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SCHAUDER ESTIMATES FOR EQUATIONS WITH CONE METRICS, II

BIN GUO AND JIAN SONG

We continue our work on the linear theory for equations with conical singularities. We derive interior
Schauder estimates for linear elliptic and parabolic equations with a background Kähler metric of conical
singularities along a divisor of simple normal crossings. As an application, we prove the short-time
existence of the conical Kähler–Ricci flow with conical singularities along a divisor with simple normal
crossings.
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1. Introduction

This is a continuation of our paper [20]. Regularity of solutions of complex Monge–Ampère equations is
a central problem in complex geometry. Complex Monge–Ampère equations with singular and degenerate
data can be applied to study compactness and moduli problems of canonical Kähler metrics in Kähler
geometry. In [43], Yau considered special cases of complex singular Monge–Ampère equations as
generalizations of his solution to the Calabi conjecture. Conical singularities along complex hypersurfaces
of a Kähler manifold are among the mildest singularities in Kähler geometry, and they have been
extensively studied, especially in the case of Riemann surfaces [28; 41]. The study of such Kähler metrics
with conical singularities has many geometric applications, for example, the Chern number inequality
in various settings [38; 39]. Recently, Donaldson [14] initiated the program of studying analytic and
geometric properties of Kähler metrics with conical singularities along a smooth complex hypersurface on
a Kähler manifold. This is an essential step in the solution of the Yau–Tian–Donaldson conjecture relating
existence of Kähler–Einstein metrics and algebraic K-stability on Fano manifolds [7; 8; 9; 40]. In [14],
the Schauder estimate for linear Laplace equations with the conical background metric is established using
classical potential theory. This is crucial for the openness of the continuity method to find a desirable
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(conical) Kähler–Einstein metric. Donaldson’s Schauder estimate is generalized to the parabolic case [5]
with a similar classical approach. There is also an alternative approach for the conical Schauder estimates
using microlocal analysis [23]. Various global and local estimates and regularity are also derived in the
conical setting [1; 6; 11; 12; 13; 15; 19; 24; 29; 32; 44; 45].

The Schauder estimates play an important role in linear PDE theory. Apart from the classical potential
theory, various proofs have been established by different analytic techniques. In fact, the blow-up or
perturbation techniques developed in [36; 42] (also see [2; 3; 33; 34]) are much more flexible and sharper
than the classical method. The authors combined the perturbation method in [20] and geometric gradient
estimates to establish sharp Schauder estimates for Laplace equations and heat equations on Cn with a
background flat Kähler metric of conical singularities along the smooth hyperplane {z1 = 0} and derived
explicit and optimal dependence on conical parameters.

In algebraic geometry, one often has to consider pairs (X, D) with X an algebraic variety of complex
dimension n and the boundary divisor D a complex hypersurface of X . After possible log resolution,
one can always assume the divisor D is a union of smooth hypersurfaces with simple normal crossings.
The suitable category of Kähler metrics associated to (X, D) is the family of Kähler metrics on X with
conical singularities along D. In order to study canonical Kähler metrics on pairs and related moduli
problems, we are obliged to study regularity and asymptotics for complex Monge–Ampère equation
with prescribed conical singularities of normal crossings. However, the linear theory is still missing
and has been open for a while. The goal of this paper is to extend our result [20] and establish the
sharp Schauder estimates for linear equations with background Kähler metric of conical singularities
along divisors of simple normal crossings. We can apply and extend many techniques developed in [20];
however, new estimates and techniques have to be developed because, in the case of conical singularities
along a single smooth divisor, the difficult estimate in the conical direction can sometimes be bypassed
and reduced to estimates in the regular directions, while such treatment does not work in the case of
simple normal crossings. One is forced to treat regions near high codimensional singularities directly
with new and more delicate estimates beyond the scope of [20]. More crucially, the estimates in the
mixed normal directions (see Section 3D) relies on those in Lemma 3.3, which is new compared to the
case of a smooth divisor [20]. This enables us to compare the difference of mixed normal derivatives
at two different points. Readers who are interested only in the case of smooth divisors are advised to
omit Section 3D.

The standard local models for such conical Kähler metrics are described below.

Let β = (β1, . . . , βp) ∈ (0, 1)p, p ≤ n, and let ωβ (or gβ) be the standard cone metric on Cp
× Cn−p

with cone singularity along S =
⋃p

i=1 Si , where Si = {zi = 0}, that is,

ωβ =

p∑
j=1

β2
j

√
−1 dz j ∧ dz̄ j

|z j |
2(1−β j )

+

n∑
j=p+1

√
−1 dz j ∧ dz̄ j . (1-1)

We shall use s2p+1, . . . , s2n to denote the real coordinates of Cn−p
=R2n−2p such that, for j = p+1, . . . , n,

z j = s2 j−1 +
√

−1s2 j .
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In this paper we will study the conical Laplacian equation with the background metric gβ on Cn

1βu = f in Bβ(0, 1)\S, (1-2)

where Bβ(0, 1) is the unit ball with respect to gβ centered at 0. The Laplacian 1β is defined as

1βu =

∑
j,k

g j k̄
β

∂2u
∂z j∂ z̄k

=

p∑
j=1

β−1
j |z j |

2(1−β j )
∂2u

∂z j∂ z̄ j
+

n∑
j=p+1

∂2u
∂z j∂ z̄ j

.

We always assume

f ∈ C0(Bβ(0, 1)) and u ∈ C0(Bβ(0, 1)) ∩ C2(Bβ(0, 1)\S).

Throughout this paper, given a continuous function f , we write

ω(r) := ω f (r) = sup
z,w∈Bβ (0,1)

dβ (z,w)<r

| f (z) − f (w)|

for the oscillation of f with respect to gβ in the ball Bβ(0, 1). It is clear that ω(2r) ≤ 2ω(r) for any r < 1
2 .

We say a continuous function f is Dini continuous if
∫ 1

0 ω(r)/r dr < ∞.

Definition 1.1. We will write the (weighted) polar coordinates of z j for 1 ≤ j ≤ p as

r j = |z j |
β j , θ j = arg z j .

We define D′ to be one of the first-order operators {∂/∂s2p+1, . . . , ∂/∂s2n}, and N j to be one of the
operators {∂/∂r j , (β jr j )

−1(∂/∂θ j )} which as vector fields are transversal to S j .

Our first main result is the Hölder estimates of the solution u to (1-2).

Theorem 1.2. Suppose β ∈
( 1

2 , 1
)p and f ∈ C0(Bβ(0, 1)) is Dini continuous with respect to gβ . Let

u ∈ C0(Bβ(0, 1))∩C2(Bβ(0, 1)\S) be the solution to (1-2). Then there exists C = C(n, β) > 0 such that,
for any two points p, q ∈ Bβ

(
0, 1

2

)
\S,

|(D′)2u(p) − (D′)2u(q)| +

p∑
j=1

∣∣∣∣|z j |
2(1−β j )

∂2u
∂z j∂ z̄ j

(p) − |z j |
2(1−β j )

∂2u
∂z j∂ z̄ j

(q)

∣∣∣∣
≤ C

(
d∥u∥L∞(Bβ (0,1)) +

∫ d

0

ω(r)

r
dr + d

∫ 1

d

ω(r)

r2 dr
)

, (1-3)

for any 1 ≤ j ≤ p,

|N j D′u(p) − N j D′u(q)| ≤ C
(

d1/β j −1
∥u∥L∞(Bβ (0,1)) +

∫ d

0

ω(r)

r
dr + d1/β j −1

∫ 1

d

ω(r)

r1/β j
dr

)
, (1-4)

and, for any 1 ≤ j, k ≤ p with j ̸= k,

|N j Nku(p)−N j Nku(q)|≤C
(

d1/βmax−1
∥u∥L∞(Bβ (0,1))+

∫ d

0

ω(r)

r
dr +d1/βmax−1

∫ 1

d

ω(r)

r1/βmax
dr

)
, (1-5)

where d = dβ(p, q) > 0 is the gβ-distance of p and q and βmax = max{β1, . . . , βp} ∈
( 1

2 , 1
)
.
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Remarks 1.3. (1) The number βmax on the right-hand side of (1-5) can be replaced by max{β j , βk}.

(2) We assume β ∈
( 1

2 , 1
)p for the purposes of exposition and simplification of the statements of

Theorems 1.2 and 1.7. When some of the angles β j lie in
(
0, 1

2

]
, the pointwise Hölder estimates in

Theorem 1.2 are adjusted as follows: in (1-4), if β j ∈
(
0, 1

2

]
, we replace the right-hand side by the

right-hand side of (1-3); in (1-5), if both β j and βk ∈
(
0, 1

2

]
, we also replace the right-hand side by that

of (1-3); if at least one of the β j , βk is bigger than 1
2 , (1-5) remains unchanged. The inequalities in

Theorem 1.7 can be adjusted similarly. The proofs of these estimates are contained in the proof of the
case when β j ∈

( 1
2 , 1

)
by using the corresponding estimates in (2-3).

An immediate corollary of Theorem 1.2 is a precise form of Schauder estimates for (1-2).

Corollary 1.4. Given β ∈ (0, 1)p and f ∈ C0,α
β (Bβ(0, 1)) for some 0 < α < min{1, 1/βmax − 1}, if

u ∈ C0(Bβ(0, 1)) ∩ C2(Bβ(0, 1)\S) solves (1-2), then u ∈ C2,α
β (Bβ(0, 1)). Moreover, for any compact

subset K ⋐ Bβ(0, 1), there exists a constant C = C(n, β, K ) > 0 such that the following estimate holds
(see Definition 2.1 for the notations):

∥u∥C2,α
β (K )

≤ C
(
∥u∥C0(Bβ (0,1)) +

∥ f ∥C0,α
β (Bβ (0,1))

α
(
min

{ 1
βmax

− 1, 1
}
− α

))
. (1-6)

Remark 1.5. A scaling-invariant version of the Schauder estimate (1-6) is that, for any 0 < r < 1, there
exists a constant C = C(n, β, α) > 0 such that (see Definition 2.4 for the notations)

∥u∥
∗

C2,α
β (Bβ (0,r))

≤ C(∥u∥C0(Bβ (0,r)) + ∥ f ∥
(2)

C0,α
β (Bβ (0,r))

), (1-7)

which follows from a standard rescaling argument by scaling r to 1.

Let g be a C0,α
β -conical Kähler metric on Bβ(0, 1) (see Definition 3.31). By definition g is equivalent

to gβ . We consider the equation

1gu = f in Bβ(0, 1) and u = ϕ on ∂ Bβ(0, 1) (1-8)

for some ϕ ∈ C0(∂ Bβ(0, 1)). The following theorem is the generalization of Corollary 1.4 for nonflat
background conical Kähler metrics, which is useful for applications of global geometric complex Monge–
Ampère equations.

Theorem 1.6. For any given β ∈ (0, 1)p, f ∈ C0,α
β (Bβ(0, 1)) and ϕ ∈ C0(∂ Bβ(0, 1)), there is a unique

solution u ∈ C2,α
β (Bβ(0, 1)) ∩ C0(Bβ(0, 1)) to (1-8). Moreover, for any compact subset K ⋐ Bβ(0, 1),

there exists C = C(n, β, α, g, K ) > 0 such that

∥u∥C2,α
β (K )

≤ C(∥u∥C0(Bβ (0,1)) + ∥ f ∥C0,α
β (Bβ (0,1))

).

Theorem 1.6 can immediately be applied to study complex Monge–Ampère equations with prescribed
conical singularities along divisors of simple normal crossings, and most of the geometric and analytic
results for canonical Kähler metrics with conical singularities along a smooth divisor can be generalized
to the case of simple normal crossings.
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We now turn to the parabolic Schauder estimates for the solution u ∈ C 0(Qβ) ∩ C 2(Q#
β) to the equation

∂u
∂t

= 1gβ
u + f (1-9)

for a Dini continuous function f in Qβ , where for convenience of notation we write

Qβ := Bβ(0, 1) × (0, 1] and Q#
β := Bβ(0, 1)\S × (0, 1].

Our second main theorem is the following pointwise estimate.

Theorem 1.7. Suppose β ∈
( 1

2 , 1
)p and u is the solution to (1-9). Then there exists a computable constant

C = C(n, β)> 0 such that, for any Q p = (p, tp), Qq = (q, tq)∈ Bβ

(
0, 1

2

)
\S×(t̂, 1] ( for some t̂ ∈ (0, 1)),

|(D′)2u(Q p) − (D′)2u(Qq)|

+

p∑
j=1

∣∣∣∣|z j |
2(1−β j )

∂2u
∂z j∂ z̄ j

(Q p) − |z j |
2(1−β j )

∂2u
∂z j∂ z̄ j

(Qq)

∣∣∣∣ + ∣∣∣∣∂u
∂t

(Q p) −
∂u
∂t

(Qq)

∣∣∣∣
≤ C

(
d

t̂ 3/2
∥u∥L∞(Bβ (0,1)) + t̂ −1

∫ d

0

ω(r)

r
dr +

d
t̂ 3/2

∫ 1

d

ω(r)

r2 dr
)

,

and, for any 1 ≤ j ≤ p,

|N j D′u(Q p) − N j D′u(Qq)| ≤ C
(

d1/β j −1

t̂ 3/2
∥u∥L∞(Bβ (0,1)) + t̂ −1

∫ d

0

ω(r)

r
dr +

d1/β j −1

t̂ 3/2

∫ 1

d

ω(r)

r1/β j
dr

)
,

and, for any 1 ≤ j, k ≤ p with j ̸= k,

|N j Nku(Q p)−N j Nku(Qq)|≤C
(

d1/βmax−1

t̂ 3/2
∥u∥L∞(Bβ (0,1))+t̂ −1

∫ d

0

ω(r)

r
dr+

d1/βmax−1

t̂ 3/2

∫ 1

d

ω(r)

r1/βmax
dr

)
,

where d = dP,β(Q p, Qq) > 0 is the parabolic gβ-distance of Q p and Qq , βmax = max{β1, . . . , βp},
and ω(r) is the oscillation of f in Qβ under the parabolic distance dP,β (see Section 2A2).

If f ∈ C
α,α/2
β (Qβ) for some α ∈ (0, min(1/βmax −1, 1)), then we have the following precise estimates

as the parabolic analogue of Corollary 1.4.

Corollary 1.8. Suppose β ∈ (0, 1)p and u ∈ C 0(Qβ)∩C 2(Q#
β) satisfies (1-9). Then there exists a constant

C = C(n, β) > 0 such that (see Definition 2.6 for the notations)

∥u∥
C

2+α,(α+2)/2
β (Bβ (0,1/2)×(1/2,1])

≤ C
(
∥u∥C 0(Qβ ) +

∥ f ∥
C

α,α/2
β (Qβ )

α
(
min

{ 1
βmax

− 1, 1
}
− α

))
.

For general nonflat C
α,α/2
β -conical Kähler metrics g, we consider the linear parabolic equation

∂u
∂t

= 1gu + f in Qβ, u = ϕ on ∂PQβ . (1-10)

We then have the following parabolic Schauder estimates as an analogue of Theorem 1.6.
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Theorem 1.9. Given β ∈ (0, 1)p, f ∈ C
α,α/2
β (Qβ) and ϕ ∈ C 0(∂PQβ), there exists a unique solution

u ∈ C
2+α,(α+2)/2
β (Bβ(0, 1) × (0, 1]) ∩ C 0(Qβ) to the Dirichlet boundary value problem (1-10). For any

compact subset K ⋐ Bβ(0, 1) and ε0 > 0, there exists C = C(n, β, α, K , ε0, g) > 0 such that the following
interior Schauder estimate holds:

∥u∥
C

2+α,(2+α)/2
β (K×[ε0,1])

≤ C(∥u∥C 0(Qβ ) + ∥ f ∥
C

α,α/2
β (Qβ )

).

Furthermore, if we assume u|t=0 = u0 ∈ C2,α
β (Bβ(0, 1)), then u ∈ C

2+α,(α+2)/2
β (Bβ(0, 1) × [0, 1]), and

there exists a constant C = C(n, β, α, g, K ) > 0 such that

∥u∥
C

2+α,(α+2)/2
β (K×[0,1])

≤ C(∥u∥C 0(Qβ ) + ∥ f ∥
C

α,α/2
β (Qβ )

+ ∥u0∥C2,α
β (Bβ (0,1))

).

As an application of Theorem 1.9, we derive the short-time existence of the conical Kähler–Ricci flow
with background metric being conical along divisors with simple normal crossings.

Let (X, D) be a compact Kähler manifold, where D =
∑

j D j is a finite union of smooth divisors {D j }

and D has only simple normal crossings. Let ω0 be a C0,α′

β (X)-conical Kähler metric with cone angle 2πβ

along D (see Definition 2.8), let ω̂t be a family of conical metrics with bounded norm ∥ω̂∥
C

α′,α′/2
β

, and
let ω̂0 = ω0. We consider the complex Monge–Ampère flow

∂ϕ

∂t
= log

(
(ω̂t +

√
−1∂∂̄ϕ)n

ωn
0

)
+ f and ϕ|t=0 = 0 (1-11)

for some f ∈ C
α′,α′/2
β (X × [0, 1]).

Theorem 1.10. Given α ∈ (0, α′), there exists T = T (n, ω̂, f, α′, α) > 0 such that (1-11) admits a unique
solution ϕ ∈ C

2+α,(2+α)/2
β (X × [0, T ]).

An immediate corollary of Theorem 1.10 is the short-time existence for the conical Kähler–Ricci flow

∂ω

∂t
= − Ric(ω) +

∑
j

(1 − β j )[D j ], ω|t=0 = ω0, (1-12)

where Ric(ω) is the unique extension of the Ricci curvature of ω from X \ D to X , and [D j ] denotes the
current of integration over the component D j . In addition we assume ω0 is a C0,α′

β (X, D)-conical Kähler
metric such that

ωn
0 =

�∏
j (|s j |

2
h j

)1−β j
, (1-13)

where s j and h j are holomorphic sections and hermitian metrics, respectively, of the line bundle associated
to D j , and � is a smooth volume form.

Corollary 1.11. For any given α ∈ (0, α′), there exists a constant T = T (n, ω0, α, α′) > 0 such that the
conical Kähler–Ricci flow (1-12) admits a unique solution ω = ωt , where ω ∈ C

α,α/2
β (X × [0, T ]) and,

for each t ∈ [0, T ], ωt is still a conical metric with cone angle 2πβ along D.
Furthermore, ω is smooth in X\D × (0, T ] and the (normalized) Ricci potentials of ω, by which we

mean log(ωn/ωn
0), are still in C

2+α,(2+α)/2
β (X × [0, T ]).
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The short-time existence of the conical Kähler–Ricci flow with singularities along a smooth divisor is
derived in [5] by adapting the elliptic potential techniques of Donaldson [14]. Corollary 1.11 treats the
general case of conical singularities with simple normal crossings. There have been many results in the
analytic aspects of the conical Ricci flow [5; 6; 15; 16; 24; 30; 43]. In [31], the conical Ricci flow on
Riemann surfaces is completely classified with jumping conical structure in the limit. Such phenomena is
also expected in higher dimension, but it requires much deeper and delicate technical advances both in
analysis and geometry.

2. Preliminaries

We explain the notations and give some preliminary tools which will be used later in this section.

2A. Notations. To distinguish the elliptic from parabolic norms, we will use C to denote the norms in
the elliptic case and C to denote the norms in the parabolic case.

We always assume the Hölder component α appearing in C0,α
β or C

α,α/2
β (or other Hölder norms) is in

(0, min{β−1
max − 1, 1}).

2A1. Elliptic case. We will denote dβ(x, y) to be the distance between two points x, y ∈ Cn under the
metric gβ . Bβ(x, r) will be the metric ball under the metric induced by gβ with radius r and center x . It
is well known that (Cn

\S, gβ) is geodesically convex, i.e., any two points x, y ∈ Cn
\S can be joined by

a gβ-minimal geodesic γ which is disjoint from S.

Definition 2.1. We define the gβ-Hölder norm of functions u ∈ C0(Bβ(0, r)) for some α ∈ (0, 1) as

∥u∥C0,α
β (Bβ (0,r))

:= ∥u∥C0(Bβ (0,r)) + [u]C0,α
β (Bβ (0,r))

,

where the seminorm is defined as

[u]C0,α
β (Bβ (0,r))

:= sup
x ̸=y∈Bβ (0,r)

|u(x) − u(y)|

dβ(x, y)α
.

We denote by C0,α
β (Bβ(0, r)) the subspace of all continuous functions u such that ∥u∥C0,α

β
< ∞.

Definition 2.2. The C2,α
β -norm of a function u on Bβ(0, r) =: Bβ is defined as

∥u∥C2,α
β (Bβ )

:= ∥u∥C0(Bβ ) + ∥∇gβ
u∥C0(Bβ ,gβ ) +

p∑
j=1

∥N j D′u∥C0,α
β (Bβ )

+ ∥(D′)2u∥C0,α
β (Bβ )

+

∑
1≤ j ̸=k≤p

∥N j Nku∥C0,α
β (Bβ )

+

p∑
j=1

∥∥∥∥|z j |
2(1−β j )

∂2u
∂z j∂ z̄ j

∥∥∥∥
C0,α

β (Bβ )

.

We denote by C2,α
β (Bβ(0, r)) the subspace of all continuous functions u such that ∥u∥C2,α

β
< ∞.

Remark 2.3. These spaces are generalizations of those defined in [20] and are slight variations of those
introduced in [14; 23].
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Let us compare the Schauder estimates in [14; 23; 20] in the special case when p = 1, i.e., the conical
singularities are supported on Cn−1. The Hölder space of [14] is defined using a collection of differential
operators as components of

√
−1∂∂̄ . The collection of differential operators in our definition for C0,α

β

(see [20]) is given by{
∂

∂r
, r−1 ∂

∂θ
, D′,

∂2

∂r2 + r−1 ∂

∂r
+ (βr)−2 ∂2

∂θ2 ,
∂

∂r
D′, r−1 ∂

∂θ
D′

}
,

while those defined in [23] for the Hölder space D0,α
ω gives the collection{

∂

∂r
, r−1 ∂

∂θ
, D′,

∂2

∂r2 + r−1 ∂

∂r
+ (βr)−2 ∂2

∂θ2 ,
∂

∂r
D′, r−1 ∂

∂θ
D′,

∂2

∂r∂θ

}
. (2-1)

Here the operators D′ are given in Definition 1.1. There seems to a typo in the original definition of (2-1)
in [23, p. 104, (16)], where the factor r−1 is missing in the operator r−1∂/∂θ D′ (see [32, p. 57]). It was
pointed out by the referee that this typo does not affect Proposition 3.3 in [23] since the correct operator
was used in the proof. The space D0,α

ω is introduced in [23] as an alternative definition for the Hölder
space of [14] as a consequence of the Schauder estimates in [23, Proposition 3.3]. The Schauder estimates
in [23] are stronger than those established in [14] by Donaldson and later in [20] by the authors because
of the additional operator ∂2/∂r∂θ in (2-1). This also implies that the two Hölder spaces from [14]
and [20] must coincide. For interested readers, we refer to the survey paper [32] for more details on the
characterization of the Hölder space of [14] in terms of the operators in (2-1).

For a given set � ⊂ Bβ(0, 1), we define the following weighted (semi)norms.

Definition 2.4. Suppose σ ∈ R is a given real number and u is a C2,α
β -function in �. We will write

dx = dβ(x, ∂�) for any x ∈ �. We define the weighted (semi)norms

[u]
(σ )

C0,α
β (�)

= sup
x ̸=y∈�

min(dx , dy)
σ+α |u(x) − u(y)|

dβ(x, y)α
,

∥u∥
(σ )

C0(�)
= sup

x∈�

dσ
x |u(x)|, [u]

(σ )

C1
β (�)

= sup
x∈�\S

dσ+1
x

(∑
j

|N j u|(x) + |D′u|(x)

)
,

[u]
(σ )

C2
β (�)

= sup
x∈�\S

dσ+2
x |T u(x)|, [u]

(σ )

C2,α
β (�)

= sup
x ̸=y∈�\S

min(dx , dy)
σ+2+α |T u(x) − T u(y)|

dβ(x, y)α
,

∥u∥
(σ )

C2,α
β (�)

= ∥u∥
(σ )

C0(�)
+ [u]

(σ )

C1
β (�)

+ [u]
(σ )

C2
β (�)

+ [u]
(σ )

C2,α
β (�)

,

where T is the collection of operators of second-order{
|z j |

2(1−β j )
∂2

∂z j∂ z̄ j
, N j Nk ( j ̸= k), N j D′, (D′)2

}
. (2-2)

When σ = 0, we write the norms above as [ · ]
∗ or ∥ · ∥

∗ for simplicity of notation.

2A2. Parabolic case. We define Qβ = Qβ(0, 1) = Bβ(0, 1) × (0, 1] to be a parabolic cylinder and

∂PQβ = (Bβ(0, 1) × {0}) ∪ (∂ Bβ(0, 1) × (0, 1])
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to be the parabolic boundary of the cylinder Qβ . We write SP = S × [0, 1] for the singular set and
Q#

β = Qβ\SP for the complement of SP . For any two space-time points Qi = (pi , ti ), we define their
parabolic distance dP,β(Q1, Q2) as

dP,β(Q1, Q2) = max{
√

|t1 − t2|, dβ(p1, p2)}.

Definition 2.5. We define the gβ-Hölder norm of functions u ∈ C 0(Qβ) for some α ∈ (0, 1) as

∥u∥
C

α,α/2
β (Qβ )

:= ∥u∥C 0(Qβ ) + [u]
C

α,α/2
β (Qβ )

,

where the seminorm is
[u]

C
α,α/2
β (Qβ )

:= sup
Q1 ̸=Q2∈Qβ

|u(Q1) − u(Q2)|

dP,β(Q1, Q2)α
.

We denote by C
α,α/2
β (Qβ) the subspace of all continuous functions u such that ∥u∥

C
α,α/2
β (Qβ )

< ∞.

Definition 2.6. The C
2+α,(α+2)/2
β -norm of a function u on Qβ is defined as

∥u∥
C

2+α,(α+2)/2
β (Qβ )

:= ∥u∥C 0(Qβ ) + ∥∇gβ
u∥C 0(Qβ ,gβ ) + ∥T u∥

C
α,α/2
β (Qβ )

,

where T is the collection of all the second-order operators in (2-2) with the first-order operator ∂/∂t .

For a given set � ⊂ Qβ we define the following weighted (semi)norms.

Definition 2.7. Suppose σ ∈ R is a real number and u is a C
2+α,(α+2)/2
β -function in �. We will write

dP,Q = dP,β(Q, ∂P�) for any Q ∈ �. We define the weighted (semi)norms

[u]
(σ )

C
α,α/2
β (�)

= sup
Q1 ̸=Q2∈�

min(dP,Q1, dP,Q2)
σ+α |u(Q1) − u(Q2)|

dP,β(Q1, Q2)α
, ∥u∥

(σ )

C 0(�)
= sup

Q∈�

dσ
P,Q |u(Q)|,

[u]
(σ )

C 1
β (�)

= sup
Q∈�\SP

dσ+1
P,Q

(∑
j

|N j u|(Q) + |D′u|(Q)

)
, [u]

(σ )

C
2,1
β (�)

= sup
Q∈�\SP

dσ+2
P,Q |T u(Q)|,

[u]
(σ )

C
2+α,(α+2)/2
β (�)

= sup
Q1 ̸=Q2∈�\SP

min(dP,Q1, dP,Q2)
σ+2+α |T u(Q1) − T u(Q2)|

dP,β(Q1, Q2)α
,

∥u∥
(σ )

C
2+α,(α+2)/2
β (�)

= ∥u∥
(σ )

C 0(�)
+ [u]

(σ )

C 1
β (�)

+ [u]
(σ )

C
2,1
β (�)

+ [u]
(σ )

C
2+α,(α+2)/2
β (�)

.

When σ = 0, we write the norms above as [ · ]
∗ or ∥ · ∥

∗ for simplicity of notation.

2A3. Compact Kähler manifolds. Let (X, D) be a compact Kähler manifold with a divisor D =
∑

j D j

with simple normal crossings, i.e., on an open coordinate chart (U, z j ) of any x ∈ D, D ∩ U is given by
{z1 · · · z p = 0} and D j ∩U = {z j = 0} for any component D j of D. We fix a finite cover {Ua, za, j } of D.

Definition 2.8. A (singular) Kähler metric ω is called a conical metric with cone angle 2πβ along D
if ω is equivalent to ωβ locally on any coordinate chart Ua under the coordinates {za, j }, where ωβ is the
standard cone metric (1-1) with cone angle 2πβ j along {za, j = 0}, and ω is a smooth Kähler metric in
the usual sense on X\

⋃
a Ua .

A conical metric ω is in C0,α
β (X, D) if ω is in C0,α

β (Ua) for each a and ω is smooth in the usual sense
on X\

⋃
a Ua . Similarly we can define the C

α,α/2
β -conical Kähler metrics on X × [0, 1].
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Definition 2.9. A continuous function u ∈ C0(X) is said to be in C0,α
β (X, D) if u is in C0,α

β (Ua) locally on
each Ua and u is C0,α-continuous in the usual sense on X\

⋃
a Ua . We define the C0,α

β (X, D)-norm of u

∥u∥C0,α
β (X,D)

:= ∥u∥C0,α(X\
⋃

a Ua,ω) +

∑
a

∥u∥C0,α
β (Ua)

.

The C0,α
β (X, D)-norm depends on the choice of finite covers, and another cover yields a different but

equivalent norm. The space C0,α
β (X, D) is clearly independent of the choice of finite covers.

The other spaces and norms like C2,α
β (X, D), C

α,α/2
β (X × [0, 1], D), etc., can be defined similarly.

2B. A useful lemma. We will frequently use the following elementary estimates from [20]. We write
BC(0, r) for the Euclidean ball in C with center 0 and radius r > 0.

Lemma 2.10 (Lemma 2.2 in [20]). Given r ∈ (0, 1], suppose v ∈ C0(BC(0, r)) ∩ C2(BC(0, r)\{0})

satisfies

|z|2(1−β1)
∂2v

∂z∂ z̄
= F in BC(0, r)\{0}

for some F ∈ L∞(BC(0, r)). Then we have the following pointwise estimate for any z ∈ BC

(
0, 9

10r
)
\{0}:

∣∣∣∣∂v

∂z
(z)

∣∣∣∣ ≤ C
∥v∥L∞

r
+ C∥F∥L∞ ·


r2β1−1 if β1 ∈

( 1
2 , 1

)
,

|z|2β1−1 if β1 ∈
(
0, 1

2

)
,∣∣∣log

(
|z|
2r

)∣∣∣ if β1 =
1
2 ,

(2-3)

where the L∞-norms are taken in BC(0, r) and C > 0 is a uniform constant depending only on the
angle β1.

Finally we remark that the idea of the proof of the estimates in Theorems 1.2 and 1.7 is the same for
general 2 ≤ p ≤ n. To explain the argument more clearly, we prove the theorems assuming p = 2, i.e.,
the cone metric of ωβ is singular along the two components S1 and S2.

3. Elliptic estimates

In this section, we will prove Theorems 1.2 and 1.6, the Schauder estimates for the Laplace equation (1-2).
To begin with, we first observe the simple C0-estimate based on the maximum principle.

Suppose u ∈ C2(Bβ(0, 1)\S) ∩ C0(Bβ(0, 1)) satisfies the equation{
1βu = 0 in Bβ(0, 1)\S,

u = ϕ on ∂ Bβ(0, 1)
(3-1)

for some ϕ ∈ C0(∂ Bβ(0, 1)), then we have the following lemma.

Lemma 3.1. We have the maximum principle

inf
∂ Bβ (0,1)

ϕ ≤ inf
Bβ (0,1)

u ≤ sup
Bβ (0,1)

u ≤ sup
∂ Bβ (0,1)

ϕ. (3-2)

Proof. Consider the functions ũϵ = u ± ϵ(log |z1|
2
+ log |z2|

2) for any ϵ > 0. By the proof of Lemma 2.1
in [20], (3-2) is established. □
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The next step is to show (3-1) is solvable for suitable boundary values.

3A. Conical harmonic functions.

3A1. Smooth approximating metrics. Let ϵ ∈ (0, 1) be a given small positive number and define a smooth
approximating Kähler metric gϵ on Bβ(0, 1) as

gϵ = β2
1

√
−1 dz1 ∧ dz̄1

(|z1|2 + ϵ)1−β1
+ β2

2

√
−1 dz2 ∧ dz̄2

(|z2|2 + ϵ)1−β2
+

n∑
j=3

√
−1 dz j ∧ dz̄ j . (3-3)

The gϵ are product metrics on C × C × Cn−2. It is clear that their Ricci curvatures satisfy

Ric(gϵ) =
√

−1∂∂̄ log((|z1|
2
+ ϵ)1−β1(|z2|

2
+ ϵ)1−β2) ≥ 0.

Let uϵ ∈ C2(Bβ(0, 1)) be the solution to the equation

1gϵ
uϵ = 0 in Bβ(0, 1) and uϵ = ϕ on ∂ Bβ(0, 1) (3-4)

with a given ϕ ∈ C0(∂ Bβ(0, 1)). Note that the metric balls Bβ(0, 1) and Bgϵ
(0, 1) are uniformly close

when ϵ is sufficiently small, so for the following estimates we will work on Bβ(0, 1).
Let uϵ be the harmonic function for 1ϵ = 1gϵ

as in (3-4), which we may assume without loss of
generality is positive by replacing uϵ by uϵ − inf uϵ if necessary. We will study the Cheng–Yau-type
gradient estimate of uϵ and the estimate of 11,ϵuϵ := (|z1|

2
+ ϵ)1−β1(∂2uϵ/∂z1∂ z̄1). Let us recall Cheng–

Yau’s gradient estimate first.

In Sections 3A2–3A5, for convenience of notation, we will omit the subscript ϵ in gϵ and uϵ in the
proofs of the lemmas.

3A2. Cheng–Yau gradient estimate revisited. We assume uϵ > 0, as otherwise we could consider the func-
tion uϵ +δ for some δ > 0 and then let δ → 0. We fix a metric ball Bgϵ

(p, R) ⊂ Bβ(0, 1) centered at some
point p ∈ Bβ(0, 1). Since Ric(gϵ)≥ 0, the Cheng–Yau gradient estimate holds for 1gϵ

-harmonic functions.

Lemma 3.2 [10]. Let uϵ ∈ C2(B(p, R)) be a positive 1gϵ
-harmonic function. There exists a uniform

constant C = C(n) > 0 such that (the metric balls are taken under the metric gϵ)

sup
x∈B(p,3R/4)

|∇uϵ |gϵ
(x) ≤ C(n)

oscB(p,R) uϵ

R
. (3-5)

As we mentioned above, we will omit the ϵ in the subscript of uϵ and gϵ . The proof of the lemma is
standard [10]. For completeness and to motivate the proofs of Lemmas 3.3 and 3.4, we sketch a proof.
Defining f = log u, it can be calculated that

1 f =
1u
u

−
|∇u|

2

u2 = −|∇ f |
2. (3-6)

Then by Bochner’s formula we have

1|∇ f |
2
= |∇∇ f |

2
+ |∇∇ f |

2
+ 2 Re⟨∇ f, ∇1 f ⟩ + Ric(∇ f, ∇ f )

≥ |∇∇ f |
2
− 2 Re⟨∇ f, ∇|∇ f |

2
⟩. (3-7)
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Let φ : [0, 1] → [0, 1] be a standard cut-off function such that φ|[0,3/4] = 1, φ[5/6,1] = 0 and 0 < φ < 1
otherwise. Let r(x) = dgϵ

(p, x) be the distance function to p under the metric g = gϵ . By abusing
notation, we also write φ(x) = φ(r(x)/R). It can be calculated by Laplacian comparison and the Bochner
formula (3-7) that, at the (positive) maximum point pmax of H := φ2

|∇ f |
2,

2
n

H 2
−

4|φ′
|

R
H 3/2

−
8(φ′)2

R2 H +
2H
R2 ((2n − 1)φφ′

+ φφ′′
+ (φ′)2) ≤ 0.

Therefore, for any x ∈ B
(

p, 3
4 R

)
,

|∇u|
2

u2 (x) = |∇ f (x)|2 = H(x) ≤ H(pmax) ≤
C(n)

R2 . (3-8)

3A3. Laplacian estimate in singular directions. We will prove the estimates of

1 j,ϵuϵ := (|z j |
2
+ ϵ)1−β j

∂uϵ

∂z j∂ z̄ j

for a 1gϵ
-harmonic function uϵ .

Lemma 3.3. Under the same assumptions as in Lemma 3.2, along the “bad” directions z1 and z2, we
have that 11,ϵuϵ and 12,ϵuϵ satisfy the estimates

sup
x∈B(p,R/2)

(|11,ϵuϵ |(x) + |12,ϵuϵ |(x)) ≤ C(n)
oscB(p,R) uϵ

R2 . (3-9)

As in the proof of Cheng–Yau gradient estimates, we will work on the function f = fϵ = log u, and
we only need to prove the estimate for 11,ϵuϵ . We write 11,ϵ f := (|z1|

2
+ ϵ)1−β1(∂2 f/∂z1∂ z̄1).

As above, we will omit the subscript ϵ in 11,ϵ f . We first observe that

111gϵ
f = 1gϵ

11 f. (3-10)

Equation (3-10) can be checked from the definitions using the property that gϵ is a product metric. Indeed

111gϵ
f = (|z1|

2
+ ϵ)1−β1

∂2

∂z1∂ z̄1

(
(|z1|

2
+ ϵ)1−β1

∂2 f
∂z1∂ z̄1

+ (|z2|
2
+ ϵ)1−β2

∂2 f
∂z2∂ z̄2

+

∑
j

∂2 f
∂z j∂ z̄ j

)

= (|z1|
2
+ ϵ)1−β1

∂2

∂z1∂ z̄1
11 f + (|z2|

2
+ ϵ)1−β2

∂2

∂z2∂ z̄2
11 f +

n∑
j=3

∂2

∂z j∂ z̄ j
11 f = 1gϵ

11 f.

On the other hand, note that 1gϵ
f = 1g f = −|∇ f |

2 by (3-6). Choosing a normal frame {e1, . . . , en} at
some point x such that dg(x) = 0 and 11 f = f11̄, we calculate

11|∇ f |
2
= ( f j f j̄ )11̄ = f j1 f j̄ 1̄ + f j 1̄ f j̄1 + f j11̄ f j̄ + f j f j̄11̄

= f j1 f j̄ 1̄ + f j 1̄ f j̄1 + f j f1̄1 j̄ + f j̄ ( f11̄ j + fm R1m̄ j 1̄)

= |∇1∇ f |
2
+ |∇1∇ f |

2
+ 2 Re⟨∇ f, ∇11 f ⟩ + fm f j̄ R11̄ j m̄

≥ (11 f )2
+ 2 Re⟨∇ f, ∇11 f ⟩. (3-11)
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Then
1(−11 f ) = −111 f = 11|∇ f |

2
≥ (11 f )2

+ 2 Re⟨∇ f, ∇11 f ⟩.

Let ϕ : [0, 1] → [0, 1] be a standard cut-off function such that ϕ|[0,1/2] = 1 and ϕ|[2/3,1] = 0. We also
define ϕ(x) = ϕ(r(x)/R). Then consider the function G := ϕ2

· (−11 f ). We calculate

1G = 1(ϕ2(−11 f ))

= ϕ21(−11 f ) + 2 Re⟨∇ϕ2, ∇(−11 f )⟩ + (−11 f )1ϕ2

≥ ϕ2((11 f )2
+ 2 Re⟨∇ f, ∇11 f ⟩) + 2 Re⟨∇ϕ2, ∇(−11 f )⟩ + (−11 f )1ϕ2. (3-12)

We want to estimate the upper bound of G. If the maximum value of G = ϕ2(−11 f ) is negative, we
are done. So we assume the maximum of G on B(p, R) is positive, which is achieved at some point
pmax ∈ B

(
p, 2

3 R
)
. Hence, at pmax we have (−11 f ) > 0. By Laplacian comparison, 1r ≤ (2n − 1)/r ,

and we get, at pmax,

1ϕ2
≥

2
R2 ((2n − 1)ϕϕ′

+ ϕϕ′′
+ (ϕ′)2). (3-13)

Thus, at pmax, the last term on the right-hand side of (3-12) is greater than or equal to

(−11 f )
2
R2 ((2n − 1)ϕϕ′

+ ϕϕ′′
+ (ϕ′)2).

Substituting this into (3-12), it follows that, at pmax, we have 1G ≤ 0 and ∇11 f = −2ϕ−111 f ∇ϕ,
and hence

0 ≥ 1G

≥ ϕ2(11 f )2
+2ϕ2 Re⟨∇ f, ∇11 f ⟩+4ϕ Re⟨∇ϕ, ∇(−11 f )⟩+(−11 f )

2
R2 ((2n−1)ϕϕ′

+ϕϕ′′
+(ϕ′)2)

≥ ϕ2(11 f )2
−4ϕ|11 f ||∇ f ||∇ϕ|+811 f |∇ϕ|

2
+(−11 f )

2
R2 ((2n−1)ϕϕ′

+ϕϕ′′
+(ϕ′)2)

=
G2

ϕ2 −4ϕ−1G|∇ f ||∇ϕ|−8G
|∇ϕ|

2

ϕ2 +
2G

R2ϕ2 ((2n−1)ϕϕ′
+ϕϕ′′

+(ϕ′)2)

≥
G2

ϕ2 −4
|ϕ′

||∇ f |

Rϕ
G−8

|ϕ′
|
2

R2ϕ2 G+
2G

R2ϕ2 ((2n−1)ϕϕ′
+ϕϕ′′

+(ϕ′)2).

(3-14)
Therefore, at pmax ∈ B

(
p, 2

3 R
)
,

G2
− 4

ϕ|ϕ′
∇ f |

R
G − 8

|ϕ′
|
2

R2 G +
2G
R2 ((2n − 1)ϕϕ′

+ ϕϕ′′
+ (ϕ′)2) ≤ 0,

and combining (3-8) and the fact that ϕ, ϕ′, ϕ′′ are all uniformly bounded, we can get, at pmax,

G2
≤ C(n)R−2G =⇒ G(pmax) ≤

C(n)

R2 .

Then, for any x ∈ B
(

p, 1
2 R

)
, where ϕ = 1, we have

−11 f (x) = G(x) ≤ G(pmax) ≤
C(n)

R2 .
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Moreover, recall that f = log u and −11 f = −11u/u + |∇1 f |
2, therefore it follows that

sup
x∈B(p,R/2)

(
−

11u
u

(x)

)
≤

C(n)

R2 . (3-15)

This in particular implies that

sup
x∈B(p,R/2)

(−11u(x)) ≤ C(n)
oscB(p,R/2) u

R2 ≤ C(n)
oscB(p,R) u

R2 . (3-16)

On the other hand, consider the function û = maxB(p,R) u − u, which is still a positive gϵ-harmonic
function with 1gû = 1gϵ

û = 0. Applying (3-15) to the function û, we get

sup
x∈B(p,R/2)

(
11u(x)

maxB(p,R) u − u(x)

)
= sup

x∈B(p,R/2)

(
−

11û
û

(x)

)
≤

C(n)

R2 , (3-17)

which yields

sup
x∈B(p,R/2)

11u(x) ≤ C(n)
oscB(p,R) u

R2 . (3-18)

Combining (3-18) and (3-16), we get

sup
x∈B(p,R/2)

|11u|(x) ≤ C(n)
oscB(p,R) u

R2 . (3-19)

3A4. Mixed derivatives estimates. In this subsection we will estimate the mixed derivatives

|∇1∇2 f |
2
=

∂2 f
∂z1∂z2

∂2 f
∂z1∂z2

g11̄g22̄ and |∇1∇2̄ f |
2
=

∂2 f
∂z1∂ z̄2

∂2 f
∂z1∂ z̄2

g11̄g22̄,

where as before f = log u and u is a positive harmonic function of 1gϵ
. Here for simplicity, we omit

the subscript ϵ in uϵ , fϵ and gϵ . Observing that since gϵ = g is a product metric with the nonzero
components gkk̄ depending only on zk , it follows that the curvature tensor

Ri j̄ kl̄ = −
∂2gi j̄

∂zk∂ z̄l
+ g pq̄ ∂gi q̄

∂zk

∂gp j̄

∂ z̄l

vanishes unless i = j = k = l ∈ {1, 2} and also Ri ī i ī ≥ 0 for all i = 1, . . . , n.

We fix some notation: we will write f12 = ∇1∇2 f (in fact this is just the ordinary derivative of f with
respect to g, since g is a product metric), | f12|

2
g = |∇1∇2 f |

2
g, etc.

Let us first recall that (3-11) implies

1(−11 f − 12 f )

=

n∑
k=1

(g11̄gkk̄ f1k f1̄k̄ + g11̄gkk̄ f1k̄ f1̄k + g22̄gkk̄ f2k f2̄k̄ + g22̄gkk̄ f2k̄ fk2̄)

− 2 Re⟨∇ f, ∇(−11 f − 12 f )⟩ + f1 f1̄g11̄g11̄ R11̄11̄ + f2 f2̄g22̄g22̄ R22̄22̄

≥

n∑
k=1

(|∇1∇k f |
2
+ |∇1∇k̄ f |

2
+ |∇2∇k f |

2
+ |∇2∇k̄ f |

2) − 2 Re⟨∇ f, ∇(−11 f − 12 f )⟩. (3-20)
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Next we calculate 1|∇1∇2 f |
2. For convenience of notation we will write f 12

= f1̄2̄g11̄g22̄, and hence
|∇1∇2 f |

2
= f12 f 12. We calculate

1|∇1∇2 f |
2
= gkl̄( f12 f 12)kl̄ = gkk̄( f12 f 12)kk̄ (since g is a product metric)

= gkk̄( f12kk̄ f 12
+ f12k f 12

,k̄ + f12k̄ f 12
,k + f12 f 12

,kk̄ ). (3-21)

The first term on the right-hand side of (3-21) is (by Ricci identities and switching the indices)

gkk̄ f 12( fk1k̄2 + gmm̄ fm1 Rkm̄2k̄ + gmm̄ fkm R1m̄2k̄)

= gkk̄ f 12( fkk̄12 + gmm̄ fm2 Rkm̄1k̄ + gmm̄ fm Rkm̄1k̄ + gmm̄ fm1 Rkm̄2k̄ + gmm̄ fkm R1m̄2k̄)

= gkk̄ f 12( fkk̄12 + gmm̄ fm2 Rkm̄1k̄ + gmm̄ fm1 Rkm̄2k̄)

= gkk̄ f 12 fkk̄12 + g11̄g11̄ f 12 f21 R11̄11̄ + g22̄g22̄ f 12 f12 R22̄22̄, (3-22)

and the last term on the right-hand side of (3-21) is the conjugate of the first term; hence we get

1|∇1∇2 f |
2
= 2 Re( f 12(1 f )12) + 2 f 12 f12(g11̄g11̄ R11̄11̄ + g22̄g22̄ R22̄22̄)

+gkk̄ f12k f 12
,k̄ + gkk̄ f12k̄ f 12

,k . (3-23)

Recall from (3-6) that 1 f = −|∇ f |
2; hence the first term on the right-hand side of (3-23) is

2 Re( f 12(1 f )12) = 2 Re( f 12(−|∇ f |
2)12)

= −2 Re( f 12gkk̄( fk12 fk̄ + fk1 fk̄2 + fk2 fk̄1 + fk fk̄12))

= −2 Re( f 12gkk̄( f12k fk̄ + fk1 fk̄2 + fk2 fk̄1 + fk f12k̄ − fk fm R1m̄2k gmm̄))

= −4 Re⟨∇ f, ∇|∇1∇2 f |
2
⟩ − 2 Re( f 12gkk̄ fk1 f2k̄ + f 12gkk̄ fk2 fk̄1). (3-24)

Combining (3-24) and (3-23), we get

1|∇1∇2 f |
2
≥ −4 Re⟨∇ f, ∇|∇1∇2 f |

2
⟩ +

∑
k

( f12k f 12k
+ f12k̄ f 12k̄)

− 2
∑

k

(|∇1∇2 f ||∇1∇k f ||∇2∇k̄ f | + |∇1∇2 f ||∇2∇k f ||∇1∇k̄ f |). (3-25)

On the other hand, by Kato’s inequality we have

1|∇1∇2 f |
2
= 2|∇1∇2 f |1|∇1∇2 f | + 2

∣∣∇|∇1∇2 f |
∣∣2

≤ 2|∇1∇2 f |1|∇1∇2 f | +

∑
k

|∇k∇1∇2 f |
2
+ |∇k̄∇1∇2 f |

2

= 2|∇1∇2 f |1|∇1∇2 f | +

∑
k

f12k f 12k
+ f12k̄ f 12k̄ . (3-26)

Combining (3-25) and (3-26), it follows that

1|∇1∇2 f | ≥ −2 Re⟨∇ f, ∇|∇1∇2 f |⟩ −

∑
k

(|∇1∇k f ||∇2∇k̄ f | + |∇2∇k f ||∇1∇k̄ f |). (3-27)
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Combining (3-20) and (3-27) and applying the Cauchy–Schwarz inequality, we have

1(|∇1∇2 f | + 2(−11 f − 12 f )) ≥ −2 Re⟨∇ f, ∇(|∇1∇2 f | + 2(−11 f − 12 f ))⟩

+

n∑
k=1

(|∇1∇k f |
2
+ |∇1∇k̄ f |

2
+ |∇2∇k f |

2
+ |∇2∇k̄ f |

2). (3-28)

Note that the sum on the right-hand side of (3-27) is (recall under our notation |∇1∇1̄ f |
2

= (11 f )2)
greater than or equal to

|∇1∇2 f |
2
+ |− 11 f |

2
+ |− 12 f |

2
≥

1
12(|∇1∇2 f | + 2(−11 f − 12 f ))2,

so we get the equation

1(|∇1∇2 f | + 2(−11 f − 12 f )) ≥ −2 Re⟨∇ f, ∇(|∇1∇2 f | + 2(−11 f − 12 f ))⟩

+
1

12(|∇1∇2 f | + 2(−11 f − 12 f ))2. (3-29)

Write
Q = η2(|∇1∇2 f | + 2(−11 f − 12 f )) =: η2 Q1,

where η(x) = η̃(r(x)/R) and η̃ is a cut-off function such that η̃|[0,1/3] = 1 and η̃|[1/2,1] = 0. The following
arguments are similar to the previous two cases. We calculate

1Q = η21Q1 + 2 Re⟨∇η2, ∇Q1⟩ + Q11η2

≥ −2η2 Re⟨∇ f, ∇Q1⟩ + 2 Re⟨∇η2, ∇Q1⟩ +
1
12η2 Q2

1 + Q11η2. (3-30)

Apply the maximum principle to Q, and if max Q ≤ 0, we are done. So we may assume that max Q > 0
and that it is attained at pmax; thus at pmax, we have Q1 > 0, 1Q ≤ 0, ∇Q1 = −2η−1 Q1∇η and

Q11η2
≥ Q1

2
R2 ((2n − 1)ηη′

+ ηη′′
+ (η′)2).

So, at pmax,

0 ≥ 1Q ≥ 4ηQ1 Re⟨∇ f, ∇η⟩ − 8Q1|∇η|
2
+ η2 Q2

1

12
+ Q1

2
R2 ((2n − 1)ηη′

+ ηη′′
+ (η′)2)

=
Q2

12η2 + 4Qη−1 Re⟨∇ f, ∇η⟩ −
8Q
η2

(η′)2

R2 +
2Q

R2η2 ((2n − 1)ηη′
+ ηη′′

+ (η′)2)

≥
1
η2

(
Q2

12
−

40|∇ f |

R
Q −

800
R2 Q −

100n
R2 Q

)
, (3-31)

where we choose η such that |η′
|, |η′′

| ≤ 10, for example. Therefore, at pmax ∈ B
(

p, 1
2 R

)
, we have

Q2

12
− Q

(
40|∇ f |

R
+

800
R2 +

100n
R2

)
≤ 0 =⇒ Q(pmax) ≤

C(n)

R2 ,

since supB(p,R/2) |∇ f | ≤ C(n)R−1 from the previous estimates. Then, for any x ∈ B
(

p, 1
3 R

)
, we have

Q1(x) = η2(x)Q1(x) = Q(x) ≤ Q(pmax) ≤
C(n)

R2 .
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Thus it follows that

|∇1∇2 f |(x) ≤ Q1(x) + 2(11 f (x) + 12 f (x)) ≤
C(n)

R2 + 2(11 f (x) + 12 f (x)).

On the other hand, from |∇1∇2 f | = |(∇1∇2u/u) − (∇1u/u)(∇2u/u)|, we get

|∇1∇2u|(x) ≤ |∇1∇2 f (x)|u(x) + u(x)
|∇1u(x)|

u
|∇2u(x)|

u

≤ C(n)
u(x)

R2 + 211u(x) + 212u(x) + u(x)
|∇1u(x)|

u
|∇2u(x)|

u

≤ C(n)
oscB(p,R) u

R2 . (3-32)

Therefore we obtain
sup

B(p,R/3)

|∇1∇2u| ≤ C(n)
oscB(p,R) u

R2 . (3-33)

By exactly the same argument we get similar estimates for |∇1∇2̄u| and |∇1∇ku| + |∇1∇k̄u| for k ̸= 1.
Hence we have proved the following lemma.

Lemma 3.4. There exists a constant C(n) > 0 such that, for the solution uϵ to (3-4),

sup
Bgϵ (0,R/2)

(|∇i∇ j uϵ |gϵ
+ |∇i∇ j̄ uϵ |gϵ

) ≤ C(n)
oscBgϵ (0,R) uϵ

R2

for all i, j = 1, 2, . . . , n.

3A5. Convergence of uϵ . In this subsection, we will show that the Dirichlet problem (3-1) admits a
unique solution for any ϕ ∈ C0(∂ Bβ(0, 1)). Here we will write Bβ = Bβ(0, 1) for simplicity of notation.

Proposition 3.5. For any ϕ ∈ C0(∂ Bβ), the Dirichlet boundary value problem (3-1) admits a unique
solution u ∈ C2(Bβ\S)∩C0(Bβ). Moreover, u satisfies the estimates in Lemmas 3.2–3.4 with uϵ replaced
by u and the metric balls replaced by those under the metric gβ , which we will refer to as “derivatives
estimates” throughout this section.

Proof. Given the estimates of uϵ as in Lemmas 3.2–3.4, we can derive the uniform local C2,α estimates
of uϵ on any compact subsets of Bβ(0, 1)\S.

The C0 estimates of uϵ follow immediately from the maximum principle (see Lemma 3.1).
Take any compact subsets K ⋐ K ′ ⋐ Bβ(0, 1). By Lemmas 3.2 and 3.3, we have

sup
K ′

(
|z1|

1−β1

∣∣∣∣∂uϵ

∂z1

∣∣∣∣ + |z2|
1−β2

∣∣∣∣∂uϵ

∂z2

∣∣∣∣ + ∣∣∣∣∂uϵ

∂s j

∣∣∣∣) ≤ C(n)
∥uϵ∥∞

d(K ′, ∂ Bβ)
, (3-34)

sup
K ′

(
|z1|

1−β1

∣∣∣∣ ∂2uϵ

∂sk∂z1

∣∣∣∣ + |z2|
1−β2

∣∣∣∣ ∂2uϵ

∂sk∂z2

∣∣∣∣ + ∣∣∣∣ ∂2uϵ

∂sk∂s j

∣∣∣∣) ≤ C(n)
∥uϵ∥∞

d(K ′, ∂ Bβ)2 , (3-35)

and the third-order estimates

sup
K ′

(
|z1|

1−β1

∣∣∣∣ ∂3uϵ

∂z1∂sk∂sl

∣∣∣∣ + |z2|
1−β2

∣∣∣∣ ∂3uϵ

∂z2∂sk∂sl

∣∣∣∣ + ∣∣∣∣ ∂3uϵ

∂s j∂sk∂sl

∣∣∣∣) ≤ C(n)
∥uϵ∥∞

d(K ′, ∂ Bβ)3 . (3-36)
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Moreover, applying the gradient estimate to the 1gϵ
-harmonic function 11,ϵuϵ , we get

sup
K ′

(
|z1|

1−β1

∣∣∣∣ ∂

∂z1
11,ϵuϵ

∣∣∣∣ + |z2|
1−β2

∣∣∣∣ ∂

∂z2
11,ϵuϵ

∣∣∣∣ + ∣∣∣∣ ∂

∂s j
11,ϵuϵ

∣∣∣∣) ≤ C(n)
∥uϵ∥∞

d(K ′, ∂ Bβ)3 .

From (3-34)–(3-36), we see that the functions uϵ have uniform C3-estimates in the “tangential directions”
on any compact subset of Bβ(0, 1). Moreover, for any fixed small constant δ > 0, let Tδ(S) be the tubular
neighborhood of S. We consider the equation

1ϵuϵ = (|z1|
2
+ ϵ)1−β1

∂2uϵ

∂z1∂ z̄1
+ (|z2|

2
+ ϵ)1−β2

∂2uϵ

∂z2∂ z̄2
+

2n∑
j=5

∂2uϵ

∂s2
j

= 0 on K ′
\Tδ/2(S),

which is strictly elliptic (with ellipticity depending only on δ > 0). Hence by standard elliptic Schauder
theory, we also have C2,α-estimates of uϵ in the “transversal directions” (i.e., normal to S) and the mixed
directions on the compact subset K\Tδ(S). By taking δ → 0 and K → Bβ , and using a diagonal argument,
up to a subsequence, the uϵ converge in C2,α

loc (Bβ\S) to a function u ∈ C2,α(Bβ\S). Clearly, u satisfies
the equation 1βu = 0 on Bβ\S, and the estimates (3-34)–(3-36) hold for u outside S, which implies
that u can be continuously extended through S and defines a continuous function in Bβ(0, 1). It remains
to check the boundary value of u.

Claim: u = ϕ on ∂ Bβ(0, 1). It remains to show the limit function u of uϵ satisfies the boundary condition
u = ϕ on ∂ Bβ(0, 1), which will be proved by constructing suitable barriers as we did in [20].

The metric ball Bβ(0, 1) is given by

Bβ(0, 1) =

{
z ∈ Cn

∣∣∣ dβ(0, z)2
:= |z1|

2β1 + |z2|
2β2 +

2n∑
j=5

s2
j < 1

}
.

Bβ(0, 1) ⊂ BCn (0, 1), and their boundaries only intersect at S1 ∩S2, where z1 = z2 = 0. Fix any point
q ∈ ∂ Bβ(0, 1) and consider the cases q ∈ S1 ∩S2 and q ̸∈ S1 ∩S2.

Case 1: q ∈ S1 ∩S2, i.e., z1(q) = z2(q) = 0. Consider the point

q ′
= −q ∈ ∂ Bβ(0, 1) ∩ ∂ BCn (0, 1).

Since q is the unique farthest point from q ′ on ∂ Bβ(0, 1) under the Euclidean distance, the function
9q(z) := dCn (z, q ′)2

− 4 satisfies 9q(q) = 0 and 9q(z) < 0 for all z ∈ ∂ Bβ(0, 1)\{q}. By the continuity
of ϕ for any δ > 0, there is a small neighborhood V of q such that ϕ(q) − δ < ϕ(z) < ϕ(q) + δ for
all z ∈ ∂ Bβ(0, 1)∩ V , and, on ∂ Bβ(0, 1)\V , we have that 9q is bounded above by a negative constant.
Hence we can define

ϕq(z) := ϕ(q) − δ + A9q(z) < ϕ(z)

for all z ∈ ∂ Bβ(0, 1) if A is chosen large enough. The function ϕq is 1gϵ
-subharmonic; hence by the

maximum principle we have uϵ(z) ≥ ϕq(z) for all z ∈ Bβ(0, 1). Letting ϵ → 0 we get u(z) ≥ ϕq(z), taking
z → q we have lim infz→q u(z) ≥ ϕ(q)− δ, and since δ > 0 is arbitrary we have lim infz→q u(z) ≥ ϕ(q).

By considering the barrier function ϕ(q) + δ − A9q(z) and using a similar argument it is not hard to
see that lim supz→q u(z) ≤ ϕ(q); hence limz→q u(z) = ϕ(q) and u is continuous up to q ∈ ∂ Bβ(0, 1).
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Case 2: q ∈ ∂ Bβ(0, 1)\S1 ∩S2. We first consider the case when z1(q) ̸= 0 and z2(q) ̸= 0. The boundary
∂ Bβ(0, 1) is smooth near q, and hence satisfies the exterior sphere condition. We choose an exterior
Euclidean ball BCn (q̃, rq) which is tangential to ∂ Bβ(0, 1) (only) at q , i.e., under the Euclidean distance,
q is the unique closest point to q̃ on ∂ Bβ(0, 1). So the function

G(z) =
1

|z − q̃|2n−2 −
1

r2n−2
q

(3-37)

satisfies G(q) = 0 and G(z) < 0 for all z ∈ ∂ Bβ(0, 1)\{q}. We calculate

1gϵ
G = (|z1|

2
+ ϵ)−β1+1 ∂2G

∂z1∂ z̄1
+ (|z2|

2
+ ϵ)−β2+1 ∂2G

∂z2∂ z̄2
+

n∑
k=3

∂2G
∂zk∂ z̄k

= ((|z1|
2
+ ϵ)−β1+1

− 1)
∂2G

∂z1∂ z̄1
+ ((|z2|

2
+ ϵ)−β2+1

− 1)
∂2G

∂z2∂ z̄2

=

2∑
k=1

(−n + 1)
(|zk |

2
+ ϵ)−βk+1

− 1
|z − q̃|2n

(
−

n|zk − q̃k |
2

|z − q̃|2
+ 1

)
≥ −C(q, rq).

The function
9q(z) = A(dβ(z, 0)2

− 1) + G(z)

is 1gϵ
-subharmonic for A ≫ 1, and 9q(q) = 0 and 9q(z) < 0 for all z ∈ ∂ Bβ(0, 1)\{q}. We are in the

same situation as Case 1, so by the same argument as above, we can show the continuity of u at such a
boundary point q .

In the case when z1(q) ̸= 0 and z2(q) = 0, the boundary ∂ Bβ(0, 1) is not smooth at q and we cannot
apply the exterior sphere condition to construct the barrier. Instead we use the geometry of the metric
ball Bβ(0, 1). Consider the standard cone metric

gβ1 = β2
1

dz1 ⊗ dz̄1

|z1|2(1−β1)
+

n∑
k=2

dzk ⊗ dz̄k

with cone singularity only along S1 = {z1 = 0}. We observe that the metric ball Bβ(0, 1) is strictly
contained in Bgβ1

(0, 1), and the boundaries of these balls are tangential at the points with vanishing
z2-coordinate. Thus q ∈ ∂ Bβ(0, 1)∩∂ Bgβ1

(0, 1) and ∂ Bgβ1
(0, 1) is smooth at q , so there exists an exterior

sphere for ∂ Bgβ1
(0, 1) at q . We define a similar function G(z) as in (3-37), and, by the strict inclusion of

the metric balls Bβ(0, 1) ⊂ Bgβ1
(0, 1), it follows that G(q) = 0 and G(z) < 0 for all z ∈ ∂ Bβ(0, 1)\{q}.

The remaining argument is the same as before. □

Remark 3.6. For any constant c ∈ R, the Dirichlet boundary value problem

1gβ
u = c in Bβ(0, 1)\S and u = ϕ on ∂ Bβ(0, 1)

admits a solution u ∈ C2(Bβ\S)∩ C0(Bβ) for any given ϕ ∈ C0(∂ Bβ). This follows from the solution ũ
of (3-1) with boundary value ϕ̃ = ϕ−

1
2 c(n−2)−1 ∑2n

j=5 s2
j . Then the function u = ũ +

1
2 c(n−2)−1 ∑

j s2
j

solves the equation above.
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For later application, we prove the existence of solutions for a more general right-hand side of the
Laplace equation with the standard background metric. This result is not needed to prove Theorem 1.2.

Proposition 3.7. For any given ϕ ∈ C0(∂ Bβ(0, 1)) and f ∈ C0,α
β (Bβ(0, 1)), the Dirichlet boundary value

problem {
1gβ

v = f in Bβ(0, 1)\S,

v = ϕ on ∂ Bβ(0, 1)
(3-38)

admits a unique solution v ∈ C2(Bβ(0, 1)\S) ∩ C0(Bβ(0, 1)).

By Theorem 1.2, the solution v to (3-38) belongs to C2,α
β (Bβ(0, 1)) ∩ C0(Bβ(0, 1)).

Proof. The proof is similar to that of Proposition 3.5. As before, let gϵ be the approximating metrics (3-3)
of gβ which are smooth metrics on Bβ(0, 1). By standard elliptic theory we can solve the equations{

1gϵ
vϵ = f in Bβ(0, 1),

vϵ = ϕ on ∂ Bβ(0, 1).
(3-39)

For any compact subset K ⋐ Bβ(0, 1) and small δ > 0, we have a uniform C2,α′

-bound of vϵ on K\Tδ(S)

for some α′ < α. Thus vϵ converges in the C2,α′

-norm to a function v on K\Tδ(S) as ϵ → 0. By a
standard diagonal argument, letting K → Bβ(0, 1) and δ → 0, we can achieve

vϵ

C2,α′

loc (Bβ (0,1)\S)
−−−−−−−−−→ v ∈ C2,α′

loc (Bβ(0, 1)\S) as ϵ → 0.

Clearly v satisfies (3-38) in Bβ(0, 1)\S. It only remains to show the boundary value of v coincides with ϕ

and v is globally continuous in Bβ(0, 1).

Global continuity: v ∈ C0(Bβ(0, 1)). It suffices to show v is continuous at any p ∈ S ∩ Bβ(0, 1). Fix
such a point p and take R0 > 0 small enough that BCn (p, 10R0) ∩ ∂ Bβ(0, 1) = ∅. We observe that
1
2 gCn ≤ gϵ ≤ gβ , so for any r ∈

(
0, 1

2

)
,

Bgβ
(p, r) ⊂ Bgϵ

(p, r) ⊂ BCn (p, 2r). (3-40)

In particular, the balls Bgϵ
(p, 5R0) are also disjoint with ∂ Bβ(0, 1).

Since Ric(gϵ) ≥ 0, we have the following Sobolev inequality [25]: there exists a constant C = C(n) > 0
such that, for any h ∈ C1

0(Bgϵ
(p, r)),(∫

Bgϵ (p,r)

h2n/(n−1)ωn
ϵ

)(n−1)/n

≤ C
(

r2n

Volgϵ
(Bgϵ

(p, r))

)1/n ∫
Bgϵ (p,r)

|∇h|
2
gϵ

ωn
ϵ . (3-41)

It can be checked by straightforward calculations that Volgϵ
(Bgϵ

(p, 1)) ≥ c0(n) > 0 for some constant c0

independent of ϵ. Then Bishop’s volume comparison yields, for any r ∈ (0, 1),

C1(n)r2n
≥ Volgϵ

(Bgϵ
(p, r)) ≥ c1(n)r2n.

Thus the Sobolev inequality (3-41) is reduced to(∫
Bgϵ (p,r)

h2n/(n−1)ωn
ϵ

)(n−1)/n

≤ C
∫

Bgϵ (p,r)

|∇h|
2
gϵ

ωn
ϵ for all h ∈ C1

0(Bgϵ
(p, r)). (3-42)
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With (3-42) at hand, we can apply the same proof of the standard De Giorgi–Nash–Moser theory (see the
proof of Corollary 4.18 in [22]) to derive the uniform Hölder continuity of vϵ at p, i.e., there exists a
constant C = C(n, β, R0) > 0 such that

oscBβ (p,r) vϵ ≤ oscBgϵ (p,r) vϵ ≤ Crα′′

for all r ∈ (0, R0)

for some α′′
= α′′(n, β, R0) ∈ (0, 1), where in the first inequality we use the relation (3-40). Letting ϵ → 0

we see the continuity of v at p.

Boundary value: v = ϕ on ∂ Bβ(0, 1). The proof is almost identical to that of Proposition 3.5. For
example, the function ϕq(z) = ϕ(q) − δ + A9q(z) defined in Case 1 in the proof of Proposition 3.5
satisfies 1gϵ

ϕq(z) ≥ maxX f if A > 0 is taken large enough. Then from 1gϵ
(ϕq − vϵ) ≥ 0 in Bβ and

ϕq −ϕ ≤ 0 on ∂ Bβ , applying the maximum principle we get ϕq ≤ vϵ in Bβ(0, 1). The remaining arguments
are the same as in Proposition 3.5. Case 2 can be dealt with similarly. □

Remark 3.8. Let H 1
0 (Bβ(0, 1), gβ) be the completion of the space of C1

0(Bβ(0, 1))-functions under the
norm

∥∇u∥L2(gβ ) =

(∫
Bβ (0,1)

|∇u|
2
gβ

ωn
β

)1/2

.

For any h ∈ C1
0(Bβ(0, 1)), letting ϵ → 0 in (3-42), we get(∫

Bβ (p,r)

|h|
2n/n−1ωn

β

)(n−1)/n

≤ C
∫

Bβ (p,r)

|∇h|
2
gβ

ωn
β (3-43)

for the same constant C in (3-42). That is, the Sobolev inequality also holds for the conical metric ωβ .

3B. Tangential and Laplacian estimates. In this section, we will prove the Hölder continuity of 1ku for
k = 1, 2 and (D′)2u for the solution u to (1-2). The arguments of [20] can be adopted here. We recall
that we assume β1, β2 ∈

( 1
2 , 1

)
. We fix some notations first.

For a given point p ̸∈ S, we define rp = dgβ
(p,S), the gβ-distance of p to the singular set S. For

simplicity of notation we will fix τ =
1
2 and an integer kp ∈ Z+ to be the smallest integer such that τ kp < rp,

and ki,p ∈ Z+ the smallest integer ki,p such that τ ki,p < dβ(p,Si ) for i = 1, 2. So kp = max{k1,p, k2,p}.
We write p1 ∈ S1 and p2 ∈ S2 for the projections of p to S1 and S2, respectively.

For j = 1, 2, we will write

1 j u := |z j |
2(1−β j )

∂2u
∂z j∂ z̄ j

.

We will consider a family of conical Laplace equations with different choices of k ∈ Z+.

(i) If k ≥ kp, the geodesic balls Bβ(p, τ k) are disjoint from S and have smooth boundaries. We note
that gβ is smooth on such balls. By standard theory we can solve the following Dirichlet problem for
uk ∈ C∞(Bβ(p, τ k)) ∩ C0(Bβ(p, τ k)):{

1βuk = f (p) in Bβ(p, τ k),

uk = u on ∂ Bβ(p, τ k).
(3-44)
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(ii) Without loss of generality, we assume dβ(p,S1) ≤ dβ(p,S2), i.e., k1,p ≥ k2,p. We now solve the
following Dirichlet problem for uk ∈ C2(Bβ(p1, 2τ k)\S1) ∩ C0(Bβ(p1, 2τ k)) for k2,p + 2 ≤ k < k1,p:{

1βuk = f (p) in Bβ(p1, 2τ k)\S1,

uk = u on ∂ Bβ(p1, 2τ k).
(3-45)

By similar arguments to those in the proof of Proposition 3.5 and Remark 3.6, such uk exists.

(iii) For 2 ≤ k ≤ k2,p + 1, let uk ∈ C2(Bβ(p1,2, 2τ k)\S) ∩ C0(Bβ(p1,2, 2τ k)) solve the equation{
1βuk = f (p) in Bβ(p1,2, 2τ k),

uk = u on ∂ Bβ(p1,2, 2τ k),
(3-46)

whose existence follows from Remark 3.6. Here p1,2 = (0; 0; s(p)) ∈ S1 ∩S2 is the projection of p1 to S2.

We remark that we may take f (p) = 0 by considering ũ = u −
1
2 f (p)(n −2)−1

|s −s(p)|2. If the estimate
holds for ũ, it also holds for u. So from now on we assume f (p) = 0.

Lemma 3.9. Let uk be the solutions to (3-44)–(3-46). There exists a constant C = C(n) > 0 such that,
for all k ∈ Z+, we have the estimates

∥uk − u∥L∞(B̂k(p))
≤ C(n)τ 2kω(τ k), (3-47)

where we define B̂k(p) as

B̂k(p) :=


Bβ(p, τ k) if k ≥ kp,

Bβ(p1, 2τ k) if k2,p + 2 ≤ k < k1,p,

Bβ(p1,2, 2τ k) if 2 ≤ k ≤ k2,p + 1
(3-48)

for different choices of k ∈ Z+.

We will also define λB̂k(p) to be the ball concentric with B̂k(p) with radius scaled by λ ∈ (0, 1).
This lemma follows straightforwardly from Lemma 3.1 and the definition of ω(r), so we omit the

proof. By the triangle inequality, we get the estimates

∥uk − uk+1∥L∞(B̂k/2)
≤ C(n)τ 2kω(τ k). (3-49)

Since uk − uk+1 are gβ-harmonic functions on 1
2 B̂k , applying the gradient and Laplacian estimates

(3-5) and (3-9) for harmonic functions, we get the following lemma.

Lemma 3.10. There exists a constant C(n) > 0 such that, for all k ∈ Z+,

∥D′uk − D′uk+1∥L∞(B̂k/3)
≤ C(n)τ kω(τ k) (3-50)

and

sup
(B̂k/3)\S

( 2∑
i=1

|1i (uk − uk+1)| + |(D′)2uk − (D′)2uk+1|

)
≤ C(n)ω(τ k), (3-51)

where we recall that D′ denotes the first-order operators ∂/∂si for i = 5, . . . , 2n.

The following lemma can be proved by looking at the Taylor expansion of uk at p for k ≫ 1 as in
Lemma 2.8 of [20].
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Lemma 3.11. For i = 1, 2, we have the limits

lim
k→∞

D′uk(p) = D′u(p), lim
k→∞

(D′)2uk(p) = (D′)2u(p), lim
k→∞

1i uk(p) = 1i u(p). (3-52)

Combining Lemmas 3.10 and 3.11, we obtain estimates on the second-order (tangential) derivatives.

Proposition 3.12. There exists a constant C = C(n, β) > 0 such that

sup
Bβ (0,1/2)\S

|(D′)2u| + |1i u| ≤ C
(
∥u∥L∞(Bβ (0,1)) +

∫ 1

0

ω(r)

r
dr + | f (0)|

)
. (3-53)

Proof. From the triangle inequality we have, for any given z ∈ Bβ

(
0, 1

2

)
\S,

|(D′)2u(z)| ≤

∞∑
k=2

|(D′)2uk(z) − (D′)2uk+1(z)| + |(D′)2u2(z)|

≤ C(n)

∞∑
k=2

ω(τ k) + C(n) oscBβ (0,1) u0 ≤ C(n, β)

(
∥u∥L∞ +

∫ 1

0

ω(r)

r
dr + | f (0)|

)
.

The estimates for 1i u can be proved similarly. □

For any other given point q ∈ Bβ

(
0, 1

2

)
\S, we can solve a similar Dirichlet boundary problems as uk

with the metric balls centered at q , and we obtain a family of functions vk such that

1βvk = f (q) in B̃k(q), vk = u on ∂ B̃k(q), (3-54)

where B̃k(q) are metrics balls centered at q given by

B̃k(q) = B̃k :=


Bβ(q, τ k) if k ≥ kq ,

Bβ(qi , 2τ k) if k j,q + 2 ≤ k < kq (here ki,q = max(k1,q , k2,q) and j ̸= i),
Bβ(qi, j , 2τ k) if k ≤ k j,q + 1.

Similar estimates as in Lemmas 3.9–3.11 also hold for vk within the balls B̃k(q).
We are now ready to state the main result in this subsection on the continuity of second-order derivatives.

Proposition 3.13. Let d = dβ(p, q) < 1
16 . There exists a constant C = C(n) > 0 such that if u solves the

conical Laplace equation (1-2), then the following holds for i = 1, 2:

|1i u(p) − 1i u(q)| + |(D′)2u(p) − (D′)2u(q)| ≤ C
(

d∥u∥L∞(Bβ (0,1)) +

∫ d

0

ω(r)

r
dr + d

∫ 1

d

ω(r)

r2 dr
)

.

Proof. We only prove the estimate for (D′)2u; the estimates for 1i u can be dealt with in the same way.
We may assume rp = min(rp, rq). We fix ℓ ∈ Z such that τ ℓ is comparable to d; more precisely, take

τ ℓ+4
≤ d < τ ℓ+3 or τ ℓ+1

≤ 8d ≤ τ ℓ.

We calculate by the triangle inequality

|(D′)2u(p) − (D′)2u(q)| ≤ |(D′)2u(p) − (D′)2uℓ(p)| + |(D′)2uℓ(p) − (D′)2uℓ(q)|

+ |(D′)2uℓ(q) − (D′)2vℓ(q)| + |(D′)2vℓ(q) − (D′)2u(q)|

=: I1 + I2 + I3 + I4.
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We will estimate I1–I4 one by one.

I1 and I4: By (3-51) and (3-52), we have

I1 = |(D′)2u(p) − (D′)2uℓ(p)| ≤ C(n)

∞∑
k=ℓ

ω(τ k),

and a similar estimate holds for I4 as well:

I4 = |(D′)2u(q) − (D′)2vℓ(q)| ≤ C(n)

∞∑
k=ℓ

ω(τ k).

I3: By the choice of ℓ, it is not hard to see that 2
3 B̃ℓ(q) ⊂ B̂ℓ(p). In particular, uℓ and vℓ are both defined

on 2
3 B̃ℓ(q) and satisfy the equations

1βuℓ = f (p) and 1βvℓ = f (q),

respectively, on this ball. From (3-47) for uℓ and from a similar estimate for vℓ, we get

∥uℓ − vℓ∥L∞(2B̃ℓ(q)/3) ≤ Cτ 2ℓω(τ ℓ).

Consider the function

U := uℓ − vℓ −
f (p) − f (q)

2(n − 2)
|s − s(q̃)|2, (3-55)

where q̃ is the center of the ball B̃ℓ(q). U is gβ-harmonic in 2
3 B̃ℓ(q) and satisfies the estimate

∥U∥L∞(2B̃/3ℓ(q)) ≤ Cτ 2ℓω(τ ℓ) + Cτ 2ℓω(d) ≤ C(n)τ 2ℓω(τ ℓ).

The derivatives estimates imply that

|(D′)2U (q)| ≤ Cτ−2ℓ
∥U∥L∞(2B̃/3ℓ(q)) ≤ C(n)ω(τ ℓ).

Hence
I3 = |(D′)2uℓ(q) − (D′)2vℓ(q)| ≤ C(n)ω(τ ℓ).

I2: This is a little more complicated than the previous estimates. We define hk = uk−1 −uk for k ≤ ℓ. We
observe that hk is gβ-harmonic on B̂k(p) and by (3-47) satisfies the L∞-estimate ∥hk∥B̂k(p)

≤ Cτ 2kω(τ k)

and the derivatives estimates ∥(D′)2hk∥L∞(2B̂k(p)/3)
ω(τ k). On the other hand, the function (D′)2hk is

also gβ-harmonic on 2
3 B̂k(p), so the gradient estimate implies that

∥∇gβ
(D′)2hk∥L∞((B̂k(p)/2)\S)

≤ Cτ−kω(τ k). (3-56)

Integrating this along the minimal gβ-geodesic γ connecting p and q and noting that γ avoids S since
(Cn

\S, gβ) is strictly geodesically convex, we get

|(D′)2hk(p) − (D′)2hk(q)| ≤ d · ∥∇gβ
(D′)2hk∥L∞((B̂k(p)/2)\S)

≤ dCτ−kω(τ k).

By the triangle inequality, for each k ≤ ℓ,

I2 = |(D′)2uℓ(p) − (D′)2uℓ(q)| ≤ |(D′)2u2(p) − (D′)2u2(q)| + dC
ℓ∑

k=2

τ−kω(τ k). (3-57)
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Observe that p, q ∈ B̂2(p) and the function (D′)2u2 is gβ-harmonic on B̂2(p). From (3-47) and derivatives
estimates we have

∥(D′)2u2∥L∞(2B̂2(p)/3)
≤ C∥u2∥L∞(B̂2(p))

≤ C(∥u∥L∞ + ω(τ 2)).

Again by the gradient estimate we have

∥∇gβ
(D′)2u2∥L∞(B̂2(p)/2)

≤ C(∥u∥L∞ + ω(τ 2)).

Integrating along the minimal geodesic γ we arrive at

|(D′)2u2(p) − (D′)2u2(q)| ≤ dC(∥u∥L∞ + ω(τ 2)).

Combining this with (3-57), we obtain

I2 ≤ Cd
(
∥u∥L∞(Bβ (0,1)) +

ℓ∑
k=2

τ−kω(τ k)

)
.

Combing the estimates for I1–I4, we get

|(D′)2u(p) − (D′)2u(q)| ≤ C
(

d
(
∥u∥L∞(Bβ (0,1)) +

ℓ∑
k=2

τ−kω(τ k)

)
+

∞∑
k=ℓ

ω(τ k)

)
.

Proposition 3.13 now follows from this and the fact that ω(r) is monotonically increasing. □

3C. Mixed normal-tangential estimates along the directions S. Throughout this section, we fix two
points p, q ∈ Bβ

(
0, 1

2

)
\S and assume rp ≤ rq . Recall that we defined the weighted “polar coordinates”

(ri , θi ) for (z1, z2):
ρi = |zi |, ri = ρ

βi
i , θi = arg zi , i = 1, 2.

Under these coordinates,

1i u = |zi |
2(1−βi )

∂2u
∂zi∂ z̄i

=
∂2u
∂r2

i
+

1
ri

∂u
∂ri

+
1

β2
i r2

i

∂2u
∂θ2

i
. (3-58)

Let uk and vk be the solutions to (3-44)–(3-46) on B̂k(p) and B̃k(q), respectively. Recalling that uk −uk+1

satisfies (3-49) and applying gradient estimates to the gβ-harmonic function uk − uk+1, we get the bound
of ∥∇gβ

(uk − uk+1)∥L∞(B̂k(p)/3)
, which in particular implies that, for i = 1, 2,∥∥∥∥|zi |

1−βi

(
∂uk

∂zi
−

∂uk+1

∂zi

)∥∥∥∥
L∞(B̂k(p)/3)

≤ Cτ kω(τ k). (3-59)

Similarly, D′uk − D′uk+1 is also gβ-harmonic on 1
2 B̂k(p), and applying gradient estimates to this function

we get, for i = 1, 2, ∥∥∥∥|zi |
1−βi

(
∂ D′uk

∂zi
−

∂ D′uk+1

∂zi

)∥∥∥∥
L∞(B̂k(p)/3)

≤ Cω(τ k). (3-60)

The next lemma can be proved in the same way as Lemma 2.10 of [20] since p ̸∈ S; we omit the proof.
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Lemma 3.14. For i = 1, 2, we have the limits

lim
k→∞

∂uk

∂ri
(p) =

∂u
∂ri

(p), lim
k→∞

∂uk

ri∂θi
(p) =

∂u
ri∂θi

(p)

and

lim
k→∞

∂ D′uk

∂ri
(p) =

∂ D′u
∂ri

(p), lim
k→∞

∂ D′uk

ri∂θi
(p) =

∂ D′u
ri∂θi

(p). (3-61)

Similar formulas also hold for vk at the point q.

We are going to estimate the quantities

J :=

∣∣∣∣∂ D′u
∂ri

(p) −
∂ D′u
∂ri

(q)

∣∣∣∣ and K :=

∣∣∣∣∂ D′u
ri∂θi

(p) −
∂ D′u
ri∂θi

(q)

∣∣∣∣, i = 1, 2.

Note that J, K correspond to |N j D′u(p) − N j D′u(q)| in Theorem 1.2. We will estimate the case for
i = 1 and J , since the other cases are completely the same. By the triangle inequality we have

J ≤

∣∣∣∣∂ D′u
∂ri

(p) −
∂ D′uℓ

∂ri
(p)

∣∣∣∣ + ∣∣∣∣∂ D′uℓ

∂ri
(p) −

∂ D′uℓ

∂ri
(q)

∣∣∣∣
+

∣∣∣∣∂ D′uℓ

∂ri
(q) −

∂ D′vℓ

∂ri
(q)

∣∣∣∣ + ∣∣∣∣∂ D′vℓ

∂ri
(q) −

∂ D′u
∂ri

(q)

∣∣∣∣
=: J1 + J2 + J3 + J4.

Lemma 3.15. There exists a constant C(n) > 0 such that J1, J3 and J4 satisfy

J1 + J4 ≤ C
∞∑

k=ℓ

ω(τ k), J3 ≤ Cω(τ ℓ).

Proof. The estimates for J1 and J4 can be proved similarly to those of I1 and I4 in Section 3B, using
(3-60) and (3-61). J3 can be estimated in a similar way to I3 in Section 3B, using (3-60). We omit the
details. □

To estimate J2, as in Section 3B we define hk := uk−1 − uk for 2 ≤ k ≤ ℓ which is gβ-harmonic on
B̂k(p) and satisfies the L∞-estimate ∥hk∥L∞(B̂k(p))

≤ Cτ 2kω(τ k) by (3-60). We rewrite (3-56) as

∥(D′)3hk∥L∞((B̂k(p)/2)\S)
+

2∑
i=1

∥∥∥∥|zi |
1−βi

∂

∂zi
(D′)2hk

∥∥∥∥
L∞((B̂k(p)/2)\S)

≤ Cτ−kω(τ k). (3-62)

Lemma 3.16. There exists a constant C = C(n, β) > 0 such that, for any z ∈
1
4 B̂k(p)\S, the following

pointwise estimate holds for all k ≤ min(ℓ, kp):∣∣∣∣∂ D′hk

∂r1
(z)

∣∣∣∣ + ∣∣∣∣∂ D′hk

r1∂θ1
(z)

∣∣∣∣ ≤ Cr1(z)1/β1−1τ−k(1/β1−1)ω(τ k).

Proof. We define a function F as

|z1|
2(1−β1)

∂2 D′hk

∂z1∂ z̄1
= −|z2|

2(1−β2)
∂2 D′hk

∂z2∂ z̄2
−

2n∑
j=5

∂2 D′hk

∂s2
j

=: F. (3-63)
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The Laplacian estimates (3-9) and derivatives estimates applied to the gβ-harmonic function D′hk imply
that F satisfies

∥F∥L∞(B̂k(p)/2)
≤ C(n)τ−kω(τ k). (3-64)

For any k ≤ min(ℓ, kp) and x ∈ S1 ∩
1
4 B̂k(p), we have that Bβ(x, τ k) ⊂

1
3 B̂k(p). The intersection of

Bβ(x, τ k) with the complex plane C passing through x and orthogonal to the hyperplane S1 lies in a
metric ball of radius τ k under the standard cone metric ĝβ1 on C. We view (3-63) as defined on the ball
B̂ := BC(x, (τ k)1/β1) ⊂ C. The estimate (2-3) applied to the function D′hk gives rise to

sup
BC(x,(τ k)1/β1/2)\{x}

∣∣∣∣∂ D′hk

∂z1

∣∣∣∣ ≤ C
∥D′hk∥L∞(B̂)

(τ k)1/β1
+ C∥F∥L∞(B̂)

(τ k)2−1/β1 .

Therefore, on BC

(
x, 1

2(τ k)1/β1
)
\{x},∣∣∣∣∂ D′hk

∂r1
(z)

∣∣∣∣ + ∣∣∣∣∂ D′hk

r1∂θ1
(z)

∣∣∣∣ ≤
1
β1

r1/β1−1
1

∣∣∣∣∂ D′hk

∂z1
(z)

∣∣∣∣ ≤ Cr1/β1−1
1 τ k(1−1/β1)ω(τ k). (3-65)

On other hand, since BC

(
x, 1

2(τ k)1/β1
)
= Bĝβ1

(x, 2−β1τ k),

1
4 B̂k(p) ⊂

⋃
x∈S1∩B̂k/4

BC

(
x, 1

2(τ k)1/β1
)
. (3-66)

Equation (3-65) implies the desired estimate on the balls 1
4 B̂k(p). □

Remark 3.17. By similar arguments we also get the following estimates for any k ≤ min(ℓ, kp) and
z ∈

1
4 B̂k(p)\S1: ∣∣∣∣∂(D′)2hk

∂r1
(z)

∣∣∣∣ + ∣∣∣∣∂(D′)2hk

r1∂θ1
(z)

∣∣∣∣ ≤ Cr1(z)1/β1−1τ−k/β1ω(τ k). (3-67)

Lemma 3.18. There exists a constant C =C(n, β)>0 such that, for all k ≤min(kp, ℓ) and z ∈
1
4 B̂k(p)\S,

the following pointwise estimates hold:∣∣∣∣∂2 D′hk

r2
1∂θ2

1
(z)

∣∣∣∣ + ∣∣∣∣ ∂2 D′hk

r1∂r1∂θ1
(z)

∣∣∣∣ ≤ Cr1(z)1/β1−2τ−k(1/β1−1)ω(τ k), (3-68)∣∣∣∣∂2 D′hk

∂r2
1

(z)
∣∣∣∣ ≤ Cr1(z)1/β1−2τ−k(1/β1−1)ω(τ k). (3-69)

Proof. Applying the gradient estimate to the gβ-harmonic function D′hk , we get∥∥∥∥∂ D′hk

r1∂θ1

∥∥∥∥
L∞(B̂k(p)/2)

≤ ∥∇gβ
D′hk∥L∞(B̂k(p)/2)

≤ Cω(τ k).

The function ∂θ1 D′hk is also a continuous gβ-harmonic function, so the derivatives estimates implies, on
1
3 B̂k(p)\S,

|F1| ≤

∣∣∣∣|z2|
2(1−β2)

∂2(∂θ1 D′hk)

∂z2∂ z̄2

∣∣∣∣ + ∣∣∣∣∂2(∂θ1 D′hk)

∂s2
j

∣∣∣∣ ≤ Cτ−kω(τ k),
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where F1 is defined as

|z1|
2(1−β1)

∂2(∂θ1 D′hk)

∂z1∂ z̄1
= −|z2|

2(1−β2)
∂2(∂θ1 D′hk)

∂z2∂ z̄2
−

2n∑
j=5

∂2(∂θ1 D′hk)

∂s2
j

=: F1. (3-70)

We apply similar arguments as in the proof of Lemma 3.16. For any x ∈ S1 ∩
1
4 B̂k(p), we view (3-70) as

defined on the C-ball BC(x, (τ k)1/β1), and by the estimate (2-3) we have, on BC(x, (τ k)1/β1/2)\{x},∣∣∣∣∂(∂θ1 D′hk)

∂z1

∣∣∣∣ ≤ C
∥∂θ1 D′hk∥L∞(B̂C)

(τ k)1/β1
+ C∥F1∥L∞(B̂C)

(τ k)2−1/β1 .

Equivalently, this means that, on BC(x, (τ k)1/β1/2)\{x},∣∣∣∣∂2 D′hk

∂r1∂θ1

∣∣∣∣ + ∣∣∣∣∂2 D′hk

r1∂θ2
1

∣∣∣∣ ≤ r1/β1−1
1

∣∣∣∣∂(∂θ1 D′hk)

∂z1

∣∣∣∣ ≤ Cr1/β1−1
1 τ k(1−1/β1)ω(τ k).

Again by the inclusion (3-66), we get (3-68). The estimate (3-69) follows from Lemma 3.16, (3-68),
(3-64) and the equation (from (3-63))

∂2 D′hk

∂r2
1

=
1
r1

∂ D′hk

∂r1
−

1
β2

1r2
1

∂2 D′hk

∂θ2
1

+ F. □

Lemma 3.19. There exists a constant C(n, β) > 0 such that, for k ≤ min(k2,p, ℓ), the following pointwise
estimates hold for any z ∈

1
4 B̂k(p)\S:∣∣∣∣ ∂

∂r2

(
∂ D′hk

∂r1

)
(z)

∣∣∣∣ + ∣∣∣∣ ∂

r2∂θ2

(
∂ D′hk

∂r1

)
(z)

∣∣∣∣ ≤ C(n, β)r1/β1−1
1 r1/β2−1

2 τ−k(−1+1/β1+1/β2)ω(τ k). (3-71)

Proof. By the Laplacian estimate in (3-9) for the harmonic function D′hk on 1
2 B̂k(p), we have

sup
B̂k(p)/2.2

(|11 D′hk | + |12 D′hk |) ≤ C(n)τ−2k oscB̂k(p)/2(D′hk) ≤ C(n)τ−kω(τ k). (3-72)

Since 11(D′hk) is also gβ-harmonic, the Laplacian estimates (3-9) imply

sup
B̂k(p)/2.4

(|1111 D′hk | + |1211 D′hk |) ≤ C(n)τ−2k oscB̂k(p)/2.2 11 D′hk ≤ Cτ−3kω(τ k). (3-73)

Now from the equation 1β(11 D′hk) = 0, we get

|z1|
2(1−β1)

∂2

∂z1∂ z̄1
11 D′hk = −1211 D′hk −

∑
j

∂2

∂s2
j
11 D′hk =: F2. (3-74)

From (3-73) and the Laplacian estimates (3-9), we see that supB̂k(p)/2.4 |F2| ≤ Cτ−3kω(τ k). Using similar
arguments, by considering x ∈

1
3 B̂k(p)∩S1, we obtain from (3-74) that, on B̂ := BC(x, (τ k)1/β1/2)\{x},∣∣∣∣ ∂

∂z1
11 D′hk

∣∣∣∣ ≤ C
∥11 D′hk∥L∞(B̂)

(τ k)1/β1
+ C∥F2∥L∞(B̂)

(τ k)2−1/β1 ≤ Cτ−k(1+1/β1)ω(τ k).
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This implies that, for any z ∈
1
3 B̂k(p)\S,∣∣∣∣ ∂

∂r1
11 D′hk(z)

∣∣∣∣ + ∣∣∣∣ ∂

r1∂θ1
11 D′hk(z)

∣∣∣∣ ≤ Cr1/β1−1
1 τ−k(1+1/β1)ω(τ k). (3-75)

Now taking ∂/∂r1 on both sides of 1β D′hk = 0, we get

|z2|
2(1−β2)

∂2

∂z2∂ z̄2

(
∂ D′hk

∂r1

)
= −

∂

∂r1
(11 D′hk) −

∑
j

∂2

∂s2
j

(
∂ D′hk

∂r1

)
=: F3. (3-76)

From (3-75), for any z ∈
1
3 B̂k\S, we have |F3|(z) ≤ Cr1/β1−1

1 τ−k(1+1/β1)ω(τ k). By a similar argument,
for any y ∈

1
3.2 B̂k(p)∩S2, we apply estimate (2-3) to ∂ D′hk/∂r1 and get, on A1 := BC

(
y, 1

2(τ k)1/β2
)
\{y} —

the punctured ball in the complex plane C of (Euclidean) radius 1
2(τ k)1/β2 and orthogonal to S2 passing

through y — that ∣∣∣∣ ∂

∂z2

(
∂ D′hk

∂r1

)
(z)

∣∣∣∣ ≤ C

∥∥ ∂ D′hk
∂r1

∥∥
L∞(A1)

(τ k)1/β2
+ C∥F3∥L∞(A1)(τ

k)2−1/β2

≤ Cr1/β1−1
1 τ−k(1/β1+1/β2−1)ω(τ k).

(3-77)

Varying y ∈
1

3.2 B̂k(p) ∩S2 we get, for any z ∈
1
4 B̂k\S, that the following pointwise estimate holds:∣∣∣∣ ∂

∂r2

(
∂ D′hk

∂r1

)
(z)

∣∣∣∣ + ∣∣∣∣ ∂

r2∂θ2

(
∂ D′hk

∂r1

)
(z)

∣∣∣∣ ≤ Cr1/β1−1
1 r1/β2−1

2 τ−k(1/β1+1/β2−1)ω(τ k). □

Lemma 3.20. Let d = dβ(p, q). There exists a constant C(n, β) such that, for all k ≤ ℓ,∣∣∣∣∂ D′hk

∂r1
(p) −

∂ D′hk

∂r1
(q)

∣∣∣∣ ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k), (3-78)∣∣∣∣∂ D′hk

r1∂θ1
(p) −

∂ D′hk

r1∂θ1
(q)

∣∣∣∣ ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k). (3-79)

Proof. We will consider the different cases rp = min(rp, rq) ≤ 2d and rp = min(rp, rq) > 2d.

Case 1: rp ≤ 2d. In this case, it is clear by the choice of ℓ that rp ≈ τ kp ≤ 2d ≤ τ ℓ+2, so kp ≥ ℓ + 2.
From our assumption when solving (3-45), rp = dβ(p,S1), i.e., r1(p) = rp ≤ 2d. By the triangle

inequality we have r1(q) ≤ 3d . We also remark that, for k ≤ ℓ, we have τ k
≥ τ ℓ > 8d . In particular, the

geodesics considered below all lie inside the balls 1
4 B̂k(p), and the estimates in Lemmas 3.16–3.19 hold

for points on these geodesics.
Let the coordinates of the points p and q be given by

p = (r1(p), θ1(p); r2(p), θ2(p); s(p)) and q = (r1(q), θ1(q); r2(q), θ2(q); s(q)).

Let γ : [0, d] → Bβ(0, q)\S be the unique gβ-geodesic connecting p and q. We know the curve γ is
disjoint from S, and we write

γ (t) = (r1(t), θ1(t); r2(t), θ2(t); s(t))

for the coordinates of γ (t) for t ∈ [0, d]. By definition we have, for all t ∈ [0, d],

|γ ′(t)|2gβ
= (r ′

1(t))
2
+ β2

1r1(t)2(θ ′

1(t))
2
+ (r ′

2(t))
2
+ β2

2r2(t)2(θ ′

2(t))
2
+ |s ′(t)|2 = 1.
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So |s(p) − s(q)| ≤ d and |ri (p) − ri (q)| ≤ d for i = 1, 2. We define

q ′
:= (r1(q), θ1(q); r2(p), θ2(p); s(p)) and p′

:= (r1(p), θ1(q); r2(p), θ2(p); s(p)), (3-80)

the points with coordinates related to p and q . Let γ1 be the gβ-geodesic connecting q and q ′, γ2 be the
gβ-geodesic joining q ′ to p′, and γ3 be the gβ-geodesic joining p′ to p.

By the triangle inequality, we have∣∣∣∣∂ D′hk

∂r1
(p) −

∂ D′hk

∂r1
(q)

∣∣∣∣
≤

∣∣∣∣∂ D′hk

∂r1
(p) −

∂ D′hk

∂r1
(p′)

∣∣∣∣ + ∣∣∣∣∂ D′hk

∂r1
(p′) −

∂ D′hk

∂r1
(q ′)

∣∣∣∣ + ∣∣∣∣∂ D′hk

∂r1
(q ′) −

∂ D′hk

∂r1
(q)

∣∣∣∣
=: J ′

1 + J ′

2 + J ′

3.

Integrating along γ3, on which the points have fixed r1-coordinate r1(p), we get (by (3-68))

J ′

1 =

∣∣∣∣∫
γ3

∂

∂θ1

(
∂ D′hk

∂r1

)
dθ1

∣∣∣∣ ≤ C(n, β)r1(p)1/β1−1τ−k(1/β1−1)ω(τ k). (3-81)

Integrating along γ2, we get (by (3-69))

J ′

2 =

∣∣∣∣∫
γ2

∂

∂r1

(
∂ D′hk

∂r1

)
dr1

∣∣∣∣ ≤ C(n, β)τ−k(1/β1−1)ω(τ k)

∣∣∣∣∫ r1(q)

r1(p)

t1/β1−2 dt
∣∣∣∣

= C(n, β)τ−k(1/β1−1)ω(τ k)|r1(p)1/β1−1
− r1(q)1/β1−1

|

≤ C(n, β)τ−k(1/β1−1)ω(τ k)|r1(p) − r1(q)|1/β1−1

≤ C(n, β)τ−k(1/β1−1)ω(τ k)d1/β1−1. (3-82)

To deal with J ′

3, we need to consider different choices of k ≤ ℓ.

Case 1a: k2,p +1 ≤ k ≤ ℓ. In this case, the balls B̂k(p) are centered at p1 ∈ S1 (recall p1 is the projection
of p to S1; hence p and p1 have the same (r2, θ2; s)-coordinates). We have τ−k

≤ 8−1d−1 by the choice
of ℓ. The balls B̂k(p) are disjoint from S2, so we can introduce the smooth coordinates w2 = zβ2

2 , and
under the coordinates (r1, θ1; w2, z3, . . . , zn), the metric gβ becomes the smooth cone metric with conical
singularity only along S1 with angle 2πβ1. Therefore we can derive the following estimate as in (3-62):

sup
(B̂k(p)/2)\S1

∣∣∣∣∂(D′)2hk

∂r1

∣∣∣∣ + ∣∣∣∣ ∂

∂r1

(
∂ D′hk

∂w2

)∣∣∣∣ ≤ Cτ−kω(τ k). (3-83)

Since q and q ′ have the same (r1, θ1)-coordinates and gβ is a product metric, γ1 is in fact a straight
line segment (under the coordinates (w2, z3, . . . , zn)) in the hyperplane with fixed (r1, θ1)-coordinates.
Integrating over γ1, we get

J ′

3 ≤

∫
γ1

∣∣∣∣ ∂

∂w2

(
∂ D′hk

∂r1

)∣∣∣∣ + ∑
j

∣∣∣∣ ∂

∂s j

(
∂ D′hk

∂r1

)∣∣∣∣ ≤ Cτ−kω(τ k)dβ(q, q ′) ≤ Cτ−kω(τ k)d

≤ C(n, β)τ−k(1/β1−1)ω(τ k)d1/β1−1.
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Case 1b: k ≤ k2,p. In this case, the balls B̂k(p) are centered at p1,2 ∈ S1 ∩ S2 and τ k
≥ r2(p). By the

triangle inequality, r2(q) ≤ d + r2(p) ≤
9
8τ k . We choose the points

q̃ = (r1(q), θ1(q); r2(p), θ2(p); s(q)) and q̂ = (r1(q), θ1(q); r2(q), θ2(p); s(q)). (3-84)

Let γ̃1 be the gβ-geodesic joining q ′ to q̃ , γ̃ the gβ-geodesic joining q̃ to q̂ , and γ̂ the gβ-geodesic joining
q̂ to q . The curves γ̃1, γ̃ and γ̂ all lie in the hyperplane with constant (r1, θ1)-coordinates (r1(q), θ1(q)).
Then by the triangle inequality we have

J ′

3 ≤

∣∣∣∣∂ D′hk

∂r1
(q ′)−

∂ D′hk

∂r1
(q̃)

∣∣∣∣+ ∣∣∣∣∂ D′hk

∂r1
(q̃)−

∂ D′hk

∂r1
(q̂)

∣∣∣∣+ ∣∣∣∣∂ D′hk

∂r1
(q̂)−

∂ D′hk

∂r1
(q)

∣∣∣∣ =: J ′′

1 + J ′′

2 + J ′′

3 .

We will use frequently the inequalities r1(q) ≤ 3d and max(r2(q), r2(p)) ≤ 2τ k in the estimates below.
Integrating along γ̂ we get (by (3-71))

J ′′

3 ≤

∣∣∣∣∫
γ̂

∂

∂θ2

(
∂ D′hk

∂r1

)
dθ2

∣∣∣∣ ≤ Cr1(q)1/β1−1r2(q)1/β2τ−k(−1+1/β1+1/β2)ω(τ k)

≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Integrating along γ̃ we get (again by (3-71))

J ′′

2 ≤

∣∣∣∣∫
γ̃

∂

∂r2

(
∂ D′hk

∂r1

)
dr2

∣∣∣∣ ≤ Cr1(q)1/β1−1τ−k(−1+1/β1+1/β2)ω(τ k)

∣∣∣∣∫ r2(p)

r2(q)

t1/β2−1 dt
∣∣∣∣

≤ Cr1(q)1/β1−1τ−k(−1+1/β1+1/β2)ω(τ k) max(r2(q), r2(p))1/β2−1d

≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Integrating along γ̃1 we get (by (3-67))

J ′′

1 ≤

∣∣∣∣∫
γ̃1

∂

∂s j

(
∂ D′hk

∂r1

)
dt

∣∣∣∣ ≤ Cr1(q)1/β1−1τ−k/β1ω(τ k)d ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Combining the three inequalities above, we get, in the case k ≤ k2,p,

J ′

3 ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Combining the estimates on J ′

1, J ′

2 and J ′

3, we finish the proof of (3-78) in the case rp ≤ 2d.

Case 2a: rp > 2d and ℓ ≤ kp. In this case τ kp ≈ rp > 2d ≥ τ ℓ+3. From the triangle inequality we get
dβ(γ (t),S) ≥ d. In particular, the r1 and r2 coordinates of γ (t) are both bigger than d. In this case
k ≤ ℓ ≤ kp, and Lemmas 3.16–3.19 hold for the points in γ . So r1(γ (t)) ≤ r1(p)+d ≤ 2τ k . We calculate
the gradient of ∂ D′hk/∂r1 along γ :∣∣∣∣∇gβ

∂ D′hk

∂r1

∣∣∣∣2

=

∣∣∣∣ ∂

∂r1

(
∂ D′hk

∂r1

)∣∣∣∣2

+

∣∣∣∣ ∂

β1r1∂θ1

(
∂ D′hk

∂r1

)∣∣∣∣2

+

∣∣∣∣ ∂

∂r2

(
∂ D′hk

∂r1

)∣∣∣∣2

+

∣∣∣∣ ∂

β2r2∂θ2

(
∂ D′hk

∂r1

)∣∣∣∣2

+

∑
j

∣∣∣∣ ∂

∂s j

(
∂ D′hk

∂r1

)∣∣∣∣2

.
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(1) When k2,p + 1 ≤ k ≤ ℓ we have by (3-83) that

sup
(B̂k/2)\S1

∣∣∣∣ ∂

∂r2

(
∂ D′hk

∂r1

)∣∣∣∣ + ∣∣∣∣ ∂

r2∂θ2

(
∂ D′hk

∂r1

)∣∣∣∣ ≤ Cτ−kω(τ k). (3-85)

Thus by Lemma 3.18, (3-67) and (3-85), along γ we have∣∣∣∣∇gβ

∂ D′hk

∂r1

∣∣∣∣ ≤ Cω(τ k)(d1/β1−2τ−k(1/β1−1)
+ τ−k)

Integrating along γ we get∣∣∣∣∂ D′hk

∂r1
(p) −

∂ D′hk

∂r1
(q)

∣∣∣∣ ≤

∫
γ

∣∣∣∣∇gβ

∂ D′hk

∂r1

∣∣∣∣ ≤ Cω(τ k)(d1/β1−1τ−k(1/β1−1)
+ dτ−k)

≤ Cω(τ k)d1/β1−1τ−k(1/β1−1).

(2) When k ≤ k2,p, we have r2(γ (t)) ≤ r2(p)+d ≤ τ k
+d ≤

9
8τ k and similar estimates hold for r1(γ (t))

too. Then by Lemma 3.18, Lemma 3.19 and (3-67) along γ the following estimate holds∣∣∣∣∇gβ

∂ D′hk

∂r1

∣∣∣∣(γ (t)) ≤ Cω(τ k)(d1/β1−2τ−k(1/β1−1)
+ τ−k)

Integrating along γ we get∣∣∣∣∂ D′hk

∂r1
(p) −

∂ D′hk

∂r1
(q)

∣∣∣∣ ≤

∫
γ

∣∣∣∣∇gβ

∂ D′hk

∂r1

∣∣∣∣ ≤ Cω(τ k)(d1/β1−1τ−k(1/β1−1)
+ dτ−k)

≤ Cω(τ k)d1/β1−1τ−k(1/β1−1).

This finishes the proof of the lemma in this case.

Case 2b: rp > 2d but ℓ ≥ kp + 1. When k ≤ kp, the estimate (3-78) follows in the same way as the case
above. Hence it suffices to consider the case when kp +1 ≤ k ≤ ℓ. In this case the balls B̂k(p)= Bβ(p, τ k)

and it can be seen by triangle inequality that the geodesic γ ⊂
1
3 B̂k(p)\S. Since the metric balls B̂k(p)

are disjoint with S we can use the smooth coordinates w1 = zβ1
1 and w2 = zβ2

2 as before, and everything
becomes smooth under these coordinates in B̂k(p).

The estimate (3-79) can be shown by the same argument, so we skip the details. □

Iteratively applying (3-78) for k ≤ ℓ, we get

J2 =

∣∣∣∣∂ D′uℓ

∂r1
(p) −

∂ D′uℓ

∂r1
(q)

∣∣∣∣ ≤

∣∣∣∣∂ D′u2

∂r1
(p) −

∂ D′u2

∂r1
(q)

∣∣∣∣ + Cd1/β1−1
ℓ∑

k=3

τ−k(1/β1−1)ω(τ k)

≤ Cd1/β1−1
(
∥u∥C0 +

ℓ∑
k=2

τ−k(1/β1−1)ω(τ k)

)
,

where the inequality ∣∣∣∣∂ D′u2

∂r1
(p) −

∂ D′u2

∂r1
(q)

∣∣∣∣ ≤ Cd1/β1−1
∥u∥C0

can be proved by the same argument as in proving (3-78).
Combining the estimates for J1, J2, J3, J4 we finish the proof of (1-4).
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We remark that in solving (3-45) we assume r1(p) ≤ r2(p), so we need also to deal with the following
case, whose proof is more or less parallel to that of Lemma 3.20, so we just point out the differences and
sketch the proof.

Lemma 3.21. Let d = dβ(p, q) > 0. There exists a constant C(n, β) > 0 such that, for all k ≤ ℓ,∣∣∣∣∂ D′hk

∂r2
(p) −

∂ D′hk

∂r2
(q)

∣∣∣∣ ≤ Cd1/β2−1τ−k(1/β2−1)ω(τ k), (3-86)∣∣∣∣∂ D′hk

r2∂θ2
(p) −

∂ D′hk

r2∂θ2
(q)

∣∣∣∣ ≤ Cd1/β2−1τ−k(1/β2−1)ω(τ k). (3-87)

Proof. We consider the cases when k ≤ k1,p and k1,p + 1 ≤ k ≤ ℓ.

Case 1: k1,p +1 ≤ k ≤ ℓ. The balls B̂k(p) are disjoint with S2, so we can introduce the complex coordinate
w2 = zβ2

2 on these balls as before. Let t1 and t2 be the real and imaginary parts of w2, respectively. The
derivatives estimates imply that

∥∂w2 D′hk∥L∞(B̂k(p)/2)
≤ Cω(τ k) and ∥∂2

w2
D′hk∥L∞(B̂k(p)/2)

≤ Cτ−kω(τ k),

where ∂2
w2

denotes the full second-order derivatives in the {t1, t2}-directions. Also∥∥∥∥ ∂

∂r1

(
∂ D′hk

∂w2

)∥∥∥∥
L∞(B̂k(p)/2)

+

∥∥∥∥ ∂

r1∂θ1

(
∂ D′hk

∂w2

)∥∥∥∥
L∞(B̂k(p)/2)

≤ Cτ−kω(τ k).

Since
∂

∂r2
=

w2

β2r2

∂

∂w2
+

w̄2

β2r2

∂

∂w̄2
, (3-88)

we have
∂

∂w2

(
∂ D′hk

∂r2

)
=

1
r2

∂ D′hk

∂w2
−

|w2|
2

2r3
2

∂ D′hk

∂w2
−

w̄2 · w̄2

2r3
2

∂ D′hk

∂w̄2
+

w2

r2
∂2
w2

D′hk,

and we have, on 1
2 B̂k(p), ∣∣∣∣ ∂

∂w2

(
∂ D′hk

∂r2

)∣∣∣∣ ≤
C
r2

ω(τ k) + Cτ−kω(τ k)

and ∥∥∥∥ ∂

∂r1

(
∂ D′hk

∂r2

)∥∥∥∥
L∞(B̂k(p)/2)

+

∥∥∥∥ ∂

r1∂θ1

(
∂ D′hk

∂r2

)∥∥∥∥
L∞(B̂k(p)/2)

≤ Cτ−kω(τ k).

Therefore,∣∣∣∣∇gβ

∂ D′hk

∂r2

∣∣∣∣2

=

∣∣∣∣∂2 D′hk

∂r1∂r2

∣∣∣∣2

+

∣∣∣∣ ∂2

r1∂θ1∂r2

∣∣∣∣2

+

∣∣∣∣∂2 D′hk

∂w2∂r2

∣∣∣∣2

+

∑
j

∣∣∣∣∂2 D′hk

∂s j∂r2

∣∣∣∣2

≤ C(τ−kω(τ k))2
+C

1
r2

2
ω(τ k)2.

In this case we know that r1(p) ≈ τ kp ≥ 2τ k
≥ τ ℓ > 8d, so along γ

r2(γ (t)) ≥ r2(p) − d ≥ r1(p) − d ≥
7
4τ k .
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Integrating along γ we get∣∣∣∣∂ D′hk

∂r2
(p) −

∂ D′hk

∂r2
(q)

∣∣∣∣ ≤

∫
γ

∣∣∣∣∇gβ

∂ D′hk

∂r2

∣∣∣∣ ≤ Cτ−kω(τ k)d ≤ Cτ−k(1/β2−1)ω(τ k)d1/β2−1.

Case 2: k ≤ k1,p. This case is the same as in the proof of (3-78), replacing r1 by r2 and β1 by β2. We
omit the details.

We can prove (3-87) similarly. □

3D. Mixed normal directions. In this section, we deal with Hölder continuity of the four mixed derivatives

∂2u
∂r1∂r2

,
∂2u

r1∂θ1∂r2
,

∂2u
r2∂r1∂θ2

,
∂2u

r1r2∂θ1∂θ2
, (3-89)

which by our previous notation correspond to N1 N2u. Since the proof for each of them is more or less
the same, we will only prove Hölder continuity for ∂2u/∂r1∂r2. The following holds at p and q by the
same reasoning of Lemma 3.11:

lim
k→∞

∂2uk

∂r1∂r2
(p) =

∂2u
∂r1∂r2

(p), lim
k→∞

∂2vk

∂r1∂r2
(q) =

∂2u
∂r1∂r2

(q).

By the triangle inequality,∣∣∣∣ ∂2u
∂r1∂r2

(p) −
∂2u

∂r1∂r2
(q)

∣∣∣∣ ≤

∣∣∣∣ ∂2u
∂r1∂r2

(p) −
∂2uℓ

∂r1∂r2
(p)

∣∣∣∣ + ∣∣∣∣ ∂2uℓ

∂r1∂r2
(p) −

∂2uℓ

∂r1∂r2
(q)

∣∣∣∣
+

∣∣∣∣ ∂2uℓ

∂r1∂r2
(q) −

∂2vℓ

∂r1∂r2
(q)

∣∣∣∣ + ∣∣∣∣ ∂2vℓ

∂r1∂r2
(q) −

∂2u
∂r1∂r2

(q)

∣∣∣∣
=: L1 + L2 + L3 + L4.

Lemma 3.22. We have the estimate

L1 + L4 ≤

∞∑
k=ℓ

ω(τ k).

Proof. We consider the cases when k ≥ kp + 1 and ℓ ≤ k ≤ kp.

Case 1: k ≥ kp + 1. In this case the balls B̂k(p) are disjoint from S and we can introduce the smooth
coordinates w1 = zβ1

1 and w2 = zβ2
2 . Under the coordinates {w1, w2, z3, . . . , zn}, the cone metric gβ

becomes the standard Euclidean metric gCn and the metric balls B̂k(p) become the standard Euclidean
balls with the same radius and center p. Since the gβ-harmonic functions uk − uk+1 satisfy (3-49), by
standard gradient estimates for Euclidean harmonic functions, we get

sup
B̂k(p)/2.1

∣∣∣∣Dw1 Dw2(uk − uk−1)

∣∣∣∣ ≤ Cω(τ k),

where we use Dwi to denote either ∂/∂wi or ∂/∂w̄i for simplicity. From (3-88) and a similar formula
for ∂/∂r1, we get

sup
B̂k(p)/2.1

∣∣∣∣ ∂2

∂r1∂r2
(uk − uk−1)

∣∣∣∣ ≤ Cω(τ k). (3-90)
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Case 2a: ℓ ≥ k2,p + 1 and ℓ ≤ kp = k1,p. For all ℓ ≤ k, the balls B̂k(p) are disjoint from S2 and centered
at p1. We can still use w2 = zβ2

2 as the smooth coordinate. The cone metric gβ becomes smooth in the
w2-variable, and we can apply the standard gradient estimate to the gβ-harmonic function Dw2(uk −uk−1)

to get
sup

B̂k(p)/2.2

∣∣∣∣ ∂

∂r1
Dw2(uk − uk−1)

∣∣∣∣ + ∣∣∣∣ ∂

r1∂θ1
Dw2(uk − uk−1)

∣∣∣∣ ≤ Cω(τ k).

Again by (3-88), we get

sup
B̂k(p)/2.2

∣∣∣∣ ∂2

∂r1∂r2
(uk − uk−1)

∣∣∣∣ + ∣∣∣∣ ∂2

r1∂θ1∂r2
(uk − uk−1)

∣∣∣∣ ≤ Cω(τ k). (3-91)

Case 2b: ℓ ≤ k2,p and k ≥ k2,p + 1. This case can be dealt with similarly as above.

Case 2c: ℓ ≤ k ≤ k2,p. In this case r2(p) ≈ τ k2,p ≤ τ k
≤ τ ℓ

≈ 8d. Now the balls B̂k(p) are centered at
p1,2 ∈ S1 ∩S2. We can proceed as in the proof of Lemma 3.19, with the harmonic functions uk − uk−1

replacing the D′hk in that lemma to prove that, for any z ∈
1
3 B̂k(p)\S,∣∣∣∣ ∂2

∂r1∂r2
(uk − uk−1)

∣∣∣∣(z) +

∣∣∣∣ ∂2

r2∂θ2∂r1
(uk − uk−1)

∣∣∣∣(z)
≤ C(n, β)r1(z)1/β1−1r2(z)1/β2−1τ−k(−2+1/β1+1/β2)ω(τ k).

In particular, the estimate in each case holds at p, and from r1(p) ≤ r2(p) ≤ τ k we obtain∣∣∣∣ ∂2

∂r1∂r2
(uk − uk−1)

∣∣∣∣(p) +

∣∣∣∣ ∂2

r2∂θ2∂r1
(uk − uk−1)

∣∣∣∣(p) ≤ Cω(τ k). (3-92)

Combining each case above, by (3-90)–(3-92), we get, for all k ≥ ℓ,∣∣∣∣ ∂2u
∂r1∂r2

(uk − uk−1)

∣∣∣∣(p) ≤ C(n, β)ω(τ k).

Therefore, by the triangle inequality,

L1 ≤

∞∑
k=ℓ+1

∣∣∣∣ ∂2u
∂r1∂r2

(uk − uk−1)

∣∣∣∣(p) ≤ C(n, β)

∞∑
k=ℓ+1

ω(τ k).

The estimate for L4 can be dealt with similarly by studying the derivatives of vk at q . □

Lemma 3.23. L3 ≤ C(n, β)ω(τ ℓ).

Proof. As in the proof of Lemma 3.22, we consider the cases ℓ ≥ k1,p +1, k1,p ≥ ℓ ≥ k2,p and ℓ ≤ k2,p −1.

Case 1: ℓ ≥ k1,p + 1. Here the ball B̂ℓ(p) is equal to Bβ(p, τ ℓ), the function U defined in (3-55) is
gβ-harmonic in 1

2 B̂ℓ(p), and supB̂ℓ(p)/2 |U | ≤ Cω2ℓω(τ ℓ). Since the ball 1
2 B̂ℓ(p) is disjoint from S, we

have that w1 and w2 are well defined on 1
2 B̂ℓ(p), and thus we have the derivatives estimates

sup
B̂ℓ(p)/3

∣∣∣∣ ∂2U
∂r1∂r2

∣∣∣∣ ≤ sup
B̂ℓ(p)/3

∣∣∣∣Dw1 Dw2U
∣∣∣∣ ≤ C(n, β)ω(τ ℓ).
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In particular, at q ∈
1
3 B̂ℓ(p),

L3 =

∣∣∣∣ ∂2uℓ

∂r1∂r2
(q) −

∂2vℓ

∂r1∂r2
(q)

∣∣∣∣ =

∣∣∣∣ ∂2U
∂r1∂r2

(q)

∣∣∣∣ ≤ C(n, β)ω(τ ℓ).

Case 2: k1,p ≥ ℓ ≥ k2,p. Here the ball B̂ℓ(p) is equal to Bβ(p1, 2τ ℓ), the function U defined in (3-55) is
gβ-harmonic and well defined in a ball

Bq := Bβ

(
q, 1

10τ ℓ
)
⊂

1
2.2 B̂ℓ(p),

and supB̂ℓ(p)/2 |U | ≤ Cω2ℓω(τ ℓ). Since 1
2 B̂ℓ(p) is disjoint from S2, we have that w2 is well defined on

1
2.2 B̂ℓ(p), and thus we have the derivatives estimates

sup
Bq/2

∣∣∣∣ ∂2U
∂r1∂r2

∣∣∣∣ ≤ sup
Bq/2

∣∣∣∣ ∂

∂r1
Dw2U

∣∣∣∣ ≤ C(n, β)ω(τ ℓ).

In particular, at q ∈
1
2 Bq , we have

L3 =

∣∣∣∣ ∂2uℓ

∂r1∂r2
(q) −

∂2vℓ

∂r1∂r2
(q)

∣∣∣∣ =

∣∣∣∣ ∂2U
∂r1∂r2

(q)

∣∣∣∣ ≤ C(n, β)ω(τ ℓ).

Case 3: ℓ ≤ k2,p − 1. Here r2(p) ≈ τ k2,p ≤ τ ℓ+1 < 8d, so

r2(q) ≤ r2(p) + d ≤
5
8τ ℓ and r1(q) ≤ d + r1(p) ≤ d + r2(p) ≤

5
8τ ℓ.

Therefore the ball B̃ℓ(q) is centered at either q1, q2 or q1,2 ∈ S1 ∩S2, with radius 2τ ℓ. It follows that the
function U defined in (3-55) is well defined on the ball 1

1.8 B̂ℓ(p).
By the same strategy as in the proof of Lemma 3.19, with the harmonic function D′hk in that lemma

replaced by U on the metric ball 1
1.8 B̂ℓ(p), we can prove that, for any z ∈

1
2 B̂ℓ(p)\S,∣∣∣∣ ∂2U

∂r1∂r2
(z)

∣∣∣∣ ≤ C(n, β)r1/β1−1
1 r1/β2−1

2 τ−ℓ(−2+1/β1+1/β2)ω(τ ℓ).

Applying this inequality at q , we get

L3 =

∣∣∣∣∂2(uℓ − vℓ)

∂r1∂r2
(q)

∣∣∣∣ ≤ C(n, β)r1(q)1/β1−1r2(q)1/β2−1τ−ℓ(−2+1/β1+1/β2)ω(τ ℓ) ≤ C(n, β)ω(τ ℓ).

In sum, in all cases L3 ≤ C(n, β)ω(τ ℓ). □

Lemma 3.24. There exists a constant C = C(n, β) > 0 such that, for all k ≤ ℓ and z ∈
1
3 B̂k(p)\S,∣∣∣∣ ∂

∂θ1

(
∂2hk

∂r1∂r2

)
(z)

∣∣∣∣ + ∣∣∣∣( ∂3hk

r1∂θ2
1 ∂r2

)∣∣∣∣
≤ C ·

{
r1/β1−1

1 τ−k(−1+1/β1)ω(τ k) if k ∈ [k2,p + 1, min(ℓ, kp)],

r1/β1−1
1 r1/β2−1

2 τ−k(−2+1/β1+1/β2)ω(τ k) if k ≤ k2,p.
(3-93)
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Proof. The proof is parallel to that of Lemma 3.19. The function ∂hk/∂θ1 is gβ-harmonic on B̂k(p), and
by the Laplacian estimates (3-9), we have

sup
B̂k(p)/1.2

(∣∣∣∣11
∂hk

∂θ1

∣∣∣∣ + ∣∣∣∣12
∂hk

∂θ1

∣∣∣∣) ≤ C(n, β)ω(τ k).

The function 12(∂hk/∂θ1) is also gβ-harmonic, so the Laplacian estimates (3-9) imply

sup
B̂k(p)/1.4

(∣∣∣∣1112
∂hk

∂θ1

∣∣∣∣ + ∣∣∣∣1212
∂hk

∂θ1

∣∣∣∣ + ∣∣∣∣(D′)212
∂hk

∂θ1

∣∣∣∣) ≤ Cτ−2k
(

oscB̂k(p)/1.2 12
∂hk

∂θ1

)
≤ Cτ−2kω(τ k).

We consider

|z2|
2(1−β2)

∂2

∂z2∂ z̄2

(
12

∂hk

∂θ1

)
= −1112

∂hk

∂θ1
−

∑
j

∂2

∂s2
j
12

∂hk

∂θ1
=: F5, (3-94)

where the function F5 satisfies supB̂k(p)/1.4 |F5| ≤ Cτ−2kω(τ k).

Case 1: k2,p +1 ≤ k ≤ min(ℓ, kp). Here we introduce the smooth coordinate w2 = zβ2
2 in the ball 1

1.5 B̂k(p)

as before. Since this ball is disjoint from S2, under the coordinates (r1, θ1; w2, z3, . . . , zn) we can use
the usual standard gradient estimate to the gβ-harmonic function 12(∂hk/∂θ1) to obtain

sup
B̂k(p)/2

∣∣∣∣ ∂

∂r2

(
12

∂hk

∂θ1

)∣∣∣∣ + ∣∣∣∣ ∂

r2∂θ2

(
12

∂hk

∂θ1

)∣∣∣∣ ≤ Cτ−kω(τ k). (3-95)

Case 2: k ≤ k2,p. Here the ball B̂k(p) is centered at p1,2. We apply the usual estimate (2-3) to the function
12(∂hk/∂θ1), the solution to (3-94), on any C-ball A2 := BC(y, (τ k)1/β2) for any y ∈ S2 ∩

1
1.6 B̂k(p),

where A2 denotes the Euclidean ball in the complex plane orthogonal to S2 and passing through y. Then,
for any z ∈ BC(y, (τ k)1/β2/2)\{y},∣∣∣∣ ∂

∂z2

(
12

∂hk

∂θ1

)
(z)

∣∣∣∣ ≤ C

∥∥12
∂hk
∂θ1

∥∥
L∞(A2)

τ k/β2
+ C∥F5∥L∞(A2)(τ

k)2−1/β2 ≤ Cτ−k/β2ω(τ k).

This implies that, on 1
2 B̂k(p)\S,∣∣∣∣ ∂

∂r2

(
12

∂hk

∂θ1

)∣∣∣∣ + ∣∣∣∣ ∂

r2∂θ2

(
12

∂hk

∂θ1

)∣∣∣∣ ≤ Cr1/β2−1
2 τ−k/β2ω(τ k). (3-96)

Taking ∂/∂r2 on both sides of 1β(∂hk/∂θ1) = 0, we get

|z1|
2(1−β1)

∂2

∂z1∂ z̄1

(
∂2hk

∂r2∂θ1

)
= −

∂

∂r2

(
12

∂hk

∂θ1

)
−

∑
j

∂2

∂s2
j

=: F6. (3-97)

It is not hard to see from (3-95), (3-96) and standard derivatives estimates that, on 1
1.8 B̂k(p)\S,

• in Case 1 when k2,p + 1 ≤ k ≤ min(ℓ, kp), we have |F6| ≤ Cτ−kω(τ k),

• in Case 2 when k ≤ k2,p, we have |F6| ≤ Cr1/β2−1
2 τ−k/β2ω(τ k).
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Then by applying estimate (2-3) to the function ∂2hk/∂r2∂θ1 on any C-ball A3 := BC(x, (τ k)1/β1) for
any x ∈

1
1.8 B̂k(p) ∩S1, we get that, on BC(x, (τ k)1/β1/2)\{x},∣∣∣∣ ∂

∂r1

(
∂2hk

∂r2∂θ1

)∣∣∣∣ + ∣∣∣∣ ∂

r1∂θ1

(
∂2hk

∂r2∂θ1

)∣∣∣∣
≤ Cr1/β1−1

1

∥∥ ∂2hk
∂r2∂θ1

∥∥
L∞(A3)

τ k/β1
+ Cr1/β1−1

1 ∥F6∥L∞(A3)τ
k(2−1/β1)

≤ C ·

{
r1/β1−1

1 τ−k(−1+1/β1)ω(τ k) if k ∈ [k2,p + 1, min(ℓ, kp)],

r1/β1−1
1 r1/β2−1

2 τ−k(−2+1/β1+1/β2)ω(τ k) if k ≤ k2,p.

Therefore this estimate holds on 1
3 B̂k(p)\S. □

Lemma 3.25. For any k ≤ ℓ and any point z ∈
1
3 B̂k(p)\S,∣∣∣∣ ∂2hk

∂r1∂r2
(z)

∣∣∣∣ ≤ C ·

{
r1/β1−1

1 τ−k(−1+1/β1)ω(τ k) if k ∈ [k2,p + 1, min(ℓ, kp)],

r1/β1−1
1 r1/β2−1

2 τ−k(−2+1/β1+1/β2)ω(τ k) if k ≤ k2,p.∣∣∣∣∂2 D′hk

∂r1∂r2
(z)

∣∣∣∣ ≤ C ·

{
r1/β1−1

1 τ−k/β1ω(τ k) if k ∈ [k2,p + 1, min(ℓ, kp)],

r1/β1−1
1 r1/β2−1

2 τ−k(−1+1/β1+1/β2)ω(τ k) if k ≤ k2,p.

(3-98)

Proof. This follows from almost the same argument as in the proof of Lemma 3.24, by studying the
harmonic functions hk and D′hk instead of ∂hk/∂θ1. □

Lemma 3.26. For any k ≤ ℓ and any z ∈
1
3 B̂k(p)\S,∣∣∣∣ ∂

∂r1

(
∂2hk

∂r1∂r2

)∣∣∣∣(z)
≤Cω(τ k)·

{
τ−k

+ r1(z)1/β1−2τ−k(1/β1−1) if k ∈ [k2,p + 1, min(ℓ, kp)],

r2(z)1/β2−1τ−k/β2 + r1(z)1/β1−2r2(z)1/β2−1τ−k(−2+1/β1+1/β2) if k ≤ k2,p.

Proof. By the Laplacian estimates (3-9) we have

sup
(B̂k(p)/1.2)\S

|11hk | + |12hk | ≤ C(n, β)ω(τ k). (3-99)

Applying again the Laplacian estimates (3-9) to the gβ-harmonic function 11hk , we have

sup
B̂k(p)/1.4

(|1111hk | + |1211hk | + |(D′)211hk |) ≤ C(n)τ−2kω(τ k).

We consider the equation

|z2|
2−2β2

∂2

∂z2∂ z̄2
11hk = −1111hk −

∑
j

∂2

∂s2
j
11hk =: F7. (3-100)

From the estimates above, ∥F7∥L∞(B̂k(p)/1.8)
≤ Cτ−2kω(τ k).
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Case 1: k2,p + 1 ≤ k ≤ min(ℓ, kp). Here we directly apply the gradient estimate to 11hk to get

sup
(B̂k(p)/1.5)\S

∣∣∣∣ ∂

∂r2
11hk

∣∣∣∣ + ∣∣∣∣ ∂

r2∂θ2
11hk

∣∣∣∣ ≤ Cτ−kω(τ k). (3-101)

Case 2: k ≤ k2,p. Here the balls B̂k(p) are centered at p1,2, and we can apply the usual C-ball type
estimate to get that, for any z ∈

1
2 B̂k(p)\S,∣∣∣∣ ∂

∂r2
11hk

∣∣∣∣(z) +

∣∣∣∣ ∂

r2∂θ2
11hk

∣∣∣∣ ≤ Cr2(z)1/β2−1 ∥11hk∥L∞

τ k/β2
+ Cr2(z)1/β2−1

∥F7∥L∞τ k(2−1/β2)

≤ Cr2(z)1/β2−1τ−k/β2ω(τ k).

Recall that
∂

∂r1

(
∂2hk

∂r1∂r2

)
=

∂

∂r2
11hk −

1
r1

∂2hk

∂r1∂r2
−

1
β2

1r2
1

∂3hk

∂θ2
1 ∂r2

,

from which we derive that, for any z ∈
1
2 B̂k(p)\S,∣∣∣∣ ∂

∂r1

(
∂2hk

∂r1∂r2

)∣∣∣∣(z)
≤Cω(τ k)

{
τ−k

+r1(z)1/β1−2τ−k(1/β1−1) if k ∈ [k2,p+1,min(ℓ,kp)],

r2(z)1/β2−1τ−k/β2+r1(z)1/β1−2r2(z)1/β2−1τ−k(−2+1/β1+1/β2) if k ≤ k2,p.
□

Lemma 3.27. There exists a constant C = C(n, β) > 0 such that, for all k ≤ ℓ and z ∈
1
3 B̂k(p)\S,∣∣∣∣ ∂

∂θ2

(
∂2hk

∂r1∂r2

)
(z)

∣∣∣∣ + ∣∣∣∣( ∂3hk

r2∂θ2
2 ∂r1

)
(z)

∣∣∣∣
≤ Cω(τ k)

{
r1/β1−1

1 τ−k(−1+1/β1) if k ∈ [k2,p + 1, min(ℓ, kp)],

r1/β1−1
1 r1/β2−1

2 τ−k(−2+1/β1+1/β2) if k ≤ k2,p.
(3-102)

Proof. It follows from the Laplacian estimates (3-9) that

sup
B̂k(p)/1.2

(∣∣∣∣11
∂hk

∂θ2

∣∣∣∣ + ∣∣∣∣12
∂hk

∂θ2

∣∣∣∣) ≤ C(n)ω(τ k).

Again by (3-9), we have

sup
B̂k(p)/1.4

(∣∣∣∣1111
∂hk

∂θ2

∣∣∣∣ + ∣∣∣∣1211
∂hk

∂θ2

∣∣∣∣ + ∣∣∣∣(D′)211
∂hk

∂θ2

∣∣∣∣) ≤ Cτ−2kω(ωk).

We look at the equation

|z1|
2(1−β1)

∂2

∂z1∂ z̄1

(
11

∂hk

∂θ2

)
= −1211

∂hk

∂θ2
−

∑
j

∂2

∂s2
j

(
11

∂hk

∂θ2

)
=: F8

and note that

sup
B̂k(p)/1.4

|F8| ≤ Cτ−2kω(τ k).
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As we did before, by estimate (2-3) it follows that, for any z ∈
1
2 B̂k(p)\S (remember here k ≤ min(ℓ, kp)),∣∣∣∣ ∂

∂r1
11

∂hk

∂θ2

∣∣∣∣(z) +

∣∣∣∣ ∂

r1∂θ1
11

∂hk

∂θ2

∣∣∣∣(z) ≤ Cr1(z)1/β1−1

∥∥11
∂hk
∂θ2

∥∥
L∞

τ k/β1
+ Cr1(z)1/β1−1

∥F8∥L∞τ k(2−1/β1)

≤ Cr1(z)1/β1−1τ−k/β1ω(τ k).

Taking ∂/∂r1 on both sides of the equation 1β(∂hk/∂θ2) = 0, we get

|z2|
2(1−β2)

∂2

∂z2∂ z̄2

(
∂2hk

∂r1∂θ2

)
= −

∂

∂r1

(
11

∂hk

∂θ2

)
−

∑
j

∂

∂r1

(
∂2

∂s2
j

∂hk

∂θ2

)
=: F9. (3-103)

Here |F9(z)| ≤ Cr1(z)1/β1−1τ−k/β1ω(τ k) for any z ∈
1
2 B̂k(p)\S. Therefore, by the usual C-ball argument,

• when k ≤ k2,p, for any z ∈
1
3 B̂k(p)\S, we have∣∣∣∣ ∂

∂r2

(
∂2hk

∂r1∂θ2

)
(z)

∣∣∣∣ + ∣∣∣∣ ∂

r2∂θ2

(
∂2hk

∂r1∂θ2

)
(z)

∣∣∣∣ ≤ Cr2(z)1/β2−1r1(z)1/β1−1τ k(2−1/β1−1/β2)ω(τ k),

• when k2,p + 1 ≤ k ≤ min(ℓ, kp), we have∣∣∣∣ ∂

∂r2

(
∂2hk

∂r1∂θ2

)
(z)

∣∣∣∣ + ∣∣∣∣ ∂

r2∂θ2

(
∂2hk

∂r1∂θ2

)
(z)

∣∣∣∣ ≤ Cr1(z)1/β1−1τ k(1−1/β1)ω(τ k). □

Lemma 3.28. For any k ≤ ℓ and any z ∈
1
3 B̂k(p)\S,∣∣∣∣ ∂

∂r2

(
∂2hk

∂r1∂r2

)
(z)

∣∣∣∣
≤Cω(τ k)

{
r1(z)1/β1−1τ−k/β1 +r1/β1−1

1 r−1
2 τ−k(−1+1/β1) if k ∈ [k2,p+1,min(ℓ, kp)],

r1(z)1/β1−1τ−k/β1 +r1/β1−1
1 r1/β2−2

2 τ−k(−2+1/β1+1/β2) if k ≤ k2,p.
(3-104)

Proof. We first observe that

∂

∂r2

(
∂2hk

∂r1∂r2

)
=

∂

∂r1
12hk −

1
r2

∂2hk

∂r1∂r2
−

1
β2

2r2
2

∂2

∂θ2
2

(
∂hk

∂r1

)
.

It can be shown by the C-ball argument that, for any z ∈
1
2 B̂k(p)\S,∣∣∣∣ ∂

∂r1
12hk(z)

∣∣∣∣ ≤ Cr1(z)1/β1−1τ−k/β1ω(τ k).

From Lemma 3.25, we have, for any z ∈
1
2 B̂k(p)\S,∣∣∣∣ 1

r2

∂2hk

∂r1∂r2
(z)

∣∣∣∣ ≤ C ·

{
r1/β1−1

1 r−1
2 τ−k(−1+1/β1)ω(τ k) if k ∈ [k2,p + 1, min(ℓ, kp)],

r1/β1−1
1 r1/β2−2

2 τ−k(−2+1/β1+1/β2)ω(τ k) if k ≤ k2,p.

From Lemma 3.27, we have, for any z ∈
1
2 B̂k(p)\S,∣∣∣∣ 1

r2
2

∂3hk

∂r1∂θ2
2
(z)

∣∣∣∣ ≤ Cω(τ k) ·

{
r1/β1−1

1 r−1
2 τ−k(−1+1/β1) if k ∈ [k2,p + 1, min(ℓ, kp)],

r1/β1−1
1 r1/β2−2

2 τ−k(−2+1/β1+1/β2) if k ≤ k2,p.
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Therefore, for any z ∈
1
3 B̂k(p)\S, we have∣∣∣∣ ∂

∂r2

(
∂2hk

∂r1∂r2

)
(z)

∣∣∣∣
≤ Cω(τ k) ·

{
r1(z)1/β1−1τ−k/β1 + r1/β1−1

1 r−1
2 τ−k(−1+1/β1) if k ∈ [k2,p + 1, min(ℓ, kp)],

r1(z)1/β1−1τ−k/β1 + r1/β1−1
1 r1/β2−2

2 τ−k(−2+1/β1+1/β2) if k ≤ k2,p.
□

It remains to estimate L2. For simplicity, we write hk := −uk + uk−1 as before, where we take k ≤ ℓ.
We will define βmax = max(β1, β2).

Lemma 3.29. Let d = dβ(p, q). There exists a constant C(n, β) > 0 such that, for all k ≤ ℓ,∣∣∣∣ ∂2hk

∂r1∂r2
(p) −

∂2hk

∂r1∂r2
(q)

∣∣∣∣ ≤ Cω(τ k)τ−k(1/β1−1)d1/β1−1

≤ Cω(τ k)τ−k(1/βmax−1)d1/βmax−1.

