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LÉO MORIN

This paper deals with classical and semiclassical nonvanishing magnetic fields on a Riemannian manifold
of arbitrary dimension. We assume that the magnetic field B = d A has constant rank and admits a discrete
well. On the classical part, we exhibit a harmonic oscillator for the Hamiltonian H = |p − A(q)|2 near
the zero-energy surface: the cyclotron motion. On the semiclassical part, we describe the semiexcited
spectrum of the magnetic Laplacian Lh̄ = (i h̄d + A)∗(i h̄d + A). We construct a semiclassical Birkhoff
normal form for Lh̄ and deduce new asymptotic expansions of the smallest eigenvalues in powers of h̄1/2

in the limit h̄ → 0. In particular we see the influence of the kernel of B on the spectrum: it raises the
energies at order h̄3/2.

1. Introduction

1A. Context. We consider the semiclassical magnetic Laplacian with Dirichlet boundary conditions

L−h = (i−hd + A)∗(i−hd + A)

on a d-dimensional oriented Riemannian manifold (M, g), which is either compact with boundary, or the
Euclidean Rd. A denotes a smooth 1-form on M, the magnetic potential. The magnetic field is the 2-form
B = dA.

The spectral theory of the magnetic Laplacian has given rise to many investigations, and appeared
to have very various behaviors according to the variations of B and the geometry of M. We refer to
the books and review [Helffer and Kordyukov 2014; Fournais and Helffer 2010; Raymond 2017] for a
description of these works. Here we focus on the Dirichlet realization of L−h , and we give a description of
semiexcited states, eigenvalues of order O(−h) in the semiclassical limit −h → 0. As explained in the above
references, the magnetic intensity has a great influence on these eigenvalues, and one can define it in the
following way.

Using the isomorphism Tq M ≃ Tq M∗ given by the metric, one can define the following skew-symmetric
operator B(q) : Tq M → Tq M by

Bq(X, Y )= gq(X, B(q)Y ) for all X, Y ∈ Tq M, for all q ∈ M. (1-1)
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Since the operator B(q) is skew-symmetric with respect to the scalar product gq , its eigenvalues are
purely imaginary and symmetric with respect to the real axis. We denote these repeated eigenvalues by

±iβ1(q), . . . , ±iβs(q), 0,

with βj (q) > 0. In particular, the rank of B(q) is 2s and may depend on q. However, we will focus on
the constant-rank case. We denote by k the dimension of the kernel of B(q), so that d = 2s + k. The
magnetic intensity (or “trace+”) is the scalar-valued function

b(q)=

s∑
j=1

βj (q).

The function b is continuous on M, but nonsmooth in general. We are interested in discrete magnetic
wells and nonvanishing magnetic fields.

Assumption 1. We assume that:

• The magnetic intensity is nonvanishing and admits a unique global minimum b0 > 0 at q0 ∈ M \ ∂M.

• The rank of B(q) is constant equal to 2s > 0 on a neighborhood � of q0.

• βi (q0) ̸= βj (q0) for every 1 ≤ i < j ≤ s, and the minimum of b is nondegenerate.

• In the noncompact case M = Rd,

b∞ := lim inf
|q|→+∞

b(q) > b0

and there exists a C > 0 such that

|∂ℓBi j (q)| ≤ C(1 + |B(q)|) for all ℓ, i, j, for all q ∈ Rd .

Remark 1.1. Since the nonzero eigenvalues of B are simple at q0, the function b is smooth on a
neighborhood of q0. In particular, it is meaningful to say that the minimum of b is nondegenerate.

Under Assumption 1, the following useful inequality was proven in [Helffer and Mohamed 1996].
There is a C0 > 0 such that, for −h small enough,

(1 +
−h1/4C0)⟨L−hu, u⟩ ≥

∫
M

−h(b(q)− −h1/4C0)|u(q)|2 dq for all u ∈ Dom(L−h). (1-2)

Remark 1.2. Actually, one has the better inequality obtained replacing −h1/4 by −h. This was proved in
[Guillemin and Uribe 1988] in the case of a nondegenerate B, in [Borthwick and Uribe 1996] in the
constant rank case, and in [Ma and Marinescu 2002] in a more general setting.

Remark 1.3. Using this inequality, one can prove Agmon-like estimates for the eigenfunctions of L−h .
Namely, the eigenfunctions associated to an eigenvalue < b1

−h are exponentially small outside Kb1 =

{q : b(q)≤ b1}. We will use this result to localize our analysis to the neighborhood � of q0. In particular,
the greater b1 is, the larger � must be.

Under Assumption 1, estimates on the ground states of L−h in the semiclassical limit −h → 0 were proven
in several works, especially in dimensions d = 2, 3.
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On M = R2, asymptotics for the j-th eigenvalue of L−h

λj (L−h)= b0
−h + (α(2 j − 1)+ c1)

−h2
+ o(−h2) (1-3)

with explicit α, c1 ∈ R were proven in [Helffer and Morame 2001] (for j = 1) and [Helffer and Kordyukov
2011] ( j ≥ 1). Actually, this second paper contains a description of some higher eigenvalues. They proved
that, for any integers n, j ∈ N, there exist −h jn > 0 and for −h ∈ (0, −h jn) an eigenvalue λn, j (

−h) ∈ sp(L−h)

such that
λn, j (

−h)= (2n − 1)(b0
−h + ((2 j − 1)α+ cn)

−h2)+ o(−h2)

for another explicit constant cn . In particular, it gives a description of some semiexcited states (of order
(2n − 1)b0

−h). Finally, [Raymond and Vũ Ngo.c 2015] (and [Helffer and Kordyukov 2015]) gives a
description of the whole spectrum below b1

−h, for any fixed b1 ∈ (b0, b∞). More precisely, they proved
that this part of the spectrum is given by a family of effective operators N [n]

−h (n ∈ N) modulo O(−h∞).
These effective operators are −h-pseudodifferential operators with principal symbol given by the function
−h(2n − 1)b. More interestingly, they explained why the two quantum oscillators

(2n − 1)b0
−h and (2 j − 1)α−h2

appearing in the eigenvalue asymptotics correspond to two oscillatory motions in classical dynamics:
the cyclotron motion and a rotation around the minimum point of b. The results of Raymond and Vũ
Ngo. c were generalized to an arbitrary d-dimensional Riemannian manifold in [Morin 2022b], under the
assumption k = 0 (B(q) has full rank), proving in particular similar estimates (1-3) in a general setting.
Actually, these eigenvalue estimates were proven simultaneously in [Kordyukov 2019] in the context of
the Bochner Laplacian.

We are interested on the influence of the kernel of B (k > 0). Since the rank of B is even, this kernel
always exists in odd dimensions: if d = 3, the kernel directions correspond to the usual field lines. On
M = R3, Helffer and Kordyukov [2013] proved the existence of λnmj (

−h) ∈ sp(L−h) such that

λnmj (
−h)= (2n − 1)b0

−h + (2n − 1)1/2(2m − 1)ν0
−h3/2

+ ((2n − 1)(2 j − 1)α+ cnm)
−h2

+O(−h9/4)

for some ν0 > 0 and α, cnm ∈ R. Motivated by this result and the 2-dimensional case, Helffer, Kordyukov,
Raymond and Vũ Ngo. c [Helffer et al. 2016] gave a description of the whole spectrum below b1

−h, proving
in particular the eigenvalue estimates

λj (L−h)= b0
−h + ν0

−h3/2
+α(2 j − 1)−h2

+O(−h5/2). (1-4)

Their results exhibit a new classical oscillatory motion in the directions of the field lines, corresponding
to the quantum oscillator (2m − 1)ν0

−h3/2.
The aim of this paper is to generalize the results of [Helffer et al. 2016] to an arbitrary Riemannian

manifold M, under Assumption 1. In particular we describe the influence of the kernel of B in a general
geometric and dimensional setting. Their approach, which we adapt, is based on a semiclassical Birkhoff
normal form. The classical Birkhoff normal form has a long story in physics and goes back to [Delaunay
1860; Lindstedt 1883]. This formal normal form was the starting point of a lot of studies on stability near
equilibrium, and KAM theory (after [Kolmogorov 1954; Arnold 1963; Moser 1962]). The name of this
normal form comes from [Birkhoff 1927; Gustavson 1966]. We refer to the books [Moser 1968; Hofer and
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Zehnder 1994] for precise statements. Our approach here relies on a quantization. Physicists and quantum
chemists already noticed in the 1980s that a quantum analogue of the Birkhoff normal form could be used
to compute energies of molecules [Delos et al. 1983; Jaffé and Reinhardt 1982; Marcus 1985; Shirts and
Reinhardt 1982]. Joyeux and Sugny [2002] also used such techniques to describe the dynamics of excited
states. Sjöstrand [1992] constructed a semiclassical Birkhoff normal form for a Schrödinger operator
−

−h21+ V using the Weyl quantization, to make a mathematical study of semiexcited states. Raymond
and Vũ Ngo.c [2015] had the idea to adapt this method for L−h on R2, and with Helffer and Kordyukov
on R3 [Helffer et al. 2016]. This method is reminiscent of Ivrii’s approach [2019].

1B. Main results. The first idea is to link the classical dynamics of a particle in the magnetic field B
with the spectrum of L−h using pseudodifferential calculus. Indeed, L−h is an −h-pseudodifferential operator
with principal symbol

H(q, p)= |p−Aq |
2 for all p ∈ Tq M∗, for all q ∈ M,

and H is the classical Hamiltonian associated to the magnetic field B. One can use this property to
prove that, in the phase space T ∗M, the eigenfunctions (with eigenvalue < b1

−h) are microlocalized on an
arbitrarily small neighborhood of

6 = H−1(0)∩ T ∗�= {(q, p) ∈ T ∗� : p = Aq}.

Hence, the second main idea is to find a normal form for H on a neighborhood of 6. Namely, we find
canonical coordinates near 6 in which H has a “simple” form. The symplectic structure of 6 as a
submanifold of T ∗M is thus of great interest. One can see that the restriction of the canonical symplectic
form dp ∧ dq on T ∗M to 6 is given by B (Lemma 2.1), and when B has constant rank, one can find
Darboux coordinates ϕ :�′

⊂ R2s+k
(y,η,t) →� such that

ϕ∗B = dη∧ dy,

up to shrinking �. We will start from these coordinates to get the following normal form for H.

Theorem 1.4. Under Assumption 1, there exists a diffeomorphism

81 : U ′

1 ⊂ R4s+2k
→ U1 ⊂ T ∗M

between neighborhoods U ′

1 of 0 and U1 of 6 such that

Ĥ(x, ξ, y, η, t, τ ) := H ◦81(x, ξ, y, η, t, τ )

satisfies (with the notation β̂j = βj ◦ϕ)

Ĥ = ⟨M(y, η, t)τ, τ ⟩ +

s∑
j=1

β̂j (y, η, t)(ξ 2
j + x2

j )+O((x, ξ, τ )3)

uniformly with respect to (y, η, t) for some (y, η, t)-dependent positive definite matrix M(y, η, t). More-
over,

8∗

1(dp ∧ dq)= dξ ∧ dx + dη∧ dy + dτ ∧ dt.
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Remark 1.5. We will use the following notation for our canonical coordinates:

z = (x, ξ) ∈ R2s, w = (y, η) ∈ R2s, τ = (t, τ ) ∈ R2k .

This theorem gives the Taylor expansion of H on a neighborhood of 6. In particular (x, ξ, τ ) ∈ Rd

measures the distance to 6, whereas (y, η, t) ∈ Rd are canonical coordinates on 6.

Remark 1.6. This theorem exhibits the harmonic oscillator ξ 2
j + x2

j in the expansion of H. This oscillator,
which is due to the nonvanishing magnetic field, corresponds to the well-known cyclotron motion.

Actually, one can use the Birkhoff normal form algorithm to improve the remainder. Using this
algorithm, we can change the O((x, ξ)3) remainder into an explicit function of ξ 2

j + x2
j , plus some smaller

remainders O((x, ξ)r ). This remainder power r is restricted by resonances between the coefficients βj .
Thus, we take an integer r1 ∈ N such that,

for all α ∈ Zs, 0< |α|< r1 =⇒

s∑
j=1

αjβj (q0) ̸= 0. (1-5)

Here, |α| =
∑

j |αj |. Moreover, we can use the pseudodifferential calculus to apply the Birkhoff algorithm
to L−h , changing the classical oscillator ξ 2

j + x2
j into the quantum harmonic oscillator

I ( j)
−h = −

−h2∂2
x j

+ x2
j ,

whose spectrum consists of the simple eigenvalues (2n − 1)−h, n ∈ N. Following this idea we construct a
normal form for L−h in Theorem 3.4. We also deduce a description of its spectrum.

Theorem 1.7. Let ε > 0. Under Assumption 1, there exist b1 ∈ (b0, b∞), an integer Nmax > 0 and a
compactly supported function f ⋆1 ∈ C∞(R2s+2k

× Rs
× [0, 1)) such that

| f ⋆1 (y, η, t, τ, I, −h)| ≲
(
(|I | + −h)2 + |τ |(|I | + −h)+ |τ |3

)
satisfying the following properties. For n ∈ Ns , denote by N [n]

−h the −h-pseudodifferential operator in (y, t)
with symbol

N [n]
−h = ⟨M(y, η, t)τ, τ ⟩ +

s∑
j=1

β̂j (y, η, t)(2n j − 1)−h + f ⋆1 (y, η, t, τ, (2n − 1)−h, −h).

For −h ≪ 1, there exists a bijection

3−h : sp(L−h)∩ (−∞, b1
−h)→

⋃
|n|≤Nmax

sp(N [n]
−h )∩ (−∞, b1

−h)

such that 3−h(λ)= λ+O(−hr1/2−ε) uniformly with respect to λ.

