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1. Introduction

The one dimensional, focusing, mass-critical nonlinear Schrodinger equation is given by
iy +uxx + ul*u=0, u(0,x)=uo(x)e L*(R). (1-1)
This equation is a special case of the Hamiltonian equation
iuy 4+ uxx + P lu=0, u0,x)=uo(x), p>1. (1-2)
If u(z, x) is a solution to (1-2), then
v(t, x) = A @Dy (021, ax) (1-3)
is a solution to (1-2) with appropriately rescaled initial data. Furthermore,

”)\‘2/(1)—1)1/‘(0’ )‘x)”HA(R) — )\'2/(1’_1)-{1_1/2||u0||HS([R)’

so, for s, = % —2/(p—1), the H* (R) norm of the initial data is invariant under the scaling symmetry (1-3).
MSC2020: 35Q55.
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The scaling symmetry in (1-3) controls the local well-posedness theory of (1-1). In that case, p =5
and s, = 0.

Theorem 1. The initial value problem (1-1) is locally well-posed for any uy € L.
(1) Forany ug € L?, there exists T (ug) > 0 such that (1-1) is locally well-posed on the interval (—T, T).
(2) If |luol|z2 is small then (1-1) is globally well-posed, and the solution scatters both forward and

backward in time. That is, there exist u_, u4 € LZ([RE) such that

lim [u(t) —e't2y =0 and lim |u(t)—e'Pu_ =0.
im0 = B2 Jim () 22

) If I is the maximal interval of existence for a solution to (1-1) with initial data ugy, we say u blows up

forward in time if

T/l'isllg(l) ”u”L?x([O,Tlxﬂ) = oo

If u does not blow up forward in time, then sup(l) = +o00 and u scatters forward in time.

@) If sup(l) < oo then, for any s > 0,

lim  |u(t)|gs = +oo.
t Zsup(I)

(5) Time reversal symmetry implies that the results corresponding to (3) and (4) also hold going backward
in time.

Remark. It is very important to emphasize that throughout this paper, blow up in positive time may be in
finite time or infinite time, unless specified otherwise. The same is true for blow up in negative time.

Proof. Theorem 4 was proved in [Cazenave and Weissler 1990]. See also [Ginibre and Velo 1979a; 1979b;
1985; Kato 1987]. The proof uses the Strichartz estimates

”u”LtooL,Z\,ﬂL?LS’CO(IXR) < ”uOHLZ(IR) + ||F||L}L)2C+L;1/3L)1C(IXR)’

where u is the solution to
iy +uxx =F, u(O,x)=u0,

on the interval /, where 0 € /. The Strichartz estimates were proved in [Ginibre and Velo 1992; Strichartz
1977; Yajima 1987]. Theorem 4 was proved using Picard iteration, so u is a strong solution to (1-1). For
all # € I, where [ is the open interval on which local well-posedness of (1-1) holds,

t
u(t)ze”ax"uo+i/ e D0 (| (o) *u(r)) d.
0

See [Tao 2006] for different notions of a solution. O

Furthermore, a solution to (1-1) has the conserved quantities mass,

Mu() = / (e, )| dx = M (u(0)).
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and energy,
Ew@)=1 / (e, ) dx — & [ u(t.3)[ dx = E(u(0)).

For the more general equation (1-2), the Hamiltonian is given by
_1 2. 1 Pl gy _
E@) =3 | lux(t,x)]" dx P |u(r, x)[P™" dx = E(u(0)). (1-4)

For p < 5, [Ginibre and Velo 1979a] proved global well-posedness of (1-2) with initial data ug € H' (R).
Indeed, by a straightforward application of the fundamental theorem of calculus and Holder’s inequality,
ifu(t,x)e LN H',

o0 o0
0P < [0l nPldy <2 [ dute e nldy < 2Qul g lule. 05
X X

Therefore,
p+1 (p—1)/2 (p+3)/2
”u([)”Lerl(R) < “u([)”FIl(R) ”u(t)”Lz(R) )

so (1-4) implies the existence of a uniform upper bound on |[u(?)[| ;1 when p <5.
For p > 5, there exist singular solutions of (1-2), that is, solutions on the finite interval [0, T), T < oo,
for which

lim [4(0) 1y = oo

See [Glassey 1977; Weinstein 1986].
When p = 5, (1-5) implies

[t 01° dx £ O, 1O o (16)
which implies the existence of a threshold mass M for which, if |lugll;2 < My,

EQ(0) 2y 1401, -

with implicit constant N\ 0 as |[ugl|z2 / M.
From [Weinstein 1982], the optimal constant in (1-6) is given by the Gagliardo—Nirenberg inequality,

6 ”uHiZ 2 2
S oy = 3( e ) a3 (1-7)
10117
where
3 1/4
= — . 1-8
2 (cosh(2x)2) (1-8)

Therefore, if ||ug|/;2 < ||Q]12, then (1-7) implies

E(®) Zjuol,» 1417, (1-9)
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which implies global well-posedness of (1-1) with initial data ug € H' and ||ug||;2 < || Q|| ;2. Furthermore,
the identities

%/x2|u(t,x)|2 dx=4Im/xu(t,x)ux(t,x) dx

and
d 2
dr?

imply scattering for (1-1) with initial data

x2|u(t, x)|* dx = 16 E(u(t))

upe H'MRNE = {u : /x2|u(x)|2dx < oo}, luoll 2 < 1Ol 2.

More recently, [Dodson 2015; 2016a] proved that (1-1) is globally well-posed and scattering for any
initial data ug € L2, ||ug|lz2 < ||Q|l 2. The proof used the concentration compactness result of [Keraani
2006; Tao et al. 2008] which states that if «(¢) is a blowup solution to (1-1) of minimal mass, if #, is
a sequence of times approaching sup(/), and if u blows up forward in time on the maximal interval of
existence 1, then u(t,, x) has a subsequence that converges in L2, up to the symmetries of (1-1). Using
this fact, [Dodson 2015] proved that if u is a minimal mass blowup solution to (1-1), then there exists a
sequence t,, — sup([/), for which E(v,) \ 0, where v, is a good approximation of u(z,, x), acted on
by appropriate symmetries. Since (1-9) implies that the only # with mass less than || Q||i2 and zero
energy is u = 0, and the small data scattering result implies that the zero solution is stable under small
perturbations, there cannot exist a minimal mass blowup solution to (1-1) with mass less than ||Q ||i2

When |u| ;2 = ||Q|l12, (1-7) only implies that E(x) > 0. The Q(x) in (1-8) is the unique, positive
solution to

Oxx+0° = 0. (1-10)

See [Berestycki et al. 1981; Berestycki and Lions 1978; Kwong 1989; Strauss 1977] for existence and
uniqueness of a ground state solution in general dimensions. Also observe that by the Pohozaev identity,

E©Q =} [(0-0m-0)(30+x0,) dx =0

Up to the scaling (1-3), multiplication by a modulus one constant, and translation in space, Q is the
unique minimizer of the energy functional with mass || Q| ;2. See [Cazenave and Lions 1982; Weinstein
1986].

It is straightforward to verify that (1-8) solves (1-10), and that e’/ Q solves (1-1). Since |/’ Q| 16 is
constant for all ¢ € R, we have that ¢’ QO blows up both forward and backward in time. Furthermore, the
pseudoconformal transformation of e’/ Q(x),

1 —i ix?] (x
is a solution to (1-1) that blows up as ¢ N\ 0 and scatters as ¢ — co. Note that the mass is preserved under
the pseudoconformal transformation of e’ Q.
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It has long been conjecture that, up to symmetries of (1-1), the only nonscattering solutions to (1-1)
are the soliton e’/ Q and the pseudoconformal transformation of the soliton, (1-11). Partial progress has
been made in this direction.

Theorem 2. If ug € H', ||lug|l 2 = || Q|| .2, and the solution u(t) to (1-1) blows up in finite time T > 0,
then u(t, x) is equal to (1-11), up to symmetries of (1-1).

Proof. This result was proved in [Merle 1992; 1993], and was proved for the focusing, mass-critical
nonlinear Schrédinger equation in every dimension. O

For the mass-critical nonlinear Schrédinger equation in higher dimensions with radially symmetric
initial data, [Killip et al. 2009] proved:

Theorem 3. If ||ug||z2 = || Q|12 is radially symmetric, u is the solution to the focusing, mass-critical
nonlinear Schrodinger equation with initial data u, and u blows up both forward and backward in time,
then u is equal to the soliton, up to symmetries of the mass-critical nonlinear Schrodinger equation.

In this paper we completely resolve this conjecture in one dimension, showing that the only blowup so-
lutions to (1-1) with mass ||z || 22 =0 ||i2 are the soliton and the pseudoconformal transformation of the
soliton. This result should also hold in higher dimensions, which will be addressed in a forthcoming paper.

It is convenient to begin by considering solutions symmetric in x first.

Theorem 4. The only symmetric solutions to (1-1) with mass ||ug||r2 = || Q| 1.2 that blow up forward in
time are the family of soliton solutions
e 1/20(0x), A>0, 6eR, (1-12)
and the pseudoconformal transformation of the soliton solution
1 i ix2 )\.2 )\.x
—_— — j , A>0, 0eR, TeR, t<T. 1-13
(T —0)172° exP[4(z—T)}eXp[’z—T \7=; (1-13)

The proof of Theorem 4 will occupy most of the paper. Once we have proved Theorem 4, we will

remove the symmetry assumption on ug, proving:
Theorem 5. The only solutions to (1-1) with mass |\ug||z2 = || Q| 1.2 that blow up forward in time are the
family of soliton solutions

e TIO—IIES GiN21 GixE0) 12 0 () (x — 21E0) +x0), A>0, BER, xo€R, £ €R, (1-14)
and the pseudoconformal transformation of the family of solitons,

1 i i(x —&)? s AMx —&0) —(T'—=1)xo
——e'Vexp| ———|exp|i 0 ,
(T —1)1/2 4@t —T) t—T T —t
where A>0, 0 €R, xR, & eR, TeR, t<T. (1-15)

Applying time reversal symmetry to (1-1), this theorem completely settles the question of qualitative
behavior of solutions to (1-1) for initial data satisfying |uo| 2 = || Q| 2.

The reader should see [Nakanishi and Schlag 2011] for this result for the Klein—Gordon equation.



1698 BENJAMIN DODSON

Before proceeding to Section 2, the proof of Theorems 4 and 5 will be outlined. The first step (in
Section 2) in the proof of Theorem 4 is to use the sequential convergence result of [Fan 2021] to show
that Theorem 4 reduces to considering a symmetric solution to (1-1) that blows up forward in time with
llollz2 = 1Ol 2 and A(¢) and y(¢) continuous functions of time for which

o O 105) -

Then, in Section 3, the machinery in [Martel and Merle 2002] is used to choose A(?) and y(¢) satisfying
(1-16) for which

(€, 0x) = (i€, Ox) = (¢, 0%) = (ie, 0%) =0, Whefeé(’vx)Zk(’)_l/ze_w)”( x()) o).

<N, Nx <1, forallz>0. (1-16)

In Sections 4-6, the spectral theory of € is combined with the long-time Strichartz estimates in [Dodson
2016a], proving

b 1
/ le@I7 M)~ dt < 3(e2(a), (30 +x0x)) ;2 —3(e2(b). 30+ x0x),» + O(F)’

b
when / AMe)2dt=T and a>0. (1-17)
a

In Section 7, we use (1-17) to show that if [0, T") is the maximal interval of existence of (1-1) in the
forward time direction,

T
/ le@)17,4(t)"* <00 forany p > 1. (1-18)
0

Note that for the pseudoconformal solution (1-11), (1-18) holds, but fails when p = 1. Then in Section 8, we
use the virial identity in [Merle and Raphael 2005] to show that A(¢) is approximately monotone decreasing.
In Section 9, the monotonicity of A(¢) combined with long-time Strichartz estimates and conservation of
energy implies that u is a soliton solution when 7" = co. When T' < 00, a pseudoconformal transformation
of the solution must satisfy 7" = oo, so therefore # must be a pseudoconformal transformation of a soliton.
Finally, in Section 10, the above argument is generalized to the nonsymmetric case. We conclude with an
Appendix describing U? and V' ? spaces, an important tool used in long-time Strichartz estimates.

2. Reductions of a symmetric blowup solution

Let u be a symmetric blowup solution to (1-1) with mass ||u¢| ;2 = || Q|| ;2. Defining the distance to the
two dimensional manifold of symmetries acting on the soliton (1-8) by

inf [lug(x) —e” A2 Q0x) | 2. @-1)
A>0,Y€ER

there exist Ao > 0 and yy € R where this infimum is attained. Indeed:

Lemma 6. There exist Ay > 0 and yy € R such that

luo(x) —e™7025 2005 ) L2y = inf fluo(x) - VA2 N L2
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Proof. Since Q, along with all its derivatives, is rapidly decreasing,
luo(x) =727 2007 )17, (2-2)

is differentiable and hence continuous as a function of A and y.
Next, by the dominated convergence theorem,

1i inf _ —iyk—l/Z )\—1 2
e

= luol2, + 1012, =2 lim sup [ YA"200 7 %) up(x)) 2| =2 02,. (2-3)
A/100 yef0,27]

Here, (f, g); > denotes the L2-inner product

(f.8)2 = Re / F()8() dx.
Meanwhile, rescaling (2-3),
e A7Y200.7 %), up(x) 12 = (Q(x). €Y A ug (hx)) 2,

and therefore,

li inf —e 120071012, = 21|03, 2-4
Al\r‘l}) yeﬂ)l,Zn'] luo(x)—e o( x)”LZ [ Q”LZ (2-4)

Finally, the polarization identity
luo(x) =27 2QAT 012, + lluo(x) + A7V2Q( T )12, = 4] 0|12,
implies that
T ; 1/2 1 o\12 2
3 [ o= 200 ) dy = 2101 @-5)

If, for all A > 0,

inf  Juo(x) —e™YA200.7 )12, = 2] 013,
y€[0,27]

then (2-5) implies
lug(x) —e™ YA 20(0 " W) |12, =2||Q|2, forallA>0, y €[0,2x]. (2-6)
In this case simply take Ao = 1 and yy = 0.

Remark. Equation (2-6) is not possible, since (2-6) is equivalent to the statement that there exists
luollL2 = | Q|2 satisfying

(uo(x), e_iyk_l/zQ(k_lx))Lz =0 forall y €[0,2x] and for all A > 0. 2-7)

Since Q and ug are symmetric, let R(y) = e?/2Q(y) and v(y) = ¢?/2uqy(e”). Then (2-7) implies
that v(y) is orthogonal to all translations of R(y). Since R()) is exponentially decreasing, the Fourier
transform of R(y) is analytic in the strip, and therefore must have isolated zeros. Thus, its zeros are a set
of measure zero, so the translates of R are dense in L2. The author is grateful to an anonymous referee
for pointing this fact out.
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On the other hand, if

inf inf _ iy —1/2 -1 2 ) 2
Jnf ylgRlluo(x) ATV )2, < 211012,

then (2-3) and (2-4) imply that there exist 0 < A; < A, < 0o such that

inf inf —e 120007 )12, = inf inf _e 1200 )12,
5 i 1000 =€ TATEOOTIN =, i 000 AT OO

Since (2-2) is continuous as a function of A > 0, y €0, 2x], and [A1, A2] x [0, 27r] is a compact set, there

exist Ag > 0 and y; € [0, 277] such that

—i —1/2 — . —i — —
Juoe) =735 Q0 Wz = inf o) =AM 2067 )l O

Using the weak sequential convergence result of [Fan 2021], Theorem 4 may be reduced to considering
solutions that blow up in positive time for which (2-1) is small for all 7 > 0.

Theorem 7. Let 0 < ny <K 1 be a small, fixed constant to be defined later. If u is a symmetric solution

to (1-1) on the maximal interval of existence I C R, ||ugl|z2 = ||Q||12, u blows up forward in time, and

sup  inf ||eiyk1/2u(t,kx) —0) |12 <« (2-8)
te[O,sup(I)))‘aV

then u is a soliton solution of the form (1-12) or a pseudoconformal transformation of a soliton of the
form (1-13).

Remark. Scaling symmetries imply that (2-1) and the left-hand side of (2-8) at a fixed time are equal.

Proof that Theorem 7 implies Theorem 4. Let u(t) be the solution to (1-1) with symmetric initial data u

that satisfies ||ug| ;2 = | Q| 2. If

lim inf )\I/Zei)’u £AX) — —0. 50
¢ Aup(I) A0, y€R I (t.Ax) = Ol L2 (2-9)

then (2-8) holds for all ¢ > ¢y, for some ¢y € I. After translating in time so that ¢y = 0, Theorem 7 easily
implies Theorem 4 in this case.

However, the convergence theorem of [Fan 2021] only implies u(¢) must converge to Q along a
subsequence after rescaling and multiplying by a complex number of modulus one.

Theorem 8. Let u be a symmetric solution to (1-1) that satisfies |uo| ;2 = || Q|12 and blows up forward
in time. Let (T—(u), T+ (1)) be the maximal lifespan of the solution u. Then there exists a sequence
tn = T4 (u) and a family of parameters A, > 0, yn € R such that

e A 2u(ty, hyx) > Q in L% (2-10)
If (2-9) does not hold but there exists some 7, > 0 such that

sup inf ||eiykl/2u(t,kx)—Q(x)||Lz < N,
t€[to,sup(I)) *>¥

then after translating in time so that 7y = 0, (2-8) holds.



