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NECESSARY DENSITY CONDITIONS FOR SAMPLING AND INTERPOLATION
IN SPECTRAL SUBSPACES OF ELLIPTIC DIFFERENTIAL OPERATORS

KARLHEINZ GRÖCHENIG AND ANDREAS KLOTZ

We prove necessary density conditions for sampling in spectral subspaces of a second-order uniformly
elliptic differential operator on Rd with slowly oscillating symbol. For constant-coefficient operators, these
are precisely Landau’s necessary density conditions for bandlimited functions, but for more general elliptic
differential operators it has been unknown whether such a critical density even exists. Our results prove
the existence of a suitable critical sampling density and compute it in terms of the geometry defined by the
elliptic operator. In dimension d = 1, functions in a spectral subspace can be interpreted as functions with
variable bandwidth, and we obtain a new critical density for variable bandwidth. The methods are a combi-
nation of the spectral theory and the regularity theory of elliptic partial differential operators, some elements
of limit operators, certain compactifications of Rd, and the theory of reproducing kernel Hilbert spaces.

1. Introduction

The classical Paley–Wiener space is the subspace PW�={ f ∈ L2(R) : supp f̂ ⊆[−�,�]} of L2(R). Using
Fourier inversion, one sees that the point evaluation f 7→ f (x) is bounded on PW�. The fundamental
questions about PW� are originally motivated by problems in signal processing and information theory:
when is f ∈ PW� completely and stably determined by its samples { f (s) : s ∈ S} on a set S ⊆ R? On
which sets S ⊆ R can every sequence (as)s∈S ∈ ℓ2(S) be interpolated by a function f in PW�, so that
f (s)= as for all s ∈ S? These questions were answered by Beurling [1989] and Landau [1967].

Theorem A. (i) Assume that S is uniformly separated and

A∥ f ∥
2
2 ≤

∑
s∈S

| f (s)|2 ≤ B∥ f ∥
2
2 for all f ∈ PW�. (1-1)

Then

D−(S)= lim inf
r→∞

inf
x∈R

#(S ∩ [x − r, x + r ])

2r
≥
�

π
. (1-2)

(ii) If for all a ∈ ℓ2(S) there exists f ∈ PW� such that f (s)= as , s ∈ S, then

D+(S)= lim sup
r→∞

sup
x∈R

#(S ∩ [x − r, x + r ])

2r
≤
�

π
. (1-3)
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In the established terminology, a set that satisfies a sampling inequality of the form (1-1) is called a
sampling set for the underlying space PW�, or a set of stable sampling. A set on which arbitrary ℓ2-data
can be interpolated is called a set of interpolation. The expressions D−(S) and D+(S) are called the
lower and the upper Beurling density.

The number�/π in (1-2) and (1-3) is an important invariant of the space PW� and has an interpretation
in information theory. Since, roughly speaking, the densities D±(S) measure the average number of
samples in S per unit length, the necessary density conditions of Theorem A say that at least �/π samples
per unit length are required to recover a function in PW� from f |S , whereas at most �/π values per unit
length are permitted to solve the interpolation problem in PW�. Thus the density�/π represents a critical
value below which (stable) sampling is impossible, and above which interpolation is impossible. Indeed,
these questions about sampling and interpolation were at the origin of Shannon’s information theory [1948],
and the uniform sampling theorem with S = αZ is still considered the basis of analog-digital conversion in
modern signal processing. The ratio D±(S)/� is a measure for the redundancy, thus for the performance
quality, of the sampling set S. The theory of Beurling, Kahane, and Landau provides a rigorous mathemati-
cal formulation for the existence of a critical density for arbitrary sets S (in place of αZ). Although we will
not touch this question here, we mention that the conditions of Theorem A yield almost a characterization of
sets of sampling and of interpolation: in dimension d = 1, if S is uniformly separated and D−(S) > 1, then
S is a sampling set for PW�, and if D+(S)<1, then S is a set of interpolation for PW�. See [Kahane 1962;
Beurling 1989; Seip 2004] for an exposition of the sampling theory in the classical Paley–Wiener space.

The connection with partial differential operators comes from the observation that PW� is a spectral
subspace of the differential operator H = −d2/dx2. Using the Fourier transform F , this differential
operator is unitarily equivalent to the multiplication operator F (−d2 f/dx2)(ξ) = ξ 2 f̂ (ξ). In this
representation of −d2/dx2 the spectral projection on the interval [0, �] is given by χ[0,�](H) f =

F−1(χ[0,�](ξ
2) f̂ ). This implies

PW� = χ[0,�2](H)L
2(R).

This observation is the starting point for many generalizations of Paley–Wiener spaces and sampling
theorems. In this work we study the question of necessary density conditions for sampling and interpolation
in the spectral subspaces of a self-adjoint uniformly elliptic differential operator

Ha = −

d∑
j,k=1

∂j ajk(x)∂k

acting on L2(Rd)with a smooth positive definite (matrix) symbol a = (ajk(x))j,k=1,...,d . The Paley–Wiener
space associated to Ha is the spectral subspace

PW�(Ha)= χ[0,�](Ha)L2(Rd),

where, as usual, χ[0,�](Ha) is the orthogonal projection corresponding to the spectrum [0, �].
If the symbol a(x)= a is constant, then Ha is similar to the Laplace operator, and the corresponding

spectral subspace can be described with Fourier techniques. For this case necessary density conditions
for sampling and interpolation are already contained in [Landau 1967]. Optimal sufficient conditions
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for sampling in Rd in terms of a covering density were obtained in [Beurling 1966]. However, if Ha is
a uniformly elliptic differential operator with variable coefficients, then the standard techniques break
down, and it was an open question whether a critical density exists for sampling and interpolation in the
spectral subspaces of Ha , and how to compute this critical density.

We will answer this question for a class uniformly elliptic operators. We say a smooth symbol with all
derivatives bounded, a ∈ C∞

b (R
d,Cd×d), is slowly oscillating if lim|x |→∞ |∂ka(x)| = 0 for k = 1, . . . , d .

Theorem B. If a is slowly oscillating, then there exists a critical density for sampling and interpolation
for PW�(Ha).

Adapting the measure to the geometry associated to the differential operator Ha , the critical density
can be determined explicitly. This is our main result.

Theorem C. Assume Ha = −
∑d

j,k=1 ∂j ajk∂k is a self-adjoint uniformly elliptic operator with slowly
oscillating symbol a ∈ C∞

b (R
d,Cd×d). Let dν(x)= (det a(x))−1/2 dx be the associated measure.

(i) If S ⊆ Rd is a set of stable sampling for PW�(Ha) then

D−

ν (S)= lim inf
r→∞

inf
x∈Rd

#(S ∩ Br (x))
ν(Br (x))

≥
|B1|

(2π)d
�d/2.

(ii) If S ⊆ Rd is a set of interpolation for PW�(Ha), then

D+

ν (S)= lim sup
r→∞

sup
x∈Rd

#(S ∩ Br (x))
ν(Br (x))

≤
|B1|

(2π)d
�d/2.

Except for the modified definition of the density, the formulation of the theorem is identical to Landau’s
theorem [1967]. By contrast, the method of proof is vastly different as Fourier methods are not available
for the proof of Theorem C. In addition we draw the new insight that the appropriate notion of density
must be linked to the geometry defined by a. For compact manifolds the link between density and
geometry was already observed in [Ortega-Cerdà and Pridhnani 2012].

For the special case of a symbol that is asymptotically constant at infinity we can use the standard
Beurling densities in Rd from (1-2) and (1-3) (with intervals replaced by Euclidean balls Br (x)) and
obtain the following consequence.

Corollary D. Assume that a ∈ C∞

b (R
d,Cd×d) is asymptotically constant, i.e., limx→∞ a(x) = b. Let

6b
� = {ξ ∈ Rd

: bξ · ξ ≤�}.

(i) If S ⊆ Rd is a set of sampling for the Paley–Wiener space PW�(Ha), then

D−(S)≥
|6b

�|

(2π)d
= (det b)−1/2 |B1|

(2π)d
�d/2.

(ii) If S ⊆ Rd is a set of interpolation for the Paley–Wiener space PW�(Ha), then

D+(S)≤
|6b

�|

(2π)d
.
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We note that the same critical density holds for the Paley–Wiener space of the constant-coefficient
differential operator Hb. Since Ha may be considered a perturbation of Hb and since the Beurling
density D±(S) is an asymptotic quantity, it is to be expected that the necessary density for PW�(Ha)

coincides with the necessary density for PW�(Hb).
Let us put these statements into context.

Sampling in spectral subspaces. Several researchers have created an extensive qualitative theory of
sampling in spectral subspaces of a general unbounded, positive, self-adjoint operator H on a Hilbert
space H . In this case the abstract Paley–Wiener space is defined as PW[0,�](H)= χ[0,�](H)H . Usually
H = L2(X, µ) and PW[0,�](H) is a reproducing kernel Hilbert space. In this situation many authors have
proved the existence of sampling sets [Coulhon et al. 2012; Feichtinger et al. 2016; Filbir and Mhaskar
2011; Feichtinger and Pesenson 2004; Pesenson 2000; 2001; Pesenson and Zayed 2009]. In particular the
set-up of [Coulhon et al. 2012; Pesenson 1999; Pesenson and Zayed 2009] covers the case of H being
a self-adjoint uniformly elliptic differential operator on L2(Rd). The construction of sampling sets in
these abstract Paley–Wiener spaces requires some smoothness properties of functions in PW�(H) and a
Bernstein-type inequality (see (2-1) below). The result then is that a “sufficiently dense” subset in X is a
sampling set and a “sufficiently sparse” subset of X is a set of interpolation. What remained unknown
is the existence of a critical density against which one could compare the quality of the construction.
Theorems B, C, and Corollary D address this gap for uniformly elliptic differential operators. Once a
critical sampling density is established, one may aim for sampling sets near the critical density. The
question of optimal sampling sets in spectral subspaces is wide open; in fact, it has become meaningful
only after the critical density is known explicitly. This problem is already difficult for multivariate
bandlimited functions PWK = { f ∈ L2(Rd) : supp f̂ ⊆ K } for compact spectrum K ⊆ Rd and was solved
only recently in [Matei and Meyer 2010; Olevskiı̆ and Ulanovskii 2008]. A possible general approach is
via the construction of Fekete sets and weak limits, as was carried out in [Gröchenig et al. 2019] for Fock
spaces with a general weight.

