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1. Introduction

1.1. Main result. For the purposes of this paper, a mean curvature flow (MCF) soliton is a complete
surface in R3 whose evolution under the mean curvature flow is given by translation. In other words, up
to rescalings and rigid motions of the ambient spacetime, it is a solution of what we will call the MCFS
equation

H + ⟨N , ez⟩ = 0, (1-1)

where H here denotes the mean curvature of the surface, N its unit normal vector field, and ez the unit
vector in the direction of the z-axis. We refer the reader to the review of Martín, Savas-Halilaj and
Smoczyk [Martín et al. 2015] for a good overview of the theory of MCF solitons at the time of writing.

We use surgery to construct embedded MCF solitons with three ends and arbitrary finite genus. Before
stating our result, we describe the two components of our construction. First, given a positive integer g,
the Costa–Hoffman–Meeks (CHM) surface of genus g, denoted by Cg, is a properly embedded minimal
surface in R3 with three ends, each of which may be taken to be a graph over an unbounded annulus in R2;
see [Hoffman and Meeks 1990; Weber 2005]. For 0 ≤ k ≤ g, this surface is invariant under reflection
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in the vertical plane making an angle of kπ/(g + 1) with the x-axis at the origin. We call the group of
symmetries of R3 generated by these reflections the group of horizontal symmetries of Cg.1 Next, the
Grim paraboloid (also known as the bowl soliton) is defined to be the unique simply connected MCF
soliton which is symmetric under revolution about the z-axis. It is known (see [Clutterbuck et al. 2007])
that this surface is asymptotic at infinity to a vertical translate of the graph of

1
2r2

− log(r),

where r here denotes the distance in R2 to the origin.

Theorem A. For all g ∈ N and for all sufficiently small ϵ, there exists a complete, embedded MCF
soliton 6g,ϵ of genus g with three ends. Furthermore, letting R := ϵ−1/λ for some λ ∈ ]4, 5[, we may
suppose:

(1) 6g,ϵ \ (B(ϵR)× R) consists of three connected components, each of which converges towards the
same Grim paraboloid as ϵ tends to 0.

(2) Upon rescaling by a factor of 1/ϵ, 6g,ϵ ∩(B(ϵR)× R) converges to Cg as ϵ tends to 0.

(3) 6g,ϵ is invariant under the group of horizontal symmetries of Cg.

Remark. Theorem A follows immediately from Theorems 7.1.3 and 7.1.4, below.

Remark. All notation and terminology used in this paper is explained in detail in Appendix A. Recall, in
particular, that, by elliptic regularity, all standard modes of convergence of smooth, embedded solutions
of parametric elliptic functionals to smooth, embedded solutions of the same functionals are equivalent
over any compact region.

Remark. The constants that appear in Theorem A have the following geometric significance. The
quantity ϵ determines the scaling factor of the CHM surface. Roughly speaking, it is the “neck radius”
of 6g,ϵ . The quantity R determines how far along the end of the CHM surface the surgery is carried
out. For the construction to work, ϵ and R must converge in tandem to 0 and infinity respectively, hence
the condition Rλϵ = 1. Distinct values of ϵ ought to yield distinct surfaces. Indeed, a refinement of our
result ought to yield a continuous family (6g,ϵ)ϵ<r0 of distinct embedded MCF solitons with neck radii
converging to 0. However, our current argument, which uses the Schauder fixed-point theorem, does not
yield such fine control over the surfaces constructed.

1.2. Techniques. The proof of Theorem A follows the standard desingularisation construction for minimal
surfaces originally described in [Kapouleas 1990; 1995; 1997]. In simple terms, we first use surgery to
construct an approximate MCF soliton 6̂g,ϵ and then apply a fixed-point argument to prove the existence
of an actual MCF soliton lying nearby in some suitable function space. As in all singular perturbation
constructions, this is much easier said than done, and the main challenge lies in deriving the many
nontrivial analytic estimates required to make the perturbation argument work.

1Hoffman and Meeks showed that the complete symmetry group of Cg is the dihedral group generated by the elements A and B,
where A is reflection in the (x−z)-plane and B is rotation by an angle of kπ/(g + 1) about the z-axis followed by reflection in
the (x−y)-plane.
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The use of CHM surfaces in Kapouleas’ construction presents particular difficulties on account of their
low orders of rotational symmetry. Indeed, rotational symmetries often serve in such constructions to
improve decay rates and thus in turn provide stronger estimates. This phenomenon is well illustrated
by the case of bounded solutions u : S1

× [0,∞[ → R of Laplace’s equation 1u = 0. By separation of
variables, all such solutions have the form

u(θ, t)=

∑
m∈Z

ameimθe−|m|t .

In particular, when u has n-th order rotational symmetry, all of its coefficients of order 0< |m|< n vanish,
so that the difference (u − a0) decays like e−nt. Since this argument does not apply when CHM surfaces
are used, we obtain our estimates by introducing instead, in Section 4.2, what we call the hybrid norm.
This functional norm, which is a combination of Hölder and Sobolev norms, encapsulates the singular
nature of our construction as ϵ tends to 0. Its main properties, established in Lemma 4.3.1, follow readily
from the Sobolev embedding theorem and classical interpolation inequalities, and play a key role in the
derivation of various estimates throughout the rest of the paper.

Finally, before reviewing our argument, it is worth highlighting an ingenious variant of the desingulari-
sation construction for CHM surfaces used in [Hauswirth and Pacard 2007; Mazzeo and Pacard 2001;
Morabito 2009]. In each of these papers, it is observed that the Jacobi operator Ĵg,ϵ of the approximate
minimal surface 6̂g,ϵ is, modulo a conformal transformation when necessary, intrinsically close to the
Jacobi operator of the original CHM surface. A direct perturbation argument then yields a priori estimates
for the norm of its Green’s operator, thereby bypassing one of the main technical challenges of the
perturbation part of the construction. In addition, in these works, the initial surgery is carried out in a
different manner than in [Kapouleas 1990; 1995; 1997], more pleasing to the geometric eye, though it
is not clear to us whether this actually leads to simpler estimates. Regardless, their argument cannot
be applied in the present case where the Jacobi operator of the joined surface is not intrinsically of the
correct type.

The proof is organised as follows.

1.2.1. Rotationally symmetric Grim surfaces. We will desingularise the join of a CHM surface with three
rotationally symmetric Grim ends, that is, unbounded, rotationally symmetric MCF solitons in R3. The
geometry of CHM surfaces is well understood (see, for example, [Hoffman and Meeks 1990; Weber
2005]) and the large-scale geometry of rotationally symmetric Grim ends has been studied by Clutterbuck,
Schnürer and Schulze [Clutterbuck et al. 2007]. In Section 2, we study the small-scale geometry of
rotationally symmetric Grim ends, which has not previously been addressed in the literature.

Rotationally symmetric Grim ends exhibit a dual nature over the region of interest to us. Indeed, they
are roughly catenoidal towards the lower end of this region, and roughly parabolic towards its upper end.
This presents us with our first main challenge, which we address via the following algebraic trick. We
introduce two abstract variables, representing respectively the catenoidal part and the parabolic part of
the Grim end. We then construct formal solutions to the MCFS equation in terms of these variables, and
obtain the desired formulae upon applying the contraction mapping theorem to their partial sums.
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The main results of this section are Theorems 2.1.1 and 2.2.1, which provide asymptotic formulae for
the profiles of rotationally symmetric Grim ends over the large and small scales respectively.

1.2.2. Green’s operators. Our perturbation argument requires estimates for the norm of a Green’s operator
of the MCFS Jacobi operator of the approximate MCF soliton. These are in turn derived from estimates
of the norms of the corresponding operators of CHM surfaces and rotationally symmetric Grim ends.
Green’s operators of Jacobi operators of CHM surfaces are well understood; see, for example, [Hauswirth
and Pacard 2007; Morabito 2009; Nayatani 1993; Pacard 2008]. In Sections 3 and 4, we study the Green’s
operators of the MCFS Jacobi operators, first of Grim paraboloids, then of rotationally symmetric Grim
ends. The former are relatively straightforward, but the latter present us with our second main challenge,
namely, to address the singularities that catenoids produce as their neck radii tend to 0. This simple
phenomenon, which we call the vanishing neck problem, will be responsible for the introduction of a
number of technical constructions, as we now proceed to explain.

To begin with, in Section 4.1, we modify the Jacobi operator in two ways. First, we introduce the
modified MCFS Jacobi operator, which measures the first-order variation of mean curvature arising from
first-order perturbations of the surface in the direction of a suitable modification of the unit normal vector
field. At this stage, this modification serves to reduce the divergence rates of the coefficients of the Green’s
operators as the neck radii vanish. We underline that, since different modifications are made on different
scales, the precise definition of this operator varies according to context (the general framework, unifying
these definitions, is described in Section 5.4). Next, we introduce canonical extensions of operators across
the region within the neck, which allow the modified MCFS Jacobi operators of distinct rotationally
symmetric Grim ends to be compared as if they were all defined over R2.

Notably, even with these modifications, the vanishing neck problem still imposes restrictions on the
way in which ϵ and R tend respectively to 0 and infinity. Indeed, it is precisely at this stage that we
require that ϵR5 tend to infinity in the statement of Theorem A, for otherwise we could not guarantee
decay in Lemmas 4.2.1 and 4.2.2.

The main result of these two sections is Theorem 4.1.1, which provides the required uniform estimates
for the Green’s operators of the modified MCFS Jacobi operators of rotationally symmetric Grim ends.
We prove this result using a perturbation argument. To this end, we examine the differences between the
modified MCFS Jacobi operators of Grim paraboloids and those of rotationally symmetric Grim ends.
We decompose these differences into regular and singular components. In Section 4.2, we show that the
operator norms of the regular components tend to 0 as ϵ tends to 0, and in Section 4.3, making use of the
hybrid norm described above, we prove the same result for the singular components. In particular, we see
that an adequate treatment of the vanishing neck problem already calls for the hybrid norm, which will
play a larger role later on in the construction.

1.2.3. Surgery and the deformation family. In Section 5, we describe the surgery operation used to
construct the approximate MCF soliton 6̂g,ϵ as well as the deformation family around this surface
within which the actual MCF soliton 6g,ϵ will be found. The surgery operation is straightforward and
is described in Section 5.1. Simply put, the ends of the CHM surface are amputated, suitably chosen
rescaled rotationally symmetric Grim ends are grafted in their place, and the join is smoothed out using
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cut-off functions. The construction of the deformation family about 6̂g,ϵ is more technical and is carried
out in Section 5.2.

The challenge in understanding (and explaining!) this construction arises from the fact that four
different families of deformations must be considered. The first concerns deformations in the direction of
a suitable modification of the unit normal vector field. We refer to the resulting first-order perturbations of
the surface as microscopic perturbations, since they decay at infinity. The remaining three families involve
variations of the logarithmic parameters of the ends, starting far inside the locus of surgery, and vertical
translations of the ends, starting far inside and far outside the locus of surgery respectively. We refer to
the resulting first-order perturbations as macroscopic perturbations, since they remain large at infinity.

We associate to each of the four classes of perturbation described above the operator of first-order
variation of the MCFS functional about 6̂g,ϵ . We denote these operators by Ĵϵ , Xϵ , Yϵ and Zϵ respectively.
Understanding their analytic properties is key to estimating the norm of the Green’s operator of the
modified MCFS Jacobi operator of 6̂g,ϵ , and we conclude this section by deriving preliminary estimates
in Sections 5.3, 5.4 and 5.5.

1.2.4. Constructing the Green’s operator. In Section 6, we construct a Green’s operator of the modified
MCFS Jacobi operator of 6̂g,ϵ , together with estimates of its operator norm. This section constitutes the
hardest technical part of the paper. The determination of sufficiently strong estimates is made possible,
on the one hand, by the correct choice of functional norms over the different components of 6̂g,ϵ and, on
the other, by the use of the hybrid norm described above.

The estimates for the norm of the Green’s operator are obtained in Sections 6.3, 6.4 and 6.5 via a
classical iteration process which we call the “ping-pong” argument. This process, which is common to
all singular perturbation constructions, involves passing successive error terms back and forth over the
join region. From a conformal perspective, the join region consists of cylinders which become very long
as ϵ tends to 0. More explicitly, if R = ϵ−1/λ, then these cylinders are roughly of length (λ− 1)Ln(R).
The estimates we require to ensure the convergence of the iteration process then follow from the fact that
bounded harmonic functions decay exponentially over long cylinders. In particular, we maximise decay
by choosing λ as large as possible. We have already seen in Section 1.2.2, above, that λ must be less
than 5. It turns out that λ ∈ ]4, 5[ is sufficient for our purposes, thus explaining the condition imposed in
the statement of Theorem A. We believe that the ideas underlying this technique are best illustrated by
the simplest version of this construction, used in the theory of Morse homology, and described in detail
in Section 2.5 of [Schwarz 1993].

The first main results of this section are Theorems 6.3.1 and 6.4.1, which provide estimates for the norms
of the operators used in the two stages of the iteration process. In addition, Theorems 6.5.2, 6.5.3 and 6.5.4
provide estimates for the norms of the different components of the Green’s operator that we construct.

1.2.5. Existence and embeddedness. Finally, in Section 7 we prove Theorem A by applying the Schauder
fixed-point theorem to the MCFS functional about the approximate MCF soliton 6̂g,ϵ . First, we determine
estimates for the MCFS functional up to second order about 6̂g,ϵ . Then, using the estimates obtained in
Section 6, we prove existence in Theorem 7.1.3, and we prove embeddedness in Theorem 7.1.4 using a
straightforward geometric argument.
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1.3. Notation. In order not to be overwhelmed by a deluge of constants, throughout the paper we use the
following notation, which we have found to be of great help. First, given two variable quantities a and b,
we will write

a ≲ b (1-2)

to mean that there exists a constant C , which for our purposes we consider universal, such that

a ≤ Cb.

Next, given a function f and a sequence of functions (gm), we will write

f = O(gm) (1-3)

to mean that there exists a sequence (Cm) of constants, which for our purposes we again consider universal,
such that the relation

|Dm f | ≤ Cm gm

holds pointwise for all m. The indexing variable of the sequence (gm) should be clear from the context.
In certain cases, every element of this sequence may be the same. It should also be clear from the context
when this occurs. All other notation and terminology is explained in detail in Appendix A.

2. Rotationally symmetric Grim surfaces

2.1. The large scale. We define a Grim surface to be any unit-speed MCF soliton which is a graph over
some domain in R2. We define a Grim end to be a Grim surface which is defined over some unbounded
annulus A(a,∞). These will be studied in more detail in Section 4. In this section, we study rotationally
symmetric Grim surfaces defined over some annulus A(a, b). We first recall the general formula for such
surfaces. Let u be a twice differentiable function defined over some closed interval [a, b] and let 6 be
the surface of revolution generated by rotating its graph about the z-axis. The principal curvatures of 6
in the radial and angular directions are respectively

cr =
−urr√
1 + u2

r
3 , cθ =

−ur

r
√

1 + u2
r

, (2-1)

where r here denotes the radial distance in A(a, b) from the origin, and the subscript r denotes differenti-
ation with respect to this variable. The vertical component of the upward-pointing, unit normal vector
over 6 is

⟨N6, ez⟩ =
1√

1 + u2
r

, (2-2)

so that, by (1-1), 6 is a rotationally symmetric Grim surface whenever

rurr + (ur − r)(1 + u2
r )= 0. (2-3)

Solutions of this equation have no straightforward closed form. However, it will be sufficient for our
purposes to obtain approximations by semiconvergent, that is, asymptotic, series. We first derive an
asymptotic formula which is valid as r tends to infinity.
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Theorem 2.1.1. If u : ]a,∞[ → R is a solution of (2-3) then, as r → +∞,

u =
1
2r2

− log(r)+ a + O(r−(k+2)) (2-4)

for some real constant a.2

Theorem 2.1.1 follows immediately upon integrating (2-13), below. A similar result has already been
obtained in [Clutterbuck et al. 2007]. However, we consider it worth deriving (2-4) in full, not only
because we use different techniques, but also because we believe it serves as good preparation for the
more subtle small-scale asymptotic estimates that will be studied in the following sections.

Define the nonlinear operator G by

Gv := rvr + (v− r)(1 + v2), (2-5)

and observe that v solves Gv = 0 if and only if its integral is the profile of a rotationally symmetric Grim
surface. We first derive formal solutions to (2-5). To this end, we define a Laurent series in the formal
variable R to be a formal power series of the form

V :=

k∑
m=−∞

Vm Rm, (2-6)

where, for all m, Vm is a real number and k is some finite integer, which we henceforth call the order
of V. Since the operations of formal multiplication and formal differentiation are well-defined over the
space of Laurent series, the operator G also has a well-defined action over this space.

Lemma 2.1.2. There exists a unique Laurent series V such that GV = 0. Furthermore:

(1) V has order 1.

(2) V1 = 1, V−1 = −1.

(3) If m is even, then Vm = 0.

(4) If V̂n :=
∑1

m=1−2n Vm Rm denotes the n-th partial sum of V, then GV̂n is a finite Laurent series of
order (1 − 2n).

Proof. Consider the ansatz (2-6). If k ≤ −1, then the highest-order term in GV is (−R), if k = 0, then it
is (−R)(1 + V 2

0 ), and if k ≥ 2, then it is V 3
k R3k. Since none of these vanish, it follows that V must be of

order 1. In this case, the highest-order term in GV is V 2
1 (V1 − 1)R3 so that, in order to have nontrivial

solutions, we require V1 = 1. We now have

R
dV
d R

+ (V − R)(1 + V 2)= R +

0∑
m=−∞

(m + 1)Vm Rm
+

2∑
m=−∞

( ∑
p+q+r=m
p≤0, q,r≤1

VpVq Vr

)
Rm .

In particular, setting the respective coefficients of R2 and R equal to 0 yields

V0 = 0, V−1 = −1.

2We refer the reader to Section 1.3 and Appendix A for a detailed review of the notation used here and throughout the sequel.
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For all m ≤ −2, setting the coefficient of Rm+2 equal to 0 now yields

Vm +

( ∑
p+q+r=m+2
m+1≤p≤−1
m+2≤q,r≤1

VpVq Vr

)
+ (m + 3)Vm+2 = 0. (2-7)

The existence and uniqueness of V now follow from this recurrence relation. Furthermore, if p +q + r =

m + 2, and if m is even, then at least one of p, q and r is also even, and since V0 = 0, it follows by
induction that Vm = 0 for all even m. In addition, by (2-7), for all n, and for all m ≥ (3 − 2n), the
coefficient of Rm in GV̂n is equal to 0. However, since V−2n = 0, by (2-7) again, the coefficient of R2−2n

in GV̂n is also equal to 0, so that GV̂n is a finite Laurent series of order (1 − 2n), as desired. □

For all n, define the n-th partial sum vn : ]0,∞[ → R by

vn(r) :=

1∑
m=1−2n

Vmrm . (2-8)

We now show that the sequence (vn) yields successively better approximations over the large scale of the
exact solutions of Gv = 0. We first derive zeroth order bounds.

Lemma 2.1.3. If v : [a,∞[ → R solves (2-5) then, for large r ,

|v0 − v| ≲ 1
r
. (2-9)

Proof. Consider the family of polynomials pt(y)= (y − 1)(t2
+ y2). For all t > 0, y = 1 is the unique

real root of pt . Since y = 0 is the unique local maximum of p0, for sufficiently small t , the unique local
maximum of pt is also near 0, and the value of pt at this point is less than −t2/2. Since p0 is convex over
the interval

[1
3 ,∞

[
, for 1

3 < y < 1 we have p0(y)⩽ 3
2(1 − y)p0

( 1
3

)
=

1
9(y − 1) and so, for sufficiently

small t , over the smaller interval
[ 1

2 , 1
]
, pt(y)⩽ 1

18(y − 1).
Now let v be a solution of Gv = 0. In particular, using a dot to denote differentiation with respect to

r , we have v̇ = −r2 p1/r (v/r). Suppose, furthermore, that r ≫ 1 so that the estimates of the preceding
paragraph hold for p1/r . When v≥ r , we have v̇−ṙ = v̇−1 ≤−1, so that, for sufficiently large r , v(r)⩽ r .
If v ⩽ 1

2r , then v̇−
1
2 ṙ ⩾ 1

2r −
1
2 , so that, for sufficiently large r , v(r)⩾ 1

2r . Finally, if 1
2r ⩽ v ⩽ r then,

by the preceding discussion, v̇ ⩾ 1
18r(r − v). It follows that if w := r(v0 − v) = r(r − v), then w > 0

and ẇ = 2r − v− r v̇ ⩽ r +w/r −
1

18rw. Since this is negative for w ⩾ 36 and r > 6, the function w is
bounded, and the result follows. □

Lemma 2.1.4. If v : [a,∞[ → R solves (2-5) then, for all n, and for large r ,

|vn − v| ≲ r−(2n+1). (2-10)

Proof. For all n, let wn := r2n−1(vn − v) be the rescaled error. We prove by induction that |wn| ≲ r−2

for all n. Indeed, the case n = 0 follows from (2-9). We suppose therefore that n ≥ 1. Since wn =

r2wn−1 + V1−2n , it follows by the inductive hypothesis that wn is bounded. Now let P(a, b) denote any
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polynomial in the variables a and b. Since Gvn is a finite Laurent polynomial of order (1 − 2n), using a
dot to denote differentiation with respect to r , we have

ẇn =
(2n−1)

r
wn + r2n−2(r v̇n − r v̇)

=
1
r

P
(1

r
, wn

)
− r2n−2((vn − r)(1 + v2

n)− (v− r)(1 + v2)
)

=
1
r

P
(1

r
, wn

)
−

1
r
wn(1 − r(vn + v)+ (v2

n + vnv+ v2)).

