)+ S(ω̄1

R)+ 2E(ω̄1
R, ω̄

2
R)+ E(ω̄2

R)+ S(ω̄2
R),

where E(ω1, ω2) is the bilinear form associated with the energy functional:

E(ω1, ω2)= −
1

4π

∫
R2

∫
R2

log |x − y|ω1(x) ω2(y) dx dy.

The upper-semicontinuity property (3-11) can be deduced from the following assertions:

lim sup
j→+∞

(E(ω1
j R)+ S(ω1

j R))≤ E(ω̄1
R)+ S(ω̄1

R), (3-12)

sup
j∈N

(
2E(ω1

j R, ω
2
j R)+ E(ω2

j R)+ S(ω2
j R)
)
≤ δ1(R) R→+∞

−−−−→ 0, (3-13)

2E(ω̄1
R, ω̄

2
R)+ E(ω̄2

R)+ S(ω̄2
R)= δ2(R) R→+∞

−−−−→ 0. (3-14)

Indeed, assuming that (3-12)–(3-14) hold, we obtain

lim sup
j→+∞

(E(ωj )+ S(ωj ))− (E(ω̄)+ S(ω̄))≤ δ1(R)− δ2(R) R→+∞
−−−−→ 0.

It remains to verify the assertions (3-12)–(3-14) above. We recall that the functions ωj , ω̄ are radially
symmetric and nonincreasing in the radial direction. With a slight abuse of notation, we write ωj (r)
instead of ωj (x) when r = |x |, and similarly for ω̄. Accordingly, using (2-41), we obtain the following
expressions for the energy of ωj and ω̄:

E(ωj )= −

∫
∞

0
Mj (r) log(r) rωj (r) dr, E(ω̄)= −

∫
∞

0
M(r) log(r) r ω̄(r) dr, (3-15)

where

Mj (r)= 2π
∫ r

0
sωj (s) ds, M(r)= 2π

∫ r

0
sω̄(s) ds, r > 0. (3-16)

Since ωj → ω̄ in L1(R2), we see that Mj (r) → M(r) uniformly in r as j → +∞. Moreover, since
ωj ∈ X M satisfies (3-7), the quantity Mj (r) converges to M as r → +∞ uniformly in j . In particular, we
can choose R ≥ 1 large enough so that Mj (r)≥ M/2 for all j ∈ N when r ≥ R.
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To prove (3-12), we first take the decomposition

E(ω1
j R)− E(ω̄1

R)= −

∫ R

0
(Mj (r)− M(r)) log(r) rωj (r) dr −

∫ R

0
M(r) log(r) r(ωj (r)− ω̄(r)) dr,

and we deduce that

|E(ω1
j R)− E(ω̄1

R)| ≤ sup
0≤r≤R

(|Mj (r)− M(r)|)
∫ R

0
| log(r)| rωj (r) dr

+ sup
0≤r≤R

(| log(r)| M(r))
∫ R

0
r |ωj (r)− ω̄(r)| dr j→+∞

−−−−→ 0. (3-17)

Here we used the convergence of ωj to ω̄ in L1(R2), the a priori estimates (3-7), and the fact that
log(r)M(r) is bounded as r → 0, as a consequence of (3-8). On the other hand, since the function −8 is
continuous and bounded from below, and since we integrate on the bounded domain {x ∈ R2

: |x | ≤ R},
we can apply Fatou’s lemma to obtain

−S(ω̄1
R)=

∫
|x |≤R

−8(ω̄(x)) dx ≤ lim inf
j→+∞

∫
|x |≤R

−8(ωj (x)) dx = − lim sup
j→+∞

S(ω1
j R). (3-18)

Combining (3-17) and (3-18), we obtain (3-12).
We next prove (3-13). Recalling that R ≥ 1, we first observe that

E(ω2
j R)= −

∫
∞

R
Mj (r) log(r) rωj (r) dr ≤ 0,

which means that the contribution of E(ω2
j R) can be disregarded since we only need an upper bound. The

other terms in (3-13) have the expressions

2E(ω1
j R, ω

2
j R)= −Mj (R)

∫
∞

R
log(r) rωj (r) dr, S(ω2

j R)= 2π
∫

∞

R
8(ωj (r)) r dr.

Since ωj is decreasing, we have ωj (r) ≤ Mj (r)/(πr2) ≤ M for r ≥ R. So, using Hypotheses 3.3, we
deduce that 8(ωj )≤ C1ωj + C2ωj log(M/ωj ), where C1 ∈ R and C2 < M/(8π). It follows that

2E(ω1
j R, ω

2
j R)+ S(ω2

j R)≤ 2πC1

∫
∞

R
ωj (r)r dr +

∫
∞

R
1j (r)ωj (r)r dr, (3-19)

where

1j (r)= 2πC2 log
M
ωj (r)

− Mj (R) log(r).

In view of (3-7), the first term in the right-hand side of (3-19) converges to zero uniformly in j as
R → +∞, and can therefore be absorbed in the quantity δ1(R). To treat the second term, we fix a positive
number α > 2 such that 4πC2α ≤ M, and we introduce the mutually disjoints sets

I (α, R)= {r ≥ R : ωj (r)≥ Mr−α
}, I (α, R)c = {r ≥ R : ωj (r) < Mr−α

}. (3-20)

As Mj (R)≥ M/2, it follows from (3-20) that 1j (r)≤ 0 when r ∈ I (α, R), so the last integral in (3-19)
can be restricted to the complement I (α, R)c. But on that set we have the upper bound ωj (r) < Mr−α,
where α > 2, and we easily deduce that

∫
I (α,R)c 1j (r)ωj (r)r dr converges to zero as R → +∞, uniformly

in j . Altogether we obtain (3-13).
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It remains to establish (3-14), which is an easy task. Indeed ω̄ is a fixed function which satisfies the
estimates (3-8), so that 2E(ω̄1

R, ω̄
2
R)+ E(ω̄2

R)→ 0 as R → +∞. In addition, we proved in Proposition 3.5
that the integral defining S(ω̄) is absolutely convergent, and this implies that S(ω̄2

R)→ 0 as R → +∞.
We thus obtain (3-14), and the proof of Theorem 3.4 is complete. □

Example 3.6. We consider the family of algebraic vortices with parameter κ > 1:

ω(r)=
1

(1 + r2)κ
, M = 2π

∫
∞

0
rω(r) dr =

π

κ − 1
.

The associated stream function ψ satisfies ψ(r)= ψ(0)+
∫ r

0 ψ
′(s) ds, where

ψ(0)=

∫
∞

0
log(r)

r
(1 + r2)κ

dr, ψ ′(r)=
1

2(κ−1)r

(
1 −

1
(1 + r2)κ−1

)
.

We have 8(ω)=
∫ ω

0 φ(s) ds, where φ(ω(r))= ψ(r). Explicitly, for a few values of κ , we find

κ =
3
2

: ψ(r)= log
(
1 +

√
1 + r2

)
, φ(ω)= log

(
1 +

1
ω1/3

)
,

κ = 2 : ψ(r)=
1
4

log(1 + r2), φ(ω)=
1
8

log 1
ω
,

κ = 3 : ψ(r)=
1
8

(
log(1 + r2)−

1
1 + r2

)
, φ(ω)=

1
24

log 1
ω

−
ω1/3

8
.

In all cases, we observe that

φ(ω)=8′(ω)∼
1

4κ(κ−1)
log

1
ω

=
M

4πκ
log

1
ω

as ω→ 0.

It follows that Hypotheses 3.3 are satisfied if and only if κ > 2.

Example 3.7. We next consider the Gaussian vortex ω(r)= e−r2/4, where M = 4π . In that case we have
ψ(0)=

∫
+∞

0 log(r)e−r2/4 dr = 2 log(2)− γE , so that the stream function satisfies

ψ(r)= ψ(0)+
∫ r

0

2
s
(1 − e−s2/4) ds = 2 log(2)− γE + Ein

(
r2

4

)
,

where

Ein(z)=

∫ z

0

1 − e−t

t
dt =

∞∑
k=1

(−1)k−1

k
zk

k!
, z ∈ C.

We conclude that

φ(ω)=8′(ω)= 2 log(2)− γE + Ein

(
log

1
ω

)
.

In particular φ(ω)∼ log log(1/ω) as ω→ 0, and Hypotheses 3.3 are satisfied in that case.

We do not have much information on the maximizer ω̄ whose existence is established in Theorem 3.4.
We expect that, if 8 is as in Example 3.7, the maximizer is indeed the Gaussian vortex (2-39), but except
for numerical evidence we have no proof so far. Similarly, we believe that the algebraic vortices (2-38)
with κ ≥ 2 are global maximizers, but this is known only in the particular case κ = 2, where maximality
follows from the logarithmic HLS inequality (3-5).
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The examples above also suggest that the decay rate of the maximizer ω̄(x) as |x |→∞ strongly depends
on the behavior of the function8(s) near s = 0. Extending the techniques in the proof of Theorem 3.4, one
should be able to prove that, if 8 is differentiable to the right at the origin, the corresponding maximizer ω̄
is compactly supported. It is also worth mentioning that the entropy function 8 associated with any
radially symmetric decreasing vortex ω̄ through the relation ψ̄(x)=8′(ω̄(x)) is necessarily concave on
the range of ω̄, whereas no concavity assumption is included in Hypotheses 3.3. This suggests that the
maximizer ω̄ corresponding to a nonconcave function 8 should be discontinuous, so that its range does
not include the intervals where 8 does not coincide with its concave hull.

4. Stability of viscous vortices

In this final section, we give a new proof of the nonlinear stability of the Oseen vortices, which are
self-similar solutions of the Navier–Stokes equations in R2. Our approach relies on the functional-analytic
tools developed in Section 2, in connection with Arnold’s variational principle, although we now consider
a dissipative equation for which the Casimir functions (1-9) are no longer conserved quantities. Let
w =w(y, τ ) ∈ R denote the vorticity of the fluid at point y ∈ R2 and time τ > 0, and let φ = φ(y, τ ) ∈ R

be the associated stream function. The vorticity formulation of the Navier–Stokes equations is

∂τw(y, τ )+ {φ,w}(y, τ )= ν1(y, τ ), 1φ(y, τ )= w(y, τ ), (4-1)

where {φ,w}=∇
⊥φ ·∇w is the Poisson bracket, ν > 0 is the viscosity parameter, and the Laplace operator

1 acts on the space variable y ∈ R2. As in [Gallay and Wayne 2002; 2005], we introduce self-similar
variables x = y/

√
ντ and t = log(τ/T ), where T > 0 is an arbitrary time scale. More precisely, we look

for solutions of (4-1) in the form

w(y, τ )=
1
τ
ω

(
y

√
ντ
, log

τ

T

)
, φ(y, τ )= νψ

(
y

√
ντ
, log

τ

T

)
. (4-2)

The evolution equation for the rescaled vorticity ω is

∂tω(x, t)+ {ψ,ω}(x, t)= Lω(x, t), 1ψ(x, t)= ω(x, t), (4-3)

where {ψ,ω} = ∇
⊥ψ · ∇ω and L is the Fokker–Planck operator

L =1+
1
2 x · ∇ + 1. (4-4)

Let ω̄ be the vortex with Gaussian profile (2-39), namely

ω̄(x)=
1

4π
e−|x |

2/4, ū(x)= ∇
⊥ψ̄(x)=

1
2π

x⊥

|x |2
(1 − e−|x |

2/4). (4-5)

It is easy to verify that Lω̄= 0 and {ψ̄, ω̄} = 0. This implies that ω= αω̄ is a stationary solution of (4-3)
for any α ∈ R. This family of equilibria is known to be stable with respect to perturbations in various
weighted L2 spaces; see [Gallay and Wayne 2005; Gallay 2012]. We present here a new stability proof,
which may be easier to adapt to more general situations.
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4A. Nonlinear stability of Oseen vortices. Given any α ∈ R, we consider solutions of (4-3) of the form
ω = αω̄+ ω̃, ψ = αψ̄ + ψ̃ . The perturbation ω̃ satisfies the modified equation

∂t ω̃+α{ψ̄, ω̃} +α{ψ̃, ω̄} + {ψ̃, ω̃} = Lω̃, (4-6)

where it is understood that the stream function ψ̃ is expressed in terms of ω̃ via the formula (1-14), so
that 1ψ̃ = ω̃. We assume henceforth that the perturbation ω̃ satisfies the moment conditions∫

R2
ω̃ dx = 0 and

∫
R2

x j ω̃ dx = 0 for j = 1, 2, (4-7)

which are preserved under the evolution defined by (4-6). As is shown at the end of [Gallay and Wayne
2005], this hypothesis does not restrict the generality, in the sense that stability with respect to general
perturbations (with no moment conditions) can then deduced by a simple argument. As for the existence
of solutions to (4-6), we have the following standard result:

Lemma 4.1. The Cauchy problem for (4-6) is globally well-posed in the weighted L2 space X defined by
(2-4), where A(x)= 4|x |

−2(e|x |
2/4

− 1), and the subspace X1 ⊂ X defined by (2-24) is invariant under
the evolution.

Proof. It is known that the vorticity equation (4-3) or (4-6) is globally well-posed in various weighted
L2 spaces; see, e.g., [Gallay and Wayne 2002; Gallay 2012; 2018]. The nearly Gaussian weight A is
not explicitly considered in those references, but the arguments therein can be easily modified to cover
that case too. If A1/2ω̃ ∈ L2(R2), then all moments of ω̃ are well-defined, and a direct calculation shows
that the conditions (4-7) are preserved under the evolution, so that (4-6) is globally well-posed in the
subspace X1. □

Let ω̃0 ∈ X1, and let ω̃ ∈ C0([0,+∞),X1) be the solution of (4-6) with initial data ω̃0. By parabolic
regularization, we have ω̃( · , t) ∈ Z1 := Z ∩X1 for all t > 0, where Z is the weighted Sobolev space

Z = {ω ∈ H 1(R2) : A1/2ω ∈ L2(R2), A1/2
∇ω ∈ L2(R2)}. (4-8)

For later use, we introduce the following quadratic form on Z :

Q(ω)=

∫
R2
(A(x)|∇ω(x)|2 −B(x)ω(x)2) dx, ω ∈ Z , (4-9)

where

B = 1 +
1
2

(
1A −

x
2

· ∇A +A
)

= 1 +A −
x · ∇A

|x |2
. (4-10)

We shall verify in Section A3 that A/2 ≤ B ≤ 2A, so that the form Q is well-defined.
The following coercivity result plays a crucial role in our argument.

Theorem 4.2. The quadratic form Q defined by (4-9) is coercive on the subspace Z1 = Z ∩X1: there
exists a constant δ > 0 such that

Q(ω)≥ δ

∫
R2

A(x)ω(x)2 dx for all ω ∈ Z1. (4-11)
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The proof of Theorem 4.2 requires a careful analysis, which is postponed to Section 4B below. In
particular, we shall see that the quadratic form Q is not positive on the whole space Z , because it takes
negative values on a one-dimensional subspace made of radially symmetric functions. If we restrict
ourselves to functions with zero mean, the form Q is nonnegative but vanishes on a two-dimensional
subspace due to translation invariance. Therefore, all moment conditions (4-7) are necessary to establish
the coercivity of Q.

Returning to the solution ω̃ ∈ C0([0,+∞),X1) of (4-6), we define for all t > 0 the quantities

J̃ (t)=
1
2

∫
R2

(
A(x)ω̃(x, t)2 + ψ̃(x, t)ω̃(x, t)

)
dx = J (ω̃(t)),

Q̃(t)=

∫
R2

(
A(x)|∇ω̃(x, t)|2 −B(x)ω̃(x, t)2

)
dx = Q(ω̃(t)),

Ñ (t)=
1
2

∫
R2

{A(x), ψ̃(x, t)}ω̃(x, t)2 dx =: N (ω̃(t)).

(4-12)

The key observation is:

Proposition 4.3. If ω̃ ∈ C0([0,+∞),X1) is a solution of (4-6), the quantities defined in (4-12) satisfy

J̃ ′(t)= −Q̃(t)− Ñ (t) for all t > 0. (4-13)

Proof. Using the evolution equation (4-6), we find

J̃ ′(t)=

∫
R2

(
A(x)ω̃(x, t)+ ψ̃(x, t)

)
∂t ω̃(x, t) dx

=

∫
R2
(Aω̃+ ψ̃)

(
Lω̃−α{ψ̄, ω̃} −α{ψ̃, ω̄} − {ψ̃, ω̃}

)
(x, t) dx .

(4-14)

We first consider the terms involving the diffusion operator L in (4-14). We observe that∫
R2
ψ̃(x, t)Lω̃(x, t) dx =

∫
R2
ω̃(x, t)2 dx (4-15)

because Lω̃ =1ω̃+
1
2 div(xω̃) and∫

R2
ψ̃ 1ω̃ dx =

∫
R2
(1ψ̃)ω̃ dx =

∫
R2
ω̃2 dx,∫

R2
ψ̃ div(xω̃) dx = −

∫
R2
(1ψ̃)(x · ∇ψ̃) dx =

1
2

∫
R2

div(x |∇ψ̃ |
2) dx = 0.

