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THE SINGULAR STRATA OF A FREE-BOUNDARY PROBLEM
FOR HARMONIC MEASURE

SEAN McCURDY

We obtain quantitative estimates on the fine structure of the singular set of the mutual boundary dQ* for
pairs of complementary domains Q%+, Q= C R" which arise in a class of two-sided free boundary problems
for harmonic measure. These estimates give new insight into the structure of the mutual boundary 9 Q*.
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1. Introduction

The focus of this paper is the study of a class of two-phase free boundary problems for harmonic measure.
Forn >3, let QT C R” and Q~ = Q* be unbounded nontangentially accessible (NTA) domains (see
Definition 2.1), let T be their associated harmonic measures, and let u® be the associated Green’s
functions with poles at infinity. Let o~ < ot <« ™, and let h = dw~/dw™ satisfy In(h) € C%* for some
0 < a < 1. We obtain new results on the structure of the geometric singular set of the boundary 9Q*.
This problem was introduced without the regularity assumption on w® by Kenig, Preiss, and Toro
[Kenig et al. 2009], with other work under the assumption that In(#) € VMO(3Q2*) by Kenig and Toro
[2006], Badger [2011; 2013], and Badger, Engelstein, and Toro [Badger et al. 2017]. Questions about the
structure of the free boundary and the singular set when In(h) € C%* for 0 < a < 1 have been addressed
by Engelstein [2016] and Badger, Engelstein, Toro [Badger et al. 2020], respectively. Engelstein [2016]

MSC2010: 31B05, 31B25, 35R35.
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shows that under the additional assumption that the boundary is sufficiently flat in the sense of Reifenberg,
the boundary is locally C!-. In [Badger et al. 2020], the authors remove the assumption of flatness and
prove that the geometric singular set is contained in countably many C!-# submanifolds of the appropriate
dimension. See [Kenig et al. 2009] for an overview of this problem in lower dimensions and [Badger
et al. 2017; 2020] for further background.

Until recently, almost all work on the two-sided free boundary problem for harmonic measure in higher
dimensions has operated under the assumption that Q% are NTA domains because the NTA conditions
allow for scale-invariant estimates of harmonic measure. However, Azzam, Mourgoglou, Tolsa, and
Volberg [Azzam et al. 2019] proved, among other things, that if we relax the assumption that the domains
are NTA, then v~ < 0t < w™ on G C 3Q* implies that G can be decomposed into G = RU B, where R
is (n—1)-rectifiable and w*(B) = 0. However, we shall work under the assumption that Qt are NTA
domains.

Based upon [Badger et al. 2020], we know that when In(h) € C%, the singular set of 3Q* is countably
C!-P_rectifiable where B depends on but is not equal to «. This leaves open the question of whether or not
the singular set is dense, or more generally how it sits in space. In this paper, we answer the question of
how the singular set “sits in space”. In particular, we provide upper Minkowski content bounds upon the
quantitative strata of the singular set (see Theorem 2.15). The main approach will be to follow [Engelstein
2016] and consider jump functions v = u™ — u~ which are almost harmonic, and employ the Almgren
frequency function and geometric techniques as in [Cheeger et al. 2015; Han and Lin 1994] in conjunction
with the powerful quantitative differentiation techniques of [De Lellis et al. 2018; Naber and Valtorta
2017]. While these tools are common for problems in calculus of variations, it is important to note that
the jump functions v are not minimizers of any energy, nor do they satisfy any global PDE.

2. Definitions and statement of main results

2A. Domains and their Green’s functions. Nontangentially accessible (NTA) domains were formally
introduced by Jerison and Kenig [1982] to study the boundary behavior of PDEs on nonsmooth domains.

Definition 2.1. A domain 2 C R” is a nontangentially accessible (NTA) domain if there exist constants
M > 1 and Ry > 0 such that the following holds:

(1) 2 satisfies the corkscrew condition. That is, for any Q € 02 and 0 < r < Ry, there exists a point
A, (Q) € Q2 with the following two properties:

|A-(Q) = Q| <r and B, u(A(Q)) C Q.

(2) Q€ also satisfies the corkscrew condition.

(3) €2 satisfies the Harnack chain condition. That is, for any € > 0 and Q € €2, if
X1,%2 € QN Brya(Q)\ Bo(3Q) and  |x; —xo| < 2%,

then there exists a “Harnack chain” of balls {B,, (yi)}lN: | satisfying:

(@) xy € By, (y1) and x; € By (yn).



THE SINGULAR STRATA OF A FREE-BOUNDARY PROBLEM FOR HARMONIC MEASURE 1129

(b) By, (yi) CQforalli=1,...,N.

() B,(yi)NB,,, (yiy1) # foralli=1,...,N—1.
(d) N < Mk.

(e) Foralli=1,..., N,

Ti+1

ﬁ ,_min  {dist(xi, 92)} < r; < dist(y;, 9.

Note that by increasing the radii if necessary, we may assume that r; ~; dist(y;, 9€2).
We say that Q7 is a two-sided NTA domain if both Q* and Q~ := Q¢ are NTA domains. We shall

refer to the complementary pair Q¥ of domains as complementary two-sided NTA domains and denote
their mutual boundary by 3Q*.

In this paper, we shall only deal with unbounded two-sided NTA domains. That is, we shall assume
that Ryp = co. However, the results are essentially local.

Definition 2.2 (Green’s functions). For QF C R" a pair of complementary two-sided NTA domains, we
shall use u* to denote the Green’s function with pole at infinity corresponding to Q¥, respectively.

Recall that u™ are unique up to scalar multiplication and that to each u™ is associated the harmonic
measure w*, defined by the property that, for all ¢ € C>°(R"),

/Aqbuidv:/qsdwi.

See [Garnett and Marshall 2005] for more details about harmonic measures.

Observe that if w1 is the harmonic measure associated to u™, then cw™ is the harmonic measure
associated to cu™ for any ¢ > 0.
If feC%(R"), we shall use || f||o to denote the local norm:

[ flla :=sup [fI+ sup M

B1(0) x£yeBr0) X —y*

Definition 2.3. We define the class D(n, o, M) to be the collection of domains Q*  R” such that
Q% are complementary unbounded two-sided NTA domains for which M < My, 0~ < o™ < v, the
Radon—Nikodym derivative 1 = dw™/dw satisfies In(h) € C®%(3RQ), and 0 € IQ*.

Note that if QT € D(n, o, My) and Q € IQ*, then QT — Q € D(n, a, My).

2B. A class of functions and their rescalings.

Definition 2.4. Let QF C R" be a pair of complementary two-sided NTA domains with mutual bound-
ary Q. For any Q € QT and any Green’s functions u™ we define the jump function

ve(x) :=h(Q)ut (x) —u~(x). -1

The scaling h(Q)u™ normalizes the Radon-Nikodym derivative of the harmonic measure associated
to h(Q)ut and u~ at Q € IQT.
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Definition 2.5. Let QT € D(n, a, M) and Q € dQ™. For scales 0 < r, we define the rescaling of the
function v€ at scale  at the point Q' € QT by

n—2
0 — 0 !
vy (x) =ve(irx+Q)——
e ™ (B, (Q")
and the corresponding rescaled measure as
+ E 1
wt, (E):= o rE+ Q) (2-2)
o w=(B-(Q")

The rescalings vg’r were first introduced by Kenig and Toro [2006]. In this paper, we shall employ the
following results by Kenig, Toro, Badger, and Engelstein.
Theorem 2.6 [Badger 2011; Engelstein 2016; Kenig and Toro 2006]. For vg’r, antyr as in Definition 2.5:

(1) Subsequential limits as r — 0 of the functions vg , converge to harmonic polynomials. Furthermore,

the degree of these polynomials is bounded and depends only upon the NTA constant, M. [Kenig and
Toro 2006]

(2) Subsequential limits as r — 0 of the functions 2 converge to homogeneous harmonic polynomials.
q o,r
Furthermore, the degree of homogeneity is unique along blow-ups. [Badger 2011]

(3) The rescalings vg’r are uniformly locally Lipschitz with Lipschitz constant that only depends upon M.
[Engelstein 2016]

(4) The measures wz’r are locally uniformly bounded. [Engelstein 2016]

In addition to the v g, . rescalings, we shall also use a different kind of rescaling.

Definition 2.7 [Cheeger et al. 2015]. Let f : B;(0) — R be a function in C(R"). We define the rescaled
function T , f of f ata point x € B;j_,(0) atscale 0 <r < 1 by

fx+ry)— f(x)
/2"
(faBl(O)(f(x +rz) — f(x))?do(2)) /
In the case that the denominator is zero, we define T , f = co. We denote the limit as » — 0 by

T f(y) = }E}?) Tx,rf(y)‘

Definition 2.8. Let A(n, o, M) be the set of functions v : R” — R such that

Tx,rf(y) = (2'3)

vi=0"=hOut —u",

+

where u® are the Green’s functions with poles at infinity associated to a two-sided NTA domain Q¥

D(n, o, My) and h =dw™/dw™, where ™ are the harmonic measures associated to u=.

Remark 2.9. For any fixed domain Q¥ € D(n, a, Mp) there is a one-parameter family of associated
functions v € A(n, o, Mp) with {v = 0} = dQ*. Indeed, cvg1 € A(n, o, My) for all ¢ > 0. To avoid
degeneracy because of this degree of freedom within the family A(n, o, My), we shall make extensive
use of the normalizations in Definitions 2.5 and 2.7 in the arguments to come.

Finally, note that in general the functions vg,’ . will not belong to A(n, a, Mp) if Q # 0 and/or o' #0.
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2C. Quantitative symmetry. The geometry we wish to capture with the blow-ups 7 f is encoded in
their translational symmetries.

Definition 2.10. Let f : R" — R be a continuous function. We say f is 0-symmetric if
fx):=cPT(x) =P~ (x) (2-4)

for some ¢ > 0, where P* are the positive and negative parts of a homogeneous harmonic polynomial P.
We will say that f is k-symmetric if f is O-symmetric and there exists a k-dimensional subspace V' such
that f(x+y)= f(x) forallx e R* and all y € V.

The constant ¢ > 0 is there to allow for the function to “hinge” along its zero set. We must allow this
kind of “hinging” to accommodate for the “nonalignment” issue in the blow-ups at Q € 3Q* \ {0}. See
Remark 3.2.

We now define a quantitative version of symmetry.

Definition 2.11. For any f € C(R"), f will be called (k, €, r, p)-symmetric if there exists a k-symmetric
function P such that
(D fBBl(O) |P|2dV =1,
) f5,0) | Tpr f = PPV <e.
Sometimes, we shall refer to a function f as being (k, €)-symmetric in the ball B,(p) to mean f is
(k, €, r, p)-symmetric.

This quantitative control allows us to define a quantitative stratification following [Cheeger and Naber
2013].

Definition 2.12 (quantitative singular strata). Let v € A(n, o, My) and O < r < 1. We denote the
(k, €, r)-singular stratum of v by Sf’,(v), and we define it by

Sf’,(v) ={x € QT ;v is not (k+1, €, s, x)-symmetric for all r <s < 1}. (2-5)
We shall also use the notation S é‘ (v) for Sf’ o(v). Itis immediate from the definitions that Sf’, (v) C Sf,/ - (v)
ifk<k,e<e, r<r.
We can recover the qualitative stratification
Sk(v) ={xe Q% : Tv is not (k+1)-symmetric} = U ﬂ S,];’r(v).
n r

The set S*(v) is the k-th stratum of S"~2(v) = sing(E)Qi). Furthermore, if x € S¥(v), then there exists
an € > 0 such that x € Sf(v).

Remark 2.13. Note that the singular set and its strata are all stable under the operations
Sfw) =8*(cv) and S*(w) =S (vt —v)

for all ¢ # 0. The former is a trivial consequence of the fact that 7}, , f = T, ,(cf). The latter follows
from Definition 2.10 and Theorem 2.6. In particular, for all v € A(n, a, Myp), we have Sk(v) =S¥ (v9)
for all Q € IQ™.
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Previous results on the singular set are summed up in the following theorem.
Theorem 2.14 [Badger et al. 2017; 2020; Engelstein 2016]. For v € A(n, a, My), the following hold:
(1) (S"2(v) \ 8" 3(v)) N QT = @. [Badger et al. 2020, Remark 7.2]

(2) There exists an € > 0 such that sing(dQ*) = S"3(v) N 9Q* C S"2(v). [Engelstein 2016, Theo-
rem 1.1]

(3) dim,(sing(dQ2%)) < n — 3. [Badger et al. 2017, Theorem 7.5]

2D. Main results and outline of the proof. In this paper, we prove volume bounds on tubular neighbor-
hoods around the Sf’ ~(v). We are able to show the following estimates.

Theorem 2.15. Let v € A(n, a, My) with ||In(h)|lq <T. Forevery0 <e and0 <k <n — 2 there is an
ro(n, a, Mo, I, €) > 0 such that, forall 0 <r <rgandanyr <R <1,
Vol(Br(B14(0) NSE, (v))) < C(n, o, Mo, T, €)R" %, (2-6)
We have the following immediate corollary.
Corollary 2.16. Letv € A(n, o, My) and 0 <k <n —2. Forevery 0 < €,
dim,v((S¢ (V) <k, 2-7)

and there exists a constant such that
MAK(SE®) N B14(0) < C(n, o, Mo, T, €). (2-8)

Thanks to an e-regularity result due to [Engelstein 2016] we are able to strengthen the conclusion of
Theorem 2.15 when we consider the full singular set.

Corollary 2.17. Let v € A(n, o, My) with ||In(h)|lo <T. Recall that

sing(0Q%) = 8" NaQE.

There exists 0 < € = € (M, T', @) such that sing(dQ*) C 82_3; see Lemma 12.1. Thus, there is a constant
C=Cn,a, My, T") < oo such that

M*" 3 (sing(92%) N B114(0)) < C(n, a, Mo, T). (2-9)
Proof. This follows immediately from Lemma 12.1 and Theorem 2.15. U

2E. Outline of the proof of Theorem 2.15. In order to prove a theorem of this kind, we must build a
cover of Sé",(v), and we must count how many balls we use. Therefore two things are critical: getting
geometric information about Sf’ +(v) and keeping track of how the balls pack.

The overall strategy of proof is similar to that of [De Lellis et al. 2018; Edelen and Engelstein 2019].
However, there are several major differences. First, the functions v € A(n, o, My) considered here
are not harmonic functions or minimizers of an energy. Sections 3-5 are devoted to showing that the
relevant analogs of harmonic results (e.g., compactness, almost monotonicity of the Almgren frequency,
local uniform boundedness of the Almgren frequency, quantitative rigidity for the Almgren frequency,
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cone-splitting, etc.) hold for v € A(n, , Mp). In particular, we prove an estimate on the nondegeneracy
of the almost monotonicity for Almgren frequency in Lemma 4.9. Local geometric control on Sf (v) is
obtained in Section 6.

However, geometric control is not enough to obtain Theorem 2.15. To obtain finite upper Minkowski
content bounds we need the discrete Reifenberg theorem from [Naber and Valtorta 2017]; see Theorem 9.1.
This requires that we prove a “frequency pinching” result (Lemma 8.2) in which we connect the drop in
the Almgren frequency over small scales with the S-numbers. The main challenge is to connect the lower
bound on the derivative of the Almgren frequency (Lemma 4.9) and employ the techniques of [De Lellis
et al. 2018] to obtain the necessary estimates on N(Q, r, v) — N(Q’, r, v); see Section 7.

In Section 9, we obtain the necessary packing estimates, following the framework of [Naber and
Valtorta 2017] to accommodate the estimates of Section 8. Sections 10 and 11 construct the covering
which proves the theorem according to the program laid out by [Naber and Valtorta 2017]. These are
included for completeness.

3. Compactness

The main goal of this section is to show that A(n, o, Myp) enjoys sufficient compactness to allow for
limit-compactness arguments. Namely, we wish to establish that, for any sequence v; € A(n, o, Mp), we
can extract a subsequence which converges to a function v, and that N(p, r, v;) = N(p,r, veo); S€€
Corollary 4.3. This requires strong convergence in WIL’CZ(R"); see Lemmas 3.10 and 3.6.

On a technical level, we must extend the compactness implied by Theorem 2.6 for vg’r to vg,J
and Ty’ ,v. Throughout, we shall make essential use of “standard NTA results” such as the doubling of
harmonic measure and various comparability results, all of which may be found in [Jerison and Kenig

1982].
Remark 3.1. Recall that for E C 9Q*
w(E) = / xedot and o (E)= / xehdow™.
Furthermore, if In(h) € C%% with ||In(h)|, < T, then for all Q, Q' € IQ*
e 11072V h(Q) <h(Q) <" Th(Q). (3-1)

Using (3-1) in the above integral equations implies that in any compact set K, if v € A(n, o, M) with
IIn(h)|lo < T, there is a constant C(K, I', ) > 1 such that for any £ C K N aQ*

Remark 3.2. By Theorem 2.6, we know that subsequential limits as » — 0 of the functions vg’r converge

to homogeneous harmonic polynomials. However, for Q, Q' € 3Q* and Q # Q, it is not true in general
that vg, . converges to a homogeneous harmonic polynomial. As r — 0, the function v g . will converge
to a 0-symmetric function (see Definition 2.10) where ¢ = h(Q).
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Definition 3.3. We shall abuse the notation Ty , from Definition 2.7 to denote translated and scaled
versions of various objects. For example, for sets this is the usual push-forward
Qf-0 IRt -0

Tp,QF = . T, 00% =
or r Qr r

*, we will denote by Tp ,»* the harmonic measures associated to the

However, for the measures w
positive and negative parts of T ,v. The corkscrew points Aﬁ(Q) will always denote the corkscrew
point associated to Q at scale R in the appropriate domain Q*. We shall use To, ,Af(Q/ ) to denote the

corkscrew point associated to Tg , Q' = (Q' — Q)/r € Tp ,dQ™ at the scale r'/r.

Lemma 3.4 (local Lipschitz bounds). Let v € A(n, o, Mp) with ||In(h)|l <T. Forall Q € 9t N B, (0)
and all radii 0 < r < 2, the function Tg ,v is locally Lipschitz with uniform constants depending only
upon My, T, a.
Proof. Recall that by Definition 2.5,
0 rn72

er =T 0m(B,(0)
By NTA estimates, for all 0 < r, we have |[v(A; (Q))| ~ o~ (B-(Q))/r"? by constants which only
depend upon M. Thus, vg (Tg, A, (Q)) is bounded above and below by constants which only depend

v(rx + Q).

upon My. By constructing Harnack chains from Ty A, (Q) to TQ,rA;,,Or(Q) we can find a point
y € 0B1(0) such that y € B, (y;) C Tp,,22~ and dist(y;, TQ,raQi) > (2M§)_1. Applying Harnack’s
inequality to the function —v in a chain of balls which connect Ty ;A (Q) and y in Q7, we have
lwo.rW| ~um, lvo,r(To,rA;(Q))|. Thatis, [vg (y)| is bounded above and below by constants that only
depend upon M. Thus, by the uniform Lipschitz property of vy , guaranteed by Theorem 2.6, we can
find a ball of radius 0 < ¢ such that |vg | > c¢(Mp) on 0 B1(0)N B.(y). Thus, H(0, 1, vg ;) > c(Mp). Now,
recalling Definition 2.7 and the fact that T v = Tp,1 (cv) for any constant ¢ > 0, we have Tp ,v =T 1vg /.
Since we assumed |[[In(h)[lo < T, Q € B2(0), and 0 < r <2, the vp , are locally uniformly Lipschitz by

Theorem 2.6. Thus H (0, 1, vg ) > c¢(Mp) implies Ty 1vg,» = Tp v is also locally uniformly Lipschitz. []
Lemma 3.5 (local nondegeneracy). Let Q € QT and 0 < r < oo. Let v € A(n, a, M) be such that

there is a constant C = C(My, «, I', €, R) such that, if p € Bg(0) with dist(p, {TQ,rZ)Qi} N Br(0)) > ¢,

|To,,v(p)| > C.

Proof. As in Lemma 3.4, Tg ,v(Tp A, (Q)) is bounded above and below by constants that only
depend upon the NTA constant My, I', and R. Thus, by Harnack chains between Ty A, (Q) and
p € Tg Q2™ N Br(0) such that dist(p, TQ,rBQi N Br(0)) > €, Harnack’s inequality applied to —T¢ ,v
implies that [Ty ,v(p)| > C. Note that C only depends upon R, My, and €.

To get the same inequality for p € Ty Q" N Bg(0), we recall that standard NTA results compare
TQ,,U(TQJA:F(Q)) to TQ,raﬁ(B](O)). By Remark 3.1, TQ,ra)*(B](O)) ~ Tg o~ (B1(0)) by constants
which only depend upon R, T', «, and the NTA constants in the definition of the class A(n, o, Mp).

lIn(h) |l < T. The rescaling Tg v satisfies the following minimum growth conditions. For all 0 < e,

Applying the same Harnack chain and Harnack inequality argument as above gives the lemma. U
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Lemma 3.6 (compactness). Let {v;} be a sequence of functions in A(n, o, M) such that ||In(h)||, <T.

Let {Q;} C BQii N B1(0) and 0 < r; < 1. There is a subsequence {v;} and a Lipschitz function ve, € w2

loc
such that Ty, »,vj — Voo in the following senses:

(1) To,.r;vj = Voo in Cioc(R").
(2) Tg,.r,vj = Voo in L (RM).

loc

(3) VTy,rvj = Vv in L, (R"; R").

loc

Proof. To see (1), we recall Lemma 3.4 and the fact that Ty, ,,v;(0) = 0. By the Arzela—Ascoli
theorem there exists a subsequence such that Tg;.r;vj = Voo in Cioc(R™). This implies convergence
in leoc
{To,.r;vi} are bounded in WIL’CZ([R{”). By Rellich compactness, there exists a further subsequence such

that VTy, ,,v; = Vs in L (R"; R"). O

loc

(R™). Being uniformly locally Lipschitz and uniformly bounded also implies that the functions

Before we can prove the strong convergence Tg; r,Vj — Vo 1N WIL’CQ(R”), we need to control the upper
Minkowski dimension of {vy = 0}.

Lemma 3.7. Under the assumptions of Lemma 3.6, if Tg, ,vi — Voo in Cioc(R"), then TQ,.’r,.BQjE —
{voo = 0} locally in the Hausdorff metric on compact subsets.

Proof. We argue by contradiction. Suppose that there exists an € > 0, a radius 0 < R, and a sequence
of functions Ty, ,v; for which we can find a sequence of points x; € Br(0) N {Tp, ,v; = 0} such
that dist(x;, {veo = 0}) > €. Taking a subsequence which converges in Cio.(R"), we may assume that
X; —> Xoo € m \ Bc({vee = 0}). Now, convergence in Cioc(R") implies that Tg, ,, Vi (Xoc) = Voo (Xoo)-
Furthermore, since the T, ,,v; are uniformly locally Lipschitz, x; — X, and x; € {Tp, ,,v; = 0}, we have

To, rvi(xx0) — 0.

This implies xo € {voo = 0}, which contradicts our previous assertion that xo, € Br(0) \ Bc({veo = 0}).
The other direction goes the same way. Suppose that we could find a subsequence of Ty, v = Vo
such that there was a point, x € {vo, = 0} N Bg(0), for which

dist(x, {Tg, ,,v; =0} N Bg(0)) > €

foralli =1,2,.... By Lemma 3.5, we know that Ty, , v;(x) > C. This contradicts convergence in
Cioc (R™), however, since voo(x) = 0. O

Theorem 3.8 [Kenig and Toro 2006, Theorem 4.1]. In general, if BQl.i € D(n, o, My) converge to a

closed set A locally in the Hausdorff metric on compact subsets, then A divides R" into two unbounded,
two-sided NTA domains with NTA constant bounded by 2 M.

We must now bound the upper Minkowski dimension of A = {v,, = 0}. We do so crudely, using only
that A is the mutual boundary of a pair of two-sided NTA domains. That is, using the machinery of
porous sets we are able to prove the following lemma.

Lemma 3.9. Let ¥ C R" be the mutual boundary of a pair of unbounded two-sided NTA domains with
NTA constant 1 < My. Then, there exists 0 < € = €(My, n) such that dimy(E) <n — €.
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This is an elementary fact which seems to be omitted in the literature. We defer the proof to the
Appendix. We now prove strong convergence.

Lemma 3.10 (strong compactness). Let {v;} be a sequence of functions in A(n, o, My) such that
In(h) |l <T. Let {Q;} C BQfE N B1(0) and 0 < r; < 1. There is a subsequence {v;} and a Lipschitz

function ve, € WIL’CZ such that Ty, »,vj — Voo in the following senses:

(1) To,.r;vj = Voo in Cioc(R").

(2) To,.,v0; — Voo in Wbl (R™).

Proof. The only new claim is that VTp, ,,v; — Vv in L2 (R"; R"). By Lemma 3.7, Theorem 3.8, and

loc
Lemma 3.9, we have that dim v ({ve = 0}) < 1 — €. In particular, then, " (B, ({veo = 0} N Bg(0))) — 0
as r — 0 (see [Mattila 1995] for fundamental facts about Minkowski content, dimension and Hausdorff
measure). Thus, for any 6 > 0 we can find an r(6) > 0 such that H" (B, ({veo = 0} N Bg(0))) < 6. This

allows us to estimate

limsup”VTQj,rjvj”?JZ(BR(O))
j—00o
=limsup</ |VTQj,,jvj|2dv+/ |VTQJ,,jvj|2dv>
J—>00 Br(0)NB; ({vao=0}) Br(0)\Br ({veo=0})
< lim \VTo, ,v;I*dV +C6O

J=9 J BR(0)\ B, ({vos=0})

E ||va||iz(BR(0)) + Ce’

where the penultimate inequality uses the fact that v; are uniformly Lipschitz, and the last equality follows
from convergence in C(Bg,(0) \ B,2({ve = 0})) implying C*°(Br(0) \ B, ({voc = 0})) convergence

because the Tg; rv; are harmonic functions in this region. Since 6 > 0 was arbitrary, we have that
2

Qi L L2(BR(0)" _
from lower semicontinuity. Therefore, we have the equality

limsup;_, . [IVTg, r,v; ||129R 0 = Vsl The other inequality follows from the same trick or

. 2 _ 2
Jli)ngo”v’TQj,rj vj ||L2(BR(O)) - ||Vvoo ||L2(BR(O))'

Thus, by weak convergence and norm convergence we have
. L 2
h]nl”VTQj,rjvj VUOO”LZ(BR(O))

= lim IVTg, v — Vs dV
7 JBr(0)

. 2 2 .
= thIIVTQM/ Villz2(gg0y) T 11V Vo0l 72,0y — ZthWTQf»V./ Vjs VVoo) 12(Bx(0))

2 2
= 20V voolla g0 = 20V Vool 0y = 0- -

Because the functions v ,9 » are merely Lipschitz, we will often need to work with a mollified version of

them. We will use the convention that v, = v x ¢, for ¢ € C*° a mollifying function (meaning spt(¢) C B
and [¢dV =1).
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Corollary 3.11. Let v € A(n, a, My) and ve = v x ¢, be a mollification of v. By standard mollification
results,

Ve > v in WEA(RY), Croe(R™) as e — 0.

loc

4. Almost monotonicity of the Almgren frequency function
One of the key tools of this paper will be the Almgren frequency function (introduced in [Almgren 1979]).

Definition 4.1 (Almgren frequency function). For any Lipschitz function v : R” — R, radius » > 0, and
point Q € dQE, the Almgren frequency function is defined as

D 9 9
N(p,r,v) = r 2221 0). (4-1)
H(p,r,v)
where
H(p,r, v)=/ lv|>’do, D(p,r, v)=/ [Vu2dV. (4-2)
9B, (p) B, (p)

Remark 4.2. The Almgren frequency function is invariant in the following senses. For a, b € R with
a,b#0,if wx) =av(bx), then N, r, v) = N(0, b~ 'r, w).

If u is harmonic then N (p, r, u) is monotonically nondecreasing. If additionally one assumes that
u(p) =0 then lim, .o N(p,r,u) = N(p, 0, u) > 1 is the degree of the leading homogeneous harmonic
polynomial in the Taylor expansion of u at the point p.

4A. Consequences of Section 3 for the Almgren frequency function. Before turning to the main results
of this section, we note that the results of Section 3 immediately imply the following corollaries.

Corollary 4.3. Under the hypotheses of Lemma 3.6, there exists a subsequence such that, for all r € (0, 2],
N(O,r, Tg; rvj) > N(O, 1, Vo).
Moreover, if ve =vx¢ for a mollifier ¢ as in Corollary 3.11 then, forall Q € B1(0)NdQT and 0 <r <1,

lir% N(Q,r,ve) =N(Q,r,v).

Proof. This follows from the convergence of the numerator and the denominator; the former follows from
Lemma 3.6 (2) and the latter from Lemma 3.6 (1). For the convolution, both follow from Corollary 3.11. [J

Corollary 4.4. Let v € A(n, o, My) as above. There is a function C(a, I', My) such that, if ||In(h)||, <T
then for all Q € B1(0)N aQ* and all r € (0, 1],

N(Q,r,v) <C[, a, My). (4-3)

Proof. We recall that the Almgren frequency function is invariant under rescalings of the function v.
Therefore, N(0, 1, vgp,,) = D(0, 1, Tp ,v) is bounded by Lemma 3.4 and the constant only depends upon
My, T', and . |
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4B. Quantitative almost monotonicity. This section is dedicated to providing a quantitative version of
the following result of Engelstein [2016].

Lemma 4.5 [Engelstein 2016]. Let v € A(n, o, My) and Q € K € Q. There exists a constant C < 00
(Which can be taken uniformly over K and r € (0, 1]) such that

liminf N(Q, 1, v2) = N(Q,0,v2) > —Cr*.
€—

The quantitative version of this result which we prove below in Lemma 4.9 is essential for connecting
the Almgren frequency to Jones’ beta numbers in the “frequency pinching” result later in Lemma 8.2. It
comes from examining the derivative of the Almgren frequency function in the r variable.

Throughout this section, we shall use the notation (v¢),(y) = Vue(y) - v(y), where v(y) is the unit
normal to d B, (Q) at y. By differentiation (see [Engelstein 2016, Section 5.1] for details of the derivation),

2
d
H(Q,r,ve)zd—N(Q,r,ve)=2r<f (ve)ida/ |ve|2da—U ve(ve)vda])
r B, (Q) 0B, (Q) B, (Q)

+2r(/ Ve AV dV) (/ Ve (Ve)y da)
B, (Q) 9B-(Q)

—2H(Q,r, ve) (x —Q,Vve)Av. dV. (4-4)
B (Q)

We write the decomposition %N(Q, r,ve) = N{(Q,r,ve) + Ny(Q, r, ve) with

2
N{(Q, 7, ve) == H(Q,T, verzzr( f (we)2do [ vel* do — [ / v€<ve)uda} )
aB,(Q) aB,(Q) dB,(Q)

We call what remains N,(Q, 7, v¢):

Ny (Q,r,ve) == H(Q,r, ve)_2|:2r<f Ve AV dV) </ ve(ve)vdo)
B, (Q) 9B:(Q)

—2H(Q,r,v.) (x — O, Vue)Ave dV(x)i|.
B, (Q)

Note that by the Cauchy—Schwarz inequality, N{(Q, r, v¢) > 0.
Lemma 4.6. Let v € A(n, o, My), Q € QT N B1(0) and 0 < r < 1. Then, if C =Lip(v|g,)),

, Vv (y — Q) — N(Q, r,v)v|?
N rv)=2 d
1. v) /WQ) HO -0l vly—g] 7V
2 |[Vv-(y— Q) — N(Q,r,v)v|?
“ d . 4-5
¢ o o () (4-5)

Proof. Recall that for the Cauchy—Schwarz inequality, we have, for A = (u, v)/ |2

2 2 2 2 2
oll*lle = Avll” = llul“l0l]" — [{u, v)I~.
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Choosing

u:Vve-(|y_g|> and v =,
y—

using the divergence theorem on A, and letting € — 0, we have

NJ(Q,r,v) = H(Q, r,v) ' 2r </ )(v)v _ %N(Q, . v)v‘z da).
d

B-(Q)
This proves the equality. To prove the lower bound, we let C = Lip(7j, 1v|p,0)) and observe that
H(Q,r, To.1ve) < Cr'"*!. Plugging this into the above equation, we get the desired inequality

, 2 IVTo1v(y) - (y — Q) — N(Q, r, )Ty, 1v(y)|?
N 2l 2 ~ . d
l(Q r U) C /BB,(Q) |y _ Q|n+2

o(y). O

In order to bound the parts of N(Q, r, ve), we recall some estimates from [Engelstein 2016].

Lemma 4.7 [Engelstein 2016, Lemmata 5.4, 5.5, and 5.6]. Let v € A(n, o, My) with ||In(h)|, <T, and
let Q € B1(0) N3dQE. Forany 0 < s and € K s,

- 2
/ v Pdo > C (M 2 ELOS (4-6)
9B(Q) §
- 2
/ veAvedV gcnln(h)nas“%’ 4-7)
By(Q) §
- 2
/ (Vie, x = 0) Aue dV ()| < Cllin(h) s 2 (4-8)
By(Q) §
- 2
/ vewe)y do| < BN (4-9)
IBs(Q) §

where C = C(a, My, I').
Proof. Let v € A(n, o, My) be given. Recall that v = V0. Engelstein [2016, Lemmata 5.4, 5.5, and 5.6]
proves the claim for the functions vg,l. Hence, for any such v and any such Q, the integral estimates

hold for u(x) = v (x + Q) as well. However, in general, such v2(- + Q) are not in A(n, «, M) because
h(0) may not be 0. But,

VWa+ Q) =cut(x+0)—u"(x+ Q)

is an element of A(n, a, M) for some constant e 112" < ¢ < ¢I'12I" a5 in (3-1). Using this identity and
following the proofs of [Engelstein 2016, Lemmata 5.4, 5.5, and 5.6] gives the claim. U

Remark 4.8. Recalling our expansion of %N (r, p, ve) in (4-4) and the bounds contained in Lemma 4.7
we have that, for v € A(n, a, My) with |[In(h)|lo <T, € < r, and Q € B;(0) N 9T,

INS(Q, 7, v)| < Cilln(h) [lor® ", (4-10)
where C; = C(a, My, T').

‘We now state the main result of this section.
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Lemma 4.9. Let v € A(n, o, M) with ||In(h)|l¢ <T, and let Q € B1(0)NIQ*E. Forany0<s < S <1,

2 / IVTo,1v(») - (v = @) = N(Q, Iy = QI, To1v)To,1v(»)
CJaso ly — Q|+
<2/ [Vu(y) - (y = Q) = N(Q, |y = 0, v(y)|?
Ag,5(Q)

dv(y)

dVv
H(Q. |y — 0l v)ly — 0l o)

= N(Q,S,v) = N(Q,s,v) + CillIn(h) |« S (4-11)

where C1 = C] (O(, M(), F) and C(M(), F, Ot) = Lip(To,1v|Bz(0)).

Proof. We begin by normalizing v. Since N (r, p, v) = N (r, p, cv) for any ¢ # 0, we may work with Tp jv.
Note that by Remark 4.8 and (4-5), N(Q, r, v) is continuous in » and hence we may find an 0 < s < s7
such that

IN(Q,s,v) = N(Q, s1,v)| < IIn(h) ||« S

By Corollaries 3.11 and 4.3 we can find an € < s small enough that
IN(Q, 51, v0) = N(Q, 51, V)| < [[In(M) |« ¥ and  [N(Q, S, ve) = N(Q, S, v)| < [[In(h)]|oS*.
Thus, we reduce to estimating N (Q, S, Tp,1ve) — N(Q, s1, Tp.1v¢):

d

S
N(Q’ Sv TO,IUe) - N(Qs S1, TO,lve) = / EN(Q’ r, TO,lve) dr

51
s s

=/ N{(Q,r, TO,lve)dr+/ N3 (Q, 1, Tp1ve) dr.
S1 S1

Recalling Remark 4.8, Lemma 4.6, and letting ¢ — 0 gives the lemma. ]
Using these estimates it is possible to control the drop across scales from the total drop.

Lemma 4.10. Ifv e A(n, a, My) with ||In(h)|lo <T and Q € B (0)NdQE, then forany0<r <s <S <R
N(Q, S,v) = N(Q,s,v) <2Ci|In(h) [ R* + IN(Q, R, v) — N(Q, 1, v)|.

Proof. This is essentially a “rays of the sun” argument. To wit,

s

N(Q.5.0) = N(Qs.v) = [ Ni(Q.p.0)+ Ny(Q.p.v)dp
S
s

< [ M@ p ) +IN3(Q. 0.0 dp
N
R

5/ N{(Q, p,v) +IN5(Q, p,v)|dp
r

R
< 2/ IN3(Q, p,v)Idp +|N(Q, R, v) = N(Q,r,v)l.

The bounds in Remark 4.8 give the desired statement. ]
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We now turn our attention to proving a “doubling” property for H(p, r, v). This is an analog of
classical harmonic results for the Almgren frequency function, modified for our almost harmonic functions
v e A, a, My).

Lemma 4.11 (H (r, p, ve) is almost doubling). Let v € A(n, a, My) with ||In(h)|lo < T, and let Q €
Bi,(0)N AQT. Forany 0 <s < S <1, if € < s is sufficiently small,

(n—1)4+2(N(Q,S,ve)+CS%)
HQ, S v < () ep(2S 15t s ) H @ 5,00, @12)

where C = ||In(h)||C1(My, a, T') and C| is as in Remark 4.8.
Proof. First, observe that

diH(Q,r, ve):””/ |v€|2d0+2/ |Vv€|2dV—|—2/ v Av, dV.
r r 90B,(0Q) B, (Q) B, (Q)

Next, we consider the identity

(H(Q, S, ve)
Inf ———
H(Q, s, ve)

) = IH(H(Q, S’ ve)) - IH(H(Q, S, ve))

5 Iil(Qar, Ue) fS n_l
— — =  dr=
N

fBr(Q) veAvedV) )
N H(erv vé) r

faBr<Q>(”€)2dU

We bound N (r, O, ve) by Lemma 4.9. We bound the last term using Lemma 4.7. Plugging in these
bounds, we have, for € < s,

+ %N(Q, 7, Ve) +2<

H(Q, S, S
tn( 2425 2D) 1y 1) 4 2V(Q. . v + €S () S + 2
H(Qa s, UE) o K
Evaluating and exponentiating gives the desired result. (Il

Remark 4.12. Because H(Q,r,ve) - H(Q,r,v) ase€ — 0and N(Q,r,v.) > N(Q,r,v) ase — 0
(a consequence of Corollary 3.11), we have the following inequality. For all v € A(n, o, My) with
[In(h)|le <T, Q € B1p(0)NIN*, and 0 <5 < S <1,

S)(n—])+2(N(Q,S,v)+CS°‘)

H(Q, S, v) < (; exp(%c[sa —s“])H(Q,s, v). (4-13)

5. Quantitative rigidity

Throughout the rest of the paper, we shall need to use limit-compactness arguments. The key will be that
v — u for some harmonic function u as ||In(k)||, — 0. We make this rigorous in the following lemma.

Lemma 5.1 (convergence to harmonic functions). Let v; € A(n, o, My) with ||In(h;)||, — 0. Assume
that Q; € B1(0)N 89?E and {r;} C (0, 1]. Then there exists a function v, and a subsequence v; such that
Tg;.rjvj = Voo In the sense of Lemma 3.10 and v, is harmonic.
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Proof. Lemma 3.10 gives a subsequence T, ; v; which converges strongly in Wll)’cz([R”) to a function veo.
We claim that v is harmonic. To see this, we investigate the behavior of its mollifications veg e = Voo * Pe.
Observe that by Young’s inequality,

1T0;.7;Vj.e = Vool 28,00 = 1 Dell L1 (By0) 1 T0;.7; Vi — Vooll £2¢B,(0))-

Thus, for any € > 0 we have Tg;.r;Vj.e = Voo,e @S j —> 00 strongly in L?(B»(0)). By a similar argument
applied to VTg, r;vj e, we also have that VT, »vj e = Voo ¢ In L?(B>(0); R") as j — oo. Furthermore,
by our uniform Lipschitz bounds, Tg; ;vje = Voo, as j — 00 in C(B2(0)) as well.

We will show that for € < 1 the function v ¢ is harmonic. First, for any test function & € C2°(B2(0)),
we have

/ S(ATQj,rj Vje — Avoo,e) dV‘ = / AS(TQj,rj Vje — Voo,e) dv
B>(0) B>(0)

< 1 A&l 2,00 1T0; .1 Vive — Voo.ellL2(B,(0))-

Since T, 1, Vj.e = Voo, Strongly in L?(B,(0)), we have ATg; r;Vje = AVoo e In L?(B5(0)).
However, by assumption, we also have

h;(0)
/ éATQj,rjUj,e av 5/ |Eel !
B> (0) B»(0)

h;j(x)
where Ty, w* are the interior and exterior harmonic measures associated to Tg;.r;vj. Note that
To,n0~ # a)éj - but, by Definitions 2.4 and 2.7 and Lemma 3.4, there is a constant ¢’ = ¢’ (M)

- 1‘ dTg; 0~ < Cgl% &1 (k) lle To; re (B3(0)),
2

such that T, , 0™ = Cwé_,,r, and ¢ < ¢’. Since a)rj 0; (B3(0)) are uniformly bounded by Theorem 2.6, the
To, ;™ (B3(0)) are, too. Thus, as j — 0o, we have that ATg, ,vj — 0 in L?(B,(0)) as well. Thus,
AV, =0 weakly in L?(B3(0)). Since voo.e € C*(B2(0)), we have that v  is harmonic.

Since v 1s Lipschitz continuous, Voo, — Voo in C(Br(0)) as € — 0. Thus, for all x € Br(0) we have

both that v (X) = Voo (x) as € — 0 and that

f Voo,e () dV (y) — Voo (¥) dV (y)
B, (x) B, (x)

as € — 0. Thus, v, must satisfy the mean value property and is therefore harmonic. U

Now that we have Lemma 5.1, we can prove a quantitative rigidity result. Loosely speaking, it says
that if a function v € A(n, o, Mp) behaves like a homogeneous harmonic polynomial with respect to the
Almgren frequency (in the sense that it has small drop across scales), then it must be close to being a
homogeneous harmonic polynomial. This will connect the behavior of the Almgren frequency to our
quantitative stratification.

Lemma 5.2 (quantitative rigidity). Let v € A(n, o, My), as above. Let Q € B1(0)N IQE. For every § > 0,
thereisany =y n, o, My, 6) > 0 such that if |In(h)|q <y and

N(Q’ l,v)_N(stv U) 5)/,
then v is (0, 6, 1, Q)-symmetric.
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Proof. We argue by contradiction. Assume that there exists a § > 0 such that there is a sequence of
functions v; € A(n, o, My) with [|In(h;) |l <27 for which there exists a point Q; € B;(0) N an.i with

N(Qi, 1,v) = N(Q;, 27 vp) <27,

but where no v; is (0, §, 1, Q;)-symmetric.

By Lemma 5.1 there exists a subsequence Tp; 1v; which converges strongly in WI})’Cz to a harmonic
function v... Therefore N(Q, r, v) is monotone increasing. Further, by Corollary 4.3 we know that
lim; o N(O, r, TQj,lvj) = N(0,r,v) for all 0 < r < 1. By Lemma 4.10 and the aforementioned
convergence, we have that

N, 1, vx) —N(0,0, ve) =0.

This implies that v, is a homogeneous harmonic polynomial (see, for example, the proof of [Han and
Lin 1994, Theorem 2.2.3]). Thus, we arrive at our contradiction, since the TQj,lv ; were assumed to stay
away from all such functions in L?(B1(0)). [l

Remark 5.3. Since N(Q, r, v) is scale-invariant, Lemma 5.2 is also scale-invariant in the sense that if
N(Q,r,v) —N(Q,yr,v) <y and |In(h)|y <y, then v is (0, §, r, @)-symmetric.

6. A dichotomy

The proof technique in the rest of the paper is an adaptation of techniques developed by Naber and
Valtorta [2017].

This section is dedicated to proving a lemma that gives us geometric information on the quantitative
strata. Roughly, it says that if we can find (k+1) points that are well-separated and the Almgren frequency
has very small drop at these points, then the quantitative strata is contained in a neighborhood of the
affine k-plane which contains them and we have control on the Almgren frequency for all points in that
neighborhood. This is a quantitative analog of the following classical result.

Proposition 6.1. Let P : R" — R be a homogeneous harmonic polynomial. Let 0 <k <n—2. If P is
translation-invariant with respect to some k-dimensional subspace V and P is homogeneous with respect
to some point x ¢ V, then P is (k+1)-symmetric with respect to span{x, V}.

See [Cheeger et al. 2015, Proposition 2.11] or [Han and Lin 1994, proof of Theorem 4.1.3].

We shall use the notation (yp, ..., yx) to denote the k-dimensional affine linear subspace which passes
through yo, ..., .
Lemma 6.2. Let v € A(n, a, My) and 0 < € be fixed. Let y,n', p > 0 be fixed, then there exist constants
0<no(n,a, Eg,e,n,y, p) L pand0 < B(n, o, Ey, €, 1, p) < 1 such that, if
() E= SUPgeB, (0)naQ+ N(Q,2,v) €0, Eyl,
(2) there exist points {yo, y1, ..., ye} C B1(0) N dQ* satisfying yi & By({Y0. - -, Yie1s Yit1s -+ Yk))
and

N(yi,yp,v) = E—no

foralli=0,1,...,k,and
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(3) lln(A)lle < no,
then, writing (yo, ..., yx) = L, for all Q € Bg(L) N B1(0) N 3Q*,

N(Q,yp,v) > E—n
and
Sk, NB(0) C Bg(L).

€70

Proof. There are two conclusions. We argue by contradiction for both. Suppose that the first claim fails.
That is, assume that there exist constants y, p, n° > 0 for which there exists a sequence v; € A(n, o, Mp)
with SUP pe B, (0) N(Q,2,v;)) =E; e [0, Ep] and points {y; ;}; satisfying (2) above, with ||In(h;)|l¢ < <27
no <27/, and a sequence B; <2~ such that, for each i, there exists a point x; € Bg (L) N B1(0)N 8QjE
for which N (x;, yp,v;) < E —n'.

By Lemma 5.1, there exists a subsequence v; such that 7 jv; converges to a harmonic function vy in
the senses outlined in the lemma. Further, by the compactness of [0, E], m, and the Grassmannian,
we may assume that

E,—~E, yij—y, Li—>L, xi%xweBl(O)ﬂano

where BQfO = {veo = 0} is a two-sided NTA domain with constant 2/ by Theorem 3.8. Note that the
convergence given by Lemma 5.1 implies

sup N(Q,2,v00) <E, N(xoo,¥PsV0) < E—1,
0€B(0)
and

N(j, vp,ve0) > E

forall j =0,1,...,k. Because vy is harmonic, N (p, r, V) is nondecreasing in r for all p € B,(0).
Therefore, N(y;,r, voo) = E for all y; and all r € [yp,2]. Thus, v is a O-symmetric function in
B>(yj) \ By, (y;) for each y;. By unique continuation, v is 0-symmetric with respect to y; for each j.
Because the y; € B1(0) are in general position, by Proposition 6.1, vy is translation-invariant along L in
B>(0). Since xo, € LN B1(0), this implies that N (x~, 0, vo) = E. But this contradicts N (Xeo, Y0, Voo) <
E — 1/, since N (xc0, I, Voo) must be nondecreasing in r. This proves the first claim.

Now assume that the second claim fails. That is, fix 8 > 0 and assume that there is a sequence
v; € A(n, o, My) with SUPgeg, ) N(Q, 2,v;) = E; €0, E¢] and points {y; ;}; satisfying (2) above, with
n(h;) |l < 27" and a sequence #; — 0 such that for each i there exists a point x; € S 6 0 (vi)) N B1(0) \
Bg(L;).

Again, we extract a subsequence as above. The function vy, will be harmonic and k-symmetric
in B145(0), as above, and x; — x € B1(0) \ Bg(L). Note that by our definition of S, (v,) and the
convergence in Lemma 5.1, x € §; /2(voo).

Since v 18 k-symmetric and L is its k-dimensional spine, every blow-up at a point in B (0) \ Bg(L)
will be (k+1)-symmetric. Thus, there must exist a radius r for which v, is (k +1, %e, r, x)—symmetric.
This contradicts the conclusion that x € S /z(voo) [l
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Consider the following dichotomy: either we can find (k+1) well-separated points y;; with very small
drop in frequency or we cannot. In the former case, Lemma 6.2 implies that the Almgren frequency has
small drop on all of Sf, ,7(v) (and we also get good geometric control). In the latter case, the set on which
the Almgren frequency has small drop is close to a (k—1)-plane. In this case, even though we have no
geometric control on Sf’n(v), we have very good packing control on the part with small drop in frequency.
We make this formal in the following corollary.

Corollary 6.3 (key dichotomy). Let y, p, n' € (0, 1) and 0 < € be fixed. There exist
0< B, a Ep,€,n,p) <1 and 0<no=non, a, Eo,€1n,y,p)Lp

such that the following holds. For all v € A(n, o, My) with SUPpeB, (0) N(Q,2,v)<E€]0, Egl,if n<no
and ||In(h)|o < n, then one of the following possibilities must occur:

(1) N(Q.yp.v) = E—n'on S, (v) N B1(0) and

Sk N B(0) C Bg(L).

€,70

(2) There exists a (k—1)-dimensional affine plane L*=1 such that
{Q € Q" : N(Q.21,v) = E —no}N By (0) C B, (L")

Remark 6.4. The former case is simply the conclusion of Lemma 6.2. In the latter case of the dichotomy,
we know that all points in dQ% N By (0) \ B,(L*~!) must have N(Q, 27, v) < E — nj. Since N(Q, r, v)
is almost monotonic and uniformly bounded, this can happen for each Q only finitely many times.

7. Spatial derivatives of the Almgren frequency

The main result of this section is Corollary 7.7, in which we estimate the difference between the Almgren
frequency at nearby points. First, we need a preliminary estimate which extends one of the results of
Lemma 4.7 to points p € B1(0) \ dQ*.

Lemma 7.1. Letv e A(n, a, My), andlet0 <s <1, Q € QTN B (0), and p € By 3(Q). Then we have
the estimate

o™ (Bs(0))*

H(p9 sv ve) Z C(n’MO) Sn_3

Furthermore, forall0 < s < % and all %s <r <2s,

H(p’ 7", UG) %n,a,Mo,F H(Q: 2S, Ué) QJ"n,O[,Mo,I‘ H(Q7 %S, Ué)'

Proof. Let xmax(p, s)T denote the point in 3 B;(p) N QT which maximizes |v| on 3 By(p) N Q*.
If we can show that, for all p and all 0 < s < %,

o (Bs(Q))

|v(xmax(Q’S)_)| ~ My §n—2



1146 SEAN MCCURDY

and that dist(xpmax (P, 5), 92F) > 8§(Mp) > 0, then
o™ (By(Q))?

/ |v|2daz/ [vI*do > C(Mo) v (tmax (P, ))*(85)" ™" = C(n, Mo)———
dBs(p) 8 B (P)NBss (Xmax (p.5)) ST

If this can be shown, then recalling the doubling of harmonic measure on NTA domains, the above string

of inequalities proves that H (p, s, v¢), H(Q, s, v¢), and H (Q, %s, ve) share a common lower bound.
The common upper bound follows from a similar argument using Remark 3.1. That is, if we can show,

forall pandall 0 < s < %, that dist(xmax (P, 5), 992%F) > 8(a, My, I') > 0, then by Harnack chains we

know that
0t (Bs(Q))

|v(xmax(QaS)+)| N()l,M(),F Sn_2

and that
/ [0 do < [v(max(Q, )7 1" 4 [0 (max (Q, ) P!
dB;(Q)

- 2
< C(Mo)(Jv(As(Q) )" + (A (@)D" < C(n, o, Mo, F)m.

Sn—3

Recalling the doubling of harmonic measure on NTA domains, the above string of inequalities proves that
H(p,s,ve), H(Q, s, ve), and H(Q, %s, ve) share a common lower bound. This would prove the lemma.

Let O, p, and s be given. By the maximum principle for harmonic functions applied to v~ in 27, we
have |v(xmax (P, $)H)| > ‘v(xmax(Q, %s)i)‘ By NTA estimates [Engelstein 2016, Lemma 5.4], we have

w®(B1/2(0Q)) N
(35)"

Therefore, by the uniform Lipschitz estimates of Theorem 2.6 and Remark 3.1 we infer that

o 10(A55(0))] = [0 (Xmax (Q. 35)7)| < [0 max(p. 9))1.

diSt(xmax(p, S):l:’ aQi) ZMO,F,(X S.

Therefore, we may use Harnack chains and estimate

+
0= (B (Q))
v Cmax (P2 )] < [0(AS (O] ~pty — s
(2s)"
Thus, by the doubling of harmonic measure on NTA domains (see [Jerison and Kenig 1982]), we infer
that [v(Xmax (P> $)5)| ~a, [v(A2(Q)F)|. This proves the lemma. O

Remark 7.2. As a consequence of Lemma 7.1 and Corollary 4.4, we observe that if v € A(n, o, My)
then, for every 0 < r < % and every point p € B;(0) such that dist(p, Q%) < %r and forany 0 < e < r,

N(p,r,v) <C(n,a, My, I') and N(p,r,ve) <C(n,a, My, T).

Lemma 7.3. Let v € A(n, a, My) with ||In(h)||¢ < T, and let Q € B{(0)NIQT, 0 <5 <1, and € K s.

For all p € Bs3(Q) N Q™ and all vectors |0| <r,
o™ (By(0))*

sn—2

0], (7-1)

/ (Voe, 5)Ave dV ()| = CllIn(h) o5
BA(P)

where C = C(My).
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Proof. Let p, Q, and s be as above. For sufficiently small 0 < e,

/ (Vve, 0)Ave dV (x)
B (p)

h(0)

" 1‘@)— < /BMQ)'((WE’ )l

@ — llda)_
h(x)

/ (Voe, B)e Av(x)
B (p)

5/ (Vve, )]
B (p)

< In(h) e 25)° / (Voe, 3))e] do™ < In() 1o 25)* ]3] /B Vel do.

B (Q) 25 (Q)
Chasing through the change of variables x =ry + Q, we see that
1 o (B,(Q))
Voo (x) = =Vyu(ry 4+ Q) = —————=V,u,(y).
r r

Thus, we calculate that for the change of variables x = 2sy + Q,

®™ (B (Q))* ~
W/BI(O) IVVg,25 ¥ e/ 25) ¥ Pej25) dw g o
(S)n—l

Sn—2

< |[In(h) [l (25)* 7]

/ (Vve, V) Ave dV (x)
Bs(p)

< [lIn(2) |« Cs**' [0 @ 5, (B2(0))

< ln(a) [« Cs* vl

where the last two inequalities are because the vg , are uniformly locally Lipschitz, 1 +¢€/r < 2, the
a)é’r(Bz (0)) are uniformly bounded for Q € B;(0) and r < 2, and the doubling of harmonic measure on
NTA domains. U

Lemma 7.4. Let v € A(n, o, M), Q € 3Q* N B1(0), and 0 < r. Then for p € B, ;3(Q) and v € R” such
that || < r, we calculate the spatial directional derivatives as follows:

0 -

—H(p,r,ve) = 2/ ve Ve -vdo, (7-2)
v 9B, (p)

0 - 0

—D(p,r,ve) =2 (Vve-v)(Vue -n)do — — v Av. dV, (7-3)
v 9B, (p) B, (p) IV

9 2 -

—=N(p, 1 v) =———— (rVve -n—N(p,r,vea)ve)(Vve - v) do

dv H(p,r, ve) 3B, (p)

9
T fBr(p) ssveAvedV

H (p 9 r 9 vé)
Proof. Equation (7-4) follows immediately from the preceding equations. The spatial derivative for
H(Q, r, u) follows from differentiating inside the integral. To obtain the spatial derivative for D(Q, r, v),
we recall the divergence theorem:

a a
—D(p,r, v)=7(/ vVv-nda(x)—f veAvedV)
v v \JsB,(p) B, (p)

. 3
:/ (Vve-v)(Vve - n)do +/ ve—=(Vve -n)do.
9B, (p) 3aB.(p) OV

. (7-4)



1148 SEAN MCCURDY

Now, we focus upon the last term. Recalling Green’s theorem and the fact that partial derivatives of

harmonic functions are themselves harmonic,

d ad d ad
/ vef(Vve-n)dazf v€V<—_,v€)'ndG:/ Vve~n1v€do—/ — v Av . dV
9B,(p) OV 3B, (p) v 3B, (p) dv B, (p) 9V

- 0
=/ (Vvé-v)(Vve-n)da—/ — v Av. dV. ]
9B, (p) B, (p) OV

Definition 7.5. For the sake of concision, we define the following notation for v € A(n, a, M), y € Q,
andradii O <r, R <2.

Ey(2) :=Vve(2) - (z—y) = N(y, |z =yl ve)ve (2), (7-5)
Wr,R(y):: N(va’UG)_N(y7r9 UG)’ (7'6)

Lemma 7.6. Letve A(n, a, My) with |[In(h)||¢ <T. Let Q € 3Q*NB1(0) and 0 <r <1. Let p[Q, Q']
with Q' € 3Q% N B,/3(Q). Then, forv= Q' — Qand0 <€ K,

2 1
faB,‘(p) |Vve|? do )2 N 1)

< 2(W, /2.9y W, 2.0-(Q) + CI'r®
SnaMo,T 2(Wrp2.2-(Q) + Wy 22,(Q) +CI'r )<r( Hp.r. o)

2 7 5
S E 2 HEo(D))Pd ) </ Vo (2)-(z— p))d )
+H(p,r, %) (/as,(p>| o@I"+|Eg(2)|"do 83}_@)( Ve(2) - (z— p)) do

Eo()2 + |EQ’(Z)|2da>

s, ”EAvédv> 4T
H(P, r7 vé)

0
an(para vé)
v

1
+ C(n, A)(—/
H(p,r, ve) 3B, (p)

+2(N(Qv r, UE) _N(Q/’ r, Ué))(

Proof. We begin by noting that Lemmas 7.3 and 7.1 give

rfBr(p) %UGAvedV
H(pv rv vé)
Now, we write the decomposition
Vi (Q— Q) =Vu. - (2= Q)= Vi 2= Q)
= (N(Q, 12— 1, 1) = N(Q', 2= '), v)ve + (Eg(2) — Egr(2).

<C(n,a, My, T)r°T.

Therefore, plugging this into (7-4), we obtain for v= Q' — Q,

2 -
—</ <erE-n—N(p,r, Ue)”e)(vve'v)do')
H(p,r,ve) \JoB,(p)

—2 ’ ’
= H(p, o) </£;Br(p) Ep(Z)([N(Qa |Z — Q|, Ue) —N(Q s |Z -0 |, ve)]ve + (EQ(Z) _ EQ’(Z))) dO)

=A+B-C,
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where for the purposes of this lemma

2 / /
= T /33,(p> Ep(2)(N(Q, |z = Ql,ve) =N(Q', |z = Q| ve))ve do,

2
TS} /aB,m Ve (2) - (z = p)(Eg(2) — Eg/(2)) do,

2
Cim i /a o, NP 127 P10 (E0) — Eg () do.

We begin by estimating A. We rewrite

N(Q,lz=Ql,ve) = N(Q', |z = Q' ve) = N(Q, 1, ve) = N(Q', 1, ve) = Wiz—0,r(Q) + Wiz, (2.

Note that if |Q — Q'| < 1r and p € [Q, Q'], then 37 < |z —x;| < 2r for x; € {Q, Q'} and all z € 3B, (p).
Therefore, by Lemma 4.10, for all z € d B, (p),
[Wie—01,-(Q)] < W,/22,(Q) +2C T (2r)%,
IWi—0.- (O] < W22, (Q) +2C1T(2r)%.

Furthermore, we estimate by the divergence theorem
/ Ep(2)(N(Q,1,ve) = N(Q', 1, ve))ve do
9B,(p)

— (N(Q. 7, v) = N(Q' 7, w))/a NIN@ @) =Nl vndde
B (p

=(N(Q,r,ve)—N(Q',r, ve))-</ veAvedV)
B

- (P)

Thus, we may give the following preliminary estimate on A:

2
|Al < (Wy2,20(Q) + Wy /2.2-(Q") +CFra)—/ |Ep(2)||ve| do
H(p,r, ve) JaB,(p)

+2(N(Q’ r, ve) _N(Q/’ r, vE))(

fBr(p) Ve Ave dV)
H(pa r, v€)
Focusing upon the term

: /
—_— |Ep(2)||vel do,
H(p,r.v) Jag, iy ‘

using Remark 7.2 and Cauchy—Schwartz we estimate

|E,(2)]|ve| do < rlveVoe -]+ N(p, r, ve) |ve|* do

) ),
H(p,r,ve) Jog,(p) ~ H(p,r,ve) Jos,(p)

Ve |2 do \z
gzc(r(f”’(’” ‘ ) +1).
H(p,r, ve)
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Now we estimate B using Cauchy—Schwartz:

2 2
[ — Ve (z) - (z — E —E d
(H(p, 7, ve) /33r(p) Ve(2) - (2= p)(Eg(2) 0(2)) U)

(Eo(2) — Eg/(2))*do / (Voe@)- (2 — p)Ydo

4 /
= 2
H(p,r,ve)* JaB,(p) 3B, (p)

|Eo(2)]* +|Eg (2)|* do ( /a (Ve(2) - (z — p))zda).

v
H(P,n vé) 3B, (p) B (p)
For |C|, the same Cauchy—Schwartz argument plus Corollary 4.4 shows that

1
2
1C| SpoeMo.T ( |Eg()* + |EQ/(z)|2do) :

sl
H(p,r,ve) JaB,(p)

This proves the pointwise estimate

2 1
3 [58 () |VVel* do
v < 4 o r
avN(P, 1, Ve) Snoa,My,T (Wrp2,20(Q) + Wy 22-(Q) +CIr )Z(V( Hpr0) +1

2 3 5
T E 24+ |Eo 2d>(/ Vue(2) - (z — 2d>
Hipor o0 </33,<p)| 0" +|Eg ()| do aB,<p>( Ve(2) - (z— p)) do

1

1 / 2 2 >
+| [Eo(@)|"+|Eg(2)] dG)
(H(P, r, Ve) 9B, (p) © ¢

s, veAvédV) Lrer
H(p’ rv vé)

We prove the lemma by reversing the roles of Q and Q'. U

+2(N(Q,r,ve) = N(Q', 1, Ue))(

Corollary 7.7. Let v € A(n, a, M) with |[In(h)|lq < T, let Q € 3QT N B;(0) and 0 < r < 1, and let
Q' €9Q* N B,/3(Q). Then

IN(Q', 1, v) = N(Q, 7, V)| Snattyr Wrj2.20(Q) + Wy 2.0, (Q) +CTr* + 141712,

Proof. First, since for any 0 # ¢ we have N(Q, r,v) = N(Q, r, cv), we shall assume for the purposes
of this lemma that v = Tj jv. We shall show that |[N(Q’, r, ve) — N(Q, r, v.)| satisfies a corresponding
inequality, and let € — 0. Since N(Q’, r, v.) = N(Q’,r, v) as € — 0, this will prove the claim.

Let v = Q' — Q and p, := Q +tv. Then we calculate

1
N 700 = N(Q@rval = [ | & NG v
0

dt Spamyr A+B+C+D+E,

where

1 / Jog, o 1V Vel? do N2
A:=f (Wr/z,zr(Q)-i-Wr/z,zr(Q)+CFF“)2(F( ; ) +1> dr,
0 H(pl‘vrv vé)

o2 > }
B = N E 2+ E 2d ) (/ v ) ) _ 2d ) d ’
/0 H(p:,r, ve) (/{;Br(Pt) Eo@I+IEe @ do aB,(p,)( ve(@)- (2= pr)"do | di
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1 1 %
C::‘/ (-———————-/Q |Eo(2)|>+|E (zﬂ2d0> dt,
o \H(p:,1,0e) JoB,(p) e ©

8,000 ”EAvédV> .
H(Pt,r, ve) ’

1
D :=2(N(Q,r,ve) = N(Q',r, Ue))/ (
0
E :=CTr%
We estimate each term separately.

Bounding A. We begin by rewriting A:

g |Voe|? do \z
A =2(W,/22,(Q) + Wy 2.2-(Q") + CTr) / (r( 9B:tp) ~ ~ ) + l)dt.
0 H(pla r5 vE)

Observe that by Lemma 7.1 and Remark 4.12 we may using Holder’s inequality to estimate

2 1 2 1
f1r</33’(p’)|VUE| d()‘)z o< /1 (faBAp:)'vve' d0‘>zd
~h,o, Mo, T’ r t

0 H(p;, r, ve) 0 H(Q,r, ve)

< ____3____(/ﬂ/ IVve|>d d&é
oMy, T T v o .
PR (O, v 2\ o Laspy

Now, divide the spheres as follows: 3B, (p,) = 0B, (p,)" U3 B,(p; ), where

9B, (p))” ={x € 3B, (p): (x—p,)-0<0} and 3B (p)" ={x €IB(p)): (x—p;)-V=>0}.

Notice that

max #Htel0,11:2€ B, (p)* orz€ 0B, (p,)}=2.
ZeU/e[O,lJan(pf)

Then, use the coarea formula for the function ¢* : |, 0.1 9 B-(p1)* — R defined by ¢33, (p,+ =t. Note
that if we write L := Q + span{v} and dist(z, L) = §, then

r . 1
10— Q'1Vr?—58 10— Q'|cos(0(2)’

JpE(2) = Ve(2)| =

where
= Z _ pt
|z — pr

)=

v
0(2) R for z € 3B, (p,

Thus, we obtain

1 1
/1 r(faBr(pt) Vvel* do )2 dt <, o MoT —Zr (f 2V dV)2
0 H(py,r, ve) ST H(Q, v 2N, 08,00 12 — Q'l10s(0(2))] '

Note that a simple calculation gives, for any 1 < p <2,

/ 10— Q'| ' cos(B(2)|7PdV = / 10— Q|7 cos(0(z))| 7P dH" " ds
UtelO‘llaB’(pf) 0 J%s

rooppgn=2 c(n) 1

< <
<c(n) o (2=orT =111

(7-7)



1152 SEAN MCCURDY

Since Ty ,ve is uniformly locally Lipschitz by Lemma 3.4, recalling Definition 2.7 and choosing p =1
above, we see

2 |Vve|? 2
e 2/ / av
H(Q,r, ve) Useo 8B8-(p) 1@ — @'l |cos(0(2))]
1

VT 2 2
:2\/5(1"1_"/ | /Q,rve| dV)
Urero.r 9B1(To, po) 19 — Q'[c0s(0(2))]
1

=2ﬁc(r1—"/ |Q—Q/|_1|cos(9(z))|_1dv>2
UreOl 9By (pr)

<Cn,a, My, T).
Thus

|A| S,n,a,Mo,l" (Wr/2,2r(Q) + Wr/Z,Zr(Q/) + Crra)-

Bounding C. By Holder’s inequality (or Jensen’s inequality for concave functions) and Lemma 7.1, we
may reduce to considering

/— Ve (2) - (z — Q) = N(Q, |z — Ql, vo)ve (2)* do (z) dt
o H(pi,r,ve) Jag,(py

1 1
S Mo —_— Ve(z) - (z— Q) — N(Q, |z — O, vo)ve (2)|* do (z) dt.
N,,M,rfo H(Q,%r,ve)/g(p,)| 0e(2) - (z— Q) — N(Q, |z — Ol, ve)ve (2)|* do (z) dt

Now, we change variables using Definition 2.7 and Lemma 7.1, and use Young’s inequality to get
1 1 )
| i [ V@ e 0= M@ 2= 0L vv @ do @) dr
0 H( 3 Ue) B (p1)

<2f Ve (z) - (z— Q) — N(Q, |z — Ol ve>ve<z>|2
~ IUrc0 9B (p1) H(Q, 3r,ve)10 — Q'l1cos(6(2))]

|VTQ rVe(2) -2 — N0, |z], TQ rve)TQ rve(Z)|
S_,n,ot,MO,F 2r [0-0
Urego.11 881 (To. p) = E=2  |cos(0(2))]
<4f VTo,rve(@) - 21 +IN(O, [2], To, v) To v I )
Urctoy 9B1 (To. po) | 2= |cos(6(2))|

Now, by Corollary 4.4 and Lemma 3.4, the numerator is bounded by a constant. Whence, by a calculation
similar to (7-7), we obtain

f / IVve(2) - (z— Q) — N(Q, |z — Ol, ve)ve () * do (2) dt Spamtyr 1.
H(Q, 3r,ve) JoB,(p)

An identical argument holds for Q’ in the place of Q. Thus, we have that |C| <,.0.m,.1 1.
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Bounding B. Using Cauchy—Schwartz, Lemma 7.1, and the estimates of the term |C| above, we obtain

o2 > 3
o sl o st o)
/0 H(pt, r, 'Ug) (/33r(Pt) | Q(Z)l | © (Z)| 7 3B,(p,)( v (Z) (Z pt)) o f

2 2 1

r Ve (z 2

<t ( | /e( )| dV)
H(Q, 7, v) JU, 0, 0B1((pi—00/r) 19 — QI |cos(85)]

1

VT, v.(2)]? 2

Sn,a,Mo,F rl/Z([ |Q—Qgr—€()| dV) .
Usepo.n 8B1((pi—= Qi) /ri) | " ‘|COS(9§)|

Thus, by Lemma 3.4 and a calculation identical to that of (7-7), we obtain |B| Sp.a.m.0 7™

12,
Bounding D. Note that
h( h(
VeAv dV (x)| < [(Ve)el Q_l do™ < [(Ve)el Q_l dow™
h
B (p) B (p) (x) B2 (Q) h(x)
< ||1n(h)||a(2r)a/ [(Ve)el dw™ < ||1n(h)||a(27’)aC/ [(Ve)el dw™.
By (Q) Bor (Q)

Chasing through the change of variables x = ry 4+ Q, we see that

.
Vo = ey + 0= TPy )

Thus, we calculate that, for the change of variables x =2ry + Q,

/ Ve Ave dV (x)
B (p)

« @ (B(0))? -
< () o 2r)* =2 f 100,20 % Be/an] * ejian deoy,
(2r) B1(0)

~(B,,(0))?
< ||1n(h)||aCr“w(r,,#C (f)wé,zr(Bz(O))

~(B-(0))?
< iyl crec(€) 2B
r rn—2
where the last two inequalities are because the vg , are uniformly locally Lipschitz, 1 +¢€/r < 2, the

a)é (B2(0)) are uniformly bounded for Q € B;(0) and r < 2, and the doubling of harmonic measure on
NTA domains.

Thus, by Lemma 7.1 we have

1 VeAve dV
2N(Q. 1 v~ N(Q'. v [ (f B~ ) dr = Cn,a, Mo, TIIr* ™ (£).
0 H(pl‘v r, vé) r
Letting € — 0, we see that D vanishes.

Thus, putting together the estimates for A, B, C, D we have
IN(Q',r,v) = N(Q, r,v)| < 1iH}) IN(Q', 1, ve) = N(Q, 1, ve)|
€—>

Snato.r Wr220(Q) + Wrp22,(Q) +Tre + 147712
This proves the lemma.
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8. Frequency pinching

In this section, we prove a “frequency pinching” result (Lemma 8.2) in the style of [De Lellis et al. 2018].
This kind of result relates Jones’ beta numbers to the drop in Almgren frequency.

Definition 8.1 (Jones’ beta numbers). For i a Borel measure, we define ﬂ;]i,z(Q’ r)? as follows:

1 dist(x L)2
k 2 s
8 , inf — — 2 d ,
M,Z(Q I") - lL I’k 5.(p) r2 ,lL(X)

where the infimum is taken over all affine k-planes.

Taking the infimum here — as opposed to the minimum —is a convention. The space of admissible
planes is compact, so a minimizing plane exists. Let Vl’j(Q, r) denote a k-plane which minimizes the
infimum in the definition of B (Q, r)* Note that this k-plane is not a priori unique.

Lemma 8.2 (frequency pinching). There exists a constant 6o = do(n, o, Mo, I') > O such that, for any
0 <8 <éy,if ve An, a, My) with |In(h)|q <T then, forany Q € 02N B1(0) and 0 < r < 16’ if vis

(0, 8, 8r, Q)-symmetric but not (k+1, €, 8r, Q)-symmetric, then, for any finite Borel measure | supported

in B, (Q) N,
2

2
r r

,3,12,2(Q, 1?2 SpaMyre —k(/ We 2,160 () du(y)) +—= / Wy 2160 () da(y)
r B, (Q) ™ JB.(0)

+ 12 (Wr 216 () +T2r% 1 47 _I)M( r(Q))- (8-1)

Before proving Lemma 8.2, we prove a few preliminary lemmas. We begin by noting that for any
finite Borel measure n and any B,(Q) we can define the u center of mass by X = fBr( 0) % du(x) and
define the covariance matrix of the mass distribution in B,(Q) by

Z=f G-00-0" ko),
B-(Q)
With this matrix, we may naturally define a symmetric, nonnegative bilinear form

0w, w) = v T =f - (= XN (W (y = X)) du(y).
B.(Q)

Let vy, ..., U, be an orthonormal eigenbasis and A; > - - - > A, > 0 their associated eigenvalues. These

objects enjoy the relationships

V,f,z(Q, r)= X +span{vy, ..., v} and ,8 o2(x, r)? = (BF(Q)) g1+ -+ An).

See [Hochman 2015, Section 4.2] or [Naber and Valtorta 2017, Section 7.2].

Lemma 8.3. Letv e A(n, a, My), and let Q € 02N B;(0) and0 <r < ; Let,u 0, A, V; be defined as
above. For any i and any scalar c € R,

Ai / @ - Vo(2))*dz < f (f lcv(z) = Vu(z) - (z — )’)|de> dp(y). (8-2)
Az ar(Q) B, (Q) Azrar(y)
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Proof. Observe that by the definition of center of mass,
f w-(y—X)du(y) =0
B (Q)

for any w € R". Therefore, for any z for which Vv(z) is defined,
2i(0; - V() = 0V, Vu(z))

=f @ - (y = X)(Vu(z)- (y — X)) du(y)

B.(Q)

=f @ - (v = X))V (@) - (5 — X)) dp(y) +f o (@) T - (v — X)) du(y)
B, (Q) B, (0Q)

_ fB = X))~ V) (X2 42— d)

= f Wi - (y — X)) (cv(z) — V(@) - (z — y) djn(y)
B.(Q)

</ <f lcv(z) — Vu(z) - (z — ) ? du(y)>2-
B, (Q)

Squaring both sides and integrating over A, g(Q) = Br(Q) \ B,(Q) gives the result. (I

Lemma 8.4. Let v € A(n, o, Mo) with |[In(h)|l¢ <T and 0 <k <n—2. Let Q € 9Q* N By4(0) and
0 <r < 35. Then, forany Q' € B,(Q) N IQ*,

dz

/ IN(Q, 7r, v)v(z) — Vu(z) - (z — Q') ?
Az 4 (Q) H(Q', |z—Q'],v)

< F/ IN(Q', 2= 0, (@) = Vv@) - = QP
T e H(Q' |z = Q'] v)

+ (Wr2,16- (@)% + Wr216-(Q0 + T2 + 147D,
Proof. First, we observe that

N(Q,7r,v) = N(Q', |z = Q'l,v) + Wjz—0,7:(Q) + [N(Q, [z — Q'|, v) = N(Q', |z — 0'|, v)].

