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Consider a one-dimensional simple small-amplitude solution (0 k) v(lbkg)) to the isentropic compressible
Euler equations which has smooth initial data, coincides with a constant state outside a compact set, and
forms a shock in finite time. Viewing (Q(kg). v(lbkg)) as a plane-symmetric solution to the full compressible
Euler equations in three dimensions, we prove that the shock-formation mechanism for the solution
(0ke)» v(lbkg)) is stable against all sufficiently small and compactly supported perturbations. In particular,
these perturbations are allowed to break the symmetry and have nontrivial vorticity and variable entropy.

Our approach reveals the full structure of the set of blowup-points at the first singular time: within
the constant-time hypersurface of first blowup, the solution’s first-order Cartesian coordinate partial
derivatives blow up precisely on the zero level set of a function that measures the inverse foliation density
of a family of characteristic hypersurfaces. Moreover, relative to a set of geometric coordinates constructed
out of an acoustic eikonal function, the fluid solution and the inverse foliation density function remain
smooth up to the shock; the blowup of the solution’s Cartesian coordinate partial derivatives is caused by
a degeneracy between the geometric and Cartesian coordinates, signified by the vanishing of the inverse
foliation density (i.e., the intersection of the characteristics).

1. Introduction 832
2. Geometric setup 847
3. Volume forms and energies 859
4. Assumptions on the data and statement of the main theorems 862
5. Reformulation of the equations and the remarkable null structure 867
6. The bootstrap assumptions and statement of the main a priori estimates 869
7. A localization lemma via finite speed of propagation 871
8. Estimates for the geometric quantities associated to the acoustical metric 871
9. Transport estimates for the specific vorticity and the entropy gradient 880
10. Lower-order transport estimates for the modified fluid variables 884
11. Top-order transport and elliptic estimates for the specific vorticity and the entropy gradient 889
12. Wave estimates for the fluid variables 897
13. Proving the L°° estimates 906
14. Putting everything together 909
Appendix: Proof of the wave estimates 916
References 939

Luk is supported by a Terman fellowship and the NSF grants DMS-1709458 and DMS-2005435. Speck gratefully acknowledges

support from NSF grant DMS-2054184 and NSF CAREER grant DMS-1914537.

MSC2020: primary 35L67; secondary 35L05, 35Q31, 76N10.

Keywords: compressible Euler equations, shock formation, stable singularity formation, wave breaking, vectorfield method,
characteristics, eikonal function, null condition, null hypersurface, null structure.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.


http://msp.org/apde/
https://doi.org/10.2140/apde.2024.17-3
https://doi.org/10.2140/apde.2024.17.831
http://msp.org
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/

832 JONATHAN LUK AND JARED SPECK

1. Introduction

It is classically known — going back to the work of Riemann — that the compressible Euler equations
admit solutions for which singularities develop from smooth initial data. Indeed, such examples can
already be found in the plane symmetric isentropic case. In this case, the compressible Euler equations
reduce to a 2 x 2 hyperbolic system in 1+ 1-dimensions, which can be analyzed using Riemann invariants.
In particular, it is easy to show that simple plane-symmetric solutions — solutions with one vanishing
Riemann invariant — obey a Burgers-type equation, and that a shock can form in finite time. By a shock,
we mean that the solution remains bounded but its first-order partial derivative with respect to the standard
spatial coordinate blows up, and that the blowup is tied to the intersection of the characteristics.

In this article, we prove that a class of simple plane-symmetric isentropic small-amplitude shock-
forming solutions to the compressible Euler equations are stable under small perturbations which break the
symmetry and admit variable vorticity and entropy. In particular, the perturbed solutions develop a shock
singularity in finite time. This provides the details of the argument sketched in [37; 52] and completes the
program that we have initiated (partly joint also with Gustav Holzegel and Willie Wai-Yeung Wong) in
[36; 37; 50; 52].

We will consider the spatial domain' £ =R x T? =R x (R/Z)? and a time interval /. Our unknowns
are the density 0 : I x ¥ — R., the velocity v: I x ¥ — R>, and the entropy s : I x ¥ — R. Relative

2

to the standard Cartesian coordinates (z, x!, x2, x3) on I x R x T2, the compressible Euler equations can

be expressed as

(0; + v99,)0 = —p div v, (1-1)
(3 +v0,)v) = —éaf“aap, j=123, (1-2)
(0 +v0,)s =0, (1-3)

where (from now on) 8"/ denotes the Kronecker delta, divv = 9,v¢ is the Euclidean divergence of v,
repeated lowercase Latin indices are summed over i, j = 1, 2, 3, and the pressure p relates to o and s by
a prescribed smooth equation of state p = p(o, s). In other words, the right-hand side of (1-2) can be
expressed as
—éaf” dap = —ép;gaf“ 3.0 — ép;saf'“ das,
where p., denotes? the partial derivative of the equation of state with respect to the density at fixed s, and
analogously for p..
For the remainder of the paper:

(1) We fix a constant ¢ > 0 and a constant solution (p, vl s) = (0,0,0) to (1-1)—(1-3).
(2) We fix an equation of state p = p(p, s) such that® (3p/d0)(0,0) = 1.

It is only for technical convenience that we chose the spatial topology R x T2. Similar results also hold, for instance, on R°.

ZLater in the paper, we will take the partial derivative of various quantities with respect to the logarithmic density p. If fisa
function of the fluid unknowns, then f., will denote the partial derivative of f* with respect to p when the other fluid variables
are held fixed. Similarly, f.; denotes the partial derivative of f with respect to s when the other fluid variables are held fixed.

3This normalization can always be achieved by a change of variables as long as (dp/d0)(0, 0) > 0; see [36, footnote 19].
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For notational convenience, we define the logarithmic density p = log(o/0) and the speed of sound
c(p, s) =+/dp/do(o, s). We will from now on think of ¢ as a function of (p, s).

We will study perturbations of a shock-forming background solution (Q(pkg), vébkg), S(bkg)) arising from
smooth initial data such that the following hold:

(1) The background solution is plane-symmetric and isentropic, i.e., v(zbkg) = vfbkg) = S(bkg) = 0, and
(O(bkg)> v(lbkg)) are functions only of ¢ and xh,

(2) The background solution is simple, i.e., the Riemann invariant Rgb_k)g), satisfies

P(bkg)
(bkg) . 1
R(_) - U(bkg) - /0 C(p/, 0) dp/ - 0

(3) The background solution is initially compactly supported in an x-interval of length < 28, i.e., outside
g y pactly supp g

this interval, (0(bke), vébkg), Sbkg)) [r=0= (0,0, 0).

(4) Attime 0 (and hence throughout the evolution), the Riemann invariant Rgik)g) =v (1bk ot fop(bkg)c(p/ ,0)dp’

has small < & amplitude.

(bkg)

(+) up to the third order* are bounded above pointwise

(5) Attime O, the Cartesian spatial derivatives of R
by < §®k2) (where 5®%2) is not necessarily small).

(6) The quantity’ Sibkg) (where Sibkg) is not necessarily small) that controls the blowup-time satisfies®

2bkg) - 1 [l{l% 1} (ko) ]
5. = 2 sl ¢ op Pokey O+ @R | >0,
7 ko) _ (kabkg))—l‘

and the solution forms a shock at time (sing) =

The analysis for plane-symmetric solutions can be carried out easily using Riemann invariants. It is then
straightforward to check that there exists a large class of plane-symmetric solutions satisfying (1)—(6)
above.

We now provide a rough version of our main theorem; see Section 4B for a more precise statement.

Theorem 1.1 (main theorem, rough version). Consider a plane-symmetric, shock-forming background
solution (0 kg), vébkg), S(bke)) satisfying (1)—(6) above, where the parameter & from point (4) is small.
Consider a small perturbation of the initial data of this background solution satisfying the following
assumptions (see Section 4A for the precise assumptions):

“4In the one-dimensional case, one only needs information about the data’s first derivative to close a proof of blowup for a
simple plane wave. However, when studying perturbations in three dimensions, we need estimates on these derivatives up to third
order in order to close the proof. For example, the proof of the bound (8-23c) relies on having control of up to these third-order
derivatives (as is provided by (8-20b)—(8-20c)), and we use the bound (8-23c¢) in the proof of Lemma 14.2 as well as in the proof
of the energy estimates in the Appendix.

30ne can check that this rules out the Chaplygin gas, whose speed of sound (after normalization) is given by c(p, s) =exp(—p).
One can also check that for any other equation of state, it is possible to choose ¢ appropriately so that 6* &>o.

Here, [ - ]+ denotes the positive part.

"In the plane-symmetric, isentropic, simple case, R(Tg) satisfies the transport equation 8,72?3}()‘%) + (v(lbk ) +c(P(bkg)))
] 1R(bkg)— 0, and the blowup-time of 91 R &) can easily be computed explicitly by commuting this transport gquation with 91

(+) —
to obtain a Riccati-type ODE in 9; R¢ ke) along the integral curves of d; 4 (v (]bk o) +c(P(bkg)))01-

)
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e The perturbation is compactly supported in a region of x'-length < 26.

o The perturbation belongs to a high-order Sobolev space, where the required Sobolev regularity is

independent of the background solution and equation of state.

o The perturbation is small, where the smallness is captured by the small parameter 0 < € <K 1, and
the required smallness depends on the order of the Sobolev space, the equation of state, and the

parameters of the background solution.
Then the corresponding unique perturbed solution satisfies the following:

(1) The solution is initially smooth, but it becomes singular at a time T(sing), which is a small perturbation

of the background blowup-time (Sibkg))_l.

(2) Defining® R4y =v' + fop c(p’, s) dp’, we have the singular behavior

limsup sup [01R4)| = +o00. (1-4)

1> Ty (11X T

(3) Relative to a geometric coordinate system (t, u, x2, x3), where u is an eikonal function, the solution
remains smooth, all the way up to time Tsng). In particular, the partial derivatives of the solution with

respect to the geometric coordinates do not blow up.