On the other hand, integrating by parts we obtain by direct calculation∫
R2

A(x) ω̃(x, t)Lω̃(x, t) dx = −Q(ω̃(t))−
∫

R2
ω̃(x, t)2 dx . (4-16)

We next compute the advection terms in (4-14), which are proportional to α. We claim that

I (ω̃) :=

∫
R2
(Aω̃+ ψ̃)({ψ̄, ω̃} + {ψ̃, ω̄}) dx = 0. (4-17)
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This identity is not surprising, as it means that the quadratic form J is invariant under the evolution
defined by the linearized Euler equation at ω̄; see (1-6) for an analogue in the finite-dimensional case. It
can also be verified by direct calculations:∫

R2
Aω̃{ψ̄, ω̃} dx =

1
2

∫
R2

A{ψ̄, ω̃2
} dx =

1
2

∫
R2

{A, ψ̄}ω̃2 dx = 0,∫
R2
ψ̃{ψ̃, ω̄} dx =

∫
R2

{ψ̃, ψ̃}ω̄ dx = 0,∫
R2
(Aω̃{ψ̃, ω̄} + ψ̃{ψ̄, ω̃}) dx =

∫
R2
ω̃(A{ψ̃, ω̄} + {ψ̃, ψ̄}) dx = 0.

Here we used the fact that {A, ψ̄} = 0, because A and ψ̄ are radially symmetric. Moreover,

A{ψ̃, ω̄} + {ψ̃, ψ̄} = (∇ψ̃)⊥ · (A∇ω̄+ ∇ψ̄)= 0,

by the very definition of A; see (2-3). This proves (4-17).
Finally, integrating by parts the last term in (4-14), we find

N (ω̃) :=

∫
R2
(Aω̃+ ψ̃){ψ̃, ω̃} dx =

∫
R2

Aω̃{ψ̃, ω̃} dx =
1
2

∫
R2

{A, ψ̃}ω̃2 dx . (4-18)

Combining (4-14)–(4-18), we obtain the desired result. □

To control the nonlinear term N (ω̃), we use the following estimate.

Lemma 4.4. There exists a constant C0 > 0 such that, for all ω̃ ∈ Z , the nonlinear term (4-18) satisfies

|N (ω̃)| ≤ C0 ∥A1/2ω̃∥
2
L2(∥A

1/2ω̃∥L2 + ∥A1/2
∇ω̃∥L2). (4-19)

Proof. We have |{A, ψ̃}| ≤ C |∇A||∇ψ̃ | ≤ C |x |A|∇ψ̃ |; hence

|N (ω̃)| ≤ C
∫

R2
|x ||∇ψ̃ |A ω̃2 dx ≤ C∥|x ||∇ψ̃ |∥L∞ ∥A1/2ω̃∥

2
L2 .

On the other hand, using Proposition B.1 in [Gallay and Wayne 2002], Hölder’s inequality and Sobolev’s
embedding theorem, we find

∥|x ||∇ψ̃ |∥L∞ ≤ C(∥⟨x⟩ω̃∥L3/2 + ∥⟨x⟩ω̃∥L3)≤ C(∥A1/2ω̃∥L2 + ∥A1/2
∇ω̃∥L2),

where ⟨x⟩ = (1 + |x |
2)1/2. Combining these estimates we arrive at (4-19). □

We are now able to state our final result:

Theorem 4.5. There exist positive constants C1, ϵ0, and µ such that, for any α ∈ R and any ω̃0 ∈ X1

satisfying ∥ω̃0∥X ≤ ϵ0, the solution of (4-6) with initial data ω̃0 satisfies

∥ω̃(t)∥2
X ≤ C1∥ω̃0∥

2
X e−µt for all t ≥ 0. (4-20)

Proof. If ω̃ ∈ C0([0,+∞),X1) is the solution of (4-6) with initial data ω̃0, we define

m0(t)= ∥ω̃(t)∥2
X = ∥A1/2ω̃(t)∥2

L2 (t ≥ 0), m1(t)= ∥A1/2
∇ω̃(t)∥2

L2 (t > 0).
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For the Gaussian vortex, we proved in Section 2 that Hardy’s inequality (2-25) holds for some CH < 1.
Thus, by Theorems 2.5 and 2.8, there exists a constant γ ∈ (0, 1) such that

γ

2
m0(t)≤ J̃ (t)≤

1
2

m0(t), t ≥ 0. (4-21)

On the other hand, by Theorem 4.2, there exists δ > 0 such that

Q̃(t)≥ δm0(t) and Q̃(t)≥ m1(t)− 2m0(t), t > 0, (4-22)

where the second inequality follows from the definition (4-9) and the inequality B ≤ 2A. Taking a convex
combination of both estimates in (4-22), we deduce

Q̃(t)≥ µ(m0(t)+ m1(t)), t > 0, (4-23)

where µ= δ/(3 + δ). Finally, it follows from Lemma 4.4 and Young’s inequality that

|Ñ (t)| ≤ C0m0(t)(m0(t)1/2 + m1(t)1/2)≤
µ

4
(m0(t)+ m1(t))+

2C2
0

µ
m0(t)2. (4-24)

Now, as long as m0(t)≤ ϵ2
:= µ2/(8C2

0), we have by (4-13), (4-21), (4-23), (4-24)

J̃ ′(t)= −Q̃(t)− Ñ (t)≤ −
µ

2
(m1(t)+ m0(t))≤ −µ J̃ (t),

which implies
γm0(t)≤ 2 J̃ (t)≤ 2 J̃ (0)e−µt

≤ m0(0)e−µt .

As a consequence, if we assume that ∥ω̃0∥
2
X = m0(0)≤ ϵ2

0 := γ ϵ2, we have m0(t)≤ ϵ2 for all t ≥ 0 and
estimate (4-20) holds with C1 = γ−1. □

We briefly indicate here the meaning of our result for the Navier–Stokes equations in the original,
unscaled variables. If ω = αω̄+ ω̃, where ω̃ ∈ C0([0,+∞),X1) is as in Theorem 4.5, the vorticity w
defined by (4-2) satisfies, in particular, the estimate∫

R2

∣∣∣∣w(y, τ )− α

4πτ
e−|y|

2/(4τ)
∣∣∣∣ dy = O(τ−µ/2) as τ → +∞,

which means that w( · , τ ) converges to a self-similar solution with Gaussian profile as τ → +∞. As
is shown in [Gallay 2012, Theorem 1.2], that property holds in fact for all solutions of the vorticity
equation (4-1) in L1(R2), although it is not possible to specify any decay rate in the general case. Note
that the evolution defined by (4-1) in L1(R2) preserves the total mass, so that we necessarily have∫

R2 w(y, τ ) dy = α for all τ > 0.

Remark 4.6. Except for a slight difference in the definition of the function space X , Theorem 4.5 coincides
with the well-known stability result [Gallay 2012, Proposition 4.5]. The approach originally developed by
C. E. Wayne and the first author relies on conserved quantities related to symmetries of the problem, such
as the second-order moment I (ω) in (1-15). In many respects, it is simpler than ours, and it provides an
estimate of the form (4-20) with explicit constants C1 and µ. Note also that, in the limit of large circulation
numbers |α| → ∞, the enhanced dissipation effect due to fast rotation can be used to improve both the
decay rate of the perturbations and the size of the basin of attraction of the vortex; see [Gallay 2018].
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4B. Coercivity of the diffusive quadratic form. This section is entirely devoted to the proof of Theorem 4.2,
which is a key ingredient in Theorem 4.5. We first observe that the functions A(x),B(x) in (4-9) are
both radially symmetric, with radial profiles A(r), B(r) given by the explicit expressions

A(r)=
es

−1
s

, B(r)=
1

2s2 (e
s(1 + s)− 1 − 2s)+ 1, s =

r2

4
. (4-25)

On can also verify that B/A is a decreasing function of r satisfying 1
2 ≤ B(r)/A(r)≤ 7

4 for all r > 0; see
Section A3.

We next follow an approach similar to that in Section 2. If ω ∈ Z is decomposed in Fourier series like
in (2-14), we have

Q(ω)= 2π
∑
k∈Z

∫
∞

0

{
A(r)

(
|ω′

k(r)|
2
+

k2

r2 |ωk(r)|2
)

− B(r)|ωk(r)|2
}

r dr, (4-26)

and we observe that ω ∈ Z1 if and only if∫
∞

0
ω0(r) r dr = 0 and

∫
∞

0
ω±1(r) r2 dr = 0.

Introducing the new variables wk = A1/2ωk ≡ eχωk , where χ =
1
2 log(A), we obtain after straightforward

calculations

Q(ω)= 2π
∑
k∈Z

∫
∞

0

{
|w′

k(r)|
2
+

k2

r2 |wk(r)|2 + W (r)|wk(r)|2
}

r dr, (4-27)

where the potential W is defined by

W (r)= χ ′′(r)+ 1
r
χ ′(r)+χ ′(r)2 −

B(r)
A(r)

=
r
2
χ ′(r)−χ ′(r)2 −

1
2

− e−2χ(r). (4-28)

The coercivity estimate (4-11) is thus equivalent to the inequality∫
∞

0

{
|w′

k(r)|
2
+

k2

r2 |wk(r)|2 + W (r)|wk(r)|2
}

r dr ≥ δ

∫
∞

0
|wk(r)|2 r dr, (4-29)

which should hold for all k ∈ Z under the conditions∫
∞

0
w0(r)e−χ(r) r dr = 0 and

∫
∞

0
w±1(r)e−χ(r) r2 dr = 0. (4-30)

For any k ∈ Z, we denote by Lk the self-adjoint operator in Y = L2(R+, r dr) defined by

Lk g = −
1
r
∂r (r∂r g)+ k2

r2 g + Wg. (4-31)

The domain of Lk is exactly the same as for the harmonic oscillator in R2, because the potential W
defined by (4-28) satisfies

W (r) > 1
16r2

−
3
2 for all r > 0, and W (r)∼

{
−

3
2 as r → 0,

1
16r2 as r → ∞;

(4-32)



714 THIERRY GALLAY AND VLADIMÍR ŠVERÁK

see Section A3. Our goal is to prove the lower bound Lk ≥ δ in the entire space Y when |k| ≥ 2, and in
the subspaces given by conditions (4-30) when k = 0 or k = ±1. We consider three cases separately.

Case 1: When |k| ≥ 2, the desired inequality is simply obtained by comparing Lk with the usual harmonic
operator. Indeed, we know from (4-31), (4-32) that

Lk >−∂2
r −

1
r
∂r +

k2

r2 +
r2

16
−

3
2

≥
|k|

2
− 1, (4-33)

where inequalities are between self-adjoint operators on Y. Thus Lk ≥
1
2 when |k| ≥ 3, and there exists

δ > 0 such that Lk ≥ δ when |k| = 2, because the inequality in (4-32) is strict.

Case 2: When |k| = 1, the lower bound (4-33) is of no use, but it is easy to verify that Lk ≥ 0 in that case.
Indeed, we claim that Lk g1 = 0, where g1(r)= eχ(r) re−r2/4. Since g1 is a positive function vanishing at
the origin and at infinity, this means that 0 is the lowest eigenvalue of Lk in Y when k = ±1. To prove
the above claim, we first observe that, for any (smooth) function f on R+, we have the identity

L̃k f := eχ Lk(eχ f )= −
1
r
∂r (r A∂r f )+ k2

r2 A f − B f, (4-34)

because this is the property we used to go from (4-26) to (4-27). On the other hand, in view of (2-2) and
(2-3), we have the identity

−
1
r
∂r (r A∂rω∗)= ω∗, (4-35)

which holds in fact for any vorticity profile ω∗, if A is defined by (2-3). In the case of the Lamb–Oseen
vortex, if we differentiate the equality (4-35) with respect to r , we find that the function f =−2ω′

∗
=re−r2/4

satisfies the relation

−
1
r
∂r (r A∂r f )+ 1

r2 A f −

(
A′′

+
2
r

A′
−

r
2

A′

)
f = f. (4-36)

But A′′
+ 2A′/r − r A′/2 = B − 1 by (4-10), so combining (4-34) and (4-36) we conclude that L̃k f = 0

if |k| = 1, which is the desired result.
To get coercivity, we now restrict ourselves to the subspace Y1 ⊂ Y of all functions g satisfying

⟨g, h1⟩ = 0, where h1(r)= re−χ(r); see the second relation in (4-30). It is important to observe that h1

is not proportional to g1, so that Y1 is not the orthogonal complement in Y of the eigenspace spanned
by g1. However, we have ⟨g1, h1⟩ = 8 ̸= 0, which means that the closed hyperplane Y1 does not contain
the eigenfunction g1. In view of Remark 4.8 below, we conclude that there exists some δ > 0 such that
Lk ≥ δ on Y1 when |k| = 1.

Case 3: Finally, we consider the radially symmetric case where k = 0. The difficulty here is that the
operator L0 is not positive on the entire space Y. A numerical calculation indicates that L0 has one negative
eigenvalue µ0 ≈ −0.722, and that the next eigenvalue µ1 ≈ 0.615 is positive. So it is essential to use the
first relation in (4-30), and to restrict our analysis to the subspace Y0 of all g ∈ Y such that ⟨g, h0⟩ = 0,
where h0(r)= e−χ(r). Our strategy is to apply Lemma 4.7 below with a = −µ0, b = µ1, ψ = h0/∥h0∥,
and φ = g0/∥g0∥, where g0 denotes a positive function in the kernel of L0 −µ0. Estimate (4-41) can
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be used to prove coercivity of L0 on Y0 if we have good lower bounds on the eigenvalues µ0, µ1 and on
the scalar product |⟨φ,ψ⟩|, which measures the angle between the linear spaces spanned by g0 and h0.

We first estimate the lowest eigenvalue µ0. We know from the previous step that L1g1 = 0. Defining
g = cg1/r = ceχe−r2/4, where c = (2 log(2))−1/2 is a normalization factor chosen so that ∥g∥ = 1, we
deduce that L0g = (2/r)∂r g. This gives the relation(

L0 +
3
4

)
g = R, where R =

2
r
∂r g +

3
4

g =

(3
4

−
B−1

A

)
g, (4-37)

where we used the identity (B − 1)/A = 1 − A′/(r A)= 1 − 2χ ′/r ; see (4-10). In Section A3 below, we
show that B −1< 3

4 A, so that R > 0. This means that the operator L0 +
3
4 admits a positive supersolution,

and using Sturm–Liouville theory we conclude that L0 +
3
4 > 0, so that µ0 >−

3
4 . Actually the function g

is a remarkably accurate quasimode, in the sense that the remainder R in (4-37) is small. The norm of R
in Y = L2(R+, r dr) can be computed explicitly; see Section A4. The result is∫

∞

0
R(r)2r dr =

1
16 log(2)

(3 − log(2)− 2 log(π)), (4-38)

so that ϵ := ∥R∥Y ≈ 0.0396. Since L0 is a self-adjoint operator, we deduce that L0 has an eigenvalue
in the interval

[
−

3
4 ,−

3
4 + ϵ

]
. Anticipating the fact (established below) that L0 has a unique negative

eigenvalue, we conclude that µ0 ∈
[
−

3
4 ,−

3
4 + ϵ

]
.

We next estimate the second eigenvalue µ1 of L0. It is convenient here to observe that, if g = eχ f , the
relation L0g = µg is equivalent to the generalized eigenvalue problem L̃0 f = µA f , where L̃k is defined
in (4-34). The second eigenvalue of that problem is characterized by the inf-sup formula

µ1 = inf
f ∈F

sup
r>0
(R[ f ])(r)= sup

f ∈F

inf
r>0
(R[ f ])(r), where R[ f ] =

L̃0 f
A f

. (4-39)

Here F denotes the class of all (smooth) functions f : [0,+∞)→ R such that f (0)= 1, f (r)→ 0 as
r →+∞, and f has exactly one zero in the interval (0,+∞). Our first trial function is f (r)= e−s(1−αs),
where s = r2/4 and α= log(2)−1. The value of α is chosen so that the Rayleigh quotient has no singularity:

R[ f ] =
e−s(1 + (2−α)s + 2αs2)− (1 + (1−α)s +αs2)

2s(1 − e−s)(1 −αs)
, s =

r2

4
.

It happens that R[ f ] is a decreasing function on R+, with R[ f ](0)= −
3
4 +α and R[ f ](+∞)=

1
2 . In

view of (4-39), this implies that 1
2 < µ1 <−

3
4 +α ≈ 0.69. A better approximation is obtained using

f (r)= e−s(1 −αs)(1 +βs), where β =
α(1 − 2e−1/α)

2α− 1 + 2e−1/α(1 −α)
.

If 1
2 < α < log(2)−1, then β > 0 and the Rayleigh quotient has no singularity in the interval (0,+∞).

