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ARNOLD’S VARIATIONAL PRINCIPLE AND
ITS APPLICATION TO THE STABILITY OF PLANAR VORTICES

THIERRY GALLAY AND VLADIMÍR ŠVERÁK

We consider variational principles related to V. I. Arnold’s stability criteria for steady-state solutions of
the two-dimensional incompressible Euler equation. Our goal is to investigate under which conditions the
quadratic forms defined by the second variation of the associated functionals can be used in the stability
analysis, both for the Euler evolution and for the Navier–Stokes equation at low viscosity. In particular,
we revisit the classical example of Oseen’s vortex, providing a new stability proof with stronger geometric
flavor. Our analysis involves a fairly detailed functional-analytic study of the inviscid case, which may be
of independent interest, and a careful investigation of the influence of the viscous term in the particular
example of the Gaussian vortex.

1. Introduction

We investigate the applicability of V. I. Arnold’s geometric methods to certain stability problems related
to Navier–Stokes vortices at high Reynolds number. Our main goal is a “proof of concept” that such
applications are possible, at least in simple cases, even though much of the geometric structure behind the
inviscid stability analysis does not survive the addition of the viscosity term. In particular, we give a new
proof of a known result concerning the stability of Oseen’s vortex as a steady state of the Navier–Stokes
equation in self-similar variables. We expect that the approach we advertise here will be useful to tackle
stability problems involving solutions that are less symmetric and less explicit than the classical Oseen
vortex. In such cases one may not have good alternative methods for proving stability in the presence of
viscosity. Our investigation leads to a detailed study of the quadratic forms naturally arising in Arnold’s
approach. Some of their functional-analytic properties, which are established in the course of our analysis,
may be of independent interest.

1A. A finite-dimensional model. Following the seminal paper [Arnold 1965], we first illustrate the issues
we want to address in a model situation where the “phase space” is finite-dimensional. We consider the
ordinary differential equation

ẋ = b(x), x ∈ Rn, (1-1)

where b is a smooth vector field in Rn. Let us assume that f, g1, . . . , gm : Rn
→ R are (sufficiently

smooth) conserved quantities for the evolution (1-1), with m < n. This means

f ′(x)b(x)= 0 and g′

j (x)b(x)= 0, x ∈ Rn, j = 1, . . . ,m, (1-2)
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where we adopt the standard notation f ′(x) for the linear form given by the first derivative of f at x . The
situation we have ultimately in mind is somewhat more specific: it corresponds to the case where the
phase space Rn is equipped with a Poisson bracket { · , · }, where system (1-1) is of the form

ẋ = { f, x}, (1-3)

and where g1, . . . , gm are Casimir functions. The Poisson structure is of course important in many
respects, but for our arguments here it does not play a big role. We can therefore proceed in the general
context of (1-1) and (1-2).

For any c = (c1, . . . , cm) ∈ Rm, let us define Xc = {x ∈ Rn
: g1(x)= c1, . . . , gm(x)= cm}. We assume

that, for some c ∈ Rm, the function f attains a nondegenerate local maximum on Xc at some point x̄ ∈ Xc

and that the derivatives g′

1(x̄), . . . , g′
m(x̄) are linearly independent. The stationarity condition at x̄ gives

the linear relation

f ′(x̄)−
m∑

j=1

λj g′

j (x̄)= 0 (1-4)

for some Lagrange multipliers λ1, . . . ,λm ∈R. Moreover, the second-order differential1 of the function f |Xc

(the restriction of f to Xc) at x̄ is given by the restriction to the tangent space Tx̄ Xc of the quadratic form

Q = f ′′(x̄)−
m∑

j=1

λj g′′

j (x̄), (1-5)

where we denote by f ′′(x̄) the quadratic form given by the Hessian of f at x̄ , and similarly for
g′′

1 (x̄), . . . , g′′
m(x̄). Our nondegeneracy assumption means that the restriction of the form Q to Tx̄ Xc is

strictly negative definite. Now, let B = b′(x̄) be the n × n matrix corresponding to the linearization
of (1-1) at the point x̄ , which is a steady state by construction [Arnold 1965]. If we differentiate twice the
relations (1-2) and use (1-4) together with b(x̄)= 0, we see that the evolution defined by the linearized
equation ξ̇ = Bξ leaves the form Q invariant. In other words,

d
dt
Q(ξ, ξ)= Q(Bξ, ξ)+Q(ξ, Bξ)= 0 for all ξ ∈ Rn. (1-6)

The above structure2 gives various options for the stability analysis of the equilibrium x̄ of (1-1),
depending on the index of the quadratic form Q in (1-5). Our assumptions readily imply that x̄ is stable
in the sense of Lyapunov with respect to perturbations on the invariant submanifold Xc. Moreover, since
a neighborhood of x̄ in Rn is foliated by submanifolds of this form for nearby values of the parameter
c = (c1, . . . , cm), one can show that x̄ is in fact Lyapunov stable with respect to small unconstrained
perturbations [Arnold 1965]. The perspective changes qualitatively if we add to the vector field b in
(1-1) a small “dissipative” term, with the effect that the quantities f and g1, . . . , gm are no longer exactly

1We recall that the second-order differential of a function on a manifold is intrinsically defined at the points where the
first-order differential vanishes.

2Pointed out in [Arnold 1965] in the form we use here, although in the finite-dimensional case these ideas go back to the
founders of the analytical mechanics.
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conserved under the modified evolution. This is in the spirit of what we intend to do in the infinite-
dimensional case, when we consider the Navier–Stokes equation as a perturbation of the Euler equation.
Since the evolution no longer takes place on the manifolds Xc, the argument above leading to unconstrained
Lyapunov stability is not applicable anymore. However, in good situations, stability can still be obtained
if the quadratic form Q in (1-5) happens to be negative definite not just on Tx̄ Xc, but on larger subspaces
as well, for instance on the whole space Rn. This is, roughly speaking, the idea we shall pursue in the
infinite-dimensional case, to study the stability of vortex-like solutions of the Navier–Stokes equation.

To conclude with the (unmodified) evolution (1-1), we emphasize that the problem of determining
the index of the form (1-5) is also very natural from the viewpoint of the usual constrained optimization
theory. Clearly, the “Lagrange function”

L(x)= f (x)−
m∑

j=1

λj gj (x), x ∈ Rn, (1-7)

when considered on the whole space Rn, has a critical point at x̄ (and a local maximum at x̄ when
restricted to Xc). The form Q will be strictly negative definite3 in the whole space Rn if and only if L
has a nondegenerate unconstrained maximum at x̄ . As is explained in Section 2D, this is related to the
concavity of the function

(c1, . . . , cm) 7−→ M(c1, . . . , cm) := sup
x∈Xc

f (x). (1-8)

1B. Arnold’s geometric view of the two-dimensional incompressible Euler equation. V. I. Arnold
[1966b; 1966a] (see also [Arnold and Khesin 1998]) carried out the analogue of the above calculations in
an infinite-dimensional setting to handle in particular the two-dimensional incompressible Euler equation
∂tω+ u · ∇ω = 0, where u denotes the velocity of the fluid and ω = curl u is the associated vorticity. In
this case the evolution is generated by the Hamiltonian function, which represents the kinetic energy of
the fluid, and the constraints are given by the Casimir functionals

C8(ω)=

∫
�

8(ω(x)) dx, (1-9)

where � ⊂ R2 is the fluid domain and 8 is an “arbitrary” function on R. The idea of maximizing or
minimizing the energy on the set of vorticities satisfying suitable constraints has been widely used since
then to study the stability of steady-state solutions of the two-dimensional Euler equations and related
fluid models; see [Arnold and Khesin 1998; Burton 2005; Cao et al. 2019].

Let us briefly recall the setup relevant for our goals here, making the similarities with the finite-
dimensional case as transparent as possible. Our main objects will be the following:

(1) The phase space P = {ω : R2
→ (0,∞) : ω is smooth and decays “sufficiently fast” at ∞}. This is

our infinite-dimensional replacement for the manifold Rn in the finite-dimensional model. We restrict
ourselves to positive vorticity distributions defined on �= R2, because this is the appropriate framework
to study the stability of radially symmetric vortices in the whole plane. Admittedly, the definition above

3Our use of the terms “positive definite” and “negative definite” allows for vanishing along some directions. When this is not
the case, we speak of strictly positive definite or strictly negative definite forms.
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is somewhat vague, but it serves only as a motivation and our results will be independent of the vague
parts of the definitions. There is a natural Poisson structure on P that is relevant for the Euler equation,
see Section A5, but here we only need some of its Casimir functionals (to be specified now).

(2) The Casimir functionals, which play the role of the constraints gj in the finite-dimensional example.
These are linear combinations of elementary functionals of the form

h(a, ω)= |{ω > a}| =

∫
R2
χ(ω(x)− a) dx, a > 0, (1-10)

where χ = 1(0,∞) is the indicator function of (0,∞). Here and in what follows, we denote by |S| the
Lebesgue measure of any (Borel) set S ⊂ R2. Due to our assumptions on the vorticities in P, the functions
a 7→ h(a, ω) are finite and nonincreasing on (0,∞). In general, they do not have to be continuous in a
but they will have this property in the examples considered later. Similarly, the functionals ω 7→ h(a, ω)
may in general not be differentiable in every direction, but they will be in our examples. It is useful to
single out the quantity

M0(ω)=

∫
R2
ω(x) dx =

∫
∞

0
h(a, ω) da, (1-11)

which will be referred to as the “mass” of the vorticity distribution ω ∈ P.

(3) The orbits defined for any ω̄ ∈ P by

Oω̄ = {ω ∈ P : h(a, ω)= h(a, ω̄) for all a ∈ (0,∞)}. (1-12)

These subsets of the phase space are the analogues of the manifolds Xc defined by the constraints and
can be considered as a measure-theoretical replacement for the symplectic leaves

OSDiff
ω̄ = {ω ∈ P : ω = ω̄ ◦φ for some φ ∈ SDiff} ⊂ Oω̄,

where SDiff denotes the group of area-preserving diffeomorphisms in R2. In contrast to OSDiff
ω̄ , the orbit Oω̄

does not carry any topological information about ω̄, since ω ∈ Oω̄ as soon as ω is a measure-preserving
rearrangement of ω̄.

(4) The Hamiltonian (or energy functional) E : P → R, given by

E(ω)= −
1
2

∫
R2
ψ(x)ω(x) dx = −

1
4π

∫
R2

∫
R2

log |x − y|ω(x) ω(y) dx dy, (1-13)

where ψ =1−1ω is the stream function defined by

ψ(x)=
1

2π

∫
R2

log |x − y|ω(y) dy, x ∈ R. (1-14)

This is an analogue of the function f in the finite-dimensional example. Note that the usual kinetic energy
defined by 1

2

∫
R2 |u|

2 dx , where u = ∇
⊥ψ , is infinite for ω ∈ P. However, both definitions of the energy

coincide when
∫

R2 ω dx = 0, which is the case for instance if ω is the difference of two vorticities in P
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with the same mass. It is also worth observing that the functional E is not invariant under the scaling
transformation ω(x) 7→ ω(λ)(x) := λ2ω(λx) when M0 =

∫
R2 ω dx ̸= 0. In fact, one can easily check that

E(ω(λ))= E(ω)+
M2

0

4π
log λ for all λ > 0.

(5) The conserved quantities induced by Euclidean symmetries. These are the first-order moments M1,M2

and the symmetric second-order moment I defined by

Mj (ω)=

∫
R2

x jω(x) dx, j = 1, 2, I (ω)=

∫
R2

|x |
2ω(x) dx . (1-15)

Note that M1,M2 are associated to the translational symmetry, via Noether’s theorem, and I to the
rotational symmetry.

With these definitions, the Euler equation can be written in the form ∂tω = {E(ω), ω}, where { · , · }

denotes the Poisson bracket on P; see Section A5. Any steady state ω̄ ∈ P is a critical point of the
Hamiltonian E on the orbit Oω̄. Stability can be inferred when the restriction of the energy E to Oω̄ has a
strict local extremum at ω̄. In what follows, we focus on the maximizers of the energy, which correspond
to radially symmetric vortices.

1C. The constrained maximization of the energy in P. Under our assumptions, it is easy to determine
the maximizers of the Hamiltonian E under the constraints given by the functions h(a, ω) for a ∈ (0,∞).
Indeed, for any ω ∈ P, the orbit Oω contains a unique element ω∗ that is radially symmetric and
nonincreasing in the radial direction; this is the symmetric decreasing rearrangement of ω [Lieb and
Loss 1997]. The Riesz’s rearrangement inequality then shows that E(ω)≤ E(ω∗) for all ω ∈ Oω∗ , with
equality if and only if ω is a translate of ω∗; see [Carlen and Loss 1992, Lemma 2]. Of course ω∗ is a
stationary solution of the Euler equation, which represents a radially symmetric vortex with nonincreasing
vorticity profile. Our main focus here will be on the analogue of the quadratic form (1-5) for the steady
state ω̄ = ω∗.

First, the analogue of the Lagrange function (1-7) is

E(ω)−
∫

∞

0
3(a)h(a, ω) da = E(ω)−

∫
∞

0
3(a)

(∫
R2
χ(ω(x)− a) dx

)
da,

where the quantities 3(a) for a ∈ (0,∞) can be thought of as the Lagrange multipliers. The role of the
discrete index j in (1-7) is now played by the continuous parameter a > 0. Defining4

8(s)= −

∫
∞

0
3(a)χ(s − a) da = −

∫ s

0
3(a) da, s > 0, (1-16)

we see that the Lagrange function can also be expressed as

F(ω)= E(ω)+
∫

R2
8(ω(x)) dx, ω ∈ P. (1-17)

4The reason for the minus sign in (1-16) will become clear later.
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This quantity will be referred to later as the “free energy” of the vorticity distribution ω, a terminology
that will be discussed in Section 1D below.

Next, the analogue of the stationarity condition (1-4) at ω̄ = ω∗ is F ′(ω̄)= 0, where the linear form
η 7→ F ′(ω̄)η is defined for all η ∈ Tω̄P by

F ′(ω̄)η =

∫
R2

(
−ψ̄(x)+8′(ω̄(x))

)
η(x) dx, ψ̄(x)=

1
2π

∫
R2

log |x − y| ω̄(y) dy.

Stationarity is thus equivalent to the relation ψ̄(x) = 8′(ω̄(x)) for all x ∈ R2. Finally the analogue of
(1-5) is the quadratic form η 7→ F ′′(ω̄)[η, η], where

F ′′(ω̄)[η, η] =

∫
R2
(−ϕη+8′′(ω̄)η2) dx, ϕ(x)=

1
2π

∫
R2

log |x − y| η(y) dy.

Using the relation ∇ψ̄(x)=8′′(ω̄(x))∇ω̄(x), the second variation can be rewritten in the form

F ′′(ω̄)[η, η] =

∫
R2

(
−ϕη+

∇ψ̄

∇ω̄
η2
)

dx = 2E(η)+
∫

R2

∇ψ̄

∇ω̄
η2 dx, (1-18)

which is well known from Arnold’s work. Note that the ratio ∇ψ̄/∇ω̄ is meaningful only when the
vector ∇ω̄(x) is nonzero and colinear with ∇ψ̄(x) for almost all x ∈ R2. This condition is obviously
satisfied for all radially symmetric vortices with strictly decreasing vorticity profile.

1D. Overview of our results. We are now able to describe more precisely the results of this paper.
We consider a general family of radially symmetric vortices ω̄ ∈ P with vorticity profile satisfying
Hypotheses 2.1 below. Typical examples are the “algebraic vortex” ω̄(x)= (1+|x |

2)−κ, where κ > 1 is a
parameter, and the Oseen vortex for which ω̄(x)= e−|x |

2/4.

