ANALYSIS & PDE Volume 17 No. 5 2024

LÉO MORIN

A SEMICLASSICAL BIRKHOFF NORMAL FORM FOR CONSTANT-RANK MAGNETIC FIELDS

A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION

A SEMICLASSICAL BIRKHOFF NORMAL FORM FOR CONSTANT-RANK MAGNETIC FIELDS

LÉO MORIN

This paper deals with classical and semiclassical nonvanishing magnetic fields on a Riemannian manifold of arbitrary dimension. We assume that the magnetic field $B = dA$ has constant rank and admits a discrete well. On the classical part, we exhibit a harmonic oscillator for the Hamiltonian $H = |p - A(q)|^2$ near the zero-energy surface: the cyclotron motion. On the semiclassical part, we describe the semiexcited spectrum of the magnetic Laplacian $\mathcal{L}_h = (i\hbar d + A)^*(i\hbar d + A)$. We construct a semiclassical Birkhoff normal form for \mathcal{L}_\hbar and deduce new asymptotic expansions of the smallest eigenvalues in powers of $\hbar^{1/2}$ in the limit $\hbar \rightarrow 0$. In particular we see the influence of the kernel of *B* on the spectrum: it raises the energies at order $\hbar^{3/2}$.

1. Introduction

1A. *Context*. We consider the semiclassical magnetic Laplacian with Dirichlet boundary conditions

$$
\mathcal{L}_{\hbar} = (i\hbar d + A)^{*}(i\hbar d + A)
$$

on a *d*-dimensional oriented Riemannian manifold (*M*, *g*), which is either compact with boundary, or the Euclidean \mathbb{R}^d . *A* denotes a smooth 1-form on *M*, the magnetic potential. The magnetic field is the 2-form $B = dA$.

The spectral theory of the magnetic Laplacian has given rise to many investigations, and appeared to have very various behaviors according to the variations of *B* and the geometry of *M*. We refer to the books and review [\[Helffer and Kordyukov 2014;](#page-39-0) [Fournais and Helffer 2010;](#page-39-1) [Raymond 2017\]](#page-40-0) for a description of these works. Here we focus on the Dirichlet realization of L[−] *^h*, and we give a description of semiexcited states, eigenvalues of order $\mathcal{O}(\hbar)$ in the semiclassical limit $\hbar \to 0$. As explained in the above references, the *magnetic intensity* has a great influence on these eigenvalues, and one can define it in the following way.

Using the isomorphism $T_a M \simeq T_a M^*$ given by the metric, one can define the following skew-symmetric operator $\mathbf{B}(q): T_qM \to T_qM$ by

$$
B_q(X, Y) = g_q(X, B(q)Y) \quad \text{for all } X, Y \in T_qM, \text{ for all } q \in M. \tag{1-1}
$$

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the [Creative Commons Attribution License 4.0 \(CC BY\).](https://creativecommons.org/licenses/by/4.0/) Open Access made possible by subscribing institutions via [Subscribe to Open.](https://msp.org/s2o/)

MSC2020: primary 35P15, 81Q20; secondary 35S05, 37J40, 70H05.

Keywords: magnetic Laplacian, normal form, spectral theory, semiclassical limit, pseudodifferential operators, microlocal analysis, symplectic geometry.

1594 LÉO MORIN

Since the operator $\mathbf{B}(q)$ is skew-symmetric with respect to the scalar product g_q , its eigenvalues are purely imaginary and symmetric with respect to the real axis. We denote these repeated eigenvalues by

$$
\pm i\beta_1(q), \ldots, \pm i\beta_s(q), 0,
$$

with $\beta_i(q) > 0$. In particular, the rank of $\mathbf{B}(q)$ is 2*s* and may depend on *q*. However, we will focus on the constant-rank case. We denote by *k* the dimension of the kernel of $\mathbf{B}(q)$, so that $d = 2s + k$. The magnetic intensity (or "trace+") is the scalar-valued function

$$
b(q) = \sum_{j=1}^{s} \beta_j(q).
$$

The function b is continuous on M , but nonsmooth in general. We are interested in discrete magnetic wells and nonvanishing magnetic fields.

Assumption 1. We assume that:

- The magnetic intensity is nonvanishing and admits a unique global minimum $b_0 > 0$ at $q_0 \in M \setminus \partial M$.
- The rank of $\mathbf{B}(q)$ is constant equal to $2s > 0$ on a neighborhood Ω of q_0 .
- $\beta_i(q_0) \neq \beta_i(q_0)$ for every $1 \leq i < j \leq s$, and the minimum of *b* is nondegenerate.
- In the noncompact case $M = \mathbb{R}^d$,

$$
b_{\infty} := \liminf_{|q| \to +\infty} b(q) > b_0
$$

and there exists a $C > 0$ such that

$$
|\partial_{\ell} \mathbf{B}_{ij}(q)| \le C(1+|\mathbf{B}(q)|) \quad \text{for all } \ell, i, j, \text{ for all } q \in \mathbb{R}^d.
$$

Remark 1.1. Since the nonzero eigenvalues of \bf{B} are simple at q_0 , the function b is smooth on a neighborhood of *q*0. In particular, it is meaningful to say that the minimum of *b* is nondegenerate.

Under [Assumption 1,](#page-2-0) the following useful inequality was proven in [\[Helffer and Mohamed 1996\]](#page-39-2). There is a $C_0 > 0$ such that, for \hbar small enough,

$$
(1+\hbar^{1/4}C_0)\langle \mathcal{L}_{\hbar}u, u \rangle \ge \int_M \hbar (b(q)-\hbar^{1/4}C_0)|u(q)|^2 dq \quad \text{for all } u \in \text{Dom}(\mathcal{L}_{\hbar}).\tag{1-2}
$$

Remark 1.2. Actually, one has the better inequality obtained replacing $\hbar^{1/4}$ by \hbar . This was proved in [\[Guillemin and Uribe 1988\]](#page-39-3) in the case of a nondegenerate *B*, in [\[Borthwick and Uribe 1996\]](#page-38-0) in the constant rank case, and in [\[Ma and Marinescu 2002\]](#page-40-1) in a more general setting.

Remark 1.3. Using this inequality, one can prove Agmon-like estimates for the eigenfunctions of \mathcal{L}_h . Namely, the eigenfunctions associated to an eigenvalue $\langle b_1 \hbar \rangle$ are exponentially small outside $K_{b_1} =$ ${q : b(q) \leq b_1}$. We will use this result to localize our analysis to the neighborhood Ω of q_0 . In particular, the greater b_1 is, the larger Ω must be.

Under [Assumption 1,](#page-2-0) estimates on the ground states of \mathcal{L}_h in the semiclassical limit $h \to 0$ were proven in several works, especially in dimensions $d = 2, 3$.

On $M = \mathbb{R}^2$, asymptotics for the *j*-th eigenvalue of \mathcal{L}_h

$$
\lambda_j(\mathcal{L}_{\hbar}) = b_0 \hbar + (\alpha (2j - 1) + c_1) \hbar^2 + o(\hbar^2)
$$
 (1-3)

with explicit α , $c_1 \in \mathbb{R}$ were proven in [\[Helffer and Morame 2001\]](#page-39-4) (for $j = 1$) and [\[Helffer and Kordyukov](#page-39-5) [2011\]](#page-39-5) $(j \ge 1)$. Actually, this second paper contains a description of some higher eigenvalues. They proved that, for any integers *n*, $j \in \mathbb{N}$, there exist $\hbar_{jn} > 0$ and for $\hbar \in (0, \hbar_{jn})$ an eigenvalue $\lambda_{n,j}(\hbar) \in sp(\mathcal{L}_{\hbar})$ such that

$$
\lambda_{n,j}(\hbar) = (2n - 1)(b_0 \hbar + ((2j - 1)\alpha + c_n)\hbar^2) + o(\hbar^2)
$$

for another explicit constant *cn*. In particular, it gives a description of *some* semiexcited states (of order (2*n* − 1)*b*₀*h*). Finally, [Raymond and Vũ Ngọc 2015] (and [\[Helffer and Kordyukov 2015\]](#page-39-6)) gives a description of the whole spectrum below $b_1 \hbar$, for any fixed $b_1 \in (b_0, b_\infty)$. More precisely, they proved that this part of the spectrum is given by a family of effective operators $\mathcal{N}_\hbar^{[n]}$ ($n \in \mathbb{N}$) modulo $\mathcal{O}(\hbar^{\infty})$. These effective operators are *ħ*-pseudodifferential operators with principal symbol given by the function $h(2n-1)b$. More interestingly, they explained why the two quantum oscillators

$$
(2n-1)b_0\hbar
$$
 and $(2j-1)\alpha\hbar^2$

appearing in the eigenvalue asymptotics correspond to two oscillatory motions in classical dynamics: the cyclotron motion and a rotation around the minimum point of b . The results of Raymond and V \tilde{u} Ngoc were generalized to an arbitrary *d*-dimensional Riemannian manifold in [\[Morin 2022b\]](#page-40-3), under the assumption $k = 0$ ($\mathbf{B}(q)$ has full rank), proving in particular similar estimates [\(1-3\)](#page-3-0) in a general setting. Actually, these eigenvalue estimates were proven simultaneously in [\[Kordyukov 2019\]](#page-39-7) in the context of the Bochner Laplacian.

We are interested on the influence of the kernel of \bf{B} ($k > 0$). Since the rank of \bf{B} is even, this kernel always exists in odd dimensions: if $d = 3$, the kernel directions correspond to the usual field lines. On *M* = \mathbb{R}^3 , Helffer and Kordyukov [\[2013\]](#page-39-8) proved the existence of $\lambda_{nmj}(\hbar) \in sp(\mathcal{L}_{\hbar})$ such that

$$
\lambda_{nmj}(\hbar) = (2n-1)b_0\hbar + (2n-1)^{1/2}(2m-1)v_0\hbar^{3/2} + ((2n-1)(2j-1)\alpha + c_{nm})\hbar^2 + \mathcal{O}(\hbar^{9/4})
$$

for some $v_0 > 0$ and α , $c_{nm} \in \mathbb{R}$. Motivated by this result and the 2-dimensional case, Helffer, Kordyukov, Raymond and Vũ Ngọc [\[Helffer et al. 2016\]](#page-39-9) gave a description of the whole spectrum below $b_1\hbar$, proving in particular the eigenvalue estimates

$$
\lambda_j(\mathcal{L}_h) = b_0 \hbar + v_0 \hbar^{3/2} + \alpha (2j - 1) \hbar^2 + \mathcal{O}(\hbar^{5/2}). \tag{1-4}
$$

Their results exhibit a new classical oscillatory motion in the directions of the field lines, corresponding to the quantum oscillator $(2m - 1)v_0\hbar^{3/2}$.

The aim of this paper is to generalize the results of [\[Helffer et al. 2016\]](#page-39-9) to an arbitrary Riemannian manifold *M*, under [Assumption 1.](#page-2-0) In particular we describe the influence of the kernel of *B* in a general geometric and dimensional setting. Their approach, which we adapt, is based on a *semiclassical Birkhoff normal form*. The *classical* Birkhoff normal form has a long story in physics and goes back to [\[Delaunay](#page-39-10) [1860;](#page-39-10) [Lindstedt 1883\]](#page-40-4). This formal normal form was the starting point of a lot of studies on stability near equilibrium, and KAM theory (after [\[Kolmogorov 1954;](#page-39-11) [Arnold 1963;](#page-38-1) [Moser 1962\]](#page-40-5)). The name of this normal form comes from [\[Birkhoff 1927;](#page-38-2) [Gustavson 1966\]](#page-39-12). We refer to the books [\[Moser 1968;](#page-40-6) [Hofer and](#page-39-13)

[1596 LÉO MORIN](#page-39-13)

[Zehnder 1994\]](#page-39-13) for precise statements. Our approach here relies on a quantization. Physicists and quantum chemists already noticed in the 1980s that a quantum analogue of the Birkhoff normal form could be used to compute energies of molecules [\[Delos et al. 1983;](#page-39-14) [Jaffé and Reinhardt 1982;](#page-39-15) [Marcus 1985;](#page-40-7) [Shirts and](#page-40-8) [Reinhardt 1982\]](#page-40-8). Joyeux and Sugny [\[2002\]](#page-39-16) also used such techniques to describe the dynamics of excited states. Sjöstrand [\[1992\]](#page-40-9) constructed a semiclassical Birkhoff normal form for a Schrödinger operator $-\hbar^2\Delta + V$ using the Weyl quantization, to make a mathematical study of semiexcited states. Raymond and Vũ Ngọc [\[2015\]](#page-40-2) had the idea to adapt this method for \mathcal{L}_h on \mathbb{R}^2 , and with Helffer and Kordyukov on \mathbb{R}^3 [\[Helffer et al. 2016\]](#page-39-9). This method is reminiscent of Ivrii's approach [\[2019\]](#page-39-17).

1B. *Main results.* The first idea is to link the classical dynamics of a particle in the magnetic field *B* with the spectrum of \mathcal{L}_\hbar using pseudodifferential calculus. Indeed, \mathcal{L}_\hbar is an \hbar -pseudodifferential operator with principal symbol

$$
H(q, p) = |p - A_q|^2 \quad \text{for all } p \in T_q M^*, \text{ for all } q \in M,
$$

and *H* is the classical Hamiltonian associated to the magnetic field *B*. One can use this property to prove that, in the phase space T^*M , the eigenfunctions (with eigenvalue $\langle b_1 \hbar \rangle$) are microlocalized on an arbitrarily small neighborhood of

$$
\Sigma = H^{-1}(0) \cap T^* \Omega = \{ (q, p) \in T^* \Omega : p = A_q \}.
$$

Hence, the second main idea is to find a normal form for *H* on a neighborhood of Σ . Namely, we find canonical coordinates near Σ in which *H* has a "simple" form. The symplectic structure of Σ as a submanifold of T^*M is thus of great interest. One can see that the restriction of the canonical symplectic form $dp \wedge dq$ on T^*M to Σ is given by *B* [\(Lemma 2.1\)](#page-10-0), and when *B* has constant rank, one can find Darboux coordinates $\varphi : \Omega' \subset \mathbb{R}_{(\gamma,\eta,t)}^{2s+k} \to \Omega$ such that

$$
\varphi^* B = d\eta \wedge dy,
$$

up to shrinking Ω . We will start from these coordinates to get the following normal form for *H*.

Theorem 1.4. *Under [Assumption 1](#page-2-0)*, *there exists a diffeomorphism*

$$
\Phi_1: U'_1 \subset \mathbb{R}^{4s+2k} \to U_1 \subset T^*M
$$

between neighborhoods U_1' of 0 and U_1 of Σ such that

$$
\widehat{H}(x,\xi,y,\eta,t,\tau) := H \circ \Phi_1(x,\xi,y,\eta,t,\tau)
$$

satisfies (with the notation $\hat{\beta}_j = \beta_j \circ \varphi$)

$$
\widehat{H} = \langle M(y, \eta, t)\tau, \tau \rangle + \sum_{j=1}^{s} \widehat{\beta}_j(y, \eta, t)(\xi_j^2 + x_j^2) + \mathcal{O}((x, \xi, \tau)^3)
$$

uniformly with respect to (y, η, t) *for some* (y, η, t) *-dependent positive definite matrix* $M(y, \eta, t)$ *. Moreover*,

$$
\Phi_1^*(dp \wedge dq) = d\xi \wedge dx + d\eta \wedge dy + d\tau \wedge dt.
$$

Remark 1.5. We will use the following notation for our canonical coordinates:

$$
z = (x, \xi) \in \mathbb{R}^{2s}
$$
, $w = (y, \eta) \in \mathbb{R}^{2s}$, $\tau = (t, \tau) \in \mathbb{R}^{2k}$.

This theorem gives the Taylor expansion of *H* on a neighborhood of Σ . In particular $(x, \xi, \tau) \in \mathbb{R}^d$ measures the distance to Σ , whereas $(y, \eta, t) \in \mathbb{R}^d$ are canonical coordinates on Σ .

Remark 1.6. This theorem exhibits the harmonic oscillator $\xi_j^2 + x_j^2$ in the expansion of *H*. This oscillator, which is due to the nonvanishing magnetic field, corresponds to the well-known cyclotron motion.

Actually, one can use the *Birkhoff normal form* algorithm to improve the remainder. Using this algorithm, we can change the $\mathcal{O}((x, \xi)^3)$ remainder into an explicit function of $\xi_j^2 + x_j^2$, plus some smaller remainders $\mathcal{O}((x,\xi)^r)$. This remainder power *r* is restricted by resonances between the coefficients β_j . Thus, we take an integer $r_1 \in \mathbb{N}$ such that,

for all
$$
\alpha \in \mathbb{Z}^s
$$
, $0 < |\alpha| < r_1 \implies \sum_{j=1}^s \alpha_j \beta_j(q_0) \neq 0.$ (1-5)

Here, $|\alpha| = \sum_j |\alpha_j|$. Moreover, we can use the pseudodifferential calculus to apply the Birkhoff algorithm to \mathcal{L}_\hbar , changing the classical oscillator $\xi_j^2 + x_j^2$ into the quantum harmonic oscillator

$$
\mathcal{I}_{\hbar}^{(j)} = -\hbar^2 \partial_{x_j}^2 + x_j^2,
$$

whose spectrum consists of the simple eigenvalues $(2n - 1)\hbar$, $n \in \mathbb{N}$. Following this idea we construct a normal form for \mathcal{L}_h in [Theorem 3.4.](#page-19-0) We also deduce a description of its spectrum.

Theorem 1.7. Let $\varepsilon > 0$. Under [Assumption 1](#page-2-0), there exist $b_1 \in (b_0, b_\infty)$, an integer $N_{\text{max}} > 0$ and a *compactly supported function* $f_1^{\star} \in C^{\infty}(\mathbb{R}^{2s+2k} \times \mathbb{R}^s \times [0, 1))$ *such that*

$$
|f_1^{\star}(y,\eta,t,\tau,I,\hbar)| \lesssim ((|I|+\hbar)^2+|\tau|(|I|+\hbar)+|\tau|^3)
$$

satisfying the following properties. For $n \in \mathbb{N}^s$, denote by $\mathcal{N}_\hbar^{[n]}$ the \hbar -pseudodifferential operator in (y, t) *with symbol*

$$
N_{\hbar}^{[n]} = \langle M(y, \eta, t)\tau, \tau \rangle + \sum_{j=1}^{s} \hat{\beta}_{j}(y, \eta, t)(2n_{j} - 1)\hbar + f_{1}^{\star}(y, \eta, t, \tau, (2n - 1)\hbar, \hbar).
$$

For \hbar ≪ 1, *there exists a bijection*

$$
\Lambda_{\hbar}: \mathrm{sp}(\mathcal{L}_{\hbar}) \cap (-\infty, b_1 \hbar) \to \bigcup_{|n| \leq N_{\max}} \mathrm{sp}(\mathcal{N}_{\hbar}^{[n]}) \cap (-\infty, b_1 \hbar)
$$

such that $\Lambda_{\hbar}(\lambda) = \lambda + \mathcal{O}(\hbar^{r_1/2-\varepsilon})$ *uniformly with respect to* λ *.*

Remark 1.8. In this theorem $sp(A)$ denotes the *repeated* eigenvalues of an operator A, so that there might be some multiple eigenvalues, but Λ_{\hbar} preserves this multiplicity. We only consider self-adjoint operators with discrete spectrum.

Remark 1.9. One should care of how large b_1 can be. As mentioned above, the eigenfunctions of energy *h* **are exponentially small outside** $K_{b_1} = \{q \in M : b(q) \leq b_1\}$ **. Thus, we will chose** b_1 **such that** $K_{b_1} \subset \Omega$, where Ω is some neighborhood of q_0 . Hence the larger Ω is, the greater b_1 can be. However, there are three restrictions on the size of Ω :

- The rank of $\mathbf{B}(q)$ is constant on Ω .
- There exist canonical coordinates φ on Ω (i.e., such that $\varphi^* B = d\eta \wedge dy$).
- There is no resonance in Ω :

for all
$$
q \in \Omega
$$
, for all $\alpha \in \mathbb{Z}^s$, $0 < |\alpha| < r_1 \implies \sum_{j=1}^s \alpha_j \beta_j(q) \neq 0$.

Of course the last condition is the most restrictive. However, if we forget the second condition, which is of global geometric nature, given a magnetic field and an r_1 one can estimate an associated b_1 satisfying the third condition. In particular we can construct simple examples on \mathbb{R}^d such that the threshold $b_1\hbar$ includes several Landau levels.

Remark 1.10. If $k = 0$ we recover the result of [\[Morin 2022b\]](#page-40-3). Here we want to study the influence of a nonzero kernel $k > 0$. This result generalizes the result of [\[Helffer et al. 2016\]](#page-39-9), which corresponds to $d = 3$, $s = k = 1$ on the Euclidean \mathbb{R}^3 . However, this generalization is not straightforward since the magnetic geometry is much more complicated in higher dimensions, in particular if $k > 1$. Moreover, there is a new phenomena in higher dimensions: resonances between the functions β_j (as in [\[Morin 2022b\]](#page-40-3)).

The spectrum of \mathcal{L}_\hbar in $(-\infty, b_1\hbar)$ is given by the operators $\mathcal{N}_{\hbar}^{[n]}$. Actually if we choose b_1 small enough, it is only given by the first operator $\mathcal{N}_h^{[1]}$ (here we denote the multi-integer $1 = (1, \ldots, 1) \in \mathbb{N}^s$). Hence in the second part of this paper, we study the spectrum $\mathcal{N}_h^{[1]}$ using a second Birkhoff normal form. Indeed, the symbol of $\mathcal{N}_h^{[1]}$ is

$$
N_{\hbar}^{[1]}(w, t, \tau) = \langle M(w, t)\tau, \tau \rangle + \hbar \hat{b}(w, t) + \mathcal{O}(\hbar^2) + \mathcal{O}(\tau \hbar) + \mathcal{O}(\tau^3),
$$

so if we denote by $s(w)$ the minimum point of $t \mapsto \hat{b}(w, t)$ (which is unique on a neighborhood of 0), we get the expansion

$$
N_h^{[1]}(w, t, \tau) = \langle M(w, s(w))\tau, \tau \rangle + \frac{\hbar}{2} \Big\langle \frac{\partial^2 \hat{b}}{\partial t^2}(w, s(w)) \cdot (t - s(w)), t - s(w) \Big\rangle + \cdots, \tag{1-6}
$$

where we will show that the remaining terms are only perturbations. As explained in [Section 5,](#page-26-0) in [\(1-6\)](#page-6-0) where we will show that the remaining terms are only perturbations. As explained in Section 5, in (1-0) we can recognize a harmonic oscillator with frequencies $\sqrt{\hbar}v_j(w)$ (1 ≤ *j* ≤ *k*), where $(v_j^2(w))_{1 \le j \le k}$ are the eigenvalues of the symmetric matrix

$$
M(w, s(w))^{1/2} \cdot \frac{1}{2} \partial_t^2 \hat{b}(w, s(w)) \cdot M(w, s(w))^{1/2}.
$$

These frequencies are smooth nonvanishing functions of w on a neighborhood of 0, as soon as we assume that they are simple.

