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THE SINGULAR STRATA OF A FREE-BOUNDARY PROBLEM
FOR HARMONIC MEASURE
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We obtain quantitative estimates on the fine structure of the singular set of the mutual boundary ∂�± for
pairs of complementary domains �+, �−

⊂ Rn which arise in a class of two-sided free boundary problems
for harmonic measure. These estimates give new insight into the structure of the mutual boundary ∂�±.
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1. Introduction

The focus of this paper is the study of a class of two-phase free boundary problems for harmonic measure.
For n ≥ 3, let �+

⊂ Rn and �−
= �+c

be unbounded nontangentially accessible (NTA) domains (see
Definition 2.1), let ω± be their associated harmonic measures, and let u± be the associated Green’s
functions with poles at infinity. Let ω−

≪ ω+
≪ ω−, and let h = dω−/dω+ satisfy ln(h) ∈ C0,α for some

0 < α < 1. We obtain new results on the structure of the geometric singular set of the boundary ∂�±.
This problem was introduced without the regularity assumption on ω± by Kenig, Preiss, and Toro

[Kenig et al. 2009], with other work under the assumption that ln(h) ∈ VMO(∂�±) by Kenig and Toro
[2006], Badger [2011; 2013], and Badger, Engelstein, and Toro [Badger et al. 2017]. Questions about the
structure of the free boundary and the singular set when ln(h) ∈ C0,α for 0 < α < 1 have been addressed
by Engelstein [2016] and Badger, Engelstein, Toro [Badger et al. 2020], respectively. Engelstein [2016]
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shows that under the additional assumption that the boundary is sufficiently flat in the sense of Reifenberg,
the boundary is locally C1,α. In [Badger et al. 2020], the authors remove the assumption of flatness and
prove that the geometric singular set is contained in countably many C1,β submanifolds of the appropriate
dimension. See [Kenig et al. 2009] for an overview of this problem in lower dimensions and [Badger
et al. 2017; 2020] for further background.

Until recently, almost all work on the two-sided free boundary problem for harmonic measure in higher
dimensions has operated under the assumption that �± are NTA domains because the NTA conditions
allow for scale-invariant estimates of harmonic measure. However, Azzam, Mourgoglou, Tolsa, and
Volberg [Azzam et al. 2019] proved, among other things, that if we relax the assumption that the domains
are NTA, then ω−

≪ ω+
≪ ω− on G ⊂ ∂�± implies that G can be decomposed into G = R ∪ B, where R

is (n−1)-rectifiable and ω±(B) = 0. However, we shall work under the assumption that �± are NTA
domains.

Based upon [Badger et al. 2020], we know that when ln(h) ∈ C0,α, the singular set of ∂�± is countably
C1,β-rectifiable where β depends on but is not equal to α. This leaves open the question of whether or not
the singular set is dense, or more generally how it sits in space. In this paper, we answer the question of
how the singular set “sits in space”. In particular, we provide upper Minkowski content bounds upon the
quantitative strata of the singular set (see Theorem 2.15). The main approach will be to follow [Engelstein
2016] and consider jump functions v = u+

− u− which are almost harmonic, and employ the Almgren
frequency function and geometric techniques as in [Cheeger et al. 2015; Han and Lin 1994] in conjunction
with the powerful quantitative differentiation techniques of [De Lellis et al. 2018; Naber and Valtorta
2017]. While these tools are common for problems in calculus of variations, it is important to note that
the jump functions v are not minimizers of any energy, nor do they satisfy any global PDE.

2. Definitions and statement of main results

2A. Domains and their Green’s functions. Nontangentially accessible (NTA) domains were formally
introduced by Jerison and Kenig [1982] to study the boundary behavior of PDEs on nonsmooth domains.

Definition 2.1. A domain � ⊂ Rn is a nontangentially accessible (NTA) domain if there exist constants
M > 1 and R0 > 0 such that the following holds:

(1) � satisfies the corkscrew condition. That is, for any Q ∈ ∂� and 0 < r < R0, there exists a point
Ar (Q) ∈ � with the following two properties:

|Ar (Q) − Q| < r and Br/M(Ar (Q)) ⊂ �.

(2) �c also satisfies the corkscrew condition.

(3) � satisfies the Harnack chain condition. That is, for any ϵ > 0 and Q ∈ ∂�, if

x1, x2 ∈ � ∩ BR0/4(Q) \ Bϵ(∂�) and |x1 − x2| ≤ 2kϵ,

then there exists a “Harnack chain” of balls {Bri (yi )}
N
i=1 satisfying:

(a) x1 ∈ Bri (y1) and x1 ∈ BrN (yN ).
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(b) Bri (yi ) ⊂ � for all i = 1, . . . , N.
(c) Bri (yi ) ∩ Bri+1(yi+1) ̸= ∅ for all i = 1, . . . , N − 1.
(d) N ≤ Mk.
(e) For all i = 1, . . . , N,

1
2M

min
i=1,2,...,N

{dist(xi , ∂�)} ≤ ri ≤ dist(yi , ∂�).

Note that by increasing the radii if necessary, we may assume that ri ∼M dist(yi , ∂�).

We say that �+ is a two-sided NTA domain if both �+ and �−
:= �c are NTA domains. We shall

refer to the complementary pair �± of domains as complementary two-sided NTA domains and denote
their mutual boundary by ∂�±.

In this paper, we shall only deal with unbounded two-sided NTA domains. That is, we shall assume
that R0 = ∞. However, the results are essentially local.

Definition 2.2 (Green’s functions). For �±
⊂ Rn a pair of complementary two-sided NTA domains, we

shall use u± to denote the Green’s function with pole at infinity corresponding to �±, respectively.
Recall that u± are unique up to scalar multiplication and that to each u± is associated the harmonic

measure ω±, defined by the property that, for all φ ∈ C∞
c (Rn),∫

1φu± dV =

∫
φ dω±.

See [Garnett and Marshall 2005] for more details about harmonic measures.

Observe that if ω+ is the harmonic measure associated to u+, then cω+ is the harmonic measure
associated to cu+ for any c > 0.

If f ∈ C0,α(Rn), we shall use ∥ f ∥α to denote the local norm:

∥ f ∥α := sup
B2(0)

| f | + sup
x ̸=y∈B2(0)

| f (x) − f (y)|

|x − y|α
.

Definition 2.3. We define the class D(n, α, M0) to be the collection of domains �±
⊂ Rn such that

�± are complementary unbounded two-sided NTA domains for which M < M0, ω−
≪ ω+

≪ ω−, the
Radon–Nikodym derivative h = dω−/dω+ satisfies ln(h) ∈ C0,α(∂�), and 0 ∈ ∂�±.

Note that if �±
∈ D(n, α, M0) and Q ∈ ∂�±, then �±

− Q ∈ D(n, α, M0).

2B. A class of functions and their rescalings.

Definition 2.4. Let �±
⊂ Rn be a pair of complementary two-sided NTA domains with mutual bound-

ary ∂�±. For any Q ∈ ∂�± and any Green’s functions u± we define the jump function

vQ(x) := h(Q)u+(x) − u−(x). (2-1)

The scaling h(Q)u+ normalizes the Radon–Nikodym derivative of the harmonic measure associated
to h(Q)u+ and u− at Q ∈ ∂�±.
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Definition 2.5. Let �±
∈ D(n, α, M0) and Q ∈ ∂�±. For scales 0 < r , we define the rescaling of the

function vQ at scale r at the point Q′
∈ ∂�± by

v
Q
Q′,r (x) := vQ(r x + Q′)

rn−2

ω−(Br (Q′))

and the corresponding rescaled measure as

ω±

Q′,r (E) :=
ω±(r E + Q′)

ω±(Br (Q′))
. (2-2)

The rescalings v
Q
Q,r were first introduced by Kenig and Toro [2006]. In this paper, we shall employ the

following results by Kenig, Toro, Badger, and Engelstein.

Theorem 2.6 [Badger 2011; Engelstein 2016; Kenig and Toro 2006]. For v
Q
Q,r , ω±

Q,r as in Definition 2.5:

(1) Subsequential limits as r → 0 of the functions v
Q
Q,r converge to harmonic polynomials. Furthermore,

the degree of these polynomials is bounded and depends only upon the NTA constant, M0. [Kenig and
Toro 2006]

(2) Subsequential limits as r → 0 of the functions v
Q
Q,r converge to homogeneous harmonic polynomials.

Furthermore, the degree of homogeneity is unique along blow-ups. [Badger 2011]

(3) The rescalings v
Q
Q,r are uniformly locally Lipschitz with Lipschitz constant that only depends upon M0.

[Engelstein 2016]

(4) The measures ω±

Q,r are locally uniformly bounded. [Engelstein 2016]

In addition to the v
Q
Q′,r rescalings, we shall also use a different kind of rescaling.

Definition 2.7 [Cheeger et al. 2015]. Let f : B1(0) → R be a function in C(Rn). We define the rescaled
function Tx,r f of f at a point x ∈ B1−r (0) at scale 0 < r < 1 by

Tx,r f (y) :=
f (x + r y) − f (x)(

/
∫
∂ B1(0)

( f (x + r z) − f (x))2 dσ(z)
)1/2 . (2-3)

In the case that the denominator is zero, we define Tx,r f = ∞. We denote the limit as r → 0 by

Tx f (y) := lim
r→0

Tx,r f (y).

Definition 2.8. Let A(n, α, M0) be the set of functions v : Rn
→ R such that

v := v0
= h(0)u+

− u−,

where u± are the Green’s functions with poles at infinity associated to a two-sided NTA domain �±
∈

D(n, α, M0) and h = dω−/dω+, where ω± are the harmonic measures associated to u±.

Remark 2.9. For any fixed domain �±
∈ D(n, α, M0) there is a one-parameter family of associated

functions v ∈ A(n, α, M0) with {v = 0} = ∂�±. Indeed, cv0
0,1 ∈ A(n, α, M0) for all c > 0. To avoid

degeneracy because of this degree of freedom within the family A(n, α, M0), we shall make extensive
use of the normalizations in Definitions 2.5 and 2.7 in the arguments to come.

Finally, note that in general the functions v
Q
Q′,r will not belong to A(n, α, M0) if Q ̸= 0 and/or Q′

̸= Q.
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2C. Quantitative symmetry. The geometry we wish to capture with the blow-ups Tx f is encoded in
their translational symmetries.

Definition 2.10. Let f : Rn
→ R be a continuous function. We say f is 0-symmetric if

f (x) := cP+(x) − P−(x) (2-4)

for some c > 0, where P± are the positive and negative parts of a homogeneous harmonic polynomial P.
We will say that f is k-symmetric if f is 0-symmetric and there exists a k-dimensional subspace V such
that f (x + y) = f (x) for all x ∈ Rn and all y ∈ V .

The constant c > 0 is there to allow for the function to “hinge” along its zero set. We must allow this
kind of “hinging” to accommodate for the “nonalignment” issue in the blow-ups at Q ∈ ∂�±

\ {0}. See
Remark 3.2.

We now define a quantitative version of symmetry.

Definition 2.11. For any f ∈ C(Rn), f will be called (k, ϵ, r, p)-symmetric if there exists a k-symmetric
function P such that

(1) /
∫
∂ B1(0)

|P|
2 dV = 1,

(2) /
∫

B1(0)
|Tp,r f − P|

2 dV < ϵ.

Sometimes, we shall refer to a function f as being (k, ϵ)-symmetric in the ball Br (p) to mean f is
(k, ϵ, r, p)-symmetric.

This quantitative control allows us to define a quantitative stratification following [Cheeger and Naber
2013].

Definition 2.12 (quantitative singular strata). Let v ∈ A(n, α, M0) and 0 < r ≤ 1. We denote the
(k, ϵ, r)-singular stratum of v by Sk

ϵ,r (v), and we define it by

Sk
ϵ,r (v) := {x ∈ ∂�±

: v is not (k + 1, ϵ, s, x)-symmetric for all r ≤ s ≤ 1}. (2-5)

We shall also use the notation Sk
ϵ (v) for Sk

ϵ,0(v). It is immediate from the definitions that Sk
ϵ,r (v)⊂Sk′

ϵ′,r ′(v)

if k ≤ k ′, ϵ′
≤ ϵ, r ≤ r ′.

We can recover the qualitative stratification

Sk(v) := {x ∈ ∂�±
: Txv is not (k+1)-symmetric} =

⋃
η

⋂
r

Sk
η,r (v).

The set Sk(v) is the k-th stratum of Sn−2(v) = sing(∂�±). Furthermore, if x ∈ Sk(v), then there exists
an ϵ > 0 such that x ∈ Sk

ϵ (v).

Remark 2.13. Note that the singular set and its strata are all stable under the operations

Sk(v) = Sk(cv) and Sk(v) = Sk(cv+
− v−)

for all c ̸= 0. The former is a trivial consequence of the fact that Tp,r f = Tp,r (c f ). The latter follows
from Definition 2.10 and Theorem 2.6. In particular, for all v ∈ A(n, α, M0), we have Sk(v) = Sk(vQ)

for all Q ∈ ∂�±.
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Previous results on the singular set are summed up in the following theorem.

Theorem 2.14 [Badger et al. 2017; 2020; Engelstein 2016]. For v ∈ A(n, α, M0), the following hold:

(1) (Sn−2(v) \Sn−3(v)) ∩ ∂�±
= ∅. [Badger et al. 2020, Remark 7.2]

(2) There exists an ϵ > 0 such that sing(∂�±) = Sn−3(v) ∩ ∂�±
⊂ Sn−2

ϵ (v). [Engelstein 2016, Theo-
rem 1.1]

(3) dimM(sing(∂�±)) ≤ n − 3. [Badger et al. 2017, Theorem 7.5]

2D. Main results and outline of the proof. In this paper, we prove volume bounds on tubular neighbor-
hoods around the Sk

ϵ,r (v). We are able to show the following estimates.

Theorem 2.15. Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0. For every 0 < ϵ and 0 ≤ k ≤ n − 2 there is an
r0(n, α, M0, 0, ϵ) > 0 such that, for all 0 < r < r0 and any r ≤ R ≤ 1,

Vol(BR(B1/4(0) ∩Sk
ϵ,r (v))) ≤ C(n, α, M0, 0, ϵ)Rn−k. (2-6)

We have the following immediate corollary.

Corollary 2.16. Let v ∈ A(n, α, M0) and 0 ≤ k ≤ n − 2. For every 0 < ϵ,

dimM(Sk
ϵ (v)) ≤ k, (2-7)

and there exists a constant such that

M∗,k(Sk
ϵ (v) ∩ B1/4(0)) ≤ C(n, α, M0, 0, ϵ). (2-8)

Thanks to an ϵ-regularity result due to [Engelstein 2016] we are able to strengthen the conclusion of
Theorem 2.15 when we consider the full singular set.

Corollary 2.17. Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0. Recall that

sing(∂�±) = Sn−3
∩ ∂�±.

There exists 0 < ϵ = ϵ(M0, 0, α) such that sing(∂�±) ⊂ Sn−3
ϵ ; see Lemma 12.1. Thus, there is a constant

C = C(n, α, M0, 0) < ∞ such that

M∗,n−3(sing(∂�±) ∩ B1/4(0)) ≤ C(n, α, M0, 0). (2-9)

Proof. This follows immediately from Lemma 12.1 and Theorem 2.15. □

2E. Outline of the proof of Theorem 2.15. In order to prove a theorem of this kind, we must build a
cover of Sk

ϵ,r (v), and we must count how many balls we use. Therefore two things are critical: getting
geometric information about Sk

ϵ,r (v) and keeping track of how the balls pack.
The overall strategy of proof is similar to that of [De Lellis et al. 2018; Edelen and Engelstein 2019].

However, there are several major differences. First, the functions v ∈ A(n, α, M0) considered here
are not harmonic functions or minimizers of an energy. Sections 3–5 are devoted to showing that the
relevant analogs of harmonic results (e.g., compactness, almost monotonicity of the Almgren frequency,
local uniform boundedness of the Almgren frequency, quantitative rigidity for the Almgren frequency,
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cone-splitting, etc.) hold for v ∈ A(n, α, M0). In particular, we prove an estimate on the nondegeneracy
of the almost monotonicity for Almgren frequency in Lemma 4.9. Local geometric control on Sk

ϵ (v) is
obtained in Section 6.

However, geometric control is not enough to obtain Theorem 2.15. To obtain finite upper Minkowski
content bounds we need the discrete Reifenberg theorem from [Naber and Valtorta 2017]; see Theorem 9.1.
This requires that we prove a “frequency pinching” result (Lemma 8.2) in which we connect the drop in
the Almgren frequency over small scales with the β-numbers. The main challenge is to connect the lower
bound on the derivative of the Almgren frequency (Lemma 4.9) and employ the techniques of [De Lellis
et al. 2018] to obtain the necessary estimates on N (Q, r, v)− N (Q′, r, v); see Section 7.

In Section 9, we obtain the necessary packing estimates, following the framework of [Naber and
Valtorta 2017] to accommodate the estimates of Section 8. Sections 10 and 11 construct the covering
which proves the theorem according to the program laid out by [Naber and Valtorta 2017]. These are
included for completeness.

3. Compactness

The main goal of this section is to show that A(n, α, M0) enjoys sufficient compactness to allow for
limit-compactness arguments. Namely, we wish to establish that, for any sequence vi ∈ A(n, α, M0), we
can extract a subsequence which converges to a function v∞ and that N (p, r, vi ) → N (p, r, v∞); see
Corollary 4.3. This requires strong convergence in W 1,2

loc (Rn); see Lemmas 3.10 and 3.6.
On a technical level, we must extend the compactness implied by Theorem 2.6 for v

Q
Q,r to v

Q
Q′,r

and TQ′,rv. Throughout, we shall make essential use of “standard NTA results” such as the doubling of
harmonic measure and various comparability results, all of which may be found in [Jerison and Kenig
1982].

Remark 3.1. Recall that for E ⊂ ∂�±

ω+(E) =

∫
χE dω+ and ω−(E) =

∫
χE h dω+.

Furthermore, if ln(h) ∈ C0,α with ∥ln(h)∥α ≤ 0, then for all Q, Q′
∈ ∂�±

e−0|Q−Q′
|
α

h(Q′) ≤ h(Q) ≤ e0|Q−Q′
|
α

h(Q′). (3-1)

Using (3-1) in the above integral equations implies that in any compact set K , if v ∈ A(n, α, M0) with
∥ln(h)∥α ≤ 0, there is a constant C(K , 0, α) > 1 such that for any E ⊂ K ∩ ∂�±

C−1
≤

ω−(E)

ω+(E)
≤ C.

Remark 3.2. By Theorem 2.6, we know that subsequential limits as r → 0 of the functions v
Q
Q,r converge

to homogeneous harmonic polynomials. However, for Q, Q′
∈ ∂�± and Q ̸= Q′, it is not true in general

that v
Q
Q′,r converges to a homogeneous harmonic polynomial. As r → 0, the function v

Q
Q′,r will converge

to a 0-symmetric function (see Definition 2.10) where c = h(Q).
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Definition 3.3. We shall abuse the notation TQ,r from Definition 2.7 to denote translated and scaled
versions of various objects. For example, for sets this is the usual push-forward

TQ,r�
±

:=
�±

− Q
r

, TQ,r∂�±
:=

∂�±
− Q

r
.

However, for the measures ω±, we will denote by TQ,rω
± the harmonic measures associated to the

positive and negative parts of TQ,rv. The corkscrew points A±

R(Q) will always denote the corkscrew
point associated to Q at scale R in the appropriate domain �±. We shall use TQ,r A±

r ′ (Q′) to denote the
corkscrew point associated to TQ,r Q′

= (Q′
− Q)/r ∈ TQ,r∂�± at the scale r ′/r .

Lemma 3.4 (local Lipschitz bounds). Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0. For all Q ∈ ∂�±
∩ B2(0)

and all radii 0 < r ≤ 2, the function TQ,rv is locally Lipschitz with uniform constants depending only
upon M0, 0, α.

Proof. Recall that by Definition 2.5,

vQ,r = v0
Q,r =

rn−2

ω−(Br (Q))
v(r x + Q).

By NTA estimates, for all 0 < r , we have |v(A−
r (Q))| ∼ ω−(Br (Q))/rn−2 by constants which only

depend upon M0. Thus, vQ,r (TQ,r A−
r (Q)) is bounded above and below by constants which only depend

upon M0. By constructing Harnack chains from TQ,r A−
r (Q) to TQ,r A−

M0r (Q) we can find a point
y ∈ ∂ B1(0) such that y ∈ Bri (yi ) ⊂ TQ,r�

− and dist(yi , TQ,r∂�±) ≥ (2M2
0 )−1. Applying Harnack’s

inequality to the function −v in a chain of balls which connect TQ,r A−
r (Q) and y in �−, we have

|vQ,r (y)| ∼M0 |vQ,r (TQ,r A−
r (Q))|. That is, |vQ,r (y)| is bounded above and below by constants that only

depend upon M0. Thus, by the uniform Lipschitz property of vQ,r guaranteed by Theorem 2.6, we can
find a ball of radius 0 < c such that |vQ,r | ≥ c(M0) on ∂ B1(0)∩ Bc(y). Thus, H(0, 1, vQ,r )≥ c(M0). Now,
recalling Definition 2.7 and the fact that T0,1v = T0,1(cv) for any constant c > 0, we have TQ,rv = T0,1vQ,r .
Since we assumed ∥ln(h)∥α ≤ 0, Q ∈ B2(0), and 0 < r ≤ 2, the vQ,r are locally uniformly Lipschitz by
Theorem 2.6. Thus H(0, 1, vQ,r )≥ c(M0) implies T0,1vQ,r = TQ,rv is also locally uniformly Lipschitz. □

Lemma 3.5 (local nondegeneracy). Let Q ∈ ∂�± and 0 < r < ∞. Let v ∈ A(n, α, M0) be such that
∥ln(h)∥α ≤ 0. The rescaling TQ,rv satisfies the following minimum growth conditions. For all 0 < ϵ,
there is a constant C = C(M0, α, 0, ϵ, R) such that, if p ∈ BR(0) with dist(p, {TQ,r∂�±

} ∩ BR(0)) > ϵ,

|TQ,rv(p)| > C.

Proof. As in Lemma 3.4, TQ,rv(TQ,r A−
r (Q)) is bounded above and below by constants that only

depend upon the NTA constant M0, 0, and R. Thus, by Harnack chains between TQ,r A−
r (Q) and

p ∈ TQ,r�
−

∩ BR(0) such that dist(p, TQ,r∂�±
∩ BR(0)) > ϵ, Harnack’s inequality applied to −TQ,rv

implies that |TQ,rv(p)| > C . Note that C only depends upon R, M0, and ϵ.
To get the same inequality for p ∈ TQ,r�

+
∩ BR(0), we recall that standard NTA results compare

TQ,rv(TQ,r A+
r (Q)) to TQ,rω

+(B1(0)). By Remark 3.1, TQ,rω
+(B1(0)) ∼ TQ,rω

−(B1(0)) by constants
which only depend upon R, 0, α, and the NTA constants in the definition of the class A(n, α, M0).
Applying the same Harnack chain and Harnack inequality argument as above gives the lemma. □
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Lemma 3.6 (compactness). Let {vi } be a sequence of functions in A(n, α, M0) such that ∥ln(h)∥α ≤ 0.
Let {Qi } ⊂ ∂�±

i ∩ B1(0) and 0 < ri ≤ 1. There is a subsequence {vj } and a Lipschitz function v∞ ∈ W 1,2
loc

such that TQ j ,rj vj → v∞ in the following senses:

(1) TQ j ,rj v j → v∞ in Cloc(R
n).

(2) TQ j ,rj vj → v∞ in L2
loc(R

n).

(3) ∇TQ j ,rj vj ⇀ ∇v∞ in L2
loc(R

n
; Rn).

Proof. To see (1), we recall Lemma 3.4 and the fact that TQi ,ri vi (0) = 0. By the Arzelà–Ascoli
theorem there exists a subsequence such that TQ j ,rj vj → v∞ in Cloc(R

n). This implies convergence
in L2

loc(R
n). Being uniformly locally Lipschitz and uniformly bounded also implies that the functions

{TQ j ,rj vi } are bounded in W 1,2
loc (Rn). By Rellich compactness, there exists a further subsequence such

that ∇TQ j ,rj vj ⇀ ∇v∞ in L2
loc(R

n
; Rn). □

Before we can prove the strong convergence TQ j ,rj vj → v∞ in W 1,2
loc (Rn), we need to control the upper

Minkowski dimension of {v∞ = 0}.

Lemma 3.7. Under the assumptions of Lemma 3.6, if TQi ,ri vi → v∞ in Cloc(R
n), then TQi ,ri ∂�±

→

{v∞ = 0} locally in the Hausdorff metric on compact subsets.

Proof. We argue by contradiction. Suppose that there exists an ϵ > 0, a radius 0 < R, and a sequence
of functions TQi ,ri vi for which we can find a sequence of points xi ∈ BR(0) ∩ {TQi ,ri vi = 0} such
that dist(xi , {v∞ = 0}) > ϵ. Taking a subsequence which converges in Cloc(R

n), we may assume that
xi → x∞ ∈ BR(0) \ Bϵ({v∞ = 0}). Now, convergence in Cloc(R

n) implies that TQi ,ri vi (x∞) → v∞(x∞).
Furthermore, since the TQi ,ri vi are uniformly locally Lipschitz, xi → x∞, and xi ∈ {TQi ,ri vi = 0}, we have

TQi ,ri vi (x∞) → 0.

This implies x∞ ∈ {v∞ = 0}, which contradicts our previous assertion that x∞ ∈ BR(0) \ Bϵ({v∞ = 0}).
The other direction goes the same way. Suppose that we could find a subsequence of TQi ,ri vi → v∞

such that there was a point, x ∈ {v∞ = 0} ∩ BR(0), for which

dist(x, {TQi ,ri vi = 0} ∩ BR(0)) > ϵ

for all i = 1, 2, . . . . By Lemma 3.5, we know that TQi ,ri vi (x) > C . This contradicts convergence in
Cloc(R

n), however, since v∞(x) = 0. □

Theorem 3.8 [Kenig and Toro 2006, Theorem 4.1]. In general, if ∂�±

i ∈ D(n, α, M0) converge to a
closed set A locally in the Hausdorff metric on compact subsets, then A divides Rn into two unbounded,
two-sided NTA domains with NTA constant bounded by 2M0.

We must now bound the upper Minkowski dimension of A = {v∞ = 0}. We do so crudely, using only
that A is the mutual boundary of a pair of two-sided NTA domains. That is, using the machinery of
porous sets we are able to prove the following lemma.

Lemma 3.9. Let 6 ⊂ Rn be the mutual boundary of a pair of unbounded two-sided NTA domains with
NTA constant 1 < M0. Then, there exists 0 < ϵ = ϵ(M0, n) such that dimM(E) ≤ n − ϵ.
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This is an elementary fact which seems to be omitted in the literature. We defer the proof to the
Appendix. We now prove strong convergence.

Lemma 3.10 (strong compactness). Let {vi } be a sequence of functions in A(n, α, M0) such that
∥ln(h)∥α ≤ 0. Let {Qi } ⊂ ∂�±

i ∩ B1(0) and 0 < ri < 1. There is a subsequence {vj } and a Lipschitz
function v∞ ∈ W 1,2

loc such that TQ j ,rj vj → v∞ in the following senses:

(1) TQ j ,rj v j → v∞ in Cloc(R
n).

(2) TQ j ,rj vj → v∞ in W 1,2
loc (Rn).

Proof. The only new claim is that ∇TQ j ,rj vj → ∇v∞ in L2
loc(R

n
; Rn). By Lemma 3.7, Theorem 3.8, and

Lemma 3.9, we have that dimM({v∞ = 0}) ≤ n − ϵ. In particular, then, Hn(Br ({v∞ = 0} ∩ BR(0))) → 0
as r → 0 (see [Mattila 1995] for fundamental facts about Minkowski content, dimension and Hausdorff
measure). Thus, for any θ > 0 we can find an r(θ) > 0 such that Hn(Br ({v∞ = 0} ∩ BR(0))) ≤ θ . This
allows us to estimate

lim sup
j→∞

∥∇TQ j ,rj vj∥
2
L2(BR(0))

= lim sup
j→∞

(∫
BR(0)∩Br ({v∞=0})

|∇TQ j ,rj vj |
2 dV +

∫
BR(0)\Br ({v∞=0})

|∇TQ j ,rj vj |
2 dV

)
≤ lim

j→∞

∫
BR(0)\Br ({v∞=0})

|∇TQ j ,rj vj |
2 dV + Cθ

≤ ∥∇v∞∥
2
L2(BR(0))

+ Cθ,

where the penultimate inequality uses the fact that vj are uniformly Lipschitz, and the last equality follows
from convergence in C(BR+r (0) \ Br/2({v∞ = 0})) implying C∞(BR(0) \ Br ({v∞ = 0})) convergence
because the TQ j ,rj vj are harmonic functions in this region. Since θ > 0 was arbitrary, we have that
lim sup j→∞∥∇TQ j ,rj vj∥

2
BR(0) ≤ ∥∇v∞∥

2
L2(BR(0))

. The other inequality follows from the same trick or
from lower semicontinuity. Therefore, we have the equality

lim
j→∞

∥∇TQ j ,rj vj∥
2
L2(BR(0))

= ∥∇v∞∥
2
L2(BR(0))

.

Thus, by weak convergence and norm convergence we have

lim
j

∥∇TQ j ,rj vj − ∇v∞∥
2
L2(BR(0))

= lim
j

∫
BR(0)

|∇TQ j ,rj vj − ∇v∞|
2 dV

= lim
j

∥∇TQ j ,rj vj∥
2
L2(BR(0))

+ ∥∇v∞∥
2
L2(BR(0))

− 2 lim
j

⟨∇TQ j ,rj vj , ∇v∞⟩L2(BR(0))

= 2∥∇v∞∥
2
L2(BR(0))

− 2∥∇v∞∥
2
L2(BR(0))

= 0. □

Because the functions v
Q
p,r are merely Lipschitz, we will often need to work with a mollified version of

them. We will use the convention that vϵ = v ⋆φϵ for φ ∈ C∞ a mollifying function (meaning spt(φ) ⊂ B1

and
∫

φ dV = 1).
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Corollary 3.11. Let v ∈ A(n, α, M0) and vϵ = v ⋆ φϵ be a mollification of v. By standard mollification
results,

vϵ → v in W 1,2
loc (Rn), Cloc(R

n) as ϵ → 0.

4. Almost monotonicity of the Almgren frequency function

One of the key tools of this paper will be the Almgren frequency function (introduced in [Almgren 1979]).

Definition 4.1 (Almgren frequency function). For any Lipschitz function v : Rn
→ R, radius r > 0, and

point Q ∈ ∂�±, the Almgren frequency function is defined as

N (p, r, v) = r
D(p, r, v)

H(p, r, v)
, (4-1)

where

H(p, r, v) =

∫
∂ Br (p)

|v|
2 dσ, D(p, r, v) =

∫
Br (p)

|∇v|
2 dV . (4-2)

Remark 4.2. The Almgren frequency function is invariant in the following senses. For a, b ∈ R with
a, b ̸= 0, if w(x) = av(bx), then N (0, r, v) = N (0, b−1r, w).

If u is harmonic then N (p, r, u) is monotonically nondecreasing. If additionally one assumes that
u(p) = 0 then limr→0 N (p, r, u) = N (p, 0, u) ≥ 1 is the degree of the leading homogeneous harmonic
polynomial in the Taylor expansion of u at the point p.

4A. Consequences of Section 3 for the Almgren frequency function. Before turning to the main results
of this section, we note that the results of Section 3 immediately imply the following corollaries.

Corollary 4.3. Under the hypotheses of Lemma 3.6, there exists a subsequence such that, for all r ∈ (0, 2],

N (0, r, TQ j ,rj vj ) → N (0, r, v∞).

Moreover, if vϵ = v⋆φ for a mollifier φ as in Corollary 3.11 then, for all Q ∈ B1(0)∩∂�± and 0 < r ≤ 1,

lim
ϵ→0

N (Q, r, vϵ) = N (Q, r, v).

Proof. This follows from the convergence of the numerator and the denominator; the former follows from
Lemma 3.6 (2) and the latter from Lemma 3.6 (1). For the convolution, both follow from Corollary 3.11. □

Corollary 4.4. Let v ∈ A(n, α, M0) as above. There is a function C(α, 0, M0) such that, if ∥ln(h)∥α ≤ 0

then for all Q ∈ B1(0) ∩ ∂�± and all r ∈ (0, 1],

N (Q, r, v) ≤ C(0, α, M0). (4-3)

Proof. We recall that the Almgren frequency function is invariant under rescalings of the function v.
Therefore, N (0, 1, vQ,r ) = D(0, 1, TQ,rv) is bounded by Lemma 3.4 and the constant only depends upon
M0, 0, and α. □
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4B. Quantitative almost monotonicity. This section is dedicated to providing a quantitative version of
the following result of Engelstein [2016].

Lemma 4.5 [Engelstein 2016]. Let v ∈ A(n, α, M0) and Q ∈ K ⋐ ∂�±. There exists a constant C < ∞

(which can be taken uniformly over K and r ∈ (0, 1]) such that

lim inf
ϵ→0

N (Q, r, vQ
ϵ ) − N (Q, 0, vQ

ϵ ) > −Crα.

The quantitative version of this result which we prove below in Lemma 4.9 is essential for connecting
the Almgren frequency to Jones’ beta numbers in the “frequency pinching” result later in Lemma 8.2. It
comes from examining the derivative of the Almgren frequency function in the r variable.

Throughout this section, we shall use the notation (vϵ)ν(y) = ∇vϵ(y) · ν(y), where ν(y) is the unit
normal to ∂ Br (Q) at y. By differentiation (see [Engelstein 2016, Section 5.1] for details of the derivation),

H(Q, r, vϵ)
2 d

dr
N (Q, r, vϵ) = 2r

(∫
∂ Br (Q)

(vϵ)
2
ν dσ

∫
∂ Br (Q)

|vϵ |
2 dσ −

[∫
∂ Br (Q)

vϵ(vϵ)ν dσ

]2 )
+ 2r

(∫
Br (Q)

vϵ1vϵ dV
)(∫

∂ Br (Q)

vϵ(vϵ)ν dσ

)
− 2H(Q, r, vϵ)

∫
Br (Q)

⟨x − Q, ∇vϵ⟩1vϵ dV . (4-4)

We write the decomposition d
dr N (Q, r, vϵ) = N ′

1(Q, r, vϵ) + N ′

2(Q, r, vϵ) with

N ′

1(Q, r, vϵ) := H(Q, r, vϵ)
−22r

(∫
∂ Br (Q)

(vϵ)
2
ν dσ

∫
∂ Br (Q)

|vϵ |
2 dσ −

[∫
∂ Br (Q)

vϵ(vϵ)ν dσ

]2 )
.

We call what remains N ′

2(Q, r, vϵ):

N ′

2(Q, r, vϵ) := H(Q, r, vϵ)
−2

[
2r

(∫
Br (Q)

vϵ1vϵ dV
)(∫

∂ Br (Q)

vϵ(vϵ)ν dσ

)
−2H(Q, r, vϵ)

∫
Br (Q)

⟨x − Q, ∇vϵ⟩1vϵ dV (x)

]
.

Note that by the Cauchy–Schwarz inequality, N ′

1(Q, r, vϵ) ≥ 0.

Lemma 4.6. Let v ∈ A(n, α, M0), Q ∈ ∂�±
∩ B1(0) and 0 < r ≤ 1. Then, if C = Lip(v|B2(0)),

N ′

1(Q, r, v) = 2
∫

∂ Br (Q)

|∇v · (y − Q) − N (Q, r, v)v|
2

H(Q, |y − Q|, v)|y − Q|
dσ(y)

≥
2
C

∫
∂ Br (Q)

|∇v · (y − Q) − N (Q, r, v)v|
2

|y − Q|n+2 dσ(y). (4-5)

Proof. Recall that for the Cauchy–Schwarz inequality, we have, for λ = ⟨u, v⟩/∥v∥
2,

∥v∥
2
∥u − λv∥

2
= ∥u∥

2
∥v∥

2
− |⟨u, v⟩|

2.
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Choosing

u = ∇vϵ ·

(
y − Q

|y − Q|

)
and v = vϵ,

using the divergence theorem on λ, and letting ϵ → 0, we have

N ′

1(Q, r, v) = H(Q, r, v)−12r
(∫

∂ Br (Q)

∣∣∣(v)ν −
1
r

N (Q, r, v)v

∣∣∣2
dσ

)
.

This proves the equality. To prove the lower bound, we let C = Lip(T0,1v|B2(0)) and observe that
H(Q, r, T0,1vϵ) ≤ Crn+1. Plugging this into the above equation, we get the desired inequality

N ′

1(Q, r, v) ≥
2
C

∫
∂ Br (Q)

|∇T0,1v(y) · (y − Q) − N (Q, r, v)T0,1v(y)|2

|y − Q|n+2 dσ(y). □

In order to bound the parts of N ′

2(Q, r, vϵ), we recall some estimates from [Engelstein 2016].

Lemma 4.7 [Engelstein 2016, Lemmata 5.4, 5.5, and 5.6]. Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0, and
let Q ∈ B1(0) ∩ ∂�±. For any 0 < s and ϵ ≪ s,∫

∂ Bs(Q)

|vϵ |
2 dσ ≥ C(M0)

ω−(Bs(Q))2

sn−3 , (4-6)∣∣∣∣∫
Bs(Q)

vϵ1vϵ dV
∣∣∣∣ ≤ C∥ln(h)∥αsα ω−(Bs(Q))2

sn−2 , (4-7)∣∣∣∣∫
Bs(Q)

⟨∇vϵ, x − Q⟩1vϵ dV (x)

∣∣∣∣ ≤ C∥ln(h)∥αsα ω−(Bs(Q))2

sn−2 , (4-8)∣∣∣∣∫
∂ Bs(Q)

vϵ(vϵ)ν dσ

∣∣∣∣ ≤ C
ω−(Bs(Q))2

sn−1 , (4-9)

where C = C(α, M0, 0).

Proof. Let v ∈ A(n, α, M0) be given. Recall that v = v0. Engelstein [2016, Lemmata 5.4, 5.5, and 5.6]
proves the claim for the functions v

Q
Q,1. Hence, for any such v and any such Q, the integral estimates

hold for u(x) = vQ(x + Q) as well. However, in general, such v0( · + Q) are not in A(n, α, M0) because
h(0) may not be 0. But,

v0(x + Q) = cu+(x + Q) − u−(x + Q)

is an element of A(n, α, M0) for some constant e−0|Q|
α

≤ c ≤ e0|Q|
α

as in (3-1). Using this identity and
following the proofs of [Engelstein 2016, Lemmata 5.4, 5.5, and 5.6] gives the claim. □

Remark 4.8. Recalling our expansion of d
dr N (r, p, vϵ) in (4-4) and the bounds contained in Lemma 4.7

we have that, for v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0, ϵ ≪ r , and Q ∈ B1(0) ∩ ∂�±,

|N ′

2(Q, r, vϵ)| ≤ C1∥ln(h)∥αrα−1, (4-10)

where C1 = C(α, M0, 0).

We now state the main result of this section.
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Lemma 4.9. Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0, and let Q ∈ B1(0)∩ ∂�±. For any 0 ≤ s < S ≤ 1,

2
C

∫
As,S(Q)

|∇T0,1v(y) · (y − Q) − N (Q, |y − Q|, T0,1v)T0,1v(y)|2

|y − Q|n+2 dV (y)

≤ 2
∫

As,S(Q)

|∇v(y) · (y − Q) − N (Q, |y − Q|, v)v(y)|2

H(Q, |y − Q|, v)|y − Q|
dV (y)

≤ N (Q, S, v)− N (Q, s, v)+ C1∥ln(h)∥α Sα, (4-11)

where C1 = C1(α, M0, 0) and C(M0, 0, α) = Lip(T0,1v|B2(0)).

Proof. We begin by normalizing v. Since N (r, p, v) = N (r, p, cv) for any c ̸= 0, we may work with T0,1v.
Note that by Remark 4.8 and (4-5), N (Q, r, v) is continuous in r and hence we may find an 0 ≤ s < s1

such that
|N (Q, s, v)− N (Q, s1, v)| ≤ ∥ln(h)∥α Sα.

By Corollaries 3.11 and 4.3 we can find an ϵ ≪ s small enough that

|N (Q, s1, vϵ) − N (Q, s1, v)| < ∥ln(h)∥α Sα and |N (Q, S, vϵ) − N (Q, S, v)| < ∥ln(h)∥α Sα.

Thus, we reduce to estimating N (Q, S, T0,1vϵ) − N (Q, s1, T0,1vϵ):

N (Q, S, T0,1vϵ) − N (Q, s1, T0,1vϵ) =

∫ S

s1

d
dr

N (Q, r, T0,1vϵ) dr

=

∫ S

s1

N ′

1(Q, r, T0,1vϵ) dr +

∫ S

s1

N ′

2(Q, r, T0,1vϵ) dr.

Recalling Remark 4.8, Lemma 4.6, and letting ϵ → 0 gives the lemma. □

Using these estimates it is possible to control the drop across scales from the total drop.

Lemma 4.10. If v ∈A(n, α, M0) with ∥ln(h)∥α ≤0 and Q ∈ B1(0)∩∂�±, then for any 0 ≤ r ≤ s < S ≤ R

N (Q, S, v)− N (Q, s, v) ≤ 2C1∥ln(h)∥α Rα
+ |N (Q, R, v)− N (Q, r, v)|.

Proof. This is essentially a “rays of the sun” argument. To wit,

N (Q, S, v)− N (Q, s, v) =

∫ S

s
N ′

1(Q, ρ, v) + N ′

2(Q, ρ, v) dρ

≤

∫ S

s
N ′

1(Q, ρ, v) + |N ′

2(Q, ρ, v)| dρ

≤

∫ R

r
N ′

1(Q, ρ, v) + |N ′

2(Q, ρ, v)| dρ

≤ 2
∫ R

r
|N ′

2(Q, ρ, v)| dρ + |N (Q, R, v)− N (Q, r, v)|.

The bounds in Remark 4.8 give the desired statement. □
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We now turn our attention to proving a “doubling” property for H(p, r, v). This is an analog of
classical harmonic results for the Almgren frequency function, modified for our almost harmonic functions
v ∈ A(n, α, M0).

Lemma 4.11 (H(r, p, vϵ) is almost doubling). Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0, and let Q ∈

B1/2(0) ∩ ∂�±. For any 0 < s < S ≤ 1, if ϵ ≪ s is sufficiently small,

H(Q, S, vϵ) ≤

( S
s

)(n−1)+2(N (Q,S,vϵ)+C Sα)

exp
(2C

α
[Sα

− sα
]

)
H(Q, s, vϵ), (4-12)

where C = ∥ln(h)∥αC1(M0, α, 0) and C1 is as in Remark 4.8.

Proof. First, observe that

d
dr

H(Q, r, vϵ) =
n−1

r

∫
∂ Br (Q)

|vϵ |
2 dσ + 2

∫
Br (Q)

|∇vϵ |
2 dV + 2

∫
Br (Q)

vϵ1vϵ dV .

Next, we consider the identity

ln
(

H(Q, S, vϵ)

H(Q, s, vϵ)

)
= ln(H(Q, S, vϵ)) − ln(H(Q, s, vϵ))

=

∫ S

s

H ′(Q, r, vϵ)

H(Q, r, vϵ)
dr =

∫ S

s

n−1
r

+
2
r

N (Q, r, vϵ) + 2
(∫

Br (Q)
vϵ1vϵdV∫

∂ Br (Q)
(vϵ)2dσ

)
dr.

We bound N (r, Q, vϵ) by Lemma 4.9. We bound the last term using Lemma 4.7. Plugging in these
bounds, we have, for ϵ ≪ s,

ln
(

H(Q, S, vϵ)

H(Q, s, vϵ)

)
≤ [(n − 1) + 2(N (Q, S, vϵ) + C Sα)] ln(r)|S

s +
2C
α

rα
∣∣∣S

s
.

Evaluating and exponentiating gives the desired result. □

Remark 4.12. Because H(Q, r, vϵ) → H(Q, r, v) as ϵ → 0 and N (Q, r, vϵ) → N (Q, r, v) as ϵ → 0
(a consequence of Corollary 3.11), we have the following inequality. For all v ∈ A(n, α, M0) with
∥ln(h)∥α ≤ 0, Q ∈ B1/2(0) ∩ ∂�±, and 0 < s < S ≤ 1,

H(Q, S, v) ≤

( S
s

)(n−1)+2(N (Q,S,v)+C Sα)

exp
(2C

α
[Sα

− sα
]

)
H(Q, s, v). (4-13)

5. Quantitative rigidity

Throughout the rest of the paper, we shall need to use limit-compactness arguments. The key will be that
v → u for some harmonic function u as ∥ln(h)∥α → 0. We make this rigorous in the following lemma.

Lemma 5.1 (convergence to harmonic functions). Let vi ∈ A(n, α, M0) with ∥ln(hi )∥α → 0. Assume
that Qi ∈ B1(0) ∩ ∂�±

i and {ri } ⊂ (0, 1]. Then there exists a function v∞ and a subsequence vj such that
TQ j ,rj vj → v∞ in the sense of Lemma 3.10 and v∞ is harmonic.
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Proof. Lemma 3.10 gives a subsequence TQ j ,rj vj which converges strongly in W 1,2
loc (Rn) to a function v∞.

We claim that v∞ is harmonic. To see this, we investigate the behavior of its mollifications v∞,ϵ = v∞ ⋆φϵ .
Observe that by Young’s inequality,

∥TQ j ,rj vj,ϵ − v∞,ϵ∥L2(B2(0)) ≤ ∥φϵ∥L1(B2(0))∥TQ j ,rj vj − v∞∥L2(B2(0)).

Thus, for any ϵ > 0 we have TQ j ,rj vj,ϵ → v∞,ϵ as j → ∞ strongly in L2(B2(0)). By a similar argument
applied to ∇TQ j ,rj vj,ϵ , we also have that ∇TQ j ,rj vj,ϵ → ∇v∞,ϵ in L2(B2(0); Rn) as j → ∞. Furthermore,
by our uniform Lipschitz bounds, TQ j ,rj vj,ϵ → v∞,ϵ as j → ∞ in C(B2(0)) as well.

We will show that for ϵ ≪ 1 the function v∞,ϵ is harmonic. First, for any test function ξ ∈ C∞
c (B2(0)),

we have ∣∣∣∣∫
B2(0)

ξ(1TQ j ,rj vj,ϵ − 1v∞,ϵ) dV
∣∣∣∣ =

∣∣∣∣∫
B2(0)

1ξ(TQ j ,rj vj,ϵ − v∞,ϵ) dV
∣∣∣∣

≤ ∥1ξ∥L2(B2(0))∥TQ j ,rj vj,ϵ − v∞,ϵ∥L2(B2(0)).

Since TQ j ,rj vj,ϵ → v∞,ϵ strongly in L2(B2(0)), we have 1TQ j ,rj vj,ϵ ⇀ 1v∞,ϵ in L2(B2(0)).
However, by assumption, we also have∣∣∣∣∫

B2(0)

ξ1TQ j ,rj vj,ϵ dV
∣∣∣∣ ≤

∫
B2(0)

|ξϵ |

∣∣∣∣h j (0)

h j (x)
− 1

∣∣∣∣ dTQ j ,rj ω
−

≤ C max
B2(0)

|ξ | · ∥ln(h j )∥αTQ j ,rj ω
−(B3(0)),

where TQ j ,rj ω
± are the interior and exterior harmonic measures associated to TQ j ,rj vj . Note that

TQ j ,rj ω
−

̸= ω−

Q j ,rj
, but, by Definitions 2.4 and 2.7 and Lemma 3.4, there is a constant c′

= c′(M0)

such that TQ j ,rj ω
−

= cω−

Q j ,rj
and c ≤ c′. Since ω−

rj ,Q j
(B3(0)) are uniformly bounded by Theorem 2.6, the

TQ j ,rj ω
−(B3(0)) are, too. Thus, as j → ∞, we have that 1TQ j ,rj vj,ϵ ⇀ 0 in L2(B2(0)) as well. Thus,

1v∞,ϵ = 0 weakly in L2(B2(0)). Since v∞,ϵ ∈ C∞(B2(0)), we have that v∞,ϵ is harmonic.
Since v∞ is Lipschitz continuous, v∞,ϵ → v∞ in C(BR(0)) as ϵ → 0. Thus, for all x ∈ BR(0) we have

both that v∞,ϵ(x) → v∞(x) as ϵ → 0 and that

/

∫
Br (x)

v∞,ϵ(y) dV (y) → /

∫
Br (x)

v∞(y) dV (y)

as ϵ → 0. Thus, v∞ must satisfy the mean value property and is therefore harmonic. □

Now that we have Lemma 5.1, we can prove a quantitative rigidity result. Loosely speaking, it says
that if a function v ∈ A(n, α, M0) behaves like a homogeneous harmonic polynomial with respect to the
Almgren frequency (in the sense that it has small drop across scales), then it must be close to being a
homogeneous harmonic polynomial. This will connect the behavior of the Almgren frequency to our
quantitative stratification.

Lemma 5.2 (quantitative rigidity). Let v ∈A(n, α, M0), as above. Let Q ∈ B1(0)∩∂�±. For every δ > 0,
there is an γ = γ (n, α, M0, δ) > 0 such that if ∥ln(h)∥α ≤ γ and

N (Q, 1, v)− N (Q, γ, v) ≤ γ,

then v is (0, δ, 1, Q)-symmetric.
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Proof. We argue by contradiction. Assume that there exists a δ > 0 such that there is a sequence of
functions vi ∈ A(n, α, M0) with ∥ln(hi )∥α ≤ 2−i for which there exists a point Qi ∈ B1(0) ∩ ∂�±

i with

N (Qi , 1, vi ) − N (Qi , 2−i , vi ) ≤ 2−i,

but where no vi is (0, δ, 1, Qi )-symmetric.
By Lemma 5.1 there exists a subsequence TQ j ,1vj which converges strongly in W 1,2

loc to a harmonic
function v∞. Therefore N (Q, r, v∞) is monotone increasing. Further, by Corollary 4.3 we know that
lim j→∞ N (0, r, TQ j ,1vj ) = N (0, r, v∞) for all 0 < r ≤ 1. By Lemma 4.10 and the aforementioned
convergence, we have that

N (0, 1, v∞) − N (0, 0, v∞) = 0.

This implies that v∞ is a homogeneous harmonic polynomial (see, for example, the proof of [Han and
Lin 1994, Theorem 2.2.3]). Thus, we arrive at our contradiction, since the TQ j ,1vj were assumed to stay
away from all such functions in L2(B1(0)). □

Remark 5.3. Since N (Q, r, v) is scale-invariant, Lemma 5.2 is also scale-invariant in the sense that if
N (Q, r, v)− N (Q, γ r, v) ≤ γ and ∥ln(h)∥α ≤ γ , then v is (0, δ, r, Q)-symmetric.

6. A dichotomy

The proof technique in the rest of the paper is an adaptation of techniques developed by Naber and
Valtorta [2017].

This section is dedicated to proving a lemma that gives us geometric information on the quantitative
strata. Roughly, it says that if we can find (k+1) points that are well-separated and the Almgren frequency
has very small drop at these points, then the quantitative strata is contained in a neighborhood of the
affine k-plane which contains them and we have control on the Almgren frequency for all points in that
neighborhood. This is a quantitative analog of the following classical result.

Proposition 6.1. Let P : Rn
→ R be a homogeneous harmonic polynomial. Let 0 ≤ k ≤ n − 2. If P is

translation-invariant with respect to some k-dimensional subspace V and P is homogeneous with respect
to some point x ̸∈ V , then P is (k+1)-symmetric with respect to span{x, V }.

See [Cheeger et al. 2015, Proposition 2.11] or [Han and Lin 1994, proof of Theorem 4.1.3].
We shall use the notation ⟨y0, . . . , yk⟩ to denote the k-dimensional affine linear subspace which passes

through y0, . . . , yk .

Lemma 6.2. Let v ∈ A(n, α, M0) and 0 < ϵ be fixed. Let γ, η′, ρ > 0 be fixed, then there exist constants
0 < η0(n, α, E0, ϵ, η

′, γ, ρ) ≪ ρ and 0 < β(n, α, E0, ϵ, η
′, ρ) < 1 such that, if

(1) E = supQ∈B1(0)∩∂�± N (Q, 2, v) ∈ [0, E0],

(2) there exist points {y0, y1, . . . , yk} ⊂ B1(0) ∩ ∂�± satisfying yi ̸∈ Bρ(⟨y0, . . . , yi−1, yi+1, . . . , yk⟩)

and
N (yi , γρ, v) ≥ E − η0

for all i = 0, 1, . . . , k, and
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(3) ∥ln(h)∥α ≤ η0,

then, writing ⟨y0, . . . , yk⟩ = L , for all Q ∈ Bβ(L) ∩ B1(0) ∩ ∂�±,

N (Q, γρ, v) ≥ E − η′

and
Sk

ϵ,η0
∩ B1(0) ⊂ Bβ(L).

Proof. There are two conclusions. We argue by contradiction for both. Suppose that the first claim fails.
That is, assume that there exist constants γ, ρ, η′ > 0 for which there exists a sequence vi ∈ A(n, α, M0)

with supQ∈B1(0) N (Q, 2, vi ) = Ei ∈ [0, E0] and points {yi, j } j satisfying (2) above, with ∥ln(hi )∥α ≤ 2−i,
η0 < 2−i, and a sequence βi ≤ 2−i such that, for each i , there exists a point xi ∈ Bβi (L i )∩ B1(0)∩ ∂�±

i
for which N (xi , γρ, vi ) < E − η′.

By Lemma 5.1, there exists a subsequence vi such that T0,1vi converges to a harmonic function v∞ in
the senses outlined in the lemma. Further, by the compactness of [0, E0], B1(0), and the Grassmannian,
we may assume that

Ei → E, yi, j → yj , L i → L , xi → x∞ ∈ B1(0) ∩ ∂�±

∞
,

where ∂�±
∞

= {v∞ = 0} is a two-sided NTA domain with constant 2M0 by Theorem 3.8. Note that the
convergence given by Lemma 5.1 implies

sup
Q∈B1(0)

N (Q, 2, v∞) ≤ E, N (x∞, γρ, v∞) < E − η′,

and
N (yj , γρ, v∞) ≥ E

for all j = 0, 1, . . . , k. Because v∞ is harmonic, N (p, r, v∞) is nondecreasing in r for all p ∈ B2(0).
Therefore, N (yi , r, v∞) = E for all yi and all r ∈ [γρ, 2]. Thus, v∞ is a 0-symmetric function in
B2(yj ) \ Bγρ(yj ) for each yj . By unique continuation, v∞ is 0-symmetric with respect to yj for each j .
Because the yj ∈ B1(0) are in general position, by Proposition 6.1, v∞ is translation-invariant along L in
B2(0). Since x∞ ∈ L ∩ B1(0), this implies that N (x∞, 0, v∞) = E . But this contradicts N (x∞, γρ, v∞) <

E − η′, since N (x∞, r, v∞) must be nondecreasing in r . This proves the first claim.
Now assume that the second claim fails. That is, fix β > 0 and assume that there is a sequence

vi ∈A(n, α, M0) with supQ∈B1(0) N (Q, 2, vi ) = Ei ∈ [0, E0] and points {yi, j } j satisfying (2) above, with
∥ln(hi )∥α ≤ 2−i and a sequence ηi → 0 such that for each i there exists a point xi ∈ Sk

ϵ,ηi
(vi )∩ B1(0) \

Bβ(L i ).
Again, we extract a subsequence as above. The function v∞ will be harmonic and k-symmetric

in B1+δ(0), as above, and xi → x ∈ B1(0) \ Bβ(L). Note that by our definition of Sk
ϵ,ηi

(vi ) and the
convergence in Lemma 5.1, x ∈ Sk

ϵ/2(v∞).
Since v∞ is k-symmetric and L is its k-dimensional spine, every blow-up at a point in B1(0) \ Bβ(L)

will be (k+1)-symmetric. Thus, there must exist a radius r for which v∞ is
(
k + 1, 1

4ϵ, r, x
)
-symmetric.

This contradicts the conclusion that x ∈ Sk
ϵ/2(v∞). □
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Consider the following dichotomy: either we can find (k+1) well-separated points yi j with very small
drop in frequency or we cannot. In the former case, Lemma 6.2 implies that the Almgren frequency has
small drop on all of Sk

ϵ,η(v) (and we also get good geometric control). In the latter case, the set on which
the Almgren frequency has small drop is close to a (k−1)-plane. In this case, even though we have no
geometric control on Sk

ϵ,η(v), we have very good packing control on the part with small drop in frequency.
We make this formal in the following corollary.

Corollary 6.3 (key dichotomy). Let γ, ρ, η′
∈ (0, 1) and 0 < ϵ be fixed. There exist

0 < β(n, α, E0, ϵ, η
′, ρ) < 1 and 0 < η0 = η0(n, α, E0, ϵ, η

′, γ, ρ) ≪ ρ

such that the following holds. For all v ∈A(n, α, M0) with supQ∈B1(0) N (Q, 2, v) ≤ E ∈ [0, E0], if η ≤ η0

and ∥ln(h)∥α ≤ η, then one of the following possibilities must occur:

(1) N (Q, γρ, v) ≥ E − η′ on Sk
ϵ,η0

(v) ∩ B1(0) and

Sk
ϵ,η0

∩ B1(0) ⊂ Bβ(L).

(2) There exists a (k−1)-dimensional affine plane Lk−1 such that

{Q ∈ ∂�±
: N (Q, 2η, v) ≥ E − η0} ∩ B1(0) ⊂ Bρ(Lk−1).

Remark 6.4. The former case is simply the conclusion of Lemma 6.2. In the latter case of the dichotomy,
we know that all points in ∂�±

∩ B1(0) \ Bρ(Lk−1) must have N (Q, 2η, v) < E − η0. Since N (Q, r, v)

is almost monotonic and uniformly bounded, this can happen for each Q only finitely many times.

7. Spatial derivatives of the Almgren frequency

The main result of this section is Corollary 7.7, in which we estimate the difference between the Almgren
frequency at nearby points. First, we need a preliminary estimate which extends one of the results of
Lemma 4.7 to points p ∈ B1(0) \ ∂�±.

Lemma 7.1. Let v ∈ A(n, α, M0), and let 0 < s ≤ 1, Q ∈ ∂�±
∩ B1(0), and p ∈ Bs/3(Q). Then we have

the estimate

H(p, s, vϵ) ≥ C(n, M0)
ω−(Bs(Q))2

sn−3 .

Furthermore, for all 0 < s ≤
1
2 and all 1

2 s ≤ r ≤ 2s,

H(p, r, vϵ) ≈n,α,M0,0 H(Q, 2s, vϵ) ≈n,α,M0,0 H
(
Q, 1

2 s, vϵ

)
.

Proof. Let xmax(p, s)± denote the point in ∂ Bs(p) ∩ �± which maximizes |v| on ∂ Bs(p) ∩ �±.
If we can show that, for all p and all 0 < s ≤

1
2 ,

|v(xmax(Q, s)−)| ∼M0

ω−(Bs(Q))

sn−2
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and that dist(xmax(p, s), ∂�±) ≥ δ(M0) > 0, then∫
∂ Bs(p)

|v|
2 dσ ≥

∫
∂ Bs(p)∩Bδs(xmax(p,s))

|v|
2 dσ≥ C(M0)|v(xmax(p,s))|2(δs)n−1

≥ C(n, M0)
ω−(Bs(Q))2

sn−3 .

If this can be shown, then recalling the doubling of harmonic measure on NTA domains, the above string
of inequalities proves that H(p, s, vϵ), H(Q, s, vϵ), and H

(
Q, 1

2 s, vϵ

)
share a common lower bound.

The common upper bound follows from a similar argument using Remark 3.1. That is, if we can show,
for all p and all 0 < s ≤

1
2 , that dist(xmax(p, s), ∂�±) ≥ δ(α, M0, 0) > 0, then by Harnack chains we

know that

|v(xmax(Q, s)+)| ∼α,M0,0

ω+(Bs(Q))

sn−2

and that∫
∂ Bs(Q)

|v|
2 dσ ≤ |v(xmax(Q, s))−|

2rn−1
+ |v(xmax(Q, s))+|

2rn−1

≤ C(M0)(|v(As(Q)−)|2rn−1
+ |v(As(Q)+)|2rn−1) ≤ C(n, α, M0, 0)

ω−(Bs(Q))2

sn−3 .

Recalling the doubling of harmonic measure on NTA domains, the above string of inequalities proves that
H(p, s, vϵ), H(Q, s, vϵ), and H

(
Q, 1

2 s, vϵ

)
share a common lower bound. This would prove the lemma.

Let Q, p, and s be given. By the maximum principle for harmonic functions applied to v− in �−, we
have |v(xmax(p, s)±)| ≥

∣∣v(
xmax

(
Q, 1

2 s
)±)∣∣. By NTA estimates [Engelstein 2016, Lemma 5.4], we have

ω±(B1/2s(Q))( 1
2 s

)n−2 ∼M0 |v(A±

s/2(Q))| ≤
∣∣v(

xmax
(
Q, 1

2 s
)±)∣∣ ≤ |v(xmax(p, s)±)|.

Therefore, by the uniform Lipschitz estimates of Theorem 2.6 and Remark 3.1 we infer that

dist(xmax(p, s)±, ∂�±) ≳M0,0,α s.

Therefore, we may use Harnack chains and estimate

|v(xmax(p, s)±)| ≤ |v(A±

2s(Q))| ∼M0

ω±(B2s(Q))

(2s)n−2 .

Thus, by the doubling of harmonic measure on NTA domains (see [Jerison and Kenig 1982]), we infer
that |v(xmax(p, s)±)| ∼M0 |v(A2s(Q)±)|. This proves the lemma. □

Remark 7.2. As a consequence of Lemma 7.1 and Corollary 4.4, we observe that if v ∈ A(n, α, M0)

then, for every 0 < r ≤
1
2 and every point p ∈ B1(0) such that dist(p, ∂�±) ≤

1
3r and for any 0 < ϵ ≪ r ,

N (p, r, v) ≤ C(n, α, M0, 0) and N (p, r, vϵ) ≤ C(n, α, M0, 0).

Lemma 7.3. Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0, and let Q ∈ B1(0) ∩ ∂�±, 0 < s ≤ 1, and ϵ ≪ s.
For all p ∈ Bs/3(Q) ∩ �− and all vectors |v⃗| ≤ r ,∣∣∣∣∫

Bs(p)

⟨∇vϵ, v⃗⟩1vϵ dV (x)

∣∣∣∣ ≤ C∥ln(h)∥αsα ω−(Bs(Q))2

sn−2 |v⃗|, (7-1)

where C = C(M0).
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Proof. Let p, Q, and s be as above. For sufficiently small 0 < ϵ,∣∣∣∣∫
Bs(p)

⟨∇vϵ, v⃗⟩1vϵ dV (x)

∣∣∣∣
=

∣∣∣∣∫
Bs(p)

⟨∇vϵ, v⃗⟩ϵ1v(x)

∣∣∣∣ ≤

∫
Bs(p)

|(⟨∇vϵ, v⃗⟩)ϵ |

∣∣∣∣h(0)

h(x)
− 1

∣∣∣∣ dω−
≤

∫
B2s(Q)

|(⟨∇vϵ, v⃗⟩)ϵ |

∣∣∣∣h(0)

h(x)
− 1

∣∣∣∣ dω−

≤ ∥ln(h)∥α(2s)α
∫

B2s(Q)

|(⟨∇vϵ, v⃗⟩)ϵ | dω−
≤ ∥ln(h)∥α(2s)α+1

|v⃗|

∫
B2s(Q)

|∇vϵ |ϵ dω−.

Chasing through the change of variables x = r y + Q, we see that

∇xv(x) =
1
r
∇yv(r y + Q) =

ω−(Br (Q))

rn−1 ∇yvr (y).

Thus, we calculate that for the change of variables x = 2sy + Q,∣∣∣∣∫
Bs(p)

⟨∇vϵ, v⃗⟩1vϵ dV (x)

∣∣∣∣ ≤ ∥ln(h)∥α(2s)α+1
|v⃗|

ω−(B2s(Q))2

(2s)n−1

∫
B1(0)

|∇vQ,2s ⋆φϵ/(2s)|⋆φϵ/(2s) dω−

Q,2s

≤ ∥ln(h)∥αCsα+1
|v⃗|

ω−(B2s(Q))2

(s)n−1 ω−

Q,2s(B2(0))

≤ ∥ln(h)∥αCsα ω−(Bs(Q))2

sn−2 |v⃗|,

where the last two inequalities are because the vQ,r are uniformly locally Lipschitz, 1 + ϵ/r < 2, the
ω−

Q,r (B2(0)) are uniformly bounded for Q ∈ B1(0) and r < 2, and the doubling of harmonic measure on
NTA domains. □

Lemma 7.4. Let v ∈ A(n, α, M0), Q ∈ ∂�±
∩ B1(0), and 0 < r . Then for p ∈ Br/3(Q) and v⃗ ∈ Rn such

that |v⃗| ≤ r , we calculate the spatial directional derivatives as follows:

∂

∂v⃗
H(p, r, vϵ) = 2

∫
∂ Br (p)

vϵ∇vϵ · v⃗ dσ, (7-2)

∂

∂v⃗
D(p, r, vϵ) = 2

∫
∂ Br (p)

(∇vϵ · v⃗)(∇vϵ · η) dσ −

∫
Br (p)

∂

∂v⃗
vϵ1vϵ dV, (7-3)

∂

∂v⃗
N (p, r, vϵ) =

2
H(p, r, vϵ)

(∫
∂ Br (p)

(r∇vϵ · η − N (p, r, vϵ)vϵ)(∇vϵ · v⃗) dσ

)
−

r
∫

Br (p)
∂

∂v⃗
vϵ1vϵ dV

H(p, r, vϵ)
. (7-4)

Proof. Equation (7-4) follows immediately from the preceding equations. The spatial derivative for
H(Q, r, u) follows from differentiating inside the integral. To obtain the spatial derivative for D(Q, r, v),
we recall the divergence theorem:

∂

∂v⃗
D(p, r, v) =

∂

∂v⃗

(∫
∂ Br (p)

v∇v · η dσ(x) −

∫
Br (p)

vϵ1vϵ dV
)

=

∫
∂ Br (p)

(∇vϵ · v⃗)(∇vϵ · η) dσ +

∫
∂ Br (p)

vϵ

∂

∂v⃗
(∇vϵ · η) dσ.
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Now, we focus upon the last term. Recalling Green’s theorem and the fact that partial derivatives of
harmonic functions are themselves harmonic,∫

∂ Br (p)

vϵ

∂

∂v⃗
(∇vϵ · η) dσ =

∫
∂ Br (p)

vϵ∇

(
∂

∂v⃗
vϵ

)
· η dσ =

∫
∂ Br (p)

∇vϵ · η
∂

∂v⃗
vϵ dσ −

∫
Br (p)

∂

∂v⃗
vϵ1vϵ dV

=

∫
∂ Br (p)

(∇vϵ · v⃗)(∇vϵ · η) dσ −

∫
Br (p)

∂

∂v⃗
vϵ1vϵ dV . □

Definition 7.5. For the sake of concision, we define the following notation for v ∈ A(n, α, M0), y ∈ �,
and radii 0 < r, R ≤ 2.

Ey(z) := ∇vϵ(z) · (z − y) − N (y, |z − y|, vϵ)vϵ(z), (7-5)

Wr,R(y) := N (y, R, vϵ) − N (y, r, vϵ). (7-6)

Lemma 7.6. Let v ∈A(n, α, M0) with ∥ln(h)∥α ≤0. Let Q ∈ ∂�±
∩B1(0) and 0 < r ≤ 1. Let p ∈ [Q, Q′

]

with Q′
∈ ∂�±

∩ Br/3(Q). Then, for v⃗ = Q′
− Q and 0 < ϵ ≪ r ,∣∣∣∣ ∂

∂v⃗
N (p, r, vϵ)

∣∣∣∣ ≲n,α,M0,0 2(Wr/2,2r (Q) + Wr/2,2r (Q′) + C0rα)

(
r
(∫

∂ Br (p)
|∇vϵ |

2 dσ

H(p, r, vϵ)

)1
2

+ 1
)

+
2

H(p, r, vϵ)

(∫
∂ Br (p)

|EQ(z)|2 + |EQ′(z)|2 dσ

)1
2
(∫

∂ Br (p)

(∇vϵ(z) · (z − p))2 dσ

)1
2

+ C(n, 3)

(
1

H(p, r, vϵ)

∫
∂ Br (p)

|EQ(z)|2 + |EQ′(z)|2 dσ

)1
2

+ 2(N (Q, r, vϵ) − N (Q′, r, vϵ))

(∫
Br (p)

vϵ1vϵ dV

H(p, r, vϵ)

)
+ rα0.

Proof. We begin by noting that Lemmas 7.3 and 7.1 give∣∣∣∣r
∫

Br (p)
∂

∂v⃗
vϵ1vϵ dV

H(p, r, vϵ)

∣∣∣∣ ≤ C(n, α, M0, 0)rα0.

Now, we write the decomposition

∇vϵ · (Q − Q′) = ∇vϵ · (z − Q′) − ∇vϵ · (z − Q)

= (N (Q, |z − Q|, vϵ) − N (Q′, |z − Q′
|, vϵ))vϵ + (EQ(z) − EQ′(z)).

Therefore, plugging this into (7-4), we obtain for v = Q′
− Q,

2
H(p, r, vϵ)

(∫
∂ Br (p)

(
r∇vϵ · η − N (p, r, vϵ)vϵ

)
(∇vϵ · v⃗) dσ

)
=

2
H(p, r, vϵ)

(∫
∂ Br (p)

E p(z)([N (Q, |z − Q|, vϵ) − N (Q′, |z − Q′
|, vϵ)]vϵ + (EQ(z) − EQ′(z))) dσ

)
= A + B − C,
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where for the purposes of this lemma

A :=
2

H(p, r, vϵ)

∫
∂ Br (p)

E p(z)(N (Q, |z − Q|, vϵ) − N (Q′, |z − Q′
|, vϵ))vϵ dσ,

B :=
2

H(p, r, vϵ)

∫
∂ Br (p)

∇vϵ(z) · (z − p)(EQ(z) − EQ′(z)) dσ,

C :=
2

H(p, r, vϵ)

∫
∂ Br (p)

N (p, |z − p|, vϵ)vϵ(z)(EQ(z) − EQ′(z)) dσ.

We begin by estimating A. We rewrite

N (Q, |z − Q|, vϵ) − N (Q′, |z − Q′
|, vϵ) = N (Q, r, vϵ) − N (Q′, r, vϵ) − W|z−Q|,r (Q) + W|z−Q′|,r (Q′).

Note that if |Q − Q′
| ≤

1
3r and p ∈ [Q, Q′

], then 1
2r ≤ |z − xi | ≤ 2r for xi ∈ {Q, Q′

} and all z ∈ ∂ Br (p).
Therefore, by Lemma 4.10, for all z ∈ ∂ Br (p),

|W|z−Q|,r (Q)| ≤ Wr/2,2r (Q) + 2C10(2r)α,

|W|z−Q′|,r (Q′)| ≤ Wr/2,2r (Q′) + 2C10(2r)α.

Furthermore, we estimate by the divergence theorem∫
∂ Br (p)

E p(z)(N (Q, r, vϵ) − N (Q′, r, vϵ))vϵ dσ

= (N (Q, r, vϵ) − N (Q′, r, vϵ))

∫
∂ Br (p)

vϵ∇vϵ(z) · (z − y) − N (p, |z − p|, vϵ)v
2
ϵ dσ

= (N (Q, r, vϵ) − N (Q′, r, vϵ)) ·

(∫
Br (p)

vϵ1vϵ dV
)

.

Thus, we may give the following preliminary estimate on A:

|A| ≤ (Wr/2,2r (Q) + Wr/2,2r (Q′) + C0rα)
2

H(p, r, vϵ)

∫
∂ Br (p)

|E p(z)||vϵ | dσ

+ 2(N (Q, r, vϵ) − N (Q′, r, vϵ))

(∫
Br (p)

vϵ1vϵ dV

H(p, r, vϵ)

)
.

Focusing upon the term
2

H(p, r, vϵ)

∫
∂ Br (p)

|E p(z)||vϵ | dσ,

using Remark 7.2 and Cauchy–Schwartz we estimate

2
H(p, r, vϵ)

∫
∂ Br (p)

|E p(z)||vϵ | dσ ≤
2

H(p, r, vϵ)

∫
∂ Br (p)

r |vϵ∇vϵ · η| + N (p, r, vϵ)|vϵ |
2 dσ

≤ 2C
(

r
(∫

∂ Br (p)
|∇vϵ |

2 dσ

H(p, r, vϵ)

)1
2

+ 1
)

.
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Now we estimate B using Cauchy–Schwartz:(
2

H(p, r, vϵ)

∫
∂ Br (p)

∇vϵ(z) · (z − p)(EQ(z) − EQ′(z)) dσ

)2

≤
4

H(p, r, vϵ)2

∫
∂ Br (p)

(EQ(z) − EQ′(z))2 dσ

∫
∂ Br (p)

(∇vϵ(z) · (z − p))2 dσ

≤
8

H(p, r, vϵ)2

∫
∂ Br (p)

|EQ(z)|2 + |EQ′(z)|2 dσ

(∫
∂ Br (p)

(∇vϵ(z) · (z − p))2 dσ

)
.

For |C |, the same Cauchy–Schwartz argument plus Corollary 4.4 shows that

|C | ≲n,α,M0,0

(
1

H(p, r, vϵ)

∫
∂ Br (p)

|EQ(z)|2 + |EQ′(z)|2 dσ

)1
2

.

This proves the pointwise estimate

∂

∂v
N (p, r, vϵ) ≲n,α,M0,0 (Wr/2,2r (Q) + Wr/2,2r (Q′) + C0rα)2

(
r
(∫

∂ Br (p)
|∇vϵ |

2 dσ

H(p, r, vϵ)

)1
2

+ 1
)

+
2

H(p, r, vϵ)

(∫
∂ Br (p)

|EQ(z)|2 + |EQ′(z)|2 dσ

)1
2
(∫

∂ Br (p)

(∇vϵ(z) · (z − p))2 dσ

)1
2

+

(
1

H(p, r, vϵ)

∫
∂ Br (p)

|EQ(z)|2 + |EQ′(z)|2 dσ

)1
2

+ 2(N (Q, r, vϵ) − N (Q′, r, vϵ))

(∫
Br (p)

vϵ1vϵ dV

H(p, r, vϵ)

)
+ rα0.

We prove the lemma by reversing the roles of Q and Q′. □

Corollary 7.7. Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0, let Q ∈ ∂�±
∩ B1(0) and 0 < r ≤ 1, and let

Q′
∈ ∂�±

∩ Br/3(Q). Then

|N (Q′, r, v)− N (Q, r, v)| ≲n,α,M0,0 Wr/2,2r (Q) + Wr/2,2r (Q′) + C0rα
+ 1 + r−1/2.

Proof. First, since for any 0 ̸= c we have N (Q, r, v) = N (Q, r, cv), we shall assume for the purposes
of this lemma that v = T0,1v. We shall show that |N (Q′, r, vϵ) − N (Q, r, vϵ)| satisfies a corresponding
inequality, and let ϵ → 0. Since N (Q′, r, vϵ) → N (Q′, r, v) as ϵ → 0, this will prove the claim.

Let v⃗ = Q′
− Q and pt := Q + t v⃗. Then we calculate

|N (Q′, r, vϵ) − N (Q, r, vϵ)| ≤

∫ 1

0

∣∣∣ ∂

∂t
N (pt , r, vϵ)

∣∣∣ dt ≲n,α,M0,0 A + B + C + D + E,

where

A :=

∫ 1

0
(Wr/2,2r (Q) + Wr/2,2r (Q′) + C0rα)2

(
r
(∫

∂ Br (pt )
|∇vϵ |

2 dσ

H(pt , r, vϵ)

)1
2

+ 1
)

dt,

B :=

∫ 1

0

2
H(pt , r, vϵ)

(∫
∂ Br (pt )

|EQ(z)|2 + |EQ′(z)|2 dσ

)1
2
(∫

∂ Br (pt )

(∇vϵ(z) · (z − pt))
2 dσ

)1
2

dt,
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C :=

∫ 1

0

(
1

H(pt , r, vϵ)

∫
∂ Br (pt )

|EQ(z)|2 + |EQ′(z)|2 dσ

)1
2

dt,

D := 2(N (Q, r, vϵ) − N (Q′, r, vϵ))

∫ 1

0

(∫
Br (pt )

vϵ1vϵ dV

H(pt , r, vϵ)

)
dt,

E := C0rα.

We estimate each term separately.

Bounding A. We begin by rewriting A:

A = 2(Wr/2,2r (Q) + Wr/2,2r (Q′) + C0rα)

∫ 1

0

(
r
(∫

∂ Br (pt )
|∇vϵ |

2 dσ

H(pt , r, vϵ)

)1
2

+ 1
)

dt.

Observe that by Lemma 7.1 and Remark 4.12 we may using Hölder’s inequality to estimate∫ 1

0
r
(∫

∂ Br (pt )
|∇vϵ |

2 dσ

H(pt , r, vϵ)

)1
2

dt ≲n,α,M0,0

∫ 1

0
r
(∫

∂ Br (pt )
|∇vϵ |

2 dσ

H(Q, r, vϵ)

)1
2

dt

≲n,α,M0,0 r
2

H(Q, r, vϵ)1/2

(∫ 1

0

∫
∂ Br (pt )

|∇vϵ |
2 dσ dt

)1
2

.

Now, divide the spheres as follows: ∂ Br (pt) = ∂ Br (pt)
+

∪ ∂ Br (p−
t ), where

∂ Br (pt)
−

= {x ∈ ∂ Br (pt) : (x − pt) · v⃗ < 0} and ∂ Br (pt)
+

= {x ∈ ∂ Br (pt) : (x − pt) · v⃗ ≥ 0}.

Notice that
max

z∈
⋃

t∈[0,1]
∂ Br (pt )

#{t ∈ [0, 1] : z ∈ ∂ Br (pt)
+ or z ∈ ∂ Br (p−

t )} = 2.

Then, use the coarea formula for the function φ±
:
⋃

t∈[0,1]
∂ Br (pt)

±
→ R defined by φ|∂ Br (pt )± = t . Note

that if we write L := Q + span{v⃗} and dist(z, L) = δ, then

Jφ±(z) = |∇φ(z)| =
r

|Q − Q′|
√

r2 − δ2
=

1
|Q − Q′| cos(θ(z))

,

where

θ(z) =
z − pt

|z − pt |
·

v⃗

|v⃗|
for z ∈ ∂ Br (pt)

±.

Thus, we obtain∫ 1

0
r
(∫

∂ Br (pt )
|∇vϵ |

2 dσ

H(pt , r, vϵ)

)1
2

dt ≲n,α,M0,0

2r
H(Q, r, vϵ)1/2

(∫
⋃

t∈[0,1]
∂ Br (pt )

2|∇vϵ |
2

|Q − Q′||cos(θ(z))|
dV

)1
2

.

Note that a simple calculation gives, for any 1 ≤ p < 2,∫
⋃

t∈[0,1]
∂ Br (pt )

|Q − Q′
|
−1

| cos(θ(z))|−p dV =

∫ r

0

∫
Cδ

|Q − Q′
|
−1

| cos(θ(z))|−p dHn−1 dδ

≤ c(n)

∫ r

0

r pδn−2

(r2 − δ2)p/2 dδ ≤
c(n)

1 −
1
2 p

rn−1. (7-7)
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Since TQ,rvϵ is uniformly locally Lipschitz by Lemma 3.4, recalling Definition 2.7 and choosing p = 1
above, we see

r
2

H(Q, r, vϵ)1/2

(
2

∫
⋃

t∈[0,1]
∂ Br (pt )

|∇vϵ |
2

|Q − Q′||cos(θ(z))|
dV

)1
2

= 2
√

2
(

r1−n
∫

⋃
t∈[0,1]

∂ B1(TQ,r pt )

|∇TQ,rvϵ |
2

|Q − Q′||cos(θ(z))|
dV

)1
2

= 2
√

2C
(

r1−n
∫

⋃
t∈[0,1]

∂ Br (pt )

|Q − Q′
|
−1

| cos(θ(z))|−1 dV
)1

2

≤ C(n, α, M0, 0).

Thus

|A| ≲n,α,M0,0 (Wr/2,2r (Q) + Wr/2,2r (Q′) + C0rα).

Bounding C . By Hölder’s inequality (or Jensen’s inequality for concave functions) and Lemma 7.1, we
may reduce to considering∫ 1

0

1
H(pt , r, vϵ)

∫
∂ Br (pt )

|∇vϵ(z) · (z − Q) − N (Q, |z − Q|, vϵ)vϵ(z)|2 dσ(z) dt

≲n,α,M0,0

∫ 1

0

1

H
(
Q, 1

2r, vϵ

) ∫
∂ Br (pt )

|∇vϵ(z) · (z − Q) − N (Q, |z − Q|, vϵ)vϵ(z)|2 dσ(z) dt.

Now, we change variables using Definition 2.7 and Lemma 7.1, and use Young’s inequality to get∫ 1

0

1

H
(
Q, 1

2r, vϵ

) ∫
∂ Br (pt )

|∇vϵ(z) · (z − Q) − N (Q, |z − Q|, vϵ)vϵ(z)|2 dσ(z) dt

≤ 2
∫

⋃
t∈[0,1]

∂ Br (pt )

|∇vϵ(z) · (z − Q) − N (Q, |z − Q|, vϵ)vϵ(z)|2

H
(
Q, 1

2r, vϵ

)
|Q − Q′||cos(θ(z))|

dV

≲n,α,M0,0 2rn
∫

⋃
t∈[0,1]

∂ B1(TQ,r pt )

|∇TQ,rvϵ(z) · z − N (0, |z|, TQ,rvϵ)TQ,rvϵ(z)|2

rn−1
∣∣ Q−Q′

r

∣∣|cos(θ(z))|
dV

≤ 4
∫

⋃
t∈[0,1]

∂ B1(TQ,r pt )

|∇TQ,rvϵ(z) · z|2 + |N (0, |z|, TQ,rvϵ)TQ,rvϵ(z)|2∣∣ Q−Q′

r

∣∣|cos(θ(z))|
dV .

Now, by Corollary 4.4 and Lemma 3.4, the numerator is bounded by a constant. Whence, by a calculation
similar to (7-7), we obtain∫ 1

0

1

H
(
Q, 1

2r, vϵ

) ∫
∂ Br (pt )

|∇vϵ(z) · (z − Q) − N (Q, |z − Q|, vϵ)vϵ(z)|2 dσ(z) dt ≲n,α,M0,0 1.

An identical argument holds for Q′ in the place of Q. Thus, we have that |C | ≲n,α,M0,0 1.
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Bounding B. Using Cauchy–Schwartz, Lemma 7.1, and the estimates of the term |C | above, we obtain

B =

∫ 1

0

2
H(pt , r, vϵ)

(∫
∂ Br (pt )

|EQ(z)|2 + |EQ′(z)|2 dσ

)1
2
(∫

∂ Br (pt )

(∇vϵ(z) · (z − pt))
2 dσ

)1
2

dt

≲n,α,M0,0

(
r2

H(Q, r, vϵ)

∫
⋃

t∈[0,1]
∂ B1((pt−Qi )/ri )

|∇vϵ(z)|2

|Q − Q′||cos(θv⃗)|
dV

)1
2

≲n,α,M0,0 r−1/2
(∫

⋃
t∈[0,1]

∂ B1((pt−Qi )/ri )

|∇TQ,rvϵ(z)|2∣∣ Q−Q′

r

∣∣|cos(θv⃗)|
dV

)1
2

.

Thus, by Lemma 3.4 and a calculation identical to that of (7-7), we obtain |B| ≲n,α,M0,0 r−1/2.

Bounding D. Note that∣∣∣∣∫
Br (pt )

vϵ1vϵ dV (x)

∣∣∣∣ ≤

∫
Br (p)

|(vϵ)ϵ |

∣∣∣∣h(0)

h(x)
− 1

∣∣∣∣ dω−
≤

∫
B2r (Q)

|(vϵ)ϵ |

∣∣∣∣h(0)

h(x)
− 1

∣∣∣∣ dω−

≤ ∥ln(h)∥α(2r)α
∫

B2r (Q)

|(vϵ)ϵ | dω−
≤ ∥ln(h)∥α(2r)αC

∫
B2r (Q)

|(vϵ)ϵ | dω−.

Chasing through the change of variables x = r y + Q, we see that

∇xv(x) =
1
r
∇yv(r y + Q) =

ω−(Br (Q))

rn−1 ∇yvr (y).

Thus, we calculate that, for the change of variables x = 2r y + Q,∣∣∣∣∫
Br (p)

vϵ1vϵ dV (x)

∣∣∣∣ ≤ ∥ln(h)∥α(2r)α
ω−(B2r (0))2

(2r)n−1

∫
B1(0)

|vQ,2r ⋆ φϵ/(2r)| ⋆ φϵ/(2r) dω−

2r

≤ ∥ln(h)∥αCrα ω−(B2r (0))2

rn−1 C
(
ϵ

r

)
ω−

Q,2r (B2(0))

≤ ∥ln(h)∥αCrαC
(
ϵ

r

)ω−(Br (0))2

rn−2 ,

where the last two inequalities are because the vQ,r are uniformly locally Lipschitz, 1 + ϵ/r < 2, the
ω−

Q,r (B2(0)) are uniformly bounded for Q ∈ B1(0) and r < 2, and the doubling of harmonic measure on
NTA domains.

Thus, by Lemma 7.1 we have

2(N (Q, r, vϵ) − N (Q′, r, vϵ))

∫ 1

0

(∫
Br (pt )

vϵ1vϵ dV

H(pt , r, vϵ)

)
dt ≤ C(n, α, M0, 0)0rα−1

(
ϵ

r

)
.

Letting ϵ → 0, we see that D vanishes.
Thus, putting together the estimates for A, B, C, D we have

|N (Q′, r, v)− N (Q, r, v)| ≤ lim
ϵ→0

|N (Q′, r, vϵ) − N (Q, r, vϵ)|

≲n,α,M0,0 Wr/2,2r (Q) + Wr/2,2r (Q′) + 0rα
+ 1 + r−1/2.

This proves the lemma. □
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8. Frequency pinching

In this section, we prove a “frequency pinching” result (Lemma 8.2) in the style of [De Lellis et al. 2018].
This kind of result relates Jones’ beta numbers to the drop in Almgren frequency.

Definition 8.1 (Jones’ beta numbers). For µ a Borel measure, we define βk
µ,2(Q, r)2 as follows:

βk
µ,2(Q, r)2

= inf
Lk

1
r k

∫
Br (p)

dist(x, L)2

r2 dµ(x),

where the infimum is taken over all affine k-planes.

Taking the infimum here — as opposed to the minimum — is a convention. The space of admissible
planes is compact, so a minimizing plane exists. Let V k

µ(Q, r) denote a k-plane which minimizes the
infimum in the definition of βk

µ(Q, r)2. Note that this k-plane is not a priori unique.

Lemma 8.2 (frequency pinching). There exists a constant δ0 = δ0(n, α, M0, 0) > 0 such that, for any
0 < δ ≤ δ0, if v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0 then, for any Q ∈ ∂�∩ B1(0) and 0 < r ≤

1
16 , if v is

(0, δ, 8r, Q)-symmetric but not (k+1, ϵ, 8r, Q)-symmetric, then, for any finite Borel measure µ supported
in Br (Q) ∩ ∂�,

βk
µ,2(Q, r)2 ≲n,α,M0,0,ϵ

r2

r k

(∫
Br (Q)

Wr/2,16r (y) dµ(y)

)
+

r2

r k

∫
Br (Q)

Wr/2,16r (y)2 dµ(y)

+ r2(Wr/2,16r (Q)2
+ 02r2α

+ 1 + r−1)
µ(Br (Q))

r k . (8-1)

Before proving Lemma 8.2, we prove a few preliminary lemmas. We begin by noting that for any
finite Borel measure µ and any Br (Q) we can define the µ center of mass by X = /

∫
Br (Q)

x dµ(x) and
define the covariance matrix of the mass distribution in Br (Q) by

6 = /

∫
Br (Q)

(y − X)(y − X)⊥ dµ(y).

With this matrix, we may naturally define a symmetric, nonnegative bilinear form

Q(v, w) = v⊥6w = /

∫
Br (Q)

(v · (y − X))(w · (y − X)) dµ(y).

Let v⃗1, . . . , v⃗n be an orthonormal eigenbasis and λ1 ≥ · · · ≥ λn ≥ 0 their associated eigenvalues. These
objects enjoy the relationships

V k
µ,2(Q, r) = X + span{v⃗1, . . . , v⃗k} and βk

µ,2(x, r)2
=

µ(Br (Q))

r k (λk+1 + · · · + λn).

See [Hochman 2015, Section 4.2] or [Naber and Valtorta 2017, Section 7.2].

Lemma 8.3. Let v ∈ A(n, α, M0), and let Q ∈ ∂�∩ B1(0) and 0 < r ≤
1
4 . Let µ, Q, λi , v⃗i be defined as

above. For any i and any scalar c ∈ R,

λi

∫
A3r,4r (Q)

(v⃗i · ∇v(z))2 dz ≤ /

∫
Br (Q)

(∫
A3r,4r (y)

|cv(z) − ∇v(z) · (z − y)|2 dz
)

dµ(y). (8-2)
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Proof. Observe that by the definition of center of mass,

/

∫
Br (Q)

w⃗ · (y − X) dµ(y) = 0

for any w⃗ ∈ Rn. Therefore, for any z for which ∇v(z) is defined,

λi (v⃗i · ∇v(z)) = Q(v⃗i , ∇v(z))

= /

∫
Br (Q)

(v⃗i · (y − X))(∇v(z) · (y − X)) dµ(y)

= /

∫
Br (Q)

(v⃗i · (y − X))(∇v(z) · (y − X)) dµ(y) + /

∫
Br (Q)

cv(z)(v⃗i · (y − X)) dµ(y)

= /

∫
Br (Q)

(v⃗i · (y − X))(cv(z) − ∇v(z) · (X − z + z − y)) dµ(y)

= /

∫
Br (Q)

(v⃗i · (y − X))(cv(z) − ∇v(z) · (z − y)) dµ(y)

≤ λ
1/2
i

(
/

∫
Br (Q)

|cv(z) − ∇v(z) · (z − y)|2 dµ(y)

)1
2

.

Squaring both sides and integrating over Ar,R(Q) = BR(Q) \ Br (Q) gives the result. □

Lemma 8.4. Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0 and 0 ≤ k ≤ n − 2. Let Q ∈ ∂�±
∩ B1/4(0) and

0 < r ≤
1
32 . Then, for any Q′

∈ Br (Q) ∩ ∂�±,∫
A3r,4r (Q′)

|N (Q, 7r, v)v(z) − ∇v(z) · (z − Q′)|2

H(Q′, |z − Q′|, v)
dz

≲n,α,M0,0

∫
A2r,7r (Q′)

|N (Q′, |z − Q′
|, v)v(z) − ∇v(z) · (z − Q′)|2

H(Q′, |z − Q′|, v)
dz

+ (Wr/2,16r (Q)2
+ Wr/2,16r (Q′)2

+ 02r2α
+ 1 + r−1)r.

Proof. First, we observe that

N (Q, 7r, v) = N (Q′, |z − Q′
|, v)+ W|z−Q′|,7r (Q) + [N (Q, |z − Q′

|, v)− N (Q′, |z − Q′
|, v)].

Therefore, by the triangle inequality,

|N (Q, 7r, v)v(z) − ∇v(z) · (z − Q′)|2

≤
(
|(W|z−Q′|,7r (Q) + N (Q, |z − Q′

|, v)− N (Q′, |z − Q′
|, v))v(z)|

+|(N (Q′, |z − Q′
|, v))v(z) − ∇v(z) · (z − Q′)|

)2

≤ 2|(W|z−Q′|,7r (Q) + N (Q, |z − Q′
|, v)− N (Q′, |z − Q′

|, v))v(z)|2

+ 2|(N (Q′, |z − Q′
|, v))v(z) − ∇v(z) · (z − Q′)|2.



1156 SEAN MCCURDY

Now, using Corollary 7.7 at scale r = |z − Q′
| and the almost monotonicity of the Almgren frequency,

we estimate∫
A2r,7r (Q′)

|(W|z−Q′|,7r (Q) + N (Q, |z − Q′
|, v)− N (Q′, |z − Q′

|, v))v(z)|2

H(Q′, |z − Q′|, v)
dz

≲n,α,M0,0 Cr (Q, Q′)

∫
A2r,7r (Q′)

|v(z)|2

H(Q′, |z − Q′|, v)
dz,

where the term Cr (Q, Q′) is defined by

Cr (Q, Q′) := Wr/2,16r (Q)2
+ Wr/2,16r (Q′)2

+ 02r2α
+ 1 + r−1.

We finish the proof by observing that∫
A2r,7r (Q′)

|v(z)|2

H(Q′, |z − Q′|, v)
dz ≤ 7r. □

Lemma 8.5. Let v ∈A(n, α, M0) with ∥ln(h)∥α ≤ 0 and 0 ≤ k ≤ n−2. Let Q ∈ B1(0)∩∂�±, 0 < r ≤
1
16 .

Let 0 < ϵ be fixed. There exists a constant δ = δ0(n, α, M0, 0, ϵ) > 0 and a constant 0 < C(n, α, M0, 0, ϵ)

such that if v is (0, δ, 8r, Q)-symmetric but not (k + 1, ϵ, 8r, Q)-symmetric, then, for any orthonormal
vectors v⃗1, . . . , v⃗k+1,

1
C

≤

∫
A3r,4r (Q)

r
H(Q, r, v)

k+1∑
i=1

(v⃗i · ∇v(z))2 dz.

Proof. We argue by contradiction. Assume that there is a sequence of functions vi ∈ A(n, α, M0),
Qi ∈ B1/16(0)∩∂�±

i , and 0 < ri ≤
1
16 such that vi is (0, 2− j , 8ri , Qi )-symmetric but not (k+1, ϵ, 8ri , Qi )-

symmetric. And, for each i , there exists an orthonormal collection of vectors {v⃗i j } such that∫
A3,4(0)

k+1∑
j=1

(v⃗i j · ∇TQ,rvi (z))2 dz ≤ 2−i.

By Lemma 3.6, we may extract a subsequence TQ j ,rj vj for which TQ j ,rj vj converges to a nondegenerate
function v∞. Similarly, {v⃗i j } converges to an orthonormal collection {v⃗i }. Given the assumptions above,
v∞ is also 0-symmetric in B8(0) and ∇v∞ ·v⃗i = 0 for all i = 1, . . . , k+1. Thus, v∞ is (k+1, 0)-symmetric
in B8(0). But, this is a contradiction, since the TQ j ,rj vj were supposed to stay away from (k+1)-symmetric
functions in L2(B1(0)). □

8A. The proof of Lemma 8.2. By Lemma 8.5 and properties of the Jones’ beta numbers, we have,
for {v⃗i } the orthonormal basis and λi the associated eigenvalues of the quadratic form in Lemma 8.3,

βk
µ,2(Q, r)2

≤
µ(Br (Q))

r k nλk+1 ≤
µ(Br (Q))

r k nCλk+1
r

H(Q, r, v)

k+1∑
i=1

∫
A3r,4r (Q)

(v⃗i · ∇v(z))2 dz

≤
µ(Br (Q))

r k nC
r

H(Q, r, v)

k+1∑
i=1

λi

∫
A3r,4r (Q)

(v⃗i · ∇v(z))2 dz.
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By choosing c = N (Q, 7r, v) in Lemma 8.3 and recalling Lemma 8.4, we have

r
H(Q, r, v)

λi

∫
A3r,4r (Q)

(v⃗i · ∇v(z))2 dz

≲n,α,M0,0

r
H(Q, r, v)

/

∫
Br (Q)

(∫
A3r,4r (y)

|N (Q, 7r, v)v(z) − ∇v(z) · (z − y)|2 dz
)

dµ(y)

≲n,α,M0,0 r /

∫
Br (Q)

(∫
A2r,7r (y)

|N (y, |z − y|, v)v(z) − ∇v(z) · (z − y)|2

H(Q, |z − y|, v)
dz

)
dµ(y)

+ r2 /

∫
Br (Q)

(Wr,16r (Q)2
+ Wr,16r (y)2

+ 02r2α
+ 1 + r−1) dµ(y).

Therefore, collecting constants and using Lemmas 4.9 and 7.1, we have

βk
µ,2(Q, r)2 ≲n,α,M0,0

r2

r k

(∫
Br (Q)

N (y, 8r, v)− N (y, r, v) dµ(y)

)
+ r2(Wr/2,16r (Q)2

+ 02r2α
+ 1 + r−1)

µ(Br (Q))

r k +
r2

r k

∫
Br (Q)

Wr/2,16r (y)2 dµ(y). □

9. Packing

The following theorem of Naber and Valtorta [2017] is a powerful tool which links the sum of the
βk

µ(Q, r)2 over all points and scales to packing estimates.

Theorem 9.1 [Naber and Valtorta 2017, discrete Reifenberg]. Let {Bτi (xi )}i be a collection of disjoint
balls such that, for all i = 1, 2, . . . , we have τi ≤ 1. Let ϵk > 0 be fixed. Define a measure

µ :=

∑
i

τ k
i δxi ,

and suppose that, for any x ∈ B2(0) and any scale l ∈{0, 1, 2, . . . }, if Brl (x)⊂ B2(0) and µ(Brl (x))≥ϵkr k
l

then ∑
i≥l

∫
B2rl (x)

βk
µ(z, 16ri )

2 dµ(z) < r k
l δ2.

Then there exists a δ0 = δ0(n, ϵk) > 0 such that if δ ≤ δ0,

µ(B1(0)) =

∑
i s.t. xi ∈B1(0)

τ k
i ≤ C(n).

Now we are ready to prove the crucial packing lemma.

Lemma 9.2. Fix 0 < ϵ, and let v ∈A(n, α, M0) satisfy ∥ln(h)∥α ≤ η and supQ∈B1(0)∩∂�± N (Q, 2, v) = E.
There is an η1(n, α, M0, ϵ) > 0 such that if η ≤ η1, then for any r > 0 if {B2rQ′ (Q′)} is a collection of
disjoint balls satisfying

N (p, ηrQ′, v) ≥ E − η1, Q′
∈ Sk

η1,r , r ≤ rQ′ ≤ 1, (9-1)

we have the packing estimate ∑
Q′

r k
Q′ ≤ C2(n, α, M0, ϵ). (9-2)
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Proof. Choose δ0(n, α, M0, ϵ) as in Lemma 8.2, and γ (n, α, M0, δ0) as in Lemma 5.2. Note that we may
assume without loss of generality that η1 ≤ 1, and so for C1(α, M0, 1) the constant in Lemma 4.9, let

η1 ≤
min{δ0, γ }

2C1 + 1
.

We will employ the convention that ri = 2−i. For each i ∈ N, define the truncated measure

µi =

∑
rQ′≤ri

r k
Q′δQ′ .

We will write βi (x, r) = βk
µi ,2(x, r). Observe that the βi enjoy the following properties. First, because

the balls are disjoint, for all j ≥ i ,

βi (x, rj ) =

{
βj (x, rj ) if x ∈ supp(µj ),

0 otherwise.

Furthermore, for ri ≤ 2−4, recalling Lemma 4.10 our assumption of the Almgren frequency gives that
N (16ri , Q, v)− N (rQ, Q, v) ≤ (2C1 + 1)η ≤ max{δ0, γ } ≤ 1 and

|Wrj /2,16rj (Q′)| ≤ η + C(α, M0, η)η(16rj )
α.

Thus, for 0 < η small enough depending only upon α and M0, we have |Wrj /2,16rj (Q′)| ≤ 1. Therefore

Wrj /2,16rj (Q′)2
≤ |Wrj /2,16rj (Q′)|.

In particular, by Lemmas 5.2 and 8.2 and our choice of η ≤ η1,

βk
µi ,2(Q, ri )

2 ≲n,α,M0,0,ϵ

1
r k

(∫
Br (Q)

|Wr/2,16r (y)| dµ(y)

)
+(|Wr/2,16r (Q)|+02r2α+2

+r2
+r)

µ(Br (Q))

r k .

The claim of the lemma is that µ0(B1(0)) ≤ C(n, α, M0, ϵ). We prove the claim inductively. That is,
we shall argue that there is a fixed scale 0 < R = 2−ℓ (depending only upon n, α, M0, ϵ) such that, for
ri ≤ R and all x ∈ B1(0),

µi (Bri (x)) ≤ CDR(n)r k
i .

Observe that since rQ′ ≥ r > 0, for ri < r the claim is trivially satisfied because µi = 0. Assume, then,
that the inductive hypothesis holds for all j ≥ i + 1. Let x ∈ B1(0). We consider µi (B4ri (x)). Observe
that we can get a course bound

µj (B4rj (x)) ≤ 0(n)r k
j for all j ≥ i − 2 for all x ∈ B1(0)

by writing µj (B4rj (x)) = µj+2(B4rj (x)) +
∑

r k
Q′ , where the sum is taken over all Q′

∈ B4rj (x) with
rj+2 < rQ′ ≤ rj . Since the balls BrQ′ (Q′) are disjoint, there is a dimensional constant c(n) which bounds
the number of such points. Thus, we may take 0(n) = c(n)CDR .
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Now, we calculate∑
rj <2ri

∫
B2ri (x)

βi (z, rj )
2 dµi (z)

=

∑
rj <2ri

∫
B2ri (x)

βj (z, rj )
2 dµj (z)

≤ C
∑

rj <2ri

1
r k

j

∫
B2ri (x)

(∫
Brj (z)

|Wrj /2,16rj (y)|dµj (y)

)
dµj (z)

+ C
∑

rj <2ri

∫
B2ri (x)

(
(|Wrj /2,16rj (z)| + ηr2α+2

j + r2
j + rj )

µ(Brj (z))

r k
j

)
dµj (z)

≤ C
∑

rj <2ri

∫
B2ri +rj (x)

µj (Brj (y))

r k
j

|Wrj /2,16rj (y)| dµj (y)

+ C
∑

rj <2ri

∫
B2ri (x)

(
(|Wrj /2,16rj (z)| + ηr2α+2

j + r2
j + rj )

µ(Brj (z))

r k
j

)
dµj (z)

≤ 2C0(n)

∫
B4ri (x)

( ∑
rj <2ri

|Wrj /2,16rj (y)|

)
dµj (y) + C0(n)

∑
rj <2ri

(ηr2α+2
j + r2

j + rj )µi (B4ri (x)).

Therefore, recalling ri = 2−i we see that

N∑
j=i−1

|Wrj /2,16rj (Q′)| ≤ 6 varr∈[rQ′ ,ri−1] N (r, Q′, v) ≤ 12C(α, M0)η(rα
i−1 − rα

Q′) + 6η.

Therefore∑
rj <2ri

∫
B2ri (x)

βi (z,rj )
2 dµi (z) ≤ C0(n)µi (B4ri (x))

(
6η+12C1rα

i−1η

)
+C02(n)

( ∑
rj <2ri

ηr2α
j +r2

j +rj

)
r k

i

≤ C02(n)(1+C(α))ηr k
i +C02(n)r k

i

∑
rj <2ri

r2
j +rj .

Thus, for η ≤ η1(n, α, M0, ϵ) sufficiently small and ri ≤ R(n, α, M0, ϵ) = 2−ℓ sufficiently small,

C0(n)2(1 + C(α))η < 1
2δDR and C02(n)

∑
rj <2ri

r2
j + rj < 1

2δDR.

For such i and µi satisfying the hypotheses of Theorem 9.1,∑
rj <2ri

∫
B2ri (x)

βi (z, rj )
2 dµi (z) ≤ δDRr k

i .

The discreet Reifenberg theorem therefore implies that µi (Bri (x)) ≤ CDRr k
i . Thus, by induction, the

claim holds for ri ≤ R = 2−ℓ. We may use a packing argument using balls of radius 2−ℓ to obtain estimates
at larger scales. That is, µ0(B1(0)) ≤ CDRC(n, ℓ). □
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10. Tree construction

In this section, we detail two procedures for inductively refined covering schemes. We will use these
covering schemes in the next section to generate the actual cover which proves Theorem 2.15. First, we
fix our constants.

10A. Fixing constants and a definition. In this section, we fix our constants as follows. Fix 0 < ϵ, and
let v ∈ A(n, α, M0). Let E = supQ∈B1(0)∩∂�± N (Q, 2, v), and fix the scale of the covering we wish to
construct as R ∈ (0, 1].

We will let ρ denote the inductive scale at which we will refine our cover. For convenience, we will
use the convention ri = ρ−i. Let ρ < 1

10 be small enough that

2C2(n, α, M0, ϵ)c2(n)ρ < 1
2 ,

where C2(n, α, M0, ϵ) is as in Lemma 9.2 and c2(n) is a dimensional constant which will be given in the
following lemmas.

Let δ(n, α, M0, ϵ) be as in Lemma 8.2 and γ (n, α, M0, δ) as in Lemma 5.2. We also let η1(n, α, M0, ϵ)

be as in Lemma 9.2, and let
γ0 = η′

=
1
20η1.

Note that while γ0 ≤ γ , Lemma 5.2 still holds with γ0 in place of γ . As in Corollary 6.3, we then let
η = η0(n, α, E + 1, ϵ, η′, γ0, ρ). We shall assume that v satisfies

∥ln(h)∥α ≤
1

2C1 + 1
η.

The sorting principle for our covering comes from Corollary 6.3. To formalize this, we make the
following definition.

Definition 10.1. For Q′
∈ B2(0) ∩ ∂�± and 0 < R < r < 2, the ball Br (Q) will be called “good” if

N (Q, γρr, v) ≥ E − η′ for all Q ∈ Sk
ϵ,ηR(v) ∩ Br (Q′).

We will say that Br (Q′) is “bad” if it is not good.

Remark 10.2. By Corollary 6.3, with E +
1
2η0 in place of E — which is admissible by monotonicity and

our choice of ∥ln(h)∥α ≤ η/(2C1 + 1) — in any bad ball Br (Q′) there exists a (k−1)-dimensional affine
plane Lk−1 such that {

N (Q, γρr, v) ≥ E −
1
2η0

}
∩ Br (Q′) ⊂ Bρr (Lk−1).

10B. Good trees. Let x ∈ B1(0)∩∂�± and BrA(x) be a good ball for A ≥ 0. We will detail the inductive
construction of a good tree based at BrA(x). The induction will build a successively refined covering
BrA(x) ∩ Sk

ϵ,ηR(v). We will terminate the process and have a cover which consists of a collection of bad
balls with packing estimates and a collection of stop balls whose radii are comparable to R. We shall
use the notation Gi to denote the collection of centers of good balls of scale ri , and Bi shall denote the
collection of centers of bad balls of scale ri .
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Because BrA(x) is a good ball, at scale i = A, we set GA = x . We let BA = ∅. Now the inductive
step. Suppose that we have constructed our collections of good and bad balls down to scale j − 1 ≥ A.
Let {z}Ji be a maximal 2

5rj -net in

BrA(x) ∩ Sk
ϵ,ηR(v) ∩ Brj−1(Gj−1) \

j−1⋃
i=A

Bri (Bi ).

We then sort these points into Gj and Bj depending on whether Brj (z) is a good ball or a bad ball. If
rj > R, we proceed inductively. If rj ≤ R, then we stop the procedure. In this case, we let S = Gj ∪Bj

and we call this the collection of “stop” balls.
The covering at which we arrive at the end of this process shall be called the “good tree at BrA(x)”.

We shall follow [Edelen and Engelstein 2019] and denote this by TG = TG(BrA(x)). We shall call the
collection of “bad” ball centers

⋃
i Bi the “leaves of the tree” and denote this collection by F(TG). We

shall denote the collection of “stop” ball centers by S(TG) = S.
For b ∈ F(TG) we let rb = ri for i such that b ∈ Bi . Similarly, if s ∈ S(TG), we let rs = rj for the

terminal j .

Theorem 10.3. A good tree TG(BrA(x)) enjoys the following properties:

(A) Tree-leaf packing: ∑
b∈F(TG)

r k
b ≤ C2(n, α, M0, ϵ)r k

A.

(B) Stop ball packing: ∑
s∈S(TG)

r k
s ≤ C2(n, α, M0, ϵ)r k

A.

(C) Covering control:

Sk
ϵ,ηR(v) ∩ BrA(x) ⊂

⋃
s∈S(TG)

Brs (s) ∪

⋃
b∈F(TG)

Brb(b).

(D) Size control: for any s ∈ S(TG), we have ρR ≤ rs ≤ R.

Proof. First, observe that by construction

{Brb/5(b) : b ∈ F(TG)} ∪ {Brs/5(s) : s ∈ S(TG)}

is pairwise disjoint and centered in the set Sk
ϵ,ηR(v). Next, all bad balls and stop balls are centered in a

good ball of the previous scale. By our definition of good balls, then, we have for all i

N (b, γ ri , v) = N (b, γρri−1, v) ≥ E − η′ for all ∈ Bi

and
N (s, γ rs, v) ≥ E − η′ for all s ∈ S(TG).

Since by monotonicity we have that supp∈BrA (x) N (Q, 2rA, v) ≤ E + η′, we can apply Lemma 9.2 to
BrA(x) and get the packing estimates (A) and (B).
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Covering control (C) follows from our choice of a maximal 2
5ri -net at each scale i . If i is the first scale

at which a point x ∈ Sk
ϵ,ηR(v) was not contained in our inductively refined cover, it would violate the

maximality assumption.
The last condition (D) follows because we stop only if j is the first scale for which rj ≤ R. Since we

decrease by a factor of ρ at each scale, (D) follows. □

10C. Bad trees. Let BrA(x) be a bad ball. Note that for every bad ball, there is a (k−1)-dimensional affine
plane Lk−1 associated to it which satisfies the properties elaborated in Corollary 6.3. Our construction of
bad trees will differ in several respects from our construction of good trees. The idea is still to define an
inductively refined cover at decreasing scales of BrA(x) ∩Sk

ϵ,ηR(v). We shall again sort balls at each step
into “good”, “bad”, and “stop” balls. But these balls will play slightly different roles and the “stop” balls
will have different radii.

We reuse the notation Gi to denote the collection of centers of good balls of scale ri , Bi to denote the col-
lection of centers of bad balls of scale ri , and Si to denote the collection of centers of stop balls of scale ri .

At scale i = A, we set BA = x , since BrA(x) is a bad ball, and set SA = GA =∅. Suppose, now that we
have constructed good, bad, and stop balls for scale i − 1 ≥ A. If ri > R, then define Si to be a maximal
2
5ηri−1-net in

BrA(x) ∩Sk
ϵ,ηR(v) ∩

⋃
b∈Bi−1

Bri−1(b) \ B2ρri−1(Lk−1
b ).

Note that η ≪ ρ, so ηri−1 < ri . We then let {z} be a maximal 2
5ri -net in

BrA(x) ∩Sk
ϵ,ηR(v) ∩

⋃
b∈Bi−1

Bri−1(b) ∩ B2ρri−1(Lk−1
b ).

We then sort {z} into the disjoint union Gi ∪Bi depending on whether Bri (z) is a good ball or a bad ball.
If ri ≤ R, we terminate the process by defining Gi = Bi = ∅ and letting Si be a maximal 2

5ηri−1-net in

BrA(x) ∩Sk
ϵ,ηR(v) ∩ Bri (Bi−1).

The covering at which we arrive at the end of this process shall be called the “bad tree at BrA(x)”.
We shall follow [Edelen and Engelstein 2019] and denote this by TB = TB(BrA(x)). We shall call the
collection of “good” ball centers,

⋃
i Gi , the “leaves of the tree” and denote this collection by F(TB). We

shall denote the collection of “stop” ball centers by S(TB) =
⋃

i Si .
As before, we shall use the convention that for g ∈F(TB) we let rg = ri for i such that g ∈ Gi . However,

note that now, if s ∈ Si ⊂ S(TB), we let rs = ηri−1.

Theorem 10.4. A bad tree TB(BrA(x)) enjoys the following properties:

(A) Tree-leaf packing: ∑
g∈F(TB)

r k
g ≤ 2c2(n)ρr k

A.

(B) Stop ball packing: ∑
s∈S(TB)

r k
s ≤ c(n, η)r k

A.
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(C) Covering control:

Sk
ϵ,ηR(v) ∩ BrA(x) ⊂

⋃
s∈S(TB)

Brs (s) ∪

⋃
g∈F(TB)

Brg (g).

(D) Size control: for any s ∈ S(TB), at least one of the following holds:

ηR ≤ rs ≤ R or sup
Q∈B2rs (s)∩∂�±

N (Q, 2rs, v) ≤ E −
1
2η.

Proof. Conclusion (C) follows identically as in Theorem 10.3. Next we consider the packing estimates.
Let ri > R. Then, by construction, for any b ∈ Bi−1, we have

Gi ∪Bi ∪ Bri−1(b) ⊂ B2ρri−1(Lk−1
b ).

Thus, since the points Gi ∪Bi are 2
5ri disjoint, we calculate

|Gi ∪Bi ∪ Bri−1(b)| ≤ ωk−1ωn−k+1(3ρ)n−k+1 1

ωn
( 1

5ρ
)n ≤ c2(n)ρ1−k .

We can push this estimate up the scales as follows:

|Gi ∪Bi |r k
i ≤ c2(n)ρ1

|Bi−1|r k
i−1

≤ c2(n)ρ1
|Bi−1 ∪Gi−1|r k

i−1
...

≤ (c2ρ)i−Ar k
A.

Summing over all i ≥ A, then, we have that
∞∑

i=A+1

|Bi−1 ∪Gi−1|r k
i ≤

∞∑
i=A+1

(c2ρ)i−Ar k
A.

Since we chose c2ρ ≤
1
2 , we have that the sum converges and

∞∑
i=A+1

|Bi−1 ∪Gi−1|r k
i ≤ 2c2ρr k

A.

This proves (A).
To see (B), we observe that for any given scale i ≥ A + 1, the collection of stop balls {Bηri−1(s)}s∈Si

form a Vitali collection centered in Bri−1(Bi−1). Thus, we have

|{Si }| ≤
10n

ηn |{Bi−1}|.

Since by construction there are no stop balls at the initial scale A, we compute that
∞∑

i=A+1

|{Si }|(ηri−1)
k
≤ 10kηk−n

∞∑
i=A

|{Bi }|r k
i ≤ c(n, η)r k

A.

This is (B).
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We now argue (D). For s ∈ Si where ri > R, by construction s ∈ Bri−1(b) \ B2ρri−1(Lk−1) for some
b ∈ Bi−1. By Corollary 6.3, the construction, and our choice of η ≤

1
2ρ, we have

sup
p∈B2rs (s)

N (Q, 2rs, v) ≤ sup
p∈B2ηri−1 (s)

N (Q, 2ηri−1, v) ≤ E −
1
2η.

On the other hand, if ri ≤ R, then ri−1 > R. Thus

R ≥ ρri−1 ≥ ηri−1 = rs ≥ ηR.

This proves (D). □

11. The covering

Assuming that ∥ln(h)∥α ≤ η/(2C1 +1), for 0 < η ≤ η0(n, α, E +1, ϵ, η′, γ0, ρ) as in Section 10, we now
wish to build the covering of Sk

ϵ,ηR ∩ B1(0) using the tree constructions above. Note that B1(0) is either a
good ball or a bad ball. Therefore, we can construct a tree with B1(0) as the root. Then in each of the
leaves, we construct either good trees or bad trees, depending upon the type of the leaf. Since in each
construction we decrease the size of the leaves by a factor of ρ < 1

10 , we can continue alternating tree
types until the process terminates in finite time.

Explicitly, we let F0 = {0} and let B1(0) be the only leaf. We set S0 = ∅. Now, assume that we have
defined the leaves and stop balls up to stage i − 1. Since by hypothesis, the leaves in Fi are all good balls
or bad balls, if they are good, we define for each f ∈ Fi−1 the good tree TG(Br f ( f )). We then set

Fi =

⋃
f ∈Fi−1

F(TG(Br f ( f ))) and Si = Si−1 ∪

⋃
f ∈Fi−1

S(TG(Br f ( f ))).

Since all the leaves of good trees are bad balls, all the leaves of Fi are bad.
If, on the other hand, leaves of Fi−1 are bad, then for each f ∈Fi−1 we construct a bad tree TB(Br f ( f )).

In this case, we set

Fi =

⋃
f ∈Fi−1

F(TB(Br f ( f ))) and Si = Si−1 ∪

⋃
f ∈Fi−1

S(TB(Br f ( f ))).

Since all the leaves of bad trees are good balls, all the leaves of Fi are good.
This construction gives the following estimates.

Lemma 11.1. For the construction described above, there is an N ∈ N such that FN = ∅ with the
following properties:

(A) Leaf packing:
N−1∑
i=0

∑
f ∈Fi

r k
f ≤ c(n).

(B) Stop ball packing: ∑
s∈SN

r k
s ≤ c(n, α, M0, ϵ).
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(C) Covering control:

Sk
ϵ,ηR(v) ∩ B1(0) ⊂

⋃
s∈SN

Brs (s).

(D) Size control: for any s ∈ SN , at least one of the following holds:

ηR ≤ rs ≤ R or sup
Q∈B2rs (s)∩∂�±

N (Q, 2rs, v) ≤ E −
1
2η.

Proof. By construction, each of the leaves of a good or bad tree satisfy r f ≤ ri . Thus, there is an i
sufficiently large such that ri < R. Thus, N is finite.

To see (A), we use the previous theorems. That is, if the leaves Fi are good, then they are the leaves of
bad trees rooted in Fi−1. Thus, we calculate by Theorem 10.4∑

f ∈Fi

r k
f ≤ 2c2(n)ρ

∑
f ′∈Fi−1

r k
f ′ .

On the other hand, if the leaves Fi are bad, then they are the leaves of good trees rooted in Fi−1. Thus,
we calculate by Theorem 10.3 ∑

f ∈Fi

r k
f ≤ C2(n, α, M0, ϵ)

∑
f ′∈Fi−1

r k
f ′ .

Concatenating the estimates, since we alternate between good and bad leaves, we have∑
f ∈Fi

r k
f ≤ c(n)(2C2(n, α, M0, ϵ)c2(n)ρ)i/2.

By our choice of ρ, ∑
f ∈Fi

r k
f ≤ c(n)2−i/2.

The estimate (A) follows immediately.
We now turn our attention to (B). Each stop ball s ∈ SN is a stop ball coming from a good or a bad

tree rooted in one of the leaves of a bad tree or good tree. We have the estimates from Theorems 10.3
and 10.4, which give bounds packing both leaves and stop balls. Combining these, we get

∑
s∈SN

r k
s =

N∑
i=0

∑
s∈Si

r k
s ≤

N−1∑
i=0

∑
f ∈Fi

c(n, η)r k
f ≤ C(n, η).

Recalling the dependencies of η gives the desired result.
Property (C) follows inductively from the analogous covering control in Theorems 10.3 and 10.4

applied to each tree constructed. Property (D) is immediate from these theorems as well. □

Corollary 11.2. Fix 0 < ϵ. Let v ∈ A(n, α, M0) satisfy supp∈B2(0) N (Q, 2, v) ≤ E. Fix 0 < ϵ. There is
an η0(n, α, M0, ϵ, E) > 0 such that if 0 < η ≤ η0 and ∥ln(h)∥α ≤ η/(2C1 + 1) then given any 0 < R ≤ 1
there is a collection of balls {Brx (x)}x∈U with centers x ∈ Sk

ϵ,ηR(v)∩ B1(0). Further, R ≤ rx ≤
1
10 and the

collection has the following properties:
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(A) Packing: ∑
x∈U

r k
x ≤ c(n, α, M0, E, ϵ).

(B) Covering control:

Sk
ϵ,ηR(v) ∩ B1(0) ⊂

⋃
x∈U

Brx (x).

(C) Energy drop: for every x ∈ U , either

rx = R or sup
Q∈B2rs (s)∩∂�±

N (Q, 2rs, v) ≤ E −
1
2η0.

This follows immediately from Lemma 11.1 with η ≤ η1, SN = U , and setting rx = max{R, rs}.

11A. Proof of Theorem 2.15.

Lemma 11.3. Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0. There exists a scale κ(n, α, M0, 0, ϵ) > 0 such
that, for all balls Br (Q) with 0 < r < κ and Q ∈ B1/4(0)∩∂�±, the function ṽ(x) = v(r x + Q) on B1(0)

satisfies the following properties:

sup
Q′∈B1(0)∩TQ,r ∂�±

N (Q′, 2, ṽ) ≤ C(α, M0, 0) and ∥ln(h̃)∥C0,α(B1(0)) ≤
η0

2C1 + 1
,

where

η0 = η0(n, α, C(n, α, M0, 0)+ 1, η′, ϵ, γ0, ρ) = η0(n, α, M0, 0, ϵ)

is as in Corollary 6.3 and C(n, α, M0, 0) is as in Corollary 4.4.

Proof. First, note that if ln(h) ∈ C0,α(B1(0)), then ln(h̃(x)) = ln(h(r x + Q)) satisfies

|ln(h̃(x)) − ln(h̃(z))| = |ln(h(r x + Q)) − ln(h(r z + Q))| ≤ 0|r x − r z|α = 0rα
|x − z|α.

Since rα
→ 0 as r → 0, there exists a κ(n, α, M0, 0, ϵ) > 0 such that ∥ln(h̃)∥C0,α ≤ 0κα < η0/(2C1 +1).

By a similar calculation, we see that Lip(ṽ) ≤ r Lip(v). Thus, the fact that H(Q, R, v) = H(0, R/r, ṽ)

for any Q ∈ B1/4(0) ∩ ∂�± and 0 < r ≤ 2κ , Lemma 3.4, and Q′
∈ Br (Q) ∩ ∂�± yields

N (TQ,r Q′, 2, ṽ) = r2 N (Q, 2r, v) ≤ r2C(α, M0, 0). □

Theorem 11.4. Let v ∈A(n, α, M0) with ∥ln(h)∥α ≤0. For all ϵ >0 there exists an η0(n, α, M0, 0, ϵ)>0
such that, for all 0 < R < 1 and k = 1, 2, . . . , n − 1, we can find a collection of balls {BR(xi )}i with the
following properties:

(1) Sk
ϵ,η0 R(v) ∩ B1/4(0) ⊂

⋃
i BR(xi ).

(2) |{xi }i | ≤ c(n, α, M0, 0, ϵ)R−k.

Proof. Cover Sk
ϵ,ηr (v) ∩ B1/4(0) by balls Bκ(Q j ), with Q j ∈ B1/4(0) ∩ ∂�±, such that

B1/4(0) ∩ ∂�±
⊂

⋃
j

Bκ(Q j )
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for 0 < κ(n, α, M0, 0, ϵ) the constant in Lemma 11.3. Note that we need at most c(n, α, M0, 0, ϵ) such
balls.

We now wish to apply Corollary 11.2 to the rescaled functions ṽi (x) = v(κx + Qi ) in B1(0). However,
a careful reader may object that ṽi is not in A(n, α, M0), since it is possible that h̃(0) ̸= 1. However,
ṽi (x) = ch̃(0)u+(xκ + Q)− u−(xκ + Q), where by Remark 3.1 we can control 0 < c < ∞ by constants
that only depend upon κ and α. Thus, by multiplying the positive part by a constant controlled by 0, α,
and M0, we obtain a new function (which we also label ṽi ) which is in A(n, α, M0).

We now construct the desired covering in B1(0) for each ṽi . Ensuring that c(n, α, M0, 0, ϵ) is suffi-
ciently large, we may reduce to arguing for r < η. We now use Corollary 11.2 to build a covering U1. If
every rx equals R, then the packing and covering estimates give the claim directly, since

Rk−n Vol(BR(Sk
ϵ,η0 R(ṽi ) ∩ B1(0))) ≤ ωn Rk−n

∑
U1

(2R)n
= ωn2n

∑
U1

r k
x ≤ c(n, α, M0, 0, ϵ).

If there exists an rx ̸= R, we use Corollary 11.2 to build a finite sequence of refined covers U1, U2, U3, . . .

such that, for each for each i , the covering satisfies the following properties:

(Ai ) Packing: ∑
x∈Ui

r k
x ≤ c(n, α, M0, 0, ϵ)(1 +

∑
x∈Ui−1

r k
x ).

(Bi ) Covering control:
Sk

ϵ,η0 R(ṽi ) ∩ B1(0) ⊂

⋃
x∈Ui

Brx (x).

(Ci ) Energy drop: for every x ∈ Ui , either

rx = R or sup
Q∈B2rs (s)∩∂�±

N (Q, 2rs, ṽi ) ≤ C(n, α, M0, 0)− i
(1

2η0
)
.

(Di ) Radius control:
sup
x∈Ui

rx ≤ 10−i.

If we can construct such a sequence of covers, then we claim that this process will terminate in finite
time, independent of R. Recall that blow-ups of ṽi are homogeneous harmonic polynomials. Therefore

N (Q, 0, ṽi ) = lim
r→∞

N (Q, r, ṽi ) ≥ 1

for all Q ∈ ∂�±. By Remark 4.8 we have that, for all 0 < r ≤ 1,

N (Q, r, ṽi ) ≥ 1 − C(n, α, M0, 0, ϵ)

for all p ∈ B1(0). Therefore, we know that, for i large enough that

i > (C(n, α, M0, 0, ϵ) + C(n, α, M0, 0, ϵ) − 1)
2
η0

,

it must be the case that rx = R for all x ∈ Ui . In this case, we will have the claim with a bound of the form

Rk−n Vol(BR(Sk
ϵ,η0 R(ṽi ) ∩ B1(0))) ≤ c(n, α, M0, 0, ϵ)C(n,α,M0,0,ϵ).
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Thus, we reduce to inductively constructing the required covers. Suppose we have already constructed
Ui−1 as desired. For each x ∈ Ui−1 with rx > R, we apply Corollary 11.2 at scale Brx (x) to obtain a new
collection of balls Ui,x . From the assumption that rx ≤

1
10 and the way that Hölder norms scale, it is clear

that ṽi satisfies the hypotheses of Corollary 11.2 in Brx (x) with the same constants. To check packing
control, we have that ∑

y∈Ui,x

r k
y ≤ c(n, α, M0, 0, ϵ)r k

x .

Covering control follows immediately from the statement of Corollary 11.2. Similarly, from hypothesis
(Ci−1), we have that supp∈B2rx (x) N (Q, 2rx , ṽi ) ≤ C(n, α, M0, 0, ϵ)−

1
2(i − 1)η0. Thus, the statement of

Corollary 11.2 at scale Brx (x) gives supp∈B2ry (y) N (Q, 2ry, ṽi ) ≤ C(n, α, M0, 0, ϵ)− 1
2 iη0 for all y ∈ Ui,x

with ry > R. Radius control follows immediately from the fact that supy∈Ui,x
ry ≤

1
10rx ≤ 10−i.

Thus, if we let
Ui = {x ∈ Ui−1 | rx = R} ∪

⋃
x∈Ui−1, rx>R

Ui,x

then Ui satisfies the inductive claim.
To obtain the cover which proves the theorem, we simply scale each covering of Sk

ϵ,η0 R/κ(ṽi ) ∩ B1(0)

to a covering of Sk
ϵ,η0 R(v)∩ Bκ(yi ) and sum over the c(n, α, M0, 0, ϵ) such balls which cover Sk

ϵ,η0 R(v)∩

B1/4(0). This completes the proof. □

Proof of Theorem 2.15. By Theorem 11.4, we have

Vol(BR(Sk
ϵ,η0 R(v) ∩ B1/4(0))) ≤ C(n, α, M0, 0, ϵ)Rn−k.