Remark 1.8. In this theorem sp(A) denotes the repeated eigenvalues of an operator A, so that there
might be some multiple eigenvalues, but 3−h preserves this multiplicity. We only consider self-adjoint
operators with discrete spectrum.

Remark 1.9. One should care of how large b1 can be. As mentioned above, the eigenfunctions of
energy < b1

−h are exponentially small outside Kb1 = {q ∈ M : b(q)≤ b1}. Thus, we will chose b1 such that
Kb1 ⊂�, where � is some neighborhood of q0. Hence the larger � is, the greater b1 can be. However,
there are three restrictions on the size of �:
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• The rank of B(q) is constant on �.

• There exist canonical coordinates ϕ on � (i.e., such that ϕ∗B = dη∧ dy).

• There is no resonance in �:

for all q ∈�, for all α ∈ Zs, 0< |α|< r1 =⇒

s∑
j=1

αjβj (q) ̸= 0.

Of course the last condition is the most restrictive. However, if we forget the second condition, which is
of global geometric nature, given a magnetic field and an r1 one can estimate an associated b1 satisfying
the third condition. In particular we can construct simple examples on Rd such that the threshold b1

−h
includes several Landau levels.

Remark 1.10. If k = 0 we recover the result of [Morin 2022b]. Here we want to study the influence
of a nonzero kernel k > 0. This result generalizes the result of [Helffer et al. 2016], which corresponds
to d = 3, s = k = 1 on the Euclidean R3. However, this generalization is not straightforward since the
magnetic geometry is much more complicated in higher dimensions, in particular if k> 1. Moreover, there
is a new phenomena in higher dimensions: resonances between the functions βj (as in [Morin 2022b]).

The spectrum of L−h in (−∞, b1
−h) is given by the operators N [n]

−h . Actually if we choose b1 small
enough, it is only given by the first operator N [1]

−h (here we denote the multi-integer 1 = (1, . . . , 1) ∈ Ns).
Hence in the second part of this paper, we study the spectrum N [1]

−h using a second Birkhoff normal form.
Indeed, the symbol of N [1]

−h is

N [1]
−h (w, t, τ )= ⟨M(w, t)τ, τ ⟩ +

−hb̂(w, t)+O(−h2)+O(τ−h)+O(τ 3),

so if we denote by s(w) the minimum point of t 7→ b̂(w, t) (which is unique on a neighborhood of 0), we
get the expansion

N [1]
−h (w, t, τ )= ⟨M(w, s(w))τ, τ ⟩ +

−h
2

〈
∂2b̂
∂t2 (w, s(w)) · (t − s(w)), t − s(w)

〉
+ · · · , (1-6)

where we will show that the remaining terms are only perturbations. As explained in Section 5, in (1-6)
we can recognize a harmonic oscillator with frequencies

√
−hνj (w) (1 ≤ j ≤ k), where (ν2

j (w))1≤ j≤k are
the eigenvalues of the symmetric matrix

M(w, s(w))1/2 ·
1
2∂

2
t b̂(w, s(w)) · M(w, s(w))1/2.

These frequencies are smooth nonvanishing functions of w on a neighborhood of 0, as soon as we assume
that they are simple.

Assumption 2. For indices 1 ≤ i < j ≤ k, we have νi (0) ̸= νj (0).

We fix an integer r2 ∈ N such that,

for all α ∈ Zk, 0< |α|< r2 =⇒

k∑
j=1

αjνj (0) ̸= 0,

and we construct a normal form for N [1]
−h in Theorem 5.4. Again, we deduce a description of its spectrum.
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Theorem 1.11. Let c> 0 and δ ∈
(
0, 1

2

)
. Under Assumptions 1 and 2, with k > 0, there exists a compactly

supported function f ⋆2 ∈ C∞(R2s
× Rk

× [0, 1)) such that

| f ⋆2 (y, η, J,
√

−h)| ≲ (|J | +

√
−h)2

satisfying the following properties. For n ∈ Nk, denote by M[n]
−h the −h-pseudodifferential operator in y

with symbol

M [n]
−h (y, η)= b̂(y, η, s(y, η))+

√
−h

k∑
j=1

νj (y, η)(2n j − 1)+ f ⋆2 (y, η, (2n − 1)
√

−h,
√

−h).

For −h ≪ 1, there exists a bijection

3−h : sp(N [1]
−h )∩ (−∞, (b0 + c−hδ)−h)→

⋃
n∈Nk

sp(−hM[n]
−h )∩ (−∞, (b0 + c−hδ)−h)

such that 3−h(λ)= λ+O(−h1+δr2/2) uniformly with respect to λ.

Remark 1.12. The threshold b0 + c−hδ is needed to get microlocalization of the eigenfunctions of N [1]
−h in

an arbitrarily small neighborhood of τ = 0.

Remark 1.13. This second harmonic oscillator (in variables (t, τ )) corresponds to a classical oscillation
in the directions of the field lines. We see that this new motion, due to the kernel of B, induces powers of
√

−h in the spectrum.

As a corollary, we get a description of the low-lying eigenvalues of L−h by the effective operator −hM[1]
−h .

Corollary 1.14. Let ε > 0 and c ∈ (0,minj νj (0)). Define ν(0) =
∑

j νj (0) and r = min(2r1, r2 + 4).
Under Assumptions 1 and 2, with k > 0, there exists a bijection

3−h : sp(L−h)∩ (−∞, −hb0 +
−h3/2(ν(0)+ 2c))→ sp(−hM[1]

−h )∩ (−∞, −hb0 +
−h3/2(ν(0)+ 2c))

such that 3−h(λ)= λ+O(−hr/4−ε) uniformly with respect to λ.

We deduce the following eigenvalue asymptotics.

Corollary 1.15. Under the assumptions of Corollary 1.14, for j ∈ N, the j-th eigenvalue of L−h admits an
expansion

λj (L−h)=
−h

⌊r/2⌋−2∑
ℓ=0

αjℓ
−hℓ/2 +O(−hr/4−ε),

with coefficients αjℓ ∈ R such that

αj,0 = b0, αj,1 =

k∑
j=1

νj (0), αj,2 = E j + c0,

where c0 ∈ R and −hE j is the j-th eigenvalue of an s-dimensional harmonic oscillator.
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Remark 1.16. Note −hE j is the j-th eigenvalue of a harmonic oscillator whose symbol is given by the
Hessian at w = 0 of b̂(w, s(w)). Hence, it corresponds to a third classical oscillatory motion: a rotation
in the space of field lines.

Remark 1.17. The asymptotics

λj (L−h)= b0
−h + ν(0)−h3/2

+ (E j + c0)
−h2

+ o(−h2)

were unknown before, except in the special 3-dimensional case M = R3 in [Helffer et al. 2016].

1C. Related questions and perspectives. In this paper, we are restricted to energies λ < b1
−h, and as men-

tioned in Remark 1.9, the threshold b1>b0 is limited by three conditions, including the nonresonance one:

for all q ∈�, for all α ∈ Zs, 0< |α|< r1 =⇒

s∑
j=1

αjβj (q) ̸= 0.

It would be interesting to study the influence of resonances between the functions βj on the spectrum of L−h .
Maybe the Grushin techniques could help, as in [Helffer and Kordyukov 2015] for instance. A Birkhoff nor-
mal form was given in [Charles and Vũ Ngo. c 2008] for a Schrödinger operator −

−h21+V with resonances,
but the situation is somehow simpler, since the analogues of βj (q) are independent of q in this context.

We are also restricted by the existence of Darboux coordinates ϕ on (6, B) such that ϕ∗B = dη∧ dy.
Indeed, the coordinates (y, η) on 6 are necessary to use the Weyl quantization. To study the influence
of the global geometry of B, one should consider another quantization method for the presymplectic
manifold (6, B). In the symplectic case, for instance in dimension d = 2, a Toeplitz quantization may be
useful. This quantization is linked to the complex structure induced by B on 6, and the operator L−h can
be linked with this structure in the following way:

L−h = 4−h2
(
∂̄ +

i
2−h

A
)∗(

∂̄ +
i

2−h
A
)

+
−h B = 4−h2∂̄∗

A∂̄A +
−h B,

with
A = A1 + i A2, B = ∂1 A2 − ∂2 A1, 2∂̄ = ∂1 + i∂2.

In [Tejero Prieto 2006], this is used to compute the spectrum of L−h on a bidimensional Riemann surface M
with constant curvature and constant magnetic field. See also [Charles 2020; Kordyukov 2022], where
semiexcited states for constant magnetic fields in higher dimensions are considered.

If the 2-form B is not exact, we usually consider a Bochner Laplacian on the p-th tensor product
of a complex line bundle L over M, with curvature B. This Bochner Laplacian 1p depends on p ∈ N,
and the limit p → +∞ is interpreted as the semiclassical limit. The Bochner Laplacian 1p is a good
generalization of the magnetic Laplacian because locally it can be written (1/−h2)(i−h∇ + A)2, where
the potential A is a local primitive of B, and −h = p−1. For details, we refer to [Kordyukov 2019;
2020; Marinescu and Savale 2018]. Kordyukov [2019] constructed quasimodes for 1p in the case of a
symplectic B and discrete wells. He proved expansions

λj (1p)∼

∑
ℓ≥0

αjℓ p−ℓ/2.

Our work also gives such expansions for 1p as explained in [Morin 2022a].
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In this paper, we only mention the study of the eigenvalues of L−h: what about the eigenfunctions?
WKB expansions for the j-th eigenfunction were constructed on R2 in [Bonthonneau and Raymond
2020] and on a 2-dimensional Riemannian manifold in [Bonthonneau et al. 2021a]. We do not know
how to construct magnetic WKB solutions in higher dimensions. This article suggests that the directions
corresponding to the kernel of B could play a specific role.

Another related question is the decreasing of the real eigenfunctions. Agmon estimates only give a
O(e−c/

√
−h) decay outside any neighborhood of q0, but the 2-dimensional WKB suggests a O(e−c/−h) decay.

Recently Bonthonneau, Raymond and Vũ Ngo. c [Bonthonneau et al. 2021b] proved this on R2 using the
FBI transform to work on the phase space T ∗R2. This kind of question is motivated by the study of the
tunneling effect: the exponentially small interaction between two magnetic wells for example.

Finally, we only have investigated the spectral theory of the stationary Schrödinger equation with a
pure magnetic field; it would be interesting to describe the long-time dynamics of the full Schrödinger
evolution, as was done in the Euclidean 2-dimensional case in [Boil and Vũ Ngo. c 2021].

1D. Structure of the paper. In Section 2 we prove Theorem 1.4, describing the symbol H of L−h on a
neighborhood of 6 = H−1(0). In Section 3 we construct the normal form, first in a space of formal series
(Section 3B) and then the quantized version N−h (Section 3C). In Section 4 we prove Theorem 1.7. For
this we describe the spectrum of N−h (Section 4A), then we prove microlocalization properties on the
eigenfunctions of L−h and N−h (Section 4B), and finally we compare the spectra of L−h and N−h (Section 4C).

In Section 5 we focus on Theorem 1.11 which describes the spectrum of the effective operator N [1]
−h . In

Section 5A we study its symbol, in Section 5B we construct a second formal Birkhoff normal form, and
in Section 5C the quantized version M−h . In Section 5D we compare the spectra of N [1]

−h and M−h .
Finally, Sections 6 and 7 are dedicated to the proofs of Corollaries 1.14 and 1.15 respectively.

2. Geometry of the classical Hamiltonian

2A. Notation. L−h is an −h-pseudodifferential operator on M with principal symbol H :

H(q, p)= |p − Aq |
2
g∗

q
, p ∈ T ∗

q M, q ∈ M.

Here, T ∗M denotes the cotangent bundle of M, and p ∈ T ∗
q M is a linear form on Tq M. The scalar

product gq on Tq M induces a scalar product g∗
q on T ∗

q M, and | · |g∗
q

denotes the associated norm. In this
section we prove Theorem 1.4, thus describing H on a neighborhood of its minimum:

6 = {(q, p) ∈ T ∗M : q ∈�, p = Aq}.

Recall that � is a small neighborhood of q0 ∈ M \ ∂M. We will construct canonical coordinates
(z, w, v) ∈ R2d on �, with

z = (x, ξ) ∈ R2s, w = (y, η) ∈ R2s, v = (t, τ ) ∈ R2k .

R2d is endowed with the canonical symplectic form

ω0 = dξ ∧ dx + dη∧ dy + dτ ∧ dt.
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We will identify 6 with

6′
= {(x, ξ, y, η, t, τ ) ∈ R2d

: x = ξ = 0, τ = 0} = R2s+k
(y,η,t) × {0}.

We will use several lemmas to prove Theorem 1.4. Before constructing the diffeomorphism 8−1
1 on

a neighborhood U1 of 6, we will first define it on 6. Thus we need to understand the structure of 6
induced by the symplectic structure on T ∗M (Section 2B). Then we will construct 81 and finally prove
Theorem 1.4 (Section 2C).

2B. Structure of 6. Recall that on T ∗M we have the Liouville 1-form α defined by

α(q,p)(V)= p((dπ)(q,p)V) for all (q, p) ∈ T ∗M, V ∈ T(q,p)(T ∗M),

where π : T ∗M → M is the canonical projection: π(q, p)= q , and dπ is its differential. T ∗M is endowed
with the symplectic form ω = dα. 6 is a d-dimensional submanifold of T ∗M which can be identified
with � using

j : q ∈� 7→ (q, Aq) ∈6

and its inverse, which is π .

