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We study nodal sets of Steklov eigenfunctions in a bounded domain with C2 boundary. Our first result is a
lower bound for the Hausdorff measure of the nodal set: we show that, for uλ a Steklov eigenfunction
with eigenvalue λ ̸= 0, we have Hd−1({uλ = 0}) ≥ c�, where c� is independent of λ. We also prove an
almost sharp upper bound, namely, Hd−1({uλ = 0}) ≤ C�λ log(λ + e).

1. Introduction

Let � a bounded domain in Rd, where d ≥ 2. A Steklov eigenfunction uλ ∈ H 1(�) is a solution of{
1uλ = 0 in �,

∂νuλ = λuλ on ∂�.
(1)

Here and throughout the paper we denote by ∂ν the outward normal derivative. A number λ for which a
solution to (1) exists is called a Steklov eigenvalue, and it is well known that Steklov eigenvalues form a
discrete sequence accumulating to infinity. Moreover, Steklov eigenvalues coincide with the eigenvalues
of the Dirichlet-to-Neumann operator, which is the operator that maps a function on ∂� to the normal
derivative of its harmonic extension in �, and a Steklov eigenfunction restricted to ∂� is an eigenfunction
of the Dirichlet-to-Neumann operator. For a survey on the Steklov problem outlining many results and
open questions see [Girouard and Polterovich 2017].

Inspired by a famous conjecture of Yau on the Hausdorff measure of nodal sets of Laplace eigenfunctions,
an analogous question has been asked for nodal sets of Steklov eigenfunctions (it is stated explicitly in
[Girouard and Polterovich 2017], for example); the conjecture can be formulated both for interior and
boundary nodal sets. For the interior nodal set, the question is as follows:

• Is it true that there exist positive constants c and C , depending only on �, such that

cλ ≤ Hd−1({uλ = 0}) ≤ Cλ? (2)

Similarly, for the boundary nodal set (which is the nodal set of an eigenfunction of the Dirichlet-to-
Neumann operator) one can ask:

• Is it true that there exist positive constants c′ and C ′, depending only on �, such that

c′λ ≤ Hd−2({uλ = 0} ∩ ∂�) ≤ C ′λ? (3)
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Here we do not deal with question (3) and just note that the upper bound was proved in [Zelditch 2015]
when ∂� is real-analytic. About question (2), a polynomial upper bound was proved in [Georgiev and Roy-
Fortin 2019], following the corresponding polynomial upper bound in the Laplace–Beltrami eigenfunction
case proved in [Logunov 2018a]. On real-analytic surfaces (that is, real-analytic metric in the interior and
real-analytic boundary), the full conjecture (2) was established in [Polterovich et al. 2019]. Again in the
real-analytic category, the upper bound was recently obtained in any dimension in [Zhu 2020]. Concerning
lower bounds, as far as we know, the best result was contained in [Sogge et al. 2016], where the bound
Hd−1({uλ = 0})≥ cλ(2−d)/2 is obtained for � a domain with C∞ boundary (actually, a smooth Riemannian
manifold with smooth boundary). The first contribution of the present article is an improvement on the
lower bound; we show that the Hausdorff measure of the interior nodal set is bounded below by a constant
independent of λ (so the result is really an improvement over [Sogge et al. 2016] if d ≥ 3).

Theorem 1. Let � be a bounded domain in Rd with C2-smooth boundary, and let uλ be a solution of (1)
in �, λ ̸= 0. Then there exists a constant c� > 0 independent of λ such that

Hd−1({uλ = 0}) ≥ c�. (4)

In the previous work [Decio 2022] we established a density property of the zero set near the boundary,
under weaker hypothesis on the boundary regularity: we transcribe the result below.

Theorem A [Decio 2022]. Let � be a Lipschitz domain in Rd, d ≥ 2, and let uλ be a solution of (1),
where we assume λ ̸= 0. There exists a constant C = C(�) such that

{uλ = 0} ∩ B ̸= ∅ (5)

for any ball B in Rd of radius C/λ centered at a point in ∂�.

The proof of Theorem 1 involves a combination of Theorem A and the recent breakthrough by
Logunov [2018b] on Yau’s conjecture. We cannot apply the results of [Logunov 2018b] directly and have
to do some work to modify the necessary arguments. The fact that we are one power of λ away from
the optimal result is a consequence of the deficiency of the density result, which we can only prove very
close to the boundary, and not of the arguments in [Logunov 2018b].

Remark. It will be apparent from the proof that Theorem 1 extends without much difficulty to the case
of manifolds equipped with a C2-smooth Riemannian metric and C2 boundary.

The conjectured upper bound in (2) would be sharp, as the example of a ball shows; the second main
contribution of this article is an almost sharp upper bound for Euclidean domains with C2 boundary.

Theorem 2. Let � be a bounded domain in Rd with C2-smooth boundary, and let uλ be a solution of (1)
in �. Then there is a constant C� > 0 independent of λ such that

Hd−1({uλ = 0}) ≤ C�λ log(λ + e). (6)

Remark. The proof of Theorem 2 uses the sharp bounds of Donnelly and Fefferman [1988] in the interior
of the domain and a multiscale induction argument at the boundary, which is based on a version of
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the hyperplane lemma of [Logunov 2018a; Logunov et al. 2021]. While, as remarked above, the proof
of the lower bound can be extended almost verbatim to smooth Riemannian manifolds with boundary,
for Theorem 2 we rely heavily on the fact that � is a Euclidean domain, or at least we have to require
that the metric inside � is real analytic; this is because the results of [Donnelly and Fefferman 1988]
require real analyticity. Our theorem lies in between previous results on the upper bound: the multiscale
argument at the boundary allows for C2-regularity of the boundary only, as opposed to real analyticity as
in the aforementioned paper [Zhu 2020]; on the other hand, if the metric inside is assumed to be only C2

(or C∞), the best result attainable with these methods is still the polynomial upper bound of [Georgiev
and Roy-Fortin 2019].

Plan of the paper. We prove Theorem 1 in Sections 2 and 3; in Section 2 we discuss a procedure for
extending a Steklov eigenfunction across the boundary, which gives rise to an auxiliary equation for
which a statement very similar to Logunov’s theorem [2018b] holds (see Theorem 3), and we use this
together with Theorem A to prove the lower bound. Section 3 is quite long and contains the proof of
Theorem 3, which requires us to review Logunov’s argument carefully and use a combination of classical
elliptic estimates and frequency function techniques. Section 4 is dedicated to the proof of Theorem 2.

2. Lower bound on nodal sets

Here we deduce Theorem 1 using Theorem A and ideas stemming from Logunov’s solution [2018b]
of a conjecture of Nadirashvili on nodal sets of harmonic functions. In order to do this, we transform
a solution to (1) into a solution of an elliptic equation in the interior of a domain. To the best of our
knowledge, this idea was introduced first in [Bellová and Lin 2015] and then also applied successfully in
[Georgiev and Roy-Fortin 2019; Zhu 2015].