Taking for instance α = 1.4 gives the excellent lower bound µ1 ≥ 0.6.
Finally, we use the quasimode g in (4-37) and a standard perturbation argument to estimate the true

eigenfunction corresponding to the lowest eigenvalue µ0. We first look for a nonnormalized eigenfunction
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of the form g0 = g − f , where f ⊥ g0. We have

0 = (L0 −µ0)g0 = (L0 −µ0)g − (L0 −µ0) f = R −
(
µ0 +

3
4

)
g − (L0 −µ0) f,

so that f = (L0 −µ0)
−1
(
R −

(
µ0 +

3
4

)
g
)
, where (L0 −µ0)

−1 denotes the partial inverse of L0 −µ0 on its
range. The norm of that inverse is bounded by 1/d , where d = µ1 −µ0 is the spectral gap. As ∥R∥ = ϵ

and |µ0 +
3
4 | ≤ ϵ, we conclude that ∥ f ∥ ≤ 2ϵ/d . The normalized eigenfunction is

φ =
g0

∥g0∥
=

g − f√
1 − ∥ f ∥2

.

Let ψ = ĉh0 = ĉe−χ, where ĉ =
√

3/π is a normalization factor chosen so that ∥ψ∥ = 1. A direct
calculation shows

⟨ψ, g⟩ = cĉ
∫

∞

0
e−r2/4 r dr = 2cĉ =

1
π

√
6

log(2)
≈ 0.9365;

hence
⟨ψ, φ⟩ =

⟨ψ, g⟩ − ⟨ψ, f ⟩√
1 − ∥ f ∥2

≥ 2cĉ −
2ϵ
d
. (4-40)

We use Lemma 4.7 below with a = −µ0 ≤
3
4 , d = a + b = µ1 −µ0 ≥ 1.2, and ϵ = ∥R∥ ≤ 0.04. In

view of (4-40), estimate (4-41) shows that there exists some δ > 0 such that ⟨L f, f ⟩ ≥ δ∥ f ∥
2 for all

f ∈ Y0 = h⊥

0 . This concludes the proof of Theorem 4.5. □
Finally, we state an elementary lemma that was used twice in the above proof.

Lemma 4.7. Let X be a Hilbert space and L : D(L)→ X be a self-adjoint operator in X. We assume
that there exist φ ∈ D(L) with ∥φ∥ = 1 and a, b ∈ R with a + b ≥ 0 such that

(i) Lφ = −aφ, and

(ii) ⟨Lg, g⟩ ≥ b∥g∥
2 for all g ∈ D(L) with g ⊥ φ.

Then, for any ψ ∈ X with ∥ψ∥ = 1, we have the lower bound

⟨L f, f ⟩ ≥ ((a + b)|⟨φ,ψ⟩|
2
− a)∥ f ∥

2 for all f ∈ D(L) with f ⊥ ψ. (4-41)

Proof. Given f ∈ D(L), we take the decomposition f = ⟨ f, φ⟩φ+ g, so that g ⊥ φ. Since Lφ = −aφ,
we find

⟨L f, f ⟩ = ⟨Lg, g⟩ − a|⟨ f, φ⟩|
2
≥ b∥g∥

2
− a|⟨ f, φ⟩|

2
= b∥ f ∥

2
− (a + b)|⟨ f, φ⟩|

2,

where the inequality follows from (ii). We now assume that f ⊥ ψ and take the decomposition φ =

⟨φ,ψ⟩ψ + h. By Cauchy–Schwarz, we have

|⟨ f, φ⟩|
2
= |⟨ f, h⟩|

2
≤ ∥ f ∥

2
∥h∥

2
= ∥ f ∥

2(1 − |⟨φ,ψ⟩|
2),

and combining both inequalities we arrive at (4-41). □

Remark 4.8. In the particular case where a = 0 and b > 0, the kernel of L is one-dimensional, and
inequality (4-41) implies that the quadratic form of L is strictly positive on any closed hyperplane that
does not contain the eigenfunction φ.
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Appendix

A1. Integral inequalities involving logarithmic weights.

Proof of Proposition 3.1. Let B1 = {x ∈ Rn
: |x |< 1} and DM = {x ∈ Rn

: f (x) < M}. To prove (3-1),
we must verify that ∫

B1

(
log

1
|x |

)
f (x) dx ≲ M +

∫
Rn\DM

(
log

f (x)
M

)
f (x) dx . (A-1)

Let �1 = {x ∈ B1 : f (x) ≤ M |x |
−n/2

} and �2 = {x ∈ B1 : f (x) > M |x |
−n/2

} ⊂ Rn
\ DM . We have

B1 =�1 ∪�2 and∫
�1

(
log

1
|x |

)
f (x) dx ≤ M

∫
B1

1
|x |n/2

log
1
|x |

dx = C M,∫
�2

(
log

1
|x |

)
f (x) dx ≤

2
n

∫
�2

(
log

f (x)
M

)
f (x) dx ≤

2
n

∫
Rn\DM

(
log

f (x)
M

)
f (x) dx;

hence (A-1) follows by adding both inequalities. We next consider (3-2), which reads∫
DM

(
log

M
f (x)

)
f (x) dx ≲ M +

∫
Rn\B1

(log |x |) f (x) dx . (A-2)

Let e = exp(1) and

�3 =

{
x ∈ DM : f (x)≤

M
e(1+|x |)2n

}
, �4 =

{
x ∈ DM : f (x) >

M
e(1+|x |)2n

}
.

Since t 7→ t log(1/t) is increasing on [0, e−1
] and s 7→ log(s) is increasing on [1,+∞), we have∫

�3

(
log

M
f (x)

)
f (x) dx ≤ M

∫
Rn

1
e(1+|x |)2n log(e(1+|x |)2n) dx = C M,∫

�4

(
log

M
f (x)

)
f (x) dx ≤

∫
�4

log(e(1+|x |)2n) f (x) dx ≤ C M + 2n
∫

Rn\B1

(log |x |) f (x) dx,

and (A-2) follows in the same way.
From now on, we assume that f is radially symmetric and nonincreasing in the radial direction. In

particular, we have, for all x ̸= 0,

f (x)≤
1

αn|x |n

∫
|y|≤|x |

f (y) dy ≤
M

αn|x |n
, where αn =

πn/2

0(1 + n/2)
. (A-3)

Since t 7→ log+(t) is increasing, we deduce that∫
Rn\DM

(
log

f (x)
M

)
f (x) dx ≤

∫
Rn

(
log+

1
αn|x |n

)
f (x) dx ≤ C M + n

∫
B1

(
log

1
|x |

)
f (x) dx,

which is the converse of (3-1). Note that, when n ≤ 12, the first term C M in the right-hand side can be
dropped, because αn > 1. In a similar way, we find∫

Rn\B1

(log |x |) f (x) dx ≤
1
n

∫
Rn

(
log+

M
αn f (x)

)
f (x) dx ≤ C M +

∫
DM

(
log

M
f (x)

)
f (x) dx,
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which is the converse of (3-2). Again, the first term C M in the right-hand side can be dropped when
n ≤ 12. □

Proof of Proposition 2.2. Throughout the proof we assume that M :=∥ω∥L1>0. We take the decomposition
E(ω)= E1(ω)+ E2(ω), where

Ei (ω)=
1

4π

∫
�i

log 1
|x−y|

ω(x)ω(y) dx dy, i = 1, 2,

and �1 = {(x, y) ∈ R2
× R2

: |x − y|< 1}, �2 = {(x, y) ∈ R2
× R2

: |x − y| ≥ 1}. We have to verify that
the integrals defining the quantities E1, E2 are convergent under assumptions (2-6).

First of all, using inequality (A-1) above with n = 2, we obtain for all x ∈ R2∫
|y−x |<1

log
1

|x − y|
|ω(y)| dy ≤ C

∫
R2

(
1 + log+

|ω(y)|
M

)
|ω(y)| dy.

If we multiply both sides by |ω(x)| and integrate over x ∈ R2, we thus find

|E1(ω)| ≤ C M
∫

R2

(
1 + log+

|ω(y)|
M

)
|ω(y)| dy. (A-4)

On the other hand, we have log |x − y| ≤ log(|x | + |y|)≤ log(1 + |x |)+ log(1 + |y|) when |x − y| ≥ 1.
This gives the bound

|E2(ω)| ≤
1

4π

∫
�2

|ω(x)||ω(y)|
(
log(1 + |x |)+ log(1 + |y|)

)
dx dy

≤
M
2π

∫
R2

|ω(y)| log(1 + |y|) dy. (A-5)

Combining (A-4) and (A-5), we arrive at (2-7).
Finally, we assume that ω ∈ C2

c (R
2) and

∫
R2 ω(x) dx = 0. The associated stream function ψ ∈ C2(R)

defined by (1-14) satisfies |ψ(x)| = O(|x |
−1) and |u(x)| = |∇ψ(x)| = O(|x |

−2) as |x | → ∞, so that
u ∈ L2(R2). This allows us to integrate by parts in the first expression (1-13) of the energy, using
the relation 1ψ = ω, to obtain the elegant formula E(ω) =

1
2

∫
R2 |u|

2 dx . By a density argument, the
conclusion remains valid for all integrable vorticities with zero average satisfying a assumptions (2-6). □

A2. Positivity of the potential V in some examples. For the algebraic vortex (2-38) with κ = 1 + ν > 1,
the potential V defined in (2-34) has the expression

V (r)=
1

r2(1+r2)2

(
3 − 2(ν−1)r2

+ (ν2
−1)r4

− 2S − S2), where S =
νr2

(1 + r2)ν − 1
.

If ν = 1, then S = 1; hence V ≡ 0. Otherwise:

• If ν > 1, we have (1 + r2)ν > 1 + νr2 for all r > 0, so that S < 1. We deduce

V (r) >
ν− 1
(1+r2)2

(−2 + (ν+1)r2), (A-6)
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so that V (r) > 0 if r2
≥ 2/(ν+1). In the region where r2

≤ 2/(ν+1), we use the improved estimate

S =
νr2

(1 + r2)ν − 1
< 1 −

ν−1
2

r2
+
ν2

−1
12

r4, r > 0, (A-7)

which can be established by a direct calculation. This gives the lower bound

V (r) >
(ν−1)r2

12(1+r2)2

(
5ν+ 11 + (ν2

−1)r2
−
(ν−1)(ν+1)2

12
r4
)
, (A-8)

which implies that V (r) > 0 if (ν+1)r2
≤ 2.

• If 0<ν < 1, the calculations are entirely similar, except that all inequalities in (A-6)–(A-8) are reversed.
This shows that V (r) < 0 in that case.

For the Gaussian vortex (2-39), a direct calculation shows that

V (r)=
3
4s

−
1
2

+
s
4

−
1/2

es − 1
−

s/4
(es − 1)2

, where s =
r2

4
.

Using the lower bound es
− 1 ≥ s(1 + s/2 + s2/6), we obtain

V (r)≥
1
4s

1
(1+s/2+s2/6)2

(
(3 − 2s + s2)

(
1 +

s
2

+
s2

6

)2

− 2
(

1 +
s
2

+
s2

6

)
− 1
)

=
1
4

s
(6+3s+s2)2

(15 + 12s + 12s2
+ 4s3

+ s4) > 0.

A3. Properties of the Gaussian vortex. Given the expressions of A, B in (4-25), we first verify that the
ratio B/A is a decreasing function of r . We have

B(r)− 1
A(r)

=
1
2

(
1 + h

(
r2

4

))
, where h(s)=

1
s

−
1

es − 1
. (A-9)

Since

h′(s)= −
(es

− 1)2 − s2es

s2(es − 1)2
= −4es sinh(s/2)2 − (s/2)2

s2(es − 1)2
< 0, s > 0,

we see that h is strictly decreasing on (0,+∞) with h(0) =
1
2 and h(+∞) = 0. We conclude that

(B − 1)/A, hence also B/A, is a decreasing function of r , and that 1
2 ≤ B/A ≤

7
4 .

We next prove the lower bound (4-32) on the potential W. Since χ = log(A)/2 with A as in (4-25), a
direct calculation shows that the potential W defined by (4-28) has the expression

W (r)=
s
4

−
1
2

−
1
4s

−
s − 1/2
es − 1

−
s/4

(es − 1)2
, where s =

r2

4
.

Inequality (4-32) is thus equivalent to the positivity of the function G defined by

G(s)= 1 −
1
4s

−
s − 1/2
es − 1

−
s/4

(es − 1)2
, s > 0. (A-10)
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If s ≥
1
2 , we use the lower bound es

− 1 ≥ s(1 + s/2) and obtain

G(s)≥
s

4(2 + s)2
(7 + 4s) > 0.

If 0 < s < 1
2 , the third term in the right-hand side of (A-10) has the opposite sign. To estimate the

denominator, we use the upper bound es
− 1 ≤ s(1 + s/2)(1 + s2/5), which holds for s ≤

1
2 . This gives

G(s)≥
s

4(2 + s)2(5 + s2)
(27 + 32s + 15s2

+ 4s3) > 0.

A4. Computing the norm of the quasimode (4-37). In this section we compute the L2 norm of the
function R defined by (4-37). We recall that g = cA1/2e−r2/4, where c = (2 log(2))−1/2, and using (A-9)
we observe that

3
4

−
B − 1

A
=

1
4

(
1 − 2h

(
r2

4

))
, where h(s)=

1
s

−
1

es − 1
.

It follows that

∥R∥
2
Y =

1
16

∫
∞

0

(
1 − 2h

(
r2

4

))2

g(r)2r dr =
1

16 log(2)

∫
∞

0
(1 − 2h(s))2

1
s
(e−s

− e−2s) ds.

Expanding (1 − 2h(s))2 = 1 − 4h(s)+ 4h(s)2, we take the decomposition

∥R∥
2
Y ≡

∫
∞

0
R(r)2r dr =

I1 − 4I2 + 4I3

16 log(2)
, (A-11)

where the integrals I1, I2, I3 are defined and computed below.

• Evaluation of I1: I1 =

∫
∞

0

1
s
(e−s

− e−2s) ds = log(2).

• Evaluation of I2:

I2 =

∫
∞

0

h(s)
s
(e−s

− e−2s) ds

=

∫
∞

0

(
1
s

−
1

es − 1

){∫
∞

0
e−st dt

}
(e−s

− e−2s) ds

=

∫
∞

0

{∫
∞

0

(
1
s

−
1

es − 1

)
(e−s(1+t)

− e−s(2+t)) ds
}

dt

=

∫
∞

0

(
log

2 + t
1 + t

−
1

2 + t

)
dt = (1 + t) log

2 + t
1 + t

∣∣∣∣t=+∞

t=0
= 1 − log(2).

• Evaluation of I3:

I3 =

∫
∞

0

h(s)2

s
(e−s

− e−2s) ds

=

∫
∞

0

(
1
s

−
1

es − 1

)2{∫ ∞

0
tse−st dt

}
(e−s

− e−2s) ds

=

∫
∞

0

{∫
∞

0

(
e−s(1+t)

− e−s(2+t)

s
− 2e−s(2+t)

+
se−s(2+t)

es − 1

)
ds
}

t dt

=

∫
∞

0

(
log

2 + t
1 + t

−
2

2 + t
+ψ (1)(3 + t)

)
t dt,
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where ψ (1) denotes the trigamma function [Abramowitz and Stegun 1966, Section 6.4]:

ψ (1)(z)=

∫
∞

0

se−sz

1 − e−s ds =
d2

dz2 log0(z), Re(z) > 0.

It follows that

I3 =
t2

+ 4
2

log(2 + t)−
t2

− 1
2

log(1 + t)−
3t
2

+ t (log0)′(3 + t)− (log0)(3 + t)
∣∣∣t=+∞

t=0

=
1
4
(7 − 6 log(2)− 2 log(π)).

Here we used Stirling’s formula to compute an asymptotic expansion of (log0)(3 + t) and its derivative
as t → +∞. Inserting the values of I1, I2, I3 into (A-11), we arrive at (4-38).

A5. The Poisson structure on P. For two functions φ,ψ on R2 we use the familiar notation {φ,ψ} =

∂1φ∂2ψ−∂2φ∂1ψ . Now, if F and G are two functionals of P, the standard way of defining their Poisson
bracket is

{F,G}(ω)= −

∫
R2
ω
{
δF

δω
,
δG

δω

}
dx, (A-12)

where δF/δω is the usual “variational derivative” of F, namely, the function on R2 defined by the relation( d
dϵ

F(ω+ ϵη)
)∣∣∣
ϵ=0

=

∫
R2

δF

δω
(x)η(x) dx

for all (smooth and compactly supported) increments η. In particular, the variational derivative of the
energy functional (1-13) is δE/δω = −ψ , where ψ is the stream function (1-14). As an application, if ω
evolves according to the Euler equation ∂tω+ {ψ,ω} = 0, we have for any (smooth) functional F:

d
dt
F(ω)= −

∫
R2

δF

δω
{ψ,ω} dx =

∫
R2

{
δF

δω
,
δE
δω

}
ω dx = {E,F}(ω).