(4) The blowup at time T(sing) is characterized by the vanishing of the inverse foliation density | (see
Definition 2.15) of a family of acoustically null hypersurfaces defined to be the level sets of u.

(5) In particular, the set of blowup-points at time Tsing) is characterized by

{(u,xz,x3) ERxT?: lim sup |81R(+)|(f,ﬁ,£2,i3)=oo}

(F.0.52.5%) > (T

Sing),u,xz,X3)

= {(u, x*, %) € Rx T? : W(Tising) u, X%, x°) = 0},

where |1 R |(T, it, X2, %) denotes the absolute value of the Cartesian partial derivative 3R (4, evalu-

ated at the point with geometric coordinates (f, ii, X2, ¥°).

(6) At the same time, as Tsing) is approached from below, the fluid variables o, vi, s all remain bounded,
as do the specific vorticity 2! = (curlv)' /(0/0) and the entropy gradient S = Vs.

The proof of Theorem 1.1 relies on two main ingredients: (i) Christodoulou’s geometric theory of shock
formation for irrotational and isentropic solutions, in which case the dynamics reduces to the study of
quasilinear wave equations and (ii) a (re-)formulation of the compressible Euler equations as a quasilinear
system of wave-transport equations, which was derived in [50], following the earlier works [36; 37] in the
barotropic’ case. This formulation exhibits remarkable null structures and regularity properties, which in
total allow us to perturbatively control the vorticity and entropy gradient all the way up to the singular

8n higher dimensions or in the presence of dynamic entropy, R () is not a Riemann invariant because its dynamics is not
determined purely by a transport equation. Nonetheless, for comparison purposes, we continue to use the symbol R4 to denote
this quantity.

9A barotropic fluid is such that the equation of state for the pressure is a function of the density alone, as opposed to being a
function of the pressure and entropy.
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time — even though generically, their first-order Cartesian partial derivatives blow up at the singularity.
See Section 1A for further discussion of the proof.
Some remarks are in order.

Remark 1.2. Note that even though the rough Theorem 1.1 is formulated in terms of plane-symmetric
background solutions, we do not actually “subtract off a background” in the proof. See Theorem 4.3 for
the precise formulation.

Remark 1.3 (results building up towards Theorem 1.1).

» Concerning stability of simple plane-symmetric shock-forming solutions to the compressible Euler
equations, the first result was our joint work with G. Holzegel and W. Wong [52], which proved the analog'®
of Theorem 1.1 in the case!! where the perturbation is irrotational and isentropic (i.e., 2 =0, S = 0).

 In[36], we proved the first stable shock formation result without symmetry assumptions for the compress-
ible Euler equations for open sets of initial data that can have nontrivial specific vorticity §2. Specifically,
in [36], we treated the two-dimensional barotropic compressible Euler equations (see footnote 9). One
of the key points in [36] was our reformulation of equations into a system of quasilinear wave-transport
equations which has favorable nonlinear null structures. This allowed us to use the full power of the
geometric vectorfield method on the wave part of the system while treating the vorticity perturbatively.

« In [37], we considered three-dimensional barotropic compressible Euler flow and derived a similar
reformulation of the equations that allowed for nonzero vorticity. In contrast to the two-dimensional case,
the transport equation satisfied by the specific vorticity §2 featured vorticity-stretching source terms (of
the schematic form £2 - 9v). In order to handle the vorticity-stretching source terms in the framework
of [36], we also showed in [37] that §2 satisfies a div-curl-transport system with source terms that are
favorable from the point of view of regularity and from the point of view of null structure. We refer to
Section 1A6 for further discussion of this point.

« To incorporate thermodynamic effects into compressible fluid flow, one must look beyond the family of
barotropic equations of state, e.g., consider equations of state in which the pressure depends on the density
and entropy.'? Fortunately, in [50], it was shown that a similar good reformulation of the compressible
Euler equations holds under an arbitrary equation of state (in which the pressure is a function of the
density and the entropy) in the presence of vorticity and variable entropy. In the present paper, we use
this reformulation to prove our main results; we recall it below as Theorem 5.1. The analysis in [50]
is substantially more complicated compared to the barotropic case, and the basic setup requires the

10We remark that while [52] only explicitly stated a theorem in two spatial dimensions, the analogous result in three (or
indeed higher) dimensions can be proved using similar arguments; see [52, Remarks 1.4,1.11].

U The main theorem in [52] is stated for general quasilinear wave equations. Particular applications to the relativistic
compressible Euler equations in the irrotational and isentropic regime can be found in [52, Appendix B]. It applies equally well
to the nonrelativistic case.

12Incorporating entropy into the analysis is expected to be especially important for studying weak solutions after the shock
(see Section 1B4 for further discussion), since formal calculations [16] suggest that the entropy (even if initially zero) should
jump across the shock hypersurface, which in turn should induce a jump in vorticity.
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observation of some new structures tied to elliptic estimates for £2 and S, such as good regularity and
null structures tied to the modified fluid variables from Definition 2.7.

This paper completes the program described above by giving the analytic details already sketched in
[37; 50]. Chief among the analytic novelties in the present paper are the elliptic estimates for £2 and S at
the top-order; see [37, Sections 1.3, 4.2.7], [50, Section 4.3] and Section 1A6. We also point out that
there are other related works, which we discuss in Section 1B.

Remark 1.4 (blowup and boundedness of quantities involving higher derivatives). For generic pertur-
bations, derivatives of fluid variables other than R (whose blowup was highlighted in (1-4)) can also
blow up. In particular, while the d, and 93 derivatives of the fluid variables are identically O for the
plane-symmetric background solutions, for the perturbed solution, d,v’, say, is generically unbounded at
the singularity. This is because the perturbation changes the geometry of the solution, and the regular
directions no longer align with the Cartesian directions.

On the other hand, there are indeed higher derivatives of the fluid variables that remain bounded up to
the singular time. These include the specific vorticity and the entropy gradient that we already mentioned
explicitly in Theorem 1.1. Moreover, any null-hypersurface-tangential geometric derivatives (see further
discussions in Section 1A) of the fluid variables are also bounded up to the singular time. This is not just
a curiosity, but rather is a fundamental aspect of the proof.

Remarkably, there are additionally quantities, denoted by C and D (these variables were identified
in [50], see (2-5a)—(2-5b)), which are special combinations of up-to-second-order Cartesian coordinate
derivatives of the fluid variables, which remain uniformly bounded up to the singularity (as do their
derivatives in directions tangent to a family of null hypersurfaces); C and D are precisely the modified fluid
variables mentioned in Remark 1.3. The existence of such regular higher-order quantities is not only an
interesting fact, but is also quite helpful in controlling the solution up to the first singularity; see Section 1A.

Finally, as a comparison with our two-dimensional work [36], note that in the two-dimensional case,
we proved that the specific vorticity remains Lipschitz (in Cartesian coordinates) up to the first singular
time. This is no longer the case in three dimensions. Indeed, in the language of this paper, the improved
regularity for the specific vorticity in [36] stems from the fact that in two dimensions, the Cartesian
coordinate derivatives of the specific vorticity §2 coincide with C.

Remark 1.5 (additional information on subclasses of solutions). Within the solution regime we study, we
are able to derive additional information about the solution by making further assumptions on the data.
For instance, there are open subsets of data such that the vorticity/entropy gradient are nonvanishing at
the first singularity, and also open subsets of data such that the fluid variables remain Holder'* C'/3 up to
the singularity. See Section 4B for details.

Remark 1.6 (the maximal smooth development). The approach we take here allows us to analyze the
solution up to the first singular time, and our main results yield a complete description of the set of
blowup-points at that time (see, for example, conclusions (4)—(5) of Theorem 1.1). However, since

13The Holder estimates hold only for an open subset of data satisfying certain nondegeneracy assumptions. They were not
announced in [37; 50]. We were instead inspired by [9; 11] to include such estimates.
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the compressible Euler equations are a hyperbolic system, it is desirable to go beyond our results by
deriving a full description of the maximal smooth development of the initial data, in analogy with [15].
Understanding the maximal smooth development is particularly important for the shock development
problem; see Section 1B4 below.

Our methods, at least on their own, are not enough to construct the maximal smooth development.'*
This is in part because our approach here relies on spatially global elliptic estimates on constant-¢
hypersurfaces; the point is that a full description of the smooth maximal development would require
spatially localized estimates. On the other hand, the recent preprint [1] discovered an integral identity
that allows the elliptic estimates to be localized, and thus gives hope that Theorem 1.1 can be extended to
derive the structure of the full maximal smooth development.

Remark 1.7 (no universal blowup-profile). One of the main advantages of our geometric framework is
that it works for many kinds of singular solutions, not just those exhibiting a specific blowup-profile. In
particular, the solutions featured in Theorem 1.1 do not exhibit a universal blowup-profile. Although we do
not rigorously study the full class of blowup-profiles exhibited by the solutions from Theorem 1.1, the full
class is likely quite complicated to describe. This can already be seen in model case of Burgers’ equation,
where there are a continuum of possible blowup-profiles and corresponding blowup-rates [27] (recall that
we work in the near plane-symmetric regime and our work includes, as special cases, plane-symmetric
solutions, which are analogs of Burgers’ equation solutions). A related issue is that at the time of first
singularity formation, the set of blowup-points can be complicated and/or of infinite cardinality (as one
can already see in the special case of plane-symmetric solutions, viewed as solutions in three dimensions
with symmetry).

Remark 1.8 (the relativistic case). While our present work treats only the nonrelativistic case, it is likely
that the relativistic case can also be treated in the same way. This is because the relativistic compressible
Euler equations also admit a similar reformulation as we consider here, and likewise the variables in the
reformulation also exhibit a very similar null structure [25].

In the remainder of the Introduction, we will first discuss the proof in Section 1A and then discuss some
related works in Section 1B. We will end the introduction with an outline of the remainder of the paper.

1A. Ideas of the proof.