Thus, let r0 = η0 and r = η0 R′ for 0 < R′
≤ 1. For any r ≤ R ≤ R′, by containment, we have

BR(Sk
ϵ,r (v) ∩ B1/4(0)) ⊂ BR′(Sk

ϵ,r (v) ∩ B1/4(0)) ⊂

⋃
i

B2R′(xi ),

where {xi } are the centers of the balls in the covering constructed in Theorem 11.4. Therefore, the
estimates in Theorem 11.4 give

Vol(BR(Sk
ϵ,r (v) ∩ B1/4(0))) ≤ C(n, α, M0, 0, ϵ)2n(R′)n−k

≤ C(n, α, M0, 0, ϵ)2n
( R
η0

)n−k
≤ C(n, α, M0, 0, ϵ)Rn−k

by increasing our constant C(n, α, M0, 0, ϵ).
For any R′

≤ R, by containment, we have

BR(Sk
ϵ,r (v) ∩ B1/4(0)) ⊂

⋃
i

B2R(xi ),

where {xi } are the centers of the balls in the covering constructed in Theorem 11.4. In this case

Vol(BR(Sk
ϵ,r (v) ∩ B1/4(0))) ≤ C(n, α, M0, 0, ϵ)2n(R)n−k

≤ C(n, α, M0, 0, ϵ)Rn−k

by increasing our constant C(n, α, M0, 0, ϵ). This concludes the proof of Theorem 2.15. □
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12. Proof of Corollary 2.17

In this section, we prove that sing(∂�±) ⊂ Sk−3
ϵ (v) for ϵ small enough.

Lemma 12.1. Let v ∈ A(n, α, M0) with ∥ln(h)∥α ≤ 0. Then there exists 0 < ϵ = ϵ(M0, α, 0) such that
sing(∂�±) ∩ B1/4(0) ⊂ Sn−3

ϵ (v).

Proof. We must argue that there is an ϵ > 0 such that, for all Q ∈ sing(∂�±) ∩ B1(0) and all radii 0 < r ,∫
B1(0)

|TQ,rv − P|
2 dV ≥ ϵ

for all (n−2)-symmetric functions P.
If P is (n−2)-symmetric, P only depends upon two variables. By complex analysis all homogeneous

harmonic polynomials in two dimensions are of the form q(z) = c(x + iy)k. By Theorem 2.14 (2), we
need only consider k ≥ 2. Hence, the zero set 6q of any Re(q) is the union of an even number of infinite
rays equidistributed in angle. If we label the connected components of R2

\ 6q as {Ui }, we see that by
the maximum principle, the sign of q must change from one Ui to another contiguous Uj .

Thus, the zero set of P is 6P =6q ×Rn−2 for some homogeneous harmonic polynomial Re(q) :R2
→R

of degree ≥ 2. We label the connected components of Rn
\ 6q × Rn−2 as {Wi }.

Now, we claim that there is a constant, 0 < c(M0, 0, α) ≤ 1, such that one of the following estimates
must hold:

Hn
(

TQ,r�
−

∩

⋃
i

{Wi : P > 0 on Wi } ∩ B1(0)

)
≥ c, (estimate 1)

Hn
(

TQ,r�
+

∩

⋃
i

{Wi : P < 0 on Wi } ∩ B1(0)

)
≥ c. (estimate 2)

Note that by Theorem 2.6 (2), we need only consider P with degree ≤ d(M0) < ∞. Reducing to R2,
since the rays of 6q are equidistributed, for q of degree k, the connected components occupy a sector of
aperture π/k. Thus, if B1/M0(A±

1 (0)) ⊂ TQ,r�
± is the ball guaranteed by the corkscrew condition, then,

for c = (4Mn
0 )−1, there exists an integer k(M0) such that

Hn(B1/M0(A±

1 (0)) ∩ {P · TQ,rv < 0}) ≥ c

for all P with degree ≥ k(M0).
For P with degree ≤ k(M0), we argue by contradiction. Suppose that no such constant exists. Then

there would be a sequence of functions vj ∈ A(n, α, M0) with points Q j ∈ B1/4(0) and radii 0 < rj ≤
1
2

and zero sets 6Pj for Pj satisfying 2 ≤ degree(Pj ) ≤ k(M0) such that the scaled and translated mutual
boundaries TQ j ,rj ∂�±

j satisfy the properties

Hn
(

TQ j ,rj �
−

j ∩

⋃
i

{Wi, j : Pj > 0 on Wi, j } ∩ B1(0)

)
→ 0,

Hn
(

TQ j ,rj �
+

j ∩

⋃
i

{Wi, j : Pj < 0 on Wi, j } ∩ B1(0)

)
→ 0.
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By Lemma 3.6 there exists a subsequence for which TQ j ,rj ∂�±

j converge locally in the Hausdorff metric
to a limit set A ⊂ Rn. By Theorem 3.8, A must be the mutual boundary of a pair of two-sided NTA
domains �±

∞
with constant 2M0. Furthermore, up to scaling and rotation, the space of homogeneous

harmonic functions of two variables in Rn with 2 ≤ degree(P) ≤ k(M0) is finite-dimensional. Since the
space of rotations is compact, we may find a subsequence 6Pj which converges to 6P∞

locally in the
Hausdorff metric for some (n−2)-symmetric P∞. This implies that

Hn
(
�−

∞
∩

⋃
i

{Wi,∞ : P∞ > 0 on Wi,∞} ∩ B1(0)

)
= 0, (12-1)

Hn
(
�+

∞
∩

⋃
i

{Wi,∞ : P∞ < 0 on Wi,∞} ∩ B1(0)

)
= 0. (12-2)

Indeed, if there were p ∈
⋃

i {Wi,∞ : P∞ > 0 on Wi,∞}∩ B1(0) such that p ∈ �−
∞

, since Wi,∞ and �− are
open, there would exist a ball Bδ(p) ⊂ �−

∩ Wi,∞. Therefore, since 6Pj → 6P∞
and TQ j ,rj ∂�±

j → A
locally in the Hausdorff metric, for all j sufficiently large, Bδ/2(p) ⊂ Wi, j ∩ TQ j ,rj ∂�−

j . This is a
contradiction. The other equation follows identically.

Now we claim that A ∩ B1(0) = 6P∞
∩ B1(0). Suppose not, then there exists a point p ∈ 6P∞

with
p ̸∈ A or there exists a point Q ∈ A such that Q ̸∈ 6P∞

. In the former case, suppose dist(Q, A) > δ.
Then Bδ(p) must intersect at least two contiguous connected components, Wi,∞ and Wj,∞. Since they
are contiguous, the sign of P∞ must be positive on one and negative on the other. This contradicts (12-1).
Similarly, if there exists a point Q ∈ A such that Q ̸∈ 6P∞

then there exists a ball Bδ(Q) which intersects
both �±

∞
but which is contained in a single Wi,∞. This also contradicts (12-1).

However, if P∞ is (n−2)-symmetric with degree ≥ 2, then 6P∞
does not divide Rn into two connected

components. This contradicts our assumption that A = 6P∞
was the mutual boundary of a pair of

two-sided NTA domains with constant 2M0. Therefore, such a constant 0 < c = c(M0, 0, α) must exist.
Without loss of generality, we assume (estimate 1) holds. By Lemma A.2 we may find a radius

0 < r = r(M0, 0, α) such that Hn(Br (TQ,r∂�±)) < 1
20 c(α, M0, 0). Now, consider

p ∈

⋃
{Wi : P > 0 on Wi } ∩ B1(0) \ Br (TQ,r∂�±).

By Lemma 3.5, |TQ,rv(p)| ≥ c′ for a constant c′
= c′(M0, 0, α). Thus∫

B1(0)

|TQ,rv − P|
2 dV ≥

∫
B1(0)∩TQ,r ∂�−∩

⋃
i {Wi :P>0 on Wi }

|TQ,rv − P|
2 dV

≥
19
20 c(α, M0, 0)c′(α, M0, 0)2.

If (estimate 2) holds, an identical argument with signs switched proves the claim. □

Remark 12.2. The argument above can be modified to show that there is an ϵ′ > 0 such that if Q ∈ ∂� but
Q ̸∈ Sn−3

ϵ′,r0
, then Q ̸∈ Sn−2

ϵ′,r0
. Indeed, if Q ̸∈ Sn−3

ϵ′,r0
, then there exists a radius r0 ≤ r and an (n−2)-symmetric

function P such that ∥TQ,rv − P∥
2
L2(B1(0))

≤ ϵ′. However, by taking ϵ′ < ϵ(α, M0, 0) in Lemma 12.1,
we see that P must be (n−1)-symmetric.
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Appendix

The purpose of this section is to justify Lemma 3.9. We use the language of porous sets. For a nonempty
set E ⊂ Rn , x ∈ E , and radius 0 < r , we write

P(E, x, r) = sup{0, h : h > 0, Bh(y) ⊂ Br (x) \ E for some y ∈ Br (x)}. (A-1)

For α > 0, we say that E is α-porous if

lim inf
r→0

P(E, x, r)

r
> α (A-2)

for all x ∈ E .
We shall say that E is α-porous down to scale r0 if

P(E, x, r)

r
> α (A-3)

for all x ∈ E and for all r0 ≤ r .

Remark A.1. By definition, for �±
∈ D(n, α, M0), the boundary ∂�± is 1/M0-porous. Similarly,

Br (∂�±) is 1/(2M0)-porous down to scale r0 = 2r M0.

Lemma A.2. Let E ⊂ Rn be a nonempty, bounded set, E ⊂ [0, 1]
n with 0 ∈ E. If E is α-porous down to

scale r0 ≪ 1, then there are k = k(α), k ′
= k ′(n), and N ≤ − log2(r0)/(k + k ′) such that

Vol(E) ≤

(
1 −

1
2k+k′(n)

)N

.

Moreover, there exists 0 < ϵ = ϵ(α, n) and a constant c(n, α) such that

Mn−ϵ
r0

(E) ≤ (1 − c)N.

Proof. Let {Qi
j }j be the collection of dyadic subcubes Qi

j ⊂ [0, 1]
n with ℓ(Qi

j ) = 2−i. Let k ∈ N be the
smallest number such that 2−k

≤ α. Note that, for any y ∈ [0, 1]
n with Bα/2(y) ⊂ [0, 1]

n, there exists
a dyadic cube Qk+k′(n)

j ⊂ Bα/4(y) where k ′(x) is the smallest integer such that k ′(n) ≥ 2 +
1
2 log2(n).

Let 1
2 Qi

j denote an axis-parallel cube with the same center as Qi
j but side length half that of Qi

j .
Now we apply the standard argument. Tile [0, 1]

n by Qk+k′(n)
j . By our porosity assumption, there

exists a Qk+k′(n)
j ′ which does not intersect E . Thus

Vol(E) ≤

∑
j ̸= j ′

Vol(Qk+k′(n)
j ) ≤ (2(k+k′(n))n

− 1)2(−k−k′(n))n
≤

(
1 −

1
2k+k′(n)

)
.

Now, within each of the Qk+k′(n)
j which intersects E , either E intersects 1

2 Qk+k′(n)
j or it doesn’t. If

E ∩
1
2 Qk+k′(n)

j = ∅, then we tile Qk+k′(n)
j by cubes {Q2(k+k′(n))

ℓ }ℓ and overestimate

Vol(E ∩ Qk+k′(n)
j ) ≤

∑
ℓ:Q2(k+k′(n))

ℓ ∩(E∩Qk+k′(n)
j ) ̸=∅

Vol(Q2(k+k′(n))
ℓ )

≤ (22(k+k′(n))n
− 1)2−2(k+k′(n))n Vol(Qk+k′(n)

j ) ≤

(
1 −

1
2k+k′(n)

)
Vol(Qk+k′(n)

j ).
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If E ∩
1
2 Qk+k′(n)

j ̸= ∅, then there exists a ball B2−k−k′(n)−1(x) ⊂ Qk+k′(n)
j centered on x ∈ E . By our

porosity assumption and choice of k ′(n), we can still tile Qk+k′(n)
j by Q2(k+k′(n))

ℓ and be guaranteed that
at least one such subcube does not intersect E ∩ Qk+k′(n)

j . Thus, we overestimate in the same manner as
above.

We can continue, inductively, only stopping at the first N such that 2−(N+1)(k+k′(n)) < r0. This gives
the desired bound

Vol(E) ≤

(
1 −

1
2k+k′(n)

)N

.

Taking a bit more care, we can actually improve these estimates. Let 0 < ϵ = ϵ(α, n) be such that(
1 −

1
2k+k′(n)

)
<

(
2ϵ(k+k′(n))

−
1

2(k+k′(n))(n−ϵ)

)
< 1.

Then we bound Mn−ϵ
r0

(E) as follows:

Mn−ϵ
r0

(E) = inf
{∑

i

rn−ϵ
: xi ∈ E, r0 ≤ r, E ⊂

⋃
i

Br (xi )

}

≤

∑
j

ℓ(QN (k+k′(n)))n−ϵ
≤

(
2ϵ(k+k′(n))

−
1

2(k+k′(n))(n−ϵ)

)N

. □

As immediate corollaries, we have the following statements.

Corollary A.3. If E ⊂ Rn is α-porous, then there exists 0 < ϵ = ϵ(α, n) such that dimM(E) ≤ n − ϵ.

Proof. Recall that dimM(E) = inf{s : M∗,s(E) = 0} and that M∗,s(E) = lim supr0→0 Mn−ϵ
r0

(E).
By taking 0 < ϵ to be as in Lemma A.2, we have

Mn−ϵ
r0

(E) ≤

(
2ϵ(k+k′(n))

−
1

2(k+k′(n))(n−ϵ)

)N

≤ (1 − c)N,

where c = c(α, n, ϵ) and N = N (α, n, r0), as in the previous lemma. Thus, letting r0 → 0 and N → ∞

we have that Mn−ϵ(E) = 0. □

Recalling Remark A.1, Corollary A.3 gives Lemma 3.9.

Corollary A.4. Let 6 ⊂ Rn be the mutual boundary of a pair of unbounded two-sided NTA domains with
NTA constant 1 < M0. Then, there exists 0 < ϵ = ϵ(M0, n) such that dimM(E) ≤ n − ϵ.
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We desingularise the union of three Grim paraboloids along Costa–Hoffman–Meeks surfaces in order to
obtain complete embedded translating solitons of the mean curvature flow with three ends and arbitrary
finite genus.
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1. Introduction

1.1. Main result. For the purposes of this paper, a mean curvature flow (MCF) soliton is a complete
surface in R3 whose evolution under the mean curvature flow is given by translation. In other words, up
to rescalings and rigid motions of the ambient spacetime, it is a solution of what we will call the MCFS
equation

H + ⟨N , ez⟩ = 0, (1-1)

where H here denotes the mean curvature of the surface, N its unit normal vector field, and ez the unit
vector in the direction of the z-axis. We refer the reader to the review of Martín, Savas-Halilaj and
Smoczyk [Martín et al. 2015] for a good overview of the theory of MCF solitons at the time of writing.

We use surgery to construct embedded MCF solitons with three ends and arbitrary finite genus. Before
stating our result, we describe the two components of our construction. First, given a positive integer g,
the Costa–Hoffman–Meeks (CHM) surface of genus g, denoted by Cg, is a properly embedded minimal
surface in R3 with three ends, each of which may be taken to be a graph over an unbounded annulus in R2;
see [Hoffman and Meeks 1990; Weber 2005]. For 0 ≤ k ≤ g, this surface is invariant under reflection
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Keywords: mean curvature flow, soliton, singular perturbation, Costa–Hoffman–Meeks surface, Grim paraboloid, bowl soliton.
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in the vertical plane making an angle of kπ/(g + 1) with the x-axis at the origin. We call the group of
symmetries of R3 generated by these reflections the group of horizontal symmetries of Cg.1 Next, the
Grim paraboloid (also known as the bowl soliton) is defined to be the unique simply connected MCF
soliton which is symmetric under revolution about the z-axis. It is known (see [Clutterbuck et al. 2007])
that this surface is asymptotic at infinity to a vertical translate of the graph of

1
2r2

− log(r),

where r here denotes the distance in R2 to the origin.

Theorem A. For all g ∈ N and for all sufficiently small ϵ, there exists a complete, embedded MCF
soliton 6g,ϵ of genus g with three ends. Furthermore, letting R := ϵ−1/λ for some λ ∈ ]4, 5[, we may
suppose:

(1) 6g,ϵ \ (B(ϵR)× R) consists of three connected components, each of which converges towards the
same Grim paraboloid as ϵ tends to 0.

(2) Upon rescaling by a factor of 1/ϵ, 6g,ϵ ∩(B(ϵR)× R) converges to Cg as ϵ tends to 0.

(3) 6g,ϵ is invariant under the group of horizontal symmetries of Cg.

Remark. Theorem A follows immediately from Theorems 7.1.3 and 7.1.4, below.

Remark. All notation and terminology used in this paper is explained in detail in Appendix A. Recall, in
particular, that, by elliptic regularity, all standard modes of convergence of smooth, embedded solutions
of parametric elliptic functionals to smooth, embedded solutions of the same functionals are equivalent
over any compact region.

Remark. The constants that appear in Theorem A have the following geometric significance. The
quantity ϵ determines the scaling factor of the CHM surface. Roughly speaking, it is the “neck radius”
of 6g,ϵ . The quantity R determines how far along the end of the CHM surface the surgery is carried
out. For the construction to work, ϵ and R must converge in tandem to 0 and infinity respectively, hence
the condition Rλϵ = 1. Distinct values of ϵ ought to yield distinct surfaces. Indeed, a refinement of our
result ought to yield a continuous family (6g,ϵ)ϵ<r0 of distinct embedded MCF solitons with neck radii
converging to 0. However, our current argument, which uses the Schauder fixed-point theorem, does not
yield such fine control over the surfaces constructed.

1.2. Techniques. The proof of Theorem A follows the standard desingularisation construction for minimal
surfaces originally described in [Kapouleas 1990; 1995; 1997]. In simple terms, we first use surgery to
construct an approximate MCF soliton 6̂g,ϵ and then apply a fixed-point argument to prove the existence
of an actual MCF soliton lying nearby in some suitable function space. As in all singular perturbation
constructions, this is much easier said than done, and the main challenge lies in deriving the many
nontrivial analytic estimates required to make the perturbation argument work.

1Hoffman and Meeks showed that the complete symmetry group of Cg is the dihedral group generated by the elements A and B,
where A is reflection in the (x−z)-plane and B is rotation by an angle of kπ/(g + 1) about the z-axis followed by reflection in
the (x−y)-plane.
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The use of CHM surfaces in Kapouleas’ construction presents particular difficulties on account of their
low orders of rotational symmetry. Indeed, rotational symmetries often serve in such constructions to
improve decay rates and thus in turn provide stronger estimates. This phenomenon is well illustrated
by the case of bounded solutions u : S1

× [0,∞[ → R of Laplace’s equation 1u = 0. By separation of
variables, all such solutions have the form

u(θ, t)=

∑
m∈Z

ameimθe−|m|t .

In particular, when u has n-th order rotational symmetry, all of its coefficients of order 0< |m|< n vanish,
so that the difference (u − a0) decays like e−nt. Since this argument does not apply when CHM surfaces
are used, we obtain our estimates by introducing instead, in Section 4.2, what we call the hybrid norm.
This functional norm, which is a combination of Hölder and Sobolev norms, encapsulates the singular
nature of our construction as ϵ tends to 0. Its main properties, established in Lemma 4.3.1, follow readily
from the Sobolev embedding theorem and classical interpolation inequalities, and play a key role in the
derivation of various estimates throughout the rest of the paper.

Finally, before reviewing our argument, it is worth highlighting an ingenious variant of the desingulari-
sation construction for CHM surfaces used in [Hauswirth and Pacard 2007; Mazzeo and Pacard 2001;
Morabito 2009]. In each of these papers, it is observed that the Jacobi operator Ĵg,ϵ of the approximate
minimal surface 6̂g,ϵ is, modulo a conformal transformation when necessary, intrinsically close to the
Jacobi operator of the original CHM surface. A direct perturbation argument then yields a priori estimates
for the norm of its Green’s operator, thereby bypassing one of the main technical challenges of the
perturbation part of the construction. In addition, in these works, the initial surgery is carried out in a
different manner than in [Kapouleas 1990; 1995; 1997], more pleasing to the geometric eye, though it
is not clear to us whether this actually leads to simpler estimates. Regardless, their argument cannot
be applied in the present case where the Jacobi operator of the joined surface is not intrinsically of the
correct type.

The proof is organised as follows.

1.2.1. Rotationally symmetric Grim surfaces. We will desingularise the join of a CHM surface with three
rotationally symmetric Grim ends, that is, unbounded, rotationally symmetric MCF solitons in R3. The
geometry of CHM surfaces is well understood (see, for example, [Hoffman and Meeks 1990; Weber
2005]) and the large-scale geometry of rotationally symmetric Grim ends has been studied by Clutterbuck,
Schnürer and Schulze [Clutterbuck et al. 2007]. In Section 2, we study the small-scale geometry of
rotationally symmetric Grim ends, which has not previously been addressed in the literature.

Rotationally symmetric Grim ends exhibit a dual nature over the region of interest to us. Indeed, they
are roughly catenoidal towards the lower end of this region, and roughly parabolic towards its upper end.
This presents us with our first main challenge, which we address via the following algebraic trick. We
introduce two abstract variables, representing respectively the catenoidal part and the parabolic part of
the Grim end. We then construct formal solutions to the MCFS equation in terms of these variables, and
obtain the desired formulae upon applying the contraction mapping theorem to their partial sums.
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The main results of this section are Theorems 2.1.1 and 2.2.1, which provide asymptotic formulae for
the profiles of rotationally symmetric Grim ends over the large and small scales respectively.

1.2.2. Green’s operators. Our perturbation argument requires estimates for the norm of a Green’s operator
of the MCFS Jacobi operator of the approximate MCF soliton. These are in turn derived from estimates
of the norms of the corresponding operators of CHM surfaces and rotationally symmetric Grim ends.
Green’s operators of Jacobi operators of CHM surfaces are well understood; see, for example, [Hauswirth
and Pacard 2007; Morabito 2009; Nayatani 1993; Pacard 2008]. In Sections 3 and 4, we study the Green’s
operators of the MCFS Jacobi operators, first of Grim paraboloids, then of rotationally symmetric Grim
ends. The former are relatively straightforward, but the latter present us with our second main challenge,
namely, to address the singularities that catenoids produce as their neck radii tend to 0. This simple
phenomenon, which we call the vanishing neck problem, will be responsible for the introduction of a
number of technical constructions, as we now proceed to explain.

To begin with, in Section 4.1, we modify the Jacobi operator in two ways. First, we introduce the
modified MCFS Jacobi operator, which measures the first-order variation of mean curvature arising from
first-order perturbations of the surface in the direction of a suitable modification of the unit normal vector
field. At this stage, this modification serves to reduce the divergence rates of the coefficients of the Green’s
operators as the neck radii vanish. We underline that, since different modifications are made on different
scales, the precise definition of this operator varies according to context (the general framework, unifying
these definitions, is described in Section 5.4). Next, we introduce canonical extensions of operators across
the region within the neck, which allow the modified MCFS Jacobi operators of distinct rotationally
symmetric Grim ends to be compared as if they were all defined over R2.

Notably, even with these modifications, the vanishing neck problem still imposes restrictions on the
way in which ϵ and R tend respectively to 0 and infinity. Indeed, it is precisely at this stage that we
require that ϵR5 tend to infinity in the statement of Theorem A, for otherwise we could not guarantee
decay in Lemmas 4.2.1 and 4.2.2.

The main result of these two sections is Theorem 4.1.1, which provides the required uniform estimates
for the Green’s operators of the modified MCFS Jacobi operators of rotationally symmetric Grim ends.
We prove this result using a perturbation argument. To this end, we examine the differences between the
modified MCFS Jacobi operators of Grim paraboloids and those of rotationally symmetric Grim ends.
We decompose these differences into regular and singular components. In Section 4.2, we show that the
operator norms of the regular components tend to 0 as ϵ tends to 0, and in Section 4.3, making use of the
hybrid norm described above, we prove the same result for the singular components. In particular, we see
that an adequate treatment of the vanishing neck problem already calls for the hybrid norm, which will
play a larger role later on in the construction.

1.2.3. Surgery and the deformation family. In Section 5, we describe the surgery operation used to
construct the approximate MCF soliton 6̂g,ϵ as well as the deformation family around this surface
within which the actual MCF soliton 6g,ϵ will be found. The surgery operation is straightforward and
is described in Section 5.1. Simply put, the ends of the CHM surface are amputated, suitably chosen
rescaled rotationally symmetric Grim ends are grafted in their place, and the join is smoothed out using



COMPLETE EMBEDDED TRANSLATING SOLITONS OF THE MEAN CURVATURE FLOW OF FINITE GENUS 1179

cut-off functions. The construction of the deformation family about 6̂g,ϵ is more technical and is carried
out in Section 5.2.

The challenge in understanding (and explaining!) this construction arises from the fact that four
different families of deformations must be considered. The first concerns deformations in the direction of
a suitable modification of the unit normal vector field. We refer to the resulting first-order perturbations of
the surface as microscopic perturbations, since they decay at infinity. The remaining three families involve
variations of the logarithmic parameters of the ends, starting far inside the locus of surgery, and vertical
translations of the ends, starting far inside and far outside the locus of surgery respectively. We refer to
the resulting first-order perturbations as macroscopic perturbations, since they remain large at infinity.

We associate to each of the four classes of perturbation described above the operator of first-order
variation of the MCFS functional about 6̂g,ϵ . We denote these operators by Ĵϵ , Xϵ , Yϵ and Zϵ respectively.
Understanding their analytic properties is key to estimating the norm of the Green’s operator of the
modified MCFS Jacobi operator of 6̂g,ϵ , and we conclude this section by deriving preliminary estimates
in Sections 5.3, 5.4 and 5.5.

1.2.4. Constructing the Green’s operator. In Section 6, we construct a Green’s operator of the modified
MCFS Jacobi operator of 6̂g,ϵ , together with estimates of its operator norm. This section constitutes the
hardest technical part of the paper. The determination of sufficiently strong estimates is made possible,
on the one hand, by the correct choice of functional norms over the different components of 6̂g,ϵ and, on
the other, by the use of the hybrid norm described above.

The estimates for the norm of the Green’s operator are obtained in Sections 6.3, 6.4 and 6.5 via a
classical iteration process which we call the “ping-pong” argument. This process, which is common to
all singular perturbation constructions, involves passing successive error terms back and forth over the
join region. From a conformal perspective, the join region consists of cylinders which become very long
as ϵ tends to 0. More explicitly, if R = ϵ−1/λ, then these cylinders are roughly of length (λ− 1)Ln(R).
The estimates we require to ensure the convergence of the iteration process then follow from the fact that
bounded harmonic functions decay exponentially over long cylinders. In particular, we maximise decay
by choosing λ as large as possible. We have already seen in Section 1.2.2, above, that λ must be less
than 5. It turns out that λ ∈ ]4, 5[ is sufficient for our purposes, thus explaining the condition imposed in
the statement of Theorem A. We believe that the ideas underlying this technique are best illustrated by
the simplest version of this construction, used in the theory of Morse homology, and described in detail
in Section 2.5 of [Schwarz 1993].

The first main results of this section are Theorems 6.3.1 and 6.4.1, which provide estimates for the norms
of the operators used in the two stages of the iteration process. In addition, Theorems 6.5.2, 6.5.3 and 6.5.4
provide estimates for the norms of the different components of the Green’s operator that we construct.

1.2.5. Existence and embeddedness. Finally, in Section 7 we prove Theorem A by applying the Schauder
fixed-point theorem to the MCFS functional about the approximate MCF soliton 6̂g,ϵ . First, we determine
estimates for the MCFS functional up to second order about 6̂g,ϵ . Then, using the estimates obtained in
Section 6, we prove existence in Theorem 7.1.3, and we prove embeddedness in Theorem 7.1.4 using a
straightforward geometric argument.
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1.3. Notation. In order not to be overwhelmed by a deluge of constants, throughout the paper we use the
following notation, which we have found to be of great help. First, given two variable quantities a and b,
we will write

a ≲ b (1-2)

to mean that there exists a constant C , which for our purposes we consider universal, such that

a ≤ Cb.

Next, given a function f and a sequence of functions (gm), we will write

f = O(gm) (1-3)

to mean that there exists a sequence (Cm) of constants, which for our purposes we again consider universal,
such that the relation

|Dm f | ≤ Cm gm

holds pointwise for all m. The indexing variable of the sequence (gm) should be clear from the context.
In certain cases, every element of this sequence may be the same. It should also be clear from the context
when this occurs. All other notation and terminology is explained in detail in Appendix A.

2. Rotationally symmetric Grim surfaces

2.1. The large scale. We define a Grim surface to be any unit-speed MCF soliton which is a graph over
some domain in R2. We define a Grim end to be a Grim surface which is defined over some unbounded
annulus A(a,∞). These will be studied in more detail in Section 4. In this section, we study rotationally
symmetric Grim surfaces defined over some annulus A(a, b). We first recall the general formula for such
surfaces. Let u be a twice differentiable function defined over some closed interval [a, b] and let 6 be
the surface of revolution generated by rotating its graph about the z-axis. The principal curvatures of 6
in the radial and angular directions are respectively

cr =
−urr√
1 + u2

r
3 , cθ =

−ur

r
√

1 + u2
r

, (2-1)

where r here denotes the radial distance in A(a, b) from the origin, and the subscript r denotes differenti-
ation with respect to this variable. The vertical component of the upward-pointing, unit normal vector
over 6 is

⟨N6, ez⟩ =
1√

1 + u2
r

, (2-2)

so that, by (1-1), 6 is a rotationally symmetric Grim surface whenever

rurr + (ur − r)(1 + u2
r )= 0. (2-3)

Solutions of this equation have no straightforward closed form. However, it will be sufficient for our
purposes to obtain approximations by semiconvergent, that is, asymptotic, series. We first derive an
asymptotic formula which is valid as r tends to infinity.
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Theorem 2.1.1. If u : ]a,∞[ → R is a solution of (2-3) then, as r → +∞,

u =
1
2r2

− log(r)+ a + O(r−(k+2)) (2-4)

for some real constant a.2

Theorem 2.1.1 follows immediately upon integrating (2-13), below. A similar result has already been
obtained in [Clutterbuck et al. 2007]. However, we consider it worth deriving (2-4) in full, not only
because we use different techniques, but also because we believe it serves as good preparation for the
more subtle small-scale asymptotic estimates that will be studied in the following sections.

Define the nonlinear operator G by

Gv := rvr + (v− r)(1 + v2), (2-5)

and observe that v solves Gv = 0 if and only if its integral is the profile of a rotationally symmetric Grim
surface. We first derive formal solutions to (2-5). To this end, we define a Laurent series in the formal
variable R to be a formal power series of the form

V :=

k∑
m=−∞

Vm Rm, (2-6)

where, for all m, Vm is a real number and k is some finite integer, which we henceforth call the order
of V. Since the operations of formal multiplication and formal differentiation are well-defined over the
space of Laurent series, the operator G also has a well-defined action over this space.

Lemma 2.1.2. There exists a unique Laurent series V such that GV = 0. Furthermore:

(1) V has order 1.

(2) V1 = 1, V−1 = −1.

(3) If m is even, then Vm = 0.

(4) If V̂n :=
∑1

m=1−2n Vm Rm denotes the n-th partial sum of V, then GV̂n is a finite Laurent series of
order (1 − 2n).

Proof. Consider the ansatz (2-6). If k ≤ −1, then the highest-order term in GV is (−R), if k = 0, then it
is (−R)(1 + V 2

0 ), and if k ≥ 2, then it is V 3
k R3k. Since none of these vanish, it follows that V must be of

order 1. In this case, the highest-order term in GV is V 2
1 (V1 − 1)R3 so that, in order to have nontrivial

solutions, we require V1 = 1. We now have

R
dV
d R

+ (V − R)(1 + V 2)= R +

0∑
m=−∞

(m + 1)Vm Rm
+

2∑
m=−∞

( ∑
p+q+r=m
p≤0, q,r≤1

VpVq Vr

)
Rm .

In particular, setting the respective coefficients of R2 and R equal to 0 yields

V0 = 0, V−1 = −1.

2We refer the reader to Section 1.3 and Appendix A for a detailed review of the notation used here and throughout the sequel.
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For all m ≤ −2, setting the coefficient of Rm+2 equal to 0 now yields

Vm +

( ∑
p+q+r=m+2
m+1≤p≤−1
m+2≤q,r≤1

VpVq Vr

)
+ (m + 3)Vm+2 = 0. (2-7)

The existence and uniqueness of V now follow from this recurrence relation. Furthermore, if p +q + r =

m + 2, and if m is even, then at least one of p, q and r is also even, and since V0 = 0, it follows by
induction that Vm = 0 for all even m. In addition, by (2-7), for all n, and for all m ≥ (3 − 2n), the
coefficient of Rm in GV̂n is equal to 0. However, since V−2n = 0, by (2-7) again, the coefficient of R2−2n

in GV̂n is also equal to 0, so that GV̂n is a finite Laurent series of order (1 − 2n), as desired. □

For all n, define the n-th partial sum vn : ]0,∞[ → R by

vn(r) :=

1∑
m=1−2n

Vmrm . (2-8)

We now show that the sequence (vn) yields successively better approximations over the large scale of the
exact solutions of Gv = 0. We first derive zeroth order bounds.

Lemma 2.1.3. If v : [a,∞[ → R solves (2-5) then, for large r ,

|v0 − v| ≲ 1
r
. (2-9)

Proof. Consider the family of polynomials pt(y)= (y − 1)(t2
+ y2). For all t > 0, y = 1 is the unique

real root of pt . Since y = 0 is the unique local maximum of p0, for sufficiently small t , the unique local
maximum of pt is also near 0, and the value of pt at this point is less than −t2/2. Since p0 is convex over
the interval

[1
3 ,∞

[
, for 1

3 < y < 1 we have p0(y)⩽ 3
2(1 − y)p0

( 1
3

)
=

1
9(y − 1) and so, for sufficiently

small t , over the smaller interval
[ 1

2 , 1
]
, pt(y)⩽ 1

18(y − 1).
Now let v be a solution of Gv = 0. In particular, using a dot to denote differentiation with respect to

r , we have v̇ = −r2 p1/r (v/r). Suppose, furthermore, that r ≫ 1 so that the estimates of the preceding
paragraph hold for p1/r . When v≥ r , we have v̇−ṙ = v̇−1 ≤−1, so that, for sufficiently large r , v(r)⩽ r .
If v ⩽ 1

2r , then v̇−
1
2 ṙ ⩾ 1

2r −
1
2 , so that, for sufficiently large r , v(r)⩾ 1

2r . Finally, if 1
2r ⩽ v ⩽ r then,

by the preceding discussion, v̇ ⩾ 1
18r(r − v). It follows that if w := r(v0 − v) = r(r − v), then w > 0

and ẇ = 2r − v− r v̇ ⩽ r +w/r −
1

18rw. Since this is negative for w ⩾ 36 and r > 6, the function w is
bounded, and the result follows. □

Lemma 2.1.4. If v : [a,∞[ → R solves (2-5) then, for all n, and for large r ,

|vn − v| ≲ r−(2n+1). (2-10)

Proof. For all n, let wn := r2n−1(vn − v) be the rescaled error. We prove by induction that |wn| ≲ r−2

for all n. Indeed, the case n = 0 follows from (2-9). We suppose therefore that n ≥ 1. Since wn =

r2wn−1 + V1−2n , it follows by the inductive hypothesis that wn is bounded. Now let P(a, b) denote any
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polynomial in the variables a and b. Since Gvn is a finite Laurent polynomial of order (1 − 2n), using a
dot to denote differentiation with respect to r , we have

ẇn =
(2n−1)

r
wn + r2n−2(r v̇n − r v̇)

=
1
r

P
(1

r
, wn

)
− r2n−2((vn − r)(1 + v2

n)− (v− r)(1 + v2)
)

=
1
r

P
(1

r
, wn

)
−

1
r
wn(1 − r(vn + v)+ (v2

n + vnv+ v2)).

Since v = vn − r−(2n−1)wn and since (vn − r) is also a polynomial in r−1 with no constant term, this
yields

ẇn =
1
r

P
(1

r
, wn

)
− rwn.

Since wn is bounded, there therefore exists a constant B > 0 such that, for all r ⩾ 1,

|ẇn + rwn| ⩽ Br−1. (2-11)

In particular, for r ≥ 2 and r2wn ≥ 2B,

d
dr

r2wn = r2(ẇn + rwn)+ (2r − r3)wn ≤ Br −
1
2r3wn ≤ 0,

so that r2wn is bounded from above. Since (−wn) also satisfies (2-11), we see that r2wn is bounded from
below, and this completes the proof. □

Lemma 2.1.5. If v : [a,∞[ → R solves (2-5) then, for all n,

vn − v = O(r−(k+2n+1)). (2-12)
In particular,

v = r −
1
r

+ O(r−(k+3)). (2-13)

Proof. For all n, define wn := (vn − v). As in the proof of Lemma 2.1.4, we obtain

ẇn = P1

(1
r
, wn

)
rwn +

1
r
Gvn,

where P1 is some polynomial. Since Gvn is a finite Laurent polynomial of order (1 − 2n), it follows by
induction that, for all k,

dkwn

dr k = Pk

(1
r
, wn

)
r kwn + Qk

(1
r
, wn

)
r k−(2n+1),

where Pk and Qk are polynomials. It follows by (2-10) that, for all k,∣∣∣∣ dk

dr k (vn − v)

∣∣∣∣ =

∣∣∣∣dkwn

dr k

∣∣∣∣ ≲ r k−(2n+1).

However, since (vn+k − vn) is a finite Laurent series of order −(2n + 1), for all k,∣∣∣∣ dk

dr k (vn − v)

∣∣∣∣ ≤

∣∣∣∣ dk

dr k (vn − vn+k)

∣∣∣∣ + ∣∣∣∣ dk

dr k (vn+k − v)

∣∣∣∣ ≲ r−(k+2n+1),

and the result follows. □
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2.2. The small scale: formal solutions. We now study solutions to (2-5) over the small scale. We fix
positive constants K ≫ 1 and η ≪ 1 which we henceforth consider to be universal. Let 3 be a large,
positive real number, and let ϵ, R > 0 and c ∈ R be such that(

ϵR4+η
+

1
R1−η

)
≤

1
3
, ϵR5−η

≥3, |c| ≤ K . (2-14)

These conditions will be used repeatedly throughout the paper. Observe, in particular, that (2-14) implies
that ϵ becomes small and R becomes large as 3 tends to infinity. We will prove:

Theorem 2.2.1. For all sufficiently large 3, and for all R, ϵ satisfying (2-14), there exists a smooth
function σ [ϵ, R] : R → R such that, for all c ∈ [−K , K ], if v : [ϵR, ϵR4

] → R solves Gv = 0 with initial
value

v(ϵR)=
1
R
σ [ϵ, R](c)+ ϵR

2
, (2-15)

then

v(r)=
1
2

r +
cϵ
r

+ O
([

1 + log
(

r
ϵR

)]
1
r k

(
r +

ϵ

r

)3)
. (2-16)

Furthermore, the function σ [ϵ, R] converges to the identity in the C∞

loc sense as 3 tends to +∞.

Remark. We leave the reader to verify that the same conclusion also holds over the interval [ϵR,CϵR4
]

for any constant C not depending on ϵ or R.

The function σ [ϵ, R] will be defined explicitly in Section 2.3, below, and Theorem 2.2.1 will follow
immediately from Lemma 2.4.2, below. The constant c will henceforth be referred to as the logarithmic
parameter of the function v. Observe that, up to a small perturbation, it is related to the initial value of v by
a linear function. This perturbation is required in order to guarantee good estimates over the whole interval.
Indeed, replacing σ [ϵ, R](c) by c in (2-15) would increase the error in (2-16), making it then of order (ϵ/r).

In order to appreciate Theorem 2.2.1 and the argument that follows, we find it helpful to first recall the
geometric properties of the function v over the interval [ϵR, ϵR4

]. Indeed, by definition, its integral u is the
profile of some rotationally symmetric Grim surface. However, it is known (see [Clutterbuck et al. 2007])
that, near the lower end of this interval, the first term in the MCFS equation (1-1) dominates, so that the
graph of u is close to some minimal catenoid in R3 and the function u is itself approximately logarithmic.
On the other hand, near the upper end of this interval, it is the second term in the MCFS equation which
dominates, and the function u is approximately quadratic, in accordance with the asymptotic formula
obtained in the preceding section. These two contrasting behaviours are reflected in (2-16) by the ϵ/r
terms and the r terms respectively.

In order to derive an asymptotic formula for u that simultaneously describes these two behaviours, we
introduce two abstract variables M and N, where M measures its quadratic behaviour, and N measures its
logarithmic behaviour. By expressing the equation Gv = 0 in terms of these new variables, the asymptotic
formula for v is then obtained in the same manner as in Section 2.1 namely, by first determining formal
solutions which then serve as approximations for exact solutions.

Upon applying the change of variables r := ϵRex we obtain

Gv = Dv− ϵRex
+ (v− ϵRex)v2, (2-17)
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where the operator D is defined by
Dv := vx + v, (2-18)

and the subscript x here denotes differentiation with respect to this variable. Now let R[X,M, N ] be the
ring of polynomials with real coefficients in the variables X , M and N. We consider a general element V
of R[X,M, N ] as a sum of the form

V =

∑
p,q≤k

Vp,q(X)M p N q , (2-19)

where, for all p, q , Vp,q is a polynomial in the variable X and k is some finite, nonnegative integer which
we henceforth refer to as the order of V. There is a natural correspondence sending R[X,M, N ] into the
space of continuous functions over [0, 3 log(R)] given by

V 7→ v(x) :=

∑
p,q≤k

Vp,q(x)(ϵRex)p
( c

R
e−x

)q
. (2-20)

In other words, this correspondence is the unique R[X ]-ring homomorphism which sends M to ϵRex and
N to (c/R)e−x . Although this homomorphism is not injective, it keeps track of the parameters ϵ, R and c,
which is the reason why it serves our purposes. Operators G and D are also defined over R[X,M, N ] by

GV := DV − M + (V − M)V 2,

(DV )p,q :=

( d
d X

+ 1 + (p − q)
)

Vp,q ,
(2-21)

where d/(d X) here denotes the operator of formal differentiation with respect to the variable X . In
particular, G and D both map through the above correspondence to the operators given in (2-17) and
(2-18) respectively, thereby justifying this notation. Observe, furthermore, that D defines a surjective
linear map from R[X,M, N ] to itself and that its kernel consists of finite sums of the form

V =

∑
p≤k

ap M p N p+1,

where a0, . . . , ak are real constants.
Let R[X ][[M, N ]] be the ring of formal power series over the variables M and N with coefficients

that are polynomials in the variable X . Observe that the operators G and D naturally extend again to
well-defined operators over this space.

Lemma 2.2.2. There exists a unique formal power series V in R[X ][[M, N ]] such that

(1) V0,1 = 1,

(2) Vp,p+1(0)= 0 for all p ≥ 1, and

(3) GV = 0.

Furthermore,

(4) V1,0 =
1
2 ,

(5) if p + q is even, then Vp,q = 0, and

(6) if p + q = 2k + 1 is odd, then Vp,q has order at most k in X.
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Finally, if we define
V̂k :=

∑
p+q≤2k+1

Vp,q(X)M p N q ,

then,

(7) if (p + q)≤ (2k + 1), then the coefficient of M p N q in GV̂k vanishes,

(8) if (p + q) > (2k + 1) is even, then the coefficient of M p N q in GV̂k vanishes, and

(9) if (p+q)> (2k+1) is odd, then the coefficient of M p N q in GV̂k has order at most 1
2(p+q −3) in X.

Proof. Let V =
∑

p,q Vp,q(X)M p N q be an element of R[X ][[M, N ]] which solves GV = 0. For all (p, q),
equating the coefficient of M p N q in GV to 0, we obtain( d

d X
+ (1 + (p − q))

)
Vp,q = δp1δq0 −

∑
p1+p2+p3=p
q1+q2+q3=q

Vp1,q1 Vp2,q2 Vp3,q3 +

∑
p1+p2=p−1

q1+q2=q

Vp1,q1 Vp2,q2 . (2-22)

In particular,
dV0,0

d X
+ V0,0(1 + V 2

0,0)= 0,

and since there exists no nontrivial polynomial solution to this equation, it follows that V0,0 = 0. From
this it follows that the two summations on the right-hand side of (2-22) only involve terms of order at
most p + q − 2 in (M, N ). In particular, V0,1 satisfies

dV0,1

d X
= 0.

It is thus constant, and we henceforth set it equal to 1. It now follows by induction that there exists a unique
sequence of polynomials (Vp,q) satisfying (2-22) such that V0,1 = 1 and Vp,p+1(0)= 0 for all p ≥ 1.

To prove (4), observe that V1,0 satisfies dV1,0/(d X)+ 2V1,0 = 1 so that, since it is a polynomial,
V1,0 =

1
2 , as desired. To prove (5), observe that if p + q is even, then every summand on the right-hand

side in (2-22) involves at least one term of the form Vp′,q ′ , where p′
+ q ′ is an even number no greater

than p + q − 2. Since V0,0 = 0, it follows by induction that Vp,q = 0 whenever p + q is even, as desired.
To prove (6), suppose that for all l < k, and for p + q = 2l + 1, the polynomial Vp,q has order at most l
in X . By (2-22), for all p + q = 2k + 1, the polynomial Vp,q is obtained by integrating terms of order
at most (k − 1) in X , and it follows by induction that Vp,q has order at most k in X , as desired.

Finally, observe that, by (2-22), the term Vp,q is defined by setting the coefficient of M p N q equal to 0
in GV, and (7) follows. Furthermore, for p +q > (2k +1), the coefficient of M p N q in GV is equal to the
right-hand side of (2-22). Items (8) and (9) now follow by similar arguments used to prove (5) and (6),
above, and this completes the proof. □

2.3. The small scale: exact solutions, I. Let V be the formal power series constructed in Lemma 2.2.2.
For ϵ, R satisfying (2-14), for c ∈ R, and for nonnegative, integer k, let vk,c be the k-th partial sum of V
with logarithmic parameter c, that is,

vk,c(x) :=

∑
p+q≤2k+1

Vp,q(x)(ϵRex)p
( c

R
e−x

)q
. (2-23)
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Define the function σ [ϵ, R, k] : R → R by

σ [ϵ, R, k](c) := Rvk,c(0)−
ϵR2

2
. (2-24)

Trivially, if v : [0, 3 log(R)] → R satisfies

v(0)=
1
R
σ [ϵ, R, k](c)+ ϵR

2
,

then v has the same initial value as vk,c. Observe that σ [ϵ, R, k] is a polynomial in c with coefficients that
depend on ϵ, R and k and, for all k, σ [ϵ, R, k] converges to the identity in the C∞

loc sense as3 tends to infin-
ity. We will see presently that the estimates we require follow when k is at least 9, and we therefore define

σ [ϵ, R](c) := σ [ϵ, R, 9](c). (2-25)

This is the function that appears in the statement of Theorem 2.2.1.
As in Section 2.1, we now determine zeroth order bounds for the difference between vk,c and an exact

solution with the same initial value. We achieve this via the contraction mapping theorem. We first
introduce the required analytic framework. For T ∈ [0, 3 log(R)], let C0([0, T ]) be the Banach space of
continuous functions over the interval [0, T ] furnished with the uniform norm and let C1

0([0, T ]) be the
Banach space of continuously differentiable functions over this interval with initial value 0, furnished
with the norm

∥w∥C1
0
:= ∥wx∥C0, (2-26)

where the subscript x here denotes differentiation with respect to this variable. Observe that, for all
w ∈ C1

0([0, T ]),
∥w∥C0 ≤ T ∥w∥C1

0
. (2-27)

Lemma 2.3.1. The operator D defines a linear isomorphism from C1
0([0, T ]) into C0([0, T ]). Further-

more, the operator norms of D and its inverse satisfy

∥D∥ ≤ 1 + T, ∥D−1
∥ ≤ 2. (2-28)

Proof. First, bearing in mind (2-27),

∥Dw∥C0 ≤ ∥wx∥C0 + ∥w∥C0 ≤ (1 + T )∥w∥C1
0
,

so that ∥D∥ ≤ 1 + T. By inspection, for all w,

(D−1w)(x)= e−x
∫ x

0
eyw(y) dy.

In particular,
∥D−1w∥C0 ≤ ∥w∥C0 .

Thus,
∥D−1w∥C1

0
= ∥(D−1w)x∥C0 ≤ ∥DD−1w∥C0 + ∥D−1w∥C0 ≤ 2∥w∥C0,

so that ∥D−1
∥ ≤ 2. □
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Consider now the functional H : C1
0([0, T ])→ C0([0, T ]) given by

H(w) := G(vk +w). (2-29)
Its Fréchet derivative at w is

DH(w) f := D f + E(w) f, (2-30)
where

E(w) f := 3(vk,c +w)2 f − 2ϵRex(vk,c +w) f. (2-31)

Lemma 2.3.2. For all w ∈ C1
0([0, T ]), the operator norm of E(w), considered as a linear map from

C1
0([0, T ]) into C0([0, T ]), satisfies

∥E(w)∥ ≲ T
(
(ϵReT )2 +

1
R2 + T 2

∥w∥
2
C1

0

)
. (2-32)

Proof. Indeed, over [0, T ],

∥ϵRex
∥C0 ≤ ϵReT ,

∥∥∥∥ c
R

e−x
∥∥∥∥

C0
≤

c
R
.

Thus, by Lemma 2.2.2 and (2-14),

∥vk∥C0 ≲
k∑

i=0

(1 + T i )
(
ϵReT

+
1
R

)2i+1
≲ ϵReT

+
1
R
,

so that, by (2-27) and (2-31),

∥E(w) f ∥C0 ≲
(
(ϵReT )2 +

1
R2 + ∥w∥

2
C0

)
∥ f ∥C0

≲ T
(
(ϵReT )2 +

1
R2 + T 2

∥w∥
2
C1

0

)
∥ f ∥C1

0
,

as desired. □

Define the map 8 : C1
0([0, T ])→ C1

0([0, T ]) by

8(w) := w−D−1H(w). (2-33)

Lemma 2.3.3. For w, w̄ ∈ C1
0([0, T ]),

∥8(w)−8(w̄)∥C1
0
≲ T

(
(ϵReT )2 +

1
R2 + T 2

∥w∥
2
C1

0
+ T 2

∥w̄∥
2
C1

0

)
∥w− w̄∥C1

0
. (2-34)

Proof. Indeed, for w, w̄ ∈ C1
0([0, T ]), using (2-30),

8(w)−8(w̄)= w− w̄−D−1(H(w)−H(w̄))

= −D−1(H(w)−H(w̄)−D(w− w̄))

= −D−1
(∫ 1

0
E(tw+ (1 − t)w̄) dt

)
(w− w̄).

Thus, by (2-28) and (2-32),

∥8(w)−8(w̄)∥C1
0
≲ T

(
(ϵReT )2 +

1
R2 + T 2

∥w∥
2
C1

0
+ T 2

∥w̄∥
2
C1

0

)
∥w− w̄∥C1

0
,

as desired. □
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Applying the contraction mapping theorem now yields:

Lemma 2.3.4. For sufficiently large 3, if vk,c is the k-th partial sum of V with logarithmic parameter c,
and if v : [0, 3 log(R)] → R solves Gv = 0 with initial value

v(0)=
1
R
σ [ϵ, R, k](c)+ ϵR

2
, (2-35)

then

∥v− vk,c∥C0 ≲ (1 + T k+1)
(
ϵReT

+
1
R

)2k+3
. (2-36)

Proof. By Lemma 2.2.2,

∥Gvk∥C0 ≲ (1 + T k)
(
ϵReT

+
1
R

)2k+3
.

By (2-28), there therefore exists B > 0, which we may consider to be universal, such that

∥8(0)∥C1
0
= ∥D−1Gvk∥C1

0
≤ B(1 + T k)

(
ϵReT

+
1
R

)2k+3
.

Let X be the closed ball of radius 2B(1 + T k)(ϵReT
+ R−1)2k+3 about 0 in C1

0([0, T ]). By (2-14), if
w, w̄ ∈ X then, in particular,

T ∥w∥C1
0
, T ∥w̄∥C1

0
≲

(
ϵReT

+
1
R

)
,

so that, by (2-34) and (2-14) again,

∥8(w)−8(w̄)∥C1
0
≲ 1
3

∥w− w̄∥C1
0
.

The map 8 thus defines a contraction from X to itself, and there therefore exists w ∈ X such that
8(w)= w. In particular Hw = 0, and

∥w∥C0 ≤ T ∥w∥C1
0
≲ (1 + T k+1)

(
ϵReT

+
1
R

)2k+3
.

Finally, by the definition of the function σ [ϵ, R, k], we have v(0) = vk,c(0) so that, by uniqueness of
solutions to ODEs with prescribed initial values, v− vk,c = w, and the result follows. □

2.4. The small scale: exact solutions, II. The final step in proving Theorem 2.2.1 involves extending the
estimates obtained in Lemma 2.3.4 to derivatives of all orders.

Lemma 2.4.1. If vk,c and v are as in Lemma 2.3.4, then

v = vk,c + O
(
(1 + T k+1)

(
ϵReT

+
1
R

)2k+3)
. (2-37)

Proof. Define w := v− vk,c. Since vk,c is a polynomial in ϵRex and (c/R)e−x with coefficients in R[X ],
as in the proof of Lemma 2.1.4,

wx = P1

(
w, ϵRex ,

c
R

e−x
)
w+Gvk,c
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for some polynomial P1 with coefficients in R[X ]. Since Gvk,c is also a polynomial in ϵRex and (c/R)e−x

with coefficients in R[X ], it follows by induction that, for all l,

dl

dx lw = Pl

(
w, ϵRex ,

c
R

e−x
)
w+

l−1∑
p=0

Q p,l

(
w, ϵRex ,

c
R

) d p

dx p Gvk,c (2-38)

for suitable polynomials Pl and (Q p,l)0≤p≤l−1 also with coefficients in R[X ]. However, by (2-36),

∥w∥C0 ≲ (1 + T k+1)
(
ϵReT

+
1
R

)2k+3
.

Thus, by (2-14), ∥∥∥Pl

(
w, ϵRex ,

c
R

e−x
)∥∥∥

C0
,

∥∥∥Q p,l

(
ϵRex ,

c
R

e−x
)∥∥∥

C0
≲ 1.

Finally, Lemma 2.2.2 and (2-14) again,∥∥∥∥ dl−1

dx l−1Gvk

∥∥∥∥
C0

≲ (1 + T k)
(
ϵReT

+
1
R

)2k+3
,

and the result follows upon combining these relations. □

Lemma 2.4.2. If vk,c is the k-th partial sum of V with logarithmic parameter c, and if v : [0, 3 log(R)] →

R solves Gv = 0 with initial value

v(0)=
1
R
σ [ϵ, R, 4k + 9](c)+ ϵR

2
, (2-39)

then, for sufficiently large 3,

v = vk,c + O
(
(1 + xk+1)

(
ϵRex

+
1
R

e−x
)2k+3)

. (2-40)

Remark. Since r = ϵRex, by the chain rule,

d
dr

=
1
r

d
dx
,

so that Theorem 2.2.1 follows immediately from (2-40) upon setting k = 0.

Proof. For nonnegative, integer l, if v : [0, 3 log(R)] → R solves Gv = 0 with initial value as in (2-35)
then, since (2-37) holds for all T ∈ [0, 3 log(R)],

v = vl,c + O
(
(1 + x l+1)

(
ϵRex

+
1
R

)2l+3)
.

In particular, if v : [0, 3 log(R)] → R now solves Gv = 0 with initial value given by (2-39), then, bearing
in mind (2-14),

v = v4k+9,c + O
(
(1 + xk+1)

(
ϵRex

+
1
R

e−x
)2k+3)

.

However, by Lemma 2.2.2 and (2-14) again,

v4k+9,c = vk,c + O
(
(1 + xk+1)

(
ϵRex

+
1
R

e−x
)2k+3)

,

and the result follows. □
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2.5. The small scale: solutions of the linearised equation. We conclude this section by studying how
solutions of the equation Gv = 0 vary with the logarithmic parameter c.

Theorem 2.5.1. For sufficiently large 3 and for all R, ϵ satisfying (2-14), if , for all c ∈ [−K , K ], the
function vc : [ϵR, ϵR4

] → R solves Gvc = 0 with initial value

vc(ϵR)=
1
R
σ [ϵ, R](c)+ ϵR

2
,

then
dvc

dc
(r)=

ϵ

r
+ O

([
1 + log

( r
ϵR

)] 1
r k

(
r +

ϵ

r

)3)
. (2-41)

Theorem 2.5.1 follows from (2-49), below, via reasoning similar to that used in Section 2.4. It suffices
to study solutions of the linearisation of G about v, the asymptotic properties of which are readily derived
from the analysis of the previous sections. Indeed, let R[X ][[M, N ]] be as in Section 2.2 and define the
operator ∂N over this space by

(∂N V )p,q := (q + 1)Vp,q+1. (2-42)

In other words, ∂N is simply the operator of formal differentiation with respect to N. By explicit calculation,
N∂N commutes with D. Now let V be the formal power series constructed in Lemma 2.2.2 and define

W := N∂N V . (2-43)

Applying N∂N to the relation GV = 0 yields

DW + 3V 2W − 2MV W = 0, (2-44)

so that W is a formal solution to the linearisation of G about the formal series V.
Fix a nonnegative integer k, let V̂k be as in Lemma 2.2.2 and define

Ŵk :=

∑
p+q≤2k+1

Wp,q(X)M p N q . (2-45)

By (2-44),
DŴk + 3V̂ 2

k Ŵk − 2MV̂k Ŵk = O((M + N )2k+3). (2-46)

Consider now 3, K > 0, let ϵ, R > 0 and c ∈ R satisfy (2-14), and let vk,c and wk,c be the functions
corresponding to V̂k and Ŵk respectively. By (2-46), for all k,

Dwk,c + 3v2
k,cwk,c − 2(ϵRex)vk,cwk,c = O

(
xk+1

(
ϵRex

+
1
R

e−x
)2k+3)

. (2-47)

Lemma 2.5.2. For sufficiently large 3 and for all T ∈ [0, 3 log(R)], if v : [0, T ] → R solves Gv = 0 with
initial value

v(0)=
1
R
σ [ϵ, R, k](c)+ ϵR

2
,

and if w : [0, T ] → R solves

Dw+ 3v2w− 2ϵRexvw = 0 (2-48)
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with initial value w(0)= wk,c(0), then

∥w−wk,c∥C1
0
≲ (1 + T )k+1

(
ϵReT

+
1
R

)2k+3
. (2-49)

Proof. Indeed, by (2-47),

∥Dwk,c + 3v2
k,cwk,c − 2(ϵRex)vk,cwk,c∥ ≲ (1 + T )k+1

(
ϵReT

+
1
R

)2k+3
.

Observe that
∥v∥C0, ∥vk,c∥C0, ∥wk,c∥C0 ≲ 1.

Thus, by (2-36),
∥(3v2

k,c − 3v2)wk,c∥C0 = 3∥(vk,c − v)(vk,c + v)wk,c∥C0

≲ (1 + T )k+1
(
ϵReT

+
1
R

)2k+3
.

Likewise

∥(2(ϵRex)vk,c − 2(ϵRex)v)wk,c∥C0 ≲ (1 + T )k+1
(
ϵReT

+
1
R

)2k+3
.

Thus

∥D(wk,c−w)+3v2(wk,c−w)−2(ϵRex)v(wk,c−w)∥C0 = ∥Dwk,c+3v2wk,c−2(ϵRex)vwk,c∥C0

≲ (1+T )k+1
(
ϵReT

+
1
R

)2k+3
. (2-50)

Observe now that, for all φ : [0, T ] → R,

3v2φ− 2ϵRexφ = E(v− vk,c)φ,

where E is given by (2-31). In particular, by (2-14), (2-32) and (2-36), the operator norm of E(v− vk,c)

considered as a map from C1
0([0, T ]) into C0([0, T ]) satisfies

∥E(v− vk,c)∥ ≲ T
(
(ϵReT )2 +

1
R2

)
.

Thus, by (2-28), for sufficiently large 3, the operator D + E(v− vk,c) defines an invertible map from
C1

0([0, T ]) into C0([0, T ]) and the result now follows by (2-50). □

Theorem 2.5.1 now follows as indicated above. In addition, a further iteration of this process also
yields:

Theorem 2.5.3. With the same hypotheses as in Theorem 2.5.1,

d2vc

dc2 (r)= O
([

1 + log
( r
ϵR

)] 1
r k

(
r +

ϵ

r

)3)
. (2-51)

3. The Grim paraboloid

3.1. The MCFS Jacobi operator. The Grim paraboloid, which we henceforth denote by G0, is defined to
be the unique rotationally symmetric MCF soliton which is a graph over the whole of R2. Put differently,
using the notation of Section 2, there is a unique solution v to the ODE Gv = 0 which is defined over the



COMPLETE EMBEDDED TRANSLATING SOLITONS OF THE MEAN CURVATURE FLOW OF FINITE GENUS 1193

whole interval ]0,∞[. This solution tends to 0 as x tends to 0, and the Grim paraboloid is the surface of
revolution generated by rotating the graph of its integral about the z-axis.

Let J be the MCFS Jacobi operator of the Grim paraboloid as defined in Section A2. In this section,
we show that this operator defines a linear isomorphism over suitably weighted Sobolev and Hölder
spaces. We first describe the spaces of interest to us (see Section A4 for details). Let g denote the metric
induced over R2 by the graph G0, that is,

g := (1 + v2) dr2
+ r2 dθ2. (3-1)

For all nonnegative, integer m, let ∥ · ∥Hm(G) denote the Sobolev norm of order m of functions over R2

with respect to this metric. Likewise, for all nonnegative, integer m, and, for all α ∈ [0, 1], let ∥ · ∥Cm,α(G)

denote the Hölder norm of order (m, α) of functions over R2 with respect to this metric. Observe that, by
(2-4), these Sobolev and Hölder norms are uniformly equivalent to the Sobolev and Hölder norms defined
with respect to the more straightforward metric

g′
:= (1 + r2) dr2

+ r2 dθ2. (3-2)

For all nonnegative, integer m, let H m(G) denote the Sobolev space of measurable functions f over R2

whose distributional derivatives up to and including order m are locally square integrable and which
satisfy ∥ f ∥Hm(G) < ∞. Likewise, for all nonnegative, integer m, and, for all α ∈ [0, 1], let Cm,α(G)
denote the Hölder space of m-times differentiable functions f over R2 which satisfy ∥ f ∥Cm,α(G) <∞.
Recall that both H m(G) and Cm,α(G), furnished with the above norms, are Banach spaces.

For all real γ , define φγ : R2
→ R by

φγ := e(1+γ )u/2. (3-3)

where u here denotes the integral of v with initial value 0. For all nonnegative, integer m, for all α ∈ [0, 1]

and for all real γ , define the weighted Sobolev and Hölder norms of weight γ over R2 by

∥ f ∥Hm
γ (G) := ∥φγ f ∥Hm(G),

∥ f ∥Cm,α
γ (G) := ∥φγ f ∥Cm,α(G).

(3-4)

Observe that, by (2-4) again, these weighted Sobolev and Hölder norms are uniformly equivalent to the
weighted norms defined using instead of φγ the more straightforward weight function

φ′

γ := e(1+γ )r2/4. (3-5)

For all nonnegative, integer m, for all α ∈ [0, 1], and for all real γ , define the weighted Sobolev and
Hölder spaces of weight γ over R2 by

H m
γ (G) := { f | φγ f ∈ H m(G)},

Cm,α
γ (G) := { f | φγ f ∈ Cm,α(G)}.

(3-6)

These spaces, furnished with the weighted Sobolev and Hölder norms are trivially also Banach spaces.
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Since G0 is a graph over R2, its MCFS Jacobi operator may be thought of as an operator acting on
functions over R2. In particular, as we will see presently, for all α ∈ [0, 1], and for all real γ, J defines
bounded linear maps from H 2

γ (G) into H 0
γ (G) and from C2,α

γ (G) into C0,α
γ (G). We show:

Theorem 3.1.1. (1) For all sufficiently small γ, J defines a linear isomorphism from H 2
γ (G) into H 0

γ (G).

(2) For all α ∈ ]0, 1[ and for all sufficiently small γ, J defines a linear isomorphism from C2,α
γ (G) into

C0,α
γ (G).

Theorem 3.1.1 will follow from Lemmas 3.2.6 and 3.3.4 below. Before proceeding, we first observe that,
for all γ , the function φγ is strictly positive so that, for all nonnegative, integer m, and for all α ∈ [0, 1],
the operator of multiplication by this function, which we denote by Mγ , defines linear isomorphisms
from H m

γ (G) into H m(G) and from Cm,α
γ (G) into Cm,α(G). For all real γ , we therefore define

Jγ := Mγ J M−1
γ . (3-7)

This operator is none other than the φγ -Jacobi operator of the Grim paraboloid, which has been studied
in detail in [Cheng and Zhou 2015; Cheng et al. 2014; 2015a; 2015b]. Trivially, J defines linear
isomorphisms from H 2

γ (G) into H 0
γ (G) and from C2,α

γ (G) into C0,α
γ (G) if and only if Jγ defines linear

isomorphisms from H 2(G) into H 0(G) and from C2,α(G) into C0,α(G) respectively.

Lemma 3.1.2. For all real γ ,

Jγ f =1G0 f − γ ⟨ez,∇
G0 f ⟩ +

(γ 2
− 1)
4

f −
(1 + γ )2

4
⟨ez, NG0⟩

2 f + Tr(A2
G0
) f. (3-8)

Proof. By (A-3),

∇
G0φ−1

γ = −
(1 + γ )

2φγ
πG0(ez),

HessG0 φ−1
γ =

(1 + γ )2

4φγ
dz ⊗ dz +

(1 + γ )

2φγ
⟨ez, NG0⟩II

G0 .

However, since G0 is a mean curvature flow soliton, HG0 = −⟨ez, NG0⟩, and taking the trace therefore
yields

1G0φ−1
γ =

(1 + γ )2

4φγ
−
(1 + γ )(3 + γ )

4φγ
⟨ez, NG0⟩

2.

Thus, by (A-2),

φγ J0φ
−1
γ =

(γ 2
− 1)
4

−
(1 + γ )2

4
⟨ez, NG0⟩

2
+ Tr(AG0)

2.

The result now follows by (A-4). □

By (A-6) and (2-13),
⟨ez, NG0⟩

2
= O(r−(2+k)),

Tr(A2
G0
)= O(r−(2+k)).

(3-9)

It follows that, as γ tends to 0, the family (Jγ ) converges to J0 in every operator norm of relevance to us.
Since invertibility is stable under small perturbations, it is therefore sufficient to consider only the case
γ = 0 where, in particular, J0 is self-adjoint.
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We now derive a formula for J0 which is better adapted to our purposes. First, let c : ]0,∞[ → R be
such that, for all r , c(r) is the geodesic curvature of the circle C(r) with respect to the metric induced by
the graph G0 over R2.

Lemma 3.1.3. The function c is given by

c =
1
r
⟨ez, NG0⟩. (3-10)

In particular, for large values of r ,
c = O(r−(2+k)). (3-11)

Proof. Let D denote the Levi-Civita covariant derivative of the Euclidean metric over R3. Think of C(r)
as a horizontal circle in R3 at height u(r), where u here denotes the integral of v with initial value 0. In
particular, Deθ eθ = (1/r)er , where eθ and er denote respectively the unit, horizontal vector fields in the
angular and radial directions about the z-axis. Since the geodesic curvature of C(r) with respect to the
induced metric over G0 is equal to the length of the tangential component of this vector, the function c is
given by

c =
1
r

√
1 − ⟨er , NG0⟩

2 =
1
r
⟨ez, NG0⟩,

as desired. Equation (3-11) now follows from (3-9), and this completes the proof. □

Let ρ : ]0,∞[ → R be such that, for all r , ρ(r) is the intrinsic distance along G0 of any point on the
circle C(r) from the origin. Since ρ is obtained by integrating

√
1 + v2, by (2-4) again, for large values

of r ,
ρr = r + O(r−(k+1)),

rρ =
1
r

+ O(r−(k+3)),
(3-12)

where the subscripts r and ρ here denote differentiation with respect to the variables r and ρ respectively.

Lemma 3.1.4. Away from the z-axis,

J0 f = fρρ + fθθ + c fρ −
1
4 f +ψ f, (3-13)

where the subscripts ρ and θ denote differentiation along the unit radial and unit angular directions in G0

and, for large values of ρ,
|ψ | ≲ ρ−1. (3-14)

Proof. Indeed, away from the z-axis,
1G0 f = fρρ + fθθ + c fρ,

so that (3-13) follows by (3-8) and (3-9) with

|ψ | ≲ r−2.

Finally, integrating (3-12), yields ρ ≲ r2, so that r−2 ≲ ρ−1 and the result follows. □
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3.2. Invertibility over Sobolev spaces. We now obtain the invertibility of J0 for Sobolev spaces. The
main technical difficulty here arises from the noncompactness of the ambient space. This is compensated
for by the following estimate.

Lemma 3.2.1. There exist B, R > 0 such that, for all f in H 2(G),

∥ f |A(R,∞)∥L2(G) ≤ B
(
∥ f |A(R−1,R+1)∥L2(G) + ∥J0 f |A(R−1,∞)∥L2(G)

)
. (3-15)

Proof. Since C∞

0 (G) is dense in H 2(G), it suffices to prove the result when f is smooth and has compact
support. Set g := J0 f and define α, β : ]0,∞[ → R by

α(ρ) :=

∫
C(ρ)

f 2 dl, β(ρ) :=

∫
C(ρ)

g2 dl,

where C(ρ) here denotes the circle of points lying at intrinsic distance ρ along G0 from the origin. Twice
differentiating α yields

αρ =

∫
C(ρ)

2 f fρ + f 2c dl,

αρρ =

∫
C(ρ)

2 f 2
ρ + 2 f fρρ + 4 f fρc + f 2cρ + f 2c2 dl,

where the subscript ρ here denotes differentiation with respect to this variable. By (3-13),

αρρ =

∫
C(ρ)

2 f 2
ρ − 2 f fθθ +

1
2 f 2

− 2ψ f 2
+ 2 f g + 2 f fρc + f 2cρ + f 2c2 dl.

Integrating the term 2 f fθθ by parts and applying the algebraic-geometric mean inequality now yields

αρρ ≥

∫
C(ρ)

( 1
4 − 2ψ + cρ − c2) f 2

− 4g2 dl.

However, by (3-11), (3-12) and (3-14), c, cρ = crrρ and ψ all tend to 0 as ρ tends to +∞ so that, for
sufficiently large ρ,

αρρ ≥
1
8α− 4β.

Since f has compact support, upon integrating this relation we obtain, for sufficiently large R,

∥ f |A(R,∞)∥
2
L2(G) =

∫
∞

R
α dρ ≤ 32

∫
∞

R
β dρ− 8αρ(R)= 32∥ Ĵ0 f |A(R,∞)∥

2
L2(G) − 8αρ(R).

However, by the Sobolev trace formula and classical elliptic estimates,

αρ(R)≤ B1∥ f |A(R−1/2,R+1/2)∥
2
H2(G)

≤ B2(∥ f |A(R−1,R+1)∥
2
L2(G) + ∥J0 f |A(R−1,R+1)∥

2
L2(G))

for suitable constants B1 and B2. The result now follows upon combining the last two relations. □

Combining Lemma 3.2.1 with classical elliptic estimates yields:
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Lemma 3.2.2. There exist B, R > 0 such that, for all f in H 2(G),

∥ f ∥H2(G) ≤ B(∥ f |B(R)∥L2(G) + ∥J0 f ∥L2(G)). (3-16)

Proof. Observe that G0 is of bounded geometry in the sense that, as x tends to infinity in G0, the geodesic
ball of unit radius about x in this surface converges in the pointed Cheeger–Gromov sense to the unit ball
about the origin in R2. It thus follows by classical elliptic theory (see [Gilbarg and Trudinger 1983]) that
there exists B > 0 such that

∥ f ∥H2(G) ≤ B(∥ f ∥L2(G) + ∥J0 f ∥L2(G)).

The result follows upon combining this relation with (3-15). □

Since, J0 is self-adjoint, standard arguments of the theory of elliptic operators now yield

Lemma 3.2.3. J0 defines a Fredholm map from H 2(G) into L2(G) of Fredholm index equal to 0.

Proof. Since B(R) is relatively compact, it follows by Rellich’s compactness theorem that the restriction
map sending H 2(G) into L2(B(R)) is also compact. Thus, by (3-16), J0 satisfies an elliptic estimate,
as defined in Section A5, so that, by Theorem A5.1, J0 has finite-dimensional kernel and closed image.
Observe now that J0 is self adjoint, so that Ker(J0) is contained within the orthogonal complement of
Im(J0) in L2(G). We claim that these two spaces coincide. Indeed, let u be an element of the orthogonal
complement of Im(J0). In particular, J0u = 0 in the distributional sense. Thus, bearing in mind that
G0 is of bounded geometry, it follows by classical elliptic regularity that u is an element of H 2(G). In
particular, u is therefore an element of Ker(J0), so that Ker(J0) coincides with the orthogonal complement
of Im(J0) in L2(G), as asserted. It immediately follows that J0 is a Fredholm map of Fredholm index
equal to 0, and this completes the proof. □

It remains only to prove that J0 has trivial kernel in H 2(G). We obtain a slightly more general result
which will serve also for the Hölder space case of the following section.

Lemma 3.2.4. There exists no nontrivial, bounded function f : G0 → R such that J0 f = 0.

Proof. Indeed, suppose that there exists a nontrivial bounded function f : G0 → R such that J0 f = 0.
Upon multiplying by (−1), we may suppose that f is positive at some point. Now, since all vertical
translates of G0 are also mean curvature flow solitons, the function µ= ⟨ez, NG⟩ is a Jacobi field over
this surface, that is,

J0φ0µ= φ0 Jµ= 0.

Since G0 is a graph, the function µ is everywhere strictly positive. It follows that φ0µ is also positive, so
that the quotient f/φ0µ is smooth. Since φ0 ≳ er2/4 and µ= O(r−1), the function φ0µ tends to infinity
as r tends to infinity, and so f/φ0µ attains its maximum value at some point x , say, of G0. In particular,
upon rescaling, we may suppose that f/φ0µ≤ 1 and that f (x)/φ0(x)µ(x)= 1.

Bearing in mind that µ is positive, we define the operator Jµ := M−1
µ J Mµ, where Mµ here denotes

the operator of multiplication by µ. Since Jµ= 0, by (A-4), this operator has no zeroth order term. Thus,
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since Jµ( f/µφ0)= (1/µφ0)J0 f = 0, it follows by the strong maximum principle that f/φ0µ is constant
and equal to 1. However, since φ0µ is unbounded, this is absurd, and the result follows. □

Corollary 3.2.5. J0 has trivial kernel in H 2(G).

Proof. Indeed, by the Sobolev embedding theorem, every element of H 2(G) is bounded, and the result
now follows by Lemma 3.2.4. □

The above results together with a perturbation argument now yield

Lemma 3.2.6. For sufficiently small γ , J defines a linear isomorphism from H 2
γ (G) into H 0

γ (G).

3.3. Invertibility over Hölder spaces. We prove the invertibility of J0 over C2,α(G) in essentially the
same manner. We first require the following preliminary result.

Lemma 3.3.1. Let α and β be positive constants. If φ : [0,∞[→]0,∞[ is a bounded, positive function
such that φ′′

≥ α2φ−β in the viscosity sense, then, for all t ,

φ(t)≤ Max
(
φ(0)−

β

α2 , 0
)

e−αt
+
β

α2 . (3-17)

Proof. Let A = Max(φ(0)−β/α2, 0) and let B = Supt∈[0,∞[ φ(t). Fix T > 0 and define

f =
BeαT

− A
e2αT − 1

eαt
+

A − Be−αT

1 − e−2αT e−αt
+
β

α2 .

In other words, f is the unique solution of the ODE problem ft t = α2 f − β with boundary values
f (0) = A + β/α2

≥ φ(0) and f (T ) = B + β/α2
≥ φ(T ). Let C be the minimum value of f − φ over

[0, T ] and let t ∈ [0, T ] be the point at which this minimum is attained. If t is a boundary point of this
interval, then C ≥ 0. Otherwise, f −C ≥ φ and f (t)−C = φ(t). Thus, since φ is a viscosity solution of
φ′′

≥ α2φ−β, at this point, we have

α2 f −β = ( f − C)t t ≥ α2( f − C)−β

so that, once again, C ≥ 0. In each case, we therefore obtain

φ ≤ f =
BeαT

− A
e2αT − 1

eαt
+

A − Be−αT

1 − e−2αT e−αt
+
β

α2 ,

and the result follows upon taking the limit as T tends to +∞. □

As in the Sobolev case, the noncompactness of the ambient space is compensated for by the following
estimate.

Lemma 3.3.2. There exist B, R > 0 such that, for all f in C2,α(G),

∥ f |A(R,∞)∥C0(G) ≤ B(∥ f |C(R)∥C0(G) + ∥J0 f |A(R−1,∞)∥C0(G)). (3-18)

Proof. Define α : ]0,∞[ → R by
α(ρ) := Supx∈C(ρ) f (x)2,
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where C(ρ) here denotes the circle of points lying at intrinsic distance ρ along G0 from the origin. Denote
g := J0 f , and define B ⩾ 0 by

B := ∥g2
|A(R,∞)∥C0(G).

Choose x ∈ C(ρ) maximising f 2, and observe that f fθθ is nonpositive at this point. Thus, bearing in
mind (3-13),

( f 2)ρρ = 2 f 2
ρ + 2 f fρρ,

≥ 2 f 2
ρ + 2 f g − 2c fρ +

1
2 f 2

− 2ψ f 2,

≥
( 1

4 −
1
2 c2

− 2ψ
)

f 2
− 4g2.

By (3-11) and (3-14), for sufficiently large ρ

( f 2)ρρ ≥
1
8 f 2

− 4g2.

Since α is the envelope of the restriction of f (x)2 to each radial line, it follows that over [R,∞[,

αρρ ≥
1
8α− 4B,

in the viscosity sense. Thus, by Lemma 3.3.1,

Supx∈A(R,∞) f 2(x)= Supρ≥R α(ρ)≤ Max(∥ f 2
|C(R)∥C0 − 32B, 0)+ 32B,

and the result follows. □

Using classical elliptic estimates again, this yields

Lemma 3.3.3. There exist B, R > 0 such that for all f in C2,α(G),

∥ f ∥C2,α(G) ≤ B(∥ f |B(R)∥C0(G) + ∥J0 f ∥C0,α(G)). (3-19)

Proof. Recall that G0 is of bounded geometry in the sense that, as x tends to infinity in G0, the geodesic
ball of unit radius about x in this surface converges in the pointed Cheeger–Gromov sense to the unit ball
about the origin in R2. It thus follows by classical elliptic theory (see [Gilbarg and Trudinger 1983]) that
there exists B > 0 such that

∥ f ∥C2,α(G) ≤ B(∥ f ∥C0(G) + ∥J0 f ∥C0,α(G)),

and the result now follows upon combining this relation with (3-18). □

As before, this yields the desired invertibility result.

Lemma 3.3.4. For all α and for all sufficiently small γ, J defines a linear isomorphism from C2,α
γ (G)

into C0,α
γ (G).

Proof. Recall that this is equivalent to showing that, for sufficiently small γ , Jγ defines a linear isomor-
phism from C2,α(G) into C0,α(G). Furthermore, by (3-8) and (3-9), Jγ converges to J0 in the operator
norm as γ tends to 0, so that it suffices to prove the result for J0.

Since B(R) is a relatively compact subset of G0, it follows by the Arzelà–Ascoli theorem that the
restriction map of C2,α(G) into C0(B(R)) is compact. Thus, by (3-19), J0 satisfies an elliptic estimate,
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as defined in Section A5. By Theorem A5.1, the image of J0 is closed and, in particular, is a Banach
subspace of C0,α(G). Furthermore, by Lemma 3.2.4, the kernel of J0 in C2,α(G) is trivial, so that, by the
closed graph theorem, J0 defines a linear isomorphism from C2,α(G) into its image. In particular, there
exists a constant B > 0 such that, for all u ∈ C2,α(G),

∥u∥2,α ≤ B∥J0u∥0,α. (3-20)

It remains only to prove surjectivity. Choose v ∈ C0,α(G) and let (vm) be a sequence of smooth
functions of compact support in R2 which is bounded in C0,α(G) and which converges to v in the C0,β

loc
sense for all β < α. For all m, since vm is a smooth function with compact support, it is an element of
L2(G) so that, by Lemma 3.2.6, there exists an element um of H 2(G) such that J0um = vm . Since G0 is
of bounded geometry, it follows by classical elliptic regularity that, for all m, um is in fact an element of
C2,α(G). In particular, by (3-20), for all m,

∥um∥C2,α(G) ≤ B∥vm∥C0,α(G).

Since the sequence (um) is uniformly bounded in C2,α(G), it follows by the Arzelà–Ascoli theorem there
exists u ∈ C2,α(G) towards which (um) subconverges in the C2,β

loc -topology for all β < α. By continuity,
J0u = v and surjectivity follows. □

4. Rotationally symmetric Grim ends

4.1. The modified MCFS Jacobi operator. We now consider the case of rotationally symmetric Grim
ends. Let 3 be a large, positive real number, let K > 0 be fixed, and let ϵ, R > 0 and c ∈ R satisfy
(2-14). Let v : [ϵR,∞[ → R solve (2-5) with logarithmic parameter c so that, by (2-16), over the interval
[ϵR, ϵR4

],

v =
1
2

r +
cϵ
r

+ O
([

1 + log
( r
ϵR

)] 1
r k

(
r +

ϵ

r

)3)
. (4-1)

Let u : [ϵR,∞[→ R be a primitive of v, let G be the Grim end generated by rotating the graph of u about
the z-axis, and let J be its MCFS Jacobi operator, as defined in Section A2.

Since G is a graph over A(ϵR,∞), J may again be thought of as an operator acting on functions over
this annulus. For all nonnegative, integer m, for all α ∈ [0, 1], and for all real γ , we define the norms
∥ · ∥Hm

γ (G) and ∥ · ∥Cm,α
γ (G) as in Section 3. For all nonnegative integer m, for all α ∈ [0, 1] and for all real

γ , we define the hybrid norm with weight γ of functions over Rm by

∥ f ∥m,α,γ := ∥ f ∥Cm,α
γ (G) +

1
(ϵR)

∥ f ∥Hm
γ (G). (4-2)

As we will see in Section 6, this norm encapsulates the asymptotic behaviour of J as 3 tends to infinity.
Let Lm,α

γ (G) denote the Banach space of m-times differentiable functions f over R2 with finite hybrid
norm. In this section, we show that, for sufficiently small γ , and for sufficiently large 3, the operator J
more or less defines linear isomorphisms from L2,α

γ (G) into L0,α
γ (G) and, furthermore, that the norms

of this isomorphism and its inverse are uniformly bounded as 3 tends to infinity. In order to properly
formalise these assertions, we now apply the following two modifications.
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First, on account of the vanishing neck problem, discussed in the Introduction, the zeroth-order
coefficient of J diverges rapidly over the annulus A(ϵR, ϵR4) as 3 tends to infinity. We address this
by introducing what we call the modified MCFS Jacobi operator. Recall that different modifications
are applied at different scales, so that the definition of this operator varies according to context, and the
general framework will be discussed in Section 5.4, below. In the present case, the modified MCFS Jacobi
operator is defined as follows. Let χ1 be the cut-off function of the transition region A(1, 2) as defined in
Section A1 and define ψ : A(ϵR,∞)→ R by

ψ(r)= χ1⟨ez, NG⟩ + (1 −χ1), (4-3)

where NG here denotes the upward-pointing unit normal vector field over G. Bearing in mind that ψ is
always positive, the modified MCFS Jacobi operator of G is now defined by

Ĵ := M−1
ψ J Mψ , (4-4)

where Mψ here denotes the operator of multiplication by ψ .
Next, observe that Ĵ is in fact only defined over the annulus A(ϵR,∞). We thus extend it to an operator

defined over the whole of R2 as follows. Given a function φ : A(ϵR,∞)→ R, we define its canonical
extension φ̃ : R2

→ R such that φ̃(x)= φ(x) over A(ϵR,∞), φ̃(0) is equal to the mean value of φ over
the circle C(ϵR), and φ̃ restricts to a linear function over every radial line in B(ϵR). In particular, if φ is
Lipschitz, then so too is φ̃, and

∥φ̃∥C0,1 ≤
π
2 ∥φ∥C0,1 .

Now, given a linear operator L over A(ϵR,∞), we define its canonical extension L̃ to be the operator
over R2 whose coefficients are the canonical extensions of each of the coefficients of L . We henceforth
identify all operators with their canonical extensions over R2. Observe, in particular, that if L has any
rotational symmetries, then so too does its canonical extension.

Theorem 4.1.1. For all sufficiently small α ∈]0, 1[ and for all sufficiently large 3, Ĵ defines a linear
isomorphism from L2,α

γ (G) into L0,α
γ (G). Furthermore, the operator norms of Ĵ and its inverse are

uniformly bounded independent of 3.

Theorem 4.1.1 follows from Theorem 3.1.1 by a perturbation argument and Lemmas 4.2.7 and 4.3.4.
We conclude this section by deriving formulae for Ĵ over different regions.

Lemma 4.1.2. Over A(ϵR, 1), the modified MCFS Jacobi operator of G is given by

Ĵ f = gi j fi j − 2µgi pg jqu pqu j fi . (4-5)

Proof. First observe that, for every tangent vector X over G,

⟨∇
Gψ, X⟩ = Xψ = X⟨NG, ez⟩ = ⟨DX NG, ez⟩ = ⟨AG X, ez⟩ = ⟨X, AGπ

G(ez)⟩,

and so,

∇
Gψ = AGπ

G(ez).
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Since every vertical translate of G is also a rotationally symmetric Grim end, J ⟨ez, NG⟩ = 0, and so,
by (A-4),

Ĵ f =1G f + ⟨ez,∇
G f ⟩ + 2ψ−1

⟨AG∇
G f, ez⟩.

By (A-3),
HessG f = Hess( f ) ◦π − ⟨D( f ◦π), N ⟩IIG .

Furthermore, since D( f ◦π) is horizontal

⟨D( f ◦π), NG⟩ = −
1

⟨NG, ez⟩
⟨D( f ◦π), ez − ⟨NG, ez⟩NG⟩ = −

1
⟨NG, ez⟩

⟨∇
G f, ez⟩.

Taking the trace therefore yields

1G f = gi j fi j +
1

⟨NG, ez⟩
⟨∇

G f, ez⟩HG .

However, since G is a mean curvature flow soliton, HG = −⟨N , ez⟩, and so

1G f = gi j fi j − ⟨∇
G f, ez⟩.

We conclude that
Ĵ f = gi j fi j + 2ψ−1

⟨AG∇
G f, ez⟩,

and the result now follows by (A-6). □

Lemma 4.1.3. Over A(ϵR, 2ϵR4), the modified MCFS Jacobi operator of G satisfies

Ĵ f =1 f −

(
1
2

+
cϵ
r2

)2

x i x j fi j −

(
1
2

−
2c2ϵ2

r4

)
x i fi + EG f, (4-6)

where EG f := ai j fi j + bi fi , and a and b satisfy

a = O
([

1 + log
( r
ϵR

)] 1
r k

(
r +

ϵ

r

)4)
,

b = O
([

1 + log
( r
ϵR

)] 1
r k+1

(
r +

ϵ

r

)4)
.

(4-7)

Proof. Indeed, by (4-1),

ui =
1
2

xi +
cϵ
r2 xi + O

([
1 + log

( r
ϵR

)] 1
r k

(
r +

ϵ

r

)3)
.

Thus, by (A-6),

µ2
= 1 −

(r
2

+
cϵ
r

)2
+ O

([
1 + log

( r
ϵR

)] 1
r k

(
r +

ϵ

r

)4)
,

gi j
= δi j −

(1
2

+
cϵ
r2

)2
x i x j

+ O
([

1 + log
( r
ϵR

)] 1
r k+1

(
r +

ϵ

r

)4)
.

It follows that

gi j fi j =1 f −

(1
2

+
cϵ
r2

)2
x i x j fi j + ai j fi j ,
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where a = O([1 + log(r/ϵR)]r−k(r + ϵ/r)4), and since r−1(r + ϵ/r)4 bounds (r + ϵ/r)3,

−2µgi pg jqu pqui f j = −

(
1
2

−
2ϵ2c2

r4

)
x i fi + bi fi ,

where b = O([1 + log(r/ϵR)]r−(k+1)(r + ϵ/r)4). The result follows. □

4.2. The regular component. Theorem 4.1.1 is derived from Theorem 3.1.1 by a perturbation argument.
First, let vp :]0,∞[→ R denote the unique solution of (2-5) which is defined over the whole positive half-
line, as in Section 3. Let u p denote its primitive with initial value 0 so that its graph is a Grim paraboloid.
Let Ĵp denote its modified MCFS Jacobi operator, as defined in Section 4.1. Over the ball B(2ϵR4),

vp(r)=
1
2r + O(r3−k), (4-8)

so that, as in Lemma 4.1.3, over B(0, 2ϵR4),

Ĵp f =1 f −
1
2 x i x j fi j −

1
2 x i fi + Ep f, (4-9)

where Ep f := ai j fi j + bi fi and

a = O(r4−k), b = O(r3−k). (4-10)
Define

Ĵγ := M−1
γ Ĵ Mγ , (4-11)

where Mγ here denotes the operator of multiplication by χ2 + (1 −χ2)φγ , φγ is given by (3-3), and χ2

is the cut-off function of the transition region A(2, 4) as defined in Section A1. Observe that, since φγ
and ψ only depend on v and its integral u, it follows by (A-2) that the coefficients of Ĵγ are functions
of u, v and vr only. Finally, define

Ĵp,γ := M−1
γ Ĵp Mγ . (4-12)

A straightforward modification of Theorem 3.1.1 shows that, for all α ∈]0, 1[, and for all sufficiently
small γ, Ĵp,γ defines a linear isomorphism from L2,α

γ (G) into L0,α
γ (G) whose Green’s operator has norm

uniformly bounded independent of 3.
It will suffice to show that the difference Ĵp,0 − Ĵ0 converges to 0 with respect to the hybrid norm as 3

tends to +∞. This is, in fact, a nontrivial result, since the coefficients of this operator diverge. However,
the region over which they diverge itself converges to a point; the relative rates of convergence are such
that the coefficients converge in the mean, which will be sufficient for us to conclude. Formally, we define
the operators D and E over A(ϵR,∞) by

D f := ( Ĵ0 − E) f − Ĵp,0 f,

E f := χ
2c2ϵ2

r4 x i fi ,
(4-13)

where χ here denotes the cut-off function of the transition region A(ϵR4, 2ϵR4). We then extend these
operators canonically to operators over the whole of R2, as in Section 4.1. By definition,

Ĵ0 := Ĵp,0 + D + E . (4-14)
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We call D and E respectively the regular component and the singular component of the difference. We
now show that the coefficients of the regular component tend to 0 in all norms that concern us as 3 tends
to infinity. We will study the singular component in the next section.

By (4-6), (4-7), (4-9), (4-10) and (4-13),

D f = ai j fi j + bi fi ,

where, over A(ϵR, 2ϵR4),

ai j
= −

cϵ
r2 x i x j

−
c2ϵ2

r4 x i x j
+ O

([
1 + log

( r
ϵR

)] 1
r k

(
r +

ϵ

r

)4)
,

bi
= (1 −χ)

2c2ϵ2

r4 x i
+ O

([
1 + log

( r
ϵR

)] 1
r k+1

(
r +

ϵ

r

)4)
.

(4-15)

Lemma 4.2.1. For sufficiently small α,

∥a|B(ϵR)∥C0,α , ∥b|B(ϵR)∥C0,α → 0, (4-16)
as 3 tends to infinity.

Proof. Indeed, by (4-15), since χ equals 1 near C(ϵR), over this circle,

a = O
(

1
(ϵR)k

(
ϵ+

1
R2 + (ϵR)4 +

1
R4

))
,

b = O
(

1
(ϵR)k+1

(
(ϵR)4 +

1
R4

))
.

Since the Lipschitz seminorms of the canonical extensions of a and b over B(ϵR) are controlled by their
Lipschitz seminorms over C(ϵR), by (A-10), for all α ∈ [0, 1],

∥a|B(ϵR)∥C0,α ≲
ϵ1−α

Rα
+

1
ϵαR2+α

+ (ϵR)4−α
+

1
ϵαR4+α

,

∥b|B(ϵR)∥C0,α ≲ (ϵR)3−α
+

1
ϵ1+αR5+α

.

By (2-14), for sufficiently small α, these both tend to 0 as 3 tends to infinity, as desired. □

Lemma 4.2.2. For sufficiently small α,

∥a|A(ϵR,2ϵR4)∥C0,α , ∥b|A(ϵR,2ϵR4)∥C0,α → 0, (4-17)
as 3 tends to infinity.

Proof. Indeed, by (4-15), over A(ϵR, 2ϵR4),

a = O
(

1
r k

(
ϵ+

ϵ2

r2

))
+ O

([
1 + log

(
r
ϵR

)]
1
r k

(
r +

ϵ

r

)4)
,

and b = b1 + b2, where

b1 = O
([

1 + log
(

r
ϵR

)]
1

r k+1

(
r4

+
ϵ4

r4

))
,

b2 = (1 −χ)
2c2ϵ2

r4 x i .
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Thus, by (A-10) and (A-20), for all α ∈ [0, 1],

∥a|A(ϵR,2ϵR4)∥C0,α ≲
ϵ1−α

Rα
+

1
ϵαR2+α

+ log(R)(ϵR4)4−α
+

1
ϵαR4+α

,

∥b1|A(ϵR,2ϵR4)∥C0,α ≲ log(R)(ϵR4)3−α
+

1
ϵ1+αR5+α

.

By (2-14), for sufficiently small α, these both tend to 0 as 3 tends to infinity. Finally, over A(ϵR4, 2ϵR4),

b2 = O(ϵ2r−(k+3)),

so that, by (A-10),

∥b2|A(ϵR4,2ϵR4)∥C0,α ≲
1

ϵ1+αR12+4α .

By (2-14), for sufficiently small α, this also tends to 0 as 3 tends to infinity, and the result follows. □

Lemma 4.2.3. If ϵR < s < t <
√

2, then

|v(t)− vp(t)| ≤ |v(s)− vp(s)|. (4-18)

Proof. Indeed, by (2-5), using a dot to denote differentiation with respect to r , we have

r(v̇− v̇p)= −(v− vp)(1 − r(v+ vp)+ (v
2
+ vvp + v2

p)).

However,

1 − r(v+ vp)+ (v
2
+ vvp + v2

p)≥ 1 −
r2

2
.

Thus, for r ≤
√

2, |v− vp| is decreasing, as desired. □

Lemma 4.2.4. For all α ∈]0, 1],
∥a|A(ϵR4,1)∥C1, ∥b|A(ϵR4,1)∥C1 → 0, (4-19)

as 3 tends to infinity.

Proof. By (4-1) and (4-8), over C(2ϵR4),

|v− vp| ≲
1
R4 + log(R)(ϵR4)3 + log(R)

1
R12 .

By Lemma 4.2.3, this inequality continues to hold over the whole of A(2ϵR4, 1). Since v and vp both
solve (2-5), it follows that, over this annulus,

v− vp = O
(

1
(ϵR4)k

(
1
R4 + log(R)(ϵR4)3 + log(R)

1
R12

))
.

Thus,

∥(v− vp)|[2ϵR4,1]∥C2 ≲
1

ϵ2 R12 + log(R)ϵR4
+ log(R)

1
ϵ2 R20 ,

so that, by (2-14),
∥(v− vp)|[2ϵR4,1]∥C2 → 0,
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as 3 tends to infinity. However, by (4-5), over A(ϵR4, 1), the coefficients a and b only depend on the
first derivatives of v and vp, so that

∥a|A(2ϵR4,1)∥C1, ∥b|A(2ϵR4,1)∥C1 → 0,

as 3 tends to infinity, as desired. □

Lemma 4.2.5. For all R0 > 1,

∥a|A(1,R0)∥C1, ∥b|A(1,R0)∥C1 → 0, (4-20)

as 3 tends to infinity.

Proof. By (4-1), (4-8) and (4-18), over C(1),

|v− vp| ≲
1
R4 + log(R)(ϵR4)3 + log(R)

1
R12 .

Since solutions of first-order ODEs vary smoothly with their parameters,

∥(v− vp)|[1,R0]∥C2 → 0,

as 3 tends to ∞. However, over A(1, R0), a and b only depend on v and vp and their derivatives up to
order 2, and the result follows. □

Lemma 4.2.6. For all ϵ > 0, there exists R0 > 0 such that if |v(1)− vp(1)| ≤ 1, then

∥a|A(R0,∞)∥C1(G), ∥b|A(R0,∞)∥C1(G) ≤ ϵ. (4-21)

Proof. Indeed, over A(4,∞), both Ĵ0 and Ĵp,0 are given by (3-8). The result now follows by local uniform
dependence of the estimates in (3-9) on the initial value. □

Combining these results yields:

Lemma 4.2.7. (1) The operator norm of D, considered as a map from H 2(G) into L2(G) converges
to 0 as 3 tends to infinity.

(2) For sufficiently small α, the operator norm of D, considered as a map from C2,α(G) into C0,α(G)
converges to 0 as 3 tends to infinity.

Proof. Indeed, by (4-16), (4-17), (4-19), (4-21) and (4-20), for sufficiently small α, both ∥a∥C0,α(G) and
∥b∥C0,α(G) converge to 0 as 3 tends to infinity, and the result follows. □

4.3. The singular component. We now write

E f =: ai fi . (4-22)

Since E is defined by canonical extension, over the ball B(ϵR),

ai
=

2c2

ϵ2 R4 x i . (4-23)

At this stage we require the following key estimate, which reveals the significance of the hybrid norm.



COMPLETE EMBEDDED TRANSLATING SOLITONS OF THE MEAN CURVATURE FLOW OF FINITE GENUS 1207

Lemma 4.3.1. For sufficiently small α and for sufficiently small γ ,

∥ f ∥C1,α
γ (G) ≲ (ϵR)1−2α

∥ f ∥2,α,γ . (4-24)

Remark. It will be useful to observe that this relation is also valid for spaces of functions defined over
an unbounded annulus.

Proof. Indeed, by the Sobolev embedding theorem, for all β < 1,

∥ f ∥C0,β
γ (G) ≲ ∥ f ∥H2

γ (G) ≲ (ϵR)∥ f ∥2,α,γ .

Setting β = (1 −α) and using (A-10) and (A-11), we obtain

∥ f ∥C1,α
γ (G) ≲ (ϵR)1/(1+2α)

∥ f ∥2,α,γ ≲ (ϵR)1−2α
∥ f ∥2,α,γ ,

as desired. □

Lemma 4.3.2. For sufficiently small α ∈ [0, 1] and for sufficiently small γ , the operator norm of E ,
considered as a map from L2,α

γ (G) into C0,α
γ (G) tends to 0 as 3 tends to infinity.

Proof. Indeed, over A(ϵR, 2ϵR4),

ai
= O

(
ϵ2

r3+k

)
,

so that
∥ai

|A(ϵR,2ϵR4)∥C0 ≲
1
ϵR3 and [ai

|A(ϵR,2ϵR4)]1 ≲
1

ϵ2 R4 .

Since ai is extended canonically over B(ϵR), these inequalities also hold over the whole of B(2ϵR4) so
that, by (A-10), for all α ∈ [0, 1],

[ai
]α ≲

1
(ϵR)αϵR3 .

It follows by (4-24) and (A-12) that

∥E f ∥C0,α
γ (G) ≲

1
(ϵR)αϵR3 ∥ f ∥C1,α

γ (G),

and the result follows by (2-14) and (4-24). □

Lemma 4.3.3. For sufficiently small α ∈ [0, 1] and for sufficiently small γ , the operator norm of (ϵR)−1 E
considered as a map from L2,α

γ (G) into H 0
γ (G) tends to 0 as 3 tends to infinity.

Proof. Indeed, a direct calculation yields

∥ai
∥L2

γ (G) ≲
1
R2 .

Thus, bearing in mind (4-24),

∥(ϵR)−1 E f ∥L2
γ (G) ≲ (ϵR)−1

∥ai
∥L2

γ (G)∥D f ∥L∞(G)

≲ (ϵR)−1
∥ai

∥L2
γ (G)∥ f ∥C1,α

γ (G) ≲
1

(ϵR)2αR2 ∥ f ∥2,α,γ ,

and the result follows by (2-14). □
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Combining these results yields:

Lemma 4.3.4. For sufficiently small α ∈ [0, 1] and for sufficiently small γ , the operator norm of E
considered as a map from L2,α

γ (G) into L0,α
γ (G) tends to 0 as 3 tends to infinity.

5. Surgery and the perturbation family

5.1. The basic surgery operation. Recall that our strategy for proving Theorem A consists of two stages.
The first involves a surgery operation in which approximate MCF solitons are constructed out of properly
embedded minimal surfaces and rotationally symmetric Grim ends. The second involves a fixed-point
argument in which these approximate MCF solitons are perturbed into actual MCF solitons. In this
section, we describe the surgery operation and in Section 5.2, we describe the family of deformations
of the approximate MCF soliton in which the actual MCF soliton will be found. Though conceptually
simple, our construction is inevitably rather technical. However, we believe that a careful reading of the
following two sections will be rewarded by a clear understanding of the essence of this paper.

Consider first a properly embedded surface C in R3, minimal outside of some compact set, and
with finitely many ends, all of which are horizontal. Let R0 > 0 be such that every component of
C ∩(A(R0,∞)× R) is a minimal graph over A(R0,∞). Let F : A(R0,∞)→ R be the profile of one of
these minimal ends. In Appendix B, we show how the Weierstrass representation yields

F = a + c log(r)+ O(r−(1+k))

for some real constants a and c, which will henceforth be referred to respectively as the constant term
and the logarithmic parameter of the minimal end. In particular, planar ends are simply catenoidal ends
with vanishing logarithmic parameters. We will only be concerned with minimal ends invariant under
reflection in at least two distinct vertical planes. In this case, the above asymptotic series contains no
terms of order (−1), so that

F = a + c log(r)+ O(r−(2+k)). (5-1)

This asymptotic formula will be used repeatedly throughout the sequel.
Let 3 be a large, positive number, let K > 0 be a fixed constant, and choose ϵ, R > 0 and |c|< K as

in (2-14). Let G : A(R/4,∞)→ R be the profile of a rotationally symmetric Grim end with constant
term a, logarithmic parameter c and speed ϵ. Rescaling and integrating (2-16) we obtain, over the annulus
A(R/4, 2R4),

G = a + c log(r)+ 1
4
ϵr2

+ O
([

1 + log
( r

R

)]
r1−k

(
ϵr +

1
r

)3)
. (5-2)

Let χc be the cut-off function of the central transition region A(R, 2R), as defined in Section A1, and
define the function H over A(R0,∞) by

H := χc F + (1 −χc)G. (5-3)

Its graph will be called the joined end. Observe that H is entirely determined by F and the parameters ϵ
and R. Furthermore, over the annuli A(R0, R) and A(2R,∞), H simply coincides with F and G
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respectively whilst, over the annulus A(R, 2R), by (5-1), (5-2) and the fact that χc = O(r−k),

H = a + c log(r)+ 1
4ϵ(1 −χc)r2

+ O(r−(2+k)). (5-4)

5.2. The deformation family. Continuing to use the notation of Section 5.1, let S denote the surface
obtained by replacing each of the ends of C with their respective joined ends. We now construct a family
of deformations of S out of which the actual MCF soliton will be selected when 3 is large. We first
describe how the logarithmic parameters of C and S are varied. Let n denote the number of ends of C , and,
for each 1 ≤ i ≤ n, let a0,i and c0,i denote respectively the constant term and the logarithmic parameter of
the i-th end. Let U be a neighbourhood of (c0,1, . . . , c0,n) in Rn and let (Cc)c∈U be a smoothly varying
family of immersed surfaces in R3 such that Cc0 = C and, for all c ∈ U and for all 1 ≤ i ≤ n, the i-th
component of Cc ∩(A(R0,∞)× R) is a horizontal, minimal end with constant term a0,i and logarithmic
parameter ci . Finally, for all c ∈ U, let Sc denote the surface obtained by replacing each end of Cc with
its corresponding joined end, as described in Section 5.1.

Let E : U × S → R3 be a smooth function such that

(1) for all c ∈ U, Ec := E(c, · ) parametrises Sc, and

(2) for all c ∈ U, and for all p ∈ S ∩(A(R0,+∞)× R), the point Ec(p) lies vertically above or below
the point p.

Let χ0, χ ′

0, χ ′
ϵ and χϵ be the cut-off functions of the transition regions A(R0, 2R0), A(2R0, 4R0),

A(1/(2ϵ), 1/ϵ) and A(1/ϵ, 2/ϵ) respectively, as defined in Section A1. By composing with vertical
projections onto R2, we think of these functions also as functions defined over S. For all c ∈ U, let Nc

denote the unit normal vector field over Sc. For all 1 ≤ i ≤ n, let Ii : S → {0, 1} denote the indicator
function of the i-th component of Sc ∩(A(R0,∞)× R). Observe that, since this intersection is a union
of graphs, every component is transverse to the unit vertical vector ez . For all 1 ≤ i ≤ n, let ϵi ∈ {±1}

be such that ϵi ez lies on the same side of the i-th component as Nc. For all c ∈ U, define the modified
normal vector field over Sc by

N̂c := (χϵ −χ0)ϵi ez + (1 − (χϵ −χ0))Nc. (5-5)

Observe that, over the regions Sc ∩(B(R0)× R) and Sc ∩(A(2/ϵ,∞)× R), this vector field coincides
with Nc whilst, over the region Sc ∩(A(2R0, 1/ϵ)× R), it coincides with ±ez . Now let V and W be
neighbourhoods of 0 in Rn and define Ẽ : U × V × W × C∞(S)→ C∞(S,R3) by

Ẽc,a,b, f (p) := Ec(p)+ f (p)N̂c(p)+
n∑

i=1

ϵi Ii (p)
(
ai (1 −χ ′

0(p))+ bi (1 −χ ′

ϵ(p))
)
ez. (5-6)

Upon reducing U, V and W if necessary, there trivially exists δ > 0, which is independent of 3, ϵ and R,
such that, for all (c, a, b)∈ U ×V ×W, and, for all ∥ f ∥C0 <δ, the function Ẽc,a,b, f defines an immersion
of S into R3. This concludes the description of the deformation family in which the actual MCF soliton
will be found.



1210 GRAHAM SMITH

5.3. Microscopic and macroscopic perturbations. Continuing to use the notation of Sections 5.1 and 5.2,
we consider now the first-order perturbations of S defined by the above deformation family. We classify
these perturbations into two main types. Those in the direction of C∞(S) will be called microscopic
perturbations, and those in the directions of U, V and W will be called macroscopic perturbations. We
now describe the first-order variations of the MCFS functional resulting from macroscopic perturbations.
The first-order variations resulting from microscopic perturbations will be studied in the next section.

Recall that, as in Section A2, the MCFS functional with speed ϵ of an immersion E : S → R3 is given by

ME := HE + ϵ⟨NE , ez⟩, (5-7)

where HE here denotes the mean curvature function of E , and NE here denotes its unit normal vector
field. We define Mϵ : U × V × W → C∞

0 (S) such that, for all (c, a, b) ∈ U × V × W, and, for all p ∈ S,
Mϵ,c,a,b(p) is the value of this functional for the immersion Ec,a,b at the point p. We define the operators
Xϵ, Yϵ, Zϵ : Rn

→ C∞

0 (S) by

(Xϵu)(p) :=
1

⟨N̂S, NS⟩

d
dt

Mϵ,c0+tu,0,0(p)
∣∣∣∣
t=0
,

(Yϵv)(p) :=
1

⟨N̂S, NS⟩

d
dt

Mϵ,c0,tv,0(p)
∣∣∣∣
t=0
,

(Zϵw)(p) :=
1

⟨N̂S, NS⟩

d
dt

Mϵ,c0,0,tw(p)
∣∣∣∣
t=0
.

(5-8)

These are the first-order variations of the MCFS functional arising from the three types of macroscopic
perturbation. In particular, since Mϵ,c,0,0 vanishes over S ∩(A(2R,+∞)×R) for all c ∈ V, for all u ∈ Rd ,
Xu is supported over S ∩(B(2R)× R). Likewise, for all v,w ∈ Rn , Yv and Zw are supported over
S ∩(A(2R0, 4R0)× R) and S ∩(A(1/(2ϵ), 1/ϵ)× R) respectively. In later sections, when no ambiguity
arises, the subscript ϵ will be suppressed, and these operators will be denoted simply by X , Y and Z
respectively.

5.4. Modified Jacobi operators. The operator of first-order variation of the MCFS functional resulting
from microscopic perturbations is none other than the modified MCFS Jacobi operator. In this section, we
determine asymptotic formulae for its coefficients over different regions. We recall that, since different
modifications are made on different scales, the precise definition of the modified MCFS Jacobi operator
varies with context. We now describe the framework which unifies these different definitions. We will
then study three different cases corresponding to, in order, CHM surfaces, rotationally symmetric Grim
ends, and joined surfaces.

Consider first a general immersed surface 6 in R3 such that, for some R0 > 0, every component of
6 ∩(A(R0,∞)× R) is a graph over A(R0,∞). Let 3 > 0 be a large, positive number, let ϵ, R > 0
be as in (2-14), and let N̂6 be the modified normal vector field over 6 as defined in (5-5). We define
E : C∞

0 (6)→ C∞(6,R3) by

E f (p) := p + f (p)N̂6(p).
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Observe that if f is sufficiently small, then E f is an immersion. Define M : C∞

0 (6)→ C∞(6) such that,
for all such f , and for all p ∈6, M f (p) is the value of the MCFS functional (5-7) with speed ϵ for the
immersion E f at the point p. The modified MCFS Jacobi operator of 6 with speed ϵ is now defined by

( Ĵ6,ϵ f )(p) :=
1

⟨N̂6, N6⟩

d
dt

Mt f (p)
∣∣∣∣
t=0
. (5-9)

In later sections, when no ambiguity arises, the subscript ϵ will be suppressed, and this operator will be
denoted simply by Ĵ6 .

Over the annulus A(R/4, 1/ϵ), since N̂6 here coincides with ez , the operator Ĵ6,ϵ is simply ⟨N6, ez⟩
−1

times the linearisation of the MCFS functional for graphs. Consequently, if F : A(R/4, 1/ϵ)→R is the pro-
file of a component of6 ∩(A(R/4, 1/ϵ)×R) then, upon differentiating (A-7) we obtain, over this annulus,

Ĵ6,ϵ f = gi j fi j −µ2gi j Fi j Fk fk + 2µ4 Fi F j Fk Fi j fk − 2µ2 Fi j Fi f j − ϵµ2 Fi fi . (5-10)

In particular, for all v,w ∈ Rn , and for all p ∈ S,

(Yv)(p)= −

n∑
i=1

Ii (p)vi ( Ĵ6,ϵχ ′

0)(p),

(Zw)(p)= −

n∑
i=1

Ii (p)wi ( Ĵ6,ϵχ ′

ϵ)(p).

(5-11)

Now let C be a minimal end over the annulus A(R0,∞) satisfying (5-1) and let ĴC,ϵ be its modified
MCFS Jacobi operator with speed ϵ.

Lemma 5.4.1. Over A(R/4, 2R4),

ĴC,ϵ f =1 f −
c2

r4 x i x j fi j −
ϵc
r2 x i fi +

2c2

r4 x i fi + EC,ϵ f, (5-12)

where EC,ϵ f := ai j fi j + bi fi and a and b satisfy

a = O(r−(k+4)), b = O
(

r−(k+4)
(
ϵr +

1
r

))
. (5-13)

Proof. By (5-1),

Fi =
c
r2 x i

+ O(r−(k+3)).

Thus, by (A-6),

µ2
= 1 −

c2

r2 + O(r−(k+4)),

gi j
= δi j −

c2

r4 x i x j
+ O(r−(k+4)).

Therefore,

gi j fi j =1 f −
c2

r4 x i x j fi j + ai j fi j ,
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where a = O(r−(k+4)). Likewise,

µ2gi j Fi j Fk fk = bi
1 fi ,

2µ4 Fi F j Fk Fi j fk = bi
2 fi ,

−2µ2 Fi j Fi f j =
2c2

r4 x i fi + bi
3 fi ,

where bi
1, bi

2, bi
3 = O(r−(k+5)). Finally,

ϵµ2 Fi fi =
ϵc
r2 x i fi + bi

4,

where bi
4 = O(ϵr−(k+3)). The result follows. □

Next let G be a rotationally symmetric Grim end of speed ϵ over the annulus A(R/4,∞) and let ĴG,ϵ

be its modified MCFS Jacobi operator with speed ϵ. Define ψ : G → R by

ψ := ⟨N̂G, NG⟩ = χϵ⟨ez, NG⟩ + (1 −χϵ), (5-14)

and denote by Mψ the operator of multiplication by ψ .

Lemma 5.4.2. Over A(R/4,∞),
ĴG,ϵ := M−1

ψ JG,ϵMψ , (5-15)

where JG,ϵ denotes the MCFS Jacobi operator with speed ϵ of G, as defined in Section A2.

Remark. In particular, in the case of rotationally symmetric Grim ends, the modified MCFS Jacobi
operator as defined above coincides, up to rescaling, with the modified MCFS Jacobi operator as defined
in Section 4.1.

Proof. Indeed, more generally, with M := M0 defined as at the beginning of this section, for all f ∈C∞

0 (6),

Ĵ6,ϵ f = M−1
ψ J6,ϵMψ f + M−1

ψ ⟨X,∇M⟩ f,

where X here denotes the tangential component of the vector field N̂6 . The result now follows since M
vanishes identically over G. □

In particular, rescaling (4-6) and (4-7) immediately yields:

Lemma 5.4.3. Over A(R/4,∞),

ĴG,ϵ f =1 f −

(
ϵ

2
+

c
r2

)2

x i x j fi j −

(
ϵ2

2
−

2c2

r4

)
x i fi + EG f. (5-16)

where EG,ϵ f := ai j fi j + bi fi , and a and b satisfy

a = O
([

1 + log
( r

R

)] 1
r k

(
ϵr +

1
r

)4)
,

b = O
([

1 + log
( r

R

)] 1
r k+1

(
ϵr +

1
r

)4)
.

(5-17)
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Finally, let S be a joined end, as constructed in Section 5.1, and let ĴS,ϵ denote its modified MCFS
Jacobi operator with speed ϵ.

Lemma 5.4.4. Over A(R, 2R),

( ĴS,ϵ − ĴC,ϵ) f = ai j
1 fi j + bi

1 fi ,

( ĴS,ϵ − ĴG,ϵ) f = ai j
2 fi j + bi

2 fi ,

where a1, a2, b1 and b2 satisfy
a1, a2 = O(r−(4+k)),

b1, b2 = O(r−(5+k)).
(5-18)

Proof. By (5-1), (5-4) and (2-14), over A(R, 2R),

Hi − Fi = O(r−(3+k)),

Fi , Hi = O(r−(1+k)).

Thus, by (A-6),
µH −µF = O(r−(4+k)),

gi j
H − gi j

F = O(r−(4+k)).

The result follows for ( ĴS,ϵ − ĴC,ϵ) by (5-10). The result for ( ĴS,ϵ − ĴG,ϵ) follows in a similar manner,
and this completes the proof. □

We conclude this section by studying commutators of modified Jacobi operators with certain multipli-
cation operators. Indeed, let [ ĴC,ϵ, χl] denote the commutator of ĴC,ϵ with the operator of multiplication
by the cut-off function χl of the lower transition region A(R/4, R/2). Likewise, let [ ĴG,ϵ, χu] denote
the commutator of ĴG,ϵ with the operator of multiplication by the cut-off function χu of the upper
transition region A(R4, 2R4). Observe that these operators are supported over the annuli A(R/4, R/2)
and A(R4, 2R4) respectively.

Lemma 5.4.5. [ ĴC,ϵ, χl] f = ai
1 fi + b1 f, [ ĴG,ϵ, χu] f = ai

2 fi + b2 f,

where a1, a2, b1 and b2 satisfy,

a1, a2 = O(r−(k+1)), b1, b2 = O(r−(k+2)). (5-19)

Proof. Indeed, since χl, χu = O(r−k), the result follows by (5-12), (5-13), (5-16) and (5-17). □

5.5. Controlling macroscopic perturbations. We conclude this section by studying the first-order varia-
tion of the MCFS functional resulting from the first macroscopic perturbation. Recall that, for all u ∈ Rn ,
Xu vanishes outside B(2R). Inside this ball, we have:

Lemma 5.5.1. For u ∈ Rd such that ∥u∥ = 1, over A(2R0, R),

Xu = O(ϵr−(2+k)), (5-20)

and over A(R, 2R),
Xu = O(r−(4+k)). (5-21)
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Proof. For notational convenience, we suppose that C and S each only have one end and, in particular,
that u = 1. Let Cc and Sc be smooth families of immersed surfaces as in Section 5.1. For all t , let
Ft : A(2R0,∞) → R and Ht : A(2R0,∞) → R denote the profiles of Cc0+t ∩(A(2R0,∞)× R) and
Sc0+t ∩(A(2R0,∞)× R) respectively. Define

Z :=
d
dt

Ft |t=0, W :=
d
dt

Ht |t=0,

and observe that, over A(2R0, 2R),
Xu = ĴS,ϵW.

Now, by (5-1),
Z = log(r)+ O(r−(2+k)).

Next, by (2-41) and (5-3), and bearing in mind that χc = O(r−k), over A(R, 2R), we have

W = log(r)+ O(r−(2+k))= Z + O(r−(2+k)), (5-22)

and since Z = W over A(2R0, R), (5-22) in fact holds over the whole of A(2R0, 2R). We now write

Xu = ĴC,ϵZ + ( ĴS,ϵ − ĴC,ϵ)Z + ĴS,ϵ(W − Z).

The second and third terms are supported over A(R, 2R), and by (5-12) and (5-18),

( ĴS,ϵ − ĴC,ϵ)Z = O(r−(6+k)),

ĴS,ϵ(W − Z)= O(r−(4+k)).

Finally, since the graph of Ft is minimal for all t , by (A-6) and (A-7),

ĴC,ϵZ = −ϵµ2 F0,i Zi = O(ϵr−(2+k)),

and the result follows by (2-14). □

6. Constructing the Green’s operator

6.1. The cylindrical, Grim and hybrid norms. We now prepare the ground for the perturbation argument
that will be used to construct actual MCF solitons out of the approximate MCF solitons constructed in
Section 5.1. In this section, we construct the Green’s operator of the modified MCFS Jacobi operator
of the approximate MCF soliton together with estimates of its operator norm. It is the determination
of suitable estimates, requiring a careful and lengthy analysis, which constitutes the hardest part of this
paper. We will see presently that sufficiently strong estimates are made possible by the correct choice of
functional norms over the different components of the approximate MCF soliton, as well as the use of the
hybrid norm, already mentioned in the Introduction and Section 4. Throughout this section, we will make
use of (2-14) without comment.

We first study the analytic properties of Green’s operators over CHM surfaces. Thus, for g a positive
integer, let C := Cg be the CHM surface of genus g. Observe that functions over C ∩(A(R0,∞)×R) may
be considered as functions over three copies of A(R0,∞). In defining norms over spaces of functions, we
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will pass between these two perspectives without comment. Consider now the triplet (X, Y, ĴC), where
X and Y are the operators constructed in Section 5.1 and ĴC is the modified MCFS Jacobi operator of C
as constructed in Section 5.4. We now construct a right inverse for this operator when 3 is large. We
first gather various basic results that will be of use to us. Let D denote the total differentiation operator
over R2 and define

DSF := r D, (6-1)

where r here denotes the radial distance from the origin. Likewise, for α ∈ [0, 1] and for f : R2
→ R,

define
δαSF f (r) := rα[ f |A(r/2,2r)]α. (6-2)

For all nonnegative integer m, for all α ∈ [0, 1] and for all real δ, define the scale-free weighted Hölder
norm of any m-times differentiable function f : A(R0,∞)→ R by

∥ f ∥Cm,α
δ,SF(A(R0,∞)) :=

m∑
i=0

∥r δDi
SF f ∥C0(A(R0,∞)) + ∥r δδαSF Dm

SF f ∥C0(]2R0,∞[). (6-3)

For nonnegative, integer m, for all α ∈ [0, 1], for all real δ and for any m-times differentiable function
f : C → R, define

∥ f ∥Cm,α
δ,SF(C)

:= ∥ f |C ∩(B(2R0)×R)∥Cm,α + ∥ f |C ∩(A(R0,∞)×R)∥Cm,α
δ,SF(A(R0,∞)). (6-4)

For all such m, α and δ, let Cm,α
δ,SF,g(C) denote the space of m-times differentiable functions f over C

which satisfy ∥ f ∥Cm,α
δ,SF(C)

<∞ and which also satisfy f ◦ σ = f for every horizontal symmetry σ of C .
Observe in particular that, since each of X and Y has compact support, we may also think of them as
taking values in C0,α

δ+2,SF,g(C).
Recall that, with the above symmetries imposed, for all δ ∈ ]1, 2[, and for all α ∈ ]0, 1[, the Jacobi

operator JC of C defines an injective Fredholm map of Fredholm index (−3) from C2,α
δ,SF,g(C) into

C0,α
δ+2,SF,g(C); see [Hauswirth and Pacard 2007; Morabito 2009; Nayatani 1993; Pacard 2008]).3

Lemma 6.1.1. For all α ∈ ]0, 1[, for all δ ∈ ]1, 2[, for all R0 > 0 sufficiently large, and for all 3 > 0
sufficiently large, the triplet (X, Y, ĴC) defines a surjective Fredholm map from R3

⊕ R3
⊕ C2,α

δ,SF,g(C)
into C0,α

2+δ,SF,g(C) of Fredholm index 3. Furthermore, the right inverse (U, V,8) can be chosen in such a
manner that its norm is uniformly bounded, independent of 3.

Remark. In the sequel, R0 will be chosen large enough for Lemma 6.1.1 to hold for all large values of 3.
It will then be fixed once and for all, and 3 will be made to tend to +∞.

Proof. For all c ∈ U, where U is a suitable open subset of R3, let Cc be as in Section 5.1 and suppose in
addition that Cc is also invariant under all the horizontal symmetries of C . Let E : U × C → R3 be a
smooth function such that

(1) for all c ∈ U, Ec parametrises Cc,

3We aim to include an overview of the perturbation theory of the Costa–Hoffman–Meeks surfaces in forthcoming work, as
we are not aware of any readily accessible account in the literature.
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(2) for all c ∈ U and for all p ∈ C ∩(A(R0,+∞)× R), the point Ec(p) lies vertically above or below
the point p, and

(3) for all c ∈ U, Ec := E(c, · ) is equivariant under all the horizontal symmetries of C .

Let V be a neighbourhood of 0 in R3 and define Ẽ : U × V × C → R3 such that, for all (c, a) ∈ U × V,
and, for all p ∈ C ,

Ẽc,a(p)= Ec(p)+
3∑

i=1

ϵi Ii (p)ai (1 −χ ′

0(p))ez,

where (ϵi )1≤i≤3, (Ii )1≤i≤3 and χ ′

0 are defined as in Section 5.1. Define H : U × V × C → R3 such that,
for all (c, a) ∈ U × V, and for all p ∈ C , Hc,a(p) is the mean curvature of the immersion Ẽc,a at the
point p. Define the operators X0, Y0 : R3

→ C∞

0 (C) by

(X0u)(p) :=
d
dt

Hc0+tu,0(p)|t=0,

(Y0v)(p) :=
d
dt

Hc0,tv(p)|t=0.

By the perturbation theory of CHM surfaces (see [Hauswirth and Pacard 2007]), (X0, Y0, JC) defines a
surjective Fredholm map of Fredholm index 3 from R3

⊕ R3
⊕ C2,α

δ,SF,g(C) into C0,α
δ+2,SF,g(C).

Let N and N̂ be respectively the unit normal vector field and the modified normal vector field over C .
Observe that, as 3 and R0 tend to +∞, the difference (N̂ − N ) tends to 0 in the Ck sense for all k so that
the difference ( ĴC − JC) tends to 0 in the operator norm. Next, it is straightforward to show that, considered
as an operator from R3 into C0,α

δ+2,SF,g(C), ∥Y −Y0∥≲ ϵ. Finally, by (2-14), (5-20) and (5-21), considered
as another operator between these two spaces, ∥X − X0∥ ≲ Rδ−2. Since these both tend to 0 as 3 tends
to +∞, the result follows by the stability of surjectivity of Fredholm maps under small perturbations. □

We now review the analytic properties of rotationally symmetric Grim ends. Let G be a rotationally
symmetric Grim end of speed ϵ over the annulus A(R/4,+∞). For all nonnegative, integer m, for all
α ∈ [0, 1], for all γ ∈ R and for all ϵ > 0, define the following weighted Hölder and Sobolev norms for
functions over R2,

∥ f ∥Cm,α
γ,ϵ (G) := ∥ f ( · /ϵ)∥Cm,α

γ (G),

∥ f ∥Hm
γ,ϵ(G) := ∥ f ( · /ϵ)∥Hm

γ (G),
(6-5)

and define the hybrid norm by

∥ f ∥m,α,γ,ϵ := ∥ f ∥Cm,α
γ,ϵ (G) +

1
ϵR

∥ f ∥Hm
γ,ϵ(G). (6-6)

For all such m, α, γ , let Lm,α
γ,ϵ,g(G) denote the space of m-times differentiable functions with finite hybrid

norm. Let ĴG denote the modified MCFS Jacobi operator of G, as defined in Sections 4.1 and 5.4. Upon
rescaling, Theorem 4.1.1 immediately yields

Lemma 6.1.2. For all α ∈ ]0, 1[, for all sufficiently small γ , and for sufficiently large 3, the operator
ϵ2 ĴG defines a linear isomorphism from L2,α

γ,ϵ,g(G) into L0,α
γ,ϵ,g(G). Furthermore, we may suppose that the

operator norm of its inverse is uniformly bounded independent of 3.
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We conclude this section by describing an alternative form of (6-5), more amenable to calculations.
We define operators DG and δαG by

DG :=
1
ϵ

D, (6-7)

δαG f (x) :=
1
ϵα

[ f |B(x,1/ϵ)]α. (6-8)

Up to uniform equivalence, for any function f supported in A(R/4, 2R4),

∥ f ∥Cm,α
γ,ϵ (G) =

m∑
i=0

∥Di
G f ∥C0 + ∥δαG Dm

G f ∥C0 . (6-9)

Likewise, let dVol denote the canonical volume form of R2 and, in analogy to (6-1), (6-2), (6-7) and (6-8),
define

dVolSF :=
1
r2 dVol, dVolG := ϵ2 dVol. (6-10)

In particular, a formula similar to (6-9) also holds for ∥ f ∥Hm
γ,ϵ(G) when f is supported over the annulus

A(R/4, 2R4). It is these forms of the norms introduced in (6-5) that we will use in the sequel.
Comparing (6-1) and (6-7) reveals a key phenomenon that must be addressed in order to obtain good

estimates. Indeed, over the transition region A(R/4, 2R), the respective differentiation operators of the
CHM surface and the Grim ends are approximately related to one another by

DG ≃
1
ϵR

DSF, (6-11)

so that, whenever a function is transferred from the CHM surface to one of the Grim ends, each order of
differentiation introduces a factor of roughly 1/(ϵR) into the norm. This factor, which is inevitably large,
would be ruinous for our estimates unless correctly addressed, and it is in order to do so that we adopt
the following two measures. Firstly, we use norms of the least possible order, and likewise take α to be
arbitrarily small (see Theorems 6.4.1, 6.5.2 and 6.5.3). In particular, any term involving an exponent
of α may be considered heuristically to be close to 1 (see, for example, (6-15), (6-16), (6-19), and so
on). Secondly, and more significantly, it is precisely in order to tame this phenomenon that the hybrid
norm is introduced. To see how this works, recall that the Sobolev embedding theorem states that, for
all m, the Sobolev norm of order m is roughly comparable to the Hölder norm of order (m − 1). That is,
although the second-order Sobolev norm depends on the second derivative, from a scaling perspective, it
behaves more like a first derivative. It is precisely for this reason that the introduction of the factor of
1/(ϵR) in (6-6) yields a norm which scales, roughly, like a second derivative whilst furnishing, via the
Sobolev embedding theorem, stronger information about the first derivative than we would have obtained
by working with the Hölder norm alone.

