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We study the problem of scattering by several strictly convex obstacles, with smooth boundary and
satisfying a noneclipse condition. We show, in dimension 2 only, the existence of a spectral gap for
the meromorphic continuation of the Laplace operator outside the obstacles. The proof of this result
relies on a reduction to an open hyperbolic quantum map, achieved by Nonnenmacher et al. (Ann. of
Math. (2) 179:1 (2014), 179–251). In fact, we obtain a spectral gap for this type of object, which also
has applications in potential scattering. The second main ingredient of this article is a fractal uncertainty
principle. We adapt the techniques of Dyatlov et al. (J. Amer. Math. Soc. 35:2 (2022), 361–465) to apply
this fractal uncertainty principle in our context.
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1. Introduction

Scattering by convex obstacles and spectral gap. We are interested by the problem of scattering by
strictly convex obstacles in the plane; see Figure 1. Assume

O =
J⋃

j=1

Oj ,

where Oj are open, strictly convex connected obstacles in R2 having smooth boundary and satisfying the
Ikawa condition: for i ̸= j ̸= k, Oi does not intersect the convex hull of O j ∪Ok . Let

�= R2
\O.

It is known that the resolvent of the Dirichlet Laplacian in � continues meromorphically to the
logarithmic cover of C; see for instance [Dyatlov and Zworski 2019]. More precisely, suppose that
χ ∈ C∞c (R

2) is equal to 1 in a neighborhood of O. The map

χ(−1− λ2)−1χ : L2(�)→ L2(�)
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Figure 1. Scattering by three obstacles in the plane.

is holomorphic in the region {Im λ > 0} and it continues meromorphically to the logarithmic cover of C.
Its poles are the scattering resonances. We are interested in the problem of the existence of a spectral gap
in the first sheet of the logarithmic cover (i.e., C \ iR−). We prove the following theorem:

Theorem A. There exist γ > 0 and λ0 > 0 such that there is no resonance in the region

[λ0,+∞[+ i[−γ, 0],

This problem has a long history in the physics and mathematics literature. The spectral gap was for
instance studied by [Ikawa 1988] in dimension 3. It was experimentally investigated in [Barkhofen et al.
2013] for three- and five-disk systems. In this study, the author brings experimental evidence of the
presence of a spectral gap, no matter how thin the trapped set is. For related problems concerning the
distribution of scattering resonances for such systems, here is a nonexhaustive list of papers in which the
reader can find pointers to a larger literature: [Gaspard and Rice 1989] for the three-disk problem, [Gérard
1988; Ikawa 1982] for the two-obstacle problem, [Petkov and Stoyanov 2010] for a link with dynamical
zeta functions, [Bardos et al. 1987; Hargé and Lebeau 1994] for the diffraction by one convex obstacle,
[Sjöstrand and Zworski 1999] among others papers of the two authors concerning the distribution of the
scattering resonances. We will also widely use the presentation and the arguments of [Nonnenmacher
et al. 2014].

The spectral gap problem is a high-frequency problem and justifies the introduction of a small parame-
ter h, where 1/h corresponds to a large frequency scale. Under this rescaling, we are interested in the
semiclassical operator

P(h)=−h21− 1, h ≤ h0,

and spectral parameter z ∈ D(0,Ch) for some C > 0.
In the semiclassical limit, the classical dynamics associated to this quantum problem is the billiard flow

in �×S1, that is to say, the free motion outside the obstacles with normal reflection on their boundaries.
A relevant dynamical object is the trapped set corresponding to the points (x, ξ) ∈�×S1 that do not
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escape to infinity in the backward and forward direction of the flow. In the case of two obstacles, it is a
single closed geodesic. As soon as more obstacles are involved, the structure of the trapped set becomes
complex and exhibits a fractal structure. This is a consequence of the hyperbolicity of the billiard flow. It
is known that the structure of the trapped set plays a crucial role in the spectral gap problem.

A good dynamical object to study this structure is the topological pressure associated to the unstable
Jacobian φu . This dynamical quantity is a strictly decreasing function s 7→ P(s) which measures the
instability of the flow (see Section 2 for definitions and references given there). In dimension 2, Bowen’s
formula shows that the Hausdorff and upper-box dimensions of the trapped set are 2s0, where s0 is the
unique root of the equation P(s)= 0. In [Nonnenmacher and Zworski 2009], the existence of a spectral
gap for such systems has been proved under the pressure condition

P
(1

2

)
< 0.

Their result holds in any dimension, with a quantitative spectral gap. Our result doesn’t need this
assumption anymore. In fact, it relies on the weaker pressure condition

P(1) < 0.

It is known that this condition is always satisfied in the scattering problem we consider since the trapped
set is not an attractor [Bowen and Ruelle 1975]. Due to Bowen’s formula, this condition can be interpreted
as a fractal condition. This is this fractal property that will be crucial in the analysis.

Open hyperbolic systems and spectral gaps. The problem of scattering by obstacles falls into the wider
class of spectral problems for open hyperbolic systems; see [Nonnenmacher 2011]. In these open systems,
the spectral problems concern the resonances; these are generalized eigenvalues which exhibit some
resonant states. Among the problems which widely interest mathematicians and physicists, resonance
counting and spectral gaps are on the top of the list. Spectral gaps are known to be important to give
resonance expansion (see for instance [Dyatlov and Zworski 2019]) and local energy decay (see for
instance [Ikawa 1982; 1988] concerning local energy decay in the exterior of two or more obstacles
in R3). It was conjectured in [Zworski 2017, Conjecture 3] that such systems might exhibit a spectral gap
as soon as the trapped set has a fractal structure.

Potential scattering. Scattering by a compactly supported potential falls in the class of open systems. It
consists of studying the semiclassical operator P(h)=−h21+ V (x), where V ∈ C∞c (R

2); see Figure 2.
In this framework, the spectral gap problem consists of exhibiting bands in the complex plane of the form

[a, b] − i ×[0, hγ ],

where P(h) has no resonance for h small enough. In the semiclassical limit, the behavior of P(h) is linked
to the classical flow of the system, that is, the Hamiltonian flow generated by p(x, ξ)= |ξ |2+V (x). Note
that in potential scattering, one has to focus on some energy shell {p = E}, where E ∈ R is independent
of h, with Re z sufficiently close to E . This specification is not necessary in obstacle scattering (implicitly,
we have already decided to work with E = 1). The properties of the resonant states uh , which are
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Figure 2. Scattering by a smooth compactly supported potential V.

generalized solutions of the equation (P(h)− z)uh = 0, are linked to the trapped set of the flow at
energy E . This trapped set KE corresponds to all the trajectories which stay bounded for the backward
and forward evolution of the flow on the energy shell {p = E}. When the flow is hyperbolic on the
trapped set, this trapped set is known to exhibit a fractal structure.

In fact, a by-product of our method is that we can obtain a spectral gap in potential scattering, under
the dynamical assumptions of [Nonnenmacher et al. 2011], recalled in Section 2B:

Theorem B. Assume that the Hamiltonian flow is hyperbolic on KE and that KE is topologically one-
dimensional. Then, there exists δ > 0 such that for any C > 0, there exists h0 > 0 such that, for 0< h ≤ h0,
P(h)=−h21+ V − E has no resonance in

D(0,Ch)∩ {Im z ∈ [−δh, 0]}.

It is possible to obtain a spectral gap for the more general quantum Hamiltonian presented in [Nonnen-
macher et al. 2011, Section 2.1] for manifolds with Euclidean ends.

Convex cocompact hyperbolic surfaces. Another class of open hyperbolic systems exhibiting a fractal
trapped set consists of the convex cocompact hyperbolic surfaces, which can be obtained as the quotient
of the hyperbolic plane H2 by Schottky groups 0. The spectral problem concerns the Laplacian on these
surfaces and its classical counterpart is the geodesic flow on the cosphere bundle, which is known to
be hyperbolic due to the negative curvature of these surfaces. In this context, it is common to write the
energy variable λ2

= s(1− s) and study
(−1− s(1− s))−1.

The trapped set is linked to the limit set of 0 and the dimension δ of this limit set influences the spectrum.
The Patterson–Sullivan theory (see for instance [Borthwick 2007]) tells that there is a resonance at s = δ
and that the other resonances are located in {Re(s) < δ}. In particular, it gives an essential spectral gap of
size max

(
0, 1

2 − δ
)
. This is consistent with the pressure condition P(s) < 1

2 since in that situation, P(s)
is simply given by P(s)= δ− s. Results where obtained by Naud [2005], where he improves the gap
given by Patterson–Sullivan theory in the case δ ≤ 1

2 . Recent results, initiated by [Dyatlov and Zahl 2016],
have improved this gap. In [Bourgain and Dyatlov 2018], the authors show that there exists an essential
spectral gap for any convex cocompact hyperbolic surface. In particular, the pressure condition δ < 1

2
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is no longer a necessary assumption. The new idea in these papers is the use of a fractal uncertainty
principle. It will be a crucial tool of our analysis.

Reduction to open hyperbolic quantum maps. An important aspect of our analysis to prove Theorem A
relies on previous results of [Nonnenmacher et al. 2014]. Their Theorem 5 (found in Section 6 of that
work) reduces the study of the scattering poles to the study of the cancellation of

z 7→ det(I−M(z)),

where
M(z) : L2(∂O)→ L2(∂O) (1-1)

is a family of hyperbolic open quantum maps (see below Section 2A). The family z 7→ M(z) depends
holomorphically on z ∈ D(0,Ch) for some C > 0 and is sometimes called a hyperbolic quantum
monodromy operator. The construction of this operator relies on the study of the operators M0(z) defined
as follows: For 1≤ j ≤ J, let Hj (z) : C∞(∂Oi )→ C∞(R2

\Oj ) be the resolvent of the problem
(−h21− 1− z)(Hj (z)v)= 0,
Hj (z)v is outgoing,
Hj (z)v = v on ∂Oj .

Let γj be the restriction of a smooth function u ∈ C∞(R2) to C∞(∂Oj ) and define M0(z) by

M0(z)=
{

0 if i = j,
−γi Hj (z) otherwise.

Due to results of [Gérard 1988, Appendix II], this matrix is a Fourier integral operator associated with
a Lagrangian relation related to the billiard flow. A priori, it excludes neither the glancing rays nor the
shadow region. Ikawa’s condition ensures that they do not play a role when considering the trapped set and
allows the author to neglect the effects of these regions; see Section 6 in [Nonnenmacher et al. 2014]. A
consequence of their analysis is that M(z) is associated with a simpler Lagrangian relation B, which is the
restriction of the billiard map to a domain excluding the glancing rays. To be more precise, let us introduce

S∗∂Oj
= {(x, ξ) ∈ T ∗R2

: x ∈ ∂Oj , |ξ | = 1},

B∗∂Oj = {(y, η) ∈ T ∗∂Oj : |η| ≤ 1},

πj : S∗∂Oj
→ B∗∂Oj the orthogonal projection on each fiber.

B is then the union of the relations Bi j corresponding to the reflection on two obstacles: for (ρi , ρj ) ∈

B∗∂Oi × B∗∂Oj ,

(ρi , ρj ) ∈ Bi j ⇐⇒ there exists t > 0 such that ξ ∈ S1, x ∈ ∂Oj ,

πj (x, ξ)= ρj , πi (x + tξ, ξ)= ρi , νj (x) · ξ > 0, νi (x + tξ) · ξ < 0.

See Figure 3. It is a standard fact in the study of chaotic billiards (see for instance [Chernov and Markarian
2006]) that the billiard map is hyperbolic due to the strict convexity assumption. Ikawa’s condition ensures
that the restriction of the dynamical system to the trapped set has a symbolic representation [Morita 1991].
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Oj
x = yj

ξ

ηj

ηi

yi = x + tξ

Oi

Figure 3. Description of the Lagrangian relation Bi j .

Spectral gap for hyperbolic open quantum maps. Using this reduction, Theorem A will be proved
once we are able to show that the spectral radius of M(z) is strictly smaller than 1 for z ∈ D(0,Ch)∩
{Im z ∈ [−δh, 0]} for some δ > 0. This will be a consequence of the following statement, which will be
demonstrated in this paper (see Section 2 below for a more precise version).

Theorem C. Let (M(z))z be the family introduced in (1-1), that is, a hyperbolic quantum monodromy
operator associated with the open Lagrangian relation B. Then, there exist h0 > 0, γ > 0 and τmax > 0
such that the spectral radius of M(z), ρspec(z), satisfies, for all h ≤ h0 and all z ∈ D(0,Ch),

ρspec(z)≤ e−γ−τmax Im z.

When z ∈ R, the operator M(z) is microlocally unitary near the trapped set and its L2 norm is
essentially 1. Then, we have the trivial bound

ρspec(z)≤ 1.

The bound given by the theorem is a spectral gap since we obtain

ρspec(z)≤ e−γ < 1.

The dependence of the bound with the parameter z is related to the symbol of the open quantum map M(z).
The link between open quantum maps and the resonances of open quantum systems has also been

established in [Nonnenmacher et al. 2011] for the case of potential scattering and this is why we will also
obtain a spectral gap in this context. We review this reduction both in obstacle and potential scattering
in Section 2 and show how it implies the spectral gap. This correspondence between open quantum
maps and open quantum systems leads to a heuristic: to a resonance z for the open quantum systems, it
corresponds an eigenvalue e−iτ z/h of an open quantum map. Here, τ is a return time associated with the
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Figure 4. The fractal uncertainty principle asserts that no state can be microlocalized
both in frequencies (in blue) and positions (in red) near fractal sets.

classical dynamics of the open system. In particular, the spectral gap for open quantum maps given by
the theorem heuristically implies that the resonances of the open systems might satisfy Im z <−hγ /τ .

Resolvent estimates. In this paper, we use the results of [Nonnenmacher et al. 2011; 2014] as a black
box. In particular, we apply directly their main theorem establishing a correspondence between scattering
resonances and eigenvalues of open quantum maps. This allows us to get information on the locations of
the resonances, but cannot transfer resolvent estimates from open quantum maps to the scattering resolvent
directly. The main estimate of this paper (see Proposition 4.2) can be used to obtain resolvent estimates
for open quantum maps. In an ongoing work, we analyze precisely the proofs in [Nonnenmacher et al.
2011; 2014] so as to explain how to deduce polynomial estimates for the cut-off resolvent both in obstacle
and potential scattering. It seems to us that it should be possible to use the gluing method of [Datchev and
Vasy 2012] to obtain the same kind of results (spectral gap and polynomial resolvent estimates) with other
types of infinite ends, when the trapped set is hyperbolic for the flow and topologically one-dimensional.

On the fractal uncertainty principle. The fractal uncertainty principle is a recent tool in harmonic
analysis in one dimension developed by Dyatlov and several collaborators. For a large survey on this topic,
we refer the reader to [Dyatlov 2018]. We do not enter into the details in this introduction and give the
precise definitions and statements in Section 6. We rather explain here the general idea of this principle
in the spirit of our use; see Figure 4. Roughly speaking, it says that no function can be concentrated both
in frequencies and positions near a fractal set. Suppose that X, Y ⊂ R are fractal sets. To fix the ideas,
let’s say that X and Y have upper-box dimensions δX and δY strictly smaller than 1. For c > 0, we write
X (c)= X + [−c,+c] and the same for Y. Also denote by Fh the h-Fourier transform

Fhu(ξ)=
1

(2πh)1/2

∫
R

e−i xξ/hu(x) dx .
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The fractal uncertainty principle then states that there exists β>0 depending on X and Y (see Proposition 6.5
for the precise dependence) such that, for h small enough,

∥1X (h)Fh1Y (h)∥L2(R)→L2(R) ≤ hβ .

Actually, one can change the scales and look for the sets X (hαX ) and Y (hαY ), where αX and αY are
positive exponents. The result will stay true when these exponents satisfy the saturation condition

αX +αY > 1.

It will be a key ingredient in the proof of the main theorem of this paper. It has been successfully
used to show spectral gaps for convex cocompact hyperbolic surfaces [Dyatlov and Zahl 2016; Bourgain
and Dyatlov 2017; Dyatlov and Jin 2018; Dyatlov and Zworski 2020]. A discrete version of the fractal
uncertainty principle is also the main ingredient of [Dyatlov and Jin 2017], where the author proved a
spectral gap for open quantum maps in a toy model case. Their results concerning the open baker’s map
on the torus T2 partly motivates our theorem on open quantum maps.

The fractal uncertainty principle has also given new results in quantum chaos on negatively curved
compact surfaces. It was first successfully used for compact hyperbolic surfaces in [Dyatlov and Jin 2017],
where the authors proved that semiclassical measures have full support. The hyperbolic case was treated
using quantization procedures developed in [Dyatlov and Zahl 2016], which allow one to have a good
semiclassical calculus for symbols very irregular in the stable direction, but smooth in the unstable one (or
conversely). In [Schwartz 2021], the same ideas lead to a full delocalization of eigenstates for quantum
cat maps. The quantization procedures used in these papers rely on the smoothness of the unstable and
stable distributions. This smoothness is not possible for general negatively curved surfaces. However,
in [Dyatlov et al. 2022], the authors bypassed this obstacle and succeeded in extending these results to
the case of negatively curved surfaces. It is mainly from this paper that we borrow techniques and we
adapt them in our setting.

A model example. To explain the main ideas of the proof of Theorem C, let us show how it works in
an example where the trapped set is the smallest possible, a single point. In this context, we only need
a simpler uncertainty principle. We focus on the case z = 0 in Theorem C and focus on a single open
quantum map.

We consider the hyperbolic map

F : (x, ξ) ∈ R2
7→ (2−1x, 2ξ) ∈ R2.

It has a unique hyperbolic fixed point ρ0 = 0 and the stable (resp. unstable) manifold at 0 is given by
{ξ = 0} (resp. {x = 0}). The scaling operator

U : v ∈ L2(R) 7→
√

2v(2x)

is a quantum map quantizing F. To open it, consider a cut-off function χ ∈ C∞c (R
2) such that χ ≡ 1 in

B
(
0, 1

2

)
and suppχ ⋐ B(0, 1) and we consider the open quantum map

M = M(h)= Oph(χ)U,
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where Oph is in this example (and only in this example) the left quantization

Oph(χ)u(x)=
1

2πh

∫
R2
χ(x, ξ)ei(x−y)ξ/hu(y) dy dξ.

One easily checks that Egorov’s property for U is true without remainder term:

U∗Oph(χ)U = Oph(χ ◦ F), U Oph(χ)U
∗
= Oph(χ ◦ F−1).

To show a spectral gap for M, we study Mn with

n = n(h)∼−3
4

log h
log 2

.

This time is longer than the Ehrenfest time − log h/log 2. We write

Mn
=U n Oph(χ ◦ Fn) · · ·Oph(χ ◦ F1).

The formula [Oph(a),Oph(b)] = O(h1−2δ) is valid for a, b symbols in Sδ (we recall the definitions of
symbol classes in Section 3) and δ < 1

2 . The problem here is that, for 1≤ k ≤ n, χ ◦ Fk are uniformly
in S3/4; this is not a good symbol class. To bypass this difficulty, we observe that the symbols χ ◦ Fk are
uniformly in S3/8 for k ∈ {−n/2, . . . , n/2}. As a consequence, for j ∈ {1, . . . , n}, we write

[Oph(χ ◦ Fn),Oph(χ ◦ F j )] =U−n/2
[Oph(χ ◦ Fn/2),Oph(χ ◦ F j−n/2)]U n/2

=U−n/2O(h1/4)U n/2

= O(h1/4),

where the constants in O are uniform in j and depend only on χ . Applying this formula recursively to
move the term Oph(χ ◦ Fn) to the right, we get

Mn
=U n Oph(χ ◦ Fn−1) · · ·Oph(χ ◦ F1)Oph(χ ◦ Fn)+ O(h1/4 log h).

Similarly, we can write

Mn+1
= Oph(χ ◦ F−n)Oph(χ) · · ·Oph(χ ◦ F−n+1)U n+1

+ O(h1/4 log h).

Hence, we have

M2n+1
= A Oph(χ ◦ Fn)Oph(χ ◦ F−n)B+ O(h1/4 log h),

with
A = A(h)=U n Oph(χ ◦ Fn−1) · · ·Oph(χ ◦ F1)= O(1),

B = B(h)= Oph(χ) · · ·Oph(χ ◦ F−n+1)U n+1
= O(1).

We have the following properties on the supports:

suppχ ◦ Fn
⊂ {|ξ | ≤ 2−n

}, suppχ ◦ Fn
⊂ {|x | ≤ 2−n

}.
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Assuming n(h)≥− 3
4(log h/ log 2), we observe that

Oph(χ ◦ Fn)= Oph(χ ◦ Fn)1[−h3/4,h3/4](h Dx),

Oph(χ ◦ F−n)= 1[h−3/4,h3/4](x)Oph(χ ◦ F−n).

Finally, we have

M2n+1
= A Oph(χ ◦ Fn)1[−h3/4,h3/4](h Dx)1[h−3/4,h3/4](x)Oph(χ ◦ F−n)B+ O(h1/4 log h).

This is where we need an uncertainty principle:

∥1[−h3/4,h3/4](h Dx)1[h−3/4,h3/4](x)∥L2→L2 = ∥1[−h3/4,h3/4]Fh1[−h3/4,h3/4]∥L2→L2

≤ ∥1[−h3/4,h3/4]∥L∞→L2 ×∥Fh∥L1→L∞ ×∥1[−h3/4,h3/4]∥L2→L1

≤ Ch3/8
× h−1/2

× h3/8
= Ch1/4.

Here, the bound can be understood as a volume estimate; the box in phase space of size h3/4 is smaller
than a “quantum box”. Gathering all the computations together, we see that

∥M2n+1
∥L2→L2 = O(h1/4 log h).

Elevating this to the power 1/(2n+ 1), we see that, for every ε > 0, we can find hε such that, for h ≤ hε,

ρ(M)≤ (1+ ε)2−1/6.

Remark. What matters in this example is the strategy we use, and not particularly the bound, which is in
fact not optimal.

Sketch of proof. The strategy presented in this simple model case is the guideline, but its direct application
will encounter major pitfalls that we’ll have to bypass.

• Since the trapped set is a more complex fractal set, we’ll need the general fractal uncertainty principle
developed by Dyatlov and his collaborators.

• Even in small coordinate charts, the trapped set cannot be written has a product of fractal sets in
the unstable and stable directions. To tackle this difficulty, we build adapted coordinate charts (see
Section 3E) in which we straighten the unstable manifolds. The existence of such coordinate charts
is made possible by Theorem 5, in which we prove that the unstable (and stable) distribution can be
extended in a neighborhood of the trapped set to a C1+β vector field.

• In the model case, there is only one point and hence one unstable Jacobian to consider which gives the
Lyapouvov exponent of the map log J 1

u (0)= log 2. Generally, the growth rate of the unstable Jacobian
differs from one point to another (see Section 4C) and the choice of the integer n(h) is not as simple.
In fact, we prefer to break the symmetry 2n(h)= n(h)+ n(h) and split 2n(h) into a small logarithmic
time N0(h) and a long logarithmic time N1(h) (see Section 4A). The first one is supposed to be smaller
than the Ehrenfest time and allows us to use semiclassical calculus to handle M N0. As a matter of fact,
the major technical difficulties concern the study of M N1.
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• The study of M N1 requires fine microlocal techniques. The trick used in the model case to have the
commutator estimate is not possible and we have to use propagation results up to twice the Ehrenfest
time. This is what we do in Section 4D but this study has to be made locally and we need to split M N1

into a sum of many terms Uq .

• We could use the fractal uncertainty principle to get the decay for single terms M N0Uq . However, a
simple triangle inequality to handle their sum will not give a decay for M N0+N1 since the number of terms
in the sum grows like a negative power of h. To bypass this problem, we need a more careful analysis and
we gather them into clouds (see Section 4G). These clouds are supposed to interact with a few other ones,
so that a Cotlar–Stein-type estimate reduces the study of the norm of the sum to the norm of each cloud.
The elements of a single cloud are supposed to be close to each other, so that the fractal uncertainty
principle can be applied to all of them in the same time and gives the required decay for a single cloud.

Our strategy follows the main lines of the proof of [Dyatlov et al. 2022]. In particular, their strategy
allows us to apply the fractal uncertainty principle of [Bourgain and Dyatlov 2018] in a case where the
unstable foliation is not smooth (and in fact, a priori defined only in a fractal set). Their strategy relies on
the existence of adapted charts based on C2− regularity of the unstable foliations in negatively curved
surfaces. It is based on results of [Katok and Hasselblatt 1995] for Anosov flows. We needed to prove the
existence of such adapted charts in this different context. To do so, we prove that the unstable lamination
can be extended into a C1+β foliation (see Section 3E). Another aspect which changes from [Dyatlov
et al. 2022] is the proof of porosity. In their study, the porous sets arise as iterations of artifical “holes”,
and they had to control the evolution of such holes. In our context, this study is easier since we already
know that the trapped set has a fractal structure, characterized by its Hausdorff dimension. In this paper,
we will rather use the upper-box dimension (but these two dimensions are equal in this context).

Restrictions. The main restriction of our theorem is that it only applies to quantum maps with two-
dimensional phase space. In terms of open systems, it only concerns problems with physical space of
dimension 2. Several points explain this restriction:

• The fractal uncertainty principle works in dimension 1. In higher dimensions, the result is currently not
well understood and the only known cases require strong assumptions on the fractal sets; see [Dyatlov
2018, Section 6].

• Our proof strongly relies on the regularity of the stable and unstable laminations.

• The growth of the unstable Jacobian controls the contraction (resp. expansion) rate in the unique stable
(resp. unstable) direction.

Plan of the paper. The paper is organized as follows:

• In Section 2, we present the main theorem of this paper and show how it gives a spectral gap in some
open quantum systems.

• In Section 3, we give some background material in semiclassical analysis (pseudodifferential operators
and Fourier integral operators). We also recall some standard facts about hyperbolic dynamical systems
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and give further results. In particular, in Theorem 5, we show that the unstable and stable distribution
have C1+β regularity.

• The proof of Theorem 1 starts in Section 4, where we introduce the main ingredients needed for the
proof and give several technical results.

• In Section 5, we use fine microlocal methods to microlocalize the operators we work with in small
regions where the dynamic is well understood and we reduce the proof of Theorem 1 to a fractal uncertainty
principle with the techniques of [Dyatlov et al. 2022].

• In Section 6, we conclude the proof of this theorem by applying the fractal uncertainty principle of
[Bourgain and Dyatlov 2018], and more precisely, the version stated in [Dyatlov et al. 2022].

2. Main theorem and applications

2A. Hyperbolic open quantum maps. We introduce the main tools needed to state the main theorem
of this paper. The following long definition is based on the definitions in the works of Nonnenmacher,
Sjöstrand and Zworski [Nonnenmacher et al. 2011; 2014] specialized to the two-dimensional phase space.
Consider open intervals Y1, . . . , YJ of R and set

Y =
J⊔

j=1

Yj ⊂

J⊔
j=1

R

and consider

U =
J⊔

j=1

Uj ⊂

J⊔
j=1

T ∗Rd , Uj ⋐ T ∗Yj .

The Hilbert space L2(Y ) is the orthogonal sum
⊕J

i=1 L2(Yi ).
Then, we introduce a smooth Lagrangian relation F ⊂ U ×U. It is a disjoint union of symplecto-

morphisms. For j = 1, . . . , J, consider open disjoint subsets D̃i j ⋐ Uj , 1 ≤ i ≤ J, and similarly, for
i = 1, . . . , J, consider open disjoint subsets Ãi j ⋐ Ui , 1 ≤ j ≤ J. We consider a family of smooth
symplectomorphisms

Fi j : D̃i j → Fi j (D̃i j )= Ãi j (2-1)

and define the relation F as the disjoint union of the relation Fi j , namely,

(ρ ′, ρ) ∈ F ⇐⇒ there exist 1≤ i, j ≤ J such that ρ ′ = Fi j (ρ).

In particular, F and F−1 are single-valued. We will identify F with a smooth map and write by abuse of
notation ρ ′ = F(ρ) or ρ = F−1(ρ ′) instead of (ρ ′, ρ) ∈ F.

We let

πL(F)= Ã =
J⊔

i=1

J⋃
j=1

Ãi j , πR(F)= D̃ =
J⊔

j=1

J⋃
i=1

D̃i j .
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We define the outgoing (resp. incoming) tail by T+ := {ρ ∈ U : F−n(ρ) ∈ U for all n ∈ N} (resp.
T− := {ρ ∈ U : Fn(ρ) ∈ U for all n ∈ N}). We assume that they are closed subsets of U and that the
trapped set

T = T+ ∩ T− (2-2)

is compact. We denote by f : T → T the restriction of F to T . For i, j ∈ {1, . . . , J }, we write Ti = T ∩Ui ,

Di j = {ρ ∈ Tj : f (ρ) ∈ Ti } ⊂ D̃i j ,

Ai j = {ρ ∈ Ti : f −1(ρ) ∈ Tj } ⊂ Ãi j .

Remark. F is an open canonical transformation since F (resp. F−1) is defined only in D̃ (resp. Ã). The
sets U \ D̃ (resp. U \ Ã) can be seen as holes in which a point ρ can fall in the future (resp. in the past).

We then make the following hyperbolic assumption:

T is a hyperbolic set for F. (Hyp)

Namely, for every ρ ∈ T , we assume that there exist stable and unstable tangent spaces E s(ρ) and Eu(ρ)

such that:

• dim E s(ρ)= dim Eu(ρ)= 1.

• TρU = E s(ρ)⊕ Eu(ρ).

• There exist λ > 0, C > 0 such that, for every v ∈ E⋆(ρ) (⋆ stands for u or s) and any n ∈ N,

v ∈ E s(ρ) =⇒ ∥dρFn(v)∥ ≤ Ce−nλ
∥v∥, (2-3)

v ∈ Eu(ρ) =⇒ ∥dρF−n(v⋆)∥ ≤ Ce−nλ
∥v∥, (2-4)

where ∥ · ∥ is a fixed Riemannian metric on U.

The decomposition of TρU into stable and unstable spaces is assumed to be continuous.

Remark. • The definition is valid for any Riemannian metric and we can of course suppose that is it the
standard Euclidean metric on R2.

• It is a standard fact (see [Mather 1968]) that there exists a smooth Riemannian metric on U, which is
said to be adapted to the dynamics, such that (2-3) and (2-4) hold with C = 1.

• It is known that the map ρ 7→ Eu/s(ρ) is in fact β-Hölder for some β > 0 [Katok and Hasselblatt 1995].
We will show further an improved regularity. This will be an essential property for the proof of the main
theorem.

The last assumption we’ll make on T is a fractal assumption. To state it, we introduce the map
φu : ρ ∈ T 7→ − log ∥dρF |Eu(ρ)∥ associated with the bijection f . We suppose that

−γcl := −P(− log ∥dρF |Eu(ρ)∥, f ) > 0. (Fractal)
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Here, in terms of thermodynamics formalism, P denotes the topological pressure of the map φu . The
norm ∥ · ∥ is associated with any Riemannian metric on U. For instance, a possible formula for the
definition of the pressure is

P(φ)= lim
ε→0

lim sup
n→+∞

1
n

log sup
E

∑
ρ∈E

exp
∑n−1

k=0 φ( f kρ),

where the supremum ranges over all the (n, ε)-separated subsets E ⊂ T (E is said to be (n, ε)-separated
if, for every ρ, ρ ′ ∈ E , there exists k ∈ {0, . . . , n− 1} such that d( f k(ρ), f k(ρ ′)) > ε).

Remark. • γcl is the classical decay rate of the dynamical system. It has the following physical interpre-
tation: Fix a point ρ0 ∈ T and consider the set Bm(ρ0, ε) of points ρ ∈U such that |Fk(ρ)− Fk(ρ0)|< ε

for 0≤ k ≤ m− 1. Then, its Lebesgue measure if of order e−mγcl .

• In Section A4, we recall arguments showing that T is indeed “fractal”. More precisely, the trace of T
along the unstable and stable manifolds (see Lemma 3.11 for the definitions of these manifolds) have
upper-box dimension strictly smaller than 1. In fact, Bowen’s formula (see for instance [Barreira 2008])
gives that this upper-box dimension corresponds to the Hausdorff dimension dH and it is the unique
solution of the equation

P(sφu, f )= 0, s ∈ R.

The Hausdorff dimension of the trapped set is then 2dH .

• This condition has to be compared with the pressure condition P
( 1

2φu
)
< 0 in [Nonnenmacher and

Zworski 2009], which ensured a spectral gap for chaotic systems. This condition required that T was
sufficiently “thin”, i.e., with Hausdorff dimension strictly smaller than 1. Our condition allows to go up
to the limit dimH T = 2−.

We then associate to F hyperbolic open quantum maps, which are its quantum counterpart.

Definition 2.1. Fix δ ∈
[
0, 1

2

[
. We say that T = T (h) is a semiclassical Fourier integral operator

associated with F, and we let T = T (h) ∈ Iδ(Y × Y, F ′) if, for each couple (i, j) ∈ {1, . . . , J }2, there
exists a semiclassical Fourier integral operator Ti j = Ti j (h) ∈ Iδ(Yj ×Yi , F ′i j ) associated with Fi j in the
sense of Definition 3.9, such that

T = (Ti j )1≤i, j≤J :

J⊕
i=1

L2(Yi )→

J⊕
i=1

L2(Yi ).

In particular WFh(T )⊂ Ã× D̃. We define I0+(Y × Y, F ′)=
⋂
δ>0 Iδ(Y × Y, F ′).

We will say that T is microlocally unitary near T if the two following conditions hold:

• ∥T T ∗∥ ≤ 1+ O(hε) for some ε > 0.

• There exists a neighborhood �⊂U of T such that, for every u = (u1, . . . , u J ) ∈
⊕J

j=1 L2(Yj ),

for all j ∈{1, . . . , J }, WFh(u j )⊂�∩Uj =⇒ T T ∗u=u+O(h∞)∥u∥L2, T ∗T u=u+O(h∞)∥u∥L2 .
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Let us now briefly see what the second condition implies for the components of T ∗T. First focus on
the off-diagonal entries

(T ∗T )i j =

J∑
k=1

(T ∗)ik Tk j =

J∑
k=1

(Tki )
∗Tk j .

If k ∈ {1, . . . , J } and i ̸= j , (Tki )
∗Tk j = O(h∞) since

WFh(T ∗ki )⊂ D̃ki × Ãki , WFh(Tk j )⊂ Ãk j × D̃k j and Ãk j ∩ Ãki =∅.

As a consequence, the off-diagonal terms are always O(h∞). For the diagonal entries,

(T ∗T )i i =
J∑

k=1

(Tki )
∗Tki .

Each term of this sum is a pseudodifferential operator with wavefront set

WFh(T ∗ki Tki )⊂ D̃ki .

Since the D̃ki are pairwise disjoint, T ∗T = IdL2(Y )+O(h∞) microlocally near T if and only if, for
all k, i , T ∗ki Tki = IdL2(Yi )+O(h∞) microlocally near Dki . The same computations apply to T T ∗. As
a consequence, T is microlocally unitary near T if and only if, for all (k, i), Tki is a Fourier integral
operator associated with Fki , microlocally unitary near Dki× Aki (see the paragraph below Definition 3.9).

Notation. An element of Scomp
δ (U ) is a J -tuple α = (α1, . . . , αJ ), where each αj is an element of

Sδcomp(R
2) such that ess suppαj ⊂Uj (this notation is recalled in the next section).

We fix a smooth function 9Y = (91, . . . , 9J ) such that, for 1≤ j ≤ J, 9j ∈ C∞c (Yj , [0, 1]) satisfies
9j = 1 on π(Uj ) (recall that Uj ⋐ T ∗Yj ).

For α ∈ Scomp
δ (U ), we also denote by Oph(α) the diagonal operator-valued matrix

Oph(α)= Diag(91 Oph(α1)91, . . . , 9J Oph(αJ )9J ) :

J⊕
j=1

L2(Yj )→

J⊕
j=1

L2(Yj ).

Note that as operators on L2(R), Oph(αj ) and 9j Oph(αj )9j are equal modulo O(h∞).

We can now state the main theorem of this paper, namely a spectral gap for hyperbolic open quantum
maps. We denote by ρspec(A) the spectral radius of a bounded operator A : L2(Y )→ L2(Y ).

Theorem 1. Suppose that the above assumptions on F, (Hyp) and (Fractal) are satisfied. Then, there
exists γ > 0 such that the following holds:

Let T = T (h) ∈ I0+(Y × Y, F ′) be a semiclassical Fourier integral operator associated with F in the
sense of Definition 2.1 and α ∈ Scomp

δ (U ). Assume that T is microlocally unitary in a neighborhood of T .
Then, there exists h0 > 0 such that,

for all 0< h ≤ h0, ρspec(T (h)Oph(α))≤ e−γ ∥α∥∞,

where h0 depends on (U, F), T and seminorms of α in Sδ.
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For applications, we will need the following corollary (it is in fact rather a corollary of the method
used to prove Theorem 1):

Corollary 1. With the same notations and assumptions as in Theorem 1, if R(h) is a family of bounded
operators on L2(Y ) satisfying ∥R(h)∥ = O(hη) for some η > 0, then the there exists γ ′ depending only
on γ and η such that, for 0< h ≤ h0,

ρspec(T (h)Oph(α)+ R(h))≤ e−γ
′

∥α∥∞.