Therefore, by the triangle inequality,

IN(Q,7r, V)v(z) — Vu(z) - (z — Q)]?
< (W= - (@) + N(Q. 1z — Q'].v) = N(Q', [z = Q' v)v(2)|
HN(Q |z — Q' )v() — Vo) - (z— 0))°
<2|(Wi—g1.7/(Q) + N(Q. [z— Q'|.v) = N(Q'. |z — Q' )v(@)
+2/(N(Q', 1z = Q' v)v(2) = Vu(2) - (z — Q"
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Now, using Corollary 7.7 at scale r = |z — Q'| and the almost monotonicity of the Almgren frequency,
we estimate

f |(W:—0.7,(Q) + N(Q, |z — Q'|, v) = N(Q', |z — O], U))U(Z)|2
A2 () H(Q', |z—= 0], v)
,-Sl’l,ot,Mo,l—‘ Cgr(Q’ Q/)

lu(z)|?
Ayroy H(Q', |z = Q'], v)

’

where the term %, (Q, Q') is defined by

6(Q, Q") i= W, 216 (Q)? + W, 216 (Q)? 4+ T2 4 1 477!

We finish the proof by observing that

2
/ /Iv(z)l _ a< 0
As o) H(Q' |z — 0’|, v)

Lemma 8.5. Letv e A(n, o, My) with ||In(h) |l <T and 0 <k <n—2. Let Q € B{(0)NIQ*E, 0 <r < 116
Let 0 < € be fixed. There exists a constant § = §y(n, o, My, I', €) > 0 and a constant 0 < C(n, o, My, T', €)
such that if v is (0, 8, 8r, Q)-symmetric but not (k + 1, €, 8r, Q)-symmetric, then, for any orthonormal

vectors Vi, . .., Ugt1,
k+1

1 > (G- Vu(e) s

< -
¢~ /A3,4,<Q> H(Q,rv) *

Proof. We argue by contradiction. Assume that there is a sequence of functions v; € A(n, o, Myp),
Qe B1/16(O)08§2f, andO<r; < % such that v; is (0, 27/, 8r;, Q;)-symmetric but not (k+1, €, 8r;, Q;)-
symmetric. And, for each i, there exists an orthonormal collection of vectors {v; ;) such that

k+1 .
/ Z(ﬁij VT, vi(2))dz <27
A3.4(0)

By Lemma 3.6, we may extract a subsequence Ty, ,,v; for which Ty, »,v; converges to a nondegenerate
function veo. Similarly, {v; j} converges to an orthonormal collection {v;}. Given the assumptions above,

Voo 18 also O-symmetric in Bg(0) and Voo -v; =0foralli =1, ..., k+1. Thus, ve is (k+1, 0)-symmetric
in Bg(0). But, this is a contradiction, since the Ty, ,,v; were supposed to stay away from (k+1)-symmetric
functions in L%(B;(0)). O

8A. The proof of Lemma 8.2. By Lemma 8.5 and properties of the Jones’ beta numbers, we have,
for {v;} the orthonormal basis and A; the associated eigenvalues of the quadratic form in Lemma 8.3,

k+1

1(B,(Q)) w0 ) #
ﬁ/]i,Z(Q, r)2 < r—kl’l)xk—o—l C)»k+ m ;'/I;%M(Q)(vi . VU(Z))Z dz
(B (Q)) B ) 2
A ) ;M /A;M,(Q)(vi V@) dz.
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By choosing ¢ = N(Q, 7r, v) in Lemma 8.3 and recalling Lemma 8.4, we have

r

T (¥ - V(2))* dz
H(Q, r, U) \/f;SrAr(Q)

r _ ) _ 2
IR Br(Q)(/:‘\}rAr(}‘)|N(Q’7r’ V@) = V@ @ =)l dz)du(y)

IN(y, |z — yl, v)v(z) — Vo(2) - (z — y)|? )
S, Mo, dz)d
et rrfBr(Q></Aw<y> H(Q.|z—=yl,v) ¢)ant)

+r? f (Wr16r(Q)* + Wy16-(0)* + T2 + 147N du(y).
B.(Q)

Sn,a,Mo,

Therefore, collecting constants and using Lemmas 4.9 and 7.1, we have

’,.2
ﬂlli,z(Q’ r)z S,n,oc,Mo,l" _k (/ N()’» Sra U) - N(y» r, U) dll’(y))
r B (Q)

BNIC(I
2 (W16 (@) + T2+ L r ™) —— ==+ Wepier () dpe(y). O
B-(0Q)

9. Packing

The following theorem of Naber and Valtorta [2017] is a powerful tool which links the sum of the
,Bﬁ(Q, r)? over all points and scales to packing estimates.

Theorem 9.1 [Naber and Valtorta 2017, discrete Reifenberg]. Let { B, (x;)}; be a collection of disjoint
balls such that, foralli =1,2,...,we have t; < 1. Let €} > 0 be fixed. Define a measure

o= Z t,-k(Sxi,
i

and suppose that, for any x € B2(0) and any scalel €{0, 1,2, ...}, if By, (x) C B2(0) and (B, (x)) > ekrlk
then

Z/ ﬁ,’j(z, 16r)? du(z) < rlk82.

i=1 Y B

Then there exists a §g = do(n, €;) > 0 such that if § < dy,

uBO)= > tf=Cm).

i s.t. x;€B1(0)

Now we are ready to prove the crucial packing lemma.

Lemma 9.2. Fix 0 <€, and let v € A(n, a, My) satisfy ||In(h)||, <n and SUPpep, o+ N(Q,2,v) =E.
There is an ny(n, o, My, €) > 0 such that if n < ny, then for any r > 0 if {BZ,Q,(Q/)} is a collection of
disjoint balls satisfying

N(p,nrg.v) = E—n, Q' €Sk .. r<rg<l, (9-1)
we have the packing estimate
Y o < Caln,a, Mo, €). 9-2)
Q/
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Proof. Choose §o(n, a, My, €) as in Lemma 8.2, and y (n, o, My, §p) as in Lemma 5.2. Note that we may
assume without loss of generality that n; < 1, and so for C;(«, My, 1) the constant in Lemma 4.9, let

min{o, y}
ms—-—-
2C1+1

We will employ the convention that r; = 27". For each i € N, define the truncated measure

ni = Z r]é,SQ/.

ro/ <r;

We will write B;(x,r) = :3;5,-,2()(’ r). Observe that the g; enjoy the following properties. First, because
the balls are disjoint, for all j > i,

Bj(x,r;) if x € supp(u;),
0 otherwise.

/3i(x,rj)={

Furthermore, for r; < 274, recalling Lemma 4.10 our assumption of the Almgren frequency gives that
N(16ri, Q,v) = N(rg, Q,v) < 2C1 + I)n <max{y, y} < I and

|Wr 2,16 (Q)] < 1+ C(at, Mo, m)n(167))~.
Thus, for 0 < n small enough depending only upon « and M, we have [Wr, /2,161, ( 0| < 1. Therefore
We2.16r, (@) < IW,, 2,161, (Q)].

In particular, by Lemmas 5.2 and 8.2 and our choice of n < ny,

1 11(B,(Q))
Bl (0. 1) SnaMoTe = ( f W, /2,160 ()] du(y)) +(|Wr/2,16r(Q)|+F2”2“+2+"2+")r—k-
B (Q)

The claim of the lemma is that uo(B(0)) < C(n, o, My, €). We prove the claim inductively. That is,
we shall argue that there is a fixed scale 0 < R = 2~¢ (depending only upon n, a, My, €) such that, for
r; < R and all x € B{(0),

1i (B, (x)) < Cpr(n)rf.

Observe that since ro > r > 0, for r; < r the claim is trivially satisfied because p; = 0. Assume, then,
that the inductive hypothesis holds for all j >i 4 1. Let x € B1(0). We consider u; (B4, (x)). Observe
that we can get a course bound

14j(Bay, (x)) <T(n)rf forall j >i—2 forall x € B(0)

by writing ;(Bay, (X)) = pj+2(Bay; () + > r’é,, where the sum is taken over all Q' € By, (x) with

rjy2 <rg <rj. Since the balls B, ,(Q’) are disjoint, there is a dimensional constant c(n) which bounds

rQ/
the number of such points. Thus, we may take I'(n) = c(n)Cpg.
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Now, we calculate

> / Bi(z. ) dpi(2)
BZrl ()C)

rj <2r,~

=Y. / Bi(z. ) dp;(2)

rj<2r; Bay; (x)
1
<C) = W, 2,16, DI (7)) dptj 2)
ri<2ri rj BZr[ (x) Br/ (2)
J<=<li /
w(By, (z))
+C Y / (<|Wr f2.06r, D1+ 07 17 + ,)4) dp;(2)
rj<2r; Bay; (x) rj
Wi (Br ()
<C Z/ Llwr,/216r/(y)|d:u](y)
rj<2r[_ BZri+r‘j(x) rj
2042 (B (z))
+C Z AW p206r (D +0r7 " +r + rj)——— | duj(2)
rj<2r; Bz’z(x J
<2CT(n) (Z |W,,/2,16,j<y>|> duj(y)+CTn) Y ri* 417 + 1)) i (Bay, (x)).
Bar; (x) i <2ri rj<2r

Therefore, recalling r; = 2~ we see that

> AW 2166, (Q)] < 6Vareelry 1 N(r, @', v) < 12C (o, Mo)n (' — 1) + 611,
j=i—1

Therefore

> / Bi(z,r))* dui(z) < CT ()i (Bay, (X))<6n+12C1rf‘m) +CF2(n)( > nr,-2“+rj2+rj>r{‘
BZrI (x)

rj<2r; rj<2r;

<Cr?m)(1L+C@)nrf +CT*myrf Y rl+r;.
rj<2r;

Thus, for n < ni(n, o, My, €) sufficiently small and r; < R(n, o, My, €) = 2-¢ sufficiently small,

CT(m)*(1+C(a)n < 18pg and CT?(n) Z rP4rj < 38pr.
rj<2r;

For such i and p; satisfying the hypotheses of Theorem 9.1,

Z / Bi(z, rj)z dpi(z) < 5Der-k.

rj <2r; Bor; (x)

The discreet Reifenberg theorem therefore implies that u; (B, (x)) < Cp Rr Thus, by induction, the
claim holds for ; < R =27*. We may use a packing argument using balls of radius 2~¢ to obtain estimates
at larger scales. That is, wo(B1(0)) < CprC(n, £). [l
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10. Tree construction

In this section, we detail two procedures for inductively refined covering schemes. We will use these
covering schemes in the next section to generate the actual cover which proves Theorem 2.15. First, we
fix our constants.

10A. Fixing constants and a definition. In this section, we fix our constants as follows. Fix 0 < ¢, and
let v € A(n, a, Mp). Let E = supycp, 0)naq+ N(Q, 2, v), and fix the scale of the covering we wish to
construct as R € (0, 1].

We will let p denote the inductive scale at which we will refine our cover. For convenience, we will
use the convention r; = p . Let p < ﬁ) be small enough that

2Cy(n, o, Mo, €)ca(n)p < 3,

where Co(n, o, My, €) is as in Lemma 9.2 and ¢, (n) is a dimensional constant which will be given in the
following lemmas.

Let §(n, o, My, €) be as in Lemma 8.2 and y (n, o, My, §) as in Lemma 5.2. We also let n; (n, o, My, €)
be as in Lemma 9.2, and let

vw=n'= %7)1-

Note that while 3y < y, Lemma 5.2 still holds with yy in place of y. As in Corollary 6.3, we then let
n=non,a, E+1,¢,1,y, p). We shall assume that v satisfies

In(h)|la < :
[ln( )Ila_2C1+1n

The sorting principle for our covering comes from Corollary 6.3. To formalize this, we make the
following definition.

Definition 10.1. For Q' € B,(0) NdQ* and 0 < R < r < 2, the ball B, (Q) will be called “good” if
N(Q.ypr,v) > E—n' forall Q €St r(v)NB.(Q.
We will say that B,(Q’) is “bad” if it is not good.

Remark 10.2. By Corollary 6.3, with E + %'70 in place of E — which is admissible by monotonicity and
our choice of ||In(h) |y < n/(2C; 4+ 1)—in any bad ball B,(Q’) there exists a (k—1)-dimensional affine
plane L*~! such that

{N(Q.ypr.v) = E—no} N B(Q)) C By (LK),

10B. Good trees. Let x € B;(0)N QT and B, L, (x) be a good ball for A > 0. We will detail the inductive
construction of a good tree based at B,,(x). The induction will build a successively refined covering
B, (x)N Sfﬁ 2R (V). We will terminate the process and have a cover which consists of a collection of bad
balls with packing estimates and a collection of stop balls whose radii are comparable to R. We shall
use the notation G; to denote the collection of centers of good balls of scale r;, and 5; shall denote the
collection of centers of bad balls of scale r;.
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Because B, (x) is a good ball, at scale i = A, we set G4 = x. We let B4 = &. Now the inductive
step. Suppose that we have constructed our collections of good and bad balls down to scale j — 1 > A.
Let {z}; be a maximal %rj-net in

j—1
B,,(x)N St r)N B, G-\ | B (B).
i=A
We then sort these points into G; and B; depending on whether B, (z) is a good ball or a bad ball. If
ri > R, we proceed inductively. If r; < R, then we stop the procedure. In this case, we let S = G; U B;
and we call this the collection of “stop” balls.

The covering at which we arrive at the end of this process shall be called the “good tree at B, (x)”.
We shall follow [Edelen and Engelstein 2019] and denote this by 7g = 7g(B,,(x)). We shall call the
collection of “bad” ball centers | J; B; the “leaves of the tree” and denote this collection by F(7g). We
shall denote the collection of “stop” ball centers by S(7g) = S.

For b € F(Tg) we let r, = r; for i such that b € B;. Similarly, if s € S(7g), we let rg = r; for the
terminal j.

Theorem 10.3. A good tree Tg(B,,(x)) enjoys the following properties:
(A) Tree-leaf packing:

Z r,f < Cy(n,a, My, e)rﬁ.
beF(Tg)
(B) Stop ball packing:
Z rf < Cy(n, a, My, e)rff‘.
5€8(75)
(C) Covering control:

S rNB,xc ) B.ou |J B,®).

seS(Tg) beF(Tg)
(D) Size control: for any s € S(Tg), we have pR <ry < R.

Proof. First, observe that by construction
{By,/5(b) : b € F(Tg)} U{By 5(s) : 5 € S(Tg)}

is pairwise disjoint and centered in the set Sf IR

good ball of the previous scale. By our definition of good balls, then, we have for all i

(v). Next, all bad balls and stop balls are centered in a

N(b, yri,v) =N, ypri_1,v) > E—n" forall €B;
and

N(s,yrs,v) > E—n" foralls e S(7g).

Since by monotonicity we have that sup By, (x) N(Q,2ra,v) < E+n', we can apply Lemma 9.2 to
B, (x) and get the packing estimates (A) and (B).
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Covering control (C) follows from our choice of a maximal %r,-—net at each scale i. If i is the first scale
at which a point x € Sé‘ﬁ & (V) Was not contained in our inductively refined cover, it would violate the
maximality assumption.

The last condition (D) follows because we stop only if j is the first scale for which r; < R. Since we
decrease by a factor of p at each scale, (D) follows. U

10C. Bad trees. Let B,,(x) be a bad ball. Note that for every bad ball, there is a (k—1)-dimensional affine
plane L*~! associated to it which satisfies the properties elaborated in Corollary 6.3. Our construction of
bad trees will differ in several respects from our construction of good trees. The idea is still to define an
inductively refined cover at decreasing scales of B, (x) N Sf’ & (V). We shall again sort balls at each step
into “good”, “bad”, and “stop” balls. But these balls will play slightly different roles and the “stop” balls
will have different radii.

We reuse the notation G; to denote the collection of centers of good balls of scale r;, 15; to denote the col-
lection of centers of bad balls of scale r;, and S; to denote the collection of centers of stop balls of scale ;.

Atscale i = A, we set B4 = x, since B,, (x) is a bad ball, and set S4 = G4 = &. Suppose, now that we
have constructed good, bad, and stop balls for scale i — 1 > A. If r; > R, then define S; to be a maximal
%nri_l -net in

B, ,(x)N Sé(,nR(v) N U By,_,(b)\ Bopr, (Lllj_l)‘
beB;_

Note that n < p, so nri_1 < r;. We then let {z} be a maximal %ri -net in
B, (x)NSE x)N | B, (0) N Bapr (L.
bEB,',l

We then sort {z} into the disjoint union G; U B; depending on whether B,,(z) is a good ball or a bad ball.
If r; < R, we terminate the process by defining G; = 5; = & and letting S; be a maximal %nri,l—net in

B, (x)NSL, r(v) N By, (Bi_).

The covering at which we arrive at the end of this process shall be called the “bad tree at B, (x)”.
We shall follow [Edelen and Engelstein 2019] and denote this by 7z = Tg(B;,(x)). We shall call the
collection of “good” ball centers, | J; G;, the “leaves of the tree” and denote this collection by F(75). We
shall denote the collection of “stop” ball centers by S(7g) = J; Si.

As before, we shall use the convention that for g € 7(75) we let rg =r; for i such that g € G;. However,
note that now, if s € §; C S(73), we let rg = nri_y.

Theorem 10.4. A bad tree Tp(B,,(x)) enjoys the following properties:

(A) Tree-leaf packing:

Z r§ < 2c2(n),0r/]§.
8€F(Tn)

Z rk<cn, n)rﬁ.

s€S(TB)

(B) Stop ball packing:
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(C) Covering control:

S rNB, @ | By (] B (9.

s€S(TB) 8EF(Tn)
(D) Size control: for any s € S(Tg), at least one of the following holds:

nR<ry <R or sup N(Q,er,v)fE—%n.
Q€By,, (s)NIE

Proof. Conclusion (C) follows identically as in Theorem 10.3. Next we consider the packing estimates.

Let r; > R. Then, by construction, for any b € B;_;, we have
Gi UB; U By, (b) C Bagyy (Ly ™).

Thus, since the points G; U B; are %r,- disjoint, we calculate

1—k

B 1
G UB; UB,,_,(b)| < @k 10,—4+1(3p)" k“ﬁ <cn)p
(O g

p)
We can push this estimate up the scales as follows:
1Gi UBiIrf < cam)p Bialrf,
<emp' 1B UGl

< (cap) k.

Summing over all i > A, then, we have that

o0 o0
Z 1B 1 UGi|rF < Z (c2p) A1k,

Since we chose c;p < % we have that the sum converges and

o
D B UG lrf <2207k,
i=A+1
This proves (A).
To see (B), we observe that for any given scale i > A + 1, the collection of stop balls { B, , (s)}ses;

form a Vitali collection centered in B,,_, (B;_1). Thus, we have
10"
1Bl

Since by construction there are no stop balls at the initial scale A, we compute that

H{Si} <

oo oo
D HSHr- ) <1055 Y T [{BIrf < c(r, .
i=A+1 i=A

This is (B).
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We now argue (D). For s € S; where r; > R, by construction s € B,,_,(b) \ By, (L*=1) for some
b € B;_1. By Corollary 6.3, the construction, and our choice of n < %,0, we have

sup N(Q,2r,,v) < sup  N(Q,2nri_1,v) <E—1In.
PEBa (5) PEByy,_, (5)

On the other hand, if r; < R, then r,_; > R. Thus

R > priy Znri-y =r; = nR.
This proves (D). (|

11. The covering

Assuming that ||In(h) |l <n/QC;+1),for0<n <no(n,a, E+1,¢€,71, 0, p) as in Section 10, we now
wish to build the covering of Sf’n & N B1(0) using the tree constructions above. Note that B;(0) is either a
good ball or a bad ball. Therefore, we can construct a tree with B1(0) as the root. Then in each of the
leaves, we construct either good trees or bad trees, depending upon the type of the leaf. Since in each
construction we decrease the size of the leaves by a factor of p < %, we can continue alternating tree
types until the process terminates in finite time.

Explicitly, we let Fy = {0} and let B;(0) be the only leaf. We set Sy = &. Now, assume that we have
defined the leaves and stop balls up to stage i — 1. Since by hypothesis, the leaves in F; are all good balls
or bad balls, if they are good, we define for each f € F;_; the good tree 7g(B,,(f)). We then set

Fi= |J FTe®B, () and S=8.U | STeB., (/).
feFia fEeFii

Since all the leaves of good trees are bad balls, all the leaves of F; are bad.
If, on the other hand, leaves of F;_; are bad, then for each f € F;_; we construct a bad tree T5(B;, (f)).
In this case, we set

Fi= |J FTsB, () and S=8_U | STsB., ().

feFioi feFiz

Since all the leaves of bad trees are good balls, all the leaves of F; are good.
This construction gives the following estimates.

Lemma 11.1. For the construction described above, there is an N € N such that Fy = & with the
following properties:

(A) Leaf packing:
ry < c(n).

(B) Stop ball packing:
Yk <c,a, My, €).

SESN
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(C) Covering control:
S8, k@ NB1O) C ] B ().

SESN

(D) Size control: for any s € Sy, at least one of the following holds:

nR<ry <R or sup N(Q,2rs,v)§E—%n.
Q€By,, (5)NAKE

Proof. By construction, each of the leaves of a good or bad tree satisfy ry < r;. Thus, there is an i
sufficiently large such that r; < R. Thus, N is finite.

To see (A), we use the previous theorems. That is, if the leaves F; are good, then they are the leaves of
bad trees rooted in F;_;. Thus, we calculate by Theorem 10.4

Z rfc <2c(n)p Z r;‘u.
feFi feFia

On the other hand, if the leaves F; are bad, then they are the leaves of good trees rooted in F;_;. Thus,

Z rfc < Cr(n,a, My, €) Z rfc,.

Jezi f'eFin

we calculate by Theorem 10.3

Concatenating the estimates, since we alternate between good and bad leaves, we have

D 1 =em@Can, o Mo, €)e2(n)p) .
feF;
By our choice of p,
Z r];» < c(n)2_i/2.
feFi
The estimate (A) follows immediately.
We now turn our attention to (B). Each stop ball s € Sy is a stop ball coming from a good or a bad
tree rooted in one of the leaves of a bad tree or good tree. We have the estimates from Theorems 10.3
and 10.4, which give bounds packing both leaves and stop balls. Combining these, we get

N N-1
S A=Y S A=Y et =Coun
sESN i=0 seS; i=0 feF
Recalling the dependencies of n gives the desired result.

Property (C) follows inductively from the analogous covering control in Theorems 10.3 and 10.4
applied to each tree constructed. Property (D) is immediate from these theorems as well. U

Corollary 11.2. Fix 0 < €. Let v € A(n, o, My) satisfy Sup e, 0) N(Q, 2,v) < E. Fix0 <e€. Thereis
an no(n, a, My, €, E) > 0 such that if 0 < n < ng and ||In(h) |, <n/Q2C1+ 1) then given any 0 < R < 1
there is a collection of balls { By (x)}xcy with centers x € Sf’nR(v) N B1(0). Further, R <r, < % and the
collection has the following properties:



1166 SEAN MCCURDY

(A) Packing:

> ok <c, o, Mo, E, ).
xel
(B) Covering control:

SE,x@NB1©0) C | B, ().
xeld

(C) Energy drop: for every x € U, either

re=R or sup N(Q,2rs,v)§E—%no.
Q€By,, (5)NANE

This follows immediately from Lemma 11.1 with n <n;, Sy = U, and setting r, = max{R, r,}.

11A. Proof of Theorem 2.15.

Lemma 11.3. Let v € A(n, a, My) with |In(h) || < T'. There exists a scale k (n, a, My, I', €) > 0 such
that, for all balls B, (Q) with0 <r <k and Q € By4(0)N a0t the function v(x) = v(rx + Q) on B;(0)
satisfies the following properties:

=~ = 1o
sup N(Q',2,0) <C(a, My, T) and |In(h)lcowp o)) < =5
Q'eB(0)NTp,, 0% B =95c,+1

where

no =no(n, o, C(n, o, Mo, T)+ 1, 7', €, o, p) = no(n, o, My, T, €)
is as in Corollary 6.3 and C (n, a, My, I') is as in Corollary 4.4.
Proof. First, note that if In(h) € C%*(B;(0)), then In(h(x)) = In(h(rx + Q)) satisfies

lIn(2(x)) = In(h(2))| = [In(h(rx + Q)) —In(h(rz+ Q)| < Tlrx —rz|* =Tr%x — 2|,

Since r* — 0 as r — 0, there exists a k (n, o, Mg, I', €) > 0 such that ||1n(ﬁ)||co,a <T'k%* <no/Q2C;+1).
By a similar calculation, we see that Lip(?) < r Lip(v). Thus, the fact that H(Q, R, v) = H(0, R/r, v)
for any Q € By4(0) N9Q* and 0 < r < 2«, Lemma 3.4, and Q' € B,(Q) N 9Q* yields

N(To.,Q',2,7) =r*N(Q,2r,v) <r*C(a, Mo, T). 0

Theorem 11.4. Let v e A(n, o, My) with ||In(h) ||, <T. For all € > 0 there exists an no(n, o, Mo, I', €) >0
such that, forall0 < R <landk=1,2,...,n— 1, we can find a collection of balls { Bg(x;)}; with the
following properties:

(1) 8, r @) N B14(0) C U; Br(x).

() xi}il <cn,a, Moy, T, )R,

Proof. Cover Sk (v)N B1/4(0) by balls B, (Q;), with Q; € By,4(0) N 9Q*, such that

€,nr

B1,4(0)N32* ) Bc(Q))
J
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for 0 < k(n, a, My, I', €) the constant in Lemma 11.3. Note that we need at most c(n, a, My, I', €) such
balls.

We now wish to apply Corollary 11.2 to the rescaled functions v; (x) = v(kx + Q;) in B;(0). However,
a careful reader may object that v; is not in A(n, o, M), since it is possible that ﬁ(O) # 1. However,
v (x) = ch O)u™(xx + Q) —u~ (xk + Q), where by Remark 3.1 we can control 0 < ¢ < oo by constants
that only depend upon « and «. Thus, by multiplying the positive part by a constant controlled by I', «,
and M, we obtain a new function (which we also label v;) which is in A(n, o, My).

We now construct the desired covering in B;(0) for each v;. Ensuring that c(n, o, My, I, €) is suffi-
ciently large, we may reduce to arguing for r < n. We now use Corollary 11.2 to build a covering U;. If
every r, equals R, then the packing and covering estimates give the claim directly, since

R*"" Vol(B(SE , r () N B1(0) < 0, RS Y (2R)" = w,2" Y rk <c(n.a, My, T, €).
U U
If there exists an r, # R, we use Corollary 11.2 to build a finite sequence of refined covers U1, Ua, U3, . ..
such that, for each for each i, the covering satisfies the following properties:
(A;) Packing:
Z rf <cmn,a, My, T,e)(1 + Z r)’f).

xelY; xelUi—
(B;) Covering control:

Sst(ﬁ,-)ﬂBl(O) - U B, (x).

XeU;
(Ci) Energy drop: for every x € U;, either
ry=R or sup  N(Q,2r,, ) < Cn, o, Mo, T) —i(%m0).
Q€By, (5)NINE
(D;) Radius control:
sup ry < 107",

XEU;

If we can construct such a sequence of covers, then we claim that this process will terminate in finite
time, independent of R. Recall that blow-ups of v; are homogeneous harmonic polynomials. Therefore

N(Q.0.5) = lim N(Q.r. 7)) = 1
forall Q € IO+, By Remark 4.8 we have that, forall 0 <r <1,
NQ,rv)>1—-Cn,a, My, T, €)
for all p € B1(0). Therefore, we know that, for i large enough that
i>Cn,a, My, I',e)+C(n, a, My, T, €) — 1)%,
it must be the case that r, = R for all x € U4;. In this case, we will have the claim with a bound of the form

R Vol(BR(SE g (5:) N B1(0)) < c(n, &, Mo, T, )Mo,
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Thus, we reduce to inductively constructing the required covers. Suppose we have already constructed
U;—1 as desired. For each x € U;_; with r, > R, we apply Corollary 11.2 at scale B, (x) to obtain a new
collection of balls U; . From the assumption that r, < % and the way that Holder norms scale, it is clear
that v; satisfies the hypotheses of Corollary 11.2 in B, (x) with the same constants. To check packing
control, we have that

Z r;f <c(n,a, My, T, e)rf.
yeUix
Covering control follows immediately from the statement of Corollary 11.2. Similarly, from hypothesis
(Ci_1), we have that SUP ye B, (x) N(Q,2ry, ;) <C(n,a, My, T, €) — %(i — 1)ng. Thus, the statement of
Corollary 11.2 at scale B, (x) gives SUP peg,, (y) N(Q,2ry,v;)) <C(n,a, My, I, €) — %ino forall y € U; »
with ry > R. Radius control follows immediately from the fact that sup,¢;, ry < ll—orx <107,

Thus, if we let

U={xel|re=RWU ] U,
Xe€Ui—1,rx>R
then U4; satisfies the inductive claim.

To obtain the cover which proves the theorem, we simply scale each covering of Sfﬁ HoR /K (v;) N B1(0)
to a covering of Sf,noR(”) N B, (y;) and sum over the c(n, «, My, I', €) such balls which cover Sf,noR(U) N
B1,4(0). This completes the proof. O

Proof of Theorem 2.15. By Theorem 11.4, we have
VOI(BR(SS,]OR(U) N B1/4(0))) < C(n, a, My, T', R"*.
Thus, let ro = no and r = noR’ for 0 < R’ < 1. For any r < R < R/, by containment, we have

Br(SE,(v) N B1/4(0) C Br/(SE, (v) N B4 (0) C | Bar (%),

where {x;} are the centers of the balls in the covering constructed in Theorem 11.4. Therefore, the
estimates in Theorem 11.4 give

Vol(Br(SE ,(v) N B1/4(0)) < C(n, o, Mo, T, €)2"(R)"*

n—k
< Cna M. T2 (1) < Clnar Mo, T R
0

by increasing our constant C(n, o, Mo, I, €).
For any R’ < R, by containment, we have

Br(SE, ()N B14(0) C | Bar(x:),

1

where {x;} are the centers of the balls in the covering constructed in Theorem 11.4. In this case
Vol(Bg(SE, (v) N B1a(0))) < C(n, @, My, T, €)2*(R)" ™ < C(n, @, My, T, )R" ™

by increasing our constant C(n, o, My, I', €). This concludes the proof of Theorem 2.15. (|
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12. Proof of Corollary 2.17

In this section, we prove that sing(dQ%*) C S§*3(v) for € small enough.

Lemma 12.1. Let v € A(n, a, My) with ||In(h) ||, < I'. Then there exists 0 < € = e(My, a, I') such that
sing(32%) N B174(0) C SI 3 (v).

Proof. We must argue that there is an € > 0 such that, for all Q € sing(9d Q%) N B1(0) and all radii 0 < r,

f |Tg,v—P[*dV > ¢
B1(0)

for all (n—2)-symmetric functions P.

If P is (n—2)-symmetric, P only depends upon two variables. By complex analysis all homogeneous
harmonic polynomials in two dimensions are of the form ¢(z) = c(x +i y)k. By Theorem 2.14 (2), we
need only consider k > 2. Hence, the zero set X, of any Re(q) is the union of an even number of infinite
rays equidistributed in angle. If we label the connected components of R? \ X, as {U;}, we see that by
the maximum principle, the sign of g must change from one U; to another contiguous U;.

Thus, the zero setof P is X p =X, X R"~2 for some homogeneous harmonic polynomial Re(g) : R — R
of degree > 2. We label the connected components of R" \ X, x R*=2 as {W;}.

Now, we claim that there is a constant, 0 < c(My, I', @) < 1, such that one of the following estimates
must hold:

H" (TQ,,Q— NJwi: P>00n w;}n 31(0)> > ¢, (estimate 1)
H" (TQ,,Q+ N(Jwi: P <0on W;}n 31(0)> > c. (estimate 2)

Note that by Theorem 2.6 (2), we need only consider P with degree < d (M) < co. Reducing to R,
since the rays of X, are equidistributed, for ¢ of degree k, the connected components occupy a sector of
aperture 7w /k. Thus, if By, (AT(O)) CTp, »QF is the ball guaranteed by the corkscrew condition, then,
for ¢ = (4M8)_1, there exists an integer k(My) such that

1" (Biymy (AT (0) N{P - T v <0}) > ¢

for all P with degree > k(Mp).

For P with degree < k(My), we argue by contradiction. Suppose that no such constant exists. Then
there would be a sequence of functions v; € A(n, a, My) with points Q; € B1/4(0) and radii 0 < r; < %
and zero sets Xp, for P; satisfying 2 < degree(P;) < k(My) such that the scaled and translated mutual

boundaries T, ,jaszj.t satisfy the properties
W (TQ_,,,_,QJ.— N{Jtwi;: P> 00n W ;30 31(0)) — 0,
i

H" (TQ,.,,j QfnlJwi,;: P <0on w; ;)N B, (0)) — 0.
i
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By Lemma 3.6 there exists a subsequence for which T, , EJSZ;E converge locally in the Hausdorff metric
to a limit set A C R". By Theorem 3.8, A must be the mutual boundary of a pair of two-sided NTA
domains QZ with constant 2M,. Furthermore, up to scaling and rotation, the space of homogeneous
harmonic functions of two variables in R" with 2 < degree(P) < k(Mp) is finite-dimensional. Since the
space of rotations is compact, we may find a subsequence X p, which converges to X p,, locally in the
Hausdorff metric for some (n—2)-symmetric Py,. This implies that

" (sz;o N JWisoo  Poo > 0 0n Wi o} N 31(0)) =0, (12-1)

H" (Qjo NJWiso : Poo <0 0n Wi 0} N Bl(0)> =0. (12-2)

Indeed, if there were p € | J;{Wi o : Poc > 0 on W; oo} N B1(0) such that p € Q7 , since W; o, and Q7 are
open, there would exist a ball Bs(p) C 2~ N W; . Therefore, since ¥p, — Zp,, and TQj,rjE)Q;.—L — A
locally in the Hausdorff metric, for all j sufficiently large, Bs,(p) C W; ;i N Tg;r08; . This is a
contradiction. The other equation follows identically.

Now we claim that AN B1(0) = Xp_ N B1(0). Suppose not, then there exists a point p € Xp, with
p ¢ A or there exists a point Q € A such that O ¢ ¥p_. In the former case, suppose dist(Q, A) > §.
Then Bs(p) must intersect at least two contiguous connected components, W; o, and W; . Since they
are contiguous, the sign of P, must be positive on one and negative on the other. This contradicts (12-1).
Similarly, if there exists a point Q € A such that Q ¢ X p_ then there exists a ball Bs(Q) which intersects
both foo but which is contained in a single W; .. This also contradicts (12-1).

However, if Py is (n—2)-symmetric with degree > 2, then X p_ does not divide R" into two connected
components. This contradicts our assumption that A = Xp _ was the mutual boundary of a pair of
two-sided NTA domains with constant 2M(. Therefore, such a constant 0 < ¢ = ¢(My, I', @) must exist.

Without loss of generality, we assume (estimate 1) holds. By Lemma A.2 we may find a radius
0<r=r(My,T, a) such that H" (B,(TQ,,E)Qi)) < ;—Oc(oz, My, T'). Now, consider

pelJIWi: P >00n Wi} Bi(0)\ B, (Tp.-025).

By Lemma 3.5, [T »v(p)| = ¢’ for a constant ¢’ = ¢'(My, T, o). Thus

/ |TQ,,v—P|2dV3/ |Tg,v— P[*dV
B1(0) Bl(O)ﬂTQ,BQ*ﬂUi{W;:P>OonW,»}

> Be(a, Mo, T)c (o, Mo, T).
If (estimate 2) holds, an identical argument with signs switched proves the claim. H

Remark 12.2. The argument above can be modified to show that there is an €’ > 0 such that if Q € 92 but
0 ¢8" >, then Q ¢ Sf/;ﬁ. Indeed, if Q ¢ S" >, then there exists a radius ro < r and an (n—2)-symmetric

€'.ro’ €'.ro’

function P such that ||Tp ,v — P”i2(31(0)) < €. However, by taking €’ < €(«, My, I') in Lemma 12.1,

we see that P must be (n—1)-symmetric.
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Appendix

The purpose of this section is to justify Lemma 3.9. We use the language of porous sets. For a nonempty
set E C R", x € E, and radius 0 < r, we write

P(E,x,r)=sup{0,h:h >0, By(y) C B,(x)\ E for some y € B,(x)}. (A-1)

For o > 0, we say that E is a-porous if

.. . P(E,x,r)
lim 161f —— >« (A-2)
r— r

forall x e E.

We shall say that E is a-porous down to scale ry if

P(E,x,r)
—_— >

r

(A-3)

for all x € E and for all ro <r.

Remark A.l. By definition, for QF € D(n, a, M), the boundary dQ* is 1/My-porous. Similarly,
B, (3Q%) is 1/(2My)-porous down to scale ro = 2r M.

Lemma A.2. Let E C R" be a nonempty, bounded set, E C [0, 11" with 0 € E. If E is a-porous down to
scale ry K 1, then there are k = k(«), k' =k'(n), and N < —1log,(ro)/(k + k') such that

1 N

Moreover, there exists 0 < € = €(a, n) and a constant c(n, @) such that
n—e N
MIS(E) < (1= o).

Proof. Let {Q }; be the collection of dyadic subcubes Q’ [0, 1] with E(Q ) =2"" Let k € N be the
smallest number such that 27% < . Note that, for any y € [0, 1]" with By /z(y) C [0, 17", there exists
a dyadic cube QHk,(") C By/4(y) where k'(x) is the smallest integer such that k'(n) > 2 + %logz(n).
Let 4 Q’ denote an axis-parallel cube with the same center as Q' but side length half that of Q’

Now we apply the standard argument. Tile [0, 1]" by Qk+k @), By our porosity assumption, there

exists a Qk+k ™ which does not intersect E. Thus

/ / / 1
VOI(E) < Z VOI(Q5+k (i’l)) < (2(k+k (n)n _ 1)2(7](7/( (n))n < (1 . W)-
J#]

k+k'(n) k+k' ()

Now, within each of the Q" which intersects E, either E intersects 5 Q or it doesn’t. If

EN; Qk+k ™ — & then we tile Qk+k ™ by cubes {Q e(k+k )y, and overestimate

Vol(E N Q;‘Jrk (")) < Z Vol(Qﬁ(Hk (n)))

¢ Q%<k+k/(n))ﬂ(Eﬂ Q./;-*—k’(ﬂ));ég

< QA I _ =20t 1 (g @) (1 N 2’<+i /(n)> Vol(Q4H®)
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If EN %Qerk,(") # &, then there exists a ball B, vu-1(x) C Q].(Jrk/(") centered on x € E. By our

K+ (n) by] Q2+ ™)
V4

porosity assumption and choice of k’(n), we can still tile Q ; and be guaranteed that

at least one such subcube does not intersect £ N Q;.(Jrk/("). Thus, we overestimate in the same manner as
above.

We can continue, inductively, only stopping at the first N such that 2~ V+D&+KM) 0 This gives
the desired bound

1 N

Taking a bit more care, we can actually improve these estimates. Let 0 < € = €(«, n) be such that

1 ek 1
_ (S )
<1 2k+k’(n)) < <2 2(k+k’(n))(n—e)) <L

Then we bound M;’O_G(E ) as follows:

M T(E) = inf{Zrn_e xi€E, rg<r,EC U Br(x,-)}

1
1 N
N (k+k'(n))yn—e etk+k'(m)) _ _ ~
< ZZ(Q )t = <2 2(k+k/<n>)<ne)) : -
J

As immediate corollaries, we have the following statements.
Corollary A.3. If E C R" is a-porous, then there exists 0 < € = €(a, n) such that di_mM(E) <n-—e.

Proof. Recall that dimy((E) = inf{s : M**(E) = 0} and that M**(E) = limsup,,_,o M""(E).

0
By taking 0 < € to be as in Lemma A.2, we have

/ 1 N
n—e e(k+k'(n)) _ 3N
M}’() (E) S <2 2(k+k’(n))(n—e)) S (1 C) ’

where ¢ = c(«, n, €) and N = N («, n, rg), as in the previous lemma. Thus, letting ro — 0 and N — oo
we have that M"~€(E) = 0. ]

Recalling Remark A.1, Corollary A.3 gives Lemma 3.9.
Corollary A4, Let ¥ C R" be the mutual boundary of a pair of unbounded two-sided NTA domains with
NTA constant 1 < M. Then, there exists 0 < € = €(My, n) such that (ﬁnM(E) <n-—e.
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1. Introduction

1.1. Main result. For the purposes of this paper, a mean curvature flow (MCF) soliton is a complete
surface in R? whose evolution under the mean curvature flow is given by translation. In other words, up
to rescalings and rigid motions of the ambient spacetime, it is a solution of what we will call the MCFS
equation

H+(N,e;) =0, (1-1)

where H here denotes the mean curvature of the surface, N its unit normal vector field, and e, the unit
vector in the direction of the z-axis. We refer the reader to the review of Martin, Savas-Halilaj and
Smoczyk [Martin et al. 2015] for a good overview of the theory of MCF solitons at the time of writing.

We use surgery to construct embedded MCEF solitons with three ends and arbitrary finite genus. Before
stating our result, we describe the two components of our construction. First, given a positive integer g,
the Costa—Hoffman—Meeks (CHM) surface of genus g, denoted by Cg, is a properly embedded minimal
surface in R? with three ends, each of which may be taken to be a graph over an unbounded annulus in R?;
see [Hoffman and Meeks 1990; Weber 2005]. For 0 < k < g, this surface is invariant under reflection
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in the vertical plane making an angle of kw /(g + 1) with the x-axis at the origin. We call the group of
symmetries of R® generated by these reflections the group of horizontal symmetries of Cg.1 Next, the
Grim paraboloid (also known as the bowl soliton) is defined to be the unique simply connected MCF
soliton which is symmetric under revolution about the z-axis. It is known (see [Clutterbuck et al. 2007])
that this surface is asymptotic at infinity to a vertical translate of the graph of

1,2
27" —log(r),
where r here denotes the distance in R? to the origin.

Theorem A. For all g € N and for all sufficiently small €, there exists a complete, embedded MCF
soliton X, ¢ of genus g with three ends. Furthermore, letting R := e~ Y* for some X\ € 14, 5[, we may

suppose:

(1) Zg.e\ (B(eR) x R) consists of three connected components, each of which converges towards the

same Grim paraboloid as € tends to 0.
(2) Upon rescaling by a factor of 1/€, Xg  N(B(eR) x R) converges to Cy as € tends to 0.
(3) Xy ¢ is invariant under the group of horizontal symmetries of C,.
Remark. Theorem A follows immediately from Theorems 7.1.3 and 7.1.4, below.

Remark. All notation and terminology used in this paper is explained in detail in Appendix A. Recall, in
particular, that, by elliptic regularity, all standard modes of convergence of smooth, embedded solutions
of parametric elliptic functionals to smooth, embedded solutions of the same functionals are equivalent
over any compact region.

Remark. The constants that appear in Theorem A have the following geometric significance. The
quantity € determines the scaling factor of the CHM surface. Roughly speaking, it is the “neck radius’
of X, .. The quantity R determines how far along the end of the CHM surface the surgery is carried

’

out. For the construction to work, € and R must converge in tandem to 0 and infinity respectively, hence
the condition R*¢ = 1. Distinct values of € ought to yield distinct surfaces. Indeed, a refinement of our
result ought to yield a continuous family (X, <)<, of distinct embedded MCF solitons with neck radii
converging to 0. However, our current argument, which uses the Schauder fixed-point theorem, does not
yield such fine control over the surfaces constructed.

1.2. Techniques. The proof of Theorem A follows the standard desingularisation construction for minimal
surfaces originally described in [Kapouleas 1990; 1995; 1997]. In simple terms, we first use surgery to
construct an approximate MCEF soliton b ¢, and then apply a fixed-point argument to prove the existence
of an actual MCF soliton lying nearby in some suitable function space. As in all singular perturbation
constructions, this is much easier said than done, and the main challenge lies in deriving the many
nontrivial analytic estimates required to make the perturbation argument work.

1H()Tanand Meeks showed that the complete symmetry group of Cy is the dihedral group generated by the elements A and B,

where A is reflection in the (x—z)-plane and B is rotation by an angle of k7w /(g + 1) about the z-axis followed by reflection in
the (x—y)-plane.
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The use of CHM surfaces in Kapouleas’ construction presents particular difficulties on account of their
low orders of rotational symmetry. Indeed, rotational symmetries often serve in such constructions to
improve decay rates and thus in turn provide stronger estimates. This phenomenon is well illustrated
by the case of bounded solutions u : S' x [0, co[ — R of Laplace’s equation Au = 0. By separation of
variables, all such solutions have the form

u@®,1) = Z ape’ ™m0 e Imt
meZ
In particular, when u has n-th order rotational symmetry, all of its coefficients of order 0 < |m| < n vanish,
so that the difference (u — ag) decays like e, Since this argument does not apply when CHM surfaces
are used, we obtain our estimates by introducing instead, in Section 4.2, what we call the hybrid norm.
This functional norm, which is a combination of Holder and Sobolev norms, encapsulates the singular
nature of our construction as € tends to 0. Its main properties, established in Lemma 4.3.1, follow readily
from the Sobolev embedding theorem and classical interpolation inequalities, and play a key role in the
derivation of various estimates throughout the rest of the paper.

Finally, before reviewing our argument, it is worth highlighting an ingenious variant of the desingulari-
sation construction for CHM surfaces used in [Hauswirth and Pacard 2007; Mazzeo and Pacard 2001;
Morabito 2009]. In each of these papers, it is observed that the Jacobi operator fg,é of the approximate
minimal surface fg’e is, modulo a conformal transformation when necessary, intrinsically close to the
Jacobi operator of the original CHM surface. A direct perturbation argument then yields a priori estimates
for the norm of its Green’s operator, thereby bypassing one of the main technical challenges of the
perturbation part of the construction. In addition, in these works, the initial surgery is carried out in a
different manner than in [Kapouleas 1990; 1995; 1997], more pleasing to the geometric eye, though it
is not clear to us whether this actually leads to simpler estimates. Regardless, their argument cannot
be applied in the present case where the Jacobi operator of the joined surface is not intrinsically of the
correct type.

The proof is organised as follows.

1.2.1. Rotationally symmetric Grim surfaces. We will desingularise the join of a CHM surface with three
rotationally symmetric Grim ends, that is, unbounded, rotationally symmetric MCF solitons in R3. The
geometry of CHM surfaces is well understood (see, for example, [Hoffman and Meeks 1990; Weber
2005]) and the large-scale geometry of rotationally symmetric Grim ends has been studied by Clutterbuck,
Schniirer and Schulze [Clutterbuck et al. 2007]. In Section 2, we study the small-scale geometry of
rotationally symmetric Grim ends, which has not previously been addressed in the literature.
Rotationally symmetric Grim ends exhibit a dual nature over the region of interest to us. Indeed, they
are roughly catenoidal towards the lower end of this region, and roughly parabolic towards its upper end.
This presents us with our first main challenge, which we address via the following algebraic trick. We
introduce two abstract variables, representing respectively the catenoidal part and the parabolic part of
the Grim end. We then construct formal solutions to the MCFS equation in terms of these variables, and
obtain the desired formulae upon applying the contraction mapping theorem to their partial sums.
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The main results of this section are Theorems 2.1.1 and 2.2.1, which provide asymptotic formulae for
the profiles of rotationally symmetric Grim ends over the large and small scales respectively.

1.2.2. Green’s operators. Our perturbation argument requires estimates for the norm of a Green’s operator
of the MCFS Jacobi operator of the approximate MCF soliton. These are in turn derived from estimates
of the norms of the corresponding operators of CHM surfaces and rotationally symmetric Grim ends.
Green’s operators of Jacobi operators of CHM surfaces are well understood; see, for example, [Hauswirth
and Pacard 2007; Morabito 2009; Nayatani 1993; Pacard 2008]. In Sections 3 and 4, we study the Green’s
operators of the MCFS Jacobi operators, first of Grim paraboloids, then of rotationally symmetric Grim
ends. The former are relatively straightforward, but the latter present us with our second main challenge,
namely, to address the singularities that catenoids produce as their neck radii tend to 0. This simple
phenomenon, which we call the vanishing neck problem, will be responsible for the introduction of a
number of technical constructions, as we now proceed to explain.

To begin with, in Section 4.1, we modify the Jacobi operator in two ways. First, we introduce the
modified MCFS Jacobi operator, which measures the first-order variation of mean curvature arising from
first-order perturbations of the surface in the direction of a suitable modification of the unit normal vector
field. At this stage, this modification serves to reduce the divergence rates of the coefficients of the Green’s
operators as the neck radii vanish. We underline that, since different modifications are made on different
scales, the precise definition of this operator varies according to context (the general framework, unifying
these definitions, is described in Section 5.4). Next, we introduce canonical extensions of operators across
the region within the neck, which allow the modified MCFS Jacobi operators of distinct rotationally
symmetric Grim ends to be compared as if they were all defined over R?.

Notably, even with these modifications, the vanishing neck problem still imposes restrictions on the
way in which € and R tend respectively to 0 and infinity. Indeed, it is precisely at this stage that we
require that € RY tend to infinity in the statement of Theorem A, for otherwise we could not guarantee
decay in Lemmas 4.2.1 and 4.2.2.

The main result of these two sections is Theorem 4.1.1, which provides the required uniform estimates
for the Green’s operators of the modified MCFS Jacobi operators of rotationally symmetric Grim ends.
We prove this result using a perturbation argument. To this end, we examine the differences between the
modified MCFS Jacobi operators of Grim paraboloids and those of rotationally symmetric Grim ends.
We decompose these differences into regular and singular components. In Section 4.2, we show that the
operator norms of the regular components tend to 0 as € tends to 0, and in Section 4.3, making use of the
hybrid norm described above, we prove the same result for the singular components. In particular, we see
that an adequate treatment of the vanishing neck problem already calls for the hybrid norm, which will
play a larger role later on in the construction.

1.2.3. Surgery and the deformation family. In Section 5, we describe the surgery operation used to
construct the approximate MCF soliton fg,e as well as the deformation family around this surface
within which the actual MCEF soliton ¥, . will be found. The surgery operation is straightforward and
is described in Section 5.1. Simply put, the ends of the CHM surface are amputated, suitably chosen
rescaled rotationally symmetric Grim ends are grafted in their place, and the join is smoothed out using
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cut-off functions. The construction of the deformation family about /E\Dg’g is more technical and is carried
out in Section 5.2.

The challenge in understanding (and explaining!) this construction arises from the fact that four
different families of deformations must be considered. The first concerns deformations in the direction of
a suitable modification of the unit normal vector field. We refer to the resulting first-order perturbations of
the surface as microscopic perturbations, since they decay at infinity. The remaining three families involve
variations of the logarithmic parameters of the ends, starting far inside the locus of surgery, and vertical
translations of the ends, starting far inside and far outside the locus of surgery respectively. We refer to
the resulting first-order perturbations as macroscopic perturbations, since they remain large at infinity.

We associate to each of the four classes of perturbation described above the operator of first-order
variation of the MCFS functional about /Z\g,e. We denote these operators by J;, X, Ye and Z, respectively.
Understanding their analytic properties is key to estimating the norm of the Green’s operator of the
modified MCEFS Jacobi operator of fg,e, and we conclude this section by deriving preliminary estimates
in Sections 5.3, 5.4 and 5.5.

1.2.4. Constructing the Green’s operator. In Section 6, we construct a Green’s operator of the modified
MCES Jacobi operator of /E\Dg,e, together with estimates of its operator norm. This section constitutes the
hardest technical part of the paper. The determination of sufficiently strong estimates is made possible,
on the one hand, by the correct choice of functional norms over the different components of i]\g,e and, on
the other, by the use of the hybrid norm described above.

The estimates for the norm of the Green’s operator are obtained in Sections 6.3, 6.4 and 6.5 via a
classical iteration process which we call the “ping-pong” argument. This process, which is common to
all singular perturbation constructions, involves passing successive error terms back and forth over the
join region. From a conformal perspective, the join region consists of cylinders which become very long

as € tends to 0. More explicitly, if R = e~ 1/*

, then these cylinders are roughly of length (A — 1) Ln(R).
The estimates we require to ensure the convergence of the iteration process then follow from the fact that
bounded harmonic functions decay exponentially over long cylinders. In particular, we maximise decay
by choosing A as large as possible. We have already seen in Section 1.2.2, above, that A must be less
than 5. It turns out that A € ]4, 5[ is sufficient for our purposes, thus explaining the condition imposed in
the statement of Theorem A. We believe that the ideas underlying this technique are best illustrated by
the simplest version of this construction, used in the theory of Morse homology, and described in detail
in Section 2.5 of [Schwarz 1993].

The first main results of this section are Theorems 6.3.1 and 6.4.1, which provide estimates for the norms
of the operators used in the two stages of the iteration process. In addition, Theorems 6.5.2, 6.5.3 and 6.5.4

provide estimates for the norms of the different components of the Green’s operator that we construct.

1.2.5. Existence and embeddedness. Finally, in Section 7 we prove Theorem A by applying the Schauder
fixed-point theorem to the MCFS functional about the approximate MCF soliton fg,e. First, we determine
estimates for the MCFS functional up to second order about /E\g,e. Then, using the estimates obtained in
Section 6, we prove existence in Theorem 7.1.3, and we prove embeddedness in Theorem 7.1.4 using a
straightforward geometric argument.
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1.3. Notation. In order not to be overwhelmed by a deluge of constants, throughout the paper we use the
following notation, which we have found to be of great help. First, given two variable quantities a and b,
we will write

asb (1-2)

to mean that there exists a constant C, which for our purposes we consider universal, such that
a <Cb.
Next, given a function f and a sequence of functions (g,,), we will write

J=00gm) (1-3)

to mean that there exists a sequence (Cy,) of constants, which for our purposes we again consider universal,
such that the relation
ID™ f1 = Cngm

holds pointwise for all m. The indexing variable of the sequence (g,,) should be clear from the context.
In certain cases, every element of this sequence may be the same. It should also be clear from the context
when this occurs. All other notation and terminology is explained in detail in Appendix A.

2. Rotationally symmetric Grim surfaces

2.1. The large scale. We define a Grim surface to be any unit-speed MCF soliton which is a graph over
some domain in R%. We define a Grim end to be a Grim surface which is defined over some unbounded
annulus A(a, 00). These will be studied in more detail in Section 4. In this section, we study rotationally
symmetric Grim surfaces defined over some annulus A(a, b). We first recall the general formula for such
surfaces. Let u be a twice differentiable function defined over some closed interval [a, b] and let ¥ be
the surface of revolution generated by rotating its graph about the z-axis. The principal curvatures of X
in the radial and angular directions are respectively

—Urr —Ur
a2 RN

where r here denotes the radial distance in A(a, b) from the origin, and the subscript r denotes differenti-

2-1

¢ =

ation with respect to this variable. The vertical component of the upward-pointing, unit normal vector

over X is .
(Ng,e;) = —, (2-2)
X, €7 1 T u%
so that, by (1-1), X is a rotationally symmetric Grim surface whenever
rityy + (uy —r)(1+u?) =0. (2-3)

Solutions of this equation have no straightforward closed form. However, it will be sufficient for our
purposes to obtain approximations by semiconvergent, that is, asymptotic, series. We first derive an
asymptotic formula which is valid as r tends to infinity.
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Theorem 2.1.1. If u : Ja, oo[ — R is a solution of (2-3) then, as r — +00,

u=1r* —log(r)+a+0@ ) (2-4)
for some real constant a.>

Theorem 2.1.1 follows immediately upon integrating (2-13), below. A similar result has already been
obtained in [Clutterbuck et al. 2007]. However, we consider it worth deriving (2-4) in full, not only
because we use different techniques, but also because we believe it serves as good preparation for the
more subtle small-scale asymptotic estimates that will be studied in the following sections.

Define the nonlinear operator G by

Gv:=rv, + @ —r)1+0?), (2-5)

and observe that v solves Gv = 0 if and only if its integral is the profile of a rotationally symmetric Grim
surface. We first derive formal solutions to (2-5). To this end, we define a Laurent series in the formal
variable R to be a formal power series of the form

k
V= Z V,,R™, (2-6)

m=—0oQ
where, for all m, V,, is a real number and k is some finite integer, which we henceforth call the order
of V. Since the operations of formal multiplication and formal differentiation are well-defined over the
space of Laurent series, the operator G also has a well-defined action over this space.

Lemma 2.1.2. There exists a unique Laurent series V such that GV = 0. Furthermore:

(1) V has order 1.

2 vi=1,V_=-1

(3) If m is even, then V,,, = 0.

@) If V, = Z] Vin R™ denotes the n-th partial sum of V, then GV,, is a finite Laurent series of

m=1-2n
order (1 —2n).
Proof. Consider the ansatz (2-6). If k£ < —1, then the highest-order term in GV is (—R), if k =0, then it
is (—R)(1+ Voz), and if k > 2, then it is Vk3R3k. Since none of these vanish, it follows that V must be of
order 1. In this case, the highest-order term in GV is V12(V1 — l)R3 so that, in order to have nontrivial
solutions, we require V; = 1. We now have

dv 0 . 2 .
Rﬁ+(V—R)(1+V2)=R+ Y mADVWR"+ > ( > VPVqu>R :

m=—00 m=—00 * p+q+r=m
p=0, g,r=1

In particular, setting the respective coefficients of R and R equal to 0 yields
V=0, V_=-1.

2We refer the reader to Section 1.3 and Appendix A for a detailed review of the notation used here and throughout the sequel.
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For all m < —2, setting the coefficient of R"*2 equal to 0 now yields

Vin + ( Z Vp Vq Vr) + (m + 3)Vm+2 =0. (2'7)
ptq+r=m+2
m+1<p<-1
m+2=<q,r<1

The existence and uniqueness of V now follow from this recurrence relation. Furthermore, if p+¢g +r =
m + 2, and if m is even, then at least one of p, ¢ and r is also even, and since Vy = 0, it follows by
induction that V,,, = 0 for all even m. In addition, by (2-7), for all n, and for all m > (3 — 2n), the
coefficient of R™ in GV, is equal to 0. However, since V_,, = 0, by (2-7) again, the coefficient of R*>~2"
in QI//\n is also equal to 0, so that g\7n is a finite Laurent series of order (1 — 2n), as desired. O

For all n, define the n-th partial sum v, : ]0, co[ - R by
1
V()= Y V™. (2-8)
m=1-2n
We now show that the sequence (v,) yields successively better approximations over the large scale of the
exact solutions of Gv = 0. We first derive zeroth order bounds.

Lemma 2.1.3. If v: [a, oo — R solves (2-5) then, for large r,
v — vl S 1. 29)

Proof. Consider the family of polynomials p;(y) = (y — 1)(t> + y?). For all t > 0, y = 1 is the unique
real root of p;. Since y = 0 is the unique local maximum of py, for sufficiently small ¢, the unique local
maximum of p;, is also near 0, and the value of p, at this point is less than —>/2. Since py is convex over
the interval [%, oo[, for % <y < 1 we have py(y) < %(1 — y)po(%) = %(y — 1) and so, for sufficiently
small 7, over the smaller interval [%, l], pr(y) < %(y —1).

Now let v be a solution of Gv = 0. In particular, using a dot to denote differentiation with respect to
r, we have 0 = —r?p, /r(v/7). Suppose, furthermore, that r >> 1 so that the estimates of the preceding
paragraph hold for p;,.. When v > r, we have v —7 =90 —1 < —1, so that, for sufficiently large r, v(r) <r.
Ifv< %r, then v — %r’ > %r - %, so that, for sufficiently large r, v(r) > %r. Finally, if %r < v < r then,
by the preceding discussion, v > %r(r —v). It follows that if w :=r(vg —v) =r(r —v), then w > 0
andw=2r—v—ro<r+w/r— %rw. Since this is negative for w > 36 and r > 6, the function w is
bounded, and the result follows. O

Lemma 2.1.4. If v: [a, oo — R solves (2-5) then, for all n, and for large r,
vy — v S, (2-10)

Proof. For all n, let w,, := r2"=1(v, — v) be the rescaled error. We prove by induction that |w,| < r—2
for all n. Indeed, the case n = 0 follows from (2-9). We suppose therefore that n > 1. Since w, =
r2w,_1 + Vi_an, it follows by the inductive hypothesis that w, is bounded. Now let P(a, b) denote any
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polynomial in the variables a and b. Since Gv, is a finite Laurent polynomial of order (1 —2n), using a
dot to denote differentiation with respect to r, we have

b, = —(2”;1) wy + 22 (r by, — r0)
=%P<%nm)—r”‘%hm—rx1+vb—wv—rx1+v%)
= 1P () = Fun1 =00+ @b )

Since v = v, — r Dy, and since (v, — r) is also a polynomial in r~! with no constant term, this
yields

w, = lP<l, wn) —rw,.
r r
Since w,, is bounded, there therefore exists a constant B > 0 such that, for all r > 1,
[, +rw,| < Br'. 2-11)
In particular, for r > 2 and r’w, > 2B,

j—rr2wn = r? (W, +rw,) + 2r —r)w, < Br — ir*w, <0,

so that 2w, is bounded from above. Since (—w,) also satisfies (2-11), we see that 2w, is bounded from
below, and this completes the proof. (I

Lemma 2.1.5. If v: [a, oo[ — R solves (2-5) then, for all n,
Uy — v = O~ k2D, (2-12)

In particular,
v=r— 140 ), 2-13)

Proof. For all n, define w, := (v, — v). As in the proof of Lemma 2.1.4, we obtain
w, = P (l, wn)rwn + lgvny
r r

where P; is some polynomial. Since Gv,, is a finite Laurent polynomial of order (1 — 2n), it follows by
induction that, for all &,

dk
ﬂ = Pk(ls wn>rkwn + Qk(%a wn)rk—(Zn—',—l)’

drk r
where Py and Qy are polynomials. It follows by (2-10) that, for all &,
d* d*w,

- _ — < k—(2n+1)‘

‘drk (v = v) ‘ dre |~
However, since (v,4x — v,) is a finite Laurent series of order —(2n + 1), for all &,

k dk k o
7=V = ’m(vn — Vpk) |+ ‘W(Un—s—k —v)| SroErHD,

and the result follows. |
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2.2. The small scale: formal solutions. We now study solutions to (2-5) over the small scale. We fix
positive constants K > 1 and n < 1 which we henceforth consider to be universal. Let A be a large,
positive real number, and let €, R > 0 and ¢ € R be such that

<eR4+’7 + ﬁ) < % €eRT> A, |c| <K. (2-14)
These conditions will be used repeatedly throughout the paper. Observe, in particular, that (2-14) implies
that € becomes small and R becomes large as A tends to infinity. We will prove:

Theorem 2.2.1. For all sufficiently large A, and for all R, € satisfying (2-14), there exists a smooth
function o€, R]: R — R such that, forallc € [-K, K], if v:[eR, € R*] = R solves Gv = 0 with initial
value

V(eR) = %0[6, RI(c) + %, (2-15)

then
—1“011r1€3 2-16
U(”)—Er+7+ <|: +og<€—R>]r—k<r+;) ) (2-16)

o0

loc Sense as A tends to +00.

Furthermore, the function o [€, R] converges to the identity in the C

Remark. We leave the reader to verify that the same conclusion also holds over the interval [e R, Ce R*]
for any constant C not depending on € or R.

The function o [€, R] will be defined explicitly in Section 2.3, below, and Theorem 2.2.1 will follow
immediately from Lemma 2.4.2, below. The constant ¢ will henceforth be referred to as the logarithmic
parameter of the function v. Observe that, up to a small perturbation, it is related to the initial value of v by
a linear function. This perturbation is required in order to guarantee good estimates over the whole interval.
Indeed, replacing o [€, R](c) by c in (2-15) would increase the error in (2-16), making it then of order (e¢/r).

In order to appreciate Theorem 2.2.1 and the argument that follows, we find it helpful to first recall the
geometric properties of the function v over the interval [€ R, € R*]. Indeed, by definition, its integral u is the
profile of some rotationally symmetric Grim surface. However, it is known (see [Clutterbuck et al. 2007])
that, near the lower end of this interval, the first term in the MCFS equation (1-1) dominates, so that the
graph of u is close to some minimal catenoid in R and the function u is itself approximately logarithmic.
On the other hand, near the upper end of this interval, it is the second term in the MCFS equation which
dominates, and the function u is approximately quadratic, in accordance with the asymptotic formula
obtained in the preceding section. These two contrasting behaviours are reflected in (2-16) by the €/r
terms and the r terms respectively.

In order to derive an asymptotic formula for u that simultaneously describes these two behaviours, we
introduce two abstract variables M and N, where M measures its quadratic behaviour, and N measures its
logarithmic behaviour. By expressing the equation Gv = 0 in terms of these new variables, the asymptotic
formula for v is then obtained in the same manner as in Section 2.1 namely, by first determining formal
solutions which then serve as approximations for exact solutions.

Upon applying the change of variables r := € Re* we obtain

Gv ="Dv —eRe* + (v — € Re“ V2, (2-17)
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where the operator D is defined by
Dv :=v, + v, (2-18)

and the subscript x here denotes differentiation with respect to this variable. Now let R[X, M, N] be the
ring of polynomials with real coefficients in the variables X, M and N. We consider a general element V
of R[X, M, N] as a sum of the form

V=YV, (X)MPNY, (2-19)

p.q<k

where, for all p, g, V) , is a polynomial in the variable X and k is some finite, nonnegative integer which
we henceforth refer to as the order of V. There is a natural correspondence sending R[X, M, N] into the
space of continuous functions over [0, 31og(R)] given by

Vi 0@ i= Y Vi oeRe)? (L) (2-20)
P.q=<k
In other words, this correspondence is the unique R[X]-ring homomorphism which sends M to € Re* and
N to (¢/R)e™*. Although this homomorphism is not injective, it keeps track of the parameters €, R and c,
which is the reason why it serves our purposes. Operators G and D are also defined over R[X, M, N] by

GV :=DV —M+(V—-M)V?,

d
(Dv)p,q = <d_X +1+ (P - CI)) Vp,qa

where d/(d X) here denotes the operator of formal differentiation with respect to the variable X. In

(2-21)

particular, G and D both map through the above correspondence to the operators given in (2-17) and
(2-18) respectively, thereby justifying this notation. Observe, furthermore, that D defines a surjective
linear map from R[X, M, N] to itself and that its kernel consists of finite sums of the form

V=Y a,M N,
p<k
where ag, ..., a; are real constants.
Let R[X][M, N] be the ring of formal power series over the variables M and N with coefficients
that are polynomials in the variable X. Observe that the operators G and D naturally extend again to
well-defined operators over this space.

Lemma 2.2.2. There exists a unique formal power series V in R[X][M, N] such that
() Voa=1,
(2) Vp,p41(0) =0 forall p > 1, and
(3) gv =0.
Furthermore,
@) Vip=1,
(5) if p+q iseven, thenV, , =0, and
(6) if p+q =2k+1isodd,thenV, , has order at most k in X.
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Finally, if we define
Vii= ) Vp(X)MPNY,
pHq<2k+1
then,

(7)) if (p+q) < 2k + 1), then the coefficient of MP N1 in QVk vanishes,
®) if (p+4q) > 2k +1) is even, then the coefficient of MP N4 in g\7k vanishes, and
9) if (p+q) > 2k+1) is odd, then the coefficient of MP N9 in GV has order at most %(p-i—q —3)in X.

Proof. Let V = Zp’q Vg (X)MP N9 be an element of R[X][M, N] which solves GV =0. For all (p, q),
equating the coefficient of M” N9 in GV to 0, we obtain

(% + (1 +(p— ‘1))) Vg =38p1840 — Z VoraiVora Vps.gs + Z Vorai Vo (2-22)
p1+p2+p3=p pi+p2=p—1
q1+92+q3=q q1+q2=q
In particular,
dV(),()

T T Vool + Vo) =0,

and since there exists no nontrivial polynomial solution to this equation, it follows that Vj 9 = 0. From

this it follows that the two summations on the right-hand side of (2-22) only involve terms of order at
most p+qg —2in (M, N). In particular, V| satisfies

d V(), 1

dX

It is thus constant, and we henceforth set it equal to 1. It now follows by induction that there exists a unique

=0.

sequence of polynomials (V) ;) satisfying (2-22) such that Vo ; =1 and V), ,11(0) =0 for all p > 1.

To prove (4), observe that V| o satisfies dV;,0/(dX) + 2V1,0 = 1 so that, since it is a polynomial,
Vio= % as desired. To prove (5), observe that if p 4+ ¢ is even, then every summand on the right-hand
side in (2-22) involves at least one term of the form V), ./, where p’+ ¢’ is an even number no greater
than p +¢ — 2. Since Vj o =0, it follows by induction that V), , = 0 whenever p + g is even, as desired.
To prove (6), suppose that for all / < k, and for p + g = 2[ + 1, the polynomial V), , has order at most /
in X. By (2-22), for all p + g = 2k + 1, the polynomial V,, , is obtained by integrating terms of order
at most (k — 1) in X, and it follows by induction that V), , has order at most k in X, as desired.

Finally, observe that, by (2-22), the term V), , is defined by setting the coefficient of M” N9 equal to 0
in GV, and (7) follows. Furthermore, for p +¢g > (2k 4 1), the coefficient of M” N9 in GV is equal to the
right-hand side of (2-22). Items (8) and (9) now follow by similar arguments used to prove (5) and (6),
above, and this completes the proof. ]

2.3. The small scale: exact solutions, 1. Let V be the formal power series constructed in Lemma 2.2.2.
For €, R satisfying (2-14), for ¢ € R, and for nonnegative, integer k, let vg . be the k-th partial sum of V
with logarithmic parameter c, that is,

(@)= Y VpeReD? (L) (2-23)

pHq<2k+1
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Define the function o[e, R, k] : R — R by

R2

ole, R, k](c) := R (0) — GT (2-24)

Trivially, if v : [0, 3log(R)] — R satisfies

v(0) = %a[e, R, k](c) + %
then v has the same initial value as v .. Observe that o[€, R, k] is a polynomial in ¢ with coefficients that
depend on €, R and k and, for all k, o [€, R, k] converges to the identity in the C}’ sense as A tends to infin-
ity. We will see presently that the estimates we require follow when £ is at least 9, and we therefore define

ole, Rl(c) :==ole, R, 9](c). (2-25)

This is the function that appears in the statement of Theorem 2.2.1.

As in Section 2.1, we now determine zeroth order bounds for the difference between vi . and an exact
solution with the same initial value. We achieve this via the contraction mapping theorem. We first
introduce the required analytic framework. For T € [0, 3 log(R)], let C([0, T) be the Banach space of
continuous functions over the interval [0, 7] furnished with the uniform norm and let Cé ([0, T]) be the
Banach space of continuously differentiable functions over this interval with initial value 0, furnished
with the norm

lwlicy == llwllco, (2-26)

where the subscript x here denotes differentiation with respect to this variable. Observe that, for all
w € Cy([0, T,
lwllco = Tlwll¢;- (2-27)

Lemma 2.3.1. The operator D defines a linear isomorphism from C(l) ([0, TY) into C°([0, T1). Further-
more, the operator norms of D and its inverse satisfy

IDI<1+7, D" <2 (2-28)
Proof. First, bearing in mind (2-27),
Pwllco = wxllco +wllco = A+ T)[[wlicy
so that | D|| < 1+ T. By inspection, for all w,
(D 'w)(x)=e /x ew(y)dy.
In particular, ’
1D~ wlico < flwllco.

Thus,
1D~ wlicy = 1D~ wicllco < IPD ™ wllco + 1D~ wllco < 2[wllco,

so that |D~!|| < 2. O
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Consider now the functional H : Cé([O, T — C°([0, T]) given by

H(w) := G (v + w). (2-29)
Its Fréchet derivative at w is
DH(w)f:=Df +E(w)S, (2-30)
where
Ew) f =3 +w) f —2eRe (v + w) f. (2-31)

Lemma 2.3.2. For all w € Cé([O, T1), the operator norm of £(w), considered as a linear map from
C, ([0, T1) into C°([0, T1), satisfies

1 2
€l <T((€Re )? tatT lwll?. > (2-32)

Proof. Indeed, over [0, T],

C
leRe* || co < €ReT, H—e—x <

c
R
Thus, by Lemma 2.2.2 and (2-14),

k

. 2i+1
< i T VT o et L
||vk||CoNZ(;(1+T )<6Re + R) SeRe + 4,
so that, by (2-27) and (2-31),
1) fller S (€ReTY + =5 w +wl2o) 1 f llco
< T((eRe™ + 1y + T2 1wl ) Flly.
as desired. 4
Define the map & : C} ([0, T'1) — CA([0, T]) by
O (w) :=w—D "H(w). (2-33)
Lemma 2.3.3. Forw, w € C}([0, T1),
1P (w) = @@l ¢y S T((eReT>2 =7+ T wlg, + T2||u‘)||’éol) lw =l (2-34)
Proof. Indeed, for w, w € CO([O, T1]), using (2-30),
d(w) — dW) =w—w—D"(H(w) — HW))

— D (H(w) — H(®) — D(w — ©))

1
=_p! (/ E(tw+ (1 —nw) dt)(w — ).
0
Thus, by (2-28) and (2-32),

. 1 . _
[©(w) = (@)l ¢y S T((€ReT) + =5+ T Wiy + T2 101, ) lw = By,

as desired. |
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Applying the contraction mapping theorem now yields:

Lemma 2.3.4. For sufficiently large A, if vk . is the k-th partial sum of V with logarithmic parameter c,
and if v : [0, 31og(R)] — R solves Gv = 0 with initial value

v(0) = ole, R Kl + <X, (2-35)
then
2k+3
v —veellco S (1+ Tk“)(eReT + %) . (2-36)
Proof. By Lemma 2.2.2,
k T 1 2k+3
IGuelleo S 1+ T (eRe™ + ).

By (2-28), there therefore exists B > 0, which we may consider to be universal, such that
. ' ;o 1\2kH3
10Ol = 1D~ Guelly = BA+TH)(eRe™ + )

Let X be the closed ball of radius 2B(1 + T¥)(eRe” + R™1)**3 about 0 in C} ([0, T1). By (2-14), if
w, w € X then, in particular,
_ 1
Tlwley Tl S (eRe” + ),
so that, by (2-34) and (2-14) again,
_ 1 _
1P @w) =Py S Hllw—wlle-

The map @ thus defines a contraction from X to itself, and there therefore exists w € X such that
@ (w) = w. In particular Hw = 0, and
1 >2k+3

lwlieo = Tllwlley S 4+ T (eRe + 4

Finally, by the definition of the function o€, R, k], we have v(0) = v ~(0) so that, by uniqueness of
solutions to ODEs with prescribed initial values, v — vy . = w, and the result follows. O

2.4. The small scale: exact solutions, II. The final step in proving Theorem 2.2.1 involves extending the
estimates obtained in Lemma 2.3.4 to derivatives of all orders.

Lemma 2.4.1. If v . and v are as in Lemma 2.3.4, then

V= v+ o((l + Tk“)(eReT n %)2k+3). (2-37)

Proof. Define w := v — vi .. Since vi . is a polynomial in e Re* and (c¢/R)e™* with coefficients in R[X],
as in the proof of Lemma 2.1.4,

wy = Py (w, e€Re", %e‘x>w + Gug.e
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for some polynomial P; with coefficients in R[X]. Since Gy . is also a polynomial in e Re* and (c¢/R)e™™
with coefficients in R[X], it follows by induction that, for all /,
dl

-1
dr
—w=~F (w eRe*, £e_")w + Z Qp,1<w, eRe*, £>—gvk,c (2-38)
p=0

dx! R R/ dxp

for suitable polynomials P; and (Q . 1)o<p</—1 also with coefficients in R[X]. However, by (2-36),

2k+3
lwlleo < (14 Tk+1)<eReT 4 %) .

Thus, by (2-14),

o o) e o) 51
Finally, Lemma 2.2.2 and (2-14) again,
4! 1 \2k+3
v <(14+Tk (eR T —) ,
"dxllgkcoN(+ I\ eRe” + 4
and the result follows upon combining these relations. (I

Lemma 2.4.2. If vy . is the k-th partial sum of V with logarithmic parameter c, and if v : [0, 31og(R)] —
R solves Gv = 0 with initial value

v(0) = %a[e, R,4k+9](c)+%, (2-39)
then, for sufficiently large A,
ot 1 2k+3
V= Ve +o((1 okt )(eRex n Ee—X) ) (2-40)
Remark. Since r = e Re*, by the chain rule,
da_1d
dr  rdx’

so that Theorem 2.2.1 follows immediately from (2-40) upon setting k = 0.

