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FAMILIES OF FUNCTIONALS REPRESENTING SOBOLEV NORMS

HAÏM BREZIS, ANDREAS SEEGER, JEAN VAN SCHAFTINGEN AND PO-LAM YUNG

We obtain new characterizations of the Sobolev spaces Ẇ 1,p(RN ) and the bounded variation space ḂV(RN ).
The characterizations are in terms of the functionals νγ (Eλ,γ /p[u]), where

Eλ,γ /p[u] =

{
(x, y) ∈ RN

× RN
: x ̸= y,

|u(x) − u(y)|

|x − y|1+γ /p
> λ

}
and the measure νγ is given by dνγ (x, y) = |x − y|

γ−N dx dy. We provide characterizations which
involve the L p,∞-quasinorms supλ>0 λνγ (Eλ,γ /p[u])1/p and also exact formulas via corresponding limit
functionals, with the limit for λ → ∞ when γ > 0 and the limit for λ → 0+ when γ < 0. The results
unify and substantially extend previous work by Nguyen and by Brezis, Van Schaftingen and Yung. For
p > 1 the characterizations hold for all γ ̸= 0. For p = 1 the upper bounds for the L1,∞ quasinorms fail in
the range γ ∈ [−1, 0); moreover, in this case the limit functionals represent the L1 norm of the gradient
for C∞

c -functions but not for generic Ẇ 1,1-functions. For this situation we provide new counterexamples
which are built on self-similar sets of dimension γ + 1. For γ = 0 the characterizations of Sobolev spaces
fail; however, we obtain a new formula for the Lipschitz norm via the expressions ν0(Eλ,0[u]).

1. Introduction

We are concerned with various ways in which we can recover the Sobolev seminorm ∥∇u∥L p(RN ) via
positive nonconvex functionals involving differences u(x) − u(y).

We begin by mentioning two relevant results already in the literature. A theorem of H.-M. Nguyen
[2006] (see also [Brezis and Nguyen 2018; 2020]) states that, for 1 < p < ∞ and u in the inhomogeneous
Sobolev space W 1,p(RN ),

lim
λ↘0

λp
∫∫

|u(x)−u(y)|>λ

|x − y|
−p−N dx dy =

κ(p, N )

p
∥∇u∥

p
L p(RN )

, (1-1)

with

κ(p, N ) :=

∫
SN−1

|e · ω|
p dω =

20((p + 1)/2)π (N−1)/2

0((N + p)/2)
, (1-2)

and e is any unit vector in RN. As shown in [Brezis and Nguyen 2018], (1-1) still holds for all u ∈ C1
c (RN )

when p = 1 but fails for general u ∈ W 1,1(RN ). The limit formula (1-1) may be compared to a theorem
of [Brezis et al. 2021b], which states that, for all u ∈ C∞

c (RN ) and 1 ≤ p < ∞, one has

lim
λ→∞

λpL2N ({(x, y) ∈ RN
× RN

: |u(x) − u(y)| > λ|x − y|
1+N/p

}) =
κ(p, N )

N
∥∇u∥

p
L p(RN )

, (1-3)
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where L2N denotes the Lebesgue measure on RN
× RN. Our first result, namely Theorem 1.1 below,

provides an extension of (1-1) and (1-3) that unifies the two statements. Before we state the theorem, we
introduce some notation that will be used throughout the paper.

First, for Lebesgue measurable subsets E of R2N
= RN

× RN and γ ∈ R, we define

νγ (E) :=

∫∫
(x,y)∈E

x ̸=y

|x − y|
γ−N dx dy. (1-4)

In particular, when γ = N , νN is just the Lebesgue measure on R2N. If u is a measurable function on RN

and b ∈ R, we define, for (x, y) ∈ RN
× RN with x ̸= y, a difference quotient

Qbu(x, y) :=
u(x) − u(y)

|x − y|1+b ; (1-5)

moreover, we define, for λ > 0, the superlevel set of Qbu at height λ by

Eλ,b[u] := {(x, y) ∈ RN
× RN

: x ̸= y, |Qbu(x, y)| > λ}. (1-6)

We will denote by Ẇ 1,p(RN ), p ≥1, the homogeneous Sobolev space, i.e., the space of L1
loc(R

N ) functions
for which the distributional gradient ∇u belongs to L p(RN ), with the seminorm ∥u∥Ẇ 1,p := ∥∇u∥L p(RN ).
The inhomogeneous Sobolev space W 1,p is the subspace of Ẇ 1,p-functions u for which u ∈ L p, and we set
∥u∥W 1,p := ∥u∥L p +∥∇u∥L p . For p = 1 we will also consider the space ḂV(RN ) of functions of bounded
variations, i.e., locally integrable functions u for which the gradient ∇u ∈ M belongs to the space M
of RN -valued bounded Borel measures and we put ∥u∥ḂV := ∥∇u∥M; furthermore, let BV := ḂV ∩ L1.
In the dual formulation, with C1

c denoting the space of C1 functions with compact support,

∥u∥ḂV := sup
{∣∣∣∣∫

RN
u div(φ)

∣∣∣∣ : φ ∈ C1
c (RN , RN ), ∥φ∥∞ ≤ 1

}
.

For general background material on Sobolev spaces, see [Brezis 2011; Stein 1970].

Theorem 1.1. Suppose N ≥ 1, 1 ≤ p < ∞, γ ∈ R \ {0}.

(a) If γ > 0, then, for all u ∈ Ẇ 1,p(RN ),

lim
λ→+∞

λpνγ (Eλ,γ /p[u]) =
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

. (1-7)

(b) If either γ < 0, p > 1 or γ < −1, p = 1 then, for all u ∈ Ẇ 1,p(RN ),

lim
λ↘0

λpνγ (Eλ,γ /p[u]) =
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

. (1-8)

(c) If p =1 and −1≤γ <0 then (1-8) remains true for all u ∈C1
c (RN ) but fails for generic u ∈ Ẇ 1,1(RN ).

However, we still have, for all u ∈ Ẇ 1,1(RN ),

lim inf
λ↘0

λνγ (Eλ,γ [u]) ≥
κ(1, N )

|γ |
∥∇u∥L1(RN ). (1-9)
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Formula (1-1) is the special case of (1-8) with γ = −p, and formula (1-3) is the special case of (1-7)
with γ = N. Note that our result concerns functions in the homogeneous Sobolev space Ẇ 1,p; we do not
require u to be in L p.

Remarks. (i) The reader will note the resemblance of (1-8) and (1-7) and may wonder why in (1-8), for
γ < 0, one is concerned with the limit as λ ↘ 0 and in (1-7), for γ > 0, one takes the limit as λ → ∞.
In the proofs of these formulas one relates limits involving λνγ (Eλ,γ /p[u])1/p to (the absolute value of)
limits of directional difference quotients δ−1(u(x + δθ) − u(x)) with increment δ = λ−p/γ, and in order
to recover the directional derivative ⟨θ, ∇u(x)⟩ we need to let δ → 0, which suggests that we need to
take λ → ∞ or λ ↘ 0 depending on the sign of γ . For the calculations see the proofs of Lemmas 3.2
and 3.3 below.

(ii) The failure of (1-8) for p = 1, γ ∈ [−1, 0) and u ∈ Ẇ 1,1(RN ) is generic in the sense of Baire category.
It may happen that limλ↘0 λνγ (Eλ,γ [u]) = ∞. This phenomenon was originally revealed when γ = −1
by A. Ponce and is presented in [Nguyen 2006]; see also [Brezis and Nguyen 2018, Pathology 1]. For
stronger statements and more information, see Theorem 1.8. For γ ∈ (−1, 0) we provide new examples
based on self-similarity considerations. For discussion of failure in the case γ = 0, see Theorem 1.5 below.
The special case of (1-9) for γ = −1 was already established in [Brezis and Nguyen 2018, Proposition 1].

When p = 1 we can also consider what happens if one allows functions in ḂV(RN ) in (1-7) and
(1-8). For γ = N in particular Poliakovsky [2022] asked whether the limit formulas remain valid in this
generality (with ∥∇u∥L1 replaced by ∥∇u∥M). We provide a negative answer:

Proposition 1.2. (i) The analogues of the limiting formulas (1-7) for γ > 0, p = 1 and (1-8) for γ < 0,
p = 1, with ∥∇u∥M on the right-hand side, fail for suitable u ∈ ḂV.

(ii) Specifically, let � ⊂ RN be a bounded convex domain with smooth boundary and let u be the
characteristic function of �. The limits limλ→∞ λνγ (Eλ,γ [u]) for γ > 0 and limλ→0+ λνγ (Eλ,γ [u])

for γ < −1 exist, but they are not equal to |γ |
−1κ(1, N )∥∇u∥M.

For a more detailed discussion we refer to Section 3F. See also Section 7B for a discussion about some
related open problems.

Motivated by [Brezis et al. 2021b], we will also be interested in what happens to the larger quantity
obtained by replacing the limits on the left-hand sides of (1-7) and (1-8) by supλ>0. This will be formulated
in terms of the Marcinkiewicz space L p,∞(R2N , νγ ) (a.k.a. weak-type L p) defined by the condition

[F]
p
L p,∞(R2N ,νγ )

:= sup
λ>0

λpνγ

(
{(x, y) ∈ RN

× RN
: |F(x, y)| > λ}

)
< ∞. (1-10)

As an immediate consequence of Theorem 1.1 we have, for N ≥ 1, 1 ≤ p <∞, γ ̸= 0 and all u ∈C∞
c (RN ),

[Qγ /pu]
p
L p,∞(R2N ,νγ )

≥ C(N , p, γ )∥∇u∥
p
L p(RN )

, (1-11)

where C(N , p, γ ) is a positive constant depending only on N, p and γ . Moreover, the same conclusion
holds for all u ∈ Ẇ 1,p(RN ) when p > 1, with any γ ̸= 0, and when p = 1, with any γ /∈ [−1, 0]. We
shall show that the conditions in the last statement can in fact be relaxed; see the inequalities (1-14) and
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(1-16) below. In addition we have the important upper bounds for Qγ /pu, extending the case γ = N
already dealt with in [Brezis et al. 2021b] for u ∈ C∞

c (RN ). The result in [Brezis et al. 2021b] states that,
for every N ≥ 1, there exists a constant C(N ) such that

[QN/pu]
p
L p,∞(R2N ,νN )

≤ C(N )∥∇u∥
p
L p(RN )

(1-12)

for all u ∈ C∞
c (RN ) and all 1 ≤ p <∞. In light of Theorem 1.1, it is natural to ask whether one can replace

the limits on the left-hand sides of (1-7) and (1-8) by supλ>0 and still obtain a quantity that is comparable to
∥∇u∥

p
L p(RN )

. As suggested by Theorem 1.1 the answer to our question is sensitive to the values of γ and p.

Theorem 1.3. Suppose that N ≥ 1, 1 < p < ∞ and γ ∈ R. Then the following hold:

(i) The inequality
[Qγ /pu]L p,∞(R2N ,νγ ) ≤ C(N , p, γ )∥∇u∥L p(RN ) (1-13)

holds for all u ∈ C∞
c (RN ) if and only if γ ̸= 0. In this case (1-13) extends to all u ∈ Ẇ 1,p(RN ).

(ii) Suppose that u ∈ L1
loc(R

N ) and Qγ /pu ∈ L p,∞(R2N , νγ ). Then u ∈ Ẇ 1,p(RN ) and we have the
inequality

∥∇u∥L p(RN ) ≤ CN ,p,γ [Qγ /pu]L p,∞(R2N ,νγ ). (1-14)

There is a new phenomenon for p = 1, namely the upper bounds for Qγ u only hold for the more
restrictive range γ ∈ (−∞, −1) ∪ (0, ∞). Here it is also natural to replace Ẇ 1,1 with ḂV.

Theorem 1.4. Suppose that N ≥ 1 and γ ∈ R. Then the following hold:

(i) The inequality
[Qγ u]L1,∞(R2N ,νγ ) ≤ C(N , γ )∥∇u∥L1(RN ) (1-15)

holds for all u ∈ C∞
c (RN ) if and only if γ ̸∈ [−1, 0]. In this case (1-15) extends to all u ∈ Ẇ 1,1(RN ),

and, if ∥∇u∥L1(RN ) is replaced by ∥∇u∥M, to all u ∈ ḂV(RN ).

(ii) Suppose that u ∈ L1
loc(R

N ) and Qγ u ∈ L1,∞(R2N , νγ ). Then u ∈ ḂV(RN ) and we have the inequality

∥∇u∥M ≤ CN ,γ [Qγ u]L1,∞(R2N ,νγ ). (1-16)

We note that the quantitative bounds (1-13) and (1-15) in Theorems 1.3 and 1.4 are crucial tools for
establishing the limiting relations for all Ẇ 1,p functions in Theorem 1.1. Note that there is no restriction
on γ in (1-14) and (1-16). The constants in the inequalities will be quantified further later in the paper. In
particular, C(N , p, γ ) in (1-13) remains bounded as p ↘ 1 only in the range γ ∈ (0, ∞) ∪ (−∞, −1)

(see Theorem 2.2 and Proposition 6.1).

Historical comments. Some special cases of the above quantitative estimates have been known. Estimate
(1-13) for γ =−p and 1< p <∞ was discovered independently by H.-M. Nguyen [2006], and by A. Ponce
and J. Van Schaftingen (unpublished communication to H. Brezis and H.-M. Nguyen), both relying on the
Hardy–Littlewood maximal inequality. A. Poliakovsky [2022] recently proved generalizations of results
in [Brezis et al. 2021b] to Sobolev spaces on domains; moreover, he obtained Theorems 1.3 and 1.4 in
the special case γ = N under the additional assumption that u ∈ L p. Other far-reaching generalizations to
one-parameter families of operators were obtained by Ó. Domínguez and M. Milman [2022].
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The case γ =0. We shall now return to the necessity of the assumption γ /∈[−1, 0] in parts of Theorems 1.1,
1.3 and 1.4. When γ =0, the bounds for [Qγ /pu]L p,∞(R2N ,νγ ) fail in a striking way. We begin by formulating
a result illustrating this failure, which also gives a characterization of the seminorm in the Lipschitz
space Ẇ 1,∞.

