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Let E ⊂ B(1) ⊂ R2 be an H1 measurable set with H1(E) < ∞, and let L ⊂ R2 be a line segment with
H1(L) = H1(E). It is not hard to see that Fav(E) ≤ Fav(L). We prove that in the case of near equality,
that is,

Fav(E) ≥ Fav(L) − δ,

the set E can be covered by an ϵ-Lipschitz graph, up to a set of length ϵ. The dependence between ϵ and
δ is polynomial: in fact, the conclusions hold with ϵ = Cδ1/70 for an absolute constant C > 0.

1. Introduction 1473
2. Measure-theoretic preliminaries 1475
3. Proof of Theorem 1.1 in two main steps 1477
4. Proof of Proposition 3.3 1481
5. Proof of Proposition 3.11 1488
6. The grid example 1495
Appendix: Lines spanned by rectifiable curves 1498
Acknowledgements 1499
References 1499

1. Introduction

Let E ⊂ R2 be H1 measurable with H1(E) < ∞. We recall the definition of Favard length:

Fav(E) =

∫ π

0
H1(πθ (E)) dθ.

Here πθ : R2
→ R is the orthogonal projection πθ (x) = x · (cos θ, sin θ). The definition of Fav(E) can be

posed without the assumption H1(E) < ∞, but this hypothesis will be crucial for most of the statements
below, and it will be assumed unless otherwise stated. A fundamental result in geometric measure theory
is the Besicovitch projection theorem [1939] which relates Favard length and rectifiability: Fav(E) > 0
if and only if H1(E ∩ 0) > 0 for some Lipschitz graph 0 ⊂ R2 — in other words, E is not purely
1-unrectifiable.
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The proof of the Besicovitch projection theorem is famous for being difficult to quantify, partly because
of its reliance on the Lebesgue differentiation theorem: it is hard to decipher from the argument just
how large the intersection E ∩ 0 is, and what the Lipschitz constant of 0 is. In fact, it is nontrivial to
even find the right question: for example, if E ⊂ B(1), H1(E) = 1, and Fav(E) ≥ δ for some small but
fixed constant δ > 0, then it is not true that H1(E ∩ 0) ≥ ϵ for some ϵ−1-Lipschitz graph 0 ⊂ R2, where
ϵ = ϵ(δ) > 0. We construct a relevant counterexample in Section 6.

In Theorem 1.1, we show that similar counterexamples are no longer possible if the assumption
“Fav(E) ≥ δ” is upgraded to “Fav(E) ≥ 2H1(E) − δ” for a sufficiently small constant δ > 0. The
number 2 comes from the fact that Fav([0, 1] × {0}) = 2 and that [0, 1] × {1} has the maximal Favard
length among sets of length unity (see (2.4)).

Theorem 1.1. For every ϵ > 0 there exists δ > 0 such that the following holds: Let E ⊂ B(1) be an
H1 measurable set with H1(E) < ∞, and assume that

Fav(E) ≥ Fav(L) − δ, (1.2)

where L ⊂ R2 is a line segment with H1(L) = H1(E). Then, there exists an ϵ-Lipschitz graph 0 ⊂ R2

such that H1(E ∩ 0) ≥ H1(E) − ϵ. One can take δ = ϵ70/C for an absolute constant C > 1.

By an ϵ-Lipschitz graph we mean a set of the form R(Graph f ), where R : R2
→ R2 is a rotation, and

Graph f = {(x, f (x)) : x ∈ R} is the graph of an ϵ-Lipschitz function f : R → R. This means that

| f (x) − f (y)| ≤ ϵ|x − y|

for all x, y ∈ R. It is easy to check that the intersection of an ϵ-Lipschitz graph with B(1) is contained in
the 2ϵ-neighborhood of some line ℓ ⊂ R2, so in particular the same is true of E ∩0 (as in Theorem 1.1).

Theorem 1.1 shows that if Fav(E) is nearly maximal, the Besicovitch projection theorem can be
quantified in a very strong way, whereas the example constructed in Section 6 shows that any similar
conclusion fails completely if we make the weaker assumption Fav(E) ≥ δ. However, it remains plausible
that the assumption Fav(E) ≥ δ is sufficient to guarantee a quantitative version of Besicovitch’s theorem
under the additional assumption that E is 1-Ahlfors regular, or satisfies other multiscale 1-dimensionality
hypotheses. For recent partial results, and more discussion on this question; see [Davey and Taylor 2022;
Martikainen and Orponen 2018; Orponen 2021; Tao 2009]. The problem is closely related to Vitushkin’s
conjecture [1967] on the connection between analytic capacity and Favard length; see [Chang and Tolsa
2020; Dąbrowski and Villa 2022].

We briefly mention another closely related topic: if E ⊂ R2 is self-similar and purely 1-unrectifiable,
then Fav(E) = 0 by the Besicovitch projection theorem. It is an interesting and very popular question to
attempt quantifying the (sharp) rate of decay at which Fav(En) → 0, where En is the n-th iteration of the
self-similar set. For recent developments; see [Bateman and Volberg 2010; Bond et al. 2014; Bond and
Volberg 2010; 2012; Bongers and Taylor 2023; Cladek et al. 2022; Łaba and Zhai 2010; Łaba 2015; Łaba
and Marshall 2022; Nazarov et al. 2010; Peres and Solomyak 2002].
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It is tempting to consider the following scale-invariant version of Theorem 1.1: for any ϵ1, ϵ2 > 0 there
exists δ > 0 such that if E ⊂ B(1) satisfies H1(E) < ∞ and

Fav(E) ≥ (1 − δ) Fav(L),

then there exists an ϵ1-Lipschitz graph 0 ⊂ R2 such that H1(E \0) ≤ ϵ2H1(E). Note that for sets E with
H1(E)∼1 this statement is equivalent to Theorem 1.1; however, in general, the statement is false. Consider
a set En consisting of four horizontal segments of length 1/n placed in the corners of [0, 1]

2. Clearly, one
may cover at most half of En using a single 1-Lipschitz graph. At the same time, Fav(En)/ Fav(Ln) → 1,
where Ln = [0, 4/n] × {0}. To see this, let Bn := {θ ∈ [0, π) : πθ is not injective on En}. Note that
H1(Bn) → 0, and at the same time for θ /∈ Bn we have H1(πθ (En)) = H1(πθ (Ln)). It follows easily that
Fav(En)/ Fav(Ln) → 1.

1A. Outline of the paper. A quick outline of the article is as follows: In Section 2 we introduce Crofton’s
formula and prove that line segments maximize Favard length. In Section 3 we prove Theorem 1.1
using two main propositions, Proposition 3.3 and Proposition 3.11. The moral of these propositions
is discussed at the beginning of Section 3. These two propositions are then proven in Section 4 and
Section 5, respectively. Section 6 contains the counterexample mentioned above to the scale-invariant
version of Theorem 1.1. Finally, in the Appendix we give an exact formula for the measure of lines
spanned by two rectifiable curves — this is used in Section 5 but it might be of independent interest.

2. Measure-theoretic preliminaries

2A. Notation. For x ∈ Rd and r > 0, the notation B(x, r) stands for a closed ball of radius r centered
at x . For A ⊂ Rd, we denote the cardinality of A by #A, and we write A(r) := {x ∈ Rd

: dist(x, A) ≤ r},
where “dist” is Euclidean distance. For f, g ≥ 0, we write f ≲ g if there exists an absolute constant C > 0
such that f ≤ Cg. The notation f ≳ g means the same as g ≲ f , and f ∼ g is shorthand for f ≲ g ≲ f .
If the constant C > 0 is allowed to depend on some parameter p, we signify this by writing f ≲p g.

2B. Integralgeometry and Crofton’s formula. One of the main tools is Crofton’s formula for rectifiable
sets, which states the following: if E ⊂ R2 is an H1 measurable 1-rectifiable set with H1(E) < ∞, then

H1(E) =
1
2

∫ π

0

∫
R
#(E ∩ π−1

θ {t}) dt dθ. (2.1)

Equation (2.1) is false without the rectifiability assumption, but the inequality “≥” remains valid in this
case. This formula (and the inequality) is a special case of a more general relation between Hausdorff
measure and integralgeometric measure for n-rectifiable sets in Rd ; see [Federer 1947, Theorem 9.7;
1969, Theorem 3.2.26]. We next rephrase the formula (2.1) in slightly more abstract terms. We define the
following measure η on the family A := A(2, 1) of all affine lines in R2:

η(L) =

∫ π

0
H1({t ∈ R : π−1

θ {t} ∈ L}) dθ, L ⊂ A.
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With this notation, the Crofton formula (2.1) can be rewritten as

H1(E) =
1
2

∫
L(E)

#(E ∩ ℓ) dη(ℓ), (2.2)

where

L(E) := {ℓ ∈ A : E ∩ ℓ ̸= ∅}.

Lemma 2.3 (the line segment maximizes Favard length). If E ⊂ R2 is H1 measurable, H1(E) < ∞, and
L ⊂ R2 is a line segment with H1(E) = H1(L), then

Fav(E) ≤ Fav(L) (2.4)

and

Fav(L) − Fav(E) ≥

∫
L(E)

(#(E ∩ ℓ) − 1) dη(ℓ). (2.5)

If E is rectifiable, then equality holds in (2.5).