Since v = vn − r−(2n−1)wn and since (vn − r) is also a polynomial in r−1 with no constant term, this
yields

ẇn =
1
r

P
(1

r
, wn

)
− rwn.

Since wn is bounded, there therefore exists a constant B > 0 such that, for all r ⩾ 1,

|ẇn + rwn| ⩽ Br−1. (2-11)

In particular, for r ≥ 2 and r2wn ≥ 2B,

d
dr

r2wn = r2(ẇn + rwn)+ (2r − r3)wn ≤ Br −
1
2r3wn ≤ 0,

so that r2wn is bounded from above. Since (−wn) also satisfies (2-11), we see that r2wn is bounded from
below, and this completes the proof. □

Lemma 2.1.5. If v : [a,∞[ → R solves (2-5) then, for all n,

vn − v = O(r−(k+2n+1)). (2-12)
In particular,

v = r −
1
r

+ O(r−(k+3)). (2-13)

Proof. For all n, define wn := (vn − v). As in the proof of Lemma 2.1.4, we obtain

ẇn = P1

(1
r
, wn

)
rwn +

1
r
Gvn,

where P1 is some polynomial. Since Gvn is a finite Laurent polynomial of order (1 − 2n), it follows by
induction that, for all k,

dkwn

dr k = Pk

(1
r
, wn

)
r kwn + Qk

(1
r
, wn

)
r k−(2n+1),

where Pk and Qk are polynomials. It follows by (2-10) that, for all k,∣∣∣∣ dk

dr k (vn − v)

∣∣∣∣ =

∣∣∣∣dkwn

dr k

∣∣∣∣ ≲ r k−(2n+1).

However, since (vn+k − vn) is a finite Laurent series of order −(2n + 1), for all k,∣∣∣∣ dk

dr k (vn − v)

∣∣∣∣ ≤

∣∣∣∣ dk

dr k (vn − vn+k)

∣∣∣∣ + ∣∣∣∣ dk

dr k (vn+k − v)

∣∣∣∣ ≲ r−(k+2n+1),

and the result follows. □
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2.2. The small scale: formal solutions. We now study solutions to (2-5) over the small scale. We fix
positive constants K ≫ 1 and η ≪ 1 which we henceforth consider to be universal. Let 3 be a large,
positive real number, and let ϵ, R > 0 and c ∈ R be such that(

ϵR4+η
+

1
R1−η

)
≤

1
3
, ϵR5−η

≥3, |c| ≤ K . (2-14)

These conditions will be used repeatedly throughout the paper. Observe, in particular, that (2-14) implies
that ϵ becomes small and R becomes large as 3 tends to infinity. We will prove:

Theorem 2.2.1. For all sufficiently large 3, and for all R, ϵ satisfying (2-14), there exists a smooth
function σ [ϵ, R] : R → R such that, for all c ∈ [−K , K ], if v : [ϵR, ϵR4

] → R solves Gv = 0 with initial
value

v(ϵR)=
1
R
σ [ϵ, R](c)+ ϵR

2
, (2-15)

then

v(r)=
1
2

r +
cϵ
r

+ O
([

1 + log
(

r
ϵR

)]
1
r k

(
r +

ϵ

r

)3)
. (2-16)

Furthermore, the function σ [ϵ, R] converges to the identity in the C∞

loc sense as 3 tends to +∞.

Remark. We leave the reader to verify that the same conclusion also holds over the interval [ϵR,CϵR4
]

for any constant C not depending on ϵ or R.

The function σ [ϵ, R] will be defined explicitly in Section 2.3, below, and Theorem 2.2.1 will follow
immediately from Lemma 2.4.2, below. The constant c will henceforth be referred to as the logarithmic
parameter of the function v. Observe that, up to a small perturbation, it is related to the initial value of v by
a linear function. This perturbation is required in order to guarantee good estimates over the whole interval.
Indeed, replacing σ [ϵ, R](c) by c in (2-15) would increase the error in (2-16), making it then of order (ϵ/r).

In order to appreciate Theorem 2.2.1 and the argument that follows, we find it helpful to first recall the
geometric properties of the function v over the interval [ϵR, ϵR4

]. Indeed, by definition, its integral u is the
profile of some rotationally symmetric Grim surface. However, it is known (see [Clutterbuck et al. 2007])
that, near the lower end of this interval, the first term in the MCFS equation (1-1) dominates, so that the
graph of u is close to some minimal catenoid in R3 and the function u is itself approximately logarithmic.
On the other hand, near the upper end of this interval, it is the second term in the MCFS equation which
dominates, and the function u is approximately quadratic, in accordance with the asymptotic formula
obtained in the preceding section. These two contrasting behaviours are reflected in (2-16) by the ϵ/r
terms and the r terms respectively.

In order to derive an asymptotic formula for u that simultaneously describes these two behaviours, we
introduce two abstract variables M and N, where M measures its quadratic behaviour, and N measures its
logarithmic behaviour. By expressing the equation Gv = 0 in terms of these new variables, the asymptotic
formula for v is then obtained in the same manner as in Section 2.1 namely, by first determining formal
solutions which then serve as approximations for exact solutions.

Upon applying the change of variables r := ϵRex we obtain

Gv = Dv− ϵRex
+ (v− ϵRex)v2, (2-17)
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where the operator D is defined by
Dv := vx + v, (2-18)

and the subscript x here denotes differentiation with respect to this variable. Now let R[X,M, N ] be the
ring of polynomials with real coefficients in the variables X , M and N. We consider a general element V
of R[X,M, N ] as a sum of the form

V =

∑
p,q≤k

Vp,q(X)M p N q , (2-19)

where, for all p, q , Vp,q is a polynomial in the variable X and k is some finite, nonnegative integer which
we henceforth refer to as the order of V. There is a natural correspondence sending R[X,M, N ] into the
space of continuous functions over [0, 3 log(R)] given by

V 7→ v(x) :=

∑
p,q≤k

Vp,q(x)(ϵRex)p
( c

R
e−x

)q
. (2-20)

In other words, this correspondence is the unique R[X ]-ring homomorphism which sends M to ϵRex and
N to (c/R)e−x . Although this homomorphism is not injective, it keeps track of the parameters ϵ, R and c,
which is the reason why it serves our purposes. Operators G and D are also defined over R[X,M, N ] by

GV := DV − M + (V − M)V 2,

(DV )p,q :=

( d
d X

+ 1 + (p − q)
)

Vp,q ,
(2-21)

where d/(d X) here denotes the operator of formal differentiation with respect to the variable X . In
particular, G and D both map through the above correspondence to the operators given in (2-17) and
(2-18) respectively, thereby justifying this notation. Observe, furthermore, that D defines a surjective
linear map from R[X,M, N ] to itself and that its kernel consists of finite sums of the form

V =

∑
p≤k

ap M p N p+1,

where a0, . . . , ak are real constants.
Let R[X ][[M, N ]] be the ring of formal power series over the variables M and N with coefficients

that are polynomials in the variable X . Observe that the operators G and D naturally extend again to
well-defined operators over this space.

Lemma 2.2.2. There exists a unique formal power series V in R[X ][[M, N ]] such that

(1) V0,1 = 1,

(2) Vp,p+1(0)= 0 for all p ≥ 1, and

(3) GV = 0.

Furthermore,

(4) V1,0 =
1
2 ,

(5) if p + q is even, then Vp,q = 0, and

(6) if p + q = 2k + 1 is odd, then Vp,q has order at most k in X.
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Finally, if we define
V̂k :=

∑
p+q≤2k+1

Vp,q(X)M p N q ,

then,

(7) if (p + q)≤ (2k + 1), then the coefficient of M p N q in GV̂k vanishes,

(8) if (p + q) > (2k + 1) is even, then the coefficient of M p N q in GV̂k vanishes, and

(9) if (p+q)> (2k+1) is odd, then the coefficient of M p N q in GV̂k has order at most 1
2(p+q −3) in X.

Proof. Let V =
∑

p,q Vp,q(X)M p N q be an element of R[X ][[M, N ]] which solves GV = 0. For all (p, q),
equating the coefficient of M p N q in GV to 0, we obtain( d

d X
+ (1 + (p − q))

)
Vp,q = δp1δq0 −

∑
p1+p2+p3=p
q1+q2+q3=q

Vp1,q1 Vp2,q2 Vp3,q3 +

∑
p1+p2=p−1

q1+q2=q

Vp1,q1 Vp2,q2 . (2-22)

In particular,
dV0,0

d X
+ V0,0(1 + V 2

0,0)= 0,

and since there exists no nontrivial polynomial solution to this equation, it follows that V0,0 = 0. From
this it follows that the two summations on the right-hand side of (2-22) only involve terms of order at
most p + q − 2 in (M, N ). In particular, V0,1 satisfies

dV0,1

d X
= 0.

It is thus constant, and we henceforth set it equal to 1. It now follows by induction that there exists a unique
sequence of polynomials (Vp,q) satisfying (2-22) such that V0,1 = 1 and Vp,p+1(0)= 0 for all p ≥ 1.

To prove (4), observe that V1,0 satisfies dV1,0/(d X)+ 2V1,0 = 1 so that, since it is a polynomial,
V1,0 =

1
2 , as desired. To prove (5), observe that if p + q is even, then every summand on the right-hand

side in (2-22) involves at least one term of the form Vp′,q ′ , where p′
+ q ′ is an even number no greater

than p + q − 2. Since V0,0 = 0, it follows by induction that Vp,q = 0 whenever p + q is even, as desired.
To prove (6), suppose that for all l < k, and for p + q = 2l + 1, the polynomial Vp,q has order at most l
in X . By (2-22), for all p + q = 2k + 1, the polynomial Vp,q is obtained by integrating terms of order
at most (k − 1) in X , and it follows by induction that Vp,q has order at most k in X , as desired.

Finally, observe that, by (2-22), the term Vp,q is defined by setting the coefficient of M p N q equal to 0
in GV, and (7) follows. Furthermore, for p +q > (2k +1), the coefficient of M p N q in GV is equal to the
right-hand side of (2-22). Items (8) and (9) now follow by similar arguments used to prove (5) and (6),
above, and this completes the proof. □

2.3. The small scale: exact solutions, I. Let V be the formal power series constructed in Lemma 2.2.2.
For ϵ, R satisfying (2-14), for c ∈ R, and for nonnegative, integer k, let vk,c be the k-th partial sum of V
with logarithmic parameter c, that is,

vk,c(x) :=

∑
p+q≤2k+1

Vp,q(x)(ϵRex)p
( c

R
e−x

)q
. (2-23)
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Define the function σ [ϵ, R, k] : R → R by

σ [ϵ, R, k](c) := Rvk,c(0)−
ϵR2

2
. (2-24)

Trivially, if v : [0, 3 log(R)] → R satisfies

v(0)=
1
R
σ [ϵ, R, k](c)+ ϵR

2
,

then v has the same initial value as vk,c. Observe that σ [ϵ, R, k] is a polynomial in c with coefficients that
depend on ϵ, R and k and, for all k, σ [ϵ, R, k] converges to the identity in the C∞

loc sense as3 tends to infin-
ity. We will see presently that the estimates we require follow when k is at least 9, and we therefore define

σ [ϵ, R](c) := σ [ϵ, R, 9](c). (2-25)

This is the function that appears in the statement of Theorem 2.2.1.
As in Section 2.1, we now determine zeroth order bounds for the difference between vk,c and an exact

solution with the same initial value. We achieve this via the contraction mapping theorem. We first
introduce the required analytic framework. For T ∈ [0, 3 log(R)], let C0([0, T ]) be the Banach space of
continuous functions over the interval [0, T ] furnished with the uniform norm and let C1

0([0, T ]) be the
Banach space of continuously differentiable functions over this interval with initial value 0, furnished
with the norm

∥w∥C1
0
:= ∥wx∥C0, (2-26)

where the subscript x here denotes differentiation with respect to this variable. Observe that, for all
w ∈ C1

0([0, T ]),
∥w∥C0 ≤ T ∥w∥C1

0
. (2-27)

Lemma 2.3.1. The operator D defines a linear isomorphism from C1
0([0, T ]) into C0([0, T ]). Further-

more, the operator norms of D and its inverse satisfy

∥D∥ ≤ 1 + T, ∥D−1
∥ ≤ 2. (2-28)

Proof. First, bearing in mind (2-27),

∥Dw∥C0 ≤ ∥wx∥C0 + ∥w∥C0 ≤ (1 + T )∥w∥C1
0
,

so that ∥D∥ ≤ 1 + T. By inspection, for all w,

(D−1w)(x)= e−x
∫ x

0
eyw(y) dy.

In particular,
∥D−1w∥C0 ≤ ∥w∥C0 .

Thus,
∥D−1w∥C1

0
= ∥(D−1w)x∥C0 ≤ ∥DD−1w∥C0 + ∥D−1w∥C0 ≤ 2∥w∥C0,

so that ∥D−1
∥ ≤ 2. □
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Consider now the functional H : C1
0([0, T ])→ C0([0, T ]) given by

H(w) := G(vk +w). (2-29)
Its Fréchet derivative at w is

DH(w) f := D f + E(w) f, (2-30)
where

E(w) f := 3(vk,c +w)2 f − 2ϵRex(vk,c +w) f. (2-31)

Lemma 2.3.2. For all w ∈ C1
0([0, T ]), the operator norm of E(w), considered as a linear map from

C1
0([0, T ]) into C0([0, T ]), satisfies

∥E(w)∥ ≲ T
(
(ϵReT )2 +

1
R2 + T 2

∥w∥
2
C1

0

)
. (2-32)

Proof. Indeed, over [0, T ],

∥ϵRex
∥C0 ≤ ϵReT ,

∥∥∥∥ c
R

e−x
∥∥∥∥

C0
≤

c
R
.

Thus, by Lemma 2.2.2 and (2-14),

∥vk∥C0 ≲
k∑

i=0

(1 + T i )
(
ϵReT

+
1
R

)2i+1
≲ ϵReT

+
1
R
,

so that, by (2-27) and (2-31),

∥E(w) f ∥C0 ≲
(
(ϵReT )2 +

1
R2 + ∥w∥

2
C0

)
∥ f ∥C0

≲ T
(
(ϵReT )2 +

1
R2 + T 2

∥w∥
2
C1

0

)
∥ f ∥C1

0
,

as desired. □

Define the map 8 : C1
0([0, T ])→ C1

0([0, T ]) by

8(w) := w−D−1H(w). (2-33)

Lemma 2.3.3. For w, w̄ ∈ C1
0([0, T ]),

∥8(w)−8(w̄)∥C1
0
≲ T

(
(ϵReT )2 +

1
R2 + T 2

∥w∥
2
C1

0
+ T 2

∥w̄∥
2
C1

0

)
∥w− w̄∥C1

0
. (2-34)

Proof. Indeed, for w, w̄ ∈ C1
0([0, T ]), using (2-30),

8(w)−8(w̄)= w− w̄−D−1(H(w)−H(w̄))

= −D−1(H(w)−H(w̄)−D(w− w̄))

= −D−1
(∫ 1

0
E(tw+ (1 − t)w̄) dt

)
(w− w̄).

Thus, by (2-28) and (2-32),

∥8(w)−8(w̄)∥C1
0
≲ T

(
(ϵReT )2 +

1
R2 + T 2

∥w∥
2
C1

0
+ T 2

∥w̄∥
2
C1

0

)
∥w− w̄∥C1

0
,

as desired. □
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Applying the contraction mapping theorem now yields:

Lemma 2.3.4. For sufficiently large 3, if vk,c is the k-th partial sum of V with logarithmic parameter c,
and if v : [0, 3 log(R)] → R solves Gv = 0 with initial value

v(0)=
1
R
σ [ϵ, R, k](c)+ ϵR

2
, (2-35)

then

∥v− vk,c∥C0 ≲ (1 + T k+1)
(
ϵReT

+
1
R

)2k+3
. (2-36)

Proof. By Lemma 2.2.2,

∥Gvk∥C0 ≲ (1 + T k)
(
ϵReT

+
1
R

)2k+3
.

By (2-28), there therefore exists B > 0, which we may consider to be universal, such that

∥8(0)∥C1
0
= ∥D−1Gvk∥C1

0
≤ B(1 + T k)

(
ϵReT

+
1
R

)2k+3
.

Let X be the closed ball of radius 2B(1 + T k)(ϵReT
+ R−1)2k+3 about 0 in C1

0([0, T ]). By (2-14), if
w, w̄ ∈ X then, in particular,

T ∥w∥C1
0
, T ∥w̄∥C1

0
≲

(
ϵReT

+
1
R

)
,

so that, by (2-34) and (2-14) again,

∥8(w)−8(w̄)∥C1
0
≲ 1
3

∥w− w̄∥C1
0
.

The map 8 thus defines a contraction from X to itself, and there therefore exists w ∈ X such that
8(w)= w. In particular Hw = 0, and

∥w∥C0 ≤ T ∥w∥C1
0
≲ (1 + T k+1)

(
ϵReT

+
1
R

)2k+3
.

Finally, by the definition of the function σ [ϵ, R, k], we have v(0) = vk,c(0) so that, by uniqueness of
solutions to ODEs with prescribed initial values, v− vk,c = w, and the result follows. □

2.4. The small scale: exact solutions, II. The final step in proving Theorem 2.2.1 involves extending the
estimates obtained in Lemma 2.3.4 to derivatives of all orders.

Lemma 2.4.1. If vk,c and v are as in Lemma 2.3.4, then

v = vk,c + O
(
(1 + T k+1)

(
ϵReT

+
1
R

)2k+3)
. (2-37)

Proof. Define w := v− vk,c. Since vk,c is a polynomial in ϵRex and (c/R)e−x with coefficients in R[X ],
as in the proof of Lemma 2.1.4,

wx = P1

(
w, ϵRex ,

c
R

e−x
)
w+Gvk,c
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for some polynomial P1 with coefficients in R[X ]. Since Gvk,c is also a polynomial in ϵRex and (c/R)e−x

with coefficients in R[X ], it follows by induction that, for all l,

dl

dx lw = Pl

(
w, ϵRex ,

c
R

e−x
)
w+

l−1∑
p=0

Q p,l

(
w, ϵRex ,

c
R

) d p

dx p Gvk,c (2-38)

for suitable polynomials Pl and (Q p,l)0≤p≤l−1 also with coefficients in R[X ]. However, by (2-36),

∥w∥C0 ≲ (1 + T k+1)
(
ϵReT

+
1
R

)2k+3
.

Thus, by (2-14), ∥∥∥Pl

(
w, ϵRex ,

c
R

e−x
)∥∥∥

C0
,

∥∥∥Q p,l

(
ϵRex ,

c
R

e−x
)∥∥∥

C0
≲ 1.

Finally, Lemma 2.2.2 and (2-14) again,∥∥∥∥ dl−1

dx l−1Gvk

∥∥∥∥
C0

≲ (1 + T k)
(
ϵReT

+
1
R

)2k+3
,

and the result follows upon combining these relations. □

Lemma 2.4.2. If vk,c is the k-th partial sum of V with logarithmic parameter c, and if v : [0, 3 log(R)] →

R solves Gv = 0 with initial value

v(0)=
1
R
σ [ϵ, R, 4k + 9](c)+ ϵR

2
, (2-39)

then, for sufficiently large 3,

v = vk,c + O
(
(1 + xk+1)

(
ϵRex

+
1
R

e−x
)2k+3)

. (2-40)

Remark. Since r = ϵRex, by the chain rule,

d
dr

=
1
r

d
dx
,

so that Theorem 2.2.1 follows immediately from (2-40) upon setting k = 0.

Proof. For nonnegative, integer l, if v : [0, 3 log(R)] → R solves Gv = 0 with initial value as in (2-35)
then, since (2-37) holds for all T ∈ [0, 3 log(R)],

v = vl,c + O
(
(1 + x l+1)

(
ϵRex

+
1
R

)2l+3)
.

In particular, if v : [0, 3 log(R)] → R now solves Gv = 0 with initial value given by (2-39), then, bearing
in mind (2-14),

v = v4k+9,c + O
(
(1 + xk+1)

(
ϵRex

+
1
R

e−x
)2k+3)

.

However, by Lemma 2.2.2 and (2-14) again,

v4k+9,c = vk,c + O
(
(1 + xk+1)

(
ϵRex

+
1
R

e−x
)2k+3)

,

and the result follows. □
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2.5. The small scale: solutions of the linearised equation. We conclude this section by studying how
solutions of the equation Gv = 0 vary with the logarithmic parameter c.