Remark. • If the value h0 depends on T and α, this is not the case of γ which depends on (U, F).

• This is a spectral gap; it has to be compared with the easy bound we could have

ρspec(T Oph(α))≤ ∥α∥∞+ o(1).

In particular, if α ≡ 1 in a neighborhood of T and |α| ≤ 1 everywhere, ρspec(T (h))≤ e−γ < 1.

• T Oph(α) is the way we’ve chosen to write our Fourier integral operator with “gain” (or absorption
depending on the modulus of α) factor α. T Oph(α) transforms a wave packet u0 microlocalized near ρ0

lying in a small neighborhood of T into a wave packet microlocalized near F(ρ0), with norm essentially
changed by a factor |α(ρ0)|.

• The proof will actually show that if η is strictly bigger than some threshold, then γ ′ = γ .

Notation. Throughout the paper, the meaning of the constants C can change from line to line but these con-
stants will only depend on our dynamical system (U, F). If there is another dependence, it will be specified.

2B. Applications of the theorem. This theorem has applications in the study of open quantum systems.
We refer the reader to [Nonnenmacher 2011] for a survey on this topic. The spectral gap given by
Theorem 1 will actually give a spectral gap for the resonances of semiclassical operators P(h) in R2, or
for the resonances of the Dirichlet Laplacian in the exterior of strictly convex obstacles satisfying the Ikawa
noneclipse condition. We refer the reader to the review [Zworski 2017] for more background on scattering
resonances or to the book [Dyatlov and Zworski 2019]. The results we will obtain from Theorem 1 give
a positive answer (in dimension 2) to Conjecture 3 in [Zworski 2017], under a fractal assumption.

Scattering by strictly convex obstacles in the plane. As already explained in the Introduction the main
problem motivating Theorem 1 is the problem of scattering by obstacles in the plane R2. It leads to:

Theorem 2. Assume that O =
⋃J

i=1 Oj , where Oj are open, strictly convex connected obstacles in R2

having smooth boundary and satisfying the Ikawa condition: for i ̸= j ̸= k, Oi does not intersect the
convex hull of O j ∪Ok . Let

�= R2
\O.

There exist γ > 0 and λ0 > 1 such that the Dirichlet Laplacian −1 on L2(�) has no scattering resonance
in the region

[λ0,+∞[+ i[−γ, 0].
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Let us give the arguments to see why Theorem 1 implies this theorem. After a semiclassical
reparametrization, it is enough to show that there exist δ > 0 and h0 > 0 such that P(h) := −h21−1 has
no resonance in D(0,Ch)∩{Im z ∈ [−δh, 0]} for any h ≤ h0. As already explained, the implication relies
on [Nonnenmacher et al. 2014, Theorem 5, Section 6]. There they prove the existence of a family of

(M(z))z∈D(0,Ch) = (M(z, h)) (2-5)

such that:

• M(z)=5h M(z)5h + O(hL), where 5h is a finite-rank projector, of rank comparable to h−1, L > 0
is a fixed constant (which can in fact be chosen as big as we want) and M(z) is described below and
satisfies 5h M(z)5h = M(z)+ O(hL).

• M(0) is an open quantum map associated with a Lagrangian relation B presented in the Introduction,
which is microlocally unitary near T . B and M(0) play the roles of F and T in Theorem 1 and satisfy its
assumptions.

• M(z)= M(0)Oph(e
i zτ/h)+ O(h1−ε) uniformly in D(0,Ch), where ε > 0 can be chosen arbitrarily

close to zero and τ ∈ C∞c (U ) is a smooth function (which has to be seen as a return time).

• The resonances of P(h) in D(0,Ch) are the roots, with multiplicities, of the equation

det(I −M(z))= 0.

Hence, to prove the theorem, it is enough to show that the spectral radius of M(z) is strictly smaller
than 1 for z ∈ D(0,Ch)∩{Im z ∈ [−δh, 0]} for some δ > 0 and for h small enough. To see that, we write

M(z)= M(0)Oph(e
i zτ/h)+ R(h),

with R(h)= O(hη) for any η <min(1, L). We apply Theorem 1 and find some γ ′ such that

ρspec(M(z))≤ e−γ
′

∥ei zτ/h
∥∞ ≤ e−γ

′

eδτmax, z ∈ D(0,Ch)∩ {Im z ∈ [−δh, 0]},

where τmax = ∥τ∥∞. This ensures a spectral gap of size

δ <
γ ′

τmax
.

Schrödinger operators. Actually, the obstacles, seen as infinite potential barriers, can be smoothened
with a potential V ∈ C∞c (R

2) and we can consider the Schrödinger operators P0(h)=−h21+ V (x).
Unlike the obstacle problem, a simple rescaling does not allow to pass from energy 1 to any energy E

and the behavior of the classical flow can drastically change from an energy shell to another. To study the
problem at energy E > 0, independent of h, we rather consider

P(h)= P0(h)− E .

The resolvent (P(h)− z)−1 continues meromorphically from Im z > 0 to D(0,Ch) (as previously in
the sense that χ(P(h)− z)1χ extends meromorphically with χ ∈ C∞c (R

2)) and we are interested in the
existence of a spectral gap.
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The classical Hamiltonian flow associated with P(h) is the Hamiltonian flow8t generated by p0(x, ξ)=
|ξ |2+ V (x) on the energy shell p−1

0 (E). The trapped set is defined as above by

KE := {(x, ξ) ∈ T ∗R2
: p0(x, ξ)= E, 8t(x, ξ) stays bounded as t→±∞}.

We assume that the flow is hyperbolic on KE and that the trapped set is topologically one-dimensional.
Equivalently, we assume that transversely to the flow, KE is zero-dimensional. Under these assumptions,
the authors proved (see Theorem 1 in [Nonnenmacher et al. 2011]) the existence of a family of monodromy
operators associated with a Lagrangian relation FE which is a Poincaré map of the flow on different
Poincaré sections 61, . . . , 6J ⊂ p−1

0 (E). The assumption on the dimension of KE implies that the
assumption (Fractal) is satisfied since KE cannot be an attractor [Bowen and Ruelle 1975]. Hence,
Theorem 1 applies and we can prove as done in the case of obstacles:

Theorem 3. Under the above assumptions, there exists δ > 0 such that P(h) has no resonances in

D(0,Ch)∩ {Im z ∈ [−δh, 0]}.

3. Preliminaries

3A. Pseudodifferential operators and Weyl quantization. We recall some basic notions and properties
of the Weyl quantization on Rn. We refer the reader to [Zworski 2012] for the proofs of the statements
and further considerations on semiclassical analysis and quantizations. We start by defining classes of
h-dependent symbols.

Definition 3.1. Let 0 ≤ δ ≤ 1
2 . We say that an h-dependent family a := (a( · ; h))0<h⩽1 is in the class

Sδ(T ∗Rn) (or simply Sδ if there is no ambiguity) if, for every α ∈ N2n, there exists Cα > 0 such that,

for all 0< h ≤ 1, sup
(x,ξ)∈Rn

|∂αa(x, ξ ; h)| ≤ Cαh−δ|α|.

In this paper, we will mostly be concerned with δ < 1
2 . We will also use the notation S0+ =

⋂
δ>0 Sδ.

We write a = O(hN )Sδ to mean that, for every α ∈ N2n, there exists Cα,N such that,

for all 0< h ≤ 1, sup
(x,ξ)∈Rn

|∂αa(x, ξ ; h)| ≤ Cα,N h−δ|α|hN .

If a = O(hN )Sδ for all N ∈ N , we’ll write a = O(h∞)Sδ . A priori, the constants Cα,N depend on the
symbol a. However, in this paper, we will often make them depend on different parameters but not
directly on a. This will be specified when needed.

For a given symbol a ∈ Sδ(T ∗Rn), we say that a has a compact essential support if there exists a
compact set K such that,

for all χ ∈ C∞c (�), suppχ ∩ K =∅ =⇒ χa = O(h∞)S(T ∗Rn)

(here S stands for the Schwartz space). We let ess supp a ⊂ K and say that a belongs to the class
Scomp
δ (T ∗Rn). The essential support of a is then the intersection of all such compact K ’s. In particular,

the class Scomp
δ contains all the symbols supported in an h-independent compact set and these symbols
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correspond, modulo O(h∞)S(T ∗R), to all symbols of Scomp
δ . For this reason, we will adopt the notation

a ∈ Scomp
δ (�)⇐⇒ ess supp a ⋐�.

For a symbol a ∈ Sδ(T ∗Rn), we’ll quantize it using Weyl’s quantization procedure. It is informally
written as

(Oph(a)u)(x)= (a
W (x, h Dx)u)(x)=

1
(2πh)n

∫
R2n

a
(

x + y
2

, ξ

)
u(y)ei((x−y)·ξ)/h dy dξ.

We will denote by 9δ(Rn) the corresponding classes of pseudodifferential operators. By definition, the
wavefront set of A = Oph(a) is WFh(A)= ess supp a.

We say that a family u = u(h) ∈ D′(Rn) is h-tempered if, for every χ ∈ C∞c (R
n), there exist C > 0

and N ∈ N such that ∥χu∥H−N
h
≤ Ch−N. For a h-tempered family u, we say that a point ρ ∈ T ∗Rn

does not belong to the wavefront set of u if there exists a ∈ Scomp(T ∗Rn) such that a(ρ) ̸= 0 and
Oph(a)u = O(h∞)S . We denote by WFh(u) the wavefront set of u.

We say that a family of operators B = B(h) :C∞c (R
n2)→D′(Rn1) is h-tempered if its Schwartz kernel

KB ∈ D′(Rn1 ×Rn2) is h-tempered. We define

WF′h(B)= {(x, ξ, y,−η) ∈ T ∗Rn1 × T ∗Rn2 : (x, ξ, y, η) ∈WFh(KB)}.

Let us now recall standard results in semiclassical analysis concerning the L2-boundedness of pseudo-
differential operators and their composition. We’ll use the following version of the Calderón–Vaillancourt
theorem [Zworski 2012, Theorem 4.23].

Theorem 4. There exists Cn > 0 such that the following holds. For every 0≤ δ < 1
2 and a ∈ Sδ(T ∗Rn),

Oph(a) is a bounded operator on L2 and

∥Oph(a)∥L2(Rn)→L2(Rn) ≤ Cn

∑
|α|≤8n

h|α|/2∥∂αa∥L∞ .

As a consequence of the sharp Gårding inequality (see [Zworski 2012, Theorem 4.32]), we also have
the precise estimate of L2 norms of pseudodifferential operator,

Proposition 3.2. Assume that a ∈ Sδ(R2n). Then, there exists Ca depending on a finite number of
seminorms of a such that

∥Oph(a)∥L2→L2 ≤ ∥a∥∞+Cah1/2−δ.

We recall that the Weyl quantizations of real symbols are self-adjoint in L2. The composition of two
pseudodifferential operators in 9δ is still a pseudodifferential operator. More precisely (see [Zworski
2012, Theorems 4.11 and 4.18]), if a, b ∈ Sδ , then Oph(a)◦Oph(b) is given by Oph(a # b), where a # b is
the Moyal product of a and b. It is given by

a # b(ρ)= eih A(D)(a⊗ b)|ρ=ρ1=ρ2,

where a⊗b(ρ1, ρ2)= a(ρ1)b(ρ2), eih A(D) is a Fourier multiplier acting on functions on R4n and, writing
ρi = (xi , ξi ),

A(D)= 1
2(Dξ1 ◦ Dx2 − Dx1 ◦ Dξ2).
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We can estimate the Moyal product by a quadratic stationary phase and get the following expansion: for
all N ∈ N,

a # b(ρ)=
N−1∑
k=0

ikhk

k!
A(D)k(a⊗ b)|ρ=ρ1=ρ2 + rN ,

where, for all α ∈ N2n, there exists Cα, independent of a and b, such that

∥∂αrN∥∞ ≤ CαhN
∥a⊗ b∥C2N+4n+1+|α| .

As a consequence of this asymptotic expansion, we have the precise product formula:

Lemma 3.3. For every N ∈ N, there exists CN > 0 such that, for every a, b ∈ Sδ(Rn),

Oph(a) ◦Oph(b)= Oph

( N−1∑
k=0

ikhk

k!
A(D)k(a⊗ b)|ρ=ρ1=ρ2

)
+ RN , (3-1)

where
∥RN∥L2(R)→L2(R) ≤ CN hN

∥a⊗ b∥C2N+12n+1 . (3-2)

Remark. It will be important in the sequel to understand the derivatives of a and b involved in the k-th
term of the previous expansion. A quick recurrence using the precise form of the operator A(D) shows
that A(D)k(a⊗ b)(ρ1, ρ2) is of the form∑

|α|=k,|β|=k

λα,β∂
αa(ρ1)∂

βb(ρ2).

This can be rewritten lk(dka(ρ1), dkb(ρ2)), where lk is a bilinear form on the spaces of k-symmetric
forms on R2n. Of course, we make use of the identifications Tρ1 T ∗Rn

≃ Tρ2 T ∗Rn
≃ R2n.

As a simple corollary, we get an expression for the commutator of pseudodifferential operators.

Corollary 3.4. For every N ∈ N, there exists CN > 0 such that, for every a, b ∈ Sδ(Rn),

[Oph(a),Oph(b)] = Oph

(
h
i
{a, b}+

N−1∑
k=2

hk Lk(dka, dkb)
)
+ RN ,

where
∥RN∥L2(R)→L2(R) ≤ CN hN

∥a⊗ b∥C2N+12n+1,

where the Lk are bilinear forms on the spaces of k-symmetric forms on R2n .

3B. Fourier Integral operators. We now review some aspects of the theory of Fourier integral operators.
We follow [Zworski 2012, Chapter 11] and [Nonnenmacher et al. 2014]. We refer the reader to [Guillemin
and Sternberg 2013] for further details. Finally, we will give the precise definition needed to understand
Definition 2.1.

3B1. Local symplectomorphisms and their quantization. We momentarily work in dimension n. Let us
denote by K the set of symplectomorphisms κ : T ∗Rn

→ T ∗Rn such that the following holds: there exist
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continuous and piecewise smooth families of smooth functions (κt)t∈[0,1], (qt)t∈[0,1] such that:

• For all t ∈ [0, 1], κt : T ∗Rn
→ T ∗Rn is a symplectomorphism.

• κ0 = IdT ∗Rn , κ1 = κ .

• For all t ∈ [0, 1], κt(0)= 0.

• There exists K ⋐ T ∗Rn compact such that, for all t ∈ [0, 1], qt : T ∗Rn
→ R and supp qt ⊂ K .

• (d/dt)κt = (κt)
∗Hqt .

If κ ∈ K, we denote by C = Gr′(κ)= {(x, ξ, y,−η) : (x, ξ)= κ(y, η)} the twisted graph of κ . We recall
[Zworski 2012, Lemma 11.4], which asserts that local symplectomorphisms can be seen as elements of K,
as soon as we have some geometric freedom.

Lemma 3.5. Let U0,U1 be open and precompact subsets of T ∗Rn. Assume that κ :U0→U1 is a local
symplectomorphism fixing 0 and which extends to V0 ⋑ U0 an open star-shaped neighborhood of 0. Then,
there exists κ̃ ∈ K such that κ̃|U0 = κ .

If κ ∈ K and if (qt) denotes the family of smooth functions associated with κ in its definition, we let
Q(t)=Oph(qt). It is a continuous and piecewise smooth family of operators. Then the Cauchy problem{

h DtU (t)+U (t)Q(t)= 0,
U (0)= Id

(3-3)

is globally well-posed.
Following [Nonnenmacher et al. 2014, Definition 3.9], we adopt the definition:

Definition 3.6. Fix δ ∈
[
0, 1

2

[
. We say that U ∈ Iδ(Rn

×Rn
;C) if there exist a ∈ Sδ(T ∗Rn) and a path (κt)

from Id to κ satisfying the above assumptions such that U =Oph(a)U (1), where t 7→U (t) is the solution
of the Cauchy problem (3-3).

The class I0+(R×R,C) is by definition
⋂
δ>0 Iδ(R×R,C).

It is a standard result, known as Egorov’s theorem (see [Zworski 2012, Theorem 11.1]) that if U (t)
solves the Cauchy problem (3-3) and if a ∈ Sδ , then U−1 Oph(a)U is a pseudodifferential operator in 9δ
and if b = a ◦ κ , then U−1 Oph(a)U −Oph(b) ∈ h1−2δ9δ.

Remark. Applying Egorov’s theorem and Beal’s theorem, it is possible to show that if (κt) is a closed path
from Id to Id, and U (t) solves (3-3), then U (1) ∈90(R

n). In other words, Iδ(R×R,Gr′(Id))⊂9δ(Rn).
But the other inclusion is trivial. Hence, this in an equality:

Iδ(Rn
×Rn,Gr′(Id))=9δ(Rn).

The notation I (Rn
×Rn,C) comes from the fact that the Schwartz kernel of such operators are Lagrangian

distributions associated with C , and in particular have wavefront set included in C . As a consequence, if
T ∈ Iδ(Rn

×Rn,C), then WF′h(T )⊂ Gr(T ).

Let us state a simple proposition concerning the composition of Fourier integral operators:

Proposition 3.7. Let κ1, κ2 ∈ K and U1 ∈ Iδ(R×R,Gr′(κ1)),U2 ∈ Iδ(R×R,Gr′(κ1)). Then,

U1 ◦U2 ∈ Iδ(R×R,Gr′(κ1 ◦ κ2)).
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Proof. Let’s write U1=Oph(a1)U1(1), U2=Oph(a2)U2(1) with the obvious notation associated with the
Cauchy problems (3-3) for κ1 and κ2. Egorov’s theorem asserts that U1(1)Oph(a2)U1(1)−1

= Oph(b2)

for some b2 ∈ Sδ and Oph(a1)Oph(b2)=Oph(a1 # b2). It is then enough to focus on the case a1 = a2 = 1.
We set

U3(t) :=
{

U1(2t) for 0≤ t ≤ 1
2 ,

U1(1) ◦U2(2t − 1) for 1
2 ≤ t ≤ 1.

It solves the Cauchy problem {
h DtU3(t)+U3(t)Q3(t)= 0,
U (0)= Id,

with

Q3(t) :=
{

2Q1(2t) for 0≤ t ≤ 1
2 ,

2Q2(2t − 1) for 1
2 ≤ t ≤ 1.

To conclude the proof, it is enough to notice that this Cauchy problem is associated with the path κ3(t)
between κ(0)= Id and κ3(1)= κ1 ◦ κ2, where

κ3(t) :=
{
κ1(2t) for 0≤ t ≤ 1

2 ,

κ1 ◦ κ2(2t − 1) for 1
2 ≤ t ≤ 1. □

3B2. Precise version of Egorov’s theorem. We will need a more quantitative version of Egorov’s theorem,
similar to the one in [Dyatlov et al. 2022, Lemma A.7]. The result does not show that U (1)−1 Oph(a)U (1)
is a pseudodifferential operator (one would need Beal’s theorem to say that) but it gives a precise estimate
on the remainder, depending on the seminorms of a. We now specialize to the case of dimension n= 1 but
the following result holds in any dimension but changing the constant 15 to something of the form Mn.

Proposition 3.8. Consider κ ∈ K and denote by U (t) the solution of (3-3). There exists a family of
differential operators (Dj )j∈N of order j such that, for all a ∈ Sδ and all N ∈ N,

U (1)−1 Oph(a)U (1)= Oph

(
a ◦ κ +

N−1∑
j=1

h j (Dj+1a) ◦ κ
)
+ Oκ(hN

∥a∥C2N+15). (3-4)

Proof. We keep the notation introduced previously. Let us first define

A0(t)=U (t)Oph(a ◦ κt)U (t)−1

and compute

U (t)−1∂t A0(t)U (t)

=−
i
h
[Q(t),Oph(a◦κt)]+Oph({qt ,a◦κt })

=Oph({qt ,a◦κt })−
i
h

(
Oph

(
h
i
{qt ,a◦κt }+

N∑
j=2

h j L j (d j qt ,d j (a◦κt))

))
+O(hN

∥qt⊗(a◦κt)∥C2(N+1)+13)

=Oph

( N−1∑
j=1

−ih j L j+1(d j+1qt ,d j+1(a◦κt))

)
+Oκt (h

N
∥a∥C2N+15).
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We now define by induction a family of functions aj (t), j = 0, . . . , N − 1, by

a0(t)= a, ak(t)=
k−1∑
m=0

∫ t

0
i Lk+1−m(dk+1−mqs, dk+1−m(am(s) ◦ κs)) ◦ κ

−1
s ds,

and set Ak(t) = U (t)Oph
(∑k

j=0 h j aj (t) ◦ κt
)
U (t)−1. We first remark by an easy induction on k, that

ak(t) is of the form Dk+1(t)a, where Dk+1(t) is a differential operator of order at most k + 1, with
coefficients depending continuously on t and on (κt)t . We now check the following by induction:

U (t)−1∂t Ak(t)U (t)=−i Oph

( N−1∑
j=k+1

k∑
m=0

h j L j+1−m(d j+1−mqt ,d j+1−m(am(t)◦κt))

)
+Oκ(hN

∥a∥C2N+15).

We’ve already done it for k = 0. Let’s assume that the equality holds for k− 1 and let’s prove it for k ≥ 1:

U (t)−1∂t Ak(t)U (t)=U (t)−1∂t Ak−1(t)U (t)+ hkU (t)−1∂t Oph(ak(t) ◦ κt)U (t).

Let’s compute the second part of the right-hand side:

U (t)−1∂t Oph(ak(t)◦κt)U (t)

=−
i
h
[Q(t),Oph(ak(t)◦κt)]+Oph({qt ,ak(t)◦κt })+Oph(∂t ak(t)◦κt)

=−i Oph

( N−1−k∑
l=1

h j L l+1(dl+1qt ,dl+1(ak(t)◦κt))

)
+Oκ(hN−k

∥ak(t)∥C2(N+1−k)+13)+Oph(∂t ak(t)◦κt).

We can estimate the remainder by

Oκ(hN−k
∥ak(t)∥C2(N+1−k)+13)= Oκ(hN−k

∥a∥C2(N+1−k)+13+k+1)= Oκ(hN−k
∥a∥C2N+15).

We now combine this with the value of

U (t)−1∂t Ak−1(t)U (t)=−i Oph

(N−1∑
j=k

k−1∑
m=0

h j L j+1−m(d j+1−mqt ,d j+1−m(am(t)◦κt))

)
+Oκ(hN

∥a∥C2N+15).

By the definition of ak(t), the term hk Oph(∂t ak(t)◦κt) cancels the term corresponding to j = k in the sum.
Moreover, for every j>k, writing j=k+l, l∈{1, . . . ,N−1−k}, the term hk+l L l+1(dl+1qt ,dl+1(ak(t)◦κt))

gives the missing term h j L j+1−k(d j+1−kqt , d j+1−k(ak(t)◦κt)). This gives the required equality for Ak(t).
In particular, ∂t AN−1(t)= Oκ(hN

∥a∥C2N+15). We now use the fact that at t = 0, a0(0)= a, ak(0)= 0,
k=1, . . . , N−1, U (0)= Id, κ0= Id, and hence AN−1(0)=Oph(a). Integrating between 0 and 1, we have

AN−1(t)−Oph(a)= Oκ(hN
∥a∥C2N+15).

Conjugating by U (1), we finally have

U (1)−1 Oph(a)U (1)= Oph

(
a ◦ κ +

N−1∑
k=1

hkak(1) ◦ κ
)
+ Oκ(hN

∥a∥C2N+15),

which is what we wanted, since ak(1)= Dk+1(1)a. □
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3B3. An important example. Let us focus on a particular case of canonical transformations. Suppose
that κ : T ∗Rn

→ T ∗Rn is a canonical transformation such that

(x, ξ, y, η) ∈ Gr(κ) 7→ (x, η)

is a local diffeomorphism near (x0, ξ0, y0, η0). Then, there exists a phase function ψ ∈ C∞(Rn
×Rn),

�x , �η open sets of Rn and � a neighborhood of (x0, ξ0, y0, η0) such that

Gr′(κ)∩�= {(x, ∂xψ(x, η), ∂ηψ(x, η),−η) : x ∈�x , η ∈�η}.

One says that ψ generates Gr′(κ). Suppose that α ∈ Scomp
δ (�x×�η). Then, modulo a smoothing operator

O(h∞), the following operator T is an element of I comp
δ (Rn

×Rn,Gr′(κ)):

T u(x)=
1

(2πh)n

∫
R2n

e(i/h)(ψ(x,η)−y·η)α(x, η) u(y) dy dη,

and if T ∗T = Id microlocally near (y0, η0) then |α(x, η)|2 = |det D2
xηψ(x, η)| + O(h1−2δ)Sδ near

(x0, ξ0, y0, η0). The converse statement holds: microlocally near (x0, ξ0, y0, η0) and modulo O(h∞), the
elements of Iδ(Rn

×Rn,Gr′(κ)) can be written under this form.

3B4. Lagrangian relations. Recall that the Lagrangian relation F we consider is the union of local
Lagrangian relations Fi j ⊂Ui ×Uj . We fix a compact set W ⊂ πL(F) containing some neighborhood
of T . Our definition will depend on W. Following [Nonnenmacher et al. 2014, Section 3.4.2], we now focus
on the definition of the elements of Iδ(Y ×Y ; F ′). An element T ∈ Iδ(Y ×Y ; F ′) is a matrix of operators

T = (Ti j )1≤i, j≤J :

J⊕
j=1

L2(Yj )→

J⊕
i=1

L2(Yi ).

Each Ti j is an element of Iδ(Yi × Yj , F ′i j ). Let’s now describe the recipe to construct elements of
Iδ(Yi × Yj , F ′i j ). We fix i, j ∈ {1, . . . , J }.

• Fix some small ε > 0 and two open covers of Uj , Uj ⊂
⋃L

l=1�l , �l ⋐ �̃l , with �̃l star-shaped and
having diameter smaller than ε. We denote by L the sets of indices l such that �l ⊂ πR(Fi j )= D̃i j ⊂Uj

and we require (this is possible if ε is small enough)

F−1(W )∩Uj ⊂
⋃
l∈L

�l .

• Introduce a smooth partition of unity associated with the cover (�l), (χl)1≤l≤L ∈ C∞c (�l, [0, 1]),
suppχl ⊂�l ,

∑
l χl = 1 in a neighborhood of U j .

• For each l ∈ L, we denote by Fl the restriction to �̃l of Fi j , seen as a symplectomorphism Fi j : D̃i j ⊂

U → V. By Lemma 3.5, there exists κl ∈ K which coincides with Fl on �l .

• We consider Tl = Oph(αi )Ul(1), where Ul(t) is the solution of the Cauchy problem (3-3) associated
with κl and αi ∈ Scomp

δ (T ∗R).
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• We set
T R
=

∑
l∈L

Tl Oph(χl) : L2(R)→ L2(R). (3-5)

T R is a globally defined Fourier integral operator. We will write T R
∈ Iδ(R×R, F ′i j ). Its wavefront set is

included in Ãi j × D̃i j .

• Finally, we fix cut-off functions (9i , 9j ) ∈ C∞c (Yi , [0, 1])×C∞c (Yj , [0, 1]) such that 9i ≡ 1 on π(Ui )

and 9j ≡ 1 on π(Uj ) (here, π : (x, ξ) ∈ T ∗Y· 7→ x ∈ Y· is the natural projection) and we adopt the
following definitions:

Definition 3.9. We say that T :D′(Yj )→C∞(Y i ) is a Fourier integral operator in the class Iδ(Yi×Yj , F ′i j )

if there exists T R
∈ Iδ(R×R, F ′) as constructed above such that

• T −9i T9j = O(h∞)D′(Y )→C∞(Z),

• 9i T9j =9i T R9j .

For U ′j ⊂ Uj and U ′i = F(U ′j ) ⊂ Ui , we say that T (or T R) is microlocally unitary in U ′i ×U ′j if
T T ∗ = Id microlocally in U ′i and T ∗T = Id microlocally in U ′j.

Remark. The definition of this class is not canonical since it depends in fact on the compact set W
through the partition of unity.

Another version of Egorov’s theorem. The precise version of Egorov’s theorem in Proposition 3.8 is only
stated for globally unitary Fourier integral operator defined using the Cauchy equation (3-3). We extend
it here to microlocally unitary and globally defined Fourier integral operators. We fix i, j ∈ {1, . . . , J }.

Lemma 3.10. Let T ∈ Iδ(R×R, F ′i j ). Suppose that B(ρ, 4ε) ⊂ Uj and that T is microlocally unitary
in Fi j (B(ρ, 4ε))× B(ρ, 4ε). Then, there exists a family (Dk)k∈N of differential operators of order k,
compactly supported in B(ρ, 3ε) such that the following holds: For every N ∈ N and for all b ∈
C∞c (B(ρ, 2ε)),

T Oph(b)= Oph

(
b ◦ κ−1

+

N−1∑
k=1

hk(Dk+1b) ◦ κ−1
)

T + O(hN
∥b∥C2N+15)L2(R)→L2(R).

The constants in O depend on T and F.

Proof. First, introduce some cut-off function χ such that χ ≡ 1 in a neighborhood of B(ρ, 2ε) and
suppχ ⊂ B(ρ, 3ε). Due to these properties and Lemma 3.3, we have

Oph(b)= Oph(χ)Oph(b)Oph(χ)Oph(χ)+ O(hN
∥b∥C2N+13)L2(R)→L2(R).

Moreover, Oph(χ)T
∗T = Oph(χ)+ O(h∞), and hence

T Oph(b)= T Oph(χ)Oph(b)Oph(χ)Oph(χ)T
∗T +O(hN

∥b∥C2N+13)L2→L2+O(h∞)∥Oph(b)∥L2→L2 .

The term O(h∞)∥Oph(b)∥L2→L2 can be absorbed in O(hN
∥b∥C2N+13)L2→L2 . Consider κ̃ ∈ K extending

κ|B(ρ,3ε) and construct U = U (1) by solving the Cauchy problem (3-3) associated with κ̃ . Due to the
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properties on composition of Fourier integral operators (Proposition 3.7), T Oph(χ)U
−1 and U Oph(χ)T

∗

are pseudodifferential operators, and we denote them by Oph(a1),Oph(a2). Now write

T Oph(b)= [T Oph(χ)U
−1
]U Oph(b)Oph(χ)U

−1
[U Oph(χ)T

∗
]T + O(hN

∥b∥C2N+13)L2→L2

= Oph(a1)[U Oph(b)Oph(χ)U
−1
]Oph(a2)T + O(hN

∥b∥C2N+13)L2→L2 .

By using the precise version in Proposition 3.8, one can write

U Oph(b)Oph(χ)U
−1
= Oph

(
b ◦ κ−1

+

N−1∑
k=1

(Lk+1b) ◦ κ−1
)
+ O(hN

∥b∥C2N+15)L2→L2 .

Applying Lemma 3.3, we see that we can write

T Oph(b)= Oph

(
b0 ◦ κ

−1
+

N−1∑
k=1

(Dk+1b) ◦ κ−1
)

T + O(hN
∥b∥C2N+15)L2→L2,

where b0 = a1× b ◦ κ−1
× a2. Since T is microlocally unitary in B(ρ, 4ε), the product a1a2 is equal to 1

in B(ρ, 2ε), and hence, the lemma is proved. □

3C. Hyperbolic dynamics. We assumed that F is hyperbolic on the trapped set T . As already mentioned,
we can fix an adapted Riemannian metric on U such that the following stronger version of the hyperbolic
estimates are satisfied for some λ0 > 0: for every ρ ∈ T , n ∈ N,

v ∈ Eu(ρ) =⇒ ∥dρF−n(v)∥ ≤ e−λ0n
∥v∥, (3-6)

v ∈ Es(ρ) =⇒ ∥dρFn(v)∥ ≤ e−λ0n
∥v∥. (3-7)

Notation. We now use the induced Riemannian distance on U and denote it by d .
We also use the same notation ∥ ·∥ to denote the subordinate norm on the space of linear maps between

tangent spaces of U ; namely, if F(ρ1)= ρ2,

∥dρ1 F∥ = sup
v∈Tρ1U, ∥v∥ρ1=1

∥dρ1 F(v)∥ρ2 .

If ρ ∈ T , n ∈ Z, we use this Riemannian metric to define the unstable Jacobian J u
n (ρ) and stable

Jacobian J s
n (ρ) at ρ by

v ∈ Eu(ρ) =⇒ ∥dρFn(v)∥ = J u
n (ρ)∥v∥, (3-8)

v ∈ Es(ρ) =⇒ ∥dρFn(v)∥ = J s
n (ρ)∥v∥. (3-9)

These Jacobians quantify the local hyperbolicity of the map.

Notation. Suppose that f and g are some real-valued functions depending on the same family of
parameters P . For instance, for J u

n (ρ), P = {n, ρ}. We will write f ∼ g to mean that there exists a
constant C ≥ 1 depending only on (U, F), but not on P , such that C−1g ≤ f ≤ Cg.

For instance, if we define unstable and stable Jacobians J̃ u
n and J̃ s

n using another Riemannian metric,
then, for every n ∈ Z and ρ ∈ T ,

J̃ u
n (ρ)∼ J u

n (ρ), J̃ s
n (ρ)∼ J s

n (ρ).
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From the compactness of T , there exist λ1 ≥ λ0 which satisfy

enλ0 ≤ J u
n (ρ)≤ enλ1 and e−nλ1 ≤ J s

n (ρ)≤ e−nλ0, n ∈ N, ρ ∈ T , (3-10)

enλ0 ≤ J s
−n(ρ)≤ enλ1 and e−nλ1 ≤ J u

−n(ρ)≤ e−nλ0, n ∈ N, ρ ∈ T . (3-11)

We cite here standard facts about the stable and unstable manifolds; see for instance [Katok and Hasselblatt
1995, Chapter 6].

Lemma 3.11. For any ρ ∈T , there exist local stable and unstable manifolds Ws(ρ),Wu(ρ)⊂U satisfying,
for some ε1 > 0 (only depending on F) (⋆ will denote a letter in {u, s} and the use of ± with ⋆ has to be
read with the convention u→−, s→+):

(1) Ws(ρ),Wu(ρ) are C∞-embedded curves, with the C∞ norms of the embedding uniformly bounded
in ρ.

(2) The boundary of W⋆(ρ) do not intersect B(ρ, ε1).1

(3) Ws(ρ)∩Wu(ρ)= {ρ} and TρW⋆(ρ)= E⋆(ρ).

(4) F±(W⋆(ρ))⊂W⋆(F(ρ)).

(5) For each ρ ′ ∈W⋆(ρ), we have d(F±n(ρ), F±n(ρ ′))→ 0.

(6) Let θ > 0 satisfying e−λ0 < θ < 1. If ρ ′ ∈U satisfies d(F±i (ρ), F±i (ρ ′)) ≤ ε1 for all i = 0, . . . , n
then d(ρ ′,W⋆(ρ))≤ Cθnε1 for some C > 0.

(7) If ρ, ρ ′ ∈ T satisfy d(ρ, ρ ′)≤ ε1, then Wu(ρ)∩Ws(ρ
′) consists of exactly one point in T .

Since we work with the local unstable and stable manifolds, we may assume that W⋆(ρ)⊂ B(ρ, 2ε1).
For our purpose, we will need a more precise version of these results. The following lemmas are an

adaptation of Lemma 2.1 in [Dyatlov et al. 2022] to our setting.