Proof. Case 1: First we assume that rp ≤ 2d , so that rq ≤ 3d and ℓ+2 ≤ kp. In particular, the balls B̂k(p)

are centered at either p1 ∈ S1 or 0, depending on whether k ≥ k2,p + 1 or k ≤ k2,p. As in the proof of
Lemma 3.20, let γ : [0, d] → Bβ(0, 1)\S be the gβ-geodesic connecting p and q, let the two points q ′

and p′ be defined as in (3-80), and let γ1, γ2, γ3 be the gβ-geodesics defined in that lemma. By the
triangle inequality we calculate∣∣∣∣ ∂2hk

∂r1∂r2
(p)−

∂2hk

∂r1∂r2
(q)

∣∣∣∣
≤

∣∣∣∣ ∂2hk

∂r1∂r2
(p)−

∂2hk

∂r1∂r2
(p′)

∣∣∣∣+∣∣∣∣ ∂2hk

∂r1∂r2
(p′)−

∂2hk

∂r1∂r2
(q ′)

∣∣∣∣+∣∣∣∣ ∂2hk

∂r1∂r2
(q ′)−

∂2hk

∂r1∂r2
(q)

∣∣∣∣ =: L ′

1+L ′

2+L ′

3.

Integrating along γ3, where the coordinates (r1; r2, θ2; z3, . . . , zn) are the same as p, we get (by (3-93))

L ′

1 =

∣∣∣∣∫
γ3

∂

∂θ1

(
∂2hk

∂r1∂r2

)
dθ1

∣∣∣∣ ≤ Cω(τ k)·

{
r1(p)1/β1−1τ−k(−1+1/β1) if k ∈ [k2,p+1,ℓ],

r1(p)1/β1−1r2(p)1/β2−1τ−k(−2+1/β1+1/β2) if k ≤ k2,p.

Integrating along γ2, where the coordinates (θ1; r2, θ2; z3, . . . , zn) are the same as p′ or q ′, we get by the
estimate in Lemma 3.26 that

L ′

2 =

∣∣∣∣∫
γ2

∂

∂r1

(
∂2hk

∂r1∂r2

)
dr1

∣∣∣∣
≤ Cω(τ k) ·


τ−kd + τ−k(1/β1−1)

|r1(p) − r1(q)|1/β1−1 if k ∈ [k2,p + 1, ℓ],

r2(p)1/β2−1τ−k/β2d
+ r2(p)1/β2−1τ−k(−2+1/β1+1/β2)|r1(p) − r1(q)|1/β1−1 if k ≤ k2,p

≤ Cω(τ k) ·

{
τ−kd + τ−k(1/β1−1)d1/β1−1 if k ∈ [k2,p + 1, ℓ],

r2(p)1/β2−1τ−k/β2d + r2(p)1/β2−1τ−k(−2+1/β1+1/β2)d1/β1−1 if k ≤ k2,p.

To deal with the term L ′

3, we consider two cases for k: ℓ ≥ k ≥ k2,p + 1 and k ≤ k2,p.
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Case 1a: k2,p +1 ≤ k ≤ ℓ. In this case the balls B̂k(p) are centered at p1 ∈ S1. Here τ−k
≤ τ−ℓ

≤ 8−1d−1

and τ k
≤ τ k2,p+1

≤
1
2r2(p), so r2(q) ≥ −d + r2(p) ≥ τ k . The balls B̂k(p) are disjoint from S2, and we

can use the smooth coordinate w2 = zβ2
2 as before. The functions Dw2 D′hk are gβ-harmonic; hence by

the gradient estimate we have

sup
(B̂k(p)/1.2)\S1

|∇gβ
(Dw2 D′hk)| ≤ C(n)

∥Dw2 D′hk∥L∞(B̂k(p)/1.1)

τ k ≤ Cτ−kω(τ k).

From (3-88), we get

sup
(B̂k(p)/1.2)\S1

∣∣∣∣ ∂2

∂r1∂r2
D′hk

∣∣∣∣ ≤ C(n)τ−kω(τ k). (3-105)

Recalling that r1(p) = rp ≤ 2d ≤
1
2τ k , the triangle inequality implies r1(q) ≤ 3d ≤

1
2τ k . The points in γ1

have fixed (r1, θ1)-coordinates (r1(q), θ1(q)), so integrating along γ1 we get (by (3-104) and (3-105))

L ′

3 ≤

∫
γ1

∣∣∣∣ ∂

∂r2

(
∂2hk

∂r1∂r2

)∣∣∣∣ + ∣∣∣∣ ∂

r2∂θ2

(
∂2hk

∂r1∂r2

)∣∣∣∣ + ∣∣∣∣D′

(
∂2hk

∂r1∂r2

)∣∣∣∣
≤ Cdω(τ k)(r1(q)1/β1−1τ−k/β1 + τ1(q)1/β1−1 min(r2(p), r2(q))−1τ−k(1/β1−1)

+ τ−k)

≤ Cτ−kω(τ k) · d ≤ Cτ−k(1/β1−1)ω(τ k)d1/β1−1.

Case 1b: k ≤ k2,p. In this case τ k
≥ τ k2,p ≥ r2(p) and τ k

≥ τ ℓ
≥ 8d. Thus r2(q) ≤ r2(p) + d ≤

3
2τ k .

We choose points q̃ and q̂ as in (3-84), and let γ̃1, γ̃ and γ̂ be gβ-geodesics defined as in the proof of
Lemma 3.20. Then we have

L ′

3 ≤

∣∣∣∣ ∂2hk

∂r1∂r2
(q ′)−

∂2hk

∂r1∂r2
(q̃)

∣∣∣∣+ ∣∣∣∣ ∂2hk

∂r1∂r2
(q̃)−

∂2hk

∂r1∂r2
(q̂)

∣∣∣∣+ ∣∣∣∣ ∂2hk

∂r1∂r2
(q̂)−

∂2hk

∂r1∂r2
(q)

∣∣∣∣ =: L ′′

1 + L ′′

2 + L ′′

3.

We will estimate L ′′

1 , L ′′

2 and L ′′

3 term by term by integrating appropriate functions along the geodesics γ̃1,
γ̃ and γ̂ as follows: The points in γ̂ have fixed (r1, θ1; r2; s)-coordinates (r1(q), θ1(q); r2(q); s(q)), so
(by (3-102))

L ′′

3 =

∣∣∣∣∫
γ̂

∂

∂θ2

(
∂2hk

∂r1∂r2

)
dθ2

∣∣∣∣ ≤ Cω(τ k)r1(q)1/β1−1r2(q)1/β2−1τ−k(−2+1/β1+1/β2)

≤ Cω(τ k)r1(q)1/β1−1τ−k(−1+1/β1) ≤ Cτ−k(1/β1−1)ω(τ k)d1/β1−1.

Integrating along γ̃ , where the points have constant r1-coordinate r1(q), we get (by (3-104))

L ′′

2 =

∣∣∣∣∫
γ̃

∂

∂r2

(
∂2hk

∂r1∂r2

)
dr2

∣∣∣∣
≤ Cω(τ k)

(
r1(q)1/β1−1τ−k/β1 |r2(q) − r2(p)|

+ r1(q)1/β1−1τ−k(−2+1/β1+1/β2)|r2(q)1/β2−1
− r2(p)1/β2−1

|
)

≤ Cω(τ k)(r1(q)1/β1−1τ−k/β1d + r1(q)1/β1−1τ−k(−2+1/β1+1/β2)d1/β2−1)

≤ Cω(τ k)r1(q)1/β1−1τ−k(−1+1/β1)

≤ Cτ−k(1/β1−1)ω(τ k)d1/β1−1.
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Integrating along γ̃1, where the points have constant (r1, θ1; r2, θ2)-coordinates, we have (by (3-71))

L ′′

1 ≤

∫
γ̃1

∣∣∣∣D′

(
∂2hk

∂r1∂r2

)∣∣∣∣ ≤ Cr1(q)1/β1−1r2(p)1/β2−1τ−k(−1+1/β1+1/β2)d

≤ Cdτ−kω(τ k) ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Combining both cases, we conclude that

L ′

3 ≤ Cτ−k(1/β1−1)ω(τ k)d1/β1−1.

Then by the estimates above for L ′

1 and L ′

2, we finally get, for all k ≤ ℓ,∣∣∣∣ ∂2hk

∂r1∂r2
(p) −

∂2hk

∂r1∂r2
(q)

∣∣∣∣ ≤ Cω(τ k)τ−k(1/β1−1)d1/β1−1
≤ Cω(τ k)τ−k(1/βmax−1)d1/βmax−1,

where in the last inequality we use the fact that τ−kd ≤
1
8 < 1 when k ≤ ℓ. Hence we finish the proof of

Lemma 3.29 in the case rp ≤ 2d .

Now we deal with the remaining cases.

Case 2: Here we assume min(rp, rq) = rp ≥ 2d and ℓ ≤ kp. In this case τ kp ≈ rp ≥ 2d ≥ τ ℓ+3, so
ℓ+ 3 ≥ kp. It follows by the triangle inequality that dβ(γ (t),S) ≥ d , where γ is the gβ-geodesic joining
p to q as before. In particular, this implies that min(r1(γ (t)), r2(γ (t))) ≥ d .

Since ℓ ≤ kp, Lemmas 3.24–3.28 hold for all k ≤ ℓ and r1(p) ≈ τ kp ≤ τ ℓ, so

r1(γ (t)) ≤ d + r1(p) ≤
9
8τ ℓ

≤
9
8τ k .

We calculate the gradient of ∂2hk/∂r1∂r2 along the geodesic γ as∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣2

(γ (t)) =

∣∣∣∣ ∂

∂r1

(
∂2hk

∂r1∂r2

)∣∣∣∣2

+

∣∣∣∣ 1
β1r1∂θ1

(
∂2hk

∂r1∂r2

)∣∣∣∣2

+

∣∣∣∣ ∂

∂r2

(
∂2hk

∂r1∂r2

)∣∣∣∣2

+

∣∣∣∣ ∂

β2r2∂θ2

(
∂2hk

∂r1∂r2

)∣∣∣∣2

+

∑
j

∣∣∣∣ ∂

∂s j

(
∂2hk

∂r1∂r2

)∣∣∣∣2

.

Case 2a: k2,p + 1 ≤ k ≤ ℓ. Here along γ we have

r2(γ (t)) ≥ r2(p) − d ≥ τ k
− d ≥

7
8τ k .

Then by Lemmas 3.24–3.28, along γ we have∣∣∣∣∇gβ

∂2hk

∂r1∂r2
(γ (t))

∣∣∣∣ ≤ Cω(τ k)(τ−k
+ d1/β1−2τ−k(1/β1−1)).

Integrating this inequality along γ we get∣∣∣∣ ∂2hk

∂r1∂r2
(p) −

∂2hk

∂r1∂r2
(q)

∣∣∣∣ ≤

∫
γ

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣ ≤ Cω(τ k)(dτ−k
+ d1/β1−1τ−k(1/β1−1))

≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).
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Case 2b: k ≤ k2,p. Here along γ we have

r2(γ (t)) ≤ r2(p) + d ≤ τ k
+ d ≤

9
8τ k .

Then by Lemmas 3.24–3.28, along γ we have∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣ ≤ Cω(τ k)(τ−k
+ d1/β1−2τ−k(1/β1−1)).

Integrating this inequality along γ we again get∣∣∣∣ ∂2hk

∂r1∂r2
(p) −

∂2hk

∂r1∂r2
(q)

∣∣∣∣ ≤

∫
γ

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣ ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Case 3: Here we assume min(rp, rq) = rp ≥ 2d but ℓ ≥ kp + 1. The case when k ≤ kp can be dealt with
by the same argument as in Case 2, so we omit it and only consider the case when kp + 1 ≤ k ≤ ℓ. Here
r2(p) ≥ r1(p) ≥ τ k

≥ τ ℓ > 8d , and hence

r1(γ (t)) ≥
7
8τ k and r2(γ (t)) ≥

7
8τ k

for any point γ (t) in the geodesic γ . By the triangle inequality it follows that γ ⊂
1
3 B̂k(p) = Bβ

(
p, 1

3τ k
)
.

As before, we can introduce smooth coordinates w1 = zβ1
1 and w2 = zβ2

2 , and gβ becomes the standard
smooth Euclidean metric gCn under these coordinates. Moreover, hk is the usual Euclidean harmonic
function 1gCn hk = 0 on B̂k(p). By the standard derivatives estimates we have

sup
B̂k(p)/2

(|D3
w1,w2

hk | + |D′(D2
w1,w2

)hk |) ≤ Cτ−kω(τ k).

From the equation

∂2hk

∂r1∂r2
=

w1w2

r1r2

∂2hk

∂w1∂w2
+

w̄1w2

r1r2

∂2hk

∂w̄1∂w2
+

w1w̄2

r1r2

∂2hk

∂w1∂w̄2
+

w̄1w̄2

r1r2

∂2hk

∂w̄1∂w̄2

we see that, for i = 1, 2,

sup
B̂k(p)/2

∣∣∣∣ ∂

∂wi

(
∂2hk

∂r1∂r2

)∣∣∣∣ ≤
C
ri

ω(τ k) + Cτ−kω(τ k) and sup
B̂k(p)/2

∣∣∣∣D′

(
∂2hk

∂r1∂r2

)∣∣∣∣ ≤ Cτ−kω(τ k).

From this we see that

sup
γ

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣ ≤ sup
γ

(
Cτ−kω(τ k) +

C
r1

ω(τ k) +
C
r2

ω(τ k)

)
≤ Cτ−kω(τ k).

Integrating along γ we get∣∣∣∣ ∂2hk

∂r1∂r2
(p) −

∂2hk

∂r1∂r2
(q)

∣∣∣∣ ≤

∫
γ

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣ ≤ Cdτ−kω(τ k)

≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Combining the estimates in all three cases, we finish the proof of Lemma 3.29. □
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By Lemma 3.29,

L2 =

∣∣∣∣ ∂2uℓ

∂r1∂r2
(p) −

∂2uℓ

∂r1∂r2
(q)

∣∣∣∣
≤

∣∣∣∣ ∂2u2

∂r1∂r2
(p) −

∂2u2

∂r1∂r2
(q)

∣∣∣∣ + Cd1/βmax−1
ℓ∑

k=3

τ−k(1/βmax−1)ω(τ k). (3-106)

To finish the proof, it suffices to estimate the first term on the right-hand side of the above equation.
Recall that we assume u2 is a gβ-harmonic function defined on the ball B̂2(p), which is centered at
p1,2 ∈ S1 ∩S2 and has radius 2τ 2. We also know u2 satisfies the L∞-estimate by the maximum principle:
there exists some C = C(n) > 0 such that

∥u2∥L∞(B̂k(p))
≤ C(∥u∥L∞(Bβ (0,1)) + ω(τ 2)). (3-107)

Recall that the proofs of the estimates in Lemmas 3.24–3.28 in the case when k ≤ k2,p work for any
gβ-harmonic functions defined on suitable balls, and we can repeat the arguments there replacing the
L∞-estimate of hk , namely ∥hk∥L∞ ≤ Cτ 2kω(τ k), by the L∞-estimate of u2 given in (3-107) to get
similar estimates as in those lemmas. We will omit the details. Given these estimates, we can repeat the
proof of Lemma 3.29 to prove the estimates∣∣∣∣ ∂2u2

∂r1∂r2
(p) −

∂2u2

∂r1∂r2
(q)

∣∣∣∣ ≤ Cd1/βmax−1(∥u∥L∞(Bβ (0,1)) + ω(τ 2)).

This inequality, combined with (3-106), gives the final estimate of the L2 term, that is

L2 ≤ Cd1/βmax−1
∥u∥L∞(Bβ (0,1)) + Cd1/βmax−1

ℓ∑
k=2

τ−k(1/βmax−1)ω(τ k). (3-108)

By Lemmas 3.22 and 3.23 and the estimate (3-108) for L2, we are ready to prove the following estimate;
see (1-5).

Proposition 3.30. For given p, q ∈ Bβ

(
0, 1

2

)
\S, there is a constant C = C(n, β) > 0 such that∣∣∣∣ ∂2u

∂r1∂r2
(p) −

∂2u
∂r1∂r2

(q)

∣∣∣∣ ≤ C
(

d1/βmax−1
∥u∥L∞(Bβ (0,1)) +

∫ d

0

ω(r)

r
dr + d1/βmax−1

∫ 1

d

ω(r)

r1/βmax
dr

)
.

Proof. From Lemmas 3.22 and 3.23 and the estimate (3-108) for L2, we have∣∣∣∣ ∂2u
∂r1∂r2

(p)−
∂2u

∂r1∂r2
(q)

∣∣∣∣ ≤ C
(

d1/βmax−1
∥u∥L∞(Bβ (0,1))+d1/βmax−1

ℓ∑
k=2

τ−k(1/βmax−1)ω(τ k)+

∞∑
k=ℓ

ω(τ k)

)
≤ C

(
d1/βmax−1

∥u∥L∞(Bβ (0,1))+

∫ d

0

ω(r)

r
dr +d1/βmax−1

∫ 1

d

ω(r)

r1/βmax
dr

)
,

where the last inequality follows from the fact that ω(r) is monotonically increasing. □

Finally, we remark that the estimates for the other operators in (3-89) follow similarly; we omit the
proofs and state that the estimates are the same as the estimates for ∂2u/∂r1∂r2 in Proposition 3.30.
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3E. Nonflat conical Kähler metrics. In this section, we will consider the Schauder estimates for gen-
eral conical Kähler metrics on Bβ(0, 2) ⊂ Cn with cone angle 2πβ along the simple normal crossing
hypersurface S. Let ω be such a metric. By definition, there exists a constant C ≥ 1 such that

C−1ωβ ≤ ω ≤ Cωβ in Bβ(0, 2)\S, (3-109)

where ωβ is the standard flat conical metric as before. Since ω is closed and Bβ(0, 2) is simply connected,
we can write ω =

√
−1∂∂̄φ for some strictly plurisubharmonic function φ. By elliptic regularity, φ is

Hölder continuous under the Euclidean metric on Bβ(0, 2).
We fix α ∈ (0, min{1/βmax − 1, 1}).

Definition 3.31. We say ω = g is a C0,α
β Kähler metric on Bβ(0, 2) if it satisfies (3-109) and the Kähler

potential φ of ω belongs to C2,α
β (Bβ(0, 2)).

We are interested in studying the Laplacian equation

1gu = f in Bβ(0, 1), (3-110)

where f ∈ C0,α
β (Bβ(0, 1)) and u ∈ C2,α

β . We will prove the following scaling-invariant interior Schauder
estimates. The proof closely follows that of Theorem 6.6 in [18], so we mainly focus on the differences.

Proposition 3.32. There exists a constant C = C(n, β, ∥g∥
∗

C0,α
β

) > 0 such that, if u ∈ C2,α
β (Bβ(0, 1))

satisfies (3-110), then
∥u∥

∗

C2,α
β (Bβ (0,1))

≤ C(∥u∥C0(Bβ (0,1)) + ∥ f ∥
(2)

C0,α
β (Bβ (0,1))

). (3-111)

Proof. Given any points x0 ̸= y0 ∈ Bβ(0, 1), assume dx0 = min(dx0, dy0); recall dx = dβ(x, ∂ Bβ(0, 1)).
Let µ ∈

(
0, 1

4

)
be a small number to be determined later. Write d = µdx0 , and define B := Bβ(x0, d) and

1
2 B := Bβ

(
x0,

1
2 d

)
.

Case 1: dβ(x0, y0) < 1
2 d .

Case 1a: Bβ(x0, d)∩S =∅. We introduce smooth complex coordinates {w1 = zβ1
1 , w2 = zβ2

2 , z3, . . . , zn}

on Bβ(x0, d), under which gβ becomes the Euclidean metric and the components of g become Cα in
the usual sense. Equation (3-110) has Cα leading coefficients, and we can apply Theorem 6.6 in [18] to
conclude that (the following inequality is understood in the new coordinates)

[u]
∗

C2,α(B)
≤ C(∥u∥C0(B) + ∥ f ∥

(2)

C0,α(B)
). (3-112)

Recall that T denotes the second-order operators appearing in (2-2). Let D denote the ordinary first-order
operators in {w1, w2, z3, . . . , zn}. We calculate

|T u(x0)−T u(y0)| ≤ |D2u(x0)− D2u(y0)|+
dβ(x0, y0)

d
(|D2u(x0)|+|D2u(y0)|)

≤
4dβ(x0, y0)

α

d2+α
[u]

∗

C2,α(B)
+

4dβ(x0, y0)

d3 [u]
∗

C2(B)

≤
8dβ(x0, y0)

α

d2+α
[u]

∗

C2,α(B)
+C

dβ(x0, y0)
α

d2+α
∥u∥C0(B) (by the interpolation inequality).
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Then we get

d2+α
x0

|T u(x0) − T u(y0)|

dβ(x0, y0)α
≤

C
µ2+α

∥ f ∥
(2)

C0,α
β (B)

+
C

µ2+α
∥u∥C0(B). (3-113)

Case 1b: Bβ(x0, d) ∩ S ̸= ∅. Let x̂0 ∈ S be the nearest possible point x0 to S. We consider the ball
B̂ := Bβ(x̂0, 2d), which is contained in Bβ(0, 1) by the triangle inequality. As in [14], we introduce a
(nonholomorphic) basis of T ∗

1,0(C
n
\S)

{ϵ j := dr j +
√

−1β jr j dθ j , dzk} j=1,2;k=3,...,n,

and the dual basis of T1,0(C
n
\S){
γ j :=

∂

∂r j
−

√
−1

1
β jr j

∂

∂θ j
,

∂

∂zk

}
j=1,2;k=3,...,n

.

We can write the (1, 1)-form ω in the basis {ϵ j ∧ ϵ̄k, ϵ j ∧ dz̄k, dzk ∧ ϵ̄ j , dz j ∧ dz̄k} as

ω = gϵ j ϵ̄k ϵ j ∧ ϵ̄k + gϵ j k̄ϵ j ∧ dz̄k + gkϵ̄ j dzk ∧ ϵ̄ j + g j k̄ dz j ∧ dz̄k, (3-114)

where

gϵ j ϵ̄k =
√

−1∂∂̄φ(γ j , γ̄k), gϵ j k̄ =
√

−1∂∂̄φ

(
γ j ,

∂

∂ z̄k

)
,

gkϵ̄ j =
√

−1∂∂̄φ

(
∂

∂zk
, γ̄ j

)
, gk j̄ =

∂2

∂zk∂ z̄ j
φ.

(3-115)

We remark that all the second-order derivatives of φ appearing in (3-115) are linear combinations of
|z j |

2−2β j (∂2/∂z j∂z j̄ )N j Nk ( j ̸= k), N j D′ and (D′)2, which are studied in Theorem 1.2. The standard
metric ωβ becomes the identity matrix under the basis above for (1, 1)-forms. If ω is C0,α

β , all the
coefficients in the expression for ω in (3-114) are C0,α

β -continuous, and the cross terms gϵ j ϵ̄k ( j ̸= k) and
gϵ j k̄ tend to zero when approaching the corresponding singular sets S j or Sk . Moreover, the limit of
g j k̄ dz j ∧ dz̄k when approaching S1 ∩ · · · ∩ Sp defines a Kähler metric on it. Rescaling or rotating the
coordinates if necessary we may assume at x̂0 ∈ S that gϵ j ϵ̄ j (x̂0) = 1, g j k̄(x̂0) = δ jk and the cross terms
vanish at x̂0. Let ωβ be the standard cone metric under these new coordinates near x̂0. We can rewrite
(3-110) as

1gu(z) = 1gβ
u(z) + η(z) · i∂∂̄u(z) = f (z) for all z ̸∈ S

for some hermitian matrix η(z) = (η j k̄)n
j,k=1, η j k̄

= g j k̄(z)−g j k̄
β . It is not hard to see the term η(z) · i∂∂̄u

can be written as
2∑

j,k=1

(gϵ j ϵ̄k (z) − δ jk)uϵ j ϵ̄ j + 2Re
∑

1≤ j≤2
3≤k≤n

gϵ j k̄uϵ j k̄ +

n∑
j,k=3

(g j k̄(z) − δ jk)u j k̄, (3-116)

where g with the upper indices denotes the inverse matrix of g. We consider the equivalent form of
(3-110) on B̂:

1gβ
u = f − η ·

√
−1∂∂̄u =: f̂ , u ∈ C0(B̂) ∩ C2(B̂\S).
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Observing that x0, y0 ∈ Bβ

(
x̂0,

3
2 d

)
, we can apply the scaled inequality (1-7) of Theorem 1.2 to conclude

that

d2+α |T u(x0) − T u(y0)|

dβ(x0, y0)α
≤ C(∥u∥C0(B̂)

+ ∥ f̂ ∥
(2)

C0,α
β (B̂)

);

thus

d2+α
x0

|T u(x0) − T u(y0)|

dβ(x0, y0)α
≤

C
µ2+α

(∥u∥C0(B̂)
+ ∥ f̂ ∥

(2)

C0,α
β (B̂)

). (3-117)

Case 2: dβ(x0, y0) ≥
1
2 d.

d2+α
x0

|T u(x0) − T u(y0)|

dβ(x0, y0)α
≤ 4d2+α

x0

|T u(x0)| + |T u(y0)|

dα
≤

8
µα

[u]
∗

C2
β (Bβ (0,1))

. (3-118)

Combining (3-113), (3-117) and (3-118) we get

d2+α
x0

|T u(x0) − T u(y0)|

dβ(x0, y0)α
≤

8
µα

[u]
∗

C2
β (Bβ (0,1))

+
C

µ2+α
(∥u∥C0(B̂)

+ ∥ f̂ ∥
(2)

C0,α
β (B̂)

)

+
C

µ2+α
∥ f ∥

(2)

C0,α
β (B)

+
C

µ2+α
∥u∥C0(B). (3-119)

By definition it is easy to see that (writing Bβ = Bβ(0, 1))

∥ f ∥
(2)

C0,α
β (B)

≤ Cµ2
∥ f ∥

(2)

C0(Bβ )
+ Cµ2+α

[ f ]
(2)

C0,α
β (Bβ )

≤ µ2
∥ f ∥

(2)

C0,α
β (Bβ )

.

We calculate

∥ f̂ ∥
(2)

C0,α
β (B̂)

≤ ∥η∥
(0)

C0,α
β (B̂)

∥T u∥
(2)

C0,α
β (B̂)

+ ∥ f ∥
(2)

C0,α
β (B̂)

≤ C0[g]
∗

C0,α
β (Bβ )

µα(µ2
[u]

∗

C2
β (Bβ )

+ µ2+α
[u]

∗

C2,α
β (Bβ )

) + µ2
∥ f ∥

(2)

C0,α
β (Bβ )

≤ C0[g]
∗

C0,α
β (Bβ )

µα(C(µ)∥u∥C0(Bβ ) + 2µ2+α
[u]

∗

C2,α
β (Bβ )

) + µ2
∥ f ∥

(2)

C0,α
β (Bβ )

,

8
µα

[u]
∗

C2
β (Bβ )

≤ µα
[u]

∗

C2,α
β (Bβ )

+ C(µ)∥u∥C0(Bβ ).

If we choose µ > 0 small enough that µα(2C0[g]
∗

C0,α
β (Bβ )

+ 1) ≤
1
2 , then we get from (3-119) and the

inequalities above that

d2+α
x0

|T u(x0) − T u(y0)|

dβ(x0, y0)α
≤

1
2 [u]

∗

C2,α
β (Bβ )

+ C(µ)(∥u∥C0(Bβ ) + ∥ f ∥
(2)

C0,α
β (Bβ )

).

Taking the supremum over x0 ̸= y0 ∈ Bβ(0, 1), we conclude from the inequality above that

[u]
∗

C2,α
β (Bβ )

≤ C(∥u∥C0(Bβ ) + ∥ f ∥
(2)

C0,α
β (Bβ )

).

Proposition 3.32 then follows from interpolation inequalities. □

Remark 3.33. It follows easily from the proof of Proposition 3.32 that estimate (3-111) also holds for
metric balls Bβ(p, R) ⊂ Bβ(0, 1) whose center p may not lie in S.
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Remark 3.34. The Schauder estimate was first established by Donaldson [14] for a background cone
metric with singularity along a smooth divisor assuming u ∈ C2,α

β ; this latter assumption was removed by
Brendle [1] in the case β ∈

(
0, 1

2

)
and by Jeffres, Mazzeo and Rubinstein [23], requiring only a weak

solution. Jeffres, Mazzeo and Rubinstein [23] then extend the results to nonflat background metrics using
a perturbation argument. This is the first time a Schauder estimate for the linear conic equation in the
smooth divisor case appeared in the literature with a full proof.

An immediate corollary to Proposition 3.32 is the following interior Schauder estimate.

Corollary 3.35. Suppose u satisfies (3-110). For any compact subset K ⋐ Bβ(0, 1), there exists a constant
C = C(n, β, K , ∥g∥C0,α

β (Bβ (0,1))
) > 0 such that

∥u∥C2,α
β (K )

≤ C(∥u∥C0(Bβ (0,1)) + ∥ f ∥C0,α
β (Bβ (0,1))

).

Next we will show that (3-110) admits a unique C2,α
β -solution for any f ∈ C0,α

β (Bβ(0, 1)) and boundary
value ϕ ∈ C0(∂ Bβ(0, 1)). We will follow the argument in Section 6.5 in [18]. In the following we write
Bβ = Bβ(0, 1) for simplicity.

Lemma 3.36. Let σ ∈ (0, 1) be a given number. Suppose u ∈ C2,α
β (Bβ) solves (3-110), ∥u∥

(−σ)

C0(Bβ )
< ∞

and ∥ f ∥
(2−σ)

C0,α
β (Bβ )

< ∞. Then there exists a C = C(n, β, α, g, σ ) > 0 such that

∥u∥
(−σ)

C2,α
β (Bβ )

≤ C(∥u∥
(−σ)

C0(Bβ )
+ ∥ f ∥

(2−σ)

C0,α
β (Bβ )

).

Proof. Given the estimates in Proposition 3.32, the proof is identical to that of Lemma 6.20 in [18]. We
omit the details. □

Lemma 3.37. Let u ∈ C2
β(Bβ) ∩ C0(Bβ) solve the equation 1gu = f and u ≡ 0 on ∂ Bβ . For any

σ ∈ (0, 1), there exists a constant C = C(n, β, σ, g) > 0 such that

∥u∥
(−σ)

C0(Bβ )
= sup

x∈Bβ

d−σ
x |u(x)| ≤ C sup

x∈Bβ

d2−σ
x | f (x)| = C∥ f ∥

(2−σ)

C0(Bβ )
,

where dx = dβ(x, ∂ Bβ) as before.

Proof. Consider the function w1 = (1 − d2
β)σ , where dβ(x) = dβ(x, 0). We calculate

1gw1 = σ(1 − d2
β)σ−2(−(1 − d2

β) trg gβ − (1 − σ)|∇d2
β |

2
g)

≤ σ(1 − d2
β)σ−2(−C−1(1 − d2

β) − 4C−1d2
β(1 − σ)) ≤ −c0σ(1 − d2

β)σ−2.

Take a large constant A > 1 such that, for w = Aw1,

1gw ≤ −(1 − dβ)σ−2
≤ −

| f |

N
in Bβ,

where
N = sup

x∈Bβ

d2−σ
x | f (x)| = sup

x∈Bβ

(1 − dβ(x))2−σ
| f (x)|.

Hence 1g(Nw±u) ≤ 0, and from the definition of w we also have w|∂ Bβ
≡ 0. By the maximum principle

we obtain |u(x)| ≤ Nw ≤ C N (1 − dβ(x))σ = C Ndσ
x , and hence the lemma is proved. □
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Proposition 3.38. Given any function f ∈ C0,α
β (Bβ), the Dirichlet problem 1gu = f in Bβ and u ≡ 0 on

∂ Bβ admits a unique solution u ∈ C2,α
β (Bβ) ∩ C0(Bβ).

Proof. The proof of this proposition is almost identical to that of Theorem 6.22 in [18]. For completeness,
we provide the detailed argument. Fix σ ∈ (0, 1) and define a family of operators 1t = t1g + (1− t)1gβ

.
It is straightforward to see that 1t is associated to some cone metric which also satisfies (3-109). We
study the Dirichlet problem

1t ut = f in Bβ, ut ≡ 0 on ∂ Bβ . (∗t )

Equation (∗0) admits a unique solution u0 ∈ C2,α
β (Bβ) ∩ C0(Bβ) by Proposition 3.7. By Theorem 5.2

in [18], in order to apply the continuity method to solve (∗1), it suffices to show 1−1
t defines a bounded

linear operator between some Banach spaces. More precisely, define

B1 := {u ∈ C2,α
β (Bβ) | ∥u∥

(−σ)

C2,α
β (Bβ )

< ∞},

B2 := { f ∈ C0,α
β (Bβ) | ∥ f ∥

(2−σ)

C0,α
β (Bβ )

< ∞}.

By definition any u ∈ B1 is continuous on Bβ and u = 0 on ∂ Bβ . By Lemmas 3.36 and 3.37, we have

∥u∥B1 = ∥u∥
(−σ)

C2,α
β (Bβ )

≤ C∥ f ∥
(2−σ)

C0,α
β (Bβ )

= C∥1t u∥B2,

for some constant C independent of t ∈ [0, 1]. Thus (∗1) admits a solution u ∈ B1. □

Corollary 3.39. For any given ϕ ∈ C0(∂ Bβ) and f ∈ C0,α
β (Bβ), the Dirichlet problem

1gu = f in Bβ and u = ϕ on ∂ Bβ, (3-120)

admits a unique solution u ∈ C2,α
β (Bβ) ∩ C0(Bβ).

Proof. We may extend ϕ continuously to Bβ and assume ϕ ∈ C0(Bβ). Take a sequence of functions
ϕk ∈ C2,α

β (Bβ) ∩ C0(Bβ) which converges uniformly to ϕ on Bβ . The Dirichlet problem

1gvk = f − 1gϕk in Bβ and vk = 0 on ∂ Bβ

admits a unique solution vk ∈ C2,α
β (Bβ) ∩ C0(Bβ). Thus the function uk := vk + ϕk ∈ C2,α

β satisfies
1guk = f in Bβ and uk = ϕk on ∂ Bβ . By the maximum principle, uk is uniformly bounded in C0(Bβ).
Corollary 3.35 gives uniformly C2,α

β (K )-bounds on any compact subset K ⋐ Bβ . Letting k → ∞ and
K → Bβ , by a diagonal argument and up to a subsequence, uk → u ∈ C2,α

β (Bβ). On the other hand, from
1g(uk − ul) = 0, we see that {uk} is a Cauchy sequence in C0(Bβ); thus uk converges uniformly to u
on Bβ . Hence u ∈ C0(Bβ), and u satisfies (3-120). □

Corollary 3.40. Given f ∈ C0,α
β (Bβ), suppose u is a weak solution to the equation 1gu = f in the sense

that ∫
Bβ

⟨∇u, ∇ϕ⟩ωn
g = −

∫
Bβ

f ϕωn
g for all ϕ ∈ H 1

0 (Bβ),

then u ∈ C2,α
β (Bβ).
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Proof. We first observe that the Sobolev inequality (3-43) also holds for the metric g, since g is equivalent
to gβ . The metric space (Bβ, g) also has maximal volume growth/decay, so we can apply the same proof
of De Giorgi–Nash–Moser theory [22] to conclude that u is continuous in Bβ . The standard elliptic theory
implies that u ∈ C2,α

loc (Bβ\S). For any r ∈ (0, 1), by Corollary 3.39, the Dirichlet problem 1gũ = f
in Bβ(0, r), ũ = u on ∂ Bβ(0, r) admits a unique solution ũ ∈ C2,α

β (Bβ(0, r)) ∩ C0(Bβ(0, r)). Then
1g(u − ũ) = 0 in Bβ(0, r) and u − ũ = 0 on ∂ Bβ(0, r). By the maximum principle, we get u = ũ
in Bβ(0, r), so we conclude u ∈ C2,α

β (Bβ(0, r)). Since r ∈ (0, 1) is arbitrary, we get u ∈ C2,α
β (Bβ). □

Corollary 3.41. Let X be a compact Kähler manifold and D =
∑

j D j be a divisor with simple normal
crossings. Let g be a conical Kähler metric with cone angle 2πβ along D. Suppose u ∈ H 1(g) is a weak
solution to the equation 1gu = f in the sense that∫

X
⟨∇u, ∇ϕ⟩ωn

g = −

∫
X

f ϕωn
g for all ϕ ∈ C1(X)

for some f ∈ C0,α
β (X). Then u ∈ C2,α

β (X)∩C0(X) and there exists a constant C = C(n, β, g, α) such that

∥u∥C2,α
β (X)

≤ C(∥u∥C0(X) + ∥ f ∥C0,α
β (X)

).

Proof. We choose finite covers of D, {Ba} and {B ′
a}, with B ′

a ⋐ Ba and centers in D. By assumption
u is a weak solution to 1gu = f in each Ba , so by Corollary 3.40 we conclude that u ∈ C2,α

β (Ba) for
each Ba . On X\S, the metric g is smooth so standard elliptic theory implies that u ∈ C2,α

loc (X\S). Since
{Ba} covers D, we have u ∈ C2,α

β (X).
We can apply Corollary 3.35 to obtain that, for some constant C > 0,

∥u∥C2,α
β (B ′

a)
≤ C(∥u∥C0(Ba) + ∥ f ∥Cα

β (Ba)).

On X\
⋃

a{B ′
a} the metric g is smooth, so the usual Schauder estimates apply. We finish the proof of the

corollary using the definition of C2,α
β (X); see Definition 2.9. □

Remark 3.42. Let (X, D, g) be as in Corollary 3.41. It is easy to see by the variational method that weak
solutions to 1gu = f always exist for any f ∈ L2(X, ωn

g) satisfying
∫

X f ωn
g = 0.

4. Parabolic estimates

In this section, we will study the heat equation with background metric ωβ and prove the Schauder
estimates for solutions u ∈ C0(Qβ) ∩ C 2,1(Q#

β) to the equation

∂u
∂t

= 1gβ
u + f (4-1)

for a function f ∈ C 0(Qβ) with some better regularity.

4A. Conical heat equations. In this section, we will show that, for any ϕ ∈ C 0(∂PQβ), the Dirichlet
problem (4-2) admits a unique C 2,1(Q#

β) ∩ C 0(Qβ)-solution in Qβ . We first observe that a maximum
principle argument yields the uniqueness of the solution.
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Suppose u ∈ C 2,1(Q#
β) ∩ C 0(Qβ) solves the Dirichlet problem{

∂u
∂t

= 1gβ
u in Qβ,

u = ϕ on ∂PQβ

(4-2)

for some given continuous function ϕ ∈ C 0(∂PQβ). As in Lemma 3.1, it follows from the maximum
principle that

inf
∂PQβ

u ≤ inf
Qβ

u ≤ sup
Qβ

u ≤ sup
∂PQβ

u. (4-3)

So the C 2,1(Q#
β) ∩ C 0(Qβ)-solution to (4-2) is unique, if it exists.

We prove the existence of solutions to (4-2). As before, we use an approximation argument. Let gϵ be
the smooth approximation metrics in Bβ from (3-3). Let uϵ be the C 2,1(Qβ) ∩ C 0(Qβ)-solution to

∂uϵ

∂t
= 1gϵ

uϵ in Qβ and uϵ = ϕ on ∂PQβ . (4-4)

4A1. Estimates of uϵ . We first recall the Li–Yau gradient estimates [26; 35] for positive solutions to the
heat equations.

Lemma 4.1. Let (M, g) be a complete manifold with Ric(g) ≥ 0 and B(p, R) be the geodesic ball
with center p ∈ M and radius R > 0. Let u be a positive solution to the heat equation ∂t u − 1gu = 0
on B(p, R). Then there exists C = C(n) > 0 such that, for all t > 0,

sup
B(p,2R/3)

(
|∇u|

2

u2 −
2u̇t

u

)
≤

C
R2 +

2n
t

,

where u̇t = ∂u/∂t .

By considering the functions uϵ − inf uϵ and sup uϵ − uϵ , from Lemma 4.1, we see that there exists a
constant C = C(n) > 0 such that, for any R ∈ (0, 1) and t ∈ (0, R2),

sup
Bgϵ (0,2R/3)

|∇uϵ |
2
gϵ

≤ C
(

1
R2 +

1
t

)
(oscR uϵ)

2, (4-5)

sup
Bgϵ (0,2R/3)

|1gϵ
uϵ | = sup

Bgϵ (0,2R/3)

∣∣∣∣∂uϵ

∂t

∣∣∣∣ ≤ C
(

1
R2 +

1
t

)
oscR uϵ, (4-6)

where oscR uϵ := oscBgϵ (0,R)×(0,R2) uϵ is the oscillation of uϵ in the cylinder Bgϵ
(0, R)× (0, R2). Replac-

ing uϵ by uϵ − inf uϵ , we may assume uϵ > 0 and define fϵ = log uϵ . Then we have

∂ fϵ
∂t

= 1gϵ
fϵ + |∇ fϵ |2.

Let ϕ(x) = ϕ(r(x)/R), where ϕ is a cut-off function equal to 1 on
[
0, 3

5

]
and 0 on

[2
3 , ∞

)
satisfying the

inequalities |ϕ′′
| ≤ 10 and (ϕ′)2

≤ 10ϕ. Let r(x) be the distance function under gϵ to the center 0.

Lemma 4.2. There exists a constant C = C(n) > 0 such that, for any small ϵ > 0,

sup
Bgϵ (0,3R/5)

|1i uϵ | ≤ C
(

1
t

+
1
R2

)
oscR uϵ for all t ∈ (0, R2),

where we write 1i uϵ := (|zi |
2
+ ϵ)1−βi (∂2uϵ/∂zi∂z ī ) for i = 1, . . . , p.
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Proof. We only prove the case when i = 1. We define F := tϕ(−11 fϵ − 2 ḟϵ), and we calculate(
∂

∂t
− 1gϵ

)
(−11 fϵ − 2 ḟϵ) = −|∇2∇ fϵ |2 − |∇1∇ fϵ |2 − 2 Re⟨∇ fϵ, ∇(−11 fϵ − 2 ḟϵ)⟩ − R11̄ j k̄ fϵ, j̄ fϵ,k

≤ −(−11 fϵ)2
− 2 Re⟨∇ fϵ, ∇(−11 fϵ − 2 ḟϵ)⟩.

F achieves its maximum at a point (p0, t0), where we may assume F(p0, t0) > 0; otherwise we are
already done. In particular, p0 ∈ Bgϵ

(
0, 2

3r
)

by the definition of ϕ and t0 > 0. Then at (p0, t0), we have

0 ≤

(
∂

∂t
− 1gϵ

)
F

=
F
t0

+ t0ϕ
(

∂

∂t
− 1gϵ

)
(−11 fϵ − 2 ḟϵ) −

F
ϕ

1gϵ
ϕ − 2t0 Re

〈
∇ϕ, ∇

(
F

t0ϕ

)〉
≤

F
t0

+ t0ϕ
(
−(−11 fϵ)2

− 2
F

t0ϕ2 Re⟨∇ fϵ, ∇ϕ⟩

)
+ C

F
R2ϕ

(ϕ′
+ ϕ′′) + 2

F
R2ϕ2 (ϕ′)2, (4-7)

where we use the Laplacian comparison and the fact that ∇F = 0 at (p0, t0). The second term on the
right-hand side satisfies (we write F̃ := −11 fϵ − 2 ḟϵ for convenience of notation)

t0ϕ
(
−(−11 fϵ)2

− 2
F

t0ϕ2 Re⟨∇ fϵ, ∇ϕ⟩

)
≤ t0ϕ

(
−F̃2

− 4F̃ ḟϵ − 4( ḟϵ)2
+

2F̃
ϕ

|∇ fϵ ||ϕ′
|

R

)
≤ t0ϕ

(
−F̃2

− 4F̃ ḟϵ + 2F̃ |∇ fϵ |2 +
F̃ |ϕ′

|
2

2R2ϕ2

)
≤ t0ϕ

(
−F̃2

+
F̃ |ϕ′

|
2

2R2ϕ2 + C
F̃
t0

+ C
F̃
R2

)
(by Lemma 4.1)

= −
F2

t0ϕ
+ C

F
2R2ϕ

+ C
F
t0

+ C
F
R2 .

Inserting this into (4-7), we get, for some constant C = C(n) > 0, at (p0, t0),

−F2
+ CϕF +

t0ϕF
R2 + Ct0

F
R2 ≥ 0,

from which we obtain F(p0, t0) ≤ Ct0/R2
+ C . By the choice of (p0, t0), we can see that

sup
Bgϵ (0,R/2)

(−11 fϵ − 2 ḟϵ) ≤ C
(

1
R2 +

1
t

)
for all t ∈ (0, R2),

which implies that, on Bgϵ

(
0, 3

5 R
)
× (0, R2),

−11uϵ ≤ u̇ϵ + C
(

1
t

+
1
R2

)
uϵ . (4-8)

Applying (4-8) to the function sup uϵ − uϵ , we obtain, on Bgϵ

(
0, 3

5 R
)
× (0, R2),

|11uϵ | ≤ |u̇ϵ | + C
(

1
t

+
1
R2

)
oscR uϵ ≤ C

(
1
t

+
1
R2

)
oscR uϵ

by (4-6). Thus we finish the proof of the lemma. □
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Lemma 4.3. There exists a constant C = C(n) > 0 such that

sup
i ̸= j

sup
Bgϵ (0,R/2)

(|∇i∇ j uϵ | + |∇i∇ j uϵ |) ≤ C
(

1
t

+
1
R2

)
oscR uϵ

for all t ∈ (0, R2). Recall, here |∇i∇ j uϵ |
2
= ∇i∇ j uϵ∇ī∇ j̄ uϵgi ī

ϵ g j j̄
ϵ (no summation over i, j is taken).

Proof. We only prove the estimate for |∇1∇2uϵ |. The other estimates are similar, so we omit their proofs.
By calculations similar to those used to derive (3-27), we have(
∂

∂t
−1gϵ

)
|∇1∇2 fϵ | ≤ 2 Re⟨∇ fϵ, ∇|∇1∇2 fϵ |⟩+

∑
k

(|∇1∇k fϵ ||∇2∇k̄ fϵ |+ |∇2∇k fϵ ||∇1∇k̄ fϵ |), (4-9)

and similar to (3-20),(
∂

∂t
− 1gϵ

)
(−11 fϵ − 12 fϵ) ≤ 2 Re⟨∇ fϵ, ∇(−11 fϵ − 12 fϵ)⟩

−

∑
k

(|∇1∇k fϵ |2 + |∇1∇k̄ fϵ |2 + |∇2∇k fϵ |2 + |∇2∇k̄ fϵ |2). (4-10)

Combining (4-10), (4-9) and the Cauchy–Schwarz inequality, we get(
∂

∂t
−1gϵ

)
(|∇1∇2 fϵ |+2(−11 fϵ−12 fϵ))

≤ 2Re⟨∇ fϵ,∇(|∇1∇2 fϵ |+2(−11 fϵ−12 fϵ))⟩−
∑

k

(|∇1∇k fϵ |2+|∇1∇k̄ fϵ |2+|∇2∇k fϵ |2+|∇2∇k̄ fϵ |2)

≤ 2Re⟨∇ fϵ,∇(|∇1∇2 fϵ |+2(−11 fϵ−12 fϵ))⟩− 1
10(|∇1∇2 fϵ |+2(−11 fϵ−12 fϵ))2.

We define a cut-off function η similar to ϕ in the proof of Lemma 4.2 such that η = 1 on Bgϵ

(
0, 1

2 R
)

and η vanishes outside Bgϵ

(
0, 3

5 R
)
. We write

G = tη(|∇1∇2 fϵ | + 2(−11 fϵ − 12 fϵ) − 2 ḟϵ).

Like we did for F in the proof of Lemma 4.2, we argue similarly that at the maximum point (p0, t0) of G,
for which we assume G(p0, t0) > 0,

0 ≤

(
∂

∂t
− 1gϵ

)
G ≤

G
t0

−
G2

t0η
+ C

G
R2η

+ C
G
t0

+ C
G
R2 + C

G
R2

η′
+ η′′

η
+

2G
R2η2 (η′)2

≤
1

t0η

(
−G2

+ CηG +
t0ηG

R2 + Ct0
G
R2

)
,

so it follows that G(p0, t0) ≤ C(1 + t0/R2). Therefore by the definition of G, on Bgϵ

(
0, 1

2 R
)
× (0, R2),

|∇1∇2 fϵ | + 2(−11 fϵ − 12 fϵ) − 2 ḟϵ ≤ C
(

1
R2 +

1
t

)
,

and thus by Lemmas 4.1 and 4.2, we conclude that, on Bgϵ

(
0, 1

2 R
)
× (0, R2),

|∇1∇2uϵ | ≤ u̇ϵ + 2|11uϵ | + 2|12uϵ | +
|∇uϵ |

2

uϵ

+ Cuϵ

(
1
R2 +

1
t

)
≤ C

(
1
t

+
1
R2

)
oscR uϵ,

as desired. □
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4A2. Existence of a solution u to (4-2). We will show the limit function of uϵ as ϵ → 0 solves (4-2).

Proposition 4.4. Given any R ∈ (0, 1) and any ϕ ∈ C 0(∂PQβ(0, R)), there exists a unique function
u ∈ C 2,1(Qβ(0, R)#) ∩ C0(Qβ(0, R)) solving (4-2). Moreover, there exists a constant C = C(n, β) > 0
such that, for any t ∈ (0, R2) we have (defining Bβ(r)#

:= Bβ(0, r)\S),

sup
Bβ (R/2)#

( p∑
j=1

|z j |
2−2β j

∣∣∣∣ ∂u
∂z j

∣∣∣∣2

+ |D′u|
2
)

≤ C
(

1
t

+
1
R2

)
(oscR u)2, (4-11)

sup
Bβ (R/2)#

(∑
i ̸= j

(|∇i∇ j u|gβ
+ |∇i∇ j u|gβ

) +

∣∣∣∣∂u
∂t

∣∣∣∣) ≤ C
(

1
t

+
1
R2

)
oscR u, (4-12)

sup
Bβ (R/2)#

( p∑
j=1

|∇gβ
1 j u| + |∇gβ

(D′)2u| +

∣∣∣∣∇gβ

∂u
∂t

∣∣∣∣) ≤ C
(

1
t

+
1
R2

)3/2

oscR u, (4-13)

where by abusing notation we write oscR u := oscBβ (0,R)×(0,R2) u.

Proof. Let uϵ be the C 2,1-solution to (4-4). The C 0-norm of uϵ follows from the maximum principle
(4-3).

To prove the higher-order estimates, for any fixed compact subset K ⋐ Bβ(0, R) and δ > 0, standard
parabolic Schauder theory yields uniform C 4+α,(4+α)/2-estimates of uϵ on (K\TδS) × (δ, R2

] for any
α ∈ (0, 1). As ϵ → 0, uϵ converges in C 4+α,(4+α)/2(K\TδS ∩ (δ, R2

]) to some function u which is also
C 4+α,(4+α)/2 in (K\TδS) × (δ, R2

]. Letting δ → 0 and K → Bβ(0, R) and using a diagonal argument,
we can assume that

uϵ

C
4+α,(4+α)/2

loc (Bβ (0,R)#
×(0,R2

])
−−−−−−−−−−−−−−−−−→ u as ϵ → 0.

Letting ϵ → 0, estimate (4-11) follows from (4-5); (4-12) is a consequence of Lemma 4.3; and (4-13)
follows by applying the gradient estimate (4-5) to the 1gϵ

-harmonic functions 1 j uϵ , (D′)2uϵ and ∂uϵ/∂t ,
and then letting ϵ → 0.

The gradient estimate (4-11) implies that, for any compact K ⋐ Bβ(0, R),

sup
K\S j

∣∣∣∣ ∂u
∂z j

∣∣∣∣ ≤
C(n, K , β)(oscR u)2

t
|z j |

β j −1 for all t ∈ (0, R2).

From this, for any t ∈ (0, R2), we see that u( · , t) can be continuously extended to S, and thus we have
u ∈ C0(Bβ(0, R) × (0, R2)).

It only remains to show u = ϕ on ∂PQβ(0, R). Fix an arbitrary point (q0, t0) ∈ ∂P(Qβ(0, R)).

Case 1: t0 = 0 and q0 ∈ Bβ(0, R). We define a barrier function φ1(z, t) = e−dCn (z,q0)
2
−λt

−1, where λ > 0
is to be determined. If λ ≥ 4n, we calculate(

∂

∂t
− 1gϵ

)
φ1 = −λe−dCn (z,q0)

2
−λt

− (−1gϵ
d2

Cn + |∇d2
Cn |

2
gϵ

)e−dCn (z,q0)
2
−λt

≤

(
−λ +

p∑
j=1

(|z j |
2
+ ϵ)1−β j + (n − p)

)
e−dCn (z,q0)

2
−λt < 0.
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On the other hand, φ1(q0, t0)=0 and φ1(z, t)<0 for any (z, t) ̸= (q0, t0). For any ε>0, we can find a small
neighborhood V ∩∂P(Qβ(0, R)) of (q0, t0) such that, on V , we have ϕ(q0, t0)+ε >ϕ(z, t)>ϕ(q0, t0)−ε,
since ϕ is continuous. On ∂P(Qβ(0, R))\V , the function φ1 is bounded above by a negative constant.
Therefore the function φ−

1 := ϕ(q0, t0)− ε + Aφ1(z, t) ≤ ϕ(z, t) for any (z, t) ∈ ∂P(Qβ(0, R)) if A ≫ 1.
Therefore, by the maximum principle, φ−

1 (z, t)≤uϵ(z, t) for any (z, t)∈Qβ(0, R). Letting ϵ →0, we have
φ−

1 (z, t) ≤ u(z, t). Letting (z, t) → (q0, t0) yields ϕ(q0, t0)−ε ≤ lim inf(z,t)→(q0,t0) u(z, t). Setting ε → 0,
we conclude that ϕ(q0, t0) ≤ lim inf(z,t)→(q0,t0) u(z, t). Considering φ+

1 (z, t) = ϕ(q0, t0) + ε − Aφ1(z, t)
and using an argument similar to that above, we can get ϕ(q0, t0) ≥ lim sup(z,t)→(q0,t0) u(z, t). Thus u
coincides with ϕ at (q0, t0).

Case 2: t0 > 0 and q0 ∈ ∂ Bβ(0, R) ∩ (S1 ∩S2). In this case z1(q0) = z2(q0) = 0. We define q ′

0 = −q0 ∈

∂ Bβ(0, R) to be the (Euclidean) opposite point to q0. For some small δ > 0, define

φ2(z, t) = dCn (z, q ′

0)
2
− 4R2

− δ(t − t0)2.

Then φ2(q0, z0) = 0 and φ(z, t) < 0 for any (z, t) ̸= (q0, t0). We calculate ∂tφ2 − 1gϵ
φ2 ≤ 0. By an

argument similar to Case 1, replacing φ1 by φ2 we get lim(z,t)→(q0,t0) u(z, t) = ϕ(q0, t0).

Case 3: t0 > 0 and q0 ∈ ∂ Bβ(0, R)\(S1 ∩S2). As in Case 2 in the proof of Proposition 3.5, we define a
similar function G. Define φ3(z, t) = A(dβ(z, 0)2

− R2)+ G(z)− δ(t − t0)2 for A ≫ 1 and small δ > 0.
Then we can calculate that ∂tφ3 ≤ 1gϵ

φ3, φ3(q0, t0) = 0 and φ3(z, t) < 0 for any other (z, t) ̸= (q0, t0).
Similar arguments to those in Case 1 proves that

lim
(z,t)→(q0,t0)

u(z, t) = ϕ(q0, t0).

Combining the three cases above, we obtain that u coincides with ϕ on ∂PQβ(0, R). Thus the Dirichlet
problem (4-2) admits a unique solution u ∈ C 0(Qβ(0, R)) ∩ C 2,1(Qβ(0, R)#). □

Corollary 4.5. Given any functions f ∈ C
α,α/2
β (Qβ) and ϕ ∈ C 0(∂PQβ), there exists a unique solution

v ∈ C 2,1(Q#
β) ∩ C 0(Qβ) to the Dirichlet problem

∂v

∂t
= 1gβ

v + f in Qβ and v = ϕ on ∂PQβ . (4-14)

Proof. Let vϵ ∈ C 2+α,(2+α)/2(Qβ) ∩ C 0(Qβ) be the unique solution to the equations

∂vϵ

∂t
= 1gϵ

vϵ + f in Qβ and vϵ = ϕ on ∂PQβ .

For any compact subset K ⋐ Bβ(0, 1) and δ ∈ (0, 1), the standard Schauder estimates for parabolic
equations provide uniform C 2+α,(2+α)/2-estimates for vϵ on K\TδS × (δ2, 1). Then vϵ → v for some
v ∈ C 2+α,(2+α)/2(K\TδS × (δ2, 1)). Taking δ → 0 and K → Bβ(0, 1) and using a diagonal argument, we
get that vϵ converges in C

2+α,(2+α)/2
loc (Bβ\S × (0, 1)) to v and v satisfies the equation ∂v/∂t = 1gβ

v + f
on Bβ\S × (0, 1).

It only remains to show v ∈ C 0(Qβ) and v = ϕ on ∂PQβ . The same proof as in Cases 1, 2 and 3
in Proposition 4.4 yields that v must coincide with ϕ on ∂PQβ , since we can always choose A > 1
large enough that (for example in Case 1) ∂φ−

1 /∂t − 1gϵ
φ−

1 ≤ infQβ
f ≤ ∂vϵ/∂t − 1gϵ

vϵ . To see
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the continuity of v in Qβ , because of the Sobolev inequality (3-42) for metric spaces (Bβ, gϵ) and by
the proof of the standard De Giorgi–Nash–Moser theory for parabolic equations, we conclude that,
for any p ∈ S and t0 ∈ (0, 1), there exists a small number R0 = R0(p, t0) such that, on the cylinder
Q̃R0 := Bβ(p, R0) × (t0 − R2

0, t0), we have oscQ̃r
vϵ ≤ Crα′

for any r ∈ (0, R0) and some α′
∈ (0, 1).

Therefore oscQ̃r
v ≤ Crα′

and v is continuous at (p, t0), as desired.
The uniqueness of the solution to (4-14) follows from the maximum principle. □

Remark 4.6. Corollary 4.5 is not needed in the proof of Theorem 1.7. So by Theorem 1.7, the solution u
to (4-14) is in C

2+α,(2+α)/2
β (Qβ) ∩ C 0(Qβ).

4B. Sketched proof of Theorem 1.7. With Proposition 4.4, we can prove the Schauder estimates for the
solution u ∈ C 0(Qβ) ∩ C 2,1(Q#

β) to (4-1) for a Dini-continuous function f by making use of almost the
same arguments as in the proof of Theorem 1.2. We will not provide the full details and only point out
the main differences. For any given points Q p = (p, tp), Qq = (q, tq) ∈

(
Bβ

(
0, 1

2

)
\S

)
× (t̂, 1), to define

the approximating functions uk as in (3-44), we define uk in this case as the solution to the heat equation

∂uk

∂t
= 1gβ

uk + f (Q p) in B̂k(p) × (tp − t̂ · τ 2k, tp], uk = u on ∂P(B̂k(p) × (tp − t̂ · τ 2k, tp]),

where B̂k(p) is defined in (3-48). We can now apply the estimates in Proposition 4.4 to the functions uk

or uk − uk−1, instead of those in Lemmas 3.3 and 3.4 as we did in Sections 3B, 3C and 3D, to prove the
Schauder estimates for u. Thus we finish the proof of Theorem 1.7. □

4C. Interior Schauder estimate for nonflat conical Kähler metrics. Let g =
√

−1g j k̄(z, t) dz j ∧ dzk̄ be
a C

α,α/2
β conical Kähler metric on Qβ with conical singularity along S; that is, g( · , t) is a C0,α

β conical
Kähler metric (from Section 3E) for any t ∈ [0, 1], and the coefficients of g in the basis {ϵ j ∧ ϵ̄k , . . . } are
1
2α-Hölder continuous in t ∈ [0, 1]. Suppose u ∈ C

2+α,(2+α)/2
β (Qβ) satisfies the equation

∂u
∂t

= 1gu + f in Qβ (4-15)

for some f ∈ C α,α/2(Qβ).

Proposition 4.7. There exists a constant C = C(n, β, α, g) such that

∥u∥
∗

C
2+α,(2+α)/2
β (Qβ )

≤ C(∥u∥C 0(Qβ ) + ∥ f ∥
(2)

C
α,α/2
β (Qβ )

).

Proof. The proof is parallel to that of Proposition 3.32. Given any two points Px = (x, tx), Py = (y, tx)∈Qβ ,
we may assume dPx = min{dPx , dPy } > 0, where dPx := dP,β(Px , ∂PQβ) is the parabolic distance of Px to
the parabolic boundary ∂PQβ . Let µ∈

(
0, 1

4

)
be a positive number to be determined later. Define d :=µdPx ,

Q := Bβ(x, d)× (tx − d2, tx ] the “parabolic ball” centered at Px , and 1
2Q := Bβ

(
x, 1

2 d
)
×

(
tx −

1
4 d2, tx

]
.

Case 1: dP,β(Px , Py) < 1
2 d . In this case we always have Py ∈

1
2Q.

Case 1a: Bβ(x, d) ∩ S = ∅. As in the proof of Proposition 3.32, we can introduce smooth complex
coordinates {w1, w2, z3, . . . , zn} on Bβ(x, d) under which gβ becomes the standard Euclidean metric and
the components of g are C α,α/2 in the usual sense on Q. The leading coefficients and constant term f
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in (4-15) are both C α,α/2 in the usual sense, so we apply the standard parabolic Schauder estimates (see
Theorem 4.9 in [27]) to get that there exists some constant C = C(n, β, α, g) independent of Q such that

[u]
∗

C 2+α,(2+α)/2(Q)
≤ C(∥u∥C 0(Q) + ∥ f ∥

(2)

C α,α/2(Q)
). (4-16)

Let D denote the ordinary first-order operators in the coordinates {w1, w2, z3, . . . , zn}. We calculate

|T u(Px) − T u(Py)| ≤ |D2u(Px) − D2u(Py)| +
dP,β(Px , Py)

d
(|D2u(Px)| + |D2u(Py)|)

≤
4dP,β(Px , Py)

α

d2+α
[u]

∗

C 2+α,(2+α)/2(Q)
+

4dP,β(Px , Py)

d3 [u]
∗

C 2,1(Q)

≤
8dP,β(Px , Py)

α

d2+α
[u]

∗

C 2+α,(2+α)/2(Q)
+ C

dP,β(Px , Py)
α

d2+α
∥u∥C 0(Q)

and ∣∣∣∣∂u
∂t

(Px) −
∂u
∂t

(Py)

∣∣∣∣ ≤
4dP,β(Px , Py)

α

d2+α
[u]

∗

C 2+α,(2+α)/2(Q)
.

Recall T denotes the operators in T and ∂/∂t ; then by (4-16) it follows that

d2+α
Px

|T u(Px) − T u(Py)|

dP,β(Px , Py)α
≤

C
µ2+α

∥ f ∥
(2)

C
α,α/2
β (Q)

+
C

µ2+α
∥u∥C 0(Q). (4-17)

Case 1b: Bβ(x, d)∩S ̸=∅. Let x̂ ∈S be the projection of x onto S and P̂x = (x̂, tx) be the corresponding
space-time point. Define Q̂ := Bβ(x̂, 2d)× (tx − 4d2, tx ]. As in Case 1b in the proof of Proposition 3.32,
we may choose suitable enough complex coordinates that gϵ j ϵ̄k (P̂x) = δ jk and, for j, k ≥ p + 1, we have
g j k̄(P̂x) = δ jk and the cross terms in the expansion of g in (3-114) vanish at P̂x . Thus (4-15) can be
rewritten as

∂u
∂t

= 1gβ
u + η ·

√
−1∂∂̄u + f =: 1gβ

u + f̃ , u ∈ C 0(Q̂) ∩ C 2,1(Q̂#),

for some (1, 1)-form η as in the proof of Proposition 3.32. From the rescaled version of Theorem 1.7 we
conclude that

d2+α |T u(Px) − T u(Py)|

dP,β(Px , Py)α
≤ C(∥u∥C 0(Q̂) + ∥ f̃ ∥

(2)

C
α,α/2
β (Q̂)

).

Hence

d2+α
Px

|T u(Px) − T u(Py)|

dP,β(Px , Py)α
≤

C
µ2+α

(∥u∥C 0(Q̂) + ∥ f̃ ∥
(2)

C
α,α/2
β (Q̂)

). (4-18)

Case 2: dP,β(Px , Py) ≥
1
2 d. Here we calculate (recall Qβ := Bβ(0, 1) × (0, 1])

d2+α
Px

|T u(Px) − T u(Py)|

dP,β(Px , Py)α
≤ 4d2+α

Px

|T u|(Px) + |T u|(Py)

dα
≤

8
µα

[u]
∗

C
2,1
β (Qβ )

. (4-19)

Combining (4-17)–(4-19), we obtain

d2+α
Px

|T u(Px) − T u(Py)|

dP,β(Px , Py)α
≤

8
µα

[u]
∗

C
2,1
β (Qβ )

+
C

µ2+α
(∥u∥C 0(Q̂) + ∥ f̃ ∥

(2)

C
α,α/2
β (Q̂)

)

+
C

µ2+α
∥ f ∥

(2)

C
α,α/2
β (Q)

+
C

µ2+α
∥u∥C 0(Q).
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Observe that, for any P ∈ Q or P ∈ Q̂, we have dP,β(P, ∂PQβ) ≥ (1 − 2µ)dPx . Then it follows from
the definition that

∥ f ∥
(2)

C
α,α/2
β (Q)

≤ Cµ2
∥ f ∥

(2)

C 0(Qβ )
+ Cµ2+α

[ f ]
(2)

C
α,α/2
β (Qβ )

≤ Cµ2
∥ f ∥

(2)

C
α,α/2
β (Qβ )

.

We calculate

∥ f̃ ∥
(2)

C
α,α/2
β (Q̂)

≤ ∥η∥
(0)

C
α,α/2
β (Q̂)

∥T u∥
(2)

C
α,α/2
β (Q̂)

+ ∥ f ∥
(2)

C
α,α/2
β (Q̂)

≤ C1[g]
∗

C
α,α/2
β (Qβ )

µα(µ2
[u]

∗

C
2,1
β (Qβ )

+ µ2+α
[u]

∗

C
2+α,(2+α)/2
β (Qβ )

) + µ2
∥ f ∥

(2)

C
α,α/2
β (Qβ )

≤ C1[g]
∗

C
α,α/2
β (Qβ )

µα(C(µ)[u]
∗

C
2,1
β (Qβ )

+ 2µ2+α
[u]

∗

C
2+α,(2+α)/2
β (Qβ )

) + µ2
∥ f ∥

(2)

C
α,α/2
β (Qβ )

,

where in the last inequality we use the interpolation inequality, by which we also have

8
µα

[u]
∗

C
2,1
β (Qβ )

≤ µα
[u]

∗

C
2+α,(2+α)/2
β (Qβ )

+ C(µ)∥u∥C 0(Qβ ).

If µ is chosen small enough that µα(2C1[g]
∗

C
α,α/2
β (Qβ )

+ 1) < 1
2 , combining the above inequalities yields

d2+α
Px

|T u(Px) − T u(Py)|

dP,β(Px , Py)α
≤

1
2 [u]

∗

C
2+α,(2+α)/2
β (Qβ )

+ C(µ)(∥u∥C 0(Qβ ) + ∥ f ∥
(2)

C
α,α/2
β (Qβ )

).

Taking the supremum over all Px ̸= Py ∈ Qβ , we obtain

[u]
∗

C
2+α,(2+α)/2
β (Qβ )

≤ C(∥u∥C 0(Qβ ) + ∥ f ∥
(2)

C
α,α/2
β (Qβ )

).

The proposition is proved by invoking the interpolation inequalities. □

Remark 4.8. It follows from the proof that the estimates in Proposition 4.7 also hold on Qβ(p, R) :=

Bβ(p, R) × (0, R2) ⊂ Qβ , i.e., the cylinder whose spatial center p may not lie in S.

It is easy to derive the following local Schauder estimate for C
2+α,(2+α)/2
β -solutions to (4-15) from

Proposition 4.7.

Corollary 4.9. Let K ⋐ Bβ(0, 1) be a compact subset and ε0 ∈ (0, 1) be a given number. With the same
assumptions as in Proposition 4.7, there exists a constant C = C(n, β, α, g, K , ε0) > 0 such that

∥u∥C 2+α,(2+α)/2(K×[ε0,1]) ≤ C(∥u∥C 0(Qβ ) + ∥ f ∥
C

α,α/2
β (Qβ )

).

With the interior Schauder estimates in Proposition 4.7, we can show the existence of C
2+α,(2+α)/2
β (Qβ)-

solutions to the Dirichlet problem

∂u
∂t

= 1gu + f in Qβ and u = ϕ on ∂PQβ (4-20)

for any given f ∈ C
α,α/2
β (Qβ) and ϕ ∈ C 0(∂PQβ). We first show the existence of solutions to (4-20) in

the case ϕ ≡ 0.



816 BIN GUO AND JIAN SONG

Lemma 4.10. Let σ ∈ (0, 1) be given and u ∈ C
2+α,(2+α)/2
β (Qβ) solve (4-20), with ∥u∥

(−σ)

C 0(Qβ )
< ∞ and

∥ f ∥
(2−σ)

C
α,α/2
β (Qβ )

< ∞. Then there is a constant C = C(n, α,β, g, σ ) > 0 such that

∥u∥
(−σ)

C
2+α,(2+α)/2
β (Qβ )

≤ C(∥u∥
(−σ)

C 0(Qβ )
+ ∥ f ∥

(2−σ)

C
α,α/2
β (Qβ )

).

Proof. The lemma follows from the definitions of the norms and the estimates in Proposition 4.7. □

Lemma 4.11. Suppose u ∈ C 2,1
β (Qβ)∩C 0(Qβ) satisfies ∂u/∂t = 1gu + f and u ≡ 0 on ∂PQβ . For any

σ ∈ (0, 1), there exists a constant C = C(n, β, g, σ ) > 0 such that

∥u∥
(−σ)

C 0(Qβ )
= sup

Px∈Qβ

d−σ
Px

|u(Px)| ≤ C sup
Px∈Qβ

d2−σ
Px

| f (Px)| = C∥ f ∥
(2−σ)

C 0(Qβ )
,

where dPx = dP,β(Px , ∂PQβ) is the parabolic distance of Px to the parabolic boundary ∂PQβ .

Proof. We write N := ∥ f ∥
(2−σ)

C0(Qβ )
< ∞ and Px = (x, tx). Define functions

w1(Px) = (1 − dβ(x)2)σ and w2(Px) = tσ/2
x ,

where dβ(x) = dβ(x, 0) is the gβ-distance between x and 0. Observe that dPx = min{1 − dβ(x), t1/2
x } by

definition. By a straightforward calculation there is a constant c0 > 0 such that(
∂

∂t
− 1g

)
w1 ≥ c0(1 − dβ(x))σ−2 and

(
∂

∂t
− 1g

)
w2 ≥ c0(t1/2

x )σ−2.

By the maximum principle we get

|u(Px)| ≤ Nc−1
0 (w1(Px) + w2(Px)) for all Px ∈ Qβ . (4-21)

We take the decomposition of Qβ into different regions, Qβ = �1 ∪ �2, where

�1 := {Px ∈ Qβ | t1/2
x > 1 − dβ(x)},

�2 := {Px ∈ Qβ | t1/2
x ≤ 1 − dβ(x)}.

Inequality (4-21) implies that, on the parabolic boundaries ∂P�1 and ∂P�2, we have |u(Px)| ≤ 2Nc−1
0 dσ

Px
.

On �1 we have (∂/∂t − 1g)(2Nc−1
0 w1 ± u) ≥ 0 and 2Nc−1

0 w1 ± u ≥ 0 on ∂P�1, so the maximum
principle implies that 2Nc−1

0 w1 ± u ≥ 0 in �1, i.e., |u(Px)| ≤ 2Nc−1
0 dσ

Px
in �1. Similarly we also have

2Nc−1
0 w2 ± u ≥ 0 in �2, and thus |u(Px)| ≤ 2Nc−1

0 dσ
Px

in �2. In conclusion, we get

|u(Px)| ≤ 2c−1
0 Ndσ

Px
for all Px ∈ Qβ . □

Proposition 4.12. If ϕ ≡ 0, equation (4-20) admits a unique solution u ∈ C
2+α,(2+α)/2
β (Qβ) ∩ C 0(Qβ)

for any f ∈ C
α,α/2
β (Qβ).

Proof. Uniqueness follows from the maximum principle, so it suffices to show existence. We will use
the continuity method. Define a continuous family of linear operators as follows: for s ∈ [0, 1], let
Ls := s(∂/∂t − 1g) + (1 − s)(∂/∂t − 1gβ

). It can been seen that Ls = ∂/∂t − 1gs for some conical
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Kähler metric gs which is uniformly equivalent to gβ and has uniform C
α,α/2
β -estimate. So the interior

Schauder estimates holds also for Ls . Fix σ ∈ (0, 1). Define

B1 := {u ∈ C
2+α,(2+α)/2
β (Qβ) | ∥u∥

(−σ)

C
2+α,(2+α)/2
β (Qβ )

< ∞},

B2 := { f ∈ C
α,α/2
β (Qβ) | ∥ f ∥

(2−σ)

C
α,α/2
β (Qβ )

< ∞}.

Observe that any u ∈ B1 is continuous in Qβ and vanishes on ∂PQβ . Ls defines a continuous family of
linear operators from B1 to B2. By Lemmas 4.10 and 4.11 we have

∥u∥B1 ≤ C(∥u∥
(−σ)

C 0(Qβ )
+ ∥Lsu∥B2) ≤ C∥Lsu∥B2 for all s ∈ [0, 1] and for all u ∈ B1.

By Corollary 4.5 and Remark 4.6, L0 is invertible, thus by Theorem 5.2 in [18], L1 is also invertible. □

Corollary 4.13. For any ϕ ∈ C 0(∂PQβ) and f ∈ C
α,α/2
β (Qβ), equation (4-20) admits a unique solution

u ∈ C
2+α,(2+α)/2
β (Qβ) ∩ C 0(Qβ).

Proof. The proof is identical to that of Corollary 3.39 by an approximation argument. We may assume
ϕ ∈ C 0(Qβ) and choose a sequence ϕk ∈ C

2+α,(2+α)/2
β (Qβ) which converges uniformly to ϕ on Qβ . The

equations
∂vk

∂t
= 1gvk + f − 1gϕk and vk ≡ 0 on ∂PQβ

admit a unique C
2+α,(2+α)/2
β -solution by Proposition 4.12. The interior Schauder estimates in Corollary 4.9

imply that uk := vk + ϕk converges in C
2+α,(α+2)/2
β,loc to some function u in C

2+α,(2+α)/2
β (Qβ) which

solves (4-20). The C 0-convergence uk → u is uniform on Qβ by the maximum principle, so u = ϕ

on ∂PQβ , as desired. □

We recall the definition of weak solutions and refer to Section 7.1 in [17] for the notations.

Definition 4.14. We say a function u on Qβ is a weak solution to the equation ∂u/∂t = 1gu + f if:

(1) u ∈ L2(0, 1; H 1(Bβ)) and ∂u/∂t ∈ L2(0, 1; H−1(Bβ)).

(2) For any v ∈ H 1
0 (Bβ) and t ∈ (0, 1),∫

Bβ

∂u(x, t)
∂t

v(x)ωn
g = −

∫
Bβ

⟨∇u(x, t), ∇v(x)⟩gω
n
g +

∫
Bβ

f (x, t)v(x)ωn
g.

On can use the classical Galerkin approximations to construct a weak solution to ∂u/∂t = 1gu + f
(see Section 7.1.2 in [17]). If f has better regularity, so does the weak solution u.

Lemma 4.15. If f ∈ C
α,α/2
β (Qβ), then any weak solution to

∂u
∂t

= 1gu + f

belongs to C
2+α,(α+2)/2
β (Qβ).
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Proof. The Sobolev inequality holds for the metric g, so by the proof of the standard De Giorgi–Nash–
Moser theory for parabolic equations we have that u is in fact continuous on Qβ . Since the metric g is
smooth on Q#

β , the weak solution u is also a weak solution in Q#
β with the smooth background metric, so

we have that u ∈ C
2+α,(2+α)/2

loc (Q#
β) in the usual sense by the classical Schauder estimates. Thus it suffices

to consider points at S. We choose the worst such point 0 ∈ S only, since the case when centers are in
other components of S is even simpler. We fix the point P0 = (0, t0) ∈ Qβ with t0 > 0. Fix r ∈ (0,

√
t0).

By Corollary 4.13,
∂v

∂t
= 1v + f in Qβ(P0, r) := Bβ(0, r) × (t0 − r2, t0]

with boundary value v = u on ∂PQβ(P0, r) admits a unique solution v ∈ C 2+α,(α+2)/2β (Qβ (P0,r)). Then by
the maximum principle u = v in Qβ(P0, r). Thus u ∈ C

2+α,(α+2)/2
β (Qβ(P0, r)) too. Since the argument

also works at other space-time points in SP , we see that u ∈ C
2+α,(2+α)/2
β (Qβ), as desired. □

Corollary 4.16. Let (X, g, D) be as in Corollary 3.41, and let u0 ∈ C0(X) and f ∈ C
α,α/2
β (X × (0, 1])

be given functions. The weak solution u to the equation

∂u
∂t

= 1gu + f in X × (0, 1], u|t=0 = u0

always exists. Moreover, u ∈ C
2+α,(2+α)/2
β (X × (0, 1]), and there exists a constant C = C(n, g, β, α) > 0

such that
∥u∥

C
2+α,(2+α)/2
β (X×(1/2,1])

≤ C(∥u0∥C0(X) + ∥ f ∥
C

α,α/2
β (X×(0,1])

).

Proof. The weak equation can be constructed using the Galerkin approximations [17]. The uniqueness
is an easy consequence of the maximum principle. The regularity of u follows from the local results in
Lemma 4.15. The estimate follows from the maximum principle, a covering argument as in Corollary 3.41,
and the local estimates in Corollary 4.9. □

The interior estimate in Corollary 4.16 is not good enough to show the existence of solutions to
nonlinear partial differential equations since the estimate becomes worse as t approaches 0. We need
some global estimates in the whole time interval t ∈ [0, 1] if the initial value u0 has better regularity.

4D. Schauder estimate near t = 0. In this subsection, we will prove a Schauder estimate in the whole
time interval for the solutions to the heat equation when the initial value is 0 or has better regularity. We
consider the model case with the background metric gβ first, then we generalize the estimate to general
nonflat conical Kähler metrics.

4D1. The model case. In this subsection, we will assume the background metric is gβ . Let u be the
solution to the equation

∂u
∂t

= 1gβ
u + f in Qβ, u|t=0 ≡ 0, (4-22)

and u = ϕ ∈ C 0 on ∂ Bβ × (0, 1], where f ∈ C
α,α/2
β (Qβ). In the calculations below, we should have used

the smooth approximating solutions uϵ , where ∂t uϵ = 1gϵ
uϵ + f and uϵ = u on ∂PQβ . But by letting

ϵ → 0, the corresponding estimates also hold for u. So for simplicity, we will work directly on u.
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We fix 0 < ρ < R ≤ 1 and define BR := Bβ(0, R) and Q R := BR × [0, R2
] in this section. Let u be

the solution to (4-22). We first have the following Caccioppoli inequalities.

Lemma 4.17. There exists a constant C = C(n) > 0 such that

sup
t∈[0,ρ2]

∫
Bρ

u2ωn
β +

∫∫
Qρ

|∇u|
2
gβ

ωn
β dt ≤ C

(
1

(R − ρ)2

∫∫
Q R

u2ωn
β dt + (R −ρ)2

∫∫
Q R

f 2ωn
β dt

)
(4-23)

and

sup
t∈[0,ρ2]

∫
Bρ

|∇u|
2
gβ

ωn
β +

∫∫
Qρ

(|∇∇u|
2
gβ

+ |∇∇u|
2
gβ

)ωn
β dt

≤ C
(

1
(R − ρ)2

∫∫
Q R

|∇u|
2
gβ

ωn
β dt +

∫∫
Q R

( f − fR)2ωn
β dt

)
, (4-24)

where fR := |Q R|
−1
ωβ

∫∫
Q R

f ωn
β dt is the average of f over the cylinder Q R .

Proof. We fix a cut-off function η such that supp η ⊂ BR , η = 1 on Bρ , and |∇η|gβ
≤ 2/(R − ρ).

Multiplying both sides of (4-22) by η2u and integrating by parts, we get

d
dt

∫
BR

η2u2
=

∫
BR

2η2u1gβ
u + 2η2u f =

∫
BR

−2η2
|∇u|

2
gβ

− 4uη⟨∇u, ∇η⟩gβ
+ 2η2u f

≤

∫
BR

−η2
|∇u|

2
gβ

+ 4u2
|∇η|

2
gβ

+ η2 u
(R − ρ)2 + η2(R − ρ)2 f 2.

Equation (4-23) follows by integrating this inequality over t ∈ [0, s2
] for all s ≤ ρ. To see (4-24), observe

that the Bochner formula yields

∂

∂t
|∇u|

2
≤ 1gβ

|∇u|
2
− |∇∇u|

2
gβ

− |∇∇u|
2
gβ

− 2⟨∇u, ∇ f ⟩gβ
.

Multiplying both sides of this inequality by η2 and integrating by parts, we get

d
dt

∫
BR

η2
|∇u|

2
≤

∫
BR

−2η⟨∇η, ∇|∇u|
2
⟩gβ

− η2
|∇∇u|

2
− η2

|∇∇u|
2
− 2η2

⟨∇u, ∇ f ⟩

≤

∫
BR

4η|∇u||∇η|
∣∣∇|∇u|

∣∣ − η2
|∇∇u|

2
− η2

|∇∇u|
2

4η| f − fR||∇η||∇u| + 2η2
| f − fR||1gβ

u|

≤

∫
BR

−
1
2η2(|∇∇u|

2
+ |∇∇u|

2) + 10η2
|∇u|

2
|∇η|

2
+ 20η2( f − fR)2.

Then (4-24) follows by integrating this inequality over t ∈ [0, s2
] for any s ∈ [0, ρ]. □

Combining (4-23) and (4-24) we conclude that

sup
t∈[0,R2/4]

∫
BR/2

|∇u|
2
+

∫∫
Q R/2

|1gβ
u|

2

≤
C
R4

∫∫
Q R

u2
+ C R2n+2

∥ f ∥
2
C 0(Q R)

+ C R2n+2+2α([ f ]
C

α,α/2
β (Q R)

)2. (4-25)

By a standard Moser iteration argument we get the following sub-mean-value inequality.
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Lemma 4.18. If in addition f ≡ 0, then there exists a constant C = C(n, β) > 0 such that

sup
Qρ

|u| ≤ C
(

1
(R − ρ)2n+2

∫∫
Q R

u2ωn
β dt

)1/2

.

Proof. For any p ≥ 1, multiplying both sides of the equation by η2u p
+, where u+ = max{u, 0}, and

integrating by parts, we get

d
dt

∫
BR

η2

p + 1
u p+1

+ =

∫
BR

−pη2u p−1
+ |∇u+|

2
− 2ηu p

+⟨∇u+, ∇η⟩.

By the Cauchy–Schwarz inequality and integrating over t ∈ [0, R2
], we conclude that

sup
s∈[0,R2]

∫
BR

η2u p+1
+

∣∣∣∣
t=s

+

∫∫
Q R

|∇(ηu(p+1)/2
+ )|2 ≤

C
(R − ρ)2

∫∫
Q R

u p+1
+ ωn

β dt =: A.

By the Sobolev inequality we get∫ R2

0

∫
BR

(η2u p+1
+ )1+1/n

≤

∫ R2

0

(∫
BR

η2u p+1
+

)1/n(∫
BR

(ηu(p+1)/2
+ )2n/(n−1)

)(n−1)/n

≤ A1/nC
∫ R2

0

∫
BR

|∇(ηu(p+1)/2
+ )|2 ≤ C A(n+1)/n.

If we write

H(p, ρ) =

(∫ ρ2

0

∫
Bρ

u p
+

)1/p

,

the inequality above implies

H((p + 1)ξ, ρ) ≤
C1/(p+1)

(R − ρ)2/(p+1)
H(p + 1, R),

where ξ = (n+1)/n >1. Writing pk+1=2ξ k and ρk =ρ+(R−ρ)2−k , we then have H(pk+1+1, ρk+1)≤

H(pk + 1, ρk). Iterating this inequality we get

H(∞, ρ) = sup
Qρ

u+ ≤
C

(R − ρ)n+1

(∫∫
Q R

u2
+

)1/2

.

Similarly we get the same inequality for u− = max{−u, 0}. □

Corollary 4.19. If in addition f ≡ 0, then there is a constant C = C(n, β) > 0 such that∫∫
Qρ

u2ωn
β dt ≤ C

(ρ

R

)2+2n
∫∫

Q R

u2ωn
β dt. (4-26)

Proof. When ρ ∈
[ 1

2 R, R
]
, the inequality is trivial; when ρ ∈

[
0, 1

2 R
)
, it follows from Lemma 4.18. □

Lemma 4.20. If in addition f ≡ 0, then there is a constant C = C(n, β) > 0 such that, for any ρ ∈ (0, R),∫∫
Qρ

u2ωn
β dt ≤ C

(ρ

R

)2n+4
∫∫

Q R

u2ωn
β dt.
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Proof. The inequality is trivial in the case ρ ∈
[ 1

2 R, R
]
, so we assume ρ < 1

2 R. First we observe that 1βu
also satisfies the equations ∂t(1βu) = 1β(1βu) and (1βu)|t=0 ≡ 0, so (4-26) holds with u2 replaced
by (1βu)2, i.e., ∫∫

Qρ

(1βu)2ωn
β dt ≤ C

(ρ

R

)2+2n
∫∫

Q R

(1βu)2ωn
β dt.

Since u|t=0 = 0, we have u(x, t) =
∫ t

0 ∂su(x, s) ds, and we calculate∫∫
Qρ

u2
≤ ρ4

∫∫
Qρ

∣∣∣∣∂u
∂t

∣∣∣∣2

= ρ4
∫∫

Qρ

(1βu)2
≤ Cρ4

(ρ

R

)2n+2
∫∫

Q R/2

(1βu)2

≤ C
(ρ

R

)2n+6
∫∫

Q R

u2ωn
β dt (by (4-25)). □

Lemma 4.21. Let u be a solution to (4-22). There exists a constant C = C(n, β, α) > 0 such that

1
ρ2n+2+2α

∫∫
Qρ

(1βu)2
≤

C
R2n+2+2α

∫∫
Q R

(1βu)2ωn
β dt + C([ f ]

C
α,α/2
β (Q R)

)2.

Proof. Let u = u1 + u2, where

∂u1

∂t
= 1βu1 + fR in Q R, u1 = u on ∂P Q R,

and
∂u2

∂t
= 1βu2 + f − fR in Q R, u2 = 0 on ∂P Q R.

The function 1βu1 satisfies the assumptions of Lemma 4.20. Thus∫∫
Qρ

(1βu1)
2ωn

β dt ≤ C
(ρ

R

)2n+4
∫∫

Q R

(1βu1)
2ωn

β dt.

Multiplying both sides of the equation for u2 by u̇2 = ∂u2/∂t and noting that u̇2 = 0 on ∂ BR × (0, R2),
we get ∫

BR

(u̇2)
2
=

∫
BR

u̇21βu2 + u̇2( f − fR) =

∫
BR

−2⟨∇u̇2, ∇u2⟩ + u̇( f − fR)

≤

∫
BR

−
∂

∂t
|∇u2|

2
+

1
2(u̇2)

2
+ 2( f − fR)2.

Integrating over t ∈ [0, R2
], we obtain∫∫

Q R

(u̇2)
2
≤ −2

∫
BR

|∇u2|
2
∣∣∣∣
t=R2

+ 4
∫∫

Q R

( f − fR)2,

therefore ∫∫
Q R

(1βu2)
2
≤ 2

∫∫
Q R

(u̇2)
2
+ 2

∫∫
Q R

( f − fR)2
≤ C R2n+2+2α([ f ]

C
α,α/2
β (Q R)

)2.



822 BIN GUO AND JIAN SONG

Then for ρ < R we have∫∫
Qρ

(1βu)2
≤ 2

∫∫
Qρ

(1βu1)
2
+ 2

∫∫
Qρ

(1βu2)
2

≤ C
(ρ

R

)2n+4
∫∫

Q R

(1βu1)
2ωn

β dt + C R2n+2+2α([ f ]
C

α,α/2
β (Q R)

)2.

The estimate is proved by an iteration lemma (see Lemma 3.4 in [22]). □

Lemma 4.22. Suppose u satisfies (4-22). There exists a constant C = C(n, β, α) > 0 such that, for any
ρ ∈

(
0, 1

2 R
)
, ∫∫

Qρ

(1βu − (1βu)ρ)2ωn
β dt ≤ C MRρ2n+2+2α,

where

MR :=
1

R4+2α
∥u∥

2
C 0(Q R)

+
1

R2α
∥ f ∥

2
C 0(Q R)

+ ([ f ]
C

α,α/2
β (Q R)

)2.

Proof. From Lemma 4.21, we get∫∫
Qρ

(1βu)2
≤ Cρ2+2n+2α

(
1

R2n+2+2α

∫∫
Q2R/3

(1βu)2
+ ([ f ]

C
α,α/2
β (Q2R/3)

)2
)

≤ Cρ2+2n+2α

(
1

R2n+6+2α

∫∫
Q R

u2
+

1
R2α

∥ f ∥
2
C0(Q R)

+ ([ f ]
C

α,α/2
β (Q R)

)2
)

(by (4-25))

≤ Cρ2+2n+2α MR.

On the other hand, by the Hölder inequality,

(1βu)2
ρ =

1
|Qρ |2gβ

(∫∫
Qρ

(1βu)ωn
β dt

)2

≤
C

ρ2+2n

∫∫
Qρ

(1βu)2
≤ C MRρ2α.

The lemma is proved by combining the two inequalities above. □

By Campanato’s lemma (see Theorem 3.1 in Chapter 3 of [22]), we get the following.

Corollary 4.23. There is a constant C = C(n, β, α) > 0 such that, for any x ∈ Bβ

(
0, 3

4

)
and R < 1

10 ,

[1βu]
C

α,α/2
β (Bβ (x,R/2)×[0,R2/4])

≤ C
(

1
R2+α

∥u∥C 0(Bβ (x,R)×[0,R2]) +
1

Rα
∥ f ∥C 0(Bβ (x,R)×[0,R2]) + [ f ]

C
α,α/2
β (Bβ (x,R)×[0,R2])

)
. (4-27)

Lemma 4.24. There exists a constant C = C(n, β, α) > 0 such that, for any x ∈ Bβ

(
0, 3

4

)
and R < 1

10 ,

[T u]
C

α,α/2
β (Bβ (x,R/2)×[0,R2/4])

+

[
∂u
∂t

]
C

α,α/2
β (Bβ (x,R/2)×[0,R2/4])

≤ C
(

1
R2+α

∥u∥C 0(Bβ (x,R)×[0,R2]) +
1

Rα
∥ f ∥C 0(Bβ (x,R)×[0,R2]) + [ f ]

C
α,α/2
β (Bβ (x,R)×[0,R2])

)
. (4-28)
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Proof. It follows from (4-27) and the elliptic Schauder estimates in Theorem 1.2 by adjusting R slightly
that, for any t ∈

[
0, 1

4 R2
]
,

[T u( · , t)]C0,α
β (Bβ (x,R/2))

≤ C
(

1
R2+α

∥u∥C 0(Bβ (x,R)×[0,R2]) +
1

Rα
∥ f ∥C 0(Bβ (x,R)×[0,R2]) + [ f ]

C
α,α/2
β (Bβ (x,R)×[0,R2])

)
,

that is, in the spatial variables the estimate (4-28) holds. It only remains to show the Hölder continuity of
T u in the time-variable. For this, we fix any two times 0 ≤ t1 < t2 ≤

1
4 R2 and denote r :=

1
2
√

t2 − t1. For
any x0 ∈ Bβ

(
x, 1

4 R
)
, Bβ(x0, r) ⊂ Bβ

(
x, 1

2 R
)
. By (4-27) and the equation for u, it is not hard to see that

the inequality (4-27) holds when 1βu on the left-hand side is replaced by u̇ = ∂u/∂t . In particular,

|u̇(y, t) − u̇(y, t1)|
|t − t1|α/2 ≤ AR for all y ∈ Bβ

(
x, 1

2 R
)
,

where AR is defined to be the constant on the right-hand side of (4-27). Integrating over t ∈ [t1, t2] we get

|u(y, t2) − u(y, t1) − u̇(y, t1)(t2 − t1)| ≤ C AR(t2 − t1)1+α/2.

Thus, for any y ∈ Bβ(x0, r),

|u(y, t2) − u(y, t1) − u̇(x0, t1)(t2 − t1)|

≤ |u(y, t2) − u(y, t1) − u̇(y, t1)(t2 − t1)| + |u̇(x0, t1) − u̇(y, t1)|(t2 − t1)

≤ C AR(t2 − t1)1+α/2
+ ARrα(t2 − t1).

Write
ũ(y) := u(y, t2) − u(y, t1) − u̇(x0, t1)(t2 − t1),

which is a function on Bβ(x0, r). We have that the function f̃ := 1β ũ = 1βu( · , t2)−1βu( · , t1) satisfies
the inequalities ∥ f̃ ∥C0(Bβ (x0,r)) ≤ AR(t2 − t1)α and [ f̃ ]C0,α

β (Bβ (x0,r))
≤ AR by (4-27). It follows from the

rescaled version of Proposition 3.32 that

|T ũ|C0(Bβ (x0,r/2)) ≤ C(n, β, α)

(
∥ũ∥C0(Bβ (x0,r))

r2 +∥ f̃ ∥C0(Bβ (x0,r))+rα
[ f̃ ]C0,α(Bβ (x0,r))

)
≤ C(t2−t1)α/2 AR.

Therefore, for any x0 ∈ Bβ

(
x, 1

4 R
)
,

|T u(x0, t2) − T u(x0, t1)|
|t2 − t1|α/2 ≤ C AR.

It is then easy to see by the triangle inequality that (adjusting R slightly if necessary)

[T u]
C

α,α/2
β (Bβ (x,R/2)×[0,R2/4])

≤ C AR,

as desired. The estimate for u̇ follows from the equation u̇ = 1gu + f . □

Remark 4.25. By a simple parabolic rescaling of the metric and time, we see from (4-28) that, for any
0 < r < R < 1

10 ,

[T u]
C

α,α/2
β (Qr )

≤ C
(

∥u∥C 0(Q R)

(R − r)2+α
+

∥ f ∥C 0(Q R)

(R − r)α
+ [ f ]

C
α,α/2
β (Q R)

)
. (4-29)
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4D2. The nonflat metric case. In this subsection, we will consider the case when the background metrics
are general nonflat C

α,α/2
β -conical Kähler metrics g = g(z, t). Suppose u ∈ C

2+α,(2+α)/2
β (Qβ) satisfies

the equation
∂u
∂t

= 1gu + f in Qβ, u|t=0 = 0, (4-30)

and u ∈ C 0(∂PQβ).

Proposition 4.26. There exists a constant C = C(n, β, α, g) > 0 such that

∥u∥
C

2+α,(2+α)/2
β (Bβ (0,1/2)×[0,1/4])

≤ C(∥u∥C 0(Qβ ) + ∥ f ∥
C

α,α/2
β (Qβ )

).

Proof. Choosing suitable complex coordinates at the origin x = 0, we may assume the components of g
in the basis {ϵ j ∧ ϵ̄k, . . . } satisfy gϵ j ϵ̄k ( · , 0) = δ jk and g j k̄( · , 0) = δ jk at the origin. As in the proof of
Proposition 4.7, we can write (4-30) as

∂u
∂t

= 1βu + η ·
√

−1∂∂̄u + f =: 1βu + f̂ ,

where η is given in the proof of Proposition 3.32. By (4-29) we get

[T u]
C

α,α/2
β (Q̃r )

≤ C
(

∥u∥C 0(Q̃ R)

(R − r)2+α
+

1
(R − r)α

∥ f̂ ∥C 0(Q̃ R) + [ f̂ ]
C

α,α/2
β (Q̃ R)

)
,

where Q̃ R := Bβ(0, R) × [0, R2
]. Observe that

1
(R − r)α

∥ f̂ ∥C 0(Q̃ R) ≤
1

(R − r)α
∥ f ∥C 0(Q̃ R) +

1
(R − r)α

∥η∥C 0(Q̃ R)∥T u∥C0(Q̃ R)

≤
1

(R − r)α
∥ f ∥C 0(Q̃ R) +

[η]
C

α,α/2
β (Q̃ R)

Rα

(R − r)α
(ε[T u]

C
α,α/2
β (Q̃ R)

+ C(ε)∥u∥C 0(Q̃ R))

and

[ f̂ ]
C

α,α/2
β (Q̃ R)

≤ [ f ]
C

α,α/2
β (Q̃ R)

+ ∥η∥C 0(Q̃ R)[T u]
C

α,α/2
β (Q̃ R)

+ ∥T u∥C 0(Q̃ R)[η]
C

α,α/2
β (Q̃ R)

≤ [ f ]
C

α,α/2
β (Q̃ R)

+ [η]
C

α,α/2
β (Q̃ R)

Rα
[T u]

C
α,α/2
β (Q̃ R)

+ [η]
C

α,α/2
β (Q̃ R)

(ε[T u]
C

α,α/2
β (Q̃ R)

+ C(ε)∥u∥C 0(Q̃ R)).

By choosing R0 = R0(n, β, α, g) > 0 small enough and suitable ε > 0, for any 0 < r < R < R0 < 1
10 , the

combination of the above inequalities yields

[T u]
C

α,α/2
β (Q̃r )

≤
1
2 [T u]

C
α,α/2
β (Q̃ R)

+ C
(

∥u∥C 0(Q̃ R)

(R − r)2+α
+

1
(R − r)α

∥ f ∥C 0(Q̃ R) + [ f ]
C

α,α/2
β (Q̃ R)

)
.

By Lemma 4.27 below (setting φ(r) = [T u]
C

α,α/2
β (Q̃r )

), we conclude that

[T u]
C

α,α/2
β (Bβ (0,R0/2)×[0,R2

0/4])
≤ C(∥u∥C 0(Qβ ) + ∥ f ∥

C
α,α/2
β (Qβ )

).

This is the desired estimate when the center of the ball is the worst possible. For the other balls Bβ(x, r)

with center x ∈ Bβ

(
0, 1

2

)
, we can repeat the above procedures and use the smooth coordinates w j = zβ j

j



SCHAUDER ESTIMATES FOR EQUATIONS WITH CONE METRICS, II 825

in case the ball is disjoint from S j . Finitely many such balls cover Bβ

(
0, 1

2

)
, so we get

[T u]
C

α,α/2
β (Bβ (0,1/2)×[0,1/100])

≤ C(∥u∥C 0(Qβ ) + ∥ f ∥
C

α,α/2
β (Qβ )

).

The proposition is proved by combining this inequality, the equation for u, interpolation inequalities, and
the interior Schauder estimates in Corollary 4.9. □

Lemma 4.27 [22, Lemma 4.3]. Let φ(t) ≥ 0 be bounded in [0, T ]. Suppose, for any 0 < t < s ≤ T ,
we have

φ(t) ≤
1
2φ(s) +

A
(s − t)a + B

for some a > 0 and A, B > 0. Then it holds that, for any 0 < t < s ≤ T ,

φ(t) ≤ c(a)

(
A

(s − t)a + B
)

.

Corollary 4.28. Suppose u satisfies the equations

∂u
∂t

= 1gu + f in Qβ u|t=0 = u0 ∈ C2,α
β (Bβ(0, 1)).

Then
∥u∥

C
2+α,(α+2)/2
β (Bβ (0,1/2)×[0,1])

≤ C(∥u∥C 0(Qβ ) + ∥ f ∥
C

α,α/2
β (Qβ )

+ ∥u0∥C2,α
β (Bβ (0,1))

)

for some constant C = C(n, β, α, g) > 0.

Proof. We set û = u−u0 and f̂ = f −1gu0. û satisfies the conditions in Proposition 4.26, so the corollary
follows from Proposition 4.26 applied to û and triangle inequalities. □

Corollary 4.29. In addition to the assumptions in Corollary 4.16, we also assume that u0 ∈ C2,α
β (X).

Then the weak solution to ∂u/∂t = 1gu + f with u|t=0 = u0 exists and is in C
2+α,(2+α)/2
β (X, ×[0, 1]).

Moreover, there is a C = C(n, β, α, g) > 0 such that

∥u∥
C

2+α,(2+α)/2
β (X×[0,1])

≤ C(∥ f ∥
C

α,α/2
β (X×[0,1])

+ ∥u0∥C2,α
β (X)

). (4-31)

Proof. Observe that by the maximum principle we have

∥u∥C 0(X×[0,1]) ≤ ∥ f ∥C 0(X×[0,1]) + ∥u0∥C0(X).

Then (4-31) follows from Corollary 4.28 and a covering argument as in the proof of Corollary 3.41. □

5. Conical Kähler–Ricci flow

Let X be a compact Kähler manifold and D =
∑

j D j be a divisor with simple normal crossings. Let ω0

be a fixed C0,α′

β (X) conical Kähler metric with cone angle 2πβ along D and ω̂t be a family of C
α′,α′/2
β

conical metrics which are uniformly equivalent to ω0, with ω̂0 = ω0 and ∥ω̂∥
C

α′,α′/2
β (X×[0,1])

≤ C0. We
consider the complex Monge–Ampère equation∂ϕ

∂t
= log

(
(ω̂t +

√
−1∂∂̄ϕ)n

ωn
0

)
+ f,

ϕ|t=0 = 0,

(5-1)
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where f ∈ C α′,α′/2β (X×[0,1]) is a given function. We will use an inverse function theorem argument
from [4] which was outlined in [21] to show the short-time existence of the flow (5-1).

Theorem 5.1. There exists a small T = T (n, β, ω0, f, α, α′) > 0 such that (5-1) admits a unique solution
ϕ ∈ C

2+α,(2+α)/2
β (X × [0, T ]) for any α < α′.

Proof. The uniqueness of the solution follows from the maximum principle. We will break the proof of
short-time existence into three steps.

Step 1. Let u ∈ C
2+α′,(2+α′)/2
β (X × [0, 1]) be the solution to{

∂u
∂t

= 1g0u + f in X × [0, 1],

u|t=0 = 0.

Thanks to Corollary 4.29, such a u exists and satisfies the estimate (4-31). We fix ε > 0, so that, as long
as ∥φ∥C2,α

β (X) ≤ ε, we have that ω̂t,φ := ω̂t +
√

−1∂∂̄φ is equivalent to ω0, i.e.,

C−1
0 ω0 ≤ ω0,φ ≤ C0ω0 and ∥ω̂t,φ∥

C
α,α/2
β

≤ C0.

We claim that, for T1 > 0 small enough, ∥u∥C
2+α,(2+α)/2
β (X×[0,T1]) ≤ ε. We first observe by (4-31) that

N := ∥u∥
C

2+α′,(α′+2)/2
β (X×[0,1])

≤ C∥ f ∥
C

α′,α′/2
β (X×[0,1])

.

It suffices to show that [u]C
2+α′,(α′

+2)/2
β (X×[0,T1]) is small, since the lower-order derivatives are small because

u|t=0 = 0. We calculate, for any t1, t2 ∈ [0, T1],
|T u(x, t1) − T u(x, t2)|

|t1 − t2|α/2 +
|u̇(x, t1) − u̇(x, t2)|

|t1 − t2|α/2 ≤ N |t1 − t2|(α
′
−α)/2

≤
1
4ε

if N T (α′
−α)/2

1 < 1
4ε. For any x, y ∈ X and t ∈ [0, T1],

|T u(x, t) − T u(y, t)|
dg0(x, y)α

≤ N min
{

2T α′/2
1

dg0(x, y)α
, dg0(x, y)α

′
−α

}
≤

1
2ε.

The claim then follows from the triangle inequality.
We define a function

w(x, t) :=
∂u
∂t

(x, t) − log
(

(ω̂t +
√

−1∂∂̄u)n

ωn
0

)
(x, t) − f (x, t) for all (x, t) ∈ X × [0, T1].

It is clear that w(x, 0) ≡ 0.

Step 2: We consider the small ball

B = {φ ∈ C
2+α,(2+α)/2
β (X × [0, T1]) | ∥φ∥C

2+α,(α+2)/2
β

≤ ε, φ( · , 0) = 0}

in the space C
2+α,(2+α)/2
β (X × [0, T1]). Then u|t∈[0,T1] ∈ B by the discussion in Step 1.

Define the differential map 9 : B → C
α,α/2
β (X × [0, T1]) by

9(φ) =
∂φ

∂t
− log

(
(ω̂t +

√
−1∂∂̄φ)n

ωn
0

)
− f.
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The map 9 is well defined and C1, where the differential D9φ at any φ ∈ B is given by

D9φ(v) =
∂v

∂t
− (ĝφ)i j̄vi j̄ =

∂v

∂t
− 1ω̂t,φv

for any

v ∈ TφB = {v ∈ C
2+α,(2+α)/2
β (X × [0, T1]) | v( · , 0) = 0},

where (ĝφ)i j̄ denotes the inverse of the metric ω̂t +
√

−1∂∂̄φ. As a linear map,

D9φ : TφB → C
α,α/2
β (X × [0, T1])

is injective by the maximum principle and surjective by Corollary 4.29. Thus D9φ is invertible at any φ ∈B.
In particular, D9u is invertible, and by the inverse function theorem, 9 :B → C

α,α/2
β (X ×[0, T1]) defines

a local diffeomorphism from a small neighborhood of u ∈ B to an open neighborhood of w = 9(u) in
C

α,α/2
β (X ×[0, T1]). This implies that, for any w̃ ∈ C

α,α/2
β (X ×[0, T1]) with ∥w − w̃∥C

α,α/2
β (X×[0,T1]) < δ

for some small δ > 0, there exists a unique ϕ ∈ B such that 9(ϕ) = w̃.

Step 3. For a small T2 < T1 to be determined, we define a function

w̃(x, t) =

{
0, t ∈ [0, T2],

w(x, t − T2), t ∈ [T2, T1].

Since u ∈ C
2+α′,(2+α′)/2
β , we see that w ∈ C

α′,α′/2
β (X ×[0, T1]) with M := ∥w∥C

α′,α′/2
β (X×[0,T1]) < ∞. We

claim that if T2 is small enough, then ∥w − w̃∥C
α,α/2
β (X×[0,T1]) < δ. We write η = w − w̃. It is clear from

the fact that w( · , 0) = 0 that ∥η∥C 0 ≤
1
2δ if T2 is small enough.

Spatial directions: If t < T2 then

|η(x, t) − η(y, t)|
dg0(x, y)α

=
|w(x, t) − w(y, t)|

dg0(x, y)α
≤ M min

{
2T α′/2

2

dg0(x, y)α
, dg0(x, y)α

′
−α

}
≤ 2MT (α′

−α)/2
2 .

If t ∈ [T2, T1] then

|η(x, t) − η(y, t)|
dg0(x, y)α

=
|w(x, t) − w(y, t) − w(x, t − T2) + w(y, t − T2)|

dg0(x, y)α

≤ 2M min
{

T α′/2
2

dg0(x, y)α
, dg0(x, y)α

′
−α

}
≤ 2MT (α′

−α)/2
2 .

Time direction: If t, t ′ < T2 then

|η(x, t) − η(x, t ′)|

|t − t ′|α/2 =
|w(x, t) − w(x, t ′)|

|t − t ′|α/2 ≤ M |t − t ′
|
(α′

−α)/2
≤ MT (α′

−α)/2
2 .

If t, t ′
∈ [T2, T1] then

|η(x, t) − η(x, t ′)|

|t − t ′|α/2 =
|w(x, t) − w(x, t ′) − w(x, t − T2) + w(x, t ′

− T2)|

|t − t ′|α/2 ≤ 2MT (α′
−α)/2

2 .
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If t < T2 ≤ t ′
≤ T1 then

|η(x, t) − η(x, t ′)|

|t − t ′|α/2 =
|w(x, t) − w(x, t ′) + w(x, t ′

− T2)|

|t − t ′|α/2 ≤ 2MT (α′
−α)/2

2 .

Therefore, if we choose T2 > 0 small enough that 2MT (α′
−α)/2

2 < 1
4δ, then we have

|η(x, t) − η(x, t ′)|

|t − t ′|α/2 +
|η(x, t) − η(y, t)|

dg0(x, y)α
≤

1
2δ for all x ∈ X, t, t ′

∈ [0, T1].

It then follows from the triangle inequality that

|η(x, t) − η(y, t ′)| ≤ |η(x, t) − η(y, t)| + |η(y, t) − η(y, t ′)|

≤
1
2δ(dg0(x, y)α + |t − t ′

|
α/2) ≤

1
2δdP,g0((x, t), (y, t ′))α.

In conclusion, ∥w̃ − w∥C
α,α/2
β (X×[0,T1]) < δ, so by Step 2 we conclude that there exists a ϕ ∈ B such

that 9(ϕ) = w̃. Since w̃|t∈[0,T2] ≡ 0 by definition, ϕ|t∈[0,T2] satisfies (5-1) for t ∈ [0, T ], where T := T2.
This shows the short-time existence of the flow (5-1). □

Proof of Corollary 1.11. Recall that in (1-13) we wrote ωn
0 = �/

∏
j (|s j |

2
h j

)1−β j , where � is a smooth
volume form, s j and h j are holomorphic sections and hermitian metrics, respectively, of the line bundle
associated to the component D j . Choose a smooth reference form

χ =
√

−1∂∂̄ log � −

∑
j

(1 − β j )
√

−1∂∂̄ log h j .

Define the reference metrics ω̂t = ω0 + tχ which are C
α′,α′/2
β -conical and Kähler for small t > 0. Let ϕ be

the C
2+α,(2+α)/2
β -solution to (1-11) with f ≡ 0. Then it is straightforward to check that ωt = ω̂t +

√
−1∂∂̄ϕ

satisfies the conical Kähler–Ricci flow equation (1-12) and ω ∈ C
α,α/2
β (X ×[0, T ]) for some small T > 0.

The smoothness of ω in X\D × (0, T ] follows from the general smoothing properties of parabolic
equations; see [37]. Taking ∂/∂t on both sides of (1-11) we get

∂ϕ̇

∂t
= 1ωt ϕ̇ + trωt χ and ϕ̇|t=0 = 0.

By Corollary 4.29, ϕ̇ ∈ C
2+α,(2+α)/2
β (X × [0, T ]) since trωt χ ∈ C

α,α/2
β (X × [0, T ]). Therefore the

normalized Ricci potential log(ωn
t /ωn

0) exists in C
2+α,(2+α)/2
β (X × [0, T ]). □
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THE STABILITY OF SIMPLE PLANE-SYMMETRIC SHOCK FORMATION
FOR THREE-DIMENSIONAL COMPRESSIBLE EULER FLOW

WITH VORTICITY AND ENTROPY

JONATHAN LUK AND JARED SPECK

Consider a one-dimensional simple small-amplitude solution (ϱ(bkg), v
1
(bkg)) to the isentropic compressible

Euler equations which has smooth initial data, coincides with a constant state outside a compact set, and
forms a shock in finite time. Viewing (ϱ(bkg), v

1
(bkg)) as a plane-symmetric solution to the full compressible

Euler equations in three dimensions, we prove that the shock-formation mechanism for the solution
(ϱ(bkg), v

1
(bkg)) is stable against all sufficiently small and compactly supported perturbations. In particular,

these perturbations are allowed to break the symmetry and have nontrivial vorticity and variable entropy.
Our approach reveals the full structure of the set of blowup-points at the first singular time: within

the constant-time hypersurface of first blowup, the solution’s first-order Cartesian coordinate partial
derivatives blow up precisely on the zero level set of a function that measures the inverse foliation density
of a family of characteristic hypersurfaces. Moreover, relative to a set of geometric coordinates constructed
out of an acoustic eikonal function, the fluid solution and the inverse foliation density function remain
smooth up to the shock; the blowup of the solution’s Cartesian coordinate partial derivatives is caused by
a degeneracy between the geometric and Cartesian coordinates, signified by the vanishing of the inverse
foliation density (i.e., the intersection of the characteristics).
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1. Introduction

It is classically known — going back to the work of Riemann — that the compressible Euler equations
admit solutions for which singularities develop from smooth initial data. Indeed, such examples can
already be found in the plane symmetric isentropic case. In this case, the compressible Euler equations
reduce to a 2×2 hyperbolic system in 1+1-dimensions, which can be analyzed using Riemann invariants.
In particular, it is easy to show that simple plane-symmetric solutions — solutions with one vanishing
Riemann invariant — obey a Burgers-type equation, and that a shock can form in finite time. By a shock,
we mean that the solution remains bounded but its first-order partial derivative with respect to the standard
spatial coordinate blows up, and that the blowup is tied to the intersection of the characteristics.

In this article, we prove that a class of simple plane-symmetric isentropic small-amplitude shock-
forming solutions to the compressible Euler equations are stable under small perturbations which break the
symmetry and admit variable vorticity and entropy. In particular, the perturbed solutions develop a shock
singularity in finite time. This provides the details of the argument sketched in [37; 52] and completes the
program that we have initiated (partly joint also with Gustav Holzegel and Willie Wai-Yeung Wong) in
[36; 37; 50; 52].

We will consider the spatial domain1 6
.
= R × T2

= R × (R/Z)2 and a time interval I. Our unknowns
are the density ϱ : I ×6 → R>0, the velocity v : I ×6 → R3, and the entropy s : I ×6 → R. Relative
to the standard Cartesian coordinates (t, x1, x2, x3) on I × R × T2, the compressible Euler equations can
be expressed as

(∂t + va∂a)ϱ = −ϱ div v, (1-1)

(∂t + va∂a)v
j
= −

1
ϱ

δ ja∂a p, j = 1, 2, 3, (1-2)

(∂t + va∂a)s = 0, (1-3)

where (from now on) δi j denotes the Kronecker delta, div v
.
= ∂av

a is the Euclidean divergence of v,
repeated lowercase Latin indices are summed over i, j = 1, 2, 3, and the pressure p relates to ϱ and s by
a prescribed smooth equation of state p = p(ϱ, s). In other words, the right-hand side of (1-2) can be
expressed as

−
1
ϱ

δ ja ∂a p = −
1
ϱ

p;ϱδ
ja ∂aϱ −

1
ϱ

p;sδ
ja ∂as,

where p;ϱ denotes2 the partial derivative of the equation of state with respect to the density at fixed s, and
analogously for p;s .

For the remainder of the paper:

(1) We fix a constant ϱ̄ > 0 and a constant solution (ϱ, vi , s) = (ϱ̄, 0, 0) to (1-1)–(1-3).

(2) We fix an equation of state p = p(ϱ, s) such that3 (∂p/∂ϱ)(ϱ̄, 0) = 1.

1It is only for technical convenience that we chose the spatial topology R × T2. Similar results also hold, for instance, on R3.
2Later in the paper, we will take the partial derivative of various quantities with respect to the logarithmic density ρ. If f is a

function of the fluid unknowns, then f;ρ will denote the partial derivative of f with respect to ρ when the other fluid variables
are held fixed. Similarly, f;s denotes the partial derivative of f with respect to s when the other fluid variables are held fixed.

3This normalization can always be achieved by a change of variables as long as (∂p/∂ϱ)(ϱ̄, 0) > 0; see [36, footnote 19].
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For notational convenience, we define the logarithmic density ρ
.
= log(ϱ/ϱ̄) and the speed of sound

c(ρ, s) .
=

√
∂p/∂ϱ(ϱ, s). We will from now on think of c as a function of (ρ, s).

We will study perturbations of a shock-forming background solution (ϱ(bkg), v
i
(bkg), s(bkg)) arising from

smooth initial data such that the following hold:

(1) The background solution is plane-symmetric and isentropic, i.e., v2
(bkg) = v3

(bkg) = s(bkg) = 0, and
(ϱ(bkg), v

1
(bkg)) are functions only of t and x1.

(2) The background solution is simple, i.e., the Riemann invariant R(bkg)

(−) , satisfies

R(bkg)

(−)

.
= v1

(bkg) −

∫ ρ(bkg)

0
c(ρ′, 0) dρ′

= 0.

(3) The background solution is initially compactly supported in an x1-interval of length ≤ 2σ̊, i.e., outside
this interval, (ϱ(bkg), v

i
(bkg), s(bkg)) ↾t=0= (ϱ̄, 0, 0).

(4) At time 0 (and hence throughout the evolution), the Riemann invariant R(bkg)

(+)

.
=v1

(bkg)+
∫ ρ(bkg)

0 c(ρ′,0)dρ′

has small ≤ α̊ amplitude.

(5) At time 0, the Cartesian spatial derivatives of R(bkg)

(+) up to the third order4 are bounded above pointwise
by ≤ δ̊(bkg) (where δ̊(bkg) is not necessarily small).

(6) The quantity5 δ̊
(bkg)
∗ (where δ̊

(bkg)
∗ is not necessarily small) that controls the blowup-time satisfies6

δ̊
(bkg)
∗

.
=

1
2

sup
{t=0}

[1
c

{1
c

∂c
∂ρ

(ρ(bkg), 0) + 1
}
(∂1R

(bkg)

(+) )
]
+

> 0,

and the solution forms a shock at time7 T (bkg)

(sing) = (δ̊
(bkg)
∗ )−1.

The analysis for plane-symmetric solutions can be carried out easily using Riemann invariants. It is then
straightforward to check that there exists a large class of plane-symmetric solutions satisfying (1)–(6)
above.

We now provide a rough version of our main theorem; see Section 4B for a more precise statement.

Theorem 1.1 (main theorem, rough version). Consider a plane-symmetric, shock-forming background
solution (ϱ(bkg), v

i
(bkg), s(bkg)) satisfying (1)–(6) above, where the parameter α̊ from point (4) is small.

Consider a small perturbation of the initial data of this background solution satisfying the following
assumptions (see Section 4A for the precise assumptions):

4In the one-dimensional case, one only needs information about the data’s first derivative to close a proof of blowup for a
simple plane wave. However, when studying perturbations in three dimensions, we need estimates on these derivatives up to third
order in order to close the proof. For example, the proof of the bound (8-23c) relies on having control of up to these third-order
derivatives (as is provided by (8-20b)–(8-20c)), and we use the bound (8-23c) in the proof of Lemma 14.2 as well as in the proof
of the energy estimates in the Appendix.

5One can check that this rules out the Chaplygin gas, whose speed of sound (after normalization) is given by c(ρ, s)=exp(−ρ).
One can also check that for any other equation of state, it is possible to choose ϱ̄ appropriately so that δ̊(bkg)

∗ > 0.
6Here, [ · ]+ denotes the positive part.
7In the plane-symmetric, isentropic, simple case, R(bkg)

(+)
satisfies the transport equation ∂tR

(bkg)

(+)
+ (v1

(bkg)
+ c(ρ(bkg))) ·

∂1R
(bkg)

(+)
= 0, and the blowup-time of ∂1R

(bkg)

(+)
can easily be computed explicitly by commuting this transport equation with ∂1

to obtain a Riccati-type ODE in ∂1 R(bkg)

(+)
along the integral curves of ∂t + (v1

(bkg)
+ c(ρ(bkg)))∂1.
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• The perturbation is compactly supported in a region of x1-length ≤ 2σ̊.

• The perturbation belongs to a high-order Sobolev space, where the required Sobolev regularity is
independent of the background solution and equation of state.

• The perturbation is small, where the smallness is captured by the small parameter 0 < ϵ̊ ≪ 1, and
the required smallness depends on the order of the Sobolev space, the equation of state, and the
parameters of the background solution.

Then the corresponding unique perturbed solution satisfies the following:

(1) The solution is initially smooth, but it becomes singular at a time T(sing), which is a small perturbation
of the background blowup-time (δ̊

(bkg)
∗ )−1.

(2) Defining8 R(+)
.
= v1

+
∫ ρ

0 c(ρ′, s) dρ′, we have the singular behavior

lim sup
t→T −

(sing)

sup
{t}×6

|∂1R(+)| = +∞. (1-4)

(3) Relative to a geometric coordinate system (t, u, x2, x3), where u is an eikonal function, the solution
remains smooth, all the way up to time T(sing). In particular, the partial derivatives of the solution with
respect to the geometric coordinates do not blow up.

(4) The blowup at time T(sing) is characterized by the vanishing of the inverse foliation density µ (see
Definition 2.15) of a family of acoustically null hypersurfaces defined to be the level sets of u.

(5) In particular, the set of blowup-points at time T(sing) is characterized by{
(u, x2, x3) ∈ R × T2

: lim sup
(t̃,ũ,x̃2,x̃3)→(T −

(sing),u,x2,x3)

|∂1R(+)|(t̃, ũ, x̃2, x̃3) = ∞

}
= {(u, x2, x3) ∈ R × T2

: µ(T(sing), u, x2, x3) = 0},

where |∂1R(+)|(t̃, ũ, x̃2, x̃3) denotes the absolute value of the Cartesian partial derivative ∂1R(+) evalu-
ated at the point with geometric coordinates (t̃, ũ, x̃2, x̃3).

(6) At the same time, as T(sing) is approached from below, the fluid variables ϱ, vi , s all remain bounded,
as do the specific vorticity Ω i .

= (curl v)i/(ϱ/ϱ̄) and the entropy gradient S .
= ∇s.

The proof of Theorem 1.1 relies on two main ingredients: (i) Christodoulou’s geometric theory of shock
formation for irrotational and isentropic solutions, in which case the dynamics reduces to the study of
quasilinear wave equations and (ii) a (re-)formulation of the compressible Euler equations as a quasilinear
system of wave-transport equations, which was derived in [50], following the earlier works [36; 37] in the
barotropic9 case. This formulation exhibits remarkable null structures and regularity properties, which in
total allow us to perturbatively control the vorticity and entropy gradient all the way up to the singular

8In higher dimensions or in the presence of dynamic entropy, R(+) is not a Riemann invariant because its dynamics is not
determined purely by a transport equation. Nonetheless, for comparison purposes, we continue to use the symbol R+ to denote
this quantity.

9A barotropic fluid is such that the equation of state for the pressure is a function of the density alone, as opposed to being a
function of the pressure and entropy.
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time — even though generically, their first-order Cartesian partial derivatives blow up at the singularity.
See Section 1A for further discussion of the proof.

Some remarks are in order.

Remark 1.2. Note that even though the rough Theorem 1.1 is formulated in terms of plane-symmetric
background solutions, we do not actually “subtract off a background” in the proof. See Theorem 4.3 for
the precise formulation.

Remark 1.3 (results building up towards Theorem 1.1).

• Concerning stability of simple plane-symmetric shock-forming solutions to the compressible Euler
equations, the first result was our joint work with G. Holzegel and W. Wong [52], which proved the analog10

of Theorem 1.1 in the case11 where the perturbation is irrotational and isentropic (i.e., Ω ≡ 0, S ≡ 0).

• In [36], we proved the first stable shock formation result without symmetry assumptions for the compress-
ible Euler equations for open sets of initial data that can have nontrivial specific vorticity Ω . Specifically,
in [36], we treated the two-dimensional barotropic compressible Euler equations (see footnote 9). One
of the key points in [36] was our reformulation of equations into a system of quasilinear wave-transport
equations which has favorable nonlinear null structures. This allowed us to use the full power of the
geometric vectorfield method on the wave part of the system while treating the vorticity perturbatively.

• In [37], we considered three-dimensional barotropic compressible Euler flow and derived a similar
reformulation of the equations that allowed for nonzero vorticity. In contrast to the two-dimensional case,
the transport equation satisfied by the specific vorticity Ω featured vorticity-stretching source terms (of
the schematic form Ω · ∂v). In order to handle the vorticity-stretching source terms in the framework
of [36], we also showed in [37] that Ω satisfies a div-curl-transport system with source terms that are
favorable from the point of view of regularity and from the point of view of null structure. We refer to
Section 1A6 for further discussion of this point.

• To incorporate thermodynamic effects into compressible fluid flow, one must look beyond the family of
barotropic equations of state, e.g., consider equations of state in which the pressure depends on the density
and entropy.12 Fortunately, in [50], it was shown that a similar good reformulation of the compressible
Euler equations holds under an arbitrary equation of state (in which the pressure is a function of the
density and the entropy) in the presence of vorticity and variable entropy. In the present paper, we use
this reformulation to prove our main results; we recall it below as Theorem 5.1. The analysis in [50]
is substantially more complicated compared to the barotropic case, and the basic setup requires the

10We remark that while [52] only explicitly stated a theorem in two spatial dimensions, the analogous result in three (or
indeed higher) dimensions can be proved using similar arguments; see [52, Remarks 1.4,1.11].

11The main theorem in [52] is stated for general quasilinear wave equations. Particular applications to the relativistic
compressible Euler equations in the irrotational and isentropic regime can be found in [52, Appendix B]. It applies equally well
to the nonrelativistic case.

12Incorporating entropy into the analysis is expected to be especially important for studying weak solutions after the shock
(see Section 1B4 for further discussion), since formal calculations [16] suggest that the entropy (even if initially zero) should
jump across the shock hypersurface, which in turn should induce a jump in vorticity.
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observation of some new structures tied to elliptic estimates for Ω and S, such as good regularity and
null structures tied to the modified fluid variables from Definition 2.7.

This paper completes the program described above by giving the analytic details already sketched in
[37; 50]. Chief among the analytic novelties in the present paper are the elliptic estimates for Ω and S at
the top-order; see [37, Sections 1.3, 4.2.7], [50, Section 4.3] and Section 1A6. We also point out that
there are other related works, which we discuss in Section 1B.

Remark 1.4 (blowup and boundedness of quantities involving higher derivatives). For generic pertur-
bations, derivatives of fluid variables other than R+ (whose blowup was highlighted in (1-4)) can also
blow up. In particular, while the ∂2 and ∂3 derivatives of the fluid variables are identically 0 for the
plane-symmetric background solutions, for the perturbed solution, ∂2v

i , say, is generically unbounded at
the singularity. This is because the perturbation changes the geometry of the solution, and the regular
directions no longer align with the Cartesian directions.

On the other hand, there are indeed higher derivatives of the fluid variables that remain bounded up to
the singular time. These include the specific vorticity and the entropy gradient that we already mentioned
explicitly in Theorem 1.1. Moreover, any null-hypersurface-tangential geometric derivatives (see further
discussions in Section 1A) of the fluid variables are also bounded up to the singular time. This is not just
a curiosity, but rather is a fundamental aspect of the proof.

Remarkably, there are additionally quantities, denoted by C and D (these variables were identified
in [50], see (2-5a)–(2-5b)), which are special combinations of up-to-second-order Cartesian coordinate
derivatives of the fluid variables, which remain uniformly bounded up to the singularity (as do their
derivatives in directions tangent to a family of null hypersurfaces); C and D are precisely the modified fluid
variables mentioned in Remark 1.3. The existence of such regular higher-order quantities is not only an
interesting fact, but is also quite helpful in controlling the solution up to the first singularity; see Section 1A.

Finally, as a comparison with our two-dimensional work [36], note that in the two-dimensional case,
we proved that the specific vorticity remains Lipschitz (in Cartesian coordinates) up to the first singular
time. This is no longer the case in three dimensions. Indeed, in the language of this paper, the improved
regularity for the specific vorticity in [36] stems from the fact that in two dimensions, the Cartesian
coordinate derivatives of the specific vorticity Ω coincide with C.

Remark 1.5 (additional information on subclasses of solutions). Within the solution regime we study, we
are able to derive additional information about the solution by making further assumptions on the data.
For instance, there are open subsets of data such that the vorticity/entropy gradient are nonvanishing at
the first singularity, and also open subsets of data such that the fluid variables remain Hölder13 C1/3 up to
the singularity. See Section 4B for details.

Remark 1.6 (the maximal smooth development). The approach we take here allows us to analyze the
solution up to the first singular time, and our main results yield a complete description of the set of
blowup-points at that time (see, for example, conclusions (4)–(5) of Theorem 1.1). However, since

13The Hölder estimates hold only for an open subset of data satisfying certain nondegeneracy assumptions. They were not
announced in [37; 50]. We were instead inspired by [9; 11] to include such estimates.
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the compressible Euler equations are a hyperbolic system, it is desirable to go beyond our results by
deriving a full description of the maximal smooth development of the initial data, in analogy with [15].
Understanding the maximal smooth development is particularly important for the shock development
problem; see Section 1B4 below.

Our methods, at least on their own, are not enough to construct the maximal smooth development.14

This is in part because our approach here relies on spatially global elliptic estimates on constant-t
hypersurfaces; the point is that a full description of the smooth maximal development would require
spatially localized estimates. On the other hand, the recent preprint [1] discovered an integral identity
that allows the elliptic estimates to be localized, and thus gives hope that Theorem 1.1 can be extended to
derive the structure of the full maximal smooth development.

Remark 1.7 (no universal blowup-profile). One of the main advantages of our geometric framework is
that it works for many kinds of singular solutions, not just those exhibiting a specific blowup-profile. In
particular, the solutions featured in Theorem 1.1 do not exhibit a universal blowup-profile. Although we do
not rigorously study the full class of blowup-profiles exhibited by the solutions from Theorem 1.1, the full
class is likely quite complicated to describe. This can already be seen in model case of Burgers’ equation,
where there are a continuum of possible blowup-profiles and corresponding blowup-rates [27] (recall that
we work in the near plane-symmetric regime and our work includes, as special cases, plane-symmetric
solutions, which are analogs of Burgers’ equation solutions). A related issue is that at the time of first
singularity formation, the set of blowup-points can be complicated and/or of infinite cardinality (as one
can already see in the special case of plane-symmetric solutions, viewed as solutions in three dimensions
with symmetry).

Remark 1.8 (the relativistic case). While our present work treats only the nonrelativistic case, it is likely
that the relativistic case can also be treated in the same way. This is because the relativistic compressible
Euler equations also admit a similar reformulation as we consider here, and likewise the variables in the
reformulation also exhibit a very similar null structure [25].

In the remainder of the Introduction, we will first discuss the proof in Section 1A and then discuss some
related works in Section 1B. We will end the introduction with an outline of the remainder of the paper.

1A. Ideas of the proof.

1A1. The Christodoulou theory. The starting point of our proof is the work of Christodoulou [15] on
shock formation for quasilinear wave equations.15 Consider the following model quasilinear covariant
wave equation for the scalar function 9: □g(9)9 = 0, where the Cartesian component functions gαβ are
given (nonlinear in general) functions of 9, i.e., gαβ = gαβ(9). Our study of compressible Euler flow in

14Notice that in our earlier result [36] for the isentropic Euler equations in two spatial dimensions, we also only solved the
equations up to the first singular time. However, there is an important difference. In the two-dimensional case, there does not
seem to be a philosophical obstruction in extending [36] to provide a complete description of the maximal smooth development.
In contrast, in the three-dimensional case it seems that ideas in [1] would be needed in a fundamental way.

15Strictly speaking, [15] is only concerned with the irrotational isentropic relativistic Euler equations. However, its methods
apply to much more general quasilinear wave equations; see further discussions in [30; 48].
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this paper essentially amounts to studying a system of similar equations with source terms and showing
that the source terms do not radically distort the dynamics. This is possible only because the source terms
have remarkable null structure, described below.

A key insight for studying the formation of shocks, going back to [15], is that it is advantageous to
study the shock formation via a system of geometric coordinates. The point is that when appropriately
constructed, such coordinates regularize the problem, which allows one to treat the problem of shock
formation as if it were a standard local existence problem. More precisely, one constructs geometric
coordinates, adapted to the flow, such that the solution remains regular relative to them.16 However,
the geometric coordinates degenerate relative to the Cartesian ones, and the blowup of the solution’s
first-order Cartesian coordinate partial derivatives can be derived as a consequence of this degeneracy.

To carry out this strategy, one must use the Lorentzian geometry associated to the acoustical metric g
(see Definition 2.9). The following geometric objects are of central importance in implementing this
program:

• A foliation by constant-u characteristic hypersurfaces Fu (where g−1(du, du) = 0; see (2-13)). The
function u is known as an “acoustic eikonal function”.

• The inverse foliation density µ ( .
=−1/g−1(dt, du)), where µ−1 measures the density of Fu with respect

to the constant-t hypersurfaces.

• A frame of vectorfields {L , X, Y, Z}, where {L , Y, Z} are tangent to Fu (with L being its null generator)
and X is transversal to Fu ; see Figure 1, where we have suppressed the Z -direction.

• {L , X, Y, Z} is a frame that is “comparable” to the Cartesian frame {∂t , ∂1, ∂2, ∂3}, by which we mean
the coefficients relating the frames to each other are size O(1).

• However, in the analysis, uniform boundedness estimates are generally available for the derivatives of
quantities with respect to only the rescaled frame elements {L , X̆ .

= µX, Y, Z}.

The analysis simultaneously yields control of the derivatives of 9 with respect to the rescaled frame
and gives also quantitative estimates on the geometry. In this geometric picture, the blowup is completely
captured by µ → 0. The connection between the vanishing of µ and the blowup of some Cartesian
coordinate partial derivative of 9 can be understood as follows: one proves an estimate of the form
|X̆9| ≈ 1 (which is consistent with the uniform boundedness estimates mentioned above). In view of the
relation X̆ = µX , this estimate implies that |X9| blows up like 1/µ as µ → 0.

We now give a more detailed description of the behavior of the solution, with a focus on how it behaves
at different derivative levels.

• As our discussion above suggested, at the lower derivative levels, derivatives of quantities with respect
to the rescaled frame are regular, e.g., L9, X̆9, Y9, Z9, . . . , L3 X̆Y9, etc. are uniformly bounded.

16It should be emphasized that it is only at the low derivative levels that the solution is regular. The high-order geometric
energies can still blow up, even though the low-order energies remain bounded. The possible growth of the high-order energies is
one of the central technical difficulties in the problem, and we will discuss it below in more detail.
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• As we highlighted above, the formation of the shock corresponds to µ→ 0 in finite time, and moreover,
the nonrescaled first-order derivative X9 blows up in finite time, exactly at points where µ vanishes.

• The main difficulty in the proof is that the only known approach to the solution’s regularity theory
with respect to the rescaled frame derivatives that is able to avoid a loss of derivatives allows for the
following possible scenario: the energy estimates are such that the high-order geometric energies might
blow up when the shock forms. This leads to severe difficulties in the proof, especially considering that
one needs to show that the low-order derivatives of the solution remain bounded in order to derive the
singular high-order energy estimates.17

In [15], Christodoulou showed that the maximum possible blowup-rate of the high-order energies is of
the form µ−2P

⋆ (t), where P is a universal positive constant and µ⋆(t)
.
= min{1, min6t µ}. To reconcile

this possible high-order energy blowup with the regular behavior at the lower derivative levels, one is
forced to derive a hierarchy of energy estimates of the form, where M∗ is a universal18 positive integer:

ENtop(t)≲ ϵ̊2µ−2M∗+1.8
⋆ (t), ENtop−1(t)≲ ϵ̊2µ−2M∗+3.8

⋆ (t), ENtop−2(t)≲ ϵ̊2µ−2M∗+5.8
⋆ (t), . . . , (1-5)

where EN denotes the energy after N commutations and all energies are by assumption initially of small
size ϵ̊2. In other words, the energy estimates become less singular by two powers of µ⋆ for each descent
below the top derivative level. Importantly, despite the possible blowup at higher orders, all the sufficiently
low-order energies are bounded, which, by Sobolev embedding, is what allows one to show the uniform
pointwise boundedness of the solution’s lower-order derivatives:19

Ntop−M∗∑
N=1

EN (t) ≲ ϵ̊2. (1-6)

1A2. The nearly simple plane-symmetric regime. Christodoulou’s work [15] concerned compactly sup-
ported20 initial data in R3, a regime in which dispersive effects dominate for a long time before the
singularity formation processes eventually take over. In a joint work with Holzegel and Wong [52], we
adapted the Christodoulou theory to the almost simple plane symmetric regime. The important point
is that the commutators {L , Y, Z}, in addition to being regular derivatives near the singularity, also
simultaneously capture the fact that the solution is “almost simple plane symmetric.” Moreover, the
following analytical considerations were fundamental to the philosophy of the proof in [52]:

17The possible high-order energy blowup has its origins in the presence of some difficult factors of 1/µ in the top-order
energy identities, where one must work hard to avoid a loss of derivatives. To close the energy estimates, one commutes the
wave equation many times with the Fu -tangent subset {L , Y, Z} of the rescaled frame. The most difficult terms in the commuted
wave equation are top-order terms in which all the derivatives fall onto the components of {L , Y, Z}. It turns out that due to the
way the rescaled frame is constructed, the corresponding difficult error terms depend on the top-order derivatives of the eikonal
function u. In Proposition A.4, we identify these difficult commutator terms. To avoid the loss of derivatives, one must work
with modified quantities and use elliptic estimates. It is in this process that one creates difficult factors of 1/µ.

18Our proof of the universality of M∗ in the presence of vorticity and entropy requires some new observations, described
below (1-11).

19The lowest-order energy EN (t) is excluded from this estimate because it is not of small size ϵ̊2, owing to the largeness
of X̆R(+).

20More precisely, his work addressed compactly supported irrotational perturbations of constant, nonvacuum fluid solutions.
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• All energy estimates can be closed by commuting only with tangential derivatives {L , Y, Z} (and
without X̆ ). This is a slightly different strategy than we used in our paper [36] in the two-dimensional
case, in which we closed the energy estimates by commuting the equations with strings of tangential
derivatives {L , Y, Z}, as well as strings that contain up to one factor of X̆ . In [36], we also could have
closed the energy estimates by commuting only with tangential derivatives {L , Y, Z}, but we would have
had to work with the modified fluid variable C (which, though fundamental in three dimensions, was not
needed in [36] due to the absence of the vorticity-stretching term) or to treat the Cartesian gradients ∂αΩ i

as independent unknowns.

• After being commuted with (at least one of) L , Y, Z , the wave equation solutions are small. In particular,
we can capture the smallness from “nearly simple plane-symmetric” data without explicitly subtracting
the simple plane-symmetric background solution; see also Remark 1.2.

1A3. The reformulation of the equations. In order to extend Christodoulou’s theory so that it can be
applied to the compressible Euler equations, a crucial first step is to reformulate the compressible Euler
equations as a system of quasilinear wave equations and transport equations. Here, the transport part of
the system refers to the vorticity and the entropy, and the intention is to handle them perturbatively.

As we mentioned earlier, the reformulation has been carried out in [36; 37; 50]. Here we highlight the
main features and philosophy of the reformulation, and explain how we derived it.

(1) To the extent possible, formulate compressible Euler flow as a perturbation of a system of quasilinear
wave equations.

(a) We compute □gv
i , □gρ, and □gs, where □g is the covariant wave operator associated to the

acoustical metric (see (2-7)). Then using the compressible Euler equations (1-1)–(1-3), we eliminate
and re-express many terms.

(b) We find that vi , ρ, and s do not exactly satisfy wave equations; instead, the right-hand sides contain
second derivatives of the fluid variables, which we will show to be perturbative, despite their
appearance of being principal order in terms of the number of derivatives.

(2) The “perturbative” terms mentioned above are equal to good transport variables that we identify,
specifically (Ω, S, C,D). These variables behave better than what one might naïvely expect, from the
points of view of their regularity and their singularity strength.

(a) While both Ω i .
= (curl v)i/(ϱ/ϱ̄) and S .

= ∇s are derivatives of the fluid variables, they play a
distinguished role since they satisfy independent transport equations, and obey better bounds than
generic first derivatives of the fluid variables.

