ON L^∞ ESTIMATES FOR MONGE–AMPÈRE AND HESSIAN EQUATIONS ON NEF CLASSES
ON L∞ ESTIMATES FOR MONGE–AMPÈRE AND HESSEAN EQUATIONS ON NEF CLASSES

BIN GUO, DUONG H. PHONG, FREID TONG AND CHUWEN WANG

The PDE approach developed earlier by the first three authors for L^∞ estimates for fully nonlinear equations on Kähler manifolds is shown to apply as well to Monge–Ampère and Hessian equations on nef classes. In particular, one obtains a new proof of the estimates of Boucksom, Eyssidieux, Guedj and Zeriahi (2010) and Fu, Guo and Song (2020) for the Monge–Ampère equation, together with their generalization to Hessian equations.

1. Introduction

The goal of this short note is to show that the PDE approach introduced in [Guo et al. 2023a; 2023b] for L^∞ and Trudinger-type estimates for general classes of fully nonlinear equations on a compact Kähler manifold applies as well to Monge–Ampère and Hessian equations on nef classes.

The key to the approach in [Guo et al. 2023a; 2023b] is an estimate of Trudinger-type, obtained by comparing the solution φ of the given equation to the solution of an auxiliary Monge–Ampère equation with the energy of the sublevel set function $-\varphi + s$ on the right-hand side. We shall see that, in the present case of nef classes, the argument can still be made to work by replacing φ by $\varphi - V$, where V is the envelope of the nef class. Applied to the Monge–Ampère equation, this gives a PDE proof of the estimates obtained earlier for nef classes by Boucksom, Eyssidieux, Guedj and Zeriahi [Boucksom et al. 2010] and Fu, Guo and Song [Fu et al. 2020]. The estimates which we obtain with this method applied to Hessian equations seem new.

We note that the use of an auxiliary Monge–Ampère equation was instrumental in the recent progress of Chen and Cheng [2021] on the constant scalar curvature Kähler metrics problem. There the auxiliary equation involved the entropy, and not the energy, of sublevel set functions as in our case. More generally, auxiliary equations have often been used in the theory of partial differential equations, notably by De Giorgi [1961] and more recently by Dinew and Kołodziej [Demailly et al. 2014; Dinew and Kołodziej 2014] in their approach to Hölder estimates for the complex Monge–Ampère equation.

This work was supported in part by the National Science Foundation under grant DMS-1855947. Tong is supported by Harvard’s Center for Mathematical Sciences and Applications.

MSC2020: primary 53C56; secondary 34G20.

Keywords: Monge–Ampère equations, Hessian equations.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
2. The Monge–Ampère equation

We begin with the Monge–Ampère equation. Let (X, ω) be a compact Kähler manifold, and, without loss of generality, let us assume that $\int_X \omega^n = 1$. Let χ be a closed $(1, 1)$-form on X. We assume the cohomology class $[\chi]$ is nef and let $v \in \{0, 1, \ldots, n\}$ be the numerical dimension of $[\chi]$, i.e.,

$$v = \max\{k \mid [\chi]^k \neq 0 \text{ in } H^{k,k}(X, \mathbb{C})\}.$$

When $v = n$ we say the class $[\chi]$ is big.

Let $\hat{\omega}_t = \chi + t \omega$ for $t \in (0, 1]$. The form $\hat{\omega}_t$ may not be positive but its class is Kähler. We consider the family of complex Monge–Ampère equations

$$(\hat{\omega}_t + i \partial \bar{\partial} \phi_t)^n = c_t e^F \omega^n, \quad \sup_{\chi} \phi_t = 0, \quad (2-1)$$

where $c_t = [\hat{\omega}_t^n] = O(t^{n-v})$ is a normalizing constant and $F \in C^\infty(X)$ satisfies $\int_X e^F \omega^n = \int_X \omega^n$. This equation admits a unique smooth solution ϕ_t by Yau’s theorem [1978].

The form χ is not assumed to be semipositive, so the usual L^∞ estimate of ϕ_t may not hold [Kołodziej 1998]. As in [Boucksom et al. 2010; Fu et al. 2020], we need to modify the solution ϕ_t by an envelope V_t of the class $[\hat{\omega}_t]$; defined as

$$V_t = \sup\{v \mid v \in \text{PSH}(X, \hat{\omega}_t), \ v \leq 0\}.$$

Then we have:

Theorem 1. Consider (2-1), and assume that the cohomology class of χ is nef. For any $s > 0$, let $\Omega_s = \{\phi_t - V_t \leq -s\}$ be the sublevel set of $\phi_t - V_t$.