Lemma 3.12. There exists a constant C > 0 depending only on (U, F), such that, for all ρ, ρ ′ ∈U :

(1) If ρ ∈ T and ρ ′ ∈Ws(ρ) then

d(Fn(ρ), Fn(ρ ′))≤ C J s
n (ρ)d(ρ, ρ

′) for all n ∈ N. (3-12)

(2) If ρ ∈ T and ρ ′ ∈Wu(ρ) then

d(F−n(ρ), F−n(ρ ′))≤ C J u
−n(ρ)d(ρ, ρ

′) for all n ∈ N. (3-13)

Proof. We prove (1). Part (2) is proved in a similar way by inverting the time direction. Let ρ ∈ T ,
ρ ′ ∈Ws(ρ). Since Tρ(Ws(ρ))= Es(ρ) and dρF(Es(ρ))= Es(F(ρ)), the Taylor development of F along
Ws(ρ) gives

d(F(ρ), F(ρ ′))≤ J s
1 (ρ)d(ρ, ρ

′)+Cd(ρ, ρ ′)2 ≤ J s
1 (ρ)d(ρ, ρ

′)(1+Cd(ρ, ρ ′)) (3-14)

1In other words, there exists a smooth curve γ : [−δ, δ] →U such that B(ρ, ε1)∩W⋆(ρ)= Im γ , with γ (0)= ρ; it means
that the size of the (un-)stable manifolds is bounded from below uniformly.
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Figure 5. Framework for the proof of Lemma 3.13.

since J s
1 ≥ C−1. Applying this inequality with Fk(ρ) and Fk(ρ ′) instead of ρ and ρ ′, and recalling that,

by Lemma 3.11, d(Fk(ρ), Fk(ρ ′))≤ Cθ kd(ρ, ρ ′), we can write

d(Fk+1(ρ), Fk+1(ρ ′))≤ J s
1 (F

k(ρ)) d(Fk(ρ), Fk(ρ ′))(1+Cθ k). (3-15)

By this last inequality and the chain rule, we have

d(Fn(ρ), Fn(ρ ′))≤ J s
n (ρ)d(ρ, ρ

′)

n−1∏
k=0

(1+Cθ k)≤ C J s
n (ρ)d(ρ, ρ

′), (3-16)

completing the proof. □

The following lemma gives a stronger version of (6) in Lemma 3.11.

Lemma 3.13. There exist C > 0 and ε1 > 0, depending only on (U, F), such that, for all ρ, ρ ′ ∈U and
n ∈ N:

(1) If ρ ∈ T and d(F i (ρ), F i (ρ ′))≤ ε1 for all i ∈ {0, . . . , n} then

d(ρ ′,Ws(ρ))≤
C

J u
n (ρ)

, (3-17)

∥dρ′Fn
∥ ≤ C J u

n (ρ). (3-18)

(2) If ρ ∈ T and d(F−i (ρ), F−i (ρ ′))≤ ε1 for all i ∈ {0, . . . , n} then

d(ρ ′,Wu(ρ))≤
C

J s
−n(ρ)

, (3-19)

∥dρ′F−n
∥ ≤ C J s

−n(ρ). (3-20)

Proof. We prove (1). Part (2) is proved in a similar way by inverting the time direction. Let ρ ∈ T and
ρ ′ ∈U be such that d(F i (ρ), F i (ρ ′)) ≤ ε1 for 0 ≤ i ≤ n with ε1 to be determined. Define ρk = Fk(ρ).
The first condition on ε1 is that it is smaller than the one of Lemma 3.11 so that we ensure the following
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estimates: for k ∈ {0, . . . , n},

d(Fk(ρ ′),Ws(Fk(ρ)))≤ Cθn−kε1, (3-21)

d(Fk(ρ ′),Ws(Fk(ρ)))≤ Cθ kε1. (3-22)

We will use coordinates charts κk : ρ̂ ∈ Uk 7→ (uk, sk) ∈ Vk adapted to the dynamical system; see, in
[Katok and Hasselblatt 1995], Theorem 6.2.3, the explanations below and Theorem 6.2.8 for the existence
of this chart. More precisely, we want these charts to satisfy:

• κk(ρk)= (0, 0).

• κk(Ws(ρk)∩Uk)= {(0, s) : s ∈ R} ∩ Vk .

• κk(Wu(ρk)∩Uk)= {(u, 0) : u ∈ R} ∩ Vk .

• For ρ̂ ∈Uk , we have |uk
| ∼ d(ρ̂,Ws(ρk)), |sk

| ∼ d(ρ̂,Wu(ρk)) and |sk
|
2
+ |uk

|
2
∼ d(ρk, ρ̂)

2.

• (κk)0≤k≤n are uniformly bounded in the C N topology for all N , with constant independent of ρ0 and n.
In particular, we may assume that ε1 is chosen small enough so that B(ρk, ε1)⊂Uk for all 0≤ k ≤ n.

• Up to changing the metric we work with (which is not problematic), we may assume that the restrictions
of dκk(ρ) to Es(ρ) and Eu(ρ) are isometries for the metrics | · |s and | · |u .

If we write F̃k = κk ◦ F ◦ κ−1
k−1, we can check that in this pair of coordinates charts, the action of F−1 is

given by

F̃−1
k (uk, sk)= (±J u

−1(ρk)uk
+αk(uk, sk),±J s

−1(ρk)sk
+βk(uk, sk)), (3-23)

where αk, βk are smooth functions, uniformly bounded in k for the C2 topology and such that αk(0, sk)=0,
βk(uk, 0)= 0, dαk(0, 0)= 0, dβk(0, 0)= 0.

With these properties, one can check that

αk(uk, sk)≤ C |uk
|∥(uk, sk)∥. (3-24)

Let’s now define ρ ′k = Fk(ρ ′) and (uk, sk)= κk(ρ
′

k). By (3-21), (3-22), (3-23), (3-24), we can write

|uk−1
| ≤ J u

−1(ρk)|uk
| +C |uk

|∥(uk, sk)∥

≤ J u
−1(F

k(ρ))|uk
|(1+Cε1(θ

k
1 + θ

n−k
1 ))

≤ J u
−1(F

k(ρ))|uk
|(1+Cε1θ

min(k,n−k)).

Then, using the chain rule, one has

d(ρ ′,Ws(ρ))≤ C |u0
| ≤ C J u

−n(F
n(ρ))

n−1∏
k=0

(1+Cε1θ
min(k,n−k)). (3-25)

Finally, we can estimate
n∏

k=0

(1+Cε1θ
min(k,n−k))≤

⌈n/2⌉∏
k=0

(1+Cε1θ
k)2 ≤ C,
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which gives

d(ρ ′,Ws(ρ))≤ C J u
−n(F

n(ρ))=
C

J u
n (ρ)

. (3-26)

This proves (3-17).
To prove (3-18), we first construct a metric which simplifies the computations. If ρ ∈ T , we pick

v⋆(ρ) ∈ E⋆(ρ)2 such that ∥v⋆(ρ)∥ = 1. There exists a Riemannian metric | · | on T such that, for every
ρ ∈ T , (vu(ρ), vs(ρ)) is an orthonormal basis of TρU. This metric is γ -Hölder in ρ ∈ T since stable and
unstable distributions are γ -Hölder for some γ ∈ (0, 1).

If ρ ∈ T and n ∈ Z, we denote by J̃ u/s
n (ρ) ∈ R the numbers such that

dρ(Fn)(vu(ρ))= J̃ u
n (ρ)vu(Fn(ρ)), dρ(Fn)(vs(ρ))= J̃ s

n (ρ)vs(Fn(ρ)).

As already observed, | J̃ u
n (ρ)| ∼ J u

n (ρ) for all n (with constants independent of n). We can also assume
that | J̃ u

1 (ρ)| > | J̃
s
1 (ρ)| for all ρ. In the orthonormal basis (vu(ρ), vs(ρ)) and (vu(Fn(ρ), vs(Fn(ρ))),

dρFn has the form (
J̃ u

n (ρ) 0
0 J̃ s

n (ρ)

)
.

Due to the orthonormality of these basis, we have that for the subordinate norms, ∥dρFn
∥ = | J̃ u

n (ρ)|.
Hence, the chain rule implies the following equality for this particular Riemannian metric defined on T :

for all ρ ∈ T , ∥dρ(Fn)∥ = | J̃ u
n (ρ)| =

n−1∏
i=0

| J̃ u
1 (F

i (ρ)| =

n−1∏
i=0

∥dF i (ρ)F∥. (3-27)

We now claim that we can extend | · | to a relatively compact neighborhood V of T such that ρ ∈ V 7→ |· |ρ
is still γ -Hölder. To do so, it is enough to extend the coefficients of the metric in a coordinate chart in a
γ -Hölder way, which is possible (for instance, by virtue of Corollary 1 in [McShane 1934]), which still
defines a nondegenerate 2-form in a sufficiently small neighborhood of T .

We now aim at proving (3-18) for this particular metric. (3-18) will hold in the general case since two
continuous metric are always uniformly equivalent in a compact neighborhood of T .

In the following, we assume that ε1 is small enough so that ρ belongs to the neighborhood of T
in which | · | is defined. Since ρ 7→ ∥dρF∥TρU→TF(ρ)U is γ -Hölder (in the following, we will drop the
subscript in the norm) we have, for all i ∈ {0, . . . , n},∣∣∥dF i (ρ′)F∥−∥dF i (ρ)F∥

∣∣≤ Cd(F i (ρ ′), F i (ρ))γ ≤ Cε1θ
γ min(i,n−i). (3-28)

Using the chain rule and the submultiplicativity of ∥ · ∥, we have

∥dρ′Fn
∥ ≤

n∏
i=0

∥dF i (ρ′)F∥ ≤
n∏

i=0

∥dF i (ρ)F∥(1+Cε1θ
γ min(i,n−i)). (3-29)

Eventually, by (3-27) and the fact that
∏n

i=0(1+Cε1θ
γ min(i,n−i)) is convergent, (3-18) holds. □

As an immediate consequence of this lemma, we get:

2Here, we are not concerned by the orientation. It is simply a matter of direction.
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Corollary 3.14. There exist C > 0 and ε1 > 0 (depending only on (U, F)) such that, for all ρ, ρ ′ ∈ T
and n ∈ N:

(1) If d(F i (ρ), F i (ρ ′))≤ ε1 for all i ∈ {0, . . . , n} then

C−1 J u
n (ρ)≤ J u

n (ρ
′)≤ C J u

n (ρ). (3-30)

(2) If d(F−i (ρ), F−i (ρ ′))≤ ε1 for all i ∈ {0, . . . , n} then

C−1 J s
−n(ρ)≤ J s

−n(ρ
′)≤ C J s

−n(ρ). (3-31)

Proof. This is a consequence of the previous lemma and of the fact that, uniformly in ρ and n ∈ N,

∥dρFn
∥ ∼ J u

n (ρ),

∥dρF−n
∥ ∼ J s

−n(ρ). □

3D. Regularity of the invariant splitting. It is known for Anosov diffeomorphisms that stable and
unstable distributions are in fact C2−ε in dimension 2; see [Hurder and Katok 1990]. For our purpose, we
need to extend this result to our setting, where the hyperbolic invariant set T is not the full phase space,
but a fractal subset of it. In fact, we will show that one can extend the stable and unstable distributions
to an open neighborhood of T and that these extensions are C1,β for some β > 0. Actually, since what
happens outside a fixed neighborhood of T is irrelevant (one can always use cut-offs), we will prove the
following theorem which might be of independent interest.

Theorem 5. Let us denote by G1(U ) the Grassmannian bundle of 1-plane in T U. There exists β > 0 and
sections Eu, Es :U → G1(U ) such that:

• For every ρ ∈ T , Eu(ρ) (resp. Es(ρ)) is the unstable (resp. stable) distribution at ρ.

• Eu and Es have regularity C1,β .

Remark. Our proof relies on the techniques of [Hirsch and Pugh 1969]. In fact, in [Katok and Hasselblatt
1995, Chapter 19, Section 1.d] the authors show how one can obtain C1 regularity of the map ρ ∈ T 7→
Eu(ρ) and explain how to prove C1,β regularity. Their notion of differentiability on the set T (which
is clearly not open in our case) relies on the existence of linear approximations. Here, we choose to
show a slightly different version of this regularity by proving that ρ ∈ T 7→ Eu(ρ) can be obtained as the
restriction of a C1,β map defined in an open neighborhood of T .

3D1. Proof of the C1,β regularity.

Preliminaries. We recall that T is an invariant hyperbolic set for F. Hence, there exists a continuous
splitting of TT U into stable and unstable spaces ρ ∈ T 7→ Es(ρ), ρ ∈ T 7→ Eu(ρ). We use a continuous
Riemannian metric on TT U such that dρF is a contraction from Es(ρ)→ Es(F(ρ)) and expanding from
Eu(ρ)→ Eu(F(ρ)), and making Eu(ρ) and Es(ρ) orthogonal.
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Let ρ ∈ T 7→ eu(ρ) ∈ T U and ρ ∈ T 7→ es(ρ) ∈ T U be two continuous sections3 such that, for every
ρ ∈ T ,

• eu(ρ) spans Eu(ρ),

• es(ρ) spans Es(ρ),

• ∥eu(ρ)∥ = 1, ∥es(ρ)∥ = 1.

The matrix representation of dρF4 in these basis is

dρF =
(

J̃ u(ρ) 0
0 J̃ s(ρ)

)
,

with ν := supρ∈T max[(| J̃ u(ρ)|)−1, | J̃ s(ρ)|]< 1.
We can extend eu and es to U to continuous functions, still denoted by eu and es . Let us consider smooth

vector fields vu and vs on U approximating eu and es and a smooth Riemannian metric approximating the
one considered above. By slightly modifying this vector field, we can assume that, for this new metric,
(vu(ρ), vs(ρ)) is an orthonormal basis for all ρ ∈U. In these new basis, we now write

dρF =
(

a(ρ) b(ρ)
c(ρ) d(ρ)

)
.

We assume that vu and vs are sufficiently close to eu and es to ensure that, for some η > 0 small enough,

sup
ρ∈T

max(|b(ρ)|, |c(ρ)|)≤ η,

sup
ρ∈T
|d(ρ)| ≤ ν+ η ≤ 1− 4η,

inf
ρ∈T
|a(ρ)| ≥ ν−1

− η ≥ 1+ 4η.

We consider an open neighborhood � of T such that the following hold:

sup
ρ∈�

max(|b(ρ)|, |c(ρ)|)≤ 2η,

sup
ρ∈�

|d(ρ)| ≤ ν+ 2η ≤ 1− 3η,

inf
ρ∈�
|a(ρ)| ≥ ν−1

− 2η ≥ 1+ 3η.

Our method relies on different uses of the contraction map theorem. We state the fiber contraction
theorem of [Hirsch and Pugh 1969, Section 1], which will be used further. We recall that a fixed point x0

of a continuous map f : X→ X is said to be attractive if, for every x ∈ X , f n(x)→ x0.

3Note that there is no problem of orientation in constructing such global sections. Indeed, T is totally disconnected and hence,
one can cover T by a disjoint union of open sets small enough so that it is possible to construct local sections in each such sets.
Since these open sets are disjoint, these local sections allow us to build a global continuous section.

4The definition of J̃ u/s may differ from the one of J u/s
1 above since we don’t work a priori with the same metric.
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Theorem 6 (fiber contraction theorem). Let (X, d) be a metric space and h : X→ X be a map having an
attractive fixed point x0. Let us consider Y another metric space and a family of maps (gx : Y → Y )x∈X

and denote by H the map

H : (x, y) ∈ X × Y 7→ (h(x), gx(y)) ∈ X × Y.

Assume that:

• H is continuous.

• For all x ∈ X , lim supn→+∞ L(ghn(x))<1, where L(ghn(x)) denotes the best Lipschitz constant for ghn(x).

• y0 is an attractive fixed point for gx0 .

Then (x0, y0) is an attractive fixed point for H.

In the following, we study the regularity of the unstable distribution. The same holds for the stable
distribution by changing the roles of F−1 and F.

Eu is a fixed point of a contraction. By our assumption on vu and vs , there exists a continuous function
λ :U → R such that

Reu(ρ)= R(vu(ρ)+ λ(ρ)vs(ρ)).

Hence, we will represent the extension of the unstable distribution by a continuous map λ :�→ R. Our
aim is to show that we can find λ regular enough such that, for ρ ∈ T ,

Eu(ρ)= R(vu(ρ)+ λ(ρ)vs(ρ)).

To do so, we will start by constructing λ as a fixed point of a contraction in a nice space. This contraction
will be related to invariance properties of the unstable distribution.

First of all, if ρ ′ = F(ρ) ∈�∩ F(�), and if v = vu(ρ)+ λvs(ρ), then dρF maps v to

w = (a(ρ)+ λb(ρ))vu(ρ
′)+ (c(ρ)+ λd(ρ))vs(ρ

′).

Hence, the line of TρU represented by λ is sent to the line represented by t (ρ, λ) in Tρ′U, where

t (ρ, λ)=
λd(ρ)+ c(ρ)
a(ρ)+ λb(ρ)

. (3-32)

Set �1 =�∩ F(�) and let us consider a cut-off function χ ∈ C∞c (�1) such that 0≤ χ ≤ 1 and χ ≡ 1 in
a neighborhood of T . Let us introduce the complete metric space

X = {λ ∈ C(� : R) : ∥λ∥∞ ≤ 1}

and consider the map T : X→ X defined, for λ ∈ X and ρ ′ ∈�,

(Tλ)(ρ ′)= χ(ρ ′)t
(
F−1(ρ ′), λ(F−1(ρ ′))

)
. (3-33)

To see that this is well-defined, first note that F−1 is well-defined on suppχ and F−1(suppχ)⊂�. It
is clear that if λ ∈ X , then Tλ is continuous. To see that ∥Tλ∥∞ ≤ 1, it is enough to note that if ρ ∈�
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and |λ| ≤ 1,

|t (ρ, λ)| ≤
|d(ρ)| + |c(ρ)|
|a(ρ)| − |b(ρ)|

≤
1− 3η+ 2η
1+ 3η− 2η

≤
1− η
1+ η

< 1.

Let us now prove the following.

Proposition 3.15. • T is a contraction.

• If λu denotes its unique fixed point, then, for every ρ ∈ T , we have Eu(ρ)= R(vu(ρ)+λu(ρ)vs(ρ)).

Proof. Let λ,µ ∈ X . If ρ ′ ∈� \ suppχ , we have Tµ(ρ ′)= Tλ(ρ ′)= 0. Now assume that ρ ′ ∈ suppχ
and write ρ ′ = F(ρ) with ρ ∈�. Then

|Tλ(ρ ′)− Tµ(ρ ′)| = |χ(ρ ′)||t (ρ, λ(ρ))− t (ρ, µ(ρ))| ≤ |t (ρ, λ(ρ))− t (ρ, µ(ρ))|.

The map λ ∈ [−1, 1] 7→ t (ρ, λ) is smooth, so we can write

∥Tλ− Tµ∥∞ ≤ sup
ρ′∈suppχ

|Tλ(ρ ′)− Tµ(ρ ′)| ≤ sup
�×[−1,1]

|∂λt | × ∥λ−µ∥∞.

It is then enough to show that sup�×[−1,1] |∂λt |< 1. For (ρ, λ) ∈�×[−1, 1], we have

∂λt (ρ, λ)=
d(ρ)

a(ρ)+ λb(ρ)
− b(ρ)

λd(ρ)+ c(ρ)
(a(ρ)+ λb(ρ))2

. (3-34)

Hence, we can control

|∂λt (ρ, λ)| ≤
1− 3η
1+ η

+ η
1− η
(1+ η)2

= κη < 1

if η is small enough. This demonstrates that T is a contraction.
As a consequence, T has a unique fixed point, λu . We let v(ρ) = vu(ρ)+ λu(ρ)vs(ρ). We want to

show that v(ρ) ∈ Reu(ρ) for ρ ∈ T (recall that eu :U→ T U is continuous and that eu(ρ) spans Eu(ρ) if
ρ ∈ T ). Since χ = 1 on T , we see by the definition of T that, for every ρ ∈ T ,

dρF(v(ρ)) ∈ Rv(F(ρ)). (3-35)

If vu is sufficiently close to eu , we can find a continuous and bounded function µ such that

Rv(x)= R(eu(x)+µ(x)es(x)).

From (3-35), if ρ ′ = F(ρ) ∈ T ,

dρF(eu(ρ)+µ(ρ)es(ρ))= J̃ u
1 (ρ)

(
eu(ρ

′)+µ(ρ)
J̃ s

1 (ρ)

J̃ u
1 (ρ)

es(ρ
′)

)
∈ R(eu(ρ

′)+µ(ρ ′)es(ρ
′)).

This implies the equality

µ(ρ ′)= µ(ρ)
J̃ s

1 (ρ)

J̃ u
1 (ρ)

. (3-36)

This equality implies that µ= 0 on T , and hence v = eu on T , as expected. □
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Remark. As long as ρ ′ ∈ {χ = 1}, the vector field v(ρ ′)= vu(ρ
′)+λ(ρ ′)vs(ρ

′) is invariant by d F. When
ρ ′ ∈Wu(ρ)∩ {χ = 1} for some ρ ∈ T , we will see below that the direction given by v(ρ ′) coincides with
the tangent space to Wu(ρ), namely Tρ′Wu(ρ) = Rv(ρ ′). When ρ ′ ̸∈

⋃
ρ∈T Wu(ρ), there exists n ∈ N

such that F−n(ρ ′) ̸∈ suppχ . Hence, λu(ρ
′) is given by an explicit expression obtained by iterating the

fixed-point formula.

Differentiability of λu. We go on by showing that λ is C1 by adapting the method of [Hirsch and Pugh
1969]. We now introduce the Banach space Y of bounded continuous sections α :�→ T ∗�. We will
use the norm on T ∗� adapted to the metric on T�; namely, if α ∈ Y,

∥α∥Y = sup
ρ∈�

sup
v∈Tρ�,v ̸=0

|α(ρ)(v)|

∥v∥Tρ�
.

For λ ∈ X , let us introduce the map Gλ : Y → Y, defined as follows. For α ∈ Y and ρ ′ ∈�,

(Gλα)(ρ
′)= χ(ρ ′)[dρ t (ρ, λ(ρ))+ ∂λt (ρ, λ(ρ))α(ρ)] ◦ (dρF)−1

+ t (ρ, λ(ρ)) dρ′χ, (3-37)

with ρ = F−1(ρ ′), which is well-defined since ρ ∈� if ρ ′ ∈ supp(χ). Gλ is constructed to satisfy, for
λ ∈ X , if λ is C1, then the following relation holds:

Gλ(dλ)= d(Tλ). (3-38)

Let us first state the key tool to show the differentiability of λu .

Proposition 3.16. For every λ ∈ X , Gλ is a contraction with Lipschitz constant Lλ satisfying

sup
λ∈X

Lλ < 1.

Before proving it, let us show how it leads us to:

Proposition 3.17. We know λu is C1.

Proof. We use the contraction fiber theorem. Let αu be the unique fixed point of Gλu . The map

H : (λ, α) ∈ X × Y 7→ (Tλ,Gλα) ∈ X × Y

is continuous and the previous proposition shows that, for every λ∈ X , supn L(GT nλ)<1. The contraction
fiber theorem implies that (λu, αu) is an attractive fixed point for H.

Let λ ∈ X be C1. Hence, H n(λ, dλ)→ (λu, αu). But H n(λ, dλ)= (T nλ, αn), with

αn = GT n−1λ ◦ · · · ◦Gλdλ.

It is clear that if λ ∈ C1, so is Tλ and an iterative use of (3-38) implies that αn = d(T nλ). This shows
that λu is C1 and dλu = αu . □

Let us now prove Proposition 3.16.
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Proof. Let λ∈ X and fix α, β ∈Y. It is of course enough to control ∥Gλα(ρ
′)−Gλβ(ρ

′)∥ for ρ ′ ∈ supp(χ)
since both Gλα and Gλβ vanish outside. Let us fix ρ ′ = F(ρ) ∈ supp(χ).

Gλα(ρ
′)−Gλβ(ρ

′) is given by

χ(ρ ′)∂λt (ρ, λ(ρ))[α(ρ)−β(ρ)] ◦ (dρF)−1,

so it is enough to control ∂λt (ρ, λ(ρ))γ (ρ) ◦ (dρF)−1 for γ = α − β. With the precise expression of
∂λt (ρ, λ(ρ)) given by (3-34), we can estimate

|∂λt (ρ, λ(ρ))| =
|d(ρ)|

|a(ρ)+ λ(ρ)b(ρ)|
+ Oν(η)=

|d(ρ)|
|a(ρ)|

+ Oν(η).

(By the notation Oν(η), we mean that this term is bounded by Cη where C is a constant depending only
on ν and (F,U )).

Moreover, we have

∥(dρF)−1
∥ =max

(
1

a(ρ)
,

1
d(ρ)

)
+ Oν(η)=

1
d(ρ)

+ Oν(η).

Hence,

∥∂λt (ρ, λ(ρ))γ (ρ) ◦ (dρF)−1
∥ ≤

(
1

a(ρ)
+ Oν(η)

)
∥γ (ρ)∥ ≤ (ν+ Oν(η))∥γ ∥Y .

Hence, if η is small enough, the proposition is proved. □

Hölder regularity of αu. In fact, as explained at the end of [Katok and Hasselblatt 1995, Chapter 19,
Section 1.d], we can improve the C1 regularity.

To deal with Hölder regularity of sections α :�→ T ∗�, we will simply evaluate the distance between
α(ρ1) and α(ρ2) for ρ1, ρ2 ∈� using the natural identification T ∗�=�× (R2)∗, where we see α(ρ1) as
an element of (R2)∗. This allows us to write α(ρ1)−α(ρ2) and compute ∥α(ρ1)−α(ρ2)∥, where ∥ · ∥ is
a norm on (R2)∗. There exists C > 0 such that, for every α ∈ Y, supρ∈� ∥α(ρ)∥ ≤ C∥α∥Y .

Let us introduce µ a Lipschitz constant for F−1 on � and an exponent β > 0 such that

νµβ < 1. (3-39)

This condition is called a bunching condition in [Katok and Hasselblatt 1995, Chapter 19, Section1.d].
Such a β exists. We will then show the following, which finally concludes the proof of Theorem 5.

Proposition 3.18. αu is β-Hölder, that is to say, λu is C1,β .

Proof. Let us introduce

Y β := {α ∈ Y : α is β-Hölder}.

Let us consider some ε > 0 to be determined later and we equip Y β with the norm

∥α∥Y β = ∥α∥Y + ε∥α∥β, ∥α∥β = sup
ρ1 ̸=ρ2

∥α(ρ1)−α(ρ2)∥

d(ρ1, ρ2)β
.
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The map T : X → X defined by (3-33) actually maps X ∩C1(�,R) to X ∩C1(�,R). Moreover, our
previous results have proved that λu is an attractive fixed point for T in X∩C1(�,R), where X∩C1(�,R)

is now equipped with the C1 norm. For λ ∈ X and α ∈ Y, we can write

Gλα = γλ+ G̃λα,

where, for ρ ′ = F(ρ) ∈ suppχ ,

γλ(ρ
′)= χ(ρ ′)dρ t (ρ, λ(ρ))+ t (ρ, λ(ρ))dρ′χ,

G̃λα(ρ
′)= χ(ρ ′)∂λt (ρ, λ(ρ))α(ρ) ◦ (dρF)−1.

We state here some obvious facts on γλ and G̃λ:

• C1 := supλ∈X ∥γλ∥∞ <+∞.

• If λ ∈ X ∩C1(�,R), γλ is also C1.

• According to Proposition 3.16; G̃λ : Y → Y is a contraction with Lipschitz constant Lλ and
ν1 := supλ∈X Lλ < 1.

• If λ ∈ X ∩C1(�,R) and α is β-Hölder, then G̃λα is β-Hölder.

If M > C1/(1− ν1) and λ ∈ X ∩C1(�,R), then ∥dλ∥Y ≤ M implies ∥d(Tλ)∥Y ≤ M. Indeed, we have

∥d(Tλ)∥Y = ∥Gλ(dλ)∥Y = ∥γλ+ G̃λdλ∥Y ≤ C1+ ν1 M ≤ M.

Hence, we introduce the complete metric space

X ′ = {λ ∈ X ∩C1(�,R) : ∥dλ∥Y ≤ M}, (3-40)

T (X ′)⊂ X ′ and λu is an attractive fixed point for (X ′, T ).
We now wish to apply the fiber contraction theorem to

Hβ : (λ, α) ∈ X ′× Y β 7→ (Tλ,Gλα) ∈ X ′× Y β .

To do so, we need to show that, for every λ ∈ X ′, Gλ : Y β → Y β is a contraction and find a uniform
estimate for the Lipschitz constants.

Let’s consider α1, α2 ∈ Y β and set γ = α1−α2. We want to estimate the Y β norm of G̃λγ . We already
know that ∥G̃λγ ∥Y ≤ ν1∥γ ∥Y . Take ρ ′1, ρ

′

2 ∈� and let’s estimate ∥G̃λγ (ρ
′

1)− G̃λγ (ρ
′

2)∥. We distinguish
three cases:

• ρ ′1, ρ ′2 ̸∈ suppχ . There is nothing to write.

• ρ ′1 ∈ suppχ , ρ ′2 ̸∈�∩ F(�). In this case, d(ρ ′1, ρ
′

2)≥ δ > 0, where δ is the distance between suppχ
and (�∩ F(�))c. Hence,

∥G̃λγ (ρ
′

1)− G̃λ(ρ
′

2)∥

d(ρ ′1, ρ
′

2)
β

≤ δ−β∥G̃λγ (ρ
′

1)∥ ≤ δ
−βC∥G̃λγ ∥Y ≤ ν1δ

−βC∥γ ∥Y .
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• ρ ′1, ρ
′

2 ∈�∩ F(�). Let’s write ρ ′1 = F(ρ1), ρ ′2 = F(ρ2) and note that d(ρ1, ρ2)≤ µd(ρ ′1, ρ
′

2). Then

G̃λγ (ρ
′

1)− G̃λγ (ρ
′

2)= χ(ρ
′

1)∂λt (ρ1, λ(ρ1))[γ (ρ1)− γ (ρ2)] ◦ (dρ1 F)−1 (∗)

+ [χ(ρ ′1)∂λt (ρ1, λ(ρ1))−χ(ρ
′

2)∂λt (ρ2, λ(ρ2))]γ (ρ2) ◦ (dρ1 F)−1 (∗∗)

+χ(ρ ′2)∂λt (ρ2, λ(ρ2))γ (ρ2) ◦ [(dρ1 F)−1
− (dρ2 F)−1

]. (∗ ∗ ∗)

To handle the last two terms (∗∗) and (∗ ∗ ∗), we notice that ρ ′ ∈ � ∩ F(�) 7→ χ(ρ ′)∂λt (ρ, λ(ρ)) is
Lipschitz since λ is C1, with Lipschitz constant which can be chosen uniform for λ ∈ X ′. The same is
true for ρ 7→ dρF−1. Hence, there exists a uniform constant C > 0 such that

∥(∗∗)+ (∗ ∗ ∗)∥ ≤ Cd(ρ ′1, ρ
′

2)
β
∥γ ∥Y .

To deal with the first term (∗), we recall that by previous computations,

|χ(ρ ′)∂λt (ρ, λ(ρ))| · ∥(dρF)−1
∥ ≤ ν+ Oν(η).

As consequence, we have

∥(∗)∥ ≤ (ν+ Oν(η))∥γ ∥β d(ρ1, ρ2)
β
≤ (ν+ Oν(η))µ

β
∥γ ∥β d(ρ ′1, ρ

′

2)
β .

Henceforth, if η is small enough, so that ν2 := (ν+ Oν(η))µ
β < 1,

∥Hλγ ∥β ≤ ν2∥γ ∥β +C∥γ ∥Y .

Eventually,
∥G̃λγ ∥Y β ≤ ν1∥γ ∥Y + ε(ν2∥γ ∥β +C∥γ ∥Y )

≤ (ν1+ εC)∥γ ∥Y + ν2ε∥γ ∥β ≤ ν3∥γ ∥Y β ,

where ν3 =max(ν1+ εC, ν2) < 1 if ε is small enough.
The fiber contraction theorem applies and says that (λu, αu) is an attractive fixed point for Hβ . We

conclude as previously: Consider λ ∈ C1,β(�,R)∩ X ′ so that (λ, dλ) ∈ X ′ × Y β. Then H n
β (λ, dλ) =

(T nλ, dT nλ)→ (λu, αu) in X ′× Y β, which ensures that αu is β-Hölder. □

3D2. Regularity of the stable and unstable leaves. Once we’ve extended the unstable distribution to an
open neighborhood of T , we take advantage of the fact that these distributions are one-dimensional to
integrate the vector field defined by their unit vector.

We set Eu(ρ) = R(vu(ρ)+ λu(ρ)vs(ρ)). Recall that in a compact neighborhood of T , the relation
dρF(Eu(ρ)) = Eu(F(ρ)) is valid due to the definition of λu as the fixed point of T defined in (3-33).
T ∗U is equipped with a smooth Riemannian metric such that d F−1 is a contraction on Eu(ρ) for ρ ∈ T
and hence, in a compact neighborhood of T , this is also true. We can consider the vector field

ρ ∈U 7→ eu(ρ),

where eu(ρ) is a unit vector spanning Eu(ρ). By our previous result, this vector field is C1,β and if ρ lies in
a sufficiently small neighborhood of T , then dρ(F−1)(eu(ρ))= J̃ u(ρ)eu(F−1(ρ)), where | J̃ u(ρ)| ≤ ν < 1.
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We denote by ϕt
u(ρ) the flow generated by eu(ρ) and we will show that one can identify the unstable

manifolds and the flow lines of eu in a small neighborhood of T .

Proposition 3.19. There exists t0 such that, for every ρ ∈ T , we have {ϕt
u(ρ) : |t | ≤ t0} ⊂Wu(ρ).

Proof. Consider t0 sufficiently small that | J̃ u(ϕt
u(ρ))| ≤ ν < 1 for ρ ∈ T , t ∈ [−t0, t0]. For (t, ρ) ∈R×U,

set µ(t, ρ)=
∫ t

0 J̃ u(ϕs
u(ρ)) ds and we claim that for t0 small enough, if |t | ≤ t0,

F−1(ϕt
u(ρ))= ϕ

µ(t,ρ)
u (F−1(ρ)).

Indeed, in t = 0, both are equal to F−1(ρ) and a quick computation shows that both satisfy the ODE

d
dt

Y (t)= J u(ϕt
u(ρ))eu(Y (t)).

As a consequence, by induction, we see that one can write, for n ∈ N,

F−n(ϕt
u(ρ))= ϕ

µn(t,ρ)
u (F−n(ρ)),

where µn is defined by induction by µn+1(t, ρ)= µ(µn(t, ρ), F−n(ρ)). Hence, if |t | ≤ t0 and ρ ∈ T , we
see that µn(t, ρ) stays in [−t0, t0] and moreover |µn(t, ρ)| ≤ νn

|t |. We then see that if |t | ≤ t0 and ρ ∈ T ,

d
(
F−n(ϕt

u(ρ)), F−n(ρ)
)
= d

(
ϕµn(t,ρ)

u (F−n(ρ)), F−n(ρ)
)
≤ C |µn(t, ρ)| ≤ Cνn.

This shows that ϕt
u(ρ) belongs to the global unstable manifold at ρ, and hence, if t0 is small enough,

ϕt
u(ρ) belongs to the local manifold Wu(ρ) and t0 can be chosen uniformly with respect to ρ ∈ T . □

Since the regularity of the unstable distributions implies the same regularity for the flow ϕt
u (see

Lemma A.1 in the Appendix), we deduce that, up to reducing the size of the local unstable manifolds, these
local unstable manifolds Wu(ρ) depend C1,β on the base point ρ ∈ T . We’ll also use this proposition to
show the same regularity for holonomy maps. Suppose that ε0 is small enough. We know that if ρ1, ρ2 ∈ T
satisfy d(ρ1, ρ2)≤ ε0, then Wu(ρ2)∩Ws(ρ1) consists of exactly one point. Let’s denote it by H u

ρ1
(ρ2).

Finally, we define the holonomy map

H u
ρ1,ρ2
: ρ3 ∈Ws(ρ2)∩ T 7→ H u

ρ1
(ρ3) ∈Ws(ρ1)∩ T .

Lemma 3.20. If ε0 is small enough, for every ρ1 ∈ T , the map

H u
ρ1
: T ∩ B(ρ1, ε0)→Ws(ρ1)∩ T

is the restriction of a map H̃ u
ρ1
: B(ρ1, ε0)→Ws(ρ1) which is C1,β.

Proof. Let ρ1 ∈ T . As in the proof of Lemma 3.13, consider a smooth chart κ : U1 → V1 ⊂ R2,
ρ1 ∈U1, 0 ∈ V1 such that:

• κ(ρ1)= (0, 0).

• κ(Ws(ρ1)∩U1)= {(0, s) : s ∈ R} ∩ V1.

• κ(Wu(ρ1)∩U1)= {(u, 0) : u ∈ R} ∩ V1.

• dρ1κ(eu(ρ1))= (1, 0).
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Wu(ρ3)

Hρ1,ρ2(ρ3)

ρ3

ρ2

ρ1

Ws(ρ1)

Ws(ρ2)

Figure 6. The holonomy map.

We now work in this chart V1 and denote by 8t
= κ ◦ϕt

u ◦ κ
−1 the flow in this chart, well-defined for t

small enough. Consider the map
ψ(u, s)=8u(0, s);

ψ is C1,β and d0ψ = I2. By the inverse function theorem, ψ is a local diffeomorphism between
neighborhoods of 0:

ψ : V2→ V ′2.