Theorem 1.5. Suppose N ≥ 1, u is locally integrable on RN and ∇u ∈ L1
loc(R

N ). Then

∥∇u∥L∞(RN ) = inf{λ > 0 : ν0(Eλ,0[u]) < ∞}. (1-17)

Indeed in Proposition 5.1 we shall prove the stronger statement that ν0(Eλ,0[u]) = 0 for λ > ∥∇u∥∞,
and ν0(Eλ,0[u]) = ∞ for λ < ∥∇u∥∞. As an immediate consequence of Theorem 1.5 we get:

Corollary 1.6. Let u be locally integrable on RN. If ∇u ∈ L1
loc(R

N ) and if ν0(Eλ,0[u]) is finite for all
λ > 0, then u is almost everywhere equal to a constant function.

In view of other known results [Brezis 2002; Brezis et al. 2021a] on how to recognize constant functions,
a natural question arises whether the hypothesis on the local integrability of ∇u in the corollary could be
relaxed; one can ask whether the constancy conclusion holds for all locally integrable functions satisfying
ν0(Eλ,0[u]) < ∞ for all λ > 0. However, the following example shows that such an extension fails (for
details, see Lemma 5.2).

Example 1.7. Let � ⊂ RN be a bounded Lipschitz domain and let u be the characteristic function of �.
Then u ∈ BV(RN ) \ Ẇ 1,1(RN ) and supλ>0 λ ν0(Eλ,0[u]) < ∞.

More on counterexamples. We now make more explicit the exclusion of the parameters γ ∈ [−1, 0) in
part (c) of Theorem 1.1 and in (1-15). We shall show in Section 6B that for γ ∈ (−1, 0) these negative
results can be related to self-similar Cantor subsets of R, of dimension 1 + γ .

Theorem 1.8. Suppose N ≥ 1. Then the following hold:

(i) Let −1 ≤ γ < 0. There exists a C∞ function u ∈ Ẇ 1,1(RN ), rapidly decreasing as |x | → ∞ and such
that

lim
λ↘0

λνγ (Eλ,γ [u]) = ∞. (1-18)

(ii) Let −1 ≤ γ < 0. There exists a compactly supported u ∈ W 1,1(RN ) for which (1-18) holds. The set{
u ∈ W 1,1(RN ) : lim sup

λ↘0
λνγ (Eλ,γ [u]) < ∞

}
is meager in W 1,1(RN ), i.e., of first category in the sense of Baire.

(iii) Let −1 ≤ γ < 0, N ≥ 2 or −1 < γ < 0, N = 1. There exists a compactly supported u ∈ W 1,1(RN )

such that νγ (Eλ,γ [u]) = ∞ for all λ > 0; moreover, the set

{u ∈ W 1,1(RN ) : νγ (Eλ,γ [u]) < ∞ for some λ ∈ (0, ∞)}

is meager in W 1,1(RN ).
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The case N = 1 = −γ plays a special role and is excluded in the strongest statement (iii) since for
all compactly supported u ∈ Ẇ 1,1(R) one has ν−1(Eλ,−1[u]) < ∞ for all λ > 0 (see Lemma 6.5 below).
The proofs of existence of counterexamples are constructive and the Baire category statements will be
obtained as rather straightforward consequences of the constructions.

Outline of the paper. In Section 2 we provide the upper bounds for [Qγ /pu]L p,∞(R2N ,νγ ), i.e., the proof
of inequalities (1-13) and (1-15) in Theorems 1.3 and 1.4. We first derive these for a dense subclass,
relying on covering lemmas, and then extend in Sections 2C and 2D to general Ẇ 1,p and ḂV-functions.
In Section 3 we derive the limit formulas of Theorem 1.1; specifically in Section 3B we prove the sharp
lower bounds involving a lim inf λpνγ (Eλ,γ /p[u]) for general functions in Ẇ 1,p and in Section 3C we
obtain the sharp upper bounds for lim sup λpνγ (Eλ,γ /p[u]), under the assumption that u ∈ C1 is compactly
supported. Then in Section 3D we extend these limits to general Ẇ 1,p functions. In Section 3F we show
that the limit formulas for Ẇ 1,1 do not extend to general ḂV functions and prove Proposition 1.2. In
Section 4 we prove the reverse inequalities (1-14) and (1-16) in Theorems 1.3 and 1.4. In Section 5 we
prove Theorem 1.5 on a characterization of the Lipschitz norm and also discuss Example 1.7. In Section 6
we provide various constructions of counterexamples and in particular prove Theorem 1.8. We discuss
some further perspectives and open problems in Section 7.

2. Bounding [ Qγ/ pu]L p,∞(R2N ,νγ ) by the Sobolev norm

In this section we prove inequalities (1-13) and (1-15) in Theorems 1.3 and 1.4.

2A. The bound (1-13) via the Hardy–Littlewood maximal operator. Following [Brezis et al. 2021b], one
can prove the result of Theorem 1.3 for p > 1 by an elementary argument involving the Hardy–Littlewood
maximal function M |∇u| of |∇u|; however, the behavior of the constants as p ↘ 1 will only be sharp in
the range −1 ≤ γ < 0.

Proposition 2.1. Let N ≥ 1 and 1 < p < ∞. There exists a constant CN such that, for all γ ̸= 0 and all
u ∈ Ẇ 1,p(RN ),

sup
λ>0

λpνγ (Eλ,γ /p[u]) ≤
CN

|γ |

(
p

p − 1

)p

∥∇u∥
p
L p(RN )

. (2-1)

Proof. We assume first that u ∈ C1 and that ∇u is compactly supported. As in [Brezis et al. 2021b,
Remark 2.3], one uses the Lusin–Lipschitz inequality

|u(x) − u(y)|

|x − y|
≤ C[M(|∇u|)(x) + M(|∇u|)(y)] (2-2)

and observes that (2-2) implies

Eλ,γ /p[u] ⊆ {|x − y|
γ /p < 2Cλ−1 M(|∇u|)(x)} ∪ {|x − y|

γ /p < 2Cλ−1 M(|∇u|)(y)}.

As a consequence

νγ (Eλ,γ /p[u]) ≤ 2
∫

x

∫
|h|γ <2C[λ−1 M(|∇u|)(x)]p

|h|
γ−N dh dx .
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Direct computation of the inner integral (distinguishing the cases γ > 0 and γ < 0) yields

νγ (Eλ,γ /p[u]) ≲N C p
|γ |

−1λ−p
∫

RN
[M(|∇u|)(x)]p dx .

Inequality (2-1) follows then from the standard maximal inequality ∥M f ∥
p
p ≤ [C(N )p′

]
p
∥ f ∥

p
p for p > 1;

see [Stein 1970] (here p′
= p/(p − 1)). The extension to general Ẇ 1,p functions will be taken up in

Section 2C. □

2B. The case γ ∈ R\[−1, 0]. We shall prove the following more precise versions of the estimates (1-13)
and (1-15) when γ /∈ [−1, 0], with constants that stay bounded as p ↘ 1; indeed we cover all p ∈ [1, ∞).
We denote by σN−1 the surface area of the sphere SN−1. In the proof of the following theorem we
will first establish the estimates for functions u ∈ C1(RN ) whose gradient is compactly supported. The
extension to Ẇ 1,p and ḂV will be taken up in Sections 2C and 2D.

Theorem 2.2. There exists an absolute constant C > 0 such that, for every N ≥ 1, every 1 ≤ p < ∞, and
every u ∈ Ẇ 1,p(RN ):

(i) If γ > 0, then

sup
λ>0

λpνγ (Eλ,γ /p[u]) ≤ CσN−1
5γ

γ
∥∇u∥

p
L p(RN )

. (2-3)

(ii) If γ < −1, then

sup
λ>0

λpνγ (Eλ,γ /p[u]) ≤
CσN−1

|γ |

(
1 +

1
|γ + 1|

)
∥∇u∥

p
L p(RN )

. (2-4)

When p =1 the above assertions hold for all u ∈ ḂV(RN ) provided that ∥∇u∥L1(RN ) is replaced by ∥∇u∥M.

The proof of Theorem 2.2 relies on the following proposition, in which [x, y] ⊂ RN denotes the closed
line segment connecting two points x, y ∈ RN.

Proposition 2.3. Let

E( f, γ ) :=

{
(x, y) ∈ RN

× RN
: x ̸= y,

∫
[x,y]

| f | ds > |x − y|
γ+1

}
(2-5)

for f ∈Cc(R
N ). There exists an absolute constant C > 0 such that, for every N ≥ 1 and every f ∈Cc(R

N ):

(i) If γ > 0, then ∫∫
E( f,γ )

|x − y|
γ−N dx dy ≤ CσN−1

5γ

γ
∥ f ∥L1(RN ). (2-6)

(ii) If γ < −1, then∫∫
E( f,γ )

|x − y|
γ−N dx dy ≤

CσN−1

|γ |

(
1 +

1
|γ + 1|

)
∥ f ∥L1(RN ). (2-7)

Indeed, to deduce Theorem 2.2 from Proposition 2.3 one argues as in the proof of (1-12) in [Brezis
et al. 2021b]; for u ∈ C1(RN ) and 1 ≤ p < ∞, one has

|u(x) − u(y)|p
≤

[∫
[x,y]

|∇u| ds
]p

≤

∫
[x,y]

|∇u|
p ds |x − y|

p−1
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for all x, y ∈ RN, which implies

Eλ,γ /p[u] ⊆ E(λ−p
|∇u|

p, γ ).

Hence for u ∈ C1(RN ) whose gradient is compactly supported, one establishes Theorem 2.2 by applying
Proposition 2.3 with f := λ−p

|∇u|
p. The extension to u ∈ Ẇ 1,p will be taken up in Section 2C.

Proof of Proposition 2.3. As in the proof of [Brezis et al. 2021b, Proposition 2.2], using the method of
rotation, we only need to prove Proposition 2.3 for N = 1. Indeed,∫∫

E( f,γ )

|x − y|
γ−N dx dy =

1
2

∫
SN−1

∫
ω⊥

∫∫
E( fω,x ′ ,γ )

|r − s|γ−1 dr ds dx ′ dω,

where for every ω ∈ SN−1 and every x ′
∈ ω⊥, fω,x ′ is a function of one real variable defined by

fω,x ′(t) := f (x ′
+ tω).

The innermost double integral can be estimated by the case N = 1 of Proposition 2.3, and∫
SN−1

∫
ω⊥

∫
R

| fω,x ′(t)| dt dx ′ dω = σN−1∥ f ∥L1(RN ).

Thus from now on, we assume N = 1 and f ∈ Cc(R).
If γ > 0, the desired estimate (2-6) is the content of [Brezis et al. 2021b, Proposition 2.1]. On the other

hand, suppose now γ < −1. Without loss of generality, assume f ≥ 0 on R. In addition, we may assume
that f is not identically zero, for otherwise there is nothing to prove.

Let
E+( f, γ ) := {(x, y) ∈ E( f, γ ) : y < x}.

Then by symmetry, ∫∫
E( f,γ )

|x − y|
γ−1 dx dy = 2

∫∫
E+( f,γ )

|x − y|
γ−1 dx dy,

and it suffices to estimate the latter integral.
In what follows we will need to always keep in mind that in view of our assumption γ < −1 we have

−(γ + 1) = |γ | − 1 > 0. We will now use a simple stopping-time argument based on the fact that for all
c ∈ R the continuous function

x 7→ (x − c)−(γ+1)

∫ x

c
f (s) ds, x ≥ c,

increases from 0 to ∞ on [c, ∞).

Assume that supp f ⊆ [a, b]. We construct a finite sequence of intervals I1, . . . , IK , that are disjoint
up to endpoints, that cover supp f = [a, b], and that satisfy

|Ii |
−(γ+1)

∫
Ii

f =
1
2

for 1 ≤ i ≤ K . (2-8)

Indeed, we may take a1 := a, and a2 > a1 to be the unique number for which

(a2 − a1)
−(γ+1)

∫ a2

a1

f =
1
2
,
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and set I1 := [a1, a2]. If a2 < b, we may now repeat, and take I2 := [a2, a3], where a3 > a2 is the unique
number for which (a3 − a2)

−(γ+1)
∫ a3

a2
f =

1
2 . Note that the ai ’s chosen as such satisfy

(ai+1 − ai )
−(γ+1)

≥
1
2
∥ f ∥

−1
L1(R)

,

so that ai+1 − ai ≥ (2∥ f ∥L1(R))
1/(γ+1). This shows that in finitely many steps, we would reach aK+1 ≥ b

for some K ≥ 1, with aK < b if 1 ≤ K . Then we have our sequence of disjoint (up to endpoints) intervals
I1, . . . , IK that cover [a, b] and satisfy (2-8). We also write I0 := (−∞, a1] and IK+1 := [aK+1, +∞).

We now claim that Ii × Ii ∩ E+( f, γ ) = ∅ for every 0 ≤ i ≤ K + 1. This being trivially the case when
i ∈ {0, K + 1}, we consider the case i ∈ {1, . . . , K }: any x, y ∈ Ii satisfy

|x − y|
−(γ+1)

∣∣∣∣∫ x

y
f
∣∣∣∣ ≤ |Ii |

−(γ+1)

∫
Ii

f =
1
2

< 1.