Lemma 2.1. The restriction of ω to 6 is ω6 = π∗B.

Proof. Fix q ∈� and Q ∈ Tq M. Then

( j∗α)q(Q)= αj (q)((d j)Q)= Aq((dπ) ◦ (d j)Q)= Aq(Q),

because π ◦ j = Id. Thus j∗α = A and α6 = π∗ j∗α = π∗ A. Taking the exterior derivative we get

ω6 = dα6 = π∗(dA)= π∗B. □

Since B is a closed 2-form with constant rank equal to 2s, (6, π∗B) is a presymplectic manifold. It is
equivalent to (�, B), using j . We recall the Darboux lemma, which states that such a manifold is locally
equivalent to (R2s+k, dη∧ dy).

Lemma 2.2. Up to shrinking�, there exists an open subset6′ of R2s+k
(y,η,t) and a diffeomorphism ϕ :6′

→�

such that ϕ∗B = dη∧ dy.

One can always take any coordinate system on �. Up to working in these coordinates, it is enough to
consider the case M = Rd with

H(q, p)=

d∑
k,ℓ=1

gkℓ(q)(pk − Ak(q))(pℓ − Aℓ(q)), (q, p) ∈ T ∗Rd
≃ R2d ,

to prove Theorem 1.4. This is what we will do. In coordinates, ω is given by

ω = dp ∧ dq =

d∑
j=1

dpj ∧ dqj

and 6 is the submanifold
6 = {(q, A(q)) : q ∈�} ⊂ R2d ,

and j ◦ϕ :6′
→6.
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In order to extend j ◦ϕ to a neighborhood of 6′ in R2d in a symplectic way, it is convenient to split
the tangent space Tj (q)(R

2d) according to tangent and normal directions to 6. This is the purpose of the
following two lemmas.

Lemma 2.3. Fix j (q)= (q, A(q)) ∈6. Then the tangent space to 6 is

Tj (q)6 = {(Q, P) ∈ R2d
: P = ∇q A · Q}.

Moreover, the ω-orthogonal Tj (q)6
⊥ is

Tj (q)6
⊥

= {(Q, P) ∈ R2d
: P = (∇q A)T · Q}.

Finally,
Tj (q)6 ∩ Tj (q)6

⊥
= Ker(π∗B).

Proof. Since 6 is the graph of q 7→ A(q), its tangent space is the graph of the differential Q 7→ (∇q A) · Q.
In order to characterize T6⊥, note that the symplectic form ω = dp ∧ dq is defined by

ω(q,p)((Q1, P1), (Q2, P2))= ⟨P2, Q1⟩ − ⟨P1, Q2⟩, (2-1)

where ⟨ · , · ⟩ denotes the Euclidean scalar product on Rd. Thus,

(Q, P) ∈ Tj (q)6
⊥

⇐⇒ ωj (q)((Q0,∇q A · Q0), (Q, P))= 0 for all Q0 ∈ Rd

⇐⇒ ⟨P, Q0⟩ − ⟨(∇q A) · Q0, Q⟩ = 0 for all Q0 ∈ Rd

⇐⇒ ⟨P − (∇q A)T · Q, Q0⟩ = 0 for all Q0 ∈ Rd

⇐⇒ P = (∇q A)T · Q.

Finally, with Lemma 2.1 we know that the restriction ofω to T6 is given by π∗B. Hence, Tj (q)6∩Tj (q)6
⊥

is the set of (Q, P) ∈ Tj (q)6 such that

π∗B((Q, P), (Q0, P0))= 0 for all (Q0, P0) ∈ Tj (q)6.

It is the kernel of π∗B. □

Now we define specific basis of Tj (q)6 and its orthogonal. Since B(q) is skew-symmetric with respect
to g, there exist orthonormal vectors

u1(q), v1(q), . . . , us(q), vs(q), w1(q), . . . , wk(q) ∈ Rd

such that 
Buj = −βjvj , 1 ≤ j ≤ s,
Bvj = βj uj , 1 ≤ j ≤ s,
Bwj = 0, 1 ≤ j ≤ k.

(2-2)

These vectors are smooth functions of q because the nonzero eigenvalues ±iβj (q) are simple. They
define a basis of Rd. Define the following ω-orthogonal vectors to T6:{

fj (q) := (1/
√
βj (q))(uj (q), (∇q A)T · uj (q)), 1 ≤ j ≤ s,

f ′

j (q) := (1/
√
βj (q))(vj (q), (∇q A)T vj (q)), 1 ≤ j ≤ s.

(2-3)
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These vectors are linearly independent and

Tj (q)6
⊥

= K ⊕ F,

with

K = Ker(π∗B), F = span( f1, f ′

1, . . . , fs, f ′

s ).

Similarly, the tangent space Tj (q)6 admits a decomposition

Tj (q)6 = E ⊕ K

defined as follows. The map j ◦ϕ :6′
→6 from Lemma 2.2 satisfies ( j ◦ϕ)∗(π∗B)= dη∧dy. Thus its

differential d( j ◦ϕ) maps the kernel of dη∧ dy on the kernel of π∗B:

K = {d( j ◦ϕ)q(0, T ) : T ∈ Rk
}. (2-4)

A complementary space of K in T6 is given by

E := {d( j ◦ϕ)q(W, 0) : W ∈ R2s
}. (2-5)

From all these considerations we deduce:

Lemma 2.4. Fix j (q)= (q, A(q)) ∈6. Then we have the decomposition

Tj (q)(R
2d)= E ⊕ K︸ ︷︷ ︸

T6

T6⊥︷ ︸︸ ︷
⊕ F ⊕L ,

where L is any Lagrangian complement of K in (E ⊕ F)⊥.

Proof. We have T6+ T6⊥
= E ⊕ K ⊕ F, and the restriction of ω = dp ∧ dq to this space has kernel

K = T6∩T6⊥. Hence, the restriction ωE⊕F of ω to E ⊕F is nondegenerate and its orthogonal (E ⊕F)⊥

as well. Moreover (E ⊕ F)⊥ has dimension 2d − 4s = 2k, and we have

Tj (q)R
2d

= (E ⊕ F)⊕ (E ⊕ F)⊥.

K is a Lagrangian subspace of (E ⊕ F)⊥. Therefore it admits a complementary Lagrangian: a subspace L
of (E ⊕ F)⊥ with dimension k such that ωL = 0 and (E ⊕ F)⊥ = K ⊕ L . □

Remark 2.5. From now on, we fix any choice of Lagrangian complement L . With this choice, we define
a basis (ℓj ) of L as follows. First note that the decomposition (E ⊕ F)⊥ = K ⊕ L yields a bijection
between L and the dual K ∗, which is ℓ 7→ω(ℓ, · ). We emphasize that this bijection depends on the choice
of L . Using this bijection, we define ℓj to be the unique vector in L satisfying

ω(ℓj , d( j ◦ϕ)(0, T ))= Tj for all T ∈ Rk . (2-6)
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p ∈ Rd

q ∈ Rd

6

81

(z, τ ) ∈ R2s+k

6′
= {(w, t) ∈ R2s+k

}

Figure 1. Using the canonical coordinates (w, t, τ, z), we identify 6 with 6′.

2C. Construction of 81 and proof of Theorem 1.4. We identified the “curved” manifold 6 with an
open subset 6′ of R2s+k using j ◦ϕ. Moreover, we did this in such a way that ( j ◦ϕ)∗π∗B = dη∧ dy.
In this section we prove that we can identify a whole neighborhood of 6 in R2d

(q,p) with a neighborhood
of 6′ in R4s+2k

(z,w,v), via a symplectomorphism 81. See Figure 1.

Lemma 2.6. There exists a diffeomorphism

81 : U ′

1 ⊂ R2s+2k+2s
(w,t,τ,z) → U1 ⊂ R2d

(q,p)

between neighborhoods U1 of 6 and U ′

1 of 6′ such that 8∗

1ω = ω0 and 81(w, t, 0, 0) = j ◦ ϕ(w, t).
Moreover its differential at (w, t, τ = 0, z = 0) ∈6′ is

d81(W, T, T , Z)= d(w,t) j ◦ϕ(W, T )+
k∑

j=1

Tj ℓ̂j (w, t)+
s∑

j=1

X j f̂j (w, t)+4j f̂ ′

j (w, t).

Remark 2.7. In this lemma we used the notation Z = (X, 4) and ℓ̂j = ℓj ◦ϕ, f̂j = fj ◦ϕ, and f̂ ′

j = f ′

j ◦ϕ.

Proof. We will first construct 8 such that 8∗ω|6′ = ω0 |6′ only on 6′
=8−1(6). Then, we will use the

Theorem B.2 to slightly change 8 into 81 such that 8∗

1ω = ω0 on a neighborhood of 6′.
We define 8 by

8(w, t, τ, z)= j ◦ϕ(w, t)+
k∑

j=1

τj ℓ̂j (w, t)+
s∑

j=1

x j f̂j (w, t)+ ξj f̂ ′

j (w, t). (2-7)

Its differential at (w, t, 0, 0) has the desired form. Let us fix a point (w, t, 0, 0) ∈6′ and compute 8∗ω

at this point. By definition,
8∗ω(w,t,0,0)( · , · )= ωj (q)((d8) · , (d8) · ),

where q = ϕ(w, t). Computing this 2-form in the canonical basis of R4s+2k amounts to computing ω on
the vectors ℓj , fj , f ′

j and d( j ◦ϕ)(W, T ). By (2-3) and (2-1) we have

ω( fi , fj )=
1√
βiβj

(
⟨(∇q A)⊥ · uj , ui ⟩ − ⟨(∇q A)⊥ · ui , uj ⟩

)
=

1√
βiβj

⟨(∇q A)⊥ − (∇q A)) · uj , ui ⟩

=
1√
βiβj

B(uj , ui )=
1√
βiβj

g(uj , Bui )= 0,
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because Bui = −βivi is orthogonal to uj . Similarly we find

ω( fi , f ′

j )= δi j , ω( f ′

i , f ′

j )= 0.

Moreover, ℓi ∈ L ⊂ F⊥ so
ω(ℓi , fj )= ω(ℓi , f ′

j )= 0.

Since L is Lagrangian we also have ω(ℓi , ℓj ) = 0. The vector d( j ◦ ϕ)(W, T ) is tangent to 6 and
fj , f ′

j ∈ T6⊥ so
ω( fj , d( j ◦ϕ)(W, T ))= ω( f ′

j , d( j ◦ϕ)(W, T ))= 0.

Since ℓi ∈ L ⊂ E⊥ and using (2-6), we have

ω(ℓj , d( j ◦ϕ)(W, T ))= ω(ℓj , d( j ◦ϕ)(0, T ))= Tj .

Finally, ( j ◦ϕ)∗ω = ϕ∗B = dη∧ dy so that

ω(d( j ◦ϕ)(W, T ), d( j ◦ϕ)(W ′, T ′))= dη∧ dy((W, T ), (W ′, T ′)).

All these computations show that (8∗ω)(w,t,0,0) coincide with ω0 = dξ ∧ dx + dη∧ dy + dτ ∧ dt . Thus
8∗ω = ω0 on 6. With Theorem B.2, we can change 8 into 81(w, t, τ, z)=8(w, t, τ, z)+O((z, τ )2)
such that 8∗

1ω = ω0 on a neighborhood U ′

1 of 6′. In particular, the differential of 81 at (w, t, 0, 0)
coincides with the differential of 8. □

Finally, the following lemma concludes the proof of Theorem 1.4.

Lemma 2.8. The Hamiltonian Ĥ = H ◦81 has the Taylor expansion

Ĥ(w, t, τ, x, ξ)=
1
2⟨∂2

τ Ĥ(w, t, 0)τ, τ ⟩ +

s∑
j=1

β̂j (w, t)(ξ 2
j + x2

j )+O((τ, x, ξ)3).

Proof. Let us compute the differential and Hessian of

H(q, p)=

d∑
k,ℓ=1

gkℓ(q)(pk − Ak(q))(pℓ − Aℓ(q))

at a point (q, A(q)) ∈6. First,

∇(q,p)H ·(Q, P)=
d∑

k,ℓ=1

2gkℓ(q)(pk − Ak(q))(Pℓ−∇q Aℓ ·Q)+(pk − Ak(q))(pℓ− Aℓ(q))∇q g ·Q, (2-8)

and at p = A(q) the Hessian is

⟨∇
2
j (q)H · (Q, P), (Q′, P ′)⟩ = 2

d∑
k,ℓ=1

gkℓ(q)(Pk − ∇q Ak · Q)(P ′

ℓ − ∇q Aℓ · Q′). (2-9)

We can deduce a Taylor expansion of Ĥ(w, t, τ, z) with respect to (τ, z) (with fixed q = ϕ(w, t)). First,

Ĥ(w, t, 0, 0)= H(q, A(q))= 0.
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Then we can compute the partial differential using Lemma 2.6,

∂τ,z Ĥ(w, t, 0, 0) · (W, T )= ∇j (q)H · ∂τ,z81(w, t, 0, 0) · (W, T )= ∇j (q)H · d( j ◦ϕ)(W, T )= 0,

because d( j ◦ϕ)(W, T ) ∈ Tj (q)6. The Taylor expansion of Ĥ is thus

Ĥ(w, t, τ, z)=
1
2⟨∂2

τ,z Ĥ(w, t, 0) · (τ, z), (τ, z)⟩ +O((τ, z)3),

where ∂2
τ,z Ĥ is the partial Hessian with respect to (τ, z). We have

∂2
τ,z Ĥ = (∂(τ,z)81)

T
· ∇

2
j (q)H · (∂(τ,z)81),

and computing the Hessian matrix amounts to computing ∇
2
j (q)H on the vectors gj , fj , and f ′

j . If
(Q, P) ∈ Tj (q)6

⊥, then P = (∇q A)⊥ · Q so that, with (2-9),

1
2∇

2
j (q)H((Q, P), (Q′, P ′))=

d∑
k,ℓ,i, j=1

gkℓ(q)(∂k Aj Q j − ∂j Ak Q j )(∂ℓAi Q′

i − ∂i AℓQ′

i )

=

∑
k,ℓ,i, j

gkℓ(q)Bk j Q j Bℓi Q′

i .