This is precisely the integrated form of the canonical equation ∂tω = {E, ω}.
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EXPLICIT FORMULA OF RADIATION FIELDS OF FREE WAVES
WITH APPLICATIONS ON CHANNEL OF ENERGY

LIANG LI, RUIPENG SHEN AND LIJUAN WEI

We give a few explicit formulas regarding the radiation fields of linear free waves. We then apply these
formulas on the channel-of-energy theory. We characterize all the radial weakly nonradiative solutions in
all dimensions and give a few new exterior energy estimates.

1. Introduction

1A. Background and topics. The semilinear wave equation

∂2
t u − 1u = ±|u|

p−1u, (x, t) ∈ Rd
× R,

especially the energy critical case p = 1+4/(d −2), has been extensively studied by many mathematicians
in the past few decades. Please see, for example, [Kapitanski 1994; Lindblad and Sogge 1995] for local
existence and well-posedness, and [Ginibre, Soffer and Velo 1992; Grillakis 1990; 1992; Kenig and
Merle 2008; Nakanishi 1999a; 1999b; Shatah and Struwe 1993; 1994] for global existence, regularity,
scattering and blow-up. Since the semilinear wave equation can be viewed as a small perturbation of
the homogenous linear wave equation in many situations, especially when we consider the asymptotic
behaviors of solutions as spatial variables or time tends to infinity, it is important to first understand the
asymptotic behaviors of solutions to the homogenous linear wave equation, i.e., free waves. This work
is concerned with two important tools to understand the asymptotic behaviors of free waves: radiation
fields and the channel of energy. We first introduce some necessary notation. Throughout this work we
consider the homogenous linear wave equation with initial data in the energy space

∂2
t u − 1u = 0, (x, t) ∈ Rd

× R,

u|t=0 = u0 ∈ Ḣ 1(Rd),

ut |t=0 = u1 ∈ L2(Rd).

(1)

In this work we also use the notation SL(u0, u1) to represent the free wave u defined above. If it is
necessary to mention the velocity ut , we use the notation

SL(t)
(

u0

u1

)
=

(
u( · , t)
ut( · , t)

)
∈ Ḣ 1

× L2.
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It is well known that the linear wave propagation preserves the Ḣ 1
×L2 norm, i.e., the energy conservation

law holds (∇x,t u = (∇u, ut)):∫
Rd

|∇x,t u(x, t)|2 dx =

∫
Rd

(|∇u0|
2
+ |u1|

2) dx .

Now we make a brief review of radiation fields and the channel-of-energy method.

Radiation fields. The asymptotic behavior of free waves at the energy level can be characterized by the
following theorem.

Theorem 1.1 (radiation field). Assume that d ≥ 3 and let u be a solution to the free wave equation
∂2

t u − 1u = 0, with initial data (u0, u1) ∈ Ḣ 1
× L2(Rd). Then

lim
t→±∞

∫
Rd

(
|∇u(x, t)|2 − |ur (x, t)|2 +

|u(x, t)|2

|x |2

)
dx = 0

and there exist two functions G± ∈ L2(R × Sd−1) so that

lim
t→±∞

∫
∞

0

∫
Sd−1

|r (d−1)/2∂t u(rθ, t) − G±(r ∓ t, θ)|2 dθ dr = 0,

lim
t→±∞

∫
∞

0

∫
Sd−1

|r (d−1)/2∂r u(rθ, t) ± G±(r ∓ t, θ)|2 dθ dr = 0.

In addition, the maps (u0, u1) →
√

2G± are a bijective isometries from Ḣ 1
× L2(Rd) to L2(R × Sd−1).

This has been known for more than 50 years, at least in the 3-dimensional case. Please see [Friedlander
1962; 1980], for example. The version of the radiation field theorem given above and a proof for all
dimensions d ≥ 3 can be found in [Duyckaerts, Kenig and Merle 2019]. In addition, there is also a
2-dimensional version of the radiation field theorem. The statement in dimension 2 can be given in almost
the same way as in the higher-dimensional case, except that the limit

lim
t→±∞

∫
R2

|u(x, t)|2

|x |2
dx = 0

no longer holds. A proof by Radon transform for all dimensions d ≥ 2 can be found in [Katayama 2013],
where the statement of the theorem is slightly different. Throughout this work we call the function G±

radiation profiles and use the notation T± for the linear map (u0, u1) → G±.

Channel of energy. The second tool is the channel-of-energy method, which plays an important role in
the study of wave equations in the past decade. This method is first introduced in the 3-dimensional case
in [Duyckaerts, Kenig and Merle 2011] and then in the 5-dimensional case in [Kenig, Lawrie and Schlag
2014]. This method was used in the proof of the soliton resolution conjecture of the energy critical wave
equation with radial data in all odd dimensions d ≥ 3 in [Duyckaerts, Kenig and Merle 2013; 2023].
It can also be used to show the nonexistence of minimal blow-up solutions in a compactness-rigidity
argument in the energy super- or subcritical case. Please see, for example, [Duyckaerts, Kenig and Merle
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2014; Shen 2013]. Roughly speaking, the channel-of-energy method discusses the amount of energy
located in an exterior region as time tends to infinity:

lim
t→±∞

∫
|x |>|t |+R

|∇x,t u(x, t)|2 dx .

Here the constant R is nonnegative. Since the energy travels at a finite speed, the energy in the exterior
region {x : |x | > |t | + R} decays as |t | increases. Thus the limits above are always well-defined. We can
also give the exact value of the limit in terms of the radiation field:

lim
t→±∞

∫
|x |>|t |+R

|∇x,t u(x, t)|2 dx = 2
∫

∞

R

∫
Sd−1

|G±(s, θ)|2 dθ ds. (2)

We first introduce a few already known results. We start with the odd dimensions.

Proposition 1.2 [Duyckaerts, Kenig and Merle 2012]. Assume that d ≥ 3 is an odd integer. All solutions
to ∂2

t u − 1u = 0 satisfy∑
±

lim
t→±∞

∫
|x |>|t |

|∇x,t u(x, t)|2 dx =

∫
Rd

|∇x,t u(x, 0)|2 dx . (3)

As a result, we have:

Corollary 1.3. Assume that d ≥ 3 is odd. Then u ≡ 0 is the only free wave u satisfying

lim
t→±∞

∫
|x |>|t |

|∇x,t u(x, t)|2 dx = 0.

In contrast, if R > 0, the subspace of Ḣ 1
× L2(Rd) defined by

P(R) =

{
(u0, u1) ∈ Ḣ 1

× L2(Rd) : lim
t→±∞

∫
|x |>R+|t |

|∇t,x SL(u0, u1)(x, t)|2 dx = 0
}

(4)

does contain initial data (u0, u1) whose support is essentially bigger than {x : |x | ≤ R}. The free waves u
satisfying

lim
t→±∞

∫
|x |>R+|t |

|∇t,x u(x, t)|2 dx = 0

are usually called (R-weakly) nonradiative solutions. If the dimension is odd, these solutions are well-
understood in the radial case:

Theorem 1.4 [Kenig, Lawrie, Liu and Schlag 2015]. In any odd dimension d ≥ 1, every radial solution u
to (1) satisfies

max
±

lim
t→±∞

∫
r>|t |+R

|∇x,t u(r, t)|2rd−1 dr ≥
1
2∥5⊥

Prad(R)(u0, u1)∥Ḣ1×L2(r≥R:rd−1dr). (5)

Here
Prad(R)

.
= Span

{
(r2k1−d , 0), (0, r2k2−d) : k1, k2 ∈ N; 1 ≤ k1 ≤

d+2
4

, 1 ≤ k2 ≤
d
4

}
.

5⊥

Prad(R) is the orthogonal projection from Ḣ 1
× L2(r ≥ R : rd−1dr) onto the complement of the finite-

dimensional subspace Prad(R).
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Note the proof of Theorem 1.4 in [Kenig, Lawrie, Liu and Schlag 2015] uses the radial Fourier
transform.

The case of even dimensions is much more complicated and subtle. Côte, Kenig and Schlag [2014]
showed that in general the inequality∑

±

lim
t→±∞

∫
|x |>|t |

|∇x,t u(x, t)|2 dx ≥ C
∫

Rd
|∇x,t u(x, 0)|2 dx

does not hold for any positive constant C in even dimensions. But a similar inequality holds in the radial
case for either initial data (u0, 0) if d = 0 mod 4, or (0, u1) if d = 2 mod 4. More precisely we have

lim
t→±∞

∫
|x |>|t |

|∇x,t SL(u0, 0)(x, t)|2 dx ≥
1
2

∫
Rd

|∇u0(x)|2 dx, d = 4k, k ∈ N, (6)

lim
t→±∞

∫
|x |>|t |

|∇x,t SL(0, u1)(x, t)|2 dx ≥
1
2

∫
Rd

|u1(x)|2 dx, d = 4k + 2, k ∈ N. (7)

In addition, Duyckaerts, Kenig and Merle [2021] showed that the only nonradiative solution is still the
zero solution in even dimensions d ≥ 4; i.e., Corollary 1.3 still holds for even dimensions d ≥ 4, even in the
nonradial case. Much less is known about the exterior energy estimate in the region {x : |x | > R+|t |} with
R > 0. Duyckaerts, Kenig, Martel and Merle [2022] proves the exterior energy estimate in dimensions 4
and 6 if the initial data are radial:

lim
t→±∞

∫
|x |>|t |+R

|∇x,t SL(u0, 0)(x, t)|2 dx ≥
3
10

∥5⊥

R u0∥
2
Ḣ1({x∈R4:|x |>R})

,

lim
t→±∞

∫
|x |>|t |+R

|∇x,t SL(0, u1)(x, t)|2 dx ≥
3
10

∥π⊥

R u1∥
2
L2({x∈R6:|x |>R})

.

Here 5⊥

R is the orthogonal projection from Ḣ 1({x ∈ R4
: |x | > R}) onto the complement space of

Span{|x |
−2

}. While π⊥

R is the orthogonal projection from L2({x ∈ R6
: |x | > R}) onto the complement

space of Span{|x |
−4

}.

1B. Main idea. According to (2) we may obtain exterior energy estimates conveniently from the radiation
profiles G±. Please note that G− and G+ are not independent of each other. In fact the map T+ ◦ T−1

− :

G− → G+ is a bijective isometry. If we could find explicit expressions of the maps

T+ ◦ T−1
−

: G− → G+, T−1
−

: G− → (u0, u1), SL ◦ T−1
−

: G− → u,

then we would be able to:

(a) Understand how the asymptotic behavior in one time direction determines the behavior in the other
time direction. This is known in the odd-dimensional case, as shown (although not stated explicitly) in
the proof of Proposition 1.2 in [Duyckaerts, Kenig and Merle 2012]. In this work we will try to figure out
the even-dimensional case.

(b) Characterize (weakly) nonradiative solutions, especially in the radial case. We first determine all the
radiation profiles G− so that

G−(s, θ) = G+(s, θ) = 0, s > R ⇐⇒ lim
t→±∞

∫
|x |>|t |+R

|∇x,t u(x, t)|2 dx = 0;
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then we may obtain all the nonradiative solutions (as well as their initial data) by applying the formula
of T−1

− . In particular we prove that radial nonradiative solutions in even dimensions can be characterized
in the same way as in odd dimensions.

(c) Prove exterior energy estimates. We generalize the radial exterior energy estimates in 4 and 6 dimen-
sions to all even dimensions; we also prove a nonradial exterior energy estimate in odd dimensions. In
both applications (b) and (c) we follow the same roadmap:

exterior energy ↔ radiation profile ↔ initial data.

1C. Main results. Now we give the statement of our results. The details and proofs can be found in
subsequent sections.

Theorem 1.5. Let u be a finite-energy free wave with an even spatial dimension d ≥ 2 and G+, G−

be the radiation profiles associated with u. Then we may give an explicit formula of the operator
T+ ◦ T−1

− : G− → G+

G+(s, θ) = (−1)d/2(HG−)(−s, −θ).

Here H is the Hilbert transform in the first variable, i.e.,

(HG−)(−s, −θ) = p.v.
1
π

∫
∞

−∞

G−(τ, −θ)

(−s) − τ
dτ.

Remark 1.6. A similar but simpler argument shows that if d is odd, then T+ ◦ T−1
− : G− → G+ can be

explicitly given by
G+(s, θ) = (−1)(d−1)/2G−(−s, −θ).

This can also be verified by assuming that the initial data is smooth and compactly supported, and
considering the expression of G− and G+ in terms of (u0, u1) if d is odd. Please refer to [Duyckaerts,
Kenig and Merle 2012]. Since we have H2

= −1. We may write the odd and even dimensions in a
universal formula

G+(s, θ) = ((−H)d−1G−)(−s, −θ).

Remark 1.7. It has been proved in Section 3.2 of [Duyckaerts, Kenig and Merle 2021] (in the language
of Hankel and Laplace transforms) that the zero function is the only function f ∈ L2(R) satisfying

f (s) = 0, s > 0, (H f )(s) = 0, s < 0.

It immediately follows that:

Corollary 1.8. Assume d ≥ 2. Let � be a region in Sd−1. If a finite-energy solution u to the homogenous
linear wave equation satisfies

lim
t→±∞

∫
∞

|t |

∫
±�

|∇t,x u(rθ, t)|2rd−1 dθ dr = 0,

then we have

lim
t→±∞

∫
∞

0

∫
±�

|∇t,x u(rθ, t)|2rd−1 dθ dr = 0.

This is an angle-localized version of Corollary 1.3.
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Applications on channel of energy. By following the idea described above, we obtain the following
results about the channel of energy.

Proposition 1.9 (radial weakly nonradiative solutions). Let d ≥ 2 be an integer and R > 0 be a constant.
If the initial data (u0, u1) ∈ Ḣ 1

× L2 are radial, then the corresponding solution to the homogeneous
linear wave equation u is R-weakly nonradiative, i.e.,

lim
t→±∞

∫
|x |>|t |+R

|∇t,x u(x, t)|2 dx = 0,

if and only if the restriction of (u0, u1) in the region {x ∈ Rd
: |x | > R} is contained in

Prad(R) = Span
{
(r2k1−d , 0), (0, r2k2−d) : 1 ≤ k1 ≤

⌊d+1
4

⌋
, 1 ≤ k2 ≤

⌊d−1
4

⌋}
.

Here the notation ⌊q⌋ is the integer part of q. In particular, all radial R-weakly nonradiative solutions in
dimension 2 are supported in {(x, t) : |x | ≤ |t | + R}.

Remark 1.10. If d is odd, we have ⌊(d + 1)/4⌋ = ⌊(d + 2)/4⌋ and ⌊(d − 1)/4⌋ = ⌊d/4⌋; thus our result
here is the same as the already known result in odd dimension, as given in Theorem 1.4.

Proposition 1.11 (radial exterior estimates in even dimensions). Let d = 4k with k ∈ N and R > 0. If
initial data u0 ∈ Ḣ 1(Rd) are radial, then the corresponding solution u to the homogenous linear wave
equation with initial data (u0, 0) satisfies

lim
t→∞

∫
|x |>R+|t |

|∇u(x, t)|2 dx = lim
t→∞

∫
|x |>R+|t |

|ut(x, t)|2 dx ≥
1
4∥5⊥

Qk(R)u0∥
2
Ḣ1({x :|x |>R})

.

Here 5⊥

Qk(R) is the orthogonal projection from Ḣ 1({x ∈ Rd
: |x | > R}) onto the complement of the

k-dimensional linear space

Qk(R) = Span
{

1
|x |4k−2k1

: 1 ≤ k1 ≤ k
}
.

Similarly if the dimension d satisfies d = 4k + 2 ≥ 2, with k ∈ {0} ∪ N and the initial data u1 ∈ L2(Rd)

are radial, then the corresponding solution u to the homogenous linear wave equation with initial data
(0, u1) satisfies

lim
t→∞

∫
|x |>R+|t |

|∇u(x, t)|2 dx = lim
t→∞

∫
|x |>R+|t |

|ut(x, t)|2 dx ≥
1
4∥5⊥

Q′

k(R)
u1∥

2
L2({x :|x |>R})

.

Here 5⊥

Q′

k(R)
is the orthogonal projection from L2({x ∈ Rd

: |x | > R}) onto the complement of the
k-dimensional linear space

Q′

k(R) = Span
{

1
|x |4k+2−2k1

: 1 ≤ k1 ≤ k
}
.

Remark 1.12. Given u0 ∈ Ḣ 1(R4k) or u1 ∈ L2(R4k+2), the orthogonal projection of u0 or u1 onto the
finite-dimensional space Qk(R) or Q′

k(R) gradually vanishes as R → 0+. Therefore if we make R → 0+

in Proposition 1.11, we immediately obtain (6) and (7).
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Remark 1.13. At the same time as this work was done, Kenig et al. proved radial exterior estimates
similar to Proposition 1.11 for even dimensions d ≥ 8 by using the already-known result in dimension 4
and an induction argument.

Proposition 1.14 (nonradial exterior energy estimates). Let d ≥ 3 be an odd integer and R > 0 be a
constant. Then the following identity holds for all (u0, u1) ∈ Ḣ 1

× L2(Rd):∑
±

lim
t→±∞

∫
|x |>R+|t |

|∇t,x SL(t)(u0, u1)(x, t)|2 dx = ∥5⊥

P(R)(u0, u1)∥
2
Ḣ1×L2(Rd )

.