Proof. Suppose E ⊂R2 is H1 measurable, H1(E)<∞, and L ⊂R2 is a line segment with H1(E)=H1(L).
Then

Fav(E) = η(L(E)) =

∫
L(E)

1 dη(ℓ) ≤

∫
L(E)

#(E ∩ ℓ) dη(ℓ) ≤ 2H1(E). (2.6)

If we replace E with the line segment L , then equality holds in both inequalities above. Thus, Fav(L) =

2H1(L) = 2H1(E), which combined with (2.6) (for E) proves (2.5).
Next, (2.4) follows from the fact that the right-hand side of (2.5) is nonnegative. Finally, if E is

rectifiable, then the second inequality in (2.6) becomes an equality, which implies that equality holds
in (2.5). □

2C. Coarea formula. We now record another tool in the proof of Theorem 1.1. It is closely related to
Crofton’s formula, but only considers the intersections with lines in a fixed direction. The price to pay is
that the tangent of the rectifiable set enters the formula. It is a generalization of the following standard
fact: if f : [a, b] → R is α-Lipschitz, then

H1(
{(t, f (t)) : t ∈ [a, b]}

)
=

∫ b

a

√
1 + f ′(t)2 dt ≤

√
1 + α2 (b − a).

Lemma 2.7 (coarea formula). Let α > 0. Let E ⊂ R2 be a countable union of α-Lipschitz graphs over the
x-axis. Then,

H1(A) ≤

√
1 + α2

∫
R
#(A ∩ π−1

0 {t}) dt (2.8)

for all H1 measurable subsets A ⊂ E. (Recall that π0 : R2
→ R is the projection onto the x-axis.)

Proof. This follows from the coarea formula for rectifiable sets. (See, e.g., [Federer 1969, Theorem 3.2.22]
or [Krantz and Parks 2008, Theorem 5.4.9].) □
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3. Proof of Theorem 1.1 in two main steps

In this section we prove Theorem 1.1 using Propositions 3.3 and 3.11 introduced below. Proposition 3.3
says roughly the following: Assume a priori that E is a union of line segments (we reduce matters to
something like this in Section 3A), fix a small angle α > 0, and let Eℓ,α be the union of those segments
which make an angle ≤α with some given line ℓ⊂ R2. Evidently E can be expressed as the union of ∼1/α

sets of the form Eℓ,α . Proposition 3.3 says that if the parameter δ in our hypothesis Fav(E) ≥ Fav(L)− δ

is sufficiently small, then each of the sets Eℓ,α can be (almost) covered by a single (∼α)-Lipschitz graph
over ℓ. After this step, we know that E can be (almost) covered by a union of ∼1/α Lipschitz graphs
with constant ∼α. Thereafter, to complete the proof of Theorem 1.1, it remains to show that only one
of these graphs can have a nontrivial intersection with E . This uses the hypothesis Fav(E) ≥ Fav(L) − δ

once more, and is accomplished in Proposition 3.11 (and the discussion right below).

3A. Step 1: first reductions. Let E ⊂ R2 be a Borel set with H1(E) < ∞. We start with the following
simple lemma:

Lemma 3.1. It suffices to prove Theorem 1.1 under the additional assumption that E is a finite union of
disjoint C1 curves.

Proof. We may assume that E ⊂ B(1) is rectifiable, because by the Besicovitch projection theorem, the
rectifiable part of E continues to satisfy all the assumptions of Theorem 1.1 (with the same constant δ > 0).
By this assumption, H1 almost all of E can be covered by a countable union of C1-curves. Decomposing
the curves further, we may assume that they are disjoint, and for any given η > 0 we may write

E =

M1⋃
j=1

(γ j ∩ E) ∪ S,

where H1(S) ≤ η, and H1(E ∩ γ j ) ≥ (1 − η)H1(γ j ). Now, the set E :=
⋃M1

j=1γ j satisfies

H1(E) ≤ (1 − η)−1H1(E) and Fav(E) ≥ Fav(E) − η

and is additionally a finite union of disjoint C1-curves. If Theorem 1.1 is already known under this
additional assumption, we may now infer that H1(E \ 0) ≤ ϵ, where 0 is an ϵ-Lipschitz graph. But
then also H1(E \0) ≤ H1(E \ E)+H1(E \0) ≤ η + ϵ, and Theorem 1.1 follows for E by choosing the
parameters ϵ, η appropriately. □

3B. Step 2: minigraphs and how to merge them. By Lemma 3.1, we may assume that E is a finite
union of disjoint C1-curves γ1, . . . , γM1 . We further chop up each curve γ j into connected pieces whose
tangent varies by less than α, where α is a small constant depending on ϵ fixed later on (see (3.5)). At
this point, we have managed to write E as a finite union of disjoint α-Lipschitz graphs γ1, . . . , γM ′

1
,

where M1 ≤ M ′

1 < +∞. At this point we have no quantitative control on the constant M ′

1. Each of the
graphs γ j will be called a minigraph, and their collection is denoted E . The main tasks in Theorem 1.1
are to combine the minigraphs into roughly 1/α bigger graphs, and to show that nearly all of E lies on
just one of these bigger graphs.
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To begin with, let M2 = ⌈πα−1
⌉ ∼ α−1. We would like to divide the collection of minigraphs E into

M2 subcollections E1, . . . EM2 , each of them containing the minigraphs with roughly the same direction.
To do this, we consider M2 vectors of the form

vk := (cos(kπ/M2), sin(kπ/M2)) for 1 ≤ k ≤ M2 ∼ α−1.

Observe that for each minigraph γ ∈ E there exists k ∈ {1, . . . , M2} such that γ is a 2α-Lipschitz graph
over the line span(vk). The vector vk will be called the direction of the minigraph (if there are several
suitable vectors for one minigraph, fix any one of them; we will only need to know that each minigraph is
a 2α-Lipschitz graph over the line spanned by its direction). Statements about the (relative) angles of
minigraphs should always be interpreted as statements about the relative angles of the direction vectors vk .

For k ∈ {1, . . . , M2} fixed, we define Ek ⊂ E as the collection of minigraphs with direction vk . We
suggest that the reader visualize the minigraphs as line segments I with ̸ (I, span(vk)) ≤ α. It seems
likely that Theorem 1.1 could be reduced to the case where E is a finite union of line segments, but
employing the minigraphs seems to spare us some unnecessary steps.

We write Ek :=
⋃

Ek . Thus
E = E1 ∪ · · · ∪ EM2 . (3.2)

It turns out that, except for a small error, each set Ek is covered by a single Lipschitz graph with constant ∼α

over span(vk). Indeed, note that Lemma 2.3 and (1.2) together imply
∫
L(E)

#(E∩ℓ)−1 dη(ℓ)≤ δ. Since for
each k ∈ {1, . . . , M2} we have Ek ⊂ E , one sees immediately that L(Ek)⊂L(E) and #(Ek ∩ℓ)≤ #(E ∩ℓ),
so that we also get

∫
L(Ek)

#(Ek ∩ ℓ) − 1 dη(ℓ) ≤ δ. Then, the desired Lipschitz graph 0 covering most of
Ek is constructed in the following proposition, whose proof will be carried out in Section 4:

Proposition 3.3. There exist absolute constants C0, α0 ∈ (0, 1) and Clip > 1 such that the following holds:
Let δ, ϵ ∈ (0, 1) and α ∈ (0, α0) be such that δ ≤ C0α

3ϵ2. Let E ⊂ B(1) be a set with H1(E) < ∞ of the
form

E =
⋃
γ∈E

γ,

where E is a finite collection of disjoint α-Lipschitz graphs over a fixed line L ⊂ R2. Assume further that
E satisfies ∫

L(E)
(#(E ∩ ℓ) − 1) dη(ℓ) ≤ δ. (3.4)

Then, there exists a Lipschitz graph 0 over L , with Lipschitz constant at most Clip · α, such that

H1(E \ 0) ≤ ϵ.

We remark that the absolute constants α0 and Clip are such that α0 ≤ C−1
lip . In particular, the

Clipα-Lipschitz graph 0 from above has a Lipschitz constant bounded by 1.
The proof of Proposition 3.3 recycles most of the ideas from Besicovitch’s original proof of the

Besicovitch projection theorem [1939]. Indeed, we first use (in Lemma 4.1) the assumption (3.4) to show
that E must have arbitrarily low conical density in arbitrarily wide cones centered at most points x ∈ E ,
whose axis is perpendicular to the line L . The quantifications of arbitrarily low and arbitrarily wide can
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be made stronger by reducing the value of the constants α and δ. After this step, we use Besicovitch’s
two cones argument (quantified in Lemma 4.18) to show that most of E can be contained on a Lipschitz
graph over L .

3C. Step 3: there can only be one graph. In Proposition 3.3 we managed to pack a majority of each set
E j (as defined in (3.2)) to a Lipschitz graph of constant ∼α, up to errors which tend to zero as δ → 0 in
the main assumption (1.2). However, at this point there might be up to ∼α−1 distinct Lipschitz graphs,
and to prove Theorem 1.1, we would (roughly speaking) like to reduce their number to one. That this
should be possible is not hard to believe: if E consists of several distinct Lipschitz graphs of substantial
measure, which nevertheless cannot be fit into a single Lipschitz graph, then Fav(E) cannot possibly be
maximal.

We turn to the details. We recall the given constant ϵ > 0 from the statement of Theorem 1.1, and
we set

δ :=
ϵ70

C thm

for a sufficiently large absolute constant C thm > 1. We define also

α :=

(
ϵ

Calp

)10
(3.5)

for some universal Calp > 1. The universal constant C thm will depend on Calp, whereas Calp depends only
on Clip and another constant Csep, which is introduced below. The additional constant Calp will make it
easier for us to ensure that the Lipschitz graph 0 obtained from the application of Proposition 3.3 has
Lipschitz constant smaller than ϵ; see the discussion around (3.8). We record that

α7
= C−70

alp ϵ70
= C thmC−70

alp · δ. (3.6)

Recall, once more, the decompositions E = E0 ∪ · · · ∪ EM2 and E = E0 ∪ · · · ∪ EM2 from the previous
subsection: this decomposition depends on the parameter α fixed above. In addition to the decomposition
E = E0 ∪· · ·∪ EM2 , we will also need another, coarser, decomposition of E in this section. Write κ :=

1
10 ,

fix M3 ∼ α−κ, and decompose E = F0 ∪ · · · ∪FM3 in such a way that

• each Fk is a union of finitely many consecutive families E j , and

• Fk contains those minigraphs whose direction makes an angle no larger than ακ with wk =

(cos(kπ/M3), sin(kπ/M3)) for 0 ≤ k ≤ M3.