Insight for partial differential operators. Although the spectral subspaces of a partial differential operator
are natural objects, they seem to have received little attention. To the best of our knowledge, nothing
is known about the nature of the corresponding reproducing kernel and the behavior of functions in the
spectral subspaces PW�. Our investigation reveals several properties of the reproducing kernel, such as
the behavior of its diagonal and some form of off-diagonal decay. These are key properties for the proofs
of Theorems B and C, and we hope that these also hold some interest for partial differential operators.

Variable bandwidth. Our original motivation comes from a new concept of variable bandwidth. In
[Gröchenig and Klotz 2017] we argued that the spectral subspaces of the Sturm–Liouville operator
−(d/dx)a(d/dx) on L2(R) for some function a > 0 can be taken as spaces with variable bandwidth. We
proved that a(x)−1/2 is a measure for the bandwidth near x (the largest active frequency at position x).
The function a thus parametrizes the local bandwidth. For a = const., the spectral subspace is just
the classical Paley–Wiener space PW�. For the special case of an eventually constant parametrizing
function a, i.e., a is constant outside an interval [−R, R], we computed the critical density for sampling in



NECESSARY DENSITY CONDITIONS IN SPECTRAL SUBSPACES OF ELLIPTIC DIFFERENTIAL OPERATORS 591

PW�(−(d/dx)a(d/dx)). The proof required intricate details of the scattering theory of one-dimensional
Schrödinger operators. Theorem C, formulated for dimension d = 1, yields a significant extension of the
density theorem for the sampling of functions of variable bandwidth.

Corollary E. Assume that a ∈ C∞

b (R) is bounded, a > 0, and limx→±∞ a′(x)= 0. Let PW�(Ha) be the
Paley–Wiener space associated to Ha .

If S is a sampling set for PW�(Ha), then

D−

ν (S)≥
�1/2

π
.

Similarly, if S is a set of interpolation for PW�(Ha), then

D+

ν (S)≤
�1/2

π
.

Methods. The proofs of Theorems B and C combine ideas and techniques from several areas of analysis.

Critical density in reproducing kernel Hilbert spaces. Originally, density theorems in the style of Landau —
and there are dozens in analysis — were proved from scratch. In our approach we apply the results on
sampling and interpolation in general reproducing kernel Hilbert spaces from [Führ et al. 2017]. The
main insight was that it suffices to verify some geometric conditions on the measure space, such as a
doubling condition of the underlying measure, and of the reproducing kernel, such as some form of
off-diagonal decay. Once these conditions are satisfied, one obtains the existence of a critical density and
can calculate it in terms of the averaged trace of the reproducing kernel. Since the geometric conditions
are trivially satisfied for Rd, our main technical difficulty is to understand the reproducing kernel of the
spectral subspaces of a self-adjoint uniformly elliptic differential operator.

Regularity theory and heat kernel estimates. To study this reproducing kernel, we use the fundamental
results of the regularity theory of elliptic differential operators. With these tools we investigate the
smoothness of the reproducing kernel and compare various Sobolev norms on PW�(Ha). See Lemma 2.1
and Proposition 2.2. For an important technical detail (Proposition 2.2) we will need Gaussian estimates
for the heat kernel, which we expect to play a key role in extensions of our theory.

Limit operators and slowly varying symbols. To connect asymptotic properties of the symbol a of a partial
differential operator Ha to the spectral theory of Ha , we use the notion of limit operators. Although we
do not use any elaborate results from this theory (see [Georgescu 2011; Rabinovich et al. 2004a; Špakula
and Willett 2017]), limit operators are central to our arguments.

Higson compactification of Rd. An important structure underlying the proof of Theorem C is a compacti-
fication of Rd, the so-called Higson compactification. This is the compactification arising as the maximal
ideal space of the C∗-algebra of slowly oscillating functions on Rd. By Gelfand theory every slowly
oscillating function can be identified with a continuous function on the Higson compactification hRd ;
see, e.g., [Rabinovich et al. 2004a; Roe 2003; Shteinberg 2000]. On a technical level we will show that
for slowly oscillating symbols the mapping x → T−x kx of centered reproducing kernels can be extended
continuously to the compactification hRd (Proposition 6.3).
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The underlying philosophy is summarized in the following diagram; we write Tx f (z)= f (z − x) for
the translation operator and kx for the reproducing kernel of PW�(Ha):

{T−xa : x ∈ Rd
} compact =⇒ {T−x HaTx : x ∈ Rd

} compact =⇒ {T−x kx : x ∈ Rd
} compact.

Thus, if Txn a → b in a suitable topology, then T−xn HaTxn → Hb and the sequence of centered reproducing
kernels T−xn kxn converges to the reproducing kernel of PW�(Hb). In the considered examples the limit
operator Hb is simpler than the original operator Ha , and this facilitates information about the reproducing
kernel of PW�(Ha).

The paper is organized as follows. Section 2 prepares the background material on regularity theory,
symbol classes for partial differential operators, and reproducing kernel Hilbert spaces. We prove the
basic properties of the Paley–Wiener space PW�(Ha). Section 3 gives the precise formulation of the
general density theorem for PW�(Ha). Its proof is given in Sections 4 and 5. In Section 6 we calculate
the critical density for sampling in PW�(Ha) for the class of slowly varying symbols (Theorem C and
Corollary D). We conclude with an outlook and collect additional material in Appendices A and B.

2. Preliminaries

2A. Notation. For a function f on Rd and x, z ∈ Rd we define the translation operator Tx f (z)= f (z−x).
The open Euclidean ball of radius r at x is Br (x), and Br = Br (0).

We use standard multi-index notation; thus the differential operator Dα is ∂ |α|/(∂xα1
1 · · · ∂xαd

d ) and the
multivariate binomial symbol is

(
α
γ

)
=

∏d
j=1

(
αj
γj

)
for multi-indices α, γ ∈ Nd

0 .
We will denote the space of uniformly continuous and bounded functions on Rd with values in a

Banach space X by Cu
b (R

d , X). The indices c, ∞, and 0 refer to the subspaces of compactly supported,
smooth, and vanishing-at-infinity functions in C(Rd). Thus C∞

b (R
d , X) consists of all smooth X -valued

functions with bounded derivatives of all orders. The space C∞(Rd , X) has the Fréchet space topology
induced by the seminorms | f |R,α = supx∈BR(0)∥Dα f (x)∥X . If X = C, we write C∞

b (R
d), etc.

The Fourier transform of f ∈ L1(Rd) is

F f (ω)= f̂ (ω)= (2π)−d/2
∫

Rd
f (x)e−i x ·ω dx,

and F extends to a unitary operator on L2(Rd) as usual. For every s ≥0 the Sobolev space W s
2 is defined by

W s
2 =

{
f ∈ L2(Rd) : ∥ f ∥W s

2
=

[
(2π)−d/2

∫
Rd

| f̂ (ω)|2(1 + |ω|
2)s dω

]1/2

<∞

}
.

If s ∈ N, then ∥ f ∥W s
2
≍

∑
|α|≤s∥Dα f ∥2. By the Sobolev embedding theorem, W s

2 ↪→ C0(R
d) for s > d/2.

Recall that a reproducing kernel Hilbert space H is a Hilbert space of functions defined on a set X
such that f (x)= ⟨ f, kx ⟩H for all f ∈ H and x ∈ X . We write k(x, y)= kx(y) for the reproducing kernel
of H . See, e.g., [Aronszajn 1950]. In particular, the Sobolev space W s

2 is a reproducing kernel Hilbert
space with reproducing kernel Txκ , x ∈ Rd, where κ̂(ω)= κ̂s(ω)= (1 + |ω|

2)−s, by direct computation
or by [Wendland 2005].
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2B. The generalized Paley–Wiener space and its basic properties. Pesenson’s idea [1998; 2001] (see
also [Pesenson and Zayed 2009]) was to define an abstract Paley–Wiener space as a spectral subspace
associated to an arbitrary positive, self-adjoint operator H ≥ 0 with domain D(H) on a Hilbert space H

and a spectral interval [0, �]. Let χ[0,�](H) be the spectral projection of H. Then the generalized
Paley–Wiener space is defined as

PW�(H)= χ[0,�](H)H .

Equivalently, for a positive, self-adjoint operator, one can define the Paley–Wiener space PW�(H) by a
Bernstein-type inequality: f ∈ PW�(H), if and only if f ∈ D(H k) for all k ∈ N, and

∥H k f ∥2 ≤�k
∥ f ∥2 for all k ∈ N. (2-1)

This is an easy consequence of the spectral theorem; see [Gröchenig and Klotz 2010; Pesenson 2001;
Pesenson and Zayed 2009].

If H = −d2/dx2 on L2(R), then

PW�(H)= { f ∈ L2(R) : supp f̂ ⊆ [−
√
�,

√
�]}

is precisely the classical Paley–Wiener space, or in engineering language the space of band-limited
functions with bandwidth 2

√
�.

Convention. In this work we consider positive, formally self-adjoint differential expressions H = Ha of
the form

Ha f = −

d∑
j,k=1

∂j ajk∂k f, f ∈ W 2
2 . (2-2)

Here the matrix symbol a ∈ C∞

b (R
d,Cd×d) is positive definite; i.e., ajk = āk j ∈ C∞

b (R
d) and there exists

θ > 0 such that a(x)ξ · ξ ≥ θ |ξ |2 for all ξ, x ∈ Rd. Then Ha is a positive, uniformly elliptic self-adjoint
operator on Rd with domain D(Ha)= W 2

2 . In particular C∞
c (R

d) is a core for Ha; i.e., Ha is the operator
closure of Ha|C∞

c (R
d ). The regularity theory of elliptic differential operators asserts that for every k ∈ N0

there is a ck ∈ R such that
H k

a + ck : W 2k
2 → L2(Rd)

is a Hilbert space isomorphism. See [Zimmer 1990, Theorem 6.3.12] or the standard references [Agmon
1965; Shubin 1992]. For further use we record the fact that a uniformly elliptic operator is one-to-one on
its domain and thus

0 is not an eigenvalue of Ha. (2-3)

To see this, we use the ellipticity and f ∈ W 2
2 . Then the identity

⟨Ha f, f ⟩ =

∫ ∑
j,k

ajk∂k f (x)∂j f (x) dx = 0

implies that ∂j f ≡ 0; thus f = 0.