It follows thus that

E+( f, γ ) =

K+1⋃
i=1

E+( f, γ )∩ ((ai , +∞) × (−∞, ai )). (2-9)

Furthermore, for i ∈ {2, . . . , K }, if y < ai < x and x − y < min{|Ii |, |Ii−1|}, then

|x − y|
−(γ+1)

∣∣∣∣∫ x

y
f
∣∣∣∣ < min{|Ii |, |Ii−1|}

−(γ+1)

(∫
Ii−1

f +

∫
Ii

f
)

≤ |Ii−1|
−(γ+1)

∫
Ii−1

f + |Ii |
−(γ+1)

∫
Ii

f ≤
1
2

+
1
2

= 1

(again we used γ <−1 so that −(γ +1)>0 here), from which it follows that (x, y) ̸∈ E+( f, γ ). Combining
this with a similar argument for i ∈ {1, K + 1}, we get that if (x, y) ∈ E+( f, γ ) ∩ (ai , +∞) × (−∞, ai ),
then |x − y| ≥ min{|Ii |, |Ii−1|}, and thus∫

E+( f,γ )∩(ai ,+∞)×(−∞,ai )

|x − y|
γ−1 dx dy ≤

∫
∞

ai

∫ min{ai ,x−min{|Ii |,|Ii−1|}}

−∞

|x − y|
γ−1 dy dx

=
1

|γ |

∫
∞

ai

(max{x − ai , min{|Ii |, |Ii−1|}})
γ dx

=
1

|γ |

(
1 +

1
|γ + 1|

)
min{|Ii |, |Ii−1|}

γ+1

≤
2

|γ |

(
1 +

1
|γ + 1|

) ∫
Ii−1∪Ii

f.

(The computation of these integrals uses our assumption γ + 1 < 0.) Summing the estimates, we get in
view of (2-9) ∫

E+( f,γ )

|x − y|
γ−1 dx dy ≤

4
|γ |

(
1 +

1
|γ + 1|

) ∫
R

f.

We have thus completed the proof of (2-7) under the assumption γ < −1 and N = 1. □
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2C. Proof of Proposition 2.1 and Theorem 2.2 for general Ẇ1, p functions. We use a limiting argument,
together with the following fact: if u ∈ Ẇ 1,p(RN ), N ≥ 1, and 1 ≤ p < ∞, then there exists a Lebesgue
measurable set X ⊂ R2N, with L2N (X) = 0, so that, for every (x, h) ∈ R2N

\ X , we have

u(x + h) − u(x) =

∫ 1

0
⟨h, ∇u(x + th)⟩ dt. (2-10)

Indeed, both sides are measurable functions of (x, h) ∈ R2N, and if X is the set of all (x, h) where the
two sides are not equal, then X is a measurable subset of R2N, and the assertion will follow from Fubini’s
theorem if, for every fixed h ∈ RN, we have LN ({x ∈ RN

: (x, h) ∈ X}) = 0, i.e., (2-10) holds for LN

almost every x . This follows since for every φ ∈ C∞
c (RN ), one has∫

RN
[u(x+h)−u(x)]φ(x)dx =

∫
RN

u(x)[φ(x−h)−φ(x)]dx = −

∫
RN

u(x)

∫ 1

0
⟨h,∇φ(x−th)⟩dt dx

=

∫
RN

∫ 1

0
⟨h,∇u(x)⟩φ(x−th)dt dx =

∫
RN

∫ 1

0
⟨h,∇u(x+th)⟩dt φ(x)dx .

Now given u ∈ Ẇ 1,p(RN ), there exists a sequence un ∈ C∞(RN ) such that ∇un are compactly
supported, and

∥∇(un − u)∥L p(RN ) → 0. (2-11)

Indeed if N > 1 and p ≥ 1, or if N = 1 and p > 1, then this follows from the density of C∞
c (RN ) in

Ẇ 1,p(RN ) as asserted in [Hajłasz and Kałamajska 1995] (in this case one may choose un ∈ C∞
c (RN )).

The density of C∞
c (RN ) in Ẇ 1,p fails when N = p = 1 (again see [Hajłasz and Kałamajska 1995]); the

issue is that if ∇u is supported in a convex set in RN, N ≥ 2, then u is constant in the complement of the
set, but this fails for N = 1 since the complement of a bounded interval has two connected components.
On the other hand, in the anomalous case N = 1 and p = 1, one can choose an approximation of the
identity to get a sequence vn of C∞

c functions on R such that ∥vn − u′
∥L1(R) → 0. One can then take

un(x) :=
∫ x

0 vn(t) dt , and (2-11) follows with u′
n = vn being compactly supported (even though un may

not be compactly supported).
Let, for R > 1,

K R = {(x, y) ∈ R2N
: |x | ≤ R, |y| ≤ R and R−1

≤ |x − y|}.

By monotone convergence it suffices to prove

νγ (Eλ,γ /p[u] ∩ K R) ≤ C
∥∇u∥

p
L p(RN )

λp . (2-12)

with C independent of R.
Under the assumptions of Proposition 2.1 and Theorem 2.2 on p and γ , since un ∈ C∞

c (RN ), we
already know

νγ (Eλ,γ /p[un]) ≤ C
∥∇un∥

p
L p(RN )

λp .
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Moreover, the sequence Qγ /pun converges to Qγ /pu in L p(K R) as n → ∞. Indeed, using (2-10) we
may write

Qγ /pu(x, y) =
1

|x − y|γ /p

∫ 1

0

〈
x − y
|x − y|

, ∇u((1 − t)y + t x)

〉
dt

for L2N a.e. (x, y) ∈ R2N , and similarly for un in place of u, which allows us to estimate(∫∫
K R

|Qγ /pun(x, y) − Qγ /pu(x, y)|p dx dy
)1/p

≤ Rγ /p
∫ 1

0

(∫
|x |≤R

∫
|y|≤R

|∇(un − u)((1 − s)x + sy)|p dx dy
)1/p

ds

≤ 2N/p(2R)N/p Rγ /p
∥∇(un − un+1)∥p → 0.

By passing to a subsequence if necessary, we may assume that Qγ /pun converges L2N -a.e. to Qγ /pu on
K R as n → ∞. Thus

K R ∩ Eλ,γ /p[u] ⊆ K R ∩

(⋃
n∈N

⋂
ℓ≥n

Eλ,γ /p[uℓ]

)
,

which implies

νγ (K R ∩ Eλ,γ /p[u]) ≤ lim
n→∞

νγ

(
K R ∩

⋂
ℓ≥n

Eλ,γ /p[uℓ]

)
≤ lim inf

n→∞
νγ (K R ∩ Eλ,γ /p[un])

≤ C lim inf
n→∞

∥∇un∥
p
L p(RN )

λp ≤ C
∥∇u∥

p
L p(RN )

λp .

2D. Proof of Theorem 2.2 for ḂV-functions. We choose a sequence ρn ∈C∞
c (RN ), with ρn =2nN ρ(2n

· )

and
∫

RN ρ dx = 1, and set un := u ∗ρn . Then un ∈ Ẇ 1,1(RN ) and un → u almost everywhere. This means
if GL := {(x, h) ∈ RN

× RN
: |x | ≤ L , L−1

≤ |h| ≤ L} then

lim
n→∞

νγ (Eλ,γ [un] ∩ GL) = νγ (Eλ,γ [u] ∩ GL),

by dominated convergence. Also

∥∇un∥L1(RN ) = sup
φ⃗∈C∞

c
∥φ∥∞≤1

∣∣∣∣∫ un(x) div φ⃗(x) dx
∣∣∣∣ = sup

φ⃗∈C∞
c

∥φ∥∞≤1

∣∣∣∣∫ u(x) div(ρn ∗ φ⃗)(x) dx
∣∣∣∣ ≤ ∥∇u∥M;

here we used ∥ρn ∗ φ⃗∥∞ ≤ ∥φ⃗∥∞ for the last inequality. Combining these two limiting identities with
Theorem 2.2 we get the desired inequalities with Eλ,γ [u] replaced by Eλ,γ [u] ∩ GL . By monotone
convergence we may finish the proof letting L → ∞. □

3. Proof of Theorem 1.1

We extend and refine arguments from [Brezis and Nguyen 2018; Brezis et al. 2021b], which are partially
inspired by techniques developed in [Bourgain et al. 2001].
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3A. A Lebesgue differentiation lemma. Our argument uses the following standard variant of the Lebesgue
differentiation theorem. For lack of a proper reference, a proof is provided for the convenience of the reader.

Lemma 3.1. Let u ∈ Ẇ 1,1(RN ) and let {δn} be a sequence of positive numbers with limn→∞ δn = 0. Then

lim
n→∞

u(x + δnh) − u(x)

δn
= ⟨h, ∇u(x)⟩

for almost every (x, h) ∈ RN
× RN.

Proof. If u ∈ C1 with compact support the limit relation clearly holds for all (x, h). We shall below
consider for each θ ∈ SN−1 the maximal function

Mθ F(x) = sup
t>0

1
t

∫ t

0
|F(x + rθ)| dr,

which is well-defined for all θ , a measurable function on RN
× SN−1, and satisfies a weak-type (1, 1)

inequality

LN ({x ∈ RN
: Mθ F(x) > a}) ≤ 5a−1

∥F∥1.

Let u ∈ Ẇ 1,1(RN ) and AM = {h ∈ RN
: 2−M

≤ |h| ≤ 2M
}. It suffices to prove the limit relation for

almost every (x, h) ∈ RN
×AM . From (2-10) we get that, for every n ≥ 1,

u(x + δnh) − u(x)

δn
=

1
δn|h|

∫ δn |h|

0

〈
h, ∇u

(
x + r

h
|h|

)〉
dr

for L2N almost every (x, h) ∈ RN
×AM ; as a result, there exist representatives of u, ∇u and a null set

N ∈ RN
×AM such that the identity holds for all (x, h) ∈ N ∁ and all n ≥ 1. It suffices to show that, for

every α > 0, ε > 0,

L2N
({

(x, h) ∈ RN
×AM : lim sup

n→∞

∣∣∣∣ 1
δn|h|

∫ δn |h|

0
⟨h, ∇u(x + rh)⟩ dr − ⟨h, ∇u(x)⟩

∣∣∣∣ > α

})
≤ ε. (3-1)

Let v ∈ C1
c so that ∥∇(v−u)∥1 ≤ αε/(12LN (AM)). Let g = u −v. Since the asserted limiting relation

holds for v, we see that the expression on the left-hand side of (3-1) is dominated by

L2N
({

(x, h) ∈ RN
×AM : |∇g(x)| + sup

n>0

1
δn|h|

∫ δn |h|

0

∣∣∣∣∇g
(

x + r
h
|h|

)∣∣∣∣ dr > α

})
≤ 2LN (AM)α−1

∥∇g∥1 +

∫
AM

LN
({

x : Mh/|h||∇g|(x) >
α

2

})
dh

≤ 12LN (AM)α−1
∥∇g∥1 ≤ ε

since ∥∇g∥1 ≤ αε/(12LN (AM)). □

3B. The lower bounds for lim inf λ pνγ (Eλ,γ / p[u]). We use Lemma 3.1 to establish lower bounds,
relying on an idea in [Brezis and Nguyen 2018], where the case γ = −1 was considered.
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Lemma 3.2. Let 1 ≤ p < ∞ and u ∈ Ẇ 1,p(RN ). Then:

(i) For γ > 0,

lim inf
λ→∞

λpνγ (Eλ,γ /p[u]) ≥
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

.

(ii) For γ < 0,

lim inf
λ↘0

λpνγ (Eλ,γ /p[u]) ≥
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

.

Proof. We write, for λ > 0 and δ > 0,

λpνγ (Eλ,γ /p[u]) = λp
∫∫

|u(x+h)−u(x)|/|h|1+γ /p>λ

|h|
γ−N dh dx

= λpδγ

∫∫
|(u(x+δh)−u(x))/(δ|h|)|

p
>λpδγ |h|γ

|h|
γ−N dh dx;

here we have changed variables replacing h by δh. Hence

λpνγ (Eλ,γ /p[u]) =

∫∫
1(|h|γ ,∞)

(∣∣∣∣u(x + δh) − u(x)

δ|h|

∣∣∣∣p)
|h|

γ−N dh dx, with δ = λ−p/γ . (3-2)

We now take a sequence {λn} of positive numbers, set δn = λ
−p/γ
n and note that

lim
n→∞

δn = 0 if
{

limn→∞ λn = ∞ and γ > 0,

limn→∞ λn = 0 and γ < 0.
(3-3)

Also observe that

lim inf
n→∞

1(|h|γ ,∞)(sn) ≥ 1(|h|−γ ,∞)(t) if lim
n→∞

sn = t.

Now assume that λn → ∞ if γ > 0 and λn → 0+ if γ < 0 and stay with δn = λ
−p/γ
n , a sequence which

converges to 0 in both cases. Use Fatou’s lemma in (3-2) and combine it with Lemma 3.1 to get

lim inf
n→∞

λp
n νγ (Eλn,γ /p[u]) ≥

∫∫
lim inf
n→∞

1(|h|γ ,∞)

(∣∣∣∣u(x + δnh) − u(x)

δn|h|

∣∣∣∣p)
|h|

γ−N dh dx

≥

∫∫
1(|h|γ ,∞)

(
lim

n→∞

∣∣∣∣u(x + δnh) − u(x)

δn|h|

∣∣∣∣p)
|h|

γ−N dh dx

=

∫∫
|h|γ <|⟨h/|h|,∇u(x)⟩|p

|h|
γ−N dh dx =: Jγ .

We use polar coordinates h = rθ and write the last expression as

Jγ =

∫∫
RN ×SN−1

∫
rγ <|⟨θ,∇u(x)⟩|p

rγ−1 dr dθ dx

=
1

|γ |

∫∫
RN ×SN−1

|⟨θ, ∇u(x)⟩|p dθ dx =
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

,

with the calculation valid in both cases γ > 0 and γ < 0. □
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3C. Upper bounds for lim sup λ pνγ (Eλ,γ / p[u]), for C1
c functions. We assume that u ∈ C1 is com-

pactly supported and obtain the sharp upper bounds for lim supλ→∞ λpνγ (Eλ,γ /p[u]) when γ > 0 and
lim supλ→0 λpνγ (Eλ,γ /p[u]) when γ < 0.

Lemma 3.3. Suppose u ∈ C1
c (RN ) and 1 ≤ p < ∞. Then the following hold:

(i) If γ > 0 then

lim sup
λ→∞

λpνγ (Eλ,γ /p[u]) ≤
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

.

(ii) If γ < 0 then

lim sup
λ↘0

λpνγ (Eλ,γ /p[u]) ≤
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

.

(iii) The statement in part (i) continues to hold for u ∈ C1(RN ) whose gradient is compactly supported.

Remark 3.4. The subtlety in part (iii) above is only relevant in dimension N = 1, since if N ≥ 2, then
any function in C1(RN ) with a compactly supported gradient is constant outside a compact set.