Proof. For nonnegative, integer [, if v : [0, 31og(R)] — R solves Gv = 0 with initial value as in (2-35)
then, since (2-37) holds for all T € [0, 3log(R)],

243
v=vl,c+0((1+xl+1)(eRe"+%> )

In particular, if v : [0, 31og(R)] — R now solves Gv = 0 with initial value given by (2-39), then, bearing
in mind (2-14),

2k+3
UV = V4f49,c + O((l +xk+l)<€Rex + %e‘x) )

However, by Lemma 2.2.2 and (2-14) again,

k1 1 _ 2k+3
Vaps.c = Ve +O((14 x5 (€Re* 4 ze™) ),
and the result follows. |
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2.5. The small scale: solutions of the linearised equation. We conclude this section by studying how
solutions of the equation Gv = 0 vary with the logarithmic parameter c.

Theorem 2.5.1. For sufficiently large A and for all R, € satisfying (2-14), if, for all c € [—K, K], the
function v, : [€eR, € R*] = R solves Gv, = 0 with initial value

ve(eR) = %o[e, R](c) + %,
then \
o= sof[ im0+ )

Theorem 2.5.1 follows from (2-49), below, via reasoning similar to that used in Section 2.4. It suffices
to study solutions of the linearisation of G about v, the asymptotic properties of which are readily derived
from the analysis of the previous sections. Indeed, let R[X][M, N] be as in Section 2.2 and define the
operator dy over this space by

ONV)pg =g+ DVpgir. (2-42)

In other words, dy is simply the operator of formal differentiation with respect to N. By explicit calculation,
N oy commutes with D. Now let V be the formal power series constructed in Lemma 2.2.2 and define

W= NoyV. (2-43)
Applying Ndy to the relation GV = 0 yields
DW +3V*W —2MVW =0, (2-44)

so that W is a formal solution to the linearisation of G about the formal series V.
Fix a nonnegative integer k, let Vj be as in Lemma 2.2.2 and define

Wei= > Wpa(X)MPNY. (2-45)
pHa<2k+1
By (2-44),
DWy +3V2 Wy — 2M Vi Wi = O((M + N)*+3), (2-46)

Consider now A, K > 0, let €, R > 0 and ¢ € R satisfy (2-14), and let v; . and wy . be the functions
corresponding to Vi and W, respectively. By (2-46), for all k,

2 _ X _ k+1 x l —x 2kt3
Dwg,c +3v; ;wk,c —2(eRe™ ) vg cwi o = O x €Re" + Re . (2-47)

Lemma 2.5.2. For sufficiently large A and for all T € [0, 3log(R)], if v:[0, T] — R solves Gv = 0 with
initial value

0(0) = gole, R K@ + <.

and if w:[0, T] — R solves
Dw + 3v°w — 2e Re*vw =0 (2-48)
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with initial value w(0) = wy (0), then

2k+3
lw—wielley S A+TYH (eReT +2) . (2-49)
Proof. Indeed, by (2-47),

2k+3
IDwy ¢ + 3VE w.c — 2(e Re") vy cwpell S (14 T)F! (eReT + %) ,
Observe that

Ivlico, Ivk.clico, llwk,cllco S 1.

Thus, by (2-36),
13vE.. — 30D wicllco = 31 (Ve — V) (Vg + V)wcllco

2k+3
5(1+T)k+l<eReT+%> .
Likewise
Kt T 1 2k+3
|C(eRe ke = 2R W cllco S (1 + T (eReT + 1)
Thus
D (Wi, —w)+30* (W, e —w) —2(e Re*)v(wk . —w) | co = [ Dwy +3v Wi - —2(e Re ) vwy ¢ [l co
2k+3
S(l—i-T)kH(eReT—i-%) . (2-50)

Observe now that, for all ¢ : [0, T] — R,
3vp —2¢Re*p = E(v — v ) P,
where & is given by (2-31). In particular, by (2-14), (2-32) and (2-36), the operator norm of £(v — vg ()

considered as a map from Cé([O, T1) into C°([0, T')) satisfies

1
€@ = vl S T((eReT)2 + ﬁ)

Thus, by (2-28), for sufficiently large A, the operator D 4 £(v — vk ) defines an invertible map from
Cé([O, T1) into C°([0, T]) and the result now follows by (2-50). U

Theorem 2.5.1 now follows as indicated above. In addition, a further iteration of this process also
yields:

Theorem 2.5.3. With the same hypotheses as in Theorem 2.5.1,

a0 =0l (L))

3. The Grim paraboloid

3.1. The MCFS Jacobi operator. The Grim paraboloid, which we henceforth denote by Gy, is defined to
be the unique rotationally symmetric MCF soliton which is a graph over the whole of R?. Put differently,
using the notation of Section 2, there is a unique solution v to the ODE Gv = 0 which is defined over the
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whole interval ]0, oo[. This solution tends to 0 as x tends to 0, and the Grim paraboloid is the surface of
revolution generated by rotating the graph of its integral about the z-axis.

Let J be the MCFS Jacobi operator of the Grim paraboloid as defined in Section A2. In this section,
we show that this operator defines a linear isomorphism over suitably weighted Sobolev and Holder
spaces. We first describe the spaces of interest to us (see Section A4 for details). Let g denote the metric
induced over R? by the graph Gy, that is,

g = +v))dr?+r?do>. (3-1)

For all nonnegative, integer m, let || - || g» () denote the Sobolev norm of order m of functions over R?
with respect to this metric. Likewise, for all nonnegative, integer m, and, for all o € [0, 1], let || - [[cme(G)
denote the Holder norm of order (m, o) of functions over R? with respect to this metric. Observe that, by
(2-4), these Sobolev and Holder norms are uniformly equivalent to the Sobolev and Holder norms defined
with respect to the more straightforward metric

g =1 +rHdrr+r?de>. (3-2)

For all nonnegative, integer m, let H™(G) denote the Sobolev space of measurable functions f over R?
whose distributional derivatives up to and including order m are locally square integrable and which
satisfy || fllgm(G) < oo. Likewise, for all nonnegative, integer m, and, for all o € [0, 1], let C"™*(G)
denote the Holder space of m-times differentiable functions f over R* which satisfy || f |cme Gy < o0.
Recall that both H"(G) and C"™%(G), furnished with the above norms, are Banach spaces.

For all real y, define ¢,, : R> — R by

8, = 2, (3-3)

where u here denotes the integral of v with initial value 0. For all nonnegative, integer m, for all « € [0, 1]
and for all real y, define the weighted Sobolev and Hélder norms of weight y over R? by

I f a6y == @y fllamG)
’ ! (3-4)
I fllcme gy = @y fllcme ).

Observe that, by (2-4) again, these weighted Sobolev and Holder norms are uniformly equivalent to the
weighted norms defined using instead of ¢, the more straightforward weight function

@), = eIV, (3-5)

For all nonnegative, integer m, for all @ € [0, 1], and for all real y, define the weighted Sobolev and
Holder spaces of weight y over R? by

H(G):={f|¢yf e H"(G)},
CyG) ={f | ¢y f € C"(G)}.

These spaces, furnished with the weighted Sobolev and Hélder norms are trivially also Banach spaces.

(3-6)
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Since Gy is a graph over R?, its MCFS Jacobi operator may be thought of as an operator acting on
functions over R2. In particular, as we will see presently, for all o € [0, 1], and for all real y, J defines
bounded linear maps from H)f(G) into H)(,)(G) and from C)%'“ (G) into Cg’“(G). We show:

Theorem 3.1.1. (1) For all sufficiently small y, J defines a linear isomorphism from Hf(G) into H)(/) (G).
(2) For all a € 10, 1[ and for all sufficiently small y, J defines a linear isomorphism from C )%’“(G) into
Cco%(G).
¥

Theorem 3.1.1 will follow from Lemmas 3.2.6 and 3.3.4 below. Before proceeding, we first observe that,
for all y, the function ¢, is strictly positive so that, for all nonnegative, integer m, and for all a € [0, 1],
the operator of multiplication by this function, which we denote by M,,, defines linear isomorphisms
from H)'(G) into H"(G) and from CJ"%(G) into C™*(G). For all real y, we therefore define

Ty =M, IM,". (3-7)

This operator is none other than the ¢, -Jacobi operator of the Grim paraboloid, which has been studied
in detail in [Cheng and Zhou 2015; Cheng et al. 2014; 2015a; 2015b]. Trivially, J defines linear
isomorphisms from Hf(G) into H)(/) (G) and from C}%""(G) into CS"’(G) if and only if J,, defines linear
isomorphisms from H 2(G) into H°(G) and from C*>%(G) into C%%(G) respectively.

Lemma 3.1.2. For all real y,

=1, (+p)

I f=A0f —yle, VO f) + = f 1 {ea NGy [ +Tr(AG) /. (3-8)
Proof. By (A-3),
Vol = —%n(}%ez),
Hess®° qb;l = %dz Rdz+ (12—;:/) (e, NGO)IIGO.
However, since Gy is a mean curvature flow soliton, Hg, = —(e;, Ng,), and taking the trace therefore
yields
AGogt = (+y)? d +J/)(3+)/)<em Ne,)?.
49, 49,
Thus, by (A-2),
by Jod, ' = (y24— b_d -Zy)z (ez, Ngo)* + Tr(Ag,)*.
The result now follows by (A-4). U

By (A-6) and (2-13),
(ez, NG,)? = O(r—@th)),

Tr(Ag,) = O(r~ ™).

It follows that, as y tends to 0, the family (J,) converges to Jy in every operator norm of relevance to us.

(3-9)

Since invertibility is stable under small perturbations, it is therefore sufficient to consider only the case
y = 0 where, in particular, Jy is self-adjoint.
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We now derive a formula for Jo which is better adapted to our purposes. First, let ¢ : ]0, oo[ — R be
such that, for all , c(r) is the geodesic curvature of the circle C(r) with respect to the metric induced by
the graph G over R2.

Lemma 3.1.3. The function c is given by
1
c= ;(ez, Ng,). (3-10)

In particular, for large values of r,
c =0 Ny, (3-11)

Proof. Let D denote the Levi-Civita covariant derivative of the Euclidean metric over R3. Think of C (r)
as a horizontal circle in R® at height u(r), where u here denotes the integral of v with initial value 0. In
particular, D eg = (1/r)e,, where eg and e, denote respectively the unit, horizontal vector fields in the
angular and radial directions about the z-axis. Since the geodesic curvature of C(r) with respect to the
induced metric over Gy is equal to the length of the tangential component of this vector, the function c is
given by

1 1
C=; 1—(6,,NG0>2=;<81,NG0>,
as desired. Equation (3-11) now follows from (3-9), and this completes the proof. O

Let p : ]0, oo[ — R be such that, for all 7, p(r) is the intrinsic distance along G of any point on the
circle C(r) from the origin. Since p is obtained by integrating +/1 + vZ, by (2-4) again, for large values
of r,

pr=r+00" "),

1 O( —(k+3))’
r

where the subscripts r and p here denote differentiation with respect to the variables r and p respectively.

Lemma 3.1.4. Away from the z-axis,

Jof = fop+ foo+cfr— S +U1, (3-13)

where the subscripts p and 6 denote differentiation along the unit radial and unit angular directions in G
and, for large values of p,

W< (3-14)

Proof. Indeed, away from the z-axis,
AGof = f,op + f09 +Cfp,

so that (3-13) follows by (3-8) and (3-9) with
<.

Finally, integrating (3-12), yields p < r2, so that r =2 < p~!

and the result follows. |
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3.2. Invertibility over Sobolev spaces. We now obtain the invertibility of Jy for Sobolev spaces. The
main technical difficulty here arises from the noncompactness of the ambient space. This is compensated
for by the following estimate.

Lemma 3.2.1. There exist B, R > 0 such that, for all f in HZ(G),
I flak.oo 2y < B(Iflag=1,8+0 226y + 1 Jo flar—1,00 I 12(6))- (3-15)

Proof. Since C§°(G) is dense in H 2(G), it suffices to prove the result when f is smooth and has compact
support. Set g := Jof and define «, S : ]0, oo[ — R by

wlp)= [ fdl. B(p):= / Sl
C(p)

C(p)

where C(p) here denotes the circle of points lying at intrinsic distance p along G from the origin. Twice
differentiating « yields

a, =/ 2ff,+ fredl,
C(p)
%pp = fc o 215+ 2 fop +ASFpc+ frep+ f2c7dl

0

where the subscript p here denotes differentiation with respect to this variable. By (3-13),
_ 2 1,2 2 2 2.2
Upp = / 2fy =2ffoo+ 35S =20 f +2fg+2ffoc+ e, + frcmdl
C(p)
Integrating the term 2 f fypg by parts and applying the algebraic-geometric mean inequality now yields
Qpp > / (3 =2y +c, — ) f2 —4g*dl.
C(p)

However, by (3-11), (3-12) and (3-14), ¢, ¢, = ¢,r, and ¥ all tend to 0 as p tends to +o0 so that, for
sufficiently large p,

App > %(x —48.

Since f has compact support, upon integrating this relation we obtain, for sufficiently large R,

00 o0
I skl = [ ado =32 [ o= 8a,(R) =320 flack sy — 80 (R,
However, by the Sobolev trace formula and classical elliptic estimates,
a,(R) < B; ||f|A(R71/2,R+1/2)||§12(G)
< Bo(ll fla—1,8+1) 1726y + 10f lak-1.8+10 1 72())
for suitable constants By and B,. The result now follows upon combining the last two relations. O

Combining Lemma 3.2.1 with classical elliptic estimates yields:
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Lemma 3.2.2. There exist B, R > 0 such that, for all f in HZ(G),

I f 26y < BUI fl@w) 2y + 10 fll22(6))- (3-16)

Proof. Observe that G is of bounded geometry in the sense that, as x tends to infinity in Gy, the geodesic
ball of unit radius about x in this surface converges in the pointed Cheeger—Gromov sense to the unit ball
about the origin in R2. It thus follows by classical elliptic theory (see [Gilbarg and Trudinger 1983]) that
there exists B > 0 such that

I f a2y < BUSflIize) + 100 f 2 6))-
The result follows upon combining this relation with (3-15). ]
Since, Jj is self-adjoint, standard arguments of the theory of elliptic operators now yield
Lemma 3.2.3. J; defines a Fredholm map from H*(G) into L*>(G) of Fredholm index equal to 0.

Proof. Since B(R) is relatively compact, it follows by Rellich’s compactness theorem that the restriction
map sending H2(G) into L>(B(R)) is also compact. Thus, by (3-16), Jy satisfies an elliptic estimate,
as defined in Section A5, so that, by Theorem AS5.1, Jy has finite-dimensional kernel and closed image.
Observe now that Jy is self adjoint, so that Ker(Jp) is contained within the orthogonal complement of
Im(Jo) in L>(G). We claim that these two spaces coincide. Indeed, let u be an element of the orthogonal
complement of Im(Jp). In particular, Jou = O in the distributional sense. Thus, bearing in mind that
Gy is of bounded geometry, it follows by classical elliptic regularity that u is an element of H*(G). In
particular, u is therefore an element of Ker(Jp), so that Ker(Jy) coincides with the orthogonal complement
of Im(Jp) in L*(G), as asserted. It immediately follows that Jy is a Fredholm map of Fredholm index
equal to 0, and this completes the proof. ([l

It remains only to prove that Jo has trivial kernel in H>(G). We obtain a slightly more general result
which will serve also for the Holder space case of the following section.

Lemma 3.2.4. There exists no nontrivial, bounded function f : Go — R such that Jy f = 0.

Proof. Indeed, suppose that there exists a nontrivial bounded function f : Gg — R such that Jy f = 0.
Upon multiplying by (—1), we may suppose that f is positive at some point. Now, since all vertical
translates of G are also mean curvature flow solitons, the function u = (e;, Ng) is a Jacobi field over
this surface, that is,

Jogo = poJ = 0.

Since Gy is a graph, the function u is everywhere strictly positive. It follows that ¢ou is also positive, so
that the quotient f/¢ou is smooth. Since ¢y = /4 and w = 0(r~"), the function ¢ tends to infinity
as r tends to infinity, and so f/¢ou attains its maximum value at some point x, say, of Gg. In particular,
upon rescaling, we may suppose that f/¢ou < 1 and that f(x)/¢do(x)u(x) = 1.

Bearing in mind that u is positive, we define the operator J,, := M, i «» Where M, here denotes
the operator of multiplication by u. Since Ju = 0, by (A-4), this operator has no zeroth order term. Thus,
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since J,. (f/ o) = (1/upo) Jo f =0, it follows by the strong maximum principle that f/¢ou is constant
and equal to 1. However, since ¢ou is unbounded, this is absurd, and the result follows. O
Corollary 3.2.5. Jy has trivial kernel in H 2(G).

Proof. Indeed, by the Sobolev embedding theorem, every element of H?(G) is bounded, and the result
now follows by Lemma 3.2.4. 0

The above results together with a perturbation argument now yield

Lemma 3.2.6. For sufficiently small v, J defines a linear isomorphism from H)%(G) into HS(G).

3.3. Invertibility over Holder spaces. We prove the invertibility of Jy over C>%(G) in essentially the
same manner. We first require the following preliminary result.

Lemma 3.3.1. Let o and B be positive constants. If ¢ : [0, oo[—]0, oo[ is a bounded, positive function
such that ¢" > a*¢ — B in the viscosity sense, then, for all t,

¢(l)EMaX(¢(0)—£2,O)e_“’+£2. (3-17)
o o

Proof. Let A = Max(¢(0) — ﬂ/az, 0) and let B = Sup,¢[o,cof @ (7). Fix T > 0 and define

T —aT
Be® —Aeat+A—Be « o 4 B

eZaT -1 1— e—ZaT aZ :

In other words, f is the unique solution of the ODE problem f;; = a®>f —  with boundary values
f0)=A+B/a>>¢(0)and f(T) = B+ B/a*>> ¢(T). Let C be the minimum value of f — ¢ over
[0, T] and let ¢ € [0, T'] be the point at which this minimum is attained. If 7 is a boundary point of this
interval, then C > (. Otherwise, f —C > ¢ and f(t) — C = ¢ (¢). Thus, since ¢ is a viscosity solution of
¢" > a’¢p — B, at this point, we have

f—B=(f—-C)y>a*(f—C)—pB

so that, once again, C > 0. In each case, we therefore obtain

Be*T —A , A—Bel B
¢§f: eZaT_lea+ l_e—2aTea+a_2’
and the result follows upon taking the limit as 7" tends to +o0. U

As in the Sobolev case, the noncompactness of the ambient space is compensated for by the following
estimate.

Lemma 3.3.2. There exist B, R > 0 such that, for all f in C>*(G),

Il flar.co)llcogy < BULflewllcoey + 1o f lar=1,00)lcoG))- (3-18)

Proof. Define « : ]0, co[ — R by
a(p) = SupxeC(p) f(x)z,
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where C(p) here denotes the circle of points lying at intrinsic distance p along G from the origin. Denote
g = Jof, and define B > 0 by
B:= 18| ack.c0 lcoc)-

Choose x € C(p) maximising f2, and observe that ffgy is nonpositive at this point. Thus, bearing in
mind (3-13),
(Fo0 =2f3 + 2 fops

>2f7+2f8—2cfo+ 51 =20 S,
= (53" 20)f” —4g.
By (3-11) and (3-14), for sufficiently large p
oz 57— 48"
Since « is the envelope of the restriction of f (x)? to each radial line, it follows that over [R, oo[,
Qpp > %a — 4B,
in the viscosity sense. Thus, by Lemma 3.3.1,

SUPyea(R.00) S () = Sup, g @(p) < Max(| f*|cerllco —32B. 0) +32B,
and the result follows. (]
Using classical elliptic estimates again, this yields

Lemma 3.3.3. There exist B, R > 0 such that for all f in C>%(G),

Il fllcreey < BULfIBw)llcoey + 1o fllcoeay)- (3-19)

Proof. Recall that Gy is of bounded geometry in the sense that, as x tends to infinity in Gy, the geodesic
ball of unit radius about x in this surface converges in the pointed Cheeger—Gromov sense to the unit ball
about the origin in R2. It thus follows by classical elliptic theory (see [Gilbarg and Trudinger 1983]) that
there exists B > 0 such that

I fllczey < Bl fllcoy + 1o f llcow(ay)
and the result now follows upon combining this relation with (3-18). ]
As before, this yields the desired invertibility result.
Lemma 3.3.4. For all o and for all sufficiently small y, J defines a linear isomorphism from C )%’“(G)
into CY*(G).

Proof. Recall that this is equivalent to showing that, for sufficiently small y, J, defines a linear isomor-
phism from C%*(G) into C%*(G). Furthermore, by (3-8) and (3-9), J,, converges to Jy in the operator
norm as y tends to 0, so that it suffices to prove the result for Jj.

Since B(R) is a relatively compact subset of Gy, it follows by the Arzela—Ascoli theorem that the
restriction map of C 2%(G) into C°(B(R)) is compact. Thus, by (3-19), Jy satisfies an elliptic estimate,
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as defined in Section AS. By Theorem AS5.1, the image of Jj is closed and, in particular, is a Banach
subspace of C%*(G). Furthermore, by Lemma 3.2.4, the kernel of Jj in C2*(G) is trivial, so that, by the
closed graph theorem, Jy defines a linear isomorphism from C>“(G) into its image. In particular, there
exists a constant B > 0 such that, for all u € C>%(G),

lull2,0 < BllJoullo,q- (3-20)

It remains only to prove surjectivity. Choose v € C”%(G) and let (v,) be a sequence of smooth
functions of compact support in R? which is bounded in C%%(G) and which converges to v in the Cloo’cﬁ
sense for all 8 < «. For all m, since v,, is a smooth function with compact support, it is an element of
L*(G) so that, by Lemma 3.2.6, there exists an element u,, of H?(G) such that Jou,, = v,,. Since Gy is
of bounded geometry, it follows by classical elliptic regularity that, for all m, u,, is in fact an element of

C%%(G). In particular, by (3-20), for all m,

lumllc2ecy < Bllvmllcoe(g)-

Since the sequence (u,,) is uniformly bounded in C2*(G), it follows by the Arzela—Ascoli theorem there

exists u € C>%(G) towards which (u,,) subconverges in the Clzof

-topology for all 8 < «. By continuity,
Jou = v and surjectivity follows. U

4. Rotationally symmetric Grim ends

4.1. The modified MCFS Jacobi operator. We now consider the case of rotationally symmetric Grim
ends. Let A be a large, positive real number, let K > 0 be fixed, and let €, R > 0 and ¢ € R satisfy
(2-14). Let v : [e R, oo[ — R solve (2-5) with logarithmic parameter ¢ so that, by (2-16), over the interval

[€R, €RY], .
v:%r+cr—6+0<[1+10g<€LR>le<r+§) ) 4-1)

Let u : [eR, oo[— R be a primitive of v, let G be the Grim end generated by rotating the graph of u about
the z-axis, and let J be its MCFS Jacobi operator, as defined in Section A2.

Since G is a graph over A(e R, o0), J may again be thought of as an operator acting on functions over
this annulus. For all nonnegative, integer m, for all o € [0, 1], and for all real y, we define the norms
[ - ||H;n(c) and | - ||c;"-w(c) as in Section 3. For all nonnegative integer m, for all « € [0, 1] and for all real
y, we define the hybrid norm with weight y of functions over R™ by

1
I fllm.e.y =1 f llcpree) + @”f”H{,"(G)- (4-2)

As we will see in Section 6, this norm encapsulates the asymptotic behaviour of J as A tends to infinity.
Let £7*(G) denote the Banach space of m-times differentiable functions f over R? with finite hybrid
norm. In this section, we show that, for sufficiently small y, and for sufficiently large A, the operator J
more or less defines linear isomorphisms from C)Z;“(G) into E?;“(G) and, furthermore, that the norms
of this isomorphism and its inverse are uniformly bounded as A tends to infinity. In order to properly
formalise these assertions, we now apply the following two modifications.
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First, on account of the vanishing neck problem, discussed in the Introduction, the zeroth-order
coefficient of J diverges rapidly over the annulus A(eR, e R*) as A tends to infinity. We address this
by introducing what we call the modified MCFS Jacobi operator. Recall that different modifications
are applied at different scales, so that the definition of this operator varies according to context, and the
general framework will be discussed in Section 5.4, below. In the present case, the modified MCFS Jacobi
operator is defined as follows. Let x; be the cut-off function of the transition region A(1, 2) as defined in
Section Al and define ¢ : A(eR, 00) — R by

¥ (r) = xilez, No) + (1 = x1), (4-3)

where Ng here denotes the upward-pointing unit normal vector field over G. Bearing in mind that v is
always positive, the modified MCFS Jacobi operator of G is now defined by

J=m;"IMy, (4-4)

where My, here denotes the operator of multiplication by .

Next, observe that J is in fact only defined over the annulus A(e R, co). We thus extend it to an operator
defined over the whole of R? as follows. Given a function ¢ : A(eR, 00) — R, we define its canonical
extension ¢~5 : R? — R such that ¢3(x) = ¢ (x) over A(eR, 00), q~>(0) is equal to the mean value of ¢ over
the circle C(¢R), and gz7> restricts to a linear function over every radial line in B(e R). In particular, if ¢ is
Lipschitz, then so too is qS, and

pllcor < Flldllcor.

Now, given a linear operator L over A(e R, 00), we define its canonical extension L to be the operator
over R? whose coefficients are the canonical extensions of each of the coefficients of L. We henceforth
identify all operators with their canonical extensions over R?. Observe, in particular, that if L has any
rotational symmetries, then so too does its canonical extension.

Theorem 4.1.1. For all sufficiently small o €]0, 1] and for all sufficiently large A, J defines a linear
isomorphism from £72;°‘(G) into E?;‘"(G). Furthermore, the operator norms of J and its inverse are
uniformly bounded independent of A.

Theorem 4.1.1 follows from Theorem 3.1.1 by a perturbation argument and Lemmas 4.2.7 and 4.3.4.
We conclude this section by deriving formulae for J over different regions.

Lemma 4.1.2. Over A(eR, 1), the modified MCFS Jacobi operator of G is given by
Tf=2g"fij—2ug" g upqu, fi. (4-5)
Proof. First observe that, for every tangent vector X over G,
(VOy, X) = Xy = X(Ng, e:) = (DxNg. e:) = (Ag X, e) = (X, Agm % (e2)).

and so,
VY = Agm(e;).
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Since every vertical translate of G is also a rotationally symmetric Grim end, J(e;, Ng) = 0, and so,

by (A-4),

JfF=A%F +(e., VOf) +20 AV  f,e,).

By (A_3)>

Hess® f =Hess(f)om — (D(f on), N)lg.

Furthermore, since D(f o) is horizontal

(D(fom), Ng)=— No.e.)

Taking the trace therefore yields

(VO f, e:)Hg.

ACf =g fij+
Y <NGan>

However, since G is a mean curvature flow soliton, H; = —(N, e;), and so

ACf=g"fij—(VOf e).
‘We conclude that
Tf=g"fi;+20 YAV  f,e,),

and the result now follows by (A-6).

Lemma 4.1.3. Over A(eR, 2¢ R*), the modified MCFS Jacobi operator of G satisfies

2 1 2c2€?

. 1 ce
Jf=Af— (5 + r_2>
where Eg f = aijﬁj +b' f;, and a and b satisfy
o[l )+
4
o[ el )]+ )

Proof. Indeed, by (4-1),

3
=y o[ e )L+

Thus, by (A-6),

2
2_q_ (I ce T L( €
we=1 <2+ r) +O([1+10g(eR)]rk r+r

ij 1 ce 2 i r 1
¢ =8y = (3+73) 'l o([1+10e( 7 ) i

It follows that
ce

i 1 21‘ . .
g’fiJ:Af—(err—z) x'x? fi;+av fij,

(D(fOTL'), €; — <NG, €z>NG> = —

xtxl fij = (5 - )xifi +&f.

(4-6)

@-7)
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where a = O([1 +log(r /e R)]r % (r +€/r)*), and since r ~' (r +¢/r)* bounds (r +¢€/r)>
2.2

A 1 2¢e“c . .
—2ng8"" g/ upqui fj = —(5 — 3 )x’fi +b' fi,

where b = O([1 +log(r/e R)]r ~*+V (r 4+ €/r)*). The result follows. O

4.2. The regular component. Theorem 4.1.1 is derived from Theorem 3.1.1 by a perturbation argument.
First, let v, :]0, oo[— R denote the unique solution of (2-5) which is defined over the whole positive half-
line, as in Section 3. Let u, denote its primitive with initial value O so that its graph is a Grim paraboloid.
Let J » denote its modified MCFS Jacobi operator, as defined in Section 4.1. Over the ball B(2¢ R%Y),

vp(r) = Ar+ 00, (4-8)
so that, as in Lemma 4.1.3, over B(0, 2¢ R),
Jof = Af = Ixix fi; = Ix fi 4 &, f, (4-9)
where &, f :=aijﬁj +b' f; and

a=00"", b=003h, (4-10)
Define
I, =m,"im,, (4-11)

where M), here denotes the operator of multiplication by x2 + (1 — x2)¢,, ¢, is given by (3-3), and x>
is the cut-off function of the transition region A(2, 4) as defined in Section Al. Observe that, since ¢,
and ¢ only depend on v and its integral u, it follows by (A-2) that the coefficients of fy are functions
of u, v and v, only. Finally, define

Tpy =M JM,. 4-12)

A straightforward modification of Theorem 3.1.1 shows that, for all & €]0, 1[, and for all sufficiently
small y, J .y defines a linear isomorphism from L)Z/""(G) into ES}“(G} whose Green’s operator has norm
uniformly bounded independent of A.

It will suffice to show that the difference J .0 — Jo converges to 0 with respect to the hybrid norm as A
tends to +oo. This is, in fact, a nontrivial result, since the coefficients of this operator diverge. However,
the region over which they diverge itself converges to a point; the relative rates of convergence are such
that the coefficients converge in the mean, which will be sufficient for us to conclude. Formally, we define
the operators D and E over A(eRR, o0) by

Df :=o—E)f—Jyof,

2022 (4-13)
Ef=x—3 x' fi,

where x here denotes the cut-off function of the transition region A(e R*, 2¢ R*). We then extend these
operators canonically to operators over the whole of R?, as in Section 4.1. By definition,

Jo:=Jpo+D+E. (4-14)
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We call D and E respectively the regular component and the singular component of the difference. We
now show that the coefficients of the regular component tend to 0 in all norms that concern us as A tends
to infinity. We will study the singular component in the next section.

By (4-6), (4-7), (4-9), (4-10) and (4-13),

Df = aijf,‘j +b' fi,
where, over A(eR, 2eR4),

ce 2.2

. . . 4
alf = — S yid iy +O([1 +log<L)]ik<r + E) ),
r2 ré €R/1r r
) 5 . (4-15)
j 2c7€” ; r 1 €
b= (1= 0 a0 [1+10g (L) | (r+€))-
Lemma 4.2.1. For sufficiently small o,
lalser)licoa, 161l coa = 0, (4-16)

as A tends to infinity.

Proof. Indeed, by (4-15), since x equals 1 near C(e R), over this circle,
1 1 PR
a=0 WG'FE"‘(ER} +F y

1 , 1
b= O((eR)k“ ((ER) * F))

Since the Lipschitz seminorms of the canonical extensions of a and b over B(e R) are controlled by their
Lipschitz seminorms over C (e R), by (A-10), for all @ € [0, 1],

1—a
4—
lalper)llcoe S o T zagzia TER) “+ L
161 B llcow S (€R) ™ + e RSt
By (2-14), for sufficiently small «, these both tend to 0 as A tends to infinity, as desired. ]
Lemma 4.2.2. For sufficiently small o,
lalaer,2¢rtyllcoas 1Blacer,2¢r llcoe = 0, (4-17)

as A\ tends to infinity.
Proof. Indeed, by (4-15), over A(eR,2¢R%),

o 1 +€2 vofli+1 r 1 +e 4
= — e+ — ool — — — ,
“ rk r? £ €R ) |rk an
and b = by + by, where
r 1 4 e
b1=O 1+10g G_R ,T-H r +r_4 y

2c%€? ;
by=0-yx) o x'.
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Thus, by (A-10) and (A-20), for all @ € [0, 1],

el—a

1 _
lalaqer.2ersllcoa S e T agie +1log(R) (e R+ +
1

elta RS+« '

€Y R4+’
1511 aer,2e % | cow S Tog(R) (€ R ™ +
By (2-14), for sufficiently small «, these both tend to 0 as A tends to infinity. Finally, over A(e R*, 2¢ R%),

by = O (e*r~*H)),
so that, by (A-10),
1
1521 e R4 2e RS IO S cTra RI2tda
By (2-14), for sufficiently small «, this also tends to 0 as A tends to infinity, and the result follows. [J
Lemma4.23. [feR<s <t < ﬁ then
[(t) —vp ()] < [v(s) —vp(s)]. (4-18)

Proof. Indeed, by (2-5), using a dot to denote differentiation with respect to r, we have

r(—1v,) = ——v,)(1 —r(v+v,) + V> +vv, +v2)).

However,
1 2 2y 51 r?
—r(+uvy) + @ vy, +vy) = -5
Thus, for r < ﬁ, |v —v,| is decreasing, as desired. |
Lemma 4.2.4. For all a €]0, 1],
lalaers nllcrs 161aers, nller = 0, (4-19)

as A\ tends to infinity.

Proof. By (4-1) and (4-8), over C(2¢ R%),
o1 43 1
v—v,| S o +log(R)(eR™) —i—log(R)ﬁ.

By Lemma 4.2.3, this inequality continues to hold over the whole of A(2¢R*, 1). Since v and v » both
solve (2-5), it follows that, over this annulus,

1 1 43 1
Thus,
1 1
Iw=vp)lpers.niller S gz +1log(RIe R +log(R) 5,
so that, by (2-14),

(v — vp)|[2eR4,1]”C2 — 0,



1206 GRAHAM SMITH

as A tends to infinity. However, by (4-5), over A(eR*, 1), the coefficients a and b only depend on the
first derivatives of v and v, so that
lalagers nlicts 16la@ers.nlict =0,
as A tends to infinity, as desired. U
Lemma 4.2.5. Forall Ry > 1,
lalaa.rpllcrs 1Dlaca.rpllct = O, (4-20)
as A tends to infinity.

Proof. By (4-1), (4-8) and (4-18), over C(1),

[v—vp| S o +1log(R)(eR™) +10g(R)ﬁ.
Since solutions of first-order ODEs vary smoothly with their parameters,

(v —vp)li,re1llc2 — O,

as A tends to co. However, over A(1, Ry), a and b only depend on v and v, and their derivatives up to
order 2, and the result follows. O

Lemma 4.2.6. For all € > 0, there exists Ry > 0 such that if |v(1) —v,(1)| <1, then

lalary.00) lc1(Gys 1Pl AR 00) |16y < €- 4-21)

Proof. Indeed, over A(4, 00), both Joand J, p,0 are given by (3-8). The result now follows by local uniform
dependence of the estimates in (3-9) on the initial value. U

Combining these results yields:

Lemma 4.2.7. (1) The operator norm of D, considered as a map from H 2(G) into L*(G) converges
to 0 as A tends to infinity.

(2) For sufficiently small a, the operator norm of D, considered as a map from C*>%(G) into C%*(G)
converges to 0 as A tends to infinity.

Proof. Indeed, by (4-16), (4-17), (4-19), (4-21) and (4-20), for sufficiently small «, both [|a|| o) and

151l oy converge to 0 as A tends to infinity, and the result follows. O

4.3. The singular component. We now write
Ef =:df;. (4-22)
Since E is defined by canonical extension, over the ball B(e R),

i_202 i 4.2
al = S (4-23)

At this stage we require the following key estimate, which reveals the significance of the hybrid norm.
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Lemma 4.3.1. For sufficiently small « and for sufficiently small y,

1 £ by S €R) 21 fll2ay- (4-24)

Remark. It will be useful to observe that this relation is also valid for spaces of functions defined over
an unbounded annulus.

Proof. Indeed, by the Sobolev embedding theorem, for all § < 1,

11l o ) S 26 S €Rf 2.0,
Setting 8 = (1 — ) and using (A-10) and (A-11), we obtain
1f lcteggy S €RVI2I flloay S €R)' TN fllzay
as desired. O

Lemma 4.3.2. For sufficiently small o € [0, 1] and for sufficiently small y, the operator norm of E,
considered as a map from £)2;“(G) into Cg""(G) tends to 0 as A tends to infinity.

Proof. Indeed, over A(eR, 2eR4),
2
. €
ad = O<_r3+k>’

) 1
1
e and  [a'|aqer2erty]t S €2R4

Since a’ is extended canonically over B(eR), these inequalities also hold over the whole of B(2¢ R*) so
that, by (A-10), for all « € [0, 1],

so that

la'| acer2erhllco S

1

n <
e S Ry k5

It follows by (4-24) and (A-12) that

”Ef”Cgv"(G) N W”f”C}IJQ(G)’
and the result follows by (2-14) and (4-24). O

Lemma 4.3.3. For sufficiently small o € [0, 1] and for sufficiently small y, the operator norm of (€ R)™'E
considered as a map from E)%’“(G) into H](/)(G) tends to 0 as A tends to infinity.

Proof. Indeed, a direct calculation yields
la' I22(6) S R
Thus, bearing in mind (4-24),
IR Efllz6) S (R a' 26 I DS 1)
. 1
=1y i
SER) ' 2o fllctegy S (GR)—QO,Rz”fllz,a,y,

and the result follows by (2-14). U
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Combining these results yields:

Lemma 4.3.4. For sufficiently small a € [0, 1] and for sufficiently small y, the operator norm of E
considered as a map from E)%’“(G) into E?;“(G) tends to 0 as A tends to infinity.

5. Surgery and the perturbation family

5.1. The basic surgery operation. Recall that our strategy for proving Theorem A consists of two stages.
The first involves a surgery operation in which approximate MCF solitons are constructed out of properly
embedded minimal surfaces and rotationally symmetric Grim ends. The second involves a fixed-point
argument in which these approximate MCF solitons are perturbed into actual MCF solitons. In this
section, we describe the surgery operation and in Section 5.2, we describe the family of deformations
of the approximate MCF soliton in which the actual MCF soliton will be found. Though conceptually
simple, our construction is inevitably rather technical. However, we believe that a careful reading of the
following two sections will be rewarded by a clear understanding of the essence of this paper.

Consider first a properly embedded surface C in R? minimal outside of some compact set, and
with finitely many ends, all of which are horizontal. Let Ry > 0 be such that every component of
C N(A(Rp, o) x R) is a minimal graph over A(Ry, 00). Let F : A(Rp, o0) — R be the profile of one of
these minimal ends. In Appendix B, we show how the Weierstrass representation yields

F =a+clog(r)+0@ =110

for some real constants a and ¢, which will henceforth be referred to respectively as the constant term
and the logarithmic parameter of the minimal end. In particular, planar ends are simply catenoidal ends
with vanishing logarithmic parameters. We will only be concerned with minimal ends invariant under
reflection in at least two distinct vertical planes. In this case, the above asymptotic series contains no
terms of order (—1), so that

F =a+clog(r) + 0@~ #*0), (5-1)

This asymptotic formula will be used repeatedly throughout the sequel.
Let A be a large, positive number, let K > 0 be a fixed constant, and choose €, R > 0 and |c| < K as
in (2-14). Let G : A(R/4, c0) — R be the profile of a rotationally symmetric Grim end with constant

term a, logarithmic parameter ¢ and speed €. Rescaling and integrating (2-16) we obtain, over the annulus
A(R/4,2RY),

G =a+clog(r) + ierz + o([l + 1og(%)]r1*k (er + %)3) (5-2)

Let x. be the cut-off function of the central transition region A(R, 2R), as defined in Section A1, and
define the function H over A(Rg, 00) by

H:=x.F+ (1 —x.)G. (5-3)

Its graph will be called the joined end. Observe that H is entirely determined by F and the parameters €
and R. Furthermore, over the annuli A(Rp, R) and A(2R, 0o), H simply coincides with F and G
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respectively whilst, over the annulus A(R, 2R), by (5-1), (5-2) and the fact that y. = o,
H=a+clog(r) + te(1 — x)r* + 0(r~ ). (5-4)

5.2. The deformation family. Continuing to use the notation of Section 5.1, let S denote the surface
obtained by replacing each of the ends of C with their respective joined ends. We now construct a family
of deformations of S out of which the actual MCF soliton will be selected when A is large. We first
describe how the logarithmic parameters of C and S are varied. Let n denote the number of ends of C, and,
foreach 1 <i <n,letap; and cp; denote respectively the constant term and the logarithmic parameter of
the i-th end. Let U be a neighbourhood of (cq 1, ..., co.») in R" and let (C.).cy be a smoothly varying
family of immersed surfaces in R3 such that C,, =Cand, forall ce U and forall 1 <i <n, the i-th
component of C. N(A(Ry, 00) x R) is a horizontal, minimal end with constant term ag; and logarithmic
parameter c;. Finally, for all ¢ € U, let S, denote the surface obtained by replacing each end of C, with
its corresponding joined end, as described in Section 5.1.
Let E : U x S — R? be a smooth function such that

(1) forallc e U, E. := E(c, - ) parametrises S., and

(2) for all ¢ € U, and for all p € SN(A(Ry, +00) x R), the point E.(p) lies vertically above or below
the point p.

Let xo, X(/), x. and x. be the cut-off functions of the transition regions A(Ry,2Rp), A(2Ro, 4Ry),
A(1/Q2¢€),1/€) and A(1/e,2/€) respectively, as defined in Section Al. By composing with vertical
projections onto R?, we think of these functions also as functions defined over S. For all ¢ € U, let N,
denote the unit normal vector field over S.. Forall 1 <i <n, letl; : S — {0, 1} denote the indicator
function of the i-th component of S N(A(Rp, 00) x R). Observe that, since this intersection is a union
of graphs, every component is transverse to the unit vertical vector e;. Forall 1 <i <n, lete; € {£1}
be such that ¢;e, lies on the same side of the i-th component as N,. For all ¢ € U, define the modified
normal vector field over S, by

Ne = (xe — xo)€iez + (1 — (xe — x0))Ne. (5-5)

Observe that, over the regions S. N(B(Rp) x R) and S, N(A(2/€, 00) x R), this vector field coincides
with N, whilst, over the region S, N(A(2Ryp, 1/€) x R), it coincides with +e,. Now let V and W be
neighbourhoods of 0 in R” and define E:UxVxWx C®(S) — C®(S, R%) by

n
Ecan.r(p) = Ec(p) + F(P)Ne(p) + D eili(p)(ai (1 = x§(p) + b (1 = xL(p)))ez.  (5-6)
i=1
Upon reducing U, V and W if necessary, there trivially exists § > 0, which is independent of A, € and R,
such that, for all (¢, a, b) e U x V x W, and, for all || f||co < 8, the function Ec,a,b,f defines an immersion
of S into R>. This concludes the description of the deformation family in which the actual MCF soliton
will be found.
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5.3. Microscopic and macroscopic perturbations. Continuing to use the notation of Sections 5.1 and 5.2,
we consider now the first-order perturbations of S defined by the above deformation family. We classify
these perturbations into two main types. Those in the direction of C*°(S) will be called microscopic
perturbations, and those in the directions of U, V and W will be called macroscopic perturbations. We
now describe the first-order variations of the MCFES functional resulting from macroscopic perturbations.
The first-order variations resulting from microscopic perturbations will be studied in the next section.
Recall that, as in Section A2, the MCFS functional with speed € of an immersion E : § — R? is given by

Mg = Hg +€(Ng, e;), (5-7)

where Hg here denotes the mean curvature function of E, and Ng here denotes its unit normal vector
field. We define M : U x V x W — C§°(S) such that, for all (c,a,b) e U x V x W, and, for all p € S,
Mc c.4.»(p) is the value of this functional for the immersion E. , ; at the point p. We define the operators
Xe,Ye, Ze : R" — C3°(S) by

1 d
(Xeu)(p) = A—d_Me,co—i-tu,O,O(p) ,
Ngs, Ng) @t 1=0
1 d
(Yev)(p) := (I/V\S, Ng) EMG,Co,Z‘U,O(p) ,:0, (5-8)
1 d
(Zew)(p) := A—d_Me,co,O,tw(p)
Ns, Ns) t =0

These are the first-order variations of the MCFS functional arising from the three types of macroscopic
perturbation. In particular, since M . o0 vanishes over SN(A(2R, +00) x R) forallce V, forall u € R4,
Xu is supported over S N(B(2R) x R). Likewise, for all v, w € R*, Yv and Zw are supported over
SN(ARRy, 4Rp) x R) and SN(A(1/(2¢), 1/€) x R) respectively. In later sections, when no ambiguity
arises, the subscript € will be suppressed, and these operators will be denoted simply by X, ¥ and Z
respectively.

5.4. Modified Jacobi operators. The operator of first-order variation of the MCFS functional resulting
from microscopic perturbations is none other than the modified MCFS Jacobi operator. In this section, we
determine asymptotic formulae for its coefficients over different regions. We recall that, since different
modifications are made on different scales, the precise definition of the modified MCFS Jacobi operator
varies with context. We now describe the framework which unifies these different definitions. We will
then study three different cases corresponding to, in order, CHM surfaces, rotationally symmetric Grim
ends, and joined surfaces.

Consider first a general immersed surface ¥ in R* such that, for some Ry > 0, every component of
2 N(A(Rp, 00) x R) is a graph over A(Ry, o0). Let A > 0 be a large, positive number, let €, R > 0
be as in (2-14), and let ﬁg be the modified normal vector field over X as defined in (5-5). We define
E:CP(Z) — C®(Z, R%) by

Ef(p):=p+ f(p)Nx(p).
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Observe that if f is sufficiently small, then E; is an immersion. Define M : C5°(X) — C°°(X) such that,
for all such f, and for all p € £, M¢(p) is the value of the MCFS functional (5-7) with speed € for the
immersion E ¢ at the point p. The modified MCFS Jacobi operator of ¥ with speed € is now defined by

. 1 d
Js S —— ) 5-9
Us,e H(p) FYRYT 1 (p) L (5-9)

In later sections, when no ambiguity arises, the subscript € will be suppressed, and this operator will be

denoted simply by Js.

Over the annulus A(R /4, 1/¢€), since N, here coincides with e, the operator fg’e is simply (Nx, e;)~!

times the linearisation of the MCFS functional for graphs. Consequently, if F': A(R/4, 1/€) — R is the pro-
file of a component of ¥ N(A(R/4, 1/€) x R) then, upon differentiating (A-7) we obtain, over this annulus,

Js.cf = 8" fij — u*8" Fyj Fy fu + 21u* F; Fj FeFyj fi — 2u*Fi F f — € F fi. (5-10)
In particular, for all v, w € R, and for all p € S,
n
Yv)(p) ==Y 1P Uz.cxp)(P),
= (5-11)
(Zw)(p) ==Y _Li(p)w; (Jz.cx))(p).

i=1

Now let C be a minimal end over the annulus A (Ry, 0o) satisfying (5-1) and let JAC,€ be its modified
MCES Jacobi operator with speed €.

Lemma 5.4.1. Over A(R/4,2R%),

2 2
o ce . e€c 2¢ .
Jeef = Af = —x'x) fij = 32" fi+ —gx' fi+Ece f. (5-12)

where Ec ¢ f = aijﬁj +b' f; and a and b satisfy

a =00~ ), b=0(r *+9(er+ %)) (5-13)
Proof. By (5-1),
F; = %xi + O~ *+y,

r

Thus, by (A-6),
2
W=1-5 400 k),
r

2
.. C .
g7 =68 — —x'x/ + 00~ * ),
r

Therefore,
2

.. cc . . ..
g fij=Af— r_4xlxlfij +a fij,
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where a = O(r—*+%). Likewise,
1> g" Fij Fy fi = bl fi,
2u*F; Fj FyFj fi = bb f;,

2 2¢? i i
—2uFjFi f; = PR Jfi+Db5fi,

where b}, by, b5 = O(r~**). Finally,
€c . .
en’F fi = —x' fi + b,
where bi = O(er~**3). The result follows. U

Next let G be a rotationally symmetric Grim end of speed € over the annulus A(R /4, oo) and let JAG,6
be its modified MCFS Jacobi operator with speed €. Define ¥ : G — R by

¥ i= (NG, No) = Xelez, No) + (1= xo), (5-14)
and denote by My, the operator of multiplication by /.
Lemma 5.4.2. Over A(R/4, c0),
Jo.e:=M;"Jg. My, (5-15)
where Jg ¢ denotes the MCFS Jacobi operator with speed € of G, as defined in Section A2.

Remark. In particular, in the case of rotationally symmetric Grim ends, the modified MCFS Jacobi
operator as defined above coincides, up to rescaling, with the modified MCFS Jacobi operator as defined
in Section 4.1.

Proof. Indeed, more generally, with M := M defined as at the beginning of this section, for all f € C{°(X),
Jsef =M, s My f+ M, (X, VM),

where X here denotes the tangential component of the vector field Ns.. The result now follows since M
vanishes identically over G. ]

In particular, rescaling (4-6) and (4-7) immediately yields:
Lemma 5.4.3. Over A(R/4, c0),
A e ¢\ ., e 2%\
JG,efZAf_<§+r_2) xlxjfij_<?_r_4>xlfi + &6 f. (5-16)
where Eg ¢ [ 1= aijf,-j + b f;, and a and b satisfy
a=0([1-+106(%) ie(er+ 7))
p=0([1-+10e( ) (er + 1))

(5-17)
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Finally, let S be a joined end, as constructed in Section 5.1, and let JAS,G denote its modified MCFS
Jacobi operator with speed €.

Lemma 5.4.4. Over A(R,2R),
(Jsc—Jco)f=d fij +bifi,
(Jse—Jo.o)f =dy fij +bbfi,

where a1, ay, by and by satisfy
ai, ap = O(r~ ),

b1, by = O@r~ O,
Proof. By (5-1), (5-4) and (2-14), over A(R,2R),
H; — F; = 0( =0,
Fi, H; = 0(~""9).

(5-18)

Thus, by (A-6),

= pp =004,

gz _ g;{' — O(,,—(4+k))_
The result follows for (fg,e — JAC,E) by (5-10). The result for (JAS,6 — JAG,G) follows in a similar manner,
and this completes the proof. O

We conclude this section by studying commutators of modified Jacobi operators with certain multipli-
cation operators. Indeed, let [JAC’G, x1] denote the commutator of jC,e with the operator of multiplication
by the cut-off function y; of the lower transition region A(R/4, R/2). Likewise, let [JAG,G, Xu] denote
the commutator of JAG,6 with the operator of multiplication by the cut-off function y, of the upper
transition region A(R*, 2R*). Observe that these operators are supported over the annuli A(R/4, R/2)
and A(R*, 2R*) respectively.

Lemma 5.4.5. e xf =al fi+bif. e xulf =abfi +bof,
where ay, ay, by and b; satisfy,

ar,ap =0 D), by by =0 1), (5-19)
Proof. Indeed, since x;, x. = O(r %), the result follows by (5-12), (5-13), (5-16) and (5-17). O

5.5. Controlling macroscopic perturbations. We conclude this section by studying the first-order varia-
tion of the MCFS functional resulting from the first macroscopic perturbation. Recall that, for all u € R",
Xu vanishes outside B(2R). Inside this ball, we have:

Lemma 5.5.1. For u € R? such that ||\u|| = 1, over ARy, R),
Xu = O(er~@t0), (5-20)

and over A(R, 2R),
Xu = 0@~ 40y, (5-21)
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Proof. For notational convenience, we suppose that C and S each only have one end and, in particular,
that u = 1. Let C, and S, be smooth families of immersed surfaces as in Section 5.1. For all 7, let
Fi : A2QRp, 00) — R and H; : A(2Rp, 00) — R denote the profiles of C.,+; N(A(2Rp, 00) x R) and
Sco+t N(A(2ZRy, 00) x R) respectively. Define

d d
= EFH::O, W = — H;|;—o,

A I

and observe that, over A(2Ry, 2R),
Xu=JgW.
Now, by (5-1),
Z =log(r) + O(r~— @),
Next, by (2-41) and (5-3), and bearing in mind that x, = O(r~%), over A(R, 2R), we have
W =log(r) +O(r— ) = Z + 0= 0, (5-22)
and since Z = W over A(2Ry, R), (5-22) in fact holds over the whole of A(2Ry, 2R). We now write
Xu=JceZ+ Use—Jc)Z+Jse(W—2Z).
The second and third terms are supported over A(R, 2R), and by (5-12) and (5-18),
(Jse = Jc.)Z = 0=,
Js. (W —Z) = O(r— 40y,
Finally, since the graph of F; is minimal for all 7, by (A-6) and (A-7),
JeeZ = —€ep?Fy; Z; = O(er~ @0,

and the result follows by (2-14). O

6. Constructing the Green’s operator

6.1. The cylindrical, Grim and hybrid norms. We now prepare the ground for the perturbation argument
that will be used to construct actual MCF solitons out of the approximate MCF solitons constructed in
Section 5.1. In this section, we construct the Green’s operator of the modified MCFS Jacobi operator
of the approximate MCEF soliton together with estimates of its operator norm. It is the determination
of suitable estimates, requiring a careful and lengthy analysis, which constitutes the hardest part of this
paper. We will see presently that sufficiently strong estimates are made possible by the correct choice of
functional norms over the different components of the approximate MCF soliton, as well as the use of the
hybrid norm, already mentioned in the Introduction and Section 4. Throughout this section, we will make
use of (2-14) without comment.

We first study the analytic properties of Green’s operators over CHM surfaces. Thus, for g a positive
integer, let C := C, be the CHM surface of genus g. Observe that functions over C N(A(Ryp, o0) x R) may
be considered as functions over three copies of A(Ry, o0). In defining norms over spaces of functions, we
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will pass between these two perspectives without comment. Consider now the triplet (X, Y, Je), where
X and Y are the operators constructed in Section 5.1 and Je is the modified MCFS Jacobi operator of C
as constructed in Section 5.4. We now construct a right inverse for this operator when A is large. We
first gather various basic results that will be of use to us. Let D denote the total differentiation operator
over R? and define

DSF = rD, (6—1)

where r here denotes the radial distance from the origin. Likewise, for « € [0, 1] and for f : R? - R,
define

S f(r) :=r[flac/2.20)]a- (6-2)

For all nonnegative integer m, for all o € [0, 1] and for all real 8, define the scale-free weighted Hdlder
norm of any m-times differentiable function f : A(Ry, 00) — R by

m
I ey cary,o0n = Z 172 D&k £ 1l co(a(Ro.00y) + 17088 D £ 1l co2R0 00D - (6-3)
i=0
For nonnegative, integer m, for all @ € [0, 1], for all real § and for any m-times differentiable function
f:C — R, define

If lcre ey = I1fle nBery < lleme + 11f e R0 x®) | e (a Ry, 00))- (6-4)

For all such m, « and 8, let Cy'sp. . (C) denote the space of m-times differentiable functions f over C

which satisfy || f ||C§§: (c) < 00 and which also satisfy f oo = f for every horizontal symmetry o of C.
Observe in particular that, since each of X and Y has compact support, we may also think of them as
taking values in CJ'% ¢p. . (C).

Recall that, with the above symmetries imposed, for all § € ]1, 2[, and for all « € ]0, 1[ the Jacobi
operator Jc of C defines an injective Fredholm map of Fredholm index (—3) from cr¢ 5 SE. g(C ) into
cYe 5.12.SF. g(C ); see [Hauswirth and Pacard 2007; Morabito 2009; Nayatani 1993; Pacard 2008]). 3

Lemma 6.1.1. Forall « € 10, 1] for all § € 11, 2, for all Ry > O sufficiently large, and for all A > 0
suﬂiczently large, the triplet (X, Y, Jc) defines a surjective Fredholm map from R® @& R> @ C§ §‘F g(C )
into C2 4 5.SF.g (C) of Fredholm index 3. Furthermore, the right inverse (U, V, ®) can be chosen in such a
manner that its norm is uniformly bounded, independent of A.

Remark. In the sequel, Ry will be chosen large enough for Lemma 6.1.1 to hold for all large values of A.
It will then be fixed once and for all, and A will be made to tend to +o0.

Proof. For all ¢ € U, where U is a suitable open subset of R3, let C, be as in Section 5.1 and suppose in
addition that C, is also invariant under all the horizontal symmetries of C. Let E: U x C — R} be a
smooth function such that

(1) forall c € U, E. parametrises C,,

3We aim to include an overview of the perturbation theory of the Costa—Hoffman—Meeks surfaces in forthcoming work, as
we are not aware of any readily accessible account in the literature.
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(2) for all c € U and for all p € C N(A(Ry, +00) x R), the point E.(p) lies vertically above or below
the point p, and

(3) forallc e U, E. := E(c, -) is equivariant under all the horizontal symmetries of C.

Let V be a neighbourhood of 0 in R3 and define E : U x V x C — R3 such that, for all (¢,a) e U x V,

and, forall p e C,
3

Eca(p)=Ec(p)+)_eli(p)ai(1 = xj(p)e:.
i=1
where (€;)1<i<3, (Ii)1<i<3 and X(/) are defined as in Section 5.1. Define H : U x V x C — R> such that,
for all (c,a) e U x V, and for all p € C, H. ,(p) is the mean curvature of the immersion Ec,a at the
point p. Define the operators Xg, Yo : R® — Cy°(C) by

d
(Xou)(p) := EHCO—HM,O(pNt:O,

Yo)(p) =4

By the perturbation theory of CHM surfaces (see [Hauswirth and Pacard 2007]), (X 0, Yo, J¢) defines a
surjective Fredholm map of Fredholm index 3 from RPoR @ C§ S‘XF (C) into ce 542.SE. g(C ).

Let N and N be respectively the unit normal vector field and the modlﬁed normal vector field over C.
Observe that, as A and R tend to +00, the difference (N — N) tends to 0 in the C* sense for all k so that
the difference (fc — J¢) tends to 0 in the operator norm. Next, it is straightforward to show that, considered
as an operator from R3 into Cng’SF’g(C), |Y — Yol < e. Finally, by (2-14), (5-20) and (5-21), considered
as another operator between these two spaces, || X — Xp|| < R%~2. Since these both tend to 0 as A tends

Hco,tv(p)ltzo-

to 400, the result follows by the stability of surjectivity of Fredholm maps under small perturbations. [

We now review the analytic properties of rotationally symmetric Grim ends. Let G be a rotationally
symmetric Grim end of speed € over the annulus A(R/4, +00). For all nonnegative, integer m, for all
a € [0, 1], for all y € R and for all € > 0, define the following weighted Holder and Sobolev norms for
functions over RZ,

I fllcme) = I1F (- /Olcreg) ©-5)
I f ez ) = I1LFC- /)l mp ).,
and define the hybrid norm by

1
I f llma,y,e == N flleme ey + —||f||H;j€(G)- (6-6)

For all such m, «, y, let E’” & (G) denote the space of m-times differentiable functions with finite hybrid
norm. Let Jg denote the modlﬁed MCES Jacobi operator of G, as defined in Sections 4.1 and 5.4. Upon
rescaling, Theorem 4.1.1 immediately yields

Lemma 6.1.2. Forall o € 10, 1{, for all sufficiently small y, and for sufficiently large A, the operator
Ve, (G) into [,ye ¢
operator norm of its inverse is uniformly bounded independent of A.

e2Jg defines a linear isomorphism from L2 (G). Furthermore, we may suppose that the
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We conclude this section by describing an alternative form of (6-5), more amenable to calculations.
We define operators Dg and 8¢, by

Dg :=-D, (6-7)

8 £ () == L lpe o e (6-3)

Up to uniform equivalence, for any function f supported in A(R/4,2R%),

m
1fllerey = Y IDG fllco + 18 DE £l co. (6-9)
i=0
Likewise, let dVol denote the canonical volume form of R? and, in analogy to (6-1), (6-2), (6-7) and (6-8),
define
dVolsg := lz dVol, dVolg := €2 dVol. (6-10)
r

In particular, a formula similar to (6-9) also holds for || || H(G) when f is supported over the annulus
A(R/4, 2R%). It is these forms of the norms introduced in (6-5) that we will use in the sequel.

Comparing (6-1) and (6-7) reveals a key phenomenon that must be addressed in order to obtain good
estimates. Indeed, over the transition region A(R/4,2R), the respective differentiation operators of the
CHM surface and the Grim ends are approximately related to one another by

DG =~ LDy, (6-11)
so that, whenever a function is transferred from the CHM surface to one of the Grim ends, each order of
differentiation introduces a factor of roughly 1/(e R) into the norm. This factor, which is inevitably large,
would be ruinous for our estimates unless correctly addressed, and it is in order to do so that we adopt
the following two measures. Firstly, we use norms of the least possible order, and likewise take « to be
arbitrarily small (see Theorems 6.4.1, 6.5.2 and 6.5.3). In particular, any term involving an exponent
of @ may be considered heuristically to be close to 1 (see, for example, (6-15), (6-16), (6-19), and so
on). Secondly, and more significantly, it is precisely in order to tame this phenomenon that the hybrid
norm is introduced. To see how this works, recall that the Sobolev embedding theorem states that, for
all m, the Sobolev norm of order m is roughly comparable to the Hélder norm of order (m — 1). That is,
although the second-order Sobolev norm depends on the second derivative, from a scaling perspective, it
behaves more like a first derivative. It is precisely for this reason that the introduction of the factor of
1/(eR) in (6-6) yields a norm which scales, roughly, like a second derivative whilst furnishing, via the
Sobolev embedding theorem, stronger information about the first derivative than we would have obtained
by working with the Holder norm alone.

6.2. Ping-pong: overview. We now describe the iteration process used to construct the Green’s operator
of the approximate MCF soliton. As before, for g a positive integer, let C := C, denote the CHM surface
of genus g and let S := S, denote the surface obtained by replacing each of its ends with their respective
joined ends, as described in Section 5.1. Since there is a natural diffeomorphism from C to S which
maps points in the ends of C vertically upwards or downwards, functions over C may equally well be
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considered as functions over S and vice versa. As before, we will pass between these two perspectives
without comment.

Before proceeding, it is worth reviewing the role played by each component within the iteration process
that we will apply. We first recall from the previous section that a CHM surface C has been joined to the
union G := G U G, U G3 of three Grim ends to yield an approximate soliton S. The surgery is carried
out above the annulus A(R, 2R), which we call the central transition region. However, these surfaces
also all overlap over the larger annulus A(R/4, 2R*). Consequently, functions supported above B(2R%*)
are viewed as functions over C, functions supported over A(R/4, oo) are viewed as functions over G,
and functions supported over A(R/4, 2R*) are viewed alternately, at different stages of the process, as
functions over C and G.

Our aim is to construct a right inverse of the modified Jacobi operator Js of S, using the right inverses
of the respective modified Jacobi operators Je and Jg of C and G. Ignoring for the moment the finite-
dimensional components X, Y, Z and W, we proceed as follows. First let e : S — R be a function
supported above B(2R). Let x, denote the cut-off function of the annulus A(R*, 2R%), which we call the
upper transition region. Viewing e as a function over C, we view x, (jc_ Ne as an approximator for (f 5 De,
the cut-off function being here necessary to yield a function supported over B(2R*), which we may view
as a function over S. The error of this approximation is measured by the function f := Js Xu (fg De. Since
fs coincides with fc above B(R), this function is supported above A(R, c0), and we may thus view it as
a function over G. In this manner, we have concluded the “upward” stage of the process. Repeating the
process in the “downward” direction then yields a function e’ supported above B(2R), and the process
may then be iterated indefinitely.

Proceeding in this manner, we obtain two sequences (e,),en and ( f,)nen Of successive errors which
should ideally both converge to 0. In this and the next section, estimates for these functions will be
obtained in a pointwise manner via the definitions of the norms. In this process, we will encounter some
phenomena driving growth and others driving decay. Convergence is ensured upon choosing parameters
in such a manner that the latter dominate. The main contributor to growth is the large norm (6-23)
of fc_ ! resulting from the rescaling of the Grim ends. The main contributor to decay is the tendency
of bounded harmonic functions to decay over long cylinders, already outlined in Section 1.2, and here
encoded implicitly in the weighted Holder norm introduced in Section 6.1. Roughly speaking, if the radii
of the lower and upper transition region are respectively proportional to R/2 and R*, then the two will be
separated by an annulus conformally equivalent to a cylinder roughly of length (A — 1) Ln(R). We thus
choose A as large as possible in order to maximise decay. We have already seen in Section 4 that the
strict upper bound A < 5 is required in order to obtain uniform estimates for the norms of the Green’s
operators of the Grim ends (see the proofs of Lemmas 4.2.1 and 4.2.2), and it turns out that A € 14, 5[ is
sufficient for our purposes.

It remains only to explain the finite-dimensional components in (6-13) and (6-24). It is common in
singular perturbation constructions for the Green’s operators used to have singular subspaces over which
divergence occurs more rapidly than over the rest of the space. This can be understood as a consequence
of the existence of a “kernel at infinity”, itself often associated to symmetries of the construction, such
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as vertical translations and dilatations (or, equivalently, variations of the logarithmic parameter). It is thus
common to introduce “geometric”’ terms which, by eliminating the kernel at infinity, allow us to focus
on the essential asymptotic behaviours of the Green’s operators used, and this is the role played by these
finite-dimensional components. Finally, we observe that infinitesimal vertical translations can in fact be
introduced in two different ways. Indeed, they can be introduced either in the “upward” stage, as infin-
itesimal vertical translations of the ends of the CHM surface, or in the “downward” stage as infinitesimal
vertical translations of the Grim ends. The former addresses the kernel at infinity of the Green’s operator
of the CHM surface, whilst the latter addresses the kernel at infinity of the Grim ends. Thus, despite their
superficial equivalence, they play distinct roles in the construction, and are both required for it to work.

6.3. Ping-pong: batting up. For notational convenience, we will henceforth work as if C and S had only
one end. Consider now the following seminorms for functions over S:

1fllm.c =1 fBoarlicne, ., 1 lmc.s = 1flaroolaz. @),
| (6-12)
1 llm.G.1 = 1 flaw.co)lcpe 6y 1 WG 2= 1 6.1+ IS llm,G.s-

Let £ denote the closure with respect to || - ||o,c of the space of functions supported over S N(B(4R) x R)
which are invariant under every horizontal symmetry of the CHM surface C. Likewise, let F denote the
closure with respect to || - ||o,g of the space of functions supported over S N(A(R, co) x R) that are also
invariant under these symmetries.

We define the operator A : £ — F by

Ae = jsxud>e+XUe+YVe—e, (6-13)

where x, is the cut-off function of the upper transition region A(R* 2R*), and (U, V, ®) is defined as
in Lemma 6.1.1. This operator measures the extent to which (U, V, x, ®) fails to be a Green’s operator
of (X,7, fs) for functions in £. In particular, since fg coincides with fc over B(0, R), Ae is supported
in the interior of A(R, co) making it indeed an element of F. In addition, by the definition of fs, and
bearing in mind that X and Y are both supported in B(2R),

Ae =[Jg, xul®e + xu(Js — Jc) Pe. (6-14)

In this section, we prove:

Theorem 6.3.1. Forall § > 1,

Aello.c S llello,c- (6-15)

(eR)z"‘ R6+3

Theorem 6.3.1 follows immediately from (6-14) together with (6-16), (6-18), (6-19) and (6-21), below,

and the fact that
1 1
< <
Il Xu ”CS:?(G) ~ (€R4)a ~ (€R)® .

For convenience, we now define ¢ := ®e.
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Lemma 6.3.2. ||(j5—.]Ac)q)e|A(R72R4)||C0a(G) TGE lello.c. (6-16)
Proof. Indeed, by (6-1), for k € {0, 1, 2}, over A(R, 2R%),
|D*¢| < 161l c2e VS s : s lello.c-
~ k+8 Cy ~ rk

Likewise, by (6-2), for all r € [2R, R*],

1
2
18°(D"Placr/220)] S “ravs lello.c.

Thus, by (5-12), (5-13), (5-16), (5-17) and (5-18), over A(R,2R%),

2
|(fs—fc)¢|<( € L& +[1+1og<i>]e4r25+[1+1og<i)}L>||e||oc (6-17)
~ 246 R R r6+6 &

so that, by (A-20),

n ~ 1
|(Js = J)Plar2ry| S Wﬂeﬂo,c-

Likewise, using also (A-10) and (A-12), for r € [2R, R*],

o 1 € 62 49-5 r 1
18%((Js — J)plac 22| S o gt | Ilogl o J1er +  Ttlog & ) |5 fllello.c

so that, by (6-8), for r € [2R, R4],

1 € 62 by r 1
188 ((Js — JO)lawrz.2m)| S S S5 T |1 +log| & ] Tlog| = ) |5 )llello.c.

Thus, by (A-14) and (A-20),

lello,c-

188((Js — Jo)placr 2r4)| S (€R)* RoD
The result follows upon combining the above relations. (I
Lemma 6.3.3. Forall § > 1,
s a (€R)
I(Js = Je)®elar2r i, ) S WHEHO,C- (6-18)

Proof. By (6-10) and (6-17), over A(R, 2R%),

|(Js — Jo)g|? dVolg

4 2 2 2
€ r _ r €
< (rms +e0rP 7 4 |:1+10g<E) ]elor6 e |:1+10g(§> }—rlom)neuac dVols,

so that, by (A-21),

Jo — ], (eR)?
~/A(R 2R%) |Us = Je)gI” dVolg 5 R12+23 ”6”0 ol

and the result follows. |
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Lemma 6.3.4. Forall § > 1,

1
mm”eﬂo,c-

Proof. By (6-1) and (6-3) for k € {0, 1, 2}, over A(R*, 2R%),

|| [JGa Xu]q)e”CS:g(G) 5

k| < <
Dol S R4k+4a”¢||cz“F(C) R4k+45||6’||0,c-

It follows by (5-19) that, for k£ € {0, 1}, over this annulus,

N 1
D e, 3191 S Zgrarsas lello.c-

Thus, by (6-7), for k € {0, 1}, over this annulus,

IDE LG xulol S <RV Wﬂello,c,
and the result follows by (A-10).
- (eR)
Lemma 6.3.5. 16 xul®ellm ) S Wﬂello,c-

Proof. By (6-20) and (6-10), over A(R*, 2R*),

2
2 €
g xl$ I dVol <~ llellg ¢ dVols,

so that, by (A-21),

2
. €
/A(R“ o /G, xulg|” dVolg < WHEHO,C,

and the result follows.

(6-19)

(6-20)

(6-21)

O

These estimates prove Theorem 6.3.1. In addition, the following estimate will also be of use later.

Lemma 6.3.6. Forall § > 1,

I xu®ell2,c S lello,c-

(eR)“ €2 R2+6

Proof. Indeed, since x, = O (r~*), we have X ll 2. < 1. Thus
0,SF

©)

< < =
||Xu¢||c§-s‘1}:(c) ~ ||¢||C§§‘F(C) ~ ”e”Cng.SF(C) ||€||0,C-

Thus, by (6-1), (6-3) and (6-7), for k € {0, 1, 2}, over A(R, 2RY,

DG xudl S llello.c-

1
(er)k rd
Likewise, by (6-2), (6-3) and (6-8), for all € [2R, R*],

182(DZ xudl a¢r/2.20)| S lello,c,

( r)2+0‘ r_S

(6-22)
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so that, by (A-14),

1
6% (D& xudl ar 24| S Wﬁlleﬂo,c-
Combining the above relations yields
1
Il S (s caprrlieloe.

Likewise, by (6-10), for all &k, over A(R, 2RY),

| DE xu|* dVolg <

S e llellg, ¢ (er)* dVolg,

and since § > 1, it follows by (A-21) that

I xu®ll2.6.5 S FHEHO,C S 6R—1+5”6”0’C'
The result follows. 0
6.4. Ping-pong: batting down. By Lemma 6.1.2, there exists a linear map W : Cg ¢ (G)N H;,) .o(G) —~
Cy&8(G) N H2 . ,(G) such that, for all f € F,
f=JgV¥f,
and |
WS ll2.ey.e S 6_2||f||0,a,y,e- (6-23)
Define the operators B : F — £ and W : F — R3 by
Bf == Js(1 = x)(¥f = X (W) = ZWf — f, 62

Wi =)o),
where y; is the cut-off function of the lower transition region A(R/4, R/2), and x/ is the cut-off function
of the transition region A(1/2¢€, 1/€), as in Section 5.1. As before, B measures the extent to which
(=W, (1 — x))(¥ — x/W)) fails to be a Green’s operator of (Z, fs) for functions in F. In particular, by
(5-11) together with the fact that fs coincides with fG over A(2R, o0), Bf is supported in B(4R), and is
thus indeed an element of £. In addition, since x, = 1 over B(4R), over this ball, we have

Bf = —LJc. ] J(Wf — (WO + (1 = x)(Js — Jo)Wf. (6-25)
In this section, we prove:

Theorem 6.4.1. For sufficiently small o,

2

R
IBfllo.c < mllfllo G- (6-26)

Theorem 6.4.1 follows immediately from (6-25) together with (6-28) and (6-30), below, and the fact that

(1 — Xl)”CO“(C)Sl

For convenience, we now define ¢ := W f.
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2

Lemma 6.4.2. WA S (R—R)||f||o G- (6-27)

Proof. Indeed, by the Sobolev embedding theorem,

IWAIS NSz o) S ERNYS 2.0y,

Thus, by (6-23),
2

R
||Wf||<_”f”0ayEN I fllo.G-

(€R)

as desired. O
Lemma 6.4.3. 1Us = Ja)¥Sflarpemllicoe o) S ©R R2 511 f oG- (6-28)
Proof. Indeed, by (6-7), for k € {0, 1, 2}, over A(R/4, 2R)

DY S Ve S 1/ o,
and so, by (5-12), (5-13), (5-16), (5-17) and (5-18), over A(R/4, 2R),

(s = eyl S — (e + R+~ VI floe S —— 1 floc.
~ (eR) R4 ~ (eR) R4

Likewise, by (6-8),
1
8% (D*Y | acrja20)] S €Il fllo.g S ﬁllfllo,c.