Remark. We regard the mapping a 7→ Ha as a mapping from functions to operators (a symbolic
calculus) and refer to a as the (matrix) symbol of the operator. This terminology differs slightly from
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the usage in PDE, where the (principal) symbol of the differential operator
∑

|α|≤m aαDα is the function
p(x, ξ) =

∑
|α|=m aαξα on R2d. For the second-order differential operator Ha in (2-2) the principal

symbol is p(x, ξ)= a(x)ξ · ξ . Since Ha is self-adjoint, the coefficients aα are all real for |α| = 2.

First we verify that PW�(Ha) embeds in every Sobolev space.

Lemma 2.1. The Paley–Wiener space PW�(Ha) is continuously embedded in all Sobolev spaces W s
2 , s≥0,

and in C∞

0 (R
d). As a consequence, on PW�(Ha), the L2-norm and the Sobolev norms are equivalent.

Proof. Let f ∈ PW�(Ha) and k ∈ N. By elliptic regularity and Bernstein’s inequality (2-1), ∥ f ∥W 2k
2

≍

∥(H k
+ck) f ∥2 ≤ (�k

+|ck |)∥ f ∥2. Consequently, f ∈
⋂

k∈N W 2k
2 =

⋂
s≥0 W s

2 ⊆ C∞

0 (R
d) via the Sobolev

embedding. □

Embeddings of Paley–Wiener spaces different from Lemma 2.1 can be found in [Feichtinger and
Pesenson 2004].

Next we show that PW�(Ha) is a reproducing kernel Hilbert space in L2(Rd).

Proposition 2.2. There exists a reproducing kernel kx ∈ PW�(Ha) such that χ[0,�](Ha) f (x)= ⟨ f, kx ⟩

for all f ∈ L2(Rd) and all x ∈ Rd. In addition, there are positive constants c, C such that

0< c ≤ ∥kx∥2 ≤ C for all x ∈ Rd . (2-4)

Proof. Let f ∈ PW�(Ha) and s > d/2. By Lemma 2.1, f ∈ W s
2 and ∥ f ∥2 ≍ ∥ f ∥W s

2
. Since W s

2 is a
reproducing kernel Hilbert space, we obtain

| f (x)| = |⟨ f, Txκ⟩W s
2
| ≤ ∥Txκ∥W s

2
∥ f ∥W s

2
≤ C∥ f ∥2.

Thus PW�(Ha) is a reproducing kernel Hilbert space with kernel kx ∈ PW�(Ha).
For the lower bound in (2-4) we do not have a proof based exclusively on regularity theory. Instead

we refer to [Coulhon et al. 2012, Lemma 3.19], where the lower bound for the reproducing kernel was
derived by means of heat kernel estimates. As some details and notation differ, we reproduce the proof in
Appendix B. □

Proposition 2.3. The mapping x 7→ kx is continuous from Rd to W s
2 , s ≥ 0.

Proof. Since kx ∈ PW�(Ha) and ∥kx∥2 is bounded by (2-4), Lemma 2.1 and the Sobolev embedding
theorem imply that C1 = supx,y∈R |∇kx(y)| is finite; therefore

∥kx − ky∥
2
W s

2
≤ C∥kx − ky∥

2
2 = C

(
kx(x)− kx(y)− ky(x)+ ky(y)

)
≤ 2C sup

z,w
|∇kz(w)||x − y| ≤ C ′

|x − y|.

Consequently x → kx is continuous. □

2C. Sampling and interpolation in PW�(Ha) and the Beurling densities. Let µ be a Borel measure
on Rd that is equivalent to Lebesgue measure in the sense that dµ= h dx for a measurable function h
with 0< c ≤ h(x)≤ C for all x ∈ Rd.
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The lower Beurling density of S with respect to µ is defined as

D−

µ (S)= lim inf
r→∞

inf
x∈Rd

#(S ∩ Br (x))
µ(Br (x))

, (2-5)

and the upper Beurling density of S is

D+

µ (S)= lim sup
r→∞

sup
x∈Rd

#(S ∩ Br (x))
µ(Br (x))

.

If dµ= dx we omit the subscript and write D±(S).
For sampling in reproducing kernel Hilbert spaces the relevant measure is dµ(x)= k(x, x) dx . We call

the Beurling density with respect to this measure the dimension-free density and write D±

0 (S) for D±
µ (S).

We say that the reproducing kernel k of a reproducing kernel Hilbert space H ⊆ L2(Rd , dx) satisfies
the weak localization property (WL) if for every ε > 0 there is a constant r = r(ε) such that

sup
x∈Rd

∫
Rd\Br (x)

|k(x, y)|2 dy < ε2. (WL)

The discrete analog of the weak localization is the so-called homogeneous approximation property (HAP)
of the reproducing kernel: Assume that S is such that {ks : s ∈ S} is a Bessel sequence for H ; i.e., S
satisfies the upper sampling inequality

∑
s∈S| f (s)|2 ≤ C∥ f ∥

2
2 for all f ∈ H . Then for every ε > 0 there

is a constant r = r(ε) such that
sup
x∈Rd

∑
s∈S\Br (x)

|k(x, s)|2 < ε2. (HAP)

Under the assumptions of weak localization (WL) and (2-4), an upper sampling inequality implies that
for some (and hence all) ρ > 0

max
x∈Rd

#(S ∩ Bρ(x)) <∞.

We call such a set S relatively separated. See also [Führ et al. 2017, Lemma 3.7].
The two localization properties (WL) and (HAP) are the key properties of the reproducing kernel

required for an abstract density theorem to hold. For reproducing kernel Hilbert spaces embedded in
L2(Rd) this can be stated as follows [Führ et al. 2017, Corollary 4.1].

Theorem 2.4. Let H ⊆ L2(Rd, dx) be a reproducing kernel Hilbert space with kernel k. Assume that k
satisfies the boundedness property (2-4) on the diagonal, the weak localization (WL) and the homogeneous
approximation property (HAP).

(i) If S is a sampling set for H , then D−

0 (S)≥ 1.

(ii) If S is an interpolating set for H , then D+

0 (S)≤ 1.

This result holds under a set of natural assumptions on metric measure spaces and conditions on the
reproducing kernel. We will not dwell on the geometric conditions, e.g., doubling measure, as these
are clearly satisfied for Rd with µ equivalent to Lebesgue measure. We want to verify Theorem 2.4 for
H = PW�(Ha) for a suitable class of symbols a. The boundedness of the diagonal of the kernel was
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already established in Proposition 2.2, (2-4). To prove Theorems B and C we therefore need to verify the
properties (WL) and (HAP) for the reproducing kernel Hilbert space PW�(Ha).

Observe that (WL) is equivalent to the condition

sup
x∈Rd

∫
Rd\Br (0)

|T−x kx(y)|2 dy < ε2 (2-6)

for the centered reproducing kernels. We will show the stronger statement that the set {T−x kx : x ∈ Rd
}

is relatively compact in L2(Rd). The Riesz–Kolmogorov compactness theorem then implies (2-6) and
thus (WL).

The proof of (HAP) requires some additional local regularity of kx . We will use prominently elliptic
regularity theory to show that {T−x kx : x ∈ Rd

} is relatively compact in all Sobolev spaces W s
2 . For the

proof of (HAP) it is fundamental that the point evaluation on PW�(Ha) can be expressed two-fold as

f (x)= ⟨ f, kx ⟩L2 = ⟨ f, Txκ⟩W s
2

for all f ∈ PW�(Ha). (2-7)

2D. Classes of symbols, limit operators. First we define the relevant symbol classes. Let

τx(Ha)= T−x HaTx = HT−x a (2-8)

be the conjugation of Ha by the translation Tx . If a ∈ C∞

b (R
d,Cd×d), observe that τx(Ha) is again a

self-adjoint, uniformly elliptic operator with domain W 2
2 and core C∞

c (R
d). In this section we describe

symbol classes that ensure that {τx(Ha) f : x ∈ Rd
} is relatively compact in L2(Rd) for all f ∈ C∞

c (R
d).

Equivalently, every sequence τxk (Ha) f has a norm-convergent subsequence. If (xk) is bounded, this
follows from the continuity of x 7→ Tx f . To treat unbounded sequences we need some terminology.

Since in Section 6 we will deal with a nonmetrizable compactification of Rd, we formulate most results
for nets (xλ)λ∈3 instead of sequences. (Here 3 is a directed set with a partial order ⪰ and we write
limλ xλ for the limit of a net when it exists.)

Definition 2.5. Assume a ∈ C∞

b (R
d,Cd×d). If the net (xλ)λ∈3 ⊂ Rd diverges to infinity and there is an

operator H ∈ B(W 2
2 , L2(Rd)) such that limλ τxλ(Ha) f = H f for all f ∈ C∞

c (R
d), then H is called a

limit operator of Ha .

Remark 2.6. (i) Existence and uniqueness of the limit operator follow from the Banach–Steinhaus
theorem.

(ii) We do not even scratch the surface of the method of limit operators: see, amongst many others,
[Rabinovich et al. 2004a; 2004b; Špakula and Willett 2017], and in the C∗-algebra setting [Davies
and Georgescu 2013; Georgescu 2011; 2018].

(iii) Limit operators are related to compactifications of Rd. An example can be found in Section 6B.

2D1. Compact orbits. Identity (2-8) suggests that compactness properties of {τx(Ha) : x ∈ Rd
} are related

to compactness properties of {T−xa : x ∈ Rd
}, so we investigate these first.

Lemma 2.7. (i) If f ∈ C∞

b (R
d), then {Tx f : x ∈ Rd

} is relatively compact in the Fréchet space C∞(Rd)

with respect to its topology of uniform convergence of all derivatives on compact sets.
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(ii) In particular, if limλ Txλ f = g pointwise, then limλ Txλ f = g in C∞(Rd). The limit function g is
again in C∞

b (R
d).

Proof. (i) The space C∞(Rd) has the Heine–Borel property [Rudin 1973, 1.46], so it suffices to verify
that {Tx f : x ∈ Rd

} is bounded in C∞(Rd), which means that

∥DαTx f ∥L∞(Br (0)) < Cα,r for all x ∈ Rd and all r > 0, α ∈ Nd
0 .

But this is trivial for f ∈ C∞

b (R
d), since all derivatives are globally bounded.