Since d(u,s)(ψ−1)= (dψ−1(u,s)ψ)
−1, we know ψ−1 is C1,β . We now consider

κ0 = ψ
−1
◦ κ : κ−1(V2) :=U2→ V ′2

and observe that:

• κ0(Ws(ρ1)∩U2)= {(0, s), s ∈ R} ∩ V ′2.

• κ0 ◦ϕ
t
u ◦ κ

−1
0 (u, s))= (u+ t, s). In other words κ0 rectifies the unstable manifolds.

Armed with these facts, we define

H̃ u
ρ1
:U2→Ws(ρ1), H̃ u

ρ1
= κ−1

0 ◦πs ◦ κ0,

where πs(u, s) = (0, s). H̃ u
ρ1

is C1,β. We assume that B(0, ε0) ⊂ U1. Let us check that H̃ u
ρ1

extends
the holonomy map in B(ρ1, ε0) (if ε0 is small enough). Let ρ2 ∈ T ∩ B(ρ1, ε0) and let ρ ′2 = H̃ u

ρ1
(ρ2).

By the definition of H̃ u
ρ1

, ρ ′2 can be written ρ ′2 = ϕ
t
u(ρ1) and hence, if ε0 is small enough, ρ ′2 ∈Wu(ρ1).

Since, ρ ′2 ∈Ws(ρ2), we see that ρ ′2 = H u
ρ1
(ρ2). □

Note that by compactness, ε0 can be chosen uniformly in ρ1 ∈ T and the C1,β norms of H̃ u
ρ1

are
uniform. As a corollary, we get the following:

Corollary 3.21. Suppose that ε0 is small enough. Then, the holonomy maps, defined for ρ1, ρ2 ∈ T with
d(ρ1, ρ2)≤ ε0,

H u
ρ1,ρ2
:Ws(ρ2)∩ T →Ws(ρ1)∩ T

are the restrictions of C1,β
: H̃ u

ρ1,ρ2
:Ws(ρ1)→Ws(ρ2), with C1,β norms uniform in ρ1, ρ2. See Figure 6.
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3E. Adapted charts. We construct charts in which the unstable manifolds are close to horizontal lines.
These charts will be used at different places and their existence relies on the C1+β regularity of the
unstable distribution.

Weak version. We start with a weak version of these charts.

Lemma 3.22. Suppose that C > 0 is a fixed global constant and ε0 is chosen small enough. For every
ρ0 ∈ T , there exists a canonical transformation

κ0 :U ′ρ0
→ V ′ρ0

⊂ R2

satisfying (we denote by (y, η) the variable in R2):

(1) B(ρ0,Cε0)⊂U ′ρ0
.

(2) κ0(ρ0)= 0, dρ0κ0(Eu(ρ0))= R×{0}, dρ0κ0(Es(x))= {0}×R.

(3) The image of the unstable manifold Wu(ρ0)∩U ′ρ0
is exactly {(y, 0) : y ∈ R} ∩ V ′ρ0

.

Moreover, for every N , the C N norms of κ0 are bounded uniformly with respect to ρ0 ∈ T .

Remark. The difference with the charts used in the proof of Lemma 3.13 is that we require κ0 to be a
smooth canonical transformation.

Proof. Wu(ρ0) is a C∞ manifold; hence there exists a C∞ defining function η defined in a neighborhood ρ0;
namely, dρ0η ̸= 0 and Wu(ρ0)= {η= 0} locally near ρ0. Darboux’s theorem gives a function y defined in
a neighborhood of ρ0 such that (y, η) forms a system of symplectic coordinates. We can assume that
y(ρ0)= 0. If κ(ρ)= (y, η), the third point is satisfied by assumption on η and we need to ensure that
dρ0κ(Es(ρ0))= {0}×R by modifying η in a symplectic way.

Assume that dρ0κ(Es(ρ0))= Rt(a, 1). The symplectic matrix

A =
(

1 −a
0 1

)
maps the basis ( t(1, 0), t(a, 1)) to the canonical basis of R2 and we can set κ0 := A ◦ κ , which is the
required canonical transformation, defined in a small neighborhood U ′ρ0

of ρ0.
We can ensure that B(ρ0,Cε0)⊂U ′ρ0

for ε0 small enough and the uniformity of the C N norms of κ
thanks to the compactness of T and the fact that the unstable distribution depends continuously on
ρ0 ∈ T . □

Straightened version. We now straighten the unstable manifolds in a stronger version of the previous
charts. The construction and the use of these charts is similar to [Dyatlov et al. 2022, Lemma 2.3].

Lemma 3.23. Suppose that ε0 is chosen small enough. For every ρ0 ∈ T there exists a canonical
transformation

κ = κρ0 :Uρ0 ⊂U → Vρ0 ⊂ R2

satisfying (we denote by (y, η) the variable in R2):
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(1) B(ρ0, 2ε0)⊂Uρ0 .

(2) κ(ρ0)= 0, dρ0κ(Eu(ρ0))= R×{0}, dρ0κ(Es(ρ0))= {0}×R.

(3) The images of the unstable manifolds Wu(ρ), ρ ∈Uρ0 ∩ T , are described by

κ(Wu(ρ)∩Uρ0)= {(y, g(y, ζ(ρ))) : y ∈�}, (3-41)

where�⊂R is an open set, ζ :Uρ0→R is C1+β , g :�× I→R is C1+β (where I is a neighborhood
of ζ(Uρ0)) and they satisfy:

(a) ζ is constant on the unstable manifolds.
(b) ζ(ρ0)= 0, g(y, 0)= 0.
(c) g(0, ζ )= ζ .
(d) ∂ζ g(y, 0)= 1.

The derivatives of κρ0 and the C1+β norms of g, ζ are bounded uniformly in ρ0.

Remark. The most important condition, which will be used later on, is the last one: it makes the unstable
manifolds very close to horizontal lines. The model situation we expect is when the unstable distribution
is constant and horizontal.

Proof. Around a point ρ0 ∈ T , we work in the charts given by Lemma 3.22: κ0 :U ′ρ0
→ V ′ρ0

. We recall
that the unstable distribution is given by the restriction of a C1+β vector field eu . If U ′ρ0

is a sufficiently
small neighborhood of ρ0, we can write, for ρ ∈U ′ρ0

,

dρκ0(eu(ρ)) ∈ Rẽu(ρ), with ẽu(ρ)=
t(1, f0(ρ)), (3-42)

where f0 : U ′ρ0
→ R is a C1+β function which is nothing but the slope of the unstable direction in the

chart κ0. In the (y, η)-variable, we still write f0(ρ)= f0(y, η) and we observe that due to the assumption
on κ0, we have

f0(y, 0)= 0, (y, 0) ∈ V ′ρ0
.

We consider 8t(y, η), the flow generated by the vector field ẽu . Due to the form of ẽu , we can write

8t(y, η)= (y+ t, Z t(y, η)).

The reparametrization made in (3-42) does not change the flow lines of the vector field (κ0)∗eu . In
particular, by virtue of Proposition 3.19, they coincide locally with the unstable manifolds. More precisely,
if we set

g0(y, η) := Z y(0, η)

(see Figure 7) then, for (0, η)= κ0(ρ) ∈ κ0(T ∩Ws(ρ0)),

κ0(Wu(ρ))∩ {|y|< y0} = {(y, g0(y, η)) : |y|< y0}

for some y0 small enough (which can be chosen uniformly in ρ0). To define ζ , we go back up the flow:
Suppose that ρ ∈U ′ρ0

and write κ0(ρ)= (y, η) and assume |y|< y0. We set

ζ(ρ) := Z−y(y, η).

To say it differently, κ0(Wu(ρ) intersects the axis {y = 0} at (0, ζ(ρ)).
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κ0(Ws(ρ0))

ẽu(y, η) κ0(Wu(ρ1))

(y, η)= κ0(ρ1)ζ(ρ1)

ζ (y, g0(y, ζ ))

ρ0 κ0(Wu(ρ0))

Figure 7. The definitions of g0 and ζ use the flow generated by ẽu .

We know ζ and g0 are C1+β , their C1+β norms depend uniformly on ρ0 and they satisfy:

• By definition, ζ is constant on the flow lines, and hence, on the unstable manifolds Wu(ρ) if
ρ ∈ T ∩U ′ρ0

∩ {|y|< y0}.

• ζ(ρ0)= 0.

• Since f0(y, 0)= 0, we have Z y(0, 0)= 0 and hence g0(y, 0)= 0.

• Since Z0(0, η)= η, we have g0(0, η)= η.

However, at this stage, the last condition (∂ζ g0(y, 0)= 1) is not satisfied by g0 and we need to modify the
chart. To do so, we’ll make use of the following lemma, which is proved in Section A2 in the Appendix.

Lemma 3.24. The map y ∈ {|y|< y0} 7→ ∂η f0(y, 0) is smooth, with C N norms bounded uniformly in ρ0.

We first show that this lemma implies that y ∈ {|y|< y0} 7→ ∂ηg0(y, 0) is smooth. Indeed, due to the
C1+β regularity of Eu , (t, y, η) 7→ Z t(y, η) is C1 and satisfies

d
dt
∂ηZ t(y, η)= ∂η f0(y+ t, Z t(y, η)).

Setting (y, η)= (0, 0), we have
d
dt
∂ηZ t(0, 0)= ∂η f0(t, 0).

This exactly says that y 7→ ∂ηg0(y, 0) is C1 and has ∂η f0(y, 0) as derivative with respect to y and hence
y 7→ ∂ηg0(y, 0) is smooth, as required.

Due to the relation g0(0, η)= η, we have ∂ηg0(0, 0)= 1. As a consequence, if y0 is small enough, we
can assume that ∂ηg0(y, 0) > 0 for |y|< y0 and consider the smooth diffeomorphism defined in {|y|< y0}

ψ : y 7→
∫ y

0
∂ηg0(s, 0) ds.
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We then use the canonical transformation

9 : (y, η) 7→
(
ψ(y),

η

ψ ′(y)

)
.

We finally consider the chart κρ0 =9 ◦κ0 defined in Uρ0 =U ′ρ0
∩{|y|< y0} and if ε0 is small enough, we

can ensure that B(ρ0, 2ε0)⊂Uρ0 . In this chart, the graph of g0( · , ζ ) is sent to the graph of the function

g : y ∈� := ψ((−y0, y0)) 7→
g0(ψ

−1(y), ζ )
ψ ′(ψ−1(y))

.

We eventually check that:

• g(y, 0)= 0 since g0(y, 0)= 0.

• g(0, ζ )= ζ since ψ(0)= 0, ψ ′(0)= 1 and g(0, ζ )= ζ .

• ∂ηg(y, 0)= 1.

• The C1+β norm of g is bounded uniformly in ρ0.

• The C N norms of κρ0 are bounded uniformly in ρ0. □

4. Construction of a refined quantum partition

We start the proof of Theorem 1. We consider T = T (h) ∈ I0+(Y ×Y, F ′) a semiclassical Fourier integral
operator associated with F, microlocally unitary in a neighborhood of T , and a symbol α ∈ S0+(U ). We
want to show a bound for the spectral radius of M(h)= T (h)Oph(α), independent of h.

4A. Numerology. We’ll use the standard fact

∥Mn
∥L2→L2 ≤ ρ =⇒ ρspec(M)≤ ρ1/n.

The trivial lemma which follows reduces the theorem to the study of ∥Mn
∥ with n = n(h)∼ δ|log h|.

Lemma 4.1. Let δ > 0 and N (h) ∈N satisfy N (h)∼ δ|log h|. Suppose that there exists h0 > 0 and γ > 0
such that,

for all 0< h < h0, ∥M(h)N (h)
∥ ≤ hγ ∥α∥N (h)

∞
. (4-1)

Then, for every ε > 0, there exists hε such that, for h ≤ hε,

ρspec(M(h))≤ e−γ /δ+ε∥α∥∞.

Proof. It suffices to observe that under the assumption (4-1), we have ρspec(M(h))≤ eγ log h/N (h)
∥α∥∞

and use the equivalence for N (h). □

Remark. If we use the bound ∥M∥ ≤ ∥α∥∞ + O(h1/2−ε), one get the obvious bound ∥M N
∥ ≤

∥α∥N
∞
(1+ o(1)). Hence, (4-1) is a decay bound.

The proof of Theorem 1 is then reduced to the proof of the following proposition.

Proposition 4.2. There exists δ > 0, a family of integer N (h) ∼ δ|log(h)| and γ > 0 such that, for h
small enough, (4-1) holds.
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Actually, this proposition is enough to show Corollary 1 concerning perturbed operators, by virtue of:

Corollary 4.3. Suppose that R(h) : L2(Y )→ L2(Y ) is a family of bounded operators such that R(h)=
O(hη) for some η > 0. Then, there exists γ ′ = γ ′(γ, η) such that, for h small enough,

∥(M(h)+ R(h))N (h)
∥ ≤ hγ

′

∥α∥N (h)
∞

.

Proof. We write

(M + R)N
= M N

+

∑
ε∈{0,1}N
ε ̸=(1,...,1)

(ε1 M + (1− ε1)R) · · · (εN M + (1− εN )R).

Using this, we can estimate

∥(M + R)N
∥ ≤ hγ ∥α∥N

∞
+ ((∥M∥+∥R∥)N

−∥M∥N )

≤ hγ ∥α∥N
∞
+ N∥R∥(∥M∥+∥R∥)N−1

≤ hγ ∥α∥N
∞
+C |log h|hη∥α∥N−1

∞
(1+ O(hη))

= O((hγ + hη−)∥α∥N
∞
).

This gives the desired bound for any γ ′ <min(γ, η). □

Actually, the precise value of N (h) we’ll use is rather explicit and we now describe it. We set

b=
1

1+β
, (4-2)

where β is the one appearing in Theorem 5 concerning the regularity of the unstable distribution. We
now choose δ0 ∈

(
0, 1

2

)
such that

b+ δ0 < 1. (4-3)

For instance, let us set

δ0 =
1− b

2
=

β

2(1+β)
.

Recalling the definitions of the exponent λ0 ≤ λ1 in (3-10) and (3-11), we introduce the notation

N (h)= N0(h)+ N1(h), N0(h)=
⌈
δ0

λ1
|log(h)|

⌉
, N1(h)=

⌈
1
λ0
|log(h)|

⌉
, (4-4)

where N0(h) (resp. N1(h)) corresponds to a short (resp. long) logarithmic time. We will omit the
dependence on h in the following.

To be complete with the numerology, we introduce another number τ < 1 such that

b< τ < 1 and δ0
λ0

λ1
+ τ > 1. (4-5)

The meaning of these conditions will be clear in the core of the proof and we will indicate where they are
used. For instance, we set

τ = 1−
λ0

λ1

1− b

4
. (4-6)
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An important remark. If two operators M1(h) and M2(h) are equal modulo O(h∞), this is also the case
for M1(h)N (h) and M2(h)N (h) as long as

• N (h)= O(log h).

• M1(h),M2(h)= O(h−K ) for some K .

This will be widely used in the following. In particular, recall that we work with operators acting on
L2(Y ) but these operators take the form M1(h)=9Y M2(h)9Y , where 9Y ∈ C∞c (Y, [0, 1]) and M2(h)
is a bounded operator on

⊕J
j=1 L2(R) such that M2(h)=9Y M2(h)9Y + O(h∞)L2 . As a consequence,

modulo O(h∞), it is enough to focus on M2(h)N (h). For this reason, from now on and even if we keep
the same notation, we work with

M(h)= T (h)Oph(α) :

J⊕
j=1

L2(R)→

J⊕
j=1

L2(R),

where T (h)= (Ti j (h)), with Ti j ∈ I0+(R×R, F ′i j ) and

Oph(α)= Diag(Oph(α1), . . . ,Oph(αJ )).

4B. Microlocal partition of unity and notations. We consider some ε0 > 0, which is supposed small
enough to satisfy all the assumptions which will appear in the following.

We consider a cover of T by a finite number of balls of radius ε0,

T ⊂
Q⋃

q=1

B(ρq , ε0), ρq ∈ T ,

and we assume that for all q ∈ {1, . . . , Q}, there exist jq , lq ,mq ∈ {1, . . . , J } such that

B(ρq , 2ε0)⊂ Ã jq lq ∩ D̃mq jq ⊂Ujq .

We also assume that T is microlocally unitary in B(ρq , 4ε0). We then let

Vq = B(ρq , 2ε0). (4-7)

See Figure 8.

Remark. In the case of obstacle scattering, with obstacles satisfying the noneclipse condition, it is possible
to choose a simple partition of unity, related to the coding of the trapped set according to the sequence
of obstacles hit by a trajectory. Indeed, due to a result of [Morita 1991], there is a homeomorphism
between the trapped set and the admissible — that is, two consecutive obstacles are different — sequences
of obstacles. As a consequence, if the obstacles are numbered from 1 to J, we can partition the trapped
set by open subsets Uα⃗ indexed by

{α⃗ = (α−N , . . . , αN ) ∈ {1, . . . , J }2N+1
: αi+1 ̸= αi }.

The diameter of such partition goes to 0 as N goes to +∞ and we could get the required partition (Vq)q ,
with the additional property of being disjoint open subsets of U. This would simplify the study in this
particular setting.
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U ′
U

D

A
V1

Figure 8. The partition (Vq)q∈A∞ is made by small neighborhoods of T (small purple
disks) and a big open set included in U ′.

We complete this cover with

V∞ =U ′ \
Q⋃

q=1

B(ρq , ε0). (4-8)

U ′ ⋐ U is an open set such that WFh(M)⋐ U ′×U ′. We denote by U ′j the component of U ′ inside Uj .
We let A= {1, . . . , Q} and A∞ =A∪ {∞}.
We then consider a partition of unity associated with the cover V1, . . . ,VQ,V∞, namely a family of

smooth functions χq ∈ C∞c (U ) for q ∈A∞ such that:

• suppχq ⊂ Vq .

• 0≤ χq ≤ 1.

• 1=
∑

q∈A∞ χq in
⋃

q∈A∞ Vq .

More precisely, if q ∈ A, χq ∈ C∞(Ujq ) and, for every j ∈ {1, . . . , J }, there exists bj ∈ C∞c (Uj ) such
that on U ′j , then 1= bj +

∑
q∈A, jq= j χq . Thus, χ∞ =

∑J
j=1 bj .

We can then quantize these symbols so as to get a pseudodifferential partition of unity. More precisely,
to respect the matrix structure, we may write this quantization in a diagonal operator-valued matrix, still
denoted by Oph :

• For q ∈A, Aq = Oph(χq) is the diagonal matrix Diag(0, . . . ,Oph(χq), 0, . . . , 0), where the block
Oph(χq) is in the jq -th position.

• Oph(χ∞)= Diag(Oph(b1), . . . ,Oph(bJ )).

The family (Aq)q∈A∞ satisfies the properties∑
q∈A∞

Aq = Id microlocally in U ′ for all q ∈A∞, ∥Aq∥ ≤ 1+ O(h1/2). (4-9)
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Since M =
∑

q∈A∞ M Aq + O(h∞), we may write

Mn
=

∑
q∈An

∞

Uq + O(h∞),

where, for q = q0 · · · qn−1 ∈An
∞

,

Uq := M Aqn−1 · · ·M Aq0 . (4-10)

For q = q0 · · · qn−1 ∈ An
∞

, we also define a family of refined neighborhoods, forming a refined cover
of T ,

V−q =
n−1⋂
i=0

F−i (Vqi ), V+q = Fn(V−q )=
n−1⋂
i=0

Fn−i (Vqi ). (4-11)

This definition implies that a point ρ ∈ V−q lies in Vqi at time i (i.e., F i (ρ) ∈ Vqi ) for 0≤ i ≤ n− 1 and a
point ρ ∈ V+q lies in Vqn−i at time −i for 1≤ i ≤ n. Roughly speaking, we expect that each operator Uq

acts from V−q to V+q and is negligible (in some sense to be specified later on) elsewhere. Combining (4-9)
and the bound on M, the following bound is valid (for any ε > 0):

∥Uq∥L2→L2 ≤ (∥α∥∞+ O(h1/2−ε))n. (4-12)

As soon as |n| ≤ C0|log h|, we have ∥Uq∥L2→L2 ≤ C∥α∥n
∞

for some C depending on C0 and a finite
number of seminorms of α.

Reduction to words in A . We can find a uniform T0∈N such that if ρ∈V∞, there exists k∈{−T0, . . . , T0}

such that Fk(ρ) “falls” in the hole. By standard properties of the Fourier integral operators, each component
(MT0)i j of MT0 is a Fourier integral operator associated with the component (FT0)i j of FT0. In particular,
WF′h(M

T0)⊂ Gr′(FT0).
Let us study M2T0+N (h). If q = q0 · · · qN−1 ∈AN

∞
and if there exists an index i ∈ {0, . . . , N − 1} such

that qi =∞, one can isolate this index i and trap Aqi between two Fourier integral operators M1,M2,
belonging to a finite family of FIO associated with FT0, so that we can write

MT0Uq MT0 = B1 M1 A∞M2 B2,

where B1, B2 satisfy the L2-bound

∥B1∥×∥B2∥ ≤ (∥α∥∞+ O(h1/4))N−1
= O(h−K )

for some integer K . Since

WF′h(M1 A∞M2)⊂ {(FT0(ρ), F−T0(ρ)) : ρ ∈WFh(A∞)} =∅,

we have M1 A∞M2 = O(h∞), with constants that can be chosen independent of q. Hence, the same is
true for MT0Uq MT0 . |AN

| is bounded by a negative power of h. So, we can write

M N+2T0 =

∑
q∈AN

∞

MT0Uq MT0 =

∑
q∈AN

MT0Uq MT0 + O(h∞)= MT0

( ∑
q∈AN

Uq

)
MT0 + O(h∞).
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We can then replace M by

M=
∑
q∈A

M Aq = M(Id−A∞)+ O(h∞)L2→L2 . (4-13)

The decay bound
∥M(h)N (h)

∥ ≤ hγ ∥α∥N (h)
∞

(4-14)

will imply the required decay bound (4-1) for M with N (h) replaced by N (h)+ 2T0. We are hence
reduced to proving the decay bound (4-14).

4C. Local Jacobian.

A first definition. Following [Dyatlov et al. 2022], we introduce local unstable and stable Jacobians and
we then state several properties. For n ∈N∗ and q ∈An, let us define its local stable and unstable Jacobian:

J−q := inf
ρ∈T ∩V−q

J u
n (ρ), J+q := inf

ρ∈T ∩V+q
J s
−n(ρ). (4-15)

By the chain rule, we have, for ρ ∈ T ∩V−q ,

J u
n (ρ)=

n−1∏
i=0

J u
1 (F

i (ρ)).

A similar formula is true for ρ ∈ T ∩V+q :

J s
−n(ρ)=

n−1∏
i=0

(J s
1 (F

i−n(ρ)))−1
=

n−1∏
i=0

J s
−1(F

−i (ρ)).

Hence, we’ve got the basic estimates

T ∩V−q ̸=∅ =⇒ eλ0n
≤ J−q ≤ eλ1n, (4-16)

T ∩V+q ̸=∅ =⇒ eλ0n
≤ J+q ≤ eλ1n. (4-17)

If q = q0 · · · qn−1 and q− = q0 · · · qn−2, then V−q ⊂ V−q− and thus

J−q ≥ eλ0 J−q− . (4-18)

Similarly, if q+ = q1 · · · qn−1, then V+q ⊂ V+q+ and

J+q ≥ eλ0 J+q+ . (4-19)

As a consequence of Corollary 3.14, if ε0 is small enough, the local stable and unstable Jacobians give
the expansion rate of the flow at every point of T ∩V±q . If T ∩V±q ̸=∅,

for all ρ ∈ T ∩V−q , J u
n (ρ)∼ J−q , (4-20)

for all ρ ∈ T ∩V+q , J s
−n(ρ)∼ J+q . (4-21)

This definition is slightly unsatisfactory since J±q = +∞ as soon as V±q ∩ T = ∅. However, when
V±q ̸= ∅, this set can still stay relevant. For this purpose, we will give a definition of local stable
and unstable Jacobian for such words with help of the shadowing lemma [Katok and Hasselblatt 1995,
Section 18.1].
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Enlarged definition. Let n ∈ N and q = q0 · · · qn−1 ∈An . We focus on V−q , with the case of V+q handled
similarly by considering F−1 instead of F.

If V−q ∩ T ̸= ∅, we keep the definition given in (4-15). Assume now that V−q ̸= ∅ but V−q ∩ T = ∅.
Fix ρ ∈ V−q . By definition of Vqi , for i ∈ {0, . . . , n− 1}, we have d(ρi , F i (ρ))≤ 2ε0. Hence,

d(F(ρi ), ρi+1)≤ d(F(ρi ), F i+1(ρ))+ d(F i+1(ρ), ρi+1)≤ Cε0

for a constant C only depending on F. That is to say, (ρ0, . . . , ρn−1) is a Cε0 pseudo-orbit. Assume
that δ0 > 0 is a small fixed parameter. By virtue of the shadowing lemma, if ε0 is sufficiently small and
(ρ0, . . . , ρn−1) is δ0 shadowed by an orbit of F, then there exists ρ ′ ∈ T such that, for i ∈ {0, . . . , n− 1},
d(ρi , F(ρ ′)) ≤ δ0. Consequently, d(F i (ρ), F i (ρ ′)) ≤ δ0 + Cε0. If ρ2 is another point in V−q , for
i = 0, . . . , n − 1, d(F i (ρ2), F i (ρ ′)) ≤ 2ε0 +Cε0 + δ0. For convenience, set ε2 = 2ε0 + δ0 +Cε0 and
note that ε2 can be arbitrarily small depending on ε0. As a consequence, we have proven the following:

Lemma 4.4. If V−q ̸= ∅, then there exists ρ ′ ∈ T such that, for all i ∈ {0, . . . , n − 1} and ρ ∈ V−q ,
d(F i (ρ), F i (ρ ′))≤ ε2.

Fix any ρ ′ satisfying the conclusions of this lemma and we arbitrarily set

J−q = J u
n (ρ
′). (4-22)

If ρ ′1 is another point satisfying this conclusion, we have d(F i (ρ ′), F i (ρ ′1))≤ 2ε2 for i ∈ {0, . . . , n− 1}
and by virtue of Corollary 3.14,

J u
n (ρ
′)∼ J u

n (ρ
′

1).

Hence, up to global multiplicative constants, the definition of this unstable Jacobian is independent of the
choice of ρ ′. Notice that if V−q ∩ T ̸= ∅, any ρ ′ ∈ T ∩ V−q satisfies the conclusions of Lemma 4.4 and
J−q ∼ J u

n (ρ
′).

To define J+q , we can argue similarly and show that there exists ρ ′ satisfying d(F i (ρ ′), F i (ρ))≤ ε2 for
i ∈ {−n, . . . ,−1} and ρ ∈ V+q . We can assume that this is the same ε2 as before and we set J+q = J s

−n(ρ
′)

for any ρ ′.

Behavior of the local Jacobian. See Figure 9. The following three lemmas are crucial to understand the
behavior of the evolution of points in the sets V±q . The first one gives estimates to handle these quantities.

Lemma 4.5. Let n ∈ N and q, p in An . If ε0 is chosen small enough, then the following hold:

(1) V+q ̸=∅⇐⇒ V−q ̸=∅ and in that case J−q ∼ J+q .

(2) If two propagated neighborhoods intersect, the local Jacobians are comparable:

V±q ∩V
±

p ̸=∅ =⇒ J±q ∼ J±p . (4-23)

(3) If q can be written as the concatenation of q1 and q2 of lengths n1 and n2 such that n1+ n2 = n and
if V±q ̸=∅, then

J±q ∼ J±q1
J±q2
. (4-24)
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Ws(ρ
′)

V−q

ε2

ρ ′

ρ0

Wu(ρ
′)

δ0

Ws(Fn−1(ρ ′))

ε2
Fn−1(V−q )

ρn−1

Fn−1(ρ ′)

δ0

Wu(Fn−1(ρ ′))

Figure 9. Evolution of the set V−q (the red hatched set) at time 0 and n−1. The points ρi ,
F i (ρ ′) are represented at these times, so as the balls B(F i (ρ ′), ε2) and B(F i (ρ ′), δ0)

(their boundaries are the blue dotted lines). We’ve also represented the stable (resp.
unstable) manifold at F i (ρ ′) to show the directions in which F contracts (resp. expands).

Notation. The constants in∼ are independent of ρ and n. They depend on F but also on the partition (Vq)q .
In the following, we’ll be lead to use constants with the same kind of dependence. These constants will
be allowed to depend also on the partition of unity (χq)q and on M. Constants with such dependence will
be called global constants.

Proof. (1) The equivalence is obvious. From the fact that F is a volume-preserving canonical transforma-
tion, we have, for some C > 0,

for all ρ ∈ T , for all n ∈ N, C−1
≤ J u

n (ρ)J
s
n (ρ)≤ C,

and we write J u
n (ρ)∼ J s

n (ρ)
−1. From F−n

◦ Fn(ρ)= ρ, we also get J s
n (ρ)

−1
= J s
−n(F

n(ρ)). Eventually,
if ρ ′ ∈ T satisfies d(F i (ρ), F i (ρ ′) ≤ ε2 for i ∈ {0, . . . , n − 1} and ρ ∈ V−q , Fn(ρ ′) = ρ+ satisfies
d(F i (ρ), F i (ρ+))≤ ε2 for i ∈ {−n, . . . ,−1} and ρ ∈ V+q . Hence

J+q ∼ J s
−n(ρ

+)∼ J u
n (ρ
′)∼ J−q .

Thanks to this first point, it is enough to show the remaining point only for −.

(2) Pick ρq ∈ T (resp. ρ p) satisfying the conclusions of Lemma 4.4 for V−q (resp. V−p ). We have
d(F i (ρq), F i (ρ p))≤ 2ε2 and hence, by virtue of Corollary 3.14, J u

n (ρq)∼ J u
n (ρ p). This gives (2).

(3) Pick ρ ∈ T satisfying the conclusions of Lemma 4.4 for V−q . By the chain rule, we have J u
n (ρ) =

J u
n2
(Fn1(ρ))J u

n1
(ρ). Note that

V−q = V−q1
∩ F−n1(V−q2

).

Hence, ρ satisfies the conclusions of Lemma 4.4 for q1 with ε2 and the same is true for Fn1(ρ) and q2. It
follows that J−q1

∼ J u
n1
(ρ) and J−q2

∼ J u
n2
(Fn1(ρ)). This gives (3). □
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Remark. The first point of the previous lemma shows that we could consider only one of the two
quantities. Nevertheless, we prefer keeping track of it. The reason is that a priori J+ and J− support
two different kind of information: J+q controls the growth of Fn, whereas J−q controls the growth of F−n.
The fact that the two dynamics (in the past and in the future) have similar behaviors is a consequence of
the fact that F is volume-preserving.

The next lemmas relate the local Jacobian to the expansion rates of the flow in the V±q . It will be
important in our semiclassical study of operators microlocally supported in V±q .

Lemma 4.6 (control of expansion rate by unstable Jacobian). If ε0 is small enough, there exists a global
constant C > 0 satisfying the following inequalities:

For every n ∈ N∗ and q ∈An such that V−q ̸=∅ we have

sup
ρ∈V−q
∥dρFn

∥ ≤ C J−q , (4-25)

sup
ρ∈V+q
∥dρF−n

∥ ≤ C J+q . (4-26)

Proof. This is a consequence of (3-18). Indeed, if V−q ̸= ∅ and if ρ ′ ∈ T satisfies the conclusions of
Lemma 4.4, then for every ρ ∈ V−q , ∥dρFn

∥≤C J u
n (ρ) with C a global constant depending only on ε2. □

This third lemma emphasizes that V−q lies in a small neighborhood of a stable manifold and V+q lies in
a small neighborhood of an unstable manifold, with the size of this neighborhood controlled by the local
Jacobian. It is a direct consequence of Lemma 3.13.

Lemma 4.7 (localization of the V±q ). There exists a global constant C > 0 such that for all n ∈ N

and q ∈An:

(1) If V−q ̸=∅ and ρ ′ ∈ T satisfies the conclusion of Lemma 4.4, then, for all ρ ∈ V−q ,

d(ρ,Ws(ρ
′))≤

C
J−q
. (4-27)

(2) If V+q ̸=∅ and ρ ′∈T satisfies the conclusion of Lemma 4.4 in the future (namely, d(F i (ρ),F i (ρ ′))≤ε2

for all ρ ∈ V+q and i ∈ {−n, . . . ,−1}), then, for all ρ ∈ V+q ,

d(ρ,Wu(ρ
′))≤

C
J+q
. (4-28)

4D. Propagation up to local Ehrenfest time. In this section, we show that under some control of the
local Jacobian defined above, one can handle the operators Uq and prove the existence of symbols a±q (in
exotic classes Sδ) such that

Uq = Oph(a
+

q )T
|q|
+ O(h∞), (4-29)

Uq = T |q|Oph(a
−

q )+ O(h∞), (4-30)

with symbols a±q supported in V±q . We recall that Uq = M Aqn−1 · · ·M Aq0 , with M = T Oph(α). Let us
state the precise statement we will prove.
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Proposition 4.8. Fix 0< δ < δ1 <
1
2 and C0 > 0.

(1) For every n ∈ N and for all q ∈An satisfying

J+q ≤ C0h−δ, (4-31)

there exists a+q ∈ ∥α∥
n
∞

Scomp
δ1

such that

Uq = Oph(a
+

q )T
n
+ O(h∞)L2→L2, (4-32)

supp a+q ⊂ V+q . (4-33)

(2) For every n ∈ N and for all q ∈An satisfying

J−q ≤ C0h−δ, (4-34)

there exists a−q ∈ ∥α∥
n
∞

Scomp
δ1

such that

Uq = T n Oph(a
−

q )+ O(h∞)L2→L2, (4-35)

supp a−q ⊂ V−q . (4-36)

Remark. • The implied constants appearing in the O(h∞) are quasiglobal; they have the same dependence
as global constants but depend also on C0, δ, δ1. What is important is that they are independent of n
and q as soon as the assumption (4-31) is satisfied.

• (4-31) implies that V+q ̸= ∅. In particular, if q satisfies this assumption, there exists a sequence
(i0, . . . , in) such that, for all p ∈ {0, . . . , n− 1}, Vqp ⊂ D̃i p+1,i p ⊂Ui p .

• In fact, supp a+q ⊂ F(Vqn−1)⊂Uin . Hence, the operator Oph(a
+
q ) acting on

⊕J
i=1 L2(R) is the diagonal

matrix Diag(0, . . . ,Oph(a
+
q ), . . . , 0).

• The symbol a+q has an asymptotic expansion in power of h. The principal symbol is given by

(a+q )0 =
n∏

p=1

aqn−p ◦ F−p, (4-37)

where aq = χq ×α. Note that if the functions aqn−p ◦ F−p are not necessarily well-defined, the product
is well-defined thanks to the assumptions on the supports of χq , namely suppχq ⋐ Vq . Indeed, such a
symbol can be constructed inductively as the n-th term bn of the sequence of functions b1 = aq0 ◦ F−1

and bi+1 is obtained from ai by
bi+1 = (aqi × ai ) ◦ F−1.

If we assume that supp bi ⋐ V+q0···qi−1
, then supp(aqi × bi ) ⋐ F−1(V+q0···qi

). This property allows us to
define bi+1 and supp bi+1 ⋐ V+q0···qi

.

• The same holds for a−q with principal symbol

(a−q )0 =
n−1∏
p=0

aqp ◦ F p. (4-38)

• Our proof follows the sketch of proof of [Dyatlov et al. 2022, Section 5] and [Rivière 2010, Section 7].
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In the end of this section, we focus on proving this proposition. We only prove the first point. The
second point can be proved similarly by using the same techniques.

4D1. Iterative construction of the symbols. Let us start by a lemma combining the precise versions of
the expansion of the Moyal product (Lemma 3.3) and of Egorov theorem (Proposition 3.8). This lemma
is the key ingredient for the iterative formulas below.

Lemma 4.9. Let q ∈ A and let a ∈ Scomp
δ1

such that supp a ⋐ Uj for some j ∈ {1, . . . , J }. Then, there
exists a family of differential operators Lk,q of order 2k, with smooth coefficients compactly supported
in Vq , such that, for every N ∈ N, we have the expansion

M Aq Oph(a)= Oph

( N−1∑
k=0

hk(Lk,qa) ◦ F−1
)

T + O(∥a∥C2N+15hN )L2→L2 . (4-39)

Moreover, one has L0,q = χq ×α := aq .

Remark. • Again, since supp a ⊂Uj , Oph(a) is a diagonal matrix with only one nonzero block equal
to Oph(a).

• Recall that we’ve supposed that Vq ⊂ D̃mq jq . As a consequence, the symbols

a(k)1 := Lk,qa ◦ F−1

are equal to Lk,qa ◦ (Fmq jq )
−1 and are supported in Umq ; Oph(a

(k)
1 ) is still a diagonal matrix.