(b) We have introduced the modified fluid variables Ci and D (see Definition 2.7), which, up to lower-
order correction terms, are equal to (curl Ω)i and 1s = div S respectively. These quantities satisfy
better estimates than generic first derivatives of Ω and S, which is crucial for our proof.

1A4. The remarkable null structure of the reformulation. In the reformulation of compressible Euler
flow, we consider the unknowns to be all of (vi , ρ, s, Ω i , Si , Ci ,D). Note that these include not only the
fluid variables, but also higher-order variables which can be derived from the fluid variables.
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The equations satisfied by these variables take the following schematic form (see Theorem 5.1 for the
precise equations):21

□g(v, ρ, s) =

.
=I︷ ︸︸ ︷

∂(v, ρ) · ∂(v, ρ) +(Ω, S) · ∂(v, ρ) + (C,D), (1-7)

B(Ω, S) = (Ω, S) · ∂(v, ρ), (1-8)

B(C,D) = ∂(v, ρ) · ∂(Ω, S)︸ ︷︷ ︸
.
=II

+ (Ω, S) · ∂(v, ρ) · ∂(v, ρ)︸ ︷︷ ︸
.
=III

+S · S · ∂(v, ρ). (1-9)

Here, □g is the covariant wave operator associated to the acoustical metric (see (2-7)) and B .
= ∂t + va∂a

is the transport operator associated with the material derivative (cf. (1-1)–(1-3)).
Although it is not apparent from the way we have written it, the system of equations (1-7)–(1-9) has a

remarkable null structure! Importantly, the terms I, II and III are g-null forms: when decomposed in the
{L , X, Y, Z} frame, we do not have X (vi , ρ)·X (vi , ρ) in I and III, nor do we have X (v, ρ)·X (Ω, S) in II.

Because X (vi , ρ) is the only derivative that blows up (while X̆(vi , ρ) is bounded), it follows that given a
g-null form Q in the fluid variables (see Definition 8.1 concerning g-null forms), such as Q(∂vi , ∂v j ), the
quantity µQ(∂vi , ∂v j ) remains bounded up to the singularity, while a generic quadratic nonlinearity Qbad

would be such that µQbad(∂vi , ∂v j ) blows up when µ vanishes.
As is already observed in [48], a null form I on the right-hand side of the wave equation allows all the

wave estimates in Section 1A1 to be proved. As we will discuss below, the null forms II and III in (1-9)
will also be important for estimating the full system.

1A5. Estimates for the transported variables. To control solutions to the system (1-7)–(1-9), we in
particular need to estimate the transport variables (Ω, S, C,D) and understand how they interact with
the wave variables (v, ρ, s) on the left-hand side of (1-7). Here, we will discuss the estimates at the low
derivative levels. We will discuss the difficult technical issues of a potential loss of derivatives and the
blowup of the higher-order energies in Sections 1A6 and 1A7 respectively.

We begin with two basic — but crucial — properties regarding the transport operator for the compressible
Euler system, which were already observed in [36]:

• The transport vectorfield B is transversal to the null hypersurfaces Fu; see Figure 1, where some
integral curves of B are depicted. As a result, one gains a power of µ by integrating along B; i.e., for
solutions φ to Bφ = F, we have ∥φ∥L∞ ≲ ∥µF∥L∞ .

• µB is a regular vectorfield in the (t, u, x2, x3) differential structure. Thus, if Bφ = F and µF has
bounded {L , Y, Z} derivatives, then φ also has bounded {L , Y, Z} derivatives.

We now apply these observations to (1-8) and (1-9):

• Even though ∂(v, ρ) blows up as the shock forms, µ∂(v, ρ) remains regular. This is because µ∂ can be
written as a linear combination of the rescaled frame vectorfields {µX, L , Y, Z} (see Section 1A1) with

21Here, our notation above the brackets is such that ∂(v, ρ) · ∂(v, ρ) may contain all of ∂vi ∂v j , ∂vi ∂ρ and ∂ρ∂ρ. A similar
convention applies for other terms.
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X̆

Y

L

X̆
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µ ≈ 1

µ small

Figure 1. The dynamic vectorfield frame at two distinct points on Fu with the Z -direction
suppressed, and the integral curves of the transport operator B for the specific vorticity
and entropy.

coefficients that are O(1) or O(µ). Hence, the above observations imply that (Ω, S) and their {L , Y, Z}

derivatives are bounded.

• The null structure and the bounds for the wave variables and (Ω, S) together imply that the right-hand
side of (1-9) is O(µ−1). Thus, C, D and their {L , Y, Z} derivatives are also bounded.

1A6. Elliptic estimates for the vorticity and the entropy gradient. Despite the favorable structure of
(1-7)–(1-9), there is apparently a potential loss of derivatives. To see this, consider the following simple
derivative count. Suppose we bound (v, ρ, s) with Ntop + 1 derivatives. Equation (1-7) dictates22 that
we should control (C,D) with Ntop derivatives. If we rely only on (1-8), then we can only bound Ntop

derivatives of (Ω, S). However, this is insufficient: plugging this into (1-9) and using only transport
estimates, we are only able to control Ntop − 1 derivatives of (C,D), which is not enough.

The key to handling this difficulty is the observation that in fact, C and D can be used in conjunction
with elliptic estimates to control one derivative of Ω and S. This is because up to lower-order terms,
C ≈ curl Ω and D ≈ div S, while at the same time, by the definitions of Ω and S — precisely that Ω is
almost a curl of a vectorfield and S = ∇s is an exact gradient — div Ω and curl S are of lower order in
terms of the number of derivatives. It follows that we can control all first-order spatial derivatives of Ω

and S, including C and D, using elliptic estimates.

1A7. L2 estimates for the transport variables and the high-order blowup-rate. We end this section with
a few comments on the L2 energy estimates for the transport variables (Ω, S) (and (C,D)), with a focus
on how to handle the degeneracies tied to the vanishing of µ.

First, due to the eventual vanishing of µ and the corresponding blowup of the wave variables, we need
to incorporate µ weights into our analysis of the transport variables (Ω, S) (and (C,D)). In particular, we

22We use here the fact that inverting the wave operator gains one derivative.
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need to incorporate µ weights into the transport equations and energies so that the wave terms appearing
as inhomogeneous terms in the energy estimates for the transport variables are regular. Importantly,
despite the need to rely on µ weights in some parts of the analysis, the “transport energy” that we
construct controls a nondegenerate energy flux (i.e., an energy flux without µ weights) on constant-u
hypersurfaces Fu . That this energy flux is bounded can be thought of as another manifestation of the
transversality of the transport operator and Fu . More precisely, with 6t denoting constant-t hypersurfaces,
we have, roughly, L2 estimates of the following form, where PN is an order-N differential operator
corresponding to repeated differentiation with respect to the Fu-tangent vectorfields {L , Y, Z}:

sup
t ′∈[0,t)

∥
√
µPN (Ω, S)∥2

L2(6t ′ )
+ sup

u′∈[0,u)

∥PN (Ω, S)∥2
L2(Fu′ )

≲ data terms + regular wave terms +

∫ u′
=u

u′=0
∥PN (Ω, S)∥2

L2(Fu′ )
du′. (1-10)

Here, the nondegenerate energy flux (i.e., the energy along Fu′ on the left-hand side of (1-10), which does
not have a µ-weight) allows one to absorb the last term on the right-hand side of (1-10) using Grönwall’s
inequality23 in u (as opposed to Grönwall’s inequality in t which has a loss in µ). For the lower-order
energies, the “regular wave terms” are indeed bounded (see (1-6)), which in total allows us to prove that
the transport energies on the left-hand side of (1-10) are also bounded at the lower derivative levels.

Second, since the higher-order energies of the wave variables (v, ρ, s) can blow up as µ⋆(t) → 0 (even
in the absence of inhomogeneous terms; see (1-5)), (1-10) allows for the possibility that the higher-order
energies of the transport variables (Ω, S) (and (C,D)) might also blow up. Hence, one needs to verify that
there is consistency between the blowup-rates (with respect to powers of µ−1

⋆ ) associated to the different
kinds of solution variables. That is, using (1-10) and the wave energy blowup-rates from (1-5), one needs
to compute the expected blowup-rate of the transport variables and then plug these back into the energy
estimates for the wave variables to confirm that the transport terms have an expected singularity strength
that is consistent with wave energy blowup-rates. See, for example, the proof of Proposition 12.7.

Third, due to issues mentioned in Section 1A6, the transport estimates at the top-order are necessarily
coupled with elliptic estimates. By their nature, the elliptic estimates treat derivatives in all spatial
directions on the same footing. This clashes with the philosophy of bounding the solution with respect to
the rescaled frame (which would mean that derivatives in the Y and Z frame directions should be more
regular than those in the X -direction), and it leads to estimates that are singular in µ−1

⋆ . To illustrate the
difficulties and our approach to overcoming them, we first note that, suppressing many error terms, we
can derive a top-order inequality of the following form, with ∂ denoting Cartesian spatial derivatives and
A denoting a constant depending on the equation of state:

∥
√
µ∂PNtop(Ω, S)∥L2(6t )

≤ C ϵ̊3/2µ−2M∗+2.8(t) + A
∫ t ′=t

t ′=0
µ−1

⋆ (t ′)∥
√
µ∂PNtop(Ω, S)∥L2(6t ′ )

dt ′
+ · · · . (1-11)

23Our analysis takes place in regions of bounded u width, so that factors of eCu which arise in our Grönwall estimates can be
bounded by a constant.
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To apply Grönwall’s inequality to (1-11), one must quantitatively control the behavior of the crucial
“Grönwall factor”

∫ t ′=t
t ′=0 A/µ⋆(t ′) dt ′. A fundamental aspect of our analysis is that µ⋆(t) tends to 0

linearly24 in t towards the blowup-time. It follows that one can at best prove an estimate of the form∫ t ′=t
t ′=0 µ−1

⋆ (t ′) dt ′ ≲ log(µ−1
⋆ )(t) (recall that µ⋆(t) = min{1, min6t µ}, and see Proposition 8.11 for related

estimates). Using only this estimate and applying Grönwall’s inequality to (1-11), we find (ignoring the
error terms “· · · ”) that ∥∂PNtop(Ω, S)∥L2(6t ) ≲ ϵ̊3/2µ

− max{O(A), 2M∗−2.8}

⋆ (t). Notice that unless A is small,
the dominant blowup-rate in the problem would be the one corresponding to these elliptic estimates for
(Ω, S), which could in principle be much larger than the blowup-rates corresponding to the irrotational
and isentropic case.25

However, we can prove a better result: we can show that the blowup-rates are not dominated by the top-
order elliptic estimates for the transport variables, but rather by the blowup-rates for the wave variables.26

The key to showing this is to replace the estimate (1-11) with a related L2 estimate that features weights in
the eikonal function u; see Proposition 11.4. Thanks to the u weights, the corresponding constant A in this
analog of (1-11) can be chosen to be arbitrarily small, and thus the main contribution to the blowup-rate
comes from the wave variables error terms, which are present in the “· · · ” on the right-hand side of (1-11).
That this can be done is related to the fact that we have good flux estimates for top derivatives of C and D
on Fu . We refer to Propositions 11.2, 11.10, and 11.11 for the details.

1B. Related works.

1B1. Shock formation in one spatial dimension. One-dimensional shock formation has a long tradition
starting from [45]. See the works of Lax [34], John [31], Liu [35], and Christodoulou and Raoul Perez
[20], as well as the surveys [12; 24] for details.

1B2. Multidimensional shock formation for quasilinear wave equations. Multidimensional shock for-
mation for quasilinear wave equations was first proven in Alinhac’s groundbreaking papers [3; 4; 5].
Alinhac’s methods allowed him to prove the formation of nondegenerate shock singularities which, roughly
speaking, are shock singularities that are isolated within the constant-time hypersurface of first blowup.
The problem was revisited in Christodoulou’s monumental book [15], which concerned the quasilinear
wave equations of irrotational and isentropic relativistic fluid mechanics. In this book, Christodoulou
introduced methods that apply to a more general class of shock singularities than the nondegenerate ones
treated by Alinhac and, for a large open subset of these solutions, are able to yield a complete description
of the maximal smooth development, up to the boundary. This was the starting point of his follow-up
breakthrough monograph [16] on the restricted shock development problem.

24The linear vanishing rate is crucial for the proof of Proposition 8.11 and for the Grönwall-type estimates for the energies
that we carry out in Proposition 12.7 and in the Appendix. See (14-1) for a precise description of how µ⋆ goes to 0.

25In principle, the largeness of A would not be an obstruction to closing the estimates. It would just mean that the number of
derivatives needed to close the problem would increase in the presence of vorticity and entropy. We refer readers to the technical
estimates in Section A9 for clarification on the role that the sizes of various constants play in determining the blowup-rates in the
problem, as well as the number of derivatives needed to close the proof.

26In other words, our approach yields the same maximum possible high-order energy blowup-rates for the wave variables in
the general case as it does for irrotational and isentropic solutions.
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For quasilinear wave equations, there are many extensions, variations, and simplifications of [15],
some of which adapted Christodoulou’s geometric framework to other solution regimes. See, for instance,
[14; 18; 19; 30; 41; 42; 48; 52].

1B3. Multidimensional shock formation for the compressible Euler equations. Multidimensional singu-
larity formation for the compressible Euler equations without symmetry assumptions was first discovered
by Sideris [47] via an indirect argument. A constructive proof of stable shock formation in a symmetry-
reduced regime for which multidimensional phenomena (such as dispersion and vorticity) are present was
given by Alinhac in [2]. See also [10; 11].

All the works in Section 1B2 on quasilinear wave equations can be used to obtain an analogous
result for the compressible Euler equations in the irrotational and isentropic regime, where the dynamics
reduces to a single, scalar quasilinear wave equation for a potential function. The regime of small,
compact, irrotational perturbations of nonvacuum constant fluid states was treated in Christodoulou’s
aforementioned breakthrough work [15] in the relativistic case, and later in [19] in the nonrelativistic case.

Shock formation beyond the irrotational and isentropic regime was first proven in [36; 37; 50]. These
are already discussed above; see Remark 1.3.

In very interesting recent works [10; 11], Buckmaster, Shkoller and Vicol provided a philosophically
new proof of stable singularity formation without symmetry assumptions in three dimensions under
adiabatic equations of state in a solution regime with vorticity and/or dynamic entropy for initial data such
that precisely one singular point forms at the first singular time; these are analogs of the nondegenerate
singularities that Alinhac studied [3; 4; 5] in the case of quasilinear wave equations. Moreover, in their
regime (compare with Remark 1.7), they proved that the singularity is a perturbation of a self-similar
Burgers shock. See also the two-dimensional precursor work [9] in symmetry, and the recent work [7],
which, in two dimensions in azimuthal symmetry, constructed a set of shock-forming solutions whose
cusp-like spatial behavior at the singularity is unstable (nongeneric).

1B4. Shock development problem. In the one-dimensional case, the theory of global solutions of small
bounded variation (BV) norms [6; 28] allows one to study solutions that form shocks, as well as the
subsequent interactions of the shocks in the corresponding weak solutions. In higher dimensions, the
compressible Euler equations are ill-posed in BV spaces [44]. Nonetheless, in two or three dimensions,
one still hopes to develop a theory that allows one to uniquely extend the solution as a piecewise smooth
weak solution beyond the first shock singularity and to prove that the resulting solution has a propagating
shock hypersurface. This is known as the shock development problem.

Even though the shock development problem for the compressible Euler equations in its full generality
is open in higher dimensions, it has been solved under spherical symmetry in three dimensions, or in
azimuthal symmetry in two dimensions. See [18; 55] and, most recently, [8].

In the irrotational and isentropic regime, the restricted shock development problem was solved in
the recent monumental work [16] of Christodoulou without any symmetry assumptions. Here, the word
“restricted” means that the approach of [16] does not exactly construct a weak solution to the compressible
Euler equations, but instead yields a weak solution to a closely related hyperbolic PDE system such
that the solution was “forced” to remain irrotational and isentropic. Nonetheless, this gives hope that
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under an arbitrary equation of state for the compressible Euler equations in three dimensions, one could
construct a unique weak solution with a propagating shock hypersurface, starting from the first singular
time exhibited in Theorem 1.1. To solve this problem would in particular require extending the ideas in
[16] beyond the irrotational and isentropic regime. This is an outstanding open problem.

1B5. Other singularities for the compressible Euler equations. It has been known since [29; 46] that the
compressible Euler equations admit self-similar solutions. Recently, this has been revisited by Merle,
Raphaël, Rodnianski and Szeftel [39] to show that singularities more severe than shocks can arise in three
dimensions starting from smooth initial data. See also [40; 38] for some spectacular applications.

1B6. Singularity formation in related models. For shock formation results concerning some other multi-
speed hyperbolic problems, see [49; 51] by the second author.

Interestingly, there are also nonhyperbolic models with stable self-similar blowup-profiles modeled on
a self-similar Burgers shock. Examples include the Burgers equation with transverse viscosity [23], the
Burgers–Hilbert equations [54], and the fractal Burgers equation [13], as well as general dispersive or
dissipative perturbations of the Burgers equation [43]. See also [21; 22].

1B7. Other works. The framework we introduced in [36; 37; 50] is useful in other low-regularity settings.
See for example results on improved regularity for vorticity/entropy in [25], and results on local existence
with rough data in [26; 53; 56].

1C. Structure of the paper. The remainder of the paper is structured as follows.
Sections 2–4 are introductory sections. We introduce the basic setup in Section 2, and we define the

norms and energies in Section 3. The setup is similar to the setups in [36; 52]. Then in Section 4, we
state our precise assumptions on the initial data and give a precise statement of our main results, which
we split into several theorems and corollaries.

In Section 5, we recall the results of [50] on the reformulation of the equations, which is important for
the remainder of the paper.

The bulk of paper is devoted to proving the main a priori estimates, which we state in Section 6 as
Theorem 6.3. The proof of Theorem 6.3, which we provide in Section 14, relies on a set of bootstrap
assumptions that we also state in Section 6. Next, after an easy (but crucial) finite-speed-of-propagation
argument in Section 7, in Section 8, we cite various straightforward pointwise and L∞ estimates for
geometric quantities found in [52], and we complement these results with a few related ones that allow us
to handle the transport variables.

We then turn to the main estimates in this paper. In Section 9, we carry out the transport estimates,
specifically L∞ estimates and energy estimates, for Ω , S and their derivatives. In Section 10, we prove
analogous transport estimates for C, D, and their derivatives, except we delay the proof of the top-order
estimates until the next section. In Section 11, we derive the top-order estimates for C and D, which, as
we described in Section 1A7, requires elliptic estimates in addition to transport estimates. In total, these
estimates for the transport variables can be viewed as the main new contribution of the paper.

Next, in Section 12, we derive energy estimates for the fluid wave variables. For convenience,
we have organized the wave equation estimates so that they rely on an auxiliary proposition, namely
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Proposition 12.1, that provides estimates for solutions to the fluid wave equations in terms of various
norms of their inhomogeneous terms, which for purposes of the proposition, we simply denote by G. To
prove the final a priori energy estimates for the wave equations, which are located in Proposition 12.7,
we must use the bounds for G that we obtained in the previous sections, including the bounds for the
transport variables. Since the auxiliary result Proposition 12.1 does not rely on the precise structure
of G, it can be proved using essentially same arguments that have been used in previous works on shock
formation for wave equations. For this reason, and to aid the flow of the paper, we delay the proof of
Proposition 12.1 until the Appendix.

Next, in Section 13, we use the energy estimates to derive L∞ estimates for the wave variables. In
particular, these estimates yield improvements of the L∞ bootstrap assumptions that we made in Section 6.

In Section 14, we combine the results of the previous sections to provide the proof of the main a priori
estimates as well as the main theorems and their corollaries.

Finally, in the Appendix, we provide the details behind the proof of the auxiliary result Proposition 12.1.
The proof relies on small modifications to the proofs of [36; 52] that account for the third spatial dimension
(note that three dimensions wave equations were also handled in [15; 48]), as well as the presence of the
inhomogeneous terms G in the wave equations.

2. Geometric setup

In this section, we construct most of the geometric objects that we use to study shock formation and
exhibit their basic properties.

2A. Notational conventions and remarks on constants. The precise definitions of some of the concepts
referred to here are provided later in the article.

• Lowercase Greek spacetime indices α, β, etc. correspond to the Cartesian spacetime coordinates (see
Section 2C) and vary over 0, 1, 2, 3. Lowercase Latin spatial indices a,b, etc. correspond to the Cartesian
spatial coordinates and vary over 1, 2, 3. Uppercase Latin spatial indices A,B, etc. correspond to the
coordinates on ℓt,u and vary over 2, 3. All lowercase Greek indices are lowered and raised with the
acoustical metric g and its inverse g−1, and not with the Minkowski metric. We use Einstein’s summation
convention in that repeated indices are summed.

• By “·” we denote the natural contraction between two tensors. For example, if ξ is a spacetime one-form
and V is a spacetime vectorfield, then ξ · V .

= ξαV α.

• If ξ is an ℓt,u-tangent one-form (as defined in Section 2J), then ξ# denotes its /g-dual vectorfield, where /g
is the Riemannian metric induced on ℓt,u by g. Similarly, if ξ is a symmetric type-

(0
2

)
ℓt,u-tangent tensor,

then ξ# denotes the type-
(1

1

)
ℓt,u-tangent tensor formed by raising one index with /g−1 and ξ## denotes

the type-
(2

0

)
ℓt,u-tangent tensor formed by raising both indices with /g−1.

• If V is an ℓt,u-tangent vectorfield, then V♭ denotes its /g-dual one-form.

• If V and W are vectorfields, then VW
.
= V αWα = gαβ V αW β.
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• If ξ is a one-form and V is a vectorfield, then ξV
.
= ξαV α. We use similar notation when contracting

higher-order tensorfields against vectorfields. For example, if ξ is a type-
(0

2

)
tensorfield and V and W are

vectorfields, then ξV W
.
= ξαβ V αW β.

• Unless otherwise indicated, all quantities in our estimates that are not explicitly under an integral are
viewed as functions of the geometric coordinates (t, u, x2, x3). Unless otherwise indicated, integrands
have the functional dependence established below in Definition 3.1.

• [Q1, Q2] = Q1 Q2 − Q2 Q1 denotes the commutator of the operators Q1 and Q2.

• A ≲ B means that there exists C > 0 such that A ≤ C B. A ≈ B means that A ≲ B and B ≲ A.
A = O(B) means that |A| ≲ |B|.

• The constants C are free to vary from line to line. These constants, and implicit constants as well, are
allowed to depend on the equation of state, the background ϱ̄, the maximum number of times Ntop that we
commute the equations, and the parameters σ̊, δ̊ and δ̊−1

∗
from Section 4A.

• Constants C♦ are also allowed to vary from line to line, but unlike C , the C♦ are only allowed to depend
on the equation of state and the background ϱ̄.

• In the Appendix, there appear absolute constants Mabs, which can be chosen to be independent of the
equation of state and all other parameters in the problem.

• For our proof to close, the high-order energy blowup-rate parameter M∗ needs to be chosen to be large
in a manner that depends only on Mabs; hence, M∗ can also be chosen to be an absolute constant.

• The integer Ntop denotes the maximum number of times we need to commute the equations to close
the estimates. For our proof to close, Ntop needs to be chosen to be large in a manner that depends only
on M∗. Ntop could be chosen to be an absolute constant, but we choose to think of it as a parameter that
we are free to adjust so that we can study solutions with arbitrary sufficiently large regularity.

• For our proof to close, the data-size parameters α̊ and ϵ̊ must be chosen to be sufficiently small, where
the required smallness is clarified in Theorem 6.3. We always assume that ϵ̊1/2

≤ α̊.

• A ≲♦ B means that A ≤ C♦B, with C♦ as above. Similarly, A = O♦(B) means that |A| ≤ C♦|B|.

• For example, δ̊−2
∗

= O(1), 2 + α̊ + α̊2
= O♦(1), α̊ϵ̊ = O(ϵ̊), C♦α̊

2
= O♦(α̊), N ! ϵ̊ = O(ϵ̊), and

Cα̊ = O(1). Some of these examples are nonoptimal; e.g., we actually have α̊ϵ̊ = O♦(ϵ̊).

• ⌊ · ⌋ and ⌈ · ⌉ respectively denote the standard floor and ceiling functions.

2B. Caveats on citations. Before we introduce our geometric setup, we should say that our setup is
essentially the same as that in [36; 52], except for some small differences. We will therefore cite whenever
possible the computations in [36; 52], except we will need to take into account the following differences:

• The work [52] allows for very general metrics, while in the present paper, we are only concerned with
the acoustical metric for the compressible Euler equations. In citing [52], we sometimes adjust formulas
to take into account the explicit form of the Cartesian metric components gαβ stated in Definition 2.9.
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• The papers [36; 52] concern two spatial dimensions (with ambient manifold 6 = R × T), while in the
present paper, we are concerned with three spatial dimensions (with 6 = R × T2).

• In [52], the metric components gαβ were functions of a scalar function 9, as opposed to the array 9⃗

(defined in (2-3)). For this reason, we must make minor adjustments to many of the formulas from [52]
to account for the fact that in the present article, 9⃗ is an array.

In all cases, our minor adjustments can easily be verified by examining the proof in [52].

2C. Basic setup and ambient manifold. We recall again the setup from the Introduction. We will work
on the spacetime manifold I ×6 (with I ⊆ R a time interval and 6

.
= R×T2 the spatial domain). We fix

a standard Cartesian coordinate system {xα
}α=0,1,2,3 on I × 6, where t .

= x0
∈ I is the time coordinate

and x .
= (x1, x2, x3) ∈ R × T2 are the spatial coordinates.27 We use the notation {∂α}α=0,1,2,3 (or ∂t

.
= ∂0)

to denote the Cartesian coordinate partial derivative vectorfields.
In this coordinate system, the plane-symmetric solutions are exactly those whose fluid variables are

independent of (x2, x3).

2D. Fluid variables and new variables useful for the reformulation. As we already discussed in
Section 1A3, at the heart of our approach is a reformulation of the compressible Euler equations in terms
of new variables. We introduce these new variables in this subsection; see Definitions 2.3 and 2.7.

The basic fluid variables are (ϱ, vi , s) (see the Introduction). We fix an equation of state p = p(ϱ, s)
and a constant ϱ̄ > 0 such that p;ϱ(ϱ̄, 0) = 1.

Definition 2.1. Define the logarithmic density ρ and the speed of sound c(ρ, s) by

ρ = log
(

ϱ

ϱ̄

)
, c(ρ, s) =

√
∂p
∂ϱ

(ϱ, s).

Remark 2.2. As is suggested by our notation, we will consider c(ρ, s) as a function of (ρ, s). The
normalization of p;ϱ that we stated above is equivalent to

c(0, 0) = 1. (2-1)

Definition 2.3 (the fluid variables arrays).

(1) Define the almost Riemann invariants28 R(±) as follows (recall Definition 2.1):

R(±)
.
= v1

± F(ρ, s), F(ρ, s) .
=

∫ ρ

0
c(ρ′, s) dρ′. (2-2)

27While the coordinates x2, x3 on T2 are only locally defined, the corresponding partial derivative vectorfields ∂2, ∂3 can be
extended so as to form a global smooth frame on T2. Similar remarks apply to the one-forms dx2, dx3 These simple observations
are relevant for this paper because when we derive estimates, the coordinate functions x2, x3 themselves are never directly
relevant; what matters are estimates for the components of various tensorfields with respect to the frame {∂t , ∂1, ∂2, ∂3} and the
basis dual coframe {dt, dx1, dx2, dx3

}, which are everywhere smooth.
28R(±) coincide with the well-known Riemann invariants in the plane-symmetric isentropic case. Even though they are no

longer “invariant” in our case, they are useful in capturing smallness.
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(2) Define the array of wave variables:29

9⃗
.
= (91, 92, 93, 94, 95)

.
= (R(+),R(−), v

2, v3, s). (2-3)

Remark 2.4. We sometimes use the simpler notation 9 in place of 9⃗ when there is no danger of
confusion. At other times, we use the notation 9 to denote a generic element of 9⃗. The precise meaning
of the symbol 9 will be clear from context.

Remark 2.5 (clarification on our approach to estimating ρ and v1). Recall that we have introduced R(±)

to allow us to capture the fact that our solutions are perturbations of simple plane waves (for which
only R(+) is nonvanishing). In the one-dimensional isentropic case, {R(+),R(−)} can be taken to be
the unknowns in place of {ρ, v1

}. A similar remark holds in the present three-dimensional case as well,
provided we take into account the entropy. Specifically, from (2-1) and Definition 2.3, it follows that
v1

=
1
2(R(+) +R(−)), and that when ρ, v1, and s are sufficiently small (as is captured by the smallness

parameters α̊ and ϵ̊ described at the beginning of Section 4A), we have (via the implicit function theorem)
ρ= (R(+) −R(−)) · F̃(R(+) −R(−), s), where F̃ is a smooth function. This allows us to control ρ and v1

in terms of R(+), R(−), and s. Throughout the article, we use this observation without explicitly pointing
it out. In particular, even though many of the equations we cite explicitly involve ρ and v1, it should be
understood that we always estimate these quantities in terms of the wave variables R(+), R(−), and s,
which are featured in the array (2-3).

Definition 2.6 (Euclidean divergence and curl). Denote by30 div and curl the Euclidean spatial divergence
and curl operator. That is, given a 6t -tangent vectorfield V = V a∂a , define

div V .
= ∂a V a, (curl V )i .

= ϵiab∂a V b, (2-4)

where ϵiab is the fully antisymmetric symbol normalized by ϵ123 = 1.

Definition 2.7 (the higher-order variables).

(1) Define the specific vorticity to be the 6t -tangent vectorfield with the Cartesian spatial components

Ω i .
=

(curl v)i

ϱ/ϱ̄
=

(curl v)i

exp(ρ)
.

(2) Define the entropy gradient to be the 6t -tangent vectorfield with the Cartesian spatial components

Si .
= ∂i s.

(3) Define the modified fluid variables by

Ci .
= exp(−ρ)(curl Ω)i

+ exp(−3ρ)c−2 p;s

ϱ̄
Sa∂av

i
− exp(−3ρ)c−2 p;s

ϱ̄
(∂av

a)Si , (2-5a)

D .
= exp(−2ρ) div S − exp(−2ρ)Sa∂aρ. (2-5b)

We think of C as a 6t -tangent vectorfield with Cartesian spatial components given by (2-5a).
29Throughout, we consider 9⃗ as an array of scalar functions; we will not attribute any tensorial structure to the labeling

index ı of 9ı besides simple contractions, denoted by ⋄, corresponding to the chain rule; see Definition 2.13.
30This is in contrast to div/ ; see Definition 2.33.
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2E. The acoustical metric and related objects in Cartesian coordinates. Hidden within compressible
Euler flow lies a geometric structure captured by the acoustical metric, which governs the dynamics of
the sound waves. We introduce in this subsection the acoustical metric g in Cartesian coordinates.

Definition 2.8 (material derivative vectorfield). We define the material derivative vectorfield as follows
relative to the Cartesian coordinates:

B .
= ∂t + va∂a. (2-6)

Definition 2.9 (the acoustical metric). Define the acoustical metric g (in Cartesian coordinates) by

g .
= −dt ⊗ dt + c−2

3∑
a=1

(dxa
− va dt) ⊗ (dxa

− va dt). (2-7)

The following lemma follows from straightforward computations.

Lemma 2.10 (the inverse acoustical metric). The inverse of the acoustical metric g from (2-7) can be
expressed as

g−1
= −B ⊗ B + c2

3∑
a=1

∂a ⊗ ∂a. (2-8)

Remark 2.11 (closeness to the Minkowski metric). In our analysis, v and c − 1 will be small, where
the smallness is captured by the parameters α̊ and ϵ̊ described at the beginning of Section 4A. Recalling
(2-7), we see that g will be L∞-close to the Minkowski metric. It is therefore convenient to introduce the
decomposition

gαβ(9⃗) = mαβ + g(small)
αβ (9⃗), mαβ

.
= diag(−1, 1, 1, 1), (2-9)

where m is the Minkowski metric and g(small)
αβ (9⃗) is a smooth function of 9⃗ such that

g(small)
αβ (9⃗ = 0) = 0. (2-10)

Definition 2.12 (9⃗-derivatives of gαβ). For α, β = 0, . . . , 3 and ı = 1, . . . , 5, we define

Gı
αβ(9⃗)

.
=

∂

∂9ı
gαβ(9⃗), G⃗αβ = G⃗αβ(9⃗)

.
=

(
G1

αβ(9⃗), G2
αβ(9⃗), G3

αβ(9⃗), G4
αβ(9⃗), G5

αβ(9⃗)
)
. (2-11)

For each fixed ı ∈ {1, . . . , 5}, we think of {Gı
αβ}α,β=0,...,3, as the Cartesian components of a spacetime

tensorfield. Similarly, we think of {G⃗αβ}α,β=0,...,3 as the Cartesian components of an array-valued
spacetime tensorfield.

Definition 2.13 (operators involving 9⃗). Let U1, U2, V be vectorfields. We define

V 9⃗
.
= (V 91, V 92, V 93, V 94, V 95), G⃗U1U2 ⋄ V 9⃗

.
=

5∑
ı=1

Gı
αβUα

1 Uβ

2 V 9ı . (2-12)

We use similar notation with other differential operators in place of vectorfield differentiation. For
example, G⃗U1U2 ⋄ 1/ 9⃗

.
=

∑5
ı=1 Gı

αβUα
1 Uβ

2 1/ 9ı (where 1/ is defined in Definition 2.33).
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2F. The acoustic eikonal function and related constructions. To control the solution up to the shock,
we will crucially rely on an eikonal function for the acoustical metric.

Definition 2.14 (acoustic eikonal function). The acoustic eikonal function (eikonal function for short) u
solves the eikonal equation initial value problem

(g−1)αβ∂αu∂βu = 0, ∂t u > 0, u ↾t=0= σ̊− x1, (2-13)

where σ̊ > 0 is the constant controlling the initial support (recall Theorem 1.1).

Definition 2.15 (inverse foliation density). Define the inverse foliation density µ by

µ
.
=

−1

(g−1)αβ(9⃗)∂αt∂βu
> 0. (2-14)

Note that 1/µ measures the density of the level sets of u relative to the constant-time hypersurfaces 6t .
For the data that we will consider, we have µ ↾60≈ 1. When µ vanishes, the level sets of u intersect and,
as it turns out, maxα=0,1,2,3 |∂αu| and maxα=0,1,2,3 |∂αR(+)|, blow up.

The following quantities, tied to µ, play an important role in our description of the singular behavior
of our high-order energies.

Definition 2.16. Define µ⋆(t, u) and µ⋆(t) by31

µ⋆(t, u)
.
= min

{
1, min

u′≤u
µ(t, u′)

}
, µ⋆(t)

.
= min

{
1, min

6t
µ
}
.

2G. Subsets of spacetimes.

Definition 2.17 (subsets of spacetime). For 0 ≤ t ′ and 0 ≤ u′, define

6t ′
.
= {(t, x) ∈ R × (R × T2) | t = t ′

}, (2-15a)

6u′

t ′
.
= {(t, x) ∈ R × (R × T2) | t = t ′, 0 ≤ u(t, x) ≤ u′

}, (2-15b)

Fu′

.
= {(t, x) ∈ R × (R × T2) | u(t, x) = u′

}, (2-15c)

F t ′
u′

.
= {(t, x) ∈ R × (R × T2) | 0 ≤ t ≤ t ′, u(t, x) = u′

}, (2-15d)

ℓt ′,u′

.
= F t ′

u′ ∩ 6u′

t ′ = {(t, x) ∈ R × (R × T2) | t = t ′, u(t, x) = u′
}, (2-15e)

Mt ′,u′

.
=

⋃
u∈[0,u′]

F t ′
u ∩ {(t, x) ∈ R × (R × T2) | 0 ≤ t < t ′

}. (2-15f)

We refer to the 6t and 6u
t as “constant time slices,” the Fu and F t

u as “null hyperplanes,” “null
hypersurfaces,” “characteristics,” or “acoustic characteristics,” and the ℓt,u as “tori.” Note that Mt,u is
“open-at-the-top” by construction.

31By definition, µ⋆(t, u) ≥ µ⋆(t) for all u ∈ R. Note that by the localization lemma (Lemma 7.1) we prove below, we have
µ⋆(t) = µ⋆(t, U0). In most of the proof, it suffices to consider the function µ⋆(t) without considering µ⋆(t, u). The more refined
definition for µ⋆(t, u) will only be referred to in the Appendix, so that the formulas take the same forms as their counterparts in
[36; 52].
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Mt,uF t
u

F t
0

6u
0

ℓ0,0ℓ0,u

6u
t
ℓt,0ℓt,u

(x2, x3) ∈ T2

x1
∈ R

Figure 2. The spacetime region and various subsets. The (unlabeled and uncolored) flat
front and back surfaces should be identified.

2H. Important vectorfields, the rescaled frame, and the nonrescaled frame.

Definition 2.18 (important vectorfields). (1) Define the geodesic null vectorfield by

Lν
(Geo)

.
= −(g−1)να ∂αu. (2-16)

(2) Define the rescale null vectorfield (recall the definition of µ in (2-14)) by

L .
= µL(Geo). (2-17)

(3) Define X to be the unique vectorfield that is 6t -tangent, g-orthogonal to the ℓt,u , and normalized by

g(L , X) = −1. (2-18)

Define the “rescaled” vectorfield X̆ by

X̆ .
= µX. (2-19)

(4) Define Y and Z respectively to be the g-orthogonal projection32 of the Cartesian partial derivative
vectorfields ∂2 and ∂3 to the tangent space of ℓt,u , i.e.,

Y .
= ∂2 − g(∂2, X)X, Z .

= ∂3 − g(∂3, X)X. (2-20)

(5) We will use vectorfields in P
.
= {L , Y, Z} for commutation, and we therefore refer to them as

commutation vectorfields. An element of P will often be denoted schematically by P (see also
Definition 3.4).

We collect some basic properties of these vectorfields; see [52, (2.12), (2.13) and Lemma 2.1] for
proofs.

32To see that Y and Z are tangent to ℓt,u , one can use (2-18), (2-23), the fact that B is g-orthogonal to 6t , and the fact that ∂i
is tangent to 6t . Alternatively, see (2-30b).
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Lemma 2.19 (basic properties of the vectorfields).

(1) L(Geo) is geodesic and null, i.e.,

g(L(Geo), L(Geo)) = 0, DL(Geo)
L(Geo) = 0,

where D is the Levi-Civita connection associated to g.

(2) The following identities hold:

Lu = 0, Lt = L0
= 1, X̆u = 1, X̆ t = X̆0

= 0, (2-21)

g(X, X) = 1, g(X̆ , X̆) = µ2, g(L , X) = −1, g(L , X̆) = −µ. (2-22)

(3) The vectorfield B (see (2-6)) is future-directed, g-orthogonal to 6t , and is normalized by g(B,B)=−1.
Moreover,

B = ∂t + va∂a = L + X, (2-23)

Bα = −δ0
α, (2-24)

where δ
β
α is the Kronecker delta.

2I. Transformations. Having introduced various vectorfields in Section 2H, we now derive some related
transformation formulas that we will use later on.

Definition 2.20 (coordinate vectorfields in geometric (t, u, x2, x3)-coordinates). Define (/∂ t , /∂u, /∂2, /∂3)

to be the coordinate partial derivative vectorfields in the geometric (t, u, x2, x3)-coordinate system.

Definition 2.21 (Cartesian components of geometric vectorfields).

(1) Define L i and X i to be the Cartesian i-th components of L and X respectively. (Note L i
+X i

−vi
= 0;

see (2-23).)

(2) Define33 L(small) and X(small) by

L1
(small)

.
= L1

− 1, L2
(small)

.
= L2, L3

(small)
.
= L3, (2-25a)

X1
(small)

.
= X1

+ 1, X2
(small)

.
= X2, X3

(small)
.
= X3. (2-25b)

Lemma 2.22 (relations between {∂α}α=0,1,2,3 and {L , X, Y, Z}). The following identities hold:

∂t
.
= ∂0 = L + X − va∂a, (2-26a)

∂1 = c−2 X1 X −
X2

X1 Y −
X3

X1 Z , (2-26b)

∂2 = Y + (c−2 X2)X, ∂3 = Z + (c−2 X3)X. (2-26c)

Proof. Equation (2-26a) is simply a restatement of (2-23), and (2-26c) follows from (2-20) and g(∂A, X)=

c−2 X A for A = 2, 3 (see (2-7)). Finally, to obtain (2-26b), we write X = Xa∂a and use (2-26c) to obtain

∂1 =
1

X1 [1 − c−2((X2)2
+ (X3)2)]X −

X2

X1 Y −
X3

X1 Z .

This then implies (2-26b) since
∑3

a=1(Xa)2
= c2 by g(X, X) = 1 (see (2-22)) and (2-7). □

33The notation is suggestive of the fact that these quantities are of size O(α̊) (and hence small).
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Lemma 2.23 (relation between {/∂α} and {L , X, Y, Z}). The following identities hold, where repeated
capital Latin indices are summed over A = 2, 3:

L = /∂ t + L A /∂A, X̆ = /∂u +µX A /∂A, (2-27a)

Y = (1 − c−2(X2)2)/∂2 − c−2 X2 X3 /∂3, Z = (1 − c−2(X3)2)/∂3 − c−2 X2 X3 /∂2. (2-27b)

Proof. Equation (2-27a) is an immediate consequence of (2-21) (and (2-19)).
To derive the first equation in (2-27b), simply note that Y x2

= 1 − c−2(X2)2 and Y x3
= −cX2 X3 by

(2-26c), and that Y t = Y u = 0 since Y is ℓt,u-tangent. The second equation in (2-27b) follows from
similar reasoning. □

Lemma 2.24 (relation34 between {∂a}a=1,2,3, {/∂u, /∂2, /∂3}, and {X̆ , Y, Z}). The following identities hold:

/∂u =
µc2

X1 ∂1 = X̆ −µc2 X2

(X1)2 Y −µc2 X3

(X1)2 Z , (2-28a)

/∂2 = ∂2 −
X2

X1 ∂1 =

{
1 +

(
X2

X1

)2}
Y +

X2 X3

(X1)2 Z , (2-28b)

/∂3 = ∂3 −
X3

X1 ∂1 =
X2 X3

(X1)2 Y +

{
1 +

(
X3

X1

)2}
Z . (2-28c)

Proof. It suffices to derive the identities

/∂u x1
=

µc2

X1 , /∂2x1
= −

X2

X1 , /∂3x1
= −

X3

X1 ; (2-29)

it is straightforward to see that the first identities in each of (2-28a)–(2-28c) follow from (2-29); the second
identities in (2-28a)–(2-28c) then follow from the first ones and Lemma 2.22. To prove (2-29), we invert
(2-27b) to obtain (with the help of the identity

∑3
a=1(Xa)2

= c2, which follows from (2-22) and (2-7)):

/∂2 =

{
c2

(X1)2 −

(
X3

X1

)2}
Y +

X2 X3

(X1)2 Z , /∂3 =
X2 X3

(X1)2 Y +

{
c2

(X1)2 −

(
X2

X1

)2}
Z .

On the other hand, by (2-26c), Y x1
= −c−2 X2 X1 and Z x1

= −c−2 X3 X1. Hence,

/∂2x1
= −

X2

X1 , /∂3x1
= −

X3

X1 .

Plugging back into the second identity in (2-27a), we obtain

/∂u x1
= µX1

−

3∑
A=2

µX A /∂Ax1
= µX1

+

3∑
A=2

µ
(X A)2

X1 =
µc2

X1 ,

where we again used
∑3

i=1(X i )2
= c2. □

34We could also obtain /∂ t = ∂t +(L1
+(X2L2

+ X3L3)/X1)∂1. Since this will not be explicitly needed, we will not prove it.
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2J. Projection tensorfields, G⃗(frame), and projected Lie derivatives.

Definition 2.25 (projection tensorfields). We define the 6t projection tensorfield35 5 and the ℓt,u projec-
tion tensorfield 5/ relative to Cartesian coordinates as

5 µ
ν

.
= δ µ

ν + Bν Bµ
= δ µ

ν − δ 0
ν Lµ

− δ 0
ν Xµ, (2-30a)

5/ µ
ν

.
= δ µ

ν + Xν Lµ
+ Lν(Lµ

+ Xµ) = δ µ
ν − δ 0

ν Lµ
+ Lν Xµ. (2-30b)

In (2-30a)–(2-30b), δ
µ

ν is the standard Kronecker delta. The last equalities in (2-30a) and (2-30b) follow
from (2-23)–(2-24).

Definition 2.26 (projections of tensorfields). Given any type-
(m

n

)
spacetime tensorfield ξ, we define its

6t projection 5ξ and its ℓt,u projection 5/ ξ as

(5ξ)µ1···µm
ν1···νn

.
= 5

µ1
µ̃1

· · · 5
µm

µ̃m
5 ν̃1

ν1
· · · 5 ν̃n

νn
ξ

µ̃1···µ̃m
ν̃1···̃νn

, (2-31a)

(5/ ξ)µ1···µm
ν1···νn

.
= 5/

µ1
µ̃1

· · · 5/
µm

µ̃m
5/ ν̃1

ν1
· · · 5/ ν̃n

νn
ξ

µ̃1···µ̃m
ν̃1···̃νn

. (2-31b)

We say that a spacetime tensorfield ξ is 6t -tangent (respectively ℓt,u-tangent) if 5ξ = ξ (respectively
if 5/ ξ = ξ). Alternatively, we say that ξ is a 6t tensor (respectively ℓt,u tensor).

Definition 2.27 (ℓt,u projection notation). If ξ is a spacetime tensor, then ξ/
.
= 5/ ξ.

If ξ is a symmetric type-
(0

2

)
spacetime tensor and V is a spacetime vectorfield, then ξ/V

.
= 5/ (ξV ),

where ξV is the spacetime one-form with Cartesian components ξανV α, (ν = 0, 1, 2, 3).

Remark 2.28 (clarification of the symbols (/∂ t , /∂u, /∂2, /∂3)). We caution that the coordinate partial deriva-
tive vectorfields (/∂ t , /∂u, /∂2, /∂3) from Definition 2.20 are not ℓt,u projections of other vectorfields; i.e., for
(/∂ t , /∂u, /∂2, /∂3), we are not using the “slash conventions” of Definition 2.27.

Throughout, LVξ denotes the Lie derivative of the tensorfield ξ with respect to the vectorfield V. We
often use the Lie bracket notation [V, W ]

.
= LV W when V and W are vectorfields.

Definition 2.29 (6t - and ℓt,u-projected Lie derivatives). If ξ is a tensorfield and V is a vectorfield, we
define the 6t -projected Lie derivative LVξ and the ℓt,u-projected Lie derivative L/Vξ as

LVξ
.
= 5LVξ, L/Vξ

.
= 5/LVξ. (2-32)

Definition 2.30 (components of G⃗ relative to the nonrescaled frame). We define

G⃗(frame)
.
= {G⃗L L , G⃗L X , G⃗ X X , G⃗/L , G⃗/X , G⃗/ }, (2-33)

where G⃗αβ is defined in (2-11).

Our convention is that derivatives of G⃗(frame) form a new array consisting of the differentiated compo-
nents. For example,

L/L G⃗(frame)
.
= {L(G⃗L L), L(G⃗L X ), . . . ,L/L G⃗/ },

35In (2-30a), we have corrected a sign error that occurred in [52, Definition 2.8].
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where
L(G⃗L L)

.
= {L(G1

L L), L(G2
L L), . . . , L(G5

L L)},

L/L(G⃗/X )
.
= {L/L(G/ 1

X ),L/L(G/ 2
X ), . . . ,L/L(G/ 5

X )},

etc.

2K. First and second fundamental forms and covariant differential operators.

Definition 2.31 (first fundamental forms). Let 5 and 5/ be as in Definition 2.27. We define the first
fundamental form g of 6t and the first fundamental form /g of ℓt,u as

g .
= 5g, /g

.
= 5/ g. (2-34)

We define the inverse first fundamental forms by raising the indices with g−1:

(g−1)µν .
= (g−1)µα(g−1)νβgαβ, (/g−1)µν .

= (g−1)µα(g−1)νβ /gαβ
, (2-35)

where g is the Riemannian metric on 6t induced by g, while /g is the Riemannian metric on ℓt,u induced
by g. Simple calculations imply that (g−1)µαgαν = 5

µ
ν and (/g−1)µα

/gαν
= 5/

µ
ν .

Lemma 2.32 (identities for induced metrics). In the (t, u, x2, x3)-coordinate system, we have

g =
µ2c2

(X1)2 du⊗du−µ

3∑
A=2

X A

(X1)2 (dx A
⊗du+du⊗dx A)+/g, /g =

3∑
A,B=2

c−2(δAB +
X A X B

(X1)2 )dx A
⊗dx B .

Moreover,

/g−1
=

3∑
A,B=2

(c2δAB
− X A X B)/∂A ⊗ /∂ B .

Proof. The identities for g and /g follow easily from Lemma 2.24 and the fact that gi j = c−2δi j in Cartesian
coordinates (see (2-7)). The identity for /g−1 follows from inverting the matrix (/g AB)A,B=2,3 and using
the identity

∑3
i=1(X i )2

= c2, which follows from the first identity in (2-22) and (2-7). □

Definition 2.33 (differential operators associated to the metrics).

• D denotes the Levi-Civita connection of the acoustical metric g.

• /∇ denotes the Levi-Civita connection of /g.

• If f is a scalar function on ℓt,u , then d/ f .
= /∇ f = 5/ D f , where D f is the gradient one-form associated

to f .

• If ξ is an ℓt,u-tangent one-form, then div/ ξ is the scalar function div/ ξ
.
= /g−1

· /∇ξ.

• Similarly, if V is an ℓt,u-tangent vectorfield, then div/ V .
= /g−1

· /∇V♭, where V♭ is the one-form /g-dual
to V.

• If ξ is a symmetric type-
(0

2

)
ℓt,u-tangent tensorfield, then div/ ξ is the ℓt,u-tangent one-form div/ ξ .

= /g−1
· /∇ξ,

where the two contraction indices in /∇ξ correspond to the operator /∇ and the first index of ξ.

• 1/
.
= /g−1

· /∇
2 denotes the covariant Laplacian corresponding to /g.
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2L. Ricci coefficients.

Definition 2.34 (Ricci coefficients).

(1) Define the second fundamental form k of 6t and the null second fundamental form χ of ℓt,u as

k .
=

1
2LB g, χ

.
=

1
2L/L /g. (2-36)

(2) Define ζ to be the ℓt,u-tangent one-form whose components are given by

ζ(/∂A)
.
= g(D/∂A L , X) = µ−1g(D/∂A L , X̆), A = 2, 3. (2-37)

(3) Given any symmetric type-
(0

2

)
ℓt,u-tangent tensorfield ξ, define its trace by

tr/g ξ
.
= (/g−1)ABξAB .

Lemma 2.35 (useful identities for the Ricci coefficients). The following identities hold:36

χ = gab(d/La) ⊗ (d/xb) +
1
2 G⃗/ ⋄ L9⃗ +

1
2 d/9⃗

⋄

⊗ G⃗/L −
1
2 G⃗/L

⋄

⊗ d/9⃗, (2-38a)

tr/g χ = gab/g−1
· {(d/La) ⊗ (d/x)b

} +
1
2 /g−1

· G⃗/ ⋄ L9⃗, (2-38b)

k/ =
1
2µ

−1G⃗/ ⋄ X̆9⃗ +
1
2 G⃗/ ⋄ L9⃗ −

1
2 G⃗/L

⋄

⊗ d/9⃗ −
1
2 d/9⃗

⋄

⊗ G⃗/L −
1
2 G⃗/X

⋄

⊗ d/9⃗ −
1
2 d/9⃗

⋄

⊗ G⃗/X , (2-38c)

ζ = −
1
2µ

−1G⃗/L ⋄ X̆9⃗ +
1
2 G⃗/X ⋄ L9⃗ −

1
2 G⃗L X ⋄ d/9⃗ −

1
2 G⃗ X X ⋄ d/9⃗. (2-38d)

Proof. This is the same as [52, Lemmas 2.13, 2.15] except for small modifications incorporating the third
dimension. □

2M. Pointwise norms. We always measure the magnitude of ℓt,u tensors37 using /g.

Definition 2.36 (pointwise norms). For any type-
(m

n

)
ℓt,u tensor ξµ1···µm

ν1···νn , we define

|ξ|
.
=

√
/gµ1µ̃1

· · · /gµm µ̃m
(/g−1)ν1ν̃1 · · · (/g−1)νn ν̃nξ

µ1···µm
ν1···νn ξ

µ̃1···µ̃m
ν̃1···̃νn

. (2-39)

2N. Transport equations for the eikonal function quantities. The next lemma provides the transport
equations that, in conjunction with (2-38b), we use to estimate the eikonal function quantities µ, L i

(small),
and tr/g χ below top order.

Lemma 2.37 ([52, Lemma 2.12] the transport equations satisfied by µ and L i
(small)). The following

transport equations hold:

Lµ =
1
2 G⃗L L ⋄ X̆9⃗ −

1
2µG⃗L L ⋄ L9⃗ −µG⃗L X ⋄ L9⃗, (2-40)

L L i
=

1
2 G⃗L L ⋄ (L9⃗)X i

− G⃗/
#

L ⋄ (L9⃗) · d/x i
+

1
2 G⃗L L ⋄ (d/#9⃗) · d/x i . (2-41)

36Here, G⃗/L
⋄

⊗ d/9⃗ .
=

∑5
ı=1 G/ ı

L ⊗ d/9ı , and similarly for the other terms involving
⋄

⊗.
37Note that in contrast, for 6t tensors, we measure their magnitude using the Euclidean metric or an equivalent norm; see, for

example, Definition 11.1.
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2O. Calculations connected to the failure of the null condition. Many important estimates are tied to
the coefficients G⃗L L . In the next two lemmas, we derive expressions for G⃗L L and 1

2 G⃗L L ⋄ X̆9⃗. This
presence of the latter term on the right-hand side (2-40) is tied to the failure of Klainerman’s null condition
[32] and thus one expects that the product must be nonzero for shocks to form; this is explained in more
detail in the survey article [30] in a slightly different context.

Lemma 2.38 (formula for 1
2 G⃗L L ⋄ X̆9⃗). Let F be the smooth function of (ρ, s) from (2-2), and let F;s

denote its partial derivative with respect to s at fixed ρ. For solutions to (1-1)–(1-3), we have
1
2 G⃗L L ⋄ X̆9⃗ = −

1
2 c−1(c−1c;ρ + 1){X̆R(+) − X̆R(−)} −

1
2µc−2 X1

{LR(+) + LR(−)}

−µc−2(X2Lv2
+ X3Lv3) −µc−1c;s Xa Sa

+µc−1(c−1c;ρ + 1)F;s Xa Sa. (2-42)

Proof. This is the same as [36, Lemmas 2.45, 2.46], except for minor modifications incorporating the
third dimension and the entropy (via the c;s-dependent and F;s-dependent products). □

3. Volume forms and energies

In this section, we first define geometric integration forms and corresponding integrals. We then define
the energies and null fluxes which we will use in the remainder of the paper to derive a priori L2-type
estimates.

3A. Geometric forms and related integrals. We define our geometric integrals in terms of area and
volume forms that remain nondegenerate relative to the geometric coordinates throughout the evolution
(i.e., all the way up to the shock).

Definition 3.1 (geometric forms and related integrals). Define the area form dλg/ on ℓt,u , the area
form dϖ on 6u

t , the area form dϖ on F t
u , and the volume form dϖ on Mt,u as follows (relative to the

(t, u, x2, x3)-coordinates):

dλg/ = dλg/(t,u, x2, x3)
.
=

dx2 dx3

c|X1|
, dϖ = dϖ(t,u′, x2, x3)

.
= dλg/(t,u′, x2, x3)du′,

dϖ = dϖ(t ′,u, x2, x3)
.
= dλg/(t ′,u, x2, x3)dt ′, dϖ = dϖ(t ′,u′, x2, x3)

.
= dλg/(t ′,u′, x2, x3)du′ dt ′.

It is understood that unless we explicitly indicate otherwise, all integrals are defined with respect to
the forms of Definition 3.1. Moreover, in our notation, we often suppress the variables with respect to
which we integrate; i.e., we write

∫
ℓt,u

f dλg/
.
=

∫
(x2,x3)∈T2 f (t, u, x2, x3) dλg/(t, u, x2, x3), etc.

The following lemma clarifies the geometric and analytic significance of the forms from Definition 3.1.

Lemma 3.2 (identities concerning the forms).

(1) dλg/ is the volume measure induced by /g on ℓt,u .

(2) µ dϖ is the volume measure induced by g on 6u
t .

(3) Let dx be the standard Euclidean volume measure on 6u
t , i.e., dx = dx1 dx2 dx3 relative to the

Cartesian spatial coordinates. Then

dx = µc3 dϖ. (3-1)
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Proof. A computation based on Lemma 2.32 and the identity
∑3

a=1(Xa)2
= c2 (which follows from

(2-22) and (2-7)) yields that det /g = 1/(c2(X1)2). Since dλg/ =
√

det /g dx2 dx3, we thus obtain (1).
Next, we again use Lemma 2.32 and the identity

∑3
a=1(Xa)2

= c2 to compute that relative to the
(u, x2, x3)-coordinates, we have det g =µ2/(c2(X1)2). Taking the square root, we see that the volume mea-
sure induced by g on 6u

t is given in the (u, x2, x3)-coordinates by µ/(c|X1
|) du dx2 dx3, which gives (2).

Finally, we obtain (3) from (2) via (2-7), which implies that relative to the Cartesian spatial coordinates,
the canonical volume form induced by g on 6t is c−3dx1 dx2 dx3. □

3B. The definitions of the energies and null fluxes.

3B1. Forms and conventions.

Definition 3.3 (volume forms for L p norms). For p ∈{1, 2}, we define L p norms with respect to the volume
forms introduced in Definition 3.1. That is, for scalar functions or ℓt,u-tangent tensorfields ξ, we define

∥ξ∥L p(ℓt,u)
.
=

(∫
ℓt,u

|ξ|
p dλg/

)1/p

, ∥ξ∥L p(F t
u)

.
=

(∫
F t

u

|ξ|
p dϖ

)1/p

,

∥ξ∥L p(6u
t )

.
=

(∫
6u

t

|ξ|
p dϖ

)1/p

, ∥ξ∥L p(6t )
.
=

(∫
6t

|ξ|
p dϖ

)1/p

,

∥ξ∥L p(Mt,u)
.
=

(∫
Mt,u

|ξ|
p dϖ

)1/p

.

Definition 3.4 (conventions with variable arrays and differentiated quantities).

(1) Given the fluid variable array 9⃗ in Definition 2.3, define

|9⃗| = |9|
.
= max

ι=1,...,5
|9ı |.

We also set
|Ω|

.
= max

a=1,2,3
|Ωa

|,

and similarly for the other 6t -tangent tensorfields such as S and C that correspond to the transport
variables. For p = 2 or p = ∞, define also

∥9∥L p(ℓt,u)
.
= max

ι=1,...,5
∥9ı∥L p(ℓt,u),

and similarly for L p(6u
t ), L p(6t), L p(F t

u), and L p(Mt,u). Similarly, we set

∥Ω∥L p(ℓt,u)
.
= max

a=1,2,3
∥Ωa

∥L p(ℓt,u),

and we analogously define L p norms of other 6t -tangent tensorfields that correspond to the transport
variables, such as S and C.

(2) When estimating multiple solution variables simultaneously, we use the following convention (for
p = 2 or p = ∞):

∥(Ω, S)∥L p(ℓt,u)
.
= max{∥Ω∥L p(ℓt,u), ∥S∥L p(ℓt,u)},

and similarly for L p(6u
t ), L p(6t), L p(F t

u), and L p(Mt,u).
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(3) Let P
.
= {L , Y, Z} be the set of commutation vectorfields and

P(N ) .
= {P1P2 · · ·PN | Pi ∈ P for 1 ≤ i ≤ N }.

For any smooth scalar function φ, define

|PN φ|
.
= max

P1,...,PN ∈P(N )
|P1 · · ·PN φ|.

For p = 2 or p = ∞, the L p norms are defined similarly, with

∥PN φ∥L p(ℓt,u)
.
= ∥|PN φ|∥L p(ℓt,u), etc.

Moreover, we let PN Ω denote the 6t -tangent vectorfield with Cartesian spatial components PN Ω i, and
we define

|PN Ω|
.
= max

P1···PN ∈P(N )
max

a=1,2,3
|P1 · · ·PN Ωa

|,

∥PN Ω∥L p(ℓt,u)
.
= ∥|PN Ω|∥L p(ℓt,u), etc.,

and similarly for other 6t -tangent tensorfields that correspond to the transport variables, such as S and C.

(4) Similarly, we let /P
.
= {Y, Z} be the set of ℓt,u-tangent commutation vectorfields and define

/P(N ) .
= {/P1 /P2 · · · /PN | /P i ∈ /P for 1 ≤ i ≤ N },

|/PN
φ|

.
= max

/P1,..., /PN ∈ /P(N )
|/P1 · · · /PN φ|, etc.

The importance of distinguishing the subset of ℓt,u-tangent commutation vectorfields from the full set P

will be made clear in the Appendix.38

(5) We use the following conventions for sums:

|P [N1,N2]φ|
.
=

N2∑
N ′=N1

|PN ′

φ|, |P≤N φ|
.
= |P [0,N ]φ|,

|/P [N1,N2]φ|
.
=

N2∑
N ′=N1

|/PN ′

φ|, |/P≤N
φ|

.
= |/P [0,N ]

φ|.

(6) We will combine the above conventions. For instance,

|PN (Ω, S)|
.
= max

P1···PN ∈P(N )
max{|P1 · · ·PN Ω|, |P1 · · ·PN S|},

|PN 9|
.
= max

ι=1,...,5
max

P1···PN ∈P(N )
|P1 · · ·PN 9ı |.

3B2. Definitions of the energies. We are now ready to introduce the main energies we use to control the
solution.

38As in the two-dimensional case, the most difficult error terms in the wave equation energy estimates are commutator terms
involving the pure ℓt,u -tangent derivatives of the null mean curvature of the ℓt,u .
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Wave energies:

EN (t, u)
.
= sup

t ′∈[0,t]
(∥X̆PN 9∥

2
L2(6u

t ′ )
+ ∥

√
µPN+19∥

2
L2(6u

t ′ )
), (3-2a)

FN (t, u)
.
= sup

u′∈[0,u]

(∥LPN 9∥
2
L2(F t

u′ )
+ ∥

√
µ/dPN 9∥

2
L2(F t

u′ )
), (3-2b)

KN (t, u)
.
= ∥/dPN 9∥

2
L2(Mt,u∩{µ≤1/4})

, (3-2c)

QN (t, u)
.
= EN (t, u) + FN (t, u), (3-2d)

WN (t, u)
.
= EN (t, u) + FN (t, u) + KN (t, u). (3-2e)

Specific vorticity energies:

VN (t, u)
.
= sup

t ′∈[0,t]
∥
√
µPN Ω∥

2
L2(6u

t ′ )
+ sup

u′∈[0,u]

∥PN Ω∥
2
L2(F t

u′ )
, (3-3a)

CN (t, u)
.
= sup

t ′∈[0,t]
∥
√
µPNC∥

2
L2(6u

t ′ )
+ sup

u′∈[0,u]

∥PNC∥
2
L2(F t

u′ )
. (3-3b)

Entropy gradient energies:

SN (t, u)
.
= sup

t ′∈[0,t]
∥
√
µPN S∥

2
L2(6u

t ′ )
+ sup

u′∈[0,u]

∥PN S∥
2
L2(F t

u′ )
, (3-4a)

DN (t, u)
.
= sup

t ′∈[0,t]
∥
√
µPND∥

2
L2(6u

t ′ )
+ sup

u′∈[0,u]

∥PND∥
2
L2(F t

u′ )
. (3-4b)

Definition 3.5 (important conventions for energies).

(1) We define the following convention for sums (cf. Definition 3.4(3)):

E≤N (t, u)
.
=

N∑
N ′=0

EN ′(t, u), E[1,N ](t, u)
.
=

N∑
N ′=1

EN ′(t, u),

and similarly for other energies.

(2) Abusing notation slightly, if we write an energy as a function of only t (instead of a function of (t, u)),
then it is understood that we take supremum in u, e.g.,

EN (t) .
= sup

u∈R

EN (t, u).

4. Assumptions on the data and statement of the main theorems

4A. Assumptions on the data of the fluid variables. We now introduce the assumptions on the data for
our main theorem. We have five parameters (see Theorem 1.1), denoted by σ̊, δ̊∗, δ̊, α̊ and ϵ̊:

• σ̊ measures the size of the initial support in x1.

• δ̊∗ gives a lower bound on the quantity that controls the blowup, and in particular determines the time
interval for which we need to control our solution before a singularity forms.
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• δ̊, α̊ and ϵ̊ are parameters that control the sizes of various norms of the solution. The parameter δ̊ mea-
sures the L∞ size of the transversal derivatives of R(+), and it can be large, while α̊ limits the size of the am-
plitude of the fluid variables, is small depending on the equation of state and the background density ϱ̄ > 0,
and is used to control basic features of the Lorentzian geometry. The parameter ϵ̊ is small depending on the
equation of state and all the other parameters. In particular, ϵ̊ controls the size of solution in “directions that
break the simple plane symmetry,” and it provides the most crucial smallness that we exploit in the analysis.

• We assume that ϵ̊1/2
≤ α̊.

Here are the assumptions on the initial data.39

In what follows, Ntop and M∗ denote large positive integers that are constrained in particular by
Ntop ≥ 2M∗ +10. In our proof of Proposition 12.1, we will show that our estimates close with M∗ chosen
to be a universal positive integer. The restriction Ntop ≥ 2M∗ + 10 is further explained in Remark 6.1.
See also the discussion in Section 2A.

Compact support assumptions:
If |x1

| ≥ σ̊, then (ρ, v, s) = (0, 0, 0). (4-1)

By (2-13), when t = 0, the data are supported on the set where u ∈ [0, 2σ̊]. This explains why in some of
the data assumptions stated below, we only consider regions in which u ∈ [0, 2σ̊ ].

Lower bound for the quantity that controls the blowup-time:40

δ̊∗

.
= sup

60

1
2 [c−1(c−1c;ρ + 1)(X̆R(+))]+ > 0. (4-2)

Remark 4.1 (nondegeneracy assumption on the factor c−1(c−1c;ρ+1)). Recall the factor c−1(c−1c;ρ+1)

in (4-2) can be viewed as a function of (ρ, s). For the solutions under study, we are assuming that
c−1(c−1c;ρ + 1) is nonvanishing when evaluated at the trivial background solution (ρ, s) ≡ (0, 0) (recall
that this background corresponds to a state with constant density ϱ ≡ ϱ̄ > 0). One can check that for any
smooth equation of state except that of a Chaplygin gas, there are always open sets of ϱ̄ > 0 such that the
nonvanishing condition holds; see the end of [36, Section 2.16] for further discussion. We also point out
that for the Chaplygin gas, it is not expected that shocks will form.

Assumptions on the amplitude and transversal derivatives of the wave variables:

∥R(+)∥L∞(60) ≤ α̊, (4-3a)

∥X̆ [1,3]R(+)∥L∞(60) ≤ δ̊, (4-3b)

∥X̆≤3(R(−), v
2, v3, s)∥L∞(60) ≤ ϵ̊, (4-3c)

∥L X̆ X̆ X̆9∥L∞(60) ≤ ϵ̊. (4-3d)

39Of course, we are only allowed to prescribe (ϱ, vi , s) without explicitly specifying their derivatives transversal to 60.
Nevertheless, using (1-1)–(1-3), we can compute the traces of all derivatives on 60. The derivative assumptions that we specify
here are to be understood in this sense. Notice that all the assumptions are satisfied by the data of exactly simple plane-symmetric
solutions with ϵ̊ = 0. Thus, they are also satisfied by small perturbations of them.

40Here, z+
.
= max{z, 0}.
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Smallness assumptions for good derivatives of the wave variables:

∥P [1,Ntop−M∗−2]9∥L∞(60), ∥P [1,Ntop−M∗−4] X̆9∥L∞(60), ∥P [1,2] X̆ X̆9∥L∞(60),

sup
u∈[0,2σ̊]

∥P [1,Ntop−M∗]9∥L2(ℓ0,u), ∥P [1,Ntop+1]9∥L2(60), ∥P [1,Ntop] X̆9∥L2(60) ≤ ϵ̊. (4-4)

Smallness assumptions for the specific vorticity and entropy gradient:

∥P≤Ntop−M∗−2(Ω, S)∥L∞(60), sup
u∈[0,2σ̊]

∥P≤Ntop−M∗(Ω, S)∥L2(ℓ0,u), ∥P≤Ntop(Ω, S)∥L2(60) ≤ ϵ̊3/2. (4-5)

Smallness assumptions for the modified fluid variables:

∥P≤Ntop−M∗−3(C,D)∥L∞(60), sup
u∈[0,2σ̊]

∥P≤Ntop−M∗−1(C,D)∥L2(ℓ0,u), ∥P≤Ntop(C,D)∥L2(60)≤ ϵ̊3/2. (4-6)

4B. Statement of the main theorem. We are now ready to give a precise statement of Theorem 1.1 (see
Theorems 4.2 and 4.3 below), as well as the corollaries in interesting subregimes of solutions discussed
in Remark 1.5 (see Corollaries 4.4 and 4.5).

We first discuss Theorem 1.1. It will be convenient to think of Theorem 1.1 as two theorems. The first,
which is the much harder theorem, is a regularity statement, stating — with precise estimates — that in
the region under study, the only possible singularity is that of a shock, i.e., one that is associated with the
vanishing of µ. This is the content of Theorem 4.2. Once Theorem 4.2 has been proved, the proof that a
shock indeed occurs is much easier. This is the content of Theorem 4.3.

Theorem 4.2 (regularity unless shock occurs). Let σ̊, δ̊, δ̊∗ > 0. There exists a large integer M∗ that is
absolute in the sense that it is independent of the equation of state, ϱ̄, σ̊, δ̊, and δ̊−1

∗
such that the following

hold. Assume that:

• The integer Ntop satisfies Ntop ≥ 2M∗ + 10 (see Remark 6.1 regarding the size of Ntop).

• α̊ > 0 is sufficiently small in a manner that depends only on the equation of state and ϱ̄.

• ϵ̊ > 0 satisfies41 ϵ̊1/2
≤ α̊ and is sufficiently small in a manner that depends only on the equation of

state, Ntop, ϱ̄, σ̊, δ̊, and δ̊−1
∗

.

• The initial data satisfy the support-size and norm-size assumptions42 (4-1)–(4-6).

Then the corresponding solution (ϱ, v1, v2, v3, s) to the compressible Euler equations (1-1)–(1-3) exhibits
the following properties.

Suppose T ∈ (0, 2δ̊−1
∗

], and assume that there is a smooth solution such that the following two conditions
hold:

• The change of variables map (t, u, x2, x3) → (t, x1, x2, x3) from geometric to Cartesian coordinates is
a diffeomorphism from [0, T ) × R × T2 onto [0, T ) × 6.

• µ > 0 in [0, T ) × 6.

41The assumption ϵ̊1/2
≤ α̊ allows us to simplify the presentation of various estimates, for example, by allowing us to write

O(α̊) instead of O(ϵ̊1/2) +O(α̊).
42Note that our plane-symmetric background solutions satisfy these assumptions with ϵ̊ = 0.
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Then the following estimates hold for every t ∈ [0, T ), where the implicit constants in ≲♦ depend only on
the equation of state and ϱ̄, while the implicit constants in ≲ depend only on the equation of state, Ntop, ϱ̄

σ̊, δ̊, and δ̊−1
∗

(in particular, all implicit constants are independent of t and T ).

(1) The following energy estimates hold (where the energies are defined in (3-2a)–(3-4b) and µ⋆(t) is as
in Definition 2.16):

WN (t) ≲ ϵ̊2 max{1,µ
−2M∗+2Ntop−2N+1.8
⋆ (t)} for 1 ≤ N ≤ Ntop, (4-7a)

VN (t), SN (t) ≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+2.8
⋆ (t)} for 0 ≤ N ≤ Ntop, (4-7b)

CN (t), DN (t) ≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+0.8
⋆ (t)} for 0 ≤ N ≤ Ntop. (4-7c)

(2) The following L∞ estimates hold:

∥P [1,Ntop−M∗−2]9∥L∞(6t ), ∥P [1,Ntop−M∗−4] X̆9∥L∞(6t ) ≲ ϵ̊, (4-8a)

∥R(+)∥L∞(6t ) ≲♦ α̊, ∥(R(−),v
2,v3,s)∥L∞(6t ) ≲ ϵ̊, (4-8b)

∥X̆R(+)∥L∞(6t ) ≤ 2δ̊, ∥X̆(R(−),v
2,v3,s)∥L∞(6t ) ≲ ϵ̊, (4-8c)

∥P [1,Ntop−M∗−2](Ω,S)∥L∞(6t ), ∥P [1,Ntop−M∗−3](C,D)∥L∞(6t ),

∥P [1,Ntop−M∗−4] X̆(Ω,S)∥L∞(6t ) ≲ ϵ̊3/2. (4-8d)

In addition, the solution can be smoothly extended to [0, T ]× R × T2 as a function of the geometric
coordinates (t, u, x2, x3).

Finally, if inft∈[0,T ) µ⋆(t) > 0, then the solution can be smoothly extended to a Cartesian slab
[0, T + ϵ]×6 for some ϵ > 0 such that the map (t, u, x2, x3) → (t, x1, x2, x3) is a diffeomorphism from
[0, T + ϵ]× R × T2 onto [0, T + ϵ]× 6. In particular, on the extended region, the solution is a smooth
function of the geometric coordinates and the Cartesian coordinates.

Theorem 4.3 (complete description of the shock formation at the first singular time). Under the assump-
tions of Theorem 4.2 — perhaps taking α̊ and ϵ̊ smaller in a manner that depends on the same quantities
stated in the theorem — there exists T(sing) ∈ [0, 2δ̊−1

∗
] satisfying the estimate43

T(sing) = {1 +O♦(α̊) +O(ϵ̊)}δ̊−1
∗

(4-9)

such that the following hold:

(1) The solution variables are smooth functions of the Cartesian coordinates (t, x1, x2, x3) in [0,T(sing))×6.

(2) The solution variables extend as smooth functions of the geometric coordinates (t, u, x2, x3) to
[0, T(sing)] × R × T2.

(3) The inverse foliation density tends to zero at T(sing), i.e., lim inft↑T −

(sing)
µ⋆(t) = 0.

(4) ∂1R(+) blows up as t ↑ T −

(sing), i.e., lim supt↑T −

(sing)
sup6t

|∂1R(+)| = ∞.

43See Section 2A regarding our use of the notation O♦( · ), O( · ), etc.
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(5) Moreover, let44

Sblowup
.
=

{
(u, x2, x3) ∈ R × T2

: lim sup
(t̃,ũ,x̃2,x̃3)→(T −

(sing),u,x2,x3)

|∂1R(+)|(t̃, ũ, x̃2, x̃3) = ∞
}
,

Svanish
.
= {(u, x2, x3) ∈ R × T2

: µ(T(sing), u, x2, x3) = 0},

and
Sregular

.
=

{
(u, x2, x3) ∈ R × T2

: all solution variables extend to be C1 functions of
the geometric and Cartesian coordinates in a neighborhood

of the point with geometric coordinates (T(sing), u, x2, x3),
intersected with the half-space{t ≤ T(sing)}

}
.

Then Sblowup and Svanish are nonempty, and

Sblowup = Svanish = R × T2
\ Sregular.

The proofs of both Theorems 4.2 and 4.3 are located in Section 14B.
The next two corollaries concern some refined conclusions one can make with additional assumptions

on the initial data.

Corollary 4.4 (nonvanishing of the vorticity and entropy at the blowup-points). Assume the hypotheses
and conclusions of Theorem 4.2, but perhaps taking α̊ and ϵ̊ smaller in a manner that depends on the
same quantities stated in the theorem. Assume in addition that,45 for all (x2, x3) ∈ T2,

1
2 [c−1(c−1c;ρ + 1)(X̆R(+))]+(t = 0, u, x2, x3) ≤

1
2 δ̊

−1
∗

when |u − σ̊+ δ̊−1
∗

| ≥ 3α̊δ̊−1
∗

, (4-10)

and

1
2 ϵ̊

2
≤ |Ω(t = 0, u, x2, x3)| ≤ ϵ̊2, 1

2 ϵ̊
3
≤ |S(t = 0, u, x2, x3)| ≤ ϵ̊3 when |u − σ̊| ≤ α̊1/2. (4-11)

Then Ω and S are nonvanishing near the singular set; i.e., for any (u, x2, x3) ∈ Sblowup (as in
Theorem 4.3), we have Ω(T(sing), u, x2, x3) ̸= 0 and S(T(sing), u, x2, x3) ̸= 0.

The proof of Corollary 4.4 is located in Section 14C.

Corollary 4.5 (the spatial Hölder regularity of the solution relative to the Cartesian coordinates). Let
β̊ > 0 be a constant, and assume that the following hold:

(1) For all u such that |u − σ̊| ≥ σ̊/4 and all (x2, x3) ∈ T2, we have

1
2 [c−1(c−1c;ρ + 1)(X̆R(+))]+(t = 0, u, x2, x3) ≤

1
4 δ̊∗.

(2) For all46 u ∈ [σ̊/2, 3σ̊/2] and all (x2, x3) ∈ T2,

1
2 X̆ X̆{(c−1c;ρ + 1)(X̆R(+))}(t = 0, u, x2, x3) ≤ −3δ̊∗β̊ < 0. (4-12)

44For definiteness, in the definition of the subset Sregular, we have made statements only about the boundedness of the
solution’s C1 norm. However, our proof shows that on Sregular, the solution inherits the full regularity enjoyed by the initial data.

45Recall the initial condition (2-13) for u, which shows that u ↾60= σ̊− x1.
46This is a nondegeneracy condition in the sense that it guarantees that for every (x2, x3) ∈ T2, the quantity

(c−1c;ρ + 1)(X̆R(+)) ↾60 , when viewed as a one-variable function of u, has a nondegenerate maximum. (Note also that
(c−1c;ρ + 1)(X̆R(+)) ↾60 is related to the quantity in (4-2), whose reciprocal controls the blowup-time.)
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Also assume the hypotheses and conclusions of Theorems 4.2 and 4.3, but perhaps taking α̊ and ϵ̊

smaller in a manner that depends on β̊ and the same quantities stated in Theorem 4.2. Then the spatial
C1/3 norms (i.e., the standard C1/3 Hölder norms with respect to the Cartesian spatial coordinates) of all
of the fluid variables and higher-order variables ρ, vi , Ω i , Si , Ci and D are uniformly bounded up to the
first singular time.

The proof of Corollary 4.5 is located in Section 14D.

5. Reformulation of the equations and the remarkable null structure

We recall in this section the main result in [50], which is of crucial importance for our analysis.

Theorem 5.1 (the geometric wave-transport-divergence-curl formulation of the compressible Euler
equations). Consider a smooth solution to the compressible Euler equations (1-1)–(1-3) under an equation
of state p = p(ϱ, s) and constant ϱ̄ > 0 such that the normalization condition (2-1) holds. Then the
scalar-valued functions vi, R(±), Ω i, s, Si, div Ω , Ci, D, and (curl S)i, i = 1, 2, 3, (see Definitions 2.3
and 2.7) obey the following system of equations (where the Cartesian component functions vi are treated
as scalar-valued functions under covariant differentiation on the left-hand side of (5-1a)):

Covariant wave equations:

□gv
i
= −c2 exp(2ρ)Ci

+Qi
(v) +Li

(v), (5-1a)

□gR(±) = −c2 exp(2ρ)C1
±

{
F;sc2 exp(2ρ) − c exp(ρ)

p;s

ϱ̄

}
D+Q(±) +L(±), (5-1b)

□gs = c2 exp(2ρ)D+L(s). (5-1c)

Transport equations:
BΩ i

= Li
(Ω), (5-2a)

Bs = 0, (5-2b)

BSi
= Li

(S). (5-2c)

Transport-divergence-curl system for the specific vorticity:

div Ω = L(div Ω), (5-3a)

BCi
= Mi

(C) +Qi
(C) +Li

(C). (5-3b)

Transport-divergence-curl system for the entropy gradient:

BD = M(D) +Q(D), (5-4a)

(curl S)i
= 0. (5-4b)

Above, the main terms in the transport equations for the modified fluid variables take the form

Mi
(C)

.
= −2δ jkϵiab exp(−ρ)(∂av

j )∂bΩ
k
+ϵajk exp(−ρ)(∂av

i )∂jΩ
k

+exp(−3ρ)c−2 p;s

ϱ̄
{(BSa)∂av

i
−(Bvi )∂a Sa

}+exp(−3ρ)c−2 p;s

ϱ̄
{(Bva)∂a Si

−(∂av
a)BSi

}, (5-5a)
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M(D)
.
= 2exp(−2ρ){(∂av

a)∂b Sb
−(∂av

b)∂b Sa
}+exp(−ρ)δab(curlΩ)a Sb. (5-5b)

The terms Qi
(v), Q(±), Qi

(C), and Q(D) are the null forms relative to g defined by

Qi
(v)

.
= −{1 + c−1c;ρ}(g−1)αβ(∂αρ)∂βvi , (5-6a)

Q(±)
.
= Qi

(v) ∓ 2c;ρ(g−1)αβ∂αρ∂βρ± c{(∂av
a)(∂bv

b) − (∂av
b)∂bv

a
}, (5-6b)

Qi
(C)

.
= exp(−3ρ)c−2 p;s

ϱ̄
Si

{(∂av
b)∂bv

a
− (∂av

a)∂bv
b
}

+ exp(−3ρ)c−2 p;s

ϱ̄
{(∂av

a)Sb∂bv
i
− (Sa∂av

b)∂bv
i
}

+ 2 exp(−3ρ)c−2 p;s

ϱ̄
{(Sa∂aρ)Bvi

− (Bρ)Sa∂av
i
}

+ 2 exp(−3ρ)c−3c;ρ
p;s

ϱ̄
{(Sa∂aρ)Bvi

− (Bρ)Sa∂av
i
}

+ exp(−3ρ)c−2 p;s;ρ

ϱ̄
{(Bρ)Sa∂av

i
− (Sa∂aρ)Bvi

}

+ exp(−3ρ)c−2 p;s;ρ

ϱ̄
Si

{(Bva)∂aρ− (∂av
a)Bρ}

+ 2 exp(−3ρ)c−2 p;s

ϱ̄
Si

{(∂av
a)Bρ− (Bva)∂aρ}

+ 2 exp(−3ρ)c−3c;ρ
p;s

ϱ̄
Si

{(∂av
a)Bρ− (Bva)∂aρ}, (5-6c)

Q(D)
.
= 2 exp(−2ρ){(Sa∂av

b)∂bρ− (∂av
a)Sb∂bρ}. (5-6d)

In addition, the terms Li
(v), L(±), L(s), Li

(Ω), L
i
(S), L(div Ω), and Li

(C), which are at most linear in the
derivatives of the unknowns, are defined as

Li
(v)

.
= 2 exp(ρ)ϵiab(Bva)Ωb

−
p;s

ϱ̄
ϵiabΩ

a Sb 1
2 exp(−ρ)

p;ρ;s

ϱ̄
Sa∂av

i

− 2 exp(−ρ)c−1c;ρ
p;s

ϱ̄
(Bρ)Si

+ exp(−ρ)
p;s;ρ

ϱ̄
(Bρ)Si , (5-7a)

L(±)
.
= Li

(v) ± F;sL(s) ∓
5
2 c exp(−ρ)

p;s;ρ

ϱ̄
Sa∂aρ± 2c2c;s Sa∂aρ

∓ c exp(−ρ)
p;s;s

ϱ̄
δab Sa Sb

± F;s;sc2δab Sa Sb, (5-7b)

L(s)
.
= c2Sa∂aρ− cc;ρSa∂aρ− cc;sδab Sa Sb, (5-7c)

Li
(Ω)

.
= Ωa∂av

i
− exp(−2ρ)c−2 p;s

ϱ̄
ϵiab(Bva)Sb, (5-7d)

Li
(S)

.
= −Sa∂av

i
+ ϵiab exp(ρ)Ωa Sb, (5-7e)

L(div Ω)
.
= −Ωa∂aρ, (5-7f)

Li
(C)

.
= 2 exp(−3ρ)c−3c;s

p;s

ϱ̄
(Bvi )δab Sa Sb

− 2 exp(−3ρ)c−3c;s
p;s

ϱ̄
δab Sa(Bvb)Si

+ exp(−3ρ)c−2 p;s;s

ϱ̄
(Bvi )δab Sa Sb

− exp(−3ρ)c−2 p;s;s

ϱ̄
δab(Bva)Sb Si . (5-7g)

Proof. The equations are copied from [50, Theorem 1], except we have replaced the wave equations for
ρ, v1 from [50, Theorem 1] with equivalent wave equations for R(±) with the help of the identity

□gR(±) = □gv
1
± {c □g ρ+ c;ρ(g−1)αβ∂αρ∂βρ+ 2c2c;s Sa∂aρ+ F;s;sc2δab Sa Sb

+ F;s □g s},
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which follows from (2-2), the chain rule, the expression (2-8) for g−1, and the transport equation Bs = 0,
i.e., (1-3). □

6. The bootstrap assumptions and statement of the main a priori estimates

We prove our theorem with a bootstrap argument. In this section, we state the precise bootstrap assumptions,
as well as a theorem that features our main a priori estimates. The proof of the theorem occupies
Sections 7–14A.

6A. Bootstrap assumptions. We now introduce our bootstrap assumptions. In the context of Theorem 6.3
below, we assume that the bootstrap assumptions in the next two subsubsections hold for t ∈ [0, T(Boot)),
where T(Boot) ∈ [0, 2δ̊−1

∗
] is a “bootstrap time.”

6A1. Soft bootstrap assumptions.

(1) We assume that the change-of-variables map (t, u, x2, x3) → (t, x1, x2, x3) from geometric to
Cartesian coordinates is a C1 diffeomorphism from [0, T(Boot)) × R × T2 onto [0, T(Boot)) × 6.

(2) We assume that µ > 0 on [0, T(Boot)) × R × T2.

The first of these “soft bootstrap assumptions” allows us, in particular, to switch back and forth between
viewing tensorfields as a function of the geometric coordinates (which is the dominant view we take
throughout the analysis) and the Cartesian coordinates. The second soft bootstrap assumption guarantees
that there are no shocks present in the bootstrap region (though it allows for the possibility that a shock
will form precisely at time T(Boot)).

6A2. Quantitative bootstrap assumptions. Let M∗ ∈N be the absolute constant appearing in the statements
of Theorem 4.2 above and Proposition 12.1 below. Moreover, as we stated already in Section 4A, Ntop

denotes any fixed positive integer satisfying Ntop ≥ 2M∗ + 10.

Remark 6.1 (rationale behind our choice Ntop ≥2M∗+10). Later on, our assumption Ntop ≥2M∗+10 and
the bootstrap assumptions will allow us to control ≤ Ntop derivatives of nonlinear products by bounding
all terms in L∞ except perhaps the one factor hit by the most derivatives. Roughly,47 the reason is that
our derivative count will be such that any factor that is hit by ≤ Ntop − M∗ − 4 or fewer derivatives is
bounded in L∞. We will often avoid explicitly pointing out this aspect of our derivative count.

L2 bootstrap assumptions for the wave variables: For Ntop − M∗ + 1 ≤ N ≤ Ntop,48 we assume the fol-
lowing bounds, where the energies WN are defined in Section 3B2 and µ⋆(t) is defined in Definition 2.16:

WN (t) ≤ ϵ̊µ
−2M∗+2Ntop−2N+1.8
⋆ (t). (6-1)

For 1 ≤ N ≤ Ntop − M∗,
WN (t) ≤ ϵ̊. (6-2)

47In reality, the different solution variables that we have to track, such as 9, Ω i , L i , µ, etc., exhibit slightly different amounts
of L∞ regularity.

48Equivalently, for 0 ≤ K ≤ M∗ − 1, we have WNtop−K (t) ≤ ϵ̊µ
−2M∗+2K+1.8
⋆ (t).
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L∞ bootstrap assumptions for the wave variables:

∥R(+)∥L∞(6t ) ≤ α̊1/2, ∥X̆R(+)∥L∞(6t ) ≤ 3δ̊, (6-3)

∥(R(−), v
2, v3, s)∥L∞(6t ), ∥X̆(R(−), v

2, v3, s)∥L∞(6t ) ≤ ϵ̊1/2, (6-4)

∥P [1,Ntop−M∗−2]9∥L∞(6t ) ≤ ϵ̊1/2, ∥P [1,Ntop−M∗−4] X̆9∥L∞(6t ) ≤ ϵ̊1/2. (6-5)

L∞ bootstrap assumptions for the specific vorticity:

∥P≤Ntop−M∗−2Ω∥L∞(6t ) + ∥P≤Ntop−M∗−4 X̆Ω∥L∞(6t ) ≤ ϵ̊. (6-6)

L∞ bootstrap assumptions for the entropy gradient:

∥P≤Ntop−M∗−2S∥L∞(6t ) + ∥P≤Ntop−M∗−4 X̆ S∥L∞(6t ) ≤ ϵ̊. (6-7)

L∞ bootstrap assumptions for the modified fluid variables:

∥P≤Ntop−M∗−3(C,D)∥L∞(6t ) ≤ ϵ̊. (6-8)

Remark 6.2 (the main large quantity in the problem). From the discussion of the parameters at the
beginning of Section 4A and (6-3)–(6-8) we see that the main large quantity in the problem is X̆R(+); all
other terms exhibit smallness that is controlled by α̊ and ϵ̊. This, of course, is tied to the kind of initial
data we treat here.

6B. Statement of the main a priori estimates. We now state the theorem that yields our main a priori
estimates. Its proof will be the content of Sections 7–14A.

Theorem 6.3 (the main a priori estimates). Let T(Boot) ∈ [0, 2δ̊−1
∗

]. Suppose that:

(1) The assumptions on the initial data stated in Section 4A hold. (Note that these assumptions involve
Ntop, M∗, σ̊, δ̊∗, δ̊, α̊, and ϵ̊.)

(2) The bootstrap assumptions (6-1)–(6-8) all hold for all t ∈ [0, T(Boot)) (where we recall that in the
bootstrap assumptions, Ntop is any integer satisfying Ntop ≥ 2M∗ + 10, where M∗ ∈ N is the absolute
constant appearing in the statements of Theorem 4.2 and Proposition 12.1).

(3) In (6-3), the parameter α̊ is sufficiently small in a manner that depends only on the equation of state
and ϱ̄.

(4) The parameter ϵ̊> 0 in (6-1)–(6-8) satisfies ϵ̊1/2
≤ α̊ and is sufficiently small in a manner that depends

only on the equation of state, Ntop, ϱ̄, σ̊, δ̊, and δ̊−1
∗

.

(5) The soft bootstrap assumptions stated in Section 6A1 hold (including µ > 0 in [0, T(Boot)) × R × T2).

Then there exists a constant C♦ > 0 depending only on the equation of state and ϱ̄, and a constant
C > 0 depending on the equation of state, Ntop, ϱ̄, σ̊, δ̊, and δ̊−1

∗
such that the following holds for all

t ∈ [0, T(Boot)):

(1) (6-1) and (6-2) hold with ϵ̊ replaced by C ϵ̊2.

(2) The two inequalities in (6-3) hold with α̊1/2 replaced by C♦α̊ and 3δ̊ replaced by 2δ̊ respectively.
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(3) The inequalities in (6-4) and (6-5) hold with ϵ̊1/2 replaced by C ϵ̊.

(4) The inequalities (6-6)–(6-8) all hold with ϵ̊ replaced by C ϵ̊3/2.

Sections 7–13 will be devoted to the proof of Theorem 6.3. See Section 14A for the conclusion of the
proof.

From now on, we will use the conventions for constants stated in Section 2A and Theorem 6.3.

7. A localization lemma via finite speed of propagation

We work under the assumptions of Theorem 6.3.

Lemma 7.1 (a localization lemma). Let U0
.
= 2σ̊+ 4δ̊−1

∗
. Then, for all t ∈ [0, T(Boot)),

(ρ, v, s) = (0, 0, 0), whenever u /∈ (0, U0).

Proof. Recall that we have normalized (see (2-1)) c(0, 0) = 1, and (by (4-1)) the data are compactly
supported in the region where |x1

| ≤ σ̊. Hence, by a standard finite speed of propagation argument,
we see that (ρ, v, s) = (0, 0, 0) whenever |x1

| ≥ σ̊+ t . More precisely, this can be proved by applying
standard energy methods to the first-order formulation of the compressible Euler equations provided by
[16, equation (1.201)], where the relevant energy identities can be obtained with the help of the “energy
current” vectorfields defined by [16, equations (1.204), (1.205)]. Since t < T(Boot) ≤ 2δ̊−1

∗
,

{(t, x) ∈ [0, T(Boot)) × 6 : t − x1
≥ σ̊+ 4δ̊−1

∗
} ⊆

solution is trivial here︷ ︸︸ ︷
{(t, x) ∈ [0, T(Boot)) × 6 : x1

≤ −σ̊− t} .

In particular, this implies

(ρ, v, s) = (0, 0, 0) unless −σ̊ < t − x1 < σ̊+ 4δ̊−1
∗

. (7-1)

Observe now that since u ↾{t=0}= σ̊− x1, in the set {(t, x) ∈ [0, T(Boot)) × 6 : |x1
| ≥ σ̊+ t} (where

the solution is trivial), we have u = t + σ̊− x1. In particular, {u = 0} = {t − x1
= −σ̊} and {u = U0} =

{t − x1
= σ̊+ 4δ̊−1

∗
}. The conclusion thus follows from (7-1). □

For the rest of the paper, U0 > 0 denotes the constant appearing in the statement of Lemma 7.1.

8. Estimates for the geometric quantities associated to the acoustical metric

We continue to work under the assumptions of Theorem 6.3.
In this section, we collect some estimates of the geometric quantities µ, L i

(small) (see Definition 2.21),
under the bootstrap assumptions on the fluid variables. These estimates are the same as those appearing
in [36; 52]. Our analysis will therefore be somewhat brief in some spots, and we will refer the reader to
[36; 52] for details.

We highlight the following point, which is crucial for the subsequent analysis: the bounds for µ,
L i

(small) and the wave variables 9 control all the other geometric quantities, including the transformation
coefficients between different sets of vectorfields, as well as the commutators of vectorfields.
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8A. Some preliminary geoanalytic identities. In this section, we provide some geoanalytic identities
that we will use throughout our analysis.

We start by recalling the definition of a null form with respect to the acoustical metric (“g-null form”
for short).

Definition 8.1 (g-null forms). Let φ(1) and φ(2) be scalar functions. We use the notation Q(g)(∂φ(1), ∂φ(2))

to denote any derivative-quadratic term of the form

Q(g)(∂φ(1), ∂φ(2)) = f(L i , 9)(g−1)αβ∂αφ(1)∂βφ(2), (8-1)

where f( · ) is a smooth function.
We use the notation Qαβ(∂φ(1), ∂φ(2)) to denote any derivative-quadratic term of the form

Qαβ(∂φ(1), ∂φ(2)) = f(L i , 9){∂αφ(1)∂βφ(2)
− ∂βφ(1)∂αφ(2)

}, (8-2)

where f( · ) is a smooth function.

Lemma 8.2 (crucial structural properties of null forms). Let Q(∂φ(1), ∂φ(2)) be a g-null form of type
(8-1) or (8-2). Then there exist smooth functions, all schematically denoted by f (and which are different
from the f in Definition 8.1), such that the following identity holds:

µQ(∂φ(1), ∂φ(2)) = f(L i , 9)X̆φ(1)
·Pφ(2)

+ f(L i , 9)X̆φ(2)
·Pφ(1)

+µf(L i , 9)Pφ(1)
·Pφ(2). (8-3)

In particular, decomposing all differentiations in the null form with respect to the {L , X, Y, Z} frame
leads to the absence of all Xφ(1)

· Xφ(2)terms on the right-hand side of (8-3).

Proof. For null forms of type (8-2), (8-3) follows from Lemma 2.22 and the fact that the Cartesian
component functions X1, X2, X3 are smooth functions of the L i and 9 (see (2-23)). For null forms of
type (8-1), (8-3) follows from the basic identity g−1

= −L ⊗ L − (L ⊗ X + X ⊗ L)+ /g−1 (see, e.g., [52,
(2.40b)]) and Lemma 2.32. □

Lemma 8.3 (expressions for the transversal derivatives of the transport variables in terms of tangential
derivatives). There exist smooth functions, all schematically denoted by “f”, such that the following
identities hold:

X̆Ω i
= −µLΩ i

+ (Ω, S) · f(9, L i ,µ, X̆9,P9), (8-4)

X̆ Si
= −µL Si

+ (Ω, S) · f(9, L i ,µ, X̆9,P9), (8-5)

X̆Ci
= −µLCi

+ (Ω, S,PΩ,PS) · f(9, L i ,µ, X̆9,P9), (8-6)

X̆Di
= −µLDi

+ (Ω, S,PΩ,PS) · f(9, L i ,µ, X̆9,P9). (8-7)

Proof. Equations (8-4) and (8-5) follow from the transport equations (5-2a) and (5-2c), (2-23) (which
implies that µB = X̆ +µL), and Lemma 2.22.

Equations (8-6) and (8-7) follow from a similar argument based the transport equations (5-3b) and
(5-4a), where we use Lemma 8.2 to decompose the null form source terms and (8-4)–(8-5) to re-express
all X̆ derivatives of (Ω, S). □

Lemma 8.4 (identity for X̆ L i ). There exist smooth functions, all schematically denoted by f, such that

X̆ L i
= f(9, L i )X̆9 +µf(9, L i )P9 + f(9, L i )Pµ. (8-8)
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Proof. This was proved as [52, (2.71)] (which holds in the present context with obvious modifications
such as replacing GL L X̆9 with G⃗L L ⋄ X̆9⃗, etc.), where we have used that the Cartesian component
functions X1, X2, X3 are smooth functions of the L i and 9 (see (2-23)). □

Lemma 8.5 (simple commutator identities). For each pair P1,P2 ∈{L , Y, Z}, there exist smooth functions,
all schematically denoted by “f”, such that the following identity holds:

[P1,P2] = f(L i , 9,PL i ,P9)Y + f(L i , 9,PL i ,P9)Z . (8-9)

Moreover, for each P ∈ {L , Y, Z}, there exist smooth functions, all schematically denoted by “f”, such
that the following identity holds:

[P, X̆ ] = f(µ, L i , 9,Pµ, X̆9,P9)Y + f(µL i , 9,Pµ, X̆9,P9)Z . (8-10)

Proof. We first prove (8-10). Lemma 2.23 implies that [P, X̆ ] is ℓt,u-tangent, i.e., that [P, X̆ ]t =[P, X̆ ]u =

0. Hence, (2-28b)–(2-28c) imply that this commutator can be written as a linear combination of Y, Z .
Since the Cartesian component functions X1, X2, X3 are smooth functions of the L i and 9 (see (2-23)),
the same holds for the component functions P0, P1, P2, P3 (this is obvious for P = L , while see
Lemmas 2.23–2.24 for P = Y, Z ). Also using that X̆ i

= µX̆ i, we conclude (8-10) by computing relative
to the Cartesian coordinates, using Lemma 2.22 to express Cartesian coordinate partial derivatives in
terms of derivatives with respect to Y, Z (the X - and L-derivative components of the commutator must
vanish since [P, X̆ ] is ℓt,u-tangent), and using (8-8) to substitute for X̆ L i factors.

The identity (8-9) can be proved through similar but simpler arguments that do not involve factors of µ
or X̆ differentiations. □

8B. The easy L∞ estimates.

Proposition 8.6 (L∞ estimates for the acoustical geometry). The following estimates hold for all t ∈

[0, T(Boot)):

∥µ∥L∞(6t ) + ∥Lµ∥L∞(6t ) ≲ 1, ∥L i
(small)∥L∞(6t ) ≲♦ α̊, ∥Yµ∥L∞(6t ) + ∥Zµ∥L∞(6t ) ≲ ϵ̊1/2,

∥P [2,Ntop−M∗−4]µ∥L∞(6t ) + ∥P [1,Ntop−M∗−3]L i
∥L∞(6t ) ≲ ϵ̊1/2.

Proof. These can be proved using the transport equations (2-40) and (2-41) (commuted with PN ), the initial
data size-assumptions (4-3a)–(4-4), and the bootstrap assumptions (6-3)–(6-5). See [52, Proposition 8.10]
for details of this argument. We note these estimates lose a slight amount of regularity compared to 9

because the transport equations (2-40) and (2-41) depend on the derivatives of 9. □

Our analysis also relies on the following L∞ estimates.

Proposition 8.7 (L∞ estimates for other geometric quantities). The following estimates hold for all
t ∈ [0, T(Boot)), where c denotes the speed of sound:

∥X i
(small)∥L∞(6t ) ≲♦ α̊

1/2, ∥c − 1∥L∞(6t ) ≲♦ α̊
1/2,

∥P [1,Ntop−M∗−3]X i
∥L∞(6t ) ≲ ϵ̊1/2, ∥P [1,Ntop−M∗−2]c∥L∞(6t ) ≲ ϵ̊1/2.
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Proof. The estimates for X(small) follow from (2-25a)–(2-25b), (2-26a), the bootstrap assumptions (6-3)–
(6-5), and Proposition 8.6.

The estimates for c follow from the bootstrap assumptions (6-3)–(6-5) and the fact that c is a smooth
function of ρ and s with c(0, 0) = 1 (see (2-1)). □

The estimates in Propositions 8.6 and 8.7 also imply the following bounds for the commutators.

Proposition 8.8 (pointwise bounds for vectorfield commutators). All the commutators [L , X̆ ], [L , Y ],
[L , Z ], [X̆ , Y ], [X̆ , Z ] and [Y, Z ] are ℓt,u-tangent.

Moreover, if φ is a scalar function, then for 0 ≤ N ≤ Ntop iterated commutators can be bounded
pointwise as follows:

|[L ,PN
]φ|≲ ϵ̊1/2

|P [1,N ]φ|+

∑
N1+N2≤N+1

N1, N2≤N

|P [2,N1](L i ,9)||P [1,N2]φ|,

|[X̆ ,PN
]φ|≲ |P [1,N ]φ|+

∑
N1+N2≤N+1

N1, N2≤N

|P [2,N1](µ, L i ,9)||P [1,N2]φ|+

∑
N1+N2≤N
N1≤N−1

|P [2,N1] X̆9||P [1,N2]φ|.
(8-11)

In particular,
|[L ,PN

]φ| ≲ ϵ̊1/2
|P [1,N ]φ| if 0 ≤ N ≤ Ntop − M∗ − 3,

|[X̆ ,PN
]φ| ≲ |P [1,N ]φ| if 0 ≤ N ≤ Ntop − M∗ − 4.

(8-12)

Proof. All the commutators can be read off from Lemma 2.23 (and using that coordinate vectorfields
commute). In particular, since the coefficient of /∂ t in L and the coefficient of /∂u in X̆ both are equal to 1,
all the stated commutators are ℓt,u-tangent.

We first prove (8-11) for |[L ,PN
]φ|. By Lemma 2.23 and the fact L i

+ X i
− vi

= 0 (by (2-26a)),

|[L ,PN
]φ| ≲

N∑
k=2

∑
N1+···+Nk=N+1

1≤Nk≤N

|PN1(L i , 9)| · · · |PNk−1(L i , 9)||P [1,Nk ]φ|︸ ︷︷ ︸
.
=(∗)

. (8-13)

By (6-3)–(6-5), Propositions 8.6, 8.7 (and N ≤ Ntop), either |PNj (L i , 9)| ≲ ϵ̊1/2 for 1 ≤ j ≤ k − 1 (in
which case (∗)≲ ϵ̊1/2

|P [1,N ]φ|), or else there is exactly one factor |PNj (L i , 9)| with Nj > Ntop − M∗ −3
not bounded by ≲ ϵ̊1/2, in which case

(∗) ≲
∑

N1+N2≤N+1
N1, N2≤N

|P [2,N1](L i , 9)||P [1,N2]φ|.

Hence, (8-13) is bounded above by the right-hand side of the first inequality in (8-11).
To bound [X̆ ,PN

]φ, we note that according to Lemma 2.23, there is, in addition to (8-13), the terms49

N∑
k=2

∑
N1+···+Nk=N

Nk−1≤N−1
1≤Nk≤N

|PN1(L i , 9)| · · · |PNk−2(L i , 9)||PNk−1 X̆(L i , 9)||PNk φ|, (8-14)

49Importantly, one checks from Lemma 2.23 that there are no terms of the form |PNk−1 X̆µ|!
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N∑
k=2

∑
N1+···+Nk=N+1

1≤Nk≤N

|PN1(L i , 9)| · · · |PNk−2(L i , 9)||PNk−1µ||PNk φ|. (8-15)

Hence, with the help of (8-8), we can substitute for the terms X̆ L i on the right-hand side of (8-14), and
thus the right-hand side of (8-14) can be bounded above by the right-hand side of (8-13) plus (8-15) and

N∑
k=2

∑
N1+···+Nk=N

Nk−1≤N−1
1≤Nk≤N

|PN1(L i , 9)| · · · |PNk−2(L i , 9)||PNk−1 X̆9||PNk φ|, (8-16)

both of which, by arguments similar to the ones we used to prove (8-13), can be bounded above by the
right-hand side of the second inequality in (8-11).

To get from (8-11) to (8-12), we use the L∞ bounds in (6-3)–(6-5) and Propositions 8.6 and 8.7, which
are applicable in the sense that they control a sufficient number of derivatives of all relevant quantities
in L∞. □

In the rest of the paper, we will often silently use the following simple lemma.

Lemma 8.9 (the norm of the ℓt,u-tangent commutator vectorfields and simple comparison estimates).
The ℓt,u-tangent commutator vectorfields {Y, Z} satisfy the following pointwise bounds on MT(Boot),U0 :

|Y | ≲ 1, |Z | ≲ 1. (8-17)

Moreover, for any ℓt,u-tangent tensorfield ξ the following pointwise bounds hold on MT(Boot),U0 :

| /∇ξ| ≈ | /∇Yξ| + | /∇ Zξ|. (8-18)

Proof. To prove (8-17), we use Lemmas 2.23 and 2.32 and the fact that the Cartesian component functions
X1, X2, X3 are smooth functions of the L i and 9 (see (2-23)) to deduce that |Y |

2
= /g ABY AY B

= f(L i , 9),
where f is a smooth function. Similar remarks hold for |Z |

2. The desired estimates in (8-17) therefore
follow from the bootstrap assumptions (6-3)–(6-4) and Proposition 8.6.

To prove (8-18), we note that the /g-Cauchy–Schwarz inequality and (8-17) imply that | /∇Yξ|+| /∇ Zξ|≲
| /∇ξ|. We will show how to obtain the reverse inequality when ξ is a scalar function; the case of an
arbitrary ℓt,u-tangent tensorfield can be handled using the same arguments, which will complete the
proof. To proceed, we note that for scalar functions ξ we have | /∇ξ|

2
= (/g−1)AB(/∂Aξ)(/∂ Bξ). We now use

Lemmas 2.24 and 2.32 and the fact that X1, X2, X3 are smooth functions of L i and 9 (as noted above) to
deduce that there exist smooth functions, all schematically denoted by f, such that (/g−1)AB(/∂Aξ)(/∂ Bξ) =

f(L i , 9)(Yξ)2
+ f(L i , 9)(Yξ)(Zξ)+ f(L i , 9)(Zξ)2. Also using the bootstrap assumptions (6-3)–(6-4),

Young’s inequality, and Proposition 8.6, we conclude that | /∇ξ|
2 ≲ |Yξ|

2
+ |Zξ|

2
= | /∇Yξ|

2
+ | /∇ Zξ|

2 as
desired. □

8C. L∞ estimates involving higher transversal derivatives. Some aspects of our main results rely on
having L∞ estimates for the higher transversal derivatives of various solution variables. We provide these
estimates in the next proposition. The proofs are similar to the proofs of related estimates in [52].
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Proposition 8.10 (L∞ estimates involving higher transversal derivatives). The following estimates hold50

for all t ∈ [0, T(Boot)) and u ∈ [0, U0], where in (8-22b), /P ∈ {Y, Z}:

L∞ estimates involving two or three transversal derivatives of the wave variables:

∥LP≤2 X̆ X̆9∥L∞(Mt,u) ≤ C ϵ̊1/2, (8-19a)

∥P [1,2] X̆ X̆9∥L∞(Mt,u) ≤ C ϵ̊1/2, (8-19b)

∥X̆ X̆R(+)∥L∞(Mt,u) ≤ ∥X̆ X̆R(+)∥L∞(60) + C ϵ̊1/2, (8-19c)

∥X̆ X̆(R(−), v
1, v2, s)∥L∞(Mt,u) ≤ C ϵ̊1/2, (8-19d)

∥L X̆ X̆ X̆9∥L∞(Mt,u) ≤ C ϵ̊1/2, (8-20a)

∥X̆ X̆ X̆R(+)∥L∞(Mt,u) ≤ ∥X̆ X̆ X̆R(+)∥L∞(60) + C ϵ̊1/2, (8-20b)

∥X̆ X̆ X̆(R(−), v
1, v2, s)∥L∞(Mt,u) ≤ C ϵ̊1/2. (8-20c)

L∞ estimates involving one or two transversal derivatives of µ:

∥L X̆µ∥L∞(Mt,u) ≤
1
2∥X̆(G⃗L L ⋄ X̆9⃗)∥L∞(60) + C ϵ̊1/2, (8-21a)

∥X̆µ∥L∞(Mt,u) ≤ ∥X̆µ∥L∞(60) + δ̊−1
∗

∥X̆(G⃗L L ⋄ X̆9⃗)∥L∞(60) + C ϵ̊1/2, (8-21b)

∥L X̆Pµ∥L∞(Mt,u), ∥L X̆P2µ∥L∞(Mt,u) ≤ C ϵ̊1/2, (8-22a)

∥X̆ /Pµ∥L∞(Mt,u), ∥X̆P2µ∥L∞(Mt,u) ≤ C ϵ̊1/2, (8-22b)

∥L L X̆ X̆µ∥L∞(Mt,u) ≤ C ϵ̊1/2, (8-23a)

∥L X̆ X̆µ∥L∞(Mt,u) ≤
1
2∥X̆ X̆(G⃗L L ⋄ X̆9⃗)∥L∞(60) + C ϵ̊1/2, (8-23b)

∥X̆ X̆µ∥L∞(Mt,u) ≤ ∥X̆ X̆µ∥L∞(60) + δ̊−1
∗

∥X̆ X̆(G⃗L L ⋄ X̆9⃗)∥L∞(60) + C ϵ̊1/2. (8-23c)

L∞ estimates involving one or two transversal derivatives of L i :

∥P [1,Ntop−M∗−5] X̆ L i
∥L∞(Mt,u) ≤ C ϵ̊1/2, (8-24a)

∥X̆ L i
∥L∞(Mt,u) ≤ C, (8-24b)

∥LP X̆ X̆ L i
∥L∞(Mt,u) ≤ C ϵ̊1/2, (8-25a)

∥P X̆ X̆ L i
∥L∞(Mt,u) ≤ C ϵ̊1/2, (8-25b)

∥X̆ X̆ L i
∥L∞(Mt,u) ≤ C. (8-25c)

L∞ estimates involving transversal derivatives of the transported variables:

∥P≤3 X̆≤1(Ω, S)∥L∞(Mt,u) + ∥P≤2 X̆ X̆(Ω, S)∥L∞(Mt,u) + ∥X̆≤3(Ω, S)∥L∞(Mt,u)

+ ∥P≤2 X̆≤1(C,D)∥L∞(Mt,u) + ∥X̆≤2(C,D)∥L∞(Mt,u) ≤ C ϵ̊. (8-26)
50Based on our assumptions on the data (see Section 4A), we could obtain L∞ control over additional Fu-tangential

derivatives of the quantities stated in the proposition — but not! additional X̆ differentiations. However, for convenience, in the
proposition, we have only derived control of a sufficient number of derivatives so that the estimates close and so that we can use
the results in our proof of Lemma 14.2 and in the Appendix.
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Finally,

we can permute the vectorfield operators on the left-hand sides of (8-19a)–(8-25c)
up to error terms of L∞ size O(ϵ̊1/2), (8-27)

and on the left-hand side of (8-26) up to error terms of L∞ size O(ϵ̊). (8-28)

Proof. To prove the lemma, we make the “new bootstrap assumption” that the estimates in (8-26) hold
for t ∈ [0, T(Boot)) with the C ϵ̊-term on the right-hand side replaced by ϵ̊1/2, and also that (8-28) holds
with O(ϵ̊) replaced by ϵ̊1/2. Given this new bootstrap assumption, to obtain (8-19a)–(8-25c) and (8-27),
we can simply repeat51 the proof of [52, Lemma 9.3], which relies on transport-type estimates that
lose derivatives (in particular, one uses the transport equations (2-40)–(2-41) and also treats the wave
equation as a derivative-losing transport equation L X̆9 = · · · by using (13-13)). The only difference
between the estimates derived in [52, Lemma 9.3] and the estimates we need to derive is that our wave
equations (5-1a)–(5-1c), when weighted with a factor of µ (so that the decomposition (13-13) of µ□g can
be employed), feature some new inhomogeneous terms compared to [52, Lemma 9.3], specifically, some
of the ones depending on (C,D, Ω, S) and the first derivatives of (Ω, S). The key point is that our new
bootstrap assumption implies that the new inhomogeneous terms are all bounded in L∞ by ≲ ϵ̊1/2, which
is compatible with the O(ϵ̊1/2)-size bounds that one is aiming to prove; i.e., our new O(ϵ̊1/2)-sized error
terms are harmless in the context of the proof. From this logic, it follows that the estimates (8-19a)–(8-25c)
and (8-27) hold for all t ∈ [0, T(Boot)). We clarify that the estimates (8-23a) and (8-25a) were not explicitly
stated in [52, Lemma 9.3]. However (8-23a) follows from commuting the transport equation (2-40)
with L X̆ X̆ via Lemma 8.5 and bounding the resulting algebraic expression for L L X̆ X̆µ using the fact
that the Cartesian component functions X1, X2, X3 are smooth functions of the L i and 9 (see (2-23)),
the bootstrap assumptions (6-3)–(6-7), Proposition 8.6, and the estimates in (8-19a)–(8-25c) and (8-27)
besides (8-23a) and (8-25a) . Similarly, (8-25a) follows from commuting the transport equation (2-41)
with P X̆ X̆ .

To complete the proof, it only remains for us to prove (8-26) and (8-28) (with the help of the already
established bounds (8-19a)–(8-25c) and (8-27)); for if ϵ̊ is sufficiently small, this yields a strict improve-
ment of the new bootstrap assumption mentioned at the beginning of the proof, and the conclusions of the
proposition then follow from a standard continuity argument. We start by noting that the bounds in (8-26)
for the pure Fu-tangential derivatives of (Ω, S) are included in the bootstrap assumptions (6-6)–(6-7), as
are the bounds

∥P≤3 X̆(Ω, S)∥L∞(Mt,u) ≲ ϵ̊. (8-29)

Next, we use Lemma 8.5, the bootstrap assumptions (6-3)–(6-7), Proposition 8.6, the estimates (8-19a)–
(8-25c) and (8-27), and the bounds (8-29) to deduce that the estimate (8-29) also holds for all permutations
of the vectorfield operators on the left-hand side.

51We clarify that the bootstrap parameter “ε” from [52] should be identified with the quantity ϵ̊1/2 in our bootstrap assumptions
(6-4)–(6-8).
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We next show that
∥P≤2 X̆ X̆(Ω, S)∥L∞(Mt,u) ≲ ϵ̊. (8-30)

This estimate follows from differentiating the identities (8-4)–(8-5) with P≤2 X̆ and using the bootstrap
assumptions (6-3)–(6-7), Proposition 8.6, the estimates (8-19a)–(8-25c) and (8-27), the estimate (8-29),
and the analog of (8-29) for all permutations of the vectorfield operators on the left-hand side. (Notice that
we can indeed prove (8-30) with a strict improvement of our new bootstrap assumptions because the terms
arising from differentiating (8-4)–(8-5) by P≤2 X̆ contain at least one factor of (Ω, S) differentiated with
at most one X̆ derivative, and such factors have already been shown to bounded in the norm ∥ · ∥L∞(Mt,u)

by ≲ ϵ̊.) Again using Lemma 8.5 to commute vectorfield derivatives, we also deduce that the estimate
(8-30) also holds for all permutations of the vectorfield operators on the left-hand side.

We next show that
∥X̆ X̆ X̆(Ω, S)∥L∞(Mt,u) ≲ ϵ̊. (8-31)

This estimate follows from differentiating the identities (8-4)–(8-5) with X̆ X̆ and using the bootstrap
assumptions (6-3)–(6-7), Proposition 8.6, the estimates (8-19a)–(8-25c) and (8-27), the estimates (8-29)–
(8-30), and the analogs of (8-29)–(8-30) for all permutations of the vectorfield operators on the left-hand
sides.

Similarly, we can first prove
∥P≤2 X̆≤1(C,D)∥L∞(Mt,u) ≲ ϵ̊ (8-32)

and then
∥X̆≤2(C,D)∥L∞(Mt,u) ≲ ϵ̊ (8-33)

(and that (8-32) holds for all permutations of the vectorfield operators on the left-hand side all permutations
of the vectorfield operators on the left-hand side) by using the identities (8-6)–(8-7) and arguing as above,
using in addition the bootstrap assumption (6-8) and the already proven estimates for (Ω, S).

We have therefore established (8-26) and (8-28), which completes the proof of the proposition. □

8D. Sharp estimates for µ⋆. Recall the definition of µ⋆(t) in Definition 2.16. In this subsection, in
Propositions 8.11 and 8.12, we provide some estimates for µ⋆(t) that were proved in [52]. We will
simply cite the relevant estimates, noting that their proof relies only on the L∞ bounds for (lower-order
derivatives of) the wave variables and the geometric quantities that we have already established. Moreover,
we remark that these estimates capture that µ⋆(t) tends to 0 linearly, a fact that is crucial for bounding
the maximum possible singularity strength of our high-order geometric energies (i.e., for controlling the
blowup-rate of the energies in, for example, (6-1)).

Thanks to our bootstrap assumptions and the estimates of Proposition 8.6, the following estimates for
µ⋆(t) can be proved exactly as in [52, (10.36), (10.39)]:

Proposition 8.11 (control of integrals of µ⋆). Let M∗ ∈ N be the absolute constant appearing in the
statements of Theorem 4.2 and Proposition 12.1 below. For 1 < b ≤ 100M∗, the quantities µ⋆(t, u) and
µ⋆(t) from Definition 2.16 obey the following estimates for every (t, u) ∈ [0, T(Boot)) × [0, U0]:∫ t ′=t

t ′=0
µ−b

⋆ (t ′, u) dt ′ ≲
(

1 +
1

b−1

)
µ−b+1

⋆ (t, u),

∫ t ′=t

t ′=0
µ−b

⋆ (t ′) dt ′ ≲
(

1 +
1

b−1

)
µ−b+1

⋆ (t). (8-34)
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Moreover, for all t ∈ [0, T(Boot)),∫ t ′=t

t ′=0
µ−0.9

⋆ (t ′, u) dt ′ ≲ 1,

∫ t ′=t

t ′=0
µ−0.9

⋆ (t ′) dt ′ ≲ 1. (8-35)

Thanks to our bootstrap assumptions and the estimates of Proposition 8.6, the following “almost-
monotonicity” of µ⋆ can be proved as in [52, (10.23)]:

Proposition 8.12 (the approximate monotonicity of µ⋆). For 0 ≤ s1 ≤ s2 < T(Boot),

µ−1
⋆ (s1) ≤ 2µ−1

⋆ (s2).

8E. L2 estimates for the geometric quantities. We start with a simple lemma that provides L2 estimates
for solutions to transport equations along the integral curves of L .

Lemma 8.13 (L2 estimate for solutions to L-transport equations). Let F and f be smooth scalar
functions on [0, T(Boot))×[0, U0]× T2. Assume that L F(t, u, x2, x3) = f (t, u, x2, x3) with initial data
F(0, u, x2, x3) for every (t, u, x2, x3) ∈ [0, T(Boot))×[0, U0]× T2. Then the following estimate holds for
every (t, u) ∈ [0, T(Boot)) × [0, U0]:

∥F∥L2(6u
t ) ≤ (1 + C ϵ̊1/2)∥F∥L2(6u

0 ) + (1 + C ϵ̊1/2)

∫ t ′=t

t ′=0
∥ f ∥L2(6u

t ′ )
dt ′. (8-36)

Proof. Thanks to our bootstrap assumptions and the estimates of Proposition 8.6, (8-36) can be proved using
essentially the same arguments used in the proof of [52, Lemmas 12.2, 12.3, 13.2]. The only differences
are that we have to use the bootstrap assumptions (6-3)–(6-8) in place of the similar bootstrap assumptions
from [52], and that different coordinates along ℓt,u were used in [52] (this is irrelevant in the sense that
the estimate (8-36) is independent of the coordinates on ℓt,u). We clarify that the bootstrap parameter “ε”
from [52] should be identified with the quantity ϵ̊1/2 in our bootstrap assumptions (6-3)–(6-8). □

Proposition 8.14 (easy L2 estimates for the acoustical geometry). For 1 ≤ N ≤ Ntop, the following
estimates hold for all t ∈ [0, T(Boot)):

∥P [2,N ]µ∥
2
L2(6t )

, ∥P [1,N ]L i
∥

2
L2(6t )

≲ ϵ̊max{1,µ
−2M∗+2Ntop−2N+2.8
⋆ (t)}.

Proof. In an identical manner as [52, Lemma 14.3], based on the transport equations (2-40)–(2-41) and
(8-36), we obtain

∥P [2,N ]µ∥L2(6t ), ∥P [1,N ]L i
∥L2(6t ) ≲ ϵ̊+

∫ s=t

s=0

W
1/2
[1,N ]

(s)

µ
1/2
⋆ (s)

ds.

(Recall our notation in Definition 3.4, (3-2e) and Definition 3.5.) Also using our bootstrap assumptions
(6-1) and (6-2) and Proposition 8.11, we arrive at the desired conclusion. □

In the next proposition, with the help of Proposition 8.14, we derive L2 estimates for commutators.
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Proposition 8.15 (L2 estimates for commutator terms). Let φ be a scalar function. For 1 ≤ N ≤ Ntop, the
following estimates hold for all (t, u) ∈ [0, T(Boot)) × [0, U0]:

∥[L ,PN
]φ∥

2
L2(6u

t )
, ∥[X̆ ,PN

]φ∥
2
L2(6u

t )
, ∥[µB,PN

]φ∥
2
L2(6u

t )

≲ ∥P [1,N ]φ∥
2
L2(6u

t )
+ ϵ̊max{1,µ

−2M∗+2Ntop−2N+2.8
⋆ (t)}∥P [1,Ntop−M∗−5]φ∥

2
L∞(6u

t ). (8-37)

Moreover, we also have

∥PN X̆9∥
2
L2(6u

t )
≲ ϵ̊max{1,µ

−2M∗+2Ntop−2N+1.8
⋆ (t)}. (8-38)

Proof. Recall the pointwise estimate (8-11). For each of the sums in (8-11), either N2 > N1, in which
case by (6-5) and Proposition 8.6, we have |P [2,N1](µ, L i , 9)|, |P [2,N1] X̆9| ≲ 1; or else N2 ≤ N1, in
which case (since N ≤ Ntop) |P [1,N2]φ| ≲ |P [1,Ntop−M∗−5]φ|. Hence,

|[L ,PN
]φ|, |[X̆ ,PN

]φ|

≲ |P [1,N ]φ| +
{
|P [2,N ](µ, L i , 9)| + |P [2,N−1] X̆9|

}
|P [1,Ntop−M∗−5]φ|

≲ |P [1,N ]φ| +
{
|P [2,N ](µ, L i , 9)| + |X̆P [2,N−1]9| + |[X̆ ,P [2,N−1]

]9|
}
|P [1,Ntop−M∗−5]φ|. (8-39)

We first apply (8-39) to φ = 9. Taking the L2(6u
t ) norm and introducing an induction argument in N

which uses (6-1)–(6-5) and Proposition 8.14, we obtain

∥[X̆ ,PN
]9∥

2
L2(6u

t )
≲ ϵ̊max{1,µ

−2M∗+2Ntop−2N+2.8
⋆ (t)}. (8-40)

Taking the L2(6u
t ) norm in (8-39), plugging in the estimate (8-40), and using (6-1), (6-2), and

Proposition 8.14, we deduce the desired estimates in (8-37) for [L ,PN
]φ and [X̆ ,PN

]φ.
To obtain the [µB,PN

]φ estimate in (8-37), we first note that, by (2-23),

[µB,PN
]φ = µ[L ,PN

]φ + [µ,PN
]Lφ + [X̆ ,PN

]φ.

The first and last terms can be controlled by combining the commutator estimates we just established with
the simple bound ∥µ∥L∞(6t ) ≲ 1 from Proposition 8.6, while the second term can be controlled simply
using the product rule and Propositions 8.6 and 8.14. We have therefore established (8-37).

Finally, we have (8-38) thanks to (6-1), (6-2) and (8-40). □

9. Transport estimates for the specific vorticity and the entropy gradient

We continue to work under the assumptions of Theorem 6.3.
In this section, we use the transport equations (5-2a) and (5-2c) to bound PN Ω and PN S for N ≤ Ntop.

We clarify that the “true” top-order estimates for the vorticity and entropy are found in Section 11; those
estimates are more involved and rely on the modified fluid variables as well as elliptic estimates.

We will start by deriving energy estimates for general transport equations (which will also be useful in
the next section). In particular, this will reduce the derivation of the energy estimates for PN Ω and PN S
to controlling the inhomogeneous terms in the transport equations and their derivatives, which we will
carry out in Section 9B. The final estimates for PN Ω and PN S are located in Section 9C.
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9A. Estimates for general transport equations.

Proposition 9.1 (L2 estimates for solutions to B-transport equations). Let φ be a scalar function satisfying

µBφ = F,

with both φ and F being compactly supported in [0, U0] × T2 for every t ∈ [0, T(Boot)).
Then the following estimate holds for every (t, u) ∈ [0, T(Boot)) × [0, U0]:

sup
t ′∈[0,t)

∥
√
µφ∥

2
L2(6u

t ′ )
+ sup

u′∈[0,u)

∥φ∥
2
L2(F t

u′ )
≲ ∥

√
µφ∥

2
L2(6u

0 )
+ ∥F∥

2
L2(Mt,u)

.

Proof. In an identical manner as [36, Proposition 3.5], we have, for any (t ′, u′) ∈ [0, t) × [0, u), the
identity∫

6u′

t ′

µφ2 dϖ +

∫
F t ′

u′

φ2 dϖ =

∫
6u′

0

µφ2 dϖ +

∫
F t ′

0

φ2 dϖ︸ ︷︷ ︸
0 by support assumptions

+

∫
Mt ′,u′

{2φF+(Lµ+µ tr/g k/ )φ2
} dϖ. (9-1)

Using (2-38c), (2-40), Lemma 2.32, (6-3)–(6-5), and Propositions 8.6 and 8.7, we have |Lµ|, |µ tr/g k/ |≲ 1.
Thus, applying also the Cauchy–Schwarz inequality to the 2φF term, we have

sup
t ′∈[0,t)

∥
√
µφ∥

2
L2(6u

t ′ )
+ sup

u′∈[0,u)

∥φ∥
2
L2(F t

u′ )
≲ ∥

√
µφ∥

2
L2(6u

0 )
+

∫ u′
=u

u′=0
∥φ∥

2
L2(F t

u′ )
du′

+ ∥F∥
2
L2(Mt,u)

.

The conclusion follows from applying Grönwall’s inequality in u. □

Proposition 9.2 (higher-order L2 estimates for solutions to transport equations). Let φ be a scalar function
satisfying

µBφ = F,

with both φ and F being compactly supported in [0, U0] × T2 for every t ∈ [0, T(Boot)).
Then the following estimate holds for every (t, u) ∈ [0, T(Boot)) × [0, U0] and 0 ≤ N ≤ Ntop:

sup
t ′∈[0,t)

∥
√
µP≤N φ∥

2
L2(6u

t ′ )
+ sup

u′∈[0,u)

∥P≤N φ∥
2
L2(F t

u′ )

≲ ∥P≤N φ∥
2
L2(60)

+ ∥P≤NF∥
2
L2(Mt,u)

+ ϵ̊max{1,µ
−2M∗+2Ntop−2N+3.8
⋆ (t)}∥P [1,Ntop−M∗−5]φ∥

2
L∞(Mt,u).

Proof. Take 0 ≤ N ′
≤ N. We write

µBPN ′

φ = PN ′

F+ [µB,PN ′

]φ.

Therefore, by Proposition 9.1,

sup
t ′∈[0,t)

∥
√
µPN ′

φ∥
2
L2(6u

t ′ )
+ sup

u′∈[0,u)

∥PN ′

φ∥
2
L2(F t

u′ )

≲ ∥PN ′

φ∥
2
L2(60)

+ ∥PN ′

F∥
2
L2(Mt,u)

+ ∥[µB,PN ′

]φ∥
2
L2(Mt,u)

. (9-2)
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Using Proposition 8.15 and then Proposition 8.11, we obtain

∥[µB,PN ′

]φ∥
2
L2(Mt,u)

≲
∫ t ′=t

t ′=0
∥[µB,PN ′

]φ∥
2
L2(6u

t )
dt ′

≲ ∥P [1,N ′
]φ∥

2
L2(Mt,u)

+ ϵ̊∥P [1,Ntop−M∗−5]φ∥
2
L∞(Mt,u)

∫ t ′=t

t ′=0
max{1,µ

−2M∗+2Ntop−2N ′
+2.8

⋆ (t ′)} dt ′

≲
∫ u′

=u

u′=0
∥P≤N φ∥

2
L2(F t

u )
du′

+ ϵ̊max{1,µ
−2M∗+2Ntop−2N ′

+3.8
⋆ (t)}∥P [1,Ntop−M∗−5φ∥

2
L∞(Mt,u). (9-3)

Plugging (9-3) into (9-2) and summing over all 0 ≤ N ′
≤ N, we obtain

sup
t ′∈[0,t)

∥
√
µP≤N φ∥

2
L2(6u

t ′ )
+ sup

u′∈[0,u)

∥P≤N φ∥
2
L2(F t

u′ )

≲ ∥P≤N φ∥
2
L2(60)

+ ∥P≤NF∥
2
L2(Mt,u)

+

∫ u′
=u

u′=0
∥P≤N φ∥

2
L2(F t

u′ )
du′

+ ϵ̊max{1,µ
−2M∗+2Ntop−2N+3.8
⋆ (t)}∥P [1,Ntop−M∗−5φ∥

2
L∞(Mt,u). (9-4)

Applying Grönwall’s inequality in u, we arrive at the desired estimate. □

9B. Controlling the inhomogeneous terms.

Proposition 9.3 (estimates tied to the inhomogeneous terms in the transport equations for Ω and S). For
0 ≤ N ≤ Ntop, the following hold for every (t, u) ∈ [0, T(Boot)) × [0, U0]:

∥PN (µBΩ)∥2
L2(Mt,u)

+ ∥PN (µBS)∥2
L2(Mt,u)

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+2.8
⋆ (t)} +

∫ u′
=u

u′=0
(V≤N (t, u′) + S≤N (t, u′)) du′ (9-5)

and

∥(PN Ω)PN (µBΩ)∥L1(Mt,u) + ∥(PN S)PN (µBS)∥L1(Mt,u)

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+2.8
⋆ (t)} +

∫ u′
=u

u′=0
(V≤N (t, u′) + S≤N (t, u′)) du′. (9-6)

Proof. Step 1: basic pointwise estimates. We claim that the derivatives of the µ-weighted inhomogeneous
terms µLi

(Ω) and µLi
(S), which are defined respectively in (5-7d) and (5-7e), obey the following pointwise

bounds:

|PN (µLi
(Ω))| + |PN (µLi

(S))|

≲ |P≤N (Ω, S)|︸ ︷︷ ︸
.
=I

+ ϵ̊(|µP [2,N+1]9| + |P [1,N ] X̆9|)︸ ︷︷ ︸
.
=II

+ ϵ̊|P [2,N ](µ, L i , 9)|︸ ︷︷ ︸
.
=III

. (9-7)

Since this is the first instance of these kind of estimates (and we will derive similar estimates later), we
give some details on how to obtain (9-7).
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(1) By Lemma 2.22 and the fact that the Cartesian component functions X1, X2, X3 are smooth functions
of the L i and 9 (see (2-23)), the weighted Cartesian coordinate vectorfield µ∂i and the transport vectorfield
µB can be decomposed regularly (i.e., with coefficients being smooth functions of µ, L i and 9) in terms
of X̆ , µY , µZ and µL .

(2) Therefore, PN (µLi
(Ω)) and PN (µLi

(S)) can be bounded as follows:

|PN (µLi
(Ω))|+|PN (µLi

(S))|

≲
N∑

k=0

∑
N1+···+Nk+n1+n2=N

(1+|PN1(µ, L i ,9)|) · · ·(1+|PNk (µ, L i ,9)|)×|Pn1(Ω, S)|×|Pn2(µP9, X̆9)|

.
=

N∑
k=0

ErrorN1,...,Nk ,n1,n2 . (9-8)

We now bound the right-hand side of (9-8).

(3) If N1, . . . , Nk ≤ Ntop − M∗ − 5 and n2 ≤ Ntop − M∗ − 5, we bound the terms (1 + |PNj (µ, L i , 9)|)

(for all j = 1, . . . , k) and |Pn2(µP9, X̆9)| in L∞ by ≲ 1 using (6-3)–(6-5) and Proposition 8.6, which
yields

ErrorN1,...,Nk ,n1,n2 ≲ |P≤N (Ω, S)|. (9-9)

(4) If Nj > Ntop − M∗ − 5 for some52 j , then all the terms (1 + |PN j ′ (µ, L i , 9)|), when j ′
̸= j , and

|Pn2(µP9, X̆9)| can be bounded in L∞ by ≲ 1 using (6-3)–(6-5) and Proposition 8.6. Moreover, since
it must also hold that n1 ≤ Ntop − M∗ − 5, we also have |Pn1(Ω, S)| ≲ ϵ̊ by the bootstrap assumptions
(6-6) and (6-7). Hence, we have

ErrorN1,...,Nk ,n1,n2 ≲ (1 + |P [2,Nj ](µ, L i , 9)|)|P≤n1(Ω, S)|

≲ |P≤N (Ω, S)| + ϵ̊|P [2,N ](µ, L i , 9)|. (9-10)

(5) When n2 > Ntop − M∗ −5, we can argue as above to see that (1+|PN j (µ, L i , 9)|)≲ 1 for all j , and
|Pn1(Ω, S)| ≲ ϵ̊. Notice further that since n2 > Ntop − M∗ − 5, by (6-5) and Proposition 8.6 we have

|Pn2(µP9)| ≲ |µP [2,n2+1]9| + |P [2,n2]9| + |P [2,n2]µ|.

Hence, we have

ErrorN1,...,Nk ,n1,n2 ≲ ϵ̊(µ|PN+19| + |P [2,N ]9| + |P [1,N ] X̆9| + |P [2,n2]µ|). (9-11)

Finally, it is easy to check that (9-9)–(9-11) are all bounded above by the right-hand side of (9-7).

Step 2: proof of (9-5). To derive (9-5), we control each term in (9-7) in the L2(Mt,u) norm.
We begin with the term I in (9-7), which we estimate using the definition of the V≤N and S≤N energies

(see Section 3B2):

∥P≤N (Ω, S)∥2
L2(Mt,u)

≲
∫ u′

=u

u′=0
[V≤N + S≤N ](t, u′) du′. (9-12)

52Note that there can be at most one such j .
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We control term II in (9-7) by the E[1,N ] norm, and use the bootstrap assumptions (6-1), (6-2), the
bound (8-38), and Proposition 8.11 to obtain

ϵ̊2
∥µP [2,N+1]9∥

2
L2(Mt,u)

+ ϵ̊2
∥P [1,N ] X̆9∥

2
L2(Mt,u)

≲ ϵ̊2
∫ t ′=t

t ′=0

[
E[1,N ](t ′) + ϵ̊2 max{1,µ

−2M∗+2Ntop−2N+1.8
⋆ (t ′)}

]
dt ′

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+2.8
⋆ (t)}. (9-13)

Finally, for the term III, we use the control for K[1,N−1] and F[1,N−1] provided by the bootstrap
assumptions (6-1) and (6-2), the bounds in Proposition 8.14, and Proposition 8.11 to obtain

ϵ̊2
∥P [2,N ](µ, L i , 9)∥2

L2(Mt,u)

≲ ϵ̊2K[1,N−1](t, u) + ϵ̊2
∫ u′

=u

u′=0
F[1,N−1](t, u′) du′

+ ϵ̊3
∫ t ′=t

t ′=0
max{1,µ

−2M∗+2Ntop−2N+2.8
⋆ (t ′)} dt ′

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+3.8
⋆ (t)}. (9-14)

Combining (9-7) with (9-12)–(9-14), we arrive at the desired bound (9-5).

Step 3: proof of (9-6). The estimate (9-6) follows as a simple consequence of the already obtained bound
(9-5) and the Cauchy–Schwarz inequality. □

9C. Putting everything together.

Proposition 9.4 (estimates for the specific vorticity and entropy gradient). For 0 ≤ N ≤ Ntop, the following
holds for all t ∈ [0, T(Boot)) × [0, U0]:

VN (t, u) + SN (t, u) ≲ ϵ̊3 max{1, µ
−2M∗+2Ntop−2N+2.8
⋆ (t)}.

Proof. Using Proposition 9.2 for φ = Ω i , Si , the initial data size assumptions in (4-5), the bootstrap
assumptions (6-6)–(6-7), and the inhomogeneous term estimates in Proposition 9.3 for the terms on
right-hand sides of the transport equations (5-2a) and (5-2c), we deduce

V≤N (t, u) + S≤N (t, u) ≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+2.8
⋆ (t)} +

∫ u′
=u

u′=0
(V≤N (t, u′) + S≤N (t, u′)) du′.

The desired estimate now follows from applying Grönwall’s inequality in u. □

10. Lower-order transport estimates for the modified fluid variables

We continue to work under the assumptions of Theorem 6.3.
In this section, we derive the energy estimates for the modified fluid variables C and D except for the

top-order. (We will derive the top-order estimates in the next section.) Thanks to Proposition 9.2, to
obtain the desired estimates, it remains only for us to bound the inhomogeneous terms in the transport
equations (5-3b) and (5-4a). Before we estimate the inhomogeneous terms, we will first control the X̆
derivative of Ω and S in Section 10A, and give general bounds for null forms in Section 10B. (The
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null forms will also be useful later on, in Section 12.) We will combine these results to control the
inhomogeneous terms in Section 10C. We provide the final estimate in Section 10D.

10A. Preliminaries. A priori, the norms VN and SN do not control the X̆ derivatives of Ω or S. Nonethe-
less, we can obtain such control in terms of the norms VN and SN by using the transport equations (5-2a)
and (5-2c).

Proposition 10.1 (L2 control of the transversal derivatives of the Ω and S). For 1 ≤ N ≤ Ntop, the
following holds for all (t, u) ∈ [0, T(Boot)) × [0, U0]:

∥PN−1 X̆(Ω, S)∥2
L2(Mt,u)

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+2.8
⋆ (t)}.