But
∑

k gkℓBk j = Bℓj (by (1-1)) so

1
2∇

2
j (q)H((Q, P), (Q′, P ′))=

∑
i, j,ℓ

Bℓi (Bℓj Q j )Q′

i = B(B · Q, Q′).

In the special case (Q, P)= fj we have

1
2∇

2
j (q)H( fi , fj )=

1√
βiβj

B(Bui , uj )=
1√
βiβj

g(Bui , Buj )=
√
βiβj g(vi , vj )=

√
βiβjδi j ,

and similarly
1
2∇

2
j (q)H( f ′

i , f ′

j )=
√
βiβjδi j ,

1
2∇

2
j (q)H( fi , f ′

j )= 0.

Finally, it remains to prove

∇
2
j (q)H(ℓi , fj )= ∇

2
j (q)H(ℓi , f ′

j )= 0 (2-10)

to conclude that the Hessian of Ĥ is

1
2∂

2
τ,z Ĥ(w, t, 0, 0)=


1
2∂

2
τ Ĥ(w, t, 0, 0)

β1
β1 . . .

βs
βs

 .

Actually, (2-10) follows from the identity

L ⊂ F⊥
= (T6⊥)⊥H , (2-11)
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where ⊥ H denotes the orthogonal with respect to the quadratic form ∇
2 H (which is different from the

symplectic orthogonal ⊥). Indeed, to prove (2-11) note that

(Q, P) ∈ (T6⊥)⊥H
=⇒ ∇

2 H((Q, P), (Q′, (∇q A)T · Q′))= 0 for all Q′
∈ Rd

=⇒

∑
k,ℓ, j

gkℓ(Pk − ∇q Ak · Q)Bℓj Q′

j = 0 for all Q′
∈ Rd

=⇒

∑
k, j

(Pk − ∇q Ak · Q)Bk j Q′

j = 0 for all Q′
∈ Rd

=⇒ ⟨P − ∇q A · Q, BQ′
⟩ = 0 for all Q′

∈ Rd

=⇒ ⟨P, BQ′
⟩ − ⟨Q, (∇q A)T · BQ′

⟩ = 0 for all Q′
∈ Rd

=⇒ ω((Q, P), (BQ′, (∇q A)T · BQ′))= 0 for all Q′
∈ Rd ,

and we have
F = {(V : (∇q A)T V ), V ∈ span(u1, v1, . . . , us, vs)}

= {(BQ : (∇q A)T BQ), Q ∈ Rd
},

because the vectors uj , vj span the range of B. Hence we find

(Q, P) ∈ (T6⊥)⊥H
⇐⇒ (Q, P) ∈ F⊥. □

3. Construction of the normal form N−h

3A. Formal series. Define U = U ′

1 ∩6′
⊂ R2s+k

(w,t) × {0}. We construct the Birkhoff normal form in the
space

E1 = C∞(U )[[x, ξ, τ, −h]].

It is a space of formal series in (x, ξ, τ, −h) with coefficients smoothly depending on (w, t). We see these
formal series as Taylor series of symbols, which we quantize using the Weyl quantization. Given an
−h-pseudodifferential operator A−h = Opw−h a−h (with symbol a−h admitting an expansion in powers of −h in
some standard class), we denote by [a−h] or σ T (A−h) the Taylor series of a−h with respect to (x, ξ, τ ) at
(x, ξ, τ )= 0. Conversely, given a formal series ρ ∈E1, we can find a bounded symbol a−h such that [a−h]=ρ.
This symbol is not uniquely defined, but any two such symbols differ by O((x, ξ, −h)∞), uniformly with
respect to (w, t) ∈ U.

Remark 3.1. We prove below that the eigenfunctions of L−h are microlocalized, where (w, t) ∈ U and
|(x, ξ)| ≲ −h1/2, so that the remainders O((x, ξ, −h)∞) are negligible.

• In order to make operations on Taylor series compatible with the Weyl quantization, we endow E1 with
the Weyl–Moyal product ⋆, defined by Opw−h (a)Opw−h (b)= Opw−h (a ⋆ b). This product satisfies

a1 ⋆ a2 =

N∑
k=0

1
k!

( −h
2i
□

)k
a1(w, t, τ, z)a2(w

′, t ′, τ ′, z′)|w′=w,t ′=t,τ ′=τ,z′=z +O(−hN ),

where

□ =

s∑
j=1

(∂ηj ∂y′

j
− ∂yj ∂η′

j
)+

s∑
j=1

(∂ξj ∂x ′

j
− ∂x j ∂ξ ′

j
)+

k∑
j=1

(∂τj ∂t ′j − ∂tj ∂τ ′

j
).
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Note that to define such a product it is necessary to assume that our formal series depend smoothly
on (w, t).

• The degree of a monomial is

deg(xαξα
′

τα
′′
−hℓ)= |α| + |α′

| + |α′′
| + 2ℓ. (3-1)

We denote by DN the C∞(U )-module spanned by monomials of degree N, and

ON =

⊕
n≥N

DN , (3-2)

which satisfies

ON1 ⋆ON2 ⊂ ON1+N2 .

If ρ1, ρ2 ∈ E1, we denote their commutator by

[ρ1, ρ2] = adρ1 ρ2 = ρ1 ⋆ ρ2 − ρ2 ⋆ ρ1,

and we have the formula

[ρ1, ρ2] = 2 sinh
( −h

2i
□

)
ρ1ρ2. (3-3)

In particular,

for all ρ1 ∈ ON1, for all ρ2 ∈ ON2,
i
−h
[ρ1, ρ2] ∈ ON1+N2−2,

and (i/−h)[ρ1, ρ2] = {ρ1, ρ2} +O(−h2). The Birkhoff normal form algorithm is based on the following
lemma. We recall the definition (1-5) of r1.

Lemma 3.2. For 1 ≤ j ≤ s, define z j = x j + iξj and |z j |
2
= x2

j + ξ 2
j .

(1) Every series ρ ∈ E1 satisfies
i
−h

ad|z j |2 ρ = {|z j |
2, ρ}.

(2) Let 0 ≤ N < r1. For every RN ∈ DN , there exist ρN , KN ∈ DN such that

RN = KN +

s∑
j=1

β̂j (w, t) i
−h

ad|z j |2 ρN

and [KN , |z j |
2
] = 0 for 1 ≤ j ≤ s.

(3) If K ∈ E1, then [K , |z j |
2
] = 0 for all 1 ≤ j ≤ s if and only if there exists a formal series F ∈

C∞(U )[[I1, . . . , Is, τ,
−h]] such that

K = F(|z1|
2, . . . , |zs |

2, τ, −h).

Proof. The first statement is a simple computation. For the second and the third, it suffices to consider
monomials RN = c(w, t)zα z̄α

′

τα
′′
−hℓ. Note that

ad|z j |2(c(w, t)zα z̄α
′

τα
′′
−hℓ)= (α′

j −αj )c(w, t)zα z̄α
′

τα
′′
−hℓ,
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so that RN commutes with every |z j |
2 (1 ≤ j ≤ s) if and only if α = α′, which amounts to saying that RN

is a function of |z j |
2 and proves (3). Moreover,∑

j

β̂j ad|z j |2(z
α z̄α

′

τα
′′
−hℓ)= ⟨α′

−α, β̂⟩zα z̄α
′

τα
′′
−hℓ,

where ⟨γ, β̂⟩ =
∑s

j=1 γj β̂j (w, t). Under the assumption |α|+ |α′
|+ |α′′

|+2ℓ < r1, we have |α−α′
|< r1

and by the definition of r1 the function ⟨α′
−α, β̂(w, t)⟩ cannot vanish for (w, t) ∈ U, unless α = α′. If

α = α′, we choose ρN = 0 and RN = KN commutes with |z j |
2. If α ̸= α′, we choose KN = 0 and

ρN =
c(w, t)

⟨α′ −α, β̂(w, t)⟩
zα z̄α

′

τα
′′
−hℓ,

and this proves (2). □

3B. Formal Birkhoff normal form. In this section we construct the Birkhoff normal form at a formal
level. We will work with the Taylor series of the symbol H of L−h , in the new coordinates 81. According
to Theorem 1.4, Ĥ = H ◦81 defines a formal series

[Ĥ ] = H2 +

∑
k≥3

Hk,

where Hk ∈ Dk and

H2 = ⟨M(w, t)τ, τ ⟩ +

s∑
j=1

β̂j (w, t)|z j |
2. (3-4)

At a formal level, the normal form can be stated as follows.

Theorem 3.3. For every γ ∈ O3, there are κ , ρ ∈ O3 such that

e(i/
−h) adρ (H2 + γ )= H2 + κ +Or1,

where κ is a function of harmonic oscillators:

κ = F(|z1|
2, . . . , |zs |

2, τ, −h), with some F ∈ C∞(U )[[I1, . . . , Is, τ,
−h]].

Moreover, if γ has real-valued coefficients, then so do ρ, κ and the remainder Or1 .

Proof. We prove this by induction on an integer N ≥ 3. Assume that we found ρN−1, K3, . . . , KN−1 ∈O3,
with [Ki , |z j |

2
] = 0 for every (i, j) and Ki ∈ Di such that

e(i/
−h) adρN−1 (H2 + γ )= H2 + K3 + · · · + KN−1 +ON .

Rewriting the remainder as RN +ON+1, with RN ∈ DN , we have

e(i/
−h) adρN−1 (H2 + γ )= H2 + K3 + · · · + KN−1 + RN +ON+1.

We are looking for a ρ ′
∈ ON . For such a ρ ′ we apply e(i/

−h) adρ′ :

e(i/
−h) adρN−1+ρ′

(H2 + γ )= e(i/
−h) adρ′ (H2 + K3 + · · · + KN−1 + RN +ON+1).
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Since (i/−h) adρ′ : Ok → Ok+N−2 we have

e(i/
−h) adρN−1+ρ′

(H2 + γ )= H2 + K3 + · · · + KN−1 + RN +
i
−h

adρ′(H2)+ON+1. (3-5)

The new term (i/−h) adρ′(H2)= −(i/−h) adH2(ρ
′) can still be simplified. Indeed by (3-4),

i
−h

adH2(ρ
′)=

i
−h
[⟨M(w, t)τ, τ ⟩, ρ ′

] +

s∑
j=1

(
β̂j

i
−h
[|z j |

2, ρ ′
] + |z j |

2 i
−h
[β̂j , ρ

′
]

)
, (3-6)

with
i
−h
[β̂j , ρ

′
] =

s∑
i=1

(
∂β̂j

∂yi

∂ρ ′

∂ηi
−
∂β̂j

∂ηi

∂ρ ′

∂yi

)
+

k∑
i=1

∂β̂j

∂ti

∂ρ ′

∂τi
+ON−1 = ON−1,

because a derivation with respect to (y, η, t) does not decrease the degree. Similarly,

i
−h
[⟨M(w, t)τ, τ ⟩, ρ ′

] =

k∑
j=1

(
⟨∂tj M(w, t)τ, τ ⟩

∂ρ ′

∂τj
−
∂⟨M(w, t)τ, τ ⟩

∂τj

∂ρ ′

∂tj

)
+ON+1 = ON+1,

and thus (3-6) becomes
i
−h

adH2(ρ
′)=

s∑
j=1

(
β̂j

i
−h

ad|z j |2(ρ
′)
)

+ON+1.

Using this formula in (3-5) we get

e(i/
−h) adρN−1+ρ′

(H2 + γ )= H2 + K3 + · · · + KN−1 + RN −

s∑
j=1

β̂j
i
−h

ad|z j |2(ρ
′)+ON+1.

Thus, we are looking for KN , ρ
′
∈ DN such that

RN = KN +

s∑
j=1

β̂j
i
−h

ad|z j |2(ρ
′),

with [KN , |z j |
2
] = 0. By Lemma 3.2, we can solve this equation provided N < r1, and this concludes the

proof. Moreover, (i/−h) ad|z j |2 is a real endomorphism, so we can solve this equation on R. □

3C. Quantizing the normal form. We now construct the normal form N−h , quantizing Theorems 1.4
and 3.3. We denote by I ( j)

−h the harmonic oscillator with respect to x j , defined by

I ( j)
−h = Opw−h (ξ

2
j + x2

j )= −
−h2 ∂

2

∂x2
j

+ x2
j .

We prove the following theorem.

Theorem 3.4. There exist

(1) a microlocally unitary operator U−h : L2(Rd
x,y,t)→ L2(M) quantizing a symplectomorphism 8̃1 =

81 +O((x, ξ, τ )2), microlocally on U ′

1 × U1,

(2) a function f ⋆1 : R2s+2k
y,η,t,τ × Rs

I × [0, 1] which is C∞ with compact support such that

f ⋆1 (y, η, t, τ, I, −h)≤ C
(
(|I | + −h)2 + |τ |(|I | + −h)+ |τ |3

)
,

(3) an −h-pseudodifferential operator R−h , whose symbol is O((x, ξ, τ, −h1/2)r1) on U ′

1,
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such that

U∗
−hL−hU−h = N−h +R−h,

with

N−h = Opw−h ⟨M(w, t)τ, τ ⟩ +

s∑
j=1

I ( j)
−h Opw−h β̂j (w, t)+ Opw−h f ⋆1 (y, η, t, τ, I ( j)

−h , . . . , I (s)−h , −h).