Proof. Let us first work at the order of operators L2(R)→ L2(R) and let us study

Mmq jq Oph(χq)Oph(a)= Tmq jq Oph(αjq )Oph(χq)Oph(a).

Using Lemma 3.3, we write

Oph(χq)Oph(a)= Oph

( N−1∑
k=0

ikhk

k!
A(D)k(χq ⊗ a)|ρ=ρ1=ρ2

)
+ O(hN

∥χq ⊗ a∥C2N+13),

the principal term of the expansion being χqa. Set aq,k(ρ)= A(D)k(χq⊗a)|ρ=ρ1=ρ2 and use Lemma 3.3
to write

Oph(αjq )Oph(χq)Oph(a)=
∑

k1+k2<N

ik1+k2hk1+k2

k1! k2!
Oph(A(D)

k2(αjq ⊗ aq,k1)|ρ=ρ1=ρ2)+ O(hN
∥a∥C2N+13).

The principal term in the expansion is αjqχqa. We note that

a 7→
∑

k1+k2=k

A(D)k2(αjq ⊗ aq,k1)|ρ=ρ1=ρ2

is a differential operator of order 2k. Using the precise version of Egorov theorem in Lemma 3.10, we
see that, for any b with supp(b)⊂ Vq ,

Tmq jq Oph(b)= Oph

(
b ◦ (Fmq jq )

−1
+

N−1∑
k=1

hk(Dkb) ◦ (Fmq jq )
−1

)
+ O(hN

∥b∥C2N+15),
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where Dk are differential of order 2k compactly supported in Vq . Applying this to the previous expansion,
we see that we can write

Tmq jq Oph(αjq )Oph(χq)Oph(a)= Oph

(
(αjqχqa) ◦ F−1

+

N−1∑
k=1

kk(Lk,qa) ◦ F−1
)
+ O(hN

∥a∥C2N+15).

We now come to the entire matrix operator. Note that the matrix M Oph(χq)Oph(a) is of the form0 · · · M1 jq Oph(χq) · · · 0
...

...
...

...
...

0 · · · MJ jq Oph(χq) · · · 0

 Oph(a).

Recall that WFh(Oph(χq))⊂ D̃mq jq and WF′h(Mmq jq )⊂Gr′(Fmq jq ). Hence, for m ̸=mq , Mmjq Oph(χq)=

O(h∞) and the previous matrix can be written
0 · · · O(h∞) · · · 0
...
...

...
...
...

0 · · · Mmq jq Oph(χq) · · · 0
...
...

...
...
...

0 · · · O(h∞) · · · 0

Oph(a)=


0 · · · 0 · · · 0
...
...

...
...
...

0 · · · Mmq jq Oph(χq)Oph(a) · · · 0
...
...

...
...
...

0 · · · 0 · · · 0

+O(h∞)∥Oph(a)∥L2 .

With constant in O(h∞) depending on χq ,M and ∥Oph(a)∥L2→L2 = O(∥a∥C8). Let’s write

a(k)1 = Lk,qa ◦ F−1

and observe that supp(a(k)1 )⊂ F(suppχq)⋐ Ãmq jq . Consider a cut-off function χ̃q such that χ̃q ≡ 1 in a
neighborhood of F(suppχq) and supp χ̃q ⊂ Ãmq jq . Using Lemma 3.3 and the support properties of χ̃q ,
one has

Oph(a
(k)
1 )= Oph(a

(k)
1 )Oph(χ̃q)+ O(hN−k

∥a(k)1 ∥C2(N−k)+13)= Oph(a
(k)
1 )Oph(χ̃q)+ O(hN−k

∥a∥C2N+13).

Then, one can write Oph(a
(k)
1 )T on the form

0 · · · 0
...

...
...

Oph(a
(k)
1 )Oph(χ̃q)Tmq 1 · · · Oph(a

(k)
1 )Oph(χ̃q)Tmq J

...
...

...

0 · · · 0

+ O(hN−k
∥a∥C2N+13)

and, for j ̸= jq , Oph(χ̃q)Tmq j = O(h∞). We can conclude that

Oph(a
(k)
1 )T =


0 · · · · · · · · · 0
... · · · · · · · · ·

...

0 · · · Oph(a
(k)
1 )Oph(χ̃q)Tmq jq · · · 0

... · · · · · · · · ·
...

0 · · · · · · · · · 0

+O(h∞)∥Oph(a
(k)
1 )∥L2→L2+O(hN−k

∥a∥C2N+13)
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=


0 · · · · · · · · · 0
... · · · · · · · · ·

...

0 · · · Oph(a
(k)
1 )Tmq jq · · · 0

... · · · · · · · · ·
...

0 · · · · · · · · · 0

+O(hN−k
∥a∥C2N+13).

Combining this with the version obtained with Mmq jq , we get (4-39). □

Let us now start the iterative construction of the symbols. Fix N ∈ N which can be taken arbitrarily
large. Recall that we want to write

Uq = Oph(a
+

q )T
|q|
+ O(h∞)L2→L2 . (4-40)

Note Ur =Uq0···qr−1 . We want to write

Ur = Oph

(N−1∑
k=0

hka(k)r

)
T r
+ R(N )r . (4-41)

We start by writing

U1 = Oph

(N−1∑
k=0

hka(k)1

)
T + R(N )1 , (4-42)

which is possible by virtue of (4-39). To pass from Ur to Ur+1, we have the relation

Ur+1 = M Aqr Ur =

N−1∑
k=0

hk M Aqr Oph(a
(k)
r )T r

+M Aqr R(N )r .

So, we will construct inductively our symbols by setting

a(k)r+1 =

k∑
p=0

(L p,qr a(k−p)
r ) ◦ (Fir+1,ir )

−1, (4-43)

R(N )r+1 = M Aqr R(N )r +

N−1∑
k=0

O(∥a(k)r ∥C2(N−k)+15). (4-44)

The O encompasses the remainder terms in (4-39). The constants in the O only depend on M and the
χq , q ∈A, but not on q.

To make this construction work, we will have to prove that the symbols a(k)r lie in a good symbol
class Scomp

δ1
.

Before reaching this step, let us just note that by induction one sees that:

• ∥R(N )r ∥ ≤ CN hN
(

1+
N−1∑
k=0

r−1∑
l=0

∥a(k)l ∥C2(N−k)+15

)
, (4-45)

with CN depending on N , M and the aq , but neither on r nor q.

• Since L p,qr has coefficient supported in Vqr , we see by induction that supp a(k)r+1 ⊂ V+q0···qr
as announced.

• a(0)r+1 =
∏r+1

p=1 aqr+1−p ◦ F−p.
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4D2. Control of the symbols. We aim at estimating the seminorms ∥a(k)r ∥Cm for k < N , 1≤ r ≤ n and
m ∈ N. We will show the following:

Proposition 4.10. For every r ∈ {1, . . . , n}, k ∈ {0, . . . , N − 1} and m ∈ N, there exists C(k,m), such
that, with 0k,m = (k+ 1)(m+ k+ 1),

∥a(k)r ∥Cm ≤ C(k,m)r0k,m (J+q0···qr−1
)2k+m

∥α∥r
∞
. (4-46)

Remark. • What is important in this result is the way in which the bound depends on r and q. Up to the
term r0k,m , which is supposed to behave like O(|log h|0k,m ), the significant part of the estimate is that we
can control the symbols by the local Jacobian.

• Since supp a(k)r ⊂ V+q0···qr−1
, we need to focus on points ρ ∈ V+q0···qr−1

.

• Our method is very close to the ones developed in [Rivière 2010; Dyatlov et al. 2022]. However, we’ve
changed a few things at the cost of being less precise on the exponent 0k,m . Our aim was to treat our
problem as if we wanted to control the product of r triangular matrices.

Let us pick ρ∈V+q0···qr−1
. With (4-43), one sees that if k,m∈N, then dma(k)r+1 depends on dm′a(k

′)
r (F−1(ρ))

for several m′, k ′. Before going deeper in the analysis of this dependence, let us note two obvious facts:

• This dependence is linear, with coefficients smoothly depending on ρ.

• If dma(k)r+1 depends effectively on dm′a(k
′)

r (F−1(ρ)), then k ′ ≤ k and 2k ′+m′ ≤ 2k+m.

Precise analysis of the dependence. That being said, let us pick m0, k0 ∈ N. Set N0 = 2k0 +m0 and
consider the (column) vector

Ar (ρ) := (dma(k)r (ρ))k≤k0,2k+m≤N0 ∈

⊕
k≤k0,2k+m≤N0

Sm T ∗ρ U. (4-47)

Here Sm T ∗ρ U is the space of m-linear symmetric forms on TρU. To define a norm on the fibers Sm T ∗ρ U,
we can use, for f ∈ Sm T ∗ρ U,

∥ f ∥m,ρ = sup
v1,...,vm∈TρU

f (v1, . . . , vm)

∥v1∥ρ · · · ∥vm∥ρ
, (4-48)

where ∥v∥ρ for v ∈ TρU is the norm induced by the Riemannian metric used to define J u
1 in (3-8). Note

that, for any fixed neighborhood of T , there exists a global constant C > 0 such that, for each a ∈C∞c (U )
supported in this neighborhood, one has

C−1
∥a∥Cm ≤ sup

m′≤m
sup
ρ∈U
∥dm′a∥m′,ρ ≤ C∥a∥Cm .

We will denote by γ1, γ2, etc. elements of I :=I(k0,m0)={(k,m)∈N2
: k≤ k0, 2k+m≤ N0}. We equip

I with the lexicographic order ≺ and write #I := 0k0,m0 (see Figure 10). We order the indices of Ar (ρ)

with ≺. Ar (ρ) depends linearly on Ar−1(F−1(ρ)) and this dependence can be made explicit by a matrix

P (r)(ρ)= (P (r)γ1γ2
(ρ))γ1,γ2∈I, where P (r)γ1γ2

(ρ)∈ L(Sm′T ∗F−1(ρ)
U, Sm T ∗ρ U ) if γ1= (k,m), γ2= (k ′,m′),
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k

k = k0
(k0,m0)

2k+m = N0

m

Figure 10. The starting point (k0,m0) is represented by a diamond. The set I corresponds
to the couple (k,m) ∈ N2 in the region under the dotted lines k = k0 and 2k+m = N0.
We’ve represented a family of arrows starting from a point γ1 ∈ I. The dotted arrows
points toward β such that γ2 ≺ γ1. The big red arrows points toward points γ2 such that
P (r)γ1γ2 = 0.

so that
Ar (ρ)= P (r)(ρ) Ar−1(F−1(ρ)). (4-49)

Notation. If γ1 = (k,m), γ2 = (m′, k ′), ρ, ρ ′ ∈ U and if A : Sm′T ∗ρ′U → Sm T ∗ρ U is a linear operator,
we will denote by

∥ · ∥γ1,ρ,γ2,ρ′

its subordinate norm for the norms defined by (4-48).

Analyzing (4-43), it turns out that if γ1 = (k,m), γ2 = (k ′,m′) ∈ I, then:

• If k ′ > k, then P (r)γ1γ2(ρ)= 0.

• If k = k ′, the contribution to dma(k)r (ρ) of a(k)r−1 comes from

dm((aqr−1a(k)r−1)◦F
−1)(ρ)

= aqr−1(F
−1(ρ))×dm(a(k)r−1◦F

−1)(ρ)+(derivatives of order strictly less than m for a(k)r−1)

= aqr−1(F
−1(ρ))×( td F−1(ρ))⊗mdma(k)r−1(F

−1(ρ))+(derivatives of order strictly less than m for a(k)r−1).

In particular, if γ1 = (k,m)≺ γ2 = (k,m′) doesn’t hold, we see that P (r)γ1γ2(ρ)= 0.
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k

k = k0
(k0,m0)

2k+m = N0

m

Figure 11. We’ve represented the reduction of an element γ⃗ ∈ Er (k0,m0), i.e., the arrows
between γi and γi+1 when γi ̸= γi+1. During the descent, the value of m can only increase
when k decreases strictly.

• If k ′ < k, we can have P (r)γ1γ2(ρ) ̸= 0 with m′ > m. But, the use of the lexicographic order ensures that
γ1 ≺ γ2 in that case.

Hence, P (r)(ρ) is a lower triangular matrix and the diagonal coefficients for the index γ1 = (k,m) are
given by

P (r)γ1γ1
(ρ) : f ∈ Sm T ∗F−1(ρ)

U 7→ aqr−1(F
−1(ρ))× (t d F−1(ρ))⊗m f ∈ Sm T ∗ρ U. (4-50)

Iterating (4-49), we have

Ar (ρ)= P (r)(ρ)P (r−1)(F−1(ρ)) · · · P (2)(F−(r−2)(ρ))A1(F1−r (ρ)).

For γ ∈ I, we define, see Figure 11,

Er (γ )= {γ⃗ = (γ1, . . . , γr ) ∈ Ir
: γr = γ, γi ≺ γi+1}.

The triangular property of P allows us to write

(Ar (ρ))γ =
∑

γ⃗∈Er (γ )

P (r)γrγr−1
(ρ) · · · P (2)γ2γ1

(F−(r−2)(ρ))(A1(F1−r (ρ)))γ1 .

Control of individual terms. Let us fix γ = (k,m) and pick γ⃗ ∈ Er (γ ). We wish to analyze the operator

Pγ⃗ (ρ) := P (r)γrγr−1
(ρ) · · · P (2)γ2γ1

(F−(r−2)(ρ)).
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First of all, #{i ∈ {1, . . . , r − 1} : γi+1 ̸= γi } ≤ 0k0,m0 . So let us write

{i ∈ {1, . . . , r − 1} : γi+1 ̸= γi } = {t1 < · · ·< td},

with d ≤ 0k0,m0 . We can set td+1 = r , t0 = 0 and we can rewrite

γ⃗ = (β1, . . . , β1︸ ︷︷ ︸
t1

, β2, . . . , β2︸ ︷︷ ︸
t2−t1

, . . . , βd , . . . , βd︸ ︷︷ ︸
td−td−1

, βd+1, . . . , βd+1︸ ︷︷ ︸
td+1−td

).

For p ∈ {1, . . . , d + 1}, we introduce the operator

Dp(ρ)= P (tp)

βpβp
(F−(r−tp)(ρ)) · · · P (tp−1+2)

βpβp
(F−(r−tp−1−2)(ρ)),

and for p ∈ {1, . . . , d}
Tp(ρ)= P tp+1

βp+1βp
(F−(r−tp−1)(ρ))

so that we can write
Pγ⃗ (ρ)= Dd+1(ρ)Td(ρ)Dd(ρ) · · · T1(ρ)D1(ρ).

For p ∈ {1, . . . , d + 1}, if βp = (k,m), we can see that

Dp(ρ)=

[ tp−1∏
j=tp−1+1

aqj ◦ F−(r− j)(ρ)

]
[( td F−1(F−(r−tp)(ρ)))⊗m

◦ · · · ◦ ( td F−1(F−(r−tp−1−2)(ρ)))⊗m
]

=

[ tp−1∏
j=tp−1+1

aqj ◦ F−(r− j)(ρ)

]
( td F−(tp−tp−1−1)(F−(r−tp)(ρ)))⊗m .

We introduce the word
qp = qtp−1 · · · qtp−1,

and set ρp = F−(r−tp)(ρ), ρ ′p = F−(tp−tp−1−1)(ρp). To estimate the subordinate norm of Dp(ρ), we use
Lemma 4.6. Since ρ ∈ Vq+, ρp ∈ V+qp

and we have

∥Dp(ρ)∥βp,ρp,βp,ρ′p
≤

∣∣∣∣ tp−1∏
j=tp−1+1

aqj ◦ F−(r− j)(ρ)

∣∣∣∣ sup
ρp∈V+qp

∥d F−(tp−tp−1−1)(ρp)∥
m

≤ (C J+qp
)m

∣∣∣∣ tp−1∏
j=tp−1+1

aqj ◦ F−(r− j)(ρ)

∣∣∣∣≤ Ck0,m0(J
+

qp
)N0

∣∣∣∣ tp−1∏
j=tp−1+1

aqj ◦ F−(r− j)(ρ)

∣∣∣∣.
To estimate the norms of Tp(ρ), we simply note that they depend smoothly on ρp, which lies in a

compact set, so we can bound them by a uniform constant C1. This is not a problem since they appear d
times in Pγ⃗ with d ≤ 0k0,m0 . Consequently, we can estimate ∥Pγ⃗ (ρ)∥γ,ρ,γ1,F−(r−1)(ρ),

∥Pγ⃗ (ρ)∥γ,ρ,γ1,F−(r−1)(ρ) ≤ Ck0,m0(J
+

q1
· · · J+qd+1

)N0 |aq,γ⃗ (ρ)| ≤ Ck0,m0(J
+

q )
N0 |aq,γ⃗ (ρ)|, (4-51)

where

aq,γ⃗ =

d+1∏
p=1

tp−1∏
j=tp−1+1

aqj ◦ F−(r− j). (4-52)
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Here, the last inequality holds by applying d times (4-24), with d ≤ 0k0,m0 , once we’ve noted that

q = q1 · · · qd+1.

Finally, if γ1= (k1,m1), to estimate ∥(A1(F1−r (ρ)))γ1∥m1,F1−r (ρ), we simply note that it depends smoothly
on F1−r (ρ), so that we can bound it by a uniform constant. Hence, we have

∥Pγ⃗ (ρ)A1(F1−r (ρ))∥m,ρ ≤ Ck0,m0(J
+

q )
N0 |aq,γ⃗ (ρ)|. (4-53)

Cardinality of Er(γ ). The bound we will provide is far from optimal but it will turn out to be enough for
our purpose. To count the number of elements in Er (γ ), we remark that it is similar to counting the number
of decreasing sequences of length r starting from γ . This number is smaller than the number of increasing
sequences of length r in {1, . . . , 0k0,m0} . Recalling that the number of sequences u1 ≤ u2 ≤ · · · ≤ ur

satisfying u1 = 1 and ur = b is equal to
(b+r−2

r−2

)
, one can estimate

#Er (γ )≤

0k0,m0∑
b=1

(
b+ r − 2

r − 2

)
≤ 0k0,m0(r − 1)0k0,m0 . (4-54)

Finally, we can compute explicitly 0k0,m0 and we find 0k0,m0 = (k0+ 1)(m0+ 1+ k0).

Conclusion. We finally combine (4-54) and (4-53) to prove Proposition 4.10 (recall |aq |= |α|χq ≤∥α∥∞):

sup
ρ∈Vq0···qr−1

∥dm0a(k0)
r ∥m0,ρ = sup

ρ∈Vq0···qr−1

∥(Ar (ρ))(k0,m0)∥m0,ρ

≤

∑
γ⃗∈Er (k0,m0)

∥Pγ⃗ (ρ)A1(F1−r (ρ))∥m0,ρ

≤ 0k0,m0r
0k0,m0 Ck0,m0(J

+

q )
N0 |aq,γ⃗ (ρ)|

≤ Ck0,m0r
0k0,m0 (J+q )

N0∥α∥r
∞
.

Finally, we get as expected

∥a(k0)
r ∥Cm0 ≤ Ck0,m0r

0k0,m0 (J+q )
N0∥α∥r

∞
.

4D3. End of proof of Proposition 4.8. Armed with these estimates, we are now able to conclude the proof
of Proposition 4.8 under the assumptions (4-31). Assume that this assumption is satisfied and construct
inductively the symbols a(k)r with the formula (4-43). Since J+q ≤ Ch−δ, it implies that n = O(log h).
Hence, we have, for r ≤ n,

∥a(k)r ∥Cm ≤ Ck,mh−δmh−2kδ
|log h|0k,m∥α∥r

∞
≤ Ck,mh−δ1mh−2kδ1∥α∥r

∞
.

The symbol h2δ1ka(k)r lies in ∥α∥r
∞

Scomp
δ1

(T ∗R). Using Borel’s theorem with the parameter h′ = h1−2δ1 ,
we can construct a symbol

a+q0···qr−1
∼

∞∑
k=0

(h′)kh2δ1ka(k)r =

∞∑
k=0

hka(k)r ∈ ∥α∥
r
∞

Scomp
δ1

,
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that is, for every N ∈ N,

a+q0···qr−1
−

N−1∑
k=0

hka(k)r = O(h(1−2δ1)N∥α∥r
∞
).

By construction of the a(k)r , for every N ∈ N, we have

U+q −Oph(a
+

q )T
|q|
= R(N )n + O(h(1−2δ1)∥α∥r

∞
).

Fix some K ≥ 0 such that min(1, ∥α∥n
∞
) = O(h−K ), so that ∥α∥r

∞
= O(k−K ). With (4-45) and our

estimates, we can control

∥R(N )n ∥ ≤ CN hN (1+ |log h|0k,m+1h−δ(2N+15)h−K )≤ CN h−15δ1+N (1−2δ1)−K .

Since we can choose N as large as we want, we have finally proved that

U+q −Oph(a
+

q )T
|q|
= O(h∞). □

4D4. Norm of sums over many words. We’ll make use of the tools and notation developed in this
subsection to prove the following proposition. To state it, we introduce the notation

Q(n, τ,C0) := {q ∈An
: J+q ≤ C0h−τ }. (4-55)

Proposition 4.11. There exists C = C(C0, τ ) such that, for every Q⊂Q(n, τ,C0), the following bound
holds: ∣∣∣∣∑

q∈Q

Uq

∣∣∣∣
L2→L2

≤ C∥α∥n|log h|. (4-56)

Proof. Throughout the proof, we’ll denote by C quasiglobal constants, i.e., constants depending on C0, τ

and the same other parameters as global constants. We will also be led to use a constant C1: it has the
same dependence.

Step 1: First note that, since J+q ≤ C0h−τ , n satisfies the bound n = O(log h).

Step 2: If q ∈Q(n, τ,C0), denote by l(q)= l the largest integer such that

J+q0···ql−1
≤ h−τ/2.

Since Jq0···ql > h−τ/2, J+q0···ql−1
> Ch−τ/2 and hence

J+ql ···qn−1
≤ C

h−τ

J+q0···ql−1

≤ C1h−τ/2.

We can then write q = sr with s ∈Q(l, τ/2, 1), r ∈Q(n− l, τ/2,C1). It follows that we can write∑
q∈Q

Uq =

n∑
l=1

∑
s∈Q(l,τ/2,1)

r∈Q(n−l,τ/2,C1)

Fl(s, r)UrUs,
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with Fl(s, r)= 1sr∈Q. It is then enough to show the bound

max
1≤l≤n

∣∣∣∣ ∑
s∈Q(l,τ/2,1)

r∈Q(n−l,τ/2,C1)

Fl(s, r)UrUs

∣∣∣∣≤ C∥α∥n
∞
. (4-57)

In the following, we fix some 1≤ l ≤ n and we’ll simply write
∑

s,r to alleviate the notation. Note that
the number of terms in the sum is bounded by

|Q(l, τ/2, 1)×Q(n− l, τ/2,C1)| ≤ |A|l × |A|n−l
≤ |A|n ≤ h−Q,

where Q = C log |A|.

Step 3: We fix some large N ∈ N and δ1 ∈ (τ/2, 1/2). Recall that we can write

Us =

(
Oph

( N−1∑
k=0

hka(k)s

)
+ OL2→L2(h(1−2δ1)N−15δ1∥α∥l

∞
)

)
T l,

Ur = T n−l
(

Oph

( N−1∑
k=0

hka(k)r

)
+ OL2→L2(h(1−2δ1)N−15δ1∥α∥n−l

∞
)

)
,

with bounds on a(k)s and a(k)r given by Proposition 4.8.
We then use the formula for the composition of operators in9comp

δ1
(T ∗R) (Lemma 3.3) and for simplicity,

we write Lk(a, b)(ρ)= (ik/k!)(A(D))k(a⊗ b)(ρ, ρ). For 0≤ k ≤ N − 1, we set

as,r,k =
∑

j+k−+k+=k

Lj (a(k−)r , a(k+)s ).

Note that if j + k−+ k+ ≥ N,

∥a(k−)r ⊗ a(k+)s ∥C2 j+13 ≤ C j sup
m++m−=2 j+13

∥a(k−)r ∥Cm−∥a(k+)s ∥Cm+

≤ C j,k−,k+h−(2k−+m−)δ1h−(2k−+m+)δ1∥α∥n
∞

≤ C j,k−,k+h−2δ1( j+k−+k+)−13δ1∥α∥n
∞

≤ C j,k−,k+h−2δ1 N−13δ1∥α∥n
∞

and henceforth,

O(h j+k−+k+∥a(k−)r ⊗ a(k+)s ∥C2 j+13)= O(h(1−2δ1)N−15δ1∥α∥n
∞
).

As a consequence, we can write

UrUs = T n−l
(

Oph

( N−1∑
k=0

hkas,r,k

))
T l
+ OL2→L2(h(1−2δ1)N−15δ1∥α∥n

∞
).

It follows that∑
s,r

UrUs = T n−l
(

Oph

( N−1∑
k=0

hka(k)
))

T l
+ OL2→L2(h(1−2δ1)N−15δ1−Q

∥α∥n
∞
),
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where
a(k) =

∑
s,r

F(s, r)as,r,k . (4-58)

Suppose that N has been chosen such that

(1− 2δ1)N > 15δ1+ Q.

The remainder term is thus controlled by the desired bound since it is of order O(∥α∥n
∞
).

Step 4: C0 norm of a(0). We have

a(0) =
∑
s,r

F(s, r)a(0)s a(0)r ,

where, by virtue of (4-37) and (4-38),

a(0)s =

l∏
p=1

asl−p ◦ F−p, a(0)r =

n−l−1∏
p=0

arp ◦ F p.

As a consequence, we can estimate

|a(0)| ≤
∑
s,r
|a(0)s ||a

(0)
r | ≤

l∏
p=1

(∑
q∈A

|aq |

)
◦ F−p

×

n−l−1∏
p=0

(∑
q∈A

|aq |

)
◦ F p
≤ ∥α∥n

∞
.

Step 5: Cm norms of a(k). We will show there exist constants Ck,m (depending only on C0, δ1, τ and
m, k) such that, for all 0≤ k ≤ N − 1 and m ∈ N,

∥a(k)∥Cm ≤ Ck,mh−(2k+m)δ1∥α∥n
∞
. (4-59)

Let’s compute
∥a(k)∥Cm ≤

∑
s,r
∥as,r,k∥Cm ≤

∑
s,r

∑
j+k++k−=k

∥Lj (a(k−)r , a(k+)s )∥Cm

≤

∑
s,r

∑
j+k++k−=k

∥a(k−)r ⊗ a(k+)s ∥C2 j+m

≤

∑
s,r

∑
j+k++k−=k

m++m−≤m+2 j

∥a(k−)r ∥Cm−∥a(k+)s ∥Cm+ ,

and hence
∥a(k)∥Cm ≤ Ck,m sup

j+k++k−=k
m++m−≤m+2 j

∑
s,r
∥a(k−)r ∥Cm−∥a(k+)s ∥Cm+ . (4-60)

Let us fix j, k+, k−,m+,m− satisfying j + k++ k− = k, m−+m+ ≤ m+ 2 j and let us estimate∑
s
∥a(k+)s ∥Cm+ ×

∑
r
∥a(k−)r ∥Cm− .

We estimate the sum over s. The same kind of estimates will hold for r with the same methods. We reuse
the tools developed in the last subsections. Namely, we set N+=2k++m+, γ+= (k+,m+), I=I(γ+) and

(As(ρ))= (dma(k)s )k≤k+,2k+m≤N+ .
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We have shown that there exists a global constant C > 0 such that

∥a(k+)s ∥Cm+ ≤ sup
ρ

∥As(ρ)∥ ≤ C
∑

γ⃗∈El (γ+)

∥Pγ⃗ (ρ)∥ ≤
∑

γ⃗∈El (γ+)

CN+,k+(J
+

s )
N+ |as,γ⃗ (ρ)|

≤ CN+,k+h−τN+/2
∑

γ⃗∈El (γ+)

|as,γ⃗ (ρ)|,

where CN+,k+ depends on C0, τ, N+, k+ and global parameters. We hence have to estimate∑
s

∑
γ⃗∈El (γ+)

|as,γ⃗ (ρ)|.

Fix γ⃗ ∈ El(α+) and write it

γ⃗ = (β1, . . . , β1︸ ︷︷ ︸
t1

, β2, . . . , β2︸ ︷︷ ︸
t2−t1

, . . . , βd , . . . , βd︸ ︷︷ ︸
td−td−1

, βd+1, . . . , βd+1︸ ︷︷ ︸
td+1−td

), where d ≤ 0k+,m+,

and recall that

as,γ⃗ =

d+1∏
p=1

tp−1∏
j=tp−1+1

asj ◦ F−(l− j).

When one sums over s ∈Al , the values of s at the indices ti , 1≤ i ≤ d , do not play a role and we write∑
s
|as,γ⃗ | =

∑
st1∈A

· · ·

∑
std∈A

d+1∏
p=1

tp−1∏
j=tp−1+1

(∑
s∈A

|as |

)
◦ F−(l− j)

≤ |A|d sup
ρ

(∑
s∈A

|as |

)l

≤ K0k+,m+∥α∥l
∞
≤ Ck+,m+∥α∥

l
∞
.

As a consequence,∑
s

∑
γ⃗∈El (γ+)

|as,γ⃗ | ≤ #El(γ+)Ck+,m+∥α∥
l
∞
≤ Ck+,m+(l − 1)0k+,m+∥α∥l

∞
,

which gives ∑
s
∥a(k+)s ∥Cm+ ≤ Ck+,m+h−τN+/2(l − 1)0k+,m+∥α∥l

∞
≤ Ck+,m+h−δ1 N+∥α∥l

∞
,

where the last inequality (with a different value of Ck+,m+) follows from the fact that l = O(log h) and
δ1 > τ/2. The same kind of estimates holds for the sum over r:∑

r
∥a(k−)r ∥Cm− ≤ Ck−,m−h−δ1 N−∥α∥n−l

∞
.

Eventually, using (4-60), we get (4-59) since

N++ N− = 2k++m++ 2k−+m− ≤ 2(k++ k−+ j)+m = 2k+m.

Step 6: Conclusion. We can conclude the proof of the Proposition 4.11. The bound (4-59) shows that, for
0≤ k ≤ N −1, a(k) ∈ h−2kδ1∥α∥n

∞
Scomp
δ1

and thus
∑N−1

k=0 hka(k) ∈ Scomp
δ1
∥α∥n

∞
. From the L2-boundedness
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of pseudodifferential operators with symbol in Sδ1 ,∥∥∥∥Oph

( N−1∑
k=0

hka(k)
)∥∥∥∥≤ N−1∑

k=0

∑
m≤M

hk+m/2
∥a(k)∥Cm ≤

N−1∑
k=0

∑
m≤M

Ck,mh(k+2m)(1/2−δ1)∥α∥n
∞
≤ C∥α∥n

∞
,

where C depends only on C0, τ, δ1. Since ∥T ∥ ≤ 1, we get∥∥∥∥∑
s,r

F(s, r)UrUs

∥∥∥∥≤ C∥α∥n
∞
,

which concludes the proof of Proposition 4.11. □

4E. Manipulations of the Uq .

4E1. First consequences. We now make use of Proposition 4.8 to deduce several important facts. We
go on following [Dyatlov et al. 2022]. In the whole subsection, we fix 0≤ δ < δ1 <

1
2 and C0 > 0. We

define A→ =
⋃

n∈N An .

Remark. The constants in O(h∞) depend on p and q only through C0, δ, δ1, not on the precise values
of p and q. It will always be the case in the following and we won’t mention it anymore. As already
done, all the quasiglobal constants (i.e., depending on global parameters and C0, δ, τ, δ1) will be noted
by the letter C .

Lemma 4.12. Let q, p ∈A→ satisfying V+q ∩V−p =∅ and max(J+q , J−p )≤ C0h−δ. Then

U pUq = O(h∞)L2→L2 .

Proof. By virtue of Proposition 4.8, we can write

U p = T | p|Oph(a
−

p )+ O(h∞),

Uq = Oph(a
+

q )T
|q|
+ O(h∞).

With a+q ∈ ∥α∥
|q|
∞ Scomp

δ1
, a−p ∈ ∥α∥

| p|
∞ Scomp

δ1
and supp a−p ⊂ V−p , supp a+q ⊂ V+q . Since V+q ∩ V−p = ∅,

Oph(a
−
p )Oph(a

+
q )= O(h∞) as a consequence of the composition of two symbols of Sδ1 . The constants

in O(h∞) depend on seminorms of these symbols, themselves depending on C0, τ, δ1. Since T n
= O(1),

the result is proved. □

Lemma 4.12 will have interesting consequences, starting with the following lemma which enables us
to get rid (that is to say to control by O(h∞)) of words q where V±q =∅, under some assumptions. In
particular, it can be applied without trouble to words of “small” lengths N ≤ |log h|/(2λ1), which could
also be deduced from applying Egorov’s theorem up to the global Ehrenfest time |log h|/(2λ1).

Lemma 4.13. Let q ∈A→ such that n = |q| ≤ C0|log h| and assume that V−q =∅. We suppose that one
of the following assumptions is satisfied:

(i) If m =max{k ∈ {1, . . . , n} : V−q0···qk−1
̸=∅}, then J−q0···qm−1

≤ C0h−2δ.

(ii) If m =min{k ∈ {0, . . . , n− 1} : V−qm ···qn−1
̸=∅}, then J−qm ···qn−1

≤ C0h−2δ.

Then, Uq = O(h∞).
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Proof. We prove this lemma under assumption (i). This is similar under (ii). We let m=max{k∈{1, . . . , n} :
V−q0···qm−1

̸=∅} and assume J−q0···qm−1
≤C0h−2δ. Due to (4-12), it is enough to show that Uq0···qm = O(h∞).

Let us define l =max{k ∈ {1, . . . ,m} : J−q0···ql−1
≤ h−δ} and notice that l < m (if h is small enough). By

maximality of l, it is clear that J−q0···ql
≥ h−δ. According to the third point of Lemma 4.5,

J−ql+1···qm−1
∼

J−q0···qm−1

J−q0···ql

≤ Ch−δ.

Set p= ql · · · qm . We distinguish now between two cases:

• V−p ̸=∅: We set r = q0 · · · ql−1. It follows that

max(J−p , J−r )≤ Ch−δ.

Moreover,
V−p ∩V

+

r = F l(V−q0···qm
)=∅.

By Lemma 4.12, U pUr =Uq0···qm = O(h∞).

• V−p = ∅: This time, we have max(J−ql ···qm−1
, J−qm

) ≤ Ch−δ and V−qm
∩ V+ql ···qm−1

= ∅. According to
Lemma 4.12, Uql ···qm =Uqm Uql ···qm−1 = O(h∞). It follows that Uq0···qm = O(h∞). □

4E2. Orthogonality of the Uq . We now focus on terms UqU∗p and U∗q U p when V+q and V+p are disjoint,
under growth conditions of the Jacobian. The following result shows that the operators Uq and U p are (up
to O(h∞)) orthogonal. These estimates will turn out to be important to apply Cotlar–Stein-type estimates.

Proposition 4.14. Assume that q, p ∈ A→ are two words of same length |q| = | p| = n satisfying
V+q ∩V+p =∅ and max(J+q , J+p )≤ C0h−2δ. Then,

UqU∗p = O(h∞),

U∗q U p = O(h∞).

Before proving it, we need the following lemma, whose proof relies on the iterative construction of the
symbols a±q .

Lemma 4.15. Assume q, p ∈A→ are two words of same length |q| = | p| = n satisfying max(J+q , J+p )≤
C0h−δ. Then,

UqU∗p = Oph(a
+

q )Oph(a
+

p )
∗
+ O(h∞),

U∗q U p = Oph(a
−

q )
∗Oph(a

−

p )+ O(h∞).

Proof of Lemma 4.15. We prove the first equality. The second one could be treated similarly. Recall
the construction procedure of Section 4D. We adopt the same notation. We will show by induction on
r ∈ {0, . . . , n− 1} that

Vr :=Uq0···qr−1U∗p0···pr−1
= Oph(a

+

q0···qr−1
)Oph(a

+

p0···pr−1
)∗+ O(h∞).

The case r = 1 follows from

M Aq0 A∗p0
M∗ = Oph(a

+

q0
)T T ∗Oph(a

+

p0
)∗+ O(h∞)= Oph(a

+

q0
)Oph(a

+

p0
)∗+ O(h∞),
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where we use the fact that T T ∗= I +O(h∞) microlocally in V+p0
, Assume that the assumption is satisfied

for r , namely
Vr = Oph(a

+

q0···qr−1
)Oph(a

+

p0···pr−1
)+ O(h∞),

and let’s prove it for r + 1:

Vr+1 = M Aqr Vr A∗pr
M∗

= M Aqr Oph(a
+

q0···qr−1
)Oph(a

+

p0···pr−1
)∗A∗pr

M∗r + O(h∞)

= Oph(a
+

q0···qr
)T T ∗Oph(a

+

p0···pr
)∗+ O(h∞)

= Oph(a
+

q0···qr
)Oph(a

+

p0···pr
)∗+ O(h∞).