Proof. Recalling (2-23), we have

PN−1 X̆Ω = PN−1(µBΩ) −PN−1(µLΩ), PN−1 X̆ S = PN−1(µBS) −PN−1(µL S). (10-1)

The terms PN−1(µBΩ) and PN−1(µBS) can be bounded as follows using (9-5) and Proposition 9.4:

∥PN−1(µBΩ)∥2
L2(Mt,u)

+ ∥PN−1(µBS)∥2
L2(Mt,u)

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+2.8
⋆ (t)}. (10-2)

By (6-6), (6-7), Propositions 8.6, 8.12, 8.14, and 9.4, we have

∥PN−1(µLΩ)∥2
L2(Mt,u)

+ ∥PN−1(µL S)∥2
L2(Mt,u)

≲ ∥P≤N (Ω, S)∥2
L2(Mt,u)

+ ϵ̊2
∥P [2,N−1]µ∥

2
L2(Mt,u)

≲
∫ u

0
[V≤N + S≤N ](t, u′) du′

+ ϵ̊3
∫ t ′=t

t ′=0
max{1,µ

−2M∗+2Ntop−2N+4.8
⋆ (t ′)} dt ′

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+2.8
⋆ (t)}. (10-3)

Therefore, combining (10-1)–(10-3), we obtain the desired conclusion. □

10B. General estimates for null forms.

Lemma 10.2 (pointwise estimates for null forms). Suppose

(1) Q(∂φ(1), ∂φ(2)) is a g-null form, as in Definition 8.1; and

(2) φ(1) and φ(2) obey the following L∞ estimates for some d(1,1)≳d(1,2), d(2,1)≳d(2,2) for all t ∈[0,T(Boot)):

∥P≤Ntop−M∗−5 X̆φ(1)
∥L∞(6t ) ≤ d(1,1),

∥P [1,Ntop−M∗−5]φ(1)
∥L∞(6t ) ≤ d(1,2),

∥P≤Ntop−M∗−5 X̆φ(2)
∥L∞(6t ) ≤ d(2,1),

∥P [1,Ntop−M∗−5]φ(2)
∥L∞(6t ) ≤ d(2,2).

(10-4)

Then, for any 0 ≤ N ≤ Ntop, the following pointwise estimate holds on [0, T(Boot)) × 6:

|PN
[µQ(∂φ(1), ∂φ(2))]|

≲ d(2,1)
|P [1,N+1]φ(1)

| + d(2,2)
|P [1,N ] X̆φ(1)

| + d(1,1)
|P [1,N+1]φ(2)

| + d(1,2)
|P [1,N ] X̆φ(2)

|

+ max{d(1,1)d(2,2), d(1,2)d(2,1)
}|P [2,N ](µ, L i , 9)|, (10-5)
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and, for any 1 ≤ N ≤ Ntop, we have

|P [1,N ]
[µQ(∂φ(1), ∂φ(2))]|

≲ d(2,1)
|P [2,N+1]φ(1)

| + d(2,2)
|P [1,N ] X̆φ(1)

| + d(1,1)
|P [2,N+1]φ(2)

| + d(1,2)
|P [1,N ] X̆φ(2)

|

+ ϵ̊1/2(d(2,1)
|Pφ(1)

| + d(1,1)
|Pφ(2)

|)︸ ︷︷ ︸
.
=A

+ d(2,2)
|Pφ(1)

| + d(1,2)
|Pφ(2)

|︸ ︷︷ ︸
.
=B

+ max{d(1,1)d(2,2), d(1,2)d(2,1)
}|P [2,N ](µ, L i , 9)|. (10-6)

Proof. Throughout this proof, f( · ) denotes a smooth function of its arguments that is free to vary from
line to line. By (8-3), we need to control

PN
[f(L i , 9)µ(Pφ(1))(Pφ(2))]︸ ︷︷ ︸

.
=I

, PN
[f(L i , 9)(Pφ(1))(X̆φ(2))]︸ ︷︷ ︸

.
=II

, PN
[f(L i , 9)(X̆φ(1))(Pφ(2))]︸ ︷︷ ︸

.
=III

.

We first prove (10-5). Consider term II. Arguing as in the proof of (9-7) and then using (10-4), we obtain

|PN
[f(L i , 9,µ)(Pφ(1))(X̆φ(2))]|

≲ |P [1,Ntop−M∗−5]φ(1)
||P [1,N ] X̆φ(2)

| + |P [1,N+1]φ(1)
||P≤Ntop−M∗−5 X̆φ(2)

|

+ |P≤Ntop−M∗−5φ(1)
||P≤Ntop−M∗−5 X̆φ(2)

||P [2,N ](µ, L i , 9)|

≲ d(1,2)
|P [1,N ] X̆φ(2)

| + d(2,1)
|P [1,N+1]φ(1)

| + d(1,2)d(2,1)
|P [2,N ](µ, L i , 9)|,

which is bounded from above by the right-hand side of (10-5).
Next, we observe that the term III can be handled just like term II, after we interchange the roles

of φ(1) and φ(2). Moreover, the term I is even easier to handle because d(1,1) ≳ d(1,2) and d(2,1) ≳ d(2,2).
We finally turn to the proof of (10-6), in which we need to show an improvement compared to (10-5)

using the fact that on the left-hand side of the estimate, the µ-weighted null form is differentiated
by at least one P . More precisely, we need to improve d(1,1)

|P [1,N+1]φ(2)
| and d(1,2)

|P [1,N ] X̆φ(2)
| to

d(1,1)
|P [2,N+1]φ(2)

| and d(1,2)
|P [2,N ] X̆φ(2)

|, at the expense of incurring terms of the type A and B

in (10-6).
It is straightforward to use the arguments given in the previous paragraph to confirm that if N ≥ 2,

then d(1,1)
|P [1,N+1]φ(2)

| and d(1,2)
|P [1,N ] X̆φ(2)

| on the right-hand side of (10-5) can be replaced by
d(1,1)

|P [2,N+1]φ(2)
| and d(1,2)

|P [2,N ] X̆φ(2)
|. We are thus only concerned with the following terms in the

case when N = 1:

[P(f(L i , 9)µ)](Pφ(1))(Pφ(2))︸ ︷︷ ︸
.
=I ′

, [Pf(L i , 9)](Pφ(1))(X̆φ(2))︸ ︷︷ ︸
.
=II ′

, [Pf(L i , 9)](X̆φ(1))(Pφ(2))︸ ︷︷ ︸
.
=III ′

.

Next, we observe that for the terms II ′ and III ′, when the P derivative falls on f(L i , 9), (6-5) and
Proposition 8.6 yield a smallness factor of ϵ̊1/2. Thus, II ′ and III ′ can be bounded by A . Finally, to
handle the term I ′, we can control either Pφ(1) or Pφ(2) in L∞, which allows us to bound I ′ by B. □
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10C. Estimates of the inhomogeneous terms in the transport equations for C and D.

Proposition 10.3 (below-top-order estimates for the main inhomogeneous terms in the transport equations
for the modified fluid variables). For53 0 ≤ N ≤ Ntop − 1, the main terms M ∈ {Mi

(C), M(D)} (see
(5-5a)–(5-5b)) can be estimated as follows for every (t, u) ∈ [0, T(Boot)) × [0, U0]:

∥PN (µM)∥2
L2(Mt,u)

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+0.8
⋆ (t)}. (10-7)

Proof. Note that Mi
(C) consists of null forms (see Definition 8.1) Q(∂9, ∂Ω), Q(∂9, ∂S). Therefore, by

Lemma 10.2 (with φ(1)
= Ω i , Si , φ(2)

= 9, d(1,1)
= d(1,2) .

= ϵ̊, d(2,2) .
= ϵ̊1/2, and d(2,1)

=O(1) by virtue
of the bootstrap assumptions (6-3)–(6-7)),54 we have

|PN (µMi
(C))|≲ ϵ̊3/2

+|P≤N+1(Ω, S)|+|P≤N X̆(Ω, S)|︸ ︷︷ ︸
.
=I

+ϵ̊(|P [2,N+1]9|+|P [1,N ] X̆9|)︸ ︷︷ ︸
.
=II

+ ϵ̊|P [2,N ](µ, L i ,9)|︸ ︷︷ ︸
.
=III

. (10-8)

We recall the expression for M(D) given by (5-5b). The term 2 exp(−2ρ){(∂av
a)∂b Sb

− (∂av
b)∂b Sa

} is
a null form of type Q(∂9, ∂S). Thus, using the same arguments we gave when handling Mi

(C), we can
pointwise bound its PN (µ · ) derivatives by the right-hand side of (10-8).

Moreover, using the same arguments given below (9-7), we see that the PN derivatives of the term
µ exp(−ρ)δab(curl Ω)a Sb can be pointwise bounded by the right-hand side of (10-8). From now on, it
therefore suffices to consider the terms on the right-hand side of (10-8).

The term I can be controlled using Propositions 9.4 and 10.1 so that

∥P≤N+1(Ω, S)∥2
L2(Mt,u)

+ ∥P≤N X̆(Ω, S)∥2
L2(Mt,u)

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+0.8
⋆ (t)}. (10-9)

For the term II in (10-8), we use the bootstrap assumptions (6-1), (6-2), and (6-5) and the estimates of
Propositions 8.12 and 8.15 to obtain

ϵ̊2
∥P [2,N+1]9∥

2
L2(Mt,u)

+ϵ̊2
∥P [1,N ] X̆9∥

2
L2(Mt,u)

≲ ϵ̊2K[1,N ](t,u)+ ϵ̊2
∫ u′

=u

u′=0
F[1,N ](t,u′)du′

+ ϵ̊2
∫ t ′=t

t ′=0
E[1,N ](t ′,u)dt ′

+ ϵ̊3max{1,µ
−2M∗+2Ntop−2N+1.8
⋆ (t)}

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+1.8
⋆ (t)}. (10-10)

The term III in (10-8) is the same as the term III in (9-7), and can be bounded as in the proof
of Proposition 9.3, which, when combined with Proposition 9.4, implies that it is bounded by
≲ ϵ̊3max{1,µ

−2M∗+2Ntop−2N+1.8
⋆ (t)}.

Combining the above estimates, we conclude the desired estimate (10-7). □

53Note that in the case N = Ntop, the error terms on the right-hand side involving V≤N+1 and S≤N+1 have not been
estimated in Section 9A. It is for this reason that we only consider 0 ≤ N ≤ Ntop − 1 at this point.

54Note that by Lemma 10.2, there is also a term ϵ̊|P9|, which we bound by ≲ ϵ̊3/2 using (6-5).
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Proposition 10.4 (L2 control of some null forms in the modified fluid variable transport equations).
For 0 ≤ N ≤ Ntop, the terms Q ∈ {Qi

(C), Q(D)} (see (5-6c)–(5-6d)) can be estimated as follows for all
(t, u) ∈ [0, T(Boot)) × [0, U0]:

∥PN (µQ)∥2
L2(Mt,u)

≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+0.8
⋆ (t)}. (10-11)

Proof. The Q terms can all be expressed as S multiplied by a null form Q(∂9, ∂9). We control the null
form using (10-5) with d(1,1), d(1,2), d(2,1), d(2,2) ≲ 1 (justified by (6-3)–(6-5)) so that

|PN (µQ)| ≲
∑

N1+N2≤N

|P≤N1(Ω, S)|(|P [1,N2+1]9| + |P [1,N2] X̆9| + |P [2,N2](µ, L i , 9)|)

≲ |P≤N (Ω, S)|︸ ︷︷ ︸
.
=I

+ ϵ̊(|P [2,N+1]9| + |P [1,N ] X̆9|)︸ ︷︷ ︸
.
=II

+ ϵ̊|P [2,N ](µ, L i , 9)|︸ ︷︷ ︸
.
=III

, (10-12)

where in the last line, we used the L∞ estimates (6-6), (6-7) for (Ω, S) if N1 ≤ Ntop − M∗ − 5, and
otherwise, we used the L∞ estimates (6-3)–(6-5) and Proposition 8.6 for 9, µ, and L i.

Next, we observe that the terms II and III are exactly the same as II and III in (10-8) in Proposition 10.3.
We can therefore argue exactly as in Proposition 10.3 to show that these terms in ∥ · ∥

2
L2(Mt,u)

are bounded
above by ϵ̊3 max{1,µ

−2M∗+2Ntop−2N+1.8
⋆ (t)}. Notice in particular that while Proposition 10.3 was only

stated for 0 ≤ N ≤ Ntop − 1, the bounds for these two terms in fact also hold (and can be proved in the
same way) for N = Ntop.

It thus remains to consider the term I in (10-12). Importantly, notice that term I in (10-12) is better
than the corresponding term I in (10-8) because it has up to N, as opposed to N + 1 derivatives. We
control this term using the definition of V≤N , S≤N and Proposition 9.4 as follows:

∥P≤N (Ω, S)∥2
L2(Mt,u)

≲
∫ u′

=u

u′=0
[V≤N + S≤N ](t, u′) du′ ≲ ϵ̊3 max{1,µ

−2M∗+2Ntop−2N+2.8
⋆ (t)}.

Combining the above estimates, we conclude the proposition. □

Proposition 10.5 (L2 control of some easy terms in the transport equation for C). For 0 ≤ N ≤ Ntop, the
term Li

(C) (see (5-7g)) can be estimated as follows for all (t, u) ∈ [0, T(Boot)) × [0, U0]:

∥PN (µLi
(C))∥L2(Mt,u) ≲ ϵ̊3 max{1,µ

−2M∗+2Ntop−2N+0.8
⋆ (t)}.

Proof. We begin with the pointwise estimate

|P≤N (µLi
(C))| ≲ ϵ̊|P≤N (Ω, S)| + ϵ̊2(|P [2,N+1]9| + |P [1,N ] X̆9|) + ϵ̊2

|P [2,N ](µ, L i )|,

which can be derived by using the same arguments we used to obtain (9-7). Notice that all the above
terms can be bounded above by the right-hand of (10-12). They can therefore be bounded in the norm
∥ · ∥L2(Mt,u) via exactly the same arguments we used in the proof of Proposition 10.4. This yields the
desired conclusion. □
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10D. Below top-order estimates for C and D.

Proposition 10.6 (below top-order estimates for the modified fluid variables). For 0 ≤ N ≤ Ntop − 1, the
following holds for (t, u) ∈ [0, T(Boot)) × [0, U0]:

CN (t, u) + DN (t, u) ≲ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+0.8
⋆ (t)}.

Proof. This follows from combining Proposition 9.2 for φ = Ci ,Di with the initial data size assumptions in
(4-6), the bootstrap assumptions (6-8), and the inhomogeneous term estimates (in Propositions 10.3–10.5)
for the terms on the right-hand sides of the transport equations (5-3b) and (5-4a). □

11. Top-order transport and elliptic estimates for the specific vorticity and the entropy gradient

We continue to work under the assumptions of Theorem 6.3.
In this section, we derive top-order estimates for the modified fluid variables C and D. The key

difference with the lower-order estimates (which we derived in Proposition 10.6) is that we cannot bound
the top-order derivatives of Ω and S using the V and S norms; that approach would lead to a loss of a
derivative, which is not permissible at the top-order. To avoid losing a derivative, we rely on the following
additional ingredient: weighted elliptic estimates for the specific vorticity and entropy gradient (recall
Sections 1A6, 1A7).

In Section 11A, we derive top-order transport estimates. The estimates are similar to the ones we
derived in Section 10, except there are some top-order inhomogeneous terms. We derive the elliptic
estimates in Sections 11B and 11C. For the final estimate, see Section 11D.

In our analysis, we rely on elliptic estimates relative to the Cartesian spatial coordinates. In deriving
these estimates, we will use the “Cartesian pointwise norms” from the following definition.

Definition 11.1. Denote by ∂ the gradient with respect to the Cartesian spatial coordinates. For a scalar
function f and a one-form φ, define respectively

|∂ f |
2 .
=

3∑
i=1

|∂i f |
2, |∂φ|

2 .
=

3∑
i, j=1

|∂iφj |
2.

11A. Top-order transport estimates for CNtop and DNtop .

Proposition 11.2 (preliminary top-order L2 estimates for the modified fluid variables). Let ς ∈ (0, 1].
There exists a constant C > 0 independent of ς and a constant cς > 0 (depending on ς ) such that whenever
c≥ cς the following estimate holds for every (t, u) ∈ [0, T(Boot))×[0, U0] (with u′ denoting the u-value of
the integrand):

∥e−cu′/2√µPNtop(C,D)∥2
L2(6u

t )
+ ∥e−cu′/2PNtop(C,D)∥2

L2(F t
u )

+
c
2
∥e−cu′/2PNtop(C,D)∥2

L2(Mt,u)

≤ C ϵ̊3µ−2M∗+0.8
⋆ (t) + ς

∫ t ′=t

t ′=0

1
µ⋆(t ′)

∥e−cu′/2√µ∂PNtop(Ω, S)∥2
L2(6u

t ′ )
dt ′. (11-1)

Proof. Let ς ′, c > 0 be constants to be specified later. It is crucial that all explicit constants C > 0 and
implicit constants in this proof are independent of ς ′ and c. At the end of the proof, there will be a large
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constant C such that we will choose ς ′ to satisfy ς = Cς ′, where ς > 0 is the constant from the statement
of the proposition.

Step 1: transport estimate in the weighted norms. Since µBu = 1 by (2-21), (2-23), we have

µB(e−cu/2PNtopC) = −
c
2

e−cu/2PNtopC + e−cu/2µB(PNtopC), (11-2)

µB(e−cu/2PNtopD) = −
c
2

e−cu/2PNtopD+ e−cu/2µB(PNtopD). (11-3)

Starting with (11-2) and (11-3), we now argue using the identity (9-1) with φ
.
= (Ci ,Di ), except now,

unlike in the proof of Proposition 9.1, we do not use Grönwall’s inequality but instead take advantage of
the good terms associated with the terms −(c/2)e−cu/2PNtopC and −(c/2)e−cu/2PNtopD on the right-hand
sides (11-2)–(11-3). We thus obtain, for any ς ′ > 0 (here, u′ denotes the u-value of the integrand),

∥e−cu′/2√µPNtopC∥
2
L2(6u

t )
+ ∥e−cu′/2PNtopC∥

2
L2(F t

u )
+ c∥e−cu′/2PNtopC∥

2
L2(Mt,u)

+ ∥e−cu′/2√µPNtopD∥
2
L2(6u

t )
+ ∥e−cu′/2PNtopD∥

2
L2(F t

u )
+ c∥e−cu′/2PNtopD∥

2
L2(Mt,u)

≲ ∥e−cu′/2√µPNtop(C,D)∥2
L2(6u

0 )
+ ∥e−cu′/2PNtop(C,D)∥2

L2(Mt,u)

+ ∥e−cu′/2PNtop(C,D)∥L2(Mt,u)∥e−cu′/2µBPNtop(C,D)∥L2(Mt,u)

≲ ∥e−cu′/2√µPNtop(C,D)∥2
L2(6u

0 )
+ (1 + (ς ′)−1)∥e−cu′/2PNtop(C,D)∥2

L2(Mt,u)

+ ς ′
∥e−cu′/2µBPNtop(C,D)∥2

L2(Mt,u)
. (11-4)

Step 2: estimating the easy terms. We now consider the terms on the right-hand side of (11-4). First, the
assumptions (4-6) on the initial data and the simple bound ∥µ∥L∞(60) ≲ 1 from Proposition 8.6 give

∥e−cu′/2√µPNtop(C,D)∥2
L2(6u

0 )
≲ ϵ̊3. (11-5)

Recalling the transport equations (5-3b), (5-4a), we notice that the terms ∥e−cu′/2µBPNtopC∥L2(Mt,u) and
∥e−cu′/2µBPNtopD∥L2(Mt,u) have essentially been estimated in Propositions 10.3–10.5 (using e−cu′/2

≤ 1).
Crucially, however, unlike in Proposition 10.3, we have not yet bounded the following terms in (10-9):

∥e−cu′/2PNtop+1(Ω, S)∥2
L2(Mt,u)

+ ∥e−cu′/2PNtop X̆(Ω, S)∥2
L2(Mt,u)

(since this is one more derivative than VNtop and SNtop control). In other words, simply repeating the
argument in Propositions 10.3–10.5 and separating the error terms that depend on Ntop + 1 derivatives of
(Ω, S), we obtain

∥e−cu′/2µBPNtopC∥
2
L2(Mt,u)

+ ∥e−cu′/2µBPNtopD∥
2
L2(Mt,u)

≲ ϵ̊3µ−2M∗+0.8
⋆ (t) + ∥e−cu′/2PNtop+1(Ω, S)∥2

L2(Mt,u)
+ ∥e−cu′/2PNtop X̆(Ω, S)∥2

L2(Mt,u)
. (11-6)

Step 3: controlling the top-order terms. We now consider the terms on the right-hand side of (11-6).
First, using the commutator estimates (8-37), Proposition 9.4, and the bootstrap assumptions (6-6)–(6-7)
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to control [PNtop, X̆ ](Ω, S) (and using e−cu′/2
≤ 1), we see that

∥e−cu′/2PNtop+1(Ω, S)∥2
L2(Mt,u)

+ ∥e−cu′/2PNtop X̆(Ω, S)∥2
L2(Mt,u)

≲ ϵ̊3µ−2M∗+2.8
⋆ (t) + ∥e−cu′/2 X̆PNtop(Ω, S)∥2

L2(Mt,u)
+ ∥e−cu′/2LPNtop(Ω, S)∥2

L2(Mt,u)

+ ∥e−cu′/2YPNtop(Ω, S)∥2
L2(Mt,u)

+ ∥e−cu′/2 ZPNtop(Ω, S)∥2
L2(Mt,u)

≲ ϵ̊3µ−2M∗+2.8
⋆ (t) + ∥e−cu′/2 BPNtop(Ω, S)∥2

L2(Mt,u)
+ ∥e−cu′/2∂PNtop(Ω, S)∥2

L2(Mt,u)
, (11-7)

where we have replaced LPNtop(Ω, S) = BPNtop(Ω, S)− XPNtop(Ω, S) (by (2-23)) and also used Lem-
mas 2.23 and 2.24 to express (X, Y, Z) in terms of the Cartesian coordinate spatial partial derivative
vectorfields, and Propositions 8.6 and 8.7 to bound the coefficients in the expressions by ≲ 1. More-
over, using the commutator identity BPNtop(Ω, S) = µ−1PNtop[µB(Ω, S)] +µ−1

[µB,PNtop](Ω, S), the
commutator estimates of Proposition 8.15 with φ

.
= (Ω i , Si ), the bootstrap assumptions (6-6)–(6-7),

Proposition 9.4, the estimate (9-5), and Proposition 8.11, we deduce (also using e−cu′/2
≤ 1) that

∥e−cu′/2 BPNtop(Ω, S)∥2
L2(Mt,u)

≲ ϵ̊3µ−2M∗+0.8
⋆ (t). Combining the above results, we deduce

∥e−cu′/2PNtop+1(Ω, S)∥2
L2(Mt,u)

+ ∥e−cu′/2PNtop X̆(Ω, S)∥2
L2(Mt,u)

≲ ϵ̊3µ−2M∗+0.8
⋆ (t) +

∫ t ′=t

t ′=0

1
µ⋆(t ′)

∥e−cu′/2√µ∂PNtop(Ω, S)∥2
L2(6u

t ′ )
dt ′. (11-8)

Step 4: putting everything together. Using (11-5), (11-6) and (11-8) to control the terms on the right-hand
side of (11-4), we see that there is a C > 0 such that

∥e−cu′/2√µPNtopC∥
2
L2(6u

t )
+ ∥e−cu′/2PNtopC∥

2
L2(F t

u )
+ c∥e−cu′/2PNtopC∥

2
L2(Mt,u)

+ ∥e−cu′/2√µPNtopD∥
2
L2(6u

t )
+ ∥e−cu′/2PNtopD∥

2
L2(F t

u )
+ c∥e−cu′/2PNtopD∥

2
L2(Mt,u)

≤ C(1 + ς ′)ϵ̊3µ−2M∗+0.8
⋆ (t) + C(1 + (ς ′)−1)∥e−cu′/2PNtop(C,D)∥2

L2(Mt,u)

+ Cς ′

∫ t ′=t

t ′=0

1
µ⋆(t ′)

∥e−cu′/2√µ∂PNtop(Ω, S)∥2
L2(6u

t ′ )
dt ′. (11-9)

Finally, relabeling the coefficients Cς ′ on the right-hand side of (11-9) by setting ς
.
= Cς ′, bounding

the data term C(1 + ς ′)ϵ̊3µ−2M∗+0.8
⋆ (t) by a new constant C times ϵ̊3µ−2M∗+0.8

⋆ (t) via the assumption
ς ∈ (0, 1], taking cς sufficiently large (depending on ς ) so that

C(1 + (ς ′)−1)∥e−cu′/2PNtop(C,D)∥2
L2(Mt,u)

≤
cς

2

∫
Mt,u

e−cu′

[|PNtopC|
2
+ |PNtopD|

2
] dϖ,

now allowing c to be any constant such that c ≥ cς , and subtracting (c/2)
∫
Mt,u

e−cu′

[|PNtopC|
2

+

|PNtopD|
2
] dϖ from both sides of (11-9), we obtain the desired inequality (11-1). □

11B. General elliptic estimates on R×T2. We begin with a standard weighted Euclidean elliptic estimate
on R × T2 in Proposition 11.3. We then apply this in our geometric setting for general one-forms in
Proposition 11.4.
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Proposition 11.3 (weighted Euclidean elliptic estimates). Let w : R × T2
→ R>0 be a smooth, strictly

positive, bounded weight function.
The following inequality holds for all one-forms φ = φadxa

∈ C2
c (R × T2):

∥
√

w∂φ∥
2
L2(R×T2,dx)

≤ 4∥
√

w curl φ∥
2
L2(R×T2,dx)

+ 4∥
√

w div φ∥
2
L2(R×T2,dx)

+ 3∥∂ log w∥
2
L∞(R×T2)

∥
√

wφ∥
2
L2(R×T2,dx)

,

where ∂ is as in Definition 11.1, ∥ξ∥
2
L2(R×T2,dx)

.
=

∫
R×T2 |ξ|

2
e dx for tensorfields ξ, |ξ|e denotes the

standard Euclidean pointwise norm of ξ, and dx = dx1 dx2 dx3.

Proof. Integrating by parts and using Hölder’s inequality, we find that

∥
√

w∂φ∥
2
L2(R×T2,dx)

=

3∑
i, j=1

∫
R×T2

w(∂iφj )
2 dx

= −

3∑
i, j=1

{∫
R×T2

wφj (∂
2
i iφj ) dx +

∫
R×T2

(∂iw)φj (∂iφj ) dx
}

= −

3∑
i, j=1

∫
R×T2

wφj∂
2
i jφi dx +

3∑
i, j=1

∫
R×T2

wφj∂i (∂jφi − ∂iφj ) dx −

3∑
i, j=1

∫
R×T2

(∂iw)φj (∂iφj ) dx

=

3∑
i, j=1

∫
R×T2

w(∂jφj )(∂iφi ) dx −

3∑
i, j=1

∫
R×T2

w(∂iφj )(∂jφi − ∂iφj ) dx

+

3∑
i, j=1

∫
R×T2

(∂jw)φj (∂iφi ) dx −

3∑
i, j=1

∫
R×T2

(∂iw)φj (∂jφi − ∂iφj ) dx −

3∑
i, j=1

∫
R×T2

(∂iw)φj (∂iφj ) dx

≤ ∥
√

w div φ∥
2
L2(R×T2,dx)

+ ∥
√

w ∂φ∥L2(R×T2,dx)∥
√

w curl φ∥L2(R×T2,dx)

+ ∥∂ log w∥L∞(R×T2)∥
√

wφ∥L2(R×T2,dx){∥
√

w div φ∥L2(R×T2,dx) + ∥
√

w curl φ∥L2(R×T2,dx)}

+ ∥∂ log w∥L∞(R×T2)∥
√

wφ∥L2(R×T2,dx)∥
√

w ∂φ∥L2(R×T2,dx). (11-10)

Using |ab| ≤ a2/4 + b2, we find that

∥
√

w∂φ∥
2
L2(R×T2,dx)

≤
1
2∥

√
w ∂φ∥

2
L2(R×T2,dx)

+ 2∥
√

w div φ∥
2
L2(R×T2,dx)

+ 2∥
√

w curl φ∥
2
L2(R×T2,dx)

+
3
2∥∂ log w∥

2
L∞(R×T2)

∥
√

wφ∥
2
L2(R×T2,dx)

. (11-11)

The conclusion of the lemma follows from subtracting 1
2∥

√
w ∂φ∥

2
L2(R×T2,dx)

from both sides of
(11-11). □

Proposition 11.4 (Euclidean elliptic estimates with u-weights). Let φ = φadxa be a smooth compactly
supported one-form on 6t . Then for each c > 0 and each t ∈ [0, T(Boot)), the following elliptic estimate
holds, where the implicit constants are independent of c:

∥e−cu/2√µ∂φ∥L2(6t ) ≲ ∥e−cu/2√µ div φ∥L2(6t )+∥e−cu/2√µ curl φ∥L2(6t )+cµ−1
⋆ (t)∥e−cu/2√µφ∥L2(6t ).
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Proof. In this proof, the implicit constants in ≲ are independent of c.
We apply Proposition 11.3 with w

.
= e−cu. By Lemma 2.22, (2-21), and Proposition 8.7, we have

∥∂ log w∥L∞(R×T2) ≲ cµ−1
⋆ (t). Hence,

∥e−cu/2∂φ∥L2(6t ,dx) ≲ ∥e−cu/2 div φ∥L2(6t ,dx) + ∥e−cu/2 curl φ∥L2(6t ,dx) + cµ−1
⋆ (t)∥e−cu/2 φ∥L2(6t ,dx).

The conclusion thus follows from the fact that the volume measures µ dx and dϖ are comparable,
which in turn follows from (3-1) and Proposition 8.7. □

11C. Top-order elliptic estimates for Ω and S. In this section, we derive top-order elliptic estimates for
Ω and S.

There are four main steps. Ultimately, our goal is to exploit the preliminary energy inequality for
(PNtopC,PNtopD) that we derived in Proposition 11.2, and to do this, we have to control the integrand term
∥e−cu′/2√µ∂PNtop(Ω, S)∥2

L2(6u
t ′ )

on the right-hand side of (11-1) with the help of elliptic estimates. To
achieve this, we first commute the top-order operators PNtop through the Euclidean operators div and curl.
To avoid uncontrollable commutator terms, we introduce a µ weight into the commutators. In the second
step, we have to control (divPNtopΩ, divPNtop S) and (curlPNtopΩ, curlPNtop S) in terms of the modified
fluid variables (PNtopC,PNtopD) from (2-5a)–(2-5b) plus simpler error terms. The first and second steps
are carried out in Lemmas 11.6–11.9.

Next, in Proposition 11.10, we use the weighted elliptic estimates on 6t provided by Proposition 11.4
and the results of the first two steps to obtain

∥e−cu/2√µ(∂PNtopΩ, ∂PNtop S)∥2
L2(6t )

≲ ∥e−cu/2√µ(PNtopC,PNtopD)∥2
L2(6t )

+ · · · ,

where “· · · ” denotes simpler error terms for which we already have an independent bound. Finally, in
Proposition 11.11, we combine all of these results to obtain our main L2 estimate55 for (PNtopC,PNtopD).

11C1. Controlling curlPNtopΩ and divPNtopΩ . We start with a simple commutation lemma.

Lemma 11.5 (commuting geometric vectorfields with µ-weighted Cartesian vectorfields). Let φ be a
smooth function such that

∥P≤Ntop−M∗−5φ∥L∞(6t ) ≤ ϵ̊, ∥P≤Ntop−M∗−5 X̆φ∥L∞(6t ) ≤ ϵ̊

for all t ∈ [0, T(Boot)).
Then, for 0 ≤ N ≤ Ntop, the following holds in MT(Boot),U0 :

|[µ∂i ,PN
]φ| ≲ |P [1,N ]φ| + |P≤N−1 X̆φ| + ϵ̊(|P [2,N ](µ, L i , 9)| + |P [2,N−1] X̆9|).

Proof. We first use Lemma 2.22 to express µ∂i in terms of the geometric vectorfields and then argue as in
Proposition 8.8. □

55We clarify that although the estimate for (PNtopC,PNtopD) and the aforementioned estimates
∥e−cu/2√

µ(∂PNtopΩ, ∂PNtop S)∥2
L2(6t )

≲ ∥e−cu/2√
µ(PNtopC,PNtopD)∥2

L2(6t )
+ · · · together imply a top-order L2 esti-

mate for (∂PNtopΩ,∂PNtop S), we do not explicitly state such an estimate in the paper because we do not need it for our main
results.
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Lemma 11.6 (L2 estimates for the Euclidean curl of the derivatives of Ω in terms of the derivatives
of C). Let c ≥ 0 be a real number. The following estimate holds for all t ∈ [0, T(Boot)), where the implicit
constants are independent of c:

∥e−cu′/2√µ curl PNtopΩ∥
2
L2(6t )

≲ ϵ̊3µ−2M∗+0.8
⋆ (t) + ∥e−cu′/2√µPNtopC∥

2
L2(6t )

.

Proof. We first compute the commutator [µ curl,PNtop] using Lemma 11.5 and the bootstrap assump-
tion (6-6):

|[µ curl,PNtop]Ω| ≲ |P≤NtopΩ| + |P≤Ntop−1 X̆Ω| + ϵ̊(|P [2,Ntop](µ, L i , 9)| + |P [2,Ntop−1] X̆9|). (11-12)

On the other hand, by (2-5a), Lemma 2.22, the bootstrap assumptions (6-3)–(6-8), and Propositions 8.6
and 8.7, we have

|PNtop(µ curl Ω)| =

∣∣∣∣PNtop

{
µ

[
exp(ρ)C − exp(−2ρ)c−2

s
p;s

ϱ̄
Sa∂av + exp(−2ρ)c−2

s
p;s

ϱ̄
(∂av

a)S
]}∣∣∣∣

≲ µ|PNtopC| + |P≤Ntop−1C| + |P≤Ntop S|

+ ϵ̊
(
|P [2,Ntop](µ, L i )| +µ|PNtop+19| + |P [2,Ntop]9| + |P [1,Ntop] X̆9|

)
. (11-13)

We stress that on the right-hand side of (11-13), it is important that the top-order terms PNtopC and
PNtop+19 are accompanied by a factor of µ.

We can therefore use (11-12) and (11-13) (to write µ curlPNtopΩ =[µ curl,PNtop]Ω+PNtop(µ curl Ω)),
multiply by e−cu/2µ−1/2, take the L2(6t) norm, and then use e−cu/2

≤ 1 to obtain

∥e−cu′/2√µ curl(PNtopΩ)∥L2(6t )

≲ ∥e−cu′/2√µPNtopC∥L2(6t ) +µ−1
⋆ (t)∥

√
µP≤Ntop−1C∥L2(6t ) +µ−1

⋆ (t)∥
√
µP≤Ntop(Ω, S)∥L2(6t )

+µ−1
⋆ (t)∥

√
µP≤Ntop−1 X̆Ω∥L2(6t ) + ϵ̊µ−1/2

⋆ (t)∥P [2,Ntop](µ, L i )∥L2(6t )

+ ϵ̊(∥
√
µPNtop+19∥L2(6t ) +µ−1/2

⋆ (t)∥P [1,Ntop] X̆9∥L2(6t ) +µ−1
⋆ (t)∥

√
µP [2,Ntop]9∥L2(6t ))

≲ ∥e−cu′/2√µPNtopC∥L2(6t ) + ϵ̊3/2µ−M∗+0.4
⋆ (t), (11-14)

where we have used Proposition 10.6 to bound µ−1
⋆ (t)∥

√
µP≤Ntop−1C∥L2(6t ), Proposition 9.4 to

bound µ−1
⋆ (t)∥

√
µP≤Ntop(Ω, S)∥L2(6t ), Proposition 10.1 to bound µ−1

⋆ (t)∥
√
µP≤Ntop−1 X̆Ω∥L2(6t ),

Proposition 8.14 to bound ϵ̊µ
−1/2
⋆ (t)∥P [2,Ntop](µ, L i )∥L2(6t ), and the bootstrap assumptions (6-1),

(6-2), and (8-38) to estimate all the remaining terms. (We remark that the worst terms are
µ−1

⋆ (t)∥
√
µP≤Ntop−1C∥L2(6t ), µ−1

⋆ (t)∥
√
µP≤Ntop(Ω, S)∥L2(6t ), µ−1

⋆ (t)∥
√
µP≤Ntop−1 X̆Ω∥L2(6t ), and

µ
−1/2
⋆ (t)∥P [1,Ntop] X̆9∥L2(6t ), which determine the blowup-exponent −M∗ + 0.4 for µ⋆ on the right-hand

side of (11-14)). Squaring (11-14), we arrive at the desired result. □

Lemma 11.7 (L2 estimates for the Euclidean divergence of the derivatives of Ω). Let c ≥ 0 be a real
number. The following estimate holds for all t ∈ [0, T(Boot)), where the implicit constant is independent of c:

∥e−cu′/2√µ div PNtopΩ∥
2
L2(6t )

≲ ϵ̊3µ−2M∗+0.8
⋆ (t).
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Proof. The commutator [µ div,PNtop]Ω can be computed exactly as (11-12). Thus, we have

|[µ div,PNtop]Ω| ≲ the right-hand side of (11-12). (11-15)

We also use Lemma 2.22, the fact that the Cartesian component functions X1, X2, X3 are smooth functions
of the L i and 9 (see (2-23)), (5-3a), and the L∞ bounds in (6-3)–(6-6) and Proposition 8.6 to deduce

|PNtop(µ div Ω)| = |PNtop(µΩa∂aρ)|

≲ |P≤NtopΩ| + ϵ̊(|P [2,Ntop]µ| +µ|PNtop+19| + |P [2,Ntop]9| + |P [1,Ntop] X̆9|). (11-16)

Notice that every term on the right-hand side of (11-16) has already appeared on the right-hand sides
of (11-12) and (11-13). Hence, with the help of the simple identity

µ divPNtopΩ = PNtop(µ div Ω) + [µ div,PNtop]Ω

and the estimates obtained above, we can argue exactly as in Lemma 11.6 to obtain the same estimate.
(Note that here there are no C terms and so we do not have the term ∥e−cu′/2√µPNtopC∥

2
L2(6t )

.) □

11C2. Controlling curlPNtop S and divPNtop S.

Lemma 11.8 (L2 estimates for the Euclidean curl of the derivatives of S). Let c ≥ 0 be a real number.
The following estimate holds for all t ∈ [0, T(Boot)), where the implicit constant is independent of c:

∥e−cu′/2√µ curlPNtop S∥
2
L2(6t )

≲ ϵ̊3µ−2M∗+0.8
⋆ (t).

Proof. By (5-4b), curl S = 0. Hence, using Lemma 11.5 and the bootstrap assumption (6-7),

|µ curlPNtop S| = |[µ curl,PNtop]S|

≲ |P≤Ntop S| + |P≤Ntop−1 X̆ S| + ϵ̊(|P [2,Ntop](µ, L i , 9)| + |P [2,Ntop−1] X̆9|). (11-17)

The only new terms here compared to (11-12) and (11-13) are |P≤Ntop S| and |P≤Ntop−1 X̆ S|, which can
be handled using Propositions 9.4 and 10.1 in the same way that we handled the corresponding terms
µ−1

⋆ ∥
√
µP≤NtopΩ∥L2(6t ) and µ−1

⋆ ∥
√
µP≤Ntop−1 X̆Ω∥L2(6t ) in the proof of Lemma 11.6. □

Lemma 11.9 (L2 estimates for the Euclidean divergence of the derivatives of S in terms of the derivatives
of D). Let c ≥ 0 be a real number. The following estimate holds for all t ∈ [0, T(Boot)), where the implicit
constants are independent of c:

∥e−cu′/2√µ divPNtop S∥
2
L2(6t )

≲ ϵ̊3µ−2M∗+0.8
⋆ + ∥e−cu′/2√µPNtopD∥

2
L2(6t )

.

Proof. Using Lemma 11.5 and the bootstrap assumption (6-7), we find that

|[µ div,PNtop]S| ≲ the right-hand side of (11-17).

Therefore, we can therefore handle |[µ div,PNtop]S| by using the same arguments we gave in the proof
of Lemma 11.8.
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We then express div S in terms of D using (2-5b) and use Lemma 2.22, the fact that the Cartesian
component functions X1, X2, X3 are smooth functions of the L i and 9 (see (2-23)), and the L∞ bounds
in (6-3)–(6-5), (6-7), (6-8), and Proposition 8.6 to deduce

|PNtop(µ div S)| ≤ |PNtop(µ exp(2ρ)D)| + |PNtop(µ exp(2ρ)Sa∂aρ)|

≲ µ|PNtopD| + |P≤Ntop−1D| + |P≤Ntop S|

+ ϵ̊(|P [2,Ntop](µ, L i )| +µ|PNtop+19| + |P [2,Ntop]9| + |P [1,Ntop] X̆9|).

The new terms here compared to (11-12) and (11-13) are |P≤Ntop S|, which we handled just below (11-17),
and µ|PNtopD| and |P≤Ntop−1D|, which can be treated using the same arguments we used to handle the
terms µ|PNtopC| and |P≤Ntop−1C| in our proof of Lemma 11.6. Hence, the weighted, squared L2(6t) norms
corresponding to these new terms are bounded above by ϵ̊3µ−2M∗+0.8

⋆ + ∥e−cu′/2√µPNtopD∥
2
L2(6t )

. □

11C3. Proving the elliptic estimates. We now combine Lemmas 11.6–11.9 and the elliptic estimates in
Proposition 11.4 to obtain the following proposition.

Proposition 11.10 (preliminary top-order elliptic estimates for Ω and S). Let c ≥ 0 be a real number.
The following estimates hold for all t ∈ [0, T(Boot)), where the implicit constants are independent of c:

∥e−cu/2√µ∂PNtopΩ∥
2
L2(6t )

≲ ϵ̊3(1 + c2)µ−2M∗+0.8
⋆ (t) + ∥e−cu/2√µPNtopC∥

2
L2(6t )

, (11-18)

∥e−cu/2√µ∂PNtop S∥
2
L2(6t )

≲ ϵ̊3(1 + c2)µ−2M∗+0.8
⋆ (t) + ∥e−cu/2√µPNtopD∥

2
L2(6t )

. (11-19)

Proof. Applying first Proposition 11.4, and then Lemmas 11.6, 11.7, Proposition 9.4 (and using e−cu/2
≤ 1),

we obtain

∥e−cu/2√µ∂PNtopΩ∥
2
L2(6t )

≲ ∥e−cu/2√µ div PNtopΩ∥
2
L2(6t )

+∥e−cu/2√µ curl PNtopΩ∥
2
L2(6t )

+c2µ−2
⋆ (t)∥e−cu/2√µPNtopΩ∥

2
L2(6t )

≲ ϵ̊3(1+c2)µ−2M∗+0.8
⋆ (t)+∥e−cu/2√µPNtopC∥

2
L2(6t )

,

which proves (11-18). The proof of (11-19) is similar, except we use Lemmas 11.8, 11.9 instead of
Lemmas 11.6, 11.7. □

11D. Putting everything together.

Proposition 11.11 (the main top-order estimates for the modified fluid variables). The following estimate
holds for every (t, u) ∈ [0, T(Boot)) × [0, U0]:

CNtop(t, u) + DNtop(t, u) ≲ ϵ̊3µ−2M∗+0.8
⋆ (t).

Proof. Step 1: controlling ∥e−cu/2√µ∂PNtop(Ω, S)∥2
L2(6t )

via Grönwall-type argument. Given ς > 0, we
first apply Proposition 11.10 and then use56 Proposition 11.2 (for57 u = U0) to deduce that if c > 0 is

56Here, we again relabeled the ς from Proposition 11.2
57Note that in view of the fact that Ω , S are compactly supported in u ∈ [0, U0] (by Lemma 7.1), it follows that the integral

on 6
U0
t is the same as the integral on 6t .
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sufficiently large (depending on ς), then the following estimate holds, where the constants C > 0 and
C∗ > 0 are independent of c and ς :

∥e−cu/2√µ∂PNtop(Ω, S)∥2
L2(6t )

≤ C ϵ̊3(1 + c2)µ−2M∗+0.8
⋆ (t) + C∥e−cu/2√µPNtop(C,D)∥2

L2(6t )

≤ C∗ϵ̊
3(1 + c2)µ−2M∗+0.8

⋆ (t) + ς

∫ t ′=t

t ′=0

1
µ⋆(t ′)

∥e−cu/2√µ∂PNtop(Ω, S)∥2
L2(6t ′ )

dt ′. (11-20)

We clarify that it is only for notational convenience for the argument in (11-21)–(11-23) below that we
have used the symbol C∗ > 0 to denote the fixed constant on the last line of (11-20).

We now argue by a continuity argument to show that, after choosing ς smaller and c larger if necessary,
(11-20) implies the estimate

∥e−cu/2√µ∂PNtop(Ω, S)∥2
L2(6t )

≤ 2C∗ϵ̊
3(1 + c2)µ−2M∗+0.8

⋆ (t). (11-21)

If it is not the case that (11-21) holds on [0, T(Boot)), then by continuity, there exists T∗ ∈ [0, T(Boot))

such that (11-21) holds for all t ∈ [0, T∗] and such that

∥e−cu/2√µ∂PNtop(Ω, S)∥2
L2(6T∗ )

= 2C∗ϵ̊
3(1 + c2)µ−2M∗+0.8

⋆ (T∗). (11-22)

However, plugging the estimate (11-21) (which by assumption holds for t ∈ [0, T∗]) into the integral
in (11-20), using Proposition 8.11 (and M∗ ≥ 1) to integrate away a negative power of µ⋆, and finally
choosing ς sufficiently small, we obtain that for t ∈ [0, T∗], we have

∥e−cu/2√µ∂PNtop(Ω, S)∥2
L2(6t )

≤
3
2C∗ϵ̊

3(1 + c2)µ−2M∗+0.8
⋆ (t), (11-23)

which obviously contradicts (11-22) when t = T∗. It therefore follows that our desired estimate (11-21)
holds for all t ∈ [0, T(Boot)).

Step 2: deducing the estimates for CNtop(t, u) and DNtop(t, u). At this point, we can fix the constants c, ς ,
which we will absorb into the ensuring generic constants C . Moreover, since u ∈ [0, U0] on the support
of Ω and S (by Lemma 7.1), we will also absorb the weights e−cu/2 into the constants. Hence, plugging
(11-21) into the right-hand side of (11-1) and then using Proposition 8.11, we obtain

CNtop(t, u) + DNtop(t, u) ≲ ϵ̊3µ−2M∗+0.8
⋆ (t) +

∫ t ′=t

t ′=0

1
µ⋆(t ′)

∥e−cu′/2√µ∂PNtop(Ω, S)∥2
L2(6t ′ )

dt ′

≲ ϵ̊3µ−2M∗+0.8
⋆ (t) + ϵ̊3

∫ t ′=t

t ′=0
µ−2M∗−0.2

⋆ (t ′) dt ′ ≲ ϵ̊3µ−2M∗+0.8
⋆ (t), (11-24)

as desired. □

12. Wave estimates for the fluid variables

We continue to work under the assumptions of Theorem 6.3.
In this section, we derive a priori energy estimates for the wave variables, which will in particular yield

strict improvements of the bootstrap assumptions (6-1)–(6-2). In Section 12A, we start by providing a
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somewhat general58 “auxiliary” proposition, which yields energy estimates for solutions to inhomogeneous
quasilinear wave equations in terms of norms of the inhomogeneity. The difficult aspect of the proof is
that we have to close the estimates even though µ can be tending towards 0, that is, even though the shock
may be forming. We delay discussing the proof of the auxiliary proposition until the Appendix; as we
will explain, modulo small modifications based on established techniques, the proposition was proved
as [36, Proposition 14.1] (see also [52, Proposition 14.1]). Then, in Section 12B, we bound the specific
inhomogeneous terms that are relevant for our main results, that is, the inhomogeneous terms on the
right-hand sides of the fluid wave equations (5-1a)–(5-1c). Finally, in Section 12C, we prove the final
a priori energy estimates.

12A. The main estimates for inhomogeneous covariant wave equations. In this section, we state the
“auxiliary” Proposition 12.1, which yields energy estimates for solutions to the fluid wave equations.
In this section, we ignore the precise structure of the inhomogeneous terms and simply denote them
by G. That is, we state the estimates of Proposition 12.1 in terms of various norms of G. Later on, in
Proposition 12.7, we will control the relevant norms of G to obtain our final a priori energy estimates for
the wave variables. Proposition 12.1 is of independent interest in the sense that with small modifications,
it could be used to study shock formation for compressible Euler flow with given smooth forcing terms.

Proposition 12.1 (the main estimates for the inhomogeneous geometric wave equations). Let 9⃗
.
=

(91, 92, 93, 94, 95)
.
= (R(+),R(−), v

2, v3, s), as in (2-3). Recall that the 9ı are solutions to the
inhomogeneous covariant wave system

µ□g(9⃗) 9ı = Gı ,

where G⃗ = (G1,G2,G3,G4,G5) is the array whose entries are the product of µ and the inhomogeneous
terms on the right-hand sides of the five scalar wave equations (5-1a)–(5-1c). Assume that the following
smallness bound holds:59

∥P≤⌈Ntop/2⌉G⃗∥L∞(Mt,u) ≤ ϵ̊1/2. (12-1)

Then there exists an absolute constant M∗ ∈ N, independent of the equation of state and all other
parameters in the problem, such that the following hold. As in Theorem 6.3, let T(Boot) ∈ [0, 2δ̊−1

∗
], and

assume that:

(1) The bootstrap assumptions (6-1)–(6-8) all hold for all t ∈ [0, T(Boot)), where we recall that in the
bootstrap assumptions, Ntop is any integer satisfying Ntop ≥ 2M∗ + 10.

(2) In (6-3), the parameter α̊ is sufficiently small in a manner only on the equation of state and ϱ̄.

58Using a slight reorganization of the paper, these estimates could be upgraded so that they are “black box” estimates for
inhomogeneous wave equations. Given the setup of this paper, they are not quite black box estimates because the proofs rely
on the estimates of Section 8, some of which (e.g., some of the estimates in Proposition 8.10) depend on the structure of the
inhomogeneous terms in the wave equations.

59We clarify that in our main results, in the proof of Proposition 12.7, we will show that the smallness assumption (12-1) is
satisfied for the particular inhomogeneous terms G⃗ stated in the hypotheses of the proposition. However, for the purposes of
proving Proposition 12.1, the precise structure of G⃗ is not important.
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(3) The parameter ϵ̊> 0 in (6-1)–(6-8) satisfies ϵ̊1/2
≤ α̊ and is sufficiently small in a manner that depends

only on the equation of state, Ntop, ϱ̄, σ̊, δ̊, and δ̊−1
∗

.

(4) The soft bootstrap assumptions stated in Section 6A1 hold (including µ > 0 in [0, T(Boot)) × R × T2).

Then the following estimates hold for every (t, u) ∈ [0, T(Boot)) × [0, U0], where µ⋆ is defined in
Definition 2.16:

(1) The top- and penultimate-order wave energies defined in (3-2e) obey the estimates

sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )W[1,Ntop](t̂, u) + sup

t̂∈[0,t]
µ2M∗−3.8

⋆ (t̂ )W[1,Ntop−1](t̂, u)

≲ ϵ̊2
+ sup

t̂∈[0,t]
µ2M∗−1.8

⋆ (t̂ )
∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop]G⃗∥L2(6u

s ) ds
}2

dt ′

+ sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )∥(|LP [1,Ntop]9| + |X̆P [1,Ntop]9|)|P [1,Ntop]G⃗|∥L1(Mt̂,u)

+ sup
t̂∈[0,t]

µ2M∗−3.8
⋆ (t̂ )∥(|LP [1,Ntop−1]9| + |X̆P [1,Ntop−1]9|)|P [1,Ntop−1]G⃗|∥L1(Mt̂,u). (12-2)

(2) For 1 ≤ N ≤ Ntop − 1, the lower-order wave energies W[1,N ] defined in (3-2c) obey the estimates

W[1,N ](t, u) ≲ ϵ̊2
+ max{1,µ

−2M∗+2Ntop−2N+1.8
⋆ (t)}

(
sup

s∈[0,t]
min{1,µ

2M∗−2Ntop+2N+0.2
⋆ (s)}Q[1,N+1](s)

)
+ ∥(|LP [1,N ]9| + |X̆P [1,N ]9|)|P [1,N ]G⃗|∥L1(Mt,u). (12-3)

Remark 12.2. The proof of Proposition 12.1 follows from almost exactly the same arguments used in
the proof of [36, Proposition 14.1]. The only differences are the following two changes:

(1) We have to track the influence of the inhomogeneous terms G on the estimates.

(2) In three dimensions, the second fundamental form of the null hypersurfaces of the acoustical metric has
three (as opposed to one) independent components. This necessitates an additional elliptic estimate that was
not needed in the two-dimensional case treated in [36]. This elliptic estimate is standard; see [15; 17; 33].

These differences necessitate minor modifications to the proof of [36, Proposition 14.1]. We will sketch
them in the Appendix.

Remark 12.3 (additional term in the top-order estimate). In Proposition 12.1, the inhomogeneous term G⃗

makes an additional appearance in the top- and penultimate-order estimates as compared to the estimates
of all the lower orders. By “additional appearance,” we are referring to the double time integral, which
comes from a difficult top-order commutator term that depends on the acoustic geometry; this difficult term
has to be controlled by first integrating a transport equation, which explains the double time-integration;
see the Appendix.

12B. Estimates for the inhomogeneous terms. We start by controlling the null forms in the wave
equations.
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Proposition 12.4 (control of wave equation error terms involving null forms). For Q ∈ {Qi
(v),Q(±)}

(see (5-6a), (5-6b)) and 1 ≤ N ≤ Ntop, the following hold for all (t, u) ∈ [0, T(Boot))×[0, U0] and for all
ς ∈ (0, 1], where the implicit constants are independent of ς :

∥(|LP [1,N ]9| + |X̆P [1,N ]9|)P [1,N ](µQ)∥L1(Mt,u)

≲ ϵ̊2 max{1,µ
−2M∗+2Ntop−2N+1.8
⋆ (t)}

+ ςK[1,N ](t, u) + (1 + ς−1)

(∫ u′
=u

u′=0
F[1,N ](t, u′) du′

+

∫ t ′=t

t ′=0
E[1,N ](t ′, u) dt ′

)
(12-4)

and∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop](µQ)∥L2(6u

s ) ds
}2

dt ′

≲ ϵ̊2µ−2M∗+1.8
⋆ (t) +

∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
µ−1/2

⋆ (s)E1/2
[1,Ntop]

(s) ds
}2

dt ′. (12-5)

Proof. Step 1: proof of (12-4). To bound the left-hand side of (12-4), we use the Cauchy–Schwarz and
the Young inequalities to obtain, for any ς > 0,

∥(|LP [1,N ]9| + |X̆P [1,N ]9|)P [1,N ](µQ)∥L1(Mt,u)

≲ (1 + ς−1)

(∫ u′
=u

u′=0
F[1,N ](t, u′) du′

+

∫ t ′=t

t ′=0
E[1,N ](t ′, u) dt ′

)
+ ς∥P [1,N ](µQ)∥2

L2(Mt,u)
. (12-6)

By inspection, it can be checked that Q is a g-null form (see Definition 8.1) that is quadratic in the
wave variables. Hence, applying (10-6) with φ(1), φ(2)

= 9, d(1,1), d(2,1) ≲ 1, d(1,2), d(2,2) ≲ ϵ̊1/2 (which
is justified by the bootstrap assumptions (6-3)–(6-5)), we obtain

|P [1,N ](µQ)| ≲ |P [2,N+1]9| + ϵ̊1/2
{|P [1,N ] X̆9| + |P9| + |P [2,N ](µ, L i )|}. (12-7)

To bound (12-7) in L2(Mt,u), we control |P [2,N+1]9| by the energies (3-2a)–(3-2c), control |P [1,N ] X̆9|

by (8-38), bound |P9| by (6-5), and |P [2,N ](µ, L i )| by Proposition 8.14. We thus obtain the following
bound for any ς ∈ (0, 1], where the implicit constants are independent of ς :

ς∥P [1,N ](µQ)∥2
L2(Mt,u)

≲ ς

{
K[1,N ](t, u) +

∫ u′
=u

u′=0
F[1,N ](t, u′) du′

+

∫ t ′=t

t ′=0
E[1,N ](t ′, u) dt ′

}
+ ϵ̊2

∫ t ′=t

t ′=0
max{1,µ

−2M∗+2Ntop−2N+1.8
⋆ (t ′)} dt ′

+ ϵ̊2

≲ ϵ̊2 max{1,µ
−2M∗+2Ntop−2N+1.8
⋆ (t)}

+ ς

{
K[1,N ](t, u) +

∫ u′
=u

u′=0
F[1,N ](t, u′) du′

+

∫ t ′=t

t ′=0
E[1,N ](t ′, u) dt ′

}
, (12-8)

where in the last line, we have used Proposition 8.12.
Putting (12-6)–(12-8) together, we obtain (12-4).

Step 2: proof of (12-5). We begin with (12-7) when N = Ntop. Notice that unlike in Step 1, we now have
to control |P [2,N+1]9| only with the E (but not F and K) energy (since we need an estimate on a fixed-t
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hypersurface). This gives a µ
−1/2
⋆ degeneration. The other terms can be controlled by using arguments

similar to the ones we used in Step 1. In total, for 0 ≤ s ≤ t ′
≤ t , we have

∥P [1,Ntop](µQ)∥L2(6u
s ) ≲ µ−1/2

⋆ (s)E1/2
[1,Ntop]

(s) + ϵ̊max{1,µ−M∗+0.9
⋆ (s)}. (12-9)

Finally, integrating with respect to time and using Proposition 8.11, we obtain (12-5). □

Next, we control the easy linear terms in the wave equations.

Proposition 12.5 (control of wave equation error terms involving easy linear inhomogeneous terms).
For L ∈ {Li

(v), L(±), L(s)} (see (5-7a), (5-7b), (5-7c)) and 1 ≤ N ≤ Ntop, the following holds for all
(t, u) ∈ [0, T(Boot)) × [0, U0]:

∥(|LP [1,N ]9| + |X̆P [1,N ]9|)P [1,N ](µL)∥L1(Mt,u) ≲ the right-hand side of (12-4), (12-10)
and ∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop](µL)∥L2(6u

s ) ds
}2

dt ′ ≲ the right-hand side of (12-5). (12-11)

Proof. We first pointwise bound µL ∈ {µLi
(v), µL(±), µL(s)} in a similar manner60 to (12-7):

|P [1,N ](µL)| ≲ |P≤N (Ω, S)| + terms already in (12-7). (12-12)

Proof of (12-10). The terms in (12-12) that are already in (12-7) can of course be controlled as in
Proposition 12.4. We therefore focus on |P≤N (Ω, S)|, for which we have the following estimate using
the Cauchy–Schwarz and Hölder inequalities and Proposition 9.4:

∥(|LP [1,N ]9| + |X̆P [1,N ]9|)P≤N (Ω, S)∥L1(Mt,u)

≲ ∥LP [1,N ]9∥
2
L2(Mt,u)

+ ∥X̆P [1,N ]9∥
2
L2(Mt,u)

+

∫ u

0
∥P≤N (Ω, S)∥2

L2(F t
u′ )

du′

≲ ∥LP [1,N ]9∥
2
L2(Mt,u)

+ ∥X̆P [1,N ]9∥
2
L2(Mt,u)

+ ϵ̊3 max{1,µ
−2M∗+2Ntop+2N+2.8
⋆ (t)}, (12-13)

which can indeed be bounded above by the right-hand side of (12-4) as claimed.

Proof of (12-11). Again, we only focus on the |P≤Ntop(Ω, S)| term in (12-12). Using the definitions of
the V and S norms and Propositions 8.11 and 9.4, we deduce∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P≤Ntop(Ω, S)∥L2(6u

s ) ds
}2

dt ′

≲
∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
µ−1/2

⋆ (s)[V1/2
≤Ntop

(s) + S
1/2
≤Ntop

(s)] ds
}2

dt ′

≲ ϵ̊3
∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
µ−M∗+0.9

⋆ (s) ds
}2

dt ′

≲ ϵ̊3 max{1,µ−2M∗+3.3
⋆ (t)} ≲ ϵ̊2 max{1,µ−2M∗+1.8

⋆ (t)}, (12-14)

which can indeed be bounded above by the right-hand side of (12-5) as claimed. □

60In fact, we can even do better than terms in (12-7) because of the extra smallness in ϵ̊ we have from the bootstrap
assumptions. However, we do not need this improvement for our proof.
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Finally, we consider the linear terms involving C and D.

Proposition 12.6 (control of wave equation error terms involving C and D). For

M ∈

{
c2 exp(2ρ)Ci , c exp(ρ)

p;s

ϱ̄
D, c2 exp(2ρ)D, F;sc2 exp(2ρ)D

}
(cf. main terms in (5-1a)–(5-1c)) and 1 ≤ N ≤ Ntop, the following hold for all (t, u) ∈ [0, T(Boot))×[0, U0]:

∥(|LP [1,N ]9| + |X̆P [1,N ]9|)P [1,N ](µM)∥L1(Mt,u) ≲ the right-hand side of (12-4), (12-15)∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop](µM)∥L2(6u

s ) ds
}2

dt ′ ≲ the right-hand side of (12-5). (12-16)

Proof. We first use the bootstrap assumptions (6-3)–(6-5) and (6-8) and Proposition 8.6 to deduce

|PN (µM)| ≲ µ|PN (C,D)|︸ ︷︷ ︸
.
=I

+ |P≤N−1(C,D)|︸ ︷︷ ︸
.
=II

+ terms already in (12-7). (12-17)

Step 1: proof of (12-15). The terms already in (12-7) were handled in the proof of (12-4), so we only
have to handle I and II in (12-17). We will use slightly different arguments for each of these two terms.
For I, we have61 by the Cauchy–Schwarz inequality, Propositions 10.6, 11.11, the bootstrap assumptions
(6-1), (6-2), and Propositions 8.6 and 8.11 that

∥(|LP [1,N ]9| + |X̆P [1,N ]9|)µPN (C,D)∥L1(Mt,u)

≲
∫ t ′=t

t ′=0
E

1/2
[1,N ]

(t ′, u)[C
1/2
≤N + D

1/2
≤N ](t ′, u) dt ′

≲ ϵ̊1/2ϵ̊3/2
∫ t ′=t

t ′=0
max{1,µ

−M∗+Ntop−N+0.9
⋆ (t ′)} max{1,µ

−M∗+Ntop−N+0.4
⋆ (t ′)} dt ′

≲ ϵ̊2 max{1,µ
−2M∗+2Ntop−2N+2.3
⋆ (t)}. (12-18)

For II in (12-17), we use Cauchy–Schwarz and Proposition 10.6 to obtain

∥(|LP [1,N ]9| + |X̆P [1,N ]9|)P≤N−1(C,D)∥L1(Mt,u)

≲ ∥LP [1,N ]9∥
2
L2(Mt,u)

+ ∥X̆P [1,N ]9∥
2
L2(Mt,u)

+ ∥P≤N−1(C,D)∥2
L2(Mt,u)

≲ ∥LP [1,N ]9∥
2
L2(Mt,u)

+ ∥X̆P [1,N ]9∥
2
L2(Mt,u)

+

∫ u′
=u

u′=0
[C≤N−1 + D≤N−1](t, u′) du′

≲ ∥LP [1,N ]9∥
2
L2(Mt,u)

+ ∥X̆P [1,N ]9∥
2
L2(Mt,u)

+ ϵ̊3 max{1,µ
−2M∗+2Ntop−2N+2.8
⋆ (t)}. (12-19)

Finally, we observe that the right-hand side of (12-18) and the right-hand side of (12-19) are less than
or equal to the right-hand side of (12-4). We have therefore proved (12-15).

Step 2: proof of (12-16). Returning to (12-17), we again note that we only have to consider terms not
already controlled in Proposition 12.4. Applying Propositions 8.6, 8.11, 10.6, and 11.11, we have

61Note that it is only at the top N = Ntop level that C
1/2
≤N and D

1/2
≤N is only bounded by µ

−M∗+Ntop−N+0.4
⋆ (t ′). For N < Ntop,

we have the stronger estimates in Proposition 10.6, which in principle would allow us to avoid controlling the term I separately.
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t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
[∥µP≤Ntop(C,D)∥L2(6s) + ∥P≤Ntop−1(C,D)∥L2(6s)] ds

}2

dt ′

≲
∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
[C

1/2
≤Ntop

+ D
1/2
≤Ntop

](s) +
1

µ
1/2
⋆ (s)

[C
1/2
≤Ntop−1 + D

1/2
≤Ntop−1](s) ds

}2

dt ′

≲ ϵ̊3
∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
µ−M∗+0.4

⋆ (s) ds
}2

dt ′ ≲ ϵ̊3µ−2M∗+2.3
⋆ (t) ≲ ϵ̊2µ−2M∗+1.8

⋆ (t),

which is therefore bounded above by the right-hand side of (12-5). □

12C. Putting everything together.

Proposition 12.7 (main L2 estimates for the wave variables). For 1 ≤ N ≤ Ntop, the following holds for
all (t, u) ∈ [0, T(Boot)) × [0, U0]:

W[1,N ](t, u) ≲ ϵ̊2 max{1,µ
−2M∗+2Ntop−2N+1.8
⋆ (t)}. (12-20)

Proof. We first use the pointwise bounds (12-7), (12-12), (12-17), the bootstrap assumptions (6-5)–(6-8),
and Proposition 8.6 to deduce that the assumption (12-1) in Proposition 12.1 on the inhomogeneous
terms G⃗, i.e., the terms on the right-hand sides of (5-1a)–(5-1c), is satisfied. Hence, the results of
Proposition 12.1 are valid, and we will use them throughout the rest of this proof. We will also silently
use the basic fact that µ⋆(t, u) ≤ 1 and µ⋆(t) ≤ 1; see Definition 2.16.

Step 1: N = Ntop. By the top- and penultimate-order general wave estimates (12-2) in Proposition 12.1,
the initial data assumptions in (4-1), (4-3a)–(4-4), and the bounds for the inhomogeneous terms in
Propositions 12.4–12.6, we obtain the following bound for any ς ∈ (0, 1] (with implicit constants that are
independent of ς ):
sup

t̂∈[0,t]
µ2M∗−1.8

⋆ (t̂ )
(
E[1,Ntop](t̂,u)+F[1,Ntop](t̂,u)+K[1,Ntop](t̂,u)

)
+ sup

t̂∈[0,t]
µ2M∗−3.8

⋆ (t̂ )
(
E[1,Ntop−1](t̂,u)+F[1,Ntop−1](t̂,u)+K[1,Ntop−1](t̂,u)

)
≲ ϵ̊2

+ sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop]G⃗∥L2(6s) ds

}2

dt ′

+ sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )∥(|LP [1,Ntop]9|+|X̆P [1,Ntop]9|)|P [1,Ntop]G⃗|∥L1(Mt̂,u)

+ sup
t̂∈[0,t]

µ2M∗−3.8
⋆ (t̂ )∥(|LP [1,Ntop−1]9|+|X̆P [1,Ntop−1]9|)|P [1,Ntop−1]G⃗|∥L1(Mt̂,u)

≲ ϵ̊2
+ sup

t̂∈[0,t]
µ2M∗−1.8

⋆ (t̂ )
∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′,u)

{∫ s=t ′

s=0
µ−1/2

⋆ (s)E1/2
[1,Ntop]

(s)ds
}2

dt ′

+ sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

{
ςK[1,Ntop](t̂,u)

+(1+ς−1)

(∫ t ′=t̂

t ′=0
E[1,Ntop](t

′,u)dt ′
+

∫ u′
=u

u′=0
F[1,Ntop](t̂,u′)du′

)}
+ sup

t̂∈[0,t]
µ2M∗−3.8

⋆ (t̂ )
{
ςK[1,Ntop−1](t̂,u)

+(1+ς−1)

(∫ t ′=t̂

t ′=0
E[1,Ntop−1](t ′,u)dt ′

+

∫ u′
=u

u′=0
F[1,Ntop−1](t̂,u′)du′

)}
. (12-21)
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We now argue as follows using (12-21):

• We choose ς > 0 sufficiently small and absorb the terms

ς sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )K[1,Ntop](t̂, u), ς sup

t̂∈[0,t]
µ2M∗−3.8

⋆ (t̂ )K[1,Ntop−1](t̂, u)

appearing on the right-hand side by the terms

sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )K[1,Ntop](t̂, u), sup

t̂∈[0,t]
µ2M∗−3.8

⋆ (t̂ )K[1,Ntop−1](t̂, u)

on the left-hand side.

• We then apply Proposition 8.12 (using that the exponents 2M∗ − 1.8 and 2M∗ − 3.8 are positive) and
Grönwall’s inequality to handle the terms involving the integrals of E and F.

This leads to the following estimate (where on the left-hand side, we have dropped the below-top-order
energies):

sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

(
E[1,Ntop](t̂, u) + F[1,Ntop](t̂, u) + K[1,Ntop](t̂, u)

)
≲ ϵ̊2

+ sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′, u)

{∫ s=t ′

s=0
µ−1/2

⋆ (s)E1/2
[1,Ntop]

(s) ds
}2

dt ′. (12-22)

We will now apply a further Grönwall-type argument to (12-22). Define

ι(t) .
= exp

(∫ s=t

s=0
µ−0.9

⋆ (s) ds
)

,

and, for a large C > 0 to be chosen later,

H(t) .
= sup

t̂∈[0,t]
ι−2C(t̂ )µ2M∗−1.8

⋆ (t̂ )E[1,Ntop](t̂ ).

From the definitions of E[1,Ntop], ι, and H, the fact that ι is increasing, and the estimate (12-22), we find
that there exists a constant62 C∗∗ > 0 independent of C > 0 so that

H(t)≤C∗∗

(
ϵ̊2

+ sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )ι−2C(t̂ )

∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
µ−1/2

⋆ (s)E1/2
[1,Ntop]

(s)ds
}2

dt ′

)
. (12-23)

Before we proceed, note that for n = 1, 2 an easy change of variables gives∫ s=t ′

s=0
ιnC(s)µ−0.9

⋆ (s) ds =

∫ y=
∫ τ=t ′

τ=0 µ−0.9
⋆ (τ ) dτ

y=0
enCy dy ≤

1
nC

ιnC(t ′). (12-24)

Fix t ∈[0, T(Boot)) and t̂ ∈[0, t]. Since ι−C is decreasing and µ⋆ is almost decreasing by Proposition 8.12,
we have, using (12-24) and the estimate (12-23) for H, the following bound for the terms under the sup

62We call the constant C∗∗ so as to make the notation clearer later in the proof.
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on right-hand side of (12-23):

µ2M∗−1.8
⋆ (t̂ )ι−2C(t̂ )

∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
µ−1/2

⋆ (s)E1/2
[1,Ntop]

(s) ds
}2

dt ′

≤ µ2M∗−1.8
⋆ (t̂ )ι−2C(t̂ )

∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
µ−M∗+1.3

⋆ (s)

× [ιC(s)µ−0.9
⋆ (s)][ι−C(s)µM∗−0.9

⋆ (s)E1/2
[1,Ntop]

(s)] ds
}2

dt ′

≤ 22M∗−2.6µ2M∗−1.8
⋆ (t̂ )ι−2C(t̂ )

∫ t ′=t̂

t ′=0
µ−2M∗+1.1

⋆ (t ′)

{∫ s=t ′

s=0
ιC(s)µ−0.9

⋆ (s)H 1/2(s) ds
}2

dt ′

≤ 22M∗−2.6µ2M∗−1.8
⋆ (t̂ )ι−2C(t̂ )H(t)

∫ t ′=t̂

t ′=0
µ−2M∗+1.1

⋆ (t ′)

{∫ s=t ′

s=0
ιC(s)µ−0.9

⋆ (s) ds
}2

dt ′

≤ 22M∗−2.6µ2M∗−1.8
⋆ (t̂ )ι−2C(t̂ )

H(t)
C2

∫ t ′=t̂

t ′=0
[ι2C(t ′)µ−0.9

⋆ (t ′)]µ−2M∗+2
⋆ (t ′) dt ′

≤ 24M∗−4.6µ0.2
⋆ (t̂ )ι−2C(t̂ )

H(t)
C2

∫ t ′=t̂

t ′=0
ι2C(t ′)µ−0.9

⋆ (t ′) dt ′

≤ 24M∗−5.6µ0.2
⋆ (t̂ )

H(t)
C3 ≤ 24M∗−5.6 H(t)

C3 . (12-25)

Plugging (12-25) into (12-23), we obtain

H(t) ≤ C∗∗

{
ϵ̊2

+ 24M∗−5.6 H(t)
C3

}
. (12-26)

Choosing C > 0 sufficiently large such that 24M∗−5.6/C3
≤

1
2 , we immediately infer from (12-26) that

H(t) ≤ 2C∗∗ϵ̊
2. From this estimate, (12-25) the definition of ι(t), and the estimate (8-35), we find that

the right-hand side of (12-22) is at most C ϵ̊2, where C is allowed to depend on C. From this estimate and
the definition of W[1,N ](t, u), we conclude (12-20) in the case N = Ntop.

Step 2: 1 ≤ N ≤ Ntop − 1. Let 1 ≤ N ≤ Ntop − 1. Arguing like we did at the beginning of Step 1, except
for using (12-3) instead of (12-2), we obtain

E[1,N ](t, u) + F[1,N ](t, u) + K[1,N ](t, u)

≲ ϵ̊2 max{1,µ
−2M∗+2Ntop−2N+1.8
⋆ (t)}

+ max{1,µ
−2M∗+2Ntop−2N+1.8
⋆ (t)}

(
sup

s∈[0,t]
min{1,µ

2M∗−2Ntop+2N+0.2
⋆ (s)}Q[1,N+1](s)

)
+ ςK[1,N ] + (1 + ς−1)

(∫ t ′=t

t ′=0
E[1,N ](t ′, u) dt ′

+

∫ u′
=u

u′=0
F[1,N ](t, u′) du′

)
≲ ϵ̊2 max{1,µ

−2M∗+2Ntop−2N+1.8
⋆ (t)}

+ max{1,µ
−2M∗+2Ntop−2N+1.8
⋆ (t)}

(
sup

s∈[0,t]
min{1,µ

2M∗−2Ntop+2N+0.2
⋆ (s)}Q[1,N+1](s)

)
, (12-27)

where to obtain the last inequality, we first took ς to be sufficiently small to absorb ςK[1,N ], and then
used Grönwall’s inequality.
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Using (12-27), we easily obtain (12-20) by induction in decreasing N. Notice in particular that the
base case N = Ntop has already been proven in Step 1. □

13. Proving the L∞ estimates

We continue to work under the assumptions of Theorem 6.3.
In this section, we derive L∞ estimates that in particular yield an improvement over the bootstrap

assumptions we made in Section 6A. This is the final section in which we derive PDE estimates that are
needed for the proof of Theorem 6.3; aside from the Appendix, the rest of the paper (i.e., Section 14)
entails deriving consequences of the estimates and assembling the logic of the proof.

We first bound (in Propositions 13.2, 13.3) the L∞ norm of the fluid variables, specific vorticity,
entropy gradient and modified fluid variables and their P derivatives using the energy estimates we have
already obtained and Sobolev embedding (Lemma 13.1). Then, in Propositions 13.3 and 13.4, we control
derivatives of these variables that involve one factor of X̆ by combining the just-obtained L∞-estimates
for P-derivatives with the (wave or transport) equations.

Lemma 13.1 (Sobolev embedding estimates). Suppose φ is a smooth function with u-support in [0, U0].
Then, for every t ∈ [0, T(Boot)), we have the estimate

∥φ∥L∞(6t ) ≲ sup
u∈[0,U0]

∥P≤2φ∥L2(ℓ0,u) + sup
u∈[0,U0]

∥LP≤2φ∥L2(F t
u ). (13-1)

Proof. First, using standard Sobolev embedding on T2, using (2-28b)–(2-28c) to express /∂2, /∂3 in terms
of derivatives with respect to {Y, Z}, comparing the volume forms using Definition 3.1, and using the
estimates of Proposition 8.7, we deduce

∥φ∥L∞(ℓt,u) ≲
∑

i+ j≤2

(∫
ℓt,u

|/∂
i
2 /∂

j
3φ|

2 dx2 dx3
)1

2

≲

(∫
ℓt,u

|P≤2φ|
2 dλ/g

)1
2 .
= ∥P≤2φ∥L2(ℓt,u). (13-2)

To complete the proof of (13-1), it remains only for us to control the right-hand side of (13-2) by showing
that for any smooth function ϕ (where the role of ϕ will be played by P≤2φ), we have

∥ϕ∥L2(ℓt,u) ≤ C∥ϕ∥L2(ℓ0,u) + C∥Lϕ∥L2(F t
u ). (13-3)

To prove (13-3), we start by using the identity /∂ t = L − L A /∂A (see (2-27a)) to deduce that

∂

∂t

∫
ℓt,u

ϕ2 dx2 dx3
= 2

∫
ℓt,u

ϕ/∂ tϕ dx2 dx3
= 2

∫
ℓt,u

ϕLϕ dx2 dx3
− 2

∫
ℓt,u

ϕL A /∂Aϕ dx2 dx3

= 2
∫

ℓt,u

ϕLϕ dx2 dx3
+

∫
ℓt,u

ϕ2(/∂A L A) dx2 dx3, (13-4)

where in the last step, we integrated the geometric coordinate partial derivatives /∂A by parts (and we
recall that capital Latin indices vary over 2, 3). Again using (2-28b)–(2-28c) to express /∂2, /∂3 in terms
of derivatives with respect to {Y, Z}, and using the estimates of Propositions 8.6 and 8.7, we find that
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|/∂A L A
| ≤ C . From this estimate, (13-4), and Young’s inequality, we deduce that∣∣∣∣ ∂

∂t

∫
ℓt,u

ϕ2 dx2 dx3
∣∣∣∣ ≤ C

∫
ℓt,u

|Lϕ|
2 dx2 dx3

+ C
∫

ℓt,u

ϕ2 dx2 dx3. (13-5)

Integrating (13-5) with respect to time, using the fundamental theorem of calculus, and then applying
Grönwall’s inequality, we find that∫

ℓt,u

ϕ2 dx2 dx3
≤ C

∫
ℓ0,u

ϕ2 dx2 dx3
+ C

∫
t ′=0

∫
ℓt ′,u

|Lϕ|
2 dx2 dx3 dt ′. (13-6)

Again comparing the volume forms using Definition 3.1 and using the estimates of Proposition 8.7, we
arrive at the desired bound (13-3). □

Proposition 13.2. The following L∞ estimates hold for all t ∈ [0, T(Boot)):

∥P [1,Ntop−M∗−2]9∥L∞(6t ) ≲ ϵ̊, (13-7)

∥P≤Ntop−M∗−2(Ω, S)∥L∞(6t ) + ∥P≤Ntop−M∗−3(C,D)∥L∞(6t ) ≲ ϵ̊3/2. (13-8)

Proof. These two estimates follow as immediate consequences of the energy estimates (respectively
for (V, S), (C, D) and W) in Propositions 9.4, 10.6, and 12.7, Lemma 13.1, and the initial data size-
assumptions (4-4)–(4-6). □

Proposition 13.3. The following L∞ estimates hold for all t ∈ [0, T(Boot)):

∥R(+)∥L∞(6t ) ≲♦ α̊, ∥(R(−), v
2, v3, s)∥L∞(6t ) ≲ ϵ̊, (13-9a)

∥X̆R(+)∥L∞(6t ) ≤ 2δ̊, ∥X̆(R(−), v
2, v3, s)∥L∞(6t ) ≲ ϵ̊, (13-9b)

∥P [1,Ntop−M∗−4] X̆9∥L∞(6t ) ≲ ϵ̊. (13-9c)

Proof. Step 1: proof of (13-9a). Since Lt = 1, we can apply the fundamental theorem of calculus along
the integral curves of L to deduce that for any scalar function φ, we have

∥φ∥L∞(6t ) ≤ ∥φ∥L∞(60) +

∫ t

t ′=0
∥Lφ∥L∞(6t ′ )

dt ′. (13-10)

By Proposition 13.2, we have ∥L9∥L∞(6t ) ≲ ϵ̊. From this estimate, the data assumptions (4-3a) and
(4-3c), and (13-10) with φ

.
= 9, we conclude the desired bounds in (13-9a).

Step 2: an auxiliary estimate for tr/g χ. We need an auxiliary estimate before proving (13-9b). To start,
we note that the same arguments used to prove Proposition 8.6, based on the transport equation63 (2-41),
but now with the estimate (13-7) in place of the L∞ bootstrap assumptions for ∥P [1,Ntop−M∗−2]9∥L∞(6t )

in (4-4), yield the estimate
∥P [1,Ntop−M∗−3]L i

∥L∞(6t ) ≲ ϵ̊. (13-11)

We next use Lemmas 2.23 and 2.32, and the fact that the Cartesian component functions X1, X2, X3 are
smooth functions of the L i and 9 (see (2-23)) to write the identity (2-38b) in the following form, where f

63Note importantly that the right-hand side of (2-41) does not contain an X̆9 term!
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schematically denotes smooth functions: tr/g χ = f(L i , 9)PL i
+ f(L i , 9)P9. From this equation, the

estimates of Proposition 13.2, (13-9a), and (13-11), we obtain the desired auxiliary estimate:

∥P≤Ntop−M∗−4 tr/g χ∥L∞(6t ) ≲ ϵ̊. (13-12)

Step 3: controlling P≤Ntop−M∗−4L X̆9. By [52, Proposition 2.16], the wave operator is given by64

µ□g(9⃗) f = −L(µL f + 2X̆ f ) +µ1/ f − tr/g χX̆ f −µ tr/g k/ L f − 2µζ#
· d/ f. (13-13)

Consider now the wave equations (5-1a)–(5-1c). We will now bound the inhomogeneous terms in these
equations. For Q ∈ {Qi

(v),Q(±),Q(s)}, we first apply (10-5) with φ(1), φ(2)
= 9, d(1,1), d(2,1) ≲ 1, d(1,2),

d(2,2) ≲ ϵ̊ (which is justified by Proposition 13.2 and the bootstrap assumptions (6-3)–(6-5)), and then
use (6-3)–(6-5) and Propositions 8.6 and 13.2 to obtain

|P≤Ntop−M∗−4(µQ)|≲ |P [1,Ntop−M∗−3]9|+ϵ̊{|P [1,Ntop−M∗−4] X̆9|+|P [2,Ntop−M∗−4](µ, L i )|}≲ ϵ̊. (13-14)

For L ∈ {Li
(v), L(±), L(s)} and

M ∈

{
c2 exp(2ρ)Ci , c exp(ρ)

p;s

ϱ̄
D, c2 exp(2ρ)D

}
,

we use the pointwise bounds (12-12), (12-17) together with (6-3)–(6-8) and Propositions 8.6 and 13.2 to
obtain

|P≤Ntop−M∗−4(µL)| + |P≤Ntop−M∗−4(µM)| ≲ ϵ̊. (13-15)

Combining (13-14) and (13-15), we thus obtain

|P≤Ntop−M∗−4(µ□g 9)| ≲ ϵ̊. (13-16)

We now use (13-16) together with (13-13) to control P≤Ntop−M∗−4L X̆9. The key point is that every
term in P≤Ntop−M∗−4(13-13) except for P≤Ntop−M∗−4(−2L X̆9) is already known to be bounded in L∞

by O(ϵ̊). More precisely, we express the Ricci coefficients on the right-hand side of (13-13) using
(2-38b)–(2-38d) and /1 using Lemmas 2.24 and 2.32. We also use the transport equation (2-40) to
express65 the factor of Lµ on the right-hand side of (13-13) as the right-hand side of (2-40). Then using
Propositions 8.6, 8.7, and 13.2, the estimates (13-9a) and (13-11)–(13-12), and the bootstrap assumptions
(6-3)–(6-5) (to control all X̆9-involving products on the right-hand side of (13-13) except −2L X̆9), we
obtain |P≤Ntop−M∗−4L X̆9|≲ ϵ̊. Also using the first commutator estimate in (8-12) with φ

.
= X̆9 and the

bootstrap assumption (6-5), we further deduce that

∥LP≤Ntop−M∗−4 X̆9∥L∞(6t ) ≲ |P≤Ntop−M∗−4L X̆9| + ϵ̊1/2
|P [1,Ntop−M∗−4] X̆9| ≲ ϵ̊. (13-17)

Step 4: proof of (13-9b) and (13-9c). We finally conclude (13-9b) and (13-9c) using (13-10) and (13-17),
together with the initial data bounds (4-3b), (4-3c) and (4-4). □

64Here, 1/ is the Laplace–Beltrami operator on ℓt,u , which can be expressed as a second order differential operator in Y and
Z with regular coefficients.

65This step is needed to avoid having to control Ntop − M∗ − 3 P-derivatives of µ in L∞, since Proposition 8.6 does not
yield L∞ control of that many derivatives of µ.
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Proposition 13.4. The following L∞ estimates hold for all t ∈ [0, T(Boot)):

∥P≤Ntop−M∗−4 X̆(Ω, S)∥L∞(Mt,u) ≲ ϵ̊3/2.

Proof. We apply P≤Ntop−M∗−4 to (8-4)–(8-5) and then bound all terms on the right-hand side in L∞ using
Propositions 8.6, 13.2, and 13.3. □

14. Putting everything together

This is the concluding section. First, in Section 14A, we use the estimates derived in Sections 7–13 to
conclude our main a priori estimates, i.e., to prove Theorem 6.3.

With the help of Theorem 6.3, all of the main results stated in Section 4B are quite easy to prove. We
will prove Theorems 4.2 and 4.3 in Section 14B, Corollary 4.4 in Section 14C, and finally, Corollary 4.5
in Section 14D.

14A. Proof of the main a priori estimates.

Proof of Theorem 6.3. We prove each of the four conclusions asserted by Theorem 6.3.

(1) By Proposition 12.7, for 1 ≤ N ≤ Ntop, the following wave estimates hold:

WN (t) ≲ ϵ̊2 max{1,µ
−2M∗+2Ntop−2N+1.8
⋆ (t)}.

Hence, the inequalities in (6-1)–(6-2) hold with ϵ̊ replaced by C ϵ̊2.

(2) By (13-9a)–(13-9b), the inequalities in (6-3) hold with α̊1/2 replaced by C♦α̊ and 3δ̊ replaced by 2δ̊.

(3) By (13-7) and (13-9a)–(13-9c), the inequalities in (6-4)–(6-5) hold with ϵ̊1/2 replaced by C ϵ̊.

(4) By (13-8) and Proposition 13.4, the inequalities (6-6)–(6-8) hold with ϵ̊ replaced by C ϵ̊3/2. □

14B. Proof of the main theorems.

Proof of the regularity theorem (Theorem 4.2). By the main a priori estimates (Theorem 6.3) and a
standard continuity argument, all the estimates established in the proof of Theorem 6.3 hold on [0, T )×6.
As a consequence, the energy estimates (4-7a), (4-7b) and (4-7c) follow from Propositions 12.7, 9.4, 10.6,
and 11.11. As for the L∞ estimates, (4-8a) holds thanks to (13-7) and (13-9c); (4-8b) and (4-8c) hold
thanks to (13-9a) and (13-9b) respectively; and (4-8d) holds thanks to (13-8) and Proposition 13.4.

Moreover, Lemma 2.24, the identity /∂ t = L − L A /∂A (see (2-27a)), and the L∞ estimates mentioned
above, together with those of Propositions 8.6, 8.7, and 8.10, imply that the solution can be smoothly
extended66 to [0, T ] × R × T2 as a function of the geometric coordinates (t, u, x2, x3).

It remains for us to show that the solution can be extended as a smooth solution of both the geometric and
the Cartesian coordinates as long as inft∈[0,T ) µ⋆(t)>0. Now the estimates (4-8a)–(4-8c), Lemma 2.22, and
the assumed lower bound on µ⋆ together imply that the fluid variables and their first partial derivatives with
respect to the Cartesian coordinates remain bounded. Standard local existence results/continuation criteria

66Note that these estimates imply that the /∂ t derivatives of many geometric coordinate partial derivatives of the solution are
uniformly bounded on [0, T ] × R × T2, which leads to their extendibility to [0, T ] × R × T2.
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then imply that the solution can be smoothly extended in the Cartesian coordinates to a Cartesian slab
[0, T +ϵ]×6 for some ϵ > 0. Finally, within this Cartesian slab, one can solve the eikonal equation (2-13)
such that the map (t, u, x2, x3) → (t, x1, x2, x3) is a diffeomorphism from [0, T + ϵ] × R × T2 onto
[0, T + ϵ]×6; the diffeomorphism property of this map follows easily from the identity /∂u x1

= µc2/X1

(see (2-28a)) and the fact that µc2/X1 < 0 in [0, T + ϵ] × R × T2 whenever ϵ is small enough, thanks to
µ > 0, (2-25b), and the estimates of Proposition 8.7 for X i

(small) and c − 1. This implies that the solution
can also be smoothly extended in the geometric coordinates (t, u, x2, x3). □

Proof of the shock formation theorem (Theorem 4.3). Step 1: vanishing of µ⋆. First, we will show that

µ⋆(t) = 1 +O♦(α̊) +O(ϵ̊) − δ̊∗t. (14-1)

To prove (14-1), we start by using (2-40), (2-42), and the L∞ estimates established in Propositions 8.6
and 8.7 and Theorem 4.2 to deduce that

Lµ = −
1
2 c−1(c−1c;ρ + 1)X̆R(+) +O(ϵ̊) (14-2)

and
L
{ 1

2 c−1(c−1c;ρ + 1)
}

= O(ϵ̊), L
{ 1

2 c−1(c−1c;ρ + 1)X̆R(+)

}
= O(ϵ̊). (14-3)

Moreover, from (2-13), (2-14), and our data assumptions (4-3a) and (4-3c), we have the following initial
condition estimate for µ:

µ ↾60= 1 +O♦(α̊) +O(ϵ̊). (14-4)

From (14-2)–(14-4), (4-2), and the fundamental theorem of calculus along the integral curves of L (and
recalling that Lt = 1), we conclude (14-1).

Step 2: proof of (1), (2), and (3). Define

T(sing)
.
= sup{T ∈ [0, 2δ̊−1

∗
] : a smooth solutions exists with µ > 0 on [0, T ) × 6}. (14-5)

From Theorem 4.2, it follows that either T(sing) = 2δ̊−1
∗

or lim inft→T −

(sing)
µ⋆(t) = 0.

Using (14-2), we infer that µ⋆(t) first vanishes at a time equal to {1 +O♦(α̊) +O(ϵ̊)}δ̊−1
∗

. From this
fact, the definition of T(sing), and the above discussion, it follows that this time of first vanishing of µ⋆(t)
is equal to T(sing), which implies (4-9). Using Theorem 4.2 again, we have therefore proved parts (1), (2)
and (3) of Theorem 4.3.

Step 3: proof of (4). In the next step, we will show that the vanishing of µ⋆ along 6T(sing)
coincides with

the blowup of |∂1R(+)| at one or more points in 6T(sing)
; that will show that T(sing) is indeed the time of

first singularity formation and in particular yields the conclusion (4) stated in Theorem 4.3.

Step 4: proof of (5). We now prove that Sblowup = Svanish. This in particular also implies the blowup-
claim in conclusion (4) of Theorem 4.3. We first prove Sblowup ⊆ Svanish. If (u, x2, x3) /∈ Svanish, then
µ has a lower bound away from 0 near (T(sing), u, x2, x3) and thus the estimates in Theorem 4.2 (and
Lemma 2.22) imply that the fluid variables are C1 functions of the geometric coordinates and the Cartesian
coordinates near the point with geometric coordinates (T(sing), u, x2, x3), i.e., (u, x2, x3) /∈ Sblowup.
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To show Sblowup ⊇ Svanish, suppose (u, x2, x3) ∈ Svanish. Let β(t) denote the t-parametrized integral
curve of L emanating from (T(sing),u, x2, x3). Note in particular that µ◦β(T(sing))

.
=µ(T(sing),u, x2, x3)=0,

and recall that Lt = 1. We next use (14-2)–(14-4), (4-2), (4-9), and the fundamental theorem of calculus
along the integral curve β(t) to deduce that, for 0 ≤ t ≤ T(sing), we have

1
2 |c−1(c−1c;ρ + 1)| ◦β(0) × |X̆R(+)| ◦β(t) ≥

1
4 3δ̊∗

(for otherwise, µ ◦ β(T(sing)) = 0 would not be possible). Also using (2-26b), Propositions 8.6, 8.7, and
the L∞ estimates of Theorem 6.3, we find that the following estimate holds for 0 ≤ t ≤ T(sing):

1
2 |c−1(c−1c;ρ + 1)| ◦β(0) × |µ∂1R(+)| ◦β(t) ≥

1
2 δ̊∗.

In particular, also considering Remark 4.1, we deduce that

lim sup
t↑T −

(sing)

|∂1R(+))| ◦β(t) ≥
δ̊∗

2|c−1(c−1c;ρ + 1)| ◦β(0)
lim sup
t↑T −

(sing)

1
µ ◦ β(t)

= ∞.

Hence (u, x2, x3) ∈ Sblowup, which finishes the proof that Sblowup = Svanish.
Finally, we prove that Svanish = R × T2

\ Sregular. The direction ⊆ holds since Svanish = Sblowup and
obviously Sblowup ⊆ R × T2

\ Sregular. We now show the direction ⊇. Suppose that (u, x2, x3) /∈ Sblowup,
i.e., µ(T(sing), u, x2, x3) > 0. Then the estimates with respect to the geometric vectorfields established
in Theorem 4.2 and Lemma 2.22 imply that in a neighborhood of (T(sing), u, x2, x3) intersected with
{t ≤ T(sing)}, the fluid variables remain C1 functions of the geometric coordinates and Cartesian coordinates.
We have therefore proved part (5) of Theorem 4.3, which completes its proof. □

14C. Nontriviality of Ω and S (Proof of Corollary 4.4).

Proof of Corollary 4.4. Using equations (14-2)–(14-4), we deduce (recalling that ϵ̊1/2
≤ α̊ by assumption)

that along any t-parametrized integral curve β(t) of L emanating from 60 (i.e., β0(0) = 0, where βα

denotes the Cartesian components of β), we have µ◦β(t)= 1−
1
2 t[c−1(c−1c;ρ+1)X̆R(+)]◦β(0)+O♦(α̊).

From this bound, (4-9) (which implies that 0 ≤ t ≤ T(sing) = {1 + O♦(α̊) + O(ϵ̊)}δ̊−1
∗

), (4-2), and the
assumption (4-10), we see that if |u ◦ β(0) − σ̊ + δ̊−1

∗
| ≥ 3α̊δ̊−1

∗
(where u ◦ β(0) is the value of the

u-coordinate at β(0)), then µ ◦ β(t) ≥
3
8 for 0 ≤ t ≤ T(sing) (assuming that α̊ and ϵ̊ are sufficiently small).

Now fix any (u∗, x2
∗
, x3

∗
) ∈ Svanish (that is, µ(T(sing), u∗, x2

∗
, x3

∗
) = 0). We will show that under the

assumptions of the corollary, there is a constant C > 1 such that

C−1ϵ̊3
≤ |S(T(sing), u∗, x2

∗
, x3

∗
)| ≤ C ϵ̊3, C−1ϵ̊2

≤ |Ω(T(sing), u∗, x2
∗
, x3

∗
)| ≤ C ϵ̊2. (14-6)

Clearly, the bounds (14-6) imply the desired conclusion of the corollary.
To initiate the proof of (14-6), we let β(sing)(t) denote the t-parametrized integral curve of L pass-

ing through (T(sing), u∗, x2
∗
, x3

∗
). Then since (2-21) implies that the coordinate function u is constant

along β(sing) (and thus u ◦ β(sing)(0) = u∗), the results derived two paragraphs above guarantee that
|u∗ − σ̊+ δ̊−1

∗
| ≤ 3α̊δ̊−1

∗
. In particular, in view of the initial condition (2-13) for u along 60, we see that

|β1
(sing)(0)−δ̊−1

∗
|≤ 3α̊δ̊−1

∗
, where β1

(sing)(0)
.
= x1

◦β(sing)(0) is the x1-coordinate of the point β(sing)(0)∈60.
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Then, since Proposition 8.6 yields that (d/dt)β1
= Lβ1

= L1
= 1+ L1

(small) = 1+O♦(α̊), we can integrate
in time and use (4-9) to deduce that

β1(T(sing)) = β1(0) + T(sing) +O♦(α̊)T(sing) = −δ̊−1
∗

+ T(sing) +O♦(α̊)T(sing) = O♦(α̊)δ̊−1
∗

.

That is, the x1-coordinate of the singular point (T(sing),u∗, x2
∗
, x3

∗
) is of size O♦(α̊)δ̊−1

∗
.

Let now γ(sing) be the integral curve of B passing through the singular point (T(sing), u∗, x2
∗
, x3

∗
) as

above. Since (2-23) and (4-8b) imply that B = ∂t +O♦(α̊)∂ , we can integrate with respect to time along
γ(sing) and use (4-9) and the bound on the x1-coordinate of the singular point (T(sing), u∗, x2

∗
, x3

∗
) proved

above to deduce that γ(sing) intersects 60 at a point q with x1-coordinate q1 of size q1
= O♦(α̊)δ̊−1

∗
. In

view of the initial condition (2-13) for u along 60, we see that the u-coordinate of q1, which we denote
by u|q , satisfies |u|q − σ̊| = O♦(α̊)δ̊−1

∗
. From this bound and the assumption (4-11), we see that

1
2 ϵ̊

2
≤ |Ω|q | ≤ ϵ̊2, 1

2 ϵ̊
3
≤ |S|q | ≤ ϵ̊3. (14-7)

To complete the proof, we need to use (14-7) to prove (14-6). To this end, we find it convenient
to parametrize γ(sing) by the eikonal function. Since (2-23) and (2-21) guarantee that µBu = 1, this
is equivalent to studying integral curves of µB. That is, we slightly abuse notation by denoting the
reparametrized integral curve by the same symbol γ(sing); i.e., γ(sing) solves the integral curve ODE
(d/du)γ(sing)(u) = µB ◦ γ(sing)(u). To proceed, we multiply the transport equations (5-2a) and (5-2c)
by µ and use (2-23), (2-21), Lemma 2.22, Propositions 8.6, 8.7, and the L∞ estimates of Theorem 6.3
to deduce that along γ(sing), (5-2a) and (5-2c) imply the following evolution equations, expressed in
schematic form:

d
du

Ω ◦ γ(sing)(u) = O(1)Ω ◦ γ(sing)(u) +O(1)S ◦ γ(sing)(u), (14-8)

d
du

S ◦ γ(sing)(u) = O(1)S ◦ γ(sing)(u). (14-9)

From the evolution equations (14-8)–(14-9), the initial conditions (14-7), and the fact that 0 ≤ u ≤ U0

in the support of the solution (see Section 7), we conclude that if ϵ̊ is sufficiently small, then there is a
C > 1 such that (14-6) holds. □

14D. Hölder estimates (proof of Corollary 4.5). Throughout this section, we work under the assumptions
of Corollary 4.5.

Lemma 14.1 (a simple calculus lemma). Let J ⊆ R be an interval. Suppose f : J → R is a C3 function
such that:

(1) f is increasing, i.e., f ′
≥ 0.

(2) There exists b̊ > 0 such that f (3)(y) ≥ b̊ for every y ∈ J , where f (3) denotes the third derivative of f .

Then for any y1, y2 ∈ J , the following estimate holds:

| f (y1) − f (y2)| ≥
b̊
48

|y1 − y2|
3.
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Proof. First, note that the assumption on f (3) implies that f ′′ is strictly increasing. In particular, f ′′ can
at most change sign once.

Without loss of generality, assume y1 ̸= y2. We consider three cases: the first two are such that f ′′(y1)

and f ′′(y2) are of the same sign, while the third is such that they have opposite sign.

Case 1: y1 < y2 and f ′′(y1) < f ′′(y2) ≤ 0. By Taylor’s theorem,

f (y1) = f (y2) − f ′(y2)(y2 − y1) +
1
2

f ′′(y2)(y2 − y1)
2

−
1
2
(y2 − y1)

3
∫ 1

0
(1 − τ)2 f (3)(y2 + τ(y1 − y2)) dτ ≤ f (y2) −

b̊
6
(y2 − y1)

3,

where we have used f ′(y2) ≥ 0, f ′′(y2) ≤ 0 and f (3)(y) ≥ b̊.
Therefore,

| f (y1) − f (y2)| = f (y2) − f (y1) ≥
b̊
6
(y2 − y1)

3.

Case 2: y2 < y1 and f ′′(y1) > f ′′(y2) ≥ 0. This can be treated in the same way as Case 1 so that we have

| f (y1) − f (y2)| = f (y1) − f (y2) ≥
b̊
6
(y1 − y2)

3.

Case 3: y1 < y2, f ′′(y1) < 0 < f ′′(y2). Since f ′′ is strictly increasing, there exists a unique z ∈ (y1, y2)

such that f ′′(z) = 0. Therefore, using Case 1 (for y1 and z) and Case 2 (for y2 and z), we have

| f (y1) − f (y2)| = f (y2) − f (z) + f (z) − f (y1) ≥
b̊
6
(|y2 − z|3 + |y1 − z|3) ≥

b̊
23 ·6

(y2 − y1)
3,

where in the very last inequality we have used y2 − y1 ≤ 2 max{|y1 − z|, |y2 − z|}.
Combining all three cases, we conclude the desired inequality. □

Lemma 14.2 (quantitative negativity of /∂
3
u x1). Under the assumptions of Corollary 4.5, the following

holds at all points such that (t, u) ∈ [3T(sing)/4, T(sing)) × [σ̊/2, 3σ̊/2]:

/∂
3
u x1

≤ −β̊.

Proof. In this proof, we will silently use the fact that the Cartesian component functions X1, X2, X3 are
smooth functions of the L i and 9 (see (2-23)) and the fact that c is a smooth function of 9.

By (2-29), to prove the lemma, we need to estimate /∂
3
u x1

= /∂
2
u(µc2/X1). To proceed, we use (2-28a)

(in particular, the fact that /∂u − X̆ is ℓt,u-tangent) and the L∞ estimates of Propositions 8.6, 8.7, and 8.10
and Theorem 6.3 to deduce that

/∂
3
u x1

= X̆ X̆
(
µc2

X1

)
+O(ϵ̊). (14-10)

We will now estimate the term X̆ X̆(µc2/X1) on the right-hand side of (14-10). We start by not-
ing that the L∞ estimates of Propositions 8.6, 8.7, and 8.10 and Theorem 6.3 together imply that
|L L X̆ X̆(µc2/X1)| = O(ϵ̊). Therefore, letting γ (t) be any integral curve of L parametrized by Cartesian



914 JONATHAN LUK AND JARED SPECK

time t (with γ (0) ∈ 60) and recalling that Lt = 1, we integrate this estimate twice in time to deduce that
for t ∈ [0, T(sing)), we have

X̆ X̆
(
µc2

X1

)
◦ γ (t) =

[
X̆ X̆

(
µc2

X1

)]
◦ γ (0) + t

[
L X̆ X̆

(
µc2

X1

)]
◦ γ (0) +O(ϵ̊)

=

[
X̆ X̆

(
µc2

X1

)]
◦ γ (0) + t

[
X̆ X̆ L

(
µc2

X1

)]
◦ γ (0) +O(ϵ̊), (14-11)

where to deduce the last equality, we used in particular (8-27).
Next, using the transport equation (2-40), (2-42), the fact that X ↾60= −c∂1 (by (2-7), (2-13), (2-26b),

and the normalization condition g(X, X) = 1), and the L∞ estimates mentioned above, we deduce that[
X̆ X̆ L

(
µc2

X1

)]
◦ γ (0) =

[
X̆ X̆

{
(Lµ)

c2

X1

}]
◦ γ (0) +O(ϵ̊)

=
1
2
[X̆ X̆{(c−1c;ρ + 1)(X̆R(+))}] ◦ γ (0) +O(ϵ̊). (14-12)

Next, using that X ↾60= −c∂1, and using that µ ↾60= 1/c (this follows from the initial condition in
(2-13) and the fact that (2-21) implies that Xu = 1/µ), we deduce

X̆ X̆
(
µc2

X1

)
↾60= −X̆ X̆(1) = 0. (14-13)

Combining (14-11)–(14-13), we find that

X̆ X̆
(
µc2

X1

)
◦ γ (t) =

t
2
[X̆ X̆{(c−1c;ρ + 1)(X̆R(+))}] ◦ γ (0) +O(ϵ̊). (14-14)

From (14-14) and our assumption (4-12), we deduce that at any point whose corresponding u-coordinate67

satisfies u ∈ [σ̊/2, 3σ̊/2], we have

X̆ X̆
(
µc2

X1

)
◦ γ (t) ≤ −2t δ̊∗β̊+O(ϵ̊). (14-15)

In particular, for points whose corresponding u- and t-coordinates satisfy, respectively, u ∈ [σ̊/2, 3σ̊/2]

and t ∈ [3T(sing)/4, T(sing)), we have, in view of (4-9), the estimate

X̆ X̆
(
µc2

X1

)
◦ γ (t) ≤ −

3β̊
2

+O♦(α̊)δ̊∗β̊+O(ϵ̊). (14-16)

Combining (14-10) and (14-16), we conclude the lemma. □

Lemma 14.3 (the main Hölder estimate for the eikonal function). Under the assumptions of Corollary 4.5,
the following holds for t ∈ [3T(sing)/4, T(sing)):

sup
p1,p2∈6t , p1 ̸=p2
u(pi )∈[σ̊/2,3σ̊/2]

|u(p1) − u(p2)|

distEuc(p1, p2)1/3 ≤ 5β̊−1/3.

Above, u(pi ) denotes the value of the eikonal function at pi , x(pi ) denotes the Cartesian spatial coordi-
nates of pi , and distEuc(p1, p2) denotes the Euclidean distance in 6t between p1 and p2.

67Recall that u ↾60= σ̊− x1 and the u-value is constant along the integral curves of L by virtue of the first equation in (2-21).
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Proof. Step 1: estimating minu(pi )=ui distEuc(p1, p2) by carefully choosing two points. Consider two
distinct values u1, u2 which obey ui ∈ [σ̊/2, 3σ̊/2]. By compactness of the constant-u hypersurfaces
in 6t , there exist points p1, p2 ∈ 6t with u( pi ) = ui and distEuc( p1, p2) = minu(pi )=ui distEuc(p1, p2). In
particular, p1 and p2 are connected by a Euclidean straight line L p1, p2 which is Euclidean-perpendicular
to {u = ui } at the point pi for i = 1, 2.

Now by Lemma 2.22 and (2-21), the Euclidean gradient of u satisfies

µ∂i u = c−2 X i , i = 1, 2, 3. (14-17)

Recalling (by Proposition 8.7 and conclusions (2) and (3) of Theorem 6.3) that c−2 X1
= −1 +O♦(α̊),

c−2 X2, c−2 X3
= O♦(α̊), we deduce from (14-17) that L p1, p2 makes a Euclidean angle of O♦(α̊) with

respect to ∂1. Therefore, using (14-17) again (which implies that constant-u hypersurfaces in 6t make an
angle O(α̊) with constant-x1 planes), we infer that there exist68 p1, p2 such that:

(1) u(pi ) = ui .

(2) ∂1 is tangent to the Euclidean line L connecting p1 and p2.

(3) minu(pi )=ui distEuc(p1, p2) = distEuc( p1, p2) ≥
1
2 distEuc(p1, p2) =

1
2 |x1(p1) − x1(p2)|.

We fix such a choice of (p1, p2) for any given (u1, u2) (with u1 ̸= u2).

Step 2: estimating |x1(p1) − x1(p2)|. By (2-29), Proposition 8.7, and conclusions (2) and (3) of
Theorem 6.3, we have

/∂u x1
= µ(−1 +O♦(α̊)).

Hence, for every fixed (x2, x3), x1 is a strictly decreasing function in u. Moreover, by Lemma 14.2,
/∂

3
u x1

≤ −β̊. Hence, we are exactly in the setting to apply Lemma 14.1 (for the one-variable function
f (u) = −x1(u), where (x2, x3) is fixed, and b̊ = β̊) to obtain

|x1(p1) − x1(p2)| ≥
β̊

48
|u1 − u2|

3. (14-18)

In view of our choice of p1 and p2 in Step 1, we conclude from (14-18) that

sup
p1,p2∈6t ,p1 ̸=p2
u(pi )∈[σ̊/2,3σ̊/2]

|u(p1) − u(p2)|

distEuc(p1, p2)1/3 ≤ sup
u1 ̸=u2

ui ∈[σ̊/2,3σ̊/2]

|u1 − u2|

infp1,p2∈6t ,u(pi )=ui distEuc(p1, p2)1/3

≤ 21/3 sup
p1,p2∈6t ,p1 ̸=p2
u(pi )∈[σ̊/2,3σ̊/2]

|u1 − u2|

|x1(p1) − x1(p2)|1/3 ≤ 961/3β̊−1/3
≤ 5β̊−1/3. □

We are now ready to conclude the proof of Corollary 4.5.

Proof of Corollary 4.5. Our starting point is the observation that the estimates in Theorem 4.2 guarantee
that, for at each fixed t with 0 ≤ t ≤ T(sing), the fluid variables and higher-order variables ρ, vi , Ω i , Si , Ci ,
and D are all uniformly Lipschitz when viewed as functions of the (u, x2, x3)-coordinates. Therefore, the
key to proving Corollary 4.5 is to understand the regularity of the map (x1, x2, x3) 7→ (u, x2, x3).

68We can, for instance, take p1 = p1 and let p2 be the unique point in both the level set {u = u2} and the line passing through
p1 with tangent vector everywhere equal to ∂1.
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To this end, we first note that by the assumption (1) in Corollary 4.5, the equations (14-2)–(14-4), (4-9),
and the arguments given in the proof of Corollary 4.4, it follows that away from u ∈ [3σ̊/4, 5σ̊/4], we
have µ > 1

2 . From this lower bound, Lemma 2.22, and the estimates of Proposition 8.7, we see that when
u /∈ [3σ̊/4, 5σ̊/4], the map (x1, x2, x3) 7→ (u, x2, x3) remains uniformly Lipschitz (in fact, we could
prove that it is even more regular). Combined with the aforementioned fact that ρ, vi , Ω i , Si , Ci and D
are uniformly Lipschitz in the (u, x2, x3)-coordinates, we see that at each fixed t , with 0 ≤ t ≤ T(sing),
ρ, vi , Ω i , Si , Ci , and D are also uniformly Lipschitz in the (x1, x2, x3)-coordinates away from u ∈

[3σ̊/4, 5σ̊/4]. Moreover, (14-1) guarantees that in the region {0 ≤ t ≤ 3T(sing)/4}, we have µ > 1
8 .

Thus, for the same reasons given above, the map (x1, x2, x3) 7→ (u, x2, x3) is uniformly Lipschitz in
{0 ≤ t ≤ 3T(sing)/4}, and thus ρ, vi , Ω i , Si , Ci , and D also remain uniformly Lipschitz in the (x1, x2, x3)-
coordinates in this region.

It remains for us to consider the difficult region in which u ∈ [3σ̊/4, 5σ̊/4] ⊆ [σ̊/2, 3σ̊/2] and t ∈

[3T(sing)/4, T(sing)). Using Lemma 14.3, we see that the map (x1, x2, x3) 7→ (u, x2, x3) is uniformly C1/3

in this difficult region. Hence, ρ, vi , Ω i , Si , Ci , and D all have uniformly bounded Cartesian spatial C1/3

norms in this region as well. □

Appendix: Proof of the wave estimates

In this appendix, we sketch the proof of the wave equation estimates, that is, of Proposition 12.1. As we
already discussed in Section 12A, although the wave equation estimates that we need are almost identical
to the ones derived in [36], there are two differences:

(1) The wave equations in Proposition 12.1 feature the inhomogeneous terms G⃗, and we need to track
the influence of these inhomogeneous terms on the estimates. Recall that the precise inhomogeneous
terms are located on the right-hand sides of (5-1a)–(5-1c), but for purposes of proving Proposition 12.1,
we do not need to know their precise structure.

(2) Recall that our commutation vectorfields {L , Y, Z} are constructed out of the acoustic eikonal
function u, and hence the commuted wave equations feature error terms that depend on the acoustic
geometry. In three dimensions, some additional arguments are needed (compared to the two-dimensional
case treated in [36]) to control the top-order derivatives of some of these error terms.

The issue (2) is tied to the fact that the null second fundamental form of null hypersurfaces in 1+3
dimensions has now three independent components, which stands in contrast to the case of 1+2 dimensions,
where it has only a single component (i.e., it is trace-free in 1+2 dimensions). This issue is by now
very well-understood, and it can be resolved by using an elliptic estimate. For completeness, we will
nonetheless sketch the main points needed for the argument in this appendix.

We now further discuss the issue (2). In 1+2 dimensions, tr/g χ satisfies a transport equation known as
the Raychaudhuri equation69 (see [52, (6.2.5)]):

µL tr/g χ = (Lµ) tr/g χ−µ(tr/g χ)2
−µRicL L , (A-1)

69Note that this is a purely differential geometric identity that is independent of the compressible Euler equations.
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where Ric is the Ricci curvature of the acoustical metric g and RicL L
.
=Ricαβ Lα Lβ . In contrast, in 1+3 di-

mensions, the right-hand side of (A-1) features some additional terms. Specifically, in 1+3 dimensions,
the Raychaudhuri equation takes the following form (see [48, (11.23)]):

µL tr/g χ = (Lµ) tr/g χ−µ|χ|
2
−µRicL L = (Lµ) tr/g χ−µ(tr/g χ)2

−µ|χ̂|
2
−µRicL L , (A-2)

where χ̂ is the traceless part of χ, i.e., it can be defined by imposing the identity χ = χ̂+
1
2(tr/g χ)/g. In

other words, (A-2) has an additional −µ|χ̂|
2 term compared to (A-1), and this additional term cannot

be bounded using the only the transport equation (A-2), (since the left-hand side of (A-2) features a
transport operator acting only on the component tr/g χ, as opposed to the full second fundamental form χ).
The saving grace, however, as already noticed in [15] (see also [17; 33]), is that one can use geometric
identities (specifically, the famous Codazzi equation) and elliptic estimates to control /∇χ̂ in terms of
d/ tr/g χ plus simpler error terms. A top-order version of this kind of argument allows one to control the
difficult top-order derivatives of the term −µ|χ̂|

2 on the right-hand side of (A-2); see Section A5 for the
details. We remark that for the solutions under study, the −µ|χ̂|

2 term is quadratically small and, as it
turns out, it does not have much effect on the dynamics.

A1. Running assumptions in the appendix and the dependence of constants and parameters. Through-
out the entire appendix, we work in the setting of Proposition 12.1. In particular, we make the same
assumptions as we did in Theorem 6.3 (which provides the main a priori estimates), as well as the
smallness assumption (12-1) for the inhomogeneous terms G⃗.

Our analysis involves various constants and parameters that play distinct roles in the proof. We have
already introduced these quantities earlier in the article. For the reader’s convenience, we again provide a
brief description of these quantities in order to help the reader understand their role in our subsequent
arguments in the appendix.

• The background density constant ϱ̄ > 0 was fixed at the beginning of the paper. The parameters σ̊, δ̊∗,
δ̊, α̊ and ϵ̊ measure the size of the x1-support and various norms of the initial data; see Section 4A.

• As in the rest of the paper, the positive integer Ntop denotes the maximum number of times that we
commute the equations for the purpose of obtaining L2-type energy estimates.

• Mabs denotes an absolute constant, that is, a constant that can be chosen to be independent of Ntop, the
equation of state, ϱ̄, σ̊, δ̊, and δ̊−1

∗
, as long as α̊ and ϵ̊ are sufficiently small. The constants Mabs arise as nu-

merical coefficients that multiply the borderline energy error integrals; see in particular the right-hand side
of (A-37). The universality of the Mabs is crucial since, as the next two points clarify, they drive the blowup-
rate of the top-order energies, which in turn controls the size of largeness of Ntop needed to close the proof.

• As in the rest of the paper, the positive integer M∗ controls the blowup-rate of the high-order energies.
The following point is crucial: for the proof to close we need to choose M∗ to be sufficiently large in a
manner that depends only on the absolute constants Mabs. In particular, M∗ does not depend on Ntop.

• Once M∗ has been chosen to be sufficiently large (as described in the previous point), for the proof
to close we need to choose Ntop to be sufficiently large in a manner that depends only on the integer M∗

fixed in the previous step.
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• Once Ntop has been chosen to be sufficiently large (as described in the previous point), to close the
proof, we must choose ϵ̊ to be sufficiently small in a manner that is allowed to depend on all other
parameters and constants. We must also choose α̊ to be sufficiently small in a manner that depends only
on the equation of state and ϱ̄. We always assume that ϵ̊1/2

≤ α̊.

• In contrast to Mabs, the constants C ′ are less delicate and are allowed to depend on the equation of state,
ϱ̄, σ̊, δ̊, and δ̊−1

∗
. We use the notation C ′ to emphasize that these constants multiply difficult, borderline

energy estimate error terms, but we could have just as well denoted these constants by C (where C has
the properties described in the next point), and the proof would go through.

• Unless otherwise stated, “general” constants C are allowed to depend on Ntop, Mabs, the equation
of state, ϱ̄, σ̊, δ̊, and δ̊−1

∗
. When we write A ≲ B, it means that there exists a C > 0 with the above

dependence properties such that A ≤ C B. Moreover, A ≈ B means that A ≲ B and B ≲ A.

A2. An outline of the rest of the appendix. In Sections A3–A8, we will derive the estimates we need to
prove Proposition 12.1. The conclusion of the proof of Proposition 12.1 is located in Section A9.

Proposition 12.1 is an analog of the similar result [36, Proposition 14.1]. In fact, in our proof of the
proposition, we will exactly follow the strategy from [36]. For this reason, we will only focus on terms
which did not already appear in [36]. We begin by identifying the most difficult wave equation error
terms in Section A3. As in [36; 52], these hardest terms are commutator terms involving the top-order
derivatives of tr/g χ, which we control using the following steps:

• In Section A4, we write down the transport equations satisfied by the important modified quantities.
The modified quantities are special combinations of solution variables involving tr/g χ. With the help of
the Raychaudhuri equation (A-2), the modified quantities will allow us to avoid the loss of a derivative at
the top order and/or allow us to avoid fatal borderline error integrals.

• In Section A5, we use elliptic estimates on ℓt,u to control the top-order derivatives of χ̂ in terms of the
modified quantities.

• In Section A6, we define partial energies, which are similar to the energies we defined in Section 3B,
but they control all wave variables except for the “difficult” one R(+) (which is such that |∂1R(+)| blows
up as the shock forms). As in [36], the partial energies play an important role in allowing us to close the
proof using a universal number of derivatives, that is, a number Ntop that is independent of the equation of
state and all parameters in the problem; the role of these partial energies will be made clear in Section A9.

• In Section A7, we use the transport equations in Section A4 and the estimates in Section A5 to obtain
the bounds for the top-order derivatives of tr/g χ.

At this point in the proof, we will have obtained all of the main new estimates we need to prove
Proposition 12.1. In Section A8, we use our estimates for the top-order derivatives of tr/g χ to derive
preliminary energy integral inequalities for the wave equation solutions. These are the same integral
inequalities that were derived in [36, Proposition 14.3], except they include the new terms generated by
the inhomogeneous terms G⃗ featured in the statement of Proposition 12.1. Finally, in Section A9, we
use these integral inequalities and a slightly modified version of the Grönwall-type argument used in the
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proof of [36, Proposition 14.1], carefully tracking the different kinds of constants, thereby obtaining a
priori estimates for the energies and concluding the proof of Proposition 12.1.

We close this section with three remarks to help the reader understand how we use cite/use results that
were proved in [36].

Remark A.1 (implicit reliance on results we have already proved). The estimates in this appendix rely,
in addition to the bootstrap assumptions, on many of the estimates that we independently derived in
Section 8, such as the results of Propositions 8.6, 8.7, 8.10, 8.11, 8.12, and 8.14. Many of the results that
we cite from [36] rely on these propositions, and we will not always explicitly indicate the dependence of
the results of [36] on these propositions.

Remark A.2 (ε vs. ϵ̊1/2). The bootstrap smallness parameter ε from [36] should be identified with
the quantity ϵ̊1/2 in our bootstrap assumptions (6-4)–(6-8). For this reason, various error terms from
[36] reappear in the present paper, but with the factors of ε replaced by ϵ̊1/2. This minor point has no
substantial effect on our analysis, and we will often avoid explicitly pointing out that the error terms from
[36] need to be modified as such.

Remark A.3 (vorticity terms have been absorbed into G⃗). Many error terms in the estimates of [36]
involve vorticity terms that are generated by the vorticity terms on the right-hand side of the wave
equations. However, in this appendix, we have absorbed these error terms into our definition of the
inhomogeneous terms G⃗ in Proposition 12.1. For this reason, it is to be understood that many of the
estimates cited from [36] have to be modified so that these vorticity terms are absent and are instead
replaced with analogous error terms that depend on G⃗ (where throughout the appendix, we carefully
explain how the term G⃗ appears in various estimates).

A3. The top-order commutator terms that require the modified quantities. To begin, we recall that
{Y, Z} denotes the commutation vectorfields tangent to ℓt,u , and that we use the notation /P to denote a
generic element of this set. In the following proposition, we identify the most difficult error terms in the
top-order commuted wave equations.

Proposition A.4 (identifying the most difficult commutator terms). Let G denote the inhomogeneous terms
in the wave equations from Proposition 12.1. Then solutions to the wave equations of Proposition 12.1
satisfy the following top-order wave equations (which identify the most difficult commutator terms):

µ□g ( /PNtop−1L9) = (/d♯
9)(µ/d /PNtop−1 tr/g χ) + /PNtop−1LG+ Harmless, (A-3)

µ□g ( /PNtop−1Y9) = (X̆9)(/PNtop−1Y tr/g χ) + c−2 X2(/d♯
9)(µ/d /PNtop−1 tr/g χ)

+ /PNtop−1YG+ Harmless, (A-4)
µ□g ( /PNtop−1 Z9) = (X̆9)(/PNtop−1 Z tr/g χ)

+ c−2 X3(/d♯
9)(µ/d /PNtop−1 tr/g χ) + /PNtop−1 ZG+ Harmless. (A-5)

Above, the terms “Harmless” are precisely the Harmless≤Ntop
(Wave) terms defined in [36, Definition 13.1], except

here we do not need to allow for the presence of vorticity-involving terms in the definition of Harmless≤Ntop
(Wave)

because we have absorbed these terms into our definition of the wave equation inhomogeneous term G.
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Moreover, for any other top-order operator PNtop (i.e., a top-order operator featuring at least two
copies of L or featuring only a single L but in an order different from (A-3)), there are no difficult
commutator terms in the sense that the following equation holds:

µ□g (PNtop9) = PNtopG+ Harmless. (A-6)

Proof. This is exactly the same as [36, Proposition 13.2] with the obvious modifications: we have {L , Y, Z}

(as opposed to just {L , Y }) as commutation vectorfields, and we have accounted for the presence of the
inhomogeneous terms G. We stress that even in three spatial dimensions, the top-order derivatives of χ
that appear on the right-hand sides of (A-3)–(A-5) only involve its trace-part tr/g χ, as opposed to involving
the full tensor χ. Roughly speaking, this follows from three basic facts: all of these top-order terms are
generated when all Ntop + 1 derivatives (including the two coming from □g) on the left-hand sides fall on
the components P i (where P ∈ {L , Y, Z}); all P i can be expressed as functions 9 and L1, L2, L3; and
Lemma 2.19 and (13-13) with f .

= u together imply that µ□g u = − tr/g χ. Hence, considering also (2-14),
we have, schematically, that µ□g ∂u = −∂ tr/g χ+· · · , where “· · · ” denotes terms that involve lower-order
derivatives (i.e., up to second-order derivatives) of the eikonal function u and/or derivatives of 9. Thus,
(2-14), (2-16), (2-17) imply that the scalar functions P i satisfy, schematically,70 □gP i

= ∂ tr/g χ+· · · . □

Remark A.5. Notice that in [36, Proposition 13.2], there is an additional difficult commutator term
coming from (in the language of the present paper) the commutation with X̆ . Since in this paper, we
use only the subset of energy estimates in [36] that avoid commutations with X̆ , an added benefit of our
approach here is that we do not need to handle these additional terms.71

A4. The modified quantities and the additional terms in the transport equations. In order to control the
top-order commutator terms from Proposition A.4, the idea from [15] is to introduce modified quantities,
which are corrected versions of tr/g χ. The “fully modified quantities” solve transport equations with
source terms that enjoy improved regularity, thus allowing us to avoid a loss of regularity at the top order.
The “partially modified quantities” lead to cancellations in the energy identities that allow us to avoid
error integrals whose singularity strength would have been too severe for us to control.

Definition A.6 (modified versions of the derivatives of tr/g χ). We define, for every72 fixed string of
order-N commutators PN

∈ P(N ), the fully modified quantity (PN )X as

(PN )X
.
= µPN tr/g χ+PNX, (A-7a)

X
.
= −G⃗L L ⋄ X̆9⃗ −

1
2µ tr/g G⃗/ ⋄ L9⃗ −

1
2µG⃗L L ⋄ L9⃗ +µG⃗/

#
L ⋄ d/9⃗. (A-7b)

70Of course, careful geometric decompositions are needed to obtain the precise form of the terms on the right-hand sides of
(A-3)–(A-5); here we are simply emphasizing that the dependence of the top-order terms is through the derivatives of tr/g χ.

71Of course, even if these terms had been present in our work here, we could have handled them in the same way they were
handled in [36].

72In practice, we need these quantities only to handle the difficult terms from Proposition A.4, which involve purely
ℓt,u -tangential derivatives of tr/g χ. Put differently, in practice, we only need to use the quantities ( /PN

)X .
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We define, for every73 fixed string of order PN
∈ P(N ), the partially modified quantity (PN )X̃ as

(PN )X̃
.
= PN tr/g χ+

(PN )̃X, (A-8a)

(PN )̃X
.
= −

1
2 tr/g G⃗/ ⋄ LPN 9⃗ + G⃗/

#
L ⋄ d/PN 9⃗. (A-8b)

Proposition A.7 (transport equations satisfied by the modified quantities). The fully modified quantities
solve the following modified version of equation [36, (6.9)], where G⃗ denotes the array of inhomogeneous
terms in the wave equations from Proposition 12.1:

L(PNtop )X −

(
2

Lµ
µ

− 2 tr/g χ
)

(PNtop )X

= non-vorticity-involving terms in [36, (6.9)] −PNtop(µ|χ̂|
2) +

1
2P

Ntop(G⃗L L ⋄ G⃗). (A-9)

Moreover, the partially modified quantities solve the following modified version of equation [36, (6.10)]:

L(PNtop−1)X̃ = terms in [36, (6.10)] −PNtop−1(|χ̂|
2). (A-10)

Remark A.8. We clarify that the vorticity-involving terms in [36, (6.9)] are absent from the right-hand side
of (A-9) because we have absorbed these terms into our definition of the wave equation inhomogeneous
term G⃗.

Proof of Proposition A.7. The key point is that the derivations of both [36, (6.9), (6.10)] used the
Raychaudhuri transport equation satisfied by tr/g χ, and thus we need to take into account the additional
−µ|χ̂|

2 term in (A-2) as compared to (A-1).
The derivation of [36, (6.9)] consists of two steps. First, in [36, Lemma 6.1], one expresses µRicL L in

terms of a sum of two terms: one term is a total L derivative, and the other term is of lower order; see [36,
(6.1)]. Step 1 in particular uses the wave equations µ□g(9⃗) 9ι = · · · . In the second step, one combines
the result of [36, Lemma 6.1] with the 1+2-dimensional Raychaudhuri equation (A-1) and then commutes
the resulting equation to obtain [36, (6.9)]. In our setting, each step requires a small modification.

• In the first step, instead of µ□g(9⃗) 9ι = · · · , we have µ□g(9⃗) 9ι =Gι. Thus, we get an additional term
1
2P

Ntop(G⃗L L ⋄ G⃗) on the right-hand side of (A-9).

• In the second step, we need to use the 1+3-dimensional Raychaudhuri equation (A-2) instead of (A-1)
and get the extra term −PNtop(µ|χ̂|

2) on the right-hand side of (A-9).

We thus obtain (A-9).
The derivation of [36, (6.10)] is simpler because its proof relies only on the 1+2-dimensional Ray-

chaudhuri equation (A-1) (in particular, it does not rely on the wave equations µ□g(9⃗) 9ι = · · · ). Thus,
to obtain (A-10), we simply replace the application of (A-1) from [36, (6.10)] by an application of (A-2).
The additional term in (A-10) is a result of the extra −µ|χ̂|

2 term in (A-2) compared to (A-1). □

73As in footnote 72, in practice, we only need to use the quantities ( /PN
)X̃ .
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A5. Control of the geometry of ℓt,u and the elliptic estimates for χ̂. The following elliptic estimate is
standard; see [15, Lemma 8.8].

Lemma A.9 (elliptic estimate for symmetric, trace-free tensorfields). Let (M2, /γ ) be a closed, orientable
Riemannian manifold, and let µ be a nonnegative function on M2. Then the following estimate holds for
all trace-free symmetric covariant 2-tensorfields ξ belonging to W 1,2(M2, /γ ):∫

M2

µ2( 1
2 | /∇ξ|

2
/γ
+ 2K/γ |ξ|

2
/γ

)
dA/γ ≤ 3

∫
M2

µ2
| /div/γξ|

2
/γ

dA/γ + 3
∫
M2

| /∇µ|
2
/γ
|ξ|

2
/γ

dA/γ , (A-11)

where /∇, /div/γ , K/γ and dA/γ are respectively the Levi-Civita connection, divergence operator, Gaussian
curvature and induced area measure associated with /γ .

In order to use Lemma A.9, we need an L∞ estimate for the Gaussian curvature of the tori (ℓt,u, /g).
We provide this basic estimate in the following proposition.

Proposition A.10. The Gaussian curvature K/g of (ℓt,u, /g) satisfies the following estimate for every
(t, u) ∈ [0, T(Boot)) × [0, U0]:

∥K/g∥L∞(Mt,u) ≲ ϵ̊1/2.

Proof. It is a standard fact that at fixed (t, u), K/g can be expressed in terms of the components of /g, /g−1

with respect to the coordinate system (x2, x3) on ℓt,u and their first and second partial derivatives with
respect to the geometric coordinate vectorfields /∂2, /∂3. Schematically, we have

K/g = /g−1
· /g−1

· /∂
2
/g + /g−1

· /g−1
· /g−1

· /∂/g · /∂/g,

where /∂ ∈ {/∂2, /∂3}.
Recalling the expression for the induced metric /g in Lemma 2.32 and the relations between the

vectorfields in Lemma 2.24, we see that the desired estimate for K/g follows from Proposition 8.7. □

We now apply the elliptic estimate in Lemma A.9 to control the top-order derivatives of χ̂ in terms of
the top-order pure ℓt,u-tangential derivatives of tr/g χ.

Proposition A.11. The following estimate holds for74 the Ntop-th ℓt,u-tangential derivatives of χ̂ for
every (t, u) ∈ [0, T(Boot)) × [0, U0]:

∥µ(/L /P)Ntop χ̂∥L2(6u
t ) ≲ ∥µ/PNtop tr/g χ∥L2(6u

t ) + ϵ̊1/2µ−M∗+0.9
⋆ (t).

Proof. Step 0: preliminaries. Throughout the proof, we will silently use the following observations, valid
for P ∈ {L , Y, Z} and /P ∈ {Y, Z}, where f( · ) denotes a generic smooth function of its arguments that is
allowed to vary from line to line.

• The component functions X1, X2, X3 are smooth functions of the L i and 9; see (2-23). The same
holds for the component functions P0,P1,P2,P3; this is obvious for P = L , while see Lemma 2.23
for P = Y, Z . Similarly, the geometric coordinate component functions /g AB and (/g−1)AB are smooth
functions of the L i and 9; see Lemma 2.32.

74Recall that /L /P denotes Lie differentiation with respect to elements /P ∈ {Y, Z}, followed by projection onto ℓt,u .
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• For /∂ ∈{/∂2, /∂3}, we have the following schematic identity: /∂ = f(L i , 9)Y +f(L i , 9)Z ; see Lemma 2.24.

• For ℓt,u-tangent one-forms ξ, we have |ξ| ≈
∑

A=2,3 |ξA| ≈ |ξY | + |ξZ |
.
= |ξ(Y )| + |ξ(Z)|; this

follows from the discussion in the previous two points, the bootstrap assumptions (6-3)–(6-5), and
the L∞ estimates for L i

(small) from Proposition 8.6. In particular, for scalar functions φ, we have
| /∇φ| ≈

∑
A=2,3 |/∂Aφ| ≈ |Yφ|+ |Zφ|. Analogous estimates hold for ℓt,u-tangent tensorfields of any order.

• For type-
(0

n

)
tensorfields, we have the following covariant identity, expressed schematically: [ /∇, /LP ]ξ=

( /∇ /LP /g)·ξ. It is straightforward to check that /LP /g is in fact equal to the ℓt,u-projection of the deformation
tensor of P (the deformation tensor itself is equal to LPg, where g is the acoustical metric).

• Relative to the geometric coordinates (t, u, x2, x3), we have /LP /g = f(L i , 9)(PL i ,P9) (where the
P’s on the left- and right-hand sides can be different).

• For ℓt,u-tangent tensorfields ξ, we have the following schematic identity, valid relative to the geometric
coordinates, where /∂ ∈ {/∂2, /∂3}: /∇ξ− /∂ξ = f(L i , 9)ξ · ( /PL i , /P9); this follows from expressing /∇ in
terms of geometric coordinate partial derivatives and the Christoffel symbols of /g and then expressing
/∂ = f(L i , 9)/P on the right-hand side.

• For ℓt,u-tangent tensorfields ξ, we have the following schematic identity, valid relative to the geometric
coordinates, where /∂ ∈ {/∂2, /∂3}: /L /Pξ = /P A /∂Aξ + f(L i , 9)ξ · ( /PL i , /P9) (where the /P’s on the left-
and right-hand sides can be different); this formula is straightforward to verify relative to the geometric
coordinates.

• For ℓt,u-tangent tensorfields ξ, we have the following schematic identity, valid relative to the geometric
coordinates, where /∂ ∈ {/∂2, /∂3}: /∇ /Pξ− /L /Pξ = f(L i , 9⃗)ξ · ( /PL i , /P9) (where the /P’s on the left- and
right-hand sides can be different); this formula is straightforward to verify relative to the geometric
coordinates.

• If f is a scalar function, then LP /d f = /dP f , where /d denotes ℓt,u-gradient of f ; this formula is
straightforward to verify relative to the geometric coordinates.

Step 1: Codazzi equation.75 We compute (/LP)Ntop−1 /∇
A
χB A by differentiating (2-38a) with the operator

(/LP)Ntop−1 /div/g and treating all capital Latin indices as tensorial indices, while treating all lowercase
Latin indices as corresponding to scalar functions. We clarify that the tensor on the left-hand sides of
(2-38a) is symmetric, while the first, third, and fourth products on the right-hand side of (2-38a) are not.
Hence, for clarity, we emphasize that when we write “differentiating (2-38a) with (/LP)Ntop−1 /∇

A
χB A,”

it is to be understood that the corresponding first term on the right-hand side is an ℓt,u-tangent one-
form with index B whose top-order part (in the sense of the number of derivatives that fall on La)
is (/LP)Ntop−1(gab((/g−1)AC /∇C /∂ B La) ⊗ /∂Axb)) = (/LP)Ntop−1(gab((/g−1)AC /∇B /∂C La) ⊗ /∂Axb)), where to
obtain the last equality, we used the commutation identity /∇C /∂ B La

= /∇B /∂C La , which is a consequence
of the torsion-free property of /∇ and the fact that we are viewing the Cartesian components La as scalar
functions. Notice that unless all the Ntop derivatives fall on the factor /d La in the first product on the

75We use the phrase “Codazzi equation” because the equations we use in this analysis are closely related to the classical
Codazzi equation, which links div/ χ, /∇ tr/g χ, and the curvature components of the acoustical metric.
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right-hand side of (2-38a), the expression involves at most Ntop derivatives on L and 9, and we can
control such terms using the bounds we have obtained thus far. In total, using the symmetry property
χB A = χAB , isolating the terms featuring the top-order derivatives of the components La, and estimating
the remaining terms with (6-1)–(6-5) and Propositions 8.6 and 8.14, we obtain

∥µ(/L /P)Ntop−1 /∇
A
χAB −µ(/L /P)Ntop−1

{gab(/g−1)AC( /∇C /∂ B La)(/∂Axb)}∥L2(6u
t )

≲ ∥µPNtop+19∥L2(6u
t ) + ∥µP [1,Ntop](L i , 9)∥L2(6u

t ) ≲ ϵ̊1/2µ−M∗+0.9
⋆ (t). (A-12)

We then compute (/L /P)Ntop−1 /∂ B tr/g χ in a similar manner using (2-38b) to obtain

∥µ(/L /P)Ntop−1 /∂ B tr/g χ−µ(/L /P)Ntop−1
{gab(/g−1)AC( /∇B /∂C La)(/∂Axb)}∥L2(6u

t ) ≲ ϵ̊1/2µ−M∗+0.9
⋆ (t). (A-13)

In view of the commutation identity /∇C /∂ B La
= /∇B /∂C La mentioned above (which implies that the second

terms on left-hand sides of (A-12) and (A-13) coincide), we can use (A-12), (A-13), and the triangle
inequality to obtain

∥µ(/L /P)Ntop−1 /∇
A
χAB∥L2(6u

t ) ≲ ∥µ(/L /P)Ntop−1 /∂ B tr/g χ∥L2(6u
t ) + ϵ̊1/2µ−M∗+0.9

⋆ (t)

≲ ∥µ/PNtop tr/g χ∥L2(6u
t ) + ϵ̊1/2µ−M∗+0.9

⋆ (t), (A-14)

where to obtain the last line, we used the commutation identity (/L /P)Ntop−1 /∂ B tr/g χ = /∂ B /PNtop−1 tr/g χ (in
which we are thinking of both sides as ℓt,u-tangent one-forms with components corresponding to the
index B), the schematic identity /∂ = f(L i , 9)Y + f(L i , 9)Z , and Proposition 8.6.