Assumption 2. For indices $1 \le i < j \le k$, we have $v_i(0) \ne v_i(0)$.

We fix an integer $r_2 \in \mathbb{N}$ such that,

for all
$$
\alpha \in \mathbb{Z}^k
$$
, $0 < |\alpha| < r_2 \implies \sum_{j=1}^k \alpha_j v_j(0) \neq 0$,

and we construct a normal form for $\mathcal{N}_{h}^{[1]}$ in [Theorem 5.4.](#page-31-0) Again, we deduce a description of its spectrum.

Theorem 1.11. Let $c > 0$ and $\delta \in (0, \frac{1}{2})$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$). Under Assumptions 1 and 2, with $k > 0$, there exists a compactly supported function $f_2^{\star} \in C^{\infty}(\mathbb{R}^{2s} \times \mathbb{R}^k \times [0, 1))$ such that

$$
|f_2^{\star}(y,\eta,J,\sqrt{\hbar})| \lesssim (|J| + \sqrt{\hbar})^2
$$

satisfying the following properties. For $n \in \mathbb{N}^k$, *denote by* $\mathcal{M}_\hbar^{[n]}$ the \hbar -pseudodifferential operator in y *with symbol*

$$
M_{\hbar}^{[n]}(y,\eta) = \hat{b}(y,\eta,s(y,\eta)) + \sqrt{\hbar} \sum_{j=1}^{k} v_j(y,\eta)(2n_j - 1) + f_2^*(y,\eta,(2n - 1)\sqrt{\hbar},\sqrt{\hbar}).
$$

For ≪ 1, <i>there exists a bijection

$$
\Lambda_{\hbar}: \mathrm{sp}(\mathcal{N}_{\hbar}^{[1]}) \cap (-\infty, (b_0 + c\hbar^{\delta})\hbar) \to \bigcup_{n \in \mathbb{N}^k} \mathrm{sp}(\hbar \mathcal{M}_{\hbar}^{[n]}) \cap (-\infty, (b_0 + c\hbar^{\delta})\hbar)
$$

 Δ *h*(λ) = λ + $\mathcal{O}(\hbar^{1+\delta r_2/2})$ *uniformly with respect to* λ *.*

Remark 1.12. The threshold $b_0 + c\hbar^{\delta}$ is needed to get microlocalization of the eigenfunctions of $\mathcal{N}_{\hbar}^{[1]}$ in an arbitrarily small neighborhood of $\tau = 0$.

Remark 1.13. This second harmonic oscillator (in variables (t, τ)) corresponds to a classical oscillation in the directions of the field lines. We see that this new motion, due to the kernel of *B*, induces powers of $\sqrt{\hbar}$ in the spectrum.

As a corollary, we get a description of the low-lying eigenvalues of \mathcal{L}_h by the effective operator $h \mathcal{M}_h^{[1]}$.

Corollary 1.14. *Let* $\varepsilon > 0$ *and* $c \in (0, \min_j v_j(0))$ *. Define* $v(0) = \sum_j v_j(0)$ *and* $r = \min(2r_1, r_2 + 4)$ *. Under Assumptions [1](#page-2-0) and [2](#page-6-1)*, *with k* > 0, *there exists a bijection*

$$
\Lambda_{\hbar} : \mathrm{sp}(\mathcal{L}_{\hbar}) \cap (-\infty, \hbar b_0 + \hbar^{3/2}(\nu(0) + 2c)) \to \mathrm{sp}(\hbar \mathcal{M}_{\hbar}^{[1]}) \cap (-\infty, \hbar b_0 + \hbar^{3/2}(\nu(0) + 2c))
$$

such that $\Lambda_{\hbar}(\lambda) = \lambda + \mathcal{O}(\hbar^{r/4-\epsilon})$ *uniformly with respect to* λ *.*

We deduce the following eigenvalue asymptotics.

Corollary 1.15. *Under the assumptions of [Corollary 1.14](#page-7-0), for* $j \in \mathbb{N}$ *, the j-th eigenvalue of* \mathcal{L}_h *admits an expansion*

$$
\lambda_j(\mathcal{L}_\hbar) = \hbar \sum_{\ell=0}^{\lfloor r/2 \rfloor -2} \alpha_{j\ell} \hbar^{\ell/2} + \mathcal{O}(\hbar^{r/4-\varepsilon}),
$$

with coefficients $\alpha_{j\ell} \in \mathbb{R}$ *such that*

$$
\alpha_{j,0} = b_0, \quad \alpha_{j,1} = \sum_{j=1}^k v_j(0), \quad \alpha_{j,2} = E_j + c_0,
$$

 $where c₀ ∈ ℝ and $\hbar E_j$ is the j-th eigenvalue of an s-dimensional harmonic oscillator.$

Remark 1.16. Note $\hbar E_j$ is the *j*-th eigenvalue of a harmonic oscillator whose symbol is given by the Hessian at $w = 0$ of $\hat{b}(w, s(w))$. Hence, it corresponds to a third classical oscillatory motion: a rotation in the space of field lines.

Remark 1.17. The asymptotics

$$
\lambda_j(\mathcal{L}_{\hbar}) = b_0 \hbar + \nu(0) \hbar^{3/2} + (E_j + c_0) \hbar^2 + o(\hbar^2)
$$

were unknown before, except in the special 3-dimensional case $M = \mathbb{R}^3$ in [\[Helffer et al. 2016\]](#page-39-9).

1C. Related questions and perspectives. In this paper, we are restricted to energies $\lambda < b_1 \hbar$, and as men-tioned in [Remark 1.9,](#page-5-0) the threshold $b_1 > b_0$ is limited by three conditions, including the nonresonance one:

for all
$$
q \in \Omega
$$
, for all $\alpha \in \mathbb{Z}^s$, $0 < |\alpha| < r_1 \implies \sum_{j=1}^s \alpha_j \beta_j(q) \neq 0$.

It would be interesting to study the influence of resonances between the functions β_j on the spectrum of \mathcal{L}_\hbar . Maybe the Grushin techniques could help, as in [\[Helffer and Kordyukov 2015\]](#page-39-6) for instance. A Birkhoff normal form was given in [Charles and Vũ Ngọc 2008] for a Schrödinger operator $-\hbar^2\Delta + V$ with resonances, but the situation is somehow simpler, since the analogues of $\beta_i(q)$ are independent of *q* in this context.

We are also restricted by the existence of Darboux coordinates φ on (Σ, B) such that $\varphi^*B = d\eta \wedge dy$. Indeed, the coordinates (y, η) on Σ are necessary to use the Weyl quantization. To study the influence of the global geometry of *B*, one should consider another quantization method for the presymplectic manifold (Σ, B) . In the symplectic case, for instance in dimension $d = 2$, a Toeplitz quantization may be useful. This quantization is linked to the complex structure induced by *B* on Σ , and the operator \mathcal{L}_\hbar can be linked with this structure in the following way:

with

$$
\mathcal{L}_{\hbar} = 4\hbar^2 \Big(\bar{\partial} + \frac{i}{2\hbar}A\Big)^* \Big(\bar{\partial} + \frac{i}{2\hbar}A\Big) + \hbar B = 4\hbar^2 \bar{\partial}_A^* \bar{\partial}_A + \hbar B,
$$

$$
A = A_1 + iA_2, \quad B = \partial_1 A_2 - \partial_2 A_1, \quad 2\overline{\partial} = \partial_1 + i\partial_2.
$$

In [\[Tejero Prieto 2006\]](#page-40-10), this is used to compute the spectrum of L[−] *^h* on a bidimensional Riemann surface *M* with constant curvature and constant magnetic field. See also [\[Charles 2020;](#page-39-19) [Kordyukov 2022\]](#page-40-11), where semiexcited states for constant magnetic fields in higher dimensions are considered.

If the 2-form *B* is not exact, we usually consider a Bochner Laplacian on the *p*-th tensor product of a complex line bundle *L* over *M*, with curvature *B*. This Bochner Laplacian Δ_p depends on $p \in \mathbb{N}$, and the limit $p \to +\infty$ is interpreted as the semiclassical limit. The Bochner Laplacian Δ_p is a good generalization of the magnetic Laplacian because *locally* it can be written $(1/\hbar^2)(i\hbar \nabla + A)^2$, where the potential *A* is a local primitive of *B*, and $\hbar = p^{-1}$. For details, we refer to [\[Kordyukov 2019;](#page-39-7) [2020;](#page-39-20) [Marinescu and Savale 2018\]](#page-40-12). Kordyukov [\[2019\]](#page-39-7) constructed quasimodes for Δ_p in the case of a symplectic *B* and discrete wells. He proved expansions

$$
\lambda_j(\Delta_p) \sim \sum_{\ell \geq 0} \alpha_{j\ell} p^{-\ell/2}.
$$

Our work also gives such expansions for Δ_p as explained in [\[Morin 2022a\]](#page-40-13).

In this paper, we only mention the study of the eigenvalues of L[−] *^h*: what about the eigenfunctions? WKB expansions for the *j*-th eigenfunction were constructed on \mathbb{R}^2 in [\[Bonthonneau and Raymond](#page-38-3) [2020\]](#page-38-3) and on a 2-dimensional Riemannian manifold in [\[Bonthonneau et al. 2021a\]](#page-38-4). We do not know how to construct magnetic WKB solutions in higher dimensions. This article suggests that the directions corresponding to the kernel of *B* could play a specific role.

Another related question is the decreasing of the real eigenfunctions. Agmon estimates only give a Another related question is the decreasing of the real eigenfunctions. Agnon estimates only give a $O(e^{-c/\sqrt{h}})$ decay. Recently Bonthonneau, Raymond and Vũ Ngọc [\[Bonthonneau et al. 2021b\]](#page-38-5) proved this on \mathbb{R}^2 using the FBI transform to work on the phase space $T^*\mathbb{R}^2$. This kind of question is motivated by the study of the tunneling effect: the exponentially small interaction between two magnetic wells for example.

Finally, we only have investigated the spectral theory of the stationary Schrödinger equation with a pure magnetic field; it would be interesting to describe the long-time dynamics of the full Schrödinger evolution, as was done in the Euclidean 2-dimensional case in [Boil and Vũ Ngọc 2021].

1D. *Structure of the paper.* In [Section 2](#page-9-0) we prove [Theorem 1.4,](#page-4-0) describing the symbol *H* of \mathcal{L}_\hbar on a neighborhood of $\Sigma = H^{-1}(0)$. In [Section 3](#page-16-0) we construct the normal form, first in a space of formal series [\(Section 3B\)](#page-18-0) and then the quantized version \mathcal{N}_h [\(Section 3C\)](#page-19-1). In [Section 4](#page-21-0) we prove [Theorem 1.7.](#page-5-1) For this we describe the spectrum of \mathcal{N}_h [\(Section 4A\)](#page-21-1), then we prove microlocalization properties on the eigenfunctions of \mathcal{L}_h and \mathcal{N}_h [\(Section 4B\)](#page-22-0), and finally we compare the spectra of \mathcal{L}_h and \mathcal{N}_h [\(Section 4C\)](#page-25-0).

In [Section 5](#page-26-0) we focus on [Theorem 1.11](#page-6-2) which describes the spectrum of the effective operator $\mathcal{N}_h^{[1]}$. In [Section 5A](#page-26-1) we study its symbol, in [Section 5B](#page-28-0) we construct a second formal Birkhoff normal form, and in [Section 5C](#page-31-1) the quantized version \mathcal{M}_\hbar . In [Section 5D](#page-32-0) we compare the spectra of $\mathcal{N}_{\hbar}^{[1]}$ and \mathcal{M}_{\hbar} .

Finally, Sections [6](#page-33-0) and [7](#page-34-0) are dedicated to the proofs of Corollaries [1.14](#page-7-0) and [1.15](#page-7-1) respectively.

2. Geometry of the classical Hamiltonian

2A. *Notation.* \mathcal{L}_\hbar is an \hbar -pseudodifferential operator on *M* with principal symbol *H*:

$$
H(q, p) = |p - A_q|_{g_q^*}^2, \quad p \in T_q^*M, \ q \in M.
$$

Here, T^*M denotes the cotangent bundle of M, and $p \in T_q^*M$ is a linear form on T_qM . The scalar product g_q on T_qM induces a scalar product g_q^* on T_q^*M , and $|\cdot|_{g_q^*}$ denotes the associated norm. In this section we prove [Theorem 1.4,](#page-4-0) thus describing *H* on a neighborhood of its minimum:

$$
\Sigma = \{ (q, p) \in T^*M : q \in \Omega, p = A_q \}.
$$

Recall that Ω is a small neighborhood of $q_0 \in M \setminus \partial M$. We will construct canonical coordinates $(z, w, v) \in \mathbb{R}^{2d}$ on Ω , with

$$
z = (x, \xi) \in \mathbb{R}^{2s}
$$
, $w = (y, \eta) \in \mathbb{R}^{2s}$, $v = (t, \tau) \in \mathbb{R}^{2k}$.

 \mathbb{R}^{2d} is endowed with the canonical symplectic form

$$
\omega_0 = d\xi \wedge dx + d\eta \wedge dy + d\tau \wedge dt.
$$

We will identify Σ with

 $\Sigma' = \{(x, \xi, y, \eta, t, \tau) \in \mathbb{R}^{2d} : x = \xi = 0, \tau = 0\} = \mathbb{R}^{2s+k}_{(y, \eta, t)} \times \{0\}.$

We will use several lemmas to prove [Theorem 1.4.](#page-4-0) Before constructing the diffeomorphism Φ_1^{-1} 1^{-1} on a neighborhood U_1 of Σ , we will first define it on Σ . Thus we need to understand the structure of Σ induced by the symplectic structure on T^*M [\(Section 2B\)](#page-10-1). Then we will construct Φ_1 and finally prove [Theorem 1.4](#page-4-0) [\(Section 2C\)](#page-13-0).

2B. *Structure of* Σ . Recall that on T^*M we have the Liouville 1-form α defined by

$$
\alpha_{(q,p)}(\mathcal{V}) = p((d\pi)_{(q,p)}\mathcal{V}) \quad \text{for all } (q, p) \in T^*M, \ \mathcal{V} \in T_{(q,p)}(T^*M),
$$

where $\pi : T^*M \to M$ is the canonical projection: $\pi(q, p) = q$, and $d\pi$ is its differential. T^*M is endowed with the symplectic form $\omega = d\alpha$. Σ is a *d*-dimensional submanifold of T^*M which can be identified with Ω using

$$
j: q \in \Omega \mapsto (q, A_q) \in \Sigma
$$

and its inverse, which is π .

Lemma 2.1. *The restriction of* ω *to* Σ *is* $\omega_{\Sigma} = \pi^* B$.

Proof. Fix $q \in \Omega$ and $Q \in T_qM$. Then

$$
(j^*\alpha)_q(Q) = \alpha_{j(q)}((d j) Q) = A_q((d \pi) \circ (d j) Q) = A_q(Q),
$$

because $\pi \circ j =$ Id. Thus $j^* \alpha = A$ and $\alpha_{\Sigma} = \pi^* j^* \alpha = \pi^* A$. Taking the exterior derivative we get

$$
\omega_{\Sigma} = d\alpha_{\Sigma} = \pi^*(dA) = \pi^*B.
$$

Since *B* is a closed 2-form with constant rank equal to 2*s*, (Σ, π^*B) is a presymplectic manifold. It is equivalent to (Ω, B) , using *j*. We recall the Darboux lemma, which states that such a manifold is locally equivalent to $(\mathbb{R}^{2s+k}, d\eta \wedge dy)$.

Lemma 2.2. Up to shrinking Ω , there exists an open subset Σ' of $\mathbb{R}_{\{w,n\}}^{2s+k}$ $_{(\mathrm{y},\eta,t)}^{2s+k}$ and a diffeomorphism $\varphi:\Sigma'\!\rightarrow\Omega$ *such that* $\varphi^* B = d\eta \wedge dy$.

One can always take any coordinate system on Ω . Up to working in these coordinates, it is enough to consider the case $M = \mathbb{R}^d$ with

$$
H(q, p) = \sum_{k,\ell=1}^d g^{k\ell}(q)(p_k - A_k(q))(p_\ell - A_\ell(q)), \quad (q, p) \in T^* \mathbb{R}^d \simeq \mathbb{R}^{2d},
$$

to prove [Theorem 1.4.](#page-4-0) This is what we will do. In coordinates, ω is given by

$$
\omega = \mathrm{d}p \wedge \mathrm{d}q = \sum_{j=1}^d \mathrm{d}p_j \wedge \mathrm{d}q_j
$$

and Σ is the submanifold

$$
\Sigma = \{ (q, A(q)) : q \in \Omega \} \subset \mathbb{R}^{2d},
$$

and $j \circ \varphi : \Sigma' \to \Sigma$.

In order to extend $j \circ \varphi$ to a neighborhood of Σ' in \mathbb{R}^{2d} *in a symplectic way*, it is convenient to split the tangent space $T_{j(q)}(\mathbb{R}^{2d})$ according to tangent and normal directions to Σ . This is the purpose of the following two lemmas.

Lemma 2.3. *Fix* $j(q) = (q, A(q)) \in \Sigma$. *Then the tangent space to* Σ *is*

$$
T_{j(q)}\Sigma = \{ (Q, P) \in \mathbb{R}^{2d} : P = \nabla_q A \cdot Q \}.
$$

Moreover, the ω -*orthogonal* $T_{i}(q) \Sigma^{\perp}$ *is*

$$
T_{j(q)}\Sigma^{\perp} = \{ (Q, P) \in \mathbb{R}^{2d} : P = (\nabla_q A)^T \cdot Q \}.
$$

Finally,

$$
T_{j(q)}\Sigma \cap T_{j(q)}\Sigma^{\perp} = \text{Ker}(\pi^*B).
$$

Proof. Since Σ is the graph of $q \mapsto A(q)$, its tangent space is the graph of the differential $Q \mapsto (\nabla_q A) \cdot Q$. In order to characterize $T\Sigma^{\perp}$, note that the symplectic form $\omega = dp \wedge dq$ is defined by

$$
\omega_{(q,p)}((Q_1, P_1), (Q_2, P_2)) = \langle P_2, Q_1 \rangle - \langle P_1, Q_2 \rangle, \tag{2-1}
$$

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean scalar product on \mathbb{R}^d . Thus,

$$
(Q, P) \in T_{j(q)} \Sigma^{\perp} \iff \omega_{j(q)}((Q_0, \nabla_q \mathbf{A} \cdot Q_0), (Q, P)) = 0 \text{ for all } Q_0 \in \mathbb{R}^d
$$

\n
$$
\iff \langle P, Q_0 \rangle - \langle (\nabla_q \mathbf{A}) \cdot Q_0, Q \rangle = 0 \text{ for all } Q_0 \in \mathbb{R}^d
$$

\n
$$
\iff \langle P - (\nabla_q \mathbf{A})^T \cdot Q, Q_0 \rangle = 0 \text{ for all } Q_0 \in \mathbb{R}^d
$$

\n
$$
\iff \qquad P = (\nabla_q \mathbf{A})^T \cdot Q.
$$

Finally, with [Lemma 2.1](#page-10-0) we know that the restriction of ω to $T\Sigma$ is given by π^*B . Hence, $T_{j(q)}\Sigma \cap T_{j(q)}\Sigma^\perp$ is the set of $(Q, P) \in T_{i(q)}\Sigma$ such that

$$
\pi^* B((Q, P), (Q_0, P_0)) = 0 \quad \text{for all } (Q_0, P_0) \in T_{j(q)} \Sigma.
$$

It is the kernel of π ^{*}*B*. \overline{B} .

Now we define specific basis of $T_{i(q)}\Sigma$ and its orthogonal. Since $\mathbf{B}(q)$ is skew-symmetric with respect to *g*, there exist orthonormal vectors

$$
\mathbf{u}_1(q), \mathbf{v}_1(q), \ldots, \mathbf{u}_s(q), \mathbf{v}_s(q), \mathbf{w}_1(q), \ldots, \mathbf{w}_k(q) \in \mathbb{R}^d
$$

such that

$$
\begin{cases}\n\mathbf{B}\mathbf{u}_{j} = -\beta_{j}\mathbf{v}_{j}, & 1 \leq j \leq s, \\
\mathbf{B}\mathbf{v}_{j} = \beta_{j}\mathbf{u}_{j}, & 1 \leq j \leq s, \\
\mathbf{B}\mathbf{w}_{j} = 0, & 1 \leq j \leq k.\n\end{cases}
$$
\n(2-2)

These vectors are smooth functions of *q* because the nonzero eigenvalues $\pm i\beta$ _{*j*}(*q*) are simple. They define a basis of \mathbb{R}^d . Define the following ω -orthogonal vectors to $T\Sigma$:

$$
\begin{cases}\nf_j(q) := (1/\sqrt{\beta_j(q)}) (\boldsymbol{u}_j(q), (\nabla_q A)^T \cdot \boldsymbol{u}_j(q)), & 1 \le j \le s, \\
f'_j(q) := (1/\sqrt{\beta_j(q)}) (\boldsymbol{v}_j(q), (\nabla_q A)^T \boldsymbol{v}_j(q)), & 1 \le j \le s.\n\end{cases}
$$
\n(2-3)

These vectors are linearly independent and

$$
T_{j(q)}\Sigma^{\perp} = K \oplus F,
$$

with

$$
K = \text{Ker}(\pi^*B), \quad F = \text{span}(f_1, f'_1, \ldots, f_s, f'_s).
$$

Similarly, the tangent space $T_{i(q)}\Sigma$ admits a decomposition

$$
T_{j(q)}\Sigma = E \oplus K
$$

defined as follows. The map $j \circ \varphi : \Sigma' \to \Sigma$ from [Lemma 2.2](#page-10-2) satisfies $(j \circ \varphi)^*(\pi^*B) = d\eta \wedge dy$. Thus its differential $d(j \circ \varphi)$ maps the kernel of $d\eta \wedge dy$ on the kernel of π^*B :

$$
K = \{d(j \circ \varphi)_q(0, T) : T \in \mathbb{R}^k\}.
$$
\n
$$
(2-4)
$$

A complementary space of *K* in $T\Sigma$ is given by

$$
E := \{ d(j \circ \varphi)_q(W, 0) : W \in \mathbb{R}^{2s} \}. \tag{2-5}
$$

From all these considerations we deduce:

Lemma 2.4. *Fix* $j(q) = (q, A(q)) \in \Sigma$. *Then we have the decomposition*

$$
T_{j(q)}(\mathbb{R}^{2d}) = \underbrace{E \oplus K \oplus F}_{T\Sigma} \oplus L,
$$

where L is any Lagrangian complement of K in $(E \oplus F)^{\perp}$.