Remark 3.5. U−h is a Fourier integral operator quantizing the symplectomorphism 8̃1; see [Martinez 2002;
Zworski 2012]. In particular, if A−h is a pseudodifferential operator on M with symbol a−h = a0 +O(−h2),
then U∗

−hA−hU−h is a pseudodifferential operator on Rd with symbol

σ−h = a0 ◦ 8̃1 +O(−h2) on U ′

1.

Remark 3.6. Due to the parameters (y, η, t, τ ) in the formal normal form, an additional quantization is
needed, hence the Opw−h f ⋆1 -term. It is a quantization with respect to (y, η, t, τ ) of an operator-valued
symbol f ⋆1 (y, η, t, τ, I (1)−h , . . . , I (s)−h ). Actually, this operator symbol is simple since one can diagonalize
it explicitly. Denoting by h j

n j (x j ) the n j -th eigenfunction of I ( j)
−h , associated to the eigenvalue (2n j − 1)−h,

we have for all n ∈ Ns

f ⋆1 (y, η, t, τ, I (1)−h , . . . , I (s)−h , −h)hn(x)= f ⋆1 (y, η, τ, (2n − 1)−h, −h)hn(x),

where hn(x)= h1
n1
(x1) · · · hs

ns
(xs). Thus the operator Opw−h f ⋆1 satisfies, for u ∈ L2(Rs+k

(y,t)),

(Opw−h f ⋆1 )u ⊗ hn =
(
Opw−h f ⋆1 (y, η, t, τ, (2n − 1)−h, −h)u

)
⊗ hn.

Proof. In order to prove Theorem 3.4, we first quantize Theorem 1.4. Using the Egorov theorem,
there exists a microlocally unitary operator V−h : L2(Rd)→ L2(M) quantizing the symplectomorphism
81 : U ′

1 → U1. Thus,
V ∗

−h L−h V−h = Opw−h (σ−h)

for some symbol σ−h such that
σ−h = Ĥ +O(−h2) on U ′

1.

Then we use the following lemma to quantize the formal normal form and conclude. □

Lemma 3.7. There exists a bounded pseudodifferential operator Q−h with compactly supported symbol
such that

e(i/
−h)Q−h Opw−h (σ−h)e−(i/−h)Q−h = N−h +R−h,

where N−h and R−h satisfy the properties stated in Theorem 3.4.

Remark 3.8. As explained below, the principal symbol Q of Q−h is O((x, ξ, τ )3). Thus, the symplectic
flow ϕt associated to the Hamiltonian Q is ϕt(x, ξ, τ )= (x, ξ, τ )+O((x, ξ, τ )2). Moreover, the Egorov
theorem implies that e−(i/−h)Q−h quantizes the symplectomorphism ϕ1. Hence, V−he−(i/−h)Q−h quantizes the
symplectomorphism 8̃1 =81 ◦ϕ1 =81 +O((x, ξ, τ )2).
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Proof. The proof of this lemma follows the exact same lines as in the case k = 0 [Morin 2022b,
Theorem 4.1]. Let us recall the main arguments. The symbol σ−h is equal to Ĥ +O(−h2) on U ′

1. Thus, its
associated formal series is [σ−h] = H2 + γ for some γ ∈ O3. Using the Birkhoff normal form algorithm
(Theorem 3.3), we get κ , ρ ∈ O3 such that

e(i/
−h) adρ (H2 + γ )= H2 + κ +Or1 .

If Q−h is a smooth compactly supported symbol with Taylor series [Q−h] = ρ, then by the Egorov theorem
the operator

ei−h−1 Opw−h Q−h Opw−h (σ−h)e
−i−h−1 Opw−h Q−h (3-7)

has a symbol with Taylor series H2 + κ + Or1 . Since κ commutes with the oscillator |z j |
2, it can be

written as

κ =

∑
2|α|+|α′|+2ℓ≥3

cαα′ℓ(w, t)|z1|
2α1 · · · |zs |

2αsτ
α′

1
1 · · · τ

α′

k
k

−hℓ.

We can reorder this formal series using the monomials (|z j |
2)⋆αj = |z j |

2 ⋆ · · · ⋆ |z j |
2:

κ =

∑
2|α|+|α′|+2ℓ≥3

c⋆αα′ℓ(w, t)(|z1|
2)⋆α1 · · · (|zs |

2)⋆αsτ
α′

1
1 · · · τ

α′

k
k

−hℓ.

If f ⋆1 is a smooth compactly supported function with Taylor series

[ f ⋆1 ] =

∑
2|α|+|α′|+2ℓ≥3

c⋆αα′ℓ(w, t)I α1
1 · · · I αs

s τ
α′

1
1 · · · τ

α′

k
k

−hℓ,

then the operator (3-7) is equal to

N−h = Opw−h H2 + Opw−h f ⋆1 (y, η, t, τ, I (1)−h , . . . , I (s)−h , −h)

modulo Or1 . □

4. Comparing the spectra of L−h and N−h

4A. Spectrum of N−h. In this section we describe the spectral properties of N−h . We can use the properties
of harmonic oscillators to diagonalize it in the following way. For 1 ≤ j ≤ s and n j ≥ 1, we recall that
the n j -th Hermite function h j

n j (x j ) is an eigenfunction of I ( j)
−h ,

I ( j)
−h h j

n j
=

−h(2n j − 1)h j
n j
,

and the functions (hn)n∈Ns defined by

hn(x)= h1
n1

⊗ · · · ⊗ hs
ns
(x)= h1

n1
(x1) · · · hs

ns
(xs)

form a Hilbertian basis of L2(Rs
x). Thus, we can use this basis to decompose the space L2(R2s+k

x,y,t ) on
which N−h acts:

L2(R2s+k)=

⊕
n∈Ns

(L2(Rs+k
y,t )⊗ hn).
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N−h preserves this decomposition and
N−h =

⊕
n∈Ns

N [n]
−h ,

where N [n]
−h is the pseudodifferential operator with symbol

N [n]
−h = ⟨M(w, t)τ, τ ⟩ +

s∑
j=1

β̂j (w, t)(2n j + 1)−h + f ⋆1 (w, t, τ, (2n − 1)−h, −h). (4-1)

In particular, the spectrum of N−h is given by

sp(N−h)=

⋃
n∈Ns

sp(N [n]
−h ).

Moreover, as in the k = 0 case, for any b1 > 0 there is an Nmax > 0 (independent of −h) such that

sp(N−h)∩ (−∞, b1
−h)=

⋃
|n|≤Nmax

sp(N [n]
−h )∩ (−∞, b1

−h).

The reason is that the symbol N [n]
−h is greater than b1

−h for n large enough. Finally, to prove our main
result, Theorem 1.7, it remains to compare the spectra of L−h and N−h .

4B. Microlocalization of the eigenfunctions. Here we prove microlocalization results for the eigenfunc-
tions of L−h and N−h . These results are needed to show that the remainders O((x, ξ, τ )r1) we got are small.
More precisely, for each operator we need to prove that the eigenfunctions are microlocalized

• inside � (space localization),

• where |(x, ξ, τ )| ≲ −hδ for δ ∈
(
0, 1

2

)
(i.e., close to 6).

Fix b̃1 such that
K b̃1

= {q ∈ M : b(q)≤ b̃1} ⋐�.

Lemma 4.1 (space localization for L−h). Let b1 ∈ (b0, b̃1) and χ0 ∈ C∞

0 (M) be a cutoff function such that
χ0 = 1 on K b̃1

. Then every normalized eigenfunction ψ−h of L−h associated with an eigenvalue λ−h ≤ b1
−h

satisfies
ψ−h = χ0ψ−h +O(−h∞),

where the O(−h∞) is independent of (λ−h, ψ−h).

Proof. This follows from the Agmon estimates,

∥ed(q,K b̃1
)−h−1/4

ψ−h∥ ≤ C∥ψ−h∥
2, (4-2)

as in the k = 0 case (in [Morin 2022b]). Indeed, from (4-2) we deduce

∥(1 −χ0)ψ∥ ≤ Ce−ε−h−1/4
∥ψ−h∥,

as soon as χ0 = 1 on an ε-neighborhood of K b̃1
. □
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Lemma 4.2 (microlocalization near 6 for L−h). Let δ ∈
(
0, 1

2

)
, b1 ∈ (b0, b̃1) and χ1 ∈ C∞(T ∗M) be a

cutoff function equal to 1 on a neighborhood of 6. Then every eigenfunction ψ−h of L−h associated with an
eigenvalue λ−h ≤ b1

−h satisfies
ψ−h = Opw−h χ1(

−h−δ(q, p))ψ−h +O(−h∞)ψ−h,

where the O(−h∞) is in the space of bounded operators L(L2,L2) and independent of (λ−h, ψ−h).

Proof. Let g−h ∈ C∞

0 (R) be such that

g−h(λ)=

{
1 if λ≤ b1

−h,
0 if λ≥ b̃1

−h.

Then the eigenfunction ψ−h satisfies
ψ−h = g−h(λ−h)ψ−h = g−h(L−h)ψ−h .

With the notation χ = 1 −χ1, we will prove that

∥Opw−h χ(
−h−δ(q, p))g−h(L−h)∥L(L2,L2) = O(−h∞), (4-3)

from which will follow ψ−h = Opw−h χ1(
−h−δ(q, p))ψ−h +O(−h∞)ψ−h , uniformly with respect to (λ−h, ψ−h).

To lighten the notation, we define χw := Opw−h χ(
−h−δ(q, p)). For every ψ ∈ L2(M) we define ϕ =

g−h(L−h)ψ . Then,
⟨L−hχ

wϕ, χwϕ⟩ = ⟨χwL−hϕ, χ
wϕ⟩ + ⟨[L−h, χ

w
]ϕ, χwϕ⟩. (4-4)

We will bound from above the right-hand side, and from below the left-hand side. First, since g−h(λ) is
supported where λ≤ b̃1

−h, we have
⟨χwL−hϕ, χ

wϕ⟩ ≤ b̃1
−h∥χwϕ∥

2. (4-5)

Moreover, the commutator [L−h, χ
w
] is a pseudodifferential operator of order −h, with symbol supported

on suppχ . Hence, if χ is a cutoff function having the same general properties of χ , such that χ = 1 on
suppχ , we have

⟨[L−h, χ
w
]ϕ, χwϕ⟩ ≤ C−h∥χwϕ∥∥χwϕ∥. (4-6)

Finally, the symbol of χw is equal to 0 on an −hδ-neighborhood of 6, and thus the symbol |p − A(q)|2

of L−h is ≥ c−h2δ on the support of χw. Hence the Gårding inequality yields

⟨L−hχ
wϕ, χwϕ⟩ ≥ c−h2δ

∥χwϕ∥
2. (4-7)

Using this last inequality in (4-4), and bounding the right-hand side with (4-5) and (4-6) we find

c−h2δ
∥χwϕ∥

2
≤ b̃1

−h∥χwϕ∥
2
+ C−h∥χwϕ∥∥χwϕ∥,

and we deduce that
∥χwϕ∥ ≤ C−h1−2δ

∥χwϕ∥.

Iterating with χ instead of χ , we finally get, for arbitrarily large N > 0,

∥χwϕ∥ ≤ CN
−hN

∥ϕ∥.

This is true for every ψ , with ϕ = g−h(L−h)ψ , and thus ∥χwg−h(L−h)∥ = O(−h∞). □
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Lemma 4.3 (microlocalization near 6 for N−h). Let δ ∈
(
0, 1

2

)
, b1 ∈ (b0, b̃1) and χ1 ∈ C∞

0 (R
2s+k
x,ξ,τ ) be a

cutoff function equal to 1 on a neighborhood of 0. Then every eigenfunction ψ−h of N−h associated with an
eigenvalue λ−h ≤ b1

−h satisfies

ψ−h = Opw−h χ1(
−h−δ(x, ξ, τ ))+O(−h∞)ψ−h,

where the O(−h∞) is in L(L2,L2) and independent of (λ−h, ψ−h).

Proof. Just as in the previous lemma, it is enough to show that

∥χwg−h(N−h)∥ = O(−h∞),

where χw = Opw−h (1 − χ1(
−h−δ(x, ξ, τ ))). We prove this using the same method. If ψ ∈ L2(Rd) and

ϕ = g−h(N−h)ψ ,

⟨N−hχ
wϕ, χwϕ⟩ = ⟨χwN−hϕ, χ

wϕ⟩ + ⟨[N−h, χ
w
]ϕ, χwϕ⟩. (4-8)

The right-hand side can be bounded from above as before. On the left-hand side we find ε > 0 such that

⟨N−hχ
wϕ, χwϕ⟩ ≥ (1 − ε)⟨H2χ

wϕ, χwϕ⟩, (4-9)

with H2 = Opw−h
(
⟨M(w, t)τ, τ ⟩ +

∑
β̂j (w, t)|z j |

2
)
. The symbol of χw vanishes on an −hδ-neighborhood

of x = ξ = τ = 0. Thus we can bound from below the symbol of H2 and use the Gårding inequality:

⟨H2χ
wϕ, χwϕ⟩ ≥ c−h2δ

∥χwϕ∥
2.

We conclude the proof as in Lemma 4.2. □

Lemma 4.4 (space localization for N−h). Let b1 ∈ (b0, b̃1) and χ0 ∈ C∞

0 (R
2s+k
y,η,t ) be a cutoff function equal

to 1 on a neighborhood of {b̂(y, η, t) ≤ b̃1}. Then every eigenfunction ψ−h of N−h associated with an
eigenvalue λ−h ≤ b1

−h satisfies

ψ−h = Opw−h χ0(w, t)ψ−h +O(−h∞)ψ−h,

where the O(−h∞) is in L(L2,L2) and independent of (λ−h, ψ−h).