Now since ( /div/gχ̂)B = ( /div/gχ)B −
1
2
/∂ B tr/g χ= /∇

A
χAB −

1
2
/∂ B tr/g χ, we deuce from the estimate (A-14)

that

∥µ(/L /P)Ntop−1 /div/gχ̂∥L2(6u
t ) ≲ ∥µ/PNtop tr/g χ∥L2(6u

t ) + ϵ̊1/2µ−M∗+0.9
⋆ (t). (A-15)

Step 2: commuting /div/g with /L /P derivatives. We now deduce from (A-15) an estimate for /div/g(/L /P)Ntop−1χ̂.
For this, we simply note that the commutator [ /div/g, (/L /P)Ntop−1

]χ̂ can be controlled by up to Ntop /P
derivatives of 9 and L i. Hence, by (A-15), (6-1)–(6-5), and Propositions 8.6 and 8.14, we have

∥µ /div/g(/L /P)Ntop−1χ̂∥L2(6u
t ) ≲ ∥µ(/L /P)Ntop−1 /div/gχ̂∥L2(6u

t ) + ∥µ/P [1,Ntop](9, L i )∥L2(6u
t )

≲ ∥µ/PNtop tr/g χ∥L2(6u
t ) + ϵ̊1/2µ−M∗+0.9

⋆ (t). (A-16)

Step 3: bounding the trace-part of (/L /P)Ntop−1χ̂. By definition, tr/g χ̂ = 0. Note that the commutator
[/g−1, (/L /P)Ntop−1

]χ̂ can be controlled by up to Ntop −1 /P derivatives of 9 and L i. Hence, this commutator
can be treated in the same way we treated the commutator term in Step 2, which yields the bound

∥ tr/g(/L /P)Ntop−1χ̂∥L2(6u
t ) ≲ ∥[/g−1, (/L /P)Ntop−1

]χ̂∥L2(6u
t ) ≲ ϵ̊1/2µ−M∗+0.9

⋆ (t). (A-17)

Moreover, we can take a further /P-derivative of tr/g(/L /P)Ntop−1χ̂, and the resulting term can be controlled
by up to Ntop /P derivatives of 9 and L i. Therefore, using (6-1)–(6-5) and Propositions 8.6 and 8.14, we
obtain

∥µ /∇(tr/g(/L /P)Ntop−1χ̂)∥L2(6u
t ) ≲ ∥µ/P [1,Ntop](9, L i )∥L2(6u

t ) ≲ ϵ̊1/2µ−M∗+0.9
⋆ (t). (A-18)
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Step 4: elliptic estimates. Define ξ to be the /g-trace-free part of (/L /P)Ntop−1χ̂, i.e.,

ξAB
.
= (/L /P)Ntop−1χ̂AB −

1
2 /g AB tr/g(/L /P)Ntop−1χ̂. (A-19)

The term (/L /P)Ntop−1χ̂AB on the right-hand side of (A-19) can be written using (2-38a), (2-38b) as
an expression of up to Ntop P derivatives of 9 and L i . Hence, by (2-38a), (2-38b), (6-1)–(6-5), and
Propositions 8.6 and 8.14, we obtain

∥(/L /P)Ntop−1χ̂∥L2(6u
t ) ≲ ∥P [1,Ntop](9, L i )∥L2(6u

t ) ≲ ϵ̊1/2µ−M∗+0.9
⋆ (t). (A-20)

Combining (A-20) with (A-17), we find that

∥ξ∥L2(6u
t ) ≲ ϵ̊1/2µ−M∗+0.9

⋆ (t). (A-21)

Moreover, in view of the algebraic relation

/div/gξ = /div/g(/L /P)Ntop−1χ̂−
1
2
/∇(tr/g(/L /P)Ntop−1χ̂)

and the estimates (A-16) and (A-18), we have

∥µ /div/gξ∥L2(6u
t ) ≲ ∥µ/PNtop tr/g χ∥L2(6u

t ) + ϵ̊1/2µ−M∗+0.9
⋆ (t). (A-22)

Therefore, applying the elliptic estimates in Lemma A.9 on ℓt,u with ξ as in (A-19) and µ = µ,
integrating over u ∈ [0, U0], and using (A-18), (A-20), (A-21), and (A-22), as well as the Gauss curvature
estimate in Proposition A.10 and the estimates of Proposition 8.6 (including the bound | /∇µ| ≲ ϵ̊1/2 that
it implies), we obtain

∥µ(/L /P)Ntop χ̂∥L2(6u
t ) ≲ ∥µ /∇(/L /P)Ntop−1χ̂∥L2(6u

t ) + ∥µ(/L /P)Ntop−1χ̂∥L2(6u
t )

≲ ∥µ /∇ξ∥L2(6u
t ) + ϵ̊1/2µ−M∗+0.9

⋆ (t)

≲ ∥µ /div/gξ∥L2(6u
t ) + (∥K/g∥

1/2
L∞(6t )

+ ∥ /∇µ∥L∞(6t ))∥ξ∥L2(6u
t ) + ϵ̊1/2µ−M∗+0.9

⋆ (t)

≲ ∥µ/PNtop tr/g χ∥L2(6u
t ) + ϵ̊1/2µ−M∗+0.9

⋆ (t),

which is what we wanted to prove. □

A6. The partial energies. To derive our top-order energy estimates for the wave equations, we will use
the approach of [36], which relies on distinguishing the “full energies” featured in definitions (3-2a)–(3-2e)
(which control all wave variables) from the “partial energies,” which are captured by the next definition.
The main point is that the partial energies do not control the difficult almost Riemann invariant R(+) (it is
difficult in the sense that the shock formation is driven by the relative largeness of |X̆R(+)|), and it turns
out that this leads to easier error terms in the corresponding energy identities. Importantly, we need to
distinguish the partial energies from the full energies in order to close the proof using a uniform number
of derivatives76 Ntop, that is, a number derivatives that does not depend on the equation of state or any
parameters in the problem; see the arguments in Section A9 for clarification on the role played by the

76We could close the proof without introducing the partial energies, but those simpler, less precise arguments would allow for
the possibility that the number of derivatives needed to close the estimates might depend on the equation of state, ϱ̄, σ̊, δ̊ and δ̊−1

∗ .
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partial energies in allowing us to close the proof using a number of derivatives that is independent of the
equation of state and all parameters in the problem.

Definition A.12 (the partial energies). At the top-order, we define the partial energy by

E
(Partial)
Ntop

(t, u)
.
= sup

t ′∈[0,t)

∑
9̃∈{R(−),v2,v3,s}

(
∥X̆PNtop9̃∥

2
L2(6u

t ′ )
+ ∥

√
µPNtop+19̃∥

2
L2(6u

t ′ )

)
.

Similarly, we separate the contribution of R(+) from that of other components of 9 and define F
(Partial)
Ntop

,
K

(Partial)
Ntop

, Q
(Partial)
Ntop

in an analogous way, that is, as in Section 3B, but without the R(+)-involving terms.

A7. L2 estimates for the top-order derivatives of tr/g χ tied to the modified quantities.

Proposition A.13 (L2 estimates for the top-order derivatives of tr/g χ tied to the fully modified quantities).
There exists an absolute positive constant Mabs ∈ N, a positive constant C ′

∈ N, and a constant C > 0
(each having the properties described in Section A1) such that the following estimates (whose right-hand
sides involve the wave energies (3-2a)–(3-2e) as well as the partial energies of Definition A.12) holds for
every (t, u) ∈ [0, T(Boot)) × [0, U0]:

∥(X̆R(+)) /PNtop tr/g χ∥L2(6u
t )

≤ non-vorticity-involving terms on the right-hand side of [36, (14.27)]
with the boxed constants replaced by Mabs and the constant C∗ replaced by C ′

+ C ϵ̊µ−M∗+0.9
⋆ (t) + Cµ−1

⋆ (t)
∫ t ′=t

t ′=0
∥P [1,Ntop]G⃗∥L2(6u

t ′ )
dt ′, (A-23)

and

∥µ/PNtop tr/g χ∥L2(6u
t )

≲ non-vorticity-involving terms on the right-hand side of [36, (14.28)]

+ ϵ̊µ−M∗+1.9
⋆ (t) +

∫ t ′=t

t ′=0
∥P [1,Ntop]G⃗∥L2(6u

t ′ )
dt ′. (A-24)

Remark A.14. We clarify that in the proofs of [36, (14.27)] and [36, (14.28)], the vorticity-involving
inhomogeneous terms in the wave equations led to error integrals on the right-hand sides of [36, (14.27)]
and [36, (14.28)] that involved the vorticity energies; in contrast, on the right-hand sides of (A-23)–(A-24),
the vorticity-involving terms are not explicitly indicated because we have absorbed them into our definition
of the wave equation inhomogeneous term G⃗.

Proof. The proofs of both estimates are similar. We first discuss the proof of (A-24) in Steps 1–2. In
Step 3, we describe the changes we need in order to obtain (A-23). Throughout this proof, we freely use
the observations made in Step 0 of the proof of Proposition A.11.

Following [36; 52], in order to bound µ/PNtop tr/g χ, we first control the fully modified quantity (recall
the definition in (A-7a)), and then bound the difference of µ/PNtop tr/g χ and the fully modified quantity.
See the corresponding estimates in [36, Lemma 13.9, Proposition 13.11, Lemma 14.14].
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Step 1: controlling the inhomogeneous terms in (A-9). We first estimate the two new terms on the
right-hand sides of (A-9) in the following norms (recall that here we are assuming that in (A-9), PNtop is
equal to a pure ℓt,u-tangential operator /PNtop):∫ t ′=t

t ′=0
∥/PNtop(µ|χ̂|

2)∥L2(6u
t ′ )

dt ′,

∫ t ′=t

t ′=0
∥/PNtop(G⃗L L ⋄ G⃗)∥L2(6u

t ′ )
dt ′. (A-25)

Step 1(a): the /PNtop(µ|χ̂|
2) term. For the first term in (A-25), the most (and indeed only) difficult

contribution arises when all operators /PNtop fall on one factor of χ̂. For the lower-order terms, we use the
identities (2-38a), (2-38b), and χ̂AB = χAB −

1
2 /g AB tr/g χ, (6-3)–(6-5), and Proposition 8.6 to obtain the

pointwise estimates

|/PNtop(µ|χ̂|
2) − 2µχ̂♯♯(/L /P)Ntop χ̂| ≲ ϵ̊1/2

|/P [1,Ntop](9, L i ,µ)|. (A-26)

From (6-1), (6-2) and Proposition 8.14, and the estimate (A-26), we see that

∥/PNtop(µ|χ̂|
2) − 2µχ̂♯♯(/L /P)Ntop χ̂∥L2(6u

t ) ≲ ϵ̊1/2
∥/P [1,Ntop](9, L i ,µ)∥L2(6u

t ) ≲ ϵ̊µ−M∗+1.4
⋆ (t). (A-27)

On the other hand, the top-order derivative µ(/L /P)Ntop χ̂ can be bounded using Proposition A.11, while
the low-order factor χ̂♯♯ can be bounded in L∞ by ≲ ϵ̊1/2 by virtue of the bootstrap assumptions (6-3)–
(6-5) and the estimates of Proposition 8.6. Therefore, combining (A-27) and Proposition A.11, and then
using Proposition 8.11, we bound the first term in (A-25) as∫ t ′=t

t ′=0
∥/PNtop(µ|χ̂|

2)∥L2(6u
t ′ )

dt ′ ≲ ϵ̊1/2
∫ t ′=t

t ′=0
∥µ/PNtop tr/g χ∥L2(6u

t ′ )
dt ′

+ ϵ̊

∫ t ′=t

t ′=0
µ−M∗+0.9

⋆ (t ′) dt ′

≲ ϵ̊1/2
∫ t ′=t

t ′=0
∥µ/PNtop tr/g χ∥L2(6u

t ′ )
dt ′

+ ϵ̊µ−M∗+1.9
⋆ (t). (A-28)

Step 1(b): the /PNtop(G⃗L L ⋄ G⃗) term. To handle the second term in (A-25), we simply use Hölder’s
inequality together with (6-1)–(6-5), Propositions 8.6, 8.14, the assumption (12-1), and Proposition 8.11
to obtain the bound∫ t ′=t

t ′=0
∥/PNtop(G⃗L L ⋄ G⃗)∥L2(6u

t ′ )
dt ′

≲
∫ t ′=t

t ′=0

{
∥/P [2,Ntop](9, L i )∥L2(6u

t ′ )
∥/P≤⌈Ntop/2⌉G⃗∥L∞(6t ′ )

+ ∥/P [1,Ntop]G⃗∥L2(6u
t ′ )

}
dt ′

≲
∫ t ′=t

t ′=0

{
ϵ̊µ−M∗+1.4

⋆ (t ′) + ∥/P [1,Ntop]G⃗∥L2(6u
t ′ )

}
dt ′

≲ ϵ̊µ−M∗+2.4
⋆ (t) +

∫ t ′=t

t ′=0
∥P [1,Ntop]G⃗∥L2(6u

t ′ )
dt ′. (A-29)

Step 2: bounding the fully modified quantity. The fully modified quantity ( /PNtop )X satisfies the transport
equation (A-9) in the L-direction. We use the arguments given in [36, Proposition 13.11] to integrate the
transport equation to obtain a pointwise estimate for ( /PNtop )X . On the right-hand side of the pointwise
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estimate there appears, in particular, the time integral of the new terms /PNtop(µ|χ̂|
2) and 1

2
/PNtop(G⃗L L ⋄ G⃗)

on the right-hand side of (A-9). We then take the L2(6u
t ) norm of the resulting pointwise inequality, as

in the proof of [36, Lemma 14.14]. This yields an L2(6u
t ) estimate for ( /PNtop )X . We next use (A-7a) to

algebraically express µ/PNtop tr/g χ in terms of ( /PNtop )X plus a remainder term, and then use the triangle
inequality to obtain an L2(6u

t ) estimate for µ/PNtop tr/g χ. One of the remainder terms is /PNtopX, and it
can be estimated exactly as in [36, Lemma 14.14]. In total, we find that

∥µ/PNtop tr/g χ∥L2(6u
t )

≲ ∥
( /PNtop )X ∥L2(6u

t ) + ∥/PNtopX∥L2(6u
t )

≲ terms on the right-hand side of [36, (14.28)]

+

∫ t ′=t

t ′=0
∥/PNtop(µ|χ̂|

2)∥L2(6u
t ′ )

dt ′
+

∫ t ′=t

t ′=0
∥/PNtop(G⃗L L ⋄ G⃗)∥L2(6u

t ′ )
dt ′

≲ terms on the right-hand side of [36, (14.28)]

+ ϵ̊µ−M∗+1.9
⋆ (t) + ϵ̊1/2

∫ t ′=t

t ′=0
∥µ/PNtop tr/g χ∥L2(6u

t ′ )
dt ′

+

∫ t ′=t

t ′=0
∥/P [1,Ntop]G⃗∥L2(6u

t ′ )
dt ′

≲ terms on the right-hand side of [36, (14.28)] + ϵ̊µ−M∗+1.9
⋆ (t) +

∫ t ′=t

t ′=0
∥P [1,Ntop]G⃗∥L2(6u

t ′ )
dt ′,

where to obtain the next-to-last line, we used the estimates (A-28) and (A-29), and to obtain the last line,
we used Grönwall’s inequality to eliminate the factor ϵ̊1/2

∫ t ′=t
t ′=0 ∥µ/PNtop tr/g χ∥L2(6u

t ′ )
dt ′ on the right-hand

side. We have therefore proved (A-24).

Step 3: proof of (A-23). Estimate (A-23) can be proved using arguments that are very similar to the
ones we used in the proof of (A-24), except that we need to keep track of the constants in the borderline
terms, i.e., the absolute constant Mabs (whose precise value we do not bother to estimate here) and the
parameter-dependent constant C ′. This can be done exactly as in the proof of [36, (14.27)]. The only
terms which are not already present in [36, (14.27)] are exactly those we encountered already in Steps 1–2.
These new terms can be treated exactly as in the proof of (A-24), since we do not have to keep track of
the sharp constants for these new terms (we instead allow a general constant C). □

Proposition A.15 (L2 estimates for the partially modified quantities). There exists an absolute positive
constant Mabs ∈ N, a positive constant C ′

∈ N, and a constant C > 0 (each having the properties described
in Section A1) such that the partially modified quantity ( /PNtop−1

)X̃ obeys the following estimates (whose
right-hand sides involve the wave energies (3-2a)–(3-2e) as well as the partial energies of Definition A.12)
for every (t, u) ∈ [0, T(Boot)) × [0, U0]:∥∥∥ 1

√
µ

(X̆R(+))L( /PNtop−1
)X̃

∥∥∥
L2(6u

t )

≤ terms on the right-hand side of [36, (14.32a)] with the boxed constants replaced by Mabs

and the constant C∗ replaced by C ′
+ C ϵ̊µ−M∗+0.9

⋆ (t), (A-30)
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√
µ

(X̆R(+))
( /PNtop−1

)X̃
∥∥∥

L2(6u
t )

≤ terms on the right-hand side of [36, (14.32b)] with the boxed constants replaced by Mabs

and the constant C∗ replaced by C ′
+ C ϵ̊µ−M∗+1.9

⋆ (t), (A-31)

∥L( /PNtop−1
)X̃ ∥L2(6u

t ) ≲ terms in [36, (14.33a)] + ϵ̊µ−M∗+1.4
⋆ (t), (A-32)

∥
( /PNtop−1

)X̃ ∥L2(6u
t ) ≲ terms in [36, (14.33b)] + ϵ̊µ−M∗+2.4

⋆ (t). (A-33)

Proof. To control L( /PNtop−1
)X̃ , we bound the terms on the right-hand side of the transport equation (A-10).

Note that for this estimate, the only term not already found in [36] is the term −/PNtop−1
(|χ̂|

2). Compared
to the estimates for the fully modified quantity that we derived in Proposition A.13, the estimates for the
partially modified quantity is simpler in two ways: the transport equation (A-10) does not feature the
wave equation inhomogeneous term G⃗, and the additional term only has up to Ntop − 1 derivatives of χ̂,
and thus elliptic estimates are not necessary to control this term.

We now estimate −/PNtop−1
(|χ̂|

2). By (2-38a), (6-1)–(6-5), and Propositions 8.6 and 8.14, we have

∥/PNtop−1
(|χ̂|

2)∥L2(6u
t ) ≲ ϵ̊1/2

∥P [1,Ntop](9, L i )∥L2(6u
t ) ≲ ϵ̊µ−M∗+1.4

⋆ (t). (A-34)

We now recall (A-10). The terms that are already in terms in [36, (6.10)] can be treated using the same
arguments that were used to prove [36, (14.32a)] and [36, (14.33a)], except here we do not bother to
estimate the absolute constant Mabs that arises in the arguments, and we have renamed the constant C∗

as C ′ . From this fact, the estimate (A-34), and the bootstrap assumption (6-3) for X̆R(+), we deduce
(A-30) and (A-32).

To obtain (A-33), we use the transport equation estimate provided by Lemma 8.13, the estimate (A-32)
for the source term, Proposition 8.11, and the initial data bound ∥

( /PNtop−1
)X̃ (0, · )∥L2(6u

t ) ≲ ϵ̊ obtained in
the proof of [36, (14.33b)].

Similarly, (A-31) can be proved using the same arguments used in the proof of [36, (14.32b)]. The
estimate is based on integrating the transport equation (A-10) along the integral curves of L and using
Lemma 8.13. The only new term we have to handle comes from the −PNtop−1(|χ̂|

2) term on the right-
hand side of (A-10), and by Lemma 8.13, this term leads to the following additional term that has to be
controlled:

1
√
µ⋆(t)

∥X̆R(+)∥L∞(6u
t )

∫ t ′=t

t ′=0
∥PNtop−1(|χ̂|

2)∥L2(6u
t ′ )

dt ′.

In view of the bootstrap assumption (6-3), the estimate (A-34), and Proposition 8.11, we bound this addi-
tional term by ≲ µ−M∗+1.9

⋆ (t), which is less than or equal to the right-hand side of (A-31) as desired. □

A8. The main integral inequalities for the energies. Our main goal in this section is to prove
Proposition A.17, which provides integral inequalities for the various wave energies at various derivative
levels. Most of the analysis is the same as in [36]. In the next definition, we highlight the error terms in
the energy estimates that are new in the present paper compared to [36]. The new terms stem from the
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inhomogeneous term G⃗ in the wave equations as well as the −µ|χ̂|
2 term on the right-hand side of the

three-dimensional Raychaudhuri equation (A-2).

Definition A.16 (new energy estimate error terms). We use the notation NewError(Top)

Ntop
(t, u) to denote

any term that obeys the following bound for every (t, u) ∈ [0, T(Boot)) × [0, U0]:

NewError(Top)

Ntop
(t, u)≤ C ϵ̊2µ−2M∗+1.8

⋆ (t)+C
∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop]G⃗∥L2(6u

s ) ds
}2

dt ′

+ C∥(|LP [1,Ntop]9| + |X̆P [1,Ntop]9|)|P [1,Ntop]G⃗|∥L1(Mt,u), (A-35)

where C > 0 is a constant of the type described in Section A1.
Similarly, we use the notation NewError(Below−Top)

N−1 (t, u) to denote any term that obeys the following
bound for every (t, u) ∈ [0, T(Boot)) × [0, U0]:

NewError(Below−Top)

N−1 (t, u) ≤ C∥(|LP [1,N−1]9| + |X̆P [1,N−1]9|)|P [1,N−1]G⃗|∥L1(Mt,u). (A-36)

Proposition A.17 (the main integral inequalities for the energies). Let Q[1,N ](t, u), K[1,N ](t, u) be the
wave energies from Section 3B2, and let Q

(Partial)
[1,N ]

(t, u), K
(Partial)
[1,N ]

(t, u) be the partial wave energies from
Section A6. There exist an absolute constant Mabs ∈ N and a constant C ′

∈ N depending on the equation
of state, ϱ̄, σ̊, δ̊ and δ̊−1

∗
such that the following estimate, which is a modified version of [36, (14.3)], hold

for every (t, u) ∈ [0, T(Boot)) × [0, U0]:

max{Q[1,Ntop](t, u), K[1,Ntop](t, u)}

≤ Mabs

∫ t

t ′=0

∥[Lµ]−∥L∞(6u
t ′ )

µ⋆(t ′, u)
Q[1,Ntop](t

′, u) dt ′

+ Mabs

∫ t ′=t

t ′=0

∥[Lµ]−∥L∞(6u
t ′ )

µ⋆(t ′, u)

√
Q[1,Ntop](t

′, u)

∫ s=t ′

s=0

∥[Lµ]−∥L∞(6u
s )

µ⋆(s, u)

√
Q[1,Ntop](s, u) ds dt ′

+ Mabs

∥Lµ∥L∞((−)6u
t;t )

µ
1/2
⋆ (t, u)

√
Q[1,Ntop](t, u)

∫ t ′=t

t ′=0

1

µ
1/2
⋆ (t ′, u)

√
Q[1,Ntop](t

′, u) dt ′

+ C ′

∫ t

t ′=0

∥[Lµ]−∥L∞(6u
t ′ )

µ⋆(t ′, u)

√
Q[1,Ntop](t

′, u)

√
Q

(Partial)
[1,Ntop]

(t ′, u) dt ′

+ C ′

∫ t ′=t

t ′=0

∥[Lµ]−∥L∞(6u
t ′ )

µ⋆(t ′, u)

√
Q[1,Ntop](t

′, u)

∫ s=t ′

s=0

∥[Lµ]−∥L∞(6u
s )

µ⋆(s, u)

√
Q

(Partial)
[1,Ntop]

(s, u) ds dt ′

+ C ′
∥Lµ∥L∞((−)6u

t;t )

µ⋆(t, u)1/2

√
Q[1,Ntop](t, u)

∫ t ′=t

t ′=0

1

µ
1/2
⋆ (t ′, u)

√
Q

(Partial)
[1,Ntop]

(t ′, u) dt ′

+ the error terms Error(Top)

Ntop
(t, u) defined by [36, (14.4)]

+ the error terms NewError(Top)

Ntop
(t, u) defined by (A-35). (A-37)

The set (−)6u
t;t appearing on the right-hand side of (A-37) is defined in77 [36, Definition 10.4].

77We have no need to state its precise definition here; later, we will simply quote the relevant estimates from [36] that are tied
to this set.
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Moreover, the partial wave energies obey the following estimate, which is a modified version of
[36, (14.5)]:

max{Q
(Partial)
[1,Ntop]

(t, u), K
(Partial)
[1,Ntop]

(t, u)} ≤ the error terms Error(Top)

Ntop
(t, u) defined by [36, (14.4)]

+ the error terms NewError(Top)

Ntop
(t, u) defined by (A-35). (A-38)

Finally, we have the following below-top-order estimate, which is a modified version78 of [36, (14.6)]:

max{Q[1,N−1](t, u), K[1,N−1](t, u)}

≤ C
∫ t

t ′=0

1

µ
1/2
⋆ (t ′, u)

√
Q[1,N−1](t ′, u)

∫ t ′

s=0

1

µ
1/2
⋆ (s, u)

√
Q[1,N ](s, u) ds dt ′

+ the error terms Error(Below−Top)

N−1 (t, u) defined by [36, (14.7)]

+ the error terms NewError(Below−Top)

N−1 (t, u) defined by (A-36). (A-39)

Proof. Step 1: proof of (A-39). We begin with (A-39), which is the easier estimate since it is be-
low top-order. Here, we use that [36, (14.6)] is proved by differentiating the wave equation µ□g(9⃗)

9 = · · · with PN ′

, computing the commutator [µ□g(9⃗),P
N ′

], multiplying the commuted equation by
(1 + 2µ)LPN ′

9 + X̆PN ′

9, and then integrating (with respect to the volume form dϖ Definition 3.1) by
parts over the spacetime region Mt,u (for 1 ≤ N ′

≤ N −1). Hence, to prove (A-39), we repeat the argument
in [36], except that here we simply denote all of the inhomogeneous terms in the wave equations as G.
That is, we start with the wave equations µ□g(9⃗) 9ι =Gι and commute them to obtain the wave equations
µ□g(9⃗)P

N ′

9ι = [µ□g(9⃗),P
N ′

]9ι +PN ′

Gι. The main point is that for the below-top-order estimates, all
commutator terms [µ□g(9⃗),P

N ′

]9ι can be handled exactly as in [36]. These commutator terms lead to the
presence of the first term on the right-hand side of (A-39), as well as the error term Error(Below−Top)

N−1 (t, u)

on the right-hand side of (A-39). We clarify that in the proof of [36, (14.6)], the vorticity-involving
inhomogeneous terms in the wave equation led to error integrals on the right-hand side of [36, (14.6)]
that involved the vorticity energies; in contrast, on the right-hand side of (A-39), the vorticity-involving
terms are not explicitly indicated because we have absorbed them into our definition of Gι. Thus, to
complete the proof of (A-39), we only have to discuss the contribution of the inhomogeneous term Gι.
From the above discussion, it follows that we only have to show that the following energy identity error
integrals are bounded above in magnitude by the right-hand side of (A-39) when 1 ≤ N ′

≤ N − 1 and
(t, u) ∈ [0, T(Boot)) × [0, U0]: ∫

Mt,u

{(1 + 2µ)LPN ′

9 + X̆PN ′

9}PN ′

G dϖ.

78Note that the lower-order estimate [36, (14.6)] is easier and has fewer additional terms. This is because to obtain the
top-order estimates [36, (14.3), (14.5)], one needs to bound all of the commutator terms, including the difficult ones identified in
Proposition A.4, without losing derivatives. In contrast, to obtain the lower-order estimates [36, (14.6)], one is allowed to lose a
derivative, as is manifested by the double-time-integral term on the right-hand side of (A-39). This double-time-integral will
eventually be responsible for the coupling between the energies of different orders; see in particular the estimates (12-3) in the
statement of Proposition 12.1.
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The desired estimate is simple; in view of the L∞ estimates for µ provided by Proposition 8.6, we see that
these error integrals are all bounded by C∥(|LP [1,N−1]9| + |X̆P [1,N−1]9|)|P [1,N−1]G|∥L1(Mt,u), which
are exactly the error terms we have defined in (A-36).

Step 2: proof of (A-37).

Step 2(a): preliminaries. As in our proof of (A-39), to prove (A-37), the only new step compared to [36]
is tracking the contribution of the wave equation inhomogeneous terms Gι to the energy estimates. As in
Step 1, one way in which this inhomogeneous term contributes to the energy estimates is through the error
terms C∥(|LP [1,Ntop]9| + |X̆P [1,Ntop]9|)|P [1,Ntop]G⃗|∥L1(Mt,u), which are found on the right-hand side of
(A-35). However, in the top-order case, there is a second way in which Gι contributes to the top-order
energy estimates. To explain this contribution, we first note that, as in the proof of [36, (14.3)], we have
to handle some additional difficult top-order commutator terms involving the top-order derivatives of tr/g χ.
Specifically, these difficult top-order commutator terms are explicitly listed on the right-hand sides of
(A-3)–(A-5). Recalling that we multiply the wave equation by (1 + 2µ)LPN ′

9 + X̆PN ′

9 to derive the
wave equation energy estimates at level N ′, we see that up to harmless factors that are O(1) by virtue
of the estimates of Proposition 8.7, these difficult commutator terms lead to the following three error
integrals in the top-order energy estimates:∫

Mt,u

(X̆PNtop9)(X̆9)/PNtop tr/g χ dϖ,∫
Mt,u

{(1 + 2µ)LPNtop9}(X̆9)/PNtop tr/g χ dϖ,∫
Mt,u

{(1 + 2µ)LPNtop9 + X̆PNtop9}( /P9)µ/PNtop tr/g χ dϖ.

We will control these three terms, respectively, in Steps 2(b)–(d) below.

Step 2(b): contributions from
∫
Mt,u

(X̆PNtop9)(X̆9)/PNtop tr/g χ dϖ . We first consider the case 9 = R(+),
which is by far the most difficult case.Using Hölder’s inequality and the estimate (A-23) in Proposition A.13,
we deduce that∣∣∣∣∫

Mt,u

(X̆PNtopR(+))(X̆R(+)) /PNtop tr/g χ dϖ

∣∣∣∣
≤

∫ t ′=t

t ′=0
∥X̆PNtopR(+)∥L2(6u

t ′ )
∥(X̆R(+)) /PNtop tr/g χ∥L2(6u

t ′ )
dt ′

≤ terms on the right-hand sides of [36, (14.3)] with the boxed constants replaced by Mabs

and the constant C∗ replaced by C ′

+ C
∫ t ′=t

t ′=0
∥X̆PNtopR(+)∥L2(6u

t ′ )
ϵ̊µ−M∗+0.9

⋆ (t ′) dt ′︸ ︷︷ ︸
.
=I

+ C

.
=II︷ ︸︸ ︷∫ t ′=t

t ′=0
µ−1

⋆ (t)∥X̆PNtopR(+)∥L2(6u
t ′ )

{∫ s=t ′

s=0
∥P [1,Ntop]G∥L2(6u

s ) ds
}

dt ′ . (A-40)

We clarify that Remark A.14 also applies to the terms on the right-hand sides of [36, (14.3)] (some of
which also appear on the right-hand side of (A-40)).
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To handle the term I in (A-40), we use Cauchy–Schwarz inequality in t ′ and Proposition 8.11 to deduce∫ t ′=t

t ′=0
∥X̆PNtopR(+)∥L2(6u

t ′ )
ϵ̊µ−M∗+0.9

⋆ (t ′) dt ′

≲
∫ t ′=t

t ′=0
µ−1/2

⋆ (t)∥X̆PNtopR(+)∥
2
L2(6u

t ′ )
dt ′

+ ϵ̊2
∫ t ′=t

t ′=0
µ−2M∗+2.3

⋆ (t ′) dt ′

≲
∫ t ′=t

t ′=0
µ−1/2

⋆ (t)∥X̆PNtopR(+)∥
2
L2(6u

t ′ )
dt ′

+ ϵ̊2µ−M∗+3.3
⋆ (t). (A-41)

For the term II in (A-40), we apply first the Cauchy–Schwarz inequality in t ′ and then Young’s
inequality to obtain∫ t ′=t

t ′=0
µ−1

⋆ (t)∥X̆PNtopR(+)∥L2(6u
t ′ )

{∫ s=t ′

s=0
∥P [1,Ntop]G∥L2(6u

s ) ds
}

dt ′

≲
∫ t ′=t

t ′=0
µ−1/2

⋆ (t)∥X̆PNtopR(+)∥
2
L2(6u

t ′ )
dt ′

+

∫ t ′=t

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop]G∥L2(6u

s ) ds
}2

dt ′. (A-42)

Notice that the term ∫ t ′=t

t ′=0
µ−1/2

⋆ (t)∥X̆PNtopR(+)∥
2
L2(6u

t ′ )
dt ′

appearing on the right-hand sides of both (A-41) and (A-42) is bounded above by∫ t ′=t

t ′=0
µ−1/2

⋆ (t ′, u)QNtop(t
′, u) dt ′,

which is among the error terms Error(Top)

Ntop
(t, u) defined by [36, (14.4)]. Therefore, combining (A-40)–

(A-42) and taking into account (A-35), we obtain that

∥(X̆PNtopR(+))(X̆R(+)) /PNtop tr/g χ∥L1(Mt,u) ≤ the right-hand side of (A-37) (A-43)
as desired.

We also need to bound the integral∫
Mt,u

(X̆PNtop9)(X̆9)/PNtop tr/g χ dϖ

in the remaining cases 9 ∈ {R(−), v
2, v3, s}. As we further explain below in Step 3, a similar argument

allows us to bound these error integrals by exploiting one crucial simplifying feature: these error integrals
are bounded by the right-hand side of (A-37), but without the difficult boxed-constant-involving integrals
on the right-hand side. The difference is that we can take advantage of the smallness of the factor
∥X̆9∥L∞(6t ) ≤ ϵ̊1/2 (valid for 9 ∈ {R(−), v

2, v3, s} — but not for R(+)!), which is provided by the
bootstrap assumption (6-4); this allows us to avoid the error terms with large boxed constants and thus
allows us to relegate the contribution of these error integrals to the error term Error(Top)

Ntop
(t, u) on the

right-hand side of (A-37); we refer to [36, pg. 154] for further details.

Step 2(c): contributions from
∫
Mt,u

{(1+2µ)LPNtop9}(X̆9)/PNtop tr/g χ dϖ . We first consider the case 9 =

R(+), which is by far the most difficult case. Unlike the error integral we controlled in Step 2(b), as in [36],
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this error integral can be controlled by first using the definition (A-8a) of the partially modified quantities
to algebraically replace the factor /PNtop tr/g χ with a /P derivative of ( /PNtop−1

)X̃ plus remainder terms (that
one controls separately), and then using integration by parts to swap the L and /P derivatives. Notice that by
Proposition A.15, the partially modified quantity obeys the same bounds as in [36, Lemma 14.19], except
the estimates of Proposition A.15 feature ϵ̊-multiplied terms such as C ϵ̊µ−M∗+1.4

⋆ (t) on the right-hand sides,
which can be handled using arguments of the type we used to control the error term (A-41). In particular,
the right-hand sides of the estimates in Proposition A.15 do not involve the wave equation inhomogeneity G.
Hence, the error integral

∫
Mt,u

{(1+2µ)LPNtopR(+)}(X̆R(+)) /PNtop tr/g χ dϖ can be bounded using exactly
the same arguments given in [36, Lemma 14.17] and [52, Lemma 14.12], except with the boxed constants
from [36] replaced by Mabs and the constant C∗ from [36] replaced by C ′ . As a consequence, the error
integral under consideration is bounded above in magnitude by the right-hand side of (A-37).

To bound the integral ∫
Mt,u

{(1 + 2µ)LPNtop9}(X̆9)/PNtop tr/g χ dϖ

in the remaining cases 9 ∈ {R(−), v
2, v3, s}, we can again (as in Step 2(b)) take advantage of the

smallness ∥X̆9∥L∞(6t ) ≤ ϵ̊1/2 (valid for 9 ∈ {R(−), v
2, v3, s} — but not for R(+)!), which is provided

by the bootstrap assumption (6-4). This again allows us to relegate the contribution of these integrals
to the error term Error(Top)

Ntop
(t, u) on the right-hand side of (A-37); see [36, p. 154] for further details.

Step 2(d): contributions from
∫
Mt,u

{(1 + 2µ)LPNtop9 + X̆PNtop9}( /P9)µ/PNtop tr/g χ dϖ . This error
integral is similar to the one we treated in Step 2(b), but easier. Here are the differences:

• There is an additional µ factor.

• There is a LPNtop9 term, in addition to a X̆PNtop9 term.

• There is a factor of /P9 instead of X̆9.

Notice that due to the additional factor of µ, we can control the L2(6u
t ) norm of

√
µLPNtop9 by the

QNtop energy (recall the definition (3-2a) for the energy). Moreover, comparing (6-5) with (6-3), we see
that the factor /P9 gives an additional ϵ̊1/2 L∞-smallness factor compared to X̆R(+). Therefore, we can
use Hölder’s inequality, (6-5), the L∞ bound for µ in Proposition 8.6, (A-24) in Proposition A.13, and
Proposition 8.11 and argue as in Step 2(b) (taking into account (A-35)) to obtain∣∣∣∣∫

Mt,u

{(1 + 2µ)LPNtop9 + X̆PNtop9}( /P9)µ/PNtop tr/g χ dϖ

∣∣∣∣
≲ ϵ̊1/2

∫ t ′=t

t ′=0
µ−1/2

⋆ (t ′, u)
(
∥X̆PNtop9∥L2(6u

t ′ )
+ ∥

√
µLPNtop9∥L2(6u

t ′ )

)
∥µ/PNtop tr/g χ∥L2(6u

t ′ )
dt ′

≲ ϵ̊1/2
∫ t ′=t

t ′=0
µ−1/2

⋆ (t ′, u)QNtop(t
′, u) dt ′

+ ϵ̊5/2µ−2M∗+4.3
⋆ (t)

+ ϵ̊1/2
∫ t ′=t

t ′=0
µ−1/2

⋆ (t ′, u)

{∫ s=t ′

s=0
∥P [1,Ntop]G∥L2(6u

s ) ds
}2

dt ′

≤ non-boxed-constant-involving terms on the right-hand side of (A-37).

Combining Steps 2(a)–2(d), we arrive at the desired bound (A-37).
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Step 3: proof of (A-38). In this step, we only have to derive top-order energy estimates for R(−), v
2, v3, s.

This is in contrast to Step 2, in which we also had to derive energy estimates for R(+). The proof of (A-38)
is the same as the proof of [36, (14.5)], except we have to account for the contribution of the inhomogeneous
terms Gι in the wave equations satisfied by 9̃ ∈{R(−), v

2, v3, s}. For the same reason as in Step 2, these in-
homogeneous terms lead to error integrals that are controlled by the terms NewError(Top)

Ntop
(t, u) on the right-

hand side of (A-38). We clarify that the proof of (A-38) requires that we control the difficult error integrals∫
Mt,u

(X̆PNtop9̃)(X̆9̃) /PNtop tr/g χ dϖ,∫
Mt,u

{(1 + 2µ)LPNtop9̃}(X̆9̃) /PNtop tr/g χ dϖ,∫
Mt,u

{(1 + 2µ)LPNtop9̃ + X̆PNtop9̃}(P9̃)µ/PNtop tr/g χ dϖ,

as in Step 2. In Step 2, the first two of these error integrals led to error terms that are controlled by the boxed-
constant-involving terms on the right-hand side of (A-37). However, in Step 3, we can take advantage
of the smallness of the factors X̆9̃ in these integrals. That is, we can exploit the smallness estimate
∥X̆9̃∥L∞(6t ) ≤ ϵ̊1/2 (valid for 9̃ ∈ {R(−), v

2, v3, s} — but not for R(+)!), which is provided by the boot-
strap assumption (6-4); this allows us to avoid the error terms with large boxed constants (which are found
on the right-hand of (A-37)), and allow us to relegate the contribution of the corresponding error integrals
to the error term Error(Top)

Ntop
(t, u) on the right-hand side of (A-38). See [36, p. 154] for further details. □

A9. Sketch of the proof of Proposition 12.1. The argument here is the same as in the proof of [36,
Proposition 14.1], except we have to handle the additional terms in Proposition A.17.

Sketch of proof of Proposition 12.1. Step 1: the top- and penultimate- orders (proof of (12-2)). It turns out
that the top-order energies are heavily coupled to the penultimate-order energies. In turn, this forces us
to perform a Grönwall-type argument that simultaneously handles the top- and penultimate-order energy
estimates at the same time. For these reasons, we follow the notation of [36, Proposition 14.1] and define79

F(t, u)
.
= sup

(t̂,û)∈[0,t]×[0,u]

ι−1
F (t̂, û) max{Q[1,Ntop](t̂, û), K[1,Ntop](t̂, û)}, (A-44)

G(t, u)
.
= sup

(t̂,û)∈[0,t]×[0,u]

ι−1
G (t̂, û) max{Q

(Partial)
[1,Ntop]

(t̂, û), K
(Partial)
[1,Ntop]

(t̂, û)}, (A-45)

H(t, u)
.
= sup

(t̂,û)∈[0,t]×[0,u]

ι−1
H (t̂, û) max{Q[1,Ntop−1](t̂, û), K[1,Ntop−1](t̂, û)}, (A-46)

where

ι1(t)
.
=

∫ t ′=t

t ′=0

1
√

T(Boot) − t ′
dt ′, ιF (t, u) = ιG(t, u)

.
= µ−2M∗+1.8

⋆ (t)ιc1(t)ι
c
2(t)e

ct ecu,

ι2(t)
.
=

∫ t ′=t

t ′=0
µ−0.9

⋆ (t ′) dt ′, ιH (t, u)
.
= µ−2M∗+3.8

⋆ (t)ιc1(t)ι
c
2(t)e

ct ecu .

79For easy comparisons with the proof of [36, Proposition 14.1], we are using the notation F , G, and H here. The reader
should be careful to distinguish these functions from the different functions F and G in Definitions 2.3 and 2.12.
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Following exactly the same80 argument81 used in the proof of [36, Proposition 14.1] (see in particular
[36, (14.64)–(14.66)]), but taking into account the additional terms in Proposition A.17, we can choose
M∗ ∈ N and c > 0 sufficiently large depending on the absolute constant Mabs in Proposition A.17 so that
the following hold82 for every (t̂, û) ∈ [0, t] × [0, u]:

F(t̂, û) ≤ C ϵ̊2
+α1 F(t, u) +α2 H(t, u) +α3G(t, u)

+ Cι−1
F (t̂, û)

∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop]9| + |X̆P [1,Ntop]9|)P [1,Ntop]G⃗∥L1(6u

t ′ )
dt ′

+ Cι−1
F (t̂, û)

∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop]G⃗∥L2(6u

s ) ds
}2

dt ′, (A-47)

G(t̂, û) ≤ C ϵ̊2
+β1 F(t, u) +β2 H(t, u)

+ Cι−1
G (t̂, û)

∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop]9| + |X̆P [1,Ntop]9|)P [1,Ntop]G∥L1(6u

t ′ )
dt ′

+ Cι−1
G (t̂, û)

∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop]G∥L2(6u

s ) ds
}2

dt ′, (A-48)

H(t̂, û) ≤ C ϵ̊2
+γ1 F(t, u) +γ2 H(t, u)

+ Cι−1
H (t̂, û)

∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop−1]9| + |X̆P [1,Ntop−1]9|)P [1,Ntop−1]G∥L1(6u

t ′ )
dt ′, (A-49)

where C > 0 is a constant, while α1, α2, α3, β1, β2, γ1 and γ2 are constants that obey the following
smallness conditions (as long as M∗ ∈ N and c > 0 are sufficiently large):

α1 + 4α2γ1 +α3β1 + 4α3β2γ1 < 1,

γ2 < 3
4 . (A-50)

At this point we fix c > 0 and M∗ ∈ N. From now on, we allow the general constants C > 0 to depend
on these particular fixed choices of c and M∗.

For each of the three integrals on the right-hand sides of (A-47)–(A-49), we absorb ιc1(t̂ )ι
c
2(t̂ )e

ct̂ ecû

into the general constant C , and then take the supremum with respect to t̂ . For instance, for the first

80Here we note one minor difference compared to [36, Proposition 14.1]: that proposition was more precise with respect
to u in the sense that it yielded a priori estimates in terms of powers of µ⋆(t, u), rather than µ⋆(t) (see Definition 2.16). For this
reason, in the proof [36, Proposition 14.1], the definition of the analog of ι2 involved µ⋆(t, u), and similarly for the µ⋆-dependent
factors on the right-hand sides of the analogs of ιF , ιG , and ιH . The change we have made in this paper has no substantial effect
on the analysis; at the relevant points in the proof of [36, Proposition 14.1], all of the needed estimates hold true with µ⋆(t) in
place of µ⋆(t, u).

81The detailed argument relies on some extensions and sharpened versions of the estimates of Proposition 8.11. Given the
estimates of Section 8, such as Propositions 8.6, 8.7, and 8.10, the needed estimates can be proved using the same arguments
given in [36].

82The inequality [36, (14.64)] featured a term C F1/2(t, u)G1/2(t, u) on the right-hand side. We used Young’s inequality to
bound this term by ≤ aF(t, u) +α3G(t, u), where α3

.
= C2/a and we have chosen a to be small, which allows us to absorb

aF(t, u) into the term α1 F(t, u).
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integral on the right-hand side of (A-47), we deduce that for (t̂, û) ∈ [0, t] × [0, u], we have

ι−1
F (t̂, û)

∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop]9| + |X̆P [1,Ntop]9|)P [1,Ntop]G⃗∥L1(6u

t ′ )
dt ′

≲ sup
t̂ ′∈[0,t]

µ2M∗−1.8
⋆ (t̂ ′)

∫ t ′=t̂ ′

t ′=0
∥(|LP [1,Ntop]9| + |X̆P [1,Ntop]9|)P [1,Ntop]G⃗∥L1(6u

t ′ )
dt ′.

We perform the same operation on the other integrals. Since we have taken a supremum, the right-hand
sides are independent of (t̂, û). We then take supremum over (t̂, û) ∈ [0, t]× [0, u] on the left-hand sides
of (A-47)–(A-49) to obtain, with the same constants α1, α2, α3, β1, β2, γ1 and γ2, but with a different
constant C , the inequalities

F(t,u) ≤ C ϵ̊2
+α1 F(t,u)+α2 H(t,u)+α3G(t,u)

+C sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop]9|+|X̆P [1,Ntop]9|)P [1,Ntop]G⃗∥L1(6u

t ′ )
dt ′

+C sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop]G⃗∥L2(6u

s ) ds
}2

dt ′, (A-51)

G(t,u) ≤ C ϵ̊2
+β1 F(t,u)+β2 H(t,u)

+C sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop]9|+|X̆P [1,Ntop]9|)P [1,Ntop]G⃗∥L1(6u

t ′ )
dt ′

+C sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop]G⃗∥L2(6u

s ) ds
}2

dt ′, (A-52)

H(t,u) ≤ C ϵ̊2
+γ1 F(t,u)+γ2 H(t,u)

+C sup
t̂∈[0,t]

µ2M∗−3.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop−1]9|+|X̆P [1,Ntop−1]9|)P [1,Ntop−1]G⃗∥L1(6u

t ′ )
dt ′. (A-53)

The main point is the smallness conditions (A-50) on the constants α1, . . . ,γ2 allow us to solve the
inequalities (A-51)–(A-53) using a reductive approach. More precisely, using that γ2 < 3

4 , we absorb
the γ2 H(t, u) term on the right-hand side of (A-53) back into the left-hand side to isolate H(t, u), at
the expense of enlarging C and replacing γ1 with 4γ1. We then insert this estimate for H(t, u) into the
right-hand side of (A-52) to obtain an estimate for G(t, u), and then insert these estimates for H(t, u)

and G(t, u) into the right-hand side of (A-51) to obtain the inequality

F(t,u)

≤ C ϵ̊2
+{α1+4α2γ1+α3β1+4α3β2γ1}F(t,u)

+C sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop]9|+|X̆P [1,Ntop]9|)P [1,Ntop]G⃗∥L1(6u

t ′ )
dt ′

+C sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop]G⃗∥L2(6u

s ) ds
}2

dt ′

+C sup
t̂∈[0,t]

µ2M∗−3.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop−1]9|+|X̆P [1,Ntop−1]9|)P [1,Ntop−1]G⃗∥L1(6u

t ′ )
dt ′. (A-54)
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From the smallness condition α1 + 4α2γ1 +α3β1 + 4α3β2γ1 < 1 featured in (A-50), it follows that we
can absorb the terms {α1 + 4α2γ1 +α3β1 + 4α3β2γ1}F(t, u) on the right-hand side of (A-54) back into
the left-hand side of (A-54) to isolate F(t, u), at the expense of increasing the constant C . We therefore
deduce the inequality

F(t,u)≲ ϵ̊2
+ sup

t̂∈[0,t]
µ2M∗−1.8

⋆ (t̂ )
∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop]9|+|X̆P [1,Ntop]9|)P [1,Ntop]G⃗∥L1(6u

t ′ )
dt ′

+ sup
t̂∈[0,t]

µ2M∗−1.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
µ−3/2

⋆ (t ′)

{∫ s=t ′

s=0
∥P [1,Ntop]G⃗∥L2(6u

s ) ds
}2

dt ′

+ sup
t̂∈[0,t]

µ2M∗−3.8
⋆ (t̂ )

∫ t ′=t̂

t ′=0
∥(|LP [1,Ntop−1]9|+|X̆P [1,Ntop−1]9|)P [1,Ntop−1]G⃗∥L1(6u

t ′ )
dt ′. (A-55)

Then from (A-55) and the arguments given above, we deduce that G(t, u) and H(t, u) are also bounded
above by the right-hand side of (A-55) (where we enlarge C if necessary).

Recalling the definitions of F ,G, and H in (A-44)–(A-46), we see that (A-55) and the similar bounds
for G(t, u) and H(t, u) collectively imply (12-2).

Step 2: the lower orders (proof of (12-3)). To prove the lower-order energy estimates, we start by
considering the energy inequality given by the below-top-order estimate from Proposition A.17, i.e., the
estimate (A-39), which features the additional term (A-36) compared to [36, (14.6)].

Observe that on the right-hand side of (A-39), except for∫ t ′=t

t ′=0

Q
1/2
[1,N−1]

(t ′, u)

µ
1/2
⋆ (t ′, u)

{∫ s=t ′

s=0

Q
1/2
[1,N ]

(s, u)

µ
1/2
⋆ (s, u)

ds
}

dt ′,

every other term can be treated directly by Grönwall’s inequality (using Proposition 8.11), as in [36]. It
thus follows that
sup

t ′∈[0,t]
max{Q[1,N−1](t ′, u), K[1,N−1](t ′, u)}

≤ C ϵ̊2
+ C

∫ t ′=t

t ′=0

Q
1/2
[1,N−1]

(t ′, u)

µ
1/2
⋆ (t ′, u)

{∫ s=t ′

s=0

Q
1/2
[1,N ]

(s, u)

µ
1/2
⋆ (s, u)

ds
}

dt ′

+ C∥(|LP [1,N−1]9| + |X̆P [1,N−1]9|)|P [1,N−1]G⃗|∥L1(Mt,u). (A-56)

To proceed, we analyze the double time-integral term on the right-hand side of (A-56). For any ς > 0,
we have∫ t ′=t

t ′=0

Q
1/2
[1,N−1]

(t ′, u)

µ
1/2
⋆ (t ′, u)

{∫ s=t ′

s=0

Q
1/2
[1,N ]

(s, u)

µ
1/2
⋆ (s, u)

ds
}

dt ′

≤
(

sup
t ′∈[0,t]

Q
1/2
[1,N−1]

(t ′)
)
×

(
sup

s∈[0,t]
min{1,µ

M∗−Ntop+N−0.9
⋆ (s)}Q1/2

[1,N ]
(s)

)
×

∫ t ′=t

t ′=0

1

µ
1/2
⋆ (t ′)

{∫ s=t ′

s=0

max{1,µ
−M∗+Ntop−N+0.9
⋆ (s)}

µ
1/2
⋆ (s)

ds
}

dt ′

≤ ς sup
t ′∈[0,t]

Q[1,N−1](t ′)

+ Cς−1 max{1,µ
−2M∗+2Ntop−2N+3.8
⋆ (t)}( sup

s∈[0,t]
min{1,µ

2M∗−2Ntop+2N−1.8
⋆ (s)}Q[1,N ](s)), (A-57)
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where to obtain the last inequality, we have used Young’s inequality and the following estimate, which
follows from Proposition 8.11:∫ t ′=t

t ′=0

1

µ
1/2
⋆ (t ′)

{∫ s=t ′

s=0

max{1,µ
−M∗+Ntop−N+0.9
⋆ (s)}

µ
1/2
⋆ (s)

ds
}

dt ′ ≲
∫ t ′=t

t ′=0

max{1,µ
−M+Ntop−N+1.4
⋆ (t ′)}

µ
1/2
⋆ (t ′)

dt ′

≲ max{1,µ
−M∗+Ntop−N+1.9
⋆ (t)}.

Inserting (A-57) into (A-56) and fixing ς > 0 to be sufficiently small, we can absorb the term
Cς(supt ′∈[0,t] Q[1,N−1](t ′)) back into the left-hand side of (A-56). Thus, for this fixed value of ς , we obtain

sup
t ′∈[0,t]

max{Q[1,N−1](t ′, u), K[1,N−1](t ′, u)}

≲ ϵ̊2
+ max{1,µ

−2M+2Ntop−2N+3.8
⋆ (t)}

(
sup

s∈[0,t]
min{1,µ

2M∗−2Ntop+2N−1.8
⋆ (s)}Q[1,N ](s)

)
+ ∥(|LP [1,N−1]9| + |X̆P [1,N−1]9|)|P [1,N−1]G⃗|∥L1(Mt,u).

After changing the index N to N + 1, we conclude the estimate (12-3). □
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FAMILIES OF FUNCTIONALS REPRESENTING SOBOLEV NORMS

HAÏM BREZIS, ANDREAS SEEGER, JEAN VAN SCHAFTINGEN AND PO-LAM YUNG

We obtain new characterizations of the Sobolev spaces Ẇ 1,p(RN ) and the bounded variation space ḂV(RN ).
The characterizations are in terms of the functionals νγ (Eλ,γ /p[u]), where

Eλ,γ /p[u] =

{
(x, y) ∈ RN

× RN
: x ̸= y,

|u(x) − u(y)|

|x − y|1+γ /p
> λ

}
and the measure νγ is given by dνγ (x, y) = |x − y|

γ−N dx dy. We provide characterizations which
involve the L p,∞-quasinorms supλ>0 λνγ (Eλ,γ /p[u])1/p and also exact formulas via corresponding limit
functionals, with the limit for λ → ∞ when γ > 0 and the limit for λ → 0+ when γ < 0. The results
unify and substantially extend previous work by Nguyen and by Brezis, Van Schaftingen and Yung. For
p > 1 the characterizations hold for all γ ̸= 0. For p = 1 the upper bounds for the L1,∞ quasinorms fail in
the range γ ∈ [−1, 0); moreover, in this case the limit functionals represent the L1 norm of the gradient
for C∞

c -functions but not for generic Ẇ 1,1-functions. For this situation we provide new counterexamples
which are built on self-similar sets of dimension γ + 1. For γ = 0 the characterizations of Sobolev spaces
fail; however, we obtain a new formula for the Lipschitz norm via the expressions ν0(Eλ,0[u]).

1. Introduction

We are concerned with various ways in which we can recover the Sobolev seminorm ∥∇u∥L p(RN ) via
positive nonconvex functionals involving differences u(x) − u(y).

We begin by mentioning two relevant results already in the literature. A theorem of H.-M. Nguyen
[2006] (see also [Brezis and Nguyen 2018; 2020]) states that, for 1 < p < ∞ and u in the inhomogeneous
Sobolev space W 1,p(RN ),

lim
λ↘0

λp
∫∫

|u(x)−u(y)|>λ

|x − y|
−p−N dx dy =

κ(p, N )

p
∥∇u∥

p
L p(RN )

, (1-1)

with

κ(p, N ) :=

∫
SN−1

|e · ω|
p dω =

20((p + 1)/2)π (N−1)/2

0((N + p)/2)
, (1-2)

and e is any unit vector in RN. As shown in [Brezis and Nguyen 2018], (1-1) still holds for all u ∈ C1
c (RN )

when p = 1 but fails for general u ∈ W 1,1(RN ). The limit formula (1-1) may be compared to a theorem
of [Brezis et al. 2021b], which states that, for all u ∈ C∞

c (RN ) and 1 ≤ p < ∞, one has

lim
λ→∞

λpL2N ({(x, y) ∈ RN
× RN

: |u(x) − u(y)| > λ|x − y|
1+N/p

}) =
κ(p, N )

N
∥∇u∥

p
L p(RN )

, (1-3)
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where L2N denotes the Lebesgue measure on RN
× RN. Our first result, namely Theorem 1.1 below,

provides an extension of (1-1) and (1-3) that unifies the two statements. Before we state the theorem, we
introduce some notation that will be used throughout the paper.

First, for Lebesgue measurable subsets E of R2N
= RN

× RN and γ ∈ R, we define

νγ (E) :=

∫∫
(x,y)∈E

x ̸=y

|x − y|
γ−N dx dy. (1-4)

In particular, when γ = N , νN is just the Lebesgue measure on R2N. If u is a measurable function on RN

and b ∈ R, we define, for (x, y) ∈ RN
× RN with x ̸= y, a difference quotient

Qbu(x, y) :=
u(x) − u(y)

|x − y|1+b ; (1-5)

moreover, we define, for λ > 0, the superlevel set of Qbu at height λ by

Eλ,b[u] := {(x, y) ∈ RN
× RN

: x ̸= y, |Qbu(x, y)| > λ}. (1-6)

We will denote by Ẇ 1,p(RN ), p ≥1, the homogeneous Sobolev space, i.e., the space of L1
loc(R

N ) functions
for which the distributional gradient ∇u belongs to L p(RN ), with the seminorm ∥u∥Ẇ 1,p := ∥∇u∥L p(RN ).
The inhomogeneous Sobolev space W 1,p is the subspace of Ẇ 1,p-functions u for which u ∈ L p, and we set
∥u∥W 1,p := ∥u∥L p +∥∇u∥L p . For p = 1 we will also consider the space ḂV(RN ) of functions of bounded
variations, i.e., locally integrable functions u for which the gradient ∇u ∈ M belongs to the space M
of RN -valued bounded Borel measures and we put ∥u∥ḂV := ∥∇u∥M; furthermore, let BV := ḂV ∩ L1.
In the dual formulation, with C1

c denoting the space of C1 functions with compact support,

∥u∥ḂV := sup
{∣∣∣∣∫

RN
u div(φ)

∣∣∣∣ : φ ∈ C1
c (RN , RN ), ∥φ∥∞ ≤ 1

}
.

For general background material on Sobolev spaces, see [Brezis 2011; Stein 1970].

Theorem 1.1. Suppose N ≥ 1, 1 ≤ p < ∞, γ ∈ R \ {0}.

(a) If γ > 0, then, for all u ∈ Ẇ 1,p(RN ),

lim
λ→+∞

λpνγ (Eλ,γ /p[u]) =
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

. (1-7)

(b) If either γ < 0, p > 1 or γ < −1, p = 1 then, for all u ∈ Ẇ 1,p(RN ),

lim
λ↘0

λpνγ (Eλ,γ /p[u]) =
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

. (1-8)

(c) If p =1 and −1≤γ <0 then (1-8) remains true for all u ∈C1
c (RN ) but fails for generic u ∈ Ẇ 1,1(RN ).

However, we still have, for all u ∈ Ẇ 1,1(RN ),

lim inf
λ↘0

λνγ (Eλ,γ [u]) ≥
κ(1, N )

|γ |
∥∇u∥L1(RN ). (1-9)
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Formula (1-1) is the special case of (1-8) with γ = −p, and formula (1-3) is the special case of (1-7)
with γ = N. Note that our result concerns functions in the homogeneous Sobolev space Ẇ 1,p; we do not
require u to be in L p.

Remarks. (i) The reader will note the resemblance of (1-8) and (1-7) and may wonder why in (1-8), for
γ < 0, one is concerned with the limit as λ ↘ 0 and in (1-7), for γ > 0, one takes the limit as λ → ∞.
In the proofs of these formulas one relates limits involving λνγ (Eλ,γ /p[u])1/p to (the absolute value of)
limits of directional difference quotients δ−1(u(x + δθ) − u(x)) with increment δ = λ−p/γ, and in order
to recover the directional derivative ⟨θ, ∇u(x)⟩ we need to let δ → 0, which suggests that we need to
take λ → ∞ or λ ↘ 0 depending on the sign of γ . For the calculations see the proofs of Lemmas 3.2
and 3.3 below.

(ii) The failure of (1-8) for p = 1, γ ∈ [−1, 0) and u ∈ Ẇ 1,1(RN ) is generic in the sense of Baire category.
It may happen that limλ↘0 λνγ (Eλ,γ [u]) = ∞. This phenomenon was originally revealed when γ = −1
by A. Ponce and is presented in [Nguyen 2006]; see also [Brezis and Nguyen 2018, Pathology 1]. For
stronger statements and more information, see Theorem 1.8. For γ ∈ (−1, 0) we provide new examples
based on self-similarity considerations. For discussion of failure in the case γ = 0, see Theorem 1.5 below.
The special case of (1-9) for γ = −1 was already established in [Brezis and Nguyen 2018, Proposition 1].

When p = 1 we can also consider what happens if one allows functions in ḂV(RN ) in (1-7) and
(1-8). For γ = N in particular Poliakovsky [2022] asked whether the limit formulas remain valid in this
generality (with ∥∇u∥L1 replaced by ∥∇u∥M). We provide a negative answer:

Proposition 1.2. (i) The analogues of the limiting formulas (1-7) for γ > 0, p = 1 and (1-8) for γ < 0,
p = 1, with ∥∇u∥M on the right-hand side, fail for suitable u ∈ ḂV.

(ii) Specifically, let � ⊂ RN be a bounded convex domain with smooth boundary and let u be the
characteristic function of �. The limits limλ→∞ λνγ (Eλ,γ [u]) for γ > 0 and limλ→0+ λνγ (Eλ,γ [u])

for γ < −1 exist, but they are not equal to |γ |
−1κ(1, N )∥∇u∥M.

For a more detailed discussion we refer to Section 3F. See also Section 7B for a discussion about some
related open problems.

Motivated by [Brezis et al. 2021b], we will also be interested in what happens to the larger quantity
obtained by replacing the limits on the left-hand sides of (1-7) and (1-8) by supλ>0. This will be formulated
in terms of the Marcinkiewicz space L p,∞(R2N , νγ ) (a.k.a. weak-type L p) defined by the condition

[F]
p
L p,∞(R2N ,νγ )

:= sup
λ>0

λpνγ

(
{(x, y) ∈ RN

× RN
: |F(x, y)| > λ}

)
< ∞. (1-10)

As an immediate consequence of Theorem 1.1 we have, for N ≥ 1, 1 ≤ p <∞, γ ̸= 0 and all u ∈C∞
c (RN ),

[Qγ /pu]
p
L p,∞(R2N ,νγ )

≥ C(N , p, γ )∥∇u∥
p
L p(RN )

, (1-11)

where C(N , p, γ ) is a positive constant depending only on N, p and γ . Moreover, the same conclusion
holds for all u ∈ Ẇ 1,p(RN ) when p > 1, with any γ ̸= 0, and when p = 1, with any γ /∈ [−1, 0]. We
shall show that the conditions in the last statement can in fact be relaxed; see the inequalities (1-14) and
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(1-16) below. In addition we have the important upper bounds for Qγ /pu, extending the case γ = N
already dealt with in [Brezis et al. 2021b] for u ∈ C∞

c (RN ). The result in [Brezis et al. 2021b] states that,
for every N ≥ 1, there exists a constant C(N ) such that

[QN/pu]
p
L p,∞(R2N ,νN )

≤ C(N )∥∇u∥
p
L p(RN )

(1-12)

for all u ∈ C∞
c (RN ) and all 1 ≤ p <∞. In light of Theorem 1.1, it is natural to ask whether one can replace

the limits on the left-hand sides of (1-7) and (1-8) by supλ>0 and still obtain a quantity that is comparable to
∥∇u∥

p
L p(RN )

. As suggested by Theorem 1.1 the answer to our question is sensitive to the values of γ and p.

Theorem 1.3. Suppose that N ≥ 1, 1 < p < ∞ and γ ∈ R. Then the following hold:

(i) The inequality
[Qγ /pu]L p,∞(R2N ,νγ ) ≤ C(N , p, γ )∥∇u∥L p(RN ) (1-13)

holds for all u ∈ C∞
c (RN ) if and only if γ ̸= 0. In this case (1-13) extends to all u ∈ Ẇ 1,p(RN ).

(ii) Suppose that u ∈ L1
loc(R

N ) and Qγ /pu ∈ L p,∞(R2N , νγ ). Then u ∈ Ẇ 1,p(RN ) and we have the
inequality

∥∇u∥L p(RN ) ≤ CN ,p,γ [Qγ /pu]L p,∞(R2N ,νγ ). (1-14)

There is a new phenomenon for p = 1, namely the upper bounds for Qγ u only hold for the more
restrictive range γ ∈ (−∞, −1) ∪ (0, ∞). Here it is also natural to replace Ẇ 1,1 with ḂV.

Theorem 1.4. Suppose that N ≥ 1 and γ ∈ R. Then the following hold:

(i) The inequality
[Qγ u]L1,∞(R2N ,νγ ) ≤ C(N , γ )∥∇u∥L1(RN ) (1-15)

holds for all u ∈ C∞
c (RN ) if and only if γ ̸∈ [−1, 0]. In this case (1-15) extends to all u ∈ Ẇ 1,1(RN ),

and, if ∥∇u∥L1(RN ) is replaced by ∥∇u∥M, to all u ∈ ḂV(RN ).

(ii) Suppose that u ∈ L1
loc(R

N ) and Qγ u ∈ L1,∞(R2N , νγ ). Then u ∈ ḂV(RN ) and we have the inequality

∥∇u∥M ≤ CN ,γ [Qγ u]L1,∞(R2N ,νγ ). (1-16)

We note that the quantitative bounds (1-13) and (1-15) in Theorems 1.3 and 1.4 are crucial tools for
establishing the limiting relations for all Ẇ 1,p functions in Theorem 1.1. Note that there is no restriction
on γ in (1-14) and (1-16). The constants in the inequalities will be quantified further later in the paper. In
particular, C(N , p, γ ) in (1-13) remains bounded as p ↘ 1 only in the range γ ∈ (0, ∞) ∪ (−∞, −1)

(see Theorem 2.2 and Proposition 6.1).

Historical comments. Some special cases of the above quantitative estimates have been known. Estimate
(1-13) for γ =−p and 1< p <∞ was discovered independently by H.-M. Nguyen [2006], and by A. Ponce
and J. Van Schaftingen (unpublished communication to H. Brezis and H.-M. Nguyen), both relying on the
Hardy–Littlewood maximal inequality. A. Poliakovsky [2022] recently proved generalizations of results
in [Brezis et al. 2021b] to Sobolev spaces on domains; moreover, he obtained Theorems 1.3 and 1.4 in
the special case γ = N under the additional assumption that u ∈ L p. Other far-reaching generalizations to
one-parameter families of operators were obtained by Ó. Domínguez and M. Milman [2022].
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The case γ =0. We shall now return to the necessity of the assumption γ /∈[−1, 0] in parts of Theorems 1.1,
1.3 and 1.4. When γ =0, the bounds for [Qγ /pu]L p,∞(R2N ,νγ ) fail in a striking way. We begin by formulating
a result illustrating this failure, which also gives a characterization of the seminorm in the Lipschitz
space Ẇ 1,∞.

Theorem 1.5. Suppose N ≥ 1, u is locally integrable on RN and ∇u ∈ L1
loc(R

N ). Then

∥∇u∥L∞(RN ) = inf{λ > 0 : ν0(Eλ,0[u]) < ∞}. (1-17)

Indeed in Proposition 5.1 we shall prove the stronger statement that ν0(Eλ,0[u]) = 0 for λ > ∥∇u∥∞,
and ν0(Eλ,0[u]) = ∞ for λ < ∥∇u∥∞. As an immediate consequence of Theorem 1.5 we get:

Corollary 1.6. Let u be locally integrable on RN. If ∇u ∈ L1
loc(R

N ) and if ν0(Eλ,0[u]) is finite for all
λ > 0, then u is almost everywhere equal to a constant function.

In view of other known results [Brezis 2002; Brezis et al. 2021a] on how to recognize constant functions,
a natural question arises whether the hypothesis on the local integrability of ∇u in the corollary could be
relaxed; one can ask whether the constancy conclusion holds for all locally integrable functions satisfying
ν0(Eλ,0[u]) < ∞ for all λ > 0. However, the following example shows that such an extension fails (for
details, see Lemma 5.2).

Example 1.7. Let � ⊂ RN be a bounded Lipschitz domain and let u be the characteristic function of �.
Then u ∈ BV(RN ) \ Ẇ 1,1(RN ) and supλ>0 λ ν0(Eλ,0[u]) < ∞.

More on counterexamples. We now make more explicit the exclusion of the parameters γ ∈ [−1, 0) in
part (c) of Theorem 1.1 and in (1-15). We shall show in Section 6B that for γ ∈ (−1, 0) these negative
results can be related to self-similar Cantor subsets of R, of dimension 1 + γ .

Theorem 1.8. Suppose N ≥ 1. Then the following hold:

(i) Let −1 ≤ γ < 0. There exists a C∞ function u ∈ Ẇ 1,1(RN ), rapidly decreasing as |x | → ∞ and such
that

lim
λ↘0

λνγ (Eλ,γ [u]) = ∞. (1-18)

(ii) Let −1 ≤ γ < 0. There exists a compactly supported u ∈ W 1,1(RN ) for which (1-18) holds. The set{
u ∈ W 1,1(RN ) : lim sup

λ↘0
λνγ (Eλ,γ [u]) < ∞

}
is meager in W 1,1(RN ), i.e., of first category in the sense of Baire.

(iii) Let −1 ≤ γ < 0, N ≥ 2 or −1 < γ < 0, N = 1. There exists a compactly supported u ∈ W 1,1(RN )

such that νγ (Eλ,γ [u]) = ∞ for all λ > 0; moreover, the set

{u ∈ W 1,1(RN ) : νγ (Eλ,γ [u]) < ∞ for some λ ∈ (0, ∞)}

is meager in W 1,1(RN ).
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The case N = 1 = −γ plays a special role and is excluded in the strongest statement (iii) since for
all compactly supported u ∈ Ẇ 1,1(R) one has ν−1(Eλ,−1[u]) < ∞ for all λ > 0 (see Lemma 6.5 below).
The proofs of existence of counterexamples are constructive and the Baire category statements will be
obtained as rather straightforward consequences of the constructions.

Outline of the paper. In Section 2 we provide the upper bounds for [Qγ /pu]L p,∞(R2N ,νγ ), i.e., the proof
of inequalities (1-13) and (1-15) in Theorems 1.3 and 1.4. We first derive these for a dense subclass,
relying on covering lemmas, and then extend in Sections 2C and 2D to general Ẇ 1,p and ḂV-functions.
In Section 3 we derive the limit formulas of Theorem 1.1; specifically in Section 3B we prove the sharp
lower bounds involving a lim inf λpνγ (Eλ,γ /p[u]) for general functions in Ẇ 1,p and in Section 3C we
obtain the sharp upper bounds for lim sup λpνγ (Eλ,γ /p[u]), under the assumption that u ∈ C1 is compactly
supported. Then in Section 3D we extend these limits to general Ẇ 1,p functions. In Section 3F we show
that the limit formulas for Ẇ 1,1 do not extend to general ḂV functions and prove Proposition 1.2. In
Section 4 we prove the reverse inequalities (1-14) and (1-16) in Theorems 1.3 and 1.4. In Section 5 we
prove Theorem 1.5 on a characterization of the Lipschitz norm and also discuss Example 1.7. In Section 6
we provide various constructions of counterexamples and in particular prove Theorem 1.8. We discuss
some further perspectives and open problems in Section 7.

2. Bounding [ Qγ/ pu]L p,∞(R2N ,νγ ) by the Sobolev norm

In this section we prove inequalities (1-13) and (1-15) in Theorems 1.3 and 1.4.

2A. The bound (1-13) via the Hardy–Littlewood maximal operator. Following [Brezis et al. 2021b], one
can prove the result of Theorem 1.3 for p > 1 by an elementary argument involving the Hardy–Littlewood
maximal function M |∇u| of |∇u|; however, the behavior of the constants as p ↘ 1 will only be sharp in
the range −1 ≤ γ < 0.

Proposition 2.1. Let N ≥ 1 and 1 < p < ∞. There exists a constant CN such that, for all γ ̸= 0 and all
u ∈ Ẇ 1,p(RN ),

sup
λ>0

λpνγ (Eλ,γ /p[u]) ≤
CN

|γ |

(
p

p − 1

)p

∥∇u∥
p
L p(RN )

. (2-1)

Proof. We assume first that u ∈ C1 and that ∇u is compactly supported. As in [Brezis et al. 2021b,
Remark 2.3], one uses the Lusin–Lipschitz inequality

|u(x) − u(y)|

|x − y|
≤ C[M(|∇u|)(x) + M(|∇u|)(y)] (2-2)

and observes that (2-2) implies

Eλ,γ /p[u] ⊆ {|x − y|
γ /p < 2Cλ−1 M(|∇u|)(x)} ∪ {|x − y|

γ /p < 2Cλ−1 M(|∇u|)(y)}.

As a consequence

νγ (Eλ,γ /p[u]) ≤ 2
∫

x

∫
|h|γ <2C[λ−1 M(|∇u|)(x)]p

|h|
γ−N dh dx .
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Direct computation of the inner integral (distinguishing the cases γ > 0 and γ < 0) yields

νγ (Eλ,γ /p[u]) ≲N C p
|γ |

−1λ−p
∫

RN
[M(|∇u|)(x)]p dx .

Inequality (2-1) follows then from the standard maximal inequality ∥M f ∥
p
p ≤ [C(N )p′

]
p
∥ f ∥

p
p for p > 1;

see [Stein 1970] (here p′
= p/(p − 1)). The extension to general Ẇ 1,p functions will be taken up in

Section 2C. □

2B. The case γ ∈ R\[−1, 0]. We shall prove the following more precise versions of the estimates (1-13)
and (1-15) when γ /∈ [−1, 0], with constants that stay bounded as p ↘ 1; indeed we cover all p ∈ [1, ∞).
We denote by σN−1 the surface area of the sphere SN−1. In the proof of the following theorem we
will first establish the estimates for functions u ∈ C1(RN ) whose gradient is compactly supported. The
extension to Ẇ 1,p and ḂV will be taken up in Sections 2C and 2D.

Theorem 2.2. There exists an absolute constant C > 0 such that, for every N ≥ 1, every 1 ≤ p < ∞, and
every u ∈ Ẇ 1,p(RN ):

(i) If γ > 0, then

sup
λ>0

λpνγ (Eλ,γ /p[u]) ≤ CσN−1
5γ

γ
∥∇u∥

p
L p(RN )

. (2-3)

(ii) If γ < −1, then

sup
λ>0

λpνγ (Eλ,γ /p[u]) ≤
CσN−1

|γ |

(
1 +

1
|γ + 1|

)
∥∇u∥

p
L p(RN )

. (2-4)

When p =1 the above assertions hold for all u ∈ ḂV(RN ) provided that ∥∇u∥L1(RN ) is replaced by ∥∇u∥M.

The proof of Theorem 2.2 relies on the following proposition, in which [x, y] ⊂ RN denotes the closed
line segment connecting two points x, y ∈ RN.

Proposition 2.3. Let

E( f, γ ) :=

{
(x, y) ∈ RN

× RN
: x ̸= y,

∫
[x,y]

| f | ds > |x − y|
γ+1

}
(2-5)

for f ∈Cc(R
N ). There exists an absolute constant C > 0 such that, for every N ≥ 1 and every f ∈Cc(R

N ):

(i) If γ > 0, then ∫∫
E( f,γ )

|x − y|
γ−N dx dy ≤ CσN−1

5γ

γ
∥ f ∥L1(RN ). (2-6)

(ii) If γ < −1, then∫∫
E( f,γ )

|x − y|
γ−N dx dy ≤

CσN−1

|γ |

(
1 +

1
|γ + 1|

)
∥ f ∥L1(RN ). (2-7)

Indeed, to deduce Theorem 2.2 from Proposition 2.3 one argues as in the proof of (1-12) in [Brezis
et al. 2021b]; for u ∈ C1(RN ) and 1 ≤ p < ∞, one has

|u(x) − u(y)|p
≤

[∫
[x,y]

|∇u| ds
]p

≤

∫
[x,y]

|∇u|
p ds |x − y|

p−1
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for all x, y ∈ RN, which implies

Eλ,γ /p[u] ⊆ E(λ−p
|∇u|

p, γ ).

Hence for u ∈ C1(RN ) whose gradient is compactly supported, one establishes Theorem 2.2 by applying
Proposition 2.3 with f := λ−p

|∇u|
p. The extension to u ∈ Ẇ 1,p will be taken up in Section 2C.

Proof of Proposition 2.3. As in the proof of [Brezis et al. 2021b, Proposition 2.2], using the method of
rotation, we only need to prove Proposition 2.3 for N = 1. Indeed,∫∫

E( f,γ )

|x − y|
γ−N dx dy =

1
2

∫
SN−1

∫
ω⊥

∫∫
E( fω,x ′ ,γ )

|r − s|γ−1 dr ds dx ′ dω,

where for every ω ∈ SN−1 and every x ′
∈ ω⊥, fω,x ′ is a function of one real variable defined by

fω,x ′(t) := f (x ′
+ tω).

The innermost double integral can be estimated by the case N = 1 of Proposition 2.3, and∫
SN−1

∫
ω⊥

∫
R

| fω,x ′(t)| dt dx ′ dω = σN−1∥ f ∥L1(RN ).

Thus from now on, we assume N = 1 and f ∈ Cc(R).
If γ > 0, the desired estimate (2-6) is the content of [Brezis et al. 2021b, Proposition 2.1]. On the other

hand, suppose now γ < −1. Without loss of generality, assume f ≥ 0 on R. In addition, we may assume
that f is not identically zero, for otherwise there is nothing to prove.

Let
E+( f, γ ) := {(x, y) ∈ E( f, γ ) : y < x}.

Then by symmetry, ∫∫
E( f,γ )

|x − y|
γ−1 dx dy = 2

∫∫
E+( f,γ )

|x − y|
γ−1 dx dy,

and it suffices to estimate the latter integral.
In what follows we will need to always keep in mind that in view of our assumption γ < −1 we have

−(γ + 1) = |γ | − 1 > 0. We will now use a simple stopping-time argument based on the fact that for all
c ∈ R the continuous function

x 7→ (x − c)−(γ+1)

∫ x

c
f (s) ds, x ≥ c,

increases from 0 to ∞ on [c, ∞).

Assume that supp f ⊆ [a, b]. We construct a finite sequence of intervals I1, . . . , IK , that are disjoint
up to endpoints, that cover supp f = [a, b], and that satisfy

|Ii |
−(γ+1)

∫
Ii

f =
1
2

for 1 ≤ i ≤ K . (2-8)

Indeed, we may take a1 := a, and a2 > a1 to be the unique number for which

(a2 − a1)
−(γ+1)

∫ a2

a1

f =
1
2
,
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and set I1 := [a1, a2]. If a2 < b, we may now repeat, and take I2 := [a2, a3], where a3 > a2 is the unique
number for which (a3 − a2)

−(γ+1)
∫ a3

a2
f =

1
2 . Note that the ai ’s chosen as such satisfy

(ai+1 − ai )
−(γ+1)

≥
1
2
∥ f ∥

−1
L1(R)

,

so that ai+1 − ai ≥ (2∥ f ∥L1(R))
1/(γ+1). This shows that in finitely many steps, we would reach aK+1 ≥ b

for some K ≥ 1, with aK < b if 1 ≤ K . Then we have our sequence of disjoint (up to endpoints) intervals
I1, . . . , IK that cover [a, b] and satisfy (2-8). We also write I0 := (−∞, a1] and IK+1 := [aK+1, +∞).

We now claim that Ii × Ii ∩ E+( f, γ ) = ∅ for every 0 ≤ i ≤ K + 1. This being trivially the case when
i ∈ {0, K + 1}, we consider the case i ∈ {1, . . . , K }: any x, y ∈ Ii satisfy

|x − y|
−(γ+1)

∣∣∣∣∫ x

y
f
∣∣∣∣ ≤ |Ii |

−(γ+1)

∫
Ii

f =
1
2

< 1.

It follows thus that

E+( f, γ ) =

K+1⋃
i=1

E+( f, γ )∩ ((ai , +∞) × (−∞, ai )). (2-9)

Furthermore, for i ∈ {2, . . . , K }, if y < ai < x and x − y < min{|Ii |, |Ii−1|}, then

|x − y|
−(γ+1)

∣∣∣∣∫ x

y
f
∣∣∣∣ < min{|Ii |, |Ii−1|}

−(γ+1)

(∫
Ii−1

f +

∫
Ii

f
)

≤ |Ii−1|
−(γ+1)

∫
Ii−1

f + |Ii |
−(γ+1)

∫
Ii

f ≤
1
2

+
1
2

= 1

(again we used γ <−1 so that −(γ +1)>0 here), from which it follows that (x, y) ̸∈ E+( f, γ ). Combining
this with a similar argument for i ∈ {1, K + 1}, we get that if (x, y) ∈ E+( f, γ ) ∩ (ai , +∞) × (−∞, ai ),
then |x − y| ≥ min{|Ii |, |Ii−1|}, and thus∫

E+( f,γ )∩(ai ,+∞)×(−∞,ai )

|x − y|
γ−1 dx dy ≤

∫
∞

ai

∫ min{ai ,x−min{|Ii |,|Ii−1|}}

−∞

|x − y|
γ−1 dy dx

=
1

|γ |

∫
∞

ai

(max{x − ai , min{|Ii |, |Ii−1|}})
γ dx

=
1

|γ |

(
1 +

1
|γ + 1|

)
min{|Ii |, |Ii−1|}

γ+1

≤
2

|γ |

(
1 +

1
|γ + 1|

) ∫
Ii−1∪Ii

f.

(The computation of these integrals uses our assumption γ + 1 < 0.) Summing the estimates, we get in
view of (2-9) ∫

E+( f,γ )

|x − y|
γ−1 dx dy ≤

4
|γ |

(
1 +

1
|γ + 1|

) ∫
R

f.

We have thus completed the proof of (2-7) under the assumption γ < −1 and N = 1. □
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2C. Proof of Proposition 2.1 and Theorem 2.2 for general Ẇ1, p functions. We use a limiting argument,
together with the following fact: if u ∈ Ẇ 1,p(RN ), N ≥ 1, and 1 ≤ p < ∞, then there exists a Lebesgue
measurable set X ⊂ R2N, with L2N (X) = 0, so that, for every (x, h) ∈ R2N

\ X , we have

u(x + h) − u(x) =

∫ 1

0
⟨h, ∇u(x + th)⟩ dt. (2-10)

Indeed, both sides are measurable functions of (x, h) ∈ R2N, and if X is the set of all (x, h) where the
two sides are not equal, then X is a measurable subset of R2N, and the assertion will follow from Fubini’s
theorem if, for every fixed h ∈ RN, we have LN ({x ∈ RN

: (x, h) ∈ X}) = 0, i.e., (2-10) holds for LN

almost every x . This follows since for every φ ∈ C∞
c (RN ), one has∫

RN
[u(x+h)−u(x)]φ(x)dx =

∫
RN

u(x)[φ(x−h)−φ(x)]dx = −

∫
RN

u(x)

∫ 1

0
⟨h,∇φ(x−th)⟩dt dx

=

∫
RN

∫ 1

0
⟨h,∇u(x)⟩φ(x−th)dt dx =

∫
RN

∫ 1

0
⟨h,∇u(x+th)⟩dt φ(x)dx .

Now given u ∈ Ẇ 1,p(RN ), there exists a sequence un ∈ C∞(RN ) such that ∇un are compactly
supported, and

∥∇(un − u)∥L p(RN ) → 0. (2-11)

Indeed if N > 1 and p ≥ 1, or if N = 1 and p > 1, then this follows from the density of C∞
c (RN ) in

Ẇ 1,p(RN ) as asserted in [Hajłasz and Kałamajska 1995] (in this case one may choose un ∈ C∞
c (RN )).

The density of C∞
c (RN ) in Ẇ 1,p fails when N = p = 1 (again see [Hajłasz and Kałamajska 1995]); the

issue is that if ∇u is supported in a convex set in RN, N ≥ 2, then u is constant in the complement of the
set, but this fails for N = 1 since the complement of a bounded interval has two connected components.
On the other hand, in the anomalous case N = 1 and p = 1, one can choose an approximation of the
identity to get a sequence vn of C∞

c functions on R such that ∥vn − u′
∥L1(R) → 0. One can then take

un(x) :=
∫ x

0 vn(t) dt , and (2-11) follows with u′
n = vn being compactly supported (even though un may

not be compactly supported).
Let, for R > 1,

K R = {(x, y) ∈ R2N
: |x | ≤ R, |y| ≤ R and R−1

≤ |x − y|}.

By monotone convergence it suffices to prove

νγ (Eλ,γ /p[u] ∩ K R) ≤ C
∥∇u∥

p
L p(RN )

λp . (2-12)

with C independent of R.
Under the assumptions of Proposition 2.1 and Theorem 2.2 on p and γ , since un ∈ C∞

c (RN ), we
already know

νγ (Eλ,γ /p[un]) ≤ C
∥∇un∥

p
L p(RN )

λp .
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Moreover, the sequence Qγ /pun converges to Qγ /pu in L p(K R) as n → ∞. Indeed, using (2-10) we
may write

Qγ /pu(x, y) =
1

|x − y|γ /p

∫ 1

0

〈
x − y
|x − y|

, ∇u((1 − t)y + t x)

〉
dt

for L2N a.e. (x, y) ∈ R2N , and similarly for un in place of u, which allows us to estimate(∫∫
K R

|Qγ /pun(x, y) − Qγ /pu(x, y)|p dx dy
)1/p

≤ Rγ /p
∫ 1

0

(∫
|x |≤R

∫
|y|≤R

|∇(un − u)((1 − s)x + sy)|p dx dy
)1/p

ds

≤ 2N/p(2R)N/p Rγ /p
∥∇(un − un+1)∥p → 0.

By passing to a subsequence if necessary, we may assume that Qγ /pun converges L2N -a.e. to Qγ /pu on
K R as n → ∞. Thus

K R ∩ Eλ,γ /p[u] ⊆ K R ∩

(⋃
n∈N

⋂
ℓ≥n

Eλ,γ /p[uℓ]

)
,

which implies

νγ (K R ∩ Eλ,γ /p[u]) ≤ lim
n→∞

νγ

(
K R ∩

⋂
ℓ≥n

Eλ,γ /p[uℓ]

)
≤ lim inf

n→∞
νγ (K R ∩ Eλ,γ /p[un])

≤ C lim inf
n→∞

∥∇un∥
p
L p(RN )

λp ≤ C
∥∇u∥

p
L p(RN )

λp .

2D. Proof of Theorem 2.2 for ḂV-functions. We choose a sequence ρn ∈C∞
c (RN ), with ρn =2nN ρ(2n

· )

and
∫

RN ρ dx = 1, and set un := u ∗ρn . Then un ∈ Ẇ 1,1(RN ) and un → u almost everywhere. This means
if GL := {(x, h) ∈ RN

× RN
: |x | ≤ L , L−1

≤ |h| ≤ L} then

lim
n→∞

νγ (Eλ,γ [un] ∩ GL) = νγ (Eλ,γ [u] ∩ GL),

by dominated convergence. Also

∥∇un∥L1(RN ) = sup
φ⃗∈C∞

c
∥φ∥∞≤1

∣∣∣∣∫ un(x) div φ⃗(x) dx
∣∣∣∣ = sup

φ⃗∈C∞
c

∥φ∥∞≤1

∣∣∣∣∫ u(x) div(ρn ∗ φ⃗)(x) dx
∣∣∣∣ ≤ ∥∇u∥M;

here we used ∥ρn ∗ φ⃗∥∞ ≤ ∥φ⃗∥∞ for the last inequality. Combining these two limiting identities with
Theorem 2.2 we get the desired inequalities with Eλ,γ [u] replaced by Eλ,γ [u] ∩ GL . By monotone
convergence we may finish the proof letting L → ∞. □

3. Proof of Theorem 1.1

We extend and refine arguments from [Brezis and Nguyen 2018; Brezis et al. 2021b], which are partially
inspired by techniques developed in [Bourgain et al. 2001].
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3A. A Lebesgue differentiation lemma. Our argument uses the following standard variant of the Lebesgue
differentiation theorem. For lack of a proper reference, a proof is provided for the convenience of the reader.

Lemma 3.1. Let u ∈ Ẇ 1,1(RN ) and let {δn} be a sequence of positive numbers with limn→∞ δn = 0. Then

lim
n→∞

u(x + δnh) − u(x)

δn
= ⟨h, ∇u(x)⟩

for almost every (x, h) ∈ RN
× RN.

Proof. If u ∈ C1 with compact support the limit relation clearly holds for all (x, h). We shall below
consider for each θ ∈ SN−1 the maximal function

Mθ F(x) = sup
t>0

1
t

∫ t

0
|F(x + rθ)| dr,

which is well-defined for all θ , a measurable function on RN
× SN−1, and satisfies a weak-type (1, 1)

inequality

LN ({x ∈ RN
: Mθ F(x) > a}) ≤ 5a−1

∥F∥1.

Let u ∈ Ẇ 1,1(RN ) and AM = {h ∈ RN
: 2−M

≤ |h| ≤ 2M
}. It suffices to prove the limit relation for

almost every (x, h) ∈ RN
×AM . From (2-10) we get that, for every n ≥ 1,

u(x + δnh) − u(x)

δn
=

1
δn|h|

∫ δn |h|

0

〈
h, ∇u

(
x + r

h
|h|

)〉
dr

for L2N almost every (x, h) ∈ RN
×AM ; as a result, there exist representatives of u, ∇u and a null set

N ∈ RN
×AM such that the identity holds for all (x, h) ∈ N ∁ and all n ≥ 1. It suffices to show that, for

every α > 0, ε > 0,

L2N
({

(x, h) ∈ RN
×AM : lim sup

n→∞

∣∣∣∣ 1
δn|h|

∫ δn |h|

0
⟨h, ∇u(x + rh)⟩ dr − ⟨h, ∇u(x)⟩

∣∣∣∣ > α

})
≤ ε. (3-1)

Let v ∈ C1
c so that ∥∇(v−u)∥1 ≤ αε/(12LN (AM)). Let g = u −v. Since the asserted limiting relation

holds for v, we see that the expression on the left-hand side of (3-1) is dominated by

L2N
({

(x, h) ∈ RN
×AM : |∇g(x)| + sup

n>0

1
δn|h|

∫ δn |h|

0

∣∣∣∣∇g
(

x + r
h
|h|

)∣∣∣∣ dr > α

})
≤ 2LN (AM)α−1

∥∇g∥1 +

∫
AM

LN
({

x : Mh/|h||∇g|(x) >
α

2

})
dh

≤ 12LN (AM)α−1
∥∇g∥1 ≤ ε

since ∥∇g∥1 ≤ αε/(12LN (AM)). □

3B. The lower bounds for lim inf λ pνγ (Eλ,γ / p[u]). We use Lemma 3.1 to establish lower bounds,
relying on an idea in [Brezis and Nguyen 2018], where the case γ = −1 was considered.
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Lemma 3.2. Let 1 ≤ p < ∞ and u ∈ Ẇ 1,p(RN ). Then:

(i) For γ > 0,

lim inf
λ→∞

λpνγ (Eλ,γ /p[u]) ≥
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

.

(ii) For γ < 0,

lim inf
λ↘0

λpνγ (Eλ,γ /p[u]) ≥
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

.

Proof. We write, for λ > 0 and δ > 0,

λpνγ (Eλ,γ /p[u]) = λp
∫∫

|u(x+h)−u(x)|/|h|1+γ /p>λ

|h|
γ−N dh dx

= λpδγ

∫∫
|(u(x+δh)−u(x))/(δ|h|)|

p
>λpδγ |h|γ

|h|
γ−N dh dx;

here we have changed variables replacing h by δh. Hence

λpνγ (Eλ,γ /p[u]) =

∫∫
1(|h|γ ,∞)

(∣∣∣∣u(x + δh) − u(x)

δ|h|

∣∣∣∣p)
|h|

γ−N dh dx, with δ = λ−p/γ . (3-2)

We now take a sequence {λn} of positive numbers, set δn = λ
−p/γ
n and note that

lim
n→∞

δn = 0 if
{

limn→∞ λn = ∞ and γ > 0,

limn→∞ λn = 0 and γ < 0.
(3-3)

Also observe that

lim inf
n→∞

1(|h|γ ,∞)(sn) ≥ 1(|h|−γ ,∞)(t) if lim
n→∞

sn = t.

Now assume that λn → ∞ if γ > 0 and λn → 0+ if γ < 0 and stay with δn = λ
−p/γ
n , a sequence which

converges to 0 in both cases. Use Fatou’s lemma in (3-2) and combine it with Lemma 3.1 to get

lim inf
n→∞

λp
n νγ (Eλn,γ /p[u]) ≥

∫∫
lim inf
n→∞

1(|h|γ ,∞)

(∣∣∣∣u(x + δnh) − u(x)

δn|h|

∣∣∣∣p)
|h|

γ−N dh dx

≥

∫∫
1(|h|γ ,∞)

(
lim

n→∞

∣∣∣∣u(x + δnh) − u(x)

δn|h|

∣∣∣∣p)
|h|

γ−N dh dx

=

∫∫
|h|γ <|⟨h/|h|,∇u(x)⟩|p

|h|
γ−N dh dx =: Jγ .

We use polar coordinates h = rθ and write the last expression as

Jγ =

∫∫
RN ×SN−1

∫
rγ <|⟨θ,∇u(x)⟩|p

rγ−1 dr dθ dx

=
1

|γ |

∫∫
RN ×SN−1

|⟨θ, ∇u(x)⟩|p dθ dx =
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

,

with the calculation valid in both cases γ > 0 and γ < 0. □
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3C. Upper bounds for lim sup λ pνγ (Eλ,γ / p[u]), for C1
c functions. We assume that u ∈ C1 is com-

pactly supported and obtain the sharp upper bounds for lim supλ→∞ λpνγ (Eλ,γ /p[u]) when γ > 0 and
lim supλ→0 λpνγ (Eλ,γ /p[u]) when γ < 0.

Lemma 3.3. Suppose u ∈ C1
c (RN ) and 1 ≤ p < ∞. Then the following hold:

(i) If γ > 0 then

lim sup
λ→∞

λpνγ (Eλ,γ /p[u]) ≤
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

.

(ii) If γ < 0 then

lim sup
λ↘0

λpνγ (Eλ,γ /p[u]) ≤
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

.

(iii) The statement in part (i) continues to hold for u ∈ C1(RN ) whose gradient is compactly supported.

Remark 3.4. The subtlety in part (iii) above is only relevant in dimension N = 1, since if N ≥ 2, then
any function in C1(RN ) with a compactly supported gradient is constant outside a compact set.

Proof of Lemma 3.3. We distinguish the cases γ > 0 and γ < 0.

The case γ > 0. We assume that ∇u is compactly supported. To prove part (iii) (and thus part (i)) assume

λ ≥ L :=

∥∥∥∥( N∑
i=1

|∂i u|
2
)1/2∥∥∥∥

L∞(RN )

. (3-4)

Then
(x, y) ∈ Eλ,γ /p[u] =⇒ λ|x − y|

γ /p
≤ L =⇒ |x − y| ≤ 1. (3-5)

Furthermore, if (x, y) ∈ Eλ,γ /p[u], then writing y = x + rω with r > 0 and ω ∈ SN−1, we have

λrγ /p
≤ |∇u(x) · ω| + ρ(r), with ρ(r) := sup

x∈RN
sup
|h|≤r

|∇u(x + h) − ∇u(x)|; (3-6)

since ∇u is uniformly continuous on RN, we have ρ(r) ↘ 0 as r ↘ 0. This, together with the first
implication of (3-5), shows

λrγ /p
≤ |∇u(x) · ω| + ρ

((
L
λ

)p/γ )
. (3-7)

Let B be a ball centered at the origin containing supp(∇u), and let B̃ be the expanded ball with radius
1 + rad(B). Then for x /∈ B̃, we have Qγ /pu(x, y) = 0 for every y with |x − y| ≤ 1, and (3-5) shows
(x, y) /∈ Eλ,γ /p[u] for every y with |x − y| > 1, so Eλ,γ /p[u] ⊆ B̃ × RN. Define, for x ∈ B̃, ω ∈ SN−1,
and λ > 0

R(x, ω, λ) :=

(
λ−1

(
|∇u(x) · ω| + ρ

((
L
λ

)p/γ )))p/γ

.

Then by (3-7),

λpνγ (Eλ,γ /p[u]) ≤ λp
∫

B̃

∫
SN−1

∫ R(x,ω,λ)

0
rγ−1 dr dω dx

= γ −1
∫

B̃

∫
SN−1

(
|∇u(x) · ω| + ρ

((
L
λ

)p/γ ))p

dω dx .
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Letting λ → ∞ we get

lim sup
λ→∞

λpνγ (Eλ,γ /p[u]) ≤ γ −1κ(p, N )

∫
B̃

|∇u(x)|p dx

and hence the assertion.

The case γ < 0. We first note that if (x, y) ∈ Eλ,γ /p[u], then writing y = x + rω, we have again (3-6).
Now let ε > 0, and let δ(ε) > 0 be such that ρ(r) ≤ ε for 0 < r ≤ δ(ε). Let

rλ(x, ω, ε) = min
{
δ(ε),

(
λ

|∇u(x) · ω| + ε

)−p/γ }
.

Note that rλ(x, ω, ε) > 0 for λ > 0. Also if (x, x + rω) ∈ Eλ,γ /p[u] then r ≥ rλ(x, ω, ε); indeed, either
rλ(x, ω, ε) ≥ δ(ε) already, or else rλ(x, ω, ε) < δ(ε), in which case (3-6) shows

rλ(x, ω, ε) ≥

(
λ

|∇u(x) · ω| + ε

)−p/γ

.

Finally let B be any ball in RN containing the support of u, and let B̃ be the double ball. Then

lim sup
λ↘0

λpνγ (Eλ,γ /p[u] ∩ (B̃ × RN )) ≤ lim sup
λ↘0

λp
∫

B̃

∫
SN−1

∫
∞

rλ(x,ω,ε)

rγ−1 dr dω dx

= lim sup
λ↘0

λp
∫

B̃

∫
SN−1

1
|γ |

[rλ(x, ω, ε)]γ dω dx

= lim sup
λ↘0

1
|γ |

∫
B̃

∫
SN−1

max{λpδ(ε)γ , (|∇u(x) · ω| + ε)p
} dω dx

=
1

|γ |

∫
B̃

∫
SN−1

(|∇u(x) · ω| + ε)p dω dx .

Since ε > 0 was arbitrary we obtain

lim sup
λ↘0

λpνγ

(
Eλ,γ /p[u] ∩ (B̃ × RN )

)
≤

1
|γ |

κ(p, N )∥∇u∥
p
L p(RN )

. (3-8)

Since u = 0 in RN
\ B, if (x, y) ∈ Eλ,γ /p[u] ∩ ((RN

\ B̃) × RN ) then y ∈ B. Therefore

lim sup
λ↘0

λpνγ

(
Eλ,γ /p[u] ∩ ((RN

\ B̃) × RN )
)
≤ lim sup

λ↘0
λp

∫
B

∫
RN \B̃

|x − y|
γ−N dx dy = 0.

This finishes the proof of part (ii). □

In dimension N = 1, when γ < −1, one can also weaken the hypothesis u ∈ C1
c (R) in Lemma 3.3 to

u ∈ C1(R) and u′ is compactly supported:

Lemma 3.5. Suppose u ∈ C1(R), u′ is compactly supported, and 1 ≤ p < ∞. If γ < −1 then

lim sup
λ↘0

λpνγ (Eλ,γ /p[u]) ≤
κ(p, N )

|γ |
∥u′

∥
p
L p(R).
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Proof. Let supp(u′) ⊂ B := (−β, β). By (3-8) we have

lim sup
λ↘0

νγ (Eλ,γ /p[u] ∩ (−2β, 2β) × R) ≤
1

|γ |
κ(p, 1)∥u′

∥
p
L p(R).

Moreover, since u is constant on (β, ∞) and constant on (−∞, −β), if (x, y) ∈ Eλ,γ /p[u] and x < −2β

then y > −β, and if (x, y) ∈ Eλ,γ /p[u] and x > 2β then y < β. Since γ < −1,

νγ (Eλ,γ /p[u] ∩ (R \ (−2β, 2β)) × R) ≤

∫
∞

2β

∫ β

−∞

(x − y)γ−1 dy dx +

∫
−2β

−∞

∫
∞

−β

(y − x)γ−1 dy dx < ∞.

We conclude
lim sup

λ↘0
λpνγ (Eλ,γ /p[u] ∩ (R \ (−2β, 2β)) × R) = 0. □

3D. Upper bounds for lim sup λ pνγ (Eλ,γ / p[u]), for general Ẇ1, p functions. Let N ≥ 1, 1 ≤ p < ∞

and u ∈ Ẇ 1,p(RN ). In light of Lemma 3.2, to prove the limiting relations (1-7) and (1-8) in Theorem 1.1,
we need only show that

lim sup
λ→∞

λpνγ (Eλ,γ /p[u]) ≤
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

(3-9)

if γ > 0 and

lim sup
λ↘0

λpνγ (Eλ,γ /p[u]) ≤
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

(3-10)

if γ < 0 and p > 1, or γ < −1 and p = 1. Lemma 3.3(i)–(ii) asserts that these desired inequalities hold
for functions in C1

c (RN ). When N ≥ 2 or p > 1, a general Ẇ 1,p(RN ) function can be approximated in
Ẇ 1,p(RN ) by functions in C1

c (RN ); by [Hajłasz and Kałamajska 1995], there exists a sequence {un} in
C∞

c (RN ) such that limn→∞ ∥∇(un −u)∥L p(RN ) = 0. If further γ > 0, or γ < 0 and p > 1, or γ < −1 and
p = 1, then by parts (i) of Theorems 1.3 and 1.4 (proved in Section 2), we have

sup
λ>0

λpνγ (Eλ,γ /p[un − u]) ≤ C p
N ,p,γ ∥∇(un − u)∥

p
L p(RN )

. (3-11)

It follows that, for every n and every δ ∈ (0, 1),

lim sup
λ→∞

λpνγ (Eλ,γ /p[u]) ≤ lim sup
λ→∞

λpνγ (E(1−δ)λ,γ /p[un]) + sup
λ>0

λpνγ (Eδλ,γ /p[un − u])

≤
κ(p, N )

|γ |(1 − δ)
∥∇un∥

p
L p(RN )

+

C p
N ,p,γ ∥∇(un − u)∥

p
L p(RN )

δ p (3-12)

if γ > 0, and a similar inequality holds with lim supλ→∞ replaced by lim supλ↘0 if γ < 0, p > 1 or
γ < −1, p = 1. Letting first n → ∞ and then δ → 0, we get the desired conclusions (3-9) and (3-10)
under the corresponding conditions on γ and p.

It remains to tackle the case N = p = 1, in which case we only need to prove (3-9) when γ > 0 and
(3-10) when γ < −1. Using (2-11), we approximate u by finding a sequence {un} in C∞(R) so that u′

n

are compactly supported for each n, and limn→∞ ∥u′
n − u′

∥L1(R) = 0. Since the desired inequalities hold
for un in place of u by Lemma 3.3(iii) and Lemma 3.5, and since part (i) of Theorem 1.4 applies to give
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(3-11) when γ > 0 or γ < −1, our earlier argument in (3-12) can be repeated to yield (3-9) when γ > 0
and (3-10) when γ < −1. This completes our proof of parts (a) and (b) of Theorem 1.1.

3E. Conclusion of the proof of Theorem 1.1. In Section 3D we proved parts (a) and (b) of Theorem 1.1.
The lower bound for the lim inf in part (c) has been established in Lemma 3.2(ii), and the limiting equality
for u ∈ C1

c (RN ) when p = 1 and −1 ≤ γ < 0 follows by combining that with the upper bound for the
lim sup in part (ii) of Lemma 3.3. The proof of the negative result in part (c) of the theorem (generic
failure for p = 1, −1 ≤ γ < 0) will be given in Proposition 6.6 below. □

3F. On limit formulas for ḂV(R)-functions: the proof of Proposition 1.2. When p = 1, Poliakovsky
[2022] asked whether (1-7) still holds for u ∈ ḂV(RN ) instead of Ẇ 1,1(RN ) if γ = N. More generally,
one may wonder whether it is possible that, for all u ∈ ḂV(RN ), one has

lim
λ→∞

λνγ (Eλ,γ [u]) =
κ(1, N )

|γ |
∥∇u∥M when γ > 0, (3-13)

lim
λ→0+

λνγ (Eλ,γ [u]) =
κ(1, N )

|γ |
∥∇u∥M when γ < 0. (3-14)

We show that this is not the case.
First, when −1 ≤ γ < 0, Theorem 1.8(i) (proved in Proposition 6.3 below) shows that even if

u ∈ Ẇ 1,1(RN ), it may happen that limλ→0+ λνγ (Eλ,γ [u]) = ∞. So (3-14) cannot hold for all u ∈ ḂV(RN )

for such γ .
The following lemma provides examples of failure of (3-13) and (3-14) when γ ∈ R \ [−1, 0], since

|γ + 1| ̸= |γ | unless γ = −
1
2 :

Lemma 3.6. Suppose N ≥ 1 and u = 1�, where � is any bounded convex domain in RN with smooth
boundary. Then u ∈ ḂV(RN ) and

lim
λ→∞

λνγ (Eλ,γ [u]) =
κ(1, N )

|γ + 1|
∥∇u∥M for all γ > −1,

while
lim

λ→0+

λνγ (Eλ,γ [u]) =
κ(1, N )

|γ + 1|
∥∇u∥M for all γ < −1.

Proof. First consider the case N = 1. If u = 1[0,∞) (so that ∥u′
∥M(R) = 1), then, for every γ ∈ R \ {−1}

and λ > 0, one has

νγ (Eλ,γ [u]) = 2νγ ({(x, y) ∈ R : x ≥ 0, y < 0, |x − y|
−(γ+1)

≥ λ}) =
2

|γ + 1|

1
λ
, (3-15)

which follows from a change of variables s = x − y, t = x + y: when γ > −1, one has

νγ (Eλ,γ [u]) =

∫ λ−1/(γ+1)

0

∫ s

−s
dt sγ−1 ds = 2

∫ λ−1/(γ+1)

0
sγ ds =

2
γ + 1

1
λ
,

while when γ < −1, one has

νγ (Eλ,γ [u]) =

∫
∞

λ−1/(γ+1)

∫ s

−s
dt sγ−1 ds = 2

∫
∞

λ−1/(γ+1)

sγ ds =
2

|γ + 1|

1
λ
.
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A similar calculation shows that if u = 1I is a characteristic function of a bounded open interval (so that
∥u′

∥M(R) = 2), then

lim
λ→∞

λνγ (Eλ,γ [u]) =
2

|γ + 1|
∥u′

∥M(R) for all γ > −1, (3-16)

while

lim
λ→0+

λνγ (Eλ,γ [u]) =
2

|γ + 1|
∥u′

∥M(R) for all γ < −1; (3-17)

we also have

sup
λ>0

λνγ (Eλ,γ [u]) ≤
2

|γ + 1|
∥u′

∥M(R) for all γ ∈ R \ {−1}. (3-18)

Now consider the case N ≥ 2. Let � be a bounded convex domain in RN with smooth boundary and
u = 1�. Then u ∈ ḂV(RN ) with ∥∇u∥M = LN−1(∂�). The method of rotation shows

λνγ (Eλ,γ [u]) =
1
2

∫
SN−1

∫
ω⊥

λνγ (Eλ,γ [uω,x ′]) dx ′ dω,

where uω,x ′(t) := u(x ′
+ tω) for ω ∈ SN−1 and x ′

∈ ω⊥. Note that ∥u′

ω,x ′∥M(R) ≤ 2 for all ω ∈ SN−1 and
all x ′

∈ ω⊥, since � is convex and every line only meets ∂� at at most two points. Thus (3-16), (3-18)
and the dominated convergence theorem allow one to show that

lim
λ→∞

λνγ (Eλ,γ [u]) =
1

|γ + 1|

∫
SN−1

∫
ω⊥

∥u′

ω,x ′∥M(R) dx ′ dω for all γ > −1,

and using (3-17) in place of (3-16) we obtain the same conclusion with limλ→∞ replaced by limλ→0+ if
γ < −1. It remains to observe that∫

SN−1

∫
ω⊥

∥u′

ω,x ′∥M(R) dx ′ dω = κ(1, N )∥∇u∥M. (3-19)

This holds by Fubini’s theorem if u = 1� is replaced by uε := u ∗ ρε, where ρε is a suitable family of
mollifiers, because the left-hand side is then just∫

SN−1

∫
ω⊥

∫
R

∣∣∣ d
dt

uε(x ′
+ tω)

∣∣∣ dt dx ′ dω =

∫
SN−1

∫
RN

|ω · ∇uε(x)| dx dω,

which equals κ(1, N )∥∇uε∥L1(RN ). One then just needs to let ε → 0 to obtain (3-19): in fact, a standard
argument shows that

lim
ε→0+

∥∇uε∥L1(RN ) = ∥∇u∥M(RN ).

so it remains to prove that

lim
ε→0+

∫
SN−1

∫
ω⊥

∫
R

∣∣∣ d
dt

uε(x ′
+ tω)

∣∣∣ dt dx ′ dω =

∫
SN−1

∫
ω⊥

∥u′

ω,x ′∥M(R) dx ′ dω. (3-20)

But for every ω ∈ SN−1, and almost every x ′
∈ ω⊥ (as long as t 7→ x ′

+ tω parametrizes a line Lω,x ′ that
is either disjoint from �, or intersects ∂� transversely at two different points), we have

lim
ε→0+

∫
R

∣∣∣ d
dt

uε(x ′
+ tω)

∣∣∣ dt = ∥u′

ω,x ′∥M(R). (3-21)
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The validity of (3-21) is clear if Lω,x ′ does not intersect �, while if Lω,x ′ intersects ∂� transversely at
two different points, then we can choose a coordinate system so that ω = (0, . . . , 0, 1), and assume that
for some open neighborhood U of x ′ in ω⊥, the intersection of U × Lω,x ′ with � takes the form

{(y′, yN ) : y′
∈ U, φ1(y′) < yN < φ2(y′)}

for some smooth functions φ1 and φ2 of y′
∈ U. Then, for ε > 0 sufficiently small,∫

R

∣∣∣ d
dt

uε(x ′
+ tω)

∣∣∣ dt =

∫
R

∣∣∣∣∫
RN

1�(y)∂N ρε(x ′
− y′, t − yN ) dy

∣∣∣∣ dt

=

∫
R

∣∣∣∣− ∫
RN

1φ1(y′)<yN <φ2(y′)
∂

∂yN
[ρε(x ′

− y′, t − yN )] dy
∣∣∣∣ dt

=

∫
R

∣∣∣∣∫
RN−1

ρε(x ′
− y′, t − φ1(y′)) − ρε(x ′

− y′, t − φ2(y′)) dy′

∣∣∣∣ dt

=

∫
R

(∫
RN−1

ρε(x ′
− y′, t − φ1(y′)) dy′

+

∫
RN−1

ρε(x ′
− y′, t − φ2(y′)) dy′

)
dt

= 2
∫

RN−1

∫
R

ρε(x ′
− y′, t) dt dy′

= 2 = ∥u′

ω,x ′∥M(R).

This proves (3-21), and then the dominated convergence theorem allows one to conclude the proof
of (3-20). □

Remark. The identity (3-19) for u = 1� can be derived from Crofton’s formula for rather general (not
necessarily convex) domains �. See [Federer 1969, Chapter 3.2.26], which showed that when ∂� is
rectifiable, then its (N−1)-dimensional Hausdorff measure HN−1(∂�) is equal to I N−1

1 (∂�), where
I N−1

1 (∂�) is given by [Federer 1969, Chapter 2.10.15] as

1
β1(N , N − 1)

∫
p∈O∗(N ,N−1)

∫
y∈RN−1

N (p|∂�, y) dy dp;

here O∗(N , N −1) is the space of all orthogonal projections p from RN onto RN−1, dp is the right-O(N )-
invariant measure on O∗(N , N − 1) normalized so that

∫
O∗(N ,N−1)

dp = 1, N (p|∂�, y) is the number of
points x ∈ ∂� so that px = y, and

β1(N , N − 1) =
0(N/2)

0((N + 1)/2)0(1/2)

according to [Federer 1969, Chapter 3.2.13]. It follows that, for u = 1�,∫
SN−1

∫
ω⊥

∥u′

ω,x ′∥M(R) dx ′ dω = HN−1(SN−1)

∫
p∈O∗(N ,N−1)

∫
y∈RN−1

N (p|∂�, y) dy dp

=
2π N/2

0(N/2)
β1(N , N − 1)HN−1(∂�)

=
2π (N−1)/2

0((N + 1)/2)
∥∇u∥M = κ(1, N )∥∇u∥M,

as asserted in (3-19).
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4. From weak-type bounds on quotients to Ẇ1, p and ḂV

In this section we complete the proofs of Theorems 1.3 and 1.4 proving part (ii) of these theorems. We
use as a key tool the BBM formula discovered in [Bourgain et al. 2001] (see also [Dávila 2002] for
additional information for the BV case), in a way that is reminiscent of the proof of [Nguyen 2006,
Theorem 2], and we apply duality for Lorentz spaces to control the double integral arising in the BBM
formula. The BBM formula stated in [Bourgain et al. 2001] is quite flexible, involving a bounded
smooth domain � and a sequence of nonnegative radial mollifiers ρn(|x |), with

∫
∞

0 ρn(r)r N−1 dr = 1
and limn→∞

∫
∞

δ
ρn(r)r N−1 dr = 0 for every δ > 0; we will apply it in the case when � = BR , the ball of

radius R centered at 0, and ρn(r) = sn p(2R)−sn pr−N+sn p1[0,2R](r), where {sn} is a sequence of positive
numbers tending to 0. As a result, we conclude that if R > 0, 1 ≤ p < ∞, u ∈ L p(BR) and

lim inf
s→0+

s
∫∫

BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy < ∞,

then for p = 1 we have u ∈ ḂV(BR) with ∥∇u∥M(BR) being bounded by κ(1, N ) times the above liminf,
and, for 1 < p < ∞ we have u ∈ Ẇ 1,p(BR) and ∥∇u∥L p(BR) being bounded by κ(p, N )/p times the
above liminf. The assumption u ∈ L p(BR) can easily be relaxed to u ∈ L1(BR), via an observation of
Stein as explained in [Brezis 2002, proof of Theorem 2]: if u ∈ L1(BR) and the above liminf is finite
for some 1 < p < ∞, then, for any δ > 0 and any ε ∈ (0, δ), we may consider uε := u ∗ φε(x), where
φε(x) := ε−N φ(ε−1x) and φ ∈ C∞

c (B1) is nonnegative and has integral 1. Then uε is C∞ on the closure
of the ball BR−δ, so the above formulation of BBM applies, and ∥∇uε∥L p(BR−δ) is uniformly bounded
independent of ε ∈ (0, δ); indeed Jensen’s inequality implies∫∫

BR−δ×BR−δ

|uε(x) − uε(y)|p

|x − y|N+p−sp dx dy ≤

∫∫
BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy

for every ε. This shows that a subsequence of {∇uε} converges weakly in L p(BR−δ) to the distributional
gradient ∇u on BR−δ, and a desired bound on ∥∇u∥L p(BR−δ) follows for every δ > 0.

Suppose now N ≥ 1, 1 ≤ p < ∞, γ ∈ R, u ∈ L1
loc(R

N ) and Qγ /pu ∈ L p,∞(R2N , νγ ). Let

A := sup
R>0

lim inf
s→0+

s
∫∫

BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy. (4-1)

Suppose A is finite. If p = 1, then the BBM formula above implies u ∈ ḂV(BR) for every R > 0,
with ∥∇u∥M(BR) ≤ κ(1, N )A independent of R; as a result, u ∈ ḂV(RN ), with ∥∇u∥M(RN ) ≤ κ(1, N )A.
Similarly, if 1 < p < ∞, the above BBM formula (applicable for u ∈ L1

loc(R
N )) implies u ∈ Ẇ 1,p(RN ),

with ∥∇u∥L p(RN ) ≤ (κ(1, N )A/p)1/p.
It remains to prove that A < ∞. By considering truncations of u we may assume additionally that

u ∈ L∞(RN ); the reduction is based on the pointwise bound

Qγ /pun(x, y) ≤ Qγ /pu(x, y), where un(x) =

{
u(x) if |u(x)| < n,

nu(x)/|u(x)| if |u(x)| ≥ n.
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Using the definition of weak derivative we see by a limiting argument that the conclusion supn ∥∇un∥p ≤C
implies ∥∇u∥p ≤ C if p > 1 and supn ∥∇un∥M ≤ C implies ∥∇u∥M ≤ C .

In order to establish our estimate for bounded functions we will use Lorentz duality in the following
form: if F, G are measurable functions on R2N, then, for any 1 < q < ∞, we have∫∫

RN ×RN
F(x, y)G(x, y) dνγ ≤ q ′

[F]Lq,∞(R2N ,νγ )[G]Lq′,1(R2N ,νγ ), (4-2)

where 1/q + 1/q ′
= 1,

[F]Lq,∞(R2N ,νγ ) := sup
λ>0

λνγ ({|F | > λ})1/q
= sup

t>0
t1/q F∗(t),

[G]Lq′,1(R2N ,νγ ) :=

∫
∞

0
νγ ({|G| > λ})1/q ′

dλ =
1
q ′

∫
∞

0
t1/q ′

G∗(t) dt
t

;

here F∗(t) := inf{s > 0 : νγ ({|F | > λ}) ≤ s} is the nonincreasing rearrangement of F, and similarly
for G∗(t); see [Hunt 1966; Stein and Weiss 1971]. Indeed, (4-2) follows by noticing that∫∫

RN ×RN
F(x, y)G(x, y) dνγ ≤

∫
∞

0
F∗(t)G∗(t) dt =

∫
∞

0
[t1/q F∗(t)][t1/q ′

G∗(t)] dt
t

,

which is clearly ≤ q ′
[F]Lq,∞(R2N ,νγ )[G]Lq′,1(R2N ,νγ ).

First we consider the case γ > 0. For sufficiently small s > 0, define

θ :=
s

1 + γ /p

so that θ ∈ (0, 1) and p − sp = p(1 − θ)(1 + γ /p) − γ . Then, for every R > 0,∫∫
BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy =

∫∫
RN ×RN

(Qγ /pu(x, y))p(1−θ)(|u(x) − u(y)|1BR×BR (x, y))pθ dνγ

≤
1
θ
[(Qγ /pu)p(1−θ)

]L1/(1−θ),∞(R2N ,νγ )[|u(x) − u(y)|pθ
]L1/θ,1(BR×BR ,νγ )

by (4-2). But

[(Qγ /pu)p(1−θ)
]L1/(1−θ),∞(R2N ,νγ ) = [Qγ /pu]

p(1−θ)

L p,∞(R2N ,νγ )

and
[|u(x) − u(y)|pθ

]L1/θ,1(BR×BR,νγ ) ≤ (2∥u∥L∞(RN ))
pθ

[1BR×BR ]L1/θ,1(RN ×RN ,νγ )

= (2∥u∥L∞(RN ))
pθνγ (BR × BR)θ ,

from which it follows that

s
∫∫

BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy ≤
s
θ
[Qγ /pu]

p(1−θ)

L p,∞(R2N ,νγ )
(2∥u∥L∞(RN ))

pθνγ (BR × BR)θ .

Furthermore, since γ > 0, we have

νγ (BR × BR) ≤ |BR|

∫
B2R

1
|h|N−γ

dh < ∞.
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Recall θ = s/(1 + γ /p). Thus as s → 0+, we have

lim sup
s→0+

s
∫∫

BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy ≤

(
1 +

γ

p

)
[Qγ /pu]

p
L p,∞(R2N ,νγ )

< ∞.

Since this upper bound holds uniformly over all R > 0, this concludes the argument for the case γ > 0.
Next we turn to the case γ ≤ 0. We then observe that, for 0 < s < 1 and every R > 0,∫∫
BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy

=

∫∫
RN ×RN

(Qγ /pu(x, y))p(1−s/2)(|u(x) − u(y)||x − y|
1−γ /p1BR×BR )ps/2 dνγ

≤
2
s
[(Qγ /pu)p(1−s/2)

]L1/(1−s/2),∞(R2N ,νγ )[(|u(x) − u(y)||x − y|
1−γ /p)ps/2

]L2/s,1(BR×BR ,νγ ).

Again
[(Qγ /pu)p(1−s/2)

]L1/(1−s/2),∞(R2N ,νγ ) = [Qγ /pu]
p(1−s/2)

L p,∞(R2N ,νγ )

and

[(|u(x) − u(y)||x − y|
1−γ /p)ps/2

]L2/s,1(BR×BR,νγ )

≤ (2∥u∥L∞(RN ))
ps/2

[|x − y|
(p−γ )s/2

]L2/s,1(BR×BR,νγ ). (4-3)

We will show that
lim sup

s→0+

[|x − y|
(p−γ )s/2

]L2/s,1(BR×BR ,νγ ) ≤ 1 −
γ

p
(4-4)

when γ ≤ 0. We then see that

lim sup
s→0+

s
∫∫

BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy ≤ 2
(

1 −
γ

p

)
[Qγ /pu]

p
L p,∞(R2N ,νγ )

,

which concludes the argument in this case since this bound is uniform in R > 0.
It remains to prove (4-4) when γ ≤ 0. Note that in this case p−γ > 0, so |x − y|

(p−γ )s/2
≤ (2R)(p−γ )s/2

on BR × BR . Thus

[|x − y|
(p−γ )s/2

]L2/s,1(BR×BR,νγ ) =

∫ (2R)(p−γ )s/2

0
νγ {(x, y) ∈ BR × BR : |x − y|

(p−γ )s/2 > λ}
s/2 dλ.

If γ < 0, then

νγ {(x, y) ∈ BR × BR : |x − y|
(p−γ )s/2 > λ} ≤ |BR|

∫
|h|>λ2/(s(p−γ ))

1
|h|N−γ

dh ≤ σN−1|BR|
1

|γ |
λ2γ /(s(p−γ )),

where σN−1 is the surface area of SN−1. Hence in this case,

[|x − y|
(p−γ )s/2

]L2/s,1(BR×BR,νγ ) ≤

(
σN−1|BR|

1
|γ |

)s/2∫ (2R)(p−γ )s/2

0
λγ /(p−γ ) dλ

=

(
1 −

γ

p

)(
σN−1|BR|

1
|γ |

)s/2

(2R)ps/2.
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(Here we used γ /(p − γ ) = −1/(1 − γ /p) ∈ (−1, 0) whenever γ < 0.) This proves (4-4) when γ < 0.
Next, suppose γ = 0. Then

[|x − y|
(p−γ )s/2

]L2/s,1(BR×BR,νγ ) =

∫ (2R)ps/2

0
ν0{(x, y) ∈ BR × BR : |x − y|

ps/2 > λ}
s/2 dλ

≤

∫ (2R)ps/2

0

(
|BR|

∫
λ2/(sp)≤|h|≤2R

1
|h|N dh

)s/2

dλ

=

∫ (2R)ps/2

0

(
|BR|ωN−1

2
ps

log
(

(2R)ps/2

λ

))s/2

dλ

= (2R)ps/2
∫ 1

0

(
|BR|ωN−1

2
ps

log
(

1
λ

))s/2

dλ,

which shows (4-4) remains valid when γ = 0 by the dominated convergence theorem. □

5. Finiteness of ν0(Eλ,0[u]) and the Lipschitz norm

In this section we prove Theorem 1.5, which we put in the following more precise form.

Proposition 5.1. Let u be locally integrable on RN and ∇u ∈ L1
loc(R

N ). Then

ν0(Eλ,0[u]) =

{
0 if λ > ∥∇u∥∞,

∞ if λ < ∥∇u∥∞.

Proof. First assume ∇u ∈ L∞ and λ > ∥∇u∥∞. Then for every h ∈ RN we have |u(x +h)−u(x)|/|h| ≤ λ

for almost every x ∈ RN. This immediately implies ν0(Eλ,0[u]) = 0.
For the more substantial part assume λ < ∥∇u∥∞, where ∥∇u∥∞ may be finite or infinite. We need to

show that ν0(Eλ,0[u]) = ∞. We pick λ1, λ2 such that

λ < λ1 < λ2 < ∥∇u∥∞.

Let BR = {x ∈ RN
: |x | < R} and assume that R > 1 is so large that ∥∇u∥L∞(BR) > λ2. Let χ ∈ C∞

c

such that χ(x) = 1 in a neighborhood of B2R and set u◦ = χu. Then ∇u◦ = ∇u as integrable functions
on B2R . There is a measurable set F0 ⊂ BR of positive measure such that |∇u(x)| > λ2 for all x ∈ F0.

Fix 0 < ε ≪ 1 − λ1/λ2. We now consider the set Sε of all spherical balls S ⊂ SN−1 with positive
radius and the property that ⟨θ1, θ2⟩ > 1 − ε for all θ1, θ2 ∈ S. By pigeonholing there exists a spherical
ball S ∈ Sε and a Lebesgue measurable subset F ⊂ F0 such that LN (F) > 0 and ∇u(x)/|∇u(x)| ∈ S for
all x ∈ F. For the remainder of the argument we fix this spherical ball S; we denote by σ(S) its spherical
measure.

We first note that, for |h| ≤ 1 and for almost every |x | ≤ R,

u(x + h) − u(x)

|h|
=

u◦(x + h) − u◦(x)

|h|
=

〈
h
|h|

,

∫ 1

0
∇u◦(x + sh) ds

〉
. (5-1)
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Secondly since the translation operator is continuous in the strong operator topology of L1 we see that
there exists δ0 < 1 such that

∥∇u◦( · + w) − ∇u◦∥L1(RN ) <
LN (F)(λ1 − λ)

10
for |w| ≤ δ0. (5-2)

In what follows we let δ ≪ δ0 and set

S(δ, δ0) =

{
h ∈ RN

: δ ≤ |h| ≤ δ0,
h
|h|

∈ S
}
.

Let

E0 =

{
(x, h) : x ∈ F, h ∈ S(δ, δ0),

|u(x + h) − u(x)|

|h|
> λ

}
so that (x, h) ∈ E0 implies (x, x + h) ∈ Eλ,0[u]. We then have by (5-1)

ν0(Eλ,0[u]) ≥ ν0(E0) = ν0

({
(x, h) : x ∈ F, h ∈ S(δ, δ0),

∣∣∣∣〈 h
|h|

,

∫ 1

0
∇u◦(x + sh) ds

〉∣∣∣∣ > λ

})
≥ ν0(E1) − ν0(E2), (5-3)

where

E1 =

{
(x, h) : x ∈ F, h ∈ S(δ, δ0),

∣∣∣∣〈 h
|h|

, ∇u◦(x)

〉∣∣∣∣ > λ1

}
,

E2 =

{
(x, h) : x ∈ F, h ∈ S(δ, δ0),

∫ 1

0
|∇u◦(x + sh) − ∇u◦(x)| ds > λ1 − λ

}
.

Indeed, if (x, h) /∈ E0 ∪ E2 then∣∣∣∣〈 h
|h|

, ∇u◦(x)

〉∣∣∣∣ ≤

∣∣∣∣〈 h
|h|

,

∫ 1

0
∇u◦(x + sh) ds

〉∣∣∣∣ + ∫ 1

0
|∇u◦(x + sh) − ∇u◦(x)| ds,

which is then ≤ λ1, so (x, h) /∈ E1, establishing E1 ⊂ E0 ∪ E2 and thus (5-3).
The set E1 does not change if we replace u◦ by u in its definition. Since〈

h
|h|

, ∇u(x)

〉
≥ (1 − ε)|∇u(x)| > (1 − ε)λ2 > λ1 for x ∈ F,

h
|h|

∈ S,

we get

ν0(E1) ≥

∫
F

dx
∫

S(δ,δ0)

dh
|h|N = LN (F)σ (S) log

(
δ0

δ

)
.

Moreover, using (5-2) and Chebyshev’s inequality we see that

ν0(E2) ≤

∫
S(δ,δ0)

∫ 1
0 ∥∇u◦( · + sh) − ∇u◦∥L1(RN ) ds

λ1 − λ

dh
|h|N

≤

∫
S(δ,δ0)

LN (F)(λ1 − λ)/10
λ1 − λ

dh
|h|N =

LN (F)

10
σ(S) log

(
δ0

δ

)
,
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and hence putting pieces together we obtain for δ < δ0

ν0(Eλ,0[u]) ≥ ν0(E1) − ν0(E2) >
LN (F)

2
σ(S) log

(
δ0

δ

)
.

Here δ < δ0 was arbitrary and by letting δ → 0 we conclude that ν0(Eλ,0[u]) = ∞. □

We now give a more precise version of Example 1.7.

Lemma 5.2. Let � ⊂ RN be a bounded domain with Lipschitz boundary and let u = 1�. Then u ∈

BV(RN ) \ Ẇ 1,1(RN ), with

ν0(Eλ,0[u]) ≤ C� ×

{
log(2/λ) if λ ≤ 1,

λ−1 if λ > 1;

in particular we have supλ>0 λ ν0(Eλ,0[u]) < ∞.

Proof. Let
E(r, λ) = {(x, y) ∈ Eλ,0[u] : r ≤ |x − y| ≤ 2r}.

We begin with the observation that rλ ≤ 2 if ν0(E(r, λ)) > 0. Furthermore, if (x, y) ∈ E(r, λ) for
some y ∈RN, then x belongs to the 2r -neighborhood of ∂�. The Lebesgue measure of such a neighborhood
is O(r) if r ≤ r0, where r0 is some positive constant depending on � (because the boundary of a bounded
Lipschitz domain can be covered by finitely many Lipschitz graphs, and the 2r-neighborhood of such
graphs can be approximated by a union of O(r) neighborhoods of suitable hyperplanes). Hence for r ≤ r0

we have ν0(E(r, λ)) ≤ Cr if r ≤ 2/λ and ν0(E(r, λ)) = 0 if r > 2/λ. As a result, if 2/λ ≤ r0 we get

ν0(Eλ,0[u]) ≤

∑
j∈Z:2 j ≤2/λ

ν0(E(2 j , λ)) ≲ λ−1

and if 2/λ > r0 we get

ν0(Eλ,0[u]) ≤

∑
j∈Z:2 j ≤r0

ν0(E(2 j , λ))+ 2
∫

�

∫
r0≤|x−y|≤2/λ

dy
|x − y|N dx ≲ 1 + log(λ−1). □

6. When the upper bound (1-15) fails

In this section we make various constructions demonstrating the failure of (1-15) in the range −1 ≤ γ < 0,
and give the proof of Theorem 1.8. We first establish:

Proposition 6.1. Suppose N ≥ 1 and −1 ≤ γ < 0.

(i) For every m > 0, there exists u ∈ C∞
c (RN ) such that

νγ (E1,γ [u]) > m∥∇u∥L1(RN ). (6-1)

(ii) There exists C = C(N , γ ) > 0 and p0 = p0(N , γ ) > 1 such that, for all 1 < p < p0,

sup
u∈C∞

c (RN )
∥∇u∥L p ≤1

νγ (E1,γ /p[u]) ≥ C
p

p − 1
. (6-2)
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6A. Proof of Proposition 6.1: the case γ = −1. Here we may choose, for m > 1,

vm = 2 ηm ∗ 1B1 ∈ C∞

c (RN ), (6-3)

where ηm(x) := 2m N η(2m x) for some nonnegative, radially decreasing η ∈ C∞
c (B1), with

∫
RN η = 1.

Then when 1 ≤ p < ∞ and m ≤ p′
= p/(p − 1) (which is no restriction on m if p = 1), we have

∥∇vm∥p ≲2m/p′

≲1, while E1,−1/p[vm]⊇{|x |≤1−2−m, 1+2−m
≤|y|≤2} (because for (x, y) in the latter

set, |vm(x)−vm(y)|= 2 and |x −y|
1−1/p

≤ 21−1/p, which means |Q−1/pvm(x, y)|≥ 2/21−1/p
= 21/p > 1).

Hence
ν−1(E1,−1/p[vm]) ≥

∫
|x |≤1−2−m

∫
1+2−m≤|y|≤2

|x − y|
−1−N dx dy

≥ cN

∫
|x |≤1−2−m

(1 + 2−m
− |x |)−1

− (2 − |x |)−1 dx ≥ c′

N m.

This proves both (i) and (ii) of Proposition 6.1 in the case γ = −1. □

6B. The case −1 < γ < 0: examples of Cantor–Lebesgue-type on the real line. We now discuss some
examples related to self-similar Cantor sets of dimension β = 1 + γ . Recall the definition of νγ , Qγ in
(1-4), (1-5) and observe the behavior under dilations:

νγ (t E) = t1+γ νγ (E). (6-4)
We have:

Lemma 6.2. Let −1 < γ < 0. There exist constants cγ > 0, Cγ > 0, and a sequence of functions
gm ∈ C∞(R), with gm(x) = 0 for x ≤ 0 and gm(x) = 1 for x ≥ 1, such that, for all 1 ≤ p < ∞,

∥g′

m∥p ≤ cγ 2m|γ |/(1+γ )(1−1/p) (6-5)
and if

m − 1 ≤
γ + 1
|γ |

p
p − 1

,

then
νγ

({
(x, y) ∈ [0, 1]

2
: |Qγ /pgm(x, y)| >

1
4

})
≥

m
C γ

. (6-6)

Proof. For −1 < γ < 0 let
ρ = 2−1/(1+γ ) (6-7)

so that 0 <ρ < 1
2 . We construct gm such that its derivative is supported on the m-th step of the construction

of symmetric Cantor sets of dimension β = 1 + γ = log 2/log(1/ρ), with an equal variation on each of
its 2m components [Mattila 2015, Chapter 8.1].

Let g0 ∈ C∞(R) be such that 0 ≤ g0 ≤ 1, g0(x) = 0 for x ≤ ρ and g0(x) = 1 for x ≥ 1 − ρ. Set, for
m ∈ N,

gm+1(x) :=
1
2

gm

(
x
ρ

)
+

1
2

gm

(
1 −

1 − x
ρ

)
.

Since ρ < 1
2 , we have, for p ∈ [1, ∞), ∥g′

m+1∥
p
L p(R) = 2 × (2ρ)−pρ∥g′

m∥
p
L p(R), and thus

∥g′

m∥L p(R) = (2ρ)(1/p−1)m
∥g′

0∥L p(R) = 2(1−1/p)m|γ |/(γ+1)
∥g′

0∥L p(R).
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Fix now 1 ≤ p < ∞, and for m ∈ N, λ > 0 define

Am,λ := νγ ({(x, y) ∈ [0, 1]
2
: |Qγ /pgm(x, y)| > λ}).

Our goal is to estimate Am,1/4, which we do by deriving a recursive estimate for Am,λ. We have the
decomposition

Am+1,λ ≥ νγ ({(x, y) ∈ [0, ρ]
2
: |Qγ /pgm+1(x, y)| > λ})

+ νγ ({(x, y) ∈ [1 − ρ, 1]
2
: |Qγ /pgm+1(x, y)| > λ})

+ νγ ({(x, y) ∈ [0, ρ] × [1 − ρ, 1] : |Qγ /pgm+1(x, y)| > λ}). (6-8)

Using the definition of gm+1, (6-7) and (6-4), we compute the first term in the right-hand side of (6-8) as

νγ ({(x, y) ∈ [0, ρ]
2
: |Qγ gm+1(x, y)| > λ})

= νγ ({(ρw, ρz) : (w, z) ∈ [0, 1]
2, |Qγ gm(w, z)| > 2ρ1+γ /pλ})

= ργ+1νγ ({(w, z) ∈ [0, 1]
2
: |Qγ gm(w, z)| > 2|γ |/(p′(γ+1))λ}) =

1
2 Am,sλ, (6-9)

where s := 2ρ1+γ /p
= 2|γ |/(p′(γ+1)), and similarly the second term as

νγ

({
(x, y) ∈ [1 − ρ, 1]

2
: |Qγ gm+1(x, y)| > 1

2

})
=

1
2 Am,sλ. (6-10)

Thus
Am+1,λ ≥ Am,sλ + νγ ({(x, y) ∈ [0, ρ] × [1 − ρ, 1] : |Qγ /pgm+1(x, y)| > λ}),

which iterates to give

Am,1/4 ≥ A0,sm/4 +

m∑
j=1

νγ

({
(x, y) ∈ [0, ρ] × [1 − ρ, 1] : |Qγ /pg j (x, y)| > 1

4 sm− j}).
We drop the first term, and note that as long as

m − 1 ≤
γ + 1
|γ |

p
p − 1

,

we have 1
4 sm− j

≤
1
2 for all j = 1, . . . , m. Moreover, for every x ∈ [0, ρ2

]× [1 − ρ2, 1] and every j ≥ 1,
we have g j (x) ≤

1
4 and g j (y) ≥

3
4 , so |Qγ /pg j (x, y)| > 1

2 . Thus we obtain the desired conclusion

Am,1/4 ≥ mνγ ([0, ρ2
] × [1 − ρ2, 1]) =

m
C γ

. □

6C. Conclusion of the proof of Proposition 6.1. We continue with the case −1 <γ < 0. Let η1 ∈ C∞
c (R)

supported in (−1, 2) such that η1(s) = 1 on
(
−

1
2 , 3

2

)
and 0 ≤ η1(s) ≤ 1 for all s ∈ R.

We split x = (x1, x ′) with x ′
∈ RN−1, where the variable x ′ should simply be dropped in the case N = 1.

Set η(x) =
∏N

i=1 η1(xi ) and define

um(x1, x ′) = 16gm(x1)η(x), (6-11)

where gm is as in Lemma 6.2. Then um ∈ C∞
c (RN ), and if 1 ≤ p < ∞ and

m − 1 ≤
γ + 1
|γ |

p
p − 1

,
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we have ∥∇um∥p ≲ 1. Both parts of Proposition 6.1 will follow, if we can prove that under the same
hypotheses on p and m, we have

νγ (E1,γ /p[um]) ≥ c(N , γ )m − C(N , γ )p. (6-12)

We aim to reduce to the one-dimensional situation in Lemma 6.2 and split Qγ /pum(x, y) as

Qγ /pum(x, y) = 16η(x)
gm(x1) − gm(y1)

|x − y|1+γ /p + 16gm(y1)
η(x) − η(y)

|x − y|1+γ /p = Im(x, y) + IIm(x, y),

so that

νγ (E1,γ /p[um]) ≥

∫∫
x1,y1∈[0,1]

|Im(x,y)+IIm(x,y)|>1

|x − y|
γ−N dx dy

≥

∫∫
x∈[0,1]

N ,y1∈[0,1]

|x1−y1|≥|x ′
−y′

|

|Im(x,y)|>2

|x − y|
γ−N dx dy −

∫∫
|IIm(x,y)|>1

|x − y|
γ−N dx dy. (6-13)

Clearly if B2 is the ball in RN of radius 2 centered at the origin then

|IIm(x, y)| ≤ cN |x − y|
−γ /p(1B2(x) + 1B2(y)),

and it follows immediately (since −γ > 0) that∫∫
|IIm(x,y)|>1

|x − y|
γ−N dx dy ≤ |γ |

−1C(N )p.

For the first term in (6-13), we prove a lower bound and estimate by integrating in y′∫∫
x∈[0,1]

N ,y1∈[0,1]

|x1−y1|≥|x ′
−y′

|

|Im(x,y)|>2

|x − y|
γ−N dx dy ≥

∫∫
x∈[0,1]

N ,y1∈[0,1]

|x1−y1|≥|x ′
−y′

|

|16gm(x1)−16gm(y1)|/|x1−y1|
1+γ /p>4

|x − y|
γ−N dx dy

≥ cN

∫∫
x1,y1∈[0,1]

|Qγ /pgm(x1,y1)|>1/4

|x1 − y1|
γ−1 dx1 dy1,

but by Lemma 6.2 the last expression is bounded below for large m by cN m/Cγ under our hypothesis
on m. This concludes the proof of (6-12). □

For later purposes, note the inequality (6-13) (with p = 1) and the argument that follows proved also
that for all sufficiently large m > m(N , γ ), we have

νγ (E1,γ [um] ∩ ([0, 1] × RN−1)2) ≥ c(N , γ )m. (6-14)

6D. Examples related to Theorems 1.1 and 1.8. We now consider the limit (1-8) in the range −1 ≤ γ < 0
and provide counterexamples for cases where u is no longer required to be a C∞

c function. The following
proposition covers part (i) of Theorem 1.8.