(a) There are constants $C = C(n, \omega, \chi) > 0$ and $\alpha_0 = \alpha_0(n, \omega, \chi) > 0$ such that

$$\int_{\Omega_s} \exp\left\{\alpha_0 \left(\frac{-(\phi_t - V_t + s)}{A_s^{1/(1+n)}}\right)^{(n+1)/n}\right\} d\omega^n \leq C \exp (CE_t), \quad (2-2)$$

where $A_s = \int_{\Omega_s} (-\phi_t + V_t - s) e^F \omega^n$ and $E_t = \int_X (-\phi_t + V_t) e^F \omega^n$.

(b) Fix $p > n$. There is a constant $C(n, p, \omega, \chi, \|e^F\|_{L^1(\log L)^p})$ such that, for all $t \in (0, 1]$, we have

$$0 \leq -\phi_t + V_t \leq C(n, p, \omega, \chi, \|e^F\|_{L^1(\log L)^p}). \quad (2-3)$$

We remark that the estimates in Theorem 1 continue to hold for a family of Kähler metrics (maybe with distinct complex structures) which satisfy a uniform α-invariant-type estimate.

Proof. We would like to find an auxiliary equation with smooth coefficients, so that its solvability can be guaranteed by Yau’s theorem. For this, we need a lemma due to Berman [2019] on a smooth approximation for V_t; see also Lemma 4 below. Fix a time $t \in (0, 1]$.

Lemma 2. Let u_β be the smooth solution to the complex Monge–Ampère equation

$$(\hat{\omega}_t + i \partial \bar{\partial} u_\beta)^n = e^{\beta u_\beta} \omega^n.$$

Then u_β converges uniformly to V_t as $\beta \to \infty$.
We remark that by [Chu et al. 2018], \(V_t\) is a \(C^{1,1}\) function on \(X\), although this fact is not used in this note. We now return to the proof of Theorem 1(a).

We choose a sequence of smooth positive functions \(\tau_k : \mathbb{R} \to \mathbb{R}_+\) such that \(\tau_k(x)\) decreases to \(x \cdot \chi_{\mathbb{R}_+}(x)\) as \(k \to \infty\). Fix a smooth function \(u_\beta\) as in Lemma 2. The function \(u_\beta\) depends on \(t\), but for simplicity we omit the subscript \(t\). We solve the following auxiliary Monge–Ampère equation on \(X\),

\[
(\hat{\omega}_t + i \partial \bar{\partial} \psi_{t,k})^n = c_t \frac{\tau_k(-\varphi_t + u_\beta - s)}{A_{s,k,\beta}} e^F \omega^n, \quad \sup_X \psi_{t,k} = 0, \tag{2-4}
\]

where

\[
A_{s,k,\beta} = \int_X \tau_k(-\varphi_t + u_\beta - s) e^F \omega^n.
\]

Since \(\psi_{t,k} \leq V_t\) and \(u_\beta\) converges uniformly to \(V_t\), by taking \(\beta\) large enough, we may assume \(\psi_{t,k} < u_\beta + 1\).

Define a function

\[
\Phi = -\varepsilon (-\psi_{t,k} + u_\beta + 1 + \Lambda)^{n/(n+1)} - (\varphi_t - u_\beta + s),
\]

with the constants

\[
\varepsilon^{n+1} = A_{s,k,\beta}n^{-n}(n+1)^n, \quad \Lambda = n^{n+1}(n+1)^{-n-1}\varepsilon^{n+1}. \tag{2-5}
\]

As a smooth function on the compact manifold \(X\), we know \(\Phi\) must achieve its maximum at some \(x_0 \in X\). If \(x_0 \in X \setminus \Omega^\circ\), then

\[
\Phi(x_0) \leq -(\varphi_t - u_\beta + s) \leq -V_t + u_\beta \leq \varepsilon_\beta,
\]

where \(\varepsilon_\beta \to 0\) as \(\beta \to \infty\). On the other hand, if \(x_0 \in \Omega^\circ\), we calculate (\(\Delta_t\) denotes the Laplacian with respect to the metric \(\omega_t = \hat{\omega}_t + i \partial \bar{\partial} \varphi_t\))

\[
0 \geq \Delta_t \Phi(x_0)
\]