Theorem 2.5.1. For sufficiently large 3 and for all R, ϵ satisfying (2-14), if , for all c ∈ [−K , K ], the
function vc : [ϵR, ϵR4

] → R solves Gvc = 0 with initial value

vc(ϵR)=
1
R
σ [ϵ, R](c)+ ϵR

2
,

then
dvc

dc
(r)=

ϵ

r
+ O

([
1 + log

( r
ϵR

)] 1
r k

(
r +

ϵ

r

)3)
. (2-41)

Theorem 2.5.1 follows from (2-49), below, via reasoning similar to that used in Section 2.4. It suffices
to study solutions of the linearisation of G about v, the asymptotic properties of which are readily derived
from the analysis of the previous sections. Indeed, let R[X ][[M, N ]] be as in Section 2.2 and define the
operator ∂N over this space by

(∂N V )p,q := (q + 1)Vp,q+1. (2-42)

In other words, ∂N is simply the operator of formal differentiation with respect to N. By explicit calculation,
N∂N commutes with D. Now let V be the formal power series constructed in Lemma 2.2.2 and define

W := N∂N V . (2-43)

Applying N∂N to the relation GV = 0 yields

DW + 3V 2W − 2MV W = 0, (2-44)

so that W is a formal solution to the linearisation of G about the formal series V.
Fix a nonnegative integer k, let V̂k be as in Lemma 2.2.2 and define

Ŵk :=

∑
p+q≤2k+1

Wp,q(X)M p N q . (2-45)

By (2-44),
DŴk + 3V̂ 2

k Ŵk − 2MV̂k Ŵk = O((M + N )2k+3). (2-46)

Consider now 3, K > 0, let ϵ, R > 0 and c ∈ R satisfy (2-14), and let vk,c and wk,c be the functions
corresponding to V̂k and Ŵk respectively. By (2-46), for all k,

Dwk,c + 3v2
k,cwk,c − 2(ϵRex)vk,cwk,c = O

(
xk+1

(
ϵRex

+
1
R

e−x
)2k+3)

. (2-47)

Lemma 2.5.2. For sufficiently large 3 and for all T ∈ [0, 3 log(R)], if v : [0, T ] → R solves Gv = 0 with
initial value

v(0)=
1
R
σ [ϵ, R, k](c)+ ϵR

2
,

and if w : [0, T ] → R solves

Dw+ 3v2w− 2ϵRexvw = 0 (2-48)
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with initial value w(0)= wk,c(0), then

∥w−wk,c∥C1
0
≲ (1 + T )k+1

(
ϵReT

+
1
R

)2k+3
. (2-49)

Proof. Indeed, by (2-47),

∥Dwk,c + 3v2
k,cwk,c − 2(ϵRex)vk,cwk,c∥ ≲ (1 + T )k+1

(
ϵReT

+
1
R

)2k+3
.

Observe that
∥v∥C0, ∥vk,c∥C0, ∥wk,c∥C0 ≲ 1.

Thus, by (2-36),
∥(3v2

k,c − 3v2)wk,c∥C0 = 3∥(vk,c − v)(vk,c + v)wk,c∥C0

≲ (1 + T )k+1
(
ϵReT

+
1
R

)2k+3
.

Likewise

∥(2(ϵRex)vk,c − 2(ϵRex)v)wk,c∥C0 ≲ (1 + T )k+1
(
ϵReT

+
1
R

)2k+3
.

Thus

∥D(wk,c−w)+3v2(wk,c−w)−2(ϵRex)v(wk,c−w)∥C0 = ∥Dwk,c+3v2wk,c−2(ϵRex)vwk,c∥C0

≲ (1+T )k+1
(
ϵReT

+
1
R

)2k+3
. (2-50)

Observe now that, for all φ : [0, T ] → R,

3v2φ− 2ϵRexφ = E(v− vk,c)φ,

where E is given by (2-31). In particular, by (2-14), (2-32) and (2-36), the operator norm of E(v− vk,c)

considered as a map from C1
0([0, T ]) into C0([0, T ]) satisfies

∥E(v− vk,c)∥ ≲ T
(
(ϵReT )2 +

1
R2

)
.

Thus, by (2-28), for sufficiently large 3, the operator D + E(v− vk,c) defines an invertible map from
C1

0([0, T ]) into C0([0, T ]) and the result now follows by (2-50). □

Theorem 2.5.1 now follows as indicated above. In addition, a further iteration of this process also
yields:

Theorem 2.5.3. With the same hypotheses as in Theorem 2.5.1,

d2vc

dc2 (r)= O
([

1 + log
( r
ϵR

)] 1
r k

(
r +

ϵ

r

)3)
. (2-51)

3. The Grim paraboloid

3.1. The MCFS Jacobi operator. The Grim paraboloid, which we henceforth denote by G0, is defined to
be the unique rotationally symmetric MCF soliton which is a graph over the whole of R2. Put differently,
using the notation of Section 2, there is a unique solution v to the ODE Gv = 0 which is defined over the
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whole interval ]0,∞[. This solution tends to 0 as x tends to 0, and the Grim paraboloid is the surface of
revolution generated by rotating the graph of its integral about the z-axis.

Let J be the MCFS Jacobi operator of the Grim paraboloid as defined in Section A2. In this section,
we show that this operator defines a linear isomorphism over suitably weighted Sobolev and Hölder
spaces. We first describe the spaces of interest to us (see Section A4 for details). Let g denote the metric
induced over R2 by the graph G0, that is,

g := (1 + v2) dr2
+ r2 dθ2. (3-1)

For all nonnegative, integer m, let ∥ · ∥Hm(G) denote the Sobolev norm of order m of functions over R2

with respect to this metric. Likewise, for all nonnegative, integer m, and, for all α ∈ [0, 1], let ∥ · ∥Cm,α(G)

denote the Hölder norm of order (m, α) of functions over R2 with respect to this metric. Observe that, by
(2-4), these Sobolev and Hölder norms are uniformly equivalent to the Sobolev and Hölder norms defined
with respect to the more straightforward metric

g′
:= (1 + r2) dr2

+ r2 dθ2. (3-2)

For all nonnegative, integer m, let H m(G) denote the Sobolev space of measurable functions f over R2

whose distributional derivatives up to and including order m are locally square integrable and which
satisfy ∥ f ∥Hm(G) < ∞. Likewise, for all nonnegative, integer m, and, for all α ∈ [0, 1], let Cm,α(G)
denote the Hölder space of m-times differentiable functions f over R2 which satisfy ∥ f ∥Cm,α(G) <∞.
Recall that both H m(G) and Cm,α(G), furnished with the above norms, are Banach spaces.

For all real γ , define φγ : R2
→ R by

φγ := e(1+γ )u/2. (3-3)

where u here denotes the integral of v with initial value 0. For all nonnegative, integer m, for all α ∈ [0, 1]

and for all real γ , define the weighted Sobolev and Hölder norms of weight γ over R2 by

∥ f ∥Hm
γ (G) := ∥φγ f ∥Hm(G),

∥ f ∥Cm,α
γ (G) := ∥φγ f ∥Cm,α(G).

(3-4)

Observe that, by (2-4) again, these weighted Sobolev and Hölder norms are uniformly equivalent to the
weighted norms defined using instead of φγ the more straightforward weight function

φ′

γ := e(1+γ )r2/4. (3-5)

For all nonnegative, integer m, for all α ∈ [0, 1], and for all real γ , define the weighted Sobolev and
Hölder spaces of weight γ over R2 by

H m
γ (G) := { f | φγ f ∈ H m(G)},

Cm,α
γ (G) := { f | φγ f ∈ Cm,α(G)}.

(3-6)

These spaces, furnished with the weighted Sobolev and Hölder norms are trivially also Banach spaces.
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Since G0 is a graph over R2, its MCFS Jacobi operator may be thought of as an operator acting on
functions over R2. In particular, as we will see presently, for all α ∈ [0, 1], and for all real γ, J defines
bounded linear maps from H 2

γ (G) into H 0
γ (G) and from C2,α

γ (G) into C0,α
γ (G). We show:

Theorem 3.1.1. (1) For all sufficiently small γ, J defines a linear isomorphism from H 2
γ (G) into H 0

γ (G).

(2) For all α ∈ ]0, 1[ and for all sufficiently small γ, J defines a linear isomorphism from C2,α
γ (G) into

C0,α
γ (G).

Theorem 3.1.1 will follow from Lemmas 3.2.6 and 3.3.4 below. Before proceeding, we first observe that,
for all γ , the function φγ is strictly positive so that, for all nonnegative, integer m, and for all α ∈ [0, 1],
the operator of multiplication by this function, which we denote by Mγ , defines linear isomorphisms
from H m

γ (G) into H m(G) and from Cm,α
γ (G) into Cm,α(G). For all real γ , we therefore define

Jγ := Mγ J M−1
γ . (3-7)

This operator is none other than the φγ -Jacobi operator of the Grim paraboloid, which has been studied
in detail in [Cheng and Zhou 2015; Cheng et al. 2014; 2015a; 2015b]. Trivially, J defines linear
isomorphisms from H 2

γ (G) into H 0
γ (G) and from C2,α

γ (G) into C0,α
γ (G) if and only if Jγ defines linear

isomorphisms from H 2(G) into H 0(G) and from C2,α(G) into C0,α(G) respectively.

Lemma 3.1.2. For all real γ ,

Jγ f =1G0 f − γ ⟨ez,∇
G0 f ⟩ +

(γ 2
− 1)
4

f −
(1 + γ )2

4
⟨ez, NG0⟩

2 f + Tr(A2
G0
) f. (3-8)

Proof. By (A-3),

∇
G0φ−1

γ = −
(1 + γ )

2φγ
πG0(ez),

HessG0 φ−1
γ =

(1 + γ )2

4φγ
dz ⊗ dz +

(1 + γ )

2φγ
⟨ez, NG0⟩II

G0 .

However, since G0 is a mean curvature flow soliton, HG0 = −⟨ez, NG0⟩, and taking the trace therefore
yields

1G0φ−1
γ =

(1 + γ )2

4φγ
−
(1 + γ )(3 + γ )

4φγ
⟨ez, NG0⟩

2.

Thus, by (A-2),

φγ J0φ
−1
γ =

(γ 2
− 1)
4

−
(1 + γ )2

4
⟨ez, NG0⟩

2
+ Tr(AG0)

2.

The result now follows by (A-4). □

By (A-6) and (2-13),
⟨ez, NG0⟩

2
= O(r−(2+k)),

Tr(A2
G0
)= O(r−(2+k)).

(3-9)

It follows that, as γ tends to 0, the family (Jγ ) converges to J0 in every operator norm of relevance to us.
Since invertibility is stable under small perturbations, it is therefore sufficient to consider only the case
γ = 0 where, in particular, J0 is self-adjoint.
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We now derive a formula for J0 which is better adapted to our purposes. First, let c : ]0,∞[ → R be
such that, for all r , c(r) is the geodesic curvature of the circle C(r) with respect to the metric induced by
the graph G0 over R2.

Lemma 3.1.3. The function c is given by

c =
1
r
⟨ez, NG0⟩. (3-10)

In particular, for large values of r ,
c = O(r−(2+k)). (3-11)

Proof. Let D denote the Levi-Civita covariant derivative of the Euclidean metric over R3. Think of C(r)
as a horizontal circle in R3 at height u(r), where u here denotes the integral of v with initial value 0. In
particular, Deθ eθ = (1/r)er , where eθ and er denote respectively the unit, horizontal vector fields in the
angular and radial directions about the z-axis. Since the geodesic curvature of C(r) with respect to the
induced metric over G0 is equal to the length of the tangential component of this vector, the function c is
given by

c =
1
r

√
1 − ⟨er , NG0⟩

2 =
1
r
⟨ez, NG0⟩,

as desired. Equation (3-11) now follows from (3-9), and this completes the proof. □

Let ρ : ]0,∞[ → R be such that, for all r , ρ(r) is the intrinsic distance along G0 of any point on the
circle C(r) from the origin. Since ρ is obtained by integrating

√
1 + v2, by (2-4) again, for large values

of r ,
ρr = r + O(r−(k+1)),

rρ =
1
r

+ O(r−(k+3)),
(3-12)

where the subscripts r and ρ here denote differentiation with respect to the variables r and ρ respectively.

Lemma 3.1.4. Away from the z-axis,

J0 f = fρρ + fθθ + c fρ −
1
4 f +ψ f, (3-13)

where the subscripts ρ and θ denote differentiation along the unit radial and unit angular directions in G0

and, for large values of ρ,
|ψ | ≲ ρ−1. (3-14)

Proof. Indeed, away from the z-axis,
1G0 f = fρρ + fθθ + c fρ,

so that (3-13) follows by (3-8) and (3-9) with

|ψ | ≲ r−2.

Finally, integrating (3-12), yields ρ ≲ r2, so that r−2 ≲ ρ−1 and the result follows. □
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3.2. Invertibility over Sobolev spaces. We now obtain the invertibility of J0 for Sobolev spaces. The
main technical difficulty here arises from the noncompactness of the ambient space. This is compensated
for by the following estimate.

Lemma 3.2.1. There exist B, R > 0 such that, for all f in H 2(G),

∥ f |A(R,∞)∥L2(G) ≤ B
(
∥ f |A(R−1,R+1)∥L2(G) + ∥J0 f |A(R−1,∞)∥L2(G)

)
. (3-15)

Proof. Since C∞

0 (G) is dense in H 2(G), it suffices to prove the result when f is smooth and has compact
support. Set g := J0 f and define α, β : ]0,∞[ → R by

α(ρ) :=

∫
C(ρ)

f 2 dl, β(ρ) :=

∫
C(ρ)

g2 dl,

where C(ρ) here denotes the circle of points lying at intrinsic distance ρ along G0 from the origin. Twice
differentiating α yields

αρ =

∫
C(ρ)

2 f fρ + f 2c dl,

αρρ =

∫
C(ρ)

2 f 2
ρ + 2 f fρρ + 4 f fρc + f 2cρ + f 2c2 dl,

where the subscript ρ here denotes differentiation with respect to this variable. By (3-13),

αρρ =

∫
C(ρ)

2 f 2
ρ − 2 f fθθ +

1
2 f 2

− 2ψ f 2
+ 2 f g + 2 f fρc + f 2cρ + f 2c2 dl.

Integrating the term 2 f fθθ by parts and applying the algebraic-geometric mean inequality now yields

αρρ ≥

∫
C(ρ)

( 1
4 − 2ψ + cρ − c2) f 2

− 4g2 dl.

However, by (3-11), (3-12) and (3-14), c, cρ = crrρ and ψ all tend to 0 as ρ tends to +∞ so that, for
sufficiently large ρ,

αρρ ≥
1
8α− 4β.

Since f has compact support, upon integrating this relation we obtain, for sufficiently large R,

∥ f |A(R,∞)∥
2
L2(G) =

∫
∞

R
α dρ ≤ 32

∫
∞

R
β dρ− 8αρ(R)= 32∥ Ĵ0 f |A(R,∞)∥

2
L2(G) − 8αρ(R).

However, by the Sobolev trace formula and classical elliptic estimates,

αρ(R)≤ B1∥ f |A(R−1/2,R+1/2)∥
2
H2(G)

≤ B2(∥ f |A(R−1,R+1)∥
2
L2(G) + ∥J0 f |A(R−1,R+1)∥

2
L2(G))

for suitable constants B1 and B2. The result now follows upon combining the last two relations. □

Combining Lemma 3.2.1 with classical elliptic estimates yields:
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Lemma 3.2.2. There exist B, R > 0 such that, for all f in H 2(G),

∥ f ∥H2(G) ≤ B(∥ f |B(R)∥L2(G) + ∥J0 f ∥L2(G)). (3-16)

Proof. Observe that G0 is of bounded geometry in the sense that, as x tends to infinity in G0, the geodesic
ball of unit radius about x in this surface converges in the pointed Cheeger–Gromov sense to the unit ball
about the origin in R2. It thus follows by classical elliptic theory (see [Gilbarg and Trudinger 1983]) that
there exists B > 0 such that

∥ f ∥H2(G) ≤ B(∥ f ∥L2(G) + ∥J0 f ∥L2(G)).

The result follows upon combining this relation with (3-15). □

Since, J0 is self-adjoint, standard arguments of the theory of elliptic operators now yield

Lemma 3.2.3. J0 defines a Fredholm map from H 2(G) into L2(G) of Fredholm index equal to 0.

Proof. Since B(R) is relatively compact, it follows by Rellich’s compactness theorem that the restriction
map sending H 2(G) into L2(B(R)) is also compact. Thus, by (3-16), J0 satisfies an elliptic estimate,
as defined in Section A5, so that, by Theorem A5.1, J0 has finite-dimensional kernel and closed image.
Observe now that J0 is self adjoint, so that Ker(J0) is contained within the orthogonal complement of
Im(J0) in L2(G). We claim that these two spaces coincide. Indeed, let u be an element of the orthogonal
complement of Im(J0). In particular, J0u = 0 in the distributional sense. Thus, bearing in mind that
G0 is of bounded geometry, it follows by classical elliptic regularity that u is an element of H 2(G). In
particular, u is therefore an element of Ker(J0), so that Ker(J0) coincides with the orthogonal complement
of Im(J0) in L2(G), as asserted. It immediately follows that J0 is a Fredholm map of Fredholm index
equal to 0, and this completes the proof. □

It remains only to prove that J0 has trivial kernel in H 2(G). We obtain a slightly more general result
which will serve also for the Hölder space case of the following section.

Lemma 3.2.4. There exists no nontrivial, bounded function f : G0 → R such that J0 f = 0.

Proof. Indeed, suppose that there exists a nontrivial bounded function f : G0 → R such that J0 f = 0.
Upon multiplying by (−1), we may suppose that f is positive at some point. Now, since all vertical
translates of G0 are also mean curvature flow solitons, the function µ= ⟨ez, NG⟩ is a Jacobi field over
this surface, that is,

J0φ0µ= φ0 Jµ= 0.

Since G0 is a graph, the function µ is everywhere strictly positive. It follows that φ0µ is also positive, so
that the quotient f/φ0µ is smooth. Since φ0 ≳ er2/4 and µ= O(r−1), the function φ0µ tends to infinity
as r tends to infinity, and so f/φ0µ attains its maximum value at some point x , say, of G0. In particular,
upon rescaling, we may suppose that f/φ0µ≤ 1 and that f (x)/φ0(x)µ(x)= 1.

Bearing in mind that µ is positive, we define the operator Jµ := M−1
µ J Mµ, where Mµ here denotes

the operator of multiplication by µ. Since Jµ= 0, by (A-4), this operator has no zeroth order term. Thus,
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since Jµ( f/µφ0)= (1/µφ0)J0 f = 0, it follows by the strong maximum principle that f/φ0µ is constant
and equal to 1. However, since φ0µ is unbounded, this is absurd, and the result follows. □

Corollary 3.2.5. J0 has trivial kernel in H 2(G).

Proof. Indeed, by the Sobolev embedding theorem, every element of H 2(G) is bounded, and the result
now follows by Lemma 3.2.4. □

The above results together with a perturbation argument now yield

Lemma 3.2.6. For sufficiently small γ , J defines a linear isomorphism from H 2
γ (G) into H 0

γ (G).

3.3. Invertibility over Hölder spaces. We prove the invertibility of J0 over C2,α(G) in essentially the
same manner. We first require the following preliminary result.

Lemma 3.3.1. Let α and β be positive constants. If φ : [0,∞[→]0,∞[ is a bounded, positive function
such that φ′′

≥ α2φ−β in the viscosity sense, then, for all t ,

φ(t)≤ Max
(
φ(0)−

β

α2 , 0
)

e−αt
+
β

α2 . (3-17)

Proof. Let A = Max(φ(0)−β/α2, 0) and let B = Supt∈[0,∞[ φ(t). Fix T > 0 and define

f =
BeαT

− A
e2αT − 1

eαt
+

A − Be−αT

1 − e−2αT e−αt
+
β

α2 .

In other words, f is the unique solution of the ODE problem ft t = α2 f − β with boundary values
f (0) = A + β/α2

≥ φ(0) and f (T ) = B + β/α2
≥ φ(T ). Let C be the minimum value of f − φ over

[0, T ] and let t ∈ [0, T ] be the point at which this minimum is attained. If t is a boundary point of this
interval, then C ≥ 0. Otherwise, f −C ≥ φ and f (t)−C = φ(t). Thus, since φ is a viscosity solution of
φ′′

≥ α2φ−β, at this point, we have

α2 f −β = ( f − C)t t ≥ α2( f − C)−β

so that, once again, C ≥ 0. In each case, we therefore obtain

φ ≤ f =
BeαT

− A
e2αT − 1

eαt
+

A − Be−αT

1 − e−2αT e−αt
+
β

α2 ,

and the result follows upon taking the limit as T tends to +∞. □

As in the Sobolev case, the noncompactness of the ambient space is compensated for by the following
estimate.

Lemma 3.3.2. There exist B, R > 0 such that, for all f in C2,α(G),

∥ f |A(R,∞)∥C0(G) ≤ B(∥ f |C(R)∥C0(G) + ∥J0 f |A(R−1,∞)∥C0(G)). (3-18)

Proof. Define α : ]0,∞[ → R by
α(ρ) := Supx∈C(ρ) f (x)2,
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where C(ρ) here denotes the circle of points lying at intrinsic distance ρ along G0 from the origin. Denote
g := J0 f , and define B ⩾ 0 by

B := ∥g2
|A(R,∞)∥C0(G).

Choose x ∈ C(ρ) maximising f 2, and observe that f fθθ is nonpositive at this point. Thus, bearing in
mind (3-13),

( f 2)ρρ = 2 f 2
ρ + 2 f fρρ,

≥ 2 f 2
ρ + 2 f g − 2c fρ +

1
2 f 2

− 2ψ f 2,

≥
( 1

4 −
1
2 c2

− 2ψ
)

f 2
− 4g2.

By (3-11) and (3-14), for sufficiently large ρ

( f 2)ρρ ≥
1
8 f 2

− 4g2.