We write

Fk :=
⋃

Fk, 0 ≤ k ≤ M3 ∼ α−κ.

At this point, we consider two distinct cases. Let Csep be a large constant depending only on the absolute
constant Clip appearing in Proposition 3.3 (the letters sep stand for separation). Thus, the constant Csep is
also absolute, and we may (and will) assume that Calp is large relative to Csep.
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Case 1. Given the constant ϵ > 0 from Theorem 1.1, the first case is that we can find consecutive sets
Fk, Fk+1, . . . , Fk+Csep with the property

H1(E \ (Fk ∪ · · · ∪ Fk+Csep)) ≤ ϵ. (3.7)

In this case we note that F := Fk ∪ · · · ∪ Fk+Csep is a union of minigraphs whose directions are within
≲ Csepα

κ of the fixed vector wk . In particular, F can be expressed as a union of finitely many disjoint
ᾱ-Lipschitz graphs over the line span(wk), with ᾱ ∼ Csepα

κ . This will place us in a position to use
Proposition 3.3 (with E replaced by F and α replaced by ᾱ). Of course also∫

L(F)
(#(F ∩ ℓ) − 1) dη(ℓ) ≤

∫
L(E)

(#(E ∩ ℓ) − 1) dη(ℓ) ≤ δ,

so the analogue of the assumption (3.4) is valid for F in place of E . We also note that

δ = C−1
thmϵ70

≤ C−1
thmC3

alp · (ϵ/Calp)
3
· ϵ2

= (C−1
thmC3

alp) · α3κϵ2
∼ (C−1

thmC3
alpC−3

sep) · ᾱ3ϵ2,

so if C thm is sufficiently large relative to Calp, then the hypothesis in Proposition 3.3 on the relation
between δ, ᾱ, and ϵ is satisfied (the constant Csep is large, so it can be safely ignored here). Consequently,
there exists a Lipschitz graph 0 ⊂ R2 of constant ≲ ClipCsep · ακ

= ClipCsep · ϵ/Calp with the property

H1(F \ 0) ≤ ϵ, (3.8)

and consequently H1(E \ 0) ≤ 2ϵ. By choosing Calp sufficiently large relative to Csep and Clip, we may
ensure that 0 is an ϵ-Lipschitz graph, as desired.

Case 2. We then move to consider the other option, where E cannot be exhausted, up to measure ϵ, by a
constant number of consecutive sets Fk, Fk+1, . . . , Fk+Csep . Since (3.7) fails for every k, we may find an
index pair k, l ∈ {0, . . . , M3} with |k − l| ≥ Csep such that

H1(Fk) ≥ α2κ and H1(Fl) ≥ α2κ. (3.9)

This follows immediately from the pigeonhole principle, recalling that the cardinality of the pieces Fk

is ≲ α−κ, and also that ακ is much smaller than ϵ by (3.5).

Remark 3.10. Recall that the separation constant Csep above has been chosen to be large relative to the
constant Clip in Proposition 3.3: morally, if 01, 02 are two Clipα

κ -Lipschitz graphs over lines L1, L2

with ̸ (L1, L2) ≥ Csepα
κ, we need to know that 01 and 02 are still transversal (their tangents form angles

≥
1
2 Csepα

κ with each other).

The next key proposition will imply that Case 2 cannot happen:

Proposition 3.11. Suppose that Csep > 0 is sufficiently large, and suppose that there are k, l ∈ {0, . . . , M3}

with |k − l| ≥ Csep such that
H1(Fk) ≥ α2κ and H1(Fl) ≥ α2κ.

Then ∫
L(E)

(#(E ∩ ℓ) − 1) dη(ℓ) ≳ α7. (3.12)
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As we recorded in (3.6), we have α7
= C thmC−70

alp · δ. Thus, if C thm is chosen sufficiently large relative
to Calp and the implicit absolute constants in (3.12), then (3.12) would lead to the contradiction

δ ≥

∫
L(E)

(#(E ∩ ℓ) − 1) dη(ℓ) > δ.

(For the first inequality, recall (2.5) and our main assumption (1.2).) Thus, with the choices of constants
specified in this section, Case 2 cannot occur. This concludes the proof of Theorem 1.1.

In the next two sections we prove the two key results used above, Propositions 3.3 and 3.11.

4. Proof of Proposition 3.3

Let E ⊂ R2 be as in the proposition. With no loss of generality, we may assume that L is the x-axis, so
the minigraphs in E are roughly horizontal. We introduce further notation. We write

Cβ := {(x, y) ∈ R2
: |y| ≥ β|x |}, β > 0.

Thus, the smaller the β, the wider the cone. We also write

Cβ(x) := x + Cβ and Cβ(x, r) := Cβ(x) ∩ B(x, r).

With this notation, if a set 0 ⊂ R2 satisfies 0 ∩ Cβ(x) = {x} for all x ∈ 0, then 0 is (a subset of) a
β-Lipschitz graph. Thus, in view of Proposition 3.3, it would be desirable to show that E ∩CClipα(x) = {x}

for all x ∈ E . In reality, we will prove a similar statement about a subset of E (of nearly full length). It is
worth noting that a toy version of these statements is already present in our hypotheses: each minigraph
γ ∈ E is an α-Lipschitz graph over the x-axis.

Define the maximal conical density

2∗

E,β(x) = sup
r>0

H1(Cβ(x, r) ∩ E)

r
.

Lemma 4.1 says that points of high conical density are negligible, whereas Lemma 4.18 says that points
of low conical density can be mostly contained in a Lipschitz graph.

Lemma 4.1 (high conical density points are negligible). Let E ⊂ B(1), α ∈ (0, α0) and δ ∈ (0, 1) be as
in Proposition 3.3, so that in particular (3.4) holds. Let ε > 0. If the absolute constant Clip > 0 is chosen
sufficiently large, then

H1({x ∈ E : 2∗

E,α′(x) ≥ ε}) ≲ δ

εα2 , (4.2)

where α′ := Clipα/2.

Write ℓx,θ := π−1
θ {πθ (x)} for θ ∈ [0, π), so that ℓ0,θ = span(cos θ, sin θ)⊥. Let J (β) ⊂ [0, π) be the

set of directions in the cone Cβ , i.e.,

J (β) = {θ ∈ [0, π) : ℓ0,θ ⊂ Cβ} = {θ ∈ [0, π) : span(cos θ, sin θ)⊥ ⊂ Cβ}.

If ℓ is a line, we let ℓ(w) denote the tube that is the w-neighborhood of ℓ. For a tube T = ℓ(w), we write
w(T ) = w.
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To prove Lemma 4.1, we rely on the following lemma:

Lemma 4.3 (the Besicovitch alternative). Let E ⊂ R2 and β ≤ 1. Then for all x ∈ E and H ≥ 1, at least
one of the following two alternatives holds:

(A1) There exists a set Ix ⊂ J (β) of measure H1(Ix) ≥ H−1 such that

#(E ∩ ℓx,θ ) ≥ 2, θ ∈ Ix .

(A2) There exists a set Jx ⊂ J (β) of measure H1(Jx)≳ H−1 with the following property: for every θ ∈ Jx ,
there is a tube T = Tx,θ = ℓx,θ (w(T )) centered around ℓx,θ such that

H1(E ∩ T ) ≳ 2∗

E,β(x) · H · w(T ).

We call this lemma the Besicovitch alternative, because its proof is part of Besicovitch’s original argu-
ment [1939] for his projection theorem. For a more recent presentation; see [Falconer 1986, Lemma 6.11]
or [Mattila 1995, Lemma 18.7]. Neither the hypotheses nor the conclusion of Falconer’s lemma are
exactly the same as ours, but the reader can easily convince himself that the proof of Lemma 4.3 heavily
draws inspiration from his proof.

Proof of Lemma 4.3. Let E, x, β, H be as in the statement of the lemma. Let ε :=
1
22∗

E,β(x), so that
there exists an r > 0 such that H1(Cβ(x, r) ∩ E) ≥ εr . We set also J := J (β).

If the alternative (A1) fails, then

H1(
{θ ∈ J : #(Cβ(x, r) ∩ E ∩ ℓx,θ ) ≥ 2}

)
≤ H1({θ ∈ J : #(E ∩ ℓx,θ ) ≥ 2}) ≤ H−1.

Since evidently x ∈ Cβ(x, r) ∩ E ∩ ℓx,θ , this implies that most of the lines ℓx,θ do not intersect the set
Cβ(x, r) ∩ E outside x . Consequently, Cβ(x, r) ∩ E is contained in a union of narrow cones C1, C2, . . .

which are centered around certain lines ℓx,θ j with θ j ∈ J , and whose opening angles β1, β2, . . . satisfy∑
β j ≤ 2H−1. We may arrange that the cones have the form

C j := C(Ij ) :=
⋃

{ℓx,θ : θ ∈ Ij },

where Ij ⊂ J is a dyadic interval, |Ij | = β j , and θ j ∈ J is the midpoint of Ij . We may also assume that
the dyadic intervals Ij are disjoint, so the sets C j \ {x} are disjoint.