(ii) We apply the following observation: A net converges to a limit g if and only if every subnet has
a subnet that converges to g. By (i) every subnet of (Txλ f )k∈N has a subnet (Tzλ f )k∈N that converges
in C∞(Rd) (to the limit function g). We conclude that (Txλ f )k∈N converges to g in C∞(Rd). As all
functions and their derivatives of all orders are bounded and continuous, this is true for the limit as well. □

Proposition 2.8. Let a ∈ C∞

b (R
d,Cd×d), k,m ∈ N0, and assume limλ T−xλa = b pointwise. Then, for

every f ∈ W 2m+2k
2

lim
λ

∥(τxλ(H
k
a )− H k

b ) f ∥W 2m
2

= 0.

Proof. We treat the case k = 1 first and assume for the moment that f ∈ C∞
c (R

d). Set a(λ) = T−xλa. We
can express Ha in the form Ha =

∑
|β|≤2 aβDβ, with coefficients aβ ∈ C∞

b (R
d), and estimate, for every

multindex α with |α| ≤ 2m,

|Dα(Ha(λ) − Hb) f | =

∣∣∣∣Dα
∑
|β|≤2

(a(λ)β − bβ)Dβ f
∣∣∣∣ =

∣∣∣∣ ∑
|β|≤2

∑
|γ |≤|α|

(
α

γ

)
Dγ (a(λ)β − bβ)Dα−γ+β f

∣∣∣∣.
By Lemma 2.7 we have limλ Dγ a(λ) = Dγ b uniformly on compact sets, so the convergence is actually
uniform on supp f , and thus

lim
λ

∥Dα(Ha(λ) − Hb) f ∥∞ = 0.

Consequently

∥(Ha(λ) − Hb) f ∥W 2m
2

≤ C max
|α|≤2m

∥Dα(Ha(λ) − Hb) f ∥2

≤ C |supp f |
1/2 max

|α|≤2m
∥Dα(Ha(λ) − Hb) f ∥∞ → 0.

As C∞
c (R

d) is dense in W 2m+2
2 , and the operators Ha(λ) are uniformly bounded from W 2m+2

2 to W 2m
2 , a

standard density argument (see, e.g., [Teschl 2009, Lemma 1.14]) implies ∥(Ha(λ) − Hb) f ∥W 2m
2

→ 0 for
all f ∈ W 2m+2

2 .
For k > 1 observe that

H k
a f − H k

b f = H k−1
a (Ha f − Hb f )+ (H k−1

a − H k−1
b )Hb f.

As limλ∥(Ha(λ) − Hb) f ∥W 2m
2

= 0 for f ∈ W 2m+2
2 , the result follows by induction on k. □

Remark. The statement of the proposition and its proof are valid under the following more general
conditions: aλ, b ∈ C∞

b (R
d), aλ

C∞

−→ b, and (Haλ) is uniformly bounded from W 2
2 to L2(Rd).

Though not needed in the sequel, we state an interesting corollary that shows how compactness
properties of the orbit {Txa : x ∈ Rd

} are transferred to compactness properties of {τx(Ha) : x ∈ Rd
}.
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Corollary 2.9. If a ∈ C∞

b (R
d,Cd×d) and f ∈ C∞

c (R
d) the set {τx(Ha) f : x ∈ Rd

} is relatively compact
in every Sobolev space W s

2 , s > 0.

Proof. The set {Txa : x ∈ Rd
} is relatively compact in C∞(Rd) by Lemma 2.7, and Proposition 2.8 says

that the mapping a 7→ Ha f is continuous from {Txa : x ∈ Rd}
C∞(Rd ) to W s

2 . □

2D2. Slowly oscillating symbols. In the next step we single out a subclass of operators for which the
spectral theory is sufficiently simple. In our approach it is essential that the limit operators do not have the
endpoint 0 and � of the spectrum as eigenvalues. The limits of translates of slowly oscillating symbols
are constant, if they exist (Lemma 2.13 below), so the limit operators are similar to the Laplacian. This
will be used in Section 6 to compute the critical density.

Definition 2.10. An X -valued function f ∈ Cu
b (R

d , X) is slowly oscillating1 if for all compact subsets
M ⊂ Rd

lim
|x |→∞

sup
m∈M

∥ f (x)− f (x + m)∥X = 0.

In fact, it suffices to use the closed unit ball B1 instead of an arbitrary compact set M.
We denote the space of all slowly oscillating functions on Rd by Ch(R

d , X) and define C∞

h (R
d , X)=

Ch(R
d , X)∩ C∞

b (R
d, X).

The space Ch(R
d) with the ∥·∥∞-norm and pointwise multiplication is a commutative C∗-subalgebra

of Cu
b (R

d).
We will need the following characterization of C∞

h (R
d , X). The statement is folklore, but we do not

know a formal reference. For completeness we sketch the simple proof.

Lemma 2.11. A function f is in C∞

h (R
d , X) if and only if f ∈ C∞

b (R
d, X) and lim|x |→∞ ∂k f (x)= 0 for

all 1 ≤ k ≤ d.

Proof. Assume that f ∈ C∞

b (R
d, X) and lim|x |→∞ ∂k f (x)= 0 for all 1 ≤ k ≤ d and choose M = [−h, h]

d.
Writing m ∈ M as m =

∑d
k=1 hkek with |hk | ≤ h, the difference in Definition 2.10 is

f
(

x +

d∑
k=1

hkek

)
− f (x)=

d−1∑
k=0

∫ x+
∑

l≤k+1 hl el

x+
∑

l≤k hl el

∂k+1 f.

This implies that supm∈M∥ f (x + m)− f (x)∥X → 0 for |x | → ∞.
Conversely, assume that f ∈ C∞

h (R
d , X). Fix ε > 0 and let η ∈ C∞

c (R
d) with supp η ⊂ B1, η ≥ 0,∫

Rd η(x) dx = 1. Then ητ (x) = τ−dη(τ−1x), τ > 0, is an approximate unit. This implies that for
f ∈ Cb

u (R
d , X) bounded and uniformly continuous

lim
τ→0+

sup
x∈Rd

∥ f (x)− f ∗ ητ (x)∥X = 0. (2-9)

To estimate the partial derivative of f ∈ C∞

h (R
d , X) we introduce the approximate unit:

∥∂k f (x)∥X ≤ ∥∂k f (x)− ητ ∗ ∂k f (x)∥X + ∥ητ ∗ ∂k f (x)∥X = Iτ + IIτ .

1In the literature f is also called “of vanishing oscillation at infinity” or a Higson function.
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Since all derivatives of f ∈ C∞

h (R
d , X) are bounded and uniformly continuous, by (2-9) there exists τ0

such that Iτ <ε/2 for t<τ0. Fix τ <τ0 and observe that ητ∗∂k f =∂kητ∗ f and that
∫

Rd ∂kητ (y) dy =0. So

IIτ = ∥ητ ∗ ∂k f (x)∥X =

∥∥∥∥∫
Rd
( f (x)− f (y))∂kητ (x − y) dy

∥∥∥∥
X

≤ sup
y∈Bτ (x)

∥ f (x)− f (y)∥X

∫
Rd

|∂kητ (x − y)| dy

≤ Cτ sup
y∈Bτ (0)

∥ f (x)− f (x + y)∥X .

As f ∈ C∞

h (R
d , X), there is R > 0 such that IIτ ≤ ε/(2Cτ ) for |x |> R, and thus ∥ητ ∗ ∂k f (x)∥X < ε

for |x |> R. □

Example 2.12. A typical example of a genuinely slowly oscillating function is a(x)= sin |x |
1/2(1−ϕ(x))

for some ϕ ∈ C∞
c (R

d) with ϕ(x) = 1 near 0. (The cut-off of the singularity at 0 serves to make all
derivatives of a bounded, but, of course, it is immaterial for the asymptotic behavior.)

Our interest in Ch(R
d , X) stems from the following fact (see [Rabinovich et al. 2004a, Proposi-

tion 2.4.1]):

Lemma 2.13. Assume that f ∈ Ch(R
d , X) and (xλ)λ∈3 ⊂ Rd diverges to infinity, |xλ| → ∞. If

limλ T−xλ f (x)= g(x) exists for all x ∈ Rd, then g is constant.

Proof. Let x, x ′
∈ Rd. Definition 2.10 with M = {x, x ′

} shows that for all ε > 0 there exists an index
λε = λε(x, x ′) such that ∥ f (x +xλ)− f (xλ)∥X <ε/2 and ∥ f (x ′

+xλ)− f (xλ)∥X <ε/2 for all λ⪰ λε. So
∥ f (x +xλ)− f (x ′

+xλ)∥X <ε for all λ⪰λε. If g = limλ T−xλ f exists, it follows that ∥g(x)−g(x ′)∥X ≤ ε.
As ε > 0 was arbitrary, g must be constant. □

3. Statement of the density theorem

We state our main theorems. A first version describes a general setup for symbols in the class C∞

b (R
d,Cd×d)

under additional assumptions on the spectra of the limit operators. We then formulate a corollary for
slowly oscillating symbols, where the assumptions on the limit operators are automatically satisfied. We
discuss possible applications of the general version in Section 7.

Theorem 3.1. Assume that Ha = −
∑d

j,k=1 ∂j ajk∂k is uniformly elliptic with symbol a ∈ C∞

b (R
d,Cd×d).

Let PW�(Ha) be the Paley–Wiener space as defined in Section 2B. Assume that � is not an eigenvalue of
any limit operator Hb.

• If S is a set of stable sampling for PW�(Ha), then

D−

0 (S)≥ 1.

• If S is a set of interpolation for PW�(Ha), then

D+

0 (S)≤ 1.
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The following consequence is a more explicit version of Theorem B of the Introduction, where we
have used the equivalence of Lemma 2.11 to avoid the formal definition of C∞

h (R
d).

Corollary 3.2. Assume that Ha = −
∑d

j,k=1 ∂j ajk∂k is uniformly elliptic with symbol a ∈ C∞

h (R
d ,Cd×d).

• If S is a set of stable sampling for PW�(Ha), then D−

0 (S)≥ 1.

• If S is a set of interpolation for PW�(Ha), then D+

0 (S)≤ 1.

Proof of Corollary 3.2. If a ∈ C∞

h (R
d ,Cd×d), then by Lemma 2.7 every net (xλ)λ∈3 ⊂ Rd that diverges

to infinity has a subnet (xµ)µ∈M such that limµ T−xµa = b in the topology of C∞(Rd) for a symbol b.
This symbol b is constant by Lemma 2.13 and positive definite; so Hb is similar to the Laplacian and has
no point spectrum. □

4. Proof of weak localization of the kernel

To prove Theorem 3.1 we invoke Theorem 2.4 and verify its main hypotheses (WL) and (HAP) on the
reproducing kernel.