1D1. Arnold’s quadratic forms with and without constraints. In Section 2, we study in detail the quadratic
form (1-18) associated with the second variation of the Lagrange function (1-17) at the steady state ω̄ ∈P,
paying some attention to the functional-analytic questions. First of all, while we know from the constrained
maximization result that the restriction of that form to the tangent space Tω̄Oω̄ is negative, it is not clear
if this restriction is strictly negative definite, and if so in which function space. Our first main result is
Theorem 2.5, where we show that, if two neutral directions corresponding to translational symmetry
are disregarded, the restriction to Tω̄Oω̄ of the quadratic form (1-18) is indeed strictly negative in an
appropriate weighted L2 space. The proof ultimately relies on a variant of the Krein–Rutman theorem.

We next investigate the index of the quadratic form (1-18) on a much larger subspace, corresponding
to perturbations η ∈ Tω̄P satisfying

∫
R2 η(x) dx = 0. In other words, we relax all constraints given by the

Casimir functions (1-10), except for the mass M0 defined in (1-11), which is still supposed to be constant.
A priori there is no reason why the form (1-18) should be negative definite in this larger sense, and indeed
Theorem 2.8 shows that this is not always the case. More precisely, we show that negativity holds in
the large sense if and only if the optimal constant in some weighted Hardy inequality (where the weight
function depends on the vorticity profile ω̄) is smaller than 1. While that condition is not easy to check in
general, we deduce from Corollary 2.11 that it is fulfilled at least for the Oseen vortex, as well as for the
algebraic vortex ω̄(x)= (1 + |x |

2)−κ if κ ≥ 2.
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Although the mass constraint is rather natural, one may wonder if, for some vorticity profiles, the
quadratic form (1-18) can be negative definite for all perturbations η ∈ Tω̄P; this question is briefly
discussed in Section 2C. Finally, in Section 2D, we give a fairly explicit expression of the energy E(ω̄)
in terms of the constraints h(a, ω̄) for all a > 0; see Proposition 2.18. One obtains in this way an
infinite-dimensional analogue of the quantity M(c1, . . . , cn) defined in (1-8). Among other things, we
justify our claim that the index of the quadratic form (1-5) is related to the concavity of the function (1-8)
(which is a well-known fact), and we discuss a similar link in the infinite-dimensional case.

As an aside, we mention here that the stability of radially symmetric vortices for the two-dimensional
Euler equations can also be studied using other conserved quantities, such as the second-order symmetric
moment I defined in (1-15); see, e.g., [Marchioro and Pulvirenti 1994, Chapter 3].

1D2. The global maximizers of the free energy. Let ψ̄ be the stream function associated with the radially
symmetric vortex ω̄. We have seen that the analogue of the Lagrange function (1-7) is given by the “free
energy” (1-17), where the function8 is defined, up to an additive constant, by the relation ψ̄(x)=8′(ω̄(x)).
The appellation “free energy” is partially justified by a (loose) analogy of formula (1-17) with the classical
thermodynamical expression for the free energy

F = U − T S. (1-19)

Here U is the internal energy (of a suitable system), T is the temperature, and S is the entropy. In (1-17),
the energy E is analogous to U, the integral

∫
R2 8(ω(x)) dx is analogous to S, and one can argue that it is

reasonable to take T =−1. Of course, T has nothing to do with the real temperature of the fluid, but should
roughly be thought of as the statistical mechanics temperature of our system in the sense of [Onsager 1949].
We have not attempted to make this connection rigorous, which would take us in a different direction.

In Section 3, we consider vortices ω̄ which are global maximizers of the free energy F(ω) for all ω ∈P

satisfying
∫

R2 ω dx =
∫

R2 ω̄ dx . Such equilibria can be expected to have strong stability properties, and
may be useful for other purposes too. Using a direct approach, in the sense of the calculus of variations,
we prove the existence of global maximizers under fairly general assumptions on the function 8; see
Theorem 3.4. However, we do not have any efficient method to determine if a given vortex ω̄ is a global
maximizer or not. A necessary condition is of course that the quadratic form (1-18) be negative on
perturbations η with zero mean, see Theorem 2.8, but there is no reason to believe that this is sufficient.
Numerical evidence indicates that the Oseen vortex is a global maximizer, and so are the algebraic
vortices ω̄(x)= (1 +|x |

2)−κ for κ ≥ 2. In the particular case κ = 2, maximality can be deduced from the
logarithmic Hardy–Littlewood–Sobolev inequality∫

R2

∫
R2

log
1

|x − y|
ω(x)ω(y) dx dy ≤

1
2

∫
R2
ω(x) log(ω(x))+

1 + log(π)
2

, (1-20)

which holds for all ω ∈P with M0(ω)= 1; see [Carlen and Loss 1992]. We mention that (1-20) is related
to Onofri’s sharp version [1982] of the Moser–Trudinger inequality.

1D3. The effect of viscosity: application to Oseen vortices. In Section 4, we consider the stability of the
Gaussian vortex under the evolution defined by the Navier–Stokes equation ∂tω+ u · ∇ω = ν1ω, where
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ν > 0 is the viscosity parameter. More precisely, we show that the quadratic form (1-18) can be used to
give an alternative proof of the local stability results established in [Gallay and Wayne 2005]. We believe
that a proof relying on the second variation of the energy is of some interest, because the analogue of the
form (1-18) can be defined for more complicated vortex structures as well, whereas the simpler approach
in [Gallay and Wayne 2005] may be more difficult to adapt.

The addition of the viscous term results in important new issues: the radial vortices are no longer steady
states and the orbits (1-12) are no longer invariant under the evolution, so that much of the geometric
picture underlying the Euler equation is destroyed. The first problem is settled by introducing self-similar
variables and restricting ourselves to Oseen’s vortex, which is a stationary solution of the Navier–Stokes
equation in these new coordinates. Thanks to Theorem 2.8 and Corollary 2.11, the quadratic form (1-18)
is positive definite for all perturbations with zero mean. This form is invariant under the evolution defined
by the linearized Euler equation at the vortex, but not under the Navier–Stokes evolution due to the
viscous term and the nonlinearity. The effect of viscosity is measured by a second quadratic form, which
happens to have a favorable sign; see Theorem 4.2. We do not know if this is just a lucky coincidence, or
if there are deeper reasons behind that. In any event, this nice structure allows us to recover the local
stability result of [Gallay and Wayne 2005], except for a slight difference in the choice of the function
space; see Theorem 4.5. Again, we emphasize that the functional setting used in that work relies in an
essential way on the radial symmetry of Oseen’s vortex, through the existence of conserved quantities
such as the moment I in (1-15), whereas our new approach can, at least in principle, be adapted to more
general situations, where other methods do not work.

2. The second variation of the energy

In this section we study the coercivity, on various subspaces, of the quadratic form (1-18) which represents
the second variation of the free energy (1-17) at a radially symmetric vortex ω̄ ∈ P. We assume that
ω̄(x)= ω∗(|x |) for all x ∈ R2 and that the vorticity profile ω∗ : [0,+∞)→ R is a C2 function with the
following properties:

Hypotheses 2.1. The vorticity profile ω∗ ∈ C2([0,+∞)) satisfies

(1) ω∗(0) > 0, ω′
∗
(0)= 0, and ω′′

∗
(0) < 0,

(2) ω′
∗
(r) < 0 for all r > 0, and ω∗(r)→ 0 as r → +∞,

(3) there exist C > 0 and β > 2 such that |ω′
∗
(r)| ≤ C(1 + r)−β−1 for all r > 0.

It follows in particular from (2) and (3) that ω∗(r)= −
∫

∞

r ω′
∗
(s) ds, so that

0< ω∗(r)≤
C

(1 + r)β
for all r > 0 and 0<

∫
∞

0
rω∗(r) dr <∞. (2-1)

Let ψ̄ be the stream function associated with ω̄ as in (1-14). We have ψ̄(x)= ψ∗(|x |), where the stream
profile ψ∗ : [0,+∞)→ R satisfies

ψ ′′

∗
(r)+ 1

r
ψ ′

∗
(r)= ω∗(r); hence ψ ′

∗
(r)=

1
r

∫ r

0
sω∗(s) ds for all r > 0. (2-2)
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We introduce the weight function A : [0,+∞)→ R defined by A(0)= −ω∗(0)/(2ω′′
∗
(0)) and

A(r)= −
ψ ′

∗
(r)

ω′
∗
(r)

= −
1

rω′
∗
(r)

∫ r

0
sω∗(s) ds, r > 0. (2-3)

Hypotheses 2.1 ensure that A ∈ C0([0,+∞))∩ C1((0,+∞)). Moreover, there exists a constant C > 0
such that A(r)≥ C(1 + r)β for all r ≥ 0.

Let A : R2
→ (0,∞) be the radially symmetric extension of A to R2, namely A(x)= A(|x |) for all

x ∈ R2. We introduce the weighted L2 space X defined by

X =

{
ω ∈ L2(R2) : ∥ω∥

2
X :=

∫
R2

A(x)|ω(x)|2 dx <∞

}
, (2-4)

so that ω ∈ X if and only if A1/2ω ∈ L2(R2). Our assumptions ensure that A−1
∈ L1(R2), and using

Hölder’s inequality we easily deduce that X ↪→ L1(R2). We also consider the closed subspaces X1 ⊂

X0 ⊂ X defined by

X0 =

{
ω ∈ X :

∫
R2
ω(x) dx = 0

}
,

X1 =

{
ω ∈ X0 :

∫
R2

x j

|x |
ω(x) dx = 0 for j = 1, 2

}
.

(2-5)

We observe that, for anyω∈X , the energy E(ω) introduced in (1-13) is well-defined. This a consequence
of the following classical estimate, whose proof is reproduced in Section A1 for the reader’s convenience.

Proposition 2.2. Assume that ω ∈ L1(R2) satisfies∫
R2

|ω(x)| log(1 + |x |) dx <∞ and
∫

R2
|ω(x)| log

(
1 + |ω(x)|

)
dx <∞. (2-6)

Then the last member in (1-13) is well-defined, and the energy E(ω) satisfies the bound

|E(ω)| ≤ C∥ω∥L1

(∫
R2

|ω(x)| log(2 + |x |) dx +

∫
R2

|ω(x)| log+

|ω(x)|
∥ω∥L1

dx
)
, (2-7)

where log+(a)= max(log(a), 0). If , moreover,
∫

R2 ω(x) dx = 0, then E(ω)=
1
2

∫
R2 |u|

2 dx , where

u(x)= ∇
⊥ψ(x)=

1
2π

∫
R2

(x − y)⊥

|x − y|2
ω(y) dy, x ∈ R2. (2-8)

Since any ω ∈ X obviously satisfies (2-6), we can consider the quadratic form J on X defined by
J (ω)=

1
2∥ω∥

2
X − E(ω), or explicitly

J (ω)=
1
2

∫
R2

A(x)ω(x)2 dx +
1

4π

∫
R2

∫
R2

log |x − y|ω(x) ω(y) dx dy, ω ∈ X. (2-9)

In the particular case where ω ∈ X0, namely when ω has zero average over R2, Proposition 2.2 gives the
alternative expression

J (ω)=
1
2

∫
R2
(A(x)ω(x)2 − |u(x)|2) dx, ω ∈ X0, (2-10)
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where u is the velocity field associated with ω via the Biot–Savart formula (2-8). In view of (1-18)
and (2-3), we have J = −

1
2 F ′′(ω̄), where F ′′(ω̄) is the second variation of the free energy (1-17) at the

equilibrium ω̄. It is clear that X is the largest function space on which this second variation is well-defined.
Our main goal in this section is to study the positivity and coercivity properties of the quadratic form J

on the spaces X , X0, and X1 defined in (2-4), (2-5). To formulate our results, it is useful to take the
decomposition X = Xrs ⊕ X⊥

rs , where

Xrs = {ω ∈ X : ω is radially symmetric}, (2-11)

and X⊥
rs is the orthogonal complement of Xrs in the Hilbert space X . Referring to the geometric picture

of Section 1B, we consider X⊥
rs as the tangent space to the orbit Oω̄ at ω̄. This interpretation can be

formally justified as follows: if ω̄ ∈ X is smooth, the tangent space Tω̄Oω̄ is spanned by vorticities
of the form v · ∇ω̄, where v is a (smooth and localized) divergence-free vector field, and using polar
coordinates as in Section 2A below one verifies that such vorticities are indeed orthogonal in X to all
radially symmetric functions. A contrario, since there is a one-to-one correspondence in P between
orbits and symmetric decreasing rearrangements, it is clear that any radially symmetric perturbation of
the equilibrium ω̄ is transverse to the orbit Oω̄.

It is easy to verify that J (ω1+ω2)= J (ω1)+ J (ω2) when ω1 ∈ Xrs and ω2 ∈ X⊥
rs , so that the restrictions

of J to Xrs and X⊥
rs can be studied separately. We first consider the tangent space X⊥

rs in Section 2A, and
postpone the study of radially symmetric perturbations (with zero or nonzero mass) to Sections 2B and 2C.

Remark 2.3. Differentiating the first equality in (2-2), we see that the function φ = ψ ′
∗

satisfies

(L0φ)(r) := −φ′′(r)− 1
r
φ′(r)+ 1

r2φ(r)=
1

A(r)
φ(r), r > 0, (2-12)

where A(r)≥ C(1+r)β. Since φ > 0, Sturm–Liouville theory asserts that µ= 1 is the lowest eigenvalue of
the (generalized) eigenvalue problem L0φ=µA−1φ on R+, with boundary conditions φ(0)=φ(+∞)=0;
see [Coddington and Levinson 1955; Hartman 1964]. This observation will be used later.

Remark 2.4. Hypotheses 2.1 are sufficient for our results to hold, but can be relaxed in several ways. In
particular, we can consider vortices that are not smooth at the origin, but the assumption that ω′

∗
(r) < 0

for all r > 0 seems essential. This excludes vortices with compact support from our considerations, but
as our motivation comes from applications to the Navier–Stokes equations, Hypotheses 2.1 are good
enough for our purposes here. Of course, extensions of the theory that would include compactly supported
vortices might be relevant in other situations and can probably be constructed, although they may require
additional work.

2A. Positivity of the quadratic form J on X⊥
rs.