Here 5⊥

P(R) is the orthogonal projection from Ḣ 1
×L2(Rd) onto the complement of the closed linear space

P(R) =

{
(u0, u1) ∈ Ḣ 1

× L2(Rd) : lim
t→±∞

∫
|x |>R+|t |

|∇t,x SL(u0, u1)(x, t)|2 dx = 0
}
.

Structure of this work. This work is organized as follows. In Section 2 we deduce an explicit formula
of T−1

− in all dimensions. Then in Section 3 we prove the explicit formula of T+◦T−1
− given in Theorem 1.5.

The rest of the paper is devoted to the applications in the channel of energy. We characterize radial
weakly nonradiative solutions in Section 4, prove radial exterior energy estimate for all even dimensions
in Section 5 and finally give a short proof of nonradial exterior energy estimate in odd-dimensional space
in Section 6. The Appendix is concerned with Hilbert transform of a family of special functions, since
the Hilbert transform is involved in the even dimensions.

Notation. In this work we use the notation C(d) for a nonzero constant determined solely by the
dimension d . It may represent different constants in different places. This avoids the trouble of keeping
track of the constants when unnecessary.

2. From radiation profile to solution

Now we assume that G−(r, θ) is smooth and compactly supported and give an explicit formula of the
operator T−1

− . We consider the odd dimensions first.

2A. Odd dimensions.

Lemma 2.1. Assume that d ≥ 3 is odd. Let G− be a smooth function with supp G− ⊂ [−R, R] × Sd−1.
Then (u0, u1) = T−1

− G− satisfies

u0(x) =
1

(2π)(d−1)/2

∫
Sd−1

G(µ−1)
− (x · ω, ω) dω, (8)

u1(x) =
1

(2π)(d−1)/2

∫
Sd−1

G(µ)
− (x · ω, ω) dω. (9)

Here the notation G(k)
− represents the partial derivative

G(k)
− (s, θ) =

∂k G−(s, θ)

∂sk .
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Remark 2.2. This formula in 3-dimensional case was previously known. Please refer to [Friedlander
1973], for example.

Proof. Let (u0, u1) = T−1
− G− and u = SL(u0, u1). Given a large time t > 0, we choose approximated

data (v0,t , v1,t) ≈ (u( · , −t), ut( · , −t)) as

v1,t(rθ) = r−µG−(r − t, θ), r > 0, θ ∈ Sd−1, (10)

v0,t(rθ) = −χ
(r

t

) ∫
+∞

r
r ′−µG−(r ′

− t, θ) dr ′, r > 0, θ ∈ Sd−1. (11)

Here µ = (d − 1)/2 and χ : R → [0, 1] is a smooth center cut-off function satisfying

χ(s) =

{
1, s > 1

2 ,

0, s < 1
4 .

It is clear that the data (v0,t , v1,t) are smooth and compactly supported in {x : |x |< R+t}. A straightforward
calculation shows that ∫

∞

0

∫
Sd−1

|rµv1,t(rθ) − G−(r − t, θ)|2 dθ dr = 0,∫
∞

0

∫
Sd−1

|rµ∂rv0,t(rθ) − G−(r − t, θ)|2 dθ dr ≲ 1
t
,∫

Rd
(|∇v0,t(x)|2 − |∂rv0,t(x)|2) dx ≲ 1

t
.

Thus by the radiation field we have

lim
t→+∞

∥(v0,t , v1,t) − (u( · , −t), ut( · , −t))∥Ḣ1×L2(Rd ) = 0.

Since the linear propagation operator SL(t) preserves the Ḣ 1
× L2 norm, we have

lim
t→+∞

∥∥∥∥(
u0

u1

)
− SL(t)

(
v0,t

v1,t

)∥∥∥∥
Ḣ1×L2(Rd )

= 0. (12)

Next we use the explicit expression of the linear propagation operator (see, for instance, [Evans 1998])
and write v = SL(v0, v1) in terms of (v0, v1) when the initial data are sufficiently smooth:

v(x, t) = cd ·
∂

∂t

(1
t

∂

∂t

)µ−1
(

td−2
∫

Sd−1
v0(x + tω) dω

)
+ cd ·

(1
t

∂

∂t

)µ−1
(

td−2
∫

Sd−1
v1(x + tω) dω

)
= cd tµ

∫
Sd−1

[((w · ∇)µv0)(x + tω) + ((w · ∇)µ−1v1)(x + tω)] dω

+

∑
0≤k<µ

Ad,k tk
∫

Sd−1
((w · ∇)kv0)(x + tω) dω +

∑
0≤k<µ−1

Bd,k tk+1
∫

Sd−1
((w · ∇)kv1)(x + tω) dω.

Here cd = 1/(2(2π)(d−1)/2), Ad,k , Bd,k (and A′

d,k , B ′

d,k below) are all constants. We may differentiate
and obtain

vt(x, t) = cd tµ

∫
Sd−1

[((w · ∇)µ+1v0)(x + tω) + ((w · ∇)µv1)(x + tω)] dω

+

∑
1≤k≤µ

A′

d,k tk−1
∫

Sd−1
((w · ∇)kv0)(x + tω) dω +

∑
0≤k≤µ−1

B ′

d,k tk
∫

Sd−1
((w · ∇)kv1)(x + tω) dω.
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Now we plug in (v0, v1) = (v0,t , v1,t) with large time t . We observe that

|(ω · ∇)kv j,t(x + tw)| ≲ t−µ, j = 0, 1, k ≥ 0, (13)

and (r = |x + tω|, θ = (x + tω)/|x + tω|, k = µ − 1, µ)

((ω · ∇)k+1v0,t)(x + tω) = (ω · θ)k+1r−µG(k)
− (r − t, θ)+ O(t−µ−1),

((ω · ∇)kv1,t)(x + tω) = (ω · θ)kr−µG(k)
− (r − t, θ)+ O(t−µ−1).

Thus (
w0,t

w1,t

)
= SL(t)

(
v0,t

v1,t

)
satisfies

w0,t = cd

∫
Sd−1

(ω · θ)µ−1(1 + ω · θ)G(µ−1)
− (r − t, θ) dω + O

(1
t

)
,

w1,t = cd

∫
Sd−1

(ω · θ)µ(1 + ω · θ)G(µ)
− (r − t, θ) dω + O

(1
t

)
.

Please note that the implicit constants in (13), O(t−µ−1) and O(1/t) above, may depend on x but remain
uniformly bounded if x is contained in a compact subset of Rd. Next we observe the facts

θ(ω) = ω + O
(1

t

)
, r(ω) − t = x · ω + O

(1
t

)
,

and further simplify the formulas

w0,t = 2cd

∫
Sd−1

G(µ−1)
− (x · ω, ω) dω + O

(1
t

)
,

w1,t = 2cd

∫
Sd−1

G(µ)
− (x · ω, ω) dω + O

(1
t

)
.

Finally we make t → +∞, utilize (12) and obtain

u0 = 2cd

∫
Sd−1

G(µ−1)
− (x · ω, ω) dω,

u1 = 2cd

∫
Sd−1

G(µ)
− (x · ω, ω) dω.

We plug in the value of cd and finish the proof. □

Remark 2.3. An explicit formula of the free wave u = SL T−1
− G− can be given by

u(x, t) =
1

(2π)(d−1)/2

∫
Sd−1

G(µ−1)
− (x · ω + t, ω) dω.

This can be verified by a straightforward calculation. One may check

• The function u above is a smooth solution to the homogenous linear wave equation.

• The initial data of u are exactly those given in Lemma 2.1.
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We may differentiate and obtain

ut(x, t) =
1

(2π)(d−1)/2

∫
Sd−1

G(µ)
− (x · ω + t, ω) dω,

∇u(x, t) =
1

(2π)(d−1)/2

∫
Sd−1

G(µ)
− (x · ω + t, ω) ω dω.

2B. Even dimensions. The formula of T−1
− in even dimensions is a little more complicated.

Lemma 2.4. Assume that d ≥ 2 is even and G− ∈ C∞

0 (R × Sd−1). Then the operator T−1
− is given

explicitly by

u0(x) =

√
2

(2π)d/2 ·

∫
∞

0

∫
Sd−1

G(d/2−1)
− (x · ω − ρ, ω)

√
ρ

dω dρ,

u1(x) =

√
2

(2π)d/2 ·

∫
∞

0

∫
Sd−1

G(d/2)
− (x · ω − ρ, ω)

√
ρ

dω dρ.

Proof. Without loss of generality let us assume supp G− ⊂ [−R1, R1] × Sd−1. It is sufficient to show
that given any R2 > 0, the formula above holds for almost every x ∈ B(0, R2). Let us use the notation
(u0, u1) = T−1

− (G−) and u = SL(u0, u1). We consider the approximated data

v1,t(rθ) = r−µG−(r − t, θ),

v0,t(rθ) = −χ
(r

t

) ∫
+∞

r
r ′−µG−(r ′

− t, θ) dr ′, r > 0, θ ∈ Sd−1.

and (
w0,t

w1,t

)
= SL(t)

(
v0,t

v1,t

)
.

Here χ is the center cut-off function as given in the previous subsection. A basic calculation shows

lim
t→+∞

∥(v0,t , v1,t) − (u( · , −t), ut( · , −t))∥Ḣ1×L2(Rd ) = 0.

Thus

lim
t→+∞

∥(w0,t , w1,t) − (u0, u1)∥Ḣ1×L2(Rd ) = 0. (14)

Let us first recall the explicit formula of v = SL(v0, v1) in the even-dimensional case:

v(x, t) = cd ·
∂

∂t

(1
t

∂

∂t

)(d−2)/2
(

td−1
∫

Bd

v0(x + t y)√
1 − |y|2

dy
)

+ cd ·

(1
t

∂

∂t

)(d−2)/2
(

td−1
∫

Bd

v1(x + t y)√
1 − |y|2

dy
)

= cd · td/2
∫

Bd

((y · ∇)d/2v0)(x + t y) + ((y · ∇)d/2−1v1)(x + t y)√
1 − |y|2

dy

+

∑
0≤k<d/2

Ad,k tk
∫

Bd

(y · ∇)kv0(x + t y)√
1 − |y|2

dy +

∑
0≤k<d/2−1

Bd,k tk+1
∫

Bd

(y · ∇)kv1(x + t y)√
1 − |y|2

dy.
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Here Bd is the unit ball in Rd and cd = (2π)−d/2 is a constant. The notations Ad,k , Bd,k (and A′

d,k , B ′

d,k
below) represent constants. We differentiate and obtain

vt(x, t) = cd · td/2
∫

Bd

((y · ∇)d/2+1v0)(x + t y) + ((y · ∇)d/2v1)(x + t y)√
1 − |y|2

dy

+

∑
1≤k≤d/2

A′

d,k tk−1
∫

Bd

(y · ∇)kv0(x + t y)√
1 − |y|2

dy +

∑
0≤k≤d/2−1

B ′

d,k tk
∫

Bd

(y · ∇)kv1(x + t y)√
1 − |y|2

dy.

We plug in (v0, v1) = (v0,t , v1,t) and observe

|(y · ∇)kv0,t | ≤ t−(d−1)/2, |(y · ∇)kv1,t | ≤ t−(d−1)/2.

This gives the approximation

w0,t(x) = cd · td/2
∫

Bd

((y · ∇)d/2v0,t)(rθ) + ((y · ∇)d/2−1v1,t)(rθ)√
1 − |y|2

dy + O(t−1/2),

w1,t(x) = cd · td/2
∫

Bd

((y · ∇)d/2+1v0,t)(rθ) + ((y · ∇)d/2v1,t)(rθ)√
1 − |y|2

dy + O(t−1/2).

Here r = |x + t y| and θ = (x + t y)/|x + t y|. Furthermore, we observe (k = d/2, d/2 − 1)

((y · ∇)k+1v0,t)(rθ) = (y · θ)k+1r−(d−1)/2G(k)
− (r − t, θ)+ O(t−(d+1)/2),

((y · ∇)kv1,t)(rθ) = (y · θ)kr−(d−1)/2G(k)
− (r − t, θ)+ O(t−(d+1)/2),

and write

w0,t(x) = cd · td/2
∫

Bd

(y · θ)d/2−1(y · θ + 1)r−(d−1)/2G(d/2−1)
− (r − t, θ)√

1 − |y|2
dy + O(t−1/2),

w1,t(x) = cd · td/2
∫

Bd

(y · θ)d/2(y · θ + 1)r−(d−1)/2G(d/2)
− (r − t, θ)√

1 − |y|2
dy + O(t−1/2).

Next we observe that if |y| < 1−(R1 + R2)/t , then we have r ≤ t |y|+|x | < t − R1; thus G(k)
− (r − t, θ) = 0.

As a result, we may restrict the domain of the integral to

Bt =

{
y ∈ Bd

: |y| ≥ 1 −
R1 + R2

t

}
.

Because in the region we have

θ =
y

|y|
+ O

(1
t

)
, y · θ = 1 + O

(1
t

)
, r = t + O(1),

we can simplify the formulas

w0,t(x) = 2cd · t1/2
∫

Bt

G(d/2−1)
− (r − t, y/|y|)√

1 − |y|2
dy + O(t−1/2),

w1,t(x) = 2cd · t1/2
∫

Bt

G(d/2)
− (r − t, y/|y|)√

1 − |y|2
dy + O(t−1/2).
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Next we utilize the change of variables

y =

(
1 −

ρ

t

)
ω, (ρ, ω) ∈ (0, R1 + R2) × Sd−1,

and the approximations

r − t = x · ω − ρ + O
(1

t

)
,

√
1 − |y|

2
=

(
1 + O

(1
t

))√
2ρ

t
, dy =

(
1 + O

(1
t

))
t−1 dρ dω

to obtain

w0,t(x) =
√

2cd ·

∫ R1+R2

0

∫
Sd−1

G(d/2−1)
− (x · ω − ρ, ω)

√
ρ

dω dρ + O(t−1/2),

w1,t(x) =
√

2cd ·

∫ R1+R2

0

∫
Sd−1

G(d/2)
− (x · ω − ρ, ω)

√
ρ

dω dρ + O(t−1/2).

Finally we recall (14), let t → +∞ and conclude

u0(x) =
√

2cd ·

∫ R1+R2

0

∫
Sd−1

G(d/2−1)
− (x · ω − ρ, ω)

√
ρ

dω dρ,

u1(x) =
√

2cd ·

∫ R1+R2

0

∫
Sd−1

G(d/2)
− (x · ω − ρ, ω)

√
ρ

dω dρ. □

Remark 2.5. If d ≥4, the convergence (14) implies that (w0,t , w1,t) converges to (u0, u1) in L2d/(d−2)
×L2

by Sobolev embedding. We may combine this convergence with the local uniform convergence given
above to verify the identities above. This argument breaks down in dimension 2. We given another
argument below in dimension 2. Given any test function ϕ ∈ C∞

0 (R2), integration by parts gives an identity∫
w0,t(x)∇ϕ(x) dx = −

∫
∇w0,t(x)ϕ(x) dx .

We recall the local uniform convergence of w0,t given above and the L2 convergence of ∇w0,t → ∇u0

and then obtain∫ (
√

2c2 ·

∫
∞

0

∫
S1

G−(x · ω − ρ, ω)
√

ρ
dω dρ

)
∇ϕ(x) dx = −

∫
∇u0(x)ϕ(x) dx .

This finishes the proof. Finally we would like to mention that we have

lim
|x |→+∞

√
2c2 ·

∫
∞

0

∫
S1

G−(x · ω − ρ, ω)
√

ρ
dω dρ = 0.

Corollary 2.6. If G− ∈ C∞

0 (R × Sd−1), then u = SL T−1
− (G−) is given by

u(x, t) =

√
2

(2π)d/2

∫
∞

0

∫
Sd−1

G(d/2−1)
− (x · ω − ρ + t, ω)

√
ρ

dω dρ.

Thus

ut(x, t) =

√
2

(2π)d/2

∫
∞

0

∫
Sd−1

G(d/2)
− (x · ω − ρ + t, ω)

√
ρ

dω dρ.

Proof. A basic calculation shows that u(x, t) solves the free wave equation with initial data given in
Lemma 2.4. □
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2C. Universal formula. Now let us give a universal formula of T−1
− for all dimensions. We first define

two convolution operators (1/
√

πx is understood as zero if x < 0)

Q f =
1

√
πx

∗ f, Q′ f =
1

√
−πx

∗ f.

Their Fourier symbols are
1 − i(ξ/|ξ |)

2
√

π |ξ |
and

1 + i(ξ/|ξ |)

2
√

π |ξ |
,

respectively. Let us also use the notation D = d/dx and recall that its Fourier symbol is 2π iξ . A simple
calculation of symbols shows

Q2D = 1, Q′2D = −1, QQ′D = H. (15)

As a result, we may understand Q as D−1/2 and rewrite u = SL T−1
− G− in the form

u(x, t) =
1

(2π)(d−1)/2

∫
Sd−1

(QG(d/2−1)
− )(x · ω + t, ω) dω

=
1

(2π)µ

∫
Sd−1

Dµ−1G−(x · ω + t, ω) dω. (16)

Here µ = (d − 1)/2. This formula holds for both odd and even dimensions.