We now describe this extension procedure, which requires ∂� to be of class C2; we follow [Bellová
and Lin 2015] very closely. There is a δ > 0 such that the map ∂� × (−δ, δ) ∋ (y, t) → y + tν(y)

is one-to-one onto a neighborhood of ∂� in Rd. We set d(x) = dist(x, ∂�), and for ρ ≤ δ we define
�ρ = {x ∈ � : d(x) < ρ} and �′

ρ = {x ∈ Rd
: d(x) < ρ} \ �. Let now uλ be a solution of (1), and for

x ∈ �δ ∪ ∂� define

v(x) = uλ(x) exp(λd(x)); (7)

an easy computation shows that v satisfies{
div(A∇v) + b(x) · ∇v + c(x)v = 0 in �δ,

∂νv = 0 on ∂�,

where A = I , b = −2λ∇d and c = λ2
− λ1d. Consider now the reflection map 9 : �δ → �′

δ given by
9(y + tν(y)) = y − tν(y), where y ∈ ∂�; since v satisfies a Neumann boundary condition on ∂�, we can
extend it “evenly” across the boundary, i.e., set v(9(x)) = v(x) for x ∈ �δ. Write 9(x) = x ′. Another
easy computation shows that on �′

δ the extended function (which we still call v) satisfies the equation

div( Ã∇v) + b̃ · ∇v + c̃v = 0,
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where

Ã(x ′) = ∇9(x)(∇9(x))T , b̃i (x ′) = −

∑
j

∂x ′

j
ãi j (x ′) + 19 i (x) + ∇9 i (x) · b(x), c̃(x ′) = c(x).

Consider now D = �δ ∪ ∂� ∪ �′

δ; we abuse notation and denote by A, b and c the functions that are
equal to the previous A, b and c in �δ and equal to Ã, b̃ and c̃ in �′

δ. In [Bellová and Lin 2015] it is
shown that A is Lipschitz across ∂� with Lipschitz constant depending only on �, and A is uniformly
positive definite, again with constant depending only on �. Pasting together the pieces, one obtains that v

is a strong solution of the uniformly elliptic equation

div(A∇v) + b · ∇v + cv = 0 (8)

in D, with A Lipschitz, ∥A∥L∞(D) ≤ C , ∥b∥L∞(D) ≤ Cλ and ∥c∥L∞(D) ≤ Cλ2.
We want to study (8) at wavelength scale. In order to deal with its zero set we use the theorem below,

which is just an extension to more general equations of the aforementioned theorem of Logunov on
harmonic functions [2018b]; its proof, which merely consists of a tedious but necessary verification that
Logunov’s argument carries over in this slightly more general setting, is relegated to the next section. We
warn the reader that below and in the rest of the paper we do not explicitly indicate dependence of the
constants on the dimension.

Theorem 3. Consider a strong solution of the equation

Lu = div(A∇u) + b · ∇u + cu = 0 (9)

in B = B(0, 1) ⊂ Rd, with the following assumptions on the coefficients:

(i) A is a uniformly positive definite matrix; that is, A(x)ξ · ξ ≥ α|ξ |
2 for any ξ ∈ Rd.

(ii) A is Lipschitz; that is,
∑

i, j |ai j (x) − ai j (y)| ≤ γ |x − y|.

(iii)
∑

i, j ∥ai j
∥L∞(B) +

∑
i ∥bi

∥L∞(B) ≤ K .

(iv) c ≥ 0 and ∥c∥L∞(B) ≤ ε0, where ε0 is a small enough constant depending on α, γ, K .

Then there exist r0 = r0(α, γ, K ) < 1 and c0 = c0(α, γ, K ) such that, for any solution u of (9) and any
ball B(x, r) ⊂ B(0, r0) for which u(x) = 0, we have the lower measure bound

Hd−1({u = 0} ∩ B(x, r)) ≥ c0rd−1. (10)

Assume now that λ is large enough depending on � and consider a ball B(x0, ε/λ) ⊂ D, where ε

is a small enough constant, with smallness depending only on �. We set vx0,λ(x) = v(x0 + εx/λ) for
x ∈ B = B(0, 1); note that vx0,λ satisfies the equation

div(Ax0,λ∇vx0,λ) + bx0,λ · ∇vx0,λ + cx0,λvx0,λ = 0, (11)

where the ellipticity constant of Ax0,λ is the same as that of A and the Lipschitz constant is the same
if not better, and the coefficients satisfy ∥Ax0,λ∥L∞(B) ≤ C , ∥bx0,λ∥L∞(B) ≤ Cε and ∥cx0,λ∥L∞(B) ≤ Cε2.
Note that if λ is large enough then cx0,λ ≥ 0. If we then take ε small enough, vx0,λ satisfies (9) and
assumptions (i)–(iv) with constants α, γ, K depending only on �. By Theorem A, any ball centered
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at ∂� of radius C/λ contains a zero of the Steklov eigenfunction uλ and hence of v. We can reduce the
radius of the balls and take a maximal disjoint subcollection of balls B(xi , C1/λ) ⊂ D, xi ∈ �, such that
v(xi ) = 0 and consider the corresponding rescaled functions vxi ,λ; we can assume that C1 < r0, so that by
Theorem 3 we obtain

Hd−1({vxi ,λ = 0} ∩ B(0, C1)) ≥ cCd−1
1 . (12)

Note also that

Hd−1
(
{uλ = 0} ∩ B

(
xi ,

C1

λ

)
∩ �

)
∼ Hd−1

(
{v = 0} ∩ B

(
xi ,

C1

λ

))
∼ εd−1λ1−dHd−1({vxi ,λ = 0} ∩ B(0, C1)) ≥ C̃λ1−d,

where C̃ depends on � only. Since there are ∼ λd−1 such balls B(xi , C1/λ), we obtain

Hd−1({uλ = 0}) ≥ c�,

and Theorem 1 is proved.

Remark. If one could improve the result of Theorem A by showing that every ball of radius C/λ centered
at any point in a corona of fixed (independent of λ) size around the boundary contains a zero of uλ, the
optimal lower bound Hd−1({uλ = 0})≳ λ would follow immediately by the preceding argument (actually
more easily, since one could directly apply Logunov’s result without the need to go through Theorem 3).

3. Proof of Theorem 3

This entire long section is dedicated to the proof of Theorem 3. We follow essentially the arguments
of [Logunov 2018b], which carry through in this setting with few changes; the difference is that we
have to use more general elliptic estimates, such as a weaker form of the maximum principle, and a
frequency function that takes into account the lower-order terms in the equation. In Sections 3.1 and 3.2
we introduce the main tools we need in the proof, namely, classical elliptic estimates and the monotonicity
of the frequency function. Section 3.3 will serve as a break from technicalities: here we try to convey an
idea of the scheme of the proof to the reader. Sections 3.4–3.8 contain the actual body of the proof with
full details.

Throughout the section we consider the operator L defined by (9) satisfying conditions (i)–(iv). It will
be convenient to denote by L1 = L − cI the operator without the zeroth-order term.

3.1. Elliptic estimates. We first recall some standard elliptic estimates for L , paraphrasing the results
in [Gilbarg and Trudinger 1983] in our notation. Note that whenever we consider a bounded domain
we can assume for our purposes that it is contained in the unit ball, so we can ignore the dependency
of the constants on the diameter of � and on the radius of balls contained in �. We start with the weak
maximum principle.

Theorem 4 [Gilbarg and Trudinger 1983, Theorem 9.1]. Let L1u ≥ −δ in a bounded domain �. Then

sup
�

u ≤ sup
∂�

u+
+ C |δ|,

where C = C(α, γ, K ).
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Corollary 5. Let Lu = 0 in a bounded domain �, with ε0 in (iv) small enough. Then

sup
�

u ≤ 2 sup
∂�

u+. (13)

Proof. We can assume sup� u ≥ 0. Since Lu = 0, we have L1u =−cu ≥−ε0 sup� u using assumption (iv).
By Theorem 4, then sup� u ≤ sup∂� u+

+ Cε0 sup� u, and the corollary follows as soon as Cε0 ≤
1
2 . □

The next theorem is a local pointwise estimate for subsolutions.