Since α is the envelope of the restriction of f (x)2 to each radial line, it follows that over [R,∞[,

αρρ ≥
1
8α− 4B,

in the viscosity sense. Thus, by Lemma 3.3.1,

Supx∈A(R,∞) f 2(x)= Supρ≥R α(ρ)≤ Max(∥ f 2
|C(R)∥C0 − 32B, 0)+ 32B,

and the result follows. □

Using classical elliptic estimates again, this yields

Lemma 3.3.3. There exist B, R > 0 such that for all f in C2,α(G),

∥ f ∥C2,α(G) ≤ B(∥ f |B(R)∥C0(G) + ∥J0 f ∥C0,α(G)). (3-19)

Proof. Recall that G0 is of bounded geometry in the sense that, as x tends to infinity in G0, the geodesic
ball of unit radius about x in this surface converges in the pointed Cheeger–Gromov sense to the unit ball
about the origin in R2. It thus follows by classical elliptic theory (see [Gilbarg and Trudinger 1983]) that
there exists B > 0 such that

∥ f ∥C2,α(G) ≤ B(∥ f ∥C0(G) + ∥J0 f ∥C0,α(G)),

and the result now follows upon combining this relation with (3-18). □

As before, this yields the desired invertibility result.

Lemma 3.3.4. For all α and for all sufficiently small γ, J defines a linear isomorphism from C2,α
γ (G)

into C0,α
γ (G).

Proof. Recall that this is equivalent to showing that, for sufficiently small γ , Jγ defines a linear isomor-
phism from C2,α(G) into C0,α(G). Furthermore, by (3-8) and (3-9), Jγ converges to J0 in the operator
norm as γ tends to 0, so that it suffices to prove the result for J0.

Since B(R) is a relatively compact subset of G0, it follows by the Arzelà–Ascoli theorem that the
restriction map of C2,α(G) into C0(B(R)) is compact. Thus, by (3-19), J0 satisfies an elliptic estimate,
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as defined in Section A5. By Theorem A5.1, the image of J0 is closed and, in particular, is a Banach
subspace of C0,α(G). Furthermore, by Lemma 3.2.4, the kernel of J0 in C2,α(G) is trivial, so that, by the
closed graph theorem, J0 defines a linear isomorphism from C2,α(G) into its image. In particular, there
exists a constant B > 0 such that, for all u ∈ C2,α(G),

∥u∥2,α ≤ B∥J0u∥0,α. (3-20)

It remains only to prove surjectivity. Choose v ∈ C0,α(G) and let (vm) be a sequence of smooth
functions of compact support in R2 which is bounded in C0,α(G) and which converges to v in the C0,β

loc
sense for all β < α. For all m, since vm is a smooth function with compact support, it is an element of
L2(G) so that, by Lemma 3.2.6, there exists an element um of H 2(G) such that J0um = vm . Since G0 is
of bounded geometry, it follows by classical elliptic regularity that, for all m, um is in fact an element of
C2,α(G). In particular, by (3-20), for all m,

∥um∥C2,α(G) ≤ B∥vm∥C0,α(G).

Since the sequence (um) is uniformly bounded in C2,α(G), it follows by the Arzelà–Ascoli theorem there
exists u ∈ C2,α(G) towards which (um) subconverges in the C2,β

loc -topology for all β < α. By continuity,
J0u = v and surjectivity follows. □

4. Rotationally symmetric Grim ends

4.1. The modified MCFS Jacobi operator. We now consider the case of rotationally symmetric Grim
ends. Let 3 be a large, positive real number, let K > 0 be fixed, and let ϵ, R > 0 and c ∈ R satisfy
(2-14). Let v : [ϵR,∞[ → R solve (2-5) with logarithmic parameter c so that, by (2-16), over the interval
[ϵR, ϵR4

],

v =
1
2

r +
cϵ
r

+ O
([

1 + log
( r
ϵR

)] 1
r k

(
r +

ϵ

r

)3)
. (4-1)

Let u : [ϵR,∞[→ R be a primitive of v, let G be the Grim end generated by rotating the graph of u about
the z-axis, and let J be its MCFS Jacobi operator, as defined in Section A2.

Since G is a graph over A(ϵR,∞), J may again be thought of as an operator acting on functions over
this annulus. For all nonnegative, integer m, for all α ∈ [0, 1], and for all real γ , we define the norms
∥ · ∥Hm

γ (G) and ∥ · ∥Cm,α
γ (G) as in Section 3. For all nonnegative integer m, for all α ∈ [0, 1] and for all real

γ , we define the hybrid norm with weight γ of functions over Rm by

∥ f ∥m,α,γ := ∥ f ∥Cm,α
γ (G) +

1
(ϵR)

∥ f ∥Hm
γ (G). (4-2)

As we will see in Section 6, this norm encapsulates the asymptotic behaviour of J as 3 tends to infinity.
Let Lm,α

γ (G) denote the Banach space of m-times differentiable functions f over R2 with finite hybrid
norm. In this section, we show that, for sufficiently small γ , and for sufficiently large 3, the operator J
more or less defines linear isomorphisms from L2,α

γ (G) into L0,α
γ (G) and, furthermore, that the norms

of this isomorphism and its inverse are uniformly bounded as 3 tends to infinity. In order to properly
formalise these assertions, we now apply the following two modifications.
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First, on account of the vanishing neck problem, discussed in the Introduction, the zeroth-order
coefficient of J diverges rapidly over the annulus A(ϵR, ϵR4) as 3 tends to infinity. We address this
by introducing what we call the modified MCFS Jacobi operator. Recall that different modifications
are applied at different scales, so that the definition of this operator varies according to context, and the
general framework will be discussed in Section 5.4, below. In the present case, the modified MCFS Jacobi
operator is defined as follows. Let χ1 be the cut-off function of the transition region A(1, 2) as defined in
Section A1 and define ψ : A(ϵR,∞)→ R by

ψ(r)= χ1⟨ez, NG⟩ + (1 −χ1), (4-3)

where NG here denotes the upward-pointing unit normal vector field over G. Bearing in mind that ψ is
always positive, the modified MCFS Jacobi operator of G is now defined by

Ĵ := M−1
ψ J Mψ , (4-4)

where Mψ here denotes the operator of multiplication by ψ .
Next, observe that Ĵ is in fact only defined over the annulus A(ϵR,∞). We thus extend it to an operator

defined over the whole of R2 as follows. Given a function φ : A(ϵR,∞)→ R, we define its canonical
extension φ̃ : R2

→ R such that φ̃(x)= φ(x) over A(ϵR,∞), φ̃(0) is equal to the mean value of φ over
the circle C(ϵR), and φ̃ restricts to a linear function over every radial line in B(ϵR). In particular, if φ is
Lipschitz, then so too is φ̃, and

∥φ̃∥C0,1 ≤
π
2 ∥φ∥C0,1 .

Now, given a linear operator L over A(ϵR,∞), we define its canonical extension L̃ to be the operator
over R2 whose coefficients are the canonical extensions of each of the coefficients of L . We henceforth
identify all operators with their canonical extensions over R2. Observe, in particular, that if L has any
rotational symmetries, then so too does its canonical extension.

Theorem 4.1.1. For all sufficiently small α ∈]0, 1[ and for all sufficiently large 3, Ĵ defines a linear
isomorphism from L2,α

γ (G) into L0,α
γ (G). Furthermore, the operator norms of Ĵ and its inverse are

uniformly bounded independent of 3.

Theorem 4.1.1 follows from Theorem 3.1.1 by a perturbation argument and Lemmas 4.2.7 and 4.3.4.
We conclude this section by deriving formulae for Ĵ over different regions.

Lemma 4.1.2. Over A(ϵR, 1), the modified MCFS Jacobi operator of G is given by

Ĵ f = gi j fi j − 2µgi pg jqu pqu j fi . (4-5)

Proof. First observe that, for every tangent vector X over G,

⟨∇
Gψ, X⟩ = Xψ = X⟨NG, ez⟩ = ⟨DX NG, ez⟩ = ⟨AG X, ez⟩ = ⟨X, AGπ

G(ez)⟩,

and so,

∇
Gψ = AGπ

G(ez).
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Since every vertical translate of G is also a rotationally symmetric Grim end, J ⟨ez, NG⟩ = 0, and so,
by (A-4),

Ĵ f =1G f + ⟨ez,∇
G f ⟩ + 2ψ−1

⟨AG∇
G f, ez⟩.

By (A-3),
HessG f = Hess( f ) ◦π − ⟨D( f ◦π), N ⟩IIG .

Furthermore, since D( f ◦π) is horizontal

⟨D( f ◦π), NG⟩ = −
1

⟨NG, ez⟩
⟨D( f ◦π), ez − ⟨NG, ez⟩NG⟩ = −

1
⟨NG, ez⟩

⟨∇
G f, ez⟩.

Taking the trace therefore yields

1G f = gi j fi j +
1

⟨NG, ez⟩
⟨∇

G f, ez⟩HG .

However, since G is a mean curvature flow soliton, HG = −⟨N , ez⟩, and so

1G f = gi j fi j − ⟨∇
G f, ez⟩.

We conclude that
Ĵ f = gi j fi j + 2ψ−1

⟨AG∇
G f, ez⟩,

and the result now follows by (A-6). □

Lemma 4.1.3. Over A(ϵR, 2ϵR4), the modified MCFS Jacobi operator of G satisfies

Ĵ f =1 f −

(
1
2

+
cϵ
r2

)2

x i x j fi j −

(
1
2

−
2c2ϵ2

r4

)
x i fi + EG f, (4-6)

where EG f := ai j fi j + bi fi , and a and b satisfy

a = O
([

1 + log
( r
ϵR

)] 1
r k

(
r +

ϵ

r

)4)
,

b = O
([

1 + log
( r
ϵR

)] 1
r k+1

(
r +

ϵ

r

)4)
.

(4-7)

Proof. Indeed, by (4-1),

ui =
1
2

xi +
cϵ
r2 xi + O

([
1 + log

( r
ϵR

)] 1
r k

(
r +

ϵ

r

)3)
.

Thus, by (A-6),

µ2
= 1 −

(r
2

+
cϵ
r

)2
+ O

([
1 + log

( r
ϵR

)] 1
r k

(
r +

ϵ

r

)4)
,

gi j
= δi j −

(1
2

+
cϵ
r2

)2
x i x j

+ O
([

1 + log
( r
ϵR

)] 1
r k+1

(
r +

ϵ

r

)4)
.

It follows that

gi j fi j =1 f −

(1
2

+
cϵ
r2

)2
x i x j fi j + ai j fi j ,
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where a = O([1 + log(r/ϵR)]r−k(r + ϵ/r)4), and since r−1(r + ϵ/r)4 bounds (r + ϵ/r)3,

−2µgi pg jqu pqui f j = −

(
1
2

−
2ϵ2c2

r4

)
x i fi + bi fi ,

where b = O([1 + log(r/ϵR)]r−(k+1)(r + ϵ/r)4). The result follows. □

4.2. The regular component. Theorem 4.1.1 is derived from Theorem 3.1.1 by a perturbation argument.
First, let vp :]0,∞[→ R denote the unique solution of (2-5) which is defined over the whole positive half-
line, as in Section 3. Let u p denote its primitive with initial value 0 so that its graph is a Grim paraboloid.
Let Ĵp denote its modified MCFS Jacobi operator, as defined in Section 4.1. Over the ball B(2ϵR4),

vp(r)=
1
2r + O(r3−k), (4-8)

so that, as in Lemma 4.1.3, over B(0, 2ϵR4),

Ĵp f =1 f −
1
2 x i x j fi j −

1
2 x i fi + Ep f, (4-9)

where Ep f := ai j fi j + bi fi and

a = O(r4−k), b = O(r3−k). (4-10)
Define

Ĵγ := M−1
γ Ĵ Mγ , (4-11)

where Mγ here denotes the operator of multiplication by χ2 + (1 −χ2)φγ , φγ is given by (3-3), and χ2

is the cut-off function of the transition region A(2, 4) as defined in Section A1. Observe that, since φγ
and ψ only depend on v and its integral u, it follows by (A-2) that the coefficients of Ĵγ are functions
of u, v and vr only. Finally, define

Ĵp,γ := M−1
γ Ĵp Mγ . (4-12)

A straightforward modification of Theorem 3.1.1 shows that, for all α ∈]0, 1[, and for all sufficiently
small γ, Ĵp,γ defines a linear isomorphism from L2,α

γ (G) into L0,α
γ (G) whose Green’s operator has norm

uniformly bounded independent of 3.
It will suffice to show that the difference Ĵp,0 − Ĵ0 converges to 0 with respect to the hybrid norm as 3

tends to +∞. This is, in fact, a nontrivial result, since the coefficients of this operator diverge. However,
the region over which they diverge itself converges to a point; the relative rates of convergence are such
that the coefficients converge in the mean, which will be sufficient for us to conclude. Formally, we define
the operators D and E over A(ϵR,∞) by

D f := ( Ĵ0 − E) f − Ĵp,0 f,

E f := χ
2c2ϵ2

r4 x i fi ,
(4-13)

where χ here denotes the cut-off function of the transition region A(ϵR4, 2ϵR4). We then extend these
operators canonically to operators over the whole of R2, as in Section 4.1. By definition,

Ĵ0 := Ĵp,0 + D + E . (4-14)
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We call D and E respectively the regular component and the singular component of the difference. We
now show that the coefficients of the regular component tend to 0 in all norms that concern us as 3 tends
to infinity. We will study the singular component in the next section.

By (4-6), (4-7), (4-9), (4-10) and (4-13),

D f = ai j fi j + bi fi ,

where, over A(ϵR, 2ϵR4),

ai j
= −

cϵ
r2 x i x j

−
c2ϵ2

r4 x i x j
+ O

([
1 + log

( r
ϵR

)] 1
r k

(
r +

ϵ

r

)4)
,

bi
= (1 −χ)

2c2ϵ2

r4 x i
+ O

([
1 + log

( r
ϵR

)] 1
r k+1

(
r +

ϵ

r

)4)
.

(4-15)

Lemma 4.2.1. For sufficiently small α,

∥a|B(ϵR)∥C0,α , ∥b|B(ϵR)∥C0,α → 0, (4-16)
as 3 tends to infinity.

Proof. Indeed, by (4-15), since χ equals 1 near C(ϵR), over this circle,

a = O
(

1
(ϵR)k

(
ϵ+

1
R2 + (ϵR)4 +

1
R4

))
,

b = O
(

1
(ϵR)k+1

(
(ϵR)4 +

1
R4

))
.

Since the Lipschitz seminorms of the canonical extensions of a and b over B(ϵR) are controlled by their
Lipschitz seminorms over C(ϵR), by (A-10), for all α ∈ [0, 1],

∥a|B(ϵR)∥C0,α ≲
ϵ1−α

Rα
+

1
ϵαR2+α

+ (ϵR)4−α
+

1
ϵαR4+α

,

∥b|B(ϵR)∥C0,α ≲ (ϵR)3−α
+

1
ϵ1+αR5+α

.

By (2-14), for sufficiently small α, these both tend to 0 as 3 tends to infinity, as desired. □

Lemma 4.2.2. For sufficiently small α,

∥a|A(ϵR,2ϵR4)∥C0,α , ∥b|A(ϵR,2ϵR4)∥C0,α → 0, (4-17)
as 3 tends to infinity.

Proof. Indeed, by (4-15), over A(ϵR, 2ϵR4),

a = O
(

1
r k

(
ϵ+

ϵ2

r2

))
+ O

([
1 + log

(
r
ϵR

)]
1
r k

(
r +

ϵ

r

)4)
,

and b = b1 + b2, where

b1 = O
([

1 + log
(

r
ϵR

)]
1

r k+1

(
r4

+
ϵ4

r4

))
,

b2 = (1 −χ)
2c2ϵ2

r4 x i .
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Thus, by (A-10) and (A-20), for all α ∈ [0, 1],

∥a|A(ϵR,2ϵR4)∥C0,α ≲
ϵ1−α

Rα
+

1
ϵαR2+α

+ log(R)(ϵR4)4−α
+

1
ϵαR4+α

,

∥b1|A(ϵR,2ϵR4)∥C0,α ≲ log(R)(ϵR4)3−α
+

1
ϵ1+αR5+α

.

By (2-14), for sufficiently small α, these both tend to 0 as 3 tends to infinity. Finally, over A(ϵR4, 2ϵR4),

b2 = O(ϵ2r−(k+3)),

so that, by (A-10),

∥b2|A(ϵR4,2ϵR4)∥C0,α ≲
1

ϵ1+αR12+4α .

By (2-14), for sufficiently small α, this also tends to 0 as 3 tends to infinity, and the result follows. □

Lemma 4.2.3. If ϵR < s < t <
√

2, then

|v(t)− vp(t)| ≤ |v(s)− vp(s)|. (4-18)

Proof. Indeed, by (2-5), using a dot to denote differentiation with respect to r , we have

r(v̇− v̇p)= −(v− vp)(1 − r(v+ vp)+ (v
2
+ vvp + v2

p)).

However,

1 − r(v+ vp)+ (v
2
+ vvp + v2

p)≥ 1 −
r2

2
.

Thus, for r ≤
√

2, |v− vp| is decreasing, as desired. □

Lemma 4.2.4. For all α ∈]0, 1],
∥a|A(ϵR4,1)∥C1, ∥b|A(ϵR4,1)∥C1 → 0, (4-19)

as 3 tends to infinity.

Proof. By (4-1) and (4-8), over C(2ϵR4),

|v− vp| ≲
1
R4 + log(R)(ϵR4)3 + log(R)

1
R12 .

By Lemma 4.2.3, this inequality continues to hold over the whole of A(2ϵR4, 1). Since v and vp both
solve (2-5), it follows that, over this annulus,

v− vp = O
(

1
(ϵR4)k

(
1
R4 + log(R)(ϵR4)3 + log(R)

1
R12

))
.

Thus,

∥(v− vp)|[2ϵR4,1]∥C2 ≲
1

ϵ2 R12 + log(R)ϵR4
+ log(R)

1
ϵ2 R20 ,

so that, by (2-14),
∥(v− vp)|[2ϵR4,1]∥C2 → 0,
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as 3 tends to infinity. However, by (4-5), over A(ϵR4, 1), the coefficients a and b only depend on the
first derivatives of v and vp, so that

∥a|A(2ϵR4,1)∥C1, ∥b|A(2ϵR4,1)∥C1 → 0,

as 3 tends to infinity, as desired. □

Lemma 4.2.5. For all R0 > 1,

∥a|A(1,R0)∥C1, ∥b|A(1,R0)∥C1 → 0, (4-20)

as 3 tends to infinity.

Proof. By (4-1), (4-8) and (4-18), over C(1),

|v− vp| ≲
1
R4 + log(R)(ϵR4)3 + log(R)

1
R12 .

Since solutions of first-order ODEs vary smoothly with their parameters,

∥(v− vp)|[1,R0]∥C2 → 0,

as 3 tends to ∞. However, over A(1, R0), a and b only depend on v and vp and their derivatives up to
order 2, and the result follows. □

Lemma 4.2.6. For all ϵ > 0, there exists R0 > 0 such that if |v(1)− vp(1)| ≤ 1, then

∥a|A(R0,∞)∥C1(G), ∥b|A(R0,∞)∥C1(G) ≤ ϵ. (4-21)

Proof. Indeed, over A(4,∞), both Ĵ0 and Ĵp,0 are given by (3-8). The result now follows by local uniform
dependence of the estimates in (3-9) on the initial value. □

Combining these results yields:

Lemma 4.2.7. (1) The operator norm of D, considered as a map from H 2(G) into L2(G) converges
to 0 as 3 tends to infinity.

(2) For sufficiently small α, the operator norm of D, considered as a map from C2,α(G) into C0,α(G)
converges to 0 as 3 tends to infinity.

Proof. Indeed, by (4-16), (4-17), (4-19), (4-21) and (4-20), for sufficiently small α, both ∥a∥C0,α(G) and
∥b∥C0,α(G) converge to 0 as 3 tends to infinity, and the result follows. □

4.3. The singular component. We now write

E f =: ai fi . (4-22)

Since E is defined by canonical extension, over the ball B(ϵR),

ai
=

2c2

ϵ2 R4 x i . (4-23)

At this stage we require the following key estimate, which reveals the significance of the hybrid norm.
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Lemma 4.3.1. For sufficiently small α and for sufficiently small γ ,

∥ f ∥C1,α
γ (G) ≲ (ϵR)1−2α

∥ f ∥2,α,γ . (4-24)

Remark. It will be useful to observe that this relation is also valid for spaces of functions defined over
an unbounded annulus.

Proof. Indeed, by the Sobolev embedding theorem, for all β < 1,

∥ f ∥C0,β
γ (G) ≲ ∥ f ∥H2

γ (G) ≲ (ϵR)∥ f ∥2,α,γ .

Setting β = (1 −α) and using (A-10) and (A-11), we obtain

∥ f ∥C1,α
γ (G) ≲ (ϵR)1/(1+2α)

∥ f ∥2,α,γ ≲ (ϵR)1−2α
∥ f ∥2,α,γ ,

as desired. □

Lemma 4.3.2. For sufficiently small α ∈ [0, 1] and for sufficiently small γ , the operator norm of E ,
considered as a map from L2,α

γ (G) into C0,α
γ (G) tends to 0 as 3 tends to infinity.