Proof. We have $T\Sigma + T\Sigma^{\perp} = E \oplus K \oplus F$, and the restriction of $\omega = dp \wedge dq$ to this space has kernel $K = T\Sigma \cap T\Sigma^{\perp}$. Hence, the restriction $\omega_{E \oplus F}$ of ω to $E \oplus F$ is nondegenerate and its orthogonal $(E \oplus F)^{\perp}$ as well. Moreover $(E \oplus F)^{\perp}$ has dimension $2d - 4s = 2k$, and we have

$$
T_{j(q)}\mathbb{R}^{2d} = (E \oplus F) \oplus (E \oplus F)^{\perp}.
$$

K is a Lagrangian subspace of $(E \oplus F)^{\perp}$. Therefore it admits a complementary Lagrangian: a subspace *L* of $(E \oplus F)^{\perp}$ with dimension *k* such that $\omega_L = 0$ and $(E \oplus F)^{\perp} = K \oplus L$.

Remark 2.5. From now on, we fix any choice of Lagrangian complement *L*. With this choice, we define a basis (ℓ_j) of *L* as follows. First note that the decomposition $(E \oplus F)^{\perp} = K \oplus L$ yields a bijection between *L* and the dual K^* , which is $\ell \mapsto \omega(\ell, \cdot)$. We emphasize that this bijection *depends on the choice of L*. Using this bijection, we define ℓ_j to be the unique vector in *L* satisfying

$$
\omega(\ell_j, d(j \circ \varphi)(0, T)) = T_j \quad \text{for all } T \in \mathbb{R}^k. \tag{2-6}
$$

Figure 1. Using the canonical coordinates (w, t, τ, z) , we identify Σ with Σ' .

2C. *Construction of* Φ_1 *and proof of [Theorem 1.4.](#page-4-0)* We identified the "curved" manifold Σ with an open subset Σ' of \mathbb{R}^{2s+k} using $j \circ \varphi$. Moreover, we did this in such a way that $(j \circ \varphi)^* \pi^* B = d\eta \wedge dy$. In this section we prove that we can identify a whole neighborhood of Σ in $\mathbb{R}^{2d}_{(q,p)}$ with a neighborhood of Σ' in $\mathbb{R}_{(z,w,v)}^{4s+2k}$, via a symplectomorphism Φ_1 . See [Figure 1.](#page-13-1)

Lemma 2.6. *There exists a diffeomorphism*

$$
\Phi_1: U'_1 \subset \mathbb{R}_{(w,t,\tau,z)}^{2s+2k+2s} \to U_1 \subset \mathbb{R}_{(q,p)}^{2d}
$$

between neighborhoods U_1 *of* Σ *and* U'_1 \int_1^t of Σ' such that $\Phi_1^*\omega = \omega_0$ and $\Phi_1(w, t, 0, 0) = j \circ \varphi(w, t)$. *Moreover its differential at* $(w, t, \tau = 0, z = 0) \in \Sigma'$ *is*

$$
d\Phi_1(W, T, T, Z) = d_{(w,t)}j \circ \varphi(W, T) + \sum_{j=1}^k \mathcal{T}_j \hat{\ell}_j(w, t) + \sum_{j=1}^s X_j \hat{f}_j(w, t) + \Xi_j \hat{f}'_j(w, t).
$$

Remark 2.7. In this lemma we used the notation $Z = (X, \Xi)$ and $\hat{\ell}_j = \ell_j \circ \varphi$, $\hat{f}_j = f_j \circ \varphi$, and $\hat{f}_j' = f_j'$ *j* ◦ϕ. *Proof.* We will first construct Φ such that $\Phi^* \omega_{\vert \Sigma'} = \omega_0 \vert_{\Sigma'}$ only on $\Sigma' = \Phi^{-1}(\Sigma)$. Then, we will use the [Theorem B.2](#page-36-0) to slightly change Φ into Φ_1 such that $\Phi_1^* \omega = \omega_0$ on a neighborhood of Σ' .

We define Φ by

$$
\Phi(w, t, \tau, z) = j \circ \varphi(w, t) + \sum_{j=1}^{k} \tau_j \hat{\ell}_j(w, t) + \sum_{j=1}^{s} x_j \hat{f}_j(w, t) + \xi_j \hat{f}'_j(w, t). \tag{2-7}
$$

Its differential at $(w, t, 0, 0)$ has the desired form. Let us fix a point $(w, t, 0, 0) \in \Sigma'$ and compute $\Phi^* \omega$ at this point. By definition,

$$
\Phi^*\omega_{(w,t,0,0)}(\cdot,\cdot)=\omega_{j(q)}((d\Phi)\cdot,(d\Phi)\cdot),
$$

where $q = \varphi(w, t)$. Computing this 2-form in the canonical basis of \mathbb{R}^{4s+2k} amounts to computing ω on the vectors ℓ_j , f_j , f'_i *j* and $d(j \circ \varphi)(W, T)$. By [\(2-3\)](#page-11-0) and [\(2-1\)](#page-11-1) we have

$$
\omega(f_i, f_j) = \frac{1}{\sqrt{\beta_i \beta_j}} \big(\langle (\nabla_q A)^{\perp} \cdot u_j, u_i \rangle - \langle (\nabla_q A)^{\perp} \cdot u_i, u_j \rangle \big)
$$

=
$$
\frac{1}{\sqrt{\beta_i \beta_j}} \langle (\nabla_q A)^{\perp} - (\nabla_q A) \rangle \cdot u_j, u_i \rangle
$$

=
$$
\frac{1}{\sqrt{\beta_i \beta_j}} B(u_j, u_i) = \frac{1}{\sqrt{\beta_i \beta_j}} g(u_j, B u_i) = 0,
$$

because $B u_i = -\beta_i v_i$ is orthogonal to u_j . Similarly we find

$$
\omega(f_i, f'_j) = \delta_{ij}, \quad \omega(f'_i, f'_j) = 0.
$$

Moreover, $\ell_i \in L \subset F^{\perp}$ so

$$
\omega(\boldsymbol{\ell}_i, f_j) = \omega(\boldsymbol{\ell}_i, f'_j) = 0.
$$

Since *L* is Lagrangian we also have $\omega(\ell_i, \ell_j) = 0$. The vector $d(j \circ \varphi)(W, T)$ is tangent to Σ and *f*_{*j*}, *f*_{*j*}^{\in} *f* ∑[⊥] so

$$
\omega(f_j, \mathrm{d}(j \circ \varphi)(W, T)) = \omega(f'_j, \mathrm{d}(j \circ \varphi)(W, T)) = 0.
$$

Since $\ell_i \in L \subset E^{\perp}$ and using [\(2-6\),](#page-12-0) we have

$$
\omega(\ell_j, d(j \circ \varphi)(W, T)) = \omega(\ell_j, d(j \circ \varphi)(0, T)) = T_j.
$$

Finally, $(j \circ \varphi)^* \omega = \varphi^* B = d\eta \wedge dy$ so that

$$
\omega(\mathrm{d}(j \circ \varphi)(W, T), \mathrm{d}(j \circ \varphi)(W', T')) = \mathrm{d}\eta \wedge \mathrm{d}y((W, T), (W', T')).
$$

All these computations show that $(\Phi^*\omega)_{(w,t,0,0)}$ coincide with $\omega_0 = d\xi \wedge dx + d\eta \wedge dy + d\tau \wedge dt$. Thus $\Phi^*\omega = \omega_0$ on Σ . With [Theorem B.2,](#page-36-0) we can change Φ into $\Phi_1(w, t, \tau, z) = \Phi(w, t, \tau, z) + \mathcal{O}((z, \tau)^2)$ such that $\Phi_1^* \omega = \omega_0$ on a neighborhood U_1' \int_1' of Σ' . In particular, the differential of Φ_1 at $(w, t, 0, 0)$ coincides with the differential of Φ .

Finally, the following lemma concludes the proof of [Theorem 1.4.](#page-4-0)

Lemma 2.8. *The Hamiltonian* $\widehat{H} = H \circ \Phi_1$ *has the Taylor expansion*

$$
\widehat{H}(w, t, \tau, x, \xi) = \frac{1}{2} \langle \partial_{\tau}^{2} \widehat{H}(w, t, 0) \tau, \tau \rangle + \sum_{j=1}^{s} \widehat{\beta}_{j}(w, t) (\xi_{j}^{2} + x_{j}^{2}) + \mathcal{O}((\tau, x, \xi)^{3}).
$$

Proof. Let us compute the differential and Hessian of

$$
H(q, p) = \sum_{k, \ell=1}^{d} g^{k\ell}(q)(p_k - A_k(q))(p_\ell - A_\ell(q))
$$

at a point $(q, A(q)) \in \Sigma$. First,

$$
\nabla_{(q,p)} H \cdot (Q, P) = \sum_{k,\ell=1}^d 2g^{k\ell}(q)(p_k - A_k(q))(P_\ell - \nabla_q A_\ell \cdot Q) + (p_k - A_k(q))(p_\ell - A_\ell(q))\nabla_q g \cdot Q, (2-8)
$$

and at $p = A(q)$ the Hessian is

$$
\langle \nabla_{j(q)}^2 H \cdot (Q, P), (Q', P') \rangle = 2 \sum_{k,\ell=1}^d g^{k\ell}(q) (P_k - \nabla_q A_k \cdot Q) (P'_\ell - \nabla_q A_\ell \cdot Q'). \tag{2-9}
$$

We can deduce a Taylor expansion of $\widehat{H}(w, t, \tau, z)$ with respect to (τ, z) (with fixed $q = \varphi(w, t)$). First,

$$
\widehat{H}(w, t, 0, 0) = H(q, A(q)) = 0.
$$

Then we can compute the partial differential using [Lemma 2.6,](#page-13-2)

$$
\partial_{\tau,z}\widehat{H}(w,t,0,0)\cdot(W,T)=\nabla_{j(q)}H\cdot\partial_{\tau,z}\Phi_1(w,t,0,0)\cdot(W,T)=\nabla_{j(q)}H\cdot d(j\circ\varphi)(W,T)=0,
$$

because $d(j \circ \varphi)(W, T) \in T_{j(q)}\Sigma$. The Taylor expansion of \widehat{H} is thus

$$
\widehat{H}(w,t,\tau,z)=\tfrac{1}{2}\langle\partial_{\tau,z}^2\widehat{H}(w,t,0)\cdot(\tau,z),(\tau,z)\rangle+\mathcal{O}((\tau,z)^3),
$$

where $\partial_{\tau,z}^2 \widehat{H}$ is the partial Hessian with respect to (τ , *z*). We have

$$
\partial_{\tau,z}^2 \widehat{H} = (\partial_{(\tau,z)} \Phi_1)^T \cdot \nabla_{j(q)}^2 H \cdot (\partial_{(\tau,z)} \Phi_1),
$$

and computing the Hessian matrix amounts to computing $\nabla^2_{j(q)}H$ on the vectors g_j , f_j , and f'_j *j* . If $(Q, P) \in T_{j(q)}\Sigma^{\perp}$, then $P = (\nabla_q A)^{\perp} \cdot Q$ so that, with [\(2-9\),](#page-14-0)

$$
\frac{1}{2} \nabla_{j(q)}^{2} H((Q, P), (Q', P')) = \sum_{k,\ell,i,j=1}^{d} g^{k\ell}(q) (\partial_{k} A_{j} Q_{j} - \partial_{j} A_{k} Q_{j}) (\partial_{\ell} A_{i} Q'_{i} - \partial_{i} A_{\ell} Q'_{i})
$$
\n
$$
= \sum_{k,\ell,i,j} g^{k\ell}(q) B_{kj} Q_{j} B_{\ell i} Q'_{i}.
$$

But $\sum_{k} g^{k\ell} B_{kj} = \boldsymbol{B}_{\ell j}$ (by [\(1-1\)\)](#page-1-1) so

$$
\frac{1}{2}\nabla^2_{j(q)}H((Q, P), (Q', P')) = \sum_{i,j,\ell} B_{\ell i}(\boldsymbol{B}_{\ell j} Q_j) Q'_i = B(\boldsymbol{B} \cdot Q, Q').
$$

In the special case $(Q, P) = f_j$ we have

$$
\frac{1}{2}\nabla_{j(q)}^2 H(f_i, f_j) = \frac{1}{\sqrt{\beta_i \beta_j}} B(\boldsymbol{B}\boldsymbol{u}_i, \boldsymbol{u}_j) = \frac{1}{\sqrt{\beta_i \beta_j}} g(\boldsymbol{B}\boldsymbol{u}_i, \boldsymbol{B}\boldsymbol{u}_j) = \sqrt{\beta_i \beta_j} g(\boldsymbol{v}_i, \boldsymbol{v}_j) = \sqrt{\beta_i \beta_j} \delta_{ij},
$$

and similarly

$$
\frac{1}{2}\nabla_{j(q)}^2 H(f'_i, f'_j) = \sqrt{\beta_i \beta_j} \delta_{ij}, \quad \frac{1}{2}\nabla_{j(q)}^2 H(f_i, f'_j) = 0.
$$

Finally, it remains to prove

$$
\nabla_{j(q)}^2 H(\ell_i, f_j) = \nabla_{j(q)}^2 H(\ell_i, f_j') = 0
$$
\n(2-10)

to conclude that the Hessian of \widehat{H} is

$$
\frac{1}{2}\partial_{\tau,z}^2 \widehat{H}(w,t,0,0) = \begin{pmatrix} \frac{1}{2}\partial_{\tau}^2 \widehat{H}(w,t,0,0) & \beta_1 \\ \beta_2 \vdots & \beta_2 \\ \beta_3 \vdots & \ddots \\ \beta_{n-1} \end{pmatrix}.
$$

Actually, [\(2-10\)](#page-15-0) follows from the identity

$$
L \subset F^{\perp} = (T\Sigma^{\perp})^{\perp H},\tag{2-11}
$$

where \perp *H* denotes the orthogonal with respect to the quadratic form $\nabla^2 H$ (which is different from the symplectic orthogonal \perp). Indeed, to prove [\(2-11\)](#page-15-1) note that

$$
(Q, P) \in (T\Sigma^{\perp})^{\perp H} \implies \nabla^2 H((Q, P), (Q', (\nabla_q A)^T \cdot Q')) = 0 \text{ for all } Q' \in \mathbb{R}^d
$$

\n
$$
\implies \sum_{k,\ell,j} g^{k\ell} (P_k - \nabla_q A_k \cdot Q) B_{\ell j} Q'_j = 0 \text{ for all } Q' \in \mathbb{R}^d
$$

\n
$$
\implies \sum_{k,j} (P_k - \nabla_q A_k \cdot Q) B_{kj} Q'_j = 0 \text{ for all } Q' \in \mathbb{R}^d
$$

\n
$$
\implies \langle P - \nabla_q A \cdot Q, B Q' \rangle = 0 \text{ for all } Q' \in \mathbb{R}^d
$$

\n
$$
\implies \langle P, B Q' \rangle - \langle Q, (\nabla_q A)^T \cdot B Q' \rangle = 0 \text{ for all } Q' \in \mathbb{R}^d
$$

\n
$$
\implies \omega((Q, P), (B Q', (\nabla_q A)^T \cdot B Q')) = 0 \text{ for all } Q' \in \mathbb{R}^d,
$$

and we have

$$
F = \{ (V : (\nabla_q A)^T V), V \in \text{span}(\boldsymbol{u}_1, \boldsymbol{v}_1, \dots, \boldsymbol{u}_s, \boldsymbol{v}_s) \}
$$

= \{ (\boldsymbol{B} Q : (\nabla_q A)^T \boldsymbol{B} Q), Q \in \mathbb{R}^d \},

because the vectors u_j , v_j span the range of \bm{B} . Hence we find

$$
(Q, P) \in (T\Sigma^{\perp})^{\perp H} \iff (Q, P) \in F^{\perp}.
$$

3. Construction of the normal form \mathcal{N}_\hbar

3A. *Formal series.* Define $U = U'_1 \cap \Sigma' \subset \mathbb{R}_{(w,t)}^{2s+k} \times \{0\}$. We construct the Birkhoff normal form in the space

$$
\mathcal{E}_1 = \mathcal{C}^{\infty}(U)[[x, \xi, \tau, \hbar]].
$$

It is a space of formal series in (x, ξ, τ, \hbar) with coefficients smoothly depending on (w, t) . We see these formal series as Taylor series of symbols, which we quantize using the Weyl quantization. Given an h -pseudodifferential operator $A_h = \text{Op}_h^w a_h$ (with symbol a_h admitting an expansion in powers of h in some standard class), we denote by $[a_{\hbar}]$ or $\sigma^T(A_{\hbar})$ the Taylor series of a_{\hbar} with respect to (x, ξ, τ) at $(x, \xi, \tau) = 0$. Conversely, given a formal series $\rho \in \mathcal{E}_1$, we can find a bounded symbol a_{\hbar} such that $[a_{\hbar}] = \rho$. This symbol is not uniquely defined, but any two such symbols differ by $\mathcal{O}((x, \xi, \hbar)^{\infty})$, uniformly with respect to $(w, t) \in U$.

Remark 3.1. We prove below that the eigenfunctions of \mathcal{L}_\hbar are microlocalized, where $(w, t) \in U$ and $|(x,\xi)| \lesssim \hbar^{1/2}$, so that the remainders $\mathcal{O}((x,\xi,\hbar)^\infty)$ are negligible.

• In order to make operations on Taylor series compatible with the Weyl quantization, we endow \mathcal{E}_1 with the Weyl–Moyal product ★, defined by $Op_{\hbar}^w(a) Op_{\hbar}^w(b) = Op_{\hbar}^w(a \star b)$. This product satisfies

$$
a_1 \star a_2 = \sum_{k=0}^N \frac{1}{k!} \left(\frac{\hbar}{2i} \Box \right)^k a_1(w, t, \tau, z) a_2(w', t', \tau', z') |_{w'=w, t'=t, \tau'= \tau, z'=z} + \mathcal{O}(\hbar^N),
$$

where

$$
\Box = \sum_{j=1}^s (\partial_{\eta_j} \partial_{y'_j} - \partial_{y_j} \partial_{\eta'_j}) + \sum_{j=1}^s (\partial_{\xi_j} \partial_{x'_j} - \partial_{x_j} \partial_{\xi'_j}) + \sum_{j=1}^k (\partial_{\tau_j} \partial_{t'_j} - \partial_{t_j} \partial_{\tau'_j}).
$$

Note that to define such a product it is necessary to assume that our formal series depend smoothly on (w, *t*).

• The degree of a monomial is

$$
\deg(x^{\alpha}\xi^{\alpha'}\tau^{\alpha''}\hbar^{\ell}) = |\alpha| + |\alpha'| + |\alpha''| + 2\ell. \tag{3-1}
$$

We denote by \mathcal{D}_N the $\mathcal{C}^{\infty}(U)$ -module spanned by monomials of degree *N*, and

$$
\mathcal{O}_N = \bigoplus_{n \ge N} \mathcal{D}_N,\tag{3-2}
$$

which satisfies

$$
\mathcal{O}_{N_1}\star\mathcal{O}_{N_2}\subset\mathcal{O}_{N_1+N_2}.
$$

If $\rho_1, \rho_2 \in \mathcal{E}_1$, we denote their commutator by

$$
[\rho_1, \rho_2] = \mathrm{ad}_{\rho_1} \, \rho_2 = \rho_1 \star \rho_2 - \rho_2 \star \rho_1,
$$

and we have the formula

$$
[\rho_1, \rho_2] = 2 \sinh\left(\frac{\hbar}{2i}\Box\right) \rho_1 \rho_2. \tag{3-3}
$$

In particular,

for all
$$
\rho_1 \in \mathcal{O}_{N_1}
$$
, for all $\rho_2 \in \mathcal{O}_{N_2}$, $\frac{i}{\hbar}[\rho_1, \rho_2] \in \mathcal{O}_{N_1+N_2-2}$,

and $(i/h)[\rho_1, \rho_2] = {\rho_1, \rho_2} + \mathcal{O}(\hbar^2)$. The Birkhoff normal form algorithm is based on the following lemma. We recall the definition [\(1-5\)](#page-5-2) of *r*1.

Lemma 3.2. *For* $1 \le j \le s$, *define* $z_j = x_j + i\xi_j$ *and* $|z_j|^2 = x_j^2 + \xi_j^2$.

(1) *Every series* $\rho \in \mathcal{E}_1$ *satisfies*

$$
\frac{i}{\hbar} \, \mathrm{ad}_{|z_j|^2} \, \rho = \{ |z_j|^2, \, \rho \}.
$$

(2) *Let* $0 \leq N < r_1$ *. For every* $R_N \in \mathcal{D}_N$ *, there exist* ρ_N *,* $K_N \in \mathcal{D}_N$ *such that*

$$
R_N = K_N + \sum_{j=1}^{s} \hat{\beta}_j(w, t) \frac{i}{\hbar} \operatorname{ad}_{|z_j|^2} \rho_N
$$

and $[K_N, |z_j|^2] = 0$ *for* $1 \le j \le s$.