Proof. Every eigenfunction of N−h is given by ψ−h(x, y, t)= u−h(y, t)hn(x) for some Hermite function hn

with |n| ≤ Nmax and some eigenfunction u−h of N [n]
−h . Thus, it is enough to prove the lemma for the

eigenfunctions of N [n]
−h . If u−h is such an eigenfunction, associated with an eigenvalue λ−h ≤ b1

−h, then

u−h = g−h(N [n]
−h )u−h .

We will prove that ∥χwg−h(N [n]
−h )∥ = O(−h∞), with χw = Opw−h (1 −χ0), which is enough to conclude. If

u ∈ L2(Rk+s
y,t ) and ϕ = g−h(N [n]

−h )u, then

⟨N [n]
−h χwϕ, χwϕ⟩ = ⟨χwN [n]

−h ϕ, χwϕ⟩ + ⟨[N [n]
−h , χw]ϕ, χwϕ⟩. (4-10)

We first have the bound

⟨χwN [n]
−h ϕ, χwϕ⟩ ≤ b̃1

−h∥χwϕ∥
2. (4-11)
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The commutator [N [n]
−h , χw] is a pseudodifferential operator of order −h with symbol supported on suppχ .

Moreover, its principal symbol is {N [n]
−h , χ}. From the definition of N [n]

−h we deduce

⟨[N [n]
−h , χw]ϕ, χwϕ⟩ ≤ C−h⟨χw|τ |wϕ, χwϕ⟩,

where χ has the same general properties as χ , and is equal to 1 on suppχ . By Lemma 4.3, we can find a
cutoff where |τ | ≲ −hδ and we get

⟨[N [n]
−h , χw]ϕ, χwϕ⟩ ≤ C−h1+δ

∥χwϕ∥∥χwϕ∥. (4-12)

Finally for ε > 0 small enough we have the lower bound

⟨N [n]
−h χwϕ, χwϕ⟩ ≥

−h(b̃1 + ε)∥χwϕ∥
2,

because N [n]
−h (w, t) ≥

−hb̂(w, t) and χ vanishes on a neighborhood of {b̂(w, t) ≤ b̃1}. Using this lower
bound in (4-10), and bounding the right-hand side with (4-11) and (4-12) we get

−h(b̃1 + ε)∥χwϕ∥
2
≤

−hb̃1∥χ
wϕ∥

2
+ C−h1+δ

∥χwϕ∥∥χwϕ∥. (4-13)

Thus
ε∥χwϕ∥ ≤ C−hδ∥χwϕ∥,

and we can iterate with χ instead of χ to conclude. □

4C. Proof of Theorem 1.7. To conclude the proof of Theorem 1.7, it remains to show that

λn(L−h)= λn(N−h)+O(−hr1/2−ε)

uniformly with respect to n ∈ [1, N max
−h ] with

N max
−h = max{n ∈ N : λn(L−h)≤ b1

−h}.

Here λn(A) denotes the n-th eigenvalue of the self-adjoint operator A, repeated with multiplicities.

Lemma 4.5. One has
λn(L−h)= λn(N−h)+O(−hr1/2−ε)

uniformly with respect to n ∈ [1, N max
−h ].

Proof. Let us focus on the “≤” inequality. For n ∈ [1, N max
−h ], denote by ψ

−h
n the normalized eigenfunction

of N−h associated with λn(N−h), and
ϕ

−h
n = U−hψ

−h
n ,

where U−h is given by Theorem 3.4. We will use ϕ
−h
n as quasimode for L−h . Let N ∈ [1, N max

−h ] and

V
−h
N = span{ϕ

−h
n : 1 ≤ n ≤ N }.

For ϕ ∈ V
−h
N we use the notation ψ = U−1

−h ϕ. By Theorem 3.4, we have

⟨L−hϕ, ϕ⟩ = ⟨N−hψ,ψ⟩ + ⟨R−hψ,ψ⟩ ≤ λN (N−h)∥ψ∥
2
+ ⟨R−hψ,ψ⟩. (4-14)
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According to Lemmas 4.3 and 4.4, ψ is microlocalized, where (w, t) ∈ {b̂(w, t) ≤ b̃1} ⊂ U and
|(x, ξ, τ )| ≤

−hδ. But the symbol of R−h is such that R−h = O((x, ξ, τ, −h1/2)r1) for (w, t) ∈ U, so

⟨R−hψ,ψ⟩ = O(−hδr1)= O(−hr1/2−ε) (4-15)

for suitable δ ∈
(
0, 1

2

)
. By (4-14) and (4-15) we have

⟨L−hϕ, ϕ⟩ ≤ (λN (N−h)+ C−hr1/2−ε)∥ϕ∥
2 for all ϕ ∈ V

−h
N .

Since V
−h
N is N -dimensional, the minimax principle implies that

λN (L−h)≤ λN (N−h)+ C−hr1/2−ε. (4-16)

The reversed inequality is proved in the same way: we take the eigenfunctions of L−h as quasimodes
for N−h , and we use the microlocalization lemma, Lemma 4.2. □

5. A second normal form in the case k > 0

In the previous sections, we compared the spectrum of L−h and the spectrum of the normal form N−h .
Moreover, if b1 > b0 is sufficiently close to b0 the spectrum of N−h in (−∞, b1

−h) is given by the spectrum
of N [1]

−h , an −h-pseudodifferential operator on Rs+k
(y,t) with symbol

N [1]
−h = ⟨M(y, η, t)τ, τ ⟩ +

−hb̂(y, η, t)+ f ⋆1 (y, η, t, τ, −h). (5-1)

In this section, we will construct a Birkhoff normal form again, to describe the spectrum of N [1]
−h by an

effective operator M−h on Rs
y . For that purpose, in Section 5A we will find new canonical variables (t̂, τ̂ )

in which N [1]
−h is the perturbation of a harmonic oscillator. In Sections 5B and 5C we will construct the

semiclassical Birkhoff normal form M−h . In Section 5D we will prove that the spectrum of N [1]
−h is given

by the spectrum of M−h .
Under Assumption 1 we know that t 7→ b̂(w, t) admits a nondegenerate minimum at s(w) for w in a

neighborhood of 0, and we denote by (ν2
1(w), . . . , ν

2
k (w)) the eigenvalues of the positive symmetric matrix

M(w, s(w))1/2 ·
1
2∂

2
t b̂(w, s(w)) · M(w, s(w))1/2.

The maps ν1, . . . , νk are smooth nonvanishing functions in a neighborhood of w = 0.

5A. Geometry of the symbol N [1]
−h . We prove the following lemma.

Lemma 5.1. There exists a canonical (symplectic) transformation 82 : U2 → V2 between neighborhoods
U2, V2 of 0 ∈ R2s+2k

(y,η,t,τ ) such that

N̂−h := N [1]
−h ◦82 =

−hb̂(w, s(w))+
k∑

j=1

νj (w)(τ
2
j +

−ht2
j )+O(|t |3|τ |2 +|t |3−h +

−h2
+

−h|τ |+ |τ |3 +|t ||τ |2).

Proof. We want to expand N [1]
−h near its minimum with respect to the variables v = (t, τ ). First, from the

Taylor expansion of f ⋆1 we deduce

N [1]
−h = ⟨M(w, t)τ, τ ⟩ +

−hb̂(w, t)+O(−h2
+ τ−h + τ 3).
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We will Taylor-expand t 7→ b̂(w, t) on a neighborhood of its minimum point s(w). For that purpose, we
define new variables (ỹ, η̃, t̃, τ̃ )= ϕ̃(y, η, t, τ ) by

ỹ = y −
∑k

j=1 τj∇ηsj (y, η),

η̃ = η+
∑k

j=1 τj∇ysj (y, η),

t̃ = t − s(y, η),

τ̃ = τ.

Then ϕ̃∗ω0 = ω0 +O(τ ). Using Theorem B.2, we can make ϕ̃ symplectic on a neighborhood of 0, up to
a change of order O(τ 2). In these new variables, the symbol Ñ−h := N [1]

−h ◦ ϕ̃−1 is

Ñ−h = ⟨M[w̃+O(τ̃ ), t̃ + s(w̃+O(τ̃ ))]τ̃ , τ̃ ⟩ +
−hb̂[ỹ +O(τ̃ ), η̃+O(τ̃ ), s(ỹ, η̃)+ t̃ +O(τ̃ )]

+O(−h2
+

−hτ̃ + τ̃ 3)
= ⟨M(w̃, t̃ + s(w̃))τ̃ , τ̃ ⟩ +

−hb̂[ỹ, η̃, s(ỹ, η̃)+ t̃] +O(−h2
+

−hτ̃ + τ̃ 3).

Then we remove the tildes and expand this symbol in powers of t , τ , −h. We find

Ñ−h = ⟨M(w, s(w))τ, τ ⟩ +
−hb̂(w, s(w))+

−h
2
⟨∂2

t b̂(w, s(w))t, t⟩ +O(|t |3−h +
−h2

+
−h|τ | + |τ |3 + |t ||τ |2).

Now, we want to diagonalize the positive quadratic forms M(w, s(w)) and 1
2∂

2
t b̂[w, s(w)]. The diagonal-

ization of quadratic forms in orthonormal coordinates implies that there exists a matrix P(w) such that

tP M−1 P = I and tP 1
2∂

2
t b̂ P = diag(ν2

1 , . . . , ν
2
k ).

We define the new coordinates (y̌, η̌, ť, τ̌ )= ϕ̌(y, η, t, τ ) by
ť = P(w)−1t,
τ̌ =

tP(w)τ,
y̌ = y +

t
[∇η(P−1t)] ·

tPτ,
η̌ = η−

t
[∇y(P−1t)] ·

tPτ,

so that ϕ̌∗ω0 −ω0 =O(|t |2 +|τ |). Again, we can make it symplectic up to a change of order O(|t |3 +|τ |2)

by Theorem B.2. In these new variables, the symbol becomes (after removing the “checks”)

Ň−h =
−hb̂(w, s(w))+

k∑
j=1

(τ 2
j +

−hνj (w)
2t2

j )+O
(
|t |3|τ |2 + |t |3−h +

−h2
+

−h|τ | + |τ |3 + |t ||τ |2
)
.

The last change of coordinates (ŷ, η̂, t̂, τ̂ )= ϕ̂(y, η, t, τ ), defined by
t̂j = νj (w)

1/2tj ,

τ̂j = νj (w)
−1/2τj ,

ŷj = yj +
∑k

i=1 ν
−1/2
i τi∂ηj ν

1/2
i ti ,

η̂ = η−
∑k

i=1 ν
−1/2
i τi∂yj ν

1/2
i ti ,

is such that ϕ̂∗ω0 = ω0 +O(τ ), so it can be corrected modulo O(|τ |2) to be symplectic, and we get the
new symbol

N̂−h =
−hb̂(w, s(w))+

k∑
j=1

νj (w)(τ
2
j +

−ht2
j )+O

(
|t |3|τ |2 + |t |3−h +

−h2
+

−h|τ | + |τ |3 + |t ||τ |2
)
,

which concludes the proof. □
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5B. Second formal normal form. The harmonic oscillators appearing in N̂−h are

J ( j)
−h = Opw−h (

−h−1τ 2
j + t2

j ), 1 ≤ j ≤ k.

If we define
h =

√
−h,

the symbol of J ( j)
−h for the h-quantization is τ̃ 2

j + t2
j . This is why we use the mixed quantization

Opw♯ (a)u(y0, t0)=
1

(2π−h)n−k(2π
√

−h)k

∫
e(i/

−h)⟨y0−y,η⟩e(i/
√

−h)⟨t0−t,τ̃ ⟩a(
√

−h, y, η, t, τ̃ ) dy dη dt dτ̃ . (5-2)

It is related to the −h-quantization by the relation

τ = hτ̃ , h =

√
−h.

In other words, if a is a symbol in some standard class S(m), and if we define

a(h, y, η, t, τ̃ )= a(h2, y, η, t, hτ̃ ),

then we have
Opw♯ (a)= Opw−h (a).

However, if we take a ∈ S(m), then Opw♯ (a) is not necessarily an −h-pseudodifferential operator, since the
associated a may not be bounded with respect to −h, and thus it does not belong to any standard class. For
instance, we have

∂τa =
1

√
−h
∂τ̃ a.

But still Opw♯ (a) is an h-pseudodifferential operator, with symbol

a(h, y, η̃, t, τ̃ )= a(h, y, hη̃, t, τ̃ ).

With this notation
Opw♯ (a)= Opwh (a).

Thus, in this sense, we can use the properties of −h-pseudodifferential and h-pseudodifferential operators
to deal with our mixed quantization.

Remark 5.2. Operators of the form (5-2) are just special cases of the usual h-pseudodifferential operators
for which the reader can refer to [Martinez 2002; Zworski 2012]. Moreover, our mixed quantization
could be interpreted as a

√
−h-quantization with operator-valued symbols for which we refer to [Keraval

2018; Martinez 2007]. Indeed we can write

Opw♯ (a)= Opwh (Opw−h a), (5-3)

where we first quantize with respect to (y, η) so that Opw−h a is an operator-valued symbol which depends
on (t, τ̃ ). In the following we could have used this formalism, thus dealing with operator-valued symbols
in (t, τ̃ ) instead of real-valued symbols and mixed quantization.
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In our case, we have
Opw♯ (Nh)= Opwh (N̂−h),

with

Nh = h2b̂(w, s(w))+ h2
k∑

j=1

νj (w)(τ̃
2
j + t2

j )+O(h2
|t |3 + h4

+ h3
|τ̃ | + h2

|t ||τ̃ |2).