Proof. Indeed, over A(ϵR, 2ϵR4),

ai
= O

(
ϵ2

r3+k

)
,

so that
∥ai

|A(ϵR,2ϵR4)∥C0 ≲
1
ϵR3 and [ai

|A(ϵR,2ϵR4)]1 ≲
1

ϵ2 R4 .

Since ai is extended canonically over B(ϵR), these inequalities also hold over the whole of B(2ϵR4) so
that, by (A-10), for all α ∈ [0, 1],

[ai
]α ≲

1
(ϵR)αϵR3 .

It follows by (4-24) and (A-12) that

∥E f ∥C0,α
γ (G) ≲

1
(ϵR)αϵR3 ∥ f ∥C1,α

γ (G),

and the result follows by (2-14) and (4-24). □

Lemma 4.3.3. For sufficiently small α ∈ [0, 1] and for sufficiently small γ , the operator norm of (ϵR)−1 E
considered as a map from L2,α

γ (G) into H 0
γ (G) tends to 0 as 3 tends to infinity.

Proof. Indeed, a direct calculation yields

∥ai
∥L2

γ (G) ≲
1
R2 .

Thus, bearing in mind (4-24),

∥(ϵR)−1 E f ∥L2
γ (G) ≲ (ϵR)−1

∥ai
∥L2

γ (G)∥D f ∥L∞(G)

≲ (ϵR)−1
∥ai

∥L2
γ (G)∥ f ∥C1,α

γ (G) ≲
1

(ϵR)2αR2 ∥ f ∥2,α,γ ,

and the result follows by (2-14). □
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Combining these results yields:

Lemma 4.3.4. For sufficiently small α ∈ [0, 1] and for sufficiently small γ , the operator norm of E
considered as a map from L2,α

γ (G) into L0,α
γ (G) tends to 0 as 3 tends to infinity.

5. Surgery and the perturbation family

5.1. The basic surgery operation. Recall that our strategy for proving Theorem A consists of two stages.
The first involves a surgery operation in which approximate MCF solitons are constructed out of properly
embedded minimal surfaces and rotationally symmetric Grim ends. The second involves a fixed-point
argument in which these approximate MCF solitons are perturbed into actual MCF solitons. In this
section, we describe the surgery operation and in Section 5.2, we describe the family of deformations
of the approximate MCF soliton in which the actual MCF soliton will be found. Though conceptually
simple, our construction is inevitably rather technical. However, we believe that a careful reading of the
following two sections will be rewarded by a clear understanding of the essence of this paper.

Consider first a properly embedded surface C in R3, minimal outside of some compact set, and
with finitely many ends, all of which are horizontal. Let R0 > 0 be such that every component of
C ∩(A(R0,∞)× R) is a minimal graph over A(R0,∞). Let F : A(R0,∞)→ R be the profile of one of
these minimal ends. In Appendix B, we show how the Weierstrass representation yields

F = a + c log(r)+ O(r−(1+k))

for some real constants a and c, which will henceforth be referred to respectively as the constant term
and the logarithmic parameter of the minimal end. In particular, planar ends are simply catenoidal ends
with vanishing logarithmic parameters. We will only be concerned with minimal ends invariant under
reflection in at least two distinct vertical planes. In this case, the above asymptotic series contains no
terms of order (−1), so that

F = a + c log(r)+ O(r−(2+k)). (5-1)

This asymptotic formula will be used repeatedly throughout the sequel.
Let 3 be a large, positive number, let K > 0 be a fixed constant, and choose ϵ, R > 0 and |c|< K as

in (2-14). Let G : A(R/4,∞)→ R be the profile of a rotationally symmetric Grim end with constant
term a, logarithmic parameter c and speed ϵ. Rescaling and integrating (2-16) we obtain, over the annulus
A(R/4, 2R4),

G = a + c log(r)+ 1
4
ϵr2

+ O
([

1 + log
( r

R

)]
r1−k

(
ϵr +

1
r

)3)
. (5-2)

Let χc be the cut-off function of the central transition region A(R, 2R), as defined in Section A1, and
define the function H over A(R0,∞) by

H := χc F + (1 −χc)G. (5-3)

Its graph will be called the joined end. Observe that H is entirely determined by F and the parameters ϵ
and R. Furthermore, over the annuli A(R0, R) and A(2R,∞), H simply coincides with F and G
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respectively whilst, over the annulus A(R, 2R), by (5-1), (5-2) and the fact that χc = O(r−k),

H = a + c log(r)+ 1
4ϵ(1 −χc)r2

+ O(r−(2+k)). (5-4)

5.2. The deformation family. Continuing to use the notation of Section 5.1, let S denote the surface
obtained by replacing each of the ends of C with their respective joined ends. We now construct a family
of deformations of S out of which the actual MCF soliton will be selected when 3 is large. We first
describe how the logarithmic parameters of C and S are varied. Let n denote the number of ends of C , and,
for each 1 ≤ i ≤ n, let a0,i and c0,i denote respectively the constant term and the logarithmic parameter of
the i-th end. Let U be a neighbourhood of (c0,1, . . . , c0,n) in Rn and let (Cc)c∈U be a smoothly varying
family of immersed surfaces in R3 such that Cc0 = C and, for all c ∈ U and for all 1 ≤ i ≤ n, the i-th
component of Cc ∩(A(R0,∞)× R) is a horizontal, minimal end with constant term a0,i and logarithmic
parameter ci . Finally, for all c ∈ U, let Sc denote the surface obtained by replacing each end of Cc with
its corresponding joined end, as described in Section 5.1.

Let E : U × S → R3 be a smooth function such that

(1) for all c ∈ U, Ec := E(c, · ) parametrises Sc, and

(2) for all c ∈ U, and for all p ∈ S ∩(A(R0,+∞)× R), the point Ec(p) lies vertically above or below
the point p.

Let χ0, χ ′

0, χ ′
ϵ and χϵ be the cut-off functions of the transition regions A(R0, 2R0), A(2R0, 4R0),

A(1/(2ϵ), 1/ϵ) and A(1/ϵ, 2/ϵ) respectively, as defined in Section A1. By composing with vertical
projections onto R2, we think of these functions also as functions defined over S. For all c ∈ U, let Nc

denote the unit normal vector field over Sc. For all 1 ≤ i ≤ n, let Ii : S → {0, 1} denote the indicator
function of the i-th component of Sc ∩(A(R0,∞)× R). Observe that, since this intersection is a union
of graphs, every component is transverse to the unit vertical vector ez . For all 1 ≤ i ≤ n, let ϵi ∈ {±1}

be such that ϵi ez lies on the same side of the i-th component as Nc. For all c ∈ U, define the modified
normal vector field over Sc by

N̂c := (χϵ −χ0)ϵi ez + (1 − (χϵ −χ0))Nc. (5-5)

Observe that, over the regions Sc ∩(B(R0)× R) and Sc ∩(A(2/ϵ,∞)× R), this vector field coincides
with Nc whilst, over the region Sc ∩(A(2R0, 1/ϵ)× R), it coincides with ±ez . Now let V and W be
neighbourhoods of 0 in Rn and define Ẽ : U × V × W × C∞(S)→ C∞(S,R3) by

Ẽc,a,b, f (p) := Ec(p)+ f (p)N̂c(p)+
n∑

i=1

ϵi Ii (p)
(
ai (1 −χ ′

0(p))+ bi (1 −χ ′

ϵ(p))
)
ez. (5-6)

Upon reducing U, V and W if necessary, there trivially exists δ > 0, which is independent of 3, ϵ and R,
such that, for all (c, a, b)∈ U ×V ×W, and, for all ∥ f ∥C0 <δ, the function Ẽc,a,b, f defines an immersion
of S into R3. This concludes the description of the deformation family in which the actual MCF soliton
will be found.



1210 GRAHAM SMITH

5.3. Microscopic and macroscopic perturbations. Continuing to use the notation of Sections 5.1 and 5.2,
we consider now the first-order perturbations of S defined by the above deformation family. We classify
these perturbations into two main types. Those in the direction of C∞(S) will be called microscopic
perturbations, and those in the directions of U, V and W will be called macroscopic perturbations. We
now describe the first-order variations of the MCFS functional resulting from macroscopic perturbations.
The first-order variations resulting from microscopic perturbations will be studied in the next section.

Recall that, as in Section A2, the MCFS functional with speed ϵ of an immersion E : S → R3 is given by

ME := HE + ϵ⟨NE , ez⟩, (5-7)

where HE here denotes the mean curvature function of E , and NE here denotes its unit normal vector
field. We define Mϵ : U × V × W → C∞

0 (S) such that, for all (c, a, b) ∈ U × V × W, and, for all p ∈ S,
Mϵ,c,a,b(p) is the value of this functional for the immersion Ec,a,b at the point p. We define the operators
Xϵ, Yϵ, Zϵ : Rn

→ C∞

0 (S) by

(Xϵu)(p) :=
1

⟨N̂S, NS⟩

d
dt

Mϵ,c0+tu,0,0(p)
∣∣∣∣
t=0
,

(Yϵv)(p) :=
1

⟨N̂S, NS⟩

d
dt

Mϵ,c0,tv,0(p)
∣∣∣∣
t=0
,

(Zϵw)(p) :=
1

⟨N̂S, NS⟩

d
dt

Mϵ,c0,0,tw(p)
∣∣∣∣
t=0
.

(5-8)

These are the first-order variations of the MCFS functional arising from the three types of macroscopic
perturbation. In particular, since Mϵ,c,0,0 vanishes over S ∩(A(2R,+∞)×R) for all c ∈ V, for all u ∈ Rd ,
Xu is supported over S ∩(B(2R)× R). Likewise, for all v,w ∈ Rn , Yv and Zw are supported over
S ∩(A(2R0, 4R0)× R) and S ∩(A(1/(2ϵ), 1/ϵ)× R) respectively. In later sections, when no ambiguity
arises, the subscript ϵ will be suppressed, and these operators will be denoted simply by X , Y and Z
respectively.

5.4. Modified Jacobi operators. The operator of first-order variation of the MCFS functional resulting
from microscopic perturbations is none other than the modified MCFS Jacobi operator. In this section, we
determine asymptotic formulae for its coefficients over different regions. We recall that, since different
modifications are made on different scales, the precise definition of the modified MCFS Jacobi operator
varies with context. We now describe the framework which unifies these different definitions. We will
then study three different cases corresponding to, in order, CHM surfaces, rotationally symmetric Grim
ends, and joined surfaces.

Consider first a general immersed surface 6 in R3 such that, for some R0 > 0, every component of
6 ∩(A(R0,∞)× R) is a graph over A(R0,∞). Let 3 > 0 be a large, positive number, let ϵ, R > 0
be as in (2-14), and let N̂6 be the modified normal vector field over 6 as defined in (5-5). We define
E : C∞

0 (6)→ C∞(6,R3) by

E f (p) := p + f (p)N̂6(p).
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Observe that if f is sufficiently small, then E f is an immersion. Define M : C∞

0 (6)→ C∞(6) such that,
for all such f , and for all p ∈6, M f (p) is the value of the MCFS functional (5-7) with speed ϵ for the
immersion E f at the point p. The modified MCFS Jacobi operator of 6 with speed ϵ is now defined by

( Ĵ6,ϵ f )(p) :=
1

⟨N̂6, N6⟩

d
dt

Mt f (p)
∣∣∣∣
t=0
. (5-9)

In later sections, when no ambiguity arises, the subscript ϵ will be suppressed, and this operator will be
denoted simply by Ĵ6 .

Over the annulus A(R/4, 1/ϵ), since N̂6 here coincides with ez , the operator Ĵ6,ϵ is simply ⟨N6, ez⟩
−1

times the linearisation of the MCFS functional for graphs. Consequently, if F : A(R/4, 1/ϵ)→R is the pro-
file of a component of6 ∩(A(R/4, 1/ϵ)×R) then, upon differentiating (A-7) we obtain, over this annulus,

Ĵ6,ϵ f = gi j fi j −µ2gi j Fi j Fk fk + 2µ4 Fi F j Fk Fi j fk − 2µ2 Fi j Fi f j − ϵµ2 Fi fi . (5-10)

In particular, for all v,w ∈ Rn , and for all p ∈ S,

(Yv)(p)= −

n∑
i=1

Ii (p)vi ( Ĵ6,ϵχ ′

0)(p),

(Zw)(p)= −

n∑
i=1

Ii (p)wi ( Ĵ6,ϵχ ′

ϵ)(p).

(5-11)

Now let C be a minimal end over the annulus A(R0,∞) satisfying (5-1) and let ĴC,ϵ be its modified
MCFS Jacobi operator with speed ϵ.

Lemma 5.4.1. Over A(R/4, 2R4),

ĴC,ϵ f =1 f −
c2

r4 x i x j fi j −
ϵc
r2 x i fi +

2c2

r4 x i fi + EC,ϵ f, (5-12)

where EC,ϵ f := ai j fi j + bi fi and a and b satisfy

a = O(r−(k+4)), b = O
(

r−(k+4)
(
ϵr +

1
r

))
. (5-13)

Proof. By (5-1),

Fi =
c
r2 x i

+ O(r−(k+3)).

Thus, by (A-6),

µ2
= 1 −

c2

r2 + O(r−(k+4)),

gi j
= δi j −

c2

r4 x i x j
+ O(r−(k+4)).

Therefore,

gi j fi j =1 f −
c2

r4 x i x j fi j + ai j fi j ,
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where a = O(r−(k+4)). Likewise,

µ2gi j Fi j Fk fk = bi
1 fi ,

2µ4 Fi F j Fk Fi j fk = bi
2 fi ,

−2µ2 Fi j Fi f j =
2c2

r4 x i fi + bi
3 fi ,

where bi
1, bi

2, bi
3 = O(r−(k+5)). Finally,

ϵµ2 Fi fi =
ϵc
r2 x i fi + bi

4,

where bi
4 = O(ϵr−(k+3)). The result follows. □

Next let G be a rotationally symmetric Grim end of speed ϵ over the annulus A(R/4,∞) and let ĴG,ϵ

be its modified MCFS Jacobi operator with speed ϵ. Define ψ : G → R by

ψ := ⟨N̂G, NG⟩ = χϵ⟨ez, NG⟩ + (1 −χϵ), (5-14)

and denote by Mψ the operator of multiplication by ψ .

Lemma 5.4.2. Over A(R/4,∞),
ĴG,ϵ := M−1

ψ JG,ϵMψ , (5-15)

where JG,ϵ denotes the MCFS Jacobi operator with speed ϵ of G, as defined in Section A2.

Remark. In particular, in the case of rotationally symmetric Grim ends, the modified MCFS Jacobi
operator as defined above coincides, up to rescaling, with the modified MCFS Jacobi operator as defined
in Section 4.1.

Proof. Indeed, more generally, with M := M0 defined as at the beginning of this section, for all f ∈C∞

0 (6),

Ĵ6,ϵ f = M−1
ψ J6,ϵMψ f + M−1

ψ ⟨X,∇M⟩ f,

where X here denotes the tangential component of the vector field N̂6 . The result now follows since M
vanishes identically over G. □

In particular, rescaling (4-6) and (4-7) immediately yields:

Lemma 5.4.3. Over A(R/4,∞),

ĴG,ϵ f =1 f −

(
ϵ

2
+

c
r2

)2

x i x j fi j −

(
ϵ2

2
−

2c2

r4

)
x i fi + EG f. (5-16)

where EG,ϵ f := ai j fi j + bi fi , and a and b satisfy

a = O
([

1 + log
( r

R

)] 1
r k

(
ϵr +

1
r

)4)
,

b = O
([

1 + log
( r

R

)] 1
r k+1

(
ϵr +

1
r

)4)
.

(5-17)
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Finally, let S be a joined end, as constructed in Section 5.1, and let ĴS,ϵ denote its modified MCFS
Jacobi operator with speed ϵ.

Lemma 5.4.4. Over A(R, 2R),

( ĴS,ϵ − ĴC,ϵ) f = ai j
1 fi j + bi

1 fi ,

( ĴS,ϵ − ĴG,ϵ) f = ai j
2 fi j + bi

2 fi ,

where a1, a2, b1 and b2 satisfy
a1, a2 = O(r−(4+k)),

b1, b2 = O(r−(5+k)).
(5-18)

Proof. By (5-1), (5-4) and (2-14), over A(R, 2R),

Hi − Fi = O(r−(3+k)),

Fi , Hi = O(r−(1+k)).

Thus, by (A-6),
µH −µF = O(r−(4+k)),

gi j
H − gi j

F = O(r−(4+k)).

The result follows for ( ĴS,ϵ − ĴC,ϵ) by (5-10). The result for ( ĴS,ϵ − ĴG,ϵ) follows in a similar manner,
and this completes the proof. □

We conclude this section by studying commutators of modified Jacobi operators with certain multipli-
cation operators. Indeed, let [ ĴC,ϵ, χl] denote the commutator of ĴC,ϵ with the operator of multiplication
by the cut-off function χl of the lower transition region A(R/4, R/2). Likewise, let [ ĴG,ϵ, χu] denote
the commutator of ĴG,ϵ with the operator of multiplication by the cut-off function χu of the upper
transition region A(R4, 2R4). Observe that these operators are supported over the annuli A(R/4, R/2)
and A(R4, 2R4) respectively.

Lemma 5.4.5. [ ĴC,ϵ, χl] f = ai
1 fi + b1 f, [ ĴG,ϵ, χu] f = ai

2 fi + b2 f,

where a1, a2, b1 and b2 satisfy,

a1, a2 = O(r−(k+1)), b1, b2 = O(r−(k+2)). (5-19)

Proof. Indeed, since χl, χu = O(r−k), the result follows by (5-12), (5-13), (5-16) and (5-17). □

5.5. Controlling macroscopic perturbations. We conclude this section by studying the first-order varia-
tion of the MCFS functional resulting from the first macroscopic perturbation. Recall that, for all u ∈ Rn ,
Xu vanishes outside B(2R). Inside this ball, we have:

Lemma 5.5.1. For u ∈ Rd such that ∥u∥ = 1, over A(2R0, R),

Xu = O(ϵr−(2+k)), (5-20)

and over A(R, 2R),
Xu = O(r−(4+k)). (5-21)
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Proof. For notational convenience, we suppose that C and S each only have one end and, in particular,
that u = 1. Let Cc and Sc be smooth families of immersed surfaces as in Section 5.1. For all t , let
Ft : A(2R0,∞) → R and Ht : A(2R0,∞) → R denote the profiles of Cc0+t ∩(A(2R0,∞)× R) and
Sc0+t ∩(A(2R0,∞)× R) respectively. Define

Z :=
d
dt

Ft |t=0, W :=
d
dt

Ht |t=0,

and observe that, over A(2R0, 2R),
Xu = ĴS,ϵW.

Now, by (5-1),
Z = log(r)+ O(r−(2+k)).

Next, by (2-41) and (5-3), and bearing in mind that χc = O(r−k), over A(R, 2R), we have

W = log(r)+ O(r−(2+k))= Z + O(r−(2+k)), (5-22)

and since Z = W over A(2R0, R), (5-22) in fact holds over the whole of A(2R0, 2R). We now write

Xu = ĴC,ϵZ + ( ĴS,ϵ − ĴC,ϵ)Z + ĴS,ϵ(W − Z).

The second and third terms are supported over A(R, 2R), and by (5-12) and (5-18),

( ĴS,ϵ − ĴC,ϵ)Z = O(r−(6+k)),

ĴS,ϵ(W − Z)= O(r−(4+k)).

Finally, since the graph of Ft is minimal for all t , by (A-6) and (A-7),

ĴC,ϵZ = −ϵµ2 F0,i Zi = O(ϵr−(2+k)),

and the result follows by (2-14). □

6. Constructing the Green’s operator

6.1. The cylindrical, Grim and hybrid norms. We now prepare the ground for the perturbation argument
that will be used to construct actual MCF solitons out of the approximate MCF solitons constructed in
Section 5.1. In this section, we construct the Green’s operator of the modified MCFS Jacobi operator
of the approximate MCF soliton together with estimates of its operator norm. It is the determination
of suitable estimates, requiring a careful and lengthy analysis, which constitutes the hardest part of this
paper. We will see presently that sufficiently strong estimates are made possible by the correct choice of
functional norms over the different components of the approximate MCF soliton, as well as the use of the
hybrid norm, already mentioned in the Introduction and Section 4. Throughout this section, we will make
use of (2-14) without comment.