The last equality follows from T T ∗ = I + O(h∞) microlocally in V+pr
and the one before is due to the

recursive construction of the symbols a+q0···qr
in the Section 4D. □

Proof of Proposition 4.14. Let us begin with the first equality. Consider the largest integer l such that

max(J+q0···ql−1
, J+p0···pl−1

)≤ h−δ.

We set q← = q0 · · · ql−1 and q→ = ql · · · qn−1, and define similar notation for p. We obviously have

UqU∗p =Uq→Uq←U∗p←U∗p→ .

We then consider two cases:

• V+q← ∩V
+
p← =∅: we may write

Uq←U∗p← = T l Oph(a
−

q←)Oph(a
−

q←)
∗T l
+ O(h∞).

Since, V−q← ∩V
−
p← =∅, we can use the composition formula in Scomp

δ1
to conclude Oph(a

−
q←)Oph(a

−
q←)
∗
=

O(h∞), which gives the desired result, recalling that Uq = O(1).

• V+q← ∩V
+
p← ̸=∅: In this case, we use the previous lemma and we can write

Uq←U∗p← = Oph(a
+

q←)Oph(a
+

p←)
∗
+ O(h∞).

By virtue of the second point of Lemma 4.5, J+q← ∼ J+p← . Moreover, by maximality of l, either J+q←ql
> h−δ

or J+p← pl
> h−δ. But

J+q←ql
∼ J+q← .

Hence, J+q← ∼ h−δ. Using now the third point of Lemma 4.5, we conclude that

J+q→ ∼ J+p→ ∼ h−δ.

This estimate allows us to write

UqU∗p = T n−l Oph(a
−

q→)Oph(a
+

q←)Oph(a
+

p←)
∗Oph(a

−

p→)
∗(T ∗)n−l

+ O(h∞),

with all the symbols in h−M Scomp
δ1

for some M > 0. To conclude, we use the composition formula in this
symbol class, noting that

V+q← ∩V
−

q→ ∩V
+

p← ∩V
−

p→ = F l(V−q ∩V
−

p )=∅.
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To deal with the second equality, we consider the smallest integer l such that

max(J+ql ···qn−1
, J+pl ···pn−1

)≤ h−δ.

As before, we write q← = q0 · · · ql−1 and q→ = ql · · · qn−1, and define similar notation for p. We
obviously have

U∗q U p =U∗q←U∗q→U p→U p← .

We distinguish the cases V+q→ ∩V
+
p→ =∅ and V+q→ ∩V

+
p→ ̸=∅ and argue similarly. □

4F. Reduction to subwords with precise growth of their Jacobian. Recall that we are interested in a
decay bound for ∥MN0+N1∥, where M = M(Id−A∞) =

∑
q∈A M Aq . For this purpose, we take the

decomposition MN1 =
∑

q∈AN1 Uq .
If q ∈AN1 , either V+q =∅, and in this case J+q =+∞, or V+q ̸=∅, which implies that J+q ≥ eλ1 N1 ≥

h−1
≫ h−τ. In both cases, the following integer is well-defined:

n(q)=max{k ∈ {1, N1} : J+qN1−k ···qN1−1
≤ h−τ }. (4-61)

We then set qτ = qN1−n(q)−1 · · · qN1−1. The case Vqτ =∅ is irrelevant. Indeed, if q ∈AN1 and if Vqτ =∅,
then Uq = O(h∞), as an obvious consequence of Lemma 4.13. Then, we set

Q = {q ∈AN1 : Vqτ ̸=∅} (4-62)

so that, due to the fact that |AN1 | = O(h−M), for some M > 0, we have

MN1 =

∑
q∈Q

Uq + O(h∞).

We partition Q in function of the length of qτ and the value of qN1−1. Namely, we set

Q0(n, a)= {q ∈ Q : |qτ | = n, qN1−1 = a}.

We finally set Q(n, a)= {qτ : q ∈ Q0(n, a)}, which is simply the set of words q ∈An such that qn−1 = a
and J+q1···qn−1

≤ h−τ < J+q . Note that every word q ∈ Q0(n, a) can be written in the form q = r p, with
p ∈ Q(n, a) and r ∈AN1−n. We deduce that, modulo O(h∞),

MN1 =

N1∑
n=1

∑
a∈A

∑
q∈Q0(n,a)

Uq =

N1∑
n=1

∑
a∈A

∑
p∈Q(n,a)
r∈AN1−n

U pUr =

N1∑
n=1

∑
a∈A

( ∑
q∈Q(n,a)

Uq

)
MN1−n.

As a consequence, we get

∥MN0+N1∥ ≤ C N1|A| sup
1≤n≤N1

a∈A

∥MN0UQ(n,a)∥(∥α∥∞)
N1−n, (4-63)

where
UQ(n,a) =

∑
q∈Q(n,a)

Uq . (4-64)

Since N1 = O(log h), the proof of (4-14) is reduced to proving:
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V+p ρ0

V+q

Wu(ρ0)
hb

Figure 12. Two words q, p ∈ Q(n, a) are close to each other if V+q and V+p lie in the
hb-neighborhood of the same unstable leaves, as stated in Definition 4.17.

Proposition 4.16. There exists γ > 0 such that, for h small enough, we have

sup
1≤n≤N1

a∈A

∥MN0UQ(n,a)∥

∥α∥
n+N0
∞

≤ hγ . (4-65)

4G. Partition into clouds. We fix 1 ≤ n ≤ N1 and a ∈ A. We aim at gathering pieces of MN0UQ(n,a)

into clouds and we want these clouds to interact (with a meaning we will define further) with only a finite
and uniform number of other clouds, so that the global norm of ∥MN0UQ(n,a)∥ can be deduced from a
uniform bound for each cloud.

Recall that δ0 and τ (see (4-2), (4-3) and (4-5)) have be chosen such that

b+ δ0 < 1, b< τ.

We start by defining a notion of closeness between two words q, p ∈ Q(n, a). We choose ε2 as in
Lemma 4.4.

Definition 4.17. Let q, p ∈ Q(n, a). We say that these two words are close to each other if there exists
ρ0 ∈ T ∩ F(Va(ε2)) such that,

for all ρ ∈ V+q ∪V
+

p , d(ρ,Wu(ρ0))≤ hb.

Otherwise, we say that q and p are far from each other. See Figure 12.

Remark. By the definition of V+q , if q ∈Q(n, a) and if ρ ∈ V+q , then ρ does not lie in Va , but F−1(ρ)

does. Hence, we work with F(Va) instead of Va . Moreover, the set F(Va(ε2)) is chosen to fit well in
the computations below and in particular in the proof of Lemma 4.19. We could replace it by V+a (Cε2),
where C is any Lipschitz constant for F.

The important fact on words p, q far from each other is that the associated operators MN0U p, MN0Uq

are almost orthogonal:

Proposition 4.18. Assume that q, p ∈ Q(n, a) are far from each other. Then,

(MN0Uq)
∗(MN0U p)= O(h∞), (4-66)

(MN0Uq)(M
N0Uq)

∗
= O(h∞). (4-67)
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We will need the following lemma.

Lemma 4.19. If q, p ∈ Q(n, a) are far from each other, there exist words p1, q1, p2, q2 such that

• | p1| = |q1|, | p2| = |q2|.

• q = q1q2, p= p1 p2.

• V+q2
∩V+p2

=∅.

• max(J+q2
, J+p2

)≤ Ch−b ( for some global constant C > 0).

In particular, V+q ∩V+p =∅.

Let’s momentarily admit it and prove the proposition.

Proof of Proposition 4.18. Fix q, p ∈ Q(n, a) far from each other. Since V+q ∩ V+p = ∅, we have
UqU∗p = O(h∞) by virtue of Proposition 4.14. Hence, using the polynomial bounds ∥MN0∥ = O(h−M)

(for some M > 0), we have
(MN0Uq)(M

N0U p)
∗
= O(h∞).

To prove the first point, we write

(MN0Uq)
∗(MN0U p)=

∑
s,t∈AN0

U ⋆
q1

U∗q2
U∗s UtU p2U p1 .

Hence, it is enough to show that U∗q2
U∗s UtU p2 = O(h∞) uniformly in s, t . To do so, we note that

V+q2s ∩V
+

p2 t ⊂ F N0(V+q2
∩V+p2

)=∅,

J+q2s ≤ C J+s J+q2
≤ Ceλ1 N0h−b ≤ Ch−(δ0+b),

J+p2 t ≤ Ch−(δ0+b)

and apply Proposition 4.14, with δ = (δ0+ b)/2< 1
2 (here we use condition (4-3)). □

We now prove the lemma.

Proof of Lemma 4.19. Consider q, p ∈ Q(n, a) far from each other. Consider the smallest integer m
such that V+qm ···qn−1

∩ V+pm ···pn−1
̸= ∅. We will show that m > 0 and set p2 = pm−1 · · · pn−1, q2 =

qm−1 · · · qn−1. Pick ρ ∈ V+qm ···qn−1
∩ V+pm ···pn−1

. By choice of ε2 after Lemma 4.4, there exists ρ0 ∈ T
such that d(F−i (ρ), F−i (ρ0))≤ ε2 for i ∈ {1, . . . , n−m}. In particular, d(F−1(ρ), F−1(ρ0))≤ ε2 and
F−1(ρ) ∈ Va , so that ρ0 ∈ F(Va(ε2)). Since, q, p are far from each other, there exists ρ1 ∈ V+q ∪V+p such
that d(ρ1,Wu(ρ0)) > hb (otherwise, it would contradict Definition 4.17).

Suppose for instance that ρ1 ∈ V+q ⊂ V+qm ···qn−1
. Hence, d(F−i (ρ0), F−i (ρ1)) ≤ 2ε0 + ε2 for i ∈

{1, . . . , n−m}. From (3-17), d(ρ1,Wu(ρ0))≤ C(J n−m
s (ρ0))

−1 and hence, J n−m
s (ρ0)≤ Ch−b.

But, J n−m
s (ρ0)∼ J+pm ···pn−1

∼ J+qm ···qn−1
, which gives

max(J+pm ···pn−1
, J+qm ···qn−1

)≤ Ch−b.

Since min(J+q , J+p ) > h−τ ≫ h−b (here we use (4-5)), we cannot have m = 0 (if h small enough). Thus,
we can set p2 = pm−1 · · · pn−1, q2 = qm−1 · · · qn−1, which satisfy the required properties by minimality
of m. □



1090 LUCAS VACOSSIN

We now decompose UQ(n,a) into a sum of operators, each of them corresponding to a cloud of words.
In the following, we’ll use the term cloud to mean a subset Q⊂ Q(n, a) and we’ll adopt the notation

V+Q =
⋃
q∈Q

V+q

and the definition:

Definition 4.20. We say that two clouds Q1,Q2 do not interact if, for all pairs (q1, q2) ∈ Q1 ×Q2,
q1 and q2 are far from each other.

The existence of such a decomposition follows from the key proposition (see Figure 13):

Proposition 4.21. Suppose ε0 is small enough. There exists a partition of Q(n, a) into clouds Q1, . . . ,Qr

and a global constant C > 0 such that, for i = 1, . . . , r :

(i) There exists ρi ∈ T such that, for all ρ ∈ V+Qi
, d(ρ,Wu(ρi ))≤ Chb.

(ii) If Qi interacts with exactly ci clouds, then ci ≤ C.

Remark. Actually, r and the clouds Qi depend on n and a. We do not write this dependence explicitly
here to make the notation lighter. The second point is relevant since a priori, the only obvious bound on
r = r(n, a) is |r | ≤ |A|n , where n = O(log h).

Proof. Keeping in mind that, for all q ∈ Q(n, a), we have V+q ⊂ V+a , we fix ρa ∈ V+a . If ε0 is small enough,
V+a does not intersect the boundaries of Ws(ρa) and Wu(ρa).

For q ∈ Q(n, a), there exists ρq ∈ T such that d(F−i (ρ), F−i (ρq)) ≤ ε2 for all ρ ∈ V+q and for
i = 1, . . . , n, according to Lemma 4.4 and since J+q ∼ hτ,

d(ρ,Wu(ρq))≤ Ch−τ ,

d(ρa, ρq)≤C(ε2+ε0) and hence, if ε0 is small enough, zq := H u
ρa
(ρq) (here, H u

ρa
: B(ρa, ε

′

0)→Ws(ρa))
is the unstable holonomy map defined before Lemma 3.20) is well-defined, and depends Lipschitz-
continuously on ρq (with global Lipschitz constant).

Next, consider a maximal subset {z1, . . . , zr }⊂ {zq, q ∈ Q(n, a)} which is hb separated. By maximality,
for every q ∈ Q(n, a), there exists i ∈ {1, . . . , r} such that |zi − zq | ≤ hb and we use these zi to partition
Q(n, a) into clouds Qi , where for i ∈ {1, . . . , r}, |zi − zq | ≤ hb for all q ∈Qi . We now show that this
partition satisfies the required properties.

Let i ∈ {1, . . . , r}, q ∈Qi and ρ ∈ V+q . By local uniqueness of the unstable leaves, we may assume
that ε0 is small enough so that Wu(ρq)∩V+a =Wu(zq)∩V+a . Hence,

d(ρ,Wu(zq))≤ Ch−τ .

Since the unstable leaves depend Lipschitz-continuously on ρ ∈ T , we have

d(ρ,Wu(zi ))≤ C |zi − zq | +Cd(ρ,Wu(zq))≤ Chb
+Chτ ≤ Chb.

This gives (i).
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z1

z2

z3

ρa

Ws(ρa)

Vq1

Vq3 Vq4

Vq2

Vq5

Vq6

Figure 13. We gather the six small sets Vq into three clouds corresponding to z1, z2

and z3. Here, Q1 = {q1}, Q2 = {q2, q3, q4} and Q3 = {q5, q6}. The clouds Q1 and Q2

interact. The dotted lines draw tubes of width Chb around the unstable leaves Wu(zi ).
The sets Vq have width of order hτ.

To show (ii), suppose that Qi and Qj interact. Then, there exist (q, p) ∈ Qi ×Qj and ρ0 ∈ T such
that, for all ρ ∈ V+q ∪V+p , d(ρ,Wu(ρ0)) ≤ hb. It follows that d(zq,Wu(ρ0)) ≤ Chτ + hb

≤ Chb and if
we denote by z0 = H u

ρa
(ρ0) the unique point in Wu(ρ0)∩Ws(ρa) then |z0− zq | ≤ Chb. The same is true

for p and we have |zq− z p| ≤Chb and eventually, |zi − z j | ≤Chb. Since z1, . . . , zr are hb-separated, we
see after rescaling that the number of j such that Qi and Qj interact is smaller than the maximal number
of points in B(0,C) which are 1-separated (one can for instance bound it by (2C + 1)2, but what matters
is that it is a global constant). □

This partition into clouds allows us to decompose MN0UQ(n,a) into a sum of operators

Bi =MN0UQi =

∑
q∈Qi

MN0Uq, MN0UQ(n,a) =

r∑
i=1

Bi . (4-68)

The use of Cotlar–Stein theorem [Zworski 2012, Theorem C.5] reduces the control of the sum by the
control of individual clouds:

Lemma 4.22. With the above notation, there exists a global constant C > 0 such that

∥MN0UQ(n,a)∥ ≤ C sup
1≤i≤r

∥Bi∥+ O(h∞). (4-69)

Proof. Cotlar–Stein theorem reduces to control

max
i

∑
j

∥B∗i Bj∥
1/2, max

i

∑
j

∥Bj B∗i ∥
1/2.

Fix i ∈ {1, . . . , r}.
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If Qi and Qj do not interact, then ∥B∗i Bj∥
1/2 (resp. ∥Bj B∗i ∥

1/2) is a sum of terms of the form
(MN0Uq)

∗(MN0U p) (resp. (MN0Uq)(M
N0U p)

∗), where p and q are far from each other. By virtue
of Proposition 4.14, these terms are uniformly O(h∞) and since the number of terms in the sum grows at
most polynomially with h, we can gather all these terms in a single uniform O(h∞). As a consequence,
we have ∑

j

∥B∗i Bj∥
1/2
≤

∑
Qi and Qj interact

∥B∗i Bj∥
1/2
+ O(h∞)

≤

∑
Qi and Qj interact

max
k
∥Bk∥+ O(h∞)≤ C max

k
∥Bk∥+ O(h∞),

and the same holds for the second sum. This gives the desired inequalities. □

The proof of (4-14) and, as a consequence, of Proposition 4.2 is then reduced to the proof of:

Proposition 4.23. There exists γ > 0 such that the following holds for h small enough. Assume that
Q⊂Q(n, a) satisfies, for some global constant C > 0,

there exists ρ0 ∈ T such that for all ρ ∈ V+Q, d(ρ,Wu(ρ0))≤ Chb,

where b= 1/(1+β) is defined in (4-2). Then,

∥MN0UQ∥

∥α∥
N0+n
∞

≤ hγ .

5. Reduction to a fractal uncertainty principle via microlocalization properties

In this section, we reduce the proof of Proposition 4.23 to a fractal uncertainty principle. To do so, we aim
at showing microlocalization properties of the operators involved. The dissymmetry between N0 and N1

in the decomposition N = N0+ N1 will appear clearly in this section. Since N0 is below the Ehrenfest
time, we can actually use semiclassical tools. By contrast, things are more complicated for operators Uq ,
with q ∈Q(n, a), and we’ll use methods of propagation of Lagrangian leaves. These methods are inspired
by [Anantharaman and Nonnenmacher 2007a; 2007b; Nonnenmacher and Zworski 2009] and are also
used in [Dyatlov et al. 2022].

5A. Microlocalization of MN0 . We first state a microlocalization result for MN0. This is the easiest one
to obtain since N0 is below the Ehrenfest time. We recall the definition of T−, the set of the future trapped
points

T− =
⋂
n∈N

F−n(U )

and focus on T loc
−
:= T− ∩ T (4ε0). The set T− is laminated by the weak global stable leaves. Hence, if

ε0 is small enough, ensuring that the boundaries of the local stable leaves Ws(ρ), ρ ∈ T , do not intersect
T (4ε0), we have

T loc
−
⊂

⋃
ρ∈T

Ws(ρ).
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When q ∈AN0 and V−q ̸=∅, V−q lies in an O(hδ0λ0/λ1) neighborhood of a stable leaves, as stated in the
following lemma. In the following, we write

δ2 = δ0
λ0

λ1
. (5-1)

We recall that we have defined b in (4-2) and τ in (4-6) such that α < τ < 1 and δ2+ τ > 1 (see (4-5)).
Moreover, N0 = ⌈(δ0/λ1)|log h|⌉.

Lemma 5.1. There exists a global constant C2 > 0 such that, for all q ∈AN0 satisfying V−q ̸=∅,

d(V−q , T
loc
−
)≤ C2hδ2 .

Remark. In the end of this section, the use of C2 will always refer to the constant appearing in this
lemma. On other places, we keep our convention on global constants, denoting them always by C .

Proof. We already know by Lemma 4.7 that there exists C > 0 such that if V−q ̸=∅, there exists ρ0 ∈ T
such that

d(V−q ,Ws(ρ0))≤
C
J−q
.

But J−q ≥ eλ0 N0 ≥ C−1h−δ0λ0/λ1 . Finally, d(V−q , T loc
−
)≤ Chδ2, as required. □

The following lemma allows us to construct symbols in nice symbol classes with supports in hδ

neighborhood. Its proof can be found in [Dyatlov and Zahl 2016, Lemma 3.3].

Lemma 5.2. Let ε > 0 and δ ∈
[
0, 1

2

[
. Let V0(h)⊂ V1(h)⊂ Rd be sets depending on h and assume that,

for 0≤ h ≤ 1, d(V0(h), V1(h)c) > εhδ. Then, there exists a family χh ∈ C∞c (R
d) such that, for all h ≤ 1:

• χh = 1 on V0(h).

• suppχ ⊂ V1(h).

• For every α ∈Nd, there exists Cα depending only on ε such that, for all x ∈ Rd and for all 0< h ≤ 1,

|∂αχh(x)| ≤ Cαh−δ|α|.

Applying this lemma with V0(h)= T loc
−
(2C2hδ2), V1(h)= T loc

−
(4C2hδ2) with ε = 2C2, we consider a

family of smooth cut-offs χh ∈ Scomp
δ2

and we can consider it as an element of Scomp
δ2

(U ) since (at least
for h small enough) the support of χh is included in U. We are now ready to state the microlocalization
property of MN0.

Proposition 5.3. MN0 =MN0 Oph(χh)+ O(h∞)L2(Y )→L2(Y ). (5-2)

Proof. We need to show that MN0(Oph(1 − χh)) = O(h∞). To do so, we take the decomposition
MN0 =

∑
q∈AN0 Uq . Since the number of terms in this sum grows polynomially with h, it is enough to

show that,
for all q ∈AN0, Uq(Oph(1−χh))= O(h∞),

with bounds uniform in q. We then consider two cases:
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• V−q =∅: Lemma 4.13 applies. Indeed, if m ≤ N0 and V−q0···qm−1
̸=∅, we have

J−q0···qm−1
≤ emλ1 ≤ eN0λ1 ≤ Ch−δ0 .

Hence, Uq = O(h∞), with global constants in the O(h∞).

• V−q ̸=∅: We apply Proposition 4.8. Since J−q ≤Ceλ1 N0 ≤Ch−δ0, we take some δ1∈
]
δ0,

1
2

[
(in particular,

δ2<δ1) and we can write Uq = T N0 Oph(a
−
q )+O(h∞), with a−q ∈ Scomp

δ1
(U ) and supp a−q ⊂V−q . Noticing

that χh = 1 on V−q ⊂ T loc
−
(2C2hδ2), the composition formula in Scomp

δ1
implies that Oph(a

−
q )Oph(1−χh)=

O(h∞). Since the seminorms of a−q are uniformly bounded in q, the constants appearing in O(h∞) are
uniform in q. □

5B. Propagation of Lagrangian leaves and Lagrangian states. To study the microlocalization of Uq

we’ll use the same strategy as in [Dyatlov et al. 2022], the authors themselves inspired by [Anantharaman
and Nonnenmacher 2007a; 2007b; Nonnenmacher and Zworski 2009]. We cannot show that Uq is a
Fourier integral operator since the propagation goes behind the Ehrenfest time. Instead, we show a
weaker result which will be enough for our purpose. The idea is to decompose a state u in a sum of
Lagrangian states associated with Lagrangian leaves almost parallel to unstable leaves, what we will
call horizontal leaves (because we will consider them in charts where the unstable leaves are close
to be horizontal). Studying the precise behavior of these states, we can get fine information on the
microlocalization of Uqu. Roughly speaking, we’ll show that if u is a Lagrangian state associated with
an original horizontal Lagrangian Lq0,θ ⊂ Vq0 , then Uqu is a Lagrangian state associated with the piece
of the evolved Lagrangian Fn(Lq0,θ ) inside V+q .

To define “horizontal” Lagrangian leaves, we need to work in adapted coordinate charts in which the
notion of horizontality (thinking Wu(ρ) as the reference) makes sense. For this purpose, for q ∈A, we
consider charts centered around the points ρq , associated with the fixed macroscopic partition of T by the
Vq = B(ρq , 2ε0). First, we consider symplectic maps

κq :Wq ⊂Ukq → Vq ⊂ R2

satisfying (we denote by (x, ξ) the variable in U and (y, η) in R2):

(1) B(ρq ,Cε0)⊂Wq for some global constant C ≫ 2.

(2) κ(ρq)= 0, dκ(ρq)(Eu(ρq))= R×{0} : dκ(ρq)(Es(ρq))= {0}×R.

(3) The image of the unstable leave Wu(ρq) is exactly {(y, 0) : y ∈ R} ∩ Ṽq .

Theses charts are for instance given by Lemma 3.22 (at this stage, the strong straightening property is
not necessary). In these adapted charts where Wu(ρq) coincides with R×{0}, the horizontal Lagrangian
leaves will be the of the form

Cθ := {(y, θ) : y ∈ R}. (5-3)

Finally, we fix unit vectors on Eu(ρq) and Es(ρq), eu(ρq) and es(ρq), used to defined the unstable and
stable Jacobians in Section 3C. Let’s write

dκq(eu(ρq))= (λq,u, 0), dκq(es(ρq))= (0, λq,s).
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Note

Dq =

(
λq,u 0

0 λq,s

)
.

We dilate the chart κ̃q and define

κ̃q : ρ ∈Wq 7→ Dqκq(ρ) ∈ Ṽq := Dq(Vq).

5B1. Horizontal Lagrangian and their evolution. Let us fix a word q ∈An and let us define

Lq0,θ = κ
−1
q0
(Cθ ∩ Vq0)∩Vq0 . (5-4)

Then, let’s define inductively
Lq0···qj ,θ = F(Lq0···qj−1,θ )∩Vqj , (5-5)

which allows us to define Lq,θ . One can check that

Lq,θ = F−1(V+q )∩ Fn−1(Lq0,θ ). (5-6)

The term F−1 comes from the definition of V+q :

ρ ∈ V+q ⇐⇒ for all 1≤ i ≤ n, F−i (ρ) ∈ Vqn−i .

Finally, let’s define
Cq,θ = κqn−1(Lq,θ ). (5-7)

We first focus on one step of the iterative process.
In Ṽq ⊂ R2, we use the notation B̃q(0, r) for the cube]−r, r [ × ]−r, r [. We keep the subscript q to

keep track of the chart in which this cube is supposed to live. Finally, we set

Bq(0, r)= D−1
q (B̃q(0, r))⊂ Vq .

Bq(0, r) is simply a rectangle centered at zero with size only depending on q (this is also a ball for some
norm in R2). The advantage of B̃q and κ̃q compared with Bq and κq will appear below. However, κ̃q is
not symplectic, and for further use, it is not possible to use κ̃q as a symplectic change of coordinates.

Let q, p ∈ A and suppose that Vq ∩ F−1(Vp) ̸= ∅. As a consequence there exists a global constant
C ′ > 0 such that d(F(ρq), ρp) ≤ C ′ε0 and if C in (1) of Lemma 3.22 is large enough, we can assume
that, for some global constant C1 > 0,

κq(Vq)⊂ Bq(0,C1ε0)⊂ Vq , κp ◦ F ◦ κ−1
q (Bq(0,C1ε0))⊂ Vp. (5-8)

The following map is hence well-defined:

τp,q := κp ◦ F ◦ κ−1
q : Bq(0,C1ε0)→ τp,q(Bq(0,C1ε0))⊂ Vp;

τp,q is nothing but the writing of F between the charts Vq and Vp. Note that since the number of possible
transitions is finite, we can assume that C1 is uniform for all q, p ∈A such that Vq ∩ F−1(Vp) ̸=∅.

We also adopt the following definitions and notation:
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Definition 5.4. Let Gq : ]−C1ε0,C1ε0[ → ]−C1ε0,C1ε0[ be a smooth map. It represents the horizontal
Lagrangian

LGq := D−1
q

(
{(y,Gq(y)) : y ∈ ]−C1ε0,C1ε0[}

)
⊂ Bq(0,C1ε0)⊂ Vq .

We say that such a Lagrangian lies in the γ -unstable cone if

∥G ′q∥∞ ≤ γ,

and we write Gq ∈ Cu
q (C1ε0, γ ).

Remark. This is where the use of κ̃q and B̃q turns out to be useful; to represent horizontal Lagrangian
in Vq , we use the cube B̃q(0,C1ε0)⊂ Ṽq of fixed size.

With this definition, we show in the following lemma an invariance property of the γ -unstable cones:

Lemma 5.5. There exist global constants C > 0,C1 > 0 such that if ε0 is sufficiently small, then the
following holds:

For every Gq ∈ Cu
q (C1ε0,Cε0), there exists G p ∈ Cu

p(C1ε0,Cε0) such that:

(i) τp,q(LGq )∩ Bp(0,C1ε0)= LG p .

(ii) For some global constants Cl , l ≥ 2, we have ∥Gq∥C l ≤ Cl =⇒ ∥G p∥C l ≤ Cl .

Moreover, let’s define φqp : ]−C1ε0,C1ε0[ → R by

yq = φqp(yp) ⇐⇒ (yp,G p(yp))= Dp ◦ τpq ◦ D−1
q (φqp(yp),Gq ◦φqp(yp)).

Then, φpq is smooth contracting diffeomorphism onto its image. In particular, there exists a global
constant ν < 1 such that ∥φ′pq∥∞ ≤ ν.

Proof. Take C1 large but fixed (with conditions further imposed) and assume that ε0 is small enough
so that (5-8) holds. Let us define λq = J u

1 (ρq) > 1 and µq = J s
1 (ρq) < 1 and let us fix some global ν

satisfying,

for all q ∈A, max(λ−1
q , µq) < ν < 1.

Recall that eu and es are C1,ε in ρ. We write ∂y and ∂η to denote the unit vector of R×{0} and {0}×R

respectively. We fix a constant C > 0 with conditions imposed further and we assume that ∥G ′p∥∞ ≤Cε0.
We let τ̃ = Dp ◦ τp,q ◦ D−1

q (we drop the subscript for τ̃ to alleviate the notation). In the computations
below, the implied constants in the O are global constants (depending also on the choices on κq ):

• τ̃ (0)= κ̃p ◦ F(ρq)= O(ε0).

• d τ̃ (0)= d κ̃p(F(ρq)) ◦ d F(ρq) ◦ [d κ̃q(ρq)]
−1.

• d τ̃ (0)(∂y)= d κ̃p(F(ρq))(λqeu(F(ρq)))= λq(d κ̃p(ρp)+O(ε0))(eu(ρp)+O(ε0))= λq∂y+O(ε0),
where we use the Lipschitz regularity of ρ 7→ eu(ρ) in the second equality.

• Similarly, d τ̃ (0)(∂η)= µq∂η+ O(ε0).
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(It is here that we use the renormalization of κq into κ̃q ). Eventually, we use the fact that τ̃−τ̃ (0)−d τ̃ (0)=
O(C1ε0)C1(B(0,C1ε0)) and we get

τ̃ (y, η)= (λq y+ yr (y, η), µqη+ ηr (y, η)), (y, η) ∈ B̃q(0,C1ε0), (5-9)

where yr (y, η) and ηr (y, η) are O(C1ε0)C1 . Before going further, let us show that we can fix C1 such that

(y, η) ∈ B̃q(0,C1ε0) =⇒ |µqη+ ηr (y, η))| ≤ C1ε0. (5-10)

To do so, let us note that in fact τ̃ − τ̃ (0) − d τ̃ (0) = O((C1ε0)
2)C0(B(0,C1ε0)) and hence if (y, η) ∈

B̃q(0,C1ε0), we have

|ηr (y, η)| = O(ε0)+ O((C1ε0)
2)C0(B(0,C1ε0)) ≤ C ′ε0(1+C2

1ε0).

Assume that C1 is large enough such that νC1+C ′ < C1(ν+ 1)/2. If (y, η) ∈ B̃q(0,C1ε0), we have

|µqη+ ηr (y, η)| ≤ νC1ε0+C ′ε0(1+C2
1ε0)≤

(
C1
ν+1

2
+C2

1ε0

)
ε0.

This fixes C1. Since C1 is now a global fixed parameter, we can remove it from the O in the estimates.
If ε0 is small enough, depending on our choice of C1, (5-10) holds.

To write the image of the leaf as a graph, we observe that, if ε0 is small enough (depending only on
global parameters) the map

ψ : y ∈ ]−C1ε0,C1ε0[ 7→ λq y+ yr (y,Gq(y))

is expanding and we can impose |ψ ′| ≥ ν−1. In particular, Imψ contains an interval of size 2ν−1C1ε0.
Moreover, ψ(0) = yr (0,Gq(0)) ≤ ∥yr∥C1 |Gq(y)| = O(ε2

0). We claim that if ε0 is small enough, Imψ

contains ]−C1ε0,C1ε0[. Indeed, it suffices to have

ν−1C1ε0− |ψ(0)| ≥ C1ε0.

But we have

C1ε0+ |ψ(0)| ≤ C1ε0(1+ O(ε0))≤ C1ε0ν
−1

if 1+O(ε0)≤ ν
−1, a condition that can be satisfied if ε0 is small enough. Hence, φ :=φpq =ψ

−1
|]−C1ε0,C1ε0[

is well-defined and we set

G p(y)= µq Gq(φ(y))+ ηr (φ(y),Gq(φ(y))), y ∈ ]−C1ε0,C1ε0[. (5-11)

By definition, it is clear that τp,q(LGq )∩ Bp(0,C1ε0)= LG p and (y,G p(y))= τ̃ (φ(y),Gq(φ(y))). The
map φ is obviously a smooth contracting diffeomorphism and ∥φ′∥ ≤ 1/inf |ψ ′(y)| ≤ ν. Moreover, due
to (5-10), |G p(y)| ≤ C1ε0. To prove that G p ∈ Cu

p(C1ε0,Cε0), we compute

G ′p(y)= µq G ′q(φ(y))×φ
′(y)+ (∂yηr + ∂ηηr ×G ′q(φ(y)))φ

′(y),

|G ′p(y)| ≤ ν
2Cε0+ O(ε0(1+Cε0))ν ≤ [ν

2C + νC ′(1+Cε0)]ε0



1098 LUCAS VACOSSIN

for some global C ′ > 0. If we assume ν2
+ ε0C ′ν < 1, which is possible if ε0 is small enough, then we

can choose C large enough satisfying

C × (ν2
+ νC ′ε0)+ νC ′ ≤ C.

This ensures that ∥G ′p∥∞ ≤ Cε0.
Finally, we prove (ii) by induction on l: The case l = 1 is done. Assume that there exists a constant Cl

such that ∥Gq∥C l ≤ Cl =⇒ ∥G p∥C l ≤ Cl . We want to find a constant Cl+1 fitting for the C l+1 norm.
Using (5-11), we see by induction that the (l + 1)-th derivative of G p has the form

G(l+1)
p (y)= φ′(y)l+1

×G(l+1)
q (y)× (1+ ∂ηηr (y, φ(y)))+ Py(Gq(y), . . . ,G(l)

q (y)),

where Py(τ0, . . . , τl) is a polynomial with smooth coefficients in y. Hence, there exists a constant M(Cl)

such that for y ∈ ]−C1ε0,C1ε0[, |Py(Gq(y), . . . ,G(l)
q (y))| ≤ M(Cl). Since

|φ′(y)l+1(1+ ∂ηηr (y, φ(y)))| ≤ ν(1+ ε0C ′) := ν1

if ε0 is small enough ensuring that ν1 < 1, we can take

Cl+1 =max
(

Cl,
M(Cl)

1− ν1

)
.

Indeed, with such a constant, assuming that ∥Gq∥C l+1 ≤ Cl+1, we have

|G(l+1)
p (y)| ≤ Cl+1ν1+M(Cl)≤ Cl+1. □

Armed with this lemma, we can now iterate the process and get the following proposition describing
the evolution of the Lagrangian Cq,θ .

Proposition 5.6. Assume that ε0 is small enough. Then, for every n ∈N∗, q ∈An , and θ ∈ R, there exists
an open subset Iq,θ ⊂ R and a smooth map Gq,θ such that:

• Cq,θ = {(y,Gq,θ (y)) : y ∈ Iq,θ }.

• ∥G ′q,θ∥∞ ≤ Cε0 for some global constant C.

• For every l ≥ 2, ∥Gq,θ∥C l ≤ Cl for some global Cl .

• If φq,θ : Iq,θ → R is defined by

κqn−1 ◦ Fn−1
◦ κ−1

q0
(φq,θ (y), θ)= (y,Gq,θ (y)).

Then, for some global constants C > 0 and 0< ν < 1, ∥φ′q,θ∥ ≤ Cνn−1.

Proof. Assume that Lq,θ ̸= ∅; otherwise, there is nothing to prove. In particular, we can restrict our
attention to small θ , |θ | ≤ C1ε0. As a consequence, for every i ∈ {1, . . . , n}, F(Vqi−1)∩Vqi ̸=∅. Hence,
we can consider the maps τi := τqi ,qi−1 and since we assume that κqi (Vqi )⊂ Bqi (0,C1ε0),

Cq0···qi ,θ = τi (Cq0···qi−1,θ )∩ κqi (Vqi ).
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We start with a constant function G0 ∈ Cu
0 (C1ε0, 0) such that LG0 = Cθ (it suffices to take G0 = λq0,sθ)

and we inductively apply the previous lemma to show the existence of a family G j ∈ Cu
qj
(C1ε0,Cε0),

0≤ j ≤ n− 1, such that:

(i) τi (LGi )∩ Bqi (0,C1ε0)= LGi+1 .

(ii) ∥Gi∥C l ≤ Cl .

(iii) If we define φi : ]−C1ε0,C1ε0[ → ]−C1ε0,C1ε0[ by

(y,Gi (y))= Dqi ◦ τi ◦ D−1
qi−1
(φi (y),Gi−1 ◦φi (y))

then there exists ν < 1 such that ∥φ′i∥∞ ≤ ν.