Theorem 2.5. Under Hypotheses 2.1, the quadratic form J defined by (2-10) is nonnegative on the
space X⊥

rs ⊂ X0. Moreover, there exists a constant γ > 0 such that

J (ω)≥
γ

2

∫
R2

A(x)ω(x)2 dx for all ω ∈ X⊥

rs ∩ X1. (2-13)
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Proof. We introduce polar coordinates (r, θ) in R2, and given anyω∈ X⊥
rs we use the Fourier decomposition

ω(r cos(θ), r sin(θ))=

∑
k ̸=0

ωk(r)eikθ , r > 0, θ ∈ R/(2πZ), (2-14)

where the sum runs over all nonzero integers k ∈ Z \ {0}. By Parseval’s relation we have∫
R2

A(x)ω(x)2 dx = 2π
∑
k ̸=0

∫
∞

0
A(r) |ωk(r)|2 r dr,∫

R2
|u(x)|2 dx =

∫
R2
(−1−1ω)(x) ω(x) dx = 2π

∑
k ̸=0

∫
∞

0
Bk[ωk](r) ω̄k(r) r dr,

(2-15)

where Bk is the integral operator on the half-line R+ defined by the formula

(Bk[ f ])(r)=
1

2|k|

∫
∞

0
min

(r
s
,

s
r

)|k|

f (s) s ds, r > 0. (2-16)

Note that g = Bk[ f ] is the unique solution of the ODE

−g′′(r)− 1
r

g′(r)+ k2

r2 g(r)= f (r), r > 0, (2-17)

which is regular at the origin and converges to zero at infinity.
In view of (2-15), the proof of Theorem 2.5 reduces to the study of the one-dimensional inequality∫

∞

0
(Bk[ f ])(r) f̄ (r) r dr ≤ Ck

∫
∞

0
A(r)| f (r)|2 r dr, (2-18)

which depends on the angular Fourier parameter k ∈ Z \ {0}. More precisely, the quadratic form J is
nonnegative on X⊥

rs if and only if, for all k ̸= 0, inequality (2-18) holds with some constant Ck ≤ 1. In
addition, we have the lower bound (2-13) on the subspace X⊥

rs ∩ X1 if and only if inequality (2-18) holds
with a better constant Ck ≤1−γ for all k ̸=0, assuming when |k|=1 that f satisfies the additional condition∫

∞

0
f (r) r dr = 0. (2-19)

It remains to establish inequality (2-18) for all k ∈ Z \ {0}. We obviously have the pointwise bound
|(Bk[ f ])(r)|≤ (Bk[| f |])(r), so that we can restrict ourselves to nonnegative functions f . Moreover the op-
erator Bk preserves positivity, and an inspection of the formula (2-16) reveals that 0 ≤ Bk[ f ]≤ |k|

−1 B1[ f ]

if f ≥ 0. As a consequence, to show that J is nonnegative on X⊥
rs , it is sufficient to prove inequality

(2-18) in the particular case where |k| = 1 and f ≥ 0. Setting h = A1/2 f , we write that inequality in the
equivalent form ∫

∞

0
(B̃1[h])(r) h(r) r dr ≤ C1

∫
∞

0
h(r)2 r dr, (2-20)

where B̃1[h] = A−1/2 B1[A−1/2h]. The following assertions play a crucial role in our argument:

Claim 1: The operator B̃1 is self-adjoint and compact in the (real) space Y = L2(R+, r dr).
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Indeed, take h ∈ Y with ∥h∥Y ≤ 1, and define f = A−1/2h, g = B1[ f ] = A1/2 B̃1[h]. Applying (2-16)
with |k| = 1, we see that

g(r)=
1
2r

∫ r

0
A(s)−1/2 h(s) s2 ds +

r
2

∫
∞

r
A(s)−1/2 h(s) ds, r > 0,

and using Hölder’s inequality we deduce

|g(r)| ≤

{
1
2r

(∫ r

0
A(s)−1 s3 ds

)1/2

+
r
2

(∫
∞

r
A(s)−1 s−1 ds

)1/2}
∥h∥Y . (2-21)

As A(r)≥ C(1 + r)β with β > 2, the right-hand side of (2-21) is uniformly bounded, so that ∥g∥L∞ ≤ C
for some universal constant C . It also follows from (2-21) that g(r)→ 0 as r → 0 and r → +∞. On
the other hand, since g satisfies the ODE (2-17) with k = 1 and f = A−1/2h, a standard energy estimate
yields the bound∫

∞

0

(
g′(r)2 +

g(r)2

r2

)
r dr =

∫
∞

0
g(r) A(r)−1/2 h(r) r dr ≤ ∥g∥L∞∥A−1/2

∥Y ∥h∥Y ≤ C. (2-22)

In view of (2-21) and (2-22), the Fréchet–Kolmogorov theorem [Reed and Simon 1978, Theorem XIII.66]
implies that the function B̃1[h] = A−1/2g lies in a compact set of Y, so that the operator B̃1 is compact.
To prove that B̃1 is self-adjoint, we take h1, h2 ∈ Y and observe that∫

∞

0
(B̃1[h1])(r) h2(r) r dr =

∫
∞

0

(
g′

1(r)g
′

2(r)+
g1(r)g2(r)

r2

)
r dr,

where gj = B1[A−1/2h j ] for j = 1, 2. This expression is clearly a symmetric function of (h1, h2).

Claim 2: The spectral radius of B̃1 is equal to 1, and λ= 1 is a simple eigenvalue of B̃1.
To see that, we first observe that λ= 1 is an eigenvalue of B̃1 with a positive eigenfunction. Indeed,

using (2-2), it is straightforward to verify that the function g = ψ ′
∗

satisfies the ODE (2-17) with k = 1
and f = −ω′

∗
. This shows that B1[−ω

′
∗
] = ψ ′

∗
; hence defining h = A−1/2ψ ′

∗
= −A1/2ω′

∗
we conclude

that B̃1[h] = h. On the other hand, assume that λ > 0 is an eigenvalue of B̃1, with eigenfunction h ∈ Y.
Defining f = A−1/2h, we see that B1[ f ] = λA f , so that the function g = B1[ f ] satisfies the generalized
eigenvalue problem

−g′′(r)−
1
r

g′(r)+
1
r2 g(r)= µ

g(r)
A(r)

, r > 0, (2-23)

with the boundary conditions g(0) = g(+∞) = 0, where µ = 1/λ, We already observed that µ = 1 is
the lowest eigenvalue of (2-23); see Remark 2.3. It follows that λ = 1 is the largest eigenvalue of the
integral operator B̃1, whose spectral radius is therefore equal to 1. The argument above also shows that
all positive eigenvalues of B̃1 are simple, because (2-23) is a second-order differential equation.

It is now a simple task to conclude the proof of Theorem 2.5. Claims 1 and 2 imply the validity
of inequality (2-20) with C1 = 1. We deduce that (2-18) holds for |k| = 1 with Ck = 1, and (since
Bk ≤ |k|

−1 B1) for |k| ≥ 2 with Ck ≤ 1/|k|. This shows that the quadratic form J is nonnegative on X⊥
rs .

On the other hand, if we assume that ω ∈ X⊥
rs ∩ X1, the function f =ω±1 satisfies condition (2-19), which
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means that h = A1/2 f is orthogonal in Y to the one-dimensional subspace Y0 spanned by the positive
function χ = A−1/2. It is clear that Y ⊥

0 does not contain any positive function, and in particular does
not include the principal eigenfunction h0 = −A1/2ω′

∗
of the operator B̃1. So, applying Lemma 4.7 and

Remark 4.8 below, we deduce that 1 − B̃1 > 0 on Y ⊥

0 , which means that inequality (2-20) holds on Y ⊥

0
with some constant C ′

1 < 1. Taking into account the other values of k, for which Ck ≤ 1/|k| ≤
1
2 , we

conclude that estimate (2-13) holds with γ = min
( 1

2 , 1−C ′

1

)
. □

Remark 2.6. The Krein–Rutman theorem [Deimling 1985, Theorem 19.2] asserts that the spectral
radius of the compact and positivity-preserving operator B̃1 is an eigenvalue with positive eigenfunction.
However, since the cone of positive functions has empty interior in Y, we cannot apply Theorem 19.3 in
[Deimling 1985] to conclude that B̃1 has a unique eigenvalue with positive eigenfunction, which is thus
equal to the spectral radius. For this reason, we prefer invoking Sturm–Liouville theory to prove that 1 is
the largest eigenvalue of B̃1.

Remark 2.7. If β > 4 in Hypotheses 2.1, the conclusion of Theorem 2.5 remains valid, with the same
proof, if the subspace X1 is replaced by

X1 =

{
ω ∈ X0 :

∫
R2

x j ω(x) dx = 0 for j = 1, 2
}
. (2-24)

This possibility will be used in Section 4.

2B. Positivity of the quadratic form J on Xrs ∩ X0. The quadratic form J is not necessarily positive
when considered on the subspace Xrs ∩ X0, which consists of radially symmetric functions with zero
mean. This question is related to the optimal constant in the weighted Hardy inequality∫

∞

0
f (r)2 dr

r
≤ CH

∫
∞

0
A(r) f ′(r)2 dr

r
, (2-25)

where f : [0,+∞)→ R is an absolutely continuous function with f (0)= f (+∞)= 0. Weighted Hardy
inequalities are extensively studied in the literature; see, e.g., [Mazya 2011, Section 1.3.2]. In particular,
it is known that (2-25) holds for some constant CH > 0 if and only if the positive function A satisfies

lim sup
r→0

(
log

1
r

)∫ r

0

s
A(s)

ds <∞ and lim sup
r→+∞

log(r)
∫

∞

r

s
A(s)

ds <∞. (2-26)

Both conditions in (2-26) are fulfilled in our case, since A(r)≥ C(1 + r)β for some β > 2.

Theorem 2.8. Under Hypotheses 2.1, the quadratic form J defined by (2-10) is coercive on Xrs ∩ X0 if
and only if Hardy’s inequality (2-25) holds for some CH < 1. In that case we have

J (ω)≥
γ

2

∫
R2

A(x)ω(x)2 dx for all ω ∈ Xrs ∩ X0, (2-27)

where γ = 1 − CH .

Proof. Given ω ∈ Xrs ∩ X0, we write ω(x)= ω0(|x |) and we consider the stream function ψ0 defined (up
to an irrelevant additive constant) by

ψ ′

0(r)=
1
r

∫ r

0
sω0(s) ds = −

1
r

∫
∞

r
sω0(s) ds, r > 0.
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Defining f (r)=rψ ′

0(r), we see that f is absolutely continuous on R+ with f (0)= f (+∞)=0. Moreover
we have ω0(r) = f ′(r)/r and u0(r) := ψ ′

0(r) = f (r)/r by construction. Finally the assumption that
ω0 ∈ Xrs ∩ X0 ensures that A1/2ω0 and u0 belong to the space Y = L2(R+, r dr). We thus have

J (ω)= π

∫
∞

0

(
A(r)ω0(r)2 − u0(r)2

)
r dr = π

∫
∞

0

(
A(r) f ′(r)2 − f (r)2

) dr
r
, (2-28)

and using (2-25) we conclude that (2-27) holds with γ = 1 − CH . This proves that the quadratic form J
is coercive on Xrs ∩ X0 if CH < 1. Conversely, if (2-27) holds for some γ > 0, it follows from (2-28) that
inequality (2-25) is valid with CH = 1 − γ . □

As is well known, the optimal constant in Hardy’s inequality (2-25) is related to the lowest eigenvalue
of a self-adjoint operator. A convenient way of seeing this is to apply the change of variables r = ex,
h(x)= f (ex), B(x)= e−2x A(ex), which transforms (2-25) into the equivalent inequality∫

R

h(x)2 dx ≤ CH

∫
R

B(x)h′(x)2 dx . (2-29)

The integral in the right-hand side of (2-29) defines a closed quadratic form on the Hilbert space H = L2(R),
with dense domain D = {h ∈ H : B1/2h′

∈ H}. Let

B : D(B)−→ H, h 7−→ −∂x(B(x)∂x h),

be the self-adjoint operator in H associated with the quadratic form (2-29) by Friedrich’s representation
theorem [Kato 1966]. Since B(x) > 0 for all x ∈ R we know that B is positive, and using the fact that
x2 B(x)−1

→ 0 as |x |→∞ it is easy to verify that B has compact resolvent in H , and hence purely discrete
spectrum. The optimal constant in CH in (2-29) is precisely the inverse of the lowest eigenvalue of B:

CH = max{λ−1
: λ ∈ spec(B)}. (2-30)

By Sturm–Liouville theory, ifµ=C−1
H is the lowest eigenvalue of B, there exists a positive eigenfunction

h ∈ D(B) such that Bh = µh. Setting h(x)= f (ex), we see that f is a positive solution of the ODE

−∂r

(
A(r)

r
∂r f (r)

)
= µ

f (r)
r
, r > 0, (2-31)

satisfying the boundary conditions f (0) = f (+∞) = 0. Moreover
∫

∞

0 A(r) f ′(r)2 dr/r <∞ by con-
struction. It is not easy to guess from (2-31) whether µ is smaller or larger than 1, but under additional
assumptions on the vortex profile it is possible to make another change of variables which puts (2-31)
into a form that allows for a comparison with (2-12).

Lemma 2.9. If the function A in (2-3) satisfies

A ∈ C2([0,+∞)) and sup
r≥1

(
A(r)
r2 +

A′(r)2

r2 A(r)

)∫
∞

r

s
A(s)

ds <∞, (2-32)

then the function g : [0,+∞)→ R defined by g(r)= A(r)1/2 f (r)/r is a solution of the ODE

−g′′(r)−
1
r

g′(r)+
1
r2 g(r)+ V (r)g(r)=

µ

A(r)
g(r), (2-33)
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with boundary conditions g(0)= g(+∞)= 0, where

V (r)= χ ′′(r)− 1
r
χ ′(r)+χ ′(r)2 and χ(r)=

1
2

log(A(r)). (2-34)

Proof. Since f satisfies (2-31), a direct calculation shows that g(r) := A(r)1/2 f (r)/r is a solution
of (2-33), where the potential V is defined by (2-34). As for the boundary conditions, we recall that∫

∞

0 A(r) f ′(r)2 dr/r <∞; hence
∫

∞

0 | f ′(r)| dr <∞. As f (r)=
∫ r

0 f ′(s) ds, we have

| f (r)|
r

≤
1
r

(∫ r

0

s
A(s)

ds
)1/2(∫ r

0
A(s) f ′(s)2

ds
s

)1/2

r→0−−−→ 0,

which shows that g(r)→ 0 as r → 0. Similarly, since f (r)= −
∫

∞

r f ′(s) ds, we have

|g(r)| ≤
A(r)1/2

r

(∫
∞

r

s
A(s)

ds
)1/2(∫ ∞

r
A(s) f ′(s)2

ds
s

)1/2

r→+∞
−−−−→ 0,

thanks to (2-32). □

Remark 2.10. The same arguments show that r2g′(r)→ 0 as r → 0 and g′(r)→ 0 as r → +∞, at least
along appropriate sequences.

Let L be the differential operator defined by

L = L0 + V = −∂2
r −

1
r
∂r +

1
r2 + V (r), (2-35)

where L0 was introduced in (2-12). We know from (2-33) that Lg =µA−1g, where µ= C−1
H and g is the

positive function defined in Lemma 2.9. On the other hand, we observed in Remark 2.3 that L0φ = A−1φ,
where φ = ψ ′

∗
is also a positive function vanishing at the origin and at infinity. Using Sturm–Liouville

theory, we easily deduce the following useful criterion:

Corollary 2.11. Under assumptions (2-32), if the function V defined by (2-34) does not change sign, the
optimal constant in Hardy’s inequality (2-25) satisfies CH ≤ 1 if V ≥ 0, and CH ≥ 1 if V ≤ 0; moreover,
CH = 1 only if V is identically zero.

Proof. With the notation above, we have L0φ− A−1φ = 0 and

L0g − A−1g = Lg − (A−1
+ V )g = R, where R = (µ− 1)A−1g − V g. (2-36)

Since rRφ = r(φ(L0g)− g(L0φ))= (d/dr)(r(φ′g − g′φ)), we have for r1 > r0 > 0 the identity∫ r1

r0

R(r)φ(r)r dr = r
(
φ′(r)g(r)− g′(r)φ(r)

)∣∣r=r1

r=r0
. (2-37)

Now, we let r0 tend to 0 and r1 to +∞ along appropriate sequences, in such a way that the right-hand
side of (2-37) converges to zero. This possible, because we know that φ(r)= O(r) and φ′(r)= O(1) as
r → 0, while φ(r) = O(1/r) and φ′(r) = O(1/r2) as r → +∞; moreover, the behavior of g in these
limits is given in Lemma 2.9 and Remark 2.10. We thus deduce from (2-37) that

∫
∞

0 Rφr dr = 0, which
is impossible if the function R has a constant sign and is not identically zero. So, if V does not change
sign, we must have µ≥ 1 if V ≥ 0 and µ≤ 1 if V ≤ 0; moreover, µ= 1 is possible only if V ≡ 0. Since
µ= C−1

H , this gives the desired conclusion. □
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Remark 2.12. As is easily verified, the optimal constant CH in Hardy’s inequality (2-25) is unchanged if
the function A(r) is replaced by λ−2 A(λr) for some λ > 0. This corresponds to a rescaling of the vortex
profile ω∗.

We now give two important examples where the sign of CH − 1 can be determined.

Example 2.13 (algebraic vortex). Given κ > 1, we define

ω∗(r)=
1

(1 + r2)κ
, ψ ′

∗
(r)=

1
2(κ−1)r

(
1 −

1
(1 + r2)κ−1

)
. (2-38)

We have

A(r)= −
ψ ′

∗
(r)

ω′
∗
(r)

=
1

4κ(κ−1)r2 ((1 + r2)κ+1
− (1 + r2)2).

When κ = 2 (Kaufmann–Scully vortex), inequality (2-25) holds with optimal constant CH = 1, and is
saturated for f (r)= r2/(1+r2)2. Indeed, it is easy to verify that A(r)= (1+r2)2/8 and V (r)= 0 in that
particular case. Taking g(r)= r/(1 + r2), a direct calculation shows that Lg = A−1g, so that CH = 1.

