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PLATEAU FLOW OR THE HEAT FLOW
FOR HALF-HARMONIC MAPS

MICHAEL STRUWE

Using the interpretation of the half-Laplacian on S1 as the Dirichlet-to-Neumann operator for the Laplace
equation on the ball B, we devise a classical approach to the heat flow for half-harmonic maps from S1 to
a closed target manifold N ⊂ Rn , recently studied by Wettstein, and for arbitrary finite-energy data we
obtain a result fully analogous to the author’s 1985 results for the harmonic map heat flow of surfaces and
in similar generality. When N is a smoothly embedded, oriented closed curve 0 ⊂ Rn , the half-harmonic
map heat flow may be viewed as an alternative gradient flow for a variant of the Plateau problem of
disc-type minimal surfaces.

1. Background and results

Half-harmonic maps and their heat flow. Let N ⊂ Rn be a closed submanifold, that is, compact and
without boundary. The concept of a half-harmonic map u : S1

→ N ⊂ Rn was introduced by Da Lio and
Rivière [2011], who together with Martinazzi [Da Lio et al. 2015, Theorem 2.9] also made the interesting
observation that the harmonic extension of a half-harmonic map yields a free boundary minimal surface
supported by N, a fact which also was noticed by Millot and Sire [2015, Remark 4.28].

In his Ph.D. thesis, Wettstein [2021; 2022; 2023], studied the corresponding heat flow given by

dπN (u)(ut + (−1)1/2u) = 0 on S1
× [0, ∞[, (1-1)

where ut =∂t u and where πN : Nρ → N is the smooth nearest-neighbor projection on a ρ-neighborhood Nρ

of the given target manifold to N, and, with the help of a fine analysis of the fractional differential operators
involved, he showed global existence for initial data of small energy.

Moser [2011] and Millot and Sire [2015] contributed important results to the study of half-harmonic
maps by exploiting the fact that for any smooth u : S1

→ Rn we can represent the half-Laplacian classically
in the form

(−1)1/2u = ∂rU, (1-2)

where U : B → Rn is the harmonic extension of u to the unit disc B.1 Here, using the identity (1-2), we
are able to remove the smallness assumption in Wettstein’s work and show the existence of a “global”
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weak solution to the heat flow (1-1) for data of arbitrarily large (but finite) energy, which is defined for
all times and smooth away from finitely many “blow-up points” where energy concentrates, and whose
energy is nonincreasing. The solution is unique in this class in exact analogy with the classical result
by the author [Struwe 1985] on the harmonic map heat flow for maps from a closed surface to a closed
target manifold N ⊂ Rn; see Theorem 1.2 below.

In order to describe our work in more detail, let

H 1/2(S1
; N ) = {u ∈ H 1/2(S1

; Rn) : u(z) ∈ N for almost every z ∈ S1
}.

Interpreting S1
= ∂ B, where B = B1(0; R2), and tacitly identifying a map u ∈ H 1/2(S1

; N ) with its
harmonic extension U ∈ H 1(B; Rn), for a given function u0 ∈ H 1/2(S1

; N ) we then seek to find a family
of harmonic functions u(t) ∈ H 1(B; Rn) with traces u(t) ∈ H 1/2(S1

; N ) for t > 0, solving the equation

dπN (u)(ut + ∂r u) = ut + dπN (u)∂r u = 0 on S1
× [0, ∞[, (1-3)

with initial data
u|t=0 = u0 ∈ H 1/2(S1

; N ). (1-4)

Energy. The half-harmonic heat flow may be regarded as the heat flow for the half-energy

E1/2(u) =
1
2

∫
S1

|(−1)1/4u|
2 dφ

of a map u ∈ H 1/2(S1
; N ). Note that the half-energy of u equals the standard Dirichlet energy

E(u) =
1
2

∫
B

|∇u|
2 dz

of its harmonic extension u ∈ H 1(B; Rn). Indeed, integrating by parts we have∫
B

|∇u|
2 dz =

∫
S1

u∂r u dφ =

∫
S1

u(−1)1/2u dφ =

∫
S1

|(−1)1/4u|
2 dφ, (1-5)

where we use the identity (1-2) and where the last identity easily follows from the representation of the
operators (−1)1/2 and (−1)1/4 in Fourier space with symbols |ξ | and

√
|ξ |, respectively, and Parceval’s

identity.2 Therefore, in the following for convenience we may always work with the classically defined
Dirichlet energy. Moreover, we may interpret the half-harmonic heat flow as the heat flow for the Dirichlet
energy in the class of harmonic functions with trace in H 1/2(S1

; N ); see Section 2 below for details.

Results. Identifying R2 with C, we denote by M the three dimensional Möbius group of conformal
transformations of the unit disc, given by

M =

{
8(z) = eiθ z + a

1 + āz
∈ C∞(B; B) : |a| < 1, θ ∈ R

}
.

Observe that the Dirichlet energy is invariant under conformal transformations, and we have E(u) =

E(u ◦ 8) for any u ∈ H 1(B; Rn) and any 8 ∈ M.

2Conversely, via Fourier expansion we also can prove (1-5) directly. Computing the first variations of E and E1/2, respectively,
we then obtain (1-2).
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For smooth data we then have the following result.

Theorem 1.1. Let N ⊂ Rn be a closed, smooth submanifold of Rn, and suppose that the normal bundle
T ⊥N is parallelizable. Then the following holds:

(i) For any smooth u0 ∈ H 1/2(S1
; N ) there exists a time T0 ≤ ∞ and a unique smooth solution u = u(t)

of (1-3), and hence of (1-1), with data (1-4) for 0 < t < T0.

(ii) If T0 < ∞, we have concentration in the sense that, for some δ > 0 and any R > 0,

sup
z0∈B

0<t<T0

∫
BR(z0)∩B

|∇u(t)|2 dz ≥ δ,

and for suitable tk ↑ T0 there exist finitely many points z(1)
k , . . . , z(i0)

k and conformal maps 8
(i)
k ∈ M with

z(i)
k → z(i)

∈ B and 8
(i)
k → 8

(i)
∞ ≡ z(i) weakly in H 1(B) such that u(tk) ◦ 8

(i)
k → ū(i) weakly in H 1(B)

as k → ∞, where ū(i) is nonconstant and conformal and satisfies

dπN (ū(i))∂r ū(i)
= 0, 1 ≤ i ≤ i0. (1-6)

Moreover, there exists δ = δ(N ) > 0 such that E(ū(i)) ≥ δ, and i0 ≤ E(u0)/δ. Finally, u(tk) smoothly
converges to a limit u1 ∈ H 1/2(S1

; N ) on B \ {z(1), . . . , z(i0)}.

(iii) If T0 = ∞, then, as t → ∞ suitably, u(t) smoothly converges to a half-harmonic limit map away
from at most finitely many concentration points where nonconstant half-harmonic maps “bubble off” as
in (ii).

By the Da Lio–Rivière interpretation of (1-6), the “bubbles” ū(i) as well as the limit u∞ of the flow
conformally parametrize minimal surfaces with free boundary on N, meeting N orthogonally along their
free boundaries.

The hypothesis regarding the target manifold N in particular is fulfilled if N is a closed, orientable
hypersurface of codimension 1 in Rn, or if N is a smoothly embedded, closed curve 0 ⊂ R3.

It would be interesting to find examples of initial data for which the flow blows up in finite time, as in
the work of Chang, Ding, and Ye [Chang et al. 1992] on the harmonic map heat flow.

For data in H 1/2(S1
; N ) the following global existence result holds, which is our main result.

Theorem 1.2. For N ⊂ Rn as in Theorem 1.1 the following holds:

(i) For any u0 ∈ H 1/2(S1
; N ) there exists a unique global weak solution of (1-3) with data (1-4) as in

Definition 6.3, whose energy is nonincreasing and which is smooth for positive time away from finitely many
points in space-time where nontrivial half-harmonic maps “bubble off” in the sense of Theorem 1.1(ii).

(ii) As t → ∞ suitably, u(t) smoothly converges to a half-harmonic limit map away from at most finitely
many concentration points where nonconstant half-harmonic maps “bubble off” as in Theorem 1.1(iii).

Note that uniqueness is only asserted within the class of partially regular weak solutions with nonin-
creasing energy, as in the case of the harmonic map heat flow. It would be interesting to find out if the
latter condition suffices, as in the work of Freire [1995], and, conversely, to explore the possibility of
“backward bubbling” in (1-3), as in the examples of Topping [2002] for the latter flow.
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Key features of the proof and related flow equations. In our approach, in a similar vein as [Lenzmann
and Schikorra 2020], we uncover and exploit surprising regularity properties of the normal component
dπ⊥

N (u)∂r u for the harmonic extension of u, likely related to the fractional commutator estimates for the
normal projection in the work of Da Lio and Rivière [2011] or the regularity estimates of Da Lio and
Pigati [2020], Mazowiecka and Schikorra [2018], and others.

The use of the Dirichlet-to-Neumann map for the harmonic extension u : B → Rn of u instead of the
half-Laplacian, and the simple identity (3-2) as well as (3-5) allow us to perform the analysis using only
local, classically defined operators, avoiding fractional calculus almost entirely.

Note that (1-3) is similar to the equation governing the (scalar) evolution problem for conformal metrics
e2ugR2 of prescribed geodesic boundary curvature and vanishing Gauss curvature on the unit disc B,
studied for instance by Brendle [2002] or Gehrig [2020]. In contrast to the latter flows, due to the presence
of the projection operator mapping ur to its tangent component, the flow (1-3) at first sight appears to
be degenerate. However, surprisingly, within our framework we are able to obtain similar smoothing
properties as in the case of the harmonic map heat flow of surfaces.

A different heat flow associated with half-harmonic maps, using the half-heat operator (∂t − 1)1/2

instead of (1-1), was suggested by Hyder et al. [2022], and they obtained global existence of partially
regular, but possibly nonunique, weak solutions for their flow, with a possibly large singular set of measure
zero.

Applications to the Plateau problem. In the case when N is a smoothly embedded, oriented closed curve
0 ⊂ R3, the half-harmonic heat flow (1-3) may furnish an alternative gradient flow for the Plateau problem
of minimal surfaces of the type of the disc, which has a long and famous tradition in geometric analysis.

Posed in the 1890’s, Plateau’s problem was finally solved independently by Douglas [1931] and
Radó [1930]. In order to analyze the set of all minimal surfaces solving the Plateau problem, including
saddle points of the Dirichlet integral, thereby building on Douglas’ ideas, Morse and Tompkins [1939]
proposed a critical point theory for Plateau’s problem in the sense of [Morse 1937], attempting to
characterize nonminimizing solutions as “homotopy-critical” points of Dirichlet’s integral. However,
Tromba [1984; 1985] pointed out that it was not even clear that all smooth, nondegenerate minimal
surfaces would be “homotopy-critical” in the sense of [Morse and Tompkins 1939]. To overcome this
problem, Tromba developed a version of degree theory that could be applied in this case and which
yielded at least a proof of the “last” Morse inequality, which is an identity for the total degree.

Finally, this author [Struwe 1984] recast the Plateau problem as a variational problem on a closed
convex set and was able to develop a version of the Palais–Smale type critical point theory for the problem
within this frame-work, which allowed him to obtain all Morse inequalities in a rigorous fashion; see
[Struwe 1988] and [Imbusch and Struwe 1999] for further details. In [Struwe 1986] and [Jost and Struwe
1990], the approach was extended to the case of multiple boundaries and/or higher genus.

A key element of critical point theory for a variational problem is the construction of a pseudogradient
flow for the problem at hand. In [Struwe 1984] this was achieved in an ad-hoc way. However, starting with
the work of Eells and Sampson [1964] on the harmonic map heat flow, it is now an established approach
in geometric analysis to study the (negative) (L2-)gradient flow related to a variational problem, similar
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to the standard heat equation. For Plateau’s problem, such a flow was obtained by Chang and Liu [2005]
within the frame-work laid out by Struwe [1984] in the form of a parabolic variational inequality, for
which Chang and Liu obtained a solution of class H 2 by means of a time-discrete minimization scheme.
Rupflin [2017] and Rupflin and Schrecker [2018] studied the analogous parabolic variational inequality in
the case of an annulus, which again had previously been studied in [Struwe 1986] by means of an ad-hoc
pseudogradient flow.

In view of the much better regularity properties of the flow equation (1-3) it would be tempting to
regard this as the correct definition of the canonical gradient flow for the Plateau problem, but an important
issue still needs to be addressed.

Monotonicity. Recall that in the classical Plateau problem u(t) is required to induce a (weakly) monotone
parametrization of 0 for each t > 0. Even though it may seem likely that — at least for curves 0 on the
boundary of a convex body in R3 — this Plateau boundary condition will be preserved along the flow (1-3)
whenever it is satisfied initially, at this moment even for a strictly convex planar curve 0 ⊂ R2 it is not
clear whether this actually happens. However, the results that we obtain also seem to be of interest if
we drop the Plateau condition. In particular, our results motivate the study of smooth minimal surfaces
with continuous trace covering only a part of the given boundary curve 0; dropping the monotonicity
condition also brings the parametric approach to the Plateau problem closer to the approach via geometric
measure theory or level sets.

Plateau flow. It should be straightforward to extend our results to the case when the disc B is replaced
by a surface 6 of higher genus with boundary ∂6 ∼= S1, if for given initial data u0 ∈ H 1/2(S1

; N ) we
consider a family u = u(t) in H 1/2(S1

; N ) solving (1-3), that is,

ut + dπN (u)∂νu = 0

instead of (1-1), where for each time we harmonically extend u(t) to 6 and denote by ∂νu the outward
normal derivative of u along ∂6, as was proposed and analyzed by Da Lio and Pigati [2020] in the
time-independent case. Similarly, one might study the flow (1-3) on a domain 6 with multiple boundaries.
Of course, in order for the flow to converge to a minimal surface in the case of higher genus or higher
connectivity it will be necessary to couple the flow (1-3) with a corresponding evolution equation for
the conformal structure on 6, as in the work of Rupflin and Topping [2019] on minimal immersions.
Note that on a general domain 6 the flow equations (1-1) and (1-3) no longer agree. In order to clearly
distinguish the flow equation (1-3) from the equation (1-1) defining the half-harmonic map heat flow, we
therefore propose to say that (1-3) defines the “Plateau flow”.

Outline. After a brief discussion of energy estimates in Section 2, in Section 3 we present the analytic
core of the argument for higher regularity in Section 4 and for the blow-up analysis, later presented in
Section 8. These tools are also instrumental in proving uniqueness of partially regular weak solutions in
Section 7. The L2-bounds for higher and higher derivatives which we establish in Section 4, assuming
that energy does not concentrate, may be of particular interest. These bounds either concern estimates
for ∇∂k

φu on B or on ∂ B, and we view the latter bounds as stronger by an order of 1
2 . These bounds may
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be iterated interlaced, as we later do in Section 6, to prove uniform smooth estimates, locally in time,
for smooth flows with smooth initial data converging in H 1/2(N ; S1). Since the latter data are dense in
H 1/2(N ; S1), we thus not only obtain existence of weak solutions for arbitrary data u0 ∈ H 1/2(N ; S1)

but also can show their smoothness for positive time and hence are able to derive Theorem 1.2 from
Theorem 1.1. A peculiar feature is that one set of regularity estimates can only be obtained globally,
that is on all of B, whereas the other set of estimates may be localized using cut-off functions. Similar
estimates for a regularized version of (1-3) are employed in Section 5 to prove local existence of smooth
solutions of (1-3) for smooth data (1-4). Finally, in Section 9 the large-time behavior of smooth solutions
to (1-3) is discussed, finishing the proof of Theorem 1.1.

Notation. The letter C is used throughout to denote a generic constant, possibly depending on the
“target” N and the initial energy E(u0).