To use these cones to arrive at alternative (A2), recall that H1(Cβ(x, r)∩ E) ≥ εr , where ε =
1
22∗

E,β(x).
Now, we throw away cones which are not heavy: we call a cone heavy if it satisfies

H1(C j ∩ B(x, r) ∩ E) ≥
1
4 · εH |Ij | · r. (4.4)

The total length of Cβ(x, r) ∩ E contained in the nonheavy cones is bounded from above by

1
4εHr

∑
j∈N

|Ij | ≤
1
2εr ≤

1
2H

1(Cβ(x, r) ∩ E),

so at least half of the length in Cβ(x, r)∩ E is contained in the union of the heavy cones. In the sequel,
we assume that all the cones C j are heavy.
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Next, we would like to prove that
∑

β j =
∑

|Ij | ≳ H−1. This would be easy if the heavy cones also
satisfied an upper bound roughly matching the lower bound in (4.4). If we knew this, then we could
estimate ∑

j∈N

|Ij | ≳ (εHr)−1 ∑
j∈N

H1(C j ∩ B(x, r) ∩ E) ≳ H−1. (4.5)

This desired upper bound in (4.4) need not be true to begin with, but can be easily arranged. Fix a heavy
cone C(Ij ), and perform the following stopping time argument: the dyadic interval Ij is successively
replaced by its parent Îj until either the upper bound

H1(C( Îj ) ∩ B(x, r) ∩ E) ≤ εH | Îj | · r (4.6)

holds, or then Îj = J . This procedure gives rise to a new collection of cones C( Îj ) which are evidently
still heavy, and whose union covers the union of the initial heavy cones. Since the intervals Îj are dyadic,
we may arrange that the new heavy cones are disjoint outside {x} without violating the previous two
properties.

At this point, either Îj = J for some index j , in which case (4.5) is trivially true (using |J | ∼ 1), or
then the upper bound (4.6) holds for all the heavy cones. In this case the lower bound (4.5) holds by the
very calculation shown in (4.5).

We are now fully equipped to establish alternative (A2). Consider a line ℓx,θ contained in the union of
the heavy cones. According to (4.5), the set of angles θ ∈ J of such lines has length ≳ H−1. This set of
angles is the set Jx ⊂ J whose existence is claimed in (A2). It remains to associate the tube Tx,θ to each
line ℓx,θ with θ ∈ Jx . Let C(Ij ) = C j ⊃ ℓx,θ be the (unique) heavy cone containing ℓx,θ . The opening
angle of C j is β j = |Ij | ∈ (0, |J |], and it follows by elementary geometry that

C j ∩ B(x, r) ⊂ ℓx,θ (2β jr) =: Tx,θ .

Finally,

H1(E ∩ Tx,θ ) ≥ H1(C j ∩ B(x, r) ∩ E) ≳ εHβ j · r ∼ εH · w(T ),

as claimed in alternative (A2). □

Proof of Lemma 4.1. Recall that E is a union of finitely many disjoint α-Lipschitz minigraphs γ ∈ E ,
all defined over the x-axis. The main geometric observation is the following: every minigraph in E
is an α−1-Lipschitz graph over every line Lθ := span(cos θ, sin θ) = ℓ⊥

0,θ with θ ∈ J (α′) (recall that
α′

= Clipα/2). This is simply because the minigraphs in E are α-Lipschitz graphs over the x-axis, but for
all θ ∈ J (α′), the lines Lθ form an angle ≳ α with the y-axis. See Figure 1. Thus, E is a union of finitely
many α−1-Lipschitz graphs over Lθ , for every θ ∈ J (α′). This places us in a position to use the coarea
formula (2.8): for every θ ∈ J (α′) and every H1 measurable subset E ′

⊂ E we have∫
πθ (E ′)

#(E ′
∩ π−1

θ {t}) dt ≳ αH1(E ′). (4.7)

Let

R = {x ∈ E : 2∗

E,α′(x) ≥ ε}.
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Lθ

γ

Figure 1. Every minigraph γ ∈ E is an α−1-Lipschitz graph over every line Lθ with θ ∈ J (α′).

Fix H ≥ 1. (We will eventually choose H ∼ 1/(αε); see (4.16) below.) By Lemma 4.3 (with β = α′),
we can write R = R1 ∪ R2, where alternative (A1) holds on R1 and (A2) holds on R2. To prove (4.2), it
suffices to show

H1(Ri ) ≲
δ

εα2 for i = 1, 2. (4.8)

We first consider R1. Recall the sets Ix ⊂ J (α′) defined in (A1). Since E is a union of finitely many
compact Lipschitz graphs, there are no measurability issues, and we may freely use Fubini’s theorem:

H−1H1(R1) ≤

∫
R1

H1(Ix) dH1(x) =

∫
J (α′)

H1({x ∈ R1 : θ ∈ Ix}) dθ. (4.9)

For θ ∈ J (α′) fixed, abbreviate R′

θ := {x ∈ R1 : θ ∈ Ix}. Write also

E ′

θ :=
⋃

t∈πθ (R′

θ )

(E ∩ π−1
θ {t}),

so certainly R′

θ ⊂ E ′

θ . Note that if t ∈ πθ (E ′

θ ), then t = πθ (x) for some x ∈ R′

θ . Thus θ ∈ Ix by definition,
so

#(E ′

θ ∩ π−1
θ {t}) = #(E ∩ ℓx,θ ) ≥ 2.

Therefore

#(E ′

θ ∩ π−1
θ {t}) − 1 ∼ #(E ′

θ ∩ π−1
θ {t}), t ∈ πθ (E ′

θ ). (4.10)

We may now deduce from (4.7) applied to E ′
:= E ′

θ , and (4.10), that∫
πθ (E ′

θ )
(#(E ′

θ ∩ π−1
θ {t}) − 1) dt ∼

∫
πθ (E ′

θ )
#(E ′

θ ∩ π−1
θ {t}) dt ≳ αH1(E ′

θ ) ≥ αH1(R′

θ ),



STRUCTURE OF SETS WITH NEARLY MAXIMAL FAVARD LENGTH 1485

and finally

∫
L(E)

(#(E ∩ ℓ) − 1) dη(ℓ) ≥

∫
J (α′)

∫
#(E ′

θ ∩ π−1
θ {t}) − 1 dt dθ

(4.9)
≥ αH−1H1(R1).

By (3.4) the left-hand side is bounded from above by δ, so

H1(R1) ≲
δH
α

. (4.11)

Recalling that we promised to choose H ∼ 1/(αε) in the end, the bound above implies (4.8) for R1.
Next, we tackle R2. This time we define R′

θ := {x ∈ R2 : θ ∈ Jx} ⊂ E , and we deduce exactly as in
(4.9) that

H−1H1(R2) ≲
∫

J (α′)
H1(R′

θ ) dθ. (4.12)

Fix θ ∈ J (α′) with R′

θ ̸= ∅. For each x ∈ R′

θ , by definition, there exists a tube T = Tx,θ centered around
ℓx,θ with the property

H1(E ∩ T ) ≳ εH · w(T ). (4.13)

The tubes {Tx,θ : x ∈ R′

θ } may overlap, but they are all parallel. By the Besicovitch covering theorem
(e.g., [Mattila 1995, Theorem 2.7]) applied to the projections πθ (Tx,θ ) ⊂ R, there exists a countable
subcollection Tθ ⊂ {Tx,θ : x ∈ R′

θ }, with the properties

R′

θ ⊂
⋃

x∈R′

θ

Tx,θ ⊂
⋃

T ∈Tθ

T and
∑

T ∈Tθ

1T ≲ 1. (4.14)

Fix T ∈ Tθ , and let Bad(E ∩ T ) ⊂ E ∩ T consist of those points x ∈ E ∩ T with #(ℓx,θ ∩ E) = 1. We
apply the coarea formula (2.8) to the set A := Bad(E ∩ T ) ⊂ E . Recalling that for every θ ∈ J (α′) the
set E is a union of finitely many α−1-Lipschitz graphs over Lθ (see the remark above (4.7)) we get that

H1(Bad(E ∩ T )) ≲ 1
α

∫
πθ (T )

1 dt =
w(T )

α
. (4.15)

Now, for a suitable choice H ∼ 1/(αε), a combination of (4.13) and (4.15) shows that

H1((E ∩ T ) \ Bad(E ∩ T )) ≥
1
2H

1(E ∩ T ). (4.16)

At this point, we simplify notation by setting

Eθ :=
⋃

T ∈Tθ

(E ∩ T ) \ Bad(E ∩ T ) ⊂ E .

By the definition of the sets Bad(E ∩ T ), if x ∈ Eθ , then #(E ∩ ℓx,θ ) ≥ 2, and therefore

#(E ∩ π−1
θ {t}) − 1 ∼ #(E ∩ π−1

θ {t}) ≥ #(Eθ ∩ π−1
θ {t}), t ∈ πθ (Eθ ). (4.17)
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It follows that ∫
L(E)

#(E ∩ ℓ) − 1 dη(ℓ) ≥

∫
J (α′)

∫
#(E ∩ π−1

θ {t}) − 1 dt dθ

(4.17)
≳

∫
J (α′)

∫
πθ (Eθ )

#(Eθ ∩ π−1
θ {t}) dt dθ

(4.14)
≳

∫
J (α′)

∑
T ∈Tθ

∫
πθ (Eθ∩T )

#(Eθ ∩ π−1
θ {t}) dt dθ

(4.7)
≳ α

∫
J (α′)

∑
T ∈Tθ

H1(Eθ ∩ T ) dθ

(4.16)
≥

α

2

∫
J (α′)

∑
T ∈Tθ

H1(E ∩ T ) dθ

(4.14)
≥ α

∫
J (α′)

H1(R′

θ ) dθ

(4.12)
≥

α

H
·H1(R2).