We first study the analytic properties of Green’s operators over CHM surfaces. Thus, for g a positive
integer, let C := Cg be the CHM surface of genus g. Observe that functions over C ∩(A(R0,∞)×R) may
be considered as functions over three copies of A(R0,∞). In defining norms over spaces of functions, we
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will pass between these two perspectives without comment. Consider now the triplet (X, Y, ĴC), where
X and Y are the operators constructed in Section 5.1 and ĴC is the modified MCFS Jacobi operator of C
as constructed in Section 5.4. We now construct a right inverse for this operator when 3 is large. We
first gather various basic results that will be of use to us. Let D denote the total differentiation operator
over R2 and define

DSF := r D, (6-1)

where r here denotes the radial distance from the origin. Likewise, for α ∈ [0, 1] and for f : R2
→ R,

define
δαSF f (r) := rα[ f |A(r/2,2r)]α. (6-2)

For all nonnegative integer m, for all α ∈ [0, 1] and for all real δ, define the scale-free weighted Hölder
norm of any m-times differentiable function f : A(R0,∞)→ R by

∥ f ∥Cm,α
δ,SF(A(R0,∞)) :=

m∑
i=0

∥r δDi
SF f ∥C0(A(R0,∞)) + ∥r δδαSF Dm

SF f ∥C0(]2R0,∞[). (6-3)

For nonnegative, integer m, for all α ∈ [0, 1], for all real δ and for any m-times differentiable function
f : C → R, define

∥ f ∥Cm,α
δ,SF(C)

:= ∥ f |C ∩(B(2R0)×R)∥Cm,α + ∥ f |C ∩(A(R0,∞)×R)∥Cm,α
δ,SF(A(R0,∞)). (6-4)

For all such m, α and δ, let Cm,α
δ,SF,g(C) denote the space of m-times differentiable functions f over C

which satisfy ∥ f ∥Cm,α
δ,SF(C)

<∞ and which also satisfy f ◦ σ = f for every horizontal symmetry σ of C .
Observe in particular that, since each of X and Y has compact support, we may also think of them as
taking values in C0,α

δ+2,SF,g(C).
Recall that, with the above symmetries imposed, for all δ ∈ ]1, 2[, and for all α ∈ ]0, 1[, the Jacobi

operator JC of C defines an injective Fredholm map of Fredholm index (−3) from C2,α
δ,SF,g(C) into

C0,α
δ+2,SF,g(C); see [Hauswirth and Pacard 2007; Morabito 2009; Nayatani 1993; Pacard 2008]).3

Lemma 6.1.1. For all α ∈ ]0, 1[, for all δ ∈ ]1, 2[, for all R0 > 0 sufficiently large, and for all 3 > 0
sufficiently large, the triplet (X, Y, ĴC) defines a surjective Fredholm map from R3

⊕ R3
⊕ C2,α

δ,SF,g(C)
into C0,α

2+δ,SF,g(C) of Fredholm index 3. Furthermore, the right inverse (U, V,8) can be chosen in such a
manner that its norm is uniformly bounded, independent of 3.

Remark. In the sequel, R0 will be chosen large enough for Lemma 6.1.1 to hold for all large values of 3.
It will then be fixed once and for all, and 3 will be made to tend to +∞.

Proof. For all c ∈ U, where U is a suitable open subset of R3, let Cc be as in Section 5.1 and suppose in
addition that Cc is also invariant under all the horizontal symmetries of C . Let E : U × C → R3 be a
smooth function such that

(1) for all c ∈ U, Ec parametrises Cc,

3We aim to include an overview of the perturbation theory of the Costa–Hoffman–Meeks surfaces in forthcoming work, as
we are not aware of any readily accessible account in the literature.
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(2) for all c ∈ U and for all p ∈ C ∩(A(R0,+∞)× R), the point Ec(p) lies vertically above or below
the point p, and

(3) for all c ∈ U, Ec := E(c, · ) is equivariant under all the horizontal symmetries of C .

Let V be a neighbourhood of 0 in R3 and define Ẽ : U × V × C → R3 such that, for all (c, a) ∈ U × V,
and, for all p ∈ C ,

Ẽc,a(p)= Ec(p)+
3∑

i=1

ϵi Ii (p)ai (1 −χ ′

0(p))ez,

where (ϵi )1≤i≤3, (Ii )1≤i≤3 and χ ′

0 are defined as in Section 5.1. Define H : U × V × C → R3 such that,
for all (c, a) ∈ U × V, and for all p ∈ C , Hc,a(p) is the mean curvature of the immersion Ẽc,a at the
point p. Define the operators X0, Y0 : R3

→ C∞

0 (C) by

(X0u)(p) :=
d
dt

Hc0+tu,0(p)|t=0,

(Y0v)(p) :=
d
dt

Hc0,tv(p)|t=0.

By the perturbation theory of CHM surfaces (see [Hauswirth and Pacard 2007]), (X0, Y0, JC) defines a
surjective Fredholm map of Fredholm index 3 from R3

⊕ R3
⊕ C2,α

δ,SF,g(C) into C0,α
δ+2,SF,g(C).

Let N and N̂ be respectively the unit normal vector field and the modified normal vector field over C .
Observe that, as 3 and R0 tend to +∞, the difference (N̂ − N ) tends to 0 in the Ck sense for all k so that
the difference ( ĴC − JC) tends to 0 in the operator norm. Next, it is straightforward to show that, considered
as an operator from R3 into C0,α

δ+2,SF,g(C), ∥Y −Y0∥≲ ϵ. Finally, by (2-14), (5-20) and (5-21), considered
as another operator between these two spaces, ∥X − X0∥ ≲ Rδ−2. Since these both tend to 0 as 3 tends
to +∞, the result follows by the stability of surjectivity of Fredholm maps under small perturbations. □

We now review the analytic properties of rotationally symmetric Grim ends. Let G be a rotationally
symmetric Grim end of speed ϵ over the annulus A(R/4,+∞). For all nonnegative, integer m, for all
α ∈ [0, 1], for all γ ∈ R and for all ϵ > 0, define the following weighted Hölder and Sobolev norms for
functions over R2,

∥ f ∥Cm,α
γ,ϵ (G) := ∥ f ( · /ϵ)∥Cm,α

γ (G),

∥ f ∥Hm
γ,ϵ(G) := ∥ f ( · /ϵ)∥Hm

γ (G),
(6-5)

and define the hybrid norm by

∥ f ∥m,α,γ,ϵ := ∥ f ∥Cm,α
γ,ϵ (G) +

1
ϵR

∥ f ∥Hm
γ,ϵ(G). (6-6)

For all such m, α, γ , let Lm,α
γ,ϵ,g(G) denote the space of m-times differentiable functions with finite hybrid

norm. Let ĴG denote the modified MCFS Jacobi operator of G, as defined in Sections 4.1 and 5.4. Upon
rescaling, Theorem 4.1.1 immediately yields

Lemma 6.1.2. For all α ∈ ]0, 1[, for all sufficiently small γ , and for sufficiently large 3, the operator
ϵ2 ĴG defines a linear isomorphism from L2,α

γ,ϵ,g(G) into L0,α
γ,ϵ,g(G). Furthermore, we may suppose that the

operator norm of its inverse is uniformly bounded independent of 3.
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We conclude this section by describing an alternative form of (6-5), more amenable to calculations.
We define operators DG and δαG by

DG :=
1
ϵ

D, (6-7)

δαG f (x) :=
1
ϵα

[ f |B(x,1/ϵ)]α. (6-8)

Up to uniform equivalence, for any function f supported in A(R/4, 2R4),

∥ f ∥Cm,α
γ,ϵ (G) =

m∑
i=0

∥Di
G f ∥C0 + ∥δαG Dm

G f ∥C0 . (6-9)

Likewise, let dVol denote the canonical volume form of R2 and, in analogy to (6-1), (6-2), (6-7) and (6-8),
define

dVolSF :=
1
r2 dVol, dVolG := ϵ2 dVol. (6-10)

In particular, a formula similar to (6-9) also holds for ∥ f ∥Hm
γ,ϵ(G) when f is supported over the annulus

A(R/4, 2R4). It is these forms of the norms introduced in (6-5) that we will use in the sequel.
Comparing (6-1) and (6-7) reveals a key phenomenon that must be addressed in order to obtain good

estimates. Indeed, over the transition region A(R/4, 2R), the respective differentiation operators of the
CHM surface and the Grim ends are approximately related to one another by

DG ≃
1
ϵR

DSF, (6-11)

so that, whenever a function is transferred from the CHM surface to one of the Grim ends, each order of
differentiation introduces a factor of roughly 1/(ϵR) into the norm. This factor, which is inevitably large,
would be ruinous for our estimates unless correctly addressed, and it is in order to do so that we adopt
the following two measures. Firstly, we use norms of the least possible order, and likewise take α to be
arbitrarily small (see Theorems 6.4.1, 6.5.2 and 6.5.3). In particular, any term involving an exponent
of α may be considered heuristically to be close to 1 (see, for example, (6-15), (6-16), (6-19), and so
on). Secondly, and more significantly, it is precisely in order to tame this phenomenon that the hybrid
norm is introduced. To see how this works, recall that the Sobolev embedding theorem states that, for
all m, the Sobolev norm of order m is roughly comparable to the Hölder norm of order (m − 1). That is,
although the second-order Sobolev norm depends on the second derivative, from a scaling perspective, it
behaves more like a first derivative. It is precisely for this reason that the introduction of the factor of
1/(ϵR) in (6-6) yields a norm which scales, roughly, like a second derivative whilst furnishing, via the
Sobolev embedding theorem, stronger information about the first derivative than we would have obtained
by working with the Hölder norm alone.

6.2. Ping-pong: overview. We now describe the iteration process used to construct the Green’s operator
of the approximate MCF soliton. As before, for g a positive integer, let C := Cg denote the CHM surface
of genus g and let S := Sg denote the surface obtained by replacing each of its ends with their respective
joined ends, as described in Section 5.1. Since there is a natural diffeomorphism from C to S which
maps points in the ends of C vertically upwards or downwards, functions over C may equally well be
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considered as functions over S and vice versa. As before, we will pass between these two perspectives
without comment.

Before proceeding, it is worth reviewing the role played by each component within the iteration process
that we will apply. We first recall from the previous section that a CHM surface C has been joined to the
union G := G1 ∪ G2 ∪ G3 of three Grim ends to yield an approximate soliton S. The surgery is carried
out above the annulus A(R, 2R), which we call the central transition region. However, these surfaces
also all overlap over the larger annulus A(R/4, 2R4). Consequently, functions supported above B(2R4)

are viewed as functions over C , functions supported over A(R/4,∞) are viewed as functions over G,
and functions supported over A(R/4, 2R4) are viewed alternately, at different stages of the process, as
functions over C and G.

Our aim is to construct a right inverse of the modified Jacobi operator ĴS of S, using the right inverses
of the respective modified Jacobi operators ĴC and ĴG of C and G. Ignoring for the moment the finite-
dimensional components X , Y , Z and W, we proceed as follows. First let e : S → R be a function
supported above B(2R). Let χu denote the cut-off function of the annulus A(R4, 2R4), which we call the
upper transition region. Viewing e as a function over C , we view χu( Ĵ−1

C )e as an approximator for ( Ĵ−1
S )e,

the cut-off function being here necessary to yield a function supported over B(2R4), which we may view
as a function over S. The error of this approximation is measured by the function f := ĴSχu( Ĵ−1

C )e. Since
ĴS coincides with ĴC above B(R), this function is supported above A(R,∞), and we may thus view it as
a function over G. In this manner, we have concluded the “upward” stage of the process. Repeating the
process in the “downward” direction then yields a function e′ supported above B(2R), and the process
may then be iterated indefinitely.

Proceeding in this manner, we obtain two sequences (en)n∈N and ( fn)n∈N of successive errors which
should ideally both converge to 0. In this and the next section, estimates for these functions will be
obtained in a pointwise manner via the definitions of the norms. In this process, we will encounter some
phenomena driving growth and others driving decay. Convergence is ensured upon choosing parameters
in such a manner that the latter dominate. The main contributor to growth is the large norm (6-23)
of Ĵ−1

G resulting from the rescaling of the Grim ends. The main contributor to decay is the tendency
of bounded harmonic functions to decay over long cylinders, already outlined in Section 1.2, and here
encoded implicitly in the weighted Hölder norm introduced in Section 6.1. Roughly speaking, if the radii
of the lower and upper transition region are respectively proportional to R/2 and Rλ, then the two will be
separated by an annulus conformally equivalent to a cylinder roughly of length (λ− 1)Ln(R). We thus
choose λ as large as possible in order to maximise decay. We have already seen in Section 4 that the
strict upper bound λ < 5 is required in order to obtain uniform estimates for the norms of the Green’s
operators of the Grim ends (see the proofs of Lemmas 4.2.1 and 4.2.2), and it turns out that λ ∈ ]4, 5[ is
sufficient for our purposes.

It remains only to explain the finite-dimensional components in (6-13) and (6-24). It is common in
singular perturbation constructions for the Green’s operators used to have singular subspaces over which
divergence occurs more rapidly than over the rest of the space. This can be understood as a consequence
of the existence of a “kernel at infinity”, itself often associated to symmetries of the construction, such
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as vertical translations and dilatations (or, equivalently, variations of the logarithmic parameter). It is thus
common to introduce “geometric” terms which, by eliminating the kernel at infinity, allow us to focus
on the essential asymptotic behaviours of the Green’s operators used, and this is the role played by these
finite-dimensional components. Finally, we observe that infinitesimal vertical translations can in fact be
introduced in two different ways. Indeed, they can be introduced either in the “upward” stage, as infin-
itesimal vertical translations of the ends of the CHM surface, or in the “downward” stage as infinitesimal
vertical translations of the Grim ends. The former addresses the kernel at infinity of the Green’s operator
of the CHM surface, whilst the latter addresses the kernel at infinity of the Grim ends. Thus, despite their
superficial equivalence, they play distinct roles in the construction, and are both required for it to work.

6.3. Ping-pong: batting up. For notational convenience, we will henceforth work as if C and S had only
one end. Consider now the following seminorms for functions over S:

∥ f ∥m,C := ∥ f |B(0,4R)∥Cm,α
(2−m)+δ,SF(C)

, ∥ f ∥m,G,S := ∥ f |A(R,∞)∥Hm
γ,ϵ(G),

∥ f ∥m,G,H := ∥ f |A(R,∞)∥Cm,α
γ,ϵ (G), ∥ f ∥m,G := ∥ f ∥m,G,H +

1
ϵR

∥ f ∥m,G,S.
(6-12)

Let E denote the closure with respect to ∥ · ∥0,C of the space of functions supported over S ∩(B(4R)× R)

which are invariant under every horizontal symmetry of the CHM surface C . Likewise, let F denote the
closure with respect to ∥ · ∥0,G of the space of functions supported over S ∩(A(R,∞)× R) that are also
invariant under these symmetries.

We define the operator A : E → F by

Ae := ĴSχu8e + XUe + Y V e − e, (6-13)

where χu is the cut-off function of the upper transition region A(R4, 2R4), and (U, V,8) is defined as
in Lemma 6.1.1. This operator measures the extent to which (U, V, χu8) fails to be a Green’s operator
of (X, Y, ĴS) for functions in E . In particular, since ĴS coincides with ĴC over B(0, R), Ae is supported
in the interior of A(R,∞) making it indeed an element of F . In addition, by the definition of ĴS , and
bearing in mind that X and Y are both supported in B(2R),

Ae = [ ĴG, χu]8e +χu( ĴS − ĴC)8e. (6-14)

In this section, we prove:

Theorem 6.3.1. For all δ > 1,

∥Ae∥0,G ≲
1

(ϵR)2α
1

R6+δ
∥e∥0,C . (6-15)

Theorem 6.3.1 follows immediately from (6-14) together with (6-16), (6-18), (6-19) and (6-21), below,
and the fact that

∥χu∥C0,α
γ,ϵ (G)

≲
1

(ϵR4)α
≲

1
(ϵR)α

.

For convenience, we now define φ :=8e.
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Lemma 6.3.2. ∥( ĴS − ĴC)8e|A(R,2R4)∥C0,α
γ,ϵ (G)

≲
1

(ϵR)α
1

R6+δ
∥e∥0,C . (6-16)

Proof. Indeed, by (6-1), for k ∈ {0, 1, 2}, over A(R, 2R4),

|Dkφ| ≲
1

r k+δ
∥φ∥C2,α

δ,SF(C)
≲

1
r k+δ

∥e∥0,C .

Likewise, by (6-2), for all r ∈ [2R, R4
],

|δα(D2φ|A(r/2,2r))| ≲
1

r k+α+δ
∥e∥0,C .

Thus, by (5-12), (5-13), (5-16), (5-17) and (5-18), over A(R, 2R4),

|( ĴS − ĴC)φ| ≲

(
ϵ

r2+δ
+
ϵ2

r δ
+

[
1 + log

(
r
R

)]
ϵ4r2−δ

+

[
1 + log

(
r
R

)]
1

r6+δ

)
∥e∥0,C , (6-17)

so that, by (A-20),

|( ĴS − ĴC)φ|A(R,2R4)| ≲
1

R6+δ
∥e∥0,C .

Likewise, using also (A-10) and (A-12), for r ∈ [2R, R4
],

|δα(( ĴS − ĴC)φ|A(r/2,2r))| ≲
1

rα

(
ϵ

r2+δ
+
ϵ2

r δ
+

[
1 + log

(
r
R

)]
ϵ4r2−δ

+

[
1 + log

(
r
R

)]
1

r6+δ

)
∥e∥0,C ,

so that, by (6-8), for r ∈ [2R, R4
],

|δαG(( ĴS − ĴC)φ|A(r/2,2r))|≲
1

(ϵr)α

(
ϵ

r2+δ
+
ϵ2

r δ
+

[
1+ log

(
r
R

)]
ϵ4r2−δ

+

[
1+ log

(
r
R

)]
1

r6+δ

)
∥e∥0,C .

Thus, by (A-14) and (A-20),

|δαG(( ĴS − ĴC)φ|A(R,2R4))| ≲
1

(ϵR)α
1

R6+δ
∥e∥0,C .

The result follows upon combining the above relations. □

Lemma 6.3.3. For all δ > 1,

∥( ĴS − ĴC)8e|A(R,2R4)∥H0
γ,ϵ(G) ≲

(ϵR)
R6+δ

∥e∥0,C . (6-18)

Proof. By (6-10) and (6-17), over A(R, 2R4),

|( ĴS − ĴC)φ|
2 dVolG

≲

(
ϵ4

r2+2δ + ϵ6r2−2δ
+

[
1 + log

(
r
R

)2]
ϵ10r6−2δ

+

[
1 + log

(
r
R

)2]
ϵ2

r10+2δ

)
∥e∥2

0,C dVolSF,

so that, by (A-21), ∫
A(R,2R4)

|( ĴS − ĴC)φ|
2 dVolG ≲

(ϵR)2

R12+2δ ∥e∥2
0,C ,

and the result follows. □
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Lemma 6.3.4. For all δ > 1,

∥[ ĴG, χu]8e∥C0,α
γ,ϵ (G)

≲
1

(ϵR4)α

1
R8+4δ ∥e∥0,C . (6-19)

Proof. By (6-1) and (6-3) for k ∈ {0, 1, 2}, over A(R4, 2R4),

|Dkφ| ≲
1

R4k+4δ ∥φ∥C2,α
δ,SF(C)

≲
1

R4k+4δ ∥e∥0,C .

It follows by (5-19) that, for k ∈ {0, 1}, over this annulus,

|Dk
[ ĴG, χu]φ| ≲

1
R8+4k+4δ ∥e∥0,C . (6-20)

Thus, by (6-7), for k ∈ {0, 1}, over this annulus,

|Dk
G[ ĴG, χu]φ| ≲

1
(ϵR4)k

1
R8+4δ ∥e∥0,C ,

and the result follows by (A-10). □

Lemma 6.3.5. ∥[ ĴG, χu]8e∥H0
γ,ϵ(G) ≲

(ϵR)
R5+4δ ∥e∥0,C . (6-21)

Proof. By (6-20) and (6-10), over A(R4, 2R4),

|[ ĴG, χu]φ|
2 dVolG ≲

ϵ2

R8+8δ ∥e∥2
0,C dVolSF,

so that, by (A-21), ∫
A(R4,2R4)

|[ ĴG, χu]φ|
2 dVolG ≲

ϵ2

R8+8δ ∥e∥0,C ,

and the result follows. □

These estimates prove Theorem 6.3.1. In addition, the following estimate will also be of use later.

Lemma 6.3.6. For all δ > 1,

∥χu8e∥2,G ≲
1

(ϵR)α
1

ϵ2 R2+δ
∥e∥0,C . (6-22)

Proof. Indeed, since χu = O(r−k), we have ∥χu∥C2,α
0,SF(C)

≲ 1. Thus

∥χuφ∥C2,α
δ,SF(C)

≲ ∥φ∥C2,α
δ,SF(C)

≲ ∥e∥C0,α
2+δ,SF(C)

= ∥e∥0,C .

Thus, by (6-1), (6-3) and (6-7), for k ∈ {0, 1, 2}, over A(R, 2R4),

|Dk
Gχuφ| ≲

1
(ϵr)k

1
r δ

∥e∥0,C .

Likewise, by (6-2), (6-3) and (6-8), for all r ∈ [2R, R4
],

|δαG(D
2
Gχuφ|A(r/2,2r))| ≲

1
(ϵr)2+α

1
r δ

∥e∥0,C ,
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so that, by (A-14),

|δαG(D
2
Gχuφ|A(R,2R4))| ≲

1
(ϵR)2+α

1
Rδ

∥e∥0,C .

Combining the above relations yields

∥χuφ∥2,G,H ≲
1

(ϵR)α
1

ϵ2 R2+δ
∥e∥0,C .

Likewise, by (6-10), for all k, over A(R, 2R4),

|Dk
Gχuφ|

2 dVolG ≲
1

(ϵr)2k

1
r2δ ∥e∥2

0,C(ϵr)
2 dVolSF,

and since δ > 1, it follows by (A-21) that

∥χuφ∥2,G,S ≲
1
Rδ

∥e∥0,C ≲
1

ϵR1+δ
∥e∥0,C .