Moreover, since T ⊥N by assumption is parallelizable and compact, there exists ρ > 0 such that the
representation

T : N × Bρ(0; Rm) ∋ (p, y) → p +

m∑
i=1

yiνi (p) ∈ Nρ

of the tubular neighborhood Nρ =
⋃

p∈N Bρ(p) of N is a diffeomorphism, where ν1, . . . , νm is a suitable
smooth orthonormal frame along N and where we let y = (y1, . . . , ym) ∈ Rm. For q ∈ Nρ , then T −1(q) =

(p, h) with p = πN (q) defines a (vector-valued) signed distance function h = h(q) = (h1(q), . . . , hm(q))

with hi (q) = νi (p) · (q − πN (q)) for each 1 ≤ i ≤ m. Fixing a smooth function η : R → R such that
η(s) = s for |s| < 1

2ρ, and with η(s) = 0 for |s| ≥
3
4ρ, we then let

distN (q) = (dist1N (q), . . . , distmN (q)),

with
distiN (q) = η(hi (q)) for q ∈ Nρ, otherwise distiN (q) = 0, 1 ≤ i ≤ m.

Then for any smooth u ∈ H 1/2(S1
; N ) with harmonic extension u ∈ H 1(B; Rn) we have

m∑
i=1

νi (u)∂r distiN (u) =

m∑
i=1

νi (u)νi (u) · ur = dπ⊥

N (u)ur on ∂ B = S1, (1-7)

where for each p ∈ N we denote by dπ⊥

N (p) = 1 − dπN (p) : Rn
→ T ⊥

p N the orthogonal projection. In
the sequel, we abbreviate

m∑
i=1

νi (u)νi (u) · ur =: ν(u)ν(u) · ur = ν(u)∂r distN (u);

moreover, we extend the vector fields νi to the whole ambient space by letting νi (q) = ∇ distiN (q) for
q ∈ Rn , 1 ≤ i ≤ m.

Finally, we fix a smooth cut-off function ϕ ∈ C∞
c (B) satisfying 0 ≤ ϕ ≤ 1 with ϕ ≡ 1 on B1/2(0), and

for any z0 ∈ B and any 0 < R < 1 we scale

ϕz0,R(z) = ϕ

(
(z − z0)

R

)
∈ C∞

c (BR(z0)).
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2. Energy inequality and first consequences

The half-harmonic heat flow may be regarded as the heat flow for the Dirichlet energy in the class
H 1/2(S1

; N ). Indeed, let u(t) be a smooth solution of (1-3) and (1-4) for 0 < t < T0. Then we have the
following result.

Lemma 2.1. For any 0 ≤ S < T < T0,

E(u(T )) +

∫ T

S

∫
∂ B

|ut |
2 dφ dt ≤ E(u(S)).

Proof. Integrating by parts and using (1-3) we compute

d
dt

E(u) =

∫
B

∇u∇ut dz =

∫
∂ B

ur · ut dφ = −

∫
∂ B

|dπN (u)ur |
2 dφ = −

∫
∂ B

|ut |
2 dφ

for any 0 < t < T0. The claim follows by integration. □

Moreover, there holds a localized version of this energy inequality.

Lemma 2.2. There exists a constant C > 0 such that, for any z0 ∈ B, any 0 < R < 1, any ε > 0, and any
0 < t0 < t1 ≤ t0 + εR < T0,∫

B
|∇u(t1)|2ϕ2

z0,R dz + 4
∫ t1

t0

∫
∂ B

|ut |
2ϕ2

z0,R dφ dt ≤ 4
∫

B
|∇u(t0)|2ϕ2

z0,R dz + CεE(u0).

Proof. Writing ϕ = ϕz0,R for brevity, integrating by parts, and using Young’s inequality, similar to the
proof of Lemma 2.1 for any 0 < t < T0 we have

d
dt

(
1
2

∫
B

|∇u|
2ϕ2 dz

)
=

∫
∂ B

ut · urϕ
2 dφ −

∫
B

ut div(∇uϕ2) dz

= −

∫
∂ B

|dπN (u)ur |
2ϕ2 dφ − 2

∫
B

ut∇uϕ∇ϕ dz

≤ −

∫
∂ B

|ut |
2ϕ2 dφ + (8εR)−1

∫
B

|∇u|
2ϕ2 dz + 8εR

∫
B

|ut |
2
|∇ϕ|

2 dz. (2-1)

Letting

A = sup
t0<t<t1

(
1
2

∫
B

|∇u(t)|2ϕ2 dz
)

,

then upon integration we find

A +

∫ t1

t0

∫
∂ B

|ut |
2ϕ2 dφ dt ≤

∫
B

|∇u(t0)|2ϕ2 dz +
t1 − t0
2εR

A + CεR−1
∫ t1

t0

∫
BR(z0)∩B

|ut |
2 dz dt.

But with u = u(t), then also ut = ut(t) is harmonic for each t . Expanding

ut(reiφ) =

∑
k≥0

akr keikφ
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in a Fourier series, we see that the map

r 7→

∫
∂ Br (0)

|ut |
2 ds = 2π

∑
k≥0

|ak |
2r2k+1,

with ds denoting the element of length along ∂ Br (0), is nondecreasing. Thus, for any z0 ∈ B, any
0 < R < 1, and any t0 < t < t1, ∫

BR(z0)∩B
|ut |

2 dz ≤ 2R
∫

∂ B
|ut |

2 dφ, (2-2)

and we may use Lemma 2.1 to conclude. □

3. A regularity estimate

To illustrate the key ideas that later will allow us to prove higher regularity and analyze blow-up of
solutions of (1-3), we first consider smooth solutions u ∈ H 1/2(S1

; N ) of the equation

dπN (u)∂r u + f = 0 on ∂ B = S1, (3-1)

where f ∈ L2(S1). We prove the following a-priori estimate, where we use classical estimates similar
to [Wettstein 2022, Lemma 3.4], which in turn is a fractional version of a result by Rivière [1993,
Chapter 4, pp. 96-104]. Note that with the truncated signed distance function distN : Rn

→ Rm we have
the orthogonal decomposition

∂r u = dπN (u)∂r u + dπ⊥

N (u)∂r u = dπN (u)∂r u + ν(u)∂r (distN (u)) (3-2)

on ∂ B = S1, where we recall that we use the shorthand notation

ν(u)∂r (distN (u)) =

m∑
i=1

νi (u)∂r (distiN (u)) =

m∑
i=1

νi (u)νi (u) · ∂r u

and extend νi (p) = ∇ distiN (p), p ∈ Rn.

Proposition 3.1. There exist constants C and δ0 = δ0(N ) > 0 such that, for any smooth solution
u ∈ H 1/2(S1

; N ) of (3-1) with E(u) ≤ δ2 < δ2
0 ,∫

S1
|∂φu|

2 dφ ≤ C∥ f ∥
2
L2(S1)

. (3-3)

Proof. Multiplying (3-2) with ∂r u, we find the Pythagorean identity

|∂r u|
2
= |dπN (u)∂r u|

2
+ |dπ⊥

N (u)∂r u|
2
= |dπN (u)∂r u|

2
+ |∂r (distN (u))|2. (3-4)

Note that distN (u) ∈ H 1
0 (B); moreover, for each 1 ≤ i ≤ m we have ∇(distiN (u)) = νi (u) · ∇u, and

there holds the equation

1(distiN (u)) = div(νi (u) · ∇u) = ∇u · dνi (u)∇u in B. (3-5)
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The divergence theorem now gives

∥∂r (distN (u))∥2
L2(S1)

= (∇(distN (u)), ∇(distN (u))r )L2(B) + (1(distN (u)), (distN (u))r )L2(B)

≤ C∥∇u∥L2(B)∥∇
2(distN (u))∥L2(B) ≤ Cδ∥∇2(distN (u))∥L2(B),

where the basic L2-theory for the Laplace equation (3-5) yields the bound

∥∇
2(distN (u))∥L2(B) ≤ C∥1(distiN (u))∥L2(B) ≤ C∥∇u∥

2
L4(B)

.

With Sobolev’s embedding H 1/2(B) ↪→ L4(B) we then conclude

∥∂r (distN (u))∥2
L2(S1)

≤ Cδ∥∇u∥
2
H1/2(B)

.

Thus from (3-4) and (3-1) we have

∥∂r u∥
2
L2(S1)

≤ ∥ f ∥
2
L2(S1)

+ ∥∂r (distN (u))∥2
L2(S1)

≤ ∥ f ∥
2
L2(S1)

+ Cδ∥∇u∥
2
H1/2(B)

. (3-6)

But Fourier expansion of the harmonic function u gives

∥∂φu∥
2
L2(S1)

= ∥∂r u∥
2
L2(S1)

=
1
2∥∇u∥

2
L2(S1)

(3-7)

as well as the bound
∥∇u∥

2
H1/2(B)

≤ C∥∇u∥
2
L2(S1)

,

and from (3-6) we obtain

∥∂r u∥
2
L2(S1)

≤ ∥ f ∥
2
L2(S1)

+ Cδ∥∇u∥
2
H1/2(B)

≤ ∥ f ∥
2
L2(S1)

+ Cδ∥∂r u∥
2
L2(S1)

,

which for sufficiently small δ > 0 by (3-7) yields the claim. □

In particular, from Proposition 3.1 we obtain a positive energy threshold for nonconstant solutions
of (1-6).

Corollary 3.2. Suppose u ∈ H 1/2(S1
; N ) smoothly solves (1-6). Then, either u is constant or E(u) ≥ δ2

0 ,
with δ0 = δ0(N ) > 0 given by Proposition 3.1.

Combining the ideas in the proof of the previous result with ideas from the classical proof of the
Courant–Lebesgue lemma in minimal surface theory, we can obtain the following local version of
Proposition 3.1.

Proposition 3.3. There exists a constant δ > 0 with the following property. Given any smooth solution
u ∈ H 1/2(S1

; N ) of (3-1) with harmonic extension u ∈ H 1(B), any z0 ∈ ∂ B, and any 0 < R ≤
1
2 such that∫

BR(z0)∩B
|∇u|

2 dz < δ2, (3-8)

with a constant C = C(R) > 0 there holds∫
BR2 (z0)∩S1

|∂φu|
2 dφ ≤ C∥ f ∥

2
L2(BR(z0)∩S1)

+ C E(u).
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Proof. Fix any z0 ∈ ∂ B and 0 < R ≤
1
2 such that (3-8) holds. For suitable ρ ∈ [R2, R], with s denoting

arc-length along the curve Cρ = {z0 + ρeiθ
∈ B : θ ∈ R} with end-points z j = z0 + ρeiθ j = eiφ j ∈ ∂ B,

j = 1, 2, we have

ρ

∫
Cρ

|∇u|
2 ds ≤ 2 inf

R2<ρ′<R

(
ρ ′

∫
Cρ′

|∇u|
2 ds

)
.

We can bound the latter infimum by the average over ρ ∈ [R2, R] with respect to the measure with density
ρ−1 to obtain the bound

ρ

∫
Cρ

|∇u|
2 ds ≤

2
∫ R

R2

∫
Cρ

|∇u|
2 ds dρ∫ R

R2 ρ−1 dρ
≤

2
∫

B |∇u|
2 dz

|log(R)|
=

4E(u)

|log(R)|
. (3-9)

Let 80 : B → B be the conformal map fixing the circular arc Cρ and mapping the point z0 to the point −z0,
obtained as the composition 80 = π−1

0 ◦90 ◦π0 of a conformal diffeomorphism π0 : B → R2
+

mapping
the points z0 and −z0 to the origin and infinity, respectively, and the reflection 90 : R2

+
→ R2

+
of the

upper half-plane R2
+

in the half-circle π0(Cρ). Replacing u by the map u ◦80 in B \ Bρ(z0) we obtain
a piecewise smooth map v1 : B → Rn which is harmonic on B \ Cρ and continuous on all of B. Let
v0 ∈ H 1(B) be harmonic with w := v1 − v0 ∈ H 1

0 (B). Note that by the variational characterization of
harmonic functions and conformal invariance of the Dirichlet integral we have

E(v0) ≤ E(v1) ≤

∫
BR(z0)∩B

|∇u|
2 dz ≤ δ2. (3-10)

Moreover, for any smooth ϕ ∈ H 1
0 (B), by (3-9) we can estimate∣∣∣∣∫

B
∇w∇ϕ dz

∣∣∣∣ =

∣∣∣∣∫
B

∇v1∇ϕ dz
∣∣∣∣ =

∣∣∣∣∫
Cρ

[∂νv1]ϕ ds
∣∣∣∣ ≤

(∫
Cρ

|∇u|
2 ds

)1/2(∫
Cρ

|ϕ|
2 ds

)1/2

≤ C(R)E(u)1/2
∥ϕ∥H1/2(B),

where [∂νv1] denotes the difference of the outer and inner normal derivatives of v1 along Cρ . Thus we
have 1w ∈ H−1/2(B), and the basic L2-theory for the Laplace equation gives w ∈ H 3/2

∩ H 1
0 (B) with

∥w∥H3/2(B) ≤ sup
ϕ∈H1

0 (B)

∥ϕ∥H1/2(B)
≤1

(∫
B

∇w∇ϕ dz
)

≤ C(R)E(u)1/2,

and then also
∥∂rw∥

2
L2(S1)

≤ C∥w∥
2
H3/2(B)

≤ C(R)E(u). (3-11)

In view of (3-10), for sufficiently small δ > 0, from Proposition 3.1 we obtain the estimate

∥∂φv0∥
2
L2(S1)

≤ C∥dπN (v0)∂rv0∥
2
L2(S1)

. (3-12)

Observe that since v0 = v1 on ∂ B = S1 and since we also have v1 = u on B ∩ Bρ(z0) and v1 = u ◦80 on
B \ Bρ(z0), respectively, we can bound

∥dπN (v0)∂rv0∥
2
L2(S1)

= ∥dπN (v1)∂rv0∥
2
L2(S1)

≤ 2∥dπN (v1)∂rv1∥
2
L2(S1)

+ 2∥∂rw∥
2
L2(S1)
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and

∥dπN (v1)∂rv1∥
2
L2(S1)

≤ C(R)∥dπN (u)∂r u∥
2
L2(S1∩Bρ(z0))

.

Thus from (3-11) we obtain

∥dπN (v0)∂rv0∥
2
L2(S1)

≤ C(R)∥dπN (u)∂r u∥
2
L2(S1∩Bρ(z0)

+ C∥∂rw∥
2
L2(S1)

≤ C(R)∥ f ∥
2
L2(S1∩Bρ(z0))

+ C(R)E(u),

and from (3-12) there results the bound

∥∂φu∥
2
L2(S1∩Bρ(z0))

= ∥∂φv0∥
2
L2(S1∩Bρ(z0))

≤ ∥∂φv0∥
2
L2(S1)

≤ C∥dπN (v0)∂rv0∥
2
L2(S1)

≤ C(R)∥ f ∥
2
L2(S1∩BR(z0)))

+ C(R)E(u),

as claimed. □

The local estimate Proposition 3.3 also implies the following global bound.

Proposition 3.4. There exists a constant δ > 0 with the following property. Given any smooth solution
u ∈ H 1/2(S1

; N ) of (3-1) and any 0 < R ≤
1
2 with

sup
z0∈B

∫
BR(z0)∩B

|∇u|
2 dz < δ2, (3-13)

there holds ∫
S1

|∂φu|
2 dφ ≤ C(R)∥ f ∥

2
L2(S1)

+ C(R)E(u).

Proof. Covering ∂ B with balls BR2(zi ), 1 ≤ i ≤ i0, from Proposition 3.3 we obtain the claim. □

Remark 3.5. The proofs of the above propositions only require u ∈ H 1(S1
; N ) with harmonic extension

u ∈ H 3/2(B).