Recalling once again from (3.4) that the left-hand side above is ≤ δ, we deduce that

H1(R2) ≲
δH
α

∼
δ

εα2 ,

which is (4.8) for R2. The proof of Lemma 4.1 is complete. □

Next, repeating the classical two cones argument of Besicovitch (e.g., [Mattila 1995, Lemma 15.14]),
we show that we can pack most of points of low conical density into a single Lipschitz graph:

Lemma 4.18 (most low conical density points fit into a Lipschitz graph). Let E ⊂ B(1) ⊂ R2 and let
ε ∈ (0, 1), β ∈

(
0, 1

2

)
. Then, there exists a 2β-Lipschitz graph 0 ⊂ R2 over the x-axis such that

H1({x ∈ E : 2∗

E,β(x) ≤ ε} \0) ≲ ε/β.

Proof. Let G = {x ∈ E : 2∗

E,β(x) ≤ ε}. Our task is to find a subset 0 ⊂ G with H1(G \0) ≲ ε/β and the
property C2β(x) ∩ 0 = {x} for all x ∈ 0. Then 0 extends to a 2β-Lipschitz graph, as desired.

Let B be the set of points x ∈ G with the “bad” property that there exists a point y ∈ G ∩ C2β(x)

with y ̸= x . The goal is to show that H1(B)≲ ε/β. For each x ∈ B, let r(x)= sup{|x −y| : y ∈ G∩C2β(x)},
so

B ∩ C2β(x) ⊂ B(x, r(x)), x ∈ B. (4.19)

See Figure 2 for an illustration.
Let Tx be the tube around the vertical line passing through x with w(Tx) :=

1
10βr(x). Then

Tx \ B
(
x, 1

2βr(x)
)
⊂ C1(x) ⊂ C2β(x) ⊂ Cβ(x). (4.20)
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Tx y(x)

B
(
x, 1

2βr(x)
)

β

x

Figure 2. Containing the tube Tx in the union of the cones Cβ(x) and Cβ(y(x)). The
dotted cone illustrates C2β(x) ∋ y(x).

(Recall that 2β ≤ 1.) In particular, (4.20) implies Tx \ B(x, r(x)) ⊂ C2β(x). Using this, we observe that

B ∩ Tx ⊂ B(x, r(x)) ∪ [(B ∩ Tx) \ B(x, r(x))]

= B(x, r(x)) ∪ [B ∩ (Tx \ B(x, r(x)))] ⊂ B(x, r(x)) ∪ [B ∩ C2β(x)]
(4.19)
⊂ B(x, r(x)). (4.21)

Choose a point y(x) ∈ G ∩ C2β(x) such that |x − y(x)| ≥
9

10r(x). A slightly more delicate geometric
fact is that

Tx ⊂ Cβ(x) ∪ Cβ(y(x)).

This is an exercise in elementary geometry; see Figure 2 (or the proof in [Mattila 1995, Lemma 15.14] for
a more formal argument): the disc B

(
x, 1

2βr(x)
)
, and in particular the intersection Tx ∩ B

(
x, 1

2βr(x)
)
, is

contained in the cone Cβ(y(x)), whereas the rest of Tx is contained in Cβ(x), as already noted in (4.20).
Consequently, using (4.21), the trivial inclusion B(x, r(x)) ⊂ B(y(x), 2r(x)), and x, y(x) ∈ G, we have

H1(B ∩ Tx) ≤ H1(Cβ(y(x), 2r(x)) ∩ E) +H1(Cβ(x, r(x)) ∩ E) ≤ 2εr(x) + εr(x) ≤ 30(ε/β) · w(Tx).

We have now shown that every point x ∈ B is contained on the central line of a vertical tube Tx satisfying
the estimate above. By the Besicovitch covering theorem, as in the proof of Lemma 4.1, we may then
find a countable, boundedly overlapping subfamily T of these tubes which still cover B. All the tubes
intersect B(1) ⊃ B, so

∑
T ∈T w(T ) ≲ 1. It follows that

H1(B) ≤

∑
T ∈T

H1(B ∩ T ) ≤
30ε

β

∑
T ∈T

w(T ) ≲ ε

β
.

This completes the proof of Lemma 4.18. □

We are then ready to prove Proposition 3.3:

Proof of Proposition 3.3. Fix ϵ > 0 as in the statement of the proposition, and set α′
= Clipα/2. Define

ϵ1 := αϵ/C for a suitable absolute constant C > 0. By Lemma 4.1 applied to ε = ϵ1, we know that the
set R ⊂ E of bad points x ∈ E with

2∗

Eα,α′(x) ≥ ϵ1

satisfies
H1(R) ≲ δ · ϵ−1

1 α−2
= Cδ · ϵ−1α−3.
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Since δ ≤ C0ϵ
2α3, taking C0 = C−2 gives H1(R) ≤ ϵ/2 (assuming that C > 0 was large enough).

The set G := E \ R satisfies the hypotheses of Lemma 4.18 (with β = α′
= Clipα/2 and ε = ϵ1), so

there exists a Clipα-Lipschitz graph 0 ⊂ R over the x-axis such that H1(G \ 0) ≲ ϵ1/α = ϵ/C . If the
constant C > 0 was chosen large enough, we see that

H1(E \ 0) ≤ H1(R) +H1(G \ 0) ≤
1
2ϵ +

1
2ϵ = ϵ.

This concludes the proof of Proposition 3.3. □

5. Proof of Proposition 3.11

In this section we prove Proposition 3.11. Recall that we are assuming to be in Case 2; that is, E cannot
be exhausted, up to measure ϵ, by a constant number of consecutive sets Fk, Fk+1, . . . , Fk+Csep (recall
this notation from Section 3C). More precisely, this means that

H1(E \ (Fk ∪ · · · ∪ Fk+Csep)) ≤ ϵ (5.1)

fails for every k; thus we find an index pair k, l ∈ {0, . . . , M3} with |k − l| ≥ Csep such that

H1(Fk) ≥ α2κ and H1(Fl) ≥ α2κ. (5.2)

Recall that all the minigraphs in Fk make an angle ≤ ακ with

Lk := span(wk) = span(cos(kπ/M3), sin(kπ/M3)),

and similarly all the minigraphs in Fl make an angle ≤ ακ with L l = span(wl).
The existence of Fk and Fl will imply a configuration such as the one depicted in Figure 3. A more

precise definition is given in the lemma below.

Lemma 5.3. If the inequalities in (5.2) hold, then there exists an absolute constant C ∼ Clip (the constant
from Proposition 3.3) such that the following objects exist:

(1) affine lines ℓk and ℓl with ̸ (ℓk, Lk) ≤ ακ and ̸ (ℓl, L l) ≤ ακ,

(2) tubes T ′

k := ℓk(Cα) and Tk := ℓk(α
1/2),

(3) tubes T ′

l := ℓl(Cα) and Tl := ℓl(α
1/2),

(4) Clipα-Lipschitz graphs γk, γl over the lines ℓk, ℓl , respectively such that

γk ∩ B(1) ⊂ T ′

k and γl ∩ B(1) ⊂ T ′

l ,

(5) compact subsets

Gk ⊂ (E ∩ γk) \ Tl ⊂ B(1) and Gl ⊂ (E ∩ γl) \ Tk ⊂ B(1) (5.4)

of measure H1(Gk) ≥ α3/C and H1(Gl) ≥ α3/C.

Once the objects in Lemma 5.3 are found, it follows from a relatively simple geometric argument,
presented below, that positively many lines intersect E twice (the lines in question are depicted in red in
Figure 3):



STRUCTURE OF SETS WITH NEARLY MAXIMAL FAVARD LENGTH 1489

 

Tk Tl

γl

γk

T ′

l

T ′

k

Figure 3. A configuration where positively many lines hit E twice.

Lemma 5.5. There exists a set of lines L(Gk, Gl) of measure η(L(Gk, Gl)) ≳ α7 such that ℓ∩ Gk ̸= ∅
and ℓ ∩ Gl ̸= ∅ for all ℓ ∈ L(Gk, Gl). In particular, since Gk, Gl ⊂ E are disjoint,∫

L(E)
(#(E ∩ ℓ) − 1) dη(ℓ) ≳ η(L(Gk, Gl)) ≳ α7. (5.6)

Proposition 3.11 follows immediately by Lemma 5.5. We will next derive Lemma 5.5 from Lemma 5.3.
(See Remark 5.10 and the Appendix for an alternative proof of Lemma 5.5.)

Proof. The key geometric observation is the following: if ℓ ⊂ R2 is any line with

Gk ∩ ℓ ̸= ∅ ̸= Gl ∩ ℓ,

then ℓ must make an angle ≳α1/2 with both ℓk and ℓl ; see Figure 3: indeed, if for example ̸ (ℓ, ℓl)≪α1/2

and ℓ∩Gl ̸=∅, then ℓ∩ B(1) ⊂ Tl , and hence ℓ∩Gk =∅ by (5.4). It follows that both ℓk, ℓl are Cα−1/2-
graphs over ℓ⊥, for any line ℓ connecting Gk and Gl . But since γk, γl were by definition Clipα-Lipschitz
graphs over ℓk, ℓl , it follows that also γk, γl are Cα−1/2-Lipschitz graphs over ℓ⊥ (assuming that α > 0 is
small enough).

To prove the lower bound (5.6), start by fixing x ∈ Gl ⊂ γl , recall that ℓx,θ := π−1
θ {πθ (x)}, and consider

the set of directions

2(x, Gk) := {θ ∈ [0, π) : ℓx,θ ∩ Gk ̸= ∅}.