6.2. Ping-pong: overview. We now describe the iteration process used to construct the Green’s operator
of the approximate MCF soliton. As before, for g a positive integer, let C := Cg denote the CHM surface
of genus g and let S := Sg denote the surface obtained by replacing each of its ends with their respective
joined ends, as described in Section 5.1. Since there is a natural diffeomorphism from C to S which
maps points in the ends of C vertically upwards or downwards, functions over C may equally well be
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considered as functions over S and vice versa. As before, we will pass between these two perspectives
without comment.

Before proceeding, it is worth reviewing the role played by each component within the iteration process
that we will apply. We first recall from the previous section that a CHM surface C has been joined to the
union G := G1 ∪ G2 ∪ G3 of three Grim ends to yield an approximate soliton S. The surgery is carried
out above the annulus A(R, 2R), which we call the central transition region. However, these surfaces
also all overlap over the larger annulus A(R/4, 2R4). Consequently, functions supported above B(2R4)

are viewed as functions over C , functions supported over A(R/4,∞) are viewed as functions over G,
and functions supported over A(R/4, 2R4) are viewed alternately, at different stages of the process, as
functions over C and G.

Our aim is to construct a right inverse of the modified Jacobi operator ĴS of S, using the right inverses
of the respective modified Jacobi operators ĴC and ĴG of C and G. Ignoring for the moment the finite-
dimensional components X , Y , Z and W, we proceed as follows. First let e : S → R be a function
supported above B(2R). Let χu denote the cut-off function of the annulus A(R4, 2R4), which we call the
upper transition region. Viewing e as a function over C , we view χu( Ĵ−1

C )e as an approximator for ( Ĵ−1
S )e,

the cut-off function being here necessary to yield a function supported over B(2R4), which we may view
as a function over S. The error of this approximation is measured by the function f := ĴSχu( Ĵ−1

C )e. Since
ĴS coincides with ĴC above B(R), this function is supported above A(R,∞), and we may thus view it as
a function over G. In this manner, we have concluded the “upward” stage of the process. Repeating the
process in the “downward” direction then yields a function e′ supported above B(2R), and the process
may then be iterated indefinitely.

Proceeding in this manner, we obtain two sequences (en)n∈N and ( fn)n∈N of successive errors which
should ideally both converge to 0. In this and the next section, estimates for these functions will be
obtained in a pointwise manner via the definitions of the norms. In this process, we will encounter some
phenomena driving growth and others driving decay. Convergence is ensured upon choosing parameters
in such a manner that the latter dominate. The main contributor to growth is the large norm (6-23)
of Ĵ−1

G resulting from the rescaling of the Grim ends. The main contributor to decay is the tendency
of bounded harmonic functions to decay over long cylinders, already outlined in Section 1.2, and here
encoded implicitly in the weighted Hölder norm introduced in Section 6.1. Roughly speaking, if the radii
of the lower and upper transition region are respectively proportional to R/2 and Rλ, then the two will be
separated by an annulus conformally equivalent to a cylinder roughly of length (λ− 1)Ln(R). We thus
choose λ as large as possible in order to maximise decay. We have already seen in Section 4 that the
strict upper bound λ < 5 is required in order to obtain uniform estimates for the norms of the Green’s
operators of the Grim ends (see the proofs of Lemmas 4.2.1 and 4.2.2), and it turns out that λ ∈ ]4, 5[ is
sufficient for our purposes.

It remains only to explain the finite-dimensional components in (6-13) and (6-24). It is common in
singular perturbation constructions for the Green’s operators used to have singular subspaces over which
divergence occurs more rapidly than over the rest of the space. This can be understood as a consequence
of the existence of a “kernel at infinity”, itself often associated to symmetries of the construction, such
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as vertical translations and dilatations (or, equivalently, variations of the logarithmic parameter). It is thus
common to introduce “geometric” terms which, by eliminating the kernel at infinity, allow us to focus
on the essential asymptotic behaviours of the Green’s operators used, and this is the role played by these
finite-dimensional components. Finally, we observe that infinitesimal vertical translations can in fact be
introduced in two different ways. Indeed, they can be introduced either in the “upward” stage, as infin-
itesimal vertical translations of the ends of the CHM surface, or in the “downward” stage as infinitesimal
vertical translations of the Grim ends. The former addresses the kernel at infinity of the Green’s operator
of the CHM surface, whilst the latter addresses the kernel at infinity of the Grim ends. Thus, despite their
superficial equivalence, they play distinct roles in the construction, and are both required for it to work.

6.3. Ping-pong: batting up. For notational convenience, we will henceforth work as if C and S had only
one end. Consider now the following seminorms for functions over S:

∥ f ∥m,C := ∥ f |B(0,4R)∥Cm,α
(2−m)+δ,SF(C)

, ∥ f ∥m,G,S := ∥ f |A(R,∞)∥Hm
γ,ϵ(G),

∥ f ∥m,G,H := ∥ f |A(R,∞)∥Cm,α
γ,ϵ (G), ∥ f ∥m,G := ∥ f ∥m,G,H +

1
ϵR

∥ f ∥m,G,S.
(6-12)

Let E denote the closure with respect to ∥ · ∥0,C of the space of functions supported over S ∩(B(4R)× R)

which are invariant under every horizontal symmetry of the CHM surface C . Likewise, let F denote the
closure with respect to ∥ · ∥0,G of the space of functions supported over S ∩(A(R,∞)× R) that are also
invariant under these symmetries.

We define the operator A : E → F by

Ae := ĴSχu8e + XUe + Y V e − e, (6-13)

where χu is the cut-off function of the upper transition region A(R4, 2R4), and (U, V,8) is defined as
in Lemma 6.1.1. This operator measures the extent to which (U, V, χu8) fails to be a Green’s operator
of (X, Y, ĴS) for functions in E . In particular, since ĴS coincides with ĴC over B(0, R), Ae is supported
in the interior of A(R,∞) making it indeed an element of F . In addition, by the definition of ĴS , and
bearing in mind that X and Y are both supported in B(2R),

Ae = [ ĴG, χu]8e +χu( ĴS − ĴC)8e. (6-14)

In this section, we prove:

Theorem 6.3.1. For all δ > 1,

∥Ae∥0,G ≲
1

(ϵR)2α
1

R6+δ
∥e∥0,C . (6-15)

Theorem 6.3.1 follows immediately from (6-14) together with (6-16), (6-18), (6-19) and (6-21), below,
and the fact that

∥χu∥C0,α
γ,ϵ (G)

≲
1

(ϵR4)α
≲

1
(ϵR)α

.

For convenience, we now define φ :=8e.
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Lemma 6.3.2. ∥( ĴS − ĴC)8e|A(R,2R4)∥C0,α
γ,ϵ (G)

≲
1

(ϵR)α
1

R6+δ
∥e∥0,C . (6-16)

Proof. Indeed, by (6-1), for k ∈ {0, 1, 2}, over A(R, 2R4),

|Dkφ| ≲
1

r k+δ
∥φ∥C2,α

δ,SF(C)
≲

1
r k+δ

∥e∥0,C .

Likewise, by (6-2), for all r ∈ [2R, R4
],

|δα(D2φ|A(r/2,2r))| ≲
1

r k+α+δ
∥e∥0,C .

Thus, by (5-12), (5-13), (5-16), (5-17) and (5-18), over A(R, 2R4),

|( ĴS − ĴC)φ| ≲

(
ϵ

r2+δ
+
ϵ2

r δ
+

[
1 + log

(
r
R

)]
ϵ4r2−δ

+

[
1 + log

(
r
R

)]
1

r6+δ

)
∥e∥0,C , (6-17)

so that, by (A-20),

|( ĴS − ĴC)φ|A(R,2R4)| ≲
1

R6+δ
∥e∥0,C .

Likewise, using also (A-10) and (A-12), for r ∈ [2R, R4
],

|δα(( ĴS − ĴC)φ|A(r/2,2r))| ≲
1

rα

(
ϵ

r2+δ
+
ϵ2

r δ
+

[
1 + log

(
r
R

)]
ϵ4r2−δ

+

[
1 + log

(
r
R

)]
1

r6+δ

)
∥e∥0,C ,

so that, by (6-8), for r ∈ [2R, R4
],

|δαG(( ĴS − ĴC)φ|A(r/2,2r))|≲
1

(ϵr)α

(
ϵ

r2+δ
+
ϵ2

r δ
+

[
1+ log

(
r
R

)]
ϵ4r2−δ

+

[
1+ log

(
r
R

)]
1

r6+δ

)
∥e∥0,C .

Thus, by (A-14) and (A-20),

|δαG(( ĴS − ĴC)φ|A(R,2R4))| ≲
1

(ϵR)α
1

R6+δ
∥e∥0,C .

The result follows upon combining the above relations. □

Lemma 6.3.3. For all δ > 1,

∥( ĴS − ĴC)8e|A(R,2R4)∥H0
γ,ϵ(G) ≲

(ϵR)
R6+δ

∥e∥0,C . (6-18)

Proof. By (6-10) and (6-17), over A(R, 2R4),

|( ĴS − ĴC)φ|
2 dVolG

≲

(
ϵ4

r2+2δ + ϵ6r2−2δ
+

[
1 + log

(
r
R

)2]
ϵ10r6−2δ

+

[
1 + log

(
r
R

)2]
ϵ2

r10+2δ

)
∥e∥2

0,C dVolSF,

so that, by (A-21), ∫
A(R,2R4)

|( ĴS − ĴC)φ|
2 dVolG ≲

(ϵR)2

R12+2δ ∥e∥2
0,C ,

and the result follows. □
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Lemma 6.3.4. For all δ > 1,

∥[ ĴG, χu]8e∥C0,α
γ,ϵ (G)

≲
1

(ϵR4)α

1
R8+4δ ∥e∥0,C . (6-19)

Proof. By (6-1) and (6-3) for k ∈ {0, 1, 2}, over A(R4, 2R4),

|Dkφ| ≲
1

R4k+4δ ∥φ∥C2,α
δ,SF(C)

≲
1

R4k+4δ ∥e∥0,C .

It follows by (5-19) that, for k ∈ {0, 1}, over this annulus,

|Dk
[ ĴG, χu]φ| ≲

1
R8+4k+4δ ∥e∥0,C . (6-20)

Thus, by (6-7), for k ∈ {0, 1}, over this annulus,

|Dk
G[ ĴG, χu]φ| ≲

1
(ϵR4)k

1
R8+4δ ∥e∥0,C ,

and the result follows by (A-10). □

Lemma 6.3.5. ∥[ ĴG, χu]8e∥H0
γ,ϵ(G) ≲

(ϵR)
R5+4δ ∥e∥0,C . (6-21)

Proof. By (6-20) and (6-10), over A(R4, 2R4),

|[ ĴG, χu]φ|
2 dVolG ≲

ϵ2

R8+8δ ∥e∥2
0,C dVolSF,

so that, by (A-21), ∫
A(R4,2R4)

|[ ĴG, χu]φ|
2 dVolG ≲

ϵ2

R8+8δ ∥e∥0,C ,

and the result follows. □

These estimates prove Theorem 6.3.1. In addition, the following estimate will also be of use later.

Lemma 6.3.6. For all δ > 1,

∥χu8e∥2,G ≲
1

(ϵR)α
1

ϵ2 R2+δ
∥e∥0,C . (6-22)

Proof. Indeed, since χu = O(r−k), we have ∥χu∥C2,α
0,SF(C)

≲ 1. Thus

∥χuφ∥C2,α
δ,SF(C)

≲ ∥φ∥C2,α
δ,SF(C)

≲ ∥e∥C0,α
2+δ,SF(C)

= ∥e∥0,C .

Thus, by (6-1), (6-3) and (6-7), for k ∈ {0, 1, 2}, over A(R, 2R4),

|Dk
Gχuφ| ≲

1
(ϵr)k

1
r δ

∥e∥0,C .

Likewise, by (6-2), (6-3) and (6-8), for all r ∈ [2R, R4
],

|δαG(D
2
Gχuφ|A(r/2,2r))| ≲

1
(ϵr)2+α

1
r δ

∥e∥0,C ,
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so that, by (A-14),

|δαG(D
2
Gχuφ|A(R,2R4))| ≲

1
(ϵR)2+α

1
Rδ

∥e∥0,C .

Combining the above relations yields

∥χuφ∥2,G,H ≲
1

(ϵR)α
1

ϵ2 R2+δ
∥e∥0,C .

Likewise, by (6-10), for all k, over A(R, 2R4),

|Dk
Gχuφ|

2 dVolG ≲
1

(ϵr)2k

1
r2δ ∥e∥2

0,C(ϵr)
2 dVolSF,

and since δ > 1, it follows by (A-21) that

∥χuφ∥2,G,S ≲
1
Rδ

∥e∥0,C ≲
1

ϵR1+δ
∥e∥0,C .

The result follows. □

6.4. Ping-pong: batting down. By Lemma 6.1.2, there exists a linear map 9 : C0,α
γ,ϵ,g(G)∩ H 0

γ,ϵ,g(G)→
C2,α,g
γ,ϵ,g (G)∩ H 2

γ,ϵ,g(G) such that, for all f ∈ F ,

f = ĴG9 f,
and

∥9 f ∥2,α,γ,ϵ ≲
1
ϵ2 ∥ f ∥0,α,γ,ϵ . (6-23)

Define the operators B : F → E and W : F → R3 by

B f := ĴS(1 −χl)(9 f −χ ′

ϵ(W f ))− Z W f − f,

W f := (9 f )(0),
(6-24)

where χl is the cut-off function of the lower transition region A(R/4, R/2), and χ ′
ϵ is the cut-off function

of the transition region A(1/2ϵ, 1/ϵ), as in Section 5.1. As before, B measures the extent to which
(−W, (1 −χl)(9 −χ ′

ϵW )) fails to be a Green’s operator of (Z , ĴS) for functions in F . In particular, by
(5-11) together with the fact that ĴS coincides with ĴG over A(2R,∞), B f is supported in B(4R), and is
thus indeed an element of E . In addition, since χ ′

ϵ = 1 over B(4R), over this ball, we have

B f = −[ ĴC , χl](9 f − (9 f )(0))+ (1 −χl)( ĴS − ĴG)9 f. (6-25)

In this section, we prove:

Theorem 6.4.1. For sufficiently small α,

∥B f ∥0,C ≲
R2

(ϵR)
∥ f ∥0,G . (6-26)

Theorem 6.4.1 follows immediately from (6-25) together with (6-28) and (6-30), below, and the fact that

∥(1 −χl)∥C0,α
0,SF(C)

≲ 1.

For convenience, we now define ψ :=9 f .
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Lemma 6.4.2. ∥W f ∥ ≲
R2

(ϵR)
∥ f ∥0,G . (6-27)

Proof. Indeed, by the Sobolev embedding theorem,

∥W f ∥ ≲ ∥9 f ∥H2
γ,ϵ(G) ≲ (ϵR)∥9 f ∥2,α,γ,ϵ .

Thus, by (6-23),

∥W f ∥ ≲
R
ϵ

∥ f ∥0,α,γ,ϵ ≲
R2

(ϵR)
∥ f ∥0,G,

as desired. □

Lemma 6.4.3. ∥( ĴS − ĴG)9 f |A(R/4,2R)∥C0,α
2+δ,SF(C)

≲
1

(ϵR)
1

R2−δ
∥ f ∥0,G . (6-28)

Proof. Indeed, by (6-7), for k ∈ {0, 1, 2}, over A(R/4, 2R),

|Dkψ | ≲ ϵk
∥ψ∥C2,α

γ,ϵ (G)
≲

1
ϵ2−k ∥ f ∥0,G,

and so, by (5-12), (5-13), (5-16), (5-17) and (5-18), over A(R/4, 2R),

|( ĴS − ĴG)ψ | ≲
1

(ϵR)

(
ϵ+ ϵ2 R2

+
1
R4

)
∥ f ∥0,G ≲

1
(ϵR)

1
R4 ∥ f ∥0,G .

Likewise, by (6-8),

|δα(D2ψ |A(R/4,2R))| ≲ ϵ
α
∥ f ∥0,G ≲

1
Rα

∥ f ∥0,G .

Thus, by (6-2), using also (A-10) and (A-12),

|δαSF(( ĴS − ĴG)ψ |A(R/4,2R))| ≲
1

(ϵR)
1
R4 ∥ f ∥0,G,

and the result follows. □

Lemma 6.4.4. ∥9 f − (9 f )(0)|A(R/4,2R)∥2,C ≲
R2+δ

(ϵR)2α
∥ f ∥0,G . (6-29)

Proof. Bearing in mind (6-8) and the Sobolev embedding theorem, over A(R/4, 2R),

[ψ0] ≲ (ϵR)1−α
∥ψ∥C0,1−α

γ,ϵ (G) ≲ (ϵR)1−α
∥ψ∥H2

γ,ϵ(G) ≲ (ϵR)2−α
∥ψ∥2,G .

Consequently, by (6-23),

[ψ0] ≲
R2

(ϵR)α
∥ f ∥0,G .

Likewise, by (4-24) and the subsequent remark, over this annulus,

|DGψ | ≲ (ϵR)1−2α
∥ψ∥2,G ≲

1
(ϵR)2α

R
ϵ

∥ f ∥0,G .

Finally, over this annulus,

|D2
Gψ | ≲ ∥ψ∥C2,α

γ,ϵ (G)
≲

1
ϵ2 ∥ f ∥0,G,



1224 GRAHAM SMITH

and
|δαG(D

2
Gψ |A(R/4,2R))| ≲ ∥φ∥C2,α

γ,ϵ (G)
≲

1
ϵ2 ∥ f ∥0,G .

The result now follows by (6-1), (6-2), (6-3), (6-7), (6-8) and (2-14). □

Lemma 6.4.5. For sufficiently small α,

∥[ ĴC , χl](9 f − (9 f )(0))∥C0,α
2+δ,SF(C)

≲
1

(ϵR)2α
R2+δ

∥ f ∥0,G . (6-30)

Proof. This follows from (5-19) and (6-29). □

6.5. Ping-pong: iteration. By (6-15) and (6-26), for δ ∈ ]1, 2[ and for sufficiently small α, the operator
norms of the products AB and B A satisfy

∥AB∥, ∥B A∥ ≲
1

(ϵR)2α
1

ϵR5+δ
≲

1
3
.

We therefore define QE : E → E and QF : F → F by

QE :=

∞∑
m=0

(B A)m, QF :=

∞∑
m=0

(AB)m . (6-31)

In particular, the operator norms of both QE and QF are uniformly bounded for large values of 3. We
now define

UC e := U QE e, UG f := −U B QF f,

VC e := V QE e, VG f := −V B QF f,

WC e := W AQE e, WG f := −W QF f,

PC e := χu8QE e − (1 −χl)(9AQE e −χ ′

ϵ(W AQE e)),

PG f := −χu8B QF f + (1 −χl)(9QF f −χ ′

ϵ(W QF f )).
(6-32)

Lemma 6.5.1. For all e ∈ E and for all f ∈ F ,

ĴS PC e + XUC e + Y VC e + Z WC e = e,

ĴS PG f + XUG f + Y VG f + Z WG f = f.
(6-33)

Proof. Indeed, bearing in mind (6-13) and (6-24),

ĴS PC e + XUC e + Y VC e + Z WC e

= ĴSχu8QE e + XU QE e + Y V QE e − ĴS(1 −χl)(9AQE e −χ ′

ϵ(W AQE e))+ Z W AQE e

= AQE e + QE e − B AQE e − AQE e = e.

The second relation follows in a similar manner, and this completes the proof. □

Now let χ be the cut-off function of the transition region A(2R, 4R). Since χ = O(r−k), for all f ,

∥χ f ∥0,C ≲ ∥ f ∥0,C , ∥(1 −χ) f ∥0,G ≲
1

(ϵR)α
∥ f ∥0,G . (6-34)
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Define
Û f := UCχ f + UG(1 −χ) f, Ŵ f := WCχ f + WG(1 −χ) f,

V̂ f := VCχ f + VG(1 −χ) f, P̂ f := PCχ f + PG(1 −χ) f.
(6-35)

In particular, by (6-33),
ĴS P̂ f + XÛ f + Y V̂ f + Z Ŵ f = f, (6-36)

so that (Û , V̂ , Ŵ , P̂) defines a Green’s operator for (X, Y, Z , ĴS). We conclude this section by determining
the norms of its different components. First, since the operator norms of U and V are uniformly bounded,
by (6-26), (6-32) and (6-34),

∥Û f ∥ ≲ ∥ f ∥0,C +
R2

(ϵR)1+α
∥ f ∥0,G,

∥V̂ f ∥ ≲ ∥ f ∥0,C +
R2

(ϵR)1+α
∥ f ∥0,G .

(6-37)

Theorem 6.5.2. For sufficiently small α, for all δ ∈ ]1, 2[, and for all f ,

∥Ŵ f ∥ ≲ ∥ f ∥0,C +
R2

(ϵR)1+α
∥ f ∥0,G . (6-38)

Proof. For e ∈ E , by (6-15) and (6-27),

∥WC e∥ = ∥W AQE e∥ ≲
R2

(ϵR)
∥AQE e∥0,G ≲

1
(ϵR)2α

1
ϵR5+δ

∥e∥0,C ≲ ∥e∥0,C .

For f ∈ F , by (6-27),

∥WG f ∥ = ∥W QF f ∥ ≲
R2

(ϵR)
∥ f ∥0,G .

The result now follows by (6-34). □

Theorem 6.5.3. For sufficiently small α, for all δ ∈ ]1, 2[, and for all f ,

∥P̂ f ∥2,C ≲ ∥ f ∥0,C +
R2

(ϵR)1+α
∥ f ∥0,G . (6-39)

Proof. Consider e ∈ E . Observe that, over B(4R),

PC e =8QE e − (1 −χl)(9AQE e −9AQE e(0)).

Now,
∥8QE e∥2,C ≲ ∥e∥0,C ,

and by (6-15) and (6-29),

∥(1 −χl)(9AQE e − (9AQE e)(0))∥2,C ≲
1

(ϵR)4αR4 ∥e∥0,C ≲ ∥e∥0,C ,

so that
∥PC e∥2,C ≲ ∥e∥0,C .
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Now consider f ∈ F . Over B(4R),

PG f = −8B QF f − (1 −χl)(9QF f −9QF f (0)).

By (6-26),

∥8B QF f ∥2,C ≲
R2

(ϵR)
∥ f ∥0,G,

and, by (6-29),

∥(1 −χl)(9QF f − (9QF f )(0))∥2,C ≲
R2+δ

(ϵR)2α
∥ f ∥0,G,

so that,

∥PG f ∥2,C ≲
R2

(ϵR)
∥ f ∥0,G .

The result now follows by (6-34) and (6-35). □

Theorem 6.5.4. For sufficiently small α, for all δ ∈ ]1, 2[, and for all f ,

∥P̂ f ∥2,G ≲
1

(ϵR)α
1

ϵ2 R2+δ

(
∥ f ∥0,C +

R2

(ϵR)1+α
∥ f ∥0,G

)
. (6-40)

Proof. Consider e ∈ E . Observe that, over S ∩(A(R,∞)× R),

PC e = χu8QE e −9AQE e + (W AQE e)χ ′

ϵ .

By (6-22),

∥χu8QE e∥2,G ≲
1

(ϵR)α
1

ϵ2 R2+δ
∥e∥0,C .

By (6-15) and (6-23),

∥9AQE e∥2,G ≲
1

(ϵR)2α
1

ϵ2 R6+δ
∥e∥0,C .

By (6-15) and (6-27),

∥W AQE e∥ ≲
R2

(ϵR)
∥AQE e∥0,G ≲

1
(ϵR)2α

1
ϵR5+δ

∥e∥0,C .

However,

∥χ ′

ϵ∥2,G ≲
1

(ϵR)
,

and so

∥(W AQE e)χ ′

ϵ∥2,G ≲
1

(ϵR)2α
1

ϵ2 R6+δ
∥e∥0,C .

Combining these relations yields

∥PC e∥2,G ≲
1

(ϵR)α
1

ϵ2 R2+δ
∥e∥0,C .

Consider now f ∈ E . Over S ∩(A(R,∞)× R),

PG f = −χu8B QF f +9QF f − (W QF f )χ ′

ϵ .
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By (6-22) and (6-26),

∥χu8B QF f ∥2,G ≲
1

(ϵR)α
1

ϵ2 Rδ(ϵR)
∥ f ∥0,G .

By (6-23),

∥9QF f ∥2,G ≲
1
ϵ2 ∥ f ∥0,G .

By (6-27),

∥W QF f ∥ ≲
R2

(ϵR)
∥ f ∥0,G,

so that
∥(W QF f )χ ′

ϵ∥2,G ≲
1
ϵ2 ∥ f ∥0,G .

Combining these relations yields

∥PG f ∥2,G ≲
1

(ϵR)α
1

ϵ2 Rδ(ϵR)
∥ f ∥0,G .

The result now follows by (6-34). □

7. Existence and embeddedness

7.1. The Schauder fixed-point theorem. It remains only to perturb the approximate MCF solitons
constructed in Section 5 into actual MCF solitons. This perturbation will be carried out using the Schauder
fixed-point theorem. It will first be convenient to modify slightly the norms introduced in (6-12). We thus
define

∥ f ∥
′

m,G,H := ∥ f |A(2R,∞)∥Cm,α
γ,ϵ (G),

∥ f ∥
′

m,G,S := ∥ f |A(2R,∞)∥Hm
γ,ϵ(G),

∥ f ∥
′

m,G := ∥ f ∥
′

m,G,H +
1

(ϵR)
∥ f ∥

′

m,G,S.

(7-1)

By (6-35), this does not affect (6-37), (6-38), (6-39) and (6-40). In addition, we will also ignore the factor
⟨N̂S, NS⟩

−1 used in the definitions (5-8) and (5-9) of (X, Y, Z , ĴS). Indeed, we readily show that the
operator of multiplication by this function is uniformly bounded, independent of 3, with respect to the
norms ∥ · ∥0,C and ∥ · ∥0,G , for which reason it also does not affect the above estimates.

For all nonnegative, integer m, for all α ∈ [0, 1] and for all real γ , let Em,α,γ be the space of m-times dif-
ferentiable functions f : S → R which are invariant under all horizontal symmetries of C and which satisfy

∥ f ∥m,C , ∥ f ∥
′

m,G <∞.

Observe that Em,α,γ furnished with these norms is a Fréchet space. Now let

M : U ⊕ V ⊕ W ⊕ E2,α,γ → E0,α,γ

be the MCFS functional about S, as defined in Sections 5.1 and 5.4. It only remains to study how M
varies up to second order about S. As before, throughout this section, we apply (2-14) without comment.

Lemma 7.1.1. ∥M(0, 0, 0, 0)∥0,C ≲ Rδ−2, ∥M(0, 0, 0, 0)∥′

0,G = 0. (7-2)
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Proof. Define ψ := M(0, 0, 0, 0). Since C is minimal, over B(R),

ψ = ϵµ.

Thus, by (5-1) and (A-6),
∥ψ |B(R)∥C0,α

2+δ,SF(C)
≲ ϵR2+δ ≲ Rδ−2.

By (5-4), over A(R, 2R),

Hi =
cx i

r2 + O(R−(3+k)),

Hi j =
c
r2

(
δi j −

x i x j

2r2

)
+ O(R−(4+k)).

Thus, by (A-6), over this annulus,

µ= 1 + O(R−2+k), gi j
= δi j + O(R−2+k),

so that, by (A-7),
ψ = O(R−(4+k)).

Consequently,
∥ψ |A(R,2R)∥C0,α

2+δ,cyl(C)
≲ Rδ−2,

and the first estimate follows upon combining these relations. Finally, by construction, ψ vanishes over
A(2R,∞), so that ∥ψ∥

′

0,G = 0, and this completes the proof. □

It is straightforward to show that for ∥u∥, ∥v∥, ∥w∥ and ∥ f ∥2,C sufficiently small, independent of 3,

∥M(u, v, w, f )− M(0, 0, 0, 0)− ĴS f − X̂u − Ŷv∥0,C ≲ ∥ f ∥
2
2,C + ∥u∥

2
+ ∥v∥2. (7-3)

The corresponding estimate over rotationally symmetric Grim ends is more subtle.

Lemma 7.1.2. There exists η > 0 such that, for sufficiently large 3, if ϵ(ϵR)1−2α
∥ f ∥

′

2,G < η, then

∥M(u, v, w, f )− M(0, 0, 0, 0)− ĴS f − Ẑw∥
′

0,G

≲
ϵ2

R
∥u∥

2
+
ϵ2

R
∥v∥2

+
ϵ2

R
∥w∥

2
+ ϵ3(ϵR)1−2α(∥ f ∥

′

2,G)
2. (7-4)

Remark. Before continuing, it is worth reflecting on the terms that will appear in the following proof.
First, on the scale of the rotationally symmetric Grim end, the perturbation that we make is of order ϵ so
that, since this perturbation is quadratic, it introduces a factor of ϵ2. Second, returning to the scale of the
joined surface introduces a further factor of ϵ, thus explaining the factor of ϵ3 in the formulae below.

Proof. Since M is a second-order quasilinear functional, upon rescaling, we obtain, for all u, for all v,
and for all g with ∥ϵg∥

′

1,G,H sufficiently small,

∥M(u, v, 0, g)− M(u, v, 0, 0)− ĴS,u,vg∥
′

0,G ≲ ϵ3
∥g∥

′

1,G,H∥g∥
′

2,G

≲
ϵ2

R
(∥g∥

′

1,G,H )
2
+ ϵ3(ϵR)(∥g∥

′

2,G)
2.

Next, for all sufficiently small u and v, and for all g,

∥( ĴS,u,v − ĴS)g∥
′

0,G ≲ ϵ3(∥u∥ +∥v∥)∥g∥
′

2,G

≲
ϵ2

R
∥u∥

2
+
ϵ2

R
∥v∥2

+ ϵ3(ϵR)(∥g∥
′

2,G)
2.
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Now, bearing in mind the definition of the macroscopic perturbation in the direction of w,

∥M(u, v, w, f )− M(0, 0, 0, 0)− ĴS f − Ẑw∥
′

0,G

≲ ∥M(u, v, w, f )− M(u, v, 0, 0)− ĴS f − Ẑw∥
′

0,G

≲ ∥M(u, v, 0, f +w(1 −χ ′

ϵ))− M(u, v, 0, 0)− ĴS( f +w(1 −χϵ′))∥′

0,G

≲ ∥M(u, v, 0, f +w(1 −χ ′

ϵ))− M(u, v, 0, 0)− ĴS,u,v( f +w(1 −χϵ′))∥′

0,G

+ ∥( ĴS,u,v − ĴS)( f +w(1 −χϵ′))∥′

0,G

≲
ϵ2

R
∥u∥

2
+
ϵ2

R
∥v∥2

+
ϵ2

R
(∥ f +w(1 −χ ′

ϵ)∥
′

1,G,H )
2
+ ϵ3(ϵR)(∥ f +w(1 −χ ′

ϵ)∥
′

2,G)
2.

Finally,
∥(1 −χ ′

ϵ)|A(1/(2ϵ),1/ϵ)∥
′

1,G,H ≲ 1,

∥(1 −χ ′

ϵ)|A(1/(2ϵ),1/ϵ)∥
′

2,G ≲
1
ϵR
,

and the result now follows by Lemma 4.3.1 and the subsequent remark. □

This concludes our analysis of M up to second order about S. We are now ready to prove existence.

Theorem 7.1.3. For γ sufficiently small, for all δ ∈ ]1, 2[, for α ∈ ]0, 1[ sufficiently small, and for 3
sufficiently large, there exist u, v, w and f such that

M(u, v, w, f )= 0.

Furthermore,

∥u∥, ∥v∥, ∥w∥, ∥ f ∥2,C ≲ Rδ−2, ∥ f ∥2,G ≲
1

(ϵR)αϵ2 R4 . (7-5)

Proof. Fix γ ≪ 1, δ ∈ ]1, 2[ and α ∈ ]0, 1[ small. Set ψ0 := M(0, 0, 0, 0) and define

(u0, v0, w0, f0) := φ0 := −(Ûψ0, V̂ψ0, Ŵψ0, P̂ψ0).

By (6-37), (6-38), (6-39), (6-40) and (7-2), there exists a constant B > 0, such that, for all large 3,

∥u0∥, ∥v0∥, ∥w0∥, ∥ f0∥2,C ≤ B Rδ−2, ∥ f0∥
′

2,G ≤
B

(ϵR)αϵ2 R4 .

Define �⊆ R3
⊕ R3

⊕ R3
⊕ E2,α,γ to be the set of all quadruplets (u, v, w, f ) such that

∥u∥, ∥v∥, ∥w∥, ∥ f ∥2,C ≤ 2B Rδ−2, ∥ f ∥
′

2,G ≤
2B

(ϵR)αϵ2 R4 .

Observe that � is convex and, by the Arzelà–Ascoli theorem, for all α′ < α and γ ′ < γ , � is a compact
subset of R3

⊕ R3
⊕ R3

⊕ E2,α′,γ ′ . For φ := (u, v, w, f ) in �, define

8(φ) := φ0 − (Ûψ, V̂ψ, Ŵψ, P̂ψ),

where
ψ := M(u, v, w, f )− M(0, 0, 0, 0)− ĴS f − X̂u − Ŷv− Ẑw.
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By (7-3), (7-4) and (2-14),

∥ψ∥0,C ≲ R2δ−4, ∥ψ∥
′

0,G ≲
1

(ϵR)6αR7 ,

so that, by (6-37), (6-38), (6-39) and (6-40), for sufficiently large 3, 8 maps � to itself. Furthermore,
for all α′ < α and γ ′ < γ , 8 is continuous with respect to the topology of E2,α′,γ ′ . It follows by the
Schauder fixed-point theorem (see [Gilbarg and Trudinger 1983]) that there exists a fixed point φ of 8
in �. We readily verify that M(φ)= 0, and this completes the proof. □

Theorem 7.1.4. Let (u,v,w, f ) be as in Theorem 7.1.3. For sufficiently large3, the surface Ẽ(u,v,w, f )
is embedded.

Proof. We denote the joined surface by S, we denote the image of Ẽ(u, v, w, f ) by S′, and we rescale
both S and S′ by ϵ. Observe that the intersection of S with A(2ϵR,∞)× R consists of three distinct
rotationally symmetric Grim ends, which we denote by G+, G0 and G− respectively. Let u+, u0 and u−

be the respective profiles of these ends, and let v+, v0 and v− be the respective derivatives of these
functions in the radial direction. Observe that

u+(ϵR) > u0(ϵR) > u−(ϵR),

v+(ϵR) > v0(ϵR) > v−(ϵR).

Since v+, v0 and v− are all solutions of the same first-order ODE, it follows that v+(r) > v0(r) > v−(r)
for all r . In particular, the ends G+, G0 and G+ are separated vertically by a distance of no less than η,
where η ∼ ϵ log(R). Let �+, �0 and �− denote the open sets of points lying at a vertical distance of no
more than η/2 from G+, G0 and G− respectively. Observe, in particular, that these three sets are disjoint.

Now let G ′
+

, G ′

0 and G ′
−

be the three ends of S′. Over the annulus A(ϵR, 2ϵR), by (7-5),

∥ϵ f |A(R,2R)∥C0 ≲ ϵR−δ
∥ f |(A(R,2R)∥2,C ≲ ϵR−2,

so that, over this annulus, G ′
+

lies strictly above G ′

0, and G ′

0 lies strictly above G ′
−

. However, by
Lemma 4.3.1 and the subsequent remark and (7-5) again,

∥ϵ f ∥
′

1,G,H ≲
1

(ϵR)3αR3 .

Bearing in mind the definition of the norm ∥ · ∥1,G,H , it follows that for sufficiently large 3, G ′
+

, G ′

0
and G ′

−
are all graphs over A(ϵR,∞). Furthermore, for some large R′, the intersections of G ′

+
, G ′

0 and
G ′

−
with A(R′,∞)× R are contained in �+, �0 and �− respectively. In particular, outside B(R′)× R,

G ′
+

lies strictly above G ′

0 and G ′

0 lies strictly above G ′
−

. Since vertical translates of mean curvature flow
solitons are also mean curvature flow solitons, it now follows by the strong maximum principle that, over
the whole of A(ϵR,∞), G ′

+
lies strictly above G ′

0 and G ′

0 lies strictly above G−. □

Appendix A: Terminology, conventions and standard results

A1. General definitions. Let R2 and R3 denote respectively 2- and 3-dimensional Euclidean space. We
consider R2 as the (x−y) plane in R3. Let π : R3

→ R2 denote the canonical projection. Let r denote



COMPLETE EMBEDDED TRANSLATING SOLITONS OF THE MEAN CURVATURE FLOW OF FINITE GENUS 1231

a smooth positive function over R2 which is equal to the distance to the origin outside some (suitably
large) compact set. We denote the composition of r with π also by r . Let ex , ey and ez denote the vectors
of the canonical basis of R3. Let er , eθ denote respectively the unit radial and unit angular vector fields
about the origin over R2 and about the z-axis over R3. Let D denote the canonical differentiation operator
over R2 and R3. Let 1 denote the canonical Laplacian over R2 (not to be confused with 16, defined
below). Let C(a) denote the circle of radius a about the origin in R2. Let B(a) denotes the closed disk
of radius a about the origin in R2. Let A(a, b) denote the closed annulus of inner radius a and outer
radius b about the origin in R2. Let χ : [0,∞[ → R be a nonnegative, nonincreasing function such that
χ = 1 over [0, 1] and χ = 0 over [2,∞[. For all a, define χa : R2

→ R by χa(x)= χ(∥x∥/a). We call
χa the cut-off function of the transition region A(a, 2a). Composing with π , we likewise consider χa as
a function over R3.

A2. Surface geometry. Let 6 be an embedded surface in R3. Let N6 denote the unit normal vector field
over 6. Let π6 denote the orthogonal projection onto the tangent space of 6. Let ∇

6 denote the gradient
operator as well as the Levi-Civita covariant derivative of 6. Let Hess6 denote the intrinsic Hessian
operator of 6. Let 16 denote the intrinsic Laplacian of 6. Let II6 denote the second fundamental form
of 6. Let A6 denote the shape operator of 6. Let H6 denote the mean curvature of 6 (taken to be the
sum of the principle curvatures, or the trace of the shape operator). Let M6 denote the MCFS operator of
6 (with speed ϵ). It is given by

M6 := H6 + ϵ⟨N6, ez⟩. (A-1)

Let J6 denote the MCFS Jacobi operator (with speed ϵ) of 6. That is, J6 is the linearisation of the
MCFS operator of 6. It is given by

J6 f =16 f + Tr(A2
6) f + ϵ⟨∇G f, ez⟩. (A-2)

Finally, we recall the following elementary relations. For any function f defined over a neighbourhood
of 6,

∇
6 f = D f − ⟨D f, N6⟩N6,

Hess6( f )= Hess( f )− ⟨D f, N6⟩II6.
(A-3)

Given any positive function φ defined over 6, if Ĵ6 := M−1
φ J6Mφ denotes the conjugate of J6 with the

operator of multiplication by φ, then

Ĵ6 f =16 f + 2φ−1
⟨∇

6φ,∇6 f ⟩ + ϵ⟨∇6 f, ez⟩ + (φ−1 J6φ) f. (A-4)

A3. Surface geometry of graphs. If 6 is the graph of a function u over a subset of R2, then we call u
the profile of 6. In this case, π defines a coordinate chart of 6 in R2. It will be more convenient to work,
sometimes over 6, and sometimes over R2, and we will move freely between these two perspectives. Let
gi j denote the intrinsic metric of 6. Its inverse is denoted by gi j. Let 0k

i j denote the Christoffel symbols
of the Levi-Civita covariant derivative of gi j . Setting

µ := ⟨ez, N6⟩, (A-5)
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we readily verify the following relations:

µ=
1√

1+∥Du∥2
, 16( f )= gi j fi j − gi j gkpui j u p fk,

gi j = δi j + ui u j , II6i j = −µui j ,

gi j
= δi j −µ2ui u j , (A6)ij = −µgi pu pj ,

0k
i j = gkpui j u p, H6

= −µgi j ui j ,

Hess6( f )i j = fi j − gkpui j u p fk, πT (ez)i = µ2ui .

(A-6)

Finally, when 6 is a graph, the MCFS functional is given by

M6 = −µgi j ui j + ϵµ. (A-7)

A4. Function spaces. Let X be a metric space. For all α ∈ [0, 1], we define the Hölder seminorm of
order α over X by

[ f ]α := Supx ̸=y∈X
| f (x)− f (y)|

d(x, y)α
. (A-8)

Observe that [ f ]0 measures the total oscillation of f . In particular,

[ f ]0 ≤ 2∥ f ∥C0 . (A-9)

For all α ∈ [0, 1],
[ f ]α ≤ [ f ]

1−α
0 [ f ]

α
1 ≤ 21−α

∥ f ∥
1−α

C0 [ f ]
α
1 . (A-10)

If X is a complete manifold, and if f is differentiable over X , then, for all α ∈ [0, 1[ and for all β ∈]0, 1],

∥D f ∥C0 ≤ 2[ f ]
β/(1+(β−α))
α [D f ]

(1−α)/(1+(β−α))
β . (A-11)

For all α,
[ f g]α ≤ ∥ f ∥C0[g]α + [ f ]α∥g∥C0 . (A-12)

Finally, if X = X1 ∪ · · · ∪ Xm , then, for all α,

[ f ]α ≤ m1−α Sup1≤k≤m[ f |X i ]α. (A-13)

If, in particular, X = [0,m +1]× S1 is a cylinder and X i = [i, i +1]× S1 for all i , then (A-13) refines to

[ f ]α ≤

m∑
i=1

[ f |X i ]α. (A-14)

For a continuous function f over X , for all α, we define

δα f (x) := [ f |B1(x)]α. (A-15)

Now suppose that X is a smooth Riemannian manifold. For all k, α, we define the Ck,α-Hölder norm
over C∞(M) by

∥ f ∥Ck,α :=

k∑
i=0

∥Di f ∥C0 + ∥δαDk f ∥C0 . (A-16)
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We define the space Ck,α(X) to be the closure of C∞(X) with respect to this norm. For all p, we define
the L p-norm over C∞

0 (M) by

∥ f ∥
p
L p :=

∫
X

| f |
p dVol. (A-17)

We define the space L p(X) to be the closure of C∞

0 (X) with respect to this norm. For all k, we define
the H k-Sobolev norm over C∞

0 (M) by

∥ f ∥H k :=

k∑
i=0

∥Di f ∥L2 . (A-18)

The reader may verify that all surfaces studied in this paper are sufficiently regular at infinity for the
Sobolev embedding theorem to hold. That is for all l, and for all k +α < l − 1,

∥ f ∥Ck,α ≲ ∥ f ∥H l . (A-19)

The following formulae are readily verified:

Supt∈[1,T ] log(t)tα ≲
{

log(T )T α if α > 0,
1 if α < 0

(A-20)

and ∫
A(1,T )

log(r)mrα dVolSF ≲

{
log(T )m T α if α > 0,
1 if α < 0.

(A-21)

A5. Elliptic estimates. Let E and F be Banach spaces and let A : E → F be a bounded linear map. We
say that A satisfies an elliptic estimate whenever there exists a normed vector space G, a compact map
K : E → G, and a constant C such that, for all e in E ,

∥e∥ ≤ C(∥K e∥ +∥Ae∥). (A-22)

The following straightforward result plays an important role in Fredholm theory.

Theorem A5.1. If A satisfies an elliptic estimate, then the kernel of A is finite-dimensional and its image
is a closed subset of F.

Appendix B: Catenoidal minimal ends

In this appendix, we use the Weierstrass representation to determine the asymptotics of horizontal,
catenoidal minimal ends. This is used in Sections 5 and 6 to model the asymptotics of CHM surfaces.

Let C be a horizontal, catenoidal minimal end. Its intrinsic metric is biholomorphic to the punctured
disk which, for the purposes of this appendix, it is useful to view as the complement of the closed unit
disk in C, that is,

1∗
:= {ζ ∈ C | |ζ |> 1}. (B-1)

The Weierstrass representation (see [Weber 2005]) is a parametrisation of C by a function 8 :1∗
→ R3

of the form

8(ζ) := Re
(∫ ζ(1

2

(
G −

1
G

)
,

1
2i

(
G +

1
G

)
, 1

)
h dζ

)
(B-2)
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for some holomorphic functions G, h :1∗
→ C. These functions are interpreted geometrically as follows.

Setting 8 := (81,82,83), we readily show that

h = 2∂ζ83. (B-3)

That is, hdζ is twice the holomorphic part of the derivative of the height function of C . The geometric
significance of G is more subtle, but with some work we can show that it is the image under the
stereographic projection of the unit normal vector field over C .

Define ρ := |ζ |. Since C is a horizontal catenoidal end, 83 is asymptotic to a + c log(ρ) for some
constants a and c, and it follows that

h =

−1∑
k=−∞

hkζ
k . (B-4)

Meanwhile, since the normal of C is asymptotically vertical, G may be chosen to vanish at infinity, so
that

G =

−1∑
k=−∞

Gkζ
k . (B-5)

In addition, since C is a single-valued graph over some neighbourhood of infinity in R2, the functions h
and G together satisfy a vanishing holonomy condition around the puncture at infinity. In terms of their
Laurent coefficients, this holonomy condition is

h−1G−2 − h−2G−1 = 0. (B-6)

This condition ensures, in particular, that the first two components of 8 contain no logarithmic terms.
Thus, defining ζ =: ξ + iν and rotating and rescaling if necessary, we obtain, near infinity

8(ξ, ν)=

(
ξ +α

(
ξ

ρ2 ,
ν

ρ2

)
, ν+β

(
ξ

ρ2 ,
ν

ρ2

)
, a + b log(ρ)+ γ

(
ξ

ρ2 ,
ν

ρ2

))
, (B-7)

where α, β and γ are analytic functions of their arguments defined in a neighbourhood of the origin
which, furthermore, vanish at this point.

We now define

(x, y) := (81(ξ, ν),82(ξ, ν)) and r2
:= x2

+ y2. (B-8)

That is, (x, y) is the composition of the parametrisation 8 with the projection onto the horizontal plane.
Trivially, near infinity, C is the graph of some function F defined over the (x, y)-plane. We now use
(B-7) to determine the asymptotic structure of this function. First, upon observing that

1
ρ2 =

ξ 2

ρ4 +
ν2

ρ4 , (B-9)

we find that (
x
r2 ,

y
r2

)
=9

(
ξ

ρ2 ,
ν

ρ2

)
(B-10)
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for some analytic function 9, defined in a neighbourhood of the origin, such that 9(0, 0) = 0 and
D9(0, 0)= Id. Upon applying the implicit function theorem for analytic functions, we deduce that

F(x, y)= a + b log(r)+ δ
(

x
r2 ,

y
r2

)
(B-11)

for some analytic function δ, vanishing at the origin. In particular, with the notation of Section 1.3,

F(x, y)= a + c log(r)+ O(r−(1+k)), (B-12)

thus confirming the first formula of Section 5.1.
It remains only to verify (5-1). However, by (B-11),

F(x, y)= a + c log(r)+
φ(x, y)

r2 + O(r−(2+k)) (B-13)

for some linear form φ. Let ez denote the unit vector in the direction of the positive z-axis. Let u be any
nonzero, horizontal vector. If C is symmetric under reflection in the plane spanned by ez and u, then
φ annihilates the line orthogonal to u. Consequently, if C is symmetric under reflection in two distinct
planes of this type, then φ vanishes, so that

F(x, y)= a + c log(r)+ O(r−(2+k)), (B-14)

thus confirming (5-1).
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HAUSDORFF MEASURE BOUNDS FOR NODAL SETS
OF STEKLOV EIGENFUNCTIONS

STEFANO DECIO

We study nodal sets of Steklov eigenfunctions in a bounded domain with C2 boundary. Our first result is a
lower bound for the Hausdorff measure of the nodal set: we show that, for uλ a Steklov eigenfunction
with eigenvalue λ ̸= 0, we have Hd−1({uλ = 0}) ≥ c�, where c� is independent of λ. We also prove an
almost sharp upper bound, namely, Hd−1({uλ = 0}) ≤ C�λ log(λ + e).

1. Introduction

Let � a bounded domain in Rd, where d ≥ 2. A Steklov eigenfunction uλ ∈ H 1(�) is a solution of{
1uλ = 0 in �,

∂νuλ = λuλ on ∂�.
(1)

Here and throughout the paper we denote by ∂ν the outward normal derivative. A number λ for which a
solution to (1) exists is called a Steklov eigenvalue, and it is well known that Steklov eigenvalues form a
discrete sequence accumulating to infinity. Moreover, Steklov eigenvalues coincide with the eigenvalues
of the Dirichlet-to-Neumann operator, which is the operator that maps a function on ∂� to the normal
derivative of its harmonic extension in �, and a Steklov eigenfunction restricted to ∂� is an eigenfunction
of the Dirichlet-to-Neumann operator. For a survey on the Steklov problem outlining many results and
open questions see [Girouard and Polterovich 2017].

Inspired by a famous conjecture of Yau on the Hausdorff measure of nodal sets of Laplace eigenfunctions,
an analogous question has been asked for nodal sets of Steklov eigenfunctions (it is stated explicitly in
[Girouard and Polterovich 2017], for example); the conjecture can be formulated both for interior and
boundary nodal sets. For the interior nodal set, the question is as follows:

• Is it true that there exist positive constants c and C , depending only on �, such that

cλ ≤ Hd−1({uλ = 0}) ≤ Cλ? (2)

Similarly, for the boundary nodal set (which is the nodal set of an eigenfunction of the Dirichlet-to-
Neumann operator) one can ask:

• Is it true that there exist positive constants c′ and C ′, depending only on �, such that

c′λ ≤ Hd−2({uλ = 0} ∩ ∂�) ≤ C ′λ? (3)
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Here we do not deal with question (3) and just note that the upper bound was proved in [Zelditch 2015]
when ∂� is real-analytic. About question (2), a polynomial upper bound was proved in [Georgiev and Roy-
Fortin 2019], following the corresponding polynomial upper bound in the Laplace–Beltrami eigenfunction
case proved in [Logunov 2018a]. On real-analytic surfaces (that is, real-analytic metric in the interior and
real-analytic boundary), the full conjecture (2) was established in [Polterovich et al. 2019]. Again in the
real-analytic category, the upper bound was recently obtained in any dimension in [Zhu 2020]. Concerning
lower bounds, as far as we know, the best result was contained in [Sogge et al. 2016], where the bound
Hd−1({uλ = 0})≥ cλ(2−d)/2 is obtained for � a domain with C∞ boundary (actually, a smooth Riemannian
manifold with smooth boundary). The first contribution of the present article is an improvement on the
lower bound; we show that the Hausdorff measure of the interior nodal set is bounded below by a constant
independent of λ (so the result is really an improvement over [Sogge et al. 2016] if d ≥ 3).

Theorem 1. Let � be a bounded domain in Rd with C2-smooth boundary, and let uλ be a solution of (1)
in �, λ ̸= 0. Then there exists a constant c� > 0 independent of λ such that

Hd−1({uλ = 0}) ≥ c�. (4)

In the previous work [Decio 2022] we established a density property of the zero set near the boundary,
under weaker hypothesis on the boundary regularity: we transcribe the result below.

Theorem A [Decio 2022]. Let � be a Lipschitz domain in Rd, d ≥ 2, and let uλ be a solution of (1),
where we assume λ ̸= 0. There exists a constant C = C(�) such that

{uλ = 0} ∩ B ̸= ∅ (5)

for any ball B in Rd of radius C/λ centered at a point in ∂�.

The proof of Theorem 1 involves a combination of Theorem A and the recent breakthrough by
Logunov [2018b] on Yau’s conjecture. We cannot apply the results of [Logunov 2018b] directly and have
to do some work to modify the necessary arguments. The fact that we are one power of λ away from
the optimal result is a consequence of the deficiency of the density result, which we can only prove very
close to the boundary, and not of the arguments in [Logunov 2018b].

Remark. It will be apparent from the proof that Theorem 1 extends without much difficulty to the case
of manifolds equipped with a C2-smooth Riemannian metric and C2 boundary.

The conjectured upper bound in (2) would be sharp, as the example of a ball shows; the second main
contribution of this article is an almost sharp upper bound for Euclidean domains with C2 boundary.

Theorem 2. Let � be a bounded domain in Rd with C2-smooth boundary, and let uλ be a solution of (1)
in �. Then there is a constant C� > 0 independent of λ such that

Hd−1({uλ = 0}) ≤ C�λ log(λ + e). (6)

Remark. The proof of Theorem 2 uses the sharp bounds of Donnelly and Fefferman [1988] in the interior
of the domain and a multiscale induction argument at the boundary, which is based on a version of
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the hyperplane lemma of [Logunov 2018a; Logunov et al. 2021]. While, as remarked above, the proof
of the lower bound can be extended almost verbatim to smooth Riemannian manifolds with boundary,
for Theorem 2 we rely heavily on the fact that � is a Euclidean domain, or at least we have to require
that the metric inside � is real analytic; this is because the results of [Donnelly and Fefferman 1988]
require real analyticity. Our theorem lies in between previous results on the upper bound: the multiscale
argument at the boundary allows for C2-regularity of the boundary only, as opposed to real analyticity as
in the aforementioned paper [Zhu 2020]; on the other hand, if the metric inside is assumed to be only C2

(or C∞), the best result attainable with these methods is still the polynomial upper bound of [Georgiev
and Roy-Fortin 2019].

Plan of the paper. We prove Theorem 1 in Sections 2 and 3; in Section 2 we discuss a procedure for
extending a Steklov eigenfunction across the boundary, which gives rise to an auxiliary equation for
which a statement very similar to Logunov’s theorem [2018b] holds (see Theorem 3), and we use this
together with Theorem A to prove the lower bound. Section 3 is quite long and contains the proof of
Theorem 3, which requires us to review Logunov’s argument carefully and use a combination of classical
elliptic estimates and frequency function techniques. Section 4 is dedicated to the proof of Theorem 2.

2. Lower bound on nodal sets

Here we deduce Theorem 1 using Theorem A and ideas stemming from Logunov’s solution [2018b]
of a conjecture of Nadirashvili on nodal sets of harmonic functions. In order to do this, we transform
a solution to (1) into a solution of an elliptic equation in the interior of a domain. To the best of our
knowledge, this idea was introduced first in [Bellová and Lin 2015] and then also applied successfully in
[Georgiev and Roy-Fortin 2019; Zhu 2015].

We now describe this extension procedure, which requires ∂� to be of class C2; we follow [Bellová
and Lin 2015] very closely. There is a δ > 0 such that the map ∂� × (−δ, δ) ∋ (y, t) → y + tν(y)

is one-to-one onto a neighborhood of ∂� in Rd. We set d(x) = dist(x, ∂�), and for ρ ≤ δ we define
�ρ = {x ∈ � : d(x) < ρ} and �′

ρ = {x ∈ Rd
: d(x) < ρ} \ �. Let now uλ be a solution of (1), and for

x ∈ �δ ∪ ∂� define

v(x) = uλ(x) exp(λd(x)); (7)

an easy computation shows that v satisfies{
div(A∇v) + b(x) · ∇v + c(x)v = 0 in �δ,

∂νv = 0 on ∂�,

where A = I , b = −2λ∇d and c = λ2
− λ1d. Consider now the reflection map 9 : �δ → �′

δ given by
9(y + tν(y)) = y − tν(y), where y ∈ ∂�; since v satisfies a Neumann boundary condition on ∂�, we can
extend it “evenly” across the boundary, i.e., set v(9(x)) = v(x) for x ∈ �δ. Write 9(x) = x ′. Another
easy computation shows that on �′

δ the extended function (which we still call v) satisfies the equation

div( Ã∇v) + b̃ · ∇v + c̃v = 0,
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where

Ã(x ′) = ∇9(x)(∇9(x))T , b̃i (x ′) = −

∑
j

∂x ′

j
ãi j (x ′) + 19 i (x) + ∇9 i (x) · b(x), c̃(x ′) = c(x).

Consider now D = �δ ∪ ∂� ∪ �′

δ; we abuse notation and denote by A, b and c the functions that are
equal to the previous A, b and c in �δ and equal to Ã, b̃ and c̃ in �′

δ. In [Bellová and Lin 2015] it is
shown that A is Lipschitz across ∂� with Lipschitz constant depending only on �, and A is uniformly
positive definite, again with constant depending only on �. Pasting together the pieces, one obtains that v

is a strong solution of the uniformly elliptic equation

div(A∇v) + b · ∇v + cv = 0 (8)

in D, with A Lipschitz, ∥A∥L∞(D) ≤ C , ∥b∥L∞(D) ≤ Cλ and ∥c∥L∞(D) ≤ Cλ2.
We want to study (8) at wavelength scale. In order to deal with its zero set we use the theorem below,

which is just an extension to more general equations of the aforementioned theorem of Logunov on
harmonic functions [2018b]; its proof, which merely consists of a tedious but necessary verification that
Logunov’s argument carries over in this slightly more general setting, is relegated to the next section. We
warn the reader that below and in the rest of the paper we do not explicitly indicate dependence of the
constants on the dimension.

Theorem 3. Consider a strong solution of the equation

Lu = div(A∇u) + b · ∇u + cu = 0 (9)

in B = B(0, 1) ⊂ Rd, with the following assumptions on the coefficients:

(i) A is a uniformly positive definite matrix; that is, A(x)ξ · ξ ≥ α|ξ |
2 for any ξ ∈ Rd.

(ii) A is Lipschitz; that is,
∑

i, j |ai j (x) − ai j (y)| ≤ γ |x − y|.

(iii)
∑

i, j ∥ai j
∥L∞(B) +

∑
i ∥bi

∥L∞(B) ≤ K .

(iv) c ≥ 0 and ∥c∥L∞(B) ≤ ε0, where ε0 is a small enough constant depending on α, γ, K .

Then there exist r0 = r0(α, γ, K ) < 1 and c0 = c0(α, γ, K ) such that, for any solution u of (9) and any
ball B(x, r) ⊂ B(0, r0) for which u(x) = 0, we have the lower measure bound

Hd−1({u = 0} ∩ B(x, r)) ≥ c0rd−1. (10)

Assume now that λ is large enough depending on � and consider a ball B(x0, ε/λ) ⊂ D, where ε

is a small enough constant, with smallness depending only on �. We set vx0,λ(x) = v(x0 + εx/λ) for
x ∈ B = B(0, 1); note that vx0,λ satisfies the equation

div(Ax0,λ∇vx0,λ) + bx0,λ · ∇vx0,λ + cx0,λvx0,λ = 0, (11)

where the ellipticity constant of Ax0,λ is the same as that of A and the Lipschitz constant is the same
if not better, and the coefficients satisfy ∥Ax0,λ∥L∞(B) ≤ C , ∥bx0,λ∥L∞(B) ≤ Cε and ∥cx0,λ∥L∞(B) ≤ Cε2.
Note that if λ is large enough then cx0,λ ≥ 0. If we then take ε small enough, vx0,λ satisfies (9) and
assumptions (i)–(iv) with constants α, γ, K depending only on �. By Theorem A, any ball centered



HAUSDORFF MEASURE BOUNDS FOR NODAL SETS OF STEKLOV EIGENFUNCTIONS 1241

at ∂� of radius C/λ contains a zero of the Steklov eigenfunction uλ and hence of v. We can reduce the
radius of the balls and take a maximal disjoint subcollection of balls B(xi , C1/λ) ⊂ D, xi ∈ �, such that
v(xi ) = 0 and consider the corresponding rescaled functions vxi ,λ; we can assume that C1 < r0, so that by
Theorem 3 we obtain

Hd−1({vxi ,λ = 0} ∩ B(0, C1)) ≥ cCd−1
1 . (12)

Note also that

Hd−1
(
{uλ = 0} ∩ B

(
xi ,

C1

λ

)
∩ �

)
∼ Hd−1

(
{v = 0} ∩ B

(
xi ,

C1

λ

))
∼ εd−1λ1−dHd−1({vxi ,λ = 0} ∩ B(0, C1)) ≥ C̃λ1−d,

where C̃ depends on � only. Since there are ∼ λd−1 such balls B(xi , C1/λ), we obtain

Hd−1({uλ = 0}) ≥ c�,

and Theorem 1 is proved.

Remark. If one could improve the result of Theorem A by showing that every ball of radius C/λ centered
at any point in a corona of fixed (independent of λ) size around the boundary contains a zero of uλ, the
optimal lower bound Hd−1({uλ = 0})≳ λ would follow immediately by the preceding argument (actually
more easily, since one could directly apply Logunov’s result without the need to go through Theorem 3).

3. Proof of Theorem 3

This entire long section is dedicated to the proof of Theorem 3. We follow essentially the arguments
of [Logunov 2018b], which carry through in this setting with few changes; the difference is that we
have to use more general elliptic estimates, such as a weaker form of the maximum principle, and a
frequency function that takes into account the lower-order terms in the equation. In Sections 3.1 and 3.2
we introduce the main tools we need in the proof, namely, classical elliptic estimates and the monotonicity
of the frequency function. Section 3.3 will serve as a break from technicalities: here we try to convey an
idea of the scheme of the proof to the reader. Sections 3.4–3.8 contain the actual body of the proof with
full details.

Throughout the section we consider the operator L defined by (9) satisfying conditions (i)–(iv). It will
be convenient to denote by L1 = L − cI the operator without the zeroth-order term.

3.1. Elliptic estimates. We first recall some standard elliptic estimates for L , paraphrasing the results
in [Gilbarg and Trudinger 1983] in our notation. Note that whenever we consider a bounded domain
we can assume for our purposes that it is contained in the unit ball, so we can ignore the dependency
of the constants on the diameter of � and on the radius of balls contained in �. We start with the weak
maximum principle.

Theorem 4 [Gilbarg and Trudinger 1983, Theorem 9.1]. Let L1u ≥ −δ in a bounded domain �. Then

sup
�

u ≤ sup
∂�

u+
+ C |δ|,

where C = C(α, γ, K ).
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Corollary 5. Let Lu = 0 in a bounded domain �, with ε0 in (iv) small enough. Then

sup
�

u ≤ 2 sup
∂�

u+. (13)

Proof. We can assume sup� u ≥ 0. Since Lu = 0, we have L1u =−cu ≥−ε0 sup� u using assumption (iv).
By Theorem 4, then sup� u ≤ sup∂� u+

+ Cε0 sup� u, and the corollary follows as soon as Cε0 ≤
1
2 . □

The next theorem is a local pointwise estimate for subsolutions.

Theorem 6 [Gilbarg and Trudinger 1983, Theorem 9.20]. Let Lu ≥ −δ in �. Then for any ball
B(x, 2R) ⊂ � and any p > 0 we have

sup
B(x,R)

u ≤ C1

{

/

∫
B(x,2R)

(u+)p
}1/p

+ C2|δ|, (14)

where C1 and C2 depend on α, K and p.

Remark. In Theorem 9.20 in [Gilbarg and Trudinger 1983], the constants depend on R. However, they
get worse as R increases and improve as R decreases; in this work we will only be concerned with
small R, so that we can ignore the dependency on it.

We now come to the weak Harnack inequality and then the full Harnack inequality.

Theorem 7 [Gilbarg and Trudinger 1983, Theorem 9.22]. Let Lu ≤ δ in �, and suppose that u is
nonnegative in a ball B(x, 2R) ⊂ �. Then{

/

∫
B(x,R)

u p
}1/p

≤ C( inf
B(x,R)

u + |δ|), (15)

where p and C are positive numbers depending on α and K .

Theorem 8 [Gilbarg and Trudinger 1983, Corollary 9.25]. Let Lu = 0 in �, and suppose that u is
nonnegative in a ball B(x, 2R) ⊂ �. Then

sup
B(x,R)

u ≤ C inf
B(x,R)

u, (16)

where C = C(α, K ).

Corollary 9. Let Lu = 0 in �. If u(x0) ≥ 0 and B(x0, R) ⊂ �, then the inequality

sup
B(x0,2R/3)

|u| ≤ C sup
B(x0,R)

u (17)

holds for C = C(α, K ).

Proof. Call M = supB(x0,R) u and consider the function h = M − u, which is nonnegative in B(x0, R).
Note that Lh = cM, so that |Lh| ≤ εM. By applying to h Theorem 6 and then Theorem 7 with δ = εM,
one gets that

sup
B(x0,2R/3)

(M − u) ≤ C1

{

/

∫
B(x0,3R/4)

u p
}1/p

+ C2εM ≤ C3 inf
B(x0,3R/4)

(M − u) + C4εM ≤ C5 M,

where the last inequality holds because u(x0) ≥ 0. Hence we obtain supB(x0,2R/3)(−u) ≤ C M. Since
clearly we have that supB(x0,2R/3) u ≤ M , the corollary is proved. □
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3.2. Frequency function and doubling index. The frequency function, which as far as we know was
used first by Almgren and then subsequently developed in the works of Garofalo and Lin [1986; 1987], is
a powerful tool in the study of unique continuation and zero sets of elliptic PDEs. We are now going to
define it for operators of the form (9) and state some of its properties, following mainly [Garofalo and
Lin 1987; Han and Lin].

Let u ∈ W 1,2
loc (B) be a solution of (9). In [Garofalo and Lin 1987] and [Han and Lin] a metric

g(x) =
∑

i, j gi j (x) dxi ⊗ dx j is introduced in the following way: let first

gi j (x) = ai j (x)(det A)1/(d−2),

where, as customary, ai j denote the entries of the matrix A−1. To define gi j we assume here d ≥ 3; if
d = 2, we can just add a “mute” variable. Next, one defines

r(x)2
=

∑
i, j

gi j (0)xi x j and η(x) =

∑
k,l

gkl(x)
∂r
∂xk

(x)
∂r
∂xl

(x).

Finally, one sets

gi j (x) = η(x)gi j (x).

Note that η is a positive Lipschitz function with Lipschitz constant depending on α, γ and K . Let G be
the matrix (gi j ) and define |g| = det(G). We can now write (9) as

divg(µ(x)∇gu) + bg(x) · ∇gu + cg(x)u = 0,

where µ = η−(d−2)/2 is a Lipschitz function in B with C1 ≤ µ(x) ≤ C2, bg = Gb/
√

|g| and cg = c/
√

|g|.
Note that, since |g|

−1/2 is a Lipschitz function bounded above and below by constants depending on
α, γ and K only, bg and cg satisfy analogous bounds to b and c in (9). The following quantities are then
introduced, where the integrals are with respect to the measure induced by the metric g:

H(x, r) =

∫
∂ B(x,r)

µu2, D(x, r) =

∫
B(x,r)

µ|∇gu|
2, I (x, r) =

∫
B(x,r)

µ|∇gu|
2
+ ubg · ∇gu + cgu2.

The frequency function is finally defined as

β(x, r) =
2r I (x, r)

H(x, r)
. (18)

Compared with the definition in [Garofalo and Lin 1987] and [Han and Lin] there is an extra factor of 2
for aesthetic reasons in later formulas. More often than not, we will forget about the point x and only
write the dependance on the radius r . The key property of the frequency function is the following almost
monotonicity:

Theorem 10. There are constants r0, c1 and c2 depending on α, γ and K such that

β(x, r) ≤ c1 + c2β(x, r0) (19)

for r ∈ (0, r0). Moreover, c2 can be chosen to be 1 + ε for any ε > 0 if r0 = r0(ε) is small enough.
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Remark. The statement of Theorem 10 is implicit in [Garofalo and Lin 1987], and the proof is contained
there; in [Han and Lin] the theorem is stated as it is here, and the proof given is essentially the one of
[Garofalo and Lin 1987]. The second assertion is not explicitly stated in [Garofalo and Lin 1987] or [Han
and Lin] and needs some justification. In both papers, the strategy to prove the theorem is the following:
one defines �r0 = {r ∈ (0, r0) : β(r) > max(1, β(r0))} and proves that it is an open subset of R and
therefore it can be decomposed as �r0 =

⋃
+∞

j=1(a j , b j ) with a j and b j not belonging to �r0 ; it is then
showed that β ′(r)/β(r) ≥ −C for any r ∈ �r0 . By integration, one has that β(r) ≤ β(b j ) exp(C(b j − r))

for any r ∈ (a j , b j ). Since b j /∈ �r0 , this implies that the constant c2 can be chosen to be exp (Cr0), which
is close to 1 if r0 is small.

In the course of the proof of Theorem 10 in [Garofalo and Lin 1987] and [Han and Lin] the differentiation
formula

H ′(r) =

(
d − 1

r
+ O(1)

)
H(r) + 2I (r)

is obtained; the formula can be rewritten as

d
dr

(
log

H(r)

rd−1

)
= O(1) +

β(r)

r
. (20)

The next statement is an immediate consequence of this formula.

Proposition 11. There is a constant C depending on α, γ and K such that the function eCr H(r)/rd−1 is
increasing for r ∈ (0, r0).

From (20) and almost monotonicity (19), by integration one obtains the following:

Proposition 12. The two-sided inequality

c
(

r2

r1

)c−1
2 β(r1)−c3

≤
H(r2)

H(r1)
≤ C

(
r2

r1

)c2β(r2)+c3

(21)

holds, where again c2 can be chosen to be 1 + ε if r0 is small enough.

From now on we denote with letters c, C, c1, . . . constants which may vary from line to line and that
depend only on α, γ and K without explicitly saying so every time. Additional dependencies will be
indicated. We now define a quantity related to the frequency function: the doubling index.

Definition 13. For B(x, 2r) ⊂ B, the doubling index N (x, r) is defined by

2N (x,r)
=

supB(x,2r) |u|

supB(x,r) |u|
. (22)

The doubling index and the frequency function are comparable in the following sense:

Lemma 14. Let ε > 0 be sufficiently small, and let r0 be small enough that the constant c2 in (21) is 1+ε;
then, for 4r < r0,

β(x, r(1 + ε))(1 − 100ε) − c ≤ N (x, r) ≤ β(x, 2r(1 + ε))(1 + 100ε) + c.
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The proof of Lemma 14 is an easy computation using the elliptic estimate (14), Proposition 11 and
inequality (21); in fact, by (14),

sup
B(x,r)

|u|
2
≤ Cε /

∫
B(x,(1+ε)r)

|u|
2,

and further

/

∫
B(x,(1+ε)r)

|u|
2
≤ C

H((1 + ε)r)

rd−1

by integration and Proposition 11. From here on the computation is identical to the one in [Logunov
2018a, Lemma 7.1]. Using this, one can derive a scaling property for the doubling index; see [Logunov
2018a, Lemmas 7.2 and 7.3] for details of the computation.

Lemma 15. Given any ε ∈ (0, 1), there exist r0(ε) > 0 and C(ε) > 0 such that, for u ∈ W 1,2(B) a solution
of (9) and any 0 < 2r1 ≤ r2 ≤ r0, we have(

r2

r1

)N (x,r1)(1−ε)−C

≤
supB(x,r2)

|u|

supB(x,r1)
|u|

≤

(
r2

r1

)N (x,r2)(1+ε)+C

. (23)

As a consequence, the doubling index is also almost monotonic in the sense that

N (x, r1)(1 − ε) − C ≤ N (x, r2)(1 + ε) + C.

3.3. An informal outline of the proof. We include here a brief discussion of the scheme of the proof
avoiding details and technicalities; the latter are all included in the next subsections. Let us first note that
in dimension 2 Theorem 3 is an easy consequence of the weak maximum principle (Corollary 5): if u
vanishes at the center of a ball, the weak maximum principle tells us that there can be no small loops of
zeros containing the center and therefore the nodal component containing the center must exit the ball,
implying that its length must be greater than the diameter of the ball.

In higher dimensions, this simple argument does not give any lower measure bound because a priori
the nodal set could be a very thin tube crossing the ball. However, a slightly more sophisticated argument,
still using essentially only the maximum principle, does give a nonoptimal lower bound: we prove in
Proposition 16 that if u(x) = 0,

Hd−1({u = 0} ∩ B(x, r)) ≥ crd−1 N 2−d,

where N is an upper bound for the doubling index N
(
x, 1

2r
)
. Note that when d = 2 this is already optimal,

as it should be. If d ≥ 3, this naive lower bound gets worse as the doubling index gets larger. This
however contradicts intuition, since we are dealing with solutions of elliptic PDEs: if the doubling index
is large, meaning that there is strong growth of u, then there should be many zeros. This suggests that
one could use induction on N to promote the naive lower bound to the optimal one. The key to achieving
this is Proposition 23, which shows that if the doubling index is comparable to N ≫ 1 in balls of radii 1

4r
to r (we call this “stable growth”, see Definition 22), there are many zeros in the ball of radius r ; more
precisely, there are at least [

√
N ]

d−1 f (N ), with f (N ) → ∞ as N → ∞, disjoint balls of radius r/
√

N
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such that u vanishes at the center. The fact that f (N ) grows with N essentially shows that indeed there
are more zeros as the doubling index increases, and it is needed to close the induction in Section 3.8.

The proof of Proposition 23 uses crucially Theorem 19, which tells us that if a cube is partitioned into
some large number Bd of subcubes, the number of subcubes which have doubling indices dropping by an
amount increasing with B compared to the doubling index of the original cube form the vast majority of
the subcubes. The argument goes as follows: since the doubling index is comparable to N on scales 1

4r
to r , we can assume that in the ball of radius 1

4r , |u| ≤ 1, while in the ball of radius 1
2r , |u| ≥ 2cN. We

then connect points where u is small to points where u is large by many chains of cubes (called “tunnels”
later): since there is considerable growth of u from one endpoint of the tunnel to the other, the Harnack
inequality tells us that there must be zeros and the growth happens in the cubes with zeros; an application
of Theorem 19 gives us that most of the cubes in the tunnel have doubling index much smaller than N,
so that the growth from one endpoint to the other cannot be realized in very few cubes, and hence each
tunnel must have many cubes with zeros. The formal proof is a matter of quantifying what “small”,
“large”, “few” and “many” mean.

The only issue remaining is ensuring that there are balls of stable growth: this is done in Claim 3, and
the proof uses the estimates in Section 3.6 which are consequences of the almost monotonicity of the
frequency function.

Let us emphasize once again that the proof scheme described above is due to Aleksandr Logunov, and
it appeared first in [Logunov 2018b]. In our case we have to adapt it to elliptic equations with lower-order
terms, but the more general estimates that we need are collected above in Sections 3.1 and 3.2, and using
those estimates the proof runs in the same way as for harmonic functions.

3.4. Local asymmetry. We now derive a lower estimate for the relative volume of the set {u > 0} in balls
centered at zeros of u, and consequently a nonoptimal lower estimate for the measure of the zero set. The
estimate and the proof are analogous to the Laplace–Beltrami eigenfunctions case, for which see, for
example, [Logunov and Malinnikova 2018; Mangoubi 2008]. For the reader’s convenience, we reproduce
here essentially the same proof as [Logunov and Malinnikova 2018].

Proposition 16. Let B(x, r)⊂ B and u be a solution of (9) such that u(x)=0. Suppose that N
(
x, 1

2r
)
≤ N,

where N is a positive integer. Then the lower measure bound

Hd−1({u = 0} ∩ B(x, r)) ≥ crd−1 N 2−d (24)

holds for some c > 0.

Proof. For notational simplicity we assume x = 0 and write Br = B(0, r). We can also safely assume that
N ≥ 4, say. Note that by (17) and (13) we have supBr/2

|u| ≤ C max∂ B3r/4 u, so that

max∂ Br u
max∂ B3r/4 u

≤ C1
supBr

|u|

supBr/2
|u|

≤ C12N.

Let now r j = r
( 3

4 + j/(4N )
)

for j = 0, 1, . . . , N, and consider the concentric spheres S j = {|x | = r j }.
Write m+

j = maxS j u and m−

j = minS j u. From the weak maximum principle (13) (applied to u as well
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as −u), it follows that

m+

j > 0, m−

j < 0, m+

j ≤ 2m+

j+1 and |m−

j | ≤ 2|m−

j+1|.

For j = 0, 1, . . . , N − 1, define

τ+

j = m+

j+1/m+

j and τ−

j = |m−

j+1|/|m
−

j |;

from the above, τ
+/−

j ≥
1
2 . Moreover, we have that

τ+

0 · · · τ+

N−1 =
max∂ Br u

max∂ B3r/4 u
≤ C12N,

so at most 1
4 N , say, of the τ+

j are greater than some C independent of N. The same holds for the τ−

j , so
that for at least 1

2 N indices there holds m+

k+1 ≤ Cm+

k and |m−

k+1| ≤ C |m−

k |. Consider each such k and let
x0 ∈ Sk be such that u(x0) = m+

k . Denote by b the ball centered at x0 of radius r/(8N ); then by (13) and
the choice of k,

sup
b

u ≤ sup
{|x |≤rk+1}

u ≤ 2m+

k+1 ≤ Cm+

k .

Applying (17), we then get that supb/2 |u| ≤ Cm+

k . We now use this last inequality and the elliptic gradient
estimate (see, for instance, [Gilbarg and Trudinger 1983, Theorem 8.32])

sup
B(y,s/2)

|∇u| ≤

(C
s

)
sup

B(y,s)
|u|

for y = x0 and s = r/(16N ) to get, for x ∈ B(x0, θr/N ) with θ a sufficiently small number,

u(x) ≥ u(x0) − |x − x0| sup
b/4

|∇u| ≥ m+

k − Cθm+

k ≥ 0.

We thus found a ball centered on Sk of radius θr/N where u is positive, call it b+. Replace now u
with −u, which is also a solution of (9): repeating the argument above with m−

k and τ−

k instead of m+

k
and τ+

k gives us a ball centered on Sk of radius θr/N where u is negative, call it b−. Now consider the
sections of the two balls with hyperplanes through the origin that contain the center of the balls: any
path within the annulus {rk−1 < |x | < rk+1} that connects these two sections contains a zero of u, since u
is positive on b+ and negative on b−. This implies that the measure of the zero set is greater than the
measure of the section of the balls, that is to say,

Hd−1({x : rk−1 < |x | < rk+1, u(x) = 0}) ≥ c
( r

N

)d−1
.

The above holds for all indices k for which m+

k+1 ≤ Cm+

k and |m−

k+1| ≤ C |m−

k |, and recall that there are
at least 1

2 N such indices. Summing the inequality above over those indices, we see that (24) holds. □

Remark. Note that the argument above also shows that

Vol({u > 0} ∩ B(x, r))

Vol(B(x, r))
≥

c
N d−1

if u(x) = 0, which is analogous to the best known lower bound (when d ≥ 3) for the local asymmetry of
Laplace eigenfunctions [Mangoubi 2008].
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3.5. Counting doubling indices. We now recall some very useful results from [Logunov 2018a; 2018b;
Logunov and Malinnikova 2018] that allow us to find many small cubes with better doubling index than
the original ball (or cube). The proofs are combinatorial in nature. First we define a version of the
doubling index for cubes, which are more suitable for partitioning than balls. Given a cube Q and a
solution u of (9), we define the doubling index N (Q) as

N (Q) = sup
{x∈Q, r<diam(Q)}

log
supB(x,10dr) |u|

supB(x,r) |u|
.

The constant 10d is there for technical reasons and the reader should not worry about it. It is clear that
with this definition N (Q1) ≤ N (Q2) if Q1 ⊂ Q2. Theorem 18 was proved in [Logunov 2018a], and then
extended in [Georgiev and Roy-Fortin 2019] to the more general equation (9); the proof combines an
accumulation of growth result ([Logunov 2018a, Lemma 2.1] and [Georgiev and Roy-Fortin 2019, Proposi-
tion 3.1], called the simplex lemma), and a propagation of smallness result ([Logunov 2018a, Lemma 4.1]
and [Georgiev and Roy-Fortin 2019, Proposition 3.2], called the hyperplane lemma). The hyperplane
lemma is a consequence of quantitative Cauchy uniqueness, which we state in a simple version below; it
can be obtained from a very general result in [Alessandrini et al. 2009] (Theorem 1.7). See also [Lin 1991].

Proposition 17. Let D be a bounded domain with C2 boundary, and let B be a ball of radius ρ < 1.
Let u be a solution of (9) in D ∩ B, u ∈ C1(D ∩ B). There exist β = β(α, γ, K , D, ρ) ∈ (0, 1) and
C = C(α, γ, K , D, ρ) > 0 such that, if |u| ≤ 1 and |∇u| ≤ ρ−1 in D ∩ B, and |u| ≤ η and |∇u| ≤ ηρ−1

on ∂ D ∩ B, where η is a real number, then

|u(x)| ≤ Cηβ

for any x ∈ D ∩
1
2 B.

Remark. In [Logunov 2018a; Georgiev and Roy-Fortin 2019], Proposition 17 is applied when ∂ D is
flat; this is sufficient to prove the theorem below. We will use the proposition in the nonflat case later in
Section 4, to prove a version of the hyperplane lemma.

Theorem 18 [Logunov 2018a, Theorem 5.1; Georgiev and Roy-Fortin 2019, Theorem 4.1]. There
exist a constant c > 0 and an integer A > 1 depending on the dimension only, and positive numbers
N0 = N0(α, γ, K ) and R0 = R0(α, γ, K ) such that for any cube Q ⊂ B(0, R0) the following holds: if Q
is partitioned into Ad equal subcubes, then the number of subcubes with doubling index greater than
max(N (Q)/(1 + c), N0) is less than 1

2 Ad−1.

Starting from Theorem 18, in [Logunov 2018b] an iterated version is proved, which is the one decisively
used in the proof of the lower bound on zero sets. We state it below and refer to [Logunov 2018b] for the
proof.

Theorem 19 [Logunov 2018b, Theorem 5.3]. There exist positive constants c1, c2, C and an integer
B0 > 1 depending on the dimension only, and positive numbers N0 = N0(α, γ, K ) and R0 = R0(α, γ, K )

such that for any cube Q ⊂ B(0, R0) the following holds: if Q is partitioned into Bd equal sub-
cubes, where B > B0 is an integer, then the number of subcubes with doubling index greater than
max(N (Q)2−c1 log B/ log log B, N0) is less than C Bd−1−c2 .
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3.6. Estimates in a spherical shell. In the following we always indicate by u a solution of (9); the
frequency function and doubling index are relative to u. Consider a ball B(p, s) ⊂ B

(
0, 1

4r0
)
; we are

going to establish some estimates for the growth of u near a point of maximum. Let x ∈ ∂ B(p, s) be a
point where the maximum of |u| on B(p, s) is almost attained, in the sense that supB(p,s) |u| ≤ 2|u(x)|;
the existence of such an x is guaranteed by Corollary 5. Write M = |u(x)|. In the next two lemmas we
will assume that there is a large enough number N and

δ ∈

(
1

log100 N
,

1
8

)
such that

1
10 N ≤ β(p, t) ≤ 104 N (25)

for t ∈ I := (s(1 − δ), s(1 + δ)).

Lemma 20 (variation on [Logunov 2018b, Lemma 4.1]). Let (25) be satisfied. There exist positive
constants C and c such that

sup
B(p,s(1−δ))

|u| ≤ C M2−cδN, (26)

sup
B(p,s(1+δ))

|u| ≤ C M2CδN. (27)

Proof. Let us prove (26) only. By (21) and (25), we have that(
t2
t1

)N/30

≤
H(p, t2)
H(p, t1)

≤ C
(

t2
t1

)105 N

(28)

for t1 < t2 ∈ I , where we assume that r0 is small enough to take c2 = 2 in (21). We estimate

M2
≥ C1s−d+1 H(p, s) ≥ C1s−d+1 H

(
p, s

(
1 −

1
2δ

))(
1 +

1
2δ

)N/30
,

where the first inequality is just the estimate of the L2-norm by the L∞-norm and the second inequality
comes from (28). By integration and Proposition 11 we have

s H
(

p, s
(
1 −

1
2δ

))
= s

∫
∂ B(p,s(1−δ/2))

|u|
2
≥ C2

∫
B(p,s(1−δ/2))

|u|
2.

Let now x̃ be a point on ∂ B(p, s(1− δ)) where the supremum of |u| on B(p, s(1− δ)) is almost attained,
i.e., supB(p,s(1−δ))|u| ≤ 2|u(x̃)|, and write M̃ = |u(x̃)|. Note now that∫

B(p,s(1−δ/2))

|u|
2
≥

∫
B(x̃,δs/2)

|u|
2
≥ C3(δs)d /

∫
B(x̃,δs/2)

|u|
2
;

moreover, by (14) we have

M̃2
≤ C4 /

∫
B(x̃,δs/2)

|u|
2.

Combining the estimates we obtain
M2

≥ C5δ
d(

1 +
1
2δ

)N/30 M̃2.

Since log
(
1+

1
2δ

)
≥

1
4δ, it follows easily from the above and δ≳ 1/ log100 N that M2

≥ C6 exp
( 1

100 Nδ
)
M̃2,

from which one obtains (26) recalling the definitions of M and M̃. □
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Using the properties of the doubling index, we now derive some estimates on small balls close to x ; we
keep on denoting by x the point on ∂ B(p, s) where the maximum of |u| on B(p, s) is almost attained.

Lemma 21 (variation on [Logunov 2018b, Lemma 4.2]). Let (25) be satisfied. There exists C > 0 such
that

sup
B(x,δs)

|u| ≤ M2CδN+C (29)

and, for any x̃ with d(x, x̃) ≤
1
4δs,

N
(
x̃, 1

4δs
)
≤ CδN + C, (30)

sup
B(x̃,δs/10N )

|u| ≥ M2−CδN log N−C. (31)

Proof. Note that since B(x, δs) ⊂ B(p, s(1 + δ)), the first estimate (29) is an immediate consequence
of (27). By definition of doubling index and (29) we have that

2N (x̃,δs/4)
≤

supB(x̃,δs/2) |u|

supB(x̃,δs/4) |u|
≤

supB(x,δs) |u|

M
≤ 2CδN+C,

and (30) is proved. Now recall the scaling properties (23); by those and (30) we obtain

supB(x̃,δs/4) |u|

supB(x̃,δs/10N ) |u|
≤ (40N )2N (x̃,δs/4)+C1 ≤ (40N )C1δN+C1 ≤ 2C2δN log N+C2 log N

≤ 2C3δN log N+C3,

where the last inequality holds because δ≳ 1/ log100 N . Since, by the distance condition, supB(x̃,δs/4) |u|≥

|u(x)| = M , (31) follows. □

3.7. Finding many balls around the zero set. We follow the arguments in Section 6 of [Logunov 2018b],
in the reformulation contained in [Logunov and Malinnikova 2020]; the estimates in the spherical shell
will be used together with the combinatorial results on doubling indices. We use the notion of “stable
growth”, which is taken from [Logunov and Malinnikova 2020] and was not present in [Logunov 2018b].

Definition 22. We say that u has a stable growth of order N in a ball B(y, s) if N
(
y, 1

4 s
)

≥ N and
N (y, s) ≤ 1000N .

The number 1000 does not have any special meaning, it is just a large enough numerical constant. The
following result is the key to the proof of the lower bound.

Proposition 23 (variation on [Logunov 2018b, Proposition 6.1]). Let B(p, 2r) ⊂ B(0, r0). There exists
a number N0 > 0 large enough such that, for N > N0 and any solution u of (9) that has stable growth
of order N in B(p, r), the following holds: there exist at least [

√
N ]

d−12c1 log N/ log log N disjoint balls
B(xi , r/

√
N ) ⊂ B(p, r) such that u(xi ) = 0.

Proof. Assume without loss of generality that supB(p,r/4) |u| = 1. The stable growth assumption then
implies that

sup
B(p,r/2)

|u| ≥ 2N and sup
B(p,2r)

|u| ≤ 2C N.
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We denote by x the point on ∂ B
(

p, 1
2r

)
where the maximum over B

(
p, 1

2r
)

is almost attained, so that
by the above |u(x)| ≥ 2N−1. We now divide the ball B(p, 2r) into cubes qi of side length cr/

√
N and

organize these cubes into tunnels in the following way: the centers of the cubes in each tunnel lie on a
line parallel to the segment that connects p and x . A tunnel contains at most C

√
N cubes. Let us call a

cube qi “good” if

N (qi ) ≤ max
(

N
2c log N/ log log N , N0

)
(32)

for some constant c. We will call a tunnel “good” if it contains only good cubes; by Theorem 19, most
of the cubes are good and most of the tunnels are good. Another application of Theorem 19 gives the
following:

Claim 1. The number of good tunnels containing at least one cube with distance from x less than r/ log2 N
is greater than c(

√
N/ log2 N )d−1.

The proof of the proposition is then completed with the help of the next claim.

Claim 2. Any good tunnel that contains at least one cube with distance from x less than r/ log2 N also
contains at least 2c2 log N/ log log N cubes with zeros of u.

Proof. Take one such tunnel T . Note that T contains at least one cube qa ⊂ B
(

p, 1
4r

)
, so that supqa

|u| ≤ 1.
Call qb a cube in T with distance from x less than r/ log2 N ; we want to show that the supremum of |u|

over qb is large. To this end, we apply Lemma 21 with δ ∼ 1/ log2 N and x̃ being the center xb of the
cube qb. By the stable growth assumption and the comparability of the doubling index and frequency
function (Lemma 14), inequality (25) is satisfied for N large enough. Then (31) gives us

sup
B(xb,δr/10N )

|u| ≥ |u(x)|2−C N/ log N−C,

and hence, recalling that |u(x)| ≥ 2N−1,

sup
qb/2

|u| ≥ 2cN.

We now follow T from qa to qb and find many zeros. The proof is at this point identical to the one given
in [Logunov 2018b]; for completeness we provide the details. We enumerate the cubes qi from qa to qb

such that qa is the first and qb is the last. Since T is a good tunnel, by (32) we have that for any two
adjacent cubes

log
supqi+1/2 |u|

supqi /2 |u|
≤ log

sup4qi
|u|

supqi /2 |u|
≤

N
2c3 log N/ log log N .

We split the set of indices S into two sets S1 and S2, where S1 is the set of i such that u does not change
sign in q i ∪ q i+1 and S2 = S \ S1. The advantage of this is the possibility to use the Harnack inequality
on S1; the aim is to get a lower bound on the cardinality of S2. In fact, for i ∈ S1, by (16) we have that

log
supqi+1/2 |u|

supqi /2 |u|
≤ C1.
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We then estimate

log
supqb/2 |u|

supqa/2 |u|
=

∑
S1

log
supqi+1/2 |u|

supqi /2 |u|
+

∑
S2

log
supqi+1/2 |u|

supqi /2 |u|
≤ |S1|C1 + |S2|

N
2c3 log N/ log log N ;

on the other hand, recall that

log
supqb/2 |u|

supqa/2 |u|
≥ cN.

Combining the two estimates one obtains

|S1|C1 + |S2|
N

2c3 log N/ log log N ≥ cN,

and noting that |S1|C1 ≤ C1
√

N ≤
1
2 cN we conclude

|S2| ≥ c32c3 log N/ log log N.

The last quantity is larger than 2c2 log N/ log log N if N is large enough, and the claim is proved. □

It is now a straightforward matter to finish the proof of Proposition 23: by Claim 1 there are at
least c(

√
N/ log2 N )d−1 tunnels satisfying the hypothesis of Claim 2, and hence there are at least

c(
√

N/ log2 N )d−12c2 log N/ log log N cubes that contain zeros of u; the last quantity can be made larger than
(
√

N )d−12c1 log N/ log log N, and then one replaces cubes by balls. □

3.8. Proof of the lower bound. We take r0 small enough that (19), (21), Lemma 14 and (23) hold. Writing
N (0, r0) = sup{B(x,r)⊂B(0,r0)}

N (x, r), we define

F(N ) = inf
Hd−1({u = 0} ∩ B(x, ρ))

ρd−1 ,

where the infimum is taken over all balls B(x, ρ) ⊂ B(0, r0) and all solutions u of (9) such that u(x) = 0
and N (0, r0) ≤ N. Theorem 3 then follows immediately from the following:

Theorem 24. F(N ) ≥ c, where c is independent of N.

Proof. Let u be a solution of (9) in competition for the infimum in the definition of F(N ); let F(N ) be
almost attained on u, in the sense that

Hd−1({u = 0} ∩ B(x, ρ))

rd−1 ≤ 2F(N ) (33)

for some B(x, r) ⊂ B(0, r0) with u(x) = 0. Recall the easy bound (24):

Hd−1({u = 0} ∩ B(x, r))

rd−1 ≥
c1

N (x, r/4)d−2 ≥
c1

N d−2 . (34)

Estimate (34) already finishes the proof if N
(
x, 1

4r
)

is bounded uniformly in N ; let us then argue by
contradiction and assume that N

(
x, 1

4r
)

is large enough. Denote Ñ = N
(
x, 1

4r
)

and suppose first that u
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has stable growth of order Ñ . We can then apply Proposition 23 and find at least [

√
Ñ ]

d−12c log Ñ/ log log Ñ

disjoint balls B(xi , r/
√

Ñ ) ⊂ B(x, r) with u(xi ) = 0. By definition of F(N ), there holds:

Hd−1
(
{u = 0} ∩ B

(
xi ,

r√
Ñ

))
≥ F(N )

(
r√
Ñ

)d−1

.

Summing the inequality over all the balls, we obtain

Hd−1({u = 0} ∩ B(x, ρ)) ≥ [

√
Ñ ]

d−12c log Ñ/ log log Ñ F(N )

(
r√
Ñ

)d−1

;

the quantity on the right can be made larger than 2F(N )rd−1 if Ñ is large enough, which is a contradiction
with (33). Therefore we would be done if we knew a priori that u has stable growth of order Ñ in B(x, r),
but this is not necessarily the case; fortunately we can find a smaller ball where u has stable growth.

Claim 3. If N
(
x, 1

4r
)

is large enough, there is a number N1 ≳N
(
x, 1

4r
)

and a ball B1 ⊂ B(x, r) with
radius r1 ∼ r/ log2 N1 such that u has stable growth of order N1/ log2 N1 in B1.

Proof. Let us define a modified frequency function as

β̃(p, r) = sup
t∈(0,r ]

β(p, t) + c1,

so that β̃(p, r) is a positive monotonic increasing function. Note that by (19) we have

β(p, r) ≤ β̃(p, r) ≤ c3 + 2β(p, r),

and the rightmost expression is less than 3β(p, r) if β(p, r) ≥ c3. We use the following claim:

Claim 4 [Logunov 2018b, Lemma 3.1]. Let f be a nonnegative, monotonic nondecreasing function
in [a, b], and assume f ≥ e. Then there exist x ∈

[
a, 1

2(a + b)
)

and a number N1 ≥ e such that

N1 ≤ f (t) ≤ eN1 for any t ∈

(
x −

b − a

20 log2 f (x)
, x +

b − a

20 log2 f (x)

)
⊂ [a, b].

We apply Claim 4 to β̃(p, · ) and hence identify a spherical shell of width ∼r/ log2 N1 about s ∈
(2

3r, 3
4r

)
where β̃(p, · ) is comparable to N1. Since N

(
x, 1

4r
)

is large, by Lemma 14 and almost monotonicity
β(x, t) is large for t > 1

2r and then also β(x, · ) is comparable to N1 in the spherical shell. In other words,
(25) holds with N1 and δ ∼ 1/ log2 N. Let now y ∈ ∂ Bs be a point where the maximum is almost attained,
as in Lemmas 20 and 21. Take a ball B1 of radius ∼ s/ log2 N1 such that 1

4 B1 ⊂ Bs(1−δ) and y ∈
1
2 B1;

then (26) implies that

N
( 1

4 B1
)
≥ c

N1

log2 N1
and (27) implies that

N (B1) ≤ C
N1

log2 N1
,

which means that u has stable growth of order N1/ log2 N1 in B1, and the claim is proved. □
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Claim 3 gives an order of stable growth that is again large enough to get a contradiction with (33) if
N

(
x, 1

4r
)

and hence N1 is large enough. This means that N
(
x, 1

4r
)

is bounded from above by some N0

independently of N , and therefore by (33) and (34) we obtain

F(N ) ≥
Hd−1({u = 0} ∩ B(x, r))

2rd−1 ≥
c3

(N0)d−2 ≥ c, (35)

which concludes the proof of the theorem. □

4. Upper bound

Here we give the proof of Theorem 2. Throughout this section ∂� is assumed to be of class C2. As
remarked in the introduction, the proof uses the Donnelly–Fefferman bound [1988] in the interior of
the domain and a multiscale induction argument at the boundary. As will be apparent from the proof,
the result with a C∞-metric inside � would follow from an upper bound for zero sets of elliptic PDEs
with smooth coefficients that is linear in the frequency; the best we have thus far is polynomial in the
frequency [Logunov 2018a].

We introduce now a version of the doubling index that takes into account the boundary. Namely, for
x ∈ � and u ∈ C(�) a harmonic function, we let

2N ∗
u (x,r)

=
supB(x,2r)∩� |u|

supB(x,r)∩� |u|
. (36)

Note that if v is the extension across the boundary of the Steklov eigenfunction uλ as in Section 2 and
dist(x, ∂�) ≲ 1/λ, r ≲ 1/λ, we have that N ∗

uλ
(x, r) ∼ Nv(x, r), where Nv(x, r) is defined as in (22);

this will allow us to use the almost monotonicity property (23). It was proved in [Zhu 2015] (using the
extension v) that for any r < r0(�)

N ∗

uλ
(x, r) ≤ Cλ, (37)

mirroring a corresponding statement for Laplace eigenfunctions proved by Donnelly and Fefferman. It
will once again be convenient to define a maximal version of the doubling index for cubes; for Q ⊂ Rd a
cube such that Q ∩ � ̸= ∅, we set

N ∗

u (Q) = sup
x∈Q∩�

r≤diam(Q)

N ∗

u (x, r).

Definition 25. A Whitney cube in � is any cube Q such that c1 dist(Q, ∂�) ≤ s(Q) ≤ c2 dist(Q, ∂�),
where s(Q) is the side length of Q and c1 and c2 are positive dimensional constants.

With this notation, we state the following important result of [Donnelly and Fefferman 1988].

Theorem 26. Let u be a harmonic function in �. Then there is C > 0, independent of u, such that

Hd−1(Zu ∩ Q) ≤ C(N ∗

u (Q) + 1)s(Q)d−1 (38)

for any Whitney cube Q.
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From now on, we will denote by u a Steklov eigenfunction with eigenvalue λ. We will first use the
theorem above to bound the measure of the zero set of u in the interior, up to a distance from the boundary
comparable to 1/λ. We will assume λ > λ0. As in the previous section, write d(x) = dist(x, ∂�); Let c0

be a small constant depending only on �. We write the decomposition

� = In ∪ Mid ∪ Bd,

where In = {x ∈ � : d(x) ≥ c0}, Mid = {x ∈ � : c0/λ < d(x) < c0} and Bd = {x ∈ � : d(x) ≤ c0/λ}. It
follows easily from Theorem 26 and (37) that

Hd−1(Zu ∩ In) ≤ Cλ, (39)

with C depending on � only. The next lemma estimates the contribution of the nodal set in Mid.

Lemma 27. There is C > 0 depending only on � such that

Hd−1(Zu ∩ Mid) ≤ Cλ log λ. (40)

Proof. We set Mk = {x ∈ � : c02k−1/λ < d(x) < c02k/λ}, and we have

Mid =

c log λ⋃
k=1

Mk .

We perform a decomposition of � into Whitney cubes with disjoint interior (the statement that this is
possible is usually called the Whitney covering lemma). Define

Qk = {Whitney cubes intersecting Mk}.

In the following lines we will denote by | · | both the cardinality of a discrete collection and the Lebesgue
measure of cubes; it should cause no confusion. Note that if Q ∈ Qk , then

|Q| ∼
2kd

λd ;

it follows that |Qk | ≲ 2−kdλd−1. We can then estimate, using Theorem 26 and (37),

Hd−1(Zu ∩ Mid) =

c log λ∑
k=1

Hd−1(Zu ∩ Mk) ≤

c log λ∑
k=1

∑
Q∈Qk

Hd−1(Zu ∩ Q)

≲ λ

c log λ∑
k=1

∑
Q∈Qk

s(Q)d−1 ≲ λ

c log λ∑
k=1

|Qk |
2kd

λd−1 ≲ λ log λ. □

To prove Theorem 2 the only thing left is to estimate Hd−1(Zu ∩ Bd). We cover Bd with ∼ λd−1

cubes qλ centered at ∂� of side length s(qλ)= 4c0/λ; then Theorem 2 follows from (37) and the following
proposition:

Proposition 28. Let qλ be one of the cubes above, and suppose N ∗
u (4qλ) ≤ N. Then

Hd−1(Zu ∩ qλ) ≤ C(�)(N + 1)s(qλ)
d−1. (41)
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Remark. In the following we will rescale

h(x) = u
( x
λ

)
, (42)

so that qλ becomes a cube Q of side length s < 1, where s is small enough depending on � but independent
of λ, and h satisfies 1h = 0 in 10Q ∩ � and ∂νh = h on ∂� ∩ 10Q. Note that the doubling index is
unchanged under this rescaling. Proposition 28 will follow from

Hd−1(Zh ∩ Q) ≤ C(�)(N + 1). (43)

The main ingredient in the proof of Proposition 28 is a version of the hyperplane lemma of [Logunov
2018a] with cubes touching the boundary, the proof of which uses quantitative Cauchy uniqueness as
stated in Proposition 17. The proof is very similar to the one contained in [Logunov et al. 2021], we
reproduce it here for the reader’s convenience.

Lemma 29. Let h be as in (42) and Q a cube of side length s as in the remark above. There exist k
and N0 large enough depending on s and � such that if Q ∩ ∂� is covered by 2k(d−1) cubes q j with
disjoint interior centered at ∂� of side length 2−ks, and N ∗

h (Q) = N > N0, then there exists q j0 such that
N ∗

h (q j0) ≤
1
2 N.

Proof. We note first that since ∂� is of class C2, h is harmonic in 10Q ∩� and ∂νh = h on ∂�∩10Q, we
can use the extension-across-the-boundary trick described in Section 4, namely, consider v(x)= ed(x)h(x);
recall that the coefficients of the second-order term in the equation satisfied by v are at least Lipschitz.
This gives us access to elliptic estimates that hold up to the boundary for h. In particular, we will use the
gradient estimate

sup
B(y,r)∩�

|∇h| ≲ 1
r

sup
B(y,2r)∩�

|h|, (44)

where the implied constant depends on s and �. Denote now by xQ ∈ ∂� the center of the cube Q.
Consider a ball B centered at xQ such that 2Q ⊂ B, and let M = supB∩� |h|. By contradiction, suppose that
N ∗

h (q j )> 1
2 N for any j ; by definition, this implies that for any j there is x j ∈q j ∩� and r j ≤2−k

√
ds =: r0

such that N ∗

h (x j , r j ) > 1
2 N. Assuming N large enough, we use (23) to get

sup
B(x j ,2r0)∩�

|h| ≤ (C2−k)N/10 sup
B∩�

|h| ≤ Me−cNk

if k is large enough. Using (44), we get

sup
B(x j ,r0)∩�

|∇h| ≲ 1
r0

Me−cNk,

with the implied constant depending on s and �. Note that since q j ⊂ B(x j , r0) the two estimates above
give bounds for the Cauchy data of h on ∂�∩ Q. On the other hand, if B ′ is the ball centered at xQ such
that 4B ′

⊂ Q we have sup2B ′∩� |h| ≤ M and sup2B ′∩� |∇h|≲ M/s. Recalling that r0 = 2−k
√

ds, we can
then apply Proposition 17 with η = 2ke−cNk to get

sup
B ′∩�

|h| ≤ C(s, �)2βkcd e−cβNk M.
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But then
N ∗

h (xQ,
√

ds) ≥ Cd log
supB∩� |h|

supB ′∩� |h|
≥ Cd(cβNk − cdβk − C),

and the rightmost expression is larger than N if k and N are large enough depending on s and �; this is a
contradiction with N ∗

h (Q) = N. □

We are now ready to prove Proposition 28, or actually (43). The argument is an iteration at the
boundary; it originates in [Logunov et al. 2021].

Proof of (43). First, we consider again v(x) = ed(x)h(x) and its even extension across the boundary
(which we still call v). Recall from Section 2 that v satisfies an elliptic PDE with Lipschitz second-order
coefficients and bounded lower-order coefficients. The results of [Hardt and Simon 1989] then apply to
this situation. Let Q be any cube with s(Q) < s0 small enough. By [Hardt and Simon 1989, Theorem 1.7],
we have that

Hd−1(Zv ∩ B(x, ρ)) ≤ C Nv(Q)ρd−1

for any ball B(x, ρ) ⊂ Q where v(x) = 0 and ρ < ρ0(Nv(Q)). Covering Zh ∩ Q with balls of such small
radius and summing the estimate above over all those balls, it follows that there is a function Ã : R+ → R+

such that
Hd−1(Zh ∩ Q) ≤ Ã(N ∗

h (Q))s(Q)d−1. (45)

Let now Q be as above a cube centered at ∂� of side s, with s small enough depending on �. Fix a
large number N0; if N ∗

h (Q) < N0, (45) already implies the result. Otherwise, cover Q ∩� with smaller
cubes of side length 2−ks, where k = k(�) is given by Lemma 29, in the following way: first Q ∩ ∂�

is covered by cubes q ∈ B centered at ∂� with disjoint interior, and then the rest of Q ∩ � is covered
by cubes q ∈ I with dist(q, ∂�) > cs(q) for some constant c > 0 independent of k. Cubes in B will be
called boundary cubes and cubes in I will be called inner cubes; inner cubes are allowed to overlap,
while boundary cubes are not. Write N ∗

h (Q) = N. By (38) and almost monotonicity,

Hd−1
(
Zh ∩

(⋃
q∈I

q
))

≤ C(k)Nsd−1.

By Lemma 29, there is a boundary cube, call it q0, such that N ∗

h (q0) < 1
2 N. The other cubes in B will be

enumerated from 1 to 2k(d−1)
−1. We have that

Hd−1(Zh ∩ Q)

sd−1 ≤ C N +
Hd−1(Zh ∩ q0)

sd−1 +

2k(d−1)
−1∑

j=1

Hd−1(Zh ∩ q j )

sd−1 .

We define

A(N ) = sup
Hd−1(Zh ∩ q)

s(q)d−1 ,

where the supremum is taken over all harmonic functions h in 2Q with ∂νh = h on ∂�∩2Q, N ∗

h (Q) ≤ N
and all cubes q ⊂ Q. By (45), A(N ) < +∞. From the inequality above, we get

A(N ) ≤ C(k)N + A
(1

2 N
)
2−k(d−1)

+ (2k(d−1)
− 1)A(N )2−k(d−1),
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from which
A(N ) < C(k)N + A

( 1
2 N

)
.

(Beware that C(k) changes value from line to line and depends also on �). Iterating the last inequality
until 1

2 N < N0, we obtain

A(N ) < C(k)N + A(N0) < C(k)(N + 1),

which concludes the proof. □

Theorem 2 now follows by combining (39), (40), (41) and (37). We believe that the extra log λ factor
is not necessary and is an artificial feature of the proof; it appears in the proof of (40) and it is due to the
necessity of getting to cubes of side length ∼ λ−1.
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ON FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS
FOR COMPACT LOCALLY SYMMETRIC ORBIFOLDS

BINGXIAO LIU

We consider a certain sequence of flat vector bundles on a compact locally symmetric orbifold, and
we evaluate explicitly the associated asymptotic Ray–Singer real analytic torsion. The basic idea is to
computing the heat trace via Selberg’s trace formula, so that a key point in this paper is to evaluate the
orbital integrals associated with nontrivial elliptic elements. For that purpose, we deduce a geometric
localization formula, so that we can rewrite an elliptic orbital integral as a sum of certain identity orbital
integrals associated with the centralizer of that elliptic element. The explicit geometric formula of Bismut
for semisimple orbital integrals plays an essential role in these computations.
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1. Introduction

Let .Z; gTZ/ be a closed Riemannian manifold of dimension m, and let F ! Z be a complex vector
bundle equipped with a Hermitian metric hF and a flat connection rF;f . Let .��.Z; F /; dZ;F / be
the associated de Rham complex valued in F. It is equipped with an L2-metric induced by gTZ , hF .
Let DZ;F;2 be the corresponding de Rham–Hodge Laplacian. The real analytic torsion T .Z; F / is a
real-valued (graded) spectral invariant of DZ;F;2 introduced by Ray and Singer [1971; 1973]. When Z
is odd-dimensional and .F;rF;f / is acyclic, this invariant does not depend on the metric data gTZ, hF .
Ray and Singer also conjectured that, for a unitarily flat vector bundle F (i.e., rF;f hF D 0), this invariant
coincides with the Reidemeister torsion, a topological invariant associated with .F;rF;f /!Z. This
conjecture was later proved by Cheeger [1979] and Müller [1978]. Using the Witten deformation, Bismut
and Zhang [1991; 1992] gave an extension of the Cheeger–Müller theorem for arbitrary flat vector bundles.
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If Z is a compact orbifold, and if F is a flat orbifold vector bundle on Z, the Ray–Singer analytic
torsion T .Z; F / extends naturally to this case (see Definition 2.2.3). In particular, if F is acyclic, and
if Z and all the singular strata have odd dimensions, then T .Z; F / is independent of the metric data; see
[Shen and Yu 2022, Corollary 4.9]. We refer to [Ma 2005; Shen and Yu 2022] for more details.

We consider a certain sequence of (acyclic) flat vector bundles fFd gd2N on a compact locally symmetric
space Z, and we study the asymptotic behavior of T .Z; Fd / as d !C1. When Z is a manifold, such
question was already studied by Müller [2012], by Bismut, Ma and Zhang [Bismut et al. 2011; 2017] and
by Müller and Pfaff [2013b; 2013a]. In particular, Bismut, Ma and Zhang [Bismut et al. 2011; 2017]
worked on the manifolds which are more general than locally symmetric manifolds. When Z is a compact
hyperbolic orbifold, such question was studied by Fedosova [2015] using the method of harmonic analysis.
Here, we consider this question for an arbitrary compact locally symmetric orbifold (of noncompact type).

Let G be a connected linear reductive Lie group equipped with a Cartan involution � 2Aut.G/ and an
invariant nondegenerate symmetric bilinear form B . Let K �G be the fixed-point set of � , which is a
maximal compact subgroup of G. Put

X DG=K: (1.0.1)

Then X is a Riemannian symmetric space with the Riemannian metric induced from B . For convenience,
we also assume that G has a compact center; then X is of noncompact type.

Now let � �G be a cocompact discrete subgroup. Set

Z D �nX: (1.0.2)

Then Z is a compact locally symmetric space. In general, Z is an orbifold. Let †Z denote the orbifold
resolution of the singular points in Z whose connected components correspond exactly to the nontrivial
elliptic conjugacy classes of �.

Since G has compact center, the compact form U of G exists and is a connected compact linear
Lie group. If .E; �E ; hE / is a unitary (analytic) representation of U, then it extends uniquely to a
representation of G by a unitary trick. In this way, F DG �K E is a vector bundle on X equipped with
an invariant flat connection rF;f (see Section 3.4 and (4.1.8)) and a unimodular Hermitian metric hF

induced by hE. Moreover, .F;rF;f ; hF / descends to a flat Hermitian orbifold vector bundle on Z, which
is still denoted by .F;rF;f ; hF /. Let DZ;F;2 denote the corresponding de Rham–Hodge Laplacian.

The fundamental rank ı.G/ (or ı.X/) of G (or X) is the difference of the complex ranks of G and
of K. As we will see in Theorem 4.1.4, if ı.G/¤ 1, we always have

T .Z; F /D 0: (1.0.3)

If F is defined instead by a unitary representation of �, this result is obtained by Moscovici and Stanton
[1991, Corollary 2.2]. If � is torsion-free, with F defined via a representation of G as above, (1.0.3)
was proved in [Bismut et al. 2017, Remark 8.7] by using Bismut’s formula for orbital integrals [2011,
Theorem 6.1.1]; see also [Ma 2019, Theorems 5.4 and 5.5]. A new proof was given in [Müller and Pfaff
2013a, Proposition 4.2] (with a correction given in [Matz and Müller 2023, p. 44]). Note that in [Ma
2019, Remark 5.6], it is indicated that, using essentially Theorem 5.4 of that work, the identity (1.0.3)
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still holds if � is not torsion-free (i.e., Z is an orbifold), which gives us exactly Theorem 4.1.4 in this
paper. Due to this vanishing result, we only need to deal with the case ı.G/D 1.

We now describe the sequence of flat vector bundles fFd gd2N which is concerned here. Note that U
contains K as a Lie subgroup. Let T be a maximal torus of K, and let TU be the maximal torus of U
containing T. Let u be the Lie algebra of U, and let tU � u be the Lie algebra of TU . Let R.u; tU /
be the associated real root system with a system of positive roots RC.u; tU /. Then let PCC.U / � t�U
denote the set of (real) dominant weights of U with respect to the above root system. If � 2 PCC.U /,
let .E�; �E�/ be the irreducible unitary representation of U with the highest weight �. We extend it to
a representation of G. We require � to be nondegenerate, i.e., as G-representations, .E�; �E�/ is not
isomorphic to .E�; �E� ı �/. We also take an arbitrary �0 2 PCC.U /. If d 2 N, let .Ed ; �Ed ; hEd / be
the unitary representation of U with highest weight d�C�0. By Weyl’s dimension formula, dimEd is a
polynomial in d . This way, we get a sequence of (unimodular) flat vector bundles f.Fd ;rFd ; hFd /gd2N

on X or on Z.
Note that in Section 8.1 (see also [Bergeron and Venkatesh 2013, Lemma 4.1]), the nondegeneracy of

� implies that, for d large enough,
H �.Z; Fd /D 0: (1.0.4)

Furthermore, dimZ is odd when ı.G/D 1. Then, for any sufficiently large d , T .Z; Fd / is independent
of the different choices of hEd (or hFd ).

Let EŒ�� be the finite set of elliptic classes in �. Set ECŒ��DEŒ��nf1g. The first main result in this
paper is the following theorem.

Theorem 1.0.1. Assume that ı.G/ D 1. There exists a (real) polynomial P.d/ in d , and for each
Œ
� 2 ECŒ�� there exists a nice exponential polynomial PEŒ
�.d/ in d (i.e., a finite sum of the terms
of the form ˛d j e2�

p
�1ˇd , with ˛ 2 C, j 2 N, ˇ 2 Q; see Definition 7.6.1) such that there exists a

constant c > 0 for d large, we have

T .Z; Fd /D P.d/C
X

Œ
�2ECŒ��

PEŒ
�.d/CO.e�cd /: (1.0.5)

Moreover, the degrees of P.d/, PEŒ
�.d/ can be determined in terms of �, �0.

For a hyperbolic 3-manifold Z, Müller [2012, Theorem 1.1] computed explicitly the leading term
of T .Z; Fd / as d ! C1. In [Bismut et al. 2011; 2017], under a more general setting for a closed
manifold Z, Bismut, Ma and Zhang [Bismut et al. 2017, Remark 7.8] proved that there exists a constant
c > 0 such that

T .Z; Fd /D TL2.Z; Fd /CO.e�cd /; (1.0.6)

where TL2.Z; Fd / denotes the L2-torsion [Lott 1992; Mathai 1992] associated with Fd !Z. Moreover,
they constructed universally an elementW 2��.Z; o.TZ// (where o.TZ/ denotes the orientation bundle
of TZ) such that if n0 D degEd , then

TL2.Z; Fd /D d
n0C1

Z
Z

W CO.dn0/: (1.0.7)
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The integral of W in the right-hand side of (1.0.7) is called a W -invariant. If we specialize (1.0.7) for a
compact locally symmetric manifold Z, we get

TL2.Z; Fd /D d
n0C1 Vol.Z/ŒW �max

CO.dn0/: (1.0.8)

In [Bismut et al. 2017, Section 8.7], the explicit computation on ŒW �max was carried out for G D SL2.C/
to recover [Müller 2012, Theorem 1.1].

We now compare (1.0.5) with (1.0.6). If ignoring that � may act on X noneffectively, we can extend
the notion of L2-torsion to the orbifold Z, so that TL2.Z; Fd / is still defined in terms of the �-trace of
the heat operators on X. Then P.d/ in (1.0.5) is exactly TL2.Z; Fd /. But different from (1.0.6), we still
have the nontrivial terms PEŒ
�.d/, Œ
� 2ECŒ�� in (1.0.5). We will see, in a refined version of (1.0.5)
stated in Theorem 1.0.2, that PEŒ
�.d/ is essentially a linear combination of certain L2-torsions for †Z
associated with Œ
� and �, �0. Therefore, we can define an L2-torsion for †Z as

zT L2.†Z;Fd /D
X

Œ
�2ECŒ��

PEŒ
�.d/: (1.0.9)

Then, as an analogue to (1.0.6), we restate our Theorem 1.0.1 as follows.

Theorem 1.0.10. Assume that � acts on X effectively. For Z D �nX, as d !C1, we have

T .Z; Fd /D TL2.Z; Fd /C zT L2.†Z;Fd /CO.e�cd /: (1.0.10)

Moreover, TL2.Z; Fd / is a polynomial in d , and zT L2.†Z;Fd / is a nice exponential polynomial in d .
Their leading terms can be determined in terms of W -invariants as in (1.0.8) .

To understand better on zT L2.†Z;Fd /, we need to recall the results in [Müller and Pfaff 2013a] (also
in [Müller and Pfaff 2013b] for the hyperbolic case) for a compact locally symmetric manifold Z. They
gave a proof to (1.0.6) using Selberg’s trace formula, and then showed that TL2.Z; Fd / is a polynomial
in d . Theorem 1.0.10 here is an extension of their results, which shows a nontrivial contribution from †Z.

Let us give more detail on the results in [Müller and Pfaff 2013a]. Let DX;Fd ;2 be the G-invariant
Laplacian operator on X which is the lift of DZ;Fd ;2. For t > 0, let pX;Fdt .x; x0/ denote the heat kernel
of 1

2
DX;Fd ;2 with respect to the Riemannian volume element on X. For t > 0, the identity orbital integral

IX .Ed ; t / of pX;Fdt is defined as

IX .Fd ; t /D Trƒ
�.T �xX/˝Fd;x

s

h�
Nƒ�.T �xX/�

m

2

�
p
X;Fd
t .x; x/

i
; (1.0.11)

where Nƒ�.T �xX/ is the number operator on ƒ�.T �x X/, and the right-hand side of (1.0.11) is independent
of the choice of x 2X. Let MIX .Fd ; s/, s 2 C, denote the Mellin transform (see (7.2.57)) of IX .Fd ; t /,
which is holomorphic at 0. Set

PIX .Fd /D
@

@s

ˇ̌̌
sD0

MIX .Fd ; s/: (1.0.12)

The L2-torsion is defined as

TL2.Z; Fd /D Vol.Z/PIX .Fd /: (1.0.13)
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Using essentially Harish-Chandra’s Plancherel theorem for IX .Fd ; t /, Müller and Pfaff [2013a]
managed to show that PIX .Fd / is a polynomial in d (for d large enough). Moreover, if �0 D 0, there
exists a constant C� ¤ 0 such that

PIX .Fd /D C�d dimEd CR.d/; (1.0.14)

where R.d/ is a polynomial in d of degree no greater than deg dimEd . They also gave concrete formulae
for C� in some model cases [Müller and Pfaff 2013a, Corollaries 1.4 and 1.5].

In Section 7.4, we use instead an explicit geometric formula of [Bismut 2011, Theorem 6.1.1] for
semisimple orbital integrals to give a different computation on PIX .Fd /. In Section 7.5, we verify that
our computational results coincide with the ones of [Müller and Pfaff 2013a].

For the orbifold case, i.e., � contains nontrivial elliptic elements, a key ingredient to Theorem 1.0.1 is
to evaluate explicitly the elliptic orbital integrals associated with Œ
� 2ECŒ��. For that purpose, we make
use of the full power of Bismut’s formula [2011, Theorem 6.1.1]. Note that if Z is a hyperbolic orbifold,
i.e., G D Spin.1; 2nC 1/, the result in Theorem 1.0.1 (or Theorem 1.0.10) was obtained in [Fedosova
2015, Theorem 1.1], where she evaluated the elliptic orbital integrals using Harish-Chandra’s Plancherel
theorem.

In fact, we obtain in this paper a refined version of Theorem 1.0.1, where we give more explicit
descriptions of the exponential polynomials PEŒ
�.d/ and zT L2.†Z;Fd /. Before stating this refined
result, we need to introduce some notation and facts.

Fix k 2 T, and let X.k/ denote the fixed-point set of k acting on X. Then X.k/ is a connected
symmetric space with ı.X.k//D 1. Let Z.k/0 be the identity component of the centralizer Z.k/ of k
in G. Then X.k/ D Z.k/0=K.k/0, with K.k/0 D Z.k/0 \K. Let U.k/ denote the centralizer of k
in U with Lie algebra u.k/ � u. Then U.k/0 is naturally a compact form of Z.k/0, and the triplet
.X.k/;Z.k/0; U.k/0/ becomes a smaller version of .X;G;U /, except that Z.k/0 may have noncompact
center. Note that TU is also a maximal torus of U.k/0. We get the splitting of roots

R.u; tU /DR.u.k/; tU /[R.u
?.k/; tU /; (1.0.15)

where u?.k/ is the orthogonal space of u.k/ in u with respect to B . Let RC.u.k/; tU /, RC.u?.k/; tU /
be the induced positive roots, and let �u, �u.k/ denote the half of the sum of the roots in RC.u; tU /,
RC.u.k/; tU / respectively.

Let W.uC; tU;C/ be the Weyl group associated with the pair .u; tU /. Put

W 1
U .k/D f! 2W.uC; tU;C/ j !

�1.RC.u.k/; tU //�R
C.u; tU /g: (1.0.16)

If � 2W 1
U .k/, let ".�/ denote its sign. For � 2 PCC.U /, set

'Uk .�; �/D ".�/
��.�C�u/C�u.k/

…˛2RC.u?.k/;tU /.�˛.k/� 1/
2 C�; (1.0.17)

where �˛ is the character of TU with (dominant) weight 2�
p
�1˛. It is clear that 'U

k
.�; d�C�0/ is an

oscillating term of the form c1e
2�
p
�1c2d , with c1 2 C�, c2 2 R. If k is of finite order, then c2 2Q.
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By an equivalent definition of nondegeneracy in Definition 7.3.1, for � 2W 1
U .k/, �� is a nondegenerate

dominant weight of U.k/0 with respect to � jZ.k/0 . Let Ek
�;d

denote the unitary representations of U.k/0

(up to a finite central extension) with highest weight d��C�.�0C�u/��u.k/, d 2N, and let fF k
�;d
gd2N

be the corresponding sequence of flat vector bundles on X.k/.
Now we state our second main theorem, which refines Theorem 1.0.1.

Theorem 1.0.2. Assume that ı.G/D 1.

(1) If � �G is a cocompact discrete subgroup and 
 2 � is elliptic, let S.
/ denote the finite subgroup
of � \Z.
/ which acts on X.
/ trivially. Then there exists a constant c > 0, and, for each Œ
� 2ECŒ��,
there exists a nice exponential polynomial in d , denoted by PEX;
 .Fd /, such that, for Z D �nX, as
d !C1, we have

T .Z; Fd /D
Vol.Z/
jS.1/j

PIX .Fd /C
X

Œ
�2ECŒ��

Vol.� \Z.
/nX.
//
jS.
/j

PEX;
 .Fd /CO.e�cd /: (1.0.18)

(2) Fix an elliptic Œ
� 2ECŒ��. Then PEX;
 .Fd / depends only on the conjugacy class of 
 in G and is
independent of the lattice �. If 
 is conjugate to k 2 T by an element in G, then we have the identity

PEX;
 .Fd /D
X

�2W 1
U .k/

'Uk .�; d�C�0/PIX.k/.F k�;d /; (1.0.19)

Theorem 1.0.1 now is just a consequence of (1.0.18). Note that, for Œ
� 2 ECŒ��, the (compact)
orbifold �\Z.
/nX.
/ represents an orbifold stratum in †Z (see (3.4.13), Remark 3.4.3). An important
observation on (1.0.18) is that the sequence fT .Z; Fd /gd2N encodes the volume information on Z as well
as on†Z. Moreover, combining (1.0.13), (1.0.18) with (1.0.19), we justify that the quantity zT L2.†Z;Fd /
defined by (1.0.9) is indeed a linear combination of L2-torsions such as TL2.� \Z.
/nX.
/; F




�;d
/

for †Z.
Now we explain our approach to Theorem 1.0.2. Let us start with defining PEX;
 .Fd / and (1.0.18).

In fact, T .Z; Fd / can be rewritten as the derivative at 0 of the Mellin transform of

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;Fd ;2

2

�i
; t > 0; (1.0.20)

where TrsŒ � � denotes the supertrace with respect to the Z2-grading on ƒ�.T �Z/.
If 
 2G is semisimple, let EX;
 .Fd ; t / denote the orbital integral (see Section 3.3) of the Schwartz

kernel of .Nƒ�.T �X/�m=2/ exp.�tDX;Fd ;2=2/ associated with 
 . Note that in EX;
 .Fd ; t /, we take the
supertrace of the endomorphism on ƒ�.T �X/˝F (see (4.1.16)). Moreover, EX;
 .Fd ; t / depends only
on the conjugacy class of 
 in G. Let MEX;
 .Fd ; s/ denote the Mellin transform of EX;
 .Fd ; t /, t > 0
with appropriate s 2 C. If 
 D 1, they are just IX .Fd ; t /, MIX .Fd ; s/ introduced in (1.0.11)–(1.0.12).

We use the notation in Section 3.5. Let Œ�� denote the set of the conjugacy classes in �. By applying
Selberg’s trace formula to Z D �nX, we get

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;Fd ;2

2

�i
D

X
Œ
�2Œ��

Vol.� \Z.
/nX.
//
jS.
/j

EX;
 .Fd ; t /: (1.0.21)
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Now we compare (1.0.18) with (1.0.21). Then a proof to (1.0.18) mainly includes the following three parts:

(1) We show that if Œ
� 2EŒ��, then MEX;
 .Fd ; s/ admits a meromorphic extension to s 2 C which is
holomorphic at s D 0. Thus we define

PEX;
 .Fd /D
@

@s

ˇ̌̌
sD0

MEX;
 .Fd ; s/: (1.0.22)

Such consideration also holds for an arbitrary elliptic element 
 2G.

(2) If 
 2 � is elliptic, then it is of finite order, and from (1.0.19), we get that PEX;
 .Fd / is a nice
exponential polynomial in d for d large enough.

(3) We prove that all the terms in the sum of (1.0.21) associated with nonelliptic Œ
� 2 Œ�� contribute as
O.e�cd / in T .Z; Fd /.

Indeed, to handle the contribution of the nonelliptic Œ
� 2 Œ��, we use a spectral gap of DZ;Fd ;2 due to
the nondegeneracy of �. By [Bismut et al. 2011, Théorème 3.2], and [Bismut et al. 2017, Theorem 4.4]
which holds for a more general setting (see also [Müller and Pfaff 2013a, Proposition 7.5, Corollary 7.6]
for a proof by using representation theory for symmetric spaces), there exist constants C > 0, c > 0 such
that, for d 2 N,

DZ;Fd ;2 � cd2�C: (1.0.23)

That also explains (1.0.4) for large d . Part (3) follows essentially from the same arguments as in [Müller
and Pfaff 2013a, Section 8] and [Bismut et al. 2017, Sections 6.6, 7.2, Remarks 7.8, 8.15] which makes
good use of (1.0.23) and the fact that nonelliptic elements in � admit a uniform strictly positive lower
bound for their displacement distances on X.