Theorem 6 [Gilbarg and Trudinger 1983, Theorem 9.20]. Let Lu ≥ −δ in �. Then for any ball
B(x, 2R) ⊂ � and any p > 0 we have

sup
B(x,R)

u ≤ C1

{

/

∫
B(x,2R)

(u+)p
}1/p

+ C2|δ|, (14)

where C1 and C2 depend on α, K and p.

Remark. In Theorem 9.20 in [Gilbarg and Trudinger 1983], the constants depend on R. However, they
get worse as R increases and improve as R decreases; in this work we will only be concerned with
small R, so that we can ignore the dependency on it.

We now come to the weak Harnack inequality and then the full Harnack inequality.

Theorem 7 [Gilbarg and Trudinger 1983, Theorem 9.22]. Let Lu ≤ δ in �, and suppose that u is
nonnegative in a ball B(x, 2R) ⊂ �. Then{

/

∫
B(x,R)

u p
}1/p

≤ C( inf
B(x,R)

u + |δ|), (15)

where p and C are positive numbers depending on α and K .

Theorem 8 [Gilbarg and Trudinger 1983, Corollary 9.25]. Let Lu = 0 in �, and suppose that u is
nonnegative in a ball B(x, 2R) ⊂ �. Then

sup
B(x,R)

u ≤ C inf
B(x,R)

u, (16)

where C = C(α, K ).

Corollary 9. Let Lu = 0 in �. If u(x0) ≥ 0 and B(x0, R) ⊂ �, then the inequality

sup
B(x0,2R/3)

|u| ≤ C sup
B(x0,R)

u (17)

holds for C = C(α, K ).

Proof. Call M = supB(x0,R) u and consider the function h = M − u, which is nonnegative in B(x0, R).
Note that Lh = cM, so that |Lh| ≤ εM. By applying to h Theorem 6 and then Theorem 7 with δ = εM,
one gets that

sup
B(x0,2R/3)

(M − u) ≤ C1

{

/

∫
B(x0,3R/4)

u p
}1/p

+ C2εM ≤ C3 inf
B(x0,3R/4)

(M − u) + C4εM ≤ C5 M,

where the last inequality holds because u(x0) ≥ 0. Hence we obtain supB(x0,2R/3)(−u) ≤ C M. Since
clearly we have that supB(x0,2R/3) u ≤ M , the corollary is proved. □
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3.2. Frequency function and doubling index. The frequency function, which as far as we know was
used first by Almgren and then subsequently developed in the works of Garofalo and Lin [1986; 1987], is
a powerful tool in the study of unique continuation and zero sets of elliptic PDEs. We are now going to
define it for operators of the form (9) and state some of its properties, following mainly [Garofalo and
Lin 1987; Han and Lin].

Let u ∈ W 1,2
loc (B) be a solution of (9). In [Garofalo and Lin 1987] and [Han and Lin] a metric

g(x) =
∑

i, j gi j (x) dxi ⊗ dx j is introduced in the following way: let first

gi j (x) = ai j (x)(det A)1/(d−2),

where, as customary, ai j denote the entries of the matrix A−1. To define gi j we assume here d ≥ 3; if
d = 2, we can just add a “mute” variable. Next, one defines

r(x)2
=

∑
i, j

gi j (0)xi x j and η(x) =

∑
k,l

gkl(x)
∂r
∂xk

(x)
∂r
∂xl

(x).

Finally, one sets

gi j (x) = η(x)gi j (x).

Note that η is a positive Lipschitz function with Lipschitz constant depending on α, γ and K . Let G be
the matrix (gi j ) and define |g| = det(G). We can now write (9) as

divg(µ(x)∇gu) + bg(x) · ∇gu + cg(x)u = 0,

where µ = η−(d−2)/2 is a Lipschitz function in B with C1 ≤ µ(x) ≤ C2, bg = Gb/
√

|g| and cg = c/
√

|g|.
Note that, since |g|

−1/2 is a Lipschitz function bounded above and below by constants depending on
α, γ and K only, bg and cg satisfy analogous bounds to b and c in (9). The following quantities are then
introduced, where the integrals are with respect to the measure induced by the metric g:

H(x, r) =

∫
∂ B(x,r)

µu2, D(x, r) =

∫
B(x,r)

µ|∇gu|
2, I (x, r) =

∫
B(x,r)

µ|∇gu|
2
+ ubg · ∇gu + cgu2.

The frequency function is finally defined as

β(x, r) =
2r I (x, r)

H(x, r)
. (18)

Compared with the definition in [Garofalo and Lin 1987] and [Han and Lin] there is an extra factor of 2
for aesthetic reasons in later formulas. More often than not, we will forget about the point x and only
write the dependance on the radius r . The key property of the frequency function is the following almost
monotonicity:

Theorem 10. There are constants r0, c1 and c2 depending on α, γ and K such that

β(x, r) ≤ c1 + c2β(x, r0) (19)

for r ∈ (0, r0). Moreover, c2 can be chosen to be 1 + ε for any ε > 0 if r0 = r0(ε) is small enough.
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Remark. The statement of Theorem 10 is implicit in [Garofalo and Lin 1987], and the proof is contained
there; in [Han and Lin] the theorem is stated as it is here, and the proof given is essentially the one of
[Garofalo and Lin 1987]. The second assertion is not explicitly stated in [Garofalo and Lin 1987] or [Han
and Lin] and needs some justification. In both papers, the strategy to prove the theorem is the following:
one defines �r0 = {r ∈ (0, r0) : β(r) > max(1, β(r0))} and proves that it is an open subset of R and
therefore it can be decomposed as �r0 =

⋃
+∞

j=1(a j , b j ) with a j and b j not belonging to �r0 ; it is then
showed that β ′(r)/β(r) ≥ −C for any r ∈ �r0 . By integration, one has that β(r) ≤ β(b j ) exp(C(b j − r))

for any r ∈ (a j , b j ). Since b j /∈ �r0 , this implies that the constant c2 can be chosen to be exp (Cr0), which
is close to 1 if r0 is small.

In the course of the proof of Theorem 10 in [Garofalo and Lin 1987] and [Han and Lin] the differentiation
formula

H ′(r) =

(
d − 1

r
+ O(1)

)
H(r) + 2I (r)

is obtained; the formula can be rewritten as

d
dr

(
log

H(r)

rd−1

)
= O(1) +

β(r)

r
. (20)

The next statement is an immediate consequence of this formula.

Proposition 11. There is a constant C depending on α, γ and K such that the function eCr H(r)/rd−1 is
increasing for r ∈ (0, r0).

From (20) and almost monotonicity (19), by integration one obtains the following:

Proposition 12. The two-sided inequality

c
(

r2

r1

)c−1
2 β(r1)−c3

≤
H(r2)

H(r1)
≤ C

(
r2

r1

)c2β(r2)+c3

(21)

holds, where again c2 can be chosen to be 1 + ε if r0 is small enough.

From now on we denote with letters c, C, c1, . . . constants which may vary from line to line and that
depend only on α, γ and K without explicitly saying so every time. Additional dependencies will be
indicated. We now define a quantity related to the frequency function: the doubling index.

Definition 13. For B(x, 2r) ⊂ B, the doubling index N (x, r) is defined by

2N (x,r)
=

supB(x,2r) |u|

supB(x,r) |u|
. (22)

The doubling index and the frequency function are comparable in the following sense:

Lemma 14. Let ε > 0 be sufficiently small, and let r0 be small enough that the constant c2 in (21) is 1+ε;
then, for 4r < r0,

β(x, r(1 + ε))(1 − 100ε) − c ≤ N (x, r) ≤ β(x, 2r(1 + ε))(1 + 100ε) + c.
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The proof of Lemma 14 is an easy computation using the elliptic estimate (14), Proposition 11 and
inequality (21); in fact, by (14),

sup
B(x,r)

|u|
2
≤ Cε /

∫
B(x,(1+ε)r)

|u|
2,

and further

/

∫
B(x,(1+ε)r)

|u|
2
≤ C

H((1 + ε)r)

rd−1

by integration and Proposition 11. From here on the computation is identical to the one in [Logunov
2018a, Lemma 7.1]. Using this, one can derive a scaling property for the doubling index; see [Logunov
2018a, Lemmas 7.2 and 7.3] for details of the computation.