1A1. The Christodoulou theory. The starting point of our proof is the work of Christodoulou [15] on
shock formation for quasilinear wave equations.'> Consider the following model quasilinear covariant
wave equation for the scalar function W: Ugg)W = 0, where the Cartesian component functions g,g are
given (nonlinear in general) functions of W, i.e., g4 = gop (V). Our study of compressible Euler flow in

14Notice that in our earlier result [36] for the isentropic Euler equations in two spatial dimensions, we also only solved the
equations up to the first singular time. However, there is an important difference. In the two-dimensional case, there does not
seem to be a philosophical obstruction in extending [36] to provide a complete description of the maximal smooth development.
In contrast, in the three-dimensional case it seems that ideas in [1] would be needed in a fundamental way.

15St1rictly speaking, [15] is only concerned with the irrotational isentropic relativistic Euler equations. However, its methods
apply to much more general quasilinear wave equations; see further discussions in [30; 48].
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this paper essentially amounts to studying a system of similar equations with source terms and showing
that the source terms do not radically distort the dynamics. This is possible only because the source terms
have remarkable null structure, described below.

A key insight for studying the formation of shocks, going back to [15], is that it is advantageous to
study the shock formation via a system of geometric coordinates. The point is that when appropriately
constructed, such coordinates regularize the problem, which allows one to treat the problem of shock
formation as if it were a standard local existence problem. More precisely, one constructs geometric
coordinates, adapted to the flow, such that the solution remains regular relative to them.!® However,
the geometric coordinates degenerate relative to the Cartesian ones, and the blowup of the solution’s
first-order Cartesian coordinate partial derivatives can be derived as a consequence of this degeneracy.

To carry out this strategy, one must use the Lorentzian geometry associated to the acoustical metric g
(see Definition 2.9). The following geometric objects are of central importance in implementing this
program:

« A foliation by constant-u characteristic hypersurfaces F, (where g~ (du, du) = 0; see (2-13)). The
function u is known as an “acoustic eikonal function”.

« The inverse foliation density (= —1/¢~'(dt, du)), where u~! measures the density of F, with respect
to the constant-# hypersurfaces.

o A frame of vectorfields {L, X, Y, Z}, where {L, Y, Z} are tangent to F,, (with L being its null generator)
and X is transversal to F,; see Figure 1, where we have suppressed the Z-direction.

e {L,X,Y,Z}is a frame that is “comparable” to the Cartesian frame {d;, 91, d2, 93}, by which we mean
the coefficients relating the frames to each other are size O(1).

o However, in the analysis, uniform boundedness estimates are generally available for the derivatives of
quantities with respect to only the rescaled frame elements {L, X =uX,Y, Z}.

The analysis simultaneously yields control of the derivatives of W with respect to the rescaled frame
and gives also quantitative estimates on the geometry. In this geometric picture, the blowup is completely
captured by p — 0. The connection between the vanishing of p and the blowup of some Cartesian
coordinate partial derivative of W can be understood as follows: one proves an estimate of the form
|X V| ~ 1 (which is consistent with the uniform boundedness estimates mentioned above). In view of the
relation X = X, this estimate implies that | X \W| blows up like 1/p as p — 0.

We now give a more detailed description of the behavior of the solution, with a focus on how it behaves
at different derivative levels.

» As our discussion above suggested, at the lower derivative levels, derivatives of quantities with respect
to the rescaled frame are regular, e.g., L'V, X v, YV, ZV, ..., L3X Y, etc. are uniformly bounded.

161t should be emphasized that it is only at the low derivative levels that the solution is regular. The high-order geometric
energies can still blow up, even though the low-order energies remain bounded. The possible growth of the high-order energies is
one of the central technical difficulties in the problem, and we will discuss it below in more detail.
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o As we highlighted above, the formation of the shock corresponds to L — 0 in finite time, and moreover,
the nonrescaled first-order derivative XV blows up in finite time, exactly at points where | vanishes.

o The main difficulty in the proof is that the only known approach to the solution’s regularity theory
with respect to the rescaled frame derivatives that is able to avoid a loss of derivatives allows for the
following possible scenario: the energy estimates are such that the high-order geometric energies might
blow up when the shock forms. This leads to severe difficulties in the proof, especially considering that
one needs to show that the low-order derivatives of the solution remain bounded in order to derive the
singular high-order energy estimates.'’

In [15], Christodoulou showed that the maximum possible blowup-rate of the high-order energies is of
the form u:zp (t), where P is a universal positive constant and w,(#) = min{1, miny, u}. To reconcile
this possible high-order energy blowup with the regular behavior at the lower derivative levels, one is

118

forced to derive a hierarchy of energy estimates of the form, where M, is a universal'® positive integer:

Eng, (1) S 124 180), Engyo1 () SER3@1), En,—2() SEW 31, L, (1-5)

* *

where Ex denotes the energy after N commutations and all energies are by assumption initially of small
size &2. In other words, the energy estimates become less singular by two powers of i, for each descent
below the top derivative level. Importantly, despite the possible blowup at higher orders, all the sufficiently
low-order energies are bounded, which, by Sobolev embedding, is what allows one to show the uniform
pointwise boundedness of the solution’s lower-order derivatives:!'°
Neop— M

Y EN() S (1-6)

N=1
1A2. The nearly simple plane-symmetric regime. Christodoulou’s work [15] concerned compactly sup-
ported?” initial data in R>, a regime in which dispersive effects dominate for a long time before the
singularity formation processes eventually take over. In a joint work with Holzegel and Wong [52], we
adapted the Christodoulou theory to the almost simple plane symmetric regime. The important point
is that the commutators {L, Y, Z}, in addition to being regular derivatives near the singularity, also
simultaneously capture the fact that the solution is “almost simple plane symmetric.” Moreover, the
following analytical considerations were fundamental to the philosophy of the proof in [52]:

17The possible high-order energy blowup has its origins in the presence of some difficult factors of 1/ in the top-order
energy identities, where one must work hard to avoid a loss of derivatives. To close the energy estimates, one commutes the
wave equation many times with the 7, -tangent subset {L, Y, Z} of the rescaled frame. The most difficult terms in the commuted
wave equation are top-order terms in which all the derivatives fall onto the components of {L, Y, Z}. It turns out that due to the
way the rescaled frame is constructed, the corresponding difficult error terms depend on the top-order derivatives of the eikonal
function u. In Proposition A.4, we identify these difficult commutator terms. To avoid the loss of derivatives, one must work
with modified quantities and use elliptic estimates. It is in this process that one creates difficult factors of 1/p.

180ur proof of the universality of My in the presence of vorticity and entropy requires some new observations, described
below (1-11).

19The lowest-order energy Ep (¢) is excluded from this estimate because it is not of small size €
of )v( R(+) .

20More precisely, his work addressed compactly supported irrotational perturbations of constant, nonvacuum fluid solutions.

2 owing to the largeness
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o All energy estimates can be closed by commuting only with tangential derivatives {L, Y, Z} (and
without X). This is a slightly different strategy than we used in our paper [36] in the two-dimensional
case, in which we closed the energy estimates by commuting the equations with strings of tangential
derivatives {L, Y, Z}, as well as strings that contain up to one factor of X. In [36], we also could have
closed the energy estimates by commuting only with tangential derivatives {L, Y, Z}, but we would have
had to work with the modified fluid variable C (which, though fundamental in three dimensions, was not
needed in [36] due to the absence of the vorticity-stretching term) or to treat the Cartesian gradients 0y 2
as independent unknowns.

» After being commuted with (at least one of) L, Y, Z, the wave equation solutions are small. In particular,
we can capture the smallness from “nearly simple plane-symmetric” data without explicitly subtracting
the simple plane-symmetric background solution; see also Remark 1.2.

1A3. The reformulation of the equations. In order to extend Christodoulou’s theory so that it can be
applied to the compressible Euler equations, a crucial first step is to reformulate the compressible Euler
equations as a system of quasilinear wave equations and transport equations. Here, the transport part of
the system refers to the vorticity and the entropy, and the intention is to handle them perturbatively.

As we mentioned earlier, the reformulation has been carried out in [36; 37; 50]. Here we highlight the
main features and philosophy of the reformulation, and explain how we derived it.

(1) To the extent possible, formulate compressible Euler flow as a perturbation of a system of quasilinear
wave equations.

(a) We compute ngi , Ugp, and [l,s, where [, is the covariant wave operator associated to the
acoustical metric (see (2-7)). Then using the compressible Euler equations (1-1)—(1-3), we eliminate
and re-express many terms.

(b) We find that v, p, and s do not exactly satisfy wave equations; instead, the right-hand sides contain
second derivatives of the fluid variables, which we will show to be perturbative, despite their
appearance of being principal order in terms of the number of derivatives.

(2) The “perturbative” terms mentioned above are equal to good transport variables that we identify,
specifically (£2, S, C, D). These variables behave better than what one might naively expect, from the
points of view of their regularity and their singularity strength.

(a) While both £2/ = (curlv)/(0/0) and S = Vs are derivatives of the fluid variables, they play a
distinguished role since they satisfy independent transport equations, and obey better bounds than
generic first derivatives of the fluid variables.

(b) We have introduced the modified fluid variables C' and D (see Definition 2.7), which, up to lower-
order correction terms, are equal to (curl £2)' and As = div S respectively. These quantities satisfy
better estimates than generic first derivatives of £2 and S, which is crucial for our proof.

1A4. The remarkable null structure of the reformulation. In the reformulation of compressible Euler
flow, we consider the unknowns to be all of (v, p, s, £2¢, S, C', D). Note that these include not only the
fluid variables, but also higher-order variables which can be derived from the fluid variables.
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The equations satisfied by these variables take the following schematic form (see Theorem 5.1 for the

precise equations):?!
=]

—

Ue(v, p, ) =0(v, p)-9(v, p) +(£2, 5) - d(v, p) + (C, D), (1-7)
B($2,8)=(£2,S5) -0, p), (1-8)
B(C,D)=0(w,p)-0(8£2,5)+(£2,5)-0(v,p)-d(v,p)+S-S-3(v, p). (1-9)

=] =111

Here, [, is the covariant wave operator associated to the acoustical metric (see (2-7)) and B = 9; + v“9,
is the transport operator associated with the material derivative (cf. (1-1)—(1-3)).