\[
= -\varepsilon \frac{n}{n+1} (-\psi_{t,k} + u_\beta + \Lambda + 1)^{-1/(n+1)} \text{tr}_{\omega_t} (-i \partial \bar{\partial} \psi_{t,k} + i \partial \bar{\partial} u_\beta) - \text{tr}_{\omega_t} (i \partial \bar{\partial} \varphi_t - i \partial \bar{\partial} u_\beta)
\]

\[
+ \frac{n\varepsilon}{(n+1)^2} (-\psi_{t,k} + u_\beta + 1 + \Lambda)^{-(n+2)/(n+1)} \text{tr}_{\omega_t} i \partial (\psi_{t,k} - u_\beta) \wedge \bar{\partial} (\psi_{t,k} - u_\beta)
\]

\[
\geq \frac{n\varepsilon}{n+1} (-\psi_{t,k} + u_\beta + \Lambda + 1)^{-1/(n+1)} \text{tr}_{\omega_t} (\hat{\omega}_{t,\psi_{t,k}} - \hat{\omega}_{t,u_\beta}) - n + \text{tr}_{\omega_t} \hat{\omega}_{t,u_\beta}
\]

\[
\geq \frac{n\varepsilon}{n+1} (-\psi_{t,k} + u_\beta + \Lambda + 1)^{-1/(n+1)} n \left(\frac{\hat{\omega}_{t,\psi_{t,k}}}{\omega_t^n} \right)^{1/n}
\]

\[
- n + \left(1 - \frac{n\varepsilon}{n+1} (-\psi_{t,k} + u_\beta + 1 + 1)^{-1/(n+1)} \right) \text{tr}_{\omega_t} \hat{\omega}_{t,u_\beta}
\]

\[
\geq \frac{n^2\varepsilon}{n+1} (-\psi_{t,k} + u_\beta + 1 + 1)^{-1/(n+1)} \left(\tau_k (-\varphi_t + u_\beta - s) A_{s,k,\beta}^{-1} \right)^{1/n}
\]

\[
- n + \left(1 - \frac{n\varepsilon}{n+1} \Lambda^{-1/(n+1)} \right) \text{tr}_{\omega_t} \hat{\omega}_{t,u_\beta}
\]

\[
\geq \frac{n^2\varepsilon}{n+1} (-\psi_{t,k} + u_\beta + 1 + 1)^{-1/(n+1)} (-\varphi_t + u_\beta - s)^{1/n} A_{s,k,\beta}^{-1/n} - n.
\]
Therefore, at \(x_0 \in \Omega^c_s \),
\[
-(\varphi_t - u_\beta + s) \leq \left(\frac{n + 1}{nE} \right)^n A_{s,k,\beta} (-\psi_{t,k} + u_\beta + \Lambda + 1)^{n/(n+1)} = \varepsilon (-\psi_{t,k} + u_\beta + \Lambda + 1)^{n/(n+1)},
\]
i.e., \(\Phi(x_0) \leq 0 \). Combining the two cases, we conclude that \(\sup_{x} \Phi \leq \varepsilon_\beta \to 0 \) as \(\beta \to \infty \). It then follows that, on \(\Omega_s \),
\[
(-\varphi_t + u_\beta - s)^{(n+1)/n} \leq C_n A_{s,k,\beta} (-\psi_{t,k} + u_\beta + 1 + A_{s,k,\beta}) + \varepsilon_\beta^{(n+1)/n}.
\]
Letting \(\beta \to \infty \), we have
\[
(-\varphi_t + V_t - s)^{(n+1)/n} \leq C_n A_{s,k}^{1/n} (-\psi_{t,k} + V_t + 1 + A_{s,k}),
\]
where \(A_{s,k} = \int_X \tau_k (-\varphi_t + V_t + s) e^F \omega^p \). Observe that \(V_t \leq 0 \) by definition and, by the \(\alpha \)-invariant estimate [Hörmander 1966; Tian 1987], there exists an \(\alpha_0(n, \omega, \chi) \) such that
\[
\int_{\Omega_s} \exp \left(\frac{\alpha_0 (-\varphi_t + V_t - s)^{(n+1)/n}}{A_{s,k}^{1/n}} \right) \omega^n \leq \int_{\Omega_s} \exp(\alpha_0 C_n (-\psi_{t,k} + 1 + A_{s,k})) \omega^n \leq C e^{CA_{s,k}}.
\]
(2-6)
Letting \(k \to \infty \), we obtain
\[
\int_{\Omega_s} \exp \left(\frac{\alpha_0 (-\varphi_t + V_t - s)^{(n+1)/n}}{A_{s}^{1/n}} \right) \omega^n \leq C e^{CA_s}.
\]

Theorem 1(a) is proved by noting that \(A_s \leq E_t \) for any \(s > 0 \).