For elliptic 
 2 �, we apply Bismut’s formula [2011, Theorem 6.1.1] to evaluate EX;
 .Fd ; t /. Then
we can write EX;
 .Fd ; t / as a Gaussian-like integral with the integrand given as a product of an analytic
function determined by the adjoint action of 
 on Lie algebras and the character �Ed of the representa-
tion Ed . By coordinating these two factors, especially using all sorts of character formulae for �Ed , we
can integrate it out. We show that EX;
 .Fd ; t / is a finite sum of the terms

t�j�
1
2 e�t.cdCb/

2

Q.d/; (1.0.24)

where j 2 N, c ¤ 0, b are real constants, and Q.d/ is a nice exponential polynomial in d . It is crucial
that c ¤ 0. Indeed, we will see in Section 7.3 that this quantity c measures the difference between the
representations .E�; �E�/ and .E�; �E� ı �/.

As a consequence of (1.0.24), PEX;
 .Fd / in (1.0.22) is well-defined, which is clearly a nice exponential
polynomial in d (for d large enough). The details on these computations are carried out in Section 7.2,
where we apply the techniques inspired by the computations in Shen’s approach [2018, Section 7] to the
Fried conjecture and also in its extension to orbifold case in [Shen and Yu 2022].

The formula (1.0.19) gives a new and geometric approach to the above results on PEX;
 .Fd /. It is
nicer in the sense that each PIX.k/.F k�;d / is already well understood and related to the L2-torsions for the
singular stratum ofZ. For proving it, we apply a geometric localization formula for EX;
 .Fd ; t / as follows.
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Theorem 1.0.3. Assume that ı.G/D 1. We use the same notation as in Theorem 1.0.2. Let 
 D k 2 T.
Then, for t > 0, d 2 N,

EX;
 .Fd ; t /D
X

�2W 1
U .k/

'Uk .�; d�C�0/IX.k/.F
k
�;d ; t /: (1.0.25)

After taking the Mellin transform on both sides of (1.0.25), we get exactly (1.0.19). In Theorem 6.0.1,
we will show a general version of the above geometric localization formula for EX;
 .Fd ; t / associated
with any semisimple element 
 2G.

Our approach to Theorem 1.0.3 is a more delicate application of Bismut’s formula [2011, Theorem 6.1.1].
As we said, EX;
 .Fd ; t /, IX.k/.F k�;d ; t / are equal to integrals of some integrands involving �Ed , �Ek

�;d

respectively. To relate the two sides of (1.0.25), we employ a generalized version of the Kirillov character
formula (see Theorem 5.4.4), which gives an explicit way of decomposing �Ed jU.k/0 into a sum of �Ek

�;d
,

� 2W 1
U .k/. This character formula was proved by Duflo, Heckman and Vergne [Duflo et al. 1984, II.3,

Theorem (7)] under a general setting, and we will recall its special case for our need in Section 5.4. Then
we expand the integral formula for EX;
 .Fd ; t / carefully into a sum of certain integrals involving �Ek

�;d
,

� 2W 1
U .k/, which correspond to IX.k/.F k�;d ; t / via Bismut’s formula. This way, we prove (1.0.25).

Theorem 1.0.3 can be interpreted as follows: the action of elliptic element 
 on X could lead to a
geometric localization onto its fixed-point set X.k/ when we evaluate the orbital integrals. Even though
we only prove it for a very restrictive situation, we still expect such phenomenon in general due to a
geometric formulation for the semisimple orbital integrals; see [Bismut 2011, Chapter 4].

Finally, we note that in [Bismut et al. 2017, Section 8], the authors explained well how to use Bismut’s
formula for semisimple orbital integrals to study the asymptotic analytic torsion. Here, we go one step fur-
ther in that direction to get a refined evaluation on it. Bergeron and Venkatesh [2013] also studied the asymp-
totic analytic torsion but under a totally different setting. In [Liu 2018; 2021], the asymptotic equivariant
analytic torsion for a locally symmetric space was studied, and the oscillating terms also appeared naturally
in that case. Moreover, Finski [2018, Theorem 1.5] obtained the full asymptotic expansion of the holomor-
phic analytic torsions for the tensor powers of a given positive line bundle over a compact complex orbifold.

This paper is organized as follows. In Section 2, we recall the definition of Ray–Singer analytic torsion
for compact orbifolds. We also include a brief introduction to the orbifolds at beginning.

In Section 3, we introduce the explicit geometric formula of Bismut for semisimple orbital integrals
and the Selberg’s trace formula for compact locally symmetric orbifolds. They are the main tools to study
the analytic torsions in this paper.

In Section 4, we give a vanishing theorem for T .Z; F /, so that we only need to focus on the case
ı.G/D 1.

In Section 5, we study the Lie algebra ofG provided ı.G/D1. Furthermore, we introduce a generalized
Kirillov formula for compact Lie groups.

In Section 6, we prove a general version of Theorem 1.0.3.
In Section 7, given the sequence fFd gd2N, we compute explicitly EX;
 .Fd ; t / in terms of root systems

for elliptic 
 ; in particular, we prove (1.0.24). Then we give the formulae for PIX .Fd /, PEX;
 .Fd /.
Finally, in Section 8, we introduce the spectral gap (1.0.23) and we give a proof of Theorem 1.0.2.
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In this paper, if V is a real vector space and if E is a complex vector space, we will use the symbol
V ˝E to denote the complex vector space V ˝RE. If both V and E are complex vector spaces, then
V ˝E is just the usual tensor over C.

2. Ray–Singer analytic torsion

In this section, we recall the definitions of the orbifold and the orbifold vector bundle. We also refer
to [Satake 1956; 1957; Adem et al. 2007, Chapter 1] for more details. Then we recall the definition of
Ray–Singer analytic torsion for compact orbifolds, where we refer to [Ma 2005; Shen and Yu 2022] for
more details. In particular, Shen and Yu [2022] extended many important results on real analytic torsion
from the manifold setting to the orbifold setting.

2.1. Orbifolds and orbifold vector bundles. Let Z be a topological space.

Definition 2.1.1. If U is a connected open subset of Z, an orbifold chart for U is a triple . zU ; �U ; GU /
such that

� zU is a connected open set of some Rm and GU is a finite group acting smoothly and effectively on
zU on the left;

� �U is a continuous surjective zU ! U, which is invariant by a GU -action;

� �U induces a homeomorphism between GU n zU and U.

If V � U is a connected open subset, an embedding of orbifold chart for the inclusion i W V ! U is
an orbifold chart . zV ; �V ; GV / for V and an orbifold chart . zU ; �U ; GU / for U together with a smooth
embedding �UV W zV ! zU such that the following diagram commutes:

zV�V
�UV //

��

zU

�U

��
V

i // U

(2.1.1)

If U1, U2 are two connected open subsets of Z with the charts . zU1; �U1 ; GU1/, . zU2; �U2 ; GU2/
respectively, we say that these two orbifold charts are compatible if, for any point z 2U1\U2, there exists
an open connected neighborhood V � U1\U2 of z with an orbifold chart . zV ; �V ; GV / such that there
exist two embeddings of orbifold charts �U1V W . zV ; �V ; GV /! . zU1; �U1 ; GU1/, �U2V W . zV ; �V ; GV /!
. zU2; �U2 ; GU2/. In this case, the diffeomorphism �U2V ı �

�1
U1V
W �U1V .

zV / ! �U2V .
zV / is called a

coordinate transformation.

Definition 2.1.2. An orbifold atlas on Z is couple .U ; zU/ consisting of a cover U of open connected
subsets of Z and a family of compatible orbifold charts zU D f. zU ; �U ; GU /gU2U .

An orbifold atlas .V; zV/ is called a refinement of .U ; zU/ if V is a refinement of U and if every
orbifold chart in zV has an embedding into some orbifold chart in zU . Two orbifold atlas are said to be
equivalent if they have a common refinement, and the equivalent class of an orbifold atlas is called an
orbifold structure on Z.



1270 BINGXIAO LIU

An orbifold is a second countable Hausdorff space equipped with an orbifold structure. It is said to
have dimension m if all the orbifold charts which define the orbifold structure are of dimension m.

If Z; Y are two orbifolds, a smooth map f WZ! Y is a continuous map from Z to Y such that it lifts
locally to an equivariant smooth map from an orbifold chart of Z to any orbifold chart of Y . In this way,
we can define the notion of smooth functions and the smooth action of Lie groups.

By [Shen and Yu 2022, Proposition 2.12], if � is discrete group acting smoothly and properly dis-
continuously on the left on an orbifold X, then Z D �nX has a canonical orbifold structure induced
from X.

In the sequel, let Z be an orbifold with an orbifold structure given by .U ; zU/. If z 2Z, there exists an
open connected neighborhood Uz of z with a compatible orbifold chart . zUz; Gz; �z/ such that ��1z .z/

contains only one point x 2 zUz . Then Gz does not depend on the choice of such open connected
neighborhood (up to canonical isomorphisms compatible with the orbifold structure), and Gz is called
the local group at z.

Put
Zreg D fz 2Z jGz D f1gg; Zsing D fz 2Z jGz ¤ f1gg: (2.1.2)

Then Zreg is naturally a smooth manifold. But Zsing is not necessarily an orbifold. Kawasaki [1978,
Section 2] explained two different methods to view Zsing as an immersed image of a disjoint union of
orbifolds. We just recall that method which appears naturally in Kawasaki’s local index theorems for
orbifolds [1978; 1979].

If z 2Zsing, let 1D .h0z/; .h
1
z/; : : : ; .h

lz
z / be the conjugacy classes in Gz . Put

†Z D f.z; .hjz // j z 2Zsing; j D 1; : : : ; lzg: (2.1.3)

Let . zUz; Gz; �z/ be the local orbifold chart for z 2Zsing such that ��1z .z/ contains only one point. For
j D 1; : : : ; lz , let zU h

j
z

z � zUz be the fixed-point set of hjz , which is a submanifold of zUz . Note that
zU
h
j
z

z �Zsing. Let ZGz .h
j
z / be the centralizer of hjz in Gz . Then ZGz .h

j
z / acts smoothly on zU h

j
z

z . Put

Kjz D ker.ZGz .h
j
z /! Aut. zU h

j
z

z //: (2.1.4)

Then . zU h
j
z

z ; ZGz .h
j
z /=K

j
z ; �

j
z W
zU
h
j
z

z !
zU
h
j
z

z =ZGz .h
j
z // defines an orbifold chart near .z; .hjz // 2†Z.

They form an orbifold structure for †Z. Let Zi , i D 1; : : : ; l , denote the connected components of the
orbifold †Z.

The integer mjz D jK
j
z j is called the multiplicity of †Z in Z at .z; .hjz //. This defines a function

m W †Z ! ZC. As explained in [Kawasaki 1978, Section 1], m is locally constant on †Z, and let
mi 2 ZC be the value of m on Zi for i D 1; : : : ; l . We call mi the multiplicity of Zi in Z. We will put

Z0 DZ; m0 D 1: (2.1.5)

Remark 2.1.3. In Definition 2.1.1, for an orbifold chart, we require the action GU on zU to be effective.
To emphasize this condition, the orbifold defined above is often called an effective orbifold. In fact,
we can drop this effectiveness; then we get a general version of the (possibly ineffective) orbifold, for
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example, using the orbifold groupoid; see [Adem et al. 2007, Definition 1.38]. The point-view of orbifold
groupoid provides a unified way to deal with effective and ineffective orbifolds.

As explained in [Adem et al. 2007, Example 2.5], for global quotient groupoids (including all the
effective orbifolds and certain ineffective orbifolds), a natural stratification called the inertia groupoid
was introduced as an extension of the one

Sl
iD0Z

i defined in (2.1.3)–(2.1.5). It plays a key role in the
study of the geometry of orbifolds. We will go back to this point in Sections 3.4 and 3.5. Through this
paper, the terminology orbifold will always refer to the effective one unless otherwise stated.

We sayE is an orbifold vector bundle of rank r onZ if there exists a smooth map of orbifolds � WE!Z

such that, for any U 2 U and . zU ;GU ; �U / 2 zU , there exists an orbifold chart . zUE ; GEU ; �
E
U / of E such

that zUE is an vector bundle on zU of rank r equipped an effective action of GEU and �EU . zU
E /D ��1.U /.

Moreover, there exists a surjective group morphism  U WG
E
U !GU such that the action of GEU on zU is

identified via  U with the action of GU on zU. If we have an open embedding �UV W . zV ; �V ; GV /!
. zU ; �U ; GU /, we require that it lifts to the open embedding �EUV W . zV

E ; �EV ; G
E
V /! . zUE ; �EU ; G

E
U / of

the orbifold charts of E such that �EUV W zV
E ! zUE is a morphism of vector bundles associated with

the open embedding �UV W zV ! zU. If every  U WGEU !GU is an isomorphism of groups, we call E a
proper orbifold vector bundle on Z.

Note that if E is proper, then the rank of E can be extended to a locally constant function � on †Z.
The orbifold chart of Zi is given by the triples such as

. zU h
j
z

z ; ZGz .h
j
z /=K

j
z ; �

j
z W
zU h

j
z

z !
zU h

j
z

z =ZGz .h
j
z //:

By the above definition of E, we have an orbifold chart . zUE ; GEU D GU ; �
E
U / such that zUE is a GU -

equivariant vector bundle on zU. Then, for x 2 zU h
j
z

z , hjz acts on the fibers zUEz linearly, so that we can set
�.z; .h

j
z //D Tr zU

E
z Œh

j
z �. Then � is really a locally constant function on †Z. For i D 1; : : : ; l , let �i be

the value of � on the component Zi . We also put �0 D r .
We call s WZ! E a smooth section of E over Z if it is a smooth map between orbifolds such that

� ı s D IdZ . We will use C1.Z;E/ to denote the vector space of smooth sections of E over Z.
Take an orbifold chart . zU ;GU ; �U / 2 zU of Z. Then GU acts canonically on the tangent vector

bundle T zU of zU. The open embeddings of orbifold charts of Z also lift to the open embeddings of their
tangent vector bundles. This way, we get a proper orbifold vector bundle TZ on Z, and the projection
� W TZ! Z is just given by the obvious projection T zU ! zU. We call TZ the tangent vector bundle
of Z. If we equipped TZ with Euclidean metric gTZ, we will call Z a Riemannian orbifold and call
gTZ a Riemannian metric of Z.

Let ��.Z/ denote the set of smooth differential forms of Z, which has a Z-graded structure by degrees.
The de Rham differential dZ W��.Z/!��C1.Z/ is given by the family of de Rham differential operators
d
zU W��. zU/!��C1. zU/. Then we can define the de Rham complex .��.Z/; dZ/ ofZ and the associated

de Rham cohomology H �.Z;R/. By [Kawasaki 1978, Section 1], there is a natural isomorphism between
H �.Z;R/ and the singular cohomology of the underlying topological space Z.

Now let us recall the integrals on Z. Assume that Z is compact. We may take a finite open covering
fUigi2I of the precompact orbifold charts for Z. Since Z is Hausdorff, there exists a partition of unity
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subordinate to this open cover. We can find a family of smooth functions f�i 2 C1c .Z/gi2I with values
in Œ0; 1� such that Supp.�i /� Ui , and that X

i2I

�i D 1: (2.1.6)

Take Q�i D ��Ui .�i / 2 C
1
c .
zUi /

GUi .
If ˛ 2�m.Z; o.TZ//, let Q̨Ui be its lift on the chart . zUi ; �Ui ; GUi /. We defineZ

Z

˛ D
X
i

1

jGUi j

Z
zUi

Q�i Q̨Ui : (2.1.7)

By [Shen and Yu 2022, Section 3.2], if ˛ 2�m.Z; o.TZ//, then ˛ is also integrable on Zreg, so thatZ
Z

˛ D

Z
Zreg

˛: (2.1.8)

Also if ˛ 2��.Z; o.TZ//, we have Z
Z

dZ˛ D 0: (2.1.9)

If .Z; gTZ/ is a Riemannian orbifold, we can define the integration of functions on Z with respect to
the Riemannian volume element. If we have a Hermitian orbifold vector bundle .F; hF /! .Z; gTZ/,
one can define the L2 scalar product for the space of continuous sections of F as usual. Then, after
completion, we get the Hilbert space L2.Z; F /.

Chern–Weil theory on the characteristic forms extends to orbifolds, where their constructions are
parallel to the case of smooth manifolds. We refer to [Shen and Yu 2022, Section 3.4] for more details.
Note that the characteristic forms are not only defined on Z but also defined on †Z. The part †Z has a
nontrivial contribution in Kawasaki’s local index theorems for orbifolds [1978; 1979].

Finally, we introduce the orbifold Euler characteristic number of .Z; gTZ/ [Satake 1957]. Let rTZ D
frT

zUi gUi2U be the Levi-Civita connection on TZ associated with gTZ. The Euler form e.TZ;rTZ/ 2

�m.Z; o.TZ// is given by the family of closed forms

fe. zUi ;r
T zUi / 2�m. zUi ; o.T zUi //

GUi gUi2U : (2.1.10)

If Z is oriented, then we can view e.TZ;rTZ/ as a differential form on Z.
If Z is compact, set

�orb.Z/D

Z
Z

e.TZ;rTZ/: (2.1.11)

By [Satake 1957, Section 3], �orb.Z/ is a rational number, and it vanishes when Z is odd-dimensional.

2.2. Flat vector bundles and analytic torsions of orbifolds. If .F;rF / is an orbifold vector bundle
over Z with a connection rF , we call .F;rF / a flat vector bundle if the curvature RF DrF;2 vanishes
identically on Z. A detailed discussion for the flat vector bundles on Z is given in [Shen and Yu 2022,
Sections 2.3–2.5].

Let .Z; gTZ/ be a compact Riemannian orbifold of dimension m. Let .F;rF / be a flat complex orb-
ifold vector bundle of rank r on Z with Hermitian metric hF . Note that we do not assume that F is proper.
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Let ��.Z; F / be the set of smooth sections of ƒ�.T �Z/˝F on Z. Let dZ be the exterior differential
acting on ��.Z;R/.

Definition 2.2.1. For i D 0; 1; : : : ; m, if ˛ 2 �i .Z;R/, s 2 C1.Z; F /, the operator dZ;F acting on
�i .Z; F / is defined by

dZ;F .˛˝ s/D .dZ˛/˝ sC .�1/i˛^rF s 2�iC1.Z; F /: (2.2.1)

Since rF;2 D 0, then .��.Z; F /; dZ;F / is a complex, which is called the de Rham complex for the
flat orbifold vector bundle .F;rF / on Z. Let H �.Z; F / denote the corresponding de Rham cohomology
group of Z valued in F, as in the case of closed manifolds, H �.Z; F / is always finite-dimensional.

Let h � ; � iƒ�.T �Z/˝F;z be the Hermitian metric on ƒ�.T �z Z/˝Fz , z 2 Z induced by gTZz and hFz .
Let dv be the Riemannian volume element on Z induced by gTZ. The L2-scalar product on ��.Z; F /
is given as follows: if s; s0 2��.Z; F /, then

hs; s0iL2 D

Z
Z

hs.z/; s.z0/iƒ�.T �Z/˝F;z dv.z/: (2.2.2)

By (2.1.8), it will be the same if we take the integrals on Zreg.
Let dZ;F;� be the formal adjoint of dZ;F with respect to the above L2-metric on ��.Z; F /; i.e., for

s; s0 2��.Z; F /,
hdZ;F;�s; s0iL2 D hs; d

Z;F s0iL2 : (2.2.3)

Then dZ;F;� is a first-order differential operator acting ��.Z; F / on which decreases the degree by 1.

Definition 2.2.2. The de Rham–Hodge operator DZ;F of ��.Z; F / is defined as

DZ;F
D dZ;F C dZ;F;�: (2.2.4)

It is a first-order self-adjoint elliptic differential operator acting on ��.Z; F /.

The Hodge Laplacian is

DF;Z;2
D ŒdZ;F ; dZ;F;��D dZ;F dZ;F;�C dZ;F;�dZ;F : (2.2.5)

Here, Œ � ; � � denotes the supercommutator. Then DZ;F;2 is a second-order essentially self-adjoint nonneg-
ative elliptic operator, which preserves the degree.

The Hodge decomposition for ��.Z; F / still holds in this case (see [Ma 2005, Proposition 2.2; Dai
and Yu 2017, Proposition 2.1]),

��.Z; F /D ker.DZ;F;2
j��.Z;F //˚ Im.dZ;F j���1.Z;F //˚ Im.dZ;F;�j��C1.Z;F //: (2.2.6)

Then we have the canonical identification of vector spaces,

H�.Z; F / WD kerDZ;F;2
'H �.Z; F /: (2.2.7)

Put

�.Z; F /D

mX
jD0

.�1/j dimH j .Z; F /: (2.2.8)
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If F is proper, recall that the numbers �i , i D 0; : : : ; l , are defined in previous subsection as the
extension of the rank of F. Then by [Shen and Yu 2022, Theorem 4.3], we have

�.Z; F /D

lX
iD0

�i
�orb.Zi /

mi
: (2.2.9)

The right-hand side of (2.2.9) contains the nontrivial contributions from †Z.
Let P denote the orthogonal projection from ��.Z; F / to H�.Z; F /. Let H? denote the orthogonal

subspace of H�.Z; F / in ��.Z; F /, and let .DZ;F;2/�1 be the inverse of DZ;F;2 acting on H?. Let
Nƒ�.T �Z/ be the number operator on ƒ�.T �Z/ which acts on ƒj .T �Z/ by multiplication of j .

For s 2 C, <.s/ is large enough; set

#.F /.s/D�TrsŒNƒ�.T �Z/.DZ;F;2/�s�

D�
1

�.s/

Z C1
0

TrsŒNƒ�.T �Z/ exp.�tDZ;F;2/.1�P /�ts�1 dt; (2.2.10)

where �.s/ is the gamma function for s 2 C. By the short time asymptotic expansions of the heat trace
(see [Ma 2005, Proposition 2.1]), #.F /.s/ admits a unique meromorphic extension to s 2 C which is
holomorphic at s D 0.

Definition 2.2.3. Let T .gTZ ;rF ; hF / 2 R be given by

T .gTZ ;rF ; hF /D d

ds

ˇ̌̌
sD0

#.F /.s/: (2.2.11)

The quantity T .gTZ ;rF ; hF / is called Ray–Singer analytic torsion associated with .F;rF ; hF /.

By [Shen and Yu 2022, Proposition 4.6, Corollary 4.9], for an orientable closed orbifold Z, ifm is even
and F is unitarily flat, then T .gTZ ;rF ; hF /D 0; if m is odd and F is acyclic, then T .gTZ ;rF ; hF / is
independent of the metrics gTZ and hF .

Now we explain how to evaluate T .gTZ ;rF ; hF / in practice when F is acyclic. Using the analogous
arguments in [Bismut and Zhang 1992, Theorem 7.10, Section XI], as t ! 0C, the heat supertrace
TrsŒ.Nƒ�.T �Z/�m=2/ exp.�tDZ;F;2=2/� either has a leading term as a multiple of 1=

p
t or is a small

quantity as O.
p
t /; see [Shen and Yu 2022, equation (4.37)]. To deal with this possible divergent term

1=
p
t in the integral of (2.2.10), we proceed as in the proof of [Bismut and Lott 1995, Theorem 3.29].

For t > 0, put

bt .g
TZ ; F /D

�
1C 2t

@

@t

�
Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;F;2

2

�i
: (2.2.12)

By [Bismut and Zhang 1992, Theorem 7.10; Bismut and Lott 1995, Theorem 2.13; Shen and Yu 2022,
Section 4.3] and since F is acyclic, as t ! 0,

bt .g
TZ ; F /DO.

p
t /I (2.2.13)

as t !C1,

bt .g
TZ ; F /DO

�
1
p
t

�
: (2.2.14)
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By [Bismut and Lott 1995, Theorem 3.29; Shen and Yu 2022, Corollary 4.14], we have

T .gTZ ;rF ; hF /D�
Z C1
0

bt .g
TZ ; F /

dt

t
: (2.2.15)

One particular case is that if, for t > 0, we always have

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;F;2

2

�i
D 0; (2.2.16)

then T .gTZ ;rF ; hF /D 0. This holds even for nonacyclic F.

3. Orbital integrals and locally symmetric spaces

In this section, we recall the geometry of the symmetric space X, and we recall an explicit geometric
formula for semisimple orbital integrals obtained in [Bismut 2011, Chapter 6] . Then, given a cocompact
discrete subgroup � �G, we describe the orbifold structure on Z D �nX, and we give Selberg’s trace
formula for Z.

In this section, G is taken to be a connected linear real reductive Lie group; we do not require that
it has a compact center. Then X is a symmetric space which may have de Rham components of both
noncompact type and Euclidean type.

3.1. Real reductive Lie group. Let G be a connected linear real reductive Lie group with Lie algebra g,
and let � 2 Aut.G/ be a Cartan involution. Let K be the fixed-point set of � in G. Then K is a maximal
compact subgroup of G, and let k be its Lie algebra. Let p� g be the eigenspace of � associated with the
eigenvalue �1. The Cartan decomposition of g is given by

gD p˚ k: (3.1.1)
Put mD dim p, nD dim k.

Let B be a G- and � -invariant nondegenerate symmetric bilinear form on g, which is positive on p and
negative on k. It induces a symmetric bilinear form B� on g�, which extends to a symmetric bilinear form
on ƒ�.g�/. The K-invariant bilinear form h � ; � i D �B. � ; � � / is a scalar product on g, which extends to
a scalar product on ƒ�.g�/. We will use j � j to denote the norm under this scalar product.

LetU g be the universal enveloping algebra of g. LetC g2U g be the Casimir element associated withB;
i.e., if feigiD1;:::;mCn is a basis of g, and if fe�i giD1;:::;mCn is the dual basis of g with respect to B , then

C g
D�

X
e�i ei : (3.1.2)

We can identify U g with the algebra of left-invariant differential operators over G; then C g is a second-
order differential operator, which is Ad.G/-invariant. Similarly, let C k 2 U k denote the Casimir operator
associated with .k; Bjk/.

Let zg � g be the center of g. Put
gss D Œg; g�: (3.1.3)

Then
gD zg˚ gss: (3.1.4)

They are orthogonal with respect to B .
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Let ZG be the center of G, and let Gss be the closed analytic subgroup of G associated with gss; see
[Knapp 2002, Corollary 7.11]. Then G is the commutative product of ZG and Gss; in particular,

G DZ0GGss: (3.1.5)

Let i D
p
�1 denote one square root of �1. Put

uD
p
�1p˚ k: (3.1.6)

For simplicity, if a 2 p, we write ia or
p
�1a 2

p
�1p� u to denote the corresponding vector.

Then u is a (real) Lie algebra, which is called the compact form of g. Then

gC D uC: (3.1.7)

Let GC be the complexification of G with Lie algebra gC, which is closed and linear reductive [Knapp
1986, Proposition 5.6]. Then G is the analytic subgroup of GC with Lie algebra g. Let U �GC be the
analytic subgroup associated with u. If G has compact center, i.e., zg\ pD f0g, then by [Knapp 1986,
Proposition 5.3], U is compact; since GC is closed, U is a maximal compact subgroup of GC.

Definition 3.1.1. An element 
 2G is said to be semisimple if there exists g 2G such that


 D g.eak/g�1; a 2 p; k 2K; Ad.k/aD a: (3.1.8)

We call 
hD geag�1 and 
eD gkg�1 the hyperbolic and elliptic parts of 
 . These two parts are uniquely
determined by 
 . If 
h D 1, we say 
 is elliptic, and if 
e D 1 and 
h ¤ 1, we say 
 is hyperbolic.

Let Z.
/ be the centralizer of 
 in G. If v 2 g, let Z.v/�G be the stabilizer of v in G via the adjoint
action. Let z.
/, z.v/ be the Lie algebras of Z.
/, Z.v/ respectively. If 
 D 
h
e is semisimple as above,
by [Eberlein 1996, Theorem 2.19.23; Knapp 2002, Lemma 7.36],

Z.
/DZ.
h/\Z.
e/; Z.
h/DZ.Ad.g/a/: (3.1.9)

By [Knapp 2002, Proposition 7.25], Z.
/ is reductive (possibly with several connected components).
Set

�g D C.g/�C.g
�1/: (3.1.10)

Then �g defines a Cartan involution on Z.
/. Let K.
/ be the fixed-point set of �g in Z.
/; then

K.
/DZ.
/\gKg�1: (3.1.11)

Let Z.
/0, K.
/0 be the connected components of the identities of Z.
/, K.
/ respectively. By
[Bismut 2011, Theorem 3.3.1],

Z.
/

K.
/
D
Z.
/0

K.
/0
: (3.1.12)

Moreover, K.
/, K.
/0 are maximal compact subgroups of Z.
/, Z.
/0 respectively.
Taking the corresponding Lie algebras in (3.1.9), we have

z.
/D z.
h/\ z.
e/; z.
h/D z.Ad.g/a/: (3.1.13)
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Let k.
/� z.
/ be the Lie algebra of K.
/. Put

p.
/D z.
/\Ad.g/p: (3.1.14)

Then the Cartan decomposition of z.
/ with respect to �g is given by

z.
/D k.
/˚ p.
/: (3.1.15)

Let Bz.
/ denote the restriction of B on z.
/� z.
/. Then Bz.
/ is invariant under the adjoint action of �g
on z.
/. Moreover, Bz.
/ is positive on p.
/ and negative on k.
/. The splitting in (3.1.15) is orthogonal
with respect to Bz.
/.

3.2. Symmetric space. Set
X DG=K: (3.2.1)

Then X is a smooth manifold with the smooth structure induced by G. By definition, X is diffeomorphic
to p.

Let !g 2�1.G; g/ be the canonical left-invariant 1-form on G. Then by (3.1.1),

!g
D !p

C!k: (3.2.2)

Let p WG!X denote the obvious projection. Then p is a K-principal bundle over X. Then !k is a
connection form of this principal bundle. The associated curvature form

�k
D d!k

C
1
2
Œ!k; !k�D�1

2
Œ!p; !p�: (3.2.3)

If .E; �E ; hE / is a finite-dimensional unitary or Euclidean representation of K, then F D G �K E
defines a vector bundle over X equipped with a metric hF induced by hE and a unitary or a Euclidean
connection rF induced by !k. Note that G acts on .F; hF ;rF /! X equivariantly on the left; more
precisely, for 
 2G, .g; v/ 2G �K E, the action of 
 on F is represented by


.g; v/D .
g; v/ 2G �K E: (3.2.4)

In particular, we have the identification
TX DG �K p; (3.2.5)

where the right-hand side is defined by the adjoint action of K on p. The bilinear form B restricting to p

gives a Riemannian metric gTX, and !k induces the associated Levi-Civita connection rTX. Then G
acts on .X; gTX / isometrically. Let d. � ; � / denote the Riemannian distance on X.

Let C.G;E/ denote the set of continuous map from G into E. If k 2K, s 2 C.G;E/, put

.k:s/.g/D �E .k/s.gk/: (3.2.6)

Let CK.G;E/ be the set of K-invariant maps in C.G;E/. Let C.X;F / denote the continuous sections
of F over X. Then

CK.G;E/D C.X;F /: (3.2.7)

Also C1K .G;E/D C1.X; F /.
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The Casimir operator C g acting on C1.G;E/ preserves C1K .G;E/, so it induces an operator C g;X

acting on C1.X; F /. Let �H;X be the Bochner Laplacian acting on C1.X; F / given by rF , and let
C k;E 2 End.E/ be the action of the Casimir C k on E via �E. The element C k;E induces a self-adjoint
section of End.F / over X. Then

C g;X
D��H;X CC k;E : (3.2.8)

Let C k;p 2 End.p/, C k;k 2 End.k/ be the actions of C k acting on p, k via the adjoint actions. Moreover,
we can also view C k;p as a parallel section of End.TX/.

If A 2 End.E/ commutes with K, then it can be viewed a parallel section of End.F / over X. Let dx
be the Riemannian volume element of .X; gTX /.

Definition 3.2.1. Let LXA be the Bochner-like Laplacian acting on C1.X; F / given by

LXA D
1
2
C g;X

C
1
16

TrpŒC k;p�C 1
48

TrkŒC k;k�CA: (3.2.9)

For t > 0, x; x0 2X, let pXt .x; x
0/ denote its heat kernel with respect to dx0.

Since LXA is G-invariant, pXt .x; x
0/ lifts to a function pXt .g; g

0/ on G�G valued in End.E/ such that,
for g00 2G, k; k0 2K,

pXt .g
00g; g00g0/D pXt .g; g

0/; pXt .gk; g
0k0/D �E .k�1/pXt .g; g

0/�E .k0/: (3.2.10)

We set

pXt .g/D p
X
t .1; g/: (3.2.11)

Then pXt is a K �K-invariant smooth function on G valued in End.E/. We will not distinguish the heat
kernel pXt .x; x

0/ and the function pXt .g/ in the sequel.

3.3. Bismut’s formula for semisimple orbital integrals. Let dg be the left-invariant Haar measure on G
induced by .g; h � ; � i/. Since G is unimodular, dg is also right-invariant. Let dk be the Haar measure
on K induced by �Bjk; then

dg D dx dk: (3.3.1)

Now let 
 2G be a semisimple element given as in (3.1.8).
By [Eberlein 1996, Definition 2.19.21; Bismut 2011, Theorem 3.1.2], 
 2 G is semisimple if and

only if the displacement function X 3 x 7! d.x; 
x/ on X associated with 
 can reach its minimum
m
 � 0 in X. In this case, the minimizing set X.
/ of this displacement function is a geodesically convex
submanifold of X, and by [Bismut 2011, Theorem 3.3.1],

X.
/'
Z.
/0

K.
/0
D
Z.
/

K.
/
: (3.3.2)

Moreover, we have

m
 D jaj: (3.3.3)
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Let dy be the Riemannian volume element of X.
/, and let dz be the bi-invariant Haar measure on
Z.
/ induced by Bz.
/. Let dk.
/ be the Haar measure on K.
/ such that

dz D dy dk.
/: (3.3.4)

Let Vol.K.
/nK/ be the volume of K.
/nK with respect to dk; dk.
/. Then we have

Vol.K.
/nK/D
Vol.K/

Vol.K.
//
: (3.3.5)

Let dv be the G-left invariant measure on Z.
/nG such that

dg D dz dv: (3.3.6)

By [Bismut 2011, Definition 4.2.2, Proposition 4.4.2], for t > 0, the orbital integral

TrŒ
�Œexp.�tLXA /�D
1

Vol.K.
/nK/

Z
Z.
/nG

TrE ŒpXt .v
�1
v/� dv (3.3.7)

is well-defined. As indicated by the notation, it only depends on the conjugacy class Œ
� of 
 in G.
Using the theory of hypoelliptic Laplacian and the techniques from local index theory, Bismut obtained

an explicit geometric formula for TrŒ
�Œexp.�tLXA /� in [Bismut 2011, Theorem 6.1.1] as well as its
extension to the wave operators of LXA [Bismut 2011, Section 6.3]. Now we describe in detail this formula.
We may and we will assume that


 D eak; a 2 p; k 2K; Ad.k/aD a: (3.3.8)

Put
z0 D z.a/; p0 D ker ad.a/\ p; k0 D ker ad.a/\ k: (3.3.9)

Let z?0 , p?0 , k?0 be the orthogonal vector spaces to z0, p0, k0 in g; p; k with respect to B . Then

z0 D p0˚ k0; z?0 D p?0 ˚ k?0 : (3.3.10)

By [Bismut 2011, equation (3.3.6)],
z.
/D z0\ z.k/: (3.3.11)

Also p.
/, k.
/ are subspaces of p0, k0 respectively. Let z?0 .
/, p
?
0 .
/, k

?
0 .
/ be the orthogonal spaces

to z.
/, p.
/, k.
/ in z0, p0, k0. Then

z?0 .
/D p?0 .
/˚ k?0 .
/: (3.3.12)

Also the action ad.a/ gives an isomorphism between p?0 and k?0 .
For Y k

0 2 k.
/, ad.Y k
0/ preserves p.
/; k.
/; p?0 .
/; k

?
0 .
/, and it is an antisymmetric endomorphism

with respect to the scalar product.
Recall that the function yA is given by

yA.x/D
x=2

sinh.x=2/
: (3.3.13)
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Let H be a finite-dimensional Hermitian vector space. If B 2 End.H/ is self-adjoint, then

B=2

sinh.B=2/

is a self-adjoint positive endomorphism. Put

yA.B/D det
1
2

�
B=2

sinh.B=2/

�
: (3.3.14)

In (3.3.14), the square root is taken to be the positive square root.
If Y k

0 2 k.
/, as explained in [Bismut 2011, p. 105], the following function A.Y k
0/ has a natural square

root that is analytic in Y k
0 2 k.
/:

A.Y k
0/D

1

det.1�Ad.k//jz?0 .
/
�

det.1� exp.�i ad.Y k
0//Ad.k//jk?0 .
/

det.1� exp.�i ad.Y k
0//Ad.k//jp?0 .
/

: (3.3.15)

Its square root is denoted by�
1

det.1�Ad.k//jz?0 .
/
�

det.1� exp.�i ad.Y k
0//Ad.k//jk?0 .
/

det.1� exp.�i ad.Y k
0//Ad.k//jp?0 .
/

� 1
2

: (3.3.16)

The value of (3.3.16) at Y k
0 D 0 is taken to be such that

1

det.1�Ad.k//jp?0 .
/
: (3.3.17)

We recall an important function J
 defined in [Bismut 2011, equation (5.5.5)].

Definition 3.3.1. Let J
 .Y k
0/ be the analytic function of Y k

0 2 k.
/ given by

J
 .Y
k
0/D

1

jdet.1�Ad.
//jz?0 j
1
2

yA.i ad.Y k
0/jp.
//

yA.i ad.Y k
0/jk.
//

�

�
1

det.1�Ad.k//jz?0 .
/

det.1� exp.�i ad.Y k
0//Ad.k//jk?0 .
/

det.1� exp.�i ad.Y k
0//Ad.k//jp?0 .
/

� 1
2

: (3.3.18)

By [Bismut 2011, equation (6.1.1)], there exist C
 > 0, c
 > 0 such that, if Y k
0 2 k.
/,

jJ
 .Y
k
0/j � C
e

c
 jY
k
0 j: (3.3.19)

Put p D dim p.
/, q D dim k.
/. Then r D dim z.
/D pC q. By [Bismut 2011, Theorem 6.1.1], for
t > 0, we have

TrŒ
�Œexp.�tLXA /�D
e�
jaj2

2t

.2�t/
p
2

Z
k.
/

J
 .Y
k
0/TrE Œ�E .k/ exp.�i�E .Y k

0/� tA/�e
�
jY k
0
j2

2t
dY k

0

.2�t/
q
2

: (3.3.20)

Remark 3.3.2. A generalization of Bismut’s formula (3.3.20) to the twisted case is obtained in [Liu 2018;
2019]. An extension of this formula for considering arbitrary elements in the center of an enveloping
algebra instead of the Casimir operator (3.2.8) was obtained in [Bismut and Shen 2022].
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3.4. Compact locally symmetric spaces. Let � be a cocompact discrete subgroup ofG. Then � acts onX
isometrically and properly discontinuously. Then ZD�nX is compact second countable Hausdorff space.

If x 2X, put
�x D f
 2 � j 
x D xg: (3.4.1)

Then �x is a finite subgroup of �. Put

rx D inf

2���x

d.x; 
x/: (3.4.2)

Then we always have rx > 0. Set

Ux D B

�
x;
rx

4

�
�X: (3.4.3)

If x 2X, 
 2 �, we have
r
x D rx; U
x D 
Ux : (3.4.4)

It is clear that �xnUx can identified with a connected open subset of Z.
Set

S D ker.�! Diffeo.X//D � \ ker.K Ad
�! Aut.p//: (3.4.5)

Then S is a finite subgroup of � \K and a normal subgroup of �.

Remark 3.4.1. Note that Gss is a connected noncompact simple linear Lie group. Then

S DZG \� \K: (3.4.6)

Put
� 0 D �=S: (3.4.7)

Then � 0 acts on X effectively and we have Z D � 0nX.
If x 2X, we have

S � �x; � 0x D �x=S: (3.4.8)

Then the orbifold charts .Ux; � 0x; �x W Ux! � 0xnUx/x2X together with the action of � 0 on these charts
give an (effective) orbifold structure for Z, so that Z D �nX is a compact orbifold with a Riemannian
metric gTZ induced by gTX.

By [Selberg 1960, Lemma 1], if 
 2 �, then 
 is semisimple. Let Œ�� denote the set of the conjugacy
classes of �. If 
 2 �, we say Œ
� 2 Œ�� is an elliptic class if 
 is elliptic. Let EŒ�� � Œ�� be the set of
elliptic classes. Then EŒ�� is always a finite set. If EŒ�� only contains the trivial conjugacy class Œ1�; i.e.,
� is torsion free, then Z is compact smooth manifold.

Let Œ� 0� be the set of conjugacy classes in � 0, and let EŒ� 0� denote the set of elliptic classes in Œ� 0�. If

 0 2 � 0, let Z� 0.
 0/ denote the centralizer of 
 0 in � 0, and let Œ
 0�0 denote the conjugacy class of 
 0 in � 0.
If 
 0 2� 0 is elliptic, let X.
 0/ be its fixed-point set in X on which Z� 0.
 0/ acts isometrically and properly
discontinuously; see [Selberg 1960, Lemma 2]. Note that if 
 2 � is a lift of 
 0 2 � 0, then X.
/DX.
 0/,
and 
 is elliptic if and only if 
 0 is elliptic.
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Proposition 3.4.2. We have

Zsing D �
0
n� 0

� [
Œ
 0�02EŒ� 0�nf1g

X.
 0/

�
�Z: (3.4.9)

Moreover, we have
†Z D

[
Œ
 0�02EŒ� 0�nf1g

Z� 0.

0/nX.
 0/: (3.4.10)

Note that the right-hand side of (3.4.10) is a disjoint union of compact orbifolds.
If 
 0 2 � 0, put

S 0.
 0/D ker.Z� 0.
 0/! Diffeo.X.
 0///: (3.4.11)

Then jS 0.
 0/j is the multiplicity of the connected component Z� 0.
 0/nX.
 0/ in †Z.

Proof. Note that z 2 Z with a lift x 2 X belongs to Zsing if and only if the stabilizer � 0x is nontrivial.
Thus x is a fixed point of some 
 0 2 � 0, from which (3.4.9) follows. By definition in Section 2.1, we get
the rest of this proposition. �

Note that �nG is a compact smooth homogeneous space equipped with a right action of K. Moreover,
the action of K is almost free; i.e., for each Ng 2 �nG, the stabilizer K Ng is finite. Then the quotient space
.�nG/=K also has a natural orbifold structure, which, after examining the local charts, is equivalent to Z.

Let d Ng be the volume element on �nG induced by dg. By (3.3.1), we get

Vol.�nG/D
Vol.K/
jS j

Vol.Z/: (3.4.12)

In the context of geometry, we have many interesting cases where S D f1g. For instance, given
a Riemannian symmetric space .X; gTX / of noncompact type, let G D Isom.X/0 be the connected
component of identity of the Lie group of isometries of X. By [Eberlein 1996, Proposition 2.1.1], G is a
semisimple Lie group with trivial center (which might not be linear, but we do not need that linearity for
the geometry ofZ). We refer to [Eberlein 1996, Chapter 2; Bismut 2011, Chapter 3] for more details. This
way, any subgroup of G acts on X effectively. In particular, if � is a cocompact discrete subgroup of G,
then Z D �nX is a compact good orbifold with the orbifold fundamental group �. By (3.4.10), we have

†Z D
[

Œ
�2EŒ��nf1g

� \Z.
/nX.
/: (3.4.13)

In general, by [Helgason 1978, Chapter V, §4, Theorem 4.1], G D Isom.X DG=K/0 if and only if K
acts on p effectively.

Remark 3.4.3. Note that, as mentioned in Remark 2.1.3, when S ¤ f1g, we can also consider Z D �nX
as an ineffective orbifold by taking the action of � instead of � 0 on the local charts. This way, the role of
the above Z[†Z is replaced by the inertia groupoid defined in [Adem et al. 2007, Example 2.5], which
is exactly [

Œ
�2EŒ��

� \Z.
/nX.
/: (3.4.14)
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It is a very natural object to use in the context here, for instance, for the Selberg’s trace formula in the
next subsection. In the problems we are concerned with, these two point-views on Z are equivalent.

If � W � 0! GL.Ck/ is a representation of � 0, which can be viewed as a representation of � via the
projection �! � 0 D �=S , then F D � 0n.X �Ck/ is a proper flat orbifold vector bundle on Z with the
flat connection rF;f induced from the exterior differential dX on Ck-valued functions. By [Shen and
Yu 2022, Theorem 2.35], all the proper orbifold vector bundles on Z of rank k come from this.

Now let � W�!GL.Ck/ be a representation of �; we do not assume that it comes from a representation
of � 0. We still have a flat orbifold vector bundle .F D �n.X �Ck/;rF;f / on Z, which may not be
proper in general. Note that � acts on C1.X;Ck/ so that if ' 2 C1.X;Ck/, 
 2 �, then

.
'/.x/D �.
/'.
�1x/: (3.4.15)

Let C1.X;Ck/� denote the �-invariant sections in C1.X;Ck/. Then

C1.Z; F /D C1.X;Ck/� : (3.4.16)

Definition 3.4.4. Let .V; �V / be the isotypic component of .Ck; �jS / corresponding to the trivial repre-
sentation of S on C, i.e., the maximal S -invariant subspace of Ck via �. Set

F pr
D �n.X �V /: (3.4.17)

It is clear that F pr is a proper flat orbifold vector bundle on Z.

Proposition 3.4.5. We have

C1.Z; F /D C1.Z; F pr/: (3.4.18)

In particular, if �jS W S ! GL.Ck/ does not have the isotypic component of the trivial representation
of S on C, then

C1.Z; F /D f0g: (3.4.19)

Let .E; �E / be a finite-dimensional complex representation of G. When restricting to �, K, we get
the corresponding representations of �, K respectively, which are still denoted by �E. As discussed
in Section 3.2, associated with the K-representation .E; �E / we define a homogeneous vector bundle
F DG �K E on X. Moreover, G acts on F equivariantly. By taking a �-quotient on the left, it descends
to an orbifold vector bundle on Z, which we still denote by the same notation.

The map .g; v/ 2G�KE! .pg; �E .g/v/ 2X �E gives a canonical trivialization of F over X. This
trivialization provides a flat connection rX;F;f for F !X, which is G-invariant. Then it descends to a
flat connection rZ;F;f on the orbifold vector bundle F over Z. Moreover, the above trivialization of
F !X implies that the flat orbifold vector bundle .F;rZ;F;f / is exactly the one given by �n.X �E/
with the flat connection rF;f induced by dX. We will always use the notation rF;f for the above flat
connection. By (3.2.7), (3.4.16), we get

C1.Z; F /D C1K .G;E/� : (3.4.20)



1284 BINGXIAO LIU

3.5. Selberg’s trace formula. Let Z be the compact locally symmetric space discussed in Section 3.4,
and let .F; hF ;rF / be a Hermitian vector bundle on X defined by a unitary representation .E; �E /
of K. As said before, .F; hF ;rF / descends to a Hermitian orbifold vector bundle on Z. Recall the
Bochner-like Laplacian LXA is defined by (3.2.9). Since it commutes with G, it descends to a Bochner-like
Laplacian LZA acting on C1.Z; F /.

Here the convergences of the integrals and infinite sums are already guaranteed by the results in [Bismut
2011, Chapters 2, 4; Shen 2018, Section 4D].

For t > 0, let pZt .z; z
0/, z; z0 2 Z, be the heat kernel of LZA over Z with respect to dz0. If z; z0 are

identified with their lifts in X, then

pZt .z; z
0/D

1

jS j

X

2�


pXt .

�1z; z0/D

1

jS j

X

2�

pXt .z; 
z
0/
: (3.5.1)

Note that the action of 
 on F
�1z or on the metric dual of Fz0 is given as in (3.2.4).
Since Z is compact, for t > 0, exp.�tLZA / is trace class. We have

TrŒexp.�tLZA /�D
Z
Z

TrF ŒpZt .z; z/� dz: (3.5.2)

Combining (3.2.10), (3.2.11), (3.4.12) and (3.5.1), (3.5.2), and proceeding as in [Bismut 2011, equa-
tions (4.8.8)–(4.8.12)], we get

TrŒexp.�tLZA /�D
1

Vol.K/

Z
�nG

X

2�

TrE ŒpXt . Ng
�1
 Ng/� d Ng

D

X
Œ
�2Œ��

Vol.� \Z.
/nZ.
//
Vol.K.
//

TrŒ
�Œexp.�tLXA /�: (3.5.3)

Take 
 2 �. Recall that X.
/DZ.
/=K.
/ defined in Section 3.3. Then K.
/ acts on Z.
/ on the
right, which induces an action on � \Z.
/nZ.
/ on the right. Set

S.
/D ker.� \Z.
/! Diffeo.X.
///: (3.5.4)

Then S.
/ represents the isotropy group of the principal orbit type for the right action of K.
/ on
� \Z.
/nZ.
/. As in (3.4.12), we have

Vol.� \Z.
/nZ.
//D
Vol.K.
//
jS.
/j

Vol.� \Z.
/nX.
//: (3.5.5)

Theorem 3.5.1. For t > 0, we have the identity

TrŒexp.�tLZA /�D
X
Œ
�2Œ��

Vol.� \Z.
/nX.
//
jS.
/j

TrŒ
�Œexp.�tLXA /�: (3.5.6)

Proof. This is a direct consequence of (3.5.3) and (3.5.5). �

In the case where S D 1, the trace formula (3.5.6) shows clearly the different contributions from Z

and from each components of †Z. Then combining (3.4.10), (3.5.6) with the results in [Bismut 2011,
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Theorem 7.8.2; Liu 2018, Theorem 7.7.1], we can recover (2.2.9) for Z. If we use the same settings as in
[Bismut 2011, Sections 7.1, 7.2] and we use instead the results in Theorem 7.7.1 of that work, then we
can recover the Kawasaki’s local index theorem [1979] for Z. By taking account of Remarks 2.1.3 and
3.4.3, the above considerations also hold even for S ¤ f1g.

4. Analytic torsions for compact locally symmetric spaces

In this section, we explain how to make use of Bismut’s formula (3.3.20) and Selberg’s trace formula
(3.5.6) to study the analytic torsions of Z. We continue using the same settings as in Section 3. We will
see that by a vanishing result on the analytic torsion, only the case ı.G/D 1 remains interesting. For
studying this case, more tools will be introduced in Sections 5 and 6.

4.1. A vanishing result on the analytic torsions. Recall that G is a connected linear real reductive Lie
group. Recall that zg is the center of g. Set

zp D zg\ p; zk D zg\ k: (4.1.1)

Then

zg D zp˚ zk; ZG D exp.zp/.ZG \K/: (4.1.2)

Let T be a maximal torus of K with Lie algebra t; put

bD ff 2 p j Œf; t�D 0g: (4.1.3)

It is clear that

zp � b: (4.1.4)

Put hD b˚ t. Then h is a Cartan subalgebra of g. Let H be analytic subgroup of G associated with h.
Then it is also a Cartan subgroup of G; see [Knapp 1986, p. 129 and Theorem 5.22(b)]. Moreover, dim t

is just the complex rank of K, and dim h is the complex rank of G.

Definition 4.1.1. Using the above notation, the deficiency ofG, or the fundamental rank ofG is defined as

ı.G/D rkCG � rkCK D dimR b: (4.1.5)

The number m� ı.G/ is even.

The following result was proved in [Shen 2018, Proposition 3.3].

Proposition 4.1.2. If 
 2G is semisimple, then

ı.G/� ı.Z.
/0/: (4.1.6)

The two sides of (4.1.6) are equal if and only if 
 can be conjugated into H.

Recall that uD
p
�1p˚ k is the compact form of G, and that U �GC is the analytic subgroup with

Lie algebra u. Let U u, U gC be the enveloping algebras of u, gC respectively. Then U gC can be identified



1286 BINGXIAO LIU

with the left-invariant holomorphic differential operators on GC. Let C u 2 U u be the Casimir operator of
u associated with B . Then

C u
D C g

2 U g\U u� U gC: (4.1.7)

In the sequel, we always assume that U is compact; this is the case when G has compact center.

Proposition 4.1.3 (unitary trick). Assume that U is compact. Then any irreducible finite-dimensional
(analytic) complex representation of U extends uniquely to an irreducible finite-dimensional complex
representation of G such that their induced representations of Lie algebras are compatible.

We now fix a unitary representation .E; �E ; hE / of U, and we extend it to a representation of G,
whose restriction to K is still unitary. Put F DG �K E, with the Hermitian metric hF induced by hE.
Let rF be the Hermitian connection induced by the connection form !k.

Furthermore, as explained in the last part of Section 3.4, F is equipped with a canonical flat connec-
tion rF;f as follows:

r
F;f
Dr

F
C �E .!p/: (4.1.8)

If G has compact center, then .F; hF ;rF;f / is a unimodular flat vector bundle.
Let .��c.X; F /; d

X;F / be the (compactly supported) de Rham complex twisted by F. Let dX;F;�

be the adjoint operator of dX;F with respect to the L2 metric on ��c.X; F /. The de Rham–Hodge
operator DX;F of this de Rham complex is given by

DX;F
D dX;F C dX;F;�: (4.1.9)

The Clifford algebras c.TX/, Oc.TX/ act onƒ�.T �X/. We still use e1, : : : , em to denote an orthonormal
basis of p or TX, and let e1, : : : , em be the corresponding dual basis of p� or T �X.

Let rƒ
�.T �X/˝F;u be the unitary connection on ƒ�.T �X/˝F induced by rTX and rF . Then the

standard Dirac operator is given by

DX;F D

mX
jD1

c.ej /r
ƒ�.T �X/˝F;u
ej

: (4.1.10)

By [Bismut et al. 2017, equation (8.42)], we have

DX;F
DDX;F C

mX
jD1

Oc.ej /�
E .ej /: (4.1.11)

At the same time, as explained in Section 3.2, C g descends to an elliptic differential operator C g;X

acting on C1.X;ƒ�.T �X/˝F /. As in (3.2.9), we put

LX;F D 1
2
C g;X

C
1
16

TrpŒC k;p�C 1
48

TrkŒC k;k�: (4.1.12)

For simplicity, we will always put

ˇg D
1
16

TrpŒC k;p�C 1
48

TrkŒC k;k� 2 R: (4.1.13)
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By [Bismut et al. 2017, Proposition 8.4], we have

1
2
DX;F;2

D LX;F � 1
2
C g;E

�ˇg DW LX;FA ; (4.1.14)
where AD�1

2
C g;E �ˇg.

Let 
 2G be a semisimple element. In the sequel, we may assume that


 D eak; a 2 p; k 2K; Ad.k/aD a: (4.1.15)

We also use the same notation as in Section 3.3.
Recall that p D dim p.
/, q D dim k.
/. By (3.3.20) and (4.1.14), we have

TrŒ
�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D

e�
jaj2

2t

.2�t/
p
2

exp.tˇ/
Z
k.
/

J
 .Y
k
0/Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.Y k

0//
i

�TrE
h
�E .k/ exp

�
�i�E .Y k

0/C
t

2
C u;E

�i
e�
jY k
0
j2

2t
dY k

0

.2�t/
q
2

: (4.1.16)

Now we take a cocompact discrete subgroup � �G. Then Z D �nX is a compact locally symmetric
orbifold. We use the same notation as in Sections 3.4 and 3.5. Then we get a flat orbifold vector bundle
.F;rF;f ; hF / onZ. Furthermore,DX;F descends to the corresponding de Rham–Hodge operatorDZ;F

acting on ��.Z; F /. Let T .Z; F / denote the associated analytic torsion as in Definition 2.2.3, i.e.,

T .Z; F /D T .gTZ ;rF;f ; hF /: (4.1.17)

As explained in Section 2.2, for computing T .Z; F /, it is enough to evaluate

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;F;2

2

�i
; t > 0: (4.1.18)

Then we apply Selberg’s trace formula in Theorem 3.5.1. We get

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;F;2

2

�i
D

X
Œ
�2Œ��

Vol.� \Z.
/nX.
//
jS.
/j

TrŒ
�
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
: (4.1.19)

As in [Bismut et al. 2017, Remark 8.7], by [Ma 2019, Theorems 5.4, 5.5, Remark 5.6], we have the
following vanishing theorem on T .Z; F /.

Theorem 4.1.4. If m is even, or if m is odd and ı.G/� 3, then

T .Z; F /D 0: (4.1.20)

Proof. By [Bismut 2011, Theorem 7.9.1; Ma 2019, Theorem 5.4], and using instead (4.1.19), we get that
under the assumptions in this theorem, for t > 0,

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp.�tDZ;F;2/

i
D 0: (4.1.21)

Then (4.1.20) follows from the definition of T .Z; F /. �
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Therefore, the only nontrivial case is that ı.G/D 1, so that m is odd. If 
 2G is of the form (4.1.15),
let t.
/� k.
/ be a Cartan subalgebra. Put

b.
/D fv 2 p.k/ j Œv; t.
/�D 0g; h.
/p D b.
/\ p.
/: (4.1.22)

In particular, a 2 b.
/. Then h.
/D h.
/p˚ t.
/ is a Cartan subalgebra of z.
/.
Recall that H is a maximally compact Cartan subgroup of G. The following result is just an analogue

of [Shen 2018, Theorem 4.12; Bismut 2011, Theorem 7.9.1].

Proposition 4.1.5. If ı.G/D 1, if 
 is semisimple and cannot be conjugated into H by an element in G,
then

TrŒ
�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D 0: (4.1.23)

Proof. Let t be a Cartan subalgebra of k containing t.
/. Then b � b.
/. If a … b, then dim b.
/ � 2.
Therefore, by [Shen 2018, equation (4-44)], for Y k

0 2 k.
/, we have

Trƒ
�.p�/

s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.Y k

0//
i
D 0: (4.1.24)

This implies (4.1.23). �

Set
g0 D zk˚ gss: (4.1.25)

Then g0 is an ideal of g. Let G0 be the analytic subgroup of G associated with g0, which is closed and has
a compact center; see [Knapp 2002, Proposition 7.27]. The group K is still a maximal subgroup of G0.
Let U 0 � U be the compact form of G0 with Lie algebra u0. Then

uD
p
�1zp˚ u0: (4.1.26)

Now we assume that ı.G/ D 1 and that G has noncompact center, so that b D zp has dimension 1.
Then ı.G0/D 0. Under the hypothesis that U is compact, up to a finite cover, we may write

U ' S1 �U 0: (4.1.27)

We take a1 2 b with ja1j D 1. If .E; �E / is an irreducible unitary representation of U, then �E .a1/
acts on E by a real scalar operator. Let ˛E 2 R be such that

�E .a1/D ˛E IdE : (4.1.28)

PutX 0DG0=K. ThenX 0 is an even-dimensional symmetric space (of noncompact type). We identify zp
with a real line R. Then

G D R�G0; X D R�X 0: (4.1.29)

In this case, the evaluation for analytic torsions can be made more explicit. If 
 2G0, let X 0.
/ denote
the minimizing set of d
 . � / in X 0, so that

X.
/D R�X 0.
/: (4.1.30)
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Let Œ � �max denote the coefficient of a differential form (valued in o.TX 0/) on X 0 of the corresponding
Riemannian volume form. Similarly, for k 2 T, let Œ � �max.k/ denote the analogous object on X 0.k/. The
following results are the analogues of [Shen 2018, Proposition 4.14].

Proposition 4.1.6. Assume that G has noncompact center with ı.G/D 1 and that .E; �E / is irreducible.
Then

TrŒ1�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D�

e�
1
2
t˛2E

p
2�t

Œe.TX 0;rTX
0

/�max dimE: (4.1.31)

If 
 D eak is such that a 2 b, k 2 T, then

TrŒ
�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D�

1
p
2�t

e�
jaj2

2t
� 1
2
t˛2E Œe.TX 0.k/;rTX

0.k//�max.k/ TrE Œ�E .k/�: (4.1.32)

Proof. Let C u0 denote the Casimir operator of u0 associated with Bju0 . Then we have

C u
D�a21CC

u0 : (4.1.33)

Since .E; �E / is an irreducible representation, by (4.1.28) and (4.1.33), we get

C u;E
D�˛2E CC

u0;E : (4.1.34)

Then by (4.1.34) and [Bismut et al. 2017, Theorem 8.5], a modification of the proof of [Shen 2018,
Proposition 4.14] proves the identities in our proposition. �

If we assembly the results in Proposition 4.1.6, it is enough to study the corresponding analytic torsions.
We will get back to this point in Corollary 7.4.4 for asymptotic analytic torsions.

4.2. Symmetric spaces of noncompact type with fundamental rank 1. In this subsection, we focus
on the case where ı.G/ D 1 and G has compact center (i.e., zp D 0), so that X is a symmetric space
of noncompact type [Shen 2018, Proposition 6.18]. For simplicity, let us also assume that G is linear
semisimple in this subsection.

Note that the rank ı.X/ of X (see [Eberlein 1996, Section 2.7]) is the same as ı.G/. Then ı.X/D 1.
By the de Rham decomposition, we can write

X DX1 �X2; (4.2.1)

where X1 is an irreducible symmetric space of noncompact type with ı.X1/D 1, and X2 is a symmetric
space of noncompact type with ı.X2/D 0.

As in [Bismut 2011, Remark 7.9.2], among the noncompact simple connected real linear groups such
that m is odd and dim bD 1, there are only SL3.R/, SL4.R/, SL2.H/, and SO0.p; q/ with pq odd > 1.
Also, we have sl4.R/D so.3; 3/ and sl2.H/D so.5; 1/. Therefore, X1 is one of the following cases (see
[Shen 2018, Proposition 6.19]):

X1 D SL3.R/=SO.3/ or SO0.p; q/=SO.pC q/; with pq > 1 odd: (4.2.2)
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Since ı.G/D 1, we have the decomposition of Lie algebras

gD g1˚ g2; (4.2.3)

where
g1 D sl3.R/ or so.p; q/; (4.2.4)

with pq > 1 odd, and g2 is semisimple with ı.g2/D 0. The Cartan involution � preserves the splitting
(4.2.3); see [Knapp 2002, VII.6, p. 471].

Let G1 be the identity component of ZG.g2/. Then G1 is a connected linear semisimple closed
subgroup of G with Lie algebra of g1. Similarly, we can find a connected linear semisimple closed
subgroup G2 of G with Lie algebra of g2 such that we have canonically G1 �G2!G a finite central
extension. Let �j be the induced Cartan involution on Gj (j D 1; 2) from � . Set Kj DGj \K; then

Xj DGj =Kj ; j D 1; 2: (4.2.5)

Note that in general, G1 is a just a finite central extension of SL3.R/ or SO0.p; q/ (pq > 1 odd). The
invariant bilinear form B also splits as B1˚B2 with respect to the splitting (4.2.3).

Remark 4.2.1. Let G�, G1;�, G2;� denote the identity components of the isometry groups of X, X1, X2
respectively. Then we have

G� DG1;� �G2;�: (4.2.6)

By [Shen 2018, Proposition 6.19], G1;� D SL3.R/ or SO0.p; q/, with pq > 1 odd, and G2;� is a
semisimple Lie group with Lie algebra g2 and trivial center. Also ı.G2;�/D 0. If we consider G� instead
of G, then the factor G1 is exactly SL3.R/ or SO0.p; q/, with pq > 1 odd.

Let U1, U2 be (connected linear) compact forms of G1, G2. Then U1�U2 is a finite central extension
of the compact form U of G. Let .E; �E / be an irreducible unitary representation of U, and hence of
U1 �U2. Then

.E; �E /D .E1; �
E1/˝ .E2; �

E2/; (4.2.7)

where .Ej ; �Ej / is an irreducible unitary representation of Uj , j D 1; 2. Let F, F1, F2 be the ho-
mogeneous flat vector bundles on X, X1, X2 associated with these representations. Then we have

F D F1�F2 WD �
�
1 .F1/˝�

�
2 .F2/; (4.2.8)

where �i denote the projections X !Xi , i D 1; 2.
Take 
 2 G. Let .
1; 
2/ 2 G1 �G2 be one of its lifts. Then 
 is semisimple (resp. elliptic) if and

only if both 
1, 
2 are semisimple (resp. elliptic). Set mi D dimXi ; then m1 is odd, and m2 is even.

Proposition 4.2.2. If 
 2G is semisimple, for t > 0, we have

TrŒ
�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D TrŒ
1�s

h�
Nƒ�.T �X1/�

m1
2

�
exp

�
�
tDX1;F1;2

2

�i
�TrŒ
2�s

h
exp

�
�
tDX2;F2;2

2

�i
: (4.2.9)
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Then if 
2 is nonelliptic,

TrŒ
�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D 0: (4.2.10)

If 
2 is elliptic, then

TrŒ
�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D Œe.TX2.
2/;r

TX2.
2//�max2.
2/TrE2 Œ�E2.
2/�

�TrŒ
1�s

h�
Nƒ�.T �X1/�

m1
2

�
exp

�
�
tDX1;F1;2

2

�i
; (4.2.11)

where Œ � �max2.
2/ is taking the coefficient of the Riemannian volume element on X2.
2/.

Proof. We write

Nƒ�.T �X/
�
m

2
D

�
Nƒ�.T �X1/�

m1
2

�
C

�
Nƒ�.T �X2/�

m2
2

�
: (4.2.12)

Note that, since ı.G1/D 1, by [Bismut 2011, Theorem 7.8.2], we always have

TrŒ
1�s

h
exp

�
�
tDX1;F1;2

2

�i
D 0: (4.2.13)

Combining the definition of orbital integrals (3.3.7) together with (4.2.12) and (4.2.13), we get (4.2.9).
The identities (4.2.10), (4.2.11) follow from applying the results in [Bismut 2011, Theorem 7.8.2] to

TrŒ
2�s Œexp.�tDX2;F2;2=2/�. �

For studying T .Z; F /, Proposition 4.2.2 helps us to reduce the computations on

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;F;2

2

�i
to the model cases listed in (4.2.2). But it is far from enough to get an explicit evaluation. In Sections 5
and 6, we will introduce more tools, which allows us work out a proof to Theorem 1.0.2.

5. Cartan subalgebra and root system of G when ı.G/D 1

We use the same notation as in Section 3 and Section 4.1. In Sections 5.1–5.3, we always assume that G
is a connected linear real reductive Lie group with compact center and with ı.G/D 1. But, as we will
see in Remark 5.3.3, the constructions and results in these subsections are still true (most of them are
trivial) if U is compact and if G has noncompact center with ı.G/D 1.

Section 5.4 is independent from other subsections, where we introduce a generalized Kirillov formula
for compact Lie groups.

Recall that T is a maximal torus of K with Lie algebra t� k, and that b� p is defined in (4.1.3). Since
ı.G/D 1, we know b is 1-dimensional. We now fix a vector a1 2b, ja1jD 1. Recall that hDb˚t is a Car-
tan subalgebra of g. Let hgC be the Hermitian product on gC induced by the scalar product �B. � ; � � / on g.
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5.1. Reductive Lie algebra with fundamental rank 1. Since G has compact center, b 6� zg. Let Z.b/ be
the centralizer of b in G, and let Z.b/0 be its identity component with Lie algebra z.b/D p.b/˚ k.b/� g.
Let m be the orthogonal subspace of b in z.b/ (with respect to B) such that

z.b/D b˚m: (5.1.1)

Then m is a Lie subalgebra of z.b/, which is invariant by � .
Put

pm Dm\ p; km Dm\ k: (5.1.2)

Then
mD pm˚ km; p.b/D b˚ pm; k.b/D km: (5.1.3)

Let z?.b/, p?.b/, k?.b/ be the orthogonal subspaces of z.b/, p.b/, k.b/ in g, p, k respectively with
respect to B . Then

z?.b/D p?.b/˚ k?.b/: (5.1.4)

Moreover,
pD b˚ pm˚ p?.b/; kD k.b/˚ k?.b/: (5.1.5)

Let M �Z.b/0 be the analytic subgroup associated with m. If we identify b with R, then

Z.b/0 D R�M: (5.1.6)

Then M is a Lie subgroup of Z.b/0; i.e., it is closed in Z.b/0. Let KM be the analytic subgroup of M
associated with the Lie subalgebra km. Since M is reductive, KM is a maximal compact subgroup of M.
Then the splittings in (5.1.3), (5.1.4), (5.1.5) are invariant by the adjoint action of KM .

Then t is Cartan subalgebra of k, of km, and of m. Recall that hD b˚ t is a Cartan subalgebra of g.
We fix a1 2 b such that B.a1; a1/D 1. The choice of a1 fixes an orientation of b. Let n� z?.b/ be the
direct sum of the eigenspaces of ad.a1/ with the positive eigenvalues. Set NnD �n. Then

z?.b/D n˚ Nn: (5.1.7)

By [Shen 2018, Section 6A], dim n D dim p� dim pm � 1. Then dim n is even under our assumption
ı.G/D 1. Put

l D 1
2

dim n: (5.1.8)

By [Shen 2018, Proposition 6.2], there exists ˇ 2 b� such that if a 2 b, f 2 n, then

Œa; f �D ˇ.a/f; Œa; �.f /�D�ˇ.a/�.f /: (5.1.9)

The map f 2n 7!f ��.f /2p?.b/ is an isomorphism ofKM -modules. Similarly, f 2n 7!f C�.f /2

k?.b/ is also an isomorphism of KM -modules. Since � fixes KM , n' Nn as KM -modules via � .
By [Shen 2018, Proposition 6.3], we have

Œn; Nn�� z.b/; Œn; n�D ŒNn; Nn�D 0: (5.1.10)
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Also
Bjn�n D 0; BjNn�Nn D 0: (5.1.11)

Then the bilinear form B induces an isomorphism of n� and Nn as KM -modules. Therefore, as KM -
modules, n is isomorphic to n�.

As a consequence of (5.1.10), we get

Œz.b/; z.b/� ; Œz?.b/; z?.b/�� z.b/; Œz.b/; z?.b/�� z?.b/: (5.1.12)

Then .g; z.b// is a symmetric pair.
If k 2KM , letM.k/ be the centralizer of k inM, and let m.k/ be its Lie algebra. LetM.k/0 be the iden-

tity component of M.k/. The Cartan involution � acts on M.k/. The associated Cartan decomposition is

m.k/D pm.k/˚ km.k/; (5.1.13)

where pm.k/D pm\m.k/, km.k/D km\m.k/.
Recall that Z.k/ is the centralizer of k in G and that Z.k/0 is the identity component of Z.k/ with

Lie algebra z.k/� g. Then

M.k/DM \Z.k/; m.k/Dm\ z.k/: (5.1.14)

Note that Z.k/0 is still a reductive Lie group equipped with the Cartan involution induced by the
action of � . By the assumption that ı.G/D 1, we have

ı.Z.k/0/D 1: (5.1.15)

In particular,
b� p.k/: (5.1.16)

Set
zb.k/D z.b/\ z.k/; pb.k/D p.b/\ p.k/; kb.k/D k.b/\ k.k/: (5.1.17)

Then
zb.k/D b˚m.k/D pb.k/˚ kb.k/: (5.1.18)

We also have the identities
pb.k/D b˚ pm.k/; kb.k/D km.k/: (5.1.19)

Let p?b .k/, k
?
b .k/, z

?
b .k/ be the orthogonal spaces of pb.k/, kb.k/, zb.k/ in p.k/, k.k/, z.k/ with

respect to B , so that

p.k/D pb.k/˚ p?b .k/; k.k/D kb.k/˚ k?b .k/; z.k/D zb.k/˚ z?b .k/: (5.1.20)

Then
z?b .k/D p?b .k/˚ k?b .k/D z?.b/\ z.k/: (5.1.21)

Put
n.k/D z.k/\ n; Nn.k/D z.k/\ Nn: (5.1.22)
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Then
z?b .k/D n.k/˚ Nn.k/: (5.1.23)

By (5.1.17), (5.1.23), we get

z.k/D pb.k/˚ kb.k/˚ n.k/˚ Nn.k/: (5.1.24)

Since ı.m.k//D 0, dim n.k/ is even. We set

l.k/D 1
2

dim n.k/: (5.1.25)

Let KM .k/ denote the centralizer of k in KM . The map f 2 n.k/ 7! f � �.f / 2 p?b .k/ is an
isomorphism of KM .k/-modules, and similarly for k?b .k/. Since � fixes KM .k/, we have n.k/' Nn.k/

as KM .k/-modules via � .

5.2. A compact Hermitian symmetric space Yb. Recall that uD
p
�1p˚ k is the compact form of g.

Let u.b/� u, um � u be the compact forms of z.b/, m. Then

u.b/D
p
�1b˚ um; um D

p
�1pm˚ km: (5.2.1)

Since M has compact center, let UM be the analytic subgroup of U associated with um. Then UM is
the compact form of M. Let U.b/� U, A0 � U be the connected subgroups of U associated with Lie
algebras u.b/,

p
�1b. Then A0 is in the center of U.b/. By [Shen 2018, Proposition 6.6], A0 is closed

in U and is diffeomorphic to a circle S1. Moreover, we have

U.b/D A0UM : (5.2.2)

The bilinear form �B induces an Ad.U /-invariant metric on u. Let u?.b/ � u be the orthogonal
subspace of u.b/. Then

u?.b/D
p
�1p?.b/˚ k?.b/: (5.2.3)

By (5.1.12), we get

Œu.b/; u.b/� ; Œu?.b/; u?.b/�� u.b/; Œu.b/; u?.b/�� u?.b/: (5.2.4)

Then .u; u.b// is a symmetric pair.
Put a0 D a1=ˇ.a1/ 2 b. Set

J D
p
�1 ad.a0/ju?.b/ 2 End.u?.b//: (5.2.5)

By (5.1.9), J is an U.b/-invariant complex structure on u?.b/ which preserves Bju?.b/. The spaces
nC D n˝R C, NnC D Nn˝R C are exactly the eigenspaces of J associated with eigenvalues

p
�1, �

p
�1.

The following proposition is just the summary of the results in [Shen 2018, Section 6B].

Proposition 5.2.1. Set
Yb D U=U.b/: (5.2.6)

Then Yb is a compact symmetric space, and J induces an integrable complex structure on Yb such that

T .1;0/Yb D U �U.b/ nC; T .0;1/Yb D U �U.b/ NnC: (5.2.7)

The form �B. � ; J � / induces a Kähler form !Yb on Yb.
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Let !u be the canonical left-invariant 1-form on U with values in u. Let !u.b/ and !u?.b/ be the u.b/

and u?.b/ components of !u, so that

!u
D !u.b/

C!u?.b/: (5.2.8)

Moreover, !u.b/ defines a connection form on the principal U.b/-bundle U ! Yb. Let �u.b/ be the
curvature form. Then

�u.b/
D�

1
2
Œ!u?.b/; !u?.b/�: (5.2.9)

Note that the real tangent bundle of Yb is given by

T Yb D U �U.b/ u
?.b/: (5.2.10)

Then �Bju?.b/ induces a Riemannian metric gTYb on Yb. The corresponding Levi-Civita connection is
induced by !u.b/.

Recall that the first splitting in (5.2.1) is orthogonal with respect to �B . Let �um be the um-component
of �u.b/. Since the Kähler form !Yb is invariant under the left action of U on Yb, we also can view !Yb

as an element in ƒ2.u?b /
�/. By [Shen 2018, equation (6-48)],

�u.b/
D ˇ.a1/!

Yb ˝
p
�1a1C�

um : (5.2.11)

Moreover, by [Shen 2018, Proposition 6.9], we have

B.�u.b/; �u.b//D 0; B.�um ; �um/D ˇ.a1/
2!Yb;2: (5.2.12)

Remark 5.2.2. By [Shen 2018, Proposition 6.20], if G has compact center, then as symmetric spaces,
the Kähler manifold Yb is isomorphic either to SU.3/=U.2/ or to SO.pC q/=SO.pC q � 2/� SO.2/
with pq > 1 odd. This way, the computations on Yb can be made more explicit.

Now we fix k 2KM . Let U.k/ be the centralizer of k in U, and let U.k/0 be its identity component.
Let u.k/ be the Lie algebra of U.k/0. Then u.k/ is the compact form of z.k/, and U.k/0 is the compact
form of Z.k/0.

We will use the same notation as in Section 5.1. Then the compact form of m.k/ is given by

um.k/D
p
�1pm.k/˚ km.k/: (5.2.13)

Let ub.k/ be the compact form of zb.k/. Then

ub.k/D
p
�1b˚ um.k/: (5.2.14)

Let Ub.k/ be the analytic subgroup associated with ub.k/. Then

Ub.k/D U.b/\U.k/
0: (5.2.15)

Set
Yb.k/D U.k/

0=Ub.k/: (5.2.16)

As in Proposition 5.2.1, Yb.k/ is a connected complex manifold equipped with a Kähler form !Yb.k/.
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Let u?b .k/ be the orthogonal space of ub.k/ in u.k/ with respect to B . Then

u?b .k/D
p
�1p?b .k/˚ k?b .k/: (5.2.17)

Then the real tangent bundle of Yb.k/ is given by

T Yb.k/D U.k/
0
�Ub.k/ u

?
b .k/: (5.2.18)

Moreover,

T .1;0/Yb.k/D U.k/
0
�Ub.k/ n.k/C; T .0;1/Yb.k/D U.k/

0
�Ub.k/ Nn.k/C: (5.2.19)

Let �ub.k/ be the curvature form as in (5.2.9) for the pair .U.k/0; Ub.k//, which can be viewed as
an element in ƒ2.u?b .k/

�/˝ ub.k/. Using the splitting (5.2.14), let �um.k/ be the um.k/-component
of �ub.k/. Then as in (5.2.11) and (5.2.12), we have

�ub.k/ D ˇ.a1/!
Yb.k/˝

p
�1a1C�

um.k/; (5.2.20)

B.�ub.k/; �ub.k//D 0; B.�um.k/; �um.k//D ˇ.a1/
2!Yb.b/;2: (5.2.21)

5.3. Positive root system and character formula. Recall that t is Cartan subalgebra of k, of km, and of m.
Recall that hD b˚ t is a Cartan subalgebra of g, and H is the associated maximally compact Cartan
subgroup of G.

Put

tU D
p
�1b˚ t� u: (5.3.1)

Then tU is a Cartan subalgebra of u. Let TU � U be the corresponding maximal torus. Then A0 is a
circle in TU . Then t is a Cartan subalgebra of um, and the corresponding maximal torus is T.

Let R.u; tU / be the real root system for the pair .U; TU / [Bröcker and tom Dieck 1985, Chapter V].
The root system for the complexified pair .uC; tU;C/D .gC; hC/ is given by 2�iR.u; tU /. Similarly, let
R.u.b/; tU /, R.um; t/ denote the real root systems for the pairs .u.b/; tU /, .um; t/. When we embed t�

into t�U by the splitting in (5.3.1),

R.u.b/; tU /DR.um; t/: (5.3.2)

For a root ˛ 2R.u; tU /, if ˛.
p
�1a1/D 0, then ˛ 2R.um; t/. Fix a positive root system RC.um; t/.

We get a positive root system RC.u; tU / consisting of an element ˛ such that ˛.
p
�1a1/ > 0 and the

elements in RC.um; t/.
Let W.u; tU / denote the algebraic Weyl group associated with R.u; tU /. If ! 2W.u; tU /, let l.!/

denote the length of ! with respect to RC.u; tU /. Set

".!/D .�1/l.!/: (5.3.3)

Let W.U; TU / be the analytic Weyl group. Then W.u; tU /DW.U; TU /.
Put

Wu D f! 2W.U; TU / j !
�1
�˛ > 0 for all ˛ 2RC.um; t/g: (5.3.4)
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Put
�u D

1

2

X
˛02RC.u;tU /

˛0 2 t�U ; �um D
1

2

X
˛02RC.um;t/

˛0 2 t�: (5.3.5)

Then �ujt D �um .
LetPCC.U /� t�U be the set of dominant weights of .U; TU /with respect toRC.u; tU /. If �2PCC.U /,

let .E�; �E�/ be the irreducible unitary representation of U with the highest weight �, which by the
unitary trick extends to an irreducible representation of G.

By [Warner 1972, Lemmas 1.1.2.15, 2.4.2.1], if ! 2Wu, then !.�C�u/��u is a dominant weight for
RC.u.b/; tU /. Let V�;! denote the representation of U.b/ with the highest weight !.�C �u/� �u.

Recall that U.b/ acts on nC. Let H �.nC; E�/ be the Lie algebra cohomology of nC with coefficients
inE�; see [Kostant 1961]. By [Warner 1972, Theorem 2.5.1.3], for iD0; : : : ; 2l , we have the identification
of U.b/-modules

H i .nC; E�/'
M
!2Wu
l.!/Di

V�;! : (5.3.6)

By (5.3.6) and the Poincaré duality, we get the following identifications as U.b/-modules:
2lM
iD0

.�1/iƒin�C˝E� D
M
!2Wu

".!/V�;! : (5.3.7)

Note that if we apply the unitary trick, the above identification also holds as Z.b/0-modules.

Definition 5.3.1. Let P0 W t�U ! t� denote the orthogonal projection with respect to B�jt�U . For ! 2Wu,
� 2 PCC.U /, put

�!.�/D P0.!.�C �u/� �u/ 2 t
�: (5.3.8)

Note that
P0�u D �um : (5.3.9)

Then
�!.�/D P0.!.�C �u//� �um : (5.3.10)

Proposition 5.3.2. If � 2 PCC.U /, for ! 2 Wu, then �!.�/ is a dominant weight of .UM ; T / with
respect to RC.um; t/. Moreover, the restriction of the U.b/-representation V�;! to the subgroup UM is
irreducible, which has the highest weight �!.�/.

Proof. Since !.�C �u/� �u is analytically integrable, �!.�/ is also analytically integrable as a weight
associated with .UM ; T /. By (5.3.2) and the corresponding identification of positive root systems, we
know that �!.�/ is dominant with respect to RC.um; t/.

Recall that A0 ' S1 is defined in Section 5.2. By (5.2.2), we get that A0 acts on V�;! as scalars given
by its character, and then UM act irreducibly on V�;! , which clearly has the highest weight �!.�/. �

Remark 5.3.3. In general, U is just the analytic subgroup of GC with Lie algebra u. If U is compact but
G has noncompact center, i.e., zp D b, then nD NnD 0, so that l D 0. Recall that in this case, G0, U 0 are
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defined in Section 4.1. Then
M DG0; UM D U

0: (5.3.11)

The compact symmetric space Yb now reduces to one point.
Moreover, in (5.3.4), Wu D f1g, so that V�;! becomes just E� itself. The identities (5.3.6), (5.3.7) are

trivially true; so is Proposition 5.3.2.

5.4. Kirillov character formula for compact Lie groups. In this subsection, we recall the Kirillov
character formula for compact Lie groups. We only use the group UM as an explanatory example. We fix
the maximal torus T and the positive (real) root system RC.um; t/.

Let � 2 t� be a dominant (analytically integrable) weight of UM with respect to the above root system.
Let .V�; �V�/ be the irreducible unitary representation of UM with the highest weight �.

Put
OD Ad�.UM /.�C �um/� u�m: (5.4.1)

Then O is an even-dimensional closed manifold.
Since �C �um is regular, we have the following identifications of UM -manifolds:

O' UM=T: (5.4.2)

For u 2 um, an associated vector field Qu on O is defined as follows: if f 2O, then

Quf D� ad�.u/f 2 TfO: (5.4.3)

Such vector fields span the whole tangent space at each point. Let !L denote the real 2-form on O such
that if u; v 2 um, f 2O,

!L. Qu; Qv/f D�hf; Œu; v�i: (5.4.4)

Then !L is a UM -invariant symplectic form on O. Put rC D 1
2

dim um=t. In fact, if we can define an
almost complex structure on TO such that the holomorphic tangent bundle is given by the positive root
system RC.um; t/. Then .O; !L/ become a closed Kähler manifold, and rC is its complex dimension.

The Liouville measure on O is defined as

d�L D
.!L/

rC

.rC/Š
: (5.4.5)

It is invariant by the left action of UM . Let VolL.O/ denote the symplectic volume of O with respect to
the Liouville measure. Then we have (see [Berline et al. 1992, Proposition 7.26])

VolL.O/D…˛02RC.um;t/
h˛0; �C �umi

h˛0; �umi
D dimV�: (5.4.6)

The second identity is the Weyl dimension formula (see [Knapp 1986, Theorem 4.48]).
By the Kirillov formula (see [Berline et al. 1992, Theorem 8.4]), if y 2 um, we have

yA�1.ad.y/jum/TrV� Œ�V�.ey/�D
Z
f 2O

e2�ihf;yi d�L: (5.4.7)

To shorten the notation here, if k 2 T, put Y D UM .k/0 with Lie algebra yD um.k/. Then T � Y ,
and it also a maximal torus of Y .
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In the sequel, we will give a generalized version of (5.4.7) for describing the function TrV� Œ�V�.key/�,
with y 2 y.

Let q be the orthogonal space of y in um with respect to B , so that

um D y˚ q: (5.4.8)

Since the adjoint action of T preserves the splitting in (5.4.8). Then R.um; t/ splits into two disjoint parts

R.um; t/DR.y; t/[R.q; t/; (5.4.9)

where R.q; t/ is just the set of real roots for the adjoint action of t on qC.
The positive root system RC.um; t/ induces a positive root system RC.y; t/. Set

RC.q; t/DRC.um; t/\R.q; t/: (5.4.10)

Then we have the disjoint union

RC.um; t/DR
C.y; t/[RC.q; t/: (5.4.11)

Put
�y D

1

2

X
˛02RC.y;t/

˛0; �q D
1

2

X
˛02RC.q;t/

˛0: (5.4.12)

Then
�um D �yC �q 2 t

�: (5.4.13)

Let C � t� denote the Weyl chamber corresponding to RC.um; t/, and let C0 � t� denote the Weyl
chamber corresponding to RC.y; t/. Then C � C0.

Let W.UM ; T /, W.Y; T / be the Weyl groups associated with the pairs .UM ; T /, .Y; T / respectively.
Then W.Y; T / is canonically a subgroup of W.UM ; T /. Put

W 1.k/D f! 2W.UM ; T / j !.C/� C0g: (5.4.14)

Note that the set W 1.k/ is similar to the set Wu defined in (5.3.4).

Lemma 5.4.1. The inclusion W 1.k/ ,!W.UM ; T / induces a bijection between W 1.k/ and the quotient
W.Y; T /nW.UM ; T /.

Proof. This lemma follows from W.Y; T / acting simply transitively on the Weyl chambers associated
with .y; t/. �

Let Ok denote the fixed-point set of the holomorphic action of k on O. We embed y� in u�m by the
splitting (5.4.8). Then

Ok DO\ y�: (5.4.15)

Lemma 5.4.2 (see [Duflo et al. 1984, I.2, Lemma (7); Bouaziz 1987, Lemmas 6.1.1, 7.2.2]). As subsets
of y�, we have the identification

OkD
[

�2W 1.k/

Ad�.Y /.�.�C�um//� y�; (5.4.16)

where the union is disjoint.
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For each � 2W 1.k/, put
Ok�.�C�um / D Ad�.Y /.�.�C �um//� y�: (5.4.17)

Let d�k� denote the Liouville measure on Ok
�.�C�um /

as defined in (5.4.5).
If ı2 t� is (real) analytically integrable, let �ı denote the character of T with differential 2�iı. Note that

for � 2W 1.k/, ��umC�um is analytically integrable even though �um may not be analytically integrable.

Definition 5.4.3. For � 2W 1.k/, set

'k.�; �/D ".�/
��.�C�um /C�um .k/

…˛02RC.q;t/.�˛0.k/� 1/
: (5.4.18)

Note that if y 2 y, the analytic function

det.1� ead.y/ Ad.k//jq
det.1�Ad.k//jq

(5.4.19)

has a square root which is analytic in y 2 y and equal to 1 at y D 0. We denote this square root by�
det.1� ead.y/ Ad.k//jq

det.1�Ad.k//jq

� 1
2

: (5.4.20)

The following theorem is a special case of a generalized Kirillov formula obtained by Duflo, Heckman
and Vergne [Duflo et al. 1984, II.3, Theorem (7)]. We will also include a simpler proof for the sake of
completeness.

Theorem 5.4.4 (generalized Kirillov formula). For y 2 y, we have the identity of analytic functions

yA�1.ad.y/jy/
�

det.1� ead.y/ Ad.k//jq
det.1�Ad.k//q

� 1
2

TrV� Œ�V�.key/�

D

X
�2W 1.k/

'k.�; �/

Z
f 2Ok

�.�C�um /

e2�ihf;yi d�k� : (5.4.21)

If k D 1, (5.4.21) is reduced to (5.4.7).

Proof. Let t0 denote the set of regular element in t associated with the root R.um; t/, which is an open
dense subset of t. Since both sides of (5.4.21) are analytic and invariant by the adjoint action of Y , we
only need to prove (5.4.21) for y 2 t0.

We firstly compute the left-hand side of (5.4.21).
For y 2 t0, we have

yA�1.ad.y/jy/D…˛02RC.y;t/
e�ih˛

0;yi� e��ih˛
0;yi

h2�i˛0; yi
: (5.4.22)

Let y0 2 t be such that k D exp.y0/. Then�
det.1� ead.y/ Ad.k//jq

det.1�Ad.k//jq

� 1
2

D…˛02RC.q;t/
e�ih˛

0;yCy0i� e��ih˛
0;yCy0i

e�ih˛
0;y0i� e��ih˛

0;y0i
: (5.4.23)
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By the Weyl character formula for .UM ; T /, we get

TrV� Œ�V�.key/�D TrV� Œ�V�.eyCy0/�D

P
!2W.um;C;tC/

".!/e2�ih!.�C�um /;yCy0i

…˛02RC.um;t/.e
�ih˛0;yCy0i� e��ih˛

0;yCy0i/
: (5.4.24)

Note that we have �˛0.k/D 1 for ˛0 2RC.y; t/. Then

…˛02RC.y;t/
e�ih˛

0;yCy0i� e��ih˛
0;yCy0i

e�ih˛
0;yi� e��ih˛

0;yi
D e�2�ih�y;y0i: (5.4.25)

Combining (5.4.22)–(5.4.25), we get the left-hand side of (5.4.21) is equal the to function

e2�ih�y;y0i

…˛02RC.y;t/h2�i˛
0; yi

P
!2W.um;C;tC/

".!/e2�ih!.�C�um /;yCy0i

…˛02RC.q;t/.e
�ih˛0;yi� e��ih˛

0;yi/
: (5.4.26)

Now we show that the right-hand side of (5.4.21) is also equal to (5.4.26).
Note that, for ! 2W.Y; T /, !�um��um is analytically integrable. We claim that if ! 2W.Y; T /, then

�!�um��um .k/D e
2�ih!�um��um ;y0i D 1: (5.4.27)

Actually, we have �2�um .k/D �2!�um .k/D 1. Then, after taking the square roots, we get �!�um��um .k/D
�!�um��um .e

y0/D˙1. The continuity of the character implies exactly (5.4.27).
As a consequence of (5.4.27), we get that for � 2W 1.k/, if ! 2W.Y; T /, then

e2�ih!�.�C�um /;y0i D e2�ih�.�C�um /;y0i: (5.4.28)

For � 2W 1.k/, since �.�C �um/ 2 C0 and y is regular, by [Berline et al. 1992, Corollary 7.25], we
haveZ

f 2Ok
�.�C�um /

e2�ihf;yi d�k� D
1

…˛02RC.y;t/h2�i˛
0; yi

X
!2W.Y;T /

".!/e2�ih!�.�C�um /;yi: (5.4.29)

We rewrite 'k.�; �/ as

".�/
e2�ih�y;y0i

…˛02RC.q;t/.e
�ih˛0;yi� e��ih˛

0;yi/
e2�ih�.�C�um /;y0i: (5.4.30)

Combining together Lemma 5.4.1 and (5.4.28)–(5.4.30), a direct computation shows that the right-hand
side of (5.4.21) is given exactly by (5.4.26). �

Remark 5.4.5. Let C 0 denote the identity component of the center of Y , and let Yss be the closed analytic
subgroup of Y associated with yssD Œy; y�. By Weyl’s theorem [Knapp 1986, Theorem 4.26], the universal
covering group of Yss is compact, which we denote by zYss. Put

zY D C 0 � zYss: (5.4.31)

Then zY is clearly a finite central extension of Y . Let zT be the maximal torus of zY associated with the
Cartan subalgebra t, which is also a finite extension of T. By [Knapp 1986, Corollary 4.25], the weights



1302 BINGXIAO LIU

�um ; �y are analytically integrable with respect to zT, since they are algebraically integrable [Knapp 1986,
Propositions 4.15, 4.33].

Note that, for � 2 W 1.k/, �.� C �um/ is regular and positive with respect to RC.y; t/; thus
�.�C �um/� �y is nonnegative with respect to RC.y; t/ by the property of �y [Knapp 1986, Proposi-
tion 4.33]. Since now �.�C �um/� �y is also analytically integrable with respect to zT, it is a dominant
weight for . zY ; zT / with respect to RC.y; t/. In this case, let V k

�;�
be the irreducible unitary representation

of zY with highest weight �.�C �um/� �y. Then by (5.4.7), (5.4.21), we get that, for y 2 y,�
det.1� ead.y/ Ad.k//jq

det.1�Ad.k//q

� 1
2

TrV� Œ�V�.key/�D
X

�2W 1.k/

'k.�; �/TrV
k
�;� Œ�V

k
�;� .ey/�: (5.4.32)

6. A geometric localization formula for orbital integrals

Recall that GC is the complexification of G with Lie algebra gC, and that G, U are the analytic subgroups
of GC with Lie algebras g, u respectively. In this section, we always assume that U is compact; we do
not require that G have compact center. We need not to assume ı.G/D 1 either.

Under the settings in Section 4.1, for t > 0 and semisimple 
 2G, we set

EX;
 .F; t/D TrŒ
�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
: (6.0.1)

The indices X, F in this notation indicate precisely the symmetric space and the flat vector bundle which
are concerned with defining the orbital integrals.

If 
 2G is semisimple, then there exists a unique elliptic element 
e and a unique hyperbolic element 
h
in G such that 
 D 
e
h D 
h
e. Here, we will show that EX;
 .F; t/ becomes a sum of the orbital
integrals associated with 
h, but defined for the centralizer of 
e instead of G. This suggests that the
elliptic part of 
 should lead to a localization for the geometric orbital integrals.

We still fix a maximal torus T of K with Lie algebra t. For simplicity, if 
 2G is semisimple, we may
and we will assume


 D eak; k 2 T; a 2 p; Ad.k�1/aD a: (6.0.2)

In this case,

e D k 2 T; 
h D e

a: (6.0.3)

Recall that Z.
e/0 is the identity component of the centralizer of 
e in G. Then


h 2Z.
e/
0: (6.0.4)

The Cartan involution � preserves Z.
e/0 such that Z.
e/0 is a connected linear reductive Lie group.
Then we have the diffeomorphism

Z.
e/
0
DK.
e/

0 exp.p.
e//: (6.0.5)

It is clear that ı.Z.
e/0/D ı.G/.
Recall that TU is a maximal torus of U with Lie algebra tU D

p
�1b˚ t � u. Let RC.u; tU / be a

positive root system for R.u; tU /, which is not necessarily the same as in Section 5.3 when ı.G/D 1.
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Since U is the compact form of G, U.
e/0 is the compact form for Z.
e/0. Moreover, TU is also a
maximal torus of U.
e/0. Let R.u.
e/; tU / be the corresponding real root system with the positive root
system RC.u.
e/; tU /D R.u.
e/; tU /\R

C.u; tU /. Let �u, �u.
e/ be the corresponding half sums of
positive roots.

Let zU.
e/ be a connected finite covering group of U.
e/0 such that �u, �u.
e/ are analytically integrable
with respect to the maximal torus zTU of zU.
e/ associated with tU . It always exists by a construction
similar to that in Remark 5.4.5.

Let zK.
e/ be the analytic subgroup of zU.
e/ associated with the Lie algebra k.
e/. By [Knapp 2002,
Proposition 7.12], zU.
e/ has a unique complexification zU.
e/C which is a connected linear reductive Lie
group. Let zZ.
e/ be the analytic subgroup of zU.
e/C associated with z.
e/� u.
e/C D z.
e/C. Then
we have the Cartan decomposition

zZ.
e/D zK.
e/ exp.p.
e//: (6.0.6)

We still denote by � the corresponding Cartan involution on zZ.
e/.
The Lie group zZ.
e/ is a finite covering group of Z.
e/0. Moreover, we have the identification of

symmetric spaces
X.
e/' zZ.
e/= zK.
e/: (6.0.7)

Note that even under an additional assumption thatG has compact center, zZ.
e/may still have noncompact
center.

Let � be a dominant weight for .U; TU / with respect to RC.u; tU /. Let .E�; �E�/ be the associated
irreducible unitary representation of U. As before, let .F�; hF�/ be the corresponding homogeneous
vector bundle on X with the G-invariant flat connection rF�;f . Let DX;F�;2 denote the associated
de Rham–Hodge Laplacian.

Let W 1
U .
e/ � W.U; TU / be the set defined as in (5.4.14) but with respect to the group U and to


e D k 2 T � TU . As in Definition 5.4.3, for � 2W 1
U .
e/, set

'U
e .�; �/D ".�/
��.�C�u/C�u.
e/

…˛02RC.u?.
e/;tU /.�˛0.
e/� 1/
: (6.0.8)

As explained in Remark 5.4.5, if � 2W 1
U .
e/, then �.�C �u/� �u.
e/ is a dominant weight of zU.
e/

with respect to RC.u.
e/; tU /. Let E�;� be the irreducible unitary representation of zU.
e/ with highest
weight �.�C �u/� �u.
e/.

We extend E�;� to an irreducible representation of zZ.
e/ by the unitary trick. Then

F�;� D zZ.
e/� zK.
e/
E�;�

is a homogeneous vector bundle on X.
e/ with an invariant flat connection rF�;�;f as explained in
Section 4. LetDX.
e/;F�;�;2 denote the associated de Rham–Hodge Laplacian acting on��.X.
e/; F�;�/.

We also view 
h D e
a as a hyperbolic element in zZ.
e/. For � 2W 1

U .
e/, as in (6.0.1), we set

EX.
e/;
h.F�;�; t /D TrŒ
h�s

��
Nƒ�.T �X.
e//�

p0

2

�
exp

�
�
tDX.
e/;F�;�;2

2

��
: (6.0.9)

Note that we use Bjz.
e/ on z.
e/ to define this orbital integral for zZ.
e/.
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Set

c.
/D

ˇ̌̌̌
det.1�Ad.
e//jz?.
e/
det.1�Ad.
//jz?.
e/

ˇ̌̌̌ 1
2

> 0: (6.0.10)

In particular, c.
e/D 1.
The following theorem is essentially a consequence of the generalized Kirillov formula in Theorem 5.4.4.

Theorem 6.0.1. Let 
 2G be given as in (6.0.2). For t > 0, we have the identity

EX;
 .F�; t /D c.
/
X

�2W 1
U .
e/

'U
e .�; �/EX.
e/;
h.F�;�; t /: (6.0.11)

We call (6.0.11) a localization formula for the geometric orbital integral.

Proof. Set p0 D dim p.
e/D dimX.
e/. At first, if m is even, then p0 is even. Then the both sides of
(6.0.11) are 0 by [Bismut 2011, Theorem 7.9.1].

If m is odd, then p0 is odd, and ı.G/D ı.Z.
e/0/ is odd. If ı.G/� 3, then the both sides of (6.0.11)
are 0 by [Bismut 2011, Theorem 7.9.1].

Now we consider the case where ı.G/ D ı.Z.
e/0/ D 1. If 
 cannot be conjugated into H by an
element in G, then 
h cannot be conjugated into H by an element in Z.
e/0. Then both sides of (6.0.11)
are 0 by Proposition 4.1.5.

Now we assume that ı.G/ D 1 and a 2 b. Note that z.
/ is the centralizer of 
h in z.
e/. We will
prove (6.0.11) using (4.1.16)

For y 2 k.
/, let J�
h.y/ be the function defined in 3.3.1 for 
h D ea 2 zZ.
e/:

J�
h.y/D
1

jdet.1�Ad.
h//jz?0 \z.
e/j
1
2

yA.i ad.y/jp.
//
yA.i ad.y/jk.
//

: (6.0.12)

The Casimir operator C u.
e/;E�;� acts on E�;� by the scalar given by

�4�2.j�C �uj
2
� j�u.
e/j

2/: (6.0.13)
Similar to (4.1.13), set

ˇz.
e/ D
1
16

Trp.
e/ŒC k.
e/;p.
e/�C 1
48

Trk.
e/ŒC k.
e/;k.
e/�: (6.0.14)

Then by [Bismut 2011, Propositions 2.6.1, 7.5.1],

2�2j�u.
e/j
2
D�ˇz.
e/: (6.0.15)

By (4.1.16), (6.0.13), (6.0.15), for � 2W 1
U .
e/, we get

EX.
e/;
h.F�;�; t /D
e�
jaj2

2t

.2�t/
p
2

exp.�2�2t j�C �uj2/

�

Z
k.
/

J�
h.y/Trƒ
�.p.
e/

�/
s

��
Nƒ�.p.
e/

�/
�
p0

2

�
exp.�i ad.y//

�
�TrE�;� Œexp.�i�E�;�.y//�e�

jyj2

2t
dy

.2�t/
q
2

: (6.0.16)
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Note that dim p?.
e/ is even. We claim that if y 2 k.
/, then

Trƒ
�.p�/

s

��
Nƒ�.p�/

�
m

2

�
exp.�i ad.y//Ad.k�1/

�
D Trƒ

�.p.
e/
�/

s

��
Nƒ�.p.
e/

�/
�
p0

2

�
e�i ad.y/

�
det.1� e�i ad.y/ Ad.k�1//jp?.
e/: (6.0.17)

Indeed, we can verify (6.0.17) for y 2 t. Since both sides of (6.0.17) are invariant by the adjoint action
of K.
e/0, (6.0.17) holds in full generality.

Also K.
/0 preserves the splitting

p?.
e/D p?0 .
/˚ .p
?.
e/\ p?0 /: (6.0.18)

The action ad.a/ gives an isomorphism between p?.
e/\ p?0 and k?.
e/\ k?0 as K.
/-vector spaces.
Note that

z?.
e/\ z?0 D .p
?.
e/\ p?0 /˚ .k

?.
e/\ k?0 /: (6.0.19)

Then

det.1� e�i ad.y/ Ad.
e//jp?.
e/

D det.1� e�i ad.y/ Ad.
e//jp?0 .
e/Œdet.1� e�i ad.y/ Ad.
e//jz?.
e/\z?0 �
1
2 : (6.0.20)

Here the square root is taken to be positive at y D 0.
By Definition 3.3.1 and (6.0.12), for y 2 k.
/,

J
 .y/D J
�

h
.y/

1

jdet.1�Ad.
//jz?0 \z?.
e/j
1
2

�

�
1

det.1�Ad.
e//jz?0 .
/

det.1� exp.�i ad.y//Ad.
e//jk?0 .
/
det.1� exp.�i ad.y//Ad.
e//jp?0 .
/

� 1
2

: (6.0.21)

Combining (6.0.17), (6.0.20) and (6.0.21), we get

J
 .y/Trƒ
�.p�/

s

��
Nƒ�.p�/

�
m

2

�
exp.�i ad.y//Ad.
e/

�
D c.
/J�
h.y/Trƒ

�.p.
e/
�/

s

�

��
Nƒ�.p.
e/

�/
�
p0

2

�
e�i ad.y/

��det.1� exp.�i ad.y//Ad.
e//jz?.
e/
det.1�Ad.
e//jz?.
e/

� 1
2

: (6.0.22)

Note that, for y 2 k.
/,�det.1� exp.�i ad.y//Ad.
e//jz?.
e/
det.1�Ad.
e//jz?.
e/

� 1
2

D

�det.1� exp.�i ad.y//Ad.
e//ju?.
e/
det.1�Ad.
e//ju?.
e/

� 1
2

: (6.0.23)
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By (4.1.16), (6.0.13), (6.0.15), (6.0.22) and (6.0.23), we get

EX;�.F�; t /D c.
/
e�
jaj2

2t

.2�t/
p
2

exp.�2�2t j�C�uj2/

�

Z
k.
/

J�
h.y/Trƒ
�.p.
e/

�/
s

��
Nƒ�.p.
e/

�/
�
p0

2

�
e�i ad.y/

�
�

�det.1�e�i ad.y/Ad.
e//ju?.
e/
det.1�Ad.
e//ju?.
e/

� 1
2

TrE� Œ�E�.
e/e�i�
E� .y/�e�

jyj2

2t
dy

.2�t/
q
2

: (6.0.24)

Then (6.0.11) follows from (5.4.32), (6.0.16) and (6.0.24). �

Remark 6.0.2. A similar consideration can be made for TrŒ
�s Œexp.�tDX;F�;2/�, where (6.0.11) will
become an analogue of the index theorem for orbifolds as in (2.2.9). The related computation can be
found in [Bismut and Shen 2022, Section 10.4].

7. Full asymptotics of elliptic orbital integrals

In this section, we always assume that ı.G/D 1 and that U is compact. We also use the notation and
settings as in Sections 5.1, 5.2 and 5.3.

In this section, given a irreducible unitary representation E of U with certain nondegenerate highest
weight ƒ, and for elliptic 
 , we will compute explicitly EX;
 .F DG �K E; t/ and its Mellin transform
in terms of the root systems. Note that, when 
 D 1, EX;
 .Fd ; t / is already computed in [Bergeron and
Venkatesh 2013; Müller and Pfaff 2013a] using the Plancherel formula for identity orbital integral. We
here give a different approach via Bismut’s formula as in (4.1.16).

Then in Section 7.3, we apply these results to a sequence of flat vector bundles fFd gd2N on X defined
by a sequence of nondegenerate dominant weights ƒD d�C �0. This way, we show that the Mellin
transforms of the elliptic orbital integrals are exponential polynomials in d .

7.1. Estimates of elliptic orbital integrals for small time t. Recall that T is a maximal torus of K, TU
is a maximal torus of U, and W.U; TU / denotes the (analytic) Weyl group of .U; TU /. The positive root
system RC.u; tU / is given in Section 5.3. Recall that PCC.U / is the set of dominant weights of .U; TU /
with respect to RC.u; tU /.

Let .E; �E / be the irreducible unitary representation of U associated with the highest weight ƒ 2
PCC.U /. We will prove our main result of this subsection and next subsection for this .E; �E /.

Our homogeneous flat vector bundle concerned here is given by F DG �K E. Let DX;F;2 denote the
associated de Rham–Hodge Laplacian.

For t > 0, if 
 2G is semisimple, as in (6.0.1), set

EX;
 .F; t/D TrŒ
�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
: (7.1.1)

It is clear that EX;
 .Fd ; t / only depends on the conjugacy class Œ
� in G. If 
 D 1, we also write

IX .F; t/D EX;1.F; t/: (7.1.2)

In the sequel, we only consider the case of elliptic 
 .
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By (4.1.16), (6.0.13), (6.0.15), if 
 D k 2K, we have

EX;
 .F; t/D
1

.2�t/
p
2

exp.�2�2t jƒC �uj2/

�

Z
k.
/

J
 .Y
k
0/Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.Y k

0//
i

�TrE Œ�E .k/ exp.�i�E .Y k
0//�e

�
jY k
0
j2

2t
dY k

0

.2�t/
q
2

: (7.1.3)

By (3.3.18), we have the following formula for J
 .Y k
0/, Y

k
0 2 k.
/:

J
 .Y
k
0/D

yA.i ad.Y k
0/jp.
//

yA.i ad.Y k
0/jk.
//

�
1

det.1�Ad.k//jz?.
/

det.1� exp.�i ad.Y k
0//Ad.k//jk?.
/

det.1� exp.�i ad.Y k
0//Ad.k//jp?.
/

� 1
2

: (7.1.4)

Proposition 7.1.1. For an elliptic element 
 2G, there exists a constant C
 > 0 (depending on ƒ) such
that for t 2 �0; 1�

j
p
tEX;
 .F; t/j � C
 ;

ˇ̌̌�
1C 2t

@

@t

�
EX;
 .F; t/

ˇ̌̌
� C


p
t : (7.1.5)

As t ! 0, EX;
 .E; t/ has the asymptotic expansion in the form of

1
p
t

C1X
jD0

a


j t
j ; (7.1.6)

with a
j 2 C.

Proof. If 
 is elliptic, up to a conjugation, we assume that 
 D k 2 T. Thus the subgroup H defined
in Section 4.1 is also a Cartan subgroup of Z.
/0. Then b.
/ D b. Let b?.
/ be the orthogonal
complementary space of b.
/ in p.
/, whose dimension is p� 1. Note that similar estimates have been
proved in [Liu 2021, Theorem 4.4.1]; here we only sketch a proof to (7.1.5).

By (7.1.3), we have

EX;
 .F; t/D
1

.2�t/
p
2

exp.�2�2t jƒC �uj2/

�

Z
k.k/

Jk.
p
tY k
0/Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.

p
tY k
0//
i

�TrE Œ�E .k/ exp.�i�E .
p
tY k
0//�e

�
jY k
0
j2

2
dY k

0

.2�/
q
2

; (7.1.7)

where the integral is rescaled by
p
t .

In this proof, we denote by C or c a positive constant independent of the variables t and Y k
0 . We use

the symbol Oind to denote the big-O convention which does not depend on t and Y k
0 .

The same computations as in [Liu 2021, equations (4.4.8)–(4.4.10)] show that, for Y k
0 2 t,

Jk.
p
tY k
0/D

1

det.1�Ad.k//jp?.k/
COind.

p
t jY k

0 je
C
p
t jY k
0 j/

�
1

t .p�1/=2
Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
�ƒ
�.p�/.k/ exp.�i�ƒ

�.p�/.
p
tY k
0//
i

D� det.i ad.Y k
0//jb?.k/ det.1�Ad.k//jp?.k/COind.

p
t jY k

0 je
C
p
t jY k
0 j/: (7.1.8)
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Using the adjoint invariance, the further estimates on the above quantities by a function in jY k
0 j hold for

all Y k
0 2 k.k/.

It is clear that

jTrE Œ�E .k/ exp.�i�E .
p
tY k
0//�j � C exp.C

p
t jY k

0 j/: (7.1.9)

Combining (7.1.8) and (7.1.9), we see that there exists a number N 2 N big enough such that if
t 2 �0; 1�,

j
p
tEX;
 .F; t/j � C 0k

Z
k.k/

.1CjY k
0 j/

N exp
�
C jY k

0 j �
jY k
0 j
2

2

�
dY k

0 : (7.1.10)

The second estimate in (7.1.5) can be proved using the same arguments as in [Liu 2021, equa-
tions (4.4.24)–(4.4.29)].

The asymptotic expansion in (7.1.6) is just a consequence of (7.1.5) and (7.1.7). �

7.2. Elliptic orbital integrals for Hodge Laplacians. In this subsection, we explain how to use Bismut’s
formula (4.1.16) to compute explicitly the expansion of EX;
 .F; t/ in t > 0 when 
 2G is elliptic. Then
we study the corresponding Mellin transform. After conjugation, we may and we will assume that

 D k 2 T. Then T is also a maximal torus for K.
/0, and b.
/D b.

Recall that !Yb.
/, �ub.
/, �um.
/ are defined in Section 5.2. Note that dim u?b .
/ D 4l.
/. If
� 2ƒ�.u?b .
/

�/, let Œ��max.
/ 2 R be such that

� � Œ��max.
/!
Yb.
/;2l.
/

.2l.
//Š
(7.2.1)

is of degree strictly smaller than 4l.
/.
Recall that �B. � ; � � / is a Euclidean product on g. Let n?.
/, Nn?.
/ be the orthogonal spaces of

n.
/, Nn.
/ in n, Nn respectively. As T -modules, n?.
/' Nn?.
/.
Since t � k.
/ � k, R.k.
/; t/ is a subroot system of R.k; t/. Let RC.k.
/; t/ be the positive root

system for .k.
/; t/ induced by RC.k; t/. We use the notation in Sections 5.1, 5.2. Then t is a Cartan
subalgebra for km.
/, um.
/, m.
/. Let R.km.
/; t/, R.um.
/; t/ be the corresponding root systems.

Similar to (5.4.10), we have the disjoint union

R.um.
/; t/DR.
p
�1pm.
/; t/[R.km.
/; t/: (7.2.2)

SinceR.um.
/; t/�R.um; t/, by intersecting withRC.um; t/, we get a positive root systemRC.um.
/; t/.
Moreover,

RC.um.
/; t/DR
C.
p
�1pm.
/; t/[R

C.km.
/; t/: (7.2.3)

Let Vol.K=T /, Vol.UM=T / be the Riemannian volumes ofK=T , UM=T with respect to the restriction
of �B to k, um respectively. We have explicit formulae for them in terms of the roots; for example,

Vol.UM ; T /D…˛02RC.um;t/
1

2�h˛0; �umi
: (7.2.4)
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For 
 D k 2 T, set

cG.
/D
.�1/

p�1
2
C1 Vol.K.
/0=T /jW.UM .
/0; T /j

Vol.UM .
/0=T /jW.K.
/0; T /j
1

det.1�Ad.
//jn?.
/
: (7.2.5)

If 
 D 1, we define

cG D cG.1/D
.�1/

m�1
2
C1Vol.K=T /jW.UM ; T /j

Vol.UM=T /jW.K; T /j
: (7.2.6)

We will use the same notation as in Sections 5.3 and 5.4. In particular, Wu is defined by (5.3.4)
as a subset of W.U; TU /, and W 1.
/ is defined by (5.4.14) as a subset of W.UM ; T /. As explained
in Remark 5.4.5, for ! 2 Wu, � 2 W 1.
/, let E
!;� denote the irreducible unitary representation of
Y D UM .
/

0 or its finite central extension with highest weight �.�!.ƒ/C �um/� �y.

Definition 7.2.1. For j D 0; 1; : : : ; l.
/, ! 2Wu, � 2W 1.
/, set

Q


j;!;� .ƒ/D

.�1/jˇ.a1/
2j

j Š .2l.
/� 2j /Š .8�2/j
dimE
!;� Œ!

Yb.
/;2j h!.ƒC�u/;�
um.
/i

2l.
/�2j �max.
/: (7.2.7)

In particular, if l.
/� 1, we have

Q


0;!;� .ƒ/D

1

.2l/Š
dimE
!;� Œh!.ƒC �u/;�

um.
/i
2l.
/�max.
/;

Q



l.
/;!;�
.ƒ/D

.�1/l.
/ˇ.a1/
2l.
/.2l.
/� 1/ŠŠ

.4�2/l.
/
dimE
!;� : (7.2.8)

Recall that a1 2 b is such that B.a1; a1/D 1. For ! 2Wu, set

bƒ;! D h! � .ƒC �u/;
p
�1a1i 2 R: (7.2.9)

Then we have

j�!.ƒ/C �um j
2
� jƒC �uj

2
D�b2ƒ;! : (7.2.10)

Note that '
 .�; �!.ƒ// is defined in Definition 5.4.3.

Theorem 7.2.2. For t > 0, we have the identity

EX;
 .F; t/D
cG.
/
p
2�t

l.
/X
jD0

t�j
X
!2Wu

�2W1.
/

".!/'
 .�; �!.ƒ//e
�2�2tb2ƒ;!Q



j;!;� .ƒ/: (7.2.11)

Remark 7.2.3. The formula (7.2.11) is compatible with the estimate (7.1.5). For example, we take 
 D 1;
then W 1.
/ reduces to f1g, the representation E
!;� is just Vƒ;! introduced in (5.3.6), and l.
/ D l ,
'
 .�; �!.ƒ//D 1. Then we take the asymptotic expansion of the right-hand side of (7.4.2) as t ! 0, the
coefficient of t�l�1=2 is given by

cG
p
2�

X
!2Wu

".!/Q

D1

l;!;1
.ƒ/: (7.2.12)
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By (5.3.7), if l � 1, we get X
!2Wu

".!/ dimVƒ;! D Tr
ƒ�.n�C/
s Œ1� dimE D 0: (7.2.13)

Then by (7.2.8) and (7.2.13), the quantity in (7.2.12) is 0 (provided l � 1).

Before proving Theorem 7.2.2, we need some preparation work.

Definition 7.2.4. For y 2 t, put

�um.
/=t.y/D
Y

˛02RC.um.
/;t/

h2�
p
�1˛0; yi;

�p
�1pm.
/=t

.y/D
Y

˛02RC.
p
�1pm.
/;t/

h2�
p
�1˛0; yi;

�km.
/=t.y/D
Y

˛02RC.km.
/;t/

h2�
p
�1˛0; yi:

(7.2.14)

For y 2 t, put

�um.
/=t.y/D
Y

˛02RC.um.
/;t/

�
exp.h�

p
�1˛0; yi/� exp.�h�

p
�1˛0; yi/

�
;

�p
�1pm.
/=t

.y/D
Y

˛02RC.
p
�1pm.
/;t/

�
exp.h�

p
�1˛0; yi/� exp.�h�

p
�1˛0; yi/

�
;

�km.
/=t.y/D
Y

˛02RC.km.
/t;t/

�
exp.h�

p
�1˛0; yi/� exp.�h�

p
�1˛0; yi/

�
:

(7.2.15)

We can always extend analytically the above functions to y 2 tC. If 
 D 1, the above functions become
�um=t.y/, �p�1pm=t.y/, �km=t.y/, �um=t.y/, �

p
�1pm=t

.y/, �km=t.y/.
If the adjoint action of T preserves certain orthogonal splittings of um, um.
/, etc., so that we have

the corresponding splitting of the root systems, then we can also define the associated �-function or
� -function as above.

It is clear that if y 2 tC,
�um.
/=t.y/D �

p
�1pm.
/=t

.y/�km.
/=t.y/;

�um.
/=t.y/D �
p
�1pm.
/=t

.y/�km=t.y/:
(7.2.16)

Set
k0m.
/D k?.
/\ km; p0m.
/D p?.
/\ pm;

k00m.
/D k?.
/\ k?.b/; p00m.
/D p?.
/\ p?.b/:
(7.2.17)

Let m?.
/ be the orthogonal space of m.
/ in m with respect to B . Then

m?.
/D p0m.
/˚ k0m.
/: (7.2.18)

We also have
km D km.
/˚ k0m.
/; pm D pm.
/˚ p0m.
/ (7.2.19)
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and
k?.
/D k0m.
/˚ k00m.
/; p?.
/D p0m.
/˚ p00m.
/: (7.2.20)

Set
u?m.
/D

p
�1p0m.
/˚ k0m.
/: (7.2.21)

Then it is the orthogonal space of um.
/ in um with respect to B .

Lemma 7.2.5. The following spaces are isomorphic to each other as modules of T by the adjoint actions:

n?.
/' Nn?.
/' k00m.
/' p00m.
/: (7.2.22)
Proof. Note that

dim nD dim k� dim km; dim n.
/D dim k.
/� dim km.
/: (7.2.23)

Together with the splittings (7.2.19), (7.2.20), we get

dim k00m.
/D dim n?.
/: (7.2.24)
Similarly, dim p00m.
/D dim n?.
/.

If f 2 n?.
/, then f C �.f / 2 k; we can verify directly that f C �.f / 2 k00m.
/. Then the map
f 2 n?.
/ 7! f C�.f / 2 k00m.
/ defines an isomorphisms of T -modules. Similar for n?.
/' p00m.
/. �

Since 
 D k 2 T, let y0 2 t be such that exp.y0/D 
 . Note that y0 is not unique.

Lemma 7.2.6. If y 2 t is regular with respect to R.km.
/; t/, then we have

J
 .y/Trƒ
�.p�/

s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.y//

i
D

.�1/dim pm.
/=2C1

det.1�Ad.k//jn?.
/
Tr
ƒ�.n�C/
s Œe�i ad.y/ Ad.k/�

�
�p
�1pm.
/=t

.iy/

�km.
/=t.iy/

�um.
/=t.iy/�u?m .
/=t.�iyCy0/

�u?m .
/=t.y0/
: (7.2.25)

Proof. Using (5.4.23), (7.2.20) and Lemma 7.2.5, we get that, for y 2 t,�
1

det.1�Ad.k//jz?.
/

det.1� e�i ad.y/ Ad.k//jk?.
/
det.1� e�i ad.y/ Ad.k//jp?.
/

� 1
2

D
.�1/

1
2

dim p0m.
/

det.1�Ad.k//jn?.
/

1

�u?m .
/=t.y0/

�k0m.
/=t.�iyCy0/

�p
�1p0m.
/=t

.�iyCy0/
: (7.2.26)

Recall that in Section 5.1, as KM -modules, we have the isomorphism

p' b˚ pm˚ n: (7.2.27)
Note that

Ad.k/D ead.y0/: (7.2.28)

If y 2 t, when acting on p, we have

Ad.k/ exp.�i ad.y//D exp.ad.�iyCy0//: (7.2.29)
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Note that dim bD 1. Then, for y 2 t, we get

Trƒ
�.p�/

s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.y//

i
D�Trƒ

�.p�m/
s ŒAd.k/e�i ad.y/�Tr

ƒ�.n�C/
s ŒAd.k/e�i ad.y/�

D� det.1�Ad.k�1/ei ad.y//jpm Tr
ƒ�.n�C/
s ŒAd.k/e�i ad.y/�; (7.2.30)

where we have the identity

det.1�Ad.k�1/ei ad.y//jpm D .�1/
1
2

dim pm�p
�1p0m.
/=t

.�iyCy0/
2�p

�1pm.
/=t
.iy/2: (7.2.31)

Note that analogous to (7.2.27), we have p.
/ ' b ˚ pm.
/ ˚ n.
/; using [Bismut 2011, equa-
tion (7.5.24)], if y 2 t, we have

yA.i ad.y/jp
�1p.
//D

�p
�1pm.
/=t

.iy/

�p
�1pm.
/=t

.iy/
yA.i ad.y/jn.
//;

yA.i ad.y/jk.
//D
�k.
/=t.iy/

�k.
/=t.iy/
D
�km.
/=t.iy/

�km.
/=t.iy/
yA.i ad.y/jn.
//:

(7.2.32)

Combining (7.1.4), (7.2.26) and (7.2.30)–(7.2.32), we get (7.2.25). �

Now we prove Theorem 7.2.2.