Proof of Lemma 3.3. We distinguish the cases γ > 0 and γ < 0.

The case γ > 0. We assume that ∇u is compactly supported. To prove part (iii) (and thus part (i)) assume

λ ≥ L :=

∥∥∥∥( N∑
i=1

|∂i u|
2
)1/2∥∥∥∥

L∞(RN )

. (3-4)

Then
(x, y) ∈ Eλ,γ /p[u] =⇒ λ|x − y|

γ /p
≤ L =⇒ |x − y| ≤ 1. (3-5)

Furthermore, if (x, y) ∈ Eλ,γ /p[u], then writing y = x + rω with r > 0 and ω ∈ SN−1, we have

λrγ /p
≤ |∇u(x) · ω| + ρ(r), with ρ(r) := sup

x∈RN
sup
|h|≤r

|∇u(x + h) − ∇u(x)|; (3-6)

since ∇u is uniformly continuous on RN, we have ρ(r) ↘ 0 as r ↘ 0. This, together with the first
implication of (3-5), shows

λrγ /p
≤ |∇u(x) · ω| + ρ

((
L
λ

)p/γ )
. (3-7)

Let B be a ball centered at the origin containing supp(∇u), and let B̃ be the expanded ball with radius
1 + rad(B). Then for x /∈ B̃, we have Qγ /pu(x, y) = 0 for every y with |x − y| ≤ 1, and (3-5) shows
(x, y) /∈ Eλ,γ /p[u] for every y with |x − y| > 1, so Eλ,γ /p[u] ⊆ B̃ × RN. Define, for x ∈ B̃, ω ∈ SN−1,
and λ > 0

R(x, ω, λ) :=

(
λ−1

(
|∇u(x) · ω| + ρ

((
L
λ

)p/γ )))p/γ

.

Then by (3-7),

λpνγ (Eλ,γ /p[u]) ≤ λp
∫

B̃

∫
SN−1

∫ R(x,ω,λ)

0
rγ−1 dr dω dx

= γ −1
∫

B̃

∫
SN−1

(
|∇u(x) · ω| + ρ

((
L
λ

)p/γ ))p

dω dx .
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Letting λ → ∞ we get

lim sup
λ→∞

λpνγ (Eλ,γ /p[u]) ≤ γ −1κ(p, N )

∫
B̃

|∇u(x)|p dx

and hence the assertion.

The case γ < 0. We first note that if (x, y) ∈ Eλ,γ /p[u], then writing y = x + rω, we have again (3-6).
Now let ε > 0, and let δ(ε) > 0 be such that ρ(r) ≤ ε for 0 < r ≤ δ(ε). Let

rλ(x, ω, ε) = min
{
δ(ε),

(
λ

|∇u(x) · ω| + ε

)−p/γ }
.

Note that rλ(x, ω, ε) > 0 for λ > 0. Also if (x, x + rω) ∈ Eλ,γ /p[u] then r ≥ rλ(x, ω, ε); indeed, either
rλ(x, ω, ε) ≥ δ(ε) already, or else rλ(x, ω, ε) < δ(ε), in which case (3-6) shows

rλ(x, ω, ε) ≥

(
λ

|∇u(x) · ω| + ε

)−p/γ

.

Finally let B be any ball in RN containing the support of u, and let B̃ be the double ball. Then

lim sup
λ↘0

λpνγ (Eλ,γ /p[u] ∩ (B̃ × RN )) ≤ lim sup
λ↘0

λp
∫

B̃

∫
SN−1

∫
∞

rλ(x,ω,ε)

rγ−1 dr dω dx

= lim sup
λ↘0

λp
∫

B̃

∫
SN−1

1
|γ |

[rλ(x, ω, ε)]γ dω dx

= lim sup
λ↘0

1
|γ |

∫
B̃

∫
SN−1

max{λpδ(ε)γ , (|∇u(x) · ω| + ε)p
} dω dx

=
1

|γ |

∫
B̃

∫
SN−1

(|∇u(x) · ω| + ε)p dω dx .

Since ε > 0 was arbitrary we obtain

lim sup
λ↘0

λpνγ

(
Eλ,γ /p[u] ∩ (B̃ × RN )

)
≤

1
|γ |

κ(p, N )∥∇u∥
p
L p(RN )

. (3-8)

Since u = 0 in RN
\ B, if (x, y) ∈ Eλ,γ /p[u] ∩ ((RN

\ B̃) × RN ) then y ∈ B. Therefore

lim sup
λ↘0

λpνγ

(
Eλ,γ /p[u] ∩ ((RN

\ B̃) × RN )
)
≤ lim sup

λ↘0
λp

∫
B

∫
RN \B̃

|x − y|
γ−N dx dy = 0.

This finishes the proof of part (ii). □

In dimension N = 1, when γ < −1, one can also weaken the hypothesis u ∈ C1
c (R) in Lemma 3.3 to

u ∈ C1(R) and u′ is compactly supported:

Lemma 3.5. Suppose u ∈ C1(R), u′ is compactly supported, and 1 ≤ p < ∞. If γ < −1 then

lim sup
λ↘0

λpνγ (Eλ,γ /p[u]) ≤
κ(p, N )

|γ |
∥u′

∥
p
L p(R).
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Proof. Let supp(u′) ⊂ B := (−β, β). By (3-8) we have

lim sup
λ↘0

νγ (Eλ,γ /p[u] ∩ (−2β, 2β) × R) ≤
1

|γ |
κ(p, 1)∥u′

∥
p
L p(R).

Moreover, since u is constant on (β, ∞) and constant on (−∞, −β), if (x, y) ∈ Eλ,γ /p[u] and x < −2β

then y > −β, and if (x, y) ∈ Eλ,γ /p[u] and x > 2β then y < β. Since γ < −1,

νγ (Eλ,γ /p[u] ∩ (R \ (−2β, 2β)) × R) ≤

∫
∞

2β

∫ β

−∞

(x − y)γ−1 dy dx +

∫
−2β

−∞

∫
∞

−β

(y − x)γ−1 dy dx < ∞.

We conclude
lim sup

λ↘0
λpνγ (Eλ,γ /p[u] ∩ (R \ (−2β, 2β)) × R) = 0. □

3D. Upper bounds for lim sup λ pνγ (Eλ,γ / p[u]), for general Ẇ1, p functions. Let N ≥ 1, 1 ≤ p < ∞

and u ∈ Ẇ 1,p(RN ). In light of Lemma 3.2, to prove the limiting relations (1-7) and (1-8) in Theorem 1.1,
we need only show that

lim sup
λ→∞

λpνγ (Eλ,γ /p[u]) ≤
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

(3-9)

if γ > 0 and

lim sup
λ↘0

λpνγ (Eλ,γ /p[u]) ≤
κ(p, N )

|γ |
∥∇u∥

p
L p(RN )

(3-10)

if γ < 0 and p > 1, or γ < −1 and p = 1. Lemma 3.3(i)–(ii) asserts that these desired inequalities hold
for functions in C1

c (RN ). When N ≥ 2 or p > 1, a general Ẇ 1,p(RN ) function can be approximated in
Ẇ 1,p(RN ) by functions in C1

c (RN ); by [Hajłasz and Kałamajska 1995], there exists a sequence {un} in
C∞

c (RN ) such that limn→∞ ∥∇(un −u)∥L p(RN ) = 0. If further γ > 0, or γ < 0 and p > 1, or γ < −1 and
p = 1, then by parts (i) of Theorems 1.3 and 1.4 (proved in Section 2), we have

sup
λ>0

λpνγ (Eλ,γ /p[un − u]) ≤ C p
N ,p,γ ∥∇(un − u)∥

p
L p(RN )

. (3-11)

It follows that, for every n and every δ ∈ (0, 1),

lim sup
λ→∞

λpνγ (Eλ,γ /p[u]) ≤ lim sup
λ→∞

λpνγ (E(1−δ)λ,γ /p[un]) + sup
λ>0

λpνγ (Eδλ,γ /p[un − u])

≤
κ(p, N )

|γ |(1 − δ)
∥∇un∥

p
L p(RN )

+

C p
N ,p,γ ∥∇(un − u)∥

p
L p(RN )

δ p (3-12)

if γ > 0, and a similar inequality holds with lim supλ→∞ replaced by lim supλ↘0 if γ < 0, p > 1 or
γ < −1, p = 1. Letting first n → ∞ and then δ → 0, we get the desired conclusions (3-9) and (3-10)
under the corresponding conditions on γ and p.

It remains to tackle the case N = p = 1, in which case we only need to prove (3-9) when γ > 0 and
(3-10) when γ < −1. Using (2-11), we approximate u by finding a sequence {un} in C∞(R) so that u′

n

are compactly supported for each n, and limn→∞ ∥u′
n − u′

∥L1(R) = 0. Since the desired inequalities hold
for un in place of u by Lemma 3.3(iii) and Lemma 3.5, and since part (i) of Theorem 1.4 applies to give
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(3-11) when γ > 0 or γ < −1, our earlier argument in (3-12) can be repeated to yield (3-9) when γ > 0
and (3-10) when γ < −1. This completes our proof of parts (a) and (b) of Theorem 1.1.

3E. Conclusion of the proof of Theorem 1.1. In Section 3D we proved parts (a) and (b) of Theorem 1.1.
The lower bound for the lim inf in part (c) has been established in Lemma 3.2(ii), and the limiting equality
for u ∈ C1

c (RN ) when p = 1 and −1 ≤ γ < 0 follows by combining that with the upper bound for the
lim sup in part (ii) of Lemma 3.3. The proof of the negative result in part (c) of the theorem (generic
failure for p = 1, −1 ≤ γ < 0) will be given in Proposition 6.6 below. □

3F. On limit formulas for ḂV(R)-functions: the proof of Proposition 1.2. When p = 1, Poliakovsky
[2022] asked whether (1-7) still holds for u ∈ ḂV(RN ) instead of Ẇ 1,1(RN ) if γ = N. More generally,
one may wonder whether it is possible that, for all u ∈ ḂV(RN ), one has

lim
λ→∞

λνγ (Eλ,γ [u]) =
κ(1, N )

|γ |
∥∇u∥M when γ > 0, (3-13)

lim
λ→0+

λνγ (Eλ,γ [u]) =
κ(1, N )

|γ |
∥∇u∥M when γ < 0. (3-14)

We show that this is not the case.
First, when −1 ≤ γ < 0, Theorem 1.8(i) (proved in Proposition 6.3 below) shows that even if

u ∈ Ẇ 1,1(RN ), it may happen that limλ→0+ λνγ (Eλ,γ [u]) = ∞. So (3-14) cannot hold for all u ∈ ḂV(RN )

for such γ .
The following lemma provides examples of failure of (3-13) and (3-14) when γ ∈ R \ [−1, 0], since

|γ + 1| ̸= |γ | unless γ = −
1
2 :

Lemma 3.6. Suppose N ≥ 1 and u = 1�, where � is any bounded convex domain in RN with smooth
boundary. Then u ∈ ḂV(RN ) and

lim
λ→∞

λνγ (Eλ,γ [u]) =
κ(1, N )

|γ + 1|
∥∇u∥M for all γ > −1,

while
lim

λ→0+

λνγ (Eλ,γ [u]) =
κ(1, N )

|γ + 1|
∥∇u∥M for all γ < −1.

Proof. First consider the case N = 1. If u = 1[0,∞) (so that ∥u′
∥M(R) = 1), then, for every γ ∈ R \ {−1}

and λ > 0, one has

νγ (Eλ,γ [u]) = 2νγ ({(x, y) ∈ R : x ≥ 0, y < 0, |x − y|
−(γ+1)

≥ λ}) =
2

|γ + 1|

1
λ
, (3-15)

which follows from a change of variables s = x − y, t = x + y: when γ > −1, one has

νγ (Eλ,γ [u]) =

∫ λ−1/(γ+1)

0

∫ s

−s
dt sγ−1 ds = 2

∫ λ−1/(γ+1)

0
sγ ds =

2
γ + 1

1
λ
,

while when γ < −1, one has

νγ (Eλ,γ [u]) =

∫
∞

λ−1/(γ+1)

∫ s

−s
dt sγ−1 ds = 2

∫
∞

λ−1/(γ+1)

sγ ds =
2

|γ + 1|

1
λ
.
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A similar calculation shows that if u = 1I is a characteristic function of a bounded open interval (so that
∥u′

∥M(R) = 2), then

lim
λ→∞

λνγ (Eλ,γ [u]) =
2

|γ + 1|
∥u′

∥M(R) for all γ > −1, (3-16)

while

lim
λ→0+

λνγ (Eλ,γ [u]) =
2

|γ + 1|
∥u′

∥M(R) for all γ < −1; (3-17)

we also have

sup
λ>0

λνγ (Eλ,γ [u]) ≤
2

|γ + 1|
∥u′

∥M(R) for all γ ∈ R \ {−1}. (3-18)

Now consider the case N ≥ 2. Let � be a bounded convex domain in RN with smooth boundary and
u = 1�. Then u ∈ ḂV(RN ) with ∥∇u∥M = LN−1(∂�). The method of rotation shows

λνγ (Eλ,γ [u]) =
1
2

∫
SN−1

∫
ω⊥

λνγ (Eλ,γ [uω,x ′]) dx ′ dω,

where uω,x ′(t) := u(x ′
+ tω) for ω ∈ SN−1 and x ′

∈ ω⊥. Note that ∥u′

ω,x ′∥M(R) ≤ 2 for all ω ∈ SN−1 and
all x ′

∈ ω⊥, since � is convex and every line only meets ∂� at at most two points. Thus (3-16), (3-18)
and the dominated convergence theorem allow one to show that

lim
λ→∞

λνγ (Eλ,γ [u]) =
1

|γ + 1|

∫
SN−1

∫
ω⊥

∥u′

ω,x ′∥M(R) dx ′ dω for all γ > −1,

and using (3-17) in place of (3-16) we obtain the same conclusion with limλ→∞ replaced by limλ→0+ if
γ < −1. It remains to observe that∫