The result follows. □

6.4. Ping-pong: batting down. By Lemma 6.1.2, there exists a linear map 9 : C0,α
γ,ϵ,g(G)∩ H 0

γ,ϵ,g(G)→
C2,α,g
γ,ϵ,g (G)∩ H 2

γ,ϵ,g(G) such that, for all f ∈ F ,

f = ĴG9 f,
and

∥9 f ∥2,α,γ,ϵ ≲
1
ϵ2 ∥ f ∥0,α,γ,ϵ . (6-23)

Define the operators B : F → E and W : F → R3 by

B f := ĴS(1 −χl)(9 f −χ ′

ϵ(W f ))− Z W f − f,

W f := (9 f )(0),
(6-24)

where χl is the cut-off function of the lower transition region A(R/4, R/2), and χ ′
ϵ is the cut-off function

of the transition region A(1/2ϵ, 1/ϵ), as in Section 5.1. As before, B measures the extent to which
(−W, (1 −χl)(9 −χ ′

ϵW )) fails to be a Green’s operator of (Z , ĴS) for functions in F . In particular, by
(5-11) together with the fact that ĴS coincides with ĴG over A(2R,∞), B f is supported in B(4R), and is
thus indeed an element of E . In addition, since χ ′

ϵ = 1 over B(4R), over this ball, we have

B f = −[ ĴC , χl](9 f − (9 f )(0))+ (1 −χl)( ĴS − ĴG)9 f. (6-25)

In this section, we prove:

Theorem 6.4.1. For sufficiently small α,

∥B f ∥0,C ≲
R2

(ϵR)
∥ f ∥0,G . (6-26)

Theorem 6.4.1 follows immediately from (6-25) together with (6-28) and (6-30), below, and the fact that

∥(1 −χl)∥C0,α
0,SF(C)

≲ 1.

For convenience, we now define ψ :=9 f .
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Lemma 6.4.2. ∥W f ∥ ≲
R2

(ϵR)
∥ f ∥0,G . (6-27)

Proof. Indeed, by the Sobolev embedding theorem,

∥W f ∥ ≲ ∥9 f ∥H2
γ,ϵ(G) ≲ (ϵR)∥9 f ∥2,α,γ,ϵ .

Thus, by (6-23),

∥W f ∥ ≲
R
ϵ

∥ f ∥0,α,γ,ϵ ≲
R2

(ϵR)
∥ f ∥0,G,

as desired. □

Lemma 6.4.3. ∥( ĴS − ĴG)9 f |A(R/4,2R)∥C0,α
2+δ,SF(C)

≲
1

(ϵR)
1

R2−δ
∥ f ∥0,G . (6-28)

Proof. Indeed, by (6-7), for k ∈ {0, 1, 2}, over A(R/4, 2R),

|Dkψ | ≲ ϵk
∥ψ∥C2,α

γ,ϵ (G)
≲

1
ϵ2−k ∥ f ∥0,G,

and so, by (5-12), (5-13), (5-16), (5-17) and (5-18), over A(R/4, 2R),

|( ĴS − ĴG)ψ | ≲
1

(ϵR)

(
ϵ+ ϵ2 R2

+
1
R4

)
∥ f ∥0,G ≲

1
(ϵR)

1
R4 ∥ f ∥0,G .

Likewise, by (6-8),

|δα(D2ψ |A(R/4,2R))| ≲ ϵ
α
∥ f ∥0,G ≲

1
Rα

∥ f ∥0,G .

Thus, by (6-2), using also (A-10) and (A-12),

|δαSF(( ĴS − ĴG)ψ |A(R/4,2R))| ≲
1

(ϵR)
1
R4 ∥ f ∥0,G,

and the result follows. □

Lemma 6.4.4. ∥9 f − (9 f )(0)|A(R/4,2R)∥2,C ≲
R2+δ

(ϵR)2α
∥ f ∥0,G . (6-29)

Proof. Bearing in mind (6-8) and the Sobolev embedding theorem, over A(R/4, 2R),

[ψ0] ≲ (ϵR)1−α
∥ψ∥C0,1−α

γ,ϵ (G) ≲ (ϵR)1−α
∥ψ∥H2

γ,ϵ(G) ≲ (ϵR)2−α
∥ψ∥2,G .

Consequently, by (6-23),

[ψ0] ≲
R2

(ϵR)α
∥ f ∥0,G .

Likewise, by (4-24) and the subsequent remark, over this annulus,

|DGψ | ≲ (ϵR)1−2α
∥ψ∥2,G ≲

1
(ϵR)2α

R
ϵ

∥ f ∥0,G .

Finally, over this annulus,

|D2
Gψ | ≲ ∥ψ∥C2,α

γ,ϵ (G)
≲

1
ϵ2 ∥ f ∥0,G,
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and
|δαG(D

2
Gψ |A(R/4,2R))| ≲ ∥φ∥C2,α

γ,ϵ (G)
≲

1
ϵ2 ∥ f ∥0,G .

The result now follows by (6-1), (6-2), (6-3), (6-7), (6-8) and (2-14). □

Lemma 6.4.5. For sufficiently small α,

∥[ ĴC , χl](9 f − (9 f )(0))∥C0,α
2+δ,SF(C)

≲
1

(ϵR)2α
R2+δ

∥ f ∥0,G . (6-30)

Proof. This follows from (5-19) and (6-29). □

6.5. Ping-pong: iteration. By (6-15) and (6-26), for δ ∈ ]1, 2[ and for sufficiently small α, the operator
norms of the products AB and B A satisfy

∥AB∥, ∥B A∥ ≲
1

(ϵR)2α
1

ϵR5+δ
≲

1
3
.

We therefore define QE : E → E and QF : F → F by

QE :=

∞∑
m=0

(B A)m, QF :=

∞∑
m=0

(AB)m . (6-31)

In particular, the operator norms of both QE and QF are uniformly bounded for large values of 3. We
now define

UC e := U QE e, UG f := −U B QF f,

VC e := V QE e, VG f := −V B QF f,

WC e := W AQE e, WG f := −W QF f,

PC e := χu8QE e − (1 −χl)(9AQE e −χ ′

ϵ(W AQE e)),

PG f := −χu8B QF f + (1 −χl)(9QF f −χ ′

ϵ(W QF f )).
(6-32)

Lemma 6.5.1. For all e ∈ E and for all f ∈ F ,

ĴS PC e + XUC e + Y VC e + Z WC e = e,

ĴS PG f + XUG f + Y VG f + Z WG f = f.
(6-33)

Proof. Indeed, bearing in mind (6-13) and (6-24),

ĴS PC e + XUC e + Y VC e + Z WC e

= ĴSχu8QE e + XU QE e + Y V QE e − ĴS(1 −χl)(9AQE e −χ ′

ϵ(W AQE e))+ Z W AQE e

= AQE e + QE e − B AQE e − AQE e = e.

The second relation follows in a similar manner, and this completes the proof. □

Now let χ be the cut-off function of the transition region A(2R, 4R). Since χ = O(r−k), for all f ,

∥χ f ∥0,C ≲ ∥ f ∥0,C , ∥(1 −χ) f ∥0,G ≲
1

(ϵR)α
∥ f ∥0,G . (6-34)



COMPLETE EMBEDDED TRANSLATING SOLITONS OF THE MEAN CURVATURE FLOW OF FINITE GENUS 1225

Define
Û f := UCχ f + UG(1 −χ) f, Ŵ f := WCχ f + WG(1 −χ) f,

V̂ f := VCχ f + VG(1 −χ) f, P̂ f := PCχ f + PG(1 −χ) f.
(6-35)

In particular, by (6-33),
ĴS P̂ f + XÛ f + Y V̂ f + Z Ŵ f = f, (6-36)

so that (Û , V̂ , Ŵ , P̂) defines a Green’s operator for (X, Y, Z , ĴS). We conclude this section by determining
the norms of its different components. First, since the operator norms of U and V are uniformly bounded,
by (6-26), (6-32) and (6-34),

∥Û f ∥ ≲ ∥ f ∥0,C +
R2

(ϵR)1+α
∥ f ∥0,G,

∥V̂ f ∥ ≲ ∥ f ∥0,C +
R2

(ϵR)1+α
∥ f ∥0,G .

(6-37)

Theorem 6.5.2. For sufficiently small α, for all δ ∈ ]1, 2[, and for all f ,

∥Ŵ f ∥ ≲ ∥ f ∥0,C +
R2

(ϵR)1+α
∥ f ∥0,G . (6-38)

Proof. For e ∈ E , by (6-15) and (6-27),

∥WC e∥ = ∥W AQE e∥ ≲
R2

(ϵR)
∥AQE e∥0,G ≲

1
(ϵR)2α

1
ϵR5+δ

∥e∥0,C ≲ ∥e∥0,C .

For f ∈ F , by (6-27),

∥WG f ∥ = ∥W QF f ∥ ≲
R2

(ϵR)
∥ f ∥0,G .

The result now follows by (6-34). □

Theorem 6.5.3. For sufficiently small α, for all δ ∈ ]1, 2[, and for all f ,

∥P̂ f ∥2,C ≲ ∥ f ∥0,C +
R2

(ϵR)1+α
∥ f ∥0,G . (6-39)

Proof. Consider e ∈ E . Observe that, over B(4R),

PC e =8QE e − (1 −χl)(9AQE e −9AQE e(0)).

Now,
∥8QE e∥2,C ≲ ∥e∥0,C ,

and by (6-15) and (6-29),

∥(1 −χl)(9AQE e − (9AQE e)(0))∥2,C ≲
1

(ϵR)4αR4 ∥e∥0,C ≲ ∥e∥0,C ,

so that
∥PC e∥2,C ≲ ∥e∥0,C .
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Now consider f ∈ F . Over B(4R),

PG f = −8B QF f − (1 −χl)(9QF f −9QF f (0)).

By (6-26),

∥8B QF f ∥2,C ≲
R2

(ϵR)
∥ f ∥0,G,

and, by (6-29),

∥(1 −χl)(9QF f − (9QF f )(0))∥2,C ≲
R2+δ

(ϵR)2α
∥ f ∥0,G,

so that,

∥PG f ∥2,C ≲
R2

(ϵR)
∥ f ∥0,G .

The result now follows by (6-34) and (6-35). □

Theorem 6.5.4. For sufficiently small α, for all δ ∈ ]1, 2[, and for all f ,

∥P̂ f ∥2,G ≲
1

(ϵR)α
1

ϵ2 R2+δ

(
∥ f ∥0,C +

R2

(ϵR)1+α
∥ f ∥0,G

)
. (6-40)

Proof. Consider e ∈ E . Observe that, over S ∩(A(R,∞)× R),

PC e = χu8QE e −9AQE e + (W AQE e)χ ′

ϵ .

By (6-22),

∥χu8QE e∥2,G ≲
1

(ϵR)α
1

ϵ2 R2+δ
∥e∥0,C .

By (6-15) and (6-23),

∥9AQE e∥2,G ≲
1

(ϵR)2α
1

ϵ2 R6+δ
∥e∥0,C .

By (6-15) and (6-27),

∥W AQE e∥ ≲
R2

(ϵR)
∥AQE e∥0,G ≲

1
(ϵR)2α

1
ϵR5+δ

∥e∥0,C .

However,

∥χ ′

ϵ∥2,G ≲
1

(ϵR)
,

and so

∥(W AQE e)χ ′

ϵ∥2,G ≲
1

(ϵR)2α
1

ϵ2 R6+δ
∥e∥0,C .

Combining these relations yields

∥PC e∥2,G ≲
1

(ϵR)α
1

ϵ2 R2+δ
∥e∥0,C .

Consider now f ∈ E . Over S ∩(A(R,∞)× R),

PG f = −χu8B QF f +9QF f − (W QF f )χ ′

ϵ .
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By (6-22) and (6-26),

∥χu8B QF f ∥2,G ≲
1

(ϵR)α
1

ϵ2 Rδ(ϵR)
∥ f ∥0,G .

By (6-23),

∥9QF f ∥2,G ≲
1
ϵ2 ∥ f ∥0,G .

By (6-27),

∥W QF f ∥ ≲
R2

(ϵR)
∥ f ∥0,G,

so that
∥(W QF f )χ ′

ϵ∥2,G ≲
1
ϵ2 ∥ f ∥0,G .

Combining these relations yields

∥PG f ∥2,G ≲
1

(ϵR)α
1

ϵ2 Rδ(ϵR)
∥ f ∥0,G .

The result now follows by (6-34). □

7. Existence and embeddedness

7.1. The Schauder fixed-point theorem. It remains only to perturb the approximate MCF solitons
constructed in Section 5 into actual MCF solitons. This perturbation will be carried out using the Schauder
fixed-point theorem. It will first be convenient to modify slightly the norms introduced in (6-12). We thus
define

∥ f ∥
′

m,G,H := ∥ f |A(2R,∞)∥Cm,α
γ,ϵ (G),

∥ f ∥
′

m,G,S := ∥ f |A(2R,∞)∥Hm
γ,ϵ(G),

∥ f ∥
′

m,G := ∥ f ∥
′

m,G,H +
1

(ϵR)
∥ f ∥

′

m,G,S.

(7-1)

By (6-35), this does not affect (6-37), (6-38), (6-39) and (6-40). In addition, we will also ignore the factor
⟨N̂S, NS⟩

−1 used in the definitions (5-8) and (5-9) of (X, Y, Z , ĴS). Indeed, we readily show that the
operator of multiplication by this function is uniformly bounded, independent of 3, with respect to the
norms ∥ · ∥0,C and ∥ · ∥0,G , for which reason it also does not affect the above estimates.

For all nonnegative, integer m, for all α ∈ [0, 1] and for all real γ , let Em,α,γ be the space of m-times dif-
ferentiable functions f : S → R which are invariant under all horizontal symmetries of C and which satisfy

∥ f ∥m,C , ∥ f ∥
′

m,G <∞.

Observe that Em,α,γ furnished with these norms is a Fréchet space. Now let

M : U ⊕ V ⊕ W ⊕ E2,α,γ → E0,α,γ

be the MCFS functional about S, as defined in Sections 5.1 and 5.4. It only remains to study how M
varies up to second order about S. As before, throughout this section, we apply (2-14) without comment.

Lemma 7.1.1. ∥M(0, 0, 0, 0)∥0,C ≲ Rδ−2, ∥M(0, 0, 0, 0)∥′

0,G = 0. (7-2)
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Proof. Define ψ := M(0, 0, 0, 0). Since C is minimal, over B(R),

ψ = ϵµ.

Thus, by (5-1) and (A-6),
∥ψ |B(R)∥C0,α

2+δ,SF(C)
≲ ϵR2+δ ≲ Rδ−2.

By (5-4), over A(R, 2R),

Hi =
cx i

r2 + O(R−(3+k)),

Hi j =
c
r2

(
δi j −

x i x j

2r2

)
+ O(R−(4+k)).

Thus, by (A-6), over this annulus,

µ= 1 + O(R−2+k), gi j
= δi j + O(R−2+k),

so that, by (A-7),
ψ = O(R−(4+k)).

Consequently,
∥ψ |A(R,2R)∥C0,α

2+δ,cyl(C)
≲ Rδ−2,

and the first estimate follows upon combining these relations. Finally, by construction, ψ vanishes over
A(2R,∞), so that ∥ψ∥

′

0,G = 0, and this completes the proof. □

It is straightforward to show that for ∥u∥, ∥v∥, ∥w∥ and ∥ f ∥2,C sufficiently small, independent of 3,

∥M(u, v, w, f )− M(0, 0, 0, 0)− ĴS f − X̂u − Ŷv∥0,C ≲ ∥ f ∥
2
2,C + ∥u∥

2
+ ∥v∥2. (7-3)

The corresponding estimate over rotationally symmetric Grim ends is more subtle.

Lemma 7.1.2. There exists η > 0 such that, for sufficiently large 3, if ϵ(ϵR)1−2α
∥ f ∥

′

2,G < η, then

∥M(u, v, w, f )− M(0, 0, 0, 0)− ĴS f − Ẑw∥
′

0,G

≲
ϵ2

R
∥u∥

2
+
ϵ2

R
∥v∥2

+
ϵ2

R
∥w∥

2
+ ϵ3(ϵR)1−2α(∥ f ∥

′

2,G)
2. (7-4)

Remark. Before continuing, it is worth reflecting on the terms that will appear in the following proof.
First, on the scale of the rotationally symmetric Grim end, the perturbation that we make is of order ϵ so
that, since this perturbation is quadratic, it introduces a factor of ϵ2. Second, returning to the scale of the
joined surface introduces a further factor of ϵ, thus explaining the factor of ϵ3 in the formulae below.

Proof. Since M is a second-order quasilinear functional, upon rescaling, we obtain, for all u, for all v,
and for all g with ∥ϵg∥

′

1,G,H sufficiently small,

∥M(u, v, 0, g)− M(u, v, 0, 0)− ĴS,u,vg∥
′

0,G ≲ ϵ3
∥g∥

′

1,G,H∥g∥
′

2,G

≲
ϵ2

R
(∥g∥

′

1,G,H )
2
+ ϵ3(ϵR)(∥g∥

′

2,G)
2.

Next, for all sufficiently small u and v, and for all g,

∥( ĴS,u,v − ĴS)g∥
′

0,G ≲ ϵ3(∥u∥ +∥v∥)∥g∥
′

2,G

≲
ϵ2

R
∥u∥

2
+
ϵ2

R
∥v∥2

+ ϵ3(ϵR)(∥g∥
′

2,G)
2.
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Now, bearing in mind the definition of the macroscopic perturbation in the direction of w,

∥M(u, v, w, f )− M(0, 0, 0, 0)− ĴS f − Ẑw∥
′

0,G

≲ ∥M(u, v, w, f )− M(u, v, 0, 0)− ĴS f − Ẑw∥
′

0,G

≲ ∥M(u, v, 0, f +w(1 −χ ′

ϵ))− M(u, v, 0, 0)− ĴS( f +w(1 −χϵ′))∥′

0,G

≲ ∥M(u, v, 0, f +w(1 −χ ′

ϵ))− M(u, v, 0, 0)− ĴS,u,v( f +w(1 −χϵ′))∥′

0,G

+ ∥( ĴS,u,v − ĴS)( f +w(1 −χϵ′))∥′

0,G

≲
ϵ2

R
∥u∥

2
+
ϵ2

R
∥v∥2

+
ϵ2

R
(∥ f +w(1 −χ ′

ϵ)∥
′

1,G,H )
2
+ ϵ3(ϵR)(∥ f +w(1 −χ ′

ϵ)∥
′

2,G)
2.

Finally,
∥(1 −χ ′

ϵ)|A(1/(2ϵ),1/ϵ)∥
′

1,G,H ≲ 1,

∥(1 −χ ′

ϵ)|A(1/(2ϵ),1/ϵ)∥
′

2,G ≲
1
ϵR
,

and the result now follows by Lemma 4.3.1 and the subsequent remark. □

This concludes our analysis of M up to second order about S. We are now ready to prove existence.

Theorem 7.1.3. For γ sufficiently small, for all δ ∈ ]1, 2[, for α ∈ ]0, 1[ sufficiently small, and for 3
sufficiently large, there exist u, v, w and f such that

M(u, v, w, f )= 0.

Furthermore,

∥u∥, ∥v∥, ∥w∥, ∥ f ∥2,C ≲ Rδ−2, ∥ f ∥2,G ≲
1

(ϵR)αϵ2 R4 . (7-5)

Proof. Fix γ ≪ 1, δ ∈ ]1, 2[ and α ∈ ]0, 1[ small. Set ψ0 := M(0, 0, 0, 0) and define

(u0, v0, w0, f0) := φ0 := −(Ûψ0, V̂ψ0, Ŵψ0, P̂ψ0).

By (6-37), (6-38), (6-39), (6-40) and (7-2), there exists a constant B > 0, such that, for all large 3,

∥u0∥, ∥v0∥, ∥w0∥, ∥ f0∥2,C ≤ B Rδ−2, ∥ f0∥
′

2,G ≤
B

(ϵR)αϵ2 R4 .

Define �⊆ R3
⊕ R3

⊕ R3
⊕ E2,α,γ to be the set of all quadruplets (u, v, w, f ) such that

∥u∥, ∥v∥, ∥w∥, ∥ f ∥2,C ≤ 2B Rδ−2, ∥ f ∥
′

2,G ≤
2B

(ϵR)αϵ2 R4 .

Observe that � is convex and, by the Arzelà–Ascoli theorem, for all α′ < α and γ ′ < γ , � is a compact
subset of R3

⊕ R3
⊕ R3

⊕ E2,α′,γ ′ . For φ := (u, v, w, f ) in �, define

8(φ) := φ0 − (Ûψ, V̂ψ, Ŵψ, P̂ψ),

where
ψ := M(u, v, w, f )− M(0, 0, 0, 0)− ĴS f − X̂u − Ŷv− Ẑw.
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By (7-3), (7-4) and (2-14),

∥ψ∥0,C ≲ R2δ−4, ∥ψ∥
′

0,G ≲
1

(ϵR)6αR7 ,

so that, by (6-37), (6-38), (6-39) and (6-40), for sufficiently large 3, 8 maps � to itself. Furthermore,
for all α′ < α and γ ′ < γ , 8 is continuous with respect to the topology of E2,α′,γ ′ . It follows by the
Schauder fixed-point theorem (see [Gilbarg and Trudinger 1983]) that there exists a fixed point φ of 8
in �. We readily verify that M(φ)= 0, and this completes the proof. □

Theorem 7.1.4. Let (u,v,w, f ) be as in Theorem 7.1.3. For sufficiently large3, the surface Ẽ(u,v,w, f )
is embedded.