Lemma 15. Given any ε ∈ (0, 1), there exist r0(ε) > 0 and C(ε) > 0 such that, for u ∈ W 1,2(B) a solution
of (9) and any 0 < 2r1 ≤ r2 ≤ r0, we have(

r2

r1

)N (x,r1)(1−ε)−C

≤
supB(x,r2)

|u|

supB(x,r1)
|u|

≤

(
r2

r1

)N (x,r2)(1+ε)+C

. (23)

As a consequence, the doubling index is also almost monotonic in the sense that

N (x, r1)(1 − ε) − C ≤ N (x, r2)(1 + ε) + C.

3.3. An informal outline of the proof. We include here a brief discussion of the scheme of the proof
avoiding details and technicalities; the latter are all included in the next subsections. Let us first note that
in dimension 2 Theorem 3 is an easy consequence of the weak maximum principle (Corollary 5): if u
vanishes at the center of a ball, the weak maximum principle tells us that there can be no small loops of
zeros containing the center and therefore the nodal component containing the center must exit the ball,
implying that its length must be greater than the diameter of the ball.

In higher dimensions, this simple argument does not give any lower measure bound because a priori
the nodal set could be a very thin tube crossing the ball. However, a slightly more sophisticated argument,
still using essentially only the maximum principle, does give a nonoptimal lower bound: we prove in
Proposition 16 that if u(x) = 0,

Hd−1({u = 0} ∩ B(x, r)) ≥ crd−1 N 2−d,

where N is an upper bound for the doubling index N
(
x, 1

2r
)
. Note that when d = 2 this is already optimal,

as it should be. If d ≥ 3, this naive lower bound gets worse as the doubling index gets larger. This
however contradicts intuition, since we are dealing with solutions of elliptic PDEs: if the doubling index
is large, meaning that there is strong growth of u, then there should be many zeros. This suggests that
one could use induction on N to promote the naive lower bound to the optimal one. The key to achieving
this is Proposition 23, which shows that if the doubling index is comparable to N ≫ 1 in balls of radii 1

4r
to r (we call this “stable growth”, see Definition 22), there are many zeros in the ball of radius r ; more
precisely, there are at least [

√
N ]

d−1 f (N ), with f (N ) → ∞ as N → ∞, disjoint balls of radius r/
√

N
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such that u vanishes at the center. The fact that f (N ) grows with N essentially shows that indeed there
are more zeros as the doubling index increases, and it is needed to close the induction in Section 3.8.

The proof of Proposition 23 uses crucially Theorem 19, which tells us that if a cube is partitioned into
some large number Bd of subcubes, the number of subcubes which have doubling indices dropping by an
amount increasing with B compared to the doubling index of the original cube form the vast majority of
the subcubes. The argument goes as follows: since the doubling index is comparable to N on scales 1

4r
to r , we can assume that in the ball of radius 1

4r , |u| ≤ 1, while in the ball of radius 1
2r , |u| ≥ 2cN. We

then connect points where u is small to points where u is large by many chains of cubes (called “tunnels”
later): since there is considerable growth of u from one endpoint of the tunnel to the other, the Harnack
inequality tells us that there must be zeros and the growth happens in the cubes with zeros; an application
of Theorem 19 gives us that most of the cubes in the tunnel have doubling index much smaller than N,
so that the growth from one endpoint to the other cannot be realized in very few cubes, and hence each
tunnel must have many cubes with zeros. The formal proof is a matter of quantifying what “small”,
“large”, “few” and “many” mean.

The only issue remaining is ensuring that there are balls of stable growth: this is done in Claim 3, and
the proof uses the estimates in Section 3.6 which are consequences of the almost monotonicity of the
frequency function.

Let us emphasize once again that the proof scheme described above is due to Aleksandr Logunov, and
it appeared first in [Logunov 2018b]. In our case we have to adapt it to elliptic equations with lower-order
terms, but the more general estimates that we need are collected above in Sections 3.1 and 3.2, and using
those estimates the proof runs in the same way as for harmonic functions.

3.4. Local asymmetry. We now derive a lower estimate for the relative volume of the set {u > 0} in balls
centered at zeros of u, and consequently a nonoptimal lower estimate for the measure of the zero set. The
estimate and the proof are analogous to the Laplace–Beltrami eigenfunctions case, for which see, for
example, [Logunov and Malinnikova 2018; Mangoubi 2008]. For the reader’s convenience, we reproduce
here essentially the same proof as [Logunov and Malinnikova 2018].

Proposition 16. Let B(x, r)⊂ B and u be a solution of (9) such that u(x)=0. Suppose that N
(
x, 1

2r
)
≤ N,

where N is a positive integer. Then the lower measure bound

Hd−1({u = 0} ∩ B(x, r)) ≥ crd−1 N 2−d (24)

holds for some c > 0.

Proof. For notational simplicity we assume x = 0 and write Br = B(0, r). We can also safely assume that
N ≥ 4, say. Note that by (17) and (13) we have supBr/2

|u| ≤ C max∂ B3r/4 u, so that

max∂ Br u
max∂ B3r/4 u

≤ C1
supBr

|u|

supBr/2
|u|

≤ C12N.

Let now r j = r
( 3

4 + j/(4N )
)

for j = 0, 1, . . . , N, and consider the concentric spheres S j = {|x | = r j }.
Write m+

j = maxS j u and m−

j = minS j u. From the weak maximum principle (13) (applied to u as well
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as −u), it follows that

m+

j > 0, m−

j < 0, m+

j ≤ 2m+

j+1 and |m−

j | ≤ 2|m−

j+1|.

For j = 0, 1, . . . , N − 1, define

τ+

j = m+

j+1/m+

j and τ−

j = |m−

j+1|/|m
−

j |;

from the above, τ
+/−

j ≥
1
2 . Moreover, we have that

τ+

0 · · · τ+

N−1 =
max∂ Br u

max∂ B3r/4 u
≤ C12N,

so at most 1
4 N , say, of the τ+

j are greater than some C independent of N. The same holds for the τ−

j , so
that for at least 1

2 N indices there holds m+

k+1 ≤ Cm+

k and |m−

k+1| ≤ C |m−

k |. Consider each such k and let
x0 ∈ Sk be such that u(x0) = m+

k . Denote by b the ball centered at x0 of radius r/(8N ); then by (13) and
the choice of k,

sup
b

u ≤ sup
{|x |≤rk+1}

u ≤ 2m+

k+1 ≤ Cm+

k .

Applying (17), we then get that supb/2 |u| ≤ Cm+

k . We now use this last inequality and the elliptic gradient
estimate (see, for instance, [Gilbarg and Trudinger 1983, Theorem 8.32])

sup
B(y,s/2)

|∇u| ≤

(C
s

)
sup

B(y,s)
|u|

for y = x0 and s = r/(16N ) to get, for x ∈ B(x0, θr/N ) with θ a sufficiently small number,

u(x) ≥ u(x0) − |x − x0| sup
b/4

|∇u| ≥ m+

k − Cθm+

k ≥ 0.