Although it is not apparent from the way we have written it, the system of equations (1-7)—(1-9) has a
remarkable null structure! Importantly, the terms /, /I and /I are g-null forms: when decomposed in the
{L, X, Y, Z} frame, we do not have X(vi, p)-X (v', p) in I and III, nor do we have X (v, p)-X (£2, S) in 1.

Because X (v, p) is the only derivative that blows up (while X (v', p) is bounded), it follows that given a
g-null form Q in the fluid variables (see Definition 8.1 concerning g-null forms), such as Q(dv’, dv/), the
quantity nQ(dv’, dv/) remains bounded up to the singularity, while a generic quadratic nonlinearity Qpaq
would be such that 1Qpaq(dv’, dv/) blows up when u vanishes.

As is already observed in [48], a null form 7 on the right-hand side of the wave equation allows all the
wave estimates in Section 1A1 to be proved. As we will discuss below, the null forms I/ and /II in (1-9)
will also be important for estimating the full system.

1AS. Estimates for the transported variables. To control solutions to the system (1-7)—(1-9), we in
particular need to estimate the transport variables (£2, S, C, D) and understand how they interact with
the wave variables (v, p, s) on the left-hand side of (1-7). Here, we will discuss the estimates at the low
derivative levels. We will discuss the difficult technical issues of a potential loss of derivatives and the
blowup of the higher-order energies in Sections 1A6 and 1A7 respectively.

We begin with two basic — but crucial — properties regarding the transport operator for the compressible
Euler system, which were already observed in [36]:

o The transport vectorfield B is transversal to the null hypersurfaces F,; see Figure 1, where some
integral curves of B are depicted. As a result, one gains a power of p by integrating along B; i.e., for
solutions ¢ to B¢ = §, we have ||¢]lr~ < US| L.

e WUB is a regular vectorfield in the (t,u, x?, x3) differential structure. Thus, if B¢ = § and uF has
bounded {L, Y, Z} derivatives, then ¢ also has bounded {L, Y, Z} derivatives.

We now apply these observations to (1-8) and (1-9):

« Even though d(v, p) blows up as the shock forms, nd (v, p) remains regular. This is because po can be
written as a linear combination of the rescaled frame vectorfields {1 X, L, Y, Z} (see Section 1A1) with

21Here, our notation above the brackets is such that d(v, p) - d(v, p) may contain all of vl ov/, 3vi8p and dpdp. A similar
convention applies for other terms.
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Figure 1. The dynamic vectorfield frame at two distinct points on F;, with the Z-direction
suppressed, and the integral curves of the transport operator B for the specific vorticity
and entropy.

coefficients that are O(1) or O(w). Hence, the above observations imply that (§2, S) and their {L, Y, Z}
derivatives are bounded.

o The null structure and the bounds for the wave variables and (£2, S) together imply that the right-hand
side of (1-9) is O(u~1). Thus, C, D and their {L, Y, Z} derivatives are also bounded.

1A6. Elliptic estimates for the vorticity and the entropy gradient. Despite the favorable structure of
(1-7)—(1-9), there is apparently a potential loss of derivatives. To see this, consider the following simple
derivative count. Suppose we bound (v, p, s) with Ny, + 1 derivatives. Equation (1-7) dictates®? that
we should control (C, D) with Ny, derivatives. If we rely only on (1-8), then we can only bound Ny
derivatives of (£2, §). However, this is insufficient: plugging this into (1-9) and using only transport
estimates, we are only able to control Ny, — 1 derivatives of (C, D), which is not enough.

The key to handling this difficulty is the observation that in fact, C and D can be used in conjunction
with elliptic estimates to control one derivative of 2 and S. This is because up to lower-order terms,
C =~ curl 2 and D ~ div S, while at the same time, by the definitions of 2 and S — precisely that £2 is
almost a curl of a vectorfield and S = Vs is an exact gradient—div £2 and curl S are of lower order in
terms of the number of derivatives. It follows that we can control all first-order spatial derivatives of £2
and §, including C and D, using elliptic estimates.

1A7. L? estimates for the transport variables and the high-order blowup-rate. We end this section with
a few comments on the L2 energy estimates for the transport variables (§2, S) (and (C, D)), with a focus
on how to handle the degeneracies tied to the vanishing of p.

First, due to the eventual vanishing of p and the corresponding blowup of the wave variables, we need
to incorporate L weights into our analysis of the transport variables (§2, S) (and (C, D)). In particular, we

22We use here the fact that inverting the wave operator gains one derivative.
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need to incorporate p weights into the transport equations and energies so that the wave terms appearing
as inhomogeneous terms in the energy estimates for the transport variables are regular. Importantly,
despite the need to rely on p weights in some parts of the analysis, the “transport energy” that we
construct controls a nondegenerate energy flux (i.e., an energy flux without p weights) on constant-u
hypersurfaces F,,. That this energy flux is bounded can be thought of as another manifestation of the
transversality of the transport operator and F,,. More precisely, with X, denoting constant-t hypersurfaces,
we have, roughly, L? estimates of the following form, where PV is an order-N differential operator
corresponding to repeated differentiation with respect to the F,-tangent vectorfields {L, Y, Z}:

sup [PV (2, )72, + sup 1PV (2, 9725,
1'€[0,1) u'€[0,u) ‘ ,

u=u
< data terms + regular wave terms —+ /

1PN (2, )32z, du’. (1-10)
u'=0 "

Here, the nondegenerate energy flux (i.e., the energy along F, on the left-hand side of (1-10), which does
not have a p-weight) allows one to absorb the last term on the right-hand side of (1-10) using Gronwall’s
inequality?? in u (as opposed to Gronwall’s inequality in # which has a loss in ). For the lower-order
energies, the “regular wave terms” are indeed bounded (see (1-6)), which in total allows us to prove that
the transport energies on the left-hand side of (1-10) are also bounded at the lower derivative levels.

Second, since the higher-order energies of the wave variables (v, p, s) can blow up as 1, (¢) — 0 (even
in the absence of inhomogeneous terms; see (1-5)), (1-10) allows for the possibility that the higher-order
energies of the transport variables (£2, S) (and (C, D)) might also blow up. Hence, one needs to verify that
there is consistency between the blowup-rates (with respect to powers of u; ') associated to the different
kinds of solution variables. That is, using (1-10) and the wave energy blowup-rates from (1-5), one needs
to compute the expected blowup-rate of the transport variables and then plug these back into the energy
estimates for the wave variables to confirm that the transport terms have an expected singularity strength
that is consistent with wave energy blowup-rates. See, for example, the proof of Proposition 12.7.

Third, due to issues mentioned in Section 1A6, the transport estimates at the top-order are necessarily
coupled with elliptic estimates. By their nature, the elliptic estimates treat derivatives in all spatial
directions on the same footing. This clashes with the philosophy of bounding the solution with respect to
the rescaled frame (which would mean that derivatives in the ¥ and Z frame directions should be more
regular than those in the X-direction), and it leads to estimates that are singular in p!. To illustrate the
difficulties and our approach to overcoming them, we first note that, suppressing many error terms, we
can derive a top-order inequality of the following form, with d denoting Cartesian spatial derivatives and
A denoting a constant depending on the equation of state:

I/mdPY (2, )12,
t'=t
< CEPUTMARE (1) 4 A / w O IVmIPYr (2, )l 2z, di' +--- . (1-11)

t'=0

B0ur analysis takes place in regions of bounded u width, so that factors of € which arise in our Gronwall estimates can be
bounded by a constant.
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To apply Gronwall’s inequality to (1-11), one must quantitatively control the behavior of the crucial
“Gronwall factor” ftt,,:ot A/u. () dt. A fundamental aspect of our analysis is that p,(f) tends to O
linearly?* in ¢ towards the blowup-time. It follows that one can at best prove an estimate of the form
j;t’/::O p:l @ dt' < log(u*_l)(t) (recall that p,(#) = min{1, miny, 1}, and see Proposition 8.11 for related
estimates). Using only this estimate and applying Gronwall’s inequality to (1-11), we find (ignoring the
error terms *“ - - ) that |9PNer (2, S)[I125,) S &3/ %0y max{O(A). 2M.:=2.8) 1y Notice that unless A is small,
the dominant blowup-rate in the problem would be the one corresponding to these elliptic estimates for
(£2, S), which could in principle be much larger than the blowup-rates corresponding to the irrotational
and isentropic case.?

However, we can prove a better result: we can show that the blowup-rates are not dominated by the top-
order elliptic estimates for the transport variables, but rather by the blowup-rates for the wave variables.?¢
The key to showing this is to replace the estimate (1-11) with a related L? estimate that features weights in
the eikonal function u; see Proposition 11.4. Thanks to the u weights, the corresponding constant A in this
analog of (1-11) can be chosen to be arbitrarily small, and thus the main contribution to the blowup-rate
comes from the wave variables error terms, which are present in the “- - - on the right-hand side of (1-11).
That this can be done is related to the fact that we have good flux estimates for top derivatives of C and D

on F,. We refer to Propositions 11.2, 11.10, and 11.11 for the details.

1B. Related works.

1B1. Shock formation in one spatial dimension. One-dimensional shock formation has a long tradition
starting from [45]. See the works of Lax [34], John [31], Liu [35], and Christodoulou and Raoul Perez
[20], as well as the surveys [12; 24] for details.