3. Between radiation profiles

In this section we give an explicit expression of the operator T+ ◦ T−1
− in the even-dimensional case,

without the radial assumption.

Theorem 3.1. Assume that d ≥ 2 is an even integer. The operator T+ ◦ T−1
− can be explicitly given by the

formula

G+(s, θ) = (T+T−1
−

G−)(s, θ) = (−1)d/2(HG−)(−s, −θ).

Here H is the Hilbert transform in the first variable, i.e.,

(HG−)(−s, −θ) = p.v.
1
π

∫
∞

−∞

G−(τ, −θ)

−τ − s
dτ.

Proof. Since T+ ◦ T−1
− is a bijective isometry from L2(R × Sd−1) to itself. We only need to prove

this formula for smooth and compactly supported data G−. Without loss of generality let us assume
supp G− ⊂ [−R1, R1] × Sd−1. Let us also fix a positive constant R2 > 0. If (s, θ) ∈ (−R2, R2) × Sd−1,
then we may apply Corollary 2.6 and obtain

(t + s)(d−1)/2∂t u((t + s)θ, t) =
√

2cd(t + s)(d−1)/2
∫

∞

0

∫
Sd−1

G(d/2)
− ((t + s)θ · ω − ρ + t, ω)

√
ρ

dω dρ.



736 LIANG LI, RUIPENG SHEN AND LIJUAN WEI

Let M ≫ R1 + R2 + 1 be a large constant. We may split the integral above into two parts:

J1 =
√

2cd(t + s)(d−1)/2
∫

∞

0

∫
θ ·ω<−1+M/t

G(d/2)
− ((t + s)θ · ω − ρ + t, ω)

√
ρ

dω dρ,

J2 =
√

2cd(t + s)(d−1)/2
∫

∞

0

∫
θ ·ω≥−1+M/t

G(d/2)
− ((t + s)θ · ω − ρ + t, ω)

√
ρ

dω dρ.

We may find an upper bound of J2. In this region we have

(t + s)θ · ω + t ≥ M − R2 =⇒ G−((t + s)θ · ω − ρ + t) = 0 if ρ <
M
2

.

Thus we may integrate by parts and obtain

J2 = C(d)(t + s)(d−1)/2
∫

∞

0

∫
θ ·ω≥−1+M/t

G−((t + s)θ · ω − ρ + t, ω)

ρ(d+1)/2 dω dρ.

Therefore when t is sufficiently large

|J2| ≲ t (d−1)/2
∫

θ ·ω≥−1+M/t

∫ (t+s)θ ·ω+t+R1

(t+s)θ ·ω+t−R1

|G−((t + s)θ · ω − ρ + t, ω)|

ρ(d+1)/2 dρ dω

≲ t (d−1)/2
∫

θ ·ω≥−1+M/t

∫ (t+s)θ ·ω+t+R1

(t+s)θ ·ω+t−R1

|G−((t + s)θ · ω − ρ + t, ω)|

|(t + s)θ · ω + t |(d+1)/2 dρ dω

≲ t (d−1)/2
∫

θ ·ω≥−1+M/t

1
|tθ · ω + t |(d+1)/2 dω ≲ 1

M
.

In the integral region of J1, we have the approximation ω = −θ + O(t−1/2). Thus we have

J1 =
√

2cd t (d−1)/2
∫

∞

0

∫
θ ·ω<−1+M/t

G(d/2)
− ((t + s)θ · ω − ρ + t, −θ)

√
ρ

dω dρ + O(t−1/2).

Next we utilize the change of variables (please refer to Figure 1 for a geometrical meaning)

ω =

(
−1 +

ρ ′

t

)
θ +

√(
ρ ′

t

)(
2 −

ρ ′

t

)
ϕ, ρ ′

∈ [0, M], ϕ ∈ Sd−2
= {ϕ ∈ Sd−1

: ϕ ⊥ θ},

dω =

[
1 + O

(1
t

)](2ρ ′

t

)d/2−1
dSd−2(ϕ) ·

dρ ′

√
2ρ ′t

=

[
1 + O

(1
t

)]
(2ρ ′)(d−3)/2t−(d−1)/2 dSd−2(ϕ) dρ ′

and obtain

J1 =
1

2πd/2

∫
∞

0

∫ M

0

∫
Sd−2

G(d/2)
− (ρ ′

− ρ − s, −θ)ρ ′(d−3)/2ρ−1/2 dϕ dρ ′ dρ + O(t−1/2).

We observe that the integrand is independent of ϕ and integrate by parts

J1 =
(−1)d/2−1

π

∫
∞

0

∫ M

0

G ′
−
(ρ ′

− ρ − s, −θ)
√

ρρ ′
dρ ′ dρ + O(t−1/2).
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ω

rϕ

(−1+ρ ′/t)θ

ϕ

Sd−2

Sd−1

θ

Figure 1. Change of variables, where r =
√

(ρ ′/t)(2 − ρ ′/t).

We next change the variables τ = ρ ′
− ρ, η = ρ ′

+ ρ, and write

J1 =
(−1)d/2−1

π

∫ M

−∞

∫ 2M−τ

|τ |

G ′
−
(τ − s, −θ)√
η2 − τ 2

dη dτ + O(t−1/2)

=
(−1)d/2−1

π

∫ M

−∞

G ′

−
(τ − s, −θ)

[
ln(2M − τ +

√
4M2 − 4Mτ) − ln |τ |

]
dτ + O(t−1/2)

=
(−1)d/2−1

π

∫ R1+R2

−R1−R2

G ′

−
(τ − s, −θ)

[
ln(2M − τ +

√
4M2 − 4Mτ) − ln |τ |

]
dτ + O(t−1/2).

The integrals above can be split into two parts:

I1 =

∫ R1+R2

−R1−R2

G ′

−
(τ − s, −θ)

[
ln(2M − τ +

√
4M2 − 4Mτ)

]
dτ

=

∫ R1+R2

−R1−R2

G ′

−
(τ − s, −θ)

[
ln(2M − τ +

√
4M2 − 4Mτ) − ln(4M)

]
dτ

=

∫ R1+R2

−R1−R2

G ′

−
(τ − s, −θ)O

( 1
M

)
dτ = O

( 1
M

)
and

I2 = − lim
ε→0+

∫
ε<|τ |<R1+R2

G ′

−
(τ − s, −θ) ln |τ | dτ

= lim
ε→0+

∫
ε<|τ |<R1+R2

G−(τ − s, −θ)

τ
dτ = −π(HG−)(−s, −θ).

In summary we have

J1 = (−1)d/2(HG−)(−s, −θ) + O
( 1

M

)
+ O(t−1/2).

Now we may combine J1 and J2

(t + s)(d−1)/2∂t u((t + s)θ, t) = (−1)d/2(HG−)(−s, −θ) + O
( 1

M

)
+ O(t−1/2).
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Because the implicit constants in O’s do not depend on s ∈ [−R2, R2] or θ ∈ Sd−1, we may let t → +∞

then M → +∞ to conclude

lim
t→+∞

∫ R2

−R2

∫
Sd−1

|(t + s)(d−1)/2∂t u((t + s)θ, t) − (−1)d/2(HG−)(−s, −θ)|2 dθ ds = 0. □

4. Radial weakly nonradiative solutions

In this section we prove Proposition 1.9. First of all, we briefly show that any initial data in Prad(R) leads to
an R-weakly nonradiative solution. By linearity we only need to consider the case (u0, u1) = (r2k1−d, 0)

or (u0, u1) = (0, r2k2−d). If (u0, u1) = (r2k1−d, 0), then a basic calculation shows that if we choose
C1, C2, . . . , Ck1−1 inductively, the solution

uk1(x, t) =
1

|x |d−2k1
+

C1t2

|x |d−2k1+2 + · · · +
Ck1−1t2k1−2

|x |d−2

solves the linear wave equation with initial data (|x |
2k1−d, 0) in the region Rd

\ {0}. By finite speed of
propagation, we have

SL(u0, u1)(x, t) = uk1(x, t), |x | > R + |t |.

A simple calculation shows that this is indeed a nonradiative solution. The case (u0, u1) = (0, r2k2−d)

can be dealt with in the same manner by considering the solution

uk2(x, t) =
t

|x |d−2k1
+

C1t3

|x |d−2k1+2 + · · · +
Ck2−1t2k1−1

|x |d−2 .

Thus it is sufficient to show initial data of any nonradiative solution are contained in the space Prad(R).
We first consider the odd dimensions.

4A. Odd dimensions. Assume that u = SL(u0, u1) is a radial R-weakly nonradiative solution. Let
G− = T−(u0, u1). By radial assumption G− is independent of the angle ω ∈ Sd−1. Let us first consider
smooth functions G−. We may calculate (r > R, e1 = (1, 0, . . . , 0) ∈ Rd )

u0(re1) = (2π)−µ

∫
Sd−1

G(µ−1)
− (rω1) dω =

σd−2

(2π)µ

∫ 1

−1
G(µ−1)

− (rω1)(1 − ω2
1)

µ−1 dω1.

Here ω1 is the first variable of Rd
⊃ Sd−1 and σd−2 is the area of the sphere Sd−2. We may integrate by

parts and rescale:

u0(re1) =
(−1)µ−1σd−2

(2π)µrµ−1

∫ 1

−1
G−(rω1)[∂

µ−1
ω1

(1 − ω2
1)

µ−1
] dω1

=

⌊(µ−1)/2⌋∑
k=0

Ad,k

rµ−1

∫ 1

−1
G−(rω1)ω

µ−1−2k
1 dω1 =

⌊(d−3)/4⌋∑
k=0

Ad,k

rd−2−2k

∫ R

−R
G−(s)s(d−3)/2−2k ds

=

⌊(d+1)/4⌋∑
k=1

Ad,k

rd−2k

∫ R

−R
G−(s)s(d+1)/2−2k ds.
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Here the Ad,k are nonzero constants. Similarly we have

u1(re1) = (2π)−µ

∫
Sd−1

G(µ)
− (rω1) dω =

σd−2

(2π)µ

∫ 1

−1
G(µ)

− (rω1)(1 − ω2
1)

µ−1 dω1

=
(−1)µσd−2

(2π)µrµ

∫ 1

−1
G−(rω1)[∂

µ
ω1

(1 − ω2
1)

µ−1
] dω1 =

⌊(µ−2)/2⌋∑
k=0

Bd,k

rµ

∫ 1

−1
G−(rω1)ω

µ−2−2k
1 dω1

=

⌊(d−1)/4⌋∑
k=1

Bd,k

rd−2k

∫ R

−R
G−(s)s(d−1)/2−2k ds.

Here the Bd,k are nonzero constants. Since smooth functions are dense in L2([−R, R]), we have:

Proposition 4.1. There exist constants {Ad,k}1≤k≤⌊(d+1)/4⌋, {Bd,k}1≤k≤⌊(d−1)/4⌋, so that for any G− ∈

L2(R) supported in [−R, R], the initial data (u0, u1) = T−1
− G− satisfy (r > R)

u0(r) =

⌊(d+1)/4⌋∑
k=1

(
Ad,k

∫ R

−R
G−(s)s(d+1)/2−2k ds

)
r−d+2k,

u1(r) =

⌊(d−1)/4⌋∑
k=1

(
Bd,k

∫ R

−R
G−(s)s(d−1)/2−2k ds

)
r−d+2k .

This clearly shows that if u = SL(u0, u1) is a radial R-weakly nonradiative solution, then (u0, u1) ∈

Prad(R).

4B. Even dimensions. The even dimensions involve the Hilbert transform, and thus are much more
difficult to handle. The general idea is the same. If the initial data (u0, u1) are radial, then G±(s) =

T±(u0, u1) is independent to the angle. We also have G+(s) = (−1)d/2HG−(−s). Thus SL(u0, u1) is
R-weakly nonradiative if and only if G− is contained in the space

Prad = {G− ∈ L2(R) : G−(s) = 0, s > R, (HG−)(s) = 0, s < −R}.

Now recall the operators Q, Q′ and D defined in Section 2C. We claim:

Lemma 4.2. Q′Prad = Ḣ 1/2
0 (−R, R). Here Ḣ 1/2

0 (−R, R) is the completion of C∞

0 (−R, R) equipped
with the Ḣ 1/2(R) norm.

Proof. In order to avoid technical difficulties, we use an approximation technique. Given any G− ∈ Prad,
we may utilize a local smoothing kernel to generate a sequence Gk , so that:

(a) Gk ∈ Prad(R + 1/k).

(b) Gk ∈ H n(R) for all n ≥ 0 and thus Gk ∈ C∞(R).

(c) Gk converges to G− in L2(R).

Let us consider the properties of the function gk = Q′Gk ∈ C∞(R). According to part (a), Gk(s) = 0 if
s > R + 1/k. We may use the convolution expression of Q′ to obtain that gk vanishes in the interval
(R + 1/k, +∞). Similarly gk = QHGk vanishes in the interval (−∞, −R − 1/k). We recall that
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Q′
: L2(R) → Ḣ 1/2(R) is an isometry up to a constant. Thus gk → g = Q′G− in Ḣ 1/2(R). This verifies

g ∈ Ḣ 1/2
0 (−R, R). We also need to show that given any g ∈ Ḣ 1/2

0 (−R, R), then Q′−1g ∈ Prad. It is
sufficient to consider g ∈ C∞

0 (−R, R) by smooth approximation. A simple calculation of Fourier symbols
shows that Q′−1

= −Q′D and HQ′−1
= QD. A combination of these identities with the convolution

expressions of Q and Q′ immediately verifies Q′−1g ∈ Prad. □

We also need to use the following explicit formula of T− for radial data.

Lemma 4.3. Assume G ∈ C∞(R) so that |G(s)| ≲ |s|−3/2 for |s| ≫ 1. Then the corresponding radial
free wave u = SL T−1

− G satisfies

u(r, t) = C(d) · r1−d/2
∫ 1

−1
QG(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1. (17)

Here Pd is an even or odd polynomial of degree d/2 − 1 defined by(
∂

∂w1

)d/2−1
(1 − w2

1)
(d−3)/2

= Pd(w1)(1 − w2
1)

−1/2.

Proof. If G ∈ C∞

0 (R), we use polar coordinates and integrate by parts:

u(r, t) = C(d)

∫
∞

0

∫
Sd−1

G(d/2−1)(rω1 − ρ + t)
√

ρ
dω dρ

= C(d)

∫
∞

0

∫ 1

−1

G(d/2−1)(rω1 − ρ + t)
√

ρ
(1 − w2

1)
(d−3)/2 dω1 dρ

= C(d) · r1−d/2
∫

∞

0

∫ 1

−1

G(rω1 − ρ + t)
√

ρ
Pd(w1)(1 − w2

1)
−1/2 dω1 dρ

= C(d) · r1−d/2
∫ 1

−1
QG(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1.

This verifies the formula if G ∈ C∞

0 (R). In order to deal with profile G without compact support, we use
standard smooth cut-off techniques. More precisely, we may choose Gk ∈ C∞

0 (R) so that Gk → G in
L2(R) and

|Gk(s) − G(s)| = 0, s < k, |Gk(s) − G(s)| ≲ |s|−3/2, s ≥ k.

Thus we have ∥QG −QGk∥L∞ ≲ 1/k. This means we have the uniform convergence for all (r, t) in any
compact subset of R+

× R:

uk(r, t) =
C(d)

rd/2−1

∫ 1

−1
QGk(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1

⇒
C(d)

rd/2−1

∫ 1

−1
QG(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1.

Combining this with the convergence uk → u in Ḣ 1 we finish the proof. □
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Remark 4.4. If d ≥ 4 and G ∈ L2(R), then formula (17) still holds. This follows standard smooth
approximation and/or cut-off techniques. Let Gk ∈ C∞

0 (R) so that Gk → G in L2(R). Thus QGk → QG
in Ḣ 1/2(R). Finally we observe the fact Pd(w1)(1 − w2

1)
−1/2

∈ Ḣ−1/2(R), obtain a locally uniform
convergence uk(r, t) → u(r, t) and conclude the proof.

Now we are ready to give an expression of u = SL T−1
− G− when G− ∈ Prad(R).

Lemma 4.5. Assume G− ∈ Prad(R). Then the following identity holds:

u(r, t) =
C(d)

rd/2

∫ R

−R
Q′G−(s)Wd

(
s − t

r

)
ds.

Here Wd(σ ) is the Hilbert transform (the function below is understood as zero if |w1| > 1)

Wd(σ )
.
= H

(
Pd(w1)

√

1 − w2
1

)
= H

[(
d

dw1

)d/2−1

(1 − w2
1)

(d−3)/2
]
.