Thus, by (6-2), using also (A-10) and (A-12),

182:((Js — TV AR /a28)| S ——= ) R4 Il fllo.c,
and the result follows. O
R2+8
Lemma 6.4.4. Wf—V)O)arss2rllae S R Il fllo.G- (6-29)

Proof. Bearing in mind (6-8) and the Sobolev embedding theorem, over A(R/4,2R),

[Vl S (R ™1Vl co1-e () S €R)' W12 ) S RN |12,

Consequently, by (6-23),
2

(eR)”

Likewise, by (4-24) and the subsequent remark, over this annulus,

(Yol S

I fllo.G-

1D6¥| < (€R) 1Y llac S —||f||0G

( R)Za
Finally, over this annulus,

1
DGV S 1V llc2ee) S 1l
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and
18& (D&Y | acrja2m)] S Pl c2e ) < ||f||o G-
The result now follows by (6-1), (6-2), (6-3), (6-7), (6-8) and (2—14). [l
Lemma 6.4.5. For sufficiently small o,
e Xl = @HOete, ) S 2 ;)M R fllo.6- (6-30)
Proof. This follows from (5-19) and (6-29). O

6.5. Ping-pong: iteration. By (6-15) and (6-26), for § € ]1, 2[ and for sufficiently small «, the operator
norms of the products AB and B A satisfy
1 <1 1
(€ R)Zoz € R5+5 A
We therefore define Qg : £ — £ and Qf : F — F by

IABI 1BAI'S e

Qp:=» (BA)", Qr:=) (AB)". (6-31)
m=0 m=0

In particular, the operator norms of both Qg and QF are uniformly bounded for large values of A. We
now define

Uce:=UQke, Ugf:=—-UBQrf,

Vee :=V Qge, Vof :==—VBOFf,

Wece:=WAQge, Wgf:=—WOQFrf,
Pce:= xu®Qre— (1 — x)(VAQpe — x(WAQre)),

(6-32)
Pof:=—xu®BOrf+ (1= x)(WOrf—x.(WQFf)).
Lemma 6.5.1. Forall e € £ and for all f € F,
JsPce+XUce+YVee+ZWee =e, 633

IsPof+XUcf +YVof +ZWof = f.
Proof. Indeed, bearing in mind (6-13) and (6-24),
JsPce+XUce+YVce+ZWee
= Jsxu®Qre+XUQpe+YVQpe —Js(1— x)(WAQre — x.(WAQge)) + ZWAQre
=AQpe+ Qpe— BAQpe— AQre—=ce.
The second relation follows in a similar manner, and this completes the proof. ]

Now let x be the cut-off function of the transition region A(2R, 4R). Since x = O(r—*), for all f,

Ixfllo.c S W flloes IKE=x)flloe S Ifllo,G- (6-34)

(eR)*
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Define . A
Uf=Ucxf+UcU=x)f. Wf=Wexf+Woll=xf. (6-35)
Vf=Vexf+Ve(l=x)f. Pfi=Pcxf+Ps(1-0f.
In particular, by (6-33),
ISP+ XUF+YVF+ZWf=f, (6-36)

so that (l7 , f/\, W ﬁ) defines a Green’s operator for (X, Y, Z, J s). We conclude this section by determining
the norms of its different components. First, since the operator norms of U and V are uniformly bounded,

by (6-26), (6-32) and (6-34)
2

ﬁ < 9
U IS W llo,e + —%== R Il fllo,c
5 (6-37)
V<
IVAIS I lloe+ —a (€R)ITa I fllo,G-
Theorem 6.5.2. For sufficiently small «, for all § € 11, 2[, and for all f,
2
Wrl < 6-38
| fIINIIfllo,c+( R)l-‘,—ot”f”OG (6-38)
Proof. For e € £, by (6-15) and (6-27),
R2
[Weell = IWAQEgel < mllAQEello G S cRym GR—S—HS”e”O’C < llello,c-
For f € F, by (6-27),
R2
(|W =|W S —
W Fll=IIWQFfII S R I fllo,G-
The result now follows by (6-34). O
Theorem 6.5.3. For sufficiently small «, for all § € 11, 2[, and for all f,
2
1P fllz.c SN fllo.c+ = flloc- (6-39)

( R)H'O‘
Proof. Consider e € £. Observe that, over B(4R),

Pce=®Qpe— (1= x)(VAQpe —VAQEe(0)).
Now,
[®Qkell2.c < llello.cs
and by (6-15) and (6-29),

11— x)(VAQre — (WAQEe)(0)2c S lello,c < llello,c,

(6R)4°‘ R4
so that

| Pcella,c S llello,c-
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Now consider f € F. Over B(4R),

Pof=—PBOrf (- x)(WQOrf—-VYOrf(0).

By (6-26),
R2
<
|®PBOF fll2.c S B I f1lo.G»
and, by (6-29),
RZ—I—B
(A= xDVOFrf—(VOF 02 < Wllfllo,c,

so that,
2

R
<
I1Pcfll2c S R Ifllo.G-

The result now follows by (6-34) and (6-35).
Theorem 6.5.4. For sufficiently small o, for all 5 € 11, 2[, and for all f,

L (YA
(GR)“ €2 R2+3 0.C ( R)1+a 0.6
Proof. Consider e € £. Observe that, over SN(A(R, 00) X R),

1P fll2c S

Pce=x,®Qpe—VAQre+ (WAQge)x,.

By (6-22),
Ix«®Qkellc S % R ERED llello,c-
By (6-15) and (6-23),
IWAQEel26 < WGZR—G_H;”eHO,C-
By (6-15) and (6-27)
R? 1 1
IWAQEel S mllAQEello 6 R g lello.c
However,
1
<
Xl < SER)
and so
1 1
||(WAQE6’)X4||2,G f, WEZR—HSH@”O,O
Combining these relations yields
IPcelzc S —% R R llello,c-

Consider now f € &£. Over SN(A(R, 00) X R),

Pof=—xu®BOrf+YQrf—(WQrf)x..

(6-40)
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By (6-22) and (6-26),
1

®B < .
I®BQrf 16 S (o ey oo
By (6-23),
1
VOFfllae S z||f||o,c-
By (6-27),
R2
W < D )
IWOFfII'S R I fllo.c
so that
, 1
I(WOFfxellze < e_2||f||0’G'
Combining these relations yields
P < .
1P6 1126 S e crocery /106
The result now follows by (6-34). O

7. Existence and embeddedness

7.1. The Schauder fixed-point theorem. It remains only to perturb the approximate MCF solitons
constructed in Section 5 into actual MCF solitons. This perturbation will be carried out using the Schauder
fixed-point theorem. It will first be convenient to modify slightly the norms introduced in (6-12). We thus
define

”f”:n,G,H = ||f|A(2R,m)||cﬁ%“(G),

||f||:n,(;,s = ||f|A(2R,oo)||Hg1€(G), (7-1)

1w =1 .+ oy 1 5
By (6-35), this does not affect (6-37), (6-38), (6-39) and (6-40). In addition, we will also ignore the factor
(]VS, Ng)~! used in the definitions (5-8) and (5-9) of (X, Y, Z, fg). Indeed, we readily show that the
operator of multiplication by this function is uniformly bounded, independent of A, with respect to the
norms | - |lo.c and || - |lo.g, for which reason it also does not affect the above estimates.
For all nonnegative, integer m, for all o € [0, 1] and for all real y, let E,, 4,,, be the space of m-times dif-

ferentiable functions f : S — R which are invariant under all horizontal symmetries of C and which satisfy

1f s Il < 00
Observe that E,, 4, furnished with these norms is a Fréchet space. Now let
M:UBDVOWOEr s, —> Eoa,y
be the MCFS functional about S, as defined in Sections 5.1 and 5.4. It only remains to study how M

varies up to second order about S. As before, throughout this section, we apply (2-14) without comment.

Lemma 7.1.1. IM(0,0,0,0)[lo.c SR IM(0,0,0,0)[f s =0. (7-2)
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Proof. Define ¢ := M (0, 0, 0, 0). Since C is minimal, over B(R),

Y =€un.
Thus, by (5-1) and (A-6),

246 §—2
||K”|B(R)”Cg_}‘_)‘5 SF(C) S_, €R + SI R .

By (5-4), over A(R, 2R),

i
Hy = S5 + O(R™60),
r . .
c xtx/
L —(@4+h)
mf_ﬂ(% 2r2)+0(1e ).

Thus, by (A-6), over this annulus,

p=14+0R, g7 =6;+0R >,
so that, by (A-7),
¥ = O(R™“H0),
Consequently,

5-2
Wlaremlics o SR

and the first estimate follows upon combining these relations. Finally, by construction, { vanishes over
A(2R, 00), so that ||1//||6’ ¢ = 0, and this completes the proof. ([

It is straightforward to show that for ||u||, ||v]|, [[w| and || f||2.c sufficiently small, independent of A,
1M, v, w, f) = M(0,0,0,0) — Js f — Xu—Yvllo.c SI£13.¢c+ lul+ [lv]*. (7-3)
The corresponding estimate over rotationally symmetric Grim ends is more subtle.
Lemma 7.1.2. There exists n > 0 such that, for sufficiently large A, if €(€ R)'~>*|| f ||/2, G <1 then
1M, v, w, f) = M(0,0,0,0) = Js f = Zwlly g

<E2 2 €0 € g 1-20 12
S gl + 2 lvll” + wlwl™+ e € R) = fllz,6)" -4

Remark. Before continuing, it is worth reflecting on the terms that will appear in the following proof.
First, on the scale of the rotationally symmetric Grim end, the perturbation that we make is of order € so
that, since this perturbation is quadratic, it introduces a factor of €2, Second, returning to the scale of the
joined surface introduces a further factor of €, thus explaining the factor of € in the formulae below.

Proof. Since M is a second-order quasilinear functional, upon rescaling, we obtain, for all «, for all v,
and for all g with [egll} ;  sufficiently small,

1M (u, v,0,8) — M(u, v,0,0) — Jsuvgllo g S €Nl gullglhg
2

€
S gl gm0 + € €R) gl )
Next, for all sufficiently small # and v, and for all g,
I (s — fs)gllf),c Se(lull + lvDliglls. ¢

2 2
<l + S v+ EER)Iglly o)
~Y R R E)
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Now, bearing in mind the definition of the macroscopic perturbation in the direction of w,

IM(u, v, w, f)—M(©0,0,0,0) - Jsf — Zwl)
SIM@, v, w, f) =M, v.0,0) = Js f - Zwly
SUIM@,v,0, f+w(l = x)) = M(u,v,0,0) = Js(f +w(d — xe)llo g
S UM, v, 0. f +w(l = x)) = M, v,0,0) = Js o (f + w1 = X))l 6
B + 1 (Jsuw = I (f +wd = xeNlo.6
E;uun +—||v|| +—(||f+w(1 X 6.+ ERLf +wl = xDlly6).

Finally,
11 = x)laq/eo. /0l cn ST
(1= x)laa/eo./ellh e S R
and the result now follows by Lemma 4.3.1 and the subsequent remark. ]

This concludes our analysis of M up to second order about S. We are now ready to prove existence.

Theorem 7.1.3. For y sufficiently small, for all § € 11, 2[, for a € 10, 1[ sufficiently small, and for A
sufficiently large, there exist u, v, w and f such that

Mu,v,w, f)=

Furthermore,

e, ol lwll, | fllze SR N fllee < (7-5)

(€R)¥e2 R4
Proof. Fix y « 1,8 € ]1,2[ and « € ]0, 1[ small. Set vy := M(0, 0, 0, 0) and define
(o, vo, wo, fo) := o := —(U o, Viro, Wiko, P).

By (6-37), (6-38), (6-39), (6-40) and (7-2), there exists a constant B > 0, such that, for all large A,
luol, oo, ol Wfollzc < BRI follp.g < —os—
uofl, oll, IWoll, 0ll2,Cc = ’ 0 2,G = (ER)aEzRLL.
Define Q CR* @R @ R* @ Ey 4, to be the set of all quadruplets (u, v, w, f) such that

ull, lvll, lwll, <2BR%*?, <
Nlall, ol Twll, 1 fll2,c < Ifll2.6 = (€R)“e’R*

Observe that €2 is convex and, by the Arzela—Ascoli theorem, for all &’ <« and ¥’ < y, © is a compact
subset of R3@R3@ R3 @ E» o . For ¢ := (u, v, w, f) in Q, define

D (p) :=do — Uy, Vi, Wy, Pyp),
where
Vi=M@u, v, w, f) —M(0,0,0,0) — Js f — Xu—Yv—Zw.
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By (7-3), (7-4) and (2-14),

25—4 /
¥ llo.c SR, ”w”O’GS(ER)W’

so that, by (6-37), (6-38), (6-39) and (6-40), for sufficiently large A, ® maps 2 to itself. Furthermore,
for all «’ <« and y’ < y, ® is continuous with respect to the topology of E> o . It follows by the
Schauder fixed-point theorem (see [Gilbarg and Trudinger 1983]) that there exists a fixed point ¢ of ®
in . We readily verify that M (¢) = 0, and this completes the proof. U

Theorem 7.1.4. Let (u,v,w, f) be as in Theorem 7.1.3. For sufficiently large A, the surface E(u, v,w, f)
is embedded.

Proof. We denote the joined surface by S, we denote the image of E (u, v, w, f) by §’, and we rescale
both § and S’ by €. Observe that the intersection of S with A(2¢ R, 00) x R consists of three distinct
rotationally symmetric Grim ends, which we denote by G, Go and G _ respectively. Let u, g and u_
be the respective profiles of these ends, and let v4, vy and v_ be the respective derivatives of these
functions in the radial direction. Observe that

uy(eR) > ug(eR) > u_(eR),

V+(eR) > vg(eR) > v_(eR).
Since v4, vg and v_ are all solutions of the same first-order ODE, it follows that vy () > vo(r) > v_(r)
for all r. In particular, the ends G, Gy and G are separated vertically by a distance of no less than 7,
where n ~ e log(R). Let 24, 29 and 2_ denote the open sets of points lying at a vertical distance of no

more than n/2 from G, G and G_ respectively. Observe, in particular, that these three sets are disjoint.
Now let G/, G(, and G'_ be the three ends of S’. Over the annulus A(eR, 2¢ R), by (7-5),

leflararlico S €RP flararllae SeRT2,

so that, over this annulus, G’, lies strictly above G, and Gj, lies strictly above G’.. However, by
Lemma 4.3.1 and the subsequent remark and (7-5) again,

1
/
lefllc.u S CR RS
Bearing in mind the definition of the norm || - ||1,g,#, it follows that for sufficiently large A, G',, G

and G'_ are all graphs over A(eR, 00). Furthermore, for some large R’, the intersections of G',, G|, and
G’ with A(R’, 00) x R are contained in 2, €y and 2— respectively. In particular, outside B(R’) x R,
G', lies strictly above G|, and G|, lies strictly above G’_. Since vertical translates of mean curvature flow
solitons are also mean curvature flow solitons, it now follows by the strong maximum principle that, over
the whole of A(eR, 00), G’ lies strictly above G, and G, lies strictly above G _. 0

Appendix A: Terminology, conventions and standard results

Al. General definitions. Let R* and R? denote respectively 2- and 3-dimensional Euclidean space. We
consider R? as the (x—y) plane in R3. Let 7 : R> — R? denote the canonical projection. Let r denote
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a smooth positive function over R? which is equal to the distance to the origin outside some (suitably
large) compact set. We denote the composition of » with 7 also by r. Let e,, e, and e, denote the vectors
of the canonical basis of R3. Let e,, ¢y denote respectively the unit radial and unit angular vector fields
about the origin over R? and about the z-axis over R>. Let D denote the canonical differentiation operator
over R? and R Let A denote the canonical Laplacian over R? (not to be confused with A, defined
below). Let C(a) denote the circle of radius a about the origin in R2. Let B(a) denotes the closed disk
of radius a about the origin in R%. Let A(a, b) denote the closed annulus of inner radius a and outer
radius b about the origin in R?. Let x : [0, oo[ — R be a nonnegative, nonincreasing function such that
x = 1 over [0, 1] and x = 0 over [2, oo[. For all a, define x, : R> > R by x.(x) = x(|x||/a). We call
Xa the cut-off function of the transition region A(a, 2a). Composing with 7, we likewise consider yx, as
a function over R,

A2. Surface geometry. Let X be an embedded surface in R>. Let N5 denote the unit normal vector field
over X. Let 7 * denote the orthogonal projection onto the tangent space of X. Let V> denote the gradient
operator as well as the Levi-Civita covariant derivative of X. Let Hess* denote the intrinsic Hessian
operator of . Let A denote the intrinsic Laplacian of =. Let II* denote the second fundamental form
of . Let Ay, denote the shape operator of ¥. Let Hy denote the mean curvature of ¥ (taken to be the
sum of the principle curvatures, or the trace of the shape operator). Let My denote the MCES operator of
3 (with speed €). It is given by

My := Hy +€(Nx, ¢;). (A-1)

Let Jx denote the MCFS Jacobi operator (with speed €) of ¥. That is, Jy is the linearisation of the
MCES operator of X. It is given by

Jsf=A"f+Tr(A3) f +€(VO f.e:). (A-2)

Finally, we recall the following elementary relations. For any function f defined over a neighbourhood
of X,
V*f =Df —(Df. Nz)Nx,

A-3
Hess™(f) = Hess(f) — (Df, Ns)II%. (A-3)

Given any positive function ¢ defined over X, if fz‘ =M (; ! Jx. M denotes the conjugate of Jx with the
operator of multiplication by ¢, then

Jsf =A% f+2071(VEG, VEf) +e(VEfe)) + (07 s f. (A-4)

A3. Surface geometry of graphs. 1If X is the graph of a function u over a subset of R?, then we call u
the profile of X. In this case, 7 defines a coordinate chart of ¥ in R2. It will be more convenient to work,
sometimes over %, and sometimes over R?, and we will move freely between these two perspectives. Let
gij denote the intrinsic metric of X. Its inverse is denoted by g". Let Ffj denote the Christoffel symbols
of the Levi-Civita covariant derivative of g;;. Setting

u:=(e;, Nx), (A-5)
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we readily verify the following relations:

1

M:\/TTHZ’ AZ(f)=g" fi; — gV g"uiju, fi,
8ij = 8ij tuiuj, I = —puij,
gl =8 — pPul, (A%) = —pugPu,y, (A-6)
T = g"%uiju,p, H* = —pg"ujj,
Hess™ (f)ij = fij — §Puijup o 7' (e)i = 1u;.
Finally, when ¥ is a graph, the MCFES functional is given by
Ms = —pcgijuij +eun. (A-7)

Ad4. Function spaces. Let X be a metric space. For all « € [0, 1], we define the Holder seminorm of
order o over X by

[f(x)— f(»)l
e =St =g e oo
Observe that [ f']o measures the fotal oscillation of f. In particular,
[flo =2 fllco- (A-9)
For all o € [0, 1],
[fle < LF15 11T <2 F I LAY (A-10)
If X is a complete manifold, and if f is differentiable over X, then, for all « € [0, 1[ and for all 8 €]0, 1],
IDflleo < 2015/ F=eNp i~/ E=en, (A-11)
For all o,
[f8le = 1 fllcolgle + [f1allgllco- (A-12)
Finally, if X = X U---U X,,, then, for all «,
[l <m" =% Sup; <l f1x, ) (A-13)

If, in particular, X = [0, m 4 1] x S' is a cylinder and X; = [i,i 4+ 1] x S! for all i, then (A-13) refines to
m

[l <D [flx ). (A-14)
i=1

For a continuous function f over X, for all o, we define

8 f(x) :=[f1B,0)]a- (A-15)

Now suppose that X is a smooth Riemannian manifold. For all k, o, we define the C**-Holder norm
over C*°(M) by

k
| Fllcka := Y I1D" fllco + 18 D* flico. (A-16)

i=0
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We define the space C k@ (X)) to be the closure of C*°(X) with respect to this norm. For all p, we define
the L?-norm over C3°(M) by

[Fall 2=/ | f17 dVol. (A-17)
X

We define the space L?(X) to be the closure of C;°(X) with respect to this norm. For all k, we define
the H*-Sobolev norm over Cy° (M) by

k
1f e =D ID fll2 (A-18)
i=0
The reader may verify that all surfaces studied in this paper are sufficiently regular at infinity for the
Sobolev embedding theorem to hold. That is for all /, and for all k +oa <[ —1,

I llcka S NS N a- (A-19)

The following formulae are readily verified:

log(T)T* ifa >0,
Sup, 1.7y log(HO)t* < {1 o <0 (A-20)
and 1 m o f 0
TYnTe i
/ log(r)"r® dVolgg < { og(T) ta=", (A-21)
A(1,T) 1 ifa <O.

AS. Elliptic estimates. Let E and F be Banach spaces and let A : E — F be a bounded linear map. We
say that A satisfies an elliptic estimate whenever there exists a normed vector space G, a compact map
K : E — G, and a constant C such that, for all e in E,

lell < CIKell + [l Ael). (A-22)

The following straightforward result plays an important role in Fredholm theory.

Theorem AS5.1. If A satisfies an elliptic estimate, then the kernel of A is finite-dimensional and its image
is a closed subset of F.

Appendix B: Catenoidal minimal ends

In this appendix, we use the Weierstrass representation to determine the asymptotics of horizontal,
catenoidal minimal ends. This is used in Sections 5 and 6 to model the asymptotics of CHM surfaces.
Let C be a horizontal, catenoidal minimal end. Its intrinsic metric is biholomorphic to the punctured
disk which, for the purposes of this appendix, it is useful to view as the complement of the closed unit
disk in C, that is,
A" :={¢eC|g]> 1} (B-1)

The Weierstrass representation (see [Weber 2005]) is a parametrisation of C by a function ® : A* — R3

of the form .
® () ::Re(/ <%(G—é>%<G+é) 1)hd§> (B-2)
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for some holomorphic functions G, h : A* — C. These functions are interpreted geometrically as follows.
Setting @ := (P, P, P3), we readily show that

h =20, ®;. (B-3)

That is, hd¢ is twice the holomorphic part of the derivative of the height function of C. The geometric
significance of G is more subtle, but with some work we can show that it is the image under the
stereographic projection of the unit normal vector field over C.

Define p :=|¢]|. Since C is a horizontal catenoidal end, ®3 is asymptotic to a + clog(p) for some
constants a and ¢, and it follows that

—1
h= " ht (B-4)
k=—o00

Meanwhile, since the normal of C is asymptotically vertical, G may be chosen to vanish at infinity, so
that

-1
G = Z Gk (B-5)
k=—o00

In addition, since C is a single-valued graph over some neighbourhood of infinity in R?, the functions &
and G together satisfy a vanishing holonomy condition around the puncture at infinity. In terms of their
Laurent coefficients, this holonomy condition is

h_1G_2—h_2G_;=0. (B-6)

This condition ensures, in particular, that the first two components of @ contain no logarithmic terms.
Thus, defining ¢ =: £ +iv and rotating and rescaling if necessary, we obtain, near infinity

§ v § v E v
“’@"’)=(““(ﬁ?)"’*ﬂ(ﬁ?)’““’“g(“”(?ﬁ))’ D

where o, B and y are analytic functions of their arguments defined in a neighbourhood of the origin
which, furthermore, vanish at this point.
We now define

(x, ) = (P1(£,v), D2(€,v)) and r?:=x*+y% (B-8)

That is, (x, y) is the composition of the parametrisation @ with the projection onto the horizontal plane.
Trivially, near infinity, C is the graph of some function F defined over the (x, y)-plane. We now use
(B-7) to determine the asymptotic structure of this function. First, upon observing that

L&,y (B-9)
pr  pt
we find that
X 'y E v
(52)=+(=%) 0
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for some analytic function W, defined in a neighbourhood of the origin, such that ¥ (0, 0) = 0 and
DW(0, 0) =Id. Upon applying the implicit function theorem for analytic functions, we deduce that

F(x,y)=a+blog(r)+5<ﬁz,12) (B-11)

rer

for some analytic function §, vanishing at the origin. In particular, with the notation of Section 1.3,
F(x,y) =a+clog(r) + 0@~ 1h), (B-12)

thus confirming the first formula of Section 5.1.
It remains only to verify (5-1). However, by (B-11),

F(x,y) =a+clog(r) + ——= ¢( y) +0(r~ ) (B-13)
for some linear form ¢. Let e, denote the unit vector in the direction of the positive z-axis. Let u be any
nonzero, horizontal vector. If C is symmetric under reflection in the plane spanned by e; and u, then
¢ annihilates the line orthogonal to u. Consequently, if C is symmetric under reflection in two distinct
planes of this type, then ¢ vanishes, so that

F(x,y) =a+clog(r) + O~ %H0), (B-14)
thus confirming (5-1).
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HAUSDORFF MEASURE BOUNDS FOR NODAL SETS
OF STEKLOV EIGENFUNCTIONS

STEFANO DECIO

We study nodal sets of Steklov eigenfunctions in a bounded domain with C? boundary. Our first result is a
lower bound for the Hausdorff measure of the nodal set: we show that, for u; a Steklov eigenfunction
with eigenvalue A # 0, we have HA=({u;, = 0}) > cq, where cq is independent of . We also prove an
almost sharp upper bound, namely, H?~! ({u, = 0}) < Cqilog(x + e).

1. Introduction

Let © a bounded domain in R?, where d > 2. A Steklov eigenfunction u; € H () is a solution of

Au, =0 in 2,
{BUM}L:)\.M)L on 0%2. (1)
Here and throughout the paper we denote by 9, the outward normal derivative. A number A for which a
solution to (1) exists is called a Steklov eigenvalue, and it is well known that Steklov eigenvalues form a
discrete sequence accumulating to infinity. Moreover, Steklov eigenvalues coincide with the eigenvalues
of the Dirichlet-to-Neumann operator, which is the operator that maps a function on 9<2 to the normal
derivative of its harmonic extension in €2, and a Steklov eigenfunction restricted to d€2 is an eigenfunction
of the Dirichlet-to-Neumann operator. For a survey on the Steklov problem outlining many results and
open questions see [Girouard and Polterovich 2017].

Inspired by a famous conjecture of Yau on the Hausdorff measure of nodal sets of Laplace eigenfunctions,
an analogous question has been asked for nodal sets of Steklov eigenfunctions (it is stated explicitly in
[Girouard and Polterovich 2017], for example); the conjecture can be formulated both for interior and
boundary nodal sets. For the interior nodal set, the question is as follows:

« Is it true that there exist positive constants ¢ and C, depending only on €2, such that

ch <H 7 {u, =0 < CA2 )
Similarly, for the boundary nodal set (which is the nodal set of an eigenfunction of the Dirichlet-to-
Neumann operator) one can ask:

« Is it true that there exist positive constants ¢’ and C’, depending only on 2, such that
A <HIT2({u; =0)N Q) < C'A? 3)

MSC2020: 35J15, 58750.
Keywords: Steklov eigenfunctions, nodal set, frequency function.
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Here we do not deal with question (3) and just note that the upper bound was proved in [Zelditch 2015]
when 0€2 is real-analytic. About question (2), a polynomial upper bound was proved in [Georgiev and Roy-
Fortin 2019], following the corresponding polynomial upper bound in the Laplace—Beltrami eigenfunction
case proved in [Logunov 2018a]. On real-analytic surfaces (that is, real-analytic metric in the interior and
real-analytic boundary), the full conjecture (2) was established in [Polterovich et al. 2019]. Again in the
real-analytic category, the upper bound was recently obtained in any dimension in [Zhu 2020]. Concerning
lower bounds, as far as we know, the best result was contained in [Sogge et al. 2016], where the bound
H ({uy, =0}) > cAC~9/? s obtained for £ a domain with C* boundary (actually, a smooth Riemannian
manifold with smooth boundary). The first contribution of the present article is an improvement on the
lower bound; we show that the Hausdorff measure of the interior nodal set is bounded below by a constant
independent of A (so the result is really an improvement over [Sogge et al. 2016] if d > 3).

Theorem 1. Let Q be a bounded domain in R¢ with C?-smooth boundary, and let u;, be a solution of (1)
in Q, A # 0. Then there exists a constant cg, > 0 independent of A such that

H (fup = 0) = ca. )

In the previous work [Decio 2022] we established a density property of the zero set near the boundary,
under weaker hypothesis on the boundary regularity: we transcribe the result below.

Theorem A [Decio 2022]. Let Q2 be a Lipschitz domain in R, d > 2, and let u; be a solution of (1),
where we assume )\ # 0. There exists a constant C = C(2) such that

{un =0}NB # 2 &)
for any ball B in RY of radius C /A centered at a point in 3.

The proof of Theorem 1 involves a combination of Theorem A and the recent breakthrough by
Logunov [2018b] on Yau’s conjecture. We cannot apply the results of [Logunov 2018b] directly and have
to do some work to modify the necessary arguments. The fact that we are one power of A away from
the optimal result is a consequence of the deficiency of the density result, which we can only prove very
close to the boundary, and not of the arguments in [Logunov 2018b].

Remark. It will be apparent from the proof that Theorem 1 extends without much difficulty to the case
of manifolds equipped with a C?-smooth Riemannian metric and C> boundary.

The conjectured upper bound in (2) would be sharp, as the example of a ball shows; the second main
contribution of this article is an almost sharp upper bound for Euclidean domains with C? boundary.

Theorem 2. Let Q be a bounded domain in R¢ with C*-smooth boundary, and let u;_be a solution of (1)
in Q. Then there is a constant Cg > 0 independent of )\ such that

H ({up. = 0}) < Carlog(h+e). (6)

Remark. The proof of Theorem 2 uses the sharp bounds of Donnelly and Fefferman [1988] in the interior
of the domain and a multiscale induction argument at the boundary, which is based on a version of
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the hyperplane lemma of [Logunov 2018a; Logunov et al. 2021]. While, as remarked above, the proof
of the lower bound can be extended almost verbatim to smooth Riemannian manifolds with boundary,
for Theorem 2 we rely heavily on the fact that 2 is a Euclidean domain, or at least we have to require
that the metric inside 2 is real analytic; this is because the results of [Donnelly and Fefferman 1988]
require real analyticity. Our theorem lies in between previous results on the upper bound: the multiscale
argument at the boundary allows for C2-regularity of the boundary only, as opposed to real analyticity as
in the aforementioned paper [Zhu 2020]; on the other hand, if the metric inside is assumed to be only C?
(or C*), the best result attainable with these methods is still the polynomial upper bound of [Georgiev
and Roy-Fortin 2019].

Plan of the paper. We prove Theorem 1 in Sections 2 and 3; in Section 2 we discuss a procedure for
extending a Steklov eigenfunction across the boundary, which gives rise to an auxiliary equation for
which a statement very similar to Logunov’s theorem [2018b] holds (see Theorem 3), and we use this
together with Theorem A to prove the lower bound. Section 3 is quite long and contains the proof of
Theorem 3, which requires us to review Logunov’s argument carefully and use a combination of classical
elliptic estimates and frequency function techniques. Section 4 is dedicated to the proof of Theorem 2.

2. Lower bound on nodal sets

Here we deduce Theorem 1 using Theorem A and ideas stemming from Logunov’s solution [2018b]
of a conjecture of Nadirashvili on nodal sets of harmonic functions. In order to do this, we transform
a solution to (1) into a solution of an elliptic equation in the interior of a domain. To the best of our
knowledge, this idea was introduced first in [Bellovd and Lin 2015] and then also applied successfully in
[Georgiev and Roy-Fortin 2019; Zhu 2015].

We now describe this extension procedure, which requires 9 to be of class C2; we follow [Bellova
and Lin 2015] very closely. There is a § > 0 such that the map 92 x (—=38,98) 2 (y,1) — y 4+ tv(y)
is one-to-one onto a neighborhood of 92 in RY. We set d(x) = dist(x, 3Q), and for p < § we define
Q,={xeQ:dx) < p}and Q;) ={x eR?:d(x) < p}\ Q. Let now u; be a solution of (1), and for
x € Qs U I define

v(x) = uy(x) exp(Ad (x)); (M
an easy computation shows that v satisfies

div(AVv) +b(x)-Vv+c(x)v =0 1in Qg,
d,v =0 on 0€2,

where A = I, b= —2AVd and ¢ = A> — AAd. Consider now the reflection map ¥ : Q5 — Q§ given by
W(y+rtv(y)) =y—tv(y), where y € 9Q2; since v satisfies a Neumann boundary condition on 9£2, we can
extend it “evenly” across the boundary, i.e., set v(W¥(x)) = v(x) for x € Q5. Write W(x) = x’. Another
easy computation shows that on Q§ the extended function (which we still call v) satisfies the equation

div(AVv) +b - Vv +év =0,
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where

AN =VE@EVE@), B0 == 0,a7 () + AV + VW) b(x), G = (),
j
Consider now D = Q5 U dQ U Q}; we abuse notation and denote by A, b and ¢ the functions that are
equal to the previous A, b and ¢ in Q5 and equal to A, b and & in Q5. In [Bellovd and Lin 2015] it is
shown that A is Lipschitz across a2 with Lipschitz constant depending only on €2, and A is uniformly
positive definite, again with constant depending only on €2. Pasting together the pieces, one obtains that v
is a strong solution of the uniformly elliptic equation

div(AVv)+b-Vv+cv=0 )

in D, with A Lipschitz, || A=y < C, ||bllL=py < CA and |[c||rp) < CAZ.

We want to study (8) at wavelength scale. In order to deal with its zero set we use the theorem below,
which is just an extension to more general equations of the aforementioned theorem of Logunov on
harmonic functions [2018b]; its proof, which merely consists of a tedious but necessary verification that
Logunov’s argument carries over in this slightly more general setting, is relegated to the next section. We
warn the reader that below and in the rest of the paper we do not explicitly indicate dependence of the
constants on the dimension.

Theorem 3. Consider a strong solution of the equation
Lu =div(AVu)+b-Vu+cu=0 ©)
in B = B(0, 1) C RY, with the following assumptions on the coefficients:
() A is a uniformly positive definite matrix; that is, A(x)& - & > «|€|* for any & € R%.
(i1) A is Lipschitz; that is, Zi’j la (x) —a (y)| < ylx —yl.
(i) Y, ; la" |y + 22 16 I~ (s) < K.
(iv) ¢ > 0and ||c| L= By < 0, where &g is a small enough constant depending on a, y, K.

Then there exist ro =ro(e, v, K) < 1 and cg = co(a, y, K) such that, for any solution u of (9) and any
ball B(x,r) C B(0, ro) for which u(x) = 0, we have the lower measure bound

H ' {u=0}NB(x,r)) > cor? . (10)

Assume now that A is large enough depending on €2 and consider a ball B(xg, ¢/A) C D, where ¢
is a small enough constant, with smallness depending only on 2. We set vy, ; (x) = v(xg + ex/A) for
x € B=B(0, 1); note that v, , satisfies the equation

diV(Axo,}\,VU.XO,)\.) + bxo,l : VU.XO,)\. + Cxo,kvxo,h = 0’ (1 1)

where the ellipticity constant of Ay, , is the same as that of A and the Lipschitz constant is the same
if not better, and the coefficients satisfy ||Ax, 1llz=B) < C, bxyallLeB) < Ce and |y, llzoB) < Ce2
Note that if A is large enough then ¢y, , > 0. If we then take ¢ small enough, vy, , satisfies (9) and
assumptions (i)—(iv) with constants «, ¥, K depending only on 2. By Theorem A, any ball centered
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at 92 of radius C/A contains a zero of the Steklov eigenfunction «, and hence of v. We can reduce the
radius of the balls and take a maximal disjoint subcollection of balls B(x;, C;/A) C D, x; € , such that
v(x;) = 0 and consider the corresponding rescaled functions vy, ; we can assume that C < ry, so that by
Theorem 3 we obtain

HI™ (v, 1 = 0} N B(0, C1)) > cC. (12)
Note also that

G <{”A =0iN B<xi, %) N Q) ~H! ({v =0}N B(xi, %))

~ eI IHT (v 0 = 0V N B(O, €)= €A,
where C depends on €2 only. Since there are ~ A?~! such balls B(x;, C;/A), we obtain

HI ({ur = 0) = cq,
and Theorem 1 is proved.

Remark. If one could improve the result of Theorem A by showing that every ball of radius C /A centered
at any point in a corona of fixed (independent of 1) size around the boundary contains a zero of u,, the
optimal lower bound %~ ({u;, = 0}) > A would follow immediately by the preceding argument (actually
more easily, since one could directly apply Logunov’s result without the need to go through Theorem 3).

3. Proof of Theorem 3

This entire long section is dedicated to the proof of Theorem 3. We follow essentially the arguments
of [Logunov 2018b], which carry through in this setting with few changes; the difference is that we
have to use more general elliptic estimates, such as a weaker form of the maximum principle, and a
frequency function that takes into account the lower-order terms in the equation. In Sections 3.1 and 3.2
we introduce the main tools we need in the proof, namely, classical elliptic estimates and the monotonicity
of the frequency function. Section 3.3 will serve as a break from technicalities: here we try to convey an
idea of the scheme of the proof to the reader. Sections 3.4-3.8 contain the actual body of the proof with
full details.

Throughout the section we consider the operator L defined by (9) satisfying conditions (i)—(iv). It will
be convenient to denote by L; = L — ¢/ the operator without the zeroth-order term.

3.1. Elliptic estimates. We first recall some standard elliptic estimates for L, paraphrasing the results
in [Gilbarg and Trudinger 1983] in our notation. Note that whenever we consider a bounded domain
we can assume for our purposes that it is contained in the unit ball, so we can ignore the dependency
of the constants on the diameter of 2 and on the radius of balls contained in 2. We start with the weak
maximum principle.

Theorem 4 [Gilbarg and Trudinger 1983, Theorem 9.1]. Let Liu > —3§ in a bounded domain 2. Then

supu <supu’ +C|§],
Q a0
where C = C(a, y, K).
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Corollary 5. Let Lu = 0 in a bounded domain 2, with &¢ in (iv) small enough. Then

supu <2supu. (13)
Q a0
Proof. We can assume supg, u > 0. Since Lu =0, we have Lju = —cu > —¢&g supg, u using assumption (iv).

By Theorem 4, then supg, u < sup,yq u™ + Cep supg, u, and the corollary follows as soon as Ceg < % ]
The next theorem is a local pointwise estimate for subsolutions.

Theorem 6 [Gilbarg and Trudinger 1983, Theorem 9.20]. Let Lu > —§ in Q2. Then for any ball
B(x,2R) C Q and any p > 0 we have

1/p
sup USCI{][ (M+)p} + G281, (14)
B(x,R) B(x,2R)

where C| and C, depend on «, K and p.

Remark. In Theorem 9.20 in [Gilbarg and Trudinger 1983], the constants depend on R. However, they
get worse as R increases and improve as R decreases; in this work we will only be concerned with
small R, so that we can ignore the dependency on it.

We now come to the weak Harnack inequality and then the full Harnack inequality.

Theorem 7 [Gilbarg and Trudinger 1983, Theorem 9.22]. Let Lu < § in 2, and suppose that u is
nonnegative in a ball B(x,2R) C Q. Then

1/p
{][ u”} <C( inf u+18)), (15)
B(x.R) B(x,R)

where p and C are positive numbers depending on o and K.

Theorem 8 [Gilbarg and Trudinger 1983, Corollary 9.25]. Let Lu = 0 in 2, and suppose that u is
nonnegative in a ball B(x,2R) C Q2. Then
sup u <C inf u, (16)

B(x,R) B(x,R)
where C = C(a, K).

Corollary 9. Let Lu =0 in Q. If u(xg) > 0 and B(xg, R) C Q, then the inequality

sup |u|<C sup u (17)
B(x0,2R/3) B(xo,R)

holds for C = C(a, K).

Proof. Call M = supg,, gyu and consider the function # = M — u, which is nonnegative in B(xo, R).
Note that Lh = c¢M, so that |Lh| < e M. By applying to & Theorem 6 and then Theorem 7 with § = eM,
one gets that

1/p
sup (M—u)fCl{][ u”} +CoeM <C3z inf (M—u)+CseM <CsM,
B(x0,2R/3) B(x0,3R/4) B(x0,3R/4)

where the last inequality holds because u(xp) > 0. Hence we obtain sup B(x0.2R /3)(—u) < CM. Since
clearly we have that supg,, 2g/3) 4 < M, the corollary is proved. U
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3.2. Frequency function and doubling index. The frequency function, which as far as we know was
used first by Almgren and then subsequently developed in the works of Garofalo and Lin [1986; 1987], is
a powerful tool in the study of unique continuation and zero sets of elliptic PDEs. We are now going to
define it for operators of the form (9) and state some of its properties, following mainly [Garofalo and
Lin 1987; Han and Lin].

Let u € Wlif(B) be a solution of (9). In [Garofalo and Lin 1987] and [Han and Lin] a metric

glx) = Zi’j gij(x) dx; ® dx; is introduced in the following way: let first
2ij(x) = a” (x)(det )"/,

where, as customary, a'/ denote the entries of the matrix A~!. To define gij we assume here d > 3; if
d =2, we can just add a “mute” variable. Next, one defines

_ _ 0 0
re? =3 g;(Oxx; and ”(x)=;gkl(x)a_;k(x)a_;(")'

ij
Finally, one sets
8ij (x) = n(x)gij(x).

Note that 7 is a positive Lipschitz function with Lipschitz constant depending on «, ¥y and K. Let G be
the matrix (g;;) and define |g| = det(G). We can now write (9) as

divg (u(x)Veu) +bg(x) - Veu + co(x)u =0,

where 11 = n~@=2/2 s a Lipschitz function in B with C; < u(x) < Ca, by = Gb//Ig] and ¢ = c//Ig].
Note that, since |g|~'/? is a Lipschitz function bounded above and below by constants depending on
a, y and K only, b, and c, satisfy analogous bounds to b and ¢ in (9). The following quantities are then

introduced, where the integrals are with respect to the measure induced by the metric g:

H(x,r)=/ e, D(x,r)=f 1| Voul?, I(x,r)=f 1| Vgul* +ubg - Vou + cou’.
dB(x,r) B(x,r) B(x,r)

The frequency function is finally defined as
2ri(x,r)
) =—"" 18
Bx,r) Hix.r) (18)

Compared with the definition in [Garofalo and Lin 1987] and [Han and Lin] there is an extra factor of 2
for aesthetic reasons in later formulas. More often than not, we will forget about the point x and only
write the dependance on the radius . The key property of the frequency function is the following almost
monotonicity:

Theorem 10. There are constants ry, c| and c; depending on «, y and K such that

,3(x,r)§c1+02,3(x,r0) (19)

forr € (0, rg). Moreover, cy can be chosen to be 1 + ¢ for any ¢ > 0 if ro = ro(¢) is small enough.
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Remark. The statement of Theorem 10 is implicit in [Garofalo and Lin 1987], and the proof is contained
there; in [Han and Lin] the theorem is stated as it is here, and the proof given is essentially the one of
[Garofalo and Lin 1987]. The second assertion is not explicitly stated in [Garofalo and Lin 1987] or [Han
and Lin] and needs some justification. In both papers, the strategy to prove the theorem is the following:
one defines Q,, = {r € (0, r¢) : B(r) > max(1l, B(rp))} and proves that it is an open subset of R and
therefore it can be decomposed as €2,) = ;’f{ (aj,bj) with aj and b; not belonging to €2,; it is then
showed that 8'(r)/B(r) > —C for any r € Q,,. By integration, one has that B(r) < B(b;) exp(C(b; —r))
forany r € (aj, bj). Since b; ¢ 2,,, this implies that the constant ¢, can be chosen to be exp (Crg), which
is close to 1 if rg is small.

In the course of the proof of Theorem 10 in [Garofalo and Lin 1987] and [Han and Lin] the differentiation
formula

H'(r) = (d%1 + 0(1))H(r) +21(r)

is obtained; the formula can be rewritten as

d H(r) B(r)

The next statement is an immediate consequence of this formula.

Proposition 11. There is a constant C depending on «, y and K such that the function e" H(r)/r?=" is
increasing for r € (0, rp).

From (20) and almost monotonicity (19), by integration one obtains the following:
Proposition 12. The two-sided inequality

—1
¢y Blri—cs 2p(ra)+cs
o2 H) (2 @1)
r T H@r) T \n

holds, where again c, can be chosen to be 1+ ¢ if ry is small enough.

From now on we denote with letters ¢, C, ¢y, ... constants which may vary from line to line and that
depend only on «, y and K without explicitly saying so every time. Additional dependencies will be
indicated. We now define a quantity related to the frequency function: the doubling index.

Definition 13. For B(x, 2r) C B, the doubling index N (x, r) is defined by

2./\/()(,7') — SupB(xszr) |u| (22)
SUPg(x, ) U]

The doubling index and the frequency function are comparable in the following sense:

Lemma 14. Let ¢ > 0 be sufficiently small, and let ro be small enough that the constant ¢ in (21) is 1 +¢;
then, for 4r < ry,

B, r(1+¢)(1—-1008) —c < N(x,r) < B(x,2r(1+¢))(1+100¢) +c.
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The proof of Lemma 14 is an easy computation using the elliptic estimate (14), Proposition 11 and
inequality (21); in fact, by (14),

sup Juf? < cg][ .
B(x,r) B(x,(1+¢&)r)

H((1
foo e OED
B(x,(14€)r) r

by integration and Proposition 11. From here on the computation is identical to the one in [Logunov

and further

2018a, Lemma 7.1]. Using this, one can derive a scaling property for the doubling index; see [Logunov
2018a, Lemmas 7.2 and 7.3] for details of the computation.

Lemma 15. Given any ¢ € (0, 1), there exist ro(g) > 0 and C(¢) > 0 such that, for u € W“?(B) a solution
of (9) and any 0 < 2r; <ry <ry, we have

(r_2>N(x,r1)(l—e)—C B SupB(x,rz) |u| - <r_2)N(x,r2)(l+s)+C

< < (23)
SupB(x,rl) |u|

r r

As a consequence, the doubling index is also almost monotonic in the sense that
N, r)(I—¢g)=C =N(x,r)(1+¢)+C.

3.3. An informal outline of the proof. We include here a brief discussion of the scheme of the proof
avoiding details and technicalities; the latter are all included in the next subsections. Let us first note that
in dimension 2 Theorem 3 is an easy consequence of the weak maximum principle (Corollary 5): if u
vanishes at the center of a ball, the weak maximum principle tells us that there can be no small loops of
zeros containing the center and therefore the nodal component containing the center must exit the ball,
implying that its length must be greater than the diameter of the ball.

In higher dimensions, this simple argument does not give any lower measure bound because a priori
the nodal set could be a very thin tube crossing the ball. However, a slightly more sophisticated argument,
still using essentially only the maximum principle, does give a nonoptimal lower bound: we prove in
Proposition 16 that if u(x) =0,

H 7 (u =0y N B(x, r)) > crd N>,

where N is an upper bound for the doubling index A/ (x, %r) Note that when d = 2 this is already optimal,
as it should be. If d > 3, this naive lower bound gets worse as the doubling index gets larger. This
however contradicts intuition, since we are dealing with solutions of elliptic PDEs: if the doubling index
is large, meaning that there is strong growth of u, then there should be many zeros. This suggests that
one could use induction on N to promote the naive lower bound to the optimal one. The key to achieving
this is Proposition 23, which shows that if the doubling index is comparable to N > 1 in balls of radii }‘r
to r (we call this “stable growth”, see Definition 22), there are many zeros in the ball of radius r; more
precisely, there are at least [VN]¢! f(N), with f(N) - oo as N — 00, disjoint balls of radius r/ VN
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such that u vanishes at the center. The fact that f(N) grows with N essentially shows that indeed there
are more zeros as the doubling index increases, and it is needed to close the induction in Section 3.8.

The proof of Proposition 23 uses crucially Theorem 19, which tells us that if a cube is partitioned into
some large number B¢ of subcubes, the number of subcubes which have doubling indices dropping by an
amount increasing with B compared to the doubling index of the original cube form the vast majority of
the subcubes. The argument goes as follows: since the doubling index is comparable to N on scales ;llr
to r, we can assume that in the ball of radius %r, |u| < 1, while in the ball of radius %r, lu] > 2N, We
then connect points where u is small to points where u is large by many chains of cubes (called “tunnels”
later): since there is considerable growth of # from one endpoint of the tunnel to the other, the Harnack
inequality tells us that there must be zeros and the growth happens in the cubes with zeros; an application
of Theorem 19 gives us that most of the cubes in the tunnel have doubling index much smaller than N,
so that the growth from one endpoint to the other cannot be realized in very few cubes, and hence each
tunnel must have many cubes with zeros. The formal proof is a matter of quantifying what “small”,
“large”, “few” and “many”’ mean.

The only issue remaining is ensuring that there are balls of stable growth: this is done in Claim 3, and
the proof uses the estimates in Section 3.6 which are consequences of the almost monotonicity of the
frequency function.

Let us emphasize once again that the proof scheme described above is due to Aleksandr Logunov, and
it appeared first in [Logunov 2018b]. In our case we have to adapt it to elliptic equations with lower-order
terms, but the more general estimates that we need are collected above in Sections 3.1 and 3.2, and using
those estimates the proof runs in the same way as for harmonic functions.

3.4. Local asymmetry. We now derive a lower estimate for the relative volume of the set {u > 0} in balls
centered at zeros of u, and consequently a nonoptimal lower estimate for the measure of the zero set. The
estimate and the proof are analogous to the Laplace—Beltrami eigenfunctions case, for which see, for
example, [Logunov and Malinnikova 2018; Mangoubi 2008]. For the reader’s convenience, we reproduce
here essentially the same proof as [Logunov and Malinnikova 2018].

Proposition 16. Let B(x, ) C B and u be a solution of (9) such that u(x) =0. Suppose that N (x, %r) <N,
where N is a positive integer. Then the lower measure bound

H (fu =0} N B(x, r)) = crd™ N> (24)
holds for some ¢ > 0.

Proof. For notational simplicity we assume x = 0 and write B, = B(0, r). We can also safely assume that
N > 4, say. Note that by (17) and (13) we have supg, , lu| < C maxyg,, , u, so that

maxypg, U su u
3B, e pg, lul <2V,
maxyg,,,, U supg, , |u|
Let now r; = r(%1 +j/(4N)) for j=0,1,..., N, and consider the concentric spheres S; = {|x| =r;}.

Write m}r = maxg; u and m; = ming; . From the weak maximum principle (13) (applied to u as well
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as —u), it follows that

+

+ - + - -
j . m < . | < .
mJ>0, mJ<0, m]_2m]+1 and |mJ|_2|mJ+1|.
For j =0,1,..., N —1, define
+ o+ + -\ -
T =mi/m; and T o= ml/Im s
from the above, r;r/ > % Moreover, we have that
maxypg u
+ + v N
Ty Ty = —— < C127,

maxgg,, , U

SO at most Z—ILN , say, of the rj+ are greater than some C independent of N. The same holds for the t ;580
that for at least %N indices there holds m,‘(:l <C m,j and |m;_ | < C|m, |. Consider each such k and let
xo € Si be such that u(xg) = m,j. Denote by b the ball centered at xq of radius /(8 N); then by (13) and
the choice of k,
supu < sup u< ZmZZrl < Cm,j.
b {Ix|<ri+1}
Applying (17), we then get that sup;, » [u| < ka*. We now use this last inequality and the elliptic gradient
estimate (see, for instance, [Gilbarg and Trudinger 1983, Theorem 8.32])
sup_|Val = (<) sup Ju
B(y.s/2) 57 B(y.s)
for y =xp and s =r/(16N) to get, for x € B(xg, 6r/N) with 0 a sufficiently small number,
u(x) > u(xo) — |x —xo| sup |Vu| > m;" — CoOm; > 0.
b/4
We thus found a ball centered on Sy of radius 8r/N where u is positive, call it by. Replace now u
with —u, which is also a solution of (9): repeating the argument above with m, and 7, instead of m,‘f
and ‘E]:r gives us a ball centered on S; of radius 6r/N where u is negative, call it b_. Now consider the
sections of the two balls with hyperplanes through the origin that contain the center of the balls: any
path within the annulus {ry_; < |x| < rr41} that connects these two sections contains a zero of u, since u
is positive on by and negative on b_. This implies that the measure of the zero set is greater than the
measure of the section of the balls, that is to say,

d—1 r\¢!

MO (e <l < e u@ =) = ¢(5) -
The above holds for all indices k for which m,‘(:l <C m,:r and |m;_ | < C|m; |, and recall that there are
at least %N such indices. Summing the inequality above over those indices, we see that (24) holds. [

Remark. Note that the argument above also shows that
Vol({u > 0} N B(x, r)) ¢
Vol(B(x, r)) — N1

if u(x) = 0, which is analogous to the best known lower bound (when d > 3) for the local asymmetry of

Laplace eigenfunctions [Mangoubi 2008].
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3.5. Counting doubling indices. We now recall some very useful results from [Logunov 2018a; 2018b;
Logunov and Malinnikova 2018] that allow us to find many small cubes with better doubling index than
the original ball (or cube). The proofs are combinatorial in nature. First we define a version of the
doubling index for cubes, which are more suitable for partitioning than balls. Given a cube Q and a
solution u of (9), we define the doubling index N (Q) as

su |u|
N(Q) = sup Jog PB(x,10dr) '
{xeQ, r<diam(Q)} SUPB(x,r) |“|

The constant 104 is there for technical reasons and the reader should not worry about it. It is clear that
with this definition N (Q1) < N(Q») if Q1 C Q». Theorem 18 was proved in [Logunov 2018a], and then
extended in [Georgiev and Roy-Fortin 2019] to the more general equation (9); the proof combines an
accumulation of growth result ([Logunov 2018a, Lemma 2.1] and [Georgiev and Roy-Fortin 2019, Proposi-
tion 3.1], called the simplex lemma), and a propagation of smallness result ([Logunov 2018a, Lemma 4.1]
and [Georgiev and Roy-Fortin 2019, Proposition 3.2], called the hyperplane lemma). The hyperplane
lemma is a consequence of quantitative Cauchy uniqueness, which we state in a simple version below; it
can be obtained from a very general result in [Alessandrini et al. 2009] (Theorem 1.7). See also [Lin 1991].

Proposition 17. Let D be a bounded domain with C* boundary, and let B be a ball of radius p < 1.
Let u be a solution of (9)in DN B, u € C'(D N B). There exist B =8y, K,D,p)e 0,1) and
C=C(a,y,K,D,p)>O0suchthat,if lu| <1and|Vu| < p~'in DN B, and |u| < n and |Vu| < np~"
on 0D N B, where n is a real number, then

ux)| < Cn’
1
forany x € DN 3B.

Remark. In [Logunov 2018a; Georgiev and Roy-Fortin 2019], Proposition 17 is applied when 9D is
flat; this is sufficient to prove the theorem below. We will use the proposition in the nonflat case later in
Section 4, to prove a version of the hyperplane lemma.

Theorem 18 [Logunov 2018a, Theorem 5.1; Georgiev and Roy-Fortin 2019, Theorem 4.1]. There
exist a constant ¢ > 0 and an integer A > 1 depending on the dimension only, and positive numbers
No = No(e, y, K) and Ry = Ro(«, v, K) such that for any cube Q C B(0, Ry) the following holds: if Q
is partitioned into A? equal subcubes, then the number of subcubes with doubling index greater than
max(N(Q)/(1+4c), Ny) is less than %Ad_l.

Starting from Theorem 18, in [Logunov 2018b] an iterated version is proved, which is the one decisively
used in the proof of the lower bound on zero sets. We state it below and refer to [Logunov 2018b] for the
proof.

Theorem 19 [Logunov 2018b, Theorem 5.3]. There exist positive constants c1, ¢, C and an integer
By > 1 depending on the dimension only, and positive numbers No = Ny(, ¥, K) and Ry = Ro(«, v, K)
such that for any cube Q C B(0, Ry) the following holds: if Q is partitioned into B¢ equal sub-
cubes, where B > By is an integer, then the number of subcubes with doubling index greater than
max(N (Q)2~¢1logB/loglog B Ny s Jess than C B4~17¢,
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3.6. Estimates in a spherical shell. In the following we always indicate by u a solution of (9); the
frequency function and doubling index are relative to u. Consider a ball B(p, s) C B(O, iro); we are
going to establish some estimates for the growth of u near a point of maximum. Let x € dB(p, s) be a
point where the maximum of |u| on lm is almost attained, in the sense that sup g .5) lu| <2u(x)l;
the existence of such an x is guaranteed by Corollary 5. Write M = |u(x)|. In the next two lemmas we
will assume that there is a large enough number N and

1 1
€ Jog® N 8

N < B(p.1) <10°N (25)

such that

fort el :=(s(1—3),s(1+9)).

Lemma 20 (variation on [Logunov 2018b, Lemma 4.1]). Let (25) be satisfied. There exist positive
constants C and c¢ such that

sup  |u| < CM27N, (26)
B(p,s(1-6))
sup  |u| < CM2°°N, (27)

B(p,s(14+38))
Proof. Let us prove (26) only. By (21) and (25), we have that

N/30 10N
t H t t
(_2) - (p, 1) - C(_z) 28)
1 H(p, 1) 1

for t; < t, € I, where we assume that ry is small enough to take ¢, =2 in (21). We estimate
M > Cis™ ' H(p, 5) = Cis ™ H(p, s(1— 18)) (1 + 15)",

where the first inequality is just the estimate of the L?-norm by the L>°-norm and the second inequality
comes from (28). By integration and Proposition 11 we have

sH(p,s(l—%B)):s/ |u|22C2/ |u|?.
dB(p,s(1-8/2)) B(p,s(1-6/2))

Let now X be a point on d B(p, s(1 —§)) where the supremum of |u| on B(p, s(1 —§)) is almost attained,
Le., supp(, s1—sylul < 2lu(x)], and write M= |u(x)|. Note now that

f wﬂz/ w%xa&ﬂf e
B(p,s(1—8/2)) B(%.55/2) B(%.55/2)

moreover, by (14) we have
Ws@f Juf.
B(%,85/2)

N/30

Combining the estimates we obtain

M? > Cs84(1+ 1) M2,

Since log(l + %6) > %3, it follows easily from the above and § > 1/ log'% N that M? > C¢ exp(ﬁNS)]VIZ,
from which one obtains (26) recalling the definitions of M and M. U
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Using the properties of the doubling index, we now derive some estimates on small balls close to x; we
keep on denoting by x the point on d B(p, s) where the maximum of |u| on B(p, s) is almost attained.

Lemma 21 (variation on [Logunov 2018b, Lemma 4.2]). Let (25) be satisfied. There exists C > 0 such

that
sup |u| < M2CN+C (29)
B(x,8s)
and, for any X withd(x, X) < %55‘,
N (%, $85) < CSN +C, (30)
sup  |u| > M2 CNlogN=C (31)
B(%,85/10N)

Proof. Note that since B(x, és) C B(p, s(1 + 3)), the first estimate (29) is an immediate consequence
of (27). By definition of doubling index and (29) we have that

NG54 o SUPBG.85/2) |ul _ SUPB(rsy) |ul < YCON+C
SUPB(%,85/4) |ul M

and (30) is proved. Now recall the scaling properties (23); by those and (30) we obtain

SUP (7 55/4) U] < (AON)2NE3/DHCt < (40 N)C1IN+C1 < 9C2N Tog N+Calog N C3dNlog N+Cs.
SUPB(%,85/10N) |ua]

where the last inequality holds because 8 > 1/1og'% N. Since, by the distance condition, sup B854 U =
lu(x)| = M, (31) follows. O

3.7. Finding many balls around the zero set. We follow the arguments in Section 6 of [Logunov 2018b],
in the reformulation contained in [Logunov and Malinnikova 2020]; the estimates in the spherical shell
will be used together with the combinatorial results on doubling indices. We use the notion of “stable
growth”, which is taken from [Logunov and Malinnikova 2020] and was not present in [Logunov 2018b].

Definition 22. We say that u has a stable growth of order N in a ball B(y, s) if N'(y, ;s) > N and
N(y, ) < 1000N.

The number 1000 does not have any special meaning, it is just a large enough numerical constant. The
following result is the key to the proof of the lower bound.

Proposition 23 (variation on [Logunov 2018b, Proposition 6.1]). Let B(p, 2r) C B(0, ro). There exists
a number Ny > 0 large enough such that, for N > Ny and any solution u of (9) that has stable growth
of order N in B(p,r), the following holds: there exist at least [/N1?~12c110eN/loglogN giginint balls
B(x;, r/\/ﬁ) C B(p, r) such that u(x;) = 0.

Proof. Assume without loss of generality that supp,, , /4 lu| = 1. The stable growth assumption then
implies that

sup |u| > 2V and sup |u| < 20N,
B(p,r/2) B(p.2r)
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We denote by x the point on 8B( D, %r) where the maximum over B( D, %r) is almost attained, so that
by the above |u(x)| > 2¥~!. We now divide the ball B(p, 2r) into cubes g; of side length c¢r/+/N and
organize these cubes into tunnels in the following way: the centers of the cubes in each tunnel lie on a
line parallel to the segment that connects p and x. A tunnel contains at most C+/N cubes. Let us call a
cube ¢; “good” if

N
N(gi) < max(m, N0> (32)

for some constant c. We will call a tunnel “good” if it contains only good cubes; by Theorem 19, most
of the cubes are good and most of the tunnels are good. Another application of Theorem 19 gives the
following:

Claim 1. The number of good tunnels containing at least one cube with distance from x less thanr/ log2 N
is greater than c(~/N ] log? N)4~1.

The proof of the proposition is then completed with the help of the next claim.

Claim 2. Any good tunnel that contains at least one cube with distance from x less than r/1log> N also
contains at least 22198 N/1081e N ey bos ywith zeros of u.

Proof. Take one such tunnel 7. Note that 7' contains at least one cube g, C B( D, %r), so that sup,, |u| <1.
Call g, a cube in T with distance from x less than r/log?> N; we want to show that the supremum of |u|
over g, is large. To this end, we apply Lemma 21 with 8§ ~ 1/log? N and % being the center x; of the
cube ¢,. By the stable growth assumption and the comparability of the doubling index and frequency
function (Lemma 14), inequality (25) is satisfied for N large enough. Then (31) gives us

sup  u| > |u(x)|2mCN/leeN=C
B(xp,8r/10N)

and hence, recalling that |u(x)| > 2V -1

sup |u| > 2V,

qp/2
We now follow T from g, to g, and find many zeros. The proof is at this point identical to the one given
in [Logunov 2018b]; for completeness we provide the details. We enumerate the cubes g; from g, to g
such that g, is the first and g, is the last. Since T is a good tunnel, by (32) we have that for any two
adjacent cubes
SUPg;1/2 |ul < SUP4q; |ul < N

Supqi/Z |u| - Squ,«/z |u| — Jc3log N/loglog N

We split the set of indices S into two sets S; and S,, where S| is the set of i such that # does not change
signin g; Ug;+1 and S = S\ S;. The advantage of this is the possibility to use the Harnack inequality
on S1; the aim is to get a lower bound on the cardinality of S;. In fact, for i € Sy, by (16) we have that

SUPg,1/2 |ul <
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‘We then estimate

su |u| sup, |ul Supy, |ul
pq;,/Z Z > Pgig /2171 +Zlog‘]’+—l/2§|S1|C1+|Sz|m;
Supq /2 |ue] Supg, /2 |ul SupPy, /2 |ul 20 e

on the other hand, recall that
Supg, 2 Ul

supg, /o lul —

cN.

Combining the two estimates one obtains

IS11C1 + 152 >cN,

2c3logN/loglog N —
and noting that |S;|C; < C;+/N < %CN we conclude

|S2| > c32C3 log N/loglog N.

The last quantity is larger than 2¢210¢ N/loglog N jf N ig large enough, and the claim is proved. O

It is now a straightforward matter to finish the proof of Proposition 23: by Claim 1 there are at
least c¢(+/N/log? N)4~! tunnels satisfying the hypothesis of Claim 2, and hence there are at least
c(v/N/log? N)d—1pc2logN/loglogN cybes that contain zeros of u; the last quantity can be made larger than
(v/N)d=1p¢erlogN/loglogN "anq then one replaces cubes by balls. O

3.8. Proof of the lower bound. We take ry small enough that (19), (21), Lemma 14 and (23) hold. Writing
N(0, 70) = SUP{p(x r)c BO.rp)y N (X, 7), we define
Hd '(fu =0} N B(x, p))
pd—1

F(N) =
where the infimum is taken over all balls B(x, p) C B(0, ry) and all solutions u of (9) such that u(x) =0
and N (0, rg) < N. Theorem 3 then follows immediately from the following:

Theorem 24. F(N) > c, where c is independent of N.

Proof. Let u be a solution of (9) in competition for the infimum in the definition of F(N); let F(N) be
almost attained on u, in the sense that

H ({u =0} N B(x, p))
rd—l

<2F(N) (33)

for some B(x,r) C B(0, ry) with u(x) = 0. Recall the easy bound (24):

H ' {u =0} N B(x, r)) c1 c1
rd—1 N(x r/4)d=2 = Nd 2"

(34)

Estimate (34) already finishes the proof it ( , 4r) is bounded uniformly in N; let us then argue by
contradiction and assume that ( ) is large enough. Denote N=N ( ) and suppose first that u
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has stable growth of order N. We can then apply Proposition 23 and find at least [v/ N |4~ 12¢log N/ loglog N
disjoint balls B(x;, r/\/ﬁ) C B(x, r) with u(x;) = 0. By definition of F(N), there holds:

d—1
HH({ =0}nB<,~,%>)zF(N)(%> -
! U N

Summing the inequality over all the balls, we obtain

r

. - d-1
HI (=0} N B(x, p)) = [V N1tV ogloe N gy (—~) :
VN
the quantity on the right can be made larger than 2 F (N)r¢~ if N is large enough, which is a contradiction

with (33). Therefore we would be done if we knew a priori that u has stable growth of order N in B(x, r),
but this is not necessarily the case; fortunately we can find a smaller ball where u has stable growth.

Claim 3. If /\/(x, }lr) is large enough, there is a number Ny 2 ./\/(x, %r) and a ball By C B(x, r) with
radius ri ~ r/log? Ny such that u has stable growth of order Ny /log®> N\ in Bj.

Proof. Let us define a modified frequency function as

B(p,r)= sup B(p,t)+eci,
te(0,r]

so that B(p, r) is a positive monotonic increasing function. Note that by (19) we have

B(p.r) < B(p.r) <c3+2B(p.r),
and the rightmost expression is less than 38(p, r) if 8(p, r) > c3. We use the following claim:

Claim 4 [Logunov 2018b, Lemma 3.1]. Let f be a nonnegative, monotonic nondecreasing function
in [a, b], and assume f > e. Then there exist x € [a, %(a + b)) and a number N1 > e such that
b—a b—a
- 2 X+ 2
201og” f(x) 201og” f(x)

Ny < f(t) <eN; foranyte(x )C[a,b].

We apply Claim 4 to (p, - ) and hence identify a spherical shell of width ~ r/ log? N; about s € (%r %r)
where B(p, -) is comparable to N;. Since N (x, %r) is large, by Lemma 14 and almost monotonicity
B(x,t) is large for ¢t > %r and then also B(x, -) is comparable to N in the spherical shell. In other words,
(25) holds with Ny and § ~ 1/1og? N. Let now y € 3 B, be a point where the maximum is almost attained,
as in Lemmas 20 and 21. Take a ball B; of radius ~ s/log2 Ny such that %Bl C By—syand y € %Bl;
then (26) implies that

Ny
1
N(3 )_Cl 2
og- Ni
and (27) implies that
Ni
N(B) <C ,
(B1) = 02 N,

which means that u has stable growth of order N;/log? Ny in By, and the claim is proved. ]
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Claim 3 gives an order of stable growth that is again large enough to get a contradiction with (33) if

N (x, 1r) and hence N is large enough. This means that A/(x,

independently of N, and therefore by (33) and (34) we obtain

r) is bounded from above by some Ny

d—1 —
H T {u=0}NB(x,r)) .6 > e
2rd—1 - (No)de -

F(N) = (35)

which concludes the proof of the theorem. ]

4. Upper bound

Here we give the proof of Theorem 2. Throughout this section 32 is assumed to be of class C2. As
remarked in the introduction, the proof uses the Donnelly—Fefferman bound [1988] in the interior of
the domain and a multiscale induction argument at the boundary. As will be apparent from the proof,
the result with a C*°-metric inside 2 would follow from an upper bound for zero sets of elliptic PDEs
with smooth coefficients that is linear in the frequency; the best we have thus far is polynomial in the
frequency [Logunov 2018a].

We introduce now a version of the doubling index that takes into account the boundary. Namely, for
x € Q and u € C(Q2) a harmonic function, we let

Nz _ SUPBG20ng Ul 36)

SUPg(x.ne Ul
Note that if v is the extension across the boundary of the Steklov eigenfunction u; as in Section 2 and
dist(x, 92) S 1/A, r < 1/4, we have that N (x, r) ~ N, (x, ), where N, (x, r) is defined as in (22);
this will allow us to use the almost monotonicity property (23). It was proved in [Zhu 2015] (using the
extension v) that for any r < ro(€2)

N, (x,r) < Ch, (37)

mirroring a corresponding statement for Laplace eigenfunctions proved by Donnelly and Fefferman. It
will once again be convenient to define a maximal version of the doubling index for cubes; for 0 C R¢ a
cube such that Q N Q2 # &, we set

Ni Q)= sup  Nj(x.r).
xe0NQ
r<diam(Q)

Definition 25. A Whitney cube in Q2 is any cube Q such that ¢; dist(Q, 0Q2) < s(Q) < cp dist(Q, 9€2),
where s(Q) is the side length of Q and ¢; and ¢, are positive dimensional constants.

With this notation, we state the following important result of [Donnelly and Fefferman 1988].
Theorem 26. Let u be a harmonic function in Q. Then there is C > 0, independent of u, such that

12, Q) < C(NH(Q) + D)s(Q)* ! (38)
for any Whitney cube Q.
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From now on, we will denote by u a Steklov eigenfunction with eigenvalue L. We will first use the
theorem above to bound the measure of the zero set of # in the interior, up to a distance from the boundary
comparable to 1/A. We will assume A > Ag. As in the previous section, write d (x) = dist(x, d€2); Let ¢
be a small constant depending only on 2. We write the decomposition

Q=InUMidUBd,

where In={x € Q:d(x) > cp}, Mid={x e Q:¢cg/A <d(x) <cp}and Bd={x € Q:d(x) <co/A}. It
follows easily from Theorem 26 and (37) that
H (2, NIn) < CA, (39)

with C depending on €2 only. The next lemma estimates the contribution of the nodal set in Mid.

Lemma 27. There is C > 0 depending only on Q2 such that
#41(2,NMid) < Crlog . (40)

Proof We set My = {x € Q: co2"" /A < d(x) < c92¥/1}, and we have
clogi

Mid = U M.
k=1

We perform a decomposition of €2 into Whitney cubes with disjoint interior (the statement that this is
possible is usually called the Whitney covering lemma). Define

9y = {Whitney cubes intersecting My }.

In the following lines we will denote by | - | both the cardinality of a discrete collection and the Lebesgue
measure of cubes; it should cause no confusion. Note that if Q € Qy, then

2kd
Q] ~ S
it follows that | Q| < 2~kd3d=1 We can then estimate, using Theorem 26 and (37),
cloghi clogi
HTlZnMid = Y 1N ENMy < Y Y HITNEN )
k=1 k=1 QeQy
clogi clogi
VDR I() S Z |lekd Silogh. O
k=1 Q€Qk

To prove Theorem 2 the only thing left is to estimate ¢! (Z, N Bd). We cover Bd with ~ 1¢~!
cubes g, centered at 02 of side length s(g;) = 4co/X; then Theorem 2 follows from (37) and the following
proposition:

Proposition 28. Let g, be one of the cubes above, and suppose N;;(4q;) < N. Then

HITN(2,N i) < CQN + Ds(g)? (41)
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Remark. In the following we will rescale
h(x) = u(’—“) 42)
A
so that g, becomes a cube Q of side length s < 1, where s is small enough depending on €2 but independent
of A, and h satisfies Ah = 0in 100 N and 3,h = h on 32N 10Q. Note that the doubling index is
unchanged under this rescaling. Proposition 28 will follow from

H7N 2N Q) < C(QN +1). (43)

The main ingredient in the proof of Proposition 28 is a version of the hyperplane lemma of [Logunov
2018a] with cubes touching the boundary, the proof of which uses quantitative Cauchy uniqueness as
stated in Proposition 17. The proof is very similar to the one contained in [Logunov et al. 2021], we
reproduce it here for the reader’s convenience.

Lemma 29. Let h be as in (42) and Q a cube of side length s as in the remark above. There exist k
and Ny large enough depending on s and Q@ such that if Q N 3K is covered by 24~V cubes g j with
disjoint interior centered at 32 of side length 2~*s, and N 4 (Q) =N > Ny, then there exists q j, such that
N ;zk (qjo) = %N :

Proof. We note first that since <2 is of class C2, A is harmonic in 10Q N and 3,4 =h on IQN 100, we
can use the extension-across-the-boundary trick described in Section 4, namely, consider v(x) = 4 n(x);
recall that the coefficients of the second-order term in the equation satisfied by v are at least Lipschitz.
This gives us access to elliptic estimates that hold up to the boundary for 4. In particular, we will use the
gradient estimate

sup |Vh| < 1

B(y,r)NQ

sup |h|, (44)
B(y,2r)NQ

~

where the implied constant depends on s and 2. Denote now by xp € 92 the center of the cube Q.
Consider a ball B centered at xp such that 2Q C B, and let M =suppnq |h|. By contradiction, suppose that
N;y(qj)> %N for any j; by definition, this implies that for any j thereis x; €g;NQ and r; < 2% Vds=:rg
such that N (x;, r;) > %N . Assuming N large enough, we use (23) to get

sup  |h] < (C27MN/10 qup |h| < Me™<Nk
B(xj,2rg)N2 BNQ

if k is large enough. Using (44), we get

sup |Vh| < 1M(fd\’k,

B(xj,ro)N<2 ro
with the implied constant depending on s and €2. Note that since g; C B(x;, ro) the two estimates above
give bounds for the Cauchy data of 42 on 92N Q. On the other hand, if B’ is the ball centered at x such
that 4B’ C Q we have sup,znq |1 < M and sup, g |Vi| < M/s. Recalling that ro = 27%+/ds, we can
then apply Proposition 17 with n = 2Xe =Nk to get

sup |h| < C(s, Q2P cte=PNEpy,
B'NQ
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But then
N} (v, Vas) = Cylog 2B ML o o cpnk — capi — ).
suppng ||
and the rightmost expression is larger than N if k and N are large enough depending on s and €2; this is a
contradiction with N;(Q) = N. [l

We are now ready to prove Proposition 28, or actually (43). The argument is an iteration at the
boundarys; it originates in [Logunov et al. 2021].

Proof of (43). First, we consider again v(x) = 4@ h(x) and its even extension across the boundary
(which we still call v). Recall from Section 2 that v satisfies an elliptic PDE with Lipschitz second-order
coefficients and bounded lower-order coefficients. The results of [Hardt and Simon 1989] then apply to
this situation. Let Q be any cube with s(Q) < sg small enough. By [Hardt and Simon 1989, Theorem 1.7],
we have that

1IN (2,0 B(x, p)) < CNy(Q)p?!

for any ball B(x, p) C Q where v(x) =0 and p < po(N,(Q)). Covering Z, N Q with balls of such small
radius and summing the estimate above over all those balls, it follows that there is a function A : R — R
such that

HITN(2,n Q) < ANF(Q)s(@)* . (45)

Let now Q be as above a cube centered at d€2 of side s, with s small enough depending on 2. Fix a
large number Ny; if N;(Q) < Ny, (45) already implies the result. Otherwise, cover Q N with smaller
cubes of side length 27 X5, where k = k() is given by Lemma 29, in the following way: first Q N 92
is covered by cubes g € BB centered at d€2 with disjoint interior, and then the rest of Q N2 is covered
by cubes g € Z with dist(g, 0€2) > cs(g) for some constant ¢ > 0 independent of k. Cubes in B will be
called boundary cubes and cubes in Z will be called inner cubes; inner cubes are allowed to overlap,
while boundary cubes are not. Write N, (Q) = N. By (38) and almost monotonicity,

-1 (zh N (U q)) <C(k)Ns? .

qeT

By Lemma 29, there is a boundary cube, call it go, such that N; (o) < %N . The other cubes in B will be
enumerated from 1 to 2¥@=1_1. We have that
k(d—])_]
H1 (2,0 Q) H T (EZNgq0) | P 7T @Engy)
gd—1 =CN+ gd—1 + Z gd—1 :
j=1
We define
H(ZNg)
s(g)4!
where the supremum is taken over all harmonic functions 4 in 2Q with d,h=h on 9QN20Q, N;(Q) <N
and all cubes g C Q. By (45), A(N) < +o00. From the inequality above, we get

A(N) =sup

’

A(N) < C(k)N +A(3N)2744=D 4 QM@= _ 1y g(Ny2 =D,
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from which
A(N) < C(k)N + A(3N).