1B2. Multidimensional shock formation for quasilinear wave equations. Multidimensional shock for-
mation for quasilinear wave equations was first proven in Alinhac’s groundbreaking papers [3; 4; 5].
Alinhac’s methods allowed him to prove the formation of nondegenerate shock singularities which, roughly
speaking, are shock singularities that are isolated within the constant-time hypersurface of first blowup.
The problem was revisited in Christodoulou’s monumental book [15], which concerned the quasilinear
wave equations of irrotational and isentropic relativistic fluid mechanics. In this book, Christodoulou
introduced methods that apply to a more general class of shock singularities than the nondegenerate ones
treated by Alinhac and, for a large open subset of these solutions, are able to yield a complete description
of the maximal smooth development, up to the boundary. This was the starting point of his follow-up
breakthrough monograph [16] on the restricted shock development problem.

24The linear vanishing rate is crucial for the proof of Proposition 8.11 and for the Gronwall-type estimates for the energies
that we carry out in Proposition 12.7 and in the Appendix. See (14-1) for a precise description of how ., goes to 0.

B1n principle, the largeness of A would not be an obstruction to closing the estimates. It would just mean that the number of
derivatives needed to close the problem would increase in the presence of vorticity and entropy. We refer readers to the technical
estimates in Section A9 for clarification on the role that the sizes of various constants play in determining the blowup-rates in the
problem, as well as the number of derivatives needed to close the proof.

261 other words, our approach yields the same maximum possible high-order energy blowup-rates for the wave variables in
the general case as it does for irrotational and isentropic solutions.
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For quasilinear wave equations, there are many extensions, variations, and simplifications of [15],
some of which adapted Christodoulou’s geometric framework to other solution regimes. See, for instance,
[14; 18; 19; 30; 41; 42; 48; 52].
1B3. Multidimensional shock formation for the compressible Euler equations. Multidimensional singu-
larity formation for the compressible Euler equations without symmetry assumptions was first discovered
by Sideris [47] via an indirect argument. A constructive proof of stable shock formation in a symmetry-
reduced regime for which multidimensional phenomena (such as dispersion and vorticity) are present was
given by Alinhac in [2]. See also [10; 11].

All the works in Section 1B2 on quasilinear wave equations can be used to obtain an analogous
result for the compressible Euler equations in the irrotational and isentropic regime, where the dynamics
reduces to a single, scalar quasilinear wave equation for a potential function. The regime of small,
compact, irrotational perturbations of nonvacuum constant fluid states was treated in Christodoulou’s
aforementioned breakthrough work [15] in the relativistic case, and later in [19] in the nonrelativistic case.

Shock formation beyond the irrotational and isentropic regime was first proven in [36; 37; 50]. These
are already discussed above; see Remark 1.3.

In very interesting recent works [10; 11], Buckmaster, Shkoller and Vicol provided a philosophically
new proof of stable singularity formation without symmetry assumptions in three dimensions under
adiabatic equations of state in a solution regime with vorticity and/or dynamic entropy for initial data such
that precisely one singular point forms at the first singular time; these are analogs of the nondegenerate
singularities that Alinhac studied [3; 4; 5] in the case of quasilinear wave equations. Moreover, in their
regime (compare with Remark 1.7), they proved that the singularity is a perturbation of a self-similar
Burgers shock. See also the two-dimensional precursor work [9] in symmetry, and the recent work [7],
which, in two dimensions in azimuthal symmetry, constructed a set of shock-forming solutions whose
cusp-like spatial behavior at the singularity is unstable (nongeneric).

1B4. Shock development problem. In the one-dimensional case, the theory of global solutions of small
bounded variation (BV) norms [6; 28] allows one to study solutions that form shocks, as well as the
subsequent interactions of the shocks in the corresponding weak solutions. In higher dimensions, the
compressible Euler equations are ill-posed in BV spaces [44]. Nonetheless, in two or three dimensions,
one still hopes to develop a theory that allows one to uniquely extend the solution as a piecewise smooth
weak solution beyond the first shock singularity and to prove that the resulting solution has a propagating
shock hypersurface. This is known as the shock development problem.

Even though the shock development problem for the compressible Euler equations in its full generality
is open in higher dimensions, it has been solved under spherical symmetry in three dimensions, or in
azimuthal symmetry in two dimensions. See [18; 55] and, most recently, [8].

In the irrotational and isentropic regime, the restricted shock development problem was solved in
the recent monumental work [16] of Christodoulou without any symmetry assumptions. Here, the word
“restricted” means that the approach of [16] does not exactly construct a weak solution to the compressible
Euler equations, but instead yields a weak solution to a closely related hyperbolic PDE system such
that the solution was “forced” to remain irrotational and isentropic. Nonetheless, this gives hope that
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under an arbitrary equation of state for the compressible Euler equations in three dimensions, one could
construct a unique weak solution with a propagating shock hypersurface, starting from the first singular
time exhibited in Theorem 1.1. To solve this problem would in particular require extending the ideas in
[16] beyond the irrotational and isentropic regime. This is an outstanding open problem.

1BS. Other singularities for the compressible Euler equations. It has been known since [29; 46] that the
compressible Euler equations admit self-similar solutions. Recently, this has been revisited by Merle,
Raphaél, Rodnianski and Szeftel [39] to show that singularities more severe than shocks can arise in three
dimensions starting from smooth initial data. See also [40; 38] for some spectacular applications.

1B6. Singularity formation in related models. For shock formation results concerning some other multi-
speed hyperbolic problems, see [49; 51] by the second author.

Interestingly, there are also nonhyperbolic models with stable self-similar blowup-profiles modeled on
a self-similar Burgers shock. Examples include the Burgers equation with transverse viscosity [23], the
Burgers—Hilbert equations [54], and the fractal Burgers equation [13], as well as general dispersive or
dissipative perturbations of the Burgers equation [43]. See also [21; 22].

1B7. Other works. The framework we introduced in [36; 37; 50] is useful in other low-regularity settings.
See for example results on improved regularity for vorticity/entropy in [25], and results on local existence
with rough data in [26; 53; 56].

1C. Structure of the paper. The remainder of the paper is structured as follows.

Sections 2—4 are introductory sections. We introduce the basic setup in Section 2, and we define the
norms and energies in Section 3. The setup is similar to the setups in [36; 52]. Then in Section 4, we
state our precise assumptions on the initial data and give a precise statement of our main results, which
we split into several theorems and corollaries.

In Section 5, we recall the results of [50] on the reformulation of the equations, which is important for
the remainder of the paper.

The bulk of paper is devoted to proving the main a priori estimates, which we state in Section 6 as
Theorem 6.3. The proof of Theorem 6.3, which we provide in Section 14, relies on a set of bootstrap
assumptions that we also state in Section 6. Next, after an easy (but crucial) finite-speed-of-propagation
argument in Section 7, in Section 8, we cite various straightforward pointwise and L*° estimates for
geometric quantities found in [52], and we complement these results with a few related ones that allow us
to handle the transport variables.

We then turn to the main estimates in this paper. In Section 9, we carry out the transport estimates,
specifically L* estimates and energy estimates, for §2, S and their derivatives. In Section 10, we prove
analogous transport estimates for C, D, and their derivatives, except we delay the proof of the top-order
estimates until the next section. In Section 11, we derive the top-order estimates for C and D, which, as
we described in Section 1A7, requires elliptic estimates in addition to transport estimates. In total, these
estimates for the transport variables can be viewed as the main new contribution of the paper.

Next, in Section 12, we derive energy estimates for the fluid wave variables. For convenience,
we have organized the wave equation estimates so that they rely on an auxiliary proposition, namely



THE STABILITY OF SIMPLE PLANE-SYMMETRIC SHOCK FORMATION 847

Proposition 12.1, that provides estimates for solutions to the fluid wave equations in terms of various
norms of their inhomogeneous terms, which for purposes of the proposition, we simply denote by &. To
prove the final a priori energy estimates for the wave equations, which are located in Proposition 12.7,
we must use the bounds for & that we obtained in the previous sections, including the bounds for the
transport variables. Since the auxiliary result Proposition 12.1 does not rely on the precise structure
of &, it can be proved using essentially same arguments that have been used in previous works on shock
formation for wave equations. For this reason, and to aid the flow of the paper, we delay the proof of
Proposition 12.1 until the Appendix.

Next, in Section 13, we use the energy estimates to derive L> estimates for the wave variables. In
particular, these estimates yield improvements of the L bootstrap assumptions that we made in Section 6.

In Section 14, we combine the results of the previous sections to provide the proof of the main a priori
estimates as well as the main theorems and their corollaries.

Finally, in the Appendix, we provide the details behind the proof of the auxiliary result Proposition 12.1.
The proof relies on small modifications to the proofs of [36; 52] that account for the third spatial dimension
(note that three dimensions wave equations were also handled in [15; 48]), as well as the presence of the
inhomogeneous terms & in the wave equations.

2. Geometric setup

In this section, we construct most of the geometric objects that we use to study shock formation and
exhibit their basic properties.

2A. Notational conventions and remarks on constants. The precise definitions of some of the concepts
referred to here are provided later in the article.

» Lowercase Greek spacetime indices «, 8, etc. correspond to the Cartesian spacetime coordinates (see
Section 2C) and vary over 0, 1, 2, 3. Lowercase Latin spatial indices a,b, etc. correspond to the Cartesian
spatial coordinates and vary over 1, 2, 3. Uppercase Latin spatial indices A, B, etc. correspond to the
coordinates on ¢;, and vary over 2, 3. All lowercase Greek indices are lowered and raised with the

1

acoustical metric g and its inverse g~ ', and not with the Minkowski metric. We use Einstein’s summation

convention in that repeated indices are summed.

[T3R1]

« By “-” we denote the natural contraction between two tensors. For example, if & is a spacetime one-form

and V is a spacetime vectorfield, then & -V = &,V

o If £ is an ¢, ,-tangent one-form (as defined in Section 2J), then &% denotes its g-dual vectorfield, where g
is the Riemannian metric induced on ¢, , by g. Similarly, if  is a symmetric type-() ¢ ,-tangent tensor,
then £* denotes the type—(i) £; ,-tangent tensor formed by raising one index with g_l and £* denotes
the type- (é) £, ,-tangent tensor formed by raising both indices with g‘l.

e If V is an ¢, ,-tangent vectorfield, then V, denotes its g-dual one-form.

o If V and W are vectorfields, then Viy = VEW, = g VEWP.
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o If & is a one-form and V is a vectorfield, then &y = &,V We use similar notation when contracting
higher-order tensorfields against vectorfields. For example, if & is a type-(g) tensorfield and V and W are
vectorfields, then Eyw = EpV* We.