BLOWUP SOLUTIONS TO THE FOCUSING, QUINTIC NLS WITH THE MASS OF THE SOLITON 1701

Now suppose (2-9) does not hold and furthermore that there exists a sequence #,” /" sup(/) such that

inf e AV 2u(t; Ax) — Oll2 > ns (2-11)
yER,A>0
for every n. After passing to a subsequence, suppose that, for every n, we have 7, <1, <1, ,, where #,

is the sequence in (2-10) and ¢, is the sequence in (2-11). The fact that

inf  [le!”AY2u(t,Ax) — Q|| 2 (2-12)

yER,A>0
is upper semicontinuous as a function of ¢ and is continuous for every ¢ such that (2-12) is small guarantees
that there exists a small, fixed 0 < 7, < 1 such that the sequence 7, defined by
iy =inf{teI: sup inf [|AY2eu(t,hx)— Qll 12 < s}
et 1] Y

satisfies 2,7 7 sup(/) and

inf [l AV 2u(t,, Ax) — Q)22 = na. (2-13)
A>0,y€ER

Indeed, the fact that (2-12) is upper semicontinuous as a function of ¢ implies that

(0<t<ty: inf |2V 2u(t, Ax) — Q)| 12 = 1)
A>0,7€R

is a closed set. Since this set is also contained in a bounded set, it has a maximal element tn+ , and z,j >, .

The fact that (2-12) is upper semicontinuous in time also implies

inf e A 2u(tt Ax)— Ollr2 > ns.
A>0,y€R

On the other hand, since

inf e A 2u(t,Ax) — Q|2 <« forall th <t <ty
A>0,y€R

and (2-12) is continuous at times ¢ € I where (2-12) is small,

inf e AV 2u(tf Ax) — Ol 2 = ns. (2-14)
A>0,Y€ER

Remark. The constant 0 < 1y < 1 will be chosen to be a small fixed quantity that is sufficiently small
to satisfy the hypotheses of Theorem 10, sufficiently small such that (2-12) is continuous in time when
(2-12) is bounded by 74, sufficiently small such that n. < g, where n¢ is the constant in the induction

on frequency arguments in Theorem 13, and such that 7y = 1/ny is sufficiently large to satisfy the
hypotheses of Theorem 18.

Theorem 9 (upper semicontinuity of the distance to a soliton). The quantity

inf e A1 2u(t, Ax) — Q) |l 2y (2-15)
N

is upper semicontinuous as a function of time for any t € I, where I is the maximal interval of existence
for u. The quantity (2-15) is also continuous in time when (2-15) is small.
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Proof. Choose some #y € I and suppose without loss of generality that

luetto. ) = Q)2 = Inf e 2! 2u(to. hx) = O (V)] -
For ¢ close to g, let
et,x)=u(t, x) —ei(t_tO)Q(x). (2-16)
Since ¢!(*=10) O solves (1-1),
i€+ exx + |ul*u—e"|QI*Q .
= i€, +exx + 3|0 +2£21070) | 012 0% + 0( €2t QS_j) =0. (2-17)
j=2

Equations (2-16), (2-17), and Strichartz estimates imply that, for J C R, ty € J,

< 4 5
||6||L<;OL§CQL;*L;O(JX[R) < lleo)llz2 + ||E||L;’OL§(JXR)”u”LétlL)oCO(JXR) + ”E”L?,X(JXR)'

Local well-posedness of (1-1) combined with Strichartz estimates implies that ||u|| LALP(IxR) = 1 on
some open neighborhood J of #y. Therefore, for | €(#y)| ;2 small, partitioning J into finitely many pieces,

sup [[€(@)l2 < lle(?o)ll L2 (2-18)
teJ
and
Jim (el = lle(to)] 2. (2-19)
Therefore,
lim inf |2 Y2 u(t, hx) — < |lu(to, x) — = inf |AY2eMu(ty, Ax) — .
Jim inf 327 u(t.1x) = Q2 < Julio.x) = Qll 2 = _inf 126 utio. bx) = Q.2

Furthermore, if

: : 1/2 iy _ .
Jim inf 4127 u(t.13) = Q1 2 < Juti0.x) = Q2

then there exists a sequence t, — fo, A, > 0, ¥, € R such that

lim A 2eiYny( A x) — < inf |[AY2e u(ty, Ax )
n_>oo|| n (tys Ay X) — Ol 2 i’y” (fo, AX)| 2

For ¢, sufficiently close to #o, repeating the arguments giving (2-18) and (2-19) with ¢, as the initial data
gives a contradiction.
When ||e(ty)|| 2 is large, (2-17) implies

d 2 4 2 4 2
Ellé(l)lle SOz llelly 2 + llullzooll€l;2-

4

Therefore, Gronwall’s inequality and the fact that u € Ly .

L imply

lim inf eV AY2u(t, Aix) = Q2 < inf  |e!” A 2u(ty, Ax) — Q|| 2.
I—>1o A>0,y€R A>0,yER

which implies upper semicontinuity. O
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Making a profile decomposition of u(z,}, x), the fact that u is a minimal mass blowup solution that
blows up forward in time and 7, 7 sup(I) implies that there exist A(z,7) > 0 and y(z,1) € R such that

)\(t’j-)lﬂeiy(tj)u(t’j', )\(Z,T)X) — g

in L2. Also, ;7 7 sup(I) implies ||iig||;2 = || Q|| .2 is the initial data for a solution to (1-1) that blows
up forward and backward in time, and by (2-14),
inf |22 iig(Ax) — Oll 12 = 1x. (2-20)
A>0,Y€ER
Moreover, observe that (2-10), (2-13), and (2-18) directly imply that

Jim lelips @k o =00 and - m fullpe o xm = ©-
so if # is the solution to (1-1) with initial data ),

inf  |AY2e (1, Ax) — Oll 12 < 1«
A>0,Y€ER

for all ¢ € [0, sup(I~ )), where I is the interval of existence of the solution # to (1-1) with initial data i,
and & blows up both forward and backward in time. However, Theorem 7 and (2-20) imply that & must be
of the form (1-13). Such a solution scatters backward in time and is well approximated by a linear solution
12
which contradicts the fact that i blows up both forward and backward in time.
Therefore, Theorem 7 implies that (2-11) cannot hold for any symmetric solution to (1-1) with mass

llollz2 = 11Ol 12, so by Theorem 7, any symmetric solution to (1-1) that blows up forward in time must
be of the form (1-12) or (1-13). O

3. Decomposition of the solution near Q

Turning now to the proof of Theorem 7, make a decomposition of a symmetric solution close to Q, up to
rescaling and multiplication by a modulus one constant. This result is classical; see, e.g., [Martel and Merle
2002], although here there is an additional technical complication due to the fact that u need not lie in H!.

Theorem 10. Take u € L2. There exists a > 0 sufficiently small such that if there exist Ay > 0, yo € R

that satisfy
le’0 1y 2 uhox) — Q12 < a.

then there exist unique A > 0, y € R which satisfy

(6.0%)2=(e,i0%) 2 =0, (3-1)

where
e(x) =" A 2u(0x) - 0. (3-2)
Furthermore, )
lellz2 + IR - 1‘ +ly = vol < lle™0 g *u(hox) — Ol 2. (3-3)
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Remark. Since ¢'” is 27-periodic, the y in (3-2) is unique up to translations by 277k for some integer k.
Proof. By Holder’s inequality,
€70 uhox) = 0(x). @) 12| £ €700 2u(hox) = |l 2.
(70 2u(hox) = Q(x).10) 2] £ l€70g 2 u(hox) = Ol -
First suppose that Ay = 1 and Y9 = 0. The inner products
(€72 2u(x) = 0(x). @2 and (72 2u(hx) — Q(x).i Q%) 2 (3-4)

are C'! as functions of A and y. Indeed,
J .
@(e’ml/zu(xx) —0(x). 02 = (i A 2u(Ax), 0*) 2 < ull 211 Q113 6.
d , ; . . .
5(%%@@— 0(x),iQ% 2 = (e A 2u(x),i Q%) 2 S llull 211 Q113 6.

Next, integrating by parts,

iy
u(Ax)+xe’” A 2u, (hx), Q)
L2

%(eiml/zu()\x)—Q(x),Q3)L2 (Ziuz

iy 1
(2?1/2“(“)]1/2 u(x). 0 )Lz m/z(ely“@x) 0%0.);>
1

N X”u”LZ”Q”i6+x||u||L2||xQx||L2||Q”iOO

and

u(xx)+xeim1/2ux(xx),iQ3)
L2

(UG- 0 (1), Q%) 2= (2)\1 =

3 .
(2)\1/2 ( )—mely”(}hx),iQ3)L2—m(e”’u(kx),iQ2 0x)2

1
< xIIMIILz||QII26+XIIMIILZIIXQxIILzllQIIioo-

Similar calculations prove uniform bounds on the Hessians of the inner products given in (3-4).
Next, compute

%(e"m“zu@x)— 0(x). 0%)12 = (10.0%)12 =0,

A=1,y=0,u=Q

%(ei”)»l/zu(m) —0(x),iQ%) > =(0.i0%) 2 =0l

A=1,y=0,u=Q

2 Pu) - 0(x), @) 2 (30 +x0r. %) 12 = §I0I2a,

A=1,y=0,u=Q
9 iy 1/2 - 1 ‘ _
g€ 00, i0) | = (30 +%0x.10) 2 =0,
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Therefore, by the inverse function theorem, if Ao = 1 and yy = 0, there exist A and y satisfying

A =1+ Iyl S lle”°u(x) — Q(x)| .2
such that
@A 2u(1, Ax) — 0(x), 032 = (YA 2u(t, Ax) — 0(x),i Q%) 2 = 0.

The inverse function theorem also guarantees that A and y are unique for all A,y € [1 =4, 1 + 8] x[-4, §]
for some § > 0, up to 2m-periodicity.
For A outside [1 — 4§, 1 4 4], observe that

le” a1 2u(x) - Q117
= lulZ2 + 10172 =222 Q(x). Q)2 =21 2[u — QJ(hx). Q)12 2 62 = O(@). (3-5)
Similarly, for y outside [—6, §], up to 2z -multiplicity,
le” A 2u(x) - Q17
= lullZ2 + 101172 =222 Q(x). Q)2 = 2(e” 4 *u = QJ3hx). Q)12 2 8%~ O(@).  (3-6)
which implies uniqueness for @ > 0 sufficiently small.
For general A and yy, after rescaling,
A ivey1/2
= =l 1 o) - Q00 67
Finally, using scaling symmetries, the triangle inequality, and (3-7),
le” A 2u(t. hx) = Q)2
u(x) —e_’.y)»_l/zQ(f)

A

L2
< _ —iVO)\_l/Z (i) —iyok—l/Z (i)_ —iy)\—l/Z (i)
= JJu(x) —e 0o @ o) |2 te 0o 9 o e 0o @ %) |12
—iy, ~1/2 A —iy)—1/2 X
; " He 0 Q()‘O ¢ Q A L2
< lleu(x) — Q)| 2.
This proves (3-3). O

Therefore, in Theorem 7, there exist functions
A:l—(0,00) and y:I—>R
such that (3-1) holds for all ¢ € [0, sup(/)).

Theorem 11. Under the hypotheses of Theorem 7, the functions A(t) and y (t) are continuous as func-
tions of time on [0, sup(1)). Additionally, A(t) and y(t) are differentiable in time almost everywhere
on [0, sup(])).
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Proof. Suppose J = [a, b] is an interval that satisfies

||M||L4L°°(J><R) =1

and J C [0, sup(/)). Suppose without loss of generality that A(a) = 1 and y (a) = 0. Also, suppose for
now that [|u(a)|| 71 < oo. Strichartz estimates and local well-posedness theory imply that

el e 111y < @l (3-8)
Since A(¢) =1 and y(a) =0,
(u(a,x) = Q(x), Q%) 2 = (u(a.x) = Q(x).i Q%) 2 = 0.

Then, by direct calculation and the fact that Q is smooth and rapidly decreasing,

d . .
7t )= 0.0M 2 = (ittex. Q%) g2 + (i |ul*u. Q)12
= (. 0xx (@) 2 +i(|ul*u, Q)2 S llull g2 + Nl oo el 7.

Therefore, (3-8) implies that (u(t, x)—Q(x), Q3); 2 is Lipschitz in time on J as is (u(¢, x)—Q(x),i Q%) 2
by an identical calculation. Then by the proof of Theorem 10, A(¢) and y(¢) are Lipschitz as a function
of time for 7 close to a, and by the Lebesgue differentiation theorem, A and y are differentiable almost
everywhere for ¢ near a.

Recall from (3-1) that
e(t,x) = YOrO) Y 2u(t, Mt)x) — O(x).

By direct computation, for almost every ¢ near a,

e = 1700+ + 2D (10 4+ x0, + Le + xex) +IA02(Qrx + €xx)

A(r) 2
+iM(0) 2 O e, M) x) | *ulr, M(x))
(L0 +x0x) +ir(1) (exx + 50* Re(e) +i 0% Im(e) — ¢)

o)
NOR

Since a is arbitrary, A and y are differentiable at almost every ¢ € [0, sup([)).

O
A1) \2

+i(p) + A1) He+ —=

=iy +r0)HO+

(Le+xex) + 1O 20 0P el* + Iel).  (3-9)

Next, define the monotone function s : [0, sup(/)) — R,

t
s(1) = / A1) 2 dr (3-10)
0
Making a change of variables €; = A2¢;, by (3-9),

es =i(ys + 1)Q+%(%Q+xQx) +i(exx + 50*Re(e) +i0* Im(e) —¢€)

A
+i(ys+ De+ =2

(e +xex) + O(QPlel® + lellul). - (3-11)
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Plugging (3-11) into (3-2) and integrating by parts,
d A A
75 0 = (€, 0) = 0= 2211Qll7s — (Im(), £-0%)z2 + Olys + 1llell2) + O(fnenu)

+O0(lel2,) + Ollel 22 llull} o)
and

As
%(6, i0%) = (&,i0%) = 0= (ys + DI Qs+ (e.£O%) 2+ O(ys + €l 2) + O(THGHLZ)

+O(lell72) + Ol 7 2 llull7.00),
where £_ and £ are the linear operators

Lof=—fuxx=0% + ) and Lf=—fux=50"+ /. (3-12)
Since £LQ3 = —8Q? and (¢, 03);2 =0,
”Q“44 )\s )\s
TE S = (m(e). £-07) 12 + O(lys + lllellz2) + O(THean)
+ O(lell72) + Ol 72 llull 7o) (3-13)
and

A
101174 (rs +1) = O(ys + el L2) + O(TSHGHLZ) +O(lell2) + Ollel 2 llullze).  (B-14)

Doing some algebra, (3-13), (3-14), and the computations proving (2-18) imply that, for any a € Z>,

1
/a-f- k
a
a+1

A
a+1
/ |)/s+1|ds§/ lell 2 ds. (3-16)
a

a

a+1
ds 5/ lell 2 ds (3-15)
a

and

Indeed, the computations proving (2-18) imply that

a+1
sup  Jle(s)l Lz < / le)ll 2 ds. (3-17)
s€la,a+1] a
SO
a+1 5 3 a+1 ) a+1 3
/ lell2a 3 ds < / ()12 ds- / il ds. (3-18)
a a a

Furthermore, Strichartz estimates and the computations proving (2-18) imply that [ : +l
and crucially, the bound is independent of |u(a)|| g1 -
For a general u(a) € L?, let u™¥ (a) = P<yu(a). Taking N large enough that

lullfoo ds < 1,

e @ (@) 2uN @, A(@)x) — Ol 2 < 2.

Theorem 10 implies that there exist ¥V (s) and AN (s) for any s € [a,a + 1] such that (3-1) holds.
Furthermore, AN (s) and y™ (s) satisfy (3-13) and (3-14), and y™V (s) and A" (s) converge to y(s)
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N

and A(s) uniformly on [a, @ + 1], so y(s) and A(s) are continuous as functions of s. Furthermore, €¢’¥ — €

in L2 uniformly in s and #™ — u in L L.
Therefore, plugging AV (s), ¥V (s), €V, and "V into (3-13) and (3-14) and doing some algebra implies,
by the dominated convergence theorem,

101740 A(s) = InA(a)] =/ O((Im(e), £-0%)2) + O(llel72) + Olell 2 lullj ) ds

a
and

||Q||4L4[V(S)—V(a)+(s—a)]=/ O(llell2) + OlelZ 2 llully o) ds.

a

Therefore, by the Lebesgue differentiation theorem, Ag/A and y; exist for almost every s € [a,a + 1] and
satisfy (3-13) and (3-14). O

Following [Merle 2001], the decomposition in Theorem 10 gives a positivity result.

Theorem 12. If €(t, x) is a symmetric function, e 1. Q3, € LiQ3, |le(t,x)| 2 < 1,and |Q +¢€|2 =
Q2. then

EQ+6) 2 |l = [ lestt )P dx+ [ lee 0P ax.