Once Theorem 1(a) has been proved, part (b) can be proved by following closely the arguments in [Guo et al. 2023a].

Fix \(p > n \), and define \(\eta : \mathbb{R}_+ \to \mathbb{R}_+ \) by \(\eta(x) = (\log(1 + x))^p \). Note that \(\eta \) is a strictly increasing function with \(\eta(0) = 0 \), and let \(\eta^{-1} \) be its inverse function. Write
\[
v := \frac{\alpha_0}{2} \left(\frac{-\varphi_t + V_t - s}{A_{s}^{1/(n+1)}} \right)^{(n+1)/n}.
\]
(2-7)
Then by the generalized Young’s inequality with respect to \(\eta \), for any \(z \in \Omega_s \),
\[
v(z)^p e^{F(z)} \leq \int_0^{\exp(F(z))} \eta(x) \, dx + \int_0^{v(z)^p} \eta^{-1}(y) \, dy \leq \exp(F(z))(1 + |F(z)|)^p + \int_0^{v(z)^p} (e^{y^{1/\nu}} - 1) \, dy
\]
\[
\leq \exp(F(z))(1 + |F(z)|)^p + p \int_0^{v(z)^p} e^{y^{1/\nu}} \, dy \leq \exp(F(z))(1 + |F(z)|)^p + C(p) \exp(2v(z)).
\]
We integrate both sides in the inequality above over \(z \in \Omega_s \) and get by Theorem 1(a) that
\[
\int_{\Omega_s} v(z)^p e^{F(z)} \omega^n \leq \int_{\Omega_s} e^{F(z)}(1 + |F(z)|)^p \omega^n + \int_{\Omega_s} e^{2v(z)} \omega^n \leq \|e^{F(z)}\|_{L^1(\log L)^p} + C + C e^{CE_t},
\]
where the constant \(C > 0 \) depends only on \(n, \omega_X \) and \(\chi \). In view of the definition of \(v \), this implies
\[
\int_{\Omega_s} (-\varphi_t + V_t - s)^{(n+1)p/n} e^{F(z)} \omega^n \leq 2p \alpha_0^{-p} A_{s}^{p/n} (\|e^{F(z)}\|_{L^1(\log L)^p} + C + C e^{CE_t}).
\]
(2-8)
From the definition of A_s, it follows from Hölder’s inequality that
\[
A_s = \int_{\Omega_s} (-\varphi_t + V_t - s)e^F \omega^n \leq \left(\int_{\Omega_s} (-\varphi_t + V_t - s)^{n+1/p} e^F \omega^n \right)^{\frac{n}{(n+1)p}} \cdot \left(\int_{\Omega_s} e^F \omega^n \right)^{1/q} \leq A_s^{1/(n+1)} \left(2^p \alpha_0^{-p} (\|e^F\|_{L^1(\log L)^p} + C + Ce^{CE_i}) \right)^{n/(n+1)p} \cdot \left(\int_{\Omega_s} e^F \omega^n \right)^{1/q},
\]
where $q > 1$ satisfies $n/(p(n+1)) + 1/q = 1$, i.e., $q = p(n+1)/(p(n+1) - n)$. The inequality above yields
\[
A_s \leq (2^p \alpha_0^{-p} (\|e^F\|_{L^1(\log L)^p} + C + Ce^{CE_i}))^{1/p} \cdot \left(\int_{\Omega_s} e^F \omega^n \right)^{(1+n)/(qn)}.
\]
Observe that the exponent of the integral on the right-hand of (2-9) satisfies
\[
\frac{1+n}{qn} = \frac{pn + p - n}{pn} = 1 + \delta_0 > 1
\]
for $\delta_0 := (p - n)/(pn) > 0$. For convenience of notation, set
\[
B_0 := (2^p \alpha_0^{-p} (\|e^F\|_{L^1(\log L)^p} + C + Ce^{CE_i}))^{1/p}.
\]
From (2-9) we then get
\[
A_s \leq B_0 \left(\int_{\Omega_s} e^F \omega^n \right)^{1+\delta_0}.
\]
If we define $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ by $\phi(s) := \int_{\Omega_s} e^F \omega^n$, then (2-11) and the definition of A_s implies
\[
\liminf_{r \to 0} \frac{\phi(s + r) - \phi(s)}{\log r} \leq B_0 \phi'(s)^{1+\delta_0} \quad \text{for all } r \in [0, 1] \text{ and } s \geq 0.
\]
Since ϕ is clearly nonincreasing and continuous, a De Giorgi-type iteration argument shows that there is some S_0 such that $\phi(s) = 0$ for any $s \geq S_0$. This finishes the proof of the L^∞ estimate of $\varphi_t - V_t$, combining with a bound on E_i by $\|e^F\|_{L^1(\log L)^1}$ which follows from Jensen’s inequality; see Lemma 6 in [Guo et al. 2023a].