» Unless otherwise indicated, all quantities in our estimates that are not explicitly under an integral are
viewed as functions of the geometric coordinates (¢, u, x2, x3). Unless otherwise indicated, integrands
have the functional dependence established below in Definition 3.1.

e [Q1, 02]1= 0107 — 0,0 denotes the commutator of the operators O and Q5.

e A < B means that there exists C > 0 such that A < CB. A ~ B means that A < B and B < A.
A = O(B) means that |A| < |B].

o The constants C are free to vary from line to line. These constants, and implicit constants as well, are
allowed to depend on the equation of state, the background 0, the maximum number of times Ny that we
commute the equations, and the parameters &, & and d;' from Section 4A.

o Constants C, are also allowed to vary from line to line, but unlike C, the C, are only allowed to depend
on the equation of state and the background 9.

« In the Appendix, there appear absolute constants M,,s, which can be chosen to be independent of the
equation of state and all other parameters in the problem.

 For our proof to close, the high-order energy blowup-rate parameter M, needs to be chosen to be large
in a manner that depends only on My; hence, M, can also be chosen to be an absolute constant.

o The integer Ny, denotes the maximum number of times we need to commute the equations to close
the estimates. For our proof to close, Ny, needs to be chosen to be large in a manner that depends only
on M,. Nip could be chosen to be an absolute constant, but we choose to think of it as a parameter that
we are free to adjust so that we can study solutions with arbitrary sufficiently large regularity.

« For our proof to close, the data-size parameters & and € must be chosen to be sufficiently small, where
the required smallness is clarified in Theorem 6.3. We always assume that &!/2 < &.

e A <, B means that A < C, B, with C, as above. Similarly, A = O,(B) means that |A| < C,|B]|.
« For example, 5.2 = O(1), 2+ &+ &2 = O,(1), && = O(&), C,&* = O,(&), N!'¢& = O(¢), and
C& = O(1). Some of these examples are nonoptimal; e.g., we actually have &é = O, (€).

e | -] and [ -] respectively denote the standard floor and ceiling functions.

2B. Caveats on citations. Before we introduce our geometric setup, we should say that our setup is
essentially the same as that in [36; 52], except for some small differences. We will therefore cite whenever
possible the computations in [36; 52], except we will need to take into account the following differences:

o The work [52] allows for very general metrics, while in the present paper, we are only concerned with
the acoustical metric for the compressible Euler equations. In citing [52], we sometimes adjust formulas
to take into account the explicit form of the Cartesian metric components g, stated in Definition 2.9.
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o The papers [36; 52] concern two spatial dimensions (with ambient manifold ¥ = R x T), while in the
present paper, we are concerned with three spatial dimensions (with £ = R x T?).

« In [52], the metric components g,g were functions of a scalar function W, as opposed to the array 7
(defined in (2-3)). For this reason, we must make minor adjustments to many of the formulas from [52]
to account for the fact that in the present article, W is an array.

In all cases, our minor adjustments can easily be verified by examining the proof in [52].

2C. Basic setup and ambient manifold. We recall again the setup from the Introduction. We will work
on the spacetime manifold / x ¥ (with I € R a time interval and ¥ = R x T? the spatial domain). We fix
a standard Cartesian coordinate system {x*}y—0.12,3 on I x X, where t = x% € I is the time coordinate
and x = (x', x%, x3) € R x T? are the spatial coordinates.?” We use the notation {0q}a=0,1,2,3 (or 9y = dp)
to denote the Cartesian coordinate partial derivative vectorfields.

In this coordinate system, the plane-symmetric solutions are exactly those whose fluid variables are
independent of (x2, x3).

2D. Fluid variables and new variables useful for the reformulation. As we already discussed in
Section 1A3, at the heart of our approach is a reformulation of the compressible Euler equations in terms
of new variables. We introduce these new variables in this subsection; see Definitions 2.3 and 2.7.

The basic fluid variables are (o, v', s) (see the Introduction). We fix an equation of state p = p(o, )
and a constant ¢ > 0 such that p.,(0,0) = 1.

Definition 2.1. Define the logarithmic density p and the speed of sound c(p, s) by

0
p=log(§), c(p,5) =/ (0, 5).
0 do

Remark 2.2. As is suggested by our notation, we will consider c(p, s) as a function of (p, s). The
normalization of p., that we stated above is equivalent to

c(0,0)=1. 2-1)
Definition 2.3 (the fluid variables arrays).

(1) Define the almost Riemann invariants®® R+, as follows (recall Definition 2.1):

P
Rexy =v' £ F(p,s), F(p,S)i/ c(p’,s)dp’. (2-2)
0

2TWhile the coordinates x2, x3 on T2 are only locally defined, the corresponding partial derivative vectorfields d,, d3 can be

extended so as to form a global smooth frame on T2. Similar remarks apply to the one-forms dx?, dx3 These simple observations
are relevant for this paper because when we derive estimates, the coordinate functions x2, x3 themselves are never directly
relevant; what matters are estimates for the components of various tensorfields with respect to the frame {9;, 1, 9>, 93} and the
basis dual coframe {dt¢, dxl, dxz, dx3}, which are everywhere smooth.

ZSR(i) coincide with the well-known Riemann invariants in the plane-symmetric isentropic case. Even though they are no
longer “invariant” in our case, they are useful in capturing smallness.
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(2) Define the array of wave variables:*
U= (W), Wy, W3, Wy, Ws) = (Rep), Ry, 02, 0%, 5). (2-3)

Remark 2.4. We sometimes use the simpler notation W in place of U when there is no danger of
confusion. At other times, we use the notation W to denote a generic element of W. The precise meaning
of the symbol W will be clear from context.

Remark 2.5 (clarification on our approach to estimating p and v'). Recall that we have introduced R«
to allow us to capture the fact that our solutions are perturbations of simple plane waves (for which
only R4 is nonvanishing). In the one-dimensional isentropic case, {R(4), R(~)} can be taken to be
the unknowns in place of {p, v'}. A similar remark holds in the present three-dimensional case as well,
provided we take into account the entropy. Specifically, from (2-1) and Definition 2.3, it follows that
vl = %(R(H +R()), and that when p, v!, and s are sufficiently small (as is captured by the smallness
parameters & and € described at the beginning of Section 4A), we have (via the implicit function theorem)
P=Rup) —R))- F (Rt —R(~), s), where F is a smooth function. This allows us to control p and v’
in terms of R(4), R(~), and s. Throughout the article, we use this observation without explicitly pointing
it out. In particular, even though many of the equations we cite explicitly involve p and v', it should be
understood that we always estimate these quantities in terms of the wave variables R (), R(~), and s,
which are featured in the array (2-3).

Definition 2.6 (Euclidean divergence and curl). Denote by° div and curl the Euclidean spatial divergence
and curl operator. That is, given a X,;-tangent vectorfield V = V“9,, define

divV =8,V (curl V) = €450, V7, (2-4)
where €;, is the fully antisymmetric symbol normalized by €1o3 = 1.
Definition 2.7 (the higher-order variables).
(1) Define the specific vorticity to be the X,-tangent vectorfield with the Cartesian spatial components
i . (curl )’ (curl )’

0/c  exp(p)
(2) Define the entropy gradient to be the X;-tangent vectorfield with the Cartesian spatial components

St = s,
(3) Define the modified fluid variables by
' = exp(—p)(curl 2)! +exp(=3p)c 22 598, — exp(—3p)c 222 3,0 s!,  (2-5a)
0 0
D =exp(—2p) div S —exp(—2p) S99, p. (2-5b)

We think of C as a X,-tangent vectorfield with Cartesian spatial components given by (2-5a).

29Throughout, we consider U as an array of scalar functions; we will not attribute any tensorial structure to the labeling
index : of W, besides simple contractions, denoted by ¢, corresponding to the chain rule; see Definition 2.13.
30Thjs is in contrast to djv; see Definition 2.33.
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2E. The acoustical metric and related objects in Cartesian coordinates. Hidden within compressible
Euler flow lies a geometric structure captured by the acoustical metric, which governs the dynamics of
the sound waves. We introduce in this subsection the acoustical metric g in Cartesian coordinates.

Definition 2.8 (material derivative vectorfield). We define the material derivative vectorfield as follows
relative to the Cartesian coordinates:

B =3, 4 v°d,. (2-6)

Definition 2.9 (the acoustical metric). Define the acoustical metric g (in Cartesian coordinates) by

3
g=—dit®dt+c 7Y (dx* —v*di) ® (dx* — v dt). (2-7)

a=1

The following lemma follows from straightforward computations.

Lemma 2.10 (the inverse acoustical metric). The inverse of the acoustical metric g from (2-7) can be

expressed as
3

g'=-BR®B+*) 3,®0,. (2-8)

a=1
Remark 2.11 (closeness to the Minkowski metric). In our analysis, v and ¢ — 1 will be small, where
the smallness is captured by the parameters & and € described at the beginning of Section 4A. Recalling
(2-7), we see that g will be L*°-close to the Minkowski metric. It is therefore convenient to introduce the

decomposition

(small)

Zap (W) = mqp +8up (B),  mp = diag(—1,1,1,1), (2-9)

where m is the Minkowski metric and g(sm‘lu)(\ll) is a smooth function of W such that
g (B =0)= (2-10)

Definition 2.12 (\fJ—derivatives of ggp). Fora, $=0,...,3and1=1,...,5, we define

Gly(D) = ?I,ga,s(\m Gap = Gap(B) = (GLy (D), G24(F), Gy (W), GL4(D), G34(9)). (2-11)

For each fixed 1 € {1, ..., 5}, we think of {Gaﬂ}a p=0,...,3» as the Cartesian components of a spacetime

tensorfield. Similarly, we think of {Gaﬂ}a p=0,..,3 as the Cartesian components of an array-valued

.....

spacetime tensorfield.