Proof. Decomposing the energy and integrating by parts, since Q is a real-valued function,
EQ+e =3 [ Qhdv+Re [ Quwesttndx+ Slexls — § [ 00
—Re/ 0(x)%e(t, x) dx—%/Q(x)4|e(l,x)|2dx
—Re/ Q(x)4e(t,x)2dx—[ O(le(t, x)|> Q* + |e(t, x)|%) dx.

First observe that, since E(Q) =0,

Llozae— L [ 054y =
2/Qxafx 6/Q dx =0.

Next, by (1-10) and integrating by parts,
Re/ O (x)ex (t,x)—Re/Q(x)Se(t,x) = —Re/(Qxx (X)+0(x)°)e(t, x)dx = —Re/ O(x)e(t,x)dx.
Using the fact that ||Q +€||;2 = || Q|| .2,

310117, =310 +¢€ll7, + llell;. =—(Q.€)p2 = —Re/ O(x)e(t, x)dx = S|€l7..  (3-19)
Therefore,

1 1 3
EQ+e) = el + JleslZs — 3 [ 000t et 00 dn

—Re/ O(x)*e(t, x)? dx—/ O(le(t, x)]2 03 + |e(t, x)|®) dx.
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Decomposing the terms of order €? into real and imaginary parts,

YlesliZs + 3lels =3 [ @00*let. 0 dx e [ 00ttt ax
= % / Re(e)i dx + % / Re(e)? dx — % / O(x)*Re(e)? dx + % / Im(e)i dx + % [ Im(e)? dx

—%/ 0(x)* Im(e)? dx.
Recalling (3-12),

% / Re(e)2 dx + % / Re(e)? dx — % / 0(x)* Re(e)? dx = %(z Re(e), Re(€)) 2.

It is well known, see, e.g., [Merle 2001], that £ has one negative eigenvector, C(Q3) = —8Q3 , and
one zero eigenvector, £(Qx) = 0. Since Re(¢) L O and Re(¢) symmetric guarantees that Re(e¢) L Oy,

é /Re(e)x dx + = /Re(e)2 dx — —/ O(x)*Re(e)? dx > = /Re(e)2 dx.

Next, doing some algebra,
% / Re(e)2 dx = %(c Re(e), Re(e)) — % / Re(e)? dx + % / 0(x)* Re(e)? dx < C(LRe(e), Re(e)).
By similar calculations, since Im(e) L. Q3 and Im(¢) L Oy,
é/lm(e)x dx + = /‘Im(e)2 dx — / 0(x)*Im(e)? dx
= z(c Im(e), Im(¢)) + 2 / 0(x)* Im(e)?

1 1 2 1 2
> > =
> 2(LIIrn(e),Im(e)) >3 /Im(e) dx + — 50 Im(e)y dx.
Finally, by the Sobolev embedding theorem and ||€]/;2 < 1,
/|e|6dx < el llellds < Nl
and
0( ‘ dx < 3/20 13/2 < o152 1112 < y1.115/2 5/2
) le(t. )P dx < el llell s < Nellz llell 57 < el + lell 2 llell %y, < llellZ> + llell, -
which completes the proof of Theorem 12. O

4. A long-time Strichartz estimate

Having shown that it is enough to consider solutions to (1-1) that are close to the family of solitons and
that there is a good decomposition of solutions that are close to the family of solitons, the next task is to
obtain a good frequency-localized Morawetz estimate. The proof of the frequency-localized Morawetz
estimate will occupy Sections 4-6.

The proof of scattering in [Dodson 2015] for (1-1) when |Jugl|/z2 < || Q|2 utilized a frequency-
localized Morawetz estimate. There, the Morawetz estimate was used to show that E(P,u(t,)) — 0
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along a subsequence, where P, is a Fourier truncation operator that converges to the identity in the
strong L2-operator topology. Then the Gagliardo—Nirenberg inequality, (1-7), and the stability of the zero
solution to (1-1) implies that # = 0. In the case that |ug|/72 = || Q||2, [Dodson 2021; Fan 2021] proved
that E(P,u(t,)) — 0 along a subsequence, so the almost periodicity of u implies that u(z,) converges to
a rescaled version of Q.

In fact, [Dodson 2021; Fan 2021] proved more, that £(Pu(t)) — 0 in an averaged sense on an interval
[0, T] C I. The operator P is fixed on a fixed time interval, but P converges to the identity in the strong
L?-operator topology as T — sup(/). The proof of Theorem 7 will argue that if E(Pu(t)) goes to zero
in a time-averaged sense, then ¥ must be equal to the soliton if the solution is global. If the solution
blows up in finite time, then # must equal a pseudoconformal transformation of the soliton.

An essential ingredient in this proof is an improved version of the long-time Strichartz estimates in
[Dodson 2016a]. The proof will make use of the bilinear estimates of [Planchon and Vega 2009], which
were also used in the two dimensional problem [Dodson 2016b].

Eventually, the proof of Theorem 7 will make use of long-time Strichartz estimates on an interval
J =|a, b] for

1 <A(r) < TV100, (4-1)

where T = s(b) — s(a) and s(¢) : [0, sup(/)) — [0, 0c0) is the function given by (3-10). However, to
avoid obscuring the main idea, it will be convenient to consider the case when A(¢z) = 1 first, since the
generalization to the case (4-1) is fairly straightforward.

Suppose without loss of generality that a = 0 and » = T'. Choose
0<n KKl

to be small constants, suppose
e x)llz2 = no 4-2)

for all # € J, and choose 1; < 1y small enough that

/|s|> L, |01 dE < g, 43)
=n,
and therefore

swp [ it 6) de < and
|E1=n;

teJ

Then rescale from A(t) = 1 to A(t) = 1/ny and [0, T] — [0, 171_2T].
Wheni € Z, i > 0, let P; denote the standard Littlewood—Paley projection operator. When i = 0,
let P; denote the projection operator P<g, and when i < 0, let P; denote the zero operator.

Definition. Suppose nl_zT = 23k for some k € Z>¢. Then define the norm

sup sup || Pull

0<i<k 1<aq<23k—3i

2
[l U2 (I(a—1)2%, a23]xR)

+ 21||(P=ju) (P<i—3u)|

2 _
X0, 0 2TIxR) —

2
L?  ([(a—1)23,a23/]xR)" (4-4)
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Also, forany 0 < j <k, let

[[ul sup  sup || Pru|

2
0<i<j 1<q<23k—3i UR ((@—1)23,a23]xR)

+ 2'|[(Psiu)(P<i—3u)|

2 _
X; ([0, n72TIxR) —

2
L? ([(a—1)23,a23|xR)’

See [Koch and Tataru 2007] for a definition of the U K and VAP norms. See also [Dodson 2016a; 2016b;
2019].

Theorem 13. The long-time Strichartz estimate

el o, 27y 1
holds with implicit constant independent of T.

Proof. This estimate is proved by induction on j. Local well-posedness arguments combined with the
fact that A(¢) = 771_1 for any ¢ € [0, 771_2 T'] imply that

||“||Ug([a,a+1]xR) <1
and wheni =0,

(P=ju)(P<j—3u) = 0.
Therefore,

el 0.2 77xmy S 1- (4-5)
This is the base case.

Remark. The implicit constant in (4-5) does not depend on 7" or ;.

To prove the inductive step, recall, by Duhamel’s principle, that if J = [(a — 1)23k=3% 423%=37] then,
forany 19 € J,
t
u(t) = e TRy (1) + i / e A (lul*u) de

o
and

t .
/ DA P (lu*u) dt
11

0

I Pittll g2 ey S NI Pi (lto)) L2 + :
U2 (J xR)

By (4-3) and the fact that (1) = 1/1; for all € [0, n 2T}, if i >0,

sup || Pziu(to)llz2 < no- (4-6)
tUG[OanrzT]

Next, choose v € VAZ(J X R) such that ||v]| V2(IxR) = 1 and 0(z, §) is supported on the Fourier support
of P;. It is a well-known fact that

t
‘ / IR P (lul*u) d
1

0
where sup,, is the supremum over all such v supported on P; satisfying || v]| V2(IxR) = 1. See [Hadac
et al. 2009] for a proof.

4
< sup [vPsi(lul*w) 1
UZ(JxR) v :
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By Holder’s inequality,
2 3 3 2 4 5
louzi-3) (uzi-3) lpr A+ lv(zi-3) (wsi-3) L A lv@zi-3)" (@<=l +llv@=zi-3) [
5 4
< ||U||LIOOL)ZC flu>;—3 ”LfL}CO + ||U||L;‘Lgo u>;—3 ”L;6/3L§C lu<i—s ||L;>OL§
2
+lvligs Nwzi—3)u=i-6)lip2 Nusi-slre, ||”Zi—3||L?x
K o2 ) . 3/2 C3/2 C1/2
+lvls IIle—sllL?’x IIMzz—sllL?’x +lvlgs ||(“21—3)(“51—6)”L%’x”“51—6”L§>§x””21—3”L?x
2 3
ol NusizslZg Nusi-olys - @)
Since VA2 cU f for any p > 2, again see [Hadac et al. 2009],
lollzsorz + Ivlls +0llperes S lvllyz S 1. (4-8)
Next, when i > 4, since U i C U, (4-3) and (4-6) imply
5 4 4 4
||u2i—3||L§L)1co < llusi—s ”L;LL;O||“21'—3”L,°°L§ < Vlo||”zi—3||thLL§o Snollully, ,qo.rxr)y 49
When i < 4, the fact that for any «a € Z,
el L4 .90 (fa, a4 11xm) S 1 (4-10)

the fact that the Fourier inversion formula and Holder’s inequality imply

H/ 1Ze""‘gﬁ(t,‘f)déH < u@)ll 2, (4-11)
j€l<m L
and the fact that (4-3) implies, after rescaling A(t) = 1 — A(¢) = 1/n4,
1/2
(/ L, 0@ &) ds) <o (4-12)
HEH
combine to imply that
luzi-3l75 10 S M0- (4-13)

Similar calculations can be made for the terms
lusi—31 %163, g lu<izsllpoor2 + lluzi—s|36 llusi—sl?e +lluzi—sle llusi—sl’6 . (4-14)
L, L% [ Ly Ly L? Ly
Therefore,
5 4 3 2 2 3
luziall s o Hluzizal s g lnmimall o2 +luzialD Tuzisll}e +luzizallys luzizel}s

< 770||”||§(,~,3([0,T]><R) + 770||”||§(,~,3([0,T]x[k%) +10. (4-15)
Next, by the definition on page 1710,

2 —i/2 3
lzi—s)w<i-e)lrz lu<i-sllrgs luzi-slpe <2 Pully_ qo.rpxm lusi-ellLe.  (4-16)
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By (4-11), (4-12), and the Sobolev embedding theorem,

272 usi 6|2, S Mo (4-17)
SO
272 |u3 lu<i—gll oo, < nollull (4-18)
X;—3([0,T1xR) U =i—6 LS ~ ToliUllx; 50, T]xR)"
Making a similar calculation,
3/2 3/2 1/2 3/2
luzis)wsi-o) 175" Nusi-slpes luzioslys' <m0 Nl qo.rpern (4-19)

Since
Psi(|u<i—s|*u<i—3) =0,

it only remains to compute, using the definition on page 1710, (4-15), and (4-17),
lo((Poi—su)(Pi—s) )1 S 1(Poica)(Pizs) 2 | Psizullzse, lo(Psi—3)?l 2
| Pzi—sullpe ||P2i—6u”i[6 . ||U(Psi—3u)2||Lng
< 770||u||§(i_3([0,T]xR)||U(Psi—3u)2||L§.x + 7)0||”||§(i_3([0,7‘]x|];g) +7o-

By the Sobolev embedding theorem,

3i—3j)/18A~j/3 i/3
I P<i—sullis < Z IPjullps, < Z RGN |y qo.r1xmy < 273 ullx: s o.71xR)-
0<j<i—3 0<j<i—3

Also, by VA2 C Uz/ % and the Sobolev embedding theorem,

8/9
L7

itA

lo(P=i—3u)ll pors < 21/9||U||Vg2/5(JxR) “sup [(e"" Fvo)(u<i-3)|l

where sup,, is over all ||vg| ;2 = 1 supported in Fourier space on the support of P;. Therefore, we have
finally proved

”PZiu”Ui(JxR) S 1o+ 770||”||12Y,-_3([0,T]><[R) + 770||””§(,-_3([0,T]><[R)

8/9

A0 (U<i—3) ||L% . (4-20)

+ 103,y o, r1xmy - 2+ sup Il (e
Vo
To complete the proof of Theorem 13, it only remains to prove

2/ sup ||(€itAU0)(u5i—3)||Lgx S U+ lullx; _5 o, 71xm)- (4-21)
Vg ,

Indeed, assuming that (4-21) is true, (4-20) becomes
2 4
||Pziu||U§(JxR) <o+ 770||u||)(,-_3([0,T]XR) + ’70||”||X,-_3([0,T]xR)'
Equation (4-21) would also imply
212/ (Poit) (Psi—3t0)ll 12 (s my S I Poittlly2 gy (1 + el so.71em)

< no +nollullx; _;qo,71xw) + 770||“||§(1._3([0,T]Xqu)-
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Then taking a supremum over 0 <i < j,

luellx; o, 71xm) < 1+ mollullx;_5qo,m1xr) + ’70||“||)5(,~_3([0,T]xm)»
which by induction on j, starting from the base case (4-5), proves Theorem 13.

The bilinear estimate (4-21) is proved using the interaction Morawetz estimate (see [Dodson 2016b;
Planchon and Vega 2009]). To simplify notation, let

v(t,x) = ey,

where |lvg||z2 = 1 and 0y is supported on the Fourier support of P; for some j > i. Then take the
Morawetz potential

x J—
MO = [ 1P 2 st sl dy -+ [ lusis P2 imfouddx .
Let F(u) = |u|*u. Then u<;_3 solves the equation
i0tu<j—3+ Au<j3+ Flu<j—3) = F(u<j—3) — P<i—3 F(u) = —Nj_3. (4-22)

Following [Planchon and Vega 2009],

%M(1)=8/I3x(v(l,X)usi—3)(Z,X)|2 dx—%/IU(Z,X)Izlusi—3(t,X)|6dx

/|v(z y>|2( TRe[u<, S0 Nisl(t, x) dx

- / |v<r,y)|2Q Re[V;—3dxtt<i_s](t. x) dx
|x —y|

+2 / it <is Ni—s](t, ) =)

|x —y|

Then by the fundamental theorem of calculus, Bernstein’s inequality, the Fourier support of vu<;_3,
lvollz2 = 1, and the fact that |[ul|;2 = || Q|| 2,

Im[vd,v](¢, x) dx dy.

P iusioally gy Y H P lziosNy = [ 106000 =2 RV -adsarsical(r ) d
+ [ 1ot P2 Relsioad A3l x) d
+2 / Imfit<;—3 N;—3](¢, ») Ti : y? Im[vdxv](2, x) dx dy. (4-23)
Also note that ’
”5”51'—3”%%’)( = vvisi—sus<i-sllpy = llvusi-s ||i%’x, (4-24)

so it is not too important to pay attention to complex conjugates in the proceeding calculations.
First, by (4-17),

|||v|2|“§i—3|6||L1x(JxR)< lvu<i— 3||Lz llu<i— 3||Loo S no2% vusi- 3|| : (4-25)
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Now consider the term
Ni—3 = P<i—3F(u) — F(u<i—3). (4-26)
Since by Fourier support arguments
P<i 3F(u<i—¢)— F(u<i—¢) =0, (4-27)
we have
Nic3 = P<i—3(3lu<i—g|*uzi—¢ +2lu<i—6|*(<i—¢) iizi—¢)
— Blu<i—g|*ui—6<.<i—3 +2lu<i—|* (u<i—6)*li—6<.<i—3)
+ P<i—30((uzi—6)*t”) + O((ui—g<.<i—3)*u°)
_ s 2
= N3+ NS (4-28)
Following (4-7)-(4-19),
2
|||N,~(_§||”Si—3|||L}'x < |||”Zi—6|2|“§i—9|4||L;)x + |||u2i—6|2|u2i—9|4||L})x
5 ||(”Zi—6)(”§i—9)”i%x [ ||Mzi—6||igx ||u2i—9||2tsqx
S oL+ 1l qo.71xm))- (4-29)

Therefore, since |vg| 2 =1,

=[] e D R sl vy

+ [] 1ot T Relsi 2t AN ) i dy s

+2///Im i<i—s N2, )T ?Im[vaxv](t x) dx dy dt

102 (L4 1% o.77xm))- (4-30)

Next, observe that

3P<i—3(lu<i—g|*usi—¢) — 3(|u<i—6|*tti—<.<i—3)
=3P 3(Ju<i—¢|*ti—6<.<i—3) + 3P<i—3(lu<i—g|*u=;i—3). (4-31)
Again following (4-7)—(4-19),
”PSi—3(lusi—6|4u>i—3)(“i—6s-si—3)||Lt1’x + ”P>i—3(|usi—6|4”i—6s-Si—3)(ui—65~5i—3)”]‘}.x
Sno(L+ 1ul§, sqorixmy):  (4-32)

Finally, observe that the Fourier support of

3P i3 (lu<i—g|*ui—6<.<i—3)(u=i—6) + 3P<i—3(Ju=i—¢|*u>i—3)(u=i—) (4-33)
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is on frequencies |£| > 2/~6. Therefore, integrating by parts,

/// it <j Poi—s (1t <i—o| i <i—3)](t. ) Tx : T TG0 u](¢. x) dx dy di

_ 0 _
:/// Im[vaxv](t’x)'a_;Im[”si—6p>i—3(|”§i—6|4”i—6§~§i—3)](t’x) dx dydt
X
i 4
S 27 Moxllpsreellvlips pee lWi-6s-<i-3)=i-o)llr2 Mu<i—6lpeo s
+ 27 vl pa poo vl o poo lti—6= - <i—3ll o poo 4imo<. <i—6ll L4 oo Uil
rirelllipspeeliti—e<-<i-3ll s poellti-os - <i—6llpa e llu<i—6ll oo 4
j 2
< 02’ lull, _, qo,1xm)-

A similar calculation gives the estimate

/f/ mfii s Peis (l<is [ *u=i_3)]( y)f flm[va (1, x) dx dy di

j 2
<02’ llully,_qo.11xm)-

The terms
// lu(t, y |2( |R e[ NV dyu<i_3)(t, x) dx dy dt

and

/f vz, y)|2( ?Re[uq 30x N2, x) dx dy di

may be analyzed in a similar manner.