We thus found a ball centered on Sk of radius θr/N where u is positive, call it b+. Replace now u
with −u, which is also a solution of (9): repeating the argument above with m−

k and τ−

k instead of m+

k
and τ+

k gives us a ball centered on Sk of radius θr/N where u is negative, call it b−. Now consider the
sections of the two balls with hyperplanes through the origin that contain the center of the balls: any
path within the annulus {rk−1 < |x | < rk+1} that connects these two sections contains a zero of u, since u
is positive on b+ and negative on b−. This implies that the measure of the zero set is greater than the
measure of the section of the balls, that is to say,

Hd−1({x : rk−1 < |x | < rk+1, u(x) = 0}) ≥ c
( r

N

)d−1
.

The above holds for all indices k for which m+

k+1 ≤ Cm+

k and |m−

k+1| ≤ C |m−

k |, and recall that there are
at least 1

2 N such indices. Summing the inequality above over those indices, we see that (24) holds. □

Remark. Note that the argument above also shows that

Vol({u > 0} ∩ B(x, r))

Vol(B(x, r))
≥

c
N d−1

if u(x) = 0, which is analogous to the best known lower bound (when d ≥ 3) for the local asymmetry of
Laplace eigenfunctions [Mangoubi 2008].
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3.5. Counting doubling indices. We now recall some very useful results from [Logunov 2018a; 2018b;
Logunov and Malinnikova 2018] that allow us to find many small cubes with better doubling index than
the original ball (or cube). The proofs are combinatorial in nature. First we define a version of the
doubling index for cubes, which are more suitable for partitioning than balls. Given a cube Q and a
solution u of (9), we define the doubling index N (Q) as

N (Q) = sup
{x∈Q, r<diam(Q)}

log
supB(x,10dr) |u|

supB(x,r) |u|
.

The constant 10d is there for technical reasons and the reader should not worry about it. It is clear that
with this definition N (Q1) ≤ N (Q2) if Q1 ⊂ Q2. Theorem 18 was proved in [Logunov 2018a], and then
extended in [Georgiev and Roy-Fortin 2019] to the more general equation (9); the proof combines an
accumulation of growth result ([Logunov 2018a, Lemma 2.1] and [Georgiev and Roy-Fortin 2019, Proposi-
tion 3.1], called the simplex lemma), and a propagation of smallness result ([Logunov 2018a, Lemma 4.1]
and [Georgiev and Roy-Fortin 2019, Proposition 3.2], called the hyperplane lemma). The hyperplane
lemma is a consequence of quantitative Cauchy uniqueness, which we state in a simple version below; it
can be obtained from a very general result in [Alessandrini et al. 2009] (Theorem 1.7). See also [Lin 1991].

Proposition 17. Let D be a bounded domain with C2 boundary, and let B be a ball of radius ρ < 1.
Let u be a solution of (9) in D ∩ B, u ∈ C1(D ∩ B). There exist β = β(α, γ, K , D, ρ) ∈ (0, 1) and
C = C(α, γ, K , D, ρ) > 0 such that, if |u| ≤ 1 and |∇u| ≤ ρ−1 in D ∩ B, and |u| ≤ η and |∇u| ≤ ηρ−1

on ∂ D ∩ B, where η is a real number, then

|u(x)| ≤ Cηβ

for any x ∈ D ∩
1
2 B.

Remark. In [Logunov 2018a; Georgiev and Roy-Fortin 2019], Proposition 17 is applied when ∂ D is
flat; this is sufficient to prove the theorem below. We will use the proposition in the nonflat case later in
Section 4, to prove a version of the hyperplane lemma.

Theorem 18 [Logunov 2018a, Theorem 5.1; Georgiev and Roy-Fortin 2019, Theorem 4.1]. There
exist a constant c > 0 and an integer A > 1 depending on the dimension only, and positive numbers
N0 = N0(α, γ, K ) and R0 = R0(α, γ, K ) such that for any cube Q ⊂ B(0, R0) the following holds: if Q
is partitioned into Ad equal subcubes, then the number of subcubes with doubling index greater than
max(N (Q)/(1 + c), N0) is less than 1

2 Ad−1.

Starting from Theorem 18, in [Logunov 2018b] an iterated version is proved, which is the one decisively
used in the proof of the lower bound on zero sets. We state it below and refer to [Logunov 2018b] for the
proof.

Theorem 19 [Logunov 2018b, Theorem 5.3]. There exist positive constants c1, c2, C and an integer
B0 > 1 depending on the dimension only, and positive numbers N0 = N0(α, γ, K ) and R0 = R0(α, γ, K )

such that for any cube Q ⊂ B(0, R0) the following holds: if Q is partitioned into Bd equal sub-
cubes, where B > B0 is an integer, then the number of subcubes with doubling index greater than
max(N (Q)2−c1 log B/ log log B, N0) is less than C Bd−1−c2 .
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3.6. Estimates in a spherical shell. In the following we always indicate by u a solution of (9); the
frequency function and doubling index are relative to u. Consider a ball B(p, s) ⊂ B

(
0, 1

4r0
)
; we are

going to establish some estimates for the growth of u near a point of maximum. Let x ∈ ∂ B(p, s) be a
point where the maximum of |u| on B(p, s) is almost attained, in the sense that supB(p,s) |u| ≤ 2|u(x)|;
the existence of such an x is guaranteed by Corollary 5. Write M = |u(x)|. In the next two lemmas we
will assume that there is a large enough number N and

δ ∈

(
1

log100 N
,

1
8

)
such that

1
10 N ≤ β(p, t) ≤ 104 N (25)

for t ∈ I := (s(1 − δ), s(1 + δ)).

Lemma 20 (variation on [Logunov 2018b, Lemma 4.1]). Let (25) be satisfied. There exist positive
constants C and c such that

sup
B(p,s(1−δ))

|u| ≤ C M2−cδN, (26)

sup
B(p,s(1+δ))

|u| ≤ C M2CδN. (27)

Proof. Let us prove (26) only. By (21) and (25), we have that(
t2
t1

)N/30

≤
H(p, t2)
H(p, t1)

≤ C
(

t2
t1

)105 N

(28)

for t1 < t2 ∈ I , where we assume that r0 is small enough to take c2 = 2 in (21). We estimate

M2
≥ C1s−d+1 H(p, s) ≥ C1s−d+1 H

(
p, s

(
1 −

1
2δ

))(
1 +

1
2δ

)N/30
,

where the first inequality is just the estimate of the L2-norm by the L∞-norm and the second inequality
comes from (28). By integration and Proposition 11 we have

s H
(

p, s
(
1 −

1
2δ

))
= s

∫
∂ B(p,s(1−δ/2))

|u|
2
≥ C2

∫
B(p,s(1−δ/2))

|u|
2.

Let now x̃ be a point on ∂ B(p, s(1− δ)) where the supremum of |u| on B(p, s(1− δ)) is almost attained,
i.e., supB(p,s(1−δ))|u| ≤ 2|u(x̃)|, and write M̃ = |u(x̃)|. Note now that∫

B(p,s(1−δ/2))

|u|
2
≥

∫
B(x̃,δs/2)

|u|
2
≥ C3(δs)d /

∫
B(x̃,δs/2)

|u|
2
;

moreover, by (14) we have

M̃2
≤ C4 /

∫
B(x̃,δs/2)

|u|
2.

Combining the estimates we obtain
M2

≥ C5δ
d(

1 +
1
2δ

)N/30 M̃2.

Since log
(
1+

1
2δ

)
≥

1
4δ, it follows easily from the above and δ≳ 1/ log100 N that M2

≥ C6 exp
( 1

100 Nδ
)
M̃2,

from which one obtains (26) recalling the definitions of M and M̃. □
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Using the properties of the doubling index, we now derive some estimates on small balls close to x ; we
keep on denoting by x the point on ∂ B(p, s) where the maximum of |u| on B(p, s) is almost attained.