Proposition 6.3. Let −1 ≤ γ < 0. Let s 7→ ω(s) be any decreasing function on [0, ∞), with ω(0) ≤ 1
and ω(s) > 0 for all s ≥ 0. Then there exists a C∞ function u ∈ Ẇ 1,1(RN ) such that

|u(x)| ≤ Cω(|x |) for all x ∈ RN (6-15)
and

lim
λ↘0

λνγ (Eλ,γ [u]) = ∞. (6-16)
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Proof. We consider the case −1 < γ < 0. Let um ∈ C∞
c (RN ) be as in (6-11) and define

fm(x) = um(x1 − 2, x ′) (6-17)

so that fm(x) = 0 if x1 /∈ [1, 4]. Let, for n ∈ N,

Rn = 22n , λn = R−(N+γ )
n ω(Rn+1), m(n) ≥ 4

λn

λn+1
ω(Rn+1)

−1n3. (6-18)

We also assume m(n) > m(N , γ ) so that by (6-14) in Section 6C,

νγ ({(x, y) : x1, y1 ∈ [2, 3], |Qγ fm(n)(x, y)| > 1}) ≥ c(N , γ )m(n) (6-19)

for all n ∈ N. Finally let

u(x) =

∞∑
n=2

ω(Rn+1)

RN−1
n n2

fm(n)

(
x
Rn

)
. (6-20)

Since ∥ fm∥Ẇ 1,1 ≤ C , and ω is bounded, it is easy to see that the sum converges in Ẇ 1,1(RN ), and that u
is in Ẇ 1,1(RN ). Also, the supports of fm(n)(R−1

n · ), namely [Rn, 4Rn]× [−4Rn, 4Rn]
N−1, are disjoint as

n varies, so clearly u ∈ C∞(RN ). Since ∥ fm∥L∞ ≤ C , we have

|u(x)| ≤ ω(Rn+1)R−(N−1)
n n−2 for |x | ≥ Rn,

so |u(x)| ≤ C ′
|x |

−N+1ω(|x |) for |x | ≥ 2. In particular |u(x)| ≤ Cω(|x |).
For λ ∈ ((n + 1)−2λn+1, n−2λn] we estimate

λνγ (Eλ,γ [u]) ≥ (n + 1)−2λn+1νγ (En−2λn,γ [u]) ≥
λn+1

4λn
n−2λnνγ (En),

where En := En−2λn,γ [u]∩ ([2Rn, 3Rn]×RN−1)2. Moreover, for (x, y) ∈ ([2Rn, 3Rn]×RN−1)2, we have

u(x) − u(y) = R1−N
n n−2ω(Rn+1)( fm(n)(R−1

n x) − fm(n)(R−1
n y)),

so

|Qγ u(x, y)| > n−2λn ⇐⇒
| fm(n)(R−1

n x) − fm(n)(R−1
n y)|

|R−1
n x − R−1

n y|1+γ
>

RN+γ
n

ω(Rn+1)
λn = 1,

where the last equality follows from (6-18). Hence rescaling using (6-4) yields

n−2λnνγ (En) = n−2λn Rγ+N
n νγ ({(x, y) : x1, y1 ∈ [2, 3], |Qγ fm(n)(x, y)| > 1})

≥ c(N , γ )m(n)ω(Rn+1)n−2, (6-21)

with c(N , γ ) > 0, by (6-19). Thus we have shown

inf
λ∈((n+1)−2λn+1,n−2λn]

λνγ (Eλ,γ [u]) ≥ c(N , γ )
λn+1

4λn
ω(Rn+1)m(n)n−2

≥ c(N , γ )n,

where for the last inequality we have used our assumption (6-18) on m(n). The assertion follows for
−1 < γ < 0.
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Finally consider the case γ = −1. We now choose vm as in (6-3) and

Rn = 22n , λn = R−(N−1)
n ω(Rn+1), m(n) ≥ 4

λn

λn+1

n3

ω(Rn+1)
. (6-22)

In analogy to (6-20) we now use

u(x) =

∞∑
n=2

ω(Rn+1)

RN−1
n n2

vm(n)

(
x
Rn

)
. (6-23)

Since ω is bounded it is immediate that u ∈ Ẇ 1,1(RN ) and also that |u(x)| ≲ ω(|x |). We need to check
that λν−1(Eλ,−1[u]) → ∞ as λ → 0+. If |x | ≤ Rn(1 − 2m(n)) and |y| ≥ Rn(1 + 2m(n)), then

u(x) − u(y) ≥
ω(Rn+1)

RN−1
n n2

vm(n)

(
x
Rn

)
= 2

ω(Rn+1)

RN−1
n n2

= 2n−2λn > n−2λn,

so (x, y) ∈ En−2λn,−1[u]. Hence we get

n−2λnν−1(En−2λn,−1[u]) ≥ n−2λn

∫∫
|x |≤Rn(1−2m(n))

|y|≥Rn(1+2m(n))

|x − y|
−1−N dx dy

≥ n−2λn RN−1
n

∫∫
|x |≤1−2m(n)

|y|≥1+2m(n)

|x − y|
−1−N dx dy

≥ cN m(n)ω(Rn+1)n−2

(using (6-22) in the last inequality). This, together with our assumption on m(n), implies that

inf
λ∈((n+1)−2λn+1,n−2λn]

λν−1(Eλ,−1[u]) ≥ cN n → ∞

when n → ∞, as desired. □

The next proposition is relevant for part (ii) of Theorem 1.8.

Proposition 6.4. Suppose −1 ≤ γ < 0. Then there exists a compactly supported u ∈ W 1,1(RN ) such that
u is C∞ for x ̸= 0,

|u(x)| ≤
C

|x |N−1[log(2 + |x |−1)]2 (6-24)

and

lim
λ↘0

λνγ (Eλ,γ [u]) = ∞. (6-25)

If in addition N ≥ 2 or −1 < γ < 0 there exists u with the above properties and

νγ (Eλ,γ [u]) = ∞ for all λ > 0. (6-26)

Proof. Consider first the case −1 < γ < 0. We choose for n ∈ N

Rn = 2−2n , m(n) ≥ 22n
, (6-27)
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and with these choices of Rn and m(n) and fm as in (6-17) and (6-11) we define again

u(x) =

∞∑
n=2

1

n2 RN−1
n

fm(n)

(
x
Rn

)
.

The sum converges in W 1,1 to a function supported in [−4, 4]
N. We have |u(x)| ≤ C22n(N−1)n−2 for

0 < x1 ≤ 2−2n; moreover, |x ′
| ≲ |x1| on the support of u. This implies |u(x)| ≤ C ′

[|x |
1−N log(1/|x |)]−2

for small x . Also, because of the choices of Rn , we see that u is smooth away from 0.
Fix λ > 0. Since limn→∞ RN+γ

n n2
= 0, we may choose n0 such that

λRN+γ
n n2

≤ 1 for all n ≥ n0. (6-28)

Now νγ (Eλ,γ [u]) ≥ νγ (Eλ,γ [u]∩([2Rn, 3Rn]×RN−1)2), and again fm(n)(R−1
n · ) is supported in R(n) =

[Rn, 4Rn] × [−4Rn, 4Rn]
N−1. Hence by the same rescaling argument as in (6-21), we obtain

νγ (Eλ,γ [u]) ≥ RN+γ
n νγ ({(x, y) : x1, y1 ∈ [2, 3], |Qγ fm(n)(x, y)| > λRN+γ

n n2
}).

If n ≥ n0 then this gives

νγ (Eλ,γ [u]) ≥ RN+γ
n νγ ({(x, y) : x1, y1 ∈ [2, 3], |Qγ fm(n)(x, y)| > 1})

≥ c(N , γ )m(n)RN+γ
n

by (6-19). Since limn→∞ m(n)RN+γ
n = ∞, by (6-27) we conclude νγ (Eλ,γ [u]) = ∞.

For the case γ = −1 and N ≥ 2, define u as in (6-23) but with the choice of the parameters Rn , m(n) as
in (6-27) to obtain a compactly supported u ∈ W 1,1 satisfying (6-24). We now fix λ > 0 and note that when
N ≥ 2 we have λRN−1

n n2
→ 0 as n → ∞. The above calculation gives ν−1(Eλ,−1[u]) ≥ c(N )m(n)RN−1

n

provided that λRN−1
n n2

≤ 1 and thus the conclusion ν−1(Eλ,−1[u]) = ∞.
Finally, clearly (6-25) follows from (6-26), and the latter was proved if −1 <γ < 0 or N ≥ 2. It remains

to consider the case N = 1, γ = −1. We define u as in the previous paragraph. The above calculation
shows that ν−1(Eλ,−1[u]) ≥ cm(n) provided that λ < 1/n2 which establishes (6-25) in this last case. □

The case N = 1, γ = −1 plays a special role. The following lemma shows that the conclusion (6-26)
in Proposition 6.4 fails in this case.

Lemma 6.5. Let u ∈ Ẇ 1,1(R) be compactly supported. Then ν−1(Eλ,−1[u]) < ∞ for all λ > 0.

Proof. Let u ∈ Ẇ 1,1(R) be compactly supported in [−R, R]. Then given any λ ∈ (0, 1), there exists
δ(λ) > 0 such that

∫
I |u′

| ≤ λ/2 for every interval I ⊂ R with length ≤ δ(λ). As a result, u is uniformly
continuous on R, with supx∈R |u(x + h) − u(x)| ≤ λ/2 for |h| ≤ δ(λ). Thus

ν−1(Eλ,−1[u]) = 2
∫

∞

−∞

∫
h>0

|u(x+h)−u(x)|>λ

dh
h2 dx

≤

∫ 2R

−2R

∫
∞

δ(λ)

dh
h2 dx +

∫
R\[−2R,2R]

∫
|x |+R

|x |−R

dh
h2 dx

≤ 4R(δ(λ))−1
+ 4. □
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6E. Generic failure in W1,1 for the case −1 ≤ γ < 0.

Proposition 6.6. Let −1 ≤ γ < 0, N ≥ 2 or −1 < γ < 0, N ≥ 1. Let

V = { f ∈ W 1,1(RN ) : νγ (Eλ,γ [ f ]) < ∞ for some > 0.} (6-29)

Then V is of first category in W 1,1(RN ), in the sense of Baire.

Let
Uk = {(x, y) ∈ R2N

: 2k−1
≤ |x − y| ≤ 2k

},

�ℓ =

ℓ⋃
k=1−ℓ

Uk .
(6-30)

For the proof of Proposition 6.6 we use an elementary estimate for the intersections Eλ,γ [u] ∩�ℓ.

Lemma 6.7. For all γ ∈ R, u ∈ W 1,1(RN ), ℓ > 0 and �ℓ as in (6-30),

sup
λ>0

λνγ (Eλ,γ [u] ∩�ℓ) ≤ C(N , γ )ℓ∥∇u∥1.

Proof. For u ∈ C1 we use the Lusin–Lipschitz inequality (2-2) to see that

λ

∫∫
Eλ,γ [u]∩Uk

|x − y|
γ−N dx dy ≤ C(γ )λ2kγLN

{x ∈ RN
: M(|∇u|)(x) > c2kγ λ}

≤ C(N , γ )∥∇u∥1

by the Hardy–Littlewood maximal inequality. Now sum in 1 − ℓ ≤ k ≤ ℓ. The extension to general
u ∈ W 1,1 is obtained as in the limiting argument of Section 2C. □

Proof of Proposition 6.6. Let, for m ∈ N and j ∈ Z,

V(m, j) = {u ∈ W 1,1(RN ) : νγ (Eλ,γ [u]) ≤ m for all λ > 2 j
}.

Since λ 7→ νγ (Eλ,γ [u]) is decreasing, we see that V is contained in
⋃

m≥1
⋃

j∈Z V(m, j). To show that V
is of first category in W 1,1(RN ), we need to show that for every m ∈ N, j ∈ Z, the set V(m, j) is nowhere
dense.

We first show that V(m, j) is closed in W 1,1(RN ). Let un ∈ V(m, j) and u ∈ W 1,1(RN ) such that
limn→∞ ∥u − un∥W 1,1(RN ) = 0. It suffices to show that given ε > 0, we have νγ (Eλ,γ [u]) ≤ m + ε for all
λ > 2 j. By the monotone convergence theorem, we have

lim
ℓ→∞

νγ (Eλ,γ [u] ∩�ℓ) = νγ (Eλ,γ [u]),

and it suffices to verify that

νγ (Eλ,γ [u] ∩�ℓ) ≤ m + ε for λ > 2 j , (6-31)

for all ℓ ∈ N. Now let δ > 0 such that (1 − δ)λ > 2 j. Then

νγ (Eλ,γ [u] ∩�ℓ) ≤ νγ (E(1−δ)λ,γ [un] ∩�ℓ) + νγ (Eδλ,γ [u − un] ∩�ℓ)
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and using that un ∈ V(m, j) together with (1 − δ)λ > 2 j, and Lemma 6.7, we see that for λ > 2 j

νγ (Eλ,γ [u] ∩�ℓ) ≤ m + C(N , γ )ℓ
1 + δ

δ2 j ∥∇(un − u)∥1.

Since δ > 0 was arbitrary and since ∥∇(un − u)∥L1(RN ) → 0 by assumption, we obtain (6-31).
To show that the closed set V(m, j) is nowhere dense when −1 ≤ γ < 0, we need to verify that for every

u ∈ V(m, j) and ε1 > 0 there exists f ∈ W 1,1(RN ) such that ∥ f − u∥W 1,1(RN ) < ε1 and f /∈ V(m, j). To
see this we use Proposition 6.4, according to which there exists a compactly supported W 1,1 function f0

for which νγ (Eλ,γ [ f0]) = ∞ for all λ > 0. It is then clear that

f = u +
ε1

2
f0

∥ f0∥W 1,1

satisfies ∥ f − u∥W 1,1 ≤ ε1/2 and also,

νγ (Eλ,γ [ f ]) ≥ νγ

(
E2λ,γ

[
ε1

2
f0

∥ f0∥W 1,1

])
− νγ (Eλ,γ [u]) = ∞

for every λ > 2 j , for all j ∈ Z. The proposition is proved. □

To include a result of generic failure of the limiting relation in the case N = 1, γ = −1 we give

Proposition 6.8. Let −1 ≤ γ < 0. Let

W =
{

f ∈ W 1,1(R) : lim sup
R→0

sup
λ>R

Rνγ (Eλ,γ [ f ]) < ∞
}
.

Then W is of first category in W 1,1, in the sense of Baire.

Proof. Clearly W ⊂ V , where V is defined in (6-29). We define

W(m, j) =
{
u ∈ W 1,1(R) : sup

0<R≤2− j
sup
λ>R

Rνγ (Eλ,γ [u]) ≤ m
}

and note that
W ⊂ ∪ j≥1

⋃
m≥1

W(m, j). (6-32)

The arguments in the proof of Proposition 6.6 that were used to show that the sets V(m, j) are closed in
W 1,1(RN ) also show that the sets W(m, j) are closed in W 1,1(R).

Let u ∈ W(m, j), and let ε1 > 0. By Proposition 6.4 there is f0 ∈ W 1,1(R) such that

lim
λ↘0

λνγ (Eλ,γ [ f0]) = ∞.

We may normalize so that ∥ f0∥W 1,1(R) = 1. Pick R ∈ (0, 2− j
] so that λνγ (Eλ,γ [ f0]) > 16m/ε1 for

λ ≤ 8R/ε1. Let f = u + (ε1/2) f0 so that ∥ f − u∥W 1,1(R) ≤ ε1/2. Moreover if λ = 2R, then λ > R and

Rνγ (Eλ,γ [ f ]) ≥ Rνγ

(
E2λ,γ

[
ε1

2
f0

])
− Rνγ (Eλ,γ [u])

=
ε1

8
8R
ε1

νγ (E8R/ε1,γ [ f0]) − Rνγ (Eλ,γ [u]) >
ε1

8
16m
ε1

− m = m,
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and we see that f /∈ W(m, j). Thus we have shown that W(m, j) is nowhere dense in W 1,1(R). By
(6-32) the proof is concluded. □

7. Perspectives and open problems

7A. Subspaces of Ẇ1,1 and ḂV and related spaces. The failure of the upper bounds for [Qγ u]L1,∞(R2N ,νγ )

for γ ∈ [−1, 0) raises a number of interesting questions. Consider the space ḂV(γ ) consisting of all ḂV
functions satisfying

∥u∥ḂV(γ ) := ∥∇u∥M + sup
λ>0

λνγ (Eλ,γ [u]) < ∞ (7-1)

and the corresponding subspace Ẇ 1,1(γ ) of Ẇ 1,1.

Embeddings. We proved in this paper that for γ /∈ [−1, 0] we have ḂV(γ ) = ḂV and Ẇ 1,1(γ ) = Ẇ 1,1.
It is natural to ask how in the range −1 ≤ γ < 0 the proper subspaces ḂV(γ ) and Ẇ 1,1(γ ) relate to other
families of function spaces, in particular to the Hardy–Sobolev space Ḟ1

1,2, another subspace of Ẇ 1,1.

Triangle inequalities. The spaces Ẇ 1,1(γ ) and ḂV(γ ) are defined via L1,∞-quasinorms, and the space L1,∞

is not normable (unlike L p,∞ for 1 < p < ∞, which is normable [Hunt 1966]). However Theorem 1.4
tells us that Ẇ 1,1(γ ) and ḂV(γ ) are normable for γ /∈ [−1, 0]. Are these spaces normable in the
range γ ∈ [−1, 0)?

Related quasinorms. Consider for 0 < s ≤ 1

∥u∥(p,s,γ ) =

[
u(x) − u(y)

|x − y|γ /p+s

]
L p,∞(R2N ,νγ )

.

It is an obvious consequence of Theorem 1.3 that for s = 1 and fixed p > 1, these expressions define
equivalent (semi/quasi)-norms on C∞

c as γ varies over R\{0}. It would be interesting to find a more direct
proof of this observation which does not involve the relation with Ẇ 1,p. We note that the equivalence for
varying γ breaks down for 0 < s < 1. This result, and more about the spaces for which ∥u∥(p,s,γ ) < ∞

with 0 < s < 1, such as their connection to Besov spaces and interpolation, can be found in [Domínguez
et al. 2023].

7B. Other limit functionals. Our results, combined with the various developments presented in [Brezis
and Nguyen 2018; 2020; Nguyen 2007; 2011], suggest several possible directions of research.

Can one prove a generalization of (1-14), (1-16) where the supremum is replaced by the lim infλ→∞

when γ > 0 and by a lim infλ→0+ when γ < 0? More precisely, for 1 < p < ∞, is there a positive constant
C(N , γ, p) such that, for all u ∈ L1

loc(R
N ),

∥∇u∥
p
L p ≤ C(N , γ, p) lim inf

λ→∞
λpνγ (Eλ,γ /p[u]) if γ > 0, (7-2a)

∥∇u∥
p
L p ≤ C(N , γ, p) lim inf

λ↘0
λpνγ (Eλ,γ /p[u]) if γ < 0, (7-2b)

in the sense that ∥∇u∥L p = ∞ if u ∈ L1
loc \ Ẇ 1,p?
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For p = 1 we can also ask: is there a positive constant C(N , γ ) such that, for all u ∈ L1
loc(R

N ),

∥∇u∥M ≤ C(N , γ ) lim inf
λ→∞

λνγ (Eλ,γ [u]) if γ > 0, (7-3a)

∥∇u∥M ≤ C(N , γ ) lim inf
λ↘0

λνγ (Eλ,γ [u]) if γ < 0, (7-3b)

in the sense that ∥∇u∥M = ∞ if u ∈ L1
loc \ ḂV?

Theorem 1.1 gives (7-2a) and (7-2b) if we additionally assume u ∈ Ẇ 1,p(RN ). It also gives (7-3a) and
(7-3b) if we additionally assume that u ∈ Ẇ 1,1(RN ). It would already be interesting to establish (7-3a),
(7-3b) for all ḂV functions.

When γ = −1, p = 1, (7-3b) holds for all u ∈ L1
loc(R

N ) as established in [Nguyen 2008, Theorem 2]
and [Brezis and Nguyen 2018, Section 3.4]. For γ = −p, 1 < p < ∞, inequality (7-2b) was proved in
[Bourgain and Nguyen 2006]. For γ = N, Poliakovsky [2022] proved weaker versions of (7-2a) and
(7-3a) where the lim inf is replaced by a lim sup.

7C. 0-convergence. This is a far-reaching generalization of the questions raised in Section 7B. For fixed
p ≥ 1 and γ ∈ R \ {0} consider the functionals

8λ[u] := λpνγ (Eλ,γ /p[u]), λ ∈ (0, ∞),

defined for all u ∈ L1
loc(R

N ). It would be very interesting to study the 0-limit of 8λ in L1
loc(R

N ), in the
sense of De Giorgi, as λ → ∞ when γ > 0 and as λ ↘ 0 when γ < 0. More specifically, if p > 1, define
on L1

loc(R
N )

8∗,c[u] =

{
c∥∇u∥

p
L p if u ∈ Ẇ 1,p(RN ),

∞ otherwise,
and for p = 1 define

8∗,c[u] =

{
c∥∇u∥M if u ∈ ḂV(RN ),

∞ otherwise.

A challenging question is whether there exists a constant c = c(p, γ, N ) > 0 such that 8λ → 8∗,c in the
sense of 0-convergence, meaning

(1) whenever uλ → u in L1
loc then lim inf 8λ[uλ] ≥ 8∗,c[u], and

(2) for each u ∈ L1
loc(R

N ) there exist (vλ) with vλ ∈ L1
loc(R

N ), vλ →u in L1
loc and lim sup 8λ[vλ]≤8∗,c[u].

This question is especially meaningful in the case p = 1 where the pointwise limit behaves somewhat
pathologically. Indeed, recall that for p = 1, −1 ≤ γ < 0 there is no universal upper bound for 8λ[u]

in terms of ∥∇u∥L1 . Also when p = 1 and γ ∈ R \ [−1, 0] the examples in Section 3F show that the
pointwise limit in Ẇ 1,1 and on ḂV \ Ẇ 1,1 may differ (by a multiplicative constant). A remarkable result
of Nguyen [2007; 2011] states that 8λ → 8∗,c as λ → 0, in the sense of 0–convergence, when p ≥ 1, and
γ = −p for some appropriate constant c = c(p, N ); see also [Brezis and Nguyen 2020] (note, however,
that Ẇ 1,p and ḂV are replaced in these papers by W 1,p and BV).



978 HAÏM BREZIS, ANDREAS SEEGER, JEAN VAN SCHAFTINGEN AND PO-LAM YUNG

7D. More general families of functionals. Consider a monotone nondecreasing function ϕ : [0, ∞) →

[0, ∞) and set (inspired by [Brezis and Nguyen 2018; 2020])

9λ[u] := λp
∫∫

RN ×RN
ϕ

(
|u(x) − u(y)|

λ|x − y|1+γ /p

)
|x − y|

γ−N dx dy.

The family 8λ in Section 7C corresponds to ϕ = 1(1,∞). It is an interesting generalization of the above
problems to study the limit of 9λ as λ ↘ 0 when γ < 0 and the limit of 9λ as λ → ∞ when γ > 0, both
in the sense of pointwise convergence or in the sense of 0-convergence. A formal computation suggests
that our Theorem 1.1 should go over modulo a factor

∫
∞

0 ϕ(s)/s p+1 ds; see [Brezis and Nguyen 2020].
We refer to [Brezis and Nguyen 2018] for a further discussion of applications.
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FRANC FORSTNERIČ AND DAVID KALAJ

We obtain a sharp estimate on the norm of the differential of a harmonic map from the unit disc D in C

into the unit ball Bn of Rn , n ≥ 2, at any point where the map is conformal. For n = 2 this generalizes the
classical Schwarz–Pick lemma, and for n ≥ 3 it gives the optimal Schwarz–Pick lemma for conformal
minimal discs D → Bn . This implies that conformal harmonic maps M → Bn from any hyperbolic
conformal surface are distance decreasing in the Poincaré metric on M and the Cayley–Klein metric
on the ball Bn , and the extremal maps are the conformal embeddings of the disc D onto affine discs
in Bn . Motivated by these results, we introduce an intrinsic pseudometric on any Riemannian manifold of
dimension at least three by using conformal minimal discs, and we lay foundations of the corresponding
hyperbolicity theory.

1. Introduction

In this paper, we establish precise estimates of derivatives and the rate of growth of conformal harmonic
maps from hyperbolic conformal surfaces into the unit ball Bn of Rn for any n ≥ 3; see Theorem 2.6.
Such maps parametrize minimal surfaces, objects of high interest in geometry. To motivate the discussion,
we begin with the following special case of one of our main results, Theorem 2.1. This generalizes
the classical Schwarz–Pick lemma, due to H. A. Schwarz [1890, Band II, p. 108], H. Poincaré [1884],
C. Carathéodory [1912], and G. A. Pick [1915], to a substantially larger class of maps.

Theorem 1.1. Let D = {z ∈ C : |z| < 1} denote the unit disc. If f : D → D is a harmonic map which is
conformal at a point z ∈ D, then at this point we have

∥d fz∥ ≤
1 − | f (z)|2

1 − |z|2
, (1-1)

with equality if and only if f is a conformal diffeomorphism of the disc D.

The classical Schwarz–Pick lemma gives the same conclusion under the much stronger hypothesis
that the map f is holomorphic or antiholomorphic, which means that it is conformal at every noncritical
point; see, e.g., [Dineen 1989; Kobayashi 2005; Royden 1988]. This fundamental rigidity result in
complex analysis leads to the notion of Kobayashi hyperbolic manifolds [1967; 1976; 2005] and
provides a connection to complex differential geometry via the Ahlfors lemma (see [Ahlfors 1938;
Kobayashi 2005, Theorem 2.1; Royden 1988]) and its generalizations by S.-T. Yau [1978] and others.
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Keywords: harmonic map, minimal surface, Schwarz–Pick lemma, Cayley–Klein metric.
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The conditions in Theorem 1.1 are invariant under precompositions by holomorphic automorphisms
of D, so the proof reduces to the case z = 0. On the other hand, postcompositions of harmonic maps
into D by holomorphic automorphisms of D need not be harmonic, so we cannot exchange f (0) and 0.
Hence, the standard proof of the classical Schwarz–Pick lemma breaks down. The estimate (1-1) fails
for some nonconformal harmonic diffeomorphisms of D (see Example 4.1), as well as for harmonic
maps D → D to more general domains which are conformal at a point (see Example 4.2 and Problem 4.3).

Our main results are precise estimates of the differential and the rate of growth of conformal harmonic
maps M → Bn from an open conformal surface M to the unit ball Bn of Rn for any n ≥ 3. It is classical
that such maps parametrize minimal surfaces. Indeed, a smooth conformal map f : M → Rn from an
open conformal surface M into Rn with the Euclidean metric parametrizes a minimal surface in Rn if and
only if f is a harmonic map; see [Alarcón et al. 2021, Chapter 2; Duren 2004; Osserman 1969], among
many other sources. Note that an oriented conformal surface is a Riemann surface.

The focal point of the paper is Theorem 2.1, which gives a precise upper bound on the norm ∥d fz∥ of
the differential d fz of a harmonic map f : D → Bn at any point z ∈ D where the map is conformal. The
estimate is similar to the one in Theorem 1.1, except that, for n ≥ 3, it also involves the angle θ between
the position vector f (z) ∈ Bn and the 2-plane d fz(R

2) ⊂ Rn. A related result (see Theorem 2.2) shows
that the worst case estimate, which occurs for θ =

π
2 (i.e., when the vector f (z) is orthogonal to the

plane d fz(R
2)), holds for all harmonic maps f : D → Bn provided that ∥d fz∥ is replaced by

√
2−1

|∇ f (z)|;
these quantities coincide if f is conformal at z.

We then give a differential geometric formulation and an extension of Theorem 2.1. Let CK denote
the Cayley–Klein metric on the ball Bn (n ≥ 2), also called the Beltrami–Klein metric; see (2-6) and the
footnote on page 985. This metric is one of the classical models of hyperbolic geometry. It coincides with
the restriction of the Kobayashi metric on the complex ball Bn

C
⊂ Cn (2-5) (which is the same as 1/

√
n + 1

times the Bergman metric on Bn
C

) to points of the real ball Bn and real tangent vectors. Theorem 2.1
implies that any conformal harmonic map f : M → Bn, n ≥ 3, from a hyperbolic conformal surface is
metric and distance decreasing in the Poincaré metric on M and the Cayley–Klein metric on Bn; see
Theorem 2.6. Furthermore, if the differential d fp has the operator norm equal to 1 at some point p ∈ M
in this pair of metrics, or if f preserves the distance between a pair of distinct points in M, then M is
necessarily the disc D and f is a conformal diffeomorphism of D onto a proper affine disc in Bn. In
particular, a conformal harmonic disc f : D → Bn with f (0) = 0 satisfies | f (z)| ≤ |z| for all z ∈ D

(see Corollary 2.7).
In Section 2 we give precise statements of the mentioned results. Theorem 2.1 is proved in Section 3.

We introduce a new idea into the subject, connecting it to Lempert’s seminal work [1981] on complex
geodesics of the Kobayashi metric on bounded convex domains in Cn. Theorem 2.2 is proven in Section 4.
In Section 5 we apply Theorem 1.1 to estimate the gradient of a quasiconformal harmonic self-map of
the disc in terms of its second Beltrami coefficient at the reference point; see Theorem 5.1.

Motivated by these result, we introduce in Section 6 an intrinsic pseudometric on any domain in Rn ,
n ≥ 3 (and more generally on any Riemannian manifold of dimension at least three) in terms of conformal
minimal discs, in analogy to Kobayashi’s definition of his pseudometric on complex manifolds in terms
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of holomorphic discs. This provides the basis for a new hyperbolicity theory of such domains and of
Riemannian manifolds.

2. The main results

Given a differentiable map f : D → Rn, we denote by fx and fy its partial derivatives with respect to x
and y, where z = x +iy ∈ D. The gradient ∇ f = ( fx , fy) is an n×2 matrix representing the differential d f .
The map f is said to be conformal at z ∈ D if

| fx(z)| = | fy(z)| and fx(z) · fy(z) = 0. (2-1)

Here, the dot stands for the Euclidean inner product on Rn, and |x| is the Euclidean norm of x ∈ Rn. If f
is an immersion at z then (2-1) holds if and only if d fz preserves angles. It follows from (2-1) that f has
rank zero at any branch point. We denote by |∇ f | the Euclidean norm of the gradient:

|∇ f (z)|2 = | fx(z)|2 + | fy(z)|2, z ∈ D.

If f is conformal at z then clearly ∥d fz∥ =
√

2−1
|∇ f (z)| = | fx(z)| = | fy(z)|. The map f = ( f1, . . . , fn) :

D → Rn is harmonic if and only if every component fk is a harmonic function on D, meaning that the
Laplacian 1 fk = ∂2 fk/∂x2

+ ∂2 fk/∂y2 vanishes identically.
We denote by Bn the unit ball of Rn:

Bn
=

{
x = (x1, . . . , xn) ∈ Rn

: |x|
2
=

n∑
k=1

x2
k < 1

}
. (2-2)

Our first main result is the following; it is proved in Section 3.

Theorem 2.1. Let f : D → Bn for n ≥ 2 be a harmonic map. If f is conformal at a point z ∈ D and
θ ∈

[
0, π

2

]
denotes the angle between the vector f (z) and the plane 3 = d fz(R

2) ⊂ Rn, then

∥d fz∥ =
1

√
2
|∇ f (z)| ≤

1 − | f (z)|2

1 − |z|2
1√

1 − | f (z)|2 sin2 θ
, (2-3)

with equality if and only if f is a conformal diffeomorphism of D onto the affine disc 6 = ( f (z)+3)∩Bn.
(When f (z) = 0 or d fz = 0, the angle θ does not matter.)

Note that the number R =

√
1 − | f (z)|2 sin2 θ is the radius of the affine disc 6. In dimension n = 2

we have θ = 0, so Theorem 1.1 is a special case of Theorem 2.1. Without assuming that f is conformal
at z or that f (z) = 0, inequality (2-3) fails for some harmonic diffeomorphisms of the disc as shown by
Example 4.1.

For a fixed value of | f (z)| ∈ [0, 1), the maximum of the right-hand side of (2-3) over angles θ ∈
[
0, π

2

]
equals

√
1 − | f (z)|2/(1−|z|2) and is attained precisely at θ =

π
2 , i.e., when the vector f (z) is orthogonal

to 3 = d fz(R
2), unless f (z) = 0 when it is independent of θ . It turns out that this weaker estimate holds

for all harmonic maps D → Bn without any conformality assumption. The following result is proved in
Section 4.
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Theorem 2.2. For every harmonic map f : D → Bn (n ≥ 2) we have that

1
√

2
|∇ f (z)| ≤

√
1 − | f (z)|2

1 − |z|2
, z ∈ D. (2-4)

Equality holds for some z ∈ D if f (z) is orthogonal to the two-plane 3 = d fz(R
2) and f is a conformal

diffeomorphism onto the affine disc ( f (z) + 3) ∩ Bn. In particular, if f (z) = 0 then

|∇ f (z)| ≤

√
2

1 − |z|2
,

with equality if and only if f is a conformal diffeomorphism onto the linear disc 3 ∩ Bn.

The proof of estimate (2-4) relies on Parseval’s inequality, using the hypothesis that the L1-norm of
| f |

2
=

∑n
k=1 f 2

k on the circles {|z| = r} for 0 < r < 1 is bounded by 1. We find it surprising that this
simple approach gives an optimal estimate in certain cases indicated in the theorem. Except in these
cases, we do not know whether there exist harmonic maps D → Bn reaching (near) equality in (2-4).

The precise upper bound on the size of the gradient ∥d f0∥ of a nonconformal harmonic map f : D → Bn

with a given center f (0) = x ∈ Bn
\ {0} for n ≥ 2 in terms of the distortion of f at 0 is unknown; see

[Brevig et al. 2021; Kovalev and Yang 2020] for n = 2. On the other hand, for n = 1 the harmonic Schwarz
lemma (see [Axler et al. 2001, Theorem 6.26]) says that any harmonic function f : Bm

→ (−1, +1) for
m ≥ 2 satisfies the sharp estimate

|∇ f (0)| ≤
2 Vol(Bm−1)

Vol(Bm)
.

For m = 2 the inequality reads |∇ f (0)| ≤
4
π

, and a simple proof in this case was given by Kalaj and
Vuorinen [2012, Theorem 1.8].

Let us mention a consequence of Theorem 2.1 related to the Schwarz lemma for holomorphic discs in
the ball of the complex Euclidean space,

Bn
C =

{
z = (z1, . . . , zn) ∈ Cn

: |z|2 =

n∑
k=1

|zk |
2 < 1

}
(2-5)

(see [Rudin 1980, Section 8.1]). The following corollary to Theorem 2.1 shows that the extremal
holomorphic discs in Bn

C
are precisely those extremal orientation-preserving conformal harmonic discs

D → Bn
C

which parametrize affine complex discs.

Corollary 2.3. Let f : D → Bn
C

be a harmonic map which is conformal at a point z ∈ D. If 3 = d fz(R
2)

is a complex line in Cn, then equality holds in (2-3) for this z if and only if f is a biholomorphic or
antibiholomorphic map onto the affine complex disc ( f (z) + 3) ∩ Bn

C
.

The Cayley–Klein metric. A differential geometric interpretation of the classical Schwarz–Pick lemma
is that holomorphic maps D → D are distance decreasing in the Poincaré metric on D, and isometries
coincide with holomorphic and antiholomorphic automorphisms of D (see [Kobayashi 2005]). The
analogous conclusion holds for holomorphic maps D → Bn

C
with the Kobayashi metric on the complex
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ball Bn
C

(2-5), where orientation-preserving isometric embeddings are precisely holomorphic embeddings
onto affine complex discs in Bn

C
.

In the same spirit, we shall now interpret Theorem 2.1 as the distance-decreasing property of conformal
harmonic maps D → Bn with respect to the Cayley–Klein metric1 on Bn:

CK(x, v) =

√
1 − |x|

2 sin2 φ

1 − |x|2
|v|, x ∈ Bn, v ∈ Rn, (2-6)

where φ ∈
[
0, π

2

]
is the angle between the vector x and the line Rv. Equivalently,

CK(x, v)2
=

(1 − |x|
2)|v|

2
+ |x · v|

2

(1 − |x|2)2 =
|v|

2

1 − |x|2
+

|x · v|
2

(1 − |x|2)2 . (2-7)

Let G2(R
n) denote the Grassmann manifold of two-planes in Rn. We define a Finsler pseudometric

M : Bn
× G2(R

n) → R+ by

M(x, 3) =

√
1 − |x|2 sin2 θ

1 − |x|2
, x ∈ Bn, 3 ∈ G2(R

n), (2-8)

where θ ∈
[
0, π

2

]
is the angle between x and 3. At x = 0 we have M(0, 3) = 1 for all 3 ∈ G2(R

n).
Assume now that x ̸= 0. Let v ∈ Rn

\ {0} be a vector having angle φ ∈
[
0, π

2

]
with the line Rx. The

angle θ between x and any 2-plane 3 containing v satisfies 0 ≤ θ ≤ φ, and the maximum of θ over all
such 3 equals φ. Hence, (2-6) gives

CK(x, v)

|v|
= min{M(x, 3) : 3 ∈ G2(R

n), v ∈ 3}, (2-9)

M(x, 3) = max
{
CK(x, v)

|v|
: v ∈ 3

}
. (2-10)

Inequality (2-3) in Theorem 2.1 is obviously equivalent to

M( f (z), d fz(R
2))|d fz(ξ)| =

√
1 − | f (z)|2 sin2 θ

1 − | f (z)|2
|d fz(ξ)| ≤

|ξ |

1 − |z|2
, (2-11)

where θ ∈
[
0, π

2

]
is the angle between f (z) and the 2-plane 3 = d fz(R

2). By (2-9) the left-hand side
of (2-11) is bigger than or equal to CK( f (z), d fz(ξ)). Equality holds if and only if the angle φ between
the line f (z)R and the vector d fz(ξ) ∈ 3 equals θ ; clearly this holds if and only if d fz(ξ) is tangent to the
diameter of the affine disc 6 = ( f (z)+3)∩Bn through the point f (z). This and the addition concerning
equality in (2-3) give the following corollary to Theorem 2.1. Note that PD(z, ξ) := |ξ |/(1 − |z|2) is the
Poincaré metric on the disc.

1The Beltrami–Calvin–Klein model of hyperbolic geometry was introduced by Arthur Cayley [1859] and Eugenio Beltrami
[1868], and it was developed by Felix Klein [1871; 1873]. The underlying space is the n-dimensional unit ball, geodesics are
straight line segments with ideal endpoints on the boundary sphere, and the distance between points on a geodesic is given by a
cross ratio. This is a special case of the Hilbert metric on convex domains in Rn and RPn, introduced by David Hilbert [1895].
These are examples of projectively invariant metrics discussed by many authors; see the surveys by S. Kobayashi [1977; 1984],
W. M. Goldman [2019], and J. G. Ratcliffe [1994].
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Corollary 2.4. If f : D → Bn is a conformal harmonic map then for every point z ∈ D and tangent vector
ξ ∈ R2 we have

CK( f (z), d fz(ξ)) ≤
|ξ |

1 − |z|2
= PD(z, ξ). (2-12)

Equality holds for some z ∈ D and ξ ∈ R2
\ {0} if and only if f is a conformal diffeomorphism onto the

affine disc
6 = ( f (z) + d fz(R

2)) ∩ Bn

and the vector d fz(ξ) is tangent to the diameter of 6 through the point f (z).

This shows in particular that every linear conformal embedding f : D → 6 onto a proper affine disc
in Bn is geodesic on each diameter (−1, +1) ∋ r 7→ f (reit) ∈ 6 for every fixed t ∈ R. However, distances
between points of different rays strictly decrease from the Poincaré metric on D to the Cayley–Klein
metric on the disc 6 ⊂ Bn.

Remark 2.5. The Cayley–Klein metric (2-7) is the restriction of the Kobayashi metric on the unit ball
Bn

C
⊂ Cn to points x ∈ Bn

= Bn
C
∩Rn of the real ball and tangent vectors in TxRn ∼= Rn. A direct geometric

argument was given by Lempert [1993, proof of Theorem 3.1]. The Cayley–Klein metric also equals
1/

√
n + 1 times the Bergman metric on Bn

C
restricted to Bn and real tangent vectors; see [Krantz 1992,

Proposition 1.4.22]. (On the ball of Cn, most holomorphically invariant metrics coincide up to scalar
factors.) The Cayley–Klein metric equals the Poincaré metric |v|/(1 − |x|

2) on Bn on vectors v parallel
to the base point x ∈ Bn, but is strictly smaller on other vectors. While the Poincaré metric on Bn is
conformally equivalent to the Euclidean metric, the Cayley–Klein metric is not.

We now extend Corollary 2.4 to more general minimal surfaces. A conformal surface is a topological
surface M together with a conformal atlas, i.e., an atlas whose transition maps between charts are conformal
diffeomorphisms between plane domains. Every surface admits a conformal structure. Indeed, every
topological surface admits a smoothing, and a conformal structure on a smooth surface is determined by
the choice of a Riemannian metric in view of the existence of local isothermal coordinates (see [Osserman
1969] or [Alarcón et al. 2021, Theorem 1.8.6]). Oriented conformal surfaces are Riemann surfaces. There
is a well-defined notion of a harmonic function on a conformal surface. Indeed, a Riemannian metric g
defines the metric Laplacian 1g and hence g-harmonic functions satisfying 1gh = 0. The Laplacians
associated to any two Riemannian metrics in the same conformal class on a surface differ by a positive
multiplicative function (see [Alarcón et al. 2021, Corollary 1.8.2]), and hence the notion of a harmonic
function is independent of the choice of metric in a given conformal class.

A conformal surface M is said to be hyperbolic if its universal conformal covering space is the disc D.
Let h : D → M be a universal conformal covering map. Since conformal automorphisms of D are
isometries of the Poincaré metric PD = |dz|/(1 −|z|2), there is a unique Riemannian metric PM on M (a
Kähler metric if M is a Riemann surface) such that h is a local isometry. This Poincaré metric PM is a
complete metric of constant Gaussian curvature −4 (see [Kobayashi 2005, p. 48, Example 2]), which
agrees with the Kobayashi metric if M is a Riemann surface. This leads to the following generalization
of Corollary 2.4.
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Theorem 2.6 (metric and distance decreasing property of conformal harmonic maps). Let M be a
connected hyperbolic conformal surface endowed with the Poincaré metric PM . Every conformal harmonic
map f : M → Bn (n ≥ 3) satisfies the estimate

CK( f (p), d fp(ξ)) ≤ PM(p, ξ), p ∈ M, ξ ∈ Tp M. (2-13)

If equality holds in (2-13) for some point p ∈ M and vector 0 ̸= ξ ∈ Tp M, or if f preserves the distance on
a pair of distinct points in M, then M = D and f is a conformal diffeomorphism onto an affine disc in Bn.

Proof. Assume first that M is orientable and hence a Riemann surface. Choose a holomorphic covering
map h : D → M and a point z ∈ D with h(z) = p. The conformal harmonic map f̃ = f ◦h : D → Bn then
satisfies f̃ (z)= f (p) and d f̃z = d fp◦dhz . Let η ∈ R2 be such that dhz(η)= ξ . Then PM(p, ξ)=PD(z, η)

by the definition of the metric PM , and d f̃z(η) = d fp(ξ). From (2-12) it follows that

CK( f (p), d fp(ξ)) = CK( f̃ (z), d f̃z(η)) ≤
|d f̃z(η)|

1 − | f̃ (z)|2
=

|d fp(ξ)|

1 − | f (p)|2
,

which gives (2-13). If ξ ̸= 0 and equality holds, then by Corollary 2.4 the map f̃ = f ◦ h : D → Bn is a
conformal diffeomorphism onto an affine disc in Bn, and hence h : D → M is a biholomorphism.

For a nonorientable hyperbolic conformal surface M we obtain the same conclusion by passing to its
orientable two-sheeted conformal cover. The statement concerning distances is an immediate consequence.
Note that if the distances agree for a pair of distinct points in M and their images in Bn, then the differential
d fp has operator norm 1 at some point p ∈ M in the given pair of metrics. □

On the disc with the Poincaré metric PD = |dz|/(1 − |z|2), the Poincaré distance equals

distP(z, w) =
1
2

log
(

|1 − zw| + |z − w|

|1 − zw| − |z − w|

)
, z, w ∈ D. (2-14)

The Cayley–Klein distance function on the ball Bn coincides up to a scalar factor
√

n + 1 with the
restriction to Bn of the Bergman distance function on the complex ball Bn

C
or, equivalently, with the

restriction to Bn of the Kobayashi distance function on Bn
C

. The following explicit formula for the
Kobayashi distance between a pair of points z, w ∈ Bn

C
can be found in [Krantz 1992, p. 437]; here,

z · w =
∑n

k=1 zkwk :

dist(z, w) =
1
2

log
(

|1 − z · w| +
√

|z − w|2 + |z · w|2 − |z|2|w|2

|1 − z · w| −
√

|z − w|2 + |z · w|2 − |z|2|w|2

)
. (2-15)

As said before, the same formula applied to points in Bn gives the Cayley–Klein distance. Taking w = 0
and w = 0 in the above formulas, we obtain

distP(z, 0) =
1
2

log
(

1 + |z|
1 − |z|

)
(z ∈ D), dist(z, 0) =

1
2

log
(

1 + |z|
1 − |z|

)
(z ∈ Bn).

Together with Theorem 2.6 this implies the following corollary.
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Corollary 2.7. If f : D → Bn, n ≥ 3, is a conformal harmonic map with f (0) = 0, then | f (z)| ≤ |z| for
all z ∈ D. Equality at one point z ∈ D \ {0} implies that f is a conformal parametrization of a linear disc
obtained by intersecting Bn with a plane through the origin, and hence equality holds at all points.

3. Proof of Theorem 2.1

It suffices to prove Theorem 2.1 for z = 0. Indeed, with f and z as in the theorem, let φz ∈ Aut(D) be
such that φz(0) = z. The harmonic map g = f ◦ φz : D → Bn is then conformal at the origin. Since
|φ′

z(0)| = 1 − |z|2, inequality (2-3) follows from the same estimate for g at z = 0. On the image side, the
hypotheses and the statement of the theorem are invariant under postcomposition of maps D → Bn by
elements of the orthogonal group On .

We begin with an explicit description of conformal parametrizations of proper affine discs in Bn. Fix a
point q ∈ Bn and a linear two-plane 0 ∈ 3 ⊂ Rn, and consider the affine disc 6 = (q + 3) ∩ Bn. Let us
identify conformal parametrizations D → 6 sending 0 to q. Let p ∈ 6 be the closest point to the origin.
If n = 2 then p = 0 and 6 = D. Suppose now that n ≥ 3. Up to an orthogonal rotation, we may assume

p = (0, 0, p, 0, . . . , 0) and 6 = {(x, y, p, 0, . . . , 0) : x2
+ y2 < 1 − p2

}. (3-1)

Let q = (b1, b2, p, 0, . . . , 0) ∈ 6, and let θ denote the angle between q and 6. Set

c =

√
1 − p2

=

√
1 − |q|

2 sin2 θ, a =
b1 + ib2

c
∈ D, |a| =

|q| cos θ

c
. (3-2)

We orient 6 by the tangent vectors ∂x , ∂y in the parametrization (3-1). Every orientation-preserving
conformal parametrization f : D → 6 with f (0) = q is then of the form

f (z) =

(
cℜ

eit z + a
1 + āeit z

, cℑ
eit z + a
1 + āeit z

, p, 0, . . . , 0
)

, z ∈ D, (3-3)

for some t ∈ R. (Here, ℜ and ℑ stand for the real and imaginary parts of a complex number. If n = 2 then
p = 0 and c = 1, and the same holds if we drop all coordinates except the first two. Orientation-reversing
conformal parametrizations are obtained by replacing z = x + iy with z̄ = x − iy. By a rotation in the
(x, y)-plane, we may further assume that b2 = 0 and f (0) = (b1, 0, p, 0, . . . , 0); in this case a ∈ [0, 1).
By also allowing rotations on the disc D, we can take t = 0 in (3-3).) Using the complex coordinate
x + iy in the plane d f0(R

2) = R2
× {0}

n−2, the map (3-3) can be written in the form

f (z) =

(
c

eit z + a
1 + āeit z

, p, 0, . . . , 0
)

= (h(z), p, 0, . . . , 0).

From (3-2) it follows that

|h′(0)| = c(1 − |a|
2) =

c2
− c2

|a|
2

c
=

1 − |q|
2 sin2 θ − |q|

2 cos2 θ

c

=
1 − |q|

2√
1 − |q|

2 sin2 θ
=

1 − | f (0)|2√
1 − | f (0)|2 sin2 θ

.

Since ∥d f0∥ = |h′(0)|, this gives equality in (2-3) at z = 0.
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Theorem 2.1 now follows immediately from the following lemma.

Lemma 3.1. Let f : D → Bn (n ≥ 2) be the disc (3-3). If g : D → Bn is a harmonic disc such that
g(0) = f (0), g is conformal at 0, and dg0(R

2) = d f0(R
2), then ∥dg0∥ ≤ ∥d f0∥, with equality if and only

if g(z) = f (eisz) or g(z) = f (eis z̄) for some s ∈ R and all z ∈ D.

The proof of Lemma 3.1 uses ideas from Lempert’s seminal paper [1981] concerning complex geodesics
of the Kobayashi metric in convex domains in Cn; see Remark 3.2.

Proof. Let p, c and a be as in (3-2) related to the map f in (3-3), where q = f (0). Precomposing f by a
rotation in C, we may assume that t = 0 in (3-3). For simplicity of notation we assume that n = 3; the
proof for n ̸= 3 is exactly the same. If n = 2, we delete the remaining components and take c = 1.

Consider the holomorphic disc F : D → � = B3
× iR3 given by

F(z) =

(
c

z + a
1 + āz

, −ci
z + a

1 + āz
, p

)
, z ∈ D. (3-4)

Then, f = ℜF. Suppose that g : D → B3 is as in the lemma. Up to replacing g(z) by g(eisz) or g(eis z̄)
for a suitable s ∈ R, we may assume that

dg0 = rd f0 for some r > 0. (3-5)

We must prove that r ≤ 1, and that r = 1 if and only if g = f .
Let G : D → � be the unique holomorphic map with ℜG = g and G(0) = F(0). In view of the

Cauchy–Riemann equations, condition (3-5) implies

G ′(0) = r F ′(0), (3-6)

where the prime denotes the complex derivative. It follows that the map (F(z)− G(z))/z is holomorphic
on D, and its value at z = 0 equals

lim
z→0

F(z) − G(z)
z

= F ′(0) − G ′(0) = (1 − r)F ′(0). (3-7)

The bounded harmonic map g : D → B3 has a nontangential boundary value at almost every point of
the circle T = bD. Since the Hilbert transform is an isometry on the Hilbert space L2(T), the same is
true for its holomorphic extension G; see [Garnett 1981].

Denote by ⟨ · , · ⟩ the complex bilinear form on Cn given by ⟨z, w⟩ =
∑n

i=1 ziwi for z, w ∈ Cn. Note
that on vectors in Rn this is the Euclidean inner product. For each z = eit ∈ bD the vector f (z) ∈ bB3

is the unit normal vector to the sphere bB3 at the point f (z). Since B3 is strongly convex and f is
real-valued, we have

ℜ⟨F(z) − G(z), f (z)⟩ = ⟨ f (z) − g(z), f (z)⟩ ≥ 0 a.e. z ∈ bD, (3-8)

and the value is positive for almost every z ∈ bD if and only if g ̸= f . It is at this point that strong
convexity of the ball B3 is used in an essential way.
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We now consider the map f̃ on the circle bD given by

f̃ (z) = z|1 + āz|2 f (z), |z| = 1. (3-9)

An explicit calculation, taking into account zz̄ = 1, shows that

f̃ (z) =


1
2 c(1 + a2

+ 4(ℜa)z + (1 + ā2)z2)

1
2 c(i(1 − a2) + 4(ℑa)z + i(ā2

− 1)z2)

p(z + a)(1 + āz)

 . (3-10)

We extend f̃ to all z ∈ C by letting it equal the quadratic holomorphic polynomial map on the right-hand
side above. Since |1 + āz|2 > 0 for z ∈ D, (3-8) implies

h(z) := ℜ⟨F(z) − G(z), |1 + āz|2 f (z)⟩ = ⟨ f (z) − g(z), |1 + āz|2 f (z)⟩ ≥ 0 a.e. z ∈ bD,

and h > 0 almost everywhere on bD if and only if g ̸= f . From (3-9) we see that

h(z) = ℜ

〈
F(z) − G(z)

z
, f̃ (z)

〉
a.e. z ∈ bD. (3-11)

Since the maps (F(z)− G(z))/z and f̃ (z) are holomorphic on D, formula (3-11) provides an extension
of h from bD to a nonnegative harmonic function on D which is positive on D unless f = g. Inserting
the value (3-7) into (3-11) gives

h(0) = ℜ⟨F ′(0) − G ′(0), f̃ (0)⟩ = (1 − r)ℜ⟨F ′(0), f̃ (0)⟩ ≥ 0,

with equality if and only if f = g. Applying this argument to the linear map g(z) = f (0) + rd f0(z)
(z ∈ D) for a small r > 0 we get ℜ⟨F ′(0), f̃ (0)⟩ > 0. It follows that r ≤ 1, with equality if and only
if g = f . □

Remark 3.2. The main point in the above proof is that the complexification of a conformal proper affine
disc in Bn is a stationary disc in the tube TBn = Bn

× iRn. In Lempert’s terminology [1981], a proper
holomorphic disc F : D → � in a smoothly bounded convex domain � ⊂ Cn, extending continuously to D,
is a stationary disc if, denoting by ν : bD → Cn the unit normal vector field to b� along the boundary
circle F(bD) ⊂ b�, there is a positive continuous function q > 0 on bD such that the function zq(z)ν(z)
extends from the circle |z| = 1 to a holomorphic function f̃ (z) on D. Lempert [1981] showed that every
stationary disc F in a bounded strongly convex domain is the unique Kobayashi extremal disc through the
point F(a) in the tangent direction F ′(a) for every a ∈ D. In our case, a suitable holomorphic function f̃
is given by (3-9) and (3-10). Lempert’s theory also works on tubes over bounded strongly convex domains
(see [Jarnicki and Pflug 2013, Section 11.1]); however, our proof of Theorem 2.1 does not depend on this
information.

4. Proof of Theorem 2.2

Precomposing the given harmonic map f : D → Bn in Theorem 2.2 by a holomorphic automorphism of
the disc D, we see that it suffices to prove estimate (2-4) for z = 0.
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Assume first that f : D → R is a harmonic function on D. Let F(z) = a0 + a1z + a2z2
+ · · · be the

holomorphic function on D with ℜF = f and F(0) = f (0) ∈ R. Writing z = reit with 0 ≤ r < 1 and t ∈ R,
we have

f (reit)2
=

1
4(a0 + a1reit + r2e2it

+ · · · + a0 + ā1re−it
+ ā2r2e−2it

+ · · · )2

= a2
0 +

1
2

∞∑
k=1

r2k
|ak |

2
+ · · · ,

where each of the remaining terms in the series contains a power emit for some m ∈ Z \ {0}. Integrating
around the circle |z| = r for 0 < r < 1 annihilates all such terms and yields∫ 2π

0
f (reit)2 dt

2π
= a2

0 +
1
2

∞∑
k=1

r2k
|ak |

2.

Clearly, a0 = f (0). Writing z = x + iy, we have that a1 = F ′(0) = Fx(0) = fx(0) − i fy(0) by the
Cauchy–Riemann equations. Therefore,

a2
0 = f (0)2 and |a1|

2
= fx(0)2

+ fy(0)2
= |∇ f (0)|2,

and hence ∫ 2π

0
f (reit)2 dt

2π
= | f (0)|2 +

1
2
|∇ f (0)|2r2

+
1
2

∞∑
k=2

r2k
|ak |

2. (4-1)

Suppose now that f = ( f1, . . . , fn) : D → Bn is a harmonic map. Then,
∑n

j=1 f j (reit)2 < 1 for
all 0 ≤ r < 1 and t ∈ R. Integrating this inequality and taking into account the identity (4-1) for each
component f j of f gives∫ 2π

0
| f (reit)|2

dt
2π

= | f (0)|2 +
1
2
|∇ f (0)|2r2

+
1
2

∞∑
k=2

r2k
|ak |

2 < 1.

Letting r increase to 1 gives | f (0)|2 +
1
2 |∇ f (0)|2 ≤ 1, with equality if and only if all higher-order

coefficients in the Fourier expansion of f vanish. The latter holds if and only if f is a linear disc. This
gives the estimate (2-4).

Note that (2-4) holds if the L2-Hardy norm of f is at most 1. This does not necessarily imply that there
is a harmonic disc in Bn reaching equality in (2-4). However, equality is attained if f (0) is orthogonal to
the two-plane d f0(R

2). In this case we may assume that f (0) = (0, 0, p, 0, . . . , 0) for some 0 ≤ p < 1
and d f0(R

2) = R2
× {0}

n−2. The affine disc

6 = {(x, y, p, 0, . . . , 0) : x2
+ y2 < 1 − p2

}

of radius c =
√

1 − p2 is then orthogonal to f (0), proper in Bn, and its conformal linear parametrization f
has gradient of size c

√
2 at the origin, so | f (0)|2 +

1
2 |∇ f (0)|2 = p2

+ c2
= 1. (Compare with (3-1)

and (3-3).) This completes the proof of Theorem 2.2. □
We now show by examples that the inequality (2-3) fails in general for some nonconformal harmonic

maps, and even for harmonic diffeomorphisms of the disc.
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Example 4.1. Let U be the harmonic function on the disc D given by

U (z) = ℑ
2
π

log
1 + z
1 − z

=
2
π

arctan
2y

1 − x2 − y2 . (4-2)

This is the extremal harmonic function whose boundary value equals +1 on the upper unit semicircle
and −1 on the lower semicircle, and we have that ∇U (0) =

4
π
(0, 1) and |∇U (0)| =

4
π

. For every c ∈ R

the harmonic map

f (z) =
1√

1 + |c|2
(c + iU (z)), z ∈ D,

clearly takes the unit disc into itself. For c = 1 we have

f (0) =
1

√
2
, ∇ f (0) =

2
√

2
π

(
0 0
0 1

)
, |∇ f (0)| =

2
√

2
π

≈ 0.9,
√

2(1 − | f (0)|2) =

√
2

2
≈ 0.7.

Hence, inequality (2-3) fails in this example. On the other hand,
√

2
√

1 − | f (0)|2 = 1, so inequality (2-4)
holds, as it should by Theorem 2.2.

With some more effort we can show that inequality (2-3) fails for harmonic diffeomorphisms of the
unit disc onto itself. Consider the sequence ϕn , n ∈ N, of orientation-preserving homeomorphisms of the
interval [0, 2π ] onto itself, defined by

ϕn(t) =

{ π

2π−1/n
t if t ∈

[
0, 2π −

1
n

]
,

2(π − nπ2) + nπ t if t ∈
[
2π −

1
n , 2π

]
.

Let φn : T → T be the associated sequence of homeomorphisms of the circle T = bD given by φn(eit) =

eiϕn(t) for t ∈ [0, 2π ]. Denote by

fn(z) = P[φn](z) =
1

2π

∫ 2π

0

1 − |z|2

|eit − z|2
φn(eit) dt, z ∈ D,

the Poisson extension of φn . By the Radó–Kneser–Choquet theorem (see [Duren 2004, Section 3.1]),
fn is a harmonic diffeomorphism of D for every n ∈ N. As n → ∞, the sequence fn converges uniformly
on compacts in D to the harmonic map f = P[φ0], where φ0(eit) = limn→∞ φn(eit) = eit/2 for t ∈ [0, 2π).
Further, we have

lim
n→∞

|∇ fn(0)|

1 − | fn(0)|2
=

|∇ f (0)|

1 − | f (0)|2
.

A calculation shows that
1

√
2

|∇ f (0)|

1 − | f (0)|2
=

√
|A|2 + |B2|

1 − |C |2
,

where

A =
1
π

∫ 2π

0
eit/2 cos t dt = −

4i
3π

, B =
1
π

∫ 2π

0
eit/2 sin t dt =

8
3π

, C =
1

2π

∫ 2π

0
eit/2 dt =

2i
π

.

Hence,
1

√
2

|∇ f (0)|

1 − | f (0)|2
=

2
√

10
3π(1 − 4/π2)

≈ 1.1.

This shows that (2-3) fails for harmonic diffeomorphisms of the unit disc onto itself.
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Example 4.2. Let U (x, y) be the function (4-2). The harmonic map f (x, y) = (U (y, x), U (x, y)) takes
the disc D onto the square P = {(x, y) ∈ R2

: |x | < 1, |y| < 1} and d f0(0, 0) =
4
π

Id. In particular,
f is conformal at (0, 0) and ∥d f0∥ =

4
π

≈ 1.27. On the other hand, a conformal diffeomorphism of D

onto P mapping the origin to itself has the derivative at the origin of absolute value ≈ 1.08. Hence, the
Schwarz–Pick lemma in Theorem 1.1 fails for maps from the disc to more general domains in C. In
particular, while the domain C \ {0, 1} is Kobayashi hyperbolic, one can find nonconstant harmonic maps
C → C \ {0, 1} whose differential is nonvanishing and conformal at the origin.

Problem 4.3. Assume that D ⊊ R2 is a simply connected domain such that, for some point p ∈ D, the
supremum of the norm ∥d f0∥ of the differential of f at 0 ∈ D over all harmonic maps f : D → D with
f (0) = p which are conformal at 0 is attained by a conformal diffeomorphism of D onto D. Does it
follow that D is a disc?

5. A Schwarz–Pick lemma for quasiconformal harmonic maps

In this section we apply the Schwarz–Pick lemma for harmonic self-maps of the disc, given by Theorem 1.1,
to provide an estimate of the gradient of an orientation-preserving harmonic map f : D → D in terms of
its second Beltrami coefficient

ω(z) =
( f z̄)

fz
, z ∈ D. (5-1)

Here, fz =
1
2( fx − i fy) and f z̄ =

1
2( fx + i fy). If the map f is harmonic then ω is a holomorphic function;

see (5-2). This is not the case for the Beltrami coefficient µ from the Beltrami equation f z̄ = µ(z) fz . The
number |µ(z)| = |ω(z)| measures the dilatation of d fz; in particular, µ(z) = ω(z) = 0 if and only if f
is conformal at z. We refer to [Ahlfors 1966; Duren 2004; Lehto and Virtanen 1973; Hengartner and
Schober 1986] for background on the theory of quasiconformal maps.

The main question is to find the optimal estimate on ∥d f0∥ for a harmonic map f : D → D with
f (0) = 0 and with a given value of |ω(0)| = |µ(0)|. A related problem was studied by Kovalev and

Yang [2020] and Brevig et al. [2021], where the reader can find references to earlier works. Here we
prove the following result.

Theorem 5.1. Assume that f is an orientation-preserving harmonic map of the unit disc into itself , and
let ω(z) denote its second Beltrami coefficient (5-1). Then we have the inequality

∥d fz∥ ≤
2(|ω(z) f (z)2

| +ℜ(ω(z) f (z)2))

(1 − |ω(z)|2)(1 − |z|2)
+

1 + |ω(z)|
1 − |ω(z)|

1 − | f (z)|2

1 − |z|2
, z ∈ D.

If f is conformal at a point z, i.e., ω(z) = 0, this estimate coincides with the Schwarz–Pick inequal-
ity (1-1) in Theorem 1.1.

Proof. It suffices to prove the inequality in the theorem for z = 0. For other points, we obtain it replacing f
by f ◦φz for φz ∈ Aut(D). However, we cannot reduce to the case f (0) = 0 since postcompositions by
automorphisms of D are not allowed. The main idea is to construct from f a new harmonic map f̃ : D → D

which is conformal at 0, to which we then apply the Schwarz–Pick lemma given by Theorem 1.1.
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Let us write f = g + h̄, where g and h are holomorphic functions on D. Then,

fz(z) = g′(z), f z̄(z) = h′(z), ω(z) =
h′(z)
g′(z)

. (5-2)

Recall that the second Beltrami coefficient ω (5-1) is holomorphic. It follows that

∥d f ∥ = |g′
|(1 + |ω|). (5-3)

Since f is orientation preserving, we have that |g′(z)| ≥ |h′(z)| for all z ∈ D. Let

a = g′(0) and b = h′(0). (5-4)

We may assume that |a|+ |b| > 0, for otherwise the estimate is trivial. Since | f (z)| < 1 for all z ∈ D, the
complex harmonic function

f̃ (z) :=
ā f − b̄ f̄
|a| + |b|

, z ∈ D, (5-5)

clearly maps the unit disc into itself. We have f̃ = g̃ + h̃, where

g̃ =
āg − b̄h
|a| + |b|

and h̃ =
ah − bg
|a| + |b|

(5-6)

are holomorphic functions on D. Since

h̃′(0) =
ah′(0) − bg′(0)

|a| + |b|
= 0, (5-7)

the second Beltrami coefficient ω̃ of f̃ vanishes at z = 0, and hence f̃ is conformal at 0. Our Schwarz–Pick
lemma (see Theorem 1.1) gives

∥d f̃0∥ ≤ 1 − | f̃ (0)|2. (5-8)

Taking into account (5-3), (5-4), (5-6), and (5-7), we have

∥d f̃0∥ = |g̃′(0)| = |g′(0)| − |h′(0)|.

Together with (5-5), (5-4), and (5-8) this gives the estimate

|g′(0)| − |h′(0)| ≤ 1 −
|g′(0) f (0) − h′(0) f (0)|2

(|g′(0)| + |h′(0)|)2

=
2|g′(0)| · |h′(0)| · | f (0)|2 + 2ℜ(g′(0)h′(0) f (0)2)

(|g′(0)| + |h′(0)|)2 + 1 − | f (0)|2.

In view of (5-2), this inequality can be written in the form

(1 − |ω(0)|)|g′(0)| ≤
2(|ω(0)|| f (0)|2 + ℜ(ω(0) f (0)2))

(1 + |ω(0)|)2 + 1 − | f (0)|2.

From (5-3) we see that

|g′(0)| =
∥d f0∥

1 + |ω(0)|
.
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Inserting this into the expression on the left-hand side of the previous inequality gives

∥d f0∥
1 − |ω(0)|

1 + |ω(0)|
≤

2|ω(0) f (0)2
| + 2ℜ(ω(0) f (0)2)

(1 + |ω(0)|)2 + 1 − | f (0)|2,

which is clearly equivalent to

∥d f0∥ ≤
2|ω(0) f (0)2

| + 2ℜ(ω(0) f (0)2)

1 − |ω(0)|2
+

1 + |ω(0)|

1 − |ω(0)|
(1 − | f (0)|2). □

6. An intrinsic pseudometric defined by conformal harmonic discs

In this section we introduce an intrinsic Finsler pseudometric gD on any domain D in Rn, n ≥ 3, and
more generally on any Riemannian manifold of dimension at least three, in terms of conformal minimal
discs D → D. The definition is modeled on Kobayashi’s definition of his pseudometric on complex
manifolds, which uses holomorphic discs. The pseudometric gD and the associated pseudodistance
ρD : D × D → R+ are the largest ones having the property that any conformal harmonic map M → D
from a hyperbolic conformal surface with the Poincaré metric is metric and distance decreasing. On the
ball Bn, we have that gBn coincides with the Cayley–Klein metric; see Theorem 6.2. The same definition
of gD applies in any Riemannian manifold of dimension at least three; see Remark 6.6. This provides
the basis for hyperbolicity theory of domains in Euclidean spaces and, more generally, of Riemannian
manifolds, in terms of minimal surfaces.

We begin by introducing a Finsler pseudometric on the bundle of two-planes over a domain D ⊂ Rn,
analogous to the metric M on the ball; see (2-8). A conformal frame in Rn is a pair (u, v) ∈ Rn

×Rn such
that |u| = |v| and u · v = 0. We denote by CFn the space of all conformal frames on Rn, including (0, 0).
Given a domain D ⊂ Rn, let CH(D, D) denote the space of conformal harmonic maps D → D (i.e., such
that (2-1) holds at every point of D). Define the function MD : D × CFn → R+ by

MD(x, (u, v)) = inf
{1

r
: ∃ f ∈ CH(D, D), f (0) = x, fx(0) = r u, fy(0) = rv

}
. (6-1)

Clearly, MD is homogeneous and rotation-invariant, in the sense that for any c ∈ R and orthogonal
rotation R in the two-plane 3 = span{u, v} we have for every x ∈ D that

MD(x, (cu, cv)) = |c|MD(x, (u, v)), MD(x, (Ru, Rv)) = MD(x, (u, v)). (6-2)

Thus, MD is determined by its values on unitary conformal frames (u, v) with |u| = |v| = 1 and hence on
D × G2(R

n), where G2(R
n) is the Grassmann manifold of two-planes in Rn. Precisely, for a two-plane

3∈ G2(R
n) we set MD(x, 3)=MD(x, (u, v)), where (u, v) is any unitary conformal frame spanning 3.

Note that

MD(x, 3) = inf
{

1
∥d f0∥

: f ∈ CH(D, D), f (0) = x, d f0(R
2) = 3

}
. (6-3)

By shrinking the disc D and using rotations and translations on Rn, we see that the function MD is upper
semicontinuous on D × CFn . Obviously, MRn ≡ 0. On the ball Bn, we have that MBn (x, 3) is given
by (2-8) according to Theorem 2.1.
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We also introduce a Finsler pseudometric gD : D × Rn
→ R+, called the minimal metric on D, whose

value at a point x ∈ D on a tangent vector u ∈ Tx D = Rn is given by

gD(x, u) = inf
{1

r
> 0 : ∃ f ∈ CH(D, D), f (0) = x, fx(0) = r u

}
= |u| · inf{MD(x, 3) : 3 ∈ G2(R

n), u ∈ 3}. (6-4)

It follows that every conformal harmonic map f : D → D satisfies

gD( f (z), d fz(ξ)) ≤ P(z, ξ) =
|ξ |

1 − |z|2
, z ∈ D, ξ ∈ R2, (6-5)

and gD is the biggest pseudometric on D with this property. For z = 0 this follows directly from the
definition, and for any other point z ∈ D we precompose f by a conformal automorphism of D mapping 0
to z. The same holds if D is replaced by any hyperbolic conformal surface; see the proof of Theorem 2.6.

By integrating gD we get the minimal pseudodistance ρD : � × � → R+:

ρD(x, y) = inf
γ

∫ 1

0
gD(γ (t), γ̇ (t)) dt, x, y ∈ �. (6-6)

The infimum is over all piecewise smooth paths γ : [0, 1] → � with γ (0) = x and γ (1) = y. Obviously,
ρ� satisfies the triangle inequality, but it need not be a distance function. In particular, ρRn vanishes
identically.

There is another natural procedure to obtain the pseudodistance ρD in (6-6), which is motivated by
Kobayashi’s definition of his pseudodistance on complex manifolds [1967]. Fix a pair of points x, y ∈ D.
To any finite chain of conformal harmonic discs fi : D → D and points ai ∈ D (i = 1, . . . , k) such that

f1(0) = x, fi+1(0) = fi (ai ) for i = 1, . . . , k − 1, fk(ak) = y, (6-7)

we associate the number
k∑

i=1

1
2

log
1 + |ai |

1 − |ai |
≥ 0.

The i-th term in the sum is the Poincaré distance from 0 to ai in D. The pseudodistance ρD(x, y) is
defined to be the infimum of the numbers obtained in this way. The proof that the two definitions yield the
same result is similar to the one given for the Kobayashi pseudodistance by Royden [1971, Theorem 1];
see [Drinovec Drnovšek and Forstnerič 2023, Theorem 3.1] for the details.

The following proposition says that the minimal pseudodistance ρD gives an upper bound for growth
of conformal minimal surfaces in the domain D.

Proposition 6.1. Every conformal harmonic map M → D from a hyperbolic conformal surface is
distance decreasing in the Poincaré distance on M and the pseudodistance ρD , and ρD is the biggest
pseudodistance on D for which this holds.

Proof. Let M be a hyperbolic conformal surface and h : D → M be a conformal universal covering.
Choose a conformal harmonic map f : M → D and a pair of points p, q ∈ M. Let a, b ∈ D be such that
h(a) = p and h(b) = q. Precomposing h by an automorphism of the disc, we may assume that a = 0.
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Then, g := f ◦h : D → D is a conformal harmonic disc with g(0) = f (p) and g(b) = f (q), and it follows
from the definition of ρD that

ρD( f (p), f (q)) = ρD(g(0), g(b)) ≤
1
2

log
1 + |b|

1 − |b|
.

The infimum of the right-hand side over all points b ∈ D with h(b) = q equals the Poincaré distance
between p and q in M, so we see that f is distance decreasing.

Suppose now that τ is a pseudodistance on D such that every conformal harmonic map D → D is
distance decreasing with the Poincaré metric on D. Let fi : D → D and ai ∈ D for i = 1, . . . , k be a
chain as in (6-7) connecting the points x, y ∈ D. Then,

τ(x, y) ≤

k∑
i=1

τ( fi (0), fi (ai )) ≤

k∑
i=1

1
2

log
1 + |ai |

1 − |ai |
.

Taking the infimum over all such chains gives τ(x, y) ≤ ρD(x, y). □

We have already observed that, on the ball Bn (n ≥ 3), the Finsler metric MBn is given by (2-8). From
(2-9) and (6-4) it follows that gBn equals the Cayley–Klein metric CK (2-6):

Theorem 6.2. On the ball Bn, n ≥ 3, we have

gBn = CK, ρBn = distCK .

Hilbert [1895] defined a metric on any convex domain in RPn that generalizes the Cayley–Klein metric
on the ball. Hilbert metrics are examples of projectively invariant metrics which have been studied by many
authors; see the surveys by Kobayashi [1977; 1984] and Goldman [2019]. Kobayashi [1977] discussed
the analogy between his metric and Hilbert’s metric. Lempert [1987] established an explicit connection,
and then in [Lempert 1993, Theorem 3.1] proved that the Hilbert metric HD on any bounded convex
domain D ⊂ Rn is the restriction to D of the Kobayashi metric on the elliptic tube D∗

⊂ D × iRn
⊂ Cn

obtained as follows; see [Lempert 1993, p. 441]. Every affine line segment L ⊂ D with endpoints on bD
is the diameter of a unique complex disc in D × iRn, and D∗ is the union of all such discs. The elliptic
tube over the ball Bn is the complex ball Bn

C
, and the metric gBn agrees with the Hilbert metric HBn = CK

according to Theorem 6.2.
While Hilbert’s metric is invariant under projective linear transformations, the minimal metric is

invariant (at least in an obvious way) only under the conformal group (see Proposition 6.5); hence it is
expected that the two metrics differ on most convex domains. We give an explicit example on ellipsoids.

Example 6.3. Let (x, y, z) be coordinates on R3. Consider the ellipsoid

Da =

{
(x, y, z) ∈ R3

: x2
+

1
a2 (y2

+ z2) < 1
}
, a > 0.

Note that Da ⊂ B3 if and only if 0 < a ≤ 1, and D1 = B3. We will show that for 0 < a < 1 the
Hilbert metric on Da does not agree with the minimal metric at the origin 0 ∈ R3. Since the x-axis
intersects Da in the interval (−1, 1), the Hilbert length of the vector e1 = (1, 0, 0) equals 1. Pick a
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two-plane 3 ⊂ R3 containing the vector e1. Due to rotational symmetry of Da in the (y, z)-coordinates
the value of MDa (0, 3) (6-3) does not depend on the choice of 3, so we may take 3 = {z = 0}. Let
f = ( f1, f2, f3) : D → Da be a conformal harmonic disc with f (0) = 0 and d f0(R

2) = {z = 0}. Replacing
f by f (eit z) for a suitable t ∈ R gives fx(0) = r e1 and fy(0) = ±r e2 with r = ∥d f0∥ > 0. The projection
h = ( f1, f2) : D → R2 maps D into the ellipse Ea = {x2

+ y2/a2 < 1}, h(0) = 0, and h is conformal at 0.
For 0 < a < 1 we have Ea ⊊ D. Theorem 1.1 implies that r = ∥dh0∥ < 1; equality is excluded since in
that case we would have h(D) = D. By a normal families argument we also have that sup f ∥d f0∥ < 1. It
follows that MDa (0, 3) > 1 for every such 3, and hence

gDa (0, e1) = MDa (0, 3) > 1 = HDa (0, e1) if 0 < a < 1.

Problem 6.4. On which bounded convex domains D ⊂ Rn, n ≥ 3 (besides the ball) does the Hilbert
metric coincide with the minimal metric gD? Is the ball the only such domain?

Denote by Rn the Lie group of transformations Rn
→ Rn generated by the orthogonal group On ,

translations, and dilations by positive numbers. Elements of Rn are called rigid transformations of Rn.
Postcomposition of any conformal harmonic map f : M → Rn by a rigid transformation of Rn is again a
conformal harmonic map, and it is well known that Rn is the largest group of diffeomorphisms of Rn

having this property. This gives the following.

Proposition 6.5. Given a domain D ⊂Rn, n ≥3, and a map R ∈Rn , the restriction R|D : D → D′
= R(D)

is an isometry of pseudometric spaces (D, ρD) → (D′, ρD′).

Remark 6.6. The intrinsic pseudometric gD and the associated pseudodistance ρD can be defined in the
very same way on an arbitrary Riemannian manifold (D, g̃) of dimension at least three. The Riemannian
metric g̃ determines the class of conformal harmonic maps D → D, which coincide with conformal
minimal discs in D.

Hyperbolic domains in Rn. We now introduce the notion of (complete) hyperbolic domains in Rn, in
analogy with Kobayashi hyperbolic complex manifolds.

Definition 6.7. A domain D ⊂ Rn (n ≥ 3) is hyperbolic if the pseudodistance ρD is a distance function
on D, and is complete hyperbolic if (D, ρD) is a complete metric space.

Example 6.8. (a) The ball Bn
⊂ Rn (n ≥ 3) is complete hyperbolic. Indeed, the Cayley–Klein metric

(2-6) is complete, so the conclusion follows from Theorem 6.2.

(b) Every bounded domain D ⊂ Rn is hyperbolic. Indeed, if B is a ball containing D then ρD(x, y) ≥

ρB(x, y) for any pair x, y ∈ D, and B is complete hyperbolic by (a). However, a bounded domain need
not be complete hyperbolic. For example, if bD is strongly concave at p ∈ bD, there is a conformal
linear disc 6 ⊂ D ∪ { p} containing p, and it is easily seen that p is at finite ρ-distance from D.

(c) The half-space Hn
= {x = (x1, . . . , xn) ∈ Rn

: xn > 0} is not hyperbolic, and the pseudodistance ρHn

vanishes on all planes xn = const. However, every point on bHn
= {xn = 0} is at infinite minimal distance

from points in Hn [Drinovec Drnovšek and Forstnerič 2023, Lemma 5.2].
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By using the expression for the metric (2-8) on the ball we can determine the asymptotic rate of growth
of the Finsler metric MD , and hence of the distance function ρD , on any bounded strongly convex domain
D ⊂ Rn with C 2 boundary. Let δ = δ(x) = 1 − |x| denote the distance from a point x ∈ Bn

\ {0} to the
sphere bBn, and let 3 ⊂ Rn be a 2-plane forming an angle θ with x. As x approaches the sphere radially,
we have

MBn (x, θ) := MBn (x, 3) ≈

√
cos2 θ + 2δ sin2 θ

2δ
,

in the sense that the quotient of the two sides converges to 1 as δ → 0. In particular,

MBn

(
x,

π

2

)
≈

1
√

2δ
and MBn (x, θ) ≈

cos θ

2δ
for θ ∈

[
0,

π

2

)
.

Assume now that D ⊂ Rn is a bounded strongly convex domain with C 2 boundary. There is a collar
U ⊂ Rn around bD such that every point x ∈ U ∩ D has a unique closest point π(x) ∈ bD. Comparison
with inscribed and circumscribed balls to D passing through the point π(x) shows that there are constants
0 < c < C such that

c

√
cos2 θ + 2δ sin2 θ

2δ
≤ MD(x, 3) ≤ C

√
cos2 θ + 2δ sin2 θ

2δ
(6-8)

for x ∈ U ∩ D, where δ = |x − π(x)| = dist(x, bD) and θ is the angle between the 2-plane 3 and
the normal vector Nx = δ−1(π(x) − x) to bD at π(x) ∈ bD. The upper bound uses comparison with
inscribed balls, so it holds on any domain with C 2 boundary, while the lower bound uses comparison
with circumscribed ball, and hence it depends on strong convexity of D. These estimates are analogous to
the asymptotic boundary estimates of the Kobayashi metric in bounded strongly pseudoconvex domains
in Cn and are due to Graham [1975]. (There is a large subsequent literature on this subject.) These
estimates show in particular that the distance function ρD induced by MD is complete, thereby giving
the following.

Theorem 6.9. Every bounded strongly convex domain in Rn, n ≥ 3, with C 2 boundary is complete
hyperbolic in the minimal metric.

Remark 6.10. Since the first version of this paper was posted on arXiv in February 2021, progress on
the subject of minimal hyperbolicity was made by Drinovec Drnovšek and Forstnerič [2023], whose
paper we will henceforth abbreviate as [DDF 2023]. Besides establishing basic characterizations of
(complete) hyperbolicity, they proved that a convex domain in Rn is hyperbolic if and only if it is complete
hyperbolic if and only if it does not contain any affine 2-plane [DDF 2023, Theorem 5.1]. They also
showed that every bounded strongly minimally convex domain in Rn, n ≥ 3, is complete hyperbolic
[DDF 2023, Theorem 9.2]. This is a considerable generalization of Theorem 6.9, whose proof relies on
the lower bound for M� (and hence g�) given by another Finsler pseudometric F� : �× G2(R

n) → R+

defined in terms of minimal plurisubharmonic functions; see [DDF 2023, Section 7]. A discussion of
this class of domains and functions can be found in [Alarcón et al. 2019; 2021, Chapter 8]. Finally,
they established a localization theorem for the minimal pseudometric analogous to the results for the
Kobayashi pseudometric; see [DDF 2023, Section 8].
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The following problem remains open; an affirmative answer is known for the case when M is a plane;
see [DDF 2023, Lemma 5.2].

Problem 6.11. Let M be an embedded minimal surface in R3. Is the minimal distance from R3
\ M to M

infinite? Is the complement of a catenoid in R3 complete hyperbolic?

Extremal minimal discs. Another important and natural question is the following.

Problem 6.12. Let D ⊂ Rn be a bounded strongly convex domain with smooth boundary. Is there a
unique (up to a conformal reparametrization) extremal conformal harmonic disc through any given point
x ∈ D tangent to a given two-plane 3 ∈ G2(R

n) at x?

Theorem 2.1 gives an affirmative answer on the ball, and this is the only domain for which the answer
seems to be known. By the seminal result of Lempert [1981; 1987], the analogous result holds for the
extremal holomorphic discs for the Kobayashi metric in any smoothly bounded strongly convex domain
D ⊂ Cn.

We now describe a condition which implies an affirmative answer to this problem. It explores a
comparison between the Finsler pseudometric MD (6-1) on a domain D ⊂ Rn and a Kobayashi-type
pseudometric on the tube TD = D × iRn

⊂ Cn. To this end, we recall a few basic facts from the theory of
minimal surfaces; see [Alarcón et al. 2021, Chapter 2] or [Osserman 1969].

A holomorphic map F = (F1, . . . , Fn) : D → Cn satisfying∑
i=1

F ′

i (z)
2
= 0 for all z ∈ D

is called a holomorphic null map. The analogous definition applies with the disc replaced by any open
Riemann surface, considering the above equation in local holomorphic coordinates. (The map F need not
be an immersion.) The complex cone

An−1
=

{
z = (z1, . . . , zn) ∈ Cn

:

n∑
i=1

z2
i = 0

}
(6-9)

is called the null cone, and its elements are null vectors. Hence, a holomorphic map F is null if and only
if the complex derivative F ′(z) lies in An−1 for every z. It is a basic fact that the real and imaginary
parts of a holomorphic null map M → Cn are conformal harmonic maps M → Rn; conversely, every
conformal harmonic map D → Rn from the disc is the real part of a holomorphic null map D → Cn; see
[Alarcón et al. 2021, Theorem 2.3.4]. Given a domain D ⊂ Rn, we denote by HN(D, TD) the space of all
holomorphic null maps F = (F1, . . . , Fn) : D → TD . Define a pseudometric on (z, w) ∈ TD × An−1 by

ND(z, w) = inf
{

1
|a|

: ∃F ∈ HN(D, TD), F(0) = z, F ′(0) = aw

}
. (6-10)

Here, a may be a complex number. Clearly, ND(z, w) is bigger than or equal to the Kobayashi pseudonorm
of the vector w ∈ Tz(TD), since in the definition of the latter one uses all holomorphic discs as opposed to
just null discs. Note that for each conformal frame (u, v) ∈ CFn the vectors u ± iv ∈ Cn are null vectors;
conversely, the real and imaginary component of a null vector w ∈ An−1 form a conformal frame. The
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aforementioned correspondence between conformal harmonic discs in D and holomorphic null discs
in TD shows that for all x ∈ D, y ∈ Rn, and (u, v) ∈ CFn we have

ND(x + i y, u ± iv) = MD(x, (u, v)). (6-11)

This shows in particular that every extremal conformal harmonic disc in D is the real part of an extremal
holomorphic null disc in the tube TD. Therefore, the correspondence between the extremal conformal
minimal discs in the ball Bn

⊂ Rn and the Kobayashi geodesics in the tube TBn , used in the proof of
Lemma 3.1, extends to any bounded strongly convex domain D ⊂ Rn with C 2 boundary satisfying the
following condition. The notion of a stationary holomorphic disc was explained in Remark 3.2.

Definition 6.13. A domain D ⊂ Rn satisfies Condition N if for every point x ∈ D and null vector
0 ̸= w ∈ An−1 there is a stationary holomorphic null disc in the tube TD through the point x + i0 in the
direction w.

Our proof of Theorem 2.1 implies the following.

Theorem 6.14. If D is a bounded strongly convex domain in Rn, n ≥ 3, with smooth boundary and
satisfying Condition N, then for every point x ∈ D and two-plane 3 ∈ G2(R

n) there exists an extremal
conformal harmonic disc f : D → D with f (0) = x and d f0(R

2) = 3. Such an f is unique up to a
rotation of D.

Proof. Let 0 ̸= w = u − iv ∈ An−1 be such that 3 = span{u, v}. By Condition N there is a stationary
holomorphic null disc F : D → TD with F(0) = x + i0 and F ′(0) = αw for α ∈ C, and F is unique up
to rotations of D by Lempert’s theorem [1981, Theorem 2]. The real part f = ℜF : D → D is then a
conformal harmonic disc as in the theorem. □

Problem 6.15. Which bounded strongly convex domains in Rn, besides the ball, satisfy Condition N?

Complex geodesics of the Kobayashi metric in tubes over convex domains D ⊂ Rn were studied by
Zając [2015; 2016], Pflug and Zwonek [2018], and Zwonek [2022]. It would be of interest to see whether
these works can be used to give information on the validity of Condition N. The fact that Condition N
holds on the ball Bn may simply be a lucky coincidence which makes our analysis work on this most
symmetric domain.
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AN IMPROVED REGULARITY CRITERION AND ABSENCE
OF SPLASH-LIKE SINGULARITIES FOR G-SQG PATCHES

JUNEKEY JEON AND ANDREJ ZLATOŠ

We prove that splash-like singularities cannot occur for sufficiently regular patch solutions to the generalized
surface quasi-geostrophic equation on the plane or half-plane with parameter α ≤

1
4 . This includes potential

touches of more than two patch boundary segments in the same location, an eventuality that has not been
excluded previously and presents nontrivial complications (in fact, if we do a priori exclude it, then our
results extend to all α ∈ (0, 1)). As a corollary, we obtain an improved global regularity criterion for
H 3 patch solutions when α ≤

1
4 , namely that finite time singularities cannot occur while the H 3 norms of

patch boundaries remain bounded.

1. Introduction

The g-SQG (generalized surface quasi-geostrophic) equation is the active scalar PDE

∂tω + u · ∇ω = 0, (1-1)

where the scalar ω : R2
× (0, ∞) → R is advected by the velocity field

u := ∇
⊥(−1)−1+αω. (1-2)

Here ∇
⊥

:= (−∂x2, ∂x1) and α ∈ (0, 1) is a given parameter. Note that (1-1) is the vorticity form of the
(incompressible) two-dimensional Euler equation when α = 0, which models the motion of ideal fluids,
with u the fluid velocity and ω := ∇

⊥
· u its vorticity. When α =

1
2 , it is the SQG equation, which is

used in atmospheric science models [Pedlosky 1979] and was first analyzed rigorously by Constantin,
Majda, and Tabak [Constantin et al. 1994]. The g-SQG equation with α ∈ (0, 1) is its generalization and
has also been studied in both geophysical and mathematical literature, including in [Chae et al. 2012;
Constantin et al. 2008; Córdoba et al. 2005; Gancedo 2008; Kiselev and Luo 2023; Kiselev et al. 2016;
2017; Pierrehumbert et al. 1994; Smith et al. 2002].

Global regularity for (smooth or bounded) solutions has been known in the Euler case α = 0 since
the works of Hölder [1933], Wolibner [1933], and Yudovich [1963], but it is still an open problem in
the g-SQG case with any α ∈ (0, 1). In this work we consider so-called patch solutions to (1-1), that
is, weak solutions that are linear combinations of characteristic functions of some time-dependent sets
�n(t) ⊆ R2 (often only a single such set/patch is considered but the extension to multiple sets is typically
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straightforward). The main question now is that of global well-posedness for these solutions: if the
boundary of each initial patch �n(0) is a simple closed curve of some prescribed regularity (H k or Ck,γ )
and these curves are pairwise disjoint, does this setup persist forever or may it cease existing in finite
time? This of course involves not only the required regularity of each ∂�n(t), but also that they all remain
pairwise disjoint simple closed curves.

Chemin [1993] showed the answer to be in the affirmative when α = 0, but the question remains
open for any α ∈ (0, 1). Local existence for these models was proved for α ∈

(
0, 1

2

]
and H 3 patches

by Gancedo [2008], who also obtained uniqueness for α ∈
(
0, 1

2

)
and those solutions that satisfy a

related contour equation (well-posedness for α =
1
2 in a special class of patches was earlier proved by

Rodrigo [2005]). Local existence was also proved for α ∈
[1

2 , 1
)

and H 4 patches by Chae, Constantin,
Córdoba, Gancedo, and Wu [Chae et al. 2012]. Kiselev, Yao, and Zlatoš [Kiselev et al. 2017] later proved
full local well-posedness for α ∈

(
0, 1

2

)
and H 3 patches (they also considered the related half-plane case, in

which global well-posedness was proved to fail by Kiselev, Yao, Ryzhik, and Zlatoš [Kiselev et al. 2016]).
In addition, Córdoba, Córdoba, and Gancedo achieved this for α =

1
2 and H 3 patches [Córdoba et al. 2018],

Gancedo and Patel for α ∈
(
0, 1

2

)
and H 2 patches as well as for α ∈

( 1
2 , 1

)
and H 3 patches [Gancedo

and Patel 2021], and Gancedo, Nguyen, and Patel for α =
1
2 and H 2+γ patches [Gancedo et al. 2022].

The singularity-formation mechanism on the half-plane from [Kiselev et al. 2016], which was motivated
by numerical simulations for the three-dimensional Euler equation due to Luo and Hou [2014a; 2014b] and
by the related proof of double exponential growth of gradients for smooth solutions to the two-dimensional
Euler equation on a bounded domain by Kiselev and Šverák [2014], does not seem to extend to the whole
plane case. It is therefore still unknown whether global well-posedness holds on R2 for any α ∈ (0, 1).
Nevertheless, the local well-posedness result in [Kiselev et al. 2017] does show that, at least for α ∈

(
0, 1

2

)
and H 3 patches, finite time singularity can only occur if either a patch boundary loses H 3 regularity or a
touch happens. The latter might involve two or more patch boundary segments, which might belong to
different patches or to a single patch.

The main result of this paper is that, for α ∈
(
0, 1

4

]
, a touch cannot occur without the loss of C1,2α/(1−2α)

(and hence also H 3) regularity of a patch boundary at the same time (this is also suggested by numerical
simulations of Córdoba, Fontelos, Mancho, and Rodrigo [Córdoba et al. 2005]). If it did occur and
the C1,γ norm of the patch boundary would stay uniformly bounded for some γ > 0, the resulting
singularity would be called a splash. One might think that its existence for the free boundary Euler
equation, demonstrated by Castro, Córdoba, Fefferman, Gancedo, and Gómez-Serrano [Castro et al. 2013]
and Coutand and Shkoller [2014], would suggest its possibility for g-SQG patches as well. But these two
cases are very different: the converging boundary segments are separated by vacuum in the free boundary
case, while for (1-1) they are separated by the (incompressible) fluid medium, which must be “squeezed
out” of the region between them before a touch can occur.

One might also think that impossibility of general splash singularities was already proved by Gancedo
and Strain [2014] for the SQG case α =

1
2 and smooth patches, who showed that a touch of two patch

boundary segments (which we call a simple splash) is indeed impossible at any specific location without
a loss of boundary smoothness; their argument extends to all α ∈

(
0, 1

2

)
. However, they proved this
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assuming that no singularity occurs elsewhere, and the result also does not exclude simultaneous touches
of three or more boundary segments. Crucially, their proof does not extend to this case either. In it, they
place the two segments in a coordinate system in which both are close to horizontal, and use the fact
that normal vectors at two points that minimize the vertical distance of the two boundary segments (at
any given time) are automatically parallel. This causes important cancellations in the integral evaluating
the approach velocity of the two points, which bound this velocity by a multiple of the product of the
distance of the two points and the log of this distance. Grönwall’s inequality then yields at most double
exponential in time approach rate of the two segments.

We can even obtain a simple exponential bound for C2,γ patches with γ > 0 by instead minimizing
the distance (rather than vertical distance) of the two boundary segments, in which case the normals at
the closest points both lie on the line connecting these points. The resulting computation then bounds the
approach velocity by only a multiple of the distance, and it even extends to all α ∈ (0, 1) with appropriate γ

(see Section 2E).
However, when a third boundary segment is present nearby, its normal vector at the point where it

intersects the above line need not lie on that line, which significantly compromises the cancellations
involved. One then needs to obtain very precise bounds on the resulting errors in this case, which we will
achieve by using the uniform C1,2α/(1−2α) bound on the patch boundary to estimate the angle between
this normal vector and the line, in terms of the distance of the third segment from the two closest points
on the first two segments. When this distance is small, the error will be controlled because the angle must
be small; this control worsens when the distance is larger, but then the effect of the third segment on the
two points decreases as well. This will yield the needed bound on the approach velocity of the closest
points, and this estimate will even extend to the case of arbitrarily many boundary segments folded on
top of each other and attempting to create a complex splash singularity.

As a result, we will obtain an improved regularity criterion for H 3 patch solutions to (1-1), requiring
only a uniform bound on the C1,2α/(1−2α) norm of the patch boundaries. Nevertheless, this approach only
works when α ∈

(
0, 1

4

]
, and the obtained estimates are insufficient for larger α (specifically, Lemma 2.5).

The reason for this is not just technical, and simply assuming higher boundary regularity will not suffice
to overcome the new complications involved. We believe that a different (dynamical) approach will be
needed for α > 1

4 (if the result extends to this range at all), which likely makes it a very difficult problem.
Let us now state rigorously the definition of patch solutions to (1-1) from [Kiselev et al. 2017] (which

even allows patches to be nested) and our main result. Below we let T := R/2πZ.

Definition 1.1. Let � ⊆ R2 be a bounded open set whose boundary ∂� is a simple closed C1 curve with
arc-length |∂�|. We call a constant-speed parametrization of ∂� any counterclockwise parametrization
z : T → R2 of ∂� with |z′

| ≡ |∂�|/(2π) on T (these are all translations of each other), and we define
∥�∥Ck,γ := ∥z∥Ck,γ (T) and ∥�∥H k := ∥z∥H k for (k, γ ) ∈ N0 × [0, 1].

Next we note that, when α ∈
(
0, 1

2

)
, the velocity u from (1-2) satisfies the explicit formula

u(x, t) := cα

∫
R2

(x − y)⊥

|x − y|2+2α
ω(y, t) dy (1-3)
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for bounded ω, with v⊥
:= (−v2, v1) and cα > 0 an appropriate constant; see Section 2E for the necessary

adjustments when α ∈
[ 1

2 , 1
)
. For any 0 ⊆ R2, vector field v : 0 → R2, and h ∈ R, we let the set to

which 0 is advected by v in time h be

Xh
v [0] := {x + hv(x) | x ∈ 0}.

Definition 1.2. Let θ1, . . . , θN ∈ R \ {0}, and for each t ∈ [0, T ), let �1(t), . . . , �N (t) ⊆ R2 be bounded
open sets whose boundaries are pairwise disjoint simple closed curves such that each ∂�n(t) is also
continuous in t ∈ [0, T ) with respect to Hausdorff distance dH of sets. Define ∂�(t) :=

⋃N
n=1 ∂�n(t)

and ∥�(t)∥Y :=
∑N

n=1∥�n(t)∥Y for Y ∈ {Ck,γ , H k
}, and let

ω( · , t) :=

N∑
n=1

θnχ�n(t). (1-4)

If for each t ∈ (0, T ) we have

lim
h→0

dH (∂�(t + h), Xh
u( · ,t)[∂�(t)])

h
= 0, (1-5)

with u from (1-3), then ω is a a patch solution to (1-1)–(1-2) on the time interval [0, T ). If we also have
supt∈[0,T ′]∥�(t)∥Y < ∞ for some Y ∈ {Ck,γ , H k

} and each T ′
∈ (0, T ), then ω is a Y patch solution to

(1-1)–(1-2) on [0, T ).

While (1-5) is stated for each single time t (akin to the definition of strong or classical solutions to
a PDE), it agrees with the usual flow-map based definition of solutions to the two-dimensional Euler
equation; see the remarks after Definition 1.2 in [Kiselev et al. 2017]. Since u is only Hölder continuous
at the patch boundaries when α > 0 (and hence the flow map may not be unique), this definition is more
appropriate in the g-SQG case.

Theorem 1.5 in [Kiselev et al. 2017] shows that for any θ1, . . . , θN ∈ R \ {0} and any bounded open
sets �1(0), . . . , �N (0) ⊆ R2 whose boundaries are pairwise disjoint simple closed H 3 curves, there is a
time T ∈ (0, ∞] such that a unique H 3 patch solution ω =

∑N
n=1 θnχ�n( · ) to (1-1)–(1-2) exists on [0, T ).

And if the maximal such T is finite, then either supt∈[0,T )∥�(t)∥H3 = ∞ or

sup
t∈[0,T )

sup
(n,ξ),( j,η)∈{1,...,N }×T

(n,ξ) ̸=( j,η)

|n − j | + |ξ − η|

|zn(ξ, t) − z j (η, t)|
= ∞, (1-6)

where zn( · , t) is a constant-speed parametrization of ∂�n(t) and |ξ −η| is distance on T. Note that if (1-6)
holds with n = j — which means that the arc-chord ratio for some �n( · ) becomes unbounded as t → T —
then this must be realized by a touch of “distinct” segments (which we call folds) of ∂�n( · ) whenever
supt∈[0,T )∥�(t)∥C1,γ < ∞ for some γ > 0. Indeed, since |∂ξ zn(ξ, t)| is then bounded below by a positive
constant uniformly in (n, ξ, t) (see (2-4)), it follows that the fraction in (1-6) is uniformly bounded
above when n = j and |ξ − η| is small enough. Therefore (1-6) is the correct definition of a splash-like
singularity at time T (i.e., a touch of either boundaries of distinct patches or folds of the same patch
boundary, including both simple and complex splashes) when supt∈[0,T )∥�(t)∥C1,γ < ∞ for some γ > 0.
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The following theorem is now our main result.

Theorem 1.3. If α ∈
(
0, 1

4

]
and a C1,2α/(1−2α) patch solution to (1-1)–(1-2) on the time interval [0, T )

with T < ∞ satisfies supt∈[0,T )∥�(t)∥C1,2α/(1−2α) < ∞, then (1-6) fails (so no splash-like singularity can
occur). In particular, if the maximal time T of existence of an H 3 patch solution from [Kiselev et al. 2017,
Theorem 1.5] is finite and α ∈

(
0, 1

4

]
, then supt∈[0,T )∥�(t)∥H3 = ∞.

Remark. (1) Our proof shows that the left-hand side of (1-6) with supt∈[0,T ) removed can grow at most
exponentially in time (up to time T ) if supt∈[0,T )∥�(t)∥C1,2α/(1−2α) < ∞. Hence boundaries of distinct
patches, as well as folds of the same patch boundary, can only approach each other exponentially quickly
in this case.

(2) While we do not know whether this result extends to some α > 1
4 , in Section 2E we provide an

extension to all α ∈ (0, 1) when one a priori requires that only simple splashes can occur (i.e., no more
than two segments of ∂� are allowed to touch in the same location) and supt∈[0,T )∥�(t)∥Ck,γ < ∞ holds
for k = 1 and some γ ≥ 2α, when α ∈

(
0, 1

2

]
, or for k = 2 and some γ ≥ 2α − 1, when α ∈

[ 1
2 , 1

)
. The

obtained bound on the approach rate of two patches/folds is now double exponential when γ is equal
to the minimal value above (2α or 2α − 1), and exponential otherwise. We note that when the potential
simple splash is assumed to have a predetermined location and development of singularities elsewhere is
a priori excluded, then this was also proved for α =

1
2 in [Gancedo and Strain 2014] (for smooth patches

and with a double exponential bound on the approach rate), and for all α ∈ (0, 1) in [Kiselev and Luo
2023] (this work was done contemporaneously with and independently of ours).

Finally, here is an extension to the half-plane; see Section 3 for the relevant adjustments.

Theorem 1.4. Theorem 1.3 extends to patch solutions on the half-plane, with the second claim involving
H 3 patch solutions from [Kiselev et al. 2017, Theorem 1.4] and α ∈

(
0, 1

24

)
, or H 2 patch solutions from

[Gancedo and Patel 2021, Theorem 1.1] and α ∈
(
0, 1

6

)
.

It was proved in [Kiselev et al. 2016] that, for any α ∈
(
0, 1

24

)
, there are H 3 patch solutions on the

half-plane that become singular in finite time. For α ∈
(
0, 1

6

)
and H 2 patch solutions this was proved in

[Gancedo and Patel 2021]. Theorem 1.4 shows that this cannot happen only via a splash-like singularity
and always involves blow-up of their H 3 and H 2 norms, respectively.

2. Proof of Theorem 1.3

2A. The single patch case. For the sake of simplicity of notation, let us first consider the case of a single
patch on which ω ≡ 1; that is, ω( · , t) = χ�(t). Then (1-3) becomes

u(x, t) :=

∫
�(t)

(x − y)⊥

|x − y|2+2α
dy (2-1)

after rescaling (1-1) in time by cα (which we do in order to remove the constant).
We will not assume α ≤

1
4 until it is needed, so that it is clear where this hypothesis enters into our

argument. We will therefore consider a C1,γ patch solution with any γ ∈ (0, 1] below. If now z( · , t) is
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any constant-speed parametrization of ∂�(t) for t ∈ [0, T ), we assume that

M := sup
t∈[0,T )

∥z( · , t)∥C1,γ < ∞. (2-2)

We now want to show that this implies

sup
t∈[0,T )

sup
ξ,η∈T
ξ ̸=η

|ξ − η|

|z(ξ, t) − z(η, t)|
< ∞. (2-3)

Since a C1 patch solution is also a weak solution to (1-1)–(1-2) with |�(t)| being conserved (see
Remark 3 after Definition 1.2 in [Kiselev et al. 2017]), the isoperimetric inequality shows that

M ′
:= inf

(ξ,t)∈T×[0,T )
|∂ξ z(ξ, t)| > 0. (2-4)

Now for any t ∈ [0, T ) and ξ, η ∈ T, there are ξ1, ξ2 ∈ T between ξ and η such that

|z(ξ, t) − z(η, t)| = |ξ − η||(∂ξ z1(ξ1, t), ∂ξ z2(ξ2, t))| ≥ |ξ − η|(|∂ξ z(ξ, t)| − 2M |ξ − η|
γ ).

Hence if we let δ := (M ′/4M)1/γ , then

|z(ξ, t) − z(η, t)| ≥
1
2 M ′

|ξ − η| (2-5)

whenever |ξ − η| ≤ δ. To conclude (2-3), it now suffices to show

inf
t∈[0,T )

min
ξ,η∈T

|ξ−η|≥δ

|z(ξ, t) − z(η, t)| > 0. (2-6)

We therefore let
m(t) := min

ξ,η∈T
|ξ−η|≥δ

|z(ξ, t) − z(η, t)| ≥ 0, (2-7)

and let ξt , ηt ∈ T be such that |z(ξt , t) − z(ηt , t)| = m(t). If (2-6) fails, then clearly for all t < T close
enough to T we have m(t) < 1

2 M ′δ, which shows that |ξt − ηt | > δ for these t because (2-5) holds. It
suffices to consider only such t . Then, following an argument in [Constantin and Escher 1998], one can
easily see that m(t) is locally Lipschitz (and so differentiable at almost all such t) and we have

m′(t) =
z(ξt , t) − z(ηt , t)

m(t)
· (u(z(ξt , t), t) − u(z(ηt , t), t)) (2-8)

for almost every such t . Hence Grönwall’s inequality shows that it suffices to prove

−(u(z(ξt , t), t) − u(z(ηt , t), t)) · nt ≤ Cm(t) (2-9)

for some t-independent C <∞ and all t such that m(t)∈
(
0, 1

2 M ′δ
)
, where nt := (z(ξt , t)−z(ηt , t))/m(t)

is the unit vector in the direction z(ξt , t) − z(ηt , t). Of course, the definition of ξt , ηt shows that nt is
also normal to ∂�(t) at both z(ξt , t) and z(ηt , t).

Since (2-9) only involves quantities at a single time, we will now assume that t is close to T and drop
the dependence of �, z, u, and m on t from our notation. The above also shows that after a translation
and rotation we can assume:
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(1) z(ηt) = (0, 0) and z(ξt) = (0, m), with m ∈
(
0, 1

2 M ′δ
)
.

(2) ∂ξ z(ξt), ∂ξ z(ηt) ⊥ (0, 1).

We will do so, and then (2-9) becomes just

u2(0, 0) − u2(0, m) ≤ Cm. (2-10)

We will prove this in the next three subsections. We note that all constants below may depend on
α, γ, M, M ′ (recall that δ also depends on these), but will be independent of m and t .

2B. Some geometric lemmas. We first state some geometric lemmas that will be used throughout. The
first of these is a trivial consequence of C1,γ -regularity of ∂�, which says that near any z(ξ), the curve z
is the graph of some function f : R → R defined with respect to the coordinate system centered at z(ξ)

and with the horizontal axis not too far from ∂ξ z(ξ).

Lemma 2.1. There are A ≥ 1 and R0 > 0 such that, for any ξ ∈ T and any v ∈ S1 with |∂ξ z(ξ) · v| ≥

1
2 |∂ξ z(ξ)|, there is f : [−R0, R0] → R with ∥ f ∥C1,γ ≤ A such that

{z(ξ) + hv + f (h)v⊥
| h ∈ [−R1, R1]} = z([ξ − ξ1, ξ + ξ2])

for each R1 ∈ [0, R0] and some ξ1, ξ2 ∈ [R1/M, 3R1/M ′
]. Then

f (0) = 0 and f ′(0) =
∂ξ z(ξ) · v⊥

∂ξ z(ξ) · v
.

The next lemma shows that when two folds of ∂� are close to each other, the angles between their
tangent lines are controlled by their distance.

Lemma 2.2. There are B, R > 0 such that, for any ξ, η ∈ T with |z(ξ) − z(η)| ≤ R we have

|tan θ | ≤ B|z(ξ) − z(η)|γ /(1+γ ), (2-11)

where θ is the angle between ∂ξ z(ξ) and ∂ξ z(η).

Proof. Let A, R0 be from Lemma 2.1. First note that it suffices to prove

|sin θ | ≤ B|z(ξ) − z(η)|γ /(1+γ ) (2-12)

instead of (2-11). Indeed, we then only need to replace R by min{R, (2B)−(1+γ )/γ
}, which yields

|cos θ | ≥
1
2 , and then double B.

Take C := 9A, and let R := min
{ 1

2C−(2+2γ )/γ , (R0/(3C))2
}

and B := 3C2. Without loss assume that
z(η) = 0 and ∂ξ z(η)/|∂ξ z(η)| = (1, 0), and then let r := |z(ξ)| ≤ R and r ′

:= Cr1/(1+γ )
≤ C R1/2

≤
1
3 R0.

Then Lemma 2.1 with v := (1, 0) shows that z near the origin is a curve connecting the vertical sides of
the rectangle Q := [−3r ′, 3r ′

] × [−C3r, C3r ] because

A(3r ′)γ (3r ′) ≤ 9AC2r ≤ C3r

(note that the definition of R shows that C3r < r ′, so the vertical sides are the shorter ones).
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z(η)

z(ξ) r θ

6r ′

2C3r

2C3r

2r ′

Figure 1. The curve z inside the rectangles Q and Q′.

Apply the same argument with v := ∂ξ z(ξ)/|∂ξ z(ξ)| and the rectangle Q′ centered at z(ξ) whose
longer axis connects the points z(ξ) ± vr ′ and whose shorter sides have again length 2C3r . It shows
that z near z(ξ) is a curve connecting the shorter sides of Q′. If (2-12) is violated, then one of these sides
lies fully in (−3r ′, 3r ′)× (C3r, ∞) and the other in (−3r ′, 3r ′)× (−∞, −C3r) (see Figure 1) because
r + r ′

+ C3r < 3r ′ and
r ′ sin θ > BCr ≥ 3C3r > 2C3r + r.

But this means that the two curves must intersect, a contradiction with our assumption that no touch has
occurred before time T . □

We can now combine Lemmas 2.1 and 2.2 to obtain the following constraint on the geometry of ∂�

near the origin.

Lemma 2.3. In the setting of (1) and (2), there are A, B, R > 0 with

B(3R)γ /(1+γ )
≤

1
2 and M(4R)γ ≤ (M ′)1+γ

such that, for any ξ ∈ T with z(ξ) ∈ [−R, R] × [−2R, 2R], there is f : [−R, R] → R with

∥ f ∥C1,γ ≤ A and | f ′(z1(ξ))| ≤ B|z(ξ)|γ /(1+γ )

such that the graph of f is a segment of the curve z around z(ξ). In particular,

| f (h) − z2(ξ) − f ′(z1(ξ))(h − z1(ξ))| ≤ A|h − z1(ξ)|1+γ

for all h ∈ [−R, R]. And if | f (h′)| > 2R for some h′
∈ [−R, R], then | f (h)| > R for all h ∈ [−R, R].

Proof. The first statement is an immediate consequence of Lemmas 2.1 and 2.2, with A from Lemma 2.1,
B from Lemma 2.2, and R being the minimum of one third of R from Lemma 2.2 and

min
{1

3(2B)−(1+γ )/γ , 1
4(M ′)(1+γ )/γ M−1/γ

}
(Lemma 2.1 is applied with v := (1, 0) and z2(ξ) is added to the obtained f ). The second statement is its
immediate consequence, while the third holds by B(3R)γ /(1+γ )

≤
1
2 . □
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The third claim shows that any connected component of ∂�∩ ([−R, R]× [−2R, 2R]) that intersects
[−R, R]

2 is a graph of a function f : [−R, R] → [−2R, 2R] that satisfies the lemma. Note also that
since the arc-length of any such component is at least 2R and the arc-length of ∂� is uniformly bounded
above because so is ∥∂�∥C1 , it follows that the number of such components is bounded above by some
constant K . That is, if we assume (2-2), only a finite number of folds of ∂� might potentially create a
single touch (splash) at time T ; we will show below that this is in fact not possible when α ≤

1
4 .

2C. Reduction to regions near individual boundary segments. Take A, B, R from Lemma 2.3, and K
from the above discussion. From (2-1) we see that the left-hand side of (2-10) is the sum of the terms

I :=

∫
�∩[−R,R]2

(
y1

|y|2+2α
−

y1

|y − (0, m)|2+2α

)
dy

and

I ′
:=

∫
�\[−R,R]2

(
y1

|y|2+2α
−

y1

|y − (0, m)|2+2α

)
dy.

To prove (2-10), it clearly suffices to assume that m ≤
1
2 R, in which case clearly |I ′

| ≤ Cm for some
constant C . Hence we only need to show that I ≤ Cm.

Assume that f1, . . . , fk : [−R, R] → [−2R, 2R] are distinct functions whose graphs are all the
connected components of ∂� from the paragraph after Lemma 2.3 (so k ≤ K ), and order them so that
f1(0) < · · · < fk(0). Let

gi := sgn( fi ) min{| fi |, R},

so that

I ≤

k+1∑
i=1

∣∣∣∣∫ R

−R

∫ gi (h)

gi−1(h)

(
h

(h2 + v2)1+α
−

h
(h2 + (v − m)2)1+α

)
dv dh

∣∣∣∣, (2-13)

where g0 ≡ −R and gk+1 ≡ R. Since the integrand is odd in h, its integral on any region symmetric
with respect to the vertical axis is zero. Since [−R, R]× [gi−1(0), gi (0)] is such a region we can replace
the integral

∫ gi (h)

gi−1(h)
in (2-13) by the sum of integrals

∫ gi−1(0)

gi−1(h)
and

∫ gi (h)

gi (0)
(with the same integrand). We

therefore obtain |I | ≤ 2
∑k

i=1 |Ii |, where

Ii :=

∫ R

−R

∫ gi (h)

gi (0)

(
h

(h2 + v2)1+α
−

h
(h2 + (v − m)2)1+α

dv

)
dh.

Hence, we are left with showing |Ii | ≤ Cm for each i . When doing this, we can just assume that gi = fi

because the error we incur by this involves only integration over � \ [−R, R]
2 and therefore is no more

than Cm (similarly to I ′).

2D. Estimating the individual integrals. We thus consider any f : [−R, R] → [−2R, 2R] whose graph
is a segment of the curve z passing through a point in [−R, R]

2, let

J :=

∫ R

−R

∫ f (h)

f (0)

(
h

(h2 + v2)1+α
−

h
(h2 + (v − m)2)1+α

)
dv dh, (2-14)
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and need to show that |J | ≤ Cm. We further divide this integral into two pieces:

J1 :=

∫ R

−R

∫ f (0)+h f ′(0)

f (0)

(
h

(h2 + v2)1+α
−

h
(h2 + (v − m)2)1+α

)
dv dh,

J2 :=

∫ R

−R

∫ f (h)

f (0)+h f ′(0)

(
h

(h2 + v2)1+α
−

h
(h2 + (v − m)2)1+α

)
dv dh,

and estimate J2 first.

Lemma 2.4. We have |J2| ≤ Cm when γ > 2α, and |J2| ≤ Cm(1 + ln− m) when γ = 2α, for some
constant C.

Proof. By Lemma 2.3, we have

|J2| ≤

∫ R

−R

∫ f (0)+h f ′(0)+A|h|
1+γ

f (0)+h f ′(0)−A|h|1+γ

∣∣∣∣ h
(h2 + v2)1+α

−
h

(h2 + (v − m)2)1+α

∣∣∣∣ dv dh.

The mean value theorem yields∣∣∣∣ h
(h2 + v2)1+α

−
h

(h2 + (v − m)2)1+α

∣∣∣∣ =
(2 + 2α)|h|(h2

+ v̄2)α|v̄|

(h2 + v2)1+α(h2 + (v − m)2)1+α
m

for some v̄ ∈ [v − m, v]. Hence∣∣∣∣ h
(h2 + v2)1+α

−
h

(h2 + (v − m)2)1+α

∣∣∣∣ ≤
3m

|h|2+2α
,

and if V := max{|v|, |v − m|)} ≥ |h|, then we also have∣∣∣∣ h
(h2 + v2)1+α

−
h

(h2 + (v − m)2)1+α

∣∣∣∣ ≤
3m|h|2αV 1+2α

|h|2+2αV 2+2α
≤

6m
|h|1+2αV

.

Since V ≥
1
2 m and we assume that m ≤

1
2 R (see the start of Section 2C), we obtain

|J2| ≤ 2
∫ m/2

0

12
|h|1+2α

2A|h|
1+γ dh + 2

∫ R

m/2

6m
|h|2+2α

2A|h|
1+γ dh.

This is less than Cm if γ > 2α and less than Cm(1 + ln− m) if γ = 2α (for some C). □

To estimate J1, it suffices to assume that f (0) /∈ [0, m]. Indeed, if f (0) ∈ {0, m}, then the graph of f
contains either (0, 0) or (0, m), so (1) and (2) above (2-10) imply f ′(0) = 0 and therefore J1 = 0. And
if f (0) ∈ (0, m), then the definition of m shows that there must be η ∈ T with |η − ηt | < δ such that
z(η) = (0, f (0)). Here (2-5) yields |η − ηt | ≤ 4R/M ′, and hence for all ξ between η and ηt we have

|∂ξ z(ξ) − ∂ξ z(ηt)| ≤ M
(

4R
M ′

)γ

≤ M ′
≤ |∂ξ z(ηt)|

by Lemma 2.3. This shows that ∂ξ z(ξ) · ∂ξ z(ηt) ≥ 0 for all these ξ , which clearly contradicts

(z(η) − z(ηt)) · ∂ξ z(ηt) = 0.
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So f (0) /∈ [0, m], and we define a := − f (0) > 0 when f (0) < 0, and a := f (0)−m > 0 when f (0) > m.
In both cases Lemma 2.3 yields

| f ′(0)| ≤ Baγ /(1+γ )
≤ B Rγ /(1+γ )

≤
1
2 . (2-15)

Lemma 2.5. We have |J1| ≤ Caγ /(1+γ )(a + m)−2αm for some constant C.

Proof. Note that the definition of m shows that a ≥ m, so we could replace a + m by a. We will not use
this so that this result also applies in Section 3. We will assume f (0) < 0 since the proof for the other
case is virtually identical. We can then rewrite J1 as

J1 =

∫ R

−R

∫ h f ′(0)

0

(
h

(h2 + (v − a)2)1+α
−

h
(h2 + (v − a − m)2)1+α

)
dv dh.

We split the integral into two parts:

J3 :=

∫
|h|<a+m

∫ h f ′(0)

0

(
h

(h2 + (v − a)2)1+α
−

h
(h2 + (v − a − m)2)1+α

)
dv dh,

J4 :=

∫
a+m≤|h|≤R

∫ h f ′(0)

0

(
h

(h2 + (v − a)2)1+α
−

h
(h2 + (v − a − m)2)1+α

)
dv dh.

For J3, note that for any v in the domain of integration, we have

v − a − m ≤ |(a + m) f ′(0)| − a − m ≤ −
1
2(a + m).

This also shows that v − a ≤
1
2(m − a), so |v − a| ≤ |v − a − m|. The mean value theorem then gives, for

some v̄ ∈ [v − a − m, v − a],∣∣∣∣ h
(h2 + (v − a)2)1+α

−
h

(h2 + (v − a − m)2)1+α

∣∣∣∣ =
(2 + 2α)|h|(h2

+ v̄2)α|v̄|

(h2 + (v − a)2)1+α(h2 + (v − a − m)2)1+α
m

≤
6m

|h|1+2α(a + m)

because max
{
|v̄|, 1

2(a + m)
}

≤ |v − a − m|. This and (2-15) yield

|J3| ≤

∫ a+m

−a−m

6m
|h|1+2α(a + m)

|h f ′(0)| dh ≤
12m

1 − 2α

| f ′(0)|

(a + m)2α
≤

12B
1 − 2α

aγ /(1+γ ) m
(a + m)2α

.

As for J4, the mean value theorem yields∣∣∣∣ h
(h2 + (v − a)2)1+α

−
h

(h2 + (v − a − m)2)1+α

∣∣∣∣ ≤
3m

|h|2+2α
.

From this and (2-15) we obtain

|J4| ≤ 2
∫ R

a+m

3m
|h|2+2α

|h f ′(0)| dh ≤
3m
α

| f ′(0)|

(a + m)2α
≤

3B
α

aγ /(1+γ ) m
(a + m)2α

. □
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The last two lemmas, together with the estimate |I ′
| ≤ Cm above and k ≤ K , show that (2-10) holds

when γ > 2α and γ /(1 + γ ) ≥ 2α. Since γ = 2α/(1 − 2α) satisfies this (and (2-2) holds for it by the
hypothesis), the proof of the single-patch case of Theorem 1.3 (and of Remark (1) after it) is finished.

2E. Absence of simple splashes for all α ∈ (0, 1). Let us now assume that only simple splashes can
happen for a C1,γ patch and α ∈

(
0, 1

2

)
. That is, there is R > 0 such that, for all t close enough to T and

any ξt , ηt ∈ T satisfying |z(ξt , t)− z(ηt , t)| = m(t), there is no ξ ∈ T such that min{|ξ − ξt |, |ξ −ηt |} ≥ δ

and also |z(ξ, t)− z(ηt , t)| ≤ R. This essentially means that any potential splash only involves two folds
of ∂�, although this requirement is in fact weaker than that: multiple folds are allowed but not near
minimizers of (2-7). Then in Lemma 2.5 we have f ′(0) = 0 and so J1 = 0. Hence Lemma 2.4 shows that
a simple splash cannot occur by time T if supt∈[0,T )∥�(t)∥C1,γ < ∞ for some γ ∈ [2α, 1], and m(t) can
decrease at most exponentially when γ > 2α and at most double exponentially when γ = 2α.

In fact, one can extend this result to all α ∈
[ 1

2 , 1
)
. In this case one must replace u in (1-5) (which

becomes infinite on ∂�(t)) by its normal “component”

un(x, t) := p.v.
∫

�(t)
cα

(x − y)⊥ · nx,t

|x − y|2+2α
dy nx,t

(which is finite), with nx,t the unit outer normal vector to �(t) at x ∈ ∂�(t); see also [Kiselev et al. 2017,
Remark 2 after Definition 1.2] or [Kiselev and Luo 2023]. If we now assume supt∈[0,T )∥�(t)∥C2,γ < ∞,
one can use (2) above (2-10) to show that

∣∣ f (h) − f (0) −
1
2 f ′′(0)h2

∣∣ ≤ A|h|
2+γ in (2-14). Then the

oddness of the integrand in h will yield the estimate

|J2| ≤ 2
∫ m/2

0

16
|h|1+2α

2A|h|
2+γ dh + 2

∫ R

m/2

8m
|h|2+2α

2A|h|
2+γ dh

in the proof of Lemma 2.4 whenever γ ∈ [2α − 1, 1]. Hence no finite time simple splash can happen
by time T in this case either, and we again obtain an exponential (resp. double exponential) lower bound
on m(t) when γ > 2α − 1 (resp. γ = 2α − 1). Note also that for α =

1
2 it even suffices to assume

supt∈[0,T )∥�(t)∥C1,1 < ∞, with 2 + γ replaced by 2 and with a double exponential lower bound on m(t).

2F. The multiple patches case. In the general multiple patches case, (2-3) becomes

sup
t∈[0,T )

sup
(n,ξ),( j,η)∈Z N ×T

(n,ξ) ̸=( j,η)

|n − j | + |ξ − η|

|zn(ξ, t) − z j (η, t)|
< ∞,

where Z N := {1, . . . , N } and zn( · , t) is a constant-speed parametrization of ∂�n(t). We choose the
same δ (with all zn included in the definitions of M and M ′), and then

m(t) := min
(n,ξ),( j,η)∈Z N ×T
|(n,ξ)−( j,η)|≥δ

|zn(ξ, t) − z j (η, t)| ≥ 0. (2-16)

The points ξt and ηt may now be on the boundaries of distinct patches, but that does not change our
analysis, which only deals with the individual patch segments in a small rectangle centered at ηt . The
geometric lemmas are unchanged; the estimates on integrals I ′ and Ii in Section 2C only change by the
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factor |θ1|+ · · ·+ |θN | and hence so does the rest of the argument. This finishes the proof of Theorem 1.3
(and of Remark (1) after it) as stated. The claim in Remark (2) after Theorem 1.3 also extends to this case.

3. Proof of Theorem 1.4

Let us now turn to the half-plane case D := R×R+, when the proof is essentially identical to Theorem 1.3
(and the H 3 and H 2 local well-posedness results from [Gancedo and Patel 2021; Kiselev et al. 2017]
require α ∈

(
0, 1

24

)
and α ∈

(
0, 1

6

)
, respectively).

Let us first recall the definition of patch solutions in this setting from [Kiselev et al. 2017]. Equation (1-1)
is unchanged, and 1 in (1-2) is the Dirichlet Laplacian on D. If we assume that α ∈

(
0, 1

2

)
, this means

that for an appropriate constant cα > 0 we have

u(x, t) = cα

∫
D

(
(x − y)⊥

|x − y|2+2α
−

(x − ȳ)⊥

|x − ȳ|2+2α

)
ω(y, t) dy (3-1)

for each x ∈ D, where ȳ := (y1, −y2). Definition 1.2 is as before, but with the patches �1(t), . . . , �N (t)
now contained in D instead of R2, and with u from (3-1) instead of (1-3).

We define M, M ′, and δ as before and m(t) via (2-16). We also consider the reflected patches
�n(t) := {y ∈ R2

\ D | ȳ ∈ �n(t)}, which allows us to write (after dropping cα via rescaling)

u(x, t) =

N∑
n=1

θn

∫
�n(t)

(x − y)⊥

|x − y|2+2α
dy −

N∑
n=1

θn

∫
�n(t)

(x − y)⊥

|x − y|2+2α
dy.

Theorem 1.4 will now follow once we show (2-9) with this u. This is proved in the same way as on R2,
but now the boundary segments defining functions fi in Section 2C can belong to both the original
and the reflected patches. Note that the distance of ∂�n(t) and ∂�n(t) can be less than m(t) — even 0
because they can touch at ∂ D, in which case their normal vectors coincide at any point of touch. But they
obviously cannot cross — this is why we did not assume a ≥ m in Lemma 2.5 — which allows us to use
the same estimates as in Section 2, modulo a factor of 2 due to the number of patches now being doubled.
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We study the problem of scattering by several strictly convex obstacles, with smooth boundary and
satisfying a noneclipse condition. We show, in dimension 2 only, the existence of a spectral gap for
the meromorphic continuation of the Laplace operator outside the obstacles. The proof of this result
relies on a reduction to an open hyperbolic quantum map, achieved by Nonnenmacher et al. (Ann. of
Math. (2) 179:1 (2014), 179–251). In fact, we obtain a spectral gap for this type of object, which also
has applications in potential scattering. The second main ingredient of this article is a fractal uncertainty
principle. We adapt the techniques of Dyatlov et al. (J. Amer. Math. Soc. 35:2 (2022), 361–465) to apply
this fractal uncertainty principle in our context.

1. Introduction 1019
2. Main theorem and applications 1030
3. Preliminaries 1036
4. Construction of a refined quantum partition 1062
5. Reduction to a fractal uncertainty principle via microlocalization properties 1092
6. Application of the fractal uncertainty principle 1111
Appendix 1115
Acknowledgment 1125
References 1125

1. Introduction

Scattering by convex obstacles and spectral gap. We are interested by the problem of scattering by
strictly convex obstacles in the plane; see Figure 1. Assume

O =
J⋃

j=1

Oj ,

where Oj are open, strictly convex connected obstacles in R2 having smooth boundary and satisfying the
Ikawa condition: for i ̸= j ̸= k, Oi does not intersect the convex hull of O j ∪Ok . Let

�= R2
\O.

It is known that the resolvent of the Dirichlet Laplacian in � continues meromorphically to the
logarithmic cover of C; see for instance [Dyatlov and Zworski 2019]. More precisely, suppose that
χ ∈ C∞c (R

2) is equal to 1 in a neighborhood of O. The map

χ(−1− λ2)−1χ : L2(�)→ L2(�)
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Figure 1. Scattering by three obstacles in the plane.

is holomorphic in the region {Im λ > 0} and it continues meromorphically to the logarithmic cover of C.
Its poles are the scattering resonances. We are interested in the problem of the existence of a spectral gap
in the first sheet of the logarithmic cover (i.e., C \ iR−). We prove the following theorem:

Theorem A. There exist γ > 0 and λ0 > 0 such that there is no resonance in the region

[λ0,+∞[+ i[−γ, 0],

This problem has a long history in the physics and mathematics literature. The spectral gap was for
instance studied by [Ikawa 1988] in dimension 3. It was experimentally investigated in [Barkhofen et al.
2013] for three- and five-disk systems. In this study, the author brings experimental evidence of the
presence of a spectral gap, no matter how thin the trapped set is. For related problems concerning the
distribution of scattering resonances for such systems, here is a nonexhaustive list of papers in which the
reader can find pointers to a larger literature: [Gaspard and Rice 1989] for the three-disk problem, [Gérard
1988; Ikawa 1982] for the two-obstacle problem, [Petkov and Stoyanov 2010] for a link with dynamical
zeta functions, [Bardos et al. 1987; Hargé and Lebeau 1994] for the diffraction by one convex obstacle,
[Sjöstrand and Zworski 1999] among others papers of the two authors concerning the distribution of the
scattering resonances. We will also widely use the presentation and the arguments of [Nonnenmacher
et al. 2014].

The spectral gap problem is a high-frequency problem and justifies the introduction of a small parame-
ter h, where 1/h corresponds to a large frequency scale. Under this rescaling, we are interested in the
semiclassical operator

P(h)=−h21− 1, h ≤ h0,

and spectral parameter z ∈ D(0,Ch) for some C > 0.
In the semiclassical limit, the classical dynamics associated to this quantum problem is the billiard flow

in �×S1, that is to say, the free motion outside the obstacles with normal reflection on their boundaries.
A relevant dynamical object is the trapped set corresponding to the points (x, ξ) ∈�×S1 that do not
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escape to infinity in the backward and forward direction of the flow. In the case of two obstacles, it is a
single closed geodesic. As soon as more obstacles are involved, the structure of the trapped set becomes
complex and exhibits a fractal structure. This is a consequence of the hyperbolicity of the billiard flow. It
is known that the structure of the trapped set plays a crucial role in the spectral gap problem.

A good dynamical object to study this structure is the topological pressure associated to the unstable
Jacobian φu . This dynamical quantity is a strictly decreasing function s 7→ P(s) which measures the
instability of the flow (see Section 2 for definitions and references given there). In dimension 2, Bowen’s
formula shows that the Hausdorff and upper-box dimensions of the trapped set are 2s0, where s0 is the
unique root of the equation P(s)= 0. In [Nonnenmacher and Zworski 2009], the existence of a spectral
gap for such systems has been proved under the pressure condition

P
(1

2

)
< 0.

Their result holds in any dimension, with a quantitative spectral gap. Our result doesn’t need this
assumption anymore. In fact, it relies on the weaker pressure condition

P(1) < 0.

It is known that this condition is always satisfied in the scattering problem we consider since the trapped
set is not an attractor [Bowen and Ruelle 1975]. Due to Bowen’s formula, this condition can be interpreted
as a fractal condition. This is this fractal property that will be crucial in the analysis.

Open hyperbolic systems and spectral gaps. The problem of scattering by obstacles falls into the wider
class of spectral problems for open hyperbolic systems; see [Nonnenmacher 2011]. In these open systems,
the spectral problems concern the resonances; these are generalized eigenvalues which exhibit some
resonant states. Among the problems which widely interest mathematicians and physicists, resonance
counting and spectral gaps are on the top of the list. Spectral gaps are known to be important to give
resonance expansion (see for instance [Dyatlov and Zworski 2019]) and local energy decay (see for
instance [Ikawa 1982; 1988] concerning local energy decay in the exterior of two or more obstacles
in R3). It was conjectured in [Zworski 2017, Conjecture 3] that such systems might exhibit a spectral gap
as soon as the trapped set has a fractal structure.

Potential scattering. Scattering by a compactly supported potential falls in the class of open systems. It
consists of studying the semiclassical operator P(h)=−h21+ V (x), where V ∈ C∞c (R

2); see Figure 2.
In this framework, the spectral gap problem consists of exhibiting bands in the complex plane of the form

[a, b] − i ×[0, hγ ],

where P(h) has no resonance for h small enough. In the semiclassical limit, the behavior of P(h) is linked
to the classical flow of the system, that is, the Hamiltonian flow generated by p(x, ξ)= |ξ |2+V (x). Note
that in potential scattering, one has to focus on some energy shell {p = E}, where E ∈ R is independent
of h, with Re z sufficiently close to E . This specification is not necessary in obstacle scattering (implicitly,
we have already decided to work with E = 1). The properties of the resonant states uh , which are
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Figure 2. Scattering by a smooth compactly supported potential V.

generalized solutions of the equation (P(h)− z)uh = 0, are linked to the trapped set of the flow at
energy E . This trapped set KE corresponds to all the trajectories which stay bounded for the backward
and forward evolution of the flow on the energy shell {p = E}. When the flow is hyperbolic on the
trapped set, this trapped set is known to exhibit a fractal structure.

In fact, a by-product of our method is that we can obtain a spectral gap in potential scattering, under
the dynamical assumptions of [Nonnenmacher et al. 2011], recalled in Section 2B:

Theorem B. Assume that the Hamiltonian flow is hyperbolic on KE and that KE is topologically one-
dimensional. Then, there exists δ > 0 such that for any C > 0, there exists h0 > 0 such that, for 0< h ≤ h0,
P(h)=−h21+ V − E has no resonance in

D(0,Ch)∩ {Im z ∈ [−δh, 0]}.

It is possible to obtain a spectral gap for the more general quantum Hamiltonian presented in [Nonnen-
macher et al. 2011, Section 2.1] for manifolds with Euclidean ends.

Convex cocompact hyperbolic surfaces. Another class of open hyperbolic systems exhibiting a fractal
trapped set consists of the convex cocompact hyperbolic surfaces, which can be obtained as the quotient
of the hyperbolic plane H2 by Schottky groups 0. The spectral problem concerns the Laplacian on these
surfaces and its classical counterpart is the geodesic flow on the cosphere bundle, which is known to
be hyperbolic due to the negative curvature of these surfaces. In this context, it is common to write the
energy variable λ2

= s(1− s) and study
(−1− s(1− s))−1.

The trapped set is linked to the limit set of 0 and the dimension δ of this limit set influences the spectrum.
The Patterson–Sullivan theory (see for instance [Borthwick 2007]) tells that there is a resonance at s = δ
and that the other resonances are located in {Re(s) < δ}. In particular, it gives an essential spectral gap of
size max

(
0, 1

2 − δ
)
. This is consistent with the pressure condition P(s) < 1

2 since in that situation, P(s)
is simply given by P(s)= δ− s. Results where obtained by Naud [2005], where he improves the gap
given by Patterson–Sullivan theory in the case δ ≤ 1

2 . Recent results, initiated by [Dyatlov and Zahl 2016],
have improved this gap. In [Bourgain and Dyatlov 2018], the authors show that there exists an essential
spectral gap for any convex cocompact hyperbolic surface. In particular, the pressure condition δ < 1

2



SPECTRAL GAP FOR OBSTACLE SCATTERING IN DIMENSION 2 1023

is no longer a necessary assumption. The new idea in these papers is the use of a fractal uncertainty
principle. It will be a crucial tool of our analysis.

Reduction to open hyperbolic quantum maps. An important aspect of our analysis to prove Theorem A
relies on previous results of [Nonnenmacher et al. 2014]. Their Theorem 5 (found in Section 6 of that
work) reduces the study of the scattering poles to the study of the cancellation of

z 7→ det(I−M(z)),

where
M(z) : L2(∂O)→ L2(∂O) (1-1)

is a family of hyperbolic open quantum maps (see below Section 2A). The family z 7→ M(z) depends
holomorphically on z ∈ D(0,Ch) for some C > 0 and is sometimes called a hyperbolic quantum
monodromy operator. The construction of this operator relies on the study of the operators M0(z) defined
as follows: For 1≤ j ≤ J, let Hj (z) : C∞(∂Oi )→ C∞(R2

\Oj ) be the resolvent of the problem
(−h21− 1− z)(Hj (z)v)= 0,
Hj (z)v is outgoing,
Hj (z)v = v on ∂Oj .

Let γj be the restriction of a smooth function u ∈ C∞(R2) to C∞(∂Oj ) and define M0(z) by

M0(z)=
{

0 if i = j,
−γi Hj (z) otherwise.

Due to results of [Gérard 1988, Appendix II], this matrix is a Fourier integral operator associated with
a Lagrangian relation related to the billiard flow. A priori, it excludes neither the glancing rays nor the
shadow region. Ikawa’s condition ensures that they do not play a role when considering the trapped set and
allows the author to neglect the effects of these regions; see Section 6 in [Nonnenmacher et al. 2014]. A
consequence of their analysis is that M(z) is associated with a simpler Lagrangian relation B, which is the
restriction of the billiard map to a domain excluding the glancing rays. To be more precise, let us introduce

S∗∂Oj
= {(x, ξ) ∈ T ∗R2

: x ∈ ∂Oj , |ξ | = 1},

B∗∂Oj = {(y, η) ∈ T ∗∂Oj : |η| ≤ 1},

πj : S∗∂Oj
→ B∗∂Oj the orthogonal projection on each fiber.

B is then the union of the relations Bi j corresponding to the reflection on two obstacles: for (ρi , ρj ) ∈

B∗∂Oi × B∗∂Oj ,

(ρi , ρj ) ∈ Bi j ⇐⇒ there exists t > 0 such that ξ ∈ S1, x ∈ ∂Oj ,

πj (x, ξ)= ρj , πi (x + tξ, ξ)= ρi , νj (x) · ξ > 0, νi (x + tξ) · ξ < 0.

See Figure 3. It is a standard fact in the study of chaotic billiards (see for instance [Chernov and Markarian
2006]) that the billiard map is hyperbolic due to the strict convexity assumption. Ikawa’s condition ensures
that the restriction of the dynamical system to the trapped set has a symbolic representation [Morita 1991].



1024 LUCAS VACOSSIN

Oj
x = yj

ξ

ηj

ηi

yi = x + tξ

Oi

Figure 3. Description of the Lagrangian relation Bi j .

Spectral gap for hyperbolic open quantum maps. Using this reduction, Theorem A will be proved
once we are able to show that the spectral radius of M(z) is strictly smaller than 1 for z ∈ D(0,Ch)∩
{Im z ∈ [−δh, 0]} for some δ > 0. This will be a consequence of the following statement, which will be
demonstrated in this paper (see Section 2 below for a more precise version).

Theorem C. Let (M(z))z be the family introduced in (1-1), that is, a hyperbolic quantum monodromy
operator associated with the open Lagrangian relation B. Then, there exist h0 > 0, γ > 0 and τmax > 0
such that the spectral radius of M(z), ρspec(z), satisfies, for all h ≤ h0 and all z ∈ D(0,Ch),

ρspec(z)≤ e−γ−τmax Im z.

When z ∈ R, the operator M(z) is microlocally unitary near the trapped set and its L2 norm is
essentially 1. Then, we have the trivial bound

ρspec(z)≤ 1.

The bound given by the theorem is a spectral gap since we obtain

ρspec(z)≤ e−γ < 1.

The dependence of the bound with the parameter z is related to the symbol of the open quantum map M(z).
The link between open quantum maps and the resonances of open quantum systems has also been

established in [Nonnenmacher et al. 2011] for the case of potential scattering and this is why we will also
obtain a spectral gap in this context. We review this reduction both in obstacle and potential scattering
in Section 2 and show how it implies the spectral gap. This correspondence between open quantum
maps and open quantum systems leads to a heuristic: to a resonance z for the open quantum systems, it
corresponds an eigenvalue e−iτ z/h of an open quantum map. Here, τ is a return time associated with the
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Figure 4. The fractal uncertainty principle asserts that no state can be microlocalized
both in frequencies (in blue) and positions (in red) near fractal sets.

classical dynamics of the open system. In particular, the spectral gap for open quantum maps given by
the theorem heuristically implies that the resonances of the open systems might satisfy Im z <−hγ /τ .