Proof of Theorem 7.2.2. Put

F
 .ƒ; t/D
1

.2�t/
p
2

Z
k.
/

J
 .Y
k
0/Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/e�i ad.Y k

0 /
i

�TrE Œ�E .k/e�i�
E.Y k

0 /�e�
jY k
0
j2

2t
dY k

0

.2�t/
q
2

: (7.2.33)

By (7.1.3), we have

EX;
 .F; t/D exp.�2�2t jƒC �uj2/F
 .ƒ; t/: (7.2.34)

Recall that r D pC q D dimR z.
/. By the Weyl integration formula,

F
 .ƒ; t/D
Vol.K.
/0=T /

.2�t/
r
2 jW.K.
/0; T /j

Z
t
j�k.
/=t.y/j

2J
 .y/Trƒ
�.p�/

s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/e�i ad.y/

i
�TrE Œ�E .k/ exp.�i�E .y//�e�

jyj2

2t dy: (7.2.35)

Recall that l.
/D 1
2

dim n.
/. We can verify directly that if y 2 t,

�k.
/=t.iy/
2
D .�1/l.
/�km.
/=t.iy/

2 det.i ad.y//jn.
/C : (7.2.36)

Moreover, if y 2 t is such that �um.
/=t.y/¤ 0,

j�k.
/=t.y/j
2

j�um.
/=t.y/j
2
D

�k.
/=t.iy/
2

�um.
/=t.iy/
2
: (7.2.37)
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Then by Lemma 7.2.6 and (7.2.5), (7.2.32), (7.2.36), we get

j�k.
/=t.y/j
2

j�um.
/=t.y/j
2
J
 .y/Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.y//

i
D
.�1/l.
/C

1
2

dim pm.
/C1

det.1�Ad.k//jn?.
/
Tr
ƒ�.n�C/
s Œe�i ad.y/ Ad.k/�

� det.i ad.y//jn.
/C yA
�1.i ad.y/jum.
//

�det.1� e�i ad.y/ Ad.k//ju?m .
/
det.1�Ad.k//u?m .
/

� 1
2

: (7.2.38)

Note that we have the even number

p� 1D dim pm.
/C 2l.
/: (7.2.39)

Now we can rewrite (7.2.35) as

F
 .ƒ; t/D
.�1/

p�1
2
C1 Vol.K.
/0=T /

.2�t/
r
2 jW.K.
/0; T /j

1

det.1�Ad.k//jn?.
/

�

Z
t
j�um.
/=t.y/j

2 det.i ad.y//jn.
/C � yA
�1.i ad.y/jum.
//

�

�det.1� e�i ad.y/ Ad.k//ju?m .
/
det.1�Ad.k//u?m .
/

� 1
2

�Tr
ƒ�.n�C/˝E
s Œe�i�

ƒ�.n�
C
/˝E

.y/�ƒ
�.n�C/˝E .k/�e�jyj

2=2t dy: (7.2.40)

Note that the function in y 2 t

det.i ad.y//jn.
/C � yA
�1.i ad.y/jum.
//

�det.1� e�i ad.y/ Ad.k//ju?m .
/
det.1�Ad.k//u?m .
/

� 1
2

�Tr
ƒ�.n�C/˝E
s Œe�i�

ƒ�.n�
C
/˝E

.y/�ƒ
�.n�C/˝E .k/� (7.2.41)

can be extended directly to a UM .
/0-invariant function in y 2 um.
/. Since t is a Cartan subalgebra of
um.
/, we can apply the Weyl integration formula for the pair .um.
/; t/; we get

F
 .ƒ; t/D
cG.
/

.2�t/
r
2

Z
y2um.
/

det.i ad.y//jn.
/C � yA
�1.i ad.y/jum.
//

�det.1� e�i ad.y/ Ad.k//ju?m .
/
det.1�Ad.k//u?m .
/

� 1
2

�Tr
ƒ�.n�C/˝E
s Œe�i�

ƒ�.n�
C
/˝E

.y/�ƒ
�.n�C/˝E .k/�e�

jyj2

2t dy: (7.2.42)

The constant cG.
/ is defined by (7.2.5).
Note that

r D dim um.
/C 4l.
/C 1: (7.2.43)

If y 2 um.
/, then

B

�
y;
�um.
/

2�

�
2ƒ2.u?b .
/

�/: (7.2.44)
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If y 2 um.
/, by [Shen 2018, equation (7-27)], we have

det.i ad.y//jn.
/C
.2�t/2l.
/

D

�
exp

�
1

t
B

�
y;
�um.
/

2�

���max.
/

: (7.2.45)

Combining (7.2.42)–(7.2.45), we get

F
 .ƒ; t/D
cG.
/
p
2�t

�Z
y2um.
/

yA�1.i ad.y/jum.
//
�det.1�e�i ad.y/Ad.k//ju?m .
/

det.1�Ad.k//u?m .
/

� 1
2

�Tr
ƒ�.n�C/˝E
s Œ�ƒ

�.n�C/˝E .e�iyk/�e
1
t
B.y;�

um.
/

2�
/� jyj

2

2t
dy

.2�t/dimum.
/=2

�max.
/

: (7.2.46)

By (5.2.21) if y 2 um.
/, then

B

�
y;
�um.
/

2�

�
�
jyj2

2
D
1

2
B

�
yC

�um.
/

2�
; yC

�um.
/

2�

�
�
ˇ.a1/

2

8�2
!Yb.
/;2: (7.2.47)

Let �um.
/ be the standard negative Laplace operator on the Euclidean space .um.
/;�Bjum.
//. Then
by considering the heat kernel of ��um.
/, we can rewrite (7.2.46) as

F
 .ƒ; t/D
cG.
/
p
2�t

�
exp

�
�
ˇ.a1/

2!Yb.
/;2

8�2t

�
�exp

�
t

2
�um.
/

��
yA�1.i ad.y/jum.
//

�det.1�e�i ad.y/Ad.k//ju?m .
/
det.1�Ad.k//u?m .
/

� 1
2

�Tr
ƒ�.n�C/˝E
s Œ�ƒ

�.n�C/˝E .e�iyk/�

�ˇ̌̌̌
yD��

um.
/

2�

�max.
/

: (7.2.48)

Recall that Vƒ;! is an irreducible unitary representation of UM with highest weight �!.ƒ/. By (5.3.7),
for y 2 um.
/, then

Tr
ƒ�.n�C/˝E
s Œ�ƒ

�.n�C/˝E .e�iyk/�D
X
!2Wu

".!/TrVƒ;! Œ�Vƒ;! .e�iyk/�: (7.2.49)

Then we apply the generalized Kirillov formula (5.4.21) to each term in the right-hand side of (7.2.49),
we conclude that, for ! 2Wu, the function in y 2 um.
/

yA�1.i ad.y/jum.
//
�det.1� e�i ad.y/ Ad.k//ju?m .
/

det.1�Ad.k//u?m .
/

� 1
2

TrVƒ;! Œ�Vƒ;! .e�iyk/� (7.2.50)

is an eigenfunction of �um.
/ associated with the eigenvalue 4�2j�!.ƒ/C�um j
2. Then the heat operator

exp
�
t
2
�um.
/

�
acts on the function (7.2.50) as a scalar e2�

2t j�!.ƒ/C�um j
2

. By (5.3.8), (5.3.9), for ! 2Wu,
we get

�!.ƒ/C �um D P0.!.ƒC �u//: (7.2.51)

Combing the above computation with the term e�2�
2t jƒC�uj

2

in (7.2.34), by (7.2.10), we get the factor
e�2�

2tb2ƒ;! in (7.2.11).
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Now we deal with the main part in (7.2.48) after removing the heat operator exp
�
t
2
�um.
/

�
. We will

use the same notation as in Section 5.4. The orbit O

�.�!.ƒ/C�um /

is defined in (5.4.17) equipped with a
Liouville measure d�
� . We claim the identity�

exp
�
�
ˇ.a1/

2!Yb.
/;2

8�2t

�
�

�
yA�1.i ad.y/jum.
//

�det.1�e�i ad.y/Ad.k//ju?m .
/
det.1�Ad.k//u?m .
/

� 1
2

TrVƒ;!s Œ�Vƒ;! .e�iyk/�

�ˇ̌̌̌
yD��

um.
/

2�

�max.
/

D

X
�2W 1.
/

'
 .�;�!.ƒ//�dimE
!;�

�
exp

�
�
ˇ.a1/

2!Yb.
/;2

8�2t
�h�.�!.ƒ/C�um/;�

um.
/i

��max.
/

: (7.2.52)

Indeed, by (5.4.21), we have the following identity as elements in ƒ�.u?b .
/
�/:�

yA�1.i ad.y/jum.
//
�det.1� e�i ad.y/ Ad.k//ju?m .
/

det.1�Ad.k//u?m .
/

� 1
2

TrVƒ;!s Œ�Vƒ;! .e�iyk/�

�ˇ̌̌̌
yD��

um.
/

2�

D

X
�2W 1.
/

'
 .�; �!.ƒ//

Z
f 2O


�.�!.ƒ/C�um /

e�hf;�
um.
/i d�
� : (7.2.53)

Recall that the curvature form �ub.
/ is invariant by the action of UM .
/0 on Yb.
/. Since a1 and
!Yb.
/ are invariant by UM .
/0-action, so is �um.
/. Therefore, for f 2 um.
/�, u 2 UM .
/0,�

exp
�
�
ˇ.a1/

2!Yb.
/;2

8�2t

�
exp.�hAd�.u/f;�um.
/i/

�max.
/

D det Ad.u/ju?b .
/

�
exp

�
�
ˇ.a1/

2!Yb.
/;2

8�2t

�
exp.�hf;�um.
/i/

�max.
/

: (7.2.54)

Since UM .
/0 acts on u?b .
/ isometrically with respect to �Bju?b .
/,

det Ad.u/ju?b .
/ D 1: (7.2.55)

Then (7.2.52) follows from (5.4.6) and (7.2.53)–(7.2.55).
The right-hand side of (7.2.52) is a polynomial in t�1. Recall that dim u?b .
/D 4l.
/. Then, for each

� 2W 1.
/, we can rewrite the term Œ � � � �max.
/ in the right-hand side of (7.2.52) as follows:
l.
/X
jD0

1

tj
.�1/jˇ.a1/

2j

j Š.2l.
/� 2j /Š.8�2/j
Œ!Yb.
/;2j h!.ƒC �u/;�

um.
/i
2l.
/�2j �max.
/: (7.2.56)

Finally, putting together (7.2.7), (7.2.34), (7.2.48), (7.2.49), (7.2.52), and (7.2.56), we get (7.2.11). �

The Mellin transform of EX;
 .F; t/ (if applicable) is defined by the following formula as a function in
s 2 C with <.s/� 0:

MEX;
 .F; s/D�
1

�.s/

Z C1
0

EX;
 .F; t/ts�1 dt: (7.2.57)
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If MEX;
 .F; s/ admits a meromorphic extension on C which is holomorphic at s D 0, we will set

PEX;
 .F /D
@

@s

ˇ̌̌
sD0

MEX;
 .F; s/: (7.2.58)

Theorem 7.2.7. Suppose that the dominant weightƒ is such that, for every ! 2Wu, bƒ;! ¤ 0. Then, for
s 2 C with <.s/ > l.
/C 1, MEX;
 .F; s/ is well-defined and holomorphic, which admits a meromorphic
extension to s 2 C.

Moreover, we have the identity

MEX;
 .F; s/

D�
cG.
/
p
2�

l.
/X
jD0

�
�
s� j � 1

2

�
�.s/

� X
!2Wu

�2W1.
/

".!/'
 .�; �!.ƒ//Q


j;!;� .ƒ/.2�

2b2ƒ;!/
jC 1

2
�s

�
: (7.2.59)

Then MEX;
 .F; s/ is holomorphic at s D 0. We have

PEX;
 .F /

D�
cG.
/
p
2

l.
/X
jD0

.�4/jC1.j C 1/Š

.2j C 2/Š

� X
!2Wu

�2W1.
/

".!/'
 .�; �!.ƒ//Q


j;!;� .ƒ/.2�

2b2ƒ;!/
jC 1

2

�
: (7.2.60)

Proof. By Theorem 7.2.2, the assumption on ƒ implies that EX;
 .F; t/ decays exponentially as t !C1.
By (7.1.6) and (7.2.11), we get (7.2.59). This proves the first part of this theorem.

Equation (7.2.60) is a direct consequence of (7.2.59) by taking its derivative at 0. This completes the
proof of our theorem. �

The formula in the right-hand side of (7.2.60) still looks complicated; we can rewrite it in a neat way
as follows. We introduce the following functions.

Definition 7.2.8. Let a1 2 b� take value �1 at a1. Note that 
 2 T. For ! 2 Wu, � 2 W 1.
/, if
ƒ 2 PCC.U /, for z 2 C, set

P


!;�;ƒ.z/D dimE
!;� �

�
exp

�
h�ub.
/; �.�!.ƒ/C �um/C z

p
�1a1i

��max.
/
: (7.2.61)

Since � fixes �ub.
/, by the fact that det � ju?b .
/ D 1, we have P 
!;�;ƒ.z/ is an even polynomial in z.
Moreover, by the dimension formula (5.4.6), the coefficients of zj , j 2 N, in P 
!;�;ƒ.z/ are polynomials
in ƒ. Such polynomials are related to the Plancherel measures in the representation theory.

Lemma 7.2.9. We have the identity

l.
/X
jD0

.�4/jC1.j C 1/Š
p
2.2j C 2/Š

Q


j;!;� .ƒ/.2�

2.bƒ;!/
2/jC

1
2 D�2�

Z jbƒ;! j
0

P


!;�;ƒ.t/ dt: (7.2.62)

Proof. We have

h�!.ƒ/C �um C z
p
�1a1; �ub.
/i D zˇ.a1/!

Yb.
/Ch!.ƒC �u/;�
um.
/i: (7.2.63)
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Since P 
!;�;ƒ.z/ is an even function in z,

P


!;�;ƒ.z/D dimE
!;� �

1

.2l.
//Š

��
zˇ.a1/!

Yb.
/Ch!.ƒC�u/;�
um.
/i

�2l.
/�max.
/

D dimE
!;� �
l.
/X
jD0

ˇ.a1/
2j z2j

.2l.
/�2j /Š.2j /Š

�
!Yb.
/;2j h!.ƒC�u/;�

um.
/i
2l.
/�2j

�max.
/
: (7.2.64)

Note that, for j D 0; 1; � � � ; l.
/,Z jbƒ;! j
0

t2j dt D
1

2j C 1
jbƒ;! j

2jC1: (7.2.65)

Then (7.2.62) is a consequence of (7.2.7), (7.2.64) and (7.2.65). �

As a consequence, we get the following formula for PEX;
 .F /.

Theorem 7.2.10. Suppose that the dominant weight ƒ is such that, for every ! 2Wu, bƒ;! ¤ 0. Then

PEX;
 .F /D 2�cG.
/ �
X
!2Wu

�2W1.
/

".!/'
 .�; �!.ƒ//

Z jbƒ;! j
0

P


!;�;ƒ.t/ dt: (7.2.66)

7.3. A family of representations of G . We recall a definition of nondegeneracy of � in [Bismut et al.
2017, Definition 1.13, Proposition 8.12].

Definition 7.3.1. A dominant weight ƒ 2PCC.U / is said to be nondegenerate with respect to the Cartan
involution � if

W.U; TU / �ƒ\ t� D∅: (7.3.1)

It is equivalent to

Ad�.U /ƒ\ k� D∅: (7.3.2)

Note that if such dominant weight exists, we must have ı.G/ > 0.

Let .E; �E / be the irreducible unitary representation of U with highest weight ƒ 2 PCC.U /. By
the unitary trick, it extends to an irreducible representation of G, which we still denote by .E; �E /.
Then ƒ being nondegenerate is equivalent to saying that .E; �E / is not isomorphic to .E; �E ı �/ as
G-representations (as in [Müller and Pfaff 2013a]).

Definition 7.3.2. If � 2 t�U , for ! 2W.U; TU /, put

a�;! D h! ��;
p
�1a1i 2 R: (7.3.3)

Recall the real number b�;! is already defined by (7.2.9); then b�;! D a�;! C a�u;! . In particular, we
simply put a� D a�;1, b� D b�;1.

Lemma 7.3.3. If � 2 PCC.U / is nondegenerate, then, for ! 2W.U; TU /, a�;! ¤ 0.
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Now we fix two dominant weights �; �0 2 PCC.U /. Let f.Ed ; �Ed /gjd2N be the sequence of
representations of G given by the irreducible unitary representations of U with the highest weights
d�C�0, d 2 N.

Put Fd D G �K Ed . Let DX;Fd ;2 denote the associated de Rham–Hodge Laplacian. For t > 0, let
exp.�tDX;Fd ;2=2/ denote the heat operator associated with DX;Fd ;2=2. By taking ƒD d�C�0, we
apply our results in previous subsection to the sequence EX;
 .Fd ; t /, d 2 N.

7.4. Asymptotics for identity orbital integrals. In this subsection, we specialize our results in Section 7.2
for 
 D 1 and ƒD d�C�0. Now the set W 1.
/ reduces to f1g, and l.
/D l , '
 .�; �!.ƒ//D 1. We
will drop the superscript 
 and subscript � in our notation.

Moreover, for ! 2 Wu, the representation E
D1!;�D1 is just Vƒ;! introduced in (5.3.6), which is the
irreducible unitary representation of UM with highest weight �!.ƒ/ given by (5.3.8).

Definition 7.4.1. By taking ƒ D d� C �0 in (7.2.7), we define the following functions in d : for
j D 0; 1; : : : ; l , ! 2Wu, set

Q
�;�0
j;! .d/DQj;!.d�C�0/

D
.�1/jˇ.a1/

2j

j Š.2l � 2j /Š.8�2/j
dimVd�C�0;! Œ!

Yb;2j h!.d�C�0C �u/;�
umi

2l�2j �max: (7.4.1)

By the Weyl dimension formula, dimVd�C�0;! is a polynomial in d . Then Q�;�0j;! .d/ is a polynomial
in d of degree � 1

2
dim.g=h/� 2j .

By Theorem 7.2.2 and (7.4.1), we get directly the following results.

Theorem 7.4.2. For t > 0, we have the identity

IX .Fd ; t /D
cG
p
2�t

lX
jD0

t�j
X
!2Wu

".!/e�2�
2t.da�;!Cb�0;!/

2

Q
�;�0
j;! .d/: (7.4.2)

Theorem 7.4.3. Suppose that � is nondegenerate with respect to � . For d 2 N large enough and for
s 2C with <.s/� 0, MIX .Fd ; s/ is well-defined and holomorphic, which admits a unique meromorphic
extension to s 2 C and is holomorphic at s D 0.

Moreover, we have the identities

MIX .Fd ; s/D�
cG
p
2�

lX
jD0

�
�
s�j�1

2

�
�.s/

� X
!2Wu

".!/Q
�;�0
j;! .d/.2�2.da�;!Cb�0;!/

2/jC
1
2
�s

�
; (7.4.3)

PIX .Fd /D�
cG
p
2

lX
jD0

.�4/jC1.jC1/Š

.2jC2/Š

� X
!2Wu

".!/Q
�;�0
j;! .d/.2�2.da�;!Cb�0;!/

2/jC
1
2

�
: (7.4.4)

In particular, the quantity PIX .Fd / is a polynomial in d for d large enough, whose coefficients depend
only on the given root system and �, �0, and has degree � 1

2
dim.g=h/C 1.
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Proof. Since � is nondegenerate, by Lemma 7.3.3, a�;! ¤ 0, ! 2Wu. Then there exists d0 2N such that
for d � d0, .da�;! C b�0;!/

2 > 0. Then by Theorem 7.2.7, we get first part of this theorem and (7.4.3),
(7.4.4).

Note that

Œ.da�;! C b�0;!/
2�
1
2 D jda�;! C b�0;! j:

For d � d0,

jda�;! C b�0;! j D sign.a�;!/.da�;! C b�0;!/:

Then we see that PIX .Fd / is a polynomial in d for d large enough. �

As explained in Remark 5.3.3, when G has noncompact center with ı.G/D 1 (but U is still assumed to
be compact), most of the above computations can be reduce into very simple ones. Recall that a�; b�0 2R

are defined in Definition 7.3.2.

Corollary 7.4.4. Assume that U is compact and that G has noncompact center with ı.G/ D 1, and
assume that � is nondegenerate. Then, for t > 0, s 2 C,

IX .Fd ; t /D
cG
p
2�t

e�2�
2t.da�Cb�0 /

2

dimEd ;

MIX .Fd ; s/D�
cG
p
2�

�
�
s� 1

2

�
�.s/

.2�2.da�C b�0/
2/1=2�s dimEd : (7.4.5)

Furthermore,

PIX .Fd /D 2�cG jda�C b�0 j dimEd : (7.4.6)

Proof. By the hypothesis, we get that l D 0, Wu D f1g and Q�;�00;1 .d/D dimEd . Then (7.4.5), (7.4.6)
are just special cases of (7.4.2), (7.4.3) and (7.4.4).

However, we can prove them more directly using a result of Proposition 4.1.6. It is enough to prove
the first identity in (7.4.5). Note that by (5.3.11), we have

X 0 DM=K; (7.4.7)

with ı.X 0/D 0.
By [Müller and Pfaff 2013a, Proposition 5.2] or [Shen 2018, Proposition 4.1], we have

Œe.TX 0;rTX
0

/�max
D .�1/

m�1
2
jW.UM ; T /j=jW.K; T /j

Vol.UM=K/
: (7.4.8)

Then by (7.2.6), we have

Œe.TX 0;rTX
0

/�max
D�cG : (7.4.9)

By (4.1.28) and (7.3.3), we have

˛Ed D�2�.da�C b�0/: (7.4.10)

Combing (4.1.31) and (7.4.8) - (7.4.10), we get the first identity in (7.4.5), and hence the other identities.
This gives a second proof to this corollary. �
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7.5. Connection to Müller and Pfaff’s results. In this subsection, we assume that G has compact center
with ı.G/D 1. We explain here how to connect our computations in the previous subsection to the results
in [Müller and Pfaff 2013a].

For 
 D 1, ! 2Wu, the function P 
!;�;ƒ defined in (7.2.61) now reduces to

P!;ƒ.z/D dimVƒ;!
�
exp

�
h�!.ƒ/C �um C z

p
�1a1; �u.b/

i
��max

: (7.5.1)

We can verify directly that

P!;ƒ.z/D
Vol.UM=T /
Vol.U=TU /

…˛02RC.u;tU /
h˛0; �!.ƒ/C �um C z

p
�1a1i

h˛0; �ui
: (7.5.2)

The scalar product in (7.5.2) is taken with respect to �Bju. Up to a universal constant, P!;ƒ.z/ is just the
polynomial related to the Plancherel measure of representation Vƒ;! as given in [Müller and Pfaff 2013a,
equation (6.10)]. Note that there is no factor .2�/2l in (7.5.2) because of our normalization for Œ � �max.

By Theorem 7.2.10, we have the following result for sufficiently large d .

Corollary 7.5.1. Suppose that � is nondegenerate with respect to � . Then

PIX .Fd /D 2�cG
X
!2Wu

".!/

Z jda�;!Cb�0;! j
0

P!;d�C�0.t/ dt: (7.5.3)

By [Müller and Pfaff 2013a, Lemma 6.1], we can get the identity

jW.K; T /j D 2jW.KM ; T /j: (7.5.4)

Combining (7.2.6), (7.5.2), (7.5.4), we see that the formula in Corollary 7.5.1, is exactly the same formula
of [Müller and Pfaff 2013a, Proposition 6.6] for PIX .Fd /.

Recall that the U -representation Ed has highest weight d�C�0 2PCC.U /. Then by Weyl dimension
formula, dimEd is a polynomial in d . If � is regular, then the degree (in d ) of dimEd is 1

2
dim g=h.

For determining the leading term of PIX .Fd /, as mentioned in the Introduction, we can specialize
the result of [Bismut et al. 2017, Theorem 0.1] as in Section 8 of that work for the symmetric space X.
Here to emphasize PIX .Fd / being a polynomial in d , we state a result of [Müller and Pfaff 2013a,
Proposition 1.3] as follows.

Proposition 7.5.2. Suppose that � is nondegenerate and that �0 D 0. Then there exists a constant
CX;� ¤ 0 such that

PIX .Fd /D CX;�d dimEd CR.d/; (7.5.5)

where R.d/ is a polynomial whose degree is no greater than the degree of dimEd .

Remark 7.5.3. Note that Müller and Pfaff [2013a, Proposition 1.3] proved Proposition 7.5.2 by reducing
the problems to the cases G D SL3.R/ and SO0.p; q/ (pq > 1 odd). In particular, for certain examples
of �, they also worked out explicitly the constant CX;� [Müller and Pfaff 2013a, Corollaries 1.4, 1.5].

Similarly, if we take a nonzero �0, we can repeat their computations for G D SL3.R/ and SO0.p; q/
(pq > 1 odd) in order to get more explicit information on the leading terms of PIX .Fd /.
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An important step in Müller and Pfaff’s proof to Proposition 7.5.2 is reducing the computation of
PIX .Fd / to the cases where gD sl3.R/ or so.p; q/ with pq >1 odd. Such reduction is already explained
in Section 4.2. More precisely, we have

X DX1 �X2; (7.5.6)

where X1 is one case listed in (4.2.1), and X2 is a symmetric space with rank 0.
We use the notation in Section 4.2 and assume G to be semisimple. Let �i , �0;i be dominant weights

of Ui , i D 1; 2, such that

�D �1C�2; �0 D �0;1C�0;2: (7.5.7)

Now we consider the sequence d�C�0, d 2 N. Then

Ed DEd�1C�0;1 ˝Ed�2C�0;2 : (7.5.8)

Since G2 is equal rank, the nondegeneracy of � with respect to � is equivalent to the nondegeneracy
of �1 with respect to �1. Then by Proposition 4.2.2, after taking the Mellin transform, we have

MIX .Fd ; s/D Œe.TX2;rTX2/�max2 dimEd�2C�0;2MIX1.Fd�1C�0;1 ; s/: (7.5.9)

Then

PIX .Fd /D Œe.TX2;rTX2/�max2 dimEd�2C�0;2PIX1.Fd�1C�0;1/: (7.5.10)

Then we only need to evaluate PIX1.Fd�1C�0;1/ explicitly, which has been dealt with in [Müller and
Pfaff 2013a, Section 6].

7.6. Asymptotic elliptic orbital integrals.

Definition 7.6.1. A function f .d/ in d is called an exponential polynomial in d if it is a finite sum of
the term cj;se

2�
p
�1sdd j with j 2 N, s 2 R, cj;s 2 C. The largest j � 0 such that cj;s ¤ 0 in f .d/ is

called the degree of f .d/.
We say that the oscillating term e2�

p
�1sd is nice if s 2Q. We say that an exponential polynomial f .d/

in d is nice if all its oscillating terms are nice.

Remark 7.6.2. If f .d/ is a nice exponential polynomial in d , then there exists an N0 2 N>0 such that
the function f .dN0/ is a polynomial in d .

Note that by (5.4.18), '
 .�; �!.d�C�0// is an oscillating term in d , which is nice when 
 2 T is of
finite order. The following theorem is a direct consequence of Theorem 7.2.10.

Theorem 7.6.3. Suppose that � is nondegenerate, and that 
 D k 2 T. Then, for sufficiently large d ,
PEX;
 .Fd / is an exponential polynomial in d . Moreover, we have

PEX;
 .Fd /D 2�cG.
/ �
X
!2Wu

�2W1.
/

".!/'
 .�; �!.d�C�0//

Z jda�;!Cb�0;! j
0

P



!;�;d�C�0
.t/ dt: (7.6.1)
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If we considerGDSpin.1; 2nC1/, n� 1, as in [Fedosova 2015], then up to a constant, the exponential
polynomial

P
�2W 1.
/ '
 .�; �!.d�C �0//P




!;�;d�C�0
.t/ is just the one defined in [Fedosova 2015,

Proposition 5.1]. This way, our results are compatible with her results in [Fedosova 2015, Theorem 1,1]
for hyperbolic orbifolds.

Remark 7.6.4. Let Char.A/ denote the character ring of the complex representations of a compact Lie
group A. One key ingredient in (7.2.66) is an explicit decomposition of characters of U into characters
of UM .
/0. In the diagram below, we give two different ways of getting to this decomposition:

Char.U.
/0/
˝ƒ�n.
/�C

++
Char.U /

˝ƒ�n�C

++

Kirillov for 
2U 33

Char.UM .
/0/

Char.UM /

Kirillov for 
2UM 33

(7.6.2)

The formula in (7.2.66) is obtained by the computations along the lower path in (7.6.2). We also have the
upper path, which is essentially the geometric localization formula obtained in Theorem 6.0.1.

We will use the same notation as in Section 6. The following theorem is a consequence of the geometric
localization formula obtained in Theorem 6.0.1.

For k 2T , letW 1
U .k/�W.U; TU / be defined as in (5.4.14) with respect to RC.u; tU /. For � 2W 1

U .k/,
the term 'U

k
.�; d�C�0/ defined as in (6.0.8) is an oscillating term, which is nice if k is of finite order.

Theorem 7.6.5. Suppose that 
 D k 2 T is elliptic and that � is nondegenerate with respect to � .
Then, for � 2 W 1

U .k/, �� 2 PCC. zU.k// is nondegenerate with respect to the Cartan involution �
on z.k/. For d 2 N, let Ek

�;d
be the irreducible unitary representation of zU.k/ with highest weight

d��C �.�0C �u/� �u.k/. This way we get a sequence of flat vector bundles fF k
�;d
gd2N on X.k/. Then,

for sufficiently large d , we have

PEX;
 .Fd /D
X

�2W 1
U .k/

'Uk .�; d�C�0/PIX.k/.F k�;d /: (7.6.3)

Proof. The nondegeneracy of �� (� 2 W 1
U .k/) follows easily from the nondegeneracy of � and the

definition ofW 1
U .k/. For proving this theorem, we only need to prove (7.6.3). Actually, by Theorem 6.0.1,

for t > 0, we get
EX;
 .Fd ; t /D

X
�2W 1

U .k/

'Uk .�; d�C�0/IX.k/.F
k
�;d ; t /; (7.6.4)

Then (7.6.3) follows from the linearity of Mellin transform. �

8. A proof of Theorem 1.0.2

In this section, we complete the proof of Theorem 1.0.2; then Theorem 1.0.1 (and Theorem 1.0.10) follows
as a consequence. We assume that G is a connected linear real reductive Lie group with ı.G/D 1 and
compact center, so that U is a compact Lie group.
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8.1. A lower bound for the Hodge Laplacian on X . We use the notation from Section 4. Recall that
e1; : : : ; em is an orthogonal basis of TX or p. Put

C g;H
D�

mX
jD1

e2j 2 U g: (8.1.1)

Let C g;H;E be its action on E via �E. Then

C g;E
D C g;H;E

CC k;E : (8.1.2)

Let �H;X be the Bochner–Laplace operator on the bundle ƒ�.T �X/˝F associated with the unitary
connection rƒ

�.T �X/˝F;u. Put

‚.F /D 1
4
SX � 1

8
hRTX .ei ; ej /ek; e`ic.ei /c.ej / Oc.ek/ Oc.e`/

�C g;H;E
C
1
2

�
c.ei /c.ej /� Oc.ei / Oc.ej /

�
RF .ei ; ej /; (8.1.3)

where RF is the curvature of the unitary connection rF on F.
Then ‚.F / is a self-adjoint section of End.ƒ�.T �X/ ˝ F /, which is parallel with respect to

rƒ
�.T �X/˝F;u. Equivalently, ‚.F / is an element in End.ƒ�.p�/ ˝ E/ which commutes with the

K-action. By [Bismut et al. 2017, equation (8.39)], we have

DX;F;2
D��H;X C‚.F /: (8.1.4)

Then, for s 2��c.X; F /, we have

hDX;F;2s; siL2 � h‚.F /s; siL2 : (8.1.5)

Let �H;X;i denote the Bochner–Laplace operator acting on �i .X; F /, and let pH;it .x; x0/ be the
kernel of exp.t�H;X;i=2/ on X with respect to dx0. We will denote by pH;it .g/ 2 End.ƒi .p�/˝E/ its
lift to G explained in Section 3.2. Let �X0 be the scalar Laplacian on X with the heat kernel pX;0t .

Let kpH;it .g/k be the operator norm of pH;it .g/ in End.ƒi .p�/˝E/. By [Müller and Pfaff 2013b,
Proposition 3.1], if g 2G; then

kp
H;i
t .g/k � p

X;0
t .g/: (8.1.6)

Let pHt be the kernel of exp.t�H;X=2/, then

pHt D

pM
iD1

p
H;i
t : (8.1.7)

Let qX;Ft be the heat kernel associated with DX;F;2=2, by (8.1.4), for g 2X,

q
X;F
t .g/D exp

�
�
t‚.F /

2

�
pHt .g/: (8.1.8)

Recall that PCC.U / is the set of dominant weights of U with respect to RC.u; tU / defined in
Section 5.3. As in Section 7.3, we fix �; �0 2 PCC.U / such that � is nondegenerate with respect to � .
Recall that, for d 2 N, .Ed ; �Ed / is the irreducible unitary representation of U with highest weight
d�C�0, which extends uniquely to a representation of G. By [Bismut et al. 2011, Théorème 3.2; 2017,
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Theorem 4.4, Remark 4.5; Müller and Pfaff 2013a, Proposition 7.5], there exist c > 0, C > 0 such that,
for d 2 N,

‚.Fd /� cd
2
�C; (8.1.9)

where the estimate d2 comes from the positive operator C g;H;Ed . By (8.1.4), (8.1.5), (8.1.9), we get

DX;Fd ;2 � cd2�C: (8.1.10)

Lemma 8.1.1. There exists d0 2 N and c0 > 0 such that if d � d0, g 2G,

kq
X;Fd
t .g/k � e�c0d

2tp
X;0
t .g/: (8.1.11)

Proof. By (8.1.9), there exist d0 2 N, c0 > 0 such that if d � d0,

‚.Fd /� c
0d2: (8.1.12)

Then if t > 0, 



exp
�
�
t‚.Fd /

2

�



� e� 12c0d2t : (8.1.13)

By (8.1.6), (8.1.7), (8.1.8), (8.1.13), we get (8.1.11). �

The locally symmetric orbifold Z is defined as �nX, where � is a cocompact discrete subgroup of G.
For 
 2 �, the number m
 � 0 is given by (3.3.3), which only depends on the conjugacy class of 
 (in G
or �). Recall that EŒ�� is the finite set of elliptic conjugacy classes in �.

For t > 0, x 2X, 
 2 �, set

vt .Fd ; 
; x/D Trƒ
�.T �X/˝Fd

s

h�
Nƒ�.T �X/

�
m

2

�
q
X;Fd
t .x; 
.x//


i
: (8.1.14)

Then by Lemma 8.1.1, we have the following result.

Lemma 8.1.2. There exist C0 > 0, c0 > 0 such that if d is large enough, for t > 0, x 2X, 
 2 �,

jvt .Fd ; 
; x/j � C0.dimEd /e
�c0d

2tp
X;0
t .x; 
.x//: (8.1.15)

Set

m� D inf
Œ
�2Œ���EŒ��

m
 : (8.1.16)

By [Liu 2018, Proposition 1.8.5], m� > 0.

Proposition 8.1.3. There exist constants C > 0, c > 0 such that if x 2X, t 2 �0; 1�, thenX

2�;
 nonelliptic

p
X;0
t .x; 
.x//� C exp

�
�
c

t

�
: (8.1.17)

Proof. By [Donnelly 1979, Theorem 3.3], there exists C0 > 0 such that when 0 < t � 1,

p
X;0
t .x; x0/� C0t

�m
2 exp

�
�
d2.x; x0/

4t

�
: (8.1.18)
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By [Liu 2018, Lemma 1.8.6], there exist c > 0, C > 0 such that for R > 0, x 2X,

#f
 2 � j 
 nonelliptic; d
 .x/�Rg � C exp.cR/: (8.1.19)

By (8.1.16), (8.1.18), (8.1.19), and using the same arguments as in the proof of [Müller and Pfaff 2013b,
Proposition 3.2], we get (8.1.17). �

8.2. A proof of Theorem 1.0.2. In this subsection, we complete our proof of Theorem 1.0.2. Note that
every elliptic element 
 2 � is of finite order, then part (2) of Theorem 1.0.2 is an easy consequence of
Theorem 7.6.5. We only need to prove part (1). We restate it as follows.

Proposition 8.2.1. Let � �G be a cocompact discrete subgroup and set Z D �nX. There exists c > 0
such that, for d large enough,

T .Z; Fd /D
Vol.Z/
jS j

PIX .Fd /C
X

Œ
�2ECŒ��

Vol.� \Z.
/nX.
//
jS.
/j

PEX;
 .Fd /CO.e�cd /; (8.2.1)

where ECŒ��DECŒ��nfŒ1�g is the finite set of nontrivial elliptic classes in Œ��.

Proof. By (8.1.10), we have

DZ;Fd ;2 � cd2�C: (8.2.2)

Then if d is large enough, we have

H �.Z; Fd /D 0: (8.2.3)

Then T .Z; Fd / can be computed using (2.2.15).
As in (2.2.12), for t > 0, set

b.Fd ; t /D
�
1C 2t

@

@t

�
Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;Fd ;2

2

�i
: (8.2.4)

As in [Bismut et al. 2017, Section 7.2], by (8.2.2), there exist constants Qc > 0, zC > 0 such that, for d
large enough and for t > 1

d
,

jb.Fd ; t /j � zC exp.�Qcd � Qct/: (8.2.5)

By (2.2.15), we have

T .Z; Fd /D�
Z C1
0

b.Fd ; t /
dt

t
: (8.2.6)

We rewrite it as

T .Z; Fd /D�
Z C1
1=d

b.Fd ; t /
dt

t
�

Z d

0

b

�
Fd ; t

d2

�
dt

t
: (8.2.7)

By (8.2.5), there exists c > 0 such that, for d large enough,Z C1
1=d

b.Fd ; t /
dt

t
DO.e�cd /: (8.2.8)
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By (3.5.1), (8.1.14), (8.2.4), we get

b.Fd ; t /D
�
1C 2t

@

@t

� Z
Z

1

jS j

X

2�

vt .Fd ; 
; z/ dz: (8.2.9)

We split the sum in (8.2.9) into two parts,X

2�;
 elliptic

C

X

2�;
 nonelliptic

; (8.2.10)

so that we write
b.Fd ; t /D belliptic.Fd ; t /C bnonelliptic.Fd ; t /: (8.2.11)

Similar to Selberg’s trace formula in Section 3.5, we get

belliptic.Fd ; t /D
X

Œ
�2EŒ��

Vol.� \Z.
/nX.
//
jS.
/j

�
1C 2t

@

@t

�
EX;
 .Fd ; t /: (8.2.12)

By (7.4.2) and (7.6.4), the terms in EX;
 .Fd ; t / are of the form

t�jC
1
2 exp.�2�2t .da0C b0/2/Q.d/; (8.2.13)

where Q.d/ is a nice exponential polynomial in d , and a0; b0 2 R with a0 ¤ 0 due to the nondegeneracy
of �. By (8.2.13), there exists c > 0 such that, for d large enough,Z d

0

belliptic

�
Fd ;

t

d2

�
dt

t
D

Z C1
0

belliptic.Fd ; t /
dt

t
CO.e�cd /: (8.2.14)

Using Proposition 7.1.1 and by (8.2.13), we get

PEX;
 .Fd /D�
Z C1
0

�
1C 2t

@

@t

�
EX;
 .Fd ; t /

dt

t
: (8.2.15)

Now we consider the contribution from the nonelliptic elements. If x 2X, put

ht .Fd ; x/D
1

jS j

X

2�;
 nonelliptic

vt .Fd ; 
; x/: (8.2.16)

Then

bnonelliptic.Fd ; t /D
�
1C 2t

@

@t

� Z
Z

ht .Fd ; z/ dz: (8.2.17)

Now we prove the following uniform estimates for x 2X :Z d

0

�
1C 2t

@

@t

�
ht=d2.Fd ; x/

dt

t
DO.e�cd /: (8.2.18)

Indeed, using Lemma 8.1.2 and Proposition 8.1.3, there exist C > 0, c0 > 0, c00 > 0 such that if d is
large enough, 0 < t � d , then

jht=d2.Fd ; x/j � C dim.Ed /e
�c0t exp

�
�
c00d2

t

�
: (8.2.19)
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Recall that dimEd is a polynomial in d . Then by (8.2.19), we haveˇ̌̌̌Z 1

0

ht=d2.Fd ; x/
dt

t

ˇ̌̌̌
� Ce�c

00d2=2 dim.Ed /
Z 1

0

e�c
00d2=2t dt

t
DO.e�cd /;ˇ̌̌̌Z d

1

ht=d2.Fd ; x/
dt

t

ˇ̌̌̌
� Ce�c

00d dim.Ed /
Z d

1

e�c
0t dt

t
DO.e�cd /:

(8.2.20)

By (8.2.19)–(8.2.20), we get (8.2.18).
At last, we assembly together (8.2.7), (8.2.8), (8.2.11), (8.2.14)–(8.2.18), we get exactly (8.2.1). �

Note that since T .Z; Fd / is always a real number, (8.2.1) still holds if we take the real part of
PEX;
 .Fd / instead.
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THE LANDAU EQUATION AS A GRADIENT FLOW

JOSÉ A. CARRILLO, MATIAS G. DELGADINO, LAURENT DESVILLETTES AND JEREMY S.-H. WU

We propose a gradient flow perspective to the spatially homogeneous Landau equation for soft potentials.
We construct a tailored metric on the space of probability measures based on the entropy dissipation of
the Landau equation. Under this metric, the Landau equation can be characterized as the gradient flow
of the Boltzmann entropy. In particular, we characterize the dynamics of the PDE through a functional
inequality which is usually referred as the energy dissipation inequality (EDI). Furthermore, analogous to
the optimal transportation setting, we show that this interpretation can be used in a minimizing movement
scheme to construct solutions to a regularized Landau equation.

1. Introduction

The Landau equation is an important partial differential equation in kinetic theory. It gives a description
of colliding particles in plasma physics [Lifshitz and Pitaevskiı̆ 1981], and it can be formally derived as a
limit of the Boltzmann equation where grazing collisions are dominant [Degond and Lucquin-Desreux
1992; Villani 1998a]. Similar to the Boltzmann equation (see [Boblylev et al. 2013] for a consistency
result and related derivation issues), the rigorous derivation of the Landau equation from particle dynamics
is still a huge challenge. For a spatially homogeneous density of particles f = ft(v) for t ∈ (0,∞),
v ∈ Rd, the homogeneous Landau equation reads

∂t f (v)= ∇v ·

(
f (v)

∫
Rd

|v− v∗|
2+γ5[v− v∗](∇v log f (v)− ∇v∗ log f (v∗)) f (v∗) dv∗

)
. (1)

For notational convenience, we sometimes abbreviate f = ft(v) and f∗ = ft(v∗). We also denote the
differentiations by ∇ = ∇v and ∇∗ = ∇v∗ . The physically relevant parameters are usually d = 2, 3 and
γ ≥−d −1 with5[z]= I −(z⊗z)/|z|2 being the projection matrix onto {z}⊥. In this paper, for simplicity
we will focus in the case d = 3 and vary the weight parameter γ , although most of our results are valid in
arbitrary dimension. The regime 0 < γ < 1 corresponds to the so-called hard potentials, while γ < 0
corresponds to the soft potentials with a further classification of −2 ≤ γ < 0 as the moderately soft
potentials and −4 ≤ γ <−2 as the very soft potentials. The particular instances of γ = 0 and γ = −d
are known as the Maxwellian and Coulomb cases respectively.

The purpose of this work is to propose a new perspective inspired from gradient flows for weak solutions
to (1), which is in analogy with the relationship of the heat equation and the 2-Wasserstein metric; see
[Jordan et al. 1998; Ambrosio et al. 2008]. Our main result is inspired by and extends [Erbar 2023]. There,
he establishes the gradient flow perspective for the closely related spatially homogeneous Boltzmann

MSC2020: primary 35Q82, 49Q22; secondary 82C40.
Keywords: Landau equation, gradient flow, steepest descent.

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/apde/
https://doi.org/10.2140/apde.2024.17-4
https://doi.org/10.2140/apde.2024.17.1331
http://msp.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1332 JOSÉ A. CARRILLO, MATIAS G. DELGADINO, LAURENT DESVILLETTES AND JEREMY S.-H. WU

equation with bounded collision kernels (γ = 0) which we perform in the case of Landau for γ ∈ (−3, 0]

(see Theorem 12). One of the fundamental steps is to symmetrize the right-hand side of (1). More
specifically, if we consider a test function φ ∈ C∞

c (R
d), we can formally characterize the equation by

d
dt

∫
Rd
φ f dv = −

1
2

∫∫
R2d

f f∗|v− v∗|
2+γ (∇φ− ∇∗φ∗) ·5[v− v∗](∇ log f − ∇∗ log f∗) dv∗ dv, (2)

where the change of variables v ↔ v∗ has been exploited. Building our analogy with the heat equation
and the 2-Wasserstein distance, we define an appropriate gradient

∇̃φ := |v− v∗|
1+γ /25[v− v∗](∇φ− ∇∗φ∗),

so that (2) now looks like

d
dt

∫
Rd
φ f dv = −

1
2

∫∫
R2d

f f∗∇̃φ · ∇̃ log f dv∗ dv,

noting that 52
=5. To highlight the use of this interpretation, we notice that ∇̃φ = 0, when we choose

as test functions φ = 1, vi , |v|2 for i = 1, . . . , d, which immediately shows that formally the equation
conserves mass, momentum and energy. The action functional defining the Landau metric mimics the
Benamou–Brenier formula [2000] for the 2-Wasserstein distance; see [Dolbeault et al. 2009; Erbar 2014;
Erbar and Maas 2014] for other distances defined analogously for nonlinear and nonlocal mobilities. In
fact, the Landau metric is built by considering a minimizing action principle over curves that are solutions
to the appropriate continuity equation, that is,

dL( f, g) := min
∂tµ+∇̃·(Vµµ∗)/2=0

µ0= f, µ1=g

{
1
2

∫ 1

0

∫∫
R2d

|V |
2 dµ(v) dµ(v∗) dt

}
, (3)

where the ∇̃ · is the appropriate divergence; the formal adjoint to the appropriate gradient (see Section 2.1).
Also, we notice that analogously to the heat equation, written as the continuity equation ∂t f =

∇ · ( f ∇ log f ), the Landau equation can be formally rewritten as

∂t f =
1
2 ∇̃ · ( f f∗∇̃ log f ),

equivalent to the continuity equation with nonlocal velocity field given by{
∂t f + ∇ · (U ( f ) f )= 0,
U ( f ) := −

∫
Rd |v− v∗|

2+γ5[v− v∗](∇ log f − ∇∗ log f∗) f∗ dv∗.
(4)

This is a direct way to write (1) in the form of a continuity equation. Considering the evolution of
Boltzmann entropy we formally obtain

d
dt

∫
Rd

f log f dv =: −D( ft)= −
1
2

∫∫
R2d

|∇̃ log f |
2 f f∗ dv∗ dv ≤ 0. (5)

In physical terms this is referred to as the entropy dissipation (referred to as entropy production in the
physics literature from defining H with a minus sign) since it formally shows that the entropy functional

H[ f ] :=

∫
Rd

f log f dv
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is nonincreasing along the dynamics of the Landau equation. Moreover, by integrating (5) in time one
formally obtains

H[ ft ] +

∫ t

0
D( fs) ds = H[ f0]. (6)

Villani [1998a] introduced the notion of H-solution, which captures this formal property. Motivated by the
physical considerations of certain conserved quantities and entropy dissipation, H-solutions provided a step
towards well-posedness of the Landau equation in the soft potential case. One advantage to this approach is
that it avoids assuming that the solutions belongs to L p(R3) for p> 1. For moderately soft potentials, the
propagation of L p norms is proven and this is enough to make sense of classical weak solutions [Wu 2014].
In the very soft potential case, there is no longer a guarantee of L p propagation due to the singularity
of the weight. We refer to [Desvillettes 2015, Section 1.2] for a heuristic description of this difficulty.

Similar to H-solutions our approach will also be based on the entropy dissipation (6). Following
De Giorgi’s minimizing movement ideas [Ambrosio 1995; Ambrosio et al. 2008], we characterize the
Landau equation by its associated energy dissipation inequality. More specifically, we show that weak
solutions to (1) with initial data f0 are completely determined by the functional inequality

H[ ft ] +
1
2

∫ t

0
| ḟ |

2
dL
(s) ds +

1
2

∫ t

0
D( fs) ds ≤ H[ f0] for a.e. every t > 0,

where | ḟ |
2
dL
(s) stands for the metric derivative associated to the Landau metric defined above. Our

analysis is also largely inspired by Erbar’s approach [2023] in viewing the Boltzmann equation as a
gradient flow and recent numerical simulations of the homogeneous Landau equation in [Carrillo et al.
2020] based on a regularized version of (4). In contrast with the classical 2-Wasserstein metric, one of the
main features of the Landau equation (1) and metric (3) is that they are nonlocal. To be precise, gradient
flow theory has been successfully applied to the study of many nonlocal PDEs [Carrillo et al. 2010; 2012;
Blanchet et al. 2008] by viewing them as gradient flows of appropriate energy functionals with respect to
the 2-Wasserstein metric. The novelty in this work is the construction of the nonlocal metric dL with
respect to which (1) can be viewed as the gradient flow of H. Hence, the convergence analysis usually
relying on convexity and lower-semicontinuity needs to be adapted to deal with the nonlocality of this
equation. In particular, our characterization Theorem 12 is based in using (expected) a priori estimates to
deal with the nonlocality through appropriate bounds.

On the other hand, the state of the art related to the uniqueness for the Landau equation depends on
the range of values γ may take. In the cases of hard potentials or Maxwellian, the uniqueness theory is
very well understood due to Villani and the third author [Desvillettes and Villani 2000a; 2000b; Villani
1998b]. In the soft potential case, one of the first major contributions to the general theory of the spatially
inhomogeneous Landau equation (γ ≥ −3) was the global existence and uniqueness result of [Guo 2002].
This result was achieved in a perturbative framework with high regularity assumptions on the initial data.
Through probabilistic arguments, the next major improvement to uniqueness for γ ∈ (−3, 0) came from
[Fournier and Guérin 2009]. Their result established uniqueness in a class of solutions that shrinks as γ
decreases towards −3, as more L p and moments assumptions are needed. In their proof, uniqueness is
shown by proving stability with respect to the 2-Wasserstein metric.
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Still lots of open questions for the soft potential case remain. In particular, a fundamental question
like uniqueness for the Coulomb case is unresolved. To tackle this and other problems an array of novel
methods have been employed. Here is an incomplete sample of the contributions made in this direction
which highlight the difficulties of the soft potential case [Desvillettes and Villani 2000a; 2000b; Alexandre
et al. 2015; Carrapatoso and Mischler 2017; Carrapatoso et al. 2017; Wu 2014; Gualdani and Zamponi
2017, 2018a; 2018b; Gualdani and Guillen 2016; Strain and Wang 2020; Golse et al. 2019a; 2019b;
Silvestre 2017]. A brief glance at some of these references illustrates the breadth of techniques that have
found partial success at answering the open questions: probability-based arguments, kinetic and parabolic
theory, and many more.

The purpose of this paper is to bring in another set of techniques to help answer some of these
fundamental questions. The gradient flow theory applied to PDEs has flourished in the last decades. In
their seminal paper, Jordan, Kinderlehrer, and Otto [Jordan et al. 1998] proposed a variational approach
(JKO scheme) extended later on to a wide class of PDEs using the optimal transportation distance of
probability measures. These results and many more achievements from their contemporaries allowed for
novel approaches to questions of existence, uniqueness, convergence to equilibrium, and other aspects of
a large class of PDEs; we mention [Ambrosio et al. 2008; Santambrogio 2017] for a coherent exposition
of these techniques and the relevant literature, even as more advances have been made since then.

The advantage of our variational characterization of the Landau equation is that it unveils new possible
routes of showing convergence results for this equation. First of all, it allows for natural regularizations of
the Landau equation by taking the steepest descent of regularized entropy functionals instead of the Boltz-
mann entropy as in [Carrillo et al. 2019]. This idea was recently developed in [Carrillo et al. 2020] leading
to structure-preserving particle schemes with good accuracy. We can also consider the framework of conver-
gence of gradient flows based on 0-convergence introduced in [Sandier and Serfaty 2004; Serfaty 2011] to
attack the convergence of these numerical methods [Carrillo et al. 2020]. Moreover, this approach is flexible
enough to also study the rigorous convergence of the grazing collision limit of the Boltzmann equation to
the Landau equation. The grazing collision limit was recently revisited in the gradient flow framework by
three of the authors [Carrillo et al. 2022]. There, ideas from 0-convergence were used to pass from Erbar’s
gradient flow description [2023] for the Boltzmann equation to the present work’s description of the
Landau equation. Finally, deriving uniqueness from the variational structure is classically done through
convexity properties of the entropy functional with respect to the geodesics of the Landau metric. This is
another important avenue of research that our work opens. Moreover, gradient flows of convex entropies
typically enjoy instantaneous smoothing [Ambrosio et al. 2008]; even if the entropy at t = 0 is infinite, for
t > 0, the entropy becomes finite. In the case of Landau, we are not aware if this property holds for H.

We mention briefly the connection between (1) and the Fokker–Planck equation. For γ = 0, one can
formally compute the evolution of

∫
viv j f (v) dv through (1). This a priori information allows one to

reduce (1) to a linear Fokker–Planck equation for γ = 0. The present work proposes the alternative
viewpoint that the resultant Fokker–Planck equation can be viewed as the dL -gradient flow of H for γ = 0.
Since many variants of the linear Fokker–Planck equation have been well-studied, this case serves as a
nice benchmark to test the gradient flow theory developed here.
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The plan of this paper is as follows. Section 2 introduces the prerequisites and contains the statements
of the main results. We first construct and analyze in Section 3 the Landau metric based on (3). For a
regularized problem, Section 4 shows the equivalence between weak solutions and gradient flows, while
Section 5 shows the existence of gradient flow solutions via a minimizing movement scheme. Finally, we
show in Section 6 that a gradient flow solution is equivalent to H-solutions of the Landau equation (1)
under some integrability assumptions. The Appendix is devoted to some technical lemmas needed in the
proof of the main theorems regarding the chain rule identity behind the definition of weak solutions for
the regularized Landau equation.

2. Preliminaries and the main results

We start by introducing the necessary notation and definitions together with a quick overview of gradient
flow concepts to make our main results fully self-contained.

2.1. Notation and definitions. We define

a ≲ ··· b ⇐⇒ there exists C(· · · ) > 0 such that a ≤ C(· · · )b.

We adopt the Japanese angle bracket notation for a smooth alternative to absolute value

⟨v⟩2
= 1 + |v|2, v ∈ Rd .

For ϵ > 0, we define our regularization kernel to be an exponential distribution:

Gϵ(v)= ϵ−d G
(
v

ϵ

)
, G(v)= Cd exp(−⟨v⟩), Cd =

(∫
Rd

exp(−⟨v⟩) dv
)−1

.

Our results work for some general tail behavior in the kernels given by

Gs,ϵ(v)= ϵ−d Gs
(
v

ϵ

)
, Gs(v)= Cs,d exp(−⟨v⟩s), Cs,d =

(∫
Rd

exp(−⟨v⟩s) dv
)−1

for s > 0; we point out some of the limitations and restrictions on s > 0 in the later estimates. We shall
refer to G2,ϵ as the Maxwellian regularization. We denote the space of probability measures over Rd

by P(Rd), endowed with the weak topology against bounded continuous functions. We will mostly
be dealing with the Lebesgue measure on Rd as our reference measure, which we denote by L. The
subset P a(Rd)⊂ P(Rd) denotes the set of absolutely continuous probability measures with respect to
Lebesgue measure. For p> 0, we also define the probability measures with finite p-moments Pp(R

d) by

Pp(R
d) :=

{
µ ∈ P(Rd)

∣∣∣∣ m p(µ) :=

∫
Rd

⟨v⟩p dµ(v) <∞

}
.

Finally, for E > 0, we consider the subset Pp,E(R
d)⊂ Pp(R

d) of probability measures with p-moments
uniformly bounded by E :

Pp,E(R
d) := {µ ∈ Pp(R

d) | m p(µ)≤ E}.
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We denote by M the space of signed Radon measures on Rd
× Rd with the standard weak* topology

against the continuous and compactly supported functions of Rd
× Rd. The space Md is the space of

signed d-length Radon measures. For T > 0, we will add the time contribution of the measures by defining
MT to be the space of signed Radon measures on Rd

× Rd
× [0, T ] with the usual weak* topology.

Similarly, Md
T will be the space of signed d-length Radon measures on Rd

× Rd
× [0, T ].

For µ ∈ P(Rd), we define a family of regularized entropies Hϵ[µ] by

Hϵ[µ] :=

∫
Rd

[µ ∗ Gϵ
](v) log[µ ∗ Gϵ

](v) dv,

which we shall see is well-defined provided µ has a finite moment in Lemma 30. Formally, one can
calculate the first variation of this functional in P2 as

δHϵ

δµ
(v)= Gϵ

∗ log[µ ∗ Gϵ
](v).

This can be formally obtained by calculating Fréchet derivatives in the sense of identifying the limit∫
Rd

δHϵ

δµ
(v)φ(v) dv = lim

t↓0

Hϵ[µ+ tφ] −Hϵ[µ]

t

for arbitrary φ ∈ C∞
c (R

d) with zero mean
∫

Rd φ = 0. To be precise, the first variation (in an L2 setting)
would actually be δHϵ/δµ= 1+Gϵ

∗ log[µ∗Gϵ
]. We drop the constant term since our functional space is

P and the first variation typically appears with derivatives applied to it. For a functional F : P a(Rd)→ R

with first variation δF/δ f , we refer to the F Landau equation as

∂t f = ∇ ·

(
f
∫

Rd
f∗|v− v∗|

2+γ5[v− v∗]

(
∇
δF
δ f

− ∇∗

δF∗

δ f∗

)
dv∗

)
. (7)

To clarify the meaning of ∇̃ · , for a given test function φ = φ(v) ∈ Rd and vector-valued test function
A = A(v, v∗) ∈ Rd, we have∫∫

R2d
[∇̃φ](v, v∗) · A(v, v∗) dv∗ dv = −

∫
Rd
φ(v)[∇̃ · A](v) dv.

In this way, the F Landau equation (7) can be concisely written as

∂t f =
1
2
∇̃ ·

(
f f∗∇̃

δF
δ f

)
.

Note, by formally testing (7) with φ = δF/δ f , one obtains an analogy of Boltzmann’s H-theorem with
the functional F :

d
dt

F [ ft ] = −DF ( ft) := −
1
2

∫∫
R2d

f f∗

∣∣∣∣∇̃ δFδ f

∣∣∣∣2

dv dv∗ ≤ 0.

We will refer to DF as the F dissipation. This notation induces our notion of weak solutions to the F
Landau equation (7) closely following Villani’s H-solutions [1998a].

Definition 1 (weak F solutions). For T > 0, we say that a curve f ∈ C([0, T ]; L1(Rd)) is a weak solution
to the F Landau equation (7) if the following hold:
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(1) f L is a probability measure with uniformly bounded second moment so that

ft ≥ 0,
∫

Rd
ft(v) dv = 1 for all t ∈ [0, T ], sup

t∈[0,T ]

∫
Rd

⟨v⟩2 ft(v) dv <∞.

(2) The functional F evaluated along the curve is bounded by its initial value:

F [ ft ] ≤ F [ f0]<+∞ for all t ∈ [0, T ].

(3) The F dissipation is time integrable:∫ T

0
DF ( ft) dt =

1
2

∫ T

0

∫∫
R2d

f f∗

∣∣∣∣∇̃ δFδ f

∣∣∣∣2

dv dv∗ dt <∞.

(4) For every test function φ ∈ C∞
c ((0, T )× Rd), equation (7) is satisfied in weak form:∫ T

0

∫
Rd
∂tφ ft(v) dv dt =

1
2

∫ T

0

∫∫
R2d

f f∗∇̃φ · ∇̃
δF
δ f

dv dv∗ dt.

For ϵ > 0, we will refer to the weak Hϵ solutions as ϵ-solutions and, recalling H is the Boltzmann
entropy, we will refer to weak H solutions as just weak solutions or H-solutions. We deliberately use the
terminology of H-solutions since the time integrability of DH( ft), as for [Villani 1998a], is essential in
our analysis.

2.2. Quick review of gradient flow theory. We recall the basic definitions of gradient flow theory that
can be found in more generality in [Ambrosio et al. 2008, Chapter 1]. Throughout, (X, d) denotes a
complete (pseudo-)metric space X with (pseudo-)metric d. Points a < b ∈ R will refer to endpoints of
some interval. F : X → (−∞,∞] will denote a proper function.

Definition 2 (absolutely continuous curve). A function µ : t ∈ (a, b) 7→µt ∈ X is said to be an absolutely
continuous curve if there exists m ∈ L2(a, b) such that for every s ≤ t ∈ (a, b)

d(µt , µs)≤

∫ t

s
m(r) dr.

Among all possible functions m in Definition 2, one can make the following minimal selection.

Definition 3 (metric derivative). For an absolutely continuous curve µ : (a, b)→ X , we define its metric
derivative at every t ∈ (a, b) by

|µ̇|(t) := lim
h→0

d(µt+h, µt)

|h|
.

Further properties of the metric derivative can be found in [Ambrosio et al. 2008, Theorem 1.1.2].

Definition 4 (strong upper gradient). The function g : X → [0,∞] is a strong upper gradient with respect
to F if for every absolutely continuous curve µ : t ∈ (a, b) 7→µt ∈ X we have that g ◦µ : (a, b)→ [0,∞]

is Borel and the following inequality holds:

|F[µt ] − F[µs]| ≤

∫ t

s
g(µr )|µ̇|(r) dr for all a < s ≤ t < b.
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Using Young’s inequality and moving everything to one side, the inequality in Definition 4 implies

F[µt ] − F[µs] +
1
2

∫ t

s
g(µr )

2 dr +
1
2

∫ t

s
|µ̇|

2(r) dr ≥ 0 for all a < s ≤ t < b.

If the reverse inequality also holds, one obtains the stronger energy dissipation equality. This leads to our
notion of gradient flows.

Definition 5 (curve of maximal slope). An absolutely continuous curve µ : (a, b)→ X is said to be a curve
of maximal slope for F with respect to its strong upper gradient g : X → [0,∞] if F ◦µ : (a, b)→ [0,∞]

is nonincreasing and the following inequality holds:

F[µt ] − F[µs] +
1
2

∫ t

s
g(µr )

2 dr +
1
2

∫ t

s
|µ̇|

2(r) dr ≤ 0 for all a < s ≤ t < b.

F has the following natural candidates for upper gradient.

Definition 6 (slopes). We define the local slope of F by

|∂F |(µ) := lim sup
ν→µ

(F(ν)− F(µ))+

d(ν, µ)
.

The superscript “+” refers to the positive part. The relaxed slope of F is given by

|∂−F |(µ) := inf{lim inf
n→∞

|∂F |(µn) | µn → µ, sup
n∈N

(d(µn, µ), F(µn)) <+∞}.

2.3. Main results. In order to understand the Landau equation as a gradient flow, we need to clarify
what type of object the corresponding metric is.

Theorem 7 (distance on P2,E(R
d)). The (pseudo-)metric dL on P2,E(R

d) satisfies:

• dL -convergent sequences are weakly convergent.

• dL -bounded sets are weakly compact.

• The map (µ0, µ1) 7→ dL(µ0, µ1) is weakly lower semicontinuous.

• For any τ ∈P2(R
d) the subset Pτ (R

d) := {µ∈P2,m2(τ )(R
d) | dL(µ, τ)<∞} is a complete geodesic

space.

The content of this theorem is essentially that our new proposed distance actually provides a meaningful
topological structure on P2,E(R

d). Furthermore, the connection to ϵ-solutions of Landau is established
when considering the previous notions of slope and upper gradient with respect to dL . General conditions
which guarantee dL(µ0, µ1)<+∞ are presently unknown. In Lemma 15, we will see that a necessary con-
dition is that µ0 and µ1 have the same mean velocity. Moreover, for γ ∈ [−4,−2], Lemma 15 asserts that
they should have the same second moment. In the construction of dL detailed in Section 3, if µ=µ(t) for
t ∈ [0, T ] is an H-solution of Landau, then it is certainly true that dL(µ(t), µ(s))<+∞ for all 0 ≤ t, s ≤ T.

Theorem 8 (epsilon equivalence). Fix any ϵ, E > 0, γ ∈ [−4, 0]. Assume that a curve µ : [0, T ] →

P2,E(R
d) has a density µt = ftL . Then µ is a curve of maximal slope for Hϵ with respect to its upper

gradient
√

DHϵ
if and only if its density f is an ϵ-solution to the Landau equation.
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From the numerical perspective, we can also construct ϵ-solutions using the JKO scheme (see Section 5)
which is the following:

Theorem 9 (existence of curves of maximal slope). For any ϵ, E > 0, γ ∈ [−4, 0], and initial data
µ0 ∈ P2,E(R

d), there exists a curve of maximal slope in P2,E(R
d) for Hϵ with respect to its upper

gradient
√

DHϵ
.

Remark 10. The curves constructed in Theorem 9 do not necessarily have a density with respect to
Lebesgue measure; the regularization allows Hϵ[µ]<+∞ without µ being absolutely continuous with
respect to Lebesgue measure. Moreover, uniqueness of such curves is beyond the scope of the present
work although it would be interesting to see what convexity properties are available for Hϵ with respect
to dL . This could also shed some insight into the available convexity of H with respect to dL .

Remark 11. The choice of an exponential convolution kernel Gϵ for the regularized entropy Hϵ is perhaps
unnatural compared to the Maxwellian regularization G2,ϵ. We discuss in more detail the estimates that fail
using G2,ϵ in Remark 33 as it pertains to Theorem 8. With respect to Theorem 9, the general construction
of some curve can be done even with the Maxwellian regularization. However, due to the same lack of
estimates, this curve might not be a curve of maximal slope with respect to

√
DHϵ

. This is discussed in
Remark 37.

Motivated by recent numerical experiments [Carrillo et al. 2020], Theorems 8 and 9 provide the theo-
retical basis to this ϵ-approximated Landau equation. In the limit ϵ → 0, more assumptions are required.

Theorem 12 (full equivalence). We fix d = 3 and γ ∈ (−3, 0]. Suppose that, for some T > 0, a curve
µ : [0, T ] → P(R3) has a density µt = ftL that satisfies the following set of assumptions:

(A1) (moments and L p) Assume that, for some 0< η ≤ γ + 3, we have

⟨v⟩2−γ ft(v) ∈ L∞

t (0, T ; L1
v ∩ L(3−η)/(3+γ−η)

v (R3)).

(A2) (finite entropy) We assume that the initial entropy is finite

H[ f0] =

∫
R3

f0 log f0 <+∞.

(A3) (finite entropy-dissipation) We assume that the entropy-dissipation of f is integrable in time:

D( ft)= DH( ft)=
1
2

∫∫
R6

f f∗

∣∣∣∣∇̃ δHδ f

∣∣∣∣2

dv dv∗

=
1
2

∫∫
R6

f f∗|v− v∗|
γ+2

|5[v− v∗](∇ log f − ∇∗ log f∗)|2 dv dv∗ ∈ L1
t (0, T ).

Then µ is a curve of maximal slope for H with respect to its upper gradient
√

D if and only if its density
f is a weak solution of the Landau equation.
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Remark 13. When γ ∈ [−2, 0], it is known that for suitable initial data (lying in weighted L p spaces for
p large enough and for a sufficient power-like weight), weak solutions of Landau equation satisfying (A1)–
(A3) are known to exist (and to be strong and unique under extra conditions). We refer to [Wu 2014], and
Appendix B of [Desvillettes 2022] when γ >−2, for details.

When γ ∈ (−3,−2), (A1) is not known to hold for global weak solutions with large initial data.
Solutions satisfying (A1)–(A3) are nevertheless known to exist for initial data close to equilibrium (see
[Guo 2002] in a much larger spatially inhomogeneous context), or in the Coulomb case γ = −3 (in that
case (3 − η)/(3 + γ − η) being replaced by ∞) for large initial data, but on specific intervals of times
only [Desvillettes et al. 2023; Arsenev and Peskov 1977].

The focus on the Maxwellian and soft potential regime γ ≤ 0 here is motivated by building a gradient
flow framework to address the open questions for Landau. The hard potential case γ ∈ (0, 1) has already
been studied in detail in [Desvillettes and Villani 2000b; 2000a]. We believe that our results also carry to
the hard potentials. In particular, the exponents in (A1) should be modified to

⟨v⟩2+γ ft(v) ∈ L∞

t (0, T ; L1
v(R

3)), ft(v) ∈ L∞

t (0, T ; L(3/(3−γ ))+
v (R3)), 0< γ < 1.

We emphasize that these conditions are guaranteed since the required moments and L p integrability are
propagated from appropriate initial data when γ >0 [Desvillettes and Villani 2000a; 2000b]. This condition
appears in [Desvillettes 2016, Corollary 2.7]. It is the hard potential version of Theorem 41, which is
crucial to the proof of Theorem 12. Much of our analysis remains the same; however, the space P2 should
be changed to P2+γ cohering with the moment condition above and trivializing Lemma 43, for example.

It is an open problem to find the range of values γ under which we can show the existence of curves
of maximal slope for the original Landau equation (1), or equivalently, constructing solutions of the
original Landau equation passing ϵ → 0 in Theorem 9. Some of the difficulties to achieve this result are
the propagation of moments for the regularized Landau equation uniformly in ϵ and the compactness of
sequences with bounded in ϵ regularized entropy dissipation DHϵ

. The rest of this work is devoted to
showing the main four theorems in the next four sections.

3. The Landau metric dL

Our approach to defining the distance dL mentioned in Theorem 7 closely follows the dynamic formulation
of transport distances originally due to Benamou and Brenier [2000] and further extended by Dolbeault,
Nazaret, and Savaré [Dolbeault et al. 2009]. We also refer the reader to [Erbar 2023] for a similar approach.

3.1. Grazing continuity equation. We consider for γ ∈ [−4, 0] the grazing continuity equation

∂tµt +
1
2 ∇̃ · Mt = 0 in (0, T )× Rd , (8)

which is interpreted in the sense of distributions. For every φ ∈ C∞
c ((0, T )× Rd), we have∫ T

0

∫
Rd
∂tφ(t, v) dµt(v) dt +

1
2

∫ T

0

∫∫
R2d

[∇̃φ](t, v, v∗) d Mt(v, v∗) dt = 0.
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Another formulation (see Lemma 14) is the following for ζ ∈ C∞
c (R

d):

d
dt

∫
Rd
ζ(v) dµt(v)=

1
2

∫∫
R2d

∇̃ζ(v, v∗) d Mt(v, v∗). (9)

The curves (µt)t∈[0,T ], (Mt)t∈[0,T ] are Borel families of measures belonging to M+ and Md respectively.
We will refer to µ from the pair as a curve and M as a grazing rate. For some regularity properties, we
will also need to assume the moment condition∫ T

0

∫∫
R2d
(1 + |v| + |v∗|) d|Mt |(v, v∗) dt <∞. (10)

We first establish some a priori properties of solutions to the grazing continuity equation.

Lemma 14 (continuous representative). For families (µt), (Mt) satisfying the grazing continuity equation
and the finite moment condition (10), there exists a unique weakly* continuous representative curve
(µ̃t)t∈[0,T ] such that µ̃t = µt for a.e. t ∈ [0, T ]. Furthermore, for any φ ∈ C∞

c ((0, T )× Rd) and any
t0, t1 ∈ [0, T ], we have the formula∫

Rd
φt1 dµ̃t1 −

∫
Rd
φt0 dµ̃t0 =

∫ t1

t0

∫
Rd
∂tφ dµt dt +

1
2

∫ t1

t0

∫∫
R2d

∇̃φ d Mt dt.

Proof. This proof is nearly identical to [Ambrosio et al. 2008, Lemma 8.1.2]. There, it was crucial to
estimate the distributional time derivative of t 7→µt . We perform the analogous estimate here to highlight
the difference in our context. Fix ζ ∈ C∞

c (R
d) and consider the map

t ∈ (0, T ) 7→ µt(ζ )=

∫
Rd
ζ(v) dµt(v) ∈ R.

According to (9), the distributional time derivative is

µ̇t(ζ )=
1
2

∫∫
R2d

∇̃ζ d Mt(v, v∗)=
1
2

∫∫
R2d

|v− v∗|
1+γ /25[v− v∗](∇ζ − ∇∗ζ∗) d Mt(v, v∗).

Depending on the values of γ above or below −2, the integrand can be estimated:∣∣|v−v∗|
1+γ /25[v−v∗](∇ζ−∇∗ζ∗)

∣∣ ≤ {
21+γ /2 supw∈Rd |∇ζ(w)|(|v|1+γ /2

+|v∗|
1+γ /2), γ ∈ [−2,0],

supw∈Rd |D2ζ(w)||v−v∗|
2+γ /2, γ ∈ [−4,−2).

Consequently, using the moment condition (10), we have the following estimates depending on γ ∈[−4, 0]:

|µ̇t(ζ )| ≲

{
supw∈Rd |∇ζ(w)|

∫∫
R2d (1 + |v| + |v∗|)d|Mt |(v, v∗), γ ∈ [−2, 0],

supw∈Rd |D2ζ(w)|
∫∫

R2d (1 + |v| + |v∗|)d|Mt |(v, v∗), γ ∈ [−4,−2).

The rest of the proof proceeds as in [Ambrosio et al. 2008, Lemma 8.1.2] using the C2-norm of ζ for the
soft potentials γ ∈ [−4,−2) as opposed to their C1 control of ζ . □

Lemma 15 (conservation lemma). Fix γ ∈ [−4, 0] and let (µt)t∈[0,T ], (Mt)t∈[0,T ] be Borel families of
measures in M+, Md respectively satisfying (8) and the moment condition (10). Assume further that
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(µt)t∈[0,T ] is weakly* continuous with respect to t . We have that mass and momentum are conserved:

µt(R
d)= µ0(R

d),

∫
Rd
v dµt(v)=

∫
Rd
v dµ0(v) for all t ∈ [0, T ].

In the case γ ∈ [−4,−2] we have that the energy is conserved:∫
Rd

|v|2 dµt(v)=

∫
Rd

|v|2 dµ0(v) for all t ∈ [0, T ].

Proof. To minimize clutter, we introduce w = |v− v∗|
1+γ /2. We show the proof of the conservation of

energy for γ ∈ [−4,−2]. We consider a fixed ϕ ∈ C∞
c (B2) which satisfies

0 ≤ ϕ ≤ 1 and ϕ(v)= 1 in B1.

We define
ϕR(v)= ϕ

(
v

R

)
.

Using the grazing continuity equation, we have∫
Rd

|v|2ϕR(v) dµt(v)−

∫
Rd

|v|2ϕR(v) dµ0(v)

=

∫ t

0

∫∫
R2d
w5

(
vϕR(v)+ |v|2

∇ϕ(v/R)
R

− v∗ϕR(v∗)− |v∗|
2 ∇ϕ(v∗/R)

R

)
d Ms(v, v∗) ds. (11)

We estimate the contribution of vφR(v)− v∗φR(v∗) from the integral in (11) using the cancellation from
the projection 5[v− v∗] to obtain∣∣∣∣∫ t

0

∫∫
R2d
w5(vϕR(v)− v∗ϕR(v∗)) d Ms

∣∣∣∣ ≤

∫ t

0

∫∫
(BR×BR)c

w|vϕR(v)− v∗ϕR(v∗)| d|Ms |

≲
∫ t

0

∫∫
(BR×BR)c

(1 + |v| + |v∗|) d|Ms |,

where we have used γ ∈ [−4,−2] to bound

w|vϕR(v)− v∗ϕR(v∗)| ≲

{
1, |v− v∗| ≤ 1,
|v| + |v∗|, |v− v∗| ≥ 1.

Similarly, using that ∇φR is supported in B2R \ BR and that |∂vi {|v|2∂v jϕ(v/R)/R}| ≲ 1 for every index
i, j ∈ {1, . . . , d}, we obtain∣∣∣∣∫ t

0

∫∫
R2d
w5

(
|v|2

∇ϕ(v/R)
R

− |v∗|
2 ∇ϕ(v∗/R)

R

)
d Ms

∣∣∣∣ ≲ ∫∫
(BR×BR)c

1 + |v| + |v∗| d|Ms |,

where we have controlled the difference with a mean-value-type estimate. From the previous bounds, we
can use hypothesis (10) to take R → ∞ in (11) and obtain the conservation of energy

lim
R→∞

∫
Rd

|v|2ϕR(v) dµt(v)= lim
R→∞

∫
Rd

|v|2ϕR(v) dµ0(v).

The proofs for conservation of mass and momentum involve testing the grazing continuity equation
against φR and viφR respectively, where vi is the i-th component of v. For these statements, the case
γ ∈ [−4,−2] follows in the same way. For γ ∈ [−2, 0], the estimates can be more blunt since the weight
is no longer singular. □
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Remark 16. Note that as γ increases into the range (−2, 0], the weight function w starts adding growth
so the mean-value-type argument in Lemma 15 no longer helps unless more moments of M are assumed
than (10). Due to the conservation of mass, the unique weakly* continuous representative (µ̃t) of
Lemma 14 has the additional property of being weakly continuous in the context of P(Rd).

Based on the previous results, we propose the following definition.

Definition 17 (grazing continuity equation). For some terminal time T > 0, we define GCET to be the set
of pairs of measures (µt ,Mt)t∈[0,T ] satisfying the following:

(1) µt ∈ P(Rd) is weakly continuous with respect to t ∈ [0, T ]. (Mt)t∈[0,T ] is a family of Borel measures
belonging to Md.

(2) We have the moment bound∫ T

0

∫∫
R2d
(1 + |v| + |v∗|) d|Mt |(v, v∗) dt <∞.

(3) The grazing continuity equation (8) is satisfied in the distributional sense. That is, for every φ ∈

C∞
c ((0, T )× Rd), ∫ T

0

∫
Rd
∂tφ dµt dt +

1
2

∫ T

0

∫∫
R2d

∇̃φ d Mt dt = 0,

or equivalently, for every ζ ∈ C∞
c (R

d),

d
dt

∫
Rd
ζ(v) dµt(v)=

1
2

∫∫
R2d

∇̃ζ(v, v∗) d Mt(v, v∗).

For fixed probability measures λ, ν, we may also specify the subset GCE(λ, ν) as those pairs (µ,M) ∈

GCET such that µ0 = λ, µT = ν. For E > 0, we will speak of curves (µ,M) ∈ GCE2,E
T such that∫

Rd
|v|2 dµt(v)≤ E for all t ∈ [0, T ].

3.2. Action of a curve. In this section, we construct the action of a curve under the grazing continuity
equation. We introduce the function α : Rd

× R≥0 → [0,∞] defined by

α(u, s) :=


|u|

2/(2s), s ̸= 0,
0, s = 0, u = 0,
∞, s = 0, u ̸= 0.

Remark 18. The function α is lower semicontinuous (lsc), convex, and positively 1-homogeneous.

For fixed µ ∈ P(Rd), M ∈ Md, we consider the tensorized probability measure µ⊗µ ∈ P(Rd
×Rd)

given byµ⊗µ(dv, dv∗)=µ(dv)µ(dv∗). Define τ ∈M given by τ =µ⊗µ+|M | and the decompositions
µ⊗µ= f 1τ and M = Nτ . We define the action functional as

A(µ,M) :=

∫∫
R2d
α(N , f 1)dτ. (12)

This is well-defined by the 1-homogeneity of α. The following lemma establishes a more concrete
expression for the action functional.
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Lemma 19. Let µ ∈ P(Rd) be absolutely continuous with respect to L and µ = f L. Let M ∈ Md be
given such that A(µ,M) <∞. Then, M is absolutely continuous with respect to f f∗ dv dv∗ given by
some density U : Rd

× Rd
→ Rd such that M = f f∗U dv dv∗ = m dv dv∗ and

A(µ,M)=
1
2

∫∫
R2d

f f∗|U |
2 dv dv∗ =

1
2

∫∫
R2d

|m|
2

f f∗
dv dv∗.

Proof. The proof is identical to [Erbar 2023, Lemma 3.6] up to appropriate modifications. Define τ ∈ M
by τ =µ⊗µ+|M | and label the corresponding densities (which may be infinite) µ⊗µ= gτ and M = Nτ .
It suffices to show that M is absolutely continuous with respect to µ⊗µ, which is the goal of this proof.

Suppose S ⊂ R2d is a measurable set such that µ⊗µ(S)= 0. This is equivalent to saying g = 0 τ -almost
everywhere in S. Since α is positive, the assumption A(µ,M) <+∞ certainly implies α(N , g) <+∞

τ -almost everywhere in S. By the definition of α, we must also have N = 0 τ -almost everywhere in S,
which is equivalent to saying M(S)= 0. □

Lemma 20 (lower semicontinuity of action functional). The action functional A as defined in (12) is
lower semicontinuous in both arguments. Specifically, if µn ⇀µ weakly in P(Rd) and Mn

∗
⇀ M weakly*

in Md, we have

A(µ,M)≤ lim inf
n→∞

A(µn,Mn).

Proof. This result is an application of the general lsc result in [Buttazzo 1989, Theorem 3.4.3] since α
satisfies the required convexity, lsc, and homogeneity assumptions by Remark 18. □

Another useful property of the action functional is the compactness provided by bounded action. We
first state:

Lemma 21. Let F : R2d
→ [0,∞] be measurable and fix any µ ∈ P(Rd), M ∈ Md. We have the

following bound:∫∫
R2d

F(v, v∗)d|M |(v, v∗)≤
√

2A(µ,M)1/2
(∫∫

R2d
F(v, v∗)

2dµ(v)dµ(v∗)

)1/2

. (13)

Proof. This proof follows [Erbar 2023, Lemma 3.8]. We assume A(µ,M) < +∞ or else (13) holds
automatically. This implies that whenever A ⊂ R2d is a measurable set, µ⊗µ(A) = 0 if and only if
|M |(A)= 0. Therefore, in the following computations we are implicitly integrating away from sets of zero
µ⊗µ-measure. We provide the simple argument by Cauchy–Schwarz for completeness. By considering
τ = µ⊗µ+ |M |, we estimate∫∫

R2d
Fd|M |(v, v∗)≤

∫∫
R2d

F
∣∣∣∣d M

dτ

∣∣∣∣dτ(v, v∗)=

∫∫
R2d

F
(∣∣∣∣d M

dτ

∣∣∣∣ / √
2

dµ⊗µ

dτ

)√
2

dµ⊗µ

dτ
dτ

≤

(∫∫
R2d
α

(
d M
dτ

,
dµ⊗µ

dτ

)
dτ

)1/2(∫∫
R2d

2F2dµ⊗µ

)1/2

=
√

2A(µ,M)1/2
(∫∫

R2d
F(v, v∗)

2dµ(v)dµ(v∗)

)1/2

. □
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Remark 22. Suppose we have µt ∈ P(Rd) such that∫ T

0
m2(µt) dt =

∫ T

0

∫
Rd

⟨v⟩2 dµt(v) dt <∞.

Then for M ∈ Md
T the previous estimate (13) yields∫ T

0

∫∫
R2d
(1 + |v| + |v∗|) d|Mt |(v, v∗) dt ≲

∫ T

0
A(µt ,Mt)

1/2
(

1 + 2
∫

Rd
|v|2 dµt

)1/2

dt. (14)

Therefore, if the integral in time of the second moment of µ is bounded, then M satisfies the moments
conditions (10) and the energy is conserved (Lemma 15). In the sequel, we will be considering curves
that have bounded second moment which guarantee (14).

Proposition 23. Let (µn
t ,Mn

t )n be a sequence in GCET such that (µn
0)n is tight and we have the uniform

bounds

sup
n∈N

∫ T

0

∫
Rd

|v|2 dµn
t dt <∞ and sup

n∈N

∫ T

0
A(µn

t ,Mn
t ) dt <∞. (15)

Then, there exists (µt ,Mt) ∈ GCET such that, possibly after extracting a subsequence, we have the
convergences

µn
t ⇀µt weakly in P(Rd) for all t ∈ [0, T ],

Mn
t dt ∗

⇀ Mt dt weakly* in Md
T .

Furthermore, along this subsequence we have the lower semicontinuity∫ T

0
A(µt ,Mt) dt ≤ lim inf

n→∞

∫ T

0
A(µn

t ,Mn
t ) dt.

Sketch of the proof. This result follows from a proof similar to that of [Dolbeault et al. 2009, Lemma 4.5]
and [Erbar 2023, Proposition 3.11], which we sketch. The second moment bound for µn in (15) produces
a limit µ. Recalling the application of Lemma 21 in Remark 22, the bounded action in (15) and the
estimate (14) produce a limit Mt dt for a subsequence of Mn

t dt . The lower semicontinuity follows from
Fatou’s lemma and Lemma 20. □

3.3. Properties of the Landau metric. We define the distance, dL induced by the action functional on
P2,E(R

d). Throughout, we will be working in the grazing continuity equation space defined earlier by
GCE2,E

T for T > 0 some terminal time and E > 0 any second moment bound.

Definition 24. For λ, ν ∈ P2,E(R
d) we define the (square of the) Landau distance by

d2
L(λ, ν) := inf

{
T

∫ T

0
A(µt ,Mt) dt

∣∣∣∣ (µ,M) ∈ GCE2,E
T (λ, ν)

}
. (16)

Notice this definition is independent of T > 0 considering the scaling of the grazing collision equation
and the 1-homogeneity of A. We have an equivalent characterization of dL which can be seen in other
PDE contexts such as [Erbar 2023; Dolbeault et al. 2009].
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Lemma 25. Given λ, ν ∈ P2,E(R
d), we have

dL(λ, ν)= inf
{∫ T

0

√
A(µt ,Mt) dt

∣∣∣∣ (µ,M) ∈ GCE2,E
T (λ, ν)

}
. (17)

Proof. This proof uses the same reparametrization technique in [Dolbeault et al. 2009, Theorem 5.4]. □

Proposition 26 (minimizing curve). Suppose that µ0, µ1 ∈ P2,E(R
d) are probability measures such

that dL(µ0, µ1) <∞. Then there exists a curve (µ,M) ∈ GCE2,E
1 (µ0, µ1) attaining the infimum of (16)

(equivalently, also (17)) and A(µt ,Mt)= d2
L(µ0, µ1) for almost every t ∈ [0, 1].

Proof. This result follows from the direct method of calculus of variations where the lower semicontinuity
comes from Proposition 23. □

Proof of Theorem 7. We prove the statements in exactly the order they are presented in the theorem,
starting with the properties of the proposed Landau distance as a metric. The positivity of dL follows
from the positivity of α. We now check that dL satisfies the properties of a metric.

dL distinguishes points: Fix µ0, µ1 ∈ P2,E(R
d). We check that dL(µ0, µ1)= 0 ⇐⇒ µ0 = µ1. Suppose

that dL(µ0, µ1)= 0. By Proposition 26 we can find (µ,M) ∈ GCE2,E
1 (µ0, µ1), which is a minimizing

curve and moreover 0 = dL(µ0, µ1)=A(µt ,Mt) implies M = 0. The grazing continuity equation reduces
to ∂tµt = 0, which implies µt is constant in time.

The converse statement follows similarly by pairing the constant curve µ : t 7→ µ0 = µ1 with the zero
measure so that (µ, 0) ∈ GCE2,E

1 (µ0, µ1).

Symmetry: Symmetry follows because time can be reversed for every curve. For instance, if (µ,M) ∈

GCE2,E
T (µ0, µ1), then one can check that the pair

µr
: t 7→ µ(T − t), Mr

: t 7→ −M(T − t)

belongs to GCE2,E
T (µ1, µ0) with the same action.

Triangle inequality: We sketch the argument using a gluing lemma as in [Dolbeault et al. 2009, Lemma 4.4].
Let µ0, µ1, µ2

∈ P2,E(R
d) be such that dL(µ

0, µ1) < ∞ and dL(µ
1, µ2) < ∞. If not, dL(µ

0, µ2) ≤

dL(µ
0, µ1)+ dL(µ

1, µ2) holds trivially. By Proposition 26, we can find minimizing curves connecting
these probability measures {

(µ0→1,M0→1) ∈ GCE2,E
1 (µ0, µ1),

(µ1→2,M1→2) ∈ GCE2,E
1 (µ1, µ2)

}
.

Their concatenation from time 0 to 1 is given by

µt :=

{
µ0→1

2t , 0 ≤ t ≤
1
2 ,

µ1→2
2(t−1/2),

1
2 ≤ t ≤ 1,

Mt :=

{
2M0→1

2t , 0 ≤ t ≤
1
2 ,

2M1→2
2t−1/2,

1
2 < t ≤ 1.

One can check that (µ,M) ∈ GCE2,E
1 (µ0, µ2), so it is an admissible competitor in the computation of

dL(µ
0, µ2). By looking at the action on the different time pieces, we obtain

dL(µ
0, µ2)≤

∫ 1

0

√
A(µt ,Mt) dt = dL(µ

0, µ1)+ dL(µ
1, µ2).
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dL -convergence/boundedness implies weak convergence/compactness: Fix µn, µ∞
∈ P2,E for n ∈ N

such that dL(µ
∞, µn) → 0 as n → ∞. By Proposition 26, take minimizing curves (νn,Mn) ∈

GCE2,E
1 (µ∞, µn) such that

dL(µ
∞, µn)=

√
A(νn

t ,Mn
t ) for a.e. t ∈ [0, 1].

By compactness in Proposition 23, there are limits (ν,M) ∈ GCE2,E
1 such that νn ⇀ν and Mn ∗

⇀ M up
to a subsequence. Moreover, the lower semicontinuity in Proposition 23 gives

A(νt ,Mt)≤ lim inf
n→∞

A(νn
t ,Mn

t )= 0;

hence M = 0 so that ν is a constant in time. Since ν(0) = µ∞, this implies µ∞
= ν(1) = limn→∞ µn ,

which establishes the weak convergence.

(Pτ , dL) is a complete geodesic space: We start with the geodesic property from completely analogous
arguments to [Erbar 2023]; the remaining statement that Pτ equipped with dL is a complete geodesic
space follows. Fix τ ∈ P2,E(R

d) with µ0, µ1 ∈ Pτ . The triangle inequality ensures dL(µ0, µ1) <∞ so
Proposition 26 guarantees the existence of a minimizing curve (µ,M) ∈ GCE2,E

1 (µ0, µ1). One easily sees
that this also induces a minimizing curve for intermediate times. More precisely, for every 0 ≤ r ≤ s ≤ 1,
we have that (t 7→ µt+r , t 7→ Mt+r ) ∈ GCE2,E

s−r (µr , µs) also minimizes dL(µr , µs).
To show completeness, let (µn)n∈N be a Cauchy sequence in Pτ . The sequence is certainly dL -bounded

so by Proposition 23, we can find, up to extraction of a weakly convergent subsequence, µ∞
∈ P2,E(R

d)

such that µn ⇀µ∞ in P2,E(R
d). Lower semicontinuity of dL and the Cauchy property of the subsequence

give
dL(µ

n, µ∞)≤ lim inf
m→∞

dL(µ
n, µm)→ 0 as n → ∞.

For any n ∈ N the triangle inequality gives

dL(µ
∞, τ )≤ dL(µ

∞, µn)+ dL(µ
n, τ ) <∞,

So µ∞
∈ Pτ . □

Proposition 27 (metric derivative). A curve (µt)t∈[0,T ] ⊂ P2,E(R
d) is absolutely continuous with respect

to dL if and only if there exists a Borel family (Mt)t∈[0.T ] belonging to Md
T such that (µ,M) ∈ GCE2,E

T
with the property that ∫ T

0

√
A(µt ,Mt) dt <∞.

In this equivalence, we have a bound on the metric derivative

lim
h↓0

d2
L(µt+h, µt)

h2 =: |µ̇|
2(t)≤ A(µt ,Mt) for a.e. t ∈ (0, T ).

Furthermore, there exists a unique Borel family (M̃t)t∈[0,T ] belonging to Md which is characterized by

Mt = Uµt ⊗µt and U ∈ Tµ := {∇̃φ | φ ∈ C∞
c (R

d)}L2(µt⊗µt )

such that (µ, M̃) ∈ GCE E
T (µ0, µT ) where we have equality

|µ̇|
2(t)= A(µt , M̃t) for a.e. t ∈ (0, T ).

Proof. The argument follows exactly as in [Dolbeault et al. 2009, Theorem 5.17]. □
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4. Energy dissipation equality

The goal in this section is to prove Theorem 8, which states that the notions of gradient flow solutions
coincide with ϵ-solutions to the Landau equation. To fix ideas, we recall the regularized entropy functionals
acting on probability measures

Hϵ[µ] =

∫
Rd
(µ ∗ Gϵ)(v) log(µ ∗ Gϵ)(v) dv,

with Gϵ(v) given by
Gϵ(v)= ϵ−dCd exp

{
−

〈
v

ϵ

〉}
.

The crucial ingredient to prove Theorem 8 is the following:

Proposition 28 (chain rule ϵ). Fix γ ∈ [−4, 0] and suppose (µ,M) ∈ GCE2,E
T and∫ T

0
A(µt ,Mt) dt <∞.

Then, supt∈[0,T ] Hϵ[µt ]<∞ and the “chain rule” holds:

Hϵ[µr ] −Hϵ[µs] =
1
2

∫ r

s

∫∫
R2d

∇̃

[
δHϵ

δµ

]
· d Mt dt for all 0 ≤ s ≤ r ≤ T . (18)

Remark 29. Recall the expression for the dissipation

Dϵ[µ] =
1
2

∫∫
R2d

∣∣∣∣∇̃[
δHϵ

δµ

]∣∣∣∣2

dµ(v)dµ(v∗).

Using a time integrated version of Lemma 21, we have the estimate

1
2

∫ r

s

∫∫
R2d

∣∣∣∣∇̃[
δHϵ

δµ

]∣∣∣∣ · d|Mt |(v, v∗) dt ≤

∫ r

s
A(µt ,Mt)

1/2 Dϵ[µt ]
1/2 dt.

Therefore, under the hypothesis of Proposition 28, we have that

|Hϵ(µr )−Hϵ(µr )| ≤

∫ r

s
|µ̇|(t)Dϵ[µt ]

1/2 dt,

which implies that Dϵ[µt ]
1/2 is a strong upper gradient of Hϵ ; see Definition 4.

Taking Proposition 28 for granted, we can prove Theorem 8.

Proof of Theorem 8. Throughout, µ = f L is a curve of probability measures with uniformly bounded
second moment.

Weak ϵ-solution =⇒ curve of maximal slope: Consider f an ϵ-solution to the Landau equation. Define
m = − f f∗∇̃(δHϵ/δ f ) so that the pair of measures (µ= f L,M = mL⊗L) therefore belong to GCE E

T .
Indeed, the distributional grazing continuity equation from Definition 17 is precisely the weak ϵ-Landau
equation. Based on the definition of M and the finite Hϵ dissipation, we have the bound∫ T

0
A(µt ,Mt) dt =

∫ T

0
Dϵ( ft) dt <∞,
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which implies the weak continuity of µ. By Proposition 27, we have

|µ̇|
2(t)= A(µt ,Mt)= Dϵ( ft) <∞ for a.e. t ∈ [0, T ].

Using Proposition 28, we have, for any 0 ≤ s ≤ r ≤ T,

Hϵ[µr ] −Hϵ[µs] +
1
2

∫ r

s
Dϵ(µt) dt +

1
2

∫ r

s
|µ̇|

2(t) dt ≤ 0.

According to Definition 5, this is the curve of maximal slope property.

Curve of maximal slope =⇒ weak ϵ-solution: Assume that µ= f L is a curve of maximal slope for Hϵ

with respect to the upper gradient
√

Dϵ . Sinceµ is absolutely continuous with respect to dL , Proposition 27
guarantees existence of a unique curve M : t ∈ [0, T ] 7→ Mt ∈ Md such that

∫ T
0

√
A(µt ,Mt) dt <∞

and |µ̇|
2(t)= A(µt ,Mt) for a.e. t ∈ [0, T ]. Furthermore, (µ,M) ∈ GCE E

T . According to Lemma 19, let
M = mL⊗L for some measurable function m. We apply the chain rule (18) with Cauchy–Schwarz and
Young’s inequalities with minus signs in the following computations:

Hϵ[ fT ] −Hϵ[ f0] =
1
2

∫ T

0

∫∫
R2d

∇̃
δHϵ

δ f
· m dv dv∗ dt

≥ −
1
2

∫ T

0

(∫∫
R2d

f f∗

∣∣∣∣∇̃ δHϵ

δ f

∣∣∣∣2

dv dv∗

)1/2(∫∫
R2d

|m|
2

f f∗
dv dv∗

)1/2

dt

≥ −
1
2

∫ T

0

(
1
2

∫∫
R2d

f f∗

∣∣∣∣∇̃ δHϵ

δ f

∣∣∣∣2

dv dv∗

)
dt −

1
2

∫ T

0

(
1
2

∫∫
R2d

|m|
2

f f∗
dv dv∗

)
dt

= −
1
2

∫ T

0
Dϵ( ft) dt −

1
2

∫ T

0
| ḟ |

2(t) dt.

All the inequalities in the calculations above are actually equalities owing to the fact that µ is a curve of
maximal slope. In particular, since we have the equality in the Young’s inequality, this implies

m
√

f f∗
= −

√
f f∗∇̃

δHϵ

δ f
.

As in the previous direction, the weak ϵ Landau equation coincides with the grazing continuity equation
when m is equal to − f f∗∇̃(δHϵ/δ f ). □

The rest of this section is devoted to proving Proposition 28. We need some lemmas to establish crucial
estimates. The following result is a variation of [Carlen and Carvalho 1992, Lemma 2.6].

Lemma 30 [Carlen and Carvalho 1992]. Let µ be a probability measure on Rd with finite second
moment/energy, m2(µ)≤ E for E > 0. Then, for every ϵ > 0, there exists a constant C = C(ϵ, E) > 0
such that

|log(µ ∗ Gϵ)(v)| ≤ C
〈
v

ϵ

〉
.

Proof. Starting with an upper bound, we easily see

µ ∗ Gϵ(v)=

∫
Rd

Gϵ(v− v′) dµ(v′)≲ϵ 1.
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Turning to the lower bound, we cut off the integration domain to |v′
| ≤ R for some R > 0 to be chosen

later. We estimate, for ϵ > 0 small enough,〈
v− v′

ϵ

〉
=

√
1 +

∣∣∣∣v− v′

ϵ

∣∣∣∣2

≤

√
1 + 2

∣∣∣∣vϵ
∣∣∣∣2

+ 2
(

R
ϵ

)2

≤
√

2
(〈
v

ϵ

〉
+

〈
R
ϵ

〉)
.

This is substituted into Gϵ(v− v′) to obtain

µ ∗ Gϵ(v)≥

∫
|v′|≤R

Gϵ(v− v′) dµ(v′)≳ϵ exp
{
−

√
2
(〈
v

ϵ

〉
+

〈
R
ϵ

〉)} ∫
|v′|≤R

dµ(v′).

At this point, we appeal to Chebyshev’s inequality to see∫
|v′|≤R

dµ(v′)= 1 −

∫
|v′|≥R

dµ(v′)≥ 1 −
1
R2

∫
|v′|≥R

|v′
|
2 dµ(v′).

We can now choose, for example, large R such that 1 − E/R2
≥

1
2 to uniformly lower bound the integral∫

|v′|≤R dµ(v′) away from 0 and then conclude the result after applying logarithms. □

Lemma 31 (log-derivative estimates). For fixed ϵ > 0 we have the formula

∇Gϵ(v)= −
1
ϵ

〈
v

ϵ

〉−1

Gϵ(v)
v

ϵ
. (19)

For µ ∈ P(Rd), defining ∂ i
= ∂/∂vi and ∂ i j

= ∂2/(∂vi∂v j ), we obtain

|∇ log(µ ∗ Gϵ)(v)| ≤
1
ϵ
, |∂ i j log(µ ∗ Gϵ)(v)| ≤

4
ϵ2 . (20)

Proof. Equation (19) is a direct computation after noticing

∇Gϵ

Gϵ
= ∇ log Gϵ

= ∇

(
−

〈
v

ϵ

〉
+ const.

)
= −

1
ϵ

〈
v

ϵ

〉−1
v

ϵ
.

The first order log-derivative estimate of (20) is calculated using formula (19) to obtain

|∇(µ ∗ Gϵ)(v)| = |µ ∗ ∇Gϵ(v)| ≤
1
ϵ

∫
Rd

〈
v− v′

ϵ

〉−1∣∣∣∣v− v′

ϵ

∣∣∣∣Gϵ(v− v′) dµ(v′)

≤
1
ϵ

∫
Rd

Gϵ(v− v′) dµ(v′)=
1
ϵ
(µ ∗ Gϵ)(v).

For the second order, we first look at ∂ i jµ ∗ Gϵ which can be computed with the help of (19):

|∂ i jµ∗Gϵ(v)|

=

∣∣∣∣∂ i
(

−
1
ϵ

∫
Rd

〈
v−v′

ϵ

〉−1
v j

−v′ j

ϵ
Gϵ(v−v′)dµ(v′)

)∣∣∣∣
=

∣∣∣∣ 1
ϵ2

∫
Rd

(〈
v−v′

ϵ

〉−3
vi

−v′i

ϵ

v j
−v′ j

ϵ
+δi j

〈
v−v′

ϵ

〉−1

−

〈
v−v′

ϵ

〉−2
vi

−v′i

ϵ

v j
−v′ j

ϵ

)
Gϵ(v−v′)dµ(v′)

∣∣∣∣
≤

3
ϵ2µ∗Gϵ(v).
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Combining this estimate with the previous first-order one, we have

|∂ i j log(µ ∗ Gϵ)(v)| =

∣∣∣∣∂ i jµ ∗ Gϵ

µ ∗ Gϵ
−
(∂ iµ ∗ Gϵ)(∂ jµ ∗ Gϵ)

(µ ∗ Gϵ)2

∣∣∣∣ ≤
4
ϵ2 . □

Lemma 32. Fix ϵ > 0 and γ ∈ [−4, 0], with µ ∈ P2,E(R
d) for some E > 0. We have

(1) Moderately soft case γ ∈ [−2, 0]:∣∣∣∣∇̃ δHϵ

δµ

∣∣∣∣ =

∣∣∣∣∇̃[Gϵ
∗ log(µ ∗ Gϵ)](v, v∗)

∣∣∣∣ ≲ϵ |v|1+γ /2
+ |v∗|

1+γ /2.

(2) Very soft case γ ∈ [−4,−2]: ∣∣∣∣∇̃ δHϵ

δµ

∣∣∣∣ ≲ϵ 1.

In particular, it holds ∫∫
R2d

∣∣∣∣∇̃ δHϵ

δµ

∣∣∣∣2

dµ(v)dµ(v∗)≤ E .

Proof. We develop the expression for ∇̃(δHϵ/δµ) in integral form to be used throughout this proof:

∇̃
δHϵ

δµ
= ∇̃Gϵ

∗ log(µ ∗ Gϵ)(v, v∗)

= |v− v∗|
1+γ /25[v− v∗](∇vGϵ

∗ log(µ ∗ Gϵ)(v)− ∇v∗ Gϵ
∗ log(µ ∗ Gϵ)(v∗))

= |v− v∗|
1+γ /25[v− v∗]

∫
Rd

Gϵ(v′)

(
∇µ ∗ Gϵ

µ ∗ Gϵ
(v− v′)−

∇µ ∗ Gϵ

µ ∗ Gϵ
(v∗ − v′)

)
dv′. (21)

(1) Moderately soft case γ ∈ [−2, 0]: We use (a concave version of) the triangle inequality (valid since
1 + γ /2 ≥ 0) and the first estimate of (20) to bound the last line of (21):∣∣∣∣∇̃ δHϵ

δµ

∣∣∣∣ ≤ 21+γ /2(|v|1+γ /2
+ |v∗|

1+γ /2)
2
ϵ

∫
Rd

Gϵ(v′) dv′ ≲ϵ |v|1+γ /2
+ |v∗|

1+γ /2.

(2) Very soft case γ ∈ [−4,−2]: We perform estimates in two cases, the far field |v− v∗| ≥ 1 and near
field |v− v∗| ≤ 1.

|v− v∗| ≥ 1: In the far field, we have |v− v∗|
1+γ /2

≤ 1; hence we can brutally estimate (21) using again
the first estimate of (20) to obtain, similar to the moderately soft case, the estimate∣∣∣∣∇̃ δHϵ

δµ

∣∣∣∣ ≤
2
ϵ
.

|v− v∗| ≤ 1: We can remove the singularity from the weight with a mean-value estimate and the second
estimate of (20):∣∣∣∣∇µ ∗ Gϵ

µ ∗ Gϵ
(v− v′)−

∇µ ∗ Gϵ

µ ∗ Gϵ
(v∗ − v′)

∣∣∣∣ ≤ sup
i, j=1,...,d

∥∥∥∥∂ i
(
∂ jµ ∗ Gϵ

µ ∗ Gϵ

)∥∥∥∥
L∞

|v− v∗| ≤
4
ϵ2 |v− v∗|.



1352 JOSÉ A. CARRILLO, MATIAS G. DELGADINO, LAURENT DESVILLETTES AND JEREMY S.-H. WU

Inserting this into (21), we have∣∣∣∣∇̃ δHϵ

δµ

∣∣∣∣ ≤
4
ϵ2 |v− v∗|

2+γ /2
∫

Rd
Gϵ(v′) dv′

≤
4
ϵ2 . □

Remark 33. Originally, we considered the general family of convolution kernels Gs,ϵ described in
Section 2.1. Besides the context of the Landau equation, Lemma 31 (excluding the second-order log-
derivative estimate) can be generalized to this family of s-order tailed exponential distributions with
additional moment assumptions on µ. In particular, (19) and (20) (for s ≥ 1) become

∇Gs,ϵ

Gs,ϵ (v)= −
s
ϵ

〈
v

ϵ

〉s−2
v

ϵ
,

|∇(µ ∗ Gs,ϵ)|

µ ∗ Gs,ϵ (v)≲
1
ϵs ⟨v⟩s−1.

Since Maxwellians are known to be stationary solutions for the Landau equation, we wanted to perform
the regularization with s = 2. However, the analogous estimates of Lemma 31 for s = 2 are not sufficient
for Lemma 32 in the P2 framework. For example, in the moderately soft potential case, the estimate reads∣∣∣∣∇̃ δH2,ϵ

δµ

∣∣∣∣ ≲ϵ ⟨v⟩2+γ /2
+ ⟨v∗⟩

2+γ /2 /∈ L2(µ⊗µ).

However, there is one value of γ =−2 for which the estimates hold when using a Maxwellian regularization
kernel G2,ϵ. A restriction to P4 resolves the issue mentioned above for the moderately soft potential case,
but then a fourth moment propagation is needed, which we did not pursue. A similar issue is present
in the very soft potential case.

Proof of Proposition 28. To prove (18), our strategy is to regularize the pair (µ,M) in time with parameter
δ > 0 and differentiate the regularization. Then we obtain uniform bounds in δ needed to take the limit
δ → 0.

Finite regularized entropy: We have the following chain of inequalities:

Hϵ[µt ] =

∫
Rd
(µt ∗ Gϵ)(v) log(µt ∗ Gϵ)(v) dv ≲ϵ,E

∫
Rd
(µt ∗ Gϵ)(v)⟨v⟩ dv ≲ϵ 1 + E .

The first inequality comes from Lemma 30 because log(µt ∗Gϵ) has linear growth (uniform in time) while
in the second inequality, one realizes that µt ∗ Gϵ has as many moments as µt with computable constants.

Time regularization with δ > 0: Without loss of generality, let µ be the weakly time continuous repre-
sentative (Lemma 14) and M be the optimal grazing rate (Proposition 27) achieving the finite distance dL .
We first regularize the pair (µ,M) in time for a fixed parameter δ > 0 as follows. Take η ∈ C∞

0 (R) with
the following properties:

supp η ⊂ (−1, 1), η ≥ 0, η(t)= η(−t),
∫ 1

−1
η(t) dt = 1.

We define the following measures for t ∈ [0, T ], by taking convex combinations:

µδt :=

∫ 1

−1
η(t ′)µt−δt ′ dt ′, Mδ

t :=

∫ 1

−1
η(t ′)Mt−δt ′ dt ′.
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Here, we constantly extend the measures in time. That is, if t − δt ′
∈ [−δ, 0], we treat µt−δt ′ =

µ0,Mt−δt ′ = 0. For the other end point, if t − δt ′
∈ [T, T + δ], we set µt−δt ′ = µT , Mt−δt ′ = 0. This

transformation is stable so that (µδ,Mδ) ∈ GCET and in particular, the distributional grazing continuity
equation holds:

∂tµ
δ
t +

1
2 ∇̃ · Mδ

t = 0.

We derive (18) using this regularized grazing continuity equation. Consider

Hϵ[µ
δ
t ] =

∫
Rd
(µδt ∗ Gϵ)(v) log(µδt ∗ Gϵ)(v) dv,

which we differentiate with respect to t by appealing to the dominated convergence theorem. Firstly, due
to the time regularization, we have

∂t {(µ
δ
t ∗ Gϵ) log(µδt ∗ Gϵ)} = [(∂tµ

δ
t ) ∗ Gϵ

](log(µδt ∗ Gϵ)+ 1).

The L1
v bound is obtained on the following difference quotient for a fixed time step h > 0:∣∣∣∣1

h
[(µδt+h ∗ Gϵ) log(µδt+h ∗ Gϵ)− (µδt ∗ Gϵ) log(µδt ∗ Gϵ)]

∣∣∣∣
≤

1
h
|(µδt+h ∗ Gϵ)− (µδt ∗ Gϵ)| sup

s∈[t,t+h]

|log(µδs ∗ Gϵ)+ 1|,

where we have used the mean value theorem with the chain rule. Applying Lemma 30, we obtain∣∣∣∣1
h
[(µδt+h ∗ Gϵ) log(µδt+h ∗ Gϵ)− (µδt ∗ Gϵ) log(µδt ∗ Gϵ)]

∣∣∣∣ ≲ϵ,E
1
h
|(µδt+h ∗ Gϵ)− (µδt ∗ Gϵ)|⟨v⟩.

We apply the mean value theorem on the difference quotient again to get∣∣∣∣1
h
[(µδt+h ∗ Gϵ) log(µδt+h ∗ Gϵ)− (µδt ∗ Gϵ) log(µδt ∗ Gϵ)]

∣∣∣∣ ≲δ,ϵ ∥η′
∥L∞

(
µ0 ∗ Gϵ

+

∫ T

0
µt ∗ Gϵ dt

)
⟨v⟩.

Sinceµ has finite second-order moments, this last expression belongs to L1
v . By the dominated convergence

theorem,

d
dt

Hϵ[µ
δ
t ] =

∫
Rd

[(∂tµ
δ
t ) ∗ Gϵ

](log(µδt ∗ Gϵ)+ 1) dv =

∫
Rd
(∂tµ

δ
t ) · [G

ϵ
∗ log(µδt ∗ Gϵ)] dv.

The last line is achieved by the self-adjointness of convolution with Gϵ and eliminating the constant term
due to the conserved mass of µδ. Integrating in t , we obtain

Hϵ[µ
δ
r ] −Hϵ[µ

δ
s ] =

∫ r

s

∫
Rd
(∂tµ

δ
t ) · [G

ϵ
∗ log(µδt ∗ Gϵ)] dv dt

=
1
2

∫ r

s

∫∫
R2d

[∇̃Gϵ
∗ log(µδt ∗ Gϵ)] · d Mδ

t dt

=
1
2

∫ r

s

∫∫
R2d

∇̃
δHϵ

δµδt
· d Mδ

t dt. (22)

We now turn to establishing estimates independent of δ > 0 to pass to the limit.
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Estimates on the right-hand side of (22): According to Lemma 32, we have the estimate∣∣∣∣∇̃ δHϵ

δµδ

∣∣∣∣ ≲ϵ,E |v|p
+ |v∗|

p,

where p ≤ 1. By the first moment assumption of Mt , we have∫ T

0

∫∫
R2d

∣∣∣∣∇̃ δHϵ

δµδt

∣∣∣∣ d|Mt |(v, v∗) dt ≲ϵ,E

∫ T

0

∫∫
R2d

|v| + |v∗| d|Mt |(v, v∗) dt <∞.

This estimate also extends to Mδ
t∫ T

0

∫∫
R2d

∣∣∣∣∇̃ δHϵ

δµδt

∣∣∣∣ d|Mδ
t |(v, v∗) dt <∞.

Note that these estimates are independent of δ > 0.

Convergence δ → 0: Firstly, we establish the following identity which will be useful later. For fixed
functions f 1, f 2 we have

∇̃[Gϵ
∗ f 1

] − ∇̃[Gϵ
∗ f 2

]

= |v− v∗|
1+γ /25[v− v∗](∇[Gϵ

∗ f 1
] −∇[Gϵ

∗ f 2
] − (∇∗[Gϵ

∗ f 1
]∗ − ∇∗[Gϵ

∗ f 2
]∗))

= |v− v∗|
1+γ /25[v− v∗]

∫
Rd
(∇Gϵ(v− v′)− ∇Gϵ(v∗ − v′))( f 1(v′)− f 2(v′)) dv′. (23)

Using the weak in time continuity of µ, we can consider

|µδt ∗ Gϵ(v′)−µt ∗ Gϵ(v′)| ≤

∫ 1

−1
η(t ′)|⟨µt−δt ′,Gϵ(v′

− · )⟩ − ⟨µt ,Gϵ(v′
− · )⟩| dt ′.

The “·” stands for the convoluted variable. Since t belongs to a compact set, the function t 7→

⟨µt ,Gϵ(v′
− · )⟩ is uniformly continuous from the weak continuity of µ. In particular, using the continuity

in v′ and the lower bound from Lemma 30 we conclude that for any R > 0

|log(µδt ∗ Gϵ)− log(µt ∗ Gϵ)| → 0 uniformly on BR . (24)

Therefore by Lemma 30, defining w = |v − v∗|
1+γ /2, and using (23) with f 1

= log(µδt ∗ Gϵ) and
f 2

= log(µt ∗ Gϵ), we have∣∣∣∣∇̃ δHϵ

δµδt
−∇̃

δHϵ

δµt

∣∣∣∣ = |∇̃Gϵ
∗log(µδt ∗Gϵ)(v, v∗)−∇̃Gϵ

∗log(µt ∗Gϵ)(v, v∗)|

≤

∫
Rd
w|∇Gϵ(v−v′)−∇Gϵ(v∗−v′)||log(µδt ∗Gϵ(v′))−log(µt ∗Gϵ(v′))| dv′

≤

∫
Bc

R0

w|∇Gϵ(v−v′)−∇Gϵ(v∗−v′)|Cϵ⟨v′
⟩ dv′

+sup
BR0

|log(µδt ∗Gϵ)−log(µt ∗Gϵ)|

∫
BR0

w|∇Gϵ(v−v′)−∇Gϵ(v∗−v′)| dv′.

For a fixed (v, v∗), we obtain the convergence to zero by taking δ → 0 and R0 → ∞ in the previous
estimate. This holds for all γ ∈ [−4, 0] by taking advantage of the regularity of Gϵ. Using continuity,
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we obtain that for any R > 0∣∣∣∣∇̃ δHϵ

δµδt
(v, v∗)− ∇̃

δHϵ

δµt
(v, v∗)

∣∣∣∣ → 0 uniformly on [0, T ] × BR × BR. (25)

We turn to the limit estimate for the right-hand side of (22). For any R > 0, we have∣∣∣∣∫ r

s

∫∫
R2d

∇̃
δHϵ

δµδt
· d Mδ

t dt −

∫ r

s

∫∫
R2d

∇̃
δHϵ

δµt
· d Mt dt

∣∣∣∣
≤

∣∣∣∣∫ r

s

∫∫
R2d

(
∇̃
δHϵ

δµδt
− ∇̃

δHϵ

δµt

)
· d Mδ

t dt
∣∣∣∣ + ∣∣∣∣∫ r

s

∫∫
R2d

∇̃
δHϵ

δµt
· d Mδ

t dt −

∫ r

s

∫∫
R2d

∇̃
δHϵ

δµt
· d Mt dt

∣∣∣∣
≤

∫ r

s

∫∫
BR×BR

∣∣∣∣∇̃ δHϵ

δµδt
− ∇̃

δHϵ

δµt

∣∣∣∣ d|Mδ
t | dt +

∫ r

s

∫∫
(BR×BR)C

∣∣∣∣∇̃ δHϵ

δµδt
− ∇̃

δHϵ

δµt

∣∣∣∣ d|Mδ
t | dt + o(1).

The last term is o(1) as δ → 0 due to similar estimates from the previous step. By sending δ → 0 (the
first term vanishes due to (25)) and then sending R → ∞ (the second term vanishes again due to the
estimate from the previous step), we obtain the convergence

lim
δ→0

1
2

∫ r

s

∫∫
R2d

∇̃
δHϵ

δµδt
· d Mδ

t dt =
1
2

∫ r

s

∫∫
R2d

∇̃
δHϵ

δµt
· d Mδ

t dt. (26)

Convergence of the left-hand side of (22): By (24), Lemma 30 and the uniform bound on the second
moment, we have

|Hϵ[µ
δ
t ] −Hϵ[µt ]| ≤

∫
Rd

|(µδt ∗ Gϵ) log(µδt ∗ Gϵ)(v)− (µt ∗ Gϵ) log(µt ∗ Gϵ)(v)| dv

→ 0 as δ → 0.

Therefore, by the previous equation and (26) we can take δ → 0 in (22) to obtain

Hϵ[µr ] −Hϵ[µs] =
1
2

∫ r

s

∫∫
R2d

∇̃
δHϵ

δµt
· d Mt(v, v∗) dt,

which is the desired result. □

5. JKO scheme for ϵ-Landau equation

This section is devoted to the proof of Theorem 9 after a series of preliminary lemmas. Our construction
of curves of maximal slope in Theorem 9 uses the basic minimizing movement/variational approximation
scheme of [Jordan et al. 1998]. Fix a small time step τ > 0 and initial datum µ0 ∈ P2,E(R

d) and consider
the recursive minimization procedure for n ∈ N

ντ0 := µ0, ντn ∈ argminλ∈P2,E

[
Hϵ(λ)+

1
2τ

d2
L(ν

τ
n−1, λ)

]
. (27)

Then, we concatenate these minimizers into a curve by setting

µτ0 := µ0, µτt := ντn for t ∈ ((n − 1)τ, nτ ]. (28)

The scheme given by (27) and (28) satisfies the abstract formulation in [Ambrosio et al. 2008] giving:
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Proposition 34 (Landau JKO scheme). For any τ > 0 and µ0 ∈ P2,E(R
d), there exists ντn ∈ P2,E(R

d)

for every n ∈ N as described in (27). Furthermore, up to a subsequence of µτt described in (28) as τ → 0,
there exists a locally absolutely continuous curve (µt)t≥0 such that

µτt ⇀µt for all t ∈ [0,∞).

Proof. Our metric setting is (Pµ0, dL) (see Theorem 7) with the weak topology σ . This space is essentially
P2,E(R

d) except we need to make sure that dL is a proper metric; hence we remove the probability
measures with infinite Landau distance. We follow the proof of [Erbar 2023], which consists in verifying
[Ambrosio et al. 2008, Assumptions 2.1(a)–(c)]. These assumptions are listed and verified now.

(1) Hϵ is sequentially σ -lsc on dL -bounded sets: Suppose µn ∈ P2,E(R
d)⇀µ∈ P2,E(R

d). This implies
µn ∗ Gϵ ⇀µ ∗ Gϵ in P2(R

d). It is known that

H(µ)=

{∫
Rd f (v) log f (v) dv, µ= f L,

+∞, else

is σ -lsc and since Hϵ(µ)= H(µ ∗ Gϵ), we achieve the first property.

(2) Hϵ is lower bounded: By Lemma 30 for fixed ϵ > 0, log(µ ∗ Gϵ) is uniformly lower bounded by a
linearly growing term. For fixed µ ∈ P2,E(R

d), we have, with Cauchy–Schwarz,

Hϵ(µ)≳ϵ −

∫
Rd

⟨v⟩µ ∗ Gϵ(v) dv ≥ −

(∫
Rd

⟨v⟩2µ ∗ Gϵ(v) dv
)1/2

≥ −(O(ϵ)+ E)1/2 >−∞.

(3) dL -bounded sets are relatively sequentially σ -compact: This is one of the consequences from
Theorem 7.

The existence of minimizers, ντn , to (27) and limits, µt , to (28) is guaranteed from [Ambrosio et al. 2008,
Corollary 2.2.2 and Proposition 2.2.3], respectively. □

At the abstract level, the limit curve constructed in Proposition 34 has no relation to
√

Dϵ . The
following lemmas bridge this gap.

Lemma 35. For any µ0 ∈ P2(R
d), we have√

Dϵ(µ0)≤ |∂−Hϵ |(µ0).

Proof. For fixed ϵ, R1, R2 > 0 and γ ∈ R, take T > 0 from Theorem 48 in the Appendix and the unique
weak solution µ ∈ C([0, T ]; P2(R

d)) to{
∂tµ= ∇ · {µφR1

∫
Rd φR1∗ψR2(v− v∗)|v− v∗|

γ+25[v− v∗](J ϵ0 − J ϵ0∗
) dµ(v∗)},

µ(0)= µ0.

The functions 0 ≤ φR1, ψR2 ≤ 1 are smooth cut-off functions with the following properties:

φR1(v)=

{
1, |v| ≤ R1,

0, |v| ≥ R1 + 1,
ψR2(z)=

{
0, |z| ≤ 1/R2,

1, |z| ≥ 2/R2.
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The notation J ϵ0 from the Appendix means

J ϵ0 = ∇Gϵ
∗ log[µ0 ∗ Gϵ

] ∈ C∞(Rd
; Rd).

For this proof alone, we define the reduced ϵ-entropy-dissipation

DR1,R2
ϵ (µ0) :=

1
2

∫∫
R2d
φR1φR1∗ψR2(v− v∗)|v− v∗|

γ+2
|5[v− v∗](J ϵ0 − J ϵ0∗

)|2dµ0(v)dµ0(v∗).

On the other hand, as the ϵ-entropy dissipation comes from the negative time derivative of entropy, we
have

DR1,R2
ϵ (µ0)= lim

t↓0

Hϵ(µ0)−Hϵ(µt)

t
= lim

t↓0

Hϵ(µ0)−Hϵ(µt)

dL(µ0,µt)

dL(µ0,µt)

t

≤ lim
t↓0

{
Hϵ(µ0)−Hϵ(µt)

dL(µ0,µt)
×

1
t

×

(∫ t

0

√
1
2

∫∫
R2d
φ2

R1
φ2

R1∗
ψ2

R2
|v−v∗|

γ+2|5[v−v∗](J ϵ0 −J ϵ0∗
)|2 dµs(v)dµs(v∗)ds

)}
≤ |∂Hϵ |(µ0)

√
DR1,R2
ϵ (µ0).

In the first inequality, we estimated dL(µ0, µt) by considering the PDE in this lemma as the grazing
collision equation with M = −(µ⊗ µ)∇̃ logµ0. In the last inequality, we have used the Lebesgue
differentiation theorem with strong-weak convergence since µ is continuous in time as well as the fact
that φ2

R1
≤ φR1 and ψ2

R2
≤ ψR2 since 0 ≤ φR1, ψR2 ≤ 1. We are left with the inequality√

DR1,R2
ϵ (µ0)≤ |∂Hϵ |(µ0) for all R1, R2 > 0.

Owing to the many regularizations applied, the ϵ-entropy-dissipation µ 7→ DR1, R2
ϵ (µ) is continuous with

respect to weak convergence of probability measures. By considering weakly convergent sequences and
passing to the limit inferior, we deduce the same inequality with the relaxed slope√

DR1,R2
ϵ (µ0)≤ |∂−Hϵ |(µ0) for all R1, R2 > 0.

As functions of R1, R2 individually, DR1,R2
ϵ (µ0) is nondecreasing. Furthermore, the integrand of

DR1,R2
ϵ (µ0) converges to the integrand of Dϵ(µ0) pointwise µ0-almost every v, v∗. Thus, an application

of the monotone convergence theorem in the limit R1, R2 → ∞ on the above inequality completes the
proof. □

Lemma 36. |∂−Hϵ | is a strong upper gradient for Hϵ in Pµ0(R
d), where µ0 ∈ P2,E(R

d).

Proof. Fix λ, ν ∈ Pµ0(R
d) so that by the triangle inequality of Theorem 7, we have dL(λ, ν) <∞. Now

by Proposition 26, there exists a pair of curves (µ,M)∈ GCE E
1 connecting λ, ν and A(µt ,Mt)= d2

L(λ, ν)

for almost every t ∈ [0, 1]. Using Remark 29 and Lemma 35, we have

|Hϵ(λ)−Hϵ(ν)| ≤

∫ 1

0

√
Dϵ(µt)|µ̇|(t) dt ≤

∫ 1

0
|∂−Hϵ |(µt)|µ̇|(t) dt. □
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We now have all the ingredients to prove Theorem 9 so that we can relate curves of maximal slope to
weak solutions of the ϵ-Landau equation.

Proof of Theorem 9. Take a limit curve µt constructed in Proposition 34. By the previous Lemma 36, the
assumptions of [Ambrosio et al. 2008, Theorem 2.3.3] are fulfilled so the curve is of maximal slope with
respect to |∂−Hϵ | and satisfies the associated energy dissipation inequality

Hϵ(µr )−Hϵ(µs)+
1
2

∫ r

s
|∂−Hϵ(µt)|

2 dt +
1
2

∫ r

s
|µ̇|

2(t) dt ≤ 0.

The inequality of Lemma 35 gives

Hϵ(µr )−Hϵ(µs)+
1
2

∫ r

s
Dϵ(µt) dt +

1
2

∫ r

s
|µ̇|

2(t) dt ≤ 0,

which is precisely the statement that the limit curve µt is a curve of maximal slope with respect to
√

Dϵ . □

Remark 37. The results of Proposition 34 and Lemma 35 can be generalized to other regularization
kernels Gs,ϵ, in particular, the Maxwellian regularization. However, this is not the case for Lemma 36
since the proof relies on Proposition 28; see Remark 33.

6. Recovering the full Landau equation as ϵ → 0

Theorems 8 and 9 provide the basic existence theory for the ϵ > 0 approximation of the Landau equation.
In this section, we prove the ϵ ↓ 0 analogue of Theorem 8, which is Theorem 12. By definition, both
H-solutions and curves of maximal slope to the full Landau equation dissipate the entropy. Therefore, the
assumption of finite initial entropy (A2) automatically ensures

sup
t∈[0,T ]

H[ ft ] = sup
t∈[0,T ]

∫
R3

ft log ft <+∞.

In the sequel, every quotation of (A2) will refer to this bound.

Sketch of the proof of Theorem 12. By repeating the proof of Theorem 8, we see that the crucial ingredient
is the chain rule (18) in Proposition 28. For now assume the following:

Claim 38. Assume (A1), (A2), (A3) and let M be any grazing rate such that (µ,M) ∈ GCE E
T and∫ T

0
A(µt ,Mt) dt <∞.

Then we have the chain rule

H[µr ] −H[µs] =
1
2

∫ r

s

∫∫
R6

∇̃

[
δH
δµ

]
· d Mt dt. (29)

By following the steps of the proof of Theorem 8 and using (29) instead of (18), one completes the
proof of Theorem 12. We dedicate this section to proving Claim 38.

Equation (29) is clearly the ϵ ↓ 0 limit of (18). The left-hand side of (29) can be obtained from the
left-hand side of (18) using the finite entropy (A2) and the fact that ϵ 7→Hϵ[µt ] is nonincreasing for every t .
We refer to [Erbar 2023, Proof of Proposition 4.2, Step 4(d)] for more details on a similar argument.



THE LANDAU EQUATION AS A GRADIENT FLOW 1359

The difficulty remains in deducing that the right-hand side of (18) converges to the right-hand side
of (29) as ϵ ↓ 0 given by∫ T

0

∫∫
R6

∇̃
δHϵ

δµ
· d Mt dt →

∫ T

0

∫∫
R6

∇̃
δH
δµ

· d Mt dt, ϵ ↓ 0, (30)

under the additional assumptions (A1), (A2), (A3) on f . The key result which we will use repeatedly
in this section is the following theorem which is a specific case of the result in [Royden 1963, Chapter 4,
Theorem 17].

Theorem 39 (extended dominated convergence theorem (EDCT)). Let (Hϵ)ϵ>0 and (Iϵ)ϵ>0 be sequences
of measurable functions on X satisfying Iϵ ≥ 0 and suppose there exists measurable functions H, I
satisfying:

(1) |Hϵ | ≤ Iϵ for every ϵ > 0 and pointwise a.e.

(2) Hϵ and Iϵ converge pointwise a.e. to H and I , respectively.

(3) limϵ↓0
∫

X Iϵ =
∫

X I <∞.

Then, we have the convergence

lim
ϵ↓0

∫
X

Hϵ =

∫
X

H.

Setting M = mL⊗L (valid by Lemma 19) and using Young’s inequality on the right-hand side of (18),
we obtain the majorants

∇̃

[
δHϵ

δµ

]
· mt ≤

1
2

f f∗

∣∣∣∣∇̃[
δHϵ

δµ

]∣∣∣∣2

+
1
2

|mt |
2

f f∗
.

Notice that the first term is precisely the integrand of Dϵ , while the second term is the integrand of the
action functional A(µt ,Mt), which has no dependence on ϵ and is henceforth ignored. We can apply
the EDCT (Theorem 39) with X = (0, T )× R6 to prove (30) once we show∫ T

0

∫∫
R6

f f∗

∣∣∣∣∇̃[
δHϵ

δµ

]∣∣∣∣2

dv∗ dv dt →

∫ T

0

∫∫
R6

f f∗

∣∣∣∣∇̃[
δH
δµ

]∣∣∣∣2

dv∗ dv dt, ϵ ↓ 0. (31)

The pointwise a.e. convergence hypothesis of Theorem 39 is straightforward based on the regularization
of Hϵ through Gϵ. Focusing on (31), we will use a standard dominated convergence theorem (DCT) for
the integration in the t-variable, by proving∫∫

R6

1
2

f f∗

∣∣∣∣∇̃[
δHϵ

δµ

]∣∣∣∣2

dv∗ dv →

∫∫
R6

1
2

f f∗

∣∣∣∣∇̃[
δH
δµ

]∣∣∣∣2

dv∗ dv for a.e. t,∫∫
R6

1
2

f f∗

∣∣∣∣∇̃[
δHϵ

δµ

]∣∣∣∣2

dv∗ dv ≤ C
∫∫

R6

1
2

f f∗

∣∣∣∣∇̃[
δH
δµ

]∣∣∣∣2

dv∗ dv for a.e. t, for all ϵ > 0,

(32)

where C > 0 is a constant independent of ϵ > 0. The estimate of (32) guarantees the L1
t majorization

due to the finite entropy-dissipation (A3). □
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Our estimates in this section accomplish both the convergence and the estimate of (32) by nested
application of Theorem 39. The significance of all three assumptions (A1), (A2), and (A3) will be apparent
in proving the convergence in (32).

Remark 40. In this section, the only properties of Gϵ we use are that it is a nonnegative radial approximate
identity with sufficiently many moments. As in the construction of minimizing movement curves in
Section 5, the results of this section can be achieved with other radial approximate identities.

6.1. Outline of technical strategy to prove (32). The need to apply Theorem 39 instead of the more
classical Lebesgue DCT is that we are unable to prove pointwise estimates in v for the function v →

f
∫

R3 f∗|∇̃[∂Hϵ/∂ f ]|
2 dv∗. Instead, our estimates in this section rely on the self-adjointness of convolution

against radial exponentials (SACRE) to construct a convergent majorant in ϵ.

Step 1: finding majorants and appealing to Theorem 39. We seek to find pointwise a.e. majorants in the
v-variable:

f
∫

R3
f∗

∣∣∣∣∇̃[
δHϵ

δµ

]∣∣∣∣2

dv∗ ≤ I 1
ϵ (v),

where I 1
ϵ (v) satisfies the hypothesis for the majorant in Theorem 39. We show that I 1

ϵ converges pointwise
to some I 1, since I 1

ϵ depends on ϵ only through convolutions against Gϵ, which is an approximation of
the identity. Hence, we are left with showing the integral convergence of Theorem 39(3)∫

R3
I 1
ϵ (v) dv dt →

∫
R3

I 1(v) dv, ϵ → 0.

Step 2: use SACRE with Gϵ. To show the integral convergence for I 1
ϵ , we find functions A1 and B1 such

that

I 1
ϵ (v)≤ A1(v)(Gϵ

∗ B1)(v)

and apply Theorem 39. As in the previous step, the pointwise convergence is easily proved. Hence, we
are left to show the integral convergence∫

R3
A1(Gϵ

∗ B1) dv →

∫
R3

A1 B1, ϵ → 0.