4. Higher regularity

Again let u(t) be a smooth solution of the half-harmonic heat flow (1-3) for 0 < t < T0 with smooth initial
data (1-4). We show that as long as the flow does not concentrate energy in the sense of Theorem 1.1(ii)
the solution remains smooth and can be a-priori bounded in any H k-norm in terms of the data.

H2-bound. In a first step we show an L2-bound in space-time for the second derivatives of our solution
to the flow (1-3). Recall that by harmonicity, writing u = u(t), ∂φu = uφ , and so on, for any 0 < t < T0

we have (3-7), that is, ∫
∂ B

|uφ|
2 dφ =

∫
∂ B

|ur |
2 dφ,

as Fourier expansion shows, with similar identities for partial derivatives of u of higher order. Indeed,
writing

1u =
1
r
(rur )r +

1
r2 uφφ (4-1)



1408 MICHAEL STRUWE

we see that ∂
j
φu and then also ∇

k− j∂
j
φu is harmonic for any j ≤ k in N0, where ∇u = (ux , u y) in Euclidean

coordinates z = x + iy. Thus by induction we obtain∫
∂ B

|∇
ku|

2 dφ = 2
∫

∂ B
|∇

k−1uφ|
2 dφ = · · · = 2k

∫
∂ B

|∂k
φu|

2 dφ (4-2)

for any k ∈ N. Similarly, for any 1
4 < r < 1 with uniform constants C > 0 we have∫

∂ Br (0)

|∇
ku|

2 dz ≤ C
∫

∂ Br (0)

|∇
k−1uφ|

2 dz ≤ · · · ≤ C
∫

∂ Br (0)

|∂k
φu|

2 dz.

Integrating and using the mean value property of harmonic functions together with (4-2) to bound

sup
B1/4(0)

|∇
ku|

2
≤ C

∫
B\B1/4(0)

|∇
ku|

2 dz ≤ C
∫

B
|∇∂k−1

φ u|
2 dz,

in particular, for any k ∈ N, we have the bound∫
B

|∇
ku|

2 dz ≤ C
∫

B
|∇∂k−1

φ u|
2 dz (4-3)

with an absolute constant C > 0.
The following lemma is strongly reminiscent of analogous results for the harmonic map heat flow in

two space dimensions.

Lemma 4.1. With a constant C > 0 depending only on N,

d
dt

(∫
∂ B

|uφ|
2 dφ

)
+

∫
B

|∇uφ|
2 dz ≤ C

∫
B

|∇u|
2
|uφ|

2 dz.

Proof. Writing dπN (u) = 1 − dπ⊥

N (u) with

dπ⊥

N (u)X = ν(u)ν(u) · X =

m∑
i=1

νi (u)νi (u) · X

for any X ∈ Rn, we compute

1
2

d
dt

(∫
∂ B

|uφ|
2 dφ

)
=

∫
∂ B

uφ · uφ,t dφ = −

∫
∂ B

uφφ · ut dφ

=

∫
∂ B

uφφ · dπN (u)ur dφ = −

∫
∂ B

(uφ · urφ − uφ · ∂φ(ν(u)ν(u) · ur )) dφ

= −
1
2

∫
∂ B

∂r (|uφ|
2) dφ −

∫
∂ B

uφ · dν(u)uφν(u) · ur dφ,

where we use orthogonality uφ · νi (u) = 0 on ∂ B, 1 ≤ i ≤ m, in the last step. But uφ is harmonic. So
with 1|uφ|

2
= 2|∇uφ|

2, from Gauss’ theorem we obtain

1
2

∫
∂ B

∂r (|uφ|
2) dφ =

∫
B

|∇uφ|
2 dz.
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On the other hand, by Young’s inequality we can estimate∫
∂ B

ur · ν(u)uφ · dν(u)uφ dφ =

∫
B

∇u · ∇(ν(u)uφ · dν(u)uφ) dz

≤ C
∫

B
|∇uφ||∇u||uφ| dz + C

∫
B

|∇u|
2
|uφ|

2 dz

≤
1
2

∫
B

|∇uφ|
2 dz + C

∫
B

|∇u|
2
|uφ|

2 dz,

and our claim follows. □

Combining the previous result with a quantitative bound for the concentration of energy, we obtain a
space-time bound for the second derivatives of u. Note that since u is smooth by assumption, for any
δ > 0 and any T < T0, there exists a number R = R(T, u) > 0 such that

sup
z0∈B

0<t<T

∫
BR(z0)∩B

|∇u(t)|2 dz < δ. (4-4)

Proposition 4.2. There exist constants δ = δ(N ) > 0 and C > 0 such that, for any T < T0 with R > 0 as
in (4-4),

sup
0<t<T

∫
∂ B

|uφ(t)|2 dφ +

∫ T

0

∫
B

|∇uφ|
2 dx dt ≤ C

∫
∂ B

|u0,φ|
2 dφ + CT R−2 E(u0). (4-5)

Proof. For given T < T0 and δ > 0 to be determined, we fix R > 0 such that (4-4) holds. Let BR/2(zi ),
1 ≤ i ≤ i0, be a cover of B such that any point z0 ∈ B belongs to at most L of the balls BR(zi ), where
L ∈ N is independent of R > 0. We then use the decomposition∫

B
|∇u|

2
|uφ|

2 dz ≤

i0∑
i=1

∫
BR/2(zi )

|∇u|
4 dz ≤

i0∑
i=1

∫
B

|∇uϕzi ,R|
4 dz.

Using the multiplicative inequality (A-2) in the Appendix, for each i we can bound∫
B

|∇uϕzi ,R|
4 dz ≤ Cδ

∫
BR(zi )

(|∇2u|
2
+ R−2

|∇u|
2) dz.

Summing over 1 ≤ i ≤ i0, we thus obtain the bound∫
B

|∇u|
2
|uφ|

2 dz ≤ C Lδ

∫
B

|∇
2u|

2 dz + C LδR−2 E(u) ≤ C Lδ

∫
B

|∇uφ|
2 dz + C LδR−2 E(u0),

and for sufficiently small δ > 0 we obtain the claim from Lemma 4.1. □

With the help of Proposition 4.2 we can now bound u in H 2(B) also uniformly in time. For this, we
first note the following estimate, which also will be useful later for bounding higher-order derivatives.

Lemma 4.3. For any k ∈ N, with a constant C > 0 depending only on k and N, for the solution u = u(t)
to (1-3) and (1-4) for any 0 < t < T0

d
dt

(∥∇∂k
φu∥

2
L2(B)

) + ∥∂k
φur∥

2
L2(S1)

≤ C
∑

1≤ ji ≤k+1
6i ji ≤k+2

∥∇∂k
φu∥L2(B)

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

.
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Proof. For any k ∈ N we use harmonicity of ∂2k
φ u to compute

1
2

d
dt

(∥∇∂k
φu∥

2
L2(B)

) = (−1)k
∫

B
∇∂2k

φ u∇ut dx

= (−1)k(∂2k
φ ur , ut)L2(S1) = (−1)k+1(∂2k

φ ur , dπN (u)ur )L2(S1)

= −(∂k
φur , ∂

k
φur )L2(S1)+(∂k

φur , ∂
k
φ(ν(u)ν(u)·ur ))L2(S1) = −∥∂k

φur∥
2
L2(S1)

+I, (4-6)

where we use the decomposition I =
∑k

j=0
(k

j

)
I j with

I j = (∂k
φur , ∂

j
φ(ν(u)ν(u))∂

k− j
φ ur )L2(S1) = (∇∂k

φu, ∇(∂
j
φ(ν(u)ν(u)) · ∂

k− j
φ ur ))L2(B).

Hence for any 1 ≤ j ≤ k we can bound

|I j | ≤ C
∑

0≤i≤ j

∥∇∂k
φu∥L2(B)∥∇∂

j−i
φ ν(u)∂ i

φν(u)∂
k− j
φ ur∥L2(B)

+ C
∑

0≤i≤ j

∥∇∂k
φu∥L2(B)∥∂

j−i
φ ν(u)∂ i

φν(u)∇∂
k− j
φ ur∥L2(B)

≤ C
∑

1≤ ji ≤k+1
6i ji =k+2

∥∇∂k
φu∥L2(B)

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

,

as claimed. It remains to bound the term I0 = ∥∂k
φur · ν(u)∥2

L2(S1)
. With the signed distance function we

can express

ν(u) · uφr = (ν(u) · ur )φ − ur · dν(u)uφ = (distN (u))φr − ur · dν(u)uφ,

so that
I0 = ∥∂k

φur · ν(u)∥2
L2(S1)

= (∂k
φur · ν(u), ∂k

φ(distN (u))r )L2(S1) + II

= (∇∂k
φu, ∇(ν(u)∂k

φ(distN (u))r ))L2(B) + II,

where all terms in II can be dealt with as in the case 1 ≤ j ≤ k. Finally, we have

(∇∂k
φu, ∇(ν(u)∂k

φ(distN (u))r ))L2(B)

≤ ∥∇∂k
φu∥L2(B)(∥∇

2∂k
φ(distN (u))∥L2(B) + ∥∇ν(u)∂k

φ(distN (u))r∥L2(B)).

But by the chain rule we can bound

∥∇ν(u)∂k
φ(distN (u))r∥L2(B) ≤ C∥∇u∇

k+1(distN (u))∥L2(B) ≤ C
∑

1≤ ji ≤k+1
6i ji =k+2

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

.

Moreover, by (3-5) and elliptic regularity theory,

∥∇
k+2(distN (u))∥2

L2(B)
≤ C∥1(distN (u))∥2

H k(B)

≤ C∥∇u · dνi (u)∇u∥
2
H k((B)

≤ C
∑

1≤ ji ≤k+1
6i ji ≤k+2

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

,

which gives the claim. □

For k = 1, from Proposition 4.2 we now easily derive a uniform L2-bound for the second derivatives
of the flow.
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Proposition 4.4. For any smooth u0 ∈ H 1/2(S1
; N ) and any T < T0 with R > 0 as in Proposition 4.2

with a constant C1 = C1(T, R, u0) > 0 depending on the right-hand side of (4-5),

sup
0<t<T

∫
B

|∇uφ(t)|2 dz +

∫ T

0

∫
∂ B

|uφr |
2 dφ dt ≤ C1

∫
B

|∇u0,φ|
2 dz + C1.

Proof. For k = 1, by Lemma 4.3 we need to bound the term

J =

∑
1≤ ji ≤2
6i ji ≤3

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

≤ C∥|∇
2u||∇u| + |∇u|

3
∥L2(B) + J1,

where J1 contains all terms of lower order. By the maximum principle and Sobolev’s embedding
H 1(∂ B) ↪→ L∞(∂ B) we can estimate

∥∇u∥
2
L∞(B) ≤ ∥∇u∥

2
L∞(∂ B) ≤ C∥∇u∥

2
H1(∂ B)

≤ C∥uφr∥
2
L2(∂ B)

+ C1,

where we have also used (3-7) and Proposition 4.2. Also bounding

∥∇u∥
3
L6(B)

≤ ∥∇u∥
2
L4(B)

∥∇u∥L∞(B) ≤ C(∥∇2u∥L2(B)∥∇u∥L2(B) + E(u))∥∇u∥L∞(B)

via (A-2), and again using (3-7) (and with similar, but simpler bounds for J1), we arrive at the estimate

J ≤ C∥|∇
2u||∇u| + |∇u|

3
∥L2(B) + C1 ≤ C(∥∇2u∥L2(B) + E(u))∥∇u∥L∞(B) + C1

≤ C(1 + ∥∇uφ∥L2(B) + E(u0))(∥uφr∥L2(∂ B) + C1).

With Lemma 4.3 and Young’s inequality we then have

d
dt

(1 + ∥∇uφ∥
2
L2(B)

) + ∥uφr∥
2
L2(S1)

≤ C∥∇uφ∥L2(B)(∥∇uφ∥L2(B) + E(u0))(∥uφr∥L2(∂ B) + C1)

≤
1
2∥uφr∥

2
L2(∂ B)

+ C(1 + ∥∇uφ∥
2
L2(B)

)(∥∇uφ∥
2
L2(B)

+ C1). (4-7)

Absorbing the term 1
2∥uφr∥

2
L2(∂ B)

into the left-hand side of this inequality and dividing by 1+∥∇uφ∥
2
L2(B)

we obtain
d
dt

(log(1 + ∥∇uφ∥
2
L2(B)

)) ≤ C∥∇uφ∥
2
L2(B)

+ C1,

and from Proposition 4.2 we obtain the bound

sup
0<t<T

∥∇uφ(t)∥2
L2(B)

≤ C1(1 + ∥∇u0,φ∥
2
L2(B)

).

The claim then follows from (4-7). □

H3-bounds. The derivation of a-priori L2-bounds for third derivatives of the solution u to the flow (1-3),
(1-4) requires special care, which is why we highlight this case.

Proposition 4.5. For any smooth u0 ∈ H 1/2(S1
; N ) and any T < T0,

sup
0<t<T

∫
B

|∇uφφ(t)|2 dz +

∫ T

0

∫
∂ B

|uφφr |
2 dφ dt ≤ C2

∫
B

|∇u0,φφ|
2 dz + C2,

where we denote by C2 = C2(T, R, u0) > 0 a constant bounded by the terms on the right-hand side in the
statements of Propositions 4.2 and 4.4.
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Proof. For k = 2, by Lemma 4.3 we need to bound the term

J =

∑
1≤ ji ≤3
6i ji =4

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

≤ C∥|∇u|
4
+ |∇u|

2
|∇

2u| + |∇
2u|

2
+ |∇u||∇

3u|∥L2(B)

and corresponding terms involving at most three derivatives in total, which we will omit.
For the first term, by the multiplicative inequality (A-2) and Sobolev’s embedding H 2(B) ↪→ L∞(B),

we can estimate

∥∇u∥
4
L8(B)

≤ ∥∇u∥
2
L4(B)

∥∇u∥
2
L∞(B) ≤ C∥∇u∥H1(B)∥∇u∥L2(B)∥∇u∥

2
L∞(B)

≤ C(∥∇2u∥
2
L2(B)

+ E(u))∥∇u∥
2
L∞(B) ≤ C2∥∇u∥

2
L∞(B)

≤ C2(∥∇
3u∥L2(B) + ∥∇u∥L2(B))∥∇u∥L∞(B)

with a constant C2 = C2(T, R, u0) > 0 as in the statement of the proposition. Similarly,

∥∇
2u∥

2
L4(B)

≤ C∥∇
2u∥H1(B)∥∇

2u∥L2(B) ≤ ∥∇
3u∥L2(B)∥∇

2u∥L2(B)+∥∇
2u∥

2
L2(B)

≤ C2(1+∥∇
3u∥L2(B)).

Hence we can also bound

∥|∇u|
2
|∇

2u|∥L2(B) ≤ ∥∇u∥
4
L8(B)

+ ∥∇
2u∥

2
L4(B)

≤ C2(1 + ∥∇
3u∥L2(B))(1 + ∥∇u∥L∞(B)).

Finally, we estimate
∥|∇u||∇

3u|∥L2(B) ≤ ∥∇
3u∥L2(B)∥∇u∥L∞(B)

to obtain
J ≤ C2(1 + ∥∇

3u∥L2(B))(1 + ∥∇u∥L∞(B)).

But with the inequality

∥ f ∥L∞(B) ≤ C∥ f ∥H1(B)

(
1 + log1/2

(
1 +

∥ f ∥H2(B)

∥ f ∥H1(B)

))
for f ∈ H 2(B) due to Brezis and Gallouet [1980] (see also [Brézis and Wainger 1980] for a more general
version), we have

∥∇u∥
2
L∞(B) ≤ C∥∇u∥

2
H1(B)

(
1 + log

(
1 +

∥∇u∥H2(B)

∥∇u∥H1(B)

))
≤ C2(1 + log(1 + ∥∇

3u∥L2(B))),

and Lemma 4.3 yields the differential inequality

d
dt

(∥∇∂2
φu∥

2
L2(B)

) + ∥uφφr∥
2
L2(∂ B)

≤ C2∥∇∂2
φu∥L2(B)(1 + ∥∇

3u∥L2(B))(1 + log(1 + ∥∇
3u∥L2(B))).