Let Qh = [−h/2, h/2]
d be the cube of side-length h, and let ϕh

x (y)= h−dχQh ((y − x)/h)= Txϕ
h
0 (y)

be the usual approximate unit.

Lemma 4.1. We have limh→0∥χ[0,�](Ha)ϕ
h
x − kx∥2 = 0 uniformly in x ∈ Rd.

Proof. Let f ∈ PW�(Ha). Then

|⟨ f, χ[0,�](Ha)ϕ
h
x − kx ⟩| = |⟨ f, ϕh

x ⟩ − f (x)| = h−d
∣∣∣∣∫

Qh(x)
( f (y)− f (x)) dy

∣∣∣∣
≤ h−d

∫
Qh(x)

| f (y)− f (x)| dy ≤ sup
z∈Rd

|∇ f (z)| h−d
∫

Qh(x)
|y − x | dy

≤ C∥∇ f ∥∞ h.

Since f ∈ W s
2 (R

d) for all s ≥ 0, we apply first the Sobolev embedding (with s > d/2 + 1) and then
Lemma 2.1 and obtain

∥∇ f ∥∞ ≤ C1∥ f ∥W s
2
≤ C∥ f ∥2,

since f ∈ PW�(Ha). Consequently,

|⟨ f, χ[0,�](Ha)ϕ
h
x − kx ⟩| ≤ Ch∥ f ∥2.

Taking the supremum over f ∈ PW�(Ha), we obtain

∥χ[0,�](Ha)ϕ
h
x − kx∥2 = sup

f ∈PW�(Ha),∥ f ∥2=1
⟨ f, χ[0,�](Ha)ϕ

h
x − kx ⟩ ≤ Ch.

As this estimate is independent of x , we have shown that χ[0,�](Ha)ϕ
h
x → kx in L2(Rd) uniformly in x . □

The following result relates the reproducing kernel of a limit operator of Ha to the original kernel. It
expresses a form of continuous dependence of the reproducing kernel of the matrix symbol of Ha . We
will denote the point spectrum of an operator H by σp(H).
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Theorem 4.2. Let Ha with symbol a ∈C∞

b (R
d,Cd×d), and let (xλ)λ∈3⊂Rd be an unbounded net such that

limλ T−xλa = b pointwise. Assume that � /∈ σp(Hb). Let k̃ be the reproducing kernel of PW�(Hb). Then

lim
λ

T−xλkxλ = k̃0,

with convergence in W s
2 for every s ≥ 0.

Before the proof we remind the reader of the following standard facts of spectral theory; see, e.g.,
[Teschl 2009, Chapter 6.6]. Although in the literature these results are formulated for sequences of
operators, the statements and proofs are equally valid for nets.2

Let Hλ, λ ∈3, and Hb be self-adjoint operators with a common core D . If Hλ f → Hb f for all f ∈ D ,
then, for every F ∈ Cb(R),

F(Hλ) f → F(Hb) f for all f ∈ L2(Rd). (4-1)

Furthermore, if χ{α}(Hb)= χ{β}(Hb)= 0, i.e., α, β ̸∈ σp(Hb), then

χ[α,β](Hλ) f → χ[α,β](Hb) f for all f ∈ L2(Rd). (4-2)

Proof of Theorem 4.2. We split the difference T−xλkxλ − k̃0 into three terms and then estimate their
W s

2 -norms separately:

∥T−xλkxλ−k̃0∥W s
2

≤ ∥T−xλkxλ−T−xλχ[0,�](Ha)ϕ
h
xλ∥W s

2
+∥T−xλχ[0,�](Ha)ϕ

h
xλ−χ[0,�](Hb)ϕ

h
0 ∥W s

2
+∥χ[0,�](Hb)ϕ

h
0 −k̃0∥W s

2

= (I )+(II )+(III ).

Choose ε > 0.

Step 1: Expression (I ) can be estimated by

∥T−xλkxλ − T−xλχ[0,�](Ha)ϕ
h
xλ∥W s

2
= ∥kxλ −χ[0,�](Ha)ϕ

h
xλ∥W s

2
≤ Cs∥kxλ −χ[0,�](Ha)ϕ

h
xλ∥2.

The first equality holds by the translation invariance of the Sobolev norm; the second inequality is a
consequence of Lemma 2.1. By Lemma 4.1 there exists hε > 0 such that, for every 0< h < hε,

∥kx −χ[0,�](Ha)ϕ
h
x ∥2 <

ε

3Cs

for all x ∈ Rd. So for h < hε, we obtain (I ) < ε/3. Similarly, we achieve (III ) < ε/3 for every h < h′
ε.

Step 2: To bound the decisive term (II ), we bring in limit operators and elliptic regularity theory. Set
aλ = T−xλa. First note that

T−xλχ[0,�](Ha)ϕ
h
xλ = T−xλχ[0,�](Ha)Txλϕ

h
0 = χ[0,�](τxλ Ha)ϕ

h
0 = χ[0,�](Haλ)ϕ

h
0 .

We have to verify that
lim
λ

∥χ[0,�](Haλ)ϕ
h
0 −χ[0,�](Hb)ϕ

h
0 ∥W s

2
= 0. (4-3)

2The cited results use the strong operator topology. As this topology is metrizable on bounded sets, the convergence of nets is
equivalent to the convergence of sequences.
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For L2-convergence (s = 0) we argue as follows. By Lemma 2.7 the translates T−xλa converge to the
matrix b uniformly on compact sets. Proposition 2.8 implies that HT−xλa f → Hb f for f ∈ W s

2 , s ≥ 0.
To apply (4-2), we note that C∞

c (R
d) is a common core for all Haλ and for Hb and that 0 /∈ σp(Hb) by

(2-3) and � /∈ σp(Hb) by assumption. Therefore (4-3) follows from (4-2).
For the convergence of (4-3) in general Sobolev spaces W s

2 it suffices to treat the case s = 2k for every
integer k. Recall that by the results on elliptic regularity in Section 2B the operator (H k

a + ck) defines an
isomorphism from W 2k

2 (R
d) to L2(Rd), and since τxλ(H

k
a + ck)= H k

aλ + ck we obtain

∥H k
aλ + ck∥W 2k

2 →L2 = ∥H k
a + ck∥W 2k

2 →L2 <∞.

The Sobolev norm can be estimated by the L2-norm

∥ f ∥W 2k
2

= ∥Tx f ∥W 2k
2

≤ Cs∥(H k
a + ck)Tx f ∥2 = Cs∥T−x(H k

a + ck)Tx f ∥2

independently of x ∈ Rd . Thus (II ) can be estimated by the L2-norm, namely

∥χ[0,�](Haλ)ϕ
h
0 −χ[0,�](Hb)ϕ

h
0 ∥W s

2
≤ Cs∥(H k

aλ + ck)χ[0,�](Haλ)ϕ
h
0 − (H k

aλ + ck)χ[0,�](Hb)ϕ
h
0 ∥2

≤ Cs∥(H k
aλ + ck)χ[0,�](Haλ)ϕ

h
0 − (H k

b + ck)χ[0,�](Hb)ϕ
h
0 ∥2

+ Cs∥(H k
b + ck)χ[0,�](Hb)ϕ

h
0 − (H k

aλ + ck)χ[0,�](Hb)ϕ
h
0 ∥2

= Aλ + Bλ.

By Proposition 2.8 we have (H k
aλ + ck) f → (H k

b + ck) f in L2-norm for all f ∈ W 2k
2 . In particular, this

holds for f = χ[0,�](Hb)ϕ
h
0 ; thus limλ Bλ = 0.

For the first term we use spectral theory again. Define F ∈ Cc(R) such that its restriction to [0, �]

satisfies

F(t)= tk
+ ck for t ∈ [0, �].

Then F(t)χ[0,�](t)= (tk
+ ck)χ[0,�](t), and limλ F(τxλ(Ha)) f = F(Hb) f for all f ∈ L2(Rd) by (4-1).

Since the product of bounded operators is continuous in the strong operator topology, it follows that

lim
λ
(H k

aλ + ck)χ[0,�](Haλ)ϕ
h
0 = lim

λ
F(Haλ)

(
lim
λ
χ[0,�](Haλ)ϕ

h
0
)

= F(Hb)χ[0,�](Hb)ϕ
h
0 = (H k

b + ck)χ[0,�](Hb)ϕ
h
0 ,

and so limλ Aλ = 0.
We can finish the proof as follows. We have already chosen h <min{hε, h′

ε} so that the terms (I ) and
(III ) are < ε/3 for all λ ∈3. For this fixed h > 0 we can find an index λ0 such that

(II )≤ Cs∥(H k
aλ + ck)χ[0,�](Haλ)ϕ

h
0 − (H k

aλ + ck)χ[0,�](Hb)ϕ
h
0 ∥2 <

ε

3

for all λ⪰ λ0. Altogether we obtain ∥T−xλkxλ − k̃0∥2 ≤ (I )+ (II )+ (III ) < ε. □

Theorem 4.3. Assume that Ha is uniformly elliptic with symbol a ∈ C∞

b (R
d,Cd×d) and that no limit

operator has the eigenvalue �. Then the set {T−x kx : x ∈ Rd
} is relatively compact in W s

2 for every s ≥ 0.
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Proof. This follows directly from Theorem 4.2. Let (xn)n∈N ⊆ Rd be an arbitrary sequence. By Lemma 2.7
the sequence T−xn a has a C∞-convergent subsequence T−xnl

a. If (xnl )l∈N is bounded, we can assume
without loss of generality that xnl → x ∈ Rd, and T−xnl

kxnl
→ T−x kx in W s

2 by the continuity of the
translations and Proposition 2.3. If (xnl )l∈N is unbounded, we can assume |xnl | → ∞. This case is settled
by Theorem 4.2 and yields the convergence of T−xnl

kxnl
. □

A combination of the above arguments yields the weak localization (WL) .

Theorem 4.4. Assume that Ha is uniformly elliptic with symbol a ∈ C∞

b (R
d,Cd×d) and that no limit

operator has the eigenvalue �. Let k be the reproducing kernel of PW�(Ha). Then k satisfies the weak
localization property (WL), i.e.,

lim
R→∞

∫
|y−x |>R

|k(x, y)|2 dy = 0.