The key observation is applying SACRE to obtain∫
R3

A1(Gϵ
∗ B1)=

∫
R3

=:I 2
ϵ︷ ︸︸ ︷

(Gϵ
∗ A1)B1 .

Therefore, we have reduced the problem to showing integral convergence of Theorem 39(3) for I 2
ϵ (as the

pointwise convergence is easily proved).

Step 3: repeat Step 2. We repeat the process outlined in Step 2 by finding functions A2 and B2 such that
we have the pointwise bound

I 2
ϵ (v)≤ A2(v)(Gϵ

∗ B2)(v).
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Again the pointwise convergence for the majorant follows easily; hence we only need to check the integral
convergence of Theorem 39(3) given by∫

R3
A2(Gϵ

∗ B2)→

∫
R3

A2 B2.

Using SACRE, we study instead the integral convergence of

I 3
ϵ (v)= (Gϵ

∗ A2)B2.

Eventually, after a finite number of times of finding majorants and applying SACRE, we will obtain a
majorant I i

ϵ for which the estimates and the convergence as ϵ→ 0 follow from the standard Lebesgue DCT,
using the bound of the weighted Fisher information in terms of the entropy-dissipation (see Theorem 41)
and (A3).

6.2. Preparatory results. As mentioned in the previous section, for the final step of the proof we need a
bound on the weighted Fisher information and a closely related variant in terms of the entropy-dissipation
originally discovered by the third author in [Desvillettes and Fellner 2006].

Theorem 41. Suppose γ ∈ (−4, 0] and let f ≥ 0 be a probability density belong to L1
2−γ ∩ L log L(R3).

We have ∫
R3

f (v)⟨v⟩γ
∣∣∣∣∇ δHδ f

∣∣∣∣2

dv+

∫
R3

f (v)⟨v⟩γ
∣∣∣∣v× ∇

δH
δ f

∣∣∣∣2

dv ≤ C(1 + Dw,H( f )),

where C > 0 is a constant depending only on the bounds of m2−γ ( f ) and the Boltzmann entropy, H[ f ],
of f .

The estimate in this precise form can be found in [Desvillettes 2022, Proposition 4, p. 10]. We will
refer to the second term on the left-hand side as a “cross Fisher information”. We mention here that (A2)
enters in the sequel since the constant C > 0 in Theorem 41 depends on bounds for H[ f ].

To decompose the entropy-dissipation in a manageable way that makes the cross Fisher term more
apparent, we have the following linear algebra fact.

Lemma 42. For x, y ∈ R3, we have
|x |

2(y ·5[x]y)= |x × y|
2.

Proof. Without loss of generality, we assume neither x, y = 0 or else the statement holds trivially. Let θ
be an oriented angle between x and y. We expand the definition of 5[x] and observe

|x |
2(y ·5[x]y)= y · (|x |

2 I − x ⊗ x)y = |x |
2
|y|

2
− |x · y|

2

= |x |
2
|y|

2(1 − cos2 θ)= |x |
2
|y|

2 sin2 θ = |x × y|
2. □

The following lemma shows how we use (A1) to control the singularity of the weight.

Lemma 43. Given γ ∈ (−3, 0], assume that f satisfies (A1) for some 0< η ≤ γ + 3. Then we have for
a.e. t ∫

R3
f∗(t)|v− v∗|

γ dv∗ ≤ C1(t)⟨v⟩γ ,
∫

R3
f∗(t)|v∗|

2
|v− v∗|

γ dv∗ ≤ C2(t)⟨v⟩γ , (33)
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where
∥C1∥L∞(0,T ) ≲γ,η ∥⟨ · ⟩

−γ f (t)∥L∞(0,T ;L1∩L(3−η)/(3+γ−η)(R3)),

∥C2∥L∞(0,T ) ≲γ,η ∥⟨ · ⟩
2−γ f (t)∥L∞(0,T ;L1∩L(3−η)/(3+γ−η)(R3)).

Proof. We will only prove the first inequality of (33) since the second inequality uses the same procedure.
We split the estimation for local |v| ≤ 1 and far-field |v| ≥ 1.

Case 1: |v| ≤ 1. We split the integral over v∗ into two regions∫
R3

f∗|v− v∗|
γ dv∗ =

∫
|v−v∗|≥1

f∗|v− v∗|
γ dv∗ +

∫
|v−v∗|≤1

f∗|v− v∗|
γ dv∗

≤ 1 +

∫
|v−v∗|≤1

f∗|v− v∗|
γ dv∗,

where we have used that
∫

R3 f = 1 and γ ≤ 0. For the integral with the singularity, we apply Young’s
convolution inequality with conjugate exponents ((3 − η)/(3 + γ − η), (−3 + η)/γ )∫

|v−v∗|≤1
f∗|v− v∗|

γ dv∗ ≤ ∥ f ∗ (χB1 | · |
γ )∥L∞

≤ ∥ f ∥L(3−η)/(3+γ−η)∥χB1 | · |
γ
∥L(−3+η)/γ ≤

(
ω2

η

)(−3+η)/γ

∥ f ∥L(3−η)/(3+γ−η) .

Here, ω2 is the volume of the unit sphere in R3.

Case 2: |v| ≥ 1. Once again, we split the integral into two parts∫
R3

f∗|v− v∗|
γ dv∗ =

∫
|v∗|≤|v|/2

f∗|v− v∗|
γ dv∗ +

∫
|v∗|≥|v|/2

f∗|v− v∗|
γ dv∗

≤ 2−γ
|v|γ

∫
|v∗|≤|v|/2

f∗ dv∗ + 2−γ
|v|γ

∫
|v∗|≥|v|/2

f∗|v∗|
−γ

|v− v∗|
γ dv∗.

The first term and second term come from the following inequalities based on their respective integration
regions:

|v− v∗| ≥ |v| − |v∗| ≥
1
2 |v|, 1 ≤ 2−γ

|v|γ |v∗|
−γ .

We estimate the first integral using the unit mass of f , while the second integral is more delicate but again
uses the splitting of the previous step to obtain∫

R3
f∗|v− v∗|

γ dv∗

≤ 2−γ
|v|γ + 2−γ

|v|γ
(∫

|v−v∗|≥1
f∗|v∗|

−γ
|v− v∗|

γ dv∗ +

∫
|v−v∗|≤1

f∗|v∗|
−γ

|v− v∗|
γ dv∗

)
.

In the large brackets, the first integral can be estimated by m−γ ( f ). Now we use the same Young’s
inequality argument for the remaining integral to obtain∫

R3
f∗|v− v∗|

γ dv∗ ≤ 2−γ
|v|γ + 2−γ

|v|γ
(

m−γ ( f )+
(
ω2

η

)(−3+η)/γ

∥| · |
−γ f ∥L(3−η)/(3+γ−η)(R3)

)
.

The proof is complete by combining the estimates for |v| ≤ 1 and |v| ≥ 1. □
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Lemma 44 (Peetre). For any p ∈ R and x, y ∈ Rd , we have

⟨x⟩
p

⟨y⟩p ≤ 2|p|/2
⟨x − y⟩

|p|.

Proof. Our proof follows [Barros-Neto 1973]. Starting with the case p = 2, for fixed vectors a, b ∈ Rd

we have, with the help of Young’s inequality,

1 + |a − b|
2
≤ 1 + |a|

2
+ 2|a||b| + |b|

2
≤ 1 + 2|a|

2
+ 2|b|

2

≤ 2 + 2|a|
2
+ 2|a|

2
|b|

2
+ 2|b|

2
= 2(1 + |a|

2)(1 + |b|
2).

Dividing by ⟨b⟩
2 and setting a = x − y, b = −y, we obtain the inequality for p = 2

⟨x⟩
2

⟨y⟩2 ≤ 2⟨x − y⟩
2.

By taking nonnegative powers, this proves the inequality for p ≥ 0. On the other hand, when we divided
by ⟨b⟩

2 we could have also set a = x − y, b = x to obtain

⟨y⟩
2

⟨x⟩2 ≤ 2⟨x − y⟩
2.

Taking strictly nonnegative powers here proves the inequality for p < 0. □

Next, we prove an estimate for algebraic functions (growing or decaying) convoluted against Gϵ with
respect to the original function.

Lemma 45. For any p ∈ R, we have∫
Rd

⟨w⟩
pGϵ(v−w) dw ≤ C⟨v⟩p,

where C > 0 is a constant depending only on |p| and m|p|(G).

Proof. We use Peetre’s inequality in Lemma 44 to introduce v−w into the angle brackets∫
Rd

⟨w⟩
pGϵ(v−w) dw ≤ 2|p|/2

⟨v⟩p
∫

Rd
⟨v−w⟩

|p|Gϵ(v−w) dw

= 2|p|/2
⟨v⟩p

∫
Rd
(1 + |w|

2)|p|/2ϵ−d G
(
w

ϵ

)
dw

= 2|p|/2
⟨v⟩p

∫
Rd
(1 + ϵ2

|w|
2)|p|/2G(w) dw

≤ C|p|⟨v⟩
p
[

1 + ϵ|p|

∫
Rd

|w|
|p|G(w) dw

]
≤ C|p|[1 + ϵ|p|m|p|(G)]⟨v⟩p. □

We stress that Peetre’s inequality in Lemma 44 is necessary for the estimate of Lemma 45 with
nonpositive powers p which we apply in the sequel. Finally, the last result we will need is an integration
by parts formula for the differential operator associated to the cross Fisher information.
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Lemma 46 (twisted integration by parts). Let f, g be smooth scalar functions of R3 which are sufficiently
integrable. Then, we have the formula∫

R3
(v× ∇vg(v)) f (v) dv = −

∫
R3

g(v)(v× ∇v f (v)) dv.

Here, the meaning of v× ∇v is

v× ∇v f (v)= (v2∂3 f (v)− v3∂2 f (v), v3∂1 f (v)− v1∂3 f (v), v1∂2 f (v)− v2∂1 f (v)).

6.3. Proof of (32) using Theorem 39. We start by decomposing and estimating the integrand of Dϵ .
With the help of Lemma 42, we expand the square term of the integrand to see∣∣∣∣∇̃[

δHϵ

δµ

]∣∣∣∣2

= |v−v∗|
2+γ

|5[v−v∗](bϵ∗aϵ−bϵ∗aϵ
∗
)|2

≤ |v−v∗|
γ (4|v×(bϵ∗aϵ)|2+4|v∗×(bϵ∗aϵ

∗
)|2+4|v×(bϵ∗aϵ

∗
)|2+4|v∗×(bϵ∗aϵ)|2)

≤ 4|v−v∗|
γ
|v×(bϵ∗aϵ)|2︸ ︷︷ ︸

1⃝

+4|v−v∗|
γ
|v∗×(bϵ∗aϵ

∗
)|2︸ ︷︷ ︸

2⃝

+4|v|2|v−v∗|
γ
|bϵ∗aϵ

∗
|
2︸ ︷︷ ︸

3⃝

+4|v∗|
2
|v−v∗|

γ
|bϵ∗aϵ |2︸ ︷︷ ︸

4⃝

,

where we use the shorthand notation

bϵ = Gϵ and aϵ = ∇ log(Gϵ
∗ f ). (34)

By using that Gϵ is an approximation of the identity, we know that the integrand of Dϵ converges pointwise
a.e. to the integrand of D as ϵ ↓ 0. As well, each i⃝ for i = 1, 2, 3, 4 converges pointwise a.e. to

1⃝ →
|v× ∇ f |

2

f 2 , 2⃝ →
|v∗ × ∇∗ f∗|2

f 2
∗

, 3⃝ →
|∇∗ f∗|2

f 2
∗

, 4⃝ →
|∇ f |

2

f 2 .

By Theorem 39, to show the integral convergence in (32), it suffices to show, for example,∫∫
R6

f f∗|v− v∗|
γ 1⃝ dv dv∗ →

∫∫
R6

f f∗|v− v∗|
γ |v× ∇ f |

2

f 2 dv dv∗,

and similarly for each i⃝ for i = 2, 3, 4. By symmetry considerations when swapping the variables
v ↔ v∗, the convergence for the terms 1⃝ and 4⃝ controls the convergence for 2⃝ and 3⃝, respectively.
Hence we will focus on the term 4⃝ first and then on term 1⃝.

6.3.1. Term 4⃝. We seek to show in the limit ϵ ↓ 0∫∫
R6

f f∗|v∗|
2
|v− v∗|

γ
|bϵ ∗ aϵ |2 dv∗ dv =

∫
R3

(∫
R3

f∗|v∗|
2
|v− v∗|

γ dv∗

)
f |bϵ ∗ aϵ |2 dv

→

∫
R3

(∫
R3

f∗|v∗|
2
|v− v∗|

γ dv∗

)
|∇ f |

2

f
dv. (35)

By the reordering of integrations written above, we now think of the double integral over v, v∗ of
f f∗|v∗|

2
|v−v∗|

γ
|bϵ ∗aϵ |2 as a single integral of the function

(∫
R3 f∗|v∗|

2
|v−v∗|

γ dv∗

)
f |bϵ ∗aϵ |2 over v.
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To be precise, we wish to apply Theorem 39 with X = R3 with Hϵ =
(∫

R3 f∗|v∗|
2
|v−v∗|

γ dv∗

)
f |bϵ ∗aϵ |2.

We can use Cauchy–Schwarz on the convolution integral to absorb the power term as follows:

|bϵ ∗ aϵ |2 =

∣∣∣∣∫
R3

bϵ(v−w)aϵ(w) dw
∣∣∣∣2

≤

(∫
R3

⟨w⟩
−γ bϵ(v−w) dw

)(∫
R3

bϵ(v−w)⟨w⟩
γ
|aϵ(w)|2 dw

)
≤ C⟨v⟩−γ bϵ ∗ [⟨ · ⟩

γ
|aϵ( · )|2],

where the last inequality comes from Lemma 45. Continuing with Lemma 43, we have(∫
R3

f∗|v∗|
2
|v− v∗|

γ dv∗

)
f |bϵ ∗ aϵ |2 ≤ C f bϵ ∗ [⟨ · ⟩

γ
|aϵ |2].

By Theorem 39, we reduce the problem to showing in the limit ϵ ↓ 0∫
R3

f bϵ ∗ [⟨ · ⟩
γ
|aϵ |2] dv →

∫
R3

⟨v⟩γ
|∇ f |

2

f
dv.

This is were we use SACRE, Step 2 of our general strategy in Section 6.1. Application of SACRE and
further simplification using the specific forms of aϵ and bϵ (see (34)) yields∫

R3
f bϵ ∗ [⟨ · ⟩

γ
|aϵ |2] dv =

∫
R3

[bϵ ∗ f ]⟨v⟩γ |aϵ |2 dv =

∫
R3

⟨v⟩γ
|bϵ ∗ ∇ f |

2

bϵ ∗ f
dv. (36)

We work with this simplified expression and note that pointwise convergence is still valid

|bϵ ∗ ∇ f |
2

bϵ ∗ f
→

|∇ f |
2

f
.

Next, we notice that the function β : (F, f ) 7→ |F |
2/ f is jointly convex in F ∈ R3 and f > 0, so we can

use Jensen’s inequality with bϵ = Gϵ as the reference probability measure to obtain a further pointwise
majorant for the integrand of (36)

|bϵ∗∇ f |
2

bϵ∗ f
(v)=β(bϵ∗∇ f, bϵ∗ f )(v)=β

(∫
R3

∇ f (v−y)bϵ(y)dy,
∫

R3
f (v−y)bϵ(y)dy

)
≤

∫
R3
β(∇ f (v−y), f (v−y))bϵ(y)dy =

∫
R3

|∇ f (v−y)|2

f (v−y)
bϵ(y)dy = bϵ∗

[
|∇ f |

2

f

]
(v).

Using Theorem 39 again, we reduce the problem to showing in the limit ϵ ↓ 0∫
R3

⟨v⟩γ bϵ ∗

[
|∇ f |

2

f

]
dv →

∫
R3

⟨v⟩γ
|∇ f |

2

f
dv.

We use SACRE once more and place the convolution onto the weight term∫
R3

⟨v⟩γ bϵ ∗

[
|∇ f |

2

f

]
dv =

∫
R3

[bϵ ∗ ⟨ · ⟩
γ
]
|∇ f |

2

f
dv.

Now, we are in a position to apply the classical dominated convergence theorem. We notice that we have
the pointwise convergence

[bϵ ∗ ⟨ · ⟩
γ
] → ⟨v⟩γ .
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Furthermore, using Lemma 45, we can estimate bϵ ∗ ⟨ · ⟩
γ uniformly in ϵ to find the domination

[bϵ ∗ ⟨ · ⟩
γ
]
|∇ f |

2

f
≤ C⟨v⟩γ

|∇ f |
2

f
.

Using Theorem 41, the finite entropy-dissipation (A3), and uniformly bounded entropy (A2) (remember
the constant in Theorem 41 depends also on bounds for the entropy), we know that the right-hand side
belongs to L1

v for a.e. t ∈ (0, T ). Therefore, for a.e. t ∈ (0, T ) the conditions of the dominated convergence
theorem are satisfied so we have the integral convergence∫

R3
[bϵ ∗ ⟨ · ⟩

γ
]
|∇ f |

2

f
dv →

∫
R3

⟨v⟩γ
|∇ f |

2

f
dv.

We have closed the argument for the convergence of (35) after retracing the previous estimates with
Theorem 39.

6.3.2. Term 1⃝. We seek to show in the limit ϵ ↓ 0∫∫
R6

f f∗|v− v∗|
γ
|v× (bϵ ∗ aϵ)|2 dv∗ dv =

∫
R3

(∫
R3

f∗|v− v∗|
γ dv∗

)
f |v× (bϵ ∗ aϵ)|2 dv

→

∫
R3

(∫
R3

f∗|v− v∗|
γ dv∗

)
|v× ∇ f |

2

f
dv (37)

using the same strategy of nested applications of Theorem 39 like in Section 6.3.1. We will encounter dif-
ficulty when trying to use Jensen’s inequality due to the cross Fisher information term. As in Section 6.3.1,
we have written this double integral over v, v∗ as a single integral over v. By Theorem 39 and Lemma 43,
it suffices to show the integral convergence of∫

R3
⟨v⟩γ f |v× (bϵ ∗ aϵ)|2 dv →

∫
R3

⟨v⟩γ
|v× ∇ f |

2

f
(38)

to obtain the integral convergence of (37). Pointwise, we can make the following manipulations:

v×(bϵ∗aϵ)= v×
(∫

R3
Gϵ(v−w)∇ log( f ∗Gϵ(w))dw

)
= v×

(∫
R3

∇Gϵ(v−w) log( f ∗Gϵ(w))dw
)

=

∫
R3
w×∇Gϵ(v−w) log( f ∗Gϵ(w))dw=

∫
R3

Gϵ(v−w)w×∇ log( f ∗Gϵ(w))dw, (39)

where we have used the radial symmetry of Gϵ to get the cancellation (v−w)×∇Gϵ(v−w)= 0 and
the twisted integration by parts Lemma 46 (we note that we do not pick up any signs in the integration by
parts, as the variable w appears with a minus sign in the argument of Gϵ).

We apply Cauchy–Schwarz, multiply and divide by ⟨w⟩
γ , and use Lemma 45 to obtain

|v× (bϵ ∗ aϵ)|2 ≤

(∫
R3

Gϵ(v−w)⟨w⟩
−γ dw

)(∫
R3

Gϵ(v−w)⟨w⟩
γ

∣∣∣∣w×
∇ f ∗ Gϵ(w)

f ∗ Gϵ(w)

∣∣∣∣2

dw
)

≲γ ⟨v⟩−γ
(∫

R3
Gϵ(v−w)⟨w⟩

γ

∣∣∣∣w×
∇ f ∗ Gϵ(w)

f ∗ Gϵ(w)

∣∣∣∣2

dw
)
.
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Remembering that this majorant holds pointwise on the integrand of (38), we multiply by ⟨v⟩γ f (v) and
obtain

⟨v⟩γ f (v)|v× (bϵ ∗ aϵ)|2 ≲ f
(∫

R3
Gϵ(v−w)⟨w⟩

γ

∣∣∣∣w×
∇ f ∗ Gϵ(w)

f ∗ Gϵ(w)

∣∣∣∣2

dw
)
.

Now, we recognize a convolution inside the brackets. Hence, using SACRE we can rewrite∫
R3

f
(∫

R3
Gϵ(v−w)⟨w⟩

γ

∣∣∣∣w×
∇ f ∗ Gϵ(w)

f ∗ Gϵ(w)

∣∣∣∣2

dw
)

dv =

∫
R3

⟨v⟩γ
|v× ∇ f ∗ Gϵ(v)|2

f ∗ Gϵ(v)
dv.

Using Theorem 39, we need to show the convergence of the right-hand side. Here, it is now possible to
use Jensen’s inequality after some more manipulations.

Claim 47.
|v× ∇ f ∗ Gϵ(v)|2

f ∗ Gϵ(v)
≤

∫
R3

Gϵ(v−w)
|w× ∇ f (w)|2

f (w)
dw. (40)

Proof of Claim 47. We start by repeating an argument similar to (39). Using that Gϵ is radially symmetric
and the twisted integration by parts Lemma 46, we obtain

v× ∇ f ∗ Gϵ(v)= v×

(∫
R3

∇Gϵ(v−w) f (w) dw
)

=

∫
R3
w× ∇Gϵ(v−w) f (w) dw =

∫
R3

Gϵ(v−w)

=:F(w)︷ ︸︸ ︷
(w× ∇w f (w)) dw.

Therefore, since β : (F, f ) 7→ |F |
2/ f is jointly convex in F ∈ R3 and f > 0, we apply Jensen’s inequality

with Gϵ as the reference probability measure to the left-hand side of (40) to see

|v× ∇ f ∗ Gϵ(v)|2

f ∗ Gϵ(v)
=

|F ∗ Gϵ
|
2

f ∗ Gϵ
(v)= β(Gϵ

∗ F, Gϵ
∗ f )(v)

= β

(∫
R3

F(v−w)Gϵ(w) dw,
∫

R3
f (v−w)Gϵ(w) dw

)
≤

∫
R3
β(F(v−w), f (v−w))Gϵ(w) dw =

∫
R3

|(v−w)× ∇F(v−w)|2

f (v−w)
Gϵ(w) dw,

which proves the claim. □

Continuing, by Theorem 39, we seek to establish the integral convergence of∫
R3

⟨v⟩γ
[
|F |

2

f
∗ Gϵ

]
(v) dv =

∫
R3

[⟨ · ⟩
γ

∗ Gϵ
](v)

|v× ∇ f (v)|2

f (v)
dv.

Finally, the integrand of the right-hand side has a majorant due to Lemma 45

[⟨ · ⟩
γ

∗ Gϵ
](v)

|v× ∇ f (v)|2

f (v)
≲ ⟨v⟩γ

|v× ∇ f (v)|2

f (v)
.

Once again, using Theorem 41 and Assumptions (A3) and (A2), we obtain that for a.e. t ∈ (0, T ) the
right-hand side belongs to L1

v(R
3). Using dominated convergence theorem, we see that the integral

converges. Tracing back the estimates, this takes care of the convergence of the term 1⃝ and establishes
the convergence in (38).
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We note that the estimates in the previous subsections not only establish the a.e. pointwise convergence
of (32), but also the majorization∫∫

R6

1
2

f f∗

∣∣∣∣∇̃[
δHϵ

δµ

]∣∣∣∣2

dv∗ dv ≤ C
∫∫

R6

1
2

f f∗

∣∣∣∣∇̃[
δH
δµ

]∣∣∣∣2

dv∗ dv for a.e. t, for all ϵ > 0,

where

C ≲ ∥⟨ · ⟩
−γ f (t)∥L∞(0,T ;L1∩L(3−η)/(3+γ−η)(R3)) + ∥⟨ · ⟩

2−γ f (t)∥L∞(0,T ;L1∩L(3−η)/(3+γ−η)(R3))

by Lemma 43. Hence, using (A3) and (32) we can apply Lebesgue DCT to pass to the limit in the time
integral and show the desired chain rule Claim 38.

Appendix: An auxiliary PDE for Lemma 35

In this section, we fix ϵ > 0 throughout and study weak solutions to the PDE{
∂tµ= ∇ · {µφR1

∫
Rd φR1∗ψR2(v− v∗)|v− v∗|

γ+25[v− v∗](J ϵ0 − J ϵ0∗
) dµ(v∗)},

µ(0)= µ0.
(41)

We assume the initial data µ0 belongs to P2(R
d). For R1, R2 > 0, the functions 0 ≤ φR1, ψR2 ≤ 1 are

smooth cut-off functions used to approximate the identity function in different ways:

φR1(v)=

{
1, |v| ≤ R1,

0, |v| ≥ R1 + 1,
ψR2(z)=

{
0, |z| ≤ 1/R2,

1, |z| ≥ 2/R2.

For ϵ > 0, J ϵ0 is the gradient of first variation of Hϵ applied to µ0, meaning

J ϵ0 = ∇Gϵ
∗ log[µ0 ∗ Gϵ

] ∈ C∞(Rd
; Rd).

The main result of this section is:

Theorem 48. Fix ϵ, R1, R2 > 0, γ ∈ R, and µ0 ∈ P2(R
d). Then, there is a global unique weak solution

µ ∈ C([0,+∞); P2(R
d)) to (41).

By Lemma 31, we know that J ϵ0 is uniformly bounded (with constant depending on ϵ and µ0 only
through bounds on its second moment). The purpose of φR1, φR1∗ is to cut off the growth of J ϵ0 , J ϵ0∗

to
ensure that the “velocity field” in the right-hand side of (41) is globally Lipschitz (it is, in fact, smooth and
compactly supported). The ψR2(v− v∗)-term avoids the possible singularities coming from the weight
|v− v∗|

γ+2 for soft potentials γ < 0.
The construction of the solution in Theorem 48 is given in two steps. Firstly, a local well-posedness

theory established to some finite time interval T > 0 which depends on ϵ, γ, R1, R2 and µ0. Secondly,
the time of existence (and uniqueness) is extended to +∞ since T depends on µ0 only through its second
moment, which is conserved by the evolution of (41).

We fix T > 0 to be determined explicitly later. Our strategy is to employ a fixed-point argument in the
space C([0, T ]; P2(R

d)), which we will equip with the metric

d(µ, ν) := sup
t∈[0,T ]

W2(µ(t), ν(t)), µ, ν ∈ C([0, T ]; P2(R
d)),
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where W2 is the 2-Wasserstein distance on P2(R
d). We have closely followed the procedure in [Cañizo

et al. 2011] with appropriate modifications for this setting.

Remark 49. Since we are cutting off the “velocity” field at radius R1, R2, the growth of J ϵ0 is inconse-
quential. Hence the results of this section can be applied when replacing the convolution kernel of J ϵ0
with general tailed exponential distributions Gs,ϵ(v) for s > 0.

For µ ∈ P2(R
d), we will denote by U [µ](v) the function

U [µ](v) := −φR1

∫
Rd
φR1∗ψR2(v− v∗)|v− v∗|

γ+25[v− v∗](J ϵ0 − J ϵ0∗
) dµ(v∗),

so that the PDE in (41) can be written as a nonlinear transport/continuity equation:

∂tµ(t)= −∇ · {µ(t)U [µ(t)]}.

To fix ideas, the weak formulation of (41) is such that the following equality holds for all test functions
τ ∈ C∞

c (R
d) and times t ∈ [0, T ]∫

Rd
τ(v) dµr (v)−

∫
Rd
τ(v) dµ0(v)

=

∫ t

0

∫
Rd
φR1∇τ(v) ·

∫
Rd
φR1∗ψR2(v− v∗)|v− v∗|

γ+25[v− v∗](J ϵ0 − J ϵ0∗
)dµs(v∗) dµs(v) ds.

Thanks to all the smooth cutoffs from φR1, φR1∗, and ψR2 and µ0 ∈ P2(R
d), we can enlarge the class

of test functions to smooth functions with quadratic growth. In particular, by choosing τ(v)= |v|2 and
symmetrizing the right-hand side by swapping v↔ v∗, we see that the second moment of µ0 is conserved
along the evolution of (41).

Our first step is to look at the level of the characteristic equation associated to (41).

Lemma 50 (characteristic equation). For any T > 0, µ ∈ C([0, T ]; P2(R
d)) and v0 ∈ Rd , there exists a

unique solution v ∈ C1((0, T ); Rd)∩ C([0, T ]; Rd) to the ODE

dv
dt

= U [µ(t)](v), v(0)= v0.

Furthermore, the growth rate satisfies

|v(t)| ≤ max{|v0|, R1 + 1} for all t ∈ [0, T ].

Proof. U [µ(t)]( · ) is smooth and compactly supported uniformly in t , so classical Cauchy–Lipschitz
theory gives existence and uniqueness of solution v with the promised regularity.

For the estimate on the growth rate, note that U [µ] has support contained in BR1+1. Points outside this
ball do not change in time according to this ODE. □

We will denote by 8t
µ the flow map associated to this ODE, so that

d
dt
8t
µ(v0)= U [µ(t)](8t

µ(v0)), 80
µ(v0)= v0.
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It is known that, given ν ∈ C([0, T ]; P2(R
d)), the curve of probability measures µ(t)=8t

ν#µ0 is a weak
solution to

∂tµ(t)= −∇ · {µ(t)U [ν(t)]}, µ(0)= µ0.

Here, 8t
ν#µ0 is the push-forward measure of µ0 defined in duality with τ ∈ Cb(R

d) by∫
Rd
τ(v) d(8t

ν#µ0)(v)=

∫
Rd
τ(8t

ν(v)) dµ0(v).

We seek to find a fixed point to the map µ 7→8t
µ#µ0 as it would weakly solve (41). To better understand

the properties of this map, we need to establish estimates on the flow map through U as a function of
time and measures.

Lemma 51 (L∞ estimate for velocity field). There exists a constant C = C(ϵ, γ, R1, R2, µ0) > 0 such
that, for every T > 0 and ν ∈ C([0, T ]; P2(R

d)), we have

|U [ν(t)](v)| ≤ C for all t ∈ [0, T ], v ∈ Rd .

Proof. Estimate for γ ≥ −2: We have the three inequalities

|v− v∗|
γ+2 ≲γ |v|γ+2

+ |v∗|
γ+2, ∥5[v− v∗]∥ ≤ 1, J ϵ0 ≲ϵ,µ0 1

due to the range of γ , boundedness of 5, and Lemma 31, respectively. These three inequalities provide
the estimate

|U [ν(t)](v)| ≲γ,ϵ,µ0 φR1(v)

∫
Rd
φR1(v∗)(|v|

γ+2
+ |v∗|

γ+2) dνt(v∗),

where we have dropped ψR2 altogether. For the integral term, we apply Hölder’s inequality taking
advantage of the compact support of φR1 and the unit mass of νt to further obtain

|U [ν(t)](v)| ≲γ,ϵ,µ0 φR1(v)(R
2+γ

1 + ⟨v⟩2+γ )

∫
Rd

dνt(v∗)≲R1 φR1(v)⟨v⟩
2+γ .

Again, since φR1 has compact support, we can brutally estimate the polynomial to conclude.

Estimate for γ <−2: Unlike the previous case, we change one of the inequalities due to the unavailability
of a triangle inequality and use

ψR2(v− v∗)|v− v∗|
γ+2 ≲ 1/Rγ+2

2 , ∥5[v− v∗]∥ ≤ 1, J ϵ0 ≲ϵ,µ0 1.

From these inequalities and the compact support of φR1 , we have

|U [ν(t)](v)| ≲γ,ϵ,µ0,R2 φR1(v)

∫
Rd
φR1(v∗) dνt(v∗)≤ 1. □

The next result follows exactly as in [Cañizo et al. 2011].

Lemma 52 (time continuity of flow map). Let C = C(ϵ, γ, R1, R2, µ0) > 0 be the same constant from
Lemma 51. Then, for any T > 0, and ν ∈ C([0, T ]; P2(R

d)) we have

∥8t
ν −8s

ν∥L∞(Rd ) ≤ C |t − s|.
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Our next objective is to establish the regularity of the flow map with respect to the measures in the
subscript. To simplify the subsequent lemmas, let us use the notation in the following:

Lemma 53. Define

F : (v,w) ∈ Rd
× Rd

7→ φR1(v)φR1(w)ψR2(v−w)|v−w|
γ+25[v−w](J ϵ0 (v)− J ϵ0 (w)).

The function F is smooth and compactly supported. In particular, for every k, l ∈ N, there is a constant
C = C(ϵ, γ, R1, R2, µ0, k, l) > 0 such that

∥Dk
vDl

wF∥L∞(Rd×Rd ) ≤ C.

More precisely, the constant C depends on µ0 only through bounds on its second moment as in Lemma 31.

Proof. The compact support property comes from the factor of φR1(v)φR1(w) in the definition. The
regularity comes from the avoidance of v = w due to the factor ψR2(v−w). □

Corollary 54 (pointwise and measurewise regularity of U ). Consider the constant C from Lemma 53
above. We have the following:

(1) Take C1 = C(ϵ, γ, R1, R2, µ0, 0, 1) > 0. For every T > 0, ν1, ν2
∈ C([0, T ]; P2(R

d)), t ∈ [0, T ],
v ∈ Rd we have the estimate

|U [ν1(t)](v)− U [ν2(t)](v)| ≤ C1W2(ν
1
t , ν

2
t ).

(2) Take C2 = C(ϵ, γ, R1, R2, µ0, 1, 0) > 0. For every T > 0, ν ∈ C([0, T ]; P2(R
d)), t ∈ [0, T ],

v1, v2 ∈ Rd we have the estimate

|U [ν(t)](v1)− U [ν(t)](v2)| ≤ C2|v1 − v2|.

Remark 55. By considering the antisymmetric property of F when swapping variables v↔w, one really
obtains C1 = C2. Their distinction in this corollary is artificial.

Proof. (1) Firstly, for every t ∈ [0, T ] take π(t) ∈ P2(R
d
×Rd), the 2-Wasserstein optimal transportation

plan connecting ν1(t) and ν2(t) which exists; see [Villani 2009]. We estimate the difference with notation
from Lemma 53:

|U [ν1(t)](v)− U [ν2(t)](v)| =

∣∣∣∣∫
Rd

F(v,w) dν1
t (w)−

∫
Rd

F(v, w̄) dν2
t (w̄)

∣∣∣∣
=

∣∣∣∣∫∫
R2d

F(v,w)− F(v, w̄)dπt(w, w̄)

∣∣∣∣
≤ C1

∫∫
R2d

|w− w̄|dπt(w, w̄)≤ C1W2(ν
1
t , ν

2
t ).

The first inequality uses a mean-value-type estimate (in the second variable of F) and the second inequality
uses Cauchy–Schwarz, or equivalently, that W2 is stronger than W1.
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(2) As with item (1), we estimate the difference using F to find

|U [ν(t)](v1)− U [ν(t)](v2)| =

∣∣∣∣∫
Rd

F(v1, w)− F(v2, w) dνt(w)

∣∣∣∣
≤

∫
Rd

|F(v1, w)− F(v2, w)| dνt(w)≤ C2|v1 − v2|.

Once more, a mean-value-type estimate is applied (in the first variable of F) and we recall νt is a
probability measure. □

The next result combines both items of Corollary 54 to estimate the regularity of the flow map with
respect to measures and follows exactly as in [Cañizo et al. 2011].

Lemma 56 (continuity of flow map with respect to measures). For T >0 fix any ν1,ν2
∈C([0, T ]; P2(R

d))

and t ∈ [0, T ]. With C := C1 = C2 the same constants in Corollary 54, we have the estimate

∥8t
ν1 −8t

ν2∥L∞(Rd ) ≤ (eCt
− 1)d(ν1, ν2),

recalling that d(ν1, ν2)= supt∈[0,T ] W2(ν
1
t , ν

2
t ).

It is by now classical how to obtain Theorem 48 from Corollary 54 and Lemma 56; see [Cañizo
et al. 2011; Carrillo et al. 2014; Golse 2016] for instance. The time of existence can be given by any
0 < T < (1/C) log 2, where C > 0 is chosen as in Lemma 56 and the result follows by a fixed-point
argument. The extension to all times is owed to the fact that C > 0 depends on the initial data µ0 only
through its second moment. This quantity is conserved through by the evolution of (41) and so the
maximal time of existence is +∞.
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DEGENERATING HYPERBOLIC SURFACES AND SPECTRAL GAPS
FOR LARGE GENUS

YUNHUI WU, HAOHAO ZHANG AND XUWEN ZHU

We study the differences of two consecutive eigenvalues λi − λi−1, i up to 2g − 2, for the Laplacian
on hyperbolic surfaces of genus g, and show that the supremum of such spectral gaps over the moduli
space has infimum limit at least 1

4 as the genus goes to infinity. A min-max principle for eigenvalues on
degenerating hyperbolic surfaces is also established.

1. Introduction

For a closed Riemann surface Xg of genus g ≥ 2, consider the hyperbolic metric uniquely determined by
its complex structure. We study the spectrum of the Laplacian on Xg, which is a discrete subset in R≥0

and consists of eigenvalues with finite multiplicities. The eigenvalues, counted with multiplicities, are
listed in the following increasing order:

0 = λ0(Xg) < λ1(Xg) ≤ λ2(Xg) ≤ · · · → ∞.

Let Mg be the moduli space of Riemann surfaces of genus g, which is an open orbifold of dimension
equal to 6g − 6. For each index i , the i-th eigenvalue λi ( · ) is a bounded continuous function on Mg. In
this paper we study the differences of two consecutive eigenvalues and will focus on the behavior of such
spectral gaps when g → ∞.

Definition. For all i ≥ 1, the i -th spectral gap SpGi ( · ) is a bounded continuous function over the moduli
space Mg defined as

SpGi : Mg → R≥0, Xg 7→ λi (Xg) − λi−1(Xg). (1)

By definition, SpG1(Xg) = λ1(Xg). For all i ≥ 1, the i-th spectral gap SpGi ( · ) can be arbitrarily close
to zero (e.g., see Proposition 3.7). In this paper we mainly study the quantity supXg∈Mg

SpGi (Xg) for
large g and a family of indices i .

The main result of this article is the limiting behavior of the lower bound of the spectral gaps.

Theorem 4.1. Let {η(g)}∞g=2 be any sequence of integers with η(g) ∈ [1, 2g − 2]. Then

lim inf
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) ≥
1
4 .
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Remark. The sequence {η(g)} is arbitrary as long as it satisfies the bounds: examples include η(g) ≡ 2,
η(g) = {2, 3, 2, 3, . . . }, and η(g) = 2g − 2.

On the other hand, by [Cheng 1975, Corollary 2.3], we know that

λi (Xg) ≤
1
4

+ i2
·

16π2

Diam2(Xg)
.

By Gauss–Bonnet, Area(Xg) = 4π(g − 1). A simple area argument implies that the diameter satisfies
Diam(Xg) ≥ C ln(g) for some universal constant C > 0. So if η(g) satisfies

lim
g→∞

η(g)

ln(g)
= 0,

we have
lim sup

g→∞

sup
Xg∈Mg

SpGη(g)(Xg) ≤
1
4 .

Together with Theorem 4.1 this yields the following direct consequence.

Corollary 1.1. If η(g) = o(ln(g)), then

lim
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) =
1
4 .

For η(g) = 1, both Theorem 4.1 and Corollary 1.1 are due to Hide and Magee [2023, Corollary 1.3],
who used a probabilistic method to solve the conjecture (e.g., see [Buser 1984; Buser et al. 1988]) that
there exists a sequence of closed hyperbolic surfaces with first eigenvalues tending to 1

4 as the genus goes
to infinity.

The following result is important in the proof of Theorem 4.1, which we include for independent
interest. The proof is highly motivated by the work of Burger, Buser and Dodziuk [Buser et al. 1988],
where they studied the case when the limiting surface is connected (e.g., see Theorem 2.6).

Proposition 3.1 (min-max principle). Let Xg(0) ∈ ∂Mg be the limit of a family of Riemann surfaces
{Xg(t)} obtained by pinching certain simple closed geodesics such that Xg(0) has k connected components,
i.e., Xg(0) = Y1 ⊔ Y2 ⊔ · · · ⊔ Yk , where k ≥ 2. Let λ1(Y1), . . . , λ1(Yk) be the first nonzero eigenvalue of
Y1, . . . , Yk (if Yi has no discrete eigenvalues then write λ1(Yi ) = ∞) and write λ̄1(∗) = min

{
λ1(∗), 1

4

}
for ∗ = Y1, . . . , Yk . Then

lim inf
t→0

λk(Xg(t)) ≥ min
1≤i≤k

{λ̄1(Yi )}.

Remark. Each component Yi in the proposition above is a complete open hyperbolic surface of finite
volume, whose spectrum consists of possibly discrete eigenvalues and the continuous spectrum

[ 1
4 , ∞

)
.

Therefore, in the statement above, λ̄1(Yi ) is the nonzero minimum of the spectrum of Yi .

Proof sketch of Theorem 4.1. In the proof of Theorem 4.1, we will apply Proposition 3.1 to the case
when all the λ̄1(Yi ) are close to 1

4 . The main idea is the following: for each η(g) we construct a sequence
of genus g surfaces that degenerate into η(g) components using only pieces that are known to have the
first eigenvalue close to 1

4 . Then by the min-max principle, the η(g)-th eigenvalue of these surfaces will be
close to 1

4 . On the other hand, by a result of Schoen, Wolpert and Yau (see Theorem 2.5), the (η(g)−1)-th
eigenvalue is close to zero. This way we find sequences of surfaces that achieve the spectral gap of 1

4 . For
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the regime η(g) > g, the components used in the construction only include the thrice-punctured sphere
and a twice-punctured torus. On the other hand, for η(g) ≤ g, the essential components also include a
large genus piece that relies on the work of Hide and Magee [2023].

Plan of the paper. Section 2 will first discuss properties of the boundary degeneration of the Riemann
moduli spaces; then we will provide a review of the background and recent developments on spectral
gaps on hyperbolic surfaces, including a list of punctured surface components with eigenvalue bounds
which will be used in the degeneration limits. In Section 3 we will provide a proof for Proposition 3.1
regarding the min-max principle for eigenvalues of degenerating hyperbolic surfaces and a few immediate
applications. In Section 4 we will complete the proof of Theorem 4.1.

2. Preliminaries

Boundary of the Riemann moduli spaces. Denote by Mg,n the moduli space of hyperbolic surfaces
of genus g with n punctures, and by Mg := Mg,0 the moduli space of compact hyperbolic surfaces
with genus g. It is well known that dimR(Mg,n) = 6g + 2n − 6. In particular, M0,3 contains only one
point represented by the hyperbolic thrice-punctured sphere. The Deligne–Mumford compactification
of Mg,n is obtained by adding nodal surfaces into Mg,n , which is homeomorphic to the completion of
Mg,n endowed with the Weil–Petersson metric. Let ∂Mg,n be the boundary of the Deligne–Mumford
compactification of Mg,n . Recall that ∂Mg,n is stratified, and each stratum of ∂Mg,n is a product of
lower-dimensional moduli spaces. Points in ∂Mg,n are represented by hyperbolic nodal surfaces in Mg,n

(see for example [Masur 1976] for more details on the completion of Mg,n). Locally the process of
pinching a simple closed geodesic into a pair of cusp points can be written with respect to hyperbolic
collar coordinates (ρ, θ) with ℓ the length of the central geodesic circle. As ℓ → 0, the hyperbolic
neck degenerates into a pair of cusps, which can be seen with the choice of the correct coordinates (see
for example [Ji 1993; Masur 1976]). Another way to see this would be using the complex “plumbing”
coordinates, which we will not discuss. Hyperbolic nodal surfaces are obtained by pinching certain
disjoint geodesic circles, and we call such a family of hyperbolic metrics approaching nodal surfaces a
degenerating family (see, e.g., [Wolpert 1990], and see Figure 1 for an example).

We also recall the collar lemma on structures of disjoint hyperbolic collars around short geodesics,
which will be useful later in decomposing the surfaces.

Lemma 2.1 (collar lemma [Buser 1992, Theorem 4.1.1]). Let γ1, γ2, . . . , γm be disjoint simple closed
geodesics on a closed hyperbolic Riemann surface Xg, and let ℓ(γi ) be the length of γi . Then m ≤ 3g − 3,
and we can define the collar of γi by

T (γi ) = {x ∈ Xg : dist(x, γi ) ≤ w(γi )},

where

w(γi ) = arcsinh
1

sinh
(1

2ℓ(γi )
) (2)

is the width of the collar.
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X1,1 X1,3

X3

ℓ1
ℓ2

ℓ1, ℓ2 → 0

Figure 1. An example of a degenerating family in M3 whose limit is X1,1 ⊔ X1,3, which is disconnected.

Then the collars are pairwise disjoint for i = 1, . . . , m. Each T (γi ) is isomorphic to a cylinder
(ρ, θ) ∈ [−w(γi ), w(γi )] × S1, where S1

= R/Z, with the metric

ds2
= dρ2

+ ℓ(γi )
2 cosh2 ρ dθ2. (3)

For a point (ρ, θ), the point (0, θ) is its projection on the geodesic γi , |ρ| is the distance to γi , and θ is
the coordinate on γi ∼= S1.

As the length ℓ(γ ) of the central closed geodesic goes to zero, the width w(γ ) is approximately
ln (1/ℓ(γ )), which tends to infinity. We have the following as an easy corollary.

Corollary 2.2. For a degenerating family of hyperbolic surfaces {Xg(t)}, the diameter satisfies

Diam(Xg(t)) → ∞.

The following two lemmas will be useful in the proof of Theorem 4.1.

Lemma 2.3. For each integer η(g) ∈ [g − 1, 2g − 2] with g ≥ 2, there exist two nonnegative integers i
and j such that

(1) i + j = η(g),

(2) M0,3 × · · · ×M0,3︸ ︷︷ ︸
i copies

×M1,2 × · · · ×M1,2︸ ︷︷ ︸
j copies

⊂ ∂Mg.

Remark. Here i and j depend on g and satisfy i +2 j = 2g−2 by the additivity of the Euler characteristic.

Proof. If η(g) = 2g − 2, the conclusion is obvious by choosing i = 2g − 2 and j = 0, which is obtained
by pinching 3g − 3 disjoint simple closed curves in a closed surface Xg of genus g.
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i(g) copies of X0,3︷ ︸︸ ︷
· · · · · ·

j (g) copies of X1,2

︸ ︷︷ ︸
· · · · · ·

Figure 2. An example of the degeneration of a genus g surface into i(g) copies of X0,3

and j (g) copies of X1,2 by pinching all the simple geodesics marked in the picture.

Now we assume g ≤ η(g) ≤ 2g − 3. Given a closed surface Xg of genus g, first one may pinch Xg

along two disjoint simple closed curves σ1 and σ2 such that Xg \ (σ1 ∪σ2) has two connected components
Xg1,2 ⊔ Xg2,2, where g1 and g2 are two nonnegative integers satisfying g1 + g2 = g − 1. Here we choose

g1 = (2g − 2) − η(g) and g2 = η(g) − (g − 1).

For the second step, we pinch Xg1,2 along g1 − 1 disjoint simple closed curves {γl}1≤l≤g1−1 such that the
complement decomposes further into g1 components:

Xg1,2 \

⋃
1≤l≤g1−1

γl = X1,2 ⊔ · · · ⊔ X1,2︸ ︷︷ ︸
g1 copies

.

For Xg2,2, one may pinch along 3g2 − 1 disjoint simple closed curves {γ ′
m}1≤m≤3g2−1 such that the

complement decomposes further into 2g2 components:

Xg2,2 \

⋃
1≤m≤3g2−1

γ ′

m = X0,3 ⊔ · · · ⊔ X0,3︸ ︷︷ ︸
2g2 copies

.

Pinching all these simple closed curves during cutting above to zero, the conclusion follows since

i = 2g2 = 2η(g) − (2g − 2) and j = g1 = (2g − 2) − η(g). (4)

For an illustration, see Figure 2.
If η(g) = g − 1, we first pinch Xg along a nonseparating simple closed curve to get a surface Xg−1,2.

Then in the same way as with Xg1,2 in the previous case, we pinch Xg−1,2 along g − 2 disjoint simple
closed curves to get g − 1 copies of X1,2. Then the conclusion follows with i = 0 and j = g − 1.

Combining the three cases above, the proof is complete. □
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i(g) copies of X0,3︷ ︸︸ ︷
· · · · · ·

j (g) copies of X1,2︷ ︸︸ ︷
· · · · · ·

· · · · · ·

Xg1,2

︸ ︷︷ ︸
Figure 3. An example of decomposing a surface of genus g into i copies of X0,3, j copies
of X1,2 and a copy of Xg1,2, where i, j , and g1 are given in the proof of Lemma 2.4.

Lemma 2.4. For each integer η(g) ∈ [2, g] with g ≥ 3, there exist three nonnegative integers g1, i and j
such that

(1) 2g1 ≥ g − 2,

(2) i + j + 1 = η(g),

(3) M0,3 × · · · ×M0,3︸ ︷︷ ︸
i(g) copies

×M1,2 × · · · ×M1,2︸ ︷︷ ︸
j (g) copies

×Mg1,2 ⊂ ∂Mg.

Remark. Similar to the previous lemma, i, j and g1 depend on g. By calculating the Euler characteristics,
these numbers should satisfy i + 2 j + 2g1 = 2g − 2.

Proof. Similar to the proof of Lemma 2.3 above, we first decompose Xg as Xg \ (σ1 ∪σ2) = Xg1,2 ⊔ Xg2,2

for two disjoint simple closed curves σ1 and σ2, where g1 and g2 := g − 1 − g1 will be determined in
different cases below. Next we decompose Xg2,2 into the disjoint union of i copies of X0,3 and j copies
of X1,2 to obtain the desired properties. For an illustration, see Figure 3.

The proof contains the following three cases.

Case 1: 2 ≤ η(g) ≤
1
2 g + 1. The conclusion follows by choosing

i = 0, j = η(g) − 1 and g1 = g − η(g).

Case 2: 1
2 g + 1 < η(g) ≤ g and η(g) is odd. The conclusion follows by choosing

i = η(g) − 1, j = 0 and g1 = g −
1
2(1 + η(g)).

Case 3: 1
2 g + 1 < η(g) ≤ g and η(g) is even. The conclusion follows by choosing

i = η(g) − 2, j = 1 and g1 = g − 1 −
1
2η(g). □
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Eigenvalues of hyperbolic surfaces. The study of eigenvalues of the Laplacian on hyperbolic surfaces
has a long history and has recently seen much progress. For a compact hyperbolic surface, the eigenvalues
are discrete. On the other hand, when the hyperbolic surface degenerates to one with cusps, by [Lax
and Phillips 1982] it is known that the spectrum is no longer discrete, rather it consists of a continuous
spectrum

[1
4 , ∞

)
and (possibly) additional discrete eigenvalues. The study of spectral degeneration has

seen many developments; see [Hejhal 1990; Ji 1993; Ji and Zworski 1993; Wolpert 1987; 1992a; 1992b]
for some of the earlier works.

An eigenvalue of a hyperbolic surface is said to be “small” if it is less than 1
4 , where the number 1

4
shows up as the bottom of the continuous spectrum of a hyperbolic surface with cusps. The questions
of existence of eigenvalues less than 1

4 for both noncompact and compact hyperbolic surfaces not only
arise in the field of spectral geometry, but also have deep relations to number theory regarding arithmetic
hyperbolic surfaces, dating back to Selberg’s famous 3

16 theorem [1965]. We refer to [Gelbart and Jacquet
1978; Kim 2003; Luo et al. 1995] for more recent developments. Regarding the estimates and multiplicity
counting of small eigenvalues, the history goes back to McKean [1972], Randol [1974], and Buser [1982;
1984]. Recently there have been many developments; see [Ballmann et al. 2016; 2017; 2018; Brooks and
Makover 2001; Buser 1992; Buser et al. 1988; Mondal 2015; Otal and Rosas 2009; Schoen et al. 1980].
Among these are two classical results of particular relevance to our current work. The first regards bounds
of eigenvalues on degenerating hyperbolic surfaces by Schoen, Wolpert and Yau [Schoen et al. 1980]:

Theorem 2.5 [Schoen et al. 1980]. For any compact hyperbolic surface Xg of genus g and integer
i ∈ (0, 2g − 2), the i-th eigenvalue satisfies

αi (g) · ℓi ≤ λi ≤ βi (g) · ℓi

and
α(g) ≤ λ2g−2,

where αi (g) > 0 and βi (g) > 0 depend only on i and g, α(g) > 0 depends only on g, and ℓi is the
minimal possible sum of the lengths of simple closed geodesics in Xg which cut Xg into i + 1 connected
components.

Dodziuk and Randol [1986] gave an alternative proof of Theorem 2.5, and one may also see Dodziuk,
Pignataro, Randol and Sullivan [Dodziuk et al. 1987] on similar results for Riemann surfaces with
punctures. It was proved by Otal and Rosas [2009] that the constant α(g) can be optimally chosen to
be 1

4 . For large genus g, it was recently proved by the first-named author and Xue [Wu and Xue 2022a;
2022c] that up to multiplication by a universal constant, α1(g) can be optimally chosen to be 1/g2.

The other result that is relevant is [Buser et al. 1988, Theorem 2.1] regarding the first eigenvalue when
the limiting degenerating surface is connected:

Theorem 2.6 [Buser et al. 1988]. Let {Xg(t)} ⊂ Mg such that Y = limt→0 Xg(t) ∈ ∂Mg is connected.
Denote by λ1(Y ) the first nonzero eigenvalue of Y ( if Y has no discrete eigenvalues we write λ1(Y ) = ∞).
Then

lim sup
t→0

λ1(Xg(t)) ≥ λ̄1(Y ) = min
{
λ1(Y ), 1

4

}
.
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In Section 3 we will give a similar description of λk(Xg(t)) when the limiting surface has k connected
components.

Another related direction in this topic is to understand how the genus of the hyperbolic surface, in
particular when g → ∞, affects the eigenvalues via different models of random hyperbolic surfaces.
Brooks and Makover [2004] gave a uniform lower bound on the first spectral gap for their combinatorial
model of random surfaces by gluing hyperbolic ideal triangles. In terms of Weil–Petersson random
closed hyperbolic surfaces, Mirzakhani [2013] showed that the first eigenvalue is greater than 0.0024 with
probability one as g → ∞. Recently, the first-named author and Xue [Wu and Xue 2022b] improved this
lower bound 0.0024 to be 3

16 −ϵ, which was also independently obtained by Lipnowski and Wright [2024].
One may also see [Hide 2022] for similar results on Weil–Petersson random punctured hyperbolic surfaces
and [Monk 2021] for related results. Recently there have also been many exciting developments in the
case of random covers of both compact and noncompact hyperbolic surfaces; see [Magee and Naud 2020;
2021, Magee and Puder 2023,Magee et al. 2022]. For example, Magee, Naud and Puder [Magee et al.
2022] showed that a generic covering of a hyperbolic surface has relative spectral gap of size 3

16 − ϵ,
which was improved to 1

4 − ϵ by Hide and Magee [2023] for random covers of punctured hyperbolic
surfaces. As an important application, [Hide and Magee 2023] proved that

lim
g→∞

sup
Xg∈Mg

λ1(Xg) =
1
4 .

This result provides major inspiration for our current paper.
One major ingredient of our proof is the existence of punctured surfaces with first eigenvalue close

to 1
4 . We summarize those components in the two theorems below.

Theorem 2.7. (1) λ1(X0,3) ≥
1
4 ;

(2) [Mondal 2015] There exists a surface X1,2 ∈ M1,2 such that λ1(X1,2) ≥
1
4 .

Proof. The first item is well known; see for example [Otal and Rosas 2009] or [Ballmann et al. 2016].
The existence of the second item was proved by Mondal [2015, Theorem 1.3]. □

The third component is from the recent breakthrough by Hide and Magee [2023]. They use probabilistic
methods to show that for any ϵ > 0, there exists an integer δ(ϵ) > 0 only depending on ϵ such that for all
g > δ(ϵ) there exists a 2g-cover X of X0,3 such that

λ̄1(X ) = min
{
λ1(X ), 1

4

}
> 1

4 − ϵ.

It is not hard to see that X must have an even number of punctures because the Euler characteristic of X
is equal to −2g, which is even. Then one may apply the handle lemma of [Buser et al. 1988] (or see
[Brooks and Makover 2001, Lemma 1.1]) to get the following.

Theorem 2.8. For any ϵ > 0 and large enough g > 0, there exists a hyperbolic surface Xg,2 ∈ Mg,2 such
that

λ̄1(Xg,2) = min
{
λ1(Xg,2),

1
4

}
> 1

4 − ϵ.
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Proof. For completeness we sketch an outline of the proof. Suppose by contradiction there exists a
constant ϵ0 > 0 such that

lim inf
g→∞

sup
X∈Mg,2

λ1(X) ≤
1
4 − ϵ0. (5)

It follows by [Hide and Magee 2023] that, for any ϵ > 0 and large enough g, there exists a 2g-cover X
of X0,3 such that

λ̄1(X ) = min
{
λ1(X ), 1

4

}
> 1

4 − ϵ.

Since the Euler characteristic χ(X ) = −2g is even, one may assume that X has an even number of cusps.
As in [Buser et al. 1988] we can construct a family of hyperbolic surfaces {Xg,2(t)} ⊂ Mg,2 such that

lim
t→0

Xg,2(t) = X ∈ ∂Mg,2.

By [Lax and Phillips 1982] we know that, for a hyperbolic surface with cusps, the spectrum below 1
4

is discrete and only contains eigenvalues. By (5), for some large g one may assume that φt is the first
eigenfunction on Xg,2(t) with 1φt = λ1(Xg,2(t)) ·φt on Xg,2(t). Then one may apply the handle lemma
of [Buser et al. 1988] (or see [Brooks and Makover 2001, Lemma 1.1]) to obtain

lim sup
t→0

λ1(Xg,2(t)) ≥ λ̄1(X ) = min
{
λ1(X ), 1

4

}
> 1

4 − ϵ,

which is a contradiction to (5) since ϵ > 0 can be chosen to be arbitrarily small. □

3. Eigenvalues on a family of degenerating Riemann surfaces

In this section we will prove the following min-max principle, which was stated earlier.

Proposition 3.1 (min-max principle). Let Xg(0) ∈ ∂Mg be the limit of a family of Riemann surfaces
{Xg(t)} obtained by pinching certain simple closed geodesics such that Xg(0) has k connected components,
i.e., Xg(0) = Y1 ⊔ Y2 ⊔ · · · ⊔ Yk , where k ≥ 2. Let λ1(Y1), . . . , λ1(Yk) be the first nonzero eigenvalue of
Y1, . . . , Yk (if Yi has no discrete eigenvalues then write λ1(Yi ) = ∞) and write λ̄1(∗) = min

{
λ1(∗), 1

4

}
for ∗ = Y1, . . . , Yk . Then

lim inf
t→0

λk(Xg(t)) ≥ min
1≤i≤k

{λ̄1(Yi )}.

To prove the theorem, we will start by discussing the subsequence limits of eigenfunctions. Denote by
φt ∈ C∞(Xg(t)) (one of) the normalized eigenfunctions corresponding to λk(Xg(t)), i.e.,

1Xg(t)φt = λk(Xg(t)) · φt and
∫

Xg(t)
|φt |

2 dVolXg(t) = 1.

By [Cheng 1975, Corollary 2.3] we know that for any compact hyperbolic surface X there is an upper
bound

λk(X) ≤
1
4

+ k2
·

16π2

Diam2(X)
.
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Note that Diam(Xg(t))→∞ as t → 0 by Corollary 2.2 for any family of degenerating hyperbolic surfaces
{Xg(t)} as described in the proposition above. This gives that, for any fixed k ≥ 1,

lim inf
t→0

λk(Xg(t)) ≤ lim sup
t→0

λk(Xg(t)) ≤
1
4 . (6)

On the other hand, by Theorem 2.5 we know that the lowest k − 1 eigenvalues of Xg(t) go to zero
when the degenerating limit has k components, while the k-th eigenvalue λk(Xg(t)) stays bounded away
from zero. Therefore

lim inf
t→0

λk(Xg(t)) > 0. (7)

Now consider

λk(0) := lim inf
t→0

λk(Xg(t)). (8)

By the discussion above we know that

0 < λk(0) ≤
1
4 . (9)

By the collar lemma, Lemma 2.1, each Xg(t) can be decomposed into a number of disjoint degenerating
hyperbolic necks and a compact part (which has possibly several connected components). The width of
each hyperbolic neck is determined by the central shrinking geodesic γ and can be chosen to be w(γ )−1,
for example, where w(γ ) is given in (2). For the degenerating family {Xg(t)} with N shrinking geodesics
{γm(t)}N

m=1, we denote the width of each hyperbolic neck by the following N -tuple:

w⃗ := (w(γ1(t)) − 1, w(γ2(t)) − 1, . . . , w(γN (t)) − 1).

Note that w⃗ depends on t , and each entry in w⃗ goes to ∞ as t goes to zero. Geometrically each hyperbolic
neck degenerates into a pair of cusps. We remark here that in the definition of w⃗, the choice w(γ )− 1 is
for convenience and can be replaced by w(γ ) − c for any c > 0.

For any Xg(t), we denote the union of all N hyperbolic necks as Cw⃗(t). In local hyperbolic geodesic
coordinates given by dρ2

+ ℓ2 cosh2 ρ dθ2 where ℓ is the length of the central geodesic circle γi ,

Cw⃗(t) =

N⋃
m=1

{(ρ, θ) : 0 ≤ |ρ| ≤ w(γm(t)) − 1}. (10)

In addition, we also denote the union of all “shells” near the collars by

Sw⃗(t) =

N⋃
m=1

{(ρ, θ) : w(γm(t)) − 1 ≤ |ρ| ≤ w(γm(t))}. (11)

Then it follows by the collar lemma that all such collar neighborhoods (and shells) are disjoint; see
Figure 4 for an illustration of collars and shells.

Denote the compact part by Fw⃗(t) = Xg(t)\Cw⃗(t). The compact area and nodal degeneration area are
grafted together [Melrose and Zhu 2018; 2019; Wolpert 1990]. For small t , the Fw⃗(t) are all diffeomorphic.
In particular, the metric on Fw⃗(t) can be written as e2ut g0, where g0 is the metric on Fw⃗(0) and ut is
polyhomogeneous and uniformly bounded in all derivatives [Melrose and Zhu 2019]. That is, we can
write the diffeomorphism Dt : Fw⃗(t) → Fw⃗(0) such that gt = D∗

t g0 and Dt are uniformly bounded. From
now on, when we consider the convergence of eigenfunctions φ(t) on Xg(t), the functions are all defined
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X1,2

ℓ1

X1,2

ℓ2 ℓ3

· · · · · · · · ·

Xg1,2

ρ

ℓ

w-wide collar neighborhood

shells

Figure 4. An example of collar neighborhoods and shells.

on Xg(0) via the pullback (D−1
t )∗φ(t); see [Wolpert 1992a; 1992b] for similar approaches. See also

another related approach via universal covers in [Buser et al. 1988].
Now take a sequence of metrics such that the corresponding sequence of eigenvalues approaches λk(0),

which is defined in (8). Denote the sequence by {Xg(ti )}∞i=1. By definition,

lim
i→∞

ti = 0 and lim
i→∞

λk(Xg(ti )) = λk(0).

Denote the corresponding eigenfunction on Xg(ti ) by φti ; we discuss the convergence of the sequence of
functions {φti }

∞

i=1 below. One key ingredient is the following Sobolev–Gårding Inequality on the compact
part Fw⃗(t). Denote by inj( · ) the injectivity radius function. Denote by ∇

jφti the j -th covariant derivative
of φti , where j ∈ N. Then we have the following.

Lemma 3.2. For any x ∈ Fw⃗(t), j ∈ N and r < inj(Fw⃗(t)), there exist a constant cr, j > 0 and an integer
Nj > 0 independent of x such that we have the following pointwise bound for any j-th derivative:

|∇
jφt(x)| ≤ cr, j

Nj∑
ℓ=0

∥1ℓ
Xg(t)φt∥L2(Br (x)). (12)

Proof. This equality was shown in [Buser et al. 1988, Theorem 2.1]. The inequality is from the combination
of the Sobolev and Gårding inequalities, for example, see [Bers et al. 1964]. □

With the above inequality we have the following uniform bound on {φti }
∞

i=1 and their derivatives.

Lemma 3.3. For any j ∈ N, we have that {∇
jφti }i is uniformly bounded on any compact set of Xg(0).

Proof. Using (12) in the previous lemma, 1φt = λk(t)φt and 0 < λk(t) < 1
3 , we have

|∇
jφt(x)| ≤ cr, j

∞∑
ℓ=0

(1
3

)ℓ

∥φt∥L2(Xg(t)) ≤ 2cr, j ,

where the bound is independent of x . Hence all derivatives of φt (in particular the sequence {φti }) are
uniformly bounded. □
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Lemma 3.4. There exists a subsequence of φti (denoted by φi ) and φ0 ∈ H 1(Xg(0)) such that any
derivatives satisfy

∇
jφi → ∇

jφ0

uniformly on connected compact set of Xg(0).

Proof. Viewing {φt } as functions on F0 where F0 is any connected compact set of Xg(0), by the previous
lemma we have uniform boundedness of φt and all their derivatives. Hence by the Arzelà–Ascoli diagonal
argument there exists a subsequence φi such that the function and its derivative converge uniformly on
any compact set. □

By the convergence above we have∫
Xg(0)

|φ0|
2
≤ 1,

∫
Xg(0)

|∇φ0|
2
≤ 1

and
1Xg(0)φ0 = λk(0) · φ0.

Now we show the following statement regarding the limit (λk(0), φ0). The argument is similar to [Wu
and Xue 2022a, Lemma 9] and [Dodziuk et al. 1987, Lemma 3.3].

Proposition 3.5. The limit (λk(0), φ0) must satisfy one of the following conditions:

(1) φ0 is an eigenfunction of 1Xg(0) and also restricts to at least one of the components Yk as an
eigenfunction; or

(2) φ0 = 0 everywhere on Xg(0) and λk(0) =
1
4 .

Proof. If φ0 is not zero everywhere, then φ0 belongs to H 1(Xg(0)) and is an eigenfunction. In particular,
it must restrict to a nonzero function on at least one component of Xg(0).

Otherwise suppose φ0 = 0 everywhere on Xg(0), that is, φi → 0 pointwise everywhere. Then following
a similar argument as in [Wu and Xue 2022a, Lemma 9] or [Dodziuk et al. 1987, Lemma 3.3], we can
show that λk(0) ≥

1
4 . For completeness we write out the proof in detail here.

Recall the definitions of collars and shells on hyperbolic necks in (10) and (11). Similar to the definition
above, we denote by Cw⃗(i) the union of w⃗-wide collar neighborhoods near all degenerating geodesic
circles on Xg(ti ), and by Sw⃗(i) the union of the “shells”. To simplify the argument below, we also denote
by Ci,m and Si,m the individual hyperbolic neck and shell, respectively, with central geodesic circle γm(i),
where 1 ≤ m ≤ N , and denote the corresponding width by wi,m := w(γm(i)) − 1. Hence

Cw⃗(i) =

N⋃
m=1

Ci,m and Sw⃗(i) =

N⋃
m=1

Si,m .

Fix any ϵ ∈ (0, 1) and δ ∈
(
0, 1

16

)
. We write c = 1 − ϵ. Since φi converges to zero uniformly on any

compact set, there exists N0 ∈ N such that for any i > N0 we have∫
Cw⃗(i)

|φi |
2
≥ c > 0,

∫
Sw⃗(i)

|φi |
2 < δc and

∫
Sw⃗(i)

|∇φi |
2 < δc.
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Define a new function on Cw⃗(i) ∪ Sw⃗(i) as follows:

8i :=

{
φi , |ρ| ≤ wi,m,

(wi,m + 1 − |ρ|)φi , wi,m ≤ |ρ| ≤ wi,m + 1.

Then 8i gives a function in H 1
0 (Cw⃗(i) ∪ Sw⃗(i)) with 8i |∂(Cw⃗(i)∪Sw⃗(i)) = 0. Therefore by applying [Wu

and Xue 2022a, Lemma 7] to a union of hyperbolic collars we have∫
Cw⃗(i)∪Sw⃗(i)

|∇8i |
2 >

1
4

∫
Cw⃗(i)∪Sw⃗(i)

|8i |
2.

On the other hand we have∫
Sw⃗(i)

|∇8i |
2
=

N∑
m=1

∫
Si,m

|∇((wi,m + 1 − |ρ|)φi )|
2

=

N∑
m=1

∫
Si,m

|∇(wi,m + 1 − |ρ|) · φi + (wi,m + 1 − |ρ|) · ∇φi |
2

≤

N∑
m=1

∫
Si,m

(|φi | + (wi,m + 1 − |ρ|) · |∇φi |)
2
≤ 2

N∑
m=1

∫
Si,m

|φi |
2
+ 2

N∑
m=1

∫
Si,m

|∇φi |
2
≤ 4δc.

Therefore for any i > N0 we have∫
Cw⃗(i)

|∇φi |
2
=

∫
Cw⃗(i)

|∇8i |
2
=

∫
Cw⃗(i)∪Sw⃗(i)

|∇8i |
2
−

∫
Sw⃗(i)

|∇8i |
2

≥
1
4

∫
Cw⃗(i)∪Sw⃗(i)

|8i |
2
−

∫
Sw⃗(i)

|∇8i |
2

≥
1
4

∫
Cw⃗(i)

|φi |
2
−

∫
Sw⃗(i)

|∇8i |
2
≥

1
4

c − 4δc =
1−16δ

4
(1 − ϵ),

which implies

λk(Xg(ti )) =

∫
Xg(ti )

|∇φti |
2∫

Xg(ti )
|φi |

2 ≥

∫
Cw⃗(i) |∇φi |

2∫
Xg(ti )

|φi |
2 ≥

1−16δ

4
(1 − ϵ).

Since this argument holds for any ϵ ∈ (0, 1) and δ ∈
(
0, 1

16

)
, we have

λk(0) = lim inf
i→∞

λk(Xg(ti )) ≥
1
4 .

On the other hand λk(0) ≤
1
4 by (9), therefore we have λk(0) =

1
4 . □

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. By the previous proposition, either λk(0) = λ1(Yi ) for at least one of the
components Yi , or λk(0) =

1
4 , therefore we obtain

λk(0) ≥ min
1≤i≤k

{
min

{
λ1(Yi ),

1
4

}}
as desired. □
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We enclose in this section the following result, which is an easy application of Proposition 3.1.

Proposition 3.6. Let Xg(0)∈ ∂Mg be the limit of a family of Riemann surfaces {Xg(t)}⊂Mg by pinching
certain simple closed geodesics such that Xg(0) has k connected components, i.e., Xg(0)=Y1⊔Y2⊔· · ·⊔Yk

for some k ≥ 2. Assume in addition that λ̄1(Yi ) = min
{
λ1(Yi ),

1
4

}
≥

1
4 for all 1 ≤ i ≤ k, where λ1(Yi ) is

the first nonzero eigenvalue of Yi . Then
lim
t→0

λk(Xg(t)) =
1
4 .

Proof. From (6) we have that
lim sup

t→0
λk(Xg(t)) ≤

1
4 .

On the other hand, it follows by Proposition 3.1 that

lim inf
t→0

λk(Xg(t)) ≥ min
1≤i≤k

{
min

{
λ1(Yi ),

1
4

}}
=

1
4 .

The conclusion immediately follows. □

We now prove spectral gaps can be arbitrarily close to zero by using this result. Recall that, for all
i ≥ 1 and Xg ∈ Mg, the i-th spectral gap SpGi (Xg) of X is defined as

SpGi (Xg) := λi (Xg) − λi−1(Xg).

We prove the following.

Proposition 3.7. For all i ≥ 1,
inf

Xg∈Mg
SpGi (Xg) = 0.

Proof. We split the proof into three cases.

Case 1: 1 ≤ i ≤ 2g − 3. One may choose a closed hyperbolic surface Xg ∈ Mg which is close enough to
the maximal nodal surface

X0,3 ⊔ · · · ⊔ X0,3︸ ︷︷ ︸
2g − 2 copies

∈ ∂Mg,

then λi (Xg) is close to zero by Theorem 2.5. So the conclusion follows for this case.

Case 2: i = 2g − 2. Let Z1,2 ∈ M1,2 such that λ̄1(Z1,2) = min
{ 1

4 , λ1(Z1,2)
}

≥
1
4 by Theorem 2.7. Recall

that λ1(X0,3) ≥
1
4 from the same theorem. Let {Xg(t)} ⊂Mg be a family of hyperbolic surfaces such that

lim
t→0

Xg(t) = X0,3 ⊔ · · · ⊔ X0,3︸ ︷︷ ︸
2g − 4 copies

⊔ Z1,2 ∈ ∂Mg.

Then it follows from Proposition 3.6 that

lim
t→0

λ2g−3(Xg(t)) =
1
4 .

Meanwhile, by [Otal and Rosas 2009, Theorem 2], we know that

λ2g−2(Xg(t)) ≥
1
4 .
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Since Diam(Xg(t)) → ∞ as t → 0, by [Cheng 1975, Corollary 2.3] we have that

lim sup
t→0

λ2g−2(Xg(t)) ≤
1
4 .

Thus, we have
lim
t→0

λ2g−2(Xg(t)) =
1
4 .

Then the conclusion also follows for this case because

inf
Xg∈Mg

SpG2g−2(Xg) ≤ lim
t→0

SpG2g−2(Xg(t)) = 0.

Case 3: i > 2g − 2. Let {Yg(t)} ⊂ Mg be a family of hyperbolic surfaces such that

lim
t→0

Yg(t) ∈ ∂Mg.

Similar to Case 2, by [Otal and Rosas 2009, Theorem 2] and [Cheng 1975, Corollary 2.3], we have

lim
t→0

λi (Yg(t)) =
1
4 and lim

t→0
λi−1(Yg(t)) =

1
4 .

This implies infXg∈Mg SpGi (Xg) = 0 for all i > 2g − 2. □

4. Proof of Theorem 4.1

Now we are ready to prove Theorem 4.1.

Theorem 4.1. Let {η(g)}∞g=2 be any sequence of integers with η(g) ∈ [1, 2g − 2]. Then

lim inf
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) ≥
1
4 .

Proof. We will show that for any η(g) with sufficiently large g, one can find a genus g surface Xg with
SpGη(g)(Xg) close to 1

4 . To see this, we split the proof into the following four cases.

Case 1: η(g) = 2g − 2. Let Xg(t) : (0, 1) → Mg be a family of closed hyperbolic surfaces such that

lim
t→0

Xg(t) = X0,3 ⊔ · · · ⊔ X0,3︸ ︷︷ ︸
2g − 2 copies

∈ ∂Mg.

First by [Otal and Rosas 2009, Theorem 2], λ2g−2(Xg(t)) ≥
1
4 for all t ∈ (0, 1). Secondly by Theorem 2.5

we know that λ2g−3(Xg(t)) → 0 as t → 0. Thus,

sup
Xg∈Mg

SpG2g−2(Xg) ≥ lim inf
t→0

SpG2g−2(Xg(t)) ≥
1
4 .

Case 2: η(g) ∈ [g + 1, 2g − 3]. First we choose a hyperbolic surface Z1,2 ∈ M1,2 such that λ̄1(Z1,2) ≥
1
4

by Theorem 2.7. Recall also that λ1(X0,3) ≥
1
4 . By Lemma 2.3 we can construct Xg(t) : (0, 1) → Mg as

a family of closed hyperbolic surfaces such that

lim
t→0

Xg(t) = X0,3 ⊔ · · · ⊔ X0,3︸ ︷︷ ︸
i copies

⊔ Z1,2 ⊔ · · · ⊔ Z1,2︸ ︷︷ ︸
j copies

∈ ∂Mg,
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where i and j are two nonnegative integers satisfying i + j = η(g). By Theorem 2.5 we know that
limt→0 λη(g)−1(Xg(t)) = 0. By Proposition 3.6 we have

lim
t→0

λη(g)(Xg(t)) =
1
4 ,

which implies

sup
Xg∈Mg

SpGη(g)(Xg) ≥ lim
t→0

SpGη(g)(Xg(t)) =
1
4 .

Case 3: η(g) ∈ [2, g]. As in Case 2, we choose a hyperbolic surface Z1,2 ∈ M1,2 such that λ̄1(Z1,2) ≥
1
4 .

Let g1 > 0 be the integer determined in Lemma 2.4. Note that g1 tends to ∞ as g → ∞ because
2g1 ≥ g − 2. Then by Theorem 2.8 we know that, for any ϵ > 0 and large enough g > 0, one may choose
a hyperbolic surface Xg1,2 ∈ Mg1,2 such that

λ̄1(Xg1,2) > 1
4 − ϵ.

Fix any such large g. Then by Lemma 2.4 we construct Xg(t) : (0, 1) → Mg as a family of closed
hyperbolic surfaces such that

lim
t→0

Xg(t) = X0,3 ⊔ · · · ⊔ X0,3︸ ︷︷ ︸
i copies

⊔ Z1,2 ⊔ · · · × Z1,2︸ ︷︷ ︸
j copies

⊔Xg1,2 ∈ ∂Mg,

where i and j are two nonnegative integers satisfying i + j = η(g) − 1. By Theorem 2.5 we know that
limt→0 λη(g)−1(Xg(t)) = 0. Applying the min-max principle in Proposition 3.1 to this sequence with
k = η(g) (note that g is a fixed large integer hence η(g) is also fixed), we have

lim inf
t→0

λη(g)(Xg(t)) ≥ min{λ̄1(M0,3), λ̄1(Z1,2), λ̄1(Xg1,2)} ≥
1
4 − ϵ,

which implies

lim inf
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) ≥
1
4 − ϵ

because

sup
Xg∈Mg

SpGη(g)(Xg) ≥ lim inf
t→0

SpGη(g)(Xg(t)).

Since ϵ > 0 can be arbitrarily small, we have

lim inf
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) ≥
1
4 .

Case 4: η(g) = 1. This is due to [Hide and Magee 2023, Corollary 1.3] because SpG1(Xg) = λ1(Xg).
The four cases above cover all possible η(g) and hence complete the proof. □

Remark. The method in this paper works for indices in the range of [1, 2g − 2] in Theorem 4.1.
The restriction comes from the lack of suitable components with λ1 close to 1

4 when constructing the
degenerating family. It would be interesting to know whether the assumption η(g) ∈ [1, 2g − 2] can be
dropped.
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We also note that, together with [Cheng 1975, Corollary 2.3], the proof of Theorem 4.1 above actually
gives the following result.

Theorem 4.2. For any 0 ≤ j < i with i = o(ln(g)),

lim
g→∞

sup
Xg∈Mg

(λi (Xg) − λj (Xg)) =
1
4 .
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PLATEAU FLOW OR THE HEAT FLOW
FOR HALF-HARMONIC MAPS

MICHAEL STRUWE

Using the interpretation of the half-Laplacian on S1 as the Dirichlet-to-Neumann operator for the Laplace
equation on the ball B, we devise a classical approach to the heat flow for half-harmonic maps from S1 to
a closed target manifold N ⊂ Rn , recently studied by Wettstein, and for arbitrary finite-energy data we
obtain a result fully analogous to the author’s 1985 results for the harmonic map heat flow of surfaces and
in similar generality. When N is a smoothly embedded, oriented closed curve 0 ⊂ Rn , the half-harmonic
map heat flow may be viewed as an alternative gradient flow for a variant of the Plateau problem of
disc-type minimal surfaces.

1. Background and results

Half-harmonic maps and their heat flow. Let N ⊂ Rn be a closed submanifold, that is, compact and
without boundary. The concept of a half-harmonic map u : S1

→ N ⊂ Rn was introduced by Da Lio and
Rivière [2011], who together with Martinazzi [Da Lio et al. 2015, Theorem 2.9] also made the interesting
observation that the harmonic extension of a half-harmonic map yields a free boundary minimal surface
supported by N, a fact which also was noticed by Millot and Sire [2015, Remark 4.28].

In his Ph.D. thesis, Wettstein [2021; 2022; 2023], studied the corresponding heat flow given by

dπN (u)(ut + (−1)1/2u) = 0 on S1
× [0, ∞[, (1-1)

where ut =∂t u and where πN : Nρ → N is the smooth nearest-neighbor projection on a ρ-neighborhood Nρ

of the given target manifold to N, and, with the help of a fine analysis of the fractional differential operators
involved, he showed global existence for initial data of small energy.

Moser [2011] and Millot and Sire [2015] contributed important results to the study of half-harmonic
maps by exploiting the fact that for any smooth u : S1

→ Rn we can represent the half-Laplacian classically
in the form

(−1)1/2u = ∂rU, (1-2)

where U : B → Rn is the harmonic extension of u to the unit disc B.1 Here, using the identity (1-2), we
are able to remove the smallness assumption in Wettstein’s work and show the existence of a “global”

I thank Amélie Loher and the anonymous referee for careful reading of the manuscript and useful suggestions.
MSC2020: primary 35K55, 35K65, 53E99; secondary 53A10.
Keywords: half-harmonic maps, harmonic map heat flow, Plateau problem.

1The classical formula (1-2) is a special case of a much more general result due to Caffarelli and Silvestre [2007], who pointed
out that many nonlocal problems involving fractional powers of the Laplacian can be related to a local, possibly degenerate,
elliptic equation via a suitable extension of the solution to a half-space.
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weak solution to the heat flow (1-1) for data of arbitrarily large (but finite) energy, which is defined for
all times and smooth away from finitely many “blow-up points” where energy concentrates, and whose
energy is nonincreasing. The solution is unique in this class in exact analogy with the classical result
by the author [Struwe 1985] on the harmonic map heat flow for maps from a closed surface to a closed
target manifold N ⊂ Rn; see Theorem 1.2 below.

In order to describe our work in more detail, let

H 1/2(S1
; N ) = {u ∈ H 1/2(S1

; Rn) : u(z) ∈ N for almost every z ∈ S1
}.

Interpreting S1
= ∂ B, where B = B1(0; R2), and tacitly identifying a map u ∈ H 1/2(S1

; N ) with its
harmonic extension U ∈ H 1(B; Rn), for a given function u0 ∈ H 1/2(S1

; N ) we then seek to find a family
of harmonic functions u(t) ∈ H 1(B; Rn) with traces u(t) ∈ H 1/2(S1

; N ) for t > 0, solving the equation

dπN (u)(ut + ∂r u) = ut + dπN (u)∂r u = 0 on S1
× [0, ∞[, (1-3)

with initial data
u|t=0 = u0 ∈ H 1/2(S1

; N ). (1-4)

Energy. The half-harmonic heat flow may be regarded as the heat flow for the half-energy

E1/2(u) =
1
2

∫
S1

|(−1)1/4u|
2 dφ

of a map u ∈ H 1/2(S1
; N ). Note that the half-energy of u equals the standard Dirichlet energy

E(u) =
1
2

∫
B

|∇u|
2 dz

of its harmonic extension u ∈ H 1(B; Rn). Indeed, integrating by parts we have∫
B

|∇u|
2 dz =

∫
S1

u∂r u dφ =

∫
S1

u(−1)1/2u dφ =

∫
S1

|(−1)1/4u|
2 dφ, (1-5)

where we use the identity (1-2) and where the last identity easily follows from the representation of the
operators (−1)1/2 and (−1)1/4 in Fourier space with symbols |ξ | and

√
|ξ |, respectively, and Parceval’s

identity.2 Therefore, in the following for convenience we may always work with the classically defined
Dirichlet energy. Moreover, we may interpret the half-harmonic heat flow as the heat flow for the Dirichlet
energy in the class of harmonic functions with trace in H 1/2(S1

; N ); see Section 2 below for details.

Results. Identifying R2 with C, we denote by M the three dimensional Möbius group of conformal
transformations of the unit disc, given by

M =

{
8(z) = eiθ z + a

1 + āz
∈ C∞(B; B) : |a| < 1, θ ∈ R

}
.

Observe that the Dirichlet energy is invariant under conformal transformations, and we have E(u) =

E(u ◦ 8) for any u ∈ H 1(B; Rn) and any 8 ∈ M.

2Conversely, via Fourier expansion we also can prove (1-5) directly. Computing the first variations of E and E1/2, respectively,
we then obtain (1-2).
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For smooth data we then have the following result.

Theorem 1.1. Let N ⊂ Rn be a closed, smooth submanifold of Rn, and suppose that the normal bundle
T ⊥N is parallelizable. Then the following holds:

(i) For any smooth u0 ∈ H 1/2(S1
; N ) there exists a time T0 ≤ ∞ and a unique smooth solution u = u(t)

of (1-3), and hence of (1-1), with data (1-4) for 0 < t < T0.

(ii) If T0 < ∞, we have concentration in the sense that, for some δ > 0 and any R > 0,

sup
z0∈B

0<t<T0

∫
BR(z0)∩B

|∇u(t)|2 dz ≥ δ,

and for suitable tk ↑ T0 there exist finitely many points z(1)
k , . . . , z(i0)

k and conformal maps 8
(i)
k ∈ M with

z(i)
k → z(i)

∈ B and 8
(i)
k → 8

(i)
∞ ≡ z(i) weakly in H 1(B) such that u(tk) ◦ 8

(i)
k → ū(i) weakly in H 1(B)

as k → ∞, where ū(i) is nonconstant and conformal and satisfies

dπN (ū(i))∂r ū(i)
= 0, 1 ≤ i ≤ i0. (1-6)

Moreover, there exists δ = δ(N ) > 0 such that E(ū(i)) ≥ δ, and i0 ≤ E(u0)/δ. Finally, u(tk) smoothly
converges to a limit u1 ∈ H 1/2(S1

; N ) on B \ {z(1), . . . , z(i0)}.

(iii) If T0 = ∞, then, as t → ∞ suitably, u(t) smoothly converges to a half-harmonic limit map away
from at most finitely many concentration points where nonconstant half-harmonic maps “bubble off” as
in (ii).

By the Da Lio–Rivière interpretation of (1-6), the “bubbles” ū(i) as well as the limit u∞ of the flow
conformally parametrize minimal surfaces with free boundary on N, meeting N orthogonally along their
free boundaries.

The hypothesis regarding the target manifold N in particular is fulfilled if N is a closed, orientable
hypersurface of codimension 1 in Rn, or if N is a smoothly embedded, closed curve 0 ⊂ R3.

It would be interesting to find examples of initial data for which the flow blows up in finite time, as in
the work of Chang, Ding, and Ye [Chang et al. 1992] on the harmonic map heat flow.

For data in H 1/2(S1
; N ) the following global existence result holds, which is our main result.

Theorem 1.2. For N ⊂ Rn as in Theorem 1.1 the following holds:

(i) For any u0 ∈ H 1/2(S1
; N ) there exists a unique global weak solution of (1-3) with data (1-4) as in

Definition 6.3, whose energy is nonincreasing and which is smooth for positive time away from finitely many
points in space-time where nontrivial half-harmonic maps “bubble off” in the sense of Theorem 1.1(ii).

(ii) As t → ∞ suitably, u(t) smoothly converges to a half-harmonic limit map away from at most finitely
many concentration points where nonconstant half-harmonic maps “bubble off” as in Theorem 1.1(iii).

Note that uniqueness is only asserted within the class of partially regular weak solutions with nonin-
creasing energy, as in the case of the harmonic map heat flow. It would be interesting to find out if the
latter condition suffices, as in the work of Freire [1995], and, conversely, to explore the possibility of
“backward bubbling” in (1-3), as in the examples of Topping [2002] for the latter flow.
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Key features of the proof and related flow equations. In our approach, in a similar vein as [Lenzmann
and Schikorra 2020], we uncover and exploit surprising regularity properties of the normal component
dπ⊥

N (u)∂r u for the harmonic extension of u, likely related to the fractional commutator estimates for the
normal projection in the work of Da Lio and Rivière [2011] or the regularity estimates of Da Lio and
Pigati [2020], Mazowiecka and Schikorra [2018], and others.

The use of the Dirichlet-to-Neumann map for the harmonic extension u : B → Rn of u instead of the
half-Laplacian, and the simple identity (3-2) as well as (3-5) allow us to perform the analysis using only
local, classically defined operators, avoiding fractional calculus almost entirely.

Note that (1-3) is similar to the equation governing the (scalar) evolution problem for conformal metrics
e2ugR2 of prescribed geodesic boundary curvature and vanishing Gauss curvature on the unit disc B,
studied for instance by Brendle [2002] or Gehrig [2020]. In contrast to the latter flows, due to the presence
of the projection operator mapping ur to its tangent component, the flow (1-3) at first sight appears to
be degenerate. However, surprisingly, within our framework we are able to obtain similar smoothing
properties as in the case of the harmonic map heat flow of surfaces.

A different heat flow associated with half-harmonic maps, using the half-heat operator (∂t − 1)1/2

instead of (1-1), was suggested by Hyder et al. [2022], and they obtained global existence of partially
regular, but possibly nonunique, weak solutions for their flow, with a possibly large singular set of measure
zero.

Applications to the Plateau problem. In the case when N is a smoothly embedded, oriented closed curve
0 ⊂ R3, the half-harmonic heat flow (1-3) may furnish an alternative gradient flow for the Plateau problem
of minimal surfaces of the type of the disc, which has a long and famous tradition in geometric analysis.

Posed in the 1890’s, Plateau’s problem was finally solved independently by Douglas [1931] and
Radó [1930]. In order to analyze the set of all minimal surfaces solving the Plateau problem, including
saddle points of the Dirichlet integral, thereby building on Douglas’ ideas, Morse and Tompkins [1939]
proposed a critical point theory for Plateau’s problem in the sense of [Morse 1937], attempting to
characterize nonminimizing solutions as “homotopy-critical” points of Dirichlet’s integral. However,
Tromba [1984; 1985] pointed out that it was not even clear that all smooth, nondegenerate minimal
surfaces would be “homotopy-critical” in the sense of [Morse and Tompkins 1939]. To overcome this
problem, Tromba developed a version of degree theory that could be applied in this case and which
yielded at least a proof of the “last” Morse inequality, which is an identity for the total degree.

Finally, this author [Struwe 1984] recast the Plateau problem as a variational problem on a closed
convex set and was able to develop a version of the Palais–Smale type critical point theory for the problem
within this frame-work, which allowed him to obtain all Morse inequalities in a rigorous fashion; see
[Struwe 1988] and [Imbusch and Struwe 1999] for further details. In [Struwe 1986] and [Jost and Struwe
1990], the approach was extended to the case of multiple boundaries and/or higher genus.

A key element of critical point theory for a variational problem is the construction of a pseudogradient
flow for the problem at hand. In [Struwe 1984] this was achieved in an ad-hoc way. However, starting with
the work of Eells and Sampson [1964] on the harmonic map heat flow, it is now an established approach
in geometric analysis to study the (negative) (L2-)gradient flow related to a variational problem, similar
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to the standard heat equation. For Plateau’s problem, such a flow was obtained by Chang and Liu [2005]
within the frame-work laid out by Struwe [1984] in the form of a parabolic variational inequality, for
which Chang and Liu obtained a solution of class H 2 by means of a time-discrete minimization scheme.
Rupflin [2017] and Rupflin and Schrecker [2018] studied the analogous parabolic variational inequality in
the case of an annulus, which again had previously been studied in [Struwe 1986] by means of an ad-hoc
pseudogradient flow.

In view of the much better regularity properties of the flow equation (1-3) it would be tempting to
regard this as the correct definition of the canonical gradient flow for the Plateau problem, but an important
issue still needs to be addressed.

Monotonicity. Recall that in the classical Plateau problem u(t) is required to induce a (weakly) monotone
parametrization of 0 for each t > 0. Even though it may seem likely that — at least for curves 0 on the
boundary of a convex body in R3 — this Plateau boundary condition will be preserved along the flow (1-3)
whenever it is satisfied initially, at this moment even for a strictly convex planar curve 0 ⊂ R2 it is not
clear whether this actually happens. However, the results that we obtain also seem to be of interest if
we drop the Plateau condition. In particular, our results motivate the study of smooth minimal surfaces
with continuous trace covering only a part of the given boundary curve 0; dropping the monotonicity
condition also brings the parametric approach to the Plateau problem closer to the approach via geometric
measure theory or level sets.

Plateau flow. It should be straightforward to extend our results to the case when the disc B is replaced
by a surface 6 of higher genus with boundary ∂6 ∼= S1, if for given initial data u0 ∈ H 1/2(S1

; N ) we
consider a family u = u(t) in H 1/2(S1

; N ) solving (1-3), that is,

ut + dπN (u)∂νu = 0

instead of (1-1), where for each time we harmonically extend u(t) to 6 and denote by ∂νu the outward
normal derivative of u along ∂6, as was proposed and analyzed by Da Lio and Pigati [2020] in the
time-independent case. Similarly, one might study the flow (1-3) on a domain 6 with multiple boundaries.
Of course, in order for the flow to converge to a minimal surface in the case of higher genus or higher
connectivity it will be necessary to couple the flow (1-3) with a corresponding evolution equation for
the conformal structure on 6, as in the work of Rupflin and Topping [2019] on minimal immersions.
Note that on a general domain 6 the flow equations (1-1) and (1-3) no longer agree. In order to clearly
distinguish the flow equation (1-3) from the equation (1-1) defining the half-harmonic map heat flow, we
therefore propose to say that (1-3) defines the “Plateau flow”.

Outline. After a brief discussion of energy estimates in Section 2, in Section 3 we present the analytic
core of the argument for higher regularity in Section 4 and for the blow-up analysis, later presented in
Section 8. These tools are also instrumental in proving uniqueness of partially regular weak solutions in
Section 7. The L2-bounds for higher and higher derivatives which we establish in Section 4, assuming
that energy does not concentrate, may be of particular interest. These bounds either concern estimates
for ∇∂k

φu on B or on ∂ B, and we view the latter bounds as stronger by an order of 1
2 . These bounds may
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be iterated interlaced, as we later do in Section 6, to prove uniform smooth estimates, locally in time,
for smooth flows with smooth initial data converging in H 1/2(N ; S1). Since the latter data are dense in
H 1/2(N ; S1), we thus not only obtain existence of weak solutions for arbitrary data u0 ∈ H 1/2(N ; S1)

but also can show their smoothness for positive time and hence are able to derive Theorem 1.2 from
Theorem 1.1. A peculiar feature is that one set of regularity estimates can only be obtained globally,
that is on all of B, whereas the other set of estimates may be localized using cut-off functions. Similar
estimates for a regularized version of (1-3) are employed in Section 5 to prove local existence of smooth
solutions of (1-3) for smooth data (1-4). Finally, in Section 9 the large-time behavior of smooth solutions
to (1-3) is discussed, finishing the proof of Theorem 1.1.

Notation. The letter C is used throughout to denote a generic constant, possibly depending on the
“target” N and the initial energy E(u0).

Moreover, since T ⊥N by assumption is parallelizable and compact, there exists ρ > 0 such that the
representation

T : N × Bρ(0; Rm) ∋ (p, y) → p +

m∑
i=1

yiνi (p) ∈ Nρ

of the tubular neighborhood Nρ =
⋃

p∈N Bρ(p) of N is a diffeomorphism, where ν1, . . . , νm is a suitable
smooth orthonormal frame along N and where we let y = (y1, . . . , ym) ∈ Rm. For q ∈ Nρ , then T −1(q) =

(p, h) with p = πN (q) defines a (vector-valued) signed distance function h = h(q) = (h1(q), . . . , hm(q))

with hi (q) = νi (p) · (q − πN (q)) for each 1 ≤ i ≤ m. Fixing a smooth function η : R → R such that
η(s) = s for |s| < 1

2ρ, and with η(s) = 0 for |s| ≥
3
4ρ, we then let

distN (q) = (dist1N (q), . . . , distmN (q)),

with
distiN (q) = η(hi (q)) for q ∈ Nρ, otherwise distiN (q) = 0, 1 ≤ i ≤ m.

Then for any smooth u ∈ H 1/2(S1
; N ) with harmonic extension u ∈ H 1(B; Rn) we have

m∑
i=1

νi (u)∂r distiN (u) =

m∑
i=1

νi (u)νi (u) · ur = dπ⊥

N (u)ur on ∂ B = S1, (1-7)

where for each p ∈ N we denote by dπ⊥

N (p) = 1 − dπN (p) : Rn
→ T ⊥

p N the orthogonal projection. In
the sequel, we abbreviate

m∑
i=1

νi (u)νi (u) · ur =: ν(u)ν(u) · ur = ν(u)∂r distN (u);

moreover, we extend the vector fields νi to the whole ambient space by letting νi (q) = ∇ distiN (q) for
q ∈ Rn , 1 ≤ i ≤ m.

Finally, we fix a smooth cut-off function ϕ ∈ C∞
c (B) satisfying 0 ≤ ϕ ≤ 1 with ϕ ≡ 1 on B1/2(0), and

for any z0 ∈ B and any 0 < R < 1 we scale

ϕz0,R(z) = ϕ

(
(z − z0)

R

)
∈ C∞

c (BR(z0)).
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2. Energy inequality and first consequences

The half-harmonic heat flow may be regarded as the heat flow for the Dirichlet energy in the class
H 1/2(S1

; N ). Indeed, let u(t) be a smooth solution of (1-3) and (1-4) for 0 < t < T0. Then we have the
following result.

Lemma 2.1. For any 0 ≤ S < T < T0,

E(u(T )) +

∫ T

S

∫
∂ B

|ut |
2 dφ dt ≤ E(u(S)).

Proof. Integrating by parts and using (1-3) we compute

d
dt

E(u) =

∫
B

∇u∇ut dz =

∫
∂ B

ur · ut dφ = −

∫
∂ B

|dπN (u)ur |
2 dφ = −

∫
∂ B

|ut |
2 dφ

for any 0 < t < T0. The claim follows by integration. □

Moreover, there holds a localized version of this energy inequality.

Lemma 2.2. There exists a constant C > 0 such that, for any z0 ∈ B, any 0 < R < 1, any ε > 0, and any
0 < t0 < t1 ≤ t0 + εR < T0,∫

B
|∇u(t1)|2ϕ2

z0,R dz + 4
∫ t1

t0

∫
∂ B

|ut |
2ϕ2

z0,R dφ dt ≤ 4
∫

B
|∇u(t0)|2ϕ2

z0,R dz + CεE(u0).

Proof. Writing ϕ = ϕz0,R for brevity, integrating by parts, and using Young’s inequality, similar to the
proof of Lemma 2.1 for any 0 < t < T0 we have

d
dt

(
1
2

∫
B

|∇u|
2ϕ2 dz

)
=

∫
∂ B

ut · urϕ
2 dφ −

∫
B

ut div(∇uϕ2) dz

= −

∫
∂ B

|dπN (u)ur |
2ϕ2 dφ − 2

∫
B

ut∇uϕ∇ϕ dz

≤ −

∫
∂ B

|ut |
2ϕ2 dφ + (8εR)−1

∫
B

|∇u|
2ϕ2 dz + 8εR

∫
B

|ut |
2
|∇ϕ|

2 dz. (2-1)

Letting

A = sup
t0<t<t1

(
1
2

∫
B

|∇u(t)|2ϕ2 dz
)

,

then upon integration we find

A +

∫ t1

t0

∫
∂ B

|ut |
2ϕ2 dφ dt ≤

∫
B

|∇u(t0)|2ϕ2 dz +
t1 − t0
2εR

A + CεR−1
∫ t1

t0

∫
BR(z0)∩B

|ut |
2 dz dt.

But with u = u(t), then also ut = ut(t) is harmonic for each t . Expanding

ut(reiφ) =

∑
k≥0

akr keikφ
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in a Fourier series, we see that the map

r 7→

∫
∂ Br (0)

|ut |
2 ds = 2π

∑
k≥0

|ak |
2r2k+1,

with ds denoting the element of length along ∂ Br (0), is nondecreasing. Thus, for any z0 ∈ B, any
0 < R < 1, and any t0 < t < t1, ∫

BR(z0)∩B
|ut |

2 dz ≤ 2R
∫

∂ B
|ut |

2 dφ, (2-2)

and we may use Lemma 2.1 to conclude. □

3. A regularity estimate

To illustrate the key ideas that later will allow us to prove higher regularity and analyze blow-up of
solutions of (1-3), we first consider smooth solutions u ∈ H 1/2(S1

; N ) of the equation

dπN (u)∂r u + f = 0 on ∂ B = S1, (3-1)

where f ∈ L2(S1). We prove the following a-priori estimate, where we use classical estimates similar
to [Wettstein 2022, Lemma 3.4], which in turn is a fractional version of a result by Rivière [1993,
Chapter 4, pp. 96-104]. Note that with the truncated signed distance function distN : Rn

→ Rm we have
the orthogonal decomposition

∂r u = dπN (u)∂r u + dπ⊥

N (u)∂r u = dπN (u)∂r u + ν(u)∂r (distN (u)) (3-2)

on ∂ B = S1, where we recall that we use the shorthand notation

ν(u)∂r (distN (u)) =

m∑
i=1

νi (u)∂r (distiN (u)) =

m∑
i=1

νi (u)νi (u) · ∂r u

and extend νi (p) = ∇ distiN (p), p ∈ Rn.

Proposition 3.1. There exist constants C and δ0 = δ0(N ) > 0 such that, for any smooth solution
u ∈ H 1/2(S1

; N ) of (3-1) with E(u) ≤ δ2 < δ2
0 ,∫

S1
|∂φu|

2 dφ ≤ C∥ f ∥
2
L2(S1)

. (3-3)

Proof. Multiplying (3-2) with ∂r u, we find the Pythagorean identity

|∂r u|
2
= |dπN (u)∂r u|

2
+ |dπ⊥

N (u)∂r u|
2
= |dπN (u)∂r u|

2
+ |∂r (distN (u))|2. (3-4)

Note that distN (u) ∈ H 1
0 (B); moreover, for each 1 ≤ i ≤ m we have ∇(distiN (u)) = νi (u) · ∇u, and

there holds the equation

1(distiN (u)) = div(νi (u) · ∇u) = ∇u · dνi (u)∇u in B. (3-5)
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The divergence theorem now gives

∥∂r (distN (u))∥2
L2(S1)

= (∇(distN (u)), ∇(distN (u))r )L2(B) + (1(distN (u)), (distN (u))r )L2(B)

≤ C∥∇u∥L2(B)∥∇
2(distN (u))∥L2(B) ≤ Cδ∥∇2(distN (u))∥L2(B),

where the basic L2-theory for the Laplace equation (3-5) yields the bound

∥∇
2(distN (u))∥L2(B) ≤ C∥1(distiN (u))∥L2(B) ≤ C∥∇u∥

2
L4(B)

.

With Sobolev’s embedding H 1/2(B) ↪→ L4(B) we then conclude

∥∂r (distN (u))∥2
L2(S1)

≤ Cδ∥∇u∥
2
H1/2(B)

.

Thus from (3-4) and (3-1) we have

∥∂r u∥
2
L2(S1)

≤ ∥ f ∥
2
L2(S1)

+ ∥∂r (distN (u))∥2
L2(S1)

≤ ∥ f ∥
2
L2(S1)

+ Cδ∥∇u∥
2
H1/2(B)

. (3-6)

But Fourier expansion of the harmonic function u gives

∥∂φu∥
2
L2(S1)

= ∥∂r u∥
2
L2(S1)

=
1
2∥∇u∥

2
L2(S1)

(3-7)

as well as the bound
∥∇u∥

2
H1/2(B)

≤ C∥∇u∥
2
L2(S1)

,

and from (3-6) we obtain

∥∂r u∥
2
L2(S1)

≤ ∥ f ∥
2
L2(S1)

+ Cδ∥∇u∥
2
H1/2(B)

≤ ∥ f ∥
2
L2(S1)

+ Cδ∥∂r u∥
2
L2(S1)

,

which for sufficiently small δ > 0 by (3-7) yields the claim. □

In particular, from Proposition 3.1 we obtain a positive energy threshold for nonconstant solutions
of (1-6).

Corollary 3.2. Suppose u ∈ H 1/2(S1
; N ) smoothly solves (1-6). Then, either u is constant or E(u) ≥ δ2

0 ,
with δ0 = δ0(N ) > 0 given by Proposition 3.1.

Combining the ideas in the proof of the previous result with ideas from the classical proof of the
Courant–Lebesgue lemma in minimal surface theory, we can obtain the following local version of
Proposition 3.1.

Proposition 3.3. There exists a constant δ > 0 with the following property. Given any smooth solution
u ∈ H 1/2(S1

; N ) of (3-1) with harmonic extension u ∈ H 1(B), any z0 ∈ ∂ B, and any 0 < R ≤
1
2 such that∫

BR(z0)∩B
|∇u|

2 dz < δ2, (3-8)

with a constant C = C(R) > 0 there holds∫
BR2 (z0)∩S1

|∂φu|
2 dφ ≤ C∥ f ∥

2
L2(BR(z0)∩S1)

+ C E(u).
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Proof. Fix any z0 ∈ ∂ B and 0 < R ≤
1
2 such that (3-8) holds. For suitable ρ ∈ [R2, R], with s denoting

arc-length along the curve Cρ = {z0 + ρeiθ
∈ B : θ ∈ R} with end-points z j = z0 + ρeiθ j = eiφ j ∈ ∂ B,

j = 1, 2, we have

ρ

∫
Cρ

|∇u|
2 ds ≤ 2 inf

R2<ρ′<R

(
ρ ′

∫
Cρ′

|∇u|
2 ds

)
.

We can bound the latter infimum by the average over ρ ∈ [R2, R] with respect to the measure with density
ρ−1 to obtain the bound

ρ

∫
Cρ

|∇u|
2 ds ≤

2
∫ R

R2

∫
Cρ

|∇u|
2 ds dρ∫ R

R2 ρ−1 dρ
≤

2
∫

B |∇u|
2 dz

|log(R)|
=

4E(u)

|log(R)|
. (3-9)

Let 80 : B → B be the conformal map fixing the circular arc Cρ and mapping the point z0 to the point −z0,
obtained as the composition 80 = π−1

0 ◦90 ◦π0 of a conformal diffeomorphism π0 : B → R2
+

mapping
the points z0 and −z0 to the origin and infinity, respectively, and the reflection 90 : R2

+
→ R2

+
of the

upper half-plane R2
+

in the half-circle π0(Cρ). Replacing u by the map u ◦80 in B \ Bρ(z0) we obtain
a piecewise smooth map v1 : B → Rn which is harmonic on B \ Cρ and continuous on all of B. Let
v0 ∈ H 1(B) be harmonic with w := v1 − v0 ∈ H 1

0 (B). Note that by the variational characterization of
harmonic functions and conformal invariance of the Dirichlet integral we have

E(v0) ≤ E(v1) ≤

∫
BR(z0)∩B

|∇u|
2 dz ≤ δ2. (3-10)

Moreover, for any smooth ϕ ∈ H 1
0 (B), by (3-9) we can estimate∣∣∣∣∫

B
∇w∇ϕ dz

∣∣∣∣ =

∣∣∣∣∫
B

∇v1∇ϕ dz
∣∣∣∣ =

∣∣∣∣∫
Cρ

[∂νv1]ϕ ds
∣∣∣∣ ≤

(∫
Cρ

|∇u|
2 ds

)1/2(∫
Cρ

|ϕ|
2 ds

)1/2

≤ C(R)E(u)1/2
∥ϕ∥H1/2(B),

where [∂νv1] denotes the difference of the outer and inner normal derivatives of v1 along Cρ . Thus we
have 1w ∈ H−1/2(B), and the basic L2-theory for the Laplace equation gives w ∈ H 3/2

∩ H 1
0 (B) with

∥w∥H3/2(B) ≤ sup
ϕ∈H1

0 (B)

∥ϕ∥H1/2(B)
≤1

(∫
B

∇w∇ϕ dz
)

≤ C(R)E(u)1/2,

and then also
∥∂rw∥

2
L2(S1)

≤ C∥w∥
2
H3/2(B)

≤ C(R)E(u). (3-11)

In view of (3-10), for sufficiently small δ > 0, from Proposition 3.1 we obtain the estimate

∥∂φv0∥
2
L2(S1)

≤ C∥dπN (v0)∂rv0∥
2
L2(S1)

. (3-12)

Observe that since v0 = v1 on ∂ B = S1 and since we also have v1 = u on B ∩ Bρ(z0) and v1 = u ◦80 on
B \ Bρ(z0), respectively, we can bound

∥dπN (v0)∂rv0∥
2
L2(S1)

= ∥dπN (v1)∂rv0∥
2
L2(S1)

≤ 2∥dπN (v1)∂rv1∥
2
L2(S1)

+ 2∥∂rw∥
2
L2(S1)
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and

∥dπN (v1)∂rv1∥
2
L2(S1)

≤ C(R)∥dπN (u)∂r u∥
2
L2(S1∩Bρ(z0))

.

Thus from (3-11) we obtain

∥dπN (v0)∂rv0∥
2
L2(S1)

≤ C(R)∥dπN (u)∂r u∥
2
L2(S1∩Bρ(z0)

+ C∥∂rw∥
2
L2(S1)

≤ C(R)∥ f ∥
2
L2(S1∩Bρ(z0))

+ C(R)E(u),

and from (3-12) there results the bound

∥∂φu∥
2
L2(S1∩Bρ(z0))

= ∥∂φv0∥
2
L2(S1∩Bρ(z0))

≤ ∥∂φv0∥
2
L2(S1)

≤ C∥dπN (v0)∂rv0∥
2
L2(S1)

≤ C(R)∥ f ∥
2
L2(S1∩BR(z0)))

+ C(R)E(u),

as claimed. □

The local estimate Proposition 3.3 also implies the following global bound.

Proposition 3.4. There exists a constant δ > 0 with the following property. Given any smooth solution
u ∈ H 1/2(S1

; N ) of (3-1) and any 0 < R ≤
1
2 with

sup
z0∈B

∫
BR(z0)∩B

|∇u|
2 dz < δ2, (3-13)

there holds ∫
S1

|∂φu|
2 dφ ≤ C(R)∥ f ∥

2
L2(S1)

+ C(R)E(u).

Proof. Covering ∂ B with balls BR2(zi ), 1 ≤ i ≤ i0, from Proposition 3.3 we obtain the claim. □

Remark 3.5. The proofs of the above propositions only require u ∈ H 1(S1
; N ) with harmonic extension

u ∈ H 3/2(B).

4. Higher regularity

Again let u(t) be a smooth solution of the half-harmonic heat flow (1-3) for 0 < t < T0 with smooth initial
data (1-4). We show that as long as the flow does not concentrate energy in the sense of Theorem 1.1(ii)
the solution remains smooth and can be a-priori bounded in any H k-norm in terms of the data.

H2-bound. In a first step we show an L2-bound in space-time for the second derivatives of our solution
to the flow (1-3). Recall that by harmonicity, writing u = u(t), ∂φu = uφ , and so on, for any 0 < t < T0

we have (3-7), that is, ∫
∂ B

|uφ|
2 dφ =

∫
∂ B

|ur |
2 dφ,

as Fourier expansion shows, with similar identities for partial derivatives of u of higher order. Indeed,
writing

1u =
1
r
(rur )r +

1
r2 uφφ (4-1)
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we see that ∂
j
φu and then also ∇

k− j∂
j
φu is harmonic for any j ≤ k in N0, where ∇u = (ux , u y) in Euclidean

coordinates z = x + iy. Thus by induction we obtain∫
∂ B

|∇
ku|

2 dφ = 2
∫

∂ B
|∇

k−1uφ|
2 dφ = · · · = 2k

∫
∂ B

|∂k
φu|

2 dφ (4-2)

for any k ∈ N. Similarly, for any 1
4 < r < 1 with uniform constants C > 0 we have∫

∂ Br (0)

|∇
ku|

2 dz ≤ C
∫

∂ Br (0)

|∇
k−1uφ|

2 dz ≤ · · · ≤ C
∫

∂ Br (0)

|∂k
φu|

2 dz.

Integrating and using the mean value property of harmonic functions together with (4-2) to bound

sup
B1/4(0)

|∇
ku|

2
≤ C

∫
B\B1/4(0)

|∇
ku|

2 dz ≤ C
∫

B
|∇∂k−1

φ u|
2 dz,

in particular, for any k ∈ N, we have the bound∫
B

|∇
ku|

2 dz ≤ C
∫

B
|∇∂k−1

φ u|
2 dz (4-3)

with an absolute constant C > 0.
The following lemma is strongly reminiscent of analogous results for the harmonic map heat flow in

two space dimensions.

Lemma 4.1. With a constant C > 0 depending only on N,

d
dt

(∫
∂ B

|uφ|
2 dφ

)
+

∫
B

|∇uφ|
2 dz ≤ C

∫
B

|∇u|
2
|uφ|

2 dz.

Proof. Writing dπN (u) = 1 − dπ⊥

N (u) with

dπ⊥

N (u)X = ν(u)ν(u) · X =

m∑
i=1

νi (u)νi (u) · X

for any X ∈ Rn, we compute

1
2

d
dt

(∫
∂ B

|uφ|
2 dφ

)
=

∫
∂ B

uφ · uφ,t dφ = −

∫
∂ B

uφφ · ut dφ

=

∫
∂ B

uφφ · dπN (u)ur dφ = −

∫
∂ B

(uφ · urφ − uφ · ∂φ(ν(u)ν(u) · ur )) dφ

= −
1
2

∫
∂ B

∂r (|uφ|
2) dφ −

∫
∂ B

uφ · dν(u)uφν(u) · ur dφ,

where we use orthogonality uφ · νi (u) = 0 on ∂ B, 1 ≤ i ≤ m, in the last step. But uφ is harmonic. So
with 1|uφ|

2
= 2|∇uφ|

2, from Gauss’ theorem we obtain

1
2

∫
∂ B

∂r (|uφ|
2) dφ =

∫
B

|∇uφ|
2 dz.
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On the other hand, by Young’s inequality we can estimate∫
∂ B

ur · ν(u)uφ · dν(u)uφ dφ =

∫
B

∇u · ∇(ν(u)uφ · dν(u)uφ) dz

≤ C
∫

B
|∇uφ||∇u||uφ| dz + C

∫
B

|∇u|
2
|uφ|

2 dz

≤
1
2

∫
B

|∇uφ|
2 dz + C

∫
B

|∇u|
2
|uφ|

2 dz,

and our claim follows. □

Combining the previous result with a quantitative bound for the concentration of energy, we obtain a
space-time bound for the second derivatives of u. Note that since u is smooth by assumption, for any
δ > 0 and any T < T0, there exists a number R = R(T, u) > 0 such that

sup
z0∈B

0<t<T

∫
BR(z0)∩B

|∇u(t)|2 dz < δ. (4-4)

Proposition 4.2. There exist constants δ = δ(N ) > 0 and C > 0 such that, for any T < T0 with R > 0 as
in (4-4),

sup
0<t<T

∫
∂ B

|uφ(t)|2 dφ +

∫ T

0

∫
B

|∇uφ|
2 dx dt ≤ C

∫
∂ B

|u0,φ|
2 dφ + CT R−2 E(u0). (4-5)

Proof. For given T < T0 and δ > 0 to be determined, we fix R > 0 such that (4-4) holds. Let BR/2(zi ),
1 ≤ i ≤ i0, be a cover of B such that any point z0 ∈ B belongs to at most L of the balls BR(zi ), where
L ∈ N is independent of R > 0. We then use the decomposition∫

B
|∇u|

2
|uφ|

2 dz ≤

i0∑
i=1

∫
BR/2(zi )

|∇u|
4 dz ≤

i0∑
i=1

∫
B

|∇uϕzi ,R|
4 dz.

Using the multiplicative inequality (A-2) in the Appendix, for each i we can bound∫
B

|∇uϕzi ,R|
4 dz ≤ Cδ

∫
BR(zi )

(|∇2u|
2
+ R−2

|∇u|
2) dz.

Summing over 1 ≤ i ≤ i0, we thus obtain the bound∫
B

|∇u|
2
|uφ|

2 dz ≤ C Lδ

∫
B

|∇
2u|

2 dz + C LδR−2 E(u) ≤ C Lδ

∫
B

|∇uφ|
2 dz + C LδR−2 E(u0),

and for sufficiently small δ > 0 we obtain the claim from Lemma 4.1. □

With the help of Proposition 4.2 we can now bound u in H 2(B) also uniformly in time. For this, we
first note the following estimate, which also will be useful later for bounding higher-order derivatives.

Lemma 4.3. For any k ∈ N, with a constant C > 0 depending only on k and N, for the solution u = u(t)
to (1-3) and (1-4) for any 0 < t < T0

d
dt

(∥∇∂k
φu∥

2
L2(B)

) + ∥∂k
φur∥

2
L2(S1)

≤ C
∑

1≤ ji ≤k+1
6i ji ≤k+2

∥∇∂k
φu∥L2(B)

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

.
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Proof. For any k ∈ N we use harmonicity of ∂2k
φ u to compute

1
2

d
dt

(∥∇∂k
φu∥

2
L2(B)

) = (−1)k
∫

B
∇∂2k

φ u∇ut dx

= (−1)k(∂2k
φ ur , ut)L2(S1) = (−1)k+1(∂2k

φ ur , dπN (u)ur )L2(S1)

= −(∂k
φur , ∂

k
φur )L2(S1)+(∂k

φur , ∂
k
φ(ν(u)ν(u)·ur ))L2(S1) = −∥∂k

φur∥
2
L2(S1)

+I, (4-6)

where we use the decomposition I =
∑k

j=0
(k

j

)
I j with

I j = (∂k
φur , ∂

j
φ(ν(u)ν(u))∂

k− j
φ ur )L2(S1) = (∇∂k

φu, ∇(∂
j
φ(ν(u)ν(u)) · ∂

k− j
φ ur ))L2(B).

Hence for any 1 ≤ j ≤ k we can bound

|I j | ≤ C
∑

0≤i≤ j

∥∇∂k
φu∥L2(B)∥∇∂

j−i
φ ν(u)∂ i

φν(u)∂
k− j
φ ur∥L2(B)

+ C
∑

0≤i≤ j

∥∇∂k
φu∥L2(B)∥∂

j−i
φ ν(u)∂ i

φν(u)∇∂
k− j
φ ur∥L2(B)

≤ C
∑

1≤ ji ≤k+1
6i ji =k+2

∥∇∂k
φu∥L2(B)

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

,

as claimed. It remains to bound the term I0 = ∥∂k
φur · ν(u)∥2

L2(S1)
. With the signed distance function we

can express

ν(u) · uφr = (ν(u) · ur )φ − ur · dν(u)uφ = (distN (u))φr − ur · dν(u)uφ,

so that
I0 = ∥∂k

φur · ν(u)∥2
L2(S1)

= (∂k
φur · ν(u), ∂k

φ(distN (u))r )L2(S1) + II

= (∇∂k
φu, ∇(ν(u)∂k

φ(distN (u))r ))L2(B) + II,

where all terms in II can be dealt with as in the case 1 ≤ j ≤ k. Finally, we have

(∇∂k
φu, ∇(ν(u)∂k

φ(distN (u))r ))L2(B)

≤ ∥∇∂k
φu∥L2(B)(∥∇

2∂k
φ(distN (u))∥L2(B) + ∥∇ν(u)∂k

φ(distN (u))r∥L2(B)).

But by the chain rule we can bound

∥∇ν(u)∂k
φ(distN (u))r∥L2(B) ≤ C∥∇u∇

k+1(distN (u))∥L2(B) ≤ C
∑

1≤ ji ≤k+1
6i ji =k+2

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

.

Moreover, by (3-5) and elliptic regularity theory,

∥∇
k+2(distN (u))∥2

L2(B)
≤ C∥1(distN (u))∥2

H k(B)

≤ C∥∇u · dνi (u)∇u∥
2
H k((B)

≤ C
∑

1≤ ji ≤k+1
6i ji ≤k+2

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

,

which gives the claim. □

For k = 1, from Proposition 4.2 we now easily derive a uniform L2-bound for the second derivatives
of the flow.
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Proposition 4.4. For any smooth u0 ∈ H 1/2(S1
; N ) and any T < T0 with R > 0 as in Proposition 4.2

with a constant C1 = C1(T, R, u0) > 0 depending on the right-hand side of (4-5),

sup
0<t<T

∫
B

|∇uφ(t)|2 dz +

∫ T

0

∫
∂ B

|uφr |
2 dφ dt ≤ C1

∫
B

|∇u0,φ|
2 dz + C1.

Proof. For k = 1, by Lemma 4.3 we need to bound the term

J =

∑
1≤ ji ≤2
6i ji ≤3

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

≤ C∥|∇
2u||∇u| + |∇u|

3
∥L2(B) + J1,

where J1 contains all terms of lower order. By the maximum principle and Sobolev’s embedding
H 1(∂ B) ↪→ L∞(∂ B) we can estimate

∥∇u∥
2
L∞(B) ≤ ∥∇u∥

2
L∞(∂ B) ≤ C∥∇u∥

2
H1(∂ B)

≤ C∥uφr∥
2
L2(∂ B)

+ C1,

where we have also used (3-7) and Proposition 4.2. Also bounding

∥∇u∥
3
L6(B)

≤ ∥∇u∥
2
L4(B)

∥∇u∥L∞(B) ≤ C(∥∇2u∥L2(B)∥∇u∥L2(B) + E(u))∥∇u∥L∞(B)

via (A-2), and again using (3-7) (and with similar, but simpler bounds for J1), we arrive at the estimate

J ≤ C∥|∇
2u||∇u| + |∇u|

3
∥L2(B) + C1 ≤ C(∥∇2u∥L2(B) + E(u))∥∇u∥L∞(B) + C1

≤ C(1 + ∥∇uφ∥L2(B) + E(u0))(∥uφr∥L2(∂ B) + C1).

With Lemma 4.3 and Young’s inequality we then have

d
dt

(1 + ∥∇uφ∥
2
L2(B)

) + ∥uφr∥
2
L2(S1)

≤ C∥∇uφ∥L2(B)(∥∇uφ∥L2(B) + E(u0))(∥uφr∥L2(∂ B) + C1)

≤
1
2∥uφr∥

2
L2(∂ B)

+ C(1 + ∥∇uφ∥
2
L2(B)

)(∥∇uφ∥
2
L2(B)

+ C1). (4-7)

Absorbing the term 1
2∥uφr∥

2
L2(∂ B)

into the left-hand side of this inequality and dividing by 1+∥∇uφ∥
2
L2(B)

we obtain
d
dt

(log(1 + ∥∇uφ∥
2
L2(B)

)) ≤ C∥∇uφ∥
2
L2(B)

+ C1,

and from Proposition 4.2 we obtain the bound

sup
0<t<T

∥∇uφ(t)∥2
L2(B)

≤ C1(1 + ∥∇u0,φ∥
2
L2(B)

).

The claim then follows from (4-7). □

H3-bounds. The derivation of a-priori L2-bounds for third derivatives of the solution u to the flow (1-3),
(1-4) requires special care, which is why we highlight this case.

Proposition 4.5. For any smooth u0 ∈ H 1/2(S1
; N ) and any T < T0,

sup
0<t<T

∫
B

|∇uφφ(t)|2 dz +

∫ T

0

∫
∂ B

|uφφr |
2 dφ dt ≤ C2

∫
B

|∇u0,φφ|
2 dz + C2,

where we denote by C2 = C2(T, R, u0) > 0 a constant bounded by the terms on the right-hand side in the
statements of Propositions 4.2 and 4.4.
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Proof. For k = 2, by Lemma 4.3 we need to bound the term

J =

∑
1≤ ji ≤3
6i ji =4

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

≤ C∥|∇u|
4
+ |∇u|

2
|∇

2u| + |∇
2u|

2
+ |∇u||∇

3u|∥L2(B)

and corresponding terms involving at most three derivatives in total, which we will omit.
For the first term, by the multiplicative inequality (A-2) and Sobolev’s embedding H 2(B) ↪→ L∞(B),

we can estimate

∥∇u∥
4
L8(B)

≤ ∥∇u∥
2
L4(B)

∥∇u∥
2
L∞(B) ≤ C∥∇u∥H1(B)∥∇u∥L2(B)∥∇u∥

2
L∞(B)

≤ C(∥∇2u∥
2
L2(B)

+ E(u))∥∇u∥
2
L∞(B) ≤ C2∥∇u∥

2
L∞(B)

≤ C2(∥∇
3u∥L2(B) + ∥∇u∥L2(B))∥∇u∥L∞(B)

with a constant C2 = C2(T, R, u0) > 0 as in the statement of the proposition. Similarly,

∥∇
2u∥

2
L4(B)

≤ C∥∇
2u∥H1(B)∥∇

2u∥L2(B) ≤ ∥∇
3u∥L2(B)∥∇

2u∥L2(B)+∥∇
2u∥

2
L2(B)

≤ C2(1+∥∇
3u∥L2(B)).

Hence we can also bound

∥|∇u|
2
|∇

2u|∥L2(B) ≤ ∥∇u∥
4
L8(B)

+ ∥∇
2u∥

2
L4(B)

≤ C2(1 + ∥∇
3u∥L2(B))(1 + ∥∇u∥L∞(B)).

Finally, we estimate
∥|∇u||∇

3u|∥L2(B) ≤ ∥∇
3u∥L2(B)∥∇u∥L∞(B)

to obtain
J ≤ C2(1 + ∥∇

3u∥L2(B))(1 + ∥∇u∥L∞(B)).

But with the inequality

∥ f ∥L∞(B) ≤ C∥ f ∥H1(B)

(
1 + log1/2

(
1 +

∥ f ∥H2(B)

∥ f ∥H1(B)

))
for f ∈ H 2(B) due to Brezis and Gallouet [1980] (see also [Brézis and Wainger 1980] for a more general
version), we have

∥∇u∥
2
L∞(B) ≤ C∥∇u∥

2
H1(B)

(
1 + log

(
1 +

∥∇u∥H2(B)

∥∇u∥H1(B)

))
≤ C2(1 + log(1 + ∥∇

3u∥L2(B))),

and Lemma 4.3 yields the differential inequality

d
dt

(∥∇∂2
φu∥

2
L2(B)

) + ∥uφφr∥
2
L2(∂ B)

≤ C2∥∇∂2
φu∥L2(B)(1 + ∥∇

3u∥L2(B))(1 + log(1 + ∥∇
3u∥L2(B))).

Simplifying, and recalling that ∥∇
3u∥

2
L2(B)

≤ C∥∇∂2
φu∥

2
L2(B)

by (4-3), we then find

d
dt

(1 + ∥∇∂2
φu∥L2(B)) ≤ C2(1 + ∥∇∂2

φu∥L2(B))(1 + log(1 + ∥∇∂2
φu∥L2(B)));

that is, we have
d
dt

(1 + log(1 + ∥∇∂2
φu∥L2(B))) ≤ C2(1 + log(1 + ∥∇∂2

φu∥L2(B))).

Arguing as in the proof of Proposition 4.4 we then obtain the claim. □
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Hm-bounds, m ≥ 4. In view of Proposition 4.5 we can now use induction to prove the following result.

Proposition 4.6. For any k ≥ 3, any smooth u0 ∈ H 1/2(S1
; N ), and any T < T0,

sup
0<t<T

∫
B

|∇∂k
φ(t)|2 dz +

∫ T

0

∫
∂ B

|∂k
φur |

2 dφ dt ≤ Ck

∫
B

|∇∂k
φu0|

2 dz + Ck,

where we denote by Ck = Ck(T, R, u0) > 0 a constant bounded by the terms on the right-hand side in the
statement of the proposition for k − 1.

Proof. By Proposition 4.5 the claimed result holds true for k = 2. Suppose the claim holds true for some
k0 ≥ 2 and let k = k0 + 1. Note that by Sobolev’s embedding H 2(B) ↪→ W 1,4

∩ C0(B) and (4-3) for
0 ≤ t < T we then have the uniform bounds

∥∇
k0+1u∥

2
L2(B)

+ ∥∇
k0u∥

2
L4(B)

+

∑
1≤ j≤k0−1

∥∇
j u∥

2
L∞(B) ≤ Ck0∥∇

k0+1u0∥
2
L2(B)

+ Ck0 ≤ Ck < ∞ (4-8)

with a constant of the type Ck , as defined above.
By Lemma 4.3 again we only need to bound the term

J =

∑
1≤ ji ≤k+1
6i ji ≤k+2

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

.