Lemma 21 (variation on [Logunov 2018b, Lemma 4.2]). Let (25) be satisfied. There exists C > 0 such
that

sup
B(x,δs)

|u| ≤ M2CδN+C (29)

and, for any x̃ with d(x, x̃) ≤
1
4δs,

N
(
x̃, 1

4δs
)
≤ CδN + C, (30)

sup
B(x̃,δs/10N )

|u| ≥ M2−CδN log N−C. (31)

Proof. Note that since B(x, δs) ⊂ B(p, s(1 + δ)), the first estimate (29) is an immediate consequence
of (27). By definition of doubling index and (29) we have that

2N (x̃,δs/4)
≤

supB(x̃,δs/2) |u|

supB(x̃,δs/4) |u|
≤

supB(x,δs) |u|

M
≤ 2CδN+C,

and (30) is proved. Now recall the scaling properties (23); by those and (30) we obtain

supB(x̃,δs/4) |u|

supB(x̃,δs/10N ) |u|
≤ (40N )2N (x̃,δs/4)+C1 ≤ (40N )C1δN+C1 ≤ 2C2δN log N+C2 log N

≤ 2C3δN log N+C3,

where the last inequality holds because δ≳ 1/ log100 N . Since, by the distance condition, supB(x̃,δs/4) |u|≥

|u(x)| = M , (31) follows. □

3.7. Finding many balls around the zero set. We follow the arguments in Section 6 of [Logunov 2018b],
in the reformulation contained in [Logunov and Malinnikova 2020]; the estimates in the spherical shell
will be used together with the combinatorial results on doubling indices. We use the notion of “stable
growth”, which is taken from [Logunov and Malinnikova 2020] and was not present in [Logunov 2018b].

Definition 22. We say that u has a stable growth of order N in a ball B(y, s) if N
(
y, 1

4 s
)

≥ N and
N (y, s) ≤ 1000N .

The number 1000 does not have any special meaning, it is just a large enough numerical constant. The
following result is the key to the proof of the lower bound.

Proposition 23 (variation on [Logunov 2018b, Proposition 6.1]). Let B(p, 2r) ⊂ B(0, r0). There exists
a number N0 > 0 large enough such that, for N > N0 and any solution u of (9) that has stable growth
of order N in B(p, r), the following holds: there exist at least [

√
N ]

d−12c1 log N/ log log N disjoint balls
B(xi , r/

√
N ) ⊂ B(p, r) such that u(xi ) = 0.

Proof. Assume without loss of generality that supB(p,r/4) |u| = 1. The stable growth assumption then
implies that

sup
B(p,r/2)

|u| ≥ 2N and sup
B(p,2r)

|u| ≤ 2C N.
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We denote by x the point on ∂ B
(

p, 1
2r

)
where the maximum over B

(
p, 1

2r
)

is almost attained, so that
by the above |u(x)| ≥ 2N−1. We now divide the ball B(p, 2r) into cubes qi of side length cr/

√
N and

organize these cubes into tunnels in the following way: the centers of the cubes in each tunnel lie on a
line parallel to the segment that connects p and x . A tunnel contains at most C

√
N cubes. Let us call a

cube qi “good” if

N (qi ) ≤ max
(

N
2c log N/ log log N , N0

)
(32)

for some constant c. We will call a tunnel “good” if it contains only good cubes; by Theorem 19, most
of the cubes are good and most of the tunnels are good. Another application of Theorem 19 gives the
following:

Claim 1. The number of good tunnels containing at least one cube with distance from x less than r/ log2 N
is greater than c(

√
N/ log2 N )d−1.

The proof of the proposition is then completed with the help of the next claim.

Claim 2. Any good tunnel that contains at least one cube with distance from x less than r/ log2 N also
contains at least 2c2 log N/ log log N cubes with zeros of u.

Proof. Take one such tunnel T . Note that T contains at least one cube qa ⊂ B
(

p, 1
4r

)
, so that supqa

|u| ≤ 1.
Call qb a cube in T with distance from x less than r/ log2 N ; we want to show that the supremum of |u|

over qb is large. To this end, we apply Lemma 21 with δ ∼ 1/ log2 N and x̃ being the center xb of the
cube qb. By the stable growth assumption and the comparability of the doubling index and frequency
function (Lemma 14), inequality (25) is satisfied for N large enough. Then (31) gives us

sup
B(xb,δr/10N )

|u| ≥ |u(x)|2−C N/ log N−C,

and hence, recalling that |u(x)| ≥ 2N−1,

sup
qb/2

|u| ≥ 2cN.

We now follow T from qa to qb and find many zeros. The proof is at this point identical to the one given
in [Logunov 2018b]; for completeness we provide the details. We enumerate the cubes qi from qa to qb

such that qa is the first and qb is the last. Since T is a good tunnel, by (32) we have that for any two
adjacent cubes

log
supqi+1/2 |u|

supqi /2 |u|
≤ log

sup4qi
|u|

supqi /2 |u|
≤

N
2c3 log N/ log log N .

We split the set of indices S into two sets S1 and S2, where S1 is the set of i such that u does not change
sign in q i ∪ q i+1 and S2 = S \ S1. The advantage of this is the possibility to use the Harnack inequality
on S1; the aim is to get a lower bound on the cardinality of S2. In fact, for i ∈ S1, by (16) we have that

log
supqi+1/2 |u|

supqi /2 |u|
≤ C1.
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We then estimate

log
supqb/2 |u|

supqa/2 |u|
=

∑
S1

log
supqi+1/2 |u|

supqi /2 |u|
+

∑
S2

log
supqi+1/2 |u|

supqi /2 |u|
≤ |S1|C1 + |S2|

N
2c3 log N/ log log N ;

on the other hand, recall that

log
supqb/2 |u|

supqa/2 |u|
≥ cN.

Combining the two estimates one obtains

|S1|C1 + |S2|
N

2c3 log N/ log log N ≥ cN,

and noting that |S1|C1 ≤ C1
√

N ≤
1
2 cN we conclude

|S2| ≥ c32c3 log N/ log log N.

The last quantity is larger than 2c2 log N/ log log N if N is large enough, and the claim is proved. □

It is now a straightforward matter to finish the proof of Proposition 23: by Claim 1 there are at
least c(

√
N/ log2 N )d−1 tunnels satisfying the hypothesis of Claim 2, and hence there are at least

c(
√

N/ log2 N )d−12c2 log N/ log log N cubes that contain zeros of u; the last quantity can be made larger than
(
√

N )d−12c1 log N/ log log N, and then one replaces cubes by balls. □

3.8. Proof of the lower bound. We take r0 small enough that (19), (21), Lemma 14 and (23) hold. Writing
N (0, r0) = sup{B(x,r)⊂B(0,r0)}

N (x, r), we define

F(N ) = inf
Hd−1({u = 0} ∩ B(x, ρ))

ρd−1 ,

where the infimum is taken over all balls B(x, ρ) ⊂ B(0, r0) and all solutions u of (9) such that u(x) = 0
and N (0, r0) ≤ N. Theorem 3 then follows immediately from the following:

Theorem 24. F(N ) ≥ c, where c is independent of N.