SN−1

∫
ω⊥

∥u′

ω,x ′∥M(R) dx ′ dω = κ(1, N )∥∇u∥M. (3-19)

This holds by Fubini’s theorem if u = 1� is replaced by uε := u ∗ ρε, where ρε is a suitable family of
mollifiers, because the left-hand side is then just∫

SN−1

∫
ω⊥

∫
R

∣∣∣ d
dt

uε(x ′
+ tω)

∣∣∣ dt dx ′ dω =

∫
SN−1

∫
RN

|ω · ∇uε(x)| dx dω,

which equals κ(1, N )∥∇uε∥L1(RN ). One then just needs to let ε → 0 to obtain (3-19): in fact, a standard
argument shows that

lim
ε→0+

∥∇uε∥L1(RN ) = ∥∇u∥M(RN ).

so it remains to prove that

lim
ε→0+

∫
SN−1

∫
ω⊥

∫
R

∣∣∣ d
dt

uε(x ′
+ tω)

∣∣∣ dt dx ′ dω =

∫
SN−1

∫
ω⊥

∥u′

ω,x ′∥M(R) dx ′ dω. (3-20)

But for every ω ∈ SN−1, and almost every x ′
∈ ω⊥ (as long as t 7→ x ′

+ tω parametrizes a line Lω,x ′ that
is either disjoint from �, or intersects ∂� transversely at two different points), we have

lim
ε→0+

∫
R

∣∣∣ d
dt

uε(x ′
+ tω)

∣∣∣ dt = ∥u′

ω,x ′∥M(R). (3-21)
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The validity of (3-21) is clear if Lω,x ′ does not intersect �, while if Lω,x ′ intersects ∂� transversely at
two different points, then we can choose a coordinate system so that ω = (0, . . . , 0, 1), and assume that
for some open neighborhood U of x ′ in ω⊥, the intersection of U × Lω,x ′ with � takes the form

{(y′, yN ) : y′
∈ U, φ1(y′) < yN < φ2(y′)}

for some smooth functions φ1 and φ2 of y′
∈ U. Then, for ε > 0 sufficiently small,∫

R

∣∣∣ d
dt

uε(x ′
+ tω)

∣∣∣ dt =

∫
R

∣∣∣∣∫
RN

1�(y)∂N ρε(x ′
− y′, t − yN ) dy

∣∣∣∣ dt

=

∫
R

∣∣∣∣− ∫
RN

1φ1(y′)<yN <φ2(y′)
∂

∂yN
[ρε(x ′

− y′, t − yN )] dy
∣∣∣∣ dt

=

∫
R

∣∣∣∣∫
RN−1

ρε(x ′
− y′, t − φ1(y′)) − ρε(x ′

− y′, t − φ2(y′)) dy′

∣∣∣∣ dt

=

∫
R

(∫
RN−1

ρε(x ′
− y′, t − φ1(y′)) dy′

+

∫
RN−1

ρε(x ′
− y′, t − φ2(y′)) dy′

)
dt

= 2
∫

RN−1

∫
R

ρε(x ′
− y′, t) dt dy′

= 2 = ∥u′

ω,x ′∥M(R).

This proves (3-21), and then the dominated convergence theorem allows one to conclude the proof
of (3-20). □

Remark. The identity (3-19) for u = 1� can be derived from Crofton’s formula for rather general (not
necessarily convex) domains �. See [Federer 1969, Chapter 3.2.26], which showed that when ∂� is
rectifiable, then its (N−1)-dimensional Hausdorff measure HN−1(∂�) is equal to I N−1

1 (∂�), where
I N−1

1 (∂�) is given by [Federer 1969, Chapter 2.10.15] as

1
β1(N , N − 1)

∫
p∈O∗(N ,N−1)

∫
y∈RN−1

N (p|∂�, y) dy dp;

here O∗(N , N −1) is the space of all orthogonal projections p from RN onto RN−1, dp is the right-O(N )-
invariant measure on O∗(N , N − 1) normalized so that

∫
O∗(N ,N−1)

dp = 1, N (p|∂�, y) is the number of
points x ∈ ∂� so that px = y, and

β1(N , N − 1) =
0(N/2)

0((N + 1)/2)0(1/2)

according to [Federer 1969, Chapter 3.2.13]. It follows that, for u = 1�,∫
SN−1

∫
ω⊥

∥u′

ω,x ′∥M(R) dx ′ dω = HN−1(SN−1)

∫
p∈O∗(N ,N−1)

∫
y∈RN−1

N (p|∂�, y) dy dp

=
2π N/2

0(N/2)
β1(N , N − 1)HN−1(∂�)

=
2π (N−1)/2

0((N + 1)/2)
∥∇u∥M = κ(1, N )∥∇u∥M,

as asserted in (3-19).
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4. From weak-type bounds on quotients to Ẇ1, p and ḂV

In this section we complete the proofs of Theorems 1.3 and 1.4 proving part (ii) of these theorems. We
use as a key tool the BBM formula discovered in [Bourgain et al. 2001] (see also [Dávila 2002] for
additional information for the BV case), in a way that is reminiscent of the proof of [Nguyen 2006,
Theorem 2], and we apply duality for Lorentz spaces to control the double integral arising in the BBM
formula. The BBM formula stated in [Bourgain et al. 2001] is quite flexible, involving a bounded
smooth domain � and a sequence of nonnegative radial mollifiers ρn(|x |), with

∫
∞

0 ρn(r)r N−1 dr = 1
and limn→∞

∫
∞

δ
ρn(r)r N−1 dr = 0 for every δ > 0; we will apply it in the case when � = BR , the ball of

radius R centered at 0, and ρn(r) = sn p(2R)−sn pr−N+sn p1[0,2R](r), where {sn} is a sequence of positive
numbers tending to 0. As a result, we conclude that if R > 0, 1 ≤ p < ∞, u ∈ L p(BR) and

lim inf
s→0+

s
∫∫

BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy < ∞,

then for p = 1 we have u ∈ ḂV(BR) with ∥∇u∥M(BR) being bounded by κ(1, N ) times the above liminf,
and, for 1 < p < ∞ we have u ∈ Ẇ 1,p(BR) and ∥∇u∥L p(BR) being bounded by κ(p, N )/p times the
above liminf. The assumption u ∈ L p(BR) can easily be relaxed to u ∈ L1(BR), via an observation of
Stein as explained in [Brezis 2002, proof of Theorem 2]: if u ∈ L1(BR) and the above liminf is finite
for some 1 < p < ∞, then, for any δ > 0 and any ε ∈ (0, δ), we may consider uε := u ∗ φε(x), where
φε(x) := ε−N φ(ε−1x) and φ ∈ C∞

c (B1) is nonnegative and has integral 1. Then uε is C∞ on the closure
of the ball BR−δ, so the above formulation of BBM applies, and ∥∇uε∥L p(BR−δ) is uniformly bounded
independent of ε ∈ (0, δ); indeed Jensen’s inequality implies∫∫

BR−δ×BR−δ

|uε(x) − uε(y)|p

|x − y|N+p−sp dx dy ≤

∫∫
BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy

for every ε. This shows that a subsequence of {∇uε} converges weakly in L p(BR−δ) to the distributional
gradient ∇u on BR−δ, and a desired bound on ∥∇u∥L p(BR−δ) follows for every δ > 0.

Suppose now N ≥ 1, 1 ≤ p < ∞, γ ∈ R, u ∈ L1
loc(R

N ) and Qγ /pu ∈ L p,∞(R2N , νγ ). Let

A := sup
R>0

lim inf
s→0+

s
∫∫

BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy. (4-1)

Suppose A is finite. If p = 1, then the BBM formula above implies u ∈ ḂV(BR) for every R > 0,
with ∥∇u∥M(BR) ≤ κ(1, N )A independent of R; as a result, u ∈ ḂV(RN ), with ∥∇u∥M(RN ) ≤ κ(1, N )A.
Similarly, if 1 < p < ∞, the above BBM formula (applicable for u ∈ L1

loc(R
N )) implies u ∈ Ẇ 1,p(RN ),

with ∥∇u∥L p(RN ) ≤ (κ(1, N )A/p)1/p.
It remains to prove that A < ∞. By considering truncations of u we may assume additionally that

u ∈ L∞(RN ); the reduction is based on the pointwise bound

Qγ /pun(x, y) ≤ Qγ /pu(x, y), where un(x) =

{
u(x) if |u(x)| < n,

nu(x)/|u(x)| if |u(x)| ≥ n.
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Using the definition of weak derivative we see by a limiting argument that the conclusion supn ∥∇un∥p ≤C
implies ∥∇u∥p ≤ C if p > 1 and supn ∥∇un∥M ≤ C implies ∥∇u∥M ≤ C .

In order to establish our estimate for bounded functions we will use Lorentz duality in the following
form: if F, G are measurable functions on R2N, then, for any 1 < q < ∞, we have∫∫

RN ×RN
F(x, y)G(x, y) dνγ ≤ q ′

[F]Lq,∞(R2N ,νγ )[G]Lq′,1(R2N ,νγ ), (4-2)

where 1/q + 1/q ′
= 1,

[F]Lq,∞(R2N ,νγ ) := sup
λ>0

λνγ ({|F | > λ})1/q
= sup

t>0
t1/q F∗(t),

[G]Lq′,1(R2N ,νγ ) :=

∫
∞

0
νγ ({|G| > λ})1/q ′

dλ =
1
q ′

∫
∞

0
t1/q ′

G∗(t) dt
t

;

here F∗(t) := inf{s > 0 : νγ ({|F | > λ}) ≤ s} is the nonincreasing rearrangement of F, and similarly
for G∗(t); see [Hunt 1966; Stein and Weiss 1971]. Indeed, (4-2) follows by noticing that∫∫

RN ×RN
F(x, y)G(x, y) dνγ ≤

∫
∞

0
F∗(t)G∗(t) dt =

∫
∞

0
[t1/q F∗(t)][t1/q ′

G∗(t)] dt
t

,

which is clearly ≤ q ′
[F]Lq,∞(R2N ,νγ )[G]Lq′,1(R2N ,νγ ).

First we consider the case γ > 0. For sufficiently small s > 0, define

θ :=
s

1 + γ /p

so that θ ∈ (0, 1) and p − sp = p(1 − θ)(1 + γ /p) − γ . Then, for every R > 0,∫∫
BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy =

∫∫
RN ×RN

(Qγ /pu(x, y))p(1−θ)(|u(x) − u(y)|1BR×BR (x, y))pθ dνγ

≤
1
θ
[(Qγ /pu)p(1−θ)

]L1/(1−θ),∞(R2N ,νγ )[|u(x) − u(y)|pθ
]L1/θ,1(BR×BR ,νγ )

by (4-2). But

[(Qγ /pu)p(1−θ)
]L1/(1−θ),∞(R2N ,νγ ) = [Qγ /pu]

p(1−θ)

L p,∞(R2N ,νγ )

and
[|u(x) − u(y)|pθ

]L1/θ,1(BR×BR,νγ ) ≤ (2∥u∥L∞(RN ))
pθ

[1BR×BR ]L1/θ,1(RN ×RN ,νγ )

= (2∥u∥L∞(RN ))
pθνγ (BR × BR)θ ,

from which it follows that

s
∫∫

BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy ≤
s
θ
[Qγ /pu]

p(1−θ)

L p,∞(R2N ,νγ )
(2∥u∥L∞(RN ))

pθνγ (BR × BR)θ .

Furthermore, since γ > 0, we have

νγ (BR × BR) ≤ |BR|

∫
B2R

1
|h|N−γ

dh < ∞.
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Recall θ = s/(1 + γ /p). Thus as s → 0+, we have

lim sup
s→0+

s
∫∫

BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy ≤

(
1 +

γ

p

)
[Qγ /pu]

p
L p,∞(R2N ,νγ )

< ∞.

Since this upper bound holds uniformly over all R > 0, this concludes the argument for the case γ > 0.
Next we turn to the case γ ≤ 0. We then observe that, for 0 < s < 1 and every R > 0,∫∫
BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy

=

∫∫
RN ×RN

(Qγ /pu(x, y))p(1−s/2)(|u(x) − u(y)||x − y|
1−γ /p1BR×BR )ps/2 dνγ

≤
2
s
[(Qγ /pu)p(1−s/2)

]L1/(1−s/2),∞(R2N ,νγ )[(|u(x) − u(y)||x − y|
1−γ /p)ps/2

]L2/s,1(BR×BR ,νγ ).

Again
[(Qγ /pu)p(1−s/2)

]L1/(1−s/2),∞(R2N ,νγ ) = [Qγ /pu]
p(1−s/2)

L p,∞(R2N ,νγ )

and

[(|u(x) − u(y)||x − y|
1−γ /p)ps/2

]L2/s,1(BR×BR,νγ )

≤ (2∥u∥L∞(RN ))
ps/2

[|x − y|
(p−γ )s/2

]L2/s,1(BR×BR,νγ ). (4-3)

We will show that
lim sup

s→0+

[|x − y|
(p−γ )s/2

]L2/s,1(BR×BR ,νγ ) ≤ 1 −
γ

p
(4-4)

when γ ≤ 0. We then see that

lim sup
s→0+

s
∫∫

BR×BR

|u(x) − u(y)|p

|x − y|N+p−sp dx dy ≤ 2
(

1 −
γ

p

)
[Qγ /pu]

p
L p,∞(R2N ,νγ )

,

which concludes the argument in this case since this bound is uniform in R > 0.
It remains to prove (4-4) when γ ≤ 0. Note that in this case p−γ > 0, so |x − y|

(p−γ )s/2
≤ (2R)(p−γ )s/2

on BR × BR . Thus

[|x − y|
(p−γ )s/2

]L2/s,1(BR×BR,νγ ) =

∫ (2R)(p−γ )s/2

0
νγ {(x, y) ∈ BR × BR : |x − y|

(p−γ )s/2 > λ}
s/2 dλ.