Simplifying, and recalling that ∥∇
3u∥

2
L2(B)

≤ C∥∇∂2
φu∥

2
L2(B)

by (4-3), we then find

d
dt

(1 + ∥∇∂2
φu∥L2(B)) ≤ C2(1 + ∥∇∂2

φu∥L2(B))(1 + log(1 + ∥∇∂2
φu∥L2(B)));

that is, we have
d
dt

(1 + log(1 + ∥∇∂2
φu∥L2(B))) ≤ C2(1 + log(1 + ∥∇∂2

φu∥L2(B))).

Arguing as in the proof of Proposition 4.4 we then obtain the claim. □
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Hm-bounds, m ≥ 4. In view of Proposition 4.5 we can now use induction to prove the following result.

Proposition 4.6. For any k ≥ 3, any smooth u0 ∈ H 1/2(S1
; N ), and any T < T0,

sup
0<t<T

∫
B

|∇∂k
φ(t)|2 dz +

∫ T

0

∫
∂ B

|∂k
φur |

2 dφ dt ≤ Ck

∫
B

|∇∂k
φu0|

2 dz + Ck,

where we denote by Ck = Ck(T, R, u0) > 0 a constant bounded by the terms on the right-hand side in the
statement of the proposition for k − 1.

Proof. By Proposition 4.5 the claimed result holds true for k = 2. Suppose the claim holds true for some
k0 ≥ 2 and let k = k0 + 1. Note that by Sobolev’s embedding H 2(B) ↪→ W 1,4

∩ C0(B) and (4-3) for
0 ≤ t < T we then have the uniform bounds

∥∇
k0+1u∥

2
L2(B)

+ ∥∇
k0u∥

2
L4(B)

+

∑
1≤ j≤k0−1

∥∇
j u∥

2
L∞(B) ≤ Ck0∥∇

k0+1u0∥
2
L2(B)

+ Ck0 ≤ Ck < ∞ (4-8)

with a constant of the type Ck , as defined above.
By Lemma 4.3 again we only need to bound the term

J =

∑
1≤ ji ≤k+1
6i ji ≤k+2

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

.

Clearly we have

J ≤ ∥∇
k+1u∥L2(B)∥∇u∥L∞(B) + ∥∇

ku∥L2(B)∥∇u∥
2
L∞(B) + ∥∇

ku∇
2u∥L2(B)

+ ∥∇
k−1u∇

3u∥L2(B) + ∥∇
k−1u∇

2u∥L2(B)∥∇u∥L∞(B) + Ck

≤ Ck∥∇
k+1u∥L2(B) + ∥∇

ku∇
2u∥L2(B) + ∥∇

k−1u∇
3u∥L2(B) + Ck .

We now distinguish the following cases: If k − 1 = k0 ≥ 3, by (4-8) we can bound

∥∇
ku∇

2u∥L2(B) ≤ ∥∇
ku∥L2(B)∥∇

2u∥L∞(B) ≤ Ck0∥∇
k0+1u∥

2
L2(B)

+ Ck0 ≤ Ck

as well as

∥∇
k−1u∇

3u∥L2(B) ≤ ∥∇
k−1u∥L4(B)∥∇

3u∥L4(B) ≤ Ck0∥∇
k0u∥

2
L4(B)

+ Ck0 ≤ Ck

to obtain the estimate
J ≤ Ck∥∇

k+1u∥L2(B) + Ck .

If, on the other hand, k0 = k − 1 = 2, by our induction hypothesis (4-8) we have

∥∇
k−1u∇

3u∥L2(B) = ∥∇
2u∇

ku∥
2
L2(B)

≤ ∥∇
ku∥L4(B)∥∇

2u∥L4(B)

≤ Ck∥∇
ku∥H1(B) + Ck ≤ Ck∥∇

k+1u∥L2(B) + Ck,

and we find
J ≤ Ck∥∇

k+1u∥L2(B) + Ck

as before.
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In any case, inequality (4-3) and Lemma 4.3 now may be invoked to obtain

d
dt

(∥∇∂k
φu∥L2(B)) ≤ Ck∥∇∂k

φu∥L2(B) + Ck,

and our claim follows. □

Local H k-bounds. The bounds established so far all require the initial data to be sufficiently smooth for
the estimate at hand and do not yet allow to show smoothing of the flow. For the latter purpose we next
prove a second set of “intermediate” estimates that in combination with the first set of estimates later
will allow boot-strapping. Moreover, in contrast to the estimates in Lemma 4.3, the following estimates
may be localized. This will be important for showing regularity of the flow at blow-up times away from
concentration points of the energy on ∂ B.

For the localized estimates, fix a point z0 ∈ ∂ B and some radius 0 < R0 < 1
4 and for k ∈ N set

Rk = 2−k R0 and ϕk = ϕz0,Rk . Set ϕk = 1 for each k ∈ N for the analogous global bounds.
We first establish the following localized version of Lemma 4.1.

Lemma 4.7. With a constant C > 0 depending only on N,

d
dt

(∫
∂ B

|uφ|
2ϕ2

1 dφ

)
+

∫
B

|∇uφ|
2ϕ2

1 dz ≤ C
∫

B
|∇u|

2
|uφ|

2ϕ2
1 dz + C R−2

0 E(u0).

Proof. Similar to the proof of Lemma 4.1, we compute

1
2

d
dt

(∫
∂ B

|uφ|
2ϕ2

1 dφ

)
=

∫
∂ B

uφ ·uφ,tϕ
2
1 dφ = −

∫
∂ B

∂φ(uφϕ2
1) ·ut dφ

=

∫
∂ B

∂φ(uφϕ2
1) ·dπN (u)ur dφ = −

∫
∂ B

(uφ ·urφ −uφ · ∂φ(ν(u)ν(u) ·ur ))ϕ
2
1 dφ

= −
1
2

∫
∂ B

∂r (|uφ|
2)ϕ2

1 dφ −

∫
∂ B

uφ ·dν(u)uφν(u) ·urϕ
2
1 dφ.

With 1|uφ|
2
= 2|∇uφ|

2 we obtain

1
2

∫
∂ B

∂r (|uφ|
2)ϕ2

1 dφ =

∫
B

|∇uφ|
2ϕ2

1 dz +

∫
B

∇|uφ|
2ϕ1∇ϕ1 dz,

where ∣∣∣∣∫
B

∇|uφ|
2ϕ1∇ϕ1 dz

∣∣∣∣ ≤
1
4

∫
B

|∇uφ|
2ϕ2

1 dz + C
∫

B
|uφ|

2
|∇ϕ1|

2 dz

by Young’s inequality. Finally, we can bound∫
∂ B

ur ·ν(u)uφ ·dν(u)uφϕ2
1 dφ =

∫
B

∇u ·∇(ν(u)uφ ·dν(u)uφϕ2
1) dz

≤ C
∫

B
(|∇uφ||∇u||uφ|+|∇u|

2
|uφ|

2)ϕ2
1 dz+C

∫
B

|∇u||∇ϕ1||uφ|
2ϕ1 dz

≤
1
4

∫
B

|∇uφ|
2ϕ2

1 dz+C
∫

B
|∇u|

2
|uφ|

2ϕ2
1 dz+C

∫
B

|∇u|
2
|∇ϕ1|

2 dz,

and our claim follows. □
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We need a substitute for the global bound (4-3). For this, we note that (4-1) also implies the pointwise
bound

|urr |
2
≤

2|uφφ|
2

r4 +
2|ur |

2

r2 ;

hence we have

|∇
2u|

2
≤ C(|∇uφ|

2
+ |∇u|

2) in BR0(z0)

with an absolute constant C > 0, uniformly in z0 ∈ ∂ B and 0 < R0 < 1
4 . By induction then, similarly, we

have

|∇
k+1u|

2
≤ C(|∇k∂φu|

2
+ |∇

ku|
2) ≤ C

k∑
j=0

|∇∂
j
φu|

2 in BR0(z0) (4-9)

with an absolute constant C = C(k) > 0, uniformly in z0 ∈ ∂ B and 0 < R0 < 1
4 for any k ∈ N.

Likewise, as a substitute for the global nonconcentration condition (4-4) we now suppose that z0 ∈ ∂ B
is not a concentration point in the sense that for suitably chosen δ > 0 to be determined in the sequel and
some 0 < R0 < 1

4 as above,

sup
0<t<T0

∫
BR0 (z0)∩B

|∇u(t)|2 dz < δ. (4-10)

We then obtain the following localized version of Proposition 4.2.

Proposition 4.8. There exist constants δ > 0 and C > 0 independent of R0 > 0 such that whenever (4-10)
holds then for any T ≤ T0 we have

sup
0<t<T

∫
∂ B

|uφ(t)|2ϕ2
1 dφ +

∫ T

0

∫
B

|∇uφ|
2ϕ2

1 dz dt ≤ 2
∫

∂ B
|u0,φ|

2ϕ2
1 dφ + CT R−2

0 E(u0).

Proof. With the help of inequality (A-1) in the Appendix we can bound∫
B

|∇u|
4ϕ2

1 dz ≤ Cδ

∫
BR(zi )

|∇
2u|

2ϕ2
1 dz + CδR−2

0

∫
BR(zi )

|∇u|
2 dz.

Thus, for sufficiently small δ > 0 our claim follows from Lemma 4.7. □

The next lemma again prepares for a proposition that later will allow us to obtain higher-derivative
bounds by induction. Note the differences to Lemma 4.3.

Lemma 4.9. For any k ≥ 2, with a constant C > 0 depending only on k and N, for the solution u = u(t)
to (1-3) and (1-4) for any 0 < t < T0,

d
dt

(∥∂k
φuϕk∥

2
L2(∂ B)

) + ∥∇∂k
φuϕk∥

2
L2(B)

≤ C
∑

1≤ ji ≤k
6i ji ≤2k+2

∥∥∥∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

+ C
∑

1≤ j0, ji ≤k
6i≥0 ji ≤k+1

∥∥∥∏
i>0

∇
ji u∇

j0ϕk

∥∥∥2

L2(B)
+ C R−2k

0 E(u0).
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Proof. Fix k ≥ 2. With 1|∂k
φu|

2
= 2|∇∂k

φu|
2 we compute

1
2

d
dt

(∥∂k
φuϕk∥

2
L2(∂ B)

) = (−1)k
∫

∂ B
∂k
φ(∂k

φuϕ2
k ) ·ut dφ = (−1)k+1

∫
∂ B

∂k
φ(∂k

φuϕ2
k ) · (ur −ν(u)ν(u) ·ur ) dφ

= −
1
2

∫
∂ B

∂r (|∂
k
φu|

2)ϕ2
k dφ +

∫
∂ B

∂k
φu · ∂k

φ(ν(u)ν(u) ·ur )ϕ
2
k dφ

= −

∫
B

|∇∂k
φu|

2ϕ2
k dz −

∫
B

∇(|∂k
φu|

2)ϕk∇ϕk dz + I,

where the term
∫

B ∇(|∂k
φu|

2)ϕk∇ϕk dz can be bounded as claimed. We use the decomposition

I =

∫
∂ B

∂k
φu · ∂k

φ(ν(u)ν(u) · ur )ϕ
2
k dφ =

k∑
j=0

(k
j

)
I j

with

I j = (∂k
φu · ∂

j
φ(ν(u)ν(u))ϕ2

k , ∂
k− j
φ ur )L2(∂ B) = (∇(∂k

φu · ∂
j
φ(ν(u)ν(u))ϕ2

k ), ∇∂
k− j
φ u)L2(B), 0 ≤ j ≤ k.

For 1 ≤ j ≤ k we bound

|I j | ≤ C
∑

0≤i≤ j

∥∇∂k
φuϕk∥L2(B)∥∂

j−i
φ ν(u)∂ i

φν(u)∇∂
k− j
φ uϕk∥L2(B)

+C
∑

0≤i≤ j

∥∂k
φu · ∇(∂

j−i
φ ν(u)∂ i

φν(u)ϕ2
k ) · ∇∂

k− j
φ u∥L1(B).

By the chain rule then for 1 ≤ j ≤ k we have

|I j | ≤ C
∑

1≤ ji ≤k
6i ji =k+1

∥∇∂k
φuϕk∥L2(B)

∥∥∥∏
i

∇
ji uϕk

∥∥∥
L2(B)

+C
∑

1≤ ji ≤k
6i ji =k+2

∥∥∥∂k
φu ·

∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

+ C
∑

1≤ ji ≤k
6i ji =k+1

∥∥∥∂k
φu ·

∏
i

∇
ji uϕk∇ϕk

∥∥∥
L1(B)

.

By Cauchy–Schwarz and Young’s inequalities then we can bound∑
1≤ j≤k

|I j | ≤
1
4∥∇∂k

φuϕk∥
2
L2(B)

+ C
∑

1≤ ji ≤k
6i ji =k+1

∥∥∥∏
i

∇
ji uϕk

∥∥∥2

L2(B)

+ C
∑

1≤ ji ≤k
6i ji =2k+2

∥∥∥∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

+ C∥∂k
φu∇ϕk∥

2
L2(B)

≤
1
4∥∇∂k

φuϕk∥
2
L2(B)

+ C
∑

1≤ ji ≤k
6i ji =2k+2

∥∥∥∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

+ C∥∂k
φu∇ϕk∥

2
L2(B)

,

as claimed. Finally, with
ν(u) · uφr = (distN (u))φr − ur · dν(u)uφ

as in the proof of Lemma 4.3, for j = 0 we can write

ν(u) · ∂k
φur = ∂k−1

φ (ν(u) · uφr ) + II = ∂k
φ(distN (u))r + III,
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where the terms in II and III involve products of at least two derivatives of orders between 1 and k of u.
Thus we have

I0 = (∂k
φu · ν(u)ϕ2

k , ν(u) · ∂k
φur )L2(∂ B) = (∂k

φu · ν(u)ϕ2
k , ∂

k
φ(distN (u))r )L2(∂ B) + II0

with a term II0 that can be dealt with in the same way as the terms I j , 1 ≤ j ≤ k.
Using the divergence theorem and integrating by parts we can write the leading term as

Î0 := (∂k
φu · ν(u)ϕ2

k , ∂
k
φ(distN (u))r )L2(∂ B)

= (∇(∂k
φu · ν(u)ϕ2

k ), ∇∂k
φ(distN (u)))L2(B) + (∂k

φu · ν(u)ϕ2
k , 1∂k

φ(distN (u)))L2(B)

= (∇(∂k
φu · ν(u)ϕ2

k ), ∇∂k
φ(distN (u)))L2(B) − (∂φ(∂k

φu · ν(u)ϕ2
k ), 1∂k−1

φ (distN (u)))L2(B)

to see that this term may be bounded:

| Î0| ≤ C∥(|∇∂k
φu| + |∂k

φu∇u|)ϕk + |∂k
φu∇ϕk |∥L2(B)∥∇

k+1(distN (u))ϕk∥L2(B).

But by elliptic regularity we again have

∥∇
k+1(distN (u))ϕk∥L2(B) ≤ ∥∇

k+1(distN (u)ϕk)∥L2(B) + C
∑

1≤ j≤k+1

∥∇
k+1− j (distN (u))∇ jϕk∥L2(B)

≤ C∥1(distN (u))ϕk∥H k−1(B) + C
∑

1≤ j≤k+1

∥∇
k+1− j (distN (u))∇ jϕk∥L2(B),

where from (3-5) we can bound the first term on the right:

∥1(distN (u))ϕk∥H k−1(B) ≤

∑
0≤ j<k

∥∇
j (∇u · dν(u)∇uϕk)∥L2(B) ≤ C

∑
0≤ j0<k
1≤ ji ≤k

6i≥0 ji ≤k+1

∥∥∥∏
i

∇
ji u∇

j0ϕk

∥∥∥
L2(B)

.