Resolvent estimates. In this paper, we use the results of [Nonnenmacher et al. 2011; 2014] as a black
box. In particular, we apply directly their main theorem establishing a correspondence between scattering
resonances and eigenvalues of open quantum maps. This allows us to get information on the locations of
the resonances, but cannot transfer resolvent estimates from open quantum maps to the scattering resolvent
directly. The main estimate of this paper (see Proposition 4.2) can be used to obtain resolvent estimates
for open quantum maps. In an ongoing work, we analyze precisely the proofs in [Nonnenmacher et al.
2011; 2014] so as to explain how to deduce polynomial estimates for the cut-off resolvent both in obstacle
and potential scattering. It seems to us that it should be possible to use the gluing method of [Datchev and
Vasy 2012] to obtain the same kind of results (spectral gap and polynomial resolvent estimates) with other
types of infinite ends, when the trapped set is hyperbolic for the flow and topologically one-dimensional.

On the fractal uncertainty principle. The fractal uncertainty principle is a recent tool in harmonic
analysis in one dimension developed by Dyatlov and several collaborators. For a large survey on this topic,
we refer the reader to [Dyatlov 2018]. We do not enter into the details in this introduction and give the
precise definitions and statements in Section 6. We rather explain here the general idea of this principle
in the spirit of our use; see Figure 4. Roughly speaking, it says that no function can be concentrated both
in frequencies and positions near a fractal set. Suppose that X, Y ⊂ R are fractal sets. To fix the ideas,
let’s say that X and Y have upper-box dimensions δX and δY strictly smaller than 1. For c > 0, we write
X (c)= X + [−c,+c] and the same for Y. Also denote by Fh the h-Fourier transform

Fhu(ξ)=
1

(2πh)1/2

∫
R

e−i xξ/hu(x) dx .
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The fractal uncertainty principle then states that there exists β>0 depending on X and Y (see Proposition 6.5
for the precise dependence) such that, for h small enough,

∥1X (h)Fh1Y (h)∥L2(R)→L2(R) ≤ hβ .

Actually, one can change the scales and look for the sets X (hαX ) and Y (hαY ), where αX and αY are
positive exponents. The result will stay true when these exponents satisfy the saturation condition

αX +αY > 1.

It will be a key ingredient in the proof of the main theorem of this paper. It has been successfully
used to show spectral gaps for convex cocompact hyperbolic surfaces [Dyatlov and Zahl 2016; Bourgain
and Dyatlov 2017; Dyatlov and Jin 2018; Dyatlov and Zworski 2020]. A discrete version of the fractal
uncertainty principle is also the main ingredient of [Dyatlov and Jin 2017], where the author proved a
spectral gap for open quantum maps in a toy model case. Their results concerning the open baker’s map
on the torus T2 partly motivates our theorem on open quantum maps.

The fractal uncertainty principle has also given new results in quantum chaos on negatively curved
compact surfaces. It was first successfully used for compact hyperbolic surfaces in [Dyatlov and Jin 2017],
where the authors proved that semiclassical measures have full support. The hyperbolic case was treated
using quantization procedures developed in [Dyatlov and Zahl 2016], which allow one to have a good
semiclassical calculus for symbols very irregular in the stable direction, but smooth in the unstable one (or
conversely). In [Schwartz 2021], the same ideas lead to a full delocalization of eigenstates for quantum
cat maps. The quantization procedures used in these papers rely on the smoothness of the unstable and
stable distributions. This smoothness is not possible for general negatively curved surfaces. However,
in [Dyatlov et al. 2022], the authors bypassed this obstacle and succeeded in extending these results to
the case of negatively curved surfaces. It is mainly from this paper that we borrow techniques and we
adapt them in our setting.

A model example. To explain the main ideas of the proof of Theorem C, let us show how it works in
an example where the trapped set is the smallest possible, a single point. In this context, we only need
a simpler uncertainty principle. We focus on the case z = 0 in Theorem C and focus on a single open
quantum map.

We consider the hyperbolic map

F : (x, ξ) ∈ R2
7→ (2−1x, 2ξ) ∈ R2.

It has a unique hyperbolic fixed point ρ0 = 0 and the stable (resp. unstable) manifold at 0 is given by
{ξ = 0} (resp. {x = 0}). The scaling operator

U : v ∈ L2(R) 7→
√

2v(2x)

is a quantum map quantizing F. To open it, consider a cut-off function χ ∈ C∞c (R
2) such that χ ≡ 1 in

B
(
0, 1

2

)
and suppχ ⋐ B(0, 1) and we consider the open quantum map

M = M(h)= Oph(χ)U,
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where Oph is in this example (and only in this example) the left quantization

Oph(χ)u(x)=
1

2πh

∫
R2
χ(x, ξ)ei(x−y)ξ/hu(y) dy dξ.

One easily checks that Egorov’s property for U is true without remainder term:

U∗Oph(χ)U = Oph(χ ◦ F), U Oph(χ)U
∗
= Oph(χ ◦ F−1).

To show a spectral gap for M, we study Mn with

n = n(h)∼−3
4

log h
log 2

.

This time is longer than the Ehrenfest time − log h/log 2. We write

Mn
=U n Oph(χ ◦ Fn) · · ·Oph(χ ◦ F1).

The formula [Oph(a),Oph(b)] = O(h1−2δ) is valid for a, b symbols in Sδ (we recall the definitions of
symbol classes in Section 3) and δ < 1

2 . The problem here is that, for 1≤ k ≤ n, χ ◦ Fk are uniformly
in S3/4; this is not a good symbol class. To bypass this difficulty, we observe that the symbols χ ◦ Fk are
uniformly in S3/8 for k ∈ {−n/2, . . . , n/2}. As a consequence, for j ∈ {1, . . . , n}, we write

[Oph(χ ◦ Fn),Oph(χ ◦ F j )] =U−n/2
[Oph(χ ◦ Fn/2),Oph(χ ◦ F j−n/2)]U n/2

=U−n/2O(h1/4)U n/2

= O(h1/4),

where the constants in O are uniform in j and depend only on χ . Applying this formula recursively to
move the term Oph(χ ◦ Fn) to the right, we get

Mn
=U n Oph(χ ◦ Fn−1) · · ·Oph(χ ◦ F1)Oph(χ ◦ Fn)+ O(h1/4 log h).

Similarly, we can write

Mn+1
= Oph(χ ◦ F−n)Oph(χ) · · ·Oph(χ ◦ F−n+1)U n+1

+ O(h1/4 log h).

Hence, we have

M2n+1
= A Oph(χ ◦ Fn)Oph(χ ◦ F−n)B+ O(h1/4 log h),

with
A = A(h)=U n Oph(χ ◦ Fn−1) · · ·Oph(χ ◦ F1)= O(1),

B = B(h)= Oph(χ) · · ·Oph(χ ◦ F−n+1)U n+1
= O(1).

We have the following properties on the supports:

suppχ ◦ Fn
⊂ {|ξ | ≤ 2−n

}, suppχ ◦ Fn
⊂ {|x | ≤ 2−n

}.
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Assuming n(h)≥− 3
4(log h/ log 2), we observe that

Oph(χ ◦ Fn)= Oph(χ ◦ Fn)1[−h3/4,h3/4](h Dx),

Oph(χ ◦ F−n)= 1[h−3/4,h3/4](x)Oph(χ ◦ F−n).

Finally, we have

M2n+1
= A Oph(χ ◦ Fn)1[−h3/4,h3/4](h Dx)1[h−3/4,h3/4](x)Oph(χ ◦ F−n)B+ O(h1/4 log h).

This is where we need an uncertainty principle:

∥1[−h3/4,h3/4](h Dx)1[h−3/4,h3/4](x)∥L2→L2 = ∥1[−h3/4,h3/4]Fh1[−h3/4,h3/4]∥L2→L2

≤ ∥1[−h3/4,h3/4]∥L∞→L2 ×∥Fh∥L1→L∞ ×∥1[−h3/4,h3/4]∥L2→L1

≤ Ch3/8
× h−1/2

× h3/8
= Ch1/4.

Here, the bound can be understood as a volume estimate; the box in phase space of size h3/4 is smaller
than a “quantum box”. Gathering all the computations together, we see that

∥M2n+1
∥L2→L2 = O(h1/4 log h).

Elevating this to the power 1/(2n+ 1), we see that, for every ε > 0, we can find hε such that, for h ≤ hε,

ρ(M)≤ (1+ ε)2−1/6.

Remark. What matters in this example is the strategy we use, and not particularly the bound, which is in
fact not optimal.

Sketch of proof. The strategy presented in this simple model case is the guideline, but its direct application
will encounter major pitfalls that we’ll have to bypass.

• Since the trapped set is a more complex fractal set, we’ll need the general fractal uncertainty principle
developed by Dyatlov and his collaborators.

• Even in small coordinate charts, the trapped set cannot be written has a product of fractal sets in
the unstable and stable directions. To tackle this difficulty, we build adapted coordinate charts (see
Section 3E) in which we straighten the unstable manifolds. The existence of such coordinate charts
is made possible by Theorem 5, in which we prove that the unstable (and stable) distribution can be
extended in a neighborhood of the trapped set to a C1+β vector field.

• In the model case, there is only one point and hence one unstable Jacobian to consider which gives the
Lyapouvov exponent of the map log J 1

u (0)= log 2. Generally, the growth rate of the unstable Jacobian
differs from one point to another (see Section 4C) and the choice of the integer n(h) is not as simple.
In fact, we prefer to break the symmetry 2n(h)= n(h)+ n(h) and split 2n(h) into a small logarithmic
time N0(h) and a long logarithmic time N1(h) (see Section 4A). The first one is supposed to be smaller
than the Ehrenfest time and allows us to use semiclassical calculus to handle M N0. As a matter of fact,
the major technical difficulties concern the study of M N1.
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• The study of M N1 requires fine microlocal techniques. The trick used in the model case to have the
commutator estimate is not possible and we have to use propagation results up to twice the Ehrenfest
time. This is what we do in Section 4D but this study has to be made locally and we need to split M N1

into a sum of many terms Uq .

• We could use the fractal uncertainty principle to get the decay for single terms M N0Uq . However, a
simple triangle inequality to handle their sum will not give a decay for M N0+N1 since the number of terms
in the sum grows like a negative power of h. To bypass this problem, we need a more careful analysis and
we gather them into clouds (see Section 4G). These clouds are supposed to interact with a few other ones,
so that a Cotlar–Stein-type estimate reduces the study of the norm of the sum to the norm of each cloud.
The elements of a single cloud are supposed to be close to each other, so that the fractal uncertainty
principle can be applied to all of them in the same time and gives the required decay for a single cloud.

Our strategy follows the main lines of the proof of [Dyatlov et al. 2022]. In particular, their strategy
allows us to apply the fractal uncertainty principle of [Bourgain and Dyatlov 2018] in a case where the
unstable foliation is not smooth (and in fact, a priori defined only in a fractal set). Their strategy relies on
the existence of adapted charts based on C2− regularity of the unstable foliations in negatively curved
surfaces. It is based on results of [Katok and Hasselblatt 1995] for Anosov flows. We needed to prove the
existence of such adapted charts in this different context. To do so, we prove that the unstable lamination
can be extended into a C1+β foliation (see Section 3E). Another aspect which changes from [Dyatlov
et al. 2022] is the proof of porosity. In their study, the porous sets arise as iterations of artifical “holes”,
and they had to control the evolution of such holes. In our context, this study is easier since we already
know that the trapped set has a fractal structure, characterized by its Hausdorff dimension. In this paper,
we will rather use the upper-box dimension (but these two dimensions are equal in this context).

Restrictions. The main restriction of our theorem is that it only applies to quantum maps with two-
dimensional phase space. In terms of open systems, it only concerns problems with physical space of
dimension 2. Several points explain this restriction:

• The fractal uncertainty principle works in dimension 1. In higher dimensions, the result is currently not
well understood and the only known cases require strong assumptions on the fractal sets; see [Dyatlov
2018, Section 6].

• Our proof strongly relies on the regularity of the stable and unstable laminations.

• The growth of the unstable Jacobian controls the contraction (resp. expansion) rate in the unique stable
(resp. unstable) direction.

Plan of the paper. The paper is organized as follows:

• In Section 2, we present the main theorem of this paper and show how it gives a spectral gap in some
open quantum systems.

• In Section 3, we give some background material in semiclassical analysis (pseudodifferential operators
and Fourier integral operators). We also recall some standard facts about hyperbolic dynamical systems
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and give further results. In particular, in Theorem 5, we show that the unstable and stable distribution
have C1+β regularity.

• The proof of Theorem 1 starts in Section 4, where we introduce the main ingredients needed for the
proof and give several technical results.

• In Section 5, we use fine microlocal methods to microlocalize the operators we work with in small
regions where the dynamic is well understood and we reduce the proof of Theorem 1 to a fractal uncertainty
principle with the techniques of [Dyatlov et al. 2022].

• In Section 6, we conclude the proof of this theorem by applying the fractal uncertainty principle of
[Bourgain and Dyatlov 2018], and more precisely, the version stated in [Dyatlov et al. 2022].

2. Main theorem and applications

2A. Hyperbolic open quantum maps. We introduce the main tools needed to state the main theorem
of this paper. The following long definition is based on the definitions in the works of Nonnenmacher,
Sjöstrand and Zworski [Nonnenmacher et al. 2011; 2014] specialized to the two-dimensional phase space.
Consider open intervals Y1, . . . , YJ of R and set

Y =
J⊔

j=1

Yj ⊂

J⊔
j=1

R

and consider

U =
J⊔

j=1

Uj ⊂

J⊔
j=1

T ∗Rd , Uj ⋐ T ∗Yj .

The Hilbert space L2(Y ) is the orthogonal sum
⊕J

i=1 L2(Yi ).
Then, we introduce a smooth Lagrangian relation F ⊂ U ×U. It is a disjoint union of symplecto-

morphisms. For j = 1, . . . , J, consider open disjoint subsets D̃i j ⋐ Uj , 1 ≤ i ≤ J, and similarly, for
i = 1, . . . , J, consider open disjoint subsets Ãi j ⋐ Ui , 1 ≤ j ≤ J. We consider a family of smooth
symplectomorphisms

Fi j : D̃i j → Fi j (D̃i j )= Ãi j (2-1)

and define the relation F as the disjoint union of the relation Fi j , namely,

(ρ ′, ρ) ∈ F ⇐⇒ there exist 1≤ i, j ≤ J such that ρ ′ = Fi j (ρ).

In particular, F and F−1 are single-valued. We will identify F with a smooth map and write by abuse of
notation ρ ′ = F(ρ) or ρ = F−1(ρ ′) instead of (ρ ′, ρ) ∈ F.

We let

πL(F)= Ã =
J⊔

i=1

J⋃
j=1

Ãi j , πR(F)= D̃ =
J⊔

j=1

J⋃
i=1

D̃i j .
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We define the outgoing (resp. incoming) tail by T+ := {ρ ∈ U : F−n(ρ) ∈ U for all n ∈ N} (resp.
T− := {ρ ∈ U : Fn(ρ) ∈ U for all n ∈ N}). We assume that they are closed subsets of U and that the
trapped set

T = T+ ∩ T− (2-2)

is compact. We denote by f : T → T the restriction of F to T . For i, j ∈ {1, . . . , J }, we write Ti = T ∩Ui ,

Di j = {ρ ∈ Tj : f (ρ) ∈ Ti } ⊂ D̃i j ,

Ai j = {ρ ∈ Ti : f −1(ρ) ∈ Tj } ⊂ Ãi j .

Remark. F is an open canonical transformation since F (resp. F−1) is defined only in D̃ (resp. Ã). The
sets U \ D̃ (resp. U \ Ã) can be seen as holes in which a point ρ can fall in the future (resp. in the past).

We then make the following hyperbolic assumption:

T is a hyperbolic set for F. (Hyp)

Namely, for every ρ ∈ T , we assume that there exist stable and unstable tangent spaces E s(ρ) and Eu(ρ)

such that:

• dim E s(ρ)= dim Eu(ρ)= 1.

• TρU = E s(ρ)⊕ Eu(ρ).

• There exist λ > 0, C > 0 such that, for every v ∈ E⋆(ρ) (⋆ stands for u or s) and any n ∈ N,

v ∈ E s(ρ) =⇒ ∥dρFn(v)∥ ≤ Ce−nλ
∥v∥, (2-3)

v ∈ Eu(ρ) =⇒ ∥dρF−n(v⋆)∥ ≤ Ce−nλ
∥v∥, (2-4)

where ∥ · ∥ is a fixed Riemannian metric on U.

The decomposition of TρU into stable and unstable spaces is assumed to be continuous.

Remark. • The definition is valid for any Riemannian metric and we can of course suppose that is it the
standard Euclidean metric on R2.

• It is a standard fact (see [Mather 1968]) that there exists a smooth Riemannian metric on U, which is
said to be adapted to the dynamics, such that (2-3) and (2-4) hold with C = 1.

• It is known that the map ρ 7→ Eu/s(ρ) is in fact β-Hölder for some β > 0 [Katok and Hasselblatt 1995].
We will show further an improved regularity. This will be an essential property for the proof of the main
theorem.

The last assumption we’ll make on T is a fractal assumption. To state it, we introduce the map
φu : ρ ∈ T 7→ − log ∥dρF |Eu(ρ)∥ associated with the bijection f . We suppose that

−γcl := −P(− log ∥dρF |Eu(ρ)∥, f ) > 0. (Fractal)
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Here, in terms of thermodynamics formalism, P denotes the topological pressure of the map φu . The
norm ∥ · ∥ is associated with any Riemannian metric on U. For instance, a possible formula for the
definition of the pressure is

P(φ)= lim
ε→0

lim sup
n→+∞

1
n

log sup
E

∑
ρ∈E

exp
∑n−1

k=0 φ( f kρ),

where the supremum ranges over all the (n, ε)-separated subsets E ⊂ T (E is said to be (n, ε)-separated
if, for every ρ, ρ ′ ∈ E , there exists k ∈ {0, . . . , n− 1} such that d( f k(ρ), f k(ρ ′)) > ε).

Remark. • γcl is the classical decay rate of the dynamical system. It has the following physical interpre-
tation: Fix a point ρ0 ∈ T and consider the set Bm(ρ0, ε) of points ρ ∈U such that |Fk(ρ)− Fk(ρ0)|< ε

for 0≤ k ≤ m− 1. Then, its Lebesgue measure if of order e−mγcl .

• In Section A4, we recall arguments showing that T is indeed “fractal”. More precisely, the trace of T
along the unstable and stable manifolds (see Lemma 3.11 for the definitions of these manifolds) have
upper-box dimension strictly smaller than 1. In fact, Bowen’s formula (see for instance [Barreira 2008])
gives that this upper-box dimension corresponds to the Hausdorff dimension dH and it is the unique
solution of the equation

P(sφu, f )= 0, s ∈ R.

The Hausdorff dimension of the trapped set is then 2dH .

• This condition has to be compared with the pressure condition P
( 1

2φu
)
< 0 in [Nonnenmacher and

Zworski 2009], which ensured a spectral gap for chaotic systems. This condition required that T was
sufficiently “thin”, i.e., with Hausdorff dimension strictly smaller than 1. Our condition allows to go up
to the limit dimH T = 2−.

We then associate to F hyperbolic open quantum maps, which are its quantum counterpart.

Definition 2.1. Fix δ ∈
[
0, 1

2

[
. We say that T = T (h) is a semiclassical Fourier integral operator

associated with F, and we let T = T (h) ∈ Iδ(Y × Y, F ′) if, for each couple (i, j) ∈ {1, . . . , J }2, there
exists a semiclassical Fourier integral operator Ti j = Ti j (h) ∈ Iδ(Yj ×Yi , F ′i j ) associated with Fi j in the
sense of Definition 3.9, such that

T = (Ti j )1≤i, j≤J :

J⊕
i=1

L2(Yi )→

J⊕
i=1

L2(Yi ).

In particular WFh(T )⊂ Ã× D̃. We define I0+(Y × Y, F ′)=
⋂
δ>0 Iδ(Y × Y, F ′).

We will say that T is microlocally unitary near T if the two following conditions hold:

• ∥T T ∗∥ ≤ 1+ O(hε) for some ε > 0.

• There exists a neighborhood �⊂U of T such that, for every u = (u1, . . . , u J ) ∈
⊕J

j=1 L2(Yj ),

for all j ∈{1, . . . , J }, WFh(u j )⊂�∩Uj =⇒ T T ∗u=u+O(h∞)∥u∥L2, T ∗T u=u+O(h∞)∥u∥L2 .
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Let us now briefly see what the second condition implies for the components of T ∗T. First focus on
the off-diagonal entries

(T ∗T )i j =

J∑
k=1

(T ∗)ik Tk j =

J∑
k=1

(Tki )
∗Tk j .

If k ∈ {1, . . . , J } and i ̸= j , (Tki )
∗Tk j = O(h∞) since

WFh(T ∗ki )⊂ D̃ki × Ãki , WFh(Tk j )⊂ Ãk j × D̃k j and Ãk j ∩ Ãki =∅.

As a consequence, the off-diagonal terms are always O(h∞). For the diagonal entries,

(T ∗T )i i =
J∑

k=1

(Tki )
∗Tki .

Each term of this sum is a pseudodifferential operator with wavefront set

WFh(T ∗ki Tki )⊂ D̃ki .

Since the D̃ki are pairwise disjoint, T ∗T = IdL2(Y )+O(h∞) microlocally near T if and only if, for
all k, i , T ∗ki Tki = IdL2(Yi )+O(h∞) microlocally near Dki . The same computations apply to T T ∗. As
a consequence, T is microlocally unitary near T if and only if, for all (k, i), Tki is a Fourier integral
operator associated with Fki , microlocally unitary near Dki× Aki (see the paragraph below Definition 3.9).

Notation. An element of Scomp
δ (U ) is a J -tuple α = (α1, . . . , αJ ), where each αj is an element of

Sδcomp(R
2) such that ess suppαj ⊂Uj (this notation is recalled in the next section).

We fix a smooth function 9Y = (91, . . . , 9J ) such that, for 1≤ j ≤ J, 9j ∈ C∞c (Yj , [0, 1]) satisfies
9j = 1 on π(Uj ) (recall that Uj ⋐ T ∗Yj ).

For α ∈ Scomp
δ (U ), we also denote by Oph(α) the diagonal operator-valued matrix

Oph(α)= Diag(91 Oph(α1)91, . . . , 9J Oph(αJ )9J ) :

J⊕
j=1

L2(Yj )→

J⊕
j=1

L2(Yj ).

Note that as operators on L2(R), Oph(αj ) and 9j Oph(αj )9j are equal modulo O(h∞).

We can now state the main theorem of this paper, namely a spectral gap for hyperbolic open quantum
maps. We denote by ρspec(A) the spectral radius of a bounded operator A : L2(Y )→ L2(Y ).

Theorem 1. Suppose that the above assumptions on F, (Hyp) and (Fractal) are satisfied. Then, there
exists γ > 0 such that the following holds:

Let T = T (h) ∈ I0+(Y × Y, F ′) be a semiclassical Fourier integral operator associated with F in the
sense of Definition 2.1 and α ∈ Scomp

δ (U ). Assume that T is microlocally unitary in a neighborhood of T .
Then, there exists h0 > 0 such that,

for all 0< h ≤ h0, ρspec(T (h)Oph(α))≤ e−γ ∥α∥∞,

where h0 depends on (U, F), T and seminorms of α in Sδ.
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For applications, we will need the following corollary (it is in fact rather a corollary of the method
used to prove Theorem 1):

Corollary 1. With the same notations and assumptions as in Theorem 1, if R(h) is a family of bounded
operators on L2(Y ) satisfying ∥R(h)∥ = O(hη) for some η > 0, then the there exists γ ′ depending only
on γ and η such that, for 0< h ≤ h0,

ρspec(T (h)Oph(α)+ R(h))≤ e−γ
′

∥α∥∞.

Remark. • If the value h0 depends on T and α, this is not the case of γ which depends on (U, F).

• This is a spectral gap; it has to be compared with the easy bound we could have

ρspec(T Oph(α))≤ ∥α∥∞+ o(1).

In particular, if α ≡ 1 in a neighborhood of T and |α| ≤ 1 everywhere, ρspec(T (h))≤ e−γ < 1.

• T Oph(α) is the way we’ve chosen to write our Fourier integral operator with “gain” (or absorption
depending on the modulus of α) factor α. T Oph(α) transforms a wave packet u0 microlocalized near ρ0

lying in a small neighborhood of T into a wave packet microlocalized near F(ρ0), with norm essentially
changed by a factor |α(ρ0)|.

• The proof will actually show that if η is strictly bigger than some threshold, then γ ′ = γ .

Notation. Throughout the paper, the meaning of the constants C can change from line to line but these con-
stants will only depend on our dynamical system (U, F). If there is another dependence, it will be specified.

2B. Applications of the theorem. This theorem has applications in the study of open quantum systems.
We refer the reader to [Nonnenmacher 2011] for a survey on this topic. The spectral gap given by
Theorem 1 will actually give a spectral gap for the resonances of semiclassical operators P(h) in R2, or
for the resonances of the Dirichlet Laplacian in the exterior of strictly convex obstacles satisfying the Ikawa
noneclipse condition. We refer the reader to the review [Zworski 2017] for more background on scattering
resonances or to the book [Dyatlov and Zworski 2019]. The results we will obtain from Theorem 1 give
a positive answer (in dimension 2) to Conjecture 3 in [Zworski 2017], under a fractal assumption.

Scattering by strictly convex obstacles in the plane. As already explained in the Introduction the main
problem motivating Theorem 1 is the problem of scattering by obstacles in the plane R2. It leads to:

Theorem 2. Assume that O =
⋃J

i=1 Oj , where Oj are open, strictly convex connected obstacles in R2

having smooth boundary and satisfying the Ikawa condition: for i ̸= j ̸= k, Oi does not intersect the
convex hull of O j ∪Ok . Let

�= R2
\O.

There exist γ > 0 and λ0 > 1 such that the Dirichlet Laplacian −1 on L2(�) has no scattering resonance
in the region

[λ0,+∞[+ i[−γ, 0].
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Let us give the arguments to see why Theorem 1 implies this theorem. After a semiclassical
reparametrization, it is enough to show that there exist δ > 0 and h0 > 0 such that P(h) := −h21−1 has
no resonance in D(0,Ch)∩{Im z ∈ [−δh, 0]} for any h ≤ h0. As already explained, the implication relies
on [Nonnenmacher et al. 2014, Theorem 5, Section 6]. There they prove the existence of a family of

(M(z))z∈D(0,Ch) = (M(z, h)) (2-5)

such that:

• M(z)=5h M(z)5h + O(hL), where 5h is a finite-rank projector, of rank comparable to h−1, L > 0
is a fixed constant (which can in fact be chosen as big as we want) and M(z) is described below and
satisfies 5h M(z)5h = M(z)+ O(hL).

• M(0) is an open quantum map associated with a Lagrangian relation B presented in the Introduction,
which is microlocally unitary near T . B and M(0) play the roles of F and T in Theorem 1 and satisfy its
assumptions.

• M(z)= M(0)Oph(e
i zτ/h)+ O(h1−ε) uniformly in D(0,Ch), where ε > 0 can be chosen arbitrarily

close to zero and τ ∈ C∞c (U ) is a smooth function (which has to be seen as a return time).

• The resonances of P(h) in D(0,Ch) are the roots, with multiplicities, of the equation

det(I −M(z))= 0.

Hence, to prove the theorem, it is enough to show that the spectral radius of M(z) is strictly smaller
than 1 for z ∈ D(0,Ch)∩{Im z ∈ [−δh, 0]} for some δ > 0 and for h small enough. To see that, we write

M(z)= M(0)Oph(e
i zτ/h)+ R(h),

with R(h)= O(hη) for any η <min(1, L). We apply Theorem 1 and find some γ ′ such that

ρspec(M(z))≤ e−γ
′

∥ei zτ/h
∥∞ ≤ e−γ

′

eδτmax, z ∈ D(0,Ch)∩ {Im z ∈ [−δh, 0]},

where τmax = ∥τ∥∞. This ensures a spectral gap of size

δ <
γ ′

τmax
.

Schrödinger operators. Actually, the obstacles, seen as infinite potential barriers, can be smoothened
with a potential V ∈ C∞c (R

2) and we can consider the Schrödinger operators P0(h)=−h21+ V (x).
Unlike the obstacle problem, a simple rescaling does not allow to pass from energy 1 to any energy E

and the behavior of the classical flow can drastically change from an energy shell to another. To study the
problem at energy E > 0, independent of h, we rather consider

P(h)= P0(h)− E .

The resolvent (P(h)− z)−1 continues meromorphically from Im z > 0 to D(0,Ch) (as previously in
the sense that χ(P(h)− z)1χ extends meromorphically with χ ∈ C∞c (R

2)) and we are interested in the
existence of a spectral gap.
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The classical Hamiltonian flow associated with P(h) is the Hamiltonian flow8t generated by p0(x, ξ)=
|ξ |2+ V (x) on the energy shell p−1

0 (E). The trapped set is defined as above by

KE := {(x, ξ) ∈ T ∗R2
: p0(x, ξ)= E, 8t(x, ξ) stays bounded as t→±∞}.

We assume that the flow is hyperbolic on KE and that the trapped set is topologically one-dimensional.
Equivalently, we assume that transversely to the flow, KE is zero-dimensional. Under these assumptions,
the authors proved (see Theorem 1 in [Nonnenmacher et al. 2011]) the existence of a family of monodromy
operators associated with a Lagrangian relation FE which is a Poincaré map of the flow on different
Poincaré sections 61, . . . , 6J ⊂ p−1

0 (E). The assumption on the dimension of KE implies that the
assumption (Fractal) is satisfied since KE cannot be an attractor [Bowen and Ruelle 1975]. Hence,
Theorem 1 applies and we can prove as done in the case of obstacles:

Theorem 3. Under the above assumptions, there exists δ > 0 such that P(h) has no resonances in

D(0,Ch)∩ {Im z ∈ [−δh, 0]}.

3. Preliminaries

3A. Pseudodifferential operators and Weyl quantization. We recall some basic notions and properties
of the Weyl quantization on Rn. We refer the reader to [Zworski 2012] for the proofs of the statements
and further considerations on semiclassical analysis and quantizations. We start by defining classes of
h-dependent symbols.

Definition 3.1. Let 0 ≤ δ ≤ 1
2 . We say that an h-dependent family a := (a( · ; h))0<h⩽1 is in the class

Sδ(T ∗Rn) (or simply Sδ if there is no ambiguity) if, for every α ∈ N2n, there exists Cα > 0 such that,

for all 0< h ≤ 1, sup
(x,ξ)∈Rn

|∂αa(x, ξ ; h)| ≤ Cαh−δ|α|.

In this paper, we will mostly be concerned with δ < 1
2 . We will also use the notation S0+ =

⋂
δ>0 Sδ.

We write a = O(hN )Sδ to mean that, for every α ∈ N2n, there exists Cα,N such that,

for all 0< h ≤ 1, sup
(x,ξ)∈Rn

|∂αa(x, ξ ; h)| ≤ Cα,N h−δ|α|hN .

If a = O(hN )Sδ for all N ∈ N , we’ll write a = O(h∞)Sδ . A priori, the constants Cα,N depend on the
symbol a. However, in this paper, we will often make them depend on different parameters but not
directly on a. This will be specified when needed.

For a given symbol a ∈ Sδ(T ∗Rn), we say that a has a compact essential support if there exists a
compact set K such that,

for all χ ∈ C∞c (�), suppχ ∩ K =∅ =⇒ χa = O(h∞)S(T ∗Rn)

(here S stands for the Schwartz space). We let ess supp a ⊂ K and say that a belongs to the class
Scomp
δ (T ∗Rn). The essential support of a is then the intersection of all such compact K ’s. In particular,

the class Scomp
δ contains all the symbols supported in an h-independent compact set and these symbols
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correspond, modulo O(h∞)S(T ∗R), to all symbols of Scomp
δ . For this reason, we will adopt the notation

a ∈ Scomp
δ (�)⇐⇒ ess supp a ⋐�.

For a symbol a ∈ Sδ(T ∗Rn), we’ll quantize it using Weyl’s quantization procedure. It is informally
written as

(Oph(a)u)(x)= (a
W (x, h Dx)u)(x)=

1
(2πh)n

∫
R2n

a
(

x + y
2

, ξ

)
u(y)ei((x−y)·ξ)/h dy dξ.

We will denote by 9δ(Rn) the corresponding classes of pseudodifferential operators. By definition, the
wavefront set of A = Oph(a) is WFh(A)= ess supp a.

We say that a family u = u(h) ∈ D′(Rn) is h-tempered if, for every χ ∈ C∞c (R
n), there exist C > 0

and N ∈ N such that ∥χu∥H−N
h
≤ Ch−N. For a h-tempered family u, we say that a point ρ ∈ T ∗Rn

does not belong to the wavefront set of u if there exists a ∈ Scomp(T ∗Rn) such that a(ρ) ̸= 0 and
Oph(a)u = O(h∞)S . We denote by WFh(u) the wavefront set of u.

We say that a family of operators B = B(h) :C∞c (R
n2)→D′(Rn1) is h-tempered if its Schwartz kernel

KB ∈ D′(Rn1 ×Rn2) is h-tempered. We define

WF′h(B)= {(x, ξ, y,−η) ∈ T ∗Rn1 × T ∗Rn2 : (x, ξ, y, η) ∈WFh(KB)}.

Let us now recall standard results in semiclassical analysis concerning the L2-boundedness of pseudo-
differential operators and their composition. We’ll use the following version of the Calderón–Vaillancourt
theorem [Zworski 2012, Theorem 4.23].

Theorem 4. There exists Cn > 0 such that the following holds. For every 0≤ δ < 1
2 and a ∈ Sδ(T ∗Rn),

Oph(a) is a bounded operator on L2 and

∥Oph(a)∥L2(Rn)→L2(Rn) ≤ Cn

∑
|α|≤8n

h|α|/2∥∂αa∥L∞ .

As a consequence of the sharp Gårding inequality (see [Zworski 2012, Theorem 4.32]), we also have
the precise estimate of L2 norms of pseudodifferential operator,

Proposition 3.2. Assume that a ∈ Sδ(R2n). Then, there exists Ca depending on a finite number of
seminorms of a such that

∥Oph(a)∥L2→L2 ≤ ∥a∥∞+Cah1/2−δ.

We recall that the Weyl quantizations of real symbols are self-adjoint in L2. The composition of two
pseudodifferential operators in 9δ is still a pseudodifferential operator. More precisely (see [Zworski
2012, Theorems 4.11 and 4.18]), if a, b ∈ Sδ , then Oph(a)◦Oph(b) is given by Oph(a # b), where a # b is
the Moyal product of a and b. It is given by

a # b(ρ)= eih A(D)(a⊗ b)|ρ=ρ1=ρ2,

where a⊗b(ρ1, ρ2)= a(ρ1)b(ρ2), eih A(D) is a Fourier multiplier acting on functions on R4n and, writing
ρi = (xi , ξi ),

A(D)= 1
2(Dξ1 ◦ Dx2 − Dx1 ◦ Dξ2).
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We can estimate the Moyal product by a quadratic stationary phase and get the following expansion: for
all N ∈ N,

a # b(ρ)=
N−1∑
k=0

ikhk

k!
A(D)k(a⊗ b)|ρ=ρ1=ρ2 + rN ,

where, for all α ∈ N2n, there exists Cα, independent of a and b, such that

∥∂αrN∥∞ ≤ CαhN
∥a⊗ b∥C2N+4n+1+|α| .

As a consequence of this asymptotic expansion, we have the precise product formula:

Lemma 3.3. For every N ∈ N, there exists CN > 0 such that, for every a, b ∈ Sδ(Rn),

Oph(a) ◦Oph(b)= Oph

( N−1∑
k=0

ikhk

k!
A(D)k(a⊗ b)|ρ=ρ1=ρ2

)
+ RN , (3-1)

where
∥RN∥L2(R)→L2(R) ≤ CN hN

∥a⊗ b∥C2N+12n+1 . (3-2)

Remark. It will be important in the sequel to understand the derivatives of a and b involved in the k-th
term of the previous expansion. A quick recurrence using the precise form of the operator A(D) shows
that A(D)k(a⊗ b)(ρ1, ρ2) is of the form∑

|α|=k,|β|=k

λα,β∂
αa(ρ1)∂

βb(ρ2).

This can be rewritten lk(dka(ρ1), dkb(ρ2)), where lk is a bilinear form on the spaces of k-symmetric
forms on R2n. Of course, we make use of the identifications Tρ1 T ∗Rn

≃ Tρ2 T ∗Rn
≃ R2n.

As a simple corollary, we get an expression for the commutator of pseudodifferential operators.

Corollary 3.4. For every N ∈ N, there exists CN > 0 such that, for every a, b ∈ Sδ(Rn),

[Oph(a),Oph(b)] = Oph

(
h
i
{a, b}+

N−1∑
k=2

hk Lk(dka, dkb)
)
+ RN ,

where
∥RN∥L2(R)→L2(R) ≤ CN hN

∥a⊗ b∥C2N+12n+1,

where the Lk are bilinear forms on the spaces of k-symmetric forms on R2n .

3B. Fourier Integral operators. We now review some aspects of the theory of Fourier integral operators.
We follow [Zworski 2012, Chapter 11] and [Nonnenmacher et al. 2014]. We refer the reader to [Guillemin
and Sternberg 2013] for further details. Finally, we will give the precise definition needed to understand
Definition 2.1.

3B1. Local symplectomorphisms and their quantization. We momentarily work in dimension n. Let us
denote by K the set of symplectomorphisms κ : T ∗Rn

→ T ∗Rn such that the following holds: there exist
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continuous and piecewise smooth families of smooth functions (κt)t∈[0,1], (qt)t∈[0,1] such that:

• For all t ∈ [0, 1], κt : T ∗Rn
→ T ∗Rn is a symplectomorphism.

• κ0 = IdT ∗Rn , κ1 = κ .

• For all t ∈ [0, 1], κt(0)= 0.

• There exists K ⋐ T ∗Rn compact such that, for all t ∈ [0, 1], qt : T ∗Rn
→ R and supp qt ⊂ K .

• (d/dt)κt = (κt)
∗Hqt .

If κ ∈ K, we denote by C = Gr′(κ)= {(x, ξ, y,−η) : (x, ξ)= κ(y, η)} the twisted graph of κ . We recall
[Zworski 2012, Lemma 11.4], which asserts that local symplectomorphisms can be seen as elements of K,
as soon as we have some geometric freedom.

Lemma 3.5. Let U0,U1 be open and precompact subsets of T ∗Rn. Assume that κ :U0→U1 is a local
symplectomorphism fixing 0 and which extends to V0 ⋑ U0 an open star-shaped neighborhood of 0. Then,
there exists κ̃ ∈ K such that κ̃|U0 = κ .

If κ ∈ K and if (qt) denotes the family of smooth functions associated with κ in its definition, we let
Q(t)=Oph(qt). It is a continuous and piecewise smooth family of operators. Then the Cauchy problem{

h DtU (t)+U (t)Q(t)= 0,
U (0)= Id

(3-3)

is globally well-posed.
Following [Nonnenmacher et al. 2014, Definition 3.9], we adopt the definition:

Definition 3.6. Fix δ ∈
[
0, 1

2

[
. We say that U ∈ Iδ(Rn

×Rn
;C) if there exist a ∈ Sδ(T ∗Rn) and a path (κt)

from Id to κ satisfying the above assumptions such that U =Oph(a)U (1), where t 7→U (t) is the solution
of the Cauchy problem (3-3).

The class I0+(R×R,C) is by definition
⋂
δ>0 Iδ(R×R,C).

It is a standard result, known as Egorov’s theorem (see [Zworski 2012, Theorem 11.1]) that if U (t)
solves the Cauchy problem (3-3) and if a ∈ Sδ , then U−1 Oph(a)U is a pseudodifferential operator in 9δ
and if b = a ◦ κ , then U−1 Oph(a)U −Oph(b) ∈ h1−2δ9δ.

Remark. Applying Egorov’s theorem and Beal’s theorem, it is possible to show that if (κt) is a closed path
from Id to Id, and U (t) solves (3-3), then U (1) ∈90(R

n). In other words, Iδ(R×R,Gr′(Id))⊂9δ(Rn).
But the other inclusion is trivial. Hence, this in an equality:

Iδ(Rn
×Rn,Gr′(Id))=9δ(Rn).

The notation I (Rn
×Rn,C) comes from the fact that the Schwartz kernel of such operators are Lagrangian

distributions associated with C , and in particular have wavefront set included in C . As a consequence, if
T ∈ Iδ(Rn

×Rn,C), then WF′h(T )⊂ Gr(T ).

Let us state a simple proposition concerning the composition of Fourier integral operators:

Proposition 3.7. Let κ1, κ2 ∈ K and U1 ∈ Iδ(R×R,Gr′(κ1)),U2 ∈ Iδ(R×R,Gr′(κ1)). Then,

U1 ◦U2 ∈ Iδ(R×R,Gr′(κ1 ◦ κ2)).
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Proof. Let’s write U1=Oph(a1)U1(1), U2=Oph(a2)U2(1) with the obvious notation associated with the
Cauchy problems (3-3) for κ1 and κ2. Egorov’s theorem asserts that U1(1)Oph(a2)U1(1)−1

= Oph(b2)

for some b2 ∈ Sδ and Oph(a1)Oph(b2)=Oph(a1 # b2). It is then enough to focus on the case a1 = a2 = 1.
We set

U3(t) :=
{

U1(2t) for 0≤ t ≤ 1
2 ,

U1(1) ◦U2(2t − 1) for 1
2 ≤ t ≤ 1.

It solves the Cauchy problem {
h DtU3(t)+U3(t)Q3(t)= 0,
U (0)= Id,

with

Q3(t) :=
{

2Q1(2t) for 0≤ t ≤ 1
2 ,

2Q2(2t − 1) for 1
2 ≤ t ≤ 1.

To conclude the proof, it is enough to notice that this Cauchy problem is associated with the path κ3(t)
between κ(0)= Id and κ3(1)= κ1 ◦ κ2, where

κ3(t) :=
{
κ1(2t) for 0≤ t ≤ 1

2 ,

κ1 ◦ κ2(2t − 1) for 1
2 ≤ t ≤ 1. □

3B2. Precise version of Egorov’s theorem. We will need a more quantitative version of Egorov’s theorem,
similar to the one in [Dyatlov et al. 2022, Lemma A.7]. The result does not show that U (1)−1 Oph(a)U (1)
is a pseudodifferential operator (one would need Beal’s theorem to say that) but it gives a precise estimate
on the remainder, depending on the seminorms of a. We now specialize to the case of dimension n= 1 but
the following result holds in any dimension but changing the constant 15 to something of the form Mn.

Proposition 3.8. Consider κ ∈ K and denote by U (t) the solution of (3-3). There exists a family of
differential operators (Dj )j∈N of order j such that, for all a ∈ Sδ and all N ∈ N,

U (1)−1 Oph(a)U (1)= Oph

(
a ◦ κ +

N−1∑
j=1

h j (Dj+1a) ◦ κ
)
+ Oκ(hN

∥a∥C2N+15). (3-4)

Proof. We keep the notation introduced previously. Let us first define

A0(t)=U (t)Oph(a ◦ κt)U (t)−1

and compute

U (t)−1∂t A0(t)U (t)

=−
i
h
[Q(t),Oph(a◦κt)]+Oph({qt ,a◦κt })

=Oph({qt ,a◦κt })−
i
h

(
Oph

(
h
i
{qt ,a◦κt }+

N∑
j=2

h j L j (d j qt ,d j (a◦κt))

))
+O(hN

∥qt⊗(a◦κt)∥C2(N+1)+13)

=Oph

( N−1∑
j=1

−ih j L j+1(d j+1qt ,d j+1(a◦κt))

)
+Oκt (h

N
∥a∥C2N+15).
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We now define by induction a family of functions aj (t), j = 0, . . . , N − 1, by

a0(t)= a, ak(t)=
k−1∑
m=0

∫ t

0
i Lk+1−m(dk+1−mqs, dk+1−m(am(s) ◦ κs)) ◦ κ

−1
s ds,

and set Ak(t) = U (t)Oph
(∑k

j=0 h j aj (t) ◦ κt
)
U (t)−1. We first remark by an easy induction on k, that

ak(t) is of the form Dk+1(t)a, where Dk+1(t) is a differential operator of order at most k + 1, with
coefficients depending continuously on t and on (κt)t . We now check the following by induction:

U (t)−1∂t Ak(t)U (t)=−i Oph

( N−1∑
j=k+1

k∑
m=0

h j L j+1−m(d j+1−mqt ,d j+1−m(am(t)◦κt))

)
+Oκ(hN

∥a∥C2N+15).

We’ve already done it for k = 0. Let’s assume that the equality holds for k− 1 and let’s prove it for k ≥ 1:

U (t)−1∂t Ak(t)U (t)=U (t)−1∂t Ak−1(t)U (t)+ hkU (t)−1∂t Oph(ak(t) ◦ κt)U (t).

Let’s compute the second part of the right-hand side:

U (t)−1∂t Oph(ak(t)◦κt)U (t)

=−
i
h
[Q(t),Oph(ak(t)◦κt)]+Oph({qt ,ak(t)◦κt })+Oph(∂t ak(t)◦κt)

=−i Oph

( N−1−k∑
l=1

h j L l+1(dl+1qt ,dl+1(ak(t)◦κt))

)
+Oκ(hN−k

∥ak(t)∥C2(N+1−k)+13)+Oph(∂t ak(t)◦κt).

We can estimate the remainder by

Oκ(hN−k
∥ak(t)∥C2(N+1−k)+13)= Oκ(hN−k

∥a∥C2(N+1−k)+13+k+1)= Oκ(hN−k
∥a∥C2N+15).

We now combine this with the value of

U (t)−1∂t Ak−1(t)U (t)=−i Oph

(N−1∑
j=k

k−1∑
m=0

h j L j+1−m(d j+1−mqt ,d j+1−m(am(t)◦κt))

)
+Oκ(hN

∥a∥C2N+15).

By the definition of ak(t), the term hk Oph(∂t ak(t)◦κt) cancels the term corresponding to j = k in the sum.
Moreover, for every j>k, writing j=k+l, l∈{1, . . . ,N−1−k}, the term hk+l L l+1(dl+1qt ,dl+1(ak(t)◦κt))

gives the missing term h j L j+1−k(d j+1−kqt , d j+1−k(ak(t)◦κt)). This gives the required equality for Ak(t).
In particular, ∂t AN−1(t)= Oκ(hN

∥a∥C2N+15). We now use the fact that at t = 0, a0(0)= a, ak(0)= 0,
k=1, . . . , N−1, U (0)= Id, κ0= Id, and hence AN−1(0)=Oph(a). Integrating between 0 and 1, we have

AN−1(t)−Oph(a)= Oκ(hN
∥a∥C2N+15).

Conjugating by U (1), we finally have

U (1)−1 Oph(a)U (1)= Oph

(
a ◦ κ +

N−1∑
k=1

hkak(1) ◦ κ
)
+ Oκ(hN

∥a∥C2N+15),

which is what we wanted, since ak(1)= Dk+1(1)a. □
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3B3. An important example. Let us focus on a particular case of canonical transformations. Suppose
that κ : T ∗Rn

→ T ∗Rn is a canonical transformation such that

(x, ξ, y, η) ∈ Gr(κ) 7→ (x, η)

is a local diffeomorphism near (x0, ξ0, y0, η0). Then, there exists a phase function ψ ∈ C∞(Rn
×Rn),

�x , �η open sets of Rn and � a neighborhood of (x0, ξ0, y0, η0) such that

Gr′(κ)∩�= {(x, ∂xψ(x, η), ∂ηψ(x, η),−η) : x ∈�x , η ∈�η}.

One says that ψ generates Gr′(κ). Suppose that α ∈ Scomp
δ (�x×�η). Then, modulo a smoothing operator

O(h∞), the following operator T is an element of I comp
δ (Rn

×Rn,Gr′(κ)):

T u(x)=
1

(2πh)n

∫
R2n

e(i/h)(ψ(x,η)−y·η)α(x, η) u(y) dy dη,

and if T ∗T = Id microlocally near (y0, η0) then |α(x, η)|2 = |det D2
xηψ(x, η)| + O(h1−2δ)Sδ near

(x0, ξ0, y0, η0). The converse statement holds: microlocally near (x0, ξ0, y0, η0) and modulo O(h∞), the
elements of Iδ(Rn

×Rn,Gr′(κ)) can be written under this form.

3B4. Lagrangian relations. Recall that the Lagrangian relation F we consider is the union of local
Lagrangian relations Fi j ⊂Ui ×Uj . We fix a compact set W ⊂ πL(F) containing some neighborhood
of T . Our definition will depend on W. Following [Nonnenmacher et al. 2014, Section 3.4.2], we now focus
on the definition of the elements of Iδ(Y ×Y ; F ′). An element T ∈ Iδ(Y ×Y ; F ′) is a matrix of operators

T = (Ti j )1≤i, j≤J :

J⊕
j=1

L2(Yj )→

J⊕
i=1

L2(Yi ).

Each Ti j is an element of Iδ(Yi × Yj , F ′i j ). Let’s now describe the recipe to construct elements of
Iδ(Yi × Yj , F ′i j ). We fix i, j ∈ {1, . . . , J }.

• Fix some small ε > 0 and two open covers of Uj , Uj ⊂
⋃L

l=1�l , �l ⋐ �̃l , with �̃l star-shaped and
having diameter smaller than ε. We denote by L the sets of indices l such that �l ⊂ πR(Fi j )= D̃i j ⊂Uj

and we require (this is possible if ε is small enough)

F−1(W )∩Uj ⊂
⋃
l∈L

�l .

• Introduce a smooth partition of unity associated with the cover (�l), (χl)1≤l≤L ∈ C∞c (�l, [0, 1]),
suppχl ⊂�l ,

∑
l χl = 1 in a neighborhood of U j .

• For each l ∈ L, we denote by Fl the restriction to �̃l of Fi j , seen as a symplectomorphism Fi j : D̃i j ⊂

U → V. By Lemma 3.5, there exists κl ∈ K which coincides with Fl on �l .

• We consider Tl = Oph(αi )Ul(1), where Ul(t) is the solution of the Cauchy problem (3-3) associated
with κl and αi ∈ Scomp

δ (T ∗R).
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• We set
T R
=

∑
l∈L

Tl Oph(χl) : L2(R)→ L2(R). (3-5)

T R is a globally defined Fourier integral operator. We will write T R
∈ Iδ(R×R, F ′i j ). Its wavefront set is

included in Ãi j × D̃i j .

• Finally, we fix cut-off functions (9i , 9j ) ∈ C∞c (Yi , [0, 1])×C∞c (Yj , [0, 1]) such that 9i ≡ 1 on π(Ui )

and 9j ≡ 1 on π(Uj ) (here, π : (x, ξ) ∈ T ∗Y· 7→ x ∈ Y· is the natural projection) and we adopt the
following definitions:

Definition 3.9. We say that T :D′(Yj )→C∞(Y i ) is a Fourier integral operator in the class Iδ(Yi×Yj , F ′i j )

if there exists T R
∈ Iδ(R×R, F ′) as constructed above such that

• T −9i T9j = O(h∞)D′(Y )→C∞(Z),

• 9i T9j =9i T R9j .

For U ′j ⊂ Uj and U ′i = F(U ′j ) ⊂ Ui , we say that T (or T R) is microlocally unitary in U ′i ×U ′j if
T T ∗ = Id microlocally in U ′i and T ∗T = Id microlocally in U ′j.

Remark. The definition of this class is not canonical since it depends in fact on the compact set W
through the partition of unity.

Another version of Egorov’s theorem. The precise version of Egorov’s theorem in Proposition 3.8 is only
stated for globally unitary Fourier integral operator defined using the Cauchy equation (3-3). We extend
it here to microlocally unitary and globally defined Fourier integral operators. We fix i, j ∈ {1, . . . , J }.

Lemma 3.10. Let T ∈ Iδ(R×R, F ′i j ). Suppose that B(ρ, 4ε) ⊂ Uj and that T is microlocally unitary
in Fi j (B(ρ, 4ε))× B(ρ, 4ε). Then, there exists a family (Dk)k∈N of differential operators of order k,
compactly supported in B(ρ, 3ε) such that the following holds: For every N ∈ N and for all b ∈
C∞c (B(ρ, 2ε)),

T Oph(b)= Oph

(
b ◦ κ−1

+

N−1∑
k=1

hk(Dk+1b) ◦ κ−1
)

T + O(hN
∥b∥C2N+15)L2(R)→L2(R).

The constants in O depend on T and F.

Proof. First, introduce some cut-off function χ such that χ ≡ 1 in a neighborhood of B(ρ, 2ε) and
suppχ ⊂ B(ρ, 3ε). Due to these properties and Lemma 3.3, we have

Oph(b)= Oph(χ)Oph(b)Oph(χ)Oph(χ)+ O(hN
∥b∥C2N+13)L2(R)→L2(R).

Moreover, Oph(χ)T
∗T = Oph(χ)+ O(h∞), and hence

T Oph(b)= T Oph(χ)Oph(b)Oph(χ)Oph(χ)T
∗T +O(hN

∥b∥C2N+13)L2→L2+O(h∞)∥Oph(b)∥L2→L2 .

The term O(h∞)∥Oph(b)∥L2→L2 can be absorbed in O(hN
∥b∥C2N+13)L2→L2 . Consider κ̃ ∈ K extending

κ|B(ρ,3ε) and construct U = U (1) by solving the Cauchy problem (3-3) associated with κ̃ . Due to the
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properties on composition of Fourier integral operators (Proposition 3.7), T Oph(χ)U
−1 and U Oph(χ)T

∗

are pseudodifferential operators, and we denote them by Oph(a1),Oph(a2). Now write

T Oph(b)= [T Oph(χ)U
−1
]U Oph(b)Oph(χ)U

−1
[U Oph(χ)T

∗
]T + O(hN

∥b∥C2N+13)L2→L2

= Oph(a1)[U Oph(b)Oph(χ)U
−1
]Oph(a2)T + O(hN

∥b∥C2N+13)L2→L2 .

By using the precise version in Proposition 3.8, one can write

U Oph(b)Oph(χ)U
−1
= Oph

(
b ◦ κ−1

+

N−1∑
k=1

(Lk+1b) ◦ κ−1
)
+ O(hN

∥b∥C2N+15)L2→L2 .

Applying Lemma 3.3, we see that we can write

T Oph(b)= Oph

(
b0 ◦ κ

−1
+

N−1∑
k=1

(Dk+1b) ◦ κ−1
)

T + O(hN
∥b∥C2N+15)L2→L2,

where b0 = a1× b ◦ κ−1
× a2. Since T is microlocally unitary in B(ρ, 4ε), the product a1a2 is equal to 1

in B(ρ, 2ε), and hence, the lemma is proved. □

3C. Hyperbolic dynamics. We assumed that F is hyperbolic on the trapped set T . As already mentioned,
we can fix an adapted Riemannian metric on U such that the following stronger version of the hyperbolic
estimates are satisfied for some λ0 > 0: for every ρ ∈ T , n ∈ N,

v ∈ Eu(ρ) =⇒ ∥dρF−n(v)∥ ≤ e−λ0n
∥v∥, (3-6)

v ∈ Es(ρ) =⇒ ∥dρFn(v)∥ ≤ e−λ0n
∥v∥. (3-7)

Notation. We now use the induced Riemannian distance on U and denote it by d .
We also use the same notation ∥ ·∥ to denote the subordinate norm on the space of linear maps between

tangent spaces of U ; namely, if F(ρ1)= ρ2,

∥dρ1 F∥ = sup
v∈Tρ1U, ∥v∥ρ1=1

∥dρ1 F(v)∥ρ2 .

If ρ ∈ T , n ∈ Z, we use this Riemannian metric to define the unstable Jacobian J u
n (ρ) and stable

Jacobian J s
n (ρ) at ρ by

v ∈ Eu(ρ) =⇒ ∥dρFn(v)∥ = J u
n (ρ)∥v∥, (3-8)

v ∈ Es(ρ) =⇒ ∥dρFn(v)∥ = J s
n (ρ)∥v∥. (3-9)

These Jacobians quantify the local hyperbolicity of the map.

Notation. Suppose that f and g are some real-valued functions depending on the same family of
parameters P . For instance, for J u

n (ρ), P = {n, ρ}. We will write f ∼ g to mean that there exists a
constant C ≥ 1 depending only on (U, F), but not on P , such that C−1g ≤ f ≤ Cg.

For instance, if we define unstable and stable Jacobians J̃ u
n and J̃ s

n using another Riemannian metric,
then, for every n ∈ Z and ρ ∈ T ,

J̃ u
n (ρ)∼ J u

n (ρ), J̃ s
n (ρ)∼ J s

n (ρ).
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From the compactness of T , there exist λ1 ≥ λ0 which satisfy

enλ0 ≤ J u
n (ρ)≤ enλ1 and e−nλ1 ≤ J s

n (ρ)≤ e−nλ0, n ∈ N, ρ ∈ T , (3-10)

enλ0 ≤ J s
−n(ρ)≤ enλ1 and e−nλ1 ≤ J u

−n(ρ)≤ e−nλ0, n ∈ N, ρ ∈ T . (3-11)

We cite here standard facts about the stable and unstable manifolds; see for instance [Katok and Hasselblatt
1995, Chapter 6].

Lemma 3.11. For any ρ ∈T , there exist local stable and unstable manifolds Ws(ρ),Wu(ρ)⊂U satisfying,
for some ε1 > 0 (only depending on F) (⋆ will denote a letter in {u, s} and the use of ± with ⋆ has to be
read with the convention u→−, s→+):

(1) Ws(ρ),Wu(ρ) are C∞-embedded curves, with the C∞ norms of the embedding uniformly bounded
in ρ.

(2) The boundary of W⋆(ρ) do not intersect B(ρ, ε1).1

(3) Ws(ρ)∩Wu(ρ)= {ρ} and TρW⋆(ρ)= E⋆(ρ).

(4) F±(W⋆(ρ))⊂W⋆(F(ρ)).

(5) For each ρ ′ ∈W⋆(ρ), we have d(F±n(ρ), F±n(ρ ′))→ 0.

(6) Let θ > 0 satisfying e−λ0 < θ < 1. If ρ ′ ∈U satisfies d(F±i (ρ), F±i (ρ ′)) ≤ ε1 for all i = 0, . . . , n
then d(ρ ′,W⋆(ρ))≤ Cθnε1 for some C > 0.

(7) If ρ, ρ ′ ∈ T satisfy d(ρ, ρ ′)≤ ε1, then Wu(ρ)∩Ws(ρ
′) consists of exactly one point in T .

Since we work with the local unstable and stable manifolds, we may assume that W⋆(ρ)⊂ B(ρ, 2ε1).
For our purpose, we will need a more precise version of these results. The following lemmas are an

adaptation of Lemma 2.1 in [Dyatlov et al. 2022] to our setting.

Lemma 3.12. There exists a constant C > 0 depending only on (U, F), such that, for all ρ, ρ ′ ∈U :

(1) If ρ ∈ T and ρ ′ ∈Ws(ρ) then

d(Fn(ρ), Fn(ρ ′))≤ C J s
n (ρ)d(ρ, ρ

′) for all n ∈ N. (3-12)

(2) If ρ ∈ T and ρ ′ ∈Wu(ρ) then

d(F−n(ρ), F−n(ρ ′))≤ C J u
−n(ρ)d(ρ, ρ

′) for all n ∈ N. (3-13)

Proof. We prove (1). Part (2) is proved in a similar way by inverting the time direction. Let ρ ∈ T ,
ρ ′ ∈Ws(ρ). Since Tρ(Ws(ρ))= Es(ρ) and dρF(Es(ρ))= Es(F(ρ)), the Taylor development of F along
Ws(ρ) gives

d(F(ρ), F(ρ ′))≤ J s
1 (ρ)d(ρ, ρ

′)+Cd(ρ, ρ ′)2 ≤ J s
1 (ρ)d(ρ, ρ

′)(1+Cd(ρ, ρ ′)) (3-14)

1In other words, there exists a smooth curve γ : [−δ, δ] →U such that B(ρ, ε1)∩W⋆(ρ)= Im γ , with γ (0)= ρ; it means
that the size of the (un-)stable manifolds is bounded from below uniformly.
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Ws(ρn)

sn

Wu(ρn)

ρn

ρ ′n

un

F−n Ws(ρ)

s0 ρ ′

ρ u0

Wu(ρ)

Figure 5. Framework for the proof of Lemma 3.13.

since J s
1 ≥ C−1. Applying this inequality with Fk(ρ) and Fk(ρ ′) instead of ρ and ρ ′, and recalling that,

by Lemma 3.11, d(Fk(ρ), Fk(ρ ′))≤ Cθ kd(ρ, ρ ′), we can write

d(Fk+1(ρ), Fk+1(ρ ′))≤ J s
1 (F

k(ρ)) d(Fk(ρ), Fk(ρ ′))(1+Cθ k). (3-15)

By this last inequality and the chain rule, we have

d(Fn(ρ), Fn(ρ ′))≤ J s
n (ρ)d(ρ, ρ

′)

n−1∏
k=0

(1+Cθ k)≤ C J s
n (ρ)d(ρ, ρ

′), (3-16)

completing the proof. □

The following lemma gives a stronger version of (6) in Lemma 3.11.

Lemma 3.13. There exist C > 0 and ε1 > 0, depending only on (U, F), such that, for all ρ, ρ ′ ∈U and
n ∈ N:

(1) If ρ ∈ T and d(F i (ρ), F i (ρ ′))≤ ε1 for all i ∈ {0, . . . , n} then

d(ρ ′,Ws(ρ))≤
C

J u
n (ρ)

, (3-17)

∥dρ′Fn
∥ ≤ C J u

n (ρ). (3-18)

(2) If ρ ∈ T and d(F−i (ρ), F−i (ρ ′))≤ ε1 for all i ∈ {0, . . . , n} then

d(ρ ′,Wu(ρ))≤
C

J s
−n(ρ)

, (3-19)

∥dρ′F−n
∥ ≤ C J s

−n(ρ). (3-20)

Proof. We prove (1). Part (2) is proved in a similar way by inverting the time direction. Let ρ ∈ T and
ρ ′ ∈U be such that d(F i (ρ), F i (ρ ′)) ≤ ε1 for 0 ≤ i ≤ n with ε1 to be determined. Define ρk = Fk(ρ).
The first condition on ε1 is that it is smaller than the one of Lemma 3.11 so that we ensure the following
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estimates: for k ∈ {0, . . . , n},

d(Fk(ρ ′),Ws(Fk(ρ)))≤ Cθn−kε1, (3-21)

d(Fk(ρ ′),Ws(Fk(ρ)))≤ Cθ kε1. (3-22)

We will use coordinates charts κk : ρ̂ ∈ Uk 7→ (uk, sk) ∈ Vk adapted to the dynamical system; see, in
[Katok and Hasselblatt 1995], Theorem 6.2.3, the explanations below and Theorem 6.2.8 for the existence
of this chart. More precisely, we want these charts to satisfy:

• κk(ρk)= (0, 0).

• κk(Ws(ρk)∩Uk)= {(0, s) : s ∈ R} ∩ Vk .

• κk(Wu(ρk)∩Uk)= {(u, 0) : u ∈ R} ∩ Vk .

• For ρ̂ ∈Uk , we have |uk
| ∼ d(ρ̂,Ws(ρk)), |sk

| ∼ d(ρ̂,Wu(ρk)) and |sk
|
2
+ |uk

|
2
∼ d(ρk, ρ̂)

2.

• (κk)0≤k≤n are uniformly bounded in the C N topology for all N , with constant independent of ρ0 and n.
In particular, we may assume that ε1 is chosen small enough so that B(ρk, ε1)⊂Uk for all 0≤ k ≤ n.

• Up to changing the metric we work with (which is not problematic), we may assume that the restrictions
of dκk(ρ) to Es(ρ) and Eu(ρ) are isometries for the metrics | · |s and | · |u .

If we write F̃k = κk ◦ F ◦ κ−1
k−1, we can check that in this pair of coordinates charts, the action of F−1 is

given by

F̃−1
k (uk, sk)= (±J u

−1(ρk)uk
+αk(uk, sk),±J s

−1(ρk)sk
+βk(uk, sk)), (3-23)

where αk, βk are smooth functions, uniformly bounded in k for the C2 topology and such that αk(0, sk)=0,
βk(uk, 0)= 0, dαk(0, 0)= 0, dβk(0, 0)= 0.

With these properties, one can check that

αk(uk, sk)≤ C |uk
|∥(uk, sk)∥. (3-24)

Let’s now define ρ ′k = Fk(ρ ′) and (uk, sk)= κk(ρ
′

k). By (3-21), (3-22), (3-23), (3-24), we can write

|uk−1
| ≤ J u

−1(ρk)|uk
| +C |uk

|∥(uk, sk)∥

≤ J u
−1(F

k(ρ))|uk
|(1+Cε1(θ

k
1 + θ

n−k
1 ))

≤ J u
−1(F

k(ρ))|uk
|(1+Cε1θ

min(k,n−k)).

Then, using the chain rule, one has

d(ρ ′,Ws(ρ))≤ C |u0
| ≤ C J u

−n(F
n(ρ))

n−1∏
k=0

(1+Cε1θ
min(k,n−k)). (3-25)

Finally, we can estimate
n∏

k=0

(1+Cε1θ
min(k,n−k))≤

⌈n/2⌉∏
k=0

(1+Cε1θ
k)2 ≤ C,
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which gives

d(ρ ′,Ws(ρ))≤ C J u
−n(F

n(ρ))=
C

J u
n (ρ)

. (3-26)

This proves (3-17).
To prove (3-18), we first construct a metric which simplifies the computations. If ρ ∈ T , we pick

v⋆(ρ) ∈ E⋆(ρ)2 such that ∥v⋆(ρ)∥ = 1. There exists a Riemannian metric | · | on T such that, for every
ρ ∈ T , (vu(ρ), vs(ρ)) is an orthonormal basis of TρU. This metric is γ -Hölder in ρ ∈ T since stable and
unstable distributions are γ -Hölder for some γ ∈ (0, 1).

If ρ ∈ T and n ∈ Z, we denote by J̃ u/s
n (ρ) ∈ R the numbers such that

dρ(Fn)(vu(ρ))= J̃ u
n (ρ)vu(Fn(ρ)), dρ(Fn)(vs(ρ))= J̃ s

n (ρ)vs(Fn(ρ)).

As already observed, | J̃ u
n (ρ)| ∼ J u

n (ρ) for all n (with constants independent of n). We can also assume
that | J̃ u

1 (ρ)| > | J̃
s
1 (ρ)| for all ρ. In the orthonormal basis (vu(ρ), vs(ρ)) and (vu(Fn(ρ), vs(Fn(ρ))),

dρFn has the form (
J̃ u

n (ρ) 0
0 J̃ s

n (ρ)

)
.

Due to the orthonormality of these basis, we have that for the subordinate norms, ∥dρFn
∥ = | J̃ u

n (ρ)|.
Hence, the chain rule implies the following equality for this particular Riemannian metric defined on T :

for all ρ ∈ T , ∥dρ(Fn)∥ = | J̃ u
n (ρ)| =

n−1∏
i=0

| J̃ u
1 (F

i (ρ)| =

n−1∏
i=0

∥dF i (ρ)F∥. (3-27)

We now claim that we can extend | · | to a relatively compact neighborhood V of T such that ρ ∈ V 7→ |· |ρ
is still γ -Hölder. To do so, it is enough to extend the coefficients of the metric in a coordinate chart in a
γ -Hölder way, which is possible (for instance, by virtue of Corollary 1 in [McShane 1934]), which still
defines a nondegenerate 2-form in a sufficiently small neighborhood of T .

We now aim at proving (3-18) for this particular metric. (3-18) will hold in the general case since two
continuous metric are always uniformly equivalent in a compact neighborhood of T .

In the following, we assume that ε1 is small enough so that ρ belongs to the neighborhood of T
in which | · | is defined. Since ρ 7→ ∥dρF∥TρU→TF(ρ)U is γ -Hölder (in the following, we will drop the
subscript in the norm) we have, for all i ∈ {0, . . . , n},∣∣∥dF i (ρ′)F∥−∥dF i (ρ)F∥

∣∣≤ Cd(F i (ρ ′), F i (ρ))γ ≤ Cε1θ
γ min(i,n−i). (3-28)

Using the chain rule and the submultiplicativity of ∥ · ∥, we have

∥dρ′Fn
∥ ≤

n∏
i=0

∥dF i (ρ′)F∥ ≤
n∏

i=0

∥dF i (ρ)F∥(1+Cε1θ
γ min(i,n−i)). (3-29)

Eventually, by (3-27) and the fact that
∏n

i=0(1+Cε1θ
γ min(i,n−i)) is convergent, (3-18) holds. □

As an immediate consequence of this lemma, we get:

2Here, we are not concerned by the orientation. It is simply a matter of direction.
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Corollary 3.14. There exist C > 0 and ε1 > 0 (depending only on (U, F)) such that, for all ρ, ρ ′ ∈ T
and n ∈ N:

(1) If d(F i (ρ), F i (ρ ′))≤ ε1 for all i ∈ {0, . . . , n} then

C−1 J u
n (ρ)≤ J u

n (ρ
′)≤ C J u

n (ρ). (3-30)

(2) If d(F−i (ρ), F−i (ρ ′))≤ ε1 for all i ∈ {0, . . . , n} then

C−1 J s
−n(ρ)≤ J s

−n(ρ
′)≤ C J s

−n(ρ). (3-31)

Proof. This is a consequence of the previous lemma and of the fact that, uniformly in ρ and n ∈ N,

∥dρFn
∥ ∼ J u

n (ρ),

∥dρF−n
∥ ∼ J s

−n(ρ). □

3D. Regularity of the invariant splitting. It is known for Anosov diffeomorphisms that stable and
unstable distributions are in fact C2−ε in dimension 2; see [Hurder and Katok 1990]. For our purpose, we
need to extend this result to our setting, where the hyperbolic invariant set T is not the full phase space,
but a fractal subset of it. In fact, we will show that one can extend the stable and unstable distributions
to an open neighborhood of T and that these extensions are C1,β for some β > 0. Actually, since what
happens outside a fixed neighborhood of T is irrelevant (one can always use cut-offs), we will prove the
following theorem which might be of independent interest.

Theorem 5. Let us denote by G1(U ) the Grassmannian bundle of 1-plane in T U. There exists β > 0 and
sections Eu, Es :U → G1(U ) such that:

• For every ρ ∈ T , Eu(ρ) (resp. Es(ρ)) is the unstable (resp. stable) distribution at ρ.

• Eu and Es have regularity C1,β .

Remark. Our proof relies on the techniques of [Hirsch and Pugh 1969]. In fact, in [Katok and Hasselblatt
1995, Chapter 19, Section 1.d] the authors show how one can obtain C1 regularity of the map ρ ∈ T 7→
Eu(ρ) and explain how to prove C1,β regularity. Their notion of differentiability on the set T (which
is clearly not open in our case) relies on the existence of linear approximations. Here, we choose to
show a slightly different version of this regularity by proving that ρ ∈ T 7→ Eu(ρ) can be obtained as the
restriction of a C1,β map defined in an open neighborhood of T .

3D1. Proof of the C1,β regularity.

Preliminaries. We recall that T is an invariant hyperbolic set for F. Hence, there exists a continuous
splitting of TT U into stable and unstable spaces ρ ∈ T 7→ Es(ρ), ρ ∈ T 7→ Eu(ρ). We use a continuous
Riemannian metric on TT U such that dρF is a contraction from Es(ρ)→ Es(F(ρ)) and expanding from
Eu(ρ)→ Eu(F(ρ)), and making Eu(ρ) and Es(ρ) orthogonal.
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Let ρ ∈ T 7→ eu(ρ) ∈ T U and ρ ∈ T 7→ es(ρ) ∈ T U be two continuous sections3 such that, for every
ρ ∈ T ,

• eu(ρ) spans Eu(ρ),

• es(ρ) spans Es(ρ),

• ∥eu(ρ)∥ = 1, ∥es(ρ)∥ = 1.

The matrix representation of dρF4 in these basis is

dρF =
(

J̃ u(ρ) 0
0 J̃ s(ρ)

)
,

with ν := supρ∈T max[(| J̃ u(ρ)|)−1, | J̃ s(ρ)|]< 1.
We can extend eu and es to U to continuous functions, still denoted by eu and es . Let us consider smooth

vector fields vu and vs on U approximating eu and es and a smooth Riemannian metric approximating the
one considered above. By slightly modifying this vector field, we can assume that, for this new metric,
(vu(ρ), vs(ρ)) is an orthonormal basis for all ρ ∈U. In these new basis, we now write

dρF =
(

a(ρ) b(ρ)
c(ρ) d(ρ)

)
.

We assume that vu and vs are sufficiently close to eu and es to ensure that, for some η > 0 small enough,

sup
ρ∈T

max(|b(ρ)|, |c(ρ)|)≤ η,

sup
ρ∈T
|d(ρ)| ≤ ν+ η ≤ 1− 4η,

inf
ρ∈T
|a(ρ)| ≥ ν−1

− η ≥ 1+ 4η.

We consider an open neighborhood � of T such that the following hold:

sup
ρ∈�

max(|b(ρ)|, |c(ρ)|)≤ 2η,

sup
ρ∈�

|d(ρ)| ≤ ν+ 2η ≤ 1− 3η,

inf
ρ∈�
|a(ρ)| ≥ ν−1

− 2η ≥ 1+ 3η.

Our method relies on different uses of the contraction map theorem. We state the fiber contraction
theorem of [Hirsch and Pugh 1969, Section 1], which will be used further. We recall that a fixed point x0

of a continuous map f : X→ X is said to be attractive if, for every x ∈ X , f n(x)→ x0.

3Note that there is no problem of orientation in constructing such global sections. Indeed, T is totally disconnected and hence,
one can cover T by a disjoint union of open sets small enough so that it is possible to construct local sections in each such sets.
Since these open sets are disjoint, these local sections allow us to build a global continuous section.

4The definition of J̃ u/s may differ from the one of J u/s
1 above since we don’t work a priori with the same metric.
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Theorem 6 (fiber contraction theorem). Let (X, d) be a metric space and h : X→ X be a map having an
attractive fixed point x0. Let us consider Y another metric space and a family of maps (gx : Y → Y )x∈X

and denote by H the map

H : (x, y) ∈ X × Y 7→ (h(x), gx(y)) ∈ X × Y.

Assume that:

• H is continuous.

• For all x ∈ X , lim supn→+∞ L(ghn(x))<1, where L(ghn(x)) denotes the best Lipschitz constant for ghn(x).

• y0 is an attractive fixed point for gx0 .

Then (x0, y0) is an attractive fixed point for H.

In the following, we study the regularity of the unstable distribution. The same holds for the stable
distribution by changing the roles of F−1 and F.

Eu is a fixed point of a contraction. By our assumption on vu and vs , there exists a continuous function
λ :U → R such that

Reu(ρ)= R(vu(ρ)+ λ(ρ)vs(ρ)).

Hence, we will represent the extension of the unstable distribution by a continuous map λ :�→ R. Our
aim is to show that we can find λ regular enough such that, for ρ ∈ T ,

Eu(ρ)= R(vu(ρ)+ λ(ρ)vs(ρ)).

To do so, we will start by constructing λ as a fixed point of a contraction in a nice space. This contraction
will be related to invariance properties of the unstable distribution.

First of all, if ρ ′ = F(ρ) ∈�∩ F(�), and if v = vu(ρ)+ λvs(ρ), then dρF maps v to

w = (a(ρ)+ λb(ρ))vu(ρ
′)+ (c(ρ)+ λd(ρ))vs(ρ

′).

Hence, the line of TρU represented by λ is sent to the line represented by t (ρ, λ) in Tρ′U, where

t (ρ, λ)=
λd(ρ)+ c(ρ)
a(ρ)+ λb(ρ)

. (3-32)

Set �1 =�∩ F(�) and let us consider a cut-off function χ ∈ C∞c (�1) such that 0≤ χ ≤ 1 and χ ≡ 1 in
a neighborhood of T . Let us introduce the complete metric space

X = {λ ∈ C(� : R) : ∥λ∥∞ ≤ 1}

and consider the map T : X→ X defined, for λ ∈ X and ρ ′ ∈�,

(Tλ)(ρ ′)= χ(ρ ′)t
(
F−1(ρ ′), λ(F−1(ρ ′))

)
. (3-33)

To see that this is well-defined, first note that F−1 is well-defined on suppχ and F−1(suppχ)⊂�. It
is clear that if λ ∈ X , then Tλ is continuous. To see that ∥Tλ∥∞ ≤ 1, it is enough to note that if ρ ∈�
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and |λ| ≤ 1,

|t (ρ, λ)| ≤
|d(ρ)| + |c(ρ)|
|a(ρ)| − |b(ρ)|

≤
1− 3η+ 2η
1+ 3η− 2η

≤
1− η
1+ η

< 1.

Let us now prove the following.

Proposition 3.15. • T is a contraction.

• If λu denotes its unique fixed point, then, for every ρ ∈ T , we have Eu(ρ)= R(vu(ρ)+λu(ρ)vs(ρ)).

Proof. Let λ,µ ∈ X . If ρ ′ ∈� \ suppχ , we have Tµ(ρ ′)= Tλ(ρ ′)= 0. Now assume that ρ ′ ∈ suppχ
and write ρ ′ = F(ρ) with ρ ∈�. Then

|Tλ(ρ ′)− Tµ(ρ ′)| = |χ(ρ ′)||t (ρ, λ(ρ))− t (ρ, µ(ρ))| ≤ |t (ρ, λ(ρ))− t (ρ, µ(ρ))|.

The map λ ∈ [−1, 1] 7→ t (ρ, λ) is smooth, so we can write

∥Tλ− Tµ∥∞ ≤ sup
ρ′∈suppχ

|Tλ(ρ ′)− Tµ(ρ ′)| ≤ sup
�×[−1,1]

|∂λt | × ∥λ−µ∥∞.

It is then enough to show that sup�×[−1,1] |∂λt |< 1. For (ρ, λ) ∈�×[−1, 1], we have

∂λt (ρ, λ)=
d(ρ)

a(ρ)+ λb(ρ)
− b(ρ)

λd(ρ)+ c(ρ)
(a(ρ)+ λb(ρ))2

. (3-34)

Hence, we can control

|∂λt (ρ, λ)| ≤
1− 3η
1+ η

+ η
1− η
(1+ η)2

= κη < 1

if η is small enough. This demonstrates that T is a contraction.
As a consequence, T has a unique fixed point, λu . We let v(ρ) = vu(ρ)+ λu(ρ)vs(ρ). We want to

show that v(ρ) ∈ Reu(ρ) for ρ ∈ T (recall that eu :U→ T U is continuous and that eu(ρ) spans Eu(ρ) if
ρ ∈ T ). Since χ = 1 on T , we see by the definition of T that, for every ρ ∈ T ,

dρF(v(ρ)) ∈ Rv(F(ρ)). (3-35)

If vu is sufficiently close to eu , we can find a continuous and bounded function µ such that

Rv(x)= R(eu(x)+µ(x)es(x)).

From (3-35), if ρ ′ = F(ρ) ∈ T ,

dρF(eu(ρ)+µ(ρ)es(ρ))= J̃ u
1 (ρ)

(
eu(ρ

′)+µ(ρ)
J̃ s

1 (ρ)

J̃ u
1 (ρ)

es(ρ
′)

)
∈ R(eu(ρ

′)+µ(ρ ′)es(ρ
′)).

This implies the equality

µ(ρ ′)= µ(ρ)
J̃ s

1 (ρ)

J̃ u
1 (ρ)

. (3-36)

This equality implies that µ= 0 on T , and hence v = eu on T , as expected. □
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Remark. As long as ρ ′ ∈ {χ = 1}, the vector field v(ρ ′)= vu(ρ
′)+λ(ρ ′)vs(ρ

′) is invariant by d F. When
ρ ′ ∈Wu(ρ)∩ {χ = 1} for some ρ ∈ T , we will see below that the direction given by v(ρ ′) coincides with
the tangent space to Wu(ρ), namely Tρ′Wu(ρ) = Rv(ρ ′). When ρ ′ ̸∈

⋃
ρ∈T Wu(ρ), there exists n ∈ N

such that F−n(ρ ′) ̸∈ suppχ . Hence, λu(ρ
′) is given by an explicit expression obtained by iterating the

fixed-point formula.

Differentiability of λu. We go on by showing that λ is C1 by adapting the method of [Hirsch and Pugh
1969]. We now introduce the Banach space Y of bounded continuous sections α :�→ T ∗�. We will
use the norm on T ∗� adapted to the metric on T�; namely, if α ∈ Y,

∥α∥Y = sup
ρ∈�

sup
v∈Tρ�,v ̸=0

|α(ρ)(v)|

∥v∥Tρ�
.

For λ ∈ X , let us introduce the map Gλ : Y → Y, defined as follows. For α ∈ Y and ρ ′ ∈�,

(Gλα)(ρ
′)= χ(ρ ′)[dρ t (ρ, λ(ρ))+ ∂λt (ρ, λ(ρ))α(ρ)] ◦ (dρF)−1

+ t (ρ, λ(ρ)) dρ′χ, (3-37)

with ρ = F−1(ρ ′), which is well-defined since ρ ∈� if ρ ′ ∈ supp(χ). Gλ is constructed to satisfy, for
λ ∈ X , if λ is C1, then the following relation holds:

Gλ(dλ)= d(Tλ). (3-38)

Let us first state the key tool to show the differentiability of λu .

Proposition 3.16. For every λ ∈ X , Gλ is a contraction with Lipschitz constant Lλ satisfying

sup
λ∈X

Lλ < 1.

Before proving it, let us show how it leads us to:

Proposition 3.17. We know λu is C1.

Proof. We use the contraction fiber theorem. Let αu be the unique fixed point of Gλu . The map

H : (λ, α) ∈ X × Y 7→ (Tλ,Gλα) ∈ X × Y

is continuous and the previous proposition shows that, for every λ∈ X , supn L(GT nλ)<1. The contraction
fiber theorem implies that (λu, αu) is an attractive fixed point for H.

Let λ ∈ X be C1. Hence, H n(λ, dλ)→ (λu, αu). But H n(λ, dλ)= (T nλ, αn), with

αn = GT n−1λ ◦ · · · ◦Gλdλ.

It is clear that if λ ∈ C1, so is Tλ and an iterative use of (3-38) implies that αn = d(T nλ). This shows
that λu is C1 and dλu = αu . □

Let us now prove Proposition 3.16.
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Proof. Let λ∈ X and fix α, β ∈Y. It is of course enough to control ∥Gλα(ρ
′)−Gλβ(ρ

′)∥ for ρ ′ ∈ supp(χ)
since both Gλα and Gλβ vanish outside. Let us fix ρ ′ = F(ρ) ∈ supp(χ).

Gλα(ρ
′)−Gλβ(ρ

′) is given by

χ(ρ ′)∂λt (ρ, λ(ρ))[α(ρ)−β(ρ)] ◦ (dρF)−1,

so it is enough to control ∂λt (ρ, λ(ρ))γ (ρ) ◦ (dρF)−1 for γ = α − β. With the precise expression of
∂λt (ρ, λ(ρ)) given by (3-34), we can estimate

|∂λt (ρ, λ(ρ))| =
|d(ρ)|

|a(ρ)+ λ(ρ)b(ρ)|
+ Oν(η)=

|d(ρ)|
|a(ρ)|

+ Oν(η).

(By the notation Oν(η), we mean that this term is bounded by Cη where C is a constant depending only
on ν and (F,U )).

Moreover, we have

∥(dρF)−1
∥ =max

(
1

a(ρ)
,

1
d(ρ)

)
+ Oν(η)=

1
d(ρ)

+ Oν(η).

Hence,

∥∂λt (ρ, λ(ρ))γ (ρ) ◦ (dρF)−1
∥ ≤

(
1

a(ρ)
+ Oν(η)

)
∥γ (ρ)∥ ≤ (ν+ Oν(η))∥γ ∥Y .

Hence, if η is small enough, the proposition is proved. □

Hölder regularity of αu. In fact, as explained at the end of [Katok and Hasselblatt 1995, Chapter 19,
Section 1.d], we can improve the C1 regularity.

To deal with Hölder regularity of sections α :�→ T ∗�, we will simply evaluate the distance between
α(ρ1) and α(ρ2) for ρ1, ρ2 ∈� using the natural identification T ∗�=�× (R2)∗, where we see α(ρ1) as
an element of (R2)∗. This allows us to write α(ρ1)−α(ρ2) and compute ∥α(ρ1)−α(ρ2)∥, where ∥ · ∥ is
a norm on (R2)∗. There exists C > 0 such that, for every α ∈ Y, supρ∈� ∥α(ρ)∥ ≤ C∥α∥Y .

Let us introduce µ a Lipschitz constant for F−1 on � and an exponent β > 0 such that

νµβ < 1. (3-39)

This condition is called a bunching condition in [Katok and Hasselblatt 1995, Chapter 19, Section1.d].
Such a β exists. We will then show the following, which finally concludes the proof of Theorem 5.

Proposition 3.18. αu is β-Hölder, that is to say, λu is C1,β .

Proof. Let us introduce

Y β := {α ∈ Y : α is β-Hölder}.

Let us consider some ε > 0 to be determined later and we equip Y β with the norm

∥α∥Y β = ∥α∥Y + ε∥α∥β, ∥α∥β = sup
ρ1 ̸=ρ2

∥α(ρ1)−α(ρ2)∥

d(ρ1, ρ2)β
.
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The map T : X → X defined by (3-33) actually maps X ∩C1(�,R) to X ∩C1(�,R). Moreover, our
previous results have proved that λu is an attractive fixed point for T in X∩C1(�,R), where X∩C1(�,R)

is now equipped with the C1 norm. For λ ∈ X and α ∈ Y, we can write

Gλα = γλ+ G̃λα,

where, for ρ ′ = F(ρ) ∈ suppχ ,

γλ(ρ
′)= χ(ρ ′)dρ t (ρ, λ(ρ))+ t (ρ, λ(ρ))dρ′χ,

G̃λα(ρ
′)= χ(ρ ′)∂λt (ρ, λ(ρ))α(ρ) ◦ (dρF)−1.

We state here some obvious facts on γλ and G̃λ:

• C1 := supλ∈X ∥γλ∥∞ <+∞.

• If λ ∈ X ∩C1(�,R), γλ is also C1.

• According to Proposition 3.16; G̃λ : Y → Y is a contraction with Lipschitz constant Lλ and
ν1 := supλ∈X Lλ < 1.

• If λ ∈ X ∩C1(�,R) and α is β-Hölder, then G̃λα is β-Hölder.

If M > C1/(1− ν1) and λ ∈ X ∩C1(�,R), then ∥dλ∥Y ≤ M implies ∥d(Tλ)∥Y ≤ M. Indeed, we have

∥d(Tλ)∥Y = ∥Gλ(dλ)∥Y = ∥γλ+ G̃λdλ∥Y ≤ C1+ ν1 M ≤ M.

Hence, we introduce the complete metric space

X ′ = {λ ∈ X ∩C1(�,R) : ∥dλ∥Y ≤ M}, (3-40)

T (X ′)⊂ X ′ and λu is an attractive fixed point for (X ′, T ).
We now wish to apply the fiber contraction theorem to

Hβ : (λ, α) ∈ X ′× Y β 7→ (Tλ,Gλα) ∈ X ′× Y β .

To do so, we need to show that, for every λ ∈ X ′, Gλ : Y β → Y β is a contraction and find a uniform
estimate for the Lipschitz constants.

Let’s consider α1, α2 ∈ Y β and set γ = α1−α2. We want to estimate the Y β norm of G̃λγ . We already
know that ∥G̃λγ ∥Y ≤ ν1∥γ ∥Y . Take ρ ′1, ρ

′

2 ∈� and let’s estimate ∥G̃λγ (ρ
′

1)− G̃λγ (ρ
′

2)∥. We distinguish
three cases:

• ρ ′1, ρ ′2 ̸∈ suppχ . There is nothing to write.

• ρ ′1 ∈ suppχ , ρ ′2 ̸∈�∩ F(�). In this case, d(ρ ′1, ρ
′

2)≥ δ > 0, where δ is the distance between suppχ
and (�∩ F(�))c. Hence,

∥G̃λγ (ρ
′

1)− G̃λ(ρ
′

2)∥

d(ρ ′1, ρ
′

2)
β

≤ δ−β∥G̃λγ (ρ
′

1)∥ ≤ δ
−βC∥G̃λγ ∥Y ≤ ν1δ

−βC∥γ ∥Y .
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• ρ ′1, ρ
′

2 ∈�∩ F(�). Let’s write ρ ′1 = F(ρ1), ρ ′2 = F(ρ2) and note that d(ρ1, ρ2)≤ µd(ρ ′1, ρ
′

2). Then

G̃λγ (ρ
′

1)− G̃λγ (ρ
′

2)= χ(ρ
′

1)∂λt (ρ1, λ(ρ1))[γ (ρ1)− γ (ρ2)] ◦ (dρ1 F)−1 (∗)

+ [χ(ρ ′1)∂λt (ρ1, λ(ρ1))−χ(ρ
′

2)∂λt (ρ2, λ(ρ2))]γ (ρ2) ◦ (dρ1 F)−1 (∗∗)

+χ(ρ ′2)∂λt (ρ2, λ(ρ2))γ (ρ2) ◦ [(dρ1 F)−1
− (dρ2 F)−1

]. (∗ ∗ ∗)

To handle the last two terms (∗∗) and (∗ ∗ ∗), we notice that ρ ′ ∈ � ∩ F(�) 7→ χ(ρ ′)∂λt (ρ, λ(ρ)) is
Lipschitz since λ is C1, with Lipschitz constant which can be chosen uniform for λ ∈ X ′. The same is
true for ρ 7→ dρF−1. Hence, there exists a uniform constant C > 0 such that

∥(∗∗)+ (∗ ∗ ∗)∥ ≤ Cd(ρ ′1, ρ
′

2)
β
∥γ ∥Y .

To deal with the first term (∗), we recall that by previous computations,

|χ(ρ ′)∂λt (ρ, λ(ρ))| · ∥(dρF)−1
∥ ≤ ν+ Oν(η).

As consequence, we have

∥(∗)∥ ≤ (ν+ Oν(η))∥γ ∥β d(ρ1, ρ2)
β
≤ (ν+ Oν(η))µ

β
∥γ ∥β d(ρ ′1, ρ

′

2)
β .

Henceforth, if η is small enough, so that ν2 := (ν+ Oν(η))µ
β < 1,

∥Hλγ ∥β ≤ ν2∥γ ∥β +C∥γ ∥Y .

Eventually,
∥G̃λγ ∥Y β ≤ ν1∥γ ∥Y + ε(ν2∥γ ∥β +C∥γ ∥Y )

≤ (ν1+ εC)∥γ ∥Y + ν2ε∥γ ∥β ≤ ν3∥γ ∥Y β ,

where ν3 =max(ν1+ εC, ν2) < 1 if ε is small enough.
The fiber contraction theorem applies and says that (λu, αu) is an attractive fixed point for Hβ . We

conclude as previously: Consider λ ∈ C1,β(�,R)∩ X ′ so that (λ, dλ) ∈ X ′ × Y β. Then H n
β (λ, dλ) =

(T nλ, dT nλ)→ (λu, αu) in X ′× Y β, which ensures that αu is β-Hölder. □

3D2. Regularity of the stable and unstable leaves. Once we’ve extended the unstable distribution to an
open neighborhood of T , we take advantage of the fact that these distributions are one-dimensional to
integrate the vector field defined by their unit vector.

We set Eu(ρ) = R(vu(ρ)+ λu(ρ)vs(ρ)). Recall that in a compact neighborhood of T , the relation
dρF(Eu(ρ)) = Eu(F(ρ)) is valid due to the definition of λu as the fixed point of T defined in (3-33).
T ∗U is equipped with a smooth Riemannian metric such that d F−1 is a contraction on Eu(ρ) for ρ ∈ T
and hence, in a compact neighborhood of T , this is also true. We can consider the vector field

ρ ∈U 7→ eu(ρ),

where eu(ρ) is a unit vector spanning Eu(ρ). By our previous result, this vector field is C1,β and if ρ lies in
a sufficiently small neighborhood of T , then dρ(F−1)(eu(ρ))= J̃ u(ρ)eu(F−1(ρ)), where | J̃ u(ρ)| ≤ ν < 1.
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We denote by ϕt
u(ρ) the flow generated by eu(ρ) and we will show that one can identify the unstable

manifolds and the flow lines of eu in a small neighborhood of T .

Proposition 3.19. There exists t0 such that, for every ρ ∈ T , we have {ϕt
u(ρ) : |t | ≤ t0} ⊂Wu(ρ).

Proof. Consider t0 sufficiently small that | J̃ u(ϕt
u(ρ))| ≤ ν < 1 for ρ ∈ T , t ∈ [−t0, t0]. For (t, ρ) ∈R×U,

set µ(t, ρ)=
∫ t

0 J̃ u(ϕs
u(ρ)) ds and we claim that for t0 small enough, if |t | ≤ t0,

F−1(ϕt
u(ρ))= ϕ

µ(t,ρ)
u (F−1(ρ)).

Indeed, in t = 0, both are equal to F−1(ρ) and a quick computation shows that both satisfy the ODE

d
dt

Y (t)= J u(ϕt
u(ρ))eu(Y (t)).

As a consequence, by induction, we see that one can write, for n ∈ N,

F−n(ϕt
u(ρ))= ϕ

µn(t,ρ)
u (F−n(ρ)),

where µn is defined by induction by µn+1(t, ρ)= µ(µn(t, ρ), F−n(ρ)). Hence, if |t | ≤ t0 and ρ ∈ T , we
see that µn(t, ρ) stays in [−t0, t0] and moreover |µn(t, ρ)| ≤ νn

|t |. We then see that if |t | ≤ t0 and ρ ∈ T ,

d
(
F−n(ϕt

u(ρ)), F−n(ρ)
)
= d

(
ϕµn(t,ρ)

u (F−n(ρ)), F−n(ρ)
)
≤ C |µn(t, ρ)| ≤ Cνn.

This shows that ϕt
u(ρ) belongs to the global unstable manifold at ρ, and hence, if t0 is small enough,

ϕt
u(ρ) belongs to the local manifold Wu(ρ) and t0 can be chosen uniformly with respect to ρ ∈ T . □

Since the regularity of the unstable distributions implies the same regularity for the flow ϕt
u (see

Lemma A.1 in the Appendix), we deduce that, up to reducing the size of the local unstable manifolds, these
local unstable manifolds Wu(ρ) depend C1,β on the base point ρ ∈ T . We’ll also use this proposition to
show the same regularity for holonomy maps. Suppose that ε0 is small enough. We know that if ρ1, ρ2 ∈ T
satisfy d(ρ1, ρ2)≤ ε0, then Wu(ρ2)∩Ws(ρ1) consists of exactly one point. Let’s denote it by H u

ρ1
(ρ2).

Finally, we define the holonomy map

H u
ρ1,ρ2
: ρ3 ∈Ws(ρ2)∩ T 7→ H u

ρ1
(ρ3) ∈Ws(ρ1)∩ T .

Lemma 3.20. If ε0 is small enough, for every ρ1 ∈ T , the map

H u
ρ1
: T ∩ B(ρ1, ε0)→Ws(ρ1)∩ T

is the restriction of a map H̃ u
ρ1
: B(ρ1, ε0)→Ws(ρ1) which is C1,β.

Proof. Let ρ1 ∈ T . As in the proof of Lemma 3.13, consider a smooth chart κ : U1 → V1 ⊂ R2,
ρ1 ∈U1, 0 ∈ V1 such that:

• κ(ρ1)= (0, 0).

• κ(Ws(ρ1)∩U1)= {(0, s) : s ∈ R} ∩ V1.

• κ(Wu(ρ1)∩U1)= {(u, 0) : u ∈ R} ∩ V1.

• dρ1κ(eu(ρ1))= (1, 0).
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Wu(ρ3)

Hρ1,ρ2(ρ3)

ρ3

ρ2

ρ1

Ws(ρ1)

Ws(ρ2)

Figure 6. The holonomy map.

We now work in this chart V1 and denote by 8t
= κ ◦ϕt

u ◦ κ
−1 the flow in this chart, well-defined for t

small enough. Consider the map
ψ(u, s)=8u(0, s);

ψ is C1,β and d0ψ = I2. By the inverse function theorem, ψ is a local diffeomorphism between
neighborhoods of 0:

ψ : V2→ V ′2.

Since d(u,s)(ψ−1)= (dψ−1(u,s)ψ)
−1, we know ψ−1 is C1,β . We now consider

κ0 = ψ
−1
◦ κ : κ−1(V2) :=U2→ V ′2

and observe that:

• κ0(Ws(ρ1)∩U2)= {(0, s), s ∈ R} ∩ V ′2.

• κ0 ◦ϕ
t
u ◦ κ

−1
0 (u, s))= (u+ t, s). In other words κ0 rectifies the unstable manifolds.

Armed with these facts, we define

H̃ u
ρ1
:U2→Ws(ρ1), H̃ u

ρ1
= κ−1

0 ◦πs ◦ κ0,

where πs(u, s) = (0, s). H̃ u
ρ1

is C1,β. We assume that B(0, ε0) ⊂ U1. Let us check that H̃ u
ρ1

extends
the holonomy map in B(ρ1, ε0) (if ε0 is small enough). Let ρ2 ∈ T ∩ B(ρ1, ε0) and let ρ ′2 = H̃ u

ρ1
(ρ2).

By the definition of H̃ u
ρ1

, ρ ′2 can be written ρ ′2 = ϕ
t
u(ρ1) and hence, if ε0 is small enough, ρ ′2 ∈Wu(ρ1).

Since, ρ ′2 ∈Ws(ρ2), we see that ρ ′2 = H u
ρ1
(ρ2). □

Note that by compactness, ε0 can be chosen uniformly in ρ1 ∈ T and the C1,β norms of H̃ u
ρ1

are
uniform. As a corollary, we get the following:

Corollary 3.21. Suppose that ε0 is small enough. Then, the holonomy maps, defined for ρ1, ρ2 ∈ T with
d(ρ1, ρ2)≤ ε0,

H u
ρ1,ρ2
:Ws(ρ2)∩ T →Ws(ρ1)∩ T

are the restrictions of C1,β
: H̃ u

ρ1,ρ2
:Ws(ρ1)→Ws(ρ2), with C1,β norms uniform in ρ1, ρ2. See Figure 6.
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3E. Adapted charts. We construct charts in which the unstable manifolds are close to horizontal lines.
These charts will be used at different places and their existence relies on the C1+β regularity of the
unstable distribution.

Weak version. We start with a weak version of these charts.

Lemma 3.22. Suppose that C > 0 is a fixed global constant and ε0 is chosen small enough. For every
ρ0 ∈ T , there exists a canonical transformation

κ0 :U ′ρ0
→ V ′ρ0

⊂ R2

satisfying (we denote by (y, η) the variable in R2):

(1) B(ρ0,Cε0)⊂U ′ρ0
.

(2) κ0(ρ0)= 0, dρ0κ0(Eu(ρ0))= R×{0}, dρ0κ0(Es(x))= {0}×R.

(3) The image of the unstable manifold Wu(ρ0)∩U ′ρ0
is exactly {(y, 0) : y ∈ R} ∩ V ′ρ0

.

Moreover, for every N , the C N norms of κ0 are bounded uniformly with respect to ρ0 ∈ T .

Remark. The difference with the charts used in the proof of Lemma 3.13 is that we require κ0 to be a
smooth canonical transformation.

Proof. Wu(ρ0) is a C∞ manifold; hence there exists a C∞ defining function η defined in a neighborhood ρ0;
namely, dρ0η ̸= 0 and Wu(ρ0)= {η= 0} locally near ρ0. Darboux’s theorem gives a function y defined in
a neighborhood of ρ0 such that (y, η) forms a system of symplectic coordinates. We can assume that
y(ρ0)= 0. If κ(ρ)= (y, η), the third point is satisfied by assumption on η and we need to ensure that
dρ0κ(Es(ρ0))= {0}×R by modifying η in a symplectic way.

Assume that dρ0κ(Es(ρ0))= Rt(a, 1). The symplectic matrix

A =
(

1 −a
0 1

)
maps the basis ( t(1, 0), t(a, 1)) to the canonical basis of R2 and we can set κ0 := A ◦ κ , which is the
required canonical transformation, defined in a small neighborhood U ′ρ0

of ρ0.
We can ensure that B(ρ0,Cε0)⊂U ′ρ0

for ε0 small enough and the uniformity of the C N norms of κ
thanks to the compactness of T and the fact that the unstable distribution depends continuously on
ρ0 ∈ T . □

Straightened version. We now straighten the unstable manifolds in a stronger version of the previous
charts. The construction and the use of these charts is similar to [Dyatlov et al. 2022, Lemma 2.3].

Lemma 3.23. Suppose that ε0 is chosen small enough. For every ρ0 ∈ T there exists a canonical
transformation

κ = κρ0 :Uρ0 ⊂U → Vρ0 ⊂ R2

satisfying (we denote by (y, η) the variable in R2):
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(1) B(ρ0, 2ε0)⊂Uρ0 .

(2) κ(ρ0)= 0, dρ0κ(Eu(ρ0))= R×{0}, dρ0κ(Es(ρ0))= {0}×R.

(3) The images of the unstable manifolds Wu(ρ), ρ ∈Uρ0 ∩ T , are described by

κ(Wu(ρ)∩Uρ0)= {(y, g(y, ζ(ρ))) : y ∈�}, (3-41)

where�⊂R is an open set, ζ :Uρ0→R is C1+β , g :�× I→R is C1+β (where I is a neighborhood
of ζ(Uρ0)) and they satisfy:

(a) ζ is constant on the unstable manifolds.
(b) ζ(ρ0)= 0, g(y, 0)= 0.
(c) g(0, ζ )= ζ .
(d) ∂ζ g(y, 0)= 1.

The derivatives of κρ0 and the C1+β norms of g, ζ are bounded uniformly in ρ0.

Remark. The most important condition, which will be used later on, is the last one: it makes the unstable
manifolds very close to horizontal lines. The model situation we expect is when the unstable distribution
is constant and horizontal.

Proof. Around a point ρ0 ∈ T , we work in the charts given by Lemma 3.22: κ0 :U ′ρ0
→ V ′ρ0

. We recall
that the unstable distribution is given by the restriction of a C1+β vector field eu . If U ′ρ0

is a sufficiently
small neighborhood of ρ0, we can write, for ρ ∈U ′ρ0

,

dρκ0(eu(ρ)) ∈ Rẽu(ρ), with ẽu(ρ)=
t(1, f0(ρ)), (3-42)

where f0 : U ′ρ0
→ R is a C1+β function which is nothing but the slope of the unstable direction in the

chart κ0. In the (y, η)-variable, we still write f0(ρ)= f0(y, η) and we observe that due to the assumption
on κ0, we have

f0(y, 0)= 0, (y, 0) ∈ V ′ρ0
.

We consider 8t(y, η), the flow generated by the vector field ẽu . Due to the form of ẽu , we can write

8t(y, η)= (y+ t, Z t(y, η)).

The reparametrization made in (3-42) does not change the flow lines of the vector field (κ0)∗eu . In
particular, by virtue of Proposition 3.19, they coincide locally with the unstable manifolds. More precisely,
if we set

g0(y, η) := Z y(0, η)

(see Figure 7) then, for (0, η)= κ0(ρ) ∈ κ0(T ∩Ws(ρ0)),

κ0(Wu(ρ))∩ {|y|< y0} = {(y, g0(y, η)) : |y|< y0}

for some y0 small enough (which can be chosen uniformly in ρ0). To define ζ , we go back up the flow:
Suppose that ρ ∈U ′ρ0

and write κ0(ρ)= (y, η) and assume |y|< y0. We set

ζ(ρ) := Z−y(y, η).

To say it differently, κ0(Wu(ρ) intersects the axis {y = 0} at (0, ζ(ρ)).
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κ0(Ws(ρ0))

ẽu(y, η) κ0(Wu(ρ1))

(y, η)= κ0(ρ1)ζ(ρ1)

ζ (y, g0(y, ζ ))

ρ0 κ0(Wu(ρ0))

Figure 7. The definitions of g0 and ζ use the flow generated by ẽu .

We know ζ and g0 are C1+β , their C1+β norms depend uniformly on ρ0 and they satisfy:

• By definition, ζ is constant on the flow lines, and hence, on the unstable manifolds Wu(ρ) if
ρ ∈ T ∩U ′ρ0

∩ {|y|< y0}.

• ζ(ρ0)= 0.

• Since f0(y, 0)= 0, we have Z y(0, 0)= 0 and hence g0(y, 0)= 0.

• Since Z0(0, η)= η, we have g0(0, η)= η.

However, at this stage, the last condition (∂ζ g0(y, 0)= 1) is not satisfied by g0 and we need to modify the
chart. To do so, we’ll make use of the following lemma, which is proved in Section A2 in the Appendix.

Lemma 3.24. The map y ∈ {|y|< y0} 7→ ∂η f0(y, 0) is smooth, with C N norms bounded uniformly in ρ0.

We first show that this lemma implies that y ∈ {|y|< y0} 7→ ∂ηg0(y, 0) is smooth. Indeed, due to the
C1+β regularity of Eu , (t, y, η) 7→ Z t(y, η) is C1 and satisfies

d
dt
∂ηZ t(y, η)= ∂η f0(y+ t, Z t(y, η)).

Setting (y, η)= (0, 0), we have
d
dt
∂ηZ t(0, 0)= ∂η f0(t, 0).

This exactly says that y 7→ ∂ηg0(y, 0) is C1 and has ∂η f0(y, 0) as derivative with respect to y and hence
y 7→ ∂ηg0(y, 0) is smooth, as required.

Due to the relation g0(0, η)= η, we have ∂ηg0(0, 0)= 1. As a consequence, if y0 is small enough, we
can assume that ∂ηg0(y, 0) > 0 for |y|< y0 and consider the smooth diffeomorphism defined in {|y|< y0}

ψ : y 7→
∫ y

0
∂ηg0(s, 0) ds.
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We then use the canonical transformation

9 : (y, η) 7→
(
ψ(y),

η

ψ ′(y)

)
.

We finally consider the chart κρ0 =9 ◦κ0 defined in Uρ0 =U ′ρ0
∩{|y|< y0} and if ε0 is small enough, we

can ensure that B(ρ0, 2ε0)⊂Uρ0 . In this chart, the graph of g0( · , ζ ) is sent to the graph of the function

g : y ∈� := ψ((−y0, y0)) 7→
g0(ψ

−1(y), ζ )
ψ ′(ψ−1(y))

.

We eventually check that:

• g(y, 0)= 0 since g0(y, 0)= 0.

• g(0, ζ )= ζ since ψ(0)= 0, ψ ′(0)= 1 and g(0, ζ )= ζ .

• ∂ηg(y, 0)= 1.

• The C1+β norm of g is bounded uniformly in ρ0.

• The C N norms of κρ0 are bounded uniformly in ρ0. □

4. Construction of a refined quantum partition

We start the proof of Theorem 1. We consider T = T (h) ∈ I0+(Y ×Y, F ′) a semiclassical Fourier integral
operator associated with F, microlocally unitary in a neighborhood of T , and a symbol α ∈ S0+(U ). We
want to show a bound for the spectral radius of M(h)= T (h)Oph(α), independent of h.

4A. Numerology. We’ll use the standard fact

∥Mn
∥L2→L2 ≤ ρ =⇒ ρspec(M)≤ ρ1/n.

The trivial lemma which follows reduces the theorem to the study of ∥Mn
∥ with n = n(h)∼ δ|log h|.

Lemma 4.1. Let δ > 0 and N (h) ∈N satisfy N (h)∼ δ|log h|. Suppose that there exists h0 > 0 and γ > 0
such that,

for all 0< h < h0, ∥M(h)N (h)
∥ ≤ hγ ∥α∥N (h)

∞
. (4-1)

Then, for every ε > 0, there exists hε such that, for h ≤ hε,

ρspec(M(h))≤ e−γ /δ+ε∥α∥∞.

Proof. It suffices to observe that under the assumption (4-1), we have ρspec(M(h))≤ eγ log h/N (h)
∥α∥∞

and use the equivalence for N (h). □

Remark. If we use the bound ∥M∥ ≤ ∥α∥∞ + O(h1/2−ε), one get the obvious bound ∥M N
∥ ≤

∥α∥N
∞
(1+ o(1)). Hence, (4-1) is a decay bound.

The proof of Theorem 1 is then reduced to the proof of the following proposition.

Proposition 4.2. There exists δ > 0, a family of integer N (h) ∼ δ|log(h)| and γ > 0 such that, for h
small enough, (4-1) holds.
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Actually, this proposition is enough to show Corollary 1 concerning perturbed operators, by virtue of:

Corollary 4.3. Suppose that R(h) : L2(Y )→ L2(Y ) is a family of bounded operators such that R(h)=
O(hη) for some η > 0. Then, there exists γ ′ = γ ′(γ, η) such that, for h small enough,

∥(M(h)+ R(h))N (h)
∥ ≤ hγ

′

∥α∥N (h)
∞

.

Proof. We write

(M + R)N
= M N

+

∑
ε∈{0,1}N
ε ̸=(1,...,1)

(ε1 M + (1− ε1)R) · · · (εN M + (1− εN )R).

Using this, we can estimate

∥(M + R)N
∥ ≤ hγ ∥α∥N

∞
+ ((∥M∥+∥R∥)N

−∥M∥N )

≤ hγ ∥α∥N
∞
+ N∥R∥(∥M∥+∥R∥)N−1

≤ hγ ∥α∥N
∞
+C |log h|hη∥α∥N−1

∞
(1+ O(hη))

= O((hγ + hη−)∥α∥N
∞
).

This gives the desired bound for any γ ′ <min(γ, η). □

Actually, the precise value of N (h) we’ll use is rather explicit and we now describe it. We set

b=
1

1+β
, (4-2)

where β is the one appearing in Theorem 5 concerning the regularity of the unstable distribution. We
now choose δ0 ∈

(
0, 1

2

)
such that

b+ δ0 < 1. (4-3)

For instance, let us set

δ0 =
1− b

2
=

β

2(1+β)
.

Recalling the definitions of the exponent λ0 ≤ λ1 in (3-10) and (3-11), we introduce the notation

N (h)= N0(h)+ N1(h), N0(h)=
⌈
δ0

λ1
|log(h)|

⌉
, N1(h)=

⌈
1
λ0
|log(h)|

⌉
, (4-4)

where N0(h) (resp. N1(h)) corresponds to a short (resp. long) logarithmic time. We will omit the
dependence on h in the following.

To be complete with the numerology, we introduce another number τ < 1 such that

b< τ < 1 and δ0
λ0

λ1
+ τ > 1. (4-5)

The meaning of these conditions will be clear in the core of the proof and we will indicate where they are
used. For instance, we set

τ = 1−
λ0

λ1

1− b

4
. (4-6)
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An important remark. If two operators M1(h) and M2(h) are equal modulo O(h∞), this is also the case
for M1(h)N (h) and M2(h)N (h) as long as

• N (h)= O(log h).

• M1(h),M2(h)= O(h−K ) for some K .

This will be widely used in the following. In particular, recall that we work with operators acting on
L2(Y ) but these operators take the form M1(h)=9Y M2(h)9Y , where 9Y ∈ C∞c (Y, [0, 1]) and M2(h)
is a bounded operator on

⊕J
j=1 L2(R) such that M2(h)=9Y M2(h)9Y + O(h∞)L2 . As a consequence,

modulo O(h∞), it is enough to focus on M2(h)N (h). For this reason, from now on and even if we keep
the same notation, we work with

M(h)= T (h)Oph(α) :

J⊕
j=1

L2(R)→

J⊕
j=1

L2(R),

where T (h)= (Ti j (h)), with Ti j ∈ I0+(R×R, F ′i j ) and

Oph(α)= Diag(Oph(α1), . . . ,Oph(αJ )).

4B. Microlocal partition of unity and notations. We consider some ε0 > 0, which is supposed small
enough to satisfy all the assumptions which will appear in the following.

We consider a cover of T by a finite number of balls of radius ε0,

T ⊂
Q⋃

q=1

B(ρq , ε0), ρq ∈ T ,

and we assume that for all q ∈ {1, . . . , Q}, there exist jq , lq ,mq ∈ {1, . . . , J } such that

B(ρq , 2ε0)⊂ Ã jq lq ∩ D̃mq jq ⊂Ujq .

We also assume that T is microlocally unitary in B(ρq , 4ε0). We then let

Vq = B(ρq , 2ε0). (4-7)

See Figure 8.

Remark. In the case of obstacle scattering, with obstacles satisfying the noneclipse condition, it is possible
to choose a simple partition of unity, related to the coding of the trapped set according to the sequence
of obstacles hit by a trajectory. Indeed, due to a result of [Morita 1991], there is a homeomorphism
between the trapped set and the admissible — that is, two consecutive obstacles are different — sequences
of obstacles. As a consequence, if the obstacles are numbered from 1 to J, we can partition the trapped
set by open subsets Uα⃗ indexed by

{α⃗ = (α−N , . . . , αN ) ∈ {1, . . . , J }2N+1
: αi+1 ̸= αi }.

The diameter of such partition goes to 0 as N goes to +∞ and we could get the required partition (Vq)q ,
with the additional property of being disjoint open subsets of U. This would simplify the study in this
particular setting.
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U ′
U

D

A
V1

Figure 8. The partition (Vq)q∈A∞ is made by small neighborhoods of T (small purple
disks) and a big open set included in U ′.

We complete this cover with

V∞ =U ′ \
Q⋃

q=1

B(ρq , ε0). (4-8)

U ′ ⋐ U is an open set such that WFh(M)⋐ U ′×U ′. We denote by U ′j the component of U ′ inside Uj .
We let A= {1, . . . , Q} and A∞ =A∪ {∞}.
We then consider a partition of unity associated with the cover V1, . . . ,VQ,V∞, namely a family of

smooth functions χq ∈ C∞c (U ) for q ∈A∞ such that:

• suppχq ⊂ Vq .

• 0≤ χq ≤ 1.

• 1=
∑

q∈A∞ χq in
⋃

q∈A∞ Vq .

More precisely, if q ∈ A, χq ∈ C∞(Ujq ) and, for every j ∈ {1, . . . , J }, there exists bj ∈ C∞c (Uj ) such
that on U ′j , then 1= bj +

∑
q∈A, jq= j χq . Thus, χ∞ =

∑J
j=1 bj .

We can then quantize these symbols so as to get a pseudodifferential partition of unity. More precisely,
to respect the matrix structure, we may write this quantization in a diagonal operator-valued matrix, still
denoted by Oph :

• For q ∈A, Aq = Oph(χq) is the diagonal matrix Diag(0, . . . ,Oph(χq), 0, . . . , 0), where the block
Oph(χq) is in the jq -th position.

• Oph(χ∞)= Diag(Oph(b1), . . . ,Oph(bJ )).

The family (Aq)q∈A∞ satisfies the properties∑
q∈A∞

Aq = Id microlocally in U ′ for all q ∈A∞, ∥Aq∥ ≤ 1+ O(h1/2). (4-9)
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Since M =
∑

q∈A∞ M Aq + O(h∞), we may write

Mn
=

∑
q∈An

∞

Uq + O(h∞),

where, for q = q0 · · · qn−1 ∈An
∞

,

Uq := M Aqn−1 · · ·M Aq0 . (4-10)

For q = q0 · · · qn−1 ∈ An
∞

, we also define a family of refined neighborhoods, forming a refined cover
of T ,

V−q =
n−1⋂
i=0

F−i (Vqi ), V+q = Fn(V−q )=
n−1⋂
i=0

Fn−i (Vqi ). (4-11)

This definition implies that a point ρ ∈ V−q lies in Vqi at time i (i.e., F i (ρ) ∈ Vqi ) for 0≤ i ≤ n− 1 and a
point ρ ∈ V+q lies in Vqn−i at time −i for 1≤ i ≤ n. Roughly speaking, we expect that each operator Uq

acts from V−q to V+q and is negligible (in some sense to be specified later on) elsewhere. Combining (4-9)
and the bound on M, the following bound is valid (for any ε > 0):

∥Uq∥L2→L2 ≤ (∥α∥∞+ O(h1/2−ε))n. (4-12)

As soon as |n| ≤ C0|log h|, we have ∥Uq∥L2→L2 ≤ C∥α∥n
∞

for some C depending on C0 and a finite
number of seminorms of α.

Reduction to words in A . We can find a uniform T0∈N such that if ρ∈V∞, there exists k∈{−T0, . . . , T0}

such that Fk(ρ) “falls” in the hole. By standard properties of the Fourier integral operators, each component
(MT0)i j of MT0 is a Fourier integral operator associated with the component (FT0)i j of FT0. In particular,
WF′h(M

T0)⊂ Gr′(FT0).
Let us study M2T0+N (h). If q = q0 · · · qN−1 ∈AN

∞
and if there exists an index i ∈ {0, . . . , N − 1} such

that qi =∞, one can isolate this index i and trap Aqi between two Fourier integral operators M1,M2,
belonging to a finite family of FIO associated with FT0, so that we can write

MT0Uq MT0 = B1 M1 A∞M2 B2,

where B1, B2 satisfy the L2-bound

∥B1∥×∥B2∥ ≤ (∥α∥∞+ O(h1/4))N−1
= O(h−K )

for some integer K . Since

WF′h(M1 A∞M2)⊂ {(FT0(ρ), F−T0(ρ)) : ρ ∈WFh(A∞)} =∅,

we have M1 A∞M2 = O(h∞), with constants that can be chosen independent of q. Hence, the same is
true for MT0Uq MT0 . |AN

| is bounded by a negative power of h. So, we can write

M N+2T0 =

∑
q∈AN

∞

MT0Uq MT0 =

∑
q∈AN

MT0Uq MT0 + O(h∞)= MT0

( ∑
q∈AN

Uq

)
MT0 + O(h∞).
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We can then replace M by

M=
∑
q∈A

M Aq = M(Id−A∞)+ O(h∞)L2→L2 . (4-13)

The decay bound
∥M(h)N (h)

∥ ≤ hγ ∥α∥N (h)
∞

(4-14)

will imply the required decay bound (4-1) for M with N (h) replaced by N (h)+ 2T0. We are hence
reduced to proving the decay bound (4-14).

4C. Local Jacobian.

A first definition. Following [Dyatlov et al. 2022], we introduce local unstable and stable Jacobians and
we then state several properties. For n ∈N∗ and q ∈An, let us define its local stable and unstable Jacobian:

J−q := inf
ρ∈T ∩V−q

J u
n (ρ), J+q := inf

ρ∈T ∩V+q
J s
−n(ρ). (4-15)

By the chain rule, we have, for ρ ∈ T ∩V−q ,

J u
n (ρ)=

n−1∏
i=0

J u
1 (F

i (ρ)).

A similar formula is true for ρ ∈ T ∩V+q :

J s
−n(ρ)=

n−1∏
i=0

(J s
1 (F

i−n(ρ)))−1
=

n−1∏
i=0

J s
−1(F

−i (ρ)).

Hence, we’ve got the basic estimates

T ∩V−q ̸=∅ =⇒ eλ0n
≤ J−q ≤ eλ1n, (4-16)

T ∩V+q ̸=∅ =⇒ eλ0n
≤ J+q ≤ eλ1n. (4-17)

If q = q0 · · · qn−1 and q− = q0 · · · qn−2, then V−q ⊂ V−q− and thus

J−q ≥ eλ0 J−q− . (4-18)

Similarly, if q+ = q1 · · · qn−1, then V+q ⊂ V+q+ and

J+q ≥ eλ0 J+q+ . (4-19)

As a consequence of Corollary 3.14, if ε0 is small enough, the local stable and unstable Jacobians give
the expansion rate of the flow at every point of T ∩V±q . If T ∩V±q ̸=∅,

for all ρ ∈ T ∩V−q , J u
n (ρ)∼ J−q , (4-20)

for all ρ ∈ T ∩V+q , J s
−n(ρ)∼ J+q . (4-21)

This definition is slightly unsatisfactory since J±q = +∞ as soon as V±q ∩ T = ∅. However, when
V±q ̸= ∅, this set can still stay relevant. For this purpose, we will give a definition of local stable
and unstable Jacobian for such words with help of the shadowing lemma [Katok and Hasselblatt 1995,
Section 18.1].
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Enlarged definition. Let n ∈ N and q = q0 · · · qn−1 ∈An . We focus on V−q , with the case of V+q handled
similarly by considering F−1 instead of F.

If V−q ∩ T ̸= ∅, we keep the definition given in (4-15). Assume now that V−q ̸= ∅ but V−q ∩ T = ∅.
Fix ρ ∈ V−q . By definition of Vqi , for i ∈ {0, . . . , n− 1}, we have d(ρi , F i (ρ))≤ 2ε0. Hence,

d(F(ρi ), ρi+1)≤ d(F(ρi ), F i+1(ρ))+ d(F i+1(ρ), ρi+1)≤ Cε0

for a constant C only depending on F. That is to say, (ρ0, . . . , ρn−1) is a Cε0 pseudo-orbit. Assume
that δ0 > 0 is a small fixed parameter. By virtue of the shadowing lemma, if ε0 is sufficiently small and
(ρ0, . . . , ρn−1) is δ0 shadowed by an orbit of F, then there exists ρ ′ ∈ T such that, for i ∈ {0, . . . , n− 1},
d(ρi , F(ρ ′)) ≤ δ0. Consequently, d(F i (ρ), F i (ρ ′)) ≤ δ0 + Cε0. If ρ2 is another point in V−q , for
i = 0, . . . , n − 1, d(F i (ρ2), F i (ρ ′)) ≤ 2ε0 +Cε0 + δ0. For convenience, set ε2 = 2ε0 + δ0 +Cε0 and
note that ε2 can be arbitrarily small depending on ε0. As a consequence, we have proven the following:

Lemma 4.4. If V−q ̸= ∅, then there exists ρ ′ ∈ T such that, for all i ∈ {0, . . . , n − 1} and ρ ∈ V−q ,
d(F i (ρ), F i (ρ ′))≤ ε2.

Fix any ρ ′ satisfying the conclusions of this lemma and we arbitrarily set

J−q = J u
n (ρ
′). (4-22)

If ρ ′1 is another point satisfying this conclusion, we have d(F i (ρ ′), F i (ρ ′1))≤ 2ε2 for i ∈ {0, . . . , n− 1}
and by virtue of Corollary 3.14,

J u
n (ρ
′)∼ J u

n (ρ
′

1).

Hence, up to global multiplicative constants, the definition of this unstable Jacobian is independent of the
choice of ρ ′. Notice that if V−q ∩ T ̸= ∅, any ρ ′ ∈ T ∩ V−q satisfies the conclusions of Lemma 4.4 and
J−q ∼ J u

n (ρ
′).

To define J+q , we can argue similarly and show that there exists ρ ′ satisfying d(F i (ρ ′), F i (ρ))≤ ε2 for
i ∈ {−n, . . . ,−1} and ρ ∈ V+q . We can assume that this is the same ε2 as before and we set J+q = J s

−n(ρ
′)

for any ρ ′.

Behavior of the local Jacobian. See Figure 9. The following three lemmas are crucial to understand the
behavior of the evolution of points in the sets V±q . The first one gives estimates to handle these quantities.

Lemma 4.5. Let n ∈ N and q, p in An . If ε0 is chosen small enough, then the following hold:

(1) V+q ̸=∅⇐⇒ V−q ̸=∅ and in that case J−q ∼ J+q .

(2) If two propagated neighborhoods intersect, the local Jacobians are comparable:

V±q ∩V
±

p ̸=∅ =⇒ J±q ∼ J±p . (4-23)

(3) If q can be written as the concatenation of q1 and q2 of lengths n1 and n2 such that n1+ n2 = n and
if V±q ̸=∅, then

J±q ∼ J±q1
J±q2
. (4-24)
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Ws(ρ
′)

V−q

ε2

ρ ′

ρ0

Wu(ρ
′)

δ0

Ws(Fn−1(ρ ′))

ε2
Fn−1(V−q )

ρn−1

Fn−1(ρ ′)

δ0

Wu(Fn−1(ρ ′))

Figure 9. Evolution of the set V−q (the red hatched set) at time 0 and n−1. The points ρi ,
F i (ρ ′) are represented at these times, so as the balls B(F i (ρ ′), ε2) and B(F i (ρ ′), δ0)

(their boundaries are the blue dotted lines). We’ve also represented the stable (resp.
unstable) manifold at F i (ρ ′) to show the directions in which F contracts (resp. expands).

Notation. The constants in∼ are independent of ρ and n. They depend on F but also on the partition (Vq)q .
In the following, we’ll be lead to use constants with the same kind of dependence. These constants will
be allowed to depend also on the partition of unity (χq)q and on M. Constants with such dependence will
be called global constants.

Proof. (1) The equivalence is obvious. From the fact that F is a volume-preserving canonical transforma-
tion, we have, for some C > 0,

for all ρ ∈ T , for all n ∈ N, C−1
≤ J u

n (ρ)J
s
n (ρ)≤ C,

and we write J u
n (ρ)∼ J s

n (ρ)
−1. From F−n

◦ Fn(ρ)= ρ, we also get J s
n (ρ)

−1
= J s
−n(F

n(ρ)). Eventually,
if ρ ′ ∈ T satisfies d(F i (ρ), F i (ρ ′) ≤ ε2 for i ∈ {0, . . . , n − 1} and ρ ∈ V−q , Fn(ρ ′) = ρ+ satisfies
d(F i (ρ), F i (ρ+))≤ ε2 for i ∈ {−n, . . . ,−1} and ρ ∈ V+q . Hence

J+q ∼ J s
−n(ρ

+)∼ J u
n (ρ
′)∼ J−q .

Thanks to this first point, it is enough to show the remaining point only for −.

(2) Pick ρq ∈ T (resp. ρ p) satisfying the conclusions of Lemma 4.4 for V−q (resp. V−p ). We have
d(F i (ρq), F i (ρ p))≤ 2ε2 and hence, by virtue of Corollary 3.14, J u

n (ρq)∼ J u
n (ρ p). This gives (2).

(3) Pick ρ ∈ T satisfying the conclusions of Lemma 4.4 for V−q . By the chain rule, we have J u
n (ρ) =

J u
n2
(Fn1(ρ))J u

n1
(ρ). Note that

V−q = V−q1
∩ F−n1(V−q2

).

Hence, ρ satisfies the conclusions of Lemma 4.4 for q1 with ε2 and the same is true for Fn1(ρ) and q2. It
follows that J−q1

∼ J u
n1
(ρ) and J−q2

∼ J u
n2
(Fn1(ρ)). This gives (3). □
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Remark. The first point of the previous lemma shows that we could consider only one of the two
quantities. Nevertheless, we prefer keeping track of it. The reason is that a priori J+ and J− support
two different kind of information: J+q controls the growth of Fn, whereas J−q controls the growth of F−n.
The fact that the two dynamics (in the past and in the future) have similar behaviors is a consequence of
the fact that F is volume-preserving.

The next lemmas relate the local Jacobian to the expansion rates of the flow in the V±q . It will be
important in our semiclassical study of operators microlocally supported in V±q .

Lemma 4.6 (control of expansion rate by unstable Jacobian). If ε0 is small enough, there exists a global
constant C > 0 satisfying the following inequalities:

For every n ∈ N∗ and q ∈An such that V−q ̸=∅ we have

sup
ρ∈V−q
∥dρFn

∥ ≤ C J−q , (4-25)

sup
ρ∈V+q
∥dρF−n

∥ ≤ C J+q . (4-26)

Proof. This is a consequence of (3-18). Indeed, if V−q ̸= ∅ and if ρ ′ ∈ T satisfies the conclusions of
Lemma 4.4, then for every ρ ∈ V−q , ∥dρFn

∥≤C J u
n (ρ) with C a global constant depending only on ε2. □

This third lemma emphasizes that V−q lies in a small neighborhood of a stable manifold and V+q lies in
a small neighborhood of an unstable manifold, with the size of this neighborhood controlled by the local
Jacobian. It is a direct consequence of Lemma 3.13.

Lemma 4.7 (localization of the V±q ). There exists a global constant C > 0 such that for all n ∈ N

and q ∈An:

(1) If V−q ̸=∅ and ρ ′ ∈ T satisfies the conclusion of Lemma 4.4, then, for all ρ ∈ V−q ,

d(ρ,Ws(ρ
′))≤

C
J−q
. (4-27)

(2) If V+q ̸=∅ and ρ ′∈T satisfies the conclusion of Lemma 4.4 in the future (namely, d(F i (ρ),F i (ρ ′))≤ε2

for all ρ ∈ V+q and i ∈ {−n, . . . ,−1}), then, for all ρ ∈ V+q ,

d(ρ,Wu(ρ
′))≤

C
J+q
. (4-28)

4D. Propagation up to local Ehrenfest time. In this section, we show that under some control of the
local Jacobian defined above, one can handle the operators Uq and prove the existence of symbols a±q (in
exotic classes Sδ) such that

Uq = Oph(a
+

q )T
|q|
+ O(h∞), (4-29)

Uq = T |q|Oph(a
−

q )+ O(h∞), (4-30)

with symbols a±q supported in V±q . We recall that Uq = M Aqn−1 · · ·M Aq0 , with M = T Oph(α). Let us
state the precise statement we will prove.
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Proposition 4.8. Fix 0< δ < δ1 <
1
2 and C0 > 0.

(1) For every n ∈ N and for all q ∈An satisfying

J+q ≤ C0h−δ, (4-31)

there exists a+q ∈ ∥α∥
n
∞

Scomp
δ1

such that

Uq = Oph(a
+

q )T
n
+ O(h∞)L2→L2, (4-32)

supp a+q ⊂ V+q . (4-33)

(2) For every n ∈ N and for all q ∈An satisfying

J−q ≤ C0h−δ, (4-34)

there exists a−q ∈ ∥α∥
n
∞

Scomp
δ1

such that

Uq = T n Oph(a
−

q )+ O(h∞)L2→L2, (4-35)

supp a−q ⊂ V−q . (4-36)

Remark. • The implied constants appearing in the O(h∞) are quasiglobal; they have the same dependence
as global constants but depend also on C0, δ, δ1. What is important is that they are independent of n
and q as soon as the assumption (4-31) is satisfied.

• (4-31) implies that V+q ̸= ∅. In particular, if q satisfies this assumption, there exists a sequence
(i0, . . . , in) such that, for all p ∈ {0, . . . , n− 1}, Vqp ⊂ D̃i p+1,i p ⊂Ui p .

• In fact, supp a+q ⊂ F(Vqn−1)⊂Uin . Hence, the operator Oph(a
+
q ) acting on

⊕J
i=1 L2(R) is the diagonal

matrix Diag(0, . . . ,Oph(a
+
q ), . . . , 0).

• The symbol a+q has an asymptotic expansion in power of h. The principal symbol is given by

(a+q )0 =
n∏

p=1

aqn−p ◦ F−p, (4-37)

where aq = χq ×α. Note that if the functions aqn−p ◦ F−p are not necessarily well-defined, the product
is well-defined thanks to the assumptions on the supports of χq , namely suppχq ⋐ Vq . Indeed, such a
symbol can be constructed inductively as the n-th term bn of the sequence of functions b1 = aq0 ◦ F−1

and bi+1 is obtained from ai by
bi+1 = (aqi × ai ) ◦ F−1.

If we assume that supp bi ⋐ V+q0···qi−1
, then supp(aqi × bi ) ⋐ F−1(V+q0···qi

). This property allows us to
define bi+1 and supp bi+1 ⋐ V+q0···qi

.

• The same holds for a−q with principal symbol

(a−q )0 =
n−1∏
p=0

aqp ◦ F p. (4-38)

• Our proof follows the sketch of proof of [Dyatlov et al. 2022, Section 5] and [Rivière 2010, Section 7].
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In the end of this section, we focus on proving this proposition. We only prove the first point. The
second point can be proved similarly by using the same techniques.

4D1. Iterative construction of the symbols. Let us start by a lemma combining the precise versions of
the expansion of the Moyal product (Lemma 3.3) and of Egorov theorem (Proposition 3.8). This lemma
is the key ingredient for the iterative formulas below.

Lemma 4.9. Let q ∈ A and let a ∈ Scomp
δ1

such that supp a ⋐ Uj for some j ∈ {1, . . . , J }. Then, there
exists a family of differential operators Lk,q of order 2k, with smooth coefficients compactly supported
in Vq , such that, for every N ∈ N, we have the expansion

M Aq Oph(a)= Oph

( N−1∑
k=0

hk(Lk,qa) ◦ F−1
)

T + O(∥a∥C2N+15hN )L2→L2 . (4-39)

Moreover, one has L0,q = χq ×α := aq .

Remark. • Again, since supp a ⊂Uj , Oph(a) is a diagonal matrix with only one nonzero block equal
to Oph(a).

• Recall that we’ve supposed that Vq ⊂ D̃mq jq . As a consequence, the symbols

a(k)1 := Lk,qa ◦ F−1

are equal to Lk,qa ◦ (Fmq jq )
−1 and are supported in Umq ; Oph(a

(k)
1 ) is still a diagonal matrix.

Proof. Let us first work at the order of operators L2(R)→ L2(R) and let us study

Mmq jq Oph(χq)Oph(a)= Tmq jq Oph(αjq )Oph(χq)Oph(a).

Using Lemma 3.3, we write

Oph(χq)Oph(a)= Oph

( N−1∑
k=0

ikhk

k!
A(D)k(χq ⊗ a)|ρ=ρ1=ρ2

)
+ O(hN

∥χq ⊗ a∥C2N+13),

the principal term of the expansion being χqa. Set aq,k(ρ)= A(D)k(χq⊗a)|ρ=ρ1=ρ2 and use Lemma 3.3
to write

Oph(αjq )Oph(χq)Oph(a)=
∑

k1+k2<N

ik1+k2hk1+k2

k1! k2!
Oph(A(D)

k2(αjq ⊗ aq,k1)|ρ=ρ1=ρ2)+ O(hN
∥a∥C2N+13).

The principal term in the expansion is αjqχqa. We note that

a 7→
∑

k1+k2=k

A(D)k2(αjq ⊗ aq,k1)|ρ=ρ1=ρ2

is a differential operator of order 2k. Using the precise version of Egorov theorem in Lemma 3.10, we
see that, for any b with supp(b)⊂ Vq ,

Tmq jq Oph(b)= Oph

(
b ◦ (Fmq jq )

−1
+

N−1∑
k=1

hk(Dkb) ◦ (Fmq jq )
−1

)
+ O(hN

∥b∥C2N+15),
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where Dk are differential of order 2k compactly supported in Vq . Applying this to the previous expansion,
we see that we can write

Tmq jq Oph(αjq )Oph(χq)Oph(a)= Oph

(
(αjqχqa) ◦ F−1

+

N−1∑
k=1

kk(Lk,qa) ◦ F−1
)
+ O(hN

∥a∥C2N+15).

We now come to the entire matrix operator. Note that the matrix M Oph(χq)Oph(a) is of the form0 · · · M1 jq Oph(χq) · · · 0
...

...
...

...
...

0 · · · MJ jq Oph(χq) · · · 0

 Oph(a).

Recall that WFh(Oph(χq))⊂ D̃mq jq and WF′h(Mmq jq )⊂Gr′(Fmq jq ). Hence, for m ̸=mq , Mmjq Oph(χq)=

O(h∞) and the previous matrix can be written
0 · · · O(h∞) · · · 0
...
...

...
...
...

0 · · · Mmq jq Oph(χq) · · · 0
...
...

...
...
...

0 · · · O(h∞) · · · 0

Oph(a)=


0 · · · 0 · · · 0
...
...

...
...
...

0 · · · Mmq jq Oph(χq)Oph(a) · · · 0
...
...

...
...
...

0 · · · 0 · · · 0

+O(h∞)∥Oph(a)∥L2 .

With constant in O(h∞) depending on χq ,M and ∥Oph(a)∥L2→L2 = O(∥a∥C8). Let’s write

a(k)1 = Lk,qa ◦ F−1

and observe that supp(a(k)1 )⊂ F(suppχq)⋐ Ãmq jq . Consider a cut-off function χ̃q such that χ̃q ≡ 1 in a
neighborhood of F(suppχq) and supp χ̃q ⊂ Ãmq jq . Using Lemma 3.3 and the support properties of χ̃q ,
one has

Oph(a
(k)
1 )= Oph(a

(k)
1 )Oph(χ̃q)+ O(hN−k

∥a(k)1 ∥C2(N−k)+13)= Oph(a
(k)
1 )Oph(χ̃q)+ O(hN−k

∥a∥C2N+13).

Then, one can write Oph(a
(k)
1 )T on the form

0 · · · 0
...

...
...

Oph(a
(k)
1 )Oph(χ̃q)Tmq 1 · · · Oph(a

(k)
1 )Oph(χ̃q)Tmq J

...
...

...

0 · · · 0

+ O(hN−k
∥a∥C2N+13)

and, for j ̸= jq , Oph(χ̃q)Tmq j = O(h∞). We can conclude that

Oph(a
(k)
1 )T =


0 · · · · · · · · · 0
... · · · · · · · · ·

...

0 · · · Oph(a
(k)
1 )Oph(χ̃q)Tmq jq · · · 0

... · · · · · · · · ·
...

0 · · · · · · · · · 0

+O(h∞)∥Oph(a
(k)
1 )∥L2→L2+O(hN−k

∥a∥C2N+13)
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=


0 · · · · · · · · · 0
... · · · · · · · · ·

...

0 · · · Oph(a
(k)
1 )Tmq jq · · · 0

... · · · · · · · · ·
...

0 · · · · · · · · · 0

+O(hN−k
∥a∥C2N+13).

Combining this with the version obtained with Mmq jq , we get (4-39). □

Let us now start the iterative construction of the symbols. Fix N ∈ N which can be taken arbitrarily
large. Recall that we want to write

Uq = Oph(a
+

q )T
|q|
+ O(h∞)L2→L2 . (4-40)

Note Ur =Uq0···qr−1 . We want to write

Ur = Oph

(N−1∑
k=0

hka(k)r

)
T r
+ R(N )r . (4-41)

We start by writing

U1 = Oph

(N−1∑
k=0

hka(k)1

)
T + R(N )1 , (4-42)

which is possible by virtue of (4-39). To pass from Ur to Ur+1, we have the relation

Ur+1 = M Aqr Ur =

N−1∑
k=0

hk M Aqr Oph(a
(k)
r )T r

+M Aqr R(N )r .

So, we will construct inductively our symbols by setting

a(k)r+1 =

k∑
p=0

(L p,qr a(k−p)
r ) ◦ (Fir+1,ir )

−1, (4-43)

R(N )r+1 = M Aqr R(N )r +

N−1∑
k=0

O(∥a(k)r ∥C2(N−k)+15). (4-44)

The O encompasses the remainder terms in (4-39). The constants in the O only depend on M and the
χq , q ∈A, but not on q.

To make this construction work, we will have to prove that the symbols a(k)r lie in a good symbol
class Scomp

δ1
.

Before reaching this step, let us just note that by induction one sees that:

• ∥R(N )r ∥ ≤ CN hN
(

1+
N−1∑
k=0

r−1∑
l=0

∥a(k)l ∥C2(N−k)+15

)
, (4-45)

with CN depending on N , M and the aq , but neither on r nor q.

• Since L p,qr has coefficient supported in Vqr , we see by induction that supp a(k)r+1 ⊂ V+q0···qr
as announced.