Proof. By Lemma 4.2, we have Q′G− ∈ Ḣ 1/2
0 (−R, R). We claim that it is sufficient to consider the case

Q′G− ∈ C∞

0 (−R, R). In fact, we may choose Gk ∈ Prad(R) so that Q′Gk ∈ C∞

0 (−R, R) so that

Q′Gk → Q′G− in Ḣ 1/2(−R, R) =⇒ Gk → G− in L2(R).

Now we observe a few important facts: we have the embedding Ḣ 1/2
0 (−R, R) ↪→ L p(−R, R) for all

1 ≤ p < +∞ and
Pd(w1)

√

1 − w2
1

∈ L p(R) =⇒ Wd(σ ) ∈ L p(R), p ∈ (1, 2).

As a result, if the identity

uk(r, t) =
C(d)

rd/2

∫ R

−R
Q′Gk(s)Wd

(
s − t

r

)
ds, k ≥ 1,

holds, then we may make k → +∞ in the identity above and verify that a similar identity holds for u
and G−. In fact the left-hand side converges in the space Ḣ 1(Rd) for any given time t , while the
right-hand side converges uniformly for (r, t) in any compact subset of R+

× R. Now we assume
g = Q′G− ∈ C∞

0 (−R, R). Then G− = Q′−1g = −Q′Dg satisfies the assumption of Lemma 4.3. As a
result we have

u(r, t) = C(d) · r1−d/2
∫ 1

−1
QQ′Dg(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1

= C(d) · r1−d/2
∫ 1

−1
Hg(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1

=
C(d)

rd/2−1

∫
∞

−∞

g(rσ + t)Wd(σ ) dσ.

Here we use the facts QQ′D = H and∫
H f ·Hg dx =

∫
f · ḡ dx, H(Hg(rω1 + t))(σ ) = (H2g)(rσ + t) = −g(rσ + t).

Finally we apply change of variables s = rσ + t , recall the support of g and finish the proof. □
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Now let us consider the Hilbert transform Wd . The key observation is the following technical lemma.
This result has been known for many years; see [Solmon 1987], for instance. But we still give a brief
proof in the Appendix for the purpose of completeness.

Lemma 4.6. Assume that P(x) is a polynomial of degree κ . Let W be the Hilbert transform

W = H
(

P(x)
√

1 − x2

)
.

Then W (σ ) is equal to a polynomial of degree κ − 1 if σ ∈ (−1, 1). In particular, W2(σ ) = 0 for
σ ∈ (−1, 1); if d ≥ 4, then the function Wd(σ ) is equal to an even or odd polynomial of degree d/2−2 in
the interval (−1, 1).

Proof of Proposition 1.11. According to Lemma 4.5, we have already obtained

u(r, t) =
C(d)

rd/2

∫ R

−R
Q′G−(s)Wd

(
s − t

r

)
ds.

Here Q′G− ∈ Ḣ 1/2
0 (−R, R) ↪→ L p(−R, R) for all 1 < p < +∞. If we also have r > |t | + R, then∣∣∣∣s − t

r

∣∣∣∣ < 1 for all s ∈ (−R, R).

If d = 2, Lemma 4.6 immediately gives u(r, t) ≡ 0 if r > |R|+ t since we always have W2((s − t)/r) = 0.
In the higher-dimensional case d ≥ 4, Lemma 4.6 guarantees that

Wd(s) =

⌊d/4⌋∑
l=1

Alsd/2−2l, −1 < s < 1,

is a polynomial. We plug this in the expression of u and obtain

u(r, t) = C(d)

⌊d/4⌋∑
l=1

Al

rd−2l

∫ R

−R
Q′G−(s)(s − t)d/2−2l ds, r > R + |t |. (18)

This immediately gives (u0, u1) ∈ Prad(R).

5. Exterior energy estimates of even dimensions

In this section we prove Proposition 1.11. It suffices to consider the case d = 4k. The proof of d = 4k +2
is almost the same. Again we switch to the space of radiation profiles G− ∈ L2(R×Sd−1). We start with:

Lemma 5.1. The image of radial data in the form of (u0, 0) can be characterized by

{T−(u0, 0) : u0 ∈ Ḣ 1
rad(R

d)} = {G− ∈ L2(R) : HG−(−s) = −G−(s)}

=

{
G(s) −HG(−s)

2
: G ∈ L2(R)

}
.

Proof. First of all, if u0 ∈ Ḣ 1
rad(R

d), then the free wave u = SL(u0, u1) is radial and satisfies

u(x, t) = u(x, −t), ut(x, t) = −ut(x, −t).
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Therefore G−, G+ are radial, i.e., independent of ω and satisfy G+(s) = −G−(s). We may apply
Theorem 1.5 and obtain G+(s) = HG−(−s). As a result, G− satisfies the identity HG−(−s) = −G−(s).
Next, let us assume G− satisfies this identity. Then we have

G−(s) =
G−(s) −HG−(−s)

2
∈

{
G(s) −HG(−s)

2
: G ∈ L2(R)

}
.

Finally, if G−(s) = (G(s)−HG(−s))/2, we show there exists u0 ∈ Ḣ 1
rad(R

d), so that G− = T−(u0, 0).
In fact, we consider radial initial data (u0, u1) = T−1

− G and free wave u = SL(u0, u1). We may reverse
the time and obtain u(x, −t) = SL(u0, −u1)(x, t). Thus

T−(u0, −u1)(s) = −T+(u0, u1)(s) = −HG(−s).

Therefore we have

T−(2u0, 0)(s) = T−(u0, u1) + T−(u0, −u1) = G(s) −HG(−s) = 2G−(s),

which completes the proof. □

The key observation is the following:

Lemma 5.2. Given g ∈ L2(R+), there exists a function G with ∥G∥L2(R) ≤ 2∥g∥L2(R+) so that

G(s) −HG(−s) = 2g(s), s > 0,

∥∥∥∥G(s) −HG(−s)
2

∥∥∥∥
L2(R)

≤
√

2∥g∥L2(R+).

Proof. Let us first find a function G with ∥G∥L2(R) ≤ 2∥g∥L2 so that

G(s) −
G(s) +HG(−s)

2
= g(s), s > 0.

We define a linear bounded operator T from L2(R+) to itself. In the formula below we extend the domain
of G to R by assuming G(s) = 0 if s < 0 before we apply the Hilbert transform:

(T G)(s) =
G(s) +HG(−s)

2
=

G(s)
2

−
1

2π

∫
∞

0

G(τ )

s + τ
dτ, s > 0.

We may further rewrite it as

T G =
G
2

−
1

2π
L2G.

Here L is the Laplace transform

LG(s) =

∫
∞

0
G(τ )e−sτ dτ,

which is self-adjoint operator in L2(R+) with an operator norm
√

π . More details about the Laplace
transform can be found in [Lax 2002]. As a result, we have

∥T G∥
2
L2(R+)

=
1
4

〈
G −

1
π

L2G, G −
1
π

L2G
〉

=
1
4∥G∥

2
L2 +

1
4π2 ∥L2G∥

2
L2 −

1
4π

⟨G, L2G⟩ −
1

4π
⟨L2G, G⟩

≤
1
4∥G∥

2
L2 +

1
4π

∥LG∥
2
L2 −

1
2π

⟨LG, LG⟩ =
1
4∥G∥

2
L2 −

1
4π

∥LG∥
2
L2 .
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Thus the operator norm of T is less than or equal to 1
2 . This means that the function

G =

∞∑
j=0

T j g ∈ L2(R+)

satisfies the equation G − T G = g and ∥G∥L2(R+) ≤ 2∥g∥L2(R+). Finally we naturally extend the domain
of G to R by defining G(s) = 0 if s < 0. We have

G(s) −HG(−s)
2

=

{
g(s), s > 0,

−
1
2HG(−s), s < 0.

Therefore we may find an upper bound of the L2 norm∥∥∥∥G(s) −HG(−s)
2

∥∥∥∥2

L2(R)

≤ ∥g∥
2
L2(R+)

+
1
4∥HG∥

2
L2(R)

≤ 2∥g∥
2
L2(R+)

. □

Proof of Proposition 1.11. Let G− = T−(u0, 0) and g(s) be its cut-off version:

g(s) =

{
G−(s), s > R,

0, s < R.

Then radiation field implies that the free wave u = SL(u0, 0) satisfies

lim
t→−∞

∫
|x |>R+|t |

|∇u(x, t)|2 dx = lim
t→−∞

∫
|x |>R+|t |

|ut(x, t)|2 dx = σ4k−1∥g∥
2
L2(R+)

. (19)

Here again σ4k−1 is the area of the sphere S4k−1. According to Lemmas 5.1 and 5.2, there exists a function
ũ0 ∈ Ḣ 1

rad(R
4k), so that

T−(ũ0, 0)(s) = g(s), s > 0, ∥ũ0∥
2
Ḣ1(R4k)

≤ 4σ4k−1∥g∥
2
L2(R+)

.

Therefore T−(u0 − ũ0, 0) vanishes if s > R. A combination of this fact with the time symmetry gives

lim
t→±∞

∫
|x |>|t |+R

|∇t,x SL(u0 − ũ0, 0)(x, t)|2 dx = 0.

As a result, we may apply Proposition 1.9 and conclude u0 − ũ0 ∈ Qk(R). This means

∥5⊥

Qk(R)u0∥
2
Ḣ1({x :|x |>R})

≤ ∥ũ0∥
2
Ḣ1({x :|x |>R})

≤ 4σ4k−1∥g∥
2
L2(R+)

.

A combination of this inequality and identity (19) immediately verifies the conclusion of Proposition 1.11
in the negative time direction. The positive time direction follows the time symmetry.

6. Nonradial exterior energy estimates

In this section we give a short proof of Proposition 1.14. We start with:

Lemma 6.1. Let d ≥ 3 be an odd integer. Then∑
±

lim
t→±∞

∫
|x |>R+|t |

|∇t,x SL(u0, u1)(x, t)|2 dx = 2
∫

|s|>R

∫
Sd−1

|T−(u0, u1)(s, θ)|2 dθ ds. (20)
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In particular, we have (see (4) for the definition of P(R))

T−(P(R)) = P(R)
.
= {G− ∈ L2(R × Sd−1) : supp G− ⊂ [−R, R] × Sd−1

}.

Proof. Let u be the solution of linear wave equation with initial data (u0, u1). Then by radiation field
(Theorem 1.1) we have

lim
t→−∞

∫
|x |>|t |+R

|∇t,x u|
2 dx = 2

∫
∞

R

∫
Sd−1

|G−(s, θ)|2 dθ ds,

lim
t→−∞

∫
|x |<|t |−R

|∇t,x u|
2 dx = 2

∫
−R

−∞

∫
Sd−1

|G−(s, θ)|2 dθ ds.

In addition, we may apply the energy conservation law, Proposition 1.2 and obtain

lim
t→−∞

∫
|x |<|t |−R

|∇t,x u|
2 dx =

∫
Rd

(|∇u0|
2
+ |u1|

2) dx − lim
t→−∞

∫
|x |>|t |−R

|∇t,x u|
2 dx

= lim
t→+∞

∫
|x |>t+R

|∇t,x u|
2 dx .

Combining these identities we have∑
±

lim
t→±∞

∫
|x |>R+|t |

|∇t,x u(x, t)|2 dx = 2
∫

|s|>R

∫
Sd−1

|G−(s, θ)|2 dθ ds.

Finally (u0, u1) ∈ P(R) is equivalent to saying∫
|s|>R

∫
Sd−1

|G−(s, θ)|2 dθ ds = 0,

namely supp G− ⊂ [−R, R] × Sd−1. □

Now we are ready to prove Proposition 1.14. Since
√

2T− is a bijective isometry from Ḣ 1
× L2(Rd)

to L2(R × Sd−1), we have

5⊥

P(R)(u0, u1) = T−1
−

5⊥

T−(P(R))T−(u0, u1).

We next use the expression of P(R) = T−(P(R)):

∥5⊥

P(R)(u0, u1)∥
2
Ḣ1×L2 = 2∥5⊥

P(R)T−(u0, u1)∥
2
L2(R×Sd−1)

= 2
∫

|s|>R

∫
Sd−1

|T−(u0, u1)(s, θ)|2 dθ ds.

Combining this with (20) we finish the proof.

Appendix

In this section we give a brief proof of Lemma 4.6 for completeness. We first prove this lemma for two
special cases, P(x) = 1 and P(x) = 1 − x2. We start with P(x) = 1. A straightforward calculation gives



746 LIANG LI, RUIPENG SHEN AND LIJUAN WEI

πW (s) = p.v.

∫ 1

−1

(1 − x2)−1/2

s − x
dx

= p.v.

∫ 1

−1

(1 − s2)−1/2

s − x
dx +

∫ 1

−1

(1 − x2)−1/2
− (1 − s2)−1/2

s − x
dx

= (1 − s2)−1/2 ln
∣∣∣∣1 + s
1 − s

∣∣∣∣ + ∫ 1

−1

(1 − s2) − (1 − x2)

(s − x)
√

1 − x2
√

1 − s2(
√

1 − x2 +
√

1 − s2)
dx

= (1 − s2)−1/2 ln
∣∣∣∣1 + s
1 − s

∣∣∣∣ + −s
√

1 − s2

∫ 1

−1

1
√

1 − x2(
√

1 − x2 +
√

1 − s2)
dx .

Next we apply the change of variables x = 2z/(1 + z2). We have√
1 − x2 =

1 − z2

1 + z2 dx =
2(1 − z2)

(1 + z2)2 dz.

Thus∫ 1

−1

1
√

1−x2(
√

1−x2 +
√

1−s2)
dx =

∫ 1

−1

2 dz

1−z2 +
√

1−s2(1+z2)

=
2
s

∫ 1

0

(
1

(1+
√

1−s2)/s−z
+

1

(1+
√

1−s2)/s+z

)
dz

=
2
s

ln
∣∣∣∣(1+

√
1−s2

s
+1/

1+
√

1−s2

s
−1

)∣∣∣∣ =
1
s

ln
∣∣∣∣1+s
1−s

∣∣∣∣. (21)

This immediately gives W (s) = 0 for s ∈ (−1, 1). Next we consider the case P(x) = 1 − x2. In this case
we calculate the Hilbert transform of

√
1 − x2:

πW (s) = p.v.

∫ 1

−1

√
1 − x2

s − x
dx

= p.v.

∫ 1

−1

√
1 − s2

s − x
dx +

∫ 1

−1

√
1 − x2 −

√
1 − s2

s − x
dx

=

√
1 − s2 ln

∣∣∣∣1 + s
1 − s

∣∣∣∣ + ∫ 1

−1

(1 − x2) − (1 − s2)

(s − x)(
√

1 − x2 +
√

1 − s2)
dx

=

√
1 − s2 ln

∣∣∣∣1 + s
1 − s

∣∣∣∣ + s
∫ 1

−1

1
√

1 − x2 +
√

1 − s2
dx

=

√
1 − s2 ln

∣∣∣∣1 + s
1 − s

∣∣∣∣ + πs + s
∫ 1

−1

(
1

√
1 − x2 +

√
1 − s2

−
1

√
1 − x2

)
dx

=

√
1 − s2 ln

∣∣∣∣1 + s
1 − s

∣∣∣∣ + πs − s
√

1 − s2
∫ 1

−1

1
√

1 − x2(
√

1 − x2 +
√

1 − s2)
dx = πs.

Here we use the integral (21) again.

Induction. Now we are ready to prove Lemma 4.6 by induction. It is clear that we only need to show the
Hilbert transform of fκ(x) = xκ(1 − x2)−1/2 is a polynomial of degree κ − 1 in the interval (−1, 1). The
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cases of κ = 0, 2 have been done. Now let us consider the case of f1(x) = x(1 − x2)−1/2. We observe
that (s ∈ (−1, 1))

H f1 = H d
dx

(−
√

1 − x2) = −
d
ds

H(
√

1 − x2) = −1.

This proves the case κ = 1. Now let us assume that the cases κ = 0, 1, 2, . . . , n are done and consider the
case κ = n + 1. Here n ≥ 2. We have

xn+1(1 − x2)−1/2
= −xn−1(1 − x2)1/2

+ xn−1(1 − x2)−1/2.

The Hilbert transform of the second term in the right-hand side is known to be a polynomial of degree n−2.
Thus we only need to consider the first term. We have

d
ds

H(xn−1(1 − x2)1/2) = H d
dx

(xn−1(1 − x2)1/2)

= H{[−nxn
+ (n − 1)xn−2

](1 − x2)−1/2
}.

This is a polynomial of degree n −1 by induction hypothesis. A simple integration then finishes the proof
of the case κ = n + 1. Generally speaking, the derivative with respect to s as given above is in the weak
sense. But since the derivative is known to be a polynomial in (−1, 1), we can integrate as usual.
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ON L∞ ESTIMATES FOR MONGE–AMPÈRE AND HESSIAN EQUATIONS
ON NEF CLASSES

BIN GUO, DUONG H. PHONG, FREID TONG AND CHUWEN WANG

The PDE approach developed earlier by the first three authors for L∞ estimates for fully nonlinear
equations on Kähler manifolds is shown to apply as well to Monge–Ampère and Hessian equations on
nef classes. In particular, one obtains a new proof of the estimates of Boucksom, Eyssidieux, Guedj
and Zeriahi (2010) and Fu, Guo and Song (2020) for the Monge–Ampère equation, together with their
generalization to Hessian equations.