Proof. Let u be a solution of (9) in competition for the infimum in the definition of F(N ); let F(N ) be
almost attained on u, in the sense that

Hd−1({u = 0} ∩ B(x, ρ))

rd−1 ≤ 2F(N ) (33)

for some B(x, r) ⊂ B(0, r0) with u(x) = 0. Recall the easy bound (24):

Hd−1({u = 0} ∩ B(x, r))

rd−1 ≥
c1

N (x, r/4)d−2 ≥
c1

N d−2 . (34)

Estimate (34) already finishes the proof if N
(
x, 1

4r
)

is bounded uniformly in N ; let us then argue by
contradiction and assume that N

(
x, 1

4r
)

is large enough. Denote Ñ = N
(
x, 1

4r
)

and suppose first that u
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has stable growth of order Ñ . We can then apply Proposition 23 and find at least [

√
Ñ ]

d−12c log Ñ/ log log Ñ

disjoint balls B(xi , r/
√

Ñ ) ⊂ B(x, r) with u(xi ) = 0. By definition of F(N ), there holds:

Hd−1
(
{u = 0} ∩ B

(
xi ,

r√
Ñ

))
≥ F(N )

(
r√
Ñ

)d−1

.

Summing the inequality over all the balls, we obtain

Hd−1({u = 0} ∩ B(x, ρ)) ≥ [

√
Ñ ]

d−12c log Ñ/ log log Ñ F(N )

(
r√
Ñ

)d−1

;

the quantity on the right can be made larger than 2F(N )rd−1 if Ñ is large enough, which is a contradiction
with (33). Therefore we would be done if we knew a priori that u has stable growth of order Ñ in B(x, r),
but this is not necessarily the case; fortunately we can find a smaller ball where u has stable growth.

Claim 3. If N
(
x, 1

4r
)

is large enough, there is a number N1 ≳N
(
x, 1

4r
)

and a ball B1 ⊂ B(x, r) with
radius r1 ∼ r/ log2 N1 such that u has stable growth of order N1/ log2 N1 in B1.

Proof. Let us define a modified frequency function as

β̃(p, r) = sup
t∈(0,r ]

β(p, t) + c1,

so that β̃(p, r) is a positive monotonic increasing function. Note that by (19) we have

β(p, r) ≤ β̃(p, r) ≤ c3 + 2β(p, r),

and the rightmost expression is less than 3β(p, r) if β(p, r) ≥ c3. We use the following claim:

Claim 4 [Logunov 2018b, Lemma 3.1]. Let f be a nonnegative, monotonic nondecreasing function
in [a, b], and assume f ≥ e. Then there exist x ∈

[
a, 1

2(a + b)
)

and a number N1 ≥ e such that

N1 ≤ f (t) ≤ eN1 for any t ∈

(
x −

b − a

20 log2 f (x)
, x +

b − a

20 log2 f (x)

)
⊂ [a, b].

We apply Claim 4 to β̃(p, · ) and hence identify a spherical shell of width ∼r/ log2 N1 about s ∈
(2

3r, 3
4r

)
where β̃(p, · ) is comparable to N1. Since N

(
x, 1

4r
)

is large, by Lemma 14 and almost monotonicity
β(x, t) is large for t > 1

2r and then also β(x, · ) is comparable to N1 in the spherical shell. In other words,
(25) holds with N1 and δ ∼ 1/ log2 N. Let now y ∈ ∂ Bs be a point where the maximum is almost attained,
as in Lemmas 20 and 21. Take a ball B1 of radius ∼ s/ log2 N1 such that 1

4 B1 ⊂ Bs(1−δ) and y ∈
1
2 B1;

then (26) implies that

N
( 1

4 B1
)
≥ c

N1

log2 N1
and (27) implies that

N (B1) ≤ C
N1

log2 N1
,

which means that u has stable growth of order N1/ log2 N1 in B1, and the claim is proved. □



1254 STEFANO DECIO

Claim 3 gives an order of stable growth that is again large enough to get a contradiction with (33) if
N

(
x, 1

4r
)

and hence N1 is large enough. This means that N
(
x, 1

4r
)

is bounded from above by some N0

independently of N , and therefore by (33) and (34) we obtain

F(N ) ≥
Hd−1({u = 0} ∩ B(x, r))

2rd−1 ≥
c3

(N0)d−2 ≥ c, (35)

which concludes the proof of the theorem. □

4. Upper bound

Here we give the proof of Theorem 2. Throughout this section ∂� is assumed to be of class C2. As
remarked in the introduction, the proof uses the Donnelly–Fefferman bound [1988] in the interior of
the domain and a multiscale induction argument at the boundary. As will be apparent from the proof,
the result with a C∞-metric inside � would follow from an upper bound for zero sets of elliptic PDEs
with smooth coefficients that is linear in the frequency; the best we have thus far is polynomial in the
frequency [Logunov 2018a].

We introduce now a version of the doubling index that takes into account the boundary. Namely, for
x ∈ � and u ∈ C(�) a harmonic function, we let

2N ∗
u (x,r)

=
supB(x,2r)∩� |u|

supB(x,r)∩� |u|
. (36)

Note that if v is the extension across the boundary of the Steklov eigenfunction uλ as in Section 2 and
dist(x, ∂�) ≲ 1/λ, r ≲ 1/λ, we have that N ∗

uλ
(x, r) ∼ Nv(x, r), where Nv(x, r) is defined as in (22);

this will allow us to use the almost monotonicity property (23). It was proved in [Zhu 2015] (using the
extension v) that for any r < r0(�)

N ∗

uλ
(x, r) ≤ Cλ, (37)

mirroring a corresponding statement for Laplace eigenfunctions proved by Donnelly and Fefferman. It
will once again be convenient to define a maximal version of the doubling index for cubes; for Q ⊂ Rd a
cube such that Q ∩ � ̸= ∅, we set

N ∗

u (Q) = sup
x∈Q∩�

r≤diam(Q)

N ∗

u (x, r).

Definition 25. A Whitney cube in � is any cube Q such that c1 dist(Q, ∂�) ≤ s(Q) ≤ c2 dist(Q, ∂�),
where s(Q) is the side length of Q and c1 and c2 are positive dimensional constants.

With this notation, we state the following important result of [Donnelly and Fefferman 1988].

Theorem 26. Let u be a harmonic function in �. Then there is C > 0, independent of u, such that

Hd−1(Zu ∩ Q) ≤ C(N ∗

u (Q) + 1)s(Q)d−1 (38)

for any Whitney cube Q.
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From now on, we will denote by u a Steklov eigenfunction with eigenvalue λ. We will first use the
theorem above to bound the measure of the zero set of u in the interior, up to a distance from the boundary
comparable to 1/λ. We will assume λ > λ0. As in the previous section, write d(x) = dist(x, ∂�); Let c0

be a small constant depending only on �. We write the decomposition

� = In ∪ Mid ∪ Bd,

where In = {x ∈ � : d(x) ≥ c0}, Mid = {x ∈ � : c0/λ < d(x) < c0} and Bd = {x ∈ � : d(x) ≤ c0/λ}. It
follows easily from Theorem 26 and (37) that

Hd−1(Zu ∩ In) ≤ Cλ, (39)

with C depending on � only. The next lemma estimates the contribution of the nodal set in Mid.

Lemma 27. There is C > 0 depending only on � such that

Hd−1(Zu ∩ Mid) ≤ Cλ log λ. (40)

Proof. We set Mk = {x ∈ � : c02k−1/λ < d(x) < c02k/λ}, and we have

Mid =

c log λ⋃
k=1

Mk .

We perform a decomposition of � into Whitney cubes with disjoint interior (the statement that this is
possible is usually called the Whitney covering lemma). Define

Qk = {Whitney cubes intersecting Mk}.