If κ > 2, we prove in Section A2 that the potential V is positive, so that CH < 1 by Corollary 2.11.
Finally, if 1< κ < 2, the potential V is negative, implying that CH > 1. Summarizing, for the family of
algebraic vortices (2-38), the quadratic form J is coercive on Xrs ∩ X0 if and only if κ > 2.

Example 2.14 (Gaussian vortex). We next consider the Oseen vortex given by

ω∗(r)= e−r2/4, ψ ′

∗
(r)=

2
r
(1 − e−r2/4), A(r)=

4
r2 (e

r2/4
− 1). (2-39)

In that case too, the potential V defined in (2-34) is positive; see Section A2. By Corollary 2.11, we
conclude that CH < 1, so that the quadratic form J is coercive on Xrs ∩ X0. A numerical calculation
gives the approximate value CH ≈ 0.57, so that γ ≈ 0.43.

Remark 2.15. In a finite-dimensional situation, one can use statements such as Theorems 2.5 and 2.8 for
showing the nonlinear Lyapunov stability of the corresponding steady solution, at least if the smoothness
class of the relevant objects is C2. More precisely, if a flow ẋ = b(x) on a finite-dimensional manifold
preserves a C2 function f which attains a nondegenerate local maximum at x̄ , then the sets { f (x) >
f (x̄)− ϵ} are invariant under the flow and for small ϵ are well-approximated by the small balls given by
the quadratic form −

1
2 f ′′(x̄)[x − x̄, x − x̄]. A standard way to see this is to write f (x) > f (x̄)− ϵ as

−
1
2

f ′′(x̄)[x − x̄, x − x̄] −

∫ 1

0
(1 − t)

(
f ′′((1 − t)x̄ + t x)− f ′′(x̄)

)
[x − x̄, x − x̄] dt < ϵ.

When f ′′ is continuous at x̄ and x is close to x̄ , the integral in this inequality is dominated by a small
multiple of −

1
2 f ′′(x̄)[x − x̄, x − x̄] and the usual Lyapunov stability statements follow. In our situation

here the set Oω̄ is not a C2 submanifold and the free energy functional ω 7→ E(ω)+
∫

R2 8(ω(x)) dx is
not of class C2. It is not hard to see directly that the expression

−

∫
R2

∫ 1

0
(1 − t)8′′

(
(1 − t)ω̄(x)+ tω(x)

)
(ω(x)− ω̄(x))2 dt dx
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cannot be dominated by −
1
2

∫
R2 8

′′(ω̄)(ω(x) − ω̄(x))2 dx in a suitable way. One may still use the
invariance of the sets Uω̄,ϵ := {ω ∈ Oω̄ ∩ X1 : E(ω) > E(ω̄)− ϵ} under the Euler evolution, and possibly
also the conservation of the second-order moment I (ω) defined in (1-15), to obtain Lyapunov-type
stability statements. For results in this spirit when the domain occupied by the fluid is compact, the reader
can consult [Burton 2005] and [Arnold and Khesin 1998, Section II.4]. Our situation here is somewhat
complicated by the noncompactness of our flow domain R2, but under our assumptions one still has⋂
ϵ>0 Uω̄,ϵ = {ω̄} (by using the uniqueness of the maximizers discussed in [Carlen and Loss 1992], for

example). This could be turned into Lyapunov-type stability statements, although not quite of the same
form as in the C2 case. The important point is that there are estimates for the proximity of “almost
maximizers” to the exact maximizers, an issue that also appears in other problems, such as the stability of
the isoperimetric inequality [Fusco et al. 2008], and of the Sobolev inequality [Bianchi and Egnell 1991].

In the present work our focus is on quadratic forms, due to their applicability to the viscous case. Of
course, at the level of the linearized inviscid equation ωt + ū · ∇ω+ u · ∇ω̄ = 0, the quadratic form J
does provide Lyapunov stability in the space X1 if inequality (2-25) holds with CH < 1. We note that the
linearized analysis in other topologies can be more complicated; see for example [Bedrossian et al. 2019].

2C. The quadratic form J without mass constraint. In this short section we make a few remarks on
the index of the quadratic form (2-9) when considered on the whole space X defined by (2-4), and not
only on the subspace X0 given by (2-5). Our first observation is that, due to lack of scale invariance in
this context, the form J cannot be positive on X if the underlying steady state ω̄ is sharply concentrated
near the origin. To see this, we consider the rescaled vortex ω̄λ(x)= λ2ω̄(λx) and the associated weight
function Aλ(x)= λ−2A(λx); see Remark 2.12. We denote by Jλ the quadratic form on X corresponding
to the steady state ω̄λ, namely the form (2-9) where A is replaced by Aλ. If ω ∈ X and ωλ(x)= λ2ω(λx),
a simple calculation shows that

Jλ(ωλ)= J (ω)−
M2

0

4π
log(λ), where M0 =

∫
R2
ω(x) dx .

If M0 ̸= 0, it is clear that Jλ(ωλ) < 0 when λ> 0 is sufficiently large, so that the quadratic form Jλ cannot
be positive in this regime.

Remark 2.16. The negative direction arising by such a rescaling is related to a particular choice of the unit
of length implicitly involved in the kernel 1

2π log |x |. In writing log |x |, we imply that x is dimensionless.
When x is measured in some units of length, we should write the kernel as 1

2π log(|x |/r0), where r0 is a
reference length. The choice of r0 does not affect the behavior of the system, and in the stability analysis
based on J it can be compensated for by adding to the quadratic form J a suitable multiple of the quantity(∫

R2 ω(x, t) dx
)2, which is preserved by the evolution. Hence, as one can expect, the stability analysis is

independent of the choice of the reference length r0, or, equivalently, of the scaling parameter λ above.

We next argue that, for any vortex ω̄ satisfying Hypotheses 2.1, the index of the quadratic form is well-
defined in the sense that J has (at most) a finite number of negative directions. In view of Theorem 2.5, it is
sufficient to evaluate J on radially symmetric functions ω ∈ Xrs. The following expression will be useful:
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Lemma 2.17. For any ω ∈ Xrs, we have

J (ω)= π

∫
∞

0
A(r)ω(r)2r dr +π

∫
∞

0

∫
∞

0
log(max(r, s))r ω(r) s ω(s) dr ds. (2-40)

Proof. Here and below, with a slight abuse of notation, we consider any ω ∈ Xrs as a function of the
one-dimensional variable r = |x |. For such vorticities, the first integral in (2-9) obviously gives the first
term in (2-40), so it remains to establish the following expression of the energy:

E(ω)= −π

∫
∞

0

∫
∞

0
log(max(r, s))r ω(r) s ω(s) dr ds, ω ∈ Xrs. (2-41)

To this end, we introduce polar coordinates x = reiθ, y = seiζ to compute the right-hand side of (1-13),
and we use the identity∫ 2π

0

∫ 2π

0
log |reiθ

− seiζ
| dθ dζ = 2π

∫ 2π

0
log |reiθ

− s| dθ = 4π2 log(max(r, s)). (2-42)

The formula (2-42) is well known and can be derived in many ways. For example, assuming that r is a
fixed positive number, we interpret the last integral as a function of s ∈ C. This expression obviously
depends only on |s|, is continuous everywhere, and is analytic both inside and outside of the circle |s| = r .
Inside the circle it has to be constant and outside the circle it coincides with the potential of a point
particle of mass 2π located at the origin, which is 2π log |s|. This gives (2-42), and (2-41) follows. □

Applying the change of variables w(r)= ω(r)A(r)1/2, so that w ∈ Y = L2(R+, r dr) when ω ∈ Xrs,
the formula (2-40) becomes

1
π

J (ω)=

∫
∞

0
w(r)2r dr −

∫
∞

0

∫
∞

0
k(r, s)w(r)w(s)rs dr ds, (2-43)

where k(r, s) = − log(max(r, s))A(r)−1/2 A(s)−1/2. Under Hypotheses 2.1, we have the lower bound
A(r)≥ C(1 + r)β for some β > 2, which implies that∫

∞

0

∫
∞

0
k(r, s)2 rs dr ds <∞.

This means that the right-hand side of (2-43) is the quadratic form in Y associated with a self-adjoint
operator of the form 1 − K, where 1 is the identity and K is a Hilbert–Schmidt perturbation. By
compactness, this operator has (at most) a finite number of negative eigenvalues, which means that the
index of the quadratic form J on X is well-defined.

The eigenvalues of K can also be thought of as eigenvalues of the quadratic form (2-41) with respect
to the reference form ω 7→ π

∫
∞

0 A(r)ω(r)2r dr . As is easily verified, if λ is such an eigenvalue, the
corresponding eigenfunction ω satisfies

−ψ(r)= λA(r)ω(r), where ψ(r)=

∫
∞

0
log(max(r, s)) s ω(s) ds. (2-44)

Since ω(r)= ψ ′′(r)+ (1/r)ψ ′(r), the first relation in (2-44) is an ordinary differential equation for the
stream function ψ : R+ → R, to be solved with the boundary conditions

ψ ′(0)= 0 and lim
r→+∞

(
ψ(r) log(2r)−ψ(2r) log(r)

)
= 0,
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which can be deduced from the expression of ψ in (2-44). For the Lamb–Oseen vortex (2-39) a numerical
computation gives the largest eigenvalue λ≈ 0.7127, thus suggesting that the form J is strictly positive
definite on the whole space Xrs in that case. In contrast, the largest eigenvalue for the algebraic vor-
tices (2-38) seems to exceed the threshold value 1, indicating that for those vortices the form J is not
positive definite without additional constraints on ω.

2D. The maximal energy as a function of the constraints. In Section 1A we considered the classical prob-
lem of maximizing a function f : Rn

→ R under a family of constraints of the form g1 = c1, . . . , gm = cm ,
where g1, . . . , gm : Rn

→ R. Given c = (c1, . . . , cm) ∈ Rm, we recall the notation Xc = {x ∈ Rn
:

g1(x)= c1, . . . , gm(x)= cm}. Assuming that f reaches a nondegenerate maximum on Xc at some point
x̄ ∈ Xc where the first-order derivatives g′

1(x̄), . . . , g′
m(x̄) are linearly independent, we introduced the

quadratic form Q defined by (1-5), which is the second-order differential of the Lagrange function (1-7) at x̄ .
In the present section, we are interested in the index of the form Q on larger subspaces than Tx̄ Xc. As was
already mentioned, this question is closely related to concavity properties of the function M defined by (1-8)
or, almost equivalently, to convexity properties of the set S = {(g1(x), . . . , gm(x), f (x)) : x ∈ Rn

} ⊂ Rm+1

near its “upper boundary”.
The situation becomes particularly transparent if we use adapted coordinates which, as it turns out,

have a fairly complete analogy in the two-dimensional Euler case. Let us assume that we can introduce
new coordinates (c1, . . . , cm, y1, . . . , yn−m) in Rn such that, as before, c1, . . . , cm are the values of
the constraints g1, . . . , gm , and the additional coordinates y1, . . . , yn−m are chosen so that the points
having coordinates (c1, . . . , cm, 0, . . . , 0) are those where f attains its maximum on Xc.5 Writing
M(c1, . . . , cm)= f (c1, . . . , cm, 0, . . . , 0) as in (1-8), one verifies that

∂M
∂cj

(c1, . . . , cm)= λj , j = 1, . . . ,m, (2-45)

where λ1, . . . , λm are the Lagrange multipliers introduced in (1-4). Moreover the extremality condition
on Xc implies that

∂ f
∂yk

(c1, . . . , cm, 0, . . . , 0)= 0, k = 1, . . . , n − m.

We infer that

D2 f (c1, . . . , cm, 0, . . . , 0)=

(
(∂2 f/(∂ci∂cj ))

m
i, j=1 0

0 (∂2 f/(∂yk∂yℓ))n−m
k,ℓ=1

)
, (2-46)

where all derivatives are evaluated at the point (c1, . . . , cm, 0, . . . , 0). The first submatrix in the right-hand
side of (2-46) is precisely the Hessian of M, and the second submatrix is always negative definite, due
to our assumption that f reaches a maximum at (y1, . . . , yn−m) = (0, . . . , 0) for any fixed value of
c1, . . . , cm . So we conclude that the quadratic form Q defined in (1-5) is negative definite at x̄ if and only
if the Hessian of M is negative definite at (c1, . . . , cm), where cj = gj (x̄) for j = 1, . . . ,m.

5In a nondegenerate situation, the local existence of such a coordinate system is clear by standard arguments, but globally the
situation can, of course, be more complicated.
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Another interesting object is the function

N (λ1, . . . , λm)= sup
x∈Rn

( f (x)− λ1g1(x)− · · · − λm gm(x))

= sup
c∈Rm

(M(c1, . . . , cm)− λ1c1 − · · · − λmcm), (2-47)

which is the Legendre transform of M. Under appropriate assumptions, the main one being the concavity
of M, this quantity is well-defined and the relation (2-45) can be inverted (at least locally) via the formula

cj = −
∂N
∂λj

(λ1, . . . , λm), j = 1, . . . ,m. (2-48)

We now return to the infinite-dimensional framework of the two-dimensional Euler equation, with
the manifold Rn replaced by the phase space P introduced in Section 1B, the function f replaced by
the energy E in (1-13), the constraints gj replaced by the Casimir functionals h(a, ω) in (1-10), and the
submanifolds Xc replaced by the orbits Oω in (1-12). In that case we have

max
ω∈Oω̄

E(ω)= E(ω̄∗), (2-49)

where, as before, ω̄∗ denotes the symmetric decreasing rearrangement of an element ω̄ ∈ P. As Oω̄ is
characterized in terms of the functionals h(a, ω) defined in (1-10), the energy of the maximizer ω̄∗ in Oω̄

can also be expressed in terms of the constraint function a → h(a, ω̄). It turns out that the representation
formula is quite explicit.

Proposition 2.18. Given ω̄ ∈ P, we define h(a)= π−1h(a, ω̄)= π−1
|{ω̄ > a}| for any a > 0. Then

E(h) := max
ω∈P

h( · ,ω)=πh

E(ω)=
π

8

∫ m

0

∫ m

0
L(h(a), h(b)) da db +

1
8π

M2
0 , (2-50)

where m = max ω̄, M0 =
∫

R2 ω̄ dx = π
∫ m

0 h(a) da, and

L(R, S)= −RS log max(R, S)− 1
2 min(R, S)2. (2-51)

Proof. Replacing ω̄ with ω̄∗ (an operation that does not affect the function h), we can assume that ω̄ is
radially symmetric and nonincreasing in the radial direction. In view of (2-49), we then have E(h)= E(ω̄),
and if we consider ω̄ as a function of the radius r = |x |, we observe that h(a)= (ω̄−1(a))2 wherever ω̄ is
strictly decreasing. To compute E(ω̄), we start from the expression (2-41), and we introduce the functions

k(r, s)= −rs log max(r, s), K (R, S)= L(R, S)+ RS.

Clearly K (R, 0)= 0, K (0, S)= 0 for R, S > 0, and one can verify by direct calculation that K (R, S)
is twice continuously differentiable on (0,∞)× (0,∞), with

∂2K
∂R∂S

(R, S)= − log max(R, S), R, S > 0.