Clearly we have

J ≤ ∥∇
k+1u∥L2(B)∥∇u∥L∞(B) + ∥∇

ku∥L2(B)∥∇u∥
2
L∞(B) + ∥∇

ku∇
2u∥L2(B)

+ ∥∇
k−1u∇

3u∥L2(B) + ∥∇
k−1u∇

2u∥L2(B)∥∇u∥L∞(B) + Ck

≤ Ck∥∇
k+1u∥L2(B) + ∥∇

ku∇
2u∥L2(B) + ∥∇

k−1u∇
3u∥L2(B) + Ck .

We now distinguish the following cases: If k − 1 = k0 ≥ 3, by (4-8) we can bound

∥∇
ku∇

2u∥L2(B) ≤ ∥∇
ku∥L2(B)∥∇

2u∥L∞(B) ≤ Ck0∥∇
k0+1u∥

2
L2(B)

+ Ck0 ≤ Ck

as well as

∥∇
k−1u∇

3u∥L2(B) ≤ ∥∇
k−1u∥L4(B)∥∇

3u∥L4(B) ≤ Ck0∥∇
k0u∥

2
L4(B)

+ Ck0 ≤ Ck

to obtain the estimate
J ≤ Ck∥∇

k+1u∥L2(B) + Ck .

If, on the other hand, k0 = k − 1 = 2, by our induction hypothesis (4-8) we have

∥∇
k−1u∇

3u∥L2(B) = ∥∇
2u∇

ku∥
2
L2(B)

≤ ∥∇
ku∥L4(B)∥∇

2u∥L4(B)

≤ Ck∥∇
ku∥H1(B) + Ck ≤ Ck∥∇

k+1u∥L2(B) + Ck,

and we find
J ≤ Ck∥∇

k+1u∥L2(B) + Ck

as before.
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In any case, inequality (4-3) and Lemma 4.3 now may be invoked to obtain

d
dt

(∥∇∂k
φu∥L2(B)) ≤ Ck∥∇∂k

φu∥L2(B) + Ck,

and our claim follows. □

Local H k-bounds. The bounds established so far all require the initial data to be sufficiently smooth for
the estimate at hand and do not yet allow to show smoothing of the flow. For the latter purpose we next
prove a second set of “intermediate” estimates that in combination with the first set of estimates later
will allow boot-strapping. Moreover, in contrast to the estimates in Lemma 4.3, the following estimates
may be localized. This will be important for showing regularity of the flow at blow-up times away from
concentration points of the energy on ∂ B.

For the localized estimates, fix a point z0 ∈ ∂ B and some radius 0 < R0 < 1
4 and for k ∈ N set

Rk = 2−k R0 and ϕk = ϕz0,Rk . Set ϕk = 1 for each k ∈ N for the analogous global bounds.
We first establish the following localized version of Lemma 4.1.

Lemma 4.7. With a constant C > 0 depending only on N,

d
dt

(∫
∂ B

|uφ|
2ϕ2

1 dφ

)
+

∫
B

|∇uφ|
2ϕ2

1 dz ≤ C
∫

B
|∇u|

2
|uφ|

2ϕ2
1 dz + C R−2

0 E(u0).

Proof. Similar to the proof of Lemma 4.1, we compute

1
2

d
dt

(∫
∂ B

|uφ|
2ϕ2

1 dφ

)
=

∫
∂ B

uφ ·uφ,tϕ
2
1 dφ = −

∫
∂ B

∂φ(uφϕ2
1) ·ut dφ

=

∫
∂ B

∂φ(uφϕ2
1) ·dπN (u)ur dφ = −

∫
∂ B

(uφ ·urφ −uφ · ∂φ(ν(u)ν(u) ·ur ))ϕ
2
1 dφ

= −
1
2

∫
∂ B

∂r (|uφ|
2)ϕ2

1 dφ −

∫
∂ B

uφ ·dν(u)uφν(u) ·urϕ
2
1 dφ.

With 1|uφ|
2
= 2|∇uφ|

2 we obtain

1
2

∫
∂ B

∂r (|uφ|
2)ϕ2

1 dφ =

∫
B

|∇uφ|
2ϕ2

1 dz +

∫
B

∇|uφ|
2ϕ1∇ϕ1 dz,

where ∣∣∣∣∫
B

∇|uφ|
2ϕ1∇ϕ1 dz

∣∣∣∣ ≤
1
4

∫
B

|∇uφ|
2ϕ2

1 dz + C
∫

B
|uφ|

2
|∇ϕ1|

2 dz

by Young’s inequality. Finally, we can bound∫
∂ B

ur ·ν(u)uφ ·dν(u)uφϕ2
1 dφ =

∫
B

∇u ·∇(ν(u)uφ ·dν(u)uφϕ2
1) dz

≤ C
∫

B
(|∇uφ||∇u||uφ|+|∇u|

2
|uφ|

2)ϕ2
1 dz+C

∫
B

|∇u||∇ϕ1||uφ|
2ϕ1 dz

≤
1
4

∫
B

|∇uφ|
2ϕ2

1 dz+C
∫

B
|∇u|

2
|uφ|

2ϕ2
1 dz+C

∫
B

|∇u|
2
|∇ϕ1|

2 dz,

and our claim follows. □
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We need a substitute for the global bound (4-3). For this, we note that (4-1) also implies the pointwise
bound

|urr |
2
≤

2|uφφ|
2

r4 +
2|ur |

2

r2 ;

hence we have

|∇
2u|

2
≤ C(|∇uφ|

2
+ |∇u|

2) in BR0(z0)

with an absolute constant C > 0, uniformly in z0 ∈ ∂ B and 0 < R0 < 1
4 . By induction then, similarly, we

have

|∇
k+1u|

2
≤ C(|∇k∂φu|

2
+ |∇

ku|
2) ≤ C

k∑
j=0

|∇∂
j
φu|

2 in BR0(z0) (4-9)

with an absolute constant C = C(k) > 0, uniformly in z0 ∈ ∂ B and 0 < R0 < 1
4 for any k ∈ N.

Likewise, as a substitute for the global nonconcentration condition (4-4) we now suppose that z0 ∈ ∂ B
is not a concentration point in the sense that for suitably chosen δ > 0 to be determined in the sequel and
some 0 < R0 < 1

4 as above,

sup
0<t<T0

∫
BR0 (z0)∩B

|∇u(t)|2 dz < δ. (4-10)

We then obtain the following localized version of Proposition 4.2.

Proposition 4.8. There exist constants δ > 0 and C > 0 independent of R0 > 0 such that whenever (4-10)
holds then for any T ≤ T0 we have

sup
0<t<T

∫
∂ B

|uφ(t)|2ϕ2
1 dφ +

∫ T

0

∫
B

|∇uφ|
2ϕ2

1 dz dt ≤ 2
∫

∂ B
|u0,φ|

2ϕ2
1 dφ + CT R−2

0 E(u0).

Proof. With the help of inequality (A-1) in the Appendix we can bound∫
B

|∇u|
4ϕ2

1 dz ≤ Cδ

∫
BR(zi )

|∇
2u|

2ϕ2
1 dz + CδR−2

0

∫
BR(zi )

|∇u|
2 dz.

Thus, for sufficiently small δ > 0 our claim follows from Lemma 4.7. □

The next lemma again prepares for a proposition that later will allow us to obtain higher-derivative
bounds by induction. Note the differences to Lemma 4.3.

Lemma 4.9. For any k ≥ 2, with a constant C > 0 depending only on k and N, for the solution u = u(t)
to (1-3) and (1-4) for any 0 < t < T0,

d
dt

(∥∂k
φuϕk∥

2
L2(∂ B)

) + ∥∇∂k
φuϕk∥

2
L2(B)

≤ C
∑

1≤ ji ≤k
6i ji ≤2k+2

∥∥∥∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

+ C
∑

1≤ j0, ji ≤k
6i≥0 ji ≤k+1

∥∥∥∏
i>0

∇
ji u∇

j0ϕk

∥∥∥2

L2(B)
+ C R−2k

0 E(u0).
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Proof. Fix k ≥ 2. With 1|∂k
φu|

2
= 2|∇∂k

φu|
2 we compute

1
2

d
dt

(∥∂k
φuϕk∥

2
L2(∂ B)

) = (−1)k
∫

∂ B
∂k
φ(∂k

φuϕ2
k ) ·ut dφ = (−1)k+1

∫
∂ B

∂k
φ(∂k

φuϕ2
k ) · (ur −ν(u)ν(u) ·ur ) dφ

= −
1
2

∫
∂ B

∂r (|∂
k
φu|

2)ϕ2
k dφ +

∫
∂ B

∂k
φu · ∂k

φ(ν(u)ν(u) ·ur )ϕ
2
k dφ

= −

∫
B

|∇∂k
φu|

2ϕ2
k dz −

∫
B

∇(|∂k
φu|

2)ϕk∇ϕk dz + I,

where the term
∫

B ∇(|∂k
φu|

2)ϕk∇ϕk dz can be bounded as claimed. We use the decomposition

I =

∫
∂ B

∂k
φu · ∂k

φ(ν(u)ν(u) · ur )ϕ
2
k dφ =

k∑
j=0

(k
j

)
I j

with

I j = (∂k
φu · ∂

j
φ(ν(u)ν(u))ϕ2

k , ∂
k− j
φ ur )L2(∂ B) = (∇(∂k

φu · ∂
j
φ(ν(u)ν(u))ϕ2

k ), ∇∂
k− j
φ u)L2(B), 0 ≤ j ≤ k.

For 1 ≤ j ≤ k we bound

|I j | ≤ C
∑

0≤i≤ j

∥∇∂k
φuϕk∥L2(B)∥∂

j−i
φ ν(u)∂ i

φν(u)∇∂
k− j
φ uϕk∥L2(B)

+C
∑

0≤i≤ j

∥∂k
φu · ∇(∂

j−i
φ ν(u)∂ i

φν(u)ϕ2
k ) · ∇∂

k− j
φ u∥L1(B).

By the chain rule then for 1 ≤ j ≤ k we have

|I j | ≤ C
∑

1≤ ji ≤k
6i ji =k+1

∥∇∂k
φuϕk∥L2(B)

∥∥∥∏
i

∇
ji uϕk

∥∥∥
L2(B)

+C
∑

1≤ ji ≤k
6i ji =k+2

∥∥∥∂k
φu ·

∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

+ C
∑

1≤ ji ≤k
6i ji =k+1

∥∥∥∂k
φu ·

∏
i

∇
ji uϕk∇ϕk

∥∥∥
L1(B)

.

By Cauchy–Schwarz and Young’s inequalities then we can bound∑
1≤ j≤k

|I j | ≤
1
4∥∇∂k

φuϕk∥
2
L2(B)

+ C
∑

1≤ ji ≤k
6i ji =k+1

∥∥∥∏
i

∇
ji uϕk

∥∥∥2

L2(B)

+ C
∑

1≤ ji ≤k
6i ji =2k+2

∥∥∥∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

+ C∥∂k
φu∇ϕk∥

2
L2(B)

≤
1
4∥∇∂k

φuϕk∥
2
L2(B)

+ C
∑

1≤ ji ≤k
6i ji =2k+2

∥∥∥∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

+ C∥∂k
φu∇ϕk∥

2
L2(B)

,

as claimed. Finally, with
ν(u) · uφr = (distN (u))φr − ur · dν(u)uφ

as in the proof of Lemma 4.3, for j = 0 we can write

ν(u) · ∂k
φur = ∂k−1

φ (ν(u) · uφr ) + II = ∂k
φ(distN (u))r + III,
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where the terms in II and III involve products of at least two derivatives of orders between 1 and k of u.
Thus we have

I0 = (∂k
φu · ν(u)ϕ2

k , ν(u) · ∂k
φur )L2(∂ B) = (∂k

φu · ν(u)ϕ2
k , ∂

k
φ(distN (u))r )L2(∂ B) + II0

with a term II0 that can be dealt with in the same way as the terms I j , 1 ≤ j ≤ k.
Using the divergence theorem and integrating by parts we can write the leading term as

Î0 := (∂k
φu · ν(u)ϕ2

k , ∂
k
φ(distN (u))r )L2(∂ B)

= (∇(∂k
φu · ν(u)ϕ2

k ), ∇∂k
φ(distN (u)))L2(B) + (∂k

φu · ν(u)ϕ2
k , 1∂k

φ(distN (u)))L2(B)

= (∇(∂k
φu · ν(u)ϕ2

k ), ∇∂k
φ(distN (u)))L2(B) − (∂φ(∂k

φu · ν(u)ϕ2
k ), 1∂k−1

φ (distN (u)))L2(B)

to see that this term may be bounded:

| Î0| ≤ C∥(|∇∂k
φu| + |∂k

φu∇u|)ϕk + |∂k
φu∇ϕk |∥L2(B)∥∇

k+1(distN (u))ϕk∥L2(B).

But by elliptic regularity we again have

∥∇
k+1(distN (u))ϕk∥L2(B) ≤ ∥∇

k+1(distN (u)ϕk)∥L2(B) + C
∑

1≤ j≤k+1

∥∇
k+1− j (distN (u))∇ jϕk∥L2(B)

≤ C∥1(distN (u))ϕk∥H k−1(B) + C
∑

1≤ j≤k+1

∥∇
k+1− j (distN (u))∇ jϕk∥L2(B),

where from (3-5) we can bound the first term on the right:

∥1(distN (u))ϕk∥H k−1(B) ≤

∑
0≤ j<k

∥∇
j (∇u · dν(u)∇uϕk)∥L2(B) ≤ C

∑
0≤ j0<k
1≤ ji ≤k

6i≥0 ji ≤k+1

∥∥∥∏
i

∇
ji u∇

j0ϕk

∥∥∥
L2(B)

.

Moreover, using that distN (u) = 0 on ∂ B, with the help of Poincaré’s inequality we find the bound

∥ distN (u)∇k+1ϕk∥
2
L2(B)

≤ C R−2k
k ∥∇(distN (u))∥2

L2(BRk (z0))
≤ C R−2k

0 E(u).

The remaining terms for 1 ≤ j ≤ k can be estimated as

∥∇
k+1− j (distN (u))∇ jϕk∥L2(B) ≤ C

∑
1≤ ji ≤k

6i ji =k+1− j

∥∥∥∏
i

∇
ji u∇

jϕk

∥∥∥
L2(B)

via the chain rule. Thus, finally, we obtain the bound

∥∇
k+1(distN (u))ϕk∥

2
L2(B)

≤ C
∑

1≤ j0, ji ≤k
6i≥0 ji ≤k+1

∥∥∥∏
i>0

∇
ji u∇

j0ϕk

∥∥∥2

L2(B)
+ C R−2k

0 E(u0).

By Cauchy–Schwarz and Young’s inequalities thus we can bound

| Î0| ≤
1
4∥∇∂k

φuϕk∥
2
L2(B)

+ C∥∂k
φu∇uϕk∥

2
L2(B)

+ C
∑

1≤ j0, ji ≤k
6i≥0 ji ≤k+1

∥∥∥∏
i>0

∇
ji u∇

j0ϕk

∥∥∥2

L2(B)
+ C R−2k

0 E(u0),

and together with our above estimate for the terms I j , j ≥ 1, our claim follows. □
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Proposition 4.10. There exists a constant δ > 0 independent of R0 > 0 such that whenever (4-10) holds
then for any T ≤ T0 with a constant C2 = C2(T, R, u0) > 0 bounded by the terms on the right-hand side
in the statement of Proposition 4.8 there holds the estimate

sup
0<t<T

∫
∂ B

|uφφ(t)|2ϕ2
2 dφ +

∫ T

0

∫
B

|∇uφφ|
2ϕ2

2 dz dt ≤ C2

∫
∂ B

|u0,φφ|
2ϕ2

2 dφ + C2.

Proof. For k = 2, with the help of Young’s inequality we can bound

J1 =

∑
1≤ ji ≤k

6i ji ≤2k+2

∥∥∥∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

≤ C∥(|∇2u|
3
+ |∇

2u|
2
|∇u|

2
+ |∇

2u||∇u|
4
+ |∇u|

6
+ 1)ϕ2

2∥L1(B)

≤ C∥(|∇2u|
3
+ |∇u|

6
+ 1)ϕ2

2∥L1(B)

and

J2 =

∑
1≤ j0, ji ≤k

6i≥0 ji ≤k+1

∥∥∥∏
i>0

∇
ji u∇

j0ϕ2

∥∥∥2

L2(B)
≤ C∥(|∇2u|

2
+ |∇u|

4
+ 1)|∇ϕ2|

2
+ (|∇u|

2
+ 1)|∇2ϕ2|

2
∥L1(B).

Observing that ϕ1 = 1 on the support of ϕ2, by (A-2) for the first term in J1 we have

∥|∇
2u|

3ϕ2
2∥L1(B) ≤ ∥∇

2uϕ2∥
2
L4(B)

∥∇
2uϕ1∥L2(B) ≤ C∥∇

2uϕ2∥H1(B)∥∇
2uϕ2∥L2(B)∥∇

2uϕ1∥L2(B)

≤ C(∥∇3uϕ2∥L2(B) + ∥∇
2uϕ1∥L2(B))∥∇

2uϕ2∥L2(B)∥∇
2uϕ1∥L2(B).

Moreover, arguing as in (A-1) for the function |∇u|
6ϕ2

2 in place of |v|
4ϕ2, we can bound∫

B
|∇u|

6ϕ2
2 dz ≤ C

(∫
B
(|∇2u||∇u|

2ϕ2 + |∇u|
3
|∇ϕ2|) dz

)2

≤ C
(∫

B
|∇

2u|
3ϕ2

2 dz
)2/3(∫

B
|∇u|

3ϕ
1/2
2 dz

)4/3

+ C
(∫

B
|∇u|

3
|∇ϕ2| dz

)2

,

where by Hölder’s inequality we have∫
B

|∇u|
3ϕ

1/2
2 dz ≤

(∫
B

|∇u|
6ϕ2

2 dz
)1/4(∫

B
|∇u|

2ϕ2
1 dz

)3/4

,

so that with Young’s inequality we obtain∫
B

|∇u|
6ϕ2

2 dz ≤ Cδ

(∫
B

|∇
2u|

3ϕ2
2 dz

)2/3(∫
B

|∇u|
6ϕ2

2 dz
)1/3

+ C
(∫

B
|∇u|

3
|∇ϕ2| dz

)2

≤
1
2

∫
B

|∇u|
6ϕ2

2 dz + C
∫

B
|∇

2u|
3ϕ2

2 dz + C
(∫

B
|∇u|

3
|∇ϕ2| dz

)2

.

With Young’s inequality for suitable ε > 0, and using (4-9), we then can bound

J1 ≤ C∥(|∇2u|
3
+ 1)ϕ2

2∥L1(B) + C∥|∇u|
3
|∇ϕ2|∥

2
L1(B)

≤ ε∥∇3uϕ2∥
2
L2(B)

+ C(1 + ∥∇
2uϕ2∥

2
L2(B)

)∥∇2uϕ1∥
2
L2(B)

+ C∥|∇u|
3
|∇ϕ2|∥

2
L1(B)

≤
1
2∥∇∂2

φuϕ2∥
2
L2(B)

+ C(1 + ∥∇∂φuϕ2∥
2
L2(B)

)∥∇∂φuϕ1∥
2
L2(B)

+ C,
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where we also have estimated

∥|∇u|
3
|∇ϕ2|∥

2
L1(B)

≤ C∥∇uϕ1∥
4
L4(B)

∥∇uϕ1∥
2
L2(B)

≤ C(∥∇2uϕ1∥
2
L2(B)

+ E(u))∥∇uϕ1∥
4
L2(B)

≤ C∥∇∂φuϕ1∥
2
L2(B)

+ C.

Similarly, with (A-2) we have
J2 ≤ C∥∇

2uϕ1∥
2
L2(B)

+ C.

Thus, from Lemma 4.9 we obtain

d
dt

(∥∂2
φuϕ2∥

2
L2(∂ B)

) +
1
2∥∇∂2

φuϕ2∥
2
L2(B)

≤ C(1 + ∥∇∂φuϕ2∥
2
L2(B)

)∥∇∂φuϕ1∥
2
L2(B)

+ C. (4-11)

Denote by C1 = C1(T, R, u0) > 0 a constant bounded by the terms on the right-hand side in the
statement of Proposition 4.8. By elliptic regularity, using that |1(uϕ2)| ≤ 2|∇u∇ϕ2| + C we can bound

∥∇
2uϕ2∥

2
L2(B)

≤ ∥uϕ2∥
2
H2(B)

+ C∥∇u∇ϕ2∥
2
L2(B)

+ C

≤ C∥uϕ2∥
2
H2(∂ B)

+ ∥1(uϕ2)∥
2
L2(B)

+ C∥∇u∇ϕ2∥
2
L2(B)

+ C

≤ C∥∂2
φuϕ2∥

2
L2(∂ B)

+ C E(u) + C1.

From (4-11) we then obtain the differential inequality

d
dt

(1 + ∥∂2
φuϕ2∥

2
L2(∂ B)

) ≤ C1(1 + ∥∂2
φuϕ2∥

2
L2(∂ B)

)∥∇∂φuϕ1∥
2
L2(B)

+ C1;

that is,
d
dt

(log(1 + ∥∂2
φuϕ2∥

2
L2(∂ B)

)) ≤ C1∥∇∂φuϕ1∥
2
L2(B)

+ C1,

and the right-hand side is integrable in time by Proposition 4.8. The claim follows. □

We continue by induction.

Proposition 4.11. There exists a constant δ > 0 independent of R0 > 0 with the following property.
Whenever (4-10) holds, then, for any k ≥ 3, any smooth u0 ∈ H 1/2(S1

; N ), and any T ≤ T0,

sup
0<t<T

∫
∂ B

|∂k
φu(t)|2ϕ2

k dφ +

∫ T

0

∫
B

|∇∂k
φu|

2ϕ2
k dz dt ≤ Ck

∫
∂ B

|∂k
φu0|

2ϕ2
k dφ + Ck,

where we denote by Ck = Ck(T, R, u0) > 0 a constant bounded by the terms on the right-hand side in the
statement of the proposition for k − 1.

Proof. By Proposition 4.10 the claimed result holds true for k = 2. Suppose the claim holds true for some
k0 ≥ 2 and let k = k0+1. Note that by elliptic regularity, as in the proof of Proposition 4.10, we can bound

∥∇
kuϕk∥

2
L2(B)

≤ ∥uϕk∥
2
H k(B)

+ C
∑
j<k

∥∇
j u∇

k− jϕk∥
2
L2(B)

≤ C∥uϕk∥
2
H k(∂ B)

+ C∥1(uϕk)∥
2
H k−2(B)

+ C
∑
j<k

∥∇
j u∇

k− jϕk∥
2
L2(B)

≤ C∥∂k
φuϕk∥

2
L2(∂ B)

+ C
∑
j<k

∥∇
j u∇

k− jϕk∥
2
L2(B)

+ Ck .
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By the induction hypothesis and Sobolev’s embedding H 2(B) ↪→ W 1,4
∩ C0(B) for 0 ≤ t < T , we then

have the uniform bounds

∥∇
k0uϕk0∥

2
L2(B)

+ ∥∇
k0−1uϕk0∥

2
L4(B)

+

k0−2∑
j=1

∥∇
j uϕk0∥

2
L∞(B) ≤ Ck,

and it follows that

∥∇
kuϕk∥

2
L2(B)

+ ∥∇
k0uϕk∥

2
L4(B)

+ ∥∇
k0−1uϕk∥

2
L∞(B) ≤ C∥∂k

φuϕk∥
2
L2(∂ B)

+ Ck .

Again let

J1 :=

∑
1≤ ji ≤k

6i ji =2k+2

∥∥∥∏
i

∇
ji uϕ2

k

∥∥∥
L1(B)

≤ ∥(|∇ku|
2(|∇2u| + |∇u|

2) + |∇
ku||∇

k0u||∇
3u| + · · · + |∇u|

2k+2)ϕ2
k ∥L1(B)

and set

J2 =

∑
1≤ j0, ji ≤k

6i≥0 ji ≤k+1

∥∥∥∏
i>0

∇
ji u∇

j0ϕk

∥∥∥2

L2(B)
.

Suppose k0 = 2. Recalling that ϕk = ϕkϕk0 , we can bound the terms

∥|∇
3u|

2(|∇2u| + |∇u|
2)ϕ2

3∥L1(B) ≤ ∥∇
3uϕ3∥

2
L4(B)

(∥∇2uϕ2∥L2(B) + ∥∇uϕ2∥
2
L4(B)

)

≤ C3∥∇∂3
φuϕ3∥L2(B)∥∇

3uϕ3∥L2(B) + C3∥∇
3uϕ2∥

2
L2(B)

+ C3

≤ C3∥∇∂3
φuϕ3∥L2(B)(∥∂

3
φuϕ3∥L2(∂ B) + 1) + C3∥∇∂2

φuϕ2∥
2
L2(B)

+ C3

≤ ε∥∇∂3
φuϕ3∥

2
L2(B)

+ C3∥∂
3
φuϕ3∥

2
L2(∂ B)

+ C3∥∇∂2
φuϕ2∥

2
L2(B)

+ C3

and
∥|∇u|

8ϕ2
3∥L1(B) ≤ ∥∇uϕ3∥

2
L∞(B)∥∇uϕ2∥

6
L6(B)

≤ C3∥∂
3
φuϕ3∥

2
L2(∂ B)

+ C3

from the estimate of J1. Here we also have used (A-1) and (A-2) to bound

∥∇uϕ2∥
3
L6(B)

≤ ∥∇(|∇u|
3ϕ3

2)∥L1(B) ≤ C∥(|∇2u|ϕ2 + |∇u||∇ϕ2|)|∇u|
2ϕ2

2∥L1(B)

≤ C(∥∇2uϕ2∥L2(B) + ∥∇u∇ϕ2∥L2(B))∥∇uϕ2∥
2
L4(B)

≤ C(∥∇2uϕ2∥L2(B) + ∥∇u∇ϕ2∥L2(B))
2
∥∇uϕ2∥L2(B) ≤ C3.

Similarly, we can bound the remaining terms and the terms in J2 to obtain

d
dt

(∥∂3
φuϕ3∥

2
L2(∂ B)

) +
1
2∥∇∂3

φuϕ3∥
2
L2(B)

≤ C3(1 + ∥∂3
φuϕ3∥

2
L2(∂ B)

)(1 + ∥∇∂2
φuϕ2∥

2
L2(B)

) + C3

from Lemma 4.9 and then

d
dt

(log(1 + ∥∂3
φuϕ2∥

2
L2(∂ B)

)) ≤ C3(1 + ∥∇∂2
φuϕ2∥

2
L2(B)

),

where the right-hand side is integrable in time by Proposition 4.10. The claim for k = 3 thus follows.
For k ≥ 4 the analysis is similar (but simpler) and may be left to the reader. □
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5. Local existence

In order to show local existence we approximate the flow equation (1-3) by the equation

ut = −(ε + dπN (u))ur on ∂ B, (5-1)

where ε > 0 and where we smoothly extend the nearest-neighbor projection πN , originally defined only
in the ρ-neighborhood Nρ of N, to the whole ambient Rn. Our aim then is to show that for given smooth
initial data u0 the evolution problem (5-1), (1-4) admits a smooth solution uε which remains uniformly
smoothly bounded on a uniform time interval as ε ↓ 0. Fixing some 0 < ε < 1

2 , we show existence for the
problem (5-1) with data (1-4) by means of a fixed-point argument.

To set up the argument, fix smooth initial data u0 : S1
→ N with harmonic extension u0 ∈ C∞(B; Rn)

and some k ≥ 2. For suitable T > 0 to be determined let

X = L∞([0, T ]; H k+1(B; Rn)) ∩ H 1(S1
× [0, T ]; Rn)

and set

V =

{
v ∈ X : v(0) = u0, 1v(t) = 0 in B for 0 ≤ t ≤ T,

∥v∥
2
X = sup

0≤t≤T
∥v(t)∥2

H k+1(B)
+

∫ T

0

∫
S1

|vt |
2 dφ dt ≤ 4R2

0

}
,

where R0 = ∥u0∥H k+1(B). We endow the space V with the metric derived from the seminorm

|v|
2
X = sup

0≤t≤T
∥∇v(t)∥2

L2(B)
+

∫ T

0

∫
S1

|vt |
2 dφ dt.

Note that this metric is positive definite on V in view of the initial condition that we impose.

Lemma 5.1. V is a complete metric space.

Proof. Let (vm)m∈N ⊂ V with |vl − vm |X → 0 (l, m → ∞). By the theorem of Banach–Alaoglu a
subsequence vm ⇁ v weakly-∗ in L∞([0, T ]; H k+1(B)) with vm,t → vt weakly in L2([0, T ] × S1), and
by weak lower semicontinuity of the norm

∥v∥
2
X ≤ lim sup

m→∞

∥vm∥
2
X ≤ 4R2

0 .

Moreover, we have 1v(t) = 0 for all 0 ≤ t ≤ T and v(0) = u0 by compactness of the trace operator
H 1(S1

× [0, T ]) ∋ u 7→ u(0) ∈ L2(S1). Hence v ∈ V .
Moreover, we have

|vl − v|X ≤ lim sup
m→∞

|vl − vm |X → 0 as l → ∞. □

Lemma 5.2. There is T2 > 0 such that for any T ≤ T2 and any v ∈ V there is a solution u = 8(v) ∈ V of
the equation

ut = −(ε + dπN (v))ur on ∂ B × [0, T2[ (5-2)

satisfying (1-4).



1422 MICHAEL STRUWE

Proof. For v ∈ V we construct a solution u = 8(v) ∈ X of (5-2) via Galerkin approximation. For this let
(ϕl)l∈N0 be Steklov eigenfunctions of the Laplacian, satisfying

1ϕl = 0 in B

with boundary condition
∂rϕl = λlϕl on ∂ B, l ∈ N0.

Note that the Steklov eigenvalues are given by λ0 = 0 and λ2l−1 = λ2l = l, l ∈ N. In fact, we may choose
ϕ0 ≡ 1/

√
2π and

ϕ2l−1(reiθ ) =
1

√
π

r l sin(lθ), ϕ2l(reiθ ) =
1

√
π

r l cos(lθ), l ∈ N (5-3)

to obtain an orthonormal basis for L2(S1) consisting of these functions. Given m ∈ N then let

u(m)(t, z) =

m∑
l=0

a(m)
l (t)ϕl(z)

solve the system of equations

∂t a
(m)
l = (ϕl, u(m)

t )L2(S1) = −(ϕl, (ε + dπN (v))u(m)
r )L2(S1)

= −

m∑
j=0

a(m)
j λ j (ϕl, (ε + dπN (v))ϕ j )L2(S1), 0 ≤ l ≤ m. (5-4)

Since for any m ∈ N the coefficients λ j (ϕl, (ε + dπN (v))ϕ j )L2(S1) of this system are uniformly bounded
for any v ∈ V , for any m ∈ N there exists a unique solution a(m)

= (a(m)
l )0≤l≤m of (5-4) on [0, T ] with

initial data a(m)
l (0) = al0 = (u0, ϕl)L2(S1), 0 ≤ l ≤ m.

Note that for any m ∈ N and any j ∈ N0 we have

∂
2 j
φ (ru(m)

r ) ∈ span{ϕl : 0 ≤ l ≤ m},

and the function ∂
2 j
φ u(m) is harmonic. In particular, for j = 0 we obtain

1
2

d
dt

(∥∇u(m)
∥

2
L2(B)

) =

∫
B

∇u(m)
∇u(m)

t dz = (u(m)
r , u(m)

t )L2(S1) = −(u(m)
r , (ε + dπN (v))u(m)

r )L2(S1)

= −ε∥u(m)
r ∥

2
L2(S1)

− ∥dπN (v)u(m)
r ∥

2
L2(S1)

≤ −
1
2∥u(m)

t ∥
2
L2(S1)

≤ 0, (5-5)

and we find the uniform H 1-bound

sup
t≥0

∥∇u(m)(t)∥2
L2(B)

+ ε∥u(m)
r ∥

2
L2([0,∞[×S1)

+ ∥u(m)
t ∥

2
L2([0,∞[×S1)

≤ 2∥∇u(m)(0)∥2
L2(B)

≤ 2∥∇u0∥
2
L2(B)

≤ 2R2
0 . (5-6)

Moreover, for j = k ∈ N as in the definition of X, upon integrating by parts we find

1
2

d
dt

(∥∇∂k
φu(m)

∥
2
L2(B)

) = (−1)k
∫

B
∇∂2k

φ u(m)
∇u(m)

t dz = (−1)k(∂2k
φ u(m)

r , u(m)
t )L2(S1)

= (−1)k+1(∂2k
φ u(m)

r , (ε + dπN (v))u(m)
r )L2(S1)

= −ε∥∂k
φu(m)

r ∥
2
L2(S1)

− ∥dπN (v)∂k
φu(m)

r ∥
2
L2(S1)

+ I, (5-7)
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where I =
∑k

j=1
(k

j

)
I j with

I j = −(∂k
φu(m)

r , ∂
j
φ(dπN (v))∂

k− j
φ u(m)

r )L2(S1)

similar to the proof of Lemma 4.3. However, now we simply bound

|I j | ≤ C
∑

6i ji = j

∥∂k
φu(m)

r ∥L2(S1)

∥∥∥∏
i

∂
ji
φ v∂

k− j
φ u(m)

r

∥∥∥
L2(S1)

, 1 ≤ j ≤ k.

Note that by compactness of Sobolev’s embedding H 1(S1) ↪→ L∞(S1) and Ehrlich’s lemma for any
number 1 ≤ j ≤ k, any δ > 0 we can bound

∥∂
k− j
φ u(m)

r ∥L∞(S1) ≤ δ∥∂
k− j+1
φ u(m)

r ∥L2(S1) + C(δ)∥∂
k− j
φ u(m)

r ∥L2(S1)

≤ 2δ∥∂k
φu(m)

r ∥L2(S1) + C(δ)∥u(m)
r ∥L2(S1).

On the other hand, for any v ∈ V by the trace theorem we have

∥∂k
φv∥L2(S1) ≤ C∥∂k

φv∥H1(B) ≤ C∥v∥H k+1(B) ≤ C R0,

and we therefore also can bound

∥∂
j
φv∥L∞(S1) ≤ C∥∂k

φv∥L2(S1) + ∥∂
j
φv∥L2(S1) ≤ C∥v∥H k+1(B) ≤ C R0

for any 1 ≤ j < k.
Thus, for sufficiently small δ > 0 with a constant C > 0 depending on ε > 0 and R0,

|I | ≤
1
2ε∥∂k

φu(m)
r ∥

2
L2(S1)

+ C∥u(m)
r ∥

2
L2(S1)

,

and from (5-7) with the help of (3-7) we obtain the inequality

d
dt

(∥∇∂k
φu(m)

∥
2
L2(B)

) ≤ C∥u(m)
r ∥

2
L2(S1)

= C∥u(m)
φ ∥

2
L2(S1)

≤ C∥u(m)
φ ∥

2
H1(B)

≤ C∥∇∂k
φu(m)

∥
2
L2(B)

+ C∥∇u(m)
∥

2
L2(B)

≤ C(1 + ∥∇∂k
φu(m)

∥
2
L2(B)

),

where we recall (5-6) for the last conclusion.
It follows that for suitably small T > 0 there holds ∥u(m)

∥
2
X ≤ 4R2

0 for all m ∈ N. Thus, there is
a sequence m → ∞ such that u(m) ⇁ u weakly-∗ in L∞([0, T ]; H k+1(B)) with u(m)

t ⇁ ut weakly in
L2([0, T ] × S1), where u =: 8(v) ∈ V solves (5-2). □

Lemma 5.3. There is T > 0 such that, for v1, v2 ∈ V ,

|8(v1) − 8(v2)|X ≤
1
2 |v1 − v2|X .

Proof. Let T2 > 0 be as determined in Lemma 5.2 and fix some 0 < T ≤ T2. For v1, v2 ∈ V then we have
ui =: 8(vi ) ∈ V , i = 1, 2. Set w = u1 − u2 and v = v1 − v2, and compute

wt = −(ε + dπN (v1))wr − (dπN (v1) − dπN (v2))u2,r on ∂ B = S1. (5-8)
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Multiplying with wr and integrating we obtain

1
2

d
dt

(∥∇w∥
2
L2(B)

) =

∫
B

∇w∇wt dx = (wr , wt)L2(S1)

= −ε∥wr∥
2
L2(S1)

− ∥dπN (v1)wr∥
2
L2(S1)

− (wr , (dπN (v1) − dπN (v2))u2,r )L2(S1),

where with ∥u2,r∥L∞(S1) ≤ C∥u2∥H3(B) ≤ C R0 we can bound

|(wr , (dπN (v1) − dπN (v2))u2,r )L2(S1)| ≤ C∥wr∥L2(S1)∥v∥L2(S1)∥u2,r∥L∞(S1)

≤ C∥wr∥L2(S1)∥v∥L2(S1) ≤
1
2ε∥wr∥

2
L2(S1)

+ C(ε)∥v∥
2
L2(S1)

.

Thus, with a constant C = C(ε) > 0 we find

d
dt

∥∇w∥
2
L2(B)

+ ε∥wr∥
2
L2(S1)

≤ C∥v∥
2
L2(S1)

. (5-9)

Similarly, from (5-8) we can bound

∥wt∥
2
L2(S1)

≤ C∥wr∥
2
L2(S1)

+ C∥v∥
2
L2(S1)

. (5-10)

Integrating over 0 ≤ t ≤ T and observing that we have

sup
0≤t≤T

∥v(t)∥2
L2(S1)

≤

(∫ T

0
∥vt(t)∥L2(S1) dt

)2

≤ T
∫ T

0
∥vt(t)∥2

L2(S1)
dt,

from (5-9) we first obtain

sup
0≤t≤T

∥∇w(t)∥2
L2(B)

+ ε∥wr∥
2
L2([0,T ]×S1)

≤ CT sup
0≤t≤T

∥v(t)∥2
L2(S1)

≤ CT 2
|v|

2
X ,

which we may use together with (5-10) to bound

|w|
2
X = sup

0≤t≤T
∥∇w(t)∥2

L2(B)
+ ∥wt∥

2
L2([0,T ]×S1)

≤ CT 2
|v|

2
X .

For sufficiently small T > 0 then our claim follows. □

Thus, by Banach’s fixed-point theorem, for any ε > 0 and any smooth u0 ∈ H 1/2(S1
; N ), there

exists T > 0 and a solution u = u(t) ∈ V of the initial value problem (5-1), (1-4). We now show that the
number T > 0 may be chosen uniformly as ε ↓ 0. Indeed, we have the following result.

Lemma 5.4. There exists a constant C > 0 such that, for any k ≥ 2, any smooth u0 ∈ H 1/2(S1
; N ), and

any 0 < ε ≤
1
2 for the solution u to (5-1) with u(0) = u0,

d
dt

(∥∇∂k
φu∥

2
L2(B)

) ≤ C(1 + ∥∇u∥
2
L2(B)

+ ∥∇∂k
φu∥L2(B)k+3.

Proof. Similar to the proof of Lemma 5.2, for given 2 ≤ k ∈ N we compute

1
2

d
dt

(∥∇∂k
φu∥

2
L2(B)

) = (−1)k
∫

B
∇∂2k

φ u∇ut dx = (−1)k(∂2k
φ ur , ut)L2(S1)

= (−1)k+1(∂2k
φ ur , (ε + dπN (u))ur )L2(S1)

≤ −∥dπN (u)∂k
φur∥

2
L2(S1)

− I, (5-11)
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where we now drop the term ε∥∂k
φur∥

2
L2(S1)

from (5-7). Again we use the decomposition I =
∑k

j=1
(k

j

)
I j

with

I j = (∂k
φur , ∂

j
φ(dπN (u))∂

k− j
φ ur )L2(S1) = (∇∂k

φu, ∇(∂
j
φ(dπN (u))∂

k− j
φ ur ))L2(B),

but now we bound these terms as in the proof of Lemma 4.3 via

|I j | ≤ C∥∇∂k
φu∥L2(B)(∥∇∂

j
φ(dπN (u))∂

k− j
φ ur∥L2(B) + ∥∂

j
φ(dπN (u))∇∂

k− j
φ ur∥L2(B))

≤ C
∑

1≤ ji ≤k+1
6i ji =k+2

∥∇∂k
φu∥L2(B)

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

.

Using that for any k ≥ 2 by Sobolev’s embedding H 2(B) ↪→ W 1,4
∩ C0(B) we can bound∑

1≤ ji ≤k+1
6i ji =k+2

∥∥∥∏
i

∇
ji u

∥∥∥
L2(B)

≤ C(1 + ∥∇u∥L2(B) + ∥∇
k+1u∥L2(B))

k+2

and also using (4-3), we obtain the claim. □

We now are able to conclude.

Proposition 5.5. For any k ≥ 2 and any smooth u0 ∈ H 1/2(S1
; N ) there exist T > 0 and a solution u ∈ V

to (1-3) on [0, T ] with initial data u(0) = u0.

Proof. In view of Lemma 5.4, there exists a uniform number T > 0 such that, with V as defined above,
for any 0 < ε ≤

1
2 there exists a solution uε ∈ V to (5-1) on [0, T ]. By definition of V , as ε ↓ 0 suitably,

we have uε → u weakly-∗ in L∞([0, T ]; H k+1(B)) ∩ H 1(S1
× [0, T ]). But this suffices to pass to the

limit ε ↓ 0 in (5-1), and u ∈ V solves (1-3) with u(0) = u0. □

Proof of Theorem 1.1(i). By Proposition 5.5 for any smooth u0 ∈ H 1/2(S1
; N ) and any k ≥ 2 there exists

T > 0 and a solution u ∈ V of (1-3), (1-4) for 0 < t < T . Alternatingly employing Propositions 4.11
and 4.6, we then obtain smoothness of u for 0 < t ≤ T , including the final time T . (This argument later
appears in more detail in Section 6 after Lemma 6.2.) Iterating, the solution u may be extended smoothly
until some maximal time T0 where condition (4-4) ceases to hold. Uniqueness (even within a much larger
class of competing functions) is established in Section 7. □

6. Weak solutions

Given u0 ∈ H 1/2(S1
; N ), there are smooth functions u0k ∈ H 1/2(S1

; N ) with u0k → u0 in H 1(B) as
k → ∞. Indeed, similar to an argument of Schoen and Uhlenbeck [1982, Theorem 3.1], with a standard
mollifying sequence (ρk)k∈N for the mollified functions v0k := u0 ∗ρk we have distN (v0k) → 0 uniformly,
and u0k := πN (v0k) → u0 ∈ H 1/2(S1

; N ) as k → ∞.
Let uk be the corresponding solutions of (1-4) with initial data uk(0) = u0k , defined on a maximal

time interval [0, Tk[, k ∈ N. We claim that each function uk can be smoothly extended to a uniform time
interval [0, T [ for some T > 0. To see this, we first establish the following nonconcentration result.
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Lemma 6.1. For any δ > 0 there exists a number R > 0 and a time T0 > 0 such that

sup
z0∈B

0<t<T0

∫
BR(z0)∩B

|∇uk(t)|2 dz < δ for all k ∈ N.

Proof. Given δ > 0, by absolute continuity of the Lebesgue integral and H 1-convergence u0k → u0

(k → ∞) we can find R > 0 such that

sup
z0∈B

∫
B2R(z0)∩B

|∇u0k |
2 dz < δ for all k ∈ N.

Choosing T0 = δR, by Lemma 2.2 then we have

sup
z0∈B

0<t<T0

∫
BR(z0)∩B

|∇uk(t)|2 dz < 4δ + CδE(uk0) < Lδ

with a uniform constant L > 0 for all k ∈ N. The claim follows if we replace δ with δ/L . □

In view of Proposition 3.4, from Lemmas 6.1 and 2.1 we obtain the following bound for uk in H 1(S1).

Lemma 6.2. There exist a time T0 > 0 and constants C > 0, C0 = C0(E(u0)) > 0 such that∫ T0

0

∫
S1

|∂φuk(t)|2 dφ dt ≤ C E(uk0) ≤ C0 for all k ∈ N.

From Lemma 6.2 we obtain locally in time uniform smooth bounds for (uk) for t > 0 by iteratively
applying our previous regularity results. More precisely, Fatou’s lemma and Lemma 6.2 first yield the
bound ∫ T0

0
lim inf
k→∞

(∫
S1

|∂φuk(t)|2 dφ

)
dt ≤ C0.

Thus, for almost every 0 < t0 < T0,

lim inf
k→∞

∫
S1

|∂φuk(t0)|2 dφ < ∞.

For any such 0 < t0 < T0, if δ > 0 is sufficiently small, from Proposition 4.2 with another appeal to
Fatou’s lemma we may conclude∫ T0

t0
lim inf
k→∞

∫
B

|∇∂φuk |
2 dz dt ≤ lim inf

k→∞

∫ T0

t0

∫
B

|∇∂φuk |
2 dz dt ≤ C1

for some C1 > 0, so that now we even have

lim inf
k→∞

∫
B

|∇∂φuk(t1)|2 dz < ∞

for almost every t0 < t1 < T0. Hence we may next invoke Proposition 4.4 and (4-2) to obtain the bound

lim inf
k→∞

∫ T0

t1

∫
∂ B

|∇∂φuk |
2 dz dt < ∞
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for any such t0 < t1 < T0, and Fatou’s lemma gives

lim inf
k→∞

∫
∂ B

|∇∂φuk(t2)|2 dφ < ∞

for almost every t1 < t2 < T0. Now Proposition 4.10 may be applied with ϕ0 = 1, and we obtain

lim inf
k→∞

∫ T0

t2

∫
B

|∇∂2
φuk |

2 dz dt < ∞

for any such t1 < t2 < T0. Another application of Fatou’s lemma gives

lim inf
k→∞

∫
B

|∇∂2
φuk(t3)|2 dz < ∞

for almost every t2 < t3 < T0, and Proposition 4.5 yields

lim inf
k→∞

∫ T0

t3

∫
∂ B

|∇∂2
φuk |

2 dφ dt < ∞

for any such t2 < t3 < T0. We may then iterate, using (3-7) and alternatingly employing Propositions 4.11
and 4.6 for 3 ≤ k ∈ N, to find a subsequence (uk) satisfying uniform smooth bounds on ]t0, T0] for any
t0 > 0. Passing to the limit as k → ∞ for this subsequence we obtain a weak solution to (1-3), (1-4) of
energy-class in the following sense.

Definition 6.3. A function u ∈ H 1([0, T0]× S1
; N )∩ L∞([0, T0]; H 1/2(S1

; N )) with harmonic extension
u = u(t) for each t is a weak solution of (1-3), (1-4) of energy-class, if (1-3) is satisfied in the weak sense,
that is, if∫ T0

0

∫
∂ B

(ut + dπN (u)ur ) · ϕ dφ dt =

∫ T0

0

∫
∂ B

ut · ϕ dφ dt +

∫ T0

0

∫
B

∇u · ∇(dπN (u)ϕ) dz dt = 0 (6-1)

for all ϕ ∈ C∞
c (B × ]0, T0[), and if there holds the energy inequality

E(u(T )) +

∫ T

S

∫
∂ B

|ut |
2 dφ dt ≤ E(u(S)) (6-2)

for any 0 ≤ S < T < T0, with the initial data u0 ∈ H 1/2(S1
; N ) being attained in the sense of traces.

We then may summarize our results as follows.

Proposition 6.4. For any u0 ∈ H 1/2(S1
; N ) there exists T0 > 0 and a weak solution u to (1-3), (1-4) on

[0, T0] of energy-class, which is smooth for t > 0.

Proof. For any open U ⊂]0, T0[ we have uniform smooth bounds for uk on U ; thus a suitable subsequence
uk approaches u smoothly locally as k → ∞. Equation (6-1) follows from the corresponding identities
for uk .

Moreover, (6-2) follows from the energy identity, Lemma 2.1, for uk , where we also use H 1-convergence
u0k → u0 as well as weak lower semicontinuity of the energy and of the L2-norm.
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Finally, with error o(1) → 0 as k → ∞ for 0 < t < T0 we can estimate

∥u(t) − u0∥
2
L2(∂ B)

≤ ∥uk(t) − u0k∥
2
L2(∂ B)

+ o(1) ≤

(∫ t

0
∥∂t uk(t ′)∥L2(∂ B) dt ′

)2

+ o(1)

≤ t
∫ t

0
∥∂t uk(t ′)∥2

L2(∂ B)
dt ′

+ o(1) ≤ t E(u0) + o(1),

and u(t) → u0 weakly in H 1/2(S1
; N ) ∩ H 1(B; Rn) as t ↓ 0. In fact, by (6-2) we then even have strong

convergence. □

7. Uniqueness

With the help of the tools developed in Section 3 we can show uniqueness of partially regular weak
energy-class solutions as in Proposition 6.4.

Theorem 7.1. Let u0 ∈ H 1/2(S1
; N ). Suppose u and v both are weak energy-class solutions of (1-3), (1-4)

on [0, T0] for some T0 > 0 with initial data u0, and suppose u and v are smooth for t > 0. Then u = v.

Proof. Using (3-2) for u and v, for the function w = u − v for almost every 0 < t < T0 we have

∂tw + ∂rw = ν(u)∂r (distN (u)) − ν(v)∂r (distN (v))

= (ν(u) − ν(v))∂r (distN (u)) + ν(v)∂r (distN (u) − distN (v)) (7-1)

on ∂ B = S1. From (3-5), moreover, we obtain

|1(distN (u) − distN (v))| = |∇u · dν(u)∇u − ∇v · dν(v)∇v|

≤ C(|w||∇u|
2
+ (|∇u| + |∇v|)|∇w|) in B. (7-2)

Observing that

| distN (u) − distN (v)| ≤ C |w|,

upon multiplying (7-2) with the function (distN (u) − distN (v)) ∈ H 1
0 (B), integrating by parts, and using

Young’s inequality, for any ε > 0 we obtain

∥∇(distN (u) − distN (v))∥2
L2(B)

≤ C
∫

B
(|w|

2
|∇u|

2
+ (|∇u| + |∇v|)|∇w||w|) dz

≤ ε∥∇w∥
2
L2(B)

+ C(ε)∥w∥
2
L4(B)

(∥∇u∥
2
L4(B)

+ ∥∇v∥
2
L4(B)

). (7-3)

On the other hand, for any 0 < t0 < T ≤ T0, multiplying (7-1) with w and integrating by parts on
S1

× [t0, T ], upon letting t0 ↓ 0 we find

sup
0<t<T

∥w(t)∥2
L2(∂ B)

+

∫ T

0

∫
B

|∇w|
2 dz dt

≤ C
∫ T

0

∫
∂ B

(∂tw + ∂rw)w dφ dt

= C
∫ T

0

∫
∂ B

w(ν(u) − ν(v))∂r (distN (u)) dφ dt + C
∫ T

0

∫
∂ B

wν(v)∂r (distN (u) − distN (v)) dφ dt

=: C
∫ T

0
(I + II ) dt.
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We first estimate the term

I = I (t) =

∫
∂ B

w(ν(u) − ν(v))∂r (distN (u)) dφ

=

∫
B

∇(w(ν(u) − ν(v)))∇(distN (u)) dz +

∫
B

w(ν(u) − ν(v))1(distN (u)) dz.

Using
|∇(w(ν(u) − ν(v)))| ≤ C |∇w||w| + |w((dν(u) − dν(v))∇u + dν(v)∇w)|

≤ C(|∇w||w| + |w|
2
|∇u|)

we can bound∣∣∣∣∫
B

∇(w(ν(u) − ν(v)))∇(distN (u)) dz
∣∣∣∣ ≤ C

∫
B
(|∇w||w| + |w|

2
|∇u|)|∇u| dz

≤ ε∥∇w∥
2
L2(B)

+ C(ε)∥w∥
2
L4(B)

∥∇u∥
2
L4(B)

for each t . Also using (3-5), we can moreover estimate∣∣∣∣∫
B

w(ν(u) − ν(v))1(distN (u)) dz
∣∣∣∣ ≤ C∥w∥

2
L4(B)

∥∇u∥
2
L4(B)

for almost every 0 < t < T to obtain

|I | ≤ ε∥∇w∥
2
L2(B)

+ C(ε)∥w∥
2
L4(B)

∥∇u∥
2
L4(B)

.

Similarly, we estimate the term

II = II (t) =

∫
∂ B

wν(v)∂r (distN (u) − distN (v)) dφ

=

∫
B

∇(wν(v))∇(distN (u) − distN (v)) dz +

∫
B

wν(v)1(distN (u) − distN (v)) dz.

Noting that with (7-3) we can bound∣∣∣∣∫
B
∇(wν(v))∇(distN (u)−distN (v))dz

∣∣∣∣ ≤ C(∥∇w∥L2(B)+∥w∇v∥L2(B))∥∇(distN (u)−distN (v))∥L2(B)

≤ ε∥∇w∥
2
L2(B)

+C(ε)∥w∥
2
L4(B)

(∥∇u∥
2
L4(B)

+∥∇v∥
2
L4(B)

)

and that with (7-2) we have∣∣∣∣∫
B

wν(v)1(distN (u) − distN (v)) dz
∣∣∣∣ ≤ C

∫
B
(|w|

2
|∇u|

2
+ |w||∇w|(|∇u| + |∇v|)) dz

≤ ε∥∇w∥
2
L2(B)

+ C(ε)∥w∥
2
L4(B)

(∥∇u∥
2
L4(B)

+ ∥∇v∥
2
L4(B)

),

we find the estimate

|II | ≤ ε∥∇w∥
2
L2(B)

+ C(ε)∥w∥
2
L4(B)

(∥∇u∥
2
L4(B)

+ ∥∇v∥
2
L4(B)

)

for almost every 0 < t < T .
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But Sobolev’s embedding H 1/2(B) ↪→ L4(B) and Fourier expansion give the bound

∥w∥
2
L4(B)

≤ C∥w∥
2
H1/2(B)

≤ C∥w∥
2
L2(∂ B)

and similar bounds for ∇u as well as ∇v. Moreover, since by the energy inequality (6-2) we have
u(t), v(t) → u0 strongly in H 1(B) as t ↓ 0, there exist a radius 0 < R ≤

1
2 and a time 0 < T < T0 such

that condition (3-13) in Proposition 3.4 holds true on [0, T ] for both u and v, allowing us to bound∫ T

0
∥∇u(t)∥2

L4(B)
dt ≤ C

∫ T

0
∥∇u(t)∥2

L2(∂ B)
dt ≤ C

∫ T

0
∥∂φu(t)∥2

L2(∂ B)
dt

≤ C
∫ T

0

∫
∂ B

|ut |
2 dφ dt + C(R)T E(u0) ≤ C(R)(1 + T0)E(u0)

with the help of (3-7), and similarly for |∇v|. Choosing ε =
1
4 , for sufficiently small 0 < T < T0 by

absolute continuity of the integral we thus can estimate

sup
0<t<T

∥w(t)∥2
L2(∂ B)

+

∫ T

0

∫
B

|∇w|
2 dz dt

≤
1
2∥∇w∥

2
L2(B×[0,T ])

+ C sup
0<t<T

∥w(t)∥2
L2(∂ B)

∫ T

0
(∥∇u∥

2
L4(B)

+ ∥∇v∥
2
L4(B)

) dt

≤
1
2

(
sup

0<t<T
∥w(t)∥2

L2(∂ B)
+

∫ T

0

∫
B

|∇w|
2 dz dt

)
,

and it follows that w = 0, as claimed. □

Proof of Theorem 1.2. Existence for short time and uniqueness of a partially regular weak solution to
(1-3), (1-4) for given data u0 ∈ H 1/2(S1

; N ) follow from Proposition 6.4 and Theorem 7.1, respectively.
Since by Proposition 6.4 our weak solution is smooth for t > 0, the remaining assertions follow from
Theorem 1.1.

Note that at any blow-up time Ti−1, i ≥ 1, of the flow as in Theorem 1.1(ii) there exists a unique weak
limit ui = limt↑Ti−1 u(t) ∈ H 1/2(S1

; N ), and we may uniquely continue the flow using Proposition 6.4. □

8. Blow-up

Preparing for the proof of part (ii) of Theorem 1.1, suppose now that for the solution constructed in
part (i) of that theorem there holds T0 < ∞. Then, as we shall see in more detail below, by the results in
Section 4 condition (4-4) must be violated for T = T0 and there exist δ > 0 and points zk ∈ B as well as
radii rk ↓ 0 as k → ∞ such that, for suitable tk ↑ T0,∫

Brk (zk)∩B
|∇u(tk)|2 dz = sup

z0∈B
t≤tk

∫
Brk (z0)∩B

|∇u(t)|2 dz = δ.

We may later choose a smaller constant δ > 0, if necessary. Moreover, for later use from now on we
consider local concentrations in the sense that, for some z0 ∈ B and some fixed radius r0 > 0 for a
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sequence of points zk ∈ B with zk → z0 and radii rk ↓ 0 for suitable tk ↑ T0 as k → ∞,∫
Brk (zk)∩B

|∇u(tk)|2 dz = sup
z′

∈Br0 (z0)
t≤tk

∫
Brk (z′)∩B

|∇u(t)|2 dz = δ.

Scale
uk(z, t) = u(zk + rkz, tk + rk t)

for
z ∈ �k = {z : zk + rkz ∈ B}, t ∈ Ik = {t : 0 ≤ tk + trk < T0}.

Note that then ∫
B1(0)∩�k

|∇uk(0)|2 dz = sup
zk+rk z′

∈Br0 (z0)

−tk/rk≤t<0

∫
B1(z′)∩�k

|∇uk(t)|2 dz = δ. (8-1)

Passing to a subsequence we may assume that the domains �k exhaust a limit domain �∞ ⊂ R2, which
either is the whole space R2 or a half-space H.

By the energy inequality Lemma 2.1 for t ∈ Ik ,∫
�k

|∇uk(t)|2 dz =

∫
B

|∇u(tk + rk t)|2 dz ≤ 2E(u0), (8-2)

and for any t0 < 0 and sufficiently large k ∈ N we have∫ 0

t0

∫
∂�k

|∂t uk |
2 ds dt =

∫ 0

t0

∫
∂�k

|dπN (uk)∂νk uk |
2 ds dt

=

∫ tk

tk+rk t0

∫
∂ B

|ut |
2 dφ dt ≤

∫ T0

tk+rk t0

∫
∂ B

|ut |
2 dφ dt → 0 (8-3)

as k → ∞, where ds is the element of length and where νk is the outward unit normal along ∂�k .
Expressing the harmonic functions ∂t uk(t) in Fourier series for each t < 0, it then also follows that
∂t uk → 0 locally in L2 on �∞ ×]−∞, 0[. Finally, again using the fact that uk(t) for each t is harmonic,
by the maximum principle we have the uniform bound |uk | ≤ supp∈N |p| as well as uniform smooth
bounds locally away from the boundary of �∞.

Hence we may assume that as k → ∞ we have uk → u∞ weakly locally in H 1 on �∞ × ]−∞, 0[,
where u∞(z, t) = u∞(z) is independent of time, harmonic, and bounded. Moreover, we have smooth
convergence away from ∂�∞. Thus, if we assume that �∞ = R2, by (8-1) it follows that∫

B1(0)

|∇u∞|
2 dz = δ.

But any function v : R2
→ R which is bounded and harmonic must be constant, which rules out this

possibility. Hence �∞ can only be a half-space.
After a suitable rotation of the domain B and shift of coordinates in R2 ∼= C we may then assume that

zk = (0, −yk) with 1 − yk ≤ Mrk for some M ∈ N and that �∞ = {(x, y) : y > y0} for some y0. Finally,
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replacing rk > 0 with (M + 1)rk and zk with zk = (0, −1), if necessary, we may assume that

�k ⊂ R2
+

= {(x, y) : y > 0}

is the ball of radius 1/rk around the point (0, 1/rk) with 0 ∈ ∂�k , while from (8-1) with a uniform number
L ∈ N we have

L
∫

B1(0)∩�k

|∇uk(0)|2 dz ≥ Lδ ≥ sup
|z′

|≤r0/rk
−tk/rk≤t<0

∫
B1(z′)∩�k

|∇uk(t)|2 dz (8-4)

for any k ∈ N. Let 8k : R2
+

→ �k be the conformal maps given by

8k(z) =
2z

1 − irkz
, z ∈ R2

+
, k ∈ N,

with 8k → 2 · id locally uniformly on R2 ∼= C as k → ∞.
Let vk = uk ◦ 8k with k ∈ N. By conformal invariance of the Dirichlet energy, from (8-2) for any t

we have ∫
R2

+

|∇vk(t)|2 dz =

∫
�k

|∇uk(t)|2 dz ≤ 2E(u0), (8-5)

and by (8-4) with a uniform number L1 ∈ N there holds

L1

∫
B+

2 (0)

|∇vk(0)|2 dz ≥ L1δ ≥ sup
|z′

|≤r0/rk
−tk/rk≤t<0

∫
B+

1 (z′)

|∇vk(t)|2 dz, (8-6)

where

B+

r (z) = Br (z) ∩ R2
+

for any r > 0 and any z = (x, y) ∈ R2. Moreover, from (8-3) for any t0 < 0 and any R > 0 for the integral
over ]−R, R[ × {0} ⊂ ∂R2

+
we obtain∫ 0

t0

∫ R

−R
|∂tvk |

2 dx dt ≤ C
∫ 0

t0

∫ R

−R
|dπN (vk)∂yvk |

2 dx dt → 0 as k → ∞, (8-7)

and ∂tvk → 0 locally in L2 on R2
+

×]−∞, 0[. In addition, from our choice of (uk) it follows that vk → v∞

weakly locally in H 1 on R2
+

×]−∞, 0[ as k → ∞, where v∞(z, t) =: w∞(z) is harmonic and bounded.
For a suitable sequence of times t0 < sk < 0, we also have locally weak convergence wk := vk(sk)→w∞

in H 1 on R2
+

and, in addition,

dπN (wk)∂ywk → 0 in L2
loc(∂R2

+
) as k → ∞. (8-8)

Thus, for sufficiently small δ > 0, by Proposition 3.3 applied to the functions wk ◦9, where 9 : B → R2
+

is a suitable conformal map, we also have uniform local L2-bounds for ∂xwk on ∂R2
+

, and we may assume
that wk → w∞ locally uniformly and weakly locally in H 1 on ∂R2

+
as k → ∞. Since wk is harmonic,

we then also have locally strong H 1-convergence wk → w∞ on R2
+

.
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To see that w∞ is nonconstant, let ϕk = ϕz0,4rk , k ∈ N. Integrating the identity (2-1) from the proof of
Lemma 2.2 in time, with error o(1) → 0 and suitable numbers εk ↓ 0 as k → ∞ in view of (8-3), we find

1
2

∣∣∣∣∫
B
|∇u(tk)|2ϕ2

k dz −

∫
B
|∇u(tk + rksk)|

2ϕ2
k dz

∣∣∣∣
≤

∫ tk

tk+rksk

∫
∂ B

|ut |
2ϕ2

k dφ dt + 2
∫ tk

tk+rksk

∫
B

|ut∇uϕk∇ϕk | dz dt

≤ o(1) + 8εkrk

∫ tk

tk+rksk

∫
B

|∇u|
2
|∇ϕk |

2 dz dt + (8εkrk)
−1

∫ tk

tk+rksk

∫
B

|ut |
2ϕ2

k dz dt. (8-9)

With the help of (2-2) and (8-3) for suitable εk ↓ 0 we can bound

(8εkrk)
−1

∫ tk

tk+rksk

∫
B

|ut |
2ϕ2

k dz dt ≤ Cε−1
k

∫ tk

tk+rksk

∫
∂ B

|ut |
2 dz dt → 0.

Since for any choice t0 < sk < 0 we also can estimate

8εkrk

∫ tk

tk+rksk

∫
B

|∇u|
2
|∇ϕk |

2 dz dt ≤ Cεk |t0|E(u0) → 0,

from (8-9) and (8-6) it follows that with error o(1) → 0 as k → ∞ we have∫
B+

4 (0)

|∇wk |
2 dz + o(1) =

∫
B+

4 (0)

|∇vk(sk)|
2 dz + o(1) ≥

∫
B

|∇u(tk + rksk)|
2ϕ2

k dz + o(1)

≥

∫
B

|∇u(tk)|2ϕ2
k dz ≥

∫
B+

2 (0)

|∇vk(0)|2 dz ≥ δ. (8-10)

Finally, in view of locally uniform convergence wk → w∞ and weak local L2-convergence of the traces
∇wk → ∇w∞ on ∂R2

+
, we may pass to the limit k → ∞ in (8-8) to conclude that w∞ : ∂R2

+
→ N with

dπN (w∞)∂yw∞ = 0 on ∂R2
+
. (8-11)

Since w∞ is harmonic, the Hopf differential

f = |∂xw∞|
2
− |∂yw∞|

2
− 2i∂xw∞ · ∂yw∞

defines a holomorphic function f ∈ L1(R2
+
, C). Moreover, w∞ ∈ H 3/2

loc (R2
+
) with trace ∇w∞ ∈ L2

loc(∂R2
+
);

thus also the trace of f is well-defined on ∂R2
+

. By (8-11) now the trace of f is real-valued; thus f ≡ c
for some constant c ∈ R. But ∇w∞ ∈ L2(R2

+
); hence f ∈ L1(R2

+
). It follows that c = 0, and w∞ is

conformal.
With a conformal diffeomorphism 8 : B → R2

+
mapping a point z0 ∈ ∂ B to infinity, define the map

ū = w∞ ◦ 8 ∈ H 1/2(S1
; N ). By conformal invariance, ū again is harmonic with finite Dirichlet integral

and satisfies (1-6) on ∂ B \ {z0}; since the point {z0} has vanishing H 1-capacity, ū then is stationary in the
sense of [Grüter et al. 1981]. Moreover, ū is conformal. For such mappings, smooth regularity on B was
shown by Grüter, Hildebrandt, and Nitsche [Grüter et al. 1981]; thus condition (1-6) holds everywhere on
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∂ B in the pointwise sense, and ū parametrizes a minimal surface of finite area supported by N which
meets N orthogonally along its boundary.

Proof of Theorem 1.1(ii). For given smooth data u0 ∈ H 1/2(S1
; N ) let u be the unique solution to (1-3),

(1-4) guaranteed by part (i) of the theorem, and suppose that the maximal time of existence T0 is less
than ∞. Then condition (4-4) must fail as t ↑ T0; else from Propositions 4.11 and 4.6 we obtain smooth
bounds for u(t) as t ↑ T0 and there exists a smooth trace u1 = limt↑T0 u(t). But by the first part of the
theorem there is a smooth solution to the initial value problem for (1-3) with initial data u1 at time T0,
and this solution extends the original solution u to an interval [0, T1[ for some T1 > T0, contradicting the
maximality of T0.

Let z(i)
∈ B, 1 ≤ i ≤ i0, such that, for some number δ > 0 and suitable t (i)

k ↑ T0, z(i)
k → z(i), r (i)

k → 0
as k → ∞,

lim inf
k→∞

∫
B

r(i)
k

(z(i)
k )∩B

|∇u(t (i)
k )|2 dz ≥ δ.

By the argument following (8-9), for a suitable sequence of radii 0 < r (0)
k → 0 such that r (i)

k /r (0)
k → 0 as

well as (T0 − t (i)
k )/r (0)

k → 0, then with error o(1) → 0 as k → ∞,∫
B

r(0)
k

(z(i))∩B
|∇u(t)|2 dz + o(1) ≥

∫
B

r(i)
k

(z(i)
k )∩B

|∇u(t (i)
k )|2 dz ≥ δ

for all T0 − r (0)
k < t < T0, uniformly in 1 ≤ i ≤ i0. For sufficiently large k ∈ N such that

r (0)
k < inf

i< j
1
4 |z(i)

− z( j)
|,

it follows that i0 ≤ E(u0)/δ, and we may fix r0 > 0 and redefine t (i)
k , r (i)

k , and z(i)
k , if necessary, such that,

for each 1 ≤ i ≤ i0,∫
B

r(i)
k

(z(i)
k )∩B

|∇u(t (i)
k )|2 dz = sup

z′
∈Br0 (z(i))

0<t≤t (i)k

∫
B

r(i)
k

(z′)∩B
|∇u(t)|2 dz = δ.

Moreover, we may assume that δ < δ0 as defined in Proposition 3.1. The characterization of the
concentration points as in Theorem 1.2(ii) via solutions ū(i) of (1-6) then follows from our above analysis.

In addition, Corollary 3.2 yields the uniform lower bound

lim
r0↓0

lim inf
t↑T

∫
Br0 (z(i))∩B

|∇u(t)|2 dz ≥ 2E(ū(i)) ≥ 2δ2
0

for the concentration energy quanta, which gives the claimed upper bound for the total number of
concentration points.

Finally, with the help of Proposition 4.11 we can smoothly extend the solution u to B \ {z(1), . . . , z(i0)}

at time t = T0. □
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9. Asymptotics

Suppose next that the solution u to (1-3), (1-4) exists for all time 0 < t < ∞. Then u either concentrates
for suitable tk ↑ ∞ in the sense that condition (4-4) does not hold true uniformly in time, or u satisfies
uniform smooth bounds, as shown in Section 4.

In the latter case, the claim made in Theorem 1.1(iii) easily follows.

Proposition 9.1. Suppose that for any δ > 0 there exists R > 0 such that condition (4-4) holds true for
all 0 < t < ∞. Then there exists a smooth solution u∞ ∈ H 1/2(S1

; N ) of (1-6) such that u(t) → u∞

smoothly as t → ∞ suitably, and u∞ parametrizes a minimal surface of finite area supported by N which
meets N orthogonally along its boundary.

Proof. For sufficiently small δ > 0 and for any j ∈ N, by iterative reference to Propositions 4.2, 4.4–4.6,
and 4.10, 4.11 as in Section 6 we can find constants C j > 0 such that ∥u(t)∥H j (B) ≤ C j for all t > 1.
Moreover, by the energy inequality Lemma 2.1 for a suitable sequence tk → ∞ there holds ut(tk) → 0 in
L2(∂ B) as k → ∞. Then for any j ∈ N a subsequence u(tk) approaches u∞ in H j (B), and a diagonal
subsequence converges smoothly, where u∞ solves (1-6). By the argument after (8-11) in Section 8, u∞ is
conformal and u∞ parametrizes a minimal surface with free boundary on N which meets N orthogonally
along its boundary. □

In the remaining case that for some δ > 0 condition (4-4) fails to hold, there exists a sequence tk ↑ ∞

and points z(1), . . . , z(i0) such that, for sequences z(i)
k → z(i) and radii r (i)

k → 0 as k → ∞,

lim inf
k→∞

∫
B

r(i)
k

(z(i)
k )∩B

|∇u(tk)|2 dz ≥ δ, 1 ≤ i ≤ i0.

By Lemma 2.1 there holds the a-priori bound i0 ≤ E(u0)/δ for the number of concentration points. By
the argument leading to (8-10) then, for a suitable number

0 < r0 ≤ inf
i< j

1
4 |z(i)

− z( j)
|

with error o(1) → 0 as k → ∞ and with some constant L ∈ N for all 1 ≤ i ≤ i0,

L
∫

B
2r(i)

k
(z(i)

k )∩B
|∇u(tk)|2 dz + o(1) ≥ sup

z0∈Br0 (z(i)
k )

tk−r0≤t≤tk

∫
B

r(i)
k

(z0)∩B
|∇u(t)|2 dz ≥ δ.

Fixing any index 1 ≤ i ≤ i0 and renaming z(i)
k =: zk and r (i)

k =: rk , we then scale

uk(z, t) = u(zk + rkz, tk + rk t), z ∈ �k = {z : zk + rkz ∈ B}, −tk/rk ≤ t ≤ 0,

as before and observe that, for any t0 < 0,∫ 0

t0

∫
∂�k

|∂t uk |
2 ds dt =

∫ 0

t0

∫
∂�k

|dπN (uk)∂νk uk |
2 ds dt

=

∫ tk

tk+rk t0

∫
∂ B

|ut |
2 dφ dt ≤

∫
∞

tk+rk t0

∫
∂ B

|ut |
2 dφ dt → 0 (9-1)
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as k → ∞, where νk is the outward unit normal along ∂�k . Just as in Section 8 for suitable t0 < sk < 0
we then obtain local uniform and H 1-convergence of a subsequence of the conformally rescaled maps
wk = uk(sk) ◦ 8k ∈ H 1

loc(R
2
+
) to a smooth, nonconstant, harmonic and conformal limit w∞ with finite

energy and continuously mapping ∂R2
+

to N, inducing a solution ū∞ = w∞ ◦8 ∈ H 1/2(S1
; N ) of (1-6)

corresponding to a minimal surface with free boundary on N. This ends the proof of Theorem 1.1(iii).

Appendix

In this section, for the convenience of the reader we derive two interpolation inequalities that play a
crucial role in our arguments.

Let v ∈ H 1(B), and for r > 0 let (zi )1≤i≤i0 be such that the collection of balls Br/2(zi ), 1 ≤ i ≤ i0,
covers B with at most L balls Br (zi ) overlapping at any z ∈ B, with L ∈ N independent of r > 0. We
may assume r < 1

8 so that for any 1 ≤ i ≤ i0 there is a pair of orthogonal vectors e1,i and e2,i such that
for any z ∈ Br (zi ) there holds z + se1,i + te2,i ∈ B for any 0 ≤ s, t ≤ 2r . After a rotation of coordinates,
we may assume that e1,i = (1, 0) and e2,i = (0, 1) are the standard basis vectors. Writing ϕ for ϕzi ,r , by
arguing as Ladyzhenskaya [1963] for any z = (x, y) ∈ Br (zi ) and using that

(v2ϕ)(x + 2r, y) = 0 = (v2ϕ)(x, y + 2r)

then we can estimate

v4(z) = |(v2ϕ)(z)|2 ≤

∫ 2r

0
|∂x(v

2ϕ)(x + s, y)| ds ·

∫ 2r

0
|∂y(v

2ϕ)(x, y + t)| dt

≤

∫
{s:(s,y)∈B}

|∂x(v
2ϕ)(s, y)| ds ·

∫
{t :(x,t)∈B}

|∂y(v
2ϕ)(x, t)| dt, (A-1)

and with the help of Fubini’s theorem we find∫
Br/2(zi )

|v|
4 dz ≤

∫
B

|v|
4ϕ2 dz ≤

∫
∞

−∞

(∫
{x :(x,y)∈B}

|(v2ϕ)(x, y)|2 dx
)

dy

≤

∫
∞

−∞

∫
{s:(s,y)∈B}

|∂x(v
2ϕ)(s, y)| ds dy ·

∫
∞

−∞

∫
{t :(x,t)∈B}

|∂y(v
2ϕ)(x, t)| dt dx

≤

(∫
B

|∇(v2ϕ)| dz
)2

≤

(∫
B
(2|∇v||vϕ| + v2

|∇ϕ|) dz
)2

≤ C
(∫

Br (zi )

|∇v|
2 dz + r−2

∫
Br (zi )

v2 dz
) ∫

Br (zi )

v2 dz.

Fixing r =
1

10 and summing over 1 ≤ i ≤ i0, with an absolute constant C > 0 we obtain the bound

∥v∥
4
L4(B)

≤ C∥v∥
2
H1(B)

∥v∥
2
L2(B)

(A-2)

for any v ∈ H 1(B).
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NONCOMMUTATIVE MAXIMAL OPERATORS WITH ROUGH KERNELS

XUDONG LAI

This paper is devoted to the study of noncommutative maximal operators with rough kernels. More
precisely, we prove the weak-type (1, 1) boundedness for noncommutative maximal operators with rough
kernels. The proof of the weak-type (1, 1) estimate is based on the noncommutative Calderón–Zygmund
decomposition. To deal with the rough kernel, we use the microlocal decomposition in the proofs of both
the bad and good functions.

1. Introduction and state of main result

In recent years, there has been extensive research on noncommutative harmonic analysis, especially on
noncommutative Calderón–Zygmund theory; see, e.g., [Parcet 2009; Mei and Parcet 2009; Cadilhac
2018; Chen et al. 2013]. The main content of this topic is focused on investigating the boundedness
property of various operators in harmonic analysis on the noncommutative L p space. Due to the lack of
commutativity (i.e., ab =ba may not hold in general case), many problems in the study of noncommutative
Calderón–Zygmund theory seem to be more difficult, for instance the weak-type (1, 1) bound of integral
operators.

It is well known that the real-variable theory of classical harmonic analysis was initiated by
A. P. Calderón and A. Zygmund [1952]. One of the remarkable techniques in [Calderón and Zygmund
1952] is the so-called Calderón–Zygmund decomposition, which is now a widely used method in harmonic
analysis. This technique not only gives a real-variable method to show weak-type (1, 1) bounds of
singular integrals, but also provides a basic idea of stopping-time arguments for many topics in harmonic
analysis, such as the theory of Hardy and BMO spaces; see, e.g., [Grafakos 2014a; 2014b; Stein 1993].
The noncommutative Calderón–Zygmund decomposition was recently established in [Parcet 2009] via
the theory of noncommutative martingales. With this tool, the weak-type (1, 1) bound theory of the
standard Calderón–Zygmund operator was developed there. It was pointed out in [Parcet 2009] that the
noncommutative Calderón–Zygmund decomposition and the related method should open a door to work
for a more general class of operators. For the subsequent works related to weak-type (1, 1) problem and
noncommutative Calderón–Zygmund decomposition, see [Mei and Parcet 2009; Cadilhac 2018; Caspers
et al. 2018; 2019; Hong and Xu 2021; Hong et al. 2023; Cadilhac et al. 2022].
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On the other hand, the classical theory of singular integral operators tells us that to ensure the weak-type
(1, 1) bound of the Calderón–Zygmund operator, the regularity condition of kernel can be relaxed to the
so-called Hörmander condition; see, e.g., [Hörmander 1960; Grafakos 2014a]. Moreover, Calderón and
Zygmund [1956] further studied the singular integral operator with a rough homogeneous kernel defined by

p.v.
∫

Rd

�(x − y)
|x − y|d

f (y) dy (1-1)

and established its L p boundedness for all 1< p<∞. For its weak-type (1, 1) boundedness, it was quite
later showed by S. Hofmann [1988] (and independently by M. Christ and Rubio de Francia [1988]) in two
dimensions and by A. Seeger [1996] in higher dimensions (see further results in [Tao 1999]). Therefore
a natural question inspired by [Parcet 2009] is whether can we weaken the Lipschitz regularity of kernel
to the Hörmander condition or even rough homogeneous kernel. This problem has been open since then.
The purpose of this paper is to develop some theory in this aspect for a class of rough operators. We
consider the most fundamental operator: the maximal operator with a rough kernel which is defined by
(in the sense of classical harmonic analysis)

M� f (x)= sup
r>0

|Mr f (x)|, Mr f (x)=
1

|B(x, r)|

∫
B(x,r)

�(x − y) f (y) dy, (1-2)

where B(x, r) is a ball in Rd with center x and radius r , the kernel � is a homogeneous function defined
on Rd

\ {0} with degree zero, that is,

�(r x ′)=�(x ′) for any r > 0 and x ′
∈ Sd−1. (1-3)

Notice that the maximal operator M� is a generalization of the Hardy–Littlewood maximal operator
(by setting � as a constant, M� is exactly the Hardy–Littlewood maximal operator). M� is very important
in the theory of rough singular integrals since it could be used to control many operators with rough
kernels, just like the Hardy–Littlewood maximal operator plays an important role in analysis. By the
method of rotation, it is easy to see that M� is bounded on L p(R

d) for all 1< p ≤ ∞ if � ∈ L1(Sd−1);
see, e.g., [Grafakos 2014a]. However, the weak-type (1, 1) boundedness of M� is quite challenging.
It was proved by Christ [1988] that M� is of weak-type (1, 1) if � ∈ Lq(S1) with 1 < q ≤ ∞ in two
dimensions. Later Christ and Rubio de Francia [1988] showed in higher dimensions M� is weak-type
(1, 1) bounded if � ∈ L log+ L(Sd−1) by a depth investigation of the geometry in Euclidean space. For
more topics, including open problems related to the maximal operator M�, we refer to the reader to [Stein
1998; Grafakos and Stefanov 1999; Grafakos et al. 2017].

The noncommutative version of M� should be important in the theory of noncommutative rough
singular integral operators as expected. For instance, the noncommutative M� will play a crucial role
in the study of the noncommutative maximal operator of truncated operator in (1-1). In this paper, we
will study the boundedness of M� on the noncommutative L p space for 1 ≤ p ≤ ∞. In a special case
� is a constant (i.e., M� is the Hardy–Littlewood maximal operator), T. Mei [2007] investigated its
noncommutative L p, 1< p ≤ ∞, and weak-type (1, 1) boundedness. For general kernel �, there is no
proper theory for the noncommutative M�. To illustrate our noncommutative result of M�, we should
first give some basic notation.
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Let us first introduce the noncommutative L p space. Let M be a semifinite von Neumann algebra
equipped with a normal semifinite faithful (n.s.f. for short) trace τ . We consider the algebra AB of
essentially bounded M-valued functions

AB =
{

f : Rd
→ M | f is strong measurable such that ess sup

x∈Rd
∥ f (x)∥M <∞

}
.

equipped with the n.s.f. trace ϕ( f )=
∫

Rd τ( f (x)) dx . Let A be the weak-operator closure of AB . Then
A is a von Neumann algebra. For 1 ≤ p<∞, define L p(M) as the noncommutative L p space associated
to the pairs (M, τ ) with the L p norm given by ∥x∥L p(M) = (τ (|x |

p))1/p. The space L p(A) is defined as
the closure of AB with respect to the norm

∥ f ∥L p(A) =

(∫
Rd
τ(| f (x)|p) dx

)1/p

, (1-4)

which means that L p(A) is the noncommutative L p space associated to the pairs (A, ϕ). On the other hand,
from (1-4) we see that L p(A) is isometric to the Bochner L p space with values in L p(M). For convenience,
we set L∞(M)= M and L∞(A)= A equipped with the operator norm. The lattices of projections are
written as Mπ and Aπ , while 1M and 1A stand for the unit elements. Let L+

p (A) be the positive part of
L p(A). A lot of basic properties of classical L p spaces, such as Minkowski’s inequality, Hölder’s inequality,
the dual property, real and complex interpolation, etc., have been transferred to this noncommutative
setting. We refer to the very detailed introduction in [Parcet 2009] or the survey article [Pisier and Xu
2003] for more about the noncommutative L p space, the noncommutative L1,∞ space and related topics.

We next define a noncommutative analogue of M�. For two general elements belong to a von Neumann
algebra, they may not be comparable (i.e., neither a < b nor a ≥ b holds for a, b ∈ A). Hence it is
difficult to define the noncommutative maximal function directly. This obstacle could be overcome by
straightforwardly defining the maximal weak-type (1, 1) norm or L p norm. We adopt the definition of
the noncommutative maximal norm introduced by G. Pisier [1998] and M. Junge [2002].

Definition 1.1. For any index set I, we define L p(M; ℓ∞(I )), the space of all sequences x = {xn}n∈I

in L p(M) which admit a factorization of the following form: there exist a, b ∈ L2p(M) and a bounded
sequence y = {yn}n∈I in L∞(M) such that xn = aynb for all n ∈ I. The norm of x in L p(M; ℓ∞(I )) is
given by

∥{xk}k∈I ∥L p(M;ℓ∞(I )) = inf
{
∥a∥L2p(M) sup

n∈I
∥yn∥L∞(M) ∥b∥L2p(M)

}
,

where the infimum is taken over all factorizations of x as above. We define a sequence x = {xk}k∈I in
L1,∞(M) with quasinorm given by

∥{xk}k∈I ∥31,∞(M;ℓ∞(I )) = sup
λ>0

λ inf
e∈Mπ

{τ(e⊥) : ∥exke∥∞ ≤ λ for all k ∈ I }.

If x = {xn}n∈I is a sequence of positive elements, then x ∈ L p(M; ℓ∞(I )) if and only if there exists a
positive element a ∈ L p(M) such that 0< xn ≤ a, and

∥x∥L p(M;ℓ∞(I )) = inf{∥a∥L p(M) : 0< xn ≤ a for all n ∈ I }, (1-5)

∥(xk)k∈I ∥31,∞(M;ℓ∞(I )) = sup
λ>0

λ inf
e∈Mπ

{τ(e⊥) : exne ≤ λ for all n}. (1-6)
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Now we can state our main result as follows.

Theorem 1.2. Suppose that � satisfies (1-3) and � ∈ L(log+ L)2(Sd−1). Then the operator sequence
{Mr }r>0 is of maximal weak-type (1, 1), i.e.,

∥{Mr f }r>0∥31,∞(A,ℓ∞(0,∞)) ≲ C�∥ f ∥L1(A),

where C� is a constant depending only on the dimension d and �. Equivalently, for every f ∈ L1(A) and
λ > 0, there exists a projection e ∈ Aπ such that

sup
r>0

∥eMr f e∥L∞(A) ≤ λ and λϕ(1A − e)≲ C�∥ f ∥L1(A).

It is very easy to show that {Mr }r>0 is of maximal strong type (p, p) for 1< p ≤ ∞ by the method of
rotation. For completeness, we give a proof in the Appendix for this result.

The strategy in the proof of Theorem 1.2 is as follows. Firstly we convert the study of the maximal
operator to a linearized singular integral operator T with a rough kernel (see Section 2). Secondly,
to prove the weak-type (1, 1) bound of this singular integral operator T, we use the noncommutative
Calderón–Zygmund decomposition to split the function f into two parts: good functions and bad functions
(see Section 3A). Roughly speaking, the proof is reduced to obtain some decay estimates for the good
and bad functions separately. For the proof related to the bad functions, since the kernel � is rough, we
will use a further decomposition, the so-called microlocal decomposition, to the operator Tj . Then we
apply the L2 norm and the L1 norm to control the weak-type estimate (see Lemmas 3.4 and 3.5), where
vector-valued Plancherel’s theorem and an orthogonal geometric argument are involved in the proof of the
L2 estimate and the stationary phase method is used in the L1 estimate (see Section 3B and the proofs in
Section 4). For the proof of good functions we use the so-called pseudolocalization arguments to obtain
some decay estimate for the L2 norm of the singular integral operator T outside the support of functions
on which it acts. To get such decay estimates, we adopt a similar method (the microlocal decomposition)
from the proof of bad functions (see Section 3C).

In the classical Calderón–Zygmund decomposition, one can easily deal with the good function by the
L2 estimate. However, the proof of good functions from the noncommutative Calderón–Zygmund is
much elaborated as showed in the case of smooth kernel by J. Parcet [2009]. In this paper, to overcome
the nonsmoothness of kernel, we use the microlocal decomposition in the proofs of both bad and good
functions. To the best knowledge of the author, this method seems to be new in the noncommutative
Calderón–Zygmund theory. We should point out that the proof of bad functions is quite different from
that in the classical case of[Christ and Rubio de Francia 1988], where they used the T T ∗ argument
to obtain some regularity of the kernel Tj T ∗

j by some depth geometry but without using the Fourier
transform. However, our method presented in this paper heavily depends on the Fourier transform where
Plancherel’s theorem and the stationary phase method are involved. These ideas are mainly inspired by
[Seeger 1996]. Recall the following important pointwise property is crucial in the classical T T ∗ argument:
|Q|

−1
∫

Q |bQ(y)| dy ≲ λ, where bQ is a bad function from the Calderón–Zygmund decomposition which
is supported in a cube Q. Since in the noncommutative setting such kind of inequality may not hold for the
off-diagonal terms of bad functions, our noncommutative T T ∗ argument is more complicated than that of
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the classical case. In fact only one pointwise property holds in the noncommutative Calderón–Zygmund
decomposition: qk fkqk ≲ C−1

� λqk (see Lemma 3.1) and all pointwise estimates in the proof should finally
be transferred to this property (see Section 4B for the details in the proof of the L2 estimate).

This paper is organized as follows. First the study for maximal operator of Mr is reduced to a linearized
singular integral operator in Section 2. In Section 3, by the noncommutative Calderón–Zygmund
decomposition and microlocal decomposition, we finish the proof of our main theorem based on the
estimates of bad and good functions. The proofs of lemmas related to the bad functions are all presented
in Section 4. In Section 5, we give all proofs of lemmas related to the good functions. Finally in the
Appendix, we give a proof of strong type (p, p), 1< p ≤ ∞, for {Mr }r>0.

Further remark. After we finished this manuscript, L. Cadilhac [2022] found a more efficient noncom-
mutative Calderón–Zygmund decomposition (see also [Hong et al. 2023]) so that the off-diagonal terms
of the good functions vanish and the argument for the pseudolocalization can be avoided. Of course
using this new Calderón–Zygmund decomposition, we only need to apply the L2 estimate to deal with
the good function and the proof related to the good functions in this paper can be greatly shortened.
However, we point out that using this new method, the proof for the bad functions will be significantly
more complicated than our arguments presented in this paper. So our proof in this paper still has its own
interest. Nevertheless, we hope to show this in the study of weak-type (1, 1) boundedness for singular
integral operators with rough kernels (1-1) which is our ongoing work.

Notation. Throughout this paper, we only consider the dimension d ≥ 2 and the letter C stands for a
positive finite constant which is independent of the essential variables, not necessarily the same one in
each occurrence. A ≲ B means A ≤ C B for some constant C . By the notation Cε we mean that the
constant depends on the parameter ε, A ≈ B means that A ≲ B and B ≲ A, Z+ denotes the set of all
nonnegative integers and

Zd
+

= Z+ × · · · × Z+︸ ︷︷ ︸
d

.

For α ∈ Zd
+

and x ∈ Rd, we define xα = xα1
1 xα2

2 · · · xαd
d and |x | denotes the ℓ2 norm. For all s ∈ R+, [s]

denotes the integer part of s. For any set A with finite elements, we define card(A) or #(A) as the number
of elements in A. Let s ≥ 0, we define

∥�∥L(log+L)s :=

∫
Sd−1

|�(θ)|[log(2 + |�(θ)|)]s dσ(θ),

where dσ(θ) denotes the sphere measure of Sd−1. When s = 0, we use the standard notation ∥�∥1 :=

∥�∥L(log+L)0 .
Define F f (or f̂ ) and F−1 f (or f̌ ) the Fourier transform and the inverse Fourier transform of f by

F f (ξ)=

∫
Rd

e−i⟨x,ξ⟩ f (x) dx, F−1 f (ξ)=
1

(2π)d

∫
Rd

ei⟨x,ξ⟩ f (x) dx .

Let Q be the set of all dyadic cubes in Rd. For any Q ∈ Q, denote by ℓ(Q) the side length of the
cube Q. Let s Q be the cube with the same center of Q such that ℓ(s Q)= sℓ(Q). Given an integer k ∈ Z,
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Qk will be defined as the set of dyadic cubes of side length 2−k. Let |Q| be the volume of the cube Q. If
Q ∈ Q and f : Rd

→ M is integrable on Q, we define its average as fQ = |Q|
−1

∫
Q f (y) dy.

For k ∈ Z, set σk as the k-th dyadic σ -algebra, i.e., σk is generated by the dyadic cubes with side
lengths equal to 2−k. Let Ek be the conditional expectation which is associated to the classical dyadic
filtration σk on Rd. We also use Ek for the tensor product Ek ⊗ idM acting on A. Then for 1 ≤ p <∞

and f ∈ L p(A), we get

Ek( f )=

∑
Q∈Qk

fQχQ,

where χQ is the characteristic function of Q. Similarly, {Ak}k∈Z will stand for the corresponding filtration,
i.e., Ak =Ek(A). For simplicity, we will define the conditional expectation fk :=Ek( f ) and the martingale
difference 1k( f ) := fk − fk−1 =: d fk .

2. Reduction to singular integral operator

In this section, we reduce the study of maximal operator of Mr to a singular integral operator with a
rough kernel. This will be done by several steps as follows.

Step 1: By decomposing the functions � and f into four parts (i.e., real positive part, real negative part,
imaginary positive part, imaginary negative part), together with the quasitriangle inequality for the quasi-
norm ∥·∥31,∞(A,ℓ∞(0,∞)), we only consider the case that� is a positive function and f is positive in A. Then
by (1-6), it is enough to show that for any f ∈ L+

1 (A) and λ> 0 there exists a projection e ∈Aπ such that

eMr f e ≤ λ for all r > 0 and λϕ(1A − e)≲ C�∥ f ∥L1(A). (2-1)

Step 2: Next we show that the study of Mr can be reduced to a dyadic smooth operator. More precisely, let
φ be a C∞

c (R
d), radial, positive function which is supported in

{
x ∈ Rd

:
1
2 ≤ |x | ≤ 2

}
and

∑
i∈Z φj (x)= 1

for all x ∈ Rd
\ {0}, where φj (x)= φ(2− j x). Define an operator Mj by

Mj f (x)=

∫
Rd

�(x − y)
|x − y|d

φj (x − y) f (y) dy.

We will prove that the maximal operator of Mj is of weak-type (1, 1) below and (2-1) follows from it.

Theorem 2.1. Let � be a positive function satisfying (1-3) and � ∈ L(log+ L)2(Sd−1). For any f ∈

L+

1 (A), λ > 0, there exists a projection e ∈ Aπ such that

sup
j∈Z

∥eMj f e∥L∞(A) ≲ λ, λϕ(1A − e)≲ C�∥ f ∥L1(A),

where the constant C� only depends on � and the dimension.

The proof of Theorem 2.1 will be given later. We apply Theorem 2.1 to show (2-1). Let � be a positive
function and f be positive in L+

1 (A). Then by our choice of φj , for any r > 0, we have

Mr f (x)=
1

|B(x, r)|

∫
B(x,r)

�(x − y) f (y) dy

=
Cd

rd

∑
j≤[log r ]+1

∫
|x−y|≤r

φj (x − y)�(x − y) f (y) dy ≲
1
rd

∑
j≤[log r ]+1

2 jdMj f (x).
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Notice that � is positive and f ∈ L+

1 (A); thus the inequality eMj f e ≤ λ is equivalent to ∥eMj f e∥A =

∥eMj f e∥L∞(A) ≤ λ. By Theorem 2.1, there exists a projection e ∈ Aπ such that

eMj f e ≲ λ for all j ∈ Z, λϕ(1A − e)≲ C�∥ f ∥L1(A).

Then it is easy to see that, for any r > 0,

eMr f e ≲
1
rd

∑
j≤[log r ]+1

2 jdeMj f e ≲ λ.

Step 3: We will reduce the study of the maximal operator of Mj to a class of square functions. Notice that
the kernel � of Mj has no cancellation. Formally we cannot study the operator

(∑
j |Mj |

2
)1/2 directly

since it may not even be L2 bounded. To avoid such case, we define a new operator Tj which is a modified
version of the operator Mj

Tj f (x)=

∫
Rd
φj (x − y)

�̃(x − y)
|x − y|d

f (y) dy, (2-2)

where
�̃(x)=�(x)−

1
σd−1

∫
Sd−1

�(θ) dσ(θ)

and σd−1 is measure of the unit sphere. Then it is easy to see that �̃ has mean value zero over Sd−1.
Then formally the study of the maximal operator of Mj may follow from that of the square function(∑

j |Tj |
2
)1/2 and the maximal operator. In the following we use rigorous noncommutative language to

explain how to do it. To define a noncommutative square function, we should first introduce the so-called
column and row function space. Let { f j }j be a finite sequence in L p(A), 1 ≤ p ≤ ∞. Define

∥{ f j }j∥L p(A;ℓr
2)

=

∥∥∥∥(∑
| f ∗

j |
2
)1/2∥∥∥∥

L p(A)
, ∥( f j )∥L p(A;ℓc

2)
=

∥∥∥∥(∑
| f j |

2
)1/2∥∥∥∥

L p(A)
.

This procedure is also used to define the spaces L1,∞(A; ℓr
2) and L1,∞(A; ℓc

2); i.e.,

∥{ f j }j∥L1,∞(A;ℓr
2)

=

∥∥∥∥(∑
| f ∗

j |
2
)1/2∥∥∥∥

L1,∞(A)
, ∥{ f j }∥L1,∞(A;ℓc

2)
=

∥∥∥∥(∑
| f j |

2
)1/2∥∥∥∥

L1,∞(A)
.

Let L1,∞(A, ℓrc
2 ) space be the weak-type square function of {Tj }j defined as

∥{Tj }j∥L1,∞(A,ℓrc
2 )

= inf
Tj f =gj +h j

{∥{gj }j∥L1,∞(A,ℓc
2)

+ ∥{h j }j∥L1,∞(A;ℓr
2)
}.

We have the following weak-type (1, 1) estimate of square function of {Tj }j .

Theorem 2.2. Suppose that � satisfies (1-3) and � ∈ L(log+ L)2(Sd−1). Let Tj be defined in (2-2). Then
we have

∥{Tj }j∥L1,∞(A,ℓrc
2 )

≲ C�∥ f ∥L1(A),

where the constant C� only depends on � and the dimension.

In the following we use Theorem 2.2 to prove Theorem 2.1. Our goal is to find a projection e ∈ Aπ
such that

sup
j∈Z

∥eMj f e∥L∞(A) ≲ λ, λϕ(1A − e)≲ C�∥ f ∥L1(A).
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We first decompose Mj f into two parts

Tj f (x)+
1

σd−1

∫
Sd−1

�(θ) dσ(θ)
∫

Rd

φj (x − y)
|x − y|d

f (y) dy =: Tj f (x)+ M̃j f (x).

Notice that (1/σd−1)
∫

Sd−1 �(θ) dσ(θ) is a harmless constant which is bounded by ∥�∥1. By using the
fact that the noncommutative Hardy–Littlewood maximal operator is of weak-type (1, 1) (see, e.g., [Mei
2007]), it is not difficult to see that the maximal operator of M̃j is of weak-type (1, 1). Thus we can find
a projection e1 ∈ Aπ such that

sup
j∈Z

∥e1 M̃ j f e1∥L∞(A) ≤ λ and λϕ(1A − e1)≲ ∥�∥1∥ f ∥L1(A).

Next we utilize Theorem 2.2 to construct other projection. By the definition of infimum, there exists a
decomposition T j f = g j + h j satisfying

∥{g j }∥L1,∞(A;ℓc
2)

+ ∥{h j }∥L1,∞(A;ℓr
2)

≤
1
2C�∥ f ∥L1(A).

We now take e2 = χ(0,λ]
((∑

j∈Z |g j |
2
)1/2) and e3 = χ(0,λ]

((∑
j∈Z |h∗

j |
2
)1/2). Then∥∥∥∥((∑

j∈Z

|g j |
2
)1/2)

e2

∥∥∥∥
L∞(A)

≤ λ and λϕ(1A − e2)≲ C�∥ f ∥L1(A).

Also for e3, we have∥∥∥∥((∑
j∈Z

|h∗

j |
2
)1/2)

e3

∥∥∥∥
L∞(A)

≤ λ and λϕ(1A − e3)≲ C�∥ f ∥L1(A).

Let e = e1 ∧ e2 ∧ e3. Then it is easy to see that

sup
j∈Z

∥eM̃ j f e∥L∞(A) ≤ λ, λϕ(1A − e)≲ C�∥ f ∥L1(A).

Hence to finish the proof of Theorem 2.1, it is sufficient to show

sup
j∈Z

∥eTj f e∥L∞(A) ≲ λ.

Recall the definition of L∞(A), ∥ f ∥L∞(A) = ∥ f ∥A. Then we get

∥eTj f e∥L∞(A) ≤ ∥eg j e∥A + ∥eh j e∥A = ∥eg j e∥A + ∥eh∗

j e∥A.

Now using polar decomposition gj = u j |gj | and h∗

j = vj |h∗

j |, we continue to estimate the above term as
follows:

∥eu j |g j |e∥A + ∥ev j |h∗

j |e∥A ≤ ∥|g j |e∥A + ∥|h∗

j |e∥A = ∥e|g j |
2e∥1/2

A + ∥e|h∗

j |
2e∥1/2

A

≤

∥∥∥∥e
∑
j∈Z

|g j |
2e

∥∥∥∥1/2

A
+

∥∥∥∥e
∑
j∈Z

|h∗

j |
2e

∥∥∥∥1/2

A

=

∥∥∥∥(∑
j∈Z

|g j |
2
)1/2

e2e
∥∥∥∥
A

+

∥∥∥∥(∑
j∈Z

|h∗

j |
2
)1/2

e3e
∥∥∥∥
A
≲ λ.

Hence we finish the proof of Theorem 2.1.
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Step 4: We reduce the study of the square function to a linear operator. To simplify the notation, we still
use � in (2-2), i.e.,

Tj f (x)=

∫
Rd

K j (x − y)�(x − y) f (y) dy, with K j (x)= φj (x)|x |
−d , (2-3)

but we suppose that � satisfies the cancellation property
∫

Sd−1 �(θ) dσ(θ)= 0. To linearize the square
function, we use the following noncommutative Khintchine’s inequality in L1,∞(A, ℓrc

2 ) which was
recently established in [Cadilhac 2019].

Lemma 2.3. Let {εj }j be a Rademacher sequence on a probability space (m, P). Suppose that f = { f j }j

is a finite sequence in L1,∞(A). Then we have∥∥∥∥∑
j∈Z

f jεj

∥∥∥∥
L1,∞(L∞(m)⊗A)

≈ ∥{ f j }j∥L1,∞(A;ℓrc
2 )
.

Now by the preceding lemma, Theorem 2.2 immediately follows from the result below.

Theorem 2.4. Suppose that � satisfies (1-3), � ∈ L(log+ L)2(Sd−1) and the cancellation property∫
Sd−1 �(θ) dσ(θ) = 0. Let Tj be defined in (2-3). Assume {εj }j is the Rademacher sequence on a

probability space (m, P). Define T f (x, z)=
∑

j Tj f (x)εj (z) and the tensor trace ϕ̃ =
∫
m ⊗ϕ. Then T

maps L1(A) to L1,∞(L∞(m)⊗A), i.e., for any λ > 0, f ∈ L1(A),

λϕ̃{|T f |> λ} ≲ C�∥ f ∥L1(A),

where the constant C� only depends on � and the dimension.

At present our main result Theorem 1.2 is reduced to Theorem 2.4. In the rest of this paper, we give
effort to the proof of Theorem 2.4.

3. Proof of Theorem 2.4

In this section we give the proof of Theorem 2.4 based on some lemmas; their proofs will be given in
Sections 4 and 5. We first introduce the noncommutative Calderón–Zygmund decomposition.

3A. Noncommutative Calderón–Zygmund decomposition. By the standard density argument, we only
need to consider the following dense class of L1(A):

Ac,+ = { f : Rd
→ M | f ∈ A+,

−−→supp f is compact}.

Here −−→supp f represents the support of f as an operator-valued function in Rd , which means that −−→supp f =

{x ∈ Rd
: ∥ f (x)∥M ̸= 0}. Let � ∈ L(log+ L)2(Sd−1). Set a constant

C� = ∥�∥L(log+ L)2 +

∫
Sd−1

|�(θ)|

(
1 +

[
log+

(
|�(θ)|

∥�∥1

)]2)
dσ(θ), (3-1)

where log+ a = 0 if 0 < a < 1 and log+ a = log a if a ≥ 1. Since ∥�∥L(log+ L)2 < +∞, one can easily
check that C� is a finite constant. Now we fix f ∈ Ac,+, and set fk = Ek f for all k ∈ Z. Then the
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sequence { fk}k∈Z is a positive dyadic martingale in L1(A). Applying the so-called Cuculescu construction
introduced in [Parcet 2009, Lemma 3.1] at level λC�−1, we get the following result.

Lemma 3.1. There exists a decreasing sequence {qk}k∈Z depending on f and λC�−1, where qk is a
projection in Aπ satisfying the following conditions:

(i) qk commutes with qk−1 fkqk−1 for every k ∈ Z.

(ii) qk belongs to Ak for every k ∈ Z and qk fkqk ≤ λC�−1qk .

(iii) Set q =
∧

k∈Z qk . We have the inequality

ϕ(1A − q)≤ λ−1C�∥ f ∥L1(A).

(iv) The expression of qk can be written as follows: for some negative integer m ∈ Z

qk =


1A if k < m,
χ(0,λC−1

� ]
( fk) if k = m,

χ(0,λC−1
� ]
(qk−1 fkqk−1) if k > m.

Below we introduce another expression of the projection qk given in the previous lemma as done
in [Parcet 2009]. We point out that such kind of expression will be quite helpful when we give some
estimates to the terms related to qk . In fact we can write qk =

∑
Q∈Qk

ξQχQ for all k ∈ Z, where ξQ is a
projection in M which satisfies the following conditions:

(i) ξQ has the following explicit expression: Q̂ below is the father dyadic cube of Q,

ξQ =


1M if k < m,
χ(0,λC−1

� ]
( fQ) if k = m,

χ(0,λC−1
� ]
(ξQ̂ fQξQ̂) if k > m.

(ii) ξQ ∈ Mπ and ξQ ≤ ξQ̂ .

(iii) ξQ commutes with ξQ̂ fQξQ̂ and ξQ fQξQ ≤ C−1
� λξQ .

Define the projection pk = qk−1 − qk . By applying the above more explicit expression, we see that pk

equals
∑

Q∈Qk
(ξQ̂ − ξQ)χQ =:

∑
Q∈Qk

πQχQ , where πQ = ξQ̂ − ξQ . Then it is easy to see that all pk’s
are pairwise disjoint and

∑
k∈Z pk = 1A − q.

Now we define the associated good functions and bad functions related to f as follows:

f = g + b, g =

∑
i, j∈Ẑ

pi fi∨ j pj , b =

∑
i, j∈Ẑ

pi ( f − fi∨ j )pj ,

where we set p∞ = q , Ẑ = Z∪{∞} and i ∨ j = max(i, j). If i or j is infinite, i ∨ j is just ∞ and f∞ = f
by definition. We further decompose g as the diagonal terms and the off-diagonal terms:

gd = q f q +

∑
k∈Z

pk fk pk, goff =

∑
i ̸= j

pi fi∨ j pj + q f (1A − q)+ (1A − q) f q.

The proofs for diagonal terms gd and off-diagonal terms goff will be different as we shall see below. For
the bad function b, we can deal with the diagonal and off-diagonal terms uniformly. So it is unnecessary
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for us to decompose it as we did for the good functions. By the linearity of T, we get

ϕ̃(|T f |> λ)≤ ϕ̃
(
|T g|>

λ

2

)
+ ϕ̃

(
|T b|>

λ

2

)
.

In the following we give estimates for the good and bad functions, respectively. Before that we state a
lemma to construct a projection in A such that the proof can be reduced to the case that the operators are
restricted on this projection.

Lemma 3.2. There exists a projection ζ ∈ Aπ which satisfies the following conditions:

(i) λϕ(1A − ζ )≲ C�∥ f ∥L1(A).

(ii) If Q0 ∈ Q and x ∈ (2101
+ 1)Q0, then ζ(x)≤ 1M − ξQ̂0

+ ξQ0 and ζ(x)≤ ξQ0 .

The proof of this lemma can be easily modified from that of [Parcet 2009, Lemma 4.2]. Here the exact
value of 2101

+ 1 above is not essential and the reason we choose this value is just for convenience in a
later calculation (see (3-3)). Now let us consider the bad functions first since our method presented here
is also needed for the good functions.

3B. Estimates for the bad functions. We first use Lemma 3.2 to reduce the study of the operator T to
that of ζT ζ . Split T b into four terms as follows:

(1A − ζ )T b(1A − ζ )+ ζT b(1 − ζ )+ (1 − ζ )T bζ + ζT bζ.

By the property (i) in Lemma 3.2, we get

ϕ̃
(
|T b|>

λ

2

)
≲ ϕ(1A − ζ )+ ϕ̃

(
|ζT bζ |> λ

4

)
≲ λ−1C�∥ f ∥L1(A) + ϕ̃

(
|ζT bζ |> λ

4

)
.

Therefore it is enough to show that the term ϕ̃(|ζT bζ |> λ/4) satisfies our desired estimate. Recall the
bad function

b =

∑
k∈Z

pk( f − fk)pk +

∑
s≥1

∑
k∈Z

pk( f − fk+s)pk+s + pk+s( f − fk+s)pk =:

∑
s=0

∑
k∈Z

bk,s,

where
bk,0 = pk( f − fk)pk, bk,s = pk( f − fk+s)pk+s + pk+s( f − fk+s)pk . (3-2)

By the definition of T, we further rewrite T b as follows: for any x ∈ Rd and z ∈ m,

T b(x, z)=

∑
j∈Z

Tj

[∑
s≥0

∑
n∈Z

bn− j,s

]
(x)εj (z)=

∑
s≥0

∑
n∈Z

∑
j∈Z

Tj bn− j,s(x)εj (z).

For any Q ∈ Qn− j+s , set Qn− j ∈ Qn− j as the s-th ancestor of Q. Consider x in the support of ζ (i.e.,
ζ(x) ̸= 0) and let n < 100. Then we get that, for all s, ζ(x)Tj bn− j,s(x)ζ(x) equals∑
Q∈Qn− j+s

ζ(x)
∫

Q
K j (x−y)bn− j,s(y)dyζ(x)

=

∑
Q∈Qn− j+s

ζ(x)χ((2101+1)Qn− j )c(x)
∫

Q
K j (x−y)[πQn− j ( f (y)− fQ)πQ+πQ( f (y)− fQ)πQn− j ]dyζ(x)

= 0, (3-3)
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where in the first equality we apply ζ(x)πQn− j = 0 if x ∈ (2101
+ 1)Qn− j by the property (ii) of ζ in

Lemma 3.2 and the second inequality follows from the fact x ∈ ((2101
+ 1)Qn− j )

c and y ∈ Q implies
that |x − y| ≥ 2100+ j−n, which is a contradiction with the support of K j and n < 100. Therefore we get

ζT bζ = ζ
∑

n≥100

∑
s≥0

∑
j∈Z

Tj bn− j,sεjζ.

Hence, to finish the proof related to the bad functions, it suffices to verify the following estimate:

ϕ̃

(∣∣∣∣ζ ∑
n≥100

∑
s≥0

∑
j∈Z

Tj bn− j,sεjζ

∣∣∣∣> λ

4

)
≲ λ−1C�∥ f ∥L1(A). (3-4)

Some important decompositions play key roles in the proof of (3-4). We present them by some lemmas,
which will be proved in Section 4. It should be pointed out that the methods used here also work for the
good functions, which will be clear in the next subsection.

The first lemma shows that (3-4) holds if � is restricted in some subset of Sd−1. More precisely, for
fixed n ≥ 100 and s ≥ 0, define

Dι
= {θ ∈ Sd−1

: |�(θ)| ≥ 2ι(n+s)
∥�∥1},

where ι > 0 will be chosen later. Let T n,s
j,ι be defined by

T n,s
j,ι h(x)=

∫
Rd
�χDι

(
x − y
|x − y|

)
K j (x − y) · h(y) dy. (3-5)

Lemma 3.3. Suppose � ∈ L(log+ L)2(Sd−1). With all the notation above, we get

ϕ̃

(∣∣∣∣ζ ∑
n≥100

∑
s≥0

∑
j∈Z

T n,s
j,ι bn− j,sεjζ

∣∣∣∣> λ

8

)
≲ λ−1C�∥ f ∥L1(A).

Thus, by Lemma 3.3, to finish the proof for bad functions, it suffices to verify (3-4) under the condition
that for fixed n ≥ 100 and s ≥ 0 the kernel function � satisfies ∥�∥∞ ≤ 2ι(n+s)

∥�∥1 in each Tj .
In the following, we introduce the microlocal decomposition of kernel. To do this, we give a partition

of unity on the unit surface Sd−1. Let k ≥ 100. Choose {ek
v}v∈2k be a collection of unit vectors on Sd−1

which satisfies the following two conditions:

(a) |ek
v − ek

v′ | ≥ 2−kγ−4 if v ̸= v′.

(b) If θ ∈ Sd−1, there exists an ek
v such that |ek

v − θ | ≤ 2−kγ−3.

The constant 0< γ < 1 in (a) and (b) will be chosen later. To choose such an {ek
v}v∈2k , we simply take a

maximal collection {ek
v}v for which (a) holds and then (b) holds automatically by the maximality. Notice

that there are C2kγ (d−1) elements in the collection {ek
v}v . For every θ ∈ Sd−1, there only exist finite ek

v such
that |ek

v − θ | ≤ 2−kγ−4. Now we can construct an associated partition of unity on the unit surface Sd−1.
Let η be a smooth, nonnegative, radial function with η(u)= 1 for |u| ≤

1
2 and η(u)= 0 for |u|> 1. Define

0̃k
v(u)= η

(
2kγ

(
u
|u|

− ek
v

))
, 0k

v(u)= 0̃k
v(u)

( ∑
v∈2k

0̃k
v(u)

)−1

.
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Then it is easy to see that 0k
v is homogeneous of degree 0 with

∑
v∈2k

0k
v(u)= 1 for all u ̸= 0 and all k.

Now we define the operator T n,s,v
j by

T n,s,v
j h(x)=

∫
Rd
�(x − y)0n+s

v (x − y) · K j (x − y) · h(y) dy. (3-6)

Then it is easy to see that Tj =
∑

v∈2n+s
T n,s,v

j .
In the sequel, we will use the Fourier transform since we need to separate the phase in frequency space

into different directions. Hence we define a Fourier multiplier operator by

Ĝk,vh(ξ)=8

(
2kγ

〈
ek
v,
ξ

|ξ |

〉)
ĥ(ξ),

where ĥ is the Fourier transform of h and 8 is a smooth, nonnegative, radial function such that 0 ≤

8(x) ≤ 1 and 8(x) = 1 on |x | ≤ 2, 8(x) = 0 on |x | > 4. Now we can split T n,s,v
j into two parts:

T n,s,v
j = Gn+s,vT n,s,v

j + (I − Gn+s,v)T
n,s,v
j .

The following lemma gives the L2 estimate involving Gn+s,vT n,s,v
j , which will be proved in Section 4.

Lemma 3.4. Let n ≥ 100 and s ≥ 0. Suppose ∥�∥∞ ≤ 2ι(n+s)
∥�∥1 in each Tj . With all the notation

above, we get the estimate∑
j

∥∥∥∥ ∑
v∈2n+s

Gn+s,vT n,s,v
j bn− j,s

∥∥∥∥2

L2(A)
≲ 2−(n+s)γ+2(n+s)ιλC�∥ f ∥L1(A).

The terms involving (I − Gn+s,v)T
n,s,v
j are more complicated. For convenience, we set Ln,s,v

j =

(I − Gn+s,v)T
n,s,v
j . In Section 4, we shall prove the following lemma.

Lemma 3.5. Let n ≥ 100 and s ≥ 0. Suppose ∥�∥∞ ≤ 2ι(n+s)
∥�∥1 in each Tj . With all the notation

above, then there exists a positive constant α such that∑
j

∑
v∈2n+s

∥Ln,s,v
j bn− j,s∥L1(A) ≲ 2−(n+s)αC�∥ f ∥L1(A).

We now complete the proof of (3-4). It is sufficient to prove (3-4) under the condition that for all
fixed n ≥ 100 and s ≥ 0 we have ∥�∥∞ ≤ 2ι(n+s)

∥�∥1 in Tj . By Chebyshev’s inequality and the triangle
inequality, we get

ϕ̃

(∣∣∣∣ζ ∑
n≥100

∑
s≥0

∑
j∈Z

Tj bn− j,sεjζ

∣∣∣∣> λ

8

)

≲ λ−2
∥∥∥∥ζ ∑

n≥100

∑
s≥0

∑
j

∑
v∈2n+s

Gn+s,vT n,s,v
j bn− j,sεjζ

∥∥∥∥2

L2(L∞m⊗A)

+ λ−1
∑

n≥100

∑
s≥0

∑
j

∑
v∈2n+s

∥ζ Ln,s,v
j bn− j,sεjζ∥L1(L∞(m)⊗A)

=: I + II.

First we consider the term I. Recall that {εj }j is a Rademacher sequence on a probability space (m, P).
So we have the orthogonal equality∥∥∥∥∑

j∈Z

εj aj

∥∥∥∥2

L2(L∞(m)⊗A)
=

∑
j

∥aj∥
2
L2(A). (3-7)
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Choose 0< ι< γ

2 <
1
2 . By the triangle inequality, the above orthogonal equality, using Hölder’s inequality

to remove ζ since ζ is a projection in A, and finally by Lemma 3.4, we get

I ≲ λ−2
( ∑

n≥100

∑
s≥0

∥∥∥∥∑
j

εjζ
∑

v∈2n+s

Gn+s,vT n,s,v
j bn− j,sζ

∥∥∥∥
L2(L∞(m)⊗A)

)2

≲ λ−2
( ∑

n≥100

∑
s≥0

(∑
j

∥∥∥∥ζ ∑
v∈2n+s

Gn+s,vT n,s,v
j bn− j,sζ

∥∥∥∥2

L2(A)

)1/2)2

≲ λ−2
( ∑

n≥100

∑
s≥0

(2−(n+s)γ+2(n+s)ιC�λ∥ f ∥L1())
1
2

)2

≲ λ−1C�∥ f ∥L1(A).

For the term II, by the fact that {εj } j∈Z is a bounded sequence, using Hölder’s inequality to remove ζ
and by Lemma 3.5, we get

II ≲ λ−1
∑

n≥100

∑
s≥0

∑
j

∑
v∈2n+s

∥Ln,s,v
j bn− j,s∥L1(A)

≲ λ−1
∑

n≥100

∑
s≥0

2−(n+s)αC�∥ f ∥L1(A) ≲ C�λ−1
∥ f ∥L1(A).

Hence we complete the proof of (3-4) based on Lemmas 3.3–3.5. Their proofs will be given in Section 4.

3C. Estimates for the good functions. Now we turn to the estimates for good functions. The proofs
of diagonal terms and off-diagonal terms will be quite different. We first consider the diagonal terms,
which are simpler since they behave similar to those in the classical Calderón–Zygmund decomposition.
Following the classical strategy, we should first establish the L2 boundedness of T. In this situation, the
condition for the kernel � in fact can be relaxed to � ∈ L(log+ L)1/2(Sd−1).

Lemma 3.6. Suppose that � satisfy (1-3), � ∈ L(log+ L)1/2(Sd−1) and the cancellation property∫
Sd−1 �(θ) dσ(θ)= 0. Then we have

∥T f ∥L2(L∞(m)⊗A) ≲ ∥ f ∥L2(A),

where the implicit constant above depends only on the dimension and �.

Remark. It should be pointed out that the cancellation condition
∫

Sd−1 �(θ) dθ = 0 in Theorem 2.4 is
only used in this lemma to guarantee the L2 boundedness of T.

The proof of Lemma 3.6 will be given in Section 5. Based on this lemma, we could prove required
bound for the diagonal term gd of good functions as follows. By using the property of qk’s in Lemma 3.1,
Parcet [2009] obtained the following basic property of gd :

∥gd∥L1(A) ≲ ∥ f ∥L1(A), ∥gd∥L∞(A) ≲ λC
−1
� . (3-8)

By Lemma 3.6, it is not difficult to see that the L2 norm of T is bounded by C� (see the details in
Section 5A for its proof). Therefore we get the estimate for gd as follows:

ϕ̃
(
|T gd |>

λ

4

)
≲ λ−2

∥T gd∥
2
L2(L∞(m)⊗A) ≲ λ

−2C2
�∥gd∥

2
L2(A)

≲ λ−2C2
�∥gd∥L1(A)∥gd∥L∞(A) ≲ λ

−1C�∥ f ∥L1(A),
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where in the first inequality we use Chebyshev’s inequality, the second inequality follows from Lemma 3.6,
the third and fourth inequalities just follow from (3-8).

In the remaining parts of this subsection, we give effort to the estimate of goff. We first use Lemma 3.2
to reduce the proof to the case ζT goffζ . In fact

T goff = (1A − ζ )T goff(1A − ζ )+ ζT goff(1 − ζ )+ (1 − ζ )T goffζ + ζT goffζ.

By Lemma 3.2 and the same argument as used for the bad functions, it is sufficient to consider the last
term ζT goffζ above. Thus our goal is to prove

ϕ̃
(
|ζT goffζ |>

λ

8

)
≲ λ−1C�∥ f ∥L1(A). (3-9)

Next we introduce another expression of the off-diagonal terms goff and related estimates which were
proved in [Parcet 2009].

Lemma 3.7. Let d fs be martingale difference. We can rewrite goff as

goff =

∑
s≥1

∑
k∈Z

pkd fk+sqk+s−1 + qk+s−1d fk+s pk =:

∑
s≥1

∑
k∈Z

gk,s =:

∑
s≥1

g(s).

The martingale difference sequence of g(s) satisfies dg(s)k+s = gk,s and supp∗ gk,s ≤ pk ≤ 1A − qk , where
supp∗ is weak support projection defined by supp∗ a = 1A − q, with q is the greatest projection satisfying
qaq = 0. Meanwhile, we have the estimates

sup
s≥1

∥g(s)∥2
L2(A) = sup

s≥1

∑
k∈Z

∥gk,s∥
2
L2(A) ≲ λC

−1
� ∥ f ∥L1(A).

The strategy to deal with the off-diagonal terms goff is similar to that we use in the proof for the bad
functions, although the technical proofs may be different. By the expression of goff in Lemma 3.7 and the
formula f =

∑
n∈Z d fn , we can write

ζT goffζ = ζ
∑
s≥1

∑
j∈Z

εj Tj g(s)ζ = ζ
∑
s≥1

∑
j∈Z

∑
n∈Z

εj Tj d(g(s))n− j+sζ

= ζ
∑
s≥1

∑
j∈Z

∑
n∈Z

εj Tj gn− j,sζ = ζ
∑
s≥1

∑
n≥100

∑
j∈Z

εj Tj gn− j,sζ,

where the last equality follows from the fact if ζ(x) ̸=0 and n<100, we get Tj gn− j,s(x)=0 for all s ≥1 by
property in (ii) of Lemma 3.2, supp∗ gk,s ≤ pk ≤ 1A−qk in Lemma 3.7 and the similar arguments in (3-3).

By Chebyshev’s inequality, the triangle inequality, ζ is a projection in A and the orthogonal equality
(3-7), we then get

ϕ̃(|ζT goffζ |> λ)≲ λ
−2

∥ζT goffζ∥
2
L2(L∞(m)⊗A)

≲ λ−2
(∑

s≥1

∑
n≥100

(∑
j

∥Tj gn− j,s∥
2
L2(A)

)1/2)2

.

Hence to finish the proof for the off-diagonal terms goff, it is sufficient to show that∑
s≥1

∑
n≥100

(∑
j

∥Tj gn− j,s∥
2
L2(A)

)1/2

≲ (C�λ∥ f ∥L1(A))
1/2. (3-10)
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As done in the proof for the bad functions, we first show that (3-10) holds if � is restricted in
Dι

= {θ ∈ Sd−1
: |�(θ)| ≥ 2ι(n+s)

∥�∥1}, where ι ∈ (0, 1). Recall the definition of T n,s
j,ι in (3-5). Then we

have the following lemma.

Lemma 3.8. Suppose � ∈ L(log+ L)2(Sd−1). With all the notation above, we get∑
s≥1

∑
n≥100

(∑
j

∥T n,s
j,ι gn− j,s∥

2
L2(A)

)1/2

≲ (C�λ∥ f ∥L1(A))
1/2.

The proof of Lemma 3.8 will be given in Section 5. By Lemma 3.8, to prove (3-10), we only need to
show (3-10) under the condition that the kernel function � satisfies ∥�∥∞ ≤ 2ι(n+s)

∥�∥1 in each Tj . For
each fixed s ≥ 1 and n ≥ 100, we make a microlocal decomposition of Tj as follows:

Tj =

∑
v∈2n+s

T n,s,v
j , T n,s,v

j = Gn+s,vT n,s,v
j + (I − Gn+s,v)T

n,s,v
j .

Here the notation T n,s,v
j , Gn+s,v is the same as those in the proof of the bad functions.

Lemma 3.9. Let n ≥ 100 and s ≥ 1. Suppose that ∥�∥∞ ≤ 2ι(n+s)
∥�∥1 in each Tj . Then we get the

estimate ∥∥∥∥ ∑
v∈2n+s

Gn+s,vT n,s,v
j gn− j,s

∥∥∥∥2

L2(A)
≲ 2−(n+s)(γ−2ι)

∥�∥
2
1∥gn− j,s∥

2
L2(A).

Lemma 3.10. Let n ≥ 100 and s ≥ 1. Suppose ∥�∥∞ ≤ 2ι(n+s)
∥�∥1 in each Tj . There exists a constant

κ > 0 such that ∑
v∈2n+s

∥(I − Gn+s,v)T
n,s,v
j gn− j,s∥L2(A) ≲ 2−(n+s)κ

∥�∥1∥gn− j,s∥L2(A).

The proofs of Lemmas 3.9 and 3.10 will be given in Section 5. Now we use Lemmas 3.9 and 3.10 to
prove (3-10) as follows:∑
s≥1

∑
n≥100

(∑
j

∥Tj gn− j,s∥
2
L2(A)

)1/2

≤

∑
s≥1

∑
n≥100

(∑
j

( ∑
v∈2n+s

∥(I − Gn+s,v)T
n,s,v
j gn− j,s∥L2(A)

)2)1/2

+

∑
s≥1

∑
n≥100

(∑
j

∥∥∥∥ ∑
v∈2n+s

Gn+s,vT n,s,v
j gn− j,s

∥∥∥∥2

L2(A)

)1/2

≲ (C�λ∥ f ∥L1(A))
1/2,

where in the second inequality we use Lemmas 3.9 and 3.10, with the fact that
∑

j ∥gn− j,s∥
2
L2(A) ≲

λC−1
� ∥ f ∥L1(A) for all s ≥ 1 in Lemma 3.7. Thus to finish the proof for good functions, it remains to show

Lemmas 3.6, 3.8, 3.9 and 3.10, which are all given in Section 5.

Remark 3.11. At present, it is easy to see that the proofs for off-diagonal terms of good functions are
similar to that of bad functions. Notice that for the bad functions, we can deal with the diagonal terms
(i.e., s = 0) and the off-diagonals terms (i.e., s > 1) in a unified way. However this cannot be done for
the good functions; thus we prove the diagonal terms gd and the off-diagonal terms goff using different
methods. The main reason comes from the fact that goff has the following property: for all Q ∈Qn− j+s−1,
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Q gn− j,s(y) dy = 0. Such kind of cancellation property is crucial in the proof of Lemma 3.10. But the

diagonal terms gd do not have this cancellation property.

4. Proofs of lemmas related to the bad functions

In this section, we begin to prove all the lemmas for the bad functions in Section 3B. Before that we
introduce some lemmas needed in our proof. We first state Schur’s Lemma which will be used later.

Lemma 4.1 (Schur’s lemma). Suppose that T is an operator with the kernel K (x, y). Thus

T f (x)=

∫
Rd

K (x, y) f (y) dy.

Then T is bounded on L2(A) with bound
√

c1c2, where

c1 = sup
x∈Rd

∫
Rd

|K (x, y)| dy, c2 = sup
y∈Rd

∫
Rd

|K (x, y)| dx .

The proof of this lemma could be found in [Parcet 2009; Grafakos 2014a]. We also need the following
convexity inequality (or the Cauchy–Schwarz-type inequality) for the operator-valued function; see [Mei
2007, page 9]. Let (m, µ) be a measure space. Suppose that f : m → M is a weak-* integrable function
and g : m → C is an integrable function. Then∣∣∣∣∫

m
f (x)g(x) dµ(x)

∣∣∣∣2

≤

∫
m

| f (x)|2 dµ(x)
∫
m

|g(x)|2 dµ(x). (4-1)

Below we introduce some basic properties of the bad functions that we will use in our proof.