(Beware that C (k) changes value from line to line and depends also on €2). Iterating the last inequality
until %N < Ny, we obtain

A(N) < C(k)N + A(No) < C(k)(N + 1),
which concludes the proof. U

Theorem 2 now follows by combining (39), (40), (41) and (37). We believe that the extra log A factor
is not necessary and is an artificial feature of the proof; it appears in the proof of (40) and it is due to the
necessity of getting to cubes of side length ~ A1
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ON FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS
FOR COMPACT LOCALLY SYMMETRIC ORBIFOLDS
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We consider a certain sequence of flat vector bundles on a compact locally symmetric orbifold, and
we evaluate explicitly the associated asymptotic Ray—Singer real analytic torsion. The basic idea is to
computing the heat trace via Selberg’s trace formula, so that a key point in this paper is to evaluate the
orbital integrals associated with nontrivial elliptic elements. For that purpose, we deduce a geometric
localization formula, so that we can rewrite an elliptic orbital integral as a sum of certain identity orbital
integrals associated with the centralizer of that elliptic element. The explicit geometric formula of Bismut
for semisimple orbital integrals plays an essential role in these computations.
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1. Introduction

Let (Z,gTZ) be a closed Riemannian manifold of dimension m, and let F — Z be a complex vector
bundle equipped with a Hermitian metric #¥ and a flat connection V7. Let (Q*(Z, F), d%:F) be
the associated de Rham complex valued in F. It is equipped with an L,-metric induced by g7%, hF.
Let DZ-F>2 be the corresponding de Rham—Hodge Laplacian. The real analytic torsion 7(Z, F) is a
real-valued (graded) spectral invariant of D#4-F>2 introduced by Ray and Singer [1971; 1973]. When Z
is odd-dimensional and (F, VF F) is acyclic, this invariant does not depend on the metric data g7 %, h.
Ray and Singer also conjectured that, for a unitarily flat vector bundle F (i.e., VF S hF = 0), this invariant
coincides with the Reidemeister torsion, a topological invariant associated with (F, V¥ /) — Z. This
conjecture was later proved by Cheeger [1979] and Miiller [1978]. Using the Witten deformation, Bismut

and Zhang [1991; 1992] gave an extension of the Cheeger—Miiller theorem for arbitrary flat vector bundles.
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If Z is a compact orbifold, and if F is a flat orbifold vector bundle on Z, the Ray—Singer analytic
torsion 7 (Z, F) extends naturally to this case (see Definition 2.2.3). In particular, if F is acyclic, and
if Z and all the singular strata have odd dimensions, then 7 (Z, F) is independent of the metric data; see
[Shen and Yu 2022, Corollary 4.9]. We refer to [Ma 2005; Shen and Yu 2022] for more details.

We consider a certain sequence of (acyclic) flat vector bundles { F,; } sen On a compact locally symmetric
space Z, and we study the asymptotic behavior of 7(Z, F;) as d — +o00. When Z is a manifold, such
question was already studied by Miiller [2012], by Bismut, Ma and Zhang [Bismut et al. 2011; 2017] and
by Miiller and Pfaff [2013b; 2013a]. In particular, Bismut, Ma and Zhang [Bismut et al. 2011; 2017]
worked on the manifolds which are more general than locally symmetric manifolds. When Z is a compact
hyperbolic orbifold, such question was studied by Fedosova [2015] using the method of harmonic analysis.
Here, we consider this question for an arbitrary compact locally symmetric orbifold (of noncompact type).

Let G be a connected linear reductive Lie group equipped with a Cartan involution # € Aut(G) and an
invariant nondegenerate symmetric bilinear form B. Let K C G be the fixed-point set of 6, which is a
maximal compact subgroup of G. Put

X =G/K. (1.0.1)

Then X is a Riemannian symmetric space with the Riemannian metric induced from B. For convenience,
we also assume that G has a compact center; then X is of noncompact type.
Now let I' C G be a cocompact discrete subgroup. Set

Z =T\X. (1.0.2)

Then Z is a compact locally symmetric space. In general, Z is an orbifold. Let ¥Z denote the orbifold
resolution of the singular points in Z whose connected components correspond exactly to the nontrivial
elliptic conjugacy classes of T

Since G has compact center, the compact form U of G exists and is a connected compact linear
Lie group. If (E,pf, hF) is a unitary (analytic) representation of U, then it extends uniquely to a
representation of G by a unitary trick. In this way, F = G xg E is a vector bundle on X equipped with
an invariant flat connection V¥>/ (see Section 3.4 and (4.1.8)) and a unimodular Hermitian metric A%
induced by hE. Moreover, (F, vE.f , hF ) descends to a flat Hermitian orbifold vector bundle on Z, which
is still denoted by (F, VF>/ hF). Let DZ-F-2 denote the corresponding de Rham-Hodge Laplacian.

The fundamental rank 6(G) (or §(X)) of G (or X) is the difference of the complex ranks of G and
of K. As we will see in Theorem 4.1.4, if §(G) # 1, we always have

T(Z,F)=0. (1.0.3)

If F is defined instead by a unitary representation of I, this result is obtained by Moscovici and Stanton
[1991, Corollary 2.2]. If T is torsion-free, with F defined via a representation of G as above, (1.0.3)
was proved in [Bismut et al. 2017, Remark 8.7] by using Bismut’s formula for orbital integrals [2011,
Theorem 6.1.1]; see also [Ma 2019, Theorems 5.4 and 5.5]. A new proof was given in [Miiller and Pfaff
2013a, Proposition 4.2] (with a correction given in [Matz and Miiller 2023, p. 44]). Note that in [Ma
2019, Remark 5.6], it is indicated that, using essentially Theorem 5.4 of that work, the identity (1.0.3)
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still holds if I" is not torsion-free (i.e., Z is an orbifold), which gives us exactly Theorem 4.1.4 in this
paper. Due to this vanishing result, we only need to deal with the case §(G) = 1.

We now describe the sequence of flat vector bundles { F; } en Which is concerned here. Note that U
contains K as a Lie subgroup. Let 7" be a maximal torus of K, and let Ty be the maximal torus of U
containing 7. Let u be the Lie algebra of U, and let tyy C u be the Lie algebra of Ty. Let R(u, ty)
be the associated real root system with a system of positive roots R™ (u, ty7). Then let P4 (U) C ty
denote the set of (real) dominant weights of U with respect to the above root system. If A € P4 (U),
let (E;, pE*) be the irreducible unitary representation of U with the highest weight A. We extend it to
a representation of G. We require A to be nondegenerate, i.e., as G-representations, (E,, p£+) is not
isomorphic to (E;, p£* 0 ). We also take an arbitrary Ao € P14 (U). If d € N, let (E4, pE4, hEd) be
the unitary representation of U with highest weight dA + A¢. By Weyl’s dimension formula, dim E; is a
polynomial in d. This way, we get a sequence of (unimodular) flat vector bundles {(F;, VF4 hFfa)} o
on X oron Z.

Note that in Section 8.1 (see also [Bergeron and Venkatesh 2013, Lemma 4.1]), the nondegeneracy of
A implies that, for d large enough,

H*(Z,Fy;)=0. (1.0.4)

Furthermore, dim Z is odd when §(G) = 1. Then, for any sufficiently large d, T (Z, F;) is independent
of the different choices of h£d (or h¥a).

Let E[I'] be the finite set of elliptic classes in I'. Set E1[I'] = E[T']\{1}. The first main result in this
paper is the following theorem.

Theorem 1.0.1. Assume that 5(G) = 1. There exists a (real) polynomial P(d) in d, and for each
[y] € ET[T] there exists a nice exponential polynomial PEWYY(d) in d (i.e., a finite sum of the terms
of the form oedjezﬂ*/:ﬂd, witha € C, j € N, B € Q; see Definition 7.6.1) such that there exists a
constant ¢ > 0 for d large, we have

T(Z. F)=Pd)+ Y PEYId)+0 ™). (1.0.5)
[y]eE+[T]

Moreover, the degrees of P(d), PEYY(d) can be determined in terms of A, Ao.

For a hyperbolic 3-manifold Z, Miiller [2012, Theorem 1.1] computed explicitly the leading term
of T(Z,Fy) as d — +oo. In [Bismut et al. 2011; 2017], under a more general setting for a closed
manifold Z, Bismut, Ma and Zhang [Bismut et al. 2017, Remark 7.8] proved that there exists a constant
¢ > 0 such that

T(Z.Fg) = To,(Z, Fg) + O(e %), (1.0.6)

where T7,(Z, Fz) denotes the L,-torsion [Lott 1992; Mathai 1992] associated with F; — Z. Moreover,
they constructed universally an element W € Q*(Z, o(T Z)) (where o(T Z) denotes the orientation bundle
of T Z) such that if ng = deg E4, then

T, (Z, Fy) = d"0+1/ W+ O(@d™). (1.0.7)
zZ
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The integral of W in the right-hand side of (1.0.7) is called a W -invariant. If we specialize (1.0.7) for a
compact locally symmetric manifold Z, we get

TL,(Z, Fg) = d™ 1 Vol(Z)[W]™™ + O(d"™). (1.0.8)

In [Bismut et al. 2017, Section 8.7], the explicit computation on [W]™* was carried out for G = SL,(C)
to recover [Miiller 2012, Theorem 1.1].

We now compare (1.0.5) with (1.0.6). If ignoring that I' may act on X noneffectively, we can extend
the notion of L,-torsion to the orbifold Z, so that 7, (Z, Fy) is still defined in terms of the I'-trace of
the heat operators on X. Then P(d) in (1.0.5) is exactly 77, (Z, Fy). But different from (1.0.6), we still
have the nontrivial terms PEY1(d), [y] € ET[T] in (1.0.5). We will see, in a refined version of (1.0.5)
stated in Theorem 1.0.2, that PE [”](d ) is essentially a linear combination of certain L,-torsions for X Z
associated with [y] and A, Ao. Therefore, we can define an L-torsion for £Z as

TL,(2Z. Fy)= Y PEY(a). (1.0.9)
[y]eE+[T]

Then, as an analogue to (1.0.6), we restate our Theorem 1.0.1 as follows.

Theorem 1.0.1". Assume that T acts on X effectively. For Z = T'\X, as d — +00, we have
T(Z,Fg) = Tio(Z, Fg) + T, (SZ, Fg) + O(e™¢9). (1.0.10)

Moreover, T.,(Z, Fy) is a polynomial in d, and 7~'L2 (XZ, Fy) is a nice exponential polynomial in d.
Their leading terms can be determined in terms of W -invariants as in (1.0.8) .

To understand better on 7 1L,(2Z, Fy), we need to recall the results in [Miiller and Pfaff 2013a] (also
in [Miiller and Pfaff 2013b] for the hyperbolic case) for a compact locally symmetric manifold Z. They
gave a proof to (1.0.6) using Selberg’s trace formula, and then showed that 77,(Z, F;) is a polynomial
in d. Theorem 1.0.1” here is an extension of their results, which shows a nontrivial contribution from X Z.

Let us give more detail on the results in [Miiller and Pfaff 2013a]. Let DX-Fa:2 pe the G-invariant
Laplacian operator on X which is the lift of DZ-F4-2 For t > 0, let th Fa (x, x") denote the heat kernel
of %DX +Fa:2 with respect to the Riemannian volume element on X. For ¢ > 0, the identity orbital integral
Ix(Eg4,t) of p,X’Fd is defined as

Ty (Fy, 1) = i TE08Fas [(NA'(T?X) — %)th’Fd (x, x)], (1.0.11)

where NA*(TxX) is the number operator on A*(7} X), and the right-hand side of (1.0.11) is independent
of the choice of x € X. Let MZx(F,;,s), s € C, denote the Mellin transform (see (7.2.57)) of Zx (F;,t),
which is holomorphic at 0. Set

PIx(Fy) = a—iL:OMzX (Fy,s). (1.0.12)

The L,-torsion is defined as
T12(Z, Fg) = Vol(Z)PZx (Fy). (1.0.13)
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Using essentially Harish-Chandra’s Plancherel theorem for Zy (Fy,t), Miiller and Pfaff [2013a]
managed to show that PZy (Fy) is a polynomial in d (for d large enough). Moreover, if A9 = 0, there
exists a constant C # 0 such that

PIx(Fy)=C,ddimE, + R(d), (1.0.14)

where R(d) is a polynomial in d of degree no greater than deg dim E 4. They also gave concrete formulae
for C in some model cases [Miiller and Pfaft 2013a, Corollaries 1.4 and 1.5].

In Section 7.4, we use instead an explicit geometric formula of [Bismut 2011, Theorem 6.1.1] for
semisimple orbital integrals to give a different computation on PZy (F;). In Section 7.5, we verify that
our computational results coincide with the ones of [Miiller and Pfaff 2013a].

For the orbifold case, i.e., I' contains nontrivial elliptic elements, a key ingredient to Theorem 1.0.1 is
to evaluate explicitly the elliptic orbital integrals associated with [y] € ET[I]. For that purpose, we make
use of the full power of Bismut’s formula [2011, Theorem 6.1.1]. Note that if Z is a hyperbolic orbifold,
i.e., G = Spin(1, 2n + 1), the result in Theorem 1.0.1 (or Theorem 1.0.1") was obtained in [Fedosova
2015, Theorem 1.1], where she evaluated the elliptic orbital integrals using Harish-Chandra’s Plancherel
theorem.

In fact, we obtain in this paper a refined version of Theorem 1.0.1, where we give more explicit
descriptions of the exponential polynomials PEY1(d) and %LZ(EZ , Fy). Before stating this refined
result, we need to introduce some notation and facts.

Fix k € T, and let X(k) denote the fixed-point set of k acting on X. Then X(k) is a connected
symmetric space with §(X(k)) = 1. Let Z(k)° be the identity component of the centralizer Z (k) of k
in G. Then X (k) = Z(k)°/K(k)°, with K(k)® = Z(k)° N K. Let U(k) denote the centralizer of k
in U with Lie algebra u(k) C u. Then U(k)? is naturally a compact form of Z(k)°, and the triplet
(X(k), Z(k)°, U(k)®) becomes a smaller version of (X, G, U), except that Z(k)° may have noncompact
center. Note that Ty is also a maximal torus of U(k)?. We get the splitting of roots

R(u,ty) = R(u(k), ty) U R(ut(k), ty), (1.0.15)

where ut (k) is the orthogonal space of u(k) in u with respect to B. Let Rt (u(k), ty), RT (ut(k), ty)
be the induced positive roots, and let py, pyk) denote the half of the sum of the roots in R T(u, ty),
R (u(k), ty) respectively.

Let W(uc, ty,c) be the Weyl group associated with the pair (u, tyy). Put

W (k) = {w € W(ue, tye) | o (R (u(k), ty)) € RT (u, ty)}. (1.0.16)
Ifoe Wl} (k), let (o) denote its sign. For u € P44 (U), set

éO—(,UV'}_;Ou)"'pu (k) k
Myert @t k), ¢) Ea (k) — 1) ’

ol (0. 11) = £(0) (1.0.17)

where & is the character of Ty with (dominant) weight 277 +/—1c. It is clear that (p,g (0,dX + Ap) is an
oscillating term of the form ¢y e?” ﬁQd, with ¢; € C*, ¢ € R. If k is of finite order, then ¢; € Q.
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By an equivalent definition of nondegeneracy in Definition 7.3.1, for o € Wl} (k), oA is a nondegenerate
dominant weight of U(k)° with respect to 6| Z(k)o- Let E g 4 denote the unitary representations of U (k)°
(up to a finite central extension) with highest weight doA + 0 (Ao + pu) — puk), @ €N, and let {F(f’d tden
be the corresponding sequence of flat vector bundles on X (k).

Now we state our second main theorem, which refines Theorem 1.0.1.

Theorem 1.0.2. Assume that §(G) = 1.

(1) If ' C G is a cocompact discrete subgroup and y € U is elliptic, let S(y) denote the finite subgroup
of T' N\ Z(y) which acts on X(y) trivially. Then there exists a constant ¢ > 0, and, for each [y] € ET[T)],
there exists a nice exponential polynomial in d, denoted by PEx ,(Fy), such that, for Z = I'\ X, as
d — 400, we have

Vol(Z)
|S(D)]

Vol(I' N Z(y)\ X (v))
IS

T(Z,Fy) = PIx(Fa)+ Y PEx .y (Fg) +0(e™%).  (1.0.18)

[yleE+[T]

(2) Fix an elliptic [y] € ET[T']. Then PEx,, (F;) depends only on the conjugacy class of y in G and is
independent of the lattice T. If y is conjugate to k € T by an element in G, then we have the identity

Pexy(Fa)= Y of (0.dA+ )Py (FE,). (1.0.19)
oeWl (k)

Theorem 1.0.1 now is just a consequence of (1.0.18). Note that, for [y] € E*[I'], the (compact)
orbifold I' N Z(y)\ X (y) represents an orbifold stratum in X Z (see (3.4.13), Remark 3.4.3). An important
observation on (1.0.18) is that the sequence {7 (Z, F;)}4en encodes the volume information on Z as well
as on X Z. Moreover, combining (1.0.13), (1.0.18) with (1.0.19), we justify that the quantity 7~'L2 (ZZ,Fy)
defined by (1.0.9) is indeed a linear combination of L,-torsions such as 772(I' N Z(y)\X(y), F;" 2)
for XZ.

Now we explain our approach to Theorem 1.0.2. Let us start with defining PEx , (Fz) and (1.0.18).
In fact, T(Z, F;) can be rewritten as the derivative at 0 of the Mellin transform of

Trs[(NA'<T*Z) . %) exp(—@)], t>0, (1.0.20)

where Try| - | denotes the supertrace with respect to the Z,-grading on A*(T*Z).

If y € G is semisimple, let £, (F;,t) denote the orbital integral (see Section 3.3) of the Schwartz
kernel of (NA.(T*X) —m/2) exp(—t DX-Fa-2 /2) associated with y. Note that in Ex,y(Fg,t), we take the
supertrace of the endomorphism on A*(T*X) ® F (see (4.1.16)). Moreover, Ex,, (Fy,t) depends only
on the conjugacy class of y in G. Let MEx ,,(Fy, s) denote the Mellin transform of Ex , (Fy.1),t >0
with appropriate s € C. If y = 1, they are just Zy (F;,t), MZx(Fy,s) introduced in (1.0.11)—(1.0.12).

We use the notation in Section 3.5. Let [I'] denote the set of the conjugacy classes in I'. By applying
Selberg’s trace formula to Z = I'\ X, we get

Tr, [(NA-(T*Z) _ %> exp(_w _ Z Vol(T' N Z(y)\X(y))

& F;,1). 1.0.21
7 |S(y)| X,y( d ) ( )

[vlelT]
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Now we compare (1.0.18) with (1.0.21). Then a proof to (1.0.18) mainly includes the following three parts:

(1) We show that if [y] € E[I'], then ME&x ,, (F4, s) admits a meromorphic extension to s € C which is
holomorphic at s = 0. Thus we define

F)
PExy(Fa) = 5 SZOng,y(Fd,s)- (1.0.22)

Such consideration also holds for an arbitrary elliptic element y € G.

(2) If y € I is elliptic, then it is of finite order, and from (1.0.19), we get that PEx ,, (Fy) is a nice
exponential polynomial in d for d large enough.

(3) We prove that all the terms in the sum of (1.0.21) associated with nonelliptic [y] € [T"] contribute as
O™ in T(Z, Fy).

Indeed, to handle the contribution of the nonelliptic [y] € [I'], we use a spectral gap of D%-Fa>2 dye to
the nondegeneracy of A. By [Bismut et al. 2011, Théoreme 3.2], and [Bismut et al. 2017, Theorem 4.4]
which holds for a more general setting (see also [Miiller and Pfaff 2013a, Proposition 7.5, Corollary 7.6]
for a proof by using representation theory for symmetric spaces), there exist constants C > 0, ¢ > 0 such
that, for d e N,

D% Fa2 > g% _c. (1.0.23)

That also explains (1.0.4) for large d. Part (3) follows essentially from the same arguments as in [Miiller
and Pfaff 2013a, Section 8] and [Bismut et al. 2017, Sections 6.6, 7.2, Remarks 7.8, 8.15] which makes
good use of (1.0.23) and the fact that nonelliptic elements in I' admit a uniform strictly positive lower
bound for their displacement distances on X.

For elliptic y € I', we apply Bismut’s formula [2011, Theorem 6.1.1] to evaluate £x ,, (Fg, ). Then
we can write £x,,, (Fg, ) as a Gaussian-like integral with the integrand given as a product of an analytic
function determined by the adjoint action of y on Lie algebras and the character y g, of the representa-
tion E4. By coordinating these two factors, especially using all sorts of character formulae for yg,, we
can integrate it out. We show that £x , (Fy, 1) is a finite sum of the terms

t_j_%e_t(CdH))zQ(d)» (1.0.24)

where j € N, ¢ # 0, b are real constants, and Q(d) is a nice exponential polynomial in d. It is crucial
that ¢ # 0. Indeed, we will see in Section 7.3 that this quantity ¢ measures the difference between the
representations (E, p£4) and (E,, pE* 0 6).

As a consequence of (1.0.24), PEx,,, (Fy) in (1.0.22) is well-defined, which is clearly a nice exponential
polynomial in d (for d large enough). The details on these computations are carried out in Section 7.2,
where we apply the techniques inspired by the computations in Shen’s approach [2018, Section 7] to the
Fried conjecture and also in its extension to orbifold case in [Shen and Yu 2022].

The formula (1.0.19) gives a new and geometric approach to the above results on PEx , (Fy). It is
nicer in the sense that each PZy ) (F, (f ) 1s already well understood and related to the L»-torsions for the
singular stratum of Z. For proving it, we apply a geometric localization formula for x ,, (Fy4, t) as follows.
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Theorem 1.0.3. Assume that 5(G) = 1. We use the same notation as in Theorem 1.0.2. Lety =k € T.
Then, fort >0, d €N,
Exy(Fg.t)= Y @f (0.dA+Ao)Ixy(FE,.1). (1.0.25)
o€ W(} (k)

After taking the Mellin transform on both sides of (1.0.25), we get exactly (1.0.19). In Theorem 6.0.1,
we will show a general version of the above geometric localization formula for Ex , (Fy, ) associated
with any semisimple element y € G.

Our approach to Theorem 1.0.3 is a more delicate application of Bismut’s formula [2011, Theorem 6.1.1].
As we said, £x,, (Fg,1), IX(k)(Ff’d, t) are equal to integrals of some integrands involving y g, XEX
respectively. To relate the two sides of (1.0.25), we employ a generalized version of the Kirillov character
formula (see Theorem 5.4.4), which gives an explicit way of decomposing y g, |y)o into a sum of y g«
o€ W(} (k). This character formula was proved by Duflo, Heckman and Vergne [Duflo et al. 1984, ﬁ'.3,
Theorem (7)] under a general setting, and we will recall its special case for our need in Section 5.4. Then
we expand the integral formula for E ,, (Fy,t) carefully into a sum of certain integrals involving y EX
o€ W(} (k), which correspond to IX(k)(F(f,d, t) via Bismut’s formula. This way, we prove (1.0.25).

Theorem 1.0.3 can be interpreted as follows: the action of elliptic element y on X could lead to a
geometric localization onto its fixed-point set X (k) when we evaluate the orbital integrals. Even though
we only prove it for a very restrictive situation, we still expect such phenomenon in general due to a
geometric formulation for the semisimple orbital integrals; see [Bismut 2011, Chapter 4].

Finally, we note that in [Bismut et al. 2017, Section 8], the authors explained well how to use Bismut’s
formula for semisimple orbital integrals to study the asymptotic analytic torsion. Here, we go one step fur-
ther in that direction to get a refined evaluation on it. Bergeron and Venkatesh [2013] also studied the asymp-
totic analytic torsion but under a totally different setting. In [Liu 2018; 2021], the asymptotic equivariant
analytic torsion for a locally symmetric space was studied, and the oscillating terms also appeared naturally
in that case. Moreover, Finski [2018, Theorem 1.5] obtained the full asymptotic expansion of the holomor-
phic analytic torsions for the tensor powers of a given positive line bundle over a compact complex orbifold.

This paper is organized as follows. In Section 2, we recall the definition of Ray—Singer analytic torsion
for compact orbifolds. We also include a brief introduction to the orbifolds at beginning.

In Section 3, we introduce the explicit geometric formula of Bismut for semisimple orbital integrals
and the Selberg’s trace formula for compact locally symmetric orbifolds. They are the main tools to study
the analytic torsions in this paper.

In Section 4, we give a vanishing theorem for 7(Z, F), so that we only need to focus on the case
8(G)=1.

In Section 5, we study the Lie algebra of G provided §(G) = 1. Furthermore, we introduce a generalized
Kirillov formula for compact Lie groups.

In Section 6, we prove a general version of Theorem 1.0.3.

In Section 7, given the sequence { F,; }sen, We compute explicitly Ex ,, (Fy,t) in terms of root systems
for elliptic y; in particular, we prove (1.0.24). Then we give the formulae for PZx (F;), PEx,y (Fg).

Finally, in Section 8, we introduce the spectral gap (1.0.23) and we give a proof of Theorem 1.0.2.
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In this paper, if V is a real vector space and if E is a complex vector space, we will use the symbol
V ® E to denote the complex vector space V ®g E. If both V and E are complex vector spaces, then
V ® E is just the usual tensor over C.

2. Ray-Singer analytic torsion

In this section, we recall the definitions of the orbifold and the orbifold vector bundle. We also refer
to [Satake 1956; 1957; Adem et al. 2007, Chapter 1] for more details. Then we recall the definition of
Ray-Singer analytic torsion for compact orbifolds, where we refer to [Ma 2005; Shen and Yu 2022] for
more details. In particular, Shen and Yu [2022] extended many important results on real analytic torsion
from the manifold setting to the orbifold setting.

2.1. Orbifolds and orbifold vector bundles. et Z be a topological space.

Definition 2.1.1. If U is a connected open subset of Z, an orbifold chart for U is a triple (17 .y, Gy)
such that

o U is a connected open set of some R and Gy is a finite group acting smoothly and effectively on
U on the left;

e my is a continuous surjective U — U, which is invariant by a Gy -action;
¢ my induces a homeomorphism between GU\(7 and U.

If V C U is a connected open subset, an embedding of orbifold chart for the inclusion i : V — U is
an orbifold chart (17, my, Gy) for V and an orbifold chart ((7 , 7y, Gy) for U together with a smooth
embedding ¢y vy : V — U such that the following diagram commutes:

~  ¢uv -~

Vo, —U (2.1.1)

|l

V.U

If Uy, U, are two connected open subsets of Z with the charts (l71, mu,, Gu,). (ﬁz,nyz, Gu,)
respectively, we say that these two orbifold charts are compatible if, for any point z € U; N U, there exists
an open connected neighborhood V' C Uy N U, of z with an orbifold chart (17, v, Gy) such that there
exist two embeddings of orbifold charts ¢y, v : (V,7y,Gy) — (U, mu,, Gu,), du,v : (V,7y,Gy) —
(l~]2, ny,, Gy,). In this case, the diffeomorphism ¢y, y o ¢511V : ¢U1V(I7) — ¢U2V(I7) is called a
coordinate transformation.

Definition 2.1.2. An orbifold atlas on Z is couple (i,{) consisting of a cover U of open connected
subsets of Z and a family of compatible orbifold charts U= {(l~] .y, Gu)lveu-

An orbifold atlas (V,V) is called a refinement of (U4,{) if V is a refinement of ¢ and if every
orbifold chart in V has an embedding into some orbifold chart in /. Two orbifold atlas are said to be
equivalent if they have a common refinement, and the equivalent class of an orbifold atlas is called an
orbifold structure on Z.
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An orbifold is a second countable Hausdorff space equipped with an orbifold structure. It is said to
have dimension m if all the orbifold charts which define the orbifold structure are of dimension m.

If Z,Y are two orbifolds, a smooth map f : Z — Y is a continuous map from Z to Y such that it lifts
locally to an equivariant smooth map from an orbifold chart of Z to any orbifold chart of Y. In this way,
we can define the notion of smooth functions and the smooth action of Lie groups.

By [Shen and Yu 2022, Proposition 2.12], if " is discrete group acting smoothly and properly dis-
continuously on the left on an orbifold X, then Z = I'\ X has a canonical orbifold structure induced
from X.

In the sequel, let Z be an orbifold with an orbifold structure given by (I, ). If z € Z, there exists an
open connected neighborhood U, of z with a compatible orbifold chart (U, G, 7;) such that ;7 1(2)
contains only one point x € U,. Then G, does not depend on the choice of such open connected
neighborhood (up to canonical isomorphisms compatible with the orbifold structure), and G is called
the local group at z.

Put

Zreg:{zez | G; :{1}}’ Zsing:{ZEZ |GZ 7&{1}} (2.1.2)

Then Z.e, is naturally a smooth manifold. But Zg;, is not necessarily an orbifold. Kawasaki [1978,
Section 2] explained two different methods to view Zg,e as an immersed image of a disjoint union of
orbifolds. We just recall that method which appears naturally in Kawasaki’s local index theorems for
orbifolds [1978; 1979].

If z € Zging, let 1 = (19, (hb),..., (hlzz) be the conjugacy classes in G,. Put

SZ ={(z,(h{) |2 € Zgng, j =1,..., 15} (2.1.3)

Let (U 2, Gz, 1) be the local orbifold chart for z € Zgje such that n_l (z) contains only one point. For
j=1,...,1;,let U, 7kt - UZ be the fixed-point set of hZ, which is a submanifold of UZ Note that
U; ik C ngg Let Zg. (h) be the centralizer of 4% in G,. Then ZgG, (h]) acts smoothly on gk ?. Put

K! =ker(Zg.(h)) — Aut(ﬁzhz )). (2.1.4)

Then ((~th£ .ZG. (hé)/Kg, Jrg : ﬁzhé — ﬁzhé /Zg, (hi)) defines an orbifold chart near (z, (hi)) eX”Z.
They form an orbifold structure for ©Z. Let Z/, i =1,...,I, denote the connected components of the
orbifold ¥ Z.

The integer mé =K g | is called the multiplicity of ¥Z in Z at (z, (hé)). This defines a function
m:XZ — Z4. As explained in [Kawasaki 1978, Section 1], m is locally constant on ¥Z, and let
m; € Z4 be the value of m on Z' fori =1,...,1. We call m; the multiplicity of Z in Z. We will put

7Z°=7. my=1. (2.1.5)

Remark 2.1.3. In Definition 2.1.1, for an orbifold chart, we require the action Gy on U to be effective.
To emphasize this condition, the orbifold defined above is often called an effective orbifold. In fact,
we can drop this effectiveness; then we get a general version of the (possibly ineffective) orbifold, for
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example, using the orbifold groupoid; see [Adem et al. 2007, Definition 1.38]. The point-view of orbifold
groupoid provides a unified way to deal with effective and ineffective orbifolds.

As explained in [Adem et al. 2007, Example 2.5], for global quotient groupoids (including all the
effective orbifolds and certain ineffective orbifolds), a natural stratification called the inertia groupoid
was introduced as an extension of the one Ull —0Z I defined in (2.1.3)—(2.1.5). It plays a key role in the
study of the geometry of orbifolds. We will go back to this point in Sections 3.4 and 3.5. Through this
paper, the terminology orbifold will always refer to the effective one unless otherwise stated.

We say E is an orbifold vector bundle of rank r on Z if there exists a smooth map of orbifolds m: E — Z
such that, for any U € I/ and (U Gy.my) € U, there exists an orbifold chart (U E GU , T[U) of E such
that U is an vector bundle on U of rank r equipped an effective action of GU and 7; (U Ey =2~ 1(U).
Moreover, there exists a surjective group morphism ¥y : Gg — Gy such that the action of Gg on U is
identified via ¥y with the action of Gy on U. If we have an open embedding ouy : (V, JTv, Gy)—
U, ny, Gy ), we require that it lifts to the open embedding ¢UV (I7E nV , GE) — (UE nU , GE) of
the orbifold charts of E such that ¢UV VE S UE isa morphism of vector bundles associated with
the open embedding ¢y y : VU If every Yy : GE — Gy is an isomorphism of groups, we call E a
proper orbifold vector bundle on Z.

Note that if E is proper, then the rank of £ can be extended to a locally constant function p on X£Z.
The orbifold chart of Z’ is given by the triples such as

(0, Zg.(hD) /KL 7d O — T ) 76 (h1)).

By the above definition of E, we have an orblfold chart (U E Gg = Gy, nU) such that U is a Gy-
equivariant Vector bundle on U. Then, for x € UZ Z, hJ acts on the fibers U, JE linearly, so that we can set
o(z, (h))) = TeYz [h]] Then p is really a locally constant functionon ¥Z. Fori =1,...,[, let p; be
the value of p on the component Z'. We also put pg = r.

We call s : Z — E a smooth section of E over Z if it is a smooth map between orbifolds such that
mos =1Idz. We will use C°°(Z, E) to denote the vector space of smooth sections of E over Z.

Take an orbifold chart (U ,Gy,ny) € U of Z. Then Gy acts canonically on the tangent vector
bundle TU of U. The open embeddings of orbifold charts of Z also lift to the open embeddings of their
tangent vector bundles. This way, we get a proper orbifold vector bundle T'Z on Z, and the projection
w:TZ — Z is just given by the obvious projection TU — U. We call TZ the tangent vector bundle
of Z. If we equipped T'Z with Euclidean metric g7 4, we will call Z a Riemannian orbifold and call
gTZ a Riemannian metric of Z.

Let 2°(Z) denote the set of smooth differential forms of Z, which has a Z-graded structure by degrees.
The de Rham differential d Z:Q*(Z)— Q*+1(Z) is given by the family of de Rham differential operators
ayv: SZ’(U) —Qetl (U). Then we can define the de Rham complex (2*(Z), d %) of Z and the associated
de Rham cohomology H*(Z,R). By [Kawasaki 1978, Section 1], there is a natural isomorphism between
H*(Z,R) and the singular cohomology of the underlying topological space Z.

Now let us recall the integrals on Z. Assume that Z is compact. We may take a finite open covering
{U;}ier of the precompact orbifold charts for Z. Since Z is Hausdorff, there exists a partition of unity
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subordinate to this open cover. We can find a family of smooth functions {¢; € C°(Z)};es with values
in [0, 1] such that Supp(¢;) C U;, and that

=1 (2.1.6)
~ ~ G iel
Take ¢; = ﬂ;i (¢i) e CE°(U;)7Yi.
If « € Q"(Z,0(T Z)), let ay, be its lift on the chart (171-, my;, Gy;). We define

1 ~
= i Ay, 2.1.7
/Za EIGU,-I/aMU' 2.1.7)

By [Shen and Yu 2022, Section 3.2], if @ € ™ (Z,0(T Z)), then « is also integrable on Z g, so that

/a=/ o. (2.1.8)
z Zirea

/ da=0. (2.1.9)
Z

Alsoif o € Q*(Z,0(T Z)), we have

If (Z,gT%) is a Riemannian orbifold, we can define the integration of functions on Z with respect to
the Riemannian volume element. If we have a Hermitian orbifold vector bundle (F, hf) — (Z, gT%),
one can define the L, scalar product for the space of continuous sections of F' as usual. Then, after
completion, we get the Hilbert space L2(Z, F).

Chern—Weil theory on the characteristic forms extends to orbifolds, where their constructions are
parallel to the case of smooth manifolds. We refer to [Shen and Yu 2022, Section 3.4] for more details.
Note that the characteristic forms are not only defined on Z but also defined on £Z. The part XZ has a
nontrivial contribution in Kawasaki’s local index theorems for orbifolds [1978; 1979].

Finally, we introduce the orbifold Euler characteristic number of (Z, gT%) [Satake 1957]. Let VI % =
(vTUi }u; e be the Levi-Civita connection on 7' Z associated with gTZ. The Euler form e(TZ,VT%)

QM™(Z,0(TZ)) is given by the family of closed forms
(e(@;. VU € @"(T;. o(TT:)) 5V Yy, eur (2.1.10)

If Z is oriented, then we can view e(T Z, VT %) as a differential form on Z.
If Z is compact, set

Yorb(Z) = / e(TZ,VT%). (2.1.11)
z
By [Satake 1957, Section 3], yorr(Z) is a rational number, and it vanishes when Z is odd-dimensional.

2.2. Flat vector bundles and analytic torsions of orbifolds. If (F, V¥ is an orbifold vector bundle
over Z with a connection V¥, we call (F, VF) a flat vector bundle if the curvature R = V2 vanishes
identically on Z. A detailed discussion for the flat vector bundles on Z is given in [Shen and Yu 2022,
Sections 2.3-2.5].

Let (Z,g7%)bea compact Riemannian orbifold of dimension m. Let (F, V) be a flat complex orb-
ifold vector bundle of rank r on Z with Hermitian metric 2. Note that we do not assume that F is proper.
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Let Q°(Z, F) be the set of smooth sections of A*(T*Z)® F on Z. Let dZ be the exterior differential
acting on Q°*(Z, R).

Definition 2.2.1. Fori = 0,1,...,m, if « € Q' (Z,R), s € C®(Z, F), the operator d%-F acting on
QI(Z, F) is defined by
d“F(a®s)=(@d?a)®s+ () arViseQ T (zZ, F). (2.2.1)

Since VI>2 =0, then (Q*(Z, F),d?%°F) is a complex, which is called the de Rham complex for the
flat orbifold vector bundle (F, VF) on Z. Let H*(Z, F) denote the corresponding de Rham cohomology
group of Z valued in F, as in the case of closed manifolds, H*(Z, F) is always finite-dimensional.

Let (-, )Ae(r*z)eF,z be the Hermitian metric on A*(TZ) ® F, z € Z induced by gZTZ and hf.
Let dv be the Riemannian volume element on Z induced by gTZ. The L,-scalar product on Q*(Z, F)
is given as follows: if s, s’ € Q*(Z, F), then

(5.8") 12 = fz (5(2). 5 a2y Fr dV(Z). (222)

By (2.1.8), it will be the same if we take the integrals on Z .
Let dZ-F>* be the formal adjoint of d Z.F \ith respect to the above L,-metric on Q*(Z, F); i.e., for
s,5' € Q%Z,F),
(dZ%F*s. 5" 2 = (5.d%Fs") 2. (2.2.3)
Then d %4-F+* is a first-order differential operator acting 2°(Z, F) on which decreases the degree by 1.

Definition 2.2.2. The de Rham—Hodge operator DZ-F of Q*(Z, F) is defined as
D%F =q%F 4 qZ:Fx, (2.2.4)
It is a first-order self-adjoint elliptic differential operator acting on Q°(Z, F).
The Hodge Laplacian is

DFZ2 _ [qZF gZFx — gZ.F gZFx | gZ.FxgZF (2.2.5)

DZ,F,Z

Here, [-, -] denotes the supercommutator. Then is a second-order essentially self-adjoint nonneg-

ative elliptic operator, which preserves the degree.
The Hodge decomposition for Q°*(Z, F) still holds in this case (see [Ma 2005, Proposition 2.2; Dai
and Yu 2017, Proposition 2.1]),

Q*(Z.F) =ket(D%F2|qez. 7)) ® Mm@ F | gtz py) @Im(dZ T *geti(z 7). (22.6)
Then we have the canonical identification of vector spaces,

H*(Z,F):=ker D% T2 ~ H*(Z, F). (2.2.7)
Put

XZ. F)y=) (-1)/ dimH/(Z.F). (2.2.8)
j=0
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If F is proper, recall that the numbers p;, i = 0,...,[, are defined in previous subsection as the
extension of the rank of F. Then by [Shen and Yu 2022, Theorem 4.3], we have

Xorb(Zi)
—WI' .

1

1
WZ.F)=Y pi (2.2.9)
i=0
The right-hand side of (2.2.9) contains the nontrivial contributions from ¥ Z.

Let P denote the orthogonal projection from Q°®(Z, F) to #*(Z, F). Let %+ denote the orthogonal
subspace of H*(Z, F) in Q*(Z, F), and let (D%F>2)~1 be the inverse of D%F>2 acting on #+. Let
NA*(TZ) pe the number operator on A*(T*Z) which acts on A/ (T*Z) by multiplication of .

For s € C, 9i(s) is large enough; set

H(F)(s) = —Tis[NA T2 (pZ.F.2)=s)
1 +

o0
=—— Trs[INA T2 exp(—t D% F2)(1 = P)|e* 1 d1, (2.2.10)
I'(s) Jo

where I"(s) is the gamma function for s € C. By the short time asymptotic expansions of the heat trace
(see [Ma 2005, Proposition 2.1]), ¥ (F)(s) admits a unique meromorphic extension to s € C which is
holomorphic at s = 0.

Definition 2.2.3. Let 7(g7%, V¥, hf) € R be given by
T 2, VF hFy= 4| 9(F)s). @2.2.11)
ds s=0

The quantity 7(g7%, VE, hf) is called Ray—Singer analytic torsion associated with (F, VF hT).

By [Shen and Yu 2022, Proposition 4.6, Corollary 4.9], for an orientable closed orbifold Z, if m is even
and F is unitarily flat, then T(gTZ, vF, hF) =0; if m is odd and F is acyclic, then T(gTZ, VF, hF) is
independent of the metrics g7 # and h¥.

Now we explain how to evaluate 7 (g7 4, VF, h) in practice when F is acyclic. Using the analogous
arguments in [Bismut and Zhang 1992, Theorem 7.10, Section XI], as t — 0%, the heat supertrace
Trs[(N2 T2 — 1 /2) exp(—t DZ-F2/2)] either has a leading term as a multiple of 1/4/7 or is a small
quantity as O(+/1); see [Shen and Yu 2022, equation (4.37)]. To deal with this possible divergent term
1/ A/t in the integral of (2.2.10), we proceed as in the proof of [Bismut and Lott 1995, Theorem 3.29].
For ¢ > 0, put

be(gT%, F) = (1 + 2t8%) Trs[(N“T*Z) _ %) exp(—@)]. (2.2.12)

By [Bismut and Zhang 1992, Theorem 7.10; Bismut and Lott 1995, Theorem 2.13; Shen and Yu 2022,
Section 4.3] and since F is acyclic, as t — 0,

bi(gT%, F) = O(V1); (2.2.13)

ast — +o0,

TZ _ A L
bi(g ,F)_O(ﬁ). (2.2.14)
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By [Bismut and Lott 1995, Theorem 3.29; Shen and Yu 2022, Corollary 4.14], we have

oo dt
T(e"% vF hf) = - / be(g™%. F) (2.2.15)
0
One particular case is that if, for t > 0, we always have
o Z,F)2
Trs[(NA (T*2) _ %) exp(—[DT)] —0, (2.2.16)

then T(g7%, V¥, hF) = 0. This holds even for nonacyclic F.

3. Orbital integrals and locally symmetric spaces

In this section, we recall the geometry of the symmetric space X, and we recall an explicit geometric
formula for semisimple orbital integrals obtained in [Bismut 2011, Chapter 6] . Then, given a cocompact
discrete subgroup I' C G, we describe the orbifold structure on Z = I'\ X, and we give Selberg’s trace
formula for Z.

In this section, G is taken to be a connected linear real reductive Lie group; we do not require that
it has a compact center. Then X is a symmetric space which may have de Rham components of both
noncompact type and Euclidean type.

3.1. Real reductive Lie group. Let G be a connected linear real reductive Lie group with Lie algebra g,
and let 8 € Aut(G) be a Cartan involution. Let K be the fixed-point set of 6 in G. Then K is a maximal
compact subgroup of G, and let £ be its Lie algebra. Let p C g be the eigenspace of 6 associated with the
eigenvalue —1. The Cartan decomposition of g is given by

g=pdEL. (3.1.1)
Put m = dimp, n =dim¢.

Let B be a G- and #-invariant nondegenerate symmetric bilinear form on g, which is positive on p and
negative on €. It induces a symmetric bilinear form B* on g* which extends to a symmetric bilinear form
on A*(g*). The K-invariant bilinear form (-,-) = —B(-, 0 -) is a scalar product on g, which extends to
a scalar product on A*(g*). We will use | - | to denote the norm under this scalar product.

Let U g be the universal enveloping algebra of g. Let C® € U g be the Casimir element associated with B;
ie., if {ej}i=1 m+n 18 the dual basis of g with respect to B, then

..........

CO==> efei. (3.1.2)
We can identify U g with the algebra of left-invariant differential operators over G; then C¥9 is a second-
order differential operator, which is Ad(G)-invariant. Similarly, let C* € Ut denote the Casimir operator
associated with (¢, B).
Let 34 C g be the center of g. Put
gss = [0. 0. (3.1.3)
Then

9=13g D Gss- (3.1.4)
They are orthogonal with respect to B.
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Let Zg be the center of G, and let G be the closed analytic subgroup of G associated with gg; see
[Knapp 2002, Corollary 7.11]. Then G is the commutative product of Zg and Gg; in particular,

G = Z2Gss. (3.1.5)
Let i = +/—1 denote one square root of —1. Put
u=+—-1p@t. (3.1.6)

For simplicity, if a € p, we write ia or ~/—1la € ~/—1p C u to denote the corresponding vector.
Then u is a (real) Lie algebra, which is called the compact form of g. Then

gc = uc. 3.1.7)

Let G¢ be the complexification of G with Lie algebra gc, which is closed and linear reductive [Knapp
1986, Proposition 5.6]. Then G is the analytic subgroup of G¢ with Lie algebra g. Let U C G¢ be the
analytic subgroup associated with u. If G has compact center, i.e., 33 N p = {0}, then by [Knapp 1986,
Proposition 5.3], U is compact; since G is closed, U is a maximal compact subgroup of G¢.

Definition 3.1.1. An element y € G is said to be semisimple if there exists g € G such that

y=g(%)g™ ', aep, kekK, Adk)a=a. (3.1.8)

We call y, = ge®g~ ! and y, = gkg™! the hyperbolic and elliptic parts of y. These two parts are uniquely

determined by y. If y;, = 1, we say y is elliptic, and if y, = 1 and y, # 1, we say y is hyperbolic.

Let Z(y) be the centralizer of y in G. If v € g, let Z(v) C G be the stabilizer of v in G via the adjoint
action. Let 3(y), 3(v) be the Lie algebras of Z(y), Z(v) respectively. If y = y, v, is semisimple as above,
by [Eberlein 1996, Theorem 2.19.23; Knapp 2002, Lemma 7.36],

Z(y)=Z(yn) N Z(ye), Z(yn) = Z(Ad(g)a). (3.1.9)

By [Knapp 2002, Proposition 7.25], Z(y) is reductive (possibly with several connected components).
Set
0, = C(2)0C(g™). (3.1.10)

Then 0, defines a Cartan involution on Z(y). Let K(y) be the fixed-point set of 6, in Z(y); then
K(y)=Z(y)ngkg" (3.1.11)

Let Z(y)°, K(y)° be the connected components of the identities of Z(y), K(y) respectively. By
[Bismut 2011, Theorem 3.3.1],

Z() _ Z()°

K@y) K»°

Moreover, K(y), K(y)? are maximal compact subgroups of Z(y), Z(y)° respectively.

(3.1.12)

Taking the corresponding Lie algebras in (3.1.9), we have

3(v) =3(v) N3(Ye),  3(vn) = 3(Ad(g)a). (3.1.13)
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Let £(y) C 3(y) be the Lie algebra of K(y). Put

p(y) =5(y) N Ad(g)p. (3.1.14)
Then the Cartan decomposition of 3(y) with respect to 6, is given by
() =ty)®py). (3.1.15)

Let B;(y) denote the restriction of B on 3(y) X 3(y). Then B,y is invariant under the adjoint action of 0,
on 3(y). Moreover, B;(,) is positive on p(y) and negative on £(y). The splitting in (3.1.15) is orthogonal
with respect to Bj(y).

3.2. Symmetric space. Set
X =G/K. (3.2.1)

Then X is a smooth manifold with the smooth structure induced by G. By definition, X is diffeomorphic
to p.
Let w9 € Q1(G, g) be the canonical left-invariant 1-form on G. Then by (3.1.1),

0% = o + 0. (3.2.2)

Let p : G — X denote the obvious projection. Then p is a K-principal bundle over X. Then o' is a
connection form of this principal bundle. The associated curvature form

Q' =do' + o' o' = - 1[0’ o). (3.2.3)

If (E, p£ . hF) is a finite-dimensional unitary or Euclidean representation of K, then F = G xg E
defines a vector bundle over X equipped with a metric 4% induced by ¥ and a unitary or a Euclidean
connection VF induced by w®. Note that G acts on (F, hf,VF) — X equivariantly on the left; more
precisely, for y € G, (g,v) € G xg E, the action of y on F is represented by

y(g.v) = (yg.v) € G xg E. (3.2.4)

In particular, we have the identification
TX =G xgp, (3.2.5)

where the right-hand side is defined by the adjoint action of K on p. The bilinear form B restricting to p
gives a Riemannian metric g7%, and ! induces the associated Levi-Civita connection V7X. Then G
acts on (X, g7X) isometrically. Let d(-,-) denote the Riemannian distance on X.

Let C(G, E) denote the set of continuous map from G into E. If k € K, s € C(G, E), put

(k.5)(g) = p& (k)s(gk). (3.2.6)

Let Cx (G, E) be the set of K-invariant maps in C(G, E). Let C(X, F) denote the continuous sections
of F over X. Then

Cx(G,E)y=C(X, F). (3.2.7)
Also C°(G,E) = C®(X, F).
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The Casimir operator C? acting on C*°(G, E) preserves Cg°(G, E), so it induces an operator C 8.X
acting on C*®°(X, F). Let A”-X be the Bochner Laplacian acting on C*®° (X, F) given by V¥, and let
CYE € End(E) be the action of the Casimir C® on E via p£. The element C%¥ induces a self-adjoint
section of End(F') over X. Then

Cg,X — _AH,X + C&E' (328)

Let Ct" € End(p), C®* € End(£) be the actions of C* acting on p, £ via the adjoint actions. Moreover,
we can also view C %P as a parallel section of End(7'X).

If A € End(E) commutes with K, then it can be viewed a parallel section of End(F) over X. Let dx

be the Riemannian volume element of (X, g7%).

Definition 3.2.1. Let Eff be the Bochner-like Laplacian acting on C*° (X, F) given by
Fort >0, x,x' € X, let th(x, x") denote its heat kernel with respect to dx’.

Since 5131( is G-invariant, th (x, x’) lifts to a function p;X (g,g’) on G x G valued in End(E) such that,
forg” € G, k,k' e K,

pi(g"s.8"¢)=p¥g.&). p¥gk.g'k"y=pE*")pf (g 80" K). (3.2.10)
We set
pi(g)=p¥(l.g). (3.2.11)

Then p;Y is a K x K-invariant smooth function on G valued in End(E). We will not distinguish the heat
kernel p;X (x, x") and the function th (g) in the sequel.

3.3. Bismut’s formula for semisimple orbital integrals. Let dg be the left-invariant Haar measure on G
induced by (g, (-,-)). Since G is unimodular, dg is also right-invariant. Let d k be the Haar measure
on K induced by —B|¢; then

dg =dxdk. (3.3.1)

Now let y € G be a semisimple element given as in (3.1.8).

By [Eberlein 1996, Definition 2.19.21; Bismut 2011, Theorem 3.1.2], y € G is semisimple if and
only if the displacement function X > x — d(x, yx) on X associated with y can reach its minimum
my > 01in X. In this case, the minimizing set X (y) of this displacement function is a geodesically convex
submanifold of X, and by [Bismut 2011, Theorem 3.3.1],

L Z0° _Z()

XOV= K00 = Koy

(3.3.2)

Moreover, we have
my = lal. (3.3.3)
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Let dy be the Riemannian volume element of X(y), and let dz be the bi-invariant Haar measure on
Z(y) induced by B;(,). Let dk(y) be the Haar measure on K(y) such that

dz =dydk(y). (3.3.4)

Let Vol(K(y)\ K) be the volume of K(y)\K with respect to dk, dk(y). Then we have
Vol(K)

Vol(K(y)\K) = W. (3.3.5)
Let dv be the G-left invariant measure on Z(y)\G such that
dg =dz dv. (3.3.6)
By [Bismut 2011, Definition 4.2.2, Proposition 4.4.2], for ¢ > 0, the orbital integral
TrlV] [exp(—tﬁff)] = ! T [th(v_1 yv)] dv (3.3.7)

Vol(K(»)\K) Jzon6

is well-defined. As indicated by the notation, it only depends on the conjugacy class [y] of y in G.

Using the theory of hypoelliptic Laplacian and the techniques from local index theory, Bismut obtained
an explicit geometric formula for TrlY] [exp(—tﬁff )] in [Bismut 2011, Theorem 6.1.1] as well as its
extension to the wave operators of L;’f [Bismut 2011, Section 6.3]. Now we describe in detail this formula.
We may and we will assume that

y=¢%, acp, kekK, Adk)a=a. (3.3.8)
Put
30 =3(a), po=kerad(a)Nyp, ¢ =kerad(a)Nt. (3.3.9

Let 33‘, pol, Eol be the orthogonal vector spaces to 39, Po, £o in g, p, € with respect to B. Then
30 =Po®to, 3y =py Dy (3.3.10)

By [Bismut 2011, equation (3.3.6)],
3(y) =30N3(k). (3.3.11)

Also p(y), €(y) are subspaces of pg, £y respectively. Let 30L(y), pol(y), Eé () be the orthogonal spaces
to 3(y). p(y), &(y) in 30, po. to. Then

() =py () @G (»). (3.3.12)

Also the action ad(a) gives an isomorphism between pé‘ and E(J)-.

For Y(f € t(y), ad(YOB) preserves p(y), &(y), p(J)-(y), E(J)- (), and it is an antisymmetric endomorphism
with respect to the scalar product.

Recall that the function A is given by

x/2
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Let H be a finite-dimensional Hermitian vector space. If B € End(H) is self-adjoint, then

B/2
sinh(B/2)
is a self-adjoint positive endomorphism. Put
~ B/2
AB) =det 3| B2 _]. (3.3.14)
sinh(B/2)

In (3.3.14), the square root is taken to be the positive square root.
If YOE € £(y), as explained in [Bismut 2011, p. 105], the following function A(Y(f) has a natural square
root that is analytic in Y(f ct(y):

. 1 det(1 —exp(—i ad(Yy)) Ad(k))| )
AYy) = . - ¥ . (3.3.15)
det(1 — Ad(k))lzé(y) det(1 —exp(—i ad(Y)) Ad(k))|p(%(y)
Its square root is denoted by
[ 1 ' det(1 —exp(—i ad(Y{)) AR gt () } 3 3316
det(1 = Ad(k))[;1 () det(1 —exp(—i ad(Yg)) Ad(k)) ok )
The value of (3.3.16) at Y{ = 0 is taken to be such that
! (3.3.17)
det(1 — Ad(k)) |pé(y)
We recall an important function J,, defined in [Bismut 2011, equation (5.5.5)].
Definition 3.3.1. Let Jy(YOE) be the analytic function of YOE € ¢(y) given by
o 1 Al ad(Y) o0
Jy(Yp) = 1= ¢
|det(1 — Ad(y))[;1]2 AG ad(Yp)ley))
. [ 1 det(1 — exp(—i ad(Yy)) Ad(k))|%(y) i|§ (3318)
det(1—Ad(k))| ;1 () det(1 —exp(—i ad(Yy)) Ad(K))],1 )
By [Bismut 2011, equation (6.1.1)], there exist C), > 0, ¢;, > 0 such that, if YOE € t(y),
1y (Y] < CyecrI¥ol, (3.3.19)

Put p =dimp(y), g = dim¥(y). Then r = dim3(y) = p + ¢g. By [Bismut 2011, Theorem 6.1.1], for
t > 0, we have
_lal? €2 13
17§

= | 1, 0HTE o (k) exp(—ipE (V) —tA)]e™ 2 dYOq. (3.3.20)
Qrt)2 Je) (2mr)2

Remark 3.3.2. A generalization of Bismut’s formula (3.3.20) to the twisted case is obtained in [Liu 2018;
2019]. An extension of this formula for considering arbitrary elements in the center of an enveloping
algebra instead of the Casimir operator (3.2.8) was obtained in [Bismut and Shen 2022].

e

Trl] [exp(—tﬁff)] =
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3.4. Compact locally symmetric spaces. Let I" be a cocompact discrete subgroup of G. Then I acts on X
isometrically and properly discontinuously. Then Z = I'\ X is compact second countable Hausdorff space.
If x € X, put

Iy={yel|yx=x} (3.4.1)
Then Iy is a finite subgroup of I'. Put
= inf_d(x, . 342
re= infd(x.yx) (342)
Then we always have rx > 0. Set
x = B(X, %x) CX. (3.4.3)
If xe X, y €T, we have
ryx =TIx, Uy_x :)/Ux. (3.4.4)

It is clear that I'x\ Uy can identified with a connected open subset of Z.
Set

S = ker(I" — Diffeo(X)) = I Nker(K 2% Aut(p)). (3.4.5)

Then S is a finite subgroup of I' N K and a normal subgroup of T".

Remark 3.4.1. Note that G is a connected noncompact simple linear Lie group. Then

S=ZgNI'NK. (3.4.6)
Put
I'=r/S. (3.4.7)

Then I' acts on X effectively and we have Z = I'"\ X.
If x € X, we have

SCTly, T.L=T,/S. (3.4.8)

Then the orbifold charts (Uy, '}, 7y : Uy — I, \Ux)xex together with the action of I'” on these charts
give an (effective) orbifold structure for Z, so that Z = I'\ X is a compact orbifold with a Riemannian
metric g7 £ induced by g7X.

By [Selberg 1960, Lemma 1], if y € T, then y is semisimple. Let [I] denote the set of the conjugacy
classes of T'. If y € T, we say [y] € [I'] is an elliptic class if y is elliptic. Let E[I'] C [I'] be the set of
elliptic classes. Then E[I'] is always a finite set. If E[I"] only contains the trivial conjugacy class [1]; i.e.,
T is torsion free, then Z is compact smooth manifold.

Let [I''] be the set of conjugacy classes in I"/, and let E[I"'] denote the set of elliptic classes in [I'']. If
y' € I/, let Zr/(y') denote the centralizer of " in I'/, and let [y’]” denote the conjugacy class of y in I,
If y’ € T is elliptic, let X(y’) be its fixed-point set in X on which Zp/(y’) acts isometrically and properly
discontinuously; see [Selberg 1960, Lemma 2]. Note that if y € " is a lift of y” € T, then X(y) = X(y),
and y is elliptic if and only if y’ is elliptic.
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Proposition 3.4.2. We have
Zsing = F,\F/( U X()//)) cZ. (349)

[y’V €E[I"I\{1}
Moreover, we have
>Z= |J zZro)\xo). (3.4.10)
[’V €E[I"I\{1}
Note that the right-hand side of (3.4.10) is a disjoint union of compact orbifolds.
If y' €T, put
S'(y") = ker(Z1/(y") — Diffeo(X(y"))). (3.4.11)

Then |S’(y")| is the multiplicity of the connected component Zy/(y' )\X(y') in 2 Z.

Proof. Note that z € Z with a lift x € X belongs to Zgy, if and only if the stabilizer '\, is nontrivial.
Thus x is a fixed point of some y’ € I'/, from which (3.4.9) follows. By definition in Section 2.1, we get
the rest of this proposition. O

Note that '\ G is a compact smooth homogeneous space equipped with a right action of K. Moreover,
the action of K is almost free; i.e., for each g € I'\ G, the stabilizer Kz is finite. Then the quotient space
(I'\G)/K also has a natural orbifold structure, which, after examining the local charts, is equivalent to Z.

Let d g be the volume element on I'\ G induced by dg. By (3.3.1), we get

Vol(K)
|S|

In the context of geometry, we have many interesting cases where S = {1}. For instance, given

Vol(I'\G) = Vol(Z). (3.4.12)

a Riemannian symmetric space (X, g7X) of noncompact type, let G = Isom(X)° be the connected
component of identity of the Lie group of isometries of X. By [Eberlein 1996, Proposition 2.1.1], G is a
semisimple Lie group with trivial center (which might not be linear, but we do not need that linearity for
the geometry of Z). We refer to [Eberlein 1996, Chapter 2; Bismut 2011, Chapter 3] for more details. This
way, any subgroup of G acts on X effectively. In particular, if I" is a cocompact discrete subgroup of G,
then Z = I'\ X is a compact good orbifold with the orbifold fundamental group I'. By (3.4.10), we have

>Z= |J TnzZm\Xx@»). (3.4.13)
[yleE[T]\{1}
In general, by [Helgason 1978, Chapter V, §4, Theorem 4.1], G = Isom(X = G/K )0 if and only if K
acts on p effectively.

Remark 3.4.3. Note that, as mentioned in Remark 2.1.3, when S # {1}, we can also consider Z = I'\ X
as an ineffective orbifold by taking the action of I" instead of I'” on the local charts. This way, the role of
the above Z U X Z is replaced by the inertia groupoid defined in [Adem et al. 2007, Example 2.5], which
is exactly

L rnze)\xm). (3.4.14)
[y]€E[T]



FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS FOR COMPACT LOCALLY SYMMETRIC ORBIFOLDS 1283

It is a very natural object to use in the context here, for instance, for the Selberg’s trace formula in the
next subsection. In the problems we are concerned with, these two point-views on Z are equivalent.

If p : T” — GL(CK) is a representation of I'/, which can be viewed as a representation of I" via the
projection I' — I'" = T'/S, then F = I\ (X x C¥) is a proper flat orbifold vector bundle on Z with the
flat connection V¥>/ induced from the exterior differential 4% on C¥-valued functions. By [Shen and
Yu 2022, Theorem 2.35], all the proper orbifold vector bundles on Z of rank k come from this.

Nowletp: ' — GL(Ck ) be a representation of I"; we do not assume that it comes from a representation
of I'". We still have a flat orbifold vector bundle (F = '\ (X x Cky, vF:/) on Z, which may not be
proper in general. Note that " acts on C*°(X, C¥) so that if ¢ € C®(X,C¥), y €T, then

(ye)(x) = p(y)e(y~'x). (3.4.15)

Let C®(X, C*)T denote the T-invariant sections in C % (X, C¥). Then
C®(Z,F)=C>®(X,CHT. (3.4.16)

Definition 3.4.4. Let (V, p¥) be the isotypic component of (C¥, p|g) corresponding to the trivial repre-
sentation of S on C, i.e., the maximal S-invariant subspace of Ck via p. Set

FPr=T\(X xV). (3.4.17)
It is clear that FP" is a proper flat orbifold vector bundle on Z.

Proposition 3.4.5. We have
C>®(Z,F)=C>(Z, F™). (3.4.18)

In particular, if p|s : S — GL(Ck ) does not have the isotypic component of the trivial representation
of S on C, then
C>®(Z,F)=1{0}. (3.4.19)

Let (E, p¥) be a finite-dimensional complex representation of G. When restricting to T, K, we get
the corresponding representations of I', K respectively, which are still denoted by p£. As discussed
in Section 3.2, associated with the K-representation (E, p£) we define a homogeneous vector bundle
F = G xg E on X. Moreover, G acts on F' equivariantly. By taking a I"-quotient on the left, it descends
to an orbifold vector bundle on Z, which we still denote by the same notation.

The map (g,v) € G xg E — (pg, p£ (g)v) € X x E gives a canonical trivialization of F over X. This
trivialization provides a flat connection VX-¥>/ for F — X, which is G-invariant. Then it descends to a
flat connection VZ-F+/ on the orbifold vector bundle F over Z. Moreover, the above trivialization of
F — X implies that the flat orbifold vector bundle (F, VZ-F-/) is exactly the one given by I'\(X x E)
with the flat connection V¥>/ induced by dX. We will always use the notation V¥ -/ for the above flat
connection. By (3.2.7), (3.4.16), we get

C®(Z,F)=CX(G,E). (3.4.20)
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3.5. Selberg’s trace formula. Let Z be the compact locally symmetric space discussed in Section 3.4,
and let (F,hf,VF) be a Hermitian vector bundle on X defined by a unitary representation (E, p%)
of K. As said before, (F, ht vF ) descends to a Hermitian orbifold vector bundle on Z. Recall the
Bochner-like Laplacian ﬁ;’f is defined by (3.2.9). Since it commutes with G, it descends to a Bochner-like
Laplacian Ef acting on C*°(Z, F).

Here the convergences of the integrals and infinite sums are already guaranteed by the results in [Bismut
2011, Chapters 2, 4; Shen 2018, Section 4D].

For ¢t > 0, let ptZ(z, z'), z,z' € Z, be the heat kernel of ﬁf over Z with respect to dz’. If z, z’ are

identified with their lifts in X, then

1 B 1
piz.2) = S S ovpf ) = S > ¥y (3.5.1)
yel yel

Note that the action of y on F,—1, or on the metric dual of F;/ is given as in (3.2.4).
Since Z is compact, for ¢ > 0, exp(—tﬁf ) is trace class. We have

Tr[exp(—tﬁf)] =/ZTrF[ptZ(Z,Z)] dz. (3.5.2)

Combining (3.2.10), (3.2.11), (3.4.12) and (3.5.1), (3.5.2), and proceeding as in [Bismut 2011, equa-
tions (4.8.8)—(4.8.12)], we get

1
T [pX (e 'ye)ds
Vol(K) r\G ; !

. Vol(I' N Z(y)\Z(y))
= 2 Vol(K(y))

Trlexp(—t£5)] =

Trl exp(—1£5)]. (3.5.3)

[v]elT]

Take y € I'. Recall that X(y) = Z(y)/K(y) defined in Section 3.3. Then K(y) acts on Z(y) on the
right, which induces an action on I' N Z(y)\ Z(y) on the right. Set

S(y) = ker(I' N Z(y) — Diffeo(X(y))). (3.5.4)

Then S(y) represents the isotropy group of the principal orbit type for the right action of K(y) on
I'NZ(y)\Z(y). As in (3.4.12), we have

Vol(K(y))

Vol N ZN\Zr) = =5

Vol(T' N Z()\X (). (3.5.5)

Theorem 3.5.1. Fort > 0, we have the identity

Vol(I'NZ X
Texp(—1£)] = Y = ( |S((V))|\ ) gyt lexp(—t£X)]. (3.5.6)
[y]er] Y
Proof. This is a direct consequence of (3.5.3) and (3.5.5). O

In the case where S = 1, the trace formula (3.5.6) shows clearly the different contributions from Z
and from each components of ¥Z. Then combining (3.4.10), (3.5.6) with the results in [Bismut 2011,
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Theorem 7.8.2; Liu 2018, Theorem 7.7.1], we can recover (2.2.9) for Z. If we use the same settings as in
[Bismut 2011, Sections 7.1, 7.2] and we use instead the results in Theorem 7.7.1 of that work, then we
can recover the Kawasaki’s local index theorem [1979] for Z. By taking account of Remarks 2.1.3 and
3.4.3, the above considerations also hold even for S # {1}.

4. Analytic torsions for compact locally symmetric spaces

In this section, we explain how to make use of Bismut’s formula (3.3.20) and Selberg’s trace formula
(3.5.6) to study the analytic torsions of Z. We continue using the same settings as in Section 3. We will
see that by a vanishing result on the analytic torsion, only the case §(G) = 1 remains interesting. For
studying this case, more tools will be introduced in Sections 5 and 6.

4.1. A vanishing result on the analytic torsions. Recall that G is a connected linear real reductive Lie
group. Recall that 34 is the center of g. Set

3p=3Np, e=3NE 4.1.1)
Then
30 =3 D3, Zc =exp(3p)(Zc NK). (4.1.2)
Let T be a maximal torus of K with Lie algebra t; put
b={fepl|l/f =0} (4.1.3)

It is clear that
3p Cb. 4.1.4)

Put h = b @ t. Then b is a Cartan subalgebra of g. Let H be analytic subgroup of G associated with b.
Then it is also a Cartan subgroup of G; see [Knapp 1986, p. 129 and Theorem 5.22(b)]. Moreover, dim t
is just the complex rank of K, and dim b is the complex rank of G.

Definition 4.1.1. Using the above notation, the deficiency of G, or the fundamental rank of G is defined as
0(G) =1ke G —rke K = dimp b. (4.1.5)
The number m — §(G) is even.
The following result was proved in [Shen 2018, Proposition 3.3].
Proposition 4.1.2. If y € G is semisimple, then
5(G) = 8(Z()°). (4.1.6)
The two sides of (4.1.6) are equal if and only if y can be conjugated into H.

Recall that u = /—1p @ £ is the compact form of G, and that U C Gc¢ is the analytic subgroup with
Lie algebra u. Let Uu, U gc be the enveloping algebras of u, gc respectively. Then U g¢ can be identified
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with the left-invariant holomorphic differential operators on G¢. Let C* € Uu be the Casimir operator of
u associated with B. Then

C'=C%eUgnUucUgc. 4.1.7)
In the sequel, we always assume that U is compact; this is the case when G has compact center.

Proposition 4.1.3 (unitary trick). Assume that U is compact. Then any irreducible finite-dimensional
(analytic) complex representation of U extends uniquely to an irreducible finite-dimensional complex
representation of G such that their induced representations of Lie algebras are compatible.

We now fix a unitary representation (E, p£, hE) of U, and we extend it to a representation of G,
whose restriction to K is still unitary. Put F = G xg E, with the Hermitian metric 2" induced by hZ.
Let VF be the Hermitian connection induced by the connection form w*.

Furthermore, as explained in the last part of Section 3.4, F' is equipped with a canonical flat connec-
tion VF>/ as follows:

VES = VF 4 pE (o). (4.1.8)

If G has compact center, then (F, nF vF v ) is a unimodular flat vector bundle.

Let (Q2(X,F),d X.F) be the (compactly supported) de Rham complex twisted by F. Let dX-F+*
be the adjoint operator of dXF with respect to the L, metric on Q2(X, F). The de Rham—Hodge
operator DX-F of this de Rham complex is given by

DX,F — dX,F +dX’F’*- (419)

The Clifford algebras ¢ (TX), ¢(TX) acton A*(T*X). Westill use ey, . . ., e, to denote an orthonormal
basis of p or T'X, and let el ..., e™ be the corresponding dual basis of p* or T* X.

Let VAT T"X)®F.u pe he unitary connection on A®(T*X) ® F induced by V7 and V¥. Then the
standard Dirac operator is given by

m
X,F _ ANUA(T*X)®F,
DXF = "c(e)) VA TS M, (4.1.10)
j=1
By [Bismut et al. 2017, equation (8.42)], we have
m

DXF = DXF 1% "2(ej)pE (e). (4.1.11)

j=1
At the same time, as explained in Section 3.2, C? descends to an elliptic differential operator C 9%

acting on C*° (X, A*(T*X) ® F). As in (3.2.9), we put
rXF _ %Cg,x + %Trp[CE’p] + %Trf[cﬁf], (4.1.12)

For simplicity, we will always put

By = 1 TP[CHP] + L T [CH] e R. (4.1.13)
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By [Bismut et al. 2017, Proposition 8.4], we have

1 nX.,F2 _ pX,F _1,gE —. pX.F
5D = L5 —3C¥7 =By =1L, (4.1.14)
where A = —1C®E — g,
Let y € G be a semisimple element. In the sequel, we may assume that
y=¢k, acp, keK, Adk)a=a. (4.1.15)

We also use the same notation as in Section 3.3.
Recall that p = dimp(y), g = dim€(y). By (3.3.20) and (4.1.14), we have

[ (varro _m) exp(_rDX’F’z)]
2 2
_lal?

2t

exp(tp) / o I, (YE) TrgV@*)[(NA'(P*) . %) Ad(k) exp(—i ad(Y(f))]
Y €2
-TrE [pE (k) exp(—ipE (Y(f) + LC“’E)]e_% dYOEq .
2 (2mt)2
Now we take a cocompact discrete subgroup I' C G. Then Z = I'\ X is a compact locally symmetric
orbifold. We use the same notation as in Sections 3.4 and 3.5. Then we get a flat orbifold vector bundle
(F,VES pF ) on Z. Furthermore, DX-F descends to the corresponding de Rham—Hodge operator D Z-F
acting on Q*(Z, F). Let T(Z, F) denote the associated analytic torsion as in Definition 2.2.3, i.e.,

Q1)

(4.1.16)

T(Z, F)=T(gT? vE/ nf). (4.1.17)
As explained in Section 2.2, for computing 7 (Z, F), it is enough to evaluate
Z,F2
ANT*Z) M _Lﬂ
Trs[(N 2>exp( : . >0 4.1.18)

Then we apply Selberg’s trace formula in Theorem 3.5.1. We get

o (T Z,F2
T (V4T = ) exp (=5

Z Vol(I' r;SZ(S/y))l\X(V)) Tr[y][<NAO(T*X) _ %> exp(_g)]_ (4.1.19)
[y]elr]

As in [Bismut et al. 2017, Remark 8.7], by [Ma 2019, Theorems 5.4, 5.5, Remark 5.6], we have the
following vanishing theorem on 7(Z, F).

Theorem 4.1.4. If m is even, or if m is odd and §(G) > 3, then
T(Z,F)=0. (4.1.20)

Proof. By [Bismut 2011, Theorem 7.9.1; Ma 2019, Theorem 5.4], and using instead (4.1.19), we get that
under the assumptions in this theorem, for 7 > 0,

Tr, [(NA'<T*Z) - %) exp(—tDZ’F’z)] —0. 4.121)

Then (4.1.20) follows from the definition of 7(Z, F). O
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Therefore, the only nontrivial case is that §(G) = 1, so that m is odd. If y € G is of the form (4.1.15),
let t(y) C €(y) be a Cartan subalgebra. Put

b(y) ={vepk)|[v.t(V)]=0}, by)p=Db(y)Np(y). (4.1.22)

In particular, a € b(y). Then h(y) = b(y)p @ t(y) is a Cartan subalgebra of 3(y).
Recall that H is a maximally compact Cartan subgroup of G. The following result is just an analogue
of [Shen 2018, Theorem 4.12; Bismut 2011, Theorem 7.9.1].

Proposition 4.1.5. If §(G) = 1, if y is semisimple and cannot be conjugated into H by an element in G,
then

o X,F,2
Trgy][(NA T*X) _ %) exp(—tDT)] =0. (4.1.23)

Proof. Let t be a Cartan subalgebra of ¢ containing t(y). Then b C b(y). If a ¢ b, then dim b(y) > 2.
Therefore, by [Shen 2018, equation (4-44)], for Y(f € t(y), we have

A" [(N“P*) — %) Ad(k) exp(—i ad(Y(f))] —0. (4.1.24)

This implies (4.1.23). O
Set

g =3t D s (4.1.25)

Then g’ is an ideal of g. Let G’ be the analytic subgroup of G associated with g/, which is closed and has
a compact center; see [Knapp 2002, Proposition 7.27]. The group K is still a maximal subgroup of G’.
Let U’ C U be the compact form of G’ with Lie algebra 1". Then

u=~-1z e (4.1.26)

Now we assume that §(G) = 1 and that G has noncompact center, so that b = 3, has dimension 1.
Then §(G’) = 0. Under the hypothesis that U is compact, up to a finite cover, we may write

U~S'xU’. (4.1.27)

We take a; € b with |a;| = 1. If (E, p¥) is an irreducible unitary representation of U, then p% (a;)
acts on E by a real scalar operator. Let « g € R be such that

oE(a1) = agldg. (4.1.28)

Put X’ =G’/K. Then X’ is an even-dimensional symmetric space (of noncompact type). We identify j,,
with a real line R. Then
G=RxG', X=RxX. (4.1.29)

In this case, the evaluation for analytic torsions can be made more explicit. If y € G/, let X'(y) denote
the minimizing set of d, (-) in X', so that

X(y)=Rx X'(y). (4.1.30)
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Let [-]™* denote the coefficient of a differential form (valued in 0(7X”)) on X’ of the corresponding
Riemannian volume form. Similarly, for k € T, let [-]™*®) denote the analogous object on X’ (k). The
following results are the analogues of [Shen 2018, Proposition 4.14].

Proposition 4.1.6. Assume that G has noncompact center with §(G) = 1 and that (E, pE) is irreducible.

Then
1 2
X,F2 ~L1a3
[1]|:( A'(T*X)_ﬂ) _tD T ]=_e / VTX/ max q:
[ (N . exp( U ) o X VIO E. 413D
If y =e% is such thata € b, k € T, then
[ (AT ) exp(_w)]
2 2
1L a2 1442 / TX'(k)\jmax(k) 1.E  E
—_ o150 =319 (o (TX (k), VTX R0y max(O) TeE [ 0F (k)] (4.1.32)
Nz [ ] (0™ (k)]

Proof. Let C ¥ denote the Casimir operator of u’ associated with B|,s. Then we have
Ct=—a?+Cv. (4.1.33)
Since (E, p) is an irreducible representation, by (4.1.28) and (4.1.33), we get
CHE = o + CcVE, (4.1.34)

Then by (4.1.34) and [Bismut et al. 2017, Theorem 8.5], a modification of the proof of [Shen 2018,
Proposition 4.14] proves the identities in our proposition. O

If we assembly the results in Proposition 4.1.6, it is enough to study the corresponding analytic torsions.
We will get back to this point in Corollary 7.4.4 for asymptotic analytic torsions.