Finally, we note the recent advances in the theory of envelopes in [Guedj and Lu 2021; 2023], which can provide an approach to L^∞ estimates for Monge–Ampère equations on Hermitian manifolds.

3. Complex Hessian equations

We explain in this section how the proof of Theorem 1 can be modified to give a similar result for a degenerate family of complex Hessian equations. With the same notations as above, we consider the σ_k-equations
\[
(\hat{\omega}_t + i \partial \bar{\partial} \varphi_t)^k \wedge \omega^{n-k} = c_k e^F \omega^n, \quad \sup x \varphi_t = 0.
\]
Define the envelope corresponding to the Γ_k-cone
\[
\tilde{V}_{t,k} = \sup \{ v | v \in SH_k(X, \omega, \hat{\omega}_t) \cap C^2, \; v \leq 0 \},
\]
where \(v \in \text{SH}_k(X, \omega, \hat{\omega}_t) \cap C^2 \) indicates that the vector of eigenvalues of the linear transformation \(\omega^{-1} \cdot (\hat{\omega}_t + i \partial \bar{\partial} v) \) lies in the \(\Gamma_k \)-cone, which is the convex cone in \(\mathbb{R}^n \) given by

\[
\Gamma_k = \{ \lambda \in \mathbb{R}^n \mid \sigma_1(\lambda) > 0, \ldots, \sigma_k(\lambda) > 0 \},
\]

where \(\sigma_j(\lambda) \) denotes the \(j \)-th elementary symmetric polynomial of \(\lambda \in \mathbb{R}^n \).

Let \(E_t(\varphi_t) = \int_X (\varphi_t + \bar{V}_t, k) e^{nF/k} \omega^n \) be the entropy associated to (3-1) as in [Guo et al. 2023a], and let \(\bar{E}_t \) be an upper bound of \(E_t(\varphi_t) \). Then the following \(L^\infty \) estimate holds for the solution \(\varphi_t \) to (3-1).

Theorem 3. Let \(\varphi_t \) be the solution to (3-1). There exists a constant depending on \(E_t, \| e^{(n/k)F} \|_{L^1(\log L)^p}, \frac{c_t}{[\hat{\omega}_t^k][\omega^{n-k}]} \) and \(p > n \) such that

\[
0 \leq -\varphi_t + \bar{V}_t, k \leq C.
\]

This theorem can be derived using a similar argument as in Section 2 with suitable modifications for \(\sigma_k \) equations — see [Guo et al. 2023a] — so we omit the details. The only novel ingredient is the smooth approximation of \(\bar{V}_t, k \) as in Lemma 2. One can adapt the method in [Berman 2019] to derive this required approximation. For the convenience of the reader, we present a sketch of the proof.

Lemma 4. Fix \(t \in (0, 1] \). There exists a sequence of smooth functions \(u_\beta \in \text{SH}_k(X, \omega, \hat{\omega}_t) \) converging uniformly to \(\bar{V}_t, k \) as \(\beta \to \infty \).

Proof. Let \(u_\beta \in \text{SH}_k(X, \omega, \hat{\omega}_t) \) be the solution to the \(\sigma_k \)-equations

\[
(\hat{\omega}_t + i \partial \bar{\partial} u_\beta)^k \wedge \omega^{n-k} = c_t e^{\beta u_\beta} \omega^n,
\]

which admits a unique smooth solution by [Dinew and Kołodziej 2017]. We claim that there is a constant \(C_t > 0 \) such that

\[
\sup_X |u_\beta - \bar{V}_t, k| \leq \frac{C_t \log \beta}{\beta},
\]

from which the lemma follows.