Plugging (4-24)—(4-37) into (4-23) gives
2 usiosl, +2Y vusiosls $27+n02 (14 ulg, )
Summing up over j > i implies (4-21), which completes the proof of Theorem 13.
Theorem 13 may be upgraded to take advantage of the fact that u is close to the soliton.

Theorem 14. When A(t) = 1/n, and T = 23k for some positive integer k.,

2 7]_2T 1/2
| Pagett] 2 <(L 7 jew2.dr)  + .
> UX(0.TIxR) ~ \ T 0 L2 T10°

(4-34)

(4-35)

(4-36)

(4-37)

Proof. Make another induction on frequency argument starting at level %k. Observe that Theorem 13

implies that foranya € Z, 0 <a < 771_1 T2,

“PZk/zu”Ui([anflTl/z,(a+1)nf1T1/2]><R) <L
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Next, following Theorem 13,

||sz/2+3”||U§([51zan;1T1/2,512(a+1)n;1T1/2]xR)

< inf | Pk joy3u(@)l 2
te[512an71T1V/2,512(a+ D)y T1/2]

+ ’70”sz/2”||U§([512m;1—1T1/2,512(a+1)n]—1T1/2]><R)~ (4-38)

Since Q is a smooth function, if y(z) and A(¢) are given by Theorem 10 and A(¢) = 1/n;,

| Pogja43u(®) 2 < € On@)2u(t, M(£)x) — Q)2 + | Pskj2a+30(x) | L2
Slle@)lg2+T71° (4-39)

Plugging (4-39) back into (4-38),

”PZk/2+3u”Ui([S12anf1T1/2,512(a+1)nf1T1/2]X[R)

o, 512(a+ Dy iT1/? 1/2
< (— /5 et 012 dr)

51271/2 12an7iT1/2 i /
1/2
-10 2
+T +UO(Z”sz/zu”Ui([(S12a+(j—1))n1_1T'/z,(5120+j)711_1T‘/Z]XR)) - (4-40)
j=1

Arguing by induction in k, taking L%kj steps in all, for g sufficiently small,

P < 710 4 5k/2, —k/6 n; (T 2 4 /2
IPoctll ooy S 7710+ 22050+ ([ et dr

2 T 1/2

Remark. If C is the implicit constant in (4-40), then for o < 1 sufficiently small,
(Cno) ¥/ <1710, (4-41)
The same argument can also be made when A(¢) > 1/n forall ¢ € J.

Theorem 15. When A(t) > 1/n1 on J =|a, b],

/ M) 2dt =T,
J
and nl_zT = 23k we have

| b 1/2
—10 2 -2
I Ptz appiy < T +(7 [ etz dz) |

The same argument could also be made for A(¢) having a different lower bound, by rescaling A(z) to
A(t) > 1/n1, computing long-time Strichartz estimates, and then rescaling back.



1718 BENJAMIN DODSON

5. Almost conservation of energy

Since (3-11) implies that ||e(?)||z2 is continuous as a function of time, the mean value theorem implies
that under the conditions of Theorem 15, there exists ¢y € [a, b] such that

1 b
letto) 22 = / le() 220002 d.

The next step in proving Theorem 7 is to control

sup |[le(@)llz2
tela,b]

as a function of ||€(#p)| ;2. Theorem 12 would be a very useful tool for doing so, except that while Q
lies in H5(R) for any s > 0, it is not the case that ¢ must belong to H*(R) for any s > 0. Therefore,
Theorem 12 will be used in conjunction with the Fourier truncation method of [Bourgain 1998]. See also
the I-method, for example, in [Colliander et al. 2002].

Theorem 16. Let J = [a, b] be an interval such that
/ M) 2dt =T,
J

Ny 2T =235 and M(t) > 1/ forall t € [a,b]. Then,

22k 3 3
sup E(P<g4ou(1) S — / le@) |7 22() "2 dt + 2247710,
reJ T Jy

Proof. By the mean value theorem, there exists 79 € J such that
1 _
e 5 7 [ lelFon0 2.

Next, decompose the energy. Let Q refer to arescaled version of Q, thatis, Q =A(t0) " 20 (A (1) ' x),
and let € denote the rescaled € given by € = A(fg)~1/2&(to, A(tg) ~' x). It is also convenient to split & into
real and imaginary parts:

€=¢€1+ie.

As in Theorem 12, by (3-2),
E(P<4ou) = E(P<f49Q + P<k49¢)

= E(P<k450) +Re/ Py 9 Ox P<gyoiyx dx —Re/(Psk+9 0)° (P<j49€) dx
1 - 5 ~ - 1 ~
+ 31 Picroéllly =3 /(P§k+9 O)* (P<k49€1)* dx — 3 /(P§k+9 0)*(P<k19€2)?

- / O Pepss O | Ptsod®) + O Popsoél®) dx. (5-1)
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Since Q is smooth and rapidly decreasing, £ (Q) =0, and A(%y) > 1/n1, Bernstein’s inequality implies

that
E(P§k+9é) /(P<k+9Qx) -z /(P<k+9Q)6 <27 30k

Next, integrating by parts and using (3-19), the smoothness of Q, and Bernstein’s inequality,
Re/ Py 490x P<pyoix dx —RC/(Psk+9 0)° P<yyoé dx

1
= —Re [ (Patro0)(Pecss s + (P9 0)') dx = YT

Next, by Holder’s inequality, since A(%p) > 1/n;,

1 ~

N P<k+0él%, =2 | (P<kao Q) (P<i+9é1)? dx — 5 | (P<ji00)*(P<ir082) dx
2 H

12 1
S 1 P<k+o€ll gy + )’
By the Sobolev embedding theorem,
/ | P<se+9€° | P<ic19 O + | P<40€|® dx
1
<
At0)3/2
1
<
Mto)?
Therefore, since A(fg) > 1/1ny,

~ 5/2 ~ 1/2 ~ ~
| Pk +02(t0) 1322 Pk +9E(t0) |1 3 + | P<k 498 (t0) 13| Pk 498 (t0) 1%,

~ 2 ~ 4 ~ 2
I P<ic49€ o)l 2 + | P<i+9€ (10) |7 2 [| P<ic+9€ (10) I, -

E(P<gyoti(fo)) < 22k||6(to)||iz 42730k,
Next compute the change of energy

d
77 E(P<ieot) = —(Pakrotts, AP<pyou) 2 — (Pkrolts, | P<you|* P<jiot) 2

= —(P<ktols, P<kyoF(u) — F(P<g4ou)) 2
= (i AP<gyou + i P<jyo(|u|*ut), P<jqo F(u) — F(P<gyou))p2.
First compute

t
/ (i AP<gyou, P<pyoF(u) — F(P<gyou))p2 dt
fo

for some ¢’ € J. Making a Littlewood-Paley decomposition,

t/
(i AP<pou, P<jpi9F(u) — F(P<gyou))y2dt

to

~ > > / (i APy, P<gio(Py,ut-++ Prout)

0<ks<ks<k3;<kr<k; 0<ke¢<k+9

e, + 0(273%).

~ 12 2% 2
[ P<k+9€ll72 <27 €0l 72-

(5-2)

(5-3)

(5-4)

(5-5)

(5-6)

— (P<jeqo Pryut) -+ (P<jq0 Prsut))  » dt
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Remark. For these computations, it is not so important to distinguish between u and u.

Case 1: ki <k + 6. In this case P<f 9Py, = Py, and P<gyo(Pyu--- Pxu) = Px u--- Pru, so the
contribution of these terms is zero. That is, for kq,..., ks <k + 6,

t/
/ (i APyqu, P<pyo(Pryut - Prsut) — (P<gyo Pryut) -+ (P<iyo Prsu))p2 di = 0.
o

Case 2: k1 > k + 6 and k, < k. In this case, Fourier support properties imply that k¢ > k + 3. Then by
Theorem 15, Theorem 13, and (4-21),

t/
/ (i APri3<. <ktols P<pio((P<kt)*(Pogt6)) — (P<fu)* (Pryo<. <kott))2 dt
to

< 2 (Pogrs) (Pgi)l g2 IN(Porst) (Peg)ll 2 || Pkl oo
22k ~ ~
S | le@lzA@72de +2%€T710,
J

Case 3: k1 >k +6, ko >k, k3 <k.1If kg < k, then by Fourier support properties, k, > k + 3. Here,

t/
| GAP<t Pats(Porcsa) (P (Pei’)
to
— (Pkgo<- <k+9U)(Pkt3<. <k o) (P<ku)’) » dt

< 2K (Pakrst) (Pl 2 N(Poiasi)(P) | 12 | P<gutllf s

2k

2
S = | le®lzA@)72 dr + 22k 10,
J

In the case when kg >k,

t/
| (8P kst Petcrs((Poics st (Poi) Pes)
fo
— (Pt o<-<k+ot) (Pr<. <kot) (P<iu)’) 2 dt

< 22| (Pog461) (P | L2, IIszulli;x pooll PiuliLge llull oo 2
22k
< ?/ le@)|12,A(0) 2 dt + 22417710,
J

Case 4: k; > 2K+ and k,, k3 > k. In this case,

t/
/ (i AP<jqott, P<jero(Pogt6t) (Pu)*u”) = (Pigo<. <ic+9U) (Pr<. <k4ou)> (P<jyou)®) 2 di
fo

2k 2 2k 4 2
< 2N Pty ) (Pl 2 | Pkt 2ol Pektlgs Nl o 2+ 2% | Pkt o]

2k

2
< [ eI de+ 23T,
J
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The contribution of the nonlinear terms is similar, using the fact that

(i P<g+9F(u), P<gyoF(u) — F(P<g4ou))p2 = (i P<k19F(u), F(P<gyou))p2.
Then make a Littlewood—Paley decomposition
(i P<g+9 F(u), F(P<gyou))p2
= > > (i P<peyo(upy - Ups), (P<icyo Prey1t) - (P<gq9 Picsu)) 2. (5-7)

0<ks<ks<ksz<kr<k 0=<ki=<k,=<k};<k,<k|
Case 1: ky, k] < k + 6. Once again, if k1, k] < k + 6, then the right-hand side of (5-7) is zero.

Case 2: ky or k| > k + 6, eight terms are < k. In the case that ky or k] > k + 6 and eight of the
terms in (5-7) are at frequency < k, then by Fourier support properties the final term should be at
frequency > k + 3. The contribution in this case is bounded by

1 _
|(Pskssi)(Pen)l 2 [(Pokssi)(Pean)l 2 | Pegulfos, 2% /J le)]12, dr +224T71°.

Case 3: kq or k/ > k + 6, two terms are > k. The contribution of the case that k; or k/ > k + 6, two
additional terms in (5-7) are at frequency > k, and the other seven terms are at frequency < k is bounded by

1 _
I(P2k+6t) (P<kt) 2 ||]-Dzk”||izt1L§o||Psk“||15~<;.<jV lullpeor2 S 22k?/1 le@)|12, dt + 2%k T7~1°.

Case 4: ky or ki > k + 6 and at least three additional terms in (5-7) are at frequencies > k. This case
may be reduced to a case where at least four terms in (5-7) are at frequency > k, and at least four terms
are at frequency < k + 9. To see why, notice that all five terms in F(P<g4ou) are at frequency < k + 9,
so if four or five of the terms in P<j ¢ F(u) are at frequency > k, then we are fine.

If exactly three terms in P<g 9 (1) are at frequency > k, then take the two terms in P<j 49 F(u)
that are at frequency < k to be terms at frequency < k + 9. Meanwhile, since at least four terms are at
frequency > k,

F(P<jeiott) ~ (Pr<. <o) (P<jeiott)*, (5-8)

so in (5-8) there is one term at frequency > k and two more terms at frequency < k + 9.
If exactly two terms in P<j 9 F(u) are at frequency > k, then there are three terms that are at
frequency < k. In that case,

F(P<jyout) ~ (Px<.<k+ou)*(P<pyou)’, (5-9)

so in (5-9) there are two terms at frequency > k and one term at frequency < k + 9.
If one term in P<j 49 F(u) is at frequency > k, then there are four terms in P<j 49 F(u) at frequency <k.
Then there must be at least three more in F(P<g49u), SO

F(P<pyout) ~ (Pr<. <pou)’u’. (5-10)
If no terms in P<y ¢ F(u) are at frequency > k, then there must be four in F(P<jqu), sO

F(P<iou) ~ (Px<.<k+ou)*u. (5-11)
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The contribution of all the different subcases of case four, (5-8)—(5-11), may be bounded by
1 _
| Poktllfapcollel oo 2 | Pepsoull e, <22 fJ le@)3, dr + 22K 710,

This proves Theorem 16. U

Corollary 17. If
1 <A(0) < 1 r1/100

n - T m
and
/k(t)‘2 dt =
J
then
2
sup| P9 — e(z, x) sik le@)122A(0)"2 dr + 2247710
resll T M0)Y? A | g T Js L
and

T1/50 52k T1/50
/||e(z)||L2k(t) 2dz+ —_p%kp-i0
n

1

2
sup [le(@) |72 <
teJ

Proof. The proof uses Theorem 16, Theorem 12, rescaling, and the fact that Q is smooth and all its
derivatives are rapidly decreasing. O

6. A frequency-localized Morawetz estimate

The next step will be to combine long-time Strichartz estimates with almost conservation of energy to
prove a frequency-localized Morawetz estimate adapted to the case when A(¢) does not vary too much.

Theorem 18. Let J = [a, b] be an interval on which (4-2) holds for all t € J, 1/n1 < A(t) < T1/100 /p,
forallt € J, and

f M) 2dt=T. (6-1)
J

Also suppose 23k = r]l_zT and that € = €] i€, where € is given by Theorem 10. Then for T sufficiently

large,

b
- 1
[ 10207 dr = 3. (04 30:), - 3ea®). 30 +x04) 2+ 0( 7). 62
Remark. The signs on the right-hand side of (6-2) are very important.

Proof. The proof uses a frequency-localized Morawetz estimate. The Morawetz potential is the same as
the Morawetz potential used in [Dodson 2015]. See also [Dodson 2016a].

Let ¥ (x) € C*°(R) be a smooth, even function, satisfying ¥ (x) = 1 on |x| < 1 and supported on
|x| < 2. Then for some large R (R = T''/2% will do), let

$(x) = /0 (”}Qy ) dy = /0 wz(%) dy, (6-3)
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and let
M) = [ ¢00) ImlPoipoud Py roul(t, x) d.

Doing some algebra using (3-2), as in (5-1),

u(t, x)—e—'V(”A(z)—l/ZQ(M ))+e_iy(t)k(t)_1/2 ( m) =e YOO (x)+e Y De(, x). (6-4)

Since Im[ P<j 1910 ( P<j+ou)] is invariant under the multiplication operator u - e~ vy,

M(t) = / ¢ (x) IM[P<f 9 O(X) + Pt 19€(t, X)dx (Pt 190 (x) + P<pioé(t, x))] dx.

Since Q is real-valued,

[ #G P15 G000 (Percss G0N i = 0.
Next, by Corollary 17,

[ 6 WP 0 (Pasessr X dx ;W | el i+ :lzsz 599
Next, since A(t) > 1/n1, Q and dx Q are rapidly decreasing, ¢ (x) = x for |[x| < R/n1, and |px(x)| <1,
/ ¢ () Im[Pje & (1, x)dx (P49 O (x)] dx = —(e2.x Q)2 + O(T ™). (6-5)
Indeed, since Q is real, by rescaling,
[ OGN dx = (20 x Qs (©-6)
Next, since A(7) < 71190/, and R = T1/25,

/ * ImfE (1) (D ()] dx — / ¢ (x) ImZ(0. )2 (D ()] dx

X 1 X
: /IXI>R/171 2|2 (xm)‘ ‘x(z)l/ze(t’ x(r))

Also, since Q and all its derivatives are rapidly decreasing, A(f) > 1/ny, R = T'/25 and 23% = N 2T,

dx <T771% (6-7)

/ ¢ (x) Im[E(2, X)dx (Q(x))]dx — | $(x) I[E(t, x)x (P<g 0O (x))] dx
S Rl€ll 2l Pokr9Ox(X)2 ST (6-8)

Next, (6-3) implies that |¢/)(x)| < 1 for any j > 1, and since Q is smooth and all its derivatives are
rapidly decreasing, integrating by parts, for j sufficiently large, yields

/ ¢ () I[P g 9207 1) (Pt s O(x))] dx

= / $(x) Im[%l)zk—wg(ﬁx)ax(P§k+9Q(x)):| dx <T7'° (69
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s0 (6-6)—(6-9) imply (6-5). Finally,
/ () I[P 19 0 ()0 ( Py 192 (6 x))] dox = (6-5)— / ( ) I[Pt r0 O (x) - Py 452(t. x)] dx.