(3) If $K \in \mathcal{E}_1$, then $[K, |z_j|^2] = 0$ for all $1 \leq j \leq s$ if and only if there exists a formal series $F \in$ $\mathcal{C}^{\infty}(U)[\![I_1, \ldots, I_s, \tau, \hbar]\!]$ such that

$$
K = F(|z_1|^2, \ldots, |z_s|^2, \tau, \hbar).
$$

Proof. The first statement is a simple computation. For the second and the third, it suffices to consider monomials $R_N = c(w, t) z^{\alpha} \overline{z}^{\alpha'} \tau^{\alpha''} \hbar^{\ell}$. Note that

$$
\mathrm{ad}_{|z_j|^2}(c(w,t)z^{\alpha}\overline{z}^{\alpha'}\tau^{\alpha''}\hbar^{\ell})=(\alpha_j'-\alpha_j)c(w,t)z^{\alpha}\overline{z}^{\alpha'}\tau^{\alpha''}\hbar^{\ell},
$$

1610 LÉO MORIN

so that R_N commutes with every $|z_j|^2$ ($1 \le j \le s$) if and only if $\alpha = \alpha'$, which amounts to saying that R_N is a function of $|z_j|^2$ and proves (3). Moreover,

$$
\sum_j \hat{\beta}_j \operatorname{ad}_{|z_j|^2}(z^{\alpha} \overline{z}^{\alpha'} \tau^{\alpha''} h^{\ell}) = \langle \alpha' - \alpha, \hat{\beta} \rangle z^{\alpha} \overline{z}^{\alpha'} \tau^{\alpha''} h^{\ell},
$$

where $\langle \gamma, \hat{\beta} \rangle = \sum_{j=1}^{s} \gamma_j \hat{\beta}_j(w, t)$. Under the assumption $|\alpha| + |\alpha'| + |\alpha''| + 2\ell < r_1$, we have $|\alpha - \alpha'| < r_1$ and by the definition of r_1 the function $\langle \alpha' - \alpha, \hat{\beta}(w, t) \rangle$ cannot vanish for $(w, t) \in U$, unless $\alpha = \alpha'$. If $\alpha = \alpha'$, we choose $\rho_N = 0$ and $R_N = K_N$ commutes with $|z_j|^2$. If $\alpha \neq \alpha'$, we choose $K_N = 0$ and

$$
\rho_N = \frac{c(w,t)}{\langle \alpha' - \alpha, \hat{\beta}(w,t) \rangle} z^{\alpha} \overline{z}^{\alpha'} \tau^{\alpha''} \hbar^{\ell},
$$

and this proves (2). \Box

3B. *Formal Birkhoff normal form.* In this section we construct the Birkhoff normal form at a formal level. We will work with the Taylor series of the symbol *H* of \mathcal{L}_\hbar , in the new coordinates Φ_1 . According to [Theorem 1.4,](#page-4-0) $\hat{H} = H \circ \Phi_1$ defines a formal series

$$
[\widehat{H}] = H_2 + \sum_{k \ge 3} H_k,
$$

where $H_k \in \mathcal{D}_k$ and

$$
H_2 = \langle M(w, t)\tau, \tau \rangle + \sum_{j=1}^s \hat{\beta}_j(w, t) |z_j|^2.
$$
 (3-4)

At a formal level, the normal form can be stated as follows.

Theorem 3.3. *For every* $\gamma \in \mathcal{O}_3$ *, there are* κ *,* $\rho \in \mathcal{O}_3$ *such that*

$$
e^{(i/\hbar) \operatorname{ad}_{\rho}} (H_2 + \gamma) = H_2 + \kappa + \mathcal{O}_{r_1},
$$

where κ *is a function of harmonic oscillators*:

$$
\kappa = F(|z_1|^2, \ldots, |z_s|^2, \tau, \hbar), \quad \text{with some } F \in C^\infty(U)[\![I_1, \ldots, I_s, \tau, \hbar]\!].
$$

Moreover, if γ *has real-valued coefficients, then so do* ρ *,* κ *and the remainder* \mathcal{O}_{r_1} *.*

(*i*/[−]

Proof. We prove this by induction on an integer $N \geq 3$. Assume that we found $\rho_{N-1}, K_3, \ldots, K_{N-1} \in \mathcal{O}_3$, with $[K_i, |z_j|^2] = 0$ for every (i, j) and $K_i \in \mathcal{D}_i$ such that

$$
e^{(i/\hbar) \operatorname{ad}_{\rho_{N-1}}}(H_2 + \gamma) = H_2 + K_3 + \cdots + K_{N-1} + \mathcal{O}_N.
$$

Rewriting the remainder as $R_N + \mathcal{O}_{N+1}$, with $R_N \in \mathcal{D}_N$, we have

$$
e^{(i/\hbar) \operatorname{ad}_{\rho_{N-1}}}(H_2 + \gamma) = H_2 + K_3 + \cdots + K_{N-1} + R_N + \mathcal{O}_{N+1}.
$$

We are looking for a $\rho' \in \mathcal{O}_N$. For such a ρ' we apply $e^{(i/\hbar) \, \text{ad}_{\rho'}}$:

$$
e^{(i/\hbar) \operatorname{ad}_{\rho_{N-1}+\rho'}(H_2+\gamma)} = e^{(i/\hbar) \operatorname{ad}_{\rho'}(H_2+K_3+\cdots+K_{N-1}+R_N+\mathcal{O}_{N+1})}.
$$

Since (i/\hbar) ad_{ρ'} : $\mathcal{O}_k \to \mathcal{O}_{k+N-2}$ we have

$$
e^{(i/\hbar) \operatorname{ad}_{\rho_{N-1}+\rho'}(H_2+\gamma)} = H_2 + K_3 + \dots + K_{N-1} + R_N + \frac{i}{\hbar} \operatorname{ad}_{\rho'}(H_2) + \mathcal{O}_{N+1}.
$$
 (3-5)

The new term (i/\hbar) ad_{ρ'} $(H_2) = -(i/\hbar)$ ad_{H_2} (ρ') can still be simplified. Indeed by [\(3-4\),](#page-18-1)

$$
\frac{i}{\hbar} \operatorname{ad}_{H_2}(\rho') = \frac{i}{\hbar} [\langle M(w, t)\tau, \tau \rangle, \rho'] + \sum_{j=1}^s \Big(\hat{\beta}_j \frac{i}{\hbar} [|z_j|^2, \rho'] + |z_j|^2 \frac{i}{\hbar} [\hat{\beta}_j, \rho'] \Big), \tag{3-6}
$$

with

$$
\frac{i}{\hbar}[\hat{\beta}_j, \rho'] = \sum_{i=1}^s \left(\frac{\partial \hat{\beta}_j}{\partial y_i} \frac{\partial \rho'}{\partial \eta_i} - \frac{\partial \hat{\beta}_j}{\partial \eta_i} \frac{\partial \rho'}{\partial y_i} \right) + \sum_{i=1}^k \frac{\partial \hat{\beta}_j}{\partial t_i} \frac{\partial \rho'}{\partial \tau_i} + \mathcal{O}_{N-1} = \mathcal{O}_{N-1},
$$

because a derivation with respect to (y, η, t) does not decrease the degree. Similarly,

$$
\frac{i}{\hbar}[\langle M(w,t)\tau,\tau\rangle,\rho']=\sum_{j=1}^k\Bigl(\langle\partial_{t_j}M(w,t)\tau,\tau\rangle\frac{\partial\rho'}{\partial\tau_j}-\frac{\partial\langle M(w,t)\tau,\tau\rangle}{\partial\tau_j}\frac{\partial\rho'}{\partial t_j}\Bigr)+\mathcal{O}_{N+1}=\mathcal{O}_{N+1},
$$

and thus [\(3-6\)](#page-19-2) becomes

$$
\frac{i}{\hbar} \, \mathrm{ad}_{H_2}(\rho') = \sum_{j=1}^s \Big(\hat{\beta}_j \frac{i}{\hbar} \, \mathrm{ad}_{|z_j|^2}(\rho') \Big) + \mathcal{O}_{N+1}.
$$

Using this formula in $(3-5)$ we get

$$
e^{(i/\hbar) \operatorname{ad}_{\rho_{N-1}+\rho'}(H_2+\gamma)} = H_2 + K_3 + \cdots + K_{N-1} + R_N - \sum_{j=1}^s \hat{\beta}_j \frac{i}{\hbar} \operatorname{ad}_{|z_j|^2}(\rho') + \mathcal{O}_{N+1}.
$$

Thus, we are looking for K_N , $\rho' \in \mathcal{D}_N$ such that

$$
R_N = K_N + \sum_{j=1}^s \hat{\beta}_j \frac{i}{\hbar} \, \text{ad}_{|z_j|^2}(\rho'),
$$

with $[K_N, |z_j|^2] = 0$. By [Lemma 3.2,](#page-17-0) we can solve this equation provided $N < r_1$, and this concludes the proof. Moreover, (i/\hbar) ad_{|*z_j*|2 is a real endomorphism, so we can solve this equation on R. □}

3C. *Quantizing the normal form.* We now construct the normal form \mathcal{N}_h , quantizing Theorems [1.4](#page-4-0) and [3.3.](#page-18-2) We denote by $\mathcal{I}_h^{(j)}$ the harmonic oscillator with respect to x_j , defined by

$$
\mathcal{I}_{\hbar}^{(j)} = \text{Op}_{\hbar}^{w}(\xi_{j}^{2} + x_{j}^{2}) = -\hbar^{2} \frac{\partial^{2}}{\partial x_{j}^{2}} + x_{j}^{2}.
$$

We prove the following theorem.

Theorem 3.4. *There exist*

- (1) *a microlocally unitary operator* U_h : $L^2(\mathbb{R}^d_{x,y,t})$ → $L^2(M)$ *quantizing a symplectomorphism* $\tilde{\Phi}_1$ = $\Phi_1 + \mathcal{O}((x, \xi, \tau)^2)$, *microlocally on* $U'_1 \times U_1$,
- (2) *a function* f_1^{\star} : $\mathbb{R}_{y,\eta,t,\tau}^{2s+2k} \times \mathbb{R}_I^s \times [0,1]$ *which is* C^{∞} *with compact support such that*

$$
f_1^{\star}(y, \eta, t, \tau, I, \hbar) \leq C((|I| + \hbar)^2 + |\tau|(|I| + \hbar) + |\tau|^3),
$$

(3) an \hbar -pseudodifferential operator \mathcal{R}_{\hbar} , whose symbol is $\mathcal{O}((x,\xi,\tau,\hbar^{1/2})^{r_1})$ on U'_1 ,

such that

 $U_{\hbar}^* \mathcal{L}_{\hbar} U_{\hbar} = \mathcal{N}_{\hbar} + \mathcal{R}_{\hbar},$

with

$$
\mathcal{N}_{\hbar} = \mathrm{Op}_{\hbar}^w \langle M(w, t) \tau, \tau \rangle + \sum_{j=1}^s \mathcal{I}_{\hbar}^{(j)} \mathrm{Op}_{\hbar}^w \hat{\beta}_j(w, t) + \mathrm{Op}_{\hbar}^w f_1^{\star}(y, \eta, t, \tau, \mathcal{I}_{\hbar}^{(j)}, \ldots, \mathcal{I}_{\hbar}^{(s)}, \hbar).
$$

Remark 3.5. U_h is a Fourier integral operator quantizing the symplectomorphism $\tilde{\Phi}_1$; see [\[Martinez 2002;](#page-40-14) [Zworski 2012\]](#page-40-15). In particular, if A_{\hbar} is a pseudodifferential operator on *M* with symbol $a_{\hbar} = a_0 + \mathcal{O}(\hbar^2)$, then $U_{\hbar}^* A_{\hbar} U_{\hbar}$ is a pseudodifferential operator on \mathbb{R}^d with symbol

$$
\sigma_{\hbar} = a_0 \circ \tilde{\Phi}_1 + \mathcal{O}(\hbar^2) \quad \text{on } U_1'.
$$

Remark 3.6. Due to the parameters (y, η, t, τ) in the formal normal form, an additional quantization is needed, hence the Op^w_h^{*}₁^{*}-term. It is a quantization with respect to (y, η, t, τ) of an operator-valued symbol $f_1^*(y, \eta, t, \tau, \mathcal{I}_h^{(1)}, \ldots, \mathcal{I}_h^{(s)})$. Actually, this operator symbol is simple since one can diagonalize it explicitly. Denoting by $h_{n_j}^j(x_j)$ the n_j -th eigenfunction of $\mathcal{I}_h^{(j)}$, associated to the eigenvalue $(2n_j - 1)\hbar$, we have for all $n \in \mathbb{N}^s$

$$
f_1^{\star}(y, \eta, t, \tau, \mathcal{I}_h^{(1)}, \ldots, \mathcal{I}_h^{(s)}, \hbar)h_n(x) = f_1^{\star}(y, \eta, \tau, (2n-1)\hbar, \hbar)h_n(x),
$$

where $h_n(x) = h_{n_1}^1(x_1) \cdots h_{n_s}^s(x_s)$. Thus the operator Op_h^{*n*} f_1^{\star} satisfies, for $u \in L^2(\mathbb{R}_{y,t}^{s+k})$ $\binom{s+\kappa}{(y,t)},$

$$
(\operatorname{Op}_{\hbar}^w f_1^{\star})u \otimes h_n = \left(\operatorname{Op}_{\hbar}^w f_1^{\star}(y, \eta, t, \tau, (2n-1)\hbar, \hbar)u\right) \otimes h_n.
$$

Proof. In order to prove [Theorem 3.4,](#page-19-0) we first quantize [Theorem 1.4.](#page-4-0) Using the Egorov theorem, there exists a microlocally unitary operator $V_{\hbar}: L^2(\mathbb{R}^d) \to L^2(M)$ quantizing the symplectomorphism $\Phi_1: U'_1 \to U_1$. Thus,

$$
V_{\hbar}^* \mathcal{L}_{\hbar} V_{\hbar} = \mathrm{Op}^w_{\hbar}(\sigma_{\hbar})
$$

for some symbol σ_{\hbar} such that

$$
\sigma_{\hbar} = \widehat{H} + \mathcal{O}(\hbar^2) \quad \text{on } U_1'.
$$

Then we use the following lemma to quantize the formal normal form and conclude. \Box

Lemma 3.7. *There exists a bounded pseudodifferential operator* \mathcal{Q}_\hbar *with compactly supported symbol such that*

$$
e^{(i/\hbar)\mathcal{Q}_{\bar{h}}}\operatorname{Op}_{\hbar}^w(\sigma_{\hbar})e^{-(i/\hbar)\mathcal{Q}_{\bar{h}}}=\mathcal{N}_{\hbar}+\mathcal{R}_{\hbar},
$$

where N[−] *^h and* R[−] *^h satisfy the properties stated in [Theorem 3.4.](#page-19-0)*

Remark 3.8. As explained below, the principal symbol *Q* of Q_h is $\mathcal{O}((x, \xi, \tau)^3)$. Thus, the symplectic flow φ_t associated to the Hamiltonian *Q* is $\varphi_t(x, \xi, \tau) = (x, \xi, \tau) + \mathcal{O}((x, \xi, \tau)^2)$. Moreover, the Egorov theorem implies that $e^{-(i/\hbar)\mathcal{Q}_{\bar{h}}}$ quantizes the symplectomorphism φ_1 . Hence, $V_{\hbar}e^{-(i/\hbar)\mathcal{Q}_{\bar{h}}}$ quantizes the symplectomorphism $\tilde{\Phi}_1 = \Phi_1 \circ \varphi_1 = \Phi_1 + \mathcal{O}((x, \xi, \tau)^2)$.

Proof. The proof of this lemma follows the exact same lines as in the case $k = 0$ [\[Morin 2022b,](#page-40-3) Theorem 4.1]. Let us recall the main arguments. The symbol σ_{\hbar} is equal to $\widehat{H} + \mathcal{O}(\hbar^2)$ on U'_1 $\frac{7}{1}$. Thus, its associated formal series is $[\sigma_{\hbar}] = H_2 + \gamma$ for some $\gamma \in \mathcal{O}_3$. Using the Birkhoff normal form algorithm [\(Theorem 3.3\)](#page-18-2), we get κ , $\rho \in \mathcal{O}_3$ such that

$$
e^{(i/\hbar) \operatorname{ad}_{\rho}} (H_2 + \gamma) = H_2 + \kappa + \mathcal{O}_{r_1}.
$$

If Q_{\hbar} is a smooth compactly supported symbol with Taylor series $[Q_{\hbar}] = \rho$, then by the Egorov theorem the operator

$$
e^{i\hbar^{-1}\operatorname{Op}_{\hbar}^w Q_{\hbar}}\operatorname{Op}_{\hbar}^w(\sigma_{\hbar})e^{-i\hbar^{-1}\operatorname{Op}_{\hbar}^w Q_{\hbar}}
$$
(3-7)

has a symbol with Taylor series $H_2 + \kappa + \mathcal{O}_{r_1}$. Since κ commutes with the oscillator $|z_j|^2$, it can be written as

$$
\kappa = \sum_{2|\alpha|+|\alpha'|+2\ell\geq 3} c_{\alpha\alpha'\ell}(w,t) |z_1|^{2\alpha_1} \cdots |z_s|^{2\alpha_s} \tau_1^{\alpha'_1} \cdots \tau_k^{\alpha'_k} \hbar^{\ell}.
$$

We can reorder this formal series using the monomials $(|z_j|^2)^{*\alpha_j} = |z_j|^2 * \cdots * |z_j|^2$:

$$
\kappa = \sum_{2|\alpha|+|\alpha'|+2\ell\geq 3} c^{\star}_{\alpha\alpha'\ell}(w,t)(|z_1|^2)^{\star\alpha_1}\cdots(|z_s|^2)^{\star\alpha_s} \tau_1^{\alpha'_1}\cdots \tau_k^{\alpha'_k}h^{\ell}.
$$

If f_1^* is a smooth compactly supported function with Taylor series

$$
[f_1^{\star}] = \sum_{2|\alpha|+|\alpha'|+2\ell \geq 3} c^{\star}_{\alpha\alpha'\ell}(w,t)I_1^{\alpha_1} \cdots I_s^{\alpha_s} \tau_1^{\alpha'_1} \cdots \tau_k^{\alpha'_k}h^{\ell},
$$

then the operator $(3-7)$ is equal to

$$
\mathcal{N}_{\hbar} = \mathrm{Op}_{\hbar}^w H_2 + \mathrm{Op}_{\hbar}^w f_1^{\star}(y, \eta, t, \tau, \mathcal{I}_{\hbar}^{(1)}, \ldots, \mathcal{I}_{\hbar}^{(s)}, \hbar)
$$

modulo \mathcal{O}_{r_1} . . □

4. Comparing the spectra of \mathcal{L}_\hbar and \mathcal{N}_\hbar

4A. *Spectrum of* N[−] *^h.* In this section we describe the spectral properties of N[−] *^h*. We can use the properties of harmonic oscillators to diagonalize it in the following way. For $1 \le j \le s$ and $n_j \ge 1$, we recall that the *n_j*-th Hermite function $h_{n_j}^j(x_j)$ is an eigenfunction of $\mathcal{I}_h^{(j)}$,

$$
\mathcal{I}_{\hbar}^{(j)} h_{n_j}^j = \hbar (2n_j - 1) h_{n_j}^j,
$$

and the functions $(h_n)_{n \in \mathbb{N}^s}$ defined by

$$
h_n(x) = h_{n_1}^1 \otimes \cdots \otimes h_{n_s}^s(x) = h_{n_1}^1(x_1) \cdots h_{n_s}^s(x_s)
$$

form a Hilbertian basis of $L^2(\mathbb{R}^s_x)$. Thus, we can use this basis to decompose the space $L^2(\mathbb{R}^{2s+k}_{x,y,t})$ on which \mathcal{N}_{\hbar} acts:

$$
L^{2}(\mathbb{R}^{2s+k}) = \bigoplus_{n \in \mathbb{N}^s} (L^{2}(\mathbb{R}^{s+k}_{y,t}) \otimes h_n).
$$

 \mathcal{N}_h preserves this decomposition and

$$
\mathcal{N}_{\hbar} = \bigoplus_{n \in \mathbb{N}^s} \mathcal{N}_{\hbar}^{[n]},
$$

where $\mathcal{N}_h^{[n]}$ is the pseudodifferential operator with symbol

$$
N_{\hbar}^{[n]} = \langle M(w, t)\tau, \tau \rangle + \sum_{j=1}^{s} \hat{\beta}_{j}(w, t)(2n_{j} + 1)\hbar + f_{1}^{\star}(w, t, \tau, (2n - 1)\hbar, \hbar). \tag{4-1}
$$

In particular, the spectrum of \mathcal{N}_{\hbar} is given by

$$
\mathrm{sp}(\mathcal{N}_{\hbar})=\bigcup_{n\in\mathbb{N}^s}\mathrm{sp}(\mathcal{N}_{\hbar}^{[n]}).
$$

Moreover, as in the $k = 0$ case, for any $b_1 > 0$ there is an $N_{\text{max}} > 0$ (independent of \hbar) such that

$$
\mathrm{sp}(\mathcal{N}_{\hbar}) \cap (-\infty, b_1 \hbar) = \bigcup_{|n| \leq N_{\max}} \mathrm{sp}(\mathcal{N}_{\hbar}^{[n]}) \cap (-\infty, b_1 \hbar).
$$

The reason is that the symbol $N_{\hbar}^{[n]}$ is greater than $b_1\hbar$ for *n* large enough. Finally, to prove our main result, [Theorem 1.7,](#page-5-1) it remains to compare the spectra of \mathcal{L}_h and \mathcal{N}_h .

4B. *Microlocalization of the eigenfunctions.* Here we prove microlocalization results for the eigenfunctions of \mathcal{L}_\hbar and \mathcal{N}_\hbar . These results are needed to show that the remainders $\mathcal{O}((x, \xi, \tau)^{r_1})$ we got are small. More precisely, for each operator we need to prove that the eigenfunctions are microlocalized

- inside Ω (space localization),
- where $|(x,\xi,\tau)| \lesssim \hbar^{\delta}$ for $\delta \in (0,\frac{1}{2})$ $\frac{1}{2}$) (i.e., close to Σ).