Let us construct a semiclassical Birkhoff normal form with respect to this quantization. We will work
in the space of formal series

E2 := C∞(U )[[t, τ̃ , h]], (5-4)

where U =U2∩R2s
w ×{0}. This space is endowed with the star product ⋆ adapted to our mixed quantization.

In other words
Opw♯ (a ⋆ b)= Opw♯ (a)Opw♯ (b).

The change of variable τ = hτ̃ between the usual −h-quantization and our mixed quantization yields the
following formula for the star product:

a ⋆ b =

∑
k≥0

1
k!

( h
2i

)k
Ah(∂)

k(a(h, y1, η1, t1, τ̃1)b(h, y2, η2, t2, τ̃2))|(t1,τ1,y1,η1)=(t2,τ2,y2,η2), (5-5)

with

Ah(∂)=

k∑
j=1

∂

∂t1 j

∂

∂τ̃2 j
−

∂

∂t2 j

∂

∂τ̃1 j
+ h

s∑
j=1

∂

∂y1 j

∂

∂η2 j
−

∂

∂y2 j

∂

∂η1 j
.

The degree function on E2 is defined by

deg(tα1 τ̃α2hℓ)= |α1| + |α2| + 2ℓ.

We denote by DN the C∞(U )-module spanned by monomials of degree N, and

ON =

⊕
n≥N

Dn.

For τ1, τ2 ∈ E2, we define
adτ1(τ2)= [τ1, τ2] = τ1 ⋆ τ2 − τ2 ⋆ τ1,

and if τ1 ∈ ON1 and τ2 ∈ ON2 ,
i
h

adτ1(τ2) ∈ ON1+N2−2.

We define

N0 = b̂(w, s(w)) ∈ D0 and N2 =

k∑
j=1

νj (w)|ṽj |
2
∈ D2,

with the notation ṽj = tj + i τ̃j , so that
1
h2 Nh = N0 + N2 +O3.
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Now we construct the following normal form. Recall that r2 is an integer chosen such that,

for all α ∈ Zk, 0< |α|< r2,

s∑
j=1

αjνj (0) ̸= 0.

Moreover, this nonresonance relation at w = 0 can be extended to a small neighborhood of 0.

Lemma 5.3. For any γ ∈ O3, there exist κ, τ ∈ O3 and ρ ∈ Or2 such that

e(i/h) adτ (N0 + N2 + γ )= N0 + N2 + κ + ρ, (5-6)

and [κ, |ṽj |
2
] = 0 for 1 ≤ j ≤ k.

Proof. We prove this result by induction. Assume that we have, for some N > 0, a τ ∈ O3 such that

e(i/h) adτ (N0 + N2 + γ )= N0 + N2 + K3 + · · · + KN−1 + RN +ON+1,

with RN ∈ DN and Ki ∈ Di such that [Ki , |ṽj |
2
] = 0. We are looking for a τN ∈ DN . For such a τN ,

(i/h) adτN : Oj → ON+ j−2 so

e(i/h) adτ+τN (N0 + N2 + γ )= N0 + N2 + K3 + · · · + KN−1 + RN +
i
h

adτN (N0 + N2)+ON+1.

Moreover N0 does not depend on (t, τ ) so the expansion (5-5) yields

i
h

adτN (N0)= h
s∑

j=1

(
∂τN

∂yj

∂N0

∂ηj
−
∂τN

∂ηj

∂N0

∂yj

)
+ON+6 = ON+2,

and thus

e(i/h) adτ+τN (N0 + N2 + γ )= N0 + N2 + K3 + · · · + KN−1 + RN +
i
h

adτN (N2)+ON+1.

So we are looking for τN , KN ∈ DN solving the equation

RN = KN +
i
h

adN2 τN +ON+1. (5-7)

To solve this equation, we study the operator (i/h) adN2 : ON → ON ,

i
h

adN2(τN )=

k∑
j=1

(
νj (w)

i
h

ad|ṽj |2(τN )+
i
h

adνj (τN )|ṽj |
2
)
,

and since ν only depends on w, expansion (5-5) yields

i
h

adνi (τN )=

s∑
j=1

h
(
∂νi

∂yj

∂τN

∂ηj
−
∂νi

∂ηj

∂τN

∂yj

)
+ON+6 = ON+2.

Hence,

i
h

adN2(τN )=

k∑
j=1

νj (w)
i
h

ad|ṽj |2(τN )+ON+2,

and (5-7) becomes

RN = KN +

k∑
j=1

νj (w)
i
h

ad|ṽj |2(τN )+ON+1. (5-8)
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Moreover, (i/h) ad|ṽj |2 acts as
k∑

j=1

νj (w)
i
h

ad|ṽj |2(v
α1 v̄α2hℓ)= ⟨ν(w), α2 −α1⟩v

α1 v̄α2hℓ.

The definition of r2 ensures that ⟨ν(w), α2 − α1⟩ does not vanish on a neighborhood of w = 0 if
N = |α1| + |α2| + 2ℓ < r2 and α1 ̸= α2. Hence we can decompose every RN as in (5-8), where KN

contains the terms with α1 = α2. These terms are exactly the ones commuting with |ṽj |
2 for 1 ≤ j ≤ k. □

5C. Second quantized normal form. Now we can quantize Lemmas 5.1 and 5.3 to prove the following
theorem.

Theorem 5.4. There exist

(1) a unitary operator U2,−h :L2(Rs+k
(y,t))→L2(Rs+k

(y,t)) quantizing a symplectomorphism 8̃2 =82+O((t,τ )2)
microlocally near 0,

(2) a function f ⋆2 : R2s
w × Rk

J × [0, 1)→ R which is C∞ with compact support such that

| f ⋆2 (w, J1, . . . , Jk,
√

−h)| ≤ C(|J | +

√
−h)2,

(3) a
√

−h-pseudodifferential operator R2,−h with symbol O((t, τ̃ , −h1/4)r2) on a neighborhood of 0

such that
U∗

2,−hN
[1]

−h U2,−h =
−hM−h +

−hR2,−h,

where M−h is the −h-pseudodifferential operator

M−h = Opwh b̂(w, s(w))+
k∑

j=1

J ( j)
−h Opwh νj + Opwh f ⋆2 (w,J

(1)
−h , . . . ,J (k)

−h ,
√

−h).

Proof. Lemma 5.1 provides us with a symplectomorphism 82 such that

N [1]
−h ◦82 =

−hb̂(w, s(w))+
k∑

j=1

νj (w)(τ
2
j +

−ht2
j )+O(|t |3|τ |2 + |t |3−h +

−h2
+

−h|τ | + |τ |3 + |t ||τ |2).

We can apply the Egorov theorem to get a Fourier integral operator V2,−h such that

V ∗

2,−h Opwh (N
[1]
−h )V2,−h = Opwh (N̂−h),

with N̂−h = N [1]
−h ◦82 +O(−h2) on a neighborhood of w = 0. We define

Nh(y, η, t, τ̃ )= N̂−h(y, η, t, hτ̃ ),

and following the notation of Section 5B, we have the associated formal series

1
h2 Nh = N0 + N2 + γ, γ ∈ O3.

We apply Lemma 5.3 and we get formal series κ, ρ such that

e(i/h) adρ (N0 + N2 + γ )= N0 + N2 + κ +Or2 .
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We take a compactly supported symbol a(h, w, t, τ̃ ) with Taylor series ρ. Then the operator

eih−1 Opw♯ (a) Opw♯ (h
−2Nh)e−ih−1 Opw♯ (a) (5-9)

has a symbol with Taylor series N0 + N2 + κ +Or2 . Since κ ∈ O3 commutes with |ṽj |
2, it can be written

κ =

∑
2|α|+2ℓ≥3

c⋆αℓ(w)(|ṽ1|
2)⋆α1 · · · (|ṽk |

2)⋆αk hℓ.

If we take f ⋆2 (h, w, J1, . . . , Jk) a smooth compactly supported function with Taylor series

[ f ⋆2 ] =

∑
2|α|+2ℓ≥3

c⋆αℓ(w)J
α1
1 · · · Jαk

k hℓ,

then the operator (5-9) is equal to

Opw♯ N0 + Opw♯ N2 + Opwh f ⋆2 (h, w,J
(1)

−h , . . . ,J (k)
−h )

modulo Or2 . Multiplying by h2, and getting back to the −h-quantization, we get

eih−1 Opw♯ (a) Opw−h (N̂−h)e−ih−1 Opw♯ (a) = −hM−h +
−hR−h,

with

M−h = Opw−h b̂(w, s(w))+
k∑

j=1

Opw−h νj (w)J
( j)

−h + Opw−h f ⋆2 (
√

−h, w,J (1)
−h , . . . ,J (k)

−h ),

and R−h a
√

−h-pseudodifferential operator with symbol Or2 . Note that M−h is an −h-pseudodifferential
operator whose symbol admits an expansion in powers of

√
−h. □

5D. Proof of Theorem 1.11. In order to prove Theorem 1.11, we need the following microlocalization
lemma.

Lemma 5.5. Let δ ∈
(
0, 1

2

)
and c > 0. Let χ0 ∈ C∞

0 (R
2s
(y,η)) and χ1 ∈ C∞

0 (R
2k
(t,τ̃ )) both equal to 1

on a neighborhood of 0. Then every eigenfunction ψ−h of N−h or −hM−h associated to an eigenvalue
λ−h ≤

−h(b0 + c−hδ) satisfies

ψ−h = Opw√
−h
χ0(

√
−h

−δ
(t, τ̃ ))Opwh χ1(y, η)ψ−h +O(−h∞)ψ−h .

Proof. Using the mixed quantization and h =
√

−h, we have N [1]
−h = Opw♯ N[1]

h , with

N[1]

h (y, η, t, τ̃ )= h2
⟨M(y, η, t)τ̃ , τ̃ ⟩ + h2b̂(w, t)+ f ⋆1 (y, η, t, hτ̃ , h2).

The principal part of N[1]

h is of order h2, and implies a microlocalization of the eigenfunctions, where

h2
⟨M(w, t)τ̃ , τ̃ ⟩ + h2b̂(w, t)≤ λh ≤ h2(b0 + ch2δ).

Since b̂ admits a unique and nondegenerate minimum b0 at 0, this implies that w lies in an arbitrarily
small neighborhood of 0, and that

|t |2 ≤ Ch2δ, |τ̃ |2 ≤ Ch2δ.
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The technical details follow the same ideas of Lemmas 4.2, 4.3 and 4.4. Now we can focus on M−h , whose
principal symbol with respect to the Opw♯ -quantization is

M0(y, η, t, τ̃ )= b̂(y, η, s(y, η))+
k∑

j=1

νj (y, η)(τ̃ 2
j + t2

j ).

Hence its eigenfunctions are microlocalized where

b̂(y, η, s(y, η))+
k∑

j=1

νj (y, η)(τ̃ 2
j + t2

j )≤ b0 + ch2δ,

which implies again that w lies in an arbitrarily small neighborhood of 0 and that

|t |2 ≤ Ch2δ, |τ̃ |2 ≤ Ch2δ. □

Using the same method as before, we deduce from Theorem 5.4 and Lemma 5.5 a comparison of the
spectra of N [1]

−h and M−h . With the notation

N max
−h (c, δ)= max{n ∈ N : λn(N [1]

−h )≤
−h(b0 + c−hδ)},

the following lemma concludes the proof of Theorem 1.11.

Lemma 5.6. Let δ ∈
(
0, 1

2

)
and c > 0. We have

λn(N [1]
−h )=

−hλn(M−h)+O(−h1+δr2/2),

uniformly with respect to n ∈ [1, N max
−h (c, δ)].

Proof. We use the same method as before (see Lemma 4.5). The remainder R2,−h is O((t, τ̃ ,
√

h)r2) and
the eigenfunctions are microlocalized where |t | + |τ̃ | ≤ C−hδ/2. Hence the −hR2,−h term yields an error
in −h1+δr2/2. □

6. Proof of Corollary 1.14

In this section we prove that the spectrum of L−h below −hb0 +
−h3/2(ν(0)+ 2c) is given by the spectrum

of −hM[1]
−h , up to O(−hr/4−ε). We recall that c ∈ (0,minj νj (0)) and r = min(2r1, r2 + 4).

We can apply Theorem 1.7 for b1 > b0 arbitrarily close to b0. Thus the spectrum of L−h in (−∞, b1
−h)

is given by the spectrum of
⊕

n∈Ns N [n]
−h modulo O(−hr1/2−ε)= O(−hr/4−ε). Moreover, the symbol of N [n]

−h
for n ̸= (1, . . . , 1) satisfies

N [n]
−h (y, η, t, τ )≥

−h(b0 + 2 minβj − C−h),

and we deduce from the Gårding inequality that

⟨N [n]
−h ψ,ψ⟩ ≥

−hb1∥ψ∥
2 for all ψ ∈ L2(Rs+k),

if b1 is close enough to b0. Hence the spectrum of L−h below b1
−h is given by the spectrum of N [1]

−h . Then,
we apply Theorem 1.11 for δ close enough to 1

2 , and we see that the spectrum of N [1]
−h below (b0 +

−hδ)−h
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is given by the spectrum of
⊕

n∈Nk
−hM[n]

−h modulo O(−h1+r2/4−ε)= O(−hr/4−ε). The symbol of M[n]
−h for

n ̸= 1 satisfies

M[n]
−h (y, η)≥ b0 +

−h1/2
k∑

j=1

νj (y, η)(2n j − 1)− C−h,

and the eigenfunctions of M[n]
−h are microlocalized in an arbitrarily small neighborhood of (y, η) = 0

(Lemma 5.5), and M [n]
−h satisfies in this neighborhood

M [n]
−h (y, η)≥ b0 +

−h1/2
k∑

j=1

νj (0)(2n j − 1)− −h1/2ε− C−h

≥ b0 +
−h1/2(ν(0)+ 2 min

j
νj (0)− ε)− C−h.