In the following lines we will denote by | · | both the cardinality of a discrete collection and the Lebesgue
measure of cubes; it should cause no confusion. Note that if Q ∈ Qk , then

|Q| ∼
2kd

λd ;

it follows that |Qk | ≲ 2−kdλd−1. We can then estimate, using Theorem 26 and (37),

Hd−1(Zu ∩ Mid) =

c log λ∑
k=1

Hd−1(Zu ∩ Mk) ≤

c log λ∑
k=1

∑
Q∈Qk

Hd−1(Zu ∩ Q)

≲ λ

c log λ∑
k=1

∑
Q∈Qk

s(Q)d−1 ≲ λ

c log λ∑
k=1

|Qk |
2kd

λd−1 ≲ λ log λ. □

To prove Theorem 2 the only thing left is to estimate Hd−1(Zu ∩ Bd). We cover Bd with ∼ λd−1

cubes qλ centered at ∂� of side length s(qλ)= 4c0/λ; then Theorem 2 follows from (37) and the following
proposition:

Proposition 28. Let qλ be one of the cubes above, and suppose N ∗
u (4qλ) ≤ N. Then

Hd−1(Zu ∩ qλ) ≤ C(�)(N + 1)s(qλ)
d−1. (41)
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Remark. In the following we will rescale

h(x) = u
( x
λ

)
, (42)

so that qλ becomes a cube Q of side length s < 1, where s is small enough depending on � but independent
of λ, and h satisfies 1h = 0 in 10Q ∩ � and ∂νh = h on ∂� ∩ 10Q. Note that the doubling index is
unchanged under this rescaling. Proposition 28 will follow from

Hd−1(Zh ∩ Q) ≤ C(�)(N + 1). (43)

The main ingredient in the proof of Proposition 28 is a version of the hyperplane lemma of [Logunov
2018a] with cubes touching the boundary, the proof of which uses quantitative Cauchy uniqueness as
stated in Proposition 17. The proof is very similar to the one contained in [Logunov et al. 2021], we
reproduce it here for the reader’s convenience.

Lemma 29. Let h be as in (42) and Q a cube of side length s as in the remark above. There exist k
and N0 large enough depending on s and � such that if Q ∩ ∂� is covered by 2k(d−1) cubes q j with
disjoint interior centered at ∂� of side length 2−ks, and N ∗

h (Q) = N > N0, then there exists q j0 such that
N ∗

h (q j0) ≤
1
2 N.

Proof. We note first that since ∂� is of class C2, h is harmonic in 10Q ∩� and ∂νh = h on ∂�∩10Q, we
can use the extension-across-the-boundary trick described in Section 4, namely, consider v(x)= ed(x)h(x);
recall that the coefficients of the second-order term in the equation satisfied by v are at least Lipschitz.
This gives us access to elliptic estimates that hold up to the boundary for h. In particular, we will use the
gradient estimate

sup
B(y,r)∩�

|∇h| ≲ 1
r

sup
B(y,2r)∩�

|h|, (44)

where the implied constant depends on s and �. Denote now by xQ ∈ ∂� the center of the cube Q.
Consider a ball B centered at xQ such that 2Q ⊂ B, and let M = supB∩� |h|. By contradiction, suppose that
N ∗

h (q j )> 1
2 N for any j ; by definition, this implies that for any j there is x j ∈q j ∩� and r j ≤2−k

√
ds =: r0

such that N ∗

h (x j , r j ) > 1
2 N. Assuming N large enough, we use (23) to get

sup
B(x j ,2r0)∩�

|h| ≤ (C2−k)N/10 sup
B∩�

|h| ≤ Me−cNk

if k is large enough. Using (44), we get

sup
B(x j ,r0)∩�

|∇h| ≲ 1
r0

Me−cNk,

with the implied constant depending on s and �. Note that since q j ⊂ B(x j , r0) the two estimates above
give bounds for the Cauchy data of h on ∂�∩ Q. On the other hand, if B ′ is the ball centered at xQ such
that 4B ′

⊂ Q we have sup2B ′∩� |h| ≤ M and sup2B ′∩� |∇h|≲ M/s. Recalling that r0 = 2−k
√

ds, we can
then apply Proposition 17 with η = 2ke−cNk to get

sup
B ′∩�

|h| ≤ C(s, �)2βkcd e−cβNk M.
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But then
N ∗

h (xQ,
√

ds) ≥ Cd log
supB∩� |h|

supB ′∩� |h|
≥ Cd(cβNk − cdβk − C),

and the rightmost expression is larger than N if k and N are large enough depending on s and �; this is a
contradiction with N ∗

h (Q) = N. □

We are now ready to prove Proposition 28, or actually (43). The argument is an iteration at the
boundary; it originates in [Logunov et al. 2021].

Proof of (43). First, we consider again v(x) = ed(x)h(x) and its even extension across the boundary
(which we still call v). Recall from Section 2 that v satisfies an elliptic PDE with Lipschitz second-order
coefficients and bounded lower-order coefficients. The results of [Hardt and Simon 1989] then apply to
this situation. Let Q be any cube with s(Q) < s0 small enough. By [Hardt and Simon 1989, Theorem 1.7],
we have that

Hd−1(Zv ∩ B(x, ρ)) ≤ C Nv(Q)ρd−1

for any ball B(x, ρ) ⊂ Q where v(x) = 0 and ρ < ρ0(Nv(Q)). Covering Zh ∩ Q with balls of such small
radius and summing the estimate above over all those balls, it follows that there is a function Ã : R+ → R+

such that
Hd−1(Zh ∩ Q) ≤ Ã(N ∗

h (Q))s(Q)d−1. (45)

Let now Q be as above a cube centered at ∂� of side s, with s small enough depending on �. Fix a
large number N0; if N ∗

h (Q) < N0, (45) already implies the result. Otherwise, cover Q ∩� with smaller
cubes of side length 2−ks, where k = k(�) is given by Lemma 29, in the following way: first Q ∩ ∂�

is covered by cubes q ∈ B centered at ∂� with disjoint interior, and then the rest of Q ∩ � is covered
by cubes q ∈ I with dist(q, ∂�) > cs(q) for some constant c > 0 independent of k. Cubes in B will be
called boundary cubes and cubes in I will be called inner cubes; inner cubes are allowed to overlap,
while boundary cubes are not. Write N ∗

h (Q) = N. By (38) and almost monotonicity,

Hd−1
(
Zh ∩

(⋃
q∈I

q
))

≤ C(k)Nsd−1.

By Lemma 29, there is a boundary cube, call it q0, such that N ∗

h (q0) < 1
2 N. The other cubes in B will be

enumerated from 1 to 2k(d−1)
−1. We have that

Hd−1(Zh ∩ Q)

sd−1 ≤ C N +
Hd−1(Zh ∩ q0)

sd−1 +

2k(d−1)
−1∑

j=1

Hd−1(Zh ∩ q j )

sd−1 .

We define

A(N ) = sup
Hd−1(Zh ∩ q)

s(q)d−1 ,

where the supremum is taken over all harmonic functions h in 2Q with ∂νh = h on ∂�∩2Q, N ∗

h (Q) ≤ N
and all cubes q ⊂ Q. By (45), A(N ) < +∞. From the inequality above, we get

A(N ) ≤ C(k)N + A
(1

2 N
)
2−k(d−1)

+ (2k(d−1)
− 1)A(N )2−k(d−1),
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from which
A(N ) < C(k)N + A

( 1
2 N

)
.

(Beware that C(k) changes value from line to line and depends also on �). Iterating the last inequality
until 1

2 N < N0, we obtain

A(N ) < C(k)N + A(N0) < C(k)(N + 1),

which concludes the proof. □

Theorem 2 now follows by combining (39), (40), (41) and (37). We believe that the extra log λ factor
is not necessary and is an artificial feature of the proof; it appears in the proof of (40) and it is due to the
necessity of getting to cubes of side length ∼ λ−1.
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