Lemma 4.2. Let bk,s be defined in (3-2). Fix any s ≥ 0. Then we have the following properties for the
bad functions bk,s :

(i) The L1 estimate
∑

k∈Z ∥bk,s∥L1(A) ≲ ∥ f ∥L1(A) holds.

(ii) For all k ∈ Z and Q ∈ Qk+s , the cancellation property
∫

Q bk,s(y) dy = 0 holds.

The proof of Lemma 4.2 can be found in [Cadilhac 2018; Parcet 2009]. Now we start to prove
Lemmas 3.3, 3.4 and 3.5.

4A. Proof of Lemma 3.3. Denote the kernel of the operator T n,s
j,ι by

K n,s
j,ι (x − y) :=�χDι

(
x − y
|x − y|

)
K j (x − y). (4-2)

By the support of K j , it is easy to see that

∥K n,s
j,ι ∥L1(Rd ) ≲

∫
Dι

∫ 2 j+1

2 j−1
|�(θ)|rd−12− jd dr dσ(θ)≲

∫
Dι

|�(θ)| dσ(θ).
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Therefore by Chebyshev’s inequality and the triangle inequality, using Hölder’s inequality to remove the
projection ζ , we get

ϕ̃

(∣∣∣∣ζ ∑
n≥100

∑
s≥0

∑
j∈Z

T n,s
j,ι bn− j,sεjζ

∣∣∣∣> λ) ≤ λ−1
∑

n≥100

∑
s≥0

∑
j∈Z

∥T n,s
j,ι bn− j,sεj∥L1(L∞(m)⊗A).

Since {εj }j is the Rademacher sequence, {εj }j is a bounded sequence. Then from above we have

λ−1
∑

n≥100

∑
s≥0

∑
j∈Z

∥T n,s
j,ι bn− j,s∥L1(A) ≲ λ

−1
∑

n≥100

∑
s≥0

∑
j∈Z

∥K n,s
j,ι ∥L1(Rd )∥bn− j,s∥L1(A)

≲ λ−1
∑

n≥100

∑
s≥0

∫
Dι

|�(θ)| dσ(θ)
∑

j

∥bn− j,s∥L1(A).

Now applying the property (i) in Lemma 4.2, the above estimate is bounded by

λ−1
∥ f ∥L1(A)

∫
Sd−1

#
{
(n, s) : n ≥ 100, s ≥ 0, 2ι(n+s)

≤
|�(θ)|

∥�∥1

}
|�(θ)| dσ(θ)

≲ λ−1
∥ f ∥L1(A)

∫
Sd−1

|�(θ)|

((
log+

|�(θ)|

∥�∥1

)2)
dσ(θ)≲ λ−1C�∥ f ∥L1(A). □

4B. Proof of Lemma 3.4. The proof of Lemma 3.4 is based on the following observation of some
orthogonality of the support of F(Gk,v): For a fixed k ≥ 100, we have

sup
ξ ̸=0

∑
v∈2k

∣∣∣∣82
(

2kγ
〈
ek
v,
ξ

|ξ |

)∣∣∣∣ ≲ 2kγ (d−2). (4-3)

In fact, by the homogeneity of 82(2kγ
⟨ek
v, ξ/|ξ |⟩), it suffices to take the supremum over the surface Sd−1.

For |ξ | = 1 and ξ ∈ supp82(2kγ
⟨ek
v, ξ/|ξ |⟩), denote by ξ⊥ the hyperplane perpendicular to ξ . Then it

is easy to see that
dist(ek

v, ξ
⊥)≲ 2−kγ . (4-4)

Since the mutual distance of ek
v’s is bounded by 2−kγ−4, there are at most 2kγ (d−2) vectors satisfying (4-4).

We hence get (4-3).
Notice that L2(M) is a Hilbert space; then the following vector-valued Plancherel’s theorem holds:

∥F f ∥L2(A) = (2π)d/2∥ f ∥L2(A) = (2π)d∥F−1 f ∥L2(A).

By applying this Plancherel’s theorem, the convex inequality for the operator-valued function (4-1), the
fact (4-3) and finally Plancherel’s theorem again, we get∥∥∥∥ ∑
v∈2n+s

Gn+s,vT n,s,v
j bn− j,s

∥∥∥∥2

L2(A)

= (2π)−d/2
∫

Rd
τ

(∣∣∣∣ ∑
v∈2n+s

8

(
2(n+s)γ

〈
en+s
v ,

ξ

|ξ |

〉)
F(T n,s,v

j bn− j,s)(ξ)

∣∣∣∣2)
dξ

≲
∫

Rd

∑
v∈2n+s

82
(

2(n+s)γ
〈
en+s
v ,

ξ

|ξ |

〉)
τ

( ∑
v∈2n+s

|F(T n,s,v
j bn− j,s)(ξ)|

2
)

dξ

≲ 2(n+s)γ (d−2)
∑

v∈2n+s

∥T n,s,v
j bn− j,s∥

2
L2(A). (4-5)
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Once it is showed that, for a fixed en+s
v ,∑

j

∥T n,s,v
j bn− j,s∥

2
L2(A) ≲ 2−2(n+s)γ (d−1)+2(n+s)ιλ∥�∥1∥ f ∥L1(A), (4-6)

by card(2n+s)≲ 2(n+s)γ (d−1), and applying (4-5) and (4-6) we get

∑
j

∥∥∥∥ ∑
v∈2n+s

Gn+s,vT n,s,v
j bn− j,s

∥∥∥∥2

L2(A)
≲ 2−(n+s)γ+2(n+s)ιλC�∥ f ∥L1(A),

which is the asserted bound of Lemma 3.4. Thus, to finish the proof of Lemma 3.4, it is sufficient to
show (4-6).

Recall the definition of bn− j,s in (3-2). By using triangle inequality, to prove (4-6), it is enough to
prove the four terms∑

j

∥T n,s,v
j pn− j f pn− j+s∥

2
L2(A),

∑
j

∥T n,s,v
j pn− j fn− j+s pn− j+s∥

2
L2(A),∑

j

∥T n,s,v
j pn− j+s f pn− j∥

2
L2(A),

∑
j

∥T n,s,v
j pn− j+s fn− j+s pn− j∥

2
L2(A)

satisfy the desired bound in (4-6). In the following we will only give the detailed proofs of the first and
the second terms above, since the proofs of the third and the fourth terms are similar.

We first consider the second term, which involves pn− j fn− j+s pn− j+s . Set the kernel of T n,s,v
j as

K n,s,v
j (x)= 0n+s

v (x)�(x)φj (x)|x |
−d.

By Young’s inequality, we get

∥T n,s,v
j pn− j fn− j+s pn− j+s∥

2
L2(A) ≲ ∥K n,s,v

j ∥
2
L1(Rd )

∥pn− j fn− j+s pn− j+s∥
2
L2(A). (4-7)

Below we give some estimates for the bound in (4-7). Recall that |�(θ)| ≤ 2(n+s)ι
∥�∥1 and the

definition of 0n+s
v in Section 3B. Then by some elementary calculation, we get

∥K n,s,v
j ∥L1(Rd ) ≲ 2−(n+s)γ (d−1)+(n+s)ι

∥�∥1. (4-8)

Notice that f is positive in A. By some basic properties of trace ϕ, we write

∥pn− j fn− j+s pn− j+s∥
2
L2(A) = ϕ(|pn− j fn− j+s pn− j+s |

2)

= ϕ(|pn− j+s fn− j+s pn− j |
2)= ϕ(pn− j fn− j+s pn− j+s fn− j+s pn− j )

≤ ϕ(pn− j f 1/2
n− j+s f 1/2

n− j+s pn− j ) · ∥ f 1/2
n− j+s pn− j+s f 1/2

n− j+s∥A. (4-9)

By the trace invariance and modularity of conditional expectations, the first term in the last line above
has the trace-preserving property

ϕ(pn− j fn− j+s pn− j )= ϕ(pn− j f pn− j )= ϕ(pn− j f ). (4-10)
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Applying the basic property of C∗ algebra, ∥aa∗
∥A = ∥a∗a∥A, we get

∥ f 1/2
n− j+s pn− j+s f 1/2

n− j+s∥A = ∥pn− j+s fn− j+s pn− j+s∥A

= ∥pn− j+sqn− j+s−1 fn− j+sqn− j+s−1 pn− j+s∥A

≤ 2d
∥pn− j+sqn− j+s−1 fn− j+s−1qn− j+s−1 pn− j+s∥A

≲ λC−1
� , (4-11)

where the second equality follows from the identity pk = pkqk−1 by the definition of pk and the last
inequality follows from qk fkqk ≤λC−1

� qk , property (ii) in Lemma 3.1. Now combining (4-7)–(4-11), we get∑
j

∥T n,s,v
j pn− j fn− j+s pn− j+s∥

2
L2(A) ≲ C−1

� λ2−2(n+s)γ (d−1)+2(n+s)ι
∥�∥

2
1

∑
j

ϕ(pn− j f )

≲ λ2−2(n+s)γ (d−1)+2(n+s)ι
∥�∥1∥ f ∥L1(A),

which is the required estimate in (4-6).
Next we give an estimate of the term corresponding to pn− j f pn− j+s . Notice that there is no average

of f in this case and the crucial property qk fkqk ≤ λC−1
� qk cannot be applied in the estimate (4-11). Our

strategy here is to add an average of f . In the following we first reduce the proof to the case that the
kernel is positive. To do that, we first take the decomposition

K n,s,v
j = (K n,s,v

j )+ − (K n,s,v
j )−,

where (K n,s,v
j )+ and (K n,s,v

j )− are positive functions. Then by using triangle inequality, we get∑
j

∥T n,s,v
j pn− j f pn− j+s∥

2
L2(A) ≲

∑
j

∥∥∥∥∫
(K n,s,v

j ( · − y))+ pn− j f pn− j+s(y) dy
∥∥∥∥2

L2(A)

+

∑
j

∥∥∥∥∫
(K n,s,v

j ( · − y))− pn− j f pn− j+s(y) dy
∥∥∥∥2

L2(A)
.

Therefore we need to consider the terms related to (K n,s,v
j )+ and (K n,s,v

j )−, respectively. We only consider
the term related to (K n,s,v

j )+ since the proof of the other term is similar. For convenience, in the remaining
part of this section we still use the abused notation K n,s,v

j to represent (K n,s,v
j )+.

Denote the support of K n,s,v
j by En,s,v

j . Then it is not difficult to see

En,s,v
j ⊂

{
x ∈ Rd

:

∣∣∣∣ x
|x |

− en+s
v

∣∣∣∣ ≤ 2−(n+s)γ , 2 j−1
≤ |x | ≤ 2 j+1

}
⊂ {x ∈ Rd

: |⟨x, en+s
v ⟩| ≤ 2 j+1, |x − ⟨x, en+s

v ⟩en+s
v | ≤ 2 j+1−(n+s)γ

}.

For any Q ∈Qn− j+s , let Qn− j ∈Qn− j be the s-th ancestor of Q. By the definition of pk , we may write

T n,s,v
j (pn− j f pn− j+s)(x)=

∫
Rd

K n,s,v
j (x − y)(pn− j f pn− j+s)(y) dy

=

∑
Q∈Qn− j+s

Q∩{x−En,s,v
j }̸=∅

πQn− j

(∫
Q

K n,s,v
j (x − y) f (y) dy

)
πQ
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=

∑
Q∈Qn− j+s

Q∩{x−En,s,v
j }̸=∅

∫
Q
[pn− j (K

n,s,v
j (x − · ) f ( · ))n− j+s pn− j+s](z) dz

=

∫
En,s,v

j (x)
[pn− j (K

n,s,v
j (x − · ) f ( · ))n− j+s pn− j+s](z) dz,

where we use the notation
En,s,v

j (x)=

⋃
Q∈Qn− j+s

Q∩{x−En,s,v
j }̸=∅

Q.

By the support of En,s,v
j , we see that En,s,v

j is contained in a rectangle with one sidelength at most 2 j+1 and
d−1 sidelength at most 2 j+1−(n+s)γ. Since for any Q ∈Qn− j+s , the sidelength satisfies l(Q)= 2 j−(n+s)

≤

2 j+1−(n+s)γ. So we get En,s,v
j (x) is contained in a rectangle with one sidelength at most 2 j+2 and d − 1

sidelength at most 2 j+2−(n+s)γ . Therefore we have the estimate

|En,s,v
j (x)| ≲ 2 jd−(n+s)γ (d−1).

Next by using the convexity inequality for the operator-valued function (4-1) and the preceding
inequality, we get

|T n,s,v
j (pn− j f pn− j+s)(x)|2 ≲ 2 jd−(n+s)γ (d−1)

∫
En,s,v

j (x)
|pn− j (K

n,s,v
j (x − · ) f ( · ))n− j+s pn− j+s(z)|2 dz.

Combining the above estimates, we get

∥T n,s,v
j pn− j f pn− j+s∥

2
L2(A)

≲ 2 jd−(n+s)γ (d−1)
∫

Rd

∫
En,s,v

j (x)
τ
(
|pn− j (K

n,s,v
j (x − · ) f ( · ))n− j+s pn− j+s(z)|2

)
dz dx . (4-12)

Since K n,s,v
j is a positive function and f is a positive operator-valued function in A, we see that

K (x − · ) f ( · ) is positive in A. Therefore

(K n,s,v
j (x − · ) f ( · ))n− j+s =

∑
Q∈Qn− j+s

1
|Q|

∫
Q

K n,s,v
j (x − y) f (y) dyχQ

≲
∑

Q∈Qn− j+s

1
|Q|

∫
Q

f (y) dyχQ2− jd+(n+s)ι
∥�∥1

= 2− jd+(n+s)ι
∥�∥1 fn− j+s .

Now applying the above estimate and using the same idea in the estimates of (4-9) and (4-11), we get

τ
(
|pn− j (K

n,s,v
j (x − · ) f ( · ))n− j+s pn− j+s(z)|2

)
= τ

(
pn− j (K

n,s,v
j (x − · ) f ( · ))n− j+s pn− j+s(K

n,s,v
j (x − · ) f ( · ))n− j+s pn− j (z)

)
≤ τ

(
pn− j (K

n,s,v
j (x − · ) f ( · ))n− j+s pn− j (z)

)
∥pn− j+s(K

n,s,v
j (x − · ) f ( · ))n− j+s pn− j+s(z)∥M

≲ 2−2 jd+2(n+s)ι
∥�∥

2
1τ(pn− j fn− j+s pn− j (z))∥pn− j+s fn− j+s pn− j+s∥A

≲ 2−2 jd+2(n+s)ι
∥�∥1λτ(pn− j fn− j+s pn− j (z)). (4-13)
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By the definition of En,s,v
j (x), for any fixed z ∈ Rd , we have the estimate∣∣∣∣∫

{x : En,s,v
j (x)∋z}

dx
∣∣∣∣ ≲ 2 jd−(n+s)γ (d−1). (4-14)

Plugging (4-13) into (4-12), then applying Fubini’s theorem with (4-14), and finally using the trace-
preserving property (4-10), we get∑

j

∥T n,s,v
j pn− j f pn− j+s∥

2
L2(A) ≲ 2−2(n+s)γ (d−1)+2(n+s)ι

∥�∥1λ
∑
j∈Z

ϕ(pn− j fn− j+s pn− j )

≲ 2−2(n+s)γ (d−1)+2(n+s)ι
∥�∥1λ∥ f ∥L1(A).

Hence, we complete the proof of Lemma 3.4. □

4C. Proof of Lemma 3.5. To prove Lemma 3.5, we have to face some oscillatory integrals which come
from Ln,s,v

j . Before stating the proof of Lemma 3.5, let us first give some notation. We introduce the
Littlewood–Paley decomposition. Let ψ be a radial C∞ function such that ψ(ξ)= 1 for |ξ | ≤ 1, ψ(ξ)= 0
for |ξ | ≥ 2 and 0 ≤ ψ(ξ)≤ 1 for all ξ ∈ Rd . Define βk(ξ)= ψ(2kξ)−ψ(2k+1ξ). Then βk is supported
in {ξ : 2−k−1

≤ |ξ | ≤ 2−k+1
}. Choose β̃ be a radial C∞ function such that β̃(ξ)= 1 for 1

2 ≤ |ξ | ≤ 2, β̃ is
supported in

{
ξ :

1
4 ≤ |ξ | ≤ 4

}
and 0 ≤ β̃(ξ) ≤ 1 for all ξ ∈ Rd. Set β̃k(ξ) = β̃(2kξ). Then it is easy

to see βk = β̃kβk . Define the convolution operators 3k and 3̃k with the Fourier multipliers βk and β̃k ,
respectively. That is,

3̂k f (ξ)= βk(ξ) f̂ (ξ), ̂̃
3k f (ξ)= β̃k(ξ) f̂ (ξ).

Then by the construction of βk and β̃k , we have 3k = 3̃k3k , I =
∑

k∈Z3k .
Write

Ln,s,v
j =

∑
k

(I − Gn+s,v)3k T n,s,v
j .

Then triangle inequality gives us

∥Ln,s,v
j bn− j,s∥L1(A) ≤

∑
k∈Z

∥(I − Gn+s,v)3k T n,s,v
j bn− j,s∥L1(A).

In the remaining part of this subsection, we show that two different estimates can be established for
∥(I − Gn+s,v)3k T n,s,v

j bn− j,s∥L1(A), which will give Lemma 3.5 by taking a sum over k ∈ Z with these
two different estimates.

Lemma 4.3. With all the notation above. Then there exists N > 0 such that the following estimate holds:

∥(I−Gn+s,v)3k T n,s,v
j bn− j,s∥L1(A)≲2−(n+s)γ (d−1)+(n+s)ι+(k− j)+(n+s)γ (1+2N )

∥�∥1∥bn− j,s∥L1(A). (4-15)

Proof. Applying Fubini’s theorem, we may write

(I − Gn+s,v)3k T n,s,v
j bn− j,s(x)=:

∫
Rd

Dn,s,v
k (x − y)bn− j,s(y) dy, (4-16)
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where Dn,s,v
k (x) is defined as the kernel of the operator (I −Gn+s,v)3k T n,s,v

j . More precisely, Dn,s,v
k can be

written as

Dn,s,v
k (x)=

1
(2π)d

∫
Rd

ei x ·ξhk,n,s,v(ξ)

∫
Rd

e−iξ ·ω�(ω)0n+s
v (ω)K j (ω) dω dξ, (4-17)

where hk,n,s,v(ξ)= (1 −8(2(n+s)γ
⟨en+s
v , ξ/|ξ |⟩))βk(ξ). Using Young’s inequality, we get

∥(I − Gn+s,v)3k T n,s,v
j bn− j,s∥L1(A) ≤ ∥Dn,s,v

k ∥L1(Rd )∥bn− j,s∥L1(A).

Hence in the following we only need to give an L1 estimate of Dn,s,v
k . In order to separate the rough

kernel, we make a change of variable ω = rθ . By Fubini’s theorem, Dn,s,v
k (x) can be written as

1
(2π)d

∫
Sd−1

�(θ)0n+s
v (θ)

{∫
Rd

∫
∞

0
ei⟨x−rθ,ξ⟩hk,n,s,v(ξ)K j (r)rd−1 dr dξ

}
dσ(θ). (4-18)

Concerning the support of K j , we have 2 j−1
≤ r ≤2 j+1. Integrating by parts with r , the integral involving r

can be rewritten as ∫
∞

0
e−i⟨rθ,ξ⟩(i⟨θ, ξ⟩)−1∂r [K j (r)rd−1

] dr.

Since θ ∈ supp0n+s
v , we have |θ − en+s

v | ≤ 2−(n+s)γ. By the support of 8, we see |⟨en+s
v , ξ/|ξ |⟩| ≥

21−(n+s)γ. Thus, ∣∣∣∣〈θ, ξ|ξ |
〉∣∣∣∣ ≥

∣∣∣∣〈en+s
v ,

ξ

|ξ |

〉∣∣∣∣ − ∣∣∣∣〈en+s
v − θ,

ξ

|ξ |

〉∣∣∣∣ ≥ 2−(n+s)γ . (4-19)

After integrating by parts with r , integrating by parts N times with ξ , the integral in (4-18) can be rewritten
as

1
(2π)d

∫
Sd−1

�(θ)0n+s
v (θ)

∫
Rd

∫
∞

0
ei⟨x−rθ,ξ⟩∂r [K j (r)rd−1

]

×
(I − 2−2k1ξ )

N

(1 + 2−2k |x − rθ |2)N (hk,n,s,v(ξ)(i⟨θ, ξ⟩)−1) dr dξ dσ(θ). (4-20)

In the following, we give explicit estimates of all terms in (4-20). We show that the following estimate
holds:

|(I − 2−2k1ξ )
N
[⟨θ, ξ⟩−1hk,n,s,v(ξ)]| ≲ 2(n+s)γ+k+2(n+s)γ N . (4-21)

Firstly we prove (4-21) when N = 0. By (4-19), we have

|(−i⟨θ, ξ⟩)−1
· hk,n,s,v(ξ)| ≲ |⟨θ, ξ⟩|−1 ≲ 2(n+s)γ+k .

Next we consider N = 1 in (4-21). By using product rule and some elementary calculation, we get

|∂ξi hk,n,s,v(ξ)| ≤

∣∣∣∣−∂ξi

[
8

(
2(n+s)γ

〈
en+s
v ,

ξ

|ξ |

〉)]
·βk(ξ)

∣∣∣∣ + |∂ξiβk(ξ) ·

(
1 −8

(
2(n+s)γ

〈
en+s
v ,

ξ

|ξ |

〉))∣∣∣∣
≲ 2(n+s)γ+k .
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Therefore by induction, we have |∂αξ hk,n,s,v(ξ)| ≲ 2((n+s)γ+k)|α| for any multi-indices α ∈ Zn
+

. By using
product rule again and (4-19), we have

|∂2
ξi
(⟨θ,ξ⟩)−1hk,n,s,v(ξ))| ≤ |2⟨θ,ξ⟩−3

·θ2
i ·hk,n,s,v(ξ)|+|2⟨θ,ξ⟩−2

·θi∂ξi hk,n,s,v(ξ)|+|⟨θ,ξ⟩−1∂2
ξi

hk,n,s,v(ξ)|

≲ 23((n+s)γ+k).

Hence we conclude that 2−2k
|1ξ [(⟨θ, ξ⟩)

−1hk,n,s,v(ξ)]| ≲ 2(n+s)γ+k+2(n+s)γ. Proceeding by induction,
we get (4-21).

By the definition of K j and using product rule, it is not difficult to get

|∂r (K j (r)rd−1)| ≲ 2−2 j . (4-22)

Now we choose N = [d/2] + 1. Since we need to get the L1 estimate of (4-20), by the support of
hk,n,s,v, |ξ | ≈ 2−k, ∫

|ξ |≈2−k

∫
Rd
(1 + 2−2k

|x − rθ |2)−N dx dξ ≤ C.

Now combine (4-22), (4-21) and above estimates. Next integrating with r , we get a bound 2 j. Note that
we suppose that ∥�∥∞ ≤ 2(n+s)ι

∥�∥1. Then integrating with θ , we get a bound 2−(n+s)γ (d−1)+(n+s)ι
∥�∥1.

So we finally get

∥Dn,s,v
k ∥L1(Rd ) ≲ 2−2 j+(n+s)γ+k+2(n+s)γ N+ j−(n+s)γ (d−1)+(n+s)ι

∥�∥1

= 2−(n+s)γ (d−1)+(n+s)ι− j+k+(n+s)γ (1+2N )
∥�∥1. (4-23)

Hence we complete the proof of Lemma 4.3 with N = [d/2] + 1. □

Lemma 4.4. With all the notation above, the following estimate holds:

∥(I − Gn+s,v)3k T n,s,v
j bn− j,s∥L1(A) ≲ 2−(n+s)γ (d−1)−(n+s)+ j−k+(n+s)ι

∥�∥1∥bn− j,s∥L1(A).

Proof. Using 3k =3k3̃k , we write

∥(I − Gn+s,v)3k T n,s,v
j bn− j,s∥L1(A) = ∥(I − Gn+s,v)3̃k3k T n,s,v

j bn− j,s∥L1(A)

≲ ∥(I − Gn+s,v)3̃k∥L1(A)→L1(A)∥3k T n,s,v
j bn− j,s∥L1(A).

Then it is easy to see that the proof of this lemma follows from the two estimates

∥(I − Gn+s,v)3̃k∥L1(A)→L1(A) ≲ 1 (4-24)

and

∥3k T n,s,v
j bn− j,s∥L1(A) ≲ 2−(n+s)γ (d−1)−(n+s)+ j−k+(n+s)ι

∥�∥1∥bn− j,s∥L1(A). (4-25)

We first consider the estimate (4-24). The kernel of (I − Gn+s,v)3̃k is the inverse Fourier transform of
h̃k,n,s,v(ξ)= [1 −8(2(n+s)γ

⟨en+s
v , ξ/|ξ |⟩)]β̃k(ξ). So

∥(I − Gn+s,v)3̃k∥L1(A)→L1(A) ≲ ∥F(h̃k,n,s,v)∥L1(Rd ) = ∥F [h̃k,n,s,v(A
n,s,v
k · )]∥L1(Rd ),
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where An,s,v
k is an invertible linear transform such that An,s,v

k en+s
v = 2−(n+s)γ−ken+s

v and An,s,v
k y = 2−k y

if ⟨y, en+s
v ⟩ = 0. For all α ∈ Zd

+
, it is straightforward to check that

∥∂α[h̃k,n,s,v(A
n,s,v
k · )]∥L2(Rd ) ≲ Cα

uniformly with k, n, s, v; see [Seeger 1996, page 100]. Therefore splitting the following integral into two
parts and using Plancherel’s theorem, we get

∥F [h̃k,n,s,v(A
n,s,v
k ·)]∥L1(Rd )

=

(∫
|ξ |≥1

+

∫
|ξ |<1

)
|F [h̃k,n,s,v(A

n,s,v
k ·)](ξ)|dξ

≲

(∫
|ξ |≥1

dξ
|ξ |2([d/2]+1)

)1/2 ∑
|α|=[d/2]+1

(∫
Rd

|ξαF [h̃k,n,s,v(A
n,s,v
k ·)](ξ)|2 dξ

)1/2

+∥F [h̃k,n,s,v(A
n,s,v
k )]∥L2(Rd )

≲
∑

|α|=[d/2]+1

∥∂α[h̃k,n,s,v(A
n,s,v
k ·)]∥L2(Rd )+∥h̃k,n,s,v(A

n,s,v
k ·)∥L2(Rd )≲ 1,

which completes the proof of (4-24).
Now we turn to another estimate (4-25). Write

3k T n,s,v
j bn− j,s = β̌k ∗ K n,s,v

j ∗ bn− j,s = K n,s,v
j ∗ β̌k ∗ bn− j,s .

Then by the estimate (4-8) of K n,s,v
j , we get

∥3k T n,s,v
j bn− j,s∥L1(A) ≤ ∥K n,s,v

j ∥L1(Rd )∥β̌k ∗ bn− j,s∥L1(A)

≲ 2−(n+s)(γ (d−1)−ι)
∥�∥1∥β̌k ∗ bn− j,s∥L1(A). (4-26)

Note that βk(ξ)= β(2kξ); we get β̌k(x)= 2−kd β̌(2−k x). Therefore we see∫
Rd

|∇[β̌k](x)| dx = 2−k(d+1)
∫

Rd
|∇(β̌)(2−k x)| dx = 2−k

∫
Rd

|∇(β̌)(x)| dx . (4-27)

Using the cancellation property (ii) in Lemma 4.2, we see that, for all Q ∈Qn− j+s ,
∫

Q bn− j,s(y) dy = 0.
Let yQ be the center of Q. Notice that, for all y ∈ Q, |y − yQ |≲ 2 j−n−s . Using this cancellation property,
we then get

∥β̌k ∗ bn− j,s∥L1(A) =

∫
Rd
τ

(∣∣∣∣ ∑
Q∈Qn− j+s

∫
Q
[β̌k(x − y)− β̌k(x − yQ)]bn− j,s(y) dy

∣∣∣∣) dx

≤

∫
Rd

∑
Q∈Qn− j+s

∫
Q

∣∣∣∣∫ 1

0
⟨y − yQ,∇[β̌k](x − ρy − (1 − ρ)yQ)⟩dρ

∣∣∣∣τ(|bn− j,s(y)|) dy dx

≲ 2 j−n−s−k
∥bn− j,s∥L1(A),

where in the second inequality we just use the mean value formula. Combining this inequality with (4-26)
yields the estimate (4-25). Hence we finish the proof of this lemma. □
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Now we conclude the proof of Lemma 3.5 as follows. Let ε0 ∈ (0, 1) be a constant which will be
chosen later. Notice that card(2n+s)≲ 2(n+s)γ (d−1). Then by Lemma 4.3 with N = [d/2] + 1, Lemma 4.4
and the property

∑
j ∥bn− j,s∥L1(A) ≲ ∥ f ∥L1(A) in Lemma 4.2, we get∑

j

∑
v∈2n+s

∥Ln,s,v
j bn− j,s∥L1(A)

≤

∑
j

∑
v∈2n+s

( ∑
k≤ j−[(n+s)ε0]

+

∑
k≥ j−[(n+s)ε0]

)
∥(I − Gn+s,v)3k T n,s,v

j bn− j,s∥L1(A)

≲
∑

j

(2−(n+s)(ε0−γ (3+2[d/2])−ι)
+ 2−(n+s)(1−ε0−ι))∥bn− j,s∥L1(A) ≲ 2−(n+s)α

∥ f ∥L1(A),

where we choose the constants 0< ι≪ γ ≪ ε0 ≪ 1 such that the constant α is defined by

α = min
{
ε0 − γ

(
3 + 2

[d
2

])
− ι, 1 − ε0 − ι

}
> 0. □

5. Proofs of lemmas related to the good functions

In this section, we begin to prove all lemmas for the good functions in Section 3C. The proofs for
off-diagonal terms are similar to those for bad functions in Section 4, so we shall be brief and only indicate
necessary changes in the proofs of off-diagonal terms. We first consider the proofs of diagonal terms.

5A. Proof of Lemma 3.6. Recall the definition of T. Let K j be the kernel of the operator Tj , i.e.,
K j (x) = �(x)φj (x)|x |

−d. Notice that {εj }j is a Rademacher sequence on a probability space (m, P);
then applying the equality (3-7), we can write

∥T f ∥
2
L2(L∞(m⊗A)) =

∑
j∈Z

∥Tj f ∥
2
L2(A) = (2π)−d/2

∫
Rd

∑
j∈Z

|K̂ j (ξ)|
2τ(| f̂ (ξ)|2) dξ,

where the second equality follows from Plancherel’s theorem since L2(M) is a Hilbert space. In the
following we show that ∑

j∈Z

|K̂ j (ξ)|
2 <∞ (5-1)

holds for almost every ξ ∈ Rd . Once we prove the inequality (5-1), Lemma 3.6 follows from Plancherel’s
theorem. Now we fix ξ ̸= 0. By the cancellation property of �,

∫
Sd−1 �(θ) dσ(θ)= 0, we get

|K̂ j (ξ)| =

∣∣∣∣∫
Rd

K j (x)(e−iξ x
− 1) dx

∣∣∣∣ ≲ 2 j
|ξ |∥�∥1.

Therefore the sum over all j’s satisfying 2 j
|ξ | ≤ 1 is convergent.

Now we turn to the case 2 j
|ξ |> 1. We split the kernel �(θ) into two parts:

�1(θ)=�(θ)χ{θ∈Sd−1:|�(θ)|≤2 jν |ξ |ν∥�∥1} and 1 −�1(θ)

for some constant ν ∈
(
0, 1

2

)
. We first consider �1. By making a change of variable x = rθ , we get

|K̂ j (ξ)| ≤

∫
Sd−1

|�1(θ)|

∣∣∣∣∫
R

e−ir⟨θ,ξ⟩φj (r)r−1 dr
∣∣∣∣ dσ(θ). (5-2)
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It is easy to see that
∣∣∫

R
e−ir⟨θ,ξ⟩φj (r)r−1 dr

∣∣ is finite. By integrating by parts with the variable r , we get∣∣∣∣∫
R

e−ir⟨θ,ξ⟩φj (r)r−1 dr
∣∣∣∣ =

∣∣∣∣∫
R

e−ir⟨θ,ξ⟩
⟨θ, ξ⟩−1∂r [φj (r)r−1

] dr
∣∣∣∣ ≲ (2 j

|ξ |)−1
|⟨θ, ξ ′

⟩|
−1,

where ξ ′
= ξ/|ξ |. Interpolating these two estimates we get, that, for any δ ∈

( 1
2 , 1

)
,∣∣∣∣∫

R

e−ir⟨θ,ξ⟩φj (r)r−1 dr
∣∣∣∣ ≲ (2 j

|ξ |)−δ|⟨θ, ξ ′
⟩|

−δ.

Plugging the above estimate into (5-2) with the fact
∫

Sd−1 |⟨θ, ξ ′
⟩|

−δ dσ(θ) <∞, we hence get

|K̂ j (ξ)| ≲ (2 j
|ξ |)−δ+ν∥�∥1,

which is sufficient for us taking a sum over all j’s satisfying 2 j
|ξ |> 1. Consider the other term 1 −�1.

Then we get∑
j :2 j |ξ |>1

|K̂ j (ξ)|
2

≲
∑

j :2 j |ξ |>1

(∫
{θ∈Sd−1:|�(θ)|≥(2 j |ξ |)ν∥�∥1}

|�(θ)|dσ(θ)
)2

=

∫
Sd−1×Sd−1

#
{

j : 1< 2 j
|ξ | ≤ min

{(
|�(θ)|

∥�∥1

)1/ν

,

(
|�(α)|

∥�∥1

)1/ν}}
|�(θ)||�(α)|dσ(θ)dσ(α)

≲

(∫
Sd−1

|�(θ)|

(
1+

[
log+

|�(θ)

∥�∥1

]1/2)
dσ(θ)

)2

<∞,

where the last inequality just follows from � ∈ L(log+ L)1/2(Sd−1). Hence we complete the proof. □

5B. Proof of Lemma 3.8. Recall the definition of the kernel K n,s
j,ι in (4-2). By Young’s inequality, it is

easy to see that

∥T n,s
j,ι gn− j,s∥L2(A) ≤ ∥K n,s

j,ι ∥L1(Rd )∥gn− j,s∥L2(A) ≲
∫

Dι

|�(θ)| dσ(θ)∥gn− j,s∥L2(A).

Now applying
∑

j ∥gn− j,s∥
2
L2(A) ≲ λC

−1
� ∥ f ∥L1(A) in Lemma 3.7 and the above estimate, we get

∑
s≥1

∑
n≥100

(∑
j

∥T n,s
j,ι gn− j,s∥

2
L2(A)

)1/2

≲
∑
s≥1

∑
n≥100

∫
Dι

|�(θ)| dσ(θ)(λC−1
� ∥ f ∥L1(A))

1/2

≲
∫

Sd−1
#{(s, n) : s ≥ 1, n ≥ 100, |�(θ)| ≥ 2(n+s)ι

∥�∥1}|�(θ)| dσ(θ)(λC−1
� ∥ f ∥L1(A))

1/2

≲ (C�λ∥ f ∥L1(A))
1/2,

which is our desired estimate. Hence we complete the proof. □
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5C. Proof of Lemma 3.9. By applying Plancherel’s theorem, the convex inequality for the operator-valued
function (4-1), the fact (4-3) and finally Plancherel’s theorem again, we get∥∥∥∥ ∑
v∈2n+s

Gn+s,vT n,s,v
j gn− j,s

∥∥∥∥2

L2(A)

= (2π)−d/2
∫

Rd
τ

(∣∣∣∣ ∑
v∈2n+s

8

(
2(n+s)γ

〈
en+s
v ,

ξ

|ξ |

〉)
F(T n,s,v

j gn− j,s)(ξ)

∣∣∣∣2)
dξ

≲
∫

Rd

∑
v∈2n+s

82
(

2(n+s)γ
〈
en+s
v ,

ξ

|ξ |

〉) ∑
v∈2n+s

τ(|F(T n,s,v
j gn− j,s)(ξ)|

2) dξ

≲ 2(n+s)γ (d−2)
∑

v∈2n+s

∥T n,s,v
j gn− j,s∥

2
L2(A). (5-3)

Using Young’s inequality and (4-8), we get that ∥T n,s,v
j gn− j,s∥

2
L2(A) is bounded by

∥K n,s,v
j ∥

2
L1(Rd )

∥gn− j,s∥
2
L2(A) ≲ 22(n+s)(−γ (d−1)+ι)

∥�∥
2
1∥gn− j,s∥

2
L2(A). (5-4)

Now plugging (5-4) into (5-3) and using the fact card(2n+s)≲ 2(n+s)γ (d−1), we get∥∥∥∥ ∑
v∈2n+s

Gn+s,vT n,s,v
j gn− j,s

∥∥∥∥2

L2(A)
≲ 2(n+s)(−γ+2ι)

∥�∥
2
1∥gn− j,s∥

2
L2(A),

which is just our desired estimate. □

5D. Proof of Lemma 3.10. Using I =
∑

k 3k and the triangle inequality, we get

∥(I − Gn+s,v)T
n,s,v
j gn− j,s∥L2(A) ≤

∑
k

∥(I − Gn+s,v)3k T n,s,v
j gn− j,s∥L2(A).

Let ε0 ∈ (0, 1) be a constant which will be chosen later. Separating the above sum into two parts, we will
prove that∑
k≤ j−[(n+s)ε0]

∥(I − Gn+s,v)3k T n,s,v
j gn− j,s∥L2(A)

≲ 2−(n+s)(γ (d−1)+ε0−γ (3+2[d/2])−ι)
∥�∥1∥gn− j,s∥L2(A) (5-5)

and ∑
k> j−[(n+s)ε0]

∥(I − Gn+s,v)3k T n,s,v
j gn− j,s∥L2(A) ≲ 2−(n+s)(γ (d−1)+1−ε0−ι)∥�∥1∥gn− j,s∥L2(A). (5-6)

Based on (5-5), (5-6) and the fact card(2n+s) ≲ 2(n+s)γ (d−1), we finish the proof of this lemma by
choosing the constants 0< ι≪ γ ≪ ε0 ≪ 1 such that the constant κ is defined by

κ = min
{
ε0 − γ

(
3 + 2

[d
2

])
− ι, 1 − ε0 − ι

}
> 0.

Now we give the proof of (5-5) and (5-6). Consider (5-5) first. Recall that Dn,s,v
k (x) is defined as the

kernel of the operator (I − Gn+s,v)3k T n,s,v
j in (4-17). Applying Young’s inequality and the estimate
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of Dn,s,v
k in (4-23), we get

∥(I − Gn+s,v)3k T n,s,v
j gn− j,s∥L2(A) ≤ ∥Dn,s,v

k ∥L1(Rd )∥gn− j,s∥L2(A)

≲ 2−(n+s)(γ (d−1)−ι−(3+2[d/2])γ )− j+k
∥�∥1∥gn− j,s∥L2(A).

Taking a sum over k ≤ j − [(n + s)ε0] yields (5-5).
Next we turn to the proof of (5-6). By Plancherel’s theorem, we see that

∥(I − Gn+s,v)3k T n,s,v
j gn− j,s∥L2(A) ≲ ∥3k T n,s,v

j gn− j,s∥L2(A). (5-7)

Write
3k T n,s,v

j gn− j,s = β̌k ∗ K n,s,v
j ∗ gn− j,s = K n,s,v

j ∗ β̌k ∗ gn− j,s .

Then by Young’s inequality and (4-8), we get

∥3k T n,s,v
j gn− j,s∥L2(A) ≤ ∥K n,s,v

j ∥L1(Rd )∥β̌k ∗ gn− j,s∥L2(A)

≲ 2−(n+s)(γ (d−1)−ι)
∥�∥1∥β̌k ∗ gn− j,s∥L2(A). (5-8)

Recall the definition of gn− j,s ; we have the following cancellation property: for all s ≥ 1 and Q ∈

Qn− j+s−1, we have
∫

Q gn− j,s(y) dy = 0. Let yQ be the center of Q. Using this cancellation property,
we get

β̌k ∗ gn− j,s(x)=

∫
Rd

∑
Q∈Qn− j+s−1

[β̌k(x − y)− β̌k(x − yQ)]χQ(y)gn− j,s(y) dy

=:

∫
Rd

Kk(x, y)gn− j,s(y) dy,

with Kk(x, y) =
∑

Q∈Qn− j+s−1
[β̌k(x − y)− β̌k(x − yQ)]χQ(y). Below we will apply Schur’s lemma to

give an estimate of ∥β̌k ∗ gn− j,s∥L2(A). We first consider Kk(x, y) as follows: For any y, there exists a
unique cube Q ∈ Qn− j+s−1 such that y ∈ Q. Then by (4-27),∫

Rd
|Kk(x, y)| dx ≤

∫
Rd

|y − yQ |

∫ 1

0
|∇[β̌k](x − ρy − (1 − ρ)yQ)| dρ dx ≲ 2 j−n−s−k . (5-9)

For any x ∈ Rd , we have the estimate∫
Rd

|Kk(x, y)| dy ≤

∑
Q∈Qn− j+s−1

∫
Q

|y − yQ |

∫ 1

0
|∇[β̌k](x − ρy − (1 − ρ)yQ)| dρ dy

≲ 2 j−n−s−k
∫ 1

0

∑
Q∈Qn− j+s−1

2−kd
∫

Q
|∇[β̌](2−k(x − ρy − (1 − ρ)yQ))| dy dρ

≲ 2 j−n−s−k (5-10)

once we can show that the estimate below holds uniformly in x, ρ, k∑
Q∈Qn− j+s−1

2−kd
∫

Q
|∇[β̌](2−k(x − ρy − (1 − ρ)yQ))| dy ≲ 1. (5-11)
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In the following we prove (5-11). Making a change of variables ỹ = 2−k y, the integral now integrates
over all cubes Q ∈ Qn− j+s−1+k with ỹQ = 2−k yQ the center of this cube Q, which is rewritten as∑
Q∈Qn− j+s−1+k

∫
Q

|∇[β̌](2−k x − ρ ỹ − (1 − ρ)ỹQ)| d ỹ

=

( ∑
dist(Q,2−k x)≤2

+

∞∑
l=1

∑
2l<dist(Q,2−k x)≤2l+1

) ∫
Q

|∇[β̌](2−k x − ρ ỹ − (1 − ρ)ỹQ)| d ỹ

=: I + II,

where in the second line we split the sum
∑

Q∈Qn− j+s−1+k
into two parts. Notice that the sidelength of Q ∈

Qn− j+s−1+k is 2−n+ j−s+1−k , which is less than 1 since we only consider the sum over k > j −[(n +s)ε0]

and 0<ε0 ≪ 1. For I, note that the cubes belonging in Qn− j+s−1+k are disjoint with interior; therefore the
sum

∑
dist(Q,2−k x)≤2 over these cubes is supported in B(2−k x, 2+

√
d), a ball with center 2−k x and radius

2 +
√

d . Thus we get
|I | ≲

∑
dist(Q,2−k x)≤2

|Q| ≤ |B(2−k x, 2 +
√

d)| ≤ C.

Consider II. Since ỹ lies in a cube Q ∈Qn− j+s−1+k and ỹQ is the center of this cube, we get ρ ỹ+(1−ρ)ỹQ

lies in a line segment which is started at ỹQ and ended at ỹ. So we have ρ ỹ + (1 − ρ)ỹQ ∈ Q for any
ρ ∈ [0, 1]. Because of 2l < dist(Q, 2−k x) ≤ 2l+1 and l(Q) ≤ 1, we get |2−k x − ρ ỹ − (1 − ρ)ỹQ | ≈ 2l.
Combining the above estimates, we get

|II | ≲
∞∑

l=1

∑
2l<dist(Q,2−k x)≤2l+1

|Q|2−(d+1)l ≲
∞∑

l=1

2−l
≤ C,

where in the first inequality we also use the fact ∇[β̌] is a Schwartz function which decays fast away
from the origin, while the second inequality follows from the fact that the sum over all cubes 2l <

dist(Q, 2−k x)≤ 2l+1 is supported in a ball with center 2−k x and approximate radius 2l. Hence we finish
the proof of (5-11).

Now utilizing Schur’s lemma in Lemma 4.1 with (5-9) and (5-10), we get

∥β̌k ∗ gn− j,s∥L2(A) ≲ 2 j−n−s−k
∥gn− j,s∥L2(A).

Plugging this inequality into (5-8) and later (5-7) , we get

∥(I − Gn+s,v)3k T n,s,v
j gn− j,s∥L2(A) ≲ 2 j−k−(n+s)(γ (d−1)+1−ι)

∥�∥1∥gn− j,s∥L2(A).

Taking a sum of the above estimate over k > j −[(n +s)ε0] yields (5-6). Hence we complete the proof. □

Appendix: Strong ( p, p) bound for {Mr}r>0

Theorem A.1. Suppose that � satisfies (1-3) and � ∈ L1(Sd−1). Then the operator sequence {Mr }r>0 is
of maximal strong type (p, p) for 1< p ≤ ∞, i.e.,

∥{Mr f }r>0∥L p(A,ℓ∞(0,∞)) ≲ ∥�∥1∥ f ∥L p(A).
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Proof. By decomposing the functions � and f into four parts (i.e., real positive part, real negative
part, imaginary positive part, imaginary negative part), together with triangle inequality for the norm
∥ · ∥L p(A,ℓ∞(0,∞)), we only consider the case that � is a positive function and f is positive in A. Then by
(1-5), it is enough to show that for any f ∈ L+

p (A) there exists a positive function F ∈ L+
p (A) such that

Mr f ≤ F for all r > 0 and ∥F∥L p(A) ≲ ∥�∥1∥ f ∥L p(A). (A-1)

We will use the method of rotation. Let f ∈ L+
p (A), by making a change of variables x − y = rθ , we get

Mr f (x)=
1

|B(x, r)|

∫
B(x,r)

�(x − y) f (y) dy

=
1
vn

∫
Sd−1

�(θ)
1
rd

∫ r

0
f (x − sθ)sd−1 ds dσ(θ)

≲
∫

Sd−1
�(θ)

(
1
r

∫ r

0
f (x − sθ) ds

)
dσ(θ).

For a fixed θ ∈ Sd−1, we define the directional Hardy–Littlewood average operator as

Mθ
r f (x)=

1
r

∫ r

0
f (x − sθ) ds.

We will prove at the end of this section the result

∥{Mθ
r f }r>0∥L p(A,ℓ∞(0,∞) ≲ ∥ f ∥L p(A). (A-2)

Assuming (A-2) and using (1-5), there exists a positive function Fθ ∈ L+
p (A) such that

Mθ
r f ≤ Fθ for all r > 0 and ∥Fθ∥L p(A) ≲ ∥ f ∥L p(A).

Now if set F(x)=
∫

Sd−1 �(θ)Fθ (x) dσ(θ), then Mr f (x)≲ F(x) and

∥F∥L p(A) ≲
∫

Sd−1
�(θ)∥Fθ∥L p(A) dσ(θ)≲ ∥�∥1∥ f ∥L p(A).

Thus F is the desired function satisfying (A-1).
It remains to show (A-2). Let e1 = (1, 0, . . . , 0) be the unit vector. Now, for any orthogonal matrix A,

we have

MA(e1)
r f (x)= Me1

r ( f ◦ A)(A−1x), (A-3)

which implies that the L p boundedness of {Mθ
r }r>0 can be reduced to that of {Me1

r }r>0. Let f ∈

L p(L∞(R
d)⊗M). Without loss of generality, we may assume that f is positive. Fixing x2, . . . , xd ∈ R,

we consider f ( · , x2, . . . , xd) as a function in L p(L∞(R)⊗M)+. By the strong-type (p, p) boundedness
of noncommutative Hardy–Littlewood maximal operator (see [Mei 2007]), we know that, for 1< p ≤ ∞,

∥{Me1
r f ( · , x2, . . . , xd)}r>0∥L p(L∞(R)⊗M,ℓ∞(0,∞)) ≲ ∥ f ( · , x2, . . . , xd)∥L p(L∞(R)⊗M).
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By (1-5), there exists a positive function F( · , x2, . . . , xd) ∈ L p(L∞(R)⊗M) such that, for any r > 0,
Me1

r f (x)≤ F(x) and

∥F( · , x2, . . . , xd)∥L p(L∞(R)⊗M) ≲ ∥ f ( · , x2, . . . , xd)∥L p(L∞(R)⊗M).

Then it is easy to see that

∥F∥L p(L∞(Rd )⊗M) ≲ ∥ f ∥L p(L∞(Rd )⊗M).

Therefore, we conclude that {Me1
r }r>0 is of strong-type (p, p). □
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Let E ⊂ B(1) ⊂ R2 be an H1 measurable set with H1(E) < ∞, and let L ⊂ R2 be a line segment with
H1(L) = H1(E). It is not hard to see that Fav(E) ≤ Fav(L). We prove that in the case of near equality,
that is,

Fav(E) ≥ Fav(L) − δ,

the set E can be covered by an ϵ-Lipschitz graph, up to a set of length ϵ. The dependence between ϵ and
δ is polynomial: in fact, the conclusions hold with ϵ = Cδ1/70 for an absolute constant C > 0.
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1. Introduction

Let E ⊂ R2 be H1 measurable with H1(E) < ∞. We recall the definition of Favard length:

Fav(E) =

∫ π

0
H1(πθ (E)) dθ.

Here πθ : R2
→ R is the orthogonal projection πθ (x) = x · (cos θ, sin θ). The definition of Fav(E) can be

posed without the assumption H1(E) < ∞, but this hypothesis will be crucial for most of the statements
below, and it will be assumed unless otherwise stated. A fundamental result in geometric measure theory
is the Besicovitch projection theorem [1939] which relates Favard length and rectifiability: Fav(E) > 0
if and only if H1(E ∩ 0) > 0 for some Lipschitz graph 0 ⊂ R2 — in other words, E is not purely
1-unrectifiable.
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The proof of the Besicovitch projection theorem is famous for being difficult to quantify, partly because
of its reliance on the Lebesgue differentiation theorem: it is hard to decipher from the argument just
how large the intersection E ∩ 0 is, and what the Lipschitz constant of 0 is. In fact, it is nontrivial to
even find the right question: for example, if E ⊂ B(1), H1(E) = 1, and Fav(E) ≥ δ for some small but
fixed constant δ > 0, then it is not true that H1(E ∩ 0) ≥ ϵ for some ϵ−1-Lipschitz graph 0 ⊂ R2, where
ϵ = ϵ(δ) > 0. We construct a relevant counterexample in Section 6.

In Theorem 1.1, we show that similar counterexamples are no longer possible if the assumption
“Fav(E) ≥ δ” is upgraded to “Fav(E) ≥ 2H1(E) − δ” for a sufficiently small constant δ > 0. The
number 2 comes from the fact that Fav([0, 1] × {0}) = 2 and that [0, 1] × {1} has the maximal Favard
length among sets of length unity (see (2.4)).

Theorem 1.1. For every ϵ > 0 there exists δ > 0 such that the following holds: Let E ⊂ B(1) be an
H1 measurable set with H1(E) < ∞, and assume that

Fav(E) ≥ Fav(L) − δ, (1.2)

where L ⊂ R2 is a line segment with H1(L) = H1(E). Then, there exists an ϵ-Lipschitz graph 0 ⊂ R2

such that H1(E ∩ 0) ≥ H1(E) − ϵ. One can take δ = ϵ70/C for an absolute constant C > 1.

By an ϵ-Lipschitz graph we mean a set of the form R(Graph f ), where R : R2
→ R2 is a rotation, and

Graph f = {(x, f (x)) : x ∈ R} is the graph of an ϵ-Lipschitz function f : R → R. This means that

| f (x) − f (y)| ≤ ϵ|x − y|

for all x, y ∈ R. It is easy to check that the intersection of an ϵ-Lipschitz graph with B(1) is contained in
the 2ϵ-neighborhood of some line ℓ ⊂ R2, so in particular the same is true of E ∩0 (as in Theorem 1.1).

Theorem 1.1 shows that if Fav(E) is nearly maximal, the Besicovitch projection theorem can be
quantified in a very strong way, whereas the example constructed in Section 6 shows that any similar
conclusion fails completely if we make the weaker assumption Fav(E) ≥ δ. However, it remains plausible
that the assumption Fav(E) ≥ δ is sufficient to guarantee a quantitative version of Besicovitch’s theorem
under the additional assumption that E is 1-Ahlfors regular, or satisfies other multiscale 1-dimensionality
hypotheses. For recent partial results, and more discussion on this question; see [Davey and Taylor 2022;
Martikainen and Orponen 2018; Orponen 2021; Tao 2009]. The problem is closely related to Vitushkin’s
conjecture [1967] on the connection between analytic capacity and Favard length; see [Chang and Tolsa
2020; Dąbrowski and Villa 2022].

We briefly mention another closely related topic: if E ⊂ R2 is self-similar and purely 1-unrectifiable,
then Fav(E) = 0 by the Besicovitch projection theorem. It is an interesting and very popular question to
attempt quantifying the (sharp) rate of decay at which Fav(En) → 0, where En is the n-th iteration of the
self-similar set. For recent developments; see [Bateman and Volberg 2010; Bond et al. 2014; Bond and
Volberg 2010; 2012; Bongers and Taylor 2023; Cladek et al. 2022; Łaba and Zhai 2010; Łaba 2015; Łaba
and Marshall 2022; Nazarov et al. 2010; Peres and Solomyak 2002].
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It is tempting to consider the following scale-invariant version of Theorem 1.1: for any ϵ1, ϵ2 > 0 there
exists δ > 0 such that if E ⊂ B(1) satisfies H1(E) < ∞ and

Fav(E) ≥ (1 − δ) Fav(L),

then there exists an ϵ1-Lipschitz graph 0 ⊂ R2 such that H1(E \0) ≤ ϵ2H1(E). Note that for sets E with
H1(E)∼1 this statement is equivalent to Theorem 1.1; however, in general, the statement is false. Consider
a set En consisting of four horizontal segments of length 1/n placed in the corners of [0, 1]

2. Clearly, one
may cover at most half of En using a single 1-Lipschitz graph. At the same time, Fav(En)/ Fav(Ln) → 1,
where Ln = [0, 4/n] × {0}. To see this, let Bn := {θ ∈ [0, π) : πθ is not injective on En}. Note that
H1(Bn) → 0, and at the same time for θ /∈ Bn we have H1(πθ (En)) = H1(πθ (Ln)). It follows easily that
Fav(En)/ Fav(Ln) → 1.

1A. Outline of the paper. A quick outline of the article is as follows: In Section 2 we introduce Crofton’s
formula and prove that line segments maximize Favard length. In Section 3 we prove Theorem 1.1
using two main propositions, Proposition 3.3 and Proposition 3.11. The moral of these propositions
is discussed at the beginning of Section 3. These two propositions are then proven in Section 4 and
Section 5, respectively. Section 6 contains the counterexample mentioned above to the scale-invariant
version of Theorem 1.1. Finally, in the Appendix we give an exact formula for the measure of lines
spanned by two rectifiable curves — this is used in Section 5 but it might be of independent interest.

2. Measure-theoretic preliminaries

2A. Notation. For x ∈ Rd and r > 0, the notation B(x, r) stands for a closed ball of radius r centered
at x . For A ⊂ Rd, we denote the cardinality of A by #A, and we write A(r) := {x ∈ Rd

: dist(x, A) ≤ r},
where “dist” is Euclidean distance. For f, g ≥ 0, we write f ≲ g if there exists an absolute constant C > 0
such that f ≤ Cg. The notation f ≳ g means the same as g ≲ f , and f ∼ g is shorthand for f ≲ g ≲ f .
If the constant C > 0 is allowed to depend on some parameter p, we signify this by writing f ≲p g.

2B. Integralgeometry and Crofton’s formula. One of the main tools is Crofton’s formula for rectifiable
sets, which states the following: if E ⊂ R2 is an H1 measurable 1-rectifiable set with H1(E) < ∞, then

H1(E) =
1
2

∫ π

0

∫
R
#(E ∩ π−1

θ {t}) dt dθ. (2.1)

Equation (2.1) is false without the rectifiability assumption, but the inequality “≥” remains valid in this
case. This formula (and the inequality) is a special case of a more general relation between Hausdorff
measure and integralgeometric measure for n-rectifiable sets in Rd ; see [Federer 1947, Theorem 9.7;
1969, Theorem 3.2.26]. We next rephrase the formula (2.1) in slightly more abstract terms. We define the
following measure η on the family A := A(2, 1) of all affine lines in R2:

η(L) =

∫ π

0
H1({t ∈ R : π−1

θ {t} ∈ L}) dθ, L ⊂ A.
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With this notation, the Crofton formula (2.1) can be rewritten as

H1(E) =
1
2

∫
L(E)

#(E ∩ ℓ) dη(ℓ), (2.2)

where

L(E) := {ℓ ∈ A : E ∩ ℓ ̸= ∅}.

Lemma 2.3 (the line segment maximizes Favard length). If E ⊂ R2 is H1 measurable, H1(E) < ∞, and
L ⊂ R2 is a line segment with H1(E) = H1(L), then

Fav(E) ≤ Fav(L) (2.4)

and

Fav(L) − Fav(E) ≥

∫
L(E)

(#(E ∩ ℓ) − 1) dη(ℓ). (2.5)

If E is rectifiable, then equality holds in (2.5).

Proof. Suppose E ⊂R2 is H1 measurable, H1(E)<∞, and L ⊂R2 is a line segment with H1(E)=H1(L).
Then

Fav(E) = η(L(E)) =

∫
L(E)

1 dη(ℓ) ≤

∫
L(E)

#(E ∩ ℓ) dη(ℓ) ≤ 2H1(E). (2.6)

If we replace E with the line segment L , then equality holds in both inequalities above. Thus, Fav(L) =

2H1(L) = 2H1(E), which combined with (2.6) (for E) proves (2.5).
Next, (2.4) follows from the fact that the right-hand side of (2.5) is nonnegative. Finally, if E is

rectifiable, then the second inequality in (2.6) becomes an equality, which implies that equality holds
in (2.5). □

2C. Coarea formula. We now record another tool in the proof of Theorem 1.1. It is closely related to
Crofton’s formula, but only considers the intersections with lines in a fixed direction. The price to pay is
that the tangent of the rectifiable set enters the formula. It is a generalization of the following standard
fact: if f : [a, b] → R is α-Lipschitz, then

H1(
{(t, f (t)) : t ∈ [a, b]}

)
=

∫ b

a

√
1 + f ′(t)2 dt ≤

√
1 + α2 (b − a).

Lemma 2.7 (coarea formula). Let α > 0. Let E ⊂ R2 be a countable union of α-Lipschitz graphs over the
x-axis. Then,

H1(A) ≤

√
1 + α2

∫
R
#(A ∩ π−1

0 {t}) dt (2.8)

for all H1 measurable subsets A ⊂ E. (Recall that π0 : R2
→ R is the projection onto the x-axis.)

Proof. This follows from the coarea formula for rectifiable sets. (See, e.g., [Federer 1969, Theorem 3.2.22]
or [Krantz and Parks 2008, Theorem 5.4.9].) □
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3. Proof of Theorem 1.1 in two main steps

In this section we prove Theorem 1.1 using Propositions 3.3 and 3.11 introduced below. Proposition 3.3
says roughly the following: Assume a priori that E is a union of line segments (we reduce matters to
something like this in Section 3A), fix a small angle α > 0, and let Eℓ,α be the union of those segments
which make an angle ≤α with some given line ℓ⊂ R2. Evidently E can be expressed as the union of ∼1/α

sets of the form Eℓ,α . Proposition 3.3 says that if the parameter δ in our hypothesis Fav(E) ≥ Fav(L)− δ

is sufficiently small, then each of the sets Eℓ,α can be (almost) covered by a single (∼α)-Lipschitz graph
over ℓ. After this step, we know that E can be (almost) covered by a union of ∼1/α Lipschitz graphs
with constant ∼α. Thereafter, to complete the proof of Theorem 1.1, it remains to show that only one
of these graphs can have a nontrivial intersection with E . This uses the hypothesis Fav(E) ≥ Fav(L) − δ

once more, and is accomplished in Proposition 3.11 (and the discussion right below).

3A. Step 1: first reductions. Let E ⊂ R2 be a Borel set with H1(E) < ∞. We start with the following
simple lemma:

Lemma 3.1. It suffices to prove Theorem 1.1 under the additional assumption that E is a finite union of
disjoint C1 curves.

Proof. We may assume that E ⊂ B(1) is rectifiable, because by the Besicovitch projection theorem, the
rectifiable part of E continues to satisfy all the assumptions of Theorem 1.1 (with the same constant δ > 0).
By this assumption, H1 almost all of E can be covered by a countable union of C1-curves. Decomposing
the curves further, we may assume that they are disjoint, and for any given η > 0 we may write

E =

M1⋃
j=1

(γ j ∩ E) ∪ S,

where H1(S) ≤ η, and H1(E ∩ γ j ) ≥ (1 − η)H1(γ j ). Now, the set E :=
⋃M1

j=1γ j satisfies

H1(E) ≤ (1 − η)−1H1(E) and Fav(E) ≥ Fav(E) − η

and is additionally a finite union of disjoint C1-curves. If Theorem 1.1 is already known under this
additional assumption, we may now infer that H1(E \ 0) ≤ ϵ, where 0 is an ϵ-Lipschitz graph. But
then also H1(E \0) ≤ H1(E \ E)+H1(E \0) ≤ η + ϵ, and Theorem 1.1 follows for E by choosing the
parameters ϵ, η appropriately. □

3B. Step 2: minigraphs and how to merge them. By Lemma 3.1, we may assume that E is a finite
union of disjoint C1-curves γ1, . . . , γM1 . We further chop up each curve γ j into connected pieces whose
tangent varies by less than α, where α is a small constant depending on ϵ fixed later on (see (3.5)). At
this point, we have managed to write E as a finite union of disjoint α-Lipschitz graphs γ1, . . . , γM ′

1
,

where M1 ≤ M ′

1 < +∞. At this point we have no quantitative control on the constant M ′

1. Each of the
graphs γ j will be called a minigraph, and their collection is denoted E . The main tasks in Theorem 1.1
are to combine the minigraphs into roughly 1/α bigger graphs, and to show that nearly all of E lies on
just one of these bigger graphs.
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To begin with, let M2 = ⌈πα−1
⌉ ∼ α−1. We would like to divide the collection of minigraphs E into

M2 subcollections E1, . . . EM2 , each of them containing the minigraphs with roughly the same direction.
To do this, we consider M2 vectors of the form

vk := (cos(kπ/M2), sin(kπ/M2)) for 1 ≤ k ≤ M2 ∼ α−1.

Observe that for each minigraph γ ∈ E there exists k ∈ {1, . . . , M2} such that γ is a 2α-Lipschitz graph
over the line span(vk). The vector vk will be called the direction of the minigraph (if there are several
suitable vectors for one minigraph, fix any one of them; we will only need to know that each minigraph is
a 2α-Lipschitz graph over the line spanned by its direction). Statements about the (relative) angles of
minigraphs should always be interpreted as statements about the relative angles of the direction vectors vk .

For k ∈ {1, . . . , M2} fixed, we define Ek ⊂ E as the collection of minigraphs with direction vk . We
suggest that the reader visualize the minigraphs as line segments I with ̸ (I, span(vk)) ≤ α. It seems
likely that Theorem 1.1 could be reduced to the case where E is a finite union of line segments, but
employing the minigraphs seems to spare us some unnecessary steps.

We write Ek :=
⋃

Ek . Thus
E = E1 ∪ · · · ∪ EM2 . (3.2)

It turns out that, except for a small error, each set Ek is covered by a single Lipschitz graph with constant ∼α

over span(vk). Indeed, note that Lemma 2.3 and (1.2) together imply
∫
L(E)

#(E∩ℓ)−1 dη(ℓ)≤ δ. Since for
each k ∈ {1, . . . , M2} we have Ek ⊂ E , one sees immediately that L(Ek)⊂L(E) and #(Ek ∩ℓ)≤ #(E ∩ℓ),
so that we also get

∫
L(Ek)

#(Ek ∩ ℓ) − 1 dη(ℓ) ≤ δ. Then, the desired Lipschitz graph 0 covering most of
Ek is constructed in the following proposition, whose proof will be carried out in Section 4:

Proposition 3.3. There exist absolute constants C0, α0 ∈ (0, 1) and Clip > 1 such that the following holds:
Let δ, ϵ ∈ (0, 1) and α ∈ (0, α0) be such that δ ≤ C0α

3ϵ2. Let E ⊂ B(1) be a set with H1(E) < ∞ of the
form

E =
⋃
γ∈E

γ,

where E is a finite collection of disjoint α-Lipschitz graphs over a fixed line L ⊂ R2. Assume further that
E satisfies ∫

L(E)
(#(E ∩ ℓ) − 1) dη(ℓ) ≤ δ. (3.4)

Then, there exists a Lipschitz graph 0 over L , with Lipschitz constant at most Clip · α, such that

H1(E \ 0) ≤ ϵ.

We remark that the absolute constants α0 and Clip are such that α0 ≤ C−1
lip . In particular, the

Clipα-Lipschitz graph 0 from above has a Lipschitz constant bounded by 1.
The proof of Proposition 3.3 recycles most of the ideas from Besicovitch’s original proof of the

Besicovitch projection theorem [1939]. Indeed, we first use (in Lemma 4.1) the assumption (3.4) to show
that E must have arbitrarily low conical density in arbitrarily wide cones centered at most points x ∈ E ,
whose axis is perpendicular to the line L . The quantifications of arbitrarily low and arbitrarily wide can
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be made stronger by reducing the value of the constants α and δ. After this step, we use Besicovitch’s
two cones argument (quantified in Lemma 4.18) to show that most of E can be contained on a Lipschitz
graph over L .

3C. Step 3: there can only be one graph. In Proposition 3.3 we managed to pack a majority of each set
E j (as defined in (3.2)) to a Lipschitz graph of constant ∼α, up to errors which tend to zero as δ → 0 in
the main assumption (1.2). However, at this point there might be up to ∼α−1 distinct Lipschitz graphs,
and to prove Theorem 1.1, we would (roughly speaking) like to reduce their number to one. That this
should be possible is not hard to believe: if E consists of several distinct Lipschitz graphs of substantial
measure, which nevertheless cannot be fit into a single Lipschitz graph, then Fav(E) cannot possibly be
maximal.

We turn to the details. We recall the given constant ϵ > 0 from the statement of Theorem 1.1, and
we set

δ :=
ϵ70

C thm

for a sufficiently large absolute constant C thm > 1. We define also

α :=

(
ϵ

Calp

)10
(3.5)

for some universal Calp > 1. The universal constant C thm will depend on Calp, whereas Calp depends only
on Clip and another constant Csep, which is introduced below. The additional constant Calp will make it
easier for us to ensure that the Lipschitz graph 0 obtained from the application of Proposition 3.3 has
Lipschitz constant smaller than ϵ; see the discussion around (3.8). We record that

α7
= C−70

alp ϵ70
= C thmC−70

alp · δ. (3.6)

Recall, once more, the decompositions E = E0 ∪ · · · ∪ EM2 and E = E0 ∪ · · · ∪ EM2 from the previous
subsection: this decomposition depends on the parameter α fixed above. In addition to the decomposition
E = E0 ∪· · ·∪ EM2 , we will also need another, coarser, decomposition of E in this section. Write κ :=

1
10 ,

fix M3 ∼ α−κ, and decompose E = F0 ∪ · · · ∪FM3 in such a way that

• each Fk is a union of finitely many consecutive families E j , and

• Fk contains those minigraphs whose direction makes an angle no larger than ακ with wk =

(cos(kπ/M3), sin(kπ/M3)) for 0 ≤ k ≤ M3.

We write

Fk :=
⋃

Fk, 0 ≤ k ≤ M3 ∼ α−κ.

At this point, we consider two distinct cases. Let Csep be a large constant depending only on the absolute
constant Clip appearing in Proposition 3.3 (the letters sep stand for separation). Thus, the constant Csep is
also absolute, and we may (and will) assume that Calp is large relative to Csep.
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Case 1. Given the constant ϵ > 0 from Theorem 1.1, the first case is that we can find consecutive sets
Fk, Fk+1, . . . , Fk+Csep with the property

H1(E \ (Fk ∪ · · · ∪ Fk+Csep)) ≤ ϵ. (3.7)

In this case we note that F := Fk ∪ · · · ∪ Fk+Csep is a union of minigraphs whose directions are within
≲ Csepα

κ of the fixed vector wk . In particular, F can be expressed as a union of finitely many disjoint
ᾱ-Lipschitz graphs over the line span(wk), with ᾱ ∼ Csepα

κ . This will place us in a position to use
Proposition 3.3 (with E replaced by F and α replaced by ᾱ). Of course also∫

L(F)
(#(F ∩ ℓ) − 1) dη(ℓ) ≤

∫
L(E)

(#(E ∩ ℓ) − 1) dη(ℓ) ≤ δ,

so the analogue of the assumption (3.4) is valid for F in place of E . We also note that

δ = C−1
thmϵ70

≤ C−1
thmC3

alp · (ϵ/Calp)
3
· ϵ2

= (C−1
thmC3

alp) · α3κϵ2
∼ (C−1

thmC3
alpC−3

sep) · ᾱ3ϵ2,

so if C thm is sufficiently large relative to Calp, then the hypothesis in Proposition 3.3 on the relation
between δ, ᾱ, and ϵ is satisfied (the constant Csep is large, so it can be safely ignored here). Consequently,
there exists a Lipschitz graph 0 ⊂ R2 of constant ≲ ClipCsep · ακ

= ClipCsep · ϵ/Calp with the property

H1(F \ 0) ≤ ϵ, (3.8)

and consequently H1(E \ 0) ≤ 2ϵ. By choosing Calp sufficiently large relative to Csep and Clip, we may
ensure that 0 is an ϵ-Lipschitz graph, as desired.

Case 2. We then move to consider the other option, where E cannot be exhausted, up to measure ϵ, by a
constant number of consecutive sets Fk, Fk+1, . . . , Fk+Csep . Since (3.7) fails for every k, we may find an
index pair k, l ∈ {0, . . . , M3} with |k − l| ≥ Csep such that

H1(Fk) ≥ α2κ and H1(Fl) ≥ α2κ. (3.9)

This follows immediately from the pigeonhole principle, recalling that the cardinality of the pieces Fk

is ≲ α−κ, and also that ακ is much smaller than ϵ by (3.5).

Remark 3.10. Recall that the separation constant Csep above has been chosen to be large relative to the
constant Clip in Proposition 3.3: morally, if 01, 02 are two Clipα

κ -Lipschitz graphs over lines L1, L2

with ̸ (L1, L2) ≥ Csepα
κ, we need to know that 01 and 02 are still transversal (their tangents form angles

≥
1
2 Csepα

κ with each other).

The next key proposition will imply that Case 2 cannot happen:

Proposition 3.11. Suppose that Csep > 0 is sufficiently large, and suppose that there are k, l ∈ {0, . . . , M3}

with |k − l| ≥ Csep such that
H1(Fk) ≥ α2κ and H1(Fl) ≥ α2κ.

Then ∫
L(E)

(#(E ∩ ℓ) − 1) dη(ℓ) ≳ α7. (3.12)



STRUCTURE OF SETS WITH NEARLY MAXIMAL FAVARD LENGTH 1481

As we recorded in (3.6), we have α7
= C thmC−70

alp · δ. Thus, if C thm is chosen sufficiently large relative
to Calp and the implicit absolute constants in (3.12), then (3.12) would lead to the contradiction

δ ≥

∫
L(E)

(#(E ∩ ℓ) − 1) dη(ℓ) > δ.

(For the first inequality, recall (2.5) and our main assumption (1.2).) Thus, with the choices of constants
specified in this section, Case 2 cannot occur. This concludes the proof of Theorem 1.1.

In the next two sections we prove the two key results used above, Propositions 3.3 and 3.11.

4. Proof of Proposition 3.3

Let E ⊂ R2 be as in the proposition. With no loss of generality, we may assume that L is the x-axis, so
the minigraphs in E are roughly horizontal. We introduce further notation. We write

Cβ := {(x, y) ∈ R2
: |y| ≥ β|x |}, β > 0.

Thus, the smaller the β, the wider the cone. We also write

Cβ(x) := x + Cβ and Cβ(x, r) := Cβ(x) ∩ B(x, r).

With this notation, if a set 0 ⊂ R2 satisfies 0 ∩ Cβ(x) = {x} for all x ∈ 0, then 0 is (a subset of) a
β-Lipschitz graph. Thus, in view of Proposition 3.3, it would be desirable to show that E ∩CClipα(x) = {x}

for all x ∈ E . In reality, we will prove a similar statement about a subset of E (of nearly full length). It is
worth noting that a toy version of these statements is already present in our hypotheses: each minigraph
γ ∈ E is an α-Lipschitz graph over the x-axis.

Define the maximal conical density

2∗

E,β(x) = sup
r>0

H1(Cβ(x, r) ∩ E)

r
.

Lemma 4.1 says that points of high conical density are negligible, whereas Lemma 4.18 says that points
of low conical density can be mostly contained in a Lipschitz graph.

Lemma 4.1 (high conical density points are negligible). Let E ⊂ B(1), α ∈ (0, α0) and δ ∈ (0, 1) be as
in Proposition 3.3, so that in particular (3.4) holds. Let ε > 0. If the absolute constant Clip > 0 is chosen
sufficiently large, then

H1({x ∈ E : 2∗

E,α′(x) ≥ ε}) ≲ δ

εα2 , (4.2)

where α′ := Clipα/2.

Write ℓx,θ := π−1
θ {πθ (x)} for θ ∈ [0, π), so that ℓ0,θ = span(cos θ, sin θ)⊥. Let J (β) ⊂ [0, π) be the

set of directions in the cone Cβ , i.e.,

J (β) = {θ ∈ [0, π) : ℓ0,θ ⊂ Cβ} = {θ ∈ [0, π) : span(cos θ, sin θ)⊥ ⊂ Cβ}.

If ℓ is a line, we let ℓ(w) denote the tube that is the w-neighborhood of ℓ. For a tube T = ℓ(w), we write
w(T ) = w.
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To prove Lemma 4.1, we rely on the following lemma:

Lemma 4.3 (the Besicovitch alternative). Let E ⊂ R2 and β ≤ 1. Then for all x ∈ E and H ≥ 1, at least
one of the following two alternatives holds:

(A1) There exists a set Ix ⊂ J (β) of measure H1(Ix) ≥ H−1 such that

#(E ∩ ℓx,θ ) ≥ 2, θ ∈ Ix .

(A2) There exists a set Jx ⊂ J (β) of measure H1(Jx)≳ H−1 with the following property: for every θ ∈ Jx ,
there is a tube T = Tx,θ = ℓx,θ (w(T )) centered around ℓx,θ such that

H1(E ∩ T ) ≳ 2∗

E,β(x) · H · w(T ).

We call this lemma the Besicovitch alternative, because its proof is part of Besicovitch’s original argu-
ment [1939] for his projection theorem. For a more recent presentation; see [Falconer 1986, Lemma 6.11]
or [Mattila 1995, Lemma 18.7]. Neither the hypotheses nor the conclusion of Falconer’s lemma are
exactly the same as ours, but the reader can easily convince himself that the proof of Lemma 4.3 heavily
draws inspiration from his proof.

Proof of Lemma 4.3. Let E, x, β, H be as in the statement of the lemma. Let ε :=
1
22∗

E,β(x), so that
there exists an r > 0 such that H1(Cβ(x, r) ∩ E) ≥ εr . We set also J := J (β).

If the alternative (A1) fails, then

H1(
{θ ∈ J : #(Cβ(x, r) ∩ E ∩ ℓx,θ ) ≥ 2}

)
≤ H1({θ ∈ J : #(E ∩ ℓx,θ ) ≥ 2}) ≤ H−1.

Since evidently x ∈ Cβ(x, r) ∩ E ∩ ℓx,θ , this implies that most of the lines ℓx,θ do not intersect the set
Cβ(x, r) ∩ E outside x . Consequently, Cβ(x, r) ∩ E is contained in a union of narrow cones C1, C2, . . .

which are centered around certain lines ℓx,θ j with θ j ∈ J , and whose opening angles β1, β2, . . . satisfy∑
β j ≤ 2H−1. We may arrange that the cones have the form

C j := C(Ij ) :=
⋃

{ℓx,θ : θ ∈ Ij },

where Ij ⊂ J is a dyadic interval, |Ij | = β j , and θ j ∈ J is the midpoint of Ij . We may also assume that
the dyadic intervals Ij are disjoint, so the sets C j \ {x} are disjoint.

To use these cones to arrive at alternative (A2), recall that H1(Cβ(x, r)∩ E) ≥ εr , where ε =
1
22∗

E,β(x).
Now, we throw away cones which are not heavy: we call a cone heavy if it satisfies

H1(C j ∩ B(x, r) ∩ E) ≥
1
4 · εH |Ij | · r. (4.4)

The total length of Cβ(x, r) ∩ E contained in the nonheavy cones is bounded from above by

1
4εHr

∑
j∈N

|Ij | ≤
1
2εr ≤

1
2H

1(Cβ(x, r) ∩ E),

so at least half of the length in Cβ(x, r)∩ E is contained in the union of the heavy cones. In the sequel,
we assume that all the cones C j are heavy.
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Next, we would like to prove that
∑

β j =
∑

|Ij | ≳ H−1. This would be easy if the heavy cones also
satisfied an upper bound roughly matching the lower bound in (4.4). If we knew this, then we could
estimate ∑

j∈N

|Ij | ≳ (εHr)−1 ∑
j∈N

H1(C j ∩ B(x, r) ∩ E) ≳ H−1. (4.5)

This desired upper bound in (4.4) need not be true to begin with, but can be easily arranged. Fix a heavy
cone C(Ij ), and perform the following stopping time argument: the dyadic interval Ij is successively
replaced by its parent Îj until either the upper bound

H1(C( Îj ) ∩ B(x, r) ∩ E) ≤ εH | Îj | · r (4.6)

holds, or then Îj = J . This procedure gives rise to a new collection of cones C( Îj ) which are evidently
still heavy, and whose union covers the union of the initial heavy cones. Since the intervals Îj are dyadic,
we may arrange that the new heavy cones are disjoint outside {x} without violating the previous two
properties.

At this point, either Îj = J for some index j , in which case (4.5) is trivially true (using |J | ∼ 1), or
then the upper bound (4.6) holds for all the heavy cones. In this case the lower bound (4.5) holds by the
very calculation shown in (4.5).

We are now fully equipped to establish alternative (A2). Consider a line ℓx,θ contained in the union of
the heavy cones. According to (4.5), the set of angles θ ∈ J of such lines has length ≳ H−1. This set of
angles is the set Jx ⊂ J whose existence is claimed in (A2). It remains to associate the tube Tx,θ to each
line ℓx,θ with θ ∈ Jx . Let C(Ij ) = C j ⊃ ℓx,θ be the (unique) heavy cone containing ℓx,θ . The opening
angle of C j is β j = |Ij | ∈ (0, |J |], and it follows by elementary geometry that

C j ∩ B(x, r) ⊂ ℓx,θ (2β jr) =: Tx,θ .

Finally,

H1(E ∩ Tx,θ ) ≥ H1(C j ∩ B(x, r) ∩ E) ≳ εHβ j · r ∼ εH · w(T ),

as claimed in alternative (A2). □

Proof of Lemma 4.1. Recall that E is a union of finitely many disjoint α-Lipschitz minigraphs γ ∈ E ,
all defined over the x-axis. The main geometric observation is the following: every minigraph in E
is an α−1-Lipschitz graph over every line Lθ := span(cos θ, sin θ) = ℓ⊥

0,θ with θ ∈ J (α′) (recall that
α′

= Clipα/2). This is simply because the minigraphs in E are α-Lipschitz graphs over the x-axis, but for
all θ ∈ J (α′), the lines Lθ form an angle ≳ α with the y-axis. See Figure 1. Thus, E is a union of finitely
many α−1-Lipschitz graphs over Lθ , for every θ ∈ J (α′). This places us in a position to use the coarea
formula (2.8): for every θ ∈ J (α′) and every H1 measurable subset E ′

⊂ E we have∫
πθ (E ′)

#(E ′
∩ π−1

θ {t}) dt ≳ αH1(E ′). (4.7)

Let

R = {x ∈ E : 2∗

E,α′(x) ≥ ε}.



1484 ALAN CHANG, DAMIAN DĄBROWSKI, TUOMAS ORPONEN AND MICHELE VILLA

Lθ

γ

Figure 1. Every minigraph γ ∈ E is an α−1-Lipschitz graph over every line Lθ with θ ∈ J (α′).

Fix H ≥ 1. (We will eventually choose H ∼ 1/(αε); see (4.16) below.) By Lemma 4.3 (with β = α′),
we can write R = R1 ∪ R2, where alternative (A1) holds on R1 and (A2) holds on R2. To prove (4.2), it
suffices to show

H1(Ri ) ≲
δ

εα2 for i = 1, 2. (4.8)

We first consider R1. Recall the sets Ix ⊂ J (α′) defined in (A1). Since E is a union of finitely many
compact Lipschitz graphs, there are no measurability issues, and we may freely use Fubini’s theorem:

H−1H1(R1) ≤

∫
R1

H1(Ix) dH1(x) =

∫
J (α′)

H1({x ∈ R1 : θ ∈ Ix}) dθ. (4.9)

For θ ∈ J (α′) fixed, abbreviate R′

θ := {x ∈ R1 : θ ∈ Ix}. Write also

E ′

θ :=
⋃

t∈πθ (R′

θ )

(E ∩ π−1
θ {t}),

so certainly R′

θ ⊂ E ′

θ . Note that if t ∈ πθ (E ′

θ ), then t = πθ (x) for some x ∈ R′

θ . Thus θ ∈ Ix by definition,
so

#(E ′

θ ∩ π−1
θ {t}) = #(E ∩ ℓx,θ ) ≥ 2.

Therefore

#(E ′

θ ∩ π−1
θ {t}) − 1 ∼ #(E ′

θ ∩ π−1
θ {t}), t ∈ πθ (E ′

θ ). (4.10)

We may now deduce from (4.7) applied to E ′
:= E ′

θ , and (4.10), that∫
πθ (E ′

θ )
(#(E ′

θ ∩ π−1
θ {t}) − 1) dt ∼

∫
πθ (E ′

θ )
#(E ′

θ ∩ π−1
θ {t}) dt ≳ αH1(E ′

θ ) ≥ αH1(R′

θ ),
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and finally

∫
L(E)

(#(E ∩ ℓ) − 1) dη(ℓ) ≥

∫
J (α′)

∫
#(E ′

θ ∩ π−1
θ {t}) − 1 dt dθ

(4.9)
≥ αH−1H1(R1).

By (3.4) the left-hand side is bounded from above by δ, so

H1(R1) ≲
δH
α

. (4.11)

Recalling that we promised to choose H ∼ 1/(αε) in the end, the bound above implies (4.8) for R1.
Next, we tackle R2. This time we define R′

θ := {x ∈ R2 : θ ∈ Jx} ⊂ E , and we deduce exactly as in
(4.9) that

H−1H1(R2) ≲
∫

J (α′)
H1(R′

θ ) dθ. (4.12)

Fix θ ∈ J (α′) with R′

θ ̸= ∅. For each x ∈ R′

θ , by definition, there exists a tube T = Tx,θ centered around
ℓx,θ with the property

H1(E ∩ T ) ≳ εH · w(T ). (4.13)

The tubes {Tx,θ : x ∈ R′

θ } may overlap, but they are all parallel. By the Besicovitch covering theorem
(e.g., [Mattila 1995, Theorem 2.7]) applied to the projections πθ (Tx,θ ) ⊂ R, there exists a countable
subcollection Tθ ⊂ {Tx,θ : x ∈ R′

θ }, with the properties

R′

θ ⊂
⋃

x∈R′

θ

Tx,θ ⊂
⋃

T ∈Tθ

T and
∑

T ∈Tθ

1T ≲ 1. (4.14)

Fix T ∈ Tθ , and let Bad(E ∩ T ) ⊂ E ∩ T consist of those points x ∈ E ∩ T with #(ℓx,θ ∩ E) = 1. We
apply the coarea formula (2.8) to the set A := Bad(E ∩ T ) ⊂ E . Recalling that for every θ ∈ J (α′) the
set E is a union of finitely many α−1-Lipschitz graphs over Lθ (see the remark above (4.7)) we get that

H1(Bad(E ∩ T )) ≲ 1
α

∫
πθ (T )

1 dt =
w(T )

α
. (4.15)

Now, for a suitable choice H ∼ 1/(αε), a combination of (4.13) and (4.15) shows that

H1((E ∩ T ) \ Bad(E ∩ T )) ≥
1
2H

1(E ∩ T ). (4.16)

At this point, we simplify notation by setting

Eθ :=
⋃

T ∈Tθ

(E ∩ T ) \ Bad(E ∩ T ) ⊂ E .

By the definition of the sets Bad(E ∩ T ), if x ∈ Eθ , then #(E ∩ ℓx,θ ) ≥ 2, and therefore

#(E ∩ π−1
θ {t}) − 1 ∼ #(E ∩ π−1

θ {t}) ≥ #(Eθ ∩ π−1
θ {t}), t ∈ πθ (Eθ ). (4.17)
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It follows that ∫
L(E)

#(E ∩ ℓ) − 1 dη(ℓ) ≥

∫
J (α′)

∫
#(E ∩ π−1

θ {t}) − 1 dt dθ

(4.17)
≳

∫
J (α′)

∫
πθ (Eθ )

#(Eθ ∩ π−1
θ {t}) dt dθ

(4.14)
≳

∫
J (α′)

∑
T ∈Tθ

∫
πθ (Eθ∩T )

#(Eθ ∩ π−1
θ {t}) dt dθ

(4.7)
≳ α

∫
J (α′)

∑
T ∈Tθ

H1(Eθ ∩ T ) dθ

(4.16)
≥

α

2

∫
J (α′)

∑
T ∈Tθ

H1(E ∩ T ) dθ

(4.14)
≥ α

∫
J (α′)

H1(R′

θ ) dθ

(4.12)
≥

α

H
·H1(R2).

Recalling once again from (3.4) that the left-hand side above is ≤ δ, we deduce that

H1(R2) ≲
δH
α

∼
δ

εα2 ,

which is (4.8) for R2. The proof of Lemma 4.1 is complete. □

Next, repeating the classical two cones argument of Besicovitch (e.g., [Mattila 1995, Lemma 15.14]),
we show that we can pack most of points of low conical density into a single Lipschitz graph:

Lemma 4.18 (most low conical density points fit into a Lipschitz graph). Let E ⊂ B(1) ⊂ R2 and let
ε ∈ (0, 1), β ∈

(
0, 1

2

)
. Then, there exists a 2β-Lipschitz graph 0 ⊂ R2 over the x-axis such that

H1({x ∈ E : 2∗

E,β(x) ≤ ε} \0) ≲ ε/β.

Proof. Let G = {x ∈ E : 2∗

E,β(x) ≤ ε}. Our task is to find a subset 0 ⊂ G with H1(G \0) ≲ ε/β and the
property C2β(x) ∩ 0 = {x} for all x ∈ 0. Then 0 extends to a 2β-Lipschitz graph, as desired.

Let B be the set of points x ∈ G with the “bad” property that there exists a point y ∈ G ∩ C2β(x)

with y ̸= x . The goal is to show that H1(B)≲ ε/β. For each x ∈ B, let r(x)= sup{|x −y| : y ∈ G∩C2β(x)},
so

B ∩ C2β(x) ⊂ B(x, r(x)), x ∈ B. (4.19)

See Figure 2 for an illustration.
Let Tx be the tube around the vertical line passing through x with w(Tx) :=

1
10βr(x). Then

Tx \ B
(
x, 1

2βr(x)
)
⊂ C1(x) ⊂ C2β(x) ⊂ Cβ(x). (4.20)
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Tx y(x)

B
(
x, 1

2βr(x)
)

β

x

Figure 2. Containing the tube Tx in the union of the cones Cβ(x) and Cβ(y(x)). The
dotted cone illustrates C2β(x) ∋ y(x).

(Recall that 2β ≤ 1.) In particular, (4.20) implies Tx \ B(x, r(x)) ⊂ C2β(x). Using this, we observe that

B ∩ Tx ⊂ B(x, r(x)) ∪ [(B ∩ Tx) \ B(x, r(x))]

= B(x, r(x)) ∪ [B ∩ (Tx \ B(x, r(x)))] ⊂ B(x, r(x)) ∪ [B ∩ C2β(x)]
(4.19)
⊂ B(x, r(x)). (4.21)

Choose a point y(x) ∈ G ∩ C2β(x) such that |x − y(x)| ≥
9

10r(x). A slightly more delicate geometric
fact is that

Tx ⊂ Cβ(x) ∪ Cβ(y(x)).

This is an exercise in elementary geometry; see Figure 2 (or the proof in [Mattila 1995, Lemma 15.14] for
a more formal argument): the disc B

(
x, 1

2βr(x)
)
, and in particular the intersection Tx ∩ B

(
x, 1

2βr(x)
)
, is

contained in the cone Cβ(y(x)), whereas the rest of Tx is contained in Cβ(x), as already noted in (4.20).
Consequently, using (4.21), the trivial inclusion B(x, r(x)) ⊂ B(y(x), 2r(x)), and x, y(x) ∈ G, we have

H1(B ∩ Tx) ≤ H1(Cβ(y(x), 2r(x)) ∩ E) +H1(Cβ(x, r(x)) ∩ E) ≤ 2εr(x) + εr(x) ≤ 30(ε/β) · w(Tx).

We have now shown that every point x ∈ B is contained on the central line of a vertical tube Tx satisfying
the estimate above. By the Besicovitch covering theorem, as in the proof of Lemma 4.1, we may then
find a countable, boundedly overlapping subfamily T of these tubes which still cover B. All the tubes
intersect B(1) ⊃ B, so

∑
T ∈T w(T ) ≲ 1. It follows that

H1(B) ≤

∑
T ∈T

H1(B ∩ T ) ≤
30ε

β

∑
T ∈T

w(T ) ≲ ε

β
.

This completes the proof of Lemma 4.18. □

We are then ready to prove Proposition 3.3:

Proof of Proposition 3.3. Fix ϵ > 0 as in the statement of the proposition, and set α′
= Clipα/2. Define

ϵ1 := αϵ/C for a suitable absolute constant C > 0. By Lemma 4.1 applied to ε = ϵ1, we know that the
set R ⊂ E of bad points x ∈ E with

2∗

Eα,α′(x) ≥ ϵ1

satisfies
H1(R) ≲ δ · ϵ−1

1 α−2
= Cδ · ϵ−1α−3.
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Since δ ≤ C0ϵ
2α3, taking C0 = C−2 gives H1(R) ≤ ϵ/2 (assuming that C > 0 was large enough).

The set G := E \ R satisfies the hypotheses of Lemma 4.18 (with β = α′
= Clipα/2 and ε = ϵ1), so

there exists a Clipα-Lipschitz graph 0 ⊂ R over the x-axis such that H1(G \ 0) ≲ ϵ1/α = ϵ/C . If the
constant C > 0 was chosen large enough, we see that

H1(E \ 0) ≤ H1(R) +H1(G \ 0) ≤
1
2ϵ +

1
2ϵ = ϵ.

This concludes the proof of Proposition 3.3. □

5. Proof of Proposition 3.11

In this section we prove Proposition 3.11. Recall that we are assuming to be in Case 2; that is, E cannot
be exhausted, up to measure ϵ, by a constant number of consecutive sets Fk, Fk+1, . . . , Fk+Csep (recall
this notation from Section 3C). More precisely, this means that

H1(E \ (Fk ∪ · · · ∪ Fk+Csep)) ≤ ϵ (5.1)

fails for every k; thus we find an index pair k, l ∈ {0, . . . , M3} with |k − l| ≥ Csep such that

H1(Fk) ≥ α2κ and H1(Fl) ≥ α2κ. (5.2)

Recall that all the minigraphs in Fk make an angle ≤ ακ with

Lk := span(wk) = span(cos(kπ/M3), sin(kπ/M3)),

and similarly all the minigraphs in Fl make an angle ≤ ακ with L l = span(wl).
The existence of Fk and Fl will imply a configuration such as the one depicted in Figure 3. A more

precise definition is given in the lemma below.

Lemma 5.3. If the inequalities in (5.2) hold, then there exists an absolute constant C ∼ Clip (the constant
from Proposition 3.3) such that the following objects exist:

(1) affine lines ℓk and ℓl with ̸ (ℓk, Lk) ≤ ακ and ̸ (ℓl, L l) ≤ ακ,

(2) tubes T ′

k := ℓk(Cα) and Tk := ℓk(α
1/2),

(3) tubes T ′

l := ℓl(Cα) and Tl := ℓl(α
1/2),

(4) Clipα-Lipschitz graphs γk, γl over the lines ℓk, ℓl , respectively such that

γk ∩ B(1) ⊂ T ′

k and γl ∩ B(1) ⊂ T ′

l ,

(5) compact subsets

Gk ⊂ (E ∩ γk) \ Tl ⊂ B(1) and Gl ⊂ (E ∩ γl) \ Tk ⊂ B(1) (5.4)

of measure H1(Gk) ≥ α3/C and H1(Gl) ≥ α3/C.

Once the objects in Lemma 5.3 are found, it follows from a relatively simple geometric argument,
presented below, that positively many lines intersect E twice (the lines in question are depicted in red in
Figure 3):
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Tk Tl

γl

γk

T ′

l

T ′

k

Figure 3. A configuration where positively many lines hit E twice.

Lemma 5.5. There exists a set of lines L(Gk, Gl) of measure η(L(Gk, Gl)) ≳ α7 such that ℓ∩ Gk ̸= ∅
and ℓ ∩ Gl ̸= ∅ for all ℓ ∈ L(Gk, Gl). In particular, since Gk, Gl ⊂ E are disjoint,∫

L(E)
(#(E ∩ ℓ) − 1) dη(ℓ) ≳ η(L(Gk, Gl)) ≳ α7. (5.6)

Proposition 3.11 follows immediately by Lemma 5.5. We will next derive Lemma 5.5 from Lemma 5.3.
(See Remark 5.10 and the Appendix for an alternative proof of Lemma 5.5.)

Proof. The key geometric observation is the following: if ℓ ⊂ R2 is any line with

Gk ∩ ℓ ̸= ∅ ̸= Gl ∩ ℓ,

then ℓ must make an angle ≳α1/2 with both ℓk and ℓl ; see Figure 3: indeed, if for example ̸ (ℓ, ℓl)≪α1/2

and ℓ∩Gl ̸=∅, then ℓ∩ B(1) ⊂ Tl , and hence ℓ∩Gk =∅ by (5.4). It follows that both ℓk, ℓl are Cα−1/2-
graphs over ℓ⊥, for any line ℓ connecting Gk and Gl . But since γk, γl were by definition Clipα-Lipschitz
graphs over ℓk, ℓl , it follows that also γk, γl are Cα−1/2-Lipschitz graphs over ℓ⊥ (assuming that α > 0 is
small enough).

To prove the lower bound (5.6), start by fixing x ∈ Gl ⊂ γl , recall that ℓx,θ := π−1
θ {πθ (x)}, and consider

the set of directions

2(x, Gk) := {θ ∈ [0, π) : ℓx,θ ∩ Gk ̸= ∅}.

With this notation, we claim that

H1(2(x, Gk)) ≳ α1/2H1(Gk), x ∈ Gl . (5.7)

Indeed, if {B(θ j , r j )} j∈N is an arbitrary cover of 2(x, Gk), then the tubes ℓx,θ j (Cr j ) cover Gk , where
C > 0 is an absolute constant. This is because Gk is covered by the cones C j :=

⋃
{ℓx,θ : θ ∈ B(θ j , r j )} by

definition, and each intersection Gk ∩C j ⊂ B(1)∩C j is further covered by a tube of the form ℓx,θ j (Cr j ).
Now recall that γk ⊃ Gk is an α−1/2-Lipschitz graph over each line ℓ⊥

x,θ j
: this gives

α−1/2 ∑
j∈N

r j ≳
∑
j∈N

H1(Gk ∩ ℓx,θ j (r j )) ≥ H1(Gk),

which implies (5.7).
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We now infer from (5.7) and Fubini’s theorem that∫ π

0
H1({x ∈ Gl : θ ∈ 2(x, Gk)}) dθ =

∫
Gl

H1(2(x, Gk)) dH1(x) ≳ α1/2H1(Gk)H1(Gl). (5.8)

To proceed, write Gl(θ) := {x ∈ Gl : θ ∈ 2(x, Gk)}. We claim that

H1(Gl(θ)) ̸= 0 =⇒ H1(πθ (Gl(θ))
)
≳ α1/2H1(Gl(θ)), θ ∈ [0, π). (5.9)

This will complete the proof of the corollary, because (5.8) then implies∫ π

0
H1(πθ (Gl(θ)) dθ

(5.8)
≳ αH1(Gk)H1(Gl)

Lem. 5.3
≳ α7,

and the left-hand side above is a lower bound for η(L(Gk, Gl)).
Finally, let us prove (5.9). If H1(Gl(θ)) ̸= 0, then θ ∈ 2(x, γk) for at least one x ∈ Gl , which means

that ℓx,θ = π−1
θ {πθ (x)} intersects both Gk and Gl . Thus, γl is a Cα−1/2-Lipschitz graph over the line ℓ⊥

x,θ .
Consequently, the relation H1(πθ (H)) ≳ α1/2H1(H) holds for all H1 measurable subsets H ⊂ γl , in
particular for H := Gl(θ). □

Remark 5.10. In fact, we have an exact expression for η(L(Gk, Gl)):

η(L(Gk, Gl)) =

∫∫
Gk×Gl

|πθ(xk ,xl )(τk(xk))||πθ(xk ,xl )(τl(xl))|

|xk − xl |
d(H1

×H1)(xk, xl). (5.11)

In (5.11), τk(x) denotes the unit tangent vector to γk at x ∈ γk , and τl(x) is defined similarly. For
distinct x, x ′

∈ R2, θ(x, x ′) denotes the angle θ such that πθ (x) = πθ (x ′).
Now we show how (5.11) implies Lemma 5.5. By the key geometric observation in the first paragraph

of the proof of Lemma 5.5 and the fact that Gk, Gl ⊂ B(1), the integrand in (5.11) is ≳ α1/2α1/2/1 = α.
Thus, η(L(Gk, Gl)) ≳ αH1(Gk)H1(Gl) ≳ α7.

We state and prove a more general form of (5.11) in the Appendix.

The remainder of this section is devoted to constructing the objects listed in Lemma 5.3. This is based
on the assumption (3.9), that is, H1(Fk) ≥ α2κ and H1(Fl) ≥ α2κ . Recall also that Fk, Fl were the unions
of the minigraphs in Fk and Fl . The minigraphs in Fk make an angle ≤ ακ with Lk , while the minigraphs
in Fl make an angle ≤ ακ with L l . Furthermore, ̸ (Lk, L l) ≥ Csepα

κ, so the minigraphs from Fk and Fl

point in quantitatively different directions. We also recall that Fk (respectively Fl) can be expressed as a
union of certain consecutive families Ei :

Fk = Es ∪ Es+1 ∪ · · · ∪ Es+m and Fl = Et ∪ · · · ∪ Et+m . (5.12)

Some of these families may be empty, but not all, according to (5.2). Of course

m ≲ α−1, (5.13)

since there were no more than α−1 of the families E j altogether.
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Fk
Gk
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Tl

Tk

Figure 4. Finding the graphs and tubes claimed by Lemma 5.3.

5A. Sketch of the proof. We now explain the proof strategy with a picture. In Figure 4, we have depicted
the sets Fk and Fl , which are roughly speaking ακ -Lipschitz graphs over the lines Lk, L l by Proposition 3.3
(details will follow). Both Fk and Fl are, moreover, tiled by ≲ α−1 of the sets E j . Most of sets E j are
(individually) contained on α-Lipschitz graphs γ j , by another application of Proposition 3.3. The red sets
shown in Figure 4 illustrate sets of the form

G j = E j ∩ γ j ∩ B j ,

where B j is some ball of radius α with the property that H1(G j ) ∼α H1(E j ). Each G j is contained in a
tube T j of width α1/2 (or even a tube of width α, which was also required in Lemma 5.3). So, picking
Gk ⊂ Fk and Gl ⊂ Fl arbitrarily, we would satisfy all the points (1)-(5) in Lemma 5.3, except for the
inclusions (5.4).

The problem is that if we pick Gk ⊂ Fk and Gl ⊂ Fl arbitrarily, the tube Tk associated with Gk might
intersect Gl , or vice versa, violating (5.4). To satisfy (5.4), we need to pick Gk, Gl in such a way that the
Gk-tube avoids Gl and the Gl-tube avoids Gk . To achieve this, we roughly choose three well-separated
sets Gl

1, Gl
2, Gl

3 ⊂ Fl , and two further well-separated sets Gk
1, Gk

2 ⊂ Fk .
Then, we use the transversality of the graphs Fk, Fl to deduce the following: each Gk

i -tube can intersect
at most one of the sets Gl

j , and vice versa. At this point, we may deduce from the pigeonhole principle
that there must exists a pair (Gk

i , Gl
j ) such that the Gk

i -tube does not intersect Gl
j , and the Gl

j -tube does
not intersect Gk

i . Indeed, there are six pairs (Gk
i , Gl

j ), but only five tubes. This will complete the proof.

5B. Proof. We turn to the details. First, we apply Proposition 3.3 to the sets Fk, Fl , each of which can
be written as a finite union of ακ -Lipschitz minigraphs over the lines Lk, L l , respectively. It follows from
the choice of constants δ = ϵ70/C thm and α = (ϵ/Calp)

10 made in Section 3C that δ ≪ α5κ , assuming
that C thm is chosen sufficiently small compared to the absolute constant Calp. Writing α5κ

= (ακ)3α2κ,
this means that the main hypothesis of Proposition 3.3 is valid with constants ακ and 1

2α2κ in place of α

and ϵ. It follows that there exist Clipα
κ -Lipschitz graphs 0k, 0l over Lk, L l , respectively, which cover
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most of Fk and Fl in the sense

H1(Fk \ 0k) ≤
1
2α2κ

(3.9)
≤

1
2H

1(Fk) and H1(Fl \ 0l) ≤
1
2H

1(Fl).

We write F ′

k := Fk ∩ 0k and F ′

l := Fl ∩ 0l . Next, recall from (5.12) that

Fk = Es ∪ · · · ∪ Es+m and Fl = Et ∪ · · · ∪ Et+m,

and each E j is a finite union of α-Lipschitz minigraphs E j over a certain line (which makes an angle ≤ ακ

with Lk). Applying Proposition 3.3 again, for each E j with either j ∈ {s, . . . , s +m} or j ∈ {t, . . . , t +m},
we find Lipschitz graphs γ j with constant ≤ Clipα and the property

H1(E j \ γ j ) ≲ α2, s ≤ j ≤ s + m or t ≤ j ≤ t + m.

For this application of Proposition 3.3 to be legitimate, we need δ ≪α3(α2)2
=α7, which also follows from

our choice of constants recalled above, taking C thm ≫ C70
alp. We write E ′

j := E j ∩ γ j . With these choices,
a major part of F ′

k is covered by the union of the graphs γ j : indeed since F ′

k ⊂ Fk ⊂ (Es ∪ · · · ∪ Es+m),
we have

H1
(

F ′

k \

m⋃
j=1

E ′

s+ j

)
≤

m∑
j=1

H1(Es+ j \ γs+ j ) ≲
m∑

j=1
α2

(5.13)
≲ α.

Since H1(F ′

k) ≳H1(Fk) ≥ α2κ, and κ =
1
10 , we infer that at least half of F ′

k is covered by the (subsets of)
α-Lipschitz graphs E ′

j with s ≤ j ≤ s + m. The same conclusion mutatis mutandis holds for F ′

l and the
sets E ′

j with t ≤ j ≤ t + m. We finally redefine

Fk := F ′

k ∩

m⋃
j=1

E ′

s+ j and Fl := F ′

l ∩

m⋃
j=1

E ′

t+ j .

This should cause no confusion, since the original sets Fk, Fl will no longer be used. We list all the
properties of Fk, Fl we will need in the sequel:

• Fk, Fl ⊂ E and H1(Fk) ≳ α2κ and H1(Fl) ≳ α2κ (compare with (3.9)).

• Fk is covered by the Lipschitz graph 0k over Lk with constant ≤ Clipα
κ.

• Fl is covered by the Lipschitz graph 0l over L l with constant ≤ Clipα
κ.

• Fk is covered by the union of ≲ α−1 Lipschitz graphs γs, . . . , γs+m with constant ≤ Clipα over
certain lines ℓs+ j making an angle ≤ ακ with Lk .

• Fl is covered by the union of ≲α−1 Lipschitz graphs γt , . . . , γt+m with constant ≤ Clipα over certain
lines ℓt+ j making an angle ≤ ακ with L l .

We have now defined carefully the objects Fk and Fl in Figure 4. In defining the objects Ek and El

in the same picture, there is the technical problem that the initial sets E j need not be localized, as the
picture suggests. This will be easily fixed by intersecting the initial sets E j with balls. First, using that
H1(Fk) ≳ α2κ, we choose two special points x1, x2 ∈ Fk with the properties

|x1 − x2| ≳ α2κ and H1(Fk ∩ B(x j , α)) ≥ α2 for j ∈ {1, 2}. (5.14)



STRUCTURE OF SETS WITH NEARLY MAXIMAL FAVARD LENGTH 1493

This can be arranged, because the set of points x ∈ Fk with H1(Fk ∩ B(x, α)) ≤ α2 has total length at
most ≲ α ≪ H1(Fk). Thus, the admissible points for the second condition in (5.14) have total length
≥

1
2H

1(Fk)≳ α2κ. Then, to finish the selection, it remains to pick two of these points with separation α2κ :
this is possible because Fk lies on a Lipschitz graph with constant ≤1, so in particular H1(Fk ∩B(x, r))≲ r
for all r > 0.

Next, we move attention from Fk to Fl . This time we pick three special points y1, y2, y3 ∈ Fl with
properties similar to those in (5.14):

|yi − y j | ≳ α2κ for i ̸= j and H1(Fl ∩ B(y j , α)) ≥ α2 for j ∈ {1, 2, 3}. (5.15)

The details of the selection are the same as we have seen above.
Next, recall that both Fk and Fl can be written as a finite union of (subsets of) Clipα-Lipschitz graphs:

the covering graphs for Fk were denoted γs, . . . , γs+m and the covering graphs for Fl were denoted
γt , . . . , γt+m , where m ≲ α−1. Since H1(Fk ∩ B(x1, α)) ≥ α2, at least one of the graphs γs, . . . , γs+m

must have large intersection with Fk ∩ B(x1, α). We denote this graph by γ k
1 ; then we have

H1(Fk ∩ γ k
1 ∩ B(x1, α)) ≳ α3. (5.16)

We find similarly a graph γ k
2 ∈ {γs, . . . , γs+m} such that H1(Fk ∩ γ k

2 ∩ B(x2, α)) ≳ α3. Then, we also
repeat the argument for the three balls B(y j , α): we find three graphs γ l

1, γ
l
2, γ

l
3 ∈ {γt , . . . , γt+m} with

the property

H1(Fl ∩ B(y j , α)∩ γ l
j ) ≳ α3, 1 ≤ j ≤ 3. (5.17)

The sets

Gk
i := Fk ∩ γ k

i ∩ B(xi , α), i = 1, 2, and Gl
j := Fl ∩ γ l

j ∩ B(y j , α), j = 1, 2, 3, (5.18)

are the ones we informally discussed below Figure 4.
Next, we associate the lines and tubes (required by Lemma 5.3) to the sets Gk

i , Gl
j . We associate to

each graph γ k
i or γ l

j an affine line ℓk
i or ℓl

j with the following properties:

• γ k
i is a Clipα-Lipschitz graph over ℓk

i for i ∈ {1, 2}.

• γ l
j is a Clipα-Lipschitz graph over ℓl

j for j ∈ {1, 2, 3}.

• The lines are chosen so that

Gk
j ⊂ ℓk

i (Cα) for i ∈ {1, 2} and Gl
j ⊂ ℓl

j (Cα) for j ∈ {1, 2, 3},

where C ∼ Clip.

We now define

(T k
i )′ := ℓk

i (Cα) and T k
i := ℓk

i (α
1/2)

for i ∈ {1, 2}, and similarly

(T l
j )

′
:= ℓl

j (Cα) and T l
j := ℓl

j (α
1/2)
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0l

L l

Lk

T k
iℓk

j

Figure 5. Transversality of T k
i and 0l . The angle between ℓk

j and L l is ≳ Cακ.

for j ∈ {1, 2, 3}. Thus, Gk
i ⊂ (T k

i )′ ⊂ T k
i and Gl

j ⊂ (T l
j )

′
⊂ T l

j . Since moreover H1(Gk
i ) ≳ α3 and

H1(Gl
j ) ≳ α3 by (5.16)–(5.17), any pair (Gk

i , Gl
j ) (with associated lines and tubes) would now satisfy all

the requirements of Lemma 5.3, except perhaps the inclusions (5.4).
We will now use the pigeonhole principle to show that at least one of the pairs (Gk

i , Gl
j ) also satisfies

the inclusions (5.4). The main geometric observation is

diam(T k
i ∩ 0l) ≲ α1/2−κ and diam(T l

j ∩ 0k) ≲ α1/2−κ. (5.19)

The first inequality holds for i ∈ {1, 2}, the second for j ∈ {1, 2, 3}. The proof of (5.19) is contained in
Figure 5. Recall that T k

i is an α1/2-tube around a certain line ℓk
i with ̸ (ℓk

i , Lk) ≤ ακ . On the other hand,
̸ (Lk, L l) ≥ Csepα

κ , so also ̸ (ℓk
i , L l) ≥ (Csep − 1)ακ . Finally, 0l is a Clipα

κ -Lipschitz graph over L l ,
so every tangent of 0l makes an angle ≳ Csepα

κ with ℓk
i , since we chose Csep much larger than Clip in

Section 3C. Thus 0l is an α−κ -Lipschitz graph over (ℓk
j )

⊥. It follows that

diam(T k
i ∩ 0l) ≤ H1(T k

i ∩ 0l) ≲ α1/2−κ.

Now that we have proved (5.19), recall from (5.15) the three balls B(y j , α), all of which were centered at
y j ∈ Fl ⊂ 0l , and whose centers y j had pairwise separation ≳ α2κ . Since κ =

1
10 , we have α1/2−κ

≪ α2κ

for α > 0 small enough (or in other words assuming that the constant Calp > 0 is chosen large enough),
and therefore (5.19) implies that

#{ j ∈ {1, 2, 3} : T k
i ∩ B(y j , α) ̸= ∅} ≤ 1, i ∈ {1, 2}. (5.20)

By a similar argument,

#{i ∈ {1, 2} : T l
j ∩ B(xi , α) ̸= ∅} ≤ 1, j ∈ {1, 2, 3}. (5.21)

We finally claim, as a consequence of (5.20)- (5.21) and the pigeonhole principle, that there exists a pair
of balls (B(xi0, α), B(y j0, α)), for some i0 ∈ {1, 2} and j0 ∈ {1, 2, 3} with the property

T k
i0

∩ B(y j0, α) = ∅ and T l
j0 ∩ B(xi0, α) = ∅. (5.22)

This, by definition, yields

Gk
i0

(5.18)
⊂ B(xi0, α) \ T l

j0 and Gl
j0

(5.18)
⊂ B(y j0, α) \ T k

i0
,

which (combined with (5.18)) completes the proof of the inclusions (5.4), and Lemma 5.3.
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To prove (5.22), consider the bipartite graph with 5 vertices {v1, v2} ∪ {w1, w2, w3} and the following
edge set:

• For i ∈ {1, 2} and j ∈ {1, 2, 3}, the edge (vi , w j ) is included if T k
i ∩ B(y j , α) ̸= ∅.

• For j ∈ {1, 2, 3} and i ∈ {1, 2}, the edge (w j , vi ) is included if T l
j ∩ B(xi , α) ̸= ∅.

Now, (5.20)–(5.21) can be restated as follows: for vi fixed, there can be at most one edge (vi , w j ), and for
wi fixed, there can be at most one edge (wi , v j ). Thus, the edge set contains at most five edges. On the
other hand, the product set {v1, v2}× {w1, w2, w3} contains six elements, so there must be a pair {vi , w j }

so that neither (vi , w j ) nor (w j , vi ) lies in the edge set. This is equivalent to (5.22). This completes the
proof of Lemma 5.3.

6. The grid example

In this section we provide an example showing that Theorem 1.1 is optimal in the sense that the assumption
Fav(E) ≥ Fav(L) − δ cannot be relaxed to Fav(E) ≥ δ.

Proposition 6.1. There exists an absolute constant δ > 0 and a sequence of compact rectifiable sets
En ⊂ [0, 1]

2
⊂ R2 such that

(1) H1(En) = 1,

(2) Fav(En) ≥ δ,

(3) for any α ∈ [2n−2, 1) and any curve 0 with H1(0 ∩ En) ≥ α we have H1(0) ≳ αn.

In particular, property (3) implies that if M ≥ 1, then for any M-Lipschitz graph 0, H1(0 ∩ En) ≲ Mn−1.

We begin the construction. Fix an integer n ≥ 2, and let [n] := {1, . . . , n}. For any j = (k, l) ∈ [n]
2 set

x j =

( k
n+1

,
l

n+1

)
(6.2)

and
B j = B

(
x j ,

1
2πn2

)
.

Note that B j ⊂ [0, 1]
2 and if i, j ∈ [n]

2, i ̸= j , then

dist(Bi , B j ) ≥
1

n+1
−

2
2πn2 ≥

1
2n

. (6.3)

Define S j = ∂ B j , and observe that H1(S j ) = n−2.
We define the set En as

En :=
⋃

j∈[n]2
S j .

Since H1(S j ) = n−2, we have H1(En) = 1. This verifies property (1) for En . It is also clear that En is
compact and rectifiable.

Now we check property (3). We will use the following result:
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Lemma 6.4 [Schul 2007, Lemma 3.7]. Any compact connected set 0 ⊂ R2 with H1(0) < ∞ can be
parametrized with γ : [0, 1] → R2 such that γ ([0, 1]) = 0 and Lip(γ ) ≤ 32H1(0).

Lemma 6.5. For any α ∈ [2n−2, 1) and any curve 0 with H1(0 ∩ En) ≥ α we have H1(0) ≳ αn.

Proof. Suppose that α ∈ [2n−2, 1) and let 0 be a curve with H1(0 ∩ En) ≥ α. Since each circle S j

comprising En has length n−2, we get that 0 intersects at least αn2 different circles. Let J0 ⊂ [n]
2 be the

set of indices such that for j ∈ J0 we have 0 ∩ S j ̸= ∅, so that

N := #J0 ≥ αn2. (6.6)

To estimate H1(0), we are going to use (6.6) together with the fact that the circles S j are centered on
a well-separated grid (6.2), (6.3). We provide the details below:

Let γ be the parametrization of the curve 0 given by Lemma 6.4. Without loss of generality, we may
assume that the curve 0 begins and ends on En , i.e., γ (0), γ (1) ∈ 0 ∩ En . For all j ∈ J0 we choose a
point y j ∈ 0 ∩ S j , and let t j ∈ [0, 1] be such that γ (t j ) = y j (γ might be noninjective, in which case t j

is nonunique, but in this case we pick t j arbitrarily among the admissible options). The only constraint
we make on our choice of {y j } j∈J0 is so that γ (0), γ (1) ∈ {y j } j∈J0 . For convenience, we relabel the
points t j in “ascending order”: for all i ∈ {1, . . . , N } we set ti := t j for some j ∈ J0, in such a way that
t1 < t2 < · · · < tN . We relabel in a similar way y j and S j .

Recalling that the circles S j are centered on a grid (6.2), it follows from the separation property (6.3)
that, for any i ∈ {1, . . . , N },

1
2n

≤ |yi+1 − yi | = |γ (ti+1) − γ (ti )| ≤ Lip(γ ) · |ti+1 − ti | = Lip(γ ) · (ti+1 − ti ).

Summing over i ∈ {1, . . . , N − 1} we get

N −1
2n

≤ Lip(γ ) · (tN − t1) ≤ 32H1(0) · (tN − t1).

Since we assumed γ (0), γ (1) ∈ {y j } j∈J0 , we get that tN = 1 and t1 = 0. Thus,

32H1(0) ≥
N −1

2n
(6.6)
≥

αn2
−1

2n
≥

αn
4

.

This completes the proof of the lemma. □

It remains to prove the property (2), that is, Fav(En) ≥ δ. Let

Gn =
⋃

j∈[n]2
B j ,

so that En = ∂Gn . Note that Fav(En) = Fav(Gn). We define an auxiliary measure

µ = µn =
1

L2(Gn)
L2

|Gn .

Recall that the 1-energy of µ is defined as

I1(µ) =

∫∫ 1
|x−y|

dµ(x)dµ(y).
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Lemma 6.7. We have
I1(µ) ≲ 1.

As a consequence,
Fav(En) = Fav(Gn) ≳ 1. (6.8)

Proof. We write

I1(µ) =

∫∫ 1
|x−y|

dµ(x)dµ(y)

=
∑

i, j∈[n]2

∫
Bi

∫
B j

1
|x−y|

dµ(x)dµ(y)

=
∑

i∈[n]2

∫
Bi

∫
Bi

1
|x−y|

dµ(x)dµ(y) +
∑

i, j∈[n]
2

i ̸= j

∫
Bi

∫
B j

1
|x−y|

dµ(x)dµ(y)

= A1 + A2.

To estimate A1 we note that for any i ∈ [n]
2 and any fixed x ∈ Bi∫

Bi

1
|x−y|

dµ(y) ≤

∞∑
k=⌊log2 n2⌋

∫
B(x,2−k)\B(x,2−k−1)

1
|x−y|

dµ(y)

∼

∞∑
k=⌊log2 n2⌋

2kµ(B(x, 2−k) \ B(x, 2−k−1))

≲ 1
L2(Gn)

∞∑
k=⌊log2 n2⌋

2kL2(B(x, 2−k)) ∼ n2
∞∑

k=⌊log2 n2⌋

2k
· 2−2k

∼ 1.

Hence,

A1 =
∑

i∈[n]2

∫
Bi

∫
Bi

1
|x−y|

dµ(x) dµ(y) ≲
∑

i∈[n]2
µ(Bi ) = 1.

We move on to estimating A2. Let Q j denote the square centered at x j with sidelength 1/(n + 1).
Note that B j ⊂ Q j , and the squares Q j , j ∈ [n]

2 are pairwise disjoint. If x ∈ Bi and y ∈ B j , with i ̸= j ,
then |x − y| ∼ dist(Bi , B j ) ∼ |x − z| for any z ∈ Q j . It follows that for a fixed x ∈ Bi∫

B j

1
|x−y|

dµ(y) ∼ dist(Bi , B j )
−1 µ(B j ) ∼ dist(Bi , B j )

−1 L2(Q j ) ∼

∫
Q j

1
|x−z|

dL2(z).

Summing over j ∈ [n]
2
\ {i} yields∑

j∈[n]2\{i}

∫
B j

1
|x−y|

dµ(y) ∼
∑

j∈[n]2\{i}

∫
Q j

1
|x−z|

dL2(z) ≤

∫
[−1,2]

2

1
|x−z|

dL2(z)

≲
∞∑

k=−1

∫
B(x,2−k)\B(x,2−k−1)

2k dL2(z) ≲ 1.

Thus,

A2 =
∑

i∈[n]2

∫
Bi

( ∑
j∈[n]2\{i}

∫
B j

1
|x−y|

dµ(y)
)

dµ(x) ≲
∑

i∈[n]2
µ(Bi ) = 1.
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It follows that I1(µ) ≲ 1.
To see (6.8), we use Theorem 4.3 from [Mattila 2015] to conclude that

Fav(En) = Fav(Gn) ≳
1

I1(µ)
≳ 1.

This concludes the proof of Proposition 6.1. □

Appendix: Lines spanned by rectifiable curves

We state and prove a generalization of (5.11), which was mentioned in Remark 5.10:

Lemma A.1. Let γ1, γ2 ⊂ R2 be rectifiable curves. For H1 almost every x ∈ γi , let τi (x) denote the unit
tangent vector to γi at x. (The choice of direction is irrelevant.) Then for any G1 ⊂ γ1 and G2 ⊂ γ2, we
have∫
A

#{(x1, x2) ∈ G1 × G2 : x1 ̸= x2 and x1, x2 ∈ ℓ} dη(ℓ)

=

∫∫
G1×G2

|πθ(x1,x2)(τ1(x1))||πθ(x1,x2)(τ2(x2))|

|x1 − x2|
d(H1

×H1)(x1, x2),

where θ(x1, x2) denotes the angle θ such that πθ (x1) = πθ (x2).

Proof. Let φi (s) be a parametrization of γi by arclength. Consider the map 9 : (s1, s2) 7→ (θ, t) defined
implicitly by

πθ (φ1(s1)) = πθ (φ2(s2)) = t. (A.2)

By the change of variables formula,∫
A

#{(x1, x2) ∈ G1 × G2 : x1 ̸= x2 and x1, x2 ∈ ℓ} dη(ℓ)

=

∫
[0,π ]×R

#{(x1, x2) ∈ G1 ×G2 : x1 ̸= x2 and x1, x2 ∈ π−1
θ (t)} dH2(θ, t)

=

∫∫
s1∈φ−1

1 (G1),s2∈φ−1
2 (G2)

J9(s1, s2) ds1 ds2,

where J9 denotes the Jacobian determinant of 9. (Note that the set {(s1, s2) : φ1(s1) = φ2(s2)} has
H2-measure zero.)

We now prove that

J9(s1, s2) := abs
∣∣∣∣∂s1θ ∂s2θ

∂s1 t ∂s2 t

∣∣∣∣ =
|πθ(s1,s2)(γ

′

1(s1))||πθ(s1,s2)(γ
′

2(s2))|

|γ1(s1) − γ2(s2)|
. (A.3)

Note that this would finish the proof of the lemma. To show (A.3), define eθ = (cos θ, sin θ) and
e⊥

θ = d/dθ eθ = (− sin θ, cos θ). By differentiating (A.2) with respect to s1 and s2, we obtain

eθ · φ′

1(s1) + e⊥

θ · φ1(s1)∂s1θ = e⊥

θ · φ2(s2)∂s1θ = ∂s1 t,

eθ · φ′

2(s2) + e⊥

θ · φ2(s2)∂s2θ = e⊥

θ · φ1(s1)∂s2θ = ∂s2 t.
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The two equalities on the left give

|∂si θ | =
|eθ · φ′

i (si )|

|e⊥

θ · (φ1(s1) − φ2(s2))|
for i = 1, 2,

which, when combined with the two equalities on the right, give

J9(s1, s2) = |∂s1θ ||∂s2θ ||e⊥

θ · (φ1(s1) − φ2(s2))| =
|eθ · φ′

1(s1)||eθ · φ′

2(s2)|

|e⊥

θ · (φ1(s1) − φ2(s2))|
.

Finally, observe that eθ ·(φ1(s1)−φ2(s2))=0 by the definition of 9, which implies |e⊥

θ ·(φ1(s1)−φ2(s2))|=

|φ1(s1) − φ2(s2)|. This completes the proof of (A.3). □

By using the coarea formula for rectifiable sets (e.g., [Krantz and Parks 2008, Theorem 5.4.9]), it is
not hard to show that Lemma A.1 can be generalized to Lemma A.4, below. We omit the details.

Lemma A.4. Let E ⊂ R2 be a 1-rectifiable set. For H1 almost every x ∈ E , let τ(x) denote the unit tangent
vector to E at x. (The choice of direction is irrelevant.) Then for any G ⊂ (E×E)\{(x, x) : x ∈ E}, we have∫
A

#{(x1, x2)∈ G : x1, x2 ∈ℓ} dη(ℓ)=

∫∫
G

|πθ(x1,x2)(τ (x1))||πθ(x1,x2)(τ (x2))|

|x1 − x2|
d(H1

×H1)(x1, x2), (A.5)

where θ(x1, x2) denotes the angle θ such that πθ (x1) = πθ (x2).

A version of Lemma A.4 was discovered independently by Steinerberger [2024]; see the sixth displayed
equation in Section 1.2.
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[Dąbrowski and Villa 2022] D. Dąbrowski and M. Villa, “Analytic capacity and dimension of sets with plenty of big projections”,
preprint, 2022. arXiv 2204.05804

[Falconer 1986] K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Math. 85, Cambridge Univ. Press, 1986. MR
Zbl

[Federer 1947] H. Federer, “The (ϕ, k) rectifiable subsets of n-space”, Trans. Amer. Math. Soc. 62 (1947), 114–192. MR Zbl
[Federer 1969] H. Federer, Geometric measure theory, Grundlehren der Math. Wissenschaften 153, Springer, 1969. MR Zbl
[Krantz and Parks 2008] S. G. Krantz and H. R. Parks, Geometric integration theory, Birkhäuser, Boston, 2008. MR Zbl
[Łaba 2015] I. Łaba, “Recent progress on Favard length estimates for planar Cantor sets”, pp. 117–145 in Operator-related
function theory and time-frequency analysis (Oslo, 2012), edited by K. Gröchenig et al., Abel Symp. 9, Springer, 2015. MR
Zbl

[Łaba and Marshall 2022] I. Łaba and C. Marshall, “Vanishing sums of roots of unity and the Favard length of self-similar
product sets”, Discrete Anal. 2022 (2022), art. id. 19. MR

[Łaba and Zhai 2010] I. Łaba and K. Zhai, “The Favard length of product Cantor sets”, Bull. Lond. Math. Soc. 42:6 (2010),
997–1009. MR Zbl

[Martikainen and Orponen 2018] H. Martikainen and T. Orponen, “Characterising the big pieces of Lipschitz graphs property
using projections”, J. Eur. Math. Soc. 20:5 (2018), 1055–1073. MR Zbl

[Mattila 1995] P. Mattila, Geometry of sets and measures in Euclidean spaces: fractals and rectifiability, Cambridge Stud. Adv.
Math. 44, Cambridge Univ. Press, 1995. MR Zbl

[Mattila 2015] P. Mattila, Fourier analysis and Hausdorff dimension, Cambridge Stud. Adv. Math. 150, Cambridge Univ. Press,
2015. MR Zbl

[Nazarov et al. 2010] F. Nazarov, Y. Peres, and A. Volberg, “The power law for the Buffon needle probability of the four-corner
Cantor set”, Algebra i Analiz 22:1 (2010), 82–97. MR Zbl

[Orponen 2021] T. Orponen, “Plenty of big projections imply big pieces of Lipschitz graphs”, Invent. Math. 226:2 (2021),
653–709. MR Zbl

[Peres and Solomyak 2002] Y. Peres and B. Solomyak, “How likely is Buffon’s needle to fall near a planar Cantor set?”, Pacific
J. Math. 204:2 (2002), 473–496. MR Zbl

[Schul 2007] R. Schul, “Subsets of rectifiable curves in Hilbert space: the analyst’s TSP”, J. Anal. Math. 103 (2007), 331–375.
MR Zbl

[Steinerberger 2024] S. Steinerberger, “Quadratic Crofton and sets that see themselves as little as possible”, Monatshefte für
Mathematik (2024), 1–13.

[Tao 2009] T. Tao, “A quantitative version of the Besicovitch projection theorem via multiscale analysis”, Proc. Lond. Math. Soc.
(3) 98:3 (2009), 559–584. MR Zbl

[Vitushkin 1967] A. G. Vitushkin, “Analytic capacity of sets in problems of approximation theory”, Uspekhi Mat. Nauk 22:6(138)
(1967), 141–199. In Russian; translated in Russian Math. Surv. 22 (1967), 139–200. MR Zbl

Received 7 Apr 2022. Revised 6 Aug 2022. Accepted 27 Oct 2022.

ALAN CHANG: alanchang@math.wustl.edu
Department of Mathematics, Washington University in St. Louis, MO, United States
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