Using the Gårding inequality, the spectrum of M[n]
−h (n ̸= 1) is thus ≥ b0 +

−h1/2(ν(0)+ 2c) for ε and −h
small enough. It follows that the spectrum of N [1]

−h below −hb0 +
−h3/2(ν(0)+ 2c) is given by the spectrum

of −hM[1]
−h .

7. Proof of Corollary 1.15

We explain here where the asymptotics for λj (L−h) come from. First we use Corollary 1.14 so that the
spectrum of L−h below −hb0 +

−h3/2(ν(0)+ 2c) is given by M[1]
−h , modulo O(−hr/4−ε). The symbol of M[1]

−h
has the expansion

M [1]
−h (w)= b̂(w, s(w))+ −h1/2ν(0)+ −h1/2

∇ν(0) ·w+
−hc̃0 +O(−hw+

−h3/2
+

−h1/2w2),

with ν(w) =
∑k

j=1 νj (w). The principal part admits a unique minimum at 0, which is nondegenerate.
The asymptotics of the first eigenvalues of such an operator are well known. First one can make a linear
change of canonical coordinates diagonalizing the Hessian of b̂ and get a symbol of the form

M̂ [1]
−h (w)= b0 +

s∑
j=1

µj (η
2
j + y2

j )+
−h1/2ν(0)+ −h1/2

∇ν(0) ·w+
−hc̃0 +O(w3

+
−hw+

−h3/2
+

−h1/2w2).

One can factor the ∇ν(0) ·w term to get

M̂ [1]
−h (w)= b0 +

s∑
j=1

µj

((
ηj +

∂ηj ν(0)
2µj

−h1/2
)2

+

(
yj +

∂yj ν(0)
2µj

−h1/2
)2)

+
−h1/2ν(0)+ −hc0

+O(w3
+

−hw+
−h3/2

+
−h1/2w2),

with a new c0 ∈ R. Conjugating Opw−h M̂ [1]
−h by the unitary operator U−h ,

U−hv(x)= exp
(

i
√

−h

s∑
j=1

∂ηj ν(0)
2µj

yj

)
v

(
x −

s∑
j=1

∂yj ν(0)
2µj

−h1/2
)
,

amounts to making a phase-space translation and changes the symbol into

M̃ [1]
−h (w)= b0 +

s∑
j=1

µj (η
2
j + y2

j )+
−h1/2ν(0)+ −hc0 +O(w3

+
−hw+

−h3/2
+

−h1/2w2).
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For an operator with such symbol (i.e., harmonic oscillator + remainders) one can apply the results of
[Charles and Vũ Ngo.c 2008, Theorem 4.7] or [Helffer and Sjöstrand 1984] and deduce that the j-th
eigenvalue λj (M[1]

−h ) admits an asymptotic expansion in powers of −h1/2 such that

λj (M[1]
−h )= b0 +

−h1/2ν(0)+ −h(c0 + E j )+
−h3/2

∞∑
m=0

αj,m
−hm/2,

where −hE j is the j-th repeated eigenvalue of the harmonic oscillator with symbol
∑s

j=1 µj (η
2
j + y2

j ).

Appendix A: Local coordinates

If we choose local coordinates q = (q1, . . . , qd) on M, we get the corresponding vector field basis
(∂q1, . . . , ∂qd ) on Tq M, and the dual basis (dq1, . . . , dqd) on Tq M∗. In these bases, gq can be identified
with a symmetric matrix (gi j (q)) with determinant |g|, and g∗

q is associated with the inverse matrix
(gi j (q)). We can write the 1-form A and the 2-form B in the coordinates:

A ≡ A1dq1 + · · · + Ad dqd , B =

∑
i< j

Bi j dqi ∧ dqj ,

with A = (Aj )1≤ j≤d ∈ C∞(Rd ,Rd) and

Bi j = ∂i Aj − ∂j Ai = ( t dA − dA)i j . (A-1)

Let us denote by (Bi j (q))1≤i, j≤d the matrix of the operator B(q) : Tq M → Tq M in the basis (∂q1, . . . , ∂qd ).
With this notation, (1-1) relating B to B can be rewritten,

for all Q, Q̃ ∈ Rd ,
∑
i jk

gk j Bki Qi Q̃ j =

∑
i j

Bi j Qi Q̃ j ,

which means that,
for all i, j, Bi j =

∑
k

gk j Bki . (A-2)

Finally, in the coordinates, H is given by

H(q, p)=

∑
i, j

gi j (q)(pi − Ai (q))(pj − Aj (q)), (A-3)

and L−h acts as the differential operator:

Lcoord
−h =

d∑
k,l=1

|g|
−1/2(i−h∂k + Ak)gkl

|g|
1/2(i−h∂l + Al). (A-4)

Appendix B: Darboux-Weinstein lemmas

We used the following presymplectic Darboux lemma.

Theorem B.1. Let M be a d-dimensional manifold endowed with a closed constant-rank-2 form ω.
We denote by 2s the rank of ω and by k the dimension of its kernel. For every q0 ∈ M, there exist a
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neighborhood V of q0, a neighborhood U of 0 ∈ R2s+k
(y,η,t), and a diffeomorphism

ϕ : U → V

such that
ϕ∗ω = dη∧ dy.

We also used the following Weinstein result; see [Weinstein 1971]. We follow the proof given in
[Raymond and Vũ Ngo. c 2015].

Theorem B.2. Let ω0 and ω1 be two 2-forms on Rd which are closed and nondegenerate. Let us split Rd

into Rk
x × Rd−k

y . We assume that ω0 = ω1 +O(|x |
α) for some α ≥ 1. Then there exists a neighborhood of

0 ∈ Rd and a change of coordinates ψ on this neighborhood such that

ψ∗ω1 = ω0 and ψ = Id +O(|x |
α+1).

Proof. First we recall how to find a 1-form σ on a neighborhood of x = 0 such that

τ := ω1 −ω0 = dσ and σ = O(|x |
α+1).

We define the family (φt)0≤t≤1 by
φt(x, y)= (t x, y).

We have
φ∗

0τ = 0 and φ∗

1τ = τ. (B-1)

Let us denote by X t the vector field associated with φt ,

X t =
dφt

dt
◦φ−1

t = t−1(x, 0).

The Lie derivative of τ along X t is given by φ∗
t LX t τ = (d/dt)φ∗

t τ . From the Cartan formula we have

LX t τ = ι(X t)dτ + d(ι(X t)).

Since τ is closed, dτ = 0, and
d
dt
φ∗

t τ = d(φ∗

t ι(X t)τ ). (B-2)

We choose the following 1-form (where (ej ) denotes the canonical basis of Rd ):

σt := φ∗

t ι(X t)τ =

k∑
j=1

x jτφt (x,y)(ej ,∇φt(.))= O(|x |
α+1).

Equation (B-2) shows that t 7→ φ∗
t τ is smooth on [0, 1]. Thus, we can define σ =

∫ 1
0 σt dt . From (B-2)

and (B-1) we deduce
d
dt
φ∗

t τ = dσt and τ = dσ.

Then we use the Moser deformation argument. For t ∈ [0, 1], we let ωt =ω0 + t (ω1 −ω0). The 2-form ωt

is closed and nondegenerate on a small neighborhood of x = 0. We look for ψt such that

ψ∗

t ωt = ω0.
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For that purpose, let us determine the associated vector field Yt ,
d
dt
ψt = Yt(ψt).

The Cartan formula yields

0 =
d
dt
ψ∗

t ωt = ψ∗

t

( d
dt
ωt + ι(Yt)dωt + d(ι(Yt)ωt)

)
.

So
ω0 −ω1 = d(ι(Yt)ωt),

and we are led to solve
ι(Yt)ωt = −σ.

By the nondegeneracy of ωt , this determines Yt . We know ψt exists until time t = 1 on a small enough
neighborhood of x = 0, and ψ∗

t ωt =ω0. Thus ψ =ψ1 is the desired diffeomorphism. Since σ =O(|x |
α+1),

we get ψ = Id +O(|x |
α+1). □

Appendix C: Pseudodifferential operators

We refer to [Zworski 2012; Martinez 2002] for the general theory of −h-pseudodifferential operators. If
m ∈ Z, we denote by

Sm(R2d)= {a ∈ C∞(R2d) : |∂αx ∂
β
ξ a| ≤ Cαβ⟨ξ⟩m−|β| for all α, β ∈ Nd

}

the class of Kohn–Nirenberg symbols. If a depends on the semiclassical parameter −h, we require that the
coefficients Cαβ are uniform with respect to −h ∈ (0, −h0]. For a−h ∈ Sm(R2d), we define its associated Weyl
quantization Opw−h (a−h) by the oscillatory integral

A−hu(x)= Opw−h (a−h)u(x)=
1

(2π−h)d

∫
R2d

e(i/
−h)⟨x−y,ξ⟩a−h

(
x + y

2
, ξ

)
u(y) dy dξ,

and we define
a−h = σ−h(A−h).

If M is a compact manifold, a pseudodifferential operator A−h on L2(M) is an operator acting as a
pseudodifferential operator in coordinates. Then the principal symbol of A−h (and its Kohn–Nirenberg
class) does not depend on the coordinates, and we denote it by σ0(A−h). The subprincipal symbol σ1(A−h)

is also well-defined, up to imposing that the charts be volume-preserving (in other words, if we see A−h

as acting on half-densities, its subprincipal symbol is well-defined). In the case where M is a compact
manifold, L−h is a pseudodifferential operator, and its principal and subprincipal symbols are

σ0(L−h)= H, σ1(L−h)= 0.

If M = Rd and m is an order function on R2d, we denote by

S(m)= {a ∈ C∞(R2d) : |∂αx ∂
β
ξ a| ≤ Cαβm(x, ξ) for all α, β ∈ Nd

}

the class of standard symbols, and we similarly define the operator Opw−h (a) for such symbols. In this
case, we assume that B belongs to some standard class. This is equivalent to assuming that H belongs to
some (other) standard class. Then, L−h is a pseudodifferential operator with total symbol H.
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Appendix D: Egorov theorem

In this paper, we used several versions of the Egorov theorem. See for example [Robert 1987; Zworski
2012; Helffer et al. 2016].

Theorem D.1. Let P and Q be −h-pseudodifferential operators on Rd, with symbols p ∈ S(m), q ∈ S(m′),
where m and m′ are order functions such that

m′
= O(1), mm′

= O′(1).

Then the operator e(i/
−h)Q Pe−(i/−h)Q is a pseudodifferential operator whose symbol is in S(m), and its

symbol is
p ◦ κ +

−hS(1),

where the canonical transformation κ is the time-1 Hamiltonian flow associated with q.

We can use this result with the
√

−h-quantization to get an Egorov theorem for our mixed quantization Opw♯ .

Theorem D.2. Let P be an h-pseudodifferential operator on Rd, and a ∈ C∞

0 (R
2d). Then

e(i/
−h)Opw♯ (a)Pe−(i/−h)Opw♯ (a)

is an h-pseudodifferential operator on Rd.

Proof. Opw♯ (a) is an h-pseudodifferential operator. Thus, we can apply the Egorov theorem, and we
deduce that e(i/

−h)Opw♯ (a)Pe−(i/−h)Opw♯ (a) is an h-pseudodifferential operator on Rd. □
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zbigniew.blocki@uj.edu.pl

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

David Gérard-Varet Université de Paris, France
david.gerard-varet@imj-prg.fr

Colin Guillarmou Université Paris-Saclay, France
colin.guillarmou@universite-paris-saclay.fr

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Peter Hintz ETH Zurich, Switzerland
peter.hintz@math.ethz.ch

Vadim Kaloshin Institute of Science and Technology, Austria
vadim.kaloshin@gmail.com

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Anna L. Mazzucato Penn State University, USA
alm24@psu.edu

Richard B. Melrose Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
merle@ihes.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Jim Wright University of Edinburgh, UK
j.r.wright@ed.ac.uk

Maciej Zworski University of California, Berkeley, USA
zworski@math.berkeley.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2024 is US $440/year for the electronic version, and $690/year (+$65, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Univer-
sity of California, Berkeley, CA 94720-3840, is published continuously online.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers

http://msp.org/apde
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:berti@sissa.it
mailto:zbigniew.blocki@uj.edu.pl
mailto:cf@math.princeton.edu
mailto:david.gerard-varet@imj-prg.fr
mailto:colin.guillarmou@universite-paris-saclay.fr
mailto:ursula@math.uni-bonn.de
mailto:peter.hintz@math.ethz.ch
mailto:vadim.kaloshin@gmail.com
mailto:ilaba@math.ubc.ca
mailto:alm24@psu.edu
mailto:rbm@math.mit.edu
mailto:merle@ihes.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:irod@math.princeton.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:j.r.wright@ed.ac.uk
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 17 No. 5 2024

1501Strong cosmic censorship in the presence of matter: the decisive effect of horizon oscillations
on the black hole interior geometry

CHRISTOPH KEHLE and MAXIME VAN DE MOORTEL

1593A semiclassical Birkhoff normal form for constant-rank magnetic fields
LÉO MORIN

1633Blow-up of solutions of critical elliptic equations in three dimensions
RUPERT L. FRANK, TOBIAS KÖNIG and HYNEK KOVAŘÍK
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