(iv) Cq0···qi ,θ is an open subset of LGi .

We have
LGn−1 = D−1

qn−1
({(y,Gn−1(y)) : y ∈ ]−C1ε0,C1ε0[}).

This can be also written

LGn−1 = {(y, λ
−1
qn−1,s Gn−1(λqn−1,u y)) : |y|< λ−1

qn−1,uC1ε0}.

It suffices to consider
Gq,θ (y)= λ−1

qn−1,s Gn−1(λqn−1,u y),

Iq,θ = {y ∈ ]−λ−1
qn−1,uC1ε0, λ

−1
qn−1,uC1ε0[ : (y,Gq,θ (y)) ∈ Cq,θ },

φq,θ (y)= λ−1
q1,uφ1 ◦ · · · ◦φn−1(λqn−1,u y). □

5B2. Evolution of Lagrangian states. Once we’ve studied the evolution of the Lagrangian leaves starting
from Cθ , we can study the evolution of the corresponding Lagrangian states. In our case, since the leaves
stay rather horizontal, the form of the Lagrangian states we’ll consider is the simplest:

a(x)eiψ(x)/h,

where a is an amplitude and ψ a generating phase function. It is associated with the Lagrangian,

L= {(y, ψ ′(y)) : y ∈ supp a}.

For q ∈A, we quantize κq . Remind that we denote by kq the integer such that Vq ⋐ Ukq . There exist
Fourier integral operators Bq , B ′q ∈ I comp

0 (κq)× I comp
0 (κ−1

q ),

Bq : L2(Ykq )→ L2(R), B ′q : L
2(R)→ L2(Ykq )

such that they quantize κq in a neighborhood of κq(Vq)×Vq . Moreover, we impose that WFh(Bq B ′q) is
a compact subset of R2. We will still denote by Bq and B ′q the operators

Bq = (0, . . . , Bq︸︷︷︸
kq

, . . . , 0) : L2(Y )→ L2(R), B ′q =
t(0, . . . , B ′q︸︷︷︸

kq

, . . . , 0) : L2(R)→ L2(Y ).

If supp(cq)⊂ Vq and if C denotes the operator-valued matrix with only one nonzero entry Oph(cq) in
position (kq , kq), then as operators L2(Y )→ L2(Y ),

B ′q BqC = C + O(h∞), C B ′q Bq = C + O(h∞).
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The proposition we aim at proving is the following:

Proposition 5.7. Fix C0 > 0. For every n ∈ N, q ∈An and θ ∈ R satisfying

n ≤ C0|log h|, |θ | ≤ C0 (5-12)

and, for every N ∈ N, there exists a symbol aq,θ,N ∈ C∞c (Iq,θ ) such that

(i) Uq(B ′q0
ei(θ ·)/h)= M Aqn−1 B ′qn−1

(eiψq/haq,θ,N )+ O(hN )L2 ,

(ii) ∥aq,θ,N∥Cl ≤ Cl,N h−C0 log B ,

(iii) there exists δ > 0 such that d(supp(aq,θ,N ),R \ Iq,N ,θ )≥ δ,

where ψq,θ is a primitive of Gq,θ and B > 0 is a global constant.

Remark. • As usual, δ,Cl,N and CN depend only on F, Aq , Bq , B ′q , κq and the indices indicated in their
notation.

• In other words, the Lagrangian state ei(θ ·)/h is changed to a Lagrangian state associated with Cq,θ .

The end of this subsection is devoted to the proof of Proposition 5.7. In the rest of this section, we fix a
constant C0 > 0 and we work with a fixed word q ∈An with length n ≤ C0|log h| and a fixed momentum
|θ | ≤ C0. From now on and until the end of the proof, the constants below will always be uniform in q, θ
satisfying the previous assumption. They will depend on global parameters and on C0. If they depend
on other parameters, we will specify it with subscripts. This is also the case for implicit constants in O
(such as in O(h∞)).

Preparatory work. We first note the following fact: if Vq ∩ F−1(Vp) = ∅, Ap M Aq = O(h∞). As a
consequence, if Vqi−1 ∩ F−1(Vqi ) = ∅ for some i , then Uq = O(h∞). In the sequel, it is enough to
consider words q for which Vqi−1 ∩ F−1(Vqi ) ̸=∅ for 1≤ i ≤ n− 1.

We consider symbols ãq such that supp(ãq)⊂Vq and ãq ≡ 1 on supp(χq). We denote by Ãq =Oph(ãq)

(as usual thought of as a diagonal operator-valued matrix). The following computations holds since
n = O(log h) and ∥M Aq∥ ≤ ∥α∥∞+ o(1) uniformly in q:

Uq B ′q0
= M Aqn−1 Ãqn−1 M Aqn−2 Ãqn−2 · · ·M Aq1 Ãq1 M Aq0 B ′q0

+ O(h∞)

= M Aqn−1 B ′qn−1
Bqn−1 Ãqn−1 M · · ·M Aq1 B ′q1

Bq1 Ãq1 M Aq0 B ′q0
+ O(h∞).

We set Tp,q = Bp Ãp M Aq B ′q and Mq = M Aq B ′q , which allows us to write

Uq B ′q0
= Mqn−1 Tqn−1,qn−2 · · · Tq1,q0 + O(h∞).

For p, q ∈A with Vq ∩ F−1(Vp) ̸=∅, we have Tq,p ∈ I comp
0 (τp,q). Moreover, the previous computations

have shown that τp,q has the form

τp,q(y, η)= (λp,q y+ yr (y, η), µp,qη+ ηr (y, η)), (y, η) ∈ Bq(0,C1ε0),

where yr (y, η) and ηr (y, η) are O(ε0)C1 . This time, λp,q , µp,q are simply constants uniformly bounded
from below and from above for p, q ∈ A (recall that Bq(0,C1ε0) is a rectangle in R2, built from the
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cube B̃q(0,C1ε0) adapted to the definition of the unstable Jacobian). If ε0 small enough, the projection
π : (y, η, x, ξ) ∈ Lq,p 7→ (y, ξ) ∈ R2 is a diffeomorphism onto its image, where

Lq,p = {(τq,p(x, ξ), x,−ξ) : (x, ξ) ∈ Bq(0,C1ε0)}

is the twisted graph of τp,q . As a consequence, there exists a smooth phase function Sp,q defined in an
open set �p,q of R2, generating Lp,q locally, i.e.,

Lp,q ∩ τp,q(Bq(0,C1ε0))× Bq(0,C1ε0)= {(y, ∂y Sp,q(y, ξ), ∂ξ Sp,q(y, ξ),−ξ) : (y, ξ) ∈�q,p}.

Hence, Tp,q can be written in the following form, up to a O(h∞) remainder and for some symbol
αp,q( · ; h) ∈ C∞c (�p,q):

Tp,qu(y)=
1

2πh

∫
R2

e(i/h)(Sp,q (y,ξ)−xξ)αp,q(y, ξ ; h)u(x) dx dξ. (5-13)

Moreover, due to the operators Ãp and Aq in the definition of Tp,q , we can assume that

(y, ξ) ∈ supp(αp,q) =⇒ (∂ξ Sp,q(y, ξ), ξ) ∈ κq(supp aq), (y, ∂y Sp,q(y, ξ)) ∈ κp(supp ãp).

In the sequel, we write
Ci = Cq0···qi ,θ

and we change the subscripts (qi−1, qi ) to i in all the objects T, α, S, τ . Due to the previous results, we
can write Ci = {(y,Gi (y)) : y ∈ Ii }, with Ii := Iq0···qi ,θ and Gi :=Gq0···qi ,θ . We also have projection maps
8i : Ii → R defined by

τi ◦ · · · ◦ τ1(8i (y), θ)= (y,Gi (y))

satisfying ∥8′i∥∞ ≤ Cνi < 1. Moreover, if we define the intermediate corresponding projection φi :=

8i ◦8
−1
i−1 : Ii→ Ii−1, we observe that φi is constructed using the properties of F and Gi−1 (see the proof

of Proposition 5.6) and hence, for every l, ∥φi∥C l ≤ Cl for some Cl not depending on q, θ nor i .
For 0≤ i ≤ n− 1, we consider a primitive ψi of Gi so that Ci is generated by ψi , i.e.,

Ci = {(y, ψ ′i (y) : y ∈ Ii }.

The following lemma can be found in [Nonnenmacher and Zworski 2009, Lemma 4.1]. We state it without
proof, since it is the reference but it is a direct application of the stationary phase theorem.

Lemma 5.8. Pick i ∈ {1, . . . , n−1}. For any a ∈ C∞c (Ii−1), the application of Ti to the Lagrangian state
aeiψi−1/h associated with Ci−1 gives a Lagrangian state associated with Ci and satisfies

Ti (aeiψi−1/h)(y)= eiβi/heiψi (y)/h
( N−1∑

j=0

bj (y)h j
+ hN rN (y; h)

)
, (5-14)

where, if we let x = φi (y), then bj (y)= (L j,i (x, Dx)a)(x) for some differential operator L j,i of order 2 j
with smooth coefficients supported in Ii−1 and βi ∈ R. Moreover, one has:

• b0(y)= |φ′i (y)|
1/2a(x)αi (y, ξ)/|det D2

y,ξ Si (y, ξ)|1/2, with ξ = ψ ′i−1(x).
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• ∥bj∥C l (Ii ) ≤ Cl, j∥a∥C l+2 j (Ii−1), l ∈ N, 0≤ j ≤ N − 1.

• ∥rN∥C l (Ii ) ≤ CN∥a∥C l+1+2N (Ii−1).

The constants CN and Cl, j depend on τi , αi , ∥ψ
(m)
i ∥∞,Ii .

Remark. • In particular, by virtue of Proposition 5.6, the constants Cl, j and CN can be chosen uniform
in q, θ as soon as they satisfy the required assumptions: |q| ≤ C0|log h|, θ ≤ C0.

• Without loss of generality, we can replace ψi by βi + ψi (this actually corresponds to fixing an
antiderivative on Ci+1) and hence we can assume that βi = 0.

• The properties on the support of αi imply the following ones on the support of the differential opera-
tors L j,i :

y ∈ supp L j,i =⇒ (y, ψ ′i (y)) ∈ κqi (supp ãqi )∩ τi−1 ◦ κqi−1(supp aqi−1). (5-15)

Iteration formulas and analysis of the symbols. Then, we iterate this lemma starting from ψ0(x)= x · θ ,
in the spirit of Proposition 4.1 in [Nonnenmacher and Zworski 2009]. In the sequel, we adopt the
following convention: we denote by xk the variable in Ik and we naturally define (xk, xk−1, . . . , x1, x0),
the sequence defined by xi−1 = φi (xi ). We also let

βi (xi )=
αi (xi , ξ)

|det D2
xi ,ξ

Si (xi , ξ)|1/2
, ξ = ψ ′i−1(xi−1),

fi (xi )= β(xi )|φ
′

i (xi )|
1/2.

We fix a constant B > 0 (depending only on F, Aq , Bq , B ′q ,C0) satisfying, for all 1≤ i ≤ n− 1,

sup
xi∈Ii

|βi (xi )| ≤ B, ∥Ti∥ ≤ B.

Roughly speaking, B is of order ∥α∥∞, but in this part, the precise value of B is not relevant. Finally,
note that there exists ν < 1 (again depending only on F, Aq , Bq , B ′q) such that |φ′i (xi )| ≤ ν for xi ∈ Ii .
Fix N ∈ N and define

Ñ = 1+⌈N +C0 log B⌉. (5-16)

We iteratively define a sequence of symbols ai, j , 0≤ i ≤ n−1, 0≤ j ≤ Ñ −1 by a0,0 = 1, a0, j = 0 and
for 0≤ j ≤ Ñ − 1

ai, j (xi )=

j∑
p=0

L j−p,i (ai−1,p)(xi−1). (5-17)

The following lemma controls the growth of the symbols. The proof is a precise analysis of the iteration
formula (5-17) and is rather technical. We write the detailed proof in the Appendix (see Section A3) and
refer the reader to [Nonnenmacher and Zworski 2009, Proposition 4.1], where the author carried out the
same analysis (but in the case B = 1).

Lemma 5.9. For all j ∈ {0, . . . , Ñ − 1}, l ∈ N, there exists C j,l > 0 such that, for all i ∈ {0, . . . , n− 1},
one has

∥ai, j∥C l (Ii ) ≤ C j,l(Bν1/2)i (i + 1)l+3 j . (5-18)
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Remark. Again, what is important is the fact that C j,l does not depend on q, n, θ nor i : it depends on
C0 and global parameters.

Control of the remainder. Let us call ri,N (a) the remainder appearing in Lemma 5.8. Define inductively
(Ri,Ñ ) by R0,Ñ = 0 and

Ri+1,Ñ = e−(iψi+1)/hTi+1(eiψi/h Ri,Ñ )+

Ñ−1∑
j=0

ri+1,Ñ− j (ai, j ). (5-19)

This definition ensures that, for all 1≤ i ≤ n,

Ti · · · T1(eiψ0/h)= eiψi (y)/h
( Ñ−1∑

j=0

h j ai, j + h Ñ Ri,Ñ

)
. (5-20)

Lemma 5.10. There exists C Ñ depending only on Ñ , C0 and global parameters such that, for all
1≤ i ≤ n− 1,

∥Ri,Ñ∥L2(R) ≤ C Ñ Bi .

Proof. Recalling that ∥Ti∥L2→L2 ≤ B and the bound on the remainder in Lemma 5.8, the recursive
definition of Ri,Ñ gives the bound

∥Ri,Ñ∥L2 ≤ B∥Ri−1,Ñ∥L2 +

Ñ−1∑
j=0

C Ñ− j∥ai−1, j∥C1+2(Ñ− j) .

By induction and using the previous bounds on ∥ai, j∥C l , we get

∥RÑ ,i∥L2 ≤

i−1∑
p=0

Bi−1−p
Ñ−1∑
j=0

C Ñ− j∥ap, j∥C1+2(Ñ− j)

≤

i−1∑
p=0

Bi−1−p
N1−1∑
j=0

C Ñ− j C Ñ− j,0(Bν
1/2)p(p+ 1)1+2Ñ+ j

≤ C Ñ Bi
i−1∑
p=0

ν p/2(p+ 1)1+3N1 ≤ C Ñ Bi ,

using that the sum is absolutely convergent. □

End of proof of Proposition 5.7. We’ve got now all the elements to conclude the proof. We set

aq,θ,N :=

Ñ−1∑
j=0

h j an−1, j .

We know that
Uq B ′q0

(eiθ/h)= Mqn−1(e
iψq ·/haq,θ,N )+Mqn−1(h

Ñ Rn−1,Ñ ).

Since Mq are uniformly bounded in q and Rn−1,Ñ ≤ C Ñ Bn−1
≤ CN1h−C0 log B, we have

∥Mqn−1(h
Ñ Rn−1,Ñ )∥L2 ≤ CN h Ñ−C0 log B

≤ CN hN .
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Concerning the bounds on aq,θ,N , we have

∥aq,θ,N∥C l ≤

Ñ−1∑
j=0

h j
∥an−1, j∥C l ≤

Ñ−1∑
j=0

C j,l(Bν1/2)n−1nl+3 j h j

≤ Cl,N nl+3Ñ (Bν1/2)n−1
≤ Cl,N h−C0 log Bnl+3Ñν(n−1)/2

≤ Cl,N h−C0 log B,

where we use the fact that n ≤ C0|log h| and bound nl+3Ñν(n−1)/2 by some Cl,Ñ since ν < 1.
Finally, we need to prove the property on the support of aq,θ,N . To do so, let us introduce, for q ∈A,

an open set Wq satisfying
supp ãq ⋐Wq ⊂ Vq .

This allows us to define new objects replacing Vq by Wq in the definitions

W+q =
n−1⋂
i=0

Fn−i (Wqi )⋐ V+q ,

Dq,θ = κqn−1(F
−1(W+q )∩ Fn−1(Lq0,θ ))⋐ Cq,θ ,

and the associated subinterval Jq,θ ⋐ Iq,θ built thanks to Proposition 5.6 such that

Dq,θ = {(y,Gq,θ (y)) : y ∈ Jq,θ }.

Let us fix δ > 0 small (with further conditions imposed). We will show the stronger statement

d(supp(aq,θ,N ),R \ Jq,θ )≥ δ.

Suppose this is not the case. We can find xn−1 ∈ supp aq,θ,N , yn−1 ∈ Iq,θ \ Jq,θ such that |xn−1− yn−1| ≤ δ.
As already done, we denote by xi (resp. yi ) the points defined by xi−1 = φi (xi ) (resp. yi−1 = φi (yi )).
Since φi are contractions, we have |xi − yi | ≤ δ for 1≤ i ≤ n− 1. If we define

ρi = κ
−1
qi
(xi , ψ

′

i (xi )), ζi = κ
−1
qi
(yi , ψ

′

i (yi )),

we have, for some C > 0, d(ρi , ζi )≤ Cδ. By definition, one also has

F−i (ρn−1)= ρn−1−i , F−i (ζn−1)= ζn−1−i .

By the support property (5-15) of the operators L j,i , ρi ∈ supp ãqi for 0≤ i ≤ n− 1. Let’s assume that δ
is small enough so that, for all q ∈A,

d(supp ãq , (Wq)
c)≥ 2Cδ.

Hence,
ρi ∈ supp ãqi and d(ρi , ζi )≤ Cδ =⇒ ζi ∈Wqi .

As a consequence, for all 0≤ i ≤ n− 1, F i+1−n(ζn−1) ∈Wqi , or equivalently ζn−1 ∈ F−1(W+q ). Hence,

(yn−1, ψ
′

n−1(yn−1)) ∈ Cq,θ ∩ κqn−1(F
−1(W+q ))⊂ Dq,θ

showing that yn−1 ∈ Jq,θ , and giving a contradiction with yn−1 ∈ Iq,θ \ Jq,θ .
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hα

ρ0

Uρ0

Figure 14. The definition of the sets 0+q . They are represented by the blue segments on
the η-axis and are the projections on the η variable of the sets V+q (the shaded sets). They
are of width of order hτ .

5C. Microlocalization of UQ. We now fix a cloud Q ⊂ Q(n, a), centered at a point ρ0 ∈ T , namely
satisfying the condition of Proposition 4.23:

for all ρ ∈
⋃
q∈Q

V+q , d(ρ,Wu(ρ0))≤ Chb.

Let us define
UQ =

∑
q∈Q

Uq (5-21)

and
V+Q =

⋃
q∈Q

V+q . (5-22)

We fix an adapted chart κ := κρ0 :U0→ V0 around ρ0 as permitted by the Lemma 3.23. We can assume
that V+a ⋐ U0 (if ε0 is small enough and since the local unstable leaf Wu(ρ0) is close to points in V+a )).
We consider a cut-off function χ̃a ∈ C∞c (U0) such that χ̃a ≡ 1 on F(suppχa) and supp χ̃a ⊂ V+a . Let us
write 4a = Oph(χ̃a). Since 4a M Aa = M Aa + O(h∞), |Q| = O(h−K ) and ∥Uq∥ = O(h−K ) for some
K > 0, we have

MN0UQ =MN04aUQ+ O(h∞).

Let us introduce Fourier integral operators B, B ′ quantizing κ in supp(χa):

B ′B = I + O(h∞) microlocally in supp(χa).

Hence
MN0UQ =MN04a B ′BUQ+ O(h∞).

We introduce the sets
0+ = η(κ(V+Q)), �+ = 0+(hτ ), (5-23)

and, for q ∈Q,
0+q = η(κ(V

+

q )). (5-24)

We will prove in the following lemma that the pieces Uq are microlocalized in thin horizontal rectangles
(see Figure 14).
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Lemma 5.11. For every q ∈Q,

10+q (hτ )(h Dy)BUq = BUq + O(h∞)L2→L2, (5-25)

with uniform bounds in the O(h∞).

Using the polynomial bounds |Q| = O(h−C) and ∥Uq∥ = O(h−C), we immediately deduce:

Proposition 5.12. 1�+(h Dy)BUQ = BUQ+ O(h∞)L2→L2 . (5-26)

5C1. Proof of Lemma 5.11. We fix a word q = q0 · · · qn−2a ∈Q. Since WFh(Aq0) is compact, we can
find χ ∈ C∞c (R) such that

Aq0 = Aq0 B ′q0
χ(h Dy)Bq0 + O(h∞).

Since there is a finite number of symbols in A, we can choose one single χ for all the possible symbols q0.
We are hence reduced to proving that

1R\0+q (hτ )(h Dy)BUq B ′q0︸ ︷︷ ︸
T

χ(h Dy)= O(h∞)L2→L2 . (5-27)

If u ∈ L2(R), writing

(χ(h Dy)u)(y)=
1

(2πh)1/2

∫
R

χ(θ)Fhu(θ)ei(θy)/h dθ,

we have
T (χ(h Dy)u)=

1
(2πh)1/2

∫
R

χ(θ)Fhu(θ)(T ei(θ ·)/h) dθ.

Hence,
∥T (χ(h Dy)u)∥L2 ≤

1
(2πh)1/2

∫
R

|χ(θ)Fhu(θ)|∥T ei(θ ·)/h
∥L2 dθ

≤
1

(2πh)1/2

∫
R

|χ(θ)Fhu(θ)| sup
θ∈suppχ

∥T ei(θ ·)/h
∥L2

≤
Cχ
h1/2 ∥Fhu∥L2 sup

θ∈suppχ
∥T ei(θ ·)/h

∥L2

≤
Cχ
h1/2 ∥u∥L2 sup

θ∈suppχ
∥T ei(θ ·)/h

∥L2 .

As a consequence, we are lead to estimate supθ∈suppχ ∥T ei(θ ·)/h
∥L2 . We fix θ ∈ suppχ . Writing that

suppχ ⊂ [−C0,C0] and recalling |q| = n ≤ C0|log h| for some global C0, we are in the framework of
Proposition 5.7.

We fix N ∈ N and we aim at proving that T eiθ ·/(h)
= O(hN ). By Proposition 5.7, there exists

aq,N ,θ ∈ C∞c (Iq,θ ) such that

Uq B ′q0
(ei(θ ·)/h)= M Aa B ′a(aq,N ,θei8q,θ/h)+ O(hN ).

Set S := B M Aa B ′a . Then S is a Fourier integral operator associated with s := κ ◦ F ◦κ−1
a . Recall that the

definitions and the description of the Lagrangian

Cq,θ = κa(F−1(V+q )∩ Fn−1(Lq0,θ ))= {(y,8
′

q,θ (y)) : y ∈ Iq,θ },

with 8q,θ ∈ C∞(Iq,θ ), ∥8q,θ∥C1 ≤ Cε0, ∥8q,θ∥C l ≤ Cl .
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If ε0 is small enough, we can assume that:

• s is well-defined on Ba(0,C1ε0) and satisfies the conclusion of Lemma 5.5. As a consequence, the
Lagrangian line

s(Cq,θ )= κ(V+q )∩ κ ◦ Fn(Lq0,θ )

can be written {(y, 9 ′(y)) : y ∈ I } for some open I ⊂ R and some function 9 ∈ C∞(I ) satisfying

∥9∥C1 ≤ Cε0, ∥9∥C l ≤ Cl,

with global constants C and Cl .

• S has the form (5-13) with a phase function and a symbol having C l norms bounded by global constants
(depending on l).

Hence, we can apply Lemma 5.8 to see that there exists b ∈ C∞c (I ) such that

S(aq,N ,θei8q,θ/h)= bei9/h
+ O(hN )L2,

and b satisfies the same type of bounds as aq,N ,θ ; namely,

∥b∥C l ≤ Cl,N h−C0 log B .

Moreover, since d(supp aq,N ,θ ,R \ Iq,θ ) ≥ δ, there exists δ′ > 0 such that d(supp b,R \ I ) ≥ δ′. The
constants Cl,N and δ′ are global constants. Since N is arbitrary, to conclude the proof of Lemma 5.11, it
remains to show that

1R\0+q (hτ )(h Dy)(bei9/h)= O(hN ). (5-28)

To do so, we make use of the fine Fourier localization statement from Proposition 2.7 in [Dyatlov et al.
2022]. We state it for convenience but refer the reader to the quoted paper for the proof.

Proposition 5.13. Let U ⊂ Rn open, K ⊂ U compact, 8 ∈ C∞(U ) and a ∈ C∞c (U ) with supp a ⊂ K .
Assume that there is a constant C0 and constants CN , N ∈ N∗, such that

vol(K )≤ C0, (5-29)

d(K ,Rn
\U )≥ C−1

0 , (5-30)

max
0<|α|≤N

sup
U
|∂α8| ≤ CN , N ≥ 1, (5-31)

max
0≤|α|≤N

sup
U
|∂αa| ≤ CN , N ≥ 1. (5-32)

Finally, assume that the projection of the Lagrangian {(x,8′(x)) : x ∈U } on the momentum variable has
a diameter of order hτ ; namely,

diam(�8)≤ C0hτ , where �8 = {8′(x) : x ∈U }. (5-33)

Define the Lagrangian state

u(x)= a(x)ei8(x)/h
∈ C∞c (U )⊂ C∞c (R

n).
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Then, for every N ≥ 1, there exists C ′N such that

∥1Rn\�8(hτ )u∥ ≤ C ′N hN , (5-34)

where C ′N depends on τ, n, N ,C0,CN ′ for some N ′(n, N , τ ).

When U = I, K = supp b, a = hC0 log Bb, 8=9, the assumptions (5-29) to (5-32) are satisfied for
some global constants C0,CN . In this case,

�9 = {9
′(y) : y ∈ I } = η

(
κ(V+q )∩ κ ◦ Fn(Lq0,θ )

)
.

Since �9 ⊂ 0+q , to prove (5-28), it is enough to prove it with 0+q replaced by �9 and to apply the last
proposition, it remains to check that the last point (5-33) is satisfied. Since who can do more, can do less,
we will show that

diam(0+q )≤ C0hτ .

This is where the strong assumption on the adapted charts will play a role. To insist on this role, we state
the following lemma:

Lemma 5.14. Let C0 > 0. Assume that ρ1 ∈ T ∩Uρ0 satisfies d(ρ1,Wu(ρ0)) ≤ C0hb. If ρ2 ∈ Wu(ρ1),
then, for some global constant C > 0,

|η(κ(ρ1))− η(κ(ρ2))| ≤ CC1+β
0 h. (5-35)

Proof. Recall that the chart (κ,Uρ0) is the one centered at ρ0, given by Lemma 3.23. In this chart,
κ(Wu(ρ1)) is almost horizontal; we have

κ(Wu(ρ1))= {y : g(y, ζ(ρ1)), y ∈�},

where � is some open bounded set of R, with g and ζ satisfying the properties of Lemma 3.23. Hence,
to prove the lemma, it is enough to estimate |g(y, ζ(ρ1))− g(0, ζ(ρ1))|, y ∈�. Since ζ(ρ0)= 0 and ζ is
Lipschitz, |ζ(ρ1)| ≤ C0hb. Indeed, if ρ ′0 ∈Wu(ρ0) satisfies d(ρ ′0, ρ1)≤ 2C0hb,

|ζ(ρ1)| = |ζ(ρ1)− ζ(ρ
′

0)| ≤ Cd(ρ1, ρ
′

0)≤ CC0hb.

Then, we have

|g(y, ζ(ρ1))− g(0, ζ(ρ1))| = |g(y, ζ(ρ1))− g(y, 0)− ∂ζ g(y, 0)ζ(ρ1)|

=

∣∣∣∣∫ ζ(ρ1)

0
(∂ζ g(y, ζ )− ∂ζ g(y, 0)) dζ

∣∣∣∣
≤

∣∣∣∣∫ ζ(ρ1)

0
Cζ β dζ

∣∣∣∣≤ Cζ(ρ1)
1+β
≤ CC1+β

0 hb(1+β).

In the first equality, we’ve used the facts that g(0, ζ )= ζ , ∂ζ g(y, 0)= 1 and g(y, 0)= 0. This concludes
the proof since, by definition (see (4-2)), b(1+β)= 1. □

Remark. This lemma explains our definition of b.



SPECTRAL GAP FOR OBSTACLE SCATTERING IN DIMENSION 2 1109

From this lemma, we can deduce (5-33). Indeed, recall that there exists ρq ∈ T such that V+q ⊂
Wu(ρq)(Chτ ). If ρ1, ρ2 ∈ V+q , there exists ρ ′1, ρ

′

2 ∈Wu(ρq) such that

d(ρi , ρ
′

i )≤ Chτ , i = 1, 2.

Hence, one can estimate

|η(κ(ρ1))− η(κ(ρ2))| ≤ |η(κ(ρ1))− η(κ(ρ
′

1))|︸ ︷︷ ︸
≤Chτ

+ |η(κ(ρ ′1))− η(κ(ρ
′

2))|︸ ︷︷ ︸
≤Ch

+ |η(κ(ρ2))− η(κ(ρ
′

2))|︸ ︷︷ ︸
≤Chτ

.

The inequality in the middle is a consequence of the previous lemma. Indeed, ρ ′1, ρ
′

2 ∈Wu(ρ
′

1), where
(recall that τ > b)

d(ρ ′1,Wu(ρ0))≤ d(ρ1, ρ
′

1)+ d(ρ1,Wu(ρ0))≤ Chτ +Chb
≤ 2Chb.

5D. Reduction to a fractal uncertainty principle. We go on the work started in the last subsection and
we keep the same notation. By Propositions 5.3 and 5.12, we can write

MN0UQ =MN0 B ′B Oph(χh)4a B ′1�+(h Dy)BUQ+ O(h∞)L2→L2, (5-36)

where

• χh ∈ Scomp
δ2

, χh ≡ 1 on T loc
−
(2C2hδ2) and suppχh ∈ T loc

−
(4C2hδ2) (see Proposition 5.3 and before).

• 4a =Oph(χ̃a), where χ̃a ∈C∞c (U0) is a cut-off function such that χ̃a ≡ 1 on F(suppχa) and supp χ̃a ⊂

V+a (see the beginning of Section 5C).

• �+ = η(κ(V+Q))(h
τ ) (see (5-23) and Proposition 5.12).

In Vρ0 , UQ is microlocalized in a region {|η| ≤ Chb
}. To work with symbols in usual symbol classes, we

will rather consider a bigger region {|η| ≤ hδ0}. For this purpose, let us define

0− = y
(
κ(V+a ∩ T

loc
−
(4C2hδ2))∩ {|η| ≤ hδ0}

)
, �− = 0−(hδ0). (5-37)

Since V+Q ⊂ Wu(ρ0)(Chb), we have �+ ⊂ [−C0hb,C0hb
] ⊂ [−hδ0, hδ0] for h small enough. By

Lemma 5.2, there exists χ+(η) := χ+(η; h) ∈ C∞c (R) such that

• χ+ ≡ 1 on �+,

• suppχ+ ⊂ [−hδ0, hδ0],

• for all k ∈ N and η ∈ R, |χ (k)+ (η)| ≤ Ckh−δ0k for some global constants Ck ,

and χ+ satisfies
1�+(h Dy)= χ+(h Dy)1�+(h Dy).

Let’s now consider the following subset of 0−:

0̃− = y
(
κ(V+a ∩ T

loc
−
(4C2hδ2))∩ {η ∈ suppχ+}

)
.

The inclusion 0̃− ⊂ 0− comes from the support property of χ+.
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rr

hδ0

χ+
�+

−hδ0

0̃−

0−

�−

Figure 15. The set �+ is represented on the η-axis, with the support of the function χ+.
On the y-axis, we project the gray set κ(V+a ∩ T loc

−
(4C2hδ2)) to obtain both 0− and 0̃−

depending on the size of the η-window. The larger set �− is also represented in red.

Using again Lemma 5.2, we construct a family χ−(y) := χ−(y; h) ∈ C∞c (R) such that

• χ− ≡ 1 on 0̃−,

• suppχ− ⊂�− = 0−(hδ0),

• for all k ∈ N and y ∈ R, |χ (k)− (y)| ≤ Ckh−δ0k ,

and χ− allows us to write
χ−(y)1�−(y)= χ−(y).

We encourage the reader to use Figure 15 to fix the ideas. We now claim that

MN0UQ =MN0 Oph(χh)4a B ′χ−(y)1�−(y)1�+(h Dy)BUQ+ O(h∞)L2→L2 . (5-38)

Due to the polynomial bounds on ∥MN0∥ and ∥UQ∥, it is then enough to show that

Oph(χh)4a B ′(1−χ−(y))χ+(h Dy)= O(h∞).

Using Egorov’s theorem in 9δ2(R), we see that 40 := B Oph(χh)4a B ′ is in 9δ2(R) and WFh(40) ⊂

κ(suppχa ∩ suppχh). We now observe that

(y, η) ∈WFh(40)∩WFh(1−χ−(y))∩WFh(χ+(h Dy))

=⇒ (y, η) ∈ κ(suppχa ∩ suppχh), η ∈ suppχ+, y ̸∈ 0̃−,
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Figure 16. Example of a porous set. Its construction is based on a Cantor-like set. Red
intervals correspond to choices of I, blue ones correspond to J.

But the first two conditions imply that y ∈ 0̃−. Hence,

WFh(40)∩WFh(1−χ−(y))∩WFh(χ+(h Dy))=∅.

By the composition formulas in 9δ0(R), we have 40(1 − χ−(y))χ+(h Dy) = O(h∞). Note that the
constants in O(h∞) depend on the seminorms of χ±, χh and χa . Due to their construction, the seminorms
of χ± and χh are bounded by global constants. As a consequence, the constants O(h∞) are global
constants.

This proves (5-38). Recalling the bound

∥MN0∥L2→L2 ≤ ∥α∥N0(1+ o(1)), ∥UQ∥L2→L2 ≤ C |log h|∥α∥N1
∞
,

we see that the proof of Proposition 4.23 and hence of Proposition 4.2, has been reduced to proving the
following proposition.

Proposition 5.15. With the above notation, There exist γ > 0 and h0 > 0 such that,

for all h ≤ h0, ∥1�−(y)1�+(h Dy)∥L2→L2 ≤ hγ . (5-39)

Remark. Note γ and h0 are global; they do not depend on the particular Q ⊂ Q(n, a) satisfying the
conditions of Proposition 4.23, nor on n.

The proof of this proposition is the aim of the next section and relies on a fractal uncertainty principle.

6. Application of the fractal uncertainty principle

The fractal uncertainty principle, first introduced in [Dyatlov and Zahl 2016] and further proved in full
generality in [Bourgain and Dyatlov 2018], is the key tool for our decay estimate. We’ll use the slightly
more general version proved and used in [Dyatlov et al. 2022].

6A. Porous sets. See for instance Figure 16 for an example. We start by recalling the definition of porous
sets and then we state the version of the fractal uncertainty principle we’ll use.

Definition 6.1. Let ν ∈ (0, 1) and 0≤ α0 ≤ α1. We say that a subset �⊂R is ν-porous on a scale from α0

to α1 if, for every interval I ⊂ R of size |I | ∈ [α0, α1], there exists a subinterval J ⊂ I of size |J | = ν|I |
such that J ∩�=∅.

The following simple lemma shows that when one fattens a porous set, one gets another porous set.
For its (very elementary) proof, see [Dyatlov et al. 2022, Lemma 2.12].



1112 LUCAS VACOSSIN

Lemma 6.2. Let ν ∈ (0, 1) and 0 ≤ α0 < α1. Assume that α2 ∈ ]0, να1/3] and �⊂ R is ν-porous on a
scale from α0 to α1. Then, the neighborhood �(α2) = �+ [−α2, α2] is (ν/3)-porous on a scale from
max(α0, 3α2/ν) to α1.

The notion of porosity can be related to the different notions of fractal dimensions. Let us recall the
definition of the upper-box dimension of a metric space (X, d). We denote by NX (ε) the minimal number
of open balls of radius ε needed to cover X . Then, the upper-box dimension of X is defined by

dim X := lim sup
ε→0

log NX (ε)

− log ε
. (6-1)

In particular, if δ > dimX , there exists ε0 > 0 such that for every ε≤ ε0, NX (ε)≤ ε
−δ. This observation

motivates the following lemma:

Lemma 6.3. Let �⊂ R. Suppose that there exist 0< δ < 1, C > 0 and ε0 > 0 such that,

for all ε ≤ ε0, N�(ε)≤ Cε−δ.

Then, there exists ν = ν(δ, ε0,C) such that � is ν-porous on a scale from 0 to 1.

Remark. The proof will give an explicit value of ν. This quantitative statement will be important in the
sequel to ensure the same porosity for all the sets Wu/s(ρ0)∩ T .