Proof. We denote the joined surface by S, we denote the image of Ẽ(u, v, w, f ) by S′, and we rescale
both S and S′ by ϵ. Observe that the intersection of S with A(2ϵR,∞)× R consists of three distinct
rotationally symmetric Grim ends, which we denote by G+, G0 and G− respectively. Let u+, u0 and u−

be the respective profiles of these ends, and let v+, v0 and v− be the respective derivatives of these
functions in the radial direction. Observe that

u+(ϵR) > u0(ϵR) > u−(ϵR),

v+(ϵR) > v0(ϵR) > v−(ϵR).

Since v+, v0 and v− are all solutions of the same first-order ODE, it follows that v+(r) > v0(r) > v−(r)
for all r . In particular, the ends G+, G0 and G+ are separated vertically by a distance of no less than η,
where η ∼ ϵ log(R). Let �+, �0 and �− denote the open sets of points lying at a vertical distance of no
more than η/2 from G+, G0 and G− respectively. Observe, in particular, that these three sets are disjoint.

Now let G ′
+

, G ′

0 and G ′
−

be the three ends of S′. Over the annulus A(ϵR, 2ϵR), by (7-5),

∥ϵ f |A(R,2R)∥C0 ≲ ϵR−δ
∥ f |(A(R,2R)∥2,C ≲ ϵR−2,

so that, over this annulus, G ′
+

lies strictly above G ′

0, and G ′

0 lies strictly above G ′
−

. However, by
Lemma 4.3.1 and the subsequent remark and (7-5) again,

∥ϵ f ∥
′

1,G,H ≲
1

(ϵR)3αR3 .

Bearing in mind the definition of the norm ∥ · ∥1,G,H , it follows that for sufficiently large 3, G ′
+

, G ′

0
and G ′

−
are all graphs over A(ϵR,∞). Furthermore, for some large R′, the intersections of G ′

+
, G ′

0 and
G ′

−
with A(R′,∞)× R are contained in �+, �0 and �− respectively. In particular, outside B(R′)× R,

G ′
+

lies strictly above G ′

0 and G ′

0 lies strictly above G ′
−

. Since vertical translates of mean curvature flow
solitons are also mean curvature flow solitons, it now follows by the strong maximum principle that, over
the whole of A(ϵR,∞), G ′

+
lies strictly above G ′

0 and G ′

0 lies strictly above G−. □

Appendix A: Terminology, conventions and standard results

A1. General definitions. Let R2 and R3 denote respectively 2- and 3-dimensional Euclidean space. We
consider R2 as the (x−y) plane in R3. Let π : R3

→ R2 denote the canonical projection. Let r denote
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a smooth positive function over R2 which is equal to the distance to the origin outside some (suitably
large) compact set. We denote the composition of r with π also by r . Let ex , ey and ez denote the vectors
of the canonical basis of R3. Let er , eθ denote respectively the unit radial and unit angular vector fields
about the origin over R2 and about the z-axis over R3. Let D denote the canonical differentiation operator
over R2 and R3. Let 1 denote the canonical Laplacian over R2 (not to be confused with 16, defined
below). Let C(a) denote the circle of radius a about the origin in R2. Let B(a) denotes the closed disk
of radius a about the origin in R2. Let A(a, b) denote the closed annulus of inner radius a and outer
radius b about the origin in R2. Let χ : [0,∞[ → R be a nonnegative, nonincreasing function such that
χ = 1 over [0, 1] and χ = 0 over [2,∞[. For all a, define χa : R2

→ R by χa(x)= χ(∥x∥/a). We call
χa the cut-off function of the transition region A(a, 2a). Composing with π , we likewise consider χa as
a function over R3.

A2. Surface geometry. Let 6 be an embedded surface in R3. Let N6 denote the unit normal vector field
over 6. Let π6 denote the orthogonal projection onto the tangent space of 6. Let ∇

6 denote the gradient
operator as well as the Levi-Civita covariant derivative of 6. Let Hess6 denote the intrinsic Hessian
operator of 6. Let 16 denote the intrinsic Laplacian of 6. Let II6 denote the second fundamental form
of 6. Let A6 denote the shape operator of 6. Let H6 denote the mean curvature of 6 (taken to be the
sum of the principle curvatures, or the trace of the shape operator). Let M6 denote the MCFS operator of
6 (with speed ϵ). It is given by

M6 := H6 + ϵ⟨N6, ez⟩. (A-1)

Let J6 denote the MCFS Jacobi operator (with speed ϵ) of 6. That is, J6 is the linearisation of the
MCFS operator of 6. It is given by

J6 f =16 f + Tr(A2
6) f + ϵ⟨∇G f, ez⟩. (A-2)

Finally, we recall the following elementary relations. For any function f defined over a neighbourhood
of 6,

∇
6 f = D f − ⟨D f, N6⟩N6,

Hess6( f )= Hess( f )− ⟨D f, N6⟩II6.
(A-3)

Given any positive function φ defined over 6, if Ĵ6 := M−1
φ J6Mφ denotes the conjugate of J6 with the

operator of multiplication by φ, then

Ĵ6 f =16 f + 2φ−1
⟨∇

6φ,∇6 f ⟩ + ϵ⟨∇6 f, ez⟩ + (φ−1 J6φ) f. (A-4)

A3. Surface geometry of graphs. If 6 is the graph of a function u over a subset of R2, then we call u
the profile of 6. In this case, π defines a coordinate chart of 6 in R2. It will be more convenient to work,
sometimes over 6, and sometimes over R2, and we will move freely between these two perspectives. Let
gi j denote the intrinsic metric of 6. Its inverse is denoted by gi j. Let 0k

i j denote the Christoffel symbols
of the Levi-Civita covariant derivative of gi j . Setting

µ := ⟨ez, N6⟩, (A-5)
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we readily verify the following relations:

µ=
1√

1+∥Du∥2
, 16( f )= gi j fi j − gi j gkpui j u p fk,

gi j = δi j + ui u j , II6i j = −µui j ,

gi j
= δi j −µ2ui u j , (A6)ij = −µgi pu pj ,

0k
i j = gkpui j u p, H6

= −µgi j ui j ,

Hess6( f )i j = fi j − gkpui j u p fk, πT (ez)i = µ2ui .

(A-6)

Finally, when 6 is a graph, the MCFS functional is given by

M6 = −µgi j ui j + ϵµ. (A-7)

A4. Function spaces. Let X be a metric space. For all α ∈ [0, 1], we define the Hölder seminorm of
order α over X by

[ f ]α := Supx ̸=y∈X
| f (x)− f (y)|

d(x, y)α
. (A-8)

Observe that [ f ]0 measures the total oscillation of f . In particular,

[ f ]0 ≤ 2∥ f ∥C0 . (A-9)

For all α ∈ [0, 1],
[ f ]α ≤ [ f ]

1−α
0 [ f ]

α
1 ≤ 21−α

∥ f ∥
1−α

C0 [ f ]
α
1 . (A-10)

If X is a complete manifold, and if f is differentiable over X , then, for all α ∈ [0, 1[ and for all β ∈]0, 1],

∥D f ∥C0 ≤ 2[ f ]
β/(1+(β−α))
α [D f ]

(1−α)/(1+(β−α))
β . (A-11)

For all α,
[ f g]α ≤ ∥ f ∥C0[g]α + [ f ]α∥g∥C0 . (A-12)

Finally, if X = X1 ∪ · · · ∪ Xm , then, for all α,

[ f ]α ≤ m1−α Sup1≤k≤m[ f |X i ]α. (A-13)

If, in particular, X = [0,m +1]× S1 is a cylinder and X i = [i, i +1]× S1 for all i , then (A-13) refines to

[ f ]α ≤

m∑
i=1

[ f |X i ]α. (A-14)

For a continuous function f over X , for all α, we define

δα f (x) := [ f |B1(x)]α. (A-15)

Now suppose that X is a smooth Riemannian manifold. For all k, α, we define the Ck,α-Hölder norm
over C∞(M) by

∥ f ∥Ck,α :=

k∑
i=0

∥Di f ∥C0 + ∥δαDk f ∥C0 . (A-16)
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We define the space Ck,α(X) to be the closure of C∞(X) with respect to this norm. For all p, we define
the L p-norm over C∞

0 (M) by

∥ f ∥
p
L p :=

∫
X

| f |
p dVol. (A-17)

We define the space L p(X) to be the closure of C∞

0 (X) with respect to this norm. For all k, we define
the H k-Sobolev norm over C∞

0 (M) by

∥ f ∥H k :=

k∑
i=0

∥Di f ∥L2 . (A-18)

The reader may verify that all surfaces studied in this paper are sufficiently regular at infinity for the
Sobolev embedding theorem to hold. That is for all l, and for all k +α < l − 1,

∥ f ∥Ck,α ≲ ∥ f ∥H l . (A-19)

The following formulae are readily verified:

Supt∈[1,T ] log(t)tα ≲
{

log(T )T α if α > 0,
1 if α < 0

(A-20)

and ∫
A(1,T )

log(r)mrα dVolSF ≲

{
log(T )m T α if α > 0,
1 if α < 0.

(A-21)

A5. Elliptic estimates. Let E and F be Banach spaces and let A : E → F be a bounded linear map. We
say that A satisfies an elliptic estimate whenever there exists a normed vector space G, a compact map
K : E → G, and a constant C such that, for all e in E ,

∥e∥ ≤ C(∥K e∥ +∥Ae∥). (A-22)

The following straightforward result plays an important role in Fredholm theory.

Theorem A5.1. If A satisfies an elliptic estimate, then the kernel of A is finite-dimensional and its image
is a closed subset of F.

Appendix B: Catenoidal minimal ends

In this appendix, we use the Weierstrass representation to determine the asymptotics of horizontal,
catenoidal minimal ends. This is used in Sections 5 and 6 to model the asymptotics of CHM surfaces.

Let C be a horizontal, catenoidal minimal end. Its intrinsic metric is biholomorphic to the punctured
disk which, for the purposes of this appendix, it is useful to view as the complement of the closed unit
disk in C, that is,

1∗
:= {ζ ∈ C | |ζ |> 1}. (B-1)

The Weierstrass representation (see [Weber 2005]) is a parametrisation of C by a function 8 :1∗
→ R3

of the form

8(ζ) := Re
(∫ ζ(1

2

(
G −

1
G

)
,

1
2i

(
G +

1
G

)
, 1

)
h dζ

)
(B-2)
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for some holomorphic functions G, h :1∗
→ C. These functions are interpreted geometrically as follows.

Setting 8 := (81,82,83), we readily show that

h = 2∂ζ83. (B-3)

That is, hdζ is twice the holomorphic part of the derivative of the height function of C . The geometric
significance of G is more subtle, but with some work we can show that it is the image under the
stereographic projection of the unit normal vector field over C .

Define ρ := |ζ |. Since C is a horizontal catenoidal end, 83 is asymptotic to a + c log(ρ) for some
constants a and c, and it follows that

h =

−1∑
k=−∞

hkζ
k . (B-4)

Meanwhile, since the normal of C is asymptotically vertical, G may be chosen to vanish at infinity, so
that

G =

−1∑
k=−∞

Gkζ
k . (B-5)

In addition, since C is a single-valued graph over some neighbourhood of infinity in R2, the functions h
and G together satisfy a vanishing holonomy condition around the puncture at infinity. In terms of their
Laurent coefficients, this holonomy condition is

h−1G−2 − h−2G−1 = 0. (B-6)

This condition ensures, in particular, that the first two components of 8 contain no logarithmic terms.
Thus, defining ζ =: ξ + iν and rotating and rescaling if necessary, we obtain, near infinity

8(ξ, ν)=

(
ξ +α

(
ξ

ρ2 ,
ν

ρ2

)
, ν+β

(
ξ

ρ2 ,
ν

ρ2

)
, a + b log(ρ)+ γ

(
ξ

ρ2 ,
ν

ρ2

))
, (B-7)

where α, β and γ are analytic functions of their arguments defined in a neighbourhood of the origin
which, furthermore, vanish at this point.

We now define

(x, y) := (81(ξ, ν),82(ξ, ν)) and r2
:= x2

+ y2. (B-8)

That is, (x, y) is the composition of the parametrisation 8 with the projection onto the horizontal plane.
Trivially, near infinity, C is the graph of some function F defined over the (x, y)-plane. We now use
(B-7) to determine the asymptotic structure of this function. First, upon observing that

1
ρ2 =

ξ 2

ρ4 +
ν2

ρ4 , (B-9)

we find that (
x
r2 ,

y
r2

)
=9

(
ξ

ρ2 ,
ν

ρ2

)
(B-10)
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for some analytic function 9, defined in a neighbourhood of the origin, such that 9(0, 0) = 0 and
D9(0, 0)= Id. Upon applying the implicit function theorem for analytic functions, we deduce that

F(x, y)= a + b log(r)+ δ
(

x
r2 ,

y
r2

)
(B-11)

for some analytic function δ, vanishing at the origin. In particular, with the notation of Section 1.3,

F(x, y)= a + c log(r)+ O(r−(1+k)), (B-12)

thus confirming the first formula of Section 5.1.
It remains only to verify (5-1). However, by (B-11),

F(x, y)= a + c log(r)+
φ(x, y)

r2 + O(r−(2+k)) (B-13)

for some linear form φ. Let ez denote the unit vector in the direction of the positive z-axis. Let u be any
nonzero, horizontal vector. If C is symmetric under reflection in the plane spanned by ez and u, then
φ annihilates the line orthogonal to u. Consequently, if C is symmetric under reflection in two distinct
planes of this type, then φ vanishes, so that

F(x, y)= a + c log(r)+ O(r−(2+k)), (B-14)

thus confirming (5-1).

Acknowledgements

We are grateful to Knut Smoczyk for drawing our attention to this interesting problem. We are likewise
grateful to Detang Zhou and Andrew Clarke for helpful conversations and their invaluable insights.

The first version of this paper was completed in January 2015 and was circulated amongst experts in
the field before publication on arXiv. At roughly the same time, [Dávila et al. 2017] was also published
on arXiv. That work proves a weaker result using techniques that do not extend to the case studied in this
paper.

References

[Cheng and Zhou 2015] X. Cheng and D. Zhou, “Stability properties and gap theorem for complete f -minimal hypersurfaces”,
Bull. Braz. Math. Soc. (N.S.) 46:2 (2015), 251–274. MR Zbl

[Cheng et al. 2014] X. Cheng, T. Mejia, and D. Zhou, “Eigenvalue estimate and compactness for closed f -minimal surfaces”,
Pacific J. Math. 271:2 (2014), 347–367. MR Zbl

[Cheng et al. 2015a] X. Cheng, T. Mejia, and D. Zhou, “Simons-type equation for f -minimal hypersurfaces and applications”,
J. Geom. Anal. 25:4 (2015), 2667–2686. MR Zbl

[Cheng et al. 2015b] X. Cheng, T. Mejia, and D. Zhou, “Stability and compactness for complete f -minimal surfaces”, Trans.
Amer. Math. Soc. 367:6 (2015), 4041–4059. MR Zbl

[Clutterbuck et al. 2007] J. Clutterbuck, O. C. Schnürer, and F. Schulze, “Stability of translating solutions to mean curvature
flow”, Calc. Var. Partial Differential Equations 29:3 (2007), 281–293. MR Zbl

[Dávila et al. 2017] J. Dávila, M. del Pino, and X. H. Nguyen, “Finite topology self-translating surfaces for the mean curvature
flow in R3”, Adv. Math. 320 (2017), 674–729. MR Zbl

http://dx.doi.org/10.1007/s00574-015-0092-z
http://msp.org/idx/mr/3448944
http://msp.org/idx/zbl/1338.53086
http://dx.doi.org/10.2140/pjm.2014.271.347
http://msp.org/idx/mr/3267533
http://msp.org/idx/zbl/1322.58020
http://dx.doi.org/10.1007/s12220-014-9530-1
http://msp.org/idx/mr/3427142
http://msp.org/idx/zbl/1344.53043
http://dx.doi.org/10.1090/S0002-9947-2015-06207-2
http://msp.org/idx/mr/3324919
http://msp.org/idx/zbl/1318.53061
http://dx.doi.org/10.1007/s00526-006-0033-1
http://dx.doi.org/10.1007/s00526-006-0033-1
http://msp.org/idx/mr/2321890
http://msp.org/idx/zbl/1120.53041
http://dx.doi.org/10.1016/j.aim.2017.09.014
http://dx.doi.org/10.1016/j.aim.2017.09.014
http://msp.org/idx/mr/3709119
http://msp.org/idx/zbl/1377.53011


1236 GRAHAM SMITH

[Gilbarg and Trudinger 1983] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed.,
Grundl. Math. Wissen. 224, Springer, 1983. MR Zbl

[Hauswirth and Pacard 2007] L. Hauswirth and F. Pacard, “Higher genus Riemann minimal surfaces”, Invent. Math. 169:3
(2007), 569–620. MR Zbl

[Hoffman and Meeks 1990] D. Hoffman and W. H. Meeks, III, “Embedded minimal surfaces of finite topology”, Ann. of
Math. (2) 131:1 (1990), 1–34. MR Zbl

[Kapouleas 1990] N. Kapouleas, “Complete constant mean curvature surfaces in Euclidean three-space”, Ann. of Math. (2)
131:2 (1990), 239–330. MR Zbl

[Kapouleas 1995] N. Kapouleas, “Constant mean curvature surfaces constructed by fusing Wente tori”, Invent. Math. 119:3
(1995), 443–518. MR Zbl

[Kapouleas 1997] N. Kapouleas, “Complete embedded minimal surfaces of finite total curvature”, J. Differential Geom. 47:1
(1997), 95–169. MR Zbl

[Martín et al. 2015] F. Martín, A. Savas-Halilaj, and K. Smoczyk, “On the topology of translating solitons of the mean curvature
flow”, Calc. Var. Partial Differential Equations 54:3 (2015), 2853–2882. MR Zbl

[Mazzeo and Pacard 2001] R. Mazzeo and F. Pacard, “Constant mean curvature surfaces with Delaunay ends”, Comm. Anal.
Geom. 9:1 (2001), 169–237. MR Zbl

[Morabito 2009] F. Morabito, “Index and nullity of the Gauss map of the Costa–Hoffman–Meeks surfaces”, Indiana Univ.
Math. J. 58:2 (2009), 677–707. MR Zbl

[Nayatani 1993] S. Nayatani, “Morse index and Gauss maps of complete minimal surfaces in Euclidean 3-space”, Comment.
Math. Helv. 68:4 (1993), 511–537. MR Zbl

[Pacard 2008] F. Pacard, “Connected sum constructions in geometry and nonlinear analysis”, lecture notes, 2008, available at
https://indico.ictp.it/event/a07155/session/25/contribution/14/material/0/0.pdf.

[Schwarz 1993] M. Schwarz, Morse homology, Progress in Mathematics 111, Birkhäuser, Basel, 1993. MR Zbl

[Weber 2005] M. Weber, “Classical minimal surfaces in Euclidean space by examples: geometric and computational aspects of
the Weierstrass representation”, pp. 19–63 in Global theory of minimal surfaces, edited by D. Hoffman, Clay Math. Proc. 2,
Amer. Math. Soc., Providence, RI, 2005. MR Zbl

Received 17 Dec 2019. Revised 13 Aug 2022. Accepted 23 Sep 2022.

GRAHAM SMITH: grahamandrewsmith@gmail.com
Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil

mathematical sciences publishers msp

http://dx.doi.org/10.1007/978-3-642-61798-0
http://msp.org/idx/mr/737190
http://msp.org/idx/zbl/0562.35001
http://dx.doi.org/10.1007/s00222-007-0056-z
http://msp.org/idx/mr/2336041
http://msp.org/idx/zbl/1129.53009
http://dx.doi.org/10.2307/1971506
http://msp.org/idx/mr/1038356
http://msp.org/idx/zbl/0695.53004
http://dx.doi.org/10.2307/1971494
http://msp.org/idx/mr/1043269
http://msp.org/idx/zbl/0699.53007
http://dx.doi.org/10.1007/BF01245190
http://msp.org/idx/mr/1317648
http://msp.org/idx/zbl/0840.53005
http://projecteuclid.org/euclid.jdg/1214460038
http://msp.org/idx/mr/1601434
http://msp.org/idx/zbl/0936.53006
http://dx.doi.org/10.1007/s00526-015-0886-2
http://dx.doi.org/10.1007/s00526-015-0886-2
http://msp.org/idx/mr/3412395
http://msp.org/idx/zbl/1336.53081
http://dx.doi.org/10.4310/CAG.2001.v9.n1.a6
http://msp.org/idx/mr/1807955
http://msp.org/idx/zbl/1005.53006
http://dx.doi.org/10.1512/iumj.2009.58.3476
http://msp.org/idx/mr/2514384
http://msp.org/idx/zbl/1176.58010
http://dx.doi.org/10.1007/BF02565834
http://msp.org/idx/mr/1241471
http://msp.org/idx/zbl/0797.58018
https://indico.ictp.it/event/a07155/session/25/contribution/14/material/0/0.pdf
http://dx.doi.org/10.1007/978-3-0348-8577-5
http://msp.org/idx/mr/1239174
http://msp.org/idx/zbl/0806.57020
http://msp.org/idx/mr/2167255
http://msp.org/idx/zbl/1100.53015
mailto:grahamandrewsmith@gmail.com
http://msp.org


Analysis & PDE
msp.org/apde

EDITOR-IN-CHIEF

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

BOARD OF EDITORS

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Zbigniew Błocki Uniwersytet Jagielloński, Poland
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