Moreover, using that distN (u) = 0 on ∂ B, with the help of Poincaré’s inequality we find the bound

∥ distN (u)∇k+1ϕk∥
2
L2(B)

≤ C R−2k
k ∥∇(distN (u))∥2

L2(BRk (z0))
≤ C R−2k

0 E(u).

The remaining terms for 1 ≤ j ≤ k can be estimated as

∥∇
k+1− j (distN (u))∇ jϕk∥L2(B) ≤ C

∑
1≤ ji ≤k

6i ji =k+1− j

∥∥∥∏
i

∇
ji u∇

jϕk

∥∥∥
L2(B)

via the chain rule. Thus, finally, we obtain the bound

∥∇
k+1(distN (u))ϕk∥

2
L2(B)

≤ C
∑

1≤ j0, ji ≤k
6i≥0 ji ≤k+1

∥∥∥∏
i>0

∇
ji u∇

j0ϕk

∥∥∥2

L2(B)
+ C R−2k

0 E(u0).

By Cauchy–Schwarz and Young’s inequalities thus we can bound

| Î0| ≤
1
4∥∇∂k

φuϕk∥
2
L2(B)

+ C∥∂k
φu∇uϕk∥

2
L2(B)

+ C
∑

1≤ j0, ji ≤k
6i≥0 ji ≤k+1

∥∥∥∏
i>0

∇
ji u∇

j0ϕk

∥∥∥2

L2(B)
+ C R−2k

0 E(u0),

and together with our above estimate for the terms I j , j ≥ 1, our claim follows. □
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Proposition 4.10. There exists a constant δ > 0 independent of R0 > 0 such that whenever (4-10) holds
then for any T ≤ T0 with a constant C2 = C2(T, R, u0) > 0 bounded by the terms on the right-hand side
in the statement of Proposition 4.8 there holds the estimate

sup
0<t<T

∫
∂ B

|uφφ(t)|2ϕ2
2 dφ +

∫ T

0

∫
B

|∇uφφ|
2ϕ2

2 dz dt ≤ C2

∫
∂ B

|u0,φφ|
2ϕ2

2 dφ + C2.

Proof. For k = 2, with the help of Young’s inequality we can bound

J1 =

∑
1≤ ji ≤k

6i ji ≤2k+2

∥∥∥∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

≤ C∥(|∇2u|
3
+ |∇

2u|
2
|∇u|

2
+ |∇

2u||∇u|
4
+ |∇u|

6
+ 1)ϕ2

2∥L1(B)

≤ C∥(|∇2u|
3
+ |∇u|

6
+ 1)ϕ2

2∥L1(B)

and

J2 =

∑
1≤ j0, ji ≤k

6i≥0 ji ≤k+1

∥∥∥∏
i>0

∇
ji u∇

j0ϕ2

∥∥∥2

L2(B)
≤ C∥(|∇2u|

2
+ |∇u|

4
+ 1)|∇ϕ2|

2
+ (|∇u|

2
+ 1)|∇2ϕ2|

2
∥L1(B).

Observing that ϕ1 = 1 on the support of ϕ2, by (A-2) for the first term in J1 we have

∥|∇
2u|

3ϕ2
2∥L1(B) ≤ ∥∇

2uϕ2∥
2
L4(B)

∥∇
2uϕ1∥L2(B) ≤ C∥∇

2uϕ2∥H1(B)∥∇
2uϕ2∥L2(B)∥∇

2uϕ1∥L2(B)

≤ C(∥∇3uϕ2∥L2(B) + ∥∇
2uϕ1∥L2(B))∥∇

2uϕ2∥L2(B)∥∇
2uϕ1∥L2(B).

Moreover, arguing as in (A-1) for the function |∇u|
6ϕ2

2 in place of |v|
4ϕ2, we can bound∫

B
|∇u|

6ϕ2
2 dz ≤ C

(∫
B
(|∇2u||∇u|

2ϕ2 + |∇u|
3
|∇ϕ2|) dz

)2

≤ C
(∫

B
|∇

2u|
3ϕ2

2 dz
)2/3(∫

B
|∇u|

3ϕ
1/2
2 dz

)4/3

+ C
(∫

B
|∇u|

3
|∇ϕ2| dz

)2

,

where by Hölder’s inequality we have∫
B

|∇u|
3ϕ

1/2
2 dz ≤

(∫
B

|∇u|
6ϕ2

2 dz
)1/4(∫

B
|∇u|

2ϕ2
1 dz

)3/4

,

so that with Young’s inequality we obtain∫
B

|∇u|
6ϕ2

2 dz ≤ Cδ

(∫
B

|∇
2u|

3ϕ2
2 dz

)2/3(∫
B

|∇u|
6ϕ2

2 dz
)1/3

+ C
(∫

B
|∇u|

3
|∇ϕ2| dz

)2

≤
1
2

∫
B

|∇u|
6ϕ2

2 dz + C
∫

B
|∇

2u|
3ϕ2

2 dz + C
(∫

B
|∇u|

3
|∇ϕ2| dz

)2

.

With Young’s inequality for suitable ε > 0, and using (4-9), we then can bound

J1 ≤ C∥(|∇2u|
3
+ 1)ϕ2

2∥L1(B) + C∥|∇u|
3
|∇ϕ2|∥

2
L1(B)

≤ ε∥∇3uϕ2∥
2
L2(B)

+ C(1 + ∥∇
2uϕ2∥

2
L2(B)

)∥∇2uϕ1∥
2
L2(B)

+ C∥|∇u|
3
|∇ϕ2|∥

2
L1(B)

≤
1
2∥∇∂2

φuϕ2∥
2
L2(B)

+ C(1 + ∥∇∂φuϕ2∥
2
L2(B)

)∥∇∂φuϕ1∥
2
L2(B)

+ C,
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where we also have estimated

∥|∇u|
3
|∇ϕ2|∥

2
L1(B)

≤ C∥∇uϕ1∥
4
L4(B)

∥∇uϕ1∥
2
L2(B)

≤ C(∥∇2uϕ1∥
2
L2(B)

+ E(u))∥∇uϕ1∥
4
L2(B)

≤ C∥∇∂φuϕ1∥
2
L2(B)

+ C.

Similarly, with (A-2) we have
J2 ≤ C∥∇

2uϕ1∥
2
L2(B)

+ C.

Thus, from Lemma 4.9 we obtain

d
dt

(∥∂2
φuϕ2∥

2
L2(∂ B)

) +
1
2∥∇∂2

φuϕ2∥
2
L2(B)

≤ C(1 + ∥∇∂φuϕ2∥
2
L2(B)

)∥∇∂φuϕ1∥
2
L2(B)

+ C. (4-11)

Denote by C1 = C1(T, R, u0) > 0 a constant bounded by the terms on the right-hand side in the
statement of Proposition 4.8. By elliptic regularity, using that |1(uϕ2)| ≤ 2|∇u∇ϕ2| + C we can bound

∥∇
2uϕ2∥

2
L2(B)

≤ ∥uϕ2∥
2
H2(B)

+ C∥∇u∇ϕ2∥
2
L2(B)

+ C

≤ C∥uϕ2∥
2
H2(∂ B)

+ ∥1(uϕ2)∥
2
L2(B)

+ C∥∇u∇ϕ2∥
2
L2(B)

+ C

≤ C∥∂2
φuϕ2∥

2
L2(∂ B)

+ C E(u) + C1.

From (4-11) we then obtain the differential inequality

d
dt

(1 + ∥∂2
φuϕ2∥

2
L2(∂ B)

) ≤ C1(1 + ∥∂2
φuϕ2∥

2
L2(∂ B)

)∥∇∂φuϕ1∥
2
L2(B)

+ C1;

that is,
d
dt

(log(1 + ∥∂2
φuϕ2∥

2
L2(∂ B)

)) ≤ C1∥∇∂φuϕ1∥
2
L2(B)

+ C1,

and the right-hand side is integrable in time by Proposition 4.8. The claim follows. □

We continue by induction.

Proposition 4.11. There exists a constant δ > 0 independent of R0 > 0 with the following property.
Whenever (4-10) holds, then, for any k ≥ 3, any smooth u0 ∈ H 1/2(S1

; N ), and any T ≤ T0,

sup
0<t<T

∫
∂ B

|∂k
φu(t)|2ϕ2

k dφ +

∫ T

0

∫
B

|∇∂k
φu|

2ϕ2
k dz dt ≤ Ck

∫
∂ B

|∂k
φu0|

2ϕ2
k dφ + Ck,

where we denote by Ck = Ck(T, R, u0) > 0 a constant bounded by the terms on the right-hand side in the
statement of the proposition for k − 1.

Proof. By Proposition 4.10 the claimed result holds true for k = 2. Suppose the claim holds true for some
k0 ≥ 2 and let k = k0+1. Note that by elliptic regularity, as in the proof of Proposition 4.10, we can bound

∥∇
kuϕk∥

2
L2(B)

≤ ∥uϕk∥
2
H k(B)

+ C
∑
j<k

∥∇
j u∇

k− jϕk∥
2
L2(B)

≤ C∥uϕk∥
2
H k(∂ B)

+ C∥1(uϕk)∥
2
H k−2(B)

+ C
∑
j<k

∥∇
j u∇

k− jϕk∥
2
L2(B)

≤ C∥∂k
φuϕk∥

2
L2(∂ B)

+ C
∑
j<k

∥∇
j u∇

k− jϕk∥
2
L2(B)

+ Ck .
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By the induction hypothesis and Sobolev’s embedding H 2(B) ↪→ W 1,4
∩ C0(B) for 0 ≤ t < T , we then

have the uniform bounds

∥∇
k0uϕk0∥

2
L2(B)

+ ∥∇
k0−1uϕk0∥

2
L4(B)

+

k0−2∑
j=1

∥∇
j uϕk0∥

2
L∞(B) ≤ Ck,

and it follows that

∥∇
kuϕk∥

2
L2(B)

+ ∥∇
k0uϕk∥

2
L4(B)

+ ∥∇
k0−1uϕk∥

2
L∞(B) ≤ C∥∂k

φuϕk∥
2
L2(∂ B)

+ Ck .

Again let

J1 :=

∑
1≤ ji ≤k

6i ji =2k+2

∥∥∥∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

≤ ∥(|∇ku|
2(|∇2u| + |∇u|

2) + |∇
ku||∇

k0u||∇
3u| + · · · + |∇u|

2k+2)ϕ2
k ∥L1(B)

and set

J2 =

∑
1≤ j0, ji ≤k

6i≥0 ji ≤k+1

∥∥∥∏
i>0

∇
ji u∇

j0ϕk

∥∥∥2

L2(B)
.

Suppose k0 = 2. Recalling that ϕk = ϕkϕk0 , we can bound the terms

∥|∇
3u|

2(|∇2u| + |∇u|
2)ϕ2

3∥L1(B) ≤ ∥∇
3uϕ3∥

2
L4(B)

(∥∇2uϕ2∥L2(B) + ∥∇uϕ2∥
2
L4(B)

)

≤ C3∥∇∂3
φuϕ3∥L2(B)∥∇

3uϕ3∥L2(B) + C3∥∇
3uϕ2∥

2
L2(B)

+ C3

≤ C3∥∇∂3
φuϕ3∥L2(B)(∥∂

3
φuϕ3∥L2(∂ B) + 1) + C3∥∇∂2

φuϕ2∥
2
L2(B)

+ C3

≤ ε∥∇∂3
φuϕ3∥

2
L2(B)

+ C3∥∂
3
φuϕ3∥

2
L2(∂ B)

+ C3∥∇∂2
φuϕ2∥

2
L2(B)

+ C3

and
∥|∇u|

8ϕ2
3∥L1(B) ≤ ∥∇uϕ3∥

2
L∞(B)∥∇uϕ2∥

6
L6(B)

≤ C3∥∂
3
φuϕ3∥

2
L2(∂ B)

+ C3

from the estimate of J1. Here we also have used (A-1) and (A-2) to bound

∥∇uϕ2∥
3
L6(B)

≤ ∥∇(|∇u|
3ϕ3

2)∥L1(B) ≤ C∥(|∇2u|ϕ2 + |∇u||∇ϕ2|)|∇u|
2ϕ2

2∥L1(B)

≤ C(∥∇2uϕ2∥L2(B) + ∥∇u∇ϕ2∥L2(B))∥∇uϕ2∥
2
L4(B)

≤ C(∥∇2uϕ2∥L2(B) + ∥∇u∇ϕ2∥L2(B))
2
∥∇uϕ2∥L2(B) ≤ C3.

Similarly, we can bound the remaining terms and the terms in J2 to obtain

d
dt

(∥∂3
φuϕ3∥

2
L2(∂ B)

) +
1
2∥∇∂3

φuϕ3∥
2
L2(B)

≤ C3(1 + ∥∂3
φuϕ3∥

2
L2(∂ B)

)(1 + ∥∇∂2
φuϕ2∥

2
L2(B)

) + C3

from Lemma 4.9 and then

d
dt

(log(1 + ∥∂3
φuϕ2∥

2
L2(∂ B)

)) ≤ C3(1 + ∥∇∂2
φuϕ2∥

2
L2(B)

),

where the right-hand side is integrable in time by Proposition 4.10. The claim for k = 3 thus follows.
For k ≥ 4 the analysis is similar (but simpler) and may be left to the reader. □
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5. Local existence

In order to show local existence we approximate the flow equation (1-3) by the equation

ut = −(ε + dπN (u))ur on ∂ B, (5-1)

where ε > 0 and where we smoothly extend the nearest-neighbor projection πN , originally defined only
in the ρ-neighborhood Nρ of N, to the whole ambient Rn. Our aim then is to show that for given smooth
initial data u0 the evolution problem (5-1), (1-4) admits a smooth solution uε which remains uniformly
smoothly bounded on a uniform time interval as ε ↓ 0. Fixing some 0 < ε < 1

2 , we show existence for the
problem (5-1) with data (1-4) by means of a fixed-point argument.

To set up the argument, fix smooth initial data u0 : S1
→ N with harmonic extension u0 ∈ C∞(B; Rn)

and some k ≥ 2. For suitable T > 0 to be determined let

X = L∞([0, T ]; H k+1(B; Rn)) ∩ H 1(S1
× [0, T ]; Rn)

and set

V =

{
v ∈ X : v(0) = u0, 1v(t) = 0 in B for 0 ≤ t ≤ T,

∥v∥
2
X = sup

0≤t≤T
∥v(t)∥2

H k+1(B)
+

∫ T

0

∫
S1

|vt |
2 dφ dt ≤ 4R2

0

}
,

where R0 = ∥u0∥H k+1(B). We endow the space V with the metric derived from the seminorm

|v|
2
X = sup

0≤t≤T
∥∇v(t)∥2

L2(B)
+

∫ T

0

∫
S1

|vt |
2 dφ dt.

Note that this metric is positive definite on V in view of the initial condition that we impose.

Lemma 5.1. V is a complete metric space.

Proof. Let (vm)m∈N ⊂ V with |vl − vm |X → 0 (l, m → ∞). By the theorem of Banach–Alaoglu a
subsequence vm ⇁ v weakly-∗ in L∞([0, T ]; H k+1(B)) with vm,t → vt weakly in L2([0, T ] × S1), and
by weak lower semicontinuity of the norm

∥v∥
2
X ≤ lim sup

m→∞

∥vm∥
2
X ≤ 4R2

0 .