If γ < 0, then

νγ {(x, y) ∈ BR × BR : |x − y|
(p−γ )s/2 > λ} ≤ |BR|

∫
|h|>λ2/(s(p−γ ))

1
|h|N−γ

dh ≤ σN−1|BR|
1

|γ |
λ2γ /(s(p−γ )),

where σN−1 is the surface area of SN−1. Hence in this case,

[|x − y|
(p−γ )s/2

]L2/s,1(BR×BR,νγ ) ≤

(
σN−1|BR|

1
|γ |

)s/2∫ (2R)(p−γ )s/2

0
λγ /(p−γ ) dλ

=

(
1 −

γ

p

)(
σN−1|BR|

1
|γ |

)s/2

(2R)ps/2.
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(Here we used γ /(p − γ ) = −1/(1 − γ /p) ∈ (−1, 0) whenever γ < 0.) This proves (4-4) when γ < 0.
Next, suppose γ = 0. Then

[|x − y|
(p−γ )s/2

]L2/s,1(BR×BR,νγ ) =

∫ (2R)ps/2

0
ν0{(x, y) ∈ BR × BR : |x − y|

ps/2 > λ}
s/2 dλ

≤

∫ (2R)ps/2

0

(
|BR|

∫
λ2/(sp)≤|h|≤2R

1
|h|N dh

)s/2

dλ

=

∫ (2R)ps/2

0

(
|BR|ωN−1

2
ps

log
(

(2R)ps/2

λ

))s/2

dλ

= (2R)ps/2
∫ 1

0

(
|BR|ωN−1

2
ps

log
(

1
λ

))s/2

dλ,

which shows (4-4) remains valid when γ = 0 by the dominated convergence theorem. □

5. Finiteness of ν0(Eλ,0[u]) and the Lipschitz norm

In this section we prove Theorem 1.5, which we put in the following more precise form.

Proposition 5.1. Let u be locally integrable on RN and ∇u ∈ L1
loc(R

N ). Then

ν0(Eλ,0[u]) =

{
0 if λ > ∥∇u∥∞,

∞ if λ < ∥∇u∥∞.

Proof. First assume ∇u ∈ L∞ and λ > ∥∇u∥∞. Then for every h ∈ RN we have |u(x +h)−u(x)|/|h| ≤ λ

for almost every x ∈ RN. This immediately implies ν0(Eλ,0[u]) = 0.
For the more substantial part assume λ < ∥∇u∥∞, where ∥∇u∥∞ may be finite or infinite. We need to

show that ν0(Eλ,0[u]) = ∞. We pick λ1, λ2 such that

λ < λ1 < λ2 < ∥∇u∥∞.

Let BR = {x ∈ RN
: |x | < R} and assume that R > 1 is so large that ∥∇u∥L∞(BR) > λ2. Let χ ∈ C∞

c

such that χ(x) = 1 in a neighborhood of B2R and set u◦ = χu. Then ∇u◦ = ∇u as integrable functions
on B2R . There is a measurable set F0 ⊂ BR of positive measure such that |∇u(x)| > λ2 for all x ∈ F0.

Fix 0 < ε ≪ 1 − λ1/λ2. We now consider the set Sε of all spherical balls S ⊂ SN−1 with positive
radius and the property that ⟨θ1, θ2⟩ > 1 − ε for all θ1, θ2 ∈ S. By pigeonholing there exists a spherical
ball S ∈ Sε and a Lebesgue measurable subset F ⊂ F0 such that LN (F) > 0 and ∇u(x)/|∇u(x)| ∈ S for
all x ∈ F. For the remainder of the argument we fix this spherical ball S; we denote by σ(S) its spherical
measure.

We first note that, for |h| ≤ 1 and for almost every |x | ≤ R,

u(x + h) − u(x)

|h|
=

u◦(x + h) − u◦(x)

|h|
=

〈
h
|h|

,

∫ 1

0
∇u◦(x + sh) ds

〉
. (5-1)
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Secondly since the translation operator is continuous in the strong operator topology of L1 we see that
there exists δ0 < 1 such that

∥∇u◦( · + w) − ∇u◦∥L1(RN ) <
LN (F)(λ1 − λ)

10
for |w| ≤ δ0. (5-2)

In what follows we let δ ≪ δ0 and set

S(δ, δ0) =

{
h ∈ RN

: δ ≤ |h| ≤ δ0,
h
|h|

∈ S
}
.

Let

E0 =

{
(x, h) : x ∈ F, h ∈ S(δ, δ0),

|u(x + h) − u(x)|

|h|
> λ

}
so that (x, h) ∈ E0 implies (x, x + h) ∈ Eλ,0[u]. We then have by (5-1)

ν0(Eλ,0[u]) ≥ ν0(E0) = ν0

({
(x, h) : x ∈ F, h ∈ S(δ, δ0),

∣∣∣∣〈 h
|h|

,

∫ 1

0
∇u◦(x + sh) ds

〉∣∣∣∣ > λ

})
≥ ν0(E1) − ν0(E2), (5-3)

where

E1 =

{
(x, h) : x ∈ F, h ∈ S(δ, δ0),

∣∣∣∣〈 h
|h|

, ∇u◦(x)

〉∣∣∣∣ > λ1

}
,

E2 =

{
(x, h) : x ∈ F, h ∈ S(δ, δ0),

∫ 1

0
|∇u◦(x + sh) − ∇u◦(x)| ds > λ1 − λ

}
.

Indeed, if (x, h) /∈ E0 ∪ E2 then∣∣∣∣〈 h
|h|

, ∇u◦(x)

〉∣∣∣∣ ≤

∣∣∣∣〈 h
|h|

,

∫ 1

0
∇u◦(x + sh) ds

〉∣∣∣∣ + ∫ 1

0
|∇u◦(x + sh) − ∇u◦(x)| ds,

which is then ≤ λ1, so (x, h) /∈ E1, establishing E1 ⊂ E0 ∪ E2 and thus (5-3).
The set E1 does not change if we replace u◦ by u in its definition. Since〈

h
|h|

, ∇u(x)

〉
≥ (1 − ε)|∇u(x)| > (1 − ε)λ2 > λ1 for x ∈ F,

h
|h|

∈ S,

we get

ν0(E1) ≥

∫
F

dx
∫

S(δ,δ0)

dh
|h|N = LN (F)σ (S) log

(
δ0

δ

)
.

Moreover, using (5-2) and Chebyshev’s inequality we see that

ν0(E2) ≤

∫
S(δ,δ0)

∫ 1
0 ∥∇u◦( · + sh) − ∇u◦∥L1(RN ) ds

λ1 − λ

dh
|h|N

≤

∫
S(δ,δ0)

LN (F)(λ1 − λ)/10
λ1 − λ

dh
|h|N =

LN (F)

10
σ(S) log

(
δ0

δ

)
,
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and hence putting pieces together we obtain for δ < δ0

ν0(Eλ,0[u]) ≥ ν0(E1) − ν0(E2) >
LN (F)

2
σ(S) log

(
δ0

δ

)
.

Here δ < δ0 was arbitrary and by letting δ → 0 we conclude that ν0(Eλ,0[u]) = ∞. □

We now give a more precise version of Example 1.7.

Lemma 5.2. Let � ⊂ RN be a bounded domain with Lipschitz boundary and let u = 1�. Then u ∈

BV(RN ) \ Ẇ 1,1(RN ), with

ν0(Eλ,0[u]) ≤ C� ×

{
log(2/λ) if λ ≤ 1,

λ−1 if λ > 1;

in particular we have supλ>0 λ ν0(Eλ,0[u]) < ∞.

Proof. Let
E(r, λ) = {(x, y) ∈ Eλ,0[u] : r ≤ |x − y| ≤ 2r}.

We begin with the observation that rλ ≤ 2 if ν0(E(r, λ)) > 0. Furthermore, if (x, y) ∈ E(r, λ) for
some y ∈RN, then x belongs to the 2r -neighborhood of ∂�. The Lebesgue measure of such a neighborhood
is O(r) if r ≤ r0, where r0 is some positive constant depending on � (because the boundary of a bounded
Lipschitz domain can be covered by finitely many Lipschitz graphs, and the 2r-neighborhood of such
graphs can be approximated by a union of O(r) neighborhoods of suitable hyperplanes). Hence for r ≤ r0

we have ν0(E(r, λ)) ≤ Cr if r ≤ 2/λ and ν0(E(r, λ)) = 0 if r > 2/λ. As a result, if 2/λ ≤ r0 we get

ν0(Eλ,0[u]) ≤

∑
j∈Z:2 j ≤2/λ

ν0(E(2 j , λ)) ≲ λ−1

and if 2/λ > r0 we get

ν0(Eλ,0[u]) ≤

∑
j∈Z:2 j ≤r0

ν0(E(2 j , λ))+ 2
∫

�

∫
r0≤|x−y|≤2/λ

dy
|x − y|N dx ≲ 1 + log(λ−1). □

6. When the upper bound (1-15) fails

In this section we make various constructions demonstrating the failure of (1-15) in the range −1 ≤ γ < 0,
and give the proof of Theorem 1.8. We first establish:

Proposition 6.1. Suppose N ≥ 1 and −1 ≤ γ < 0.

(i) For every m > 0, there exists u ∈ C∞
c (RN ) such that

νγ (E1,γ [u]) > m∥∇u∥L1(RN ). (6-1)

(ii) There exists C = C(N , γ ) > 0 and p0 = p0(N , γ ) > 1 such that, for all 1 < p < p0,

sup
u∈C∞

c (RN )
∥∇u∥L p ≤1

νγ (E1,γ /p[u]) ≥ C
p

p − 1
. (6-2)
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6A. Proof of Proposition 6.1: the case γ = −1. Here we may choose, for m > 1,

vm = 2 ηm ∗ 1B1 ∈ C∞

c (RN ), (6-3)

where ηm(x) := 2m N η(2m x) for some nonnegative, radially decreasing η ∈ C∞
c (B1), with

∫
RN η = 1.

Then when 1 ≤ p < ∞ and m ≤ p′
= p/(p − 1) (which is no restriction on m if p = 1), we have

∥∇vm∥p ≲2m/p′

≲1, while E1,−1/p[vm]⊇{|x |≤1−2−m, 1+2−m
≤|y|≤2} (because for (x, y) in the latter

set, |vm(x)−vm(y)|= 2 and |x −y|
1−1/p

≤ 21−1/p, which means |Q−1/pvm(x, y)|≥ 2/21−1/p
= 21/p > 1).

Hence
ν−1(E1,−1/p[vm]) ≥

∫
|x |≤1−2−m

∫
1+2−m≤|y|≤2

|x − y|
−1−N dx dy

≥ cN

∫
|x |≤1−2−m

(1 + 2−m
− |x |)−1

− (2 − |x |)−1 dx ≥ c′

N m.

This proves both (i) and (ii) of Proposition 6.1 in the case γ = −1. □

6B. The case −1 < γ < 0: examples of Cantor–Lebesgue-type on the real line. We now discuss some
examples related to self-similar Cantor sets of dimension β = 1 + γ . Recall the definition of νγ , Qγ in
(1-4), (1-5) and observe the behavior under dilations:

νγ (t E) = t1+γ νγ (E). (6-4)
We have:

Lemma 6.2. Let −1 < γ < 0. There exist constants cγ > 0, Cγ > 0, and a sequence of functions
gm ∈ C∞(R), with gm(x) = 0 for x ≤ 0 and gm(x) = 1 for x ≥ 1, such that, for all 1 ≤ p < ∞,

∥g′

m∥p ≤ cγ 2m|γ |/(1+γ )(1−1/p) (6-5)
and if

m − 1 ≤
γ + 1
|γ |

p
p − 1

,

then
νγ

({
(x, y) ∈ [0, 1]

2
: |Qγ /pgm(x, y)| >

1
4

})
≥

m
C γ

. (6-6)

Proof. For −1 < γ < 0 let
ρ = 2−1/(1+γ ) (6-7)

so that 0 <ρ < 1
2 . We construct gm such that its derivative is supported on the m-th step of the construction

of symmetric Cantor sets of dimension β = 1 + γ = log 2/log(1/ρ), with an equal variation on each of
its 2m components [Mattila 2015, Chapter 8.1].

Let g0 ∈ C∞(R) be such that 0 ≤ g0 ≤ 1, g0(x) = 0 for x ≤ ρ and g0(x) = 1 for x ≥ 1 − ρ. Set, for
m ∈ N,

gm+1(x) :=
1
2

gm

(
x
ρ

)
+

1
2

gm

(
1 −

1 − x
ρ

)
.

Since ρ < 1
2 , we have, for p ∈ [1, ∞), ∥g′

m+1∥
p
L p(R) = 2 × (2ρ)−pρ∥g′

m∥
p
L p(R), and thus

∥g′

m∥L p(R) = (2ρ)(1/p−1)m
∥g′

0∥L p(R) = 2(1−1/p)m|γ |/(γ+1)
∥g′

0∥L p(R).
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Fix now 1 ≤ p < ∞, and for m ∈ N, λ > 0 define

Am,λ := νγ ({(x, y) ∈ [0, 1]
2
: |Qγ /pgm(x, y)| > λ}).