Proof. Let us set T =⌊max((6ε0)
−1, (6δC)1/(1−δ))⌋+1 and ν = (3T )−1. We will show that � is ν-porous

on a scale from 0 to 1. Let I ⊂ R be an interval of size |I | ∈ ]0, 1]. Cut I into 3T consecutive closed
intervals of size ν: J0, . . . , J3T−1. We argue by contradiction and assume that each of these intervals
does intersect �. Let us show that

N�(ν/2)≥ T . (6-2)

Assume that U1, . . . ,Uk is a family of open intervals of size ν covering �. For i = 0, . . . , T − 1, there
exists xi ∈ J3i+1 and ji ∈ {1, . . . , k} such that xi ∈Uji . It follows that Uji ⊂ J3i ∪ J3i+1∪ J3i+2 and hence
i ̸= l =⇒Uji ∩Ujl =∅. The map i ∈ {0, . . . , T − 1} 7→ ji ∈ {1, . . . , k} is one-to-one, and it gives (6-2).
Since T ≥ 1/(6ε0), we have ν/2≤ ε0. As a consequence,

T ≤ N (ν/2)≤ C(6T )δ,

which implies T 1−δ
≤ C6δ. This contradicts the definition of T. □

In Section A5 of the Appendix, we give a result in the other way, namely, porous sets down to scale 0
have an upper-box dimension strictly smaller than 1.

For further use, we also record the easy lemma:

Lemma 6.4. Assume (X, d), (Y, d ′) are metric spaces and f : X→Y is C-Lipschitz. Then, for every ε>0,

N f (X)(ε)≤ NX (ε/C).

In particular, if NX (ε)≤ Cδ
1ε
δ for ε ≤ ε0, then, for ε ≤ Cε0, we have N f (X)(ε)≤ (C1C)δε−δ.
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6B. Fractal uncertainty principle. We state here the version of the fractal uncertainty principle we’ll
use. This version is stated in Proposition 2.11 in [Dyatlov et al. 2022]. The difference with the original
version in [Bourgain and Dyatlov 2018] is that it relaxes the assumption regarding the scales on which the
sets are porous. We refer the reader to [Dyatlov 2019] to an overview on the fractal uncertainty principle
with other references and applications.

Proposition 6.5 (fractal uncertainty principle). Fix numbers γ±0 , γ
±

1 such that

0≤ γ±1 < γ±0 ≤ 1, γ+1 + γ
−

1 < 1< γ+0 + γ
−

0

and define
γ :=min(γ+0 , 1− γ−1 )−max(γ+1 , 1− γ−0 ).

Then, for each ν > 0, there exists β = β(ν) > 0 and C = C(ν) such that the estimate

∥1�−Fh1�+∥L2(R)→L2(R) ≤ Chγβ (6-3)

holds for all 0< h ≤ 1 and all h-dependent sets �± ⊂ R which are ν-porous on a scale from hγ
±

0 to hγ
±

1 .

Remark. In the sequel, we will use this result with γ±1 = 0. In this case, the condition on γ±0 becomes
γ−0 + γ

+

0 > 1 and the exponent γ is γ−0 + γ
+

0 − 1. This condition can be interpreted as a condition of
saturation of the standard uncertainty principle: a rectangle of size hγ

+

0 × hγ
−

0 will be subplanckian.

6C. Porosity of �+ and �−. Since we want to apply Proposition 6.5 to prove Proposition 5.15, we
need to show the porosity of the sets �± defined in (5-23) and (5-37). The main tool is the following
proposition.

Proposition 6.6. There exist δ ∈ [0, 1[, C > 0 and ε0 > 0 such that, for every ρ0 ∈ T , if X =
Wu/s(ρ0)∩ T ∩Uρ0 ,

NX (ε)≤ Cε−δ for all ε ≤ ε0.

Remark. Recall that Wu/s(ρ0) is a local unstable (resp. stable) manifold at ρ0, and in particular a single
smooth curve. Uρ0 is the domain of the chart adapted κρ0 (see Lemma 3.23).

Roughly speaking, this proposition says that the upper-box dimension of the sets Wu/s(ρ)∩T , the trace
of T along the stable and unstable manifolds, is strictly smaller than 1. This condition on the upper-box
dimension is a fractal condition. In our case, we need uniform estimates on the numbers NX (ε) for
X = Wu/s(ρ)∩ T . This uniformity is a consequence of the fact that the holonomy maps are C1 with
uniform C1 bounds (and thus Lipschitz, which is enough to conclude). This result is clearly linked with
Bowen’s formula, which has been proved in different contexts and links the dimension of X with the
topological pressure of the map φu = − log |J 1

u |. This is where the assumption (Fractal) is used. This
proposition is proved in Section A4 of the Appendix where we borrow the arguments of [Barreira 2008,
Section 4.3] to get the required bounds.

From the Proposition 6.6, we get:

Corollary 6.7. There exists ν > 0 such that, for every ρ0 ∈ T , the sets y ◦ κ(Wu(ρ0) ∩ T ∩Uρ0) and
ζ(Ws(ρ0)∩ T ∩Uρ0) are ν-porous on a scale from 0 to 1.
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Proof. The maps y ◦ κ and ζ are C-Lipschitz for a global constant C . As a consequence, the previous
lemma and Lemma 6.4 give,

for all ε ≤ ε0/C, N�(ε)≤ Cδε−δ, where �= y ◦ κ(Wu(ρ0)∩ T ∩Uρ0) or ζ(Ws(ρ0)∩ T ∩Uρ0).

Applying Lemma 6.3, the ν-porosity is proved for some ν = ν(δ,C, ε0). □

To conclude, we use this corollary to show the porosity of �±. We start by studying �+.

Lemma 6.8. There exists a global constant C > 0 such that

�+ ⊂ ζ(Ws(ρ0)∩ T ∩Uρ0)(Chτ ).

Proof. Since �+ = 0+(hτ ), it is enough to show the same statement for 0+ = η ◦ κρ0(V
+

Q).
Let ρ ∈V+Q . By assumption on Q and ρ0, d(ρ,Wu(ρ0))≤Chb. Since ρ ∈Vq for some q ∈Q, there exists

ρ1 ∈ T such that d(ρ,Wu(ρ1))≤ C/J+q (ρ1)≤ Chτ. Fix ρ2 ∈Wu(ρ1) such that d(ρ, ρ2)≤ Chτ. Then

|η ◦ κ(ρ)− ζ(ρ1)| = |η ◦ κ(ρ)− ζ(ρ2)| ≤ |η ◦ κ(ρ)− η ◦ κ(ρ2)| + |η ◦ κ(ρ2)− ζ(ρ2)|.

Since η ◦ κ is Lipschitz, we can control the first term by

|η ◦ κ(ρ)− η ◦ κ(ρ2)| ≤ Cd(ρ, ρ2)≤ Chτ .

To estimate the second term, the same arguments used after Lemma 5.14 show that

|η ◦ κ(ρ2)− ζ(ρ2)| ≤ diam[η ◦ κ(Wu(ρ2)∩Uρ0)] ≤ Ch.

It gives |η◦κ(ρ)−ζ(ρ1)| ≤Chτ. To conclude, note that there exists a unique point ρ ′1 ∈Ws(ρ0)∩Wu(ρ1)

and ζ(ρ1)= ζ(ρ
′

1). □

As a simple corollary of this lemma and of Lemma 6.2, we get:

Corollary 6.9. �+ is ν/3-porous on a scale from (3/ν)Chτ to 1.

We now turn to the study of �−. We can state and prove similar results with different scales of porosity.
Recall that δ2 = (λ0/λ1)δ0.

Lemma 6.10. There exists a global constant C > 0 such that

�− ⊂ y ◦ κ(Wu(ρ0)∩ T ∩Uρ0)(Chδ2).

Proof. Since �− = 0−(hδ0) with δ0 > δ2, it is enough to prove it for

0− = y ◦ κ
(
V+a ∩ T

loc
−
(4C2hδ2)∩ {|η| ≤ hδ0}

)
.

Recall that T loc
−
⊂

⋃
ρ∈T Ws(ρ). Since in V+a all the local stable leaves intersect Wu(ρ0), we have

V+a ∩ T
loc
−
(4C2hδ2)⊂

⋃
ρ∈Wu(ρ0)∩T

Ws(ρ)(4C2hδ2).

Fix ρ ∈Wu(ρ0)∩T . Since dκ(Es(ρ0))=R∂η, if ε0 is small enough, we can write κ(Ws(ρ))={(Gρ(η), η) :

η∈O}, where O is some open subset of R and Gρ :O→R is C∞. In particular, it is Lipschitz with a global
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Lipschitz constant C . If |η| ≤ hδ0 , then |Gρ(η)−Gρ(0)| ≤ Chδ0 . Recall that κ(Wu(ρ0)∩Uρ0)⊂ R×{0}
and hence, Gρ(0)= y ◦κ(ρ). As a consequence, if ρ1 ∈Ws(ρ)∩{|η| ≤ hδ0}, writing κ(ρ1)= (Gρ(η), η),
we have

|y ◦ κ(ρ1)− y ◦ κ(ρ)| = |Gρ(η)−Gρ(0)| ≤ Chδ0 .

Then, if ρ2 ∈Ws(ρ)(4C2hδ2), since κ is Lipschitz with global Lipschitz constant,

|y ◦ κ(ρ2)− y ◦ κ(ρ)| ≤ Chδ2 +Chδ0 ≤ Chδ2 .

This shows that y ◦ κ(ρ2) ∈ y ◦ κ(Wu(ρ0)∩ T )(Chδ2) and concludes the proof. □

As a corollary, using Lemma 6.2, we get:

Corollary 6.11. �− is ν/3-porous on a scale from (3/ν)Chδ2 to 1.

We can now prove the last Proposition 5.15 needed to end the proof of Proposition 4.2. This is a
consequence of the porosity of �± and the fractal uncertainty principle. To apply Proposition 6.5, we
need to ensure that the scale condition is satisfied, that is to say

δ2+ τ > 1,

which has been supposed when defining τ in (4-5) and (4-6). Proposition 4.2 then comes with any
0< γ < (δ2+ τ − 1)β(ν/3).

Appendix

A1. Holder regularity for flows.

Lemma A.1. Let U ⊂ Rn be open and Y :U → Rn be a complete C1+β vector field. We denote by φt(x)
the flow generated by Y. Then, for any T ∈ R and K ⊂U compact, the map

(t, x) ∈ [−T, T ]× K 7→ φt(x)

is C1+β .

Proof. We fix T, K as in the statement. We’ll use the same constants C,C ′ at different places, with
different meaning. In addition to Y, they will depend on T, K .

Since Y is C1, Cauchy–Lipschitz theorem gives the local existence and uniqueness of the flow. It is
standard that the flow is also C1 and satisfies

∂t dφt(x)= dY (φt(x)) ◦ dφt(x). (A-1)

Let’s define At(x)= dφt(x) and 4(t, x)= dY (φt(x)). The assumption on Y implies that 4 is β-Hölder.
Fix (t0, x0), (t1, x1) ∈ [−T, T ]× K and let’s estimate ∥At1(x1)− At0(x0)∥. We split it into two pieces

and control it with the triangle inequality:

∥At1(x1)− At0(x0)∥ ≤ ∥At1(x1)− At0(x1)∥+∥At0(x1)− At0(x0)∥.
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It is not hard to control the first term of the right-hand side using (A-1) since

∥At1(x1)− At0(x1)∥ =

∣∣∣∣∫ t1

t0
4(s, x1) ◦ As(x1) ds

∣∣∣∣≤ C |t1− t0|.

To estimate the second term, we estimate

∥∂t(At(x1)− At(x0))∥ ≤ ∥(4(t, x1)−4(t, x0)) ◦ At(x1)+4(t, x0) ◦ (At(x1)− At(x0))∥

≤ Cd(x0, x1)
β
+C ′∥At(x1)− At(x0)∥.

By Gronwall’s lemma,

∥At0(x1)− At0(x0)∥ ≤ Cd(x0, x1)
βeC ′t0 ≤ Cd(x0, x1)

β . □

A2. Proof of Lemma 3.24. We give the missing proof of Lemma 3.24 and widely use the notation
of the Section 3E. Its proof uses the construction of eu in the proof of Theorem 5. It is inspired by
techniques usually used to show the unstable manifold theorem; see for instance [Dyatlov 2018]. In
fact, the smoothness of y 7→ f0(y, 0) is a direct consequence of the smoothness of the unstable manifold
Wu(ρ0). It was not clear for us if it was possible to easily deduce from this the required smoothness of
y 7→ ∂η f0(y, 0). This is why we decided to give a proof of this proposition. It uses the fact that eu has been
constructed to satisfy RdρF(eu(ρ))=Reu(F(ρ)) for ρ in a small neighborhood of T . To show the lemma,
we need information along all the orbit of ρ0. For this purpose, we introduce the following, for m ∈ Z:

• ρm = Fm(ρ0).

• κm :Um→ Vm ⊂ R2 the chart given by Lemma 3.22 centered at ρm and we assume that the relation
RdρF(eu(ρ))= Reu(F(ρ)) holds for ρ ∈Um . We will denote by (ym, ηm) the variable in Vm .

• Gm = κm+1 ◦ F ◦ κ−1
m : Vm→ Vm+1.

• A reparametrization of the vector field (κm)∗eu : R(κm)∗eu =Rem , where em(ym, ηm)=
t(1, sm(ym, ηm)),

where sm is a slope function which is known to be C1+β.

Note that sm(ym, 0)= 0 due to the fact that κm(Wu(ρm))⊂ R×{0}. The hyperbolicity assumption on F
and the properties of κm allow us to write

Gm(ym, ηm)= (λm ym +αm(ym, ηm), µmηm +βm(ym, ηm)),

where

• For some ν < 1, 0≤ |µm | ≤ ν, |λm | ≥ ν
−1 for all m ∈ N.

• αm(0, 0)= βm(0, 0)= 0.

• βm(ym, 0)= 0 for (ym, 0) ∈ Vm .

• dαm(0, 0)= dβm(0, 0)= 0.

• We can assume that Um are sufficiently small neighborhoods of ρm so that βm, αm = O(δ0)C1(Um) for
some small δ0 > 0.
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The property dρF(eu(ρ)) ∈ Reu(F(ρ)) implies that d(ym ,ηm)Gm(em(ym, ηm)) ∈ Rem+1(Gm(ym, ηm)).
As a consequence, the transformation of the slopes gives an equation satisfied by the family of slopes
(sm)m∈Z:

sm+1(Gm(ym, ηm))= Qm(ym, ηm, sm(ym, ηm)), (A-2)

where Qm is the smooth function

Qm(ym, ηm, s)=
s× (µm + ∂ηmβm(ym, ηm))+ ∂ymβm(ym, ηm)

λm + ∂ymαm(ym, ηm)+ s× ∂ηmαm(ym, ηm)
.

Writing Gm(ym, ηm)= (ym+1, ηm+1), we deduce by differentiation of (A-2) with respect to ηm+1 (we
omit the point of evaluation of the maps involved in the right-hand side to alleviate the line)

∂ηm+1sm+1(ym+1, ηm+1)= ∂ym Qm × ∂ηm+1 ym + ∂ηm Qm × ∂ηm+1ηm

+ ∂s Qm × (∂ym sm × ∂ηm+1 ym + ∂ηm sm × ∂ηm+1ηm). (A-3)

This last equation gives the transformation of vertical derivative of the slope. We now evaluate this identity
at the point (ym+1, 0). In the following lines, when the variables ym and ym+1 appear in the same equation,
we implicitly assume that they are related by (ym+1, 0)= Gm(ym, 0), namely ym+1 = λm ym +αm(ym, 0).
We remark that due to the fact that βm(ym, 0) = 0, we have Qm(ym, 0, 0) = 0 and the first term of the
right-hand side vanishes. The term ∂ym sm also vanishes at (ym, 0). We will write

σm(ym)= ∂ηm sm(ym, 0),

hm(ym)= ∂ηm Qm(ym, 0, 0)× ∂ηm+1ηm(ym+1, 0),

cm(ym)= ∂s Qm(ym, 0, 0)× ∂ηm+1ηm(ym+1, 0).

This notation allows us to rewrite (A-3) at (ym+1, 0):

σm+1(ym+1)= hm(ym)+ cm(ym)× σm(ym). (A-4)

We observe that |∂ηm+1ηm(ym, 0)| = |µ−1
m + O(δ0)C0 | and after some computations, we see that

∂s Qm(ym, 0, 0)=
µm

λm
+ O(δ0)C0 .

As a consequence,
|cm(ym)| = |λ

−1
m | + O(δ0)C0 ≤ ν1, (A-5)

where, if δ0 is small enough, we can fix ν1 < 1. Moreover, cm and hm are smooth functions and their C N

norms are bounded uniformly in m, and actually by global constants depending only on F. Furthermore,
ym 7→ ym+1 is given by ym 7→ λm y+αm(ym, 0) and is an expanding diffeomorphism provided δ0 is small
enough.

We fix some small ε such that (−ε, ε)×{0} ⊂Um for all m. Let’s define I = (−ε, ε). We will make
use of the fiber contraction theorem to show that ym ∈ I 7→ σm(ym) is smooth for every m, with uniform
C N norms. For this purpose, let us introduce the following notation:

• C0 ≤ C1 ≤ · · · ≤ CN ≤ · · · a family of constants which will be specified in the sequel.
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• The complete metric space X N = {γ ∈ C N (I ) : ∥γ ∥Ck ≤ Ck, 0≤ k ≤ N } equipped with the C N norm.

• The auxiliary metric space X aux
N = {γ ∈ C0(I ) : ∥γ ∥∞ ≤ CN } equipped with the C0 norm.

• The complete metric space EN = (X N )
Z equipped with the metric

d(γ1, γ2)= sup
m∈Z

∥(γ1)m − (γ2)m∥C N .

• Its auxiliary counterpart Eaux
N = (X

aux
N )Z equipped with the metric

d(γ1, γ2)= sup
m∈Z

∥(γ1)m − (γ2)m∥C0 .

For γ ∈ EN , let’s define T γ with the formula (A-4):

(T γ )m+1(ym+1)= (hm + cmγm)(ym).

Since ym 7→ ym+1 is expanding, we see that ym+1 ∈ I =⇒ ym ∈ I. Hence, (T γ )m+1 is well-defined on I.
Our aim is to show by induction on N that for every N ∈ N, σ := (σm)m∈Z is in EN and is an attractive
fixed point of T : EN → EN .

We start with the case N = 0. We need to check that T (E0)⊂ E0. It will be the case as soon as

C0ν1+ sup
m
∥hm∥∞ ≤ C0.

For instance, take C0 = 2 supm ∥hm∥∞/(1− ν1). Due to the fact that ∥cm∥C0(I ) ≤ ν1, T is a contraction
with contraction rate ν1 and hence T : E0→ E0 has a unique attractive fixed point. This fixed point is
necessarily σ since σ satisfies (A-4).

Arguing by induction, we assume that σ ∈ EN , T (EN )⊂ EN and σ is an attractive fixed point for T
and we want to show that the same is true for N + 1. For this purpose, suppose that γ ∈ EN is of
class C N+1. Analyzing the formula defining T, we see that can write, for m ∈ Z,

(T γ )(N+1)
m (ym+1)= h(N+1)

m (ym)+ cm(ym)×

(
∂ym+1

∂ym
(ym)

)−N−1

× γ (N+1)
m (ym)

+ RN ,m(ym, γm(ym), . . . , γ
(N )
m (ym)), (A-6)

where RN ,m : I × [−C0,C0] × · · · × [−CN ,CN ] → R is a polynomial in the last N + 1 variables with
smooth coefficients in ym , uniformly bounded in m. As a consequence, there exists a global constant C ′N+1
such that

sup
m

sup
I×[−C0,C0]×···×[−CN ,CN ]

|RN ,m(ym, τ0, . . . , τN )| ≤ C ′N+1.

We can then choose CN+1 ≥ CN such that

sup
m
∥hm∥C N+1 +C ′N+1+ ν1CN+1 ≤ CN+1,

which ensures that T : EN+1→ EN+1. We now wish to use the fiber contraction theorem (Theorem 6).
If γ ∈ EN , we define the map Sγ : Eaux

N+1→ Eaux
N+1 by

(Sγ θ)m+1(ym+1)=h(N+1)
m (ym)+cm(ym)×

(
∂ym+1

∂ym
(ym)

)−N−1

×θm(ym)+RN ,m(ym,γm(ym), . . . ,γ
N

m (ym)).
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Due to the choice of CN+1, we see that Sγ is well-defined and since we have∣∣∣∣∂ym+1

∂ym
(ym)

∣∣∣∣≥ 1

and ∥cm∥C0(I ) ≤ ν1, we know Sγ is a contraction with contraction rate ν1 for every γ ∈ EN . In particular,
the map Sσ has a unique fixed point σN+1 ∈ Eaux

N+1.
The fiber contraction theorem (Theorem 6) applies to the continuous map

TN : (γ, θ) ∈ EN × Eaux
N+1 7→ (T γ, Sγ θ) ∈ EN × Eaux

N+1

and (σ, σN+1) is an attractive fixed point of TN in EN × Eaux
N+1.

In particular, if γ ∈ EN+1, then γ̃ := (γ, γ (N+1)) ∈ EN × Eaux
N+1 and

lim
p→+∞

T p
N γ̃ = (σ, σN+1) in EN × Eaux

N+1.

However, by the definition of Sγ ,

T p
N γ̃ = (T

pγ, (T pγ )(N+1)).

Hence, for every fixed m, we know (T pγ )m converges to σm in X N and (T pγ )
(N+1)
m converges uniformly

on I to σN+1. This proves that σ is C N+1 and σ (N+1)
=σN+1. We conclude that σ ∈ EN+1 is then an attrac-

tive fixed point of T : EN+1→ EN+1, which proves the induction and concludes the proof of Lemma 3.24.

A3. Proof of Lemma 5.9. We give the missing proof of Lemma 5.9. The proof is a precise analysis of
the iteration formula (5-17). We adopt the notation introduced for Lemma 5.9. We argue by induction on
J to show the property PJ : the bound (5-18) is valid for all j ≤ J and, for all 1≤ i ≤ n− 1, l ∈ N, with
some constants C j,l .

1. Base case. Let us start with P0. The iteration formula (5-17) implies

ai,0(xi )=

i∏
l=1

fl(xl).

Hence, the bound ∥ai,0∥C0 ≤ (Bν1/2)i is obvious and we can set C0,0 = 1. We now argue by induction
on i and prove the property P0,i : the bound (5-18) is valid for j = 0, i and for all l ∈ N, for some
constants C j,l . These bounds are trivially true for i = 0 and are direct consequences of Lemma 5.8 for
i = 1. Suppose that the property holds for i − 1 for some i ≥ 1 and let’s show it for i .

1.1. Case l = 1. Let us first deal with l = 1 and compute the derivative of ai,0, using the formula
ai,0(xi )= fi (xi )ai−1,0(xi−1):

a′i,0(xi )= f ′(xi )ai−1,0(xi−1)+ fi (xi )a′i−1,0(xi−1)

(
∂xi−1

∂xi

)
.

We use the (weak) bound |∂xi−1/∂xi | ≤ 1 and the property P0,i−1 to show that

∥ai,0∥C1 ≤ C(Bν1/2)i−1
+C0,1(Bν1/2)× (Bν1/2)i−1i ≤ C0,1(Bν1/2)i (i + 1),

assuming that C0,1 > C(Bν1/2)−1.



1120 LUCAS VACOSSIN

1.2. General case for l > 0. We now come back to the general case l > 0. By using the formula
ai,0(xi )= fi (xi )ai−1,0(xi−1), one sees that we can write a(l)i,0 in the form

a(l)i,0(xi )= fi (xi )a
(l)
i−1,0(xi−1)

(
∂xi−1

∂xi

)l

+ O(∥ai−1,0∥C l−1).

The constants appearing in the O depend on C l norms of fi and φi , which, by assumption are controlled
by some uniform C ′l . Hence, using the assumption P0,i−1,

|a(l)i,0(xi )| ≤ (Bν1/2)∥ai−1,0∥C l

(
∂xi−1

∂xi

)l

+C ′l∥ai−1,0∥C l−1

≤ C0,l(Bν1/2)(Bν1/2)i−1i l
+C ′l C0,l−1(Bν1/2)i−1i l−1

≤ C0,l(Bν1/2)i (i + 1)l,

assuming that C0,l is chosen bigger than (1/ l)C ′l C0,l−1(Bν1/2)−1. As a consequence, we can build
constants satisfying these conditions by defining inductively

C0,l =max
(
C0,l−1,

1
l

C ′l C0,l−1(Bν1/2)−1
)
.

This ends the proof of P0,i and hence of P0.

2. Induction step. We now assume that Pj−1 is true for some j ≥ 1 and aim at proving Pj . Again, we do
it by induction on i by proving the properties Pj,i : the bound (5-18) is true for j , i and all l ∈ N. These
bounds are trivially true for i = 0 and are direct consequences of Lemma 5.8 for i = 1. Suppose that the
property holds for i − 1 for some i ≥ 2 and let’s show it for i .

2.1 Case l = 0. Let’s start with l = 0. The iteration formula shows that

ai, j (xi )= fi (xi )ai−1, j (xi−1)+

j−1∑
p=0

L j−p,i (ai−1,p)(xi−1).

By Lemma 5.8, there exist constants C ′p,m > 0 such that

∥L p,i a∥Cm(Ii ) ≤ C ′p,m∥a∥C2p+m(Ii−1).

Hence, assuming that (5-18) holds for ai−1, j with l = 0,

∥ai, j∥∞ ≤ C j,0(Bν1/2)(Bν1/2)i−1i3 j
+

j−1∑
p=0

C ′j−p,0∥ai−1,p∥C2( j−p)

≤ C j,0(Bν1/2)i i3 j
+

j−1∑
p=0

C ′j−p,0C p,2( j−p)(Bν1/2)i−1i2( j−p)+3p

≤ C j,0(Bν1/2)i i3 j
+ i2 j (Bν1/2)i−1

j−1∑
p=0

C ′j−p,0C p,2( j−p)i p

≤ C j,0(Bν1/2)i i3 j
+ i2 j (Bν1/2)i−1[ sup

0≤p≤ j−1
C ′j−p,0C p,2( j−p)

] i j
− 1

i − 1
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≤ C j,0(Bν1/2)i i3 j
+ i3 j−1(Bν1/2)i−1[ sup

0≤p≤ j−1
C ′j−p,0C p,2( j−p)

]
C̃ j , where

i j
− 1

i − 1
≤ C̃ j i j−1,

≤ C j,0(Bν1/2)i (i + 1)3 j ,

assuming that C j,0 is chosen bigger than

K j :=
1

3 j
(Bν1/2)−1[ sup

0≤p≤ j−1
C ′j−p,0C p,2( j−p)

]
C̃ j .

As a consequence, the bounds hold for l = 0 and i, j if we set C j,0 =max(1, K j ).

2.2. Case l > 0. Consider now l > 0. As already done, one can write

a(l)i, j (xi )= fi (xi )a
(l)
i−1, j (xi−1)

(
∂xi−1

∂xi

)l

+ O(∥ai−1, j∥C l−1)+

j−1∑
p=0

(L j−p,i (ai−1,p))
(l)(xi−1).

As usual, the constants in O depend on l, j but not on i and we denote by C ′′l, j the constant in this O.
Hence, we can control

∥a(l)i, j∥∞≤C j,l(Bν1/2)(Bν1/2)i−1i l+3 j
+C ′′l, j C j,l−1(Bν1/2)i−1i l+3 j−1

+

j−1∑
p=0

∥L j−p,i (ai−1,p)∥C l

≤C j,l(Bν1/2)i i l+3 j
+C ′′l, j C j,l−1(Bν1/2)i−1i l+3 j−1

+

j−1∑
p=0

C ′j−p,l∥ai−1,p∥C l+2( j−p)

≤C j,l(Bν1/2)i i l+3 j
+C ′′l, j C j,l−1(Bν1/2)i−1i l+3 j−1

+

j−1∑
p=0

C ′j−p,lC p,l+2( j−p)(Bν1/2)i−1i l+2( j−p)+3p

≤C j,l(Bν1/2)i (i l+3 j
+i l+3 j−1 1

C j,l
(Bν1/2)−1(C ′′l, j C j,l−1+ sup

0≤p≤ j−1
C ′j−p,lC p,l+2( j−p)C̃ j

)
︸ ︷︷ ︸

C̃ j,l≤C j,l(Bν1/2)i (i+1)l+3 j

if C j,l ≥ C̃ j,l . Eventually, we define by induction on l the constants C j,l by setting C j,l =max(C j,l−1, C̃ j,l),
achieving the proof of Pj . This concludes the proof of the lemma.

A4. Upper box dimension for hyperbolic set. This subsection is devoted to the proof of Proposition 6.6.
We will simply recall some arguments which lead to give an upper bound to the upper-box dimension.
We borrow these arguments from [Barreira 2008, Section 4.3] and refer the reader to this book for the
definitions and properties of topological pressure (Definition 2.3.1), Markov partition (Definition 4.2.6)
and other references on this theory.

We’ll show that the pressure condition (Fractal) implies Proposition 6.6. We prove it for the unstable
manifolds. The proof is similar in the case of stable manifolds by changing F into F−1. We first begin by
fixing a Markov partition for T with diameter at most η0. This is possible by virtue of Theorem 18.7.3
in [Katok and Hasselblatt 1995]. We denote by R1, . . . , Rp ⊂ T this Markov partition. Here, η0 is
smaller than the diameter of the local stable and unstable manifolds and the holonomy maps H u/s

ρ,ρ′ are



1122 LUCAS VACOSSIN

well-defined for d(ρ, ρ ′)≤ η0:

H u/s
ρ,ρ′ :Ws/u(ρ)→Ws/u(ρ

′), ζ 7→ the unique point in Wu(ζ )∩Ws(ρ
′).

Due to our results on the regularity of the stable and unstable distributions, these maps are Lipschitz with
global Lipschitz constants. In particular, if an inequality of the kind

NWu(ρ)∩T (ε)≤ Cε−δ

holds for some ρ, it holds for ρ ′ if d(ρ, ρ ′)≤ η0 with C replaced by K δC where K is a Lipschitz constant
for the holonomy maps. We fix (ρ1, . . . , ρp) in (R1, . . . , Rp) and we set V =

⋃p
i=1 Wu(ρi )∩ Ri . It is

then enough to show that
dim V < 1.

Indeed, if dim V < 1 for δ ∈ (dim V, 1), there exists ε0 > 0 such that,

for all ε ≤ ε0, NV (ε)≤ ε
−δ,

and we conclude the proof of Section A4 with the above considerations on the holonomy maps.
Note δ := dim V satisfies the equation P(δφu) = 0. We will actually show that P(δφu) ≥ 0. Since

s 7→ P(sφu) is strictly decreasing and has a unique root, the assumption P(φu) < 0 will give δ < 1. We
will denote by

Ri0,...,in =

n⋂
k=0

F−i (Rik ), Vi0,...,in = Ri0,...,in ∩ V

the elements of the refined partition at time n. Similarly to the definitions of J+q , we will write

Ji0,...,in = inf{J n
u (ρ), ρ ∈ Ri0,...,in }

and write

cn(s)=
∑

i0,...,in

J−s
i0,...,in

=

∑
i0,...,in

exp max
Ri0,...,in

(
s

n−1∑
k=0

φu ◦ Fk
)

(the last equality follows from the chain rule). Properties of Markov partitions ensure that

P(sφu)= lim
n→∞

1
n

log cn(s).

Fix s > δ. Hence, there exists ε1 such that, for all ε ≤ ε1, NV (ε)≤ ε
−s.

Fix n ∈ N∗. By writing V =
⋃

i0,...,in
Vi0,...,in we have

NV (ε)≤
∑

i0,...,in

NVi0,...,in
(ε).

Note that
Fn(Vi0,...,in )⊂Wu(Fn(ρi0))∩ Rin

and
H s

Fn(ρi0 ),ρin
(Fn(Vi0,...,in ))⊂ Vin .



SPECTRAL GAP FOR OBSTACLE SCATTERING IN DIMENSION 2 1123

Hence, if we cover Vin by N sets of diameter at most ε, U1, . . . ,UN , the sets F−n
◦ H s

ρin ,Fn(ρi0 )
(Ui ),

1≤ i ≤ N, cover Vi0,...,in and have diameters at most K εJ−1
i0,...,in

. Hence,

NVin
(ε)≥ NVi0,...,in

(K εJ−1
i0,...,in

),

which gives

NV (ε)≤
∑

i0,...,in

NVin
(εK−1 Ji0,...,in ).

As a consequence, if ε < ε1K J−1
n , where Jn = supi0,...,in

Ji0,...,in , we have

NV (ε)≤
∑

i0,...,in

K s J−s
i0,...,in

ε−s
= K sε−scn(s).

By iterating this process, we see that, for all m ∈ N, if ε < ε1(K J−1
n )m ,

NV (ε)≤ ε
−s K mscn(s)m .

Hence,
log NV (ε)

− log ε
≤ s+m

log(K scn(s))
− log ε

≤ s+m
log(K scn(s))

− log(ε1(K J−1
n )m)

.

We then take the lim sup as ε→ 0 first and then pass to the limit as m→+∞ and find that

dim V ≤ s+
log K scn(s)

− log K J−1
n
.

Then, we pass to the limit s→ δ and find that log(K δcn(δ))≥ 0. Hence,

P(δφu)= lim
n→∞

1
n

log cn(δ)≥ lim
n→∞

−δ log K
n

= 0.

This ends the proof of the required inequality and gives that dim V < 1.

A5. From porosity to upper-box dimension. We have shown that sets with upper-box dimension strictly
smaller than 1 are porous. In this appendix, we show a result in the other way, namely, porous sets down
to scale 0 have an upper-box dimension strictly smaller than 1. The following lemma gives a quantitative
version of this statement. This is not useful for our use (we only needed the first implication) but we
found that it could be of independent interest. Our proof is based on the proof of Lemma 5.4 in [Dyatlov
and Jin 2018]. We adopt the same notation as in Section 6A.

Lemma A.2. Let M ∈N, ν > 0, α1 > 0. Let X ⊂ [−M,M] be a closed set and assume that X is ν-porous
on a scale from 0 to α1. Then, there exists C = C(ν, α1,M) > 0, ε0 = ε0(ν, α1,M) and δ = δ(ν) ∈ [0, 1[
such that,

for all ε ≤ ε0, NX (ε)≤ Cε−δ.

In particular,

dim X ≤ δ.
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I0,k0

I0,k0+1 I1,k0+1

I3,k0+2

. . .

I4,k0+2 I5,k0+2

. . .

I2,k0+1

I6,k0+2

. . .

I7,k0+2

. . .

I8,k0+2

Figure 17. It illustrates the tree structure of the family of intervals Ik,m with L = 3. The
porosity allows us to withdraw at least one child to any parent. The missing children are
shaded in gray.

Proof. We define L = ⌈2/ν⌉ and denote by k0 the unique integer such that

L−k0 ≤ α1 < L−k0+1.

We will let Im,k = [mL−k, (m+ 1)L−k
] for k ∈ N, m ∈ Z.

We now show by induction on k ≥ k0 that there exists Yk ⊂ Z such that

#Yk ≤ 2M Lk0(L − 1)k−k0, �⊂
⋃

m∈Yk

Im,k, (A-7)

namely, at each level k ≥ k0, one new interval Im,k does not intersect �. See Figure 17.
The case k = k0 is trivial since we simply cover � by the intervals Im,k0 for M Lk0 ≤ m < M Lk0 .
We now assume that the result is proved for k ≥ k0 and we prove it for k+ 1. Fix m ∈ Yk . We write

I =
⋃L−1

j=0 ImL+ j,k+1. We claim that among the intervals ImL+ j,k+1, at least one does not intersect �.
Indeed, since |I | ≤ L−k0 ≤ α1, the porosity of � implies the existence of an interval J ⊂ I of size ν|I | =
νL−k

≥ 2L−k−1 such that J ∩� = ∅. Since |J | ≥ 2L−k−1, J contains at least one of the intervals
ImL+ j,k+1. We denote this index by jm . We now set

Yk+1 =
⋃

m∈Yk

{mL + j : j ∈ {0, . . . , L1} \ jm}.

By the property of jm , we have �⊂
⋃

m∈Yk+1
Im,k+1 and #Yk+1 ≤ (L − 1) # Yk ≤ (L − 1)k+1−k02M Lk0 .

We now consider ε ≤ 1
2 L−k0 and write k the unique integer such that

L−k
≤ 2ε < L−k+1 i.e., k =

⌈
− log(2ε)

log L

⌉
.

Since we can cover � by 2M Lk0(L − 1)k−k0 closed intervals of size L−k, we can also cover � by
4M Lk0(L − 1)k−k0 open intervals of size 2ε. Hence,

N�(ε)≤ 4M Lk0(L − 1)k−k0 ≤ 4M
(

L
L − 1

)k0

(L − 1)− log(2ε)/log L+1
≤ Cε−δ,

with δ = log(L − 1)/log L ∈ [0, 1[ and C = 4M(L/(L − 1))k0(L − 1)1−log 2/log L . □
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