With this notation, we claim that

H1(2(x, Gk)) ≳ α1/2H1(Gk), x ∈ Gl . (5.7)

Indeed, if {B(θ j , r j )} j∈N is an arbitrary cover of 2(x, Gk), then the tubes ℓx,θ j (Cr j ) cover Gk , where
C > 0 is an absolute constant. This is because Gk is covered by the cones C j :=

⋃
{ℓx,θ : θ ∈ B(θ j , r j )} by

definition, and each intersection Gk ∩C j ⊂ B(1)∩C j is further covered by a tube of the form ℓx,θ j (Cr j ).
Now recall that γk ⊃ Gk is an α−1/2-Lipschitz graph over each line ℓ⊥

x,θ j
: this gives

α−1/2 ∑
j∈N

r j ≳
∑
j∈N

H1(Gk ∩ ℓx,θ j (r j )) ≥ H1(Gk),

which implies (5.7).
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We now infer from (5.7) and Fubini’s theorem that∫ π

0
H1({x ∈ Gl : θ ∈ 2(x, Gk)}) dθ =

∫
Gl

H1(2(x, Gk)) dH1(x) ≳ α1/2H1(Gk)H1(Gl). (5.8)

To proceed, write Gl(θ) := {x ∈ Gl : θ ∈ 2(x, Gk)}. We claim that

H1(Gl(θ)) ̸= 0 =⇒ H1(πθ (Gl(θ))
)
≳ α1/2H1(Gl(θ)), θ ∈ [0, π). (5.9)

This will complete the proof of the corollary, because (5.8) then implies∫ π

0
H1(πθ (Gl(θ)) dθ

(5.8)
≳ αH1(Gk)H1(Gl)

Lem. 5.3
≳ α7,

and the left-hand side above is a lower bound for η(L(Gk, Gl)).
Finally, let us prove (5.9). If H1(Gl(θ)) ̸= 0, then θ ∈ 2(x, γk) for at least one x ∈ Gl , which means

that ℓx,θ = π−1
θ {πθ (x)} intersects both Gk and Gl . Thus, γl is a Cα−1/2-Lipschitz graph over the line ℓ⊥

x,θ .
Consequently, the relation H1(πθ (H)) ≳ α1/2H1(H) holds for all H1 measurable subsets H ⊂ γl , in
particular for H := Gl(θ). □

Remark 5.10. In fact, we have an exact expression for η(L(Gk, Gl)):

η(L(Gk, Gl)) =

∫∫
Gk×Gl

|πθ(xk ,xl )(τk(xk))||πθ(xk ,xl )(τl(xl))|

|xk − xl |
d(H1

×H1)(xk, xl). (5.11)

In (5.11), τk(x) denotes the unit tangent vector to γk at x ∈ γk , and τl(x) is defined similarly. For
distinct x, x ′

∈ R2, θ(x, x ′) denotes the angle θ such that πθ (x) = πθ (x ′).
Now we show how (5.11) implies Lemma 5.5. By the key geometric observation in the first paragraph

of the proof of Lemma 5.5 and the fact that Gk, Gl ⊂ B(1), the integrand in (5.11) is ≳ α1/2α1/2/1 = α.
Thus, η(L(Gk, Gl)) ≳ αH1(Gk)H1(Gl) ≳ α7.

We state and prove a more general form of (5.11) in the Appendix.

The remainder of this section is devoted to constructing the objects listed in Lemma 5.3. This is based
on the assumption (3.9), that is, H1(Fk) ≥ α2κ and H1(Fl) ≥ α2κ . Recall also that Fk, Fl were the unions
of the minigraphs in Fk and Fl . The minigraphs in Fk make an angle ≤ ακ with Lk , while the minigraphs
in Fl make an angle ≤ ακ with L l . Furthermore, ̸ (Lk, L l) ≥ Csepα

κ, so the minigraphs from Fk and Fl

point in quantitatively different directions. We also recall that Fk (respectively Fl) can be expressed as a
union of certain consecutive families Ei :

Fk = Es ∪ Es+1 ∪ · · · ∪ Es+m and Fl = Et ∪ · · · ∪ Et+m . (5.12)

Some of these families may be empty, but not all, according to (5.2). Of course

m ≲ α−1, (5.13)

since there were no more than α−1 of the families E j altogether.
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Fl

Fk
Gk

Gl

Tl

Tk

Figure 4. Finding the graphs and tubes claimed by Lemma 5.3.

5A. Sketch of the proof. We now explain the proof strategy with a picture. In Figure 4, we have depicted
the sets Fk and Fl , which are roughly speaking ακ -Lipschitz graphs over the lines Lk, L l by Proposition 3.3
(details will follow). Both Fk and Fl are, moreover, tiled by ≲ α−1 of the sets E j . Most of sets E j are
(individually) contained on α-Lipschitz graphs γ j , by another application of Proposition 3.3. The red sets
shown in Figure 4 illustrate sets of the form

G j = E j ∩ γ j ∩ B j ,

where B j is some ball of radius α with the property that H1(G j ) ∼α H1(E j ). Each G j is contained in a
tube T j of width α1/2 (or even a tube of width α, which was also required in Lemma 5.3). So, picking
Gk ⊂ Fk and Gl ⊂ Fl arbitrarily, we would satisfy all the points (1)-(5) in Lemma 5.3, except for the
inclusions (5.4).

The problem is that if we pick Gk ⊂ Fk and Gl ⊂ Fl arbitrarily, the tube Tk associated with Gk might
intersect Gl , or vice versa, violating (5.4). To satisfy (5.4), we need to pick Gk, Gl in such a way that the
Gk-tube avoids Gl and the Gl-tube avoids Gk . To achieve this, we roughly choose three well-separated
sets Gl

1, Gl
2, Gl

3 ⊂ Fl , and two further well-separated sets Gk
1, Gk

2 ⊂ Fk .
Then, we use the transversality of the graphs Fk, Fl to deduce the following: each Gk

i -tube can intersect
at most one of the sets Gl

j , and vice versa. At this point, we may deduce from the pigeonhole principle
that there must exists a pair (Gk

i , Gl
j ) such that the Gk

i -tube does not intersect Gl
j , and the Gl

j -tube does
not intersect Gk

i . Indeed, there are six pairs (Gk
i , Gl

j ), but only five tubes. This will complete the proof.

5B. Proof. We turn to the details. First, we apply Proposition 3.3 to the sets Fk, Fl , each of which can
be written as a finite union of ακ -Lipschitz minigraphs over the lines Lk, L l , respectively. It follows from
the choice of constants δ = ϵ70/C thm and α = (ϵ/Calp)

10 made in Section 3C that δ ≪ α5κ , assuming
that C thm is chosen sufficiently small compared to the absolute constant Calp. Writing α5κ

= (ακ)3α2κ,
this means that the main hypothesis of Proposition 3.3 is valid with constants ακ and 1

2α2κ in place of α

and ϵ. It follows that there exist Clipα
κ -Lipschitz graphs 0k, 0l over Lk, L l , respectively, which cover
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most of Fk and Fl in the sense

H1(Fk \ 0k) ≤
1
2α2κ

(3.9)
≤

1
2H

1(Fk) and H1(Fl \ 0l) ≤
1
2H

1(Fl).

We write F ′

k := Fk ∩ 0k and F ′

l := Fl ∩ 0l . Next, recall from (5.12) that

Fk = Es ∪ · · · ∪ Es+m and Fl = Et ∪ · · · ∪ Et+m,

and each E j is a finite union of α-Lipschitz minigraphs E j over a certain line (which makes an angle ≤ ακ

with Lk). Applying Proposition 3.3 again, for each E j with either j ∈ {s, . . . , s +m} or j ∈ {t, . . . , t +m},
we find Lipschitz graphs γ j with constant ≤ Clipα and the property

H1(E j \ γ j ) ≲ α2, s ≤ j ≤ s + m or t ≤ j ≤ t + m.

For this application of Proposition 3.3 to be legitimate, we need δ ≪α3(α2)2
=α7, which also follows from

our choice of constants recalled above, taking C thm ≫ C70
alp. We write E ′

j := E j ∩ γ j . With these choices,
a major part of F ′

k is covered by the union of the graphs γ j : indeed since F ′

k ⊂ Fk ⊂ (Es ∪ · · · ∪ Es+m),
we have

H1
(

F ′

k \

m⋃
j=1

E ′

s+ j

)
≤

m∑
j=1

H1(Es+ j \ γs+ j ) ≲
m∑

j=1
α2

(5.13)
≲ α.

Since H1(F ′

k) ≳H1(Fk) ≥ α2κ, and κ =
1
10 , we infer that at least half of F ′

k is covered by the (subsets of)
α-Lipschitz graphs E ′

j with s ≤ j ≤ s + m. The same conclusion mutatis mutandis holds for F ′

l and the
sets E ′

j with t ≤ j ≤ t + m. We finally redefine

Fk := F ′

k ∩

m⋃
j=1

E ′

s+ j and Fl := F ′

l ∩

m⋃
j=1

E ′

t+ j .

This should cause no confusion, since the original sets Fk, Fl will no longer be used. We list all the
properties of Fk, Fl we will need in the sequel:

• Fk, Fl ⊂ E and H1(Fk) ≳ α2κ and H1(Fl) ≳ α2κ (compare with (3.9)).

• Fk is covered by the Lipschitz graph 0k over Lk with constant ≤ Clipα
κ.

• Fl is covered by the Lipschitz graph 0l over L l with constant ≤ Clipα
κ.

• Fk is covered by the union of ≲ α−1 Lipschitz graphs γs, . . . , γs+m with constant ≤ Clipα over
certain lines ℓs+ j making an angle ≤ ακ with Lk .

• Fl is covered by the union of ≲α−1 Lipschitz graphs γt , . . . , γt+m with constant ≤ Clipα over certain
lines ℓt+ j making an angle ≤ ακ with L l .