Our goal is to estimate Am,1/4, which we do by deriving a recursive estimate for Am,λ. We have the
decomposition

Am+1,λ ≥ νγ ({(x, y) ∈ [0, ρ]
2
: |Qγ /pgm+1(x, y)| > λ})

+ νγ ({(x, y) ∈ [1 − ρ, 1]
2
: |Qγ /pgm+1(x, y)| > λ})

+ νγ ({(x, y) ∈ [0, ρ] × [1 − ρ, 1] : |Qγ /pgm+1(x, y)| > λ}). (6-8)

Using the definition of gm+1, (6-7) and (6-4), we compute the first term in the right-hand side of (6-8) as

νγ ({(x, y) ∈ [0, ρ]
2
: |Qγ gm+1(x, y)| > λ})

= νγ ({(ρw, ρz) : (w, z) ∈ [0, 1]
2, |Qγ gm(w, z)| > 2ρ1+γ /pλ})

= ργ+1νγ ({(w, z) ∈ [0, 1]
2
: |Qγ gm(w, z)| > 2|γ |/(p′(γ+1))λ}) =

1
2 Am,sλ, (6-9)

where s := 2ρ1+γ /p
= 2|γ |/(p′(γ+1)), and similarly the second term as

νγ

({
(x, y) ∈ [1 − ρ, 1]

2
: |Qγ gm+1(x, y)| > 1

2

})
=

1
2 Am,sλ. (6-10)

Thus
Am+1,λ ≥ Am,sλ + νγ ({(x, y) ∈ [0, ρ] × [1 − ρ, 1] : |Qγ /pgm+1(x, y)| > λ}),

which iterates to give

Am,1/4 ≥ A0,sm/4 +

m∑
j=1

νγ

({
(x, y) ∈ [0, ρ] × [1 − ρ, 1] : |Qγ /pg j (x, y)| > 1

4 sm− j}).
We drop the first term, and note that as long as

m − 1 ≤
γ + 1
|γ |

p
p − 1

,

we have 1
4 sm− j

≤
1
2 for all j = 1, . . . , m. Moreover, for every x ∈ [0, ρ2

]× [1 − ρ2, 1] and every j ≥ 1,
we have g j (x) ≤

1
4 and g j (y) ≥

3
4 , so |Qγ /pg j (x, y)| > 1

2 . Thus we obtain the desired conclusion

Am,1/4 ≥ mνγ ([0, ρ2
] × [1 − ρ2, 1]) =

m
C γ

. □

6C. Conclusion of the proof of Proposition 6.1. We continue with the case −1 <γ < 0. Let η1 ∈ C∞
c (R)

supported in (−1, 2) such that η1(s) = 1 on
(
−

1
2 , 3

2

)
and 0 ≤ η1(s) ≤ 1 for all s ∈ R.

We split x = (x1, x ′) with x ′
∈ RN−1, where the variable x ′ should simply be dropped in the case N = 1.

Set η(x) =
∏N

i=1 η1(xi ) and define

um(x1, x ′) = 16gm(x1)η(x), (6-11)

where gm is as in Lemma 6.2. Then um ∈ C∞
c (RN ), and if 1 ≤ p < ∞ and

m − 1 ≤
γ + 1
|γ |

p
p − 1

,
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we have ∥∇um∥p ≲ 1. Both parts of Proposition 6.1 will follow, if we can prove that under the same
hypotheses on p and m, we have

νγ (E1,γ /p[um]) ≥ c(N , γ )m − C(N , γ )p. (6-12)

We aim to reduce to the one-dimensional situation in Lemma 6.2 and split Qγ /pum(x, y) as

Qγ /pum(x, y) = 16η(x)
gm(x1) − gm(y1)

|x − y|1+γ /p + 16gm(y1)
η(x) − η(y)

|x − y|1+γ /p = Im(x, y) + IIm(x, y),

so that

νγ (E1,γ /p[um]) ≥

∫∫
x1,y1∈[0,1]

|Im(x,y)+IIm(x,y)|>1

|x − y|
γ−N dx dy

≥

∫∫
x∈[0,1]

N ,y1∈[0,1]

|x1−y1|≥|x ′
−y′

|

|Im(x,y)|>2

|x − y|
γ−N dx dy −

∫∫
|IIm(x,y)|>1

|x − y|
γ−N dx dy. (6-13)

Clearly if B2 is the ball in RN of radius 2 centered at the origin then

|IIm(x, y)| ≤ cN |x − y|
−γ /p(1B2(x) + 1B2(y)),

and it follows immediately (since −γ > 0) that∫∫
|IIm(x,y)|>1

|x − y|
γ−N dx dy ≤ |γ |

−1C(N )p.

For the first term in (6-13), we prove a lower bound and estimate by integrating in y′∫∫
x∈[0,1]

N ,y1∈[0,1]

|x1−y1|≥|x ′
−y′

|

|Im(x,y)|>2

|x − y|
γ−N dx dy ≥

∫∫
x∈[0,1]

N ,y1∈[0,1]

|x1−y1|≥|x ′
−y′

|

|16gm(x1)−16gm(y1)|/|x1−y1|
1+γ /p>4

|x − y|
γ−N dx dy

≥ cN

∫∫
x1,y1∈[0,1]

|Qγ /pgm(x1,y1)|>1/4

|x1 − y1|
γ−1 dx1 dy1,

but by Lemma 6.2 the last expression is bounded below for large m by cN m/Cγ under our hypothesis
on m. This concludes the proof of (6-12). □

For later purposes, note the inequality (6-13) (with p = 1) and the argument that follows proved also
that for all sufficiently large m > m(N , γ ), we have

νγ (E1,γ [um] ∩ ([0, 1] × RN−1)2) ≥ c(N , γ )m. (6-14)

6D. Examples related to Theorems 1.1 and 1.8. We now consider the limit (1-8) in the range −1 ≤ γ < 0
and provide counterexamples for cases where u is no longer required to be a C∞

c function. The following
proposition covers part (i) of Theorem 1.8.

Proposition 6.3. Let −1 ≤ γ < 0. Let s 7→ ω(s) be any decreasing function on [0, ∞), with ω(0) ≤ 1
and ω(s) > 0 for all s ≥ 0. Then there exists a C∞ function u ∈ Ẇ 1,1(RN ) such that

|u(x)| ≤ Cω(|x |) for all x ∈ RN (6-15)
and

lim
λ↘0

λνγ (Eλ,γ [u]) = ∞. (6-16)
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Proof. We consider the case −1 < γ < 0. Let um ∈ C∞
c (RN ) be as in (6-11) and define

fm(x) = um(x1 − 2, x ′) (6-17)

so that fm(x) = 0 if x1 /∈ [1, 4]. Let, for n ∈ N,

Rn = 22n , λn = R−(N+γ )
n ω(Rn+1), m(n) ≥ 4

λn

λn+1
ω(Rn+1)

−1n3. (6-18)

We also assume m(n) > m(N , γ ) so that by (6-14) in Section 6C,

νγ ({(x, y) : x1, y1 ∈ [2, 3], |Qγ fm(n)(x, y)| > 1}) ≥ c(N , γ )m(n) (6-19)

for all n ∈ N. Finally let

u(x) =

∞∑
n=2

ω(Rn+1)

RN−1
n n2

fm(n)

(
x
Rn

)
. (6-20)

Since ∥ fm∥Ẇ 1,1 ≤ C , and ω is bounded, it is easy to see that the sum converges in Ẇ 1,1(RN ), and that u
is in Ẇ 1,1(RN ). Also, the supports of fm(n)(R−1

n · ), namely [Rn, 4Rn]× [−4Rn, 4Rn]
N−1, are disjoint as

n varies, so clearly u ∈ C∞(RN ). Since ∥ fm∥L∞ ≤ C , we have

|u(x)| ≤ ω(Rn+1)R−(N−1)
n n−2 for |x | ≥ Rn,

so |u(x)| ≤ C ′
|x |

−N+1ω(|x |) for |x | ≥ 2. In particular |u(x)| ≤ Cω(|x |).
For λ ∈ ((n + 1)−2λn+1, n−2λn] we estimate

λνγ (Eλ,γ [u]) ≥ (n + 1)−2λn+1νγ (En−2λn,γ [u]) ≥
λn+1

4λn
n−2λnνγ (En),

where En := En−2λn,γ [u]∩ ([2Rn, 3Rn]×RN−1)2. Moreover, for (x, y) ∈ ([2Rn, 3Rn]×RN−1)2, we have

u(x) − u(y) = R1−N
n n−2ω(Rn+1)( fm(n)(R−1

n x) − fm(n)(R−1
n y)),

so

|Qγ u(x, y)| > n−2λn ⇐⇒
| fm(n)(R−1

n x) − fm(n)(R−1
n y)|

|R−1
n x − R−1

n y|1+γ
>

RN+γ
n

ω(Rn+1)
λn = 1,

where the last equality follows from (6-18). Hence rescaling using (6-4) yields

n−2λnνγ (En) = n−2λn Rγ+N
n νγ ({(x, y) : x1, y1 ∈ [2, 3], |Qγ fm(n)(x, y)| > 1})

≥ c(N , γ )m(n)ω(Rn+1)n−2, (6-21)

with c(N , γ ) > 0, by (6-19). Thus we have shown

inf
λ∈((n+1)−2λn+1,n−2λn]

λνγ (Eλ,γ [u]) ≥ c(N , γ )
λn+1

4λn
ω(Rn+1)m(n)n−2

≥ c(N , γ )n,

where for the last inequality we have used our assumption (6-18) on m(n). The assertion follows for
−1 < γ < 0.
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Finally consider the case γ = −1. We now choose vm as in (6-3) and

Rn = 22n , λn = R−(N−1)
n ω(Rn+1), m(n) ≥ 4

λn

λn+1

n3

ω(Rn+1)
. (6-22)

In analogy to (6-20) we now use

u(x) =

∞∑
n=2

ω(Rn+1)

RN−1
n n2

vm(n)

(
x
Rn

)
. (6-23)

Since ω is bounded it is immediate that u ∈ Ẇ 1,1(RN ) and also that |u(x)| ≲ ω(|x |). We need to check
that λν−1(Eλ,−1[u]) → ∞ as λ → 0+. If |x | ≤ Rn(1 − 2m(n)) and |y| ≥ Rn(1 + 2m(n)), then

u(x) − u(y) ≥
ω(Rn+1)

RN−1
n n2

vm(n)

(
x
Rn

)
= 2

ω(Rn+1)

RN−1
n n2

= 2n−2λn > n−2λn,

so (x, y) ∈ En−2λn,−1[u]. Hence we get

n−2λnν−1(En−2λn,−1[u]) ≥ n−2λn

∫∫
|x |≤Rn(1−2m(n))

|y|≥Rn(1+2m(n))

|x − y|
−1−N dx dy

≥ n−2λn RN−1
n

∫∫
|x |≤1−2m(n)

|y|≥1+2m(n)

|x − y|
−1−N dx dy

≥ cN m(n)ω(Rn+1)n−2

(using (6-22) in the last inequality). This, together with our assumption on m(n), implies that

inf
λ∈((n+1)−2λn+1,n−2λn]

λν−1(Eλ,−1[u]) ≥ cN n → ∞

when n → ∞, as desired. □

The next proposition is relevant for part (ii) of Theorem 1.8.

Proposition 6.4. Suppose −1 ≤ γ < 0. Then there exists a compactly supported u ∈ W 1,1(RN ) such that
u is C∞ for x ̸= 0,

|u(x)| ≤
C

|x |N−1[log(2 + |x |−1)]2 (6-24)

and

lim
λ↘0

λνγ (Eλ,γ [u]) = ∞. (6-25)

If in addition N ≥ 2 or −1 < γ < 0 there exists u with the above properties and

νγ (Eλ,γ [u]) = ∞ for all λ > 0. (6-26)

Proof. Consider first the case −1 < γ < 0. We choose for n ∈ N

Rn = 2−2n , m(n) ≥ 22n
, (6-27)
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and with these choices of Rn and m(n) and fm as in (6-17) and (6-11) we define again

u(x) =

∞∑
n=2

1

n2 RN−1
n

fm(n)

(
x
Rn

)
.

The sum converges in W 1,1 to a function supported in [−4, 4]
N. We have |u(x)| ≤ C22n(N−1)n−2 for

0 < x1 ≤ 2−2n; moreover, |x ′
| ≲ |x1| on the support of u. This implies |u(x)| ≤ C ′

[|x |
1−N log(1/|x |)]−2

for small x . Also, because of the choices of Rn , we see that u is smooth away from 0.
Fix λ > 0. Since limn→∞ RN+γ

n n2
= 0, we may choose n0 such that

λRN+γ
n n2

≤ 1 for all n ≥ n0. (6-28)

Now νγ (Eλ,γ [u]) ≥ νγ (Eλ,γ [u]∩([2Rn, 3Rn]×RN−1)2), and again fm(n)(R−1
n · ) is supported in R(n) =

[Rn, 4Rn] × [−4Rn, 4Rn]
N−1. Hence by the same rescaling argument as in (6-21), we obtain

νγ (Eλ,γ [u]) ≥ RN+γ
n νγ ({(x, y) : x1, y1 ∈ [2, 3], |Qγ fm(n)(x, y)| > λRN+γ

n n2
}).

If n ≥ n0 then this gives

νγ (Eλ,γ [u]) ≥ RN+γ
n νγ ({(x, y) : x1, y1 ∈ [2, 3], |Qγ fm(n)(x, y)| > 1})

≥ c(N , γ )m(n)RN+γ
n

by (6-19). Since limn→∞ m(n)RN+γ
n = ∞, by (6-27) we conclude νγ (Eλ,γ [u]) = ∞.

For the case γ = −1 and N ≥ 2, define u as in (6-23) but with the choice of the parameters Rn , m(n) as
in (6-27) to obtain a compactly supported u ∈ W 1,1 satisfying (6-24). We now fix λ > 0 and note that when
N ≥ 2 we have λRN−1

n n2
→ 0 as n → ∞. The above calculation gives ν−1(Eλ,−1[u]) ≥ c(N )m(n)RN−1

n

provided that λRN−1
n n2

≤ 1 and thus the conclusion ν−1(Eλ,−1[u]) = ∞.
Finally, clearly (6-25) follows from (6-26), and the latter was proved if −1 <γ < 0 or N ≥ 2. It remains

to consider the case N = 1, γ = −1. We define u as in the previous paragraph. The above calculation
shows that ν−1(Eλ,−1[u]) ≥ cm(n) provided that λ < 1/n2 which establishes (6-25) in this last case. □

The case N = 1, γ = −1 plays a special role. The following lemma shows that the conclusion (6-26)
in Proposition 6.4 fails in this case.

Lemma 6.5. Let u ∈ Ẇ 1,1(R) be compactly supported. Then ν−1(Eλ,−1[u]) < ∞ for all λ > 0.

Proof. Let u ∈ Ẇ 1,1(R) be compactly supported in [−R, R]. Then given any λ ∈ (0, 1), there exists
δ(λ) > 0 such that

∫
I |u′

| ≤ λ/2 for every interval I ⊂ R with length ≤ δ(λ). As a result, u is uniformly
continuous on R, with supx∈R |u(x + h) − u(x)| ≤ λ/2 for |h| ≤ δ(λ). Thus

ν−1(Eλ,−1[u]) = 2
∫

∞

−∞

∫
h>0

|u(x+h)−u(x)|>λ

dh
h2 dx

≤

∫ 2R

−2R

∫
∞

δ(λ)

dh
h2 dx +

∫
R\[−2R,2R]

∫
|x |+R

|x |−R

dh
h2 dx

≤ 4R(δ(λ))−1
+ 4. □
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6E. Generic failure in W1,1 for the case −1 ≤ γ < 0.