4.2. Symmetric spaces of noncompact type with fundamental rank 1. In this subsection, we focus
on the case where §(G) = 1 and G has compact center (i.e., 3, = 0), so that X is a symmetric space
of noncompact type [Shen 2018, Proposition 6.18]. For simplicity, let us also assume that G is linear
semisimple in this subsection.

Note that the rank §(X) of X (see [Eberlein 1996, Section 2.7]) is the same as 6(G). Then §(X) = 1.
By the de Rham decomposition, we can write

X = Xy % Xo. 4.2.1)

where X is an irreducible symmetric space of noncompact type with §(X1) = 1, and X» is a symmetric
space of noncompact type with §(X5) = 0.

As in [Bismut 2011, Remark 7.9.2], among the noncompact simple connected real linear groups such
that m is odd and dim b = 1, there are only SL3(R), SL4(R), SL>(H), and SO°(p, ¢) with pq odd > 1.
Also, we have sl4(R) = s0(3, 3) and sl (H) = so0(5, 1). Therefore, X; is one of the following cases (see
[Shen 2018, Proposition 6.19]):

X1 =SL3(R)/SO(3) or SO%p,q)/SO(p+q), with pg > 1 odd. 4.2.2)
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Since §(G) = 1, we have the decomposition of Lie algebras

g=g1D g2, (4.2.3)
where
g1 =s53(R) or so(p,q), 4.2.4)

with pg > 1 odd, and g, is semisimple with §(g2) = 0. The Cartan involution 6 preserves the splitting
(4.2.3); see [Knapp 2002, VIL.6, p. 471].

Let G be the identity component of Zg(g2). Then G; is a connected linear semisimple closed
subgroup of G with Lie algebra of g;. Similarly, we can find a connected linear semisimple closed
subgroup G, of G with Lie algebra of g, such that we have canonically G, x G, — G a finite central
extension. Let 6; be the induced Cartan involution on G;(j = 1,2) from 6. Set K; = G; N K; then

X;=G;/K;, j=1.2. (4.2.5)

Note that in general, G is a just a finite central extension of SL3(R) or SO%(p, ¢) (pg > 1 odd). The
invariant bilinear form B also splits as B; & B, with respect to the splitting (4.2.3).

Remark 4.2.1. Let G4, G1 x, G2« denote the identity components of the isometry groups of X, X, X»
respectively. Then we have

By [Shen 2018, Proposition 6.19], G1 x = SL3(R) or SO%(p.q), with pg > 1 odd, and G 4 is a
semisimple Lie group with Lie algebra g, and trivial center. Also §(G2,«) = 0. If we consider G« instead
of G, then the factor G is exactly SL3(R) or SO°(p, ¢), with pg > 1 odd.

Let Uy, U, be (connected linear) compact forms of Gy, G,. Then U; x U, is a finite central extension
of the compact form U of G. Let (E, pE) be an irreducible unitary representation of U, and hence of
U 1 X U2. Then

(E.p") = (E1.p"") ® (E2.p"2). (4.2.7)

where (E j,pEf') is an irreducible unitary representation of U;, j = 1,2. Let F, Fy, F> be the ho-
mogeneous flat vector bundles on X, X1, X, associated with these representations. Then we have

F=FKXF:=nr{(F)Qnr;(F), (4.2.8)

where m; denote the projections X — X;, i =1, 2.
Take y € G. Let (y1,y2) € G1 x G2 be one of its lifts. Then y is semisimple (resp. elliptic) if and
only if both y1, y» are semisimple (resp. elliptic). Set m; = dim X;; then m is odd, and m, is even.

Proposition 4.2.2. If y € G is semisimple, fort > 0, we have

(T )27

=Ty [ (VAT 2L exp(_fDX;’F‘ 2)} Tyl [exp(——’DX;’Fz’z)]. (4.2.9)
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Then if v, is nonelliptic,

o X,F,2
Trl] [(NA T*X) _ %) exp(—tDT)] =0. (4.2.10)

If 2 is elliptic, then

ZDX’F’Z

(40022}

)| = le(@Xa(a) VTX0 0D T2 02 1)

o X1,F1,2
_Trgyl][(NA (T Xl)_%) exp(_”)%)], 42.11)

where [-1M2(2) js taking the coefficient of the Riemannian volume element on X (y»).

Proof. We write

NATETX) B (VAT L) (AT 2, 4.2.12)

Note that, since §(G1) = 1, by [Bismut 2011, Theorem 7.8.2], we always have

X1,F1,2
Svidl [exp<_m+)] —0. (4.2.13)

Combining the definition of orbital integrals (3.3.7) together with (4.2.12) and (4.2.13), we get (4.2.9).
The identities (4.2.10), (4.2.11) follow from applying the results in [Bismut 2011, Theorem 7.8.2] to
Trp'z] [exp(—t DX2:F2:2 /2)]. O

For studying 7(Z, F), Proposition 4.2.2 helps us to reduce the computations on

Z,F)2
ANT*Z) _ m) (_L ]
Trs[(N 2 ) P 2 )

to the model cases listed in (4.2.2). But it is far from enough to get an explicit evaluation. In Sections 5
and 6, we will introduce more tools, which allows us work out a proof to Theorem 1.0.2.

5. Cartan subalgebra and root system of G when §(G) =1

We use the same notation as in Section 3 and Section 4.1. In Sections 5.1-5.3, we always assume that G
is a connected linear real reductive Lie group with compact center and with §(G) = 1. But, as we will
see in Remark 5.3.3, the constructions and results in these subsections are still true (most of them are
trivial) if U is compact and if G has noncompact center with §(G) = 1.

Section 5.4 is independent from other subsections, where we introduce a generalized Kirillov formula
for compact Lie groups.

Recall that 7" is a maximal torus of K with Lie algebra t C €, and that b C p is defined in (4.1.3). Since
8(G) =1, we know b is 1-dimensional. We now fix a vector ay € b, |a1| = 1. Recall that h = b tis a Car-
tan subalgebra of g. Let #9C be the Hermitian product on g¢ induced by the scalar product —B(-, 6 -) on g.
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5.1. Reductive Lie algebra with fundamental rank 1. Since G has compact center, b Z 34. Let Z(b) be
the centralizer of b in G, and let Z(b)? be its identity component with Lie algebra 3(b) = p(b) @ £(b) C g.
Let m be the orthogonal subspace of b in 3(b) (with respect to B) such that

3(b)=bPm. (5.1.1)
Then m is a Lie subalgebra of 3(b), which is invariant by 6.
Put
pm=mNp, Er=mnNE (5.1.2)
Then
M=pn@tn, pb)=0Dpn, £(b)=tn. (5.1.3)

Let 35(b), pL(b), £1(b) be the orthogonal subspaces of 3(b), p(b), £(b) in g, p, & respectively with
respect to B. Then

37(6) = pH(b) ® (D). (5.1.4)
Moreover,
P=b@®p, dp(b), £==t0b)DE(b). (5.1.5)

Let M C Z(b)° be the analytic subgroup associated with m. If we identify b with R, then
Z(6)° =Rx M. (5.1.6)

Then M is a Lie subgroup of Z(b)?; i.e., it is closed in Z(b)°. Let K37 be the analytic subgroup of M
associated with the Lie subalgebra £;. Since M is reductive, Kps is a maximal compact subgroup of M.
Then the splittings in (5.1.3), (5.1.4), (5.1.5) are invariant by the adjoint action of Kjy.

Then t is Cartan subalgebra of &, of £,, and of m. Recall that h = b & t is a Cartan subalgebra of g.
We fix a1 € b such that B(ay,a;) = 1. The choice of a; fixes an orientation of b. Let n C 3(b) be the
direct sum of the eigenspaces of ad(a;) with the positive eigenvalues. Set n = én. Then

3T(0) =n@n. (5.1.7)

By [Shen 2018, Section 6A], dimn = dimp — dimp,, — 1. Then dimn is even under our assumption
8(G) = 1. Put
[ =1 dimn. (5.1.8)

By [Shen 2018, Proposition 6.2], there exists § € b* such thatif a € b, f € n, then
la. f1=B@)f, [a,0(f)]=—-B@)O(f). (5.1.9)

The map f enr> f—0(f) ep(b) is an isomorphism of Kps-modules. Similarly, f enr f+6(f)e
£ (b) is also an isomorphism of Kjs-modules. Since 6 fixes Kps, n =~ it as Kps-modules via 6.
By [Shen 2018, Proposition 6.3], we have

[n @] C 3(6), [n,n] = [ii, @] = 0. (5.1.10)
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Also
Bluxn =0, Blixa =0. (5.1.11)

Then the bilinear form B induces an isomorphism of n* and n as Kps-modules. Therefore, as Kps-
modules, n is isomorphic to n*.
As a consequence of (5.1.10), we get

[3(6), 5(0)] . [3(6), 37 (0)] C 3(b).  [35(b), 37 (B)] C 5™ (b), (5.1.12)

Then (g, 3(b)) is a symmetric pair.
If k € Kpr, let M (k) be the centralizer of k in M, and let m(k) be its Lie algebra. Let M (k)° be the iden-
tity component of M (k). The Cartan involution 6 acts on M (k). The associated Cartan decomposition is

m(k) = pu(k) @ tu(k), (5.1.13)

where py (k) = pm Nm(k), tn(k) = Nm(k).
Recall that Z (k) is the centralizer of k in G and that Z (k) is the identity component of Z (k) with
Lie algebra 3(k) C g. Then

Mk)=MnZk), wmk)=mn;k). (5.1.14)

Note that Z(k)? is still a reductive Lie group equipped with the Cartan involution induced by the
action of 6. By the assumption that §(G) = 1, we have

§(Z(k)°) =1. (5.1.15)
In particular,
b Cpk). (5.1.16)
Set
3o(k) =3(b)N3(k), po(k) =p(b) Np(k), & (k) =*t(b) NE(k). (5.1.17)
Then
360(k) =bdm(k) =pp(k) D tp(k). (5.1.18)
We also have the identities
Po(k) =b @ pm(k), Eo(k) = Etn(k). (5.1.19)

Let pi (k), & (k), 3¢ (k) be the orthogonal spaces of py(k), € (k), 35(k) in p(k), €(k), 3(k) with
respect to B, so that

p(k) = po(k) D py (k). €(k) = t(k) D (k). 3(k) = 50 (k) @ 35 (k). (5.1.20)
Then
55 (k) = py (k) @ b (k) = 57(0) N 3(k). (5.121)
Put
n(k) =3(k)Nn, ak)=3k)Nn. (5.1.22)
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Then
se (k) = n(k) ® (k). (5.1.23)
By (5.1.17), (5.1.23), we get
3(k) = po(k) ® to(k) ®n(k) (k). (5.1.24)
Since 6(m(k)) =0, dimn(k) is even. We set
I(k) = 1 dimn(k). (5.1.25)

Let Kps (k) denote the centralizer of k in Kpy. The map f € n(k) — f —0(f) € pé‘(k) is an
isomorphism of Kjps(k)-modules, and similarly for Ef; (k). Since 0 fixes Kps(k), we have n(k) >~ n(k)
as Kjz (k)-modules via 6.

5.2. A compact Hermitian symmetric space Yy. Recall that u = /—1p @ € is the compact form of g.
Let u(b) C u, uy, C u be the compact forms of 3(b), m. Then

ub) =v-1bQuy, Uy=vV—1p, P E,. (5.2.1)

Since M has compact center, let Uys be the analytic subgroup of U associated with u,. Then Uy is
the compact form of M. Let U(b) C U, Ap C U be the connected subgroups of U associated with Lie
algebras u(b), /—16. Then Ay is in the center of U(b). By [Shen 2018, Proposition 6.6], Ag is closed
in U and is diffeomorphic to a circle S!. Moreover, we have

U(b) = AgUny. (5.2.2)

The bilinear form —B induces an Ad(U )-invariant metric on u. Let ut(b) C u be the orthogonal
subspace of u(b). Then

ut(b) = vV—1pt(b) ® £1(b). (5.2.3)
By (5.1.12), we get
[u(b), u(6)], [ut(6), ut(6)] Cu(b), [u(b), ut(b)] C ut(b). (5.2.4)
Then (u, (b)) is a symmetric pair.
Putag =a;/B(a1) €b. Set
J = +/~1ad(ao)|,1 () € End(u(b)). (5.2.5)

By (5.1.9), J is an U(b)-invariant complex structure on u(b) which preserves B|,1(p)- The spaces
nc =n®rC, nc = n®p C are exactly the eigenspaces of J associated with eigenvalues v/ —1, —+/—1.
The following proposition is just the summary of the results in [Shen 2018, Section 6B].

Proposition 5.2.1. Set
Yo =U/U(b). (5.2.6)

Then Yy is a compact symmetric space, and J induces an integrable complex structure on Yy, such that
T1EO0Y, = U xygyne, TOVYy = U xy) fic. (5.2.7)
The form —B(-, J-) induces a Kéhler form ¥® on Yy.



FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS FOR COMPACT LOCALLY SYMMETRIC ORBIFOLDS 1295

Let w" be the canonical left-invariant 1-form on U with values in u. Let @*® and o*" ® be the u(b)
and u(b) components of w*, so that

o' = '® 4 it ®) (5.2.8)

Moreover, »*(®) defines a connection form on the principal U(b)-bundle U — Y;. Let Q4" be the
curvature form. Then
Qu®) — _

Lo O O], (5.2.9)

Note that the real tangent bundle of Y} is given by
TYy = U xy) ut(b). (5.2.10)

Then —B|,1 () induces a Riemannian metric gT¥ on Yy. The corresponding Levi-Civita connection is
induced by w"®.
Recall that the first splitting in (5.2.1) is orthogonal with respect to —B. Let Q"™ be the u,-component

of Q4®)_ Since the Kihler form w?® is invariant under the left action of U on Y, b, We also can view w¥r
as an element in Az(ué-)*). By [Shen 2018, equation (6-48)],
Q'® = Bap o’ @ V—la; + Q. (5.2.11)
Moreover, by [Shen 2018, Proposition 6.9], we have
B(Q'® Qu®)y =0 BQ', Q') = B(a1) w2 (5.2.12)

Remark 5.2.2. By [Shen 2018, Proposition 6.20], if G has compact center, then as symmetric spaces,
the Kéhler manifold Yy is isomorphic either to SU(3)/U(2) or to SO(p + ¢q)/ SO(p + g —2) x SO(2)
with pg > 1 odd. This way, the computations on Yy can be made more explicit.

Now we fix k € K. Let U(k) be the centralizer of k in U, and let U(k)° be its identity component.
Let u(k) be the Lie algebra of U(k)°. Then u(k) is the compact form of 3(k), and U(k)° is the compact
form of Z(k)°.

We will use the same notation as in Section 5.1. Then the compact form of m(k) is given by

um (k) = vV —=1pn(k) © tn (k). (5.2.13)
Let up (k) be the compact form of 35(k). Then
up(k) = V=16 @ un (k). (5.2.14)
Let Up(k) be the analytic subgroup associated with uy (k). Then

Up(k) = U(b) N U(k)°. (5.2.15)
Set
Yo(k) = U(k)®/ Uy (k). (5.2.16)

As in Proposition 5.2.1, Yy (k) is a connected complex manifold equipped with a Kihler form oY k),
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Let uﬁ- (k) be the orthogonal space of (k) in u(k) with respect to B. Then
ug (k) = vV—1pg (k) @ & (k). (5.2.17)
Then the real tangent bundle of Y, (k) is given by

TYo(k) = Uk)® xy, @) u (k). (5.2.18)

Moreover,
TEO0Y, (k) = Uk)® xy, gy n(k)e,  TOVYy(k) = Uk)® xy, ) k). (5.2.19)

Let Q") be the curvature form as in (5.2.9) for the pair (U(k)°, Uy(k)), which can be viewed as
an element in Az(ubL (k)*) ® up(k). Using the splitting (5.2.14), let *~®) be the uy, (k)-component
of &) Then as in (5.2.11) and (5.2.12), we have

Qu® = B(a)w’*® @ V_1a; + Q' ®), (5.2.20)
B(Qub(k), Qub(k)) — 0’ B(Qum(k), Qum(k)) — ﬁ(al)ZCl)Yb(b)’z. (5221)

5.3. Positive root system and character formula. Recall that t is Cartan subalgebra of ¢, of £, and of m.
Recall that h = b @ t is a Cartan subalgebra of g, and H is the associated maximally compact Cartan
subgroup of G.

Put

ty=+v-lbptCu. (5.3.1)

Then ty is a Cartan subalgebra of u. Let Ty C U be the corresponding maximal torus. Then Ay is a
circle in Ty . Then t is a Cartan subalgebra of 1., and the corresponding maximal torus is 7.

Let R(u, tyy) be the real root system for the pair (U, Ty ) [Brocker and tom Dieck 1985, Chapter V].
The root system for the complexified pair (uc, ty,c) = (gc. be) is given by 27iR(u, tyy). Similarly, let
R(u(b), ty), R(uy,t) denote the real root systems for the pairs (u(b), ty7), (um, t). When we embed t*
into t7; by the splitting in (5.3.1),

R(u(b), ty) = R(um, t). (5.3.2)

For a root « € R(u, ty), if a(v/—1ay) = 0, then & € R(uy, t). Fix a positive root system RT (uy, ).
We get a positive root system R (u, t7) consisting of an element « such that «(+/—1a;) > 0 and the
elements in R™ (i, t).

Let W(u, tyy) denote the algebraic Weyl group associated with R(u, ty). If € W(u, ty), let [(w)
denote the length of @ with respect to R™ (u, ty7). Set

g(w) = (-1)H@. (5.3.3)

Let W(U, Ty) be the analytic Weyl group. Then W(u, ty) = W(U, Ty).
Put
Wy ={weWU,Ty) |0~ -a>0forall @ € R (un, t)}. (5.3.4)
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Put
Py = % Z ety pu, = % Z o e t*. (5.3.5)
a%eRt (u,ty) a%eRT (upm,t)
Then pul; = pu -

Let P44 (U) C tJ; be the set of dominant weights of (U, Ty ) with respect to RT(u,ty). IfAe Py (U),
let (E;, pF*) be the irreducible unitary representation of U with the highest weight A, which by the
unitary trick extends to an irreducible representation of G.

By [Warner 1972, Lemmas 1.1.2.15, 2.4.2.1], if € W,,, then w(A + p,) — py is a dominant weight for
RT(u(b), ty). Let V ,, denote the representation of U(b) with the highest weight w(A + py) — py.

Recall that U(b) acts on nc. Let H*(n¢, E)) be the Lie algebra cohomology of n¢ with coefficients
in Ej; see [Kostant 1961]. By [Warner 1972, Theorem 2.5.1.3], fori =0, ..., 2/, we have the identification
of U(b)-modules

H(ne.E))~ P Vio. (5.3.6)
weWy,
l(w)=i
By (5.3.6) and the Poincaré duality, we get the following identifications as U(b)-modules:
2] o
P ANEQEL = @ @)V (5.3.7)
i=0 weW),

Note that if we apply the unitary trick, the above identification also holds as Z(6)°-modules.

Definition 5.3.1. Let Py : tj, — t* denote the orthogonal projection with respect to B* | . For w € W,,,
U ty
A€ Py (U), put

Nw(A) = Po(w(A + py) — pu) € t*. (5.3.8)
Note that
Popy = pu,- (5.3.9)
Then
Nw(A) = Po(@(A + pu)) = Puy- (5.3.10)

Proposition 5.3.2. If A € P14+ (U), for o € Wy, then ny(X) is a dominant weight of (Upg, T) with
respect to R (uy, t). Moreover, the restriction of the U(b)-representation V), to the subgroup Upy is
irreducible, which has the highest weight 14 (A).

Proof. Since w(A + py) — py is analytically integrable, 7, (1) is also analytically integrable as a weight
associated with (Ups, T'). By (5.3.2) and the corresponding identification of positive root systems, we
know that 7, (A) is dominant with respect to R (i, t).

Recall that Ag ~ S! is defined in Section 5.2. By (5.2.2), we get that Ag acts on V)., as scalars given
by its character, and then Uy act irreducibly on V) ,,, which clearly has the highest weight 7, (1). O

Remark 5.3.3. In general, U is just the analytic subgroup of G¢ with Lie algebra u. If U is compact but
G has noncompact center, i.e., 3 = b, then n = n =0, so that ! = 0. Recall that in this case, G/, U’ are
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defined in Section 4.1. Then
M=G', Uy=U". (5.3.11)

The compact symmetric space Yy now reduces to one point.
Moreover, in (5.3.4), W, = {1}, so that V, ,, becomes just E, itself. The identities (5.3.6), (5.3.7) are
trivially true; so is Proposition 5.3.2.

5.4. Kirillov character formula for compact Lie groups. In this subsection, we recall the Kirillov
character formula for compact Lie groups. We only use the group Ups as an explanatory example. We fix
the maximal torus 7 and the positive (real) root system R (i, t).
Let A € t* be a dominant (analytically integrable) weight of Ups with respect to the above root system.
Let (V;, p¥*) be the irreducible unitary representation of Ups with the highest weight A.
Put
O = Ad*(Up) (A + py,,) C us,. (5.4.1)

Then O is an even-dimensional closed manifold.
Since A + p,,, is regular, we have the following identifications of Ups-manifolds:

O~Upy/T. 5.4.2)
For u € uy,, an associated vector field # on O is defined as follows: if f € O, then
Up=— ad*(u) f € Ty O. 54.3)

Such vector fields span the whole tangent space at each point. Let wy, denote the real 2-form on O such
that if u, v € uy, f €O,

wp (i, 0)r =—(f, [u,v]). (5.4.4)

Then ey, is a Ups-invariant symplectic form on O. Put r+ = % dim uy, /t. In fact, if we can define an
almost complex structure on 7O such that the holomorphic tangent bundle is given by the positive root
system RT (uy, t). Then (O, wr ) become a closed Kihler manifold, and r 7 is its complex dimension.

The Liouville measure on O is defined as

()"
(rt)-
It is invariant by the left action of Ups. Let Volz (O) denote the symplectic volume of O with respect to
the Liouville measure. Then we have (see [Berline et al. 1992, Proposition 7.26])

(@, A + puy)

(@, pu,,)
The second identity is the Weyl dimension formula (see [Knapp 1986, Theorem 4.48]).

dpr = (5.4.5)

Volz (0) = T 0e r+ (.0 = dim V/,. (5.4.6)

By the Kirillov formula (see [Berline et al. 1992, Theorem 8.4]), if y € u,,, we have
A @) ) TP = [ I (5.4.7)
feo
To shorten the notation here, if k € T, put Y = Ups(k)? with Lie algebra t) = u (k). Then T C Y,
and it also a maximal torus of Y.
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In the sequel, we will give a generalized version of (5.4.7) for describing the function Tr¥* [p"2 (ke?)],
with y € 1.
Let q be the orthogonal space of #) in u,, with respect to B, so that
Un =9 Dq. (5.4.8)
Since the adjoint action of T preserves the splitting in (5.4.8). Then R(uy, t) splits into two disjoint parts

where R(q, t) is just the set of real roots for the adjoint action of { on qc.
The positive root system R (un, t) induces a positive root system R™ (1, t). Set

RY(q, 0 = RT (um, ) N R(q, 1). (5.4.10)
Then we have the disjoint union
RY (Um, ) = RT (9, ) URT (0. 1). (5.4.11)
Put
1 1
=5 D, @ =5 ) o (5.4.12)
aYeR*(n,0) a%eR*(q,0)
Then
Pu = Py 4 pg € t*. (5.4.13)

Let C C t* denote the Weyl chamber corresponding to R (uy, t), and let Cy C t* denote the Weyl
chamber corresponding to R (), t). Then C C Cp.

Let WUy, T), W(Y, T) be the Weyl groups associated with the pairs (Ups, T), (Y, T) respectively.
Then W (Y, T) is canonically a subgroup of W(Uyys, T'). Put

Wl(k) ={w e WUy, T) | w(C) CCo}. (5.4.14)
Note that the set W1 (k) is similar to the set W, defined in (5.3.4).

Lemma 5.4.1. The inclusion W(k) — W(Up, T) induces a bijection between W (k) and the quotient
W, TO\WUp.T).

Proof. This lemma follows from W(Y, T') acting simply transitively on the Weyl chambers associated
with (p, t). O
Let O denote the fixed-point set of the holomorphic action of k£ on ©. We embed n* in u, by the
splitting (5.4.8). Then
ok =ony*. (5.4.15)
Lemma 5.4.2 (see [Duflo et al. 1984, 1.2, Lemma (7); Bouaziz 1987, Lemmas 6.1.1, 7.2.2]). As subsets
of v*, we have the identification

o= ) Ad*(¥)(e(A+py,)) C*, (5.4.16)

S oeW! (k)
where the union is disjoint.
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For each o € W(k), put
O Gt pu) = AT (V)@ + p1,)) C ™. (5.4.17)

Letd /ng denote the Liouville measure on Olg Gtp) 8 defined in (5.4.5).
If § € t* is (real) analytically integrable, let £5 denote the character of T with differential 277/ §. Note that

for o € W(k), opy, + pu, is analytically integrable even though p,, may not be analytically integrable.
Definition 5.4.3. For 0 € W1(k), set

fa()t+pllm)+pum (k)
Myoer+ (g, Ea0(k) — 1)

¢k (o, A) = ¢e(0) (5.4.18)

Note that if y € ), the analytic function

det(1 — e Ad(k))|,
det(1 — Ad(k))lq

(5.4.19)

has a square root which is analytic in y € 1 and equal to 1 at y = 0. We denote this square root by

[det(l — %O Ad(K))]q ]5

det(1— Ad(k))lq (5:4.20)

The following theorem is a special case of a generalized Kirillov formula obtained by Duflo, Heckman
and Vergne [Duflo et al. 1984, I1.3, Theorem (7)]. We will also include a simpler proof for the sake of
completeness.

Theorem 5.4.4 (generalized Kirillov formula). For y €1, we have the identity of analytic functions

det(1 — e Ad(k))|,
det(1 — Ad(k))q

]znmmhmﬂn

= X wen [ ek saan
(S

oceWl(k) f 0 (A +0um)

fT*(ad(ym)[

If k =1, (5.4.21) is reduced to (5.4.7).

Proof. Let t' denote the set of regular element in t associated with the root R(ity, t), which is an open
dense subset of t. Since both sides of (5.4.21) are analytic and invariant by the adjoint action of Y, we
only need to prove (5.4.21) for y € ..

We firstly compute the left-hand side of (5.4.21).

For y € t, we have
em’(ao,y) _ e—m‘(oeo,y)

~ 4 _
A7 (@d(y)]y) = Myoe g+ .0 Briad ) (5.4.22)
Let yo € t be such that k = exp(yp). Then
det(1 — e0) Ad(k 3 wi(a®,y+yo) _ p=mi{a®,y+yo)
Sl CDILY PPNl i (5.4.23)
det(1 —Ad(k))|q BV emi(a®,y0) — p—mi{a®,yo)
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By the Weyl character formula for (Ups, T'), we get

Y oW et e(w)e2m i {@(A+pun).y+y0)
m,C»

Te 2 [p"* (ke?)] = Te 2 [pV 2 (e7 T70)] = (5.4.24)

—5 — .
HQOGRJr(um’t)(ent(a Yol — e—mifa®,y+yo))

Note that we have &y, (k) = 1 for ag € R (1, t). Then

emi(@®ytyo) _ p=mite®ytyo) on.y0)
Mo0cr+ (o.0) = ¢~ 2mi{pyy0), (5.4.25)

emifa®,y) _ p—mifa®,y)

Combining (5.4.22)—(5.4.25), we get the left-hand side of (5.4.21) is equal the to function

i 2xi{w(A+pum).y+
e27”<pt),y0) ZwEW(um.c,tc) g(a))e mi{w( plm)y yo)

; - - (5.4.26)
Maoert(r,0(2m10%.7)  Taoept (g (@™ @) —e i @)

Now we show that the right-hand side of (5.4.21) is also equal to (5.4.26).
Note that, for w € W(Y, T), wpy,, — pu,, is analytically integrable. We claim that if @ € W(Y, T'), then

é_—wpum_pum (k) — eZJTi(CUPum_Pme »Y0) =1. (5427)

Actually, we have &), (k) = £20p,,, (k) = 1. Then, after taking the square roots, we get £up, —p,., (k) =
Ewpuy —puy, (€7°) = £ 1. The continuity of the character implies exactly (5.4.27).
As a consequence of (5.4.27), we get that for o € W1(k), if o € W(Y, T), then

27 H00 (A+pun)sy0) — 27 {0 (A+pun)sv0) (5.4.28)

For o € W(k), since 0(A + py,,) € Co and y is regular, by [Berline et al. 1992, Corollary 7.25], we
have

. 1 .
2wilf,y) g,k — 271 (@0 (A+pun),¥)
e dig = - E e(w)e w1 (5.4.29)
/feog(;\wum) H“OERJF(U”‘)(ZNIO{O’ y) weW(Y,T)

We rewrite @i (0, A) as

27 {py,¥0)

27i {0 (A+pun)sY0)
(o - - e m . 5.4.30
O s €T — ) oA

Combining together Lemma 5.4.1 and (5.4.28)—(5.4.30), a direct computation shows that the right-hand
side of (5.4.21) is given exactly by (5.4.26). O

Remark 5.4.5. Let C? denote the identity component of the center of Y, and let Y, be the closed analytic
subgroup of Y associated with yg = [, ]. By Weyl’s theorem [Knapp 1986, Theorem 4.26], the universal
covering group of Y is compact, which we denote by Y. Put

Y =C%xY,. (5.4.31)

Then Y is clearly a finite central extension of Y. Let T be the maximal torus of ¥ associated with the
Cartan subalgebra t, which is also a finite extension of 7. By [Knapp 1986, Corollary 4.25], the weights
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Puy» Py are analytically integrable with respect to T, since they are algebraically integrable [Knapp 1986,
Propositions 4.15, 4.33].

Note that, for 0 € Wl(k), o(A + py,) is regular and positive with respect to R*(y,t); thus
o (A + pu,,) — Py is nonnegative with respect to R™ (1, t) by the property of p, [Knapp 1986, Proposi-
tion 4.33]. Since now o (A + py,,) — py is also analytically integrable with respect to T, it is a dominant
welght for (Y, T) with respect to R (1, t). In this case, let Vk be the irreducible unitary representation
of ¥ with highest weight o (A + pum) py. Then by (5.4.7), (5 4.21), we get that, for y €1,

det(1 — ) Ad(k))]¢ ]2
[ det(1 — Ad(k)), }

T " ke = Y @ro )T Rep o). (5432)
ceW (k)

6. A geometric localization formula for orbital integrals

Recall that G¢ is the complexification of G with Lie algebra g¢, and that G, U are the analytic subgroups
of G¢ with Lie algebras g, u respectively. In this section, we always assume that U is compact; we do
not require that G have compact center. We need not to assume §(G) = 1 either.

Under the settings in Section 4.1, for ¢ > 0 and semisimple y € G, we set

Ex.y(F.1) —Tr[y][<NA'(T*X) 2>exp( #)] 6.0.1)
The indices X, F in this notation indicate precisely the symmetric space and the flat vector bundle which
are concerned with defining the orbital integrals.

If y € G is semisimple, then there exists a unique elliptic element y, and a unique hyperbolic element y},
in G such that y = y.y) = ypve. Here, we will show that £ ,, (F,t) becomes a sum of the orbital
integrals associated with yy,, but defined for the centralizer of y, instead of G. This suggests that the
elliptic part of y should lead to a localization for the geometric orbital integrals.

We still fix a maximal torus 7 of K with Lie algebra t. For simplicity, if y € G is semisimple, we may
and we will assume

y=¢%%, keT, aecp, Adk YHa=a. (6.0.2)
In this case,
Ye=keT, y,=c¢e" (6.0.3)

Recall that Z(y,)? is the identity component of the centralizer of y, in G. Then

Yn € Z(ve)°. (6.0.4)

The Cartan involution @ preserves Z(y.)? such that Z(y,)? is a connected linear reductive Lie group.
Then we have the diffeomorphism

Z(ye)® = K(ye)° exp(p(ye))- (6.0.5)

It is clear that §(Z(y.)°) = §(G).
Recall that Ty is a maximal torus of U with Lie algebra ty = +/—1b @ t C u. Let R (u,ty) be a
positive root system for R(u, ty7), which is not necessarily the same as in Section 5.3 when §(G) = 1.
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Since U is the compact form of G, U(y.)? is the compact form for Z(y,)°. Moreover, Ty is also a
maximal torus of U(y,)°. Let R(u(y.), ty) be the corresponding real root system with the positive root
system R (u(ye). ty) = R(u(ye), ty) N R (u, ty). Let py, py(y,) be the corresponding half sums of
positive roots.

Let U (ve) be a connected finite covering group of U(y,)® such that py, Pu(y,) are analytically integrable
with respect to the maximal torus Ty of U (ve) associated with tyy. It always exists by a construction
similar to that in Remark 5.4.5.

Let K (Ye) be the analytic subgroup of U (ve) associated with the Lie algebra €(y,). By [Knapp 2002,
Proposition 7.12], U (Ye) has a unique complexification U (Ye)c which is a connected linear reductive Lie
group. Let Z (ve) be the analytic subgroup of U (ve)c associated with 3(ye) C u(ye)c = 3(¥e)c. Then
we have the Cartan decomposition

Z(ve) = K(ve) exp(p(ye)). (6.0.6)

We still denote by 6 the corresponding Cartan involution on 7 (Ve)-
The Lie group Z (Ye) is a finite covering group of Z(y.)°. Moreover, we have the identification of
symmetric spaces

X(ve) = Z(ve)/ K (ve). (6.0.7)

Note that even under an additional assumption that G has compact center, Z (Ye) may still have noncompact
center.

Let A be a dominant weight for (U, Tyy) with respect to R™ (u, tyy). Let (Ey, pEA) be the associated
irreducible unitary representation of U. As before, let (Fj, hf*) be the corresponding homogeneous
vector bundle on X with the G-invariant flat connection VF*/. Let DX-F1:2 denote the associated
de Rham-Hodge Laplacian.

Let Wl} (ve) C W(U, Ty) be the set defined as in (5.4.14) but with respect to the group U and to
Ye =k € T C Ty. As in Definition 5.4.3, for o € W} (ye), set

(p)(/]e (0, %) = £(0) = Sa(l—i—pu)—l—pu (Ve) ‘
aPeR*T (ul(ye),ty) (gao (Ye)—1)

As explained in Remark 5.4.5, if o € Wl} (Ve), then 0 (A + pu) — py(y,) is @ dominant weight of U(ve)

(6.0.8)

with respect to R™ (u(ye), ty). Let E 0,4 be the irreducible unitary representation of U (ve) with highest
weight o (A + pu) — Pu(y,)- _
We extend Ej; 5 to an irreducible representation of Z(y,) by the unitary trick. Then
Fop = Z(Ve) XK (ve) Es

is a homogeneous vector bundle on X (y.) with an invariant flat connection VFo.2-/ as explained in
Section 4. Let DXe):-Fo.2:2 denote the associated de Rham-Hodge Laplacian acting on Q°(X(ye), Fy 2)-
We also view y;, = e? as a hyperbolic element in Z (ve). For o € W[}()/e), as in (6.0.1), we set

° * p/ [DX(ye)aFa,Aaz
Ex(ve)yn (Fop 1) = Tri"] [(N ANTTXGe) 5) exp (—f . (6.0.9)

Note that we use B|;(y,) on 3(ye) to define this orbital integral for Z (Ve)-
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Set :
| det(I —Ad(ye)) ;1) |2
det(1 = Ad(¥)) s~y

c(y) > 0. (6.0.10)

In particular, c(y.) = 1.
The following theorem is essentially a consequence of the generalized Kirillov formula in Theorem 5.4.4.

Theorem 6.0.1. Let y € G be given as in (6.0.2). Fort > 0, we have the identity

Exy(Fa.0)=c(y) > 05 (0. Do) Font). (6.0.11)
oWl (ve)

We call (6.0.11) a localization formula for the geometric orbital integral.

Proof. Set p’ = dimp(y.) = dim X(y,). At first, if m is even, then p’ is even. Then the both sides of
(6.0.11) are O by [Bismut 2011, Theorem 7.9.1].

If m is odd, then p’ is odd, and 8(G) = 8§(Z(y.)°) is odd. If §(G) > 3, then the both sides of (6.0.11)
are 0 by [Bismut 2011, Theorem 7.9.1].

Now we consider the case where 8(G) = 8(Z(y.)?) = 1. If y cannot be conjugated into H by an
element in G, then y;, cannot be conjugated into H by an element in Z(y,)°. Then both sides of (6.0.11)
are 0 by Proposition 4.1.5.

Now we assume that 6(G) = 1 and a € b. Note that 3(y) is the centralizer of y; in 3(y.). We will
prove (6.0.11) using (4.1.16)

For y € £(y), let J,, () be the function defined in 3.3.1 for y; = e” € Z(Ye):

. 1 A ad(»)]p))

y) = = . (6.0.12)
T [det(1 = At gy 12 AG 20 ecr)
The Casimir operator C u(ve)-Es.2 acts on E 5 by the scalar given by
—4 (12 + pul® = lougy) |- (6.0.13)
Similar to (4.1.13), set
lB}(Ve) = 1i6 Trp()’e)[cé(ye)’p(ye)] + ﬁ TrE()’e)[CE(ye)’E(Ye)]‘ (6.0.14)

Then by [Bismut 2011, Propositions 2.6.1, 7.5.1],

272 putye) I* = —Bstre)- (6.0.15)
By (4.1.16), (6.0.13), (6.0.15), for o € W(} (Ye), we get

_la?

2t

exp(—271|A + pul?)

e
Exe)yn Fot) =

(271t)%

~ . * . * pl .
. I (v) Trﬁ‘ G| [ NA GG _ L) exp(—i ad(y))
e) 2

2 d
TrBo fexp(—ipBo (y)]e 3 — 2.
2mt)2

(6.0.16)
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Note that dim pL(y,) is even. We claim that if y € €(y), then
Trf.(p*) |:(NA.(p*) - %) exp(—i ad(y)) Ad(k_l)]
/
= TrA* G0 [(NA'(P(%)*) - %)e_’ ad(y)} det(1—e "M Ad(k™1))|,1 (5. (6.0.17)

Indeed, we can verify (6.0.17) for y € t. Since both sides of (6.0.17) are invariant by the adjoint action
of K(ye)?, (6.0.17) holds in full generality.
Also K(y)? preserves the splitting

pL(ve) = pg () ® (P (ve) NpE). (6.0.18)

The action ad(a) gives an isomorphism between p(y.) N pOL and ¢ (y,) N Eol as K(y)-vector spaces.
Note that

3 (ve) Nag = (0 (ve) Npg) ® (- () N 7). (6.0.19)
Then
det(1— e 2O Ad(y,)) oL (ye)
—i a —ia 1
= det(1 — e~1240) Ad(ye)) |y, [det(1 =™ 40 Ad(ye))| oonstl?: (6020

Here the square root is taken to be positive at y = 0.
By Definition 3.3.1 and (6.0.12), for y € £(y),

1
Jy(y)=J, () 1
[det(1 = Ad())], 2 1 ) |2
[ I det(1 —exp(—i ad(y)) Ad(ve))lyt ) F 6.021)
det(l — Ad(ve))|1 y det(I —exp(=i ad(y)) Ad(ye)) iy ]

Combining (6.0.17), (6.0.20) and (6.0.21), we get

Ty (p) T [(N A - %) exp(~i ad(y)) Ad(w]

= c(y) ]y, () Tef ¢

. 1
. [(NA.(P(J/e)*) _ p_’)e—l dd(y)} [det(l - exp(_l ad(y)) Ad(y@))t’ji(y(‘) } 2 . (6022)
2 det(1 — Ad(Ye)) |51 (y,)

Note that, for y € £(y),

[det(l —exp(—7 ad(y)) Ad(ye))l;1(y,) } 3 _ [det(l —exp(—i ad(y)) Ad(ye))lyL(y,)

1
2
. (6.0.23)
det(1 — Ad(ye))l;1(y,) det(1 — Ad(ye))lyL(y,) ]
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By (4.1.16), (6.0.13), (6.0.15), (6.0.22) and (6.0.23), we get

_la?
e 2t

Ex a(Fy 1) = C(V)( exp(—27%t| A+ pyul?)

D
2mwt)2

!
~ A (p(ve)®) A (p(re))_ P\ —iad(y)
'/e(y)J”(y)Trs " [(N " _?)e ) y]

1—e~12d) A 3 . 2
.[det( ¢ d(ye))|“L(V")]2 TeE (o (ye)e 0™ (y)]e_% 4y 7. (6.0.24)
det(1-Ad(ye) L (y,) (n1)z
Then (6.0.11) follows from (5.4.32), (6.0.16) and (6.0.24). O

Remark 6.0.2. A similar consideration can be made for Trgy] [exp(—t DX:F2:2)] where (6.0.11) will

become an analogue of the index theorem for orbifolds as in (2.2.9). The related computation can be
found in [Bismut and Shen 2022, Section 10.4].

7. Full asymptotics of elliptic orbital integrals

In this section, we always assume that §(G) = 1 and that U is compact. We also use the notation and
settings as in Sections 5.1, 5.2 and 5.3.

In this section, given a irreducible unitary representation £ of U with certain nondegenerate highest
weight A, and for elliptic y, we will compute explicitly £, (F = G xg E,t) and its Mellin transform
in terms of the root systems. Note that, when y =1, £x,,(Fy,?) is already computed in [Bergeron and
Venkatesh 2013; Miiller and Pfaff 2013a] using the Plancherel formula for identity orbital integral. We
here give a different approach via Bismut’s formula as in (4.1.16).

Then in Section 7.3, we apply these results to a sequence of flat vector bundles {F; } ey on X defined
by a sequence of nondegenerate dominant weights A = dA + Ag. This way, we show that the Mellin
transforms of the elliptic orbital integrals are exponential polynomials in d.

7.1. Estimates of elliptic orbital integrals for small time t. Recall that T is a maximal torus of K, Ty
is a maximal torus of U, and W(U, Ty) denotes the (analytic) Weyl group of (U, Ty ). The positive root
system R (u, ty) is given in Section 5.3. Recall that P1 (U) is the set of dominant weights of (U, Ty)
with respect to RT (u, ty).

Let (E, pF) be the irreducible unitary representation of U associated with the highest weight A €
P41 (U). We will prove our main result of this subsection and next subsection for this (E, p¥).

Our homogeneous flat vector bundle concerned here is given by F = G xx E. Let DX-F>2 denote the
associated de Rham—Hodge Laplacian.

For ¢t > 0, if y € G is semisimple, as in (6.0.1), set

o (T X,F,2
Ex.y (F.1) = Trgﬂ[(NA (T*X) _ %) exp(—tDT)]. (7.1.1)
It is clear that £y, (F;, ) only depends on the conjugacy class [y] in G. If y = 1, we also write
Ix(F,t) =&x1(F,1). (7.1.2)

In the sequel, we only consider the case of elliptic y.
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By (4.1.16), (6.0.13), (6.0.15), if y = k € K, we have

exp(=271|A + pul?)

5X,y(F, l) = 7
2mt)2
: [ T, (Y8 Trg"(p*)[(NA'(P*) - ﬂ) Ad(k) exp(—i ad(Y(f))]
t(y) 2 e ¢
TeE [pF (k) exp(—ipE (YE))]e™ 2 0 (7.13)
2mt)2
By (3.3.18), we have the following formula for J,,(YOE), YOE € t(y):
) — Al ad(YOE)|p(y))|: 1 det(1 — exp(—i ad(Yg))Ad(k))m(y)]i .
T ad(Y{)l(yy) Ldet(1 — Ad(K)) 1 ) det(1 —exp(—i ad(Y§)) Ad(k)|yr oy ] ~

Proposition 7.1.1. For an elliptic element y € G, there exists a constant C, > 0 (depending on A) such
that fort €10, 1]

IWiEx., (F.0)| < Cy. ((1 + 2;%)5“(1?, z)’ <C, i (7.1.5)
Ast — 0, &,y (E,t) has the asymptotic expansion in the form of
1 +o00
Y
— ait’, 7.1.6
ﬁ;) ; (7.1.6)

with a}/ eC.

Proof. 1f y is elliptic, up to a conjugation, we assume that y = k € T. Thus the subgroup H defined
in Section 4.1 is also a Cartan subgroup of Z(y)°. Then b(y) = b. Let bl (y) be the orthogonal
complementary space of b(y) in p(y), whose dimension is p — 1. Note that similar estimates have been
proved in [Liu 2021, Theorem 4.4.1]; here we only sketch a proof to (7.1.5).

By (7.1.3), we have

1
gX,)/(Fs t) =
2

exp(=27%1|A + pu[?)

13
wt)?2

: f Te(WY) TrgV(P*)[(NA’(P*)—%) Ad(k) exp(—i ad(ﬁyg))]
e(k)

€2 14
T o (k) expl(—ip” (VIYE)le™ 2 (jY"q, 717)
7)2

where the integral is rescaled by /.

In this proof, we denote by C or ¢ a positive constant independent of the variables ¢ and Y, (f. We use
the symbol Ojyg to denote the big-O convention which does not depend on ¢ and YOB.

The same computations as in [Liu 2021, equations (4.4.8)—(4.4.10)] show that, for YOE €t,

I .
(WY = Oina (V1] Y§ € V110!
€(V1Y) det(1 — Aoy m(VilYgle )

e A AC(p™) _ M\ _A°(p*) o A(p*) ¢
AT [(v )M ) exp(—iph O (ViYg) |

= —det(i ad(Y$)) oL ) det(1 — Ad(K)) ] oy + Otma (V1] Y§ 1€V, (7.1.8)
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Using the adjoint invariance, the further estimates on the above quantities by a function in |YOE| hold for
all Y{ € e(k).
It is clear that

ITe? (0% (k) exp(=ip® (VIY5))]| < C exp(C V1Y) (7.1.9)

Combining (7.1.8) and (7.1.9), we see that there exists a number N € N big enough such that if
t €]0,1],

Y€2
IV1Ex,y (F.1)| < C] f(k)(1+|Y§|)Nexp(C|Y(f|—| g' )dY(f. (7.1.10)
4

The second estimate in (7.1.5) can be proved using the same arguments as in [Liu 2021, equa-
tions (4.4.24)—(4.4.29)].
The asymptotic expansion in (7.1.6) is just a consequence of (7.1.5) and (7.1.7). O

7.2. Elliptic orbital integrals for Hodge Laplacians. In this subsection, we explain how to use Bismut’s
formula (4.1.16) to compute explicitly the expansion of £, (F, ) in t > 0 when y € G is elliptic. Then
we study the corresponding Mellin transform. After conjugation, we may and we will assume that
y =k € T. Then T is also a maximal torus for K(y)?, and b(y) = b.

Recall that @¥e®) Qu®) Qun() are defined in Section 5.2. Note that dim uﬁ-()/) =4l(y). If

v E A’(uﬁ-(y)*), let [v]™*(") ¢ R be such that
) wYe):21(y)
v—[v] —(21()/))! (7.2.1)
is of degree strictly smaller than 4/(y).

Recall that —B(-, 0 -) is a Euclidean product on g. Let nt(y), it (y) be the orthogonal spaces of
n(y), i(y) in n, @ respectively. As 7-modules, nt(y) ~ i (y).

Since t C £(y) C &, R(¥(y), 1) is a subroot system of R(&, t). Let RT(£(y), t) be the positive root
system for (£(y), t) induced by R (£, t). We use the notation in Sections 5.1, 5.2. Then t is a Cartan
subalgebra for £, (), um(y), m(y). Let R(£n(y), 1), R(um(y), t) be the corresponding root systems.

Similar to (5.4.10), we have the disjoint union

R(un(¥), ) = R(V=1pu (1), ) U R((n(y), V). (71.2.2)

Since R(un(y), ) C R(uy, t), by intersecting with R (1, t), we get a positive root system R (un (y), t).
Moreover,

RY (un(¥), ) = R (V=1pn(¥), DU RT (£ (1), 1). (7.2.3)

Let Vol(K/T), Vol(Ups / T) be the Riemannian volumes of K/ T, Upys/ T with respect to the restriction
of —B to &, uy, respectively. We have explicit formulae for them in terms of the roots; for example,

1
Vol(Up, T) = Ha06R+(um,t) 2T

_ 7.2.4
@ pu) 724
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Fory =k €T, set

(=1) "7 FIVOI(K (y)°/ T) | W(Upt (v)°, T)] 1
Vol (U (O TWEK@)O, T)| det(1—Ad())yey)

cg(y) = (7.2.5)

If y =1, we define

_ =D >+ Wol(K/ T)|W(Up. T)|
cg =cg(l) = Nol(Uns / T)[W(K.T)| . (7.2.6)

We will use the same notation as in Sections 5.3 and 5.4. In particular, W, is defined by (5.3.4)
as a subset of W(U, Ty), and W(y) is defined by (5.4.14) as a subset of W(Ups, T). As explained
in Remark 5.4.5, for o € Wy, 0 € Wl(y), let EZ),U denote the irreducible unitary representation of
Y = Up(y)? or its finite central extension with highest weight o (4 (A) + py,,) — Py-

Definition 7.2.1. For j =0,1,...,I(y), w € Wy, 0 € W(y), set

(=1)/ Bla)™
J1QUy) =2/)! 872)/

In particular, if /(y) > 1, we have

},w,a(l\) = dim Eg)’g[wa(V)Jf (@(A + py), QUnY2AN=2/max() (72 7)

Q8.0 (M) = Gy G Ed o[(@(A + pu). Qun ()21 () max(y)
_1» 21(y) —_nn
y _ (=D Ba) T 2Ly) - DIt
Ql(y),w,a (A) = G2 dim E} . (7.2.8)
Recall that a; € b is such that B(ay,a1) = 1. For w € W,,, set
baw = (w-(A+py), vV—lay) €R. (7.2.9)
Then we have
M (A) + puy > = |A + pul® = D% - (7.2.10)
Note that ¢y (0, 7, (A)) is defined in Definition 5.4.3.
Theorem 7.2.2. Fort > 0, we have the identity
CG()/) X —2m2th3
Exy(F.1) = Zz TN s@)ey @ m0(A)e T PR 07 (). (7.2.11)
weWy
GEVGVI(V)

Remark 7.2.3. The formula (7.2.11) is compatible with the estimate (7.1.5). For example, we take y = 1;
then W!(y) reduces to {1}, the representation E}, ; is just Va 4 introduced in (5.3.6), and I(y) = I,
¢y (0,nNw(A)) = 1. Then we take the asymptotic expansion of the right-hand side of (7.4.2) as t — 0, the
coefficient of 1 ~!=1/2 is given by

cG

V2m

Y e@)Q] L (). (7.2.12)

weWy,
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By (5.3.7),if [ > 1, we get

A*(nd)

Y e(@)dimVa e, =Trg ©[1]dim E = 0. (7.2.13)

weW,

Then by (7.2.8) and (7.2.13), the quantity in (7.2.12) is O (provided [ > 1).
Before proving Theorem 7.2.2, we need some preparation work.

Definition 7.2.4. For y € t, put
T =[] @rv=1a®y),

a%eR (un(y),0)

_ 0
TtV = [1 (2 v/ —la, y), (7.2.14)
a0€R+(\/j1p1n(V)9t)

T =[] (@rv=1a%y).
aO€RT (tn(¥),0)
For y € t, put

o= ]  (exp((xv=1a’ y)) —exp(—(7 V=12, y))),

aOeRT (un(¥),)

O/ Tpm ()1 (V) = l_[ (exp((mv/—1a°, y)) —exp(—(7v/~1a?, y))), (7.2.15)
aORT (V=Tpu(»),9)
Otn(p)/t(¥) = 1_[ (exp({mv/— 1%, y)) —exp(—(mv/—1a?, y) ).

aOeR* (t, (¥)2,1)
We can always extend analytically the above functions to y € t¢. If y = 1, the above functions become

T/t V) T =1 e D)5 e 1t (V)5 0w 1t (V)5 0 =, /(D) O, e (Y)-

If the adjoint action of T preserves certain orthogonal splittings of uy, uy(y), etc., so that we have
the corresponding splitting of the root systems, then we can also define the associated m-function or
o-function as above.

It is clear that if y € {¢,
T/t = T /=10 ()8 Tewn () /(D)

(7.2.16)
Oun (V) =0 /=1, ()¢ (V)00 (V).
Set N .
L) =Nt PLO)=p"1) N pm. 217
B =) NEE). P =t () NPT O).
Let m(y) be the orthogonal space of m(y) in m with respect to B. Then
mh(y) = pL(r) © B (). (7.2.18)

We also have
tn=tn(y) ® f:n()/), Pm = pm(y) ® p:n()/) (7.2.19)
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and

) =) W), pry) = L) @ pa(y). (7.2.20)
Set
us (y) = V=1pL(y) ® €, (»). (7221

Then it is the orthogonal space of uy(y) in uy with respect to B.
Lemma 7.2.5. The following spaces are isomorphic to each other as modules of T by the adjoint actions:
wh(y) = &) = 6 ) = ). (7.2.22)
Proof. Note that
dimn =dim¢—dimét,, dimn(y)=dimt(y)—dimé,(y). (7.2.23)
Together with the splittings (7.2.19), (7.2.20), we get
dim ¢ (y) = dimn(y). (7.2.24)
Similarly, dim p’: (y) = dimnt(y).

If f €nt(y), then f 4+ 6(f) € & we can verify directly that f + 6(f) € €(y). Then the map
fent(y)— f+0(f)e £/ (y) defines an isomorphisms of T-modules. Similar for nt(y) ~ pl(y). O

Since y =k € T, let yg € t be such that exp(yo) = y. Note that yq is not unique.
Lemma 7.2.6. If y € tis regular with respect to R(£y(y), t), then we have

Ty T OO (NATED — ) Ad(k) exp(—iad(y))]

(_1)dimpm(1’)/2+1 A’(né)

det(l — AN, & ®r | |
_ T T )/t EY) O ()t (0Y) 0L ()1 (—1Y + Yo)

- (7.2.25)
e (v)/e(0Y) Oul(y)i(yo)
Proof. Using (5.4.23), (7.2.20) and Lemma 7.2.5, we get that, for y € t,
1 det(1 — 90 Ad(K)) |1 () ]2
det(1 — Ad(k))ljJ_(y) det(1 — e~iad(y) Ad(k))lpJ_(y)
_ (—1) % dimp{ ) 1 oy, (y)/(=1y + yo) (7.2.26)
det(1 — Ad(k) [t () Ot (5)/t(¥0) O /=1 (1) (=1Y + 0)
Recall that in Section 5.1, as Kps-modules, we have the isomorphism
p>b®pn®dn. (7.2.27)
Note that

Ad(k) = 00, (7.2.28)

If y € t, when acting on p, we have

Ad(k) exp(—i ad(y)) = exp(ad(—iy + yo)). (7.2.29)
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Note that dim b = 1. Then, for y € t, we get

TrA¢") [(NA.(*’*) — %) Ad(k) exp(—i ad(y))]

Te O [Ad (ke 1O 00

[Ad(k)e ™ 210)]
= —det(1 — Ad(k~ e W) T D ad(k)e €0, (7.2.30)
where we have the identity
_ ] 1 4 . .
det(1 — Ad(k~He' )|, = (~1)2 dlmpmgﬁpén(y)/t(_’y + yO)zoﬁpm(V)/t(ly)z' (7.2.3D)

Note that analogous to (7.2.27), we have p(y) >~ b @ pn(y) @ n(y); using [Bismut 2011, equa-
tion (7.5.24)], if y € t, we have

(iy) ~
Fpm(y)/t( )A(z ad(y)|n(y))
O Tpm(y)/t\1Y (7.2.32)
Te(y) /(i) _ T, )/t y)A(z ad(y)|u(y))-
O i(iy) e, ()/e(iy) w

Combining (7.1.4), (7.2.26) and (7.2.30)—(7.2.32), we get (7.2.25). O

Al ad(y)| y=1,) =

A ad(y)|(y)) =

Now we prove Theorem 7.2.2.

Proof of Theorem 7.2.2. Put

Fy(A.1) = . / Ty (1) e GO (NATED — ) Ad (ke 20 |
Qr1)z Jew) 2
E E inE Yé |Y(§|2 dYE
TeE [pF (k)e™iP" Xo)je= 2 — 0 (7.2.33)
(2mt)2
By (7.1.3), we have
Ex.y(F.1) = exp(=272t| A + pu|*) Fy (A 1). (7.2.34)
Recall that r = p + ¢ = dimg 3(y). By the Weyl integration formula,
Fy(A. 1) = . % )2J, (y) Tr P)[ NATGD) Y Ad(k)e™ @ y)]
y (A1) 25 WK ). D] t| eyt 17Ty () Tr ( 2) )

2
i [0 (k) exp(—ip® (y))]e™ 2 dy. (7.2.35)
Recall that I(y) = % dimn(y). We can verity directly that if y € ¢,
) ()% = (1) P, )009)? det(G ad () lny ). (7.2.36)

Moreover, if y € tis such that m,_(,)/¢(y) # 0,

|7y ()2 _ ey /i(iy)?
1T/t ODI12 T () e (i9)?

(7.2.37)
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Then by Lemma 7.2.6 and (7.2.5), (7.2.32), (7.2.36), we get

ey e ()1
|7Tum(y)/t(y)|2
(—1)! ) +3 dimpa()+1

— det(1 — Ad(K))]y1 ()

Ty T OO (WA — ) Ad(k) exp(—iad(y))]

Trp "9 [e~940) Ad(k)]

~ det(1 — e™ ) Ad(K)) |1 () 12
-det(i ad A (i ad . (7238
30Dl A~ 80| g rggiy | 0239
Note that we have the even number
p—1=dimpu(y) +20(y). (7.2.39)
Now we can rewrite (7.2.35) as
Foag — CDZ VUK @)/ T) !
T @r0)2 WK (y)°. T)|  det(1—Ad(K))|(y)
'/t|77um(y)/t(y)|2det(i ad(y) lapye - A1 ad (D))
det(1 — e ) Ad(K)) .1 (1) 3
. [ det(1 — Ad(k)),L () ]

. Trﬁ\'(né)@’E [e—ipA.("“*?)®E(y)pA'(HE)®E (k)]e—lylz/Zl dy. (7.2.40)

Note that the functionin y € t

_ o det(1 — e~ 2O Ad(k))|,1 oy 2
u (y

A*(nOQE
Iy

T [P OEE ) A GDBE (1)) (7241

can be extended directly to a Upy (y)°-invariant function in y € uy(y). Since t is a Cartan subalgebra of
um(y), we can apply the Weyl integration formula for the pair (uy(y), t); we get

det(1 — ™10 Ad(k)) |1 () T2
[ det(1 — Ad(k)), L () }

c6(y) det(i ad(y))ln(y)e - A7 ad() )

Fy(A,t)= ;
! 2n1)2 Jyeua(»)

D ODSE (iph OB 0) A GDSE ()10= B 4y (7.2.4)

The constant cg () is defined by (7.2.5).
Note that
r=dimuy(y) +4I(y) + 1. (7.2.43)

If y € un(y), then

Qum(¥)
B(y, o ) € A2(uE(y)*). (7.2.44)
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If y € un(y), by [Shen 2018, equation (7-27)], we have

det(i ad(y)) |n(y)c 1 Qum(¥) max(y)
= ~ By, : 7.2.45
Q1)) i U > (7.2.45)

Combining (7.2.42)—(7.2.45), we get

_e—1ad(») 1
CG()/) ~q . det(l e '@ Ad(k))l L(@y) 2
Fao=S21[ a0 0
2t Lyeun(y) det(l_Ad(k))uH“—(y)
ax(y)
ATMOBE - A*(m*)QE ,—iy lB(y,w,,m)—ﬁ dy -
Tr [pA MOIBE (o =iV f)]e1 2 5 GG (7.2.46)
By (5.2.21) if y € upn(y), then
Qum(¥) Iy2 1 Qum(¥) Qum(¥) Bar)?® y
-2 = = — [1(3/)52
B(y, 2 ) 2 2B (y + w7 + 27 ) 82 ' (7247

Let AUm() be the standard negative Laplace operator on the Euclidean space (i (y), —B |y (y))- Then
by considering the heat kernel of —A'm(), we can rewrite (7.2.46) as

[ (Bt 2
21t [exp (_ 82t )

Fy(A,t)=

det(1—e~"%40) Ad(K)) L () } 3

t ~ 1.
.exp(EAum(Y)) { A l(l ad(y)|um(1/))|: det(l—Ad(k)) L )
U (¥

(7.2.48)

o % . ) max(y)
Tr;\ MO®E [PA (nc)®E(e—lyk)]} :|

_ Qum(»)
Y=="727

Recall that V5 , is an irreducible unitary representation of Ups with highest weight 1, (A). By (5.3.7),
for y € un(y), then

Tr?.(“g)g)E [pA.(“g)‘X’E (e_iyk)] = Z e(w) TrVro [pVA=‘” (e_iyk)]. (7.2.49)
weW,

Then we apply the generalized Kirillov formula (5.4.21) to each term in the right-hand side of (7.2.49),

we conclude that, for w € W, the function in y € uy,(y)

det(1— e~ 40 Ad(K)) .1 ()
det(l — Ad(k))u,J,;()/)

1
AN ad(y)|um(y))|: ] TrVae [pVAe (e 7V k)] (7.2.50)

is an eigenfunction of A (V) associated with the eigenvalue 472|n4(A) + py,,|?. Then the heat operator
exp(%A“‘“(”)) acts on the function (7.2.50) as a scalar €27 1110 (M) +oun* By (5.3.8), (5.3.9), for » € W,,
we get

Nw(A) + pu, = Po(@(A + py)). (7.2.51)

Combing the above computation with the term e 2% 2tlA+pul? i (7.2.34), by (7.2.10), we get the factor
2
e 27 10% w in (7.2.11).
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Now we deal with the main part in (7.2.48) after removing the heat operator exp(5 A% (")), We will

use the same notation as in Section 5.4. The orbit O

o (e (A)+pur) is defined in (5.4.17) equipped with a

Liouville measure du’. We claim the identity

Bla?oe®2
o)

- det(1—e= %W Ad(k
ST B Ol

det( 1 —Ad(k))qu_ )

Blar)>wo®)2
82t

1
5 ) max(y)
] Try A [pV Ao (e‘%)]} }

_ Qum(»)
Y=="727

max(y)
= Z <py(0,nw(A))-dimEC{’)’a[exp(— —(G(Uw(A)-l—pum),Q”"’(”)))] . (7.2.52)

oceWl(y)

Indeed, by (5.4.21), we have the following identity as elements in A'(uf; ) ):

det(1 — e~ 20) Ad(K)) |, 1 (5)
det(1 — Ad(k)), L (5)

_ um ()
= Y 90.10(A) / , eSS gy (7.2.53)
GEW 1 (y) f€o

{ff—l(z’ ad(y)|um(,,))|: T A [pVaw (e—iyk)]}

_ Qum(»)
Y=—""2%7

o (Mw (M) +poum)

Recall that the curvature form Q4 (") is invariant by the action of Ups(y)? on Yy (y). Since a; and
0¥ @) are invariant by Ups (y)°-action, so is Q=) Therefore, for f € um(y)*, u € Upr (y)°,

[ ( Bla?oe 2
expl ———————

max(y)
82t :|

) exp(—(Ad* (u) £, @4 )

Bla1)?w’e )2
82t

max(y)
= detAd(u)|ubL(y) |:exp(— ) exp(—( /. Qum(y)>)] . (7.2.54)

Since Ups (y)? acts on ué- (y) isometrically with respect to — B L)
detAd(u)lubL(y) =1. (7.2.55)

Then (7.2.52) follows from (5.4.6) and (7.2.53)—(7.2.55).
The right-hand side of (7.2.52) is a polynomial in ¢ ~L. Recall that dim uﬂ- (y) = 4l/(y). Then, for each
o € Wl(y), we can rewrite the term [---]™*®) in the right-hand side of (7.2.52) as follows:

I(y)

1 ( 1)] ﬁ(al)Zj Yo(¥),2j P\ 21(y)—2] »
E — ) . ~[w"® <. A u ’Qum 14 y jmax(y ' s
=0 v J '( l(}) 2])!(8712)J [ ((1)( +p ) ) ] ( )

Finally, putting together (7.2.7), (7.2.34), (7.2.48), (7.2.49), (7.2.52), and (7.2.56), we get (7.2.11). O

The Mellin transform of Ex , (F, t) (if applicable) is defined by the following formula as a function in
s € C with N(s) > 0:

+o00
MEx., (F, s):—ﬁ /O Ex., (F.0r "V dr. (1.2.57)
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If MEx,, (F,s) admits a meromorphic extension on C which is holomorphic at s = 0, we will set

PEx,y(F) = 9 MEx ,(F,s). (7.2.58)
ds ls=0

Theorem 7.2.7. Suppose that the dominant weight A is such that, for every € Wy, ba o # 0. Then, for

s € Cwith R(s) > I(y) + 1, MEx , (F,s) is well-defined and holomorphic, which admits a meromorphic

extension to s € C.

Moreover, we have the identity

MEx .y (F,s)
Z F(s) [;V:‘ e(@)py (0,10(A) 07, 5 (M) (27} )/ T2 } (7.2.59)
cewl@y)

Then MEx (F,s) is holomorphic at s = 0. We have

PEX,y(F) 1)
Y (471G + 1) .
- (Y)Z( Fr | T @A) Q],  er8 )t | 260
w1t

Proof. By Theorem 7.2.2, the assumption on A implies that £y , (F, t) decays exponentially as ¢ — +oo0.
By (7.1.6) and (7.2.11), we get (7.2.59). This proves the first part of this theorem.

Equation (7.2.60) is a direct consequence of (7.2.59) by taking its derivative at 0. This completes the
proof of our theorem. U

The formula in the right-hand side of (7.2.60) still looks complicated; we can rewrite it in a neat way
as follows. We introduce the following functions.

Definition 7.2.8. Let a! € b* take value —1 at a;. Note that y € T. For w € W,, 0 € Wl(y), if
A e Pr4(U), for z € C, set

P! p(2) =dim L, - [exp((RD, 6 (06 (A) + puy) + 27/~ 1a')) ™. (7.2.61)

Since 6 fixes Q) by the fact that det 8| wly) = 1, we have P”

w,0,A
Moreover, by the dimension formula (5.4.6), the coefficients of z/, j € N, in Py A(z) are polynomials

(z) is an even polynomial in z.

in A. Such polynomials are related to the Plancherel measures in the representatlon theory.

Lemma 7.2.9. We have the identity

WA+ !

= V2(2j +2)!
Proof. We have

. |bA,w‘
Y o (M2 (0 0)2) T2 = 21 /0 Pl A(0)dL. (7.2.62)

(Mo (A) + py, +2v/—=1a", Q%) = 2B(a )0’ P + (0 (A + py), Q') (7.2.63)
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. y . . .
Since Pw’ ol A (2) is an even function in z,

. I X
P! \(z)=dimE}, [(2B(a1)@ P +(w(A+p,), Qim0 ]P0

L
7 @)
W Blanz

dimEY . Y27 (g (A 4 ), QUn Y 2AW=27mXT) 75 0y
e L Gigy -zl e T e

Note that, for j =0,1,---,1(y),

bael o 1 2j+1
t</ dt = b . 7.2.65
/(; 2]. + 1| A,w| ( )

Then (7.2.62) is a consequence of (7.2.7), (7.2.64) and (7.2.65). O
As a consequence, we get the following formula for PEx ,, (F).

Theorem 7.2.10. Suppose that the dominant weight A is such that, for every w € Wy, b o 7# 0. Then

1bA .ol

Pexy(F) =2ncc()- Y swpyona() [ Pl (.26

weWy
oewly)

7.3. A family of representations of G. We recall a definition of nondegeneracy of A in [Bismut et al.
2017, Definition 1.13, Proposition 8.12].

Definition 7.3.1. A dominant weight A € P4 (U) is said to be nondegenerate with respect to the Cartan
involution 0 if

WU, Ty)-ANt* = 2. (7.3.1)
It is equivalent to
Ad*(U)ANE* = 2. (7.3.2)

Note that if such dominant weight exists, we must have §(G) > 0.

Let (E, pf) be the irreducible unitary representation of U with highest weight A € P, (U). By

the unitary trick, it extends to an irreducible representation of G, which we still denote by (E, p).

Then A being nondegenerate is equivalent to saying that (E, p£) is not isomorphic to (E, pZ o 6) as
G -representations (as in [Miiller and Pfaff 2013a]).

Definition 7.3.2. If A € t7;, for w € W(U, Ty), put
ar o= (w-A,vV—1lay) €eR. (7.3.3)

Recall the real number b, ,, is already defined by (7.2.9); then by ,, = a, 4 + dp, - In particular, we
simply put ay = a; 1, by = b ;.

Lemma 7.3.3. If A € P41 (U) is nondegenerate, then, for o € W(U,Ty), a, 4, # 0.
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Now we fix two dominant weights A, 1o € Py (U). Let {(Ez, pE4)}|sen be the sequence of
representations of G given by the irreducible unitary representations of U with the highest weights
d)d+ Ay, d eN.

Put F; = G xg E4. Let DX-Fa:2 denote the associated de Rham—Hodge Laplacian. For ¢ > 0, let
exp(—t DX-Fa:2 /2) denote the heat operator associated with DX-Fa:2/2 By taking A = dA + Ao, we
apply our results in previous subsection to the sequence &y, (Fy,1), d € N.

7.4. Asymptotics for identity orbital integrals. In this subsection, we specialize our results in Section 7.2
for y =1and A = dA + Ag. Now the set W(y) reduces to {1}, and I(y) =, ¢y (0, nn(A)) = 1. We
will drop the superscript y and subscript o in our notation

Moreover, for o € W, the representation E w,0=1 is just VA 4 introduced in (5.3.6), which is the
irreducible unitary representation of Ups with highest weight 1, (A) given by (5.3.8).

Definition 7.4.1. By taking A = d)A + A¢ in (7.2.7), we define the following functions in d: for
J=0,1,....1, o € Wy, set
Alo
0 (d) = 0, (d2 + 1)

(=D Bla)¥
o120 —2))'(8n2))

dim V3 1 20,0070 (@(d X + Ao + py), QU2 72/ |max - (7.4.1)

By the Weyl dimension formula, dim Vg3 4 5, ., is @ polynomial in 4. Then Q?fo (d) is a polynomial
in d of degree < % dim(g/h) —2;.
By Theorem 7.2.2 and (7.4.1), we get directly the following results.

Theorem 7.4.2. Fort > 0, we have the identity

l

G —J —27m2t(day . +birp.w)? HAsAo

NirTi E Ot EW e(w)e A 20 Qj,w (d). (7.4.2)
J= wEWy

Theorem 7.4.3. Suppose that A is nondegenerate with respect to 6. For d € N large enough and for
s € Cwith R(s) > 0, MZx (Fy,s) is well-defined and holomorphic, which admits a unique meromorphic
extension to s € C and is holomorphic at s = 0.

Ix(Fg.t) =

Moreover, we have the identities

MZx (Fy,8) = —— Z - () [Z £(0) 07} "0(d)(znz(dak,erbAO,w)Z)H%—S}, (7.4.3)
weWy
J+1; o
PIX(Fd)———Z( o +(2’)!+”![ Y s 2@ i o) | 04

.=0

In particular, the quantity PZx (Fy) is a polynomial in d for d large enough, whose coefficients depend
only on the given root system and A, Ay, and has degree < % dim(g/h) + 1.
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Proof. Since A is nondegenerate, by Lemma 7.3.3, a, ,, # 0, @ € W,,. Then there exists do € N such that
ford > do, (daj 4 + b)LO,w)2 > 0. Then by Theorem 7.2.7, we get first part of this theorem and (7.4.3),

(7.4.4).
Note that
(A 0+ big,0)]? = das.0+brgol:
For d > d,
|day o + bry.0l = sign(as o) (day o +biy.0)-
Then we see that PZy (Fy) is a polynomial in d for d large enough. O

As explained in Remark 5.3.3, when G has noncompact center with §(G) =1 (but U is still assumed to
be compact), most of the above computations can be reduce into very simple ones. Recall thatay, by, € R
are defined in Definition 7.3.2.

Corollary 7.4.4. Assume that U is compact and that G has noncompact center with §(G) = 1, and
assume that A is nondegenerate. Then, fort >0, s € C,

¢
Ix(Fy,t) = _G ,2m?t(daz+bi)? 4im Eg,

V2t
MIx(Fy.s) = ——8 F(S—_%)an(dm + b))V dimE,. (7.4.5)
’ V2r T(s) 0
Furthermore,
PIx(Fg)=2ncg|day+by,|dimE,. (7.4.6)

Proof. By the hypothesis, we get that [ = 0, W;, = {1} and 0{’}°(d) = dim E;. Then (7.4.5), (7.4.6)
are just special cases of (7.4.2), (7.4.3) and (7.4.4).

However, we can prove them more directly using a result of Proposition 4.1.6. It is enough to prove
the first identity in (7.4.5). Note that by (5.3.11), we have

X' =M/K, (7.4.7)
with §(X’) = 0.
By [Miiller and Pfaff 2013a, Proposition 5.2] or [Shen 2018, Proposition 4.1], we have
w1 |W(Ung. T)|/|W(K.T)

[e(TX', VTX)max — (—1)"2 VolUne 1K) (7.4.8)
Then by (7.2.6), we have
[e(TX', VTX ) max = _cq. (7.4.9)
By (4.1.28) and (7.3.3), we have
ap, = —2n(day +b,,). (7.4.10)

Combing (4.1.31) and (7.4.8) - (7.4.10), we get the first identity in (7.4.5), and hence the other identities.
This gives a second proof to this corollary. O
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7.5. Connection to Miiller and Pfaff’s results. In this subsection, we assume that G has compact center
with §(G) = 1. We explain here how to connect our computations in the previous subsection to the results
in [Miiller and Pfaff 2013a].

For y =1, w € W, the function PGJ:,O',A defined in (7.2.61) now reduces to

Py A(2) = dim VA o [exp((n(A) + pu,, +2v/—1a", Q4®))]™ (7.5.1)
We can verify directly that

Vol(Un /T) (@, 0 (A) + pu, +2v/=1a)

Vol(U/ Ty) "R w0 (@, pu) '
The scalar product in (7.5.2) is taken with respect to —B|,.. Up to a universal constant, Py, A (z) is just the
polynomial related to the Plancherel measure of representation V5 ,, as given in [Miiller and Pfaff 2013a,

Pw,A(Z) =

(7.5.2)

equation (6.10)]. Note that there is no factor (271)21 in (7.5.2) because of our normalization for |-
By Theorem 7.2.10, we have the following result for sufficiently large d.

]max.

Corollary 7.5.1. Suppose that X is nondegenerate with respect to 0. Then

|da)».w+b)u0,a)|
PIx (Fg) =2mcg Y &(w) / Po.diing(t)dt. (7.5.3)
0

weWy,

By [Miiller and Pfaff 2013a, Lemma 6.1], we can get the identity
IW(K,T)| =2[W(Kpm,T)|. (7.5.4)

Combining (7.2.6), (7.5.2), (7.5.4), we see that the formula in Corollary 7.5.1, is exactly the same formula
of [Miiller and Pfaft 2013a, Proposition 6.6] for PZy (F,;).

Recall that the U -representation E; has highest weight dA 4+ A¢ € P14 (U). Then by Weyl dimension
formula, dim £; is a polynomial in d. If A is regular, then the degree (in d) of dim E is % dimg/h.