Making an argument similar to (6-6)—(6-9),

_/)((’711!a )Im[m Poji9é(t,x)]dx = —(€3, Q)2+ O(T™ 10) (6-10)
Therefore,

M(b) = M(a) = 2(e2(a), 5@ + x0x) 1> — 2(€2(h), 3O + xQx) 1> + O(T ')
R
+ 0( 5 W/ le(@) 12 2(1) 72 dz) + 0(771 22k =9 99)
Following (4-22),
10¢ P<gott + AP<pyou + F(P<gyou) = F(P<gyou) — P<gyo F(u) = —N. (6-11)

Plugging in (6-11) and integrating by parts,

d

77 —M() = /¢(X) Re[— P<ptotixx P<jotix + P<jiot P<jiolixxx]

+ [ ¢ (x) Re[—| P<jou|* P ott( P<protix) + P<gyottdx (| P<frou|* P<giou)]

4 / & (x) Re[ P yotidx N1(1. x) — / () Re[ N0 Pp4901](1. x)

= 2/w (nlx)la P<k+9u| dx— 2R2 X (7711:)|P<k+9u| dx
-3/ wz(%)wsmum“ [ Rl Pt I 2)
—/¢(x) Re[N0x P<i 1 ou](t, X). (6-12)

Next, following (4-28),
N = PejeyoGlu<p|*uspre + 2u<k)*(<k) =k +6)
— Glu<k*uzkt6 +20u<k|*U<k)* Prto=. <kt+9tt) + P<0O((Uzg) Uski6)u’)
+ O((Pr+o<- <k+9U) (P <. < 4ou)u”)
=N+ N,

As in (4-29), since |¢(x)| < 77" R, by Theorems 13 and 14,

b b
/ / ¢ (x) Re[P<jroudx N P)dx dr — / / ¢ (x) R[N P9, Poyyou] dx dt

2k Ry ! sy 2k R
<= [le@ita0 2 ar+ =i 61
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Making calculations identical to the estimate (6-13),

b b
| [ el Pz asua A Dldx i~ [ [ ¢ RAF D0, Prise. cionldde
a a

S 2 Rllwskre) (4=l 13, ||(uzk+3)(u<k>||Lz.x o<t o
k -1

- R771 R’71

~ T

b
/ le() 122002 di +

Finally, using Bernstein’s inequality and the integration by parts argument in (4-34),

T T
//qb(x)Re[PSkeraxN(l)]dx dl—//qb(x)Re[/v(l)axPSker]dx dt
0 0

1
S Poky69 (X)L ||(sz+6u)(Psk“)||Lt2’x ||“5k||2§

<_.
~ T10

Remark. The last estimate follows from the fact that ¢ is smooth and [, A()"2dt = T, which by a
local well-posedness argument implies

||”||L6 axmy =T s,

Plugging this estimate of the error term back into (6-12),

b
2//w2(%)|8xPsk+9u|2dxdt 2R2// ”("‘x)|P<k+9u| dx dt
a
—gff‘ﬁ (%)|P§k+9u|6dxdl
a

= 2(62(61), %Q +xQx)L2 _2(62(b)? %Q +xQx)L2

22kT1/20
+O(T/ ||€(t)||L2)\(Z) 2dz)+0( 9)' (6-14)

| Pesyott]? = (Pg190(x))? + 2Pt 19 O(X) - Pegyoéy(t, x) + | P<g1o€(t, x)|2.

The support of " (x), the fact that A(r) < 7'/190 /n;  and (1-8) imply that

77% 2 2 1 < 1 1
ﬁ/ ( )Q( )7dx 5 Rz T~ A2 T (6-15)

Also, since Q and all its derivatives are rapidly decreasing and A(¢) > 1/9;,

Since Q is a real-valued function,

I P9 O(x)]|3, < 2730, (6-16)

Therefore, since R = 71/25 and A(t) < T'/190 /y,, (6-15), (6-16), and the Cauchy—Schwarz inequality
imply

no 2 1o 1
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Next, letting €1, + i€3, = dx€, write the decomposition

2 [ wz(m)ugmuxﬁdx—% / wz(’“%)wfmuﬁdx
2 6
mx X 1 X
A<z>3f ‘”( )(2 <"+9Q"(M )) EPSk“Q(T)))d’“

mx X J X
+A(z)3/ 4 (7)( <k+9Qx(x< )) <k+j€”( e )) -F fkng(Tt)) P 5"*“2(”@))”
4 mx\(1 5 X X
*wf v (T)(E(P<k+9“x( m))‘z”fk”Q (m) (Pfk”“(fm)) )"x
4 n1x 1 1 X 4 X 2
s 97 (3 (assen (35 )~ oess (55 (Prvsoss (555

O

4 2 nix\[1 3 x W
[N E ) (raelr555)
4
earn(iy)) (rarvol15)
5 6
(a5 ) (Poreoc(i5g5 ) + l(”“‘”e(’%)))dx' e

Remark. Due to the presence of derivatives in

mx 2 mx
2 [ (;{)|P<k+9ux| -2 [ (}{)|P<k+9u| dx.

it is convenient to dispense with the Q(x) and €(z, x) notation and return to the Q and ¢ notation.
We understand that P<j 49 Q(x/A(f)) denotes the frequency projection after rescaling, not a rescaled
projection. A rescaled projection appears in (6-18).

For terms of order €3 and higher, it is not too important to pay attention to complex conjugates, since
these terms will be estimated using Holder’s inequality.
First, using the fact that

303 -§0°=30"—30°
combined with the fact that 1/n; <A < T/190/y, R =T1/25 and Q is smooth and rapidly decreasing,
4 nx x V 1 x \
_ — )d
o | (R G () —5el) ) &
4 nmx\ {1 x OV 1 x \° 1 1
- 3/W2 o _Q(_ -39 ST
A1) R J\27\M®)/)  37\A) M0 T

Also, since 171_2T = 2%k and Q and its derivatives are smooth and rapidly decreasing, A() > 1/7; and

Bernstein’s inequality implies that

2 2(MX x YV 2 mx x V 1 1
W/ 4 (T)Q"(M) YT / 4 (R) <"+9Q"(Mr)) DR T
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2 nix x \° 2 nix 6 1 1
300 [v ( )Q(x(z)) EYOE [v (R) <"+9Q(x(r>) DR Tr T

Therefore,

2 wz(%)u’smuxﬁdx—% / wz(%)wsmuﬁdx
_ 4 2fMx X X x ¥ X
= W/I/’ (—) (P<k+9Qx (m) P<k+9€1x(f»m)—Psk+9Q(m) P<j o€ (lm)) dx
4 nix 2 5 x \ x W
] V() G (e 555)) S ravse(555) (o (1 55)) ) o
4 4 2
50 V(%) (z(P<k+9€2x( )3 Pan0(55) (s 535 )
4 mx 0 3 x YV
_Mm/ v (? Perisd A(z (P<"+9€(t m))
4
(<"+9Q(x< )(<"+96( x(z)))
6
Pk (5 ) (Petose 55 ))) g (Petone(: %)))dx

1 1
+O0|l ——==)
(k(t)2 T“)
Integrating by parts,

4
s V() (oo (555 Povssen (555 - Povvse5) Povsse (55 )
n X
= k(t)3/w ( 1 )(P<k+5Qxx+P<k+5Q )(A(t)) <k+5€1(,m) dx
811 nx nix X
~wor ] ‘”(T)‘”( ) <k+5Qx(x<z>)P<’°+56‘(l’ m) >

4 nx 2
+ OE /W(T) P§k+5€1( X7 ))[(P<k+5Q) — P<k450Q ](k(l)) dx.
Again using (1-8), 1/n; < A(t) < T1/1% /., and the support of ¥/ (x),

814 nx n1x X 11
RK(Z)Z/W(T)W( )Qx()\(t)) <k+5€1 (t,m) dx,fFWHGHLZ

Also, since Q and all its derivatives are rapidly decreasing, by Bernstein’s inequality,

811 mx\ ,,(mx X X 1
RA(1)? /W(Y)w (T) P>p15O0x (m) Pjyser (f, m) dx < WHGHLZ,

4 nx 2 1
OE /W( 11'{ ) P<k+5€1( X7 ))[(P<k+5Q) — P<j450 ](X(t)) dx < WHGHB.

and

and
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Meanwhile, by conservation of mass, (1-8), (1-10), the upper and lower bounds of A(¢), and the fact
that Q and all its derivatives are rapidly decreasing,

mx X
)h(l)3 /W ( )P<k+5(Qxx+Q )()\([)) P5k+561 (t’ m) dx
_ 4 nix X 1
__)\‘(1)3 / ( )(QXX+Q )()\(t)) <k+561(’)\,(t_)) dx+0(—)\'(t)2T6 ||E||L2)

— nNix 1
- k(t)3 ( ) (k(t)) Psktsel ( ’ m) G O(M—zTﬁllelle)
1
= )\.(Z)3 (T) P<k+5€1( A( )) dx + O(WHEHLZ)
W)

= _ _ 2 0 1
= k(t)3 ( €1 ( k( )) O(TGW)2 ||6”L2)_A(z)2 ||6”L2+0(—T6A(z)2 ||6||L2)-

Therefore,

2 [ wz(%)ugmuxﬁdx—% / wz(%)wsmuwx
2
— el
4 sfmx\ (1 X 2 5 x \ x WV
i LR Pasens(55)) 3 (i55) (peveoes (v 55)) ) o
42 /wZI—x Yoot 2\~ 1p QL4P RS
YOE R J\a\Pshrocax |l 75 2 P=ko @\ 5 sk+9€2\l 70

+ %(P§k+9 0 (kit))
X X > 1 ’
+ (P5k+9Q(TZ))) P<k+9€( At ))) (P<k+9€(t m)) ) >
+0(i ) + 0 (el
M2 T RA(1)?

Next, by Bernstein’s inequality, since 1/5; < A(f) < T1/100 /5,

i () Graoons(e)) - 3rsine (i) (o 55 ) o
)\([)3 R ) <k+9€1x ’)x(t) 2 <k+9 )\() <k+9€1 )\.(Z)
_ 4 2 MX\ (1 x\YW 5 Y >
=i | ) G 55)) =305 (rovoon (55)) ) =

1 2
O(A o ||e||L2).

+
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Taking k(¢) € R that satisfies 25() = A(¢) and rescaling,

4 2(MX\ (1 x 'V 4 FERE
At)3 /W (T) (5 (P5k+961x (” m)) __Q(k(t)) ( <k+961(t, Tl))) ) dx
A
B )\(j)z / ¢2('71 Ig)x) (%(P5k+9+k(’)€1xa’ x))% - gQ(x)4(PSk+9+k(t)El (1, x))z) dx

Integrating by parts,

A
ﬁ / v (%) (%(P5k+9+k(t)fl (t.%))% = %Q(x)4(PSk+9+k(t)61 (t. x))z) dx

2 A 2
= X(Z)z w(nl I(J)X) (P§k+9+k([)61(l,x)) i
10 A 2 4
0L /W(m I(J)X) Q()\Z)) (P<kt9+k(n€1(t,x))* dx + 0(771 lle ||L2)
. 1 )
k(z)2( €)= )»(t)z — €l - JrO(Rm)2 ||e||L2), (6-18)

where £ is given in (3-12) and

. mA{)x
€= W( R )(Psk+9+k(t)€1(l,x))-
Remark. This € is not the same as the € in (6-4).

For a function # 1 Q3 and u L Qy, by the spectral properties of £,

(Lu,u)p2—(u,u)p2=>0.
For a general u € L?,
u=a Q3 +az0x +ul,
where u*+ 1 Q% and ut 1L Q,, we have
(Lu,u)p2—(u,u)r2 > —O(a%) — O(ag).

Since €; L Q3 and €; L Qy, by Bernstein’s inequality and the fact that 1/n; < A(r) < T1/1%0/,,

A A
(0 p2= (1,02~ ((1 - W(me(t)))ep QS) - (W (771 Igl)x) P>k to+k(n)€rs Q3)
L2 L2

1
< E”E”LZ
and
A A
(€, 0x)p2 = (€1, Q0x)p2— ((1 — w(me(t)))El, Qx) - (1/f (7)1 Ig)x) P>ptotk()€rs Qx)
L2 L2
< —llellz2-

R
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Therefore, for some 0 < § < 1 (§ = 1/100 will do), since |Q(x)|® < 3,

- 2 2 1 2
T (e D= el + O s el

) nix p X
v (T) ( <k+9€1x (f, Tf)))

=
A@)?
Likewise, since € L iQ3 and e 1L iQx,

4 mx\ (1 x \YV 1o Y X \YV
[ ) G raweens(i555)) - 5200555 (P 555)) ) o
8 mx\(p X
w(T) ( <k-+9€2x (l, m))
Therefore,

>
M)
2/¢2(%)|P5k+9ux|2dx—%/Wz(%)|1)sk+9u|6dx
>;||E||2 +L w(ﬂ)p € ([ L) i
=202 T w03 R ) =K 000) | e
4 s(mx\[10 x V x \
“or [ (%) (?PSHQQ(W)) Petro(r505)
2 4
+ §P<k+9Q()\)(CZ)) <k+9€(t, %) ) dx
1 5 O\
s f (oo (i) v v35) + G pspoe e 555) ) 0

0 b 10) L
- (A(z)zT“)_ (Rx(t>2"€"L2)'

Now, by the fundamental theorem of calculus and the product rule, for any x € R,

2
mx X nmx X
s ([P (560)| =50 [ e (o) oo 555) |

N X m
P ,— —
v rere (i)
Therefore, by Holder’s inequality, the fact that ||€|| ;2 < nx, the fact that 1/n; <A(t) <T 1/100 /. and

2
1 156
—ol——— 2 o 2 ]
. ( T ||e||L2) sl

2
1 1 156
—0o|l——— 2 o 2 ]
L (R 02 ||€||Lz) 02 le2l72

L |

<
A

1
<_ - 2
aYORE lell 2wy | ¥ R €l 2-

R=T1/25,
1 nx 2 P ; x\|® < 1 nix p
s [ (Y Pt )| s (2 s (55 )| et et
me ||, (mx X\t e
S | () Porooes 155+ e
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Next, by Holder’s inequality and the Cauchy—Schwarz inequality, for j = 3,4, 5,

! mxY X\ x
W/ ‘”(?) Pfk”f(f’m) Q(m) >
1 | nix 2 X
SOIGHE (x(m / ‘”(?) P f"”é(” m)
N

el (TP (t -

E —
A(t)z 2ty |V TR ) T b
Therefore, for 1. < § sufficiently small and T sufficiently large,

nix nx 1 1
2 [0 (M) Pasonsl? x5 [0 (M ) el = el 0 )- 6419

Plugging (6-19) into (6-14), integrating in time, and using the fact that 23k = r]l_zT for T'(n;) sufficiently

large, the term
22kT1/20
oL [ tewnrora)

can be absorbed into the integral of the first term on the right-hand side of (6-19). Since

/JX(z)‘2 dt =

the proof of Theorem 18 is complete. O

6 (j—2)/4
6—j)/2
dx) ||€||( -/

2

<

Lz.

Since both the left and right-hand sides of (6-2) are scale invariant, the same argument also holds for
an interval J where
A< A1) < AT'/100 (6-20)
for any 4 > 0.

Corollary 19. Let J = [a, b] be an interval where (6-1) holds for some T sufficiently large and (6-20)
also holds. Then (6-2) holds.

7. An L? bound on ||e(s)| ;2 when p > 1

Transitioning to s variables, under the change of variables (3-10), Theorem 18 and Corollary 19 imply

that if [a,a + T'] C [0, 00) is an interval on which
S.uPse[a,aJrT])‘(S) < 1/100
infsefq,a+1] A(s)

’

then
a+T 5 ) | 1
/a le)172ds <3(e(@). 50 +x0x);2—3(ela+T), 30 +x0x) ;2 + O(F)'
Theorem 18 implies good L¥ integrability bounds on [€(s)|| ;2 under (2-8), which is equivalent to

sup [le(s)[|z2 = n«.
s€[0,00)
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Theorem 20. Let u be a symmetric solution to (1-1) that satisfies ||u| 2 = || Q| 1.2, and suppose

sup le(s)llL2 < nx« (7-1)
s€[0,00)
and ||€(0)| ;.2 = n«. Then
o0
/ le)I2. ds < na. (7-2)
0

with implicit constant independent of 1« when 0. < 1 is sufficiently small.
Furthermore, for any j € 7>, let

s; = inf{s €[0,00) : ()| L2 = 27/ na}.