So the function (r, s) 7→ K (r2, s2) is twice continuously differentiable on [0,∞)× [0,∞) and

1
8
∂2

∂r∂s
K (r2, s2)= k(r, s).
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Integrating by parts in (2-41) and recalling that m = max ω̄, we can thus write

E(ω̄)=
π

8

∫
∞

0

∫
∞

0

∂2

∂r∂s
K (r2, s2) ω̄(r) ω̄(s) dr ds =

π

8

∫
∞

0

∫
∞

0
K (r2, s2) dω̄(r) dω̄(s)

=
π

8

∫ m

0

∫ m

0
K
(
(ω̄−1(a))2, (ω̄−1(b))2

)
da db =

π

8

∫ m

0

∫ m

0
K (h(a), h(b)) da db

=
π

8

∫ m

0

∫ m

0
L(h(a), h(b)) da db +

1
8π

M2
0 , (2-52)

where we have formally used the substitutions ω̄(r)= a, ω̄(s)= b. This is straightforward when ω̄ is
strictly decreasing, and the general case where ω̄ is nonincreasing can be treated by integrating only over
the intervals where ω̄ is strictly decreasing. □

We now make a more precise comparison with the finite-dimensional situation above. Let us assume
that ω̄ ∈ P is radially symmetric with ∂r ω̄(r) < 0 for all r > 0 and ∂2

r ω̄(0) < 0. To eliminate the
translational symmetries, we work with the manifold

P̃ = {ω ∈ P : M0(ω)= M0(ω̄), Mj (ω)= 0, j = 1, 2}, (2-53)

where M0,Mj are as in (1-11), (1-15). If η ∈ X1 (see (2-24)) is smooth and compactly supported with
sufficiently small C2 norm, then ω̄+ η ∈ P̃. Denoting by ηrs the projection of η onto the subspace Xrs

defined in (2-11), we can take the quantities h(a, ω̄+ηrs) and η⊥
rs := η−ηrs as the (approximate) analogues

of the coordinates cj and yk , respectively. The analogy is not perfect, due to the stronger-than-ideal
assumptions on η, but it is sufficient for concluding that, when ω̄= ω̄∗, the negative-definiteness of Arnold’s
form (1-18) on the tangent space Tω̄P̃ is strongly related to the concavity of the energy E in the variable6

h at the function h̄(a) = π−1h(a, ω̄). In some sense the expression (2-50) is “trying to be concave”,
although not quite achieving this: the function L(R, S) is separately concave, but not concave. The second
variation on the space X0 is given by the quadratic form which takes a function ξ(a)with

∫ m
0 ξ(a) da =0 to

π

8

∫ m

0

∫ m

0

(
D2

1 L(h(a), h(b))ξ(a)2 + 2D1 D2L(h(a), h(b))ξ(a)ξ(b)+ D2
2 L(h(a), h(b))ξ(b)2

)
da db.

Due to the separate concavity of L the first term and the third term are negative, but the second one can lead
to the form being indefinite. In view of our previous considerations, the negativity of the form is equivalent
to the validity of the Hardy inequality (2-25) with CH ≤ 1, and it is not hard to verify directly that this is in-
deed the case. As an analogue of (2-45), we also note that the variational derivative of E with respect to h is

1
π

δE

δh
(a)=3(a)= −8′(a). (2-54)

We will not go into the details as we will not work with this expression. The reader can also derive the
analogue of (2-48) (under appropriate assumptions).

6It is perhaps worth recalling that E is convex in ω on the subspace given by
∫

R2 ω dx = 0. However, in some regions it may
be concave in h, at least on the subspace given by

∫
∞

0 h(a) da = 0.
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3. Global maximization of the free energy

In the previous section we observed that some radially symmetric vortices ω̄, including the Gaussian
vortex (2-39) and the algebraic vortex (2-38) with κ > 2, are nondegenerate local maxima of the associated
free energy functional (1-17) once restricted to the manifold P̃ defined in (2-53). This was established by
showing that the second-order differential F ′′(ω̄) is strictly negative definite on the tangent space Tω̄P̃.
We now follow a different approach, which relies on the direct method in the calculus of variations:
under appropriate assumptions on the function 8 in (1-17), we show that the free energy F(ω) has a
global maximum on the set of all vorticity distributions with a fixed mass M. By construction, if ω̄
is any maximizer obtained in this way, the conclusion of Theorem 2.8 applies with γ ≥ 0, so that
Hardy’s inequality (2-25) holds with CH ≤ 1. Note also that, according to the discussion in Section 2D,
prescribing 8 amounts to fixing the “Lagrange multipliers” in our constrained maximization problem.

We start with a preliminary result, which is probably well known. For the reader’s convenience, the
proof is reproduced in Section A1.

Proposition 3.1. Assume that f ∈ L1(Rn) is nonnegative and that M :=
∫

Rn f (x) dx > 0. Then

M +

∫
Rn
(log− |x |) f (x) dx ≲ M +

∫
Rn

(
log+

f (x)
M

)
f (x) dx, (3-1)

M +

∫
Rn
(log+ |x |) f (x) dx ≳ M +

∫
Rn

(
log−

f (x)
M

)
f (x) dx, (3-2)

where the implicit constants only depend on the space dimension n. Moreover, if f is radially symmetric
and nonincreasing in the radial direction, then the reverse inequalities also hold.

We next specify the function space in which we shall solve our maximization problem.

Definition 3.2. Given any M > 0, we denote by X M the set of all ω ∈ L1(R2) such that ω(x) ≥ 0 for
almost all x ∈ R2 and∫

R2
ω(x) dx = M,

∫
R2
ω(x) log(1 + |x |) dx <∞,

∫
R2
ω(x) log(1 +ω(x)) dx <∞. (3-3)

For later use we observe that, if ω ∈ X M and if ω∗ denotes the symmetric nonincreasing rearrangement
of ω, then

∫
R2 ω

∗(x) dx =
∫

R2 ω(x) dx = M and∫
R2
ω∗(x) log(1 + |x |) dx ≤

∫
R2
ω(x) log(1 + |x |) dx <∞,∫

R2
ω∗(x) log(1 +ω∗(x)) dx =

∫
R2
ω(x) log(1 +ω(x)) dx <∞.

This shows that the set X M ⊂ L1(R2) is invariant under the action of the symmetric nonincreasing
rearrangement.

For ω ∈ X M , we consider the free energy defined by F(ω)= E(ω)+ S(ω), where

E(ω)=
1

4π

∫
R2

∫
R2

log 1
|x−y|

ω(x) ω(y) dx dy, S(ω)=

∫
R2
8(ω(x)) dx .
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We have shown in Proposition 2.2 that the energy E(ω) is finite for any ω ∈ X M . Unlike in Section 2, the
function 8 in the entropy term is not related here to any radially symmetric vortex, but is an arbitrary
function satisfying the following properties:

Hypotheses 3.3. The function 8 : [0,+∞) → R is continuous with 8(0) = 0. Moreover, there exist
constants C1 ∈ R, C2 < M/(8π), and C3 > M/(8π) such that

8(ω)≤ C1ω+ C2ω log M
ω
, when ω ≤ M,

8(ω)≤ C1ω− C3ω log ω
M
, when ω ≥ M.

(3-4)

Under Hypotheses 3.3, the positive part of8 satisfies8+(ω)≤ Cω(1+| log(ω/M)|) for some constant
C > 0, and this implies in particular that the entropy S(ω) is well-defined in R ∪ {−∞} for any ω ∈ X M .
We are now in a position to state the main result of this section.

Theorem 3.4. Fix any M > 0. Under Hypotheses 3.3, there exists ω̄ ∈ X M such that

F(ω̄)= E(ω̄)+ S(ω̄)= sup
ω∈X M

(E(ω)+ S(ω)).

Moreover ω̄ can be chosen to be radially symmetric and nonincreasing in the radial direction.

The proof of Theorem 3.4 is divided into two parts. The first one consists in showing that the free
energy F is bounded from above on X M , and that there exists a maximizing sequence which is convergent
in L1(R2). We formulate this in a separate statement:

Proposition 3.5. Under Hypotheses 3.3, the free energy F = E+S is bounded from above on the space X M :

FM := sup
ω∈X M

(E(ω)+ S(ω)) <∞.

Moreover, there exists a maximizing sequence (ωj ) j∈N in X M which converges in L1(R2) to some limiting
profile ω̄ = ω̄∗

∈ X M as j → +∞, and we have S(ω̄) >−∞.

Proof. Our starting point is the logarithmic Hardy–Littlewood–Sobolev inequality

E(ω)+
M
8π

∫
R2
ω log

M
ω

dx ≤
M2

8π
(1 + logπ), (3-5)

which holds for all ω ∈ X M ; see [Carlen and Loss 1992]. In view of (3-4), we deduce from (3-5) that

E(ω)+ S(ω)+
(

M
8π

− C2

)∫
ω<M

ω log
M
ω

dx +

(
C3 −

M
8π

)∫
ω>M

ω log
ω

M
dx

≤ E(ω)+ C1 M +
M
8π

∫
R2
ω log

M
ω

dx ≤ C1 M +
M2

8π
(1 + logπ). (3-6)

Since C2 < M/(8π) and C3 > M/(8π), this proves that FM ≤ C1 M + M2(1 + logπ)/(8π).
Now, let (ωj ) j∈N be a sequence in X M such that E(ωj )+ S(ωj )→ FM as j → +∞. If we denote

by (ωj )
∗
∈ X M the symmetric nonincreasing rearrangement of ωj , we know that E((ωj )

∗)≥ E(ωj ) and
S((ωj )

∗)= S(ωj ) for all j ∈ N, so that ((ωj )
∗) j∈N is a fortiori a maximizing sequence. So we assume
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henceforth that ωj = (ωj )
∗; i.e., ωj is radially symmetric and nonincreasing in the radial direction. In that

case, there exists a constant C0 > 0 such that∫
R2
ωj (x)

∣∣∣∣log
ωj (x)

M

∣∣∣∣ dx ≤ C0 and
∫

R2
ωj (x)|log |x || dx ≤ C0 (3-7)

for all j ∈ N. Indeed, the first inequality in (3-7) follows directly from (3-6), and the second one is a
consequence of the first inequality and of Proposition 3.1, since ωj = (ωj )

∗.
It remains to verify that one can extract from (ωj ) j∈N a convergent subsequence in L1(R2). We recall

that ωj (x) is a nonincreasing function of the radial variable |x |, which satisfies the uniform pointwise
estimate 0 ≤ ωj (x) ≤ M/(π |x |

2); see (A-3) below. By Helly’s selection theorem [Rudin 1953], there
exists a subsequence, still denoted by (ωj ) j∈N, which converges pointwise to some limit ω̄ : R2

→ R+ as
j → +∞. It is clear that ω̄ is radially symmetric and nonincreasing, so that ω̄ = ω̄∗, and Fatou’s lemma
implies that

∫
R2 ω̄(x) dx ≤ M. Using in addition (3-7), we obtain similarly∫

R2
ω̄(x)

∣∣∣∣log
ω̄(x)

M

∣∣∣∣ dx ≤ C0 and
∫

R2
ω̄(x)|log |x || dx ≤ C0. (3-8)

To prove the convergence in L1(R2) we take the decomposition, for any ϵ ∈ (0, 1),∫
R2

|ωj (x)− ω̄(x)| dx =

∫
Aϵ

|ωj (x)− ω̄(x)| dx +

∫
R2\Aϵ

|ωj (x)− ω̄(x)| dx, (3-9)

where Aϵ ={x ∈ R2
: ϵ≤ |x | ≤ ϵ−1

}. The integral over Aϵ converges to zero as j →+∞ by the dominated
convergence theorem, and in view of (3-7), (3-8) the integral over R2

\ Aϵ is bounded by 2C0/| log ϵ|
uniformly in j . It thus follows from (3-9) that

lim sup
j→+∞

∫
R2

|ωj (x)− ω̄(x)| dx ≤
2C0

| log ϵ| ϵ→0−−−→ 0,

which shows that ωj → ω̄ in L1(R2). In particular
∫

R2 ω̄(x) dx = M, so that ω̄ ∈ X M .
Finally, if we take the decomposition 8=8+ −8−, where 8+,8− denote the positive and negative

parts of 8, we have the lower bound

S(ω̄)≥ −

∫
R2
8−(ω̄(x)) dx ≥ − lim inf

j→+∞

∫
R2
8−(ωj (x)) dx, (3-10)

where the second inequality is again obtained by Fatou’s lemma. But we have the identity∫
R2
8−(ωj (x)) dx =

∫
R2
8+(ωj (x)) dx − S(ωj )=

∫
R2
8+(ωj (x)) dx + E(ωj )− F(ωj ),

where the first two terms in the right-hand side are bounded uniformly in j by (3-7), in view of
Hypotheses 3.3 and Proposition 2.2, whereas F(ωj ) is bounded from below since (ωj ) is a maximizing
sequence for F. We conclude that the right-hand side of (3-10) is finite, so that S(ω̄) >−∞. □
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To conclude the proof of Theorem 3.4, it remains to show that the free energy is upper semicontinuous
along the maximizing sequence constructed in Proposition 3.5, namely

E(ω̄)+ S(ω̄)≥ lim sup
j→+∞

(E(ωj )+ S(ωj ))= FM . (3-11)

This will imply that E(ω̄)+ S(ω̄)= FM , which is the desired result.

Proof of Theorem 3.4. Let (ωj ) j∈N be the maximizing sequence defined in Proposition 3.5, and ω̄ ∈ X M

be the limiting profile. Given any sufficiently large R > 0, we take the decomposition

ωj (x)= ωj (x) 1{|x |≤R} +ωj (x) 1{|x |>R} =: ω1
j R(x)+ω

2
j R(x),

ω̄(x)= ω̄(x) 1{|x |≤R} + ω̄(x) 1{|x |>R} =: ω̄1
R(x)+ ω̄

2
R(x)

for all x ∈ R2. We thus have

E(ωj )+ S(ωj )= E(ω1
j R)+ S(ω1

j R)+ 2E(ω1
j R, ω

2
j R)+ E(ω2

j R)+ S(ω2
j R),

E(ω̄)+ S(ω̄)= E(ω̄1
R)+ S(ω̄1

R)+ 2E(ω̄1
R, ω̄

2
R)+ E(ω̄2

R)+ S(ω̄2
R),

where E(ω1, ω2) is the bilinear form associated with the energy functional:

E(ω1, ω2)= −
1

4π

∫
R2

∫
R2

log |x − y|ω1(x) ω2(y) dx dy.

The upper-semicontinuity property (3-11) can be deduced from the following assertions:

lim sup
j→+∞

(E(ω1
j R)+ S(ω1

j R))≤ E(ω̄1
R)+ S(ω̄1

R), (3-12)

sup
j∈N

(
2E(ω1

j R, ω
2
j R)+ E(ω2

j R)+ S(ω2
j R)
)
≤ δ1(R) R→+∞

−−−−→ 0, (3-13)

2E(ω̄1
R, ω̄

2
R)+ E(ω̄2

R)+ S(ω̄2
R)= δ2(R) R→+∞

−−−−→ 0. (3-14)

Indeed, assuming that (3-12)–(3-14) hold, we obtain

lim sup
j→+∞

(E(ωj )+ S(ωj ))− (E(ω̄)+ S(ω̄))≤ δ1(R)− δ2(R) R→+∞
−−−−→ 0.

It remains to verify the assertions (3-12)–(3-14) above. We recall that the functions ωj , ω̄ are radially
symmetric and nonincreasing in the radial direction. With a slight abuse of notation, we write ωj (r)
instead of ωj (x) when r = |x |, and similarly for ω̄. Accordingly, using (2-41), we obtain the following
expressions for the energy of ωj and ω̄:

E(ωj )= −

∫
∞

0
Mj (r) log(r) rωj (r) dr, E(ω̄)= −

∫
∞

0
M(r) log(r) r ω̄(r) dr, (3-15)

where

Mj (r)= 2π
∫ r

0
sωj (s) ds, M(r)= 2π

∫ r

0
sω̄(s) ds, r > 0. (3-16)

Since ωj → ω̄ in L1(R2), we see that Mj (r) → M(r) uniformly in r as j → +∞. Moreover, since
ωj ∈ X M satisfies (3-7), the quantity Mj (r) converges to M as r → +∞ uniformly in j . In particular, we
can choose R ≥ 1 large enough so that Mj (r)≥ M/2 for all j ∈ N when r ≥ R.
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To prove (3-12), we first take the decomposition

E(ω1
j R)− E(ω̄1

R)= −

∫ R

0
(Mj (r)− M(r)) log(r) rωj (r) dr −

∫ R

0
M(r) log(r) r(ωj (r)− ω̄(r)) dr,

and we deduce that

|E(ω1
j R)− E(ω̄1

R)| ≤ sup
0≤r≤R

(|Mj (r)− M(r)|)
∫ R

0
| log(r)| rωj (r) dr

+ sup
0≤r≤R

(| log(r)| M(r))
∫ R

0
r |ωj (r)− ω̄(r)| dr j→+∞

−−−−→ 0. (3-17)

Here we used the convergence of ωj to ω̄ in L1(R2), the a priori estimates (3-7), and the fact that
log(r)M(r) is bounded as r → 0, as a consequence of (3-8). On the other hand, since the function −8 is
continuous and bounded from below, and since we integrate on the bounded domain {x ∈ R2

: |x | ≤ R},
we can apply Fatou’s lemma to obtain

−S(ω̄1
R)=

∫
|x |≤R

−8(ω̄(x)) dx ≤ lim inf
j→+∞

∫
|x |≤R

−8(ωj (x)) dx = − lim sup
j→+∞

S(ω1
j R). (3-18)

Combining (3-17) and (3-18), we obtain (3-12).
We next prove (3-13). Recalling that R ≥ 1, we first observe that

E(ω2
j R)= −

∫
∞

R
Mj (r) log(r) rωj (r) dr ≤ 0,

which means that the contribution of E(ω2
j R) can be disregarded since we only need an upper bound. The

other terms in (3-13) have the expressions

2E(ω1
j R, ω

2
j R)= −Mj (R)

∫
∞

R
log(r) rωj (r) dr, S(ω2

j R)= 2π
∫

∞

R
8(ωj (r)) r dr.