For determining the leading term of PZy (F;), as mentioned in the Introduction, we can specialize
the result of [Bismut et al. 2017, Theorem 0.1] as in Section 8 of that work for the symmetric space X.
Here to emphasize PZy (Fy) being a polynomial in d, we state a result of [Miiller and Pfaff 2013a,
Proposition 1.3] as follows.

Proposition 7.5.2. Suppose that A is nondegenerate and that Ay = 0. Then there exists a constant
Cx . # 0 such that
PIx(Fg)=CxddimEgz + R(d), (7.5.5)

where R(d) is a polynomial whose degree is no greater than the degree of dim E 4.

Remark 7.5.3. Note that Miiller and Pfaff [2013a, Proposition 1.3] proved Proposition 7.5.2 by reducing
the problems to the cases G = SL3(R) and SO°(p, q) (pg > 1 odd). In particular, for certain examples
of A, they also worked out explicitly the constant Cy_; [Miiller and Pfaff 2013a, Corollaries 1.4, 1.5].

Similarly, if we take a nonzero Ao, we can repeat their computations for G = SL3(R) and SO°(p, q)
(pg > 1 odd) in order to get more explicit information on the leading terms of PZx (Fy).
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An important step in Miiller and Pfaff’s proof to Proposition 7.5.2 is reducing the computation of
PZIx (F;) to the cases where g = sl3(R) or so(p, ¢) with pg > 1 odd. Such reduction is already explained
in Section 4.2. More precisely, we have

X = X1 x X3, (7.5.6)

where X is one case listed in (4.2.1), and X3 is a symmetric space with rank 0.
We use the notation in Section 4.2 and assume G to be semisimple. Let A;, Ao,; be dominant weights
of U;, i =1, 2, such that

A=A1+2A2, Ao=2o,1+ 20,2 (7.5.7)
Now we consider the sequence dA + Ag, d € N. Then

Eqi=Egpi+201® Edrr+ig-- (7.5.8)

Since G is equal rank, the nondegeneracy of A with respect to 6 is equivalent to the nondegeneracy
of A1 with respect to 8;. Then by Proposition 4.2.2, after taking the Mellin transform, we have

MIx (Fy.s5) = [e(TX2, VI*2) ™2 dim E 43,42, , MZx, (Fa2, 420 1 5)- (7.5.9)
Then
PIx (Fg) = [e(TXo, VIX2) ™2 dim E 45, 120 , PIx, (Fap, +20.1)- (7.5.10)

Then we only need to evaluate PZy, (Fgj,+4, ) explicitly, which has been dealt with in [Miiller and
Pfaff 2013a, Section 6].

7.6. Asymptotic elliptic orbital integrals.

Definition 7.6.1. A function f(d) in d is called an exponential polynomial in d if it is a finite sum of
the term Cj,sez’rﬁs‘ldj with j €N, s € R, ¢ € C. The largest j > 0 such that ¢j ; # 0 in f(d) is
called the degree of f(d).

We say that the oscillating term 27V =1sd jspice if s € Q. We say that an exponential polynomial f(d)
in d is nice if all its oscillating terms are nice.

Remark 7.6.2. If f(d) is a nice exponential polynomial in d, then there exists an Ny € N~ such that
the function f(dNp) is a polynomial in d.

Note that by (5.4.18), ¢y (0, Nw(dA + Ag)) is an oscillating term in d, which is nice when y € T is of
finite order. The following theorem is a direct consequence of Theorem 7.2.10.

Theorem 7.6.3. Suppose that A is nondegenerate, and that y = k € T. Then, for sufficiently large d,
PEx .y (Fg) is an exponential polynomial in d. Moreover, we have

|da)l,a) +b/10,a)|

Pexy(Fa)=2mcc(y)- Y e(@)gy (0. n0(dA+ Ao)) /0 P! et (161)

weWy
aewl(y)
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If we consider G = Spin(1,2n+1), n > 1, as in [Fedosova 2015], then up to a constant, the exponential
polynomial };cp1(,) @y (0, Nw(dA + AO))Pcz,a,dAHo (¢) is just the one defined in [Fedosova 2015,
Proposition 5.1]. This way, our results are compatible with her results in [Fedosova 2015, Theorem 1,1]
for hyperbolic orbifolds.

Remark 7.6.4. Let Char(A) denote the character ring of the complex representations of a compact Lie
group A. One key ingredient in (7.2.66) is an explicit decomposition of characters of U into characters
of Ups (y)°. In the diagram below, we give two different ways of getting to this decomposition:

Char(U(y)%) (7.6.2)

Kirillov for yeU ®A°n(y)¢

/

A

@\.ﬂé) Kirillov for yeUpy

Char(Upy)

/

Char(U) Char(Upm (7)°)

\

The formula in (7.2.66) is obtained by the computations along the lower path in (7.6.2). We also have the
upper path, which is essentially the geometric localization formula obtained in Theorem 6.0.1.

We will use the same notation as in Section 6. The following theorem is a consequence of the geometric
localization formula obtained in Theorem 6.0.1.

Fork €T, let W(} (k) C W(U, Ty) be defined as in (5.4.14) with respect to R™ (u, ty). Foro € Wl} k),
the term go,g (0,dA + Ao) defined as in (6.0.8) is an oscillating term, which is nice if k is of finite order.

Theorem 7.6.5. Suppose that y = k € T is elliptic and that A is nondegenerate with respect to 0.
Then, for o € W(} (k), oA € Py (U(k)) is nondegenerate with respect to the Cartan involution 0
on 3(k). Ford €N, let Eg,d be the irreducible unitary representation of l~](k) with highest weight
doA +0 (Ao + pu) — puck)- This way we get a sequence of flat vector bundles { F, (’r‘, gtden on X (k). Then,
for sufficiently large d, we have

Pexy(Fa)= > of (0.dA+ ko)PIy)(FL ). (7.6.3)
oeW} (k)

Proof. The nondegeneracy of oA (0 € Wl} (k)) follows easily from the nondegeneracy of A and the
definition of W(} (k). For proving this theorem, we only need to prove (7.6.3). Actually, by Theorem 6.0.1,
for t > 0, we get

Exy(Fa.)=Y  ¢f (0.dA+Ao)Ix (FL 4. 0). (7.6.4)
oeW} (k)
Then (7.6.3) follows from the linearity of Mellin transform. O

8. A proof of Theorem 1.0.2

In this section, we complete the proof of Theorem 1.0.2; then Theorem 1.0.1 (and Theorem 1.0.17) follows
as a consequence. We assume that G is a connected linear real reductive Lie group with §(G) = 1 and
compact center, so that U is a compact Lie group.
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8.1. A lower bound for the Hodge Laplacian on X. We use the notation from Section 4. Recall that
e1,...,en is an orthogonal basis of TX or p. Put

m
Co =_Y"e?ecUy. (8.1.1)
=1

Let C%f-E be its action on E via pZ. Then
CQ:E — CgaH9E + CESE. (8.1.2)

Let A#-X be the Bochner—Laplace operator on the bundle A*(T*X) ® F associated with the unitary
connection VA (T X)®F.u pyq
O(F) = 35% — L(R™ (e, ¢j)er. er)c(ei)c(e)é(ex)(eq)

—CHHE 1 L(c(ei)e(e;) —Een)é(e)) R (ei e;), (8.1.3)
where RF is the curvature of the unitary connection VF on F.

Then O(F) is a self-adjoint section of End(A*(T*X) ® F), which is parallel with respect to
VAT T*X)®F.u - Equivalently, ©(F) is an element in End(A*(p*) ® E) which commutes with the
K-action. By [Bismut et al. 2017, equation (8.39)], we have

DXF2 = _AHX | g(F). (8.1.4)
Then, for s € Q2(X, F), we have

(DXF25 V1, > (O(F)s.s)L,. (8.1.5)

Let AH-X7 denote the Bochner—Laplace operator acting on (X, F), and let ptH ot (x,x") be the
kernel of exp(t AF>-X7 /2) on X with respect to dx’. We will denote by ptH’i (g) € End(A! (p*) ® E) its
lift to G explained in Section 3.2. Let AOX be the scalar Laplacian on X with the heat kernel th 0,

Let ||pfl’i (2)|| be the operator norm of pfl’i (g) in End(A’ (p*) ® E). By [Miiller and Pfaff 2013b,
Proposition 3.1], if g € G; then

H,i X,
Ip (@)l < P (2)- (8.1.6)
Let ptH be the kernel of exp(t A™>X /2), then
p
i =@ r". (8.1.7)

i=1

Let th’F be the heat kernel associated with DX’F’Z/Z, by (8.1.4), for g € X,

O(F
th’F(g)ZGXp(—t ( ))pf(g)- (8.1.8)

2

Recall that P4 (U) is the set of dominant weights of U with respect to R (u, ty) defined in
Section 5.3. As in Section 7.3, we fix A, A9 € P+4+(U) such that A is nondegenerate with respect to 6.
Recall that, for d € N, (E4, p£4) is the irreducible unitary representation of U with highest weight
d A + Ao, which extends uniquely to a representation of G. By [Bismut et al. 2011, Théoreme 3.2; 2017,
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Theorem 4.4, Remark 4.5; Miiller and Pfaff 2013a, Proposition 7.5], there exist ¢ > 0, C > 0 such that,
ford e N,

O(Fy) > cd*-C, (8.1.9)
where the estimate d? comes from the positive operator CoH.Ea By (8.1.4), (8.1.5), (8.1.9), we get
DXFa2 > 42 . (8.1.10)
Lemma 8.1.1. There exists do € N and co > 0 such that ifd > dy, g € G,
laF ()]l < e 0™ p0(e). (8.1.11)

Proof. By (8.1.9), there exist dg € N, ¢’ > 0 such that if d > d,

O(Fy) > c'd?. (8.1.12)
Then if t > 0,
tO(F ,
exp(_ (2_d))“ < ebed, 8.1.13)
By (8.1.6), (8.1.7), (8.1.8), (8.1.13), we get (8.1.11). O

The locally symmetric orbifold Z is defined as I"\ X, where I" is a cocompact discrete subgroup of G.
For y € T', the number m,, > 0 is given by (3.3.3), which only depends on the conjugacy class of y (in G
or I'). Recall that E[I'] is the finite set of elliptic conjugacy classes in T

Fort >0, x € X, y €T, set

vi(Fg. o) = Tl T 0BF (N AT _ BN (c y (yy | (8.1.14)

Then by Lemma 8.1.1, we have the following result.

Lemma 8.1.2. There exist Cy > 0, co > 0 such that if d is large enough, fort >0, x € X, y €T,

. _ 2
[v:(Fg.7,x)| < Co(dim Eg)e=04"* pX-0(x y(x)). (8.1.15)
Set

f=  inf my. (8.1.16)
[yle[T-E[r]

By [Liu 2018, Proposition 1.8.5], mp > 0.

Proposition 8.1.3. There exist constants C > 0, ¢ > 0 such that if x € X, t €10, 1], then

Yoo pky) =cC exp(—%). (8.1.17)

y €L,y nonelliptic

Proof. By [Donnelly 1979, Theorem 3.3], there exists Cy > 0 such that when 0 < ¢ <1,

2 /
M). (8.1.18)

pf(’o(x, x) < Cot ™2 exp (— 1
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By [Liu 2018, Lemma 1.8.6], there exist ¢ > 0, C > 0 such that for R > 0, x € X,
#{y € I' | y nonelliptic, d) (x) < R} < C exp(cR). (8.1.19)

By (8.1.16), (8.1.18), (8.1.19), and using the same arguments as in the proof of [Miiller and Pfaff 2013b,
Proposition 3.2], we get (8.1.17). O

8.2. A proof of Theorem 1.0.2. In this subsection, we complete our proof of Theorem 1.0.2. Note that
every elliptic element y € I is of finite order, then part (2) of Theorem 1.0.2 is an easy consequence of
Theorem 7.6.5. We only need to prove part (1). We restate it as follows.

Proposition 8.2.1. Let I' C G be a cocompact discrete subgroup and set Z = I'\ X. There exists ¢ > 0

such that, for d large enough,

Vol(Z) Vol(T' N Z(y)\X(y))
57 o 2 S0

[yleE*[T]

T(Z.Fy) = PEx.y(Fg) + 0%,  (8.2.1)

where E1[['] = E1[T]\{[1]} is the finite set of nontrivial elliptic classes in ['].
Proof. By (8.1.10), we have

D% Fa2 > g% _c. (8.2.2)
Then if d is large enough, we have

H*(Z,F;)=0. (8.2.3)

Then T(Z, F;) can be computed using (2.2.15).
Asin (2.2.12), for t > 0, set

b(Fy,1) = (1 + 218%) Tt [(NA°(T*Z) - %) exp(—@)]. (8.2.4)

As in [Bismut et al. 2017, Section 7.2], by (8.2.2), there exist constants ¢ > 0, C > 0 such that, for d
large enough and for ¢ > %,

|b(Fz.1)| < C exp(—éd — ét). (8.2.5)
By (2.2.15), we have
+o00 dt
T(Z,Fy) = —f b(Fy,t) - (8.2.6)
0
We rewrite it as
+o0o d F t
T(Z, Fy) =—/ b(Fd,t)ﬂ—/ b("—;) dr 8.2.7)
l/d t 0 d t

By (8.2.5), there exists ¢ > 0 such that, for d large enough,

+o00
/ b(Fy.1) # = O(e™¢9). (8.2.8)
1/d
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By (3.5.1), (8.1.14), (8.2.4), we get

b(Fy,1) = (1+2z 0 )/ ST Zv,(Fd v, z)dz. (8.2.9)

We split the sum in (8.2.9) into two parts,

>+ > (8.2.10)

yel,y elliptic  y€T,y nonelliptic
so that we write

b(Fg.,t) = betiptic(Fg ) + bnoneltiptic (Fg . 7). (8.2.11)
Similar to Selberg’s trace formula in Section 3.5, we get
Vol(I"'N Z(y)\X () d
beniptic(Fg,t) = 14+2t— )& Fi.1). 8.2.12
wpic(Fa )= ) sor (2 g Fan (8:2.12)

[vleE[T]
By (7.4.2) and (7.6.4), the terms in Ex , (F;,t) are of the form

(I exp(—2n?t(da’ + b)) 0(d), (8213

where Q(d) is a nice exponential polynomial in d, and a’, b’ € R with a’ # 0 due to the nondegeneracy
of A. By (8.2.13), there exists ¢ > 0 such that, for d large enough,

de _ [T dt _
/ belllptlc(Fd» d2) PR / bel]iptic(Fda t) T + O(e Cd). (8.2.14)
0
Using Proposition 7.1.1 and by (8.2.13), we get
400 9
Péx,y(Fa) = —/ (1 +25- )€X y(Fa, t) (8.2.15)
0

Now we consider the contribution from the nonelliptic elements. If x € X, put

he(Fyg,x) = W > wiFayx). (8.2.16)

y €T,y nonelliptic
Then

d
buonenipie(Fa» 1) = (14215 / he(Fy.z)dz. (8.2.17)
z
Now we prove the following uniform estimates for x € X:
d
0 dt -
/0 (1 +2t§)ht/d2(Fd,x) & =o@E™). (8.2.18)

Indeed, using Lemma 8.1.2 and Proposition 8.1.3, there exist C > 0, ¢’ > 0, ¢” > 0 such that if d is
large enough, 0 <t < d, then

c”dz)‘

eja>(Fa. %)| = € dim(Eq)e ™" exp(—

(8.2.19)
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Recall that dim £ is a polynomial in d. Then by (8.2.19), we have

1 1
' [O ht/dz(Fd,x)% < Ce™<" 12 dim(Ey) fo e—C”dz/Zf% = 0(e™Y),

d
dt
‘/1 hejaz (Fa, x) =~

By (8.2.19)—(8.2.20), we get (8.2.18).
At last, we assembly together (8.2.7), (8.2.8), (8.2.11), (8.2.14)—(8.2.18), we get exactly (8.2.1). [

p (8.2.20)
—c’d 3; —c’t ﬂ _ —cd
<Ce dim(E ) e = O(e ).
1

Note that since 7 (Z, Fy) is always a real number, (8.2.1) still holds if we take the real part of
PEx,y(Fg) instead.
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THE LANDAU EQUATION AS A GRADIENT FLOW

JOSE A. CARRILLO, MATIAS G. DELGADINO, LAURENT DESVILLETTES AND JEREMY S.-H. WU

We propose a gradient flow perspective to the spatially homogeneous Landau equation for soft potentials.
We construct a tailored metric on the space of probability measures based on the entropy dissipation of
the Landau equation. Under this metric, the Landau equation can be characterized as the gradient flow
of the Boltzmann entropy. In particular, we characterize the dynamics of the PDE through a functional
inequality which is usually referred as the energy dissipation inequality (EDI). Furthermore, analogous to
the optimal transportation setting, we show that this interpretation can be used in a minimizing movement
scheme to construct solutions to a regularized Landau equation.

1. Introduction

The Landau equation is an important partial differential equation in kinetic theory. It gives a description
of colliding particles in plasma physics [Lifshitz and Pitaevskii 1981], and it can be formally derived as a
limit of the Boltzmann equation where grazing collisions are dominant [Degond and Lucquin-Desreux
1992; Villani 1998a]. Similar to the Boltzmann equation (see [Boblylev et al. 2013] for a consistency
result and related derivation issues), the rigorous derivation of the Landau equation from particle dynamics
is still a huge challenge. For a spatially homogeneous density of particles f = f;(v) for ¢ € (0, 00),
v € R? the homogeneous Landau equation reads

O fw)=V,- (f(v) [Rd v =, P TI[v — v, (Y, log f (v) — Vy, log f () f (V) dv*>- ey

For notational convenience, we sometimes abbreviate f = f;(v) and f, = f;(v4). We also denote the
differentiations by V =V, and V, = V,,_. The physically relevant parameters are usually d =2, 3 and
y > —d—1with TI[z] = I — (z®2z)/|z|* being the projection matrix onto {z}*. In this paper, for simplicity
we will focus in the case d = 3 and vary the weight parameter y, although most of our results are valid in
arbitrary dimension. The regime 0 < y < 1 corresponds to the so-called hard potentials, while y < 0
corresponds to the soft potentials with a further classification of —2 < y < 0 as the moderately soft
potentials and —4 < y < —2 as the very soft potentials. The particular instances of y =0 and y = —d
are known as the Maxwellian and Coulomb cases respectively.

The purpose of this work is to propose a new perspective inspired from gradient flows for weak solutions
to (1), which is in analogy with the relationship of the heat equation and the 2-Wasserstein metric; see
[Jordan et al. 1998; Ambrosio et al. 2008]. Our main result is inspired by and extends [Erbar 2023]. There,
he establishes the gradient flow perspective for the closely related spatially homogeneous Boltzmann
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equation with bounded collision kernels (y = 0) which we perform in the case of Landau for y € (-3, 0]
(see Theorem 12). One of the fundamental steps is to symmetrize the right-hand side of (1). More
specifically, if we consider a test function ¢ € C, °°([R€d ), we can formally characterize the equation by

d
dt

where the change of variables v <> v, has been exploited. Building our analogy with the heat equation

qbfd ———/ ff*|v—v*|2+7’(V¢ Vi) - v — v ](Vlog f — Vi log fi) dv. dv, (2)

and the 2-Wasserstein distance, we define an appropriate gradient

Ve i= v — v, | TP TI[v — 0, ](Vo — Vs,
so that (2) now looks like

d 1 ..
ﬁfd‘ﬁfd“:_i//h, ffVe¢-Viog f dv,dv,

noting that IT> = IT. To highlight the use of this interpretation, we notice that V¢ = 0, when we choose
as test functions ¢ =1, v;, |v| fori =1,...,d, which immediately shows that formally the equation
conserves mass, momentum and energy. The action functional defining the Landau metric mimics the
Benamou—Brenier formula [2000] for the 2-Wasserstein distance; see [Dolbeault et al. 2009; Erbar 2014;
Erbar and Maas 2014] for other distances defined analogously for nonlinear and nonlocal mobilities. In
fact, the Landau metric is built by considering a minimizing action principle over curves that are solutions
to the appropriate continuity equation, that is,

di(f.g):= _min { / / f v du(v)du(v*)dt} 3)
3[M+V (VMM*)/Z 0

to=f, m1=¢
where the V - is the appropriate divergence; the formal adjoint to the appropriate gradient (see Section 2.1).

Also, we notice that analogously to the heat equation, written as the continuity equation o, f =
V- (fVlog f), the Landau equation can be formally rewritten as

0f =3V (f£.V1og ),
equivalent to the continuity equation with nonlocal velocity field given by

{azf+V-(U(f)f)=
U(f):=— [galv— 02TV T [v — v, ](Vlog f — Vi log f.) fu dvs.
This is a direct way to write (1) in the form of a continuity equation. Considering the evolution of

“

Boltzmann entropy we formally obtain

i/ flogfdv:—D(f,):—l// ¥ log f12f . dv, dv < 0. ®)
dt Rd 2 R2d

In physical terms this is referred to as the entropy dissipation (referred to as entropy production in the
physics literature from defining 7 with a minus sign) since it formally shows that the entropy functional

HIf] = /R £ log f dv
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is nonincreasing along the dynamics of the Landau equation. Moreover, by integrating (5) in time one
formally obtains

HLf] + fo D(f)ds = HLfol. ©)

Villani [1998a] introduced the notion of H-solution, which captures this formal property. Motivated by the
physical considerations of certain conserved quantities and entropy dissipation, H-solutions provided a step
towards well-posedness of the Landau equation in the soft potential case. One advantage to this approach is
that it avoids assuming that the solutions belongs to L” (R3) for p > 1. For moderately soft potentials, the
propagation of L? norms is proven and this is enough to make sense of classical weak solutions [Wu 2014].
In the very soft potential case, there is no longer a guarantee of L? propagation due to the singularity
of the weight. We refer to [Desvillettes 2015, Section 1.2] for a heuristic description of this difficulty.

Similar to H-solutions our approach will also be based on the entropy dissipation (6). Following
De Giorgi’s minimizing movement ideas [Ambrosio 1995; Ambrosio et al. 2008], we characterize the
Landau equation by its associated energy dissipation inequality. More specifically, we show that weak
solutions to (1) with initial data fo are completely determined by the functional inequality

t t
%[ﬁ]+%/ |f|flL(s)ds+%/ D(f)ds <H[fo] forae.everyt >0,
0 0

where | f |flL (s) stands for the metric derivative associated to the Landau metric defined above. Our
analysis is also largely inspired by Erbar’s approach [2023] in viewing the Boltzmann equation as a
gradient flow and recent numerical simulations of the homogeneous Landau equation in [Carrillo et al.
2020] based on a regularized version of (4). In contrast with the classical 2-Wasserstein metric, one of the
main features of the Landau equation (1) and metric (3) is that they are nonlocal. To be precise, gradient
flow theory has been successfully applied to the study of many nonlocal PDEs [Carrillo et al. 2010; 2012;
Blanchet et al. 2008] by viewing them as gradient flows of appropriate energy functionals with respect to
the 2-Wasserstein metric. The novelty in this work is the construction of the nonlocal metric d; with
respect to which (1) can be viewed as the gradient flow of 7. Hence, the convergence analysis usually
relying on convexity and lower-semicontinuity needs to be adapted to deal with the nonlocality of this
equation. In particular, our characterization Theorem 12 is based in using (expected) a priori estimates to
deal with the nonlocality through appropriate bounds.

On the other hand, the state of the art related to the uniqueness for the Landau equation depends on
the range of values y may take. In the cases of hard potentials or Maxwellian, the uniqueness theory is
very well understood due to Villani and the third author [Desvillettes and Villani 2000a; 2000b; Villani
1998b]. In the soft potential case, one of the first major contributions to the general theory of the spatially
inhomogeneous Landau equation (y > —3) was the global existence and uniqueness result of [Guo 2002].
This result was achieved in a perturbative framework with high regularity assumptions on the initial data.
Through probabilistic arguments, the next major improvement to uniqueness for y € (—3, 0) came from
[Fournier and Guérin 2009]. Their result established uniqueness in a class of solutions that shrinks as y
decreases towards —3, as more L” and moments assumptions are needed. In their proof, uniqueness is
shown by proving stability with respect to the 2-Wasserstein metric.



1334 JOSE A. CARRILLO, MATIAS G. DELGADINO, LAURENT DESVILLETTES AND JEREMY S.-H. WU

Still lots of open questions for the soft potential case remain. In particular, a fundamental question
like uniqueness for the Coulomb case is unresolved. To tackle this and other problems an array of novel
methods have been employed. Here is an incomplete sample of the contributions made in this direction
which highlight the difficulties of the soft potential case [Desvillettes and Villani 2000a; 2000b; Alexandre
et al. 2015; Carrapatoso and Mischler 2017; Carrapatoso et al. 2017; Wu 2014; Gualdani and Zamponi
2017, 2018a; 2018b; Gualdani and Guillen 2016; Strain and Wang 2020; Golse et al. 2019a; 2019b;
Silvestre 2017]. A brief glance at some of these references illustrates the breadth of techniques that have
found partial success at answering the open questions: probability-based arguments, kinetic and parabolic
theory, and many more.

The purpose of this paper is to bring in another set of techniques to help answer some of these
fundamental questions. The gradient flow theory applied to PDEs has flourished in the last decades. In
their seminal paper, Jordan, Kinderlehrer, and Otto [Jordan et al. 1998] proposed a variational approach
(JKO scheme) extended later on to a wide class of PDEs using the optimal transportation distance of
probability measures. These results and many more achievements from their contemporaries allowed for
novel approaches to questions of existence, uniqueness, convergence to equilibrium, and other aspects of
a large class of PDEs; we mention [Ambrosio et al. 2008; Santambrogio 2017] for a coherent exposition
of these techniques and the relevant literature, even as more advances have been made since then.

The advantage of our variational characterization of the Landau equation is that it unveils new possible
routes of showing convergence results for this equation. First of all, it allows for natural regularizations of
the Landau equation by taking the steepest descent of regularized entropy functionals instead of the Boltz-
mann entropy as in [Carrillo et al. 2019]. This idea was recently developed in [Carrillo et al. 2020] leading
to structure-preserving particle schemes with good accuracy. We can also consider the framework of conver-
gence of gradient flows based on I'-convergence introduced in [Sandier and Serfaty 2004; Serfaty 2011] to
attack the convergence of these numerical methods [Carrillo et al. 2020]. Moreover, this approach is flexible
enough to also study the rigorous convergence of the grazing collision limit of the Boltzmann equation to
the Landau equation. The grazing collision limit was recently revisited in the gradient flow framework by
three of the authors [Carrillo et al. 2022]. There, ideas from I'-convergence were used to pass from Erbar’s
gradient flow description [2023] for the Boltzmann equation to the present work’s description of the
Landau equation. Finally, deriving uniqueness from the variational structure is classically done through
convexity properties of the entropy functional with respect to the geodesics of the Landau metric. This is
another important avenue of research that our work opens. Moreover, gradient flows of convex entropies
typically enjoy instantaneous smoothing [Ambrosio et al. 2008]; even if the entropy at r = 0 is infinite, for
t > 0, the entropy becomes finite. In the case of Landau, we are not aware if this property holds for H.

We mention briefly the connection between (1) and the Fokker—Planck equation. For y = 0, one can
formally compute the evolution of [ viv/ f(v) dv through (1). This a priori information allows one to
reduce (1) to a linear Fokker—Planck equation for y = 0. The present work proposes the alternative
viewpoint that the resultant Fokker—Planck equation can be viewed as the d; -gradient flow of # for y = 0.
Since many variants of the linear Fokker—Planck equation have been well-studied, this case serves as a
nice benchmark to test the gradient flow theory developed here.
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The plan of this paper is as follows. Section 2 introduces the prerequisites and contains the statements
of the main results. We first construct and analyze in Section 3 the Landau metric based on (3). For a
regularized problem, Section 4 shows the equivalence between weak solutions and gradient flows, while
Section 5 shows the existence of gradient flow solutions via a minimizing movement scheme. Finally, we
show in Section 6 that a gradient flow solution is equivalent to H-solutions of the Landau equation (1)
under some integrability assumptions. The Appendix is devoted to some technical lemmas needed in the
proof of the main theorems regarding the chain rule identity behind the definition of weak solutions for
the regularized Landau equation.

2. Preliminaries and the main results

We start by introducing the necessary notation and definitions together with a quick overview of gradient
flow concepts to make our main results fully self-contained.

2.1. Notation and definitions. We define
as..b < thereexists C(---) > 0suchthata < C(---)b.
We adopt the Japanese angle bracket notation for a smooth alternative to absolute value
W?=1+* veR.

For € > 0, we define our regularization kernel to be an exponential distribution:

-1
G (v) = e_dG(g), G() =Cyexp(—(v)), Cyq= (/ exp(—(v)) dv) .
R4

Our results work for some general tail behavior in the kernels given by

-1
G (v) = e_dGS<§>, G'(v) =Csqexp(—(v)*), Csa= </ eXp(—(v>‘v)dv)
Rd

for s > 0; we point out some of the limitations and restrictions on s > O in the later estimates. We shall
refer to G>¢ as the Maxwellian regularization. We denote the space of probability measures over R?
by 2(R%), endowed with the weak topology against bounded continuous functions. We will mostly
be dealing with the Lebesgue measure on R? as our reference measure, which we denote by £. The
subset 2¢(R?) ¢ 2(R%) denotes the set of absolutely continuous probability measures with respect to
Lebesgue measure. For p > 0, we also define the probability measures with finite p-moments &, (RY) by

2,(R?) = {,ue 2R?)

my(p) = /Rd(v)pdu(v) < oo}.

Finally, for E > 0, we consider the subset &, (R C @p(Rd ) of probability measures with p-moments
uniformly bounded by E:

ZpER) :={ue 2,RY) | my(u) < E}.
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We denote by M the space of signed Radon measures on R? x R with the standard weak* topology
against the continuous and compactly supported functions of R? x R?. The space M is the space of
signed d-length Radon measures. For 7' > 0, we will add the time contribution of the measures by defining
M7 to be the space of signed Radon measures on RY x R? x [0, T] with the usual weak* topology.
Similarly, ./\/l‘% will be the space of signed d-length Radon measures on R? x R¢ x [0, T'].

For u € 2(R?), we define a family of regularized entropies #[] by

Helul := /Rd[u* G1(v) log[u * G1(v) dv,

which we shall see is well-defined provided w has a finite moment in Lemma 30. Formally, one can
calculate the first variation of this functional in 42, as

87{5

(v) G* xlog[u * G](v).

This can be formally obtained by calculatmg Fréchet derivatives in the sense of identifying the limit

f SHe iy el 101 — Help]
) 0 t

for arbitrary ¢ € Cfo(Rd ) with zero mean fRd ¢ = 0. To be precise, the first variation (in an L? setting)
would actually be §H¢ /S = 1+ G€ xlog[u+G€]. We drop the constant term since our functional space is
2 and the first variation typically appears with derivatives applied to it. For a functional F : 2¢(R¢) — R
with first variation 8 F/§f, we refer to the 7 Landau equation as

Wf=V- ( / felv— v P v v*]( ijf V*%)dv*). (7

To clarify the meaning of V -, for a given test function ¢ = ¢(v) € R? and vector-valued test function
A = A(v, v,) € RY we have

/ [Vol(v, vs) - A(v, vi) dvsdv=— | d@)[V-A](W)dv.
RZd

Rd
In this way, the F Landau equation (7) can be concisely written as

0f =57 (ff* f)

Note, by formally testing (7) with ¢ = §F/§f, one obtains an analogy of Boltzmann’s H-theorem with

the functional F:
2
dvdv, <0.

L =-Drtyi=—y [[ 1595
R2d

We will refer to Dr as the F dissipation. This notation induces our notion of weak solutions to the F
Landau equation (7) closely following Villani’s H-solutions [1998a].

Definition 1 (weak F solutions). For T > 0, we say that a curve f € C([0, T']; L'(R%)) is a weak solution
to the 7 Landau equation (7) if the following hold:
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(1) fL is aprobability measure with uniformly bounded second moment so that

f, >0, fi(vydv=1 forallse][0,T], sup f () f(v) dv < 00.
Rd te[0,T] JRY

(2) The functional F evaluated along the curve is bounded by its initial value:
Flfi] < Flfol < +oo forallze[0,T].

(3) The F dissipation is time integrable:

fOTDf(ﬁ)dt=%/oT//deff*

(4) For every test function ¢ € C°((0, T) x RY), equation (7) is satisfied in weak form:

T 1 T - - 8F
/ / 8t¢f,(v)dvdt:—/ / ffiVo -V—dvdv,dt.
0 Rd 2 0 R2d 3f

For € > 0, we will refer to the weak 7. solutions as e-solutions and, recalling # is the Boltzmann

2
dvdv, dt < 0.

-3
V-—
8f

entropy, we will refer to weak # solutions as just weak solutions or H-solutions. We deliberately use the
terminology of H-solutions since the time integrability of Dy (f;), as for [Villani 1998a], is essential in
our analysis.

2.2. Quick review of gradient flow theory. We recall the basic definitions of gradient flow theory that
can be found in more generality in [Ambrosio et al. 2008, Chapter 1]. Throughout, (X, d) denotes a
complete (pseudo-)metric space X with (pseudo-)metric d. Points a < b € R will refer to endpoints of
some interval. ' : X — (—o0, oo] will denote a proper function.

Definition 2 (absolutely continuous curve). A function i : ¢t € (a, b) — u, € X is said to be an absolutely
continuous curve if there exists m € L?(a, b) such that for every s <t € (a, b)

t
d(ps, ps) < / m(r)dr.

Among all possible functions m in Definition 2, one can make the following minimal selection.

Definition 3 (metric derivative). For an absolutely continuous curve u : (a, b) — X, we define its metric

derivative at every t € (a, b) by
d(fiths r)
Al

Further properties of the metric derivative can be found in [Ambrosio et al. 2008, Theorem 1.1.2].

1(t) =1
2] (@) lim

Definition 4 (strong upper gradient). The function g : X — [0, oc] is a strong upper gradient with respect
to F' if for every absolutely continuous curve w : t € (a, b) — u, € X we have that gou : (a, b) — [0, o]
is Borel and the following inequality holds:

t
|F[Mt]_F[/fLs]|§/ g(u) il (r)dr foralla <s <t <b.
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Using Young’s inequality and moving everything to one side, the inequality in Definition 4 implies

t t
F[;L,]—F[Ms]-i-%/ g(u,)zdr-i-%/ IL>(r)dr >0 foralla <s <t <b.

S
If the reverse inequality also holds, one obtains the stronger energy dissipation equality. This leads to our
notion of gradient flows.

Definition 5 (curve of maximal slope). An absolutely continuous curve p : (a, b) — X is said to be a curve
of maximal slope for F with respect to its strong upper gradient g : X — [0, co] if Fopu : (a, b) — [0, oo]
is nonincreasing and the following inequality holds:

t t
F[;L,]—F[Ms]-i-%/ g(ur)zdr—i-%/ ILl>(r)dr <0 foralla <s <t <b.

s

F has the following natural candidates for upper gradient.

Definition 6 (slopes). We define the local slope of F by

_ +
9| (1) = lim sup ) —F)T
V=L d(v, n)

The superscript “+ refers to the positive part. The relaxed slope of F is given by
07 Fl() == infilim inf [3 F|(1tn) | n — p, sup(d(n, 1), F(ptn)) < +00}.
e neN

2.3. Main results. In order to understand the Landau equation as a gradient flow, we need to clarify
what type of object the corresponding metric is.

Theorem 7 (distance on 2, £ (R?)). The (pseudo-)metric di, on 2, g(R?) satisfies:
e dr-convergent sequences are weakly convergent.
e dr-bounded sets are weakly compact.
e The map (g, 1) — dr (o, (L1) is weakly lower semicontinuous.

e Foranyt € P25 (RY) the subset 2, (RY) :={u € @z,mz(,)(ﬂ%d) |dr (u, T) < oo} is a complete geodesic
space.

The content of this theorem is essentially that our new proposed distance actually provides a meaningful
topological structure on %, g (R?). Furthermore, the connection to e-solutions of Landau is established
when considering the previous notions of slope and upper gradient with respect to dz.. General conditions
which guarantee dy. (o, (1) <400 are presently unknown. In Lemma 15, we will see that a necessary con-
dition is that g and @ have the same mean velocity. Moreover, for y € [—4, —2], Lemma 15 asserts that
they should have the same second moment. In the construction of d;, detailed in Section 3, if & = u(¢) for
t € [0, T'] is an H-solution of Landau, then it is certainly true that dy (u(¢), p(s)) <+ooforall0<t¢,s <T.

Theorem 8 (epsilon equivalence). Fix any €, E > 0, y € [—4, 0]. Assume that a curve u : [0, T] —
Py, £(RY) has a density ju; = f,L. Then u is a curve of maximal slope for He with respect to its upper
gradient \/ Dy, if and only if its density f is an e-solution to the Landau equation.
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From the numerical perspective, we can also construct e-solutions using the JKO scheme (see Section 5)
which is the following:

Theorem 9 (existence of curves of maximal slope). For any €, E > 0, y € [—4, 0], and initial data
po € P g(RY), there exists a curve of maximal slope in P g (R?) for H. with respect to its upper

gradient /D, .

Remark 10. The curves constructed in Theorem 9 do not necessarily have a density with respect to
Lebesgue measure; the regularization allows H¢[u] < +o0o without u being absolutely continuous with
respect to Lebesgue measure. Moreover, uniqueness of such curves is beyond the scope of the present
work although it would be interesting to see what convexity properties are available for . with respect
to dr. This could also shed some insight into the available convexity of H with respect to dy.

Remark 11. The choice of an exponential convolution kernel G€ for the regularized entropy H. is perhaps
unnatural compared to the Maxwellian regularization G>€. We discuss in more detail the estimates that fail
using G*>¢ in Remark 33 as it pertains to Theorem 8. With respect to Theorem 9, the general construction
of some curve can be done even with the Maxwellian regularization. However, due to the same lack of
estimates, this curve might not be a curve of maximal slope with respect to /Dy, . This is discussed in
Remark 37.

Motivated by recent numerical experiments [Carrillo et al. 2020], Theorems 8 and 9 provide the theo-
retical basis to this e-approximated Landau equation. In the limit € — 0, more assumptions are required.

Theorem 12 (full equivalence). We fixd = 3 and y € (-3, 0]. Suppose that, for some T > 0, a curve
w: [0, Tl = 2(R?) has a density v, = f,L that satisfies the following set of assumptions:

(A1) (moments and L?) Assume that, for some 0 <n <y + 3, we have
()77 fi(v) € LPO, T; Ly N LY/ CH =D R3y),
(A2) (finite entropy) We assume that the initial entropy is finite

Hlfol = /I;@ folog fo < +o0.

(A3) (finite entropy-dissipation) We assume that the entropy-dissipation of f is integrable in time:

D(f,) = Du(f) =4 // 1155 dva,

= Ef . ffelv— U*|V+2|1'I[v —v,](Vlog f — V,log f)|* dvdv, € L0, T).
R

Then p is a curve of maximal slope for H with respect to its upper gradient ~/ D if and only if its density
f is a weak solution of the Landau equation.
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Remark 13. When y € [-2, 0], it is known that for suitable initial data (lying in weighted L? spaces for
p large enough and for a sufficient power-like weight), weak solutions of Landau equation satisfying (A1)-
(A3) are known to exist (and to be strong and unique under extra conditions). We refer to [Wu 2014], and
Appendix B of [Desvillettes 2022] when y > —2, for details.

When y € (-3, —2), (Al) is not known to hold for global weak solutions with large initial data.
Solutions satisfying (A1)—(A3) are nevertheless known to exist for initial data close to equilibrium (see
[Guo 2002] in a much larger spatially inhomogeneous context), or in the Coulomb case y = —3 (in that
case (3 —1n)/(3+ y —n) being replaced by oco) for large initial data, but on specific intervals of times
only [Desvillettes et al. 2023; Arsenev and Peskov 1977].

The focus on the Maxwellian and soft potential regime y < 0 here is motivated by building a gradient
flow framework to address the open questions for Landau. The hard potential case y € (0, 1) has already
been studied in detail in [Desvillettes and Villani 2000b; 2000a]. We believe that our results also carry to
the hard potentials. In particular, the exponents in (A1) should be modified to

(W fi(0) € L0, T; LyRY),  fi(v) € L0, T; LY ®Y), 0<y <.

We emphasize that these conditions are guaranteed since the required moments and L? integrability are
propagated from appropriate initial data when y > 0 [Desvillettes and Villani 2000a; 2000b]. This condition
appears in [Desvillettes 2016, Corollary 2.7]. It is the hard potential version of Theorem 41, which is
crucial to the proof of Theorem 12. Much of our analysis remains the same; however, the space &7, should
be changed to &%, cohering with the moment condition above and trivializing Lemma 43, for example.

It is an open problem to find the range of values y under which we can show the existence of curves
of maximal slope for the original Landau equation (1), or equivalently, constructing solutions of the
original Landau equation passing € — 0 in Theorem 9. Some of the difficulties to achieve this result are
the propagation of moments for the regularized Landau equation uniformly in € and the compactness of
sequences with bounded in € regularized entropy dissipation D4, . The rest of this work is devoted to
showing the main four theorems in the next four sections.

3. The Landau metric d,

Our approach to defining the distance d; mentioned in Theorem 7 closely follows the dynamic formulation
of transport distances originally due to Benamou and Brenier [2000] and further extended by Dolbeault,
Nazaret, and Savaré [Dolbeault et al. 2009]. We also refer the reader to [Erbar 2023] for a similar approach.

3.1. Grazing continuity equation. We consider for y € [—4, 0] the grazing continuity equation
i +1V-M; =0 in(0,T) xR, (8)

which is interpreted in the sense of distributions. For every ¢ € C2°((0, T') x R4), we have

T T
/ f o (t,v)dus(v)dt + % / // [@qﬁ](t, v, Vy) dM; (v, vy) dt =0.
0 JRe 0 JJrx
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Another formulation (see Lemma 14) is the following for ¢ € C, f?o([Rd ):

% /Rd tydp(v) = %/AM Vi (v, vi) dM; (v, vy). )

The curves (141)ref0,71, (M;)ie0, 7] are Borel families of measures belonging to M and M¢? respectively.
We will refer to u from the pair as a curve and M as a grazing rate. For some regularity properties, we
will also need to assume the moment condition

T
/ / (1 + o[+ v dIM; ] (v, vy) dt < 00. (10)
0 R2d

We first establish some a priori properties of solutions to the grazing continuity equation.

Lemma 14 (continuous representative). For families (i,), (M;) satisfying the grazing continuity equation
and the finite moment condition (10), there exists a unique weakly™ continuous representative curve
(fLs)iero, ) Such that fi; = p, for a.e. t € [0, T]. Furthermore, for any ¢ € C°((0, T) x R and any
to, t1 € [0, T, we have the formula

51 151
~ ~ 1 ~
f &r, d iy, —/ Ory d g, 2/ / 0 d s dt+§/ /:/ VodM,dt.
R? R4 to JRY t0 J JR

Proof. This proof is nearly identical to [Ambrosio et al. 2008, Lemma 8.1.2]. There, it was crucial to
estimate the distributional time derivative of ¢ — ;. We perform the analogous estimate here to highlight
the difference in our context. Fix ¢ € C L‘?O([Rd ) and consider the map

1€, 7))~ w(5) = /Rd t()du(v) € R.

According to (9), the distributional time derivative is

u,@):%// Wdev,v*):%/f [0 — 0" v — 0, ](VE — Vio) dM, (v, vy).
RZ{I RZd

Depending on the values of y above or below —2, the integrand can be estimated:

2172 sup, cra [VE W) (0] 24 v, |H772), y e [-2,0],

—p, |1 FY/? — 0, J(VE=V,&4
||v Vs [Mv—v,](V¢ C)|§ {supweRdIDZC(w)IIU—U*|2+y/2, y e[—4, —2).

Consequently, using the moment condition (10), we have the following estimates depending on y € [—4, 0]:

supyege [VEW [fgaa (14 0] + [0 DdIM; (v, v,), ¥ €[=2,0],

- <
e (O S {supwew ID2¢(W)| [ fraa (1 + 0] + DA IM | (v, v,), ¥ €[4, —2).

The rest of the proof proceeds as in [Ambrosio et al. 2008, Lemma 8.1.2] using the C2-norm of ¢ for the
soft potentials y € [—4, —2) as opposed to their C' control of ¢. U

Lemma 15 (conservation lemma). Fix y € [—4, 0] and let (11/)ic0,11, (M;)ici0,1) be Borel families of
measures in M., M respectively satisfying (8) and the moment condition (10). Assume further that
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(ie)rero0.17 is weakly* continuous with respect to t. We have that mass and momentum are conserved:

/L,(Rd) = MO(R‘I), /I‘%d vdu:(v) = /R[ vduo(v) foralltel0,T].

In the case y € [—4, —2] we have that the energy is conserved:

/lvlzdut(v)=f [v|*>duo(v) forallt €0, T].
Rd Rd

Proof. To minimize clutter, we introduce w = |v — v,|!T7/2. We show the proof of the conservation of
energy for y € [—4, —2]. We consider a fixed ¢ € C2°(B>) which satisfies

0<p<1 and ¢(w)=1 in By.

Pr(V) =<p(%>-

Using the grazing continuity equation, we have
/ 01pR(v) dps (v) — / |vpr(v) dpo(v)
Rd Rd

=//f wn(v¢R<v>+|v|2M—v*mv*)—|v*|2w)dMs<v,v*>ds. (11
0 RZd R R

We estimate the contribution of vgg (v) — v4@g(v,) from the integral in (11) using the cancellation from

/// W[veRr (V) — vi@r (Vi) | d| M|
(BRxBR)°
5/// (T+ vl + |v]) d| M),

0J J(BrxBgr)*

1, lv—vy| <1,

ol +vil, v —vef = 1.

Similarly, using that V¢ is supported in Byg \ Bg and that |d,:{|v|>d,;¢(v/R)/R}| < 1 for every index
i,je€ {1 ., d}, we obtain

(| pYeOR M) /f L+ [ol + o] dIM,
de R R (BrxBg)*

where we have controlled the difference with a mean-value-type estimate. From the previous bounds, we

‘We define

the projection I1[v — v,] to obtain

/f/ wIT (v
Rd

where we have used y € [—4, —2] to bound

W[ver (V) — VPR (V)] S {

can use hypothesis (10) to take R — oo in (11) and obtain the conservation of energy
tim [ 0P dpw) = fim [ 1o pr(o) duoo)
R—00 JRd R—00 JRd

The proofs for conservation of mass and momentum involve testing the grazing continuity equation
against ¢ and v;¢p respectively, where v; is the i-th component of v. For these statements, the case
y € [—4, —2] follows in the same way. For y € [—2, 0], the estimates can be more blunt since the weight
is no longer singular. U
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Remark 16. Note that as y increases into the range (—2, 0], the weight function w starts adding growth
so the mean-value-type argument in Lemma 15 no longer helps unless more moments of M are assumed
than (10). Due to the conservation of mass, the unique weakly* continuous representative (i;) of
Lemma 14 has the additional property of being weakly continuous in the context of Z2(R9).

Based on the previous results, we propose the following definition.

Definition 17 (grazing continuity equation). For some terminal time 7 > 0, we define GCE7 to be the set
of pairs of measures (14;, M;);cf0,1] satisfying the following:

(1) ;e 2(RY) is weakly continuous with respect to t € [0, T']. (M)se[0,77 15 a family of Borel measures
belonging to M<.

(2) We have the moment bound

T
// (L4 0] + o) dIM (v, v2) di < 00,
0 RM

(3) The grazing continuity equation (8) is satisfied in the distributional sense. That is, for every ¢ €

CX((0,T) x RY),
T 1 T -
0 JR? 0 R2d

or equivalently, for every ¢ € C°(RY),

¥ /Rd £) dps (v) = %//w T2, v dM, (v, v2).

For fixed probability measures X, v, we may also specify the subset GCE(X, v) as those pairs (u, M) €
GCE7 such that g = A, ur =v. For E > 0, we will speak of curves (u, M) € gcg";E such that

f lv|>du,(v) < E forallze[0,T].
Rzl

3.2. Action of a curve. In this section, we construct the action of a curve under the grazing continuity
equation. We introduce the function « : R4 x R>o — [0, oo] defined by
lul*/(2s), s #0,
a(u,s): =10, s=0,u=0,
o0, s = 0, u # 0

Remark 18. The function « is lower semicontinuous (Isc), convex, and positively 1-homogeneous.

For fixed u € 2(R%), M € M¢, we consider the tensorized probability measure u @ u € 2(R? x R?)
given by u®u(dv, dvy) =pu(dv)(dv,). Define T € M given by 7 = u®u+|M| and the decompositions
uw®u= f'tr and M = Nt. We define the action functional as

A, M) := // a(N, fHdr. (12)
de

This is well-defined by the 1-homogeneity of «. The following lemma establishes a more concrete
expression for the action functional.
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Lemma 19. Let i € Z(R?) be absolutely continuous with respect to £ and o = fL. Let M € M? be
given such that A(u, M) < oo. Then, M is absolutely continuous with respect to ff, dv dv, given by
some density U : R? x R — RY such that M = ff, U dvdv, = m dv dv, and

Al M):lff ff*|U|2dvdv*=1f/ |m|2dvdv*.
’ 2 J Jpea 2 JJea ffs

Proof. The proof is identical to [Erbar 2023, Lemma 3.6] up to appropriate modifications. Define T € M
by T = u®u-+|M]| and label the corresponding densities (which may be infinite) u@u =gt and M = Nt.
It suffices to show that M is absolutely continuous with respect to i ® w, which is the goal of this proof.

Suppose S C R?? is a measurable set such that £ ® . (S) = 0. This is equivalent to saying g = 0 t-almost
everywhere in S. Since « is positive, the assumption A(u, M) < +oo certainly implies a(N, g) < 400
t-almost everywhere in S. By the definition of «, we must also have N = 0 r-almost everywhere in S,
which is equivalent to saying M (S) =0. ]

Lemma 20 (lower semicontinuity of action functional). The action functional A as defined in (12) is
lower semicontinuous in both arguments. Specifically, if j1, — w weakly in 2(R?) and M,, =~ M weakly*
in M, we have

Alp, M) = liminf A, My).

Proof. This result is an application of the general Isc result in [Buttazzo 1989, Theorem 3.4.3] since «
satisfies the required convexity, Isc, and homogeneity assumptions by Remark 18. Il

Another useful property of the action functional is the compactness provided by bounded action. We
first state:

Lemma 21. Let F : R* — [0, oo] be measurable and fix any p € 2R, M € M We have the
following bound:

1/2
f/ F(v,v*>d|M|(v,v*>ssz(u,M)‘/z(// F(v,v*)zdu(v)du(v*)> : (13)
de de

Proof. This proof follows [Erbar 2023, Lemma 3.8]. We assume A(u, M) < +oo or else (13) holds
automatically. This implies that whenever A C R?? is a measurable set, u ® n(A) = 0 if and only if
|M|(A) =0. Therefore, in the following computations we are implicitly integrating away from sets of zero
U ® pu-measure. We provide the simple argument by Cauchy—Schwarz for completeness. By considering
T=u®u-+|M|, we estimate

M M d d
f/ Fd|M|(v,v*)§// F—dr(v,v*)=// |42 \/2 LOH \/2 HOM
R2d R | dt R2d dt dt dt
M d 12 12
< // o Y AESHN 4 // 2F2dp @ u
R2d dt dt R2d

12
=~6A(M,M>1/2(f/ F(v,v*)zdu(v)du(v*)) . 0
RZd
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Remark 22. Suppose we have u, € 2(RY) such that

T T
/ ma () dt = / f (V) d; (v) dt < 0.
0 0 JRd

Then for M € M‘% the previous estimate (13) yields

T T 12
// <1+|v|+|v*|)d|M,|<v,v*>dt5/ A(ut,Mt>‘/2<1+2/ |v|2dut> . (14)
0 [R2d 0 R4

Therefore, if the integral in time of the second moment of u is bounded, then M satisfies the moments
conditions (10) and the energy is conserved (Lemma 15). In the sequel, we will be considering curves
that have bounded second moment which guarantee (14).

Proposition 23. Let (1}, M), be a sequence in GCET such that (), is tight and we have the uniform
bounds

T T
sup/o Rd|v|2dM?dt<oo and sup/o A, M™) dt < oo. (15)

neN neN

Then, there exists (s, M;) € GCET such that, possibly after extracting a subsequence, we have the
convergences
Wy = [y weakly in 2(R?) for all t € [0, T},

M™dt 2 M,dt  weakly* in M&.

Furthermore, along this subsequence we have the lower semicontinuity

T T
/ A, M) de < liminf/ A, M) dt.
0 n—oo 0

Sketch of the proof. This result follows from a proof similar to that of [Dolbeault et al. 2009, Lemma 4.5]
and [Erbar 2023, Proposition 3.11], which we sketch. The second moment bound for ¢ in (15) produces
a limit p. Recalling the application of Lemma 21 in Remark 22, the bounded action in (15) and the
estimate (14) produce a limit M; dt for a subsequence of M;' dt. The lower semicontinuity follows from
Fatou’s lemma and Lemma 20. O

3.3. Properties of the Landau metric. We define the distance, d; induced by the action functional on
2. (RY). Throughout, we will be working in the grazing continuity equation space defined earlier by
QC€2T’E for T > 0 some terminal time and £ > 0 any second moment bound.

Definition 24. For A, v € &7, £(R?) we define the (square of the) Landau distance by

T
d?(h,v) = inf{T/ A, My) dt
0

(n. M) € GCEFF (A, v)}. (16)

Notice this definition is independent of 7' > 0 considering the scaling of the grazing collision equation
and the 1-homogeneity of .4. We have an equivalent characterization of d;, which can be seen in other
PDE contexts such as [Erbar 2023; Dolbeault et al. 2009].
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Lemma 25. Given A, v € QZ’E(R“’), we have

T
dL(x,u):inf{/ A, My) dt (M,M)GQCSZT’E(A,v)}. (17)
0

Proof. This proof uses the same reparametrization technique in [Dolbeault et al. 2009, Theorem 5.4]. [J

Proposition 26 (minimizing curve). Suppose that jLg, L] € P, £(RY) are probability measures such
that di (jLg, (1) < 00. Then there exists a curve (u, M) € QCS%’E(,LLO, W1) attaining the infimum of (16)
(equivalently, also (17)) and A(u;, M;) = a’% (o, 1) for almost every t € [0, 1].

Proof. This result follows from the direct method of calculus of variations where the lower semicontinuity
comes from Proposition 23. O

Proof of Theorem 7. We prove the statements in exactly the order they are presented in the theorem,
starting with the properties of the proposed Landau distance as a metric. The positivity of d; follows
from the positivity of «. We now check that d; satisfies the properties of a metric.

dL distinguishes points: Fix g, i) € ﬁz,E(Rd). We check that dy (g, 1) = 0 <= g = n1. Suppose
that dy (1o, 1) = 0. By Proposition 26 we can find (u, M) € QCS%E(,LLO, 1), which is a minimizing

curve and moreover 0 =dy (ng, 1) = A(u;, M;) implies M = 0. The grazing continuity equation reduces
to d,u; = 0, which implies u, is constant in time.

The converse statement follows similarly by pairing the constant curve u : t — o = 1 with the zero
measure so that (u, 0) € gCS%’E(/,L(), nwi)-

Symmetry: Symmetry follows because time can be reversed for every curve. For instance, if (i, M) €
gca‘%E (o, (1), then one can check that the pair
w ot uw(T -1, M :t——-—MT—1)

belongs to QCEZT’E(,ul, o) with the same action.

Triangle inequality: We sketch the argument using a gluing lemma as in [Dolbeault et al. 2009, Lemma 4.4].
Let u°, u', u? € ﬁz,E(Rd) be such that dz (u°, u!) < oo and dz (u', u?) < oco. If not, dy (u°, u?) <
d (pLO, wh +dp (', ,u2) holds trivially. By Proposition 26, we can find minimizing curves connecting

these probability measures
{ (RO MO € GeETE (0, 1, }
(1'%, M2 egeelt !, u?)

Their concatenation from time O to 1 is given by

{Mgfl, 0<t<1, Iy {2M§t_’1, 0<r<3,
Hei=13 1.9 1 1= 12 1
Mo 1y 2 St=1, 2My 75, p<t=1

One can check that (u, M) € QCE’%’E(MO, ©?), so it is an admissible competitor in the computation of
dr (11, 1?). By looking at the action on the different time pieces, we obtain

1
(U0, 12 < / JAGo My dt = dy (10, 1) +dp (1 1),
0
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dp -convergence/boundedness implies weak convergence/compactness: Fix p”, u® € %, g forn € N

such that dy (u*°, u") — 0 as n — oo. By Proposition 26, take minimizing curves (v, M") €
GCETE (u>, w") such that

dp(u>, u"y =AW, M) forae.tel0,1].

By compactness in Proposition 23, there are limits (v, M) € QCé’f’E such that v — v and M" = M up
to a subsequence. Moreover, the lower semicontinuity in Proposition 23 gives

Ay, My) <liminf A(v)', M}") =0;
n—oo
hence M = 0 so that v is a constant in time. Since v(0) = 1, this implies u*° = v(1) = lim,_, 5, 1",
which establishes the weak convergence.

(P, dL) is a complete geodesic space: We start with the geodesic property from completely analogous

arguments to [Erbar 2023]; the remaining statement that &, equipped with d;, is a complete geodesic
space follows. Fix t € @zyE([Rd) with wo, u1 € &;. The triangle inequality ensures dy (i, (1) < 0O SO
Proposition 26 guarantees the existence of a minimizing curve (u, M) € gCé’%’E(,uo, ). One easily sees
that this also induces a minimizing curve for intermediate times. More precisely, for every 0 <r <s <1,
we have that (t — W4y, t > M;4,) € QCSE’_E, (r, s) also minimizes dy (i, is).

To show completeness, let (1), cn be a Cauchy sequence in &2;. The sequence is certainly d; -bounded
so by Proposition 23, we can find, up to extraction of a weakly convergent subsequence, u™ € 2, g(R?)
such that 1" — u™ in 2, (R?). Lower semicontinuity of d; and the Cauchy property of the subsequence
give

dp(u", u®°) <liminfd,(u", u™) - 0 asn— oco.
m— 00
For any n € N the triangle inequality gives

dp(u™,7) <dp(u™, u") +dr(pn”, v) < oo,
So u* e ;. O
Proposition 27 (metric derivative). A curve (j;)ici0.11 C P2.£(R?) is absolutely continuous with respect
to dy, if and only if there exists a Borel family (M;);c[0.1] belonging to M‘% such that (u, M) € QC&’ZT’E
with the property that

T
/ VA, My) dt < oo.
0

In this equivalence, we have a bound on the metric derivative

d? ,
lim L(Ht—i—h e)

lim === =: |22 (t) < Ay, M) forae.t€(0,T).

Furthermore, there exists a unique Borel family (Z\A/L),E[O,T] belonging to M? which is characterized by

M,=Up,®u, and UeT,:={V$|pe o)} 1®m)
such that (u, 1\7) € QCE%(MO, ) where we have equality
112t = A(ue, My)  forae t€(0,T).
Proof. The argument follows exactly as in [Dolbeault et al. 2009, Theorem 5.17]. ]
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4. Energy dissipation equality

The goal in this section is to prove Theorem 8, which states that the notions of gradient flow solutions

coincide with e-solutions to the Landau equation. To fix ideas, we recall the regularized entropy functionals

acting on probability measures

Holi) = [ (0x G0 loglue+ G (w) do,
R
with G€(v) given by
GE(w)=eCy exp{—<§>}.
The crucial ingredient to prove Theorem 8 is the following:

Proposition 28 (chain rule €). Fix y € [—4, 0] and suppose (ju, M) € QCSZT’E and

T
/ Ay, My) dt < o0.
0

Then, sup, (o771 Helptr] < 00 and the “chain rule” holds:

r W[ 8H,
He[ur]—%e[us]=%/// v[ i ]-dM,dt forall0<s<r<T.
s de

Sp
Remark 29. Recall the expression for the dissipation

L[ e[
Delul= 5//;;@ V[ S ]

Using a time integrated version of Lemma 21, we have the estimate
4 ~[8

SIS

2 Js J Jpea Sp

Therefore, under the hypothesis of Proposition 28, we have that

2
dp(v)dp(vy).

€

” dIMi|(v, v, di = / A(pe, M) Delpe]'2 .

M (1) = He ()] < f IO Dl dt,

which implies that D [1,;]'/? is a strong upper gradient of #,; see Definition 4.

Taking Proposition 28 for granted, we can prove Theorem 8.

(18)

Proof of Theorem 8. Throughout, u = f L is a curve of probability measures with uniformly bounded

second moment.

Weak e-solution => curve of maximal slope: Consider f an e-solution to the Landau equation. Define
m= —ff*ﬁ(S’He/Sf) so that the pair of measures (u = f£L, M = mL ® L) therefore belong to QCS?.
Indeed, the distributional grazing continuity equation from Definition 17 is precisely the weak e-Landau

equation. Based on the definition of M and the finite H. dissipation, we have the bound

T T
/ A, My) dt =/ Dc(f1)dt < oo,
0 0
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which implies the weak continuity of u. By Proposition 27, we have
|2* (1) = A(r, M) = De(fy) < 00 forae.1€[0,T].

Using Proposition 28, we have, forany 0 <s <r < T,

1 [ 1 [ .
He[ur]—He[usHE/ De(//«t)dl"i‘z/ i1[2(¢) dt < 0.

According to Definition 5, this is the curve of maximal slope property.

Curve of maximal slope => weak e-solution: Assume that © = f £ is a curve of maximal slope for H.
with respect to the upper gradient /D,. Since p is absolutely continuous with respect to d , Proposition 27
guarantees existence of a unique curve M : ¢ € [0, T]— M, € M such that fOT VA, M) dt < oo
and |]?(t) = A(u,, M;) for a.e. t € [0, T]. Furthermore, (u, M) € QCE?. According to Lemma 19, let
M =mL ® L for some measurable function m. We apply the chain rule (18) with Cauchy—Schwarz and
Young’s inequalities with minus signs in the following computations:

e[fT]—He[fO]zlfT//Rﬁg
/ (//de f1V dvdv*>l/2</ B I;ijlj dvdv*)l/zdt
_ / ( //waf* ‘Ser dvdv*>dt / ( //RM |;1fljdvdv*>dt

——1fTD (f)dr—lf P di
T2 ), T 2 Jo '

All the inequalities in the calculations above are actually equalities owing to the fact that u is a curve of
maximal slope. In particular, since we have the equality in the Young’s inequality, this implies

m 7 87—[5
N T

As in the previous direction, the weak € Landau equation coincides with the grazing continuity equation
when m is equal to — £, V(8 He /8f). O

dt

87'[5

| V

v

The rest of this section is devoted to proving Proposition 28. We need some lemmas to establish crucial
estimates. The following result is a variation of [Carlen and Carvalho 1992, Lemma 2.6].

Lemma 30 [Carlen and Carvalho 1992]. Let w be a probability measure on R¢ with finite second
moment/energy, my(u) < E for E > 0. Then, for every € > 0, there exists a constant C = C(¢, E) >0
such that

llog(2% G| = (%),

Proof. Starting with an upper bound, we easily see

1 G () =/ G (v — ) dpu() < 1
Rd
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Turning to the lower bound, we cut off the integration domain to |v’| < R for some R > 0 to be chosen
later. We estimate, for € > 0 small enough,
v—1 2
=./1+ <,/14+2
€

2 2
R R
() =((E)+(5)
€ € €
This is substituted into G¢ (v — v’) to obtain

wx G€(v) 2/ G (v—v)du@) 2. eXp{—ﬁ(<£>+<§>)}/ du ).
lv|<R € € lv|<R

At this point, we appeal to Chebyshev’s inequality to see

v—1v

v
€

€

1 ’ 1 12 1
dp@)=1- dp@)=1-— W du).
[V|<R [v'[=R R

[v'|=R

We can now choose, for example, large R such that | — E/R? > % to uniformly lower bound the integral
flv’\ ~g du(v') away from 0 and then conclude the result after applying logarithms. ]

Lemma 31 (log-derivative estimates). For fixed € > 0 we have the formula
c 1/v\™! N
VG (w)=——{(-) G°(v)-. (19)
€\€ €
For v € 2(RY), defining 3" = 3/3v' and 3" = 8%/(dv'dv7), we obtain

1 . 4
|Vilog(u+ G)(v)| < o [0 log(u * G*)(v)| < o (20)

Proof. Equation (19) is a direct computation after noticing

VG v 1o\
=VlegG* =V|—(—)+const.) =——(—
G¢ € €\e

The first order log-derivative estimate of (20) is calculated using formula (19) to obtain

m| e

/

1 v\ Mv—
|V(M*G€)(U)|=|M*VG€(U)|S;/Rd<v6U> YV G (o — o) dp ()
1 1
- —/ G =) dpu (V) = ~(u* G)(w).
€ R4 €

For the second order, we first look at 3"/ ;u * G¢ which can be computed with the help of (19):

19" 1% G€ (V)|

< 1 v—v'\ i i , ,
=0 ——/ < > G (v—v)du(v ))‘
€ Jpa\ € €

1 v—v'\ vl v vl ;ifv—v Uy \ TR v v . , ,
= +8Y - G (v—v)du(v)
€2 Jpa € € € € € € €

3
< —zkae (v).
€
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Combining this estimate with the previous first-order one, we have

ij € i € J €
M uxG @' u*xG*)(0 u*G) <i. 0

9/ 1 G¢ = —
[0" log (i % G*)(v)] T %G =5

Lemma 32. Fixe > 0and y € [—4,0], with u € ,@z,E(IRd) for some E > 0. We have

(1) Moderately soft case y € [—2, 0]:

~ 8H -
'V 3,; = ’V[GG xlog( * G) (v, vy)| <e 772 4 o, |72,
(2) Very soft case y € [—4, —21:
~§
‘V s,
Sp

In particular, it holds

du(v)du(v*) <E.

ILJ75

Proof. We develop the expression for V(8H, /81) in integral form to be used throughout this proof:
T 0He

= VG xlog(u % G) (v, vy)

= [v— v P w — 0, 1(V, G xlog(ue % G)(v) — V,, G xlog (1 % G) (vs))

Ty B . n*G€ _V/ka€ o ,
= v — vyl v v*]/ G (v )<—G€( v) —*Gé(* v)>dv- (2D

(1) Moderately soft case y € [—2, 0]: We use (a concave version of) the triangle inequality (valid since
14y /2 > 0) and the first estimate of (20) to bound the last line of (21):

- 5H,
‘Vi

<2l+]//2(| |l+)//2+|v |1+}//2) / Ge(v)dv |v|1+}//2+|v |l+)//2

(2) Very soft case y € [—4, —2]: We perform estimates in two cases, the far field |v — v,| > 1 and near
field |[v — v, < 1.

|v — vi| > 1: In the far field, we have |v — v| 1+¥/2 < 1; hence we can brutally estimate (21) using again
the first estimate of (20) to obtain, similar to the moderately soft case, the estimate

2

T €

o0
2

|v — v,| < 1: We can remove the singularity from the weight with a mean-value estimate and the second

estimate of (20):
VM*GG(U_U/)_VM*GG yi 3 x G€
uw* Ge

4
—_— —_— V— U] < —[v— vyl
1% Ge %G V= vl = Zlv—w.

(Vs — U/) =<

ij=1,...d Lo
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Inserting this into (21), we have

SHe
S

4 4
< 5lh- v*|2+y/2/ G W) dv' < . 0
€ R4

v
\ ;

Remark 33. Originally, we considered the general family of convolution kernels G*¢ described in
Section 2.1. Besides the context of the Landau equation, Lemma 31 (excluding the second-order log-
derivative estimate) can be generalized to this family of s-order tailed exponential distributions with
additional moment assumptions on w. In particular, (19) and (20) (for s > 1) become

(U)S_l.

VG 2 V(i * G 1
(v>:_£<2> v Wr Gl L
€

Gs< €\e € ux G5€

Since Maxwellians are known to be stationary solutions for the Landau equation, we wanted to perform
the regularization with s = 2. However, the analogous estimates of Lemma 31 for s = 2 are not sufficient
for Lemma 32 in the &%, framework. For example, in the moderately soft potential case, the estimate reads

87‘[2’5
S

'? Se ()24 ()2 ¢ L@ ).

However, there is one value of y = —2 for which the estimates hold when using a Maxwellian regularization
kernel G>€. A restriction to 24 resolves the issue mentioned above for the moderately soft potential case,
but then a fourth moment propagation is needed, which we did not pursue. A similar issue is present
in the very soft potential case.

Proof of Proposition 28. To prove (18), our strategy is to regularize the pair (i, M) in time with parameter
§ > 0 and differentiate the regularization. Then we obtain uniform bounds in § needed to take the limit
§— 0.

Finite regularized entropy: We have the following chain of inequalities:

Helpel = / (e % G)(v) log(uy * G)(v) dv Se E / (e * G))(v)dv S 1+ E.
R4 Rd

The first inequality comes from Lemma 30 because log(u, * G¢) has linear growth (uniform in time) while
in the second inequality, one realizes that u, * G¢ has as many moments as y, with computable constants.

Time regularization with § > 0: Without loss of generality, let © be the weakly time continuous repre-

sentative (Lemma 14) and M be the optimal grazing rate (Proposition 27) achieving the finite distance d .
We first regularize the pair (u, M) in time for a fixed parameter § > 0 as follows. Take n € C;°(R) with
the following properties:

1
suppn C (=1, 1), 720, 1) =n(-0), /ln(t)dtzl.

We define the following measures for ¢ € [0, T], by taking convex combinations:

1 1
/L? 3:/ Nt wi—sp dt’, M;S 32/ n(t"YM;_sp dt’.
-1 -1
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Here, we constantly extend the measures in time. That is, if t — 8¢/ € [—8, 0], we treat ;5 =
wo, M;_s; = 0. For the other end point, if ¢t — §¢" € [T, T + 8], we set u,_sy = pr, M;_50 = 0. This
transformation is stable so that (u®, M®) € GCEr and in particular, the distributional grazing continuity
equation holds:

el + V- M =0.

We derive (18) using this regularized grazing continuity equation. Consider
Holif1 = [ (] 69 log(ud + G ) o,
R

which we differentiate with respect to ¢ by appealing to the dominated convergence theorem. Firstly, due
to the time regularization, we have

A (1) * G) log(u? % G)} = [(B, ) * G](log(1? % G) + 1).

The L1 bound is obtained on the following difference quotient for a fixed time step 4 > 0:

‘ (1% G log (1l % G) — (12 % G) logmt £G)]

—|<u,+h *G) — (W G| sup [log(ud * G) +1],
s€(t,t+h]

where we have used the mean value theorem with the chain rule. Applying Lemma 30, we obtain

1
E|(u?+h £ G) — (U % G)|(v).

1
AL % G log (% G) = (g + G log (1 % G| Se.x

We apply the mean value theorem on the difference quotient again to get
1 T
‘E[(M}lh * G) log(pyy, % G) — (1] % G°) log(uy * Ge)]‘ Sae 'l (Mo * G+ / ek G dt) (v).
0

Since w1 has finite second-order moments, this last expression belongs to L!. By the dominated convergence
theorem,

d

S Heluil = f [(@r47) % G 1(log(p) % G) + 1) dv = / (0p1y) - [G % log(u] % G)] dv
R4 Rd

The last line is achieved by the self-adjointness of convolution with G¢ and eliminating the constant term
due to the conserved mass of 1°. Integrating in ¢, we obtain

Ml — Helud] / / @18) - [G* *log(yud  GO)l dv dr

—f/ [VGE s log(ul * G)]- dM? dt

& e
f / / - dM? dt. (22)
R2d 6//%

We now turn to establishing estimates independent of § > O to pass to the limit.
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Estimates on the right-hand side of (22): According to Lemma 32, we have the estimate
87’[5
Sub

where p < 1. By the first moment assumption of M;, we have

NN

Vs
This estimate also extends to M?
s

6[1/1
f /]2(1

Note that these estimates are independent of § > 0.

‘? Se£ WIP 4 v,

T
d|M,|(v,v*>dzse,Ef/[ 0]+ [val 1My (v, v2) dif < oo
0 RZd

V—=|dIM]|(v, v,) dt < o0,
t

Convergence § — 0: Firstly, we establish the following identity which will be useful later. For fixed

functions f!, f* we have
VIG % £11— V[G* * £4]
= v — v "2 — v J(VIGE % f11 = VIG % fH = (ValGE  f1. — VuIGE % £21.))

= v — v, | [v — v,] / (VG (v —v') = VG (v — ) (fL (V) — f2(0))) dV. (23)
Rd

Using the weak in time continuity of ©, we can consider

1

18 % GE (V') — g % GE(V)] Sfﬂ(fw,aﬂ, G (v — ) — (s, GV — )| dt’.

The “-” stands for the convoluted variable. Since ¢ belongs to a compact set, the function ¢ —
(r, GE(v' — +)) is uniformly continuous from the weak continuity of w. In particular, using the continuity
in v" and the lower bound from Lemma 30 we conclude that for any R > 0

llog(u? * G*) —log(it; % G*)| — 0 uniformly on Bg. (24)

Therefore by Lemma 30, defining w = |v — v*|1+y/2’ and using (23) with fl _ log(uf « G) and
2 =log(u, * G%), we have

‘~ 0He ~0He

\% -V

: = VG xlog(ul % G) (v, v,) — VG xlog (1, xG) (v, vy)|
Sus S ke

< / w|VG (v—v")— VG (v, —v")| [log(u’ *G¢ (v)) —log(u; G (V)| dv
Rd

< / w|VGE(v—1")— VG (vy—0")|Cc (V) dV'
B;?o
+-sup|log (18 G€) —log (1, *G)| w|VG(v—=0")—=VGE (vs—0")| dV'.
Bg, Br,
For a fixed (v, v,), we obtain the convergence to zero by taking § — 0 and Ry — oo in the previous
estimate. This holds for all y € [—4, 0] by taking advantage of the regularity of G€. Using continuity,
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we obtain that for any R > 0

) o
H; (v, vs) — He

(v, vy)| = 0 wuniformly on [0, T] X Bg x Bg. (25)

Mt

We turn to the limit estimate for the right-hand side of (22). For any R > 0, we have

oM r - 8H
< dedt—/// V—= . dM,dt
de 8,ut R2d Oy

8H 8H 5% oM
< S v ) dM? dt| + C.dmPdt— / f/ €. dM,dt
R2d SIut Ly de WUy R2d Oy
oM SH oA 5H
/// vV d|M5|dz+f f/ S —V—S|d|M?|dt +o(1).
BrxBg 8:“1 Skt (BrxBg)€ 8//% Ly

The last term is o(1) as § — O due to similar estimates from the previous step. By sending 6 — O (the
first term vanishes due to (25)) and then sending R — oo (the second term vanishes again due to the
estimate from the previous step), we obtain the convergence

of & 8He
lim / / / He - dM? dt / / / e ~dM? dt. (26)
502 R Sl R2d Ol

Convergence of the left-hand side of (22): By (24), Lemma 30 and the uniform bound on the second

moment, we have

e[l —Help ]l < /R 1 (18 % G) Tog(ud * G)(v) — (iy * G) log(p, * G€)(v)| dv

—0 asd— 0.

Therefore, by the previous equation and (26) we can take § — 0 in (22) to obtain
67—[6
Helr] — Helus] = - dM; (v, vy)dt,
R2d Sﬂt
which is the desired result. O

5. JKO scheme for e-Landau equation

This section is devoted to the proof of Theorem 9 after a series of preliminary lemmas. Our construction
of curves of maximal slope in Theorem 9 uses the basic minimizing movement/variational approximation
scheme of [Jordan et al. 1998]. Fix a small time step T > 0 and initial datum g € &, £(R?) and consider
the recursive minimization procedure for n € N

V) i= Mo, Y, € argmin, ¢ 5, , |:’H€(A) + dL(vn 1s A)]. 27

Then, we concatenate these minimizers into a curve by setting

Hg 2= 1o, u; :=v, forte((n—1)z, nrl (28)

n

The scheme given by (27) and (28) satisfies the abstract formulation in [Ambrosio et al. 2008] giving:
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Proposition 34 (Landau JKO scheme). For any T > 0 and j1o € 25 £ (R?), there exists vi € 25 g(R?)
for every n € N as described in (27). Furthermore, up to a subsequence of u; described in (28) as t — 0,
there exists a locally absolutely continuous curve (ji;);>0 such that

wi = e forallt €0, 00).