By definition, so = 0, and the continuity of |€(s)||; 2 combined with Theorem 8 implies that such an s;
exists for any j > 0. Then,

o0
[ 1ewids <2, (73)
sj

for each j, with implicit constant independent of Ny and j > 0.

Proof. Set Ty = 1/n4 and suppose that Ty is large enough that Theorem 18 holds. Then by (3-15)
and (7-1), for any s’ > 0,

| sup  InA(s)— inf InA(s)| <1, (7-4)
SE[s’, 8"+ Tx] s€[s’, s/ +Tx]

with implicit constant independent of s > 0. Let J be the largest dyadic integer that satisfies

J =2J* §—lnni/2.

By (7-4) and the triangle inequality,
sup  InA(s)— inf  InA(s)| S J,
s€[s’, s’ +J Tx] SEls’, "+ Tx]
and therefore

SUDy e[y, s'+37 T+ M(S) 1/100

- <T. . (7-5)
1nfs€[s’,s’+3JT*])"(S) *
Therefore, Theorem 18 may be utilized on [s/, s’ + J Tx]. In particular, for any s > 0,
s’ +JTx 1
[ e ds 5 1l + et + STl + 0 15 7-6)
s/ *

In fact, if s’ > J T, then by (7-5),

§'+J Ty 1
2 . .
e(s ds < inf e(s + inf e(s + 0 . (77
/s’ ” ( )”Lz sels'—J Tu. '] “ ( )||L2 s€ls'+ T Tors/+20 To] ” ( )||L2 (JgT*g) (7-7)
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In particular, for a fixed s’ > 0,

s’ +(a+1)J T 5 1 s’ +(a+1)J T , 1/2 1
sup | @2, § —— (sup | e ds) + 0( ) (7-8)
a>0Js'+aJ T« L JI/ZT*I/2 a>0Js'+aJ T L JOT?

Meanwhile, when a = 0,

s+ J T 5 . 1 s'+(a+1)J T« 5 1/2 1
e(s <|le(s +————|(su / e(s ds) +0( ) (7-9)
L ot st (s [0 e =

Therefore, taking s" = s, ,

/Sj* +(a+1)J T

sup le()17 2 ds S 2770w + 02~ %n3). (7-10)

a>0Jsj,+aJ T«

Then by the triangle inequality,

s+ J Tx .
sup / le)I22 ds < 2.
s/

§'Z58,

and by Holder’s inequality,

'+ J Ty
sup / le(s)||z2ds < 1.
N

§'=8j, Js

In fact, arguing by induction, there exists a constant C < oo such that

R ALY |8
swp [ ewlpads =c a-11)
8" =Spjy I8
for some n > 0 implies that
s +JniT,
wp | eI, ds < CTe+DT (-12)
8" 28+ 1)jx V8

and by Holder’s inequality,
s/+Jn+1 T*
sup / lle(s) 2 ds <cl/2
$'ZS(n41)jx V8

Therefore, (7-11) holds for any integer n > 0.
Now take any j € Z and suppose 7jx < j < (n + 1) jx. Then by (7-11),

sup
a=0

si+@+nJntir,
/ el 2 ds < J.

sj+aJntIT,
Therefore, as in (7-10),

si+(@+1)JrtiT, )
sup / leI2, ds <2,

a>0Jsj+aJ+H1T,
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and therefore by Holder’s inequality, for any s” > s;,

s'+27 Ty
sop [ el ds <1,
s'=s; Js’

with bound independent of j. Then by the triangle inequality, (7-5) holds for the interval [s’, s’ +3-27/ J Ty],
and by (7-6)—(7-9),

sj+27 JTx
/ le@)I22 27 713
8j
and therefore, by the mean value theorem,
inf ez S 2702,
S€[sj, s;+27 JTx]
which implies
Sj1 €[sj, 85 +27 I Ty].

Therefore, by (7-13) and Holder’s inequality,

8j+1 ) 8j+1
[ et ds <2 and [T el ds <1, (7-14)
S Sj
with constant independent of j. Summing in j gives (7-2) and (7-3). O

Now, by (2-18),
le(s) L2 ~ le(s) 2
for any s’ € [s, s + 1], so (7-2) implies
im_le(s)]| 2 = 0.
Next, by definition of s;, (7-14) implies

Sj+1
/ le(s)ll 2 ds < 1.
S

and, for any 1 < p < oo,
i+
[ ez ds st 20, (7-15)
8j
which implies that |[€(s)]|| ;2 belongs to LY for any p > 1 but not to L.
Comparing (7-15) to the pseudoconformal transformation of the soliton, (1-11), for 0 <t < 1,

AMt)~t and  |le()]p2~1,

SO

1
f ()]l 22 (0) 2 dit = oo,
0
but for any p > 1,

1
| e e dr <o
0

For the soliton, €(s) = 0 for any s € R, so obviously € € LY for 1 < p < oo.
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8. Monotonicity of A

Next, using a virial identity from [Merle and Raphael 2005], it is possible to show that A(s) is an
approximately monotone decreasing function.

Theorem 21. For any s > 0, let
X(s) = inf A(7).
T€[0, 5]
Then for any s > 0,
A
1<) 5 8-1)
A(s)

Proof. Suppose there exist 0 < s_ < s < oo satisfying

AMsy) .
o)

(8-2)

Then we can show that u is a soliton solution to (1-1), which is a contradiction since A(s) is constant in
that case.

The proof that (8-2) implies that « is a soliton uses a virial identity from [Merle and Raphael 2005].
Using (3-11), compute

d A
%(anzQ) + Ts”)’Q”iz +4(%Q +J’Qy,€2)L2

A
= 0l + 1llell) + 0 |2

||6||L2) +O(lell72) + Ol 2llel}s)- (8-3)
Indeed, by direct computation,

hex (X* Q)+ Q*(x?Q) —x*Q =4(30 + x0x).
Then by (3-15), (3-16), (7-2), and the fundamental theorem of calculus,

2 o 1
QI +4 [ (24 Q+x04) = 010,
S—

Therefore, there exists s” € [s—, s+] such that

(e2.30+x0x) ;2 <0. (8-4)

Since 5" > 0, there exists some j > 0 such that s; < s’ + T < 5. Using the proof of Theorem 20, in

Sji+1+4J
S/

Sji+14+J .
/ le()IZ2 ds < 27U+,
S/

particular (7-14),
A
Ts ds < J. (8-5)

Then by Theorem 18, (8-4) implies
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and therefore by definition of s 1147,

Sj+147
[ le(s)ll 2 ds < 1. (8-6)
s/

Then, (8-6) implies that (8-5) holds on the interval [s’, 5j 4 1427], and arguing by induction, for any k& > 1,

Sj+k 2 ik
/ le()I2, ds <275,
s/
and

Sj4k
/ le(s)ll 2 ds < 1.
s/

with implicit constant independent of k. Taking k — oo,

o0
[ 1€z as=o,

N

which implies that €(s) = 0 for all s > s’. Therefore,
o = 12 Q(hx)e’”

for some y € R and A > 0, which proves that u is a soliton solution. O

9. Almost monotone A (1)

The almost monotonicity of A implies that when sup(/) = oo, u is equal to a soliton solution, and when
sup(/) < oo, u is the pseudoconformal transformation of the soliton solution.

Theorem 22. If u satisfies the conditions of Theorem 7, u blows up forward in time, and

sup(/) = oo,
then u is equal to a soliton solution.
Proof. For any integer k > 0, let
I(k) ={s > 0:27%F2 < }(s5) < 27k+3y, 9-1)
Then by (8-1),
27K <a(s) <27k 3 (9-2)

for all s € I(k). By (3-10), the fact that sup(/) = oo implies that
> 27| 1(k)| = 0.

Therefore, there exists a sequence k;, /' oo such that

_ 1
(k) 2720 =

n

and such that |I(ky,)| > |I (k)| for all k < k.
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Lemma 23. For n sufficiently large, there exists s, € I(ky) such that
leCsn)ll 2 < 22,

Proof. Let I(ky) = [an, by]. By Theorem 18, for n sufficiently large,
[ leads S n o+ 27kl <
I(kn)

Then, using the virial identity in (8-3),
(Ban+by)/4
/ (€2 10 +x04) 2 ds = O(na) + O(1).
an

Therefore, by the mean value theorem, there exists s, € [an, %(361,1 + bn)] such that

1

|(€2(S )s 2Q+ Qx)L2| |I(k )l

By a similar calculation, there exists s, € [%(an + 3by), bn] such that

1

|(€2(S ) 2Q+ Qx)L2| |I(k )l

Plugging (9-3) and (9-4) into Theorem 18,

a |
d
/s; e ds 5 o

Then by the mean value theorem there exists s, € [s, . s, ] such that

1
2 < -
letsmlE2 5 7

Since |I(ky)| > 2%n k; 2, the proof of Lemma 23 is complete.

Returning to the proof of Theorem 22, let m be the smallest integer such that
2ky

ki

27 = I (ky)|.

Since |1 (k)| < |I(ky)] for all 0 < k < ky, (9-5) implies that
|Sn| < 22kn+m+1

Let r,, be the smallest integer that satisfies

2 Chntmt1) 3ok L _ 5r
m

1737

(9-3)

9-4)

(9-5)
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Since A(s) > 27k for all s € [0, 5,], setting t, = s~ (s,,), rescaling so that A(z) > 1/5; on [0, 2%kn nl_ztn],
applying Theorem 18, then rescaling back,
IP=rytlly2 (10,0,1xm) < M-

Arguing by induction on frequency and using (4-41) and the preceding computations,
1 Pory i tmfatt N2 o gty S K 272627 (9-6)
Then using the computations in (5-1)—(5-6),
E(PSrn+kn/4+m/4u(tn)) s (k32—2kn 2—m2rn+kn/4+m/4)2 ~ (k,%2_k”/12_5m/12n1_1)2.

Next, following the computations in the proof of Theorem 16 and using (9-6),

SUD E(Psr, iy fa-4myatt(1)) S (g2 ~Hn/1275m/ 12 ty2,
t€[0,1,]
Since m > 0 for any n, taking n — oo implies that E(u¢) = 0. Then by the Gagliardo—Nirenberg
inequality, u is a soliton. O

It only remains to show that when sup(/) < oo, u is a pseudoconformal transformation of the soliton.
If one could show that the energy of u¢ is finite, then this fact would follow directly from the result of
[Merle 1993]. Similarly, if one could generalize the result of that paper to data that need not have finite
energy, then the proof would also be complete.

We do not quite prove this fact. Instead, suppose without loss of generality that sup(/) = 0 and

sup €@ z2 = nx.
—1<t<0

Then write the decomposition

e_l-y(t) x e—i]/(t) X
ult.x) = 3o Q(x(z)) i A(z)l/ze(l’ Mﬂ)

and apply the pseudoconformal transformation to u(z, x). For —oo <t < —1, let

1 1 :
v(t,x) = mu(;, )Z—C)e”‘z/‘”

_ 1 e7a/n o~ )eir*ar 4 1 e/ ¢ l X ) pix?/ar
12 (1 /)2 = \er(1/1) V2 0(1/0)12 N\t tA(1/1)

Since the L2 norm is preserved by the pseudoconformal transformation,

iy(1/t) ~— /1 + \
i L PO (x|
N—oo| /2 A(1/0)1/2 N\t tA(1/1) 12
and
1 e/ 1 X ix?
- /4t <
oty |[1172 Ml/r)l/ze(t’zx(l/r))e o
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Since

1 eir/n X
t1/2 X(1/0)1/2 Q(zk(l/z))

JTO [y
ROYE Q(M)

is in the form

it only remains to estimate
1 eiv/n X
t1/2 x(1/1)1/2 Q(tk(l/t)

Once again take (9-1). As in (9-2), for any k > 0, we have A(s) ~ 27k foralls el (k). Furthermore,
by (3-15), ||e(?)|| 2 — 0 as ¢ /' 0 implies that there exists a sequence ¢ " oo such that

)(eix2/4t _ 1)

L2

[[(k)| > ¢ forall k > 0.
Then by (3-10), there exists () \, 0 as ¢ 0 such that
A0 < 2r@), soA(1/1) <tV (1/0). 9-7)

Therefore, since Q is rapidly decreasing,

i 1 Q( X )x2 0 9-8)
1im —_— = -
ool t1/2)0(1/1)V/2 = \eh(1/1) ) 41 || 12
as well as
1 X .2
li ix“/ar _q =0.
f\“—“oo‘ iz () © .2

Therefore, by time reversal symmetry, v satisfies the conditions of Theorem 7, and v is a solution that
blows up backward in time at inf(/) = —oo, so therefore, by Theorem 22, v must be a soliton. In
particular,

_ iM%t i641/2 _ b (L XY ke
v(t,x)=e'""e'7A Q(Ax)—tl/zu(t,[)e .

Doing some algebra,
u(;’ ;) = ei)‘zteiee_ixz/‘”t1/211/2Q()‘x)’

SO
iz —if ix2ar L 172 (MY
ut,x)=e e Ve tl/z)‘ Q([ .
This is clearly the pseudoconformal transformation of a soliton. This finally completes the proof of

Theorem 7.
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10. A nonsymmetric solution

When there is no symmetry assumption on u, there is no preferred origin, either in space or in frequency.
As a result, two additional group actions on a solution # must be accounted for, translation in space:

u(t,x) > u(t,x —xp), xo€R, (10-1)
and the Galilean symmetry:
e_itégeixgou(t, x —2t&), & €R. (10-2)

This gives a four parameter family of soliton solutions to (1-1), given by (1-14). Making the pseudocon-
formal transformation of (1-14) gives a solution in the form of (1-15).

In this section we prove Theorem 5, that the only nonsymmetric blowup solutions to (1-1) with mass
laeol ]242 =0 22 belong to the family of solitons and pseudoconformal transformation of a soliton. To
prove this, we will go through the proof of Theorem 4 in Sections 2-9, section by section, generalizing
each step to the nonsymmetric case. There are several steps for which the argument in the symmetric case
has an easy generalization to the nonsymmetric case, after accounting for the additional group actions
(10-1) and (10-2). There are other steps for which the nonsymmetric case will require substantially more
work.

10.1. Reductions of a nonsymmetric blowup solution. Using the same arguments showing that Theorem 4
may be reduced to Theorem 7, Theorem 5 may be reduced to:

Theorem 24. Let 0 < 1« < 1 be a small fixed constant to be defined later. If u is a solution to (1-1) on
the maximal interval of existence I C R, ||ugllz2 = ||Qll 2, u blows up forward in time, and

sup inf ||eiyeixéokl/2u(t, AX +Xx0) — O(X) |12 < n«, (10-3)
t€[0,sup(1)) »»¥>80,X0

then u is a soliton solution of the form (1-14) or the pseudoconformal transformation of a soliton of the

form (1-15).

Reducing Theorem 5 to Theorem 24 requires the following generalization of Theorem 8, which was
proved in [Dodson 2021, Theorem 2].

Theorem 25. Assume that u is a solution to (1-1) with ||ug| ;2 = || Q|| 2 that does not scatter forward in
time. Let (T~ (u), T (u)) be its lifespan (T~ (1) could be —oo and T+ (u) could be 4+00). Then there
exists a sequence t, /' T (u) and a family of parameters A, > 0, &, € R, x, € R, and y, € R such that

)\,ll/zeixé”eiy”u(tn, Anx +Xx,) = Q in L%

Lemma 6 can be generalized to the nonsymmetric case, proving that ||e? e?X€031/2y (A x +x¢)— Q|| 12
attains its infimum on y € R, &y € R, xo € R, and A > 0. Theorem 9 is also easily generalized to the
nonsymmetric case, showing that the left-hand side of (10-3) is upper semicontinuous in time and
continuous in time when small. Therefore, Theorem 5 is easily reduced to Theorem 24 using the same
argument that reduced Theorem 4 to Theorem 7.
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10.2. Decomposition of a nonsymmetric solution near 0. When a nonsymmetric « is close to a soliton,
it is possible to make a decomposition of u, generalizing Theorem 10 to account for the additional group
actions in (10-1) and (10-2).

Theorem 26. Take u € L2, There exists o > 0 sufficiently small such that if there exist Ao > 0, Yo € R,
X0 € R, and &y € R that satisfy

le/70e™0.82uhox + x0) = Q)2 <«
then there exist unique A >0, y € R, X € R, and & € R that satisfy

(.02 =(6,i0%) 2= (€. 0x)p2 = (€.iQx)p2 =0,

where
e(x) =X\ 2y(hx + %) — 0. (10-4)
Furthermore,
A ~ A X—X() iyo jixEgy1/2
lellz2+ A_o_l +|y —vo—Eo(X—x0)|+ é—néo + < et 0h T u(hox + x0) — Qll 2.

Ao

Remark. Once again, since e¢’” is 27-periodic, the y in (10-4) is unique up to translations by 27k for
some integer k.