Fix \tilde{b}_1 such that

$$
K_{\tilde{b}_1} = \{q \in M : b(q) \le \tilde{b}_1\} \subseteq \Omega.
$$

Lemma 4.1 (space localization for \mathcal{L}_h). Let $b_1 \in (b_0, \tilde{b}_1)$ and $\chi_0 \in C_0^{\infty}(M)$ be a cutoff function such that $\chi_0 = 1$ *on* $K_{\tilde{b}_1}$. Then every normalized eigenfunction ψ_h of \mathcal{L}_h associated with an eigenvalue $\lambda_h \le b_1 h$ *satisfies*

$$
\psi_{\hbar} = \chi_0 \psi_{\hbar} + \mathcal{O}(\hbar^{\infty}),
$$

where the $\mathcal{O}(\hbar^{\infty})$ *is independent of* $(\lambda_{\hbar}, \psi_{\hbar})$ *.*

Proof. This follows from the Agmon estimates,

$$
||e^{d(q,K_{\tilde{b}_1})\hbar^{-1/4}}\psi_{\hbar}|| \leq C ||\psi_{\hbar}||^2, \tag{4-2}
$$

as in the $k = 0$ case (in [\[Morin 2022b\]](#page-40-3)). Indeed, from $(4-2)$ we deduce

$$
||(1 - \chi_0)\psi|| \leq Ce^{-\varepsilon \hbar^{-1/4}} \|\psi_{\hbar}\|,
$$

as soon as $\chi_0 = 1$ on an ε -neighborhood of $K_{\tilde{b}_1}$

. □

Lemma 4.2 (microlocalization near Σ for \mathcal{L}_{\hbar}). Let $\delta \in (0, \frac{1}{2})$ $(\frac{1}{2}), b_1 \in (b_0, \tilde{b}_1)$ and $\chi_1 \in C^\infty(T^*M)$ be a *cutoff function equal to* 1 *on a neighborhood of* 6*. Then every eigenfunction* ψ[−] *^h of* L[−] *^h associated with an eigenvalue* λ[−] *^h* ≤ *b*¹ − *h satisfies*

$$
\psi_{\hbar} = \mathrm{Op}_{\hbar}^w \, \chi_1(\hbar^{-\delta}(q, p)) \psi_{\hbar} + \mathcal{O}(\hbar^{\infty}) \psi_{\hbar},
$$

where the $\mathcal{O}(\hbar^{\infty})$ *is in the space of bounded operators* $\mathcal{L}(L^2, L^2)$ *and independent of* $(\lambda_{\hbar}, \psi_{\hbar})$ *.*

Proof. Let $g_h \in C_0^\infty(\mathbb{R})$ be such that

$$
g_{\hbar}(\lambda) = \begin{cases} 1 & \text{if } \lambda \leq b_1 \hbar, \\ 0 & \text{if } \lambda \geq \tilde{b}_1 \hbar. \end{cases}
$$

Then the eigenfunction ψ_{\hbar} satisfies

$$
\psi_h = g_h(\lambda_h)\psi_h = g_h(\mathcal{L}_h)\psi_h.
$$

With the notation $\chi = 1 - \chi_1$, we will prove that

$$
\|\mathrm{Op}_{\hbar}^w \chi(\hbar^{-\delta}(q, p))g_{\hbar}(\mathcal{L}_{\hbar})\|_{\mathcal{L}(L^2, L^2)} = \mathcal{O}(\hbar^{\infty}),\tag{4-3}
$$

from which will follow $\psi_{\hbar} = \text{Op}_{\hbar}^w \chi_1(\hbar^{-\delta}(q, p)) \psi_{\hbar} + \mathcal{O}(\hbar^{\infty}) \psi_{\hbar}$, uniformly with respect to $(\lambda_{\hbar}, \psi_{\hbar})$.

To lighten the notation, we define $\chi^w := \text{Op}_{\hbar}^w \chi(\hbar^{-\delta}(q, p))$. For every $\psi \in L^2(M)$ we define $\varphi =$ $g_{\hbar}(\mathcal{L}_{\hbar})\psi$. Then,

$$
\langle \mathcal{L}_{\hbar} \chi^{w} \varphi, \chi^{w} \varphi \rangle = \langle \chi^{w} \mathcal{L}_{\hbar} \varphi, \chi^{w} \varphi \rangle + \langle [\mathcal{L}_{\hbar}, \chi^{w}] \varphi, \chi^{w} \varphi \rangle. \tag{4-4}
$$

We will bound from above the right-hand side, and from below the left-hand side. First, since $g_{\hbar}(\lambda)$ is supported where $\lambda \leq \tilde{b}_1 \hbar$, we have

$$
\langle \chi^w \mathcal{L}_\hbar \varphi, \chi^w \varphi \rangle \le \tilde{b}_1 \hbar \| \chi^w \varphi \|^2. \tag{4-5}
$$

Moreover, the commutator [\mathcal{L}_h , χ^w] is a pseudodifferential operator of order h , with symbol supported on supp χ . Hence, if χ is a cutoff function having the same general properties of χ , such that $\chi = 1$ on supp χ , we have

$$
\langle [\mathcal{L}_\hbar, \chi^w] \varphi, \chi^w \varphi \rangle \le C \hbar \| \underline{\chi}^w \varphi \| \| \chi^w \varphi \|.
$$
 (4-6)

Finally, the symbol of χ^w is equal to 0 on an \hbar^{δ} -neighborhood of Σ , and thus the symbol $|p - A(q)|^2$ of \mathcal{L}_{\hbar} is $\geq c\hbar^{2\delta}$ on the support of χ^w . Hence the Gårding inequality yields

$$
\langle \mathcal{L}_{\hbar} \chi^w \varphi, \chi^w \varphi \rangle \ge c \hbar^{2\delta} \| \chi^w \varphi \|^2. \tag{4-7}
$$

Using this last inequality in $(4-4)$, and bounding the right-hand side with $(4-5)$ and $(4-6)$ we find

$$
c\hbar^{2\delta}\|\chi^w\varphi\|^2 \leq \tilde{b}_1\hbar\|\chi^w\varphi\|^2 + C\hbar\|\underline{\chi}^w\varphi\|\|\chi^w\varphi\|,
$$

and we deduce that

$$
\|\chi^w\varphi\|\leq C\hbar^{1-2\delta}\|\underline{\chi}^w\varphi\|.
$$

Iterating with $χ$ instead of $χ$, we finally get, for arbitrarily large $N > 0$,

$$
\|\chi^w\varphi\|\leq C_N\hbar^N\|\varphi\|.
$$

This is true for every ψ , with $\varphi = g_h(\mathcal{L}_h)\psi$, and thus $\|\chi^w g_h(\mathcal{L}_h)\| = \mathcal{O}(\hbar^{\infty})$.

1616 LÉO MORIN

Lemma 4.3 (microlocalization near Σ for \mathcal{N}_{\hbar}). Let $\delta \in (0, \frac{1}{2})$ $(\frac{1}{2}), b_1 \in (b_0, \tilde{b}_1) \text{ and } \chi_1 \in C_0^{\infty}(\mathbb{R}^{2s+k}_{x,\xi,\tau}) \text{ be a}$ *cutoff function equal to* 1 *on a neighborhood of* 0*. Then every eigenfunction* ψ[−] *^h of* N[−] *^h associated with an eigenvalue* λ[−] *^h* ≤ *b*¹ − *h satisfies*

$$
\psi_{\hbar} = \mathrm{Op}^w_{\hbar} \ \chi_1(\hbar^{-\delta}(x,\xi,\tau)) + \mathcal{O}(\hbar^{\infty}) \psi_{\hbar},
$$

where the $\mathcal{O}(\hbar^{\infty})$ *is in* $\mathcal{L}(L^2, L^2)$ *and independent of* $(\lambda_{\hbar}, \psi_{\hbar})$ *.*

Proof. Just as in the previous lemma, it is enough to show that

$$
\|\chi^w g_\hbar(\mathcal{N}_\hbar)\| = \mathcal{O}(\hbar^\infty),
$$

where $\chi^w = \text{Op}_{\hbar}^w (1 - \chi_1(\hbar^{-\delta}(x, \xi, \tau)))$. We prove this using the same method. If $\psi \in L^2(\mathbb{R}^d)$ and $\varphi = g_{\hbar}(\mathcal{N}_{\hbar})\psi,$

$$
\langle \mathcal{N}_{\hbar} \chi^w \varphi, \chi^w \varphi \rangle = \langle \chi^w \mathcal{N}_{\hbar} \varphi, \chi^w \varphi \rangle + \langle [\mathcal{N}_{\hbar}, \chi^w] \varphi, \chi^w \varphi \rangle. \tag{4-8}
$$

The right-hand side can be bounded from above as before. On the left-hand side we find $\varepsilon > 0$ such that

$$
\langle \mathcal{N}_h \chi^w \varphi, \chi^w \varphi \rangle \ge (1 - \varepsilon) \langle \mathcal{H}_2 \chi^w \varphi, \chi^w \varphi \rangle, \tag{4-9}
$$

with $\mathcal{H}_2 = \text{Op}_{\hbar}^w(\langle M(w, t)\tau, \tau \rangle + \sum \hat{\beta}_j(w, t) |z_j|^2)$. The symbol of χ^w vanishes on an \hbar^{δ} -neighborhood of $x = \xi = \tau = 0$. Thus we can bound from below the symbol of \mathcal{H}_2 and use the Gårding inequality:

$$
\langle \mathcal{H}_2 \chi^w \varphi, \chi^w \varphi \rangle \geq c \hbar^{2\delta} \| \chi^w \varphi \|^2.
$$

We conclude the proof as in [Lemma 4.2.](#page-22-2) \Box

Lemma 4.4 (space localization for \mathcal{N}_h). Let $b_1 \in (b_0, \tilde{b}_1)$ and $\chi_0 \in C_0^{\infty}(\mathbb{R}^{2s+k}_{y,\eta,t})$ be a cutoff function equal *to* 1 *on a neighborhood of* $\{\hat{b}(y, \eta, t) \leq \tilde{b}_1\}$. Then every eigenfunction ψ_{\hbar} of \mathcal{N}_{\hbar} associated with an $eigenvalue \lambda_{\hbar} \leq b_1 \hbar$ satisfies

$$
\psi_{\hbar} = \mathrm{Op}_{\hbar}^w \chi_0(w, t) \psi_{\hbar} + \mathcal{O}(\hbar^{\infty}) \psi_{\hbar},
$$

where the $\mathcal{O}(\hbar^{\infty})$ *is in* $\mathcal{L}(L^2, L^2)$ *and independent of* $(\lambda_{\hbar}, \psi_{\hbar})$ *.*

Proof. Every eigenfunction of \mathcal{N}_\hbar is given by $\psi_\hbar(x, y, t) = u_\hbar(y, t)h_n(x)$ for some Hermite function h_n with $|n| \leq N_{\text{max}}$ and some eigenfunction u_h of $\mathcal{N}_h^{[n]}$. Thus, it is enough to prove the lemma for the eigenfunctions of $\mathcal{N}_\hbar^{[n]}$. If u_\hbar is such an eigenfunction, associated with an eigenvalue $\lambda_\hbar \leq b_1 \hbar$, then

$$
u_{\hbar}=g_{\hbar}(\mathcal{N}_{\hbar}^{[n]})u_{\hbar}.
$$

We will prove that $\|\chi^w g_h(\mathcal{N}_{h_1}^{[n]})\| = \mathcal{O}(\hbar^{\infty})$, with $\chi^w = \text{Op}_{\hbar}^w(1 - \chi_0)$, which is enough to conclude. If $u \in L^2(\mathbb{R}^{k+s}_{y,t})$ and $\varphi = g_h(\mathcal{N}_h^{(n)})u$, then

$$
\langle \mathcal{N}_\hbar^{[n]} \chi^w \varphi, \chi^w \varphi \rangle = \langle \chi^w \mathcal{N}_\hbar^{[n]} \varphi, \chi^w \varphi \rangle + \langle [\mathcal{N}_\hbar^{[n]}, \chi^w] \varphi, \chi^w \varphi \rangle. \tag{4-10}
$$

We first have the bound

$$
\langle \chi^w \mathcal{N}_{\hbar}^{[n]} \varphi, \chi^w \varphi \rangle \le \tilde{b}_1 \hbar \| \chi^w \varphi \|^2. \tag{4-11}
$$

The commutator $[\mathcal{N}_h^{[n]}, \chi^w]$ is a pseudodifferential operator of order \hbar with symbol supported on supp χ . Moreover, its principal symbol is $\{N_h^{[n]}, \chi\}$. From the definition of $N_h^{[n]}$ we deduce

$$
\langle [\mathcal{N}_\hbar^{[n]}, \chi^w] \varphi, \chi^w \varphi \rangle \leq C \hbar \langle \underline{\chi}^w | \tau |^w \varphi, \chi^w \varphi \rangle,
$$

where χ has the same general properties as χ , and is equal to 1 on supp χ . By [Lemma 4.3,](#page-23-3) we can find a cutoff where $|\tau| \lesssim \hbar^{\delta}$ and we get

$$
\langle [\mathcal{N}_\hbar^{[n]}, \chi^w] \varphi, \chi^w \varphi \rangle \le C \hbar^{1+\delta} \| \underline{\chi}^w \varphi \| \| \chi^w \varphi \|.
$$
 (4-12)

Finally for $\varepsilon > 0$ small enough we have the lower bound

$$
\langle \mathcal{N}_{\hbar}^{[n]} \chi^{w} \varphi, \chi^{w} \varphi \rangle \geq \hbar (\tilde{b}_{1} + \varepsilon) \| \chi^{w} \varphi \|^{2},
$$

because $N_h^{[n]}(w, t) \ge \hbar \hat{b}(w, t)$ and χ vanishes on a neighborhood of $\{\hat{b}(w, t) \le \tilde{b}_1\}$. Using this lower bound in [\(4-10\),](#page-24-0) and bounding the right-hand side with [\(4-11\)](#page-24-1) and [\(4-12\)](#page-25-1) we get

$$
\hbar(\tilde{b}_1+\varepsilon)\|\chi^w\varphi\|^2 \le \hbar\tilde{b}_1\|\chi^w\varphi\|^2 + Ch^{1+\delta}\|\underline{\chi}^w\varphi\|\|\chi^w\varphi\|.\tag{4-13}
$$

Thus

$$
\varepsilon \|\chi^w \varphi\| \leq C \hbar^{\delta} \|\chi^w \varphi\|,
$$

and we can iterate with χ instead of χ to conclude. \Box

4C. *Proof of [Theorem 1.7.](#page-5-1)* To conclude the proof of [Theorem 1.7,](#page-5-1) it remains to show that

$$
\lambda_n(\mathcal{L}_{\hbar}) = \lambda_n(\mathcal{N}_{\hbar}) + \mathcal{O}(\hbar^{r_1/2-\varepsilon})
$$

uniformly with respect to $n \in [1, N_h^{\text{max}}]$ with

$$
N_{\hbar}^{\max} = \max\{n \in \mathbb{N} : \lambda_n(\mathcal{L}_{\hbar}) \le b_1 \hbar\}.
$$

Here $\lambda_n(\mathcal{A})$ denotes the *n*-th eigenvalue of the self-adjoint operator \mathcal{A} , repeated with multiplicities. Lemma 4.5. *One has*

$$
\lambda_n(\mathcal{L}_{\hbar}) = \lambda_n(\mathcal{N}_{\hbar}) + \mathcal{O}(\hbar^{r_1/2-\varepsilon})
$$

uniformly with respect to $n \in [1, N_h^{\max}]$ *.*

Proof. Let us focus on the " \leq " inequality. For $n \in [1, N_h^{\max}]$, denote by ψ_n^{\hbar} the normalized eigenfunction of \mathcal{N}_h associated with $\lambda_n(\mathcal{N}_h)$, and

$$
\varphi_n^{\hbar} = \mathrm{U}_{\hbar} \psi_n^{\hbar},
$$

where U_h is given by [Theorem 3.4.](#page-19-0) We will use φ_n^h as quasimode for \mathcal{L}_h . Let $N \in [1, N_h^{\max}]$ and

$$
V_N^{\hbar} = \text{span}\{\varphi_n^{\hbar} : 1 \le n \le N\}.
$$

For $\varphi \in V_N^{\hbar}$ we use the notation $\psi = U_{\hbar}^{-1} \varphi$. By [Theorem 3.4,](#page-19-0) we have

$$
\langle \mathcal{L}_{\hbar} \varphi, \varphi \rangle = \langle \mathcal{N}_{\hbar} \psi, \psi \rangle + \langle \mathcal{R}_{\hbar} \psi, \psi \rangle \leq \lambda_N(\mathcal{N}_{\hbar}) \|\psi\|^2 + \langle \mathcal{R}_{\hbar} \psi, \psi \rangle.
$$
 (4-14)

1618 LÉO MORIN

According to Lemmas [4.3](#page-23-3) and [4.4,](#page-24-2) ψ is microlocalized, where $(w, t) \in {\hat{b}}(w, t) \leq {\tilde{b}}_1$ $\subset U$ and $|(x, \xi, \tau)| \leq \hbar^{\delta}$. But the symbol of \mathcal{R}_{\hbar} is such that $R_{\hbar} = \mathcal{O}((x, \xi, \tau, \hbar^{1/2})^{r_1})$ for $(w, t) \in U$, so

$$
\langle \mathcal{R}_{\hbar} \psi, \psi \rangle = \mathcal{O}(\hbar^{\delta r_1}) = \mathcal{O}(\hbar^{r_1/2 - \varepsilon}) \tag{4-15}
$$

for suitable $\delta \in (0, \frac{1}{2})$ $\frac{1}{2}$). By [\(4-14\)](#page-25-2) and [\(4-15\)](#page-26-2) we have

$$
\langle \mathcal{L}_{\hbar} \varphi, \varphi \rangle \leq (\lambda_N(\mathcal{N}_{\hbar}) + C \hbar^{r_1/2 - \varepsilon}) \|\varphi\|^2 \quad \text{for all } \varphi \in V_N^{\hbar}.
$$

Since V_N^{\hbar} is *N*-dimensional, the minimax principle implies that

$$
\lambda_N(\mathcal{L}_{\hbar}) \le \lambda_N(\mathcal{N}_{\hbar}) + C \hbar^{r_1/2 - \varepsilon}.
$$
\n(4-16)

The reversed inequality is proved in the same way: we take the eigenfunctions of L[−] *^h* as quasimodes for \mathcal{N}_{\hbar} , and we use the microlocalization lemma, [Lemma 4.2.](#page-22-2) □

5. A second normal form in the case $k > 0$

In the previous sections, we compared the spectrum of \mathcal{L}_h and the spectrum of the normal form \mathcal{N}_h . Moreover, if $b_1 > b_0$ is sufficiently close to b_0 the spectrum of \mathcal{N}_h in $(-\infty, b_1h)$ is given by the spectrum of $\mathcal{N}_{\hbar}^{[1]}$, an \hbar -pseudodifferential operator on $\mathbb{R}_{(y,t)}^{s+k}$ with symbol

$$
N_{\hbar}^{[1]} = \langle M(y, \eta, t)\tau, \tau \rangle + \hbar \hat{b}(y, \eta, t) + f_1^{\star}(y, \eta, t, \tau, \hbar). \tag{5-1}
$$

In this section, we will construct a Birkhoff normal form again, to describe the spectrum of $\mathcal{N}_h^{[1]}$ by an effective operator \mathcal{M}_\hbar on \mathbb{R}^s . For that purpose, in [Section 5A](#page-26-1) we will find new canonical variables $(\hat{t}, \hat{\tau})$ in which $N_h^{[1]}$ is the perturbation of a harmonic oscillator. In Sections [5B](#page-28-0) and [5C](#page-31-1) we will construct the semiclassical Birkhoff normal form \mathcal{M}_{\hbar} . In [Section 5D](#page-32-0) we will prove that the spectrum of $\mathcal{N}_{\hbar}^{[1]}$ is given by the spectrum of \mathcal{M}_{\hbar} .

Under [Assumption 1](#page-2-0) we know that $t \mapsto \hat{b}(w, t)$ admits a nondegenerate minimum at $s(w)$ for w in a neighborhood of 0, and we denote by $(v_1^2(w), \ldots, v_k^2(w))$ the eigenvalues of the positive symmetric matrix

$$
M(w, s(w))^{1/2} \cdot \frac{1}{2} \partial_t^2 \hat{b}(w, s(w)) \cdot M(w, s(w))^{1/2}.
$$

The maps v_1, \ldots, v_k are smooth nonvanishing functions in a neighborhood of $w = 0$.

5A. Geometry of the symbol $\mathcal{N}_h^{[1]}$. We prove the following lemma.