Proof. By Theorem 4.3 (for s = 0) the set {T−x kx : x ∈ Rd
} is relatively compact in L2(Rd). The

Riesz–Kolmogorov theorem implies that for all ε > 0 there is R > 0 such that for all x ∈ Rd∫
Rd\BR(0)

|T−x kx(y)|2 dy < ε2.

By a change of variable this expression reads as∫
|y−x |>R

|k(x, y)|2 dy < ε2,

and this is (WL). □

5. Proof of the homogeneous approximation property (HAP)

Next we prove the homogeneous approximation property. Recall that Txκ is the reproducing kernel for
W s

2 with κ̂(ω)= (1 + |ω|
2)−s.

Lemma 5.1. If S is a relatively separated set in Rd, then {Txκ : x ∈ S} is a Bessel sequence for W s
2 ,

s > d/2.

Proof. By standard facts of frame theory (see, e.g., [Heil 2011, Theorem 7.6]) the Bessel property
is equivalent to the boundedness of the Gramian G = (⟨Txκ, Tyκ⟩W s

2
)x,y∈S on ℓ2(S). To deduce the

boundedness of G we first show that G possesses exponential off-diagonal decay and then apply Schur’s
test. The off-diagonal decay follows from a (well-known) calculation. Let Jr denote the Bessel function
of the first kind and Kr the modified Bessel function of the second kind. Then by [Wendland 2005,
Theorem 6.13] or [Grafakos 2004, Appendix B]

⟨Txκ, Tyκ⟩W s
2
= (2π)−d/2

∫
Rd

T̂xκ(ω)T̂yκ(ω)(1 + |ω|
2)s dω

= (2π)−d/2
∫

Rd
e−i(x−y)ω(1 + |ω|

2)−s dω

= C |x − y|
−(d−2)/2

∫
∞

0
(1 + r2)−sJ(d−2)/2(r |x − y|)rd/2 dr

= C ′
|x − y|

s−d/2Ks−d/2(|x − y|).
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Using the asymptotic decay Kr (x)∼
√
π/(2x)e−x for x → ∞, see, e.g., [DLMF 2020, equation 10.25.3],

the off-diagonal decay of G is

|⟨Txκ, Tyκ⟩W s
2
| ≤ C ′′

|x − y|
s−d/2−1/2e−|x−y| (|x − y| → ∞). (5-1)

The off-diagonal decay of the Gramian implies the boundedness of the Gramian as follows. By (5-1)
there exists N0 ∈ N such that |Gxy| ≤ Ce−c|x−y| if |x − y|> N0. Obviously, |Gxy| ≤ ∥κ∥2

W s
2

is bounded
for all x, y.

For x ∈ S and k ∈ N0 set Ak(x)= {y ∈ S : k < |y − x | ≤ k + 1}. Since S ⊂ Rd is relatively separated,
there exists r > 0 such that

max #(S ∩ Br (x)) <∞.

A covering argument (of a large ball BR(z) by balls Br (x)) implies that #(S ∩ BR(z)) = O(Rd) for
arbitrary R > 0. Consequently we also obtain #Ak(x)≤ Ckd independent of x . Then∑

y∈S

|Gxy| =

∞∑
k=0

∑
y∈Ak(x)

|Gxy| =

N0∑
k=0

∑
y∈Ak(x)

|Gxy| +
∑

k>N0

∑
y∈Ak(x)

|Gxy|

≤ C0 #(BN0+1(x)∩ S)+ C
∑

k>N0

e−ck #Ak(x)

≤ C1(N0 + 1)d + C2
∑

k>N0

e−ckkd .

This expression is bounded independently of x . Now Schur’s test implies that the Gramian is bounded
on ℓ2(S). □

Theorem 5.2 (HAP). Assume that Ha is uniformly elliptic with symbol a ∈ C∞

b (R
d,Cd×d) and that

� /∈ σp(Hb) for every limit operator Hb. Let {kx : x ∈ S} be a Bessel sequence in PW�(Ha). Then for
every ε > 0 there exists an R > 0 such that for all y ∈ Rd∑

x∈S\BR(y)

|k(y, x)|2 < ε2.

Proof. If {kx : x ∈ S} is a Bessel sequence of reproducing kernels, then S is relatively separated in Rd (see
[Führ et al. 2017, Lemma 3.7]). Lemma 5.1 implies that {Txκ : x ∈ S} is also a Bessel sequence in W s

2
for s > d/2.

Choose ε > 0. Since {T−x kx : x ∈ Rd
} is relatively compact in W s

2 for s ≥ 0 by Theorem 4.3, the
Riesz–Kolmogorov theorem for translation-invariant Banach spaces [Feichtinger 1984] asserts that there
exists a R = Rε > 0 and a function ψ ∈ C∞

c (R
d) satisfying ψ |BR/2(0) = 1, suppψ ⊆ BR(0) such that

∥T−x kx(1 −ψ)∥W s
2
≤ ε for all x ∈ Rd .

We now use the fundamental observation (2-7) that the point evaluation in PW�(Ha) can be expressed in
two ways. For f = kx we have

k(y, x)= ⟨ky, kx ⟩L2 = ⟨ky, Txκ⟩W s
2
. (5-2)
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Since {Txκ : x ∈ S} is a Bessel sequence in W s
2 with bound B, the set {Tx−yκ : x ∈ S} is a Bessel sequence

with the same bound. Observe that for |u|> R we obtain

⟨ψT−yky, Tuκ⟩W s
2
= T−yky(u)ψ(u)= 0.

This implies ∑
x∈S\BR(y)

|⟨ky, Txκ⟩W s
2
|
2
=

∑
x∈S\BR(y)

|⟨T−yky, Tx−yκ⟩W s
2
|
2

=

∑
x∈S\BR(y)

|⟨(1 −ψ)T−yky, Tx−yκ⟩W s
2
|
2

≤ B∥(1 −ψ)T−yky∥
2
W s

2
≤ Bε2,

and this is the homogeneous approximation property, (HAP). □

Proof of Theorem 3.1. After the verification of the properties (WL) and (HAP) of the reproducing kernel,
the version for the dimension-free density of Theorem 2.4 is applicable and yields Theorem 3.1. The
statement asserts the existence of a critical density for sampling and interpolation with the dimension-free
Beurling density D±

0 (S). □

6. Geometric Beurling densities

In this section we derive results for the geometric densities (2-5). According to Theorem 2.4 this step
requires the computation of the averaged trace |µ(Br (x))|−1

∫
Br (x)

k(x, x) dµ(x) of the reproducing kernel.
This version of the density theorems is of interest because it relates the critical density in PW�(Ha) to the
geometry defined by the differential operator Ha . The explicit computation of the averaged trace becomes
possible by introducing a suitable compactification of Rd and then extending the centered kernels T−x kx

to this compactification.

6A. The basic computation: constant coefficients. For reference we mention the case when Hb =

−
∑

j,k ∂j bjk∂k = −
∑

j,k bjk∂j∂k is a differential operator with constant coefficients bjk . Define

6b
� = {ξ ∈ Rd

: bξ · ξ ≤�} = b−1/2 B�1/2(0),
with volume

|6b
�| = det(b−1/2)|B�1/2(0)| = det(b−1/2)�d/2

|B1|. (6-1)

Since Ĥb f (ξ)=
∑

j,k bjkξjξk f̂ (ξ)= (bξ · ξ) f̂ (ξ), the spectral subspace is

PW�(Hb)= χ[0,�](Hb)L2(Rd)= { f ∈ L2(Rd) : supp f̂ ⊆6b
�}.

The kernel of PW�(Hb) is
k̃(x, y)= (2π)−d/2(F−1χ6b

�
)(x − y), (6-2)

whence

k̃(x, x)= (2π)−d/2(F−1χ6b
�
)(0)=

|6b
�|

(2π)d
=

|B1|

(2π)d
det(b−1/2)�d/2.

By Landau’s theorem [1967] a sampling set S for PW�(Hb) has Beurling density at least D−(S) ≥

|6b
�|/(2π)d.
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6B. The Higson compactification. We recall how a compactification arises in Gelfand theory. Let
Cγ (Rd) be a unital C∗ algebra of functions on Rd satisfying the embeddings C0(R

d)⊂ Cγ (Rd)⊂ Cb(R
d).

The maximal ideal space Mγ of Cγ (Rd) is the space of all multiplicative homomorphisms ϕ :Cγ (Rd)→ C.
Equipped with the weak-star topology Mγ is a compact Hausdorff space. The point evaluations
δx( f ) = f (x) constitute an embedding γ of Rd into Mγ via γ (x) = δx , and γ (Rd) is dense in Mγ

and homeomorphic to Rd. Thus, the pair (γ,Mγ ) is a compactification of Rd, which we will call γRd. The
corona of γRd is ∂γRd

= γRd
\γ (Rd). By abuse of notation we will identify a point x ∈ Rd with its point

evaluation δx . Then Cγ (Rd) is isometrically isomorphic to C(γRd). We denote the image of f ∈ Cγ (Rd)

in C(γRd) by f̄ . See, e.g., [Engelking 1977] for the basics of compactifications, and [Gamelin 1969] for
compactifications of function algebras.

As noted in Section 2D2 the space Ch(R
d) of slowly oscillating functions with supremum norm is a

commutative unital C∗-algebra. Thus there is a compactification hRd of Rd, the Higson compactification,
such that Ch(R

d) is isometrically isomorphic to C(hRd). It is known that hRd is nonmetrizable, and even
more, points of the corona hRd

\ Rd can only be reached by nets; see, e.g., [Rabinovich et al. 2004a,
2.4.10]. Therefore we need to work with nets instead of sequences.

The relevance of the Higson compactification and the algebra of slowly oscillating functions in our
context is given by the fact that translations act trivially on the corona ∂hRd.

Lemma 6.1. If xλ → η ∈ ∂hRd, then x + xλ → η for all x ∈ Rd.

Proof. By definition, xλ → η ∈ ∂hRd if f (xλ)→ f̄ (η)= η( f ) for every f ∈ Ch(R
d). From the definition

of Ch(R
d) we obtain

lim
λ

| f (xλ)− f (x + xλ)| = 0

for every x ∈ Rd, so f (xλ + x)→ f̄ (η) for every f ∈ Ch(R
d) as well. □

One can show that hRd is the maximal compactification of Rd with this property: every Cγ (Rd) as
above with translations acting trivially on ∂γRd is a subalgebra of Ch(R

d).
We need the following fact [Roe 2003].