Definition 2.13 (operators involving \ff). Let Uy, U,, V be vectorfields. We define
5
VU = (VUL VU, VU3, VI, V), Gup,o VI =Y Gl UtUS VY, (2-12)
1=1
We use similar notation with other differential operators in place of vectorfield differentiation. For
example, Gy,y, © A\TI = 2,5:1 GoUY UfA\IJ, (where A is defined in Definition 2.33).
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2F. The acoustic eikonal function and related constructions. To control the solution up to the shock,
we will crucially rely on an eikonal function for the acoustical metric.

Definition 2.14 (acoustic eikonal function). The acoustic eikonal function (eikonal function for short) u
solves the eikonal equation initial value problem

(g H*Pdudgu =0, du>0, ul—o=6—x', (2-13)
where & > 0 is the constant controlling the initial support (recall Theorem 1.1).

Definition 2.15 (inverse foliation density). Define the inverse foliation density p by
) -1
S =

(&P (V)dut dpu

> 0. (2-14)

Note that 1/pL measures the density of the level sets of u relative to the constant-time hypersurfaces %;.
For the data that we will consider, we have p [x,~ 1. When p vanishes, the level sets of u intersect and,
as it turns out, maxy=0,1,2,3 |0 #| and maxy=o.1,2.3 |94 R(+)|, blow up.

The following quantities, tied to W, play an important role in our description of the singular behavior
of our high-order energies.

Definition 2.16. Define y,(z, u) and p,(¢) by’!
e (t, w) = min{1, min u(z, ")}, () ﬁmin{l,n%in w}.
u'<u t

2G. Subsets of spacetimes.

Definition 2.17 (subsets of spacetime). For 0 <¢" and 0 < «/, define

Sy ={t,x) eERx (RxT? |t=1), (2-152)

Y, x) eRx (RxTH) [1=1/, 0<u(t,x) <u'}, (2-15b)

Fuo={t,x) eRx (RxT?) |u(t,x)=u'}, (2-15c¢)

FLo={t,x) eRx RxT?)|0<t<t, ut,x)=u}, (2-15d)

b =F NS4 ={(t,x) eRx RxT?) |t =1, u(t,x)=u}, (2-15¢)

My = U Fin{(t,x) eRx (RxT?)|0<r <t} (2-15f)
uel0,u’]

LR I3

We refer to the ¥; and X as “constant time slices,” the 7, and F! as “null hyperplanes,” “null

<

hypersurfaces,” “characteristics,” or “acoustic characteristics,” and the ¢, ,, as “tori.” Note that M, , is
“open-at-the-top” by construction.

31By definition, p, (¢, #) > p(¢) for all u € R. Note that by the localization lemma (Lemma 7.1) we prove below, we have
W (1) = W (2, Up). In most of the proof, it suffices to consider the function ., (¢) without considering 1, (¢, u). The more refined
definition for . (¢, u) will only be referred to in the Appendix, so that the formulas take the same forms as their counterparts in
[36; 52].
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— >

1
Figure 2. The spacetime :egieorﬂf{ and various subsets. The (unlabeled and uncolored) flat
front and back surfaces should be identified.
2H. Important vectorfields, the rescaled frame, and the nonrescaled frame.
Definition 2.18 (important vectorfields). (1) Define the geodesic null vectorfield by
LiGeoy = —(87")" dqu. (2-16)
(2) Define the rescale null vectorfield (recall the definition of u in (2-14)) by
L = L Geo)- (2-17)
(3) Define X to be the unique vectorfield that is X,-tangent, g-orthogonal to the ¢; ,, and normalized by
gL, X)=-—1. (2-18)
Define the “rescaled” vectorfield X by
X = uX. (2-19)

(4) Define Y and Z respectively to be the g-orthogonal projection’? of the Cartesian partial derivative
vectorfields d, and 93 to the tangent space of ¢; ,, i.e.,

Y=0,—g(0, X)X, Z=03—g(d, X)X. (2-20)

(5) We will use vectorfields in &2 = {L, Y, Z} for commutation, and we therefore refer to them as
commutation vectorfields. An element of &2 will often be denoted schematically by P (see also
Definition 3.4).

We collect some basic properties of these vectorfields; see [52, (2.12), (2.13) and Lemma 2.1] for
proofs.

3270 see that Y and Z are tangent to £, one can use (2-18), (2-23), the fact that B is g-orthogonal to X, and the fact that 9;
is tangent to X;. Alternatively, see (2-30b).
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Lemma 2.19 (basic properties of the vectorfields).
(1) L(Geo) is geodesic and null, i.e.,
8(L(Geo)> L(Geo)) =0, DL geo) L (Geo) = 0,
where 9 is the Levi-Civita connection associated to g.

(2) The following identities hold:

Lu=0, Lt=L"=1, Xu=1, Xr=X"=0, (2-21)

gX.X) =1, ¢X, )= gl X)=-1, gL X)=-n (2-22)

(3) The vectorfield B (see (2-6)) is future-directed, g-orthogonal to %,, and is normalized by g(B,B)=—1.
Moreover,

B=20;,+v'9, =L+ X, (2-23)

B, =52, (2-24)

where 85 is the Kronecker delta.
21. Transformations. Having introduced various vectorfields in Section 2H, we now derive some related
transformation formulas that we will use later on.

Definition 2.20 (coordinate vectorfields in geometric (¢, u, x%, x3)-coordinates). Define (7;, 3., #2, #3)
to be the coordinate partial derivative vectorfields in the geometric (¢, u, x2, x*)-coordinate system.

Definition 2.21 (Cartesian components of geometric vectorfields).

(1) Define L’ and X' to be the Cartesian i-th components of L and X respectively. (Note L' + X' —v' =0;
see (2-23).)

(2) Define®* L (smany and X smany by

1 . 1 2 . 2 3 . 3

Lismany =L" = 1. Ligmany = L% Ligmany = L7, (2-25a)
1 . 1 2 . 2 3 . 3

Xsmay =X + 1, Xinany =X Xigman = X~ (2-25b)

Lemma 2.22 (relations between {0y }o=0,1.2,3 and {L, X, Y, Z}). The following identities hold:

3 =0 =L+X—v'd,, (2-26a)
_ X? X3

h=c ZXIX—FY—FZ, (2-26b)

Hh=Y~+C2XHX, B=Z+(@CX>X. (2-26¢)

Proof. Equation (2-26a) is simply a restatement of (2-23), and (2-26¢) follows from (2-20) and g(d4, X) =
c72XA for A =2, 3 (see (2-7)). Finally, to obtain (2-26b), we write X = X“d, and use (2-26¢) to obtain

1 X? X3
0= 27 [l = () + QO = 7Y = 5 7.
This then implies (2-26b) since Y o _,(X%)? = ¢ by g(X, X) = 1 (see (2-22)) and (2-7). O

33The notation is suggestive of the fact that these quantities are of size O(&) (and hence small).
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Lemma 2.23 (relation between {d,} and {L, X, Y, Z}). The following identities hold, where repeated
capital Latin indices are summed over A =2, 3:

L=+ L%a, X =, +uX49,, (2-27a)

Y =(1—-c (X))t — XX, Z=(1—-cX))I—c?X°X°Fh. (2-27b)
Proof. Equation (2-27a) is an immediate consequence of (2-21) (and (2-19)).

To derive the first equation in (2-27b), simply note that Yx> =1—¢"2(X?)? and Yx3 = —cX?X?> by

(2-26¢), and that Yt = Yu = 0 since Y is ¢, ,-tangent. The second equation in (2-27b) follows from
similar reasoning. U

Lemma 2.24 (relation®* between {9, }4=1.2.3, {#u, #2, 93}, and (X, Y, Z}). The following identities hold:

2 2 3
ue 9 X , X
du =50 =X —uc? ap! T s (2-28a)
x? X2\ x2x3
X3 X2X3 X3 2
&13:83—?81 (X1)2Y+{1+<F) }Z. (2-28c)
Proof. 1t suffices to derive the identities
2 2 3
_ ket X X

it is straightforward to see that the first identities in each of (2-28a)—(2-28c) follow from (2-29); the second
identities in (2-28a)—(2-28c) then follow from the first ones and Lemma 2.22. To prove (2-29), we invert
(2-27b) to obtain (with the help of the identity Zi: 1 (X @)2 = ¢2, which follows from (2-22) and (2-7)):

2 xX3\? xX2x3 xX2x3 2 X2\?
= {<X1>2 - (F) }” il Bt { X2~ (F) }Z

On the other hand, by (2-26¢), Yx! = —c72X2X! and Zx' = —¢72X3X". Hence,

Jox! = —
Plugging back into the second identity in (2-27a), we obtain

. A 3 XA)Z [J.Cz
Fux! =pux! — Z uXAgax! = px' + Z =T
where we again used Z?:l(X’)2 =2 U

34We could also obtain #; = 9, + (L' + (X2L2+ X3 L3) /X1)07. Since this will not be explicitly needed, we will not prove it.
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2J. Projection tensorfields, 6(frame), and projected Lie derivatives.

Definition 2.25 (projection tensorfields). We define the X, projection tensorfield® IT and the ¢, , projec-
tion tensorfield Il relative to Cartesian coordinates as

HVM = CSUM + BVBM = 8UM - BUOLM - (SVOXMa (2-303)
MM =8 +X,LF+L,(L*+X") =8/ —8 L'+ L, X" (2-30b)

In (2-30a)—(2-30b), 8,/ is the standard Kronecker delta. The last equalities in (2-30a) and (2-30b) follow
from (2-23)—(2-24).