Proof. Our metric setting is (,,, dr) (see Theorem 7) with the weak topology . This space is essentially
2, £(RY) except we need to make sure that d; is a proper metric; hence we remove the probability
measures with infinite Landau distance. We follow the proof of [Erbar 2023], which consists in verifying
[Ambrosio et al. 2008, Assumptions 2.1(a)—(c)]. These assumptions are listed and verified now.

(1) #He is sequentially o-Isc on d-bounded sets: Suppose u, € %, R —~pe P, £(RY). This implies
Wk GE — % G€ in 2, (RY). Tt is known that

Jod f)log f(v)dv, p=fL,

H(w) =
) { 00, else
is o-Isc and since H¢ () = H(u * G€), we achieve the first property.

(2) H. is lower bounded: By Lemma 30 for fixed € > 0, log( * G€) is uniformly lower bounded by a
linearly growing term. For fixed 1 € 2, g(R?), we have, with Cauchy—Schwarz,

12
He(w) e — / <v>u*G€<v)dvz—< / (v>2M*G€(v)dv> >~ +E)" > —.
R4 R4

(3) dp-bounded sets are relatively sequentially o-compact: This is one of the consequences from
Theorem 7.

The existence of minimizers, v;, to (27) and limits, w,, to (28) is guaranteed from [Ambrosio et al. 2008,
Corollary 2.2.2 and Proposition 2.2.3], respectively. U

At the abstract level, the limit curve constructed in Proposition 34 has no relation to v/D.. The
following lemmas bridge this gap.

Lemma 35. For any g € 2,(R?), we have

v De(po) < 107 Hel(1o).

Proof. For fixed €, R;, R, > 0 and y € R, take T > 0 from Theorem 48 in the Appendix and the unique
weak solution u € C([0, T]; 2,(RY)) to

{azu =V AUPR, [ga DR VR,V — vV — v [V P TI[ — 0, J(JE — JE) din(vi)]),
wn(0) = po.
The functions 0 < ¢, , ¥g, <1 are smooth cut-off functions with the following properties:

I, |v| <Ry,
0, [v[>=R;+1,

0, |zl =1/Ry,

P 0) = { I, |21 =2/R..

v/Rz (Z) = {
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The notation J; from the Appendix means
J§ = VG© xloglpo * G € C®(RY; RY).
For this proof alone, we define the reduced e-entropy-dissipation
1
DEGuo)i= 3 [ ombretin(v = vl = v Ml = 1§ = ) P o) (v,
R

On the other hand, as the e-entropy dissipation comes from the negative time derivative of entropy, we

have
DRV (110) = lim He(po)—=He () _ lim He (o) —He(pr) dr (1o, pr)
110 t 10 dp (o, i) t
<1 !He (o) —He(pr) 1
<lim X—=
110 dr (o, i4r) t

t
«( \/ [ R b ) R s 1) |
< 10He| (o) V DFR2 (g,

In the first inequality, we estimated dr (i, i) by considering the PDE in this lemma as the grazing
collision equation with M = —(u ® wVv log to. In the last inequality, we have used the Lebesgue
differentiation theorem with strong-weak convergence since p is continuous in time as well as the fact
that ¢%e1 < ¢g, and 1//,%2 < YR, since 0 < ¢p,, Y, < 1. We are left with the inequality

VDRR () < 19Hcl(a0) for all Ry, Ry > 0.

Owing to the many regularizations applied, the e-entropy-dissipation u — DXi-R2(y1) is continuous with
respect to weak convergence of probability measures. By considering weakly convergent sequences and
passing to the limit inferior, we deduce the same inequality with the relaxed slope

VDI R (1) <187 Hel(uo) for all Ry, Ry > 0.

As functions of R, Ry individually, DGR"Rz (io) is nondecreasing. Furthermore, the integrand of
Df“R2 (o) converges to the integrand of D, (uo) pointwise po-almost every v, v,. Thus, an application
of the monotone convergence theorem in the limit R;, R, — 0o on the above inequality completes the
proof. ]

Lemma 36. [0~ H,| is a strong upper gradient for H¢ in 2, (RY), where o € ,@g,E(Rd).

Proof. Fix A, v € QZMO([Rd ) so that by the triangle inequality of Theorem 7, we have dr (A, v) < co. Now
by Proposition 26, there exists a pair of curves (u, M) € GCE ]E connecting A, v and A(u,, M;) = d% (A, V)
for almost every ¢ € [0, 1]. Using Remark 29 and Lemma 35, we have

1 1
me(x)—ﬂe(vnsfo \/Dew,)wt)dzsfo 19 Hel () el (1) . 0
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We now have all the ingredients to prove Theorem 9 so that we can relate curves of maximal slope to
weak solutions of the e-Landau equation.

Proof of Theorem 9. Take a limit curve u, constructed in Proposition 34. By the previous Lemma 36, the
assumptions of [Ambrosio et al. 2008, Theorem 2.3.3] are fulfilled so the curve is of maximal slope with
respect to |0~ H,| and satisfies the associated energy dissipation inequality

| R IRV
Helun) = Hetuo) + 5 [0 HeuoPdr+ 5 [ 1P dr <o,

The inequality of Lemma 35 gives
1 (" 1"
He(ﬂr)_He(Ms)+§/ De(ﬂl)dt+§f IM'Z(Z) dr <0,
N N
which is precisely the statement that the limit curve p, is a curve of maximal slope with respect to /D.. [

Remark 37. The results of Proposition 34 and Lemma 35 can be generalized to other regularization
kernels G*¢, in particular, the Maxwellian regularization. However, this is not the case for Lemma 36
since the proof relies on Proposition 28; see Remark 33.

6. Recovering the full Landau equation as ¢ — 0

Theorems 8 and 9 provide the basic existence theory for the € > 0 approximation of the Landau equation.
In this section, we prove the € |, 0 analogue of Theorem 8, which is Theorem 12. By definition, both
H-solutions and curves of maximal slope to the full Landau equation dissipate the entropy. Therefore, the
assumption of finite initial entropy (A2) automatically ensures

sup H[f;]= sup filog fi < +o0.
1e[0,T] te[0,T]1 JR3

In the sequel, every quotation of (A2) will refer to this bound.

Sketch of the proof of Theorem 12. By repeating the proof of Theorem 8, we see that the crucial ingredient
is the chain rule (18) in Proposition 28. For now assume the following:

Claim 38. Assume (A1), (A2), (A3) and let M be any grazing rate such that (u, M) € GCE ? and

T
/ Ay, My) dt < o0.
0

r ~[6H
H[ur]—Hms]%///RGV[m]-thdz. (29)

By following the steps of the proof of Theorem 8 and using (29) instead of (18), one completes the

Then we have the chain rule

proof of Theorem 12. We dedicate this section to proving Claim 38.

Equation (29) is clearly the € | 0 limit of (18). The left-hand side of (29) can be obtained from the
left-hand side of (18) using the finite entropy (A2) and the fact that € — #[ ;] is nonincreasing for every ¢.
We refer to [Erbar 2023, Proof of Proposition 4.2, Step 4(d)] for more details on a similar argument.
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The difficulty remains in deducing that the right-hand side of (18) converges to the right-hand side
of (29) as € | 0 given by

T - 8H T - 8H
f// \Y E-dM,dtaf// V—-dM,dt, €0, (30)
0oJJre Su o JJrs  Sn

under the additional assumptions (A1), (A2), (A3) on f. The key result which we will use repeatedly
in this section is the following theorem which is a specific case of the result in [Royden 1963, Chapter 4,
Theorem 17].

Theorem 39 (extended dominated convergence theorem (EDCT)). Let (H¢)eso and (I¢)eso be sequences
of measurable functions on X satisfying I. > 0 and suppose there exists measurable functions H, |

satisfying:

(1) |He| < I¢ for every € > 0 and pointwise a.e.

(2) H¢ and I, converge pointwise a.e. to H and I, respectively.
(3) limeyo [y le = [y I < oc.

Then, we have the convergence

lim/ HE=/H.
€10 Jx X

Setting M = mL ® L (valid by Lemma 19) and using Young’s inequality on the right-hand side of (18),
|:6He ] 1 m, |*
Sp 2 ffe
Notice that the first term is precisely the integrand of D, while the second term is the integrand of the

action functional A(u;, M;), which has no dependence on € and is henceforth ignored. We can apply
the EDCT (Theorem 39) with X = (0, T) x R° to prove (30) once we show

[ ool ] aveavac [ el o5

The pointwise a.e. convergence hypothesis of Theorem 39 is straightforward based on the regularization
of H, through G¢. Focusing on (31), we will use a standard dominated convergence theorem (DCT) for
the integration in the z-variable, by proving

[ 32 o= e[
R e |

where C > 0 is a constant independent of € > 0. The estimate of (32) guarantees the L! majorization

we obtain the majorants

6[87{6
S

] smy < _ff*

dv,dvdt, €0. 31)

2
dv, dv for a.e. ¢,

(32)

dv,dv forae.t, forall e >0,

due to the finite entropy-dissipation (A3). ]
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Our estimates in this section accomplish both the convergence and the estimate of (32) by nested
application of Theorem 39. The significance of all three assumptions (A1), (A2), and (A3) will be apparent
in proving the convergence in (32).

Remark 40. In this section, the only properties of G¢ we use are that it is a nonnegative radial approximate
identity with sufficiently many moments. As in the construction of minimizing movement curves in
Section 5, the results of this section can be achieved with other radial approximate identities.

6.1. Outline of technical strategy to prove (32). The need to apply Theorem 39 instead of the more
classical Lebesgue DCT is that we are unable to prove pointwise estimates in v for the function v —
I w3 S |V[8He /3 1|? dvs. Instead, our estimates in this section rely on the self-adjointness of convolution
against radial exponentials (SACRE) to construct a convergent majorant in €.

Step 1: finding majorants and appealing to Theorem 39. We seek to find pointwise a.e. majorants in the

o
Wy

where [ 61 (v) satisfies the hypothesis for the majorant in Theorem 39. We show that / 61 converges pointwise

v-variable:
2

dv, <1} (v),

e
R3

to some I, since 1! depends on € only through convolutions against G¢, which is an approximation of
the identity. Hence, we are left with showing the integral convergence of Theorem 39(3)

/Ig(v)dvdz—>/ I'(v)dv, €—0.
R3 R3

Step 2: use SACRE with G€. To show the integral convergence for / 61, we find functions A! and B! such
that

I (v) < A'()(G* % B")(v)

and apply Theorem 39. As in the previous step, the pointwise convergence is easily proved. Hence, we
are left to show the integral convergence

/AI(GG*Bl)dv—> A'B', e—o0.
R3 R3

The key observation is applying SACRE to obtain _p

€

—_———
/AI(GG*Bl)zf (GExAYHB!.
R3 R3

Therefore, we have reduced the problem to showing integral convergence of Theorem 39(3) for 12 (as the
pointwise convergence is easily proved).

Step 3: repeat Step 2. We repeat the process outlined in Step 2 by finding functions A% and B? such that
we have the pointwise bound

12(v) < A>(v)(G* % B*)(v).
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Again the pointwise convergence for the majorant follows easily; hence we only need to check the integral
convergence of Theorem 39(3) given by

/ A*(G*xB*) — | A’B%
R3 R3
Using SACRE, we study instead the integral convergence of

I}(v) = (G* x A*)B%.

Eventually, after a finite number of times of finding majorants and applying SACRE, we will obtain a
majorant I/ for which the estimates and the convergence as € — 0 follow from the standard Lebesgue DCT,
using the bound of the weighted Fisher information in terms of the entropy-dissipation (see Theorem 41)
and (A3).

6.2. Preparatory results. As mentioned in the previous section, for the final step of the proof we need a
bound on the weighted Fisher information and a closely related variant in terms of the entropy-dissipation
originally discovered by the third author in [Desvillettes and Fellner 2006].

Theorem 41. Suppose y € (—4, 0] and let f > 0 be a probability density belong to Lé_y N Llog L(RY).

We have
| row

where C > 0 is a constant depending only on the bounds of my_,, (f) and the Boltzmann entropy, H[ f],
of f.

The estimate in this precise form can be found in [Desvillettes 2022, Proposition 4, p. 10]. We will
refer to the second term on the left-hand side as a “cross Fisher information”. We mention here that (A2)

2
dv < C(1+ Dy n(f)).

“dut / F0)o

vt
5f v X 57

enters in the sequel since the constant C > 0 in Theorem 41 depends on bounds for H[ f].
To decompose the entropy-dissipation in a manageable way that makes the cross Fisher term more
apparent, we have the following linear algebra fact.

Lemma 42. Forx,y € R3, we have
(- TLxly) = Jx x y 2.
Proof. Without loss of generality, we assume neither x, y = 0 or else the statement holds trivially. Let 8
be an oriented angle between x and y. We expand the definition of I1[x] and observe
(- Ilxly) = - (P = x @x)y = |xP|y* = |x - yP?
= lx[2[y[(1 —cos®§) = |x ||y | sin® 6 = |x x y[*. O
The following lemma shows how we use (A1) to control the singularity of the weight.

Lemma 43. Given y € (—3, 0], assume that f satisfies (Al) for some 0 < n <y + 3. Then we have for
ae.t

/ F@v — vl dve < Cr(t) (v / Fe@oaPlv = v, dvs < Co(1) (V)7 (33)
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where
IC1lILe©.7) Sy 1) 7Y FON Lo, 7: 102G =)/ Gty —n) @)
2_
IC2llL20.7) Sy 1)V F Ol Lo, 7:L10LG=n) /By —n) (®3)) -

Proof. We will only prove the first inequality of (33) since the second inequality uses the same procedure.
We split the estimation for local |v| < 1 and far-field |v| > 1.

Case 1: |v| < 1. We split the integral over v, into two regions

/3f*|U_U*|ydU*:/ f*|U_U*|ydU*+f f*|U_U*|ydU*
R- [v—v4|>1

[v—v,|<1

§1+/ f*lv_v*lydv*»
[v—vi|<1

where we have used that /R3 f =1and y <0. For the integral with the singularity, we apply Young’s
convolution inequality with conjugate exponents ((3 —n)/3+y —n), (=3+n)/y)

f felv=vV dve < |1 f % (x| - 1)l
lv—vy|<l1 > (=3+m/y
< W fleG—nyGey—mllxs | - Vllpcsomy < (7) I f lLe-nrGr—n.

Here, w; is the volume of the unit sphere in R3.

Case 2: |v| > 1. Once again, we split the integral into two parts

/ f*lv—v*l”dv*=/ f*|v—v*|7’dv*+/ felv — vy ]” duy
R3 [vs|<|v]/2 [vg|=[v]/2
52‘V|v|V/ f*dv*+2‘ylvlyf Floal ™ o — v l? do,
[vs|<|v]/2 [vi|=[v]/2

The first term and second term come from the following inequalities based on their respective integration
regions:

o= vl = ol = [vs = 3lvl, L <277 o7
We estimate the first integral using the unit mass of f, while the second integral is more delicate but again
uses the splitting of the previous step to obtain

Sfelv— U*|y dvy

52—y|v|y+2—y|v|y</ f*lv*|_y|v_v*|ydv*+/
[v—vi[>1

[v—v4] <1

R3

felvg 7V v _v*|ydv*>-

In the large brackets, the first integral can be estimated by m_, (f). Now we use the same Young’s
inequality argument for the remaining integral to obtain

w2

(=3+m)/y
/w felv = v |V dv, <277 v]” +2_y|v|y<my(f) + <7> - |_yf||L(3r])/(3+yn)(R3)>-

The proof is complete by combining the estimates for |[v| <1 and |v| > 1. ]
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Lemma 44 (Peetre). For any p € Rand x, y € R, we have

(x)”

M7 olpl2 g el
<y>p§ (x —y)

Proof. Our proof follows [Barros-Neto 1973]. Starting with the case p = 2, for fixed vectors a, b € R?
we have, with the help of Young’s inequality,
L+la—bl* < 1+al +2lal [b| + |b]* < 1 +2|al* +2b|*
<2+2al* +2lal?b* +2]b* = 2(1 + |al*)(1 +|b]?).

Dividing by (b)? and setting a = x — y, b = —y, we obtain the inequality for p =2

2
% <2(x —y)*.
(y)
By taking nonnegative powers, this proves the inequality for p > 0. On the other hand, when we divided

by (b)?* we could have also set a = x — y, b = x to obtain

(y )2 2
— <2{x —y)".
)2 = (x—y)
Taking strictly nonnegative powers here proves the inequality for p < 0. (]

Next, we prove an estimate for algebraic functions (growing or decaying) convoluted against G¢ with
respect to the original function.

Lemma 45. For any p € R, we have
/ (W)’ G (v —w)dw < C{v)?,
Rd

where C > 0 is a constant depending only on |p| and m,,|(G).

Proof. We use Peetre’s inequality in Lemma 44 to introduce v — w into the angle brackets

/ <w>PG€(v—w)dw52'?'/2@)1’/ (v—w)"'G (v — w)dw
Rd Rd

=2|p|/2<v>p/ (1+|w|2)|p|/2€—d(;(£) dw
R €
:2|P|/2<v)p (1+62|w|2)|p|/2G(w) dw
Rd
< c,,<v>1’[1+e'1" /Rd |w||p|G(w)dw} < Cipll+€Plm, Gy, O
We stress that Peetre’s inequality in Lemma 44 is necessary for the estimate of Lemma 45 with

nonpositive powers p which we apply in the sequel. Finally, the last result we will need is an integration
by parts formula for the differential operator associated to the cross Fisher information.
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Lemma 46 (twisted integration by parts). Let f, g be smooth scalar functions of R® which are sufficiently
integrable. Then, we have the formula

fR (WX Vyg) f(w)dv=— [R 8 X Vuf () dv.
Here, the meaning of v x V, is
VX Vy f(v) = (2 f(v) — 0387 f(v), 073" f(0) — 0! F (), '8 f () — V73! f(v)).

6.3. Proof of (32) using Theorem 39. We start by decomposing and estimating the integrand of D..
With the help of Lemma 42, we expand the square term of the integrand to see

o[
S
= [v—v, )" [TI[v—v, ] (b€ xa —b%al)|?

< 0=, |7 (@ x (b 5a®) | +4|vs X (b %aS) P +4|vx (b xal) > +4|v, x (b %a®) |*)

< 4o—v,]? [ux (b %a®)|* +4|v—v4]” [vx X (B %aS)|? +4[v|* |v—v4]? |b¢%aS|? +4|ve > lv—vi|” [b5ac|?,
N — —— — N— — —

® @ ® @
where we use the shorthand notation

2

b* =G and a° =Vlog(G®* f). (34)

By using that G€ is an approximation of the identity, we know that the integrand of D, converges pointwise
a.e. to the integrand of D as € |, 0. As well, each () fori =1, 2, 3, 4 converges pointwise a.e. to

lvx V fI? [vs X Vi fil? Vi fl? IV fI?
CTp o 9T T o 9T O

By Theorem 39, to show the integral convergence in (32), it suffices to show, for example,
x V|2
// ffelv—v " @ dvdv, — f/ fhelv—vs]” lv 2f| dvdv,,
R6 R6 f

and similarly for each ) for i = 2, 3,4. By symmetry considerations when swapping the variables

@

v <> vy, the convergence for the terms (1) and (@) controls the convergence for 2) and (3), respectively.
Hence we will focus on the term (@) first and then on term (D).

6.3.1. Term @. We seek to show in the limit € | 0

f/ ff*lv*lzlv—v*lylbg*aelzdv*dv=f (/ f*|v*|2|v—v*|ydv*)f|b€*a€|2dv
R6 R3 R3
\V/ 2
N (/ f*|v*|2|v—v*|ydv*)| /1 dv. (35)
R3 \JR3 f

By the reordering of integrations written above, we now think of the double integral over v, v, of

Felve?lv — v, |7 |b€ %a€|? as a single integral of the function (fR3 Felvel?lv— vy ] dv*)flb6 xa|* over v.
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To be precise, we wish to apply Theorem 39 with X =R> with H, = (fR3 FelvslPlv—vs]?” dv*)flb6 xa|>.
We can use Cauchy—Schwarz on the convolution integral to absorb the power term as follows:

2
< </ (w)7Vb* (v —w) dw) (f b (v — w)(w)ylae(w)lzdw>
R3 R3

< C) Vb x[() |ac (),

|b€ % a€|* =

f b*(v—w)a®(w) dw
R3

where the last inequality comes from Lemma 45. Continuing with Lemma 43, we have

(f FelvsPlo — v, dv*)fuf xa’|’ < Cfb *[(-)7]a].
R3
By Theorem 39, we reduce the problem to showing in the limit € |, 0

2
/ fbe*[(-)”lae|2]dv—>/ <u>y|vf| dv.
R? R? f

This is were we use SACRE, Step 2 of our general strategy in Section 6.1. Application of SACRE and
further simplification using the specific forms of a€ and b€ (see (34)) yields

, 16 %V fI?

b x f
We work with this simplified expression and note that pointwise convergence is still valid
b« V2 IVfP
— .
b x f f

Next, we notice that the function B : (F, f) — |F|?/f is jointly convex in F € R? and f > 0, so we can
use Jensen’s inequality with b€ = G€ as the reference probability measure to obtain a further pointwise

/ fbe*[<->y|a€|2]dv=/ [bé*f]<v>y|a€|2dv=/ (v) dv. (36)
R3 R3 IR3

majorant for the integrand of (36)

|b€*vf|2 € € € €
— W =B0 V[, b *f)(v)=/3(/R3Vf(v—y)b () dy, fRsf(v—y)b (y)dy>

béx f
IV f=y)?
R f=y)

Using Theorem 39 again, we reduce the problem to showing in the limit € | 0

2 2
fw(v)ybe* |:|Vj]:| ]dv—> /R}(U)VNJ{' dv.

We use SACRE once more and place the convolution onto the weight term
ik v fI?
/ (v)ybé*[i] dv = [lf>x<(-)”]| /1 dv.
R? f R f

Now, we are in a position to apply the classical dominated convergence theorem. We notice that we have

¢ _ ¢ e JIVEP
=< R3/3(Vf(v—y),f(v—y))b () dy= b*(y)dy =b"x 7 (v).

the pointwise convergence
(D% ()] — (v)".
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Furthermore, using Lemma 45, we can estimate b€ x ( - )¥ uniformly in € to find the domination
IV fI? VI
[b€ (- )V]T = C<U>VT-

Using Theorem 41, the finite entropy-dissipation (A3), and uniformly bounded entropy (A2) (remember
the constant in Theorem 41 depends also on bounds for the entropy), we know that the right-hand side
belongs to L}) fora.e. t € (0, T). Therefore, for a.e. r € (0, T) the conditions of the dominated convergence
theorem are satisfied so we have the integral convergence

2 2
[bé*(‘)y]wjj' dve/ﬂ{qs(v)}"v]{l dv.

We have closed the argument for the convergence of (35) after retracing the previous estimates with
Theorem 39.

R3

6.3.2. Term (D. We seek to show in the limit e | O

/f ff*|v—v*|y|vx(bf*afnzdv*dv:/( f*|v—v*|ydv*>f|vx(bf*af)ﬁdv
R6 R3 R3

\V/ 2
— < fulv— v, dv*)udv (37)
R3 \JR3 f

using the same strategy of nested applications of Theorem 39 like in Section 6.3.1. We will encounter dif-
ficulty when trying to use Jensen’s inequality due to the cross Fisher information term. As in Section 6.3.1,
we have written this double integral over v, v, as a single integral over v. By Theorem 39 and Lemma 43,
it suffices to show the integral convergence of

2
/R3(v)”f|vx b€ %)% dv — R3<U>V% (38)

to obtain the integral convergence of (37). Pointwise, we can make the following manipulations:
vx (b *xa®) =vx (f G (v—w)Vlog(f* Ge(w))dw) =vX (/ VG (v—w) log(f*Ge(w))dw>
R R

:/ waGe(v—w)log(f*Gé(w))dw:/ G (v—w)wxVlog(f+*G*(w))dw, (39)
R? R3

where we have used the radial symmetry of G¢ to get the cancellation (v — w) x VG*(v — w) =0 and
the twisted integration by parts Lemma 46 (we note that we do not pick up any signs in the integration by

2
d w)

parts, as the variable w appears with a minus sign in the argument of G€).
We apply Cauchy—Schwarz, multiply and divide by (w)”, and use Lemma 45 to obtain
Vf*xG(w)

lvx (b *a)* < (fw G (v—w)(w)™" dw) (/RS G (v—w)(w)" |w x %G (W)

_ ) VG )|’
<, () V(fR}Gw—wxw)V % dw)

w X
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Remembering that this majorant holds pointwise on the integrand of (38), we multiply by (v)” f(v) and
obtain
Vf*xG(w)

2
dw).
f*Ge(w) )
Now, we recognize a convolution inside the brackets. Hence, using SACRE we can rewrite
VG (w)|? Vf*GE))?
/ ¥ / G (v — wy(w)” |w x LLFE W@, dv=/ VYV HGOF
R3 R3 f *G€ (w) R3 f *G€ (U)

Using Theorem 39, we need to show the convergence of the right-hand side. Here, it is now possible to

) F@)o x B xa)P < f(/ G (v — wyw)” |w x
R3

w X

use Jensen’s inequality after some more manipulations.
x V%G| xV 2
v XV f*G(v) Sf Gg(v_w)lw A
f*G(v) 3 f(w)
Proof of Claim 47. We start by repeating an argument similar to (39). Using that G¢ is radially symmetric
and the twisted integration by parts Lemma 46, we obtain

Claim 47.

(40)

vx V%G (v) =v x (/ VGe(v—w)f(w)dw)
R3

=:F(w)

—_——~
=/ waGE(v—w)f(w)dwzf G‘(v—w)(w x Vy, f(w)) dw.
R3 R3

Therefore, since B : (F, f) — |F|?/f is jointly convex in F € R? and f > 0, we apply Jensen’s inequality
with G€ as the reference probability measure to the left-hand side of (40) to see

lvx VfxGW)]* |F*G|?
fxGe(v)  fxG*€

:,8</ F(v—w)Ge(w)dw,/ f(v—w)Ge(w)dw)
R3 R3

() =BG *F, G x [)(v)

_ _ 2
5/ B(F(v—w), f(v—w>>G€<w>dw=f (@ —w) XVE@ = e g
R3 R3 f(v_w)

which proves the claim. (Il

Continuing, by Theorem 39, we seek to establish the integral convergence of
F|? v 2
/ (v)y|:u * Ge](v) dv = / [(-)7 * Ge](v)w dv.
wo L w @

Finally, the integrand of the right-hand side has a majorant due to Lemma 45

X VIQP ) X VWP
f@) f)

Once again, using Theorem 41 and Assumptions (A3) and (A2), we obtain that for a.e. t € (0, T') the

[(-)"* G 1(v)

right-hand side belongs to L})([R3). Using dominated convergence theorem, we see that the integral
converges. Tracing back the estimates, this takes care of the convergence of the term (D) and establishes
the convergence in (38).
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We note that the estimates in the previous subsections not only establish the a.e. pointwise convergence
of (32), but also the majorization

[foan{sle ] aman=e [ b5 ]

where
_ 2
C ST FOllpeo,r: 0 nne-ner-n@sy + 1) F @Ol e, 7:L10L6-0/6H-n @)

2
dv,dv forae.t, forall e >0,

by Lemma 43. Hence, using (A3) and (32) we can apply Lebesgue DCT to pass to the limit in the time
integral and show the desired chain rule Claim 38.

Appendix: An auxiliary PDE for Lemma 35

In this section, we fix € > 0 throughout and study weak solutions to the PDE

{fw =V PR, [pa PR VR, (v — V)|V — 0oV 2T — 0, ](J§ — JE,) din(vi)},

41
u(0) = wo. “h

We assume the initial data pg belongs to @g(Rd). For Ry, Ry > 0, the functions 0 < ¢g,, ¥g, < 1 are
smooth cut-off functions used to approximate the identity function in different ways:

I, |v] <Ry, 0, |z| <1/Ry,

¢R1(”):{0, lv| > Ry +1, 1, |z|>2/R,.

v/Rz (Z) = {

For € > 0, J; is the gradient of first variation of H. applied to 1y, meaning
J§ = VG xlog[po * G] € C(RY; RY).
The main result of this section is:

Theorem 48. Fixe, R|, Ry > 0, y € R, and o € 2>(R?). Then, there is a global unique weak solution
i € C([0, +00); 22(RY)) 1o (41).

By Lemma 31, we know that J is uniformly bounded (with constant depending on € and i only
through bounds on its second moment). The purpose of ¢g, , g, is to cut off the growth of J§, J;, to
ensure that the “velocity field” in the right-hand side of (41) is globally Lipschitz (it is, in fact, smooth and
compactly supported). The ¥, (v — v.)-term avoids the possible singularities coming from the weight
|v — v, |V 1?2 for soft potentials y < 0.

The construction of the solution in Theorem 48 is given in two steps. Firstly, a local well-posedness
theory established to some finite time interval 7 > 0 which depends on €, y, R, R, and wg. Secondly,
the time of existence (and uniqueness) is extended to +o0 since T depends on (o only through its second
moment, which is conserved by the evolution of (41).

We fix T > 0 to be determined explicitly later. Our strategy is to employ a fixed-point argument in the
space C([0, T']; 25 (R%)), which we will equip with the metric

d(u,v) = s[lolp]wzm(r),v(r)), , v e C([0, TT; 22(RY)),
te[0, T
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where W, is the 2-Wasserstein distance on %2,(R¢). We have closely followed the procedure in [Caiiizo
et al. 2011] with appropriate modifications for this setting.

Remark 49. Since we are cutting off the “velocity” field at radius Ry, R», the growth of J; is inconse-
quential. Hence the results of this section can be applied when replacing the convolution kernel of J;§
with general tailed exponential distributions G*€(v) for s > 0.

For 1w € 2,(R%), we will denote by U[ur](v) the function

Ulul(v) := —og, /d Pryx VR (V—02) |V — 0| P TI[0 — v (TG — J5,) dn(vy),
R
so that the PDE in (41) can be written as a nonlinear transport/continuity equation:

() ==V -{u@OU[n@)]}

To fix ideas, the weak formulation of (41) is such that the following equality holds for all test functions
T € C>°(RY) and times ¢ € [0, T]

/f(v)dur(v)—f T(v) dpo(v)
Rd Rd

t
= /O/Rd or, VT (V)" /Rd PR« VR, (V=) |V — v*|1’+21'[[v — v (IS — JE)d s (vy) d s (v) ds.

Thanks to all the smooth cutoffs from ¢, , ¢r,«, and ¥g, and wo € 2,(R%), we can enlarge the class
of test functions to smooth functions with quadratic growth. In particular, by choosing 7 (v) = |v|? and
symmetrizing the right-hand side by swapping v <> v, we see that the second moment of 1 is conserved
along the evolution of (41).

Our first step is to look at the level of the characteristic equation associated to (41).

Lemma 50 (characteristic equation). Forany T >0, u € C([0, T']; 25(R?)) and vy € RY, there exists a
unique solution v € C'((0, T); RY) N C([0, T1; RY) to the ODE
dv
dt

Furthermore, the growth rate satisfies

Ulu®](),  v(0) = .

lv(®)| <max{|vg|, R1 +1} forallt €0, T].

Proof. U[u(t)](-) is smooth and compactly supported uniformly in ¢, so classical Cauchy—Lipschitz
theory gives existence and uniqueness of solution v with the promised regularity.

For the estimate on the growth rate, note that U[u] has support contained in Bg, 1. Points outside this
ball do not change in time according to this ODE. ]

We will denote by QDL the flow map associated to this ODE, so that

L !, (o) = UlOU®, (00)), B (w0) = .
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It is known that, given v € C ([0, T']; 25 (R?)), the curve of probability measures (1) = @' #up is a weak
solution to

Op) ==V -{uOUOI}, n0O)=

Here, @ #u is the push-forward measure of 1o defined in duality with T € Cp, (RY) by

|t d@iune = [ r@ o) dio)

We seek to find a fixed point to the map u +— QDL#MQ as it would weakly solve (41). To better understand
the properties of this map, we need to establish estimates on the flow map through U as a function of
time and measures.

Lemma 51 (L™ estimate for velocity field). There exists a constant C = C(¢€, v, Ry, Ra, o) > 0 such
that, for every T > 0 andv € C([0, T]; @2([@‘1)), we have

Uv()]1(v)| < C  forallt €[0,T], v e R

Proof. Estimate for y > —2: We have the three inequalities

2 2 2
v =" S, T o7 v =l < 1§ Sepo 1

due to the range of y, boundedness of I1, and Lemma 31, respectively. These three inequalities provide
the estimate

U O] Sy eos b, (V) /R DR (7 [l ) (),

where we have dropped g, altogether. For the integral term, we apply Hélder’s inequality taking
advantage of the compact support of ¢g, and the unit mass of v; to further obtain

U1 Sye o b, 0 (R + (0)2) / dvi(v) Spy D1, (0) (1)

Again, since ¢g, has compact support, we can brutally estimate the polynomial to conclude.

Estimate for y < —2: Unlike the previous case, we change one of the inequalities due to the unavailability

of a triangle inequality and use
2
VR, — vl — v " SI/RYT M=l <1, J§ Sewo |

From these inequalities and the compact support of ¢g,, we have

U1 Sye o ks PRy (v)/quﬁR.(v*)de(v*) =1L g

The next result follows exactly as in [Caifiizo et al. 2011].

Lemma 52 (time continuity of flow map). Let C = C(e, y, Ry, Ra, o) > 0 be the same constant from
Lemma 51. Then, forany T > 0,andv € C([0,T]; @2([@’)) we have

@, — D} |l o (rey < Clt —s].
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Our next objective is to establish the regularity of the flow map with respect to the measures in the
subscript. To simplify the subsequent lemmas, let us use the notation in the following:

Lemma 53. Define
F:(,w)eR! xR > ¢r, (0)pr, (W)Y, (v — w)|v — w|" P TI[v — w](J§ (v) — J§ (w)).

The function F is smooth and compactly supported. In particular, for every k,l € N, there is a constant
C=C(e,y, Ri, Ry, (o, k, 1) > 0 such that

IDS DY, Fll oo i ey < C.
More precisely, the constant C depends on Lo only through bounds on its second moment as in Lemma 3 1.

Proof. The compact support property comes from the factor of ¢g, (v)¢r, (w) in the definition. The
regularity comes from the avoidance of v = w due to the factor ¥g, (v — w). (I

Corollary 54 (pointwise and measurewise regularity of U). Consider the constant C from Lemma 53
above. We have the following:

(1) Take C; = C(e€, v, R1, R, 110, 0, 1) > 0. Forevery T > 0, v',v? € C([0, T1; 2,(R%)), t € [0, T],
v € R? we have the estimate

U ()]1() — U (O)]()] < CiWa (v, v7).

(2) Take C, = C(e, v, Ri, Ry, o, 1,0) > 0. Forevery T > 0, v € C([0, T]; 2,(RYY), t €10, T],
v1, v2 € R? we have the estimate

IUv(O)](v) = Uv(O)](w2)] < Calvr — 2.

Remark 55. By considering the antisymmetric property of F when swapping variables v <> w, one really
obtains C; = C,. Their distinction in this corollary is artificial.

Proof. (1) Firstly, for every t € [0, T'] take 7 (¢) € 25 (R x R?), the 2-Wasserstein optimal transportation
plan connecting v!(r) and v2(r) which exists; see [Villani 2009]. We estimate the difference with notation
from Lemma 53:

|U[V1(t)](v) _ U[Uz(t)](v)l — ‘\/ﬂ;d F('U, U)) thl(w) — ‘/I%d F(v, II)) dv?(ﬁ))‘
:‘// F(U,u))—F(U,u_))dnt(w’u_})’
R2d

<c ff (w — Dl (w, B) < CyWa(v), v2),
RZd

The first inequality uses a mean-value-type estimate (in the second variable of F) and the second inequality
uses Cauchy—Schwarz, or equivalently, that W5 is stronger than Wj.
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(2) As with item (1), we estimate the difference using F' to find

|Uv(O)](v) = Uv(O)](v2)| =

/ F(or, w) — F(v3. ) dv (w)
Rd

< fd |F (v, w) — F(v2, w)| dv(w) < Ca|vy — v3].
R

Once more, a mean-value-type estimate is applied (in the first variable of F) and we recall v, is a
probability measure. (Il

The next result combines both items of Corollary 54 to estimate the regularity of the flow map with
respect to measures and follows exactly as in [Cafiizo et al. 2011].

Lemma 56 (continuity of flow map with respect to measures). For T >0 fix any v 1v2eC (0, T1; 2,(RY))
andt €10, T]. With C := C| = C, the same constants in Corollary 54, we have the estimate

10!, — ', |l poqey < (€7 — DA, v?),
recalling that d(v', v?) = SUP;ef0,77] Wz(vll, vtz).

It is by now classical how to obtain Theorem 48 from Corollary 54 and Lemma 56; see [Caiiizo
et al. 2011; Carrillo et al. 2014; Golse 2016] for instance. The time of existence can be given by any
0<T < (1/C)log2, where C > 0 is chosen as in Lemma 56 and the result follows by a fixed-point
argument. The extension to all times is owed to the fact that C > 0 depends on the initial data j¢ only
through its second moment. This quantity is conserved through by the evolution of (41) and so the
maximal time of existence is +oo.

Acknowledgements

Carrillo was supported the Advanced Grant Nonlocal-CPD (Nonlocal PDEs for Complex Particle Dynam-
ics: Phase Transitions, Patterns and Synchronization) of the European Research Council Executive Agency
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement
no. 883363). Carrillo and Delgadino were partially supported by EPSRC grant no. EP/P031587/1.
Delgadino was partially supported by CNPq-Brazil (#308800/2019-2) and Instituto Serrapilheira. Wu was
funded by the President’s PhD Scholarship program of Imperial College London. Carrillo and Wu were
also partially supported by the Royal Society through the International Exchange Scheme 2016 CNRS
France. Carrillo and Delgadino would like to thank the American Institute of Mathematics since our
attendance to the AIM workshop “Nonlocal differential equations in collective behavior” in June 2018
triggered this research.

References

[Alexandre et al. 2015] R. Alexandre, J. Liao, and C. Lin, “Some a priori estimates for the homogeneous Landau equation with
soft potentials”, Kinet. Relat. Models 8:4 (2015), 617-650. MR Zbl

[Ambrosio 1995] L. Ambrosio, “Movimenti minimizzanti”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995), 191-246.
MR Zbl


http://dx.doi.org/10.3934/krm.2015.8.617
http://dx.doi.org/10.3934/krm.2015.8.617
http://msp.org/idx/mr/3375485
http://msp.org/idx/zbl/1320.35104
https://media.accademiaxl.it/memorie/S5-VXIX-P1-2-1995/Ambrosio191-246.pdf
http://msp.org/idx/mr/1387558
http://msp.org/idx/zbl/0957.49029

THE LANDAU EQUATION AS A GRADIENT FLOW 1373

[Ambrosio et al. 2008] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability
measures, 2nd ed., Birkhduser, Basel, 2008. MR Zbl

[Arsenev and Peskov 1977] A. A. Arsenev and N. V. Peskov, “The existence of a generalized solution of Landau’s equation”, Zh.
Vychisl. Mat. Mat. Fiz. 17:4 (1977), 1063—-1068. In Russian; translated in USSR Comput. Math. and Math. Phys. 17:4 (1977),
241-246. MR Zbl

[Barros-Neto 1973] J. Barros-Neto, An introduction to the theory of distributions, Pure Appl. Math. 14, Dekker, New York,
1973. MR Zbl

[Benamou and Brenier 2000] J.-D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the Monge—
Kantorovich mass transfer problem”, Numer. Math. 84:3 (2000), 375-393. MR Zbl

[Blanchet et al. 2008] A. Blanchet, V. Calvez, and J. A. Carrillo, “Convergence of the mass-transport steepest descent scheme
for the subcritical Patlak—Keller—Segel model”, SIAM J. Numer. Anal. 46:2 (2008), 691-721. MR Zbl

[Boblylev et al. 2013] A. V. Boblylev, M. Pulvirenti, and C. Saffirio, “From particle systems to the Landau equation: a
consistency result”, Comm. Math. Phys. 319:3 (2013), 683-702. MR Zbl

[Buttazzo 1989] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Res.
Notes Math. Ser. 207, Longman Sci. Tech., Harlow, England, 1989. MR Zbl

[Caiiizo et al. 2011] J. A. Caiiizo, J. A. Carrillo, and J. Rosado, “A well-posedness theory in measures for some kinetic models
of collective motion”, Math. Models Methods Appl. Sci. 21:3 (2011), 515-539. MR Zbl

[Carlen and Carvalho 1992] E. A. Carlen and M. C. Carvalho, “Strict entropy production bounds and stability of the rate of
convergence to equilibrium for the Boltzmann equation”, J. Statist. Phys. 67:3-4 (1992), 575-608. MR Zbl

[Carrapatoso and Mischler 2017] K. Carrapatoso and S. Mischler, “Landau equation for very soft and Coulomb potentials near
Maxwellians”, Ann. PDE 3:1 (2017), art.id. 1. MR Zbl

[Carrapatoso et al. 2017] K. Carrapatoso, L. Desvillettes, and L. He, “Estimates for the large time behavior of the Landau
equation in the Coulomb case”, Arch. Ration. Mech. Anal. 224:2 (2017), 381-420. MR Zbl

[Carrillo et al. 2010] J. A. Carrillo, S. Lisini, G. Savaré, and D. Slepcev, “Nonlinear mobility continuity equations and generalized
displacement convexity”, J. Funct. Anal. 258:4 (2010), 1273-1309. MR Zbl

[Carrillo et al. 2012] J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepcev, “Confinement in nonlocal interaction
equations”, Nonlinear Anal. 75:2 (2012), 550-558. MR Zbl

[Carrillo et al. 2014] J. A. Carrillo, Y.-P. Choi, and M. Hauray, “The derivation of swarming models: mean-field limit and
Wasserstein distances”, pp. 1-46 in Collective dynamics from bacteria to crowds, edited by A. Muntean and F. Toschi, CISM
Courses and Lect. 553, Springer, 2014. MR

[Carrillo et al. 2019] J. A. Carrillo, K. Craig, and F. S. Patacchini, “A blob method for diffusion”, Calc. Var. Partial Differential
Equations 58:2 (2019), art.id. 53. MR Zbl

[Carrillo et al. 2020] J. A. Carrillo, J. Hu, L. Wang, and J. Wu, “A particle method for the homogeneous Landau equation”,
J. Comput. Phys. X 7 (2020), art. id. 100066. MR

[Carrillo et al. 2022] J. A. Carrillo, M. G. Delgadino, and J. Wu, “Boltzmann to Landau from the gradient flow perspective”,
Nonlinear Anal. 219 (2022), art.id. 112824. MR Zbl

[Degond and Lucquin-Desreux 1992] P. Degond and B. Lucquin-Desreux, “The Fokker—Planck asymptotics of the Boltzmann
collision operator in the Coulomb case”, Math. Models Methods Appl. Sci. 2:2 (1992), 167-182. MR Zbl

[Desvillettes 2015] L. Desvillettes, “Entropy dissipation estimates for the Landau equation in the Coulomb case and applications”,
J. Funct. Anal. 269:5 (2015), 1359-1403. MR Zbl

[Desvillettes 2016] L. Desvillettes, “Entropy dissipation estimates for the Landau equation: general cross sections”, pp. 121-143
in From particle systems to partial differential equations, 11l (Braga, Portugal, 2014), edited by P. Gongalves and A. J. Soares,
Springer Proc. Math. Stat. 162, Springer, 2016. MR Zbl

[Desvillettes 2022] L. Desvillettes, “Autour du theoreme H de Boltzmann”, art. id. 9 in Séminaire Laurent Schwartz: EDP et
applications 2019/2020, Ecole Polytech., Palaiseau, France, 2022.

[Desvillettes and Fellner 2006] L. Desvillettes and K. Fellner, “Exponential decay toward equilibrium via entropy methods for
reaction-diffusion equations”, J. Math. Anal. Appl. 319:1 (2006), 157-176. MR Zbl


http://dx.doi.org/10.1007/b137080
http://dx.doi.org/10.1007/b137080
http://msp.org/idx/mr/2401600
http://msp.org/idx/zbl/1145.35001
https://www.mathnet.ru/eng/zvmmf5937
https://doi.org/10.1016/0041-5553(77)90125-2
https://doi.org/10.1016/0041-5553(77)90125-2
http://msp.org/idx/mr/470442
http://msp.org/idx/zbl/0383.35064
http://msp.org/idx/mr/461128
http://msp.org/idx/zbl/0273.46026
http://dx.doi.org/10.1007/s002110050002
http://dx.doi.org/10.1007/s002110050002
http://msp.org/idx/mr/1738163
http://msp.org/idx/zbl/0968.76069
http://dx.doi.org/10.1137/070683337
http://dx.doi.org/10.1137/070683337
http://msp.org/idx/mr/2383208
http://msp.org/idx/zbl/1205.65332
http://dx.doi.org/10.1007/s00220-012-1633-6
http://dx.doi.org/10.1007/s00220-012-1633-6
http://msp.org/idx/mr/3040372
http://msp.org/idx/zbl/1273.35281
http://msp.org/idx/mr/1020296
http://msp.org/idx/zbl/0669.49005
http://dx.doi.org/10.1142/S0218202511005131
http://dx.doi.org/10.1142/S0218202511005131
http://msp.org/idx/mr/2782723
http://msp.org/idx/zbl/1218.35005
http://dx.doi.org/10.1007/BF01049721
http://dx.doi.org/10.1007/BF01049721
http://msp.org/idx/mr/1171145
http://msp.org/idx/zbl/0899.76317
http://dx.doi.org/10.1007/s40818-017-0021-0
http://dx.doi.org/10.1007/s40818-017-0021-0
http://msp.org/idx/mr/3625186
http://msp.org/idx/zbl/1404.35043
http://dx.doi.org/10.1007/s00205-017-1078-3
http://dx.doi.org/10.1007/s00205-017-1078-3
http://msp.org/idx/mr/3614751
http://msp.org/idx/zbl/1390.35360
http://dx.doi.org/10.1016/j.jfa.2009.10.016
http://dx.doi.org/10.1016/j.jfa.2009.10.016
http://msp.org/idx/mr/2565840
http://msp.org/idx/zbl/1225.49043
http://dx.doi.org/10.1016/j.na.2011.08.057
http://dx.doi.org/10.1016/j.na.2011.08.057
http://msp.org/idx/mr/2847439
http://msp.org/idx/zbl/1233.35032
http://dx.doi.org/10.1007/978-3-7091-1785-9_1
http://dx.doi.org/10.1007/978-3-7091-1785-9_1
http://msp.org/idx/mr/3331178
http://dx.doi.org/10.1007/s00526-019-1486-3
http://msp.org/idx/mr/3913840
http://msp.org/idx/zbl/1442.35324
http://dx.doi.org/10.1016/j.jcpx.2020.100066
http://msp.org/idx/mr/4121055
http://dx.doi.org/10.1016/j.na.2022.112824
http://msp.org/idx/mr/4385210
http://msp.org/idx/zbl/1507.35133
http://dx.doi.org/10.1142/S0218202592000119
http://dx.doi.org/10.1142/S0218202592000119
http://msp.org/idx/mr/1167768
http://msp.org/idx/zbl/0755.35091
http://dx.doi.org/10.1016/j.jfa.2015.05.009
http://msp.org/idx/mr/3369941
http://msp.org/idx/zbl/1325.35223
http://dx.doi.org/10.1007/978-3-319-32144-8_6
http://msp.org/idx/mr/3557719
http://msp.org/idx/zbl/1351.35206
http://dx.doi.org/10.5802/slsedp.143
http://dx.doi.org/10.1016/j.jmaa.2005.07.003
http://dx.doi.org/10.1016/j.jmaa.2005.07.003
http://msp.org/idx/mr/2217853
http://msp.org/idx/zbl/1096.35018

1374 JOSE A. CARRILLO, MATIAS G. DELGADINO, LAURENT DESVILLETTES AND JEREMY S.-H. WU

[Desvillettes and Villani 2000a] L. Desvillettes and C. Villani, “On the spatially homogeneous Landau equation for hard
potentials, I: Existence, uniqueness and smoothness”, Comm. Partial Differential Equations 25:1-2 (2000), 179-259. MR Zbl

[Desvillettes and Villani 2000b] L. Desvillettes and C. Villani, “On the spatially homogeneous Landau equation for hard
potentials, II: H-theorem and applications”, Comm. Partial Differential Equations 25:1-2 (2000), 261-298. MR Zbl

[Desvillettes et al. 2023] L. Desvillettes, L.-B. He, and J.-C. Jiang, “A new monotonicity formula for the spatially homogeneous
Landau equation with Coulomb potential and its applications”, J. Eur. Math. Soc. (online publication January 2023).

[Dolbeault et al. 2009] J. Dolbeault, B. Nazaret, and G. Savaré, “A new class of transport distances between measures”, Calc.
Var. Partial Differential Equations 34:2 (2009), 193-231. MR Zbl

[Erbar 2014] M. Erbar, “Gradient flows of the entropy for jump processes”, Ann. Inst. Henri Poincaré Probab. Stat. 50:3 (2014),
920-945. MR Zbl

[Erbar 2023] M. Erbar, “A gradient flow approach to the Boltzmann equation”, J. Eur. Math. Soc. (online publication June 2023).

[Erbar and Maas 2014] M. Erbar and J. Maas, “Gradient flow structures for discrete porous medium equations”, Discrete Contin.
Dyn. Syst. 34:4 (2014), 1355-1374. MR Zbl

[Fournier and Guérin 2009] N. Fournier and H. Guérin, “Well-posedness of the spatially homogeneous Landau equation for soft
potentials”, J. Funct. Anal. 256:8 (2009), 2542-2560. MR Zbl

[Golse 2016] F. Golse, “On the dynamics of large particle systems in the mean field limit”, pp. 1-144 in Macroscopic and large
scale phenomena: coarse graining, mean field limits and ergodicity (Enschede, Netherlands, 2012), edited by A. Muntean et al.,
Lect. Notes Appl. Math. Mech. 3, Springer, 2016. MR

[Golse et al. 2019a] F. Golse, M. P. Gualdani, C. Imbert, and A. Vasseur, “Partial regularity in time for the space homogeneous
Landau equation with Coulomb potential”, preprint, 2019. arXiv 1906.02841

[Golse et al. 2019b] F. Golse, C. Imbert, C. Mouhot, and A. F. Vasseur, “Harnack inequality for kinetic Fokker-Planck equations
with rough coefficients and application to the Landau equation”, Ann. Sc. Norm. Super. Pisa CL Sci. (5) 19:1 (2019), 253-295.
MR Zbl

[Gualdani and Guillen 2016] M. P. Gualdani and N. Guillen, “Estimates for radial solutions of the homogeneous Landau equation
with Coulomb potential”, Anal. PDE 9:8 (2016), 1772-1809. MR Zbl

[Gualdani and Zamponi 2017] M. P. Gualdani and N. Zamponi, “Spectral gap and exponential convergence to equilibrium for a
multi-species Landau system”, Bull. Sci. Math. 141:6 (2017), 509-538. MR Zbl

[Gualdani and Zamponi 2018a] M. Gualdani and N. Zamponi, “A review for an isotropic Landau model”, pp. 115-144 in PDE
models for multi-agent phenomena (Rome, 2016), edited by P. Cardaliaguet and F. Salvarani, Springer INJAM Ser. 28, Springer,
2018. MR Zbl

[Gualdani and Zamponi 2018b] M. P. Gualdani and N. Zamponi, “Global existence of weak even solutions for an isotropic
Landau equation with Coulomb potential”, SIAM J. Math. Anal. 50:4 (2018), 3676-3714. MR Zbl

[Guo 2002] Y. Guo, “The Landau equation in a periodic box”, Comm. Math. Phys. 231:3 (2002), 391-434. MR Zbl

[Jordan et al. 1998] R. Jordan, D. Kinderlehrer, and F. Otto, “The variational formulation of the Fokker—Planck equation”, SIAM
J. Math. Anal. 29:1 (1998), 1-17. MR Zbl

[Lifshitz and Pitaevskii 1981] E. M. Lifshitz and L. P. Pitaevskii, Physical kinetics, Course of Theoret. Phys. 10, Pergamon,
Oxford, 1981. MR Zbl

[Royden 1963] H. L. Royden, Real analysis, Macmillan, New York, 1963. MR Zbl

[Sandier and Serfaty 2004] E. Sandier and S. Serfaty, “Gamma-convergence of gradient flows with applications to Ginzburg—
Landau”, Comm. Pure Appl. Math. 57:12 (2004), 1627-1672. MR Zbl

[Santambrogio 2017] F. Santambrogio, “(Euclidean, metric, and Wasserstein) gradient flows: an overview”, Bull. Math. Sci. 7:1
(2017), 87-154. MR Zbl

[Serfaty 2011] S. Serfaty, “Gamma-convergence of gradient flows on Hilbert and metric spaces and applications”, Discrete
Contin. Dyn. Syst. 31:4 (2011), 1427-1451. MR Zbl

[Silvestre 2017] L. Silvestre, “Upper bounds for parabolic equations and the Landau equation”, J. Differential Equations 262:3
(2017), 3034-3055. MR Zbl


http://dx.doi.org/10.1080/03605300008821512
http://dx.doi.org/10.1080/03605300008821512
http://msp.org/idx/mr/1737547
http://msp.org/idx/zbl/0946.35109
http://dx.doi.org/10.1080/03605300008821513
http://dx.doi.org/10.1080/03605300008821513
http://msp.org/idx/mr/1737548
http://msp.org/idx/zbl/0951.35130
http://dx.doi.org/10.4171/JEMS/1313
http://dx.doi.org/10.4171/JEMS/1313
http://dx.doi.org/10.1007/s00526-008-0182-5
http://msp.org/idx/mr/2448650
http://msp.org/idx/zbl/1157.49042
http://dx.doi.org/10.1214/12-AIHP537
http://msp.org/idx/mr/3224294
http://msp.org/idx/zbl/1311.60091
http://dx.doi.org/10.4171/JEMS/1349
http://dx.doi.org/10.3934/dcds.2014.34.1355
http://msp.org/idx/mr/3117845
http://msp.org/idx/zbl/1275.49084
http://dx.doi.org/10.1016/j.jfa.2008.11.008
http://dx.doi.org/10.1016/j.jfa.2008.11.008
http://msp.org/idx/mr/2502525
http://msp.org/idx/zbl/1165.35467
http://dx.doi.org/10.1007/978-3-319-26883-5_1
http://msp.org/idx/mr/3468297
http://msp.org/idx/arx/1906.02841
http://dx.doi.org/10.2422/2036-2145.201702_001
http://dx.doi.org/10.2422/2036-2145.201702_001
http://msp.org/idx/mr/3923847
http://msp.org/idx/zbl/1431.35016
http://dx.doi.org/10.2140/apde.2016.9.1772
http://dx.doi.org/10.2140/apde.2016.9.1772
http://msp.org/idx/mr/3599518
http://msp.org/idx/zbl/1378.35325
http://dx.doi.org/10.1016/j.bulsci.2017.07.002
http://dx.doi.org/10.1016/j.bulsci.2017.07.002
http://msp.org/idx/mr/3698158
http://msp.org/idx/zbl/1378.35156
http://dx.doi.org/10.1007/978-3-030-01947-1_6
http://msp.org/idx/mr/3888970
http://msp.org/idx/zbl/1414.35104
http://dx.doi.org/10.1137/17M1142685
http://dx.doi.org/10.1137/17M1142685
http://msp.org/idx/mr/3825615
http://msp.org/idx/zbl/1393.35089
http://dx.doi.org/10.1007/s00220-002-0729-9
http://msp.org/idx/mr/1946444
http://msp.org/idx/zbl/1042.76053
http://dx.doi.org/10.1137/S0036141096303359
http://msp.org/idx/mr/1617171
http://msp.org/idx/zbl/0915.35120
https://www.sciencedirect.com/book/9780080264806/physical-kinetics
http://msp.org/idx/mr/684990
http://msp.org/idx/zbl/0679.76001
http://msp.org/idx/mr/151555
http://msp.org/idx/zbl/0121.05501
http://dx.doi.org/10.1002/cpa.20046
http://dx.doi.org/10.1002/cpa.20046
http://msp.org/idx/mr/2082242
http://msp.org/idx/zbl/1065.49011
http://dx.doi.org/10.1007/s13373-017-0101-1
http://msp.org/idx/mr/3625852
http://msp.org/idx/zbl/1369.34084
http://dx.doi.org/10.3934/dcds.2011.31.1427
http://msp.org/idx/mr/2836361
http://msp.org/idx/zbl/1239.35015
http://dx.doi.org/10.1016/j.jde.2016.11.010
http://msp.org/idx/mr/3582250
http://msp.org/idx/zbl/1357.35066

THE LANDAU EQUATION AS A GRADIENT FLOW 1375

[Strain and Wang 2020] R. M. Strain and Z. Wang, “Uniqueness of bounded solutions for the homogeneous relativistic Landau
equation with Coulomb interactions”, Quart. Appl. Math. 78:1 (2020), 107-145. MR Zbl

[Villani 1998a] C. Villani, “On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations”,
Arch. Ration. Mech. Anal. 143:3 (1998), 273-307. MR Zbl

[Villani 1998b] C. Villani, “On the spatially homogeneous Landau equation for Maxwellian molecules”, Math. Models Methods
Appl. Sci. 8:6 (1998), 957-983. MR Zbl

[Villani 2009] C. Villani, Optimal transport: old and new, Grundlehren der Math. Wissenschaften 338, Springer, 2009. MR Zbl

[Wu 2014] K.-C. Wu, “Global in time estimates for the spatially homogeneous Landau equation with soft potentials”, J. Funct.
Anal. 266:5 (2014), 3134-3155. MR Zbl

Received 23 Oct 2021. Revised 1 Jun 2022. Accepted 27 Oct 2022.

JOSE A. CARRILLO: carrillo@maths.ox.ac.uk
Mathematical Institute, University of Oxford, Oxford, United Kingdom

MATIAS G. DELGADINO: matias.delgadino@math.utexas.edu
Department of Mathematics, University of Texas, Austin, TX, United States

LAURENT DESVILLETTES: desvillettes@math.univ-paris-diderot.fr
Université Paris Cité and Sorbonne Université, CNRS, IUF, IMJ-PRG, Paris, France

JEREMY S.-H. WU: jeremywu@math.ucla.edu
Department of Mathematics, University of California, Los Angeles, CA, United States

mathematical sciences publishers :.msp


http://dx.doi.org/10.1090/qam/1545
http://dx.doi.org/10.1090/qam/1545
http://msp.org/idx/mr/4042221
http://msp.org/idx/zbl/1427.82044
http://dx.doi.org/10.1007/s002050050106
http://msp.org/idx/mr/1650006
http://msp.org/idx/zbl/0912.45011
http://dx.doi.org/10.1142/S0218202598000433
http://msp.org/idx/mr/1646502
http://msp.org/idx/zbl/0957.82029
http://dx.doi.org/10.1007/978-3-540-71050-9
http://msp.org/idx/mr/2459454
http://msp.org/idx/zbl/1156.53003
http://dx.doi.org/10.1016/j.jfa.2013.11.005
http://msp.org/idx/mr/3158719
http://msp.org/idx/zbl/1296.35112
mailto:carrillo@maths.ox.ac.uk
mailto:matias.delgadino@math.utexas.edu
mailto:desvillettes@math.univ-paris-diderot.fr
mailto:jeremywu@math.ucla.edu
http://msp.org




ANALYSIS AND PDE
Vol. 17 (2024), No. 4, pp. 1377-1395

DOI: 10.2140/apde.2024.17.1377

DEGENERATING HYPERBOLIC SURFACES AND SPECTRAL GAPS
FOR LARGE GENUS

YUNHUI WU, HAOHAO ZHANG AND XUWEN ZHU

We study the differences of two consecutive eigenvalues A; — X;_;, i up to 2g — 2, for the Laplacian
on hyperbolic surfaces of genus g, and show that the supremum of such spectral gaps over the moduli
space has infimum limit at least i as the genus goes to infinity. A min-max principle for eigenvalues on
degenerating hyperbolic surfaces is also established.

1. Introduction

For a closed Riemann surface X, of genus g > 2, consider the hyperbolic metric uniquely determined by
its complex structure. We study the spectrum of the Laplacian on X,, which is a discrete subset in R=0
and consists of eigenvalues with finite multiplicities. The eigenvalues, counted with multiplicities, are
listed in the following increasing order:

Ozko(Xg) < )Ll(Xg) < )\Z(Xg) <...—> o0.

Let M, be the moduli space of Riemann surfaces of genus g, which is an open orbifold of dimension
equal to 6g — 6. For each index i, the i-th eigenvalue A;( - ) is a bounded continuous function on M,. In
this paper we study the differences of two consecutive eigenvalues and will focus on the behavior of such
spectral gaps when g — oo.

Definition. For all i > 1, the i-th spectral gap SpG,; (- ) is a bounded continuous function over the moduli
space M, defined as

SPG; : My — RZ%, X, > A (X)) — Ai—1(X). (1)

By definition, SpG(X,) = A{(X,). For all i > 1, the i-th spectral gap SpG; (- ) can be arbitrarily close
to zero (e.g., see Proposition 3.7). In this paper we mainly study the quantity Supy,em, SPG; (Xg) for
large g and a family of indices i.

The main result of this article is the limiting behavior of the lower bound of the spectral gaps.

Theorem 4.1. Let {r)(g)}zi":2 be any sequence of integers with n(g) € [1,2g — 2]. Then

liminf sup SpG, ) (X,) >

1
i
87 X,eM

8
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Remark. The sequence {n(g)} is arbitrary as long as it satisfies the bounds: examples include 1(g) = 2,
n(g)=1{2,3,2,3,...},and n(g) =2g¢g — 2.
On the other hand, by [Cheng 1975, Corollary 2.3], we know that
1672
Diam*(X,)
By Gauss—Bonnet, Area(X,) =4m(g — 1). A simple area argument implies that the diameter satisfies

M(Xe) < T4+

Diam(X,) > C In(g) for some universal constant C > 0. So if n(g) satisfies

lim n(g) _0
g—oc In(g)

we have
limsup sup SpG,,(X,) < le'

8§00 X.eM,
Together with Theorem 4.1 this yields the following direct consequence.
Corollary 1.1. If n(g) = o(In(g)), then

Jm ook, SPGyy(e) (Xg) = 1.

For 1(g) =1, both Theorem 4.1 and Corollary 1.1 are due to Hide and Magee [2023, Corollary 1.3],
who used a probabilistic method to solve the conjecture (e.g., see [Buser 1984; Buser et al. 1988]) that
there exists a sequence of closed hyperbolic surfaces with first eigenvalues tending to }l as the genus goes
to infinity.

The following result is important in the proof of Theorem 4.1, which we include for independent
interest. The proof is highly motivated by the work of Burger, Buser and Dodziuk [Buser et al. 1988],
where they studied the case when the limiting surface is connected (e.g., see Theorem 2.6).

Proposition 3.1 (min-max principle). Let X,(0) € 0 M, be the limit of a family of Riemann surfaces
{X (1)} obtained by pinching certain simple closed geodesics such that X 4(0) has k connected components,
ie, Xg(0) =Y UuYoU---UYy, where k > 2. Let A1 (Y1), ..., A (Yy) be the first nonzero eigenvalue of
Yi,..., Yk (if Y; has no discrete eigenvalues then write A1(Y;) = 00) and write r(x) = min{)q (%), %}
forx=Yy,..., Y. Then
liminf Ax (X (1)) > min {A(Y;)}.
t—0 I<i<k

Remark. Each component Y; in the proposition above is a complete open hyperbolic surface of finite
volume, whose spectrum consists of possibly discrete eigenvalues and the continuous spectrum [i, oo).
Therefore, in the statement above, A (Y;) is the nonzero minimum of the spectrum of Y;.

Proof sketch of Theorem 4.1. In the proof of Theorem 4.1, we will apply Proposition 3.1 to the case
when all the A, (Y;) are close to }f. The main idea is the following: for each 1(g) we construct a sequence
of genus g surfaces that degenerate into 1(g) components using only pieces that are known to have the
first eigenvalue close to }‘. Then by the min-max principle, the n(g)-th eigenvalue of these surfaces will be
close to %. On the other hand, by a result of Schoen, Wolpert and Yau (see Theorem 2.5), the ((g)—1)-th
eigenvalue is close to zero. This way we find sequences of surfaces that achieve the spectral gap of Alf. For
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the regime n(g) > g, the components used in the construction only include the thrice-punctured sphere
and a twice-punctured torus. On the other hand, for n(g) < g, the essential components also include a
large genus piece that relies on the work of Hide and Magee [2023].

Plan of the paper. Section 2 will first discuss properties of the boundary degeneration of the Riemann
moduli spaces; then we will provide a review of the background and recent developments on spectral
gaps on hyperbolic surfaces, including a list of punctured surface components with eigenvalue bounds
which will be used in the degeneration limits. In Section 3 we will provide a proof for Proposition 3.1
regarding the min-max principle for eigenvalues of degenerating hyperbolic surfaces and a few immediate
applications. In Section 4 we will complete the proof of Theorem 4.1.

2. Preliminaries

Boundary of the Riemann moduli spaces. Denote by M, , the moduli space of hyperbolic surfaces
of genus g with n punctures, and by M, := M, o the moduli space of compact hyperbolic surfaces
with genus g. It is well known that dimg(M, ,) = 6g +2n — 6. In particular, My 3 contains only one
point represented by the hyperbolic thrice-punctured sphere. The Deligne—Mumford compactification
of M, , is obtained by adding nodal surfaces into M, ,, which is homeomorphic to the completion of
M, » endowed with the Weil-Petersson metric. Let d M, ,, be the boundary of the Deligne-Mumford
compactification of Mg ,. Recall that 9M, , is stratified, and each stratum of d M, , is a product of
lower-dimensional moduli spaces. Points in d. M, , are represented by hyperbolic nodal surfaces in M, ,
(see for example [Masur 1976] for more details on the completion of M, ,). Locally the process of
pinching a simple closed geodesic into a pair of cusp points can be written with respect to hyperbolic
collar coordinates (p, ) with £ the length of the central geodesic circle. As £ — 0, the hyperbolic
neck degenerates into a pair of cusps, which can be seen with the choice of the correct coordinates (see
for example [Ji 1993; Masur 1976]). Another way to see this would be using the complex “plumbing”
coordinates, which we will not discuss. Hyperbolic nodal surfaces are obtained by pinching certain
disjoint geodesic circles, and we call such a family of hyperbolic metrics approaching nodal surfaces a
degenerating family (see, e.g., [Wolpert 1990], and see Figure 1 for an example).

We also recall the collar lemma on structures of disjoint hyperbolic collars around short geodesics,
which will be useful later in decomposing the surfaces.

Lemma 2.1 (collar lemma [Buser 1992, Theorem 4.1.1]). Let y1, y2, . .., Vm be disjoint simple closed
geodesics on a closed hyperbolic Riemann surface X4, and let £(y;) be the length of y;. Then m <3g — 3,
and we can define the collar of y; by

T(yi) = {x € Xy :dist(x, y;) < w(yi)},

where

1

S 2
sinh(3€(y1)) @

w(y;) = arcsinh

is the width of the collar.
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X3

j 61,52—>O

X1

Figure 1. An example of a degenerating family in M3 whose limit is X ; U X 3, which is disconnected.

Then the collars are pairwise disjoint fori = 1,...,m. Each T (y;) is isomorphic to a cylinder
(0,0) e [—wy), wy)] x S', where S! = R/Z, with the metric

ds® = dp® + £(y;)? cosh? p d6>. (3)

For a point (p, 0), the point (0, 0) is its projection on the geodesic y;, |p| is the distance to y;, and 0 is
the coordinate on y; = S'.

As the length £(y) of the central closed geodesic goes to zero, the width w(y) is approximately
In (1/€(y)), which tends to infinity. We have the following as an easy corollary.

Corollary 2.2. For a degenerating family of hyperbolic surfaces {X,(t)}, the diameter satisfies
Diam(X, (1)) — o0.
The following two lemmas will be useful in the proof of Theorem 4.1.

Lemma 2.3. For each integer n(g) € [g — 1, 2g — 2] with g > 2, there exist two nonnegative integers i
and j such that

(1) i+j=n(),
(2) Moz x - x Moz X Mg x---x My CIMs,.

i copies J copies

Remark. Here i and j depend on g and satisfy i +-2j =2g —2 by the additivity of the Euler characteristic.

Proof. If n(g) = 2g — 2, the conclusion is obvious by choosing i =2g —2 and j = 0, which is obtained
by pinching 3g — 3 disjoint simple closed curves in a closed surface X, of genus g.
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i(g) copies of X3

j(g) copics of X 5

Figure 2. An example of the degeneration of a genus g surface into i (g) copies of X 3
and j(g) copies of X 2 by pinching all the simple geodesics marked in the picture.

Now we assume g < n(g) < 2g — 3. Given a closed surface X, of genus g, first one may pinch X,
along two disjoint simple closed curves o7 and o5 such that X, \ (o1 Uo?) has two connected components
Xg,,2U X, 2, where g1 and g are two nonnegative integers satisfying g + g2 = g — 1. Here we choose

g1=02g—2)—n(g) and g=n(g —(g—1.

For the second step, we pinch X, > along g — 1 disjoint simple closed curves {y;}1</<g,—1 such that the
complement decomposes further into g; components:

Xa2\ |J n=Xiau-uX,.
—_—

I<i<gi—1 g1 copies

For X, », one may pinch along 3g> — 1 disjoint simple closed curves {y,,}1<m<3¢,—1 such that the
complement decomposes further into 2g, components:

Xg 2\ U Vm = Xo3U---UXo3.

1=m=3g>—1 2g, copies

Pinching all these simple closed curves during cutting above to zero, the conclusion follows since
i=2g=2n(g)—(2¢g—-2) and j=g =(2g-2)—n(g). “4)

For an illustration, see Figure 2.

If n(g) = g — 1, we first pinch X, along a nonseparating simple closed curve to get a surface X1 ».
Then in the same way as with X, > in the previous case, we pinch X,_; > along g — 2 disjoint simple
closed curves to get g — 1 copies of X . Then the conclusion follows withi =0 and j =g — 1.

Combining the three cases above, the proof is complete. U
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i(g) copies of Xg3 Jj(g) copies of X »

X81,2

Figure 3. An example of decomposing a surface of genus g into i copies of Xg 3, j copies
of X and a copy of X,, », where i, j, and g; are given in the proof of Lemma 2.4.

Lemma 2.4. For each integer n(g) € [2, gl with g > 3, there exist three nonnegative integers g1, i and j
such that

(1) 2g1>g—2,
Q) i+j+1=n),
(3) Moz x - x Moz X Mg x--- X MjsxMg 2 CIMs,.

i(g) copies j(g) copies

Remark. Similar to the previous lemma, i, j and g; depend on g. By calculating the Euler characteristics,
these numbers should satisfy i +2j +2g; =2g — 2.

Proof. Similar to the proof of Lemma 2.3 above, we first decompose X, as X, \ (01U02) = Xg, 2 U X, »
for two disjoint simple closed curves o] and o, where g; and g, := g — 1 — g; will be determined in
different cases below. Next we decompose X, > into the disjoint union of i copies of X 3 and j copies
of X2 to obtain the desired properties. For an illustration, see Figure 3.

The proof contains the following three cases.

Case 1: 2 <n((g) < %g + 1. The conclusion follows by choosing
i=0, j=n -1 and g =g—n(g).
Case 2: %g +1 < n(g) < g and n(g) is odd. The conclusion follows by choosing
i=n(g—1, j=0 and g =g—1(1+n(g).
Case 3: %g +1 < n(g) < g and n(g) is even. The conclusion follows by choosing

i=ng -2 j=1 and g =g—1-1n(g). O
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Eigenvalues of hyperbolic surfaces. The study of eigenvalues of the Laplacian on hyperbolic surfaces
has a long history and has recently seen much progress. For a compact hyperbolic surface, the eigenvalues
are discrete. On the other hand, when the hyperbolic surface degenerates to one with cusps, by [Lax
and Phillips 1982] it is known that the spectrum is no longer discrete, rather it consists of a continuous
spectrum [%, oo) and (possibly) additional discrete eigenvalues. The study of spectral degeneration has
seen many developments; see [Hejhal 1990; Ji 1993; Ji and Zworski 1993; Wolpert 1987; 1992a; 1992b]
for some of the earlier works.

An eigenvalue of a hyperbolic surface is said to be “small” if it is less than %, where the number JT
shows up as the bottom of the continuous spectrum of a hyperbolic surface with cusps. The questions
of existence of eigenvalues less than }L for both noncompact and compact hyperbolic surfaces not only
arise in the field of spectral geometry, but also have deep relations to number theory regarding arithmetic
hyperbolic surfaces, dating back to Selberg’s famous % theorem [1965]. We refer to [Gelbart and Jacquet
1978; Kim 2003; Luo et al. 1995] for more recent developments. Regarding the estimates and multiplicity
counting of small eigenvalues, the history goes back to McKean [1972], Randol [1974], and Buser [1982;
1984]. Recently there have been many developments; see [Ballmann et al. 2016; 2017; 2018; Brooks and
Makover 2001; Buser 1992; Buser et al. 1988; Mondal 2015; Otal and Rosas 2009; Schoen et al. 1980].
Among these are two classical results of particular relevance to our current work. The first regards bounds
of eigenvalues on degenerating hyperbolic surfaces by Schoen, Wolpert and Yau [Schoen et al. 1980]:

Theorem 2.5 [Schoen et al. 1980]. For any compact hyperbolic surface X4 of genus g and integer
i €(0,2g —2), the i-th eigenvalue satisfies

a;(g)-4i <A < Bi(g) -4
and

a(g) < A2,

where a;(g) > 0 and B;(g) > 0 depend only on i and g, o(g) > 0 depends only on g, and ¢; is the
minimal possible sum of the lengths of simple closed geodesics in Xy which cut X ¢ into i + 1 connected
components.

Dodziuk and Randol [1986] gave an alternative proof of Theorem 2.5, and one may also see Dodziuk,
Pignataro, Randol and Sullivan [Dodziuk et al. 1987] on similar results for Riemann surfaces with
punctures. It was proved by Otal and Rosas [2009] that the constant «(g) can be optimally chosen to
be %. For large genus g, it was recently proved by the first-named author and Xue [Wu and Xue 2022a;
2022c] that up to multiplication by a universal constant, o (g) can be optimally chosen to be 1/g2.

The other result that is relevant is [Buser et al. 1988, Theorem 2.1] regarding the first eigenvalue when
the limiting degenerating surface is connected:

Theorem 2.6 [Buser et al. 1988]. Let {X4(t)} C M, such that Y = lim;_,o X4(t) € 0. M, is connected.
Denote by )| (Y) the first nonzero eigenvalue of Y (if Y has no discrete eigenvalues we write A1(Y) = 00).
Then

limsup A1 (Xg (1)) = A1(Y) = min{A,(¥), 1}.

t—0
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In Section 3 we will give a similar description of A, (X, (7)) when the limiting surface has k connected
components.

Another related direction in this topic is to understand how the genus of the hyperbolic surface, in
particular when g — oo, affects the eigenvalues via different models of random hyperbolic surfaces.
Brooks and Makover [2004] gave a uniform lower bound on the first spectral gap for t