Since ωj is decreasing, we have ωj (r) ≤ Mj (r)/(πr2) ≤ M for r ≥ R. So, using Hypotheses 3.3, we
deduce that 8(ωj )≤ C1ωj + C2ωj log(M/ωj ), where C1 ∈ R and C2 < M/(8π). It follows that

2E(ω1
j R, ω

2
j R)+ S(ω2

j R)≤ 2πC1

∫
∞

R
ωj (r)r dr +

∫
∞

R
1j (r)ωj (r)r dr, (3-19)

where

1j (r)= 2πC2 log
M
ωj (r)

− Mj (R) log(r).

In view of (3-7), the first term in the right-hand side of (3-19) converges to zero uniformly in j as
R → +∞, and can therefore be absorbed in the quantity δ1(R). To treat the second term, we fix a positive
number α > 2 such that 4πC2α ≤ M, and we introduce the mutually disjoints sets

I (α, R)= {r ≥ R : ωj (r)≥ Mr−α
}, I (α, R)c = {r ≥ R : ωj (r) < Mr−α

}. (3-20)

As Mj (R)≥ M/2, it follows from (3-20) that 1j (r)≤ 0 when r ∈ I (α, R), so the last integral in (3-19)
can be restricted to the complement I (α, R)c. But on that set we have the upper bound ωj (r) < Mr−α,
where α > 2, and we easily deduce that

∫
I (α,R)c 1j (r)ωj (r)r dr converges to zero as R → +∞, uniformly

in j . Altogether we obtain (3-13).



ARNOLD’S VARIATIONAL PRINCIPLE AND ITS APPLICATION TO THE STABILITY OF PLANAR VORTICES 707

It remains to establish (3-14), which is an easy task. Indeed ω̄ is a fixed function which satisfies the
estimates (3-8), so that 2E(ω̄1

R, ω̄
2
R)+ E(ω̄2

R)→ 0 as R → +∞. In addition, we proved in Proposition 3.5
that the integral defining S(ω̄) is absolutely convergent, and this implies that S(ω̄2

R)→ 0 as R → +∞.
We thus obtain (3-14), and the proof of Theorem 3.4 is complete. □

Example 3.6. We consider the family of algebraic vortices with parameter κ > 1:

ω(r)=
1

(1 + r2)κ
, M = 2π

∫
∞

0
rω(r) dr =

π

κ − 1
.

The associated stream function ψ satisfies ψ(r)= ψ(0)+
∫ r

0 ψ
′(s) ds, where

ψ(0)=

∫
∞

0
log(r)

r
(1 + r2)κ

dr, ψ ′(r)=
1

2(κ−1)r

(
1 −

1
(1 + r2)κ−1

)
.

We have 8(ω)=
∫ ω

0 φ(s) ds, where φ(ω(r))= ψ(r). Explicitly, for a few values of κ , we find

κ =
3
2

: ψ(r)= log
(
1 +

√
1 + r2

)
, φ(ω)= log

(
1 +

1
ω1/3

)
,

κ = 2 : ψ(r)=
1
4

log(1 + r2), φ(ω)=
1
8

log 1
ω
,

κ = 3 : ψ(r)=
1
8

(
log(1 + r2)−

1
1 + r2

)
, φ(ω)=

1
24

log 1
ω

−
ω1/3

8
.

In all cases, we observe that

φ(ω)=8′(ω)∼
1

4κ(κ−1)
log

1
ω

=
M

4πκ
log

1
ω

as ω→ 0.

It follows that Hypotheses 3.3 are satisfied if and only if κ > 2.

Example 3.7. We next consider the Gaussian vortex ω(r)= e−r2/4, where M = 4π . In that case we have
ψ(0)=

∫
+∞

0 log(r)e−r2/4 dr = 2 log(2)− γE , so that the stream function satisfies

ψ(r)= ψ(0)+
∫ r

0

2
s
(1 − e−s2/4) ds = 2 log(2)− γE + Ein

(
r2

4

)
,

where

Ein(z)=

∫ z

0

1 − e−t

t
dt =

∞∑
k=1

(−1)k−1

k
zk

k!
, z ∈ C.

We conclude that

φ(ω)=8′(ω)= 2 log(2)− γE + Ein

(
log

1
ω

)
.

In particular φ(ω)∼ log log(1/ω) as ω→ 0, and Hypotheses 3.3 are satisfied in that case.

We do not have much information on the maximizer ω̄ whose existence is established in Theorem 3.4.
We expect that, if 8 is as in Example 3.7, the maximizer is indeed the Gaussian vortex (2-39), but except
for numerical evidence we have no proof so far. Similarly, we believe that the algebraic vortices (2-38)
with κ ≥ 2 are global maximizers, but this is known only in the particular case κ = 2, where maximality
follows from the logarithmic HLS inequality (3-5).
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The examples above also suggest that the decay rate of the maximizer ω̄(x) as |x |→∞ strongly depends
on the behavior of the function8(s) near s = 0. Extending the techniques in the proof of Theorem 3.4, one
should be able to prove that, if 8 is differentiable to the right at the origin, the corresponding maximizer ω̄
is compactly supported. It is also worth mentioning that the entropy function 8 associated with any
radially symmetric decreasing vortex ω̄ through the relation ψ̄(x)=8′(ω̄(x)) is necessarily concave on
the range of ω̄, whereas no concavity assumption is included in Hypotheses 3.3. This suggests that the
maximizer ω̄ corresponding to a nonconcave function 8 should be discontinuous, so that its range does
not include the intervals where 8 does not coincide with its concave hull.

4. Stability of viscous vortices

In this final section, we give a new proof of the nonlinear stability of the Oseen vortices, which are
self-similar solutions of the Navier–Stokes equations in R2. Our approach relies on the functional-analytic
tools developed in Section 2, in connection with Arnold’s variational principle, although we now consider
a dissipative equation for which the Casimir functions (1-9) are no longer conserved quantities. Let
w =w(y, τ ) ∈ R denote the vorticity of the fluid at point y ∈ R2 and time τ > 0, and let φ = φ(y, τ ) ∈ R

be the associated stream function. The vorticity formulation of the Navier–Stokes equations is

∂τw(y, τ )+ {φ,w}(y, τ )= ν1(y, τ ), 1φ(y, τ )= w(y, τ ), (4-1)

where {φ,w}=∇
⊥φ ·∇w is the Poisson bracket, ν > 0 is the viscosity parameter, and the Laplace operator

1 acts on the space variable y ∈ R2. As in [Gallay and Wayne 2002; 2005], we introduce self-similar
variables x = y/

√
ντ and t = log(τ/T ), where T > 0 is an arbitrary time scale. More precisely, we look

for solutions of (4-1) in the form

w(y, τ )=
1
τ
ω

(
y

√
ντ
, log

τ

T

)
, φ(y, τ )= νψ

(
y

√
ντ
, log

τ

T

)
. (4-2)

The evolution equation for the rescaled vorticity ω is

∂tω(x, t)+ {ψ,ω}(x, t)= Lω(x, t), 1ψ(x, t)= ω(x, t), (4-3)

where {ψ,ω} = ∇
⊥ψ · ∇ω and L is the Fokker–Planck operator

L =1+
1
2 x · ∇ + 1. (4-4)

Let ω̄ be the vortex with Gaussian profile (2-39), namely

ω̄(x)=
1

4π
e−|x |

2/4, ū(x)= ∇
⊥ψ̄(x)=

1
2π

x⊥

|x |2
(1 − e−|x |

2/4). (4-5)

It is easy to verify that Lω̄= 0 and {ψ̄, ω̄} = 0. This implies that ω= αω̄ is a stationary solution of (4-3)
for any α ∈ R. This family of equilibria is known to be stable with respect to perturbations in various
weighted L2 spaces; see [Gallay and Wayne 2005; Gallay 2012]. We present here a new stability proof,
which may be easier to adapt to more general situations.
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4A. Nonlinear stability of Oseen vortices. Given any α ∈ R, we consider solutions of (4-3) of the form
ω = αω̄+ ω̃, ψ = αψ̄ + ψ̃ . The perturbation ω̃ satisfies the modified equation

∂t ω̃+α{ψ̄, ω̃} +α{ψ̃, ω̄} + {ψ̃, ω̃} = Lω̃, (4-6)

where it is understood that the stream function ψ̃ is expressed in terms of ω̃ via the formula (1-14), so
that 1ψ̃ = ω̃. We assume henceforth that the perturbation ω̃ satisfies the moment conditions∫

R2
ω̃ dx = 0 and

∫
R2

x j ω̃ dx = 0 for j = 1, 2, (4-7)

which are preserved under the evolution defined by (4-6). As is shown at the end of [Gallay and Wayne
2005], this hypothesis does not restrict the generality, in the sense that stability with respect to general
perturbations (with no moment conditions) can then deduced by a simple argument. As for the existence
of solutions to (4-6), we have the following standard result:

Lemma 4.1. The Cauchy problem for (4-6) is globally well-posed in the weighted L2 space X defined by
(2-4), where A(x)= 4|x |

−2(e|x |
2/4

− 1), and the subspace X1 ⊂ X defined by (2-24) is invariant under
the evolution.

Proof. It is known that the vorticity equation (4-3) or (4-6) is globally well-posed in various weighted
L2 spaces; see, e.g., [Gallay and Wayne 2002; Gallay 2012; 2018]. The nearly Gaussian weight A is
not explicitly considered in those references, but the arguments therein can be easily modified to cover
that case too. If A1/2ω̃ ∈ L2(R2), then all moments of ω̃ are well-defined, and a direct calculation shows
that the conditions (4-7) are preserved under the evolution, so that (4-6) is globally well-posed in the
subspace X1. □

Let ω̃0 ∈ X1, and let ω̃ ∈ C0([0,+∞),X1) be the solution of (4-6) with initial data ω̃0. By parabolic
regularization, we have ω̃( · , t) ∈ Z1 := Z ∩X1 for all t > 0, where Z is the weighted Sobolev space

Z = {ω ∈ H 1(R2) : A1/2ω ∈ L2(R2), A1/2
∇ω ∈ L2(R2)}. (4-8)

For later use, we introduce the following quadratic form on Z :

Q(ω)=

∫
R2
(A(x)|∇ω(x)|2 −B(x)ω(x)2) dx, ω ∈ Z , (4-9)

where

B = 1 +
1
2

(
1A −

x
2

· ∇A +A
)

= 1 +A −
x · ∇A

|x |2
. (4-10)

We shall verify in Section A3 that A/2 ≤ B ≤ 2A, so that the form Q is well-defined.
The following coercivity result plays a crucial role in our argument.

Theorem 4.2. The quadratic form Q defined by (4-9) is coercive on the subspace Z1 = Z ∩X1: there
exists a constant δ > 0 such that

Q(ω)≥ δ

∫
R2

A(x)ω(x)2 dx for all ω ∈ Z1. (4-11)
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The proof of Theorem 4.2 requires a careful analysis, which is postponed to Section 4B below. In
particular, we shall see that the quadratic form Q is not positive on the whole space Z , because it takes
negative values on a one-dimensional subspace made of radially symmetric functions. If we restrict
ourselves to functions with zero mean, the form Q is nonnegative but vanishes on a two-dimensional
subspace due to translation invariance. Therefore, all moment conditions (4-7) are necessary to establish
the coercivity of Q.

Returning to the solution ω̃ ∈ C0([0,+∞),X1) of (4-6), we define for all t > 0 the quantities

J̃ (t)=
1
2

∫
R2

(
A(x)ω̃(x, t)2 + ψ̃(x, t)ω̃(x, t)

)
dx = J (ω̃(t)),

Q̃(t)=

∫
R2

(
A(x)|∇ω̃(x, t)|2 −B(x)ω̃(x, t)2

)
dx = Q(ω̃(t)),

Ñ (t)=
1
2

∫
R2

{A(x), ψ̃(x, t)}ω̃(x, t)2 dx =: N (ω̃(t)).

(4-12)

The key observation is:

Proposition 4.3. If ω̃ ∈ C0([0,+∞),X1) is a solution of (4-6), the quantities defined in (4-12) satisfy

J̃ ′(t)= −Q̃(t)− Ñ (t) for all t > 0. (4-13)

Proof. Using the evolution equation (4-6), we find

J̃ ′(t)=

∫
R2

(
A(x)ω̃(x, t)+ ψ̃(x, t)

)
∂t ω̃(x, t) dx

=

∫
R2
(Aω̃+ ψ̃)

(
Lω̃−α{ψ̄, ω̃} −α{ψ̃, ω̄} − {ψ̃, ω̃}

)
(x, t) dx .

(4-14)

We first consider the terms involving the diffusion operator L in (4-14). We observe that∫
R2
ψ̃(x, t)Lω̃(x, t) dx =

∫
R2
ω̃(x, t)2 dx (4-15)

because Lω̃ =1ω̃+
1
2 div(xω̃) and∫

R2
ψ̃ 1ω̃ dx =

∫
R2
(1ψ̃)ω̃ dx =

∫
R2
ω̃2 dx,∫

R2
ψ̃ div(xω̃) dx = −

∫
R2
(1ψ̃)(x · ∇ψ̃) dx =

1
2

∫
R2

div(x |∇ψ̃ |
2) dx = 0.

On the other hand, integrating by parts we obtain by direct calculation∫
R2

A(x) ω̃(x, t)Lω̃(x, t) dx = −Q(ω̃(t))−
∫

R2
ω̃(x, t)2 dx . (4-16)

We next compute the advection terms in (4-14), which are proportional to α. We claim that

I (ω̃) :=

∫
R2
(Aω̃+ ψ̃)({ψ̄, ω̃} + {ψ̃, ω̄}) dx = 0. (4-17)
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This identity is not surprising, as it means that the quadratic form J is invariant under the evolution
defined by the linearized Euler equation at ω̄; see (1-6) for an analogue in the finite-dimensional case. It
can also be verified by direct calculations:∫

R2
Aω̃{ψ̄, ω̃} dx =

1
2

∫
R2

A{ψ̄, ω̃2
} dx =

1
2

∫
R2

{A, ψ̄}ω̃2 dx = 0,∫
R2
ψ̃{ψ̃, ω̄} dx =

∫
R2

{ψ̃, ψ̃}ω̄ dx = 0,∫
R2
(Aω̃{ψ̃, ω̄} + ψ̃{ψ̄, ω̃}) dx =

∫
R2
ω̃(A{ψ̃, ω̄} + {ψ̃, ψ̄}) dx = 0.

Here we used the fact that {A, ψ̄} = 0, because A and ψ̄ are radially symmetric. Moreover,

A{ψ̃, ω̄} + {ψ̃, ψ̄} = (∇ψ̃)⊥ · (A∇ω̄+ ∇ψ̄)= 0,

by the very definition of A; see (2-3). This proves (4-17).
Finally, integrating by parts the last term in (4-14), we find

N (ω̃) :=

∫
R2
(Aω̃+ ψ̃){ψ̃, ω̃} dx =

∫
R2

Aω̃{ψ̃, ω̃} dx =
1
2

∫
R2

{A, ψ̃}ω̃2 dx . (4-18)

Combining (4-14)–(4-18), we obtain the desired result. □

To control the nonlinear term N (ω̃), we use the following estimate.