Proposition 6.2. Let Cγ (Rd) be a C∗-algebra of functions on Rd as above with corresponding compacti-
fication γRd of Rd. If f ∈ Cγ (Rd) satisfies

f̄ |∂γRd ≡ 0

then f ∈ C0(R
d).

Proof. Let (xλ)λ∈3 ⊂ Rd be an unbounded net, limλ|xλ| = ∞. As γRd is compact, every subnet of (xλ)
has a convergent subnet (xµ)µ∈M , and limµ xµ = η ∈ ∂γRd by the assumption of unboundedness. So
limµ f (xµ) = f̄ (η) = 0 for a subnet of a given subnet, and therefore limλ f (xλ) = 0. This means
f ∈ C0(R

d). □

We next study uniformly elliptic operators Ha with a symbol in a ∈ C∞

h (R
d ,Cd×d). By definition a

has a continuous extension to hRd. Thus for η ∈ ∂hRd the symbol ā(η)= limx→η a(x) is well-defined, and
by Lemma 2.13 Hā(η) is a differential operator with constant coefficients. Let kη denote the reproducing
kernel of PW�(Hā(η)). We show that the mapping x 7→ T−x kx has a continuous extension to hRd.
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Proposition 6.3. Let the symbol a ∈ C∞

h (R
d ,Cd×d) be the symbol of the operator Ha and let kx be the

reproducing kernel of PW�(Ha). Set K (x)= T−x kx ∈ L2(Rd). Then K extends to a continuous function
from hRd to L2(Rd) by setting K (η)= kη0 for η ∈ hRd. In particular, the diagonal k(x, x)= ∥kx∥

2
2 is a

slowly oscillating function.

Proof. By Proposition 2.3 the centered reproducing kernel K is continuous from Rd to L2(Rd). To show
that K ∈ Ch(R

d , L2), we need to extend K to the Higson corona ∂hRd .
This is accomplished by means of Theorem 4.2. Let (xλ) ⊆ Rd be an unbounded net such that

xλ → η ∈ ∂hRd. Since a ∈ Ch(R
d ,Cd×d), there is a continuous function ā ∈ C(hRd ,Cd×d) such that

limλ a(xλ)= ā(η). Furthermore, for x ∈ Rd arbitrary, x + xλ → η by Lemma 6.1, and this fact implies
the pointwise convergence

lim
λ

T−xλa(x)= ā(η).

Clearly, the spectrum of the (constant-coefficient) operator Hā(η) is continuous and does not contain any
eigenvalues. The assumptions of Theorem 4.2 are thus satisfied.

To formulate its conclusion, denote the reproducing kernel of PW�(Hā(η)) by kη. Then by Theorem 4.2

lim
λ

T−xλkxλ = kη0

in the L2-norm, and this holds for every net (xλ) with xλ → η. Thus we must take the limiting function
to be

K (η)= kη0 = (2π)−d/2F−1(χ
6

ā(η)
�
),

with the explicit formula for the kernel given by (6-2).
It remains to be shown that the limiting kernel K is continuous on ∂hRd. Let ηλ → η ∈ ∂hRd . Then

with the definition of 6b
� and (6-1) we obtain

∥kηλ0 − kη0∥
2
2 = (2π)−d

∥χ
6

ā(ηλ)
�

−χ
6

ā(η)
�

∥
2
2

= (2π)−d(|6
ā(ηλ)
� | + |6

ā(η)
� | − 2|6

ā(ηλ)
� ∩6

ā(η)
� |).

As a ∈Ch(R
d ,Cd×d), ā is continuous on ∂hRd, and this expression tends to 0, whence K is also continuous

on the corona ∂hRd . □

6C. Geometric densities for slowly oscillating symbols. In order to obtain values for the critical densities
D±
µ (S) we need the averaged traces

tr−µ (k)= lim inf
r→∞

inf
x∈Rd

1
µ(Br (x))

∫
Br (x)

k(z, z) dz

and tr+µ (k). For the comparison of averaged traces we will need the following well-known fact, whose
proof is supplied in Appendix A for completeness.

For f ∈ Cb(R
d) set

tr−( f )= lim inf
r→∞

inf
y∈Rd

1
|Br (y)|

∫
Br (y)

f (x) dx,

and define tr+( f ) similarly with sup instead of inf.
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Lemma 6.4. Assume that f, g ∈ Cb(R
d) and limx→∞ | f (x)− g(x)| = 0. Then

tr−( f )= tr−(g) and tr+( f )= tr+(g).

Proposition 6.5. If the symbol a is in C∞

h (R
d ,Cd×d), then the trace of the reproducing kernel satisfies

lim
r→∞

sup
y∈Rd

∣∣∣∣ 1
|Br (y)|

∫
Br (y)

(k(x, x)−
|B1|

(2π)d
�d/2

det a(x)1/2
) dx

∣∣∣∣ = 0. (6-3)

Equivalently, using the Borel measure ν(B)=
∫

B det a(x)−1/2 dx ,

lim
r→∞

sup
y∈Rd

∣∣∣∣ 1
ν(Br (y))

∫
Br (y)

k(x, x) dx −
|B1|

(2π)d
�d/2

∣∣∣∣ = 0. (6-4)

Consequently, the averaged trace is

tr+ν (k)= tr−ν (k)=
|B1|

(2π)d
�d/2. (6-5)

Proof. We apply Lemma 6.4 to the functions f (x)= k(x, x) and g(x)= (|B1|�
d/2/(2π)d) det a(x)−1/2.

Then k(x, x) is bounded by Proposition 2.2 and continuous by Proposition 2.3. Likewise det a(x)−1/2 is
bounded and continuous by elliptic regularity. By assumption on a and Proposition 6.3 both functions are
in Ch(R

d) and thus possess the limits ā(η) and ∥K (η)∥2
2; in particular for a this means that

lim
xλ→η

det a(xλ)−1/2
= det ā(η)−1/2.

Using the notation of Section 6A and Proposition 6.3, we obtain

lim
xλ→η

∥kxλ∥
2
2 = lim

xλ→η
∥T−xλkxλ∥

2
2 = ∥kη0∥

2
2 = |6

ā(η)
� | =

|B1|�
d/2

(2π)d
det ā(η)−1/2.

We conclude that both f and g have the same limit function, and therefore f − g ∈ C0(R
d) by

means of Proposition 6.2. Lemma 6.4 now yields (6-3). Equation (6-4) follows after multiplying
with |Br (y)|/ν(Br (y)) and taking limits. Finally, (6-5) is a direct consequence of (6-4). □

Equation (6-4) allows us to state our main result on geometric Beurling densities for operators with
slowly oscillating symbols in a simple form. In order to do so we need an elementary result on the relation
between density and a change of measure.

Lemma 6.6. Let dµ = h dx for a positive, continuous function h on Rd, bounded above and below,
0< c ≤ h(z)≤ C for all z ∈ Rd. Then the dimension-free density condition

D−

0 (S)= lim inf
r→∞

inf
x∈Rd

#(S ∩ Br (x))∫
Br (x)

k(y, y) dy
≥ 1

holds, if and only if
D−

µ (S)≥ tr−µ (k).

Similarly
D+

0 (S)≤ 1 if and only if D+

µ (S)≤ tr−µ (k).
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Proof. The inequality D−

0 (S)≥ 1 means that for all ε > 0 there is an rε > 0 such that for all r > rε

#(S ∩ Br (x))≥ (1 − ε)

∫
Br (x)

k(y, y) dy,

or equivalently,
#(S ∩ Br (x))
µ(Br (x))

≥ (1 − ε)
1

µ(Br (x))

∫
Br (x)

k(y, y) dy.

Written in terms of the Beurling density, this is

D−

µ (S)≥ lim inf
r→∞

inf
x∈Rd

∫
Br (x)

k(y, y) dy

µ(Br (x))
= tr−µ (k).

The converse is obtained by reading the argument backwards. □

As a direct consequence we obtain the main result on geometric Beurling densities for uniformly
elliptic operators with slowly oscillating symbols. This is Theorem C of the Introduction.

Theorem 6.7. Assume that Ha = −
∑d

j,k=1 ∂j ajk∂k is uniformly elliptic with symbol a ∈ C∞

h (R
d ,Cd×d).

Let PW�(Ha) = χ[0,�](Ha)L2(Rd) be the corresponding Paley–Wiener space and set dν(x) =

det(a(x))−1/2 dx.

• If S ⊆ Rd is a set of stable sampling for PW�(Ha) then

D−

ν (S)≥
|B1|

(2π)d
�d/2.

• If S ⊆ Rd is a set of interpolation for PW�(Ha), then

D+

ν (S)≤
|B1|

(2π)d
�d/2.

Proof. We only verify the first assertion. By Corollary 3.2, if S is a set of stable sampling, then D−

0 (S)≥ 1.
By Lemma 6.6 this is equivalent to

D−

ν (S)≥ tr−ν (k).

The averaged trace tr−ν (k) was computed in (6-5) to be (|B1|/(2π)d)�d/2. □

Example 6.8. We consider some special cases of Theorem 6.7.

(i) Asymptotically constant symbols. Assume that a ∈ C∞

b (R
d,Cd×d) and limx→∞ a(x)= b. Then it is

straightforward to verify that a ∈ C∞

h (R
d ,Cd×d) and D±

ν (S)= (det b)1/2 D±(S). Thus we may use the
original Beurling density, and Theorem 6.7 implies that a sampling set S ⊆ Rd for PW�(Ha) must have
density

D−(S)= (det b)−1/2 D−

ν (S)≥ (det b)−1/2 |B1|

(2π)d
�d/2

=
|6b

�|

(2π)d
,

and a set of interpolation S in PW�(Ha) must satisfy D+(S)≤ |6b
�|/(2π)d . This is Corollary D of the

Introduction. As was to be expected, this coincides with the critical density for the classical Paley–Wiener
space PW�(Hb); see [Landau 1967].
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(ii) Symbols with radial limits. Let us consider the class of symbols that possess radial limits at ∞. We
say that a ∈ C∞

b (R
d,Cd×d) is spherically continuous, if it possesses radial limits in the following sense.

There exists a continuous matrix function b ∈ C(Sd−1,Cd×d) such that

lim
r→∞

sup
η∈Sd−1

∥a(rη)− b(η)∥X = 0.