Moreover, we have 1v(t) = 0 for all 0 ≤ t ≤ T and v(0) = u0 by compactness of the trace operator
H 1(S1

× [0, T ]) ∋ u 7→ u(0) ∈ L2(S1). Hence v ∈ V .
Moreover, we have

|vl − v|X ≤ lim sup
m→∞

|vl − vm |X → 0 as l → ∞. □

Lemma 5.2. There is T2 > 0 such that for any T ≤ T2 and any v ∈ V there is a solution u = 8(v) ∈ V of
the equation

ut = −(ε + dπN (v))ur on ∂ B × [0, T2[ (5-2)

satisfying (1-4).
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Proof. For v ∈ V we construct a solution u = 8(v) ∈ X of (5-2) via Galerkin approximation. For this let
(ϕl)l∈N0 be Steklov eigenfunctions of the Laplacian, satisfying

1ϕl = 0 in B

with boundary condition
∂rϕl = λlϕl on ∂ B, l ∈ N0.

Note that the Steklov eigenvalues are given by λ0 = 0 and λ2l−1 = λ2l = l, l ∈ N. In fact, we may choose
ϕ0 ≡ 1/

√
2π and

ϕ2l−1(reiθ ) =
1

√
π

r l sin(lθ), ϕ2l(reiθ ) =
1

√
π

r l cos(lθ), l ∈ N (5-3)

to obtain an orthonormal basis for L2(S1) consisting of these functions. Given m ∈ N then let

u(m)(t, z) =

m∑
l=0

a(m)
l (t)ϕl(z)

solve the system of equations

∂t a
(m)
l = (ϕl, u(m)

t )L2(S1) = −(ϕl, (ε + dπN (v))u(m)
r )L2(S1)

= −

m∑
j=0

a(m)
j λ j (ϕl, (ε + dπN (v))ϕ j )L2(S1), 0 ≤ l ≤ m. (5-4)

Since for any m ∈ N the coefficients λ j (ϕl, (ε + dπN (v))ϕ j )L2(S1) of this system are uniformly bounded
for any v ∈ V , for any m ∈ N there exists a unique solution a(m)

= (a(m)
l )0≤l≤m of (5-4) on [0, T ] with

initial data a(m)
l (0) = al0 = (u0, ϕl)L2(S1), 0 ≤ l ≤ m.

Note that for any m ∈ N and any j ∈ N0 we have

∂
2 j
φ (ru(m)

r ) ∈ span{ϕl : 0 ≤ l ≤ m},

and the function ∂
2 j
φ u(m) is harmonic. In particular, for j = 0 we obtain

1
2

d
dt

(∥∇u(m)
∥

2
L2(B)

) =

∫
B

∇u(m)
∇u(m)

t dz = (u(m)
r , u(m)

t )L2(S1) = −(u(m)
r , (ε + dπN (v))u(m)

r )L2(S1)

= −ε∥u(m)
r ∥

2
L2(S1)

− ∥dπN (v)u(m)
r ∥

2
L2(S1)

≤ −
1
2∥u(m)

t ∥
2
L2(S1)

≤ 0, (5-5)

and we find the uniform H 1-bound

sup
t≥0

∥∇u(m)(t)∥2
L2(B)

+ ε∥u(m)
r ∥

2
L2([0,∞[×S1)

+ ∥u(m)
t ∥

2
L2([0,∞[×S1)

≤ 2∥∇u(m)(0)∥2
L2(B)

≤ 2∥∇u0∥
2
L2(B)

≤ 2R2
0 . (5-6)

Moreover, for j = k ∈ N as in the definition of X, upon integrating by parts we find

1
2

d
dt

(∥∇∂k
φu(m)

∥
2
L2(B)

) = (−1)k
∫

B
∇∂2k

φ u(m)
∇u(m)

t dz = (−1)k(∂2k
φ u(m)

r , u(m)
t )L2(S1)

= (−1)k+1(∂2k
φ u(m)

r , (ε + dπN (v))u(m)
r )L2(S1)

= −ε∥∂k
φu(m)

r ∥
2
L2(S1)

− ∥dπN (v)∂k
φu(m)

r ∥
2
L2(S1)

+ I, (5-7)
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where I =
∑k

j=1
(k

j

)
I j with

I j = −(∂k
φu(m)

r , ∂
j
φ(dπN (v))∂

k− j
φ u(m)

r )L2(S1)

similar to the proof of Lemma 4.3. However, now we simply bound

|I j | ≤ C
∑

6i ji = j

∥∂k
φu(m)

r ∥L2(S1)

∥∥∥∏
i

∂
ji
φ v∂

k− j
φ u(m)

r

∥∥∥
L2(S1)

, 1 ≤ j ≤ k.

Note that by compactness of Sobolev’s embedding H 1(S1) ↪→ L∞(S1) and Ehrlich’s lemma for any
number 1 ≤ j ≤ k, any δ > 0 we can bound

∥∂
k− j
φ u(m)

r ∥L∞(S1) ≤ δ∥∂
k− j+1
φ u(m)

r ∥L2(S1) + C(δ)∥∂
k− j
φ u(m)

r ∥L2(S1)

≤ 2δ∥∂k
φu(m)

r ∥L2(S1) + C(δ)∥u(m)
r ∥L2(S1).

On the other hand, for any v ∈ V by the trace theorem we have

∥∂k
φv∥L2(S1) ≤ C∥∂k

φv∥H1(B) ≤ C∥v∥H k+1(B) ≤ C R0,

and we therefore also can bound

∥∂
j
φv∥L∞(S1) ≤ C∥∂k

φv∥L2(S1) + ∥∂
j
φv∥L2(S1) ≤ C∥v∥H k+1(B) ≤ C R0

for any 1 ≤ j < k.
Thus, for sufficiently small δ > 0 with a constant C > 0 depending on ε > 0 and R0,

|I | ≤
1
2ε∥∂k

φu(m)
r ∥

2
L2(S1)

+ C∥u(m)
r ∥

2
L2(S1)

,

and from (5-7) with the help of (3-7) we obtain the inequality

d
dt

(∥∇∂k
φu(m)

∥
2
L2(B)

) ≤ C∥u(m)
r ∥

2
L2(S1)

= C∥u(m)
φ ∥

2
L2(S1)

≤ C∥u(m)
φ ∥

2
H1(B)

≤ C∥∇∂k
φu(m)

∥
2
L2(B)

+ C∥∇u(m)
∥

2
L2(B)

≤ C(1 + ∥∇∂k
φu(m)

∥
2
L2(B)

),

where we recall (5-6) for the last conclusion.
It follows that for suitably small T > 0 there holds ∥u(m)

∥
2
X ≤ 4R2

0 for all m ∈ N. Thus, there is
a sequence m → ∞ such that u(m) ⇁ u weakly-∗ in L∞([0, T ]; H k+1(B)) with u(m)

t ⇁ ut weakly in
L2([0, T ] × S1), where u =: 8(v) ∈ V solves (5-2). □

Lemma 5.3. There is T > 0 such that, for v1, v2 ∈ V ,

|8(v1) − 8(v2)|X ≤
1
2 |v1 − v2|X .

Proof. Let T2 > 0 be as determined in Lemma 5.2 and fix some 0 < T ≤ T2. For v1, v2 ∈ V then we have
ui =: 8(vi ) ∈ V , i = 1, 2. Set w = u1 − u2 and v = v1 − v2, and compute

wt = −(ε + dπN (v1))wr − (dπN (v1) − dπN (v2))u2,r on ∂ B = S1. (5-8)
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Multiplying with wr and integrating we obtain

1
2

d
dt

(∥∇w∥
2
L2(B)

) =

∫
B

∇w∇wt dx = (wr , wt)L2(S1)

= −ε∥wr∥
2
L2(S1)

− ∥dπN (v1)wr∥
2
L2(S1)

− (wr , (dπN (v1) − dπN (v2))u2,r )L2(S1),

where with ∥u2,r∥L∞(S1) ≤ C∥u2∥H3(B) ≤ C R0 we can bound

|(wr , (dπN (v1) − dπN (v2))u2,r )L2(S1)| ≤ C∥wr∥L2(S1)∥v∥L2(S1)∥u2,r∥L∞(S1)

≤ C∥wr∥L2(S1)∥v∥L2(S1) ≤
1
2ε∥wr∥

2
L2(S1)

+ C(ε)∥v∥
2
L2(S1)

.

Thus, with a constant C = C(ε) > 0 we find

d
dt

∥∇w∥
2
L2(B)

+ ε∥wr∥
2
L2(S1)

≤ C∥v∥
2
L2(S1)

. (5-9)

Similarly, from (5-8) we can bound

∥wt∥
2
L2(S1)

≤ C∥wr∥
2
L2(S1)

+ C∥v∥
2
L2(S1)

. (5-10)

Integrating over 0 ≤ t ≤ T and observing that we have

sup
0≤t≤T

∥v(t)∥2
L2(S1)

≤

(∫ T

0
∥vt(t)∥L2(S1) dt

)2

≤ T
∫ T

0
∥vt(t)∥2

L2(S1)
dt,

from (5-9) we first obtain

sup
0≤t≤T

∥∇w(t)∥2
L2(B)

+ ε∥wr∥
2
L2([0,T ]×S1)

≤ CT sup
0≤t≤T

∥v(t)∥2
L2(S1)

≤ CT 2
|v|

2
X ,

which we may use together with (5-10) to bound

|w|
2
X = sup

0≤t≤T
∥∇w(t)∥2

L2(B)
+ ∥wt∥

2
L2([0,T ]×S1)

≤ CT 2
|v|

2
X .

For sufficiently small T > 0 then our claim follows. □

Thus, by Banach’s fixed-point theorem, for any ε > 0 and any smooth u0 ∈ H 1/2(S1
; N ), there

exists T > 0 and a solution u = u(t) ∈ V of the initial value problem (5-1), (1-4). We now show that the
number T > 0 may be chosen uniformly as ε ↓ 0. Indeed, we have the following result.

Lemma 5.4. There exists a constant C > 0 such that, for any k ≥ 2, any smooth u0 ∈ H 1/2(S1
; N ), and

any 0 < ε ≤
1
2 for the solution u to (5-1) with u(0) = u0,

d
dt

(∥∇∂k
φu∥

2
L2(B)

) ≤ C(1 + ∥∇u∥
2
L2(B)

+ ∥∇∂k
φu∥L2(B)k+3.

Proof. Similar to the proof of Lemma 5.2, for given 2 ≤ k ∈ N we compute

1
2

d
dt

(∥∇∂k
φu∥

2
L2(B)

) = (−1)k
∫

B
∇∂2k

φ u∇ut dx = (−1)k(∂2k
φ ur , ut)L2(S1)

= (−1)k+1(∂2k
φ ur , (ε + dπN (u))ur )L2(S1)

≤ −∥dπN (u)∂k
φur∥

2
L2(S1)

− I, (5-11)
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where we now drop the term ε∥∂k
φur∥

2
L2(S1)

from (5-7). Again we use the decomposition I =
∑k

j=1
(k

j

)
I j

with

I j = (∂k
φur , ∂

j
φ(dπN (u))∂

k− j
φ ur )L2(S1) = (∇∂k

φu, ∇(∂
j
φ(dπN (u))∂

k− j
φ ur ))L2(B),

but now we bound these terms as in the proof of Lemma 4.3 via

|I j | ≤ C∥∇∂k
φu∥L2(B)(∥∇∂

j
φ(dπN (u))∂

k− j
φ ur∥L2(B) + ∥∂

j
φ(dπN (u))∇∂

k− j
φ ur∥L2(B))

≤ C
∑

1≤ ji ≤k+1
6i ji =k+2

∥∇∂k
φu∥L2(B)

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

.

Using that for any k ≥ 2 by Sobolev’s embedding H 2(B) ↪→ W 1,4
∩ C0(B) we can bound∑

1≤ ji ≤k+1
6i ji =k+2

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

≤ C(1 + ∥∇u∥L2(B) + ∥∇
k+1u∥L2(B))

k+2

and also using (4-3), we obtain the claim. □

We now are able to conclude.

Proposition 5.5. For any k ≥ 2 and any smooth u0 ∈ H 1/2(S1
; N ) there exist T > 0 and a solution u ∈ V

to (1-3) on [0, T ] with initial data u(0) = u0.

Proof. In view of Lemma 5.4, there exists a uniform number T > 0 such that, with V as defined above,
for any 0 < ε ≤

1
2 there exists a solution uε ∈ V to (5-1) on [0, T ]. By definition of V , as ε ↓ 0 suitably,

we have uε → u weakly-∗ in L∞([0, T ]; H k+1(B)) ∩ H 1(S1
× [0, T ]). But this suffices to pass to the

limit ε ↓ 0 in (5-1), and u ∈ V solves (1-3) with u(0) = u0. □

Proof of Theorem 1.1(i). By Proposition 5.5 for any smooth u0 ∈ H 1/2(S1
; N ) and any k ≥ 2 there exists

T > 0 and a solution u ∈ V of (1-3), (1-4) for 0 < t < T . Alternatingly employing Propositions 4.11
and 4.6, we then obtain smoothness of u for 0 < t ≤ T , including the final time T . (This argument later
appears in more detail in Section 6 after Lemma 6.2.) Iterating, the solution u may be extended smoothly
until some maximal time T0 where condition (4-4) ceases to hold. Uniqueness (even within a much larger
class of competing functions) is established in Section 7. □

6. Weak solutions

Given u0 ∈ H 1/2(S1
; N ), there are smooth functions u0k ∈ H 1/2(S1

; N ) with u0k → u0 in H 1(B) as
k → ∞. Indeed, similar to an argument of Schoen and Uhlenbeck [1982, Theorem 3.1], with a standard
mollifying sequence (ρk)k∈N for the mollified functions v0k := u0 ∗ρk we have distN (v0k) → 0 uniformly,
and u0k := πN (v0k) → u0 ∈ H 1/2(S1

; N ) as k → ∞.
Let uk be the corresponding solutions of (1-4) with initial data uk(0) = u0k , defined on a maximal

time interval [0, Tk[, k ∈ N. We claim that each function uk can be smoothly extended to a uniform time
interval [0, T [ for some T > 0. To see this, we first establish the following nonconcentration result.
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Lemma 6.1. For any δ > 0 there exists a number R > 0 and a time T0 > 0 such that

sup
z0∈B

0<t<T0

∫
BR(z0)∩B

|∇uk(t)|2 dz < δ for all k ∈ N.

Proof. Given δ > 0, by absolute continuity of the Lebesgue integral and H 1-convergence u0k → u0

(k → ∞) we can find R > 0 such that

sup
z0∈B

∫
B2R(z0)∩B

|∇u0k |
2 dz < δ for all k ∈ N.

Choosing T0 = δR, by Lemma 2.2 then we have

sup
z0∈B

0<t<T0

∫
BR(z0)∩B

|∇uk(t)|2 dz < 4δ + CδE(uk0) < Lδ

with a uniform constant L > 0 for all k ∈ N. The claim follows if we replace δ with δ/L . □

In view of Proposition 3.4, from Lemmas 6.1 and 2.1 we obtain the following bound for uk in H 1(S1).

Lemma 6.2. There exist a time T0 > 0 and constants C > 0, C0 = C0(E(u0)) > 0 such that∫ T0

0

∫
S1

|∂φuk(t)|2 dφ dt ≤ C E(uk0) ≤ C0 for all k ∈ N.

From Lemma 6.2 we obtain locally in time uniform smooth bounds for (uk) for t > 0 by iteratively
applying our previous regularity results. More precisely, Fatou’s lemma and Lemma 6.2 first yield the
bound ∫ T0

0
lim inf
k→∞

(∫
S1

|∂φuk(t)|2 dφ

)
dt ≤ C0.