Proposition 6.6. Let −1 ≤ γ < 0, N ≥ 2 or −1 < γ < 0, N ≥ 1. Let

V = { f ∈ W 1,1(RN ) : νγ (Eλ,γ [ f ]) < ∞ for some > 0.} (6-29)

Then V is of first category in W 1,1(RN ), in the sense of Baire.

Let
Uk = {(x, y) ∈ R2N

: 2k−1
≤ |x − y| ≤ 2k

},

�ℓ =

ℓ⋃
k=1−ℓ

Uk .
(6-30)

For the proof of Proposition 6.6 we use an elementary estimate for the intersections Eλ,γ [u] ∩�ℓ.

Lemma 6.7. For all γ ∈ R, u ∈ W 1,1(RN ), ℓ > 0 and �ℓ as in (6-30),

sup
λ>0

λνγ (Eλ,γ [u] ∩�ℓ) ≤ C(N , γ )ℓ∥∇u∥1.

Proof. For u ∈ C1 we use the Lusin–Lipschitz inequality (2-2) to see that

λ

∫∫
Eλ,γ [u]∩Uk

|x − y|
γ−N dx dy ≤ C(γ )λ2kγLN

{x ∈ RN
: M(|∇u|)(x) > c2kγ λ}

≤ C(N , γ )∥∇u∥1

by the Hardy–Littlewood maximal inequality. Now sum in 1 − ℓ ≤ k ≤ ℓ. The extension to general
u ∈ W 1,1 is obtained as in the limiting argument of Section 2C. □

Proof of Proposition 6.6. Let, for m ∈ N and j ∈ Z,

V(m, j) = {u ∈ W 1,1(RN ) : νγ (Eλ,γ [u]) ≤ m for all λ > 2 j
}.

Since λ 7→ νγ (Eλ,γ [u]) is decreasing, we see that V is contained in
⋃

m≥1
⋃

j∈Z V(m, j). To show that V
is of first category in W 1,1(RN ), we need to show that for every m ∈ N, j ∈ Z, the set V(m, j) is nowhere
dense.

We first show that V(m, j) is closed in W 1,1(RN ). Let un ∈ V(m, j) and u ∈ W 1,1(RN ) such that
limn→∞ ∥u − un∥W 1,1(RN ) = 0. It suffices to show that given ε > 0, we have νγ (Eλ,γ [u]) ≤ m + ε for all
λ > 2 j. By the monotone convergence theorem, we have

lim
ℓ→∞

νγ (Eλ,γ [u] ∩�ℓ) = νγ (Eλ,γ [u]),

and it suffices to verify that

νγ (Eλ,γ [u] ∩�ℓ) ≤ m + ε for λ > 2 j , (6-31)

for all ℓ ∈ N. Now let δ > 0 such that (1 − δ)λ > 2 j. Then

νγ (Eλ,γ [u] ∩�ℓ) ≤ νγ (E(1−δ)λ,γ [un] ∩�ℓ) + νγ (Eδλ,γ [u − un] ∩�ℓ)
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and using that un ∈ V(m, j) together with (1 − δ)λ > 2 j, and Lemma 6.7, we see that for λ > 2 j

νγ (Eλ,γ [u] ∩�ℓ) ≤ m + C(N , γ )ℓ
1 + δ

δ2 j ∥∇(un − u)∥1.

Since δ > 0 was arbitrary and since ∥∇(un − u)∥L1(RN ) → 0 by assumption, we obtain (6-31).
To show that the closed set V(m, j) is nowhere dense when −1 ≤ γ < 0, we need to verify that for every

u ∈ V(m, j) and ε1 > 0 there exists f ∈ W 1,1(RN ) such that ∥ f − u∥W 1,1(RN ) < ε1 and f /∈ V(m, j). To
see this we use Proposition 6.4, according to which there exists a compactly supported W 1,1 function f0

for which νγ (Eλ,γ [ f0]) = ∞ for all λ > 0. It is then clear that

f = u +
ε1

2
f0

∥ f0∥W 1,1

satisfies ∥ f − u∥W 1,1 ≤ ε1/2 and also,

νγ (Eλ,γ [ f ]) ≥ νγ

(
E2λ,γ

[
ε1

2
f0

∥ f0∥W 1,1

])
− νγ (Eλ,γ [u]) = ∞

for every λ > 2 j , for all j ∈ Z. The proposition is proved. □

To include a result of generic failure of the limiting relation in the case N = 1, γ = −1 we give

Proposition 6.8. Let −1 ≤ γ < 0. Let

W =
{

f ∈ W 1,1(R) : lim sup
R→0

sup
λ>R

Rνγ (Eλ,γ [ f ]) < ∞
}
.

Then W is of first category in W 1,1, in the sense of Baire.

Proof. Clearly W ⊂ V , where V is defined in (6-29). We define

W(m, j) =
{
u ∈ W 1,1(R) : sup

0<R≤2− j
sup
λ>R

Rνγ (Eλ,γ [u]) ≤ m
}

and note that
W ⊂ ∪ j≥1

⋃
m≥1

W(m, j). (6-32)

The arguments in the proof of Proposition 6.6 that were used to show that the sets V(m, j) are closed in
W 1,1(RN ) also show that the sets W(m, j) are closed in W 1,1(R).

Let u ∈ W(m, j), and let ε1 > 0. By Proposition 6.4 there is f0 ∈ W 1,1(R) such that

lim
λ↘0

λνγ (Eλ,γ [ f0]) = ∞.

We may normalize so that ∥ f0∥W 1,1(R) = 1. Pick R ∈ (0, 2− j
] so that λνγ (Eλ,γ [ f0]) > 16m/ε1 for

λ ≤ 8R/ε1. Let f = u + (ε1/2) f0 so that ∥ f − u∥W 1,1(R) ≤ ε1/2. Moreover if λ = 2R, then λ > R and

Rνγ (Eλ,γ [ f ]) ≥ Rνγ

(
E2λ,γ

[
ε1

2
f0

])
− Rνγ (Eλ,γ [u])

=
ε1

8
8R
ε1

νγ (E8R/ε1,γ [ f0]) − Rνγ (Eλ,γ [u]) >
ε1

8
16m
ε1

− m = m,
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and we see that f /∈ W(m, j). Thus we have shown that W(m, j) is nowhere dense in W 1,1(R). By
(6-32) the proof is concluded. □

7. Perspectives and open problems

7A. Subspaces of Ẇ1,1 and ḂV and related spaces. The failure of the upper bounds for [Qγ u]L1,∞(R2N ,νγ )

for γ ∈ [−1, 0) raises a number of interesting questions. Consider the space ḂV(γ ) consisting of all ḂV
functions satisfying

∥u∥ḂV(γ ) := ∥∇u∥M + sup
λ>0

λνγ (Eλ,γ [u]) < ∞ (7-1)

and the corresponding subspace Ẇ 1,1(γ ) of Ẇ 1,1.

Embeddings. We proved in this paper that for γ /∈ [−1, 0] we have ḂV(γ ) = ḂV and Ẇ 1,1(γ ) = Ẇ 1,1.
It is natural to ask how in the range −1 ≤ γ < 0 the proper subspaces ḂV(γ ) and Ẇ 1,1(γ ) relate to other
families of function spaces, in particular to the Hardy–Sobolev space Ḟ1

1,2, another subspace of Ẇ 1,1.

Triangle inequalities. The spaces Ẇ 1,1(γ ) and ḂV(γ ) are defined via L1,∞-quasinorms, and the space L1,∞

is not normable (unlike L p,∞ for 1 < p < ∞, which is normable [Hunt 1966]). However Theorem 1.4
tells us that Ẇ 1,1(γ ) and ḂV(γ ) are normable for γ /∈ [−1, 0]. Are these spaces normable in the
range γ ∈ [−1, 0)?

Related quasinorms. Consider for 0 < s ≤ 1

∥u∥(p,s,γ ) =

[
u(x) − u(y)

|x − y|γ /p+s

]
L p,∞(R2N ,νγ )

.

It is an obvious consequence of Theorem 1.3 that for s = 1 and fixed p > 1, these expressions define
equivalent (semi/quasi)-norms on C∞

c as γ varies over R\{0}. It would be interesting to find a more direct
proof of this observation which does not involve the relation with Ẇ 1,p. We note that the equivalence for
varying γ breaks down for 0 < s < 1. This result, and more about the spaces for which ∥u∥(p,s,γ ) < ∞

with 0 < s < 1, such as their connection to Besov spaces and interpolation, can be found in [Domínguez
et al. 2023].

7B. Other limit functionals. Our results, combined with the various developments presented in [Brezis
and Nguyen 2018; 2020; Nguyen 2007; 2011], suggest several possible directions of research.

Can one prove a generalization of (1-14), (1-16) where the supremum is replaced by the lim infλ→∞

when γ > 0 and by a lim infλ→0+ when γ < 0? More precisely, for 1 < p < ∞, is there a positive constant
C(N , γ, p) such that, for all u ∈ L1

loc(R
N ),

∥∇u∥
p
L p ≤ C(N , γ, p) lim inf

λ→∞
λpνγ (Eλ,γ /p[u]) if γ > 0, (7-2a)

∥∇u∥
p
L p ≤ C(N , γ, p) lim inf

λ↘0
λpνγ (Eλ,γ /p[u]) if γ < 0, (7-2b)

in the sense that ∥∇u∥L p = ∞ if u ∈ L1
loc \ Ẇ 1,p?
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For p = 1 we can also ask: is there a positive constant C(N , γ ) such that, for all u ∈ L1
loc(R

N ),

∥∇u∥M ≤ C(N , γ ) lim inf
λ→∞

λνγ (Eλ,γ [u]) if γ > 0, (7-3a)

∥∇u∥M ≤ C(N , γ ) lim inf
λ↘0

λνγ (Eλ,γ [u]) if γ < 0, (7-3b)

in the sense that ∥∇u∥M = ∞ if u ∈ L1
loc \ ḂV?

Theorem 1.1 gives (7-2a) and (7-2b) if we additionally assume u ∈ Ẇ 1,p(RN ). It also gives (7-3a) and
(7-3b) if we additionally assume that u ∈ Ẇ 1,1(RN ). It would already be interesting to establish (7-3a),
(7-3b) for all ḂV functions.

When γ = −1, p = 1, (7-3b) holds for all u ∈ L1
loc(R

N ) as established in [Nguyen 2008, Theorem 2]
and [Brezis and Nguyen 2018, Section 3.4]. For γ = −p, 1 < p < ∞, inequality (7-2b) was proved in
[Bourgain and Nguyen 2006]. For γ = N, Poliakovsky [2022] proved weaker versions of (7-2a) and
(7-3a) where the lim inf is replaced by a lim sup.

7C. 0-convergence. This is a far-reaching generalization of the questions raised in Section 7B. For fixed
p ≥ 1 and γ ∈ R \ {0} consider the functionals

8λ[u] := λpνγ (Eλ,γ /p[u]), λ ∈ (0, ∞),

defined for all u ∈ L1
loc(R

N ). It would be very interesting to study the 0-limit of 8λ in L1
loc(R

N ), in the
sense of De Giorgi, as λ → ∞ when γ > 0 and as λ ↘ 0 when γ < 0. More specifically, if p > 1, define
on L1

loc(R
N )

8∗,c[u] =

{
c∥∇u∥

p
L p if u ∈ Ẇ 1,p(RN ),

∞ otherwise,
and for p = 1 define

8∗,c[u] =

{
c∥∇u∥M if u ∈ ḂV(RN ),

∞ otherwise.

A challenging question is whether there exists a constant c = c(p, γ, N ) > 0 such that 8λ → 8∗,c in the
sense of 0-convergence, meaning

(1) whenever uλ → u in L1
loc then lim inf 8λ[uλ] ≥ 8∗,c[u], and

(2) for each u ∈ L1
loc(R

N ) there exist (vλ) with vλ ∈ L1
loc(R

N ), vλ →u in L1
loc and lim sup 8λ[vλ]≤8∗,c[u].

This question is especially meaningful in the case p = 1 where the pointwise limit behaves somewhat
pathologically. Indeed, recall that for p = 1, −1 ≤ γ < 0 there is no universal upper bound for 8λ[u]

in terms of ∥∇u∥L1 . Also when p = 1 and γ ∈ R \ [−1, 0] the examples in Section 3F show that the
pointwise limit in Ẇ 1,1 and on ḂV \ Ẇ 1,1 may differ (by a multiplicative constant). A remarkable result
of Nguyen [2007; 2011] states that 8λ → 8∗,c as λ → 0, in the sense of 0–convergence, when p ≥ 1, and
γ = −p for some appropriate constant c = c(p, N ); see also [Brezis and Nguyen 2020] (note, however,
that Ẇ 1,p and ḂV are replaced in these papers by W 1,p and BV).
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7D. More general families of functionals. Consider a monotone nondecreasing function ϕ : [0, ∞) →

[0, ∞) and set (inspired by [Brezis and Nguyen 2018; 2020])

9λ[u] := λp
∫∫

RN ×RN
ϕ

(
|u(x) − u(y)|

λ|x − y|1+γ /p

)
|x − y|

γ−N dx dy.

The family 8λ in Section 7C corresponds to ϕ = 1(1,∞). It is an interesting generalization of the above
problems to study the limit of 9λ as λ ↘ 0 when γ < 0 and the limit of 9λ as λ → ∞ when γ > 0, both
in the sense of pointwise convergence or in the sense of 0-convergence. A formal computation suggests
that our Theorem 1.1 should go over modulo a factor

∫
∞

0 ϕ(s)/s p+1 ds; see [Brezis and Nguyen 2020].
We refer to [Brezis and Nguyen 2018] for a further discussion of applications.
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