Definition 2.26 (projections of tensorfields). Given any type- (’Z ) spacetime tensorfield &, we define its
3, projection I1¢ and its ¢; , projection J1§ as

(A ESTRIES | WARERS 1 Pl s NUPERS o HF i (2-31a)
(PEYLLm = LAt gL g By DBt (2-31b)

We say that a spacetime tensorfield & is X;-tangent (respectively ¢; ,-tangent) if [1& = & (respectively
if 1€ = &). Alternatively, we say that & is a X, tensor (respectively ¢; , tensor).

Definition 2.27 (¢, , projection notation). If & is a spacetime tensor, then ¢ = JI¢.
If & is a symmetric type- ((2)) spacetime tensor and V is a spacetime vectorfield, then &, = JI(Ey),
where &y is the spacetime one-form with Cartesian components &,,V®, (v =0, 1, 2, 3).

Remark 2.28 (clarification of the symbols (,, #,,, @2, #3)). We caution that the coordinate partial deriva-
tive vectorfields (d;, d,, @2, #3) from Definition 2.20 are not ¢, , projections of other vectorfields; i.e., for
(@;, #u, 32, 33), we are not using the “slash conventions” of Definition 2.27.

Throughout, Ly & denotes the Lie derivative of the tensorfield & with respect to the vectorfield V. We
often use the Lie bracket notation [V, W] = Ly W when V and W are vectorfields.

Definition 2.29 (%;- and ¢; ,-projected Lie derivatives). If & is a tensorfield and V is a vectorfield, we
define the X;-projected Lie derivative Ly & and the ¢, ,-projected Lie derivative £y & as

Ly&=NLyE, LyE=TILyE. (2-32)
Definition 2.30 (components of G relative to the nonrescaled frame). We define
Girame) = {GL. Grx. Gxx. G - Gx G (2-33)
where éaﬂ is defined in (2-11).

Our convention is that derivatives of é(ﬁ-ame) form a new array consisting of the differentiated compo-
nents. For example,

¢Lé(frame) = {L(éLL)’ L(éLX)s cees ﬁL@},

351 (2-30a), we have corrected a sign error that occurred in [52, Definition 2.8].
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where .
L(Gr1) ={L(G};),L(G7}), ..., L(G] )},
L1(Gy) = L (G LG, - L (G},
etc.

2K. First and second fundamental forms and covariant differential operators.

Definition 2.31 (first fundamental forms). Let I1 and I1 be as in Definition 2.27. We define the first
fundamental form g of %, and the first fundamental form ¢ of ¢, , as

g=1Hg, g=1"Ng. (2-34)
We define the inverse first fundamental forms by raising the indices with g=!:
@™ =@ " e ) gap. @M =@ g (2-35)

where 8 is the Riemannian metric on %; induced by g, while ¢ is the Riemannian metric on ¢; ,, induced
by g. Simple calculations imply that (g_l)’“"gav =11,/ and (g_l)’“"gw =/

Lemma 2.32 (identities for induced metrics). In the (¢, u, x>, x3)-coordinate system, we have

HZCZ 3 XA B A 3 ) YA xB ) )
EZWM@CZ”_”Z(XUZ(‘” ®dutdu@dx*)+¢, g= ) ¢ @ap+ oy 3 @
A=2 A,B=2
Moreover,

3
gl= ) (M —X"XP) @
A,B=2
Proof. The identities for g and g follow easily from Lemma 2.24 and the fact that g;; = 72, ; in Cartesian
coordinates (see (2-7)). The identity for gfl follows from inverting the matrix_(g Ap)A.B=2,3 and using
the identity 21'3:1 (X")?% = ¢2, which follows from the first identity in (2-22) and (2-7). O

Definition 2.33 (differential operators associated to the metrics).
* 2 denotes the Levi-Civita connection of the acoustical metric g.
o Y denotes the Levi-Civita connection of g

o If f is a scalar function on ¢, ,, then d f =V f = J12 f, where 2 f is the gradient one-form associated
to f.
o If & is an ¢, ,-tangent one-form, then djv¢ is the scalar function dvé = g_l -YE.

o Similarly, if V is an ¢, ,-tangent vectorfield, then dwV = g_l -YV,, where V, is the one-form g-dual
to V.

o If & is a symmetric type- (g) £; ,-tangent tensorfield, then djvé is the £, ;,-tangent one-form djvé = g‘l VE,
where the two contraction indices in Y&, correspond to the operator ¥ and the first index of &..

e A= g‘l - ¥? denotes the covariant Laplacian corresponding to ¢.
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2L. Ricci coefficients.
Definition 2.34 (Ricci coefficients).
(1) Define the second fundamental form k of ¥, and the null second fundamental form x of £, , as
k=3Lpg, X=3LLg- (2-36)
(2) Define C to be the ¢; ,-tangent one-form whose components are given by
) =873, L. X) = 'g(7,L. X), A=2.3. (2-37)
(3) Given any symmetric type- ((2)) ¢, 4-tangent tensorfield &, define its trace by
try &= (¢~ )P Eup.

Lemma 2.35 (useful identities for the Ricci coefficients). The following identities hold:

X = 8L ® (@x") + LG o LY + Lg¥ ® G, — LG, @4V, (2-38a)
tyX = garg (ALY @ @)’} +1¢7" - Go LU, (2-38b)
k=10 GoXT+1Go LY —1G, @d¥ - V&G — 10y 04V -1V @Gy.  (2-380)
C=—1u'G o XU+ LGy o LU — LG x0dV — LGxxodV. (2-38d)

Proof. This is the same as [52, Lemmas 2.13, 2.15] except for small modifications incorporating the third
dimension. U

2M. Pointwise norms. We always measure the magnitude of ¢, ,, tensors®’ using g

Definition 2.36 (pointwise norms). For any type- ('Z) £, tensor ’,fl‘.'.'.}fi”z, we define

8= R+ Ry, @ R 239

2N. Transport equations for the eikonal function quantities. The next lemma provides the transport

equations that, in conjunction with (2-38b), we use to estimate the eikonal function quantities p, Lig, .,
and try X below top order.

Lemma 2.37 ([52, Lemma 2.12] the transport equations satisfied by p and Lésman)). The following
transport equations hold:

LI_,L:%éLLOX\i’—%uéLLOL‘fJ—LLéLXoLE’, (2‘40)
LL =1Gr o (LO)X — G o (L) -de' + 1Grr o (@) - dx'. (2-41)

- <& - <&
36Here, G @4V = 215:1 %} ®d¥,;, and similarly for the other terms involving ®.
3TNote that in contrast, for ¥; tensors, we measure their magnitude using the Euclidean metric or an equivalent norm; see, for
example, Definition 11.1.
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20. Calculations connected to the failure of the null condition. Many important estimates are tied to
the coefficients G rr- In the next two lemmas, we derive expressions for G 11 and %é LL < XU. This
presence of the latter term on the right-hand side (2-40) is tied to the failure of Klainerman’s null condition
[32] and thus one expects that the product must be nonzero for shocks to form; this is explained in more
detail in the survey article [30] in a slightly different context.

Lemma 2.38 (formula for G o XW). Let F be the smooth function of (p, s) from (2-2), and let F.
denote its partial derivative with respect to s at fixed p. For solutions to (1-1)—(1-3), we have
3GLLoXW = —Jc (¢ oo+ DIX R — XR()} = Sue X LR + LR ()

—ue (XL + XPLYY) — pe T e XOS e e T e g H 1) F XS, (2-42)
Proof. This is the same as [36, Lemmas 2.45, 2.46], except for minor modifications incorporating the
third dimension and the entropy (via the c.;-dependent and F: -dependent products). O

3. Volume forms and energies

In this section, we first define geometric integration forms and corresponding integrals. We then define
the energies and null fluxes which we will use in the remainder of the paper to derive a priori L>-type
estimates.

3A. Geometric forms and related integrals. We define our geometric integrals in terms of area and
volume forms that remain nondegenerate relative to the geometric coordinates throughout the evolution
(i.e., all the way up to the shock).

Definition 3.1 (geometric forms and related integrals). Define the area form dAy on ¢;,, the area
form de on X}, the area form dz on F), and the volume form dw on M, , as follows (relative to the
(¢, u, x2, x3)-coordinates):
dx?dx?
dhg=dNg(t,u,x* x°) = AR do =do (t,u',x*,x%) =dAg(t,u',x*, ) du/,
c
dw =dw (1, u,x*, x%) =dNg(t',u,x*, %) dt', do =do (t',u',x*, ) =d (' u', x>, x°)du' dt’.
It is understood that unless we explicitly indicate otherwise, all integrals are defined with respect to
the forms of Definition 3.1. Moreover, in our notation, we often suppress the variables with respect to
which we integrate; i.e., we write ‘/‘Z/‘u fdrg= f(xz,xg)dz F@ou,x?,x3) dhg(t, u, x2, x3), ete.
The following lemma clarifies the geometric and analytic significance of the forms from Definition 3.1.
Lemma 3.2 (identities concerning the forms).
(1) dAy is the volume measure induced by g on ¢; .

(2) wdw is the volume measure induced by g on X;.

(3) Let dx be the standard Euclidean volume measure on ¥}, i.e., dx = dx' dx?dx3 relative to the

Cartesian spatial coordinates. Then

dx = pc’ dw. (3-1)
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Proof. A computation based on Lemma 2.32 and the identity ZSZI(X )2 = ¢2 (which follows from
(2-22) and (2-7)) yields that det ¢ = 1/(c*(X')?). Since dAy = +/det ¢ dx? dx>, we thus obtain (1).
Next, we again use Lemma 2.32 and the identity 22: (X )2 = ¢? to compute that relative to the
(u, x2, x3)-coordinates, we have det g§= (2 / (2(X1H?). Taking the square root, we see that the volume mea-
sure induced by gon X/ is given in the (u, x2, x%)-coordinates by 1/ (c|X'|) du dx? dx>, which gives (2).
Finally, we obtain (3) from (2) via (2-7), which implies that relative to the Cartesian spatial coordinates,
the canonical volume form induced by g on % is c3dx"dx? dx’. U

3B. The definitio