We have now defined carefully the objects Fk and Fl in Figure 4. In defining the objects Ek and El

in the same picture, there is the technical problem that the initial sets E j need not be localized, as the
picture suggests. This will be easily fixed by intersecting the initial sets E j with balls. First, using that
H1(Fk) ≳ α2κ, we choose two special points x1, x2 ∈ Fk with the properties

|x1 − x2| ≳ α2κ and H1(Fk ∩ B(x j , α)) ≥ α2 for j ∈ {1, 2}. (5.14)
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This can be arranged, because the set of points x ∈ Fk with H1(Fk ∩ B(x, α)) ≤ α2 has total length at
most ≲ α ≪ H1(Fk). Thus, the admissible points for the second condition in (5.14) have total length
≥

1
2H

1(Fk)≳ α2κ. Then, to finish the selection, it remains to pick two of these points with separation α2κ :
this is possible because Fk lies on a Lipschitz graph with constant ≤1, so in particular H1(Fk ∩B(x, r))≲ r
for all r > 0.

Next, we move attention from Fk to Fl . This time we pick three special points y1, y2, y3 ∈ Fl with
properties similar to those in (5.14):

|yi − y j | ≳ α2κ for i ̸= j and H1(Fl ∩ B(y j , α)) ≥ α2 for j ∈ {1, 2, 3}. (5.15)

The details of the selection are the same as we have seen above.
Next, recall that both Fk and Fl can be written as a finite union of (subsets of) Clipα-Lipschitz graphs:

the covering graphs for Fk were denoted γs, . . . , γs+m and the covering graphs for Fl were denoted
γt , . . . , γt+m , where m ≲ α−1. Since H1(Fk ∩ B(x1, α)) ≥ α2, at least one of the graphs γs, . . . , γs+m

must have large intersection with Fk ∩ B(x1, α). We denote this graph by γ k
1 ; then we have

H1(Fk ∩ γ k
1 ∩ B(x1, α)) ≳ α3. (5.16)

We find similarly a graph γ k
2 ∈ {γs, . . . , γs+m} such that H1(Fk ∩ γ k

2 ∩ B(x2, α)) ≳ α3. Then, we also
repeat the argument for the three balls B(y j , α): we find three graphs γ l

1, γ
l
2, γ

l
3 ∈ {γt , . . . , γt+m} with

the property

H1(Fl ∩ B(y j , α)∩ γ l
j ) ≳ α3, 1 ≤ j ≤ 3. (5.17)

The sets

Gk
i := Fk ∩ γ k

i ∩ B(xi , α), i = 1, 2, and Gl
j := Fl ∩ γ l

j ∩ B(y j , α), j = 1, 2, 3, (5.18)

are the ones we informally discussed below Figure 4.
Next, we associate the lines and tubes (required by Lemma 5.3) to the sets Gk

i , Gl
j . We associate to

each graph γ k
i or γ l

j an affine line ℓk
i or ℓl

j with the following properties:

• γ k
i is a Clipα-Lipschitz graph over ℓk

i for i ∈ {1, 2}.

• γ l
j is a Clipα-Lipschitz graph over ℓl

j for j ∈ {1, 2, 3}.

• The lines are chosen so that

Gk
j ⊂ ℓk

i (Cα) for i ∈ {1, 2} and Gl
j ⊂ ℓl

j (Cα) for j ∈ {1, 2, 3},

where C ∼ Clip.

We now define

(T k
i )′ := ℓk

i (Cα) and T k
i := ℓk

i (α
1/2)

for i ∈ {1, 2}, and similarly

(T l
j )

′
:= ℓl

j (Cα) and T l
j := ℓl

j (α
1/2)
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0l

L l

Lk

T k
iℓk

j

Figure 5. Transversality of T k
i and 0l . The angle between ℓk

j and L l is ≳ Cακ.

for j ∈ {1, 2, 3}. Thus, Gk
i ⊂ (T k

i )′ ⊂ T k
i and Gl

j ⊂ (T l
j )

′
⊂ T l

j . Since moreover H1(Gk
i ) ≳ α3 and

H1(Gl
j ) ≳ α3 by (5.16)–(5.17), any pair (Gk

i , Gl
j ) (with associated lines and tubes) would now satisfy all

the requirements of Lemma 5.3, except perhaps the inclusions (5.4).
We will now use the pigeonhole principle to show that at least one of the pairs (Gk

i , Gl
j ) also satisfies

the inclusions (5.4). The main geometric observation is

diam(T k
i ∩ 0l) ≲ α1/2−κ and diam(T l

j ∩ 0k) ≲ α1/2−κ. (5.19)

The first inequality holds for i ∈ {1, 2}, the second for j ∈ {1, 2, 3}. The proof of (5.19) is contained in
Figure 5. Recall that T k

i is an α1/2-tube around a certain line ℓk
i with ̸ (ℓk

i , Lk) ≤ ακ . On the other hand,
̸ (Lk, L l) ≥ Csepα

κ , so also ̸ (ℓk
i , L l) ≥ (Csep − 1)ακ . Finally, 0l is a Clipα

κ -Lipschitz graph over L l ,
so every tangent of 0l makes an angle ≳ Csepα

κ with ℓk
i , since we chose Csep much larger than Clip in

Section 3C. Thus 0l is an α−κ -Lipschitz graph over (ℓk
j )

⊥. It follows that

diam(T k
i ∩ 0l) ≤ H1(T k

i ∩ 0l) ≲ α1/2−κ.

Now that we have proved (5.19), recall from (5.15) the three balls B(y j , α), all of which were centered at
y j ∈ Fl ⊂ 0l , and whose centers y j had pairwise separation ≳ α2κ . Since κ =

1
10 , we have α1/2−κ

≪ α2κ

for α > 0 small enough (or in other words assuming that the constant Calp > 0 is chosen large enough),
and therefore (5.19) implies that

#{ j ∈ {1, 2, 3} : T k
i ∩ B(y j , α) ̸= ∅} ≤ 1, i ∈ {1, 2}. (5.20)

By a similar argument,

#{i ∈ {1, 2} : T l
j ∩ B(xi , α) ̸= ∅} ≤ 1, j ∈ {1, 2, 3}. (5.21)

We finally claim, as a consequence of (5.20)- (5.21) and the pigeonhole principle, that there exists a pair
of balls (B(xi0, α), B(y j0, α)), for some i0 ∈ {1, 2} and j0 ∈ {1, 2, 3} with the property

T k
i0

∩ B(y j0, α) = ∅ and T l
j0 ∩ B(xi0, α) = ∅. (5.22)

This, by definition, yields

Gk
i0

(5.18)
⊂ B(xi0, α) \ T l

j0 and Gl
j0

(5.18)
⊂ B(y j0, α) \ T k

i0
,

which (combined with (5.18)) completes the proof of the inclusions (5.4), and Lemma 5.3.
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To prove (5.22), consider the bipartite graph with 5 vertices {v1, v2} ∪ {w1, w2, w3} and the following
edge set:

• For i ∈ {1, 2} and j ∈ {1, 2, 3}, the edge (vi , w j ) is included if T k
i ∩ B(y j , α) ̸= ∅.

• For j ∈ {1, 2, 3} and i ∈ {1, 2}, the edge (w j , vi ) is included if T l
j ∩ B(xi , α) ̸= ∅.

Now, (5.20)–(5.21) can be restated as follows: for vi fixed, there can be at most one edge (vi , w j ), and for
wi fixed, there can be at most one edge (wi , v j ). Thus, the edge set contains at most five edges. On the
other hand, the product set {v1, v2}× {w1, w2, w3} contains six elements, so there must be a pair {vi , w j }

so that neither (vi , w j ) nor (w j , vi ) lies in the edge set. This is equivalent to (5.22). This completes the
proof of Lemma 5.3.

6. The grid example

In this section we provide an example showing that Theorem 1.1 is optimal in the sense that the assumption
Fav(E) ≥ Fav(L) − δ cannot be relaxed to Fav(E) ≥ δ.

Proposition 6.1. There exists an absolute constant δ > 0 and a sequence of compact rectifiable sets
En ⊂ [0, 1]

2
⊂ R2 such that

(1) H1(En) = 1,

(2) Fav(En) ≥ δ,

(3) for any α ∈ [2n−2, 1) and any curve 0 with H1(0 ∩ En) ≥ α we have H1(0) ≳ αn.

In particular, property (3) implies that if M ≥ 1, then for any M-Lipschitz graph 0, H1(0 ∩ En) ≲ Mn−1.

We begin the construction. Fix an integer n ≥ 2, and let [n] := {1, . . . , n}. For any j = (k, l) ∈ [n]
2 set

x j =

( k
n+1

,
l

n+1

)
(6.2)

and
B j = B

(
x j ,

1
2πn2

)
.

Note that B j ⊂ [0, 1]
2 and if i, j ∈ [n]

2, i ̸= j , then

dist(Bi , B j ) ≥
1

n+1
−

2
2πn2 ≥

1
2n

. (6.3)

Define S j = ∂ B j , and observe that H1(S j ) = n−2.
We define the set En as

En :=
⋃

j∈[n]2
S j .

Since H1(S j ) = n−2, we have H1(En) = 1. This verifies property (1) for En . It is also clear that En is
compact and rectifiable.

Now we check property (3). We will use the following result:
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Lemma 6.4 [Schul 2007, Lemma 3.7]. Any compact connected set 0 ⊂ R2 with H1(0) < ∞ can be
parametrized with γ : [0, 1] → R2 such that γ ([0, 1]) = 0 and Lip(γ ) ≤ 32H1(0).

Lemma 6.5. For any α ∈ [2n−2, 1) and any curve 0 with H1(0 ∩ En) ≥ α we have H1(0) ≳ αn.