Lemma 4.4. There exists a constant C0 > 0 such that, for all ω̃ ∈ Z , the nonlinear term (4-18) satisfies

|N (ω̃)| ≤ C0 ∥A1/2ω̃∥
2
L2(∥A

1/2ω̃∥L2 + ∥A1/2
∇ω̃∥L2). (4-19)

Proof. We have |{A, ψ̃}| ≤ C |∇A||∇ψ̃ | ≤ C |x |A|∇ψ̃ |; hence

|N (ω̃)| ≤ C
∫

R2
|x ||∇ψ̃ |A ω̃2 dx ≤ C∥|x ||∇ψ̃ |∥L∞ ∥A1/2ω̃∥

2
L2 .

On the other hand, using Proposition B.1 in [Gallay and Wayne 2002], Hölder’s inequality and Sobolev’s
embedding theorem, we find

∥|x ||∇ψ̃ |∥L∞ ≤ C(∥⟨x⟩ω̃∥L3/2 + ∥⟨x⟩ω̃∥L3)≤ C(∥A1/2ω̃∥L2 + ∥A1/2
∇ω̃∥L2),

where ⟨x⟩ = (1 + |x |
2)1/2. Combining these estimates we arrive at (4-19). □

We are now able to state our final result:

Theorem 4.5. There exist positive constants C1, ϵ0, and µ such that, for any α ∈ R and any ω̃0 ∈ X1

satisfying ∥ω̃0∥X ≤ ϵ0, the solution of (4-6) with initial data ω̃0 satisfies

∥ω̃(t)∥2
X ≤ C1∥ω̃0∥

2
X e−µt for all t ≥ 0. (4-20)

Proof. If ω̃ ∈ C0([0,+∞),X1) is the solution of (4-6) with initial data ω̃0, we define

m0(t)= ∥ω̃(t)∥2
X = ∥A1/2ω̃(t)∥2

L2 (t ≥ 0), m1(t)= ∥A1/2
∇ω̃(t)∥2

L2 (t > 0).
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For the Gaussian vortex, we proved in Section 2 that Hardy’s inequality (2-25) holds for some CH < 1.
Thus, by Theorems 2.5 and 2.8, there exists a constant γ ∈ (0, 1) such that

γ

2
m0(t)≤ J̃ (t)≤

1
2

m0(t), t ≥ 0. (4-21)

On the other hand, by Theorem 4.2, there exists δ > 0 such that

Q̃(t)≥ δm0(t) and Q̃(t)≥ m1(t)− 2m0(t), t > 0, (4-22)

where the second inequality follows from the definition (4-9) and the inequality B ≤ 2A. Taking a convex
combination of both estimates in (4-22), we deduce

Q̃(t)≥ µ(m0(t)+ m1(t)), t > 0, (4-23)

where µ= δ/(3 + δ). Finally, it follows from Lemma 4.4 and Young’s inequality that

|Ñ (t)| ≤ C0m0(t)(m0(t)1/2 + m1(t)1/2)≤
µ

4
(m0(t)+ m1(t))+

2C2
0

µ
m0(t)2. (4-24)

Now, as long as m0(t)≤ ϵ2
:= µ2/(8C2

0), we have by (4-13), (4-21), (4-23), (4-24)

J̃ ′(t)= −Q̃(t)− Ñ (t)≤ −
µ

2
(m1(t)+ m0(t))≤ −µ J̃ (t),

which implies
γm0(t)≤ 2 J̃ (t)≤ 2 J̃ (0)e−µt

≤ m0(0)e−µt .

As a consequence, if we assume that ∥ω̃0∥
2
X = m0(0)≤ ϵ2

0 := γ ϵ2, we have m0(t)≤ ϵ2 for all t ≥ 0 and
estimate (4-20) holds with C1 = γ−1. □

We briefly indicate here the meaning of our result for the Navier–Stokes equations in the original,
unscaled variables. If ω = αω̄+ ω̃, where ω̃ ∈ C0([0,+∞),X1) is as in Theorem 4.5, the vorticity w
defined by (4-2) satisfies, in particular, the estimate∫

R2

∣∣∣∣w(y, τ )− α

4πτ
e−|y|

2/(4τ)
∣∣∣∣ dy = O(τ−µ/2) as τ → +∞,

which means that w( · , τ ) converges to a self-similar solution with Gaussian profile as τ → +∞. As
is shown in [Gallay 2012, Theorem 1.2], that property holds in fact for all solutions of the vorticity
equation (4-1) in L1(R2), although it is not possible to specify any decay rate in the general case. Note
that the evolution defined by (4-1) in L1(R2) preserves the total mass, so that we necessarily have∫

R2 w(y, τ ) dy = α for all τ > 0.

Remark 4.6. Except for a slight difference in the definition of the function space X , Theorem 4.5 coincides
with the well-known stability result [Gallay 2012, Proposition 4.5]. The approach originally developed by
C. E. Wayne and the first author relies on conserved quantities related to symmetries of the problem, such
as the second-order moment I (ω) in (1-15). In many respects, it is simpler than ours, and it provides an
estimate of the form (4-20) with explicit constants C1 and µ. Note also that, in the limit of large circulation
numbers |α| → ∞, the enhanced dissipation effect due to fast rotation can be used to improve both the
decay rate of the perturbations and the size of the basin of attraction of the vortex; see [Gallay 2018].
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4B. Coercivity of the diffusive quadratic form. This section is entirely devoted to the proof of Theorem 4.2,
which is a key ingredient in Theorem 4.5. We first observe that the functions A(x),B(x) in (4-9) are
both radially symmetric, with radial profiles A(r), B(r) given by the explicit expressions

A(r)=
es

−1
s

, B(r)=
1

2s2 (e
s(1 + s)− 1 − 2s)+ 1, s =

r2

4
. (4-25)

On can also verify that B/A is a decreasing function of r satisfying 1
2 ≤ B(r)/A(r)≤ 7

4 for all r > 0; see
Section A3.

We next follow an approach similar to that in Section 2. If ω ∈ Z is decomposed in Fourier series like
in (2-14), we have

Q(ω)= 2π
∑
k∈Z

∫
∞

0

{
A(r)

(
|ω′

k(r)|
2
+

k2

r2 |ωk(r)|2
)

− B(r)|ωk(r)|2
}

r dr, (4-26)

and we observe that ω ∈ Z1 if and only if∫
∞

0
ω0(r) r dr = 0 and

∫
∞

0
ω±1(r) r2 dr = 0.

Introducing the new variables wk = A1/2ωk ≡ eχωk , where χ =
1
2 log(A), we obtain after straightforward

calculations

Q(ω)= 2π
∑
k∈Z

∫
∞

0

{
|w′

k(r)|
2
+

k2

r2 |wk(r)|2 + W (r)|wk(r)|2
}

r dr, (4-27)

where the potential W is defined by

W (r)= χ ′′(r)+ 1
r
χ ′(r)+χ ′(r)2 −

B(r)
A(r)

=
r
2
χ ′(r)−χ ′(r)2 −

1
2

− e−2χ(r). (4-28)

The coercivity estimate (4-11) is thus equivalent to the inequality∫
∞

0

{
|w′

k(r)|
2
+

k2

r2 |wk(r)|2 + W (r)|wk(r)|2
}

r dr ≥ δ

∫
∞

0
|wk(r)|2 r dr, (4-29)

which should hold for all k ∈ Z under the conditions∫
∞

0
w0(r)e−χ(r) r dr = 0 and

∫
∞

0
w±1(r)e−χ(r) r2 dr = 0. (4-30)

For any k ∈ Z, we denote by Lk the self-adjoint operator in Y = L2(R+, r dr) defined by

Lk g = −
1
r
∂r (r∂r g)+ k2

r2 g + Wg. (4-31)

The domain of Lk is exactly the same as for the harmonic oscillator in R2, because the potential W
defined by (4-28) satisfies

W (r) > 1
16r2

−
3
2 for all r > 0, and W (r)∼

{
−

3
2 as r → 0,

1
16r2 as r → ∞;

(4-32)



714 THIERRY GALLAY AND VLADIMÍR ŠVERÁK

see Section A3. Our goal is to prove the lower bound Lk ≥ δ in the entire space Y when |k| ≥ 2, and in
the subspaces given by conditions (4-30) when k = 0 or k = ±1. We consider three cases separately.

Case 1: When |k| ≥ 2, the desired inequality is simply obtained by comparing Lk with the usual harmonic
operator. Indeed, we know from (4-31), (4-32) that

Lk >−∂2
r −

1
r
∂r +

k2

r2 +
r2

16
−

3
2

≥
|k|

2
− 1, (4-33)

where inequalities are between self-adjoint operators on Y. Thus Lk ≥
1
2 when |k| ≥ 3, and there exists

δ > 0 such that Lk ≥ δ when |k| = 2, because the inequality in (4-32) is strict.

Case 2: When |k| = 1, the lower bound (4-33) is of no use, but it is easy to verify that Lk ≥ 0 in that case.
Indeed, we claim that Lk g1 = 0, where g1(r)= eχ(r) re−r2/4. Since g1 is a positive function vanishing at
the origin and at infinity, this means that 0 is the lowest eigenvalue of Lk in Y when k = ±1. To prove
the above claim, we first observe that, for any (smooth) function f on R+, we have the identity

L̃k f := eχ Lk(eχ f )= −
1
r
∂r (r A∂r f )+ k2

r2 A f − B f, (4-34)

because this is the property we used to go from (4-26) to (4-27). On the other hand, in view of (2-2) and
(2-3), we have the identity

−
1
r
∂r (r A∂rω∗)= ω∗, (4-35)

which holds in fact for any vorticity profile ω∗, if A is defined by (2-3). In the case of the Lamb–Oseen
vortex, if we differentiate the equality (4-35) with respect to r , we find that the function f =−2ω′

∗
=re−r2/4

satisfies the relation

−
1
r
∂r (r A∂r f )+ 1

r2 A f −

(
A′′

+
2
r

A′
−

r
2

A′

)
f = f. (4-36)

But A′′
+ 2A′/r − r A′/2 = B − 1 by (4-10), so combining (4-34) and (4-36) we conclude that L̃k f = 0

if |k| = 1, which is the desired result.
To get coercivity, we now restrict ourselves to the subspace Y1 ⊂ Y of all functions g satisfying

⟨g, h1⟩ = 0, where h1(r)= re−χ(r); see the second relation in (4-30). It is important to observe that h1

is not proportional to g1, so that Y1 is not the orthogonal complement in Y of the eigenspace spanned
by g1. However, we have ⟨g1, h1⟩ = 8 ̸= 0, which means that the closed hyperplane Y1 does not contain
the eigenfunction g1. In view of Remark 4.8 below, we conclude that there exists some δ > 0 such that
Lk ≥ δ on Y1 when |k| = 1.

Case 3: Finally, we consider the radially symmetric case where k = 0. The difficulty here is that the
operator L0 is not positive on the entire space Y. A numerical calculation indicates that L0 has one negative
eigenvalue µ0 ≈ −0.722, and that the next eigenvalue µ1 ≈ 0.615 is positive. So it is essential to use the
first relation in (4-30), and to restrict our analysis to the subspace Y0 of all g ∈ Y such that ⟨g, h0⟩ = 0,
where h0(r)= e−χ(r). Our strategy is to apply Lemma 4.7 below with a = −µ0, b = µ1, ψ = h0/∥h0∥,
and φ = g0/∥g0∥, where g0 denotes a positive function in the kernel of L0 −µ0. Estimate (4-41) can
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be used to prove coercivity of L0 on Y0 if we have good lower bounds on the eigenvalues µ0, µ1 and on
the scalar product |⟨φ,ψ⟩|, which measures the angle between the linear spaces spanned by g0 and h0.

We first estimate the lowest eigenvalue µ0. We know from the previous step that L1g1 = 0. Defining
g = cg1/r = ceχe−r2/4, where c = (2 log(2))−1/2 is a normalization factor chosen so that ∥g∥ = 1, we
deduce that L0g = (2/r)∂r g. This gives the relation(

L0 +
3
4

)
g = R, where R =

2
r
∂r g +

3
4

g =

(3
4

−
B−1

A

)
g, (4-37)

where we used the identity (B − 1)/A = 1 − A′/(r A)= 1 − 2χ ′/r ; see (4-10). In Section A3 below, we
show that B −1< 3

4 A, so that R > 0. This means that the operator L0 +
3
4 admits a positive supersolution,

and using Sturm–Liouville theory we conclude that L0 +
3
4 > 0, so that µ0 >−

3
4 . Actually the function g

is a remarkably accurate quasimode, in the sense that the remainder R in (4-37) is small. The norm of R
in Y = L2(R+, r dr) can be computed explicitly; see Section A4. The result is∫

∞

0
R(r)2r dr =

1
16 log(2)

(3 − log(2)− 2 log(π)), (4-38)

so that ϵ := ∥R∥Y ≈ 0.0396. Since L0 is a self-adjoint operator, we deduce that L0 has an eigenvalue
in the interval

[
−

3
4 ,−

3
4 + ϵ

]
. Anticipating the fact (established below) that L0 has a unique negative

eigenvalue, we conclude that µ0 ∈
[
−

3
4 ,−

3
4 + ϵ

]
.

We next estimate the second eigenvalue µ1 of L0. It is convenient here to observe that, if g = eχ f , the
relation L0g = µg is equivalent to the generalized eigenvalue problem L̃0 f = µA f , where L̃k is defined
in (4-34). The second eigenvalue of that problem is characterized by the inf-sup formula

µ1 = inf
f ∈F

sup
r>0
(R[ f ])(r)= sup

f ∈F

inf
r>0
(R[ f ])(r), where R[ f ] =

L̃0 f
A f

. (4-39)

Here F denotes the class of all (smooth) functions f : [0,+∞)→ R such that f (0)= 1, f (r)→ 0 as
r →+∞, and f has exactly one zero in the interval (0,+∞). Our first trial function is f (r)= e−s(1−αs),
where s = r2/4 and α= log(2)−1. The value of α is chosen so that the Rayleigh quotient has no singularity:

R[ f ] =
e−s(1 + (2−α)s + 2αs2)− (1 + (1−α)s +αs2)

2s(1 − e−s)(1 −αs)
, s =

r2

4
.

It happens that R[ f ] is a decreasing function on R+, with R[ f ](0)= −
3
4 +α and R[ f ](+∞)=

1
2 . In

view of (4-39), this implies that 1
2 < µ1 <−

3
4 +α ≈ 0.69. A better approximation is obtained using

f (r)= e−s(1 −αs)(1 +βs), where β =
α(1 − 2e−1/α)

2α− 1 + 2e−1/α(1 −α)
.

If 1
2 < α < log(2)−1, then β > 0 and the Rayleigh quotient has no singularity in the interval (0,+∞).

Taking for instance α = 1.4 gives the excellent lower bound µ1 ≥ 0.6.
Finally, we use the quasimode g in (4-37) and a standard perturbation argument to estimate the true

eigenfunction corresponding to the lowest eigenvalue µ0. We first look for a nonnormalized eigenfunction
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of the form g0 = g − f , where f ⊥ g0. We have

0 = (L0 −µ0)g0 = (L0 −µ0)g − (L0 −µ0) f = R −
(
µ0 +

3
4

)
g − (L0 −µ0) f,

so that f = (L0 −µ0)
−1
(
R −

(
µ0 +

3
4

)
g
)
, where (L0 −µ0)

−1 denotes the partial inverse of L0 −µ0 on its
range. The norm of that inverse is bounded by 1/d , where d = µ1 −µ0 is the spectral gap. As ∥R∥ = ϵ

and |µ0 +
3
4 | ≤ ϵ, we conclude that ∥ f ∥ ≤ 2ϵ/d . The normalized eigenfunction is

φ =
g0

∥g0∥
=

g − f√
1 − ∥ f ∥2

.