Proof. By Holder’s inequality, if € = eiyoeixgok(l)/zu(kox + Xxo) — Q(x), then

(. 0 2l + I(e. Q) 2] + 1.1 0 2] + [(€. 0 2] S [0 0h 1 2u(hox + x0) — Q(x) | 2.
As in the proof of Theorem 10,
(e XN 2y (x 4+ %) — O(x), )12 (10-5)
is C! as a function of ¥, A, X, and £, when

f € {Q3viQ37 Qx’iQx}-

Indeed, by Hélder’s inequality and the L2-invariance of the scaling symmetry,
%@"Ve""sk“ Pulhr + %) = Q). [z = (7 ™1 PuGx +3). )2 5 Nl 21/ 2.
Next,

%@"yeixfx“zu(xxw)—Q<x>, e = ([xe” e )V 2ux + %), )2 S lull2llxf 2. (10-6)

Since Q and all its derivatives are rapidly decreasing, x / € L? and (10-6) is well defined.
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Next, integrating by parts,
D20 + 5 - Q). [

1
= (2)\ eV N2y (0 x + %) + xe e 2y, (Ax + X), f)
1
= —(elyelxéxl/zu(xx +3), gz — (e ™ 2ux + %), f
2A A L2

L 1 . .
- %(iewe'xéxl/zu(xx + %), x )2 — X(ezlyeméwzu()uc + %), X fx) 2
1 1 &
S sz /e + Sl fl 2 + S lull 2l f L e

Similarly,

D@7 2u(x 45— Q(x), [y
= (X0 2y (Ax + X), )2
= _%(igeiveixéxl/zu(xx +3), )2 — %(eiyeixékl/zu()ux + %), fu)p2
< %Ilullellflle + |i—'llullellfxlle-

Similar calculations also prove uniform bounds on the Hessians of (10-5).
Suppose Ag =1, Y9 =0, xo =0, and & = 0. Compute

%(efyeixéxl/zu(xx +5)-0(x). 0¥

Q+x0x.0%),. = 1107,
0+x0x.i0%),, =0,
Q+x0x. Qx)2 =0,
Q+x0x.10x) 2 =0

A=1,y=0,x=0,6=0,u=0

%(eiyeixgkl/zu()\x+)~c)—Q(x),iQ3)Lz

a%(eiyeixékl/zu(kx+)?)—Q(x), 0%,

A=1,y=0,x=0,6=0,u=0

(2
A=1,y=0,X=0,§=0,u=Q (
(2
(2

0 iy ixEy1/2 5)— 3
R (e etrs )\ u(kx+x) Q(X), 0 )L2 A=1,y=0,%=0,6=0,u=0

0 iy ixEy1/2 o~ 3 _ 3y

5, 7 U0 + 0 = 00, Q2| = (00,072 =0,

d iy - , o

gy €7 U0 + 2 = 0 QN =007 = 1Ol
i iy ixEq1/2 A 3 _(; —

ay(e ¢ Ul £ X) = 0(). 072 A=1,7=0,5c=0,€=0,u=Q_(lQ’QX)LZ_0’

0 iy ixEy1/2 o 3 —i0 i 0
5, €7 U0 + 9 = 0. Qe = 00,102 =0

%(e"ye"xéx”zu@x +7)— 0(x), 0%) 2

- (Qx» Q3)L2 = 0»
= (Ox, iQ3)L2 =0,

A=1,y=0,X=0,£=0,u=Q

0 iy ixEq1/2 N .13 ‘
8)2(6 A UM +X)— 0(x),iQ7%) 2 A1, y0,5=0,6=0,4=0
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=(0x.0x)12 = ||Qx||iz,
=(0x.,10x)12=0;

A=1,y=0,x=0,6=0,u=0

%@"Ve"xfx”zu(xx +3) - 0(x), 0%);2

A=1,y=0,X=0,E=0,u=Q0
%(ei}’eixé')\l/Zu()\‘x +5)— 0(x), Q3)L2

0 iy ixEq1/2 -~ 3 _ (i 3y
aé(e e A u(kx—{—x) Q(*X)’ Q )L2 A=1,y=0,%=0,6=0,u=0 - (lev Q )L2 —0,

0 iy ixEy1/2 N . 13 —(; R N
8g(e A u(AXx +X)— 0(x),i07) 12 A=1,y=0,5c=0,§=0,u=Q_(le’lQ )2 =0,

%(eiye"xéx“zu(xx +3)— 0(x). 0x)p2 , = (030,012 =0,

= (ix0.i0x)12> = —310l3..

A=1,y=0,%¥=0,6=0,u=

0 iy ixEq1/2 2y — 3
ag(e el u()»x+x) 0(x),0 )L2 A=1,y=0,%=0,6=0,u=Q

Therefore, by the inverse function theorem, if Ag = 1, Yo =0, & =0, and xo = 0, there exists A > 0,
y €R, £ eR, and X € R satisfying
lellz2 + 1A= 1+ ]+ [&] + 2] S lle0e™> 00 2u(hox + x0) — Qll 2 (10-7)
Asin (3-5) and (3-6), A > 0, ¥ € R, and X € R are unique, and y € R is unique in R/27n.
For general Ao > 0, xg € R, & € R, and Yy € R, combining (10-7) with symmetries of (1-1) yields

)~C—X()
Ao

< Jle0e* 8001 2u(hox + x0) — Q2. O

+

A 5 A
lellpz + [=— =1+ |y —vo —&o(X —x0)| + | — —&0
)\.0 )\0

As in Theorem 11, it is possible to show that A(¢), y(¢), x(¢), and £(¢) are continuous functions
on [0, sup(/)) and are differentiable almost everywhere on [0, sup(/)). Let s(¢) be as in (3-10). Since
s :[0,sup(Z)) — [0, o0) is monotone, the function is invertible: ¢(s) : [0, c0) — [0, sup([)). Letting

y(s) =y ((s)), Als)=A@(s)), x(s)=x((s), &(s)=§@(s)),

and letting

(s, x) = €'Y *E6) ) ()1 241 (5), A(x)x + x(5)) — O(x), (10-8)
we can compute

As As
es =iys(Q+e€) +i&x(Q+e)+ 7(%(Q +e)+x(Q+e)x) —i==5®)x(Q +¢)
+ 210+ —i ZEE(Q+ ) (0 +)xx
+2£()Q+)x—iE(9)*(Q+ ) +i|Q+ €' (Q+e). (10-9)

Taking f € {03,i03, 0x.i0x},

e N =65 )2 =0.
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Using the fact that £ belongs to the span of {Q3,i 03, O.iQx} if and only if i f belongs to the span of
{03,103, 0x.,i0x} as a real vector space, compute the following:

(ys(Q+€), 2= (ys0, N2 =0 if f =03 0x,i 0y,
(75(0+€).i0%) =y Qll% 4
, —1(&©) - FE6) 1012,
(- Je0)ax@r 0N = +o(lsi - Relleln) if /=i (10-11)
O(|&s(s) = B£()|lell )  if £ €{0% 0x.i0%):;

(10-10)

(i3seere.s) =(-TE00.r) =0 it 5 =0%0mi0x
L2 L2

(10-12)
(0. 000°) = -Fewlol.
(EE)HQ+6). N2 = ((£(5)?0. )2 =0 if f =07 0x.iQx, .
(£(s)°0.i0%) = ()| Q4
b (10 + 0+ x(0+0x 0%)0 = 221013 + O | 22 el
) > X 2 — an L4 A L2 )
N N (10-14)
5 (3(Q+)+x(Q+ ). )2 = 0( - ||e||Lz) if f=0x.i0%i0x;
Xg Xs 2 Xs
(7 - zs(s>) (Q+6)x. 0x)p2 = (7 + 25(s)) 10122 + 0( S+ 2A0) ||e||Lz),
(10-15)
(’% = 25(s>) (Q+6)x. f)r2 = 0( =L 2%(s) ||e||Lz) if /=0%10%i0x.

Finally, taking € = €1 + i€,

((Q+€)xx+ilQ+el*(Q+e). /)2
=0, )2+ (iLey— L€, [z + O(Ie* (e’ + Q). /)2, (10-16)

where £, £_ are given by (3-12). Since £, £_ are self-adjoint operators, (€1, 03);2 = (€2, Q)2 =0,
LOx =0, and

(i(Q+€)xx+i|Q+€|4(Q+E)’f)L2
10117« + OWel*(lel® +1Q1%), /)2 if f=i0°
_ Jowelaer +10P). £, it/ =10 0 1p
—(€2, L-0%) 2+ O((|e|* (e +1Q1), /)2 if f =07,
—(€2, L-0x)p2 + OW(e*(le* +|QP), /)2 if f = Ox.
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Combining (10-10)—(10-17), we have proved

s
&~ 26(s)

oS
A

(e 1= 350562101+ o

+0(%+%m

1 As
(650101 + o

+0(%+%m

£s

s
- Z2(s)

s b
101~ (2. £-0%)2 + 0|6 160

+ o(
(% + 25) ”Qx”iz — (€2, L-0x)p2+ 0(
5 4 2k(s)

0
+o(|3

Xs

&s

A
||6||L2) + 0( ||E||L2)

||6||L2) +O(lell 2212120 + €l z)) =0,
N

A
eliz) + (%2 1els2)

||6||L2) + O(llell 72121700 + €l 70)) = 0.
N

A
||e||Lz) i 0( ||e||Lz)

A
Ielle) +O(lell72 (12117 00 + l€ll700)) =0,
s

A
||e||Lz) ; 0( ||e||Lz)

A
||€||L2) +O(lell72(12ll7.00 + ll€l 7)) = 0.

As
- 75(3)

Using the same analysis as in (3-15)—(3-18), for any a € Z>,

a+1
/a

& —

/a+1
a
a+1
/a

a+1
/c.z

Vot 1= S2E6) — ()2

Xs
— 42
)\.+S

a+1
ds < / le()1. ds.
a

I
()
As

A

a+1
ds < / le(s)I2, ds.
a

a+1
ds < / le()ll2 ds.
a

a+1
ds < / lle(s)|| 2 ds.
a
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(10-18)

(10-19)

(10-20)

(10-21)

(10-22)

(10-23)

(10-24)

(10-25)

10.3. A long-time Strichartz estimate in the nonsymmetric case. The symmetry (10-1) does not impact
the long-time Strichartz estimates in Theorems 13—15 at all. However, the Galilean symmetry (10-2)

does, since it involves a translation in frequency, and therefore will impact estimates of # under frequency

cutoffs. Nevertheless, it is possible to prove a modification of Theorem 15 using virtually the same

arguments.

Theorem 27. Suppose A(t), x(t), £(t), and y(t) are as in (10-4). Also suppose that on the interval

J =1[a,b],

1
A1) > —, /ﬂxayidz=71 and 02T = 2%
m J

Furthermore, suppose that

@I

- <

ORE

no forallt €la,b].
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Then
10 1P 2 2 /2
1Pl e ST+ (7 [ e Er02ar)
a

Proof. Observe that by (10-4),
u(t,x) = e—iJ/(t)e—ixé(t)/k(t)k(t)_1/2Q(X —x(t))
’ x0)

+e-iy(t)e-ixs(t)/x(t)k(Z)—1/26(t x_x(’)), (10-26)
T

Then by (4-3), (4-4), and (10-26),
||P>0u||LooL2([a b]XR) 4770

Applying the induction on frequency arguments in Theorems 13—15 gives the same results. ([

10.4. Almost conservation of energy for a nonsymmetric solution. 1t is possible to use the long-time
Strichartz estimates in Theorem 27 to prove an almost conservation of energy for a nonsymmetric solution.

Theorem 28. Let J = [a, b] be an interval such that

Alt) = i |§(l)| <no foralltelJ and / )\(Z)_2 dt=T, n, 2T — 93k,
m A) J
Then,
sup E (P pou(1)) < / le@)I2A(0) 2 di + (sup st )) T 22kp10, (10-27)
teJ teJ )L( )

Proof. Decompose the energy as in Theorem 12. Since E£(Q) = 0 and (€2, Ox) =0,
E@)=E (e—iy(t)e—ixs(t)/x(t) A0 (x__x(’)) L OO0 ()12 (t, x—_X(t)))

A1) A1)
= 10l S0~ 101 5yl — (@ e
_%MB b gl ¥elts 2 Ter e + 0 (Ve ey el
~ 5o | @@leaxdx— s [ 0w et s
+ 0 (sl + sl
=j%wniﬁm)zneup—%(Vel,qm+f((l))2( e + s Vel

/Q(x)“el(z x)?dx — /Q(x)462(t x)?dx

2k(z)2 2x( )2

3 - 6 ~
+0(gralelis + ralelte). (1028
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Using the bounds on |£(¢)|/A(¢), the fact that Q and all its derivatives are rapidly decreasing, Fourier
truncation, and the mean value theorem implies that (10-27) holds for some 7y € J. Then, using the
long-time Strichartz estimates in Theorem 27 and following the proof of Theorem 16 gives Theorem 28. [

It is also possible to generalize Corollary 17 to the nonsymmetric case.

Corollary 29. If

1 1 t
— <AMt) < —T'/100 E@OF <no forallteJ  and / A 2dr =T, 3?7 =2%,
M m o) J
then
P t,
ey f"”( )12 E( 2(0) )) P
22"/ E(r)? k
<[ lle@®? A (0) 2 dt + (Sup ) 4 22k—10
T Jr L2 reg M1)?
and
22k 71/50 1/50 2 1/50
r o, T £(1) (I o
sup [le(1) 25 < / le@I222 () di + (sup )+2 ™ r
reJ L L 2 \res M1)? n?

Proof. As in the proof of Theorem 12, since € 1L {03, Q,i03,iQ x}, there exists some ¢ > 0 such that

1

2A(1)2 IVe

/ 0 () ey (1. ) dx - / 0 er(t. ) dix

el 2A(z)2

e
L2 T oat)?

21( )?

2)»()2” 172+ 5 IVelia (1029)

Next, for ||€]|72 < no sufficiently small, by the Cauchy—Schwarz inequality, taking § = ||€||;2/|| Q]2 in
the last step,

E@* o §0 @) E0? o 1E@)?

Sl — 2 (Ve e2)p2 + Ver.er)pe = Ve

T 101 5 r Ve e (Ve s = 5 551017 — 5 5 el - m)z 2 |vel2,
0 2
> _O(A(z)z) IVel2,. (10-30)
Finally, by Holder’s inequality and the Sobolev embedding theorem, since ||€||;2 < 1,
1

0 Vel3,. 10-31
(Garatelis + psllelis) < gmalels + s Vel (1031
Plugging (10-29)-(10-31) into (10-28) proves the corollary. O

10.5. A frequency-localized Morawetz estimate for nonsymmetric u. As in Section 6, the long-time
Strichartz estimates of Theorem 27 and the energy estimates of Theorem 28 and Corollary 29 give a
theorem analogous to Theorem 18 in the nonsymmetric case.
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Theorem 30. Let J = [a, b] be an interval on which

t 1 1
@I _ <N, — <AMe)<—TY' frallteJ  and / MO 2dt=T, 3T =2%
A1) M m J
Also suppose € = €1 + i€y, where € is given by Theorem 10. Finally, suppose there exists a uniform bound
on x(t),
sup |x(1)] < R=TY?, (10-32)
teJ

Finally, suppose that £ (a) = 0 and x(b) = 0. Then for T sufficiently large,

b
/ le)]220() 2 dr

< (@, (20 +x0x)),2 = Hex(B) 10 +x0x) 2 + o sup EO o(i).
— »\2 L ’ 2 L 77% e A(Z)z T9

d)(X):/O x(%) dyzf0 W(%) dy, (10-33)

M) = [ $00) Iml Pyt Peg roul(e, x) d.

Proof. This time let

and let

Since
()| Sny' R and E(0)|/A(1) < 7.

Theorem 27 implies that the error terms arising from frequency truncation may be handled in exactly the
same manner as in Theorem 18.

Next, observe that by (10-30) and (10-31), the additional terms in the left-hand side of (6-17) that
arise from the fact that £(¢) need not be zero may be handled in exactly the same manner as the terms
involving €3 and higher powers of e.