Proof. Suppose that α ∈ [2n−2, 1) and let 0 be a curve with H1(0 ∩ En) ≥ α. Since each circle S j

comprising En has length n−2, we get that 0 intersects at least αn2 different circles. Let J0 ⊂ [n]
2 be the

set of indices such that for j ∈ J0 we have 0 ∩ S j ̸= ∅, so that

N := #J0 ≥ αn2. (6.6)

To estimate H1(0), we are going to use (6.6) together with the fact that the circles S j are centered on
a well-separated grid (6.2), (6.3). We provide the details below:

Let γ be the parametrization of the curve 0 given by Lemma 6.4. Without loss of generality, we may
assume that the curve 0 begins and ends on En , i.e., γ (0), γ (1) ∈ 0 ∩ En . For all j ∈ J0 we choose a
point y j ∈ 0 ∩ S j , and let t j ∈ [0, 1] be such that γ (t j ) = y j (γ might be noninjective, in which case t j

is nonunique, but in this case we pick t j arbitrarily among the admissible options). The only constraint
we make on our choice of {y j } j∈J0 is so that γ (0), γ (1) ∈ {y j } j∈J0 . For convenience, we relabel the
points t j in “ascending order”: for all i ∈ {1, . . . , N } we set ti := t j for some j ∈ J0, in such a way that
t1 < t2 < · · · < tN . We relabel in a similar way y j and S j .

Recalling that the circles S j are centered on a grid (6.2), it follows from the separation property (6.3)
that, for any i ∈ {1, . . . , N },

1
2n

≤ |yi+1 − yi | = |γ (ti+1) − γ (ti )| ≤ Lip(γ ) · |ti+1 − ti | = Lip(γ ) · (ti+1 − ti ).

Summing over i ∈ {1, . . . , N − 1} we get

N −1
2n

≤ Lip(γ ) · (tN − t1) ≤ 32H1(0) · (tN − t1).

Since we assumed γ (0), γ (1) ∈ {y j } j∈J0 , we get that tN = 1 and t1 = 0. Thus,

32H1(0) ≥
N −1

2n
(6.6)
≥

αn2
−1

2n
≥

αn
4

.

This completes the proof of the lemma. □

It remains to prove the property (2), that is, Fav(En) ≥ δ. Let

Gn =
⋃

j∈[n]2
B j ,

so that En = ∂Gn . Note that Fav(En) = Fav(Gn). We define an auxiliary measure

µ = µn =
1

L2(Gn)
L2

|Gn .

Recall that the 1-energy of µ is defined as

I1(µ) =

∫∫ 1
|x−y|

dµ(x)dµ(y).
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Lemma 6.7. We have
I1(µ) ≲ 1.

As a consequence,
Fav(En) = Fav(Gn) ≳ 1. (6.8)

Proof. We write

I1(µ) =

∫∫ 1
|x−y|

dµ(x)dµ(y)

=
∑

i, j∈[n]2

∫
Bi

∫
B j

1
|x−y|

dµ(x)dµ(y)

=
∑

i∈[n]2

∫
Bi

∫
Bi

1
|x−y|

dµ(x)dµ(y) +
∑

i, j∈[n]
2

i ̸= j

∫
Bi

∫
B j

1
|x−y|

dµ(x)dµ(y)

= A1 + A2.

To estimate A1 we note that for any i ∈ [n]
2 and any fixed x ∈ Bi∫

Bi

1
|x−y|

dµ(y) ≤

∞∑
k=⌊log2 n2⌋

∫
B(x,2−k)\B(x,2−k−1)

1
|x−y|

dµ(y)

∼

∞∑
k=⌊log2 n2⌋

2kµ(B(x, 2−k) \ B(x, 2−k−1))

≲ 1
L2(Gn)

∞∑
k=⌊log2 n2⌋

2kL2(B(x, 2−k)) ∼ n2
∞∑

k=⌊log2 n2⌋

2k
· 2−2k

∼ 1.

Hence,

A1 =
∑

i∈[n]2

∫
Bi

∫
Bi

1
|x−y|

dµ(x) dµ(y) ≲
∑

i∈[n]2
µ(Bi ) = 1.

We move on to estimating A2. Let Q j denote the square centered at x j with sidelength 1/(n + 1).
Note that B j ⊂ Q j , and the squares Q j , j ∈ [n]

2 are pairwise disjoint. If x ∈ Bi and y ∈ B j , with i ̸= j ,
then |x − y| ∼ dist(Bi , B j ) ∼ |x − z| for any z ∈ Q j . It follows that for a fixed x ∈ Bi∫

B j

1
|x−y|

dµ(y) ∼ dist(Bi , B j )
−1 µ(B j ) ∼ dist(Bi , B j )

−1 L2(Q j ) ∼

∫
Q j

1
|x−z|

dL2(z).

Summing over j ∈ [n]
2
\ {i} yields∑

j∈[n]2\{i}

∫
B j

1
|x−y|

dµ(y) ∼
∑

j∈[n]2\{i}

∫
Q j

1
|x−z|

dL2(z) ≤

∫
[−1,2]

2

1
|x−z|

dL2(z)

≲
∞∑

k=−1

∫
B(x,2−k)\B(x,2−k−1)

2k dL2(z) ≲ 1.

Thus,

A2 =
∑

i∈[n]2

∫
Bi

( ∑
j∈[n]2\{i}

∫
B j

1
|x−y|

dµ(y)
)

dµ(x) ≲
∑

i∈[n]2
µ(Bi ) = 1.
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It follows that I1(µ) ≲ 1.
To see (6.8), we use Theorem 4.3 from [Mattila 2015] to conclude that

Fav(En) = Fav(Gn) ≳
1

I1(µ)
≳ 1.

This concludes the proof of Proposition 6.1. □

Appendix: Lines spanned by rectifiable curves

We state and prove a generalization of (5.11), which was mentioned in Remark 5.10:

Lemma A.1. Let γ1, γ2 ⊂ R2 be rectifiable curves. For H1 almost every x ∈ γi , let τi (x) denote the unit
tangent vector to γi at x. (The choice of direction is irrelevant.) Then for any G1 ⊂ γ1 and G2 ⊂ γ2, we
have∫
A

#{(x1, x2) ∈ G1 × G2 : x1 ̸= x2 and x1, x2 ∈ ℓ} dη(ℓ)

=

∫∫
G1×G2

|πθ(x1,x2)(τ1(x1))||πθ(x1,x2)(τ2(x2))|

|x1 − x2|
d(H1

×H1)(x1, x2),

where θ(x1, x2) denotes the angle θ such that πθ (x1) = πθ (x2).

Proof. Let φi (s) be a parametrization of γi by arclength. Consider the map 9 : (s1, s2) 7→ (θ, t) defined
implicitly by

πθ (φ1(s1)) = πθ (φ2(s2)) = t. (A.2)

By the change of variables formula,∫
A

#{(x1, x2) ∈ G1 × G2 : x1 ̸= x2 and x1, x2 ∈ ℓ} dη(ℓ)

=

∫
[0,π ]×R

#{(x1, x2) ∈ G1 ×G2 : x1 ̸= x2 and x1, x2 ∈ π−1
θ (t)} dH2(θ, t)

=

∫∫
s1∈φ−1

1 (G1),s2∈φ−1
2 (G2)

J9(s1, s2) ds1 ds2,

where J9 denotes the Jacobian determinant of 9. (Note that the set {(s1, s2) : φ1(s1) = φ2(s2)} has
H2-measure zero.)

We now prove that

J9(s1, s2) := abs
∣∣∣∣∂s1θ ∂s2θ

∂s1 t ∂s2 t

∣∣∣∣ =
|πθ(s1,s2)(γ

′

1(s1))||πθ(s1,s2)(γ
′

2(s2))|

|γ1(s1) − γ2(s2)|
. (A.3)

Note that this would finish the proof of the lemma. To show (A.3), define eθ = (cos θ, sin θ) and
e⊥

θ = d/dθ eθ = (− sin θ, cos θ). By differentiating (A.2) with respect to s1 and s2, we obtain

eθ · φ′

1(s1) + e⊥

θ · φ1(s1)∂s1θ = e⊥

θ · φ2(s2)∂s1θ = ∂s1 t,

eθ · φ′

2(s2) + e⊥

θ · φ2(s2)∂s2θ = e⊥

θ · φ1(s1)∂s2θ = ∂s2 t.
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The two equalities on the left give

|∂si θ | =
|eθ · φ′

i (si )|

|e⊥

θ · (φ1(s1) − φ2(s2))|
for i = 1, 2,

which, when combined with the two equalities on the right, give

J9(s1, s2) = |∂s1θ ||∂s2θ ||e⊥

θ · (φ1(s1) − φ2(s2))| =
|eθ · φ′

1(s1)||eθ · φ′

2(s2)|

|e⊥

θ · (φ1(s1) − φ2(s2))|
.

Finally, observe that eθ ·(φ1(s1)−φ2(s2))=0 by the definition of 9, which implies |e⊥

θ ·(φ1(s1)−φ2(s2))|=

|φ1(s1) − φ2(s2)|. This completes the proof of (A.3). □

By using the coarea formula for rectifiable sets (e.g., [Krantz and Parks 2008, Theorem 5.4.9]), it is
not hard to show that Lemma A.1 can be generalized to Lemma A.4, below. We omit the details.

Lemma A.4. Let E ⊂ R2 be a 1-rectifiable set. For H1 almost every x ∈ E , let τ(x) denote the unit tangent
vector to E at x. (The choice of direction is irrelevant.) Then for any G ⊂ (E×E)\{(x, x) : x ∈ E}, we have∫
A

#{(x1, x2)∈ G : x1, x2 ∈ℓ} dη(ℓ)=

∫∫
G

|πθ(x1,x2)(τ (x1))||πθ(x1,x2)(τ (x2))|

|x1 − x2|
d(H1

×H1)(x1, x2), (A.5)

where θ(x1, x2) denotes the angle θ such that πθ (x1) = πθ (x2).

A version of Lemma A.4 was discovered independently by Steinerberger [2024]; see the sixth displayed
equation in Section 1.2.
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