A 3ε-argument shows that these symbols are slowly oscillating. Consequently Theorem 6.7 holds for
spherically continuous symbols in C∞

b (R
d,Cd×d). Spherically continuous symbols are related to another

compactification, the spherical compactification with corona Sd−1. In contrast to the Higson compactifica-
tion, it is metrizable, but it is much smaller. See [Cordes 1979] for its use in partial differential equations.

6D. Variable bandwidth in dimension d = 1. Let Ha be the differential operator

Ha f = −
d

dx

(
a d

dx
f
)

on L2(R). This is a Sturm–Liouville operator on R, and the ellipticity assumption amounts to the conditions
infx∈R a(x) > 0 and a ∈ C∞

b (R
d). In [Gröchenig and Klotz 2017] we argued that the spectral subspaces

of Ha can be interpreted as spaces of locally variable bandwidth. Intuitively, the quantity a(x)−1/2 is a
measure for the bandwidth in a neighborhood of x . We apply Theorem 6.7 to Ha . The relevant measure
is dν(x) = a−1/2(x) dx , and ν(I ) =

∫
I a(x)−1/2 dx for I ⊆ R. Then we have the following necessary

density condition for functions of variable bandwidth (Corollary E of the Introduction).

Corollary 6.9. Assume that a ∈ C∞

b (R) and limx→±∞ a′(x) = 0. Let PW�(Ha) be the Paley–Wiener
space associated to Ha .

(i) If S is a sampling set for PW�(Ha), then

D−

ν (S)= lim inf
r→∞

inf
x∈R

#(S ∩ [x − r, x + r ])

ν([x − r, x + r ])
≥
�1/2

π
. (6-6)

(ii) If S is a set of interpolation for PW�(Ha), then D+
ν (S)≤�1/2/π .

Arguing as in Lemma 6.6, equation (6-6) says that for ε > 0 and r large enough we have

#(S ∩ [x − r, x + r ])≥

(
�1/2

π
− ε

) ∫ x+r

x−r
a(y)−1/2 dy.

Thus the number of samples in an interval [x − r, x + r ] is determined by a(x)−1/2, which is in line with
our interpretation of a−1/2 as the local bandwidth.

Corollary 6.9 is precisely the formulation of the necessary density conditions in [Gröchenig and
Klotz 2017]. However, the main result of that work was proved under the restrictive assumption that
a is constant outside an interval [−R, R]. The proof there dwelt heavily on the scattering theory of
one-dimensional Schrödinger operators. The method of this paper yields a significantly more general
result with a completely different method of proof. Corollary 6.9 was our dream that motivated this work.
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Finally we remark that the density conditions of Theorem 6.7 suggest that the Paley–Wiener spaces
PW�(Ha) associated to a uniformly elliptic differential operator may be taken as an appropriate general-
ization of variable bandwidth to higher dimensions.

7. Outlook

We have proved necessary density conditions for sampling and interpolation in spectral subspaces
of uniformly elliptic partial differential operators with slowly oscillating coefficients. These spectral
subspaces may be taken as a suitable generalization of the notion of variable bandwidth to higher
dimensions. The emphasis has been on a new method that combines elements from limit operators,
regularity theory and heat kernel estimates, and the use of compactifications.

Clearly one can envision manifold extensions of our results and methods. Theorem 3.1 is stated for
a significantly larger class of operators and symbols. For instance, it could be applied to higher-order
partial differential operators or to Schrödinger operators and to symbols with less smoothness or to almost
periodic symbols. However, the spectral theory of such operators is more involved and one needs to find
conditions that prevent their limit operators from having a point spectrum at the ends of the spectral
interval. As these questions belong to spectral theory rather than sampling theory, we plan to pursue them
in a separate publication.

In a different direction one may consider the graph Laplacian on an infinite graph or even a metric
measure space endowed with a kernel that satisfies Gaussian estimates [Coulhon et al. 2012]. While many
steps of our proofs remain in place, this set-up opens numerous new questions.

Finally several hidden connections beg to be explored. The identity (6-3) resembles the famous
Weyl formula for the asymptotic density of eigenvalues in a spectral interval [Hörmander 1968]. This
observation invites the comparison of the Beurling density with the density of states in spectral theory.
We plan to investigate some of these issues in future work.

Appendix A: Averaged traces

For completeness we provide the proof of Lemma 6.4. Recall that

tr−( f )= lim inf
r→∞

inf
y∈Rd

1
|Br (y)|

∫
Br (y)

f (x) dx .

If f, g ∈ Cb(R
d) and lim|x |→∞ | f (x)− g(x)| = 0, then

tr−( f )= tr−(g) and tr+( f )= tr+(g).

Proof. Set h = f − g, then limx→∞ h(x)= 0. We split the relevant averages as

1
|Br (y)|

∫
Br (y)

|h(x)| dx =
1

|Br (y)|

[∫
Br (y)∩Bc

R(0)
+

∫
Br (y)∩BR(0)

]
|h(x)| dx = (I )+ (II ).
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Given ε > 0, there exists an Rε > 0 such that sup|x |≥Rε |h(x)|< ε/2. So,

(I ) <
|Br (y)∩ Bc

Rε(0)|

|Br (y)|
ε

2
<
ε

2
,

independent of y. For the second term observe that

(II ) < ∥h∥∞

|Br (y)∩ BRε(0)|
|Br (y)|

≤ ∥h∥∞

|BRε |

|Br (y)|
<
ε

2

for r >
( 2
ε
∥h∥∞

)1/d Rε. Consequently,

lim
r→∞

sup
y∈Rd

1
|Br (y)|

∫
Br (y)

| f − g| = 0.

It follows that

tr−( f )≤ lim inf
r→∞

inf
y∈Rd

1
|Br (y)|

∫
Br (y)

g + lim
r→∞

sup
y∈Rd

1
|Br (y)|

∫
Br (y)

| f − g| = tr−(g).

Interchanging f and g yields equality. The equality tr+( f )= tr+(g) is proved in the same way. □

Appendix B: The lower bound for the reproducing kernel

We verify the lower bound for ∥kx∥2 in the proof of Proposition 2.2. This fact is proved in [Coulhon et al.
2012, Lemma 3.19(a)]. For completeness we reproduce that proof with some necessary modifications
and adjustments. The idea is to relate the reproducing kernel to the heat kernel of e−t Ha via functional
calculus.

We write k� for the reproducing kernel of PW� (Ha). For a bounded, nonnegative Borel function
F ≥ 0 with support in [0, �] we define k F

x = F(Ha)k�x and the corresponding integral kernel k F (x, y) :=
F(Ha)(x, y) := k F

x (y). The last expression is well-defined, as k F
x ∈ PW�(Ha). The kernel k F (x, y) is

symmetric, because F(Ha) is self-adjoint:

k F
x (y)= ⟨F(Ha)k�x , k�y ⟩ = ⟨k�x , F(Ha)k�y ⟩ = ⟨F(Ha)k�y , k�x ⟩ = k F

y (x).

Consequently, F(Ha) is an integral operator. For f ∈ L2(Rd)

F(Ha) f (x)= ⟨F(Ha) f, k�x ⟩ = ⟨ f, F(Ha)k�x ⟩ = ⟨ f, k F
x ⟩ =

∫
Rd

k F (y, x) f (y) dy.

If 0 ≤ G ≤ F , then

0 ≤ kG(x, x)≤ k F (x, x) (B-1)

for all x ∈ Rd. For the proof observe that F − G ≥ 0 implies that

k F (x, x)= ⟨F(Ha)k�x , k�x ⟩ ≥ ⟨G(Ha)k�x , k�x ⟩ = kG(x, x).
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The heat operator e−t Ha is bounded and has a kernel pt(x, y) that satisfies on diagonal estimates.
There are positive constants c,C such that for all x ∈ Rd and t > 0

ct−d/2
≤ pt(x, x)≤ Ct−d/2.

This is well known; see, e.g., [Ouhabaz 2006].

Claim. We have 0< c < k�(x, x) < C for all x ∈ Rd.

Proof. As χ�(u)≤ e · e−u/�χ[0,∞)(u) and χ[0,∞)(Ha)= Id, we obtain

k�(x, x)= χ[0,�](Ha)(x, x)≤ ee−�−1 Ha (x, x)≤ C�d/2, (B-2)

which gives an explicit upper bound for ∥kx∥
2
2 in Proposition 2.2.

For the proof of the lower bound, we use a dyadic decomposition:

χ[0,T )(u)e−tu
≤ χ[0,∞)(u)e−tu

= χ[0,�](u)e−tu
+

∑
k≥0

χ(2k�,2k+1�](u)e
−tu

≤ χ[0,�](u)+
∑
k≥0

χ[0,2k+1�](u)e
−t2k�, t > 0.

One can verify that this inequality remains true as an operator inequality

χ[0,T ](Ha)e−t Ha ≤ χ[0,�](Ha)+
∑
k≥0

χ[0,2k+1�](Ha)e−t2k�,

with strong convergence of the sum, and every term is an integral operator. By (B-1) and (B-2) the
operator inequality can be transferred to a corresponding inequality of the diagonals of the integral kernel
as follows:

(χ[0,T ](Ha)e−t Ha )(x, x)≤ χ[0,�](Ha)(x, x)+
∑
k≥0

χ[0,2k+1�](Ha)(x, x)e−t2k�

≤ χ[0,�](Ha)(x, x)+ C�d/2
∑
k≥0

2(k+1)d/2 e−t2k�.

In [Coulhon et al. 2012, equation (3.46)] it is shown that pt(x, y) = limT →∞(χ[0,T ](Ha)e−t Ha )(x, y),
consequently

ct−d/2
≤ pt(x, x)≤ χ[0,�](Ha)(x, x)+ C�d/2

∑
k≥0

2(k+1)d/2 e−t2k�.

We choose t = 2r/� for r ∈ N to be specified later. Then

c�d/22−rd/2
≤ χ[0,�](Ha)(x, x)+ C�d/2

∑
k≥0

e−2k2r
2(k+1)d/2

= χ[0,�](Ha)(x, x)+ C2d/2�d/22−rd/2
∑
k≥0

e−2k+r
2(k+r)d/2

≤ χ[0,�](Ha)(x, x)+ C2d/2�d/22−rd/2
∑
k≥r

e−2k
2kd/2.
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Hence,

�d/22−rd/2
(

c − C ′2d/2
∑
k≥r

e−2k
2kd/2

)
≤ χ[0,�](Ha)(x, x)= k�(x, x).

For r ∈ N sufficiently large, this implies the lower bound for k�(x, x). □
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