Lemma 5.1. *There exists a canonical (symplectic) transformation* $\Phi_2: U_2 \rightarrow V_2$ *between neighborhoods U*₂, *V*₂ *of* $0 \in \mathbb{R}^{2s+2k}_{(y, \eta, t, \tau)}$ *such that*

$$
\widehat{N}_{\hbar} := N_{\hbar}^{[1]} \circ \Phi_2 = \hbar \widehat{b}(w, s(w)) + \sum_{j=1}^{k} v_j(w) (\tau_j^2 + \hbar t_j^2) + \mathcal{O}(|t|^3 |\tau|^2 + |t|^3 \hbar + \hbar^2 + \hbar |\tau| + |\tau|^3 + |t| |\tau|^2).
$$

Proof. We want to expand $\mathcal{N}_h^{[1]}$ near its minimum with respect to the variables $v = (t, \tau)$. First, from the Taylor expansion of f_1^{\star} we deduce

$$
N_{\hbar}^{[1]} = \langle M(w, t)\tau, \tau \rangle + \hbar \hat{b}(w, t) + \mathcal{O}(\hbar^2 + \tau \hbar + \tau^3).
$$

We will Taylor-expand $t \mapsto \hat{b}(w, t)$ on a neighborhood of its minimum point $s(w)$. For that purpose, we define new variables $(\tilde{y}, \tilde{\eta}, \tilde{t}, \tilde{\tau}) = \tilde{\varphi}(y, \eta, t, \tau)$ by

$$
\begin{cases}\n\tilde{y} = y - \sum_{j=1}^{k} \tau_j \nabla_{\eta} s_j(y, \eta), \\
\tilde{\eta} = \eta + \sum_{j=1}^{k} \tau_j \nabla_{y} s_j(y, \eta), \\
\tilde{t} = t - s(y, \eta), \\
\tilde{\tau} = \tau.\n\end{cases}
$$

Then $\tilde{\varphi}^* \omega_0 = \omega_0 + \mathcal{O}(\tau)$. Using [Theorem B.2,](#page-36-0) we can make $\tilde{\varphi}$ symplectic on a neighborhood of 0, up to a change of order $\mathcal{O}(\tau^2)$. In these new variables, the symbol $\widetilde{N}_h := N_h^{[1]} \circ \widetilde{\varphi}^{-1}$ is

$$
\widetilde{N}_{\hbar} = \langle M[\tilde{w} + \mathcal{O}(\tilde{\tau}), \tilde{t} + s(\tilde{w} + \mathcal{O}(\tilde{\tau}))]\tilde{\tau}, \tilde{\tau} \rangle + \hbar \hat{b}[\tilde{y} + \mathcal{O}(\tilde{\tau}), \tilde{\eta} + \mathcal{O}(\tilde{\tau}), s(\tilde{y}, \tilde{\eta}) + \tilde{t} + \mathcal{O}(\tilde{\tau})] \n= \langle M(\tilde{w}, \tilde{t} + s(\tilde{w}))\tilde{\tau}, \tilde{\tau} \rangle + \hbar \hat{b}[\tilde{y}, \tilde{\eta}, s(\tilde{y}, \tilde{\eta}) + \tilde{t}] + \mathcal{O}(\hbar^2 + \hbar \tilde{\tau} + \tilde{\tau}^3).
$$

Then we remove the tildes and expand this symbol in powers of t , τ , \hbar . We find

$$
\widetilde{N}_{\hbar} = \langle M(w, s(w))\tau, \tau \rangle + \hbar \hat{b}(w, s(w)) + \frac{\hbar}{2} \langle \partial_t^2 \hat{b}(w, s(w))t, t \rangle + \mathcal{O}(|t|^3 \hbar + \hbar^2 + \hbar |\tau| + |\tau|^3 + |t| |\tau|^2).
$$

Now, we want to diagonalize the positive quadratic forms $M(w, s(w))$ and $\frac{1}{2}\partial_t^2 \hat{b}[w, s(w)]$. The diagonalization of quadratic forms in orthonormal coordinates implies that there exists a matrix $P(w)$ such that

$$
{}^{t}P M^{-1} P = I \quad \text{and} \quad {}^{t}P \frac{1}{2} \partial_t^2 \hat{b} P = \text{diag}(v_1^2, \dots, v_k^2).
$$

We define the new coordinates $(\check{y}, \check{\eta}, \check{t}, \check{\tau}) = \check{\varphi}(y, \eta, t, \tau)$ by

$$
\begin{cases}\n\check{t} = P(w)^{-1}t, \\
\check{\tau} = {}^{t}P(w)\tau, \\
\check{y} = y + {}^{t}[\nabla_{\eta}(P^{-1}t)] \cdot {}^{t}P\tau, \\
\check{\eta} = \eta - {}^{t}[\nabla_{y}(P^{-1}t)] \cdot {}^{t}P\tau,\n\end{cases}
$$

so that $\check{\varphi}^*\omega_0 - \omega_0 = \mathcal{O}(|t|^2 + |\tau|)$. Again, we can make it symplectic up to a change of order $\mathcal{O}(|t|^3 + |\tau|^2)$ by [Theorem B.2.](#page-36-0) In these new variables, the symbol becomes (after removing the "checks")

$$
\check{N}_{\hbar} = \hbar \hat{b}(w, s(w)) + \sum_{j=1}^{k} (\tau_j^2 + \hbar v_j(w)^2 t_j^2) + \mathcal{O}(|t|^3 |\tau|^2 + |t|^3 \hbar + \hbar^2 + \hbar |\tau| + |\tau|^3 + |t| |\tau|^2).
$$

The last change of coordinates $(\hat{y}, \hat{\eta}, \hat{t}, \hat{\tau}) = \hat{\varphi}(y, \eta, t, \tau)$, defined by

$$
\begin{cases} \hat{t}_j = v_j(w)^{1/2} t_j, \\ \hat{\tau}_j = v_j(w)^{-1/2} \tau_j, \\ \hat{y}_j = y_j + \sum_{i=1}^k v_i^{-1/2} \tau_i \partial_{\eta_j} v_i^{1/2} t_i, \\ \hat{\eta} = \eta - \sum_{i=1}^k v_i^{-1/2} \tau_i \partial_{y_j} v_i^{1/2} t_i, \end{cases}
$$

is such that $\hat{\varphi}^*\omega_0 = \omega_0 + \mathcal{O}(\tau)$, so it can be corrected modulo $\mathcal{O}(|\tau|^2)$ to be symplectic, and we get the new symbol

$$
\widehat{N}_{\hbar} = \hbar \widehat{b}(w, s(w)) + \sum_{j=1}^{k} v_j(w)(\tau_j^2 + \hbar t_j^2) + \mathcal{O}(|t|^3 |\tau|^2 + |t|^3 \hbar + \hbar^2 + \hbar |\tau| + |\tau|^3 + |t| |\tau|^2),
$$

which concludes the proof.

5B. *Second formal normal form.* The harmonic oscillators appearing in N_h are

$$
\mathcal{J}_{\hbar}^{(j)} = \text{Op}_{\hbar}^{w} (\hbar^{-1} \tau_{j}^{2} + t_{j}^{2}), \quad 1 \leq j \leq k.
$$

If we define

$$
h=\sqrt{\hbar},
$$

the symbol of $\mathcal{J}_h^{(j)}$ for the *h*-quantization is $\tilde{\tau}_j^2 + t_j^2$. This is why we use the mixed quantization

$$
\mathrm{Op}_{\sharp}^{w}(a)u(y_{0},t_{0})=\frac{1}{(2\pi\hbar)^{n-k}(2\pi\sqrt{\hbar})^{k}}\int e^{(i/\hbar)\langle y_{0}-y,\eta\rangle}e^{(i/\sqrt{\hbar})\langle t_{0}-t,\tilde{\tau}\rangle}a(\sqrt{\hbar},y,\eta,t,\tilde{\tau})\,\mathrm{d}y\,\mathrm{d}\eta\,\mathrm{d}t\,\mathrm{d}\tilde{\tau}.\tag{5-2}
$$

It is related to the *ħ*-quantization by the relation

$$
\tau = h\tilde{\tau}, \quad h = \sqrt{h}.
$$

In other words, if *a* is a symbol in some standard class $S(m)$, and if we define

$$
a(h, y, \eta, t, \tilde{\tau}) = a(h^2, y, \eta, t, h\tilde{\tau}),
$$

then we have

$$
Op^w_{\sharp}(a) = Op^w_{\hbar}(a).
$$

However, if we take $a \in S(m)$, then $Op_{\sharp}^w(a)$ is not necessarily an \hbar -pseudodifferential operator, since the associated *a* may not be bounded with respect to \hbar , and thus it does not belong to any standard class. For instance, we have

$$
\partial_{\tau}a = \frac{1}{\sqrt{\hbar}}\partial_{\tilde{\tau}}a.
$$

But still $Op_\sharp^w(a)$ is an *h*-pseudodifferential operator, with symbol

$$
\mathfrak{a}(h, y, \tilde{\eta}, t, \tilde{\tau}) = \mathfrak{a}(h, y, h\tilde{\eta}, t, \tilde{\tau}).
$$

With this notation

$$
Op^w_{\sharp}(a) = Op^w_h(\mathfrak{a}).
$$

Thus, in this sense, we can use the properties of *h*-pseudodifferential and *h*-pseudodifferential operators to deal with our mixed quantization.

Remark 5.2. Operators of the form [\(5-2\)](#page-28-1) are just special cases of the usual *h*-pseudodifferential operators for which the reader can refer to [\[Martinez 2002;](#page-40-14) [Zworski 2012\]](#page-40-15). Moreover, our mixed quantization for which the reader can refer to [*Martinez 2002*; Zworski 2012]. Moreover, our finxed quantization
could be interpreted as a √h⁻quantization with operator-valued symbols for which we refer to [\[Keraval](#page-39-21) [2018;](#page-39-21) [Martinez 2007\]](#page-40-16). Indeed we can write

$$
Op^w_{\sharp}(a) = Op^w_h (Op^w_h a), \qquad (5-3)
$$

where we first quantize with respect to (y, η) so that Op_h^{*w*} a is an operator-valued symbol which depends on $(t, \tilde{\tau})$. In the following we could have used this formalism, thus dealing with operator-valued symbols in $(t, \tilde{\tau})$ instead of real-valued symbols and mixed quantization.

In our case, we have

$$
\mathrm{Op}^w_{\sharp}(\mathrm{N}_h) = \mathrm{Op}^w_h(\widehat{N}_h),
$$

with

$$
N_h = h^2 \hat{b}(w, s(w)) + h^2 \sum_{j=1}^k v_j(w) (\tilde{\tau}_j^2 + t_j^2) + \mathcal{O}(h^2 |t|^3 + h^4 + h^3 |\tilde{\tau}| + h^2 |t| |\tilde{\tau}|^2).
$$

Let us construct a semiclassical Birkhoff normal form with respect to this quantization. We will work in the space of formal series

$$
\mathcal{E}_2 := \mathcal{C}^{\infty}(U)[\![t, \tilde{\tau}, h]\!],\tag{5-4}
$$

where $U = U_2 \cap \mathbb{R}_w^{2s} \times \{0\}$. This space is endowed with the star product \star adapted to our mixed quantization. In other words

$$
Op^w_{\sharp}(a \star b) = Op^w_{\sharp}(a) Op^w_{\sharp}(b).
$$

The change of variable $\tau = h\tilde{\tau}$ between the usual \hbar -quantization and our mixed quantization yields the following formula for the star product:

$$
\mathbf{a} \star \mathbf{b} = \sum_{k \ge 0} \frac{1}{k!} \left(\frac{h}{2i}\right)^k A_h(\partial)^k (\mathbf{a}(h, y_1, \eta_1, t_1, \tilde{\tau}_1) \mathbf{b}(h, y_2, \eta_2, t_2, \tilde{\tau}_2))_{|(t_1, \tau_1, y_1, \eta_1) = (t_2, \tau_2, y_2, \eta_2)},\tag{5-5}
$$

with

$$
A_h(\partial) = \sum_{j=1}^k \frac{\partial}{\partial t_{1j}} \frac{\partial}{\partial \tilde{\tau}_{2j}} - \frac{\partial}{\partial t_{2j}} \frac{\partial}{\partial \tilde{\tau}_{1j}} + h \sum_{j=1}^s \frac{\partial}{\partial y_{1j}} \frac{\partial}{\partial \eta_{2j}} - \frac{\partial}{\partial y_{2j}} \frac{\partial}{\partial \eta_{1j}}.
$$

The degree function on \mathcal{E}_2 is defined by

$$
\deg(t^{\alpha_1}\tilde{\tau}^{\alpha_2}h^{\ell}) = |\alpha_1| + |\alpha_2| + 2\ell.
$$

We denote by \mathcal{D}_N the $\mathcal{C}^{\infty}(U)$ -module spanned by monomials of degree *N*, and

$$
\mathcal{O}_N=\bigoplus_{n\geq N}\mathcal{D}_n.
$$

For $\tau_1, \tau_2 \in \mathcal{E}_2$, we define

$$
\mathrm{ad}_{\tau_1}(\tau_2) = [\tau_1, \tau_2] = \tau_1 \star \tau_2 - \tau_2 \star \tau_1,
$$

and if $\tau_1 \in \mathcal{O}_{N_1}$ and $\tau_2 \in \mathcal{O}_{N_2}$,

$$
\frac{i}{h} \operatorname{ad}_{\tau_1}(\tau_2) \in \mathcal{O}_{N_1+N_2-2}.
$$

We define

$$
N_0 = \hat{b}(w, s(w)) \in \mathcal{D}_0 \quad \text{and} \quad N_2 = \sum_{j=1}^k v_j(w) |\tilde{v}_j|^2 \in \mathcal{D}_2,
$$

with the notation $\tilde{v}_j = t_j + i \tilde{\tau}_j$, so that

$$
\frac{1}{h^2}N_h = N_0 + N_2 + O_3.
$$

Now we construct the following normal form. Recall that r_2 is an integer chosen such that,

for all
$$
\alpha \in \mathbb{Z}^k
$$
, $0 < |\alpha| < r_2$, $\sum_{j=1}^s \alpha_j v_j(0) \neq 0$.

Moreover, this nonresonance relation at $w = 0$ can be extended to a small neighborhood of 0.

Lemma 5.3. *For any* $\gamma \in \mathcal{O}_3$, *there exist* $\kappa, \tau \in \mathcal{O}_3$ *and* $\rho \in \mathcal{O}_{r_2}$ *such that*

$$
e^{(i/h)\operatorname{ad}_{\tau}}(N_0 + N_2 + \gamma) = N_0 + N_2 + \kappa + \rho, \tag{5-6}
$$

and $[\kappa, |\tilde{v}_j|^2] = 0$ *for* $1 \le j \le k$.

Proof. We prove this result by induction. Assume that we have, for some $N > 0$, a $\tau \in \mathcal{O}_3$ such that

$$
e^{(i/h)\operatorname{ad}_{\tau}}(N_0+N_2+\gamma)=N_0+N_2+K_3+\cdots+K_{N-1}+R_N+\mathcal{O}_{N+1},
$$

with $R_N \in \mathcal{D}_N$ and $K_i \in \mathcal{D}_i$ such that $[K_i, |\tilde{v}_j|^2] = 0$. We are looking for a $\tau_N \in \mathcal{D}_N$. For such a τ_N , (i/h) ad_{τ_N} : $\mathcal{O}_j \rightarrow \mathcal{O}_{N+j-2}$ so

$$
e^{(i/h)\operatorname{ad}_{\tau+\tau_N}}(N_0+N_2+\gamma)=N_0+N_2+K_3+\cdots+K_{N-1}+R_N+\frac{i}{h}\operatorname{ad}_{\tau_N}(N_0+N_2)+\mathcal{O}_{N+1}.
$$

Moreover N_0 does not depend on (t, τ) so the expansion [\(5-5\)](#page-29-0) yields

$$
\frac{i}{h} \operatorname{ad}_{\tau_N}(N_0) = h \sum_{j=1}^s \left(\frac{\partial \tau_N}{\partial y_j} \frac{\partial N_0}{\partial \eta_j} - \frac{\partial \tau_N}{\partial \eta_j} \frac{\partial N_0}{\partial y_j} \right) + \mathcal{O}_{N+6} = \mathcal{O}_{N+2},
$$

and thus

$$
e^{(i/h)\operatorname{ad}_{\tau+\tau_N}}(N_0+N_2+\gamma)=N_0+N_2+K_3+\cdots+K_{N-1}+R_N+\frac{i}{h}\operatorname{ad}_{\tau_N}(N_2)+\mathcal{O}_{N+1}.
$$

So we are looking for τ_N , $K_N \in \mathcal{D}_N$ solving the equation

$$
R_N = K_N + \frac{i}{h} \operatorname{ad}_{N_2} \tau_N + \mathcal{O}_{N+1}.
$$
 (5-7)

To solve this equation, we study the operator (i/h) ad_{N_2}: $\mathcal{O}_N \rightarrow \mathcal{O}_N$,

$$
\frac{i}{h} \operatorname{ad}_{N_2}(\tau_N) = \sum_{j=1}^k \Bigl(v_j(w) \frac{i}{h} \operatorname{ad}_{|\tilde{v}_j|^2}(\tau_N) + \frac{i}{h} \operatorname{ad}_{v_j}(\tau_N) |\tilde{v}_j|^2 \Bigr),
$$

and since ν only depends on w , expansion [\(5-5\)](#page-29-0) yields

$$
\frac{i}{h} \operatorname{ad}_{\nu_i}(\tau_N) = \sum_{j=1}^s h\left(\frac{\partial \nu_i}{\partial y_j} \frac{\partial \tau_N}{\partial \eta_j} - \frac{\partial \nu_i}{\partial \eta_j} \frac{\partial \tau_N}{\partial y_j}\right) + \mathcal{O}_{N+6} = \mathcal{O}_{N+2}.
$$

Hence,

$$
\frac{i}{h} \, \mathrm{ad}_{N_2}(\tau_N) = \sum_{j=1}^k v_j(w) \frac{i}{h} \, \mathrm{ad}_{|\tilde{v}_j|^2}(\tau_N) + \mathcal{O}_{N+2},
$$

and [\(5-7\)](#page-30-0) becomes

$$
R_N = K_N + \sum_{j=1}^{k} \nu_j(w) \frac{i}{h} \operatorname{ad}_{|\tilde{v}_j|^2}(\tau_N) + \mathcal{O}_{N+1}.
$$
 (5-8)

Moreover, (i/h) ad_{$|\tilde{v}_j|^2$} acts as

$$
\sum_{j=1}^k v_j(w) \frac{i}{h} \operatorname{ad}_{|\tilde{v}_j|^2}(v^{\alpha_1} \bar{v}^{\alpha_2} h^\ell) = \langle v(w), \alpha_2 - \alpha_1 \rangle v^{\alpha_1} \bar{v}^{\alpha_2} h^\ell.
$$

The definition of r_2 ensures that $\langle v(w), \alpha_2 - \alpha_1 \rangle$ does not vanish on a neighborhood of $w = 0$ if $N = |\alpha_1| + |\alpha_2| + 2\ell < r_2$ and $\alpha_1 \neq \alpha_2$. Hence we can decompose every R_N as in [\(5-8\),](#page-30-1) where K_N contains the terms with $\alpha_1 = \alpha_2$. These terms are exactly the ones commuting with $|\tilde{v}_j|^2$ for $1 \le j \le k$. \Box

5C. *Second quantized normal form.* Now we can quantize Lemmas [5.1](#page-26-3) and [5.3](#page-30-2) to prove the following theorem.

Theorem 5.4. *There exist*

(1) *a* unitary operator $U_{2,\hbar}$: $L^2(\mathbb{R}^{s+k}_{(v,t)})$ (\mathbf{y}, t) $\to L^2(\mathbb{R}^{s+k}_{(y,t)})$ $\int_{(y,t)}^{s+k}$) quantizing a symplectomorphism $\tilde{\Phi}_2 = \Phi_2 + \mathcal{O}((t,\tau)^2)$ *microlocally near* 0,

(2) a function $f_2^{\star} : \mathbb{R}_w^{2s} \times \mathbb{R}_f^k \times [0, 1) \to \mathbb{R}$ which is C^{∞} with compact support such that

$$
|f_2^{\star}(w, J_1, \ldots, J_k, \sqrt{\hbar})| \leq C(|J| + \sqrt{\hbar})^2,
$$

(3) *a* $\sqrt{\hbar}$ -pseudodifferential operator $\mathcal{R}_{2,\hbar}$ with symbol $\mathcal{O}((t, \tilde{\tau}, \hbar^{1/4})^{r_2})$ on a neighborhood of 0 *such that*

$$
U_{2,\hbar}^* \mathcal{N}_{\hbar}^{[1]} U_{2,\hbar} = \hbar \mathcal{M}_{\hbar} + \hbar \mathcal{R}_{2,\hbar},
$$

 $$

$$
\mathcal{M}_{\hbar} = \mathop{\rm Op}\nolimits^w_{\hbar} \hat{b}(w, s(w)) + \sum_{j=1}^k \mathcal{J}_{\hbar}^{(j)} \mathop{\rm Op}\nolimits^w_{\hbar} v_j + \mathop{\rm Op}\nolimits^w_{\hbar} f_2^{\star}(w, \mathcal{J}_{\hbar}^{(1)}, \ldots, \mathcal{J}_{\hbar}^{(k)}, \sqrt{\hbar}).
$$

Proof. [Lemma 5.1](#page-26-3) provides us with a symplectomorphism Φ_2 such that

$$
N_h^{[1]} \circ \Phi_2 = \hbar \hat{b}(w, s(w)) + \sum_{j=1}^k v_j(w) (\tau_j^2 + \hbar t_j^2) + \mathcal{O}(|t|^3 |\tau|^2 + |t|^3 \hbar + \hbar^2 + \hbar |\tau| + |\tau|^3 + |t||\tau|^2).
$$

We can apply the Egorov theorem to get a Fourier integral operator $V_{2,h}$ such that

$$
V_{2,\hbar}^* \operatorname{Op}_h^w(N_{\hbar}^{[1]}) V_{2,\hbar} = \operatorname{Op}_h^w(\widehat{N}_{\hbar}),
$$

with $\widehat{N}_h = N_h^{[1]} \circ \Phi_2 + \mathcal{O}(\hbar^2)$ on a neighborhood of $w = 0$. We define

$$
N_h(y, \eta, t, \tilde{\tau}) = \widehat{N}_h(y, \eta, t, h\tilde{\tau}),
$$

and following the notation of [Section 5B,](#page-28-0) we have the associated formal series

$$
\frac{1}{h^2}N_h=N_0+N_2+\gamma,\quad \gamma\in\mathcal{O}_3.
$$

We apply [Lemma 5.3](#page-30-2) and we get formal series κ , ρ such that

$$
e^{(i/h) \operatorname{ad}_{\rho}} (N_0 + N_2 + \gamma) = N_0 + N_2 + \kappa + \mathcal{O}_{r_2}.
$$

We take a compactly supported symbol $a(h, w, t, \tilde{\tau})$ with Taylor series ρ . Then the operator

$$
e^{ih^{-1}\operatorname{Op}^w_{\sharp}(a)}\operatorname{Op}^w_{\sharp}(h^{-2}N_h)e^{-ih^{-1}\operatorname{Op}^w_{\sharp}(a)}\tag{5-9}
$$

has a symbol with Taylor series $N_0 + N_2 + \kappa + \mathcal{O}_{r_2}$. Since $\kappa \in \mathcal{O}_3$ commutes with $|\tilde{v}_j|^2$, it can be written

$$
\kappa = \sum_{2|\alpha|+2\ell\geq 3} c^{\star}_{\alpha\ell}(w) (|\tilde{v}_1|^2)^{\star\alpha_1} \cdots (|\tilde{v}_k|^2)^{\star\alpha_k} h^{\ell}.
$$

If we take $f_2^*(h, w, J_1, \ldots, J_k)$ a smooth compactly supported function with Taylor series

$$
[f_2^{\star}] = \sum_{2|\alpha|+2\ell\geq 3} c^{\star}_{\alpha\ell}(w) J_1^{\alpha_1} \cdots J_k^{\alpha_k} h^{\ell},
$$

then the operator $(5-9)$ is equal to

$$
\operatorname{Op}_{\sharp}^w N_0 + \operatorname{Op}_{\sharp}^w N_2 + \operatorname{Op}_{h}^w f_2^{\star}(h, w, \mathcal{J}_{\hbar}^{(1)}, \ldots, \mathcal{J}_{\hbar}^{(k)})
$$

modulo \mathcal{O}_{r_2} . Multiplying by h^2 , and getting back to the \hbar -quantization, we get

$$
e^{ih^{-1}\operatorname{Op}^w_{\sharp}(a)}\operatorname{Op}^w_{\hbar}(\widehat{N}_{\hbar})e^{-ih^{-1}\operatorname{Op}^w_{\sharp}(a)}=\hbar\mathcal{M}_{\hbar}+\hbar\mathcal{R}_{\hbar},
$$

with

$$
\mathcal{M}_{\hbar}=\mathrm{Op}_{\hbar}^w\,\hat{b}(w,s(w))+\sum_{j=1}^k\mathrm{Op}_{\hbar}^w\,\nu_j(w)\mathcal{J}_{\hbar}^{(j)}+\mathrm{Op}_{\hbar}^w\,\,f_2^{\star}(\sqrt{\hbar},w,\mathcal{J}_{\hbar}^{(1)},\ldots,\mathcal{J}_{\hbar}^{(k)}),
$$

and \mathcal{R}_\hbar a $\sqrt{\hbar}$ -pseudodifferential operator with symbol \mathcal{O}_{r_2} . Note that \mathcal{M}_\hbar is an \hbar -pseudodifferential operator whose symbol admits an expansion in powers of $\sqrt{\hbar}$. \overline{h} .