Let ψ = ĉh0 = ĉe−χ, where ĉ =
√

3/π is a normalization factor chosen so that ∥ψ∥ = 1. A direct
calculation shows

⟨ψ, g⟩ = cĉ
∫

∞

0
e−r2/4 r dr = 2cĉ =

1
π

√
6

log(2)
≈ 0.9365;

hence
⟨ψ, φ⟩ =

⟨ψ, g⟩ − ⟨ψ, f ⟩√
1 − ∥ f ∥2

≥ 2cĉ −
2ϵ
d
. (4-40)

We use Lemma 4.7 below with a = −µ0 ≤
3
4 , d = a + b = µ1 −µ0 ≥ 1.2, and ϵ = ∥R∥ ≤ 0.04. In

view of (4-40), estimate (4-41) shows that there exists some δ > 0 such that ⟨L f, f ⟩ ≥ δ∥ f ∥
2 for all

f ∈ Y0 = h⊥

0 . This concludes the proof of Theorem 4.5. □
Finally, we state an elementary lemma that was used twice in the above proof.

Lemma 4.7. Let X be a Hilbert space and L : D(L)→ X be a self-adjoint operator in X. We assume
that there exist φ ∈ D(L) with ∥φ∥ = 1 and a, b ∈ R with a + b ≥ 0 such that

(i) Lφ = −aφ, and

(ii) ⟨Lg, g⟩ ≥ b∥g∥
2 for all g ∈ D(L) with g ⊥ φ.

Then, for any ψ ∈ X with ∥ψ∥ = 1, we have the lower bound

⟨L f, f ⟩ ≥ ((a + b)|⟨φ,ψ⟩|
2
− a)∥ f ∥

2 for all f ∈ D(L) with f ⊥ ψ. (4-41)

Proof. Given f ∈ D(L), we take the decomposition f = ⟨ f, φ⟩φ+ g, so that g ⊥ φ. Since Lφ = −aφ,
we find

⟨L f, f ⟩ = ⟨Lg, g⟩ − a|⟨ f, φ⟩|
2
≥ b∥g∥

2
− a|⟨ f, φ⟩|

2
= b∥ f ∥

2
− (a + b)|⟨ f, φ⟩|

2,

where the inequality follows from (ii). We now assume that f ⊥ ψ and take the decomposition φ =

⟨φ,ψ⟩ψ + h. By Cauchy–Schwarz, we have

|⟨ f, φ⟩|
2
= |⟨ f, h⟩|

2
≤ ∥ f ∥

2
∥h∥

2
= ∥ f ∥

2(1 − |⟨φ,ψ⟩|
2),

and combining both inequalities we arrive at (4-41). □

Remark 4.8. In the particular case where a = 0 and b > 0, the kernel of L is one-dimensional, and
inequality (4-41) implies that the quadratic form of L is strictly positive on any closed hyperplane that
does not contain the eigenfunction φ.
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Appendix

A1. Integral inequalities involving logarithmic weights.

Proof of Proposition 3.1. Let B1 = {x ∈ Rn
: |x |< 1} and DM = {x ∈ Rn

: f (x) < M}. To prove (3-1),
we must verify that ∫

B1

(
log

1
|x |

)
f (x) dx ≲ M +

∫
Rn\DM

(
log

f (x)
M

)
f (x) dx . (A-1)

Let �1 = {x ∈ B1 : f (x) ≤ M |x |
−n/2

} and �2 = {x ∈ B1 : f (x) > M |x |
−n/2

} ⊂ Rn
\ DM . We have

B1 =�1 ∪�2 and∫
�1

(
log

1
|x |

)
f (x) dx ≤ M

∫
B1

1
|x |n/2

log
1
|x |

dx = C M,∫
�2

(
log

1
|x |

)
f (x) dx ≤

2
n

∫
�2

(
log

f (x)
M

)
f (x) dx ≤

2
n

∫
Rn\DM

(
log

f (x)
M

)
f (x) dx;

hence (A-1) follows by adding both inequalities. We next consider (3-2), which reads∫
DM

(
log

M
f (x)

)
f (x) dx ≲ M +

∫
Rn\B1

(log |x |) f (x) dx . (A-2)

Let e = exp(1) and

�3 =

{
x ∈ DM : f (x)≤

M
e(1+|x |)2n

}
, �4 =

{
x ∈ DM : f (x) >

M
e(1+|x |)2n

}
.

Since t 7→ t log(1/t) is increasing on [0, e−1
] and s 7→ log(s) is increasing on [1,+∞), we have∫

�3

(
log

M
f (x)

)
f (x) dx ≤ M

∫
Rn

1
e(1+|x |)2n log(e(1+|x |)2n) dx = C M,∫

�4

(
log

M
f (x)

)
f (x) dx ≤

∫
�4

log(e(1+|x |)2n) f (x) dx ≤ C M + 2n
∫

Rn\B1

(log |x |) f (x) dx,

and (A-2) follows in the same way.
From now on, we assume that f is radially symmetric and nonincreasing in the radial direction. In

particular, we have, for all x ̸= 0,

f (x)≤
1

αn|x |n

∫
|y|≤|x |

f (y) dy ≤
M

αn|x |n
, where αn =

πn/2

0(1 + n/2)
. (A-3)

Since t 7→ log+(t) is increasing, we deduce that∫
Rn\DM

(
log

f (x)
M

)
f (x) dx ≤

∫
Rn

(
log+

1
αn|x |n

)
f (x) dx ≤ C M + n

∫
B1

(
log

1
|x |

)
f (x) dx,

which is the converse of (3-1). Note that, when n ≤ 12, the first term C M in the right-hand side can be
dropped, because αn > 1. In a similar way, we find∫

Rn\B1

(log |x |) f (x) dx ≤
1
n

∫
Rn

(
log+

M
αn f (x)

)
f (x) dx ≤ C M +

∫
DM

(
log

M
f (x)

)
f (x) dx,
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which is the converse of (3-2). Again, the first term C M in the right-hand side can be dropped when
n ≤ 12. □

Proof of Proposition 2.2. Throughout the proof we assume that M :=∥ω∥L1>0. We take the decomposition
E(ω)= E1(ω)+ E2(ω), where

Ei (ω)=
1

4π

∫
�i

log 1
|x−y|

ω(x)ω(y) dx dy, i = 1, 2,

and �1 = {(x, y) ∈ R2
× R2

: |x − y|< 1}, �2 = {(x, y) ∈ R2
× R2

: |x − y| ≥ 1}. We have to verify that
the integrals defining the quantities E1, E2 are convergent under assumptions (2-6).

First of all, using inequality (A-1) above with n = 2, we obtain for all x ∈ R2∫
|y−x |<1

log
1

|x − y|
|ω(y)| dy ≤ C

∫
R2

(
1 + log+

|ω(y)|
M

)
|ω(y)| dy.

If we multiply both sides by |ω(x)| and integrate over x ∈ R2, we thus find

|E1(ω)| ≤ C M
∫

R2

(
1 + log+

|ω(y)|
M

)
|ω(y)| dy. (A-4)

On the other hand, we have log |x − y| ≤ log(|x | + |y|)≤ log(1 + |x |)+ log(1 + |y|) when |x − y| ≥ 1.
This gives the bound

|E2(ω)| ≤
1

4π

∫
�2

|ω(x)||ω(y)|
(
log(1 + |x |)+ log(1 + |y|)

)
dx dy

≤
M
2π

∫
R2

|ω(y)| log(1 + |y|) dy. (A-5)

Combining (A-4) and (A-5), we arrive at (2-7).
Finally, we assume that ω ∈ C2

c (R
2) and

∫
R2 ω(x) dx = 0. The associated stream function ψ ∈ C2(R)

defined by (1-14) satisfies |ψ(x)| = O(|x |
−1) and |u(x)| = |∇ψ(x)| = O(|x |

−2) as |x | → ∞, so that
u ∈ L2(R2). This allows us to integrate by parts in the first expression (1-13) of the energy, using
the relation 1ψ = ω, to obtain the elegant formula E(ω) =

1
2

∫
R2 |u|

2 dx . By a density argument, the
conclusion remains valid for all integrable vorticities with zero average satisfying a assumptions (2-6). □

A2. Positivity of the potential V in some examples. For the algebraic vortex (2-38) with κ = 1 + ν > 1,
the potential V defined in (2-34) has the expression

V (r)=
1

r2(1+r2)2

(
3 − 2(ν−1)r2

+ (ν2
−1)r4

− 2S − S2), where S =
νr2

(1 + r2)ν − 1
.

If ν = 1, then S = 1; hence V ≡ 0. Otherwise:

• If ν > 1, we have (1 + r2)ν > 1 + νr2 for all r > 0, so that S < 1. We deduce

V (r) >
ν− 1
(1+r2)2

(−2 + (ν+1)r2), (A-6)
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so that V (r) > 0 if r2
≥ 2/(ν+1). In the region where r2

≤ 2/(ν+1), we use the improved estimate

S =
νr2

(1 + r2)ν − 1
< 1 −

ν−1
2

r2
+
ν2

−1
12

r4, r > 0, (A-7)

which can be established by a direct calculation. This gives the lower bound

V (r) >
(ν−1)r2

12(1+r2)2

(
5ν+ 11 + (ν2

−1)r2
−
(ν−1)(ν+1)2

12
r4
)
, (A-8)

which implies that V (r) > 0 if (ν+1)r2
≤ 2.

• If 0<ν < 1, the calculations are entirely similar, except that all inequalities in (A-6)–(A-8) are reversed.
This shows that V (r) < 0 in that case.

For the Gaussian vortex (2-39), a direct calculation shows that

V (r)=
3
4s

−
1
2

+
s
4

−
1/2

es − 1
−

s/4
(es − 1)2

, where s =
r2

4
.

Using the lower bound es
− 1 ≥ s(1 + s/2 + s2/6), we obtain

V (r)≥
1
4s

1
(1+s/2+s2/6)2

(
(3 − 2s + s2)

(
1 +

s
2

+
s2

6

)2

− 2
(

1 +
s
2

+
s2

6

)
− 1
)

=
1
4

s
(6+3s+s2)2

(15 + 12s + 12s2
+ 4s3

+ s4) > 0.

A3. Properties of the Gaussian vortex. Given the expressions of A, B in (4-25), we first verify that the
ratio B/A is a decreasing function of r . We have

B(r)− 1
A(r)

=
1
2

(
1 + h

(
r2

4

))
, where h(s)=

1
s

−
1

es − 1
. (A-9)

Since

h′(s)= −
(es

− 1)2 − s2es

s2(es − 1)2
= −4es sinh(s/2)2 − (s/2)2

s2(es − 1)2
< 0, s > 0,

we see that h is strictly decreasing on (0,+∞) with h(0) =
1
2 and h(+∞) = 0. We conclude that

(B − 1)/A, hence also B/A, is a decreasing function of r , and that 1
2 ≤ B/A ≤

7
4 .

We next prove the lower bound (4-32) on the potential W. Since χ = log(A)/2 with A as in (4-25), a
direct calculation shows that the potential W defined by (4-28) has the expression

W (r)=
s
4

−
1
2

−
1
4s

−
s − 1/2
es − 1

−
s/4

(es − 1)2
, where s =

r2

4
.

Inequality (4-32) is thus equivalent to the positivity of the function G defined by

G(s)= 1 −
1
4s

−
s − 1/2
es − 1

−
s/4

(es − 1)2
, s > 0. (A-10)
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If s ≥
1
2 , we use the lower bound es

− 1 ≥ s(1 + s/2) and obtain

G(s)≥
s

4(2 + s)2
(7 + 4s) > 0.

If 0 < s < 1
2 , the third term in the right-hand side of (A-10) has the opposite sign. To estimate the

denominator, we use the upper bound es
− 1 ≤ s(1 + s/2)(1 + s2/5), which holds for s ≤

1
2 . This gives

G(s)≥
s

4(2 + s)2(5 + s2)
(27 + 32s + 15s2

+ 4s3) > 0.

A4. Computing the norm of the quasimode (4-37). In this section we compute the L2 norm of the
function R defined by (4-37). We recall that g = cA1/2e−r2/4, where c = (2 log(2))−1/2, and using (A-9)
we observe that

3
4

−
B − 1

A
=

1
4

(
1 − 2h

(
r2

4

))
, where h(s)=

1
s

−
1

es − 1
.

It follows that

∥R∥
2
Y =

1
16

∫
∞

0

(
1 − 2h

(
r2

4

))2

g(r)2r dr =
1

16 log(2)

∫
∞

0
(1 − 2h(s))2

1
s
(e−s

− e−2s) ds.

Expanding (1 − 2h(s))2 = 1 − 4h(s)+ 4h(s)2, we take the decomposition

∥R∥
2
Y ≡

∫
∞

0
R(r)2r dr =

I1 − 4I2 + 4I3

16 log(2)
, (A-11)

where the integrals I1, I2, I3 are defined and computed below.

• Evaluation of I1: I1 =

∫
∞

0

1
s
(e−s

− e−2s) ds = log(2).

• Evaluation of I2:

I2 =

∫
∞

0

h(s)
s
(e−s

− e−2s) ds

=

∫
∞

0

(
1
s

−
1

es − 1

){∫
∞

0
e−st dt

}
(e−s

− e−2s) ds

=

∫
∞

0

{∫
∞

0

(
1
s

−
1

es − 1

)
(e−s(1+t)

− e−s(2+t)) ds
}

dt

=

∫
∞

0

(
log

2 + t
1 + t

−
1

2 + t

)
dt = (1 + t) log

2 + t
1 + t

∣∣∣∣t=+∞

t=0
= 1 − log(2).

• Evaluation of I3:

I3 =

∫
∞

0

h(s)2

s
(e−s

− e−2s) ds

=

∫
∞

0

(
1
s

−
1

es − 1

)2{∫ ∞

0
tse−st dt

}
(e−s

− e−2s) ds

=

∫
∞

0

{∫
∞

0

(
e−s(1+t)

− e−s(2+t)

s
− 2e−s(2+t)

+
se−s(2+t)

es − 1

)
ds
}

t dt

=

∫
∞

0

(
log

2 + t
1 + t

−
2

2 + t
+ψ (1)(3 + t)

)
t dt,
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where ψ (1) denotes the trigamma function [Abramowitz and Stegun 1966, Section 6.4]:

ψ (1)(z)=

∫
∞

0

se−sz

1 − e−s ds =
d2

dz2 log0(z), Re(z) > 0.

It follows that

I3 =
t2

+ 4
2

log(2 + t)−
t2

− 1
2

log(1 + t)−
3t
2

+ t (log0)′(3 + t)− (log0)(3 + t)
∣∣∣t=+∞

t=0

=
1
4
(7 − 6 log(2)− 2 log(π)).

Here we used Stirling’s formula to compute an asymptotic expansion of (log0)(3 + t) and its derivative
as t → +∞. Inserting the values of I1, I2, I3 into (A-11), we arrive at (4-38).

A5. The Poisson structure on P. For two functions φ,ψ on R2 we use the familiar notation {φ,ψ} =

∂1φ∂2ψ−∂2φ∂1ψ . Now, if F and G are two functionals of P, the standard way of defining their Poisson
bracket is

{F,G}(ω)= −

∫
R2
ω
{
δF

δω
,
δG

δω

}
dx, (A-12)

where δF/δω is the usual “variational derivative” of F, namely, the function on R2 defined by the relation( d
dϵ

F(ω+ ϵη)
)∣∣∣
ϵ=0

=

∫
R2

δF

δω
(x)η(x) dx

for all (smooth and compactly supported) increments η. In particular, the variational derivative of the
energy functional (1-13) is δE/δω = −ψ , where ψ is the stream function (1-14). As an application, if ω
evolves according to the Euler equation ∂tω+ {ψ,ω} = 0, we have for any (smooth) functional F:

d
dt
F(ω)= −

∫
R2

δF

δω
{ψ,ω} dx =

∫
R2

{
δF

δω
,
δE
δω

}
ω dx = {E,F}(ω).

This is precisely the integrated form of the canonical equation ∂tω = {E, ω}.
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