Thus, for almost every 0 < t0 < T0,

lim inf
k→∞

∫
S1

|∂φuk(t0)|2 dφ < ∞.

For any such 0 < t0 < T0, if δ > 0 is sufficiently small, from Proposition 4.2 with another appeal to
Fatou’s lemma we may conclude∫ T0

t0
lim inf
k→∞

∫
B

|∇∂φuk |
2 dz dt ≤ lim inf

k→∞

∫ T0

t0

∫
B

|∇∂φuk |
2 dz dt ≤ C1

for some C1 > 0, so that now we even have

lim inf
k→∞

∫
B

|∇∂φuk(t1)|2 dz < ∞

for almost every t0 < t1 < T0. Hence we may next invoke Proposition 4.4 and (4-2) to obtain the bound

lim inf
k→∞

∫ T0

t1

∫
∂ B

|∇∂φuk |
2 dz dt < ∞
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for any such t0 < t1 < T0, and Fatou’s lemma gives

lim inf
k→∞

∫
∂ B

|∇∂φuk(t2)|2 dφ < ∞

for almost every t1 < t2 < T0. Now Proposition 4.10 may be applied with ϕ0 = 1, and we obtain

lim inf
k→∞

∫ T0

t2

∫
B

|∇∂2
φuk |

2 dz dt < ∞

for any such t1 < t2 < T0. Another application of Fatou’s lemma gives

lim inf
k→∞

∫
B

|∇∂2
φuk(t3)|2 dz < ∞

for almost every t2 < t3 < T0, and Proposition 4.5 yields

lim inf
k→∞

∫ T0

t3

∫
∂ B

|∇∂2
φuk |

2 dφ dt < ∞

for any such t2 < t3 < T0. We may then iterate, using (3-7) and alternatingly employing Propositions 4.11
and 4.6 for 3 ≤ k ∈ N, to find a subsequence (uk) satisfying uniform smooth bounds on ]t0, T0] for any
t0 > 0. Passing to the limit as k → ∞ for this subsequence we obtain a weak solution to (1-3), (1-4) of
energy-class in the following sense.

Definition 6.3. A function u ∈ H 1([0, T0]× S1
; N )∩ L∞([0, T0]; H 1/2(S1

; N )) with harmonic extension
u = u(t) for each t is a weak solution of (1-3), (1-4) of energy-class, if (1-3) is satisfied in the weak sense,
that is, if∫ T0

0

∫
∂ B

(ut + dπN (u)ur ) · ϕ dφ dt =

∫ T0

0

∫
∂ B

ut · ϕ dφ dt +

∫ T0

0

∫
B

∇u · ∇(dπN (u)ϕ) dz dt = 0 (6-1)

for all ϕ ∈ C∞
c (B × ]0, T0[), and if there holds the energy inequality

E(u(T )) +

∫ T

S

∫
∂ B

|ut |
2 dφ dt ≤ E(u(S)) (6-2)

for any 0 ≤ S < T < T0, with the initial data u0 ∈ H 1/2(S1
; N ) being attained in the sense of traces.

We then may summarize our results as follows.

Proposition 6.4. For any u0 ∈ H 1/2(S1
; N ) there exists T0 > 0 and a weak solution u to (1-3), (1-4) on

[0, T0] of energy-class, which is smooth for t > 0.

Proof. For any open U ⊂]0, T0[ we have uniform smooth bounds for uk on U ; thus a suitable subsequence
uk approaches u smoothly locally as k → ∞. Equation (6-1) follows from the corresponding identities
for uk .

Moreover, (6-2) follows from the energy identity, Lemma 2.1, for uk , where we also use H 1-convergence
u0k → u0 as well as weak lower semicontinuity of the energy and of the L2-norm.
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Finally, with error o(1) → 0 as k → ∞ for 0 < t < T0 we can estimate

∥u(t) − u0∥
2
L2(∂ B)

≤ ∥uk(t) − u0k∥
2
L2(∂ B)

+ o(1) ≤

(∫ t

0
∥∂t uk(t ′)∥L2(∂ B) dt ′

)2

+ o(1)

≤ t
∫ t

0
∥∂t uk(t ′)∥2

L2(∂ B)
dt ′

+ o(1) ≤ t E(u0) + o(1),

and u(t) → u0 weakly in H 1/2(S1
; N ) ∩ H 1(B; Rn) as t ↓ 0. In fact, by (6-2) we then even have strong

convergence. □

7. Uniqueness

With the help of the tools developed in Section 3 we can show uniqueness of partially regular weak
energy-class solutions as in Proposition 6.4.

Theorem 7.1. Let u0 ∈ H 1/2(S1
; N ). Suppose u and v both are weak energy-class solutions of (1-3), (1-4)

on [0, T0] for some T0 > 0 with initial data u0, and suppose u and v are smooth for t > 0. Then u = v.

Proof. Using (3-2) for u and v, for the function w = u − v for almost every 0 < t < T0 we have

∂tw + ∂rw = ν(u)∂r (distN (u)) − ν(v)∂r (distN (v))

= (ν(u) − ν(v))∂r (distN (u)) + ν(v)∂r (distN (u) − distN (v)) (7-1)

on ∂ B = S1. From (3-5), moreover, we obtain

|1(distN (u) − distN (v))| = |∇u · dν(u)∇u − ∇v · dν(v)∇v|

≤ C(|w||∇u|
2
+ (|∇u| + |∇v|)|∇w|) in B. (7-2)

Observing that

| distN (u) − distN (v)| ≤ C |w|,

upon multiplying (7-2) with the function (distN (u) − distN (v)) ∈ H 1
0 (B), integrating by parts, and using

Young’s inequality, for any ε > 0 we obtain

∥∇(distN (u) − distN (v))∥2
L2(B)

≤ C
∫

B
(|w|

2
|∇u|

2
+ (|∇u| + |∇v|)|∇w||w|) dz

≤ ε∥∇w∥
2
L2(B)

+ C(ε)∥w∥
2
L4(B)

(∥∇u∥
2
L4(B)

+ ∥∇v∥
2
L4(B)

). (7-3)

On the other hand, for any 0 < t0 < T ≤ T0, multiplying (7-1) with w and integrating by parts on
S1

× [t0, T ], upon letting t0 ↓ 0 we find

sup
0<t<T

∥w(t)∥2
L2(∂ B)

+

∫ T

0

∫
B

|∇w|
2 dz dt

≤ C
∫ T

0

∫
∂ B

(∂tw + ∂rw)w dφ dt

= C
∫ T

0

∫
∂ B

w(ν(u) − ν(v))∂r (distN (u)) dφ dt + C
∫ T

0

∫
∂ B

wν(v)∂r (distN (u) − distN (v)) dφ dt

=: C
∫ T

0
(I + II ) dt.
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We first estimate the term

I = I (t) =

∫
∂ B

w(ν(u) − ν(v))∂r (distN (u)) dφ

=

∫
B

∇(w(ν(u) − ν(v)))∇(distN (u)) dz +

∫
B

w(ν(u) − ν(v))1(distN (u)) dz.

Using
|∇(w(ν(u) − ν(v)))| ≤ C |∇w||w| + |w((dν(u) − dν(v))∇u + dν(v)∇w)|

≤ C(|∇w||w| + |w|
2
|∇u|)

we can bound∣∣∣∣∫
B

∇(w(ν(u) − ν(v)))∇(distN (u)) dz
∣∣∣∣ ≤ C

∫
B
(|∇w||w| + |w|

2
|∇u|)|∇u| dz

≤ ε∥∇w∥
2
L2(B)

+ C(ε)∥w∥
2
L4(B)

∥∇u∥
2
L4(B)

for each t . Also using (3-5), we can moreover estimate∣∣∣∣∫
B

w(ν(u) − ν(v))1(distN (u)) dz
∣∣∣∣ ≤ C∥w∥

2
L4(B)

∥∇u∥
2
L4(B)

for almost every 0 < t < T to obtain

|I | ≤ ε∥∇w∥
2
L2(B)

+ C(ε)∥w∥
2
L4(B)

∥∇u∥
2
L4(B)

.

Similarly, we estimate the term

II = II (t) =

∫
∂ B

wν(v)∂r (distN (u) − distN (v)) dφ

=

∫
B

∇(wν(v))∇(distN (u) − distN (v)) dz +

∫
B

wν(v)1(distN (u) − distN (v)) dz.

Noting that with (7-3) we can bound∣∣∣∣∫
B
∇(wν(v))∇(distN (u)−distN (v))dz

∣∣∣∣ ≤ C(∥∇w∥L2(B)+∥w∇v∥L2(B))∥∇(distN (u)−distN (v))∥L2(B)

≤ ε∥∇w∥
2
L2(B)

+C(ε)∥w∥
2
L4(B)

(∥∇u∥
2
L4(B)

+∥∇v∥
2
L4(B)

)

and that with (7-2) we have∣∣∣∣∫
B

wν(v)1(distN (u) − distN (v)) dz
∣∣∣∣ ≤ C

∫
B
(|w|

2
|∇u|

2
+ |w||∇w|(|∇u| + |∇v|)) dz

≤ ε∥∇w∥
2
L2(B)

+ C(ε)∥w∥
2
L4(B)

(∥∇u∥
2
L4(B)

+ ∥∇v∥
2
L4(B)

),

we find the estimate

|II | ≤ ε∥∇w∥
2
L2(B)

+ C(ε)∥w∥
2
L4(B)

(∥∇u∥
2
L4(B)

+ ∥∇v∥
2
L4(B)

)

for almost every 0 < t < T .
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But Sobolev’s embedding H 1/2(B) ↪→ L4(B) and Fourier expansion give the bound

∥w∥
2
L4(B)

≤ C∥w∥
2
H1/2(B)

≤ C∥w∥
2
L2(∂ B)

and similar bounds for ∇u as well as ∇v. Moreover, since by the energy inequality (6-2) we have
u(t), v(t) → u0 strongly in H 1(B) as t ↓ 0, there exist a radius 0 < R ≤

1
2 and a time 0 < T < T0 such

that condition (3-13) in Proposition 3.4 holds true on [0, T ] for both u and v, allowing us to bound∫ T

0
∥∇u(t)∥2

L4(B)
dt ≤ C

∫ T

0
∥∇u(t)∥2

L2(∂ B)
dt ≤ C

∫ T

0
∥∂φu(t)∥2

L2(∂ B)
dt

≤ C
∫ T

0

∫
∂ B

|ut |
2 dφ dt + C(R)T E(u0) ≤ C(R)(1 + T0)E(u0)

with the help of (3-7), and similarly for |∇v|. Choosing ε =
1
4 , for sufficiently small 0 < T < T0 by

absolute continuity of the integral we thus can estimate

sup
0<t<T

∥w(t)∥2
L2(∂ B)

+

∫ T

0

∫
B

|∇w|
2 dz dt

≤
1
2∥∇w∥

2
L2(B×[0,T ])

+ C sup
0<t<T

∥w(t)∥2
L2(∂ B)

∫ T

0
(∥∇u∥

2
L4(B)

+ ∥∇v∥
2
L4(B)

) dt

≤
1
2

(
sup

0<t<T
∥w(t)∥2

L2(∂ B)
+

∫ T

0

∫
B

|∇w|
2 dz dt

)
,

and it follows that w = 0, as claimed. □

Proof of Theorem 1.2. Existence for short time and uniqueness of a partially regular weak solution to
(1-3), (1-4) for given data u0 ∈ H 1/2(S1

; N ) follow from Proposition 6.4 and Theorem 7.1, respectively.
Since by Proposition 6.4 our weak solution is smooth for t > 0, the remaining assertions follow from
Theorem 1.1.

Note that at any blow-up time Ti−1, i ≥ 1, of the flow as in Theorem 1.1(ii) there exists a unique weak
limit ui = limt↑Ti−1 u(t) ∈ H 1/2(S1

; N ), and we may uniquely continue the flow using Proposition 6.4. □

8. Blow-up

Preparing for the proof of part (ii) of Theorem 1.1, suppose now that for the solution constructed in
part (i) of that theorem there holds T0 < ∞. Then, as we shall see in more detail below, by the results in
Section 4 condition (4-4) must be violated for T = T0 and there exist δ > 0 and points zk ∈ B as well as
radii rk ↓ 0 as k → ∞ such that, for suitable tk ↑ T0,∫

Brk (zk)∩B
|∇u(tk)|2 dz = sup

z0∈B
t≤tk

∫
Brk (z0)∩B

|∇u(t)|2 dz = δ.

We may later choose a smaller constant δ > 0, if necessary. Moreover, for later use from now on we
consider local concentrations in the sense that, for some z0 ∈ B and some fixed radius r0 > 0 for a
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sequence of points zk ∈ B with zk → z0 and radii rk ↓ 0 for suitable tk ↑ T0 as k → ∞,∫
Brk (zk)∩B

|∇u(tk)|2 dz = sup
z′

∈Br0 (z0)
t≤tk

∫
Brk (z′)∩B

|∇u(t)|2 dz = δ.

Scale
uk(z, t) = u(zk + rkz, tk + rk t)

for
z ∈ �k = {z : zk + rkz ∈ B}, t ∈ Ik = {t : 0 ≤ tk + trk < T0}.

Note that then ∫
B1(0)∩�k

|∇uk(0)|2 dz = sup
zk+rk z′

∈Br0 (z0)

−tk/rk≤t<0

∫
B1(z′)∩�k

|∇uk(t)|2 dz = δ. (8-1)

Passing to a subsequence we may assume that the domains �k exhaust a limit domain �∞ ⊂ R2, which
either is the whole space R2 or a half-space H.

By the energy inequality Lemma 2.1 for t ∈ Ik ,∫
�k

|∇uk(t)|2 dz =

∫
B

|∇u(tk + rk t)|2 dz ≤ 2E(u0), (8-2)

and for any t0 < 0 and sufficiently large k ∈ N we have∫ 0

t0

∫
∂�k

|∂t uk |
2 ds dt =

∫ 0

t0

∫
∂�k

|dπN (uk)∂νk uk |
2 ds dt

=

∫ tk

tk+rk t0

∫
∂ B

|ut |
2 dφ dt ≤

∫ T0

tk+rk t0

∫
∂ B

|ut |
2 dφ dt → 0 (8-3)

as k → ∞, where ds is the element of length and where νk is the outward unit normal along ∂�k .
Expressing the harmonic functions ∂t uk(t) in Fourier series for each t < 0, it then also follows that
∂t uk → 0 locally in L2 on �∞ ×]−∞, 0[. Finally, again using the fact that uk(t) for each t is harmonic,
by the maximum principle we have the uniform bound |uk | ≤ supp∈N |p| as well as uniform smooth
bounds locally away from the boundary of �∞.

Hence we may assume that as k → ∞ we have uk → u∞ weakly locally in H 1 on �∞ × ]−∞, 0[,
where u∞(z, t) = u∞(z) is independent of time, harmonic, and bounded. Moreover, we have smooth
convergence away from ∂�∞. Thus, if we assume that �∞ = R2, by (8-1) it follows that∫

B1(0)

|∇u∞|
2 dz = δ.