5D. *Proof of [Theorem 1.11.](#page-6-2)* In order to prove [Theorem 1.11,](#page-6-2) we need the following microlocalization lemma.

Lemma 5.5. *Let* $\delta \in (0, \frac{1}{2})$ $\frac{1}{2}$) *and* $c > 0$. Let $\chi_0 \in C_0^{\infty}(\mathbb{R}_{(y,\eta)}^{2s})$ *and* $\chi_1 \in C_0^{\infty}(\mathbb{R}_{(t,\tilde{\tau})}^{2k})$ *both equal to* 1 *on a neighborhood of* 0*. Then every eigenfunction* ψ[−] *^h of* N[−] *^h or* [−] *h*M[−] *^h associated to an eigenvalue* $\lambda_{\hbar} \leq \hbar (b_0 + c \hbar^{\delta})$ *satisfies*

$$
\psi_{\hbar} = \mathop{\rm Op}\nolimits_{\sqrt{\hbar}}^w \chi_0(\sqrt{\hbar}^{-\delta}(t,\tilde{\tau})) \mathop{\rm Op}\nolimits_h^w \chi_1(y,\eta)\psi_{\hbar} + \mathcal{O}(\hbar^{\infty})\psi_{\hbar}.
$$

Proof. Using the mixed quantization and $h = \sqrt{\hbar}$, we have $\mathcal{N}_{\hbar}^{[1]} = \text{Op}_{\sharp}^{w} \text{ N}_{\hbar}^{[1]}$ h^{L1} , with

$$
N_h^{[1]}(y, \eta, t, \tilde{\tau}) = h^2 \langle M(y, \eta, t)\tilde{\tau}, \tilde{\tau} \rangle + h^2 \hat{b}(w, t) + f_1^{\star}(y, \eta, t, h\tilde{\tau}, h^2).
$$

The principal part of $N_h^{[1]}$ is of order h^2 , and implies a microlocalization of the eigenfunctions, where

$$
h^{2}\langle M(w,t)\tilde{\tau},\tilde{\tau}\rangle+h^{2}\hat{b}(w,t)\leq\lambda_{h}\leq h^{2}(b_{0}+ch^{2\delta}).
$$

Since \hat{b} admits a unique and nondegenerate minimum b_0 at 0, this implies that w lies in an arbitrarily small neighborhood of 0, and that

$$
|t|^2 \leq Ch^{2\delta}, \quad |\tilde{\tau}|^2 \leq Ch^{2\delta}.
$$

The technical details follow the same ideas of Lemmas [4.2,](#page-22-2) [4.3](#page-23-3) and [4.4.](#page-24-2) Now we can focus on \mathcal{M}_h , whose principal symbol with respect to the Op $_{\sharp}^w$ -quantization is

$$
M_0(y, \eta, t, \tilde{\tau}) = \hat{b}(y, \eta, s(y, \eta)) + \sum_{j=1}^k v_j(y, \eta) (\tilde{\tau}_j^2 + t_j^2).
$$

Hence its eigenfunctions are microlocalized where

$$
\hat{b}(y, \eta, s(y, \eta)) + \sum_{j=1}^{k} v_j(y, \eta) (\tilde{\tau}_j^2 + t_j^2) \le b_0 + ch^{2\delta},
$$

which implies again that w lies in an arbitrarily small neighborhood of 0 and that

$$
|t|^2 \leq Ch^{2\delta}, \quad |\tilde{\tau}|^2 \leq Ch^{2\delta}.
$$

Using the same method as before, we deduce from [Theorem 5.4](#page-31-0) and [Lemma 5.5](#page-32-2) a comparison of the spectra of $\mathcal{N}_h^{[1]}$ and \mathcal{M}_h . With the notation

$$
N_{\hbar}^{\max}(c,\delta) = \max\{n \in \mathbb{N} : \lambda_n(\mathcal{N}_{\hbar}^{[1]}) \leq \hbar(b_0 + c\hbar^{\delta})\},\
$$

the following lemma concludes the proof of [Theorem 1.11.](#page-6-2)

Lemma 5.6. *Let* $\delta \in (0, \frac{1}{2})$ $(\frac{1}{2})$ and $c > 0$. We have

$$
\lambda_n(\mathcal{N}_\hbar^{[1]}) = \hbar \lambda_n(\mathcal{M}_\hbar) + \mathcal{O}(\hbar^{1+\delta r_2/2}),
$$

uniformly with respect to $n \in [1, N_h^{\max}(c, \delta)]$ *.*

Proof. We use the same method as before (see [Lemma 4.5\)](#page-25-3). The remainder $\mathcal{R}_{2,\hbar}$ is $\mathcal{O}((t, \tilde{\tau}, \tilde{\tau}))$ √ \overline{h})^{*r*2}) and the eigenfunctions are microlocalized where $|t| + |\tilde{\tau}| \leq C h^{\delta/2}$. Hence the $\hbar R_{2,\hbar}$ term yields an error $\ln \hbar^{1+\delta r_2/2}$. □

6. Proof of [Corollary 1.14](#page-7-0)

In this section we prove that the spectrum of \mathcal{L}_h below $\hbar b_0 + \hbar^{3/2}(\nu(0) + 2c)$ is given by the spectrum of $\hbar \mathcal{M}_{\hbar}^{[1]}$, up to $\mathcal{O}(\hbar^{r/4-\varepsilon})$. We recall that $c \in (0, \min_j v_j(0))$ and $r = \min(2r_1, r_2 + 4)$.

We can apply [Theorem 1.7](#page-5-1) for $b_1 > b_0$ arbitrarily close to b_0 . Thus the spectrum of \mathcal{L}_\hbar in $(-\infty, b_1\hbar)$ is given by the spectrum of $\bigoplus_{n \in \mathbb{N}^s} \mathcal{N}_h^{[n]}$ modulo $\mathcal{O}(\hbar^{r_1/2-\varepsilon}) = \mathcal{O}(\hbar^{r/4-\varepsilon})$. Moreover, the symbol of $\mathcal{N}_h^{[n]}$ for $n \neq (1, \ldots, 1)$ satisfies

$$
N_{\hbar}^{[n]}(y,\eta,t,\tau) \geq \hbar (b_0 + 2\min \beta_j - C\hbar),
$$

and we deduce from the Gårding inequality that

$$
\langle \mathcal{N}_{\hbar}^{[n]} \psi, \psi \rangle \ge \hbar b_1 \| \psi \|^2 \quad \text{for all } \psi \in \mathrm{L}^2(\mathbb{R}^{s+k}),
$$

if *b*₁ is close enough to *b*₀. Hence the spectrum of \mathcal{L}_\hbar below *b*₁*h* is given by the spectrum of $\mathcal{N}_{\hbar}^{[1]}$. Then, we apply [Theorem 1.11](#page-6-2) for δ close enough to $\frac{1}{2}$, and we see that the spectrum of $\mathcal{N}_{\hbar}^{[1]}$ below $(b_0 + \hbar^{\delta})\hbar$

1626 LÉO MORIN

is given by the spectrum of $\bigoplus_{n \in \mathbb{N}^k} \hbar \mathcal{M}_\hbar^{[n]}$ modulo $\mathcal{O}(\hbar^{1+r_2/4-\varepsilon}) = \mathcal{O}(\hbar^{r/4-\varepsilon})$. The symbol of $\mathcal{M}_\hbar^{[n]}$ for $n \neq 1$ satisfies

$$
\mathcal{M}_\hbar^{[n]}(y,\eta) \ge b_0 + \hbar^{1/2} \sum_{j=1}^k v_j(y,\eta)(2n_j - 1) - Ch,
$$

and the eigenfunctions of $\mathcal{M}_h^{[n]}$ are microlocalized in an arbitrarily small neighborhood of $(y, \eta) = 0$ [\(Lemma 5.5\)](#page-32-2), and $M_h^{[n]}$ satisfies in this neighborhood

$$
M_h^{[n]}(y, \eta) \ge b_0 + \hbar^{1/2} \sum_{j=1}^k v_j(0)(2n_j - 1) - \hbar^{1/2} \varepsilon - C\hbar
$$

$$
\ge b_0 + \hbar^{1/2} (v(0) + 2 \min_j v_j(0) - \varepsilon) - C\hbar.
$$

Using the Gårding inequality, the spectrum of $\mathcal{M}_\hbar^{[n]}$ $(n \neq 1)$ is thus $\geq b_0 + \hbar^{1/2}(\nu(0) + 2c)$ for ε and \hbar small enough. It follows that the spectrum of $\mathcal{N}_h^{[1]}$ below $\hbar b_0 + \hbar^{3/2}(\nu(0) + 2c)$ is given by the spectrum of $\hbar \mathcal{M}_{\hbar}^{[1]}$.

7. Proof of [Corollary 1.15](#page-7-1)

We explain here where the asymptotics for $\lambda_j(\mathcal{L}_\hbar)$ come from. First we use [Corollary 1.14](#page-7-0) so that the spectrum of \mathcal{L}_{\hbar} below $\hbar b_0 + \hbar^{3/2}(\nu(0) + 2c)$ is given by $\mathcal{M}_{\hbar}^{[1]}$, modulo $\mathcal{O}(\hbar^{r/4-\epsilon})$. The symbol of $\mathcal{M}_{\hbar}^{[1]}$ has the expansion

$$
M_{\hbar}^{[1]}(w) = \hat{b}(w, s(w)) + \hbar^{1/2} v(0) + \hbar^{1/2} \nabla v(0) \cdot w + \hbar \tilde{c}_0 + \mathcal{O}(\hbar w + \hbar^{3/2} + \hbar^{1/2} w^2),
$$

with $v(w) = \sum_{j=1}^{k} v_j(w)$. The principal part admits a unique minimum at 0, which is nondegenerate. The asymptotics of the first eigenvalues of such an operator are well known. First one can make a linear change of canonical coordinates diagonalizing the Hessian of \hat{b} and get a symbol of the form

$$
\widehat{M}_{\hbar}^{[1]}(w) = b_0 + \sum_{j=1}^{s} \mu_j (\eta_j^2 + y_j^2) + \hbar^{1/2} \nu(0) + \hbar^{1/2} \nabla \nu(0) \cdot w + \hbar \tilde{c}_0 + \mathcal{O}(w^3 + \hbar w + \hbar^{3/2} + \hbar^{1/2} w^2).
$$

One can factor the $\nabla v(0) \cdot w$ term to get

$$
\widehat{M}_{\hbar}^{[1]}(w) = b_0 + \sum_{j=1}^{s} \mu_j \left(\left(\eta_j + \frac{\partial_{\eta_j} v(0)}{2\mu_j} \hbar^{1/2} \right)^2 + \left(y_j + \frac{\partial_{y_j} v(0)}{2\mu_j} \hbar^{1/2} \right)^2 \right) + \hbar^{1/2} v(0) + \hbar c_0 + \mathcal{O}(w^3 + \hbar w + \hbar^{3/2} + \hbar^{1/2} w^2),
$$

with a new $c_0 \in \mathbb{R}$. Conjugating $Op_h^w \widehat{M}_h^{[1]}$ by the unitary operator U_h ,

$$
U_{\hbar}v(x) = \exp\bigg(\frac{i}{\sqrt{\hbar}}\sum_{j=1}^{s}\frac{\partial_{\eta_{j}}v(0)}{2\mu_{j}}y_{j}\bigg)v\bigg(x - \sum_{j=1}^{s}\frac{\partial_{y_{j}}v(0)}{2\mu_{j}}\hbar^{1/2}\bigg),\,
$$

amounts to making a phase-space translation and changes the symbol into

$$
\widetilde{M}_h^{[1]}(w) = b_0 + \sum_{j=1}^s \mu_j (\eta_j^2 + y_j^2) + \hbar^{1/2} \nu(0) + \hbar c_0 + \mathcal{O}(w^3 + \hbar w + \hbar^{3/2} + \hbar^{1/2} w^2).
$$

For an operator with such symbol (i.e., harmonic oscillator + remainders) one can apply the results of [Charles and Vũ Ngọc 2008, Theorem 4.7] or [\[Helffer and Sjöstrand 1984\]](#page-39-22) and deduce that the *j*-th eigenvalue $\lambda_j(\mathcal{M}_h^{[1]})$ admits an asymptotic expansion in powers of $\hbar^{1/2}$ such that

$$
\lambda_j(\mathcal{M}_\hbar^{[1]}) = b_0 + \hbar^{1/2} \nu(0) + \hbar (c_0 + E_j) + \hbar^{3/2} \sum_{m=0}^{\infty} \alpha_{j,m} \hbar^{m/2},
$$

where $\hbar E_j$ is the *j*-th repeated eigenvalue of the harmonic oscillator with symbol $\sum_{j=1}^s \mu_j(\eta_j^2 + y_j^2)$.

Appendix A: Local coordinates

If we choose local coordinates $q = (q_1, \ldots, q_d)$ on *M*, we get the corresponding vector field basis $(\partial_{q_1}, \ldots, \partial_{q_d})$ on T_qM , and the dual basis (dq_1, \ldots, dq_d) on T_qM^* . In these bases, g_q can be identified with a symmetric matrix $(g_{ij}(q))$ with determinant |g|, and g_q^* is associated with the inverse matrix $(g^{ij}(q))$. We can write the 1-form *A* and the 2-form *B* in the coordinates:

$$
A \equiv A_1 dq_1 + \cdots + A_d dq_d, \quad B = \sum_{i < j} B_{ij} dq_i \wedge dq_j,
$$

with $A = (A_j)_{1 \leq j \leq d} \in C^\infty(\mathbb{R}^d, \mathbb{R}^d)$ and

$$
B_{ij} = \partial_i A_j - \partial_j A_i = ({}^t dA - dA)_{ij}.
$$
 (A-1)

Let us denote by $(B_{ij}(q))_{1\leq i,j\leq d}$ the matrix of the operator $B(q): T_qM \to T_qM$ in the basis $(\partial_{q_1}, \ldots, \partial_{q_d})$. With this notation, $(1-1)$ relating \boldsymbol{B} to \boldsymbol{B} can be rewritten,

for all
$$
Q, \tilde{Q} \in \mathbb{R}^d
$$
, $\sum_{ijk} g_{kj} \mathbf{B}_{ki} Q_i \tilde{Q}_j = \sum_{ij} B_{ij} Q_i \tilde{Q}_j$,

which means that,

for all *i*, *j*,
$$
B_{ij} = \sum_{k} g_{kj} B_{ki}.
$$
 (A-2)

Finally, in the coordinates, *H* is given by

$$
H(q, p) = \sum_{i,j} g^{ij}(q)(p_i - A_i(q))(p_j - A_j(q)),
$$
 (A-3)

and \mathcal{L}_\hbar acts as the differential operator:

$$
\mathcal{L}_{\hbar}^{\text{coord}} = \sum_{k,l=1}^{d} |g|^{-1/2} (i\hbar \partial_k + A_k) g^{kl} |g|^{1/2} (i\hbar \partial_l + A_l). \tag{A-4}
$$

Appendix B: Darboux-Weinstein lemmas

We used the following presymplectic Darboux lemma.

Theorem B.1. *Let M be a d-dimensional manifold endowed with a closed constant-rank-*2 *form* ω*. We denote by* 2*s the rank of* ω *and by* k *the dimension of its kernel. For every* $q_0 \in M$, *there exist a*

neighborhood V of q_0 , a neighborhood U of $0 \in \mathbb{R}_{(\nu,n)}^{2s+k}$ (*y*,η,*t*) , *and a diffeomorphism*

$$
\varphi: U \to V
$$

such that

$$
\varphi^*\omega = d\eta \wedge dy.
$$

We also used the following Weinstein result; see [\[Weinstein 1971\]](#page-40-17). We follow the proof given in [Raymond and Vũ Ngọc 2015].

Theorem B.2. Let ω_0 and ω_1 be two 2-forms on \mathbb{R}^d which are closed and nondegenerate. Let us split \mathbb{R}^d *into* $\mathbb{R}_x^k \times \mathbb{R}_y^{d-k}$. We assume that $\omega_0 = \omega_1 + \mathcal{O}(|x|^\alpha)$ for some $\alpha \ge 1$. Then there exists a neighborhood of 0 ∈ R *^d and a change of coordinates* ψ *on this neighborhood such that*

$$
\psi^* \omega_1 = \omega_0
$$
 and $\psi = \text{Id} + \mathcal{O}(|x|^{\alpha+1}).$

Proof. First we recall how to find a 1-form σ on a neighborhood of $x = 0$ such that

$$
\tau := \omega_1 - \omega_0 = \text{d}\sigma
$$
 and $\sigma = \mathcal{O}(|x|^{\alpha+1})$.

We define the family $(\phi_t)_{0 \le t \le 1}$ by

$$
\phi_t(x, y) = (tx, y).
$$

We have

$$
\phi_0^* \tau = 0 \quad \text{and} \quad \phi_1^* \tau = \tau. \tag{B-1}
$$

Let us denote by X_t the vector field associated with ϕ_t ,

$$
X_t = \frac{d\phi_t}{dt} \circ \phi_t^{-1} = t^{-1}(x, 0).
$$

The Lie derivative of τ along X_t is given by $\phi_t^* \mathcal{L}_{X_t} \tau = (d/dt) \phi_t^* \tau$. From the Cartan formula we have

$$
\mathcal{L}_{X_t}\tau=\iota(X_t)\mathrm{d}\tau+\mathrm{d}(\iota(X_t)).
$$

Since τ is closed, $d\tau = 0$, and

$$
\frac{\mathrm{d}}{\mathrm{d}t}\phi_t^*\tau = \mathrm{d}(\phi_t^*\iota(X_t)\tau). \tag{B-2}
$$

We choose the following 1-form (where (e_j) denotes the canonical basis of \mathbb{R}^d):

$$
\sigma_t := \phi_t^* \iota(X_t) \tau = \sum_{j=1}^k x_j \tau_{\phi_t(x,y)}(e_j, \nabla \phi_t(.)) = \mathcal{O}(|x|^{\alpha+1}).
$$

Equation [\(B-2\)](#page-36-1) shows that $t \mapsto \phi_t^* \tau$ is smooth on [0, 1]. Thus, we can define $\sigma = \int_0^1 \sigma_t dt$. From (B-2) and [\(B-1\)](#page-36-2) we deduce

$$
\frac{\mathrm{d}}{\mathrm{d}t}\phi_t^*\tau=\mathrm{d}\sigma_t\quad\text{and}\quad\tau=\mathrm{d}\sigma.
$$

Then we use the Moser deformation argument. For $t \in [0, 1]$, we let $\omega_t = \omega_0 + t(\omega_1 - \omega_0)$. The 2-form ω_t is closed and nondegenerate on a small neighborhood of $x = 0$. We look for ψ_t such that

$$
\psi_t^*\omega_t=\omega_0.
$$

For that purpose, let us determine the associated vector field *Y^t* ,

$$
\frac{\mathrm{d}}{\mathrm{d}t}\psi_t=Y_t(\psi_t).
$$

The Cartan formula yields

$$
0 = \frac{\mathrm{d}}{\mathrm{d}t} \psi_t^* \omega_t = \psi_t^* \Big(\frac{\mathrm{d}}{\mathrm{d}t} \omega_t + \iota(Y_t) \mathrm{d} \omega_t + \mathrm{d}(\iota(Y_t) \omega_t) \Big).
$$

So

$$
\omega_0 - \omega_1 = d(\iota(Y_t)\omega_t),
$$

and we are led to solve

$$
\iota(Y_t)\omega_t=-\sigma.
$$

By the nondegeneracy of ω_t , this determines Y_t . We know ψ_t exists until time $t = 1$ on a small enough neighborhood of $x = 0$, and $\psi_t^* \omega_t = \omega_0$. Thus $\psi = \psi_1$ is the desired diffeomorphism. Since $\sigma = \mathcal{O}(|x|^{\alpha+1})$, we get $\psi = \text{Id} + \mathcal{O}(|x|^{\alpha+1})$).

Appendix C: Pseudodifferential operators

We refer to [\[Zworski 2012;](#page-40-15) [Martinez 2002\]](#page-40-14) for the general theory of \hbar -pseudodifferential operators. If $m \in \mathbb{Z}$, we denote by

$$
S^{m}(\mathbb{R}^{2d}) = \{a \in \mathcal{C}^{\infty}(\mathbb{R}^{2d}) : |\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a| \le C_{\alpha\beta} \langle \xi \rangle^{m-|\beta|} \text{ for all } \alpha, \beta \in \mathbb{N}^{d}\}\
$$

the class of Kohn–Nirenberg symbols. If *a* depends on the semiclassical parameter \hbar , we require that the coefficients $C_{\alpha\beta}$ are uniform with respect to $\hbar \in (0, \hbar_0]$. For $a_\hbar \in S^m(\mathbb{R}^{2d})$, we define its associated Weyl quantization $Op_h^w(a_h)$ by the oscillatory integral

$$
\mathcal{A}_{\hbar}u(x) = \mathrm{Op}_{\hbar}^w(a_{\hbar})u(x) = \frac{1}{(2\pi\hbar)^d} \int_{\mathbb{R}^{2d}} e^{(i/\hbar)(x-y,\xi)} a_{\hbar} \left(\frac{x+y}{2},\xi\right) u(y) \, \mathrm{d}y \, \mathrm{d}\xi,
$$

and we define

$$
a_{\hbar}=\sigma_{\hbar}(\mathcal{A}_{\hbar}).
$$

If *M* is a compact manifold, a pseudodifferential operator A_{\hbar} on $L^2(M)$ is an operator acting as a pseudodifferential operator in coordinates. Then the principal symbol of A_h (and its Kohn–Nirenberg class) does not depend on the coordinates, and we denote it by $\sigma_0(\mathcal{A}_\hbar)$. The subprincipal symbol $\sigma_1(\mathcal{A}_\hbar)$ is also well-defined, up to imposing that the charts be volume-preserving (in other words, if we see A_h as acting on half-densities, its subprincipal symbol is well-defined). In the case where *M* is a compact manifold, \mathcal{L}_h is a pseudodifferential operator, and its principal and subprincipal symbols are

$$
\sigma_0(\mathcal{L}_{\hbar})=H, \quad \sigma_1(\mathcal{L}_{\hbar})=0.
$$

If $M = \mathbb{R}^d$ and *m* is an order function on \mathbb{R}^{2d} , we denote by

$$
S(m) = \{ a \in \mathcal{C}^{\infty}(\mathbb{R}^{2d}) : |\partial_x^{\alpha} \partial_{\xi}^{\beta} a| \le C_{\alpha\beta} m(x, \xi) \text{ for all } \alpha, \beta \in \mathbb{N}^d \}
$$

the class of standard symbols, and we similarly define the operator $Op_h^w(a)$ for such symbols. In this case, we assume that *B* belongs to some standard class. This is equivalent to assuming that *H* belongs to some (other) standard class. Then, \mathcal{L}_\hbar is a pseudodifferential operator with total symbol *H*.