1. Introduction

The goal of this short note is to show that the PDE approach introduced in [Guo et al. 2023a; 2023b] for
L∞ and Trudinger-type estimates for general classes of fully nonlinear equations on a compact Kähler
manifold applies as well to Monge–Ampère and Hessian equations on nef classes.

The key to the approach in [Guo et al. 2023a; 2023b] is an estimate of Trudinger-type, obtained by
comparing the solution ϕ of the given equation to the solution of an auxiliary Monge–Ampère equation with
the energy of the sublevel set function −ϕ+s on the right-hand side. We shall see that, in the present case of
nef classes, the argument can still be made to work by replacing ϕ by ϕ−V , where V is the envelope of the
nef class. Applied to the Monge–Ampère equation, this gives a PDE proof of the estimates obtained earlier
for nef classes by Boucksom, Eyssidieux, Guedj and Zeriahi [Boucksom et al. 2010] and Fu, Guo and Song
[Fu et al. 2020]. The estimates which we obtain with this method applied to Hessian equations seem new.

We note that the use of an auxiliary Monge–Ampère equation was instrumental in the recent progress
of Chen and Cheng [2021] on the constant scalar curvature Kähler metrics problem. There the auxiliary
equation involved the entropy, and not the energy, of sublevel set functions as in our case. More generally,
auxiliary equations have often been used in the theory of partial differential equations, notably by De
Giorgi [1961] and more recently by Dinew and Kołodziej [Demailly et al. 2014; Dinew and Kołodziej
2014] in their approach to Hölder estimates for the complex Monge–Ampère equation.
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2. The Monge–Ampère equation

We begin with the Monge–Ampère equation. Let (X, ω) be a compact Kähler manifold, and, without
loss of generality, let us assume that

∫
X ω

n
= 1. Let χ be a closed (1, 1)-form on X. We assume the

cohomology class [χ ] is nef and let ν ∈ {0, 1, . . . , n} be the numerical dimension of [χ ], i.e.,

ν = max{k | [χ ]
k
̸= 0 in H k,k(X,C)}.

When ν = n we say the class [χ ] is big.
Let ω̂t = χ + tω for t ∈ (0, 1]. The form ω̂t may not be positive but its class is Kähler. We consider

the family of complex Monge–Ampère equations

(ω̂t + i∂∂̄ϕt)
n

= ct eFωn, sup
X
ϕt = 0, (2-1)

where ct = [ω̂n
t ] = O(tn−ν) is a normalizing constant and F ∈ C∞(X) satisfies

∫
X eFωn

=
∫

X ω
n. This

equation admits a unique smooth solution ϕt by Yau’s theorem [1978].
The form χ is not assumed to be semipositive, so the usual L∞ estimate of ϕt may not hold [Kołodziej

1998]. As in [Boucksom et al. 2010; Fu et al. 2020], we need to modify the solution ϕt by an envelope Vt

of the class [ω̂t ], defined as
Vt = sup{v | v ∈ PSH(X, ω̂t), v ≤ 0}.

Then we have:

Theorem 1. Consider (2-1), and assume that the cohomology class of χ is nef. For any s > 0, let
�s = {ϕt − Vt ≤ −s} be the sublevel set of ϕt − Vt .

(a) There are constants C = C(n, ω, χ) > 0 and α0 = α0(n, ω, χ) > 0 such that∫
�s

exp
{
α0

(
−(ϕt − Vt + s)

A1/(1+n)
s

)(n+1)/n}
ωn

≤ C exp (C Et), (2-2)

where As =
∫
�s
(−ϕt + Vt − s)eFωn and Et =

∫
X (−ϕt + Vt)eFωn.

(b) Fix p > n. There is a constant C(n, p, ω, χ, ∥eF
∥L1(log L)p) such that, for all t ∈ (0, 1], we have

0 ≤ −ϕt + Vt ≤ C(n, p, ω, χ, ∥eF
∥L1(log L)p). (2-3)

We remark that the estimates in Theorem 1 continue to hold for a family of Kähler metrics (maybe
with distinct complex structures) which satisfy a uniform α-invariant-type estimate.

Proof. We would like to find an auxiliary equation with smooth coefficients, so that its solvability can be
guaranteed by Yau’s theorem. For this, we need a lemma due to Berman [2019] on a smooth approximation
for Vt ; see also Lemma 4 below. Fix a time t ∈ (0, 1].

Lemma 2. Let uβ be the smooth solution to the complex Monge–Ampère equation

(ω̂t + i∂∂̄uβ)n = eβuβωn.

Then uβ converges uniformly to Vt as β → ∞.
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We remark that by [Chu et al. 2018], Vt is a C1,1 function on X, although this fact is not used in this
note. We now return to the proof of Theorem 1(a).

We choose a sequence of smooth positive functions τk : R → R+ such that τk(x) decreases to x ·χR+
(x)

as k → ∞. Fix a smooth function uβ as in Lemma 2. The function uβ depends on t , but for simplicity
we omit the subscript t . We solve the following auxiliary Monge–Ampère equation on X ,

(ω̂t + i∂∂̄ψt,k)
n

= ct
τk(−ϕt + uβ − s)

As,k,β
eFωn, sup

X
ψt,k = 0, (2-4)

where

As,k,β =

∫
X
τk(−ϕt + uβ − s)eFωn.

Since ψt,k ≤ Vt and uβ converges uniformly to Vt , by taking β large enough, we may assume ψt,k < uβ+1.
Define a function

8= −ε(−ψt,k + uβ + 1 +3)n/(n+1)
− (ϕt − uβ + s),

with the constants

εn+1
= As,k,βn−n(n + 1)n, 3= nn+1(n + 1)−n−1εn+1. (2-5)

As a smooth function on the compact manifold X , we know 8 must achieve its maximum at some x0 ∈ X.
If x0 ∈ X\�◦

s , then

8(x0)≤ −(ϕt − uβ + s)≤ −Vt + uβ ≤ ϵβ,

where ϵβ → 0 as β → ∞. On the other hand, if x0 ∈�◦
s , we calculate (1t denotes the Laplacian with

respect to the metric ωt = ω̂t + i∂∂̄ϕt )

0 ≥1t8(x0)

= −ε
n

n + 1
(−ψt,k + uβ +3+ 1)−1/(n+1) trωt (−i∂∂̄ψt,k + i∂∂̄uβ)− trωt (i∂∂̄ϕt − i∂∂̄uβ)

+
nε

(n + 1)2
(−ψt,k + uβ + 1 +3)−(n+2)/(n+1) trωt i∂(ψt,k − uβ)∧ ∂̄(ψt,k − uβ)

≥
nε

n + 1
(−ψt,k + uβ +3+ 1)−1/(n+1) trωt (ω̂t,ψt,k − ω̂t,uβ )− n + trωt ω̂t,uβ

≥
nε

n + 1
(−ψt,k + uβ +3+ 1)−1/(n+1)n

(
ω̂n

t,ψt,k

ωn
t

)1/n

− n +

(
1 −

nε
n + 1

(−ψt,k + uβ +3+ 1)−1/(n+1)
)

trωt ω̂t,uβ

≥
n2ε

n + 1
(−ψt,k + uβ +3+ 1)−1/(n+1)(τk(−ϕt + uβ − s)A−1

s,k,β)
1/n

− n +

(
1 −

nε
n + 1

3−1/(n+1)
)

trωt ω̂t,uβ

≥
n2ε

n + 1
(−ψt,k + uβ +3+ 1)−1/(n+1)(−ϕt + uβ − s)1/n A−1/n

s,k,β − n.
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Therefore, at x0 ∈�◦
s ,

−(ϕt − uβ + s)≤

(
n + 1

nε

)n

As,k,β(−ψt,k + uβ +3+ 1)n/(n+1)
= ε(−ψt,k + uβ +3+ 1)n/(n+1),

i.e., 8(x0)≤ 0. Combining the two cases, we conclude that supX 8≤ ϵβ → 0 as β → ∞. It then follows
that, on �s ,

(−ϕt + uβ − s)(n+1)/n
≤ Cn A1/n

s,k,β(−ψt,k + uβ + 1 + As,k,β)+ ϵ
(n+1)/n
β .

Letting β → ∞, we have

(−ϕt + Vt − s)(n+1)/n
≤ Cn A1/n

s,k (−ψt,k + Vt + 1 + As,k),

where As,k =
∫

X τk(−ϕt +Vt +s)eFωn. Observe that Vt ≤ 0 by definition and, by the α-invariant estimate
[Hörmander 1966; Tian 1987], there exists an α0(n, ω, χ) such that∫

�s

exp
(
α0
(−ϕt + Vt − s)(n+1)/n

A1/n
s,k

)
ωn

≤

∫
�s

exp(α0Cn(−ψt,k + 1 + As,k))ω
n

≤ CeC As,k. (2-6)

Letting k → ∞, we obtain ∫
�s

exp
(
α0
(−ϕt + Vt − s)(n+1)/n

A1/n
s

)
ωn

≤ CeC As.

Theorem 1(a) is proved by noting that As ≤ Et for any s > 0.

Once Theorem 1(a) has been proved, part (b) can be proved by following closely the arguments in
[Guo et al. 2023a].

Fix p > n, and define η : R+ → R+ by η(x) = (log(1 + x))p. Note that η is a strictly increasing
function with η(0)= 0, and let η−1 be its inverse function. Write

v :=
α0

2

(
−ϕt + Vt − s

A1/(n+1)
s

)(n+1)/n

. (2-7)

Then by the generalized Young’s inequality with respect to η, for any z ∈�s ,

v(z)peF(z)
≤

∫ exp(F(z))

0
η(x)dx+

∫ v(z)p

0
η−1(y)dy ≤ exp(F(z))(1+|F(z)|)p

+

∫ v(z)p

0
(ey1/p

−1)dy

≤ exp(F(z))(1+|F(z)|)p
+ p

∫ v(z)

0
ey y p−1 dy ≤ exp(F(z))(1+|F(z)|)p

+C(p)exp(2v(z)).

We integrate both sides in the inequality above over z ∈�s and get by Theorem 1(a) that∫
�s

v(z)peF(z)ωn
≤

∫
�s

eF (1 + |F(z)|)pωn
+

∫
�s

e2v(z)ωn
≤ ∥eF

∥L1(log L)p + C + CeC Et,

where the constant C > 0 depends only on n, ωX and χ . In view of the definition of v, this implies∫
�s

(−ϕt + Vt − s)(n+1)p/neF(z)ωn
≤ 2pα

−p
0 Ap/n

s (∥eF
∥L1(log L)p + C + CeC Et ). (2-8)
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From the definition of As , it follows from Hölder’s inequality that

As =

∫
�s

(−ϕt + Vt − s)eFωn
≤

(∫
�s

(−ϕt + Vt − s)(n+1)p/neFωn
)n/((n+1)p)

·

(∫
�s

eFωn
)1/q

≤ A1/(n+1)
s (2pα

−p
0 (∥eF

∥L1(log L)p + C + CeC Et ))n/((n+1)p)
·

(∫
�s

eFωn
)1/q

,

where q > 1 satisfies n/(p(n + 1))+ 1/q = 1, i.e., q = p(n + 1)/(p(n + 1)− n). The inequality above
yields

As ≤ (2pα
−p
0 (∥eF

∥L1(log L)p + C + CeC Et ))1/p
·

(∫
�s

eFωn
)(1+n)/(qn)

. (2-9)

Observe that the exponent of the integral on the right-hand of (2-9) satisfies

1 + n
qn

=
pn + p − n

pn
= 1 + δ0 > 1

for δ0 := (p − n)/(pn) > 0. For convenience of notation, set

B0 := (2pα
−p
0 (∥eF

∥L1(log L)p + C + CeC Et ))1/p. (2-10)

From (2-9) we then get

As ≤ B0

(∫
�s

eFωn
)1+δ0

. (2-11)

If we define φ : R+ → R+ by φ(s) :=
∫
�s

eFωn , then (2-11) and the definition of As implies

rφ(s + r)≤ B0φ(s)1+δ0 for all r ∈ [0, 1] and s ≥ 0. (2-12)

Since φ is clearly nonincreasing and continuous, a De Giorgi-type iteration argument shows that there
is some S∞ such that φ(s) = 0 for any s ≥ S∞. This finishes the proof of the L∞ estimate of ϕt − Vt ,
combining with a bound on Et by ∥eF

∥L1(log L)1 which follows from Jensen’s inequality; see Lemma 6 in
[Guo et al. 2023a]. □

Finally, we note the recent advances in the theory of envelopes in [Guedj and Lu 2021; 2023], which
can provide an approach to L∞ estimates for Monge–Ampère equations on Hermitian manifolds.

3. Complex Hessian equations

We explain in this section how the proof of Theorem 1 can be modified to give a similar result for a
degenerate family of complex Hessian equations. With the same notations as above, we consider the
σk-equations

(ω̂t + i∂∂̄ϕt)
k
∧ωn−k

= ct eFωn, sup
X
ϕt = 0. (3-1)

Define the envelope corresponding to the 0k-cone

Ṽt,k = sup{v | v ∈ SHk(X, ω, ω̂t)∩ C2, v ≤ 0},
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where v ∈ SHk(X, ω, ω̂t) ∩ C2 indicates that the vector of eigenvalues of the linear transformation
ω−1

· (ω̂t + i∂∂̄v) lies in the 0k-cone, which is the convex cone in Rn given by

0k = {λ ∈ Rn
| σ1(λ) > 0, . . . , σk(λ) > 0},

where σ j (λ) denotes the j-th elementary symmetric polynomial of λ ∈ Rn.
Let

Et(ϕt)=

∫
X
(−ϕt + Ṽt,k)enF/kωn

be the entropy associated to (3-1) as in [Guo et al. 2023a], and let E t be an upper bound of Et(ϕt). Then
the following L∞ estimate holds for the solution ϕt to (3-1).

Theorem 3. Let ϕt be the solution to (3-1). There exists a constant depending on

E t , ∥e(n/k)F
∥L1(log L)p ,

ct

[ω̂k
t ][ω

n−k]
and p > n

such that

0 ≤ −ϕt + Ṽt,k ≤ C.

This theorem can be derived using a similar argument as in Section 2 with suitable modifications for σk

equations — see [Guo et al. 2023a] — so we omit the details. The only novel ingredient is the smooth
approximation of Ṽt,k as in Lemma 2. One can adapt the method in [Berman 2019] to derive this required
approximation. For the convenience of the reader, we present a sketch of the proof.

Lemma 4. Fix t ∈ (0, 1]. There exists a sequence of smooth functions uβ ∈ SHk(X, ω, ω̂t) converging
uniformly to Ṽt,k as β → ∞.

Proof. Let uβ ∈ SHk(X, ω, ω̂t) be the solution to the σk-equations

(ω̂t + i∂∂̄uβ)k ∧ωn−k
= ct eβuβωn, (3-2)

which admits a unique smooth solution by [Dinew and Kołodziej 2017]. We claim that there is a constant
Ct > 0 such that

sup
X

|uβ − Ṽt,k | ≤
Ct logβ
β

,

from which the lemma follows.
By the maximum principle, at a maximum point of uβ we have i∂∂̄uβ ≤ 0, so

βuβ ≤ log
ω̂k

t ∧ωn−k

ctωn ≤ Ct ,

that is, uβ − Ct/β ≤ 0. By the definition of Ṽt,k , it follows that

uβ −
Ct

β
≤ Ṽt,k . (3-3)
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On the other hand, we fix a smooth u ≤ 0 such that ω̂t + i∂∂̄u > 0. Such a u exists because [ω̂t ] is a
Kähler class by assumption. For any v ∈ SHk(X, ω, ω̂t)∩C2 with v ≤ 0, we consider the barrier function

ũ =
1
β

u +

(
1 −

1
β

)
v−

C ′
t logβ
β

,

where C ′
t > 0 is a large constant to be determined. By direct calculation, we have

(ω̂t + i∂∂̄ ũ)k ∧ωn−k
≥

1
βk (ω̂t + i∂∂̄u)k ∧ωn−k

≥ eβũωn,

where the last inequality holds if we choose C ′
t large enough such that

e−C ′
t logβ

≤
1
βk min

X

(ω̂t + i∂∂̄u)k ∧ωn−k

ωn .

Therefore, we get
(ω̂t + i∂∂̄ ũ)k ∧ωn−k

≥ eβ(ũ−uβ )(ω̂t + i∂∂̄uβ)k ∧ωn−k.

At the maximum point of ũ −uβ , we have (ω̂t + i∂∂̄ ũ)k ∧ωn−k
≤ (ω̂t + i∂∂̄uβ)k ∧ωn−k. This shows that

ũ − uβ ≤ 0 on X. Taking the supremum over all such v in ũ, it follows that(
1 −

1
β

)
Ṽt,k ≤ uβ +

Ct logβ
β

.

The lemma follows from this and (3-3). □
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