By the maximum principle, at a maximum point of \(u_\beta \) we have \(i \partial \bar{\partial} u_\beta \leq 0 \), so

\[
\beta u_\beta \leq \log \frac{\hat{\omega}_t^k \wedge \omega^{n-k}}{c_t \omega^n} \leq C_t,
\]

that is, \(u_\beta - C_t / \beta \leq 0 \). By the definition of \(\bar{V}_t, k \), it follows that

\[
u_\beta - \frac{C_t}{\beta} \leq \bar{V}_t, k.
\]
On the other hand, we fix a smooth \(u \leq 0 \) such that \(\hat{\omega}_t + i \partial \bar{\partial} u > 0 \). Such a \(u \) exists because \([\hat{\omega}_t]\) is a Kähler class by assumption. For any \(v \in \text{SH}_k(X, \omega, \hat{\omega}_t) \cap C^2 \) with \(v \leq 0 \), we consider the barrier function

\[
\tilde{u} = \frac{1}{\beta} u + \left(1 - \frac{1}{\beta}\right) v - \frac{C'_t \log \beta}{\beta},
\]

where \(C'_t > 0 \) is a large constant to be determined. By direct calculation, we have

\[
(\hat{\omega}_t + i \partial \bar{\partial} \tilde{u})^k \wedge \omega^{n-k} \geq \frac{1}{\beta^k} (\hat{\omega}_t + i \partial \bar{\partial} u)^k \wedge \omega^{n-k} \geq e^{\beta \tilde{u}} \omega^n,
\]

where the last inequality holds if we choose \(C'_t \) large enough such that \(e^{-C'_t \log \beta} \leq \frac{1}{\beta^k} \min_X (\hat{\omega}_t + i \partial \bar{\partial} u)^k \wedge \omega^{n-k} \).

Therefore, we get

\[
(\hat{\omega}_t + i \partial \bar{\partial} \tilde{u})^k \wedge \omega^{n-k} \geq e^{\beta (\tilde{u} - u_\beta)} (\hat{\omega}_t + i \partial \bar{\partial} u_\beta)^k \wedge \omega^{n-k}.
\]

At the maximum point of \(\tilde{u} - u_\beta \), we have \((\hat{\omega}_t + i \partial \bar{\partial} \tilde{u})^k \wedge \omega^{n-k} \leq (\hat{\omega}_t + i \partial \bar{\partial} u_\beta)^k \wedge \omega^{n-k} \). This shows that \(\tilde{u} - u_\beta \leq 0 \) on \(X \). Taking the supremum over all such \(v \) in \(\tilde{u} \), it follows that

\[
\left(1 - \frac{1}{\beta}\right) \tilde{V}_{t,k} \leq u_\beta + \frac{C_t \log \beta}{\beta}.
\]

The lemma follows from this and (3-3). □

References

Received 3 Dec 2021. Revised 27 Jun 2022. Accepted 26 Jul 2022.

BIN GUO: bguo@rutgers.edu
Department of Mathematics & Computer Science, Rutgers University, Newark, NJ, United States

DUONG H. PHONG: phong@math.columbia.edu
Department of Mathematics, Columbia University, New York, NY, United States

FREID TONG: ftong@cmsa.fas.harvard.edu
Center for Mathematical Sciences and Applications, Harvard University, Cambridge, MA, United States

CHUWEN WANG: wang.chuwen@columbia.edu
Department of Mathematics, Columbia University, New York, NY, United States
On a spatially inhomogeneous nonlinear Fokker–Planck equation: Cauchy problem and diffusion asymptotics
FRANCESCA ANCESCHI and YUZHE ZHU

Strichartz inequalities with white noise potential on compact surfaces
ANTOINE MOUZARD and IMMANUEL ZACHHUBER

Curvewise characterizations of minimal upper gradients and the construction of a Sobolev differential
SYLVESTER ERIKSSON-BIQUE and ELEFTERIOS SOULTANIS

Smooth extensions for inertial manifolds of semilinear parabolic equations
ANNA KOSTIANKO and SERGEY ZELIK

Semiclassical eigenvalue estimates under magnetic steps
WAFAA ASSAAD, BERNARD HELFFER and AYMEN KACHMAR

Necessary density conditions for sampling and interpolation in spectral subspaces of elliptic differential operators
KARLHEINZ GRÖCHENIG and ANDREAS KLOTZ

On blowup for the supercritical quadratic wave equation
ELEK CSOBO, IRFAN GLOGIĆ and BIRGIT SCHÖRKHUBER

Arnold’s variational principle and its application to the stability of planar vortices
THIERRY GALLAY and VLADIMÍR ŠVERÁK

Explicit formula of radiation fields of free waves with applications on channel of energy
LIANG LI, RUIPENG SHEN and LIJUAN WEI

On L^∞ estimates for Monge–Ampère and Hessian equations on nef classes
BIN GUO, DUONG H. PHONG, FREID TONG and CHUWEN WANG