• a(0)r+1 =
∏r+1

p=1 aqr+1−p ◦ F−p.
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4D2. Control of the symbols. We aim at estimating the seminorms ∥a(k)r ∥Cm for k < N , 1≤ r ≤ n and
m ∈ N. We will show the following:

Proposition 4.10. For every r ∈ {1, . . . , n}, k ∈ {0, . . . , N − 1} and m ∈ N, there exists C(k,m), such
that, with 0k,m = (k+ 1)(m+ k+ 1),

∥a(k)r ∥Cm ≤ C(k,m)r0k,m (J+q0···qr−1
)2k+m

∥α∥r
∞
. (4-46)

Remark. • What is important in this result is the way in which the bound depends on r and q. Up to the
term r0k,m , which is supposed to behave like O(|log h|0k,m ), the significant part of the estimate is that we
can control the symbols by the local Jacobian.

• Since supp a(k)r ⊂ V+q0···qr−1
, we need to focus on points ρ ∈ V+q0···qr−1

.

• Our method is very close to the ones developed in [Rivière 2010; Dyatlov et al. 2022]. However, we’ve
changed a few things at the cost of being less precise on the exponent 0k,m . Our aim was to treat our
problem as if we wanted to control the product of r triangular matrices.

Let us pick ρ∈V+q0···qr−1
. With (4-43), one sees that if k,m∈N, then dma(k)r+1 depends on dm′a(k

′)
r (F−1(ρ))

for several m′, k ′. Before going deeper in the analysis of this dependence, let us note two obvious facts:

• This dependence is linear, with coefficients smoothly depending on ρ.

• If dma(k)r+1 depends effectively on dm′a(k
′)

r (F−1(ρ)), then k ′ ≤ k and 2k ′+m′ ≤ 2k+m.

Precise analysis of the dependence. That being said, let us pick m0, k0 ∈ N. Set N0 = 2k0 +m0 and
consider the (column) vector

Ar (ρ) := (dma(k)r (ρ))k≤k0,2k+m≤N0 ∈

⊕
k≤k0,2k+m≤N0

Sm T ∗ρ U. (4-47)

Here Sm T ∗ρ U is the space of m-linear symmetric forms on TρU. To define a norm on the fibers Sm T ∗ρ U,
we can use, for f ∈ Sm T ∗ρ U,

∥ f ∥m,ρ = sup
v1,...,vm∈TρU

f (v1, . . . , vm)

∥v1∥ρ · · · ∥vm∥ρ
, (4-48)

where ∥v∥ρ for v ∈ TρU is the norm induced by the Riemannian metric used to define J u
1 in (3-8). Note

that, for any fixed neighborhood of T , there exists a global constant C > 0 such that, for each a ∈C∞c (U )
supported in this neighborhood, one has

C−1
∥a∥Cm ≤ sup

m′≤m
sup
ρ∈U
∥dm′a∥m′,ρ ≤ C∥a∥Cm .

We will denote by γ1, γ2, etc. elements of I :=I(k0,m0)={(k,m)∈N2
: k≤ k0, 2k+m≤ N0}. We equip

I with the lexicographic order ≺ and write #I := 0k0,m0 (see Figure 10). We order the indices of Ar (ρ)

with ≺. Ar (ρ) depends linearly on Ar−1(F−1(ρ)) and this dependence can be made explicit by a matrix

P (r)(ρ)= (P (r)γ1γ2
(ρ))γ1,γ2∈I, where P (r)γ1γ2

(ρ)∈ L(Sm′T ∗F−1(ρ)
U, Sm T ∗ρ U ) if γ1= (k,m), γ2= (k ′,m′),
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k

k = k0
(k0,m0)

2k+m = N0

m

Figure 10. The starting point (k0,m0) is represented by a diamond. The set I corresponds
to the couple (k,m) ∈ N2 in the region under the dotted lines k = k0 and 2k+m = N0.
We’ve represented a family of arrows starting from a point γ1 ∈ I. The dotted arrows
points toward β such that γ2 ≺ γ1. The big red arrows points toward points γ2 such that
P (r)γ1γ2 = 0.

so that
Ar (ρ)= P (r)(ρ) Ar−1(F−1(ρ)). (4-49)

Notation. If γ1 = (k,m), γ2 = (m′, k ′), ρ, ρ ′ ∈ U and if A : Sm′T ∗ρ′U → Sm T ∗ρ U is a linear operator,
we will denote by

∥ · ∥γ1,ρ,γ2,ρ′

its subordinate norm for the norms defined by (4-48).

Analyzing (4-43), it turns out that if γ1 = (k,m), γ2 = (k ′,m′) ∈ I, then:

• If k ′ > k, then P (r)γ1γ2(ρ)= 0.

• If k = k ′, the contribution to dma(k)r (ρ) of a(k)r−1 comes from

dm((aqr−1a(k)r−1)◦F
−1)(ρ)

= aqr−1(F
−1(ρ))×dm(a(k)r−1◦F

−1)(ρ)+(derivatives of order strictly less than m for a(k)r−1)

= aqr−1(F
−1(ρ))×( td F−1(ρ))⊗mdma(k)r−1(F

−1(ρ))+(derivatives of order strictly less than m for a(k)r−1).

In particular, if γ1 = (k,m)≺ γ2 = (k,m′) doesn’t hold, we see that P (r)γ1γ2(ρ)= 0.
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k

k = k0
(k0,m0)

2k+m = N0

m

Figure 11. We’ve represented the reduction of an element γ⃗ ∈ Er (k0,m0), i.e., the arrows
between γi and γi+1 when γi ̸= γi+1. During the descent, the value of m can only increase
when k decreases strictly.

• If k ′ < k, we can have P (r)γ1γ2(ρ) ̸= 0 with m′ > m. But, the use of the lexicographic order ensures that
γ1 ≺ γ2 in that case.

Hence, P (r)(ρ) is a lower triangular matrix and the diagonal coefficients for the index γ1 = (k,m) are
given by

P (r)γ1γ1
(ρ) : f ∈ Sm T ∗F−1(ρ)

U 7→ aqr−1(F
−1(ρ))× (t d F−1(ρ))⊗m f ∈ Sm T ∗ρ U. (4-50)

Iterating (4-49), we have

Ar (ρ)= P (r)(ρ)P (r−1)(F−1(ρ)) · · · P (2)(F−(r−2)(ρ))A1(F1−r (ρ)).

For γ ∈ I, we define, see Figure 11,

Er (γ )= {γ⃗ = (γ1, . . . , γr ) ∈ Ir
: γr = γ, γi ≺ γi+1}.

The triangular property of P allows us to write

(Ar (ρ))γ =
∑

γ⃗∈Er (γ )

P (r)γrγr−1
(ρ) · · · P (2)γ2γ1

(F−(r−2)(ρ))(A1(F1−r (ρ)))γ1 .

Control of individual terms. Let us fix γ = (k,m) and pick γ⃗ ∈ Er (γ ). We wish to analyze the operator

Pγ⃗ (ρ) := P (r)γrγr−1
(ρ) · · · P (2)γ2γ1

(F−(r−2)(ρ)).
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First of all, #{i ∈ {1, . . . , r − 1} : γi+1 ̸= γi } ≤ 0k0,m0 . So let us write

{i ∈ {1, . . . , r − 1} : γi+1 ̸= γi } = {t1 < · · ·< td},

with d ≤ 0k0,m0 . We can set td+1 = r , t0 = 0 and we can rewrite

γ⃗ = (β1, . . . , β1︸ ︷︷ ︸
t1

, β2, . . . , β2︸ ︷︷ ︸
t2−t1

, . . . , βd , . . . , βd︸ ︷︷ ︸
td−td−1

, βd+1, . . . , βd+1︸ ︷︷ ︸
td+1−td

).

For p ∈ {1, . . . , d + 1}, we introduce the operator

Dp(ρ)= P (tp)

βpβp
(F−(r−tp)(ρ)) · · · P (tp−1+2)

βpβp
(F−(r−tp−1−2)(ρ)),

and for p ∈ {1, . . . , d}
Tp(ρ)= P tp+1

βp+1βp
(F−(r−tp−1)(ρ))

so that we can write
Pγ⃗ (ρ)= Dd+1(ρ)Td(ρ)Dd(ρ) · · · T1(ρ)D1(ρ).

For p ∈ {1, . . . , d + 1}, if βp = (k,m), we can see that

Dp(ρ)=

[ tp−1∏
j=tp−1+1

aqj ◦ F−(r− j)(ρ)

]
[( td F−1(F−(r−tp)(ρ)))⊗m

◦ · · · ◦ ( td F−1(F−(r−tp−1−2)(ρ)))⊗m
]

=

[ tp−1∏
j=tp−1+1

aqj ◦ F−(r− j)(ρ)

]
( td F−(tp−tp−1−1)(F−(r−tp)(ρ)))⊗m .

We introduce the word
qp = qtp−1 · · · qtp−1,

and set ρp = F−(r−tp)(ρ), ρ ′p = F−(tp−tp−1−1)(ρp). To estimate the subordinate norm of Dp(ρ), we use
Lemma 4.6. Since ρ ∈ Vq+, ρp ∈ V+qp

and we have

∥Dp(ρ)∥βp,ρp,βp,ρ′p
≤

∣∣∣∣ tp−1∏
j=tp−1+1

aqj ◦ F−(r− j)(ρ)

∣∣∣∣ sup
ρp∈V+qp

∥d F−(tp−tp−1−1)(ρp)∥
m

≤ (C J+qp
)m

∣∣∣∣ tp−1∏
j=tp−1+1

aqj ◦ F−(r− j)(ρ)

∣∣∣∣≤ Ck0,m0(J
+

qp
)N0

∣∣∣∣ tp−1∏
j=tp−1+1

aqj ◦ F−(r− j)(ρ)

∣∣∣∣.
To estimate the norms of Tp(ρ), we simply note that they depend smoothly on ρp, which lies in a

compact set, so we can bound them by a uniform constant C1. This is not a problem since they appear d
times in Pγ⃗ with d ≤ 0k0,m0 . Consequently, we can estimate ∥Pγ⃗ (ρ)∥γ,ρ,γ1,F−(r−1)(ρ),

∥Pγ⃗ (ρ)∥γ,ρ,γ1,F−(r−1)(ρ) ≤ Ck0,m0(J
+

q1
· · · J+qd+1

)N0 |aq,γ⃗ (ρ)| ≤ Ck0,m0(J
+

q )
N0 |aq,γ⃗ (ρ)|, (4-51)

where

aq,γ⃗ =

d+1∏
p=1

tp−1∏
j=tp−1+1

aqj ◦ F−(r− j). (4-52)
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Here, the last inequality holds by applying d times (4-24), with d ≤ 0k0,m0 , once we’ve noted that

q = q1 · · · qd+1.

Finally, if γ1= (k1,m1), to estimate ∥(A1(F1−r (ρ)))γ1∥m1,F1−r (ρ), we simply note that it depends smoothly
on F1−r (ρ), so that we can bound it by a uniform constant. Hence, we have

∥Pγ⃗ (ρ)A1(F1−r (ρ))∥m,ρ ≤ Ck0,m0(J
+

q )
N0 |aq,γ⃗ (ρ)|. (4-53)

Cardinality of Er(γ ). The bound we will provide is far from optimal but it will turn out to be enough for
our purpose. To count the number of elements in Er (γ ), we remark that it is similar to counting the number
of decreasing sequences of length r starting from γ . This number is smaller than the number of increasing
sequences of length r in {1, . . . , 0k0,m0} . Recalling that the number of sequences u1 ≤ u2 ≤ · · · ≤ ur

satisfying u1 = 1 and ur = b is equal to
(b+r−2

r−2

)
, one can estimate

#Er (γ )≤

0k0,m0∑
b=1

(
b+ r − 2

r − 2

)
≤ 0k0,m0(r − 1)0k0,m0 . (4-54)

Finally, we can compute explicitly 0k0,m0 and we find 0k0,m0 = (k0+ 1)(m0+ 1+ k0).

Conclusion. We finally combine (4-54) and (4-53) to prove Proposition 4.10 (recall |aq |= |α|χq ≤∥α∥∞):

sup
ρ∈Vq0···qr−1

∥dm0a(k0)
r ∥m0,ρ = sup

ρ∈Vq0···qr−1

∥(Ar (ρ))(k0,m0)∥m0,ρ

≤

∑
γ⃗∈Er (k0,m0)

∥Pγ⃗ (ρ)A1(F1−r (ρ))∥m0,ρ

≤ 0k0,m0r
0k0,m0 Ck0,m0(J

+

q )
N0 |aq,γ⃗ (ρ)|

≤ Ck0,m0r
0k0,m0 (J+q )

N0∥α∥r
∞
.

Finally, we get as expected

∥a(k0)
r ∥Cm0 ≤ Ck0,m0r

0k0,m0 (J+q )
N0∥α∥r

∞
.

4D3. End of proof of Proposition 4.8. Armed with these estimates, we are now able to conclude the proof
of Proposition 4.8 under the assumptions (4-31). Assume that this assumption is satisfied and construct
inductively the symbols a(k)r with the formula (4-43). Since J+q ≤ Ch−δ, it implies that n = O(log h).
Hence, we have, for r ≤ n,

∥a(k)r ∥Cm ≤ Ck,mh−δmh−2kδ
|log h|0k,m∥α∥r

∞
≤ Ck,mh−δ1mh−2kδ1∥α∥r

∞
.

The symbol h2δ1ka(k)r lies in ∥α∥r
∞

Scomp
δ1

(T ∗R). Using Borel’s theorem with the parameter h′ = h1−2δ1 ,
we can construct a symbol

a+q0···qr−1
∼

∞∑
k=0

(h′)kh2δ1ka(k)r =

∞∑
k=0

hka(k)r ∈ ∥α∥
r
∞

Scomp
δ1

,
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that is, for every N ∈ N,

a+q0···qr−1
−

N−1∑
k=0

hka(k)r = O(h(1−2δ1)N∥α∥r
∞
).

By construction of the a(k)r , for every N ∈ N, we have

U+q −Oph(a
+

q )T
|q|
= R(N )n + O(h(1−2δ1)∥α∥r

∞
).

Fix some K ≥ 0 such that min(1, ∥α∥n
∞
) = O(h−K ), so that ∥α∥r

∞
= O(k−K ). With (4-45) and our

estimates, we can control

∥R(N )n ∥ ≤ CN hN (1+ |log h|0k,m+1h−δ(2N+15)h−K )≤ CN h−15δ1+N (1−2δ1)−K .

Since we can choose N as large as we want, we have finally proved that

U+q −Oph(a
+

q )T
|q|
= O(h∞). □

4D4. Norm of sums over many words. We’ll make use of the tools and notation developed in this
subsection to prove the following proposition. To state it, we introduce the notation

Q(n, τ,C0) := {q ∈An
: J+q ≤ C0h−τ }. (4-55)

Proposition 4.11. There exists C = C(C0, τ ) such that, for every Q⊂Q(n, τ,C0), the following bound
holds: ∣∣∣∣∑

q∈Q

Uq

∣∣∣∣
L2→L2

≤ C∥α∥n|log h|. (4-56)

Proof. Throughout the proof, we’ll denote by C quasiglobal constants, i.e., constants depending on C0, τ

and the same other parameters as global constants. We will also be led to use a constant C1: it has the
same dependence.

Step 1: First note that, since J+q ≤ C0h−τ , n satisfies the bound n = O(log h).

Step 2: If q ∈Q(n, τ,C0), denote by l(q)= l the largest integer such that

J+q0···ql−1
≤ h−τ/2.

Since Jq0···ql > h−τ/2, J+q0···ql−1
> Ch−τ/2 and hence

J+ql ···qn−1
≤ C

h−τ

J+q0···ql−1

≤ C1h−τ/2.

We can then write q = sr with s ∈Q(l, τ/2, 1), r ∈Q(n− l, τ/2,C1). It follows that we can write∑
q∈Q

Uq =

n∑
l=1

∑
s∈Q(l,τ/2,1)

r∈Q(n−l,τ/2,C1)

Fl(s, r)UrUs,
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with Fl(s, r)= 1sr∈Q. It is then enough to show the bound

max
1≤l≤n

∣∣∣∣ ∑
s∈Q(l,τ/2,1)

r∈Q(n−l,τ/2,C1)

Fl(s, r)UrUs

∣∣∣∣≤ C∥α∥n
∞
. (4-57)

In the following, we fix some 1≤ l ≤ n and we’ll simply write
∑

s,r to alleviate the notation. Note that
the number of terms in the sum is bounded by

|Q(l, τ/2, 1)×Q(n− l, τ/2,C1)| ≤ |A|l × |A|n−l
≤ |A|n ≤ h−Q,

where Q = C log |A|.

Step 3: We fix some large N ∈ N and δ1 ∈ (τ/2, 1/2). Recall that we can write

Us =

(
Oph

( N−1∑
k=0

hka(k)s

)
+ OL2→L2(h(1−2δ1)N−15δ1∥α∥l

∞
)

)
T l,

Ur = T n−l
(

Oph

( N−1∑
k=0

hka(k)r

)
+ OL2→L2(h(1−2δ1)N−15δ1∥α∥n−l

∞
)

)
,

with bounds on a(k)s and a(k)r given by Proposition 4.8.
We then use the formula for the composition of operators in9comp

δ1
(T ∗R) (Lemma 3.3) and for simplicity,

we write Lk(a, b)(ρ)= (ik/k!)(A(D))k(a⊗ b)(ρ, ρ). For 0≤ k ≤ N − 1, we set

as,r,k =
∑

j+k−+k+=k

Lj (a(k−)r , a(k+)s ).

Note that if j + k−+ k+ ≥ N,

∥a(k−)r ⊗ a(k+)s ∥C2 j+13 ≤ C j sup
m++m−=2 j+13

∥a(k−)r ∥Cm−∥a(k+)s ∥Cm+

≤ C j,k−,k+h−(2k−+m−)δ1h−(2k−+m+)δ1∥α∥n
∞

≤ C j,k−,k+h−2δ1( j+k−+k+)−13δ1∥α∥n
∞

≤ C j,k−,k+h−2δ1 N−13δ1∥α∥n
∞

and henceforth,

O(h j+k−+k+∥a(k−)r ⊗ a(k+)s ∥C2 j+13)= O(h(1−2δ1)N−15δ1∥α∥n
∞
).

As a consequence, we can write

UrUs = T n−l
(

Oph

( N−1∑
k=0

hkas,r,k

))
T l
+ OL2→L2(h(1−2δ1)N−15δ1∥α∥n

∞
).

It follows that∑
s,r

UrUs = T n−l
(

Oph

( N−1∑
k=0

hka(k)
))

T l
+ OL2→L2(h(1−2δ1)N−15δ1−Q

∥α∥n
∞
),
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where
a(k) =

∑
s,r

F(s, r)as,r,k . (4-58)

Suppose that N has been chosen such that

(1− 2δ1)N > 15δ1+ Q.

The remainder term is thus controlled by the desired bound since it is of order O(∥α∥n
∞
).

Step 4: C0 norm of a(0). We have

a(0) =
∑
s,r

F(s, r)a(0)s a(0)r ,

where, by virtue of (4-37) and (4-38),

a(0)s =

l∏
p=1

asl−p ◦ F−p, a(0)r =

n−l−1∏
p=0

arp ◦ F p.

As a consequence, we can estimate

|a(0)| ≤
∑
s,r
|a(0)s ||a

(0)
r | ≤

l∏
p=1

(∑
q∈A

|aq |

)
◦ F−p

×

n−l−1∏
p=0

(∑
q∈A

|aq |

)
◦ F p
≤ ∥α∥n

∞
.

Step 5: Cm norms of a(k). We will show there exist constants Ck,m (depending only on C0, δ1, τ and
m, k) such that, for all 0≤ k ≤ N − 1 and m ∈ N,

∥a(k)∥Cm ≤ Ck,mh−(2k+m)δ1∥α∥n
∞
. (4-59)

Let’s compute
∥a(k)∥Cm ≤

∑
s,r
∥as,r,k∥Cm ≤

∑
s,r

∑
j+k++k−=k

∥Lj (a(k−)r , a(k+)s )∥Cm

≤

∑
s,r

∑
j+k++k−=k

∥a(k−)r ⊗ a(k+)s ∥C2 j+m

≤

∑
s,r

∑
j+k++k−=k

m++m−≤m+2 j

∥a(k−)r ∥Cm−∥a(k+)s ∥Cm+ ,

and hence
∥a(k)∥Cm ≤ Ck,m sup

j+k++k−=k
m++m−≤m+2 j

∑
s,r
∥a(k−)r ∥Cm−∥a(k+)s ∥Cm+ . (4-60)

Let us fix j, k+, k−,m+,m− satisfying j + k++ k− = k, m−+m+ ≤ m+ 2 j and let us estimate∑
s
∥a(k+)s ∥Cm+ ×

∑
r
∥a(k−)r ∥Cm− .

We estimate the sum over s. The same kind of estimates will hold for r with the same methods. We reuse
the tools developed in the last subsections. Namely, we set N+=2k++m+, γ+= (k+,m+), I=I(γ+) and

(As(ρ))= (dma(k)s )k≤k+,2k+m≤N+ .
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We have shown that there exists a global constant C > 0 such that

∥a(k+)s ∥Cm+ ≤ sup
ρ

∥As(ρ)∥ ≤ C
∑

γ⃗∈El (γ+)

∥Pγ⃗ (ρ)∥ ≤
∑

γ⃗∈El (γ+)

CN+,k+(J
+

s )
N+ |as,γ⃗ (ρ)|

≤ CN+,k+h−τN+/2
∑

γ⃗∈El (γ+)

|as,γ⃗ (ρ)|,

where CN+,k+ depends on C0, τ, N+, k+ and global parameters. We hence have to estimate∑
s

∑
γ⃗∈El (γ+)

|as,γ⃗ (ρ)|.

Fix γ⃗ ∈ El(α+) and write it

γ⃗ = (β1, . . . , β1︸ ︷︷ ︸
t1

, β2, . . . , β2︸ ︷︷ ︸
t2−t1

, . . . , βd , . . . , βd︸ ︷︷ ︸
td−td−1

, βd+1, . . . , βd+1︸ ︷︷ ︸
td+1−td

), where d ≤ 0k+,m+,

and recall that

as,γ⃗ =

d+1∏
p=1

tp−1∏
j=tp−1+1

asj ◦ F−(l− j).

When one sums over s ∈Al , the values of s at the indices ti , 1≤ i ≤ d , do not play a role and we write∑
s
|as,γ⃗ | =

∑
st1∈A

· · ·

∑
std∈A

d+1∏
p=1

tp−1∏
j=tp−1+1

(∑
s∈A

|as |

)
◦ F−(l− j)

≤ |A|d sup
ρ

(∑
s∈A

|as |

)l

≤ K0k+,m+∥α∥l
∞
≤ Ck+,m+∥α∥

l
∞
.

As a consequence,∑
s

∑
γ⃗∈El (γ+)

|as,γ⃗ | ≤ #El(γ+)Ck+,m+∥α∥
l
∞
≤ Ck+,m+(l − 1)0k+,m+∥α∥l

∞
,

which gives ∑
s
∥a(k+)s ∥Cm+ ≤ Ck+,m+h−τN+/2(l − 1)0k+,m+∥α∥l

∞
≤ Ck+,m+h−δ1 N+∥α∥l

∞
,

where the last inequality (with a different value of Ck+,m+) follows from the fact that l = O(log h) and
δ1 > τ/2. The same kind of estimates holds for the sum over r:∑

r
∥a(k−)r ∥Cm− ≤ Ck−,m−h−δ1 N−∥α∥n−l

∞
.

Eventually, using (4-60), we get (4-59) since

N++ N− = 2k++m++ 2k−+m− ≤ 2(k++ k−+ j)+m = 2k+m.

Step 6: Conclusion. We can conclude the proof of the Proposition 4.11. The bound (4-59) shows that, for
0≤ k ≤ N −1, a(k) ∈ h−2kδ1∥α∥n

∞
Scomp
δ1

and thus
∑N−1

k=0 hka(k) ∈ Scomp
δ1
∥α∥n

∞
. From the L2-boundedness
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of pseudodifferential operators with symbol in Sδ1 ,∥∥∥∥Oph

( N−1∑
k=0

hka(k)
)∥∥∥∥≤ N−1∑

k=0

∑
m≤M

hk+m/2
∥a(k)∥Cm ≤

N−1∑
k=0

∑
m≤M

Ck,mh(k+2m)(1/2−δ1)∥α∥n
∞
≤ C∥α∥n

∞
,

where C depends only on C0, τ, δ1. Since ∥T ∥ ≤ 1, we get∥∥∥∥∑
s,r

F(s, r)UrUs

∥∥∥∥≤ C∥α∥n
∞
,

which concludes the proof of Proposition 4.11. □

4E. Manipulations of the Uq .

4E1. First consequences. We now make use of Proposition 4.8 to deduce several important facts. We
go on following [Dyatlov et al. 2022]. In the whole subsection, we fix 0≤ δ < δ1 <

1
2 and C0 > 0. We

define A→ =
⋃

n∈N An .

Remark. The constants in O(h∞) depend on p and q only through C0, δ, δ1, not on the precise values
of p and q. It will always be the case in the following and we won’t mention it anymore. As already
done, all the quasiglobal constants (i.e., depending on global parameters and C0, δ, τ, δ1) will be noted
by the letter C .

Lemma 4.12. Let q, p ∈A→ satisfying V+q ∩V−p =∅ and max(J+q , J−p )≤ C0h−δ. Then

U pUq = O(h∞)L2→L2 .

Proof. By virtue of Proposition 4.8, we can write

U p = T | p|Oph(a
−

p )+ O(h∞),

Uq = Oph(a
+

q )T
|q|
+ O(h∞).

With a+q ∈ ∥α∥
|q|
∞ Scomp

δ1
, a−p ∈ ∥α∥

| p|
∞ Scomp

δ1
and supp a−p ⊂ V−p , supp a+q ⊂ V+q . Since V+q ∩ V−p = ∅,

Oph(a
−
p )Oph(a

+
q )= O(h∞) as a consequence of the composition of two symbols of Sδ1 . The constants

in O(h∞) depend on seminorms of these symbols, themselves depending on C0, τ, δ1. Since T n
= O(1),

the result is proved. □

Lemma 4.12 will have interesting consequences, starting with the following lemma which enables us
to get rid (that is to say to control by O(h∞)) of words q where V±q =∅, under some assumptions. In
particular, it can be applied without trouble to words of “small” lengths N ≤ |log h|/(2λ1), which could
also be deduced from applying Egorov’s theorem up to the global Ehrenfest time |log h|/(2λ1).

Lemma 4.13. Let q ∈A→ such that n = |q| ≤ C0|log h| and assume that V−q =∅. We suppose that one
of the following assumptions is satisfied:

(i) If m =max{k ∈ {1, . . . , n} : V−q0···qk−1
̸=∅}, then J−q0···qm−1

≤ C0h−2δ.

(ii) If m =min{k ∈ {0, . . . , n− 1} : V−qm ···qn−1
̸=∅}, then J−qm ···qn−1

≤ C0h−2δ.

Then, Uq = O(h∞).
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Proof. We prove this lemma under assumption (i). This is similar under (ii). We let m=max{k∈{1, . . . , n} :
V−q0···qm−1

̸=∅} and assume J−q0···qm−1
≤C0h−2δ. Due to (4-12), it is enough to show that Uq0···qm = O(h∞).

Let us define l =max{k ∈ {1, . . . ,m} : J−q0···ql−1
≤ h−δ} and notice that l < m (if h is small enough). By

maximality of l, it is clear that J−q0···ql
≥ h−δ. According to the third point of Lemma 4.5,

J−ql+1···qm−1
∼

J−q0···qm−1

J−q0···ql

≤ Ch−δ.

Set p= ql · · · qm . We distinguish now between two cases:

• V−p ̸=∅: We set r = q0 · · · ql−1. It follows that

max(J−p , J−r )≤ Ch−δ.

Moreover,
V−p ∩V

+

r = F l(V−q0···qm
)=∅.

By Lemma 4.12, U pUr =Uq0···qm = O(h∞).

• V−p = ∅: This time, we have max(J−ql ···qm−1
, J−qm

) ≤ Ch−δ and V−qm
∩ V+ql ···qm−1

= ∅. According to
Lemma 4.12, Uql ···qm =Uqm Uql ···qm−1 = O(h∞). It follows that Uq0···qm = O(h∞). □

4E2. Orthogonality of the Uq . We now focus on terms UqU∗p and U∗q U p when V+q and V+p are disjoint,
under growth conditions of the Jacobian. The following result shows that the operators Uq and U p are (up
to O(h∞)) orthogonal. These estimates will turn out to be important to apply Cotlar–Stein-type estimates.

Proposition 4.14. Assume that q, p ∈ A→ are two words of same length |q| = | p| = n satisfying
V+q ∩V+p =∅ and max(J+q , J+p )≤ C0h−2δ. Then,

UqU∗p = O(h∞),

U∗q U p = O(h∞).

Before proving it, we need the following lemma, whose proof relies on the iterative construction of the
symbols a±q .

Lemma 4.15. Assume q, p ∈A→ are two words of same length |q| = | p| = n satisfying max(J+q , J+p )≤
C0h−δ. Then,

UqU∗p = Oph(a
+

q )Oph(a
+

p )
∗
+ O(h∞),

U∗q U p = Oph(a
−

q )
∗Oph(a

−

p )+ O(h∞).

Proof of Lemma 4.15. We prove the first equality. The second one could be treated similarly. Recall
the construction procedure of Section 4D. We adopt the same notation. We will show by induction on
r ∈ {0, . . . , n− 1} that

Vr :=Uq0···qr−1U∗p0···pr−1
= Oph(a

+

q0···qr−1
)Oph(a

+

p0···pr−1
)∗+ O(h∞).

The case r = 1 follows from

M Aq0 A∗p0
M∗ = Oph(a

+

q0
)T T ∗Oph(a

+

p0
)∗+ O(h∞)= Oph(a

+

q0
)Oph(a

+

p0
)∗+ O(h∞),
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where we use the fact that T T ∗= I +O(h∞) microlocally in V+p0
, Assume that the assumption is satisfied

for r , namely
Vr = Oph(a

+

q0···qr−1
)Oph(a

+

p0···pr−1
)+ O(h∞),

and let’s prove it for r + 1:

Vr+1 = M Aqr Vr A∗pr
M∗

= M Aqr Oph(a
+

q0···qr−1
)Oph(a

+

p0···pr−1
)∗A∗pr

M∗r + O(h∞)

= Oph(a
+

q0···qr
)T T ∗Oph(a

+

p0···pr
)∗+ O(h∞)

= Oph(a
+

q0···qr
)Oph(a

+

p0···pr
)∗+ O(h∞).

The last equality follows from T T ∗ = I + O(h∞) microlocally in V+pr
and the one before is due to the

recursive construction of the symbols a+q0···qr
in the Section 4D. □

Proof of Proposition 4.14. Let us begin with the first equality. Consider the largest integer l such that

max(J+q0···ql−1
, J+p0···pl−1

)≤ h−δ.

We set q← = q0 · · · ql−1 and q→ = ql · · · qn−1, and define similar notation for p. We obviously have

UqU∗p =Uq→Uq←U∗p←U∗p→ .

We then consider two cases:

• V+q← ∩V
+
p← =∅: we may write

Uq←U∗p← = T l Oph(a
−

q←)Oph(a
−

q←)
∗T l
+ O(h∞).

Since, V−q← ∩V
−
p← =∅, we can use the composition formula in Scomp

δ1
to conclude Oph(a

−
q←)Oph(a

−
q←)
∗
=

O(h∞), which gives the desired result, recalling that Uq = O(1).

• V+q← ∩V
+
p← ̸=∅: In this case, we use the previous lemma and we can write

Uq←U∗p← = Oph(a
+

q←)Oph(a
+

p←)
∗
+ O(h∞).

By virtue of the second point of Lemma 4.5, J+q← ∼ J+p← . Moreover, by maximality of l, either J+q←ql
> h−δ

or J+p← pl
> h−δ. But

J+q←ql
∼ J+q← .

Hence, J+q← ∼ h−δ. Using now the third point of Lemma 4.5, we conclude that

J+q→ ∼ J+p→ ∼ h−δ.

This estimate allows us to write

UqU∗p = T n−l Oph(a
−

q→)Oph(a
+

q←)Oph(a
+

p←)
∗Oph(a

−

p→)
∗(T ∗)n−l

+ O(h∞),

with all the symbols in h−M Scomp
δ1

for some M > 0. To conclude, we use the composition formula in this
symbol class, noting that

V+q← ∩V
−

q→ ∩V
+

p← ∩V
−

p→ = F l(V−q ∩V
−

p )=∅.
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To deal with the second equality, we consider the smallest integer l such that

max(J+ql ···qn−1
, J+pl ···pn−1

)≤ h−δ.

As before, we write q← = q0 · · · ql−1 and q→ = ql · · · qn−1, and define similar notation for p. We
obviously have

U∗q U p =U∗q←U∗q→U p→U p← .

We distinguish the cases V+q→ ∩V
+
p→ =∅ and V+q→ ∩V

+
p→ ̸=∅ and argue similarly. □

4F. Reduction to subwords with precise growth of their Jacobian. Recall that we are interested in a
decay bound for ∥MN0+N1∥, where M = M(Id−A∞) =

∑
q∈A M Aq . For this purpose, we take the

decomposition MN1 =
∑

q∈AN1 Uq .
If q ∈AN1 , either V+q =∅, and in this case J+q =+∞, or V+q ̸=∅, which implies that J+q ≥ eλ1 N1 ≥

h−1
≫ h−τ. In both cases, the following integer is well-defined:

n(q)=max{k ∈ {1, N1} : J+qN1−k ···qN1−1
≤ h−τ }. (4-61)

We then set qτ = qN1−n(q)−1 · · · qN1−1. The case Vqτ =∅ is irrelevant. Indeed, if q ∈AN1 and if Vqτ =∅,
then Uq = O(h∞), as an obvious consequence of Lemma 4.13. Then, we set

Q = {q ∈AN1 : Vqτ ̸=∅} (4-62)

so that, due to the fact that |AN1 | = O(h−M), for some M > 0, we have

MN1 =

∑
q∈Q

Uq + O(h∞).

We partition Q in function of the length of qτ and the value of qN1−1. Namely, we set

Q0(n, a)= {q ∈ Q : |qτ | = n, qN1−1 = a}.

We finally set Q(n, a)= {qτ : q ∈ Q0(n, a)}, which is simply the set of words q ∈An such that qn−1 = a
and J+q1···qn−1

≤ h−τ < J+q . Note that every word q ∈ Q0(n, a) can be written in the form q = r p, with
p ∈ Q(n, a) and r ∈AN1−n. We deduce that, modulo O(h∞),

MN1 =

N1∑
n=1

∑
a∈A

∑
q∈Q0(n,a)

Uq =

N1∑
n=1

∑
a∈A

∑
p∈Q(n,a)
r∈AN1−n

U pUr =

N1∑
n=1

∑
a∈A

( ∑
q∈Q(n,a)

Uq

)
MN1−n.

As a consequence, we get

∥MN0+N1∥ ≤ C N1|A| sup
1≤n≤N1

a∈A

∥MN0UQ(n,a)∥(∥α∥∞)
N1−n, (4-63)

where
UQ(n,a) =

∑
q∈Q(n,a)

Uq . (4-64)

Since N1 = O(log h), the proof of (4-14) is reduced to proving:
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V+p ρ0

V+q

Wu(ρ0)
hb

Figure 12. Two words q, p ∈ Q(n, a) are close to each other if V+q and V+p lie in the
hb-neighborhood of the same unstable leaves, as stated in Definition 4.17.

Proposition 4.16. There exists γ > 0 such that, for h small enough, we have

sup
1≤n≤N1

a∈A

∥MN0UQ(n,a)∥

∥α∥
n+N0
∞

≤ hγ . (4-65)

4G. Partition into clouds. We fix 1 ≤ n ≤ N1 and a ∈ A. We aim at gathering pieces of MN0UQ(n,a)

into clouds and we want these clouds to interact (with a meaning we will define further) with only a finite
and uniform number of other clouds, so that the global norm of ∥MN0UQ(n,a)∥ can be deduced from a
uniform bound for each cloud.

Recall that δ0 and τ (see (4-2), (4-3) and (4-5)) have be chosen such that

b+ δ0 < 1, b< τ.

We start by defining a notion of closeness between two words q, p ∈ Q(n, a). We choose ε2 as in
Lemma 4.4.

Definition 4.17. Let q, p ∈ Q(n, a). We say that these two words are close to each other if there exists
ρ0 ∈ T ∩ F(Va(ε2)) such that,

for all ρ ∈ V+q ∪V
+

p , d(ρ,Wu(ρ0))≤ hb.

Otherwise, we say that q and p are far from each other. See Figure 12.

Remark. By the definition of V+q , if q ∈Q(n, a) and if ρ ∈ V+q , then ρ does not lie in Va , but F−1(ρ)

does. Hence, we work with F(Va) instead of Va . Moreover, the set F(Va(ε2)) is chosen to fit well in
the computations below and in particular in the proof of Lemma 4.19. We could replace it by V+a (Cε2),
where C is any Lipschitz constant for F.

The important fact on words p, q far from each other is that the associated operators MN0U p, MN0Uq

are almost orthogonal:

Proposition 4.18. Assume that q, p ∈ Q(n, a) are far from each other. Then,

(MN0Uq)
∗(MN0U p)= O(h∞), (4-66)

(MN0Uq)(M
N0Uq)

∗
= O(h∞). (4-67)
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We will need the following lemma.

Lemma 4.19. If q, p ∈ Q(n, a) are far from each other, there exist words p1, q1, p2, q2 such that

• | p1| = |q1|, | p2| = |q2|.

• q = q1q2, p= p1 p2.

• V+q2
∩V+p2

=∅.

• max(J+q2
, J+p2

)≤ Ch−b ( for some global constant C > 0).

In particular, V+q ∩V+p =∅.

Let’s momentarily admit it and prove the proposition.

Proof of Proposition 4.18. Fix q, p ∈ Q(n, a) far from each other. Since V+q ∩ V+p = ∅, we have
UqU∗p = O(h∞) by virtue of Proposition 4.14. Hence, using the polynomial bounds ∥MN0∥ = O(h−M)

(for some M > 0), we have
(MN0Uq)(M

N0U p)
∗
= O(h∞).

To prove the first point, we write

(MN0Uq)
∗(MN0U p)=

∑
s,t∈AN0

U ⋆
q1

U∗q2
U∗s UtU p2U p1 .

Hence, it is enough to show that U∗q2
U∗s UtU p2 = O(h∞) uniformly in s, t . To do so, we note that

V+q2s ∩V
+

p2 t ⊂ F N0(V+q2
∩V+p2

)=∅,

J+q2s ≤ C J+s J+q2
≤ Ceλ1 N0h−b ≤ Ch−(δ0+b),

J+p2 t ≤ Ch−(δ0+b)

and apply Proposition 4.14, with δ = (δ0+ b)/2< 1
2 (here we use condition (4-3)). □

We now prove the lemma.

Proof of Lemma 4.19. Consider q, p ∈ Q(n, a) far from each other. Consider the smallest integer m
such that V+qm ···qn−1

∩ V+pm ···pn−1
̸= ∅. We will show that m > 0 and set p2 = pm−1 · · · pn−1, q2 =

qm−1 · · · qn−1. Pick ρ ∈ V+qm ···qn−1
∩ V+pm ···pn−1

. By choice of ε2 after Lemma 4.4, there exists ρ0 ∈ T
such that d(F−i (ρ), F−i (ρ0))≤ ε2 for i ∈ {1, . . . , n−m}. In particular, d(F−1(ρ), F−1(ρ0))≤ ε2 and
F−1(ρ) ∈ Va , so that ρ0 ∈ F(Va(ε2)). Since, q, p are far from each other, there exists ρ1 ∈ V+q ∪V+p such
that d(ρ1,Wu(ρ0)) > hb (otherwise, it would contradict Definition 4.17).

Suppose for instance that ρ1 ∈ V+q ⊂ V+qm ···qn−1
. Hence, d(F−i (ρ0), F−i (ρ1)) ≤ 2ε0 + ε2 for i ∈

{1, . . . , n−m}. From (3-17), d(ρ1,Wu(ρ0))≤ C(J n−m
s (ρ0))

−1 and hence, J n−m
s (ρ0)≤ Ch−b.

But, J n−m
s (ρ0)∼ J+pm ···pn−1

∼ J+qm ···qn−1
, which gives

max(J+pm ···pn−1
, J+qm ···qn−1

)≤ Ch−b.

Since min(J+q , J+p ) > h−τ ≫ h−b (here we use (4-5)), we cannot have m = 0 (if h small enough). Thus,
we can set p2 = pm−1 · · · pn−1, q2 = qm−1 · · · qn−1, which satisfy the required properties by minimality
of m. □
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We now decompose UQ(n,a) into a sum of operators, each of them corresponding to a cloud of words.
In the following, we’ll use the term cloud to mean a subset Q⊂ Q(n, a) and we’ll adopt the notation

V+Q =
⋃
q∈Q

V+q

and the definition:

Definition 4.20. We say that two clouds Q1,Q2 do not interact if, for all pairs (q1, q2) ∈ Q1 ×Q2,
q1 and q2 are far from each other.

The existence of such a decomposition follows from the key proposition (see Figure 13):

Proposition 4.21. Suppose ε0 is small enough. There exists a partition of Q(n, a) into clouds Q1, . . . ,Qr

and a global constant C > 0 such that, for i = 1, . . . , r :

(i) There exists ρi ∈ T such that, for all ρ ∈ V+Qi
, d(ρ,Wu(ρi ))≤ Chb.

(ii) If Qi interacts with exactly ci clouds, then ci ≤ C.

Remark. Actually, r and the clouds Qi depend on n and a. We do not write this dependence explicitly
here to make the notation lighter. The second point is relevant since a priori, the only obvious bound on
r = r(n, a) is |r | ≤ |A|n , where n = O(log h).

Proof. Keeping in mind that, for all q ∈ Q(n, a), we have V+q ⊂ V+a , we fix ρa ∈ V+a . If ε0 is small enough,
V+a does not intersect the boundaries of Ws(ρa) and Wu(ρa).

For q ∈ Q(n, a), there exists ρq ∈ T such that d(F−i (ρ), F−i (ρq)) ≤ ε2 for all ρ ∈ V+q and for
i = 1, . . . , n, according to Lemma 4.4 and since J+q ∼ hτ,

d(ρ,Wu(ρq))≤ Ch−τ ,

d(ρa, ρq)≤C(ε2+ε0) and hence, if ε0 is small enough, zq := H u
ρa
(ρq) (here, H u

ρa
: B(ρa, ε

′

0)→Ws(ρa))
is the unstable holonomy map defined before Lemma 3.20) is well-defined, and depends Lipschitz-
continuously on ρq (with global Lipschitz constant).

Next, consider a maximal subset {z1, . . . , zr }⊂ {zq, q ∈ Q(n, a)} which is hb separated. By maximality,
for every q ∈ Q(n, a), there exists i ∈ {1, . . . , r} such that |zi − zq | ≤ hb and we use these zi to partition
Q(n, a) into clouds Qi , where for i ∈ {1, . . . , r}, |zi − zq | ≤ hb for all q ∈Qi . We now show that this
partition satisfies the required properties.

Let i ∈ {1, . . . , r}, q ∈Qi and ρ ∈ V+q . By local uniqueness of the unstable leaves, we may assume
that ε0 is small enough so that Wu(ρq)∩V+a =Wu(zq)∩V+a . Hence,

d(ρ,Wu(zq))≤ Ch−τ .

Since the unstable leaves depend Lipschitz-continuously on ρ ∈ T , we have

d(ρ,Wu(zi ))≤ C |zi − zq | +Cd(ρ,Wu(zq))≤ Chb
+Chτ ≤ Chb.

This gives (i).
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z1

z2

z3

ρa

Ws(ρa)

Vq1

Vq3 Vq4

Vq2

Vq5

Vq6

Figure 13. We gather the six small sets Vq into three clouds corresponding to z1, z2

and z3. Here, Q1 = {q1}, Q2 = {q2, q3, q4} and Q3 = {q5, q6}. The clouds Q1 and Q2

interact. The dotted lines draw tubes of width Chb around the unstable leaves Wu(zi ).
The sets Vq have width of order hτ.

To show (ii), suppose that Qi and Qj interact. Then, there exist (q, p) ∈ Qi ×Qj and ρ0 ∈ T such
that, for all ρ ∈ V+q ∪V+p , d(ρ,Wu(ρ0)) ≤ hb. It follows that d(zq,Wu(ρ0)) ≤ Chτ + hb

≤ Chb and if
we denote by z0 = H u

ρa
(ρ0) the unique point in Wu(ρ0)∩Ws(ρa) then |z0− zq | ≤ Chb. The same is true

for p and we have |zq− z p| ≤Chb and eventually, |zi − z j | ≤Chb. Since z1, . . . , zr are hb-separated, we
see after rescaling that the number of j such that Qi and Qj interact is smaller than the maximal number
of points in B(0,C) which are 1-separated (one can for instance bound it by (2C + 1)2, but what matters
is that it is a global constant). □

This partition into clouds allows us to decompose MN0UQ(n,a) into a sum of operators

Bi =MN0UQi =

∑
q∈Qi

MN0Uq, MN0UQ(n,a) =

r∑
i=1

Bi . (4-68)

The use of Cotlar–Stein theorem [Zworski 2012, Theorem C.5] reduces the control of the sum by the
control of individual clouds:

Lemma 4.22. With the above notation, there exists a global constant C > 0 such that

∥MN0UQ(n,a)∥ ≤ C sup
1≤i≤r

∥Bi∥+ O(h∞). (4-69)

Proof. Cotlar–Stein theorem reduces to control

max
i

∑
j

∥B∗i Bj∥
1/2, max

i

∑
j

∥Bj B∗i ∥
1/2.

Fix i ∈ {1, . . . , r}.
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If Qi and Qj do not interact, then ∥B∗i Bj∥
1/2 (resp. ∥Bj B∗i ∥

1/2) is a sum of terms of the form
(MN0Uq)

∗(MN0U p) (resp. (MN0Uq)(M
N0U p)

∗), where p and q are far from each other. By virtue
of Proposition 4.14, these terms are uniformly O(h∞) and since the number of terms in the sum grows at
most polynomially with h, we can gather all these terms in a single uniform O(h∞). As a consequence,
we have ∑

j

∥B∗i Bj∥
1/2
≤

∑
Qi and Qj interact

∥B∗i Bj∥
1/2
+ O(h∞)

≤

∑
Qi and Qj interact

max
k
∥Bk∥+ O(h∞)≤ C max

k
∥Bk∥+ O(h∞),

and the same holds for the second sum. This gives the desired inequalities. □

The proof of (4-14) and, as a consequence, of Proposition 4.2 is then reduced to the proof of:

Proposition 4.23. There exists γ > 0 such that the following holds for h small enough. Assume that
Q⊂Q(n, a) satisfies, for some global constant C > 0,

there exists ρ0 ∈ T such that for all ρ ∈ V+Q, d(ρ,Wu(ρ0))≤ Chb,

where b= 1/(1+β) is defined in (4-2). Then,

∥MN0UQ∥

∥α∥
N0+n
∞

≤ hγ .

5. Reduction to a fractal uncertainty principle via microlocalization properties

In this section, we reduce the proof of Proposition 4.23 to a fractal uncertainty principle. To do so, we aim
at showing microlocalization properties of the operators involved. The dissymmetry between N0 and N1

in the decomposition N = N0+ N1 will appear clearly in this section. Since N0 is below the Ehrenfest
time, we can actually use semiclassical tools. By contrast, things are more complicated for operators Uq ,
with q ∈Q(n, a), and we’ll use methods of propagation of Lagrangian leaves. These methods are inspired
by [Anantharaman and Nonnenmacher 2007a; 2007b; Nonnenmacher and Zworski 2009] and are also
used in [Dyatlov et al. 2022].

5A. Microlocalization of MN0 . We first state a microlocalization result for MN0. This is the easiest one
to obtain since N0 is below the Ehrenfest time. We recall the definition of T−, the set of the future trapped
points

T− =
⋂
n∈N

F−n(U )

and focus on T loc
−
:= T− ∩ T (4ε0). The set T− is laminated by the weak global stable leaves. Hence, if

ε0 is small enough, ensuring that the boundaries of the local stable leaves Ws(ρ), ρ ∈ T , do not intersect
T (4ε0), we have

T loc
−
⊂

⋃
ρ∈T

Ws(ρ).
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When q ∈AN0 and V−q ̸=∅, V−q lies in an O(hδ0λ0/λ1) neighborhood of a stable leaves, as stated in the
following lemma. In the following, we write

δ2 = δ0
λ0

λ1
. (5-1)

We recall that we have defined b in (4-2) and τ in (4-6) such that α < τ < 1 and δ2+ τ > 1 (see (4-5)).
Moreover, N0 = ⌈(δ0/λ1)|log h|⌉.

Lemma 5.1. There exists a global constant C2 > 0 such that, for all q ∈AN0 satisfying V−q ̸=∅,

d(V−q , T
loc
−
)≤ C2hδ2 .

Remark. In the end of this section, the use of C2 will always refer to the constant appearing in this
lemma. On other places, we keep our convention on global constants, denoting them always by C .

Proof. We already know by Lemma 4.7 that there exists C > 0 such that if V−q ̸=∅, there exists ρ0 ∈ T
such that

d(V−q ,Ws(ρ0))≤
C
J−q
.

But J−q ≥ eλ0 N0 ≥ C−1h−δ0λ0/λ1 . Finally, d(V−q , T loc
−
)≤ Chδ2, as required. □

The following lemma allows us to construct symbols in nice symbol classes with supports in hδ

neighborhood. Its proof can be found in [Dyatlov and Zahl 2016, Lemma 3.3].

Lemma 5.2. Let ε > 0 and δ ∈
[
0, 1

2

[
. Let V0(h)⊂ V1(h)⊂ Rd be sets depending on h and assume that,

for 0≤ h ≤ 1, d(V0(h), V1(h)c) > εhδ. Then, there exists a family χh ∈ C∞c (R
d) such that, for all h ≤ 1:

• χh = 1 on V0(h).

• suppχ ⊂ V1(h).

• For every α ∈Nd, there exists Cα depending only on ε such that, for all x ∈ Rd and for all 0< h ≤ 1,

|∂αχh(x)| ≤ Cαh−δ|α|.

Applying this lemma with V0(h)= T loc
−
(2C2hδ2), V1(h)= T loc

−
(4C2hδ2) with ε = 2C2, we consider a

family of smooth cut-offs χh ∈ Scomp
δ2

and we can consider it as an element of Scomp
δ2

(U ) since (at least
for h small enough) the support of χh is included in U. We are now ready to state the microlocalization
property of MN0.

Proposition 5.3. MN0 =MN0 Oph(χh)+ O(h∞)L2(Y )→L2(Y ). (5-2)

Proof. We need to show that MN0(Oph(1 − χh)) = O(h∞). To do so, we take the decomposition
MN0 =

∑
q∈AN0 Uq . Since the number of terms in this sum grows polynomially with h, it is enough to

show that,
for all q ∈AN0, Uq(Oph(1−χh))= O(h∞),

with bounds uniform in q. We then consider two cases:
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• V−q =∅: Lemma 4.13 applies. Indeed, if m ≤ N0 and V−q0···qm−1
̸=∅, we have

J−q0···qm−1
≤ emλ1 ≤ eN0λ1 ≤ Ch−δ0 .

Hence, Uq = O(h∞), with global constants in the O(h∞).

• V−q ̸=∅: We apply Proposition 4.8. Since J−q ≤Ceλ1 N0 ≤Ch−δ0, we take some δ1∈
]
δ0,

1
2

[
(in particular,

δ2<δ1) and we can write Uq = T N0 Oph(a
−
q )+O(h∞), with a−q ∈ Scomp

δ1
(U ) and supp a−q ⊂V−q . Noticing

that χh = 1 on V−q ⊂ T loc
−
(2C2hδ2), the composition formula in Scomp

δ1
implies that Oph(a

−
q )Oph(1−χh)=

O(h∞). Since the seminorms of a−q are uniformly bounded in q, the constants appearing in O(h∞) are
uniform in q. □

5B. Propagation of Lagrangian leaves and Lagrangian states. To study the microlocalization of Uq

we’ll use the same strategy as in [Dyatlov et al. 2022], the authors themselves inspired by [Anantharaman
and Nonnenmacher 2007a; 2007b; Nonnenmacher and Zworski 2009]. We cannot show that Uq is a
Fourier integral operator since the propagation goes behind the Ehrenfest time. Instead, we show a
weaker result which will be enough for our purpose. The idea is to decompose a state u in a sum of
Lagrangian states associated with Lagrangian leaves almost parallel to unstable leaves, what we will
call horizontal leaves (because we will consider them in charts where the unstable leaves are close
to be horizontal). Studying the precise behavior of these states, we can get fine information on the
microlocalization of Uqu. Roughly speaking, we’ll show that if u is a Lagrangian state associated with
an original horizontal Lagrangian Lq0,θ ⊂ Vq0 , then Uqu is a Lagrangian state associated with the piece
of the evolved Lagrangian Fn(Lq0,θ ) inside V+q .

To define “horizontal” Lagrangian leaves, we need to work in adapted coordinate charts in which the
notion of horizontality (thinking Wu(ρ) as the reference) makes sense. For this purpose, for q ∈A, we
consider charts centered around the points ρq , associated with the fixed macroscopic partition of T by the
Vq = B(ρq , 2ε0). First, we consider symplectic maps

κq :Wq ⊂Ukq → Vq ⊂ R2

satisfying (we denote by (x, ξ) the variable in U and (y, η) in R2):

(1) B(ρq ,Cε0)⊂Wq for some global constant C ≫ 2.

(2) κ(ρq)= 0, dκ(ρq)(Eu(ρq))= R×{0} : dκ(ρq)(Es(ρq))= {0}×R.

(3) The image of the unstable leave Wu(ρq) is exactly {(y, 0) : y ∈ R} ∩ Ṽq .

Theses charts are for instance given by Lemma 3.22 (at this stage, the strong straightening property is
not necessary). In these adapted charts where Wu(ρq) coincides with R×{0}, the horizontal Lagrangian
leaves will be the of the form

Cθ := {(y, θ) : y ∈ R}. (5-3)

Finally, we fix unit vectors on Eu(ρq) and Es(ρq), eu(ρq) and es(ρq), used to defined the unstable and
stable Jacobians in Section 3C. Let’s write

dκq(eu(ρq))= (λq,u, 0), dκq(es(ρq))= (0, λq,s).
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Note

Dq =

(
λq,u 0

0 λq,s

)
.

We dilate the chart κ̃q and define

κ̃q : ρ ∈Wq 7→ Dqκq(ρ) ∈ Ṽq := Dq(Vq).

5B1. Horizontal Lagrangian and their evolution. Let us fix a word q ∈An and let us define

Lq0,θ = κ
−1
q0
(Cθ ∩ Vq0)∩Vq0 . (5-4)

Then, let’s define inductively
Lq0···qj ,θ = F(Lq0···qj−1,θ )∩Vqj , (5-5)

which allows us to define Lq,θ . One can check that

Lq,θ = F−1(V+q )∩ Fn−1(Lq0,θ ). (5-6)

The term F−1 comes from the definition of V+q :

ρ ∈ V+q ⇐⇒ for all 1≤ i ≤ n, F−i (ρ) ∈ Vqn−i .

Finally, let’s define
Cq,θ = κqn−1(Lq,θ ). (5-7)

We first focus on one step of the iterative process.
In Ṽq ⊂ R2, we use the notation B̃q(0, r) for the cube]−r, r [ × ]−r, r [. We keep the subscript q to

keep track of the chart in which this cube is supposed to live. Finally, we set

Bq(0, r)= D−1
q (B̃q(0, r))⊂ Vq .

Bq(0, r) is simply a rectangle centered at zero with size only depending on q (this is also a ball for some
norm in R2). The advantage of B̃q and κ̃q compared with Bq and κq will appear below. However, κ̃q is
not symplectic, and for further use, it is not possible to use κ̃q as a symplectic change of coordinates.

Let q, p ∈ A and suppose that Vq ∩ F−1(Vp) ̸= ∅. As a consequence there exists a global constant
C ′ > 0 such that d(F(ρq), ρp) ≤ C ′ε0 and if C in (1) of Lemma 3.22 is large enough, we can assume
that, for some global constant C1 > 0,

κq(Vq)⊂ Bq(0,C1ε0)⊂ Vq , κp ◦ F ◦ κ−1
q (Bq(0,C1ε0))⊂ Vp. (5-8)

The following map is hence well-defined:

τp,q := κp ◦ F ◦ κ−1
q : Bq(0,C1ε0)→ τp,q(Bq(0,C1ε0))⊂ Vp;

τp,q is nothing but the writing of F between the charts Vq and Vp. Note that since the number of possible
transitions is finite, we can assume that C1 is uniform for all q, p ∈A such that Vq ∩ F−1(Vp) ̸=∅.

We also adopt the following definitions and notation:
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Definition 5.4. Let Gq : ]−C1ε0,C1ε0[ → ]−C1ε0,C1ε0[ be a smooth map. It represents the horizontal
Lagrangian

LGq := D−1
q

(
{(y,Gq(y)) : y ∈ ]−C1ε0,C1ε0[}

)
⊂ Bq(0,C1ε0)⊂ Vq .

We say that such a Lagrangian lies in the γ -unstable cone if

∥G ′q∥∞ ≤ γ,

and we write Gq ∈ Cu
q (C1ε0, γ ).

Remark. This is where the use of κ̃q and B̃q turns out to be useful; to represent horizontal Lagrangian
in Vq , we use the cube B̃q(0,C1ε0)⊂ Ṽq of fixed size.

With this definition, we show in the following lemma an invariance property of the γ -unstable cones:

Lemma 5.5. There exist global constants C > 0,C1 > 0 such that if ε0 is sufficiently small, then the
following holds:

For every Gq ∈ Cu
q (C1ε0,Cε0), there exists G p ∈ Cu

p(C1ε0,Cε0) such that:

(i) τp,q(LGq )∩ Bp(0,C1ε0)= LG p .

(ii) For some global constants Cl , l ≥ 2, we have ∥Gq∥C l ≤ Cl =⇒ ∥G p∥C l ≤ Cl .

Moreover, let’s define φqp : ]−C1ε0,C1ε0[ → R by

yq = φqp(yp) ⇐⇒ (yp,G p(yp))= Dp ◦ τpq ◦ D−1
q (φqp(yp),Gq ◦φqp(yp)).

Then, φpq is smooth contracting diffeomorphism onto its image. In particular, there exists a global
constant ν < 1 such that ∥φ′pq∥∞ ≤ ν.

Proof. Take C1 large but fixed (with conditions further imposed) and assume that ε0 is small enough
so that (5-8) holds. Let us define λq = J u

1 (ρq) > 1 and µq = J s
1 (ρq) < 1 and let us fix some global ν

satisfying,

for all q ∈A, max(λ−1
q , µq) < ν < 1.

Recall that eu and es are C1,ε in ρ. We write ∂y and ∂η to denote the unit vector of R×{0} and {0}×R

respectively. We fix a constant C > 0 with conditions imposed further and we assume that ∥G ′p∥∞ ≤Cε0.
We let τ̃ = Dp ◦ τp,q ◦ D−1

q (we drop the subscript for τ̃ to alleviate the notation). In the computations
below, the implied constants in the O are global constants (depending also on the choices on κq ):

• τ̃ (0)= κ̃p ◦ F(ρq)= O(ε0).

• d τ̃ (0)= d κ̃p(F(ρq)) ◦ d F(ρq) ◦ [d κ̃q(ρq)]
−1.

• d τ̃ (0)(∂y)= d κ̃p(F(ρq))(λqeu(F(ρq)))= λq(d κ̃p(ρp)+O(ε0))(eu(ρp)+O(ε0))= λq∂y+O(ε0),
where we use the Lipschitz regularity of ρ 7→ eu(ρ) in the second equality.

• Similarly, d τ̃ (0)(∂η)= µq∂η+ O(ε0).
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(It is here that we use the renormalization of κq into κ̃q ). Eventually, we use the fact that τ̃−τ̃ (0)−d τ̃ (0)=
O(C1ε0)C1(B(0,C1ε0)) and we get

τ̃ (y, η)= (λq y+ yr (y, η), µqη+ ηr (y, η)), (y, η) ∈ B̃q(0,C1ε0), (5-9)

where yr (y, η) and ηr (y, η) are O(C1ε0)C1 . Before going further, let us show that we can fix C1 such that

(y, η) ∈ B̃q(0,C1ε0) =⇒ |µqη+ ηr (y, η))| ≤ C1ε0. (5-10)

To do so, let us note that in fact τ̃ − τ̃ (0) − d τ̃ (0) = O((C1ε0)
2)C0(B(0,C1ε0)) and hence if (y, η) ∈

B̃q(0,C1ε0), we have

|ηr (y, η)| = O(ε0)+ O((C1ε0)
2)C0(B(0,C1ε0)) ≤ C ′ε0(1+C2

1ε0).

Assume that C1 is large enough such that νC1+C ′ < C1(ν+ 1)/2. If (y, η) ∈ B̃q(0,C1ε0), we have

|µqη+ ηr (y, η)| ≤ νC1ε0+C ′ε0(1+C2
1ε0)≤

(
C1
ν+1

2
+C2

1ε0

)
ε0.

This fixes C1. Since C1 is now a global fixed parameter, we can remove it from the O in the estimates.
If ε0 is small enough, depending on our choice of C1, (5-10) holds.

To write the image of the leaf as a graph, we observe that, if ε0 is small enough (depending only on
global parameters) the map

ψ : y ∈ ]−C1ε0,C1ε0[ 7→ λq y+ yr (y,Gq(y))

is expanding and we can impose |ψ ′| ≥ ν−1. In particular, Imψ contains an interval of size 2ν−1C1ε0.
Moreover, ψ(0) = yr (0,Gq(0)) ≤ ∥yr∥C1 |Gq(y)| = O(ε2

0). We claim that if ε0 is small enough, Imψ

contains ]−C1ε0,C1ε0[. Indeed, it suffices to have

ν−1C1ε0− |ψ(0)| ≥ C1ε0.

But we have

C1ε0+ |ψ(0)| ≤ C1ε0(1+ O(ε0))≤ C1ε0ν
−1

if 1+O(ε0)≤ ν
−1, a condition that can be satisfied if ε0 is small enough. Hence, φ :=φpq =ψ

−1
|]−C1ε0,C1ε0[

is well-defined and we set

G p(y)= µq Gq(φ(y))+ ηr (φ(y),Gq(φ(y))), y ∈ ]−C1ε0,C1ε0[. (5-11)

By definition, it is clear that τp,q(LGq )∩ Bp(0,C1ε0)= LG p and (y,G p(y))= τ̃ (φ(y),Gq(φ(y))). The
map φ is obviously a smooth contracting diffeomorphism and ∥φ′∥ ≤ 1/inf |ψ ′(y)| ≤ ν. Moreover, due
to (5-10), |G p(y)| ≤ C1ε0. To prove that G p ∈ Cu

p(C1ε0,Cε0), we compute

G ′p(y)= µq G ′q(φ(y))×φ
′(y)+ (∂yηr + ∂ηηr ×G ′q(φ(y)))φ

′(y),

|G ′p(y)| ≤ ν
2Cε0+ O(ε0(1+Cε0))ν ≤ [ν

2C + νC ′(1+Cε0)]ε0
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for some global C ′ > 0. If we assume ν2
+ ε0C ′ν < 1, which is possible if ε0 is small enough, then we

can choose C large enough satisfying

C × (ν2
+ νC ′ε0)+ νC ′ ≤ C.

This ensures that ∥G ′p∥∞ ≤ Cε0.
Finally, we prove (ii) by induction on l: The case l = 1 is done. Assume that there exists a constant Cl

such that ∥Gq∥C l ≤ Cl =⇒ ∥G p∥C l ≤ Cl . We want to find a constant Cl+1 fitting for the C l+1 norm.
Using (5-11), we see by induction that the (l + 1)-th derivative of G p has the form

G(l+1)
p (y)= φ′(y)l+1

×G(l+1)
q (y)× (1+ ∂ηηr (y, φ(y)))+ Py(Gq(y), . . . ,G(l)

q (y)),

where Py(τ0, . . . , τl) is a polynomial with smooth coefficients in y. Hence, there exists a constant M(Cl)

such that for y ∈ ]−C1ε0,C1ε0[, |Py(Gq(y), . . . ,G(l)
q (y))| ≤ M(Cl). Since

|φ′(y)l+1(1+ ∂ηηr (y, φ(y)))| ≤ ν(1+ ε0C ′) := ν1

if ε0 is small enough ensuring that ν1 < 1, we can take

Cl+1 =max
(

Cl,
M(Cl)

1− ν1

)
.

Indeed, with such a constant, assuming that ∥Gq∥C l+1 ≤ Cl+1, we have

|G(l+1)
p (y)| ≤ Cl+1ν1+M(Cl)≤ Cl+1. □

Armed with this lemma, we can now iterate the process and get the following proposition describing
the evolution of the Lagrangian Cq,θ .

Proposition 5.6. Assume that ε0 is small enough. Then, for every n ∈N∗, q ∈An , and θ ∈ R, there exists
an open subset Iq,θ ⊂ R and a smooth map Gq,θ such that:

• Cq,θ = {(y,Gq,θ (y)) : y ∈ Iq,θ }.

• ∥G ′q,θ∥∞ ≤ Cε0 for some global constant C.

• For every l ≥ 2, ∥Gq,θ∥C l ≤ Cl for some global Cl .

• If φq,θ : Iq,θ → R is defined by

κqn−1 ◦ Fn−1
◦ κ−1

q0
(φq,θ (y), θ)= (y,Gq,θ (y)).

Then, for some global constants C > 0 and 0< ν < 1, ∥φ′q,θ∥ ≤ Cνn−1.

Proof. Assume that Lq,θ ̸= ∅; otherwise, there is nothing to prove. In particular, we can restrict our
attention to small θ , |θ | ≤ C1ε0. As a consequence, for every i ∈ {1, . . . , n}, F(Vqi−1)∩Vqi ̸=∅. Hence,
we can consider the maps τi := τqi ,qi−1 and since we assume that κqi (Vqi )⊂ Bqi (0,C1ε0),

Cq0···qi ,θ = τi (Cq0···qi−1,θ )∩ κqi (Vqi ).
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We start with a constant function G0 ∈ Cu
0 (C1ε0, 0) such that LG0 = Cθ (it suffices to take G0 = λq0,sθ)

and we inductively apply the previous lemma to show the existence of a family G j ∈ Cu
qj
(C1ε0,Cε0),

0≤ j ≤ n− 1, such that:

(i) τi (LGi )∩ Bqi (0,C1ε0)= LGi+1 .

(ii) ∥Gi∥C l ≤ Cl .

(iii) If we define φi : ]−C1ε0,C1ε0[ → ]−C1ε0,C1ε0[ by

(y,Gi (y))= Dqi ◦ τi ◦ D−1
qi−1
(φi (y),Gi−1 ◦φi (y))

then there exists ν < 1 such that ∥φ′i∥∞ ≤ ν.

(iv) Cq0···qi ,θ is an open subset of LGi .

We have
LGn−1 = D−1

qn−1
({(y,Gn−1(y)) : y ∈ ]−C1ε0,C1ε0[}).

This can be also written

LGn−1 = {(y, λ
−1
qn−1,s Gn−1(λqn−1,u y)) : |y|< λ−1

qn−1,uC1ε0}.

It suffices to consider
Gq,θ (y)= λ−1

qn−1,s Gn−1(λqn−1,u y),

Iq,θ = {y ∈ ]−λ−1
qn−1,uC1ε0, λ

−1
qn−1,uC1ε0[ : (y,Gq,θ (y)) ∈ Cq,θ },

φq,θ (y)= λ−1
q1,uφ1 ◦ · · · ◦φn−1(λqn−1,u y). □

5B2. Evolution of Lagrangian states. Once we’ve studied the evolution of the Lagrangian leaves starting
from Cθ , we can study the evolution of the corresponding Lagrangian states. In our case, since the leaves
stay rather horizontal, the form of the Lagrangian states we’ll consider is the simplest:

a(x)eiψ(x)/h,

where a is an amplitude and ψ a generating phase function. It is associated with the Lagrangian,

L= {(y, ψ ′(y)) : y ∈ supp a}.

For q ∈A, we quantize κq . Remind that we denote by kq the integer such that Vq ⋐ Ukq . There exist
Fourier integral operators Bq , B ′q ∈ I comp

0 (κq)× I comp
0 (κ−1

q ),

Bq : L2(Ykq )→ L2(R), B ′q : L
2(R)→ L2(Ykq )

such that they quantize κq in a neighborhood of κq(Vq)×Vq . Moreover, we impose that WFh(Bq B ′q) is
a compact subset of R2. We will still denote by Bq and B ′q the operators

Bq = (0, . . . , Bq︸︷︷︸
kq

, . . . , 0) : L2(Y )→ L2(R), B ′q =
t(0, . . . , B ′q︸︷︷︸

kq

, . . . , 0) : L2(R)→ L2(Y ).

If supp(cq)⊂ Vq and if C denotes the operator-valued matrix with only one nonzero entry Oph(cq) in
position (kq , kq), then as operators L2(Y )→ L2(Y ),

B ′q BqC = C + O(h∞), C B ′q Bq = C + O(h∞).
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The proposition we aim at proving is the following:

Proposition 5.7. Fix C0 > 0. For every n ∈ N, q ∈An and θ ∈ R satisfying

n ≤ C0|log h|, |θ | ≤ C0 (5-12)

and, for every N ∈ N, there exists a symbol aq,θ,N ∈ C∞c (Iq,θ ) such that

(i) Uq(B ′q0
ei(θ ·)/h)= M Aqn−1 B ′qn−1

(eiψq/haq,θ,N )+ O(hN )L2 ,

(ii) ∥aq,θ,N∥Cl ≤ Cl,N h−C0 log B ,

(iii) there exists δ > 0 such that d(supp(aq,θ,N ),R \ Iq,N ,θ )≥ δ,

where ψq,θ is a primitive of Gq,θ and B > 0 is a global constant.

Remark. • As usual, δ,Cl,N and CN depend only on F, Aq , Bq , B ′q , κq and the indices indicated in their
notation.

• In other words, the Lagrangian state ei(θ ·)/h is changed to a Lagrangian state associated with Cq,θ .

The end of this subsection is devoted to the proof of Proposition 5.7. In the rest of this section, we fix a
constant C0 > 0 and we work with a fixed word q ∈An with length n ≤ C0|log h| and a fixed momentum
|θ | ≤ C0. From now on and until the end of the proof, the constants below will always be uniform in q, θ
satisfying the previous assumption. They will depend on global parameters and on C0. If they depend
on other parameters, we will specify it with subscripts. This is also the case for implicit constants in O
(such as in O(h∞)).

Preparatory work. We first note the following fact: if Vq ∩ F−1(Vp) = ∅, Ap M Aq = O(h∞). As a
consequence, if Vqi−1 ∩ F−1(Vqi ) = ∅ for some i , then Uq = O(h∞). In the sequel, it is enough to
consider words q for which Vqi−1 ∩ F−1(Vqi ) ̸=∅ for 1≤ i ≤ n− 1.

We consider symbols ãq such that supp(ãq)⊂Vq and ãq ≡ 1 on supp(χq). We denote by Ãq =Oph(ãq)

(as usual thought of as a diagonal operator-valued matrix). The following computations holds since
n = O(log h) and ∥M Aq∥ ≤ ∥α∥∞+ o(1) uniformly in q:

Uq B ′q0
= M Aqn−1 Ãqn−1 M Aqn−2 Ãqn−2 · · ·M Aq1 Ãq1 M Aq0 B ′q0

+ O(h∞)

= M Aqn−1 B ′qn−1
Bqn−1 Ãqn−1 M · · ·M Aq1 B ′q1

Bq1 Ãq1 M Aq0 B ′q0
+ O(h∞).

We set Tp,q = Bp Ãp M Aq B ′q and Mq = M Aq B ′q , which allows us to write

Uq B ′q0
= Mqn−1 Tqn−1,qn−2 · · · Tq1,q0 + O(h∞).

For p, q ∈A with Vq ∩ F−1(Vp) ̸=∅, we have Tq,p ∈ I comp
0 (τp,q). Moreover, the previous computations

have shown that τp,q has the form

τp,q(y, η)= (λp,q y+ yr (y, η), µp,qη+ ηr (y, η)), (y, η) ∈ Bq(0,C1ε0),

where yr (y, η) and ηr (y, η) are O(ε0)C1 . This time, λp,q , µp,q are simply constants uniformly bounded
from below and from above for p, q ∈ A (recall that Bq(0,C1ε0) is a rectangle in R2, built from the
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cube B̃q(0,C1ε0) adapted to the definition of the unstable Jacobian). If ε0 small enough, the projection
π : (y, η, x, ξ) ∈ Lq,p 7→ (y, ξ) ∈ R2 is a diffeomorphism onto its image, where

Lq,p = {(τq,p(x, ξ), x,−ξ) : (x, ξ) ∈ Bq(0,C1ε0)}

is the twisted graph of τp,q . As a consequence, there exists a smooth phase function Sp,q defined in an
open set �p,q of R2, generating Lp,q locally, i.e.,

Lp,q ∩ τp,q(Bq(0,C1ε0))× Bq(0,C1ε0)= {(y, ∂y Sp,q(y, ξ), ∂ξ Sp,q(y, ξ),−ξ) : (y, ξ) ∈�q,p}.

Hence, Tp,q can be written in the following form, up to a O(h∞) remainder and for some symbol
αp,q( · ; h) ∈ C∞c (�p,q):

Tp,qu(y)=
1

2πh

∫
R2

e(i/h)(Sp,q (y,ξ)−xξ)αp,q(y, ξ ; h)u(x) dx dξ. (5-13)

Moreover, due to the operators Ãp and Aq in the definition of Tp,q , we can assume that

(y, ξ) ∈ supp(αp,q) =⇒ (∂ξ Sp,q(y, ξ), ξ) ∈ κq(supp aq), (y, ∂y Sp,q(y, ξ)) ∈ κp(supp ãp).

In the sequel, we write
Ci = Cq0···qi ,θ

and we change the subscripts (qi−1, qi ) to i in all the objects T, α, S, τ . Due to the previous results, we
can write Ci = {(y,Gi (y)) : y ∈ Ii }, with Ii := Iq0···qi ,θ and Gi :=Gq0···qi ,θ . We also have projection maps
8i : Ii → R defined by

τi ◦ · · · ◦ τ1(8i (y), θ)= (y,Gi (y))

satisfying ∥8′i∥∞ ≤ Cνi < 1. Moreover, if we define the intermediate corresponding projection φi :=

8i ◦8
−1
i−1 : Ii→ Ii−1, we observe that φi is constructed using the properties of F and Gi−1 (see the proof

of Proposition 5.6) and hence, for every l, ∥φi∥C l ≤ Cl for some Cl not depending on q, θ nor i .
For 0≤ i ≤ n− 1, we consider a primitive ψi of Gi so that Ci is generated by ψi , i.e.,

Ci = {(y, ψ ′i (y) : y ∈ Ii }.

The following lemma can be found in [Nonnenmacher and Zworski 2009, Lemma 4.1]. We state it without
proof, since it is the reference but it is a direct application of the stationary phase theorem.

Lemma 5.8. Pick i ∈ {1, . . . , n−1}. For any a ∈ C∞c (Ii−1), the application of Ti to the Lagrangian state
aeiψi−1/h associated with Ci−1 gives a Lagrangian state associated with Ci and satisfies

Ti (aeiψi−1/h)(y)= eiβi/heiψi (y)/h
( N−1∑

j=0

bj (y)h j
+ hN rN (y; h)

)
, (5-14)

where, if we let x = φi (y), then bj (y)= (L j,i (x, Dx)a)(x) for some differential operator L j,i of order 2 j
with smooth coefficients supported in Ii−1 and βi ∈ R. Moreover, one has:

• b0(y)= |φ′i (y)|
1/2a(x)αi (y, ξ)/|det D2

y,ξ Si (y, ξ)|1/2, with ξ = ψ ′i−1(x).
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• ∥bj∥C l (Ii ) ≤ Cl, j∥a∥C l+2 j (Ii−1), l ∈ N, 0≤ j ≤ N − 1.

• ∥rN∥C l (Ii ) ≤ CN∥a∥C l+1+2N (Ii−1).

The constants CN and Cl, j depend on τi , αi , ∥ψ
(m)
i ∥∞,Ii .

Remark. • In particular, by virtue of Proposition 5.6, the constants Cl, j and CN can be chosen uniform
in q, θ as soon as they satisfy the required assumptions: |q| ≤ C0|log h|, θ ≤ C0.

• Without loss of generality, we can replace ψi by βi + ψi (this actually corresponds to fixing an
antiderivative on Ci+1) and hence we can assume that βi = 0.

• The properties on the support of αi imply the following ones on the support of the differential opera-
tors L j,i :

y ∈ supp L j,i =⇒ (y, ψ ′i (y)) ∈ κqi (supp ãqi )∩ τi−1 ◦ κqi−1(supp aqi−1). (5-15)

Iteration formulas and analysis of the symbols. Then, we iterate this lemma starting from ψ0(x)= x · θ ,
in the spirit of Proposition 4.1 in [Nonnenmacher and Zworski 2009]. In the sequel, we adopt the
following convention: we denote by xk the variable in Ik and we naturally define (xk, xk−1, . . . , x1, x0),
the sequence defined by xi−1 = φi (xi ). We also let

βi (xi )=
αi (xi , ξ)

|det D2
xi ,ξ

Si (xi , ξ)|1/2
, ξ = ψ ′i−1(xi−1),

fi (xi )= β(xi )|φ
′

i (xi )|
1/2.

We fix a constant B > 0 (depending only on F, Aq , Bq , B ′q ,C0) satisfying, for all 1≤ i ≤ n− 1,

sup
xi∈Ii

|βi (xi )| ≤ B, ∥Ti∥ ≤ B.

Roughly speaking, B is of order ∥α∥∞, but in this part, the precise value of B is not relevant. Finally,
note that there exists ν < 1 (again depending only on F, Aq , Bq , B ′q) such that |φ′i (xi )| ≤ ν for xi ∈ Ii .
Fix N ∈ N and define

Ñ = 1+⌈N +C0 log B⌉. (5-16)

We iteratively define a sequence of symbols ai, j , 0≤ i ≤ n−1, 0≤ j ≤ Ñ −1 by a0,0 = 1, a0, j = 0 and
for 0≤ j ≤ Ñ − 1

ai, j (xi )=

j∑
p=0

L j−p,i (ai−1,p)(xi−1). (5-17)

The following lemma controls the growth of the symbols. The proof is a precise analysis of the iteration
formula (5-17) and is rather technical. We write the detailed proof in the Appendix (see Section A3) and
refer the reader to [Nonnenmacher and Zworski 2009, Proposition 4.1], where the author carried out the
same analysis (but in the case B = 1).

Lemma 5.9. For all j ∈ {0, . . . , Ñ − 1}, l ∈ N, there exists C j,l > 0 such that, for all i ∈ {0, . . . , n− 1},
one has

∥ai, j∥C l (Ii ) ≤ C j,l(Bν1/2)i (i + 1)l+3 j . (5-18)
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Remark. Again, what is important is the fact that C j,l does not depend on q, n, θ nor i : it depends on
C0 and global parameters.

Control of the remainder. Let us call ri,N (a) the remainder appearing in Lemma 5.8. Define inductively
(Ri,Ñ ) by R0,Ñ = 0 and

Ri+1,Ñ = e−(iψi+1)/hTi+1(eiψi/h Ri,Ñ )+

Ñ−1∑
j=0

ri+1,Ñ− j (ai, j ). (5-19)

This definition ensures that, for all 1≤ i ≤ n,

Ti · · · T1(eiψ0/h)= eiψi (y)/h
( Ñ−1∑

j=0

h j ai, j + h Ñ Ri,Ñ

)
. (5-20)

Lemma 5.10. There exists C Ñ depending only on Ñ , C0 and global parameters such that, for all
1≤ i ≤ n− 1,

∥Ri,Ñ∥L2(R) ≤ C Ñ Bi .

Proof. Recalling that ∥Ti∥L2→L2 ≤ B and the bound on the remainder in Lemma 5.8, the recursive
definition of Ri,Ñ gives the bound

∥Ri,Ñ∥L2 ≤ B∥Ri−1,Ñ∥L2 +

Ñ−1∑
j=0

C Ñ− j∥ai−1, j∥C1+2(Ñ− j) .

By induction and using the previous bounds on ∥ai, j∥C l , we get

∥RÑ ,i∥L2 ≤

i−1∑
p=0

Bi−1−p
Ñ−1∑
j=0

C Ñ− j∥ap, j∥C1+2(Ñ− j)

≤

i−1∑
p=0

Bi−1−p
N1−1∑
j=0

C Ñ− j C Ñ− j,0(Bν
1/2)p(p+ 1)1+2Ñ+ j

≤ C Ñ Bi
i−1∑
p=0

ν p/2(p+ 1)1+3N1 ≤ C Ñ Bi ,

using that the sum is absolutely convergent. □

End of proof of Proposition 5.7. We’ve got now all the elements to conclude the proof. We set

aq,θ,N :=

Ñ−1∑
j=0

h j an−1, j .

We know that
Uq B ′q0

(eiθ/h)= Mqn−1(e
iψq ·/haq,θ,N )+Mqn−1(h

Ñ Rn−1,Ñ ).

Since Mq are uniformly bounded in q and Rn−1,Ñ ≤ C Ñ Bn−1
≤ CN1h−C0 log B, we have

∥Mqn−1(h
Ñ Rn−1,Ñ )∥L2 ≤ CN h Ñ−C0 log B

≤ CN hN .
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Concerning the bounds on aq,θ,N , we have

∥aq,θ,N∥C l ≤

Ñ−1∑
j=0

h j
∥an−1, j∥C l ≤

Ñ−1∑
j=0

C j,l(Bν1/2)n−1nl+3 j h j

≤ Cl,N nl+3Ñ (Bν1/2)n−1
≤ Cl,N h−C0 log Bnl+3Ñν(n−1)/2

≤ Cl,N h−C0 log B,

where we use the fact that n ≤ C0|log h| and bound nl+3Ñν(n−1)/2 by some Cl,Ñ since ν < 1.
Finally, we need to prove the property on the support of aq,θ,N . To do so, let us introduce, for q ∈A,

an open set Wq satisfying
supp ãq ⋐Wq ⊂ Vq .

This allows us to define new objects replacing Vq by Wq in the definitions

W+q =
n−1⋂
i=0

Fn−i (Wqi )⋐ V+q ,

Dq,θ = κqn−1(F
−1(W+q )∩ Fn−1(Lq0,θ ))⋐ Cq,θ ,

and the associated subinterval Jq,θ ⋐ Iq,θ built thanks to Proposition 5.6 such that

Dq,θ = {(y,Gq,θ (y)) : y ∈ Jq,θ }.

Let us fix δ > 0 small (with further conditions imposed). We will show the stronger statement

d(supp(aq,θ,N ),R \ Jq,θ )≥ δ.

Suppose this is not the case. We can find xn−1 ∈ supp aq,θ,N , yn−1 ∈ Iq,θ \ Jq,θ such that |xn−1− yn−1| ≤ δ.
As already done, we denote by xi (resp. yi ) the points defined by xi−1 = φi (xi ) (resp. yi−1 = φi (yi )).
Since φi are contractions, we have |xi − yi | ≤ δ for 1≤ i ≤ n− 1. If we define

ρi = κ
−1
qi
(xi , ψ

′

i (xi )), ζi = κ
−1
qi
(yi , ψ

′

i (yi )),

we have, for some C > 0, d(ρi , ζi )≤ Cδ. By definition, one also has

F−i (ρn−1)= ρn−1−i , F−i (ζn−1)= ζn−1−i .

By the support property (5-15) of the operators L j,i , ρi ∈ supp ãqi for 0≤ i ≤ n− 1. Let’s assume that δ
is small enough so that, for all q ∈A,

d(supp ãq , (Wq)
c)≥ 2Cδ.

Hence,
ρi ∈ supp ãqi and d(ρi , ζi )≤ Cδ =⇒ ζi ∈Wqi .

As a consequence, for all 0≤ i ≤ n− 1, F i+1−n(ζn−1) ∈Wqi , or equivalently ζn−1 ∈ F−1(W+q ). Hence,

(yn−1, ψ
′

n−1(yn−1)) ∈ Cq,θ ∩ κqn−1(F
−1(W+q ))⊂ Dq,θ

showing that yn−1 ∈ Jq,θ , and giving a contradiction with yn−1 ∈ Iq,θ \ Jq,θ .



SPECTRAL GAP FOR OBSTACLE SCATTERING IN DIMENSION 2 1105

hα

ρ0

Uρ0

Figure 14. The definition of the sets 0+q . They are represented by the blue segments on
the η-axis and are the projections on the η variable of the sets V+q (the shaded sets). They
are of width of order hτ .

5C. Microlocalization of UQ. We now fix a cloud Q ⊂ Q(n, a), centered at a point ρ0 ∈ T , namely
satisfying the condition of Proposition 4.23:

for all ρ ∈
⋃
q∈Q

V+q , d(ρ,Wu(ρ0))≤ Chb.

Let us define
UQ =

∑
q∈Q

Uq (5-21)

and
V+Q =

⋃
q∈Q

V+q . (5-22)

We fix an adapted chart κ := κρ0 :U0→ V0 around ρ0 as permitted by the Lemma 3.23. We can assume
that V+a ⋐ U0 (if ε0 is small enough and since the local unstable leaf Wu(ρ0) is close to points in V+a )).
We consider a cut-off function χ̃a ∈ C∞c (U0) such that χ̃a ≡ 1 on F(suppχa) and supp χ̃a ⊂ V+a . Let us
write 4a = Oph(χ̃a). Since 4a M Aa = M Aa + O(h∞), |Q| = O(h−K ) and ∥Uq∥ = O(h−K ) for some
K > 0, we have

MN0UQ =MN04aUQ+ O(h∞).

Let us introduce Fourier integral operators B, B ′ quantizing κ in supp(χa):

B ′B = I + O(h∞) microlocally in supp(χa).

Hence
MN0UQ =MN04a B ′BUQ+ O(h∞).

We introduce the sets
0+ = η(κ(V+Q)), �+ = 0+(hτ ), (5-23)

and, for q ∈Q,
0+q = η(κ(V

+

q )). (5-24)

We will prove in the following lemma that the pieces Uq are microlocalized in thin horizontal rectangles
(see Figure 14).
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Lemma 5.11. For every q ∈Q,

10+q (hτ )(h Dy)BUq = BUq + O(h∞)L2→L2, (5-25)

with uniform bounds in the O(h∞).

Using the polynomial bounds |Q| = O(h−C) and ∥Uq∥ = O(h−C), we immediately deduce:

Proposition 5.12. 1�+(h Dy)BUQ = BUQ+ O(h∞)L2→L2 . (5-26)

5C1. Proof of Lemma 5.11. We fix a word q = q0 · · · qn−2a ∈Q. Since WFh(Aq0) is compact, we can
find χ ∈ C∞c (R) such that

Aq0 = Aq0 B ′q0
χ(h Dy)Bq0 + O(h∞).

Since there is a finite number of symbols in A, we can choose one single χ for all the possible symbols q0.
We are hence reduced to proving that

1R\0+q (hτ )(h Dy)BUq B ′q0︸ ︷︷ ︸
T

χ(h Dy)= O(h∞)L2→L2 . (5-27)

If u ∈ L2(R), writing

(χ(h Dy)u)(y)=
1

(2πh)1/2

∫
R

χ(θ)Fhu(θ)ei(θy)/h dθ,

we have
T (χ(h Dy)u)=

1
(2πh)1/2

∫
R

χ(θ)Fhu(θ)(T ei(θ ·)/h) dθ.

Hence,
∥T (χ(h Dy)u)∥L2 ≤

1
(2πh)1/2

∫
R

|χ(θ)Fhu(θ)|∥T ei(θ ·)/h
∥L2 dθ

≤
1

(2πh)1/2

∫
R

|χ(θ)Fhu(θ)| sup
θ∈suppχ

∥T ei(θ ·)/h
∥L2

≤
Cχ
h1/2 ∥Fhu∥L2 sup

θ∈suppχ
∥T ei(θ ·)/h

∥L2

≤
Cχ
h1/2 ∥u∥L2 sup

θ∈suppχ
∥T ei(θ ·)/h

∥L2 .

As a consequence, we are lead to estimate supθ∈suppχ ∥T ei(θ ·)/h
∥L2 . We fix θ ∈ suppχ . Writing that

suppχ ⊂ [−C0,C0] and recalling |q| = n ≤ C0|log h| for some global C0, we are in the framework of
Proposition 5.7.

We fix N ∈ N and we aim at proving that T eiθ ·/(h)
= O(hN ). By Proposition 5.7, there exists

aq,N ,θ ∈ C∞c (Iq,θ ) such that

Uq B ′q0
(ei(θ ·)/h)= M Aa B ′a(aq,N ,θei8q,θ/h)+ O(hN ).

Set S := B M Aa B ′a . Then S is a Fourier integral operator associated with s := κ ◦ F ◦κ−1
a . Recall that the

definitions and the description of the Lagrangian

Cq,θ = κa(F−1(V+q )∩ Fn−1(Lq0,θ ))= {(y,8
′

q,θ (y)) : y ∈ Iq,θ },

with 8q,θ ∈ C∞(Iq,θ ), ∥8q,θ∥C1 ≤ Cε0, ∥8q,θ∥C l ≤ Cl .
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If ε0 is small enough, we can assume that:

• s is well-defined on Ba(0,C1ε0) and satisfies the conclusion of Lemma 5.5. As a consequence, the
Lagrangian line

s(Cq,θ )= κ(V+q )∩ κ ◦ Fn(Lq0,θ )

can be written {(y, 9 ′(y)) : y ∈ I } for some open I ⊂ R and some function 9 ∈ C∞(I ) satisfying

∥9∥C1 ≤ Cε0, ∥9∥C l ≤ Cl,

with global constants C and Cl .

• S has the form (5-13) with a phase function and a symbol having C l norms bounded by global constants
(depending on l).

Hence, we can apply Lemma 5.8 to see that there exists b ∈ C∞c (I ) such that

S(aq,N ,θei8q,θ/h)= bei9/h
+ O(hN )L2,

and b satisfies the same type of bounds as aq,N ,θ ; namely,

∥b∥C l ≤ Cl,N h−C0 log B .

Moreover, since d(supp aq,N ,θ ,R \ Iq,θ ) ≥ δ, there exists δ′ > 0 such that d(supp b,R \ I ) ≥ δ′. The
constants Cl,N and δ′ are global constants. Since N is arbitrary, to conclude the proof of Lemma 5.11, it
remains to show that

1R\0+q (hτ )(h Dy)(bei9/h)= O(hN ). (5-28)

To do so, we make use of the fine Fourier localization statement from Proposition 2.7 in [Dyatlov et al.
2022]. We state it for convenience but refer the reader to the quoted paper for the proof.

Proposition 5.13. Let U ⊂ Rn open, K ⊂ U compact, 8 ∈ C∞(U ) and a ∈ C∞c (U ) with supp a ⊂ K .
Assume that there is a constant C0 and constants CN , N ∈ N∗, such that

vol(K )≤ C0, (5-29)

d(K ,Rn
\U )≥ C−1

0 , (5-30)

max
0<|α|≤N

sup
U
|∂α8| ≤ CN , N ≥ 1, (5-31)

max
0≤|α|≤N

sup
U
|∂αa| ≤ CN , N ≥ 1. (5-32)

Finally, assume that the projection of the Lagrangian {(x,8′(x)) : x ∈U } on the momentum variable has
a diameter of order hτ ; namely,

diam(�8)≤ C0hτ , where �8 = {8′(x) : x ∈U }. (5-33)

Define the Lagrangian state

u(x)= a(x)ei8(x)/h
∈ C∞c (U )⊂ C∞c (R

n).
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Then, for every N ≥ 1, there exists C ′N such that

∥1Rn\�8(hτ )u∥ ≤ C ′N hN , (5-34)

where C ′N depends on τ, n, N ,C0,CN ′ for some N ′(n, N , τ ).

When U = I, K = supp b, a = hC0 log Bb, 8=9, the assumptions (5-29) to (5-32) are satisfied for
some global constants C0,CN . In this case,

�9 = {9
′(y) : y ∈ I } = η

(
κ(V+q )∩ κ ◦ Fn(Lq0,θ )

)
.

Since �9 ⊂ 0+q , to prove (5-28), it is enough to prove it with 0+q replaced by �9 and to apply the last
proposition, it remains to check that the last point (5-33) is satisfied. Since who can do more, can do less,
we will show that

diam(0+q )≤ C0hτ .

This is where the strong assumption on the adapted charts will play a role. To insist on this role, we state
the following lemma:

Lemma 5.14. Let C0 > 0. Assume that ρ1 ∈ T ∩Uρ0 satisfies d(ρ1,Wu(ρ0)) ≤ C0hb. If ρ2 ∈ Wu(ρ1),
then, for some global constant C > 0,

|η(κ(ρ1))− η(κ(ρ2))| ≤ CC1+β
0 h. (5-35)

Proof. Recall that the chart (κ,Uρ0) is the one centered at ρ0, given by Lemma 3.23. In this chart,
κ(Wu(ρ1)) is almost horizontal; we have

κ(Wu(ρ1))= {y : g(y, ζ(ρ1)), y ∈�},

where � is some open bounded set of R, with g and ζ satisfying the properties of Lemma 3.23. Hence,
to prove the lemma, it is enough to estimate |g(y, ζ(ρ1))− g(0, ζ(ρ1))|, y ∈�. Since ζ(ρ0)= 0 and ζ is
Lipschitz, |ζ(ρ1)| ≤ C0hb. Indeed, if ρ ′0 ∈Wu(ρ0) satisfies d(ρ ′0, ρ1)≤ 2C0hb,

|ζ(ρ1)| = |ζ(ρ1)− ζ(ρ
′

0)| ≤ Cd(ρ1, ρ
′

0)≤ CC0hb.

Then, we have

|g(y, ζ(ρ1))− g(0, ζ(ρ1))| = |g(y, ζ(ρ1))− g(y, 0)− ∂ζ g(y, 0)ζ(ρ1)|

=

∣∣∣∣∫ ζ(ρ1)

0
(∂ζ g(y, ζ )− ∂ζ g(y, 0)) dζ

∣∣∣∣
≤

∣∣∣∣∫ ζ(ρ1)

0
Cζ β dζ

∣∣∣∣≤ Cζ(ρ1)
1+β
≤ CC1+β

0 hb(1+β).

In the first equality, we’ve used the facts that g(0, ζ )= ζ , ∂ζ g(y, 0)= 1 and g(y, 0)= 0. This concludes
the proof since, by definition (see (4-2)), b(1+β)= 1. □

Remark. This lemma explains our definition of b.
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From this lemma, we can deduce (5-33). Indeed, recall that there exists ρq ∈ T such that V+q ⊂
Wu(ρq)(Chτ ). If ρ1, ρ2 ∈ V+q , there exists ρ ′1, ρ

′

2 ∈Wu(ρq) such that

d(ρi , ρ
′

i )≤ Chτ , i = 1, 2.

Hence, one can estimate

|η(κ(ρ1))− η(κ(ρ2))| ≤ |η(κ(ρ1))− η(κ(ρ
′

1))|︸ ︷︷ ︸
≤Chτ

+ |η(κ(ρ ′1))− η(κ(ρ
′

2))|︸ ︷︷ ︸
≤Ch

+ |η(κ(ρ2))− η(κ(ρ
′

2))|︸ ︷︷ ︸
≤Chτ

.

The inequality in the middle is a consequence of the previous lemma. Indeed, ρ ′1, ρ
′

2 ∈Wu(ρ
′

1), where
(recall that τ > b)

d(ρ ′1,Wu(ρ0))≤ d(ρ1, ρ
′

1)+ d(ρ1,Wu(ρ0))≤ Chτ +Chb
≤ 2Chb.

5D. Reduction to a fractal uncertainty principle. We go on the work started in the last subsection and
we keep the same notation. By Propositions 5.3 and 5.12, we can write

MN0UQ =MN0 B ′B Oph(χh)4a B ′1�+(h Dy)BUQ+ O(h∞)L2→L2, (5-36)

where

• χh ∈ Scomp
δ2

, χh ≡ 1 on T loc
−
(2C2hδ2) and suppχh ∈ T loc

−
(4C2hδ2) (see Proposition 5.3 and before).

• 4a =Oph(χ̃a), where χ̃a ∈C∞c (U0) is a cut-off function such that χ̃a ≡ 1 on F(suppχa) and supp χ̃a ⊂

V+a (see the beginning of Section 5C).

• �+ = η(κ(V+Q))(h
τ ) (see (5-23) and Proposition 5.12).

In Vρ0 , UQ is microlocalized in a region {|η| ≤ Chb
}. To work with symbols in usual symbol classes, we

will rather consider a bigger region {|η| ≤ hδ0}. For this purpose, let us define

0− = y
(
κ(V+a ∩ T

loc
−
(4C2hδ2))∩ {|η| ≤ hδ0}

)
, �− = 0−(hδ0). (5-37)

Since V+Q ⊂ Wu(ρ0)(Chb), we have �+ ⊂ [−C0hb,C0hb
] ⊂ [−hδ0, hδ0] for h small enough. By

Lemma 5.2, there exists χ+(η) := χ+(η; h) ∈ C∞c (R) such that

• χ+ ≡ 1 on �+,

• suppχ+ ⊂ [−hδ0, hδ0],

• for all k ∈ N and η ∈ R, |χ (k)+ (η)| ≤ Ckh−δ0k for some global constants Ck ,

and χ+ satisfies
1�+(h Dy)= χ+(h Dy)1�+(h Dy).

Let’s now consider the following subset of 0−:

0̃− = y
(
κ(V+a ∩ T

loc
−
(4C2hδ2))∩ {η ∈ suppχ+}

)
.

The inclusion 0̃− ⊂ 0− comes from the support property of χ+.
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rr

hδ0

χ+
�+

−hδ0

0̃−

0−

�−

Figure 15. The set �+ is represented on the η-axis, with the support of the function χ+.
On the y-axis, we project the gray set κ(V+a ∩ T loc

−
(4C2hδ2)) to obtain both 0− and 0̃−

depending on the size of the η-window. The larger set �− is also represented in red.

Using again Lemma 5.2, we construct a family χ−(y) := χ−(y; h) ∈ C∞c (R) such that

• χ− ≡ 1 on 0̃−,

• suppχ− ⊂�− = 0−(hδ0),

• for all k ∈ N and y ∈ R, |χ (k)− (y)| ≤ Ckh−δ0k ,

and χ− allows us to write
χ−(y)1�−(y)= χ−(y).

We encourage the reader to use Figure 15 to fix the ideas. We now claim that

MN0UQ =MN0 Oph(χh)4a B ′χ−(y)1�−(y)1�+(h Dy)BUQ+ O(h∞)L2→L2 . (5-38)

Due to the polynomial bounds on ∥MN0∥ and ∥UQ∥, it is then enough to show that

Oph(χh)4a B ′(1−χ−(y))χ+(h Dy)= O(h∞).

Using Egorov’s theorem in 9δ2(R), we see that 40 := B Oph(χh)4a B ′ is in 9δ2(R) and WFh(40) ⊂

κ(suppχa ∩ suppχh). We now observe that

(y, η) ∈WFh(40)∩WFh(1−χ−(y))∩WFh(χ+(h Dy))

=⇒ (y, η) ∈ κ(suppχa ∩ suppχh), η ∈ suppχ+, y ̸∈ 0̃−,
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Figure 16. Example of a porous set. Its construction is based on a Cantor-like set. Red
intervals correspond to choices of I, blue ones correspond to J.

But the first two conditions imply that y ∈ 0̃−. Hence,

WFh(40)∩WFh(1−χ−(y))∩WFh(χ+(h Dy))=∅.

By the composition formulas in 9δ0(R), we have 40(1 − χ−(y))χ+(h Dy) = O(h∞). Note that the
constants in O(h∞) depend on the seminorms of χ±, χh and χa . Due to their construction, the seminorms
of χ± and χh are bounded by global constants. As a consequence, the constants O(h∞) are global
constants.

This proves (5-38). Recalling the bound

∥MN0∥L2→L2 ≤ ∥α∥N0(1+ o(1)), ∥UQ∥L2→L2 ≤ C |log h|∥α∥N1
∞
,

we see that the proof of Proposition 4.23 and hence of Proposition 4.2, has been reduced to proving the
following proposition.

Proposition 5.15. With the above notation, There exist γ > 0 and h0 > 0 such that,

for all h ≤ h0, ∥1�−(y)1�+(h Dy)∥L2→L2 ≤ hγ . (5-39)

Remark. Note γ and h0 are global; they do not depend on the particular Q ⊂ Q(n, a) satisfying the
conditions of Proposition 4.23, nor on n.

The proof of this proposition is the aim of the next section and relies on a fractal uncertainty principle.

6. Application of the fractal uncertainty principle

The fractal uncertainty principle, first introduced in [Dyatlov and Zahl 2016] and further proved in full
generality in [Bourgain and Dyatlov 2018], is the key tool for our decay estimate. We’ll use the slightly
more general version proved and used in [Dyatlov et al. 2022].

6A. Porous sets. See for instance Figure 16 for an example. We start by recalling the definition of porous
sets and then we state the version of the fractal uncertainty principle we’ll use.

Definition 6.1. Let ν ∈ (0, 1) and 0≤ α0 ≤ α1. We say that a subset �⊂R is ν-porous on a scale from α0

to α1 if, for every interval I ⊂ R of size |I | ∈ [α0, α1], there exists a subinterval J ⊂ I of size |J | = ν|I |
such that J ∩�=∅.

The following simple lemma shows that when one fattens a porous set, one gets another porous set.
For its (very elementary) proof, see [Dyatlov et al. 2022, Lemma 2.12].
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Lemma 6.2. Let ν ∈ (0, 1) and 0 ≤ α0 < α1. Assume that α2 ∈ ]0, να1/3] and �⊂ R is ν-porous on a
scale from α0 to α1. Then, the neighborhood �(α2) = �+ [−α2, α2] is (ν/3)-porous on a scale from
max(α0, 3α2/ν) to α1.

The notion of porosity can be related to the different notions of fractal dimensions. Let us recall the
definition of the upper-box dimension of a metric space (X, d). We denote by NX (ε) the minimal number
of open balls of radius ε needed to cover X . Then, the upper-box dimension of X is defined by

dim X := lim sup
ε→0

log NX (ε)

− log ε
. (6-1)

In particular, if δ > dimX , there exists ε0 > 0 such that for every ε≤ ε0, NX (ε)≤ ε
−δ. This observation

motivates the following lemma:

Lemma 6.3. Let �⊂ R. Suppose that there exist 0< δ < 1, C > 0 and ε0 > 0 such that,

for all ε ≤ ε0, N�(ε)≤ Cε−δ.

Then, there exists ν = ν(δ, ε0,C) such that � is ν-porous on a scale from 0 to 1.

Remark. The proof will give an explicit value of ν. This quantitative statement will be important in the
sequel to ensure the same porosity for all the sets Wu/s(ρ0)∩ T .

Proof. Let us set T =⌊max((6ε0)
−1, (6δC)1/(1−δ))⌋+1 and ν = (3T )−1. We will show that � is ν-porous

on a scale from 0 to 1. Let I ⊂ R be an interval of size |I | ∈ ]0, 1]. Cut I into 3T consecutive closed
intervals of size ν: J0, . . . , J3T−1. We argue by contradiction and assume that each of these intervals
does intersect �. Let us show that

N�(ν/2)≥ T . (6-2)

Assume that U1, . . . ,Uk is a family of open intervals of size ν covering �. For i = 0, . . . , T − 1, there
exists xi ∈ J3i+1 and ji ∈ {1, . . . , k} such that xi ∈Uji . It follows that Uji ⊂ J3i ∪ J3i+1∪ J3i+2 and hence
i ̸= l =⇒Uji ∩Ujl =∅. The map i ∈ {0, . . . , T − 1} 7→ ji ∈ {1, . . . , k} is one-to-one, and it gives (6-2).
Since T ≥ 1/(6ε0), we have ν/2≤ ε0. As a consequence,

T ≤ N (ν/2)≤ C(6T )δ,

which implies T 1−δ
≤ C6δ. This contradicts the definition of T. □

In Section A5 of the Appendix, we give a result in the other way, namely, porous sets down to scale 0
have an upper-box dimension strictly smaller than 1.

For further use, we also record the easy lemma:

Lemma 6.4. Assume (X, d), (Y, d ′) are metric spaces and f : X→Y is C-Lipschitz. Then, for every ε>0,

N f (X)(ε)≤ NX (ε/C).

In particular, if NX (ε)≤ Cδ
1ε
δ for ε ≤ ε0, then, for ε ≤ Cε0, we have N f (X)(ε)≤ (C1C)δε−δ.
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6B. Fractal uncertainty principle. We state here the version of the fractal uncertainty principle we’ll
use. This version is stated in Proposition 2.11 in [Dyatlov et al. 2022]. The difference with the original
version in [Bourgain and Dyatlov 2018] is that it relaxes the assumption regarding the scales on which the
sets are porous. We refer the reader to [Dyatlov 2019] to an overview on the fractal uncertainty principle
with other references and applications.

Proposition 6.5 (fractal uncertainty principle). Fix numbers γ±0 , γ
±

1 such that

0≤ γ±1 < γ±0 ≤ 1, γ+1 + γ
−

1 < 1< γ+0 + γ
−

0

and define
γ :=min(γ+0 , 1− γ−1 )−max(γ+1 , 1− γ−0 ).

Then, for each ν > 0, there exists β = β(ν) > 0 and C = C(ν) such that the estimate

∥1�−Fh1�+∥L2(R)→L2(R) ≤ Chγβ (6-3)

holds for all 0< h ≤ 1 and all h-dependent sets �± ⊂ R which are ν-porous on a scale from hγ
±

0 to hγ
±

1 .

Remark. In the sequel, we will use this result with γ±1 = 0. In this case, the condition on γ±0 becomes
γ−0 + γ

+

0 > 1 and the exponent γ is γ−0 + γ
+

0 − 1. This condition can be interpreted as a condition of
saturation of the standard uncertainty principle: a rectangle of size hγ

+

0 × hγ
−

0 will be subplanckian.

6C. Porosity of �+ and �−. Since we want to apply Proposition 6.5 to prove Proposition 5.15, we
need to show the porosity of the sets �± defined in (5-23) and (5-37). The main tool is the following
proposition.

Proposition 6.6. There exist δ ∈ [0, 1[, C > 0 and ε0 > 0 such that, for every ρ0 ∈ T , if X =
Wu/s(ρ0)∩ T ∩Uρ0 ,

NX (ε)≤ Cε−δ for all ε ≤ ε0.

Remark. Recall that Wu/s(ρ0) is a local unstable (resp. stable) manifold at ρ0, and in particular a single
smooth curve. Uρ0 is the domain of the chart adapted κρ0 (see Lemma 3.23).

Roughly speaking, this proposition says that the upper-box dimension of the sets Wu/s(ρ)∩T , the trace
of T along the stable and unstable manifolds, is strictly smaller than 1. This condition on the upper-box
dimension is a fractal condition. In our case, we need uniform estimates on the numbers NX (ε) for
X = Wu/s(ρ)∩ T . This uniformity is a consequence of the fact that the holonomy maps are C1 with
uniform C1 bounds (and thus Lipschitz, which is enough to conclude). This result is clearly linked with
Bowen’s formula, which has been proved in different contexts and links the dimension of X with the
topological pressure of the map φu = − log |J 1

u |. This is where the assumption (Fractal) is used. This
proposition is proved in Section A4 of the Appendix where we borrow the arguments of [Barreira 2008,
Section 4.3] to get the required bounds.

From the Proposition 6.6, we get:

Corollary 6.7. There exists ν > 0 such that, for every ρ0 ∈ T , the sets y ◦ κ(Wu(ρ0) ∩ T ∩Uρ0) and
ζ(Ws(ρ0)∩ T ∩Uρ0) are ν-porous on a scale from 0 to 1.
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Proof. The maps y ◦ κ and ζ are C-Lipschitz for a global constant C . As a consequence, the previous
lemma and Lemma 6.4 give,

for all ε ≤ ε0/C, N�(ε)≤ Cδε−δ, where �= y ◦ κ(Wu(ρ0)∩ T ∩Uρ0) or ζ(Ws(ρ0)∩ T ∩Uρ0).

Applying Lemma 6.3, the ν-porosity is proved for some ν = ν(δ,C, ε0). □

To conclude, we use this corollary to show the porosity of �±. We start by studying �+.

Lemma 6.8. There exists a global constant C > 0 such that

�+ ⊂ ζ(Ws(ρ0)∩ T ∩Uρ0)(Chτ ).

Proof. Since �+ = 0+(hτ ), it is enough to show the same statement for 0+ = η ◦ κρ0(V
+

Q).
Let ρ ∈V+Q . By assumption on Q and ρ0, d(ρ,Wu(ρ0))≤Chb. Since ρ ∈Vq for some q ∈Q, there exists

ρ1 ∈ T such that d(ρ,Wu(ρ1))≤ C/J+q (ρ1)≤ Chτ. Fix ρ2 ∈Wu(ρ1) such that d(ρ, ρ2)≤ Chτ. Then

|η ◦ κ(ρ)− ζ(ρ1)| = |η ◦ κ(ρ)− ζ(ρ2)| ≤ |η ◦ κ(ρ)− η ◦ κ(ρ2)| + |η ◦ κ(ρ2)− ζ(ρ2)|.

Since η ◦ κ is Lipschitz, we can control the first term by

|η ◦ κ(ρ)− η ◦ κ(ρ2)| ≤ Cd(ρ, ρ2)≤ Chτ .

To estimate the second term, the same arguments used after Lemma 5.14 show that

|η ◦ κ(ρ2)− ζ(ρ2)| ≤ diam[η ◦ κ(Wu(ρ2)∩Uρ0)] ≤ Ch.

It gives |η◦κ(ρ)−ζ(ρ1)| ≤Chτ. To conclude, note that there exists a unique point ρ ′1 ∈Ws(ρ0)∩Wu(ρ1)

and ζ(ρ1)= ζ(ρ
′

1). □

As a simple corollary of this lemma and of Lemma 6.2, we get:

Corollary 6.9. �+ is ν/3-porous on a scale from (3/ν)Chτ to 1.

We now turn to the study of �−. We can state and prove similar results with different scales of porosity.
Recall that δ2 = (λ0/λ1)δ0.

Lemma 6.10. There exists a global constant C > 0 such that

�− ⊂ y ◦ κ(Wu(ρ0)∩ T ∩Uρ0)(Chδ2).

Proof. Since �− = 0−(hδ0) with δ0 > δ2, it is enough to prove it for

0− = y ◦ κ
(
V+a ∩ T

loc
−
(4C2hδ2)∩ {|η| ≤ hδ0}

)
.

Recall that T loc
−
⊂

⋃
ρ∈T Ws(ρ). Since in V+a all the local stable leaves intersect Wu(ρ0), we have

V+a ∩ T
loc
−
(4C2hδ2)⊂

⋃
ρ∈Wu(ρ0)∩T

Ws(ρ)(4C2hδ2).

Fix ρ ∈Wu(ρ0)∩T . Since dκ(Es(ρ0))=R∂η, if ε0 is small enough, we can write κ(Ws(ρ))={(Gρ(η), η) :

η∈O}, where O is some open subset of R and Gρ :O→R is C∞. In particular, it is Lipschitz with a global
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Lipschitz constant C . If |η| ≤ hδ0 , then |Gρ(η)−Gρ(0)| ≤ Chδ0 . Recall that κ(Wu(ρ0)∩Uρ0)⊂ R×{0}
and hence, Gρ(0)= y ◦κ(ρ). As a consequence, if ρ1 ∈Ws(ρ)∩{|η| ≤ hδ0}, writing κ(ρ1)= (Gρ(η), η),
we have

|y ◦ κ(ρ1)− y ◦ κ(ρ)| = |Gρ(η)−Gρ(0)| ≤ Chδ0 .

Then, if ρ2 ∈Ws(ρ)(4C2hδ2), since κ is Lipschitz with global Lipschitz constant,

|y ◦ κ(ρ2)− y ◦ κ(ρ)| ≤ Chδ2 +Chδ0 ≤ Chδ2 .

This shows that y ◦ κ(ρ2) ∈ y ◦ κ(Wu(ρ0)∩ T )(Chδ2) and concludes the proof. □

As a corollary, using Lemma 6.2, we get:

Corollary 6.11. �− is ν/3-porous on a scale from (3/ν)Chδ2 to 1.

We can now prove the last Proposition 5.15 needed to end the proof of Proposition 4.2. This is a
consequence of the porosity of �± and the fractal uncertainty principle. To apply Proposition 6.5, we
need to ensure that the scale condition is satisfied, that is to say

δ2+ τ > 1,

which has been supposed when defining τ in (4-5) and (4-6). Proposition 4.2 then comes with any
0< γ < (δ2+ τ − 1)β(ν/3).

Appendix

A1. Holder regularity for flows.

Lemma A.1. Let U ⊂ Rn be open and Y :U → Rn be a complete C1+β vector field. We denote by φt(x)
the flow generated by Y. Then, for any T ∈ R and K ⊂U compact, the map

(t, x) ∈ [−T, T ]× K 7→ φt(x)

is C1+β .

Proof. We fix T, K as in the statement. We’ll use the same constants C,C ′ at different places, with
different meaning. In addition to Y, they will depend on T, K .

Since Y is C1, Cauchy–Lipschitz theorem gives the local existence and uniqueness of the flow. It is
standard that the flow is also C1 and satisfies

∂t dφt(x)= dY (φt(x)) ◦ dφt(x). (A-1)

Let’s define At(x)= dφt(x) and 4(t, x)= dY (φt(x)). The assumption on Y implies that 4 is β-Hölder.
Fix (t0, x0), (t1, x1) ∈ [−T, T ]× K and let’s estimate ∥At1(x1)− At0(x0)∥. We split it into two pieces

and control it with the triangle inequality:

∥At1(x1)− At0(x0)∥ ≤ ∥At1(x1)− At0(x1)∥+∥At0(x1)− At0(x0)∥.
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It is not hard to control the first term of the right-hand side using (A-1) since

∥At1(x1)− At0(x1)∥ =

∣∣∣∣∫ t1

t0
4(s, x1) ◦ As(x1) ds

∣∣∣∣≤ C |t1− t0|.

To estimate the second term, we estimate

∥∂t(At(x1)− At(x0))∥ ≤ ∥(4(t, x1)−4(t, x0)) ◦ At(x1)+4(t, x0) ◦ (At(x1)− At(x0))∥

≤ Cd(x0, x1)
β
+C ′∥At(x1)− At(x0)∥.

By Gronwall’s lemma,

∥At0(x1)− At0(x0)∥ ≤ Cd(x0, x1)
βeC ′t0 ≤ Cd(x0, x1)

β . □

A2. Proof of Lemma 3.24. We give the missing proof of Lemma 3.24 and widely use the notation
of the Section 3E. Its proof uses the construction of eu in the proof of Theorem 5. It is inspired by
techniques usually used to show the unstable manifold theorem; see for instance [Dyatlov 2018]. In
fact, the smoothness of y 7→ f0(y, 0) is a direct consequence of the smoothness of the unstable manifold
Wu(ρ0). It was not clear for us if it was possible to easily deduce from this the required smoothness of
y 7→ ∂η f0(y, 0). This is why we decided to give a proof of this proposition. It uses the fact that eu has been
constructed to satisfy RdρF(eu(ρ))=Reu(F(ρ)) for ρ in a small neighborhood of T . To show the lemma,
we need information along all the orbit of ρ0. For this purpose, we introduce the following, for m ∈ Z:

• ρm = Fm(ρ0).

• κm :Um→ Vm ⊂ R2 the chart given by Lemma 3.22 centered at ρm and we assume that the relation
RdρF(eu(ρ))= Reu(F(ρ)) holds for ρ ∈Um . We will denote by (ym, ηm) the variable in Vm .

• Gm = κm+1 ◦ F ◦ κ−1
m : Vm→ Vm+1.

• A reparametrization of the vector field (κm)∗eu : R(κm)∗eu =Rem , where em(ym, ηm)=
t(1, sm(ym, ηm)),

where sm is a slope function which is known to be C1+β.

Note that sm(ym, 0)= 0 due to the fact that κm(Wu(ρm))⊂ R×{0}. The hyperbolicity assumption on F
and the properties of κm allow us to write

Gm(ym, ηm)= (λm ym +αm(ym, ηm), µmηm +βm(ym, ηm)),

where

• For some ν < 1, 0≤ |µm | ≤ ν, |λm | ≥ ν
−1 for all m ∈ N.

• αm(0, 0)= βm(0, 0)= 0.

• βm(ym, 0)= 0 for (ym, 0) ∈ Vm .

• dαm(0, 0)= dβm(0, 0)= 0.

• We can assume that Um are sufficiently small neighborhoods of ρm so that βm, αm = O(δ0)C1(Um) for
some small δ0 > 0.
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The property dρF(eu(ρ)) ∈ Reu(F(ρ)) implies that d(ym ,ηm)Gm(em(ym, ηm)) ∈ Rem+1(Gm(ym, ηm)).
As a consequence, the transformation of the slopes gives an equation satisfied by the family of slopes
(sm)m∈Z:

sm+1(Gm(ym, ηm))= Qm(ym, ηm, sm(ym, ηm)), (A-2)

where Qm is the smooth function

Qm(ym, ηm, s)=
s× (µm + ∂ηmβm(ym, ηm))+ ∂ymβm(ym, ηm)

λm + ∂ymαm(ym, ηm)+ s× ∂ηmαm(ym, ηm)
.

Writing Gm(ym, ηm)= (ym+1, ηm+1), we deduce by differentiation of (A-2) with respect to ηm+1 (we
omit the point of evaluation of the maps involved in the right-hand side to alleviate the line)

∂ηm+1sm+1(ym+1, ηm+1)= ∂ym Qm × ∂ηm+1 ym + ∂ηm Qm × ∂ηm+1ηm

+ ∂s Qm × (∂ym sm × ∂ηm+1 ym + ∂ηm sm × ∂ηm+1ηm). (A-3)

This last equation gives the transformation of vertical derivative of the slope. We now evaluate this identity
at the point (ym+1, 0). In the following lines, when the variables ym and ym+1 appear in the same equation,
we implicitly assume that they are related by (ym+1, 0)= Gm(ym, 0), namely ym+1 = λm ym +αm(ym, 0).
We remark that due to the fact that βm(ym, 0) = 0, we have Qm(ym, 0, 0) = 0 and the first term of the
right-hand side vanishes. The term ∂ym sm also vanishes at (ym, 0). We will write

σm(ym)= ∂ηm sm(ym, 0),

hm(ym)= ∂ηm Qm(ym, 0, 0)× ∂ηm+1ηm(ym+1, 0),

cm(ym)= ∂s Qm(ym, 0, 0)× ∂ηm+1ηm(ym+1, 0).

This notation allows us to rewrite (A-3) at (ym+1, 0):

σm+1(ym+1)= hm(ym)+ cm(ym)× σm(ym). (A-4)

We observe that |∂ηm+1ηm(ym, 0)| = |µ−1
m + O(δ0)C0 | and after some computations, we see that

∂s Qm(ym, 0, 0)=
µm

λm
+ O(δ0)C0 .

As a consequence,
|cm(ym)| = |λ

−1
m | + O(δ0)C0 ≤ ν1, (A-5)

where, if δ0 is small enough, we can fix ν1 < 1. Moreover, cm and hm are smooth functions and their C N

norms are bounded uniformly in m, and actually by global constants depending only on F. Furthermore,
ym 7→ ym+1 is given by ym 7→ λm y+αm(ym, 0) and is an expanding diffeomorphism provided δ0 is small
enough.

We fix some small ε such that (−ε, ε)×{0} ⊂Um for all m. Let’s define I = (−ε, ε). We will make
use of the fiber contraction theorem to show that ym ∈ I 7→ σm(ym) is smooth for every m, with uniform
C N norms. For this purpose, let us introduce the following notation:

• C0 ≤ C1 ≤ · · · ≤ CN ≤ · · · a family of constants which will be specified in the sequel.
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• The complete metric space X N = {γ ∈ C N (I ) : ∥γ ∥Ck ≤ Ck, 0≤ k ≤ N } equipped with the C N norm.

• The auxiliary metric space X aux
N = {γ ∈ C0(I ) : ∥γ ∥∞ ≤ CN } equipped with the C0 norm.

• The complete metric space EN = (X N )
Z equipped with the metric

d(γ1, γ2)= sup
m∈Z

∥(γ1)m − (γ2)m∥C N .

• Its auxiliary counterpart Eaux
N = (X

aux
N )Z equipped with the metric

d(γ1, γ2)= sup
m∈Z

∥(γ1)m − (γ2)m∥C0 .

For γ ∈ EN , let’s define T γ with the formula (A-4):

(T γ )m+1(ym+1)= (hm + cmγm)(ym).

Since ym 7→ ym+1 is expanding, we see that ym+1 ∈ I =⇒ ym ∈ I. Hence, (T γ )m+1 is well-defined on I.
Our aim is to show by induction on N that for every N ∈ N, σ := (σm)m∈Z is in EN and is an attractive
fixed point of T : EN → EN .

We start with the case N = 0. We need to check that T (E0)⊂ E0. It will be the case as soon as

C0ν1+ sup
m
∥hm∥∞ ≤ C0.

For instance, take C0 = 2 supm ∥hm∥∞/(1− ν1). Due to the fact that ∥cm∥C0(I ) ≤ ν1, T is a contraction
with contraction rate ν1 and hence T : E0→ E0 has a unique attractive fixed point. This fixed point is
necessarily σ since σ satisfies (A-4).

Arguing by induction, we assume that σ ∈ EN , T (EN )⊂ EN and σ is an attractive fixed point for T
and we want to show that the same is true for N + 1. For this purpose, suppose that γ ∈ EN is of
class C N+1. Analyzing the formula defining T, we see that can write, for m ∈ Z,

(T γ )(N+1)
m (ym+1)= h(N+1)

m (ym)+ cm(ym)×

(
∂ym+1

∂ym
(ym)

)−N−1

× γ (N+1)
m (ym)

+ RN ,m(ym, γm(ym), . . . , γ
(N )
m (ym)), (A-6)

where RN ,m : I × [−C0,C0] × · · · × [−CN ,CN ] → R is a polynomial in the last N + 1 variables with
smooth coefficients in ym , uniformly bounded in m. As a consequence, there exists a global constant C ′N+1
such that

sup
m

sup
I×[−C0,C0]×···×[−CN ,CN ]

|RN ,m(ym, τ0, . . . , τN )| ≤ C ′N+1.

We can then choose CN+1 ≥ CN such that

sup
m
∥hm∥C N+1 +C ′N+1+ ν1CN+1 ≤ CN+1,

which ensures that T : EN+1→ EN+1. We now wish to use the fiber contraction theorem (Theorem 6).
If γ ∈ EN , we define the map Sγ : Eaux

N+1→ Eaux
N+1 by

(Sγ θ)m+1(ym+1)=h(N+1)
m (ym)+cm(ym)×

(
∂ym+1

∂ym
(ym)

)−N−1

×θm(ym)+RN ,m(ym,γm(ym), . . . ,γ
N

m (ym)).
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Due to the choice of CN+1, we see that Sγ is well-defined and since we have∣∣∣∣∂ym+1

∂ym
(ym)

∣∣∣∣≥ 1

and ∥cm∥C0(I ) ≤ ν1, we know Sγ is a contraction with contraction rate ν1 for every γ ∈ EN . In particular,
the map Sσ has a unique fixed point σN+1 ∈ Eaux

N+1.
The fiber contraction theorem (Theorem 6) applies to the continuous map

TN : (γ, θ) ∈ EN × Eaux
N+1 7→ (T γ, Sγ θ) ∈ EN × Eaux

N+1

and (σ, σN+1) is an attractive fixed point of TN in EN × Eaux
N+1.

In particular, if γ ∈ EN+1, then γ̃ := (γ, γ (N+1)) ∈ EN × Eaux
N+1 and

lim
p→+∞

T p
N γ̃ = (σ, σN+1) in EN × Eaux

N+1.

However, by the definition of Sγ ,

T p
N γ̃ = (T

pγ, (T pγ )(N+1)).

Hence, for every fixed m, we know (T pγ )m converges to σm in X N and (T pγ )
(N+1)
m converges uniformly

on I to σN+1. This proves that σ is C N+1 and σ (N+1)
=σN+1. We conclude that σ ∈ EN+1 is then an attrac-

tive fixed point of T : EN+1→ EN+1, which proves the induction and concludes the proof of Lemma 3.24.

A3. Proof of Lemma 5.9. We give the missing proof of Lemma 5.9. The proof is a precise analysis of
the iteration formula (5-17). We adopt the notation introduced for Lemma 5.9. We argue by induction on
J to show the property PJ : the bound (5-18) is valid for all j ≤ J and, for all 1≤ i ≤ n− 1, l ∈ N, with
some constants C j,l .

1. Base case. Let us start with P0. The iteration formula (5-17) implies

ai,0(xi )=

i∏
l=1

fl(xl).

Hence, the bound ∥ai,0∥C0 ≤ (Bν1/2)i is obvious and we can set C0,0 = 1. We now argue by induction
on i and prove the property P0,i : the bound (5-18) is valid for j = 0, i and for all l ∈ N, for some
constants C j,l . These bounds are trivially true for i = 0 and are direct consequences of Lemma 5.8 for
i = 1. Suppose that the property holds for i − 1 for some i ≥ 1 and let’s show it for i .

1.1. Case l = 1. Let us first deal with l = 1 and compute the derivative of ai,0, using the formula
ai,0(xi )= fi (xi )ai−1,0(xi−1):

a′i,0(xi )= f ′(xi )ai−1,0(xi−1)+ fi (xi )a′i−1,0(xi−1)

(
∂xi−1

∂xi

)
.

We use the (weak) bound |∂xi−1/∂xi | ≤ 1 and the property P0,i−1 to show that

∥ai,0∥C1 ≤ C(Bν1/2)i−1
+C0,1(Bν1/2)× (Bν1/2)i−1i ≤ C0,1(Bν1/2)i (i + 1),

assuming that C0,1 > C(Bν1/2)−1.
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1.2. General case for l > 0. We now come back to the general case l > 0. By using the formula
ai,0(xi )= fi (xi )ai−1,0(xi−1), one sees that we can write a(l)i,0 in the form

a(l)i,0(xi )= fi (xi )a
(l)
i−1,0(xi−1)

(
∂xi−1

∂xi

)l

+ O(∥ai−1,0∥C l−1).

The constants appearing in the O depend on C l norms of fi and φi , which, by assumption are controlled
by some uniform C ′l . Hence, using the assumption P0,i−1,

|a(l)i,0(xi )| ≤ (Bν1/2)∥ai−1,0∥C l

(
∂xi−1

∂xi

)l

+C ′l∥ai−1,0∥C l−1

≤ C0,l(Bν1/2)(Bν1/2)i−1i l
+C ′l C0,l−1(Bν1/2)i−1i l−1

≤ C0,l(Bν1/2)i (i + 1)l,

assuming that C0,l is chosen bigger than (1/ l)C ′l C0,l−1(Bν1/2)−1. As a consequence, we can build
constants satisfying these conditions by defining inductively

C0,l =max
(
C0,l−1,

1
l

C ′l C0,l−1(Bν1/2)−1
)
.

This ends the proof of P0,i and hence of P0.

2. Induction step. We now assume that Pj−1 is true for some j ≥ 1 and aim at proving Pj . Again, we do
it by induction on i by proving the properties Pj,i : the bound (5-18) is true for j , i and all l ∈ N. These
bounds are trivially true for i = 0 and are direct consequences of Lemma 5.8 for i = 1. Suppose that the
property holds for i − 1 for some i ≥ 2 and let’s show it for i .

2.1 Case l = 0. Let’s start with l = 0. The iteration formula shows that

ai, j (xi )= fi (xi )ai−1, j (xi−1)+

j−1∑
p=0

L j−p,i (ai−1,p)(xi−1).

By Lemma 5.8, there exist constants C ′p,m > 0 such that

∥L p,i a∥Cm(Ii ) ≤ C ′p,m∥a∥C2p+m(Ii−1).

Hence, assuming that (5-18) holds for ai−1, j with l = 0,

∥ai, j∥∞ ≤ C j,0(Bν1/2)(Bν1/2)i−1i3 j
+

j−1∑
p=0

C ′j−p,0∥ai−1,p∥C2( j−p)

≤ C j,0(Bν1/2)i i3 j
+

j−1∑
p=0

C ′j−p,0C p,2( j−p)(Bν1/2)i−1i2( j−p)+3p

≤ C j,0(Bν1/2)i i3 j
+ i2 j (Bν1/2)i−1

j−1∑
p=0

C ′j−p,0C p,2( j−p)i p

≤ C j,0(Bν1/2)i i3 j
+ i2 j (Bν1/2)i−1[ sup

0≤p≤ j−1
C ′j−p,0C p,2( j−p)

] i j
− 1

i − 1
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≤ C j,0(Bν1/2)i i3 j
+ i3 j−1(Bν1/2)i−1[ sup

0≤p≤ j−1
C ′j−p,0C p,2( j−p)

]
C̃ j , where

i j
− 1

i − 1
≤ C̃ j i j−1,

≤ C j,0(Bν1/2)i (i + 1)3 j ,

assuming that C j,0 is chosen bigger than

K j :=
1

3 j
(Bν1/2)−1[ sup

0≤p≤ j−1
C ′j−p,0C p,2( j−p)

]
C̃ j .

As a consequence, the bounds hold for l = 0 and i, j if we set C j,0 =max(1, K j ).

2.2. Case l > 0. Consider now l > 0. As already done, one can write

a(l)i, j (xi )= fi (xi )a
(l)
i−1, j (xi−1)

(
∂xi−1

∂xi

)l

+ O(∥ai−1, j∥C l−1)+

j−1∑
p=0

(L j−p,i (ai−1,p))
(l)(xi−1).

As usual, the constants in O depend on l, j but not on i and we denote by C ′′l, j the constant in this O.
Hence, we can control

∥a(l)i, j∥∞≤C j,l(Bν1/2)(Bν1/2)i−1i l+3 j
+C ′′l, j C j,l−1(Bν1/2)i−1i l+3 j−1

+

j−1∑
p=0

∥L j−p,i (ai−1,p)∥C l

≤C j,l(Bν1/2)i i l+3 j
+C ′′l, j C j,l−1(Bν1/2)i−1i l+3 j−1

+

j−1∑
p=0

C ′j−p,l∥ai−1,p∥C l+2( j−p)

≤C j,l(Bν1/2)i i l+3 j
+C ′′l, j C j,l−1(Bν1/2)i−1i l+3 j−1

+

j−1∑
p=0

C ′j−p,lC p,l+2( j−p)(Bν1/2)i−1i l+2( j−p)+3p

≤C j,l(Bν1/2)i (i l+3 j
+i l+3 j−1 1

C j,l
(Bν1/2)−1(C ′′l, j C j,l−1+ sup

0≤p≤ j−1
C ′j−p,lC p,l+2( j−p)C̃ j

)
︸ ︷︷ ︸

C̃ j,l≤C j,l(Bν1/2)i (i+1)l+3 j

if C j,l ≥ C̃ j,l . Eventually, we define by induction on l the constants C j,l by setting C j,l =max(C j,l−1, C̃ j,l),
achieving the proof of Pj . This concludes the proof of the lemma.

A4. Upper box dimension for hyperbolic set. This subsection is devoted to the proof of Proposition 6.6.
We will simply recall some arguments which lead to give an upper bound to the upper-box dimension.
We borrow these arguments from [Barreira 2008, Section 4.3] and refer the reader to this book for the
definitions and properties of topological pressure (Definition 2.3.1), Markov partition (Definition 4.2.6)
and other references on this theory.

We’ll show that the pressure condition (Fractal) implies Proposition 6.6. We prove it for the unstable
manifolds. The proof is similar in the case of stable manifolds by changing F into F−1. We first begin by
fixing a Markov partition for T with diameter at most η0. This is possible by virtue of Theorem 18.7.3
in [Katok and Hasselblatt 1995]. We denote by R1, . . . , Rp ⊂ T this Markov partition. Here, η0 is
smaller than the diameter of the local stable and unstable manifolds and the holonomy maps H u/s

ρ,ρ′ are
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well-defined for d(ρ, ρ ′)≤ η0:

H u/s
ρ,ρ′ :Ws/u(ρ)→Ws/u(ρ

′), ζ 7→ the unique point in Wu(ζ )∩Ws(ρ
′).

Due to our results on the regularity of the stable and unstable distributions, these maps are Lipschitz with
global Lipschitz constants. In particular, if an inequality of the kind

NWu(ρ)∩T (ε)≤ Cε−δ

holds for some ρ, it holds for ρ ′ if d(ρ, ρ ′)≤ η0 with C replaced by K δC where K is a Lipschitz constant
for the holonomy maps. We fix (ρ1, . . . , ρp) in (R1, . . . , Rp) and we set V =

⋃p
i=1 Wu(ρi )∩ Ri . It is

then enough to show that
dim V < 1.

Indeed, if dim V < 1 for δ ∈ (dim V, 1), there exists ε0 > 0 such that,

for all ε ≤ ε0, NV (ε)≤ ε
−δ,

and we conclude the proof of Section A4 with the above considerations on the holonomy maps.
Note δ := dim V satisfies the equation P(δφu) = 0. We will actually show that P(δφu) ≥ 0. Since

s 7→ P(sφu) is strictly decreasing and has a unique root, the assumption P(φu) < 0 will give δ < 1. We
will denote by

Ri0,...,in =

n⋂
k=0

F−i (Rik ), Vi0,...,in = Ri0,...,in ∩ V

the elements of the refined partition at time n. Similarly to the definitions of J+q , we will write

Ji0,...,in = inf{J n
u (ρ), ρ ∈ Ri0,...,in }

and write

cn(s)=
∑

i0,...,in

J−s
i0,...,in

=

∑
i0,...,in

exp max
Ri0,...,in

(
s

n−1∑
k=0

φu ◦ Fk
)

(the last equality follows from the chain rule). Properties of Markov partitions ensure that

P(sφu)= lim
n→∞

1
n

log cn(s).

Fix s > δ. Hence, there exists ε1 such that, for all ε ≤ ε1, NV (ε)≤ ε
−s.

Fix n ∈ N∗. By writing V =
⋃

i0,...,in
Vi0,...,in we have

NV (ε)≤
∑

i0,...,in

NVi0,...,in
(ε).

Note that
Fn(Vi0,...,in )⊂Wu(Fn(ρi0))∩ Rin

and
H s

Fn(ρi0 ),ρin
(Fn(Vi0,...,in ))⊂ Vin .
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Hence, if we cover Vin by N sets of diameter at most ε, U1, . . . ,UN , the sets F−n
◦ H s

ρin ,Fn(ρi0 )
(Ui ),

1≤ i ≤ N, cover Vi0,...,in and have diameters at most K εJ−1
i0,...,in

. Hence,

NVin
(ε)≥ NVi0,...,in

(K εJ−1
i0,...,in

),

which gives

NV (ε)≤
∑

i0,...,in

NVin
(εK−1 Ji0,...,in ).

As a consequence, if ε < ε1K J−1
n , where Jn = supi0,...,in

Ji0,...,in , we have

NV (ε)≤
∑

i0,...,in

K s J−s
i0,...,in

ε−s
= K sε−scn(s).

By iterating this process, we see that, for all m ∈ N, if ε < ε1(K J−1
n )m ,

NV (ε)≤ ε
−s K mscn(s)m .

Hence,
log NV (ε)

− log ε
≤ s+m

log(K scn(s))
− log ε

≤ s+m
log(K scn(s))

− log(ε1(K J−1
n )m)

.

We then take the lim sup as ε→ 0 first and then pass to the limit as m→+∞ and find that

dim V ≤ s+
log K scn(s)

− log K J−1
n
.

Then, we pass to the limit s→ δ and find that log(K δcn(δ))≥ 0. Hence,

P(δφu)= lim
n→∞

1
n

log cn(δ)≥ lim
n→∞

−δ log K
n

= 0.

This ends the proof of the required inequality and gives that dim V < 1.

A5. From porosity to upper-box dimension. We have shown that sets with upper-box dimension strictly
smaller than 1 are porous. In this appendix, we show a result in the other way, namely, porous sets down
to scale 0 have an upper-box dimension strictly smaller than 1. The following lemma gives a quantitative
version of this statement. This is not useful for our use (we only needed the first implication) but we
found that it could be of independent interest. Our proof is based on the proof of Lemma 5.4 in [Dyatlov
and Jin 2018]. We adopt the same notation as in Section 6A.

Lemma A.2. Let M ∈N, ν > 0, α1 > 0. Let X ⊂ [−M,M] be a closed set and assume that X is ν-porous
on a scale from 0 to α1. Then, there exists C = C(ν, α1,M) > 0, ε0 = ε0(ν, α1,M) and δ = δ(ν) ∈ [0, 1[
such that,

for all ε ≤ ε0, NX (ε)≤ Cε−δ.

In particular,

dim X ≤ δ.
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I0,k0

I0,k0+1 I1,k0+1

I3,k0+2

. . .

I4,k0+2 I5,k0+2

. . .

I2,k0+1

I6,k0+2

. . .

I7,k0+2

. . .

I8,k0+2

Figure 17. It illustrates the tree structure of the family of intervals Ik,m with L = 3. The
porosity allows us to withdraw at least one child to any parent. The missing children are
shaded in gray.

Proof. We define L = ⌈2/ν⌉ and denote by k0 the unique integer such that

L−k0 ≤ α1 < L−k0+1.

We will let Im,k = [mL−k, (m+ 1)L−k
] for k ∈ N, m ∈ Z.

We now show by induction on k ≥ k0 that there exists Yk ⊂ Z such that

#Yk ≤ 2M Lk0(L − 1)k−k0, �⊂
⋃

m∈Yk

Im,k, (A-7)

namely, at each level k ≥ k0, one new interval Im,k does not intersect �. See Figure 17.
The case k = k0 is trivial since we simply cover � by the intervals Im,k0 for M Lk0 ≤ m < M Lk0 .
We now assume that the result is proved for k ≥ k0 and we prove it for k+ 1. Fix m ∈ Yk . We write

I =
⋃L−1

j=0 ImL+ j,k+1. We claim that among the intervals ImL+ j,k+1, at least one does not intersect �.
Indeed, since |I | ≤ L−k0 ≤ α1, the porosity of � implies the existence of an interval J ⊂ I of size ν|I | =
νL−k

≥ 2L−k−1 such that J ∩� = ∅. Since |J | ≥ 2L−k−1, J contains at least one of the intervals
ImL+ j,k+1. We denote this index by jm . We now set

Yk+1 =
⋃

m∈Yk

{mL + j : j ∈ {0, . . . , L1} \ jm}.

By the property of jm , we have �⊂
⋃

m∈Yk+1
Im,k+1 and #Yk+1 ≤ (L − 1) # Yk ≤ (L − 1)k+1−k02M Lk0 .

We now consider ε ≤ 1
2 L−k0 and write k the unique integer such that

L−k
≤ 2ε < L−k+1 i.e., k =

⌈
− log(2ε)

log L

⌉
.

Since we can cover � by 2M Lk0(L − 1)k−k0 closed intervals of size L−k, we can also cover � by
4M Lk0(L − 1)k−k0 open intervals of size 2ε. Hence,

N�(ε)≤ 4M Lk0(L − 1)k−k0 ≤ 4M
(

L
L − 1

)k0

(L − 1)− log(2ε)/log L+1
≤ Cε−δ,

with δ = log(L − 1)/log L ∈ [0, 1[ and C = 4M(L/(L − 1))k0(L − 1)1−log 2/log L . □
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