1630 LÉO MORIN

Appendix D: Egorov theorem

In this paper, we used several versions of the Egorov theorem. See for example [\[Robert 1987;](#page-40-18) [Zworski](#page-40-15) [2012;](#page-40-15) [Helffer et al. 2016\]](#page-39-9).

Theorem D.1. Let P and Q be \hbar -pseudodifferential operators on \mathbb{R}^d , with symbols $p \in S(m)$, $q \in S(m')$, *where m and m*′ *are order functions such that*

$$
m' = \mathcal{O}(1), \quad mm' = \mathcal{O}'(1).
$$

Then the operator $e^{(i/\hbar)Q}$ *P* $e^{-(i/\hbar)Q}$ *is a pseudodifferential operator whose symbol is in S*(*m*), *and its symbol is*

$$
p \circ \kappa + \hbar S(1),
$$

where the canonical transformation κ *is the time-*1 *Hamiltonian flow associated with q.*

We can use this result with the $\sqrt{\hbar}$ -quantization to get an Egorov theorem for our mixed quantization Op_μ^{*w*}.

Theorem D.2. Let P be an h-pseudodifferential operator on \mathbb{R}^d , and $\mathbf{a} \in C_0^{\infty}(\mathbb{R}^{2d})$. Then

$$
e^{(i/\hbar)\operatorname{Op}^w_\sharp(\mathbf{a})}P e^{-(i/\hbar)\operatorname{Op}^w_\sharp(\mathbf{a})}
$$

is an h-pseudodifferential operator on \mathbb{R}^d .

Proof. Op_{\sharp}^{ψ}(a) is an *h*-pseudodifferential operator. Thus, we can apply the Egorov theorem, and we deduce that $e^{(i/\hbar) \text{Op}_{\sharp}^w(a)} P e^{-(i/\hbar) \text{Op}_{\sharp}^w(a)}$ is an *h*-pseudodifferential operator on \mathbb{R}^d . □

Acknowledgement

I warmly thank N. Raymond and S. Vũ Ngọc for their support and readings of preliminary versions of this work. I also thank B. Helffer for his useful remarks.

References

- [Arnold 1963] V. I. Arnold, "Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian", *Uspekhi Mat. Nauk* 18:5(113) (1963), 13–40. In Russian; translated in *[Russian](https://doi.org/10.1070/RM1963v018n05ABEH004130) Math. Surv.* 18[:5 \(1963\), 9–36.](https://doi.org/10.1070/RM1963v018n05ABEH004130) [MR](http://msp.org/idx/mr/163025)
- [Birkhoff 1927] G. D. Birkhoff, *[Dynamical systems](https://archive.org/details/dynamicalsystems00birk/page/n3/mode/2up)*, Amer. Math. Soc. Colloq. Publ. 9, Amer. Math. Soc., Providence, RI, 1927. [Zbl](http://msp.org/idx/zbl/53.0732.01)

[Boil and Vũ Ngọc 2021] G. Boil and S. Vũ Ngọc, ["Long-time dynamics of coherent states in strong magnetic fields",](http://dx.doi.org/10.1353/ajm.2021.0045) Amer. J. *Math.* 143:6 (2021), 1747–1789. [MR](http://msp.org/idx/mr/4349132) [Zbl](http://msp.org/idx/zbl/1484.81026)

[Bonthonneau and Raymond 2020] Y. Bonthonneau and N. Raymond, ["WKB constructions in bidimensional magnetic wells",](http://dx.doi.org/10.4310/MRL.2020.v27.n3.a2) *Math. Res. Lett.* 27:3 (2020), 647–663. [MR](http://msp.org/idx/mr/4216562) [Zbl](http://msp.org/idx/zbl/1459.35297)

[Bonthonneau et al. 2021a] Y. G. Bonthonneau, T. Nguyen Duc, N. Raymond, and S. Vũ Ngọc, ["Magnetic WKB constructions](http://dx.doi.org/10.1142/S0129055X21500227) [on surfaces",](http://dx.doi.org/10.1142/S0129055X21500227) *Rev. Math. Phys.* 33:7 (2021), art. id. 2150022. [MR](http://msp.org/idx/mr/4298266) [Zbl](http://msp.org/idx/zbl/1476.58009)

- [Bonthonneau et al. 2021b] Y. Guedes Bonthonneau, N. Raymond, and S. Vũ Ngọc, ["Exponential localization in](http://dx.doi.org/10.4310/arkiv.2021.v59.n1.a3) 2D pure [magnetic wells",](http://dx.doi.org/10.4310/arkiv.2021.v59.n1.a3) *Ark. Mat.* 59:1 (2021), 53–85. [MR](http://msp.org/idx/mr/4256007) [Zbl](http://msp.org/idx/zbl/1466.35272)
- [Borthwick and Uribe 1996] D. Borthwick and A. Uribe, ["Almost complex structures and geometric quantization",](http://dx.doi.org/10.4310/MRL.1996.v3.n6.a12) *Math. Res. Lett.* 3:6 (1996), 845–861. Correction in 5[:1-2 \(1998\), 211–212.](https://doi.org/10.4310/MRL.1998.v5.n2.a7) [MR](http://msp.org/idx/mr/1426541) [Zbl](http://msp.org/idx/zbl/0872.58030)

- [Charles 2020] L. Charles, "Landau levels on a compact manifold", preprint, 2020. [arXiv 2012.14190](http://msp.org/idx/arx/2012.14190)
- [Charles and Vũ Ngọc 2008] L. Charles and S. Vũ Ngọc, ["Spectral asymptotics via the semiclassical Birkhoff normal form",](http://dx.doi.org/10.1215/00127094-2008-026) *Duke Math. J.* 143:3 (2008), 463–511. [MR](http://msp.org/idx/mr/2423760) [Zbl](http://msp.org/idx/zbl/1154.58015)
- [Delaunay 1860] C. E. Delaunay, *[Théorie du mouvement de la lune](https://gallica.bnf.fr/ark:/12148/bpt6k5323412s.texteImage)*, Mallet-Bachelier, Paris, 1860. [Zbl](http://msp.org/idx/zbl/01.0395.07)
- [Delos et al. 1983] J. B. Delos, S. K. Knudson, and D. W. Noid, ["High Rydberg states of an atom in a strong magnetic field",](http://dx.doi.org/10.1103/PhysRevLett.50.579) *Phys. Rev. Lett.* 50:8 (1983), 579–583. Correction in 51[:4 \(1983\), 325.](https://doi.org/10.1103/PhysRevLett.51.325)
- [Fournais and Helffer 2010] S. Fournais and B. Helffer, *[Spectral methods in surface superconductivity](http://dx.doi.org/10.1007/978-0-8176-4797-1)*, Progr. Nonlinear Differ. Eq. Appl. 77, Birkhäuser, Boston, 2010. [MR](http://msp.org/idx/mr/2662319) [Zbl](http://msp.org/idx/zbl/1256.35001)
- [Guillemin and Uribe 1988] V. Guillemin and A. Uribe, "The Laplace operator on the *n*[th tensor power of a line bundle:](http://dx.doi.org/10.3233/ASY-1988-1202) [eigenvalues which are uniformly bounded in](http://dx.doi.org/10.3233/ASY-1988-1202) *n*", *Asymptotic Anal.* 1:2 (1988), 105–113. [MR](http://msp.org/idx/mr/950009) [Zbl](http://msp.org/idx/zbl/0649.53026)
- [Gustavson 1966] F. G. Gustavson, ["On constructing formal integrals of a Hamiltonian system near an equilibrium point",](http://dx.doi.org/10.1086/110172) *Astronom. J.* 71:8 (1966), 670–686.
- [Helffer and Kordyukov 2011] B. Helffer and Y. A. Kordyukov, ["Semiclassical spectral asymptotics for a two-dimensional](http://dx.doi.org/10.1090/conm/535/10535) [magnetic Schrödinger operator: the case of discrete wells",](http://dx.doi.org/10.1090/conm/535/10535) pp. 55–78 in *Spectral theory and geometric analysis* (Boston, 2009), edited by M. Braverman et al., Contemp. Math. 535, Amer. Math. Soc., Providence, RI, 2011. [MR](http://msp.org/idx/mr/2560751) [Zbl](http://msp.org/idx/zbl/1218.58017)
- [Helffer and Kordyukov 2013] B. Helffer and Y. A. Kordyukov, ["Eigenvalue estimates for a three-dimensional magnetic](http://dx.doi.org/10.3233/ASY-2012-1136) [Schrödinger operator",](http://dx.doi.org/10.3233/ASY-2012-1136) *Asymptot. Anal.* 82:1-2 (2013), 65–89. [MR](http://msp.org/idx/mr/3088341) [Zbl](http://msp.org/idx/zbl/1325.35123)
- [Helffer and Kordyukov 2014] B. Helffer and Y. A. Kordyukov, ["Semiclassical spectral asymptotics for a magnetic Schrödinger](http://dx.doi.org/10.1007/978-3-319-06248-8_23) [operator with non-vanishing magnetic field",](http://dx.doi.org/10.1007/978-3-319-06248-8_23) pp. 259–278 in *Geometric methods in physics* (Białowieza, Poland, 2013), edited ˙ by P. Kielanowski et al., Birkhäuser, Cham, 2014. [MR](http://msp.org/idx/mr/3587698) [Zbl](http://msp.org/idx/zbl/1317.81101)
- [Helffer and Kordyukov 2015] B. Helffer and Y. A. Kordyukov, ["Accurate semiclassical spectral asymptotics for a two](http://dx.doi.org/10.1007/s00023-014-0356-y)[dimensional magnetic Schrödinger operator",](http://dx.doi.org/10.1007/s00023-014-0356-y) *Ann. Henri Poincaré* 16:7 (2015), 1651–1688. [MR](http://msp.org/idx/mr/3356100) [Zbl](http://msp.org/idx/zbl/1338.81187)
- [Helffer and Mohamed 1996] B. Helffer and A. Mohamed, ["Semiclassical analysis for the ground state energy of a Schrödinger](http://dx.doi.org/10.1006/jfan.1996.0056) [operator with magnetic wells",](http://dx.doi.org/10.1006/jfan.1996.0056) *J. Funct. Anal.* 138:1 (1996), 40–81. [MR](http://msp.org/idx/mr/1391630) [Zbl](http://msp.org/idx/zbl/0851.58046)
- [Helffer and Morame 2001] B. Helffer and A. Morame, ["Magnetic bottles in connection with superconductivity",](http://dx.doi.org/10.1006/jfan.2001.3773) *J. Funct. Anal.* 185:2 (2001), 604–680. [MR](http://msp.org/idx/mr/1856278) [Zbl](http://msp.org/idx/zbl/1078.81023)
- [Helffer and Sjöstrand 1984] B. Helffer and J. Sjöstrand, ["Multiple wells in the semiclassical limit, I",](http://dx.doi.org/10.1080/03605308408820335) *Comm. Partial Differential Equations* 9:4 (1984), 337–408. [MR](http://msp.org/idx/mr/740094) [Zbl](http://msp.org/idx/zbl/0546.35053)
- [Helffer et al. 2016] B. Helffer, Y. Kordyukov, N. Raymond, and S. Vũ Ngọc, ["Magnetic wells in dimension three",](http://dx.doi.org/10.2140/apde.2016.9.1575) Anal. PDE 9:7 (2016), 1575–1608. [MR](http://msp.org/idx/mr/3570232) [Zbl](http://msp.org/idx/zbl/1351.81053)
- [Hofer and Zehnder 1994] H. Hofer and E. Zehnder, *[Symplectic invariants and Hamiltonian dynamics](http://dx.doi.org/10.1007/978-3-0348-8540-9)*, Birkhäuser, Basel, 1994. [MR](http://msp.org/idx/mr/1306732) [Zbl](http://msp.org/idx/zbl/0805.58003)
- [Ivrii 2019] V. Ivrii, *[Microlocal analysis, sharp spectral asymptotics and applications, III](http://dx.doi.org/10.1007/978-3-030-30537-6)*: *Magnetic Schrödinger operator* 1, Springer, 2019. [MR](http://msp.org/idx/mr/3970978) [Zbl](http://msp.org/idx/zbl/1443.35003)
- [Jaffé and Reinhardt 1982] C. Jaffé and W. P. Reinhardt, ["Uniform semiclassical quantization of regular and chaotic classical](http://dx.doi.org/10.1063/1.443696) [dynamics on the Hénon–Heiles surface",](http://dx.doi.org/10.1063/1.443696) *J. Chem. Phys.* 77:10 (1982), 5191–5203. [MR](http://msp.org/idx/mr/681223)
- [Joyeux and Sugny 2002] M. Joyeux and D. Sugny, ["Canonical perturbation theory for highly excited dynamics",](http://dx.doi.org/10.1139/p02-075) *Canad. J. Phys.* 80:12 (2002), 1459–1480. [Zbl](http://msp.org/idx/zbl/1371.81122)
- [Keraval 2018] P. Keraval, *Formules de Weyl par réduction de dimension*: *[application à des Laplaciens électro-magnétiques](https://www.theses.fr/en/2018REN1S093)*, Ph.D. thesis, Université de Rennes 1, 2018, available at https://www.theses.fr/en/2018REN1S093.
- [Kolmogorov 1954] A. N. Kolmogorov, "On conservation of conditionally periodic motions for a small change in Hamilton's function", *Dokl. Akad. Nauk SSSR* (*N.S.*) 98 (1954), 527–530. In Russian. [MR](http://msp.org/idx/mr/68687)
- [Kordyukov 2019] Y. A. Kordyukov, "Semiclassical eigenvalue asymptotics for the Bochner Laplacian of a positive line bundle on a symplectic manifold", preprint, 2019. [arXiv 1908.01756](http://msp.org/idx/arx/1908.01756)
- [Kordyukov 2020] Y. A. Kordyukov, ["Semiclassical spectral analysis of Toeplitz operators on symplectic manifolds: the case of](http://dx.doi.org/10.1007/s00209-020-02462-3) [discrete wells",](http://dx.doi.org/10.1007/s00209-020-02462-3) *Math. Z.* 296:3-4 (2020), 911–943. [MR](http://msp.org/idx/mr/4159815) [Zbl](http://msp.org/idx/zbl/1499.58023)

1632 LÉO MORIN

- [Kordyukov 2022] Y. A. Kordyukov, ["Berezin–Toeplitz quantization associated with higher Landau levels of the Bochner](http://dx.doi.org/10.4171/jst/397) [Laplacian",](http://dx.doi.org/10.4171/jst/397) *J. Spectr. Theory* 12:1 (2022), 143–167. [MR](http://msp.org/idx/mr/4404810) [Zbl](http://msp.org/idx/zbl/1487.58024)
- [Lindstedt 1883] A. Lindstedt, ["Beitrag zur Integration der Differentialgleichungen der Störungstheorie",](https://books.google.com/books?id=ZfU-AQAAMAAJ&pg=PP11#v=onepage&q&f=false) *Mem. Acad. Impér. Sci. St.-Pétersbourg* 31:4 (1883), art. id. 4. [Zbl](http://msp.org/idx/zbl/15.0983.02)
- [Ma and Marinescu 2002] X. Ma and G. Marinescu, "The Spin*^c* [Dirac operator on high tensor powers of a line bundle",](http://dx.doi.org/10.1007/s002090100393) *Math. Z.* 240:3 (2002), 651–664. [MR](http://msp.org/idx/mr/1924025) [Zbl](http://msp.org/idx/zbl/1027.58025)
- [Marcus 1985] R. A. Marcus, ["Aspects of intramolecular dynamics in chemistry",](http://dx.doi.org/10.1007/978-1-4613-2443-0_19) pp. 293–298 in *Chaotic behavior in quantum systems*: *theory and applications* (Como, Italy, 1983), edited by G. Casati, NATO Sci. Ser. B: Phys. 120, Springer, 1985.
- [Marinescu and Savale 2018] G. Marinescu and N. Savale, "Bochner Laplacian and Bergman kernel expansion of semi-positive line bundles on a Riemann surface", preprint, 2018. [arXiv 1811.00992](http://msp.org/idx/arx/1811.00992)
- [Martinez 2002] A. Martinez, *[An introduction to semiclassical and microlocal analysis](http://dx.doi.org/10.1007/978-1-4757-4495-8)*, Springer, 2002. [MR](http://msp.org/idx/mr/1872698) [Zbl](http://msp.org/idx/zbl/0994.35003)
- [Martinez 2007] A. Martinez, ["A general effective Hamiltonian method",](http://dx.doi.org/10.4171/RLM/494) *Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.* 18:3 (2007), 269–277. [MR](http://msp.org/idx/mr/2318820) [Zbl](http://msp.org/idx/zbl/1139.35383)
- [Morin 2022a] L. Morin, ["Review on spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle",](http://dx.doi.org/10.5802/cml.83) *Confluentes Math.* 14:1 (2022), 65–79. [MR](http://msp.org/idx/mr/4520160) [Zbl](http://msp.org/idx/zbl/1503.58014)
- [Morin 2022b] L. Morin, ["A semiclassical Birkhoff normal form for symplectic magnetic wells",](http://dx.doi.org/10.4171/jst/406) *J. Spectr. Theory* 12:2 (2022), 459–496. [MR](http://msp.org/idx/mr/4487480) [Zbl](http://msp.org/idx/zbl/1513.81064)
- [Moser 1962] J. Moser, "On invariant curves of area-preserving mappings of an annulus", *Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II* 1962 (1962), 1–20. [MR](http://msp.org/idx/mr/147741) [Zbl](http://msp.org/idx/zbl/0107.29301)
- [Moser 1968] J. K. Moser, *Lectures on Hamiltonian systems*, Mem. Amer. Math. Soc. 81, Amer. Math. Soc., Providence, RI, 1968. [MR](http://msp.org/idx/mr/230498) [Zbl](http://msp.org/idx/zbl/0172.11401)
- [Raymond 2017] N. Raymond, *[Bound states of the magnetic Schrödinger operator](http://dx.doi.org/10.4171/169)*, EMS Tracts in Math. 27, Eur. Math. Soc., Zürich, 2017. [MR](http://msp.org/idx/mr/3616340) [Zbl](http://msp.org/idx/zbl/1370.35004)
- [Raymond and Vũ Ngọc 2015] N. Raymond and S. Vũ Ngọc, ["Geometry and spectrum in](http://dx.doi.org/10.5802/aif.2927) 2D magnetic wells", *Ann. Inst. Fourier* (*Grenoble*) 65:1 (2015), 137–169. [MR](http://msp.org/idx/mr/3449150) [Zbl](http://msp.org/idx/zbl/1327.81207)
- [Robert 1987] D. Robert, *Autour de l'approximation semi-classique*, Progr. Math. 68, Birkhäuser, Boston, 1987. [MR](http://msp.org/idx/mr/897108) [Zbl](http://msp.org/idx/zbl/0621.35001)
- [Shirts and Reinhardt 1982] R. B. Shirts and W. P. Reinhardt, ["Approximate constants of motion for classically chaotic vibrational](http://dx.doi.org/10.1063/1.443697) [dynamics: vague tori, semiclassical quantization, and classical intramolecular energy flow",](http://dx.doi.org/10.1063/1.443697) *J. Chem. Phys.* 77:10 (1982), 5204–5217. [MR](http://msp.org/idx/mr/681224)
- [Sjöstrand 1992] J. Sjöstrand, ["Semi-excited states in nondegenerate potential wells",](http://dx.doi.org/10.3233/ASY-1992-6102) *Asymptotic Anal.* 6:1 (1992), 29–43. [MR](http://msp.org/idx/mr/1188076) [Zbl](http://msp.org/idx/zbl/0782.35050)
- [Tejero Prieto 2006] C. Tejero Prieto, ["Holomorphic spectral geometry of magnetic Schrödinger operators on Riemann surfaces",](http://dx.doi.org/10.1016/j.difgeo.2005.09.001) *Differential Geom. Appl.* 24:3 (2006), 288–310. [MR](http://msp.org/idx/mr/2216942) [Zbl](http://msp.org/idx/zbl/1172.58010)
- [Weinstein 1971] A. Weinstein, ["Symplectic manifolds and their Lagrangian submanifolds",](http://dx.doi.org/10.1016/0001-8708(71)90020-X) *Adv. Math.* 6 (1971), 329–346. [MR](http://msp.org/idx/mr/286137) [Zbl](http://msp.org/idx/zbl/0213.48203)
- [Zworski 2012] M. Zworski, *[Semiclassical analysis](http://dx.doi.org/10.1090/gsm/138)*, Grad. Stud. in Math. 138, Amer. Math. Soc., Providence, RI, 2012. [MR](http://msp.org/idx/mr/2952218) [Zbl](http://msp.org/idx/zbl/1252.58001)
- Received 22 Jul 2021. Revised 24 Aug 2022. Accepted 8 Nov 2022.

LÉO MORIN: leo.morin@ens-rennes.fr

Department of Mathematics, Aarhus University, Aarhus, Denmark

Analysis & PDE

msp.org/apde

EDITOR-IN-CHIEF

Clément Mouhot Cambridge University, UK c.mouhot@dpmms.cam.ac.uk

BOARD OF EDITORS

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2024 is US \$440/year for the electronic version, and \$690/year (+\$65, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

nonprofit scientific publishing

<http://msp.org/> © 2024 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 17 No. 5 2024