Now decompose M (b) — M (a). Since Q is real-valued, symmetric, and rapidly decreasing, (10-33),
the bounds on A(¢), and (10-32) imply

/¢(x) Im|:e—iy(t)e—ixé(t)/k(t))\(t)_1/2P§k+9Q(x —X(Z))

A(t)
8, (e—iy(z)e—ixg(z)/x(t)k(t)—l/zPsk+9Q(x ;(?;)(l)))} Jx
30 x=x(OY on E@) 10
=0 [omo(*50) dx+ 010 = S0x 0101 + 0, (10-34)
Since £(a) =0 and x(b) =
O conon| =

o)
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Next, by Corollary 29,

/ (%) Im|:P5k+9e—il/(l)e—ixé(t)/k(t)k(t)—l/Ze(t’ x‘_x(f))

0
—i —i _ X —x(t
R 02k / R T1/50 S(t)z
S 5 —oorioo | M@ A@) 2 de+ 522677 4 sup (10-35)
TI% 799/100 |, L2 77% TI% sup >3

Next, using the computations proving (6-5) combined with the fact that (e;, Q) =0,

[ o) Im[Psk+9e—fﬂ'>e—fxﬂf)/k(f)x(r)—l/2e(z, x‘x(”)

)
X3, (Psk e 0 —IXEO/0) )\(Z)_I/ZQ(%);)(I)))] dx
— (e x 0y + (€ Qg €1 Q)+ OT)
— (23012~ 51 el + 0T ) (1036)

Finally, integrating by parts,

/¢(x) Im[P5k+93—iy(t)e—ixé(t)/k(t)k(t)—1/2Q(X —x(t))

A1)
(Pt Ve IO
—x(t
=(10-36)—/ (ZIR)Im[P<k+96 iy()p— le(t)/k(t))L(t) 1/2Q(X M)tf)( ))
X P<jyoe YD mix6O/AD) (1)=1/2¢ (z, x;(—);)(t))} dx. (10-37)
As in (6-10),
n x—x(t)
_ | Por s ce=iv®—ixe@ /A0 (1)-1/20 (=1
[ 12 ) ] Peicrseroe oeo(* )
y P§k+9e—iy(t)e—ixé(t)/k(t)k(t)—1/26(t, x;(j)(l))} I
=—(€2. Q)2+ O(T™1). (10-38)

Summing up (10-34)—(10-38) and using the fundamental theorem of calculus and the Morawetz estimate
completes the proof of Theorem 30. O

10.6. An Lf bound on ||e(s)|| 2 when p > 1 for nonsymmetric u. Combining Theorem 30 with
(10-18)—(10-21), it is possible to prove Theorem 20 for nonsymmetric u.
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Theorem 31. Let u be a nonsymmetric solution to (1-1) that satisfies ||u| 2 = || Q|| 1.2, and suppose
sup [[e(s)[L2 = n« (10-39)
s€[0,00)

and ||€(0)| 1.2 = nx. Then

o
f €72 ds < . (10-40)
0

with implicit constant independent of 1« when 1y < 1 is sufficiently small.
Furthermore, for any j € Z>y, let

sj =inf{s €[0,00) : ||[€(s)] ;2 = 277 4}
By definition, so = 0, and, as in Theorem 20, such an s; exists for any j > 0. Then,
m .
/ le() 172 ds <277 s (10-41)
5j
for each j, with implicit constant independent of N« and j > 0.

Proof. Set Ty = 1/n4 and suppose that T is large enough that Theorem 30 holds. Then by (10-39)
and (10-22),

sup  InA(s)— inf  InA(s)| S 1.
SG[S/,S/+T*] SE[S/,S/—FT*]

Let J be the largest dyadic integer that satisfies
J =2/ < —lnni/4.
By (10-24) and the triangle inequality,

sup InA(s) — inf ln)\(s)‘ <J,
S€[s’,s'+J Tx] s€[s’,s"+J Tx]

and therefore,

SUPgefs,s'+3J T, A(5) _ 71/100
infs€[s/,s/-|—3JT*] A(s) ™ *
Rescale so that infye[y, ¢35 7,] A(s) = 1/11. Then make a Galilean transformation so that £(s”) = 0 and

a translation in space so that x(s”) = 0 when s” € [s/, s’ + 3J Tx] is the other endpoint of the interval of
integration. Then by (10-23) and (10-25),

K 1
sup HOI Sn«dn; K no and sup |x(s)|$J2T,.<l/100+—T,,<1/100J ¢ T*I/ZS.
SE[s’,s’+3J T4] )‘(s) SE[s’,s’+3J T4] M

Therefore, by Theorem 30,

s'+(a+1)J T 5 1 s'+(a+1)J T 5 1/2 1/50 2 1
su e(s <—|su / e(s ds) +T. +0(—),
s [ el s o (0213 el 20 +0( S
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and when a = 0,

s’ +J Ty 5
[ oz
N

< lle@sNlz2 +

1 s'+(a+1)J Tk 5 1/2 1/50 2 1
—  _|(su e(s ds + T, + 0( )
Jizrl/? (aZF())/S’—FaJT* etz ) o JOT?

Therefore, taking s" = s,

sup le()|1Z2 ds < 2770w + 0Q%*p)).

a=0

/Sj* +(a+1)J T
SjytaJ T«
By the triangle inequality,

s’ +J Tx .
sup / le)I22 ds < 27,
s/

=58,

and by Holder’s inequality,

s’ +J Tx
sup / le(s)||z2ds < 1.
s/

§'=8),
It is therefore possible to prove Theorem 31 by induction. Indeed, suppose that for some n > 0,
s+ I Ty s+ I Ty
sup / le(s)|lf2ds <C and  sup / ||e(s)||]{2 ds < C2J",.
S =Spjy I8 S =Spjy I8
Then by (10-24),
sup ‘ sup InA(s) — inf ]ln k(s)! <CJ. (10-42)

§'=5j, sels),s’+Jn+H1T,] sels/,s'+J T«
Next, rescaling so that infs¢[y oy ynt17,]A(s) = 1/n1 and setting £(s”) = 0, (10-23) implies

SOl 2~ xn

< n«11C2J <K 1o, (10-43)
s€ls’,s/+JnH1Ty] As)

and by (10-25), if x(s”) = 0, where s” is the other endpoint of the interval of integration,
1
sup |x(s)| < AT L o100y 12 (10-44)
sE[s/+JnH1T,] n
Then by Theorem 30, as in (7-12),
s'+J LT, 1 .
sup / le@)I|? ds < J~OFOTIN 4 1}/ 20n2 04 g2 < g=ED TS (10-45)
SZ8(m41)jx VS

and by Holder’s inequality,

s'+JntLT,
sup / ()l ds S 1. (10-46)
s/

8 ZS(n41)j+
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It is important to observe that the implicit constants in (10-45) and (10-46) are independent of C so long
as the final inequalities in (10-43) and (10-44) hold and C < T,)/2.
Now take any j € Z and suppose #njx < j < (n + 1) jx. Then by (10-45) and (10-46),

sup ||€(S)||iz ds < 27 N

a=0

le(s)llf2ds <J and sup

Sj+(a+1)J”+1T* sj~+(a+1)J”+1T*
/s,- +aJntIT, aZO/

sj+aJn 1T,

and therefore, after appropriate rescaling and Galilean and spatial translation, (10-42)—(10-44) hold.
Therefore, by Theorem 30,

s'+27 T, s’ +27 T, )
sup / le)l2ds <1 and / I3 ds < 277 .
S S

s'zs; Js’ '

with implicit constant independent of j. Furthermore, as in (7-13),

s'+27 J T, )
f le(s)]122 ds <2,
N

4

so by the mean value theorem,
inf - le(s)lz2 S 27 ned 72,
SE[sj, 87 +27 T Tx]
which implies
Sj41 €[sj, 85 +27 I Ty].

Therefore,
Sj+1 . Sj+1
[ ez ds <2 and [T el ds <1,
5 5
with constant independent of j. Summing in j gives (10-40) and (10-41). O

Now then, as in Section 7,

. Sj+1
Jim ez =0, [T pelzds £ 1.
and, forany 1 < p < o0
Sj+41 P p—1 —i(p—1)
[ el dss a2,
Sj

which implies that |[€(s)]|| ;2 belongs to LY for any p > 1 but not to L.

10.7. Monotonicity of A in the nonsymmetric case. It is possible to use the virial identity from [Merle
and Raphael 2005] to show monotonicity in the nonsymmetric case as well.

Theorem 32. Forany s > 0, let
A(s) = inf A(7).
€0, s]
Then for any s > 0,
A(s)

l<=——=<3.

A(s)
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Proof. Suppose there exist 0 < s_ < 54 < oo satisfying

A(sy) .
o)

Then using (10-9) and the computations in Theorem 21,

d A
(€7 Q)2 + TS”)’Q”iz +4(e2,. 304+ 0y) .2

N )\'S N
=0 [ +1- 360 007 lellsz) + O |5 lelzz) + 0 |3 + 2606l )
s
+0( |6~ 5260 lellzz) + OCIlz) + Ollelaleli). - 10-47)

Then by Theorem 30 and the fundamental theorem of calculus,

S+
QI +4 [ (240 +x04) = O,
S—
Therefore, there exists s’ € [s—, s4] such that

(62» %Q+XQX)L2 <0.

Make a Galilean transformation setting £ (s”) = 0 and a translation in space such that x(s”) = 0, where s”
is the other endpoint of the interval of integration. Also rescale so that A(s”) = T, *1 / 200/ n1. Since s’ > 0,
there exists some j > 0 such that s; <" + T < sj41. By Theorem 31 and (10-23),

Sji+14+7| ) 1 1
/l SSlds<J = —<At)<—TM

s/ A N n (10-48)
1€ (s)]

sup < 1o, and sup |x(s)] < T*I/ZS.

s€ls’,sj 1401 A(s) s€ls’,sj 11471
Then by Theorems 30 and 31,

Sj+14+J . Sii14s .
[ e ds s 20 O o [T e ds 5700,
N

’ s/

and therefore by definition of s 1147,

Sj14J
f le(s)ll2 ds < 1.
s/

Then, (10-48) holds on the interval [s', sj 4142, and arguing by induction, for any k& > 1,

Sj+k i
/ e[ ds <27y, and /
S

’ S/

Sj+k
le(s)lz2ds <1,

with implicit constant independent of k. Taking k — oo,

/ le()]2, ds =0,

S/

which implies that €(s) = 0 for all s > s’. Therefore, u is a soliton solution to (1-1). O
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10.8. Almost monotone A(t). In the nonsymmetric case, when sup(/) = oo, u is equal to a soliton
solution, and when sup(/) < oo, u is the pseudoconformal transformation of the soliton solution.

Theorem 33. If u satisfies the conditions of Theorem 24, u blows up forward in time, and

sup(/) = oo,
then u is equal to a soliton solution.

Proof. As in Theorem 22, for any integer k > 0, let
I(k)={s>0:27%F2 < J(s5) <27k+3y,

As in the proof of Theorem 22, there exists a sequence k, /' oo such that

1
—2kn
|1 (kn)|2 > k_}%

and such that |I(k;,)| > |1(k)| for all k < k.

Lemma 34. For n sufficiently large, there exists s, € I(ky) such that
leCsn)ll 2 < 22,

Proof. Let I(ky) = [an, by]. By Theorem 31,
[ 1e®izads <,
I(kn)
Then, using the virial identity in (10-47),

(Ba,+by)/4
/ (€210 +x0y) 2 ds = O(ns) + O(1).
an

Therefore, by the mean value theorem, there exists s, € [an, %(301,, + bn)] such that

1
€(s7), 10 +x <—. (10-49)
|( 20n 2Q Qx)LZ{ |1 (kn)|
By a similar calculation, there exists s, € [%(an + 3by), bn] such that
1
+), 1 < __ - 10-50
(€630 +x0)1a] % 170, (10-50)
Therefore, by Theorem 30, (10-49) and (10-50) imply
sn
le(s)I7 2 ds < : (10-51)
/sn L2507 (k)|

Indeed, rescale so that A(s,) = 1/n;. Then by Galilean transformation, suppose £(s,,) = 0 and by
translation in space, suppose x (s;7) = 0. For all s € [s;,, 5,7 ], by (10-23) and Theorem 31,

) _

T S and Ix(s)] < TV (10-52)
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Therefore, by Theorem 30 and (10-23),

sF s+
n 1 n 1
2 1/25 2
(s ds < + 1« T, / e(s ds < )
/;_ lle( )”Lz 11(kp)] Nx L % . lle( )”Lz 11(kp)]

n n

Remark. To make these computations completely rigorous, partition [s;,, s;7] into a dyadic integer
number of subintervals of length ~ 1/n,, and then following the arguments proving Theorem 31, it is
possible to prove that (10-52) holds on subintervals of length ~ J /74, and then by induction, (10-52)
holds on [s;,, 5,7 ], which by Theorem 30 implies that (10-51) holds.

Then by the mean value theorem,

1
2 <« -
ez S e

Since |1(ky,)| > 2%kn k;;2, the proof of Lemma 34 is complete. O

Make a Galilean transformation so that £(s,) = 0. Then by (10-23), since A(s) = 2% for all s € [0, s,],

% < 26, (10-53)
Now let m be the smallest integer such that

2kp

K2 2" > | I(ky)|. (10-54)

Since |1 (k)| < |I(ky)]| for all 0 < k <k, (10-54) implies that
|Sn| < 22kn+m+1_
Let r, be the smallest integer that satisfies

2 Chtm+D/3 ke Ly
m

Then, as in the proof of Theorem 27, setting ¢, = s~ ! (s,), (10-53) and induction on frequency implies

1P=ryully2 10,0,1xm) < M

and
||Pzrn+kn/4+m/4u||U§([0,tn]xR) < k,fz_Zk"z_m
Furthermore,
E(Pfrn+k,1/4+m/4u(tn)) S (kiz—an2—m2rn+kn/4+m/4)2 ~ (k’%z—kn/IZ—Sm/IZWI—l)2
and

0D E(Per vty at0) 5 (2712 )2
tel0,t,
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By (10-30), if &, (s) is the £(s) in (10-8) for which &,(s,) = 0,

sup €0 (5)]? < (k22 kn/12-5m/12)~1)2
055, M2 T b

which implies that £ (s) converges to some £ as s — co. Making a Galilean transformation that maps £.o
to the origin and taking n — oo, since m > 0, (10-10) implies that E(uo) = 0. Therefore, by the
Gagliardo—Nirenberg inequality, u is a soliton. O

When sup(/) < oo, suppose without loss of generality that sup(/) = 0, and

sup [le(®)|lz2 < n«.
—1<t<0

Then write the decomposition

e exp 53] (F520) e i) (-520)
+ éta ’
k(t)l/z

() A(t)1/2 ()

and apply the pseudoconformal transformation to u(¢, x). For —oco <t < —1,

u(t,x)=

\ iy(1/1) £(1/
o(t.x) = 1 L 1 x oix2/4t _ 1 ¢ eXPI:lX)\(l/t)] x—tx(1/t) Jix/41
(172 s 1

12 A(1/1)1/2 th(1/1)
1 ei)/(l/t)exp [lxigég] 1 x—1x(1/1) ix?/at
€l — e .
t1/2 A(1/1)1/2 tta(1/1)

Since the L? norm is preserved by the pseudoconformal transformation,

iv(1/1) - E(1/1)
. 1 e exp I:lx)‘(l/t):le(l X—tx(l/t))eix2/4t =0
T e £/ ro

Next,

|00 exp [ixE0ID] Q(X - tx(l/t)) exp [ixM} exp [—ifx (l)z]

t1/2 A(1/1)1/2 tA(l/t) 2 4 \t
is of the form
l)/(t) E( ):|)\‘ / 1/2 (X X(l))
exp[ oo (1)

where

0=~ F=e(!) e Le(Da(l)

X(z):zx(;), and i(l)ztx(%).
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Also,
. o
| et /t)exp[lxk(l/t)] x—tx(1/1) RESIEY:
. . £
1 ezy(l/t)exp[zxiglxg] (x—tx(l/l)) [ X(l/l)} itx(1/1)?
(172 A(1/)1/? A1/ ’ -

1 x—tx(1/t) (x—tx(1/1))? |
rl/zxu/z)l/ZQ( (/1) )(exp[’ 4 }_)

As in (9-7) and (9-8),

1 x—tx(1l/t) (x—tx(1/1))? |
zl/%(l/r)l/zQ( 1/ 1) )(‘”‘p[’ 4 }_)

Therefore, by time reversal symmetry, v satisfies the conditions of Theorem 24, and v is a solution that
blows up backward in time at inf(/) = —o0, so therefore, by Theorem 33, v must be a soliton. Therefore,
u is the pseudoconformal transformation of a soliton, which proves Theorem 5.

Lz.

= 0.
L2

lim
1\(—00

Appendix: U? and V' ? spaces

The description here of U? and V2 spaces comes from Section 5.3 of [Dodson 2019]. See also [Koch
et al. 2014].

Definition (U ? space). Suppose u € U”P. We say that u is a U”? atom if there exists a sequence {tx} /' 0o
satisfying

u= Z Ut i )Yk
k

Dkl gay = 1.

and

Then define the norm

lu@lyrrxrdy = inf{z lea s u(t) = chuk for almost every ¢ € R, where uy (¢) isa U? atom}.
A A

Then set

||U||U£(R><Rd) = [le " ””UI’([RXRd)'

Functions with finite U f norm have finite Strichartz norms L? L% when p < p < oo and (p, ¢) is an
admissible pair. Bilinear Strichartz estimates also hold for p in the appropriate range.
Theorem 35. If I is an interval with tg € I, forany 1 < p <oo,if 1/p+1/p' =1,
t
‘ / DA R(r) dr
t

0

A

sup (G, F)dr.
UR(IxR4) ||G||Vp/(lmd)=1 1
A
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The VAP space is defined as follows.

Definition (VAp spaces). Suppose I = [0, T'] is a compact interval. Define the partition
Z={0=t<t1 <<t =T}

Then for 1 < p < oo define the norm

n
1910 2y = D 100 = vt 1] 2 gay-
k=1

Then write

= [l v}

p
||v”V§(z;1de) V(2 IxRd)’

and define the norm
||U||Vg(1><Rd) = Sgp ||v||V§(z;1><Rd) + ||U||L;>°L§(1><Rd)-

The V2 space embedding will be extremely useful.

Theorem 36. If p < ¢,
VP cU1
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