But any function v : R2
→ R which is bounded and harmonic must be constant, which rules out this

possibility. Hence �∞ can only be a half-space.
After a suitable rotation of the domain B and shift of coordinates in R2 ∼= C we may then assume that

zk = (0, −yk) with 1 − yk ≤ Mrk for some M ∈ N and that �∞ = {(x, y) : y > y0} for some y0. Finally,
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replacing rk > 0 with (M + 1)rk and zk with zk = (0, −1), if necessary, we may assume that

�k ⊂ R2
+

= {(x, y) : y > 0}

is the ball of radius 1/rk around the point (0, 1/rk) with 0 ∈ ∂�k , while from (8-1) with a uniform number
L ∈ N we have

L
∫

B1(0)∩�k

|∇uk(0)|2 dz ≥ Lδ ≥ sup
|z′

|≤r0/rk
−tk/rk≤t<0

∫
B1(z′)∩�k

|∇uk(t)|2 dz (8-4)

for any k ∈ N. Let 8k : R2
+

→ �k be the conformal maps given by

8k(z) =
2z

1 − irkz
, z ∈ R2

+
, k ∈ N,

with 8k → 2 · id locally uniformly on R2 ∼= C as k → ∞.
Let vk = uk ◦ 8k with k ∈ N. By conformal invariance of the Dirichlet energy, from (8-2) for any t

we have ∫
R2

+

|∇vk(t)|2 dz =

∫
�k

|∇uk(t)|2 dz ≤ 2E(u0), (8-5)

and by (8-4) with a uniform number L1 ∈ N there holds

L1

∫
B+

2 (0)

|∇vk(0)|2 dz ≥ L1δ ≥ sup
|z′

|≤r0/rk
−tk/rk≤t<0

∫
B+

1 (z′)

|∇vk(t)|2 dz, (8-6)

where

B+

r (z) = Br (z) ∩ R2
+

for any r > 0 and any z = (x, y) ∈ R2. Moreover, from (8-3) for any t0 < 0 and any R > 0 for the integral
over ]−R, R[ × {0} ⊂ ∂R2

+
we obtain∫ 0

t0

∫ R

−R
|∂tvk |

2 dx dt ≤ C
∫ 0

t0

∫ R

−R
|dπN (vk)∂yvk |

2 dx dt → 0 as k → ∞, (8-7)

and ∂tvk → 0 locally in L2 on R2
+

×]−∞, 0[. In addition, from our choice of (uk) it follows that vk → v∞

weakly locally in H 1 on R2
+

×]−∞, 0[ as k → ∞, where v∞(z, t) =: w∞(z) is harmonic and bounded.
For a suitable sequence of times t0 < sk < 0, we also have locally weak convergence wk := vk(sk)→w∞

in H 1 on R2
+

and, in addition,

dπN (wk)∂ywk → 0 in L2
loc(∂R2

+
) as k → ∞. (8-8)

Thus, for sufficiently small δ > 0, by Proposition 3.3 applied to the functions wk ◦9, where 9 : B → R2
+

is a suitable conformal map, we also have uniform local L2-bounds for ∂xwk on ∂R2
+

, and we may assume
that wk → w∞ locally uniformly and weakly locally in H 1 on ∂R2

+
as k → ∞. Since wk is harmonic,

we then also have locally strong H 1-convergence wk → w∞ on R2
+

.



PLATEAU FLOW OR THE HEAT FLOW FOR HALF-HARMONIC MAPS 1433

To see that w∞ is nonconstant, let ϕk = ϕz0,4rk , k ∈ N. Integrating the identity (2-1) from the proof of
Lemma 2.2 in time, with error o(1) → 0 and suitable numbers εk ↓ 0 as k → ∞ in view of (8-3), we find

1
2

∣∣∣∣∫
B
|∇u(tk)|2ϕ2

k dz −

∫
B
|∇u(tk + rksk)|

2ϕ2
k dz

∣∣∣∣
≤

∫ tk

tk+rksk

∫
∂ B

|ut |
2ϕ2

k dφ dt + 2
∫ tk

tk+rksk

∫
B

|ut∇uϕk∇ϕk | dz dt

≤ o(1) + 8εkrk

∫ tk

tk+rksk

∫
B

|∇u|
2
|∇ϕk |

2 dz dt + (8εkrk)
−1

∫ tk

tk+rksk

∫
B

|ut |
2ϕ2

k dz dt. (8-9)

With the help of (2-2) and (8-3) for suitable εk ↓ 0 we can bound

(8εkrk)
−1

∫ tk

tk+rksk

∫
B

|ut |
2ϕ2

k dz dt ≤ Cε−1
k

∫ tk

tk+rksk

∫
∂ B

|ut |
2 dz dt → 0.

Since for any choice t0 < sk < 0 we also can estimate

8εkrk

∫ tk

tk+rksk

∫
B

|∇u|
2
|∇ϕk |

2 dz dt ≤ Cεk |t0|E(u0) → 0,

from (8-9) and (8-6) it follows that with error o(1) → 0 as k → ∞ we have∫
B+

4 (0)

|∇wk |
2 dz + o(1) =

∫
B+

4 (0)

|∇vk(sk)|
2 dz + o(1) ≥

∫
B

|∇u(tk + rksk)|
2ϕ2

k dz + o(1)

≥

∫
B

|∇u(tk)|2ϕ2
k dz ≥

∫
B+

2 (0)

|∇vk(0)|2 dz ≥ δ. (8-10)

Finally, in view of locally uniform convergence wk → w∞ and weak local L2-convergence of the traces
∇wk → ∇w∞ on ∂R2

+
, we may pass to the limit k → ∞ in (8-8) to conclude that w∞ : ∂R2

+
→ N with

dπN (w∞)∂yw∞ = 0 on ∂R2
+
. (8-11)

Since w∞ is harmonic, the Hopf differential

f = |∂xw∞|
2
− |∂yw∞|

2
− 2i∂xw∞ · ∂yw∞

defines a holomorphic function f ∈ L1(R2
+
, C). Moreover, w∞ ∈ H 3/2

loc (R2
+
) with trace ∇w∞ ∈ L2

loc(∂R2
+
);

thus also the trace of f is well-defined on ∂R2
+

. By (8-11) now the trace of f is real-valued; thus f ≡ c
for some constant c ∈ R. But ∇w∞ ∈ L2(R2

+
); hence f ∈ L1(R2

+
). It follows that c = 0, and w∞ is

conformal.
With a conformal diffeomorphism 8 : B → R2

+
mapping a point z0 ∈ ∂ B to infinity, define the map

ū = w∞ ◦ 8 ∈ H 1/2(S1
; N ). By conformal invariance, ū again is harmonic with finite Dirichlet integral

and satisfies (1-6) on ∂ B \ {z0}; since the point {z0} has vanishing H 1-capacity, ū then is stationary in the
sense of [Grüter et al. 1981]. Moreover, ū is conformal. For such mappings, smooth regularity on B was
shown by Grüter, Hildebrandt, and Nitsche [Grüter et al. 1981]; thus condition (1-6) holds everywhere on
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∂ B in the pointwise sense, and ū parametrizes a minimal surface of finite area supported by N which
meets N orthogonally along its boundary.

Proof of Theorem 1.1(ii). For given smooth data u0 ∈ H 1/2(S1
; N ) let u be the unique solution to (1-3),

(1-4) guaranteed by part (i) of the theorem, and suppose that the maximal time of existence T0 is less
than ∞. Then condition (4-4) must fail as t ↑ T0; else from Propositions 4.11 and 4.6 we obtain smooth
bounds for u(t) as t ↑ T0 and there exists a smooth trace u1 = limt↑T0 u(t). But by the first part of the
theorem there is a smooth solution to the initial value problem for (1-3) with initial data u1 at time T0,
and this solution extends the original solution u to an interval [0, T1[ for some T1 > T0, contradicting the
maximality of T0.

Let z(i)
∈ B, 1 ≤ i ≤ i0, such that, for some number δ > 0 and suitable t (i)

k ↑ T0, z(i)
k → z(i), r (i)

k → 0
as k → ∞,

lim inf
k→∞

∫
B

r(i)
k

(z(i)
k )∩B

|∇u(t (i)
k )|2 dz ≥ δ.

By the argument following (8-9), for a suitable sequence of radii 0 < r (0)
k → 0 such that r (i)

k /r (0)
k → 0 as

well as (T0 − t (i)
k )/r (0)

k → 0, then with error o(1) → 0 as k → ∞,∫
B

r(0)
k

(z(i))∩B
|∇u(t)|2 dz + o(1) ≥

∫
B

r(i)
k

(z(i)
k )∩B

|∇u(t (i)
k )|2 dz ≥ δ

for all T0 − r (0)
k < t < T0, uniformly in 1 ≤ i ≤ i0. For sufficiently large k ∈ N such that

r (0)
k < inf

i< j
1
4 |z(i)

− z( j)
|,

it follows that i0 ≤ E(u0)/δ, and we may fix r0 > 0 and redefine t (i)
k , r (i)

k , and z(i)
k , if necessary, such that,

for each 1 ≤ i ≤ i0,∫
B

r(i)
k

(z(i)
k )∩B

|∇u(t (i)
k )|2 dz = sup

z′
∈Br0 (z(i))

0<t≤t (i)k

∫
B

r(i)
k

(z′)∩B
|∇u(t)|2 dz = δ.

Moreover, we may assume that δ < δ0 as defined in Proposition 3.1. The characterization of the
concentration points as in Theorem 1.2(ii) via solutions ū(i) of (1-6) then follows from our above analysis.

In addition, Corollary 3.2 yields the uniform lower bound

lim
r0↓0

lim inf
t↑T

∫
Br0 (z(i))∩B

|∇u(t)|2 dz ≥ 2E(ū(i)) ≥ 2δ2
0

for the concentration energy quanta, which gives the claimed upper bound for the total number of
concentration points.

Finally, with the help of Proposition 4.11 we can smoothly extend the solution u to B \ {z(1), . . . , z(i0)}

at time t = T0. □
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9. Asymptotics

Suppose next that the solution u to (1-3), (1-4) exists for all time 0 < t < ∞. Then u either concentrates
for suitable tk ↑ ∞ in the sense that condition (4-4) does not hold true uniformly in time, or u satisfies
uniform smooth bounds, as shown in Section 4.

In the latter case, the claim made in Theorem 1.1(iii) easily follows.

Proposition 9.1. Suppose that for any δ > 0 there exists R > 0 such that condition (4-4) holds true for
all 0 < t < ∞. Then there exists a smooth solution u∞ ∈ H 1/2(S1

; N ) of (1-6) such that u(t) → u∞

smoothly as t → ∞ suitably, and u∞ parametrizes a minimal surface of finite area supported by N which
meets N orthogonally along its boundary.

Proof. For sufficiently small δ > 0 and for any j ∈ N, by iterative reference to Propositions 4.2, 4.4–4.6,
and 4.10, 4.11 as in Section 6 we can find constants C j > 0 such that ∥u(t)∥H j (B) ≤ C j for all t > 1.
Moreover, by the energy inequality Lemma 2.1 for a suitable sequence tk → ∞ there holds ut(tk) → 0 in
L2(∂ B) as k → ∞. Then for any j ∈ N a subsequence u(tk) approaches u∞ in H j (B), and a diagonal
subsequence converges smoothly, where u∞ solves (1-6). By the argument after (8-11) in Section 8, u∞ is
conformal and u∞ parametrizes a minimal surface with free boundary on N which meets N orthogonally
along its boundary. □

In the remaining case that for some δ > 0 condition (4-4) fails to hold, there exists a sequence tk ↑ ∞

and points z(1), . . . , z(i0) such that, for sequences z(i)
k → z(i) and radii r (i)

k → 0 as k → ∞,

lim inf
k→∞

∫
B

r(i)
k

(z(i)
k )∩B

|∇u(tk)|2 dz ≥ δ, 1 ≤ i ≤ i0.

By Lemma 2.1 there holds the a-priori bound i0 ≤ E(u0)/δ for the number of concentration points. By
the argument leading to (8-10) then, for a suitable number

0 < r0 ≤ inf
i< j

1
4 |z(i)

− z( j)
|

with error o(1) → 0 as k → ∞ and with some constant L ∈ N for all 1 ≤ i ≤ i0,

L
∫

B
2r(i)

k
(z(i)

k )∩B
|∇u(tk)|2 dz + o(1) ≥ sup

z0∈Br0 (z(i)
k )

tk−r0≤t≤tk

∫
B

r(i)
k

(z0)∩B
|∇u(t)|2 dz ≥ δ.

Fixing any index 1 ≤ i ≤ i0 and renaming z(i)
k =: zk and r (i)

k =: rk , we then scale

uk(z, t) = u(zk + rkz, tk + rk t), z ∈ �k = {z : zk + rkz ∈ B}, −tk/rk ≤ t ≤ 0,

as before and observe that, for any t0 < 0,∫ 0

t0

∫
∂�k

|∂t uk |
2 ds dt =

∫ 0

t0

∫
∂�k

|dπN (uk)∂νk uk |
2 ds dt

=

∫ tk

tk+rk t0

∫
∂ B

|ut |
2 dφ dt ≤

∫
∞

tk+rk t0

∫
∂ B

|ut |
2 dφ dt → 0 (9-1)
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as k → ∞, where νk is the outward unit normal along ∂�k . Just as in Section 8 for suitable t0 < sk < 0
we then obtain local uniform and H 1-convergence of a subsequence of the conformally rescaled maps
wk = uk(sk) ◦ 8k ∈ H 1

loc(R
2
+
) to a smooth, nonconstant, harmonic and conformal limit w∞ with finite

energy and continuously mapping ∂R2
+

to N, inducing a solution ū∞ = w∞ ◦8 ∈ H 1/2(S1
; N ) of (1-6)

corresponding to a minimal surface with free boundary on N. This ends the proof of Theorem 1.1(iii).

Appendix

In this section, for the convenience of the reader we derive two interpolation inequalities that play a
crucial role in our arguments.

Let v ∈ H 1(B), and for r > 0 let (zi )1≤i≤i0 be such that the collection of balls Br/2(zi ), 1 ≤ i ≤ i0,
covers B with at most L balls Br (zi ) overlapping at any z ∈ B, with L ∈ N independent of r > 0. We
may assume r < 1

8 so that for any 1 ≤ i ≤ i0 there is a pair of orthogonal vectors e1,i and e2,i such that
for any z ∈ Br (zi ) there holds z + se1,i + te2,i ∈ B for any 0 ≤ s, t ≤ 2r . After a rotation of coordinates,
we may assume that e1,i = (1, 0) and e2,i = (0, 1) are the standard basis vectors. Writing ϕ for ϕzi ,r , by
arguing as Ladyzhenskaya [1963] for any z = (x, y) ∈ Br (zi ) and using that

(v2ϕ)(x + 2r, y) = 0 = (v2ϕ)(x, y + 2r)

then we can estimate

v4(z) = |(v2ϕ)(z)|2 ≤

∫ 2r

0
|∂x(v

2ϕ)(x + s, y)| ds ·

∫ 2r

0
|∂y(v

2ϕ)(x, y + t)| dt

≤

∫
{s:(s,y)∈B}

|∂x(v
2ϕ)(s, y)| ds ·

∫
{t :(x,t)∈B}

|∂y(v
2ϕ)(x, t)| dt, (A-1)

and with the help of Fubini’s theorem we find∫
Br/2(zi )

|v|
4 dz ≤

∫
B

|v|
4ϕ2 dz ≤

∫
∞

−∞

(∫
{x :(x,y)∈B}

|(v2ϕ)(x, y)|2 dx
)

dy

≤

∫
∞

−∞

∫
{s:(s,y)∈B}

|∂x(v
2ϕ)(s, y)| ds dy ·

∫
∞

−∞

∫
{t :(x,t)∈B}

|∂y(v
2ϕ)(x, t)| dt dx

≤

(∫
B

|∇(v2ϕ)| dz
)2

≤

(∫
B
(2|∇v||vϕ| + v2

|∇ϕ|) dz
)2

≤ C
(∫

Br (zi )

|∇v|
2 dz + r−2

∫
Br (zi )

v2 dz
) ∫

Br (zi )

v2 dz.

Fixing r =
1

10 and summing over 1 ≤ i ≤ i0, with an absolute constant C > 0 we obtain the bound

∥v∥
4
L4(B)

≤ C∥v∥
2
H1(B)

∥v∥
2
L2(B)

(A-2)

